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PREFACE TO THE THIRD EDITION 

In the preparation of the third edition of this book a con- 
siderable number of new problems were added, and answers 
to many of the old problems inserted. The book was expanded 
by the addition of two new chapters; namely, Chapter VIII 
which deals with bending of beams in a plane which is not a 
plane of symmetry, and Chapter XII on the bending of curved 
bars. In Chapter VIII the notion of shear center, which is of 
great practical importance in the case of thin walled struc- 
tures, is introduced. In Chapter XII is presented the mate- 
rial on curved bars which previously appeared in the second 
volume of this book. That material has been entirely rewrit- 
ten and new material added. It is hoped with these major 
changes, as well as the innumerable minor changes through- 
out the entire text, that the volume will be not only more 
complete, but also more satisfactory as a textbook in elemen- 
tary courses in strength of materials. The author wishes to 
thank Professor James M. Gere of Stanford University, who 
assisted in revising the volume and in reading the proofs. 

STANFORD UNIVERSITY 
March 25, 1955 

S. TIMOSHENKO 



PREFACE TO THE SECOND EDITION 

In preparing the second edition of this volume, an effort 
has been made to adapt the book to the teaching requirements 
of our engineering schools. 

With this in view, a portion of the material of a more 
advanced character which was contained in the previous edi- 
tion of this volume has been removed and will be included in 
the new edition of the second volume. At the same time, 
some portions of the book, which were only briefly discussed 
in the first edition, have been expanded with the intention of 
making the book easier to read for the beginner. For this 
reason, chapter II, dealing with combined stresses, has been 
entirely rewritten. Also, the portion of the book dealing with 
shearing force and bending moment diagrams has been ex- 
panded, and a considerable amount of material has been added 
to the discussion of deflection curves by the integration 
method. A discussion of column theory and its application 
has been included in chapter VIII, since this subject is usually 
required in undergraduate courses of strength of materials. 
Several additions have been made to chapter X dealing with 
the application of strain energy methods to the solution of 
statically indetermined problems. In various parts of the 
book there are many new problems which may be useful for 
class and home work. 

Several changes in the notations have been made to con- 
form to the requirements of American Standard Symbols for 
Mechanics of Solid Bodies recently adopted by The American 
Society of Mechanical Engineers. 

It is hoped that with the changes made the book will be 
found more satisfactory for teaching the undergraduate 
course of strength of materials and that it will furnish a better 
foundation for the study of the more advanced material 
discussed in the second volume. 

S. TIMOSHENKO 
PALO ALTO. CALIFORNIA 

iv 



PREFACE TO THE FIRST EDITION 

At the present time, a decided change is taking place in 
the attitude of designers towards the application of analytical 
methods in the solution of engineering problems. Design is 
no longer based principally upon empirical formulas. The im- 
portance of analytical methods combined with laboratory 
experiments in the solution of technical problems is becoming 
generally accepted. 

Types of machines and structures are changing very rap- 
idly, especially in the new fields of industry, and usually time 
does not permit the accumulation of the necessary empirical 
data. The size and cost of structures are constantly increas- 
ing, which consequently creates a severe demand for greater 
reliability in structures. The economical factor in design 
under the present conditions of competition is becoming of 
growing importance. Th e construction must be sufficiently 
strong and reliable, and yet it must be designed with the 
greatest possible saving in material. Under such conditions, 
the problem of a designer becomes extremely difficult. Re- 
duction in weight involves an increase in working stresses, 
which can be safely allowed only on a basis of careful analysis 
of stress distribution in the structure and experimental investi- 
gation of the mechanical properties of the materials em- 
ployed. 

It is the aim of this book to present problems such that the 
student’s attention will be focussed on the practical applica- 
tions of the subject. If this is attained, and results, in some 
measure, in increased correlation between the studies of 
strength of materials and engineering design, an important 
forward step will have been made. 

The book is divided into two volumes. The first volume 
contains principally material which is usually covered in 
required courses of strength of materials in our engineering 

V 



vi PREFACE TO THE I;IRST ECITION 

schools. The more advanced portions of the subject are of 
interest chiefly to graduate students and research engineers, 
and are incorporated in the second volume of the book. This 
contains also the new developments of practical importance in 
the field of strength of materials. 

In writing the first volume of strength of materials, atten- 
tion was given to simplifying all derivations as much as 
possible so that a student with the usual preparation in math- 
ematics will be able to read it without difficulty. For example, 
in deriving the theory of the deflection curve, the area moment 
nzethod was extensively used. In this manner, a considerable 
simplification was made in deriving the deflections of beams for 
various loading and supporting conditions. In discussing 
statically indeterminate systems, the method of superposition 
was applied, which proves very useful in treating such problems 
as continuous beams and frames. For explaining combined 
stresses and deriving principal stresses, use was made of the 
MOWS circle, which represents a substantial simplification in 
the presentation of this portion of the theory. 

Using these methods of simplifying the presentation, the 
author was able to condense the material and to discuss some 
problems of a more advanced character. For example, in 
discussing torsion, the twist of rectangular bars and of rolled 
sections, such as angles, channels, and I beams, is considered. 
The deformation and stress in helical springs are discussed in 
detail. In the theory of bending, the case of non-symmetrical 
cross sections is discussed, the center of twist is defined and 
explained, and the effect of shearing force on the deflection of 
beams is considered. The general theory of the bending of 
beams, the materials of which do not follow Hooke’s law, is 
given and is applied in the bending of beams beyond the yielding 
point. The bending of reinforced concrete beams is given 
consideration. In discussing combinations of direct and bend- 
ing stress, the effect of deflections on the bending moment is 
considered, and the limitation of the method of superposition 
is explained. In treating combined bending and torsion, 
the cases of rectangular and elliptical cross sections are dis- 
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cussed, and applications in the design of crankshafts are 
given. Considerable space in the book is devoted to methods 
for solving elasticity problems based on the consideration of 
the strain energy of elastic bodies. These methods are ap- 
plied in discussing statically indeterminate systems. The 
stresses produced by impact are also discussed. All these 
problems of a more advanced character are printed in small 
type, and may be omitted during the first reading of the book. 

The book is illustrated with a number of problems to 
which solutions are presented. In many cases, the problems 
are chosen so as to widen the field covered by the text and to 
illustrate the application of the theory in the solution of design 
problems. It is hoped that these problems will be of interest 
for teaching purposes, and also useful for designers. 

The author takes this opportunity of thanking his friends 
who have assisted him by suggestions, reading of manuscript 
and proofs, particularly Messrs. W. M. Coates and L. H. 
Donnell, teachers of mathematics and mechanics in the 
Engineering College of the University of Michigan, and Mr. 
F. L. Everett of the Department of Engineering Research 
of the University of Michigan. He is indebted also to Mr. 
F. C. Wilharm for the preparation of drawings, to Mrs. E. D. 
Webster for the typing of the manuscript, and to the Van 
Nostrand Company for its care in the publication of the book. 

S.T~M~SHENK~ 
ANN ARBOR, MICHIGAN 

May I, Is.30 



NOTATIONS 

a. .......... Angle, coefficient of thermal expansion, numeri- 
cal coefficient 

p ........... Angle, numerical coefficient 
y ........... Shearing strain, weight per unit volume 
A ........... Unit volume expansion, distance 
6. .......... Total elongation, total deflection, distance 
t? ........... Unit strain 
E-m ey, EZ ..... Unit strains in x, y and z directions 
8 ........... Angle, angle of twist per unit length of shaft 
p ........... Poisson’s ratio 
B. .......... Unit normal stress 
Ul, ff2. ...... Principal stresses 
an. ......... Unit normal stress on plane perpendicular to the 

direction n 
*z, u2/, us. ... Unit normal stresses on planes perpendicular to 

the x, y and z axes 
U” .......... Illtimate stress 
Q,. ......... Working stress 
uy,p, ........ Yield point stress 
7 ........... Unit shear stress 
TW> TUZ> 7z2. . Unit shear stresses on planes perpendicular to 

the x, y and z axes, and parallel to the y, z 
and x axes 

7-w. ......... Working stress in shear 
Ty,p, ........ Yield point stress in shear 
$0. .......... Angle 
w ........... Angular velocity 
A. ......... Cross sectional area 
a, 6, c, d., ... Distances 
c ........... Torsional rigidity, constant of integration 
D, d. ....... Diameters 
E .......... Modulus of elasticity 

ix 



X NOTATIONS 

. Modulus of elasticity in shear 

. Horizontal force, horsepower 
Height, thickness 
Polar moment of inertia of a plane area 
Moments of inertia of a plane area with respect 

to they and z axes 
. Product of inertia of a plane area with respect 

to the y and z axes 
Bulk modulus of elasticity 
Spring constant, numerical factor 
Radii of gyration of a plane area with respect to 

they and z axes 
Length, span 
Bending moment 
Torque 
Factor of safety, revolutions per minute, normal 

to a plane 
Concentrated forces 
Pressure, steel ratio for reinforced concrete 

beams 
I,oad per unit length, pressure 
Reaction, force, radius 
Radius, radius of curvature 
Axial force in a bar 
Temperature, thickness 
Strain energy 
Deflection, distance 
Volume, shearing force 
Velocity, deflection, distance 
Total load, weight 
Weight per unit length, strain energy per unit 

volume 
. Strain energy per unit weight 

Axial forces in bars, unknown reactions 
Rectangular coordinates 
Section modulus 

G ........ 
H ....... 
h ........ 
Ip ....... 
I,, Iz. ... 

I,,. . . . . . 

K . . 
k 
k,, k,. 

I. ....... 
A4. ...... 
M, ...... 
n ........ 

P,Q..... 
p . . . . . . 

q ........ 
R ....... 
7” ........ 
c L ........ 
t ........ 
u ....... 
u ........ 
v ....... 
v ........ 
w ....... 
w ........ 

. . . . . . 
;, Y,Z.. 
x,y,z.... 
z 
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PART I 

CH.G’TER I 

TENSION AND COMPRESSION WITHIN THE ELASTIC LIMIT 

1. Elasticity.-A material body consists of small particles, 
or molecules, between which forces are acting. These molecu- 
lar forces resist the change in the shape of the body which 
external forces tend to produce. Under the action of external 
forces the particles of the body are displaced and the displace- 
ments continue until equilibrium is established between the 
external and internal forces. The body is then in a state 01’ 
strain. During deformation the external forces acting upon 
the body do work, and this work is transformed completely or 
partially into potential energy of strain. ~1 watch spring is an 
example of such an accumulation of 
potential energy in a strained body. 
If the forces which produced the 
deformation of the body are now 
gradually diminished, the body u ill 
return wholly or partly to its origi- I 
nal shape and during this reversed ” m n 

deformation the potential energy of 
strain which was accumulated in 
the body may be recovered in the 
form of external work. 

! P 
Consider, for instance, a prisma- la) (b) 

tic bar loaded at the end as shown 
FIG. 1. 

in Fig. 1.’ Under the action of this 
load a certain elongation of the bar will take place. The point 
of application of the load will then move in a downward direc- 
tion and positive work will be done by the load during this 

1 Tt is assumed that the land is actin 9 along the axis of the bar, i.e., along c_ 
the line passing through the centroids of the cross sections. 

1 



2 STRENGTH OF MATERIALS 

motion. When the load is diminished, the elongation of the 
bar diminishes also, the loaded end of the bar moves upward 
and the potential energy of strain will be transformed into the 
work of moving the load in the upward direction. 

The property by which a body returns to its original shape 
after removal of the load is called elasticity. The body is per- 

fect/y elastic if it recovers its original shape completely after 
unloading; it is partially elastic if the deformation produced by 
the external forces does not disappear completely after un- 
loading. In the case of a perfectly elastic body the work done 
by the external forces during deformation is completely trans- 
formed into potential energy of strain.2 In the case of a par- 
tially elastic body, part of the work done by the external 
forces during deformation is dissipated in the form of heat, 
which is developed in the body during the non-elastic deforma- 
tion. Experiments show that such structural materials as 
steel, wood and stone may be considered as perfectly elastic 
within certain limits, depending upon the properties of the 
material. Assuming that the external forces acting upon the 
structure are known, it is a fundamental problem for the de- 
signer to establish the proportions of the members of the struc- 
ture such that it will approach the condition of a perfectly 
elastic body under all service conditions. Only in this way can 
we be certain of continuous reliable service from the structure 
and avoid any permanent set in its members. 

2. Hooke’s Law.-By direct experiment with the extension 
of prismatic bars (Fig. 1) it has been established for many 
structural materials that within certain limits the elongation 
of the bar is proportional to the tensile force. This simple 
linear relationship between the force and the elongation which 
it produces was first formulated by the English scientist Robert 
Hooke 3 in 1678 and bears his name. Using the notation: 

P = force producing extension of bar, 
I = length of bar, 

2 The small temperature changes which usually accompany elastic defor- 
mation and the corresponding heat exchange with the surroundings are 
neglected in this consideration (see Part II). 

3 Robert Hooke, De Potentia restitutiva, London, 1678. 



TENSION AND COMPRESSION 3 

A = cross-sectional area of bar, 
6 = total elongation of bar, 

E = elastic constant of the material, called the Modulus 
of Elasticity, 

Hooke’s experimental law may be given by the following 
equation: 

g=pI 
AE’ 

The elongation of the bar is proportional to the tensile force 
and to the length of the bar and inversely proportional to the 
cross-sectional area and to the modulus of elasticity. In mak- 
ing tensile tests precautions are usually taken 
to ensure central application of the tensile 
force. In Fig. 2 is shown a method of fixing 
the ends of a circular tensile test specimen in 
a tensile test machine. In this manner any 
bending of the bar will be prevented, Ex- 
cluding from consideration those portions of P 
the bar in the vicinity of the applied forces,4 FIG. 2. 
it may be assumed that during tension all 
longitudinal fibers of the prismatic bar have the same elongation 
and that cross sections of the bar originally plane and perpen- 
dicular to the axis of the bar remain so after extension. 

In discussing the magnitude of internal forces let us imagine 
the bar cut into two parts by a cross section mn and let us con- 
sider the equilibrium of the lower portion of the bar (Fig. lb). 
At the lower end of this portion the tensile force P is applied. 

On the upper end the forces represent the action of the par- 
ticles of the upper portion of the strained bar on the particles 
of the lower portion. These forces are continuously distributed 
over the cross section. Familiar examples of such a continuous 
distribution of forces over a surface are hydrostatic pressure 
and steam pressure. In handling such continuously distributed 
forces the intensity of force, i.e., the force per unit area, is of 
great importance. In the present case of axial tension, in 

* The more complicated stress distribution near the points of application 
of the forces is discussed in Part II. 
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which all fibers have the same elongation, the distribution of 
forces over the cross section mn will be uniform. The resultant 
of these forces will pass through the centroid of the cross sec- 
tion and will act along the axis of the bar. Taking into account 
that the sum of these forces, from the condition of equilibrium 
(Fig. lb), must be equal to P and denoting the force per unit 
of cross-sectional area by g, we obtain 

P 
(T = -* 

A (2) 

This force per unit area is called unit tensile stress or simply 
stress. In this book, force is measured in pounds and area in 
square inches, so that stress is measured in pounds per square 
inch. The elongation of the bar per unit length is determined 
by the equation L 

b 
EC- 

I 
(3) 

and is called the unit elongation or the tensile strain. Using 
eqs. (l), (2) and (3), Hooke’s law may also be written in the 
following form : 

Ed (4) h 

and we see that modulus of elasticity is equal to unit stress divided 
by unit strain and may be easily calculated provided the stress 
and corresponding unit elongation are found from a tensile 
test. The unit elongation e is a pure number representing the 
ratio of two lengths (see eq. 3); therefore, from eq. (4) it may 
be concluded that modulus of elasticity is measured in the same 
units as stress u, i.e., in pounds per square inch. Average 
values of the modulus E for several materials are given in the 
first column of Table 1.6 

Eqs. (l)-(4) may be used also in the case of compression of 
prismatic bars. Then 6 denotes the total longitudinal contrac- 
tion, E the compressive strain and u the compressive stress. 

6 More details on the mechanical properties of materials are given in 
Part II. 
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TABLE 1: MECHANICAL PROPERTIES OF MATERIALS 

E 
lb/in.’ 

Structural carbon steel 0.15 
to 0.25~ carbon. 30 X lo6 

Nickel sty1 3 to 3.5y0 nickel 29 X IO6 
Duralummum. .l. 10 x 106 
Copper, cold rolled. 16 X IO6 
Glass. 10 x lo6 
Pine, with the grain. 1.5 X 10” 
c . oncrete, m compression. 4 x IO6 

Yield Point 
lb/in.’ 

30 x 10340 x 103 
40 x 103-50 x 103 
35 x 103-45 x 103 

- 

Ultimate Strength 
lb/in.’ 

55 x 103-65 x 103 
78 X 103-100 X lo3 
54 X 103-65 X lo3 
28 x 103-40 x 103 

3.5 x 103 
8 X 103-20 X 10” 
3 x IO3 

For most structural materials the modulus of elasticity for com- 
pression is the same as for tension. In calculations, tensile 
stress and tensile strain are considered as positive, and com- 
pressive stress and strain as negative. 

Problems 

1. Determine the total elongation of a steel bar 25 in. long, if the 
tensile stress is equal to 1.5 X 10” lb per sq in. 

Answer. 6 =&In. 
2. Determine the tensile force on a cylindrical steel bar of 1 in. 

diameter, if the unit elongation is equal to 0.7 X 10e3. 
Solution. The tensile stress in the bar, from eq. (4), is 

a=~.E=21XlO~lbpersqin. 

The tensile force, from eq. (2), is 

P = a.A = 21 x lo3 x ; = 16,500 lb. 

3. What is the ratio of the moduli of elasticity of the materials 
of two bars of the same size if under the action of equal tensile forces 
the unit elongations of the bars are in the ratio l:?? Determine 
these elongations if one of the bars is of steel, the other of copper, and 
the tensile stress is 10,000 lb per sq in. 
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Solution. The moduli are inversely proportional to the unit 
elongations. For steel 

10,000 1 
e= 

30 x lo6 = -’ 3,000 
for copper 

1 
EC-. 

1,600 

4. A prismatic steel bar 25 in. long is elongated & in. under 
the action of a tensile force P. Find the magnitude of the force if 
the volume of the bar is 25 in.3 

Answer. P = 30,000 lb. 
5. A piece of wire 100 ft long subjected to a tensile force P = 1,000 

lb elongates by 1 in. Find the modulus of elasticity of the material 
if the cross-sectional area of the wire is 0.04 so in. 

Answer. E = 30 X IO6 lb per sq in. I 
6. Determine the total elongation of the steel 

bar AB having a cross-sectional area A = 1 in.2 and 
submitted to the action of forces Q = 10,000 lb and 
P = 5,000 lb (Fig. 3). 

Solution. The tensile force in the upper and 
lower portions of the bar is equal to Q and that in 
the middle portion is Q - P. Then the total elonga- 
tion will be 

6 = 2 Q/I I (Q - PY2 10,000 x 10 

AE AE = 2 1 x 30 x 106 

+ 
5,000 x 10 

1 x 30 x lo6 
= &+& = k = 0.00833 in. 

7. Solve Prob. 6, assuming that the material is duraluminum 
and that P = Q = 10,000 lb. 

3. The Tensile Test Diagram.-The proportionality be- 
tween the tensile force and the corresponding elongation holds 
only up to a certain limiting value of the tensile stress, called 
the proportional limit, which depends upon the properties of 
the material. Beyond this limit, the relationship between the 
elongation and the tensile stress becomes more complicated. 
For such a material as structural steel the proportionality be- 
tween the load and elongation holds within a considerable 
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range and the proportional limit is 
lo3 lb per sq in. For materials 
such as cast iron or soft copper the 
proportional limit is very low, i.e., 
deviations from Hooke’s law may 
be noticed at a low tensile stress. 

as high as 25 X lo”--30 X 

In investigating the mechanical 
properties of materials beyond the 
proportional limit, the relationship 
between the strain and the corre- 
sponding stress is usually presented 
graphically by a tensile test diagram. 
Fig. 4a presents a typical diagram 
for structural steel. Here the elon- 
gations are plotted along the hori- 
zontal axis and the corresponding 
stresses are given by the ordinates 
of the curve OABCD. From 0 to 
A the stress and the strain are pro- 
portional; beyond A the deviation 

FIG. 4. 

from Hooke’s law becomes marked; hence the stress at A is 
the proportional limit. Upon loading beyond this limit the 
elongation increases more rapidly and the diagram becomes 
curved. At B a sudden elongation of the bar takes place with- 
out an appreciable increase in the tensile force. This phenom- 
enon, called yielding of the metal, is shown in the diagram by 
an almost horizontal portion of the curve. The stress cor- 
responding to the point B is called the yield point. Upon fur- 
ther stretching of the bar, the material recovers its resistance 
and, as is seen from the diagram, the tensile force increases 
with the elongation up to the point C, where the force attains 
its maximum value. The corresponding stress is called the 
ultimate strength of the material. Beyond the point C, elonga- 
tion of the bar takes place with a diminution of the load and 
fracture finally occurs at a load corresponding to point D of 
the diagram. 

It should be noted that stretching of the bar is accompanied 
by lateral contraction but it is established practice in calculat- 
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ing the yield point and the ultimate strength to use the initial 
cross-sectional area A. This question is discussed later in more 
detail (see Part II). 

Figure 4b represents a tensile test diagram for cast iron. 
This material has a very low proportional limit 6 and has no 
definite yield point. 

Diagrams analogous to those in tension may also be obtained 
for various materials in compression and such characteristic 
points as the proportional limit, and the yield point in the case 
of steel, can be established. The mechanical properties of ma- 
terials in tension and compression will be discussed later in 
more detail (see Part II). 

4. Working Stress.-A tensile test diagram gives very valu- 
able information on the mechanical properties of a material. 
Knowing the proportional limit, the yield point, and the ulti- 
mate strength of the material, it is possible to establish for each 
particular engineering problem the magnitude of the stress 
which may be considered as a safe stress. This stress is usually 
called the working stress. 

In choosing the magnitude of the working stress for steel it 
must be noted that at stresses below the proportional limit 
the material may be considered as perfectly elastic, whereas 
beyond this limit a part of the strain usually remains after un- 
loading the bar, i.e., permanent set occurs. In order to have 
the structure in an elastic condition and to eliminate any 
possibility of permanent set, it is common practice to keep the 
working stress well below the proportional limit. In the ex- 
perimental determination of this limit, sensitive measuring 
instruments (extensometers) are necessary and the position 
of the limit depends to some extent upon the accuracy with 
which the measurements are made. In order to eliminate this 
difficulty one usually takes the yield point or the ultimate 
strength of the material as a basis for determining the magnitude 
of the working stress. Denoting by uw, uy.p. and uu, respec- 
tively, the working stress, the yield point and the ultimate 
strength of the material, the magnitude of the working stress 

6 This limit can be established only by using very sensitive extensometers 
in measuring elongations. See Griineisen, Ber. deut. phyiysik. Ges., 1906. 
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is determined by one of the following equations: 

9 

W.P. gu 
tJw = __ or gw = --. (5) 

n n1 

Here n and nl are constants called factors of safety, which de- 
termine the magnitude of the working stress. In the case of 
structural steel, it is logical to take the yield point as the 
basis for calculating the working stress because at yield stress 
considerable permanent set occurs, which is not permissible in 
engineering structures. In this case a factor of safety tz = 2 
gives a conservative value for the working stress, provided that 
only constant or static loads act upon the structure. In the 
case of suddenly applied loads or variable loads, such as occur 
frequently in machine parts, a larger factor of safety becomes 
necessary. For brittle materials such as cast iron, concrete or 
various kinds of stone, and for material such as wood, the ulti- 
mate strength is usually taken as the basis for determining the 
working stress. 

The magnitude of the factor of safety depends upon the ac- 
curacy with which the external forces acting upon a structure 
are known, upon the accuracy with which the stresses in the 
members of a structure can be calculated, and also upon the 
homogeneity of the materials used. 
This important question of working 
stresses will be discussed in more de- 
tail later (see Part 11). Here we will 
give several simple examples of the 
determination of safe cross-sectional 
dimensions of bars, assuming that the 
working stress is given. 

Problems 

1. Determine the diameter d of the 
steel bolts N of a press for a maximum 
compressive force P = 100,000 lb (Fig. 5), 
if the working stress for steel in this case 
is GW = 10,000 lb per sq in. Determine 
the total elongation of the bolts at the FIG. 5. 

maximum load, if the length between their heads is I = 50 in. 
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Solution. The necessary cross-sectional area, from eq. (2), is 

Then 

50,000 
/+L&=-= 5 in.2 

10,000 

7% 
d= 

J 
- = 2.52 in. 
7T 

Total elongation, from eqs. (3) and (4), 

&=e12=- 
104*50 1 

= - in. 
E 30.10” 60 

2. A structure ABC consisting of two equal steel bars (Fig. 6) 
15 ft long and with hinged ends is subjected to the action of a vertical 

c 
I’ , y 

load P. Determine the necessary 
cross-sectional areas of the bars 
and the deflection of the point B 
when P = 5,000 lb, cw = 10,000 

+‘I 
lb per sq in. and the initial angle 

P of inclination of the bars B = 30”. 

16). 
Neglect the weight of the bars as a 

J 
FIG. 6. 

small quantity in comparison with 
the load P. 

Solution. From Fig. 6b, representing the condition for equi- 
librium of the hinge B, the tensile force in the bars is 

P 
/j-=-----9 

2 sin 0 
for 0 = 30”, 

The necessary cross-sectional area is 

A=C=- 5,000 

UW 10,000 

S = P = 5,000 lb. 

1 
=- in.’ 

2 

The deflection RR1 will be found from the small right triangle DBBl 
in which the arc BD, of radius equal to the initial length of the bars, 
is considered as a perpendicular dropped upon ABI, which is the 
position of the bar AB after deformation. Then the elongation of 
the bar AR is 

BID = *.l = $ = 
10,000 x 1.5 x 12 

30 x lo6 
= 0.06 in.. 

and the deflection, 
BB1 = ii: = 0.12 in. 
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It is seen that the change of the angle due to the deflection BBr is 
very small and the previous calculation of S, based upon the assump- 
tion that 6 = 30”, is accurate enough. 

3. Determine the cross-sectional dimensions of the wooden beam 
BC and of the steel bar AB of the structure ABC, loaded at B, if 
the working stress for pine wood is taken as crw = 160 lb per sq in. 
and for steel a~ = 10,000 lb per sq in. The load P = 6,000 lb. 
The dimensions of the structure are shown in Fig. 7. Determine 
the vertical and the horizontal components of the displacement of 
the point B due to deformation of the bars. Neglect the weight of 
the structure. 

Solution. From the triangle in Fig. 7b, giving the condition for 
equilibrium of hinge B and similar to the triangle ABC of Fig. 7a, 
we have 

P.l< 

S = 7: = 10,000 lb, 

P.12 
S, = ---~- = 8,000 lb. 

9 

FIG. 7. 

The cross-sectional areas of the steel bar and of the wooden beam are 

S 
A = - = ___ 10,000 = 1 ine2, /QL--= 8,000 50 in2 

UW 10,000 UW 160 
The total elongation of the steel bar and the total compression of 
the wooden beam are 

S.1 
a=-= 

10,000~ IS*12 
= 0.060 JW 30 x lo6 in., 

Slh 160 X 12 x 12 
g,=--.= = 0.0154 in. 

Ed1 1.5 x 10s 
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To determine the displacement of the hinge B, due to deformation, 
arcs are drawn with centers A and C (Fig. 7~) and radii equal to 
the lengths of the elongated bar and of the compressed beam, re- 
spectively. They intersect in the new position B’ of the hinge B. 
This is shown on a larger scale in Fig. 7c, where BB, is the elon- 
gation of the steel bar and BBz, the compression of the wooden beam. 
The dotted perpendiculars replace the arcs mentioned above. Then 
BB’ is the displacement of the hinge B. The components of this 
displacement may be easily obtained from the figure. 

4. Determine in the previous problem the angle of inclination 6 
of the bar AB so as to make its weight a minimum. 

Solution. If 0 denotes the ang!e between the bar and the hori- 
zontal beam and 11 is the length of the beam, then the length of the 
bar is I = Ir/cos 8, the tensile force in the bar is S = P/sin 0 and the 
necessary cross-sectional area is A = P/uw sin 8. The volume of 
the bar will be 

1.A = 
l1P 2l,P = 

uw sin 0 cos 0 uw sin 20 

It is seen that the volume and the weight of the bar become a mini- 
mum when sin 28 = 1 and 0 = 45”. 

5. The square frame ABCD (Fig. 8a) consisting of five steel bars 
of 1 in.” cross-sectional area is submitted to the action of two forces 
P = 10,000 lb in the direction of the diagonal. Determine the 
changes of the angles at A and C due to deformation of the frame. 
Determine the changes of the same angles if the forces are applied 
as shown in Fig. 81r. - 

FIG. 8. 

Solution. In the case shown in Fig. 8a the diagonal will take 
the complete load P. Assuming that the hinge D and the direction 
of the diagonal are stationary, the displacement of the hinge B in 
the direction of the diagonal will be equal to the elongation of the 
diagonal 6 = PI/AE. The determination of the new position C’ 
of the hinge C is indicated in the figure by dotted lines. It is seen 
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from the small right triangle CCrC’ that CC’ = S/-$I. Then the 
angle of rotation of the bar DC due to deformation of the frame is 
equal to 

CC’ Id5 ii P 1 
-z radian. 
DC v% - I - 1-E = i,oOo 

Then the increase of the angle at C will be 

1 1 
2x----== radian. 

3,000 1,500 

The solution of the problem shown in Fig. 86 is left to the student. 
6. Determine the position of the load P on the beam ABD so 

that the force in the bar BC becomes a maximum. Determine the 
angle 0 to make the volume of the bar RC a minimum (Fig. 9). 

a B P 

n 

~ 

D 

A 

c 

FIG. 9. FIG. 10. 

Ansze;er. The force in the bar BC becomes maximum when the 
load P has its extreme position on the right at point D. The volume 
of the bar will be a minimum when 0 = 4.5”. 

7. Determine the necessary cross-sectional area of the steel bar 
BC (Fig. 10) if the working stress uw = 15,000 lb per sq in. and the 
uniformly distributed vertical load per ft of beam AB is q = 1,000 lb. 
per ft. 

Answer. A = 0.6 sq in. 
8. Determine the necessary cross-sectional areas A and AI of 

the bars AB and BC of the structure shown in Fig. I I if ~rw = 16,ooO 
lb per sq in. 

Answer. A = 2.5 sq in., Al = 2 sq in. 

24,000 LB 24,000 LB 

FIG. 11. 
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9. Determine the necessary cross-sectional areas A and A1 of 
the bars AB and BC of the structure shown in Fig. 12a if uw = 16,000 
lb per sq in. 

27.000 LB ZZOOOLB 

B D 

fco 
FIG. 12. 

Solution. Let Ampo in Fig. 126 represent the triangle of forces 
acting on hinge B. Then, drawing line on horizontally, we conclude 
that triangles mno and npo are geometrically similar to triangles 
BFA and FBC in Fig. 12a. From this similarity, the forces in the 
bars AB and BC and the magnitudes of their horizontal and vertical 
projections are obtained as shown in Fig. 12b. The required areas 
then are: 

A= 
36,000 
- = 2.25 sq in., 

9,ooofi 

16,000 
A1 = 

16,000 
= 2.03 sq in. 

10. Find the cross-sectional area of the bar CD in Fig. 11 and 
the total elongation of the bar if the material is structural steel and 
uw = 16,000 lb per sq in. 

Answer. A = 2.5 sq in., 6 = 0.064 in. 
11. Solve Prob. 8, assuming that the load is applied at only one 

JoTo~~ joint of the upper chord at a distance 8 ft from 

D 

:ml 

A 
support A. 

Answer. A = 1.67 sq in., Al = 1.33 sq in. 
5’ 12. A square steel frame is loaded as shown 

c 5 in Fig. 13. Find the total elongation of each bar 
if the cross-sectional area of each bar is 1 sq in. 

30 7UNS Answer. Elongation of all the bars except 
FIG. 13. AB is zero. For bar AB, 6 = 0.12 in. 

5. Stress and Strain Produced in a Bar by Its Own Weight. 
--In discussing the extension of a bar, Fig. 1, only the load P 
applied at the end was taken into consideration. If the length 
of the bar is large, its own weight may produce considerable 
additional stress and should be taken into account. In this 
case the maximum stress will be at the built-in upper cross 
section. Denoting by y the weight per unit volume of the bar, 
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the total weight becomes A$ and the maximum stress is given 
by the equation: 

P + Ad 
~max = 

A 
(6) 

The second term on the right side of eq. (6) represents the 
stress produced by the weight of the bar. 

The weight of the portion of the bar below cross section 
mn at distance x from the lower end (Fig. 1) is Ayx and the 
stress on that cross section is given by the equation: 

P -I- A-lx g = ---. 
A 

(7) 

Substituting the working stress uw for urnax in eq. (6), the equa- 
tion for calculating the safe cross-sectional area will be 

It is interesting to note that with increasing length I the 
weight of the bar becomes more and more important, the de- 
nominator of the right side of eq. (8) diminishes and the neces- 
sary cross-sectional area A increases. When rl = CW, i.e., the 
stress due to the weight of the bar alone becomes equal to 
the working stress, the right side of eq. (8) becomes infinite. 
Under such circumstances it is impossible to use a prismatic 
design and a bar of variable cross section must be used. 

In calculating the total elongation of a prismatic bar sub- 
mitted to the action of its own weight and a tensile force P 
at the end, let us consider first the elongation of an element 
of length dx cut from the bar by two adjacent cross sections 
(see Fig. 1). It may be assumed that along the very short 
length dx the tensile stress is constant and is given by eq. (7). 
Then the elongation da of the element will be 

adx P + Arx dx 
d6 = E = --~ AE - 

The total elongation of the bar will be obtained by summing 
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the elongations of all the elements. Then 

6= S LP+Ayx 
AE 

dx = & (P + +A$). 
0 

(9) 

Comparing this with eq. (1) it is seen that the total elongation 
produced by the bar’s own weight is equal to that produced 
by a load of half its weight applied at the end. 

Problems 

1. Determine the cross-sectional area of a vertical prismatic steel 
bar (Fig. 1) carrying at its lower end a load P = 70,000 lb, if the 
length of the bar is 720 ft, the working stress uw = 10,000 lb per 
sq in. and the weight of a cu ft of steel is 490 lb. Determine the 
total elongation of the bar. 

Solution. The cross-sectional area, from eq. (8), is 

A= 
70,000 

= 9.27 in.’ 
490 x 720 x 12 

10,000 - 
12” 

The total elongation, from eq. (9), is 

720 x 12 
6= 

30 x 10” 
7,550 + 

2,450 
-_ > = 2.53 in. 

2 

2. Determine the elongation of a conical bar under the action of 
its own weight (Fig. 14) if the length of the bar is I, the diameter 
of the base is d and the weight per unit volume of the material is y. 

Assuming that 

QX” ad2 yx” -=--. 
I” 4 312 

the tensile force is uniformly distributed over the 
cross section 7 and considering the element of length dx as a pris- 

Solutionr Th e weight of the bar is 

Q=;““‘;- 

For any cross section at distance x from the lower 
end of the bar the tensile force, equal to the weight 
of the lower portion of the bar, is 

7 Such an assumption is justifiable when the angle of the cone is small. 



TENSION AND COMPRESSION 

matic bar, the elongation of this element will be 

YX 

dl.L 

and the total elongation of the bar is 

*=L S 
2 
xdx 

3E o 

This elongation is one third that of a 
of the same length (see eq. 9). 

prismatic bar 1 - 
r 

3. The vertical prismatic rod of a mine pump is 
moved up and down by a crankshaft (Fig. 15). As- 
suming that the material is steel and the working --T= 

stress is g~v = 7,000 lb per sq in., determine the 
cross-sectional area of the rod if the resistance of 
the piston during motion downward is 200 lb and 
during motion upward is 2,000 lb. The length of 
the rod is 320 ft. Determine the necessary length 
of the radius r of the crank if the stroke of the pump L!L 

r- --l L- -J 
t9 in. 

17 

71’ =-. 
6E 

is equal to 8 in. FIG. 15. 
Solution. The necessary cross-sectional area of 

the rod may be found from eq. (8) by substituting P = 2,000 lb. 
Then 

A= 
2,000 

= 0.338 in.2 
490.320.12 

7,000 - ~__ 
123 

The difference in total elongation of the rod when it moves up and 
when it moves down is due to the resistance of the piston and will 
be equal to 

~.6 = (2,000 + 200) .320.12 = o 833 in 

30.106 X 0.338 ’ * 

The radius of the crank should be 

8 + 0.833 
r= = 4.42 in. 

2 

4. Lengths of steel and aluminum wire are suspended vertically. 
Determine for each the length at which the stress due to the weight 
of the wire equals the ultimate strength if for steel wire gc: = ~OO,OOO 
lb per sq in. and y = 490 lb per cu ft, and for aluminum wire 
cu = 50,000 lb per sq in. and 7 = 170 lb per cu ft. 

Answer. For steel I = 88,200 ft, for aluminum I = 42,300 ft. 
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5. In what proportion will the maximum stress produced in a 
prismatic bar by its own weight increase if all the dimensions of 
the bar are increased in the proportion n : 1 (Fig. 1) ? 

Answer. The stress will increase in the ratio n: 1. 
6. A pillar consisting of two prismatic portions of equal length 

(Fig. 16) is centrally loaded at the upper end by a compressive 
force P = 600,000 lb. Determine the volume of masonry if the 
height of the pillar is 120 ft, its weight per cu ft is 100 lb, and the 
maximum compressive stress in’each portion is 150 lb per sq in. 
Compare this volume with that of a single prismatic pillar designed 
for the same condition. 

FIG. 16. FIG. 17. 

Solution. The cross-sectional area of the upper portion of the 
pillar, from eq. (8), is 

A= 600,000 = in. = 38.5 ft. 

150 

100 x 60 x 12 5,540 sq sq 

- 
1,728 

For the lower portion, 

Al 
1.50 x 

5,540 = = 
100 x 60 x 12 

7,680 sq in. = 53.3 sq ft. 

150 - 
1,728 

Total volume of masonry Y = (38.5 + .53.3)60 = 5,500 cu ft. For 
a prismatic pillar, 

A= 600,000 = in. = 62.5 

150 

100 x 120 x 12 9,000 sq sq ft, 

- 
1,728 

Y = 62.5 X 120 = 7,500 cu ft. 
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7. Solve the preceding problem assuming three prismatic por- 
tions of equal length. 

Answer. A = 34.1 sq ft, Al = 41.8 sq ft, As = 51.3 sq ft, 
Y = 5,090 cu ft. 

8. Determine the form of the pillar in Fig. 17 such that the 
stress in each cross section is just equal to a~. The form satisfying 
this condition is called the form of equal strength. 

Solution. Considering a differential element, shaded in the 
figure, it is evident that the compressive force on the cross section 
mlnl is larger than that on the cross section mn by the magnitude 
of the weight of the element. Thus since the stress in both cross 
sections is to be the same and equal to UW, the difference dA in the 
cross-sectional area must be such as to compensate for the difference 
in the compressive force. Hence 

dAaw = r&x, (a) 

where the right side of the equation represents the weight of the 
element. Dividing this equation by AUF and integrating, we find 

from which 

and 

log, A = y” + c1 
UW 

A = CeyziaW, Cd) 

where e is the base of natural logarithms and C = ecl. At x = 0 
this equation gives for the cross-sectional area at the top of the pillar 

(AL4 = c. 

But the cross-sectional area at the top is equal to P/aw; hence 
C = P/~w and eq. (b) becomes 

/g = P eYzl%s (cl 
UW 

The cross-sectional area at the bottom of the pillar is obtained by 
substituting x = I in eq. (c), which gives 

P 
A max = -e YUO,* 

OW 

9. Find the volume of the masonry for a pillar of equal strength 
designed to meet the conditions of Prob. 6. 
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Solution. By using eq. (d) the difference of the cross-sectional 
areas at the bottom of the pillar and at its top is found to be 

P P P _ eYuow - - = - (pwv - 1). 
UW uw uw 

This difference multiplied by the working stress ow evidently gives 
the weight of the pillar; its volume is thus 

Y = p (ey- - 1) = 4,440 cu ft. 
Y 

6. Statically Indeterminate Problems in Tension and Com- 
pression.-There are cases in which the axial forces acting in 
the bars of a structure cannot be determined from the equations 
of statics alone and the deformation of the structure must be 
taken into consideration. Such structures are called datically 
indeterminate systems. 

A simple example of such a system is shown in Fig. 18. 
The load P produces extension in the bars OB, OC and OD, 
which are in the same plane. The conditions for equilibrium 

of the hinge 0 give two equa- 
tions of statics which are not suf- 
ficient to determine the three un- 
known tensile forces in the bars, 
and for a third equation a consid- 
eration of the deformation of the 
system becomes necessary. Let 
us assume, for simplicity, that 
the system is symmetrical with 
respect to the vertical axis OC, 

FIG. 18. that the vertical bar is of steel 
with A, and E, as the cross-sec- 

tional area and the modulus of elasticity for the material, and 
that the inclined bars are of copper with A, and E, as area and 
modulus. The length of the vertical bar is I and that of the 
inclined bars is I/cos 01. Denoting by X the tensile force in 
the vertical bar and by Y the forces in the inclined bars, the 
only equation of equilibrium for the hinge 0 in this case of 
symmetry will be 

x + 2Y cos a = P. (a> 
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In order to derive the second equation necessary for determin- 
ing the unknown quantities X and Y, the deformed configura- 
tioll of the system indicated in the figure by dotted lines must 
be considered. Let 6 be the total elongation of the vertical 
bar under the action of the load P; then the elongation a1 of 
the inclined bars will be found from the triangle OFO1. Assum- 
ing that these elongations are very small, the circular arc OF 
from the center D may be replaced by a perpendicular line and 
the angle at O1 may be taken equal to the initial angle 0~. 
Then 

61 = 6 cos a. 

The unit elongations and the stresses for the vertical and the 
in&ned bars will be 

6 Ed 6 (302 o! E,s co2 Q es=-, gs=- and ec = --9 gc = 
1’ I I I ’ 

respectively. Then the forces in the bars will be obtained by 
multiplying the stresses by the cross-sectional areas as follows: 

AJ.54 X = asA, = -I~ Y = ucAc = 
A.E,B;os” a, (6) 

from which 
Y = xcos2a ’ AE’ 

A,-% 
s 8 

Substituting in eq. (a), we obtain 

x= 
P 

(10) 
1 + 2 co9 cy $$ 

s .3 

It is seen that the force X depends not only upon the angle of 
inclination 01 but also upon the cross-sectional areas and the 
mechanical properties of the materials of the bars. In the 
particular case in which all bars have the same cross section 
and the same modulus we obtain, from eq. (lo), 

P xc- 
1 +2cos3a’ 

When a approaches zero, cos 01 approaches unity, and the force 
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in the vertical bar approaches QP. When (Y approaches 90”, 
the inclined bars become very long and the complete load will 
be taken by the middle bar. 

As another example of a statically indeterminate system let 
us consider a prismatic bar with built-in ends, loaded axially 
at an intermediate cross section mn (Fig. 19). The load P will 
be in equilibrium with the reactions R and RI at the ends and 
we have 

P = R + R,. cc> 

In order to derive the second equation for determining the 
forces R and RI the deformation of the bar must be consid- 
ered. The load P with the force R produces shortening of the 
lower portion of the bar and with the force R, elongation of 
the upper portion. The total shortening of one part must be 

equal to the total elongation of the other. Then, 

I!! 

4 
// by using eq. (l), we obtain 

4 R+ Rb 

t 

-=-. 

m - ] n t Hence 
AE AE 

b R a 

R, b 
(4 

A 
R i.e., the forces R and RI are inversely propor- 

FIG. 19. tional to the distances of their points of applica- 
tion from the loaded cross section mn. Now 

from eqs. (c) and (d) the magnitudes of these forces and the 
stresses in the bar may be readily calculated. 

Problems 

1. A steel cylinder of diameter d and a copper 
tube of outer diameter D are compressed between 
the plates of a press (Fig. 20). Determine the 
stresses in steel and copper and also the unit com- 
pression if P = 100,000 lb, d = 4 in. and D = 8 in. 

Solution. Here again static conditions are in- FIG. 20. 
adequate, and the deformation of cylinder and tube 
must be considered in order to obtain the load carried by each 
material. The unit shortening in the steel and in the copper must 
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be equal; therefore the stresses in each material will be in the same 
ratio as their moduli (see eq. 4), i.e., the compressive stress in the 
steel will be 9 the compressive stress in the copper. Then the 
magnitude of the stress uc in the copper may be found from the 
equation of statics, 

?rd2 15 
P = 48U, + p - d")cr,. 

Substituting numerical values, we obtain 

*c = 1,630 lb per sq in., us = -lx5 . gc = 3,060 lb per sq in., 

and unit compression 

d = g = 102 x lo-“. 
c 

2. A square column of reinforced concrete y 
is compressed by an axial force P = 60,000 lb. 

4 

What part of this load will be taken by the 
concrete and what part by the steel if the 
cross-sectional area of the steel is &J of the 
cross-sectional area of the concrete? Assume A 
that the steel bars are symmetrically located rr”r 

C 8 

with respect to the axis of the column. Q 

Answer. The load taken by the steel is 2 FIG. 21. 

of the load taken by the concrete. 
3. A rigid body AB of weight Q hangs on three vertical wires 

symmetrically situated with respect to the center of gravity C of 
the body (Fig. 21). Determine the tensile forces in the wires if the 
middle wire is of steel and the two others of copper. Cross-sectional 
areas of all wires are equal. 

Suggestion. Use method of Prob. 1. 
4. Determine the forces in the four m 

legs of a square table, Fig. 22, produced 
by the load P acting at point A. The 
top of the table and the floor are assumed 
absolutely rigid and the legs are attached 
to the floor so that they can undergo 
tension as well as compression. 

Solution. L4ssuming that the new 
’ position of the top of the table is that 

indicated by the dotted line mn, the 
compression of legs 2 and 4 will be the 
average of that of legs 1 and 3. Hence 

FIG. 22. 2y=x+.z, 
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and since 2Y + X + Z = P, we obtain 

2Y=X+Z=+P. (4 

An additional equation for determining X and 2 is obtained by 
taking the moment of all the forces with respect to the horizontal 
axis O-O parallel to y and passing through A. Then 

X(4&4 + e) + +P.e = Z(~ab5 - e). (f) 
From (e) and (f) we obtain 

When e > afl/4, X becomes negative. This indicates that there 
will be tension in leg 1. 

5. Determine the forces in the legs of the above table if the load 
is applied at the point with the coordinates 

* = “, 
4 

y = “. 
5 

Hint. In solving this problem it should be noted that when 
the point of application of the load P is not on the diagonal of the 
table, this load may be replaced by two loads statically equivalent 
to the load P and applied at points on the two diagonals. The forces 
produced in the legs by each of these two loads are found as explained 

above. 

Ei 

Adding the effects of the two component 

P P loads, the forces in the legs for any position of 

1 

the load P may be found. 
6. A rectangular frame with diagonals is sub- 

mitted to the action of compressive forces P 
h (Fig. 23). Determine the forces in the bars if 

a 
1 

they are all of the same material, the cross-sec- 
tional area of the verticals is A, and that of the 

P P remaining bars A,. 
0 Solution. Let X be the compressive force 

FIG. 2.3. in each vertical, Y the compressive force in each 
diagonal and 2 the tensile force in each horizontal 

bar. Then from the condition of equilibrium of one of the hinges, 

Y = (P - X)/sin (Y, z= Ycosa= (P-X)cota. (g) 

The third equation will be obtained from the condition that the 
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frame after deformation remains rectangular by virtue of symmetry; 
therefore 

(a2 + h”) (1 - LJ2 = h2 (1 - $)2 + a2 (1 + -&)2- 
From this, neglecting the small quantities of higher order, we get 

(a2 + h2)Y h2X a22 
- ~. 

AIE = AE AIE 
@I 

Solving eqs. (g) and (A.), the following value of the force in a diagonal 
is obtained: 

P 
Y= 

a2 f h” A a2 A 
~.~+~.;-cosff+sin~~ 

h2 1 

The forces in the other bars may now be easily determined fi,om 
eqs. k). 

7. Solve the above problem, assuming a = h, A = 5A1 and 
P = 50,000 lb. 

8. What stresses will be produced in a steel bolt 
and a copper tube (Fig. 24) by i of a turn of the nut 
if the length of the bolt I = 30 in., the pitch of the 
bolt thread h = p in., the area of the cross section of 
the bolt A, = 1 sq in., the area of the cross section of 
the tube A, = 2 sq in. ? 

Solution. Let X denote the unknown tensile force 
in the bolt and the compressive force in the tube. The 
magnitude of X will be found from the condition that 
the extension of the bolt plus the shortening of the FIG. 24. 
tube is equal to the displacement of the nut along the 
bolt. In our case, assuming the length of the tube equal to the 
length of the bolt, we obtain 

from which 

x= hA.3, 30 x lo6 

4~(l+~~)=32x30(l+~)=‘6~1001b* 

The tensile stress in the bolt is us = X/A, = 16,100 lb per sq in. 
The compressive stress in the tube is ge = X/A, = 8,050 lb per 
sq in. 



26 STRENGTH OF MATERIALS 

9. What change in the stresses calculated in the above problem 
will be produced by tensile forces P = 5,000 lb applied to the ends 
of the bolt? 

Solution. Let X denote the increase in the tensile force in the 
bolt and Y the decrease in the compressive force in the tube. Then 
from the condition of equilibrium, 

x+y=p. (i> 

A second equation is obtained from the consideration that the unit 
elongations of the bolt and tube under the application of the forces 

P must be equal, i.e., 

c 

R I 
x Y 

--- = -. 
Cl A,sE, ACE, 

(i) 

ynl “1 From eqs. (i) and (j) the forces X and Y and the cor- 
bP, 2 responding stresses are easily calculated. 

10. A prismatic bar with built-in ends is loaded 
mz 4 axially at two intermediate cross sections (Fig. 25) by 

= G forces PI and Pa. Determine the reactions R and RI. 
Hint. Use eq. (d) on p. 22, calculating the reac- 

R. ’ tions produced by each load separately and then sum- 
FIG. 25. ming these reactions. Determine the reactions when 

a = 0.31, b = 0.31 and PI = 2P2 = l,OOO lb. 
Answer. R = 600 lb, RI = 900 lb. 
11. Determine the forces in the bars of the ’ ’ 

system shown in Fig. 26, where OA is an axis of ‘\. 

~ 

\ symmetry. 
Answer. The tensile force in the bar OB is A ’ x ’ 

a\ 

equal to the compressive force in the bar OC and a \ 
/r 

is P/2 sin N. The force in the horizontal bar On A---- p /’ 
is equal to zero. c 

12. Solve Prob. 10 assuming that the lower FIG. 26. 
portion of length c of the bar has a cross-sectional 
area two times larger than the cross-sectional area of the two upper 
parts of lengths a and 6. 

2aP1 + 2Pz(I - c) 
Answer. R = 

PI (2b + c) + cP2 
7 RI = 

21 - c 21-c . 

7. Assembly and Thermal Stresses.-In a statically inde- 
terminate system it is possible to have initial stresses produced 
in the bars during assembly. These stresses may be due to 
unavoidable inaccuracies in the lengths of the bars or to in- 
tentional deviations from the correct lengths, and are called 
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assembly stresses. Such stresses will exist even when external 
loads are absent, and depend only upon the geometric propor- 
tions of the system, on the mechanical properties of the ma- 
terials and on the magnitude of the inaccuracies. Assume, for 
example, that the system represented in Fig. 18 has, by mistake, 
I + a as the length of the vertical bar instead of 1. Then after 
assembling the bars BO and DO, the vertical bar can be put 
into place only after being initially compressed, and conse- 
quently some tensile force will be produced in the inclined bars. 
Let X denote the compressive force which exists after assembly 
in the vertical bar. Then the corresponding tensile force in 
the inclined bars will be X/2 cos o( and the displacement of 
the hinge 0 due to the extension of these bars will be (see eq. 
b, P. 21) XI 

6= 2A,E, cos3 CY' (4 

The shortening of the vertical bar will be 

From elementary geometrical considerations, the displacement 
of the hinge 0, together with the shortening of the vertical bar, 
must be equal to the error a in the length of the vertical bar. 
This gives the following equation for determining X: 

Hence 

XI XI 
2A,E, cos3 a + A,E, = a- 

x= aA,& 
As-& * 

> 2A,E,cos3 a 

(11) 

The initial stresses in all the bars may now be calculated. 
Expansion of the bars of a system due to changes in tem- 

perature may have the same effect as inaccuracies in lengths. 
Consider a bar with built-in ends. If the temperature of the 
bar is raised from to to t and thermal expansion is prevented 
by the reactions at the ends, there will be produced in the bar 
compressive stresses, whose magnitude may be calculated from 
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the condition that the length remains unchanged. Let a de- 
note the coefficient of thermal expansion and u the compressive 
stress produced by the reactions. Then the equation for de- 
termining u will be 

from which 
u = EC+ - to). (12) 

As a second example, let us consider the system represented 
in Fig. 18 and assume that the vertical bar is heated from 
the assembly temperature t,, to a new temperature t. The cor- 
responding thermal expansion will be partially prevented by 
the two other bars of the system, and certain compressive 
stresses will develop in the vertical bar and tensile stresses in 
the inclined bars. The magnitude of the compressive force in 
the vertical bar will be given by eq. (ll), in which instead of 
the magnitude a of the inaccuracy in length we substitute the 
thermal expansion oJ(t - to) of the vertical bar. 

Problems 

1. The rails of a tramway are welded together at 50” F. What 
stresses will be produced in these rails when heated by the sun to 
100” if the coefficient of thermal expansion of steel is 70. 10P7? 

Amwer. u = 10,500 lb per sq in. 
2. What change of stresses will be produced in the case repre- 

sented in Fig. 24 by increasing the temperature from to” to to if the 
coefficient of expansion of steel is olg and that of copper a,? 

Sohtion. Since (Y, > a, the increase of temperature produces 
compression in the copper and tension in the steel. The unit elonga- 
tions of the copper and the steel must be equal. Denoting by X 
the increase in the tensile force in the bolt due to the change of tem- 
perature, we obtain 

from which 
x = (~c - 40 - to)AsEs . 
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The change in the stresses in the bolt and in the tube may now be 
calculated in the usual way. 

3. A strip of copper is soldered between two strips of steel 
(Fig. 27). What stresses will be produced in the steel and in the 
copper by a rise in the temperature of 
the strips from to to t degrees? 

Suggestion. The same method as I- 

in the previous problem should be FIG. 27. 
used. 

4. What stresses will be produced in the bars of the system 
represented in Fig. 18 if the temperature of all the bars is raised from 
to to t? 

Solution. Let X denote the tensile force produced in the steel 
bar by an increase in temperature. Then from the condition of 
equilibrium of the hinge 0 it can be seen that in the copper bars 
compressive forces act, equal to X/2 cos cu; consequently the elonga- 
tion of the steel bar becomes 

6 = a,(t - toy + g 
.s 8 

and the elongation of the copper bars is 

I Xl 
61 = a& - co) __ - 

cos o! 2 ACE, cos2 a’ 

Furthermore from previous considerations (see p. 21), 

61 = 6 cos a. 
Therefore 

XI I XI 
a& - toy + - = 

As& 
a& - to) ~ - 

cos2 a 2 ACE, cos3 cr’ 
from which 

0 - to) (2 - -s) A& 

x= 
1 A& ’ 

1$-p--- 
2 cos3 a ACE, 

The stresses in the steel and in the copper will now be obtained from 
the following equations: 

X X 
us = -I 

As uc = 2 A, cos 4 

5. Assuming that in the case shown in Fig. 20 a constant load 
P- 100,000 lb is applied at an initial temperature to, determine at 
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what increase in temperature the load will be completely transmitted 
to the copper if 0~~ = 70 X 10e7 and (Ye = 92 X 10W7. 

Solution. 

4p (a, - cYJ(t - t*) = 

from which 
.lr(D2 - d2)E,’ 

t - to = 75.4” F. 

6. A steel bar consisting of two portions of lengths II and l2 and 
cross-sectional areas Al and As is fixed at the ends. Find the ther- 
mal stresses if the temperature rises by 100” F. Assume ~‘1 = 12, 
Al = 2~42 and (Ye = 70 X lo-‘. 

Answer. q = 14,000 lb per sq in., u2 = 28,000 lb per sq in. 
7. Find the thermal stresses in the system shown in Fig. 27 if 

the temperature of all three strips rises by 100” F. The thickness of 
each of the three strips is the same and the coefficients of thermal 
expansion are 01~ = 70 X lo-’ and cy, = 92 X IO-‘. Assume 
E,:E, = 8:15. 

Answer. cc = 2,780 lb per sq in. compression, qs = 1,390 lb per 
sq in. tension. 

8. The temperature of the system shown in Fig. 18 rises by 
100” F. Find the thermal stresses if all three bars are of steel and 
have equal cross-sectional areas. Take (Y, = 70 X 10m7 and E, = 
30 X lo6 lb per sq in. 

Answer. Vertical bar, u = 
42,000 cos 01 sin2 01 

2 cos3 a + 1 
lb per sq in. ten- 

sion; inclined bars, c = 
21,000 sin2 a 

2 cos3 a + 1 
lb per sq in. compression. 

9. Find the stresses in the wires of the system shown in Fig. 21 
if the cross-sectional area of the wires is 0.1 sq in., the load Q = 4,000 
lb, and the temperature of the system rises after assembly by 10” I;. 
Assume CQ = 92 X 10m7, as = 70 X 10e7, E, = 16 X lo6 lb per 
sq in., E, = 30 X 10’ lb per sq in. 

Answer. r’s = 19,700 lb per sq in., uC = 10,200 lb per sq in. 
10. Determine the stresses which will be built up in the system 

represented in Fig. 23 if the temperature of the upper horizontal 
bar rises from to to t degrees. 

Answer. The compressive force X in the upper horizontal bar 
is given by the equation: 

2h tar? Q 2h 2a 
a(t - to)a = X + __. 

AE AIE cos2 (II sin cy 
+ 

AIE > 
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8. Extension of a Circular Ring.-If uniformly distributed 
radial forces act along the circumference of a thin circular ring 
(Fig. 28), uniform enlargement of the ring will be produced. 

(b) 

In order to determine the tensile force P in the ring let us 
imagine that the ring is cut at the horizontal diametral sec- 
tion (Fig. 28b) and consider the upper portion as a free body. 
If 4 denotes the uniform load per unit length of the center 
line of the ring and r is the radius of the center line, the force 
acting on an element of the ring cut out by two adjacent cross 
sections will be ~~rn’(p, where dp is the central angle, correspond- 
ing to the element. Taking the sum of the vertical compo- 
nents of all the forces acting on the half ring, the following 
equation of equilibrium is obtained: 

from which 
s 

a/z 
2P = 2 qr sin cpdp = 2qr, 

0 

P = qr. (13) 

The tensile stress in the ring may now be obtained by dividing 
the force P by the cross-sectional area of the ring.8 

In practical applications the determination of tensile stresses 
in a rotating ring is frequently necessary. Then q represents 

* It will be shown later (see Part II) that in the case of thin rings it is 
justifiable to assume that the stresses are uniformly distributed over the 
cross section of the ring. 
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the centrifugal force per unit length of the ring and is given by 
the equation: 

(14) 

in which w is the weight of the ring per unit length, r is the 
radius of the center line, v is the velocity of the ring at the 
radius r and g is the acceleration due to gravity. Substituting 
this expression for Q in eq. (13), we obtain 

p2Yf, 
g 

and the corresponding tensile stress in the ring is 
P WV2 yv2 g=-zF=-. 
A 4 g 

(1% 

It is seen that the stress is proportional to the density r/g of 
the material and to the square of the peripheral velocity.9 For 
a steel ring and for the velocity v = 100 ft per set this stress 
becomes 1,060 lb per sq in. Then for the same material and 
for any other velocity v1 the stress will be 0.106~~~ lb per sq 
in., where vl is in ft per sec. 

Problems 

1. Determine the maximum tensile stress in the cylindrical wall 
of the press shown in Fig. 5 if the inner diameter is 10 in. and the 
thickness of the wall is 1 in. 

Solution. The maximum hydrostatic pressure p in the cylinder 
will be found from the equation: 

T102 

p. 4 
__ = 100,000 lb, 

from which p = 1,270 lb per sq in. Cutting out from the cylinder 
an elemental ring of width 1 in. in the direction of the axis of the 
cylinder and using eq. (13) in which, for this case, 4 = p = 1,270 lb 
per in. and r = 5 in., we obtain 

P 1,270 x 5 g=---= 
A 1x1 

= 6,350 lb per sq in. 

9 For a thin ring the velocity at the center line may be taken equal to the 
peripheral velocity. 
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2. A copper tube is fitted over a steel tube at a high temperature 
t (Fig. 29), the fit being such that no pressure exists between tubes 
at this temperature. Determine the stresses 
which will be produced in the copper and in the COW’ 
steel when cooled to room temperature to if the Stcrf 
outer diameter of the steel tube is d, the thick- 
ness of the steel tube is h, and that of the copper 
tube is h,. 

Solution. Due to the difference in the coeffi- 0 
cients of expansion a, and aS there will be a pres- 1;1c. 29. 
sure between the outer and the inner tubes after 
cooling. Let x denote the pressure per sq in.; then the tensile stress 
in the copper tube will be 

xd 
Qc = - 

2hc 

and the compressive stress in the steel will be 

The pressure x will now be found from the condition that during 
cooling both tubes have the same circumferential contraction; hence 

xd xd 
,,(t - to) - ___ = 

2&h, 
4 - to) + -f 

2&h, 
from which 

xd (ac - as>@ - to)-& #J,=--= 
33, I+;; 

s .s 
In the same manner the stress in the steel may be calculated. 

3. Referring to Fig. 29, what additional tensile stress in the tube 
will be produced by submitting it to an inner hydrostatic pressure 
p = 100 lb per sq in. if the inner diameter dl = 4 in., h, = 0.1 in. 
and hc = y X 0.1 in.? 

Solution. Cutting out of the tube an elemental ring of width 
1 in., the complete tensile force in the ring will be 

p = pd’ = 200 lb q 

Due to the fact that the unit circumferential elongations in copper 
and in steel are the same, the stresses will be in proportion to the 
moduli, i.e., the stress in the copper will be $5 that in the steel. 
At the same time the cross-sectional area of the copper is 9 that 
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of the steel; hence the force P will be equally distributed between 
two metals and the tensile stress in the copper produced by the 
hydrostatic pressure will be 

P 200 
cc=-= 

2 X h, 2 x y x 0.1 
= 533 lb per sq in. 

The stress in the steel will be 
15 us = 8 UC = 1,000 lb per sq in. 

4. A built-up ring consists of an inner copper ring and an outer 
steel ring. The inner diameter of the steel ring is smaller than the 
outer diameter of the copper ring by the amount 6 and the structure 
is assembled after preliminary heating of the steel ring. When 
cooled the steel ring produces pressure on the copper ring (shrink 
fit pressure). Determine the stresses in the steel and the copper 
after assembly if both rings have rectangular cross sections with the 
dimensions h, and h, in the radial direction and dimensions equal to 
unity in the direction perpendicular to the plane of the ring. The 
dimensions h, and h, may be considered small as compared with the 
diameter d of the surface of contact of the two rings. 

Solution. Let x be the uniformly distributed pressure per sq in. 
of the surface of contact of the rings; then the compressive stress in 
the copper and the tensile stress in the steel will be found from the 
equations: 

xd xd 
UC=-’ 

2h, a8=2h,’ (a> 

The decrease in the outer diameter of the copper ring will be 

xd2 
,&=$.d=-. 

c 2hcEc 
The increase of the inner diameter of the steel ring will be 

xd2 
~2z-~.d=-. 

s 2&E, 

The unknown pressure x will be found from the equation: 

61 + 82 = xz 1 1 

2 
---+ 
h,E, h,E, = ” > 

from which 
26h,E, 

x= 

d+ +z)* 
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Now the stresses oQ and ue, from eqs. (a), will be 

6 h, Es 6 Es 
UC = -. - . 

d hc I&E,’ us = 2. t&E,’ 
1+- 

hc& 
lf- 

hc& 

5. Determine the stresses which will be produced in the built-up 
ring of the preceding problem by rotation of the ring at constant 
speed n rpm. 

Solution. Due to the fact that copper has a greater density and 
a smaller modulus of elasticity than steel, the copper ring will press 
on the steel ring during rotation. Let x denote the pressure per 
sq in. of contact surface between the two rings. Then the corre- 
sponding stresses will be given by eqs. (a) of the preceding problem. 
In addition to these stresses the stresses produced by centrifugal 
forces should be taken into consideration. Denoting by ys and yc 
the weights per unit volume of steel and copper and using eq. (15), 
we obtain 

Combining these stresses with the stresses due to pressure x and 
noting that the unit elongation for both rings should be the same, 
the following equation for determining x will be obtained: 

from which x may be calculated for each particular case. Knowing 
x, the complete stress in the copper and the steel may be found 
without difficulty. 

6. Determine the limiting peripheral speed of a thin copper ring 
if the working stress is crw = 3,000 lb per sq in. and yc = 550 lb per 
cu ft. 

Answer. u = 159 ft per sec. 
7. Referring to Prob. 2 and Fig. 29, determine the stress 

in the copper at room temperature if t - to = 100” F, a’, - cx8 = 
22 x 10m7 and h, = h,. 

Answer. gc = 2,300 lb per sq in. 
8. Referring to Prob. 5, determine the number of revolutions 

n per minute at which the stress in the copper ring becomes equal 
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to zero if the initial assembly stress in the copper ring was a com- 
pression equal to co, and h, = h,, E, = 2E,. 

Answer. The number of revolutions n will be determined from 
the equation: 

9. Find the stresses in the built-up ring of Prob. 4, assummg 
6 = 0.001 in., d = 4 in., h, = h, and E,/E, = J$. Find the changes 
of these stresses if the temperature of the rings increases after assem- 
bly by 10” F. Take LY, = 92 X 10m7 and CY, = 70 X 10p7. 

dnswer. rc = crs = 2,610 lb per sq in. Change in stresses 
= 230 lb per xl in. 

10. Referring to Prob. 5, find the stresses in steel and in copper 
if n = 3,000 rpm, d = 2 ft, A, = h, = 3 in., ys = 490 lb per cu ft 
and yc = 550 lb per cu ft. 



CHAPTER II 

ANALYSIS OF STRESS AND STRAIN 

9. Stress on Inclined Planes for Simple Tension and Com- 
pression.-In discussing stresses in a prismatic bar submitted 
to an axial tension P we have previously considered (,4rt. 2) 
only the stress over cross sections perpendicular to the axis of 
the bar. \Ve now take up the 
case in which the cross section pq 

P 

(Fig. 30a), perpendicular to the p 
P 

plane of the figure, is inclined to 
the axis. Since all longitudinal Y 

Cal q 

fibers have the same elongation 
(see p. 4) the forces representing 
the action of the right portion of 
the bar on the left portion are z 

n 

P x 
a - 

uniformly distributed over the 
lb) 4 

cross section pi. The left por- 
FIG. 30. 

tion of the bar, isolated in Fig. 306, is in equiIibrium under 
the action of these forces and the external force P applied at 
the left end. Hence the resultant of the forces distributed over 
the cross section pq is equal to P. Denoting by A the area of 
the cross section normal to the axis of the bar and by cp the 
angle between the x axis and the normal n to the cross section 
pq, the cross-sectional area of pq will be A/cos cp and the stress 
s over this cross section is 

P cos p s = __~ = uz cos cp, 
A (16) 

where (TV = P/A denotes the stress on the cross section normal 
to the axis of the bar. It is seen that the stress s over an! 
inclined cross section of the bar is smaller than the stress ur 
over the cross section normal to the axis of the bar and that 
it diminishes as the angle p increases. For cp = 7r/2 the sec- 

37 
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tion pq is parallel to the axis of the bar and the stress J becomes 
zero, which indicates that there is no pressure between the 
longitudinal fibers of the bar. 

The stress .r, defined by eq. (16), has the direction of the 

I 
Y 

Y P 
,p 0 \(l- 

force P and is not perpendicular to 
the cross section pq. In such 

a, ‘\ s x cases it is usual to resolve the total 

r “L 
stress into two components, as is 
shown in Fig. 31. The stress com- 

FIG. 31. ponent cn perpendicular to the cross 
section is called the normal stress. Its magnitude is 

un = s cos $0 = CT, cos2 $0. (17) 

The tangential component r is called the shearing stress and 
has the value 

7 = s sin cp = uz cos cp sin cp = 5 sin 2~. (18) 

To visualize the strain which each component stress produces, 
let us consider a thin element cut out of the bar by two ad- 
jacent parallel sections pp and 
plql, Fig. 32a. The stresses act- 
ing on this element are shown in 
Fig. 32a. Figs. 32b and 32c are 
obtained by resolving these 

q-p 

P p 
stresses into normal and tangen- 
tial components as explained above 
and showing separately the action 

st?fg&/&; 
I 

of each of these components. It 
is seen that the normal stresses g’n 

FIG. 32. 

produce extension of the element in the direction of the normal 
n to the cross section pq and the shearing stresses produce 
sliding of section pq with respect to plql. 

From eq. (17) it is seen that the maximum normal stress 
acts on cross sections normal to the axis of the bar and we 
have 

(un)max = uz. 

The maximum shearing stress, as seen from eq. (18), acts on 
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cross sections inclined at 45” to the axis of the bar, where 
sin 2~ = 1, and has the magnitude 

Tmax = +a,. (19) 

Although the maximum shearing stress is one-half the maxi- 
mum normal stress, this stress is sometimes the controlling fac- 
tor when considering the ultimate strength of materials which 
are much weaker in shear than in tension. For example, in a 
tensile test of a bar of mild steel with a polished surface, vis- 
ible yielding of the metal occurs along inclined lines, called 
Lueders’ lines, Fig. 33. Yielding occurs along the inclined 

FIG. 33. 

planes on which the shearing stress is a maximum and at the 
value of the force P which corresponds to the point B in Fig. 
4a. This indicates that in the case of mild steel failure is 
produced by the maximum shearing stress although this stress 
is equal to only one-half of the maximum normal stress. 

Formulas (17) and (18), derived for a bar in tension, can be 
used also in the case of compression. Tensile stress is assumed 
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positive and compressive negative. Hence for a bar under axial 
compression we have only to take gz with a negative sign in 
formulas (17) and (18). The negative sign of un indicates that 
in Fig. 32b we obtain, instead of tension, a compressive action 
on the thin element between the adjacent cross sections pq and 
plql. The negative sign for 7 in formula (18) indicates that for 

* t(+), ,o+ 
compression of the bar the shear- 
ing action on the element has the 

0 

-&- 

ti it 
0 n 

direction opposite to that shown 

t1 it 
in Fig. 3%. Fig. 34 illustrates the 

(b) 
id (d sign convention for normal and 

FIG. 34. 
shearing stresses which will be 
used. Positive sign for shear is 

taken when the shear stresses form a couple in the clockwise 
direction and negative sign for the opposite direction. 

Problems 

1. Show that the couples in Figs. 326 and 32~ balance each other. 
2. A prismatic bar of cross-sectional area A is subjected to axial 

compression by a force P = 10,000 lb. Find un and 7 for a plane 
inclined at 45” to the axis of the bar. 

Answer. u,=fr=- 
5,000 
__ lb per sq in. 

A 

3. Find the change in distance between the planes pg and p,q, 
in Fig. 32a produced by forces P = 30,000 lb if the initial distance 
between those planes is 0.5 in., the cross-sectional area A = 1 sq in. 
and cp = 45”. 

Answer. 6 = 0.00025 in. 
4. Find the angle cp (Fig. 32a) defining the plane pq for which 

(1) normal stress a, is one-half of the maximum stress uz, (2) shearing 
stress 7 is one-third of cn. 

Answer. (1) cp = f4.5”; (2) cp = arctan g. 

10. Mohr’s Circle.-Formulas (17) and (18) can be repre- 
sented graphically.1 We take an orthogonal system of coordi- 

1 This graphical representation is due to 0. Mohr, Cioilingenieur, p. 113, 
1882. See also his AbhandIungen aus dem Gebiete der technischen Mechanik, 
Berlin, p. 219, 1906. In this book, references to other publications on the 
same subject are given. 
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nates with the origin at 0 and with IF 

FIG. 35. 

the positive direction of the axes as 
shown in Fig. 35. Beginning with the 
cross section pq perpendicular to the 
axis of the bar we have for this case 
cp = 0, in Fig. 31, and we find, from 
formulas (17) and (18) cn = u+, T = 0. 
Selecting a scale for stresses and meas- 
uring normal components along the 
horizontal axis and shearing compo- 
nents along the vertical axis, the stress 
acting on the plane with cp = 0 is represented in Fig. 35 by a 
point A having the abscissa equal to cZ and the ordinate equal 
to zero. Taking now a plane parallel to the axis of the bar we 
have cp = r/2, and observin g that both stress components van- 
ish for such a plane we conclude that the origin 0, in Fig. J& 
corresponds to this plane. Now constructing a circle on Or1 
as diameter it can readily be proved that the stress compo- 
nents for any cross section pq with an arbitrarily chosen angle 
‘p, Fig. 31, will be represented by the coordinates of a point on 
that circle. To obtain the point on the circle corresponding to 
a definite angle cp, it is only necessary to measure in the coun- 
ter-clockwise direction from the point A the arc subtending an 
angle equal to 29. Let D be the point obtained in this man- 
ner; then, from the figure, 

OF = OC + CF = $ + y cos 2p = Q, cos’ cp, 

DF = CD sin 2~ = T sin 2~. 

Comparing these expressions for the coordinates of point D 
with expressions (17) and (18) it is seen that this point defines 
the stresses acting on the plane pq, Fig. 31. As the section 
pq rotates in the counter-clockwise direction about an axis per- 
pendicular to the plane of Fig. 31, p varying from 0 to r/2, the 
point D moves from L? to 0, so that the upper half-circle de- 
termines the stresses for all values of cp within these limits. If 
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the angle cp is larger than r/2 we obtain a cross section as 
shown in Fig. 36a cut by a plane mm whose external normal 2 
nl makes with the x axis an angle larger than r/2. Measur- 
ing an angle equal to 2~ in the counter-clockwise direction 
from the point A, in Fig. 35, we obtain now a point on the 
lower half-circle. 

Take, as an example, the case when mm is perpendicular to 
cross section pq which was previously considered. In such a 
case the corresponding point on the circle in Fig. 35 is point 
D1 such that the angle DOD1 is equal to r; thus DD1 is a diam- 
eter of the circle. Using the coordinates of point D,, we find 
the stress components bnl and r1 for the plane mm: 

__ _ -- 
un1 = OF1 = OC - FIC = F - : cos 2~ = uz sin2 cp, (20) 

71 = -F,D, = -CD, sin 2~ = - T sin ~L,o.* (21) 

Comparing these results with expressions (17) and (18), we find 

un + Q?L, = u, cos2 p + uz sin2 cp = uz, (22) 

71 = -7. (23) 

This indicates that the sum of the normal stresses acting on 
two perpendicular planes remains constant and equal to uz. 
The shear stresses acting on two perpendicular planes are nu- 
merically equal but of opposite sign. 

By taking the adjacent cross sections mlml and plql parallel 
to mm and pi, Fig. 36a, an element is isolated as shown in 
Fig. 366, and the directions of the stresses acting on this element 
are indicated. It is seen that the shearing stresses acting on 
the sides of the element parallel to the pq plane produce a 
couple in the clockwise direction, which, according to the ac- 
cepted rule defined in Fig. 34c, must be considered positive. 
The shearing stresses acting on the other two sides of the ele- 

* The portion of the bar on which the stresses act is indicated by shading. 
The external normal nl is directed outward from that portion. 

J The minus sign is taken since point D1 is on the side of negative ordinates. 
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ment produce a couple in the counter-clockwise direction which, 
according to the rule defined in Fig. 34d, is negative. 

The circle in Fig. 35, called the circle of stress or MoI7Y.r 
circle, is used to determine the stress components g12 and r for 
a cross section pq whose normal makes any angle cp with the 
x axis, Fig. 3 1. A similar construction can be used to solve the 
inverse problem, i.e., when the components cn and r are given 

FIG. 36. 

and it is required to find the tensile stress B, in the axial direc- 
tion and the angle cp. We observe that the angle between the 
chord OD and the x axis is equal to cp, Fig. 35. Hence, after 
constructing the point D with coordinates Us and 7, we obtain 
cp by drawing the line OD. Knowing the angle cp, the radius 
DC making the angle 2~ with the axis OC can be drawn and 
the center C of the circle of stress obtained. The diameter of 
this circle gives the required stress uz. 

Problems 

1. Determine a, and T analytically and graphically if oz = 15,000 
lb per sq in. and p = 30” or q = 120”. By using the angles 30” 
and 120” isolate an element as shown in Fig. 366 and show by arrows 
the directions of the stresses acting on the element. 

2. Solve the preceding problem assuming that instead of tensile 
stress (T$ there acts compressive stress of the same amount. Observe 
that in this case the diameter of the circle, Fig. 35, must lie on the 
negative side of the abscissa. 
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3. On a plane pq, Fig. 31, there acts a normal stress un = 12,000 
lb per sq in. and a shearing stress T = 4,000 lb per sq in. Find the 
angle cp and the stress (TV. 

Answer. 
cn 

tan cp = +, cz = - = 
cos2 cp 

13,330 lb per sq in. 

4. Acting on the two perpendicular sides of the element in Fig. 
366 are the normal stresses un = 12,000 lb per sq in. and gnl = 6,000 
lb per sq in. Find (r, and T. 

Answer. (T, = 18,000 lb per sq in., r = *8,485 lb per sq in. 
5. Find the maximum shear stress for the case in Prob. 1. 
Answer. T,,~:~~ = 7,500 lb per sq in. 
6. Determine the inclination of cross sections for which the nor- 

mal and shearing stresses are numerically equal. 
3?r 

Answer. (O = % and -4- . 

11. Tension or Compression in Two Perpendicular Direc- 
tions.-There are cases in which the material of a structure is 
submitted to the action of tension or compression in two per- 
pendicular directions. As an example of such a stress condition 
let us consider stresses in the cylindrical wall of a boiler sub- 
mitted to internal pressure p lb per sq in.4 Let us cut out a 
small element from the cylindrical wall of the boiler by two 
adjacent axial sections and by two circmmferential sections, 
Fig. 37a. Because of the internal pressure the cylinder will 

expand both in the circumferential and in the axial directions. 
The tensile stress uy in the circumferential direction will be 
determined in the same manner as in the case of a circular ring 

4 More accurately p denotes the difference between the internal pressure 
and the external atmospheric pressure. 
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(Art. 8). Denoting the inner diameter of the boiler by d and 
its wall thickness by A, this stress is 

pd 
UY = -. 2h 

In calculating the tensile stress uz in the axial direction we 
imagine the boiler cut by a plane perpendicular to the x axis. 
Considering the equilibrium of one portion of the boiler it is 
seen that the tensile force producing longitudinal extension of 
the boiler is equal to the resultant of the pressure on the ends 
of the boiler, i.e., equal to 

The cross-sectional area of the wall of the boiler is 6 

Hence 
A = rdh. 

P pd lJz = - = -. 
A 4h (25) 

It is seen that the element of the wall undergoes tensile stresses 
gz and LT~ in two perpendicular directions.6 In this case the 
tensile stress uy in the circumferential direction is twice as 
large as the stress uz in the axial direction. 

For the general case, we consider now the stress over any 
cross section pg, Fig. 37a, perpendicular to the xy plane and 
whose normal n makes an angle p with the x axis. By using 
formulas (17) and (18) of the previous article, we conclude that 
the tensile stress uz acting in the axial direction produces on 
the plane pq normal and shearing stresses of magnitude 

un r = uz cos2 ‘p, 7r = +uz sin 2~. (4 

To calculate the stress components produced on the same 
plane pq by the tensile stress uy, we observe that the angle 

6 The thickness of the wall is assumed small in comparison with the diame- 
ter and the approximate formula for the cross-sectional area is used. 

~There is also a pressure on the inner cylindrical surface of the element 
but this pressure is small in comparison with uz and gv and is neglected in 
further discusslon. 
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between by and the normal n, Fig. 37a, is t - cp and is meas- 

ured clockwise from the y axis, while cp is measured counter- 
clockwise from the x axis. From this we conclude that in using 
eqs. (17) and (18) we must substitute in this case u2/ for u, and 

- for cp. This gives 

ffn I, = uy sin2 cp, i- I, = -+u, sin 2~. (4 

Summing up the stress components (a) and (6) produced by 
stresses u, and c~, respectively, the resultant normal and shear- 
ing stresses on an inclined plane for the case of tension in two 
perpendicular directions are obtained: 

on = 6, cos2 cp + uy sin2 ‘p, (26) 

7 = *(a, - u,) sin 2~. (27) 

12. Mohr’s Circle for Combined Stresses.-Proceeding as 
in Art. 10, a graphical representation of formulas (26) and (27) 
can be readily obtained using Mohr’s circle or the circle of 
stress. Assuming again that the abscissas and the ordinates 
represent to a certain scale the normal and the shearing stress 
components, we conclude that the points A and B, in Fig. 38, 

FIG. 38. 

with abscissas equal to ux and uy, represent the stresses acting 
on the sides of the element in Fig. 37a, perpendicular to the x 
and y axes, respectively. To obtain the stress components on 
any inclined plane, defined by an angle cp in Fig. 37a, we have 
only to construct a circle on AB as a diameter and draw the 
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radius CD making the angle ACD, measured in the counter- 
clockwise direction from point A, equal to 2~. From the figure 
we conclude that 

_~- -_ _- 
OE = 0~’ - CE = +(OA + 0~) - +(OB _ OA) cos 2p 

uz + uy (rg - uz = 
2 - 2 

cos 250 = ux cos2 p + uu sin’ cp. 

This indicates that the abscissa ?%!? of the point D on the circle, 
if measured to the assumed scale, gives the normal stress com- 
ponent un, eq. (26). 

The ordinate of the point D is 

-__ 
DE = CD sin 250 = uy - ux sin 2q. 

2 

Observing that this ordinate must be taken with negative sign, 
we conclude that the ordinate of the point D, taken with the 
proper sign, gives the shearing stress component 7, eq. (27). 

When the plane pq rotates counter-clockwise with respect 
to an axis perpendicular to the xy plane, Fig. 37a, the corre- 
sponding point D moves in the counter-clockwise direction 
along the circle of stress in Kg. 38 so that for each value of 
cp the corresponding values of the components un and T are 
obtained as the coordinates of the point D. 

From this graphical representation of formulas (26) and (27) 
it follows at once that the maximum normal stress component 
in the present case ’ is equal to udnd the maximum shearing 
stress represented by the radius CF of the circle in Fig. 38 is 

(28) 

and occurs when sin 2~ = - 1 and q = 3a/4. The same mag- 
nitude of shearing stress but with negative sign acts on the 
plane for which p = r/4. 

Taking two perpendicular planes defined by the angles p 
and 7~/2 + cp, which the normals n and nl make with the x 

7 We consider only planes perpendicular to the xy plane. For a more 
general case, see Art. 18. 
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axis, the corresponding stress components are given by the co- 
ordinates of points D and D, in Fig. 38, and we conclude 

‘Tn + u,, = uz + uy, (2% 

71 = -7. (30) 

This indicates that the sum of the normal stresses acting on 
two perpendicular planes remains constant as the angle cp var- 
ies. Shearing stresses acting on two perpendicular planes are 
numerically equal but of opposite sign. 

The circle of stress, similar to that in Fig. 38, can be con- 
structed also if one or both stresses u, and uU are compressive. 
It is only necessary to measure the compressive stresses on the 
negative side of the abscissa axis. Assuming, for example, that 
the stresses acting on an element are as shown in Fig. 394 the 
corresponding circle is shown in Fig. 396. The stress compo- 

FIG. 39. 

nents acting on a plane pi with normal n are given by the co- 
ordinates of the point D in the diagram. 

Problems 

1. The boiler shown in Fig. 37 has d = 100 in., h = 3 in. Deter- 
mine (r2 and gy if p = 100 lb per sq in. Isolate a small element by 
the planes for which cp = 30” and 120” and show the magnitudes 
and the directions of the stress components acting on the lateral 
sides of that element. 
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2. Determine the stresses un, uR,, T and 71 if, in Fig. 39a, 
uz = 10,000 lb per sq in., uU = -5,000 lb per sq in. and (o = 30”, 
$01 = 120”. 

Answer. gn = 6,250 lb per sq in., un, = -1,250 lb per sq in., 
T = -TV = 6,500 lb per sq in. 

3. Determine u,, un,, T and 71 in the preceding problem, if the 
angle cp is chosen so that 7 is a maximum. 

Answer. un = u%, = 2,500 lb per sq in., T = -71 = 7,500 lb 
per sq in. 

13. Principal Stresses.-It was shown in the preceding ar- 
ticle that for tension or compression in two perpendicular direc- 
tions x and y one of the two stresses uz or g2/ is the maximum 
and the other, the minimum normal stress. For all inclined 
planes, such as planes pq in Figs. 37a and 39a, the value of 
the normal stress un lies between these limiting values. At 
the same time not only normal stresses cn, but also shearing 
stresses 7, act on all inclined planes. Stresses such as uz and 
uU, one of which is the maximum and the other the minimum 
normal stress, are called the principal stresses and the two per- 
pendicular planes on which they act are called the principal 
planes. There are no shearing stresses acting on the principal 
planes. 

In the example of the previous article, Fig. 37, the principal 
stresses a2. and uV were found from very simple considerations 
and it was required to find the expressions for the normal and 
shearing stress components acting on any inclined plane, such 
as plane pq in Fig. 37a. In our further discussion (see p. 126) 
there will be cases of an inverse problem. It will be possible 
to determine the shear and normal stresses acting on two per- 
pendicular planes, and it will be required to find the magnitudes 
and the directions of the principal stresses. The simplest way 
of solving this problem is by using the circle of stress as con- 
sidered in Fig. 38. Assume that the stresses acting on an ele- 
mentary rectangular parallelepiped abed are as shown in Fig. 
40a. The stresses uz and uy are not principal stresses, since 
not only normal but also shearing stresses act on the planes 
perpendicular to the x and y axes. To construct the circle of 
stress in this case, we first use the stress components u2, uy and 
7 and construct the points D and D, as shown in Fig. 40b. Since 
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these two points represent the stresses acting on two perpen- 
dicular planes, the length DDi represents a diameter of the 
circle of stress. The intersection of this diameter with the x 
axis gives the center C of the circle, so that the circle can be 
readily constructed. Points A and B where the circle inter- 
sects the x axis define the magnitudes of the maximum and the 
minimum normal stresses, which are the principal stresses and 

are denoted by cl 
calculating cl and 
we have 

(r3 
FIG. 40. 

and f12. Using the circle, the formulas for 
u2 can be easily obtained. From the figure 

a2 = OB = OC - 

The directions of the principal stresses can a!so be obtained 
from the figure. We know that the angle DCA is the double 
angle between the stress ul and the x axis and since 2~ is meas- 
ured from D to A in the clockwise direction, the direction of 
gl must be as indicated in Fig. 40a. If we isolate the element 
shaded in the figure with the sides normal and parallel to u1 
there will be only normal stresses g1 and CT~ acting on its sides. 
For the calculation of the numerical value of the angle cp we 
have, from the figure, 

DE 
ltan 2qj = rF. 

1 J 
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Kegarding the sign of the angle cp, it must be taken negative 
in this case since it is measured from the x axis in the clock- 
wise direction, Fig. 40a. Hence 

(33) 

The maximum shearing stress is given by the magnitude of 
the radius of the circle of stress and we have 

Eqs. (31)-(34) completely solve the problem of the determina- 
tion of the maximum normal and the maximum shearing stresses 
yshen the normal and shearing stresses acting on any two per- 
pendicular planes are given. 

Problems 

1. An element, Fig. 4Oa, is submitted to the action of stresses 
‘TX = 5,000 lb per sq in., c?, = 3,000 lb per sq in., T = 1,000 lb per 
sq in. Determine the magnitudes and the directions of principal 
stresses u1 and ~2. 

sozution. By using formulas (31) and (32) we obtain 

5,000 + 3,000 5,000 - 3,000 2 
u1=-- 

2 
+ J( - ~~~ > 

2 
+ 1,0002 

= 4,000 + 1,414 = 5,414 lb per sq in., 

o2 = 4,000 - 1,414 = 2,586 lb per sq in. 

From formula (33) we have 

tan2q = -1, 2p = -45", (0 = -22%". 

The minus sign indicates that q is measured from the x axis in the 
clockwise direction as shown in Fig. 40a. 

2. Determine the direction of the principal stresses in the preced- 
ing problem if u, = -5,000 lb per sq in. 
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Solution. The corresponding circle of stress is shown in Fig. 41, 
tan 2~ = +, 2~ = 14’2’. Hence the 
angle which the maximum compressive 
stress makes with the x axis is equal to 
7”l’ and is measured counter-clockwise 
from the x axis. 

sooo---3000 

FIG. 41. 

3. Find the circle of stress for the 
case of two equal tensions u, = cl/ = u 
and for two equal compressions 
UJ = cTu = -CT. r = 0 in both cases. 

Answer. Circles become points on the 
horizontal axis with the abscissas c and 
-c, respectively. 

4. On the sides of the element shown in Fig. 42a are acting the 
stresses gZ = -500 lb per sq in., n2( = 1,500 lb per sq in., 7 = 1,000 
lb per sq in. Find, by using the circle of stress, the magnitudes of 
the normal and shearing stresses on (1) the principal planes, (2) the 
planes of maximum shearing stress. 

Solution. The corresponding circle of stress is shown in Fig. 426. 
The points D and D1 represent stresses acting on the sides of the -- 
element in Fig. 42~ perpendicular to the x and y axes. OB and OA 

FIG. 42. 

represent the principal stresses. Their magnitudes are u1 = 1,911 
lb per sq in. and a2 = -914 lb per sq in., respectively. The direc- 
tion of the maximum compressive stress (TV makes an angle of 22i” 
with the x axis, this angle bein, u measured from the x axis in the 
counter-clockwise direction as shown in Fig. 42a. The points F and 
F1 represent stresses acting on the planes subject to maximum shear. 
The magnitude of this shear is 1,414 lb per sq in. OC represents 
the normal stresses equal to 500 lb per sq in. acting on the same plane. 

5. Solve the previous problem if gZ = -5,000 lb per sq in., 
u!, = 3,000 lb per sq in., 7 = 1,000 lb per sq in. 
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14. Lateral Contraction.-In Art. 2, the axial elongation 
of a bar in tension was discussed. Experiments show that 
such axial elongation is always accompanied by lateral con- 
traction of the bar, and that within the elastic limit the ratio 

unit lateral contraction 

unit axial elongation 

is constant for a given material. This constant will be called 
p and is known as Poisson’s ratio, after the name of the French 
mathematician who determined this ratio analytically by 
using the molecular theory of structure of the material. 
For materials which have the same elastic properties in all 
directions, called isotropic materials, Poisson found p = %. 
Experimental investigations of lateral contraction in struc- 
tural metals 8 show that p is usually close to the value 
calculated by Poisson. For instance, in the case of struc- 
tural steel the value can be taken as p = 0.30. Knowing 
Poisson’s ratio for a material, the change in volume of a bar 
in tension can be calculated. The length of the bar will in- 
crease in the ratio (1 + e): 1. The lateral dimensions diminish 
in the ratio (1 - pe) : 1. Hence the cross-sectional area dimin- 
ishes in the ratio (1 - p~)~: 1. Then the volume of the bar 
changes in the ratio (1 + ~)(l - p~)~:l, which becomes 
(1 + E - 2pLE):l ‘f I we recall that e is a small quantity and 
neglect its powers. Then the unit volume expansion is ~(1 - 2p). 
It is unlikely that any material diminishes its volume when in 
tension, hence /* must be less than 0.50. For such materials 
as rubber and paraffin p approaches the above limit and the 
volume of these materials during extension remains approxi- 
mately constant. On the other hand concrete has a small 
magnitude of p (p = Q to A) and for cork p can be taken equal 
to zero. 

The above discussion of lateral contraction during tension 
can be applied with suitable changes to the case of compres- 
sion. Longitudinal compression is accompanied by lateral ex- 
pansion and for calculating this expansion the same value for 
p is used as in the case of extension. 

8 These materials can be considered as isotropic (see Part II). 
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Problems 

1. Determine the increase in unit volume of a bar in tension if 
uw = 5,600 lb per sq in., p = 0.30, E = 30. lo6 lb per sq in. 

Solution. Increase in unit volume is 

E(1 - 2/J) = T (1 - 2/L) = 
5,600 

30 x 106 
(1 - 0.6) = 74.7 x lo-+. 

2. Determine the increase in volume of a bar due to a force P 
at the end and the weight of the bar (see Art. 5). 

Answer. The increase in volume is equal to 

Al(1 - 2p) P yl 

E ( > 
A+, . 

3. A circular steel bar is subjected to an axial tensile force P of 
such a magnitude that the initial diameter of 5 in. is diminished by 
0.001 in. Find P. 

Answer. P = 393,000 lb. 
4. The steel bar of the preceding problem is stretched by a force 

P = 100,000 lb. Find the decrease of the cross-sectional area. 
Answer. 0.002 sq in. 

15. Strain in the Case of Tension or Compression in Two 
Perpendicular Directions.-If a bar in the form of a rectangular 
parallelepiped is submitted to tensile forces acting in two per- 
pendicular directions x and y (Fig. 37), the elongation in one 
of these directions will depend not only upon the tensile stress 
in this direction but also upon the stress in the perpendicular 
direction. The unit elongation in the direction of the x axis 
due to the tensile stress uz will be u,/E. The tensile stress 
gII will produce lateral contraction in the x direction equal to 
pug/E. Then, if both stresses uz and g2/ act simultaneously, 
the unit elongation in the x direction will be 

Similarly, for they direction, we obtain 

ffv us 
EY=---p-’ E E 

(36) 
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The contraction of the parallelepiped in the z direction will be 

In the particular case when the two tensions are equal, CT, = 
uy = u, we obtain 

tz = Ey = ; (1 - /.J). (37) 

From eqs. (35) and (36) the stresses uz and cy can be obtained 
as functions of the unit strains eZ and ey as follows: 

If in the case shown in Fig. 37~2. the elongation E% in the axial 
direction and the elongation Q in the circumferential direction 
are measured by an extensometer, the corresponding tensile 
stresses CT~ and gy may be found from eqs. (38). 

Problems 

1. Determine the increase in the volume of the cylindrical steel 
boiler under internal pressure (Fig. 37), neglecting the deformation 
of the ends and taking (TV = 6,000 lb per sq in. 

Solution. By using eqs. (35) and (36), 

3,000 6,000 1,200 
E z - - - 0.3 = = 

30 x lo6 30 x 106 30 x 106 
4 x 10-5 

6,000 3,000 5,100 
q/ = - 0.3 = = 

30 x 106 30 x 106 30 x 106 
17 x 10-5. 

The volume of the boiler will increase in the ratio 

(1 + e,)(l + Q:l = (1 + e, + 2431 = 1.00038:1. 

2. A cube of concrete is compressed in two perpendicular direc- 
tions by the arrangement shown in Fig. 43. Determine the decrease 



P Q 

4 in. on a side, the compressive 
stress is uniformly distributed 

P 
45* 

over the faces, p = 0.1 and P = 
20,000 lb. 

Solution. Neglecting friction 

fd in the hinges and considering the 
(sr equilibrium of each hinge (Fig. 

FIG. 43. 436), it can be shown that the 
block is submitted to equal com- 

pression in two perpendicular directions and that the compressive 
force is equal to P4-i = 28,300 lb. The corresponding strain, from 
eq. (37), is 
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E 

in the volume of the cube if it is 
4.P P 

*i* 

28,300 
E, = ey = - 

16 x 4 x 10” 
(1 - 0.1) = -0.000398. 

In the direction perpendicular to the plane of the figure a lateral 
expansion of the block takes place which is 

28,300 
Ez 

16 x 4 x lo6 
= 0.0000885. 

The change per unit volume of the block will be 

% + E2/ + cz = -2 x 0.000398 + 0.0000885 = -0.000707. 

3. Determine the increase in the cylindrical lateral surface of 
the boiler considered in Prob. 1 above. 

Solution. 
21 x 10-5. 

Increase per unit area of lateral surface = Ed + ey = 

4. Determine the unit elongation in the ~1 direction of a bar of 
steel if the stress conditions are such as indicated in Prob. 1, p. 51. 

Solution. 

~1 = 3. ; 1o6 (5,414 - 0.3 X 2,586) = 154.6 x 10-s. 

5. Under an axial tensile stress uz = 30,000 lb per sg in. a bar 
has unit elongation E, = 0.001 and the ratio of the unit volume change 
to the unit change in cross-sectional area is 2. Find E and p. 

Anszwer. E = 30 X lo6 lb per sq in., p = 3. 
6. A rectangular parallelepiped is subjected to tension in two 

perpendicular directions as shown in Fig. 44. Find the unit elonga- 
tion e in OC direction. 

Solution. The coordinates of point C after deformation will be 
a(1 + 4 and J(1 + ~1, and the length of OC after deformation 
will be 
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Subtracting from this the initial length m and dividing by 
the initial length, we obtain 

E = E, cos2 a + ey sin’ (Y.~ 

+Y 

t 
FTC. 44. 

16. Pure Shear.--Modulus in Shear.-Let us consider the 
particular case of normal stresses acting in two perpendicular 
directions in which the tensile stress uZ in the horizontal direc- 
tion is numerically equal to the compressive stress cy in the 
vertical direction, Fig. 45a. The corresponding circle of stress 
is shown in Fig. 456. Point D on this circle represents the 
stresses acting on the planes ad and cd perpendicular to the 
xy plane and inclined at 45” to the x axis. Point D, represents 
stresses acting on the planes ad and bc perpendicular to ab and 
cd. It is seen from the circle of stress that the normal stress 
on each of these planes is zero and that the shearing stress 
over these planes, represented by the radius of the circle, is 
numerically equal to the normal stress cZ, so that 

7 = a, = --(TV. (a> 

~This equation is similar to eq. (26). Thus, a graphical representation 
of strain (strain circle), similar to Mohr’s circle for stress, can be used. 
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If we imagine the element abed to be isolated, it will be in 
equilibrium under the shearin, 0 stresses only, as shown in Fig. 
45~. Such a state of stress is called pure shear. It may be 
concluded that pure shear is equivalent to the state of stress 
produced by tension in one direction and an equal compression 
in the perpendicular direction. 

I Y 

I I 
d 

Tf a square element, similar 

FIG. 45. 

to the element abed in Fig. 45a, is isolated by planes which are 
no longer at 4.5” to the x axis, normal stress as well as shearing 
stress will act on the sides of such an element. The magni- 
tude of these stresses may be obtained from the circle of stress, 
Fig. 4.5b, in the usual way. 

Let us consider now the deformation of the element abed. 
Since there are no normal stresses acting on the sides of this 
element the lengths ab, ad, bc and cd will not change due to 
the deformation, but the horizontal diagonal bd will be stretched 
and the vertical diagonal ac will be shortened, changing the 
square abed into a rhombus as indicated in the figure by dotted 
lines. The angle at 6, which was 7r/2 before deformation, now 
becomes less than r/2, say (n/2) - y, and at the same time 
the angle at a increases and becomes equal to (7r/2) + y. The 
small angle y determines the distortion of the element abed, 
and is called the shearing strain. 

The shearing strain may also be visualized as follows: The 
element abed of Fig. 45a is turned counter-clockwise through 
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3.5” and put into the position shown in Fig. 46. After the 
distortion produced by the shearing stresses T, the same ele- 
ment takes the position indicated by the 
dotted lines. The shearing strain, re- p 

f 
6 

presented by the magnitude of the small I ffr 
I 

/7” 

angle y, may be taken equal to the ratio I / / I _- 
aar/ad, equal to the horizontal sliding 

7k. 
I /’ : 

aal of the side ab with respect to the side 
m 

I /‘&f 
f /’ 

I 
I 

dc divided by the distance between these d c 
two sides. If the material obeys Hooke’s - 
law, this sliding is proportional to the 

FIG. 46. 

stress 7 and we can express the relation between the shearing 
stress and the shearing strain by the equation 

y = 2, 
G 

(39) 

in which G is a constant depending on the mechanical proper- 
ties of the material. Eq. (39) is analogous to eq. (4) which 
was established for simple tension, and the constant G is called 
the modulus of elasticity ipI shear, or modulus of rigidity. 

Since the distortion of the element abed, Fig. 46, is entirely 
defined by the elongation of the diagonal bd and the contrac- 
tion of the diagonal ac, and since these deformations can be 
calculated by using the equations of the preceding article, it 
may be concluded that the modulus G can be expressed in terms 
of the modulus in tension E and Poisson’s ratio p. To estab- 
lish this relationship we consider the triangle Oab, Fig. 45a. 
The elongation of the side Ob and the shortening of the side 
Oa of this triangle during deformation will be found by using 
eqs. (35) and (36). In terms of ez and Q, we have 

Ob, = O&l + Ez), Oa1 = Oa(1 + EJ, 

and, from the triangle Oalbl, 

n- 
tan (Oblal) = tan 

Y 001 

( )=- 

1 + Ey 
-~ - -- --=-. 
4 2 OhI 1 + Cz 

(4 
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For a small angle y we have also 

1-z 
c P. cc> 

1 + tan $ tan g 1+; 

Observing that in the case of pure shear 

u, = -uy = 7, 

~20 + P) 41 + P> 
e, = -ey = --~--- = 

E E ’ 

and equating expressions (6) and (c), we obtain 

from which 

or 

Y 41 + P) -= 
2 E 

241 + PI 
Y = ---__. E 

Comparing this result with formula (39), we conclude that 

G= 
E 

20 + l-4' 
(40) 

We see that the modulus of elasticity in shear can be easily 
calculated if the modulus in tension E and Poisson’s ratio k 
are known. In the case of steel, for example, 

30. 10G G = ~~ 
2(1 + 0.30) 

= 11.5.10” lb per sq in. 

It should be noted that the application of a uniform shear- 
ing stress to the sides of a block as assumed in Fig. 46 is very 
difficult to realize so the condition of pure shear is usually 
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produced by the torsion of a circular tube, 
Fig. 47. Due to a small rotation of one 
end of the tube with respect to the other, the I I 
generators traced on the cylindrical surface be- 
come inclined to the axis of the cylinder and an 

r3 

~pJ-~, 

element abed formed by two generators and 
d/--/C - 
1 I 

two adjacent circular cross sections undergoes 
a shearing strain similar to that shown in 
Fig. 46. 

FIG. 47. 

The problem of twist will be discussed later (see Chap. 10) 
where it will be shown how the shearing stress T and the 
shearing strain y of the element abed can be calculated if the 
torque and the corresponding angle of twist of the shaft are 
measured. If T and y are found from such a torsion test, the 
value of the modulus G can be calculated from eq. (39). With 
this value of G, and knowing E from a tensile test, Poisson’s 
ratio P can be calculated from eq. (40). The direct determi- 
nation of /I by measuring lateral contraction during a tensile 
test is more complicated since this contraction is very small 
and an extremely sensitive instrument is required to measure 
it with sufhcient accuracy. 

Problems 

1. The block abed, Fig. 46, is made of a material for which 
E = 10. lo6 lb per sq in. and ,U = 0.25. Find 7 and the unit elonga- 
tion of the diagonal bd if r = 10,000 lb per sq in. 

Answer. y = 0.0025, E = 0.00125. 
2. Find for the previous problem the sliding aaI of the side ab 

with respect to the side cd if the diagonal bd = 2 in. 
Answer. aal = -&Z. 
3. Prove that the change in volume of the block abed in Fig. 46 

is zero if only the first powers of the strain components cZ and cy 
are considered. 

4. Prove that in the case of pure shear, Fig. 46, the unit 
elongation of the diagonal bd is equal to one-half of the shearing 
strain y. 

5. Find the unit elongation of the sides of the element abed in 
Fig. 45a, taking into consideration small quantities of the second 
degree. 
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Solution. Denoting by I the initial length of the sides of the 

element abed, we find that after deformation Oal = L (1 - E,), 

$l+~,). Th 
a 

“=“;;;; lp 
en aibi = -& d(l - E,)~ + (1 + # 

% = 1(1 + iez2). The unit elongation of the sides of 
the element abed is +cz2. 

17. Working Stress in Shear.-By submitting a material 
to pure shear (see Fig. 47) the relation between shearing stress 

and shearing strain can be established 
F 

B 

lIzI 

experimentally. Such a relationship is 
usually shown by a diagram, Fig. 48, in 

A which the abscissa represents shearing 
strain and the ordinate represents shear- 
ing stress. The diagram is similar to 

0 r that of a tensile test and we can mark on 

FIG. 48. it the proportional limit A and the yield 
point B. Experiments show that for a 

material such as structural steel the yield point in shear 7yp 
is only about 0.55 - 0.60 of myp. Since at the yield point con- 
siderable distortion occurs without an appreciable change in 
stress, it is logical to take as the working stress in shear only 
a portion of the yield point stress, so that 

(41) 

where n is the factor of safety. Taking this factor of the same 
magnitude as in tension or compression, we obtain 

I-W = 0.55 to 0.60 of CW, 

which indicates that the working stress in shear should be 
taken much smaller than the working stress in tension. 

It was already indicated that in practical applications we 
do not usually encounter a uniform distribution of shearing 
stress over the sides of a block as was assumed in Fig. 46 and 
that pure shear is realized in the case of torsion. We will see 
later that pure shear also occurs in the bending of beams. 
There are many practical problems in which a solution is ob- 
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tained on the assumption that we are dealing with pure shear 
even though this assumption is only a rough approximation. 
Take, for example, the case of the joint in Fig. 49. It is evident 

P 

b-lC. 49. 

that if the diameter of the bolt ab is not large enough the joint 
may fail due to shear along the cross sections mn and mlnl. 
Although a more rigorous study of the problem indicates that 
the shearing stresses are not uniformly distributed over these 
cross sections and that the bolt undergoes not only shear but 
also bending under the action of the tensile forces P, a rough 
approximation for the required diameter of the bolt is obtained 
by assuming that along the planes mn and mlnl we have a 
uniformly distributed shear stress r which is obtained by divid- 
ing the force P by the sum of the cross-sectional areas mn and 
mlnl. Hence 

2P 
7=-Y 

ad2 

and the required diameter of the bolt is obtained from the 
equation 

2P 
nv=- 

nd2 (42) 

We have another example of such a simplified treatment of 
shear problems in the case of riveted joints, Fig. 50. Since 
the heads of the rivets are formed at high temperature the 
rivets produce after cooling considerable compression of the 
plates.‘O If tensile forces P are applied, relative motion be- 
tween the plates is prevented by friction due to the pressure 

10 Experiments show that the tensile stress in rivets usually approaches 
the yield point of the material of which the rivets are made. See C. Bach, 
Z. Ver. deut. Ing., 1912. 
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between the plates. Only after friction is overcome do the 
rivets begin to work in shear and if the diameter of the rivets 
is not sufficient failure due to shear along the planes mn and 
mlnl may occur. It is seen that the problem of stress analysis 
for a riveted joint is very complicated. A rough approximate 
solution of the problem is usually obtained by neglecting fric- 
tion and assuming that the shearing stresses are uniformly 

FIG. SO. 

distributed along the cross section mn and mlnl. Then the 
correct diameter of the rivets is obtained by using eq. (42) 
as in the previous example. 

Problems 

1. Determine the diameter of the bolt in the joint shown in Fig. 
49 if P = 10,000 lb and 7~’ = 6,000 lb per sq in. 

Answer. d = 1.03 in. 
2. Find the safe length 21 of the joint of two rectangular wooden 

bars, Fig. 51, submitted to tension, if P = 10,000 lb, 7~ = 100 lb 

J-gJqy= 
FIG. 51. 

per sq in. for shear parallel to the fibers and b = 10 in. Determine 
the proper depth mnr, if the safe limit for the local compressive stress 
along the fibers of the wood is 800 lb per sq in. 

Answer. 21 = 20 in., mnl = 1.25 in. 
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3. Find the diameter of the rivets in Fig. 50, if 7w = 8,000 lb 
per sq in. and P = 8,000 lb. 

Answer. d = 0.80 in. 
4. Determine the dimensions I and 6 in the joint of two rectangu- 

lar bars by steel plates, Fig. 52, if the forces, the dimensions and the 
working stresses are the same as in Prob. 2. 

Answer. / = 5 in., 6 = Q in. 

I 
(5000Ll9 

FIG. 52. FIG. 53. 

5. Determine the distance a which is required in the structure 
shown in Fig. 53, if the allowable shearing stress is the same as in 
Prob. 2 and the cross-sectional dimensions of all bars are 4 by 8 in. 
Neglect the effect of friction. 

Answer. a = 10 in. 

18. Tension or Compression in Three Perpendicular Direc- 
tions.-If a bar in the form of a rectangular parallelepiped is 
submitted to the action of uniformly distributed forces P3., P, 
and P, (Fig. 54), the normal stresses over 
cross sections perpendicular to the x, y and 

5 

z axes are, respectively, 

It is assumed below that a3: > (TV > cz. 
Combining the effects of the forces P,, P, and P,, it can 

be concluded that on a section through the z axis only the forces 
P, and P, produce stresses and therefore these stresses may 
be calculated from eqs. (26) and (27) and represented graph- 
ically by using Mohr’s circle. In Fig. 55 the stress circle with 
diameter AB represents these stresses. In the same manner 
the stresses on any section through the x axis can be repre- 
sented by a circle having BC as a diameter. The circle with the 
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diameter AC represents stresses on any section through the y 
axis. The three Mohr’s circles represent stresses on three series 

r 
L 

of sections through the x,y and z 
axes. For any section inclined 

4 
c 

to x, y and z axes the stress com- 
ponents are the coordinates of a 0 I point located in the shaded area I I of Fig. 55.” On the basis of this t it can be concluded that the 

r-- 
;---------- - 

maximum shearing stress is rep- 

FIG. 55. 
resented by the radius of the 
largest of the three circles and is 

given by the equation rnlax = (a, - a&/2. It acts on the section 
through they axis bisecting the angle between the x and z axes. 

The equations for calculating the unit elongations in the 
directions of the x, y and z axes may be obtained by combin- 
ing the effects of P,, P, and P, in the same manner as in con- 
sidering tension or compression in two perpendicular directions 
(see Art. 15). In this manner we obtain 

uz 
E, = - E - ; (u, + ‘Tz), 

u2/ Ey = - 
E - ; (uz + uz), 

UZ e, = - 
E - g (u, + u,). 

(43) 

The volume of the bar increases in the ratio 

(1 + Ez)(l + %/>(l + Ez):l, 

or, neglecting small quantities of higher order, 

(1 + Ez + $/ + 4:l. 

It is seen that the unit volume expansion is 

A = ~z + .zy + E,. (44) 

11 The proof of this statement can be found in the book by A. Fiippl, 
Technische Mechanik, Vol. 5, p. 18, 1918. See also H. M. Westergaard, 
Z. angew. Math. u. Mech., Vol. 4, p. 520, 1924. 
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The relation between the unit volume expansion and the stresses 
acting on the sides of the bar will be obtained by adding to- 
gether eqs. (43). In this manner we obtain 

A = E= + ey + e, = (l ;2p) (u, + cTu + u,). (45) 

In the particular case of uniform hydrostatic pressure we have 

uz = uy = uz = - P- 

Then from eqs. (43) 

EZ = Ey = e, = - $ (1 - a-4, 

and from eqs. (45) 
A = _ 3u - 2/J.) 

E ” 
or, using the notation 

E 

3u - 211) 
= K, 

we obtain 

(46) 

(47) 

(48) 

A= -me. 
K 

(49) 

The unit volume contraction is proportional to the compressive 
stress p and inversely proportional to the quantity K, which 
is called the bulk modulus of elasticity. 

Problems 

1. Determine the decrease in the volume of a solid steel sphere 
of 10 in. diameter submitted to a uniform hydrostatic pressure 
p = 10,000 lb per sq in. 

Solution. From eq. (49), 

* = _ p lO>O~ 

x 

30 

- 2 x 
0.3) 

4 

= _ = - K 30 x 106 3’ 

The decrease in the volume is, therefore, 

4 ad3 
-+ X d = 0.209 cu in. 
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2. Referring to Fig. 56, a rubber cylinder A is compressed in a 
steel cylinder B by a force P. Determine the pressure between the 

rubber and the steel if P = 1,000 lb, d = 2 in., 
Poisson’s ratio for rubber p = 0.45. Friction be- 
tween rubber and steel is neglected. 

Solution. Let p denote the compressive stresses 
6 over any cross section perpendicular to the axis of 

the cylinder and 4 the pressure between the rubber 
and the inner surface of the steel cylinder. Com- 
pressive stress of the same magnitude will act be- 
tween the lateral surfaces of the longitudinal fibers 
of the rubber cylinder, from which we isolate an ele- 
ment in the form of a rectangular parallelepiped, 
with sides parallel to the axis of the cylinder (see 
Fig. 56). This element is in equilibrium under the 

FIG. 56. compressive stresses 4 on the lateral faces of the ele- 
ment and the axial compressive stress p. Assuming 

that the steel cylinder is absolutely rigid, the lateral expansion of 
the rubber in the x and y directions must be equal to zero and from 
eqs. (43) we obtain 

0 = ; - 5 (P + 91, 
from which 

PP 0.45 1,000 x 4 
-= = 260 lb per sq in. q=1-p 1 - 0.45 . n- x 22 

3. A concrete column is enclosed in a steel tube (Fig. 57). Deter- 
mine the pressure between the steel and concrete and the circumfer- 
ential tensile stress in the tube, assuming that there is no friction 
between concrete and steel and that all the dimensions and the longi- 
tudinal compressive stress in the column are known. 

Solution. Let p denote the longitudinal and q 
the lateral compressive stress, d the inner diameter 
and h the thickness of the tube, E, the modulus of 
elasticity for steel, E,, pc the modulus of elasticity 
and Poisson’s ratio for concrete. The expansion of X 

the concrete in the lateral direction will be, from 
eqs- (431, 

E 2= -;+z(P+q). (a> 
c c FIG. 57. 

This expansion equals the circumferential expansion of the tube 
(see eq. 13, p. 31), 

d 
e- 

2hE, 
(8 
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From eqs. (a) and (d) we obtain 

from which 

qd 
~ = - ; + g (p + q), 
2hEs c c 

PC 

q=pdE, 
GE + 1 - PC 

P 

The circumferential tensile stress in the tube will now be calculated 
from the equation 

qd (T = -. 
2h 

4. Determine the maximum shearing stress in the concrete col- 
umn of the previous problem, assuming that p = 1,000 lb per sq in., 
l-k = 0.10, d/2h = 7.5. 

Solution. 

T,,x = ‘G = f (1 - p:4> = 474 lb per sq in. 

5. A steel spherical shell (Fig. 58) is subjected to a uniform inner 
and outer pressure p. Find the reduction 6 of the inner diameter. 
Construct Mohr’s circles as in Fig. 55. 

Answer. 
pa - 2P*) 6=----. 

E 
, m this case all three circles are re- 

duced to a point with abscissa (T = -p. 

k-4 
FIG. 58. 



CHAPTER III 

BENDING MOMENT AND SHEARING FORCE 

19. Types of Beams.-In this chapter we will discuss the 
simplest types of beams having a vertical plane of symmetry 
through the longitudinal axis, and supported as shown in 
Fig. 59. It is assumed that all the applied forces are vertical 
and act in the plane of symmetry so that bending occurs in 

mounted on rollers and can move 

4 c E freely in the horizontal direction. 
Fig. 596 represents a cantilever 

(d beam. The end A of this beam 
FIG. 59. is built into the wall and cannot 

rotate during bending, while the end B is entirely free. Fig. 
59~ represents a beam with an overhanging end. This beam is 
hinged to an immovable support at the end A and rests on a 
movable support at C. 

All three of the foregoing cases represent statically deter- 
minate beams since the reactions at the supports produced 
by a given load can be determined from the equations of 
statics. For instance, considering the simply supported beam 
carrying a vertical load P, Fig. 59a, we see that the reaction 
R2 at the end B must be vertical, since this end is free to move 
horizontally. Then from the equation of statics, ZX = 0, it 
follows that reaction R1 is also vertical. The magnitudes of 
X1 and R2 are then determined from the equations of mo- 
ments. Equating to zero the sum of the moments of all forces 

70 
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with respect to point B, we obtain 

from which 

In a similar way, by considering the moments with respect to 
point A, we obtain 

R2 = F. 

The reactions for the beam with an overhanging end, Fig. 59c, 
can be calculated in the same manner. 

In the case of the cantilever beam, Fig. 59b, the load P 
is balanced by the reactive forces acting on the built-in end. 
From the equations of statics, ZX = 0 and ZZY = 0, we con- 
clude at once that the resultant of the reactive forces R, must 
be vertical and equal to P. From the equation of moments, 
2M = 0, it follows that the moment Mi of the reactive forces 
with respect to point A is equal to Pa and acts in the counter- 
clockwise direction as shown in the figure. 

The reactions produced by any other kind of loading on 
the above types of beams can be calculated by a similar 
procedure. 

It should be noted that the special provisions permitting 
free rotation of the ends and free motion of the support are 
used in practice only in beams of large spans, such as those 
found in bridges. In beams of 
shorter span, the conditions at 
the support are usually as illus- 
trated in Fig. 60. During bend- 
ing of such a beam, friction 
forces between the supporting FIG. 60. 

surfaces and the beam will be 
produced such as to oppose horizontal movement of the ends 
of the beam. These forces can be of some importance in the 
case of flexible bars and thin metallic strips (see p. 179), but 
in the case of a stiff beam for which the deflection is very 
small in comparison with the span length Z these forces can 
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be neglected, and the reactions can be calculated as though 
the beam were simply supported, Fig. 59a. 

20. Bending Moment and Shearing Force.-Let us now 
consider a simply supported beam acted on by vertical forces 
PI, P2 and Pa, Fig. 61a. We assume that the beam has an 

cc) <- 
FIG. 61. 

axial plane of symmetry and that the loads act in this plane. 
Then, from considerations of symmetry, we conclude that 
bending must also occur in this same plane. In most practical 
cases this condition of symmetry is fulfilled since the usual 
cross-sectional shapes of beams, such as a circle, rectangle, 
I-section or T-section, are symmetrical. The more general 
case of a non-symmetrical cross section will be discussed later 
(see Chap. 8). 

To investigate the stresses produced in a beam during 
bending, we proceed in a manner similar to the one already 
used in discussing the stresses produced in a bar by simple 
tension, Fig. 1. We imagine that the beam AB is cut in two 
parts by a cross section rnTz taken at any distance x from the 
left support A, Fig. 61~2, and that the portion of the beam to 
the right is removed. In discussing the equilibrium of the re- 
maining left-hand portion of the beam, Fig. 61b, we must con- 
sider not only the external forces such as loads PI, P2, and 
reaction Ri, but also the internal forces which are distributed 
over the cross section mn and which represent the action of 
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the right portion of the beam on the left portion. These in- 
ternal forces must be of such a magnitude as to equilibrate the 
above-mentioned external forces P,, P2 and RI. 

In the ensuing discussion it will be advantageous to reduce 
the actual system of external forces to a simplified equivalent 
system. From statics we know that a system of parallel forces 
can be replaced by one force equal to the algebraic sum of the 
given forces together with a couple. In our particular case 
we can replace the forces PI, P, and RI by the vertical force 
Y acting in the plane of the cross section mn and by the couple 
A4. The magnitude of the force is 

Y = RI - PI - P,, (a> 

and the magnitude of the couple is 

M = Rlx - Pl(X - Cl) - Pz(x - cd* (6 

The force Y, which is equal to the algebraic sum of the ex- 
ternal forces to the left of the cross section mn, is called the 
shearing force at the, cross section mn. The couple M, which 
is equal to the algebraic sum of the moments of the external 
forces to the left of the cross section mn with respect to the 
centroid of this cross section, is called the bending moment at 
the cross section mn. Thus the system of external forces to 
the left of the cross section mn can be replaced by the statically 
equivalent system consisting of the shearing force Y acting in 
the plane of the cross section and the couple M, Fig. 61~. The 
stresses which are distributed over the cross section mn and 
which represent the action of the right portion of the beam 
on its left portion must then be such as to balance the bending 
moment A4 and the shearing force Y. 

If a distributed load rather than a number of concentrated 
forces acts on a beam, the same reasoning can be used as in 
the previous case. Take, as an example, the uniformly loaded 
beam shown in Fig. 62a. Denoting the load per unit length 
by q, the reactions in this case are 

R =R ,e 1 2 
2’ 
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To investigate the stresses distributed over a cross section mn 
we again consider the equilibrium of the left portion of the 
beam, Fig. 626. The external forces acting on this portion of 

FIG. 62. 

the beam are the reaction RI and the load uniformly distrib- 
uted along the length x. This latter load has, of course, a 
resultant equal to gx. The algebraic sum of all forces to the 
left of the cross section mn is thus R, - qx. The algebraic 
sum of the moments of all forces to the left of the cross section 
mn with respect to the centroid of this cross section is obtained 
by subtracting the moment of the resultant of the distributed 
load from the moment Rlx of the reaction. The moment of 
the distributed load is evidently equal to 

Thus we obtain for the algebraic sum of the moments the 
expression 

Rx-4X2 1 
2 * 

All the forces acting on the left portion of the beam can now 
be replaced by one force acting in the plane of the cross section 
mn and equal to 

V=R,-qx=q 

together with a couple equal to 

M = Rlx - $ = -42” (1 - x)e (4 
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Expressions (c) and (d) represent the shearing force and the 
bending moment, respectively, at the cross section mn. 

In the above examples the equilibrium of the left portion 
of the beam has been discussed. If the right portion of the 
beam is considered, the algebraic sum of the forces to the right 
of the cross section and the algebraic sum of the moments of 
those forces will have the same magnitudes Y and A4 as have 
already been found, but will be of opposite sense. This follows 
from the fact that the loads acting on a beam together with 
the reactions R, and R2 represent a system of forces in equi- 
librium, and the moment of all these forces with respect to 
any point in their plane, as well as their algebraic sum, must 
be equal to zero. Hence the moment of the forces acting on 
the left portion of the beam with respect to the centroid of a 
cross section mn must be equal and opposite to the moment 
with respect to the same point of the forces acting on the right 
portion of the beam. Also the algebraic sum of forces acting 
on the left portion of the beam must be equal and opposite to 
the algebraic sum of forces acting on the right portion. 

In the following discussion the bending moment and the 
shearing force at a cross section mn are taken as positive if in 
considering the left portion of a beam the directions obtained 
are such as shown in Fig. 61~. To visualize this sign conven- 
tion for bending moments, let us isolate an element of the beam 
by two adjacent cross sections mn and m,n,, Fig. 63. If the 

C-1 

(bl 
FIG. 63. 

bending moments in these cross sections are positive the forces 
to the left of the cross section mn give a moment in the clock- 
wise direction and the forces to the right of the cross section 
mlnl, a moment in the counter-clockwise direction as shown 
in Fig. 63a. It is thus seen that the directions of the moments 
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are such that a bending is produced which is convex down- 
wards. If the bending moments in 
the cross sections mn and mlnl 

-1 r- 7 
( are negative, a bending convex 
j, upwards is produced as shown in 

--’ Fig. 636. Thus in portions of a 

(+I C-1 
beam where the bending moment 

@I (6) 
is positive the deflection curve is 

FIG. 64. convex downwards, while in por- 
tions where bending moment is 

negative the deflection curve is convex upwards. 
The sign convention for shearing force is represented in 

Fig. 64. 

Problems 

1. Find shearing force Y and bending moment J4 at a cross 
section 4 ft from the left end of the beam shown in Fig. 59a, if a = 6 
ft, I = 10 ft and P = 10,000 lb. 

Answer. Y = 4,000 lb, k2 = 16,000 ft lb. 
2. Find shearing force Y and bending moment 1V at a cross sec- 

tion 2 ft from the left end of the beam shown in Fig. 596, if a = 8 ft, 
P = 12,000 lb. 

Answer. Y = 12,000 lb, A4 = -72,000 ft lb. 
3. Find shearing force Y and bending moment A4 for the cross 

section vzn of the beam shown in Fig. hla, if PI = P2 = 12,000 lb, 
P3 = 0, cl = 2 ft, c2 = 4 ft, x = 6 ft, I = 12 ft. 

Answer. Y = -6,000 lb, .Q’ = 36,000 ft lb. 
4. Find the shearing force Y and the bending moment A4 at the 

middle of the beam shown in Fig. 62~ if q = 1,000 lb per ft and 
I = 8 ft. 

Answer. Y = 0, M = 8,000 ft lb. 

21. Relation between Bending Moment and Shearing 
Force.-1,et us consider an element of a beam cut out by two 
adjacent cross sections mn and mlnl which are a distance dx 
apart, Fig. 6.5. Assuming that there is a positive bending mo- 
ment and a positive shearing force at the cross section mn, the 
action of the left portion of the beam on the element is repre- 
sented by the force Y and the couple M, as indicated in Fig. 
6.5a. In the same manner, assuming that at section mlul the 
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bending moment and the shearing force are positive, the action 
of the right portion of the beam on the element is represented 
by the couple and the force shown. If no forces act on the 
beam between cross sections mn and mlnl, Fig. 65a, the shear- 
ing forces at these two cross sections are equal.’ Regarding the 
bending moments, it can be seen from the equilibrium of the 
element that they are not equal at two adjacent cross sections 

,----m q ----- 
( 

1 

Cl/g) ,, 

r--m “L------ 

UdA$ \M 
c-fl I 

1 
p v dx v v dx v+dv Mw?; 
:----n L---- __---_-- 3 4 n “I 

c-----m m -------I 
y c If21 v d 1! m&f 1 c----- n, -----2 

n 

(cl 
FIG. 65. 

and that the increase &kJ in the bending moment equals the 
moment of the couple represented by the two equal and oppo- 
site forces Y, i.e., 

dM = Vdx 
and 

d&l 
--= 
dx 

V. (50) 

Thus, on all portions of a beam between loads the shearing 
force is the rate of change of the bending moment with respect 
to x. 

Let us now consider the case in which a distributed load 
of intensity q acts between the cross sections mn and mm,, 
Fig. 656. Then the total load acting on the element is qdx. If 
4 is considered positive when the load acts downward, it may 
be concluded from the equilibrium of the element that the 

1 The weight of the element of the beam is neglected in this discussion. 
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shearing force at the cross section mlnl is different from that 
at mn by an amount 

db’ = -qdx, 

from which it follows that 

dV -= 
dx -4. (51) 

Thus the rate of change of the shearing force is equal to the 
intensity of the load with negative sign. 

Taking the moment of all forces acting on the element, 
we obtain 

dM= Vdx-qdxX$ 

Neglecting the second term on the right side as a small quan- 
tity of the second order, we again arrive at eq. (SO) and con- 
clude that in the case of a distributed load the rate of change 
of the bending moment is equal to the shearing force. 

If a concentrated load P acts between the adjacent cross 
sections mn and mm,, Fig. 6.5c, there will be an abrupt change 
in the magnitude of the shearing force. Let Y denote the 
shearing force at the cross section mn and Yr that at the cross 
section mlnl. Then from the equilibrium of the element 
mmlnln, we find 

Y, = Y - P. 

Thus the magnitude of the shearing force changes by the 
amount P as we pass the point of application of the load. 
From eq. (50) it can then be concluded that at the point of 
application of a concentrated force there is an abrupt change 
in the magnitude of the derivative dM/dx. 

22. Bending Moment and Shearing Force Diagrams.-It 
was shown in the preceding discussion that the stresses acting 
on a cross section mn of a beam are such as to balance the 
bending moment M and shearing force Y at that cross sec- 
tion. Thus the magnitudes of M and Y at any cross section 
determine the magnitude of the stresses acting on that cross 
section. To simplify the investigation of stresses in a beam it 
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is advisable to use a graphical representation of the variation 
of the bending moment and the shearing force along the axis 
of the beam. In such a representation the abscissa indicates 
the position of the cross section and the ordinate represents 
the value of the bending moment or shearing force which acts 
at this cross section, positive values being plotted above the 
horizontal axis and negative values below. Such graphical 
representations are called bending moment and shearing force 
diagrams, respectively. 

Let us consider, as an example, a simply supported beam 
with a single concentrated load P, Fig. 66.2 The reactions in 
this case are 

RI = ;j and 

Taking a cross section mn to the left of P, it can be concluded 
that at such a cross section 

and 

The shearing force and the bending moment have the same 
sense as those in Figs. 63a and 64a and are therefore positive. 
It is seen that the shearing force remains constant along the 
portion of the beam to the left of the load and that the bend- 
ing moment varies directly as x. For x = 0 the moment is 
zero and for x = a, i.e., at the cross section where the load is 
applied, the moment is equal to Pab/l. The corresponding 
portions of the shearing force and bending moment diagrams 
are shown in Fig. 66b and 66c, respectively, by the straight 
lines ac and alcl. For a cross section to the right of the load 
we obtain 

p-=y-p and A4 = $! x - P(x - a), (b) 

x always being the distance from the left end of the beam. 
The shearing force for this portion of the beam remains con- 
stant and negative. In Fig. 66b this force is represented by 

* For simplicity the rollers under the movable supports will usually be 
omitted in subsequent figures. 
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the line c’b parallel to the x axis. The bending moment is a 
linear function of x which for x = a is equal to Pab/l and for 
x = I is equal to zero. It is always positive and its variation 
along the right portion of the beam is represented in Fig. 66~ 
by the straight line cibi. The broken lines acc’b and aicibi in 
Figs. 66b and 66~ represent, respectively, the shearing force and 
bending moment diagrams for the whole length of the beam. 

LAt the load P there is an abrupt change in the magnitude of 
the shearing force from the positive value Pb/Z to the negative 
value -Pa/l and a sharp change in the slope of the bending 
moment diagram. 

In deriving expressions (6) for the shearing force and bend- 
ing moment, we considered the left portion of the beam, a 
portion which is acted upon by the two forces RI and P. It 
would have been simpler in this case to consider the right por- 
tion of the beam where only the reaction Pa/Z acts. Follow- 
ing this procedure and using the rule of signs indicated in 
Figs. 63 and 64, we obtain 

y= -7 and M=qyZ-x). cc> 
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Expressions (b) previously obtained can also be brought to 
this simpler form if we observe that a = I - b. 

It is interesting to note that the shearing force diagram 
consists of two rectangles with equal areas. Taking into con- 
sideration the opposite signs of these areas, we conclude that 
the total area of the shearing force diagram is zero. This result 
is not accidental. By integrating eq. (50), we have 

LBnw =spVdx, (4 

where the limits A and B indicate that the integration is taken 
over the entire length of the beam from the end A to the end B. 
The right side of eq. (d) then represents the total area of the 
shearing force diagram. The left side of the same equation, 
after integration, b oives the difference A4B - A4A of the bending 
moments at the ends B and A. In the case of a simply sup- 
ported beam the moments at the ends vanish. Hence the total 
area of the shearing force diagram is zero. 

If several loads act on a beam, Fig. 67, the beam is divided 
into several portions and expressions for Y and ill must be 
established for each portion. Measuring x from the left end 
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of the beam and taking x < al, we obtain for the first portion 
of the beam 

V = RI and A4 = R,x. (4 

For the second portion of the beam, i.e., for al < x < a2, we 
obtain 

V = RI - P, and iI4 = Rlx - Pl(x - al). (f) 

For the third portion of the beam, i.e., for nZ < x < n3, it is 
advantageous to consider the right portion of the beam rather 
than the left. In this way we obtain 

and 
V= -(R,-PP,) 

M = R,(l - x) - P3(l - x - b3). 

Finally for the last portion of the beam we obtain 

V = -R2, A4 = R2(l - x). (At> 

From expressions (e)-(h) we see that in each portion of the 
beam the shearing force remains constant. Hence the shearing 
force diagram is as shown in Fig. 676. The bending moment 
in each portion of the beam is a linear function of x. Hence in 
the corresponding diagram it is represented by an inclined 
straight line. To d raw these lines we note from expressions 
(e) and (h) that at the ends x = 0 and x = I the moments are 
zero. The moments under the loads are obtained by substi- 
tuting in expressions (e), (j) and (h), x = al, x = a2 and 
x = a3, respectively. In this manner we obtain for the above- 
mentioned moments the values 

A4 = Rlal, M = Rlaz - Pl(a2 - al), A4 = R2b3. 

By using these values the bending moment diagram, shown in 
Fig. 67c, is readily constructed. 

In practical applications it is of importance to find the cross 
sections at which the bending moment has its maximum or 
minimum values. In the case of concentrated loads just con- 
sidered, Fig. 67, the maximum bending moment occurs under 
the load P,. This load corresponds in the bending moment 
diagram to point dl, at which point the slope of the diagram 
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changes sign. Further, from eq. (50), we know that the slope 
of the bending moment diagram at any point is equal to the 
shearing force. Hence the bending moment has its maximum 
or minimum values at the cross sections in which the shearing 
force changes its sign. If as we proceed along the x axis the 
shearing force changes from a positive to a negative value, as 
under the load Pz in Fig. 67, the slope in the bending moment 
diagram also changes from positive to negative. Hence we 
have the maximum bending moment at this cross section. A 
change in Y from a negative to a positive value indicates a 
minimum bending moment. In the general case a shearing 
force diagram may intersect the horizontal axis in several 
places. To each such intersection point there then corresponds 
a maximum or a minimum in the bending moment diagram. 
The numerical values of all these maximums and minimums 
must be investigated to find the numerically largest bending 
moment. 

Let us next consider the case of a uniformly distributed 
load, Fig. 68. From our previous discussion (p. 74), we have 
for a cross section at distance x from the left support, 

and ikl = y (I - x). (i> 

We see that the shearing force diagram consists in this case 
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of an inclined straight line for which the ordinates at x = 0 
and x = I are equal to q1/2 and --q//2, respectively, as shown 
in Fig. 68b. As can be seen from expression (i) the bending 
moment in this case is a parabolic curve with its vertical axis 
at the middle of the span of the beam, Fig. 68~. The moments 
at the ends x = 0 and x = I are zero; and the maximum value 
of the moment occurs at the middle of the span where the 
shearing force changes sign. This maximum is obtained by sub- 
stituting x = Z/2 in expression (i), which gives Mm,, = q12/8. 

If a uniform load Q covers only a part of the span, Fig. 69, 
we must consider separately the three portions of length a, b 

FIG. 69. 

and c. Beginning with the determination of the reactions RI 
and R2, we replace the uniformly distributed load by its re- 
sultant +. From the equations of statics for the moments 
with respect to B and A, we then obtain 

and 

The shearing force and the bending moment for the unloaded 
portion at the left of the beam (0 < x < a) are 

Y = RI and M = R,x. (3 
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For a cross section mn taken in the loaded portion of the beam 
the shearing force is obtained by subtracting the load 4(x - LZ) 
to the left of the cross section from the reaction RI. The 
bending moment in the same cross section is obtained by sub- 
tracting the moment of the load to the left of the cross section 
from the moment of the reaction RI. In this manner we find 

and 
Y = R, - q(x - a) 

A4 = Rlx - q(x - a) X Liz. (k) 

For the unloaded portion at the right of the beam, considering 
the forces to the right of any cross section, we find 

Y= -R, and A4 = R2(I - x). (0 

By using expressions (j), (k) and (I) the shearing force and 
bending moment diagrams are readily constructed. The 
shearing force diagram, Fig. 69b, consists of the horizontal 
portions alcl and dlbl corresponding to the unloaded portions 
of the beam and the inclined line cldl corresponding to the 
uniformly loaded portion. The bending moment diagram, 
Fig. 69c, consists of the two inclined lines a2c2 and b2d2 cor- 
responding to the unloaded portions and of the parabolic curve 
c,e,d, with vertical axis corresponding to the loaded portion 
of the beam. The maximum bending moment is at the point 
e2, which corresponds to the point el where the shearing force 
changes sign. At points c2 and d2 the parabola is tangent to 
the inclined lines a2c2 and dzb2, respectively. This follows 
from the fact that at points c 1 and d, of the shearing force 
diagram there is no abrupt change in the magnitude of the 
shearing force. Hence, by virtue of eq. (.50), there cannot 
occur an abrupt change in slope of the bending moment dia- 
gram at the corresponding points c2 and d2. 

In the case of a cantilever beam, Fig. 70, the same method 
as before is used to construct the shearing force and bending 
moment diagrams. Measuring x from the left end of the beam 
and considering the portion to the left of the load P2 
(0 < x < a), we obtain 

Y= -PI and M = -P1x. 
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The minus sign in these expressions follows from the rule of 
signs indicated in Figs. 63b and 646. For the right portion 
of the beam (a < x < I) we obtain 

Y = -P1 - P, and M = -P$ - Pz(x - u). 

The corresponding diagrams of shearing force and bending 
moment are shown in Figs. 70b and 70~. The total area of the 

FIG. 70. 
6, 

FIG. 71. 

shearing force diagram does not vanish in this case and is 
equal to -P,I - P2b, which is the bending moment hlB at 
the end B of the beam. The bending moment diagram con- 
sists of the two inclined lines a2c2 and czb2 the slopes of which 
are equal to the values of the shearing force at the correspond- 
ing portions of the cantilever. The numerical maximum of 
the bending moment is at the built-in end B of the beam. 

If a cantilever carries a uniform load, Fig. 71, the shearing 
force and bending moment at a distance x from the left end are 

Y= -qx and J/f= -q.&xx= 25. 
2 2 

The shearing force is represented in Fig. 71b by the inclined 
line ab and the bending moment in Fig. 71~ by the parabola albl 
which has a vertical axis and is tangent to the horizontal 
axis at al, where the shearing force vanishes. The numerical 
maximums of the bending moment and shearing force occur 
at the end B of the beam. 
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If concentrated loads and distributed loads act on the beam 
simultaneously, it is advantageous to draw the diagrams sepa- 
rately for each kind of loading and obtain the total values of Y 
or M at any cross section by summing up the corresponding 
ordinates of the two partial diagrams. If, for example, we 
have concentrated loads P,, P2 and Pa, Fig. 67, acting simul- 
taneously with a uniform load, Fig. 68, the bending moment 
at any cross section is obtained by summing up the corres- 
ponding ordinates of the diagrams in Figs. 67c and 68~. 

Problems 

1. Draw approximately to scale the shearing force and bending 
moment diagrams and label the values of the largest positive and 
negative shearing forces and bending moments for the beams shown 
in Fig. 72. 

FIG. 72. 

2. Draw approximately to scale the shearing force and bending 
moment diagrams and label the values of the largest positive and 
negative shearing forces and bending moments for the cantilever 
beams shown in Fig. 73. 

FIG. 73. 
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3. A cantilever carrying a total load W which increases uni- 
formly in intensity from zero at the left end as shown by the inclined 

line AC, Fig. 74 a, is built in. at the right- 
hand end. Draw the shearing force and 
bending moment diagrams. 

Solution. The shearing force at a 
cross section TTzn at a distance x from the 
left end of the cantilever is numerically 
equal to the shaded portion of the load. 
Since the total load W is represented by 
the triangle ACB the shaded portion is 
WX2/P. By using the sign convention 
previously adopted, Fig. 64, we obtain 

0, 6) lf= -+ Cd 
-7 

% The shearing force diagram is thus rep- 
resented in Fig. 746 by the parabola ab 
which has a vertical axis at the point n. 

4 The bending moment at the cross section 
FIG. 74. mn is obtained by taking the moment of 

the shaded portion of the load with re- 
spect to the centroid of the cross section VVI. Thus 

J/f= -p)+;. 

This moment is represented by the curve al& in Fig. 74~. 
4. A beam of length I uniformly supported along its entire length 

carries at the ends two equal loads P, Fig. 75. Draw the shearing 
force and bending moment diagrams. 

Answer. The diagrams are obtained from Figs. 68b and 68~ by 
substituting -2P for q/. 

fl--; ,-Jp ,T:‘fy=;;? 

FIG. 75. FIG. 76. 

5. A beam of length I = 12 ft uniformly supported along its 
entire length, carries at the center a concentrated load P = 1,000 lb, 
Fig. 76. Find the numerical maximum of the bending moment. 
Draw the shearing force and bending moment diagrams. 

Answer. M,,, = 1,500 ft lb. The required diagrams for each 
half of the beam are similar to those in Figs. 716 and 71~. 
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6. A simplv supported beam of length 1 carries a total distributed 
load W which’increases in intensity uniformly from zero at the left 
end. as shown in Fig. 77a. Draw approximately to scale the shear- 

diagrams if W = 12,000 lb and ing force and bending moment 
I = 24 ft. 

the supports in this case are 
8,000 lb. The shearing force at 

Solution. The reactions at 
RI = +W = 4,000 lb and R2 = 
a cross section mn is obtained by 
subtracting the shaded portion 
of the load from the reaction RI. 
Hence 

The shearing force diagram is rep- 
resented by the parabolic curve 
acb in Fig. 776. The bending 
moment at a cross section VI72 is 

This moment is represented by 
the curve aIc16, in Fig. 77~. The 
maximum bending moment is at 

FIG. 77. 

cr where the shearing force changes its sign, i.e., where x = 1/2/T. 
7. A simply supported beam AB carries a distributed load the 

intensity of which is represented by the line ACB, Fig. 78. Find 

the expressions for the shearing force and the bending moment at a 
cross section mn. 
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Sohtion. Assuming the total load W to be applied at the cen- 
troid of the triangle ACB, the reactions at the supports are 

I+6 
Rl=W- and 

l-l-a 
31 

Rz = W-. 
3/ 

The total load is then divided into two parts, represented by the 
triangles ACD and CBD, of the amount Wall and Wb/l, respectively. 

The shaded portion of the load is W ff X $ = W f . For the shear- 

ing force and the bending moment at mn we then obtain 

y=&-Wf and 
al 

A4 = Rlx - W; X ;. 

In a similar manner the shearing force and bending moment for a 
cross section in the portion DB of the beam can be obtained. 

8. Find A4,,:,, in the previous problem if I = 12 ft, b = 3 ft, 
W = 12,000 lb. 

Answer. M,,, = 22,400 ft lb. 
9. Draw approximately to scale the shearing force and bending 

moment diagrams and label the values of the largest positive and 
negative shearing forces and bending moments for the beams with 
overhangs shown in Fig. 79. 

FIG. 79. 
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Solution. In the case shown in Fig. 79a the reactions are 670 lb 
and 3,330 lb. The shearing force for the left portion of the beam 
is Y = 670 - 400x. It is represented in the figure by the inclined 
line ab. The shearing force for the right portion of the beam 
is found as for a cantilever beam and is shown by the inclined 
line b’c. The bending moment for the left portion of the beam is 
M = 670x - 400x2/2. It is represented by the parabola arerbr. 
The maximum of the moment at er corresponds to the point e, at 
which the shearing force changes its sign. The bending moment dia- 
gram for the right portion is the same as for a cantilever and is repre- 
sented by the parabola bier tangent at cr. 

10. A beam with two equal overhangs, Fig. 80, loaded by a uni- 
formly distributed load, has a length 1. Find the distance d between 

the supports such that the bending moment at the middle of the 
beam is numerically equal to the moments at the supports. Draw 
the shearing force and bending moment diagrams for this case. 

Answer. d = 0.586/. 



CHAPTER IV 

STRESSES IN LATERALLY LOADED SYMMETRICAL BEAMS 

23. Pure Bending.-It was mentioned in the preceding 
chapter that the magnitude of the stresses at any cross section 
of a beam is defined by the magnitude of the shearing force 

and bending moment at that 

jfq+-/q; zjYpz.2r~~Jij~F$;~~ 

P im 

+ 
3 

shearing force is zero and only 
M bending moment is present. 

P (b) , 0 This case is called pure bend- 

FIG. 81. ing. An example of such bend- 
ing is shown in Fig. 81. From 

symmetry we conclude that the reactions in this case are equal 
to P. Considering the equilibrium of the portion of the beam 
to the left of cross section mn, it can be concluded that the 
internal forces which are distributed over the cross section mn 
and which represent the action of the removed right portion 
of the beam on the left portion must be statically equivalent 
to a couple equal and opposite to the bending moment Pa. 
To find the distribution of these internal forces over the cross 
section, the deformation of the beam must be considered. For 
the simple case of a beam having a longitudinal plane of sym- 
metry with the external bending couples acting in this plane, 
bending will take place in this same plane. If the beam is of 
rectangular cross section and two adjacent vertical lines mm 
and pp are drawn on its sides, direct experiment shows that 
these lines remain straight during bending and rotate so as to 
remain perpendicular to the longitudinal fibers of the beam 
(Fig. 82). Th e o f 11 owing theory of bending is based on the 
assumption that not only such lines as mm remain straight, 
but that the entire transverse section of the beam, originally 
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plane, remains plane and normal to the longitudinal fibers of 
the beam after bending. Experiment shows that the theory 
based on this assumption gives very accurate results for the 
deflection of beams and the strain of longitudinal fibers. From 
the above assumption it follows that during bending the cross 
sections mm and pp rotate with respect to each other about 
axes perpendicular to the plane of bending, so that longitu- 
dinal fibers on the convex side suffer extension and those on 

I’ ly 
FIG. 82. 

the concave side, compression. The line nnl is the trace of 
the surface in which the fibers do not undergo strain during 
bending. This surface is called the neutral surface and its 
intersection with any cross section is called the neutral axis. 
The elongation s’s1 of any fiber at distance y from the neutral 
surface is obtained by drawing the line nlsl parallel to mm 
(Fig. 82~). Denoting by r the radius of curvature of the de- 
flected axis 1 of the beam and using the similarity of the tri- 
angles non1 and slnls’, the unit elongation of the fiber ss’ is 

J’Jl Y 
(52) 

It can be seen that the strains of the longitudinal fibers are 
proportional to the distance y from the neutral surface and 
inversely proportional to the radius of curvature. 

Experiments show that longitudinal extension in the fibers 
on the convex side of the beam is accompanied by lateral con- 

‘The axis of the beam is the line through the centroids of its cross sec- 
tions. 0 denotes the center of curvature. 
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traction and longitudinal compression on the concave side is 
accompanied by lateral expansion of the same magnitude, as 
in the case of simple tension or compression (see Art. 14). As 
a result of this the shape of the cross section changes, the ver- 
tical sides of the rectangular section becoming inclined to each 
other as in Fig. 82b. The unit strain in the lateral direction is 

Y 
Ez = -/A& 

= -7’ 
(53) 

where ,J is Poisson’s ratio. Due to this distortion all straight 
lines in the cross section, parallel to the z axis, curve so as to 
remain normal to the sides of the section. Their radius of 
curvature R will be larger than r in the same proportion in 
which cz is numerically larger than cZ (see eq. 53) and we 
obtain 

R=L (54) 
EL 

From the strains of the longitudinal fibers the correspond- 
ing stresses follow from Hooke’s law (eq. 4, p. 4): 

EY (T==--. 
r (55) 

The distribution of these stresses is shown in Fig. 83. The 
stress in any fiber is proportional to its distance from the 

neutral axis nn. The position 
of the neutral axis and the 
radius of curvature r, the two 
unknowns in eq. (55), can now 

’ be determined from the condi- 
tion that the forces distributed 
over any cross section of the 
beam must give rise to a resist- 

FIG. 83. irzg couple which balances the 
external couple A4 (Fig. 81). 

Let dA denote an elemental area of cross section at distance 
y from the neutral axis (Fig. 83). The force acting on this 
elemental area is the product of the stress (eq. 55) and the 
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area dA, i.e., (Ey/r)dA. D ue to the fact that all such forces 
distributed over the cross section represent a system equiva- 
lent to a couple, the resultant of these forces in the x direction 
must be equal to zero and we obtain 

S EY -- d/4 = g SydA = 0, 
r r 

i.e., the moment of the area of the cross section with respect 
to the neutral axis is equal to zero. Hence the neutral axis 
passes through the centroid of he section. 

The moment of the force acting on the element dA with 
respect to the neutral axis is (Ey/r) .dA.y. Adding all such 
moments over the cross section and putting the resultant 
equal to the moment M of the external forces, the following 
equation for determining the radius of curvature r is obtained: 

S E ry2dA = !?f.. = jj,f 1 
or ; = -&, (56) t 

in which 

I, = S y2dA 

is the moment of inertia of the cross section with respect to 
the neutral axis z (see Appendix, p. 417). From eq. (56) it 
is seen that the curvature varies directly as the bending mo- 
ment and inversely as the quantity EI,, which is called the 
Jexural rigidity of the beam. Elimination of r from eqs. (55) 
and (56) gives the following equation for the stresses: 

(57) 

In this equation, M is positive when it produces a deflection 
of the bar convex down, as in Fig. 82; y is positive in the down- 
ward direction. 

The preceding discussion was for the case of a rectangular 
cross section. It will also hold for a bar of any type of cross 
section which has a longitudinal plane of symmetry and which 
is bent by end couples acting in this plane. For such cases 
bending takes place in the plane of the couples and cross- 
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sectional planes remain plane and normal to the longitudinal 
fibers after bending. 

The maximum tensile and compressive stresses occur in 
the outermost fibers, and for a rectangular cross section, or 
any other cross section which has its centroid at the middle of 
the depth h, this will be for y = +h/2. Then for positive M 
we obtain 

and 

For simplicity the following notation is used: 

Then 

(59) 

(60) 

The quantity Z is called the section modz~lus. In the case of 
a rectangular cross section (Fig. 82b) we have 

For a circular cross section of diameter d, 

For the various profile sections in commercial use, such as WE‘ 
beams, I beams, channels and so on, the magnitudes of I, and 
Z for the sizes manufactured are tabulated in handbooks. An 
abridged listing of such sections is given in the Appendix. 

When the centroid of the cross section is not at the middle 
of the depth, as, for instance, in the case of a T beam, let hl 
and hz denote the distances from the neutral axis to the outer- 
most fibers in the downward and upward directions, respec- 
tively. Then for a positive bending moment we obtain 
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For a negative bending moment we obtain 

Problems 

1. Determine the maximum stress in a locomotive axle (Fig. 84) 
if c = 13.5 in., diameter d of the axle 
is 10 in. and the spring-borne load 1’ P A ._______ 4-8 ____ 8 
per journal is 26,000 lb. 

Solution. The bending moment 
acting in the middle portion of the 

L-1 

p 

axle is A/f = P X c = 26,000 X 13.5 
in. lb. The maximum stress, from eq. (60), is 

FIG. 84. 

M 32.iM 32 X 26,000 X 13.5 
u,,,, = - = ~ = 

z rd’ 7r x 10” 
= 3,580 lb per sq in. 

2. Determine the radius of curvature r and the deflection of the 
axle of the preceding problem, if the material is steel and the distance 
AB is 59 in. 

Solution. The radius of curvature T is determined from eq. (55) 
by substitutingy = d/2 = 5 in., (G~)~~,~,~ = 3,580 lb per sq in. Then 

E d 30 X 10G x 5 y=--.-= 
u 2 3,580-- = 

41,900 in. 

For calculating 6 (Fig. 84), observe that the deflection curve is an 
arc of a circle of radius r and DB IS one leg of the right triangle 
DOB, where 0 is the center of curvature. Therefore 

DB2 = r2 - (r - 8)’ = 279 - A~. 

6 is very small in comparison with the radius r and the quantity a2 
can be neglected in the above equation. Then 

DB2 5g2 
s=---= = 0.0104 in. 

2r 8 x 41,900 

3. A wooden beam of square cross section 10 X 10 in. is sup- 
ported at A and B, Fig. 84, and the loads P are applied at the ends. 
Determine the magnitude of P and the deflection 6 at the middle if 
AB = 6’, c = l’, (gz)max = 1,000 lb per sq in. and E = 1.5 X IO6 
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lb per sq in. The weight of the beam is to be neglected. Construct 
bending moment and shearing force diagrams. 

Answer. P = 13,900 lb, 6 = 0.0864 in. 
4. A standard 30” WF beam is supported as shown in Fig. 85 _ _ 

FIG. 85. 

and loaded on the overhangs, 
by a uniformly distributed load 
of 10,000 lb per ft. Determine 
the maximum stress in the mid- 
dle portion of the beam and 
the deflection at the middle of 
the beam if I, = 7,892 in.4 

Solution. The bending moment for the middle portion of the 
beam is M = 10,000 X 10 X 60 = 6 X lo6 in. lb. 

M 6 X lo6 X 15 
b&Ilax = 2 = 

7,892 
= 11,400 lb per sq in., 

6 = 0.182 in. 

5. Determine the maximum stress produced in a steel wire of 
diameter d = & In. when coiled around a pulley of diameter 
D = 20 in. 

Solution. The maximum elongation due to bending, from eq. 
(52), is 

d 1 
e=-----c==- 

D+d 32 x 20 

and the corresponding tensile stress is 

30 x 10s 
(uz)max = EE = 32 x 2. = 46,900 lb per sq in. 

6. A steel rule having a cross section & X 1 in. and a length 
2 = 10 in. is bent by couples at the ends into a circular arc of 60”. 
Determine the maximum stress and deflection. 

Solution. The radius of curvature r is determined from the 
equation I = 2~/6, from which r = 9.55 in., and the maximum 
stress will be given by eq. (55), 

(a,),,x = q = ;;,“;“i”s = 49,100 lb per sq in. 

The deflection, calculated as for a circular arc, will be 

6 = ~(1 - cos 30”) = 1.28 in. 
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7. Determine the maximum stress and the magnitude of the 
couples applied at the ends of the rule in the preceding problem if 
the maximum deflection at the middle is 1 in. 

Amw. (0~1 IIlnX = 38,300 lb per sq in., A4 = 6.23 in. lb. 
8. Determine the curvature produced in a freely supported 

steel beam of rectangular cross section by nonuniform heating over 
the depth h of the cross section. The temperature at any point at 
distance y from the middle plane xz of the beam (Fig. 82) is given 
by the equation: 

t1 + to (4 - to>r 

where tI is the temperature at the bottom of the beam, to is the tem- 
perature at the top, tr - to = 123” F, and the coefficient of expan- 
sion cys = 70 x 10-7. What stresses will be produced if the ends 
of the beam are clamped? 

Solution. The temperature of the middle plane xz is the con- 
stant (tr + to)/2, and the change in temperature of the other fibers 
is proportional to y. The corresponding unit thermal expansions 
are also proportional to y, i.e., they follow the same law as the unit 
elongations given by eq. (52). As a result of this nonuniform ther- 
mal expansion of the fibers, curving of the beam will occur and the 
radius of curvature r is found from eq. (52), using a,(tr - to)/2 for 
cz and h/2 for y. Then 

h 
r= 

41 - to> 
= 1,160h. 

If the ends of the beam are clamped, reactive couples A4 at the 
ends will be produced of magnitude such as to eliminate the curva- 
ture due to nonuniform heating. Hence 

E.I, EI, M=-=-. 
9 1,160?2 

Substituting this in eq. (57), we obtain 

EY 
u==1,160h’ 

and the maximum stress is 

b2)max = E 2 x 1,160 
= 12,900 lb per sq in. 

9. Solve Probs. 6 and 7 if the rule is bent into a circular arc of 
10” and the material is copper. 
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10. Solve Prob. 4, assuming that the beam is of wood, has a 
square cross section 12” X 12” and the intensity of distributed load 
is 1,000 lb per ft. Construct bending moment and shearing force 
diagrams. 

24. Various Shapes of Cross Sections of Beams.2-From 
the discussion in the previous article it follows that the max- 
imum tensile and compressive stresses in a beam in pure 
bending are proportional to the distances of the most remote 
fibers from the neutral axis of the cross section. Hence if the 
material has the same strength in tension and compression, it 
will be logical to choose those shapes of cross section in which 
the centroid is at the middle of the depth of the beam. In this 
manner the same factor of safety for fibers in tension and fibers 
in compression will be obtained. This is the underlying idea 
in the use of sections which are symmetrical with respect to 
the neutral axis for such materials as structural steel, which 
have the same yield point stress in tension and compression. 
If the section is not symmetrical with respect to the neutral 
axis, for example a rail section, the material is so distributed 
between the head and the base as to have the centroid at the 
middle of its height. 

For a material of small strength in tension and high strength 
in compression, as in the case of cast iron or concrete, the ad- 
visable cross section for a beam will not be symmetrical with 
respect to the neutral axis but will be such that the distances 
A1 and h, from the neutral axis to the most remote fibers in 
tension and compression are in the same ratio as the strengths 
of the material in tension and in compression. In this manner 
equal strength in tension and compression is obtained. For 
example, with a T section, the centroid of the section may be 
put in any prescribed position along the height of the section 
by properly proportioning its flange and web. 

For a given bending moment the maximum stress depends 
upon the section modulus and it is interesting to note that 
there are cases in which increase in cross-sectional area does 

* ,A very complete discussion of various shapes of cross sections of beams 
is given by Barr& de Saint-Venant in his notes to the book by Navier, Hi~sis- 
tnnce des corps solides, 3d Ed., pp. 128-62, 1864. 
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not give a decrease in this stress. For example, a bar of square 
cross section bent by couples acting in the vertical plane 
through a diagonal of the cross section (Fig. 86) will have a 
lower maximum stress if the corners, shown shaded on the fig- 
ure, are cut off. Letting a denote the 
length of the side of the square cross 
section, the moment of inertia of the 
square with respect to the z axis is 
(see Appendix) I, = a4/12 and the 2 
corresponding section modulus is 

FIG. 86. 
Let us now cut off the corners so 
that mp = aa, where CY is a fraction to be determined Iater. 
The new cross section consists of a square mmlmml with the 
sides a(1 - cz) and of two parallelograms mnnlml. The mo- 
ment of inertia of this new cross section with respect to the z 
axis is 

Ia’ = 
a4(1 - CY)4 

12 
+ 2.E$ [4-&4]3 

= a4(11; a)3 (1 + 3a), 

and the corresponding section modulus is 

I,%5 v5 Z’=--- 
a(1 - cz) 

= =.a”(1 - o()yl + 34. 

Now if we determine the value of CY so as to make this section 
modulus a maximum, we find cx = l/9. Using this value of 
O( in Z’, it is found that cutting off the corners diminishes the 
maximum bending stress by about 5 per cent. 

This result is easily understood once we consider that the 
section modulus is the quotient of the moment of inertia and 
half the depth of the cross section. By cutting off the corners 
the moment of inertia of the cross section is diminished in a 
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smaller proportion than the depth is diminished, hence the 
section modulus increases and (u,),,, decreases. A similar 
effect may be obtained in other cases. For a rectangle with 
narrow outstanding portions (Fig. 87~) the section modulus is 
increased, under certain conditions, by cutting off these por- 
tions. For a circular cross section (Fig. 876) the section modu- 

Q 5%&-z 

lus is increased by 0.7 per cent by 
cutting off the two shaded seg- 
ments which have a depth 6 = 
O.Olld. In the case of a triangular 
section (Fig. 87~) the section mod- 

FIG. 87. ulus can be increased by cutting 
off the shaded corner. 

In designing a beam to undergo pure bending, not only the 
conditions of strength should be satisfied but also the condition 
of economy in the weight of the beam itself. Of two cross sec- 
tions having the same section modulus, i.e., satisfying the 
condition of strength with the same factor of safety, the sec- 
tion with the smaller cross-sectional area is more economical. 
In comparing various shapes of cross sections, we consider 
first the rectangle of depth h and width b. The section modu- 
lus is 

where A denotes the cross-sectional area. It is seen that the 
rectangular cross section becomes more and more economical 
with increase in its depth k. However, there is a certain limit 
to this increase, and the question of the stability of the beam 
arises as the section becomes narrower. The collapse of a 
beam of very narrow rectangular section may be due not to 
overcoming the strength of the material but to sidewise buck- 
ling (see Part II). 

In the case of a circular cross section we have 

Comparing circular and square cross sections of the same 
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area, we find that the side h of the square will be !z = d&/2, 
for which eq. (a) gives 

2 = 0.147A.d. 

Comparison of this with (6) shows a square cross section to be 
more economical than a circular one. 

Consideration of the stress distribution along the depth 
of the cross section (Fig. 83) leads to the conclusion that for 
economical design most of the material of the beam should be 
put as far as possible from the neutral axis. The most favor- 
able case for a given cross-sectional area A and depth /z would 
be to distribute each half of the area at a distance h/2 from the 
neutral axis. Then 

This is a limit which may be somewhat approached in practice 
by the use of an I section or WF section with most of the mate- 
rial in the flanges. Due to the necessity of putting part of the 
material in the web of the beam, the limiting condition (c) can 
never be realized, and for standard WF profiles we have 
approximately 

z = 0.35Ah (4 

Comparison of (d) with (a) shows that a WE section is much 
more economical than a rectangular section of the same depth. 
In addition, due to its wide flanges, a WF beam will always be 
more stable with respect to sidewise buckling than a beam of 
rectangular section of the same depth and section modulus. 
From this brief discussion we see the reason for the wide appli- 
cation of WF beams in steel structures. 

Problems 

1. Determine the width x of the flange of a cast-iron beam hav- 
ing the section shown in Fig. 88, such that the maximum tensile stress 
is one-third of the maximum compressive stress. The depth of the 
beam h = 4 in., the thickness of the web and of the flange t = 1 in. 
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Solution. In order to satisfy the conditions of the problem it is 
necessary for the beam to have such dimensions that the distance c 
of the centroid from the extreme bottom edge will be equal to ah. 

FIG. 88. 

Now, referring to Fig. 88, we obtain the equation: 

ht . 5 + (x - t) f h 

c= 
ht + (x - t)t = 4’ 

from which 
h” 16 

x=t+ -=1+-= 
h - 2t 

9 in. 
4-2 

2. Determine the ratio (u~)~~,~,~: (r,)lllirl for the channel section 
shown in Fig. 89, ift = 2 in., h = 10 in., b = 24 in. 

A?75WlY. (U~)m:ix: (Ur)Inin = 3 I-7. 

M 
CC -------------J)” j%k4J 

FIG. 89. 

3. Determine the condition at which any further decrease of the 
depth hl of the section shown in Fig. 90 is accom- 
panied by an increase in section modulus. 

Solution. 

FIG. 90. 

The condition for increase in 2 with decrease of hl is 

bh3 dhl 
gp>T Or 

1 

4. Determine what amount should be cut from an equilateral 
triangular cross section (Fig. 87~) in order to obtain the maximum 2. 
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5. Determine the ratio of the weights of three beams of the same 
length under the same A4 and ~~~~~~~ and having as cross sections, 
respectively, a circle, a square and a rectangle with proportions 
h = 2b. 

Answer. 1.12: 1:0.793. 
6. Make a comparison of the section moduli for two beams of 

the same weight if the first beam is a solid circular beam of diameter 
d and the second is a circular tube of outer diameter D and inner 
diameter Dr. 2 

Solution. The cross-sectional area of both beams is A = G = 

T(L)” - DI’) 
4 * 

For the solid beam 2 = Ad/8, for the tubular 

beam 21 = 
a(D4 

-D”‘=$(l+D&). ObservingthatDr2= 
320 

D2 - g, we find for the tubular beam Zr = F 
n- 

(2-J& so 

that 
“=T?(*-A!$). 
z 

Thus, for very thick tubes D approaches d and Zr approaches 2. 
For very thin tubes D is large in comparison with d and the ratio 
Z1 :Z approaches the value 2Dld. 

25. General Case of Laterally Loaded Symmetrical Beams. 
--In the general case of beams laterally loaded in a plane of 
symmetry, the stresses distributed over a cross section of a 
beam must balance the shearing force and the bending moment 
at that cross section. The calculation of the stresses is usually 
made in two steps by determining first the stresses produced 
by the bending moment, called the bending stresses, and after- 
wards the shearing stresses produced by the shearing force. 
In this article we shall limit ourself to the calculation of the 
bending stresses; the discussion of shearing stresses will be 
given in the next article. In calculating bending stresses we 
assume that these stresses are distributed in the same manner 
as in the case of pure bending and the formulas for the stresses 
derived in .Art. 23 will be valid. (AA more complete discussion 
of stresses near the points of application of concentrated forces 
is given in Part Il.) 
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The calculation of bending stresses is usually made for 
the cross sections at which the bending moment has the 
largest positive or negative value. Having the numerical 
maximum of the bending moment and the magnitude of the 
allowable stress uw in bending, the required cross-sectional 
dimensions of a beam can be obtained from the equation 

(63) 

The application of this equation will now be shown by a 
number of examples. 

Problems 

1. Determine the necessary dimensions of a standard I beam to 
support a distributed load of 400 lb per ft, as shown in Fig. 91, if 
the working stress U>I/ = 16,000 lb per sq in. Only the normal stresses 
cz are to be taken into consideration and the weight of the beam may 
be neglected. 

Solution. To obtain the section of maximum moment the shear- 
ing force diagram should be constructed, Fig. 916. The reaction at 
the left support is 

12 x 400 X 15 + 6 X 400 
RI 

x 3 
= = 

21 
3,770 lb. 

The shearing force for any cross section of the portion AC of the 
beam is 

Y = RI - qx = 3,770 - 400 X x. 



STRESSES IN BEAMS 107 

This force is zero for x = 3,770/400 = 9.43 ft. For this section the 
bending moment is a maximum, 

A4 Inax = 3,770 X 9.43 - 400 X $ X 9.43' = 17,800 X 12 in. lb. 

The required section modulus (eq. 63) is 

22 
17,800 x 12 

= 13.4 in.3 
16,000 

This condition is satisfied by an 8 I 18.4 beam, with 2 = 14.2 in.3 
(See Appendix.) 

2. A wooden dam (Fig. 92) is built up of vertical beams such as 
AB of rectangular cross section with dimension h = 1 ft and sup- 
ported at the ends. Determine (uz)mnx if the length of the beams 
I = 18 ft and the weight of the beams is 
neglected. 

Solution. If b is the width of one 
beam, the complete hydrostatic pressure 
on the beam, represented by the tri- 
angular prism ABC, is W = +61’ X 62.4 
lb. The reaction at A is RI = +W = 
$1’ X 62.4 lb and the shearing force at 
any cross section mn is equal to the reac- 
tion RI minus the weight of the prism 
Amn of water, i.e., b 

FIG. 92. 

The position of the cross section corresponding to M,,, is found 
from the condition Y = 0 or 

1 x2 
---= 
3 I2 

0, 

from which 

x = -& = 10.4 ft. 

The bending moment at any cross section mn is equal to the moment 
of the reaction RI minus the moment of the distributed load repre- 
sented by the triangular prism Amn. Then 

#v-x2 x 
&f=Rlx---- 

I2 3 



108 STRENGTH OF MATERIALS 

Substituting, from the above, x2/12 = Q and x = 10.4 ft, we obtain 

M max = 9 ‘b1’ x 62.4 x 10.4 ft lb, 

(g2)max = !!g = t!!g = i(i)’ 62*41;210.4 = 973 lb per sq in. 

fJ 3. Determine the magnitude of 
M mnx in a beam loaded by a trian- 
gular load ADB equal to IV’ = 
12,000 lb if I = 12 ft and d = 3 ft 
(Fig. 93). 

Solution. The distance c to the 

I 
vertical through the center of grav- 
ity C from the support B is, in the 

FIG. 93. case of a triangle, 

c = g(I+d) = 5 ft. 

The reaction at the support A is then 

w.c 
RI=---= 

12,000 x 5 

I 12 
= 5,000 lb. 

The shearing force at any cross section nzn is equal to the reaction 
RI minus the weight of the load represented by the area Amn. Since 
the load represented by the area ADE is 

we obtain 

The position of the section with maximum moment is found from the 
condition 

2 
&-3pJ-= 

(/ - dy 
0 

4 
or 

from which 

x2 4R1 5 
(I - d)2 = j@ = 9’ 

x = 6.71 ft. 



STRESSES IN BEAMS 109 

The bending moment at any cross section mn is equal to the moment 
of the reaction RI minus the moment of the load Amn. Then 

x2 x &f = Rlx - “W-- . . . 
4 (1 - d)2 3 

Substituting x = 6.71 ft, we obtain 

M *nax = 22,400 ft lb. 

4. Construct the bending moment and shearing force diagrams 

for the beam shown in Fig. 94~ and determine the size of I beam 
required to carry the load if a = c = l/4 = 6 ft, P = 2,000 lb, 
q = 400 lb per ft, uw = 15,000 lb 
per sq in. Th e weight of the 
beam may be neglected. Q 

Solution. In Figs. 94b and 
94~ the bending moment and 6 C 

shearing force diagrams produced I 
by the distributed loads are 
shown. To these must be added 
the moment and shearing force 

o. 

produced by P. The maximum y 

M 

62 

nlRX 

. I:.‘;: 
bending moment will be at the 
middle of the span and IS 

=;+;= 19,200ftlb. 
FIG. 94. 

The required section modulus is 2 = 19,200 X 12 
__- = 15.4 in.” The 

15,000 
standard 8 I 23 beam of depth 8 in. and cross-sectional area 6.71 
sq in., 2 = 16.0 in.“, is the nearest cross section satisfying the 

strength requirements (see Appendix). 
5. Determine the most unfavorable 

position of the hoisting carriage of a 

e Fig.95. kndM,.,,iftheloadperwheel 
crane which rides on a beam as shown in 

FIG. 95. is P = 10,000 lb, I’= 24 ft, d = 6 ft. The 
weight of the beam may be neglected. 

So/&on. If x is the distance of the left wheel from the left 
support of the beam, the bending moment under this wheel is 

2P(l- x - $d)x 

I 
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This moment becomes a maximum when 

I d 
x=-----’ 

2 4 

Hence in order to obtain the maximum bending moment under the 
left wheel the carriage must be displaced from the middle position 
by a distance d/4 towards the right support. The same magnitude 
of bending moment can also be obtained under the right wheel by 
displacing the carriage by d/4 from the middle position towards the 
left support. 

M max 2p(1’2 - d’4)2 = 91 900 ft lb = - 9 . 
I 

6. The rails of a crane (Fig. 96) are supported by two standard I 
beams. Determine the most unfavorable position of the crane, the 

FIG. 96. 

corresponding M,,, and the dimensions of the I beams if cw = 15,000 
lb per sq in., I = 30 ft, a = 12 ft, d = 6 ft, the weight of the crane 
W = 10,000 lb, and the load lifted by the crane P = 2,000 lb. The 
loads are acting in the middle plane between the two I beams and 
are equally distributed between them. 

Solution. The maximum bending moment will be under the 
right wheel when the distance of this wheel from the right support is 
equal to Ii = i(1 - &d); M,,, = 1,009,OOO in. lb. Dividing the 
moment equally between the two beams, we find the necessary sec- 
tion modulus 

M z=“““= 33.6 in.3 
2uw 

The necessary I beam is 12 131.8, which has a depth of 12 in., cross- 
sectional area 9.26 sq in., 2 = 36.0 in.3 The weight of the beam is 
neglected. 

7. A circular wooden beam supported at C and attached to the 
foundation at A (Fig. 97) carries a load 4 = 300 lb per ft uniformly 
distributed along the portion BC. Construct the bending moment 
diagram and determine the necessary diameter d if uw = 1,200 lb 
per sq in., a = 3 ft, b = 6 ft. 
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Solution. The bending moment diagram is shown in Fig. 976. 
The numerically largest moment will be at C and is equal to 64,800 
in. lb. Then from eq. (63), 

J 

32 M 
d = 3 - . - = 8.2 in. 

ir flu 

FIG. 98. 

8. A wooden dam consists of horizontal boards backed by vertical 
pillars built in at the lower ends (Fig. 98). Determine the dimension 
of the square cross section of the pillars if I = 6 ft, d = 3 ft and 
uw = 500 lb per sq in. Construct the bending moment and shearing 
force diagrams. 

Solution. The total lateral load on one pillar is represented by 
the weight W of the triangular prism ABC of water. At any cross 
section mn, the shearing force and the bending moment are 

w- x2 wx2 x 
y= --, 

l2 
M= --.-. 

I2 3 

In determining the signs of V and M it is assumed that Fig. 98 is 
rotated 90” in the counter-clockwise direction so as to bring the 
axes x and y into coincidence with those of Fig. 61. The necessary 
dimension b is found from eq. (63), 

M 
,+2% 

3 x 62 x 62.4 x 12 

UW 500 ’ 
from which 

b = 9.90 in. 

The construction of diagrams is left to the reader. 
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9. Determine the necessary dimensions of a cantilever beam of 
standard I section which carries a uniform load 4 = 200 lb per ft 
and a concentrated load P = 500 lb at the end if the length I = 5 ft 
and CTW = 15,000 lb per sq in. 

Answer. 2 (560 x-5 + 1,000 x 2.5)12 = -- 4 in 3 

I 5,000 

The necessary standard I beam is 5 1 10 (see Appendix). 

FIG. 99. 

10. Determine the bending stresses in a rivet by assuming that 
the loads acting on the rivet are distributed as shown in Fig. 99. 
The diameter of the rivet d = 2 in., h = i in., /zr = 3 in., P = 
10,000 lb. 

Sohlion. The bending moment at the cross section mn is 
P/2 X h/2. The bending moment at the middle cross section mrnr 
is 

This latter moment is maximum and is the one to be taken into 
account in calculating the stresses. Then 

26,400 lb per sq in. 

11. Determine the required section moduli Zi, 2s and 23, and 
the necessary standard I beams for the cases shown in Figs. 72a, 
72~ and 736, assuming a working stress of 16,000 lb per sq in. 

Answer. 21 = 5.14 in.3, 2s = 11.1 in.3, Z3 = 22.5 in.” 
12. Determine the section modulus 2 and the necessary dimen- 

sions of a simply supported beam of standard \q’F section such as 
to carry a uniform load of 400 lb per ft and a concentrated load 
P = 4,000 lb placed at the middle. The length of the beam is 15 ft 
and the working stress crw = 16,000 lb per sy in. 

Answer. Z = 19.7 in.” 
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13. A channel with the cross section shown in Fig. 89 is simply 
supported at the ends and carries a concentrated load P at the 
middle. Calculate the maximum value of the load which the beam 
will carry if the working stress is 1,000 lb per sq in. for tension, 
2,000 lb per sq in. for compression, t = 2 in., A = 10 in., b = 24 in. 
and the length I = 10 ft. 

Answer. P = 6,350 lb. 

26. Shearing Stresses in Bending.-It was shown in the 
preceding article that when a beam is bent by transverse 
loads not only normal stresses u, but also shearing stresses T 
are produced in any cross section mn of the beam, Fig. 100. 

FIG. 100. 

Considering the action on the right portion of the beam, Fig. 
100, it can be concluded from the conditions of equilibrium 
that the magnitude of these shearing stresses is such that their 
sum gives the shearing force J’. In investigating the law of 
distribution of these shearing stresses over the area of the 
cross section, we begin with the simple case of a rectangular 
cross section mmnn, Fig. 101. In such a case it is natural to 
assume that the shearing stress at each point of the cross sec- 
tion is parallel to the shearing force V, i.e., parallel to the sides 
mn of the cross section. \I’e denote the stress in this case by 
rz2(. The subscript y in rzy indicates that the shearing stress is 
parallel to they axis and the subscript x that the stress acts in 
a plane perpendicular to the x axis. -4s a second assumption 
we take the distribution of the shearing stresses to be uniform 
across the width of the beam ccl. These two assumptions will 
enable us to determine completely the distribution of the 
shearing stresses. &\ more elaborate investigation of the prob- 
lem shows that the approximate solution thus obtained is 
usually sufficiently accurate and that for a narrow rectangle 
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(h large in comparison with b, Fig. 101) it practically coincides 
with the exact solution.3 

If an element be cut out from the beam by two adjacent 
cross sections and by two adjacent planes parallel to the neu- 
tral plane, as element acdeaicia’rei in Fig. 1016, then in accord- 
ance with our assumption there is a uniform distribution of the 

x 

Cd 
FIG. 101. 

shearing stresses rZy over the vertical face acc,ar. These 
stresses have a moment (7,,bdy)dx about the lower rear edge 
eel of the element, which must be balanced by the moment 
(~,,bdx)dy due to shearing stresses distributed over the hori- 
zontal face of the element, cddlcl. Then 

r,,bdydx = r,,bdxdy and ryZ = rZy, 

i.e., the shearing stresses acting on the two perpendicular 
faces of the element are equal.4 The same conclusion was 

3 The exact solution of this problem is due to St.-Venant, /. math. (Liou- 
ville), 1856. An account of St.-Venant’s famous work is given in Todhunter 
and Pearson’s History of the Theory of Elasticity, Cambridge, 1886-93. The 
approximate solution given in this article is by Jourawski. For the French 
translation of his work, see Ann. pants et chaussiees, 1856. The exact theory 
shows that when the depth of the beam is small in comparison with the width, 
the discrepancy between the exact and the approximate theories becomes 
considerable. 

* We consider here only the absolute value of these stresses. 
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met before in simple tension (see p. 42) and also in tension 
or compression in two perpendicular directions (see p. 48). 

The existence of shearing stresses in the planes parallel 
to the neutral plane can be demonstrated by simple experi- 
ments. Take two equal rectangular bars placed together on 
simple supports as shown in Fig. 
102 and bent by a concentrated 
load P. If there is no friction be- 
tween the bars, the bending of 
each bar will be independent of 

i+j 

that of the other; each will have 
compression of the upper and ten- 
sion of the lower longitudinal fibers 
and the condition will be that in- 

-3 

dicated in Fig. 102b. The lower Fro. 102. 

longitudinal fibers of the upper bar slide with respect to the 
upper fibers of the lower bar. In a solid bar of depth 2k 
(Fig. 102~) th ere will be shearing stresses along the neutral 
plane nn of such magnitude as to prevent this sliding of the 
upper portion of the bar with respect to the lower, shown 5 in 
Fig. 102b. D ue to this prevention of sliding the single bar of 
depth 2h is much stiffer and stronger than two bars each of 
depth h. In practice, keys such as a, 6, c, . . are sometimes 
used with built-up wooden beams in order to prevent sliding 
(Fig. 103~~). Ob servation of the clearances around a key, 
Fig. 1036, enables us to determine the direction of sliding in 
the case of a built-up beam and therefore the direction of the 
shearing stresses over the neutral plane in the case of a solid 
beam.6 

The above discussion shows that the shearing stress rZy at 
any point of the vertical cross section of the beam is vertical in 
direction and numerically equal to the horizontal shearing 
stress 7yZ in the horizontal plane through the same point. 

5 The upper row of arrows indicates the action of the lower half of the beam 
on the upper half. The lower row of arrows shows the action of the upper 
half of the beam on the lower half. 

6 For an analysis of built-up wooden beams see the paper by I;. Stiissi, 
“S&were Notbriicke mit verdiibelten Halken,” Gesellschaft fiir militarische 
Bautechnik, Ziirich. 
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This latter stress can easily be calculated from the condition 
of equilibrium of the element pp,nnl cut out from the beam by 

FIG. 103. 

two adjacent cross sections mn and mrnr and by the horizon- 
tal plane ppr, Figs. 104a and 104b. The only forces on this 
element in the direction of the x axis are the shearing stresses 
7yZ over the side ppr and the normal stress uZ over the sides 
pn and pInI. If the bending moments at cross sections mn 
and mlnl are equal, i.e., in the case of pure bending, the normal 

n 
Y 

(4 
FIG. 104. 

(6) 

stresses u, over the sides np and nlpl will also be equal and 
will be in balance Ijetween themselves. Then the shearing 
stress 72/z must be equal to zero. 

Let us consider now the more general case of a varying 
bending moment, denoting by &l and n/r + d&l the moments 
in the cross sections mn and mlnl, respectively. Then the 
normal force acting on an elemental area dA of the side nppn 
will be (eq. 57) 

a,dA = -yT dA. 
z 
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The sum of all these forces distributed over the side nppn of -- 
the element will be 

s 

h’2 My 
- d/4. 

1/l Iz 
(4 

In the same manner the sum of the normal forces acting on the 
side nlplplnl is 

s 
ILlz (M + dM)y dA ~-__ 

211 I, - 
(4 

The force due to the shearing stresses ryz acting on the top 
sidepp, of the element is 

r,,bdx. cc> 

The forces given in (a), (b) and (c) must satisfy L‘X = 0, hence 

ryabaX = S 
h’2 (M + dM)y d 9 _ 

S 
h’2 My 

2/l Iz i yl E I a4 
from which 

or, by using eq. (SO), : 

Y 

S 
hi2 

rzy = rur = -- 
bIz 2/l 

ydA. (64) 

The integral in this equation represents the moment of the 
shaded portion of the cross section, Fig. 1046, with respect to 
the neutral axis z. For the rectangular section discussed, 

dA = bdy 
and the integral becomes 

The same result can be obtained by multiplying the area 

Uh/2) - Y 11 of th e shaded portion by the distance 

wd2) + Y 11 

of its centroid from the neutral axis. 
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Substituting (d) in eq. (64), we obtain for the rectangular 
section 

(65) 

It is seen that the shearing stresses 7,y are not uniformly 
distributed from top to bottom of the beam. The maximum 
value of T,~ occurs for y1 = 0, i.e., for points on the neutral 
axis, and is, from eq. (69, 

or, since I, = bh3/12, 
(~zybm. = g 

z 

hyLnax = 2 . g* (66) 

Thus the maximum shearing stress in the case of a rectangular 
cross section is 50 per cent greater than the average shearing 
stress, obtained by dividing the shearing force by the area of 
the cross section. 

In the preceding derivation we took the element pnplnl 
from the lower portion of the beam. The same result is ob- 
tained by taking the element from the upper portion. 

For points at the bottom and top of the cross section, 
yr = f/z/2 and eq. (65) gives T,~ = 0. The graph of eq. (65) 
(Fig. 104~) shows that the distribution of the shearing stresses 
along the depth of the beam follows a parabolic law. The 
, 

m’ 
shaded area bounded by the parabola 

m 
m , : 

when multiplied by the width b of the 
m 

: / 

b 

beam gives ~(~~~)~~&d = Y, as it should. 
mn’ I A natural consequence of the shearing 

n. -8 stresses is shearing strain which causes 
P cross sections, initially plane, to become 

FIG. 105. 
warped. This warping can be easily dem- 
onstrated by bending with a force on the 

end a rectangular piece of rubber (Fig. 105), on whose sides 
vertical lines have been drawn. The lines will not remain 
straight as indicated by the dotted lines, but become curved, 
so that the maximum shear strain occurs at the neutral sur- 
face. At the points m’, ml’, n’, n,’ the shearing strain is zero 
and the curves m’n’ and ml’nl’ are normal to the upper and 
lower surfaces of the bar after bending. At the neutral sur- 
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face the angles between the tangents to the curves m’n’ and 
’ and the normal sections mn and mini are equal to 

:‘I” ;T&& A s on as the shearing force Y remains con- 1 g 
stant along the beam the warping of all cross sections is the 
same, so that mm’ = mlml’, nn’ = nini’ and the stretching or 
the shrinking produced by the bending moment in the longi- 
tudinal fibers is unaffected by shear. This fact explains the 
validity here of eq. (57), which was developed for pure bending 
and was based on the assumption that cross sections of a bar 
remain plane during bending. 

A more elaborate investigation of the problem 7 shows also 
that the warping of cross sections does not substantially affect 
the strain in longitudinal fibers if a distributed load acts on 
the beam and the shearing force varies continuously along the 
beam. In the case of concentrated loads the stress distribution 
near the loads is more complicated, but this deviation from 
the straight line law is of a local type (see Part II). 

Problems 

FIG. 106. 

1. Determine the limiting values of the loads P acting on the 
wooden rectangular beam, Fig. 106, if b = 8 in., h = 10 in., ~rw = 800 
lb per sq in., 7~ = 200 lb per sq in., c = 1.5 ft. 

7 See W. Voigt, Gttingen Abhandl., Vol. 34, 1887; J. H. Michell, Quart. 
J. Math., Vol. 32, p. 63, 1901; L. N. G. Filon, Tram. Roy. Sot. (London), A, 
Vol. 201, 1903, and Proc. Kay. Sot. (London), Vol. 72, 1904. See also ‘I’h. 
K&-m&, Abhandl. Aerodyn. Inst., Tech. IIochschuZe (Aachen), Vol. 7, 1927. 
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Solution. The bending moment and shearing force diagrams are 
given in Fig. 106. 

Y max = P, Mm,, = P-c. 

From equations 

PC 3P 
- = uw 
z 

and --=TW, 
2 bh 

we obtain 
P = 5,930 lb and P = 10,700 lb. 

Therefore P = 5,930 lb is the limiting value of the load P. 
2. Determine the maximum nor- 

FIG. 107. 
Fig. 107 if a = 2 ft, c = 4 ft, b = 8 
in., h = 10 in. and P = 6,000 lb. 

Answer. (u5)1,1:Ix = 720 lb per sq in., (7yz)max = 75 lb per sq in. 
3. Determine the maximum shearing stress in the neutral plane 

of a uniformly loaded rectangular beam if the length of the beam 
I = 6 ft, the load 4 = 1,000 lb per ft, the depth of the cross section 
h = 10 in. and the width L = 8 in. 

Answer. T,;,, = 56.3 lb per sq in. 
4. Determine the maximum shearing stresses in the vertical 

beams AB of Prob. 2 of Art. 25’. 

27. Distribution of Shearing Stresses in the Case of a Circular 
Cross Section.-In considering the distribution over a circular cross 
section (Fig. 108) there is no foundation for the assumption that 

Fro. 108. 

the shearing stresses are all parallel to the shearing force Y. In fact 
we can readily show that at points p (Fig. 1086) of the cross section 
along the boundary, the shearing stress must be tangent to the bound- 
ary. Let us consider an infinitesimal element abed (Fig. 108~) in 
the form of a rectangular parallelepiped with the face adfg in the 
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surface of the beam and the face abed in the plane yz of the cross 
section. If the shearing stress acting over the side abed of the ele- 
ment has a direction such as 7, it can always be resolved into two 

components 7XT in a radial direction and 7zt in the direction of the 
tangent to the boundary. Now it has been proved before (see p. 114), 
by using the equation of equilibrium of an element, that if a shearing 
stress 7 acts over an elemental area, a numerically equal shearing 
stress will act also over an elemental area perpendicular to 7. Apply- 
ing this in our case, it must be concluded that if a shearing stress 
7x7 is acting on the element abed in a radial direction there must be 
an equal shearing stress 7,, on the side adfg of the element lying in 
the surface of the beam. If the lateral surface of the beam is free 
from shearing stresses, the radial component 7z1. of the shearing 
stress 7 must be equal to zero, i.e., r must be in the direction of the 
tangent to the boundary of the cross section of the beam. At the 
midpoint n of the chord pp, symmetry requires that the shearing 
stress has the direction of the shearing force Y. Then the directions 
of the shearing stresses at the points p and n will intersect at some 
point 0 on the y axis (Fig. 108b). Assuming now that the shearing 
stress at any other point of the line pp is also directed toward the 
point 0, we define completely the directions of the shearing stresses. 
As a second assumption we take the vertical 
components of the shearing stresses equal 
for all points of the linepp.’ As this assump- 
tion coincides completely with that made in 
the case of a rectangular cross section, we 
can use eq. (64) for calculating this con- 
ponent. In such a case, h will denote the 
length of the chord pp. Knowing the actual 
direction of the shearing stress and its ver- 
tical component, its magnitude may be FIG. 109. 

easily calculated for any point of the cross section. 
Let us calculate now the shearing stresses along the line pp of 

the cross section (Fig. 109). In applying eq. (64) to the calculation 
of the vertical component rzy of these stresses, we must find the 
moment of the segment of the circle below the line pp with respect 
to the z axis. The elemental area rrrn has the length 2m 
and the width dy. The area is dA = 22/R2-y2 dy. The moment 

8 The approximate theory based on the above two assumptions gives 
satisfactory accuracy, and comparison with the exact theory shows that the 
error in the magnitude of the maximum shearing stress is about 5 per cent 
which is not high for practical application. See St.-Venant, lot. cit., p. 100. 
See also, A. E. H. Love, Mathematical Theory of Elasticity, 4th Ed., p. 346, 
1527. 
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of this strip about Cz is ydA and the total moment for the entire 
segment is 

S 
R 

2m.ydy = $(R2 - y12)x. 
2/l 

Substituting this into eq. (64) and taking 22/R2 - y12 for 6, we 
obtain for the vertical shearing stress component 

VCR2 - Y?) 
TV/ 

= 

3I, ’ 

and the total shearing stress at points p (Fig. 109) is 

(67) 

TZY 
’ = dR2 fy,? = 

VR1/R2 - y12 
* 31, 

It is seen that the maximum 7 is obtained for yr = 0, i.e., for the 
neutral axis of the cross section. Then, substituting I, = 7rR4/4, 
we obtain 

4v 4v -__ = -. _. rmax = 3 =R2 3 A (68) 

In the case of a circular cross section, therefore, the maximum shear- 
ing stress is 33 per cent larger than the average value obtained by 
dividing the shearing force by the cross-sectional area. 

28. Shearing Stresses in I Beams.-In considering the dis- 
tribution of shearing stresses in the web of 
an I beam or WF beam (Fig. IlO), the same 

e assumptions are made as for a rectangular 
cross section; these were that the shearing 
stresses are parallel to the shearing force Y 
and are uniformly distributed over the thick- 
ness bl of the web. Then eq. (64) may be 
used for calculating the stresses Tag. For 
points on the line pp at a distance y1 from 

FIG. 110. 
the neutral axis, where the width of the cross 
section is bi, the moment of the shaded por- 

tion of the cross section with respect to the neutral axis z is 
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Substituting in eq. (64), we obtain 

It is seen that the stress 7,y varies along the depth of the beam 
following a parabolic law. The maximum and minimum values 

of 7zy in the web of the beam are obtained by putting yr = 0 
andy, = h,/2, which gives 

Y bh2 
(~&lax = E [ 7 - 7 (b - b,)]. (70) 

1 z 

(71) 

When b, is very small in comparison with b there is no great 
difference between ~~~~~~~~~~ and (Tzy)min and the distribution of 
the shearing stresses over the cross section of the web is prac- 
tically uniform. 

A good approximation for ~~~~~~~~~~ is obtained by dividing 
the complete shearing force Y by the cross-sectional area of 
the web alone. This follows from the fact that the shearing 
stresses distributed over the cross section of the web yield a 
force which is nearly equal to V, which means that the web 
takes nearly all the shearing force and the flanges have only 
a secondary part in its transmission. To prove this, we calcu- 
late the sum 

S 
h,/2 

Yl = 7zyMy. 
-hx/2 

Substituting expression (69) for 7zy, we obtain: 

and, after integration, 

0 - hl) h + hl hl blh13 p--.-p.zf12. 
2 I (4 

For small thickness of flanges, i.e., when hr approaches h, the 
moment of inertia 1, is represented with sufficient accuracy 
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by the equation 
I = Kh - b) (A + w + Ml3 __._~_ . z 

2 8 12’ (b) 

in which the first term represents the cross-sectional area of 
the flanges multiplied by the square of the distance (A + A,)/4 
of their centers from the z axis, which is approximately the 
moment of inertia of the cross section of the flanges. The 
second term is the moment of inertia of the cross section of 
the web. Comparing (u) and (b), we see that as h, approaches 
k the force Y, approaches Y and the shearing force will be 
practically taken by the web alone. 

In considering the distribution of the shearing stresses 
over the cross sections of the flanges, the assumption of no 
variation along the width of the section cannot be made. 
For example, at the level ae (Fig. 110), along the lower bound- 
ary of the flange, ac and de, the shearing stress rZy must be 
zero since the corresponding equal stress 7yZ in the free bottom 
surface of the flange is zero (see p. 114 and also Fig. 108~). 
In the part cd, however, the shearing stresses are not zero, but 
have the magnitudes calculated above for (T~y)~~~i~~ in the web. 
This indicates that at the junction cd of the web and the flange 
the distribution of shearing stresses follows a more compli- 
cated law than can be investigated by our elementary anal- 
ysis. In order to reduce the stress concentration at the points 
c and d, the sharp corners are usually replaced by fillets, as 
indicated in the figure by dotted lines. A more detailed discus- 
sion of the distribution of shearing stresses in flanges will be 
given later (see Part II). 

Problems 

I. Determine (7Zy)mitx and (Tzy)min in the cross section of the web 

l!Li 

-16 --f in., hl = lOi in., Y = 30,000 lb. Determine the 
ofaWFbeam,Fig. llO,ifd = 5in.,b1 = $in.,h = 12 

h shearing force transmitted by the web VI. 
7. Arrswer. ~~~~~~~~ = 5,870 lb per sq in., (Tzy)nrin 

= 4,430 lb per sq in., Y, = 0.945V. 
2. Determine the maximum shearing stress in the 

b web of a T beam (Fig. 111) if h = 8 in., A.1 = 7 in., 
FIG. 111. b = 4 in., bl = 1 in., Y = 1,000 lb. 
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Answer. Using the same method as in the case of an I beam, we 
find (7LZl)m,lx = 176 lb per sq in. 

3. Determine the maximum shearing stress in Probs. 1 and 6 of 
Art. 25. Use the standard I beam section and assume that the total 
shearing force is uniformly distributed over the cross section of the 
web. 

4. Determine the maximum shearing stress in the channel of 
Prob. 2, p. 104, if Y = 12,000 lb. 

Answer. (T,J~~~ = 441 lb per sq in. 

29. Principal Stresses in Bending.-By using eqs. (57) and 
(64) the normal stress ux and the shearing stress 7zy can be 
calculated for any point of a cross section, provided the bend- 
ing moment M and the shearing force Y are known for this 
cross section. The maximum numerical value of u, will be in 
the fiber most remote from the neutral axis and the maximum 
value of 7,1, is usually at the neutral axis. In the majority of 
cases only the maximum values of uz and rzy obtained in this 
manner are used in design and the cross-sectional dimensions 
of beams are taken so as to satisfy the conditions 

(u,hn,x s uw and (~.zy)max 5 TW. 

It is assumed here that the material is equally strong in tension 
and compression and QJ is the same for both. Otherwise the 
conditions of strength in tension and in compression must be 
satisfied separately and we obtain 

(uz)max S uw in tension; 1 (Uz)min 1 S uw in compression. 

There are cases, however, which require a more detailed 
analysis of stresses and require a calculation of the principal 

stresses. Let us show such a calculation for a beam simply sup- 

ported and loaded at the middle (Fig. 112). For a point A below 
the neutral axis in the cross section mn, the magnitudes of the 
stresses uz and rys = 7,y are given by eqs. (57) and (64). In 
Fig, 112b those stresses are shown acting on an infinitesimal 
element cut out of the beam at the point A, their senses being 
easily determined from those of M and Y. For an infinitesimal 
element the changes in stresses uz and rzy for various points 
of the element can be neglected and it can be assumed that 
the element is in a homogeneous state of stress, i.e., the quanti- 
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ties nz and rzU may be regarded as constant throughout the 
element. Such a state of stress is illustrated by the element of 
finite dimensions in Fig. 40~. 

From our previous investigation (see p. 46) we know that 
the stresses on the sides of an element cut out from a stressed 

FIG. 112. 

body vary with the directions of these sides and that it is pos- 
sible to so rotate the element that only normal stresses are 
present (see p. 49). The directions of the sides are then called 
principal directions and the corresponding stresses, principal 
stresses. The magnitudes of these stresses for the present case 
can be found from eqs. (31) and (32) by substituting in these 
equations cy = 0. Then we obtain 

~max = - “2”+ 
J( > 

7 2+ rzy2, (72) 

uz 
Umin = - - 

2 J< ) 
F 2+ rsy2. (73) 
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It should be noted that u,,, is tension and gmin is compression. 
Knowing principal stresses, the maximum shearing stress at 
any point will be obtained from eq. (34) (see p. 51): 

umax - urnin 
TInax = -- = -- 

2 Jr7 
“; 2+ Tzy? (74) 

For determining the directions of principal stresses Mohr’s 
circle will be used. For an element such as at point A (Fig. 
1126), the corresponding Mohr’s circle is shown in Fig. 112~. 
By taking the distance OF = uZ and DF = rZ1/, the point D, 
representing stresses over the sides bc and ad of the element, 
is obtained. 

-. 
The distance OF is taken in the direction of posi- 

tive u and DF in the upward direction because u, is tensile 
stress and shearing stresses 7Z1/ over sides dc and ad give a 
clockwise couple (see p. 76). Point D1 represents the stresses 
over the sides nb and dc of the element on which the normal 
stresses are zero and the shearing stresses are negative. The 
circle constructed on the diameter DD, determines urnax = 
OA and umin = --?%. From the same construction the angle 
29 is determined and the direction of urnax in Fig. 1126 is ob- 
tained by measuring cp from the x axis in the clockwise direc- 
tion. Of course urmin is perpendicular to urnax. 

By taking a section m n 1 1 to the right of the load P (Fig. 
112~~) and considering a point A above the neutral axis, the 
direction of the stresses acting on an element abed at A will be 
that indicated in Fig. 112d. The corresponding Mohr’s circle 
is shown in Fig. 112e. Point D represents the stresses for the 
sides ab and dc of the element abed and point D1, the stresses 
over the sides ad and bc. The angle cp determining the direction 
ullnax must be measured in the clockwise direction from the 
outer normal to the side ab or cd as shown in Fig. 112d. 

If we take a point at the neutral surface, then u+ becomes 
zero. An element at this point will be in the condition of pure 
shear. The directions of the principal stresses will be at 45” to 
the x and y axes. 

It is possible to construct two systems of orthogonal curves 
whose tangents at each point are in the directions of the prin- 
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cipal stresses at this point. Such curves are called the trajec- 
tories of the stresses. Fig. 113 shows the stress trajectories for 
a rectangular cantilever beam, loaded at the end. All these 
curves intersect the neutral surface at 45” and have horizontal 
or vertical tangents at points where the shearing stress rZy is 
zero, i.e., at the top and at the bottom surfaces of the beam. 
The trajectories giving the directions of urnax (tension) are rep- 
resented by full lines and the other system of trajectories by 
dotted lines. Fig. 114 gives the trajectories and the stress dis- 
tribution diagrams for uZ and rrl, over several cross sections of 
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FIG. 113. FIG. 114. 

a simply supported rectangular beam under uniform load. It 
is clearly seen that uZ has a maximum value at the middle, 
where the bending moment M is a maximum, and 7,y is max- 
imum at the supports, where the maximum shearing force 
acts.g 

In the design of beams the concern is for the numerically 
maximum values of u. From eq. (72) it can be seen that for 
the most remote fibers in tension, where the shear is zero, the 
longitudinal normal stress ul: becomes the principal stress, i.e., 
urnax = (~Anax. For fibers nearer to the neutral axis the longi- 
tudinal fiber stress uI is smaller than at the extreme fiber. 
However, we now have a shear stress rZy also and the stresses 
uZ and 72y acting together at this point may produce a princi- 
pal stress, given by eq. (72), which will be numerically larger 
than that at the extreme fiber. In the case of beams of rec- 
tangular or circular cross section, in which the shearing stress 

TX?/ 
varies continuously down the depth of the beam, this is 

9 Several examples of construction of the trajectories of stresses are dis- 
cussed by I. Wagner, 2. iisterr. Ing. u. Architekt. Vet-., p. 615, 191 I. 
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not usually the case, i.e., the stress (uJmax calculated for the 
most remote fiber at the section of maximum bending moment 
is the maximum stress acting in the beam. However, in such 
a case as an I beam, where a sudden change occurs in the 
magnitude of shearing stress at the junction of flange and 
web (see p. 124), the maximum stress calculated at this joint 
from eq. (72) may be larger than the tensile stress (cz)mitx in 
the most remote fiber and should be taken into account in de- 
sign. To illustrate this fact, consider the case represented in 
Fig. 11%~ with a beam of I section and the same dimensions as 
in Prob. 1, p. 124, the length I = 2 ft and P = 60,000 lb. 
Then Mm,, = 30,000 ft lb and V,,, = 30,000 lb. From eq. 
(57) the tensile stress in the most remote fiber is 

(uz)max = 
30,000 x 12 x 6 

286 
___ = 7,550 lb per sq in. 

Now for a point at the junction of flange and web we obtain 
the following values of normal and shearing stresses: 

7,550 x 10; 
uz = ___ 

12 
- = 6,610 lb per sq in., 

rzy = 4,430 lb per sq in. 

Then, from eq. (72), the principal stress is 

~max = 8,830 lb per sq in. 

It can be seen that gnlax at the joint between the flange 
and the web is larger than the tensile stress at the most remote 
fiber and therefore it must be considered in design. 

Problems 

1. Determine umsx and c’nlin at a point 2 in. below the neutral 
axis in the section 3 ft from the loaded end of the cantilever (Fig. 
113) if the depth h = 8 in., the width b = 4 in. and P = 2,000 lb. 
Determine the angle between umilX at this point and the x axis. 

Answer. (u.,) = -844 Ib per sq in.; (T~J = 70.3 lb per sq in.; 
UlIX%X = 5.7 lb per sq in.; umin = -849.7 lb per sq in. The angle 
between uIllitX and the x axis is 85’16’ measured clockwise. 
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2. Determine urnax and u,in at the neutral axis and in the cross 
section 1 ft from the left support for the uniformly loaded rectangular 
beam supported at the ends (Fig. 114). The cross-sectional dimen- 
sions are the same as in the previous problem, and q = 1,000 lb per 
ft; 1 = 10 ft. 

Answer. urnax = -urnin = 187.5 lb per sq in. 
3. Determine the length of the I beam considered on p. 129 if 

Cudmax is equal to urnax at the junction of flange and web. 
Answer. I = 39.8 in. 

30. Stresses in Built-up Beams.-In engineering practice 
built-up beams are frequently used and the stresses in them 
are usually calculated on the assumption that their parts are 
rigidly connected. The computation will then involve (a) the 
designing of the beam as a solid beam and (6) the designing 
and spacing of the elements which unite the parts of the beam. 
In the first case the formulas for solid beams are used, making 
an allowance for the effect of rivet holes, bolts, slots, etc., by 
the use of reduced sections. The design of keys and rivets 
will now be illustrated. 

Let us discuss first a wooden beam built up as shown in 
Fig. 103. It is assumed that the keys used between the two 
parts of the beam are strong enough to resist the shearing 
forces S (Fig. 1036). Then eq. (57) can be used for calculating 
uz. In order to take into account the weakening of the section 
by the keyways and the bolt holes, only the shaded portion of 
the section, indicated in Fig. 103c, should be taken into con- 
sideration. Then 

I 
e 

= (b - 4 
12 [(2h)3 - (2c)31. 

In calculating the shearing force S acting on each key we 
assume that this force is equal to the shearing force distrib- 
uted in a solid beam over the area eb of the neutral surface, 
where b is the width of the beam and e is the distance between 
the middle points of the keys (see Fig. 103~). Then by using 
eq. (66) and considering that the depth of the beam is equal 
to 2h in this case, we obtain 

s = eb. 3” = 3.E 
2 2hd 2 2h ’ 
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The dimensions of the keys and the distance e between them 
should be chosen so as to insure sufficient strength against 
shearing of the key and against crushing of the wood on the 
lateral sides of the key and the keyway. In such calculations 
the rough assumption is usually made that the shearing 
stresses are uniformly distributed over the middle section 
a x b of the key and that the pressure on the lateral sides 
of the keys is uniformly distributed over the area c X b. 
Then denoting by w the working shearing stress for the keys, 
and by uW’ the working stress in lateral compression of the 
wood of the keys or the keyways, the following equations for 
designing the keys are obtained: 

It is also necessary to insure sufficient strength against shear- 
ing of the wood of the beam along the fibers between two keys. 
The shearing force will be again equal to S and the resisting 
area is b X (e - a). Denoting with TW’ the working stress in 
shear of the material of the beam along the fibers, the condition 
of strength becomes 

In addition to keys there are bolts (Fig. 103) uniting the 
parts of the beam. By tightening them friction between the 
parts of the beam is produced. This friction is usually neg- 
lected in calculations and it is assumed that the total shearing 
force is taken by keys. Experiments show that such built-up 
wooden beams are weaker than solid beams of the same 
dimensions.‘0 

In calculating the stresses uz in built-up steel beams or 
plate girders, the weakening effect of rivet holes is usually 
taken into account by assuming that all the holes are in the 

10 The experiments made by Prof. E. Kidwell at the Michigan College of 
Mines show that built-up wooden beams have about 75 per cent of the 
strength of the solid beam of the same dimensions. 
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same cross section (Fig. 11.5~~) of the beam I1 and subtracting 
their diametral sections in calculating I, in eq. (57). 

In calculating the maximum shearing stress ~~~ it is also 
the practice to take into account the weakening effect of the 
rivet holes. It can be seen that the cross-sectional area of the 
web is diminished, by holes, in the ratio (e - d)/e, where e is 
the distance between the centers of the holes and a’ the diam- 
eter of the holes. Hence the factor e//(e - d) is usually in- 
eluded in the right side of eq. (64) for calculating T,~ in the 

FIG. 115. 

web of built-up beams. It should be noted that this manner 
of calculating the weakening effect of rivet holes is only a rough 
approximation. Th e actual distribution of stresses near the 
holes is very complicated. Some discussion of stress concen- 
tration near the edge of a hole will be given later (see Part II). 

In calculating the shearing force acting on one rivet, such 
as rivet A (Fig. 115b), let us consider the two cross sections 
mn and mlnl. Due to the difference of bending moments in 
these two cross sections, the normal stresses u, on sections 
mn and mlnl will be different and there is a tendency for the 
flange of the beam shaded in Fig. 11.5~ to slide along the web. 
This sliding is prevented by friction forces and by the rivet A. 
Neglecting friction, the force acting on the rivet becomes equal 
to the difference of forces acting in sections mn and mlnl of 
the flange. The force in the flange in the cross section mn is 

11 The holes in the vertical web are present in sections where vertical 
stiffeners are riveted to the girder. 
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(see eq. a, p. 117) 
Ai! 
7 YdA, 

2 s 

where the integration should be extended over the shaded 
cross-sectional area of the flange. In the same manner for the 
cross section mlnl we obtain 

(A4 + Ahl> 

1, S ydA 

Then the force transmitted by the rivet A from the flange to 
the web will be 

AM 
S=-- 

1, S ydA. 

I3y using eq. (50) and substituting the distance e between the 
rivets instead of dx, we obtain 

AM = Ye, 

where Y is the shearing force in the cross section of the beam 
through the rivet A. Substituting in eq. (a), we obtain 

The integral entering in this equation represents the moment 
of the shaded cross section (Fig. 11.5~) of the flange with re- 
spect to the neutral axis z. 

It is easy to see that in order to have sliding of the flange 
along the web the rivet must be sheared through two cross 
sections. Assuming that the force S is uniformly distributed 
over these two cross sections, the shearing stress in the rivet 
will be 

s 2Ve 
7 = - = ~- 

7rd’ nd21, S ydA. 

The force S sometimes produces considerable shearing stress 
in the web of the beam along the plane ab (see Fig. 1156) 
which must be taken into consideration. Assuming that these 
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stresses are uniformly distributed and dividing S by the area 
b,(e - d), we obtain 

Y 
71 = - 

uz 
. fids.W. Cd) 

In addition to this stress produced by forces S transmitted 
from the flanges, there will act along the same plane LZ~ shear- 
ing stresses 7” due to bending of the web. The magnitude 
of these stresses will be obtained by using eq. (b) above and 

substituting for the integral S ydA the statical moment with 

respect to the neutral axis z of the portion of the rectangular 
cross section of the web above the plane ab. In this manner 
we arrive at the following equation for the shearing stress 7yz 
in the web along the plane ab (Fig. 115b): 

Y e 
T!iz = $ + $1 = - . ~- 

&I, e - d s YdA, (78) 

in which the integral is extended over the shaded area of the 
cross section shown in Fig. 115d. Knowing uz and ryz, then 
umaX and (TrmiII for the points in the plane ab can be calculated 
from eqs. (72) and (74), as was explained in the previous article, 
and the directions of principal stresses can be determined. 

From the above discussion it is seen that in calculating 
stresses in built-up I beams several assumptions are made for 
simplifying the calculations. This to a certain extent reduces 
the accuracy of the calculated stresses, which fact should be 
considered in choosing the working stresses for built-up I 
beams.12 

Problems 

1. A built-up wooden beam (Fig. 103) consists of two parts of 
rectangular cross section connected by keys. Determine the shear- 

I2 Experiments show that the failure of 1 beams usually occurs due to 
buckling of the compressed flanges or of the web (see H. F. Moore, Univ. 
of Illinois, Bull. No. 68, 1913). This question of buckling will be considered 
later. The effect of bending of rivets on the distribution of stresses in I 
beams has been discussed by I. Arnovlevic, 2. Architekt. u. Ingenieurw., 
p. 57, 1910. He found that, due to this, bending stresses for usual propor- 
tinns of beams increase about 6 per cent. 
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ing force acting on the keys, the shearing stress in the key and pres- 
sure per unit area on its lateral sides if the load P = 5,000 lb, the 
width of the beam b = 5 in., the depth 2h = 16 in., the width of 
the key a = 3 in., the depth of the key 2c = 23 in. and the distance 
between centers of the keys e = 11 in. 

3 2,500x11 
Answer. S = 2 . 

16 
= 2,580 lb. 

Shearing stress in the key is 

2,580 
T = __ = 172 lb per sq in. 

5x3 

The pressure per unit area on the lateral side is 

S 2,580 x 2 ,=-.-= 
bc 24 x 5 

= 413 lb per sq in. 

2. Determine the shearing stress at the neutral axis of a plate 
girder, the web of which is 2 in. thick and 50 in. high, the flanges 
consisting of two pairs of angles 6 X 6 X 3 in., when the total shear- 
ing force on the section is 150,000 lb. Determine also the shearing 
stresses in the rivets attaching the flanges to the web if the diameter 
of these rivets is 1 in. and the pitch e = 4 in. (Fig. 115). 

Solution. For the dimensions given we have 

I, = i X g + 4(19.9 + 5.75 X 23.3’) = 20,400 in.4 

The static moment of half of the cross-sectional area with respect to 
the neutral axis is 

s h/2 ydA = 4 3 ___ 25 x 2 25 + 2 X 5.75 X 23.3 = 502 in.3 
0 

In this calculation 5.75 in.2 is the cross-sectional area of one angle, 
19.9 in.4 is the moment of inertia of the cross section of one angle 
with respect to the axis through its centroid parallel to the neutral 
axis of the beam, 23.3 in. is the distance of the centroid of each angle 
from the neutral axis z of the beam. All such numerical data can be 
taken directly from a handbook or the Appendix. Now we obtain, 
from eq. (64), 

(Tyz)max = 
150,000 x 502 

2 x 20,400 
= 4,920 lb per sq in. 
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If we consider weakening of the web by the rivet holes, then 

The force S transmitted by one rivet, from eq. (76), 

s= 
150,000 x 4 x 26X 

20,400 
= 7,880 lb. 

The shearing stress in the rivet, from eq. (77), 

4,920 = fk 4,920 = 6,560 lb per sq in 
3 

7,880 x 2 
7= 

3.14 
= 5,020 lb per sq in. 

3. Determine u,,,, in points of the plane ab (Fig. 115) a distance 
of 21.5 in. from the neutral axis if the dimensions of the beam are 
the same as in the previous problem, Y = 150,000 lb and the bending 
moment A4 = 3 X 10” in. lb. 

Solution. From eq. (78), 

150,000 
Tyz = . 4 = 

$ x 20,400 3 
(268 + 61) 4,300 lb per sq in., 

3 x 10” x 21.5 
uz = 

20,400 
__ = 3,160 lb per sq in., 

uIntrx = - -  y + 
J 

$ + T?,,~ = 6,160 lb per sq in. 

4. Determine the shearing force in the 
rivets connecting the two rails of the beam 
shown in Fig. 116 if the cross-sectional 
area of a rail is A = 10 sq in., the distance 
from the bottom of the rail to the centroid 
of its cross section c = 3 in., the moment 
of inertia of the cross section of the rail 
with respect to the axis through its cen- 

FIG. 116. troid c and parallel to the z axis is 40 in.4, 
the distance between the rivets e = 6 in., 

the shearing force Y = 5,000 lb. 
1 5,000 x 6 x 30 

Solution. S = - . 
2 2(40 + 10 x 9) 

= 1,730 lb. 



CHAPTER V 

DEFLECTION OF LATERALLY LOADED SYMMETRICAL BEAMS 

31. Differential Equation of the Deflection Curve.-In the 
design of a beam the engineer is usually interested not only 
in the stresses produced by the acting loads but also in the 
deflections produced by these loads. In many cases, further- 
more, it is specified that the maximum deflection shall not 
exceed a certain small portion of the span. 

-.z- -dx 

Iy 
FIG. 117. 

Let the curve AmB in Fig. 117 represent the shape of the 
axis of the beam after bending. Bending takes place in the 
plane of symmetry due to transverse forces acting in that 
plane. This curve is called the deJection curve. To derive the 
differential equation of this curve we take the coordinate axes 
as shown in the figure and assume that the curvature of the 
deflection curve at any point depends only on the magnitude 
of the bending moment A4 at that point.’ In such a case the 
relation between the curvature and the bending moment is 

1 The effect of shearing force on the curvature will he discussed later (see 
Art. 39). It will be shown that this effect is usually small and can be neg- 
lected. 

137 
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the same as in the case of pure bending (see eq. 56), and we 
obtain 

1 M -=-. 
EIZ 

(a> 
r 

To derive an expression for the relation between the curvature 
and the shape of the curve, we shall consider two adjacent 
points m and ml, distance ds apart on the deflection curve. 
If the angle which the tangent at m makes with the x axis is 
denoted by 8, the angle between the normals to the curve at 
m and ml is de. The intersection point 0 of these normals 
gives the center of curvature and defines the length r of the 
radius of the curvature. Then 

ds = rdtl 
1 

and - = 
de 

r I I Z’ 
(4 

the bars indicating that we consider here only the numerical 
value of the curvature. Regarding the sign, it should be 
noted that the bending moment is taken positive in eq. (a) if 
it produces upward concavity (see p. 75). Hence the curva- 
ture is positive when the center of curvature is above the 
curve as in Fig. 117. However, it is easy to see that for such 
a curvature the angle 0 decreases as the point m moves along 
the curve from A to B. Hence, to a positive increment ds cor- 
responds a negative (2’8. Thus to have the proper sign eq. (b) 
must be written in the form 

1 de -= --. 
r ds cc> 

In practical applications only very small deflections of beams 
are allowable and the deflection curves are very flat. In such 
cases we can assume with sufficient accuracy that 

ds = dx and 8 = tan 0 = dy/dx. (4 

Substituting these approximate values for ds and 0 in eq. (c), 
we obtain 

1 d2y -= -__, (f> r dx2 
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Eq. (a) thus becomes 
&L-~ 

=dx2 * 
(79) 

This is the differential equation of the deflection curve and 
must be integrated in each particular case to find deflections 
of beams. 

It should be noted that the sign in eq. (79) depends upon 
the direction of the coordinate axes. For example, if we take 
y positive upwards, it is necessary to put 

e s -dy/dx 

in place of eq. (d), and we obtain plus instead of minus on the 
right side of eq. (79). 

In the case of very slender bars, in which the deflection 
may be large, it is not permissible to use the simplifications 
(d), and we must have recourse to the exact expression 

Then 

1 -= --= - 
r ds dx ds 

=- (f) 

Comparing this result with eq. (e), it can be concIuded that 
the simplifications shown in eq. (d) are equivalent to assum- 
ing that the quantity (dy/dx)” in the denominator of the exact 
formula (f) is small in comparison with unity and can there- 
fore be neglected.2 

2 The exact expression (f) for the curvature was used by the first investi- 
gators of deflection curves. It was used, e.g., by I,. Euler in his famous work, 
Elrrstic Czirves, an English translation of which was published in Isis, Vol. 20, 
p. 1, Nov. 1933. See also S. Timoshenko, History of Strength of Materials, 
New York, p. 32, 1953. 
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By differentiating eq. (79) with respect to x and using eqs. 
(SO) and (51), we obtain 

and 

The last equation is sometimes used in considering the deflec- 
tion of beams under a distributed load. 

32. Bending of a Uniformly Loaded Beam.-In the case of 
a simply supported and uniformly loaded beam, Fig. 68, the 
bending moment at any cross section mn, a distance x from 
the left support, is 

&f - QIX QX2 
2 2* 

and the differential eq. (79) becomes 

qlx && --+f. 

Multiplying both sides by dx and integrating, we obtain 

where C is the constant of integration which is to be adjusted 
so as to satisfy the conditions of this particular problem. To 
this end, we note that as a result of symmetry the slope at the 
middle of the span is zero. Setting dy/dx = 0 when x = L/2, 
we thus obtain 

and eq. (a) becomes 

c = !f 
24’ 

4 41x2 d3 EIzz= --?-+$tG. 

.A second integration gives 

42x3 qHx 
EI,y = - -c2- + $ + 34 + C,. 

(4 

cc> 
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The new constant of integration Ci is determined from the 
condition that the deflection at the supports is zero. Substi- 
tuting y = 0 and x = 0 into eq. (c), we find Ci = 0. Eq. (c) 
then becomes 

y = & (1% - 21x3 + x4). (81) 

This is the deflection curve of a simply supported and uni- 
formly loaded beam. The maximum deflection of this beam is 
evidently at the middle of the span. Substituting x = l/2 in 
eq. (Sl), we thus find 

5 414 
ymax = ~ ~.~-. 

384 EI, (82) 

The maximum slope occurs at the left end of the beam where, 
by substituting x = 0 in eq. (b), we 
obtain dr 

(-> - 
ql” 

dx m:tx 24EI, 
(83) 

In the case of a uniform4 
loaded cantilever beam, Fig. 118a, 
the bending moment at a cross 
section mn a distance x from the 
left end is 

M=vq? 
2 ’ 

and eq. (79) becomes FIG. 118. 

The first integration gives 

The constant of integration is found from the condition that 
the slope at the built-in end is zero, that is dy/dx = 0 for 
x = 1. Substituting these values in eq. (d), we find 

ql” 
c= -6’ 
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The second integration gives 

The constant Cl is found from the condition that the deflection 
vanishes at the built-in end. Thus, by substituting x = 1, 
y = 0 in eq. (e), we obtain 

c =41” 
1 

8’ 

Substituting this value in eq. (e), we find 

y = & (x4 - 4Px + 3Z4). 
z 

This equation defines the deflection curve of the uniformly 
loaded cantilever. 

If the left end instead of the right end is built in, as in 
Fig. 118b, the deflection curve is evidently obtained by sub- 
stituting I - x instead of x into eq. (84). In this way we find 

y = & (x4 - 41x3 + 612x2). 
t 

Problems 

1. A uniformly loaded steel I beam supported at the ends has a 
deflection at the middle of 6 = i5c in. while the slope of the deflec- 
tion curve at the end is 0 = 0.01 radian. Find the depth h of the 
beam if the maximum bending stress is CT = 18,000 lb per sq in. 

Sozution . We use the known formulas 
4 

b=&$. e=L, 
qz2 h 

z 24E1, 
Qmax 

=aXTr z 
From the first two formulas we find 

i I = f = $ X 100 in. and I = 100 in. 

The second formula then gives 

d2 3EB 3 x 30 x lo6 x 0.01 
--= 

8r,- I 100 * 
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Substituting this in the third formula, we obtain 

h= 
2 x 18,000 x 100 

= 
3 x 30 x lo6 x 

4 in. 
0.01 
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2. A simply supported and uniformly loaded wooden beam of 
square cross section has a span I = 10 ft. Find the maximum de- 
flection if (uz)milx = 1,000 lb per sq in., E = 1.5 X lo6 lb per sq in. 
and Q = 400 lb per ft. 

Answer. 6 = 0.281 in. 
3. Find the depth of a uniformly loaded and simply supported 

steel I beam having a span of 10 ft, if the maximum bending stress 
is 16,000 lb per sq in. and the maximum deflection 6 = 0.1 in. 

Answer. h = 16 in. 
4. A uniformly loaded cantilever beam of span I has a deflection 

at the end equal to 0.011. What is the slope of the deflection curve 
at the end? 

Answer. 0 = 0.0133 radian. 
5. What is the length of a uniformly loaded cantilever beam if 

the deflection at the free end is 1 in. and the slope of the deflection 
curve at the same point is O.Ol? 

Answer. I = 11 .I ft. 

33. Deflection of a Simply Supported Beam Loaded by a 
Concentrated Load.-~-In this case there are two different ex- 
pressions for the bending moment (see Art. 22) corresponding 
to the two portions of the beam, Fig. 119. Eq. (79) for the 

FIG. 119. 

deflection curve must 
In this way we obtain 

therefore be written for each portion. 

ET t!?= 
’ dx2 

---x 
I 

for x s a, 

and 

E$= -yx+P(x-a) for x 2 a. 
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By integrating these equations we obtain 

and 

4 EQ= - 
Pdx2 

-TfC 
for x S a, 

(4 

EI, 2 = - 7 + p(x - a)2 + Cl for 
2 

x 2 a.] - 

Since the two branches of the deflection curve must have a 
common tangent at the point of application of the load P, 
the above expressions (a) for the slope must be equal for 
x = a. From this we conclude that the constants of integra- 
tion are equal, i.e., C = Cr. Performing the second integra- 
tion and substituting C for C1, we obtain 

and 

EI,y = 
Pbx3 

- 61 + Cx + C2 for x s a, 

! (b) 
Pbx” 

EI,y = - - 
61 

+ p(x - a)3 
6 

+Cx+C3 for x 2 a. 
J 

Since the two branches of the deflection curve have a common 
deflection at the point of application of the load, the two 
expressions (B) must be identical for x = a. From this it 
follows that C2 = Ca. Finally we need to determine only two 
constants C and Ca, for which determination we have two 
conditions, namely that the deflection at each of the two ends 
of the beam is zero. Substituting x = 0 and y = 0 in the 
first of expressions (b), we find 

c2 = c3 = 0. cc> 

Substituting y = 0 and x = I in the second of expressions (6), 
we obtain 

(4 

Substituting the values (c) and (d) of the constants into eqs. 
(b) for the deflection curve, we obtain 
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EI,y = for x 5 a, (86) 
and 

EI,y = for x 1 a. (87) 

The first of these equations gives the deflections for the left 
portion of the beam and the second gives the deflections for 
the right portion. 

Substituting the value (d) into eqs. (a), we obtain 

EI, 2 = g (12 - b2 - 3x”) for x S a, 
and 

dy Pb 
‘(’ - a)2 for ,y 2 Q 

(6) 

EI, z = / (i2 - b2 - 3x2) + 2 - * 

From these equations the slope at any point of the deflection 
curve can readily be calculated. Often we need the values of 
the slopes at the ends of the beam. Substituting x = 0 in the 
first of eqs. (e), x = I in the second, and denoting the slopes at 
the corresponding ends by e1 and 02, we obtain 3 

(j = 9 P&12 - 82) 
1 

0 
= ~--) 

dx z=,, 61EI, (88) 

Pa&I + a) 
z=I = - --* 6&Y, (89) 

The maximum deflection occurs at the point where the 
tangent to the deflection curve is horizontal. If n > b as in 
Fig. 119, the maximum deflection is evidently in the left par- 
tion of the beam. We can find the position of this point by 
equating the first of the expressions (e) to zero to obtain 

from which 
z2 - 62 - 3x2 = 0, 

3 For flat curves, which we have in most cases, the slopes O1 and O2 can 
be taken numerically equal to the angles of rotation of the ends of the beam 
during bending, the angles being taken positive when the rotation is clockwise 
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This is the distance from the left support to the point of maxi- 
mum deflection. To find the maximum deflection itself, we 
substitute expression (f) in eq. (86), which gives 

If the load P is applied at the middle of the span the 
maximum deflection is evidently at the middle also. Its mag- 
nitude is obtained by substituting b = 1’/2 in eq. (g), which 
gives 

(YL;,2 = gj-. (90) 
z 

From eq. (f) it can be concluded that in the case of one 
concentrated force the maximum deflection is always near the 
middle of the beam. When 6 = 112 it is at the middle; in the 
limiting case, when b is very small and P is near the support, 
the distance x as given by eq. (f) is 1/d3, and the point of 
maximum deflection is only a distance 

A-; = 0.0771 

from the middle. Due to this fact the deflection at the middle 
is a close approximation to the maximum deflection. To oh- 
tain the deflection at the middle we substitute x = 1/2 in 
eq. (86), which gives 

(YL;,z = & (312 - 462). 
z (91) 

The difference of the deflections (g) and (91) in the most un- 
favorable case, that is when b approaches zero, is only about 
2.5 per cent of the maximum deflection. 

Problems 

1. Find the position of the load P, Fig. 119, if the ratio of 
the numerical values of the slopes at the ends of the beam is 

a = 5,. 
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2. Find the difference between the maximum deflection and the 
deflection at the middle of the be.tm in l;ig. 119 if 6 = 2a. 

Pl” 
Amwer. 0.0046 --~---. 

27EI, 
3. Find the maxi:num deflection of the beam shown in Fig. 119 if 

the beam is an 8 I 18.4 section (see Appendix) with 8 in. depth and 5.34 
sq in. cross-sectional area, and a = 12 ft, b = 8 ft and P = 2,000 lb. 

4. What will be the maximum deflection if the I beam of the 
previous problem is replaced by a wooden beam having a cross sec- 
tion 10 X 10 in.? The modulus of elasticity for wood can be taken as 
E = 1.5 X 10” Ib per sq in. 

34. Determination of Deflections by the Use of the Bend- 
ing Moment Diagram--Area-iWome?zt Method.-In the preced- 
ing articles it was shown how 
the deflection curve of a beam 
can be obtained by integration 
of the differential eq. (79). In 
many cases, however, espe- 
cially if we need the deflection 
at a prescribed point rather 
than the general equation of 
the deflection curve, the calcu- 
lation can be considerably sim- 
plified by the use of the bend- 
ing moment diagram, as will 
be described in the following 
discussion.4 

-Idx 1- 
FIG. 120. 

In Fig. 120 AB represents a portion of a deflection curve 
of a beam and albl is the corresponding portion of the bending 
moment diagram. Two adjacent cross sections of the beam at 
distance ds apart will intersect, after bending, at an angle de, 
and, from eq. (56), 

de = 1 ds = z$ ds. 
r z 

4 The use of the bending moment diagram in calculating deflections of 
beams was developed by 0. Mohr, see Z. Architekt. u. Ing.-Yer. (Humover), 
17. 10, 1868; see also his Abhnndlungen, p. 294; lot. cit., p. 40. A similar 
method was developed independently by Prof. C. E. Green, Univ. of Mich- 
iqan, 1874. It seems that the originator of the method was St.-Venant. 
See his notes in Navier’s book, pp. 72 and 79; lot. cit., p. 100. 
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For beams used in structures the curvature is very small, and 
we may use dx for ds. Then 

d8 = $ dx. 
z 

(a> 

Graphically interpreted, this means that the elemental angle 
dtl between two consecutive radii or two consecutive tangents 
to the deflection curve equals the shaded elemental area Mdx 
of the bending moment diagram, divided by the flexural 
rigidity.5 This being valid for each element, the angle B be- 
tween the tangents at A and B will be obtained by summing up 
such elements as given by eq. (a). Then 

s B 1 
8= __ Mdx 

A EIz 
(92) 

i.e., the angle between the tangents at two points A and B 
of the deflection curve equals the area of the bending moment 
diagram between the corresponding verticals, divided by the 
flexural rigidity of the beam. 

Let us consider now the distance of the point B of the 
deflection curve from the tangent AB’ at point A. Recalling 
that a deflection curve is a flat curve, the above distance can 
be measured along the vertical BB’. The contribution made 
to this distance by the bending of an element mn of the beam 
and included between the two consecutive tangents at m and n 
is equal to 

Mdx 
xde = x -- 

EIZ 

Interpreted graphically this is the moment of the shaded area 
Mdx with respect to the vertical through B, divided by ET,. 
Integration gives the total deflection BB’: 

BB’ = ,J = xMdx, (93 

i.e., the distance of B from the tangent at A is equal to the 

6 By way of dimensional check: d0 is in radians, i.e., a pure number, 
Mdx is in in. lb X in., and &:I, is in lb per sq in. X in.4 
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moment with respect to the vertical through B of the area of 
the bending moment diagram between A and B, divided by 
the flexural rigidity EI,. By using eqs. (92) and (93) the 
slope of the deflection curve and the magnitude of deflection 
at any cross section of the beam can easily be calculated in 
each particular case. We calculate first the absolute values of 
6 and 6. Then taking the positive directions of the coordinate 
axes as shown in Fig. 122, we consider the rotation of a tangent 
to the deflection curve as positive if it is in the clockwise direc- 
tion, and deflection of the beam positive if it is in the direction 
of the positive y axis. This method of calculating deflections 
is called the area-moment method. 

The calculation of the integrals in eqs. (92) and (93) can 
often be simplified by the use of known formulas concerning 
areas and centroids. Several formulas which are often en- 
countered in applications are given in Fig. 121. 

-r 
h 

35. Deflection of a Cantilever Beam by the Area-Moment 
Method.-For the case of a cantilever beam with a concen- 
trated load at the end (Fig. 122a) the bending moment dia- 
gram is shown in Fig. 122b. Since a tangent at the built-in 
end A remains fixed, the distances of points of the deflection 
curve from this tangent are actual deflections. The angle o!, 
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which the tangent to the deflection curve at B makes with the 
tangent at A is, from eq. (92),6 

(94) 

The deflection 6 is calculated from eq. (93) as the moment of 
the area aGal about the axis bb, divided by EI,. Then 

(95) 

For any cross section such as mn, the angular deflection from 
the x axis is the area m’n’aai of Fig. 1226, divided by E1,. In 
the case of flat curves such as deflection curves of beams, angu- 
lar deflection can be taken equal to the slope of the curve and 

(96) 

The deflection y at the same cross section is the moment of the 
area m’n’aal about m’n’ divided by EI, (see eq. 93). Separat- 
ing this area into the rectangle and the triangle indicated in 
the figure, this is 

6 1 t is taken positive since the rotation is clockwise. 
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For a cantilever with a concentrated load P at a cross sec- 
tion distance c from the support (Fig. 123a) the bending mo- 
ment diagram is shown in Fig. 
1236. The slope and the deflec- 
tion for any section to the left 
of the point of application of 
the load are determined from 
eqs. (96) and (97) with c in 
place of 1. For any cross sec- 
tion to the right of the load the 
bending moment and the curva- 

/ - 
A 

C 

f= (a 

FIG. 123. 

ture are zero, hence this portion of the beam remains straight. 
The slope is constant and equal to the slope at D, i.e., from 
eq. (94), Pc2/2EI,. The deflection at any cross section mn is 
the moment of the area of the triangle aaid about the vertical 
m’n’ divided by El,, which gives 

(98) 

In the case of a cantilever with a uniform load of intensity 
q (Fig. 124a), the bending moment at any cross section mn 

distant x1 from the built-in end is 

FIG. 124. 

M = _ 4(Z - Xl>” 
2 ’ 

and is represented by the parabola 
nldb in Fig. 1246. The slope at any 
cross section a distance x from the 
support is, from eq. (92), 

1 
e=z=z 4 z - S 0 qv 2 Xl>" dx 1 

4 
2EI, 

z2x - Ix2 f ’ g (99) 

The slope at the end is obtained by substituting I for x in the 
above equation, giving 

ql” 

6EI, uw 
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The deflection at any section a distance x from the built-in 
end is the moment of the area aa,cd about the vertical cd di- 
vided by EI, (Fig. 124b). Th e moment of the element of this 
area, shown shaded, is 

(x - xl) ‘(I ; ‘l)” dq, 

and the total moment is the integral of this with respect to x1 
from x1 = 0 to xl = x. Hence 

1q 2 y = zr- i (x - xl)(l - x1)2dx1. 
P s 0 

The deflection at any point a distance x from the support is 
then, after integration, 

4 
4 

P.2 Ix” 
y = 2E1, 2 

pg. 
) 

For the deflection at the end x = 1: 

(101) 

The same problem can be solved by using the method of 
superposition. Th e uniform load can be considered as a sys- 
tem of infinitesimal loads qdc, as indicated by the shaded area 
in Fig. 140, p. 164. 

Problems 

1. Determine the deflection of the top of the pillar represented in 
Fig. 98. 

Solution. The bending moment at any cross section mn, a dis- 
tance x from the top, is 

wx3 
J?f= --, 

312 

where W = idI X 62.4 lb is the total hydrostatic pressure trans- where W = idI X 62.4 lb is the total hydrostatic pressure trans- 
mitted to one pillar. mitted to one pillar. Using eq. (93), the deflection of the top of the Using eq. (93), the deflection of the top of the 

iv/” 3 x 6” x 62.4 x 63 X 123 X 12 
= -gig = -2x = 

1.5 x 1.5 100 
k 

x 9.g4 
0.070 in. 
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2. Determine the deflection and the slope at the end of a canti- 
lever bent by a couple M (Fig. 125). 

Answer. (y)$=l = - g, 
MI =-- 

* EI, ’ 

FIG. 125. FIG. 126. 

3. Two wooden rectangular beams clamped at the left end (Fig. 
126) are bent by tightening the bolt at the right end. Determine 
the diameter d of the bolt to make the factors of safety for the wooden 
beams and for the steel bolt the same. The length of the beams 
I = 3 ft, the depth h = 8 in., the width b = 6 in., working stress for 
steel uw = 12,000 lb per sq in., for wood nw = 1,200 lb per sq in. 
Determine the deflection of the beams when the tensile stress in the 
bolt is 12,000 lb per sq in. 

Solution. If P is the force in the bolt, the equation for deter- 
mining the diameter d will be 

from which 

4P 6PI 12,000 
-+- 
?rd2 bh’ 

= ___ = 10, 
1,200 

d = 0.476 in. and P = 12,000 X r; = 2,130 lb. 

Then from eq. (95), by taking E = 1.5 X 10” 
lb per sq in. the deflection 6 = 0.0864 in. 

4. What must be the equation of the 
axis of the curved bar AB before it is bent A- 

if the load P, moving along the bar, remains FIG. 127. 
always on the same level (Fig. 127) ? 

Pi.3 
Answer. 

’ = - 3EI; 
5. Determine the safe deflection of the beam shown in Fig. 125 

when the working stress a~ is given. Determine this also for a canti- 
lever loaded at the end (Fig. 122). 

Answer. (1) 6 = !g, (2) 6 = 3g . 
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6. A circular disc N of radius R (Fig. 128) 

?jJgy 

produces on a thin steel strip of thickness h an 
attraction of q lb per sq in. uniformly dis- 
tributed. Determine the length I of the unsup- 
ported part AC of the strip and the maximum 

FIG. 128. stress in it if h = 0.01 in., R = 3 in. and q = 1.5 
lb per sq in. 

Sd?&Oti. The length of the unsupported part of the strip can be 
determined from the condition that at the point C the curvature 
produced by the uniformly distributed load q must be equal to l/R. 
Therefore 

c$’ EI, -= -, 
2 R 

from which 

4 2EI, 1 I= --= - in. 
qR 3 

The maximum stress is determined from the equation urnax = Eh/2R 
= 50,000 lb per sq in. 

36. Deflection of a Simply Supported Beam by the Area- 
Moment Method.-Let US consider the case of a simply sup- 
ported beam with a load P applied at point F, Fig. 129. The 

A 

FIG. 129. 

bending moment diagram is the triangle alblfl, Fig. 1298. 
Its area is Pab/2, and its centroid C is at distance (I + b)/3 
from the vertical Bb,. The vertical distance 6 from the end 
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B to the line Ab’ which is tangent to the deflection curve at A 
is obtained from eq. (93) and is 

1 Pab I + b 6=.---~-= Pab(l + b) 
EI, 2 3 6EI, . 

By using this value the slope 19~ at the left end of the beam is 
found to be 

+;= 
P&I + 6) , 

6lEI, (4 

which coincides with previously obtained formula (SS).’ In 
calculating the angle of rotation e2 of the end B of the beam 
(Fig. 129a) we observe that rotation of the end B with respect 
to the end A, from eq. (92), is 

8 = g- 

Hence 
e2 = (yl - 8 = !yg2 : ;I = - “a:;: a). (b) 

z z z 

A simple interpretation of formulas (a) and (d) is obtained 
if we consider albl in Fig. 1296 as a simply supported beam, 
carrying the triangular load represented by the triangle alflbl. 
The reaction at the left support a1 of this imaginary beam is 

Pab(l + b) 

61 ’ 
Similarly, 

By comparing these results with formulas (a) and (6), it can 
be concluded that the angles of rotation 8r and 19~ of the ends 
of the actual beam AB are obtained by dividing by the flexural 
rigidity EI, the shearing forces at the ends of the imaginary 
beam alhI. Th e imaginary beam ald I is called the conjugate 
beam. 

1 Note that a = I - b. 
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To calculate the slope at any point d of the deflection 
curve, Fig. 129a, it is necessary to subtract the angle 0 between 
the tangents at A and at d from the angle Or at the support. 
Using eq. (92) for the calculation of the angle 0, we obtain, 
from Fig. 1298, 

d. - = O1 - 0 = %i- (RI - Aa,mn). 
dx z 

The first term in the parentheses is the reaction at the left 
support of the conjugate beam albl and the second is the load 
on the conjugate beam to the left of the cross section mn. 
The expression in the parentheses therefore represents the 
shearing force at the cross section mn of the conjugate beam. 
Consequently the slope of the actual beam at a point d can 
be obtained by dividing the shearing force at the correspond- 
ing cross section of the conjugate beam by the flexural rigid- 
ity EI,. 

Considering next the deflection y at a point d, it may be 
seen from Fig. 129~ that 

y = Z - de. cc> 

From the triangle Ace we obtain the relation 

where RI is the reaction at the left support of the conjugate 
beam. The second term on the right side of eq. (c) represents 
the distance of the point d of the deflection curve from the 
tangent Ae and is obtained from eq. (93) as 

1 
de = zr (area Aalmn) X i. 

z 

Substituting expressions (d) and (e) in eq. (c), we obtain 

1 
y = --.-- Rlx - Aalmn X x . 

ET, 3 > 

The expression in parentheses is seen to be the bending moment 
at the cross section rnz of the conjugate beam. Thus the de- 
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flection at any point of a simply supported beam is obtained 
by dividing the bending moment at the corresponding cross 
section of the conjugate beam by the flexural rigidity EI,. 
Substituting the value of RI in eq. (f) and noting that 

Pbx2 
area Aalmn = 21~ 

we obtain 

1 Pabx(l+ 6) 
Y = EI, [ 

Pbx3 -__ 
61 61 1 = g;: (1’ - 62 - g>, 

z 

This checks with eq. (86), which was previously obtained by 
integration of the differential equation of the deflection curve. 
The deflection for a point to the right of the load P can be cal- 
culated in a similar manner. The result will, of course, be the 
same as eq. (87). It is seen that by using the area-moment 
method we eliminate the process of integration which was 
applied in Art. 33. 

In the case of the uniformly "--ii-"I 
loaded beam, Fig. 130a, we con- R 
sider the conjugate beam ab, 
Fig. 130b, loaded by the para- 
bolic segment a&, which is the 
bending moment diagram in 
this case. The total fictitious a 

load on the conjugate beam is 

FIG. 130. 

and each reaction is equal to q1’“/24. The slope at the end A 
of the actual beam is then obtained by dividing this reaction 
by EI,. To calculate the deflection at the middle we find the 
bending moment at the middle of the conjugate beam, which is 

The deflection is then obtained by dividing this moment 
by EI,. 
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In the case of a simply supported beam AB with a couple 
M acting,at the end, Fig. 131, the bending moment diagram is 
a triangle abd, as shown in Fig. 131b. Considering ab as the 

FIG. 131. 

conjugate beam, the total fictitious load is M1/2. The reac- 
tions at the ends of the conjugate beam are thus Ml/6 and 
Ml/3. Hence the angles of rotation of the ends of the actual 
beam are 

Ml 
81 = __ (103) 

and 
6E1, 

MI &= --. 
3E1, (104) 

The deflection at a cross section mn of the beam is obtained 
by dividing the bending moment at the corresponding cross 
section mlnl of the conjugate beam by EI,, which gives 
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Problems 

1. Determine the angles at the ends and the deflection under 
the loads and at the middle of the beam 
shown in Fig. 132. 

Solution. The conjugate beam will A 
be loaded by the trapezoid adeb, the area 
of which is Pc(l - c). The angles at the 

p: ;pFq 

ends are 
1 Pc(I - c) 

,/d2kyj 

e1 = -e2 = zr z 2 * 
b 

FIG. 132. 

The deflection under the loads is 

(y)z=, = & [ ‘“?‘;- c) - Eg . ;] = g (; - 5 g. 

The deflection at the middle, from eq. (91), is 

bJL=z/2 = & (312 - 4c2). 
z 

2. Determine the slope at the ends of the beam shown in Fig. 92. 
Answer. 

dY 
0 

7 WI2 dr = --, 
dx s=o 180 EI, 0 

2 WI2 

z ==z= - 45 EI, 

where W is the total pressure on the beam. 
3. ,4 simply supported beam AB is loaded as shown in Fig. 133. 

Find the deflection at the center of the beam and the maximum de- 
flection; find the slopes at the ends of the beam. 

Answer. 

2v5PP 
(S>,=z,, = 0, hnax = 

(27)22/3EI, 
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4. Determine the angles Or and 0s and the deflection at any cross 
section ry2n of a beam simplv supported at the ends and bent by a 

A ’ A A couple PC (Fig. 134). 

(b) 
FIG. 134. 

Solution. The loading of the conjugate beam is indicated in Fig. 
1346. The reactions at al and B1 are 

Ra=f[!$(h+;)-gq, 

Therefore 

If a = 6 = 1/2, we obtain 
PC1 

If a > i/d3 th e angle o2 changes its sign and the deflection is every- 
where downward. The bending moment at the cross section mlnl 
of the conjugate beam is 

Pca2 x2 x 
R,x - --- 

21 a2 3 

Therefore the deflection curve for the left part of the actual beam is 

’ = 212EI, 
““[a2(6+;) +3] L&. 
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5. A beam is bent by two couples as shown in Fig. 13.5. Deter- 
mine the ratio A41:Mz if the point 
of inflection is at a distance 1/3 ’ 
from the left support. 

Answer. Mz = 2M1. 
6. Two planks of different 

$gIrt f% 

thicknesses hI and hz, resting one 
FIG. 135. 

upon the other, support a uniformly distributed load as shown in 
Fig. 136. Determine the ratio of the maximum stresses occurring in 
each. 

SoIution. Both planks have the same deflection curves and 
curvature, hence their bending moments are in the same ratio as 
the moments of inertia of their cross sections, i.e., in the ratio h13:hz3. 
The section moduli are in the ratio h12:h22, hence the maximum 
stresses are in the ratio kl:h~. 

7. A steel bar AB has such an initial curvature that after being 
straightened by the forces P (Fig. 137) it produces a uniformly dis- 
tributed pressure along the length of the rigid plane surface MN. 
Determine the forces P necessary to straighten the bar and the 
maximum stress produced in it if I = 20 in., 6 = 0.1 in. and the 
cross section of the bar is a square having 1 in. sides. 

Solution. To obtain a uniformly distributed pressure, the initial 
curvature of the bar must be the same as the deflection curve of a 
simply supported beam carrying a uniformly distributed load of in- 
tensity 2P/I. Then we obtain 

2P12 PI 
M lllAX zz --- = -, 

18 4 (d 

l4 
"=J&&. (h) 

2: 
The maximum stress will be 

M UlrZX Plh 
u max = -=-. 

z (4 
Now from (h) and (i) 

81, 

24EUz 24 x 30 x lo6 x 0.1 x 1 
~11lSX = ___ = 

.512 5 x 202 
= 36,000 lb per sq in., 

and from (i) P = 1,200 lb. 



162 STRENGTH OF MATER1AT.S 

8. Determine the deflection 6 at the middle of the wooden beam 
shown in Fig. 72~ if the cross section is 10 X IO in. Find the max- 
imum bending stress. 

Answer. 6 = 0.181 in., u,,, = 494 lb per sq in. 
9. Using the same beam as in the preceding problem, find the 

maximum bending stress and the deflection at the middle for the 
loading condition shown in Fig. 72e. 

Answer. 6 = 0, urnax = 123 lb per sq in. 

37. Method of Superposition.--From the discussion of the 
area-moment method (Art. 34) it is seen that the deflections 
of a beam are entirely defined by the bending moment dia- 
gram. From the definition of the bending moment (Art. 20) 
it follows that the bending moment produced at any cross sec- 
tion of a beam by several simultaneously acting transverse 
loads is equal to the sum of the bending moments produced at 
the same cross section by the individual loads acting sepa- 
rately. From this it follows that the deflection produced at any 
point of a beam by a system of simultaneously acting trans- 
verse loads can be obtained by summing up the deflections 
produced at that point by the individual loads. Having, for 
example, deflection curves for the cases illustrated in Figs. 123 
and 119, we can obtain by simple summation the deflections 
for a cantilever or a simply supported beam carrying any 
transverse load. 

Taking as an example the case shown in Fig. 138 and using 
eqs. (97) and (98), we conclude that the deflection at B is 

The deflection at any cross section mn for the portion DB of 
the cantilever beam will be 
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In the case of distributed load the summation will naturally 
be replaced by integration. As an example we shall take the 
case of a simply supported beam under a uniformly distributed 
load, Fig. 130, and calculate the slopes at the ends and the de- 
flection at the middle. From eq. (a), Art. 36, the increment of 
slope de1 produced at the left end of the beam by the element 
of load qdb shown in Fig. 130 is 

de = pa&l + b)dE, qb(P - P)db 
1 61E1, = 6fE1, * 

The slope 8r produced by the total load is then the summation 
of the increments of slope produced by all the elements qdb from 
F = 0 to b = 1. Thus 

01 = S z q&l” - b2)db ql” =-. 
0 61E1, 24E1, 

The deflection at the middle is obtained from eq. (91), which 
was derived on the assumption that the load is to the right of 
the middle. Any element of load qdb to the right of the middle 
produces at the middle a deflection 

(dy)z=l,z = g;+ (312 - 4b2). 
z 

Summing up the deflections produced by all such elements of 
load to the right of the middle, and noting that the load on 
the left half of the beam produces the same deflection at the 
middle as the load on the right half, we obtain for the total 
deflection 

6 = (y)z=1,2 = 2Az’2 g (312 - 4P) = &&. (b) 

The results (a) and (b) coincide with formulas (83) and (82) 
previously obtained by integration of the differential equation 
of the deflection curve. 

The method of superposition is &ye1 111111111 rdl 
especially useful if the distributed FIG. 139. 
load covers only a part of the span 
as in Fig. 139. Using the expression developed above for 
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(&)z=l,2, the deflection produced at the middle by the load to 
the right of the middle is 

61 = S Z/2 cw lj12 
d 48EI, 

- 4b2). 

The load to the left of the middle produces the deflection 

82 = S I” 4ddb- (312 _ 462). 
c 48E1, 

The total deflection at the middle is therefore 

6 = 61 + 62 = (312 - 4b2) +Jz’2 2% (312 - 4b2). 
c z 

Let us consider now a uniformly loaded cantilever, Fig. 140. 
The deflection produced at the cross 
section mn by each elemental load 
qdc to its left can be found from eq. 

8 (98) by substituting qdc for P. The 
deflection y1 produced by the total 

FIG. 140. 
load to the left of mn is the summa- 
tion of the deflections produced by 

all such elemental loads with c varying from c = 0 to c = x: 

y1 = z~~z$:(x - $)& = &;. 

The deflection produced at the cross section mn by an elemen- 
tal load qdcl to its right is found from eq. (97) by substituting 
qdcl for P and cl for 1. The deflection y2 produced at mn by 
the total load to the right is the summation of the deflections 
due to all such elemental loads, with cl varying from c1 = x to 
L-1 = I: 

Then the total deflection at the section mn is 

y=y1+y22~ 12x2 
2: ( 2 

-!g+&). 

which agrees with eq. (101) found previously. 
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Problems 

1. Determine the deflection at the middle of the beam AB, 
shown in Fig. 141, when 1, = 91.4 in.4, 
q = 500 lb per ft, I = 24 ft, a = 12 ft, 
B = 8 ft, E = 30 X lo6 lb per sq in. 

Solution. Due to the fact that a = (12, 
the deflection produced at the middle by 
the load acting on the left half of the beam, 
from eq. (82), is .* 

FIG. 141. 

(YILZ/2 = l&g- 
z 

The deflection produced at the middle by the load on the right half 
of the beam is 

S b qcdc 
(y2Lz,2 = o E (312 - 4c2) = 

25 

z 48 X 162 

The total deflection is 

1 5 

= 2384 (-- + 

2. Determine the deflection at the middle of the beam shown in 
Fig. 95 when the load is in a position to produce the maximum bend- 
ing moment. 

Suggestion. The deflection can be obtained by using eq. (91) 
together with the method of superposition and substituting b = l/2 
- d/4 in this equation for one load and b = 1/2 - zd for the other. 

3. Determine the deflections at the middle and the angles of 
rotation of the ends of the beams shown in Figs. 726 and 72d. As- 
sume in these calculations a standard steel I beam, 8 I 23.0, with 
Iz = 64.2 in.” 

Answer. For the beam in Fig 72b, 6 = 0.11 in., 8r = 0.00223 
radian, ti2 = -0.00255 radian. 

4. A beam with supported ends is bent by two couples Mi and 
Ms, applied at the ends (Fig. 142). Determine the angles of rota- 

?? 
FIG. 142. 
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tion of the ends and the position of the cross section in which the 
deflection is a maximum. 

Solution. 
(104) are 

The absolute values of the angles from eqs. (103) and 

e1 = 
M,I &if,1 

-+-, 
3EI, 6EI, 

The deflection curve, by using eq. (105), is 

The position of maximum deflection can be found from this equation 
by equating the first derivative to zero. 

5. What is the ratio of the deflections at 
the ends of the cantilevers shown in Fig. 143 

B if the intensity of uniform load is the same in 
both cases? 

Answier. 7:41. 

B 6. Determine the deflections at the ends 
of the cantilever beams shown in Fig. 73, as- 

FIG. 143. 
suming that the material is steel, the depth 
k of each beam is 10 in., and the maximum 
bending stress is 16,000 lb per sq in. Use the 

method of superposition. 
Solution. Taking, for example, the case represented in Fig. 736 

and observing that the total uniform load is qI = 4,000 lb and the 
load at the end is P = 1,000 lb = &I, we have 

(J - p14 1 pP - w4 ) 
8E1T, 3EI, 24EI, 

Eliminating I,, we obtain 

5 X 
6 

51 2 ~max (120)2 x 
16,000 = -= = 

9Eh 
0.427 

9 
in. 

x 30 x 10s x 10 

Similarly, the other three problems can be solved. 
7. Find the deflection 6 of the end B of the cantilever AB loaded 

by the triangular load ACB, Fig. 144. 
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Solution. Applying the method of superposition and using 
eq. (102) and the result of Prob. 1, Art. 35, we obtain 

q-14 q14 I l# 
g=---=p. 

8EI, 30EI, 120EI, 

---7- 

38. Deflection of Beams with Overhangs.-A beam with an 
overhang can be divided into two parts: the part between the 
supports which is to be treated as a beam with supported ends, 
and the overhang which is to be treated as a cantilever. As an 
illustration, we consider the bending of a beam with an over- 
hang under the action of a uni- 
formly distributed load CJ (Fig. 
145). The beam is divided 
into the parts AB and BC and 
the action of the overhang on 
the portion of the beam be- 
tween the supports is replaced 
by a shearing force qa and a 
couple M = qa2/2. We find 
that the shearing force is d- 
rectly transmitted to the sup- FIG. 145. 

port and that only the couple qa a/2 need be considered. Then 
the deflection at any cross section between the supports is 
obtained by subtracting the deflection produced by the couple 
qa2/2 from the deflections produced by the uniform load Q 
(Fig. 145b). Using eqs. (81) and (105), we obtain 

q -(/3x-21x3+x4) -g(1 -g>. 
’ = %EI, z 

The angle of rotation of the cross section at B is obtained by 
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using eqs. (83) and (104), f rom which, by considering rotation 
positive when in the clockwise direction, we have 

qa’l qP 

e2=m--. 24EI, 

The deflection at any cross section of the overhang (Fig. 145r.) 
is now obtained by superposing the deflection of a cantilever 
(eq. 101) on the deflection, 

due to the rotation of the cross section B. 

Problems 

1. Determine the deflection and the slope at the end C of the 
beam shown in Fig. 147~. 

Answer. deflection = 
Pa2(Z + a) Pa(21f 3a) 

3EI, ’ 
slope = ~~. 

hEr, 
2. For the beam shown in Fig. 146 determine the deflection at 

the end C and also at the midpoint between the supports. 

FIG. 146. 

Solution. That part of the beam between the supports will be 
in the condition of a beam loaded by the force P and by the couples 
Pla and P& at the supports. By using eqs. (91) and (105) and the 
method of superposition, the deflection at the middle is 

The angle e1 at the support A is obtained from eqs. (88), (103) and 
(104), 

8 = Pc(l” - c2) Plal P&1 
1 

-~-~. 

61EI, 3EI, 6EI, 
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From eq. (95) the deflection at the 
end C is 

Pla” __- 
3EI, 

aB1. Aczl% 

3. A beam with an overhang is 
p--y ‘“, c 

r 
- 

bent in one case by the force P at %&? 
the end (Fig. 147a), and in another fbl 
case by the same force applied at FIG. 147. 
the middle of the span (Fig. 1476). 
Prove that the deflection at the point D in the first case is equal to 
the deflection at the end C in the second case. 

Answer. In each case the deflection is 

16EI, 

4. A beam of length I with two equal overhangs is loaded b> 
two equal forces P at the ends (Fig. 148). Determine the ratio xl1 
at which (1) the deflection at the middle is equal to the deflection at 
either end, (2) the deflection at the middle has its maximum value. 

Answer. (I) x = 0.1521; (2) x = I/6. 

FIG. 148. FIG. 149. 

5. A wooden beam of circular cross section supported at C, with 
the end attached at A, carries a uniformly distributed load Q on the 
overhang CD (Fig. 149). Determine the diameter of the cross sec- 
tion and the deflection at D if I = 3 ft, a = 6 ft, q = 300 lb per ft, 
(TV = 1,200 lb per sq in. 

Sohtion. The diameter d is found from the equation 

qa’ rd3 -+-= 
2 32 aW* 

Then the deflection at the end D is found from the equation 
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6. A beam of length I carries a uniformly distributed load of 

b t d intensity q (Fig. 150). Determine the 

llllrlllllllllUllrllrE 
length of overhangs to make the numer- 
icai maximum value of the bending 

p-x x +I moment as small as possible. Determine 

FIG. 150. the deflection at the middle for this con- 
dition. 

Solution. Making the numerical values of the bending moments 
at the middle and at the supports equal, we obtain 

x = 0.207Z. 

The deflection at the middle is determined from the equation 

6=$. 
q(1 - 2x)4 qx2(l - 2x)2 

EI, - 16E1, ’ 

in which the first term on the right side represents the deflection 
produced by the load between the support (eq. 82) and the second, 
the deflection produced by the load on the overhangs (eq. 105). 

7. Determine the deflections at the ends of the overhangs for 
the beams represented in Fig. 79~5 6, c. Assume a standard 8 I 23.0 
beam, Iz = 64.2 in.4, E = 30 X 10” lb per sq in. 

Answer. If I is the length of the beam between supports, and 
a is the length of the overhang, then 

+2?; f 
( 

gl” 

1 z 
;;;--- 

.? 24EI, > 
a 

PLZ21 117Pn” 
&--, 

4H, 384E1, 

6, = & (a + 21). 
I 

39. Effect of Shearing Force on the Deflection of Beams.-In the 
previous discussion (see p. 137) only the action of the bending mo- 
ment in causing deflection was considered. An 
additional deflection will be produced by the 
shearing force, in the form of a mutual sliding Y/ 
of adjacent cross sections along each other. ,4s 
a result of the nonuniform distribution of the 
shearing stresses, the cross sections, previously 
plane, become curved as in Fig. 1.51, which shows h 

-._ x -.. -. -- - 
Y 

the bending due to shear alone.* The elements FIG. 151. 

8 ?‘he deformation produced by the bending moment and consisting of a 
mutual rotation of adjacent cross sections has been subtracted. 
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of the cross sections at the centroids remain vertical and slide along 
one another. Therefore the slope of the deflection curve, due to the 
shear alone, is equal at each cross section to the shearing strain at 
the centroid of this cross section. Denoting by yr the deflections 
due to shear, we obtain for any cross section the following expression 
for the slope: 

&l (~WLCI ,y 
-= ~- = --, 

dx G AG 
(a> 

in which Y/A is the average shearing stress 7z2(, G is the modulus 
in shear and CY is a numerical factor with which the average shearing 
stress must be multiplied in order to obtain the shearing stress at 
the centroid of the cross sections. For a rectangular cross section 
CY = $ (see eq. 66, p. 118); f or a circular cross section a = $ (see 
eq. 68, p. 122). With a continuous load on the beam, the shearing 
force Y is a continuous function which may be differentiated with 
respect to x. The curvature caused by the shear alone is then 

d2yl a dV a 
--=---= __ 
dx2 AG dx AG4’ 

where q is the intensity of the load. The sum of this and the curva- 
ture produced by the bending moment (see eq. 79) gives the complete 
expression for the curvature: 

d2y 1 
-= -- 
dx2 El, WW 

This equation must be used instead of eq. (79) to determine deflec- 
tions in all cases in which the effect of the shearing force should be 
taken into consideration.g Knowing A4 and q as functions of SC, 
eq. (106) can be integrated in the same manner as has been shown 
in Art. 32. 

The conjugate beam method (see p. 155) may also be applied to 
good advantage in this case by taking as ordinates of the imaginary 
load diagram 

EIZ 
M-FLY-q, 

AG (4 
instead of only M. 

Let us consider, for example, the case of a simply supported beam 
carrying a uniform load (Fig. 152). The bending moment at any 
cross section x is 

9 Another way of determining additional deflection due to shear is dis- 
cussed on p. 318. 
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The load on the conjugate beam consists of two parts: (1) that repre- 
sented by the first term of (d) and given by the parabolic bending 
moment diagram (Fig. 152b), and (2) that represented by the second 
term of (6), which is a(H,/AG)g. Since 4 is constant, the second 
term is a uniformly distributed load shown in Fig. 152~. 

The additional deflection at any 
cross section, due to the shearing 
force, is the bending moment pro- 
duced at this cross section of the 
conjugate beam by the load shown 
in Fig. 152c, divided by EI,. At 
the middle of the beam the addi- 
tional deflection is consequently 

a 
C&Q 

/cl 
Ix?- 

Adding this to the deflection due to 
(see eq. 82, p. 141), we obtain the total de- 

FIG. 152. 

the bending moment 
flection 

c 5 qP d2g 0=--+- 
384 EI, 8AG 384 EI, (4 

in which k, = 41,/A 1s the radius of gyration of the cross section 
with respect to the z axis. 

For a rectangular cross section of depth k, k,’ = &z2, 01 = $. 
Putting E/G = 2(1 + PC) = 2.6, we obtain from (d) 

*L-5&+3.12;). 

It may be seen that for I/h = 10 the effect of the shearing force on 
the deflection is about 3 per cent. As the ratio l/h decreases this 
effect increases. 

The factor 01 is usually larger than 2 for I beams and when these 
beams are short the effect of the shearing force may be comparatively 
great. Using eq. (70) and Fig. 110, we have 

av Y Hz2 
-=- --- 
A L hIz 8 

h;2 (b - b,)] v 

from which 

$(b -b,)]. (e) 

For example, suppose h = 24 in., A = 31.0 sq in., I, = 2,810 in.4, 
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the thickness of the web bl = 5 in., I = 6h. Then eq. (e) gives 
Q = 2.42. Substituting in eq. (d), we find 

2,810 

31 x 1442 
x 2.6 

> 
= 1.2655414. 

384EI, 

The additional deflection due to shear in this case is equal to 26.5 
per cent of the deflection produced by 
the bending moment and must therefore 
be considered. 

In the case of a concentrated load 
P (Fig. 153) such a load can be con- f-4-7 

sidered as the limiting case of a load dis- e 
tributed over a very short portion e of A a 

the beam. The amount of the imaginary *I 61 

loading P1 on the conjugate beam AIB1, FIG. 153. 

corresponding to the second term in expression (6), will be 

The additional deflection due to shearing forces is obtained by 
dividing by EI, the bending moment produced in the conjugate 
beam by the imaginary concentrated load given by eq. (f). For 
instance, for central loading of a beam the bending moment at the 
middle of the conjugate beam produced by the load (f) will be 
a(EI,/AG)Pl/4 and the additional deflection at the middle due to 
shearing forces is 

a PI 

61 = 25 (n> 

Adding this to the deflection produced by the bending moment 
alone (see eq. 90, p. 146), the following expression for the complete 
deflection is obtained: 

For a beam of rectangular cross section of depth h we have 

k,2 A2 3 
-= 
I2 1212’ 

(y = -, 
2 

and we obtain 

6=-5&+3.90;). @I 
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For h/Z = & the additional effect of the shearing force is about 
4 per cent. 

It has been assumed throughout the above discussion that the 
cross sections of the beam can warp freely as shown in Fig. 151. 
The uniformly loaded beam is one case in which this condition is 
approximately satisfied. The shearing force at the middle of such 
a beam is zero and there will be no warping here. The warping in- 
creases gradually with the shearing force as we proceed along the 
beam to the left or to the right of the middle. The condition of 
symmetry of deformation with respect to the middle section is there- 
fore satisfied. Consider now bending by a concentrated load at the 
middle. From the condition of symmetry the middle cross section 
of the beam must remain plane. At the same time, adjacent cross 
sections to the right and to the left of the load carry a shearing force 
equal to P/2, and warping of cross sections caused by these shearing 
forces should take place. From the condition of continuity of defor- 
mation, however, there can be no abrupt change from a plane middle 
section to warped adjacent sections. There must be a continuous 
increase in warping as we proceed along the beam in either direction 
from the middle, and only at some distance from the load can the 
warping be such as a shearing force P/2 produces under conditions 
of freedom in warping. From this discussion it must be concluded 
that in the neighborhood of the middle cross section the stress dis- 
tribution will not be that predicted by the elementary theory of 
bending (see p. 94). Warping will be partially prevented and the 
additional deflection due to shearing forces will be somewhat less 
than that found above (see eq. R). A more detailed investigation lo 
shows that in the case of a concentrated load at the middle the 
deflection at the middle is 

PI” 123 
6=-- 1 + 2.85 4XEI 5 - 0.84 01 -j . P , 

QF3 
We have an analogous condi- 

tion also in the case of a canti- - ------ -.- 
lever beam. If the built-in cross 
section can warp freely as shown 

I lo) P /b/ in Fig. 154a, the conditions will 

b-1 
p b e as assumed in the derivation 

2 of eq. (h). The deflection of a 
FIG. 154. cantilever of rectangular cross 

10 See L. N. G. tiilon, foe. cit., p. 119; and S. Timoshenko, Phil. Msg., 
Vol. 47, p. 1095, 1924. See also Th. K&+mgn, Scripta Uniuersitatis atque 
Bibliothecae Hierosolmitanarum, 1923; and writer’s Theory of Elasticity, p. 95, 
1934. 
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section will be obtained by substituting I for I/2 
this equation, giving 

+(1+0.9$. 

175 

and P for P/2 in 

When the built-in cross section is completely prevented from warp- 
ing (Fig. 1546), the conditions will be the same as assumed in the 
derivation of eq. (i) and the deflection will be 

h3 
1 + 0.71 f - 0.10 7 01 t (k) 

which is less than the deflection given by (j). 



CHAPTER VI 

STATICALLY INDETERMINATE PROBLEMS IN BENDING 

40. Redundant Constraints.-In our previous discussion 
three types of beams have been considered: (1) a cantilever 
beam, (2) a beam simply supported at the ends and (3) a beam 
with overhangs. In all three cases the reactions at the supports 
can be determined from the fundamental equations of statics 
so that the problems are statically determinate. We will now 
consider problems of bending of beams in which the equations 
of statics are not sufficient to determine all the reactive forces 
at the supports, so that additional equations, based on a con- 
sideration of the deflection of the beams, must be derived. 
Such problems are called statically indeterminate. 

IJet us consider the various types of supports which a 
beam may have. The support represented in Fig. 155a is a 

FIG. 155. 

hinged movable sqport. Neglecting the friction in the hinge 
and in the rollers, it is evident that in this type of support the 
reaction must act through the center of the hinge and must be 
perpendicular to the plane mn on which the rollers are moving. 
Hence we know the point of application of the reaction and its 
direction. There remains only one unknown element, the 
magnitude of the reaction. 

In Fig. 1556 a hinged immovable support is shown. In this 
case the reaction must go through the center of the hinge, but 
it may have any direction in the plane of the figure. We have 
two unknowns to determine from the equations of statics, the 

176 
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direction of the reaction and its magnitude, or, if we like, the 
vertical and horizontal components of the reaction. 

In Fig. 1.55~ a built-in support is represented. Tn this case, 
not only are the direction and the magnitude of the reaction 
unknown, but also the point of application. The reactive 
forces distributed over the built-in cross section can be re- 
placed by a force R applied at the centroid of the cross section 
and a couple 44. We then have three unknowns to determine 
from the equations of statics, the two components of the reac- 
tive force K and the magnitude of the couple J4. 

For beams loaded by transverse loads in the plane of sym- 
metry we have, for determining the reactions at the supports, 
the three equations of statics, namely 

2x=0, ZY ,= 0, lzM=O. (4 

If the beam is supported so that there are only three unknown 
reactive elements, they can be determined from eqs. (a), hence 
the problem is statically determinate. These three elements 
are just sufficient to assure the immovability of the beam. 
k4’hen the number of reactive elements is larger than three, we 
say there are redundant constraints and the problem is statically 
indeterminate. 

A cantilever is supported by a built-in support. In this 
case, as was explained above, the number of unknown reactive 
elements is three and they can be determined from the equa- 
tions of statics, (a). For beams supported at both ends and 
beams with overhangs it is usually assumed that one of the 
supports is an immovable and the other a movable hinge. In 
such a case we again have three 
unknown reactive elements, 
which can be determined from 
the equations of statics. 

If the beam has immovable FIG. 156. 
hinges at both ends (Fig. 156), 
the problem becomes statically indeterminate. At each end 
we have two unknown elements, the two components of the 
corresponding reaction, and for determining these four un- 
knowns we have only the three eqs. (a). Hence we have one 
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redundant constraint and a consideration of the deformation 
of the beam becomes necessary to determine the reactions. 
The vertical components of the reactions can be calculated 
from the equations of statics. In the case of vertical loads it 
can be concluded also from statics that the horizontal com- 
ponents H are equal and opposite in direction. To find the 
magnitude of H let us consider the elongation of the axis of 
the beam during bending. A good approximation to this elon- 
gation can be obtained by assuming that the deflection curve 
of the beam is a parabola,* the equation of which is 

46x(1 - x) 
Y= 12 ’ (4 

where 6 is the deflection at the middle. The length of the 
curve is 

s = 2pdx2 + dy2 = *IL’2dx J1 + ($>“. (c) 

In the case of a flat curve the quantity (dyyld~)~ is small in 
comparison with unity and, neglecting small quantities of 
order higher than the second, we obtain approximately 

Substituting this expression in eq. (c) and using eq. (b), we find 
the length of the curve to be 

The difference between the length of the curve and the dis- 
tance I between the supports represents the total axial elonga- 
tion of the beam and is ($)(62/1). The unit elongation is then 
(3) ( a2/1”). K nowing this and denoting by E the modulus of 

1 The exact expression for the deflection curve will be given later (see 
Part II). 
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elasticity of the material of the beam and by A its cross-sec- 
tional area, we obtain the horizontal reactions from the equa- 
tion 

H=+ (4 

It is important to note that in practice the deflection 6 for most 
beams is very small in comparison with the length I and the 
tensile stress (t) (6’/1’)E p ro d uced by the forces H is usually 
small in comparison with bending stresses and can be neglected. 
This justifies the usual practice of calculating beams with sup- 
ported ends by assuming that one of the two supports is a mov- 
able hinge, although the special provisions for permitting free 
motion of the hinge are actually used only in cases of large 
spans such as bridges. 

In the case of bending of flexible bars and thin metallic 
strips, where the deflection 6 is no longer very small in com- 
parison with I, the tensile stresses produced by the longitudinal 
forces I-I cannot be neglected. Such problems will be discussed 
later (see Part II). 

In the following discussion of statically indeterminate 
problems of bending, the method of superposition will be used 
and the solutions will be obtained by combining the previously 
investigated statically determinate cases in such a manner as 
to satisfy the conditions at the supports. 

41. Beam Built In at One End and Supported at the Other. 
-In this case we have three unknown reactive elements at 
one end and one unknown at the other end. Hence the prob- 
lem is statically indeterminate with one redundant constraint. 
Starting with the case of a single transverse load P, Fig. 157a, 
let us consider as redundant the constraint which prevents the 
left end A of the beam from rotating during bending. Re- 
moving this constraint, we obtain the statically determinate 
problem shown in Fig. 1576. The bending produced by the 
statically indeterminate couple M, is now studied separately 
as shown in Fig. 157~.~ It is evident that the bending of the 
beam represented in Fig. 157a can be obtained by the com- 

2 T)eflection curves rind hending moment diagrams are shown together. 
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b 

FIG. 157. 

bination of cases (6) and (c). It 
is only necessary to adjust the 
magnitude of the couple M, at 
the support A in such a man- 
ner as to satisfy the condition 

81 = --81’. (4 

Thus, the rotation of the left 
end of the beam, due to the 
force P, will be eliminated by 
the couple M, and the condi- 
tion of a built-in end with zero 
slope will be satisfied. To ob- 
tain the statically indetermi- 
nate couple M, it is necessary 
only to substitute in eq. (a) the 

known values for the angles 0i and el’ from eqs. (88), p. 14.5, 
and (104), p. 158. Then 

Pc(12 - c”) MJ , 
61EI, 3EI, 

from which 
M 

a 
= _ pcu2 - c”> 

212 ’ (107) 

The bending moment diagram can now be obtained by com- 
bining the diagrams for cases (6) and (c) as shown by the 
shaded area in Fig. 157d. The maximum bending moment 
will be either at a or d. 

The deflection of the beam at any point can easily be ob- 
tained by subtracting from the deflection at this point pro- 
duced by the load P (Fig. 157b) the deflection produced by 
the couple Ma, Fig. 157~. The equations of the deflection 
curves for both these cases have already been given in (86) and 
(87), p. 14.5, and in (105), p. 1.58. Let us take, for example, 
the case c < 31 and calculate the deflection 6 at the middle of 
the span. From eqs. (91) and (105) we have 

6= & (31” - 4c2) + g;;, 
* z 
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or, by using eq. (107), 

6= & (312 - 52). 
z 

At the point C, where the bending moment becomes zero, the 
curvature of the deflection curve is also zero and we have a 
point of inflection, i.e., a point where the curvature changes 
sign. 

It may be seen from eq. (107) that the bending moment 
at the built-in end depends on the position of the load P. If 
we equate to zero the derivative of eq. (107) with respect to c, 
we find that the moment M, has its numerical maximum value 
when c = Z/d3. Then 

p4sm,x = 
PI 

- = 0.192PI. 
32/3 

The bending moment under the load, from Fig. 157d, is 

uofo 

Pc(Z - c) c Pc(L2 - 2) PC Md=---- 
I I 212 

= 2p (I - c)2(21 + c). (b) 

If we take the derivative of (d) with respect to c and equate it 
to zero, we find that iWd becomes a maximum when 

c = ; (63 - 1) = 0.3661. 

Substituting this in eq. (b), we obtain 

(Md)max = 0.174PI. 

Comparing this with eq. (108), we find that in the case of a 
moving load the maximum normal stresses (T* are at the built-in 
section and occur when 

2 

c=z’ 

Having the solution for the single concentrated load and 
using the method of superposition, the problem can be solved 
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for other types of transverse 

1 loading by simple extension of 
the above theory. Take, for ex- 
ample, the case represented in 

FIG. 158. Fig. 158. The moment at the 
support A, produced by an ele- 

ment qdc of the load, is obtained from eq. (107) by substituting 
qdc for P. The total moment iMa at the support will be 

M, = - 
s 

b qcdc(12 - c”) 
n 212 

q P(b2 - a”) b4 - a* =-- ~~ - ____ 
212 [ 21 4 1 . (c) 

If the load be distributed along the entire length of the 
beam, Fig. 1590, then substituting in eq. (c) a = 0, b = I, we 
obtain 

The bending moment diagram is obtained by subtracting the 
triangular diagram due to the couple M, (Fig. 159) from the 
parabolic diagram, due to uniform loading. It can be seen 
that the maximum bending stresses 
will be at the built-in section. 

The deflection at any point of ’ 
the beam is obtained by subtract- 
ing the deflection at this point pro- 
duced by the couple M, (see eq. 
105, p. 158) from the deflection at A’ 
the same point produced by the 
uniform load (see eq. 81, p. 141). FIG. 159. 

For the middle of the span we will then obtain 
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Problems 

1. Draw shearing force diagrams for the cases shown in Figs. 
157 and 159. 

2. Determine the maximum deflection for the case of a uniformly 
distributed load shown in Fig. 159. 

Sohtion. Combining eqs. (81) and (105), the following equation 
for the deflection curve is obtained: 

y = & (312x2 - 51x3 + 2x4). 

Setting the derivative dy/dx equal to zero,we find the point of max- 
imum deflection at x = (l/16)(15 - 2/33) = 0..579(. Substituting 
in (d), we obtain 

al4 
6 

1 
~. 

max = 18SEI, 

3. Determine the reaction at the right-hand support of the beam 
shown in Fig. 159, considering this reaction as the redundant con- 
straint. 

Solution. Removing support B, the deflection of this end of the 
beam, considered as a cantilever, will be q14/8EI, from eq. (84). 
Reaction &, at B (Fig. 1.59~) must be such as to eliminate the above 
deflection. Then by using eq. (95) we obtain the equation 

q14 R# 
-=-, 
8EI, 3EI, 

from which 
Rb = gq1. 

4. A beam is loaded as shown in Fig. 160. Determine the bend- 
ing moment M, and the reactions R, and & at the supports. 

Answer. 

Rz = Qql + &qll, Ra = 2ql-b $+qll. 

FIG. 160. 
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5. Determine the reaction Rb at the support B of the uniformly 
loaded beam shown in Fig. 159 if the support B is elastic, so that a 
downward force of magnitude k lowers the support a unit distance. 

Solution. Using the same method as in Prob. 3 above, the equa- 
tion for determining Ra will be 

from which 

q14 R# Rb --__ 
8E.7, 3EI, = k’ 

Rb=! 1 
1 

sq 3E1,’ 
1+k(“- 

6. Construct the bending moment and shearing force diagrams 
for a uniformly loaded beam supported at the middle and at the ends. 

Suggestion. From the condition M+ L l-lc 
of symmetry the middle cross section 
does not rotate during bendmg and 
each half of the beam will be in the 
condition of a beam built in at one end 

h e,, 

+I 
lb) 

and supported at the other. 
PO 7. Determine the deflection of the 

e 
cn, 

*/a’ I a;, ( 
(4 

end C of the beam shown in Fig. 161. 
.- Solution. Replacing the action of 

FIG. 161. 
the overhang by a couple Pa, the 
bending of the beam between the sup- 

ports will be obtained by superposing cases (b) and (c) in Fig. 161. 
Iising formulas (103) and (104) (p. ISS), the statically indeter- 
minate couple M, will be found from the equation til = -el’, or 

Pal A&I 
-=-, 
6EI, 3EI, 

from which M, = Pa/2. The deflection at C will be 

The first term on the right-hand side represents the deflection of a 
cantilever and the second represents the deflection due to rotation 
of the cross section of the beam at B. 

8. Determine the additional pressure of the beam AB on the 
support B (Fig. 157) due to nonuniform heating of the beam, pro- 
vided that the temperature varies from to at the bottom to t at the 
top of the beam according to a linear law (t > to). 
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Solution. If the support at B is removed, the nonuniform heat- 
ing will cause the beam to deflect in an arc of a circle. The radius 
of this circle can be determined from the equation l/r = cr(t - Q/h, 
in which h = the depth of the beam and a! = the coefficient of 
thermal expansion. The corresponding deflection at B can be found 
as in Prob. 2, p. 97, and is 

I2 

J=G= 

12a(t - tiJ 

2h * 

This deflection is eliminated by the reaction of the support B. Let- 
ting Rb denote this reaction, we obtain 

from which 

Rbl” Pa(t - to) - = 
3E1, 2h ’ 

3EI, 
R,, = __ 

2hl 
. a(t - to). 

9. A cantilever AB, Fig. 162, loaded at 
the end B, is supported by a shorter can- 

7X t3 

tilever CD of the same cross section as P 

cantilever AB. Determine the pressure X 
5 

L 
between the two beams at C. 

Solution. Pressure X will be found from FIG. 162. 

the condition that at C both cantilevers have 
the same deflection. Using eq. (95) for the lower cantilever and 
eq. (97) together with eq. (95) for the upper, we obtain 

from which 

From a consideration of the bending moment diagrams for the upper 
and lower cantilevers it can be concluded that at C the upper canti- 
lever has a larger angular deflection than the lower. This indicates 
that there will be contact between the two cantilevers only at points 
D and C. 

10. Solve Prob. 7 assuming, instead of a concentrated load P, 
a uniform load of intensity 4 to be distributed (1) along the length 
a of the overhang, and, (2) along the entire length of the beam. 
Draw bending moment and shearing force diagrams for these two 
cases. 
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11. Draw the bending moment and shearing force diagrams for 
the case shown in Fig. 158 if a = 4 ft, b = 12 ft, I = 15 ft and 
q = 400 lb per ft. 

42. Beam with Both Ends Built In.-In this case (Fig. 163) 
we have six reactive elements (three at each end), so that the 
problem has three statically indeterminate elements. However, 
for ordinary beams, the horizontal components of the reactions 

+GJ=+=- ’ (d 

i-d) 
FIG. 163. 

can beneglected (see p. 179), 
which reduces the number of 
statically indeterminate quan- 
tities to two. Let us take the 
bending moments 111, and Mt, 
at the supports for the stati- 
cally indeterminate quantities. 
Then for the case of a sin- 
gle concentrated load P (Fig. 
163a) the solution can be ob- 
tained by combining the two 
statically determinate prob- 
lems shown in Figs. 1636 and 
163~. It is evident that the 
conditions at the built-in ends 

of the beam AB will be satisfied if the couples M, and Mb are 
adjusted so as to make 

81 = -e,‘, e2 = -13~‘. (a> 

Iirom these two equations the two statically indeterminate 
couples are obtained. Using eqs. (88) and (89) for a concen- 
trated load and eqs. (103) and (104) for the couples, eqs. (a) 
b- ccome 

Pc(12 - c”) Ma2 Mb1 ---= 
61EI, 

-+--, 
3E1, 6EI, 

Pc(l - c)(21 - c) MJ Md 
- 6ZE1, --=E+Ky. 

t z 
from which 

Ma = - 
Pc2(1 - c) 

l2 ’ 
M 

b 
= _ PC@ - cj2 

12 
* (111) 
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Both bending moments are negative and produce bending 
convex upward. Combining the bending moment diagrams 
for cases (6) and (c), the diagram shown in Fig. 163d is ob- 
tained. We see that the maximum positive bending moment 
for the case in Fig. 163~ is under the load at the point C. Its 
magnitude can be found from Fig. 163d and is given by the 
following: 

From Fig, 163d it may be seen that the numerically greatest 
bending moment is either at C or at the nearest support. For 
a moving load, i.e., when c varies, assuming c < 1/2, the max- 
imum numerical value of Mb is obtained by putting c = 1/3 
in eq. (111). This maximum is equal to 4Pl/27. The bending 
moment under the load is a maximum when c = 1/2 and this 
maximum, from eq. (112), is equal to P1/8. Hence for a mov- 
ing load the greatest moment is at the end. 

By using the method of superposition, the deflection at any 
point of the beam can be obtained by combining the deflection 
produced by load P with that produced by couples 111, and Mb. 

Having the solution for a single concentrated load P, any 
other type of transverse loading can easily be studied by using 
the method of superposition. 

Problems 

1. Draw the shearing force diagram for the case in Fig. 163~ if 
p = 1,000 lb, I = 12 ft and c = 4 ft. 

2. Find the bending moments at the ends of the beam loaded at 
the third points, Fig. 164. Draw the bending moment and shearing 
force diagrams. 

Answer. iid, = hfb = -$PI. 
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3. Solve the preceding problem when the force at D has the 
opposite direction. 

Answer. M, = -Mb = --Q$ PI. 
4. Construct the bending moment diagram for a uniformly loaded 

beam with built-in ends, Fig. 165. 
Solution. The bending moment at A produced by one element 

qdc of the load (Fig. 16%) is, from eq. (ill), 

dMa = - 
qc2(1 - c)dc 

I2 * 

The moment produced by the load over the entire span is then 

Ma = - 
s 

’ qc’(1 - c)dc d2 

0 
p =-$ 

-t---1 the moment at the support B will 
have the same magnitude. Com- 
bining the parabolic bending mo- 
ment diagram produced by the 
uniform load with the rectangular 
diagram given by two equal couples 
applied at the ends, we obtain the 

fb) 
diagram shown in Fig. 1656 by the 

FIG. 165. shaded area. 
5. Determine the bending mo- 

ments at the ends of a beam with built-in ends and loaded by the 
triangular load shown in Fig. 166. 

Solution. The intensity of the load 
at distance c from the support B is q,,c/l 
and the load represented by the shaded 
element is qacdc/l. The bending mo- 
ments acting at the ends, produced by 
this elementary load, as given by eqs. 
(ill), are FIG. 166. 

dM, = - 
qac3(1 - c)dc 

dM,, = - 
q&l - c)2dc 

I3 ’ I” * 

Therefore 

S ’ qac3(1 - c)dc I2 
Ma = - 

Qa = --, 
I” 0 20 

Mb = - 
s 

z q,c2(l - c)“dc 42 

I” 0 30 
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6. Determine the bending moments M, and Mb in a beam with 
built-in ends and bent by a couple PC 
(Fig. 167). 

Solution. By using the solution of 
Prob. 4, p. 160, and eqs. (103) and (104), 

q2Iej%zy 

the following equations are obtained: FIG. 167. 

from which M, and Mb can easily be calculated. 
7. Determine the bending moments at the ends of a built-in 

beam due to nonuniform heating of the beam if the temperature 
varies from to at the bottom to t at the top of the beam according to 
a linear law. 

Answer. M, = Mb = 
aEI,(t - to) 

h ’ 
where O( is the coefficient of thermal expansion and h is the depth 
of the beam. 

8. Determine the effect on the reactive force and reactive couple 
at A of a small vertical displacement 6 of the built-in end A of the 
beam AB (Fig. 163). 

Sdutioir. Remove the support A; then the deflection 6r at A 
and the slope 0r at this point will be found as for a cantilever built 
in at B and loaded by P, i.e., 

PC2 ,gl=-. 
2EI, 

Applying at A an upward reactive force X and a reactive couple Y 
in the same direction as Ma, of such magnitude as to eliminate the 
slope 8r and to make the deflection equal to 6, the equations for 
determining the unknown quantities X and Y become 

Xl2 Yl PC2 ---= 
ZEI, EI, 2EI,’ 

X1” Y12 p---=&-& 
3EI, 2EI, 
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9. Draw the shearing force and bending moment diagrams for 
the beam shown in Fig. 166 if qa = 400 lb per ft and I = 15 ft. 

10. Draw the shearing force and bending moment diagrams for 
a beam with built-in ends if the left half of the beam is uniformly 
loaded with a load 4 = 400 lb per ft. The length of the beam is 
I = 16 ft. 

43. Frames.-The method used in the preceding article for 
statically indeterminate beams can be applied also to the 
study of frames. Take, as a simple example, the symmetrical 
frame, Fig. 168, hinged at C and D, and loaded symmetrically. 

FIG. 168. 

The shape of the frame after deformation is shown by the 
dotted lines. Neglecting the change in the length of the bars 
and the effect of axial forces on the bending of bars,3 the frame 
can be considered to be made up of three beams as shown in 
Fig. 1686. It is evident that there will be couples A4 at the 
ends of the horizontal beam AB which oppose the free rotation 
of these ends and represent the action of the vertical bars 
on the horizontal beam. These couples A4 can be considered as 
the statically indeterminate quantity. Knowing 111, the bend- 
ing of all three bars can be investigated without any difficulty. 

3 Simultaneous action of bending and thrust will be discussed later (see 
Part II). 
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For determining A4 we have the condition that at A and at B 
there are rigid joints between the bars so that the rotation of 
the top end of the vertical bar AC must be equal to the rota- 
tion of the left end of the horizontal bar. Hence the equation 
for determining A4 is 

81 = 81’. (a> 

& must be determined from the bending of the horizontal 
beam AB. Denoting by I’ the length of this beam and by EI 
its flexural rigidity, the rotation of the end A due to the load P, 
by eq. (88) with b = 1’/2, is P1’/16EI. The couples at the ends 
resist this bending and give a rotation in the opposite direction, 
which, from eqs. (103) and (104), equals ML/2EI. The final 
value of the angle of rotation will be 

Considering now the vertical bar AC as a beam with supported 
ends, bent by a couple M, and denoting by A its length and by 
EIl its flexural rigidity, the angle at the top, from eq. (104), 
will be 

Mh -. 
‘I’ = 3E11 

Substituting in eq. (a), we obtain 

from which 

P12 Ml Mh __ - __ = ---, 
16EI 2EI 3EI, 

M=; 1 
2h I’ 

lf?rr 
1 

(113) 

This is the absolute value of M. Its direction is shown in 
Fig. 168b. Knowing M, the bending moment diagram can be 
constructed as shown in Fig. 168~. The reactive forces at the 
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FIG. 169. 

hinges C and D are also shown (Fig. 
16%~). The vertical components of 
these forces, from considerations of 
symmetry, are each equal to P/2. 
As regards the horizontal compo- 
nents, their magnitude A4/h is ob- 
tained by considering the vertical 
bars as simply supported beams 
loaded at the top by the couples M. 

The same problem can be solved 
in another way by taking the hori- 
zontal reactions H at the hinges 
C and D as the statically indeter- 
minate quantity, Fig. 169, instead 
of M. The statically indetermi- 
nate problem is solved by super- 
posing the two statically determi- 
nate problems shown in Figs. 1696 
and 169~. In case (d) the redun- 

dant constraint preventing the horizontal motion of the hinges C 
and D is removed. The vertical bars no longer have any bend- 
ing. The horizontal bar AB is in the condition of a bar with 
simply supported ends whose angles of rotation are equal to 
P12/16EI, and the horizontal motion of each hinge C and D is 
therefore k(PP/16ET). I n case (c) the eff‘ect of the forces H is 
studied. These forces produce bending couples on the ends of 
the horizontal bar AB equal to N.h, so that the angles of rota- 
tion of its ends 0’ will be Hh.Z/2EI. The deflection of each 
hinge C and D consists of two parts, (1) the deflection #/2 = 
Hh21/2EI due to rotation of the upper end and, (2) the deflec- 
tion Hh3/3EI, of the vertical bars as cantilevers. In the 
actual case (Fig. 169~~) the hinges C and D do not move. Hence 
the horizontal displacements produced by the force P (Fig. 
169b) must be counteracted by the forces H (Fig. 169c), i.e., 

P12 H/z21 H/z3 
-h=- 
16EI - 3EI + ?ET’ 1 
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from which 

Observing that HA = M, this re- 
sult agrees with eq. (113) above. 

This latter method of analysis is 
especially useful for nonsymmetrical 

the hinges C and D from horizontal FIG. 170. 
motion, we have the condition rep- 
represented in Fig. 170b. It is evident that the increase in dis- 
tance between C and D may be obtained by multiplying by /L 
the sum of the angles ~9~ and 02. Using eqs. (88) and (89), this 
increase in distance becomes 

Pc(Z - c)(21 - c) 
I 

Pc(Z - c)h -. 
61EI = 2EI 

It must be eliminated by the horizontal reactions H (Fig. 
169~). Then, using the results obtained in the previous prob- 
lem, we obtain the following equation for determining H: 

from which 
H = pcv - c> 1 __-_ 

2hl (114) 

Having the solution for one concentrated load, any other case 
of loading of the beam AB of the frame can easily be studied 
by the method of superposition. 

Let us consider now a frame with built-in supports and an un- 
symmetrical loading as shown in Fig. 171. In this case we have 
three reactive elements at each support and the system has three 
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statically indeterminate elements. In the solution of this problem 
we will use a method based on the method of superposition in which 
the given system of loading is split into parts such that for each 
partial loading a simple solution can be found.4 The problem shown 
in Fig. 171~2 can be solved by superposing the solutions of the two 
problems shown in Figs. 171b and 171~. The case shown in (d) is a 
symmetrical one and can be considered in the same manner as the 
first example shown in Fig. 168. A study of the case shown in (c) 
will show that the point of inflection 0 of the horizontal bar AB is 

located at the middle of the bar. This follows from the condition 
that the loads P/2 are equally distant from the vertical axis of sym- 
metry of the frame and are opposite in sense. The moment, the 
deflection and the axial force produced at the mid point 0 of the 
horizontal beam AB by one of the loads P/2 will be removed by the 
action of the other load P/2. Hence there will be no bending mo- 
ment, no vertical deflection and no axial force at 0. The magnitude 
of the shearing force at the same point X can be found from the 
condition that the vertical deflection of 0 is equal to zero (Fig. 1714. 
This deflection consists of two parts, a deflection S1 due to the bend- 
ing of the cantilever OB and a deflection h2 due to rotation of the 
end B of the vertical bar BD. Using the known equations for a 
cantilever (eq. 98), and using the notations given in the figure, the 
following equations are obtained: 

4 Such B method was extensively used by W. L. And&e; see his book, 
Das B-U Verfahren, Berlin, 1919. 
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Substituting this in the equation 61 + 82 = 0, the magnitude X of 
the shearing force can be found. Having determined X, the bending 
moment at every cross section of the frame for case (c) can be calcu- 
lated. Combining this with the bending moments for the sym- 
metrical case (b), the solution of the problem (a) is obtained.5 

Problems 

1. Find the axial forces in all bars of the frame in Fig. 16%~. 
Answer. Compression in the vertical bars = P/2; compression 

in the horizontal bar = M/h. 
2. Draw the bending moment diagram for the frame in Fig. 170~ 
3. Determine the bending moments at the corners of the frame 

shown in Fig. 172. 

FIG. 172. 

Solution. Considering the bar AB as a beam supported at the 
ends (Fig. 172b) and denoting by A4 the moments at the corners, 
the angle 81 will be 

P12 A41 
~--. 
16EI 2EI 

6 Solutions of many important problems on frames can be found in the 
book by Kleinlogel, Mehrstielige Rahmen, Berlin, 1927; English translation, 
New York, 1952. 
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Putting this equal to the angle 81’ at the ends of the vertical bars 
which are bent by the couples M only, the following equation for M 
is obtained: 

P12 MI Mh 
--A-= 
16EI 2EI E’ 

from which 
I 

&I=; . 

l+$; 
1 

4. Draw the bending moment diagram for the frame of the pre- 
ceding problem. 

5. Determine the horizontal reactions H 
for the case shown in Fig. 173. 

Suggestion. By using eq. (114) and ap- 
plying the method of superposition, we obtain 

H - d2 l 
24h 2 h I’ 

1;rc. 173. Ii-iii 
1 

6. Draw the bending moment diagram for the three bars of the 
preceding problem, assuming h = I and I = II. 

7. Determine the bending moments at the joints of the frame 
shown in Fig. 174. 

co) M (b) M 
FIG. 174. 

Solution. Disjointing the frame as shown in Fig. 174b, the equa- 
tions for determining the couples A4 and Ml are 

81 = 81 and e2 = e2’. 
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Substituting in these equations 

e = PC@ - c) Ml Mh Mlh 
1 

~- 

2EI 2EI 
&’ = __ - -, 

3EI1 GE11 

MI1 Mh Mlh 
&.-’ 

2EIz 
,Q2’ z.c - - -, 

6EI1 3E11 

8. Draw the bending moment 
diagram and determine the axial 
forces in all bars of the frame in 
Fig. 174~5 if h = 1 and I = Ir = Ia. 

9. A symmetrical rectangular 
frame is submitted to the action of 
a horizontal force H as shown in 
Fig. 175. Determine the bending 
moments M and Ml at the joints. 

Solution. The deformed shape 
of the frame is shown in Fig. 17%. 
Disjointing the frame as shown in 
Fig. 17% and applying moments 
in directions which comply with 
the distorted shape of the frame, 
Fig. 175a, we have for the bar CD, 

we obtain two equations for deter- 
mining M and Ml. 

FIG. 175. 

Considering now the vertical bar AC as a cantilever built in at the 
end C at an angle Or, the slope at the end A will be 

Hh’ Mh 
82’ = 81 + - ~ - 

2 2EIl Lg’ 
(cl 

Finally, due to bending of the bar AB, 

Then, from eqs. (b), (c), and (d), 

(4 
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Substituting in eq. (b), the bending moment Mr can be found. When 
the horizontal bar CD has very great rigidity, we approach the con- 
dition of the frame shown in Fig. 1714 submitted to a lateral load 
H. Substituting I = w in (e), we obtain for this case 

(f) 

The case of a frame such as shown in Fig. 168 with hinged supports 
and submitted to the action of a lateral load applied at A can be 
obtained by substituting I = 0 in eq. (e). 

10. Determine the horizontal reactions H and the bending mo- 
ments A& and A4b, at the joints A and B, for the frame shown in 
Fig. 176. 

qh llm + 20 
Answer. H = - 

20 2m -+ 3 
, where 

hI m=--. 
l 11 

11. A frame consists of two bars joined rigidly at B and built in 
at A and C (Fig. 177). Determine the bending moment M at B 

FIG. 176. FIG. L77. 

and the compressive force P in AB when, due to a rise in tempera- 
ture, the bar AB increases in length by a = LYI(~ - to). 

Answer. P and M can be found from the equations: 

Pl13 Ml12 -- ---=A 
3EI 2EI ’ 

Pll2 Ml1 M1 --__ 
2EI El = FI’ 

44. Beams on Three Supports.-In the case of a beam on 
three supports (Fig. 17%~) there is one statically indeterminate 
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reactive element. Let the reaction of the intermediate sup- 
port be this element. Then by using the method of superposi- 
tion the solution of case (u) may be obtained by combining the 
cases represented in (b) and (c), Fig. 178. The intermediate 

FIG. 178. 

reaction X is found by using the condition that the deflection 
6 produced at C by the load P must be eliminated by the reac- 
tion X. Using eq. (86), we get the following equation for deter- 
mining X: 

Pcl,[(l, + 1# - c2 - 1121 x112122 

WI + J,)EI, = 3(4 + &)EI, 
from which 

x = Pc[(l, + 1212 - c2 - lIZI . 
2111z2 (115) 

If P is acting on the left span of the beam, the same equation 
can be used, but the distance c must be measured from the 
support A and I, and Z2 must be interchanged. For II = 1a = I, 
from eq. (11.5), 

x = Pc(312 - c”) 
2P * 

(116) 

Having the solution for a single load P, any other loading can 
easily be studied by using the method of superposition. 
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The same problem can be solved in another manner. Im- 
agine the beam cut into two parts at C (Fig. 178~‘) and let 
M, denote the magnitude of the bending moment of the orig- 
inal beam at this cross section. In this manner the problem 
is reduced to the consideration of the two simply supported 
beams shown in (d) which are statically determinate. The 
magnitude of 44, is determined from the condition of con- 
tinuity of the deflection curve at the support C. From this it 
follows that the angle 6 19 = 8’, whence, using eqs. (88), p. 145, 
and (104), p. 158, and assuming that the bending moment MC 
is positive, we obtain 

MJl Pc(Zz2 - c”) MC& --= 
3E1, 6/2EJ, 

+ 
3EI,’ 

from which 
M = _ p4z22 - c”> ~____. c 

x4, + &> 
(117) 

Thus MC is negative and is directed as shown in Fig. 178d. 
The bending moment diagram is shown by the shaded area in 
Fig. 178d. 

Problems 

1. For the example in Fig. 178 prove that the magnitude of the 
bending moment MC given by eq. (117) is the same as that obtained 
for the cross section C by using ccl. (115). 

2. Draw the shearing force diagram for the beam of the preced- 
ing problem if I1 = Z2, c = &/2 and P = 1,000 lb. 

3. A beam on three supports (Fig. 17%~) carries a uniformly dis- 
tributed load of intensity q. Determine the bending moment at the 
support C. 

Solution. By the method of superposition, substituting qdc for 
P in eq. (117) and integrating along both spans, we obtain 

MC = - 
s 

‘2 qc(122 - c2)dc 

s 

‘1 qc(l12 - c2)dc q 4z3 + A” 

0 212Ul + 12) - 0 211& + 12) = - ifi 11 + 12 ’ 
and when 

11 = 12 = 1, c MC-e2 
8’ 

The direction of this moment is the same as shown in Fig. 178d. 

6 The angle is taken positive if rotation is in the clockwise direction. 
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4. Draw the shearing force diagram for the preceding problem, 
assuming II = I2 and q = 500 lb per ft. 

5. Determine the numerically maximum bending moment in the 
beam ACB (Fig. 17%~) if P = 10,000 lb, II = 9 ft, 12 = 12 ft, c = 6 ft. 

Answer. ii/l,,,,, = 23,600 ft lb. 
6. A beam on three equidistant supports carries a uniformly 

distributed load of intensity q. m’hat effect will there be on the 
middle reaction if the middle support is lowered a distance 62 

Solution. Using the method shown in Figs. 1786 and 178c, the 
middle reaction X is found from the equation 

5 qw4 X(21)3 
----==+a, 
384 ET 

from which 
66EI 

,+,I--. 
I3 

7. Determine the additional pressure of the beam AB on the 
support C (Fig. 17%~) due to nonuniform heating of the beam if the 
temperature varies from t at the bottom to tl at the top of the beam 
according to a linear law, assuming t > tl and II = 12 = I. 

Solution. If the support at C were removed, then, due to the 
nonuniform heating, the deflection curve of the beam would become 
the arc of a circle. The radius of this circle is determined by the 
equation 

1 4 - t1> -= 
Y h ’ 

in which h = the depth of the beam and 01 = the coefficient of ther- 
tnal expansion. The corresponding deflection at the middle is 
6 = 12/2r and the reaction X at C can be found from the equation 

-WV3 6 ---z. 
48EI 

8. Determine the bending moment diagram for the beam ACB 
supported by three pontoons (Fig. 179) if the horizontal cross-sec- 

tional area of each pontoon is A and the weight per unit volume of 
water is y. 
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Solution. Removing the support at C, the deflection 6 produced 
at this point by the load P consists of two parts: (1) the deflection 
due to bending of the beam, and (2) the deflection due to sinking of 
pontoons A and B. From eq. (91) we obtain 

6= -& [3(21)’ - 4c2] + &a 
t Y 

The reaction X of the middle support diminishes the above deflec- 
tion by 

X(243 x 
-+-. 
48E1, 2A7 (4 

The difference between (u) and (d) represents the distance X/A? 
which the middle pontoon sinks, from which we obtain the following 
equation for determining X: 

X(21)” x x 
& [3(21)’ - 4c2] + & - ___ - __ 

z Y 48E1, 2A-/ = z’ 

Knowing X, the bending moment diagram can readily be obtained. 

45. Continuous Beams.-In the case of a continuous beam 
on many supports (Fig. 180) one support is usually considered 
as an immovable hinge while the other supports are hinges on 
rollers. In this arrangement every intermediate support has 
only one unknown reactive element, namely the magnitude of 
the vertical reaction. Hence the number of statically indeter- 
minate elements is equal to the number of intermediate sup- 
ports. For instance, in the case shown in Fig. 180a the num- 
ber of statically indeterminate elements is five. Both methods 
shown in the previous article can be also used here. But if 
the number of supports is large, the second method, in which 
the bending moments at the supports are taken as the stati- 
cally indeterminate elements, is by far the simpler method. 
Let Fig. 1806 represent two adjacent spans n and n + 1 of a 
continuous beam cut at supports n - 1, n and n + 1. Let 

Mm-l, Mn and M,+l denote the bending moments at these 
supports. The directions of these moments depend on the 
loads on the beam. We will assume them to be in the positive 
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directions shown in the figure.7 It is evident that if the bend- 
ing moments at the supports are known the problem of the 
continuous beam will be reduced to that of calculating as many 
simply supported beams as there are spans in the continuous 
beam. For calculating the bending moments Mn-i, M,, 
A4 n+l the condition of continuity of the deflection curve at the 
supports will be used. For any support n this condition of 

FIG. 180. 

continuity is satisfied if the deflection curves of the two adja- 
cent spans have a common tangent at the support n, i.e., if the 
slope at the right end of span n is equal to the slope at the left 
endofspann + 1. To calculate these slopes the area-moment 
method will be used. Let A, denote the area of the bending 
moment diagram for the span n, Fig. 18Oc, considered as a 
simply supported beam, due to the actual load on this span. 
Let a, and b, represent the horizontal distances of the centroid 
C, of the moment area from the supports n - 1 and n. Then 
the slope at the right end for this condition of loading is (see 
Art. 36) 

Anan 

ISI, 

In addition to the deflection caused by the load on the span 
itself, the span n is also bent by the couples MnP1 and M,. 

7 If finally we would obtain negative signs for some moments, this will 
indicate that the directions of these moments are opposite to that shown in 
the figure. 
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From eqs. (103) and (104) the slope produced at the support 
n by these couples is 

+ 
M,L -l&b 

6EI, 

The total angle of rotation is then * 

/j = _ FE;2 + 
M,L-lL Anan 
-----+-. 

z 6E1, l,EI, ) 

In the same manner, for the left end of the span n + 1, we 
obtain 

From the condition of continuity it follows that 

I9 = 0’. cc> 

Substituting expressions (a) and (d) in this equation, we obtain 

This is the equation of three moments.9 It is evident that 
the number of these equations is equal to the number of inter- 
mediate supports and thus the bending moments at the sup- 
ports can be calculated without difficulty. 

In the beginning it was assumed that the ends of the con- 
tinuous beam were simply supported. If one or both ends are 
built in, then the number of statically indeterminate quantities 
will be larger than the number of intermediate supports and 
derivation of additional equations will be necessary to express 
the condition that no rotation occurs at the built-in ends (see 
Prob. 5 below). 

Knowing the moments at the supports, there is no difficulty 
in calculating the reactions at the supports of a continuous 
beam. Taking, for example, the two adjacent spans n and 

8 The angle is taken positive if rotation is in the clockwise direction. 
9 This equation was established by Bertot, Compt. rend. SOL. ing. civils, 

p. 278, 1855; see also Clapeyron, Compt. rend., Vol. 45, 1857. 
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n + 1 (Fig. lSOb), and considering them as two simply sup- 
ported beams, the reaction R,’ at the support n, due to the 
loads on these two spans, can easily be calculated. In addi- 
tion to this there will be a reaction due to the moments Ivan-,, 
M, and M,+l. Taking the directions of these moments as 
indicated in Fig. 180b, the additional pressure on the support 
n will be 

Mn-1 - M* - Mn -I- Mm.1 

I,, +I. II +1 

Adding this to the above reaction R,‘, the total reaction will be 

R, = R,’ + 
M,-1 - M, 

.L + 
- Mn f M,+I 

I 
. (119) 

n-l-1 

If concentrated forces are applied at the supports, they will 
be transmitted directly to the corresponding supports and 
must be added to the right side of eq. (119). 

The general equation of continuity (c) can also be used for those 
cases where, by misalignment or 
by settlement, the supports are 

i 

j-a? ---- :------ ______: 
not situated on the same level 

/)‘y-<~~ _ 

(Fig. 181). Let fin and Pn+l de- 
’ -----~~%:----;n,# 

note the angles of inclination to 
b - IO,,1 

the horizontal of the straight FIG. 181. 

lines connecting the points of supports in the nth and (n + l)th 
spans. The angle of rotation given by eqs. (a) and (6) was measured 
from the line connecting the centers of the hinges. Hence the angle 0 
between the tangent at n and the horizontal line will be, for the 

In the same manner, for the span n + 1, 

Equating these angles we obtain 

60% 6An+1&+1 
= --- 

L I 
- 6EIz@n+1 - P,). (120) 

n+l 
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If k-1, hn, A??+1 denote the vertical heights of the supports IZ - 1, 
n and n + 1 above a horizontal reference line, we have 

Pn = 
h-1 - h, hn - hn+- 

l ’ 
P n+l = 

n l * n+l 

Substituting in eq. (120), the bending moments at the supports due 
to misalignment or settlement can be calculated. 

Problems 

1. Determine the bending moment and shearing force diagrams 
for a continuous beam with three equal spans carrying a uniformly 
distributed load of intensity q (Fig. 182). 

Solution. For a simply supported beam and a uniformly dis- 
tributed load the bending moment diagram is a parabola with max- 
imum ordinate &‘/S. The area of the parabolic segment is 

(d 
FIG. 182. 

The centroid is above the middle of the span, so a, = b, = ~72. 
Substituting in eq. (118), we obtain 

4Un+d3 
M+lL + 2MnVn + L+d + Mn+,La+l = - @f - ___. 

4 
(118’) 

Applying this equation to our case (Fig. 182) for the first and the 
second span and noting that at the support 0 the bending moment 
is zero, we obtain 

4Mll f M21 = - $ (4 
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l:rom the condition of symmetry it is evident that J4~ = M2. Then, 
from (d), kfl = - (gj2/10). The bending moment diagram is shown 
in Fig. 182~ by the shaded area. The reaction at support 0 is 

‘G qz q1= 1 4 

R”=2--- 10 1= log’ 

The reaction at support 1 is 

The shearing force diagram is shown in Fig. 182b. The maximum 
moment will evidently be at a distance 4//10 from the ends of the 
beam, where the shearing force is zero. The numerically maximum 
bending moment is at the inter- 
mediate supports. 

2. Set up the expression for 
the right side of eq. (118) when 
there is a concentrated force in 
the span n and no load in the 
span n + 1 (Fig. 183). 

Solution. In this case A, is 
‘&+I 

the area of the triangle of height FIG. 183. 
Pc(l,, - c)/l, and with the base 
I,, hence A, = Pc(l, - c)/2 and a, = 1, - 6, = 2, - (/, + c)/3. 
Substituting in (118), we get 

Mn-11, + 2Mdn + &,+I) + Mn+lln+~ = - 
Pc(ln - c)(21, - c) 

Al * 

3. Determine the bending moments at the supports and the 
reactions for the continuous beam shown in Fig. 184. 

FIG. 184. 

Answer. Ml = -1.54 ft tons; M2 = -3.74 ft tons; Ms = 
-1.65 ft tons. The reactions are Ro = -0.386 ton; RI = 2.69 
tons; R2 = 6.22 tons; R3 = 3.75 tons; R4 = -0.275 ton. The 
moments at the supports are negative and produce bending convex 
upward. 
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4. Construct the bending moment and shearing force diagrams 
for the continuous beam shown in Fig. 1850 if P = QI, c = l/4. 

FIG. 185. 

Answer. Ml = -&&12, MS = --G=g12. The diagrams are 
shown in Figs. 185b and 185~. 

5. Determine the bending moment diagram for the case shown 
in Fig. 186~. 

Soltltion. Eq. (118) for this case becomes 

M,,l + 4MlI + M21 = 0. 

It is evident that Ms = -PC, while the condition at the built-in end 
(support 0) gives (from eqs. 103 and 104) 

M,I Ml/ 

3EI+6EI=0. 

From the above equations we obtain MO = -+Pc; Ml = -@PC; 
ML = -PC. The bending moment diagram is shown in Fig. 1866. 
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6. Determine the bending moments at the supports of a con- 
tinuous beam with seven equal spans when the middle span alone 
is loaded by a uniformly distributed load q. 

Answer. n/r, = Mh = -&&ql’, M2 = MS = -&MS, MI = 
Mfj = &MS. 

7. A continuous beam having four equal spans, each of length 
16 ft, is uniformly loaded over the last span. Draw the shearing 
force and bending moment diagrams if q = 400 lb per ft. 

8. Solve Prob. 5, assuming that a uniform load of intensity CJ 
is distributed along the entire length of the beam and that c = 1/2. 
Draw the shearing force diagram for this loading condition. 

Answer. MO = -&q12, MI = -&q12, M2 = -+q12. 



CHAPTER VII 

SYMMETRICAL BEAMS OF VARIABLE CROSS SECTION. 
BEAMS OF TWO MATERIALS 

46. Beams of Variable Cross Section.-In the preceding 
discussion all of the beams considered were of prismatic form. 
nlore elaborate investigation shows that eqs. (56) and (57), 
which were derived for prismatic bars, can also be used with 
sufficient accuracy for bars of variable cross section, provided 
the variation is not too extreme. Cases of abrupt changes in 
cross section, in which considerable stress concentration takes 
place, will be discussed in Part II. 

As a first example of a beam of variable cross section, let 
us consider the deflection of a cantilever beam of uniform 
strength, i.e., a beam in which the section modulus varies along 
the beam in the same proportion as the bending moment. 
Then, as is seen from eqs. (60), (gs)max remains constant along 
the beam and can be taken equal to ubv. Such a condition is 
favorable as regards the amount of material used, because 

each cross section will have the minimum 
I 

P 

,FT 

area necessary to satisfy the conditions of 
x , strength. 

Y 
2 

For a cantilever with an end load (Fig. 

FIG. 187. 
187), the bending moment at any cross sec- 
tion at distance x from the load is numer- 

ically equal to Px. In order to have a beam of uniform strength 
the section modulus must also be proportional to x. This con- 
dition can be fulfilled in various ways. 

Let us take as a first example the case of a rectangular cross 
section of constant width 6 and variable depth J2, Fig. 187. 
From the definition of the beam of equal strength it follows that 

A4 6Px 6PI 
z - bh2 bh()2 

const., 

210 
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in which &, is the depth of the beam at the built-in end. Then 

p = !$k. 

It may be seen that in this case the depth of the beam varies 
following a parabolic law. At the loaded end the cross-sec- 
tional area is zero. This result is obtained because the shear- 
ing stress was neglected in the derivation of the shape of the 
beam of uniform strength. In practical applications this stress 
must be taken into account by making certain changes in the 
shape at the loaded end in order to have sufficient cross-sec- 
tional area to transmit the shearing force. The deflection of 
the beam at the end is found from eq. (93): 

S z 12Px2dx 12PI 34 
6= ---p=p S ,, 

c~& = 2 PI” 
0 EM Ebho3 3 E&,’ 

(121) 

where IO = bho3/12 represents the 
moment of inertia of the cross sec- 
tion at the built-in end. Compari- 
son with eq. (95) shows that this 
deflection is twice that of a pris- 
matic bar having the flexural rigid- 
ity El0 and subjected to the same 
load, i.e., the bar has the same 
strength but not the same stiffness 
as the prismatic bar. 

As a second example we consider 
a cantilever of rectangular cross sec- 
tion of constant depth lz and variable 
width b (Figs. 18%~ and 188b). As 

FIG. 188. 

the section modulus and moment of inertia 1, of a beam of 
triangular shape increases with x in the same proportion as the 
bending moment, the maximum stress (cz)max and the curva- 
ture (see eq. 56) remain constant along the beam and the mag- 
nitude of the radius of curvature can be determined from the 
equation (see eq. 55): 
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The deflection at the end of a circular arc can be taken, for 
small deflections, equal to 

or, by using (a), 

It is seen from this equation that for this type of cantilever of 
uniform strength the deflection at the end varies as the square 
of the length and inversely as the depth. 

These results may be used to compute the approximate 
stresses and deflections in a spring of leaf type. The triangular 
plate considered above is thought of as divided into strips, 
arranged as shown in Fig. 188b, c, d. The initial curvature 
and the friction between the strips are neglected for a first 
approximation and eq. (123) can then be considered as suffi- 
ciently accurate.’ 

In calculating the deflection of beams of variable cross sec- 
tion the area-moment method (see Art. 34) can be used to 
advantage. In this connection it is only necessary to bear in 
mind that the curvature of the deflection line at any cross sec- 
tion is equal to the ratio M/EIZ (eq. 56, p. 95). Therefore an 
increase in the flexural rigidity at a given section will have the 
same effect on the deflection as a decrease of the bending mo- 
ment at that section in the same ratio. Consequently the prob- 
lem of the deflection of beams of variable cross section can be 
reduced to that of beams of constant cross section, by using 
the modi$ed bending moment diagram. The modified moment 

1 This solution was obtained by E. Phillips, Ann. mines, Vol. 1, pp. 195- 
336, 1852. See also Todhunter and Pearson, History of the Theory of Ehs- 
ticity, Vol. 2, p. 330, 1893; and A. Castigliano, Theorie der Biegungs- und 
Torsions-Federn, Vienna, 1888. The effect of friction between the leaves 
was discussed by G. Mar%, Ann. mines, Vols. 7-9, 1905-6. D. Landau and 
P. H. Parr investigated the distribution of load between the individual leaves 
of the spring, J. Franklin Inst., Vols. 185-7. A complete bibliography on 
mechanical springs was published by the Am. Sot. Mech. Engrs., New York, 
1927. See also the book by S. Gross and E. Lehr, Die Federn, V. D. I. 
Verlag, 1938. A very complete study of various types of mechanical springs 
is given in the book by A. M. Wahl, Mechanical Springs, Cleveland, 1944. 



BEAMS OF VARIABLE CROSS SECTION 213 

diagram is obtained by multiplying the ordinates of the actual 
moment diagram by the ratio 1,/l, where I is the moment of 
inertia at any cross section and I,, is a constant moment of 
inertia. This reduces the deflection of the bar of variable cross 
section to the deflection of a bar of constant cross section with 
moment of inertia 10. 

For example, the problem of the deflection of a circular 
shaft (Fig. 189) which h as sections of two different diameters, 
with moments of inertia I0 and 1, 
and loaded by P, can be reduced 
to that for a circular shaft having 
a constant moment of inertia 10 
as follows. In considering the 
conjugate beam AiBi, we use the cl, 
loading represented by the shaded 
area instead of the triangular load- 

FIG. 189. 

ing A,CIB, representing the actual bending moment diagram. 
This area is obtained by reducing the ordinates of the diagram 
along the middle portion of the shaft in the ratio 10/ll. De- 
termination of deflections and slopes can now be made as in 
the case of prismatic bars, the magnitude of the deflection and 
slope at any cross section of the beam being equal to the bend- 
ing moment and shearing force in the conjugate beam, divided 
by El,,. It should be noted that in the case represented in 
Fig. 189 an abrupt change in the diameter of the shaft takes 
place at a distance 1/4 from the supports, producing local 
stresses at these points. These have no substantial effect 
upon the deflection of the shaft, provided the difference in 
diameter of the two portions is small in comparison with the 
lengths of these portions. 

The method used for a shaft of variable cross section can 
also be applied to built-up I beams or plate girders of variable 
cross section. An example of a plate girder supported at the 
ends and uniformly loaded is shown in Fig. 190. The bending 
moment decreases from the middle towards the ends of the 
girder and the weight of the girder can be reduced by diminish- 
ing the number of plates in the flanges as shown schematically 
in the figure. The deflection of such a beam may be calculated 
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on the basis of the moment of inertia of the middle cross sec- 
tion. The load on the conjugate beam, instead of being a single 
parabola indicated by the dotted line, is represented by the 

FIG. 190. 

shaded area in Fig. 190, each diminution in the cross section 
being compensated for by an increase of the ordinates of the 
moment diagram in the ratio Imiddle/l. 

Problems 

FIG. 191. 

1. A steel plate of the form shown in 
Fig. 191 is built in at one end and loaded 
by a force P at the other. Determine the 
deflection at the end if the length is 2/, a 
is the width and h the thickness of the 
plate and P is the load at the end. 

Solution. The deflection will consist 
of three Darts: 

I  

PI3 PP 
61 = -+-= 

3E1, 2E1, 
deflection at B 

3PP 
&-= 

2EI, 
deflection at C due to the slope at B, 

PP a3=-= 
2E1, 

deflection due to bending of part BC of the plate. 

The complete deflection is given by 6 = 6r + 6s + 8s. 
2. Solve the previous problem, assuming I = 10 in., a = 3 in., 

P = 1,000 lb and u,,, = 70,000 lb per sq in. 
3. Determine the width d of a leaf spring (Fig. 188) and its de- 

flection if P = 6,000 lb, h = 3 in., I = 24 in., uw = 70,000 lb per sq 
in. and the number of leaves n = 10. 
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Solution. Considering the leaves of the spring as cut out of a 
triangular plate (Fig. 1886), the maximum stress will be 

from which 
6PI 6 X 

d=-= 6,000 
x 24 x 4 

= 
nawh2 10 x 70,000 

4.94 in. 

The deflection is determined from eq. (123), 

x 242 
6= 

70,000 
= 

3 x 30 x 106 
2.69 in. 

4. Compare the deflection at the middle and the slope at the 
ends of the shaft shown in Fig. 189 with those of a shaft of the same 
length but of constant cross section whose moment of inertia is 
equal to 1,. Take ~,/I, = 2. 

Solution. Due to the greater flexural rigidity at the middle, the 
slopes at the ends of the shaft shown in Fig. 189 will be less than 
those at the ends of the cylindrical shaft in the ratio of the shaded 
area to the total area of the triangle AICIBI. The total area is the 
loading for the case of the cylindri- 
cal shaft. For the values given, this 
ratio is g:l. 

The deflections at the middle 
for the two types of shaft are in the 
ratio given by the bending moment 
produced by the shaded area, di- 
vided by that produced by the area 
of the triangle AlC1B1. This will 
be &:l. 

5. A beam supported at the ends is loaded as shown in Fig. 192. 
How should the depth h of the beam vary in order to have a form 
of equal strength if the width b of the rectangular cross section re- 
mains constant along the beam? 

Answer. ii2 = hfj -2(1 - 8;). 

6. Determine the deflection of a steel plate 3 in. thick shown in 
Figs. 193a and 193b under the action of the load P = 20 lb at the 
middle. 

Solution. Reducing the problem to the deflection of a plate of 
constant width = ‘4 in., the transformed moment diagram for this 
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case will be represented by the trapezoid a&b, Fig. 1936, and we obtain 

PP 
s2.p, 

8 48E1, 

where I, is the moment of inertia at the middle of the span. The 
numerical value of the deflection can now be easily calculated. 

(0) 

FIG. 193 

7. Determine the maximum deflection of a leaf spring (Fig. 18%) 
if I = 36 in., h = 3 in., E = 30 X 10” lb per sq in., (T~V = 60,000 lb 
per sq in. 

Answer. 6 = 5.18 in. 
8. A simply supported rectangular beam carries a load P which 

moves along the span. How should the depth h of the beam vary 
in order to have a form of equal strength if the width b of the rec- 
tangular cross section remains constant along the beam? 

Solution. For any given position of the load the maximum 
moment occurs under the load. Denoting the distance of the load 
from the middle of the span by x, the bending moment under the 
load is 

P(i-x)(f+x) 
M= 

I 

The required depth h of the beam under the load is obtained from 
the equation 

6M 

from which 

and 
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It may be seen that in this case the depth of the beam varies follow- 
ing an elliptical law, the semi-axes of the ellipse being 

i/2 and d6P1/46c~w. 

9. Determine the bending moments at the ends of the beam AB 
with built-in ends and centrally loaded, Fig. 194. Take It/l,, = 2. 

FIG. 194. 

Solution. A solution is obtained by combining the two simple 
cases shown in (6) and (c). It is clear that the condition at the built-in 
ends will be satisfied if the slopes at the ends are equal to zero, i.e., if 
the reactions due to the imaginary loading (see p. 15.5) represented 
by the shaded areas in (6) and (c) are equal. Therefore the equation 
for calculating the numerical value of M is 

PI I 3 PI I 
-------&+!!I$ 
42 842 

from which 
111 = SP1/48. 

10. Solve the above problem on the assumption that two equal 
loads P are applied at C and 1). 

Answer. M = P//6. 

47. Symmetrical Beams of Two Different Materials.- 
There are cases when beams of two or more different materials 
are used. Fig. 195~ represents a simple case, a wooden beam 
reinforced by a steel plate bolted to the beam at the bottom. 
Assuming that there is no sliding between the steel and wood 
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during bending, the theory of solid beams can also be used 

rb-l It- 
here. According to this theory elonga- 

w 
tions and contractions of longitudinal 

h 1 

L H 

fibers are proportional to the distance 
from the neutral axis. Due to the fact 
that the modulus of elasticity of wood 

&J (b/ E, is much smaller than that of steel 

FIG. 195. E,, the wooden part of the beam in bend- 
ing will be equivalent to a much nar- 

rower web of steel as shown in Fig. 19.56. To maintain the 
resisting moment of the internal forces unchanged for a given 
curvature, i.e., for a given elongation and contraction, the 
thickness br of this web must be as follows: 

6, = g. 
s 

In this manner the problem is reduced to that of the bending 
of a steel beam of T section, called the transformed section, 
which can be solved on the basis of the previous theory. 

Consider, for instance, a simply supported beam 10 ft long 
loaded at the middle by 1,000 lb. The cross-sectional dimen- 
sions of the wooden part of the beam are b = 4 in. and h = 6 in. 
and on the convex side it is reinforced by a steel plate 1 in. 
wide and + in. thick. Assuming E,/E, = & and using eq. 
(a), the transformed section will have a web 6 X 0.20 and the 
flange 1 X 0.50. The distances of the outermost fibers from 
the neutral axis (Fig. 19.56) are hI = 2.54 in. and I& = 3.96 in. 
The moment of inertia of the transformed section with respect 
to the neutral axis is I, = 7.37 in.*, whence the stresses in the 
outermost fibers of the transformed section are (from eqs. 61, 
p. 96): 

J4naxh 1 30,000 X 2.54 
urnax = ~ = 

1, 7.37 
= 10,300 lb per sq in., 

urnin = 
30,000 X 3.96 

7.37 
= - 16,000 lb per sq in. 

To obtain the maximum compressive stress in the wood of the 
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actual beam the stress g,in obtained above for the transformed 
section (steel) must be multiplied by E,/E, = &. The max- 
imum tensile stress for this case is the same in both the actual 
beam and the transformed beam. 

As another example of the bending of a beam of two different 
materials let us consider the case of a bimetallic strip built up of 
nickel steel and monel metal (Fig. 196). The bending of such a strip 

by external forces can be discussed in the same manner as in the 
above problem of wood and steel, provided we know the ratio Em/E,, 
in which E,, and E, are the moduli of elasticity of monel metal and 
steel, respectively. Let us consider now the bending of such a strip 
due to a change in temperature. The coefficient of thermal expansion 
of monel metal is larger than that of nickel steel and, when the tem- 
perature rises, bending will occur with the concave side on the same 
side as the steel strip. This phenomenon of bending of bimetallic 
strips under varying temperatures is used in various automatic in- 
struments such as thermostats for regulating temperature.2 Let h/2 
be the thickness and b the width of each metal strip, t the increase in 
temperature, Y the radius of curvature, 01, and a, the coefficients of 
thermal expansion of steel and monel, respectively, EJ, = the flex- 
ural rigidity of the steel, EJm = the flexural rigidity of monel metal. 
When the temperature rises, the strip of monel metal, having a greater 
coefficient of expansion, will be subjected to both bending and com- 
pression and the steel will be subjected to bending and tension. Con- 
sidering an element of the strip cut out by two adjacent cross sections 
Tzn and jzlnl (Fig. 196c), the internal forces over the cross section of 
the steel can be reduced to a tensile force PI and a couple Mr. In the 
same manner the internal forces in the monel metal can be reduced to 
a compressive force P2 and a couple Ma. The internal forces over any 

2 See author’s paper in J. Opt. Sot. Amer., Vol. 11, p. 23. 
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cross section of the beam must be in equilibrium. Therefore 

PI = Pz = P 
and 

Ph 
- = Ml f Mz. A (4 

L 

Substituting 
&IS 

Ml=-, 
&&At3 M2=-----r 

r r 
into eq. (b), we obtain 

Ph E,I, EJ, 
-= -+-. 

2 r r 

Another equation for determining P and r can be derived from the 
condition that at the joining surface, c-c, the unit elongation of monel 
metal and steel must be the same. Therefore 

or 

From eqs. (c) and (d) we obtain 

(4 

Substituting in this equation 

I, = I,n = g and E, = l.lSE,, 

the following approximate equation is obtained: 

1 3 (%n - 4 -=- 
r 2 h * (f) 

Now, from eq. (c), 

P = ; (a, - 4(&I, + -Um) = $2 (am - 4@s + Em) (9) 

and 
- 

M 1 
(% - 4 hn 4t 

= ! 
2 h 

E s I s, M 2 = 3 
2 h 

E mm* I (h> 
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From eqs. (g) and (h) P, Ml, and A42 can be determined. The 
maximum stress in the steel is obtained by adding to the tensile 
stress produced by the force P the tensile stress due to the curva- 
ture l/r: 

2P h E, 4 
urnax =--+4r=6h2 

r 
E,I,i-Ed,+:Es 

Assuming, e.g., that both metals have the same modulus E, we 
obtain 

hE 
umaK = -p 

3r 
or, by using eq. (f) 3 

umax = +Et(a, - a,). 

For E = 27 X lo6 lb per sq in., t = 200” C and LY, - cys = 4 X 
lo@, we find 

u max = 10,800 lb per sq in. 

The distribution of stresses due to heating is shown in Fig. 196c. 

Problems 

1. Find the safe bending moment for the wooden beam rein- 
forced by a steel plate, Fig. 195, if b = 6 in., h = 8 in. and the thick- 
ness of the steel plate is 3 in. Assume E, = 1.5 X 10” lb per sq in., 
E, = 30 X lo6 lb per sq in., uw = 1,200 lb per sq in. for wood and 
uw = 16,000 lb per sq in. for steel. 

2. Assume that the wooden beam of the preceding problem is 
reinforced at the top with a steel plate 2 in. wide and 1 in. thick and 
at the bottom with a steel plate 6 in. wide and 3 in. thick. Calculate 
the safe bending moment if E and uw are the same as in the preceding 
problem. 

Answer. A4 = 308,000 in. lb. 
3. A bimetallic strip has a length I = 1 in. Find the deflection 

at the middle produced by a temperature increase equal to 200” C 
if E, = l.lSE,,, and cy, - a8 = 4 X 10F6. 

48. Reinforced-Concrete Beams.-It is well known that 
the strength of concrete is much greater in compression than in 
tension. Hence a rectangular beam of concrete will fail from 
the tensile stresses on the convex side. The beam can be 
greatly strengthened by the addition of steel reinforcing bars 

3 This equation also holds for E, = E,. 
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on the convex side as shown in Fig. 197. As concrete bonds 
to the steel strongly there will be no sliding of the steel bars 
with respect to the concrete during bending and the methods 
developed in the previous article can also be used here for 
calculating bending stresses. In practice the cross-sectional 
area of the steel bars is usually such that the tensile strength 
of the concrete on the convex side is overcome before yielding 
of the steel begins and at larger loads the steel alone takes 
practically all the tension. Hence it is the established practice 
in calculating bending stresses in reinforced-concrete beams to 

assume that all the tension m 
is taken by the steel and all 
the compression by the con- 
crete. Replacing the tensile 
forces in the steel bars by 

FIG. 197. 
their resultant K, the distri- 
bution of internal forces over 

any cross section mp will be as shown in Fig. 1976. Assuming, 
as before, that cross sections remain plane during bending and 
denoting by kd the distance of the neutral axis nn from the 
top,4 then the maximum longitudinal unit contraction E, in the 
concrete and the unit elongation e, of the axes of the steel bars 
are given by the following: 

kd (1 - k)d 
EC= --9 E a= (a> r r 

Concrete does not follow Hooke’s law and a compression 
test diagram for this material has a shape similar to that for 
cast iron in Fig. 4b. As the compression stress increases, the 
slope of the tangent to the diagram decreases, i.e., the modulus 
of concrete decreases with an increase in stress. In calculating 
stresses in reinforced-concrete beams it is usual practice to 
assume that Hooke’s law holds for concrete, and to compensate 
for the variable modulus by taking a lower value for this modu- 
lus than that obtained from compression tests when the stresses 
are small. In specifications for reinforced-concrete it is fre- 
quently assumed that Es/E, = 15. Then, from eqs. (a), the 

4 k is a numerical factor less than unity. 
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maximum compressive stress in the concrete and the maxi- 
mum tensile stress in the steel 5 are, respectively, 

(4 

We will now calculate the position of the neutral axis from the 
condition that the normal forces over the cross section mp must 
reduce to a couple equal to the bending moment at that cross 
section. The sum of the compressive forces in the concrete 
must equal the tensile force R in the steel bars, or 

bkdu, 

2 
- = UsAs, cc> 

where A, is the total cross-sectional area of steel. Using the 
notation AJbd = p and Es/E, = n, we obtain from (c) and (b) 

k2 = 2(1 - k)pn, (4 
from which 

k = d(pn)” + 2pn - pn. (124) 

After determining the position of the neutral axis from eq. 
(124), the ratio between the maximum stress in the concrete 
and the stress in the steel becomes, from eqs. (b), 

UC k 

us (1 - k)n 
(125) 

The distance jd between the resultants R of the compressive 
and tensile forces acting over the cross section of the beam 
(Fig. 1976) is 6 

jd = 3 kd + (1 - k)d = (126) 

and the moment of the internal forces equal to the bending 
moment A!2 is 

jkbd2 
idR = jdA,cr, = - - 

2 
UC = M, 

~The cross-sectional dimensions of the steel bars are usually small and 
the average tensile stress is used instead of the maximum stress. 

6j is a numerical factor less than unity. 
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from which 
A4 

(r,=-------7 
As+ 

2M 
u, = - -. 

jkbd2 

(127) 

(128) 

By using eqs. (124)-(128), the bending stresses in reinforced- 
concrete beams are readily calculated. 

Problems 

1. If E,JE, = 15 and A, = O.OOWd, determine the distance of 
the neutral axis from the top of the beam, Fig. 197. 

Answer. kd = 0.384d. 
2. Determine the ratio p = A,/bd if the maximum tensile stress 

in the steel is 12,000 lb per sq in., the maximum compressive stress 
in the concrete is 64.5 lb per sq in. and Es/EC = n = 15. 

Solution. From eq. (125) k = 0.446. Then, from eq. (d), 

p= k2 = 0.012. 
2(1 - k)n 

3. Determine the ratio p if the maximum compressive stress in 
the concrete is 2’0 of the tensile stress in the steel. 

An.5 wer. p = 0.0107. 
4. If n = 15 and the working compressive stress for concrete is 

650 lb per sq in., determine the safe load at the middle of a reinforced- 
concrete beam 10 ft long supported at the ends and having b = 10 
in., d = 12 in., A, = 1.17 sq in. 

Answer. P = 5,570 lb. 
5. Calculate the maximum bending moment which a concrete 

beam will safely carry if b = 8 in., d = 12 in., A, = 2 sq in., Es/E, 
= 12 and the working stress for steel is 15,000 lb per sq in. and for 
concrete 800 lb per sq in. 

Answer. M = 16,000 ft lb. 
6. Determine the value of k for which the maximum permissible 

stresses in the concrete and the steel are realized simultaneously. 
So/.&on. Let (TV and us be the allowable stresses for the concrete 

and the steel. Then taking the ratio of these stresses, as given by 
formulas (d), and considering only the absolute value of this ratio, 
we obtain 

UC k& 

a, = (1 - k)E,’ 
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from which 

If this condition is satisfied the beam is said to have balanced rein- 
forcement. Having k and using eq. (126) the depth is obtained from 
eq. (128) and the area A, from eq. (127). 

7. Determine the steel ratio p = A,/bd if (T, = 12,000 lb per sq 
in., nC = 645 lb per sq in. and n = Es/E, = 1.5. 

Solution. From the formula of the preceding problem we find 

k = 0.446. 

Then, substituting in eq. (d), we obtain 

p = 0.012. 

8. Design a beam 10 in. wide to withstand safely a bending 
moment of 22,500 ft lb if ce = 750 lb per sq in., crS = 12,000 lb per 
sq in. and Es/E, = 12. Find the depth d and the steel area A,. 
Assume balanced reinforcement as in Prob. 6. 

49. Shearing Stresses in Reinforced-Concrete Beams.- 
Using the same method as in Art. 26 and considering an ele- 
ment mnmlnl between the two ad- 
jacent cross sections mp and mlpl m, 

(Fig. 198), it can be concluded U*dR 7 

that the maximum shearing stress n 
E?FJ?r\ 

n, J’d d 

----_ _ 
7Uz will act over the neutral surface 

R_tdR- 1 ----- ---___ 

Denoting by dR the difference 
P A 

nnl. dx 
between the compressive forces on FIG. 198. 
the concrete on cross sections mp 
and mlp,, the shearing stress ryz over the neutral surface is 
found from the following: 

(~yzhmxxbd~ = dR, 
from which 

Since the bending moment is 

M = Rjd, 
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eq. (a) becomes 

(%&nax = 

OF MATERIALS 

(4 

in which Y is the shearing force at the cross section considered. 
Using eq. (126), the above equation for shearing stresses 
becomes 

(~KJrnax = g-3. (129) 

In practical calculations, not only the shearing stresses over 
the neutral surface but also the shearing stresses over the sur- 
face of contact between the steel and concrete (bond stresses) 
are of importance. Considering again the two adjacent cross 
sections (Fig. 198), the difference between the tensile forces 
in the steel bars at these two sections is 

This difference is balanced by the bond stresses distributed 
over the surface of the bars. Denoting by A the total lateral 
surface of all the steel bars per unit length of the beam, the 
bond stress over the surface of the bars is 

dR Y 3l7 

Adx = Ajd 
= --. 

A(3 - k)d 
(130) 

This bond stress becomes larger than the stress on the neutral 
surface (eq. 129) if A is less than 6. To increase A and at the 
same time keep the cross-sectional area of steel constant, it is 
only necessary to increase the number of bars and decrease 
their diameter. 



CHAPTER VIII 

BENDING OF BEAMS IN A PLANE WHICH IS NOT A 
PLANE OF SYMMETRY 

50. Pure Bending in a Plane Which Is Not a Plane of Sym- 
metry.-If a beam has a plane of symmetry, say plane xy, Fig. 
I994 and couples acting in that plane are applied at the ends, 

FIG. 199. 

then the beam will be bent in the same plane and the neutral 
axis nn at each cross section of the beam (Fig. 199~~) will pass 
through the centroid C and will be perpendicular to the plane 

227 



228 STRENGTH OF MATERIALS 

of the acting couples. From symmetry it can be concluded 
that the stresses corresponding to that direction of the neutral 
axis give a resultant couple in the xy plane, and with a proper 
selection of the magnitude of stresses (see eq. 56, p. 95) this 
couple will balance the external couple M. 

Let us consider now the case in which the plane xy of the 
bending couples, Fig. 199b, is not a plane of symmetry, and 
investigate under what condition the neutral axis will be per- 
pendicular to that plane. Assuming that the axis nn is perpen- 
dicular to the plane xy and proceeding as in Art. 23, we find 
that the force acting on an infinitesimal element dA of the 
cross section is normal to the cross section and has the magni- 
tude EydA/r. The equations of equilibrium of the portion of 
the beam shown in Fig. 1996 will be l 

” S E 
ydA = 0, - 

r A S y2dA = M, 
E 
- yzdA = 0. (a) 

r -4 S r .I 

The first of these equations states that the neutral axis passes 
through the centroid of the cross section. The second equa- 
tion defines the magnitude of the curvature l/r of the deflec- 
tion curve and the third equation states that they and z axes 
are the principal axes of inertia of the cross section (see Appen- 
dix A, A%rt. IV, p. 424) and that the planes xy and xz are the 
principal planes of the beam. This shows that in the general 
case of pure bending the plane of bending coincides with the 
plane of the acting couples only if the latter is one of the princi- 
pal planes of the bar. 

If the plane of the acting couples does not pass through one 
of the principal axes of the cross section of the bar, then the 
third of the equations of equilibrium (a) will not be satisfied. 
Thus the direction of the neutral axis will not be perpendicular 
to the plane of the bending couples and must be found as fol- 
lows: Assume that a couple A4 is acting in an axial plane of the 
bar which intersects the cross section along the line mm in- 
clined to the principal axis y by an angle 8, Fig. 200. The 

1 The remaining three equations are always satisfied since the moments 
of all forces with respect to the x axis and the projections of the forces on the 
y and z axes vanish. 
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vector A4 representing the moment of the couple can be re- 
solved into two components as shown in the figure. Since 
each component of the couple is acting in one of the principal 
planes of *the beam, the corresponding stresses will be obtained 

FIG. 200. 

by applying the usual beam formulas and the total stress at- 
any point A of the cross section will be given by the formula 

My cos 0 Mz sin 13 
U= 

+ I * 1, 
(b) 

Y 

Equating this stress to zero, we obtain the equation of the 
neutral axis: 

y cos 0 z sin 8 
-+7--o, 

Iz 
cc> 

Y 

and the tangent of the angle p defining the direction of the neu- 
tral axis nn will be 

Y Ifi 
tan p = - - 

z = T tan e* 21 
(4 

It is seen that the angle ,8 is in general different from B and 
the neutral axis is not perpendicular to the axial plane mm 
in which the bending couples are acting. The two angles are 
equal only if 0 = 0 or if I, = I,. In the first of these cases 
the bending couples are acting in the principal plane xy and 
the neutral axis coincides with the principal axis z. In the 
second case the two principal moments of inertia of the cross 
section are equal. The ellipse of inertia of the cross section 
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(see Appendix A, Art. V, p. 427) in such a case becomes a circle 
and any pair of two perpendicular centroidal axes can be con- 
sidered as the principal axes, and thus the neutral axis is always 
perpendicular to the plane of the bending couples. 

In the preceding discussion we resolved the acting couples into 
two component couples acting in the principal planes of the beam 
and calculated the stresses produced by each of those components. 
Sometimes it is advantageous to work directly with the given bend- 
ing couples and to have the formula for the bending stresses pro- 
duced by those couples. To establish such a formula, let us con- 
sider bending of a beam by couples M, and A4T1 acting in two arbi- 
trarily chosen perpendicular axial planes xy and xz, Fig. 201. Assume 

FIG. 201. 

that the magnitudes of the couples are such that bending occurs in 
the xy plane, so that the neutral axis in each cross section is parallel 
to the z axis. Denoting by r, the corresponding radius of curvature, 
the bending stresses will be u2 = Ey/r, and we obtain the following 
values of the bending couples: 

Similarly, if the couples are such that bending in the xz plane is 
produced, then (r, = -Ez/T,, and we have 

In the general case, when deflections in both planes are produced, 
the relations between the bending moments and the curvatures are 
obtained by combining eqs. (e) and (f), and we have 
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If the couples are acting only in the xy plane, then M, = 0 and we 
obtain 

EIy EI,, 1 1 I,, __- 
rz ----=0°, -=-‘I’ TY f-z rff Y 

Substituting in the second of eqs. (g) we find 

-= 
E(I,I, - Iyz2j y, = E(I,I, - I,,“) 

(131) 
ry 

The bending stresses produced by the couple M, will then be 

Ey Ez 
u x=---= I I “‘, 2 (IYY - IYZZ>. (132) 

rY rz a Y YE 

Similarly, if M, vanishes, we obtain 

MY 
fJ - 
2 - IJ$, - Iyz2 

VYZY - I&). (133) 

Eqs. (132) and (133) are especially useful for beams in which the web 
and flanges are parallel to they and z axes. 

Problems 

1. A cantilever beam of rectangular cross section, Fig. 202, is 
bent by a couple M acting in the axial plane mm. What curve will be 

FIG. 202. 

me 

-6: 

h 

z 

M 

m 

b Y 

described by the end of the beam when the angle 8, defining the 
plane of the bending moment, varies from zero to 2a? 

Solution. Resolving the bending moment M into two compo- 
nents 111~0s 0 and Msin 0 acting in the principal planes xy and XZ, 
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respectively, we find the two components u and v of the deflection of 
the end of the cantilever in they and z directions, respectively, as: 

Ml2 cos 0 Ml2 sin 6 
u= - 

2E1, ’ 
TJ= - 

2EI, ’ 
from which 

u2 V2 

(M12/2E1z)2 + (M/2/2E4,)2 = ” 

We see that the end of the cantilever describes an ellipse with the 
semi-axes M12/2EI, and Mj”/2EI,. 

2. Find for the preceding problem the numerical value of the 
ratio of the vertical and horizontal deflections of the end of the 
cantilever if 0 = 45’ and h = 26. 

Answer. U/V = I,/Iz = i. 
3. Find for the cantilever in Fig. 202 the angle of inclination p of 

the neutral axis to the horizontal and the magnitude of the maximum 
stress if 6’ = 45” and h = 26 = 6 in., M = 1,200 in. lb. 

Answer. tan fi = 4, ulnar: = 141 lb per sq in. 
4. A standard 8 I 18.4 beam, simply supported, is bent by two 

equal and opposite couples M acting at the ends of the beam in the 
plane mm, Fig. 203. Find the maximum stress and the maximum 

FIG. 203. FIG. 204. 

deflection 6 of the beam, if IV = 3.8 in.4, I, = 56.9 in.4, M = 5 x 
lo4 in. lb, 0 = 30”, I = 12 ft. 

4A4 cos 0 2M sin 0 
Answer. (T,,, = > 

8max2 = (M;bgs “>’ + kE;; OTandr.” ““,.;;, 1 sq In-; 
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5. A bar of angle cross section, Fig. 204, is bent by couples A4 
applied at the ends and acting in the plane of the larger flange. Find 
the directions of the centroidal principal axes u and v, the magnitudes 
I, and I, of the principal moments of inertia and the magnitude of 
the maximum bending stress if A4 = lo4 in. lb. Check the result by 
using formula (132). 

Answer. p = 14”20’, I,, = 9.36 in.4, I, = 0.99 in.4, (cmaxl = 
4,850 lb per sq in. at point A. 

51. Bending of Beams Having Two Planes of Symmetry. 
-If a beam has two planes of symmetry the problem of bend- 
ing by transverse forces inclined to these planes and intersect- 
ing the axis of the beam can be readily solved by using the 
method of superposition. Each transverse force can be resolved 
into two components acting in the two planes of symmetry and, 
after solving the bending problem for each of those planes, the 
final stresses and deflections are obtained by superposition. 

Let us consider, as an example, a cantilever of rectangular 
cross section, Fig. 20.5, with a transverse force P applied at 

F 
FIG. 205. 

the end at an angle 8 with the vertical plane of symmetry. 
Resolving the force into two components P cos 8 and P sin 0 
and considering bending in the vertical and horizontal planes 
of symmetry, we find that the absolute values of the corre- 
sponding bending moments at the built-in end are PI cos o 
and PI sin 8. Taking into consideration the directions of these 
moments, the bending stress at any point of the built-in cross 
section will be 

Ply cos e Ph sin e 
u=--- 

1, 
Jr- 7-s 

Y 
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The maximum tensile stress will be at point A and its magn- 
tude is 

The vertical and horizontal deflections of the loaded end will be 

PP cos 0 PP sin e 
6, = 

3E1, ’ 
6, = - 

3E1, ’ 

and the total deflection will be obtained from the equation 

Problems 

1. A horizontal wooden beam of rectangular cross section carries 
a vertical load uniformly distributed along the axis and is supported 
at the ends in the position shown in Fig. 206. Determine the maxi- 

mum normal stress and the vertical deflection at the middle if the 
length of the beam I = 10 ft, the intensity of the load 4 = 200 lb 
per ft, h = 8 in., 6 = 6 in., tan o( = Q. 

Answer. urnax = 643 lb per sq in., 6 = 0.126 in. 
2. Solve the preceding problem if the distance between the sup- 

ports is 6 ft and the beam has two overhangs each 2 ft long. 
3. A horizontal circular bar of length I and with built-in ends 

carries a uniformly distributed vertical load of intensity 4 and a 
horizontal transverse load P concentrated at the middle. Find the 
maximum stress if PI = 24,000 in. lb, q12 = 48,000 in. lb and the 
diameter of the bar d = 4 in. 

Answer. umnx = 796 lb per sq in. 
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4. A horizontal square beam (Fig. 207) with simply supported 
ends is loaded at the third points by two equal forces P, one of which 

is vertical and the other horizontal. Find urnax if I = 12 ft, a = 12 
in., P = 6,000 lb. 

2Pi 
Answer. gmax = 2 = 1,000 lb per sq in. 

52. Bending of Beams in a Principal Plane Which Is Not a 
Plane of Symmetry--Shear Center.-In the discussion of pure 
bending (see p. 228) it was shown that the plane of the deflec- 
tion curve coincides with the plane of the bending couples 
provided these couples act in one of the two principal planes 
of bending. In the case of bending of a beam by a coplanar 
system of transverse forces, the problem is more complicated. 
If the principal plane in which the forces are acting is not a 
plane of symmetry of the beam, such bending is usually accom- 
panied by torsion of the beam. The following discussion will 
show how this torsion can be eliminated and simple bending 
established by a proper displacement of the plane of the acting 
forces parallel to itself. 

We begin with simple examples in which the cross section 
of the beam has one axis of symmetry (z axis) and the forces 
are acting in a plane perpendicular to this axis, Fig. 208. Let 
us consider the case of a thin-walled beam shown in Fig. 2080 
and determine the position of the vertical plane in which the 
transverse loads must act in order to produce simple bending 
of the beam in a vertical plane. From our previous discussion 
of distribution of vertical shearing stresses T,~ (see p. 122) we 
may conclude that practically the whole of the shearing force 
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Y will be taken by the flanges alone. If we consider the 
flanges as two separate beams whose cross sections have 
moments of inertia rz’ and I,“, respectively, then their curva- 
tures and their deflections in bending will be equal if the loads 
are distributed between them in the ratio 1,‘:1,“.2 The shear- 
ing forces in these flanges will also be in the same ratio. This 

0 c 

tv 
Y 

(6) (c) 
FIG. 208. 

condition will be satisfied if the transverse loads act in the 
vertical plane passing through the point 0 (Fig. 20&z), such 
that 

where /zl and Jz2 are the distances of 0 from the centroids of 
the cross sections of the flanges. In this manner we find that 
the point 0 is displaced from the centroid C of the cross sec- 
tion towards the flange whose cross section has the larger 
moment of inertia. In the limiting case, shown in Fig. 2086, 
in which one of the flanges vanishes, it can be assumed with 
sufficient accuracy that the point 0 coincides with the centroid 
of the flange and that the transverse loads should act in the 
vertical plane through this point in order to have simple bend-. 
ing. The point 0, through which the plane of loading must 
pass to eliminate torsion, is called the shear cenler. 

Let us now consider the channel section (Fig. 208~) and 
determine the position of the plane in which the vertical loads 
must act to produce simple bending with the z axis as the neu- 
tral axis. For this purpose it is necessary to consider the dis- 

* The effect of shearing force on deflection of flanges is neglected in this 
consideration. 
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tribution of the shearing stresses over the cross section in 
simple bending. To calculate the vertical shearing stresses rZy 
for the cross section of the web, the same method is used as in 
the case of an I beam (p. 122) and it can be assumed with suflj- 
cient accuracy that the vertical shearing force Y is taken by 
the web alone. In the flanges there will be horizontal shear- 
ing stresses which we shall denote by T,,. To find the magni- 
tude of these stresses, let us consider an element cut from the 
flange by two adjacent cross sections dx apart and by a vertical 
plane mnmlnl parallel to the web (Fig. 209). If the beam is 

FIG. 209. 

bent convex downward, the lower flange will be in tension and 
the tensile forces N and N + dN acting on the above element 
will be equal to 

and 

where the integration must be extended over the shaded por- 
tion of the cross section of the flange. The integral represents 
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the moment of the shaded area with respect to the z axis. The 
difference of the tensile forces N and N + n’N must be equal 
to the sum of the shearing stresses T,~ acting over the side 
mnmlnl of the element. Assuming that these stresses are uni- 
formly distributed over this side and denoting by t the thick- 
ness of the flange, we obtain the following equation for calcu- 
lating 7Z2 : 

ah+ ax r,,tax = -aiv = - z . I -94 z S 
from which 

The moment of the shaded area is proportional to the distance 
u from the edge of the flange; hence 7ZZ is proportional to u. 
As we have shown before (see p. 114), shearing stresses 7,, 
equal to T,~ must act horizontally at points along the line nn, 
in the cross section of the flange. Hence the stresses T,, are 
distributed nonuniformly over the cross section of the flange 
but are proportional to the distance u. At the junction of 
flange and web the distribution of shearing stresses is compli- 
cated. In our approximate calculation we shall assume that 
eq. (a) holds from u = 0 to u = b. Then denoting by h the 
distance between the centroids of the flanges and observing 
that the moment of the cross section bt of the flange with re- 
spect to axis z is bt(h/2), we obtain from eq. (a), 

The resultant R (Fig. 210) of the shearing stresses 7ZZ 
distributed over the cross-sectional area bt of the flange is 

Vbh bt Yb’ht Rep.-=-. 
21, 2 4I, cc> 

The sum of the shearing stresses 7zz over the cross section of 
the upper flange will evidently be an equal and opposite force. 
Thus the shearing stresses over a channel section reduce to the 
forces shown in Fig. 210. This system of forces is statically 
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equivalent to a force Y applied at t I R 

a point 0 at a distance from the 
center of the web: 

Rh b2h2t C 

e = 7 = 41, 
(4 h ’ O z 

-. 

e 

From this it is seen that in Y 

order to obtain simple bending R1 L 
with the z axis representing the V 
neutral axis, the vertical plane in 
which the transverse loads act 

FIG. 210. 

must pass through the point 0, which is called the shear center. 
At any other position of this plane, bending of the beam will 
be accompanied by twist, and the stresses will no longer follow 
the simple law in which uz is proportional toy and independent 
of the coordinate z. 

la) 
FIG. 211. 

(b) 

In the case of bending in a vertical plane of an angle section 
(Fig. 211), the shearing stress 7 at points along mn will be in 
the direction shown and will be equal to 3 

3The same method is used in calculating these stresses as in the case of 
channel sections. 
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in which the integral represents the moment of the shaded area 
with respect to the z axis. These shearing stresses yield a re- 
sultant force in the direction shown in Fig. 211b equal to 

VPt 
R=w. 

3I,d2 

A force of the same magnitude will also be obtained for the 
lower flange. Th e resultant of these two forces is equal to Y 
and passes through the point of intersection 0 of the middle 
lines of the flanges, which is therefore the shear center in this 
case. 

In the preceding cases we considered beams with one plane of 
symmetry which were deflected perpendicularly to that plane. In 
such a case the shear center is on the symmetry axis of the cross 
section and to determine its position we need only one coordinate. 
Let us consider now a nonsymmetrical beam for which two coordi- 
nates are required to determine the position of the shear center.” As 
an example we take a channel of uniform thickness t, but with un- 
equal flanges, Fig. 212. Taking centroidal axes yz parallel to the web 
and to the flanges, we assume first that the transverse forces acting 
on the beam are parallel to the web and at such a distance from the 
web that there is no torsion of the beam. 
pU will be taken by the web alone. 

The vertical shearing force 

For calculating the horizontal shearing forces in the flanges we 
proceed as before and consider the forces acting on an element of the 
lower flange, shown shaded in Fig. 212. To calculate the longitudinal 
force N acting on the element we use eq. (132) for the longitudinal 
normal stresses. Then we have 

in which the integrals on the right-hand side represent the moments 

4The problem of determining the shear center has been discussed by 
several authors. See, e.g., A. A. Griffith and G. I. Taylor, AdGory Comm. 
Aeronaut. (England), Tech. Repts., Vol. 3, p. 950, 1917; R. Maillart, Schweiz. 
Bauzeitung, Vol. 77, p. 197, Vol. 79, p. 254 and Vol. 83, pp. 111 and 176; 
C. Weber, Z. angew. Math. U. Mech., Vol. 4, p. 334, 1924; A. Eggenschwyler, 
Proc. Zd Internat. Congr. AppL Mech., Ziirich, p. 434, 1926. See also writer’s 
paper, J. Franklin Inst., Vol. 239, p. 201, 1945. In recent times the problem 
has become of importance in airplane design. A review of the corresponding 
literature is given in a paper by P. Kuhn, Nat. Advisory Comm. Aeronaut. 
Tech. Notes, No. 691. 
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-I 

C-L” 
FIG. 212. 

with respect to the z and y axes of the area shaded in Fig. 212, so that 

s 
ydA = ctu 

and 

S zai4= -tu(b,-a-ff)=t(~+au-blu). 

By differentiation we then obtain 

and the equation of equilibrium of the element under consideration is 

- vl,ax 

Id, - L2 I 

u2 
tr,,aX = rvctu - Iu,t 

( 
i- + au - blu 

)I 
. 

The horizontal shearing stress on the cross section of the flange is then 
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and the corresponding shearing force in the flange is 

s b, t rzzdu = 
0 

Since the forces acting on the beam are all vertical, the horizontal 
shearing forces in the flanges must form a couple which may be ob- 
tained by multiplying the shearing force in the lower flange by the 
distance h. The moment 5 with respect to the centroid C (Fig. 212) 
of all shearing stresses acting on the cross section is then 

which indicates that the vertical plane in which the external forces 
act in order to produce bending of the beam without torsion is at 
the distance - 

zo=d+ 

from the centroid C of the cross section. In the particular case in 
which the flanges are equal, the y and z axes are principal axes and 
I,, vanishes, c = h/2 and we obtain 

b12h2t 
zo=d+-v 

41, 

which is in agreement with the previously obtained result (d) (see 
p. 239). 

The distance ~0 represents the horizontal coordinate of the shear 
center 0. To calculate the coordinate yo, we assume the external 
transverse forces to be acting in a plane parallel to the xx plane. 
For the calculations of the normal stresses (T, we now use eq. (133). 
Considering again the element shown shaded in Fig. 212 and pro- 
ceeding as before, we obtain 

The horizontal shearing force in the lower flange is 

s 

h 
t r,,du = 

0 

5 Clockwise moment is considered as positive. 



UNSYMMETRICAL BENDING 243 

Taking the moment of this force with respect to point B (Fig. 212) 
and dividing by the horizontal shearing force YZ, contributed by the 
external forces, we will obtain the distancef of the plane of the acting 
forces from point B. The required coordinate of the shear center 
will then be 

y,=f+c-h=c-hf 

k) 

For the particular case of equal flanges we have rVZ = 0, c = h/2, 
and by evaluating d and I, it can be shown that eq. (9) vanishes and 
the shear center lies on the z axis. The 
coordinates yo and ~0 given by eqs. (f) and 
(JJ) completelydefine the position of the shear t---w 
center for the channel shown in Fig. 212. -T* 

In the case of a 2 section, Fig. 213, con- r 
sidering first the action of transverse forces h C 

in a plane parallel to the web and deriving 

JF 

z 

an equation similar to eq. (e), it is readily 
proved that the horizontal shearing forces 
in the flanges vanish. Hence the horizontal 
coordinate z. of the shear center also van- b 

ishes. Next, considering transverse forces Y 
acting in a horizontal plane we will find that FIG. 213. 
the horizontal shearing forces in the flanges 
are equal to SP’,, indicating that the plane of horizontal loading 
must pass through the centroid C. Thus y. = 0 also and the shear 
center in this case coincides with the centroid C. 

In all cases in which the flanges of a thin-walled beam 
intersect along one axis 0, as in the examples shown in Fig. 

0 

F:c. 211. 

213, it will be found that the resultant shearing force passes 
through the same axis and this axis is evidently the shear cen- 
ter axis. 
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Returning now to the general case of bending of nonsym- 
metrical beams, we conclude from the preceding discussion 
that in order to have simple bending of a beam (bending with- 
out torsion) the external forces must be distributed along the 
shear center axis. For the calculation of deflections produced 
by these forces we can use the same methods as in the case of 
pure bending (see Art. 50). We can resolve each force into 
two components parallel to the principal centroidal axes of the 
cross section of the beam, investigate bending of the beam in 
each of the principal planes by applying the usual beam formu- 
las and obtain the complete deflections by geometrically sum- 
ming up the deflections found for the two principal planes. 

Another procedure is to select y and z axes parallel to the web and 
the flanges of the beam as shown in Fig. 212, resolve each acting 
transverse force into two components parallel to the y and z axes 
and use formulas (131) for the forces in the xy plane. Similar for- 
mulas can be established for the forces in the xz plane. The final 
deflections will again be obtained by geometrical summation. 



CHAPTER IX 

COMBINED BENDING AND AXIAL LOAD. 
THEORY OF COLUMNS 

53. Bending Accompanied by Tension or Compression.- 
It is assumed here that a prismatic bar is loaded by forces in 
one of its planes of symmetry, but, whereas in the previous 
discussion these forces were all transverse, here they may have 
components along the axis of the bar. A simple case of this 
kind is shown in Fig. 215, which represents a column loaded by 
an inclined force P. This force is resolved into a transverse 
component N and a longitudinal component T and it is assumed 
that the column is comparatively stiff with a deflection so small 
that it can be neglected in discussing the stresses produced by 
the force T. Then the resultant stress at any point is obtained 
by superposing the compressive stress due to the force T on 
the bending stress produced by the 
transverse load LV. The case of a 
flexible column in which the thrust, 

Ix k 
1 N N 

due to deflection of the column (Fig. P 
2156), has a considerable effect on I- 

T T 

the bending will be discussed later l I 
(see Art. 56). The stress due to 
force T is constant for all cross sec- 

JflE 
m n Y Y 

tions of the column and equal to 
~~“1, where A is the cross-sectional (0 /al 

The bending stress depends FIG. 215. area. 
upon the moment, which increases from zero at the top to a 
maximum NI at the bottom. Hence the dangerous section is 
at the built-in end and the stress there, for a point at distance 
y from the z axis, is 

N/y T 
uz = - --- - -. 

I, A 
(4 

245 
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Assuming, for example, that the cross section of the column 
in Fig. 215~7 is a rectangle of dimensions b X h with the side h 
parallel to the plane of bending, we have A = bh and I, = 
bIz3/12. Then the maximum compressive stress will be at 
point n and is equal to 

6NI T 
(b) 

This stress is numerically the largest. At point m we obtain 

(~zhlax = g - $- 

When the force P is not parallel to one of the two planes of 
symmetry, the bending stresses produced by its transverse 
component N are found by resolving N into components 
parallel to those planes (see the discussion in Art. 51). The 
resultant stress at any point is obtained by superposing these 
bending stresses with the compressive stress produced by the 
longitudinal force. 

Problems 

1. Determine the maximum compressive stress in the circular 
wooden poles 20 ft high and 8 in. in diameter shown in Fig. 216, if 

/a) 

FIG. 216. 

the load P on the wire ABC is 60 lb. The tensile force in each cable 
DF is S = 1,000 lb.; tan a~ = &; sin fi = 6 and L)K = 1.5 ft. 

Solution. The components of the force in the wire BC (Fig. 
2166) are iV1 = 300 lb, Tl = 30 lb. The components of the force in 
the cable DF are Nz = 200 lb, Tz = 980 lb. The maximum bending 
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moment is found to be at the built-in end, where M,,,, = 36,000 
in. lb. The thrust at the same cross section is Tl + T2 = 1,010 lb. 
The maximum compressive stress at the point m is 

IS= 
4 X 1,010 + 32 X 36,000 

ad2 7rd3 
= 21 + 715 = 736 lb per sq in. 

2. Determine the maximum tensile stress in the rectangular 
wooden beam shown in Fig. 217 if S = 4,000 lb, b = 8 in., h = 10 in. 

6 
Answer. (uz)max 

x 72 x 
1,000 = + ____ 4,000 = 590 lb in. 8 x 100 80 per sq 

FIG. 217. FIG. 218. 

3. Determine the maximum compressive stress in the structure 
ABC, which supports a load P = 2,000 lb (Fig. 218), has a rigid 
connection between the bars at B, an immovable hinge at A and 
a movable support at C. The cross section of the bars AB and BC 
is a square 10 X 10 in. A 

6 X 1,000 X 8 x 12 600 
Answer. g = 

103 +i+ 
= 582 lb per sq in. 

4. A brick wall 6 ft thick and 15 ft high sup- 
ports sand pressure (Fig. 219). Determine the 
maximum tensile and compressive stresses at the 
bottom of the wall if its weight is y = 150 lb per cu 
ft and the lateral pressure of the sand is 10,000 lb 
per yd of wall. The distribution of the sand pres- 
sure along the height of the wall follows a linear 
law, given by the line AB. 

FIG. 219. 

Answer. The stress at m = - 
150 x 15 10,000 x 60 X 6 

144 - 36 x 722 
= -15.6 - 19.3 = -34.9 lb per sq in. The stress at n = 

150 x 15 10,000 X 60 X 6 
- + = 

722 
3.7 lb in. 

144 36 x 
per sq 
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5. Determine the required thickness of the wall in the previous 
problem to give zero stress at n. 

Answer. 80 in. 
6. A circular column 6 ft high, Fig. 215, is acted upon by a force 

P which has components N and T equal to 1,000 lb each. Find the 
diameter of the column if the maximum compressive stress is 1,000 
lb per sq in. 

7. Find umnn an d amin at the cross section at the middle of the 
bar BC (Fig. 218) if, instead of the concentrated load P, a uniform 
vertical load q = 400 lb per ft is distributed along the axis ABC. 

8. A circular bar AB (Fig. 220) hinged at B and supported by a 
smooth vertical surface (no friction) at A is submitted to the action 

of its own weight. Determine the position of 
A I? 

~ 

the cross section mn at which the compressive 
stress is maximum. 

Solution. Denote by I the length of the 
x In bar, by q its weight per unit length and by 

o( its angle of inclination to the horizon. The n 
horizontal reaction at A is R = (q//2) cot cr. 

OL B The compressive force at any cross section 
mn, distance x from A, is qx sin a! + (q//2) X 

FIG. 220. (cos* a/sin a). The bending moment at the 
same cross section is 

cd 
M=Zxcosa- 

4x2 cos cx 

2 * 

The maximum compressive stress at the cross section rrzn is 

4 

( 

ql cos2 a 32 ql 

2 
qx sin (Y + - 7 

2 sin (Y ) ( 
+- 

qx* cos o! 
-xcosQI----- 7 

nd3 2 2 ) 

where d is the diameter of the bar. 
Equating the derivative of this stress with respect to x to zero, 

we obtain the required distance 

I d 
x = - + - tan (Y. 

2 8 

9. The bar shown in Fig. 215 is 6 ft long and has a circular cross 
section of 12 in. diameter. Determine the magnitude of the force P 
if its components N and T are equal and the maximum compressive 
stress at n is 1,000 lb per sq in. 

Answer. P = 3,260 lb. 
10. A force P produces bending of the bar ABC built in at A 

(Fig. 221). Determine the angle of rotation of the end C, during 
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bending, if the bending moments at A and at B are numerically 
equal. 

Solution. From the equality of the bending moments at A and 
B, it follows that the force P passes through the mid-point D of 
the bar AB. Then P, = P,1/2a and the , 
components P, and P, may now be calcu- I 

lated. The rotation of the cross section A o - 
B due to bending of the portion AB by the L 52’ 

/ 4 
component P, is P,12/2EI in a clockwise 

T 

h 

direction. The rotation of the same 
c 

cross section due to the component P, is 
P,al/EI in a counter-clockwise direction. 

8” p 

The rotation of the cross section C with 
FIG. 221. 

respect to the cross section B, due to bending of the portion BC of 
the bar, is P,a”/2EI in a counter-clockwise direction. The total 
angle of rotation of the end C in a clockwise direction is 

P,12 P,al P,a2 PZa2 
--= --a 

2EI El 2EI 2EI 

11. A three-hinged frame ABC (Fig. 222) supports a vertical 
!oad P. Find the numerically largest bending moment M,,,,, in the 
frame and the compressive force N in the horizontal bars. 

FIG. 222. FIG. 223. 

12. Find the angle of inclination CY of the force P acting on the 
bar ABC (Fig. 223) if it is known that the deflection at B is zero. 

2h 
Answer. tan a = - . 

3a 

54. Eccentric Loading of a Short Strut.-Eccentric loading 
is a particular case of the combination of direct and bending 
stresses. When the length of the bar is not very large in com- 
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FIG. 224. 

parison with its lateral dimensions, its 
deflection is so small that it can be 
neglected in comparison with the ini- 
tial eccentricity e, and the method of 
superposition may be used.’ Take, 
for example, the case of compression 
by a longitudinal force P applied 
with an eccentricity e (Fig. 224) on 
one of the two principal axes of the 
cross section. If we put two equal and 
opposite forces P at the centroid 0 of 
the cross section, the condition is not 
changed because they are equivalent 

to zero. We then obtain an axial compression by the force P 
producing direct compressive stresses -P/A, as shown in 
Fig. 2246, and bending in one of the principal planes by the 
couple Pe producing bending stresses - (Pey/l,), as shown in 
Fig. 224~. The total stress is then 

P Pey 
CT,= -- 

‘4 1, 
(a) 

The distribution diagram of this total stress is shown in 
Fig. 224d. It is assumed in Fig. 224d that the maximum 
bending stress is less than the direct stress, so that there will 
be compressive stresses over the entire cross section of the bar. 
If the maximum bending stress is larger than the direct com- 
pressive stress there will be a line of zero stress, parallel to the 
z axis, dividing the cross section into two zones, with tensile 
stresses on the left and compressive stresses on the right. 

For a rectangular cross section with sides h and b (Fig. 224~) 
eq. (a) becomes 

P 12Pey 
gz=---- 

bh b/z3 
(a’> 

and we obtain, by putting y = -(h/2), 

(~2Jmax = -g+g=!&l+;). (b) 

1 For the case of eccentric loading of long bars see Art. 56. 
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By putting y = h/2, we obtain 

(uz)min = - ~ - ~~ = - ~ (1 + ~)’ (C) 

It may be seen that when e < h/6 there is no reversal of sign 
of the stresses over the cross section. When e = h/6, the 
maximum compressive stress, from eq. (c), is 2P/bh and the 
stress on the opposite side of the rectangular cross section is 
zero. When e > h/6, there is a reversal of sign of the stress 
and the position of the line of zero stress is obtained by equat- 
ing to zero the general expression (a’) for u,, giving 

h2 yz--, 
12e 

or, using the notation k, for the radius of gyration with respect 
to the z axis (see Appendix), 

kz2 y=--. (134) e 

It will be seen that the distance of the line of zero stress from 
the centroid 0 diminishes as the eccentricity e increases. The 
same discussion applies as well to the case of eccentric loading 
in tension. Eq. (134) may also be used for other shapes of 
cross sections if the point of application of the load is on one 
of the principal axes of inertia. 

Let us consider now the case in which B, the point of application 
of the eccentric compressive force P, is not on one of the two principal 
axes of the cross section, taken as the y and the z axes in Fig. 22.5. 
Using m and n as the coordinates of this point, the moments of P 
with respect to the y and z axes are Pn 
and Pm, respectively. By superposition, ,! i 
the stress at any point F of the cross \ \ 
section is \ m 3 

‘1 
P Pmy PYZZ 

uz = - -------, 
A 1, r&l 

(e) IN s ’ \: 

in which the first term on the right side 
represents the direct stress and the two @ 

& -_____ M 3 

other terms are the bending stresses pro- FIG. 225. 
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duced by the moments Pm and Pn, respectively. It may be seen 
that the stress distribution follows a linear law. The equation of 
the line of zero stress is obtained by equating the right side of eq. 
(e) to zero. Using the notation I,/A = kZ2 and 1,/A = kV2, where 
k, and k, are the radii of gyration with respect to the z and y axes, 
respectively, this gives 

By substituting in this equation first y = 0 and then z = 0, we ob- 
tain the points A4 and N of intersection of the line of zero stress with 
the axes of coordinates z and y (Fig. 225). The coordinates of these 
points, s and r, are 

4, kg2 s = ---, y= --. k) n 722 

From these equations we obtain 

4,’ kz2 
n= --. pn= --. 

s r 

These equations have the same form as eqs. (g) and it can be con- 
cluded that when the load is put at the point B’ with the coordinates 
.Y and r, the corresponding line of zero stress will be the line N’M’, 
indicated in the figure by the dotted line, and cutting off from the 

FIG. 226. 

y and z axes the lengths m and n. 
There is another important relation be- 

tween the point of application B of the load 
and the position of the corresponding line 
of zero stress, namely, as B moves along a 
line BIB2 (Fig. 226), the corresponding line 
of zero stress turns about a certain constant 
point B’. This is proved as follows: Re- 
solve the load at B into two parallel com- 
ponents, one at B1 and the other at B2. 
The component at B1 acts in the principal 

Pl ane xs; hence the corresponding line of zero stress is parallel to the 
y axis and its intercept on OZ, as found from an equation analogous 
to eq. (134), is 



COMBINED BENDING AND AXIAL LOAD 

Similarly the line of zero stress for the component Bz is 
parallel to the .z axis and its distance from this axis is 

kz r= --. 
ml 

253 

For any position of the load on the line BIBz there will be 
zero stress at B’. Hence, as the point of application of v P 

the load moves along the straight line BIBZ, the corre- FIG. 227. 
sponding line of zero stress turns about the point B’, 
the coordinates of which are determined by eqs. (h) and (i). 

Problems 

1. The cross-sectional area of a square bar is reduced by one 
half at mn (Fig. 227). Determine the maximum tensile stress at 
cross section mn produced by an axial load P. 

2P Pa 24 8P 
Answer. (uJmax = QF’h2=>* 

2. Solve the above problem, assuming the bar to have a circular 
cross section. 

3. A bar of I section is eccentrically loaded by the forces P (Fig. 
228). Determine the maximum tensile and compressive stresses in 
this bar if d = 1 in., k = 5 in., the width of the flange b = 5 in., P = 
4,000 lb. 

FIG. 228. 

Solution. The distances of the centroid of the ..L section from 
the bottom and the top are, respectively, hr = 8 in. and hs = 93 in. 
The eccentricity of the force P is e = 3 + 3 = 2& in. The mo- 
ment of inertia I, = 19.64 in.4 The bending stresses are 

Pehl 4,000 x x 29 
(~Z)rrU,X 29 = 

7 
= = 693 lb 

19.64 x 18 
per sq in., 

i 

4,000 x 2+ x 61 
= - 1,458 lb per sq in. 19.64 x 18 
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Combining with the direct stress P/A = 4,000/9 = 444 lb per sq in., 
we obtain the maximum tensile stress 693 + 444 = 

& 

1,137 lb per sq in., maximum compressive stress 
1,458 - 444 = 1,014 lb per sq in. 

1 P 

4. Determine the maximum tensile stress at the 
section mn of the clamp shown in Fig. 229 if P = 

7 p 
300 lb, b = 3 in. and the cross section is a rectangle 

I with the dimensions 1 X $ in. 

kc--/ 
Answer. CT,,, = 22,800 lb per sq in. 
5. Determine the width of the cross section mn 

FIG. 229. in the previous problem to make cmax = 20,000 lb 
per sq in. 

6. Find the maximum and the minimum stress at the built-in 
cross section of the rectangular column shown in Fig. 224, if b = 10 
in., h = 12 in., P = 5,000 lb and the coordinates of the point B of 
application of the load (Fig. 225) are m = n = 2 in. Find the posi- 
tion of the neutral axis. 

55. The Core of a Section.-In the previous article it was shown 
that for a small eccentricity e the normal stresses have the same sign 
over all of the cross section of an eccentrically loaded bar. For larger 
values of e the line of zero stress cuts the cross section and there is a 
reversal of sign of the stress. In the case of a material very weak in 
tension, such as concrete or brick work, the question arises of deter- 
mining the region in which the compressive load may be applied 
without producing any tensile stress on the cross section. This re- 
gion is called the core of the cross section. The method of determining 
the core is illustrated in the following simple examples. 

In the case of a circular cross section of radius R we can conclude 
from symmetry that the core is a circle. The radius a of this circle 
is found from the condition that when the point of application of the 
load is on the boundary of the core the corresponding line of zero 
stress must be tangent to the boundary of the cross section. Remem- 
bering that the moment of inertia of a circle about a diameter is 
7rR4/4 (see Appendix), and hence the radius of gyration is k = 
dm = R/2, we find from eq. (134) (p. 251), by substituting a for 
e and R for -y, that 

k2 R 
a=-=-, 

R 4 (135) 

i.e., the radius of the core is one quarter of the radius of the cross 
section. 

For the case of a circular ring section with outer radius R, and 
inner radius Ri we have 

I = ; (Ku4 - R:), k2+ 
R,’ f Ri2 

4 ’ 
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and the radius of the core, from eq. (134), m 
becomes 

k2 Ro2 + Ri 
a=-= 

RI 4R, * 
(136) 

For Ri = 0, eq. (136) coincides with eq. (135). 
For a very narrow ring, when Ri approaches 
R, the radius a of the core approaches the 
value R,/2. 

In the case of a rectangular cross section 
(Fig. 230), the line of zero stress coincides 
with the side cg when the load is applied at 

FIG. 230. 

point A, a distance 6/6 f rom the centroid (see p. 251). In the same 
manner the line of zero stress coincides with the side gf when the 
load is at the point B, a distance h/6 from the centroid. As the load 
moves along the line AB, the neutral axis rotates about the point g 
(see p. 252) without cutting the cross section. Hence AB is one of 
the sides of the core. The other sides follow from symmetry. The 
core is therefore a rhombus with diagonals equal to h/3 and b/3. As 
long as the point of application of the load remains within this rhom- 
bus the line of zero stress does not cut the cross section and there will 
be no reversal in the sign of the stress. 

For an I section (Fig. 231) the extreme posi- 
tions of the lines of zero stress, in which they do 
not cut the cross section, are given by the sides 
AB and CD and by the dotted lines AC and BD. 
The corresponding positions of the point of appli- 
cation of the load may be determined from eq. 
(134). From symmetry it may be concluded 
that these points will be the corners of a rhom- 

FIG. 231. bus, shaded in Fig. 231. 
If the point of application of the eccentric 

load is outside the core of a cross section, the corresponding line of 
zero stress crosses the section and the load produces not only com- 
pressive but also tensile stresses. If the material does not resist tensile 
stresses at all, part of the cross section will be inactive and the rest 
will carry compressive stresses only. Take, for example, a rectangu- 
lar cross section (Fig. 232) with the point of application A of the load 
on the principal axis y and at a distance c from the edge of the section. 
If c is less than h/3, part of the cross section will be inactive. The 
working portion may be found from the condition that the distri- 
bution of the compressive forces over the cross section follows a 
linear law, represented in the figure by the line ml?, and that the 
resultant of these forces is P. Since this resultant must pass through 
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the centroid of the triangle WZS, the dimension ms of the working 
portion of the cross section must be equal to 3~. 

Y 

FIG. 232. FIG. 233. 

In the case of a circular cross section (Fig. 233), if the eccen- 
tricity CA of the load is larger than R/4 and the material does not 
resist tensile stresses, only a portion of the cross section will work. 
Let the line nn, perpendicular to AC, be the limit of this portion. 
Its distance b from the point A may be found from the conditions 
that (1) the compressive stresses are proportional to the distance 
y from nn, (2) the sum of the compressive forces over the working 
portion of the cross section is equal to the load P and (3) the moment 
of these forces with respect to nn is equal to the moment Pb of the 
load P with respect to the same axis. Denoting the maximum com- 
pressive stress by cmnx, the compressive stress at any distance y from 
nn is 

Y~max g=- 
bfc 

and the equations for determining b become 

S Y2?Ti!FdA = p, S Y2U,I,X 

b+c 
___ dA = Pb, 
bfc 

from which 

b=$!?, 

nn 
(a) 

in which I,, = r y2dA is the moment of inertia of the working por- 
J 

tion of the cross section with respect to the nn axis and Qnn = S YdA 

is the moment of the working portion of the cross section with respect 
to the same axis. By using eq. (a) the position of A for any given 
position of nn may easily be found. The same equation may also 
be used for other shapes of cross sections, provided A is on one of 
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the principal axes. 2 If the load is not on a principal axis, the problem 
of determining the working portion of the cross section becomes more 
complicated.3 

By using the notion of the core of a section, the calculation of 
maximum bending stresses when the bending is not in a principal 
plane may be greatly simplified. For example, in Fig. 230 let mm 
be the axial plane of the beam in which a bending moment A4 acts 
and nn, the corresponding neutral axis which makes an angle (Y with 
the plane mm (see p. 229). Denoting by ~~~~~~~ the maximum stress 
in the most remote point c and by d its distance from the neutral 
axis nn, the stress at any other point, distance w from nn, is u = 
amaxw/d, and the moment of all forces distributed over the cross sec- 
tion with respect to the axis nn is 

$ dA = ?!j? I,,, 

in which I,, is the moment of inertia of the cross section with respect 
to the nn axis. The moment of the external forces with respect to 
the same axis is M sin CY. Equating this to (b), we have 

Md sin CY 
~mnx = 

I - cc> 
nn 

This equation may be greatly simplified by using the property of 
the core of the cross section.* Let 0 be the point of intersection of 
the plane mm with the core and r its distance from the centroid of 
the cross section. From the property of the core it follows that a 
compressive force P at 0 produces zero stress at the corner c. Hence 
the tensile stress produced at c by the bending moment Pr, acting 
in the plane mm, is numerically equal to the direct compressive stress 
P/A; or, substituting Pr for M in eq. (c), we obtain 

P Prd sin a: 
-= 
A Inn’ 

2 For the cases of circular cross sections and circular ring sections, which 
are of importance in calculating stresses in chimneys, tables have been pub- 
lished which simplify these calculations. See Keck, 2. Arc&&. u. Ing.- 
Ye,. (Hannover), p. 627, 1882; see also 2. Ye,. deut. Ing., p. 1321, 1902, and 
paper by G. Dreyer, in Bautechnik, 1925. 

3 Some calculations for a rectangular cross section will be found in the 
following papers: F. Engesser, Zentr. Bauverwalt, p. 429, 1919; 0. Henkel, 
ibid., p. 447, 1918; K. Pohl, Der Eisenbau, p. 211, 1918; F. K. Esling, Proc. 
Inst. Civil Engrs., (London), Part 3, 1905-6. 

4 See R. Land, 2. Architekt. u. Ingenieurw., p. 291, 1597. 
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from which 
dsina 1 

= -. 
I nn Ar 

Substituting this into eq. (c), we obtain 

A4 
u,,, = -. 

Ar 

(4 

(137) 

The product Ar is called the section modulus of the cross section in 
the plane mnz. This definition agrees with the definition which we 
had previously (see p. 96), and for bending in a principal plane Ar 
becomes equal to 2. 

Problems 

1. Determine the core of a standard I beam of 24 in. depth, for 
which A = 23.33 sq in., I, = 2,087 in.4, k, = 9.46 in., I, = 42.9 
in.4, k, = 1.36 in. The width of the flanges b = 7 in. 

Answer. The core is a rhombus with diagonals equal to 14.9 in. 
and 1.06 in. 

2. Determine the radius of the core of a circular ring section if 
R, = 10 in. and Ri = 8 in. 

Answer. The radius of the core a = 4.10 in. 
3. Determine the core of a-cross section in the form of an equi- 

lateral triangle. 
4. Determine the core of the cross section of a square thin tube. 
Solution. If h is the thickness of the tube and b the side of the 

square cross section, we have 

2 
I, = I, = 3 hb3, k,2 = kg2 = ;. 

The core is a square with diagonal 

56. Eccentric Compression of a Slender Symmetrical Col- 
umn.--In discussing the bending of a slender column under the 
action of an eccentric load, Fig. 234, the deflection 6 can no 
longer be neglected as being small in comparison with the 
eccentricity e. Assuming that the eccentricity is in the plane 
of symmetry, the deflection occurs in the same axial plane xy 
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in which the load P acts, and the bending 
moment at any cross section mn is 

259 

&if = -P(6 + e - y). (4 

In determining the sign of the moment it 
should be noted that by rotating Fig. 234 in 
the clockwise direction by an angle n/2, the 
same directions of the coordinate axes are 
obtained as those used in deriving eq. (79). 
Hence, to follow the rule shown in Fig. 636, 
the moment (a) is taken with a minus sign 
since the deflection curve is concave in the 
positive direction of the y axis. The differential equation of 
the deflection curve obtained by substituting (a) in eq. (79) is 

dzy 
EI,s = P(S + e - Y). 

Using the notation 
P ---= 

EI, p2’ 
we obtain from eq. (b) 

(4 

(138) 

d2y 
2 + p”y = p2(6 + e). 

By substitution, it can be readily proved that 

y = Cl sin px + CZ cos px + 6 + e (4 

is the solution of eq. (c). This solution contains two constants 
of integration, C, and C2, whose magnitudes must be adjusted 
so as to satisfy the conditions at the ends of the column if we 
are to obtain the true deflection curve of the column. At the 
lower end, which is built in, the conditions are 

(YLCI = 0, dy 
0 z %=()= 

0. (4 

Using these conditions together with expression (d) and its 
first derivative, we obtain 

Cl = 0, c2 = -(6 + e). 
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The equation of the deflection curve (d) thus becomes 

y = (6 + e)(l - cospx). w 

To obtain the magnitude of the deflection 6 at the upper end 
of the column, we substitute x = I in the right side of eq. 
(f). The deflection y on the left side must then be equal to 6 
and we obtain the equation 

6 = (6 + r)(l - cos pl), 
from which 

e(1 - cos pll 6 = .-- ~--. 
cos pz 

(139) 

Substituting this into eq. (f), we obtain the deflection curve 

e(l - cos px) 
Y= --. 

cos pz 
(140) 

By using this equation the deflection at any cross section of 
the bar can readily be calculated. 

In the case of short columns, which were considered in 
Art. 54, the quantity pl is small in comparison with unity and 
it is sufficiently accurate to take 

cos pl = 1 - +p”l”. 

Using this value of cos pl and neglecting the quantity p2L2/2 
in the denominator of expression (139), as being small in com- 
parison with unity, we obtain 

This represents the magnitude of the deflection at the end of a 
cantilever bent by a couple Pe applied at the end. Hence the 
use of the approximate expression (g) is equivalent to neglect- 
ing the effect of the deflections upon the magnitude of the 
bending moment and takin, 0 instead a constant moment equal 
to Pe. 

If pl is not small, as is usually the case when the column 
is slender, we must use expression (139) in calculating 6. In 
this way we find that the deflection is no longer proportional 
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to the load P. Instead, it increases more rapidly than P, as 
is seen from the values of this deflection as given in the second 
line of Table 2. 

TABLE 2: DtrLECTT~NS PKODVCEI> HY AN ECCESTRIC I.oxmru~~rxa~. I.oan 

pi. 0.1 0.5 1.0 1.5 T/2 

6 o.oose 0.139e 0.851e 13.le x 
.4pproximate 6. o.oose 0.139e 0.840e 12.8e 3-, 
xc pl 1.005 1.140 1.867 13.2 z 
P/P,,. 0.004 0.101 0.405 0.911 1 

The maximum bending moment occurs at the built-in end 
of the column and has a magnitude 

A4 max = P(e + S) = Pe set pl. (141) 

,4 series of values of set pl is given in the fourth line of the 
above table. These values show how rapidly the moment in- 
creases as pl approaches the value 7r/2. This phenomenon will 
be discussed in the next article. 

Here, however, it should be repeated that in the case under 
discussion there is no proportionality between the mag- 
nitude of the compressive force and the deflection 6 which it 
produces. Hence the method of superposition (p. 162) cannot 
be used here. An axially applied force P produces only com- 
pression of the bar, but when the same force acts in conjunc- 
tion with a bending couple, Pe, it produces not only compres- 
sion but also additional bending, so that the resulting deforma- 
tion cannot be obtained by simple superposition of an axial 
compression due to the force P and a bending due to the couple 
Pe. The reason why in this case the method of superposition 
is not applicable can readily be seen if we compare this problem 
with the bending of a beam by transverse loads. In the latter 
case, it can be assumed that small deflections of the beam do 
not change the distances between the forces and the bending 
moments can be calculated without considering the deflection 
of the beam. In the case of eccentric compression of a column, 
the deflections produced by the couple Pe entirely change the 
character of the action of the axial load by causing it to have a 
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bending action as well as a compressive action. In each case 
in which the deformation produced by one load changes the 
action of the other load, it will be found that the final deforma- 
tion cannot be obtained by the method of superposition. 

In the previous discussion bending in a plane of symmetry 
of the column was considered. If the column has two planes 
of symmetry and the eccentricity e is not in the direction of 
one of the principal axes of the cross section, it is necessary to 
resolve the bending couple Pe into two component couples each 

a- acting in a plane of symmetry of the col- 
umn. The deflection in each of the two 

I 
planes of symmetry can then be investi- 
gated in the same manner as discussed 

‘/t above. 
The preceding discussion of bending 

of a column built in at one end can also 
1 

A Y be applied to the case of a strut eccen- 
trically compressed by two equal and op- 

‘/t 

L! 

posite forces P, Fig. 235. From symmetry 
it can be concluded that the middle cross 

P 
section A does not rotate during bending 

-I 
and each half of the strut in Fig. 235 is in 

c exactly the same condition as the strut in 

FIG. 235. Fig. 234. Hence the deflection and the 
maximum bending moment are obtained 

by substituting Z/2 for / in eqs. (139) and (141). In this way 
we obtain 

e(l - cos;) 

6= 
d ’ 

(142) 

M max = Pe set p_l 
2’ (143) 

and the equation for the maximum compressive stress becomes 

\vhere 2 denotes the section modulus. 
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Problems 

1. Find the deflection at the middle and the maximum tensile 
and compressive stresses in an eccentrically compressed steel strut 
10 ft long with hinged ends if the cross section is an 8 u 11.5 channel 
with depth 8 in., I, = 1.3 in.4, I, = 32.3 in.4, A = 3.36 in.2 and the 
width of the flanges 2.26 in. ?‘he distance between the centroid and 
the back of the channel is 0.58 in., and the compressive force P = 
4,000 lb acts in the plane of the back of the channel and in the sym- 
metry plane of the channel. 

Answer. 6 = 0.126 in., umax = 2,460 lb per sq in. tension, amin 
= 2,450 lb per sq in. compression. 

2. A square steel bar 2 X 2 in. and 6 ft long is eccentrically 
compressed by forces P = 1,000 lb. The eccentricity e is directed 
along a diagonal of the square and is equal to 1 in. Find the maxi- 
mum compressive stress, assuming that the ends of the bar are hinged. 

Am wer. c = 1,330 lb per sq in. 
3. A steel bar 4 ft long and having a rectangular cross section 

1 x 2 in. is compressed by two forces P = 1,000 lb applied at the 
corners of the end cross sections so that the eccentricity is in the 
direction of a diagonal of the cross section and is equal to one-half 
the length of the diagonal. Considering the ends to be hinged, find 
the maximum compressive stress. 

Answer. CT = 3,610 lb per sq in. 

57. Critical Load.-It was indicated in the preceding article 
that the deflection of an eccentrically compressed column 
increases very rapidly as the quantity pl in eq. (139) approaches 
the value r/2. When pl becomes equal to 7r/2, the formulas 
(139) for the deflections and (141) for the maximum bending 
moment both give infinite values. To find the corresponding 
value of the load we use formula (138). Substituting p = 
-/r/21 in this expression, we find that the value of the load at 
which expressions (139) and (141) become infinitely large is 

(144) 

This value, which depends only on the dimensions of the col- 
umn and on the modulus of the material, is called the critical 
load or Euler’s load, since Euler was the first to derive its value 
in his famous study of elastic curves.6 To see more clearly the 

6Loc. cit., p. 139. 
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physical significance of this load let us plot curves representing 
the relation between the load P and the deflection 6 as given 
by eq. (139). S everal curves of this kind, for various values of 
the eccentricity ratio e/k,, are shown in Fig. 236. The abscissas 
of these curves are the values of the ratio 6/k, while the ordi- 
nates are the ratio P/PcT, i.e., the values of the ratio of the 
acting load to its critical value defined by eq. (144). 

FIG. 236. 

It is seen from the curves that the deflections 6 become 
smaller and smaller and the curves approach closer and closer 
to the vertical axis as the eccentricity c decreases. At the 
same time the deflections increase rapidly as the load P ap- 
proaches its critical value (144), and all the curves have as 
their asymptote the horizontal line P/Per = 1. 

The differential equation of the deflection curve (79), which 
was used in the discussion of the preceding article, was derived 
on the assumption that the deflections are small in compari- 
son with the length I of the column. Hence formula (139) for 
the deflection 6 cannot give us an accurate result when P is 
very close to P,,. However, the curves in Fig. 236 indicate 
that, irrespective of how small the eccentricity e may be, very 
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large deflections are produced if the load P is sufficiently close 
to its critical value. If the deflection becomes large, the bend- 
ing moment at the built-in end and the stresses are also large. 

Experiments dealing with the compression of columns 
show that even when all practicable precautions are taken to 
apply the load centrally there are always some unavoidable 
small eccentricities. Consequently in such experiments the 
load P produces not only compression but also bending. The 
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FIG. 237. 

curves in Fig. 237 show the results of such experiments as 
obtained by several experimenters. It may be seen that, 
with increasing accuracy in the application of the load, the 
curves come closer and closer to the vertical axis and the 
rapid increase in the deflection as the load approaches its 
critical value becomes more and more pronounced. The loads 
P which are close to their critical values always produce large 
deformations which usually go beyond the elastic limit of the 
material, so that after such a loading the column loses its 
practical usefulness. This indicates that the critical value of 
the load, as given by eq. (144), must be considered as an ulti- 
mate load which will produce complete failure of the column. 
In practical applications the allowable load should be smaller 
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than the critical load and is obtained by dividing the critical 
value of the load by a certain factor of safety. Further dis- 
cussion of this question is given in the next two articles. 

In the preceding discussion a column with one end built in 
and the other end free was considered. Similar conclusions 
can be made in the case of a strut with hinged ends, Fig. 235. 
Eqs. (142) and (143) give infinite values when 

EL “. 
2 2 

Substituting for p its value from formula (138), we obtain in 
this case 

?EI, 
p,, = --. 

z2 (145) 

This is the critical value of the compressive force 
for a strut with hinged ends. 

In the case of compression of columns with 
built-in ends the deflection has the form shown in 
Fig. 238. The deflection curve can be considered 
as consisting of four portions each similar to the 
curve previously obtained for a column with one 
end built in and the other free. The critical value 
of the load is found in such a case by substituting 

FIG. 238. 
L/4 instead of I into eq. (144), which gives 

4n2EI, 
P,, = ~. 

12 (146) 

This is the critical load for a column with built-in ends. 
It should be noted that in the derivation of eq. (139) it was 

assumed that the eccentricity was in the direction of the y 
axis and that this axis was an axis of symmetry. If the col- 
umn has two planes of symmetry, similar formulas will be 
obtained if the initial eccentricity is in the direction of the z 
axis. The bending then occurs in the xz plane and, to calcu- 
late the deflections, I, must be substituted in place of Iz in 
eq. (139). If an attempt is made to apply the load centrally 
and bending occurs as a result of small unavoidable eccentrici- 
ties, we must consider deflections in both principal planes XJ 
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and xz, and in calculating the critical value of the load, we 
must use the smaller of the two principal moments of inertia 
in eqs. (144), (145) and (146). In the following discussion it 
is assumed that I, is the smaller principal moment of inertia 
and k, is the corresponding radius of gyration. 

In calculating deflections it is sometimes advantageous to 
use approximate formulas instead of the accurate formulas 
(139) and (142). It was shown in the preceding article (see 
p. 260) that for small loads, that is when pl is a small fraction, 
say less than A, the deflection is given with sufficient accuracy 
by the equation 

in which the influence of the longitudinal force on the bending 
is neglected and a constant bending moment Pe is assumed. 
For larger loads eq. (a) is not accurate enough and the influ- 
ence of the compressive force on bending should be considered. 
This influence depends principally on the ratio P/PC7 and the 
deflection can be obtained with very satisfactory accuracy 
from the approximate formula 

Pe1’ 1 

“=E- 
z 1-g 

l-7 

The deflections calculated from this formula are given in the 
third line of Table 2, p. 261. Comparison of these figures with 
those of the second line of the same table shows that formula 
(b) is sufficiently accurate almost up to the critical value of the 
load. 

A similar approximate formula for the deflection of a strut 
with hinged ends is 6 

PeJ2 1 
6=---. 

8EI, 
1-g 

CT 

6 This approximate solution was given by Thomas Young in his famous 
book, A Course of Lectures on Natural Philosophy and the Mechanical Arts, 
London, 1807. 
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The first factor on the right side is the deflection produced 
by the two couples Pe applied at the ends. The second factor 
represents the effect on the deflection of the longitudinal com- 
pressive force P. 

Eq. (c) is very useful for determining the critical load from 
an experiment with a compressed strut. If the results of such 
an experiment are represented in the form of a curve, such as 
those shown in Fig. 237, the horizontal asymptote to that curve 
must be drawn to determine P,,. This operation cannot be 
done with sufficient accuracy, especially if the unavoidable 
eccentricities are not very small and the curve does not turn 
very sharply in approaching the horizontal asymptote. A4 
more satisfactory determination of P,, is obtained by using 
eq. (c). Dividing this equation by P/PC7 we obtain % 1/ and 

6 
- . p,, = ;: 

1 

P 
1-g 

CT 

6 -. p,, - Jj = g. 
P 

-lf4--- This equation shows that if we plot the 

6 
ratio 6/P against the deflection 6 meas- 

l?T2 
T 

ured during experiment, the points will 

FIG. 239. 
fall on a straight line, Fig. 239. This 
line will cut the horizontal axis (8/P = 0) 

at the distance e7r2/8 from the origin, and the inverse slope of 
the line gives the critical load.’ 

58. Critical Stress.-Design of Columns.-Considering the 
case of a strut with hinged ends, the critical stress is obtained 
by dividing the critical load given by eq. (14.5) by the cross- 
sectional area A. In this way we find 

P,, r2E 
UC? = __ = -* A (f/W2 

(147) 

7 This method, suggested by R. V. Southwell, Proc. Roy. SOC. (London), 
,I, Vol. 135, p. 601, 1932, has proved a very useful one and is now wideI> 
t~sed in column tests. 
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It is seen that for a given material the value of the critical 
stress depends on the magnitude of the ratio I/k,, which is 
called the slenderness ratio. Tn Fig. 240 the curve ACB repre- 
sents 8 the relation between aCT and I/k, for the case of steel 
having E: = 30 X 10’ lb per sq in. It will be appreciated that 
the curve is entirely defined by the magnitude of the modulus 
of the material and is independent of its ultimate strength. 

FIG. 240. 

For large values of the slenderness ratio I/k, the critical stress 
becomes small, which indicates that a very slender strut buckles 
sidewise and loses its strength at a very smail compressive 
stress. This condition cannot be improved by taking a steel 
of higher strength, since the modulus of steel does not vary 
much with alloy and heat treatment and remains practically 
constant. The strut can be made stronger by increasing the 
moment of inertia I, and the radius of gyration k,, which can 
very often be accomplished without any increase in the cross- 
sectional area by placing the material of the strut as far as 
possible from the neutral axis. Thus tubular sections are 
more economical as columns than solid sections. As the slen- 
derness ratio diminishes the critical stress increases and the 
curve ACB approaches the vertical axis asymptotically. How- 
ever, there must be a certain limitation to the use of the Euler 
curve for shorter struts. The derivation of the expression for 
the critical load is based on the use of the differential eq. (79) 

8 This curve is sometimes called the Euler CUYOE, since it is derived from 
Euler’s formula for the critical load. 
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for the deflection curve, which equation assumes that the mate- 
rial is perfectly elastic and follows Hooke’s law (see Art. 31). 
Hence the curve ACB in Fig. 240 gives satisfactory results 
only for comparatively slender bars for which gCT remains 
within the elastic region of the material. For shorter struts, 
for which gcr as obtained from eq. (147) is higher than the 
proportional limit of the material, the Euler curve does not 
give a satisfactory result and recourse must be had to experi- 
ments with the buckling of struts compressed beyond the 
proportional limit. These experiments show that struts of 
materials such as structural steel, which have a pronounced 
yield point, lose all their stability and buckle sidewise as soon as 
the compressive stress becomes equal to the yield point stress. 
Some experimental results are shown in Fig. 241. The material 

c 
FIG. 241. 

is structural steel having a very pronounced yield point at cY.P, 
= 45,000 lb per sq in. It is seen that for struts of relativel) 
large slenderness (l/kz > 80) the experimental values of the 
critical stresses coincide satisfactorily with the Euler curve, 
while for shorter struts the critical stress remains practicall! 
independent of the slenderness ratio Z/k, and is equal to the 
yield point stress. 
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In the case of an ordinary low-carbon structural steel the 
yield point is not as pronounced as in the preceding example 
and occurs at a much lower stress. For such steel we may 
take w.~. = 34,000 lb per sq in. The proportional limit is 
also much lower, so that the Euler curve is satisfactory only 
for slenderness ratios above I/R, = 100, which corresponds to 
the compressive stress c,, = 30,000 lb per sq in. For higher 
stresses, i.e., for l/k, < 100, the material does not follow 
Hooke’s law and the Euler curve cannot be used. It is usually 
replaced in the inelastic region by the two straight lines AB 
and BC as shown in Fig. 242. The horizontal line AB corre- 

0 20 40 60 80 

FIG. 242. 

sponds to the yield point stress and the inclined line BC is 
taken for the stresses between the proportional limit and the 
yield point of the material. 

Having such a diagram as the line ABCD in Fig. 242, 
constructed for ordinary structural steel, the critical stress 
for a steel strut of any dimensions can readily be obtained. 
It is only necessary to calculate in each particular case the 
value of the slenderness ratio I/k, and take the corresponding 
ordinate from the curve. To obtain the safe stress on the 
strut the critical stress must then be divided by a proper fac- 
tor of safety. In selecting this factor it must be considered 
that as the slenderness ratio increases various imperfections, 
such as an initial crookedness of the column, are likely to in- 
crease. It appears logical therefore to introduce a variable 
factor of safety which increases with the slenderness ratio. 
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In some specifications the factor of safety increases from 1.7 
for Z/k, = 0 to 3.5 for I/k, = 100. It varies in such a way that 
the allowable stress in the inelastic range follows a parabolic 
law. For l/k$ > 100, the factor of safety is taken as constant 
at 3.5, and the allowable stresses are calculated from the 
Euler curve. In Fig. 242 curves are given which represent the 
allowable stress and the factor of safety as functions of the 
slenderness ratio for ordinary structural steel. 

In the precedin g discussion a strut with hinged ends was 
considered. This case is sometimes called the fundamental 
CLUE of buckling of struts, since it is encountered very often 
in the design of compressed members of trusses with hinged 
joints. The allowable stresses established by the diagram in 
Fig. 242 for the fundamental case can also be used in other 
cases, provided we take instead of the actual length of the 
column a reduced length, depending on the conditions at the 
ends of the column. Considering, for example, the case of a 
column with one end built in and the other end free (see p. 259) 
and also a column with both ends built in (see p. 266), the 
corresponding formulas for the critical loads can be put, re- 
spectively, in the form 

T2EI, 
pcr = (Z/)2 

and 

Comparing these formulas with formula (145) for the funda- 
mental case it can be concluded that in the design of a column 
with one end built in and the other free we must take a length 
two times larger than the actual length of the column when using 
the diagram of Fig. 242. In the case of a column with both ends 
built in the reduced length is equal to half of the actual length. 

The selection of proper cross-sectional dimensions of a 
column is usually made by trial and error. Knowing the load 
P which acts on the column, we assume certain cross-sectional 
dimensions and calculate k, and I/k, for these dimensions. 
Then the safe value of the compressive stress is obtained from 
the diagram of Fig. 242. Multiplying this value by the area 
of the assumed cross section, the safe load on the column is 
obtained. If this load is neither smaller nor considerably larger 
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than P, the assumed cross section is satisfactory. Otherwise 
the calculations must be repeated. In the case of built-up 
columns the gross cross section is used in calculating k,, since 
the rivet holes do not appreciably affect the magnitude of the 
critical load. However, in calculating the safe load on the 
column the safe stress is multiplied by the net cross-sectional 
area in order to insure against excessive stresses in the column. 

Problems 

1. A steel bar of rectangular cross section 1 X 2 in. and with 
hinged ends is compressed axially. Determine the minimum length 
at which eq. (147) for the critical stress can be applied if the limit 
of proportionality of the material is 30,000 lb per sq in. and E = 30 
x 10’ lb per sq in. Determine the magnitude of the critical stress if 
the length of the bar is 5 ft. 

Ansz~r. Minimum length = 28.9 in. The critical stress for 
I = 5 ft is 6,850 lb per sq in. 

2. Solve the preceding problem, assuming a bar with circular 
cross section 1 in. in diameter and built-in ends. 

3. Determine the critical compressive stress for a standard 6 I 12.5 
section, which is 6 ft long and has hinged ends. I, = 1.8 in4, 1, = 
21.8 in.4 and A = 3.61 sq in. Determine the safe load from the curve 
of Fig. 242. 

Answer. cscr = 28,500 lb per sq in., I/k, = 102, safe load = 
29,400 lb. 

4. Solve the preceding problem, assuming that the ends of the 
column are built in. Use Fig. 242. 

Answer. ucr = 34,000 lb per sq in., factor of safety = 2, safe 
load = 61,000 lb. 

5. Calculate by the use of Fig. 242 the safe load -- 
on a member (Fig. 243) built up of two I beams of 
the same cross section as those in Prob. 3 above. 

P 

The length of the member is 10 ft and the ends are 1% -<- 
hinged. Assume that the connecting details are so b--l 
rigid that both I beams work together as a single FIG. 243. 
bar. 

Solution. I, = 2 X 21.8 = 43.6 in.4, I, = 2[1.8 + 3.61(2)‘] = 
32.48 in.4 Therefore the larger value of the slenderness ratio is 

I 10 x 12 
k,= = 32.48 56.6, 

2 x 3.61 
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and from Fig. 242 the allowable compressive stress is 16,000 lb per 
sq in. 

Safe load = 16,000 X 2 X 3.61 = 116,000 lb. 

6. Solve the preceding problem, assuming that the ends of the 
member are built in. 

7. A column 10 ft long with hinged ends is built up of two chan- 
nels 8 in. deep having Tz = I .3 in?, Iy = 32.3 in:, A = 3.36 in.2 and 
a distance of c = 0.58 in. between the centroid and the back of the 
channel. Find the safe load on the column if the back to back distance 
between the channels is 4 in. 

8. Determine the necessary cross-sectional area of a square steel 
strut 6 ft long if the load P = 40,000 lb and the ends are hinged. 
Use Fig. 242. 

9. Solve the preceding problem, assuming that the ends of the 
strut are built in. 

59. Design of Columns on the Basis of Assumed Inaccu- 
racies.-In the preceding article the safe load on a column was 
obtained by dividing the critical load for the column by a 
proper factor of safety. The weakness of that method lies in 
a certain arbitrariness in the selection of the factor of safety 
which, as we have seen, varies with the slenderness ratio. To 
make the procedure of column design more rational, another 
method based on assumed inaccuracies has been developed.g 
0n the basis of existing experimental data we can assume 
certain values for the magnitude of the unavoidable eccen- 
tricity e in the application of the compressive force P. Then, 
by using these values in the formulas of Art. 56, we can calcu- 
late the magnitude Py.p. of the load at which the maximum 
stress in the compressed strut becomes equal to the yield point 
stress of the material. The safe load is then obtained by divid- 
ing the load Py.p. by a proper factor of safety. Thus instead 
of using the critical load, which is equivalent to the ultimate 
load, we use the load at which yielding begins as a basis for 
calculating the safe load. 

This method of column design can be simplified by the use 
of diagrams for which the calculations will now be explained. 
Taking the case of a strut with hinged ends, Fig. 235, the 

$1 See D. H. Young, Proc. Am. Sot. Civil Engrs., Dec., 1934; also H. K. 
Stephenson and K. Cloninger, Jr., Texas Eng. Exp. SM., Bull. hio. 229, 1953. 
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maximum bending moment is obtained from eq. (143) and the 
maximum compressive stress is 

--- 

urnax = 5 + $ set 
,,’ 

P I .-~- - . 
EI, 2 (4 

The first term on the right side is the direct stress and the sec- 
ond is the maximum compressive bending stress. The load at 
which yielding begins is obtained by substituting ~y.p. for urnax 
in this equation, which gives 

.- 
PY.P. PY.P. 

W.P. = - 
A ( 

l+!sec& 
P z J ) 

EA 9 (4 

in which we use the notation r = Z/A for the radius of the 
core of the cross section (see p. 254) and k, = &&? for the 
smaller principal radius of gyration. The quantity PY.P./A is 
the average compressive stress or centroidal compressive stress 
at which yielding begins. Denoting this stress by uC, we obtain 

UY.P. = UC 
( 

lfCsec& 
r I J) 

% . cc> 
From this equation, for a given value of the eccentricity ratio 
e/r, the value of ue can be obtained for any value of the slen- 
derness ratio Z/k,. The results of such calculations for a struc- 
tural steel having uy,p, = 36,000 lb per sq in. are represented 
by curves in Fig. 244. By the use of these curves the average 
compressive stress uC and the compressive load Py.p. = Au, 
at which yielding begins can readily be calculated if e/r and 
I/k, are given. Th e safe load is then obtained by dividing 
P y.p. by the factor of safety. 

We assumed in the foregoing discussion that the unavoid- 
able inaccuracies in the column could be represented by an 
eccentricity of the load. In a similar manner we can also 
consider the inaccuracies to be equivalent to an initial crooked- 
ness of the column. Denoting the maximum initial deviation 
of the axis of the column from a straight line 10 by a, curves 

10 A half wave of a sine curve is usually taken as representing the initial 
crookedness of a column. 
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similar to those shown in Fig. 244 and representing uC as a 
function of the ratio a/r and the slenderness ratio I/k, can be 
obtained. 

36 
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In practical design it is usually assumed that the initial 
deflection a is in a certain ratio to the length I of the column. 
Taking a certain magnitude for that ratio,” the magnitude 
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FIG. 245. 

of a is calculated and the value of uC is then obtained from the 
above-mentioned curves. The results obtained in this way for 

I I 
11 It is usually taken within the limits - 2 a 2 - 400 1,000 
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three different values of the ratio a/l and for uy.p. = 36,000 
lb per sq in. are shown for an I section in Fig. 24.5. For very 
short columns all three curves give uC = 36,000 lb per sq in. 
For very slender columns the values given by the curves ap- 
proach those obtained from the Euler curve. Using one of the 
curves and dividing the value uC from the curve by a proper 
factor of safety, say 2, the safe value of the average compres- 
sive stress is obtained. The advantage of this method is that 
it employs a constant factor of safety, since the increase of in- 
accuracies with the length I of the column has already been 
taken into consideration by assuming that the eccentricity is 
proportional to the span. However, the magnitude of the in- 
accuracies which should be taken remains to a certain extent 
indefinite and dependent upon existing experimental data. 

60. Empirical Formulas for Column Design-In both of 
the methods of column design developed in the last two articles 
on the basis of theoretical considerations there occur some un- 
certainties, such as a variable factor of safety in the design 
procedure illustrated by Fig. 242 or the assumed inaccuracies 
as used in making the curves in Fig. 245. These quantities 
can be properly selected only on the basis of experiments with 
actual columns. IJnder such circumstances it is natural that 
many practical engineers prefer to use directly the results of 
experiments as represented by empirical formulas. Such a 
procedure is entirely legitimate so long as the application of 
these formulas remains within the limits for which they were 
established and for which there is sufficient experimental 
information. However, as soon as it is necessary to go beyond 
those limits, the formulas must be modified to conform with 
the new conditions. In this work the theoretical considerations 
become of primary importance. 

One of the oldest empirical formulas was originated by 
Tredgold.12 It was adapted by Gordon to represent the results 
of Hodgkinson’s experiments and was given in final form by 
Rankine. The allowable average compressive stress as given 

12 Regarding the history of the formula see E. H. Salmon, Columns, 
London, 1921. See also Todhunter and Pearson, History of the Theory of 
Elasticity, Cambridge, Vol. 1, p. 105, 1886. 
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by the Gordon-Rankine formula is 

a 
uw = 

I 2’ 
l+b k 

0 2 

(4 

in which a is a stress and b is a numerical factor, both of which 
are constant for a given material. By a proper selection of 
these constants the formula can be made to agree satisfactorily 
with the results of experiments within certain limits. 

The straight-line formula, developed principally on the basis 
of experimental work by L. v. Tetmajer and formerly used by 
the American Railway Engineering Association as well as in- 
corporated in the Chicago Building Code of 1924, gives the 
working stress (lb per sq in.) in the form 

uw = 16,000 - 701/k,. @) 

This formula is to be used for 30 < I/k, < 120 for main mem- 
bers and as high as l/k, = 1.50 for secondary members. For 
values of I/k, < 30, uw = 14,000 lb per sq in. is used. 

The parabolic formula proposed by A. Ostenfeld la is also 
sometimes used. It gives for the critical compressive stress 

in which the constants a and b depend upon the mechanical 
properties of the material. For structural steel, eq. (c) is some- 
times taken in the form 

I 2 
ucr = 40,000 - 1.33 k . 

0 1 

This gives a parabola tangent to the Euler curve at l/k, = 
122.5 and makes u,, = 40,000 lb per sq in. for short columns. 
A suitable factor of safety varying from 2; to 3 should be used 

with this formula to obtain the working stress. 
The American Institute of Steel Construction (AISC) 

specifications of 1948 specify a parabolic formula for the work- 

13 2. deut. Ing., Vol. 42, 1462, VU. p. 1898. See also C. E. Fuller and W, 
A. Johnston, AppZied Mechanics, Vol. 2, p. 359, 1919. 
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ing stress in compression: 
I 2 

uw = 17,000 - 0.485 k 9 
0 z 

(4 

for I/k, < 120 and for either main or secondary members. 
For secondary members (bracing, etc.) with 120 < I/k, < 200 
the allowable compressive stress is given by a formula of the 
Gordon-Rankine type: 

18,000 
uw = 12 * w 

1+---c---- 
18,000k,2 

For main members with 120 < I/k, < 200 the allowable com- 
pressive stress is obtained by multiplying eq. (f) by the follow- 
ing fraction: 

1.6 - &. 
z 

The specifications of the American Railway Engineering 
Association (AREA) f or 1946 and the specifications of the 
American Association of State Highway Officials (AASHO) for 
1949 use a parabolic formula for compression members: 

aw = 15,000 - $(Z/kZ)2, for I/k, < 140. v> 

The building code of New York City (1947) specifies formula 
(f) for members with l/k, < 120, with a maximum value of 
15,000 lb per sq in. 

Problems 

I. A structural steel column with hinged ends has I, = 12.2 in.4 
and A = 6.61 sq in. Three lengths of column are to be considered, 
I = 5 ft, 10 ft and 13 ft 4 in. What are the safe loads on the column 
in pounds using (1) the AISC specifications, (2) the building code of 
New York City, (3) f ormula (b) and (4) the AREA specifications ? 

Answer. 
l=Sft I= loft I = 13 ft 4 in. 

(1) 106,000 87,500 68,100 
(2) 99,000 83,000 67,400 
(3) 85,400 65,000 5 1,400 
(4) 96,000 86,200 76,400 
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2. Select a WF beam section to serve as a column 2.5 ft long with 
fixed ends and carrying a load of 200,000 lb. Use the AISC specifi- 
cations. 

Solution. Taking the reduced length I = $(25) ft = 150 in., eq. 
(e) gives 

200,000 150 2 
___ = 17,000 - 0.485 k ? 

A ( > z 

assuming I/k, < 120. The minimum area may be found by taking 
CT~V = 17,000 lb per sq in. as for a short column. This gives n = 
200,000/17,000 = 11.75 sq in. FTe therefore need not try any sec- 
tion which has an area less than 11.75 sq in. 

W’e try first an 8 ‘II’F 40 section for which A = 11.76 sq in., least 
radius of gyration k, = 2.04 in. and I/k, = 73.5 which is < 120. 
The actual stress given by the left-hand side of eq. (i) is 17,000 Ib 
per sq in., while the allowable stress given by the right-hand side of 
the equation is 14,400 lb per sq in. Thus the trial section is unsafe 
and we try next an 8 WF 48 section for which A = 14.11 sq in., 
least k, = 2.08 in. and l/k, = 72.1. The actual stress is 14,180 lb 
per sq in. and the allowable stress is 14,480 lb per sq in., so the sec- 
tion chosen is satisfactory. 



CHAPTER X 

TORSION AND COMBINED BENDING AND TORSION 

61. Torsion of a Circular Shaft.-Let us consider a circular 
shaft built in at the upper end and twisted by a couple applied 
to the lower end (Fig. 246). It can be shown by measurements 

at the surface that circular cross sections of the shaft remain 
circular during twist and that their diameters and the dis- 
tances between them do not change, provided the angle of 
twist is small. 

A disc isolated as in Fig. 2463 will be in the following state 
of strain: There will be a rotation of its lower cross section with 
respect to its top cross section through an angle dp, where cp 
measures the rotation of the section mn with respect to the 
built-in end. A rectangular element abed of the lateral surface 
of the disc takes the form shown in Fig. 2466. The lengths of 
the sides remain essentially the same and only the angles at 
the corners change. The element is in a state of pure shear 
(see Art. 16) and the magnitude of the shearing strain y is 

281 
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found from the small triangle MC’: 

Since c’c is the small arc of radius d/2 corresponding to the 
difference dp in the angle of rotation of the two adjacent cross 
sections, c’c = (d/2)& and we obtain 

For a shaft twisted by a torque at the end the angle of twist is 
proportional to the length and the quantity dp/dx is constant. 
It represents the angle of twist per unit length of the shaft and 
will be called 8. Then, from (a), 

y = +ed. (148) 

The shearing stresses which act on the sides of the element 
and produce the above shear have the directions shown. The 
magnitude of each, from eq. (39), is 

r = +Ged. (149) 
Thus the state of stress of an element at the surface of the shaft 
is specified completely. 

For an element within the shaft the assumption will now be 
made that not only the circular boundaries of the cross sections 
of the shaft remain undistorted but also the cross sections 
themselves remain plane and rotate as if absolutely rigid, i.e., 
every diameter of the cross section remains straight and ro- 
tates through the same angle. Tests of circular shafts show 
that the theory developed on this assumption is in very good 
agreement with experimental results. This being the case, 
the discussion for the element abed at the surface of the shaft 
(Fig. 2466) will also hold for a similar element on the surface 
of an inner cylinder, whose radius r replaces d/2 (Fig. 246~). 
The thickness dr of the element in the radial direction is con- 
sidered as very small. Such elements are then also in pure 
shear and the shearing stress on their sides is 

T = Gre. (b) 



TORSION 283 

This states that the shearing stress varies directly as the 
distance r from the axis of the shaft. Fig. 247 pictures this 
stress distribution. The maximum stress occurs in the sur- 
face layer of the shaft. For a ductile material, plastic flow 

begins first in this outer layer. For a material which is weaker 
in shear longitudinally than transversely, e.g., a wood.en shaft 
with the fibers parallel to the axis, the first 
cracks will be produced by shearing stresses 5 
acting in the axial sections and they will ap- 

0 

pear on the surface of the shaft in the longi- m ‘c 
tudinal direction. In the case of a mate- 
rial which is weaker in tension than in shear, 

FIG. 24.7. 

e.g., a circular shaft of cast iron or a cylindrical piece of chalk, 
a crack along a helix inclined at 4.5” to the axis of the shaft 

often occurs (Fig. 248). The explanation is simple. 
We recall that the state of pure shear is equivalent 
to one of tension in one direction and equal com- 
pression in the perpendicular direction (see Fig. 45). 
&A rectangular element cut from the outer layer of a 
twisted shaft with sides at 45” to the axis will be 
submitted to the stresses shown in Fig. 248. The 

FIG. 248. 
tensile stresses shown produce the helical crack 
mentioned. 

We seek now the relationship between the applied twisting 
couple iv, and the stresses which it produces. From the equi- 
librium of the portion of the shaft between the bottom and 
the cross section mn (Fig. 246~~) we conclude that the shearing 
stresses distributed over the cross section are statically equiva- 
lent to a couple equal and opposite to the torque M,. For 
each element of area dA (Fig. 246~) the shearing force is 7dA. 
The moment of this force about the axis of the shaft is (TdA)r 
= GOr2dA, from eq. (b). The torque M, is the summation, 
taken over the entire cross-sectional area, of these moments, 
i.e., 

n n 
Mt = GWdA = GO 

J J 
PdA = GOI,, 

A A 

where l’p is the polar moment of inertia of the circular cross 
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section. For a circle of diameter d we have (see Appendix A, 
p. 420) I, = nd’/32, and therefore 

ivi!t = G%$ 

and 
ML 32 lw, 

%=Fz=z. (150) 
P 

We see that 0, the angle of twist per unit length of the shaft, 
varies directly as the applied torque and inversely as the 
modulus of shear G and the fourth power of the diameter. If 
the shaft is of length Z, the total angle of twist will be 

This equation has been checked by numerous experiments 
which prove the accuracy of the assumptions made in deriv- 
ing the theory. 

It should be noted that experiments in torsion are com- 
monly used for determining the shearing modulus of elasticity 
G for various materials. If the angle of twist produced in a 
given shaft by a given torque is measured, the magnitude of 
G can easily be obtained from eq. (151). 

Substituting B from eq. (150) into eq. (149), we obtain 
an equation for calculating the maximum shearing stress in 
torsion for a circular shaft: 

M,d 16A4, 
7 __-. max = 21, = ad3 (152) 

The maximum shear stress is proportional to the torque M, 
and inversely proportional to the cube of the diameter of the 
shaft. 

In practical applications the required diameter of a shaft 
must frequently be calculated from the horsepower H which 
it transmits. Given H, the torque is obtained in units of inch- 
pounds from the well-known equation: 

M, . zTo? = 550 x 12 x H, (153) 
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in which n denotes the number of revolutions of the shaft 
per minute. Th e q uantity 27rn/60 is the angle of rotation per 
second and the left side of eq. (153) represents the work done 
during one second by the torque M, measured in inch-pounds. 
The right side of the equation represents the work done 
(inch-pounds per second) as calculated from the horsepower H. 
Taking M, from eq. (153) and substituting into eq. (152), we 
obtain 

d (in.) = 68.5 3 J H 
-1 
n~rnttx 

Taking, for example, the working stress for shear as rw = 
9,000 lb per sq in., we have 

Problems 

1. Determine the shaft diameter d for a machine of 200 hp and 
speed n = 120 rpm, if the working stress 7~ = 3,000 lb per sq in. 

Answer. d = 5.63 in. 
2. Determine the horsepower transmitted by a shaft if d = 6 

in., n = 120 rpm, G = 12 X lo6 lb per sq in. and the angle of 
twist, as measured between two cross sections 2.5 ft apart, is & of 
a radian. 

Solution. From eq. (151), 

12 x 106 

15 x 25 x 12’ 

The power transmitted, from eq. (153), is 

H= 
ibIt. 2m 

60 x 550 x 12 

T x 64 X 12 X lo6 x 2a x 120 
= = 646 

32 X 15 x 25 x 12 x 60 x 550 X 12 
hp 

3. A shaft of diameter d = 3.5 in. makes 45 rpm. Determine 
the power transmitted if the maximum shearing stress is 4,500 lb 
per sq in. 
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4. A steel wire (G = 12 X lo6 lb per sq in.) is to have propor- 
tions such that the maximum shearing stress is 13,500 lb per sq in. 
for an angle of twist of 90”. Determine the ratio I/d. 

Answer. I/d = 698. 
5. A steel shaft with built-in ends (Fig. 249) is submitted to the 

action of a torque Mt applied at an intermediate cross section mn. 
Determine the angle of twist if the working stress 7~ is known. 

FIG. 249. FIG. 250. 

Sohtion. For both parts of the shaft the angles of twist are 
equal. Therefore, from eq. (ISl), the twisting moments are inversely 
proportional to the lengths of these parts. If a > b, the greater 
twisting moment is in the right-hand part of the shaft and its magni- 
tude is &‘,.a/(~ + d). Substituting this for the torque, and 7~ for 
~max in eq. (152), the following equation for d is obtained: 

d= JKk. 

The angle of twist can now be obtained by using eq. (151). 
6. 500 hp is transmitted from pulley I, 200 hp to pulley II and 

300 hp to pulley III (Fig. 250). Find the ratio of the diameters dl 
and d2 to give the same maximum stress in both parts of the shaft. 
Find the ratio of the angles of twist for these two parts. 

Solution. The torques in the two parts of the shaft are in the 
ratio 5:3. In order to have the same maximum stress from eq. 
(1.52), we have 

The angles of twist, from eqs. (151) and (152), will be in the ratio 

7. Assuming that the shaft of the preceding problem has a 
constant diameter and turns at 200 rpm, find the magnitude of 
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the diameter if 7~ = 6,000 lb per sq in. Find the angle of twist for 
each portion of the shaft if G = 12 X lo6 lb per sq in. and Ii = 12 
= 4 ft. 

8. Determine the length of a steel shaft of 2 in. diameter (G = 
12 X 10” lb per sq in.) if the maximum stress is equal to 13,500 lb 
per sq in. when the angle of twist is 6”. 

Answer. I = 93 in. 
9. Determine the diameter at which the angle of twist of the 

shaft, and not the maximum stress, is the controlling factor in de- 
sign, if G = 12 X 10’ lb per sq in., 
maximum allowable twist is $” per 

TW = 3,000 lb per sq in. and the 
yd. 

Solution. Eliminating Mi from the equations 

16Mt 
~ = 3,000 
ad3 

and 
32Mt ?r 

- = 
G.?rd4 180 x 4 x 36’ 

we obtain d = 4.12 in., so that for d < 4.12 in. the angle of twist is 
the controlling factor in design. 

10. Determine the torque in each / , 
portion of a shaft with built-in ends 
which is twisted by the moments Mt’ 
and Mt” applied at two intermediate 
sections (Fig. 251). 

1-4 

Solution. Determining the torques FIG. 251. 
produced in each portion of the shaft 
by each of the moments AS’,’ and hit” (see Prob. 5 above) and adding 
these moments for each portion, we obtain 

M,‘(b + c) + Mt”C Mt’a - Mtfrc Mt’a + M,“(u + 6) 

1 1 ’ I . 

11. Determine the diameters and the angles of twist for the 
shaft of Prob. 6 if n = 120 rpm, rmax = 3,000 lb per sq in., (1 = 
6 ft, 1s = 4 ft. 

62. Torsion of a Hollow Shaft.-From the previous discus- 
sion of torsion of a solid shaft, it is seen (see Fig. 247) that 
only the material at the outer surface of the shaft will be 
stressed to the limit assigned as the working stress. The 
material within will work at a lower stress. Hence in cases 
in which reduction in weight is of great importance, e.g., pro- 
peller shafts of airplanes, it is advisable to use hollow shafts. 

In discussing the torsion of hollow shafts the same assump- 
tions are made as in the case of solid shafts. The general 
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expression for shearing stresses will then be the same as given 
by eq. (6) of the preceding article. In calculating the moment 
of the shearing stresses, however, the radius r varies from the 
radius of the inner hole, which we will denote by id,, to the 
outer radius of the shaft which, as before, will be id. Then 
eq. (c) of the previous article must be replaced by the following 
equation: 

S 
m 

Ge r2dA 
ml 

= A4, = Gel,, 

where 1, = (r/32)(d4 - d14) is the polar moment of inertia of 
the ring section. Then 

O= 
32iMt Mt 

r(d4 - d14)G = cr, (15% 

and the angle of twist will be 

.=e/=g. 
P 

(156) 

Substituting eq. (155) in eq. (149), we obtain 

(157) 

From eqs. (156) and (157) we see that by taking, for example, 
dl = +d the angle of twist and the maximum stress, as com- 
pared with the same quantities for a solid shaft of diameter d, 
will increase about 6 per cent while the reduction in the weight 
of the shaft will be 25 per cent. 

Problems 

1. A hollow cylindrical steel shaft, 10 in. outside diameter and 
6 in. inside diameter, turns at 1,000 rpm. What horsepower is 
being transmitted if 7,nX = 8,000 lb per sq in.? 

Answer. H = 21,700 hp. 
2. Find the maximum torque that may be applied to a hollow 

circular shaft if d = 6 in., dl = 4 in. and 7~ = 8,000 lb per sq in. 
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3. A hollow propeller shaft of a ship transmits 8,000 hp at 100 
rpm with a working stress of 4,500 lb per sq in. If d/d1 = 2, find d. 

Solution. 

lvft = 
8,000 x 12 x 33,000 

2nXlOO . 
Eq. (157) becomes 

‘Tmax = -  .  -9 

15 ad3 
from which 

16 
/I= 3 I x 16 x 

8,000 
x 12 x 

33,000 = 18.2 in. 
- ~ v 15 x 2a x 100 x ?r x 4,500 

Then dl = 9.1 in. 
63. Shaft of Rectangular Cross Section.-The 

problem of the twist of a shaft of rectangular cross 
section is complicated, due to the warping of the 
cross section during twist. This warping can be 
shown experimentally with a rectangular bar of 
rubber on whose faces a system of small squares 
has been traced. It is seen from the photograph r 
(Fig. 252) that during twist the lines originally 
perpendicular to the axis of the bar become 
curved. This indicates that the distortion of 
the small squares, mentioned above, varies along 
the sides of this cross section, reaching a maxi- 
mum value at the middle and becoming zero at 
the corners. We therefore expect that the shear- 
ing stress varies as this distortion, namely, it is 
maximum at the middle of the sides and zero at 
the corners of the cross section. Rigorous inves- 
tigation of the problem ” indicates that the max- 

FIG. 252. 

imum shearing stress occurs at the middle of the longer sides of the 
rectangular cross section and is given by the equation 

in which b is the longer and c the shorter side of the rectangular cross 
section and (Y is a numerical factor depending upon the ratio b/c. 

l The photograph is taken from C. Bach, Elastic&t und Festigkeit, 6th 
Ed., p. 313, 1911. 

*The complete solution is due to St.-Venant, Mt!m. .rn~. &r~/gers, Vol. 
14, 1855. An account of this work will be found in Todhunter and Pearson’s 
Hidory of the Theory of Elasticity, Cambridge, Vol. 2, p. 312, 1893. 
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Several values of CY are given in Table 3 below. The magnitude of 
the maximum stress can be calculated with satisfactory accuracy 
from the following approximate equation: 

TABLE 3: DATA FOR THE TWIST OF A SHAFT OF RECTANGULAR CROSS SECTION 

6 
- = 1.00 1.50 
t 

1.75 2.00 2.50 3.00 4.00 6 8 

a = 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.299 0.307 
(3 = 0.141 0.196 0.214 0.229 0.249 0.263 0.281 0.299 0.307 

10 m 

0.313 0.333 
0.313 0.333 

The angle of twist per unit length in the case of a rectangular 
cross section is given by the equation: 

Mt e=-. 
/3bc3G 

uw 
The values of the numerical factor p are given in the third line of 
Table 3. 

In all cases considered the angle of twist per unit length 
is proportional to the torque and can be represented by the 
equation 

B=$, (a> 

where C is a constant called the torsional rigidity of the shaft. 
In the case of a circular shaft (eq. HO), C = G1,. 
For a rectangular shaft (eq. 159), C = pbc3G. 
64. Helical Spring.-Close Coiled.-Assume that a helical 

spring of circular cross section is submitted to the action of 
axial forces P (Fig. 253), and that any one coil lies nearly in 
a plane perpendicular to the axis of the helix. Considering 
the equilibrium of the upper portion of the spring bounded 
by an axial section such as mn (Fig. 2536), it can be concluded 
from the equations of statics that the stresses over the cross 
section mn of the coil reduce to a shearing force P through 
the center of the cross section and a couple acting in a counter- 
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clockwise direction in the plane of the cross section of magni- 
tude PR, where R is the radius of the cylindrical surface con- 
taining the center line of the spring. The couple PR twists 
the coil and causes a maximum shearing stress which, from eq. 
(152), is 

16PR 
T1=-’ 

nd3 
(4 

where d is the diameter of the cross section mn of the coil. 
Upon this stress due to twist must be superposed the stress due 

FIG. 253. 

to the shearing force P. For a rough approximation this 
shearing force is assumed to be uniformly distributed over the 
cross section. The corresponding shearing stress will then be 

4P 
72=-’ nd2 (4 

At the point m (Fig. 2533) the directions of 71 and r2 coincide 
so that the maximum shearing stress occurs here and has the 
magnitude 16PR 

71nax = 71 + 72 = __ 
.rrd3 (160) 

It can be seen that the second term in the parentheses, which 
represents the effect of the shearing force, increases with the 
ratio d/R. It becomes of practical importance in heavy heli- 
cal springs, such as are used on railway cars. Points such as 
m on the inner side of a coil are in a more unfavorable condi- 
tion than points such as 72. Experience with heavy springs 
shows that cracks usually start on the inner side of the coil. 
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There is another reason to expect higher stresses at the 
inner side of the coil. In calculating the stresses due to twist 
we used eq. (a), which was derived for cylindrical shafts. In 
reality each element of the spring will be in the condition 

shown in Fig. 254. It is seen that if the 

& 

C cross section bj rotates with respect to 
PR 
f ac, due to twist, the displacement of the 

point b with respect to a will be the same 
as that of the point f with respect to c. 

FIG. 254. Due to the fact that the distance ab is 
smaller than the distance cf, the shearing strain at the inner 
side ab will be larger than that at the outer side cf, and there- 
fore the shearing stresses produced by the couple PR will be 
larger at b than at f. Taking this into consideration, together 
with the effect of the shearing force,3 we have to replace eq. 
(160) by the foll owing equation for calculating the maximum 
shearing stress: 

16PR 4m-I 

( 

0.615 
7 *ax = ~- 

4m-4YT’ > 
(161) 

rd3 
in which 

2R 
m = -. 

d 

It can be seen that the correction factor in the parentheses 
increases with a decrease of m. E.g., in case m = 4 this factor 
is about 1.40 and if m = 10 it is equal to 1.14. 

In calculating the deflection of the spring usually only the 
effect of twist of the coils is taken into consideration. For the 
angle of twist of an element between the two adjacent cross 
sections mn and m’n’ (Fig. 253c), using eq. (1.51) in which 
Rdcx is used instead of I, we obtain 

dp = 
PR. RdLv 

GIp * 

3 Such investigations were made by V. Roever, 2. Yer. deut. Ing., Vol. 
57, p. 1906, 1913; also by A. M. Wahl, Trans. A. S. M. E., 1928. The latter 
also determined the stresses experimentally by making measurements at 
the surface of the coil. A complete study of various kinds of springs is given 
by Wahl, lot. cit., p. 212. 
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Due to this twist the lower portion of the spring rotates with 
respect to the center of mn (Fig. 253a), and the point of appli- 
cation B of the force P describes the small arc BB’ equal to 
adq. The vertical component of this displacement is 

PR3da B’B” = BB’ !? = R& = --. 
a GA 

The complete deflection of the spring is obtained by summa- 
tion of the deflections B’B” due to each element mnm’n’, along 
the length of the spring. Then 

s 

2an pR3 64nPR3 
6= -da=-----, 

0 GIP Gd4 (16% 

in which n denotes the number of coils. 
For a spring of other than circular cross section, the method 

given above can be used to calculate stresses and deflections 
if, instead of eqs. (151) and (1.52), we take the corresponding 
equations for this shape of cross section. For example, in the 
case of a rectangular cross section eqs. (1.58) and (1.59) should 
be used. 

Problems 

1. Determine the maximum stress and the extension of the 
helical spring (Fig. 253) if P = 250 lb, R = 4 in., d = 0.8 in., the 
number of coils is 20 and G = 12 X 10” lb per sq in. 

Answer. 7max = 11,300 lb per sq in., 6 = 4.17 in. 
2. Solve the previous problem, assuming that the coil has a 

square cross section 0.8 in. on a side. 
Solution. Assuming that the correction factor for the shearing 

force and the curvature of the coils (see eq. 161) in this case is the 
same as for a circular cross section, we obtain from eq. (158) 

PR 250 x 4 x 1.14 
~max = = 

0.208 x LJ3 
1.14 

0.208 x OA3 
= 10,700 lb per sq in. 

In calculating the extension, 0.141d4 (see eq. 159) instead of d4/32 
must be used in eq. (162). Then 

4.177r 
6= = 2.90 in. 

32 x 0.141 
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FIG. 255. 

STRENGTH OF MATERIALS 

3. Compare the weights of two helical springs, 
one of circular and the other of square cross section, 
designed for the conditions stated in Prob. 1 and 
having the same maximum stress. Take the cor- 
rection factor in both cases as 1.14. Compare the 
deflections of these two springs. 

Solution. The length of the side of the square 
cross section is found from the equation 7rd”/l6 = 
0.2086”, from which b = 40.944.d = 0.981d. The 
weights of the springs are in the same ratio as the 
cross-sectional areas, i.e., in the ratio 

$ : (0.981d)2 = 0.816. 

The deflections of the two springs are in the ratio 

0.141b4 : 
rd4 
__ = 0.141 X 0.926 : 2 = 1.33. 
32 

4. How will the load P be distributed between the two ends of 
the helical spring shown in Fig. 255 if the number of coils above the 
point of application of the load is 6 and below this point is 5? 

Answer. RI :R2 = 5~6. 
5. Two helical springs of the same material and of equal circular 

cross sections and lengths, assembled as shown in Fig. 256, are com- 
pressed between two parallel planes. Determine the maximum stress 
in each spring if d = 0.5 and P = 100 lb. 

Solution. From eq. (162) it follows that the load P is distributed 
between the two springs in inverse proportion to the cubes of the 
radii of the coils, i.e., the forces compressing the outer and the inner 
springs will be in the ratio 27:64. The maximum stresses in these 
springs are then (from eq. 161) 2,860 lb per sq in. and 
5,380 lb per sq in., respectively. 

6. What will be the limiting load for the spring of 
Prob. 1 if the working stress is 7~ = 20,000 lb per sq in.? 
What will be the deflection of the spring at this limiting 
load ? 

Answer. 442 lb, 6 = 7.38 in. 
7. A conical spring (Fig. 257) is submitted to the ac- 

tion of axial forces P. Determine the safe magnitude of 
P for a working stress 7~ = 45,000 lb per sq in.; diam- 
eter of the cross section d = 1 in.; radius of the cone at 
the top of the spring RI = 2 in. and at the bottom, Rz = 8 

FIG. 256. 

in. Determine the extension of the spring if the number of coils 
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is n, and the horizontal projection of the center line of the spring 
is a spiral given by the equation 

R = R 
1 

t (R2 - Rib _____. _ 
2an 

Solution. For any point A on the 
centerline of the spring, determined by the 
magnitude of the angle cy, the distance 
from the axis of the spring is 

R = R1 + CR2 - Rib 
2an 

and the corresponding torque is 

R1 + (R2 - R1)a 
2702 1 

The maximum torque, at (Y = 2~77, is 
P.R2. The safe limit for P, from eq. 
(161), will be 

45,000 x a 
p=- 

16 x 8 X 1.09 
= 1,010 lb. 

FIG. 257. 

The deflection of the spring will be obtained from eq. (c) (see p. 293) 
as follows: 

32P 2an 
SE-- 

s L ?rd4G o 

R 
1 

+ CR2 - Rib 1 3da 

2m 

16Pn 
= 24~ (R12 + RP.~>(RI + R,). 

8. Determine the necessary cross-sectional area of the coils of a 
conical spring, designed for the same conditions as in the previous 
problem but of square cross section. Take 1.09 as the correction 
factor (see previous problem). 

Answer. b2 = 0.960 sq in. 

65. Combined Bending and Torsion of Circular Shafts.- 
In the previous discussion of torsion (see p. 281) it was assumed 
that the circular shaft was in simple torsion. In practical 
applications we often have cases where torque and bending 
moment are acting simultaneously. The forces transmitted to 
a shaft by a pulley, a gear or a flywheel can usually be reduced 
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to a torque and a bending force. A simple case of this kind is 
shown in Fig. 258. A circular shaft is built in at one end and 

FIG. 258. 

loaded at the other by a vertical force P at a distance R from 
the axis. This case reduces to one of loading by a torque 
M, = PR and by a transverse force P at the free end.4 The 
torque is constant along the axis and the bending moment due 
to P, at any cross section, is 

iL!l = -P(Z - x). (a> 

In discussing the maximum stress produced in the shaft it 
is necessary to consider (1) shearing stresses due to the torque 
M,, (2) normal stresses due to the bending moment (a) and 
(3) shearing stresses due to the shearing force P. The maxi- 
mum torsional stress occurs at the circumference of the shaft 
and has the value 

16A4, 
rmax 

rd3 

The maximum normal stress uz due to bending occurs in the 
fibers most remote from the neutral axis at the built-in end, 
where the bending moment is numerically a maximum, and it 

4 The weights of the shaft and of the pulley are neglected in this problem. 
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The stress due to the shearing force is usually of only secondary 
importance. Its maximum value occurs at the neutral axis 
where the normal stress due to bending is zero. Hence the 
maximum combined stress usually occurs at the point where 
stresses (1) and (2) are a maximum; in this case at the top and 
bottom surfaces at the built-in end. 

Fig. 2.586 is a top view of the portion of the shaft at the 
built-in end, showing an element and the stresses acting on it. 
The principal stresses on this element are found from eqs. (72) 
and (73) (p. 126): 

urnax = y + ; d&2 + 472, 

or, using eqs. (b) and (c), 

In the same manner, using eq. (73), 

(Tmin = 2’iz (M - z/M2$- Mt2) 

-~__ 
= 3 (M - dM2 + Mt2)* 

(163) 

(163’) 

It should be noted that umilx would have the same value for a 
case of simple bending in which the equivalent bending moment 
is 

~equivalent = +(M + dM2 + Mt2) * 

The maximum shearing stress at the same element (Fig. 
2583), from eq. (34) (p. Sl), is 

urnax - urnin 
7max = 

2 
= $ dM2 + Mt2. (164) 

For ductile metals such as are used in shafts it is now common 
practice to use the maximum shearing stress to determine the 
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safe diameter of the shaft. Denoting the working stress in 
shear by TW, and substituting it into eq. (164) for T,,,, the di- 
ameter must be 

16 
d = 3 - dM2 -j- Mt2. 

i TTW 
(165) 

The above discussion can also be used in the case of a 
hollow shaft of outer diameter d and inner diameter dl. Then 

Z= 
r(d4 - d14) = $[I - (fy], 

32d 

and setting dl/d = n, eqs. (163) and (163’) for a hollow shaft 
become 

cmax = ,.,;” n4> CM + fi2 + Mt2>, (166) 

~-___ 

urnin = ,dJ(:6 n4> CM - 6” + Mt2). (167) 

The maximum shearing stress is 

16 
Tmax = 

rd3(1 - n”) 
dM2 + Mt2, 

and d becomes 

U@9 

*+ Mt2. (16% 

If several parallel transverse forces act on the shaft, the total 
bending moment M and the total torque MC at each cross sec- 
tion must be used in calculating the necessary diameter at that 
point, from eq. (165) or (169). If the transverse forces acting 
on the shaft are not parallel, the bending moments due to 
them must be added vectorially to get the resultant bending 
moment 111. An example of such a calculation is discussed in 
Prob. 3 below. 

Problems 

1. A 2$-in. circular shaft carries a 30-k. diameter pulley weighing 
500 lb. (Fig. 259). Determine the maximum shearing stress at cross 
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section mn if the horizontal tensions in the upper and lower portions 
of the belt are 1,750 lb and 250 lb, respectively. 

Solution. At cross section mn, 

121, = (1,750 - 25O)lS = 22,500 in. lb, 

A4 = 61/5002 + 2,0002 = 12,370 in. lb. 

Then, from eq. (164), 

7 max = 8,370 lb per sq in. 

FIG. 259. FIG. 260. 

2. A vertical tube, shown in Fig. 260, is submitted to the action 
of a horizontal force P = 250 lb acting 3 ft from the axis of the tube. 
Determine gmilX and 71nax if the length of the tube is I = 25 ft and 
the section modulus 2 = 10 in.” 

Answer. ~rn:m = 7,530 lb per sq in., 7max = 3,780 lb per sq in. 
3. Determine the necessary diameter for a uniform shaft (Fig. 

261) carrying two equal pulleys 30 in. in diameter and weighing 500 
lb each. The horizontal forces in the 
belt for one pulley and the vertical forces 
for the other are shown in the figure. 

,50° 

T-~ = 6,000 lb per sq in. 9 +. _ 
Solution. The weakest cross sec- 

tions are mn and mlnl, which carry the 
%. -73 * w 

full torque and the highest bending mo- 
5o” ” en- . . . 

ments. The torque at both cross sec- g,, 9:. 
/ 

tionsisA4t = (1,500 - 5OO)lS = 15,000 

% 

5o” 
in. lb. The bending moment at mn is 

,500 $00 
SO0 

(1,500 + 500 + 500)6 = 15,000 in. lb. 
The bending moment at mrnr in the 
horizontal plane is FIG. 261. 

$(1,500 + 500) X 30 = 15,000 in. lb. 
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The bending moment at the same cross section in the vertical plane is 

500 x 30 2,500 X 6 X 15 

4 - 30 
= -3,750 in. lb. 

The combined bending moment at cross section mlnl is 

A4 = d1.5,0002 + 3,7502 = 15,460 in. lb. 

This is larger than the moment at cross section mn and should there- 
fore be used together with the above calculated ML in eq. (165), 
from which 

d = 2.63 in. 

4. Determine the diameter of the shaft shown in Fig. 259 if the 
working stress in shear is ~w = 6,000 lb per sq in. 

5. Determine the outer diameter of a hollow shaft if 7rv = 6,000 
lb per sq in., dl/d = g and the other dimensions and forces are as in 
Fig. 261. 

6. Solve Prob. 3 assuming that the right-hand pulley is subjected 
to the same torque as in Prob. 3, but produced by a horizontal force 
tangent to the periphery of the pulley instead of by vertical tensions 
of 1,500 lb and 500 lb in the belt. 



CHAPTER XI 

STRAIN ENERGY AND IMPACT 

66. Elastic Strain Energy in Tension.-In the discussion of 
a bar in simple tension (see Fig. l), we saw that during elon- 
gation under a gradually increasing load, work was done on 
the bar, and that this work was transformed either partially 
or completely into potential energy of strain. If the strain 
remains within the elastic limit, the work done will be com- 
pletely transformed into potential energy and can be recovered 
during a gradual unloading of the strained bar. 

If the final magnitude of the load is P and the correspond- 
ing elongation is 6, the tensile test diagram will be as shown in 
Fig. 262, in which the abscissas are 
the elongations and the ordinates are 
the corresponding loads. P, repre- d 
sents an intermediate value of the 
load and 6, the corresponding elonga- 
tion. An increment dPl in the load 
causes an increment d61 in the elonga- 6 

tion. The work done by PI during 
this elongation is PldJ1, represented 
in the figure by the shaded area. If 

FIG. 262. 

allowance is made for the increase of PI during the elongation, 
the work done will be represented by the area of the trapezoid 
abed. The total work done in the process of loading, when the 
load is increasing from 0 to P, is the summation of such ele- 
mental areas and is given by the area of the triangle OAB. 
This represents the total energy U stored up in the bar during 
loading. Then 

(170) 



302 STRENGTH OF MATERIALS 

By the use of eq. (l), we obtain the following two expressions 
for the strain energy in a prismatic bar: 

AEli 
U=7. (172) 

The first of these equations gives the strain energy as a function 
of the load P and the second gives the same energy as a func- 
tion of the elongation 6. For a bar of given dimensions and a 
given modulus of elasticity the strain energy is completely de- 
termined by the value of the force P or the value of the elon- 
gation 6. 

In practical applications the strain energy per unit volume 
w is often of importance. This is, from eqs. (171) and (172), 

u a2 
w=Al=2E’ (173) or w = y (174) 

in which u = P/A is the tensile stress and E = S/l is the unit 
elongation. 

The greatest amount of strain energy per unit volume 
which can be stored in a bar without permanent set ’ is found 
by substituting the elastic limit of the material in place of g in 
eq. (173). Steel, with an elastic limit of 30,000 lb per sq in. 
and E = 30 X lo6 lb per sq in., gives w = 15 in. lb per cu 
in.; rubber, with a modulus of elasticity E = 1.50 lb per sq in. 
and an elastic limit of 300 lb per sq in., gives w = 300 in. lb 
per cu in. It is also sometimes of interest to know the greatest 
amount of strain energy per unit weight wl which can be 
stored without producing permanent set. This quantity is 
calculated from eq. (173) by substituting the elastic limit for 
c and dividing w by the weight of one cubic inch of the material. 
Several numerical values calculated in this manner are given 
in Table 4. 

1 This quantity is sometimes called the mod&s of re~ilit~~e. 
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Material 
Specific 
Gravity 

Structural steel. 7.8 
Tool steel 7.8 
Copper. 8.5 
Oak. 1.0 
Rubber. 0.93 

TABLE 4 

E Elastic Limit 
lb per sq in. lb per sq in. 

30 x 106 30,000 15.0 53 
30 x lo6 120,000 240 850 
16 X lo6 4,000 0.5 1.6 

1.5 x 106 4,000 5.3 146 
150 300 300 8,900 

w Wl 
in. lb in. lb 

per cu in. per lb 

This indicates that the quantity of energy which can be stored 
in a given weight of rubber is about 10 times larger than for 
tool steel and about 170 times larger than for structural steel. 

Problems 

1. A prismatic steel bar 10 in. long and 4 sq in. in cross-sectional 
area is compressed by a force P = 4,000 lb. Determine the amount 
of strain energy. 

Answer. U = % in. lb. 
2. Determine the amount of strain energy in the previous prob- 

lem if the cross-sectional area is 2 sq in. instead of 4 sq in. 
Answer. U = li in. lb. 
3. Determine the amount of strain energy in a vertical uniform 

steel bar strained by its own weight if the length of the bar is 100 ft 
and its cross-sectional area 1 sq in., the weight of steel being 490 lb 
per cu ft. 

Answer. U = 0.772 in. lb. 
4. Determine the amount of strain energy in the previous prob- 

lem if in addition to its own weight the bar carries an axial load 
P = 1,000 lb applied at the end. 

Answer. U = 27.58 in. lb. 
5. Check the solution of the problem shown in Fig. 18, p. 20, for 

the case in which all bars have the same cross section and the same 
modulus by equating the strain energy of the system to the work done 
by the load P. 

Solution. If X is the force in the vertical bar, its elongation is 
XI/AE and the work done by P is iP(Xl/AE). Equating this to 
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the strain energy, we obtain 

(X cos2 ct)2I 

2AE cos a ’ 
from which 

P 
x= 

1+ 2cos30(’ 

which checks the previous solution. 
6. Check Prob. 2, p. 10, by showing that the work done by the 

load is equal to the strain energy of the two bars. 
7. A steel bar 30 in. long and of 1 sq in. cross-sectional area is 

stretched 0.02 in. Find the amount of strain energy. 
Answer. From eq. (172), 

SOIU !tion. Th e strain el nergy of the prismatic bar is 

FIG. 263. 

u = (o.02)2 x 30 x lo6 
= 200 in. ID. 

2 x 30 

8. Compare the amounts of strain 
energy in the two circular bars shown 
in Figs. 263~ and 2636, assuming a uni- 
form distribution of stresses over cross 
sections of the bars. 

P21 
UC---. 

2AE 

The strain energy of the grooved bar is 

pzq p23/ 7 P2/ (+-5+4=--. 
2AE 8AE 16 2AE 

Hence 
Ul 7 - = -. 
u 16 

For a given maximum stress the quantity of energy stored in a 
grooved bar is less than that in a bar of uniform thickness. It 
takes only a very small amount of work to bring the tensile stress 
to a dangerous limit in a bar such as shown in Fig. 263c, having a 
very narrow groove and a large outer diameter, although its di- 
ameter at the weakest place is equal to that of the cylindrical bar. 
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67. Tension Produced by Impact.-A simple arrangement 
for producing tension by impact is shown in Fig. 264. A 
weight W falls from a height h onto the flange mn 
and during the impact produces an extension of 
the vertical bar AB, which is fixed at the upper 
end. If the masses of the bar and flange are w 
small in comparison with the mass of the falling 
body, a satisfactory approximate solution is ob- 
tained by neglecting the mass of the bar and as- 
suming that there are no losses of energy during FIG. 264. 
impact. After striking the flange mn the body 
JR’ continues to move downward, causing an extension of the 
bar. Due to the resistance of the bar the velocity of the mov- 
ing body diminishes until it becomes zero. At this moment 
the elongation of the bar and the corresponding tensile stresses 
are a maximum and their magnitudes are calculated on the 
assumption that the total work done by the weight W is trans- 
formed into strain energy of the bar.2 If 6 denotes the maxi- 
mum elongation, the work done by W is W(h + S). The strain 
energy of the bar is given by eq. (172). Then the equation for 
calculating 6 is 

W(h + S) = g 62, (a> 
from which 

where 

is the static elongation of the bar by the load W and v = 42gh 
is the velocity of the falling body at the moment of striking 
the flange mn. If the height li is large in comparison with aSt, 
this reduces to approximately 

S= 
ti 

I s,tv2. 
g 

*In actual cases part of the energy will be dissipated and the actual 
elongation will always be less than that calculated on the above assumption. 
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The corresponding tensile stress in the bar is 

The expression under the radical is directly proportional to the 
kinetic energy of the falling body, to the modulus of elasticity 
of the material of the bar, and inversely proportional to the 
volume Al of the bar. Hence the stress can be diminished not 
only by an increase in the cross-sectional area but also by an 
increase in the length of the bar or by a decrease in the modu- 
lus E. This is quite different from static tension of a bar 
where the stress is independent of the length I and the modu- 
lus E. 

By substituting the working stress for u in eq. (176) we 
obtain the following equation for proportioning a bar sub- 
mitted to an axial impact: 

2E Wv2 2EWh A/ = _-. - = ---, 
WV2 2g uw2 

(177) 

i.e., for a given material the volume of the bar must be propor- 
tional to the kinetic energy of the falling body in order to keep 
the maximum stress constant. 

Let us consider now another extreme case in which h is 
equal to zero, i.e., the body W is suddenly put on the support 
mn (Fig. 264) without an initial velocity. Although in this 
case we have no kinetic energy at the beginning of extension of 
the bar, the problem is quite different from that of static load- 
ing of the bar. In the case of static tension we assume a grad- 
ual application of the load and consequently there is always 
equilibrium between the acting load and the resisting forces of 
elasticity in the bar. The question of the kinetic energy of the 
load does not enter into the problem at all under such condi- 
tions. In the case of a sudden application of the load, the elon- 
gation of the bar and the stress in the bar are zero at the be- 
ginning and the suddenly applied load begins to fall under the 
action of its own weight. During this motion the resisting 
force of the bar gradually increases until it just equals W 
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when the vertical displacement of the weight is aat. But at 
this moment the load has a certain kinetic energy, acquired 
during the displacement 6,,, hence it continues to move down- 
ward until its velocity is brought to zero by the resisting force 
in the bar. The maximum elongation for this condition is 
obtained from eq. (175) by setting 
v = 0. Then AA 

6 = 2&t, (178) 

i.e., a suddenly applied load, due to 
dynamic conditions, produces a de- 
flection which is twice as great as 
that which is obtained when the load 
is applied gradually. 

This may also be shown graphi- 
cally as in Fig. 265. The inclined 
line OA is the tensile test diagram 
for the bar shown in Fig. 264. Then 
for any elongation such as OC the 
area AOC gives the corresponding strain energy in the bar. 
The horizontal line DB is at distance W from the 6 axis and the 
area ODBC gives the work done by the load W during the 
displacement OC. When 6 is equal to ast, the work done by W 
is represented in the figure by the area of the rectangle ODA,C,. 
At the same time the energy stored in the bar is given by the 
area of the triangle OAIC1, which is only half the area of the 
above rectangle. The other half of the work done is trans- 
formed into the kinetic energy of the moving body. Due to 
its acquired velocity the body continues to move and comes to 
rest only at the distance 6 = 26,t from the origin. At this 
point the total work done by the load W, represented by the 
rectangle ODBC, equals the amount of energy stored in the 
bar and represented by the triangle OAC. 

The above discussion of impact is based on the assumption 
that the stress in the bar remains within the elastic limit. Be- 
yond this limit the problem becomes more involved because 
the elongation of the bar is no longer proportional to the 
tensile force. .Assuming that the tensile test diagram does 



308 STRENGTH OF MATERIALS 

not depend upon the speed of straining the bar,3 elongation 
beyond the elastic limit during 
impact can be determined from an 
ordinary tensile test diagram such 
as shown in Fig. 266. For any as- 
sumed maximum elongation 6 the 
corresponding area OADF gives 

0 d 
the work necessary to produce 
such an elongation; this must equal 

FIG. 266. the work W(h + S) produced by 
the weight W. When W(k + S) is 

equal or larger than the total area OABC of the tensile test 
diagram the falling body will fracture the bar. 

From this it follows that any change in the form of the bar 
which results in diminishing the total area OABC of the dia- 
gram diminishes also the resisting power of the bar to impact. 
In the grooved specimens shown in Figs. 2636 and 263c, for 
instance, the plastic flow of metal will be concentrated at the 
groove and the total elongation and the work necessary to 
produce fracture will be much smaller than in the case of the 
cylindrical bar shown in the same figure. Such grooved speci- 
mens are very weak in impact. A slight shock may produce 
fracture, although the material itself is ductile. Members 
having rivet holes or any sharp variation in cross section are 
similarly weak against impact.4 

In the previous discussion we neglected the mass of the bar 
in comparison with the mass of the falling body W. Only then 
may we assume that the total energy of the falling body is trans- 
formed into strain energy of the bar. The actual conditions of im- 
pact are more complicated and when the bar has an appreciable 
mass a part of the energy will be lost during impact. It is well 
known that when a mass W/g moving with a velocity v strikes cen- 

3 Experiments with ductile steel show that with a high velocity of strain- 
ing the yield point is higher and the amount of work necessary to produce 
fracture is greater than in a static test. See N. K. Davidenkoff, Bull. Poly- 
tech. Inst. (St. Petersburg), 1913; Welter, Z. Metallkunde, 1924; and M. J. 
Manjoine, J. Appl. Mech., Vol. 11, p. 211, 1944. 

4 See Hackstroh, Raumaterialienkunde, p. 321, 1905; and H. Zimmermann, 
Zentr. Rauoerwait., p. 265, 1899. 
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trally a stationary mass WI/g and the deformation at the point of 
contact is plastic, the final common velocity u, of the two bodies is 

In the case of the bar shown in Fig. 264 the conditions are more 
complicated. During impact the upper end A is at rest while the 
lower end I3 acquires the velocity of the moving body W. Hence, 
to calculate the final velocity v, from eq. (b) we use a reduced maa 
in place of the actual mass of the bar. Assuming that the velocity 
of the bar varies linearly along its length, it can be shown that the 
reduced mass in such a case is equal to one third of the mass of the 
bar.5 For a bar of weight 4 per unit length, eq. (6) becomes 

This is the common velocity of the load W and the lower end of the 
bar which is established at the first moment of impact. Assuming 
plastic deformation at the surface of contact between the falling 
load and the support mn (Fig. 264) so that there will be no question 
of rebounding, the corresponding kinetic energy is 

This quantity must be substituted for 

in eq. (a) in order to take into account the loss of energy at the 
first moment of impact. Then, instead of eq. (175), we obtain 

1 1 
6 = 6st + J &t2 + - &?I2 -. (179) 

g 1+* 
3W 

The method described gives satisfactory results as long as the mass 
of the bar is small in comparison with the mass of the falling body. 

6 This solution was obtained by H. COX, Trans. Cambridge Phil. Sot., p. 
73, 1849. See also Todhunter and Pearson, History of the Theory of Elastic- 
ity, Cambridge, Vol. 1, p. 895, 1886. 
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Otherwise a consideration of longitudinal vibrations of the bar be- 
comes necessary.6 The local deformation at the point of contact 
during impact has been discussed by J. E. Sears 7 and J. E. P. Wag- 
staff .* 

Problems 

1. A weight of 10 lb attached to a steel wire & in. in diameter 
(Fig. 267) f 11 f a s rom A with the acceleration g. Determine 

A 

Ii 

the stress produced in the wire when its upper end A is sud- 
denly stopped. Neglect the mass of the wire. 

h Solution. If the acceleration of the weight W is equal 
to g, there is no tensile stress in the wire. The stress after 

W stopping the wire at A is obtained from eq. (176), in which 

FIG. 267. & is neglected. Substituting v2 = 2gh and 2 = h, we 
obtain 

It may be seen that the stress does not depend upon the height h 
through which the load falls, because the kinetic energy of the body 
increases in the same proportion as the volume of the wire. 

2. A weight L&’ = 1,000 lb fall s f rom a height h = 3 ft upon a 
vertical wooden pole 20 ft long and 12 in. in diameter, fixed at the 
lower end. Determine the maximum compressive stress in the pole, 
assuming that for wood E = 1.5 X lo6 lb per sq in. and neglecting 
the mass of the pole and the quantity &. 

Answer. u = 2,000 lb per sq in. 
3. A weight ?+’ = 10,000 lb attached to the end of a steel wire 

rope (Fig. 267) moves downwards with a constant velocity v = 3 
ft per sec. What stresses are produced in the rope when its upper 
end is suddenly stopped? The free length of the rope at the moment 
of impact is I = 60 ft, its net cross-sectional area is A = 2.5 sq in. 
and E = 15 X lo6 lb per sq in. 

Solution. Neglecting the mass of the rope and assuming that 
the kinetic energy of the moving body is completely transformed 
into the potential energy of strain of the rope, the equation for de- 

6The longitudinal vibrations of a prismatic bar during impact were con- 
sidered by Navier. A more comprehensive solution was developed by St.- 
Venant; see his translation of Clebsch, Theorie der Elastic&t fester Kcrper, 
1883, note on par. 61. See also J. Boussinesq, Application des Potentiels, p. 
508, 1885; and C. Ramsauer, Ann. Physik, Vol. 30, 1909. 

7 Trans. Cambridge Phil. Sot., Vol. 21, p. 49, 1908. 
8 Proc. Roy. Sot. (London), A., Vol. 105, p. 544, 1924. 
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termining the maximum elongation 6 of the rope is 

AE62 AE6,t2 W 
__-~ 

21 21 
= 2g v2 + W(6 - &t>, (4 

in which 6,t denotes the statical elongation of the rope. Noting that 
W = AE&/l we obtain, from eq. (d), 

from which 

AE 
T (6 - 8,J2 = ff$ 

WU2/ 
6 = 6,t + 

J- 
~. 
A% 

Hence, upon sudden stopping of the motion, the tensile stress in the 
rope increases in the ratio 

For the above numerical data 

Wf 10,000 X 60 X 12 
6st = 

FE 
= = 

2.5 x 15 x lo6 
0.192 in., 

Hence 

6 3 x 12 
- = 1 + 2/386 x o.192 = 5.18. 
6 8t 

W 
u = 5.18 - = 20,700 lb per sq in. 

A 

4. Solve the previous problem if a spring which elongates 3 in. 
per l,OOO-lb load is put between the rope and the load. 

Solution. & = 0.192 + 0.5 X 10 = 5.192 in. Substituting into 
eq- (4, 

6 W 
- = 1 + 0.80 = 1.80, u = 1.80 2 = 7,200 lb per sq in. 
6 st 

Comparison with the solution of the preceding problem shows that a 
spring incorporated between the rope and the load has a great effect 
in reducing the magnitude of uIIIBX at impact. 

5. For the case shown in Fig. 264 determine the height h for 
which the maximum stress in the bar during impact is 30,000 lb per 
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sq in. Assume W = 25 lb, I = 6 ft, A = 3 sq in., E = 30 X lo6 
lb per sq in. Neglect the mass of the bar. 

Answer. h = 21.6 in. 

68. Elastic Strain Energy in Shear and Torsion.-The strain 
energy stored in an element submitted to pure shearing stress 
(Fig. 268) may be calculated by the method used in the case 
of simple tension. If the lower side ad of the element is taken 

as fixed, only the work done during strain 
b-4 

b 
‘5 c by the force P at the upper side bc need be 

I 

b 

p considered. 

‘4 ,f 

Assuming that the material 

: 2 follows Hooke’s law, the shearing strain is 
: proportional to the shearing stress and the 

0 
d diagram showing this relationship is analo- 

FIG. 268. gous to that shown in Fig. 262. The work 
done by the force P and stored in the form 

of elastic strain energy is then (see eq. 170, p. 301) 

(170’) 

Remembering that 
6 7 P 
-=Y=G=AG, 
I 

we obtain the following two equations from (170’): 

AGP 
u=-. 

21 
(181) 

We obtain two expressions for the shearing strain energy per 
unit volume by dividing these equations by the volume AL’ of 
the block: 

T2 
(182) 

-Y2G 
w = z 

w zz --) 
2 (183) 

in which 7 = P/A is the shearing stress and y = 6/l is the 
shearing strain. The amount of shear energy per unit vol- 
ume, which can be stored in the block without permanent set, 
is obtained by substituting the elastic limit for 7 in eq. (182). 

The energy stored in a twisted circular shaft is easily calcu- 
lated by use of eq. (182). If 7max is the maximum shearing 
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stress at the surface of the shaft, then 7,,,,(2r/d) is the shear- 
ing stress at a point a distance r from the axis, where d is the 
diameter of the shaft. The energy per unit volume at this 
point is, from eq. (182), 

22 27rnax r 
w = Gd2 ’ 

The energy stored in the material included between two cylin- 
drical surfaces of radii r and r + dr is 

22 27,,* 7” - -__ 2&dr, 
Gd2 

where I is the length of the shaft. Then the total energy stored 
in the shaft is 

U= 
s 

di2 2rmsx2r2 ____ 2&& = ; Td; :!F;:. 
Gd2 (184) 

0 

This shows that the total energy is only half 
what it would be if all elements of the shaft 
were stressed to the maximum shearing stress 
‘TIIIZZX. 

The energy of torsion may also be calcu- 
lated from a diagram of torsion (Fig. 269) in 
which the torque is represented by the ordi- 0 
nates and the angle of twist by the abscissas. 
Within the elastic limit, the angle of twist FIG. 269. 
is proportional to the twisting moment, as 
represented by an inclined line OA. The small area shaded in 
the figure represents the work done by the torque during an 
increment dp in the angle of twist p. The area OAB = M,cpo/2 
represents the total energy stored in the shaft during twist. 
Recalling that p = MJ/GIp, we obtain 

Mt21 lJ=- (P~GI~ 
2GI, Or 

u=-. 
21 (18% 

In the first of these two equations the energy is represented as 
a function of the torque; in the second, as a function of the 
angle of twist. 
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In the general case of any shape of cross section and a 
torque varying along the length of the shaft, the angle of 
twist between the two adjacent cross sections is given by the 
equation (see p. 290) 

zdx = $dx. 

The strain energy of the portion of the shaft between two adja- 
cent cross sections is 

and the total energy of twist is 

dx = & fMt2dx. (186) 
0 

Problems 

1. Determine the ratio between the elastic limit in shear and the 
elastic limit in tension if the amount of strain energy per cu in., 
which can be stored without permanent set, is the same in tension 
and in shear. 

Solution. From eqs. (173) and (182), 

a2 2 
- = -, 
2E 2G 

from which 

For steel 

i- G J -= -. 
CT E 

2. Determine the deflection of a helical spring (Fig. 253) by 
using the expression for the strain energy of torsion. 

Solution. Denote by P the force acting in the direction of the 
axis of the helix (Fig. 2.53), by R the radius of the coils and by n the 
number of coils. The energy of twist stored in the spring, from eq. 
(185), is 

u = (PR)‘2rRn 

2GI. ’ 
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Equating this to the work done, P6/2, we obtain 

27rnPR' 64nPR3 ($-c=, 
G& Gd4 

315 

which coincides with eq. (162). 
3. The weight of a steel helical spring is 10 lb. Determine the 

amount of energy which can be stored in this spring without produc- 
ing permanent set if the elastic limit in shear is 74,300 lb per sq in. 

Sol&on. The amount of energy per cu in., from eq. (182), is 

(74,300)2 
w= 

2 x 11.5 x lo6 
= 240 in. lb. 

The energy per lb of material (see p. 302) is 850 in. lb. Then the total 
energy of twist 9 which can be stored in the spring is 

3 X 10 X 850 = 4,250 in. lb. 

4. A solid circular shaft and a thin tube of the same material 
and the same weight are submitted to twist. In what ratio are the 
amounts of energy in shaft and tube if the maximum stresses in both 
are equal ? 

Answer. 3 : 1. 
5. A circular steel shaft with a flywheel at one end rotates at 

120 I-pm. It is suddenly stopped at the other end. Determine the 
maximum stress in the shaft during impact if the length of the shaft 
I = 5 ft, the diameter d = 2 in., the weight of the flywheel W’ = 
100 lb, its radius of gyration r = 10 in. 

Solution. Maximum stress in the shaft is produced when the 
total kinetic energy of the flywheel is transformed into strain energy 
of the twisted shaft. The kinetic energy of the flywheel is 

wr2w2 ___ = 100 x lo2 x (47r)2 = 2050in 
, 

lb . . 
% 2 x 386 

Substituting this for U in eq. (184), 

J 

16 x 11.5 x lo6 x 2,050 
Tmax = nX4X60 

= 22,400 lb per sq in. 

6. Two circular bars of the same material and the same length but 
different cross sections A and Al, are twisted by the same torque. 

9 The stress distribution is assumed to be the same as that in a twisted 
circular bar. 
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In what ratio are the amounts of strain energy stored in these two 
bars ? 

Answer. Inversely proportional to the squares of the cross- 
sectional areas. 

69. Elastic Strain Energy in Bending.-Let us begin with 
the case of pure bending. For a prismatic bar built in at one 

e 

end, bent by a couple A4 applied at the other 

p -i” 
end (Fig. 270) and acting in one of the prin- 

X. cipal planes, the angular displacement at the 

.l free end is 
Y i-w 

FIG. 270. 
p = %I,' 

(4 

This displacement is proportional to the bending moment M, 
and by using a diagram similar to that in Fig. 269 we may 
conclude from similar reasoning that the work done during 
deflection by the bending moment M, or the energy stored in 
the bar, is 

(4 

By use of eq. (a) this energy may be expressed in either of 
these forms : 

iId 

lcJ = zr 
(187) 

V2EIZ ,TJp. 
21 (188) 

L 
It is sometimes useful to have the potential energy expressed 
as a function of the maximum normal stress urnax = M,,,/Z. 
Thus, for a rectangular bar cmex = 6M/bA.’ or M = bh2u,,,,,/6, 
and eq. (187) becomes 

u = ;&T2g. (189) 

In this case the total energy is evidently only one-third as 
much as it would be if all fibers carried the stress crmnx. 

In discussing the bending of bars by transverse forces the 
strain energy of shear will be neglected for the present. The 
energy stored in an element of the beam between two adjacent 
cross sections dx apart is, from eqs. (187) and (188), 

M2dx 
dU = ___ 

2ET, Or 
dU = gddd2 

2dx 
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Here the bending moment A4 is variable with respect to x, and 

(see p. 138). The total energy stored in the beam is co-nse- 
quently 

U= S ozg (190) or 
z 

u =[ F;: ($gdx. (191) 

Take, e.g., the cantilever AB (Fig. 271~). The bending mo- 
ment at any cross section mn is M = -Px. Substitution into 
eq. (190) gives 

For a rectangular bar, umax = ’ 
6Pl/bP, and eq. (c) may be put in 
the form 

u = +q!g. (4 

r 

6 

0 

n 
Y 1 

FIG. 271. 

This shows that the quantity of energy which can be stored 
in a rectangular cantilever beam, loaded at the end, without 
producing permanent set, is one-third of that for pure bending 
of the same bar and one-ninth of that for the same bar in 
simple tension. This consideration is of importance in de- 
signing springs, which must absorb a given amount of energy 
without damage and yet have as small a weight as possible. 
The capacity of a cantilever to absorb energy may be in- 
creased by giving it a variable cross section. For example, a 
cantilever of uniform strength with a rectangular cross section 
of constant depth h (Fig. lSS), and with the same values for 
P, h and urnax, has a deflection and hence an amount of stored 
energy 50 per cent greater than for the prismatic bar. At the 
same time the bar of uniform strength has in this case half the 
weight of the prismatic bar, so that it can store three times ,as 
much energy per pound of material. 
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Returning to eq. (c) and equating the strain energy to the 
work done by the load P during deflection, we obtain 

P6 P213 -= 
2 6EI,’ 

(4 

from which the deflection at the end is 

6 = g, 
z 

which coincides with eq. (95). 

The additional deflection due to shear may also be determined 
from the potential energy of strain. For the cantilever shown in 
Fig. 271, with a rectangular cross section, the shearing stress at a 
distance y from the neutral axis is (see eq. 65, p. 118) 

P h2 - -- 
21, 4 y2 . ( > 

The energy of shear in an elemental volume Sdxdy is, therefore, from 
eq. WW, 

P2 h2 

( > 
- -- 

and 
SGI,’ 4 

y2 26dxdy, 

2 P21h2 
bdxdy = -. 

2OG1, (4 

This must be added lo to the right-hand side of eq. (d) above to obtain 
the equation for determining the total deflection: 

Consequently 

(f> 

(9) 

The second term in the parentheses represents the effect of the 
shearing stresses on the deflection of the beam. 

10 Such an addition of the energy of shear to the energy due to normal 
stresses is justified, because the shearing stresses acting on an element (Fig. 
268) do not change the lengths of the sides of the element and if normal 
forces act on these sides, they do no work during shearing strain. Hence 
shearing stresses do not change the amount of energy due to tension or com- 
pression and the two kinds of energy may be simply added together. 
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By use of the method developed in Art. 39 under the assumption 
that the element of the cross section at the centroid of the built-in 
end remains vertical (Fig. 271b), the additional slope due to shear is 

~max 3 P 
-I=-=--, 

G 2 c&G 

and the additional deflection is 

3 PI 

2 bhG 
Hence 

6= (g’) 

We see that eqs. (g) and (g’) do not coincide. The discrepancy is 
explained as follows: The derivation of Art. 39 was based on the 
assumption that the cross sections of the beam can warp freely under 
the action of shearing stresses. In such a case the built-in cross sec- 
tion will be distorted to a curved surface man (Fig. 271b) and in 
calculating the total work done on the cantilever we must consider 
not only the work done by the force P, Fig. 271a, but also the work 
done by the stresses acting on the built-in cross section, Fig. 2716. 
If this latter work is taken into account, the deflection calculated 
from the consideration of the strain energy coincides with that ob- 
tained in Art. 39 and given in eq. (g’) above. 

In the case of a simply supported beam loaded at the middle, the 
middle cross section does not warp, as can be concluded from con- 
siderations of symmetry. In such a case eq. (g), if applied to each 
half of the beam, will give a better approximation for the deflection 
than will eq. (g’). This can be seen by comparing the approximate 
eqs. (g) and (g’) with the more rigorous solution given in Art. 39. 

Problems 

1. A wooden cantilever beam, 6 ft long, of rectangular cross 
section 8 X 5 in. carries a uniform load q = 200 lb per ft. Deter- 
mine the amount of strain energy stored if E = 1.5 X 10” lb per 
sq in. 

12 
Answer. U 

q215 1,2002 x 723 x 
= __ = 

40EI, 40 x 1.5 x 106 x 5 83 
= 42 in. lb. 

x 

2. In what ratio does the amount of strain energy calculated in 
the preceding problem increase if the depth of the beam is 5 in. and 
the width 8 in.? 

Answer. The strain energy increases in the ratio 8’ : 52. 
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3. Two identical bars, one simply supported, the other with 
built-in ends, are bent by equal loads applied at the middle. In 
what ratio are the amounts of strain energy stored? 

Answer. 4 : 1. 
4. Solve the preceding problem for a uniformly distributed load of 

the same intensity q for both bars. 
5. Find the ratio of the amounts of strain energy stored in beams 

ot rectangular section equally loaded, having the same length and 
the same width of cross sections but whose depths are in the ratio 2: 1. 

Solution. For a given load the strain energy is proportional to 
the deflection and this is inversely proportional to the moment of 
inertia of the cross section. By halving the depth the deflection is 
therefore increased 8 times and the amount of strain energy increases 
in the same proportion. 

70. Deflection Produced by Impact.-The dynamic deflec- 
tion of a beam which is struck by a falling body W may be 
determined by the method used in the case of impact causing 
tension (Art. 67). Take, as an example, a simply supported 
beam struck at the middle (Fig. 272), and assume that the 
mass of the beam may be neglected in comparison with the 
mass of the falling body and that the beam is not stressed be- 
yond the yield point. Then there will be no loss of energy dur- 
ing impact and the work done by the weight W during its fall 
is completely transformed into strain energy of bending of the 
beam.” I,et 6 denote the maximum deflection of the beam 
during impact. If we assume that the deflection curve during 

FIG. 272. 

impact has the same shape as that during 
static deflection, the force which would 
cause such a deflection is, from eq. (go), 

48E1, 

p= 6e13-* (a> 

The total energy stored in the beam is equal to the work done 
by the force P: 

‘1 Local deformation at the surface of contact of the load and the beam 
is neglected in this calculation. 
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If h denotes, as before, the distance fallen before impact, the 
equation for determining 6 is 

24EI, 
W(h + S) = a2 T-’ 69 

from which 

(192) 

where 

Eq. (192) is exactly the same as that for impact causing ten- 
sion (eq. 175). 

It should be noted that the form of the equation remains 
the same for any other case of impact, provided the deflection 
at the point of impact is proportional to the force P, exerted 
at this point. If we represent by Q! the factor of proportion- 
ality which depends upon the structure, we have 

Then 

aP = 6 and 

W(h + 6) = $Y 

and since 6,t = @‘a, this reduces to eq. (192) above. 
It should be noted also that the deflection 6 calculated 

from (192) represents the upper limit which the maximum 
dynamic deflection approaches when there are no losses of 
energy during impact. Any such loss will reduce the dynamic 
deflection. When the dynamic deflection is found from eq. 
(192), the corresponding stresses can be found by multiplying 
by 6/?jSt the stresses obtained for the statical application of the 
load W. 

When h is large in comparison with aSt or if the impact is 
in the horizontal direction, eq. (192) takes the simpler form 
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For the case of a beam supported at the ends and struck at 
the middle this equation gives 

WV2 I” a= ______. 
i 2g 24E1, 

The maximum bending moment in this case is 

M 
PI 6.48EI, I 

max = -= 
4 I” 4 

and 
M nmx 6.48EI, I 

urnax 
= ~ = ~---. 

z 13 4z 

For a rectangular cross section, using eq. (d), 

(4 

WV2 18E 
u max = J --. 

2g IA 
(4 

This indicates that the maximum stress depends upon the 
kinetic energy of the falling body and the volume Al of the 
beam. 

In determining the effect of the mass of the beam on the maxi- 
mum deflection we will assume that the deflection curve during 
impact has the same shape as during static deflection. Then it can 
be shown that the reduced mass of the beam l2 supported at the ends 
is (17/35) (q//g) and the common velocity which will be established at 
the first moment of impact is 

w 
v, = 

w + (17/35)q/ v. 

The total kinetic energy after the establishment of the common ve- 
locity 0, is 

Using this instead of 
WV2 
__ = w/t? 

% 

12 See H. Cox, lot. cit., p. 309. 
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in eq. (6), we obtain 

323 

(193) 

which takes account of the effect of the mass of the beam on the 
deflection 6.13 

In the case of a cantilever, if the weight W strikes the beam at 
the end, the magnitude of the reduced mass of the beam is &$(ql/g). 
When a beam simply supported at the ends is struck at a point whose 
distances from the supports are a and b, respectively, the reduced 
mass is 

&[l.,(l +gyf. 

and eq. (193) must be changed accordingly. 

Problems 

1. A simply supported rectangular wooden beam 9 ft long is 
struck at the middle by a 40-lb weight falling from a height h = 12 
in. Determine the necessary cross-sectional area if the working 
stress is gw = 1,000 lb per sq in., E = 1.5 X lo6 lb per sq in. and 
6,t is neglected in comparison with h. 

SoLution. Using eq. (e), p. 322,r4 

Wv2 18E 18 x 1.5 
40x 12 

x 106 
A=--= = 

2g Lsw2 
9 x 12 x 1,000~ 120 sq in. 

13 Several examples of the application of this equation will be found in 
the paper by Prof. Tschetsche, 2. Yer. deut. Ing., p. 134, 1894. A more 
accurate theory of transverse impact on a beam is based on the investigation 
of its lateral vibration together with the local deformations at the point of 
impact. See St.-Venant’s translation of Clebsch’s book, p. 537, lot. cit.; also 
Compt. rend., Vol. 45, p. 204, 1857; and writer’s paper in Z. Math. u. Phys., 
Vol. 62, p. 198, 1913. Experiments with beams subjected to impact have 
been made in Switzerland and are in satisfactory agreement with the above 
approximate theory, see M. RoS, Tech. Komm. Verband. Schwseiz. Rriickenbau- 
u. Eisenhochbaufabriken, Mar. 1922. See also 2. Tuzi and M. Nisida, Phil. 
&fag. (Ser. 7), Vol. 21, p. 448; R. N. Arnold, Proc. Inst. Mech. Engrs. (London), 
Vol. 137, p. 217, 1937; and E. H. L ee, J. AppZ. Mech., Vol. 7, p. 129, 1940. 

14 Local deformation at the surface of contact of the load and the beam 
is neglected in this calculation. 
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2. In what proportion should the area in the preceding problem 
be changed if (1) the span of the beam increases from 9 to 12 ft and 
(2) the weight P increases by 50 per cent? 

Answer. (1) The area should be diminished in the ratio 3:4. 
(2) The area should be increased by 50 per cent. 

3. A weight W = 100 lb drops 12 in. upon the middle of a simply 
supported I beam, 10 ft long. Find the safe dimensions if uw = 
30 X lo3 lb per sq in. 

Solution. Neglecting ~5,~ in comparison with h (see eq. c), the 
ratio between the dynamic and the static deflections is 

6 V2 2h 

-= 
-= -. 

6 st J- R&t ,: 6 Yt 

If the deflection curve during impact is of the same shape as for static 
deflection, the maximum bending stresses will be in the same ratio 
as the deflections. Hence 

z 6EWh 
- = (TJ~, from which - = ~ -1 

c uw2 I 

in which 2 is the section modulus and c is the distance from the 
neutral axis of the most remote fiber, which is half the depth of the 
beam in this case. Substituting the numerical data, 

z 6 x 30 x IO6 X 100 x 12 
-= 

= 30,0002 x 120 
2 in.2 

C 

The necessary I beam is 6 I 12.5 (see Appendix). 
4. What stress is produced in the beam of the preceding problem 

by a 200-lb weight falling onto the middle of the beam from a height 
of 6 in.? 

Answer. umsx = 27,200 lb per sq in. 
5. A wooden cantilever beam 6 ft long and of square cross sec- 

tion 12 X 12 in. is struck at the end by a weight W = 100 lb falling 
from a height h = 12 in. Determine the maximum deflection, taking 
into account the loss in energy due to the mass of the beam. 

Solution. Neglecting 6,t in comparison with h, the equation analo- 
gous to eq. (193) becomes 
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For ql = 40 X 6 = 240 lb, 

6 = 

,I 

6,t . 
33 x 240 

1+ 

24 = Jz=O.27lin. 

140 x 100 

6. A beam simply supported at the ends is struck at the middle 
by a weight W falling down from the height h. Neglecting 6,t in 
comparison with h, find the magnitude of the ratio ql/W at which 
the effect of the mass of the beam reduces the dynamical deflection 
by 10 per cent. 

ATLWW. 4’ = 0 483 
w . . 

71. The General Expression for Strain Energy.-In the dis- 
cussion of problems in tension, compression, torsion and 
bending it has been shown that the energy of strain can be 
represented in each case by a function of the second degree in 
the external forces (eqs. 171, 180 and 187) or by a function of 
the second degree in the displacements (eqs. 172, 181 and 188). 
This is also true for the general case of deformation of an elas- 
tic body, with the following provisions: (1) the material fol- 
lows Hooke’s law and (2) the conditions are such that the 
small displacements, due to strain, do not affect the action of 
the external forces and are negligible in calculating the stresses.15 
With these two provisions the displacements of an elastic sys- 
tem are linear functions of the external loads. If these loads 
increase in a certain proportion, all the displacements increase 
in the same proportion. Consider a body submitted to the 
action of the external forces Pr, Pz, Ps, . . . (Fig. 273) and 
supported in such a manner that movement as a rigid body is 
impossible and displacements are due to elastic deformations 
only. Let 6r, Sa, Aa, . . . denote the displacements of the points 
of application of the forces, each measured in the direction of 
the corresponding force.“j If the external forces increase 

15 Such problems as the bending of bars by lateral forces with simultane- 
ous axial tension or compression do not satisfy the above condition and are 
excluded from this discussion. Regarding these exceptional cases see Art. 76. 

r6The displacements of the same points in the directions perpendicular 
to the corresponding forces are not considered in the following discussion. 
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gradually so that they are always in equilibrium with the re- 
sisting internal elastic forces, the work which they do during 

FIG. 273. 

deformation will be equal to the strain 
energy stored in the deformed body. The 
amount of this energy does not depend 
upon the order in which the forces are 
applied and is completely determined by 
their final magnitudes. Let us assume 
that all external forces Pi, PB, Pa, . . * 
increase simultaneously in the same ratio. 
Then the relation between each force and 

its corresponding displacement can be represented by a diagram 
analogous to that shown in Fig. 262, and the work done by all 
the forces P1, PZ, PB, * * 1, equal to the strain energy stored in 
the body, is 

(194) 

i.e., the total energy of strain is equal to half the sum of the 
products of each external force and its corresponding displace- 
ment.l’ On the assumptions made above, the displacements 
61, 62, 83, * * * are homogeneous linear functions of the forces 
Pl, PB, p3, * * . * The substitution of these functions into eq. 
(194) gives a general expression for the strain energy in the 
form of a homogeneous function of the second degree in the 
external forces. If the forces be represented as linear functions 
of the displacements and these functions be substituted into 
eq. (194), an expression for the strain energy in the form of a 
homogeneous function of the second degree in the displace- 
ments is obtained. 

In the above discussion the reactions at the supports were 
not taken into consideration. The work done by these reac- 
tions during the deformation is equal to zero since the dis- 
placement of an immovable support, such as A (Fig. 273), 
is zero and the displacement of a movable support, such as B, 
is perpendicular to the reaction, friction at the supports being 

1~ This conclusion was obtained first by Clapeyron; see Lam&, &cons sur 
la thiorie mathe’matique a’~ I’blasticite’, 2d Ed., p. 79, 1866. 
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neglected. Consequently, the reactions add nothing to the 
expression for the potential energy (194). 

As an example of the application of eq. (194) let us consider the 
energy stored in a cubic element submitted to uniform tension in 
three perpendicular directions (Fig. 54). If the edge of the cube is 
of unit length, the tensile forces on its faces are numerically g2, O-~ 
and uz and the corresponding elongations are ez, ey and ez. Then the 
strain energy stored in one cubic inch from eq. (194), is 

w - “:” 1 yJ ; uzez. 
2 

Substituting for the elongations the values given by Eq. (43),18 we 
obtain 

1 
w = - (uz2 + uy2 

2E 
+ uz2) - ; (uzuy + uyuz + uzuz). (195) 

This expression can also be used when some of the normal stresses 
are compressive, in which case they must be given a negative sign. 

If in addition to normal stresses there are shearing stresses acting 
on the faces of the element, the energy of shear can be added to the 
energy of tension or compression (see p. 318), and using eq. (182) the 
total energy stored in one cubic inch is 

1 
w = TE (a,2 + uy2 + 4z2) - ‘” (Guy + uyuz + uz4 

E 

+ & bzy2 + ~y2 + 7zz2). (1%) 

As a second example let us consider a beam simply supported at the 
ends, loaded at the middle by a force P and bent by a couple M 
applied at the end A. The deflection at the middle is, from eqs. (90) 
and (105), 

PI3 Ml2 
6= -++. 

48EI 16EI (a> 

The slope at the end A is, from eqs. (88) and (104), 

18 In this calculation the changes in temperature due to strain are consid- 
ered of no practical importance. For further discussion see T. Weyrauch, 
Theorie elastischer Kijrper, Leipzig, p. 163, 1884. See also 2. Architek. u. 
Ingenieurw., Vol. 54, pp. 91 and 277, 1908. 
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Then the strain energy of the beam, equal to the work done by the 
force P and by the couple M, is 

(cl 

This expression is a homogeneous function of the second degree in 
the external force and the external couple. Solving eqs. (u) and 
(d) for M and P and substituting into ccl. (c), an expression for the 
strain energy in the form of a homogeneous function of the second 
degree in the displacements may be obtained. It must be noted that 
when external couples are acting on the body the corresponding dis- 
placements are the angular displacements of the surface elements on 
which these couples are acting. 

72. The Theorem of Castigliano.-Having the expressions 
for the strain energy in various cases, a very simple method 
for calculating the displacements of points of an elastic body 
during deformation may be established. For example, in 
the case of simple tension (Fig. l), the strain energy as given 
by eq. (171) is 

P21 
TJ-. 

2AE 

By taking the derivative of this expression with respect to P, 
we obtain 

dU PI -z-E& 
dP AE 

Thus the derivative of the strain energy with respect to the 
load gives the displacement corresponding to the load, i.e., the 
displacement of the point of application of the load in the direc- 
tion of the load. In the case of a cantilever loaded at the end, 
the strain energy is (eq. C, p. 317) 

The derivative of this expression with respect to the load P 
gives the known deflection PP/3EI at the free end. 
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In the torsion of a circular shaft the strain energy is (eq. 
185) 

u = Mt21 -. 
2GI, 

The derivative of this expression with respect to the torque gives 

dU M,l 

dM, = a = ” 

which is the angle of twist of the shaft, and represents the 
displacement corresponding to the torque. 

When several loads act on an elastic body the same method 
of calculation of displacements may be used. For example, 
expression (c) of the preceding article gives the strain energy 
of a beam bent by a load P at the middle and by a couple M 
at the end. The partial derivative of this expression with re- 
spect to P gives the deflection under the load and the partial 
derivative with respect to A4 gives the angle of rotation of the 
end of the beam on which the couple M acts. 

The theorem of Castigliano is a general statement of these 
results.lg If the material of the system follows Hooke’s law 
and the conditions are such that the small displacements due 
to deformation can be neglected in discussing the action of the 
forces, the strain energy of such a system may be given by a 
homogeneous function of the second degree in the acting forces 
(see Art. 71). Then the partial derivative of strain energy with 
respect to any such force gives the displacement corresponding 
to this force (for exceptional cases see Art. 76). The terms 

force and displacement here may have their generalized mean- 
ings, i.e., they include couple and angular displacement, re- 
spectively. 

1,et us consider a general case such as shown in Fig. 273. 
Assume that the strain energy is represented as a function of 
the forces PI, Pz, Pa, . . ., so that 

u = .f(P,, pa, ps, * * ->. (4 

19 See the paper by Castigliano, “Xuova teoria intorno dell’ equilibrio dei 
sistemi elastici,” Atti ncc. sci. Torino, 1875. See also his Thkorie de I’tCquilibre 
des syst;mes &stiques, Turin, 1879. For an English translation of Castigli- 
ano’s work see E. S. Andrews, Elastic Stresses in Structures, London, 1919. 
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If a small increment LIP, is given to any external load P,, the 
strain energy will increase and its new amount will be 

au 
U+pdP,. 

aP, 
(4 

But the magnitude of the strain energy does not depend upon 
the order in which the loads are applied to the body-it de- 
pends only upon their final values. It can be assumed, for 
example, that the infinitesimal load dP, was applied first, and 
afterwards the loads PI, Pa, P3, .. . . The final amount of 
strain energy remains the same, as given by eq. (b). The load 
dP,, applied first, produces only an infinitesimal displacement, 
so that the corresponding work (equal to the product of the 
small force and the corresponding small displacement) is a 
small quantity of the second order and can be neglected. 
Applying now the loads PI, Pa, P3, . . . , it must be noticed 
that their effect will not be modified by the load dP, previously 
applied 2o and the work done by these loads will be equal to 
U (eq. a), as before. But during the application of these forces, 
however, the force dP, is given some displacement 6, in the 
direction of P, and it does the work (dP,)6,. The two expres- 
sions for the work must be equal. Therefore 

u + g (dP,) = U + (dP,)L, 
n 

(197) 

and Castigliano’s theorem is proved. 
As an application of the theorem let us consider a canti- 

lever beam carrying a load P and a couple M, at the end, 

& 

d 

Fig. 274. The bending moment at a cross 

A 
;c 

m l3 section mn is M = -Px - Mu and the 

x n strain energy, from eq. (187), is 
P I 

2 . S l M’dx 

u= 

20 This follows from the provisions made on p. 325 on the basis of which 
the strain energy was obtained as a homogeneous function of the second degree. 
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To obtain the deflection 6 at the end of the cantilever we have 
only to take the partial derivative of U with respect to P,zl 
which gives 

1 dM 
MaPdx. 

Substituting for M its expression, in terms of P and Ma, we 
obtain 

6 = &s’(Px + Ma)xdx = gI+ y!. 
0 

The same expression would have been obtained by applying 
one of the previously described methods, such as the area- 
moment method or the method of integration of the differen- 
tial eq. (79) of the elastic curve. 

To obtain the slope at the end we calculate the partial 
derivative of the strain energy with respect to the couple M,, 
which gives 

au 1 z aiv e=- 
aM, = EI 0 S 

M- 
aM, 

dx = & s’(Px + MJdx 
0 

P12 Ma1 
+ 

2EI %?-’ 

The positive signs obtained for 6 and 0 indicate that the 
deflection and rotation of the end have the same directions, 
respectively, as the force and the couple in Fig. 274. 

It should be noted that the partial derivative aM/aP is the 
rate of increase of the moment M with respect to the increase 
of the load P and can be visualized by the bending moment 
diagram for a load equal to unity, as shown in Fig. 275a. The 
partial derivative aM/aMa can be visualized in the same 
manner by the bending moment diagram in Fig. 2753. Using 
the notations 

dM aM -= 
aP MP’ and -=M’ 

aMa m> 

21 The simplest procedure is to first differentiate under the integral sign 
and then integrate, rather than to calculate first the integral and then differen- 
tiate. 
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we can represent our previous results in the following form: 

6 = L 
s 

1 1 

EI o 
MiLQdX, (jl = J- 

s El o 
ivfMm’dx. (198) 

These equations, derived for the particular case shown in Fig. 
274, also hold for the general case of a beam with any kind of 
loading and any kind of support. They can also be used in the 
case of distributed loads. 

Let us consider, for example, the case of a uniformly loaded 
and simply supported beam, Fig. 276, and calculate the de- 
flection at the middle of this beam by using the Castigliano 
theorem. In the preceding cases concentrated forces and cou- 
ples were acting, and partial derivatives with respect to these 
forces and couples gave the corresponding displacements and 

0 
FIG. 276. 

rotations. In the case of a uniform load, however, there is no 
vertical force acting at the middle of the beam which would 
correspond to the deflection at the middle which it is desired 
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to calculate. Thus we cannot proceed as in the preceding prob- 
lem. This difficulty can, however, be readily removed by 
assuming that there is a fictitious load P of infinitely small 
magnitude at the middle. Such a force evidently will not 
affect the deflection or the bending moment diagram shown 
in Fig. 2766. At the same time, the rate of increase of the bend- 
ing moment due to the increase of P, represented by the partial 
derivative aM/aP, is as represented by Figs. 276~ and 276d. 
IVith these values of A4 and aM/aP, the value of the deflec- 
tion is 

*=g+ S 
1 

t 0 
Mg;dx- 

Observing that M and aM/aP are both symmetrical with re- 
spect to the middle of the span, we obtain 

5 qz4 

384 EI, 

If it is required to calculate 
the slope at the end B of the 
beam in Fig. 276a by using the 
Castigliano theorem, we have 
only to assume an infinitely small 
couple Mb applied at B. Such a 

#}I 

couple does not change the bend- fs) 
ing moment diagram in Fig. FIG. 277. 

2766. The partial derivative 
aM,/aMb is then represented in Figs. 277a and 2776. The re- 
quired rotation of the end B of the beam is 

qJ3 =-. 
24EI, 
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We see that the results obtained by the use of Castigliano’s 
theorem coincide with those previously obtained (p. 141). 

Problems 

P 1. Determine by the use of 
c B Castigliano’s theorem the de- 

-i 
election and the slope at the 
end of a uniformly loaded can- 

FIG. 278. tilever beam. 
2. Determine the deflec- 

tion at the end B of the overhang of the beam shown in Fig. 278. 
3. What horizontal displacement of the support B of the frame 

shown in Fig. 279 is produced by the horizontal force H? 
2 Hh3 Hi?/ 

Answer. 
““=3F+-* EI 

4. Determine the in&ease in the distance AB produced by forces 
H (Fig. 280) if the bars AC and BC are of the same dimensions and 

only the bending of the bars need be taken into account. It is as- 
sumed that 01 is not small, so that the effect of deflections on the 
magnitude of the bending moment can be neglected. 

2 HI” sin’ CY 

Answer* 6 = 3 EI . 
5. Determine the deflection at 

a distance a from the left end of 
the uniformly loaded beam shown 
in Fig. 276a. 

Solution. Applying an infi- 
nitely small load P at a distance 
a from the left end, the partial 

m 

derivative dM/dP is as visual- 
W 

FIG. 281. 
ized in Figs. 281a and 2816. Us- 
ing for M the parabolic diagram in Fig. 2766, the desired deflection is 
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au 1 
6=P=E S 0 

zM~dx=~~a(!p)~dx 

a(1 - x) 
dx 

1 

= g1 (2 + b2 + 34. 

Substituting x for a and 1 - x for b, this result can be brought into 
agreement with the equation for the deflection curve previously ob- 
tained (p. 141). 

73. Deflection of Trusses.-The Castigliano theorem is es- 
pecially useful in the calculation of deflections in trusses. As 
an example let us consider the case shown in Fig. 282. All 

?=8R $8k f=4k (al 

FIG. 282. 

members of the system are numbered and their lengths and 
cross-sectional areas given in Table 5. The force Si produced 
in any bar i of the system by the loads PI, P2, Pa may be cal- 
culated from simple equations of statics. These forces are 
given in column 4 of Table 5. The strain energy of any bar i, 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

= 

- 
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TABLE 5: DATA FOR THE TRUSS IN FIG. 282 

2 3 4 5 

l i 
in. 

Ai 
in.’ 

Si 
kips 22 

Si 

250 6 -13.75 -0.625 
150 3 8.25 0.375 
200 2 8.00 0 
150 3 8.25 0.375 
250 2 3.75 0.625 
300 4 -10.50 -0.750 
250 2 6.25 0.625 
150 3 6.75 0.375 
200 2 4.00 0 
250 6 -11.2s -0.625 
150 3 6.75 0.375 

rzzz 

- 

- 

- -  

6 

SiS(l; 

Ai 

358 
155 

0 
155 
293 

59 
488 
127 

0 
293 
127 

= 

_- 

- 

7 

Sil’ 

0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 

:jJ S,:li _ 2,055 kips per in. 

from eq. (171), is Si21i/2AiE. The amount of strain energy in 
the whole system is then 

i=m Si21i 
U=C-, 

i=l2AiE 
099) 

in which the summation is extended over all the members of 
the system, which in our case is m = 11. The forces S’i are 
functions of the loads P, and the deflection 6, under any load 
P, is therefore, from eq. (197), 

The derivative dSi/dP, is the rate of increase of the force 5’; 
with increase of the load P,. Numerically it is equal to the 
force produced in the bar i by a unit load applied in the posi- 

22 One kip (or kilo-pound) = 1,000 pounds. 
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tion of P,, and we will use this fact in finding the above deriv- 
ative. These derivatives will hereafter be denoted by Si’. 
The equation for calculating the deflections then becomes 

(201) 

Consider for instance the deflection A2 corresponding to P, at A 
in Fig. 282a. Th e magnitudes Si’ tabulated in column 5 above 
are obtained by simple statics from the loading conditions 
shown in Fig. 2826, in which all actual loads are removed and 
a vertical load of one kip is applied at the hinge A. The values 
tabulated in column 6 are calculated from those entered in 
columns 2 through 5. Summation and division by the modu- 
lus E = 30 X 10” kips per sq in. give the deflection at A, eq. 

(201), 

82 = 
2,055 

30 x 103 
= 0.0685 in. 

The above discussion was concerned with the computation 
of displacements 6r, 82, . . . corresponding to the given external 
forces PI, Pz, . * . . In investigating the deformation of an 
elastic system, it may be necessary to calculate the displace- 
ment of a point at which there is no load at all, or the displace- 
ment of a loaded point in a direction different from that of 
the load. The method of Castigliano may also be used here. 
We merely apply at that point an additional infinitely small 
imaginary load Q in the direction in which the displacement is 
wanted, and calculate the derivative aU/dQ. In this deriva- 
tive the added load Q is put equal to zero and the desired dis- 
placement obtained. For example, in the truss shown in 
Fig. 282a, let us calculate the horizontal displacement of the 
point A. A horizontal force & is applied at this point and the 
corresponding horizontal displacement is 

6h= dU 
( ) aQ &=O 

=%I%. a$, (a> 

in which the summation is extended over all the members of 
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the system. The forces Si in eq. (a) have the same meaning 
as before, because the added load Q is zero, and the derivatives 
&5’,/6’Q = Si” are obtained as the forces in the bars of the 
truss produced by the loading shown in Fig. 282~. These 
values are tabulated in column 7. Substituting these forces 
into eq. (n), we find that the horizontal displacement of A is 
equal to the sum of the elongations of the bars 2 and 4, namely, 

6,, 
1 S2l2 

XE 2 
( $414 150 

-i-fA- =--- (8.25 + 
4 > 3 x 30 x lo3 

= 0.0275 in. 

FIG. 283. 

In investigating the deformation of trusses 
it is sometimes necessary to know the change 
in distance between two points of the system. 
This can also be obtained by the Castigliano 
method. Let us determine, for instance, what 
decrease 6 in the distance between the joints 
A and B (Fig. 283a) is produced by the loads 
PI, p2, p3. At these joints two equal and 
opposite imaginary forces Q are applied, as in- 
dicated in the figure. It follows from the 
Castigliano theorem that the partial derivative 
(au/aQ)u=o g ives the shortening of the dis- 

tance AB produced by the loads PI, Pa, P3. Using eq. (197), 
this displacement is 23 

8.25) 

(202) 

in which Si are the forces produced in the bars of the system 
by the actual loads PI, Pz, P,; the quantities Si’ are to be 
determined from the loading shown in Fig. 2838, in which all 
actual loads are removed and two opposite unit forces are 
applied at A and B; and m is the number of members. 

23 This problem was first solved by J. C. Maxwell, “On the Calculation 
of the Equilibrium and Stiffness of Frames,” Phil. Mug., Vol. 27, p. 294, 
186-I; or Scierrtijc Papers, Cambridge, 1’01. 1, p, 508, 1890. 
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Problems 

1. A system consisting of two prismatic bars of equal length and 
equal cross section (Fig. 284) carries a vertical load P. Determine 
the vertical displacement of the hinge A. 

Solution. The tensile force in the bar AB 
and compressive force in the bar AC are equal 
to P. Hence the strain energy of the system 
is 

P21 
l-l= 2----. 

2AE 

The vertical displacement of A is 

dU 2PI 

‘8 

60 

2 A 

>- 

’ 60’ P 

C 

FIG. 284. 

-* 9 

2. Determine the horizontal displacement of the hinge A in the 
previous problem. 

Solution. Apply a horizontal imaginary load Q as shown in 
Fig. 284 by the dotted line. The potential energy of the system is 

u = (P + Qbb2/ + (P - Q/fi)"l 
2AE 2AE 

The derivative of this expression with respect to Q for Q = 0 gives 
the horizontal displacement 

FIG. 285. 

3. Determine the angular displacement of 
the bar AB produced by the load P in Fig. 
285. 

Solution. An imaginary couple A4 is ap- 
plied to the system as shown in the figure by 
dotted lines. The displacement corresponding 
to this couple is the angular displacement cp of 
the bar AB due to the load P. The forces in 
the bars are P + M/d31 in the bar AB and 
-P - 2IKf/d31 in the bar AC. The strain 
energy is 
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lTps.-+ 

4. Determine the vertical displace- 
ment of the point A and horizontal 
displacement of the point C of the 
steel truss shown in Fig. 286 if P = 

/6’ 
2,000 lb and the cross-sectional areas 
of the bars which act in compression 

FIG. 286. are 5 sq in. and of the other bars 2 sq in. 

74. Application of Castigliano Theorem in Solution of Stat- 
ically Indeterminate Problems.-The Castigliano theorem is 
also very useful in the solution of statically indeterminate 
problems. Let us begin with problems in which the reactions 
at the supports are considered as the statically indeterminate 
quantities. Denoting by X, Y, Z, . . . the statically inde- 
terminate reactive forces, the strain energy of the system can 
be represented as a function of these forces. For the immov- 
able supports and for the supports whose motion is perpendicu- 
lar to the direction of the reactions the partial derivatives of 
the strain energy with respect to the unknown reactive forces 
must be equal to zero by the Castigliano theorem. Hence 

au 0, ;; = 0, au 
z = az 

-=o, **.. (203) 

In this manner we obtain as many equations as there are 
statically indeterminate reactions. 

It can be shown that eqs. (203) represent the conditions 
for a minimum of the function U, from which it follows that 
the magnitudes of the statically indeterminate reactive forces 
are such as to make the strain energy of the system a minimum. 
This is the principle of Ieast work as applied to the determina- 
tion of redundant reactions.24 

24The principle of least work was stated first by F. nlenabrea in his 
article, “Nouveau principe sur la distribution des tensions dans les systimes 
Clastiques,” Compt. rend., Vol. 46, p. 1056, 1858. See also ibid., Vol. 98, 
p. 714, 1884. A complete proof of the principle was given by Castigliano, 
who made this principle the fundamental method of solution of statically 
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As an example of the application of the above principle let 
us consider a uniformly loaded beam 
built in at one end and supported at 
the other (Fig. 287). This is a problem & A c 
with one statically indeterminate re- 
action. Taking the vertical reaction 
X at the right-hand support as the 

121~. 287. 

statically indeterminate quantity, this unknown force is found 
from the equation 

dU 
- 0. 

d/Y 

The strain energy of the beam, from eq. (190), is 

in which 

Substituting in (n), we obtain 

dU I 

s LEA’ El ,, 

1 ~~ 
= El 

from which 

(4 

Instead of the reactive force X the reactive couple A4, at 
the left end of the beam could have been taken as the statically 
indeterminate quantity. The strain energy will now be a 
function of Ma. Eq. (6) still holds, where now the bending 

indetrrminate systems. The application of strain energy methods in engi- 
neering was developed by 0. Mohr, see his Abhandltrngen, lot. cit.; by H. 
Miiller-Rreslau in his book, Die neueren Methoden der Festigkeitslehre; and 
by F. Engesser, “iiber die Rerechnung statisch unbestimmter Systeme,” 
Zentr. Hauverwalt., p. 606, 1907. A very complete bibliography of this sub- 
ect is given in the article by M. Griining, Encyklopiidie der Mathematischen 
Wissenschaft, Vol. 4, p. 419. 



342 STRENGTH OF MATERIALS 

moment at any cross section is 

From the condition that the left end of the actual beam does 
not rotate when the beam is bent, the derivative of the strain 
energy with respect to M, must be equal to zero. From this 
we obtain 

dU 1 ’ dM 
dM, = i6 o dM, s- 

= ~~;z,(;d:“i.)x~~];& 

=-J&-!!$!)=o, 

from which the absolute value of the moment is 

Problems in which we consider the forces acting in redun- 
dant members of the system as the statically indeterminate 
quantities can also be solved by using the Castigliano theorem. I 8 0 C 

X 

YT 
a 

0 0 

P 
X 

0 W 
FIG. 288. 

Take, as an example, the system rep- 
resented in Fig. 18 which was dis- 
cussed previously (see p. 20). Con- 
sidering the force X in the vertical 
bar OC as the statically indeterminate 
quantity, the forces in the inclined 
bars OB and OD are (P - X)/2 cos a. 
Denoting by U, the strain energy of 
the inclined bars (Fig. 28%~) and by 
the vertical bar (Fig. 2886), the total U2 the strain energy of 

strain energy of the system is 25 

26 It is assumed that all bars have the same cross-sectional area A and 
the same modulus of elasticity E. 
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If 6 is the actual displacement downwards of the joint 0 in 
Fig. 18, the derivative with respect to X of the energy U, of 
the system in Fig. 2880. should be equal to -6, since the force 
X of the system has a direction opposite to that of the dis- 
placement 6. Also the derivative aU,/aX will be equal to 6, 
hence au au1 au2 

+ -=--s+s=o. 
Z-ax ax 

It is seen that the true value of the force X in the redundant 
member is such as to make the total strain energy of the sys- 
tem a minimum. Substituting for U its expression (c) in eq. 
(d), we obtain 

from which 
P x=--. 

1 + 2 co? (Y 

Similar reasoning can be applied to any statically indetermi- 
nate system with one redundant member, and we can state 
that the force in that member is such as to make the strain 
energy of the system a minimum. To illustrate the procedure 
of calculating stresses in such systems let us consider the frame 
shown in Fig. 289a. The reactions here are statically deter- 

FIG. 289. 

minate, but when we try to compute the forces in the bars, 
we find that there is one redundant member. Let us consider 
the bar CD as this redundant member. We cut this bar at 
any point and apply to each end F and F1 a force X, equal to 
the force in the bar. Thus we arrive at a statically deter- 
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minate system acted upon by the known force P, and in addi- 
tion by the unknown forces X. The forces in the bars of this 
system will be found in two steps: (1) those produced by the 
external load .P, assuming X = 0, Fig. 2896, and denoted by 
Si”, where i indicates the number of the bar; (2) those produced 
when the external force P is removed and unit forces replace 
the X forces (Fig. 289c). The latter forces are denoted by Si’. 
Then the total force in any bar, when the force P and the 
forces X are all acting simultaneously, is 

Si = Sj” + Si’X. 

The total strain energy of the system, from eq. (199), is 

(e> 

(f> 

in which the summation is extended over all the bars of the 
system, including the bar CD which is cut.26 The Castigliano 
theorem is now applied and the derivative of U with respect 
to X gives the displacement of the ends F and F, towards each 
other. In the actual case the bar is continuous and this dis- 
placement is equal to zero. Hence 

dU -= 
dX 0, 

i.e., the force X in the redundant bar is such as to make the 
strain energy of the system a minimum. From eqs. (f) and (g) 

d “51=” (Si’ C Si’X~‘Zi = iF (Si” + Si’X)ZjSj’ o 

dXi=l 2AiE i=l AiE = ’ 

from which 

This process may be extended to a system in which there are 
several redundant bars. 

26 For this bar Si” = 0 and Si’ = 1. 
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The principle of least work can also be applied in those 
cases in which the statically unknown quantities are couples. 
Take, as an example, a uniformly loaded beam on three sup- 
ports (Fig. 290). If the bending moment at the middle sup- 
port is considered as the statically indeterminate quantity, we 
cut the beam at B and obtain two simply supported beams 
(Fig. 290b) carrying the unknown couples Ml, in addition to 
the known uniform load 4. There is no rotation of the end 

FIG. 290. 

B' of the beam A’B’ with respect to the end B” of the beam 
B”C’ because in the actual case (Fig. 290a) there is a continu- 
ous deflection curve. Hence 

dU 
~ = 0. 
dMI, (205) 

Again the magnitude of the statically indeterminate quantity 
is such as to make the strain energy of the system a minimum. 

Problems 

1. A vertical load P is supported by a vertical bar ,!IB of length 1 
and cross-sectional area A and by two equal in- 
clined bars of length I and cross-sectional area Al 
(Fig. 291). Determine the forces in the bars and D 

also the ratio AI/A which will make the forces in 
all three bars numerically equal. 

A 

6 
Solution. The system is statically indeter- P 

minate. Let X be the tensile force in the verti- A 45* 45 ’ 
cal bar. The compressive forces in the inclined / 
bars then are (P - X)/a and the strain energy FIG. 291. 
of the system is 

x21 + (p - x)21 u=- 
2AE 2A1E . 
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The principle of least work gives the equation 

from which 

dU X1 
--- 

TX - AE 
(P - w o 

AIE = ’ 

P 
x=-. 

1+2 

Substituting this into the equation 

x = s2 (P - X), 

expressing the condition of equality of forces in all three bars, we 
obtain 

a P 

5 

Al = 4 A. 

2. Determine the horizontal reaction X in the 
x B 

x system shown in Fig. 292. 
Sol&on. The unknown force X will enter into 

2 the expression for the potential energy of bending 
A of the portion AB of the bar only. For this portion 

FIG. 292. 
M = Pa - Xx, and the equation of least work 
gives 27 

dU d S ’ M2dx 1 S ’ dM 
-=- __ 
dX dX o 2EI = FI ,, 

ME dx = - & s’(Pa - Xx)xdx 
0 

P 

from which 

x+;. 

3. Determine the horizontal re- 
actions X of the system shown in 
Fig. 293. All dimensions are given 
in Table 6. FIG. 293. 

27 The effect of the axial force on the bending of the bar AB is neglected 
in this case. 
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Solution. From the principle of least work we have 

dU d Si21i SiZi dSi 
-- 

dX-dX22A,E= z 5;AEE=o* 
(h) 

fi S;o S; 
s OS ‘I- 127 s r21. zz 

in. 4 Ai 

-1.803P 
1.581P 
1. OOOP 

-1.803P 
1.581P 

Let Si” be the force in bar i produced by the known load P, assum- 
ing X = 0, and let Si’ be the force produced in the same bar by unit 
forces which replace the X forces (Fig. 2936). The values of Si” and 
Si’ are determined from statics. They are given in columns 4 and 5 of 
Table 6. Then the total force in any bar is 

si = Asi0 + Si’X. (4 

TABLE 6: DATA FOR THE TRUSS IN FIG. 293 

1.202 
-2.108 
-1.333 

1.202 
-2.108 

- 78.1P 
--175.7P 
- 33.3P 
- 58.1P 
-175.7P 

52.0 
234 

44.5 
52.0 

234 

z = -540.9P 2: = 616.5. 
Substituting into eq. (h), we find 

from which 

The necessary figures for calculating X are given in columns 6 and 7 
of the table. Substituting this data into eq. (j), we obtain 

x = 0.877P. 

4. Determine the force in the redundant horizontal bar of the 
system shown in Fig. 294, assuming that the length of this bar is 
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lo = 300 in. and the cross-sectional 
area is Ao. The other bars have 
the same dimensions as in Prob. 3. 

Solution. The force in the hori- 
zontal bar (bar number 0) is calcu- 
lated from eq. (204). This equation 
is similar to eq. (j) in Prob. 3, except 
that in the system of Fig. 294 there 
is the additional horizontal bar 0. 
The force produced in this bar by 
the force P alone (X = 0) is zero, 
i.e., So0 = 0. The force produced 

by two forces equal to unity (Fig. 2946) is So’ = 1. The additional 
term in the numerator of eq. (j) is 

SrJ”S,‘l, 
------=O. 

A0 

The additional term in the denominator is 

so’2/o 1 . lo 300 
A0 =Ao=A,* 

Then, by using the data of Prob. 3, 

540.9P 
x= 

300 * 
7 + 616s 0 

Taking, for instance, A0 = 10 sq in., 

540.9P 
x= ~~ = 0.836P, 

30 + 616.5 

which is only 4.7 per cent less than the value obtained in Prob. 3 for 
immovable supports.28 

Taking the cross-sectional area A0 = 1 sq in., 

540.9 
X= = 0.59OP. 

300 + 616.5 

It can be seen that in statically indeterminate systems the forces in 
the bars depend not only on the applied loads, but also on the cross- 
sectional areas of the bars. 

2~ Taking ~‘0 = m, we obtain the same condition as for immovable supports. 
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5. Determine the forces in the bars of the sys- 
tems shown in Fig. 23 by using the principle of least 
work. 

6. Determine the forces in the bars of the system 
shown in Fig. 295, assuming that all bars are of the 
same dimensions and material. 

Solution. If one bar be removed, the forces in 
the remaining bars can be determined from statics. 
Hence the system has one redundant bar. Let 1 be FIG. 295. 
this bar and X the force acting in it. Then all the 
bars on the sides of the hexagon will have tensile forces X, bars 8, 9, 
11 and 12 have compressive forces X and bars 7 and 10 have the 
force P - X. The strain energy of the system is 

X’I 
u= 10;2-i+ 2 

(P - xp/ 

2AE ’ 

From the equation dc/~‘X = 0 we obtain 

7. Determine the forces in the system shown in Fig. 289, assum- 
ing the cross-sectional areas of all bars equal and taking the force X 
in the diagonal AD as the statically indeterminate quantity. 

Solution. Substituting the data given in Table 7 into eq. (204) 
we find 

x= 
3+22/s 

4f2d 
P. 

TABLE 7: DATA FOR THE SYSTEM IN FIG. 289 

i fi s .o z si 

1 a P -l/d/2 
2 a P -l/d 
3 a 0 -l/-\/2 

4 P -l/4 
5 a;2 - P\/Z +1 
6 at/Z 0 +1 

--aP/di 
- oP/J2 

0 
-LlP/di 

-2aP 
0 

s. 121. ‘ z 

a/2 
a/2 
a/2 
a/2 

adi 
adi 

m:s,‘l, = - (3 + 22/i )nP 
z/z ; ZSi’21i = 2a(l + d/2). 
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8. A rectangular frame of uniform cross section (Fig. 296) is sub- 
mitted to a uniformly distributed load of intensity 4 as shown. 
Determine the bending moments A4 at the corners. 

Answer* M = cu3-+ b3)? 
12(a + 4 

9. A load P is supported by 
crossing each other as shown in 
X between the beams. 

Pi” 
Answer. X = -----a 

I3 + 113 

FIG. 296. FIG. 297. 

two beams of equal cross section, 
Fig. 297. Determine the pressure 

10. Find the statically indeterminate quantity H in the frame 
shown in Fig. 170, p. 193, by using the principle of least work. 

Solution. The strain energy of bending of the frame is 

(k) 

in which MO denotes the bending moment varying along the horizon- 
tal bar AB and calculated as for a beam simply supported at the ends. 
Substituting into the equation 

we find 

dU 
iii?- - 0, (0 

2H h3 Hh2/ h z -- 
EIl 3 

f- 
EI = z o s 

Modx. Cm> 

The integral on the right-hand side is the area of the triangular mo- 
ment diagram for a beam carrying the load P. Hence 

s 

1 1 
Modx = - Pc(l- c). 

0 2 
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Substituting into eq. (m), we obtain for H the same expression as in 
eq. (114), p. 193. 

11. Find the statically indeterminate quantities in the frames 
shown in Figs. 169, 172 and 174 by using the principle of least work. 

12. Find the bending moment Mb in the beam of Fig. 290, assum- 
ing that II = 212. 

75. The Reciprocal Theorem.-Let us begin with the prob- 
lem of a simply supported beam as shown in Fig. 29%~ and 
calculate the deflection at a point D when the load P is act- 
ing at C. This deflection is obtained by substituting x = d 
into eq. (86), which gives 

- d2). 

It is seen that this expression does not change if we substitute 
d for b and b for d, which indicates that for the case shown in 
Fig. 2986 the deflection at D1 is the same as the deflection at 
D in Fig. 298a. From Fig. 2986 we obtain Fig. 298~ by simply 
rotating the beam through 180 degrees which brings point C1 
into coincidence with point D and point D, into coincidence 

FIG. 298. 

with point C. Hence the deflection at C in Fig. 298~ is equal 
to the deflection at D in Fig. 298a. This means that if the 
load P is moved from point C to point D, the deflection meas- 
ured at D in the first case of loading will now be obtained in 
the second case at point C. This is a particular case of the 
reciprocal theorem. 
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To establish the theorem in general form 2g we consider an 
elastic body, shown in Fig. 299, loaded in two different ways 
and supported in such a manner that any displacement as a 
rigid body is impossible. In the first state of stress the applied 
forces are PI and P,, and in the second state P3 and Ph. The 
displacements of the points of application in the directions 
of the forces are 6i, &, &, A4 in the first state and AIf, &‘, bs’, &’ 

in the second state. The reciprocal theorem states that the work 
done by the forces of the first state on the corresponding dis- 
placements of the second state is equal to the work done by 
the forces of the second state on the corresponding displace- 
ments of the first state. In symbols this means 

P,6,' + P,6,' = P363 + P484. (206) 

To prove this theorem let us consider the strain energy of 
the body when all forces P,, . . . P, are acting simultaneously, 
and let us use the fact that the amount of strain energy does 
not depend upon the order in which the forces are applied but 
only upon the final values of the forces. In the first manner 
of loading assume that forces PI and P, are applied first and 
forces P3 and P, later. The strain energy stored during the 
application of PI and P, is 

PI% P282 
2 + -2-’ (4 

2’1 A particular case of this theorem was obtained by J. C. Maxwell, Zoc. 
cit., p. 338. The theorem is due to E. Betti, NUOUO cimento, ser. 2, Vols. 7 
and 8, 1872. In a more general form, the theorem was given by Lord 
Rayleigh, Proc. London Math. Sot., Vol. 4, 1873; or ScientiJc Papers, Vol. 1, 
p. 179. Various applications of this theorem to the solution of engineering 
problems were made by 0. Mohr and H. Miiller-Breslau, Zoc. cit., pp. 340 
and 341. 



STRAIN ENERGY AND IMPACT 353 

Applying now P3 and P4, the work done by these forces is 

P3&’ P&l 

2 +T- (4 

It must be noted, however, that during the application of P3 
and P4 the points of application of the previously applied 
forces P, and P, will be displaced by 6r’ and 8s’. Then PI and 
P, do the work 

PI&’ + P&/.3Q cc> 

Hence the total strain energy stored in the body, by summing 

(a>, (6) and Cc>, is 

U= 
PlFl P& P383r PA’ 
2 + 2 + 2 + 2- + P,b + PA’. (4 

In the second manner of loading, let us apply the forces P3 
and P4 first and P, and P2 afterwards. Then, repeating the 
same reasoning as above, we obtain 

U= 
P3a3r P484’ PI61 P& 
2 -I- yjy- + 2 + 2 + P363 + PA (6) 

Observing that expressions (n) and (e) must represent the same 
amount of strain energy, we obtain eq. (206) representing the 
reciprocal theorem. This theorem can be proved for any 
number of forces and also for couples, or for forces and couples. 
In the case of a couple, the corresponding angle of rotation is 
considered as the displacement. 

For the particular case in which a single force PI acts in 
the first state of stress and a single force P2 in the second 
state, eq. (206) becomes 31 

P,6,’ = P&. 

If PI = Pz, it follows that 6r’ = I&, i.e., the displacement of 
the point of application of the force P, in the direction of this 

30These expressions are not divided by 2 because forces PI and Pe re- 
main constant during the time in which their points of application undergo 
the displacements 61’ and 62’. 

31 This was proved first by J. C. Maxwell, and is frequently called MUX- 
well’s theorem. 
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force, produced by the force Pi, is equal to the displacement 
of the point of application of the force Pi in the direction of 
PI, produced by the force P,. A verification of this conclusion 
for the particular case of the beam shown in Fig. 298 has 
already been given. 

As another example let us again consider the bending of a 
simply supported beam, In the first state of loading let it be 
bent by a load P at the middle and in the second state, by a 
couple M at the end. The load P produces the slope 19 = 
P12/16EI at the end. The couple M, applied at the end, pro- 
duces the deflection M12/16EI at the middle. Eq. (207) 
becomes 

Ml2 
P--- = 

P12 

16EI 
M-3 

16EI 

The reciprocal theorem is very useful in the problem of 
finding the most unfavorable position of moving loads on a 
statically indeterminate structure. ,4n example is shown in 

zk*i?? 

Fig. 300, which represents a beam 
built in at one end and simply sup- 
ported at the other and carrying a 

$gg& 

concentrated load P. The problem is 
to find the variation in the magnitude 
of the reaction X at the left support 
as the distance x of the load from this 

FIG. 300. support changes. Let us consider the 
actual condition of the beam (Fig. 

300a) as the first state of loading. The second, or jhitious 
state, is shown in Fig. 300b. The external load and the re- 
dundant support are removed and a unit force upwards replaces 
the unknown reaction X. This second state of loading is stati- 
cally determinate and the corresponding deflection curve is 
known (see eq. 97, p. 150). If the coordinate axes are taken as 
shown in Fig. 300b, 

y = kr (I - x)2(21 + x). 

Let 6 denote the deflection at the end and y the deflection at 
distance x from the left support. Then, applying the recipro- 
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cal theorem, the work done by the forces of the first state on 
the corresponding displacements of the second state is 

xs - Py. 

In calculating now the work done by the forces of the second 
state, there is only the unit force on the end 32 and the corre- 
sponding displacement of the point A in the first state is equal 
to zero. Consequently this work is zero and the reciprocal 
theorem gives 

from which 
xs - Py = 0, 

It is seen that as the load P changes position on the beam of 
Fig. 3004 the reaction X is proportional to the corresponding 
values of y in Fig. 300b. Hence the deflection curve of the 
second state (eq.f) gives a complete picture of the manner in 
which X varies with x. Such a curve is called the inJ.uence line 
for the reaction X.33 

If several loads act simultaneously on the beam of Fig. 
3004 the use of eq. (g) together with the method of superposi- 
tion gives 

X=$-Pd&, 

in which y,, is the ordinate of the influence line corresponding 
to the point of application of the load P, and the summation 
is extended over all the loads. 

Problems 

1. Construct influence lines for the reactions at the supports of 
the beam on three supports (Fig. 301). 

Solution. To obtain the influence line for the middle support, 
the actual state of loading shown in Fig. 301~ is taken as the first 

32 ?‘he reactions at the built-in end are not considered in either case be- 
cause the corresponding displacement is zero and the corresponding work 
vanishes. 

33 The use of models in determining influence lines was developed by G. E. 
Beggs, J. FrankIin Inst., 1927. 
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;E/? state 

. The second state is indicated in 
8(o) Fig. 301b, in which the load P is re- 

moved and the reaction X at the mid- 
B ~~ dle support is replaced by a unit force 

acting upward. This second state of 
loading is statically determinate and 

,I:-;-Isl * fi the deflection curve is known (eqs. 86 
and 87, p. 149, h ence the deflections 

FIG. 301. 6 and y can be calculated. Then the 
work done by the forces of the first 

state on the corresponding displacements of the second state is 

X6 - Py. 

The work of the forces of the second state (force equal to unity) on the 
corresponding displacements of the first state (zero deflection at C) is 
zero. Hence 

X6 - Py = 0 A’ = pi. 

Hence the deflection curve of the second state gives the shape of the 
influence line for the reaction X. In order to obtain the influence 
line for the reaction at B, the second state of loading should be taken 
as shown in Fig. 301~. 

2. Determine the reaction at B by using the influence line of the 
preceding problem, if the load P is at the middle of the first span 
(x = /i/2), Fig. 301a. 

Answer. Reaction is downward and equal to 

3P /I2 

16 1z2 + l&1 * 

3. Find the influence line for the bending moment at the middle 
support C of the beam on three supports (Fig. 302). By using this 
influence line calculate the bending moment M, when the load P is at 
the middle of the second span. 

Solution. The first state of loading is the actual state (Fig. 302~~) 
with an internal bending moment iMc acting at the cross section C. 
For the second state the load P is removed, the beam is cut at C 
and two equal and opposite unit couples replace MC (Fig. 3026). 
This case is statically determinate. 
The angles 0i and 0a are given by 
eq. (104) and the deflection y by “I- 
eq. (105). The sum of the angles A 
8i + 8s represents the displacement qd 
in the second state corresponding to 
the bending moment A4, acting in FIG. 302. 
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the first state. The work done by the forces of the first state on the 
corresponding displacement in the second state is 34 

M&l + 02) - PY. 

The work done by the forces of the second state on the displace- 
ments of the first state is zero because there is no cut at the support 
C in the actual case and the displacement corresponding to the 
two unit couples of the second state is zero. Hence 

K(b + 02) - PY = 0 
and 

MC = pY 
01 + 02 

(4 

It will be seen that as the load P changes its position, the bending 
moment AJc changes in the same ratio as the deflection y. Hence 
the deflection curves of the second state represent the shape of the 
influence line for MC. Noting that 

and that the deflection at the middle of the second span is 

1 .I22 
(YL&,2 = --’ 

16EI 

the bending moment at the support C when the load P is at the mid- 
dle of the second span is, from eq. (h), 

The positive sign obtained for MC indicates that the moment has 
the direction indicated in Fig. 302b. Following our general rule for 
the sign of moments (Fig. 63), we then consider MC as a negative bend- 
ing moment. 

4. Find the influence line for the bending moment at the built-in 
end B of the beam AB, Fig. 300, and calculate this moment when the 
load is at the distance x = 1/3 from the left support. 

Answer. Mb = -&PI. 

31 It is assumed that the bending moment MC produces a deflection curve 
concave downward. 



358 STRENGTH 

FIG. 303. 

6. Construct the influence line 
for the force X in the horizontal 
bar CD (Fig. 303~~) as the load P 
moves along the beam AB. Calcu- 
late X when the load is at the mid- 
dle. The displacements due to 
elongation and contraction of the 
bars are to be neglected and only 
the displacement due to bending of 

the beam AB is to be taken into account. 
Solution. The actual condition (Fig. 303a) is taken as the first 

state of loading. In the second state the load P is removed and the 
forces X are replaced by unit forces (Fig. 3036). Due to these forces, 
upward vertical pressures equal to (1 .h)/c are transmitted to the 
beam AB at the points F and H and the beam deflects as indicated 
by the dotted line. If y is the deflection of the beam at the point 
corresponding to the load P, and 6 is the displacement of the points 
C and D towards one another in the second state, the reciprocal 
theorem gives 

xs - Py = 0 and x+ (i) 

OF MATERIALS 

5. Construct the influence line 
for the horizontal reactions H of the 
frame shown in Fig. 170a as the 
load P moves along the bar AB. 

Answer-. The influence line has 
the same shape as the deflection 
curve of the bar AB for the loading 
condition shown in Fig. 169~. 

Hence the deflection curve of the beam AB in the second state is the 
required influence line. The bending of the beam by the two sym- 
metrically located loads is discussed in Prob. 1, p. 159. Substituting 
(1 *h)/c for P in the formulas obtained there, the deflections of the 
beam at F and at the middle are 

(y>z=, = g1 (31 - 4c) and (YL42 = &I (312 - 42), 

respectively. 
Considering now the rotation of the triangle AFC (Fig. 303~) as 

a rigid body, the horizontal displacement of the point C is equal to 
the vertical displacement of the point F multiplied by h/c. Hence 

6 = 2i (yL = g1 (31 - 4c). 
C 
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Substituting this and the deflection at the middle into eq. (i), gives 

P 312 - 42 
X=- 

8h 31- 4c ’ 

7. Find the influence line for the force in the bar CD of the 
system shown in Fig. 304, neglecting displacements due to contrac- 
tions and elongations and considering only the bending of the beam 
AB. 

Answer. The line will be the same as that for the middle reac- 
tion of the beam on three supports (see Prob. 1, p. 355). 

8. Construct the influence line for the bar BC which supports 
theibeam AB, Fig. 305. Find the force in BC when P is at the middle. 

Answer. Neglecting displacements due to elongation of the bar 
BC and contraction of the beam AB, the force in BC is &(P/sin CY). 

76. Exceptional Cases.-In the derivation of both the Castigliano 
theorem and the reciprocal theorem it was assumed that the dis- 
placements due to deformation are proportional to the loads acting 
on the elastic system. There are cases in which the displacements 
are not proportional to the loads, although the material of the body 
may follow Hooke’s law. This always occurs when the displacements 
due to deformations must be considered in discussing the action of 
external loads. In such cases, the strain energy is no longer a second 
degree function and the theorem of Castigliano does not hold. 

In order to explain this limitation let us consider a simple case in 
which only one force P acts on the elastic system. Assume first that 

FIG. 306. 
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the displacement 6 is proportional to the corresponding force P as 
represented by the straight line OA in Fig. 306~. Then the area of 
the triangle OAB represents the strain energy stored in the system 
during the application of the load P. For an infinitesimal increase 
d8 in the displacement the strain energy increases by an amount 
shown in the figure by the shaded area, and we obtain 

dU = Pd6. (a) 

With a linear relationship the infinitesimal triangle ADC is similar 
to the triangle OAB, therefore 

d6 6 sdP -=- 
dP P Or d6=T. 

(4 

Substituting this into eq. (a), 
SdP 

from which the Castigliano statement is obtained: 

dU 
F = 6 
dP * 

Cc) 

An example to which the Castigliano theorem cannot be applied 
is shown in Fig. 307. Two equal horizontal bars AC and BC hinged at 

A, B and C are subjected to &e ac- 
tion of the vertical force P at C. Let 
C1 be the position of C after deforma- 
tion and a the angle of inclination of 
either bar in its deformed condition. 
The unit elongation of the bars, from 
Fig. 307a, is 

lp 
FIG. 307. 

(b) ,=(&-$4. (d) 

If only small displacements are con- 
sidered, then a! is small and l/cos ac = 1 + (a2/2) approximately. 
Then, from (d), 

2 
E  = - .  

2 

The corresponding forces in the bars are 

AEa’ 
T = ‘gEe = __-. 

2 
(e) 
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From the condition of equilibrium of the point Cr (Fig. 3076), 

P = 2orT, (.f) 
and for T, as given in eq. (e), 

P = AEa3, 
from which 

and 

3 p 

J 

a= _ 

AE 
(9) 

In this case the displacement is not proportional to the load P, 
although the material of the bars follows Hooke’s law. The rela- 
tion between 6 and P is represented in Fig. 3066 by the curve 0~2. 
The shaded area OAB in this figure represents the strain energy 
stored in the system. The amount of strain energy is 

u = S 3Pd& 
0 

Substituting, from eq. (208), 

P=AE;y 

we obtain 

S 
6 AEs4 Ps PI 

83&j = ~ = - 
41” 4=4 

(3 
0 

This shows that the strain energy is no longer a function of the 
second degree in the force P. Also it is not one-half but only one- 
quarter of the product PS (see Art. 71). The Castigliano theorem 
of course does not hold here: 

Analogous results are obtained in all cases in which the displace- 
ments are not proportional to the loads.35 

35 Such problems were discussed by F. Engesser, 2. Architekt. u. Ing.-Ye,., 
Vol. 3.5, p. 733, 1889; see also H. M. Westergaard, Proc. Am. SOL. Civil Engrs., 
Feb. 1941. 



CHAPTER XII 

CURVED BARS 

77. Pure Bending of Curved Bars.-In the followmg dis- 
cussion it is assumed that the line joining the centroids of the 
cross sections of the bar, called the center line, is a plane curve 
and that the cross sections have an axis of symmetry in this 
plane.’ The bar is submitted to the action of forces lying in 
the plane of symmetry so that bending takes place in this plane. 

Let us consider first the case of a bar of constant cross sec- 
tion subjected to pure bending, produced by couples A4 applied 

M 

(d 
FIG. 308. 

at the ends (Fig. 308). The stress distribution will be ob- 
tained by using the same assumption as in the case of straight 
bars, namely, that transverse cross sections which were orig- 
inally plane and normal to the center line remain so after bend- 

1 The case of nonsymmetrical cross sections is discussed by F. K. G. 
Odqvist, Pd. NO. 207, Inst. f. Festigkeitslehre Kijnigl. Tech. Hochschule, 
Stockholm, 1953. 

362 
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ing.2 Let ad and cd be two adjacent cross sections of the bar 
(Fig. 308~) and let dp be the small angle between them before 
bending. Due to bending the cross section cd rotates with 
respect to ad about the neutral axis nn by a small angle Adp. 
This angle and the corresponding moment A4 are taken posi- 
tive if the initial curvature of the bar is diminished during 
bending. Due to this rotation the longitudinal fibers on the 
convex side of the bar are compressed and the fibers on the 
concave side are extended. Denoting by y the distances of 
the fibers from the centroidal axis perpendicular to the plane 
of bending, taken positive in the direction towards the center 
of curvature of the center line of the bar, and denoting by e 
the distance of the neutral axis ~zn from the centroid C, we 
find that the extension of any fiber during bending is (y -e) Adp 
and the corresponding unit elongation of the fiber is 

E = (Y - e)A& 

(r - y)& . 
(a> 

In this expression, r denotes the radius of curvature of the 
center line of the bar (Fig. 308b) and the denominator in 
eq. (a) is the initial length of the fibers between the adjacent 
cross sections ab and cd. 

Assuming that there is no lateral pressure between the 
longitudinal-fibers ,3 the bending stress at a distance y from 
the centroidal axis and normal to the cross section is 

It is seen that the stress distribution is no longer linear as in 

2 This approximate theory was developed by E. Winkler, see Cicilz’nge- 
nieur, Vol. 4, p. 232, 1858; also his book, Die Lehre non der Elastizitcit trnd 
Festigkeit, Prague, Chap. 15, 1867. A similar theory was also developed by 
H. F&al, Ann. mines, p. 617, 1862. Further development of the theory was 
made by F. Grashof in his book, Elastizit;t und Festigkeit, p. 251, 18i8; and 
by Todhunter and Pearson, History of the Theory of Elasticity, Vol. 2, 
p. 422, 1893. For publications dealing with the rigorous solution of curved 
bar problems see Theory of Elasticity, by the writer and J. N. Goodier, p. 63, 
1951. 

3The rigorous theory shows that there is a certain radial pressure but 
that it has no substantial effect on the normal bending stress u. 
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the case of straight bars, but that it follows a hyperbolic law 
as shown in Fig. 308~. From the fact that the sum of the nor- 
mal forces distributed over the cross section is zero in the case 
of pure bending, it can be concluded that the neutral axis is 
displaced from the centroid of the cross section towards the 
center of curvature of the center line of the bar. In the case 
of a rectangular cross section, the shaded area (Fig. 3086) in 
tension must equal that in compression and we see at once 
that the greatest stress acts on the concave side. To make 
the stresses in the most remote fibers in tension and in com- 
pression numerically equal, it is necessary to use cross-sec- 
tional shapes which have the centroid nearer the concave side 
of the bar. 

Eq. (d) contains two unknowns, the distance e of the neutral 
axis nn from the centroid C (Fig. 3086) and the angle of rota- 
tion Adp. To determine these quantities we use the two equa- 
tions of statics which state that the sum of the normal forces 
distributed over a cross section is equal to zero and the moment 

’ of these forces is equal to the external moment M. These 
equations are 

s 
aydA = 

A 

From the first of these equations it follows that 

s Yn’A S dA 
--e ___ = 0. 

AT-y AT-Y 

(4 

(4 

The first integral on the left side of this equation has the 
dimensions of area and may be expressed as 

S ydA mA ___ = > 
.47--Y 

(f) 

where m is a pure number to be determined for each particular 
shape of the cross section by performing the indicated integra- 
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tion. The quantity mA is called the mo&$ea area of the cross 
section. The second integral may be transformed as follows: 

= (m + 1) -A, 
r 

and eq. (e) becomes ” 
mA - (m + 1) q = 0, 

from which 
m e 

e=r- or m=--- 
mfl r-e 

Now taking eq. (d) and using the transformation 

S y2dA -= - 
AT-Y 

we obtain 

and 

y (mrA - meA) = M 

(209) 

EAdp M M 
- zz = -. 

& m(r-e)A Ae (210) 

Substituting into expression (b), we obtain the following for- 
mula for bending stresses: 

M(Y - e> M(Y - e> 
u = m(r - e)A(r - y) = Ae(r - y) ’ 

To obtain the stresses in the most remote fibers we 
for the points A and B (Fig. 308b) the values y 
y = --I&, which gives 

M(h - e> -Mb + e> 
@A = 

Aerl ’ 
fJB = --, 

Aerz 

(211) 

substitute 
= hl and 

(212) 

where rl and r2 denote the inner and the outer radii of the 
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curved bar. By determining from eqs. (f) and (209) the quan- 
tities m and e for any given shape of the cross section, we can 
readily calculate bending stresses by using eq. (211). 

The change Adp of the angle dp between the two consecu- 
tive cross sections is obtained from eq. (210) which gives 

M& Mds 
A& = __ = -, 

eAE erAE 

and the corresponding change in curvature of the center line of 
the bar is 

Adp M M(m + 1) = ~~. 
ds erAE mr2AE 

(213) 

If the radial dimension h of the curved bar is small in com- 
parison with the radius of curvature r of the center line, we 
can neglect y in comparison with r in eqs. (f) and (g), and we 
conclude that as the radius of curvature becomes larger and 
larger, the number m approaches zero and the quantity mr2A 
approaches the value of the centroidal moment of inertia I, of 
the cross section. Then expression (213) for the change in 
curvature approaches the value 

Adp M 

ds =EI,’ (214) 

which is the same as obtained previously for the curvature of 
initially straight bars (see p. 138). 

78. Bending of Curved Bars by Forces Acting in the Plane 
of Symmetry.-Let us consider now a more general case of 
bending of a curved bar, shown in Fig. 309a. It is assumed 
that the forces PI, 1 . . P, represent a system of forces in equi- 
librium and are acting in the plane of the center line, which is 
the plane of symmetry of the bar. The deflection of the bar 
will evidently occur in the same plane. To find the stresses 
at any cross section mn of the bar, Fig. 309a, we assume that 
the portion of the bar to the right of cross section mn is removed 
and its action on the left portion of the bar is replaced by a 
force applied at the centroid C of the cross section and by the 
couple M. Resolving the force into two components, N and 
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Y, one normal to the cross section and the other directed radi- 
ally, we finally obtain the bending moment M, the longitudinal 
force N and the shearing force Y. The positive directions of 
these forces are shown in Fig. 309b. 

The stresses and deformations produced by a couple were 
discussed in the preceding article in considering the pure bend- 
ing of a curved bar. The stresses corresponding to the longi- 
tudinal force will be uniformly distributed over the cross sec- 
tion and their magnitude will be N/19. These stresses will 

(b) 
FIG. 309. 

produce uniformly distributed unit elongations of the fibers, 
but the total elongations, proportional to the initial length of 
the fibers between any two adjacent cross sections, will be 
proportional to the distance from the center of curvature 0 of 
the center line, Fig. 309~. Thus, due to the action of the longi- 
tudinal force, the initial angle dq will be increased by the 
amount 

Nds 
Adp = -. 

AE?- (215) 

At the same time the initial length ds of the element of the cen- 
ter line will increase by the amount 

Ads = g. (216) 

The transverse force Y produces shearing stresses and some 
warping of the cross section. It is usually assumed that the 

distribution of shearing stresses over the cross section is the 
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same as for a straight bar.4 In such a case the relative radial 
displacement of the two adjacent cross sections will be the 
same as for straight bars and will be equal to (see p. 171) 

>; ds. (2 17) 

M Combining the bending stresses produced by the couple 
with those produced by the force N, we obtain 

M(Y - e> 
I3 = Ae(r - y) 

+ N. 
A (218) 

For the change Adp of the angle between two adjacent cross 
sections we find 

Mds Nds A&----. 
erAE AEr 

(219) 

By using formulas (215)-(219) the stresses and deflections for 
a curved bar can be calculated for any kind of loading of the 
bar in the plane of curvature of its center line. 

79. Particular Cases of Curved Bars.-In the following ex- 
amples the calculation of the number m, which is defined in 

w 
eq. (f) of Art. 77, and of the distance 
e of the neutral axis from the centroid 

h 
? c 

A 

of the cross section is given for several 

h 
7 ’ Idr 

particular cases. Knowing these quan- 

7 tities the stresses in curved bars can 
G be calculated by using the formulas 

7- 
r, of the two preceding articles. 

Rectangular Cross Se&oz.--In this 
0 0 case the width b of the cross section, 

FIG.. 310. Fig. 310, is constant and we obtain 

mA = S JdA -6 fcJa (y - r + r)dy 

AT-3 I ’ --iL/2 r - Y 

=br __- S h’2 dy 
bh = br log:,> 2 - hh, 

42 r - Y Yl 

4 This assumption is in satisfactory agreement with a rigorous solution 
for a narrow rectangular cross section; see author’s Theory of Elasticity, p. 
75, 1951. 
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so that 

and 

m = i log, F - 1 
r1 

(4 

mr r[(r/h) loge b”2/Yl) - I>1 h ,f=-= 
m+l (r/h) loge (r2/3-- = r - loge (f-2/r1) * (8 

For small values of h/r the distance e is small in comparison 
with h and to calculate it from eq. (b) with sufficient accuracy 
it is necessary to take loge (r2/r1) with a high degree of accu- 
racy. To eliminate this inconvenience we can use the known 
series 

loge (r2/r1) = loge 
r + h/2 

Y - h/2 
2[1 +;(;)2+:(gy+...]- 

Then, from eq. (a), 

We thus obtain a rapidly converging series, from which the 
quantities m and e can be readily calculated with any desired 
accuracy. Taking only the first term of the series, we obtain 

m = iG2/12r2 and e c- h2/12r. 

With two terms of the series we find 

It is seen that for small values of J~/T the distance e is very 
small. Thus a linear stress distribution instead of a hyperbolic 
one may be assumed with sufficient accuracy. To compare 
the results obtained for the two types of stress distribution, for 
the case of a rectangular cross section, Table 8 has been calcu- 
lated. In this table the ratios 

~IIlSX cmin 

“=MjAr 
and p=- 

M/A” 

are given for various values of the ratio r/h. It is seen from 
this table that for r/h > 10 a linear stress distribution can be 
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TABLE 8: COMPARISON OF HYPERBOLIC AND LINEAR STRESS DISTRIBUTIONS 

r/h --__ 

(Y B a 

- 

B 

Error in urnax 
% 

1 9.2 -4.4 6 -6 35.0 
2 14.4 -10.3 12 -12 17.0 
3 20.2 -16.1 18 -18 10.9 
4 26.2 -22.2 24 -24 9.2 

10 62.0 -58 60 -60 3.2 

Hyperbolic Stress Distribution Linear Stress Distribution 

assumed and the stmight barformrrla for maximum stress may 
be used with suflicient accuracy. 

Trapezoidal Cross Section.-Using again the equation 

s YdA 
mA= ~ 

11 r - y 

and introducing the notation 

(4 

v=r-y, (6) 

where v is the distance of the shaded element (Fig. 311) from 
the axis O-O through the center of curvature of the center 
line of the bar, we obtain 
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The variable width of the cross section 

and 

371 

(Fig. 311) is 

- v>lh 

dA = dv[bz + (b, - b2)(r2 - v)/h]. 

Substituting into eq. (j), we obtain 

r l‘y 
m=- S A Ti 

[b, + (b, - b‘J(r, - v)/h] ~$ - 1 

= ; [[bz + rz(b1 - b,)/h] log, -;: - (6, - 62) ) - 1. (g) 

When 6, = d, = 6, this formula coincides with formula (a), 
which was obtained for a rectangular cross section. If we take 
& = 0 we obtain from formula (g) the value of m for a triangu- 
lar cross section. 

I Cross Section.--Proceeding as in the previous case, we 
obtain for the cross section in Fig. 312 

m = 6 
( 

b1 log, ‘3 + bz log, ; - 1. 
r1 ) 

I Cross Section.-The same procedure as in the preceding 
case gives (Fig. 313): 

m = r 
A 

b, log, 2 + b, log, ; + b, log, z - 1. (4 
rl 
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Circular Cross S&on.-Observing that in this case (Fig. 
314) the width of the cross section at the distance y from the 

0 0 

Iiii;. 314. 

centroid is 22/h2/4 - y2, the equation for determining m 
becomes 

mA = s YdA S dA -----CT A 
AT-Y AT-Y 

=2r ~ S -h/2 f--Y 

= 2rr(r - dr” - h2j4) - A. (A 
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dl - h2/4r2 

= 1 -~~~-f(~~~‘-:,(~>“-~(~)‘-...) 
& / 

we then obtain 

This is a rapidly converging series from which m may easily 
be calculated to any desired accuracy. 

It can be seen that in calculating m from eq. (d) the magni- 
tude of m does not change if all elements dA are multiplied by 
some constant, since in this way the integral of eq. (d) and 
the area A of the same equation will be increased in the same 
proportion. From this it follows that the value of m obtained 
for a circular cross section from eq. (j) can be used also for an 
ellipse with the axes h and hr, since in this case each elemental 
area obtained for a circle is to be multiplied by the constant 
ratio Al/h. 

The calculation of the integral in eq. (d) can sometimes be 
simplified by dividing the cross section into several parts, 
integrating for each part and adding the results of these inte- 
grations. Taking, for example, a circular ring cross section 
with outer diameter h and inner diameter hr, and using eq. (j) 
for the outer and inner circles, we find for the ring cross section: 

In a similar manner we can develop formulas for the cross sec- 
tions shown in Figs. 312 and 313. When m is calculated, we 
find e from eq. (209) and the maximum stress from eq. (212). 

Eq. (d) is the basis of a graphical determination of the 
quantity m for cases in which the shape of the cross section 
cannot be simply expressed analytically. It is seen that in 
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calculating the modified area from eq. (d) every elemental 
area must be diminished in the ratio y/(r - JJ). This can be 
done by retaining the width of the elemental strips but &- 
minishing their lengths in the above ratio (Fig. 31.5). In this 

FIG. 315. 

manner the shaded area in the figure is obtained. The differ- 
ence between the areas CDF and ABC gives the modified area 
mA. Knowing this, the quantities m and e can readily be 
calculated. 

Since the value mA is obtained as the difference of the two 
areas, the accuracy of the result is low and the method gives 

only a rough approximation. A much 
better accuracy can be obtained by divid- 
ing the cross section into strips of equal 
width and then using Simpson’s rule for 
calculating the integral of eq. (d).6 

The theory of curved bars developed 
above is applied in designing crane hooks.6 
In Fig. 316 is represented the working 
portion of a hook of constant circular 
cross section. It is assumed that the 

P vertical force P passes through the center 
of curvature 0 of the axis of the hook. 

FIG. 316. The maximum bending stress occurs in 

5 Examples of such calculations are given in a paper by A. M. Wahl, 
J. Appl. Mech., Vol. 13, p. 239, 1946. 

6 A theoretical and experimental investigation of crane hooks was made 
by the National Physical Laboratory in England; see paper by H. J. Gough, 
H. L. Cox and D. G. Sopwith, Proc. Inst. Mech. Engrs. (London), Dec. 1934. 
For a comparison of theoretical stresses in hooks of a rectangular cross 
section with experimental results see K. Bijttcher, Forschungsarb., No. 337, 
1931. 
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the cross section perpendicular to the load P. Then proceeding 
as explained in Art. 78,” we find that on the horizontal cross 
section of the hook the tensile force P, applied at the center C 
of the cross section, and the bending moment M = Pr are act- 
ing. Combining direct and bending stresses and using eq. (218) 
for the latter, we obtain 

Mb - 6) +f= PY 
u = Ae(r - y) A Am(r - yj 

Applying this formula to the most remote points, for which 
A 

y = =t,l wefindthat 
L 

P h P h 
urnax = --t 

A 2mrl urnin = - -__. A 2mr2 (221) 

It is seen that the numerically largest stress is the tensile stress 
at the inner surface, which is obtained by multiplying the stress 
P/A by the stress factor: 

h 
k=-, 

2mrI 
(222) 

the magnitude of which depends on the ratio lz/2r. Using ex- 
pression (220) for m, we find that k varies from 13.5 to 15.4 as 
the ratio h/2r changes from 0.6 to 0.4.’ The calculation of 
stresses in crane hooks of irregular section may be carried out 
by using Simpson’s rule to determine m.8 

Problems 

1. Determine the ratio of the numerical values of amaX and ~,,in 
for a curved bar of rectangular cross section in pure bending if Y = 
5 in. and h = 4 in. 

urnax 
Answer. ___ 

I i 
= 1.75. 

amin 
2. Solve the previous problem, assuming a circular cross section. 

i I 

1.792 7 
Answer. e = 0.208 in.; ?ZY = ~ . - = 1.89. 

urnin 2.208 3 

7,4t h/2r = 0.6 the factor k has its minimum value. 
* This method is described by A. M. Wahl, lot. cit., p. 374. 
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3. Determine the dimensions bI and b3 of an I cross section 
(Fig. 313) to make a,,, and cmin numerically equal in pure bending. 
The dimensions are rl = 3 in., r3 = 4 in., r4 = 6 in., r2 = 7 in., 62 
= 1 in., bl + b3 = 5 in. 

Solution. From eqs. (212), 

hl - e h2 + e 1’ - 7-1 - P r2 -- r + e 
= -~__ 01 , 

f”l 7”2 71 r2 

from which 
I- 2r1rz 

y-e=== __-- = 4.20 in. 
rn + 1 7-l f 1’2 

Substituting for m the value (i) and noting that A = 7 in.‘, we have 

4.20 = 
7 

bl log,+ + l.log,~ + (5 - bl) log,;’ 
from which 

bl log, ; + (5 - b,) log,; = & - 1 .log, $7 

0.288& + 0.154(5 - 6,) = 1.667 - 0.406 = 1.261 in., 

b1 = 3.67 in., b3 = 5 - 3.67 = 1.33 in. 

4. Determine the dimension bl of the I section (Fig. 312) to 
make mmmax and gmin numerically equal in pure bending. The dimen- 
sions are rl = 3 in., r2 = 7 in., r3 = 4 in., 62 = 1 in. 

Answer. bl = 3.09 in. 
5. Determine c~,~,~ and umin for the trapezoidal cross section mn 

of the hook represented in Fig. 317 if P = 4,500 lb, 61 = 1% in., 
b2 = 3 in., 71 = 1; in., r2 = 5 in. 

FIG. 317. 
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Solution: From eq. (g), 

r 3.750 
y-e=--= 

m+l $?x5-;xl$ 

3: 
-------log, 5/1$ - (1% - $) 

3.750 
z----z 2.373 in 

1.580 

The radius of the center line 

bl + 262 h 
r = ~1 + ~-__- . - = 2.734 in. 

h + d2 3 

Therefore, e = 0.361 in., hl - e = r - e - rl = 2.373 - 1.250 = 
1.123 in., ha + e = rs - r + e = 5 - 2.373 = 2.627 in., Ae = 3.75 
x 0.361 = 1.35, hl = Pr = 12,300 in. lb. The bending stresses, 
from eqs. (212), are 

12,300 x 1.123 
~rrlax = ~-_ = 1.35 x 1.25 8,200 lb in. per sq 

12,300 X 2.627 
Umin = - 

1.35 x 5 
= -4,800 lb per sq in. 

On these bending stresses, a uniformly distributed tensile stress P/A 
= 4,500/3.75 = 1,200 lb per sq in. must be superposed. The total 
stresses are 

u max = 8,200 + 1,200 = 9,400 lb per sq in., 

Umin = -4,800 + 1,200 = -3,600 lb per sq in. 

6. Find the maximum stress in a hook of circular cross section 
if the diameter of the cross section is h = 1 in., 
radius of the central axis r = 1 in. and P 

P = 1,000 lb. 
Answer. a,,, = 17,700 lb per sq in. hi 
7. Find a,,, and rInil> for the curved bar 

of circular cross section, loaded as shown in 
m -VT0 j 

Fig. 318, if h = 4 in., r = 4 in., a = 4 in., and 
P = 5,000 lb. 

10,650 lb per sq in., umin = 
G 

a 
P 

Answer. a,,, = 
-4,080 lb per sq in. 

FIG. 318. 

8. Solve the preceding problem, assuming that the cross section 
mn has the form shown in Fig. 312 with the following dimensions: 
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rl = 2 in., r3 = 3 in., r2 = 9 in., bl = 4 in., b2 = 1 in., a = 4 in. and 
P = 4,000 lb. 

Answer. umax = 
9. Solve Prob. 7, 

3,510 lb per sq in., amin = -1,800 lb per sq in. 
assuming that the cross section mn is trapezoi- 

dal, as in Fig. 311, with the dimensions ~1 = 2 in., r2 = 4; in., 61 = 
2 in., 62 = 1 in., a = 0 and P = 1.25 tons. 

Answer. a,,, = 3.97 tons per sq in., amin = - 2.33 tons per sq in. 

80. Deflection of Curved Bars.-The deflections of curved 
bars will be calculated by the use of Castigliano’s theorem.9 
We start with the simplest case in which the cross-sectional 
dimensions of the bar are small in comparison with the radius 
of curvature of its center line.‘0 Then the change in the angle 
between two adjacent cross sections is given by eq. (214), \ 

analogous to eq. (a), p. 138, for straight 
bars, and the strain energy of bending - 
is given by the equation 

U= S ’ M2ds 
lJ TEy’ (223) 

in which the integration is extended 
along the total length s of the bar. Eq. 

Fro. 319. (223) is analogous to eq. (190) for 
straight beams,” and the deflection of 

the point of application of any load P in the direction of the 
load is 

As an example, take a curved bar of uniform cross section 
whose center line is a quarter of a circle (Fig. 319), built in 
at the lower end A with a vertical tangent and loaded at the 
other end by a vertical load P. The bending moment at any 
cross section mn is M = -Pr cos cp. 
the vertical deflection of the end B is 

Substituting in eq. (223), 

9 See p. 328. 
10 The case in which the cross-sectional dimensions are not small is dis- 

cussed in Prob. 6, p. 387. 
“The strain energy due to longitudinal and shearing forces can be neg- 

lected in the case of thin curved bars. See p. 383. 
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d “=z 0 S T12 iVf2rdp 1 

2E1, = El, o S 
s/2 

M$t-dp 

1 

---~- s 

n/2 

Erz o 
Pr3 cos2 cpdp = $ ;, 

z 

If the horizontal displacement of the end B is required, a hori- 
zontal fictitious load Q must be added as shown in the figure 
by the dotted line. Then 

and 
M = -[Prcoscp + QT-(~ - sincp)] 

akf 
- -r(l - sin cp). 

aQ- 

The horizontal deflection is 

Q = 0 must be substituted in the expression for n/c, giving 

T/2 
Pr3 cos cp(1 - sin cp)dp = $i-. 

z 

Thin King.-As a second example consider the case of a 
thin circular ring submitted to the action of two equal and 
opposite forces P acting along the vertical diameter (Fig. 320). 
Due to symmetry only one quadrant of the ring (Fig. 3206) 
need be considered, and we 
can also conclude that there 
are no shearing stresses over 
the cross section mn and that 
the tensile force on this cross 
section is equal to P/2. The 
magnitude of the bending mo- 
ment MO acting on this cross 
section is statically indeter- 
minate and may be found by 

FIG. 320. 

the Castigliano theorem. It is seen from the condition of 
symmetry that the cross section rnlz does not rotate during the 
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bending of the ring. Hence the displacement corresponding to 
MO in Fig. 320b is zero and 

dU 
__ = 0, 
dMo 

in which U is the strain energy of the quadrant of the ring 
which we are considering. For any cross section mlnl at an 
angle cp with the horizontal the bending moment is 12 

M = M,, - ; ~(1 - cos C,D) (4 

and 
dM 
- = 1. 
dMo 

Substituting this into expression (223) for the potential energy 
and using eq. (a), we find 

d S n’2 M2rda 1 S 
r/2 ()- ~ dM 

dMo o 2E1, = EI, o 
M-- 

d&if, r& 

M, - ; ~(1 - cos p) rdp, 1 
from which 

Substituting into eq. (b), we obtain 

M = $(co,. - ;) 

(224) 

cc> 
The bending moment at any cross section of the ring may be 
calculated from this expression. The greatest bending mo- 
ments are at the points of application of the forces P. Substi- 
tuting cp = 7r/2 in eq. (c), we find 

M = - p’ = -0.318Pr. cw 
7r 

12 Moments which tend to decrease the initial curvature of the bar are 
taken as positive. 
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The minus sign indicates that the bending moments at the 
points of application of the forces P tend to increase the 
curvature, while the moment MO at the cross section mn tends 
to decrease the curvature of the ring, and the shape of the ring 
after bending is that indicated in the figure by the dotted line. 

The increase in the vertical diameter of the ring may also 
be calculated by the Castigliano theorem. The tota! strain 
energy stored in the ring is 

u=4 S *I2 h12rdt,o 

0 2EI,’ 

in which ii4 is given by eq. (c). Then the increase in the verti- 
cal diameter is 

dU 4 

(‘W 

For calculating the decrease of the horizontal diameter of the 
ring in Fig. 320, two oppositely directed fictitious forces Q are 
applied at the ends of the horizontal diameter. Then by cal- 
culating (a U/~Q)Q,O, we find that the decrease in the horizon- 
tal diameter is I3 

a1 = 2 - ; g: = 0.137 g. 
( > 

(227) n- z z 
Thick Ring.-When the cross-sectional dimensions of’ a curved 

bar are not small in comparison with the 
radius of the center line, not only the strain 
energy due to bending moment but also that 
due to longitudinal and shearing forces must N 

be taken into account. The change in the 
angle between two adjacent cross sections 
(Fig. 321) in this case, from eq. (213), is 

Mf& Mds 
A& = __ = PI 

AEe AEer FIG. 321. 

13 A very complete study of circular rings under various kinds of loading 
was made by C. B. Biezeno and his collaborator, J. J. Koch. The principal 
results of their publications are presented in the book by Biezeno and R. 
Grammel, Technische Dynamik, 2d Ed., Vol. 1, pp. 362-95, 1953. 
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and the energy due to bending for the element between the two adja- 
cent cross sections is 

MZdJ 
dU, =;MAdp=---. 

2AEer 
(4 

The longitudinal force N produces an elongation of the element 
between the two adjacent cross sections in the direction of the cen- 
ter line of the bar equal to Nds/AE and increases the angle dp by 
Nds/AEr (eq. 219). Th e work done by the forces N during their 
application is N2ds/2AE. During the application of the forces N 
the couples M do the negative work -MNds/AEr. Hence the 
total energy stored in an element of the bar during the application 
of the forces N is 

N’ds MNds 
dj-/J,=----. 

2AE AEr 
(4 

The shearing force Y produces sliding of one cross section with 
respect to another, of the amount aVds/AG, where o( is a numerical 
factor depending upon the shape of the cross section (see eq. 217). 
The corresponding amount of strain energy is 

CuV’ds 

dU3 = -GF’ 

Adding (d), (e) and (f) and integrating along the length of the bar, 
the total strain energy of a curved bar becomes 

N2 MN CYV’ 
U= -+-- (228) 

Let us use this equation to solve the problem represented in Fig. 
319. Taking as positive the directions shown in Fig. 321, we have 

M = -Prcoscp, N= -Pcoscp, V = P sin cp, 

where r is the radius of the center line. Substituting in eq. (228) 
and using the Castigliano theorem, we find the vertical deflection of 
the point B to be 

CXE 
- cos2 p + F sin’ dq 

If the cross section of the bar is a rectangle of the width b and depth 
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h, using for e the approximate value h2/12r (see p. 369) and taking 
(Y = 1.2 and E/G = 2.6, 

When h is small in comparison with r, the second term in the paren- 
theses, representing the influence on the deflection of N and Y, can 
be neglected and we arrive at the equation obtained before (see p. 379). 

The above theory of thick curved 
calculating stresses in such machine 
elements as links and eye-shaped ends 
of bars (Fig. 322). In such cases a 
difficulty arises in determining the 
load distribution over the surface 
of the curved bar. This distribution 
depends on the amount of clearance 
between the bolt and the curved bar. 
A satisfactory solution of the prob- 
lem may be expected only by com- 

bars is often applied in 

FIG. 322. 

bining analytical and experimental methods of investigation.14 
The particular case of an eye-shaped end of rectangular 

cross section, Fig. 3223, was rigorously investigated.15 In this 
discussion it was assumed that there are no clearances and that 
the bolt is absolutely rigid. The maximum tensile stress occurs 
at the inner surface in the cross sections perpendicular to the 
axis of the bar, and its magnitude can be represented by the 
formula : 

8P 
umax = 01. -t 

n2r2t (9) 

in which P is the total tensile force transmitted by the bar, 
OL is a numerical factor depending on the ratio r2/r1 between 

14 For a theoretical investigation of the problem, see H. Reissner, Jahr6. 
,wiss. Ges.f. Luj#aArt, 1925; also J. Beke, Eisenbau, p. 233, 1921; F. Bleich, 
Theorie und Berechnung der eisern Briicken, p. 256, 1924; Blumenfeld, 2. 
Yer. deut. Ing., 1907; and Baumann, ibid., p. 397, 1908. Experiments have 
been made by Dr. Mathar, Forschungsarb., NO. 306, 1928; see also D. Riihl, 
dissertation, Danzig, 1920; Preuss, 2. Yer. deut. Ing., Vol. 55, p. 2173, 1911; 
M. Voropaeff, Bull. Polytech. Inst. (Kiev), 1910; E. G. Coker, “Photoelastic- 
ity,” J. Franklin Inst., 1925. 

16 H. Reissner and F. Strauch, 1129. /4rch., Vol. 4, p. 481, 1933. 
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the outer and the inner radii of the eye and t is the thickness 
of the eye perpendicular to the plane of the figure. For rz/rl 
equal to 2 and 4 the values of 01 are, respectively, 4.30 and 4.39. 
The values obtained from formula (g) are in satisfactory agree- 
ment with experiments.16 

The theory of thin rings has found application in the analy- 
sis of fuselage rings in airplane structures l7 and stiffening rings 
in submarines.‘8 

In calculating the deflections of curved bars we used up to now 
Castigliano’s theorem, but the problem can also be solved, as in the 

FIG. 323. 

case of straight bars, by introducing fictitious loads. The calcula- 
tions are especially simple in the case of thin bars when the effect of 
longitudinal and shearing forces on the deflections can be neglected. 
Let us consider a bar AB, Fig. 323, built in at the end A and loaded 
in its plane of symmetry xy. To calculate the deflection of the end 
B we consider the infinitesimal displacement BC of that end due to 

I6 See G. Rierett, Mitt. deut. Materinl~ri~~~~nMgsanstalt., Spec. hTo. 1.5, 1931. 
A photoelastic investigation of the eye-shaped end was made by K. Takemura 
and Y. Hosokawa, Rept. Aeronaut. Inst. (Tokyo), Vol. 18, p. 128, 1926. See 
also M. LLI. Frocht and H. N. Hill, J. ~Zppl. Mech., Vol. 7, p. S, 1930. In 
the latter paper the effect of clearance between the bolt and the hole is 
investigated. 

1’ See IV. Stieda, Luftfahrt-Forsch., Vol. 18, p. 214, 1941. For English 
translation see Nat. Adkory Comm. Aeronaut., Tech. Mem. No. 2004, 1942. 
See also D. A. Du Plantier, J. Aeronaut. Sci., Vol. 11, p. 136, 1944; R. Benja- 
min, ibid., Vol. 19, p. 585, 1952. 

18 A very complete study of such rings can be found in the book by P. F. 
Papkovitch, Structural Mechanics of Ships, Moscow, Vol. 2, pp. l-816, 1947. 
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bending of an element mn of the bar. Using eq. (214) for the change 
of the angle between the two adjacent cross sections m and n, we find 

- Mds 
BC = __ 

EI, Pa (h) 

Observing that the infinitesimal triangle BCD is similar to the tri- 
angle nBni, we find the two components of this displacement: 

_ Mds __ Md.r 
CD = F (Jo - YL DB = F (x0 - xl. (9 

z z 
To obtain the two components of the total deflection of the end 8, 
we have only to sum up the elemental displacements (i) for all ele- 
ments of the bar. Denoting these components by u and v and taking 
them positive when they are in the positive directions of the x and 
y axes, we obtain 

’ Mds 
u=- s a Mds 

o E (Jo - Y), 0= S o ~(XO-4. (A 
z *T 

Considering, for example, the bar represented in Fig. 319, we have 

M= -PPrcoscp, y. - y = r(l - sin cp), x0 - x = r cos $0. 

Substituting into eqs. (j) and performing the integrations, we obtain 
results coinciding with those obtained on p. 379. 

It is seen from eqs. (j) that if we apply to each element of the 
bar a fictitious horizontal load of magnitude Mdi/EI,, the moment 
of this load distribution about the end B gives the value of the de- 
flection u. If, instead of horizontal, we take the fictitious loads in 
the vertical direction and of the same intensity, the moment of those 
loads gives the deflection D. 

Problems 

1. Determine the vertical deflection of the end B of the thin 
curved bar of uniform cross section and semicircular center line 
(Fig. 324). 

Solution. The strain energy of bending is 

S = M2rdcp 
i-J= ----= 

o =I, S T 2+2(1 - cos cp)%?$ o 2E1, ’ 

The deflection at the end is 

3n Pr3 
(1 - cos p)2dq = TF. 

z 
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2. Determine the horizontal displacement of the end B in the 
previous problem. 

2Pr3 
Answer. 6 = __. 

EI, 
3. Determine the increase in the distance between the ends A 

and B of a thin bar of uniform cross section consisting of a semi- 
circular portion CD and two straight portions AC and BD (Fig. 325). 

Answer. 

FIG. 324. FIG. 32.5. 

4. A link consisting of two semicircles and of two straight portions 
is submitted to the action of two equal and opposite forces acting 
along the vertical axis of symmetry (Fig. 326). Determine the max- 

4P 

4P 
FIG. 326. 

imum bending moment, assuming that the cross-sectional dimensions 
of the link are small in comparison with the radius r. 

Solution. Considering only one-quarter of the link (Fig. 3263), 
we find the statically indeterminate moment MO from the condition 
that the cross section on which this moment acts does not rotate. 
Then, 

dU 
- = 0. 
dMo 

Noting that for the straight portion A4 = MO and that for a curved 
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portion A4 = MO - (P/2)r(l - cos cp) and taking into considera- 
tion the strain energy of bending only, we find 

from which 

1 812 

s [ 
Pf- 2 

+- 
=I, o AJo - T (1 - cos cp) rdp = 0, 

1 I 

a-2 &fox-. 
2 21+ nr 

For I = 0, this coincides with eq. (224) obtained before for a circular 
ring. The largest moment is at the points of application of forces 
P and is equal to 

J/f1 zM,-;. 

5. Solve the previous problem, assuming that forces P are applied 
as shown in Fig. 326~. 

Arrswer. The bending moment at points A is 

M =~TZ(7r-2)+2Yl+12 
1 

- 2 n-r + 21 

For I = 0, the equation coincides with that for a circular ring. For 
r = 0, MI = P//4 as for a bar with built-in ends. 

6. Determine the bending moment MO and the increase in the 
vertical diameter of the circular ring shown in Fig. 320, assuming 
that the cross section of the ring is a rectangle of width 6 and depth 
h, dimensions which are not small in comparison with the radius r 
of the center line. 

Solution. If we use eq. (228) for the potential energy and eq. (b) 
for the bending moment, the equation for determining MO is 

dU T/2 &f 
-s 6 d&f0 o AEe 

- 2 
> 

dc,o = 0, 

from which 

,210=;(1 -;+?J. 

Comparing this with eq. (224), we see that the third term in the 
parentheses represents the effect of the longitudinal force and of 
the non-linear stress distribution. The magnitudes of the errors in 
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using the approximate eq. (224) instead of the above accurate equa- 
tion are given in Table 9 below: 

TABLE 9 

r/h = 1 1.5 2 3 
e/r = 0.090 0.038 0.021 0.009 

Error in ‘%, = 15.8 6.7 3.7 1.6 

It can be seen that in the majority of cases the approximate eq. 
(224) can be used for calculating MO and that the error is substantial 
only when h approaches r or becomes larger than Y. 

The increase in the vertical diameter of the ring is obtained from 
the equation 

Using eq. (228) for U and substituting in this equation 

A4 = iI& - ; (1 - cos cp), 
P P 

A7 = z cos ‘p’ 
Y = - - sin ‘p, 

we find 

~=~~~-j(~-~~+l.ll(~-3-:1+;:1. 

Comparison with eq. (226) h s ows that the effect of the longitudinal 
and shearing forces on the magnitude of 6 is usually very small.lg 

7. Determine the bending moments in a thin ring with two axes 
of symmetry submitted to the action of a uni- 

1; 
form internal pressure p. 

a 

Sozution. Consider one quadrant of the 

c x 
ring (Kg. 327), with semi-axes a and d. If 
Mo represents the statically indeterminate 

b moment at A, the bending moment at any 
Y cross section C with coordinates x and y is 

x A 

a 

M = MO - p& - X) + Pb ; x)2 + t?g 

a 

Pa 
FIG. 327. = j$f 

0 
pa2 1 px2 ; l?y2 

2 2 2’ 
(k) 

19 A more accurate solution of the problem shown in Fig. 320 is given by 
the author; see Bull. Polytech. Inst. (Kiev), 1910; see also Phil. Msg., Vol. 
44, p. 1014, 1922; and Theory of Elasticity, p. 121, 1951. This solution shows 
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Substituting into the equation dU/di& = 0, we find 

in which s denotes the length 

Then 

I, = 
s 

‘y’d.i 
0 

of the quadrant of the ring and 

r-8 
and Iv = x’ds. 

J 0 

If the ring has the shape of the link shown in Fig. 326, with a = r 
and b = I + r, we obtain 

1, = 1 (b - a)3 + F (6 - .)Z + ia” + 2&b - a), 

ry = (b - a)2 + 7. 

Substituting into eq. (I), we obtain 

The bending moment at any other cross section may now be obtained 
from eq. (k). 

For an elliptical ring the calculations are more complicated.“0 
Using the notations Jz + I, = ~‘6, A&, = -ppa2, and moment at 
R (Fig. 327) is A41 = 7pn2, then the values of the numerical factors 

that the above theory, based on the assumption that cross sections remain 
plane during bending, gives very satisfactory results. 

20 See J. A. C. H. Rresse, Cows de mkcanique appliqu;e, Paris, 3d Ed., 
p. 493, 1SSO. See also H. R&A, J. mat/z. (Liouville), Vol. 3, 1877; M. Mnrbec, 
Bull. assoc. tech. maritim-, Vol. 19, 190s; M. Goupil, Ann. pants et chausskees, 
Vol. ?, p. 356, 1912; Mayer Mita, Z. Ver. deut. Ing., Vol. 58, p. 649, 1914; 
LV. F. Burke, Nat. A&Gory Comm. Aeronaut., Tech. Notes, 444, 1933. 
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01, p and y, for different values of the ratio a/b, are as given in Table 
10 below: 

TABLE 10: CONSTANTS FOR CALCULATING ELLJFTICAL KINGS 

a/b = 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

~___ ______ 

a...... 1.571 1.663 1.795 1.982 2.273 2.736 3.559 5.327 
p...... 0 0.057 0.133 0.237 0.391 0.629 1.049 1.927 
y..,... 0 0.060 0.148 0.283 0.498 0.870 1.576 3.128 

8. A flat spiral spring (Fig. 328) is attached at the center to a 
spindle C. A couple AJo is applied to this spindle to wind up the 
spring. It is balanced by a horizontal force P at the outer end of 
the spring A and by the reaction at the axis of the spindle. Establish 
the relation between AJo and the angle of rotation of the spindle if 

all the dimensions of the spring are given. 
It is assumed that the angle of twist is 
not large enough to cause adjacent coils 
to touch each other. 

Solution. Taking the origin of coor- 
dinates at A, the bending moment at any 
point of the spring at distance y from the 
force P is M = Py. The change in the 
angle between two adjacent cross sections 
at the point taken, from eq. (214), is 

Mds Pyds 
FIG. 328. A& = ~ = ~. 

EI, EI, 

The total angle of rotation of one end of the spring with respect to 
the other during winding is 

S a Pyds P 

s 

8 
cp= __ 

o EI, = z ,, 
yds. Cm> 

The integral on the right side of this equation represents the moment 
of the center line of the spring with respect to the x axis. This mo- 
ment is obtained by multiplying the total length s of the spiral by 
the distance of its center of gravity from the x axis. In the usual 
case, it is sufficiently accurate to take this distance equal to r, the 
distance from the center of the spindle to the force P. Then, from 
eq. Cm>, Prs M,,s 

(P=EI,=El,. (n> 
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If the end A is pin-connected, the turning moment MO applied at C 
produces a reactive force P at the fixed end A of the spring. As long 
as the thickness of the spring is very small and the number of wind- 
ings of the spiral is large and the coils do not touch, the above assump- 
tion that the force P remains horizontal can be considered as suffi- 
ciently accurate. Hence eq. (n) holds.21 

9. Assuming that the spring represented in Fig. 328 is in an un- 
stressed condition and pin-connected at A, determine the maximum 
stress produced and the amount of energy stored in the spring by 
three complete turns of the spindle. Take the spring to be of steel, 
3 in. wide, &J in. thick and 120 in. long. 

Solution. Substituting the above figures into eq. (n), 

120 x 40” x 12 
6n = MO 

30 x 10” x + 

from which MO = 3.07 in. lb. 
The amount of energy stored is 

s 8 hPa5 P2 8 l-J= ~ 
,, 2EI = ZI o - S pas 

5 A4~2s 
- 36.1 in. lb. 

8 EI 

The maximum bending stress is at point B, where the bending 
moment can be taken equal to 2Pr = 2A40, so that 

~XLnx = 3.07 X 2 X 402 X 6 X 2 = 118,000 lb per sq in. 

10. A piston ring of a circular outer boundary has a rectangular 
cross section of constant width 6 and of a variable depth h (Fig. 
329). Determine the law of variation of the 
depth h in order to obtain a ring which, when n 

assembled with the piston in the cylinder, h m 

produces a uniformly distributed pressure on P 
the cylinder wall. ho 

Solution. Let r denote the inner radius of 
the cylinder and r + 6 the outer radius of the 
ring in the unstrained state. An approximate e 
solution of the problem is obtained by using 
the outer radius of the ring instead of the 

FIG. 329. 

21 A more complete discussion of the problem is given in the book by A. 
Castigliano, Zoc. cit., p. 212. See also E. C. Wadlow, Engineer, Vol. 150, p. 
474, 1930; and J. A. Van den Broek, Trans. A.S.M.E., Vol. 53, p. 247, 1931. 
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variable radius of curvature of its center line. Then, by using eq. 
(214), the change in curvature due to bending is 

Adq 1 1 M -=- --=--. 
ds r r+6 EI 

(0) 

The bending moment A4 produced at any cross section mn of the 
ring by the pressure p uniformly distributed over the outer surface 
of the ring is 

M = -2pbr2 sin2 5. (PI 

If we substitute this into eq. (0) and take bh3/12 for I and, for small 
6, use 6/r’ instead of (l/r) - l/(r + S), then the following equation 
for calculating h is obtained: 

from which 

6 p 24~’ cp 
2 = Eh”sin2-2y 

4 
hi3 = ‘,Fsin2z. 

Letting cp = ‘lr, the maximum value of lt3, denoted by ho3, is 

p 24r4 
ho3 = --. 

E 6 

(4) 

CT) 

The maximum bending stress at any cross section mn is 

M 12pr” sin” ((p/2) 
(r=-= 

z h” 
(4 

From (t) and (r) it may be seen that the maximum bending stress 
occurs at cp = T, i.e., at the cross section opposite to the slot of the 
ring. Substituting h = ho and cp = rr in eq. (t), 

from which he can be calculated if the working stress for the ring 
and the pressure p are given. The value of 6 is found by substituting 
he into eq. (5). 

It may be noted that if two equal and opposite tensile forces P 
be applied tangentially to the ends of the ring at the slot, they pro- 
duce at any cross section mn the bending moment 

- Pr(1 - cos cp) = -2Pr sin’ (p/2, 
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i.e., the bending moment varies with cp exactly in the same manner 
as that given by eq. (p). Therefore, if the ends of the open ring be 
pulled together and in this condition it be machined to the outer 
radius r, such a ring will, when assembled, produce a uniform pres- 
sure against the wall of the cylinder.22 

Determine, for example, 6 and ho for a cast-iron piston ring if 
T = 10 in., 0117 = 4,200 lb per sq in., p = 1.4 lb per sq in. and E = 
12 x 10’ lb per sq in. Substituting in eq. (IL), 
we find ho = 0.632 in. From eq. (s), P 

6 = 0.111 in. 
11. Derive formula (227), given on p. 381. 
12. A frame consisting of two vertical bars + 

--- -__ 
and a semicircular portion, Fig. 330, is acted 
upon by the force P directed along the axis 
of symmetry of the frame. Find the hori- 2 

zontal reactions H and the bending moment A H H B 
&’ at the point of application of the force P, fi 

1- 

assuming that the frame has a constant cross FIG. 330. 
section and that it is hinged at the supports 
A and B. Neglect the influence of longitudinal and shear force on 
the deformation. 

Solution. The magnitude of the forces H is obtained from the 
equation 

dU 
-= 0. 
dH 

The results can be put in the form 

H = klP, M = k2Pr, (0) 

where kl and kz are numerical factors depending on the magnitude 
of the ratio Z/r. Several values of these factors are given in Table 
11 below. 

.~ 

l/r = 1.2 1.4 

kl = 0.0984 0.0857 

kn = 0.284 0.294 

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

0.0754 0.0669 0.0598 0.0537 0.0486 0.0442 0.0403 0.0370 

0.304 0.313 0.321 0.328 0.335 0.341 0.347 0.352 

22 This theory was developed by H. R&al, Ann. mines, Vol. 5, p. 38, 
1874; Cumpt. rend., Vol. 73, p. 542, 1871. See also I+:. Reinhardt, Z. Ver. 
deut. Ing., Vol. 45, p. 232, 1901; H. Friedmann, Z. ijsterr. Ing. Architekt.-Yer., 
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13. Solve the preceding problem, assuming that at the supports 
A and B the ends of the frame are built in. 

Answer. The values H and M are given by formulas (0). The 
numerical values of the factors kr and ks are given in Table 12. 

TABLE 12 

I/r = 

kl = 

kp = 

1.2 1.4 

~___ 

0.1659 0.1459 
-~ 

0.2479 0.2590 

1.6 1.8 2.0 2.2 

~- -~ 

0.1295 0.1157 0.1040 0.0941 

2.4 2.6 2.8 

~-- 

0.0855 0.0781 0.0716 

0.3021 0.3067 0.3152 

- 

3.0 

0.0659 

0.3211 

It is seen that by building in the ends of the frame the maximum bend- 
ing moment M is somewhat smaller than in the preceding problem. 

The results obtained can be utilized 

AP for analyzing stresses in the chain link of 
Fig. 326, provided a stud is inserted to 
prevent any change in the horizontal di- 
mension of the link. 

14. Find bending moment MO and ten- 
sile force H in the cross section A of the 
symmetrically loaded circular ring shown 
in Fig. 331. 

Answer. 

a-c? H = P . - tan Q 
2n 

, 

Pr 
l<lG. 331. MO = - 2; [ 1 + set a - (7r - a) tan a]. 

81. Arch Hinged at the Ends.-Figure 332 shows an arch 
with hinged ends at the same level carrying a vertical load. 
The vertical components of the reactions at A and B may be 
determined from equations of equilibrium in the same manner 
as for a simply supported beam, and the horizontal compo- 
nents must be equal and opposite in direction. The magnitude 

Vol. 60, p. 632, 1908, and 2. Ye,. deut. Ing., Vol. 68, p. 254, 1424. Regard- 
ing rings in space, see N. J. Hoff, “Edge Reinforcements of Cutouts in Mono- 
coques, ” J. Appl. Me& Vol. 10, p. 161, 1943. 
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H of these components is called the Gzrust of the arch. It can- 
not be obtained statically, but may be determined by use of 
the theorem of Castigliano. In the case of a flat arch, the two 
last terms in the general expression (228) for the strain energy 

FIG. 332. 

can be neglected and for usual proportions of arches the prod- 
uct Aer can be replaced by the moment of inertia 1, of the 
cross section. The equation for calculating H is then 

dU d s M2 - -- 
dH - dH ,, 2EI,+ 

s (- (4 

The bending moment at any cross section mn of the arch is 

M = MO - Hy, 

in which M, is the bending moment calculated for the corre- 
sponding section of a simply supported beam having the same 
load and the same span as the arch. The second term under 
the integral sign of eq. (a) represents the strain energy due to 
compression in the tangential direction and is of secondary 
importance. A satisfactory approximation for flat arches is 
obtained by assuming this compression equal to the thrust FL 
Substituting expression (b) and N = H in eq. (a), we obtain 

S ' (MO - HY)Y~J - 
0 EJZ 

from which 

(229) 



396 STRENGTH OF MATERIALS 

For an arch of constant cross section, using the notation 
k2 = I,/A, eq. (229) becomes 

S 
8 Moyds H=y-o s. 

S y2ds i- k2 ds 
0 S 0 

(230) 

The second term in the denominator represents the effect of 
the shortening of the center line of the arch due to the longi- 
tudinal compression. In many cases it is small and can be 
neglected. Then 

S 
.3 
J4uds 

H= OS - (231) 

S y2ds 
0 

Take, for example, the case of a parabolic arch carrying a 
continuous load uniformly distributed along the length of the 
span with a center line given by the equation: 

4fx(l - x) 
y = 

i2 * cc> 

Then 

MO = 2 x(l - x). 

Substituting (c) and (d) into eq. (231), we obtain 

(4 

The actual thrust, H, will be less than that obtained from 
eq. (e). To give some idea of the possible error AH, the ratios 
(AH)/H for various proportions of arches are given in Table 13 
below.23 In calculating this table the complete expression 

*a See author’s paper, “Calcul des arcs tlastiques,” Paris, B&ranger Ed., 
1922. 
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TABLE 13 

AH 
- = 0.1771 
H 

1 

20 

0.0513 

1 

20 

1 

%I 

1 1 

20 30 

3.0235 0.0837 1.0224 ( 

- 

- 

, 

- 

0.0101 

1 

lo 

0.0175 0.00444 / 0.00198 

(228) for stram energy was used and it was assumed that for 
any cross section of the arch 

= 
I 

397 

1 

4 

I 

Acl A=-..-- and 
EICl El, = -9 

cos (0 cos (0 

where A0 and EIo are, respectively, the cross-sectional area 
and the flexural rigidity of the arch at the top, cp is the angle 
between the cross section and they axis and Iz is the depth of 
the cross section at the top. Eq. (e) was used in calculating 
the value of H in the ratio AH/H. The table shows that the 
error in using eq. (e) has a substantial magnitude only for flat 
arches of considerable thickness. 

Since the supports of the arch are a fixed distance apart, a 
change in temperature may produce appreciable stresses in 
the structure. To calculate the thrust due to an increase in 
temperature oft degrees, we assume that one of the supports is 
movable. Then, thermal expansion would increase the span 
of the arch by Iczt, where a is the coefficient of thermal ex- 
pansion of the material of the arch. The thrust is then found 
from the condition that it prevents such an expansion by pro- 
ducing a decrease in the span equal to orlt. Using the Castigli- 
ano theorem, we obtain 
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Taking only the thermal effect and putting M, = 0 and N = H, 
we obtain from (f) 

(232) 

A more detailed study of stresses in arches may be found in 
books on the theory of structures. 

82. Stresses in a Flywheel. 24 -Due to the effect of the spokes, the 
rim of a rotating flywheel undergoes not only extension but also 
bending. We take as the free body a portion of the rim (Fig. 3336) 

FIG. 333. 

between two cross sections which bisect the angles between the 
spokes. Let 

r = the radius of the center line of the rim, 
A = the cross-sectional area of the rim, 

A1 = the cross-sectional area of a spoke, 
I = moment of inertia of the cross section of the rim, 

20( = the angle between two consecutive spokes, 
Q = the weight of the rim per unit length of the center line, 

q1 = the weight of a spoke per unit length, 
w = the angular velocity of the wheel. 

From the condition of symmetry, there can be no shearing stresses 
over the cross sections A and B and the forces acting on these cross 
sections are reducible to the longitudinal force No and the bending 
moment MO. If X denotes the force exerted by the spoke on the rim, 
the equation of equilibrium of the portion AB of the rim is 

21 A very complete study of the bending of circular rings with spokes 
is given by C. U. Biezeno and R. Grammel, Zoc. cit., p. 381. 
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2No sin LY + X - 2r2 4 u2 sin (Y = 0, 

from which 
g 

4 No = - w2y2 - 
X -. 

R 2 sin (Y 

The longitudinal force N at any cross section mn is 

(4 

qw2r cp p?r” xcos $0 
N=iV0cos~+~2rsin’~=-------~ (4 

s R 2 sin a! 

The bending moment for the same cross section is 
23 

A4 = A40 - N&l - cos cp) + YL 2 sin’ ?? 
K 2 

= Al, + -z sin2 5. (cl 
sm 01 

The force X and the moment MO cannot be determined from the 
equations of statics but are calculated by use of the theorem of least 
work. The strain energy of the portion AB of the rim is 25 

iY1 = 2 s a M2rdp S a N2rdq 
--++ -. 

o 213 ,, 2EA 
(4 

The tensile force Nl at any cross section of the spoke at distance p 
from the center of the wheel is 26 

Nl = X + ;; (r2 - P2>. 

Hence, the strain energy of the spoke is 

S r N12dp 
u,= ~. 

n 2AIE 

The equations for calculating MC, and X are 

(e> 

26 It is assumed that the thickness of the rim is small in comparison with 
T and only the energy of bending and tension is taken into account. 

26 The length of the spoke is taken equal to r. In practice it will be some- 
what less than r. 
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Substituting (d) and (e), we obtain, from eqs. (f) and (g), 

in which 

2 p2r2 1 
X=--. 

3 g Ar2 
7f2’“’ +fl(ff) + 2’ 

(234) 

Several values of the functions jr and f2, for various numbers of 
spokes, are given in Table 14 below. 

TABLE 14 

?I= 4 6 8 
--- ~- 

fib) 0.643 0.957 1.274 
--- -___ 
.a4 0.00608 0.0016Y 0.0007c 

Using this table, the force X in the spoke is readily determined 
from eq. (234) and the bending moment M0 from eq. (233). Then 
the longitudinal force and bending moment for any cross section mn 
of the rim may be found from eqs. (a), (6), and (c).“’ 

Take, as an example, a steel flywheel rotating at 600 rpm, with 
radius r = 60 in., cross section of the rim a square 12 X 12 sq in. 
and with six spokes of cross sectional area Al = 24 sq in. If the rim 

s7 The above theory was developed by R. Bredt, 2. Yer. deut. Ing., Vol. 
45, p. 267, 1901; and H. Brauer, Dinglers Polytech. J., p. 3.53, 1908. See 
also J. G. Longbottom, Proc. Inst. Mech. Engrs. (London), p. 43, 1924; and 
K. Reinhardt, Forschungsarb., No. 226, 1920. A similar problem arises when 
calculating stresses in retaining rings oflarge turbogenerators; see E. Schwerin, 
Electrotech. Z., p. 40, 1931. 
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is first considered as a rotating ring which can expand freely, then 
the tensile stress due to centrifugal force is, from p. 32, 

go = 0.106 v12 = 0.106 X $ X 600 X 5’ = 10,450 lb per sq in. 

In the case of six spokes, cy = 3O”,fr(cr) = 0.957,fs(cu) = 0.00169. 
Then the force in each spoke is, from eq. (234), 

,=?E. 1 = 0.0893 gW2r2. 
3 g 300 x 0.00169 + 0.957 + 6 g 

The longitudinal force for the cross section bisecting the angle be- 
tween the spokes is, from eq. (a), 

No - qW2r2 0.0893 gW2r2 = 0.911 qW2r2. 
g g g 

The bending moment for the same cross section, from eq. (233), is 

2cl, = -0.00402e. 
g 

The maximum stress at this cross section is 

Nrl MO 
CT Inax = -- - - 

A z 
= 10,780 lb per sq in. 

For the cross section of the rim at the axis of the spoke, eqs. (b) 
and (c) give 

(N),,a = 0.923 rlo?‘Tl (fz/r),=, = 0.00794 qW2r”. 
g g 

The maximum stress at this cross section is 

~m:tx = 12,100 lb per sq in. 

In this case the effect of the bending of the rim on the maximum 
stress is small and the calculation of the stresses in the rim as if it 
were a free rotating ring gives a satisfactory result. 

83. Deflection Curve for a Bar with a Circular Center Line. 
-In the case of a thin curved bar with a circular center line 
the differential equation for the deflection curve is analogous 
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to that for a straight bar (eq. 79, p. 139). Let ABCD (Fig. 
334) represent the center line of a circular ring after deforma- 
tion and let u denote the small radial displacements during 
this deformation. The variation in the curvature of the center 
line during bending can be studied by considering one element 
mn of the ring and the corresponding element mlnl of the de- 

n 

FIG. 334. 

formed ring included between the same radii (Fig. 3346). The 
initial length of the element mn and its initial curvature are 

For small deflections, the curvature of the same element after 
deformation can be taken equal to the curvature of the element 
mrnr. This latter is given by the equation 

1 do -I- A& -= 
ds f Ads ’ (4 

r1 

in which dp + Adp denotes the angle between the normal 
cross sections ml and nl of the deformed bar and ds + Ads the 
length of the element mlnl. The displacement u is considered 
positive if towards the center of the ring and is assumed to be 
very small in comparison with the radius of the ring. Then 
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the angle between the tangent at ml to the center line and the 
normal to the radius ml0 is du/ds. The corresponding angle 
at the cross section nl is 

Then 

du 
;; + $ds. 

Adp = 2 ds. (0 

In comparing the length of the element mlnl with that of the 
element mn, the small angle du/ds is neglected and the length 
mlnl is taken equal to (r - U)L~P. Then 

UdS 
Ads = -u& = - --I 

r 

Substituting (L) and (d) into eq. (6), we obtain 

1 
dq + ‘$ ds 

or neglecting the small quantities of higher order, 

1 
- = -- 
r1 

from which 
1 1 ---= 

r1 r 
;+fr (e> 

The relationship between the change in curvature and the 
magnitude of bending moment, from eq. (214), for thin bars is 

1 1 M ---= --. 
r1 r EI cf) 

The minus sign on the right side of the equation follows from 
the sign of the bending moment which is taken to be positive 
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when it produces a decrease in the initial curvature of the bar 
(Fig. 308). From (e) and (f) it follows that 

d’u 
s+;= -g (23 5) 

This is the differential equation for the deflection curve fo a 
thin bar with circular center line. For an infinitely large r 
this equation coincides with eq. (79) for straight bars. 

As an example of the application of eq. (235), let us con- 
sider the problem represented in Fig. 320. The bending mo- 
ment at any cross section mlnl is, from eq. (c), p. 380, 

M=;~(cosp-~)l 
and eq. (235) becomes 

d2u 
>+$ = 2,771 “(t - ..,,) 

or 
d”u 

2+ 

The general solution of this equation is 

Pr” P? 
u=Aco~~+Bsin~+~~-;~~~sin(~. 

n- 

The constants of integration A and B are determined from the 
condition of symmetry: 

du 
- = 0, 

& 
atp = Oandcp = iy 

which are satisfied by taking 

B = 0, 
Pr” ‘/y= --. 
4EI 

Then 
Pr3 Pr3 . Pr3 

u = Ez - xI cp sm cp - 4EI cos cp. 
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For cp = 0 and cp = 7r/2, we obtain 

These results are in complete agreement with eqs. (227) and 
(226) obtained before by using the Castigliano theorem.28 

84. Bending of Curved Tubes.-In discussing the distribu- 
tion of bending stresses in curved bars (Art. 77), it was assumed 
that the shape of the cross section remains unchanged. Such 
an assumption is justifiable as long as we have a solid bar, be- 
cause the very small displacements in the plane of the cross 
section due to lateral contraction and expansion have no sub- 
stantial effect on the stress distribution. The condition is very 
different, however, in the case of a thin curved tube in bending. 
It is well known that curved tubes with comparatively thin 
walls prove to be more flexible during bending than would be 
expected from the usual theory of curved bars.29 A considera- 
tion of the distortion of the cross section during bending is 
necessary in such cases.30 

Consider an element between two adjacent cross sections 
of a curved round pipe (Fig. 335) which is bent by couples in 

28 Differential eq. (235) for the deflection of a circular ring was established 
by H. R&al. See his Trait; du m&unique g&era/, Vol. 5, p. 78, 1880. See 
also J. Roussinesq, Compt. rerrd., Vol. 97, p. 543, 1883; and H. Lamb, Proc. 
London Math. Sot., Vol. 19, p. 365, 1888. Various examples of applications 
of this equation are given in a paper by R. Mayer, 2. angew. Math. U. Phytys., 
Vol. 61, p. 246, 1913; see also K. Federhofer, Wasserkraft u. Wasserwirtsch., 
Vol. 38, p. 237, 1943. 

28 Extensive experimental work on the flexibility of pipe bends was done 
by A. Rantlin, Z. Ver. deut. Ing., Vol. 54, p. 45, 1910, and Forschunxsarb., 
No, 96. See also Vi’. Hovgaard, J. Math. axd Phy,ys., Vol. 7, 1928, and A. M. 
Wahl, Trans. A.S.M.E., Vol. 49, 1927. The problem of flexibility of curved 
pipes is of practical importance in analyzing stresses in pipe lines. The 
recent literature on this subject is given in the paper by J. E. Rrock, J. Appf. 
Mech., Vol. 13, p. 501, 1952. See also the paper by N. Gross presented at 
a meeting of the Institution of Mechanical Engineers, London, Dec. 1952. 

30 This problem for pipes of circular section was discussed by Th. K&m&n, 
2. Ver. deut. Ing., Vol. 55, p. 1889, 1911. Rending of pipes of elliptic cross 
section was investigated by M. T. Huber. See Proc. 7th Internat. Congr. 
Appf. Math. Me&., Vol. 1, p. 322, 1948. The case of curved pipes of rec- 
tangular cross section was considered by the author; see Trans. A.S.M.E., 
Vol. 45, p. 135, 1923. 
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the direction indicated. Since both the tensile forces at the 

FIG. 33.5. 

wards the neutral axis by 6. The 

convex side of the tube and 
the compressive forces at the 
concave side have resultants 
towards the neutral axis, the 
previously circular cross sec- 
tions are flattened and be- 
come elliptical. This flat- 
tening of the cross section 
affects the strain of longi- 
tudinal fibers of the tube. 
The outer fiber ad takes some 
position albl after bending; 
denote its displacement to- 
total elongation of the fiber is 

albl - ab = albl - ale1 - (ah - aleI). (4 
The angle between the adjacent cross sections ac and bd is 
denoted by dp, its variation during bending by Adp, the radius 
of the center line by r and the radius of the cross section of the 
tube by a. It is assumed that the ratio a/r is small enough so 
that the neutral axis can be taken as passing through the cen- 
troid of the cross section. Then, from the figure we obtain 

albl - ale1 = (a - 6)Adp z aAdp.31 

The total elongation of the fiber ab, as given by eq. (a), is 

a Adp - 6dp 

and the unit elongation is 

a Adp - 6dp a A& 6 
’ = (ra)dq 

- __-. 
r-i-a & r+a 

(4 

The first term on the right side of this equation represents the 
strain in the fiber due to rotation of the cross section bd with 
respect to the cross section ac. This is the elongation which is 
considered in the bending of solid bars. The second term on 

31 The displacement 6 is considered as very small in comparison with the 
radius a. 
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the right side of eq. (b) represents the effect of the flattening 
of the cross section. It is evident that this effect may be of 
considerable importance. Take, for instance, r + a = 60 in. 
and 6 = 0.02 in. Then 6/(r + a) = l/3,000 and the corre- 
sponding stress for a steel tube is 10,000 lb per sq in. Hence 
a very small flattening of the cross section produces a sub- 
stantial decrease in the stress at the outermost fiber ab. A 
similar conclusion may be drawn for the fiber cd on the con- 
cave side of the bend. 

A change in the direction of the bending moment causes a 
change of sign of the normal stresses and as a result, instead 
of a flattening of the tube in the radial direction, there is a 
flattening in the direction perpendicular to the plane of Fig. 
335 and the fiber ab, due to this flattening, is displaced out- 
ward. From the same reasoning as above it may be shown 
that here again the flattening of the cross section produces a 
decrease in the stress at the most remote fibers. It may there- 
fore be concluded that the fibers of the tube farthest from the 
neutral axis do not take the share in the stresses which the 
ordinary theory of bending indicates. This affects the bending 
of the tube in the same way as a decrease in its moment of 
inertia. Instead of eq. (214) which was derived for solid 
curved bars, the following equation must be used in calculating 
the deflections of thin tubes: 

Adp = s, (236) 
z 

in which k is a numerical factor, less than unity, which takes 
account of the flattening. This factor depends upon the pro- 
portions of the bend and can be calculated from the following 
approximate formula : 32 

(23’0 

in which t is the thickness of the tube. This indicates that the 

32 See paper by Th. K&m&, lot. cit., p. 405. 
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effect of the flattening depends only upon the magnitude of the 
ratio &/a’. 

As for the effect of the flattening on the stress distribution, 
K&-mz!in showed that instead of the simple equation for nor- 
mal bending stresses 33 c = My/I,, in which y denotes the 
distance from the neutral axis, the following more complicated 
equation must be used: 

in which 

The maximum stress, obtained from (c), is 

(238) 

in which d is the outer diameter of the tube and 

is a numerical factor which depends upon the proportions of 
the bend. Several values of kl are given in Table 15 below : 

TABLE 15 

I I I 

It is seen that when &+/a” is small, the actual maximum stress 
is considerably greater than that given by the usual theory 
which neglects the flattening of the cross section. 

33 It is assumed that r is large in comparison with a and that a linear stress 
distribution is a sufficiently accurate assumption. 
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A theory analogous to the above may also be developed in 
the case of a tube of rectangular cross section.34 For example, 
in the case of a thin tube of square cross section, the coefficient 
k in eq. (236) is found to depend upon the magnitude of the 
ratio 

in which t is the thickness of the wall, r the radius of the center 
line of the bend and b the length of the side of the cross section. 
Then 

k= 
1 + 0.0270~ 
1 + 0.0656n’ 

(239) 

For instance, if b/r = 0.1 and b/t = 50, we obtain n = 2.5 
and, from (239), k = 0.63. The maximum stress in tubes of 
rectangular section increases in the same proportion as the 
flexibility, i.e., in the above example the distortion of the 
cross section increases the maximum 
stress by approximately 60 per centa 

If the cross section of a curved bar 
has flanges of considerable width, the 
question of distortion of the cross sec- 
tion again becomes of practical impor- 
tance. We have such a problem, for 
example, when investigating bending u 
stresses at a corner of a rigid frame of M 
I section, Fig. 336~. Considering an 

FIG. 336. 

element of the frame between the two consecutive cross 
sections mn and mlnl, we see that the longitudinal bending 
stresses c in the flanges have components in a radial direction 
which tend to produce bending of the flanges, Fig. 3363. This 
bending results in some diminishing of the longitudinal bend- 
ing stress u in portions of the flanges at a considerable distance 

34 Such a problem occurs, for instance, in the design of a Fairbairn crane. 
See footnote 30, p. 405. 

35 For further development of the theory of bending of curved tubes, see 
L. Beskin, J. Appl. Meclt., Vol. 12, 1945; E. Reissner, Proc. Nat. Acad. Sci., 
Vol. 35, p. 204, 1949; R. A. Clark, T. 1. Gilroy and E. Reissner, /. Appl. 
Mech., Vol. 19, 1952. 
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from the web. To take this fact into account, an e$ective 
width otb of a flange must be used in applying formula (i), 
p. 371, for an I section. Naturally the magnitude of the fac- 
tor CC, defining the effective width of the flange, depends on the 
flexibility of the flanges, which is expressed by the quantity 

in which t is the thickness of the flange and r the radius of 
curvature of the flange. E’or the inner flange r = rl, and for 
the outer flange r = r2. The calculations show that if p < 0.65, 
the bending of the flanges can be neglected and we can directly 
apply the theory developed in Art. 79. For larger values of 
0 the formula 

ah = (i - &)b (6) 

can be used 3~ for calculating the effective width of a flange. 
Assume, for example, that we have the width of the flange 
b = 6 in., the corresponding radius r = 8 in. and the thick- 
ness t = 1 in. Then, from formula (d), we obtain p = 2.80 
and the effective width of the flange is 0.35 X 6 = 2.1 in. 

85. Bending of a Curved Bar Out of Its Plane of Initial 
Curvature.-In our previous discussion we have dealt with the 
bending of curved bars in the plane of their initial curvature. 
There are cases, however, in which the forces acting on a 
curved bar do not lie in the plane of the center line of the bar.s7 

s8 For derivation of this formula see doctoral dissertation by Otto Stein- 
hard& Darmstadt, 1938. The experiments made by Steinhardt are in satis- 
factory agreement with the formula. 

3’ Several problems of this kind have been discussed by I. Stutz, 2. 
Csterr. Architekt.-u. Ipig.-Ver., p- 652, 1904; H. Miiller-Breslau, Die neueren 
Methoden der Festigkeitslehre, 2d Ed., p. 258, 1013, and 4th Ed., p. 265; and 
B. G. Kannenberg, Eisezbau, p. 329, 1913. The case of a circular ring sup- 
ported at several points and loaded by forces perpendicular to the plane of 
the ring was discussed by F. Diisterbehn, Eisenbau, p. 73, 1920; and by G. 
Unold, Forschungsarb., ATo. 255, 1922. The same problem was discussed by 
C. B. Biezeno by using the principle of least work, Ingenieur (Utrecht), 
1927, and Z. cangezer. Mat/z. u. Mech., Vol. 8, p. 237, 1928. The application 
of trigonometric series in the same problem is shown by Biezeno and J. J. 
Koch, ibid., Vol. 16, p, 321, 1936. The problem is of a practical importance 
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Then it is necessary to consider 
the deflection of the bar in two 
perpendicular planes and the twist 
of the bar. A simple problem of 
this kind is shown in Fig. 3370 in 
which a portion of a horizontal 
circular ring, built in at A, is 
loaded by a vertical load P applied 
at the end B.38 Considering a 
cross section D of the bar and 
taking the coordinate axes as 
shown in Figs. 3376 and 337~ 3g 
we find that the moments of the 
external load P with respect to 
these axes are FIG. 337. 

A4, = -Pr sin (0~ - cp), M, = 0, 

ivf, = Pr[l - cos (a - p)]. (a> 

By using these expressions the bending and torsional stresses 
can be calculated in any cross section of the bar. In calculat- 
ing the deflection at the end B the Castigliano theorem will be 
used, for which purpose we need the expression for the strain 
energy of the bar. Assuming that the cross-sectional dimen- 
sions of the bar are small in comparison with the radius r, 
we apply the same formulas as previously derived for a straight 
bar (see eqs. 186 and 190). Thus the expression for the strain 

in design of steam piping. Th e corresponding bibliography is given in the 
paper by H. E. Mayrose, J. AppZ. Mech., Vol. 4, p. 89, 1937. See also 
A. H. Gibson and E. G. Ritchie, A Study of the Circular-Arc Bow-Girder, 
London, 1914. A complete study of the problem will be found in the book 
by Biezeno and R. Grammel, Zoc. cit., p. 381. See also the publications of 
M. B. Hogan in BUZZ. Univ. of Utah, Vol. 34,194344; Vol. 35,1945, and 1947; 
Vol. 36, 1947; Vol. 38, 1948. In the last bulletin a list of numerous publica- 
tions dealing with circular rings is given. 

38 This problem has been discussed by St.-Venant; see his papers in 
Compt. rend., Vol. 17, 1843. 

89 It is assumed that the horizontal axis x and the vertical axis y are the 
axes of symmetry of the cross section and that the z axis is tangent to the 
center line of the ring at D. 
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energy of the bar is 

where C denotes the torsional rigidity of the bar.40 The re- 
quired deflection 6 is then obtained from the equation 

Substituting for U expression (b) and observing that 

aA4, 
-= --rsin(a--cp) and 

dMZ 

dP 
- = r[l - cos (cz - cp)], 
dP 

we obtain 

sin’ (CXJ - cp) 

+ F$ [l - cos (Q( - (p)12 (240) 

In the particular case when a = r/2, 

If the cross section of the ring is circular, C = GI, = 2G1,; 
taking E = 2.6G, we obtain 

6 = ;; [; + 1.3 (; - 2)] = 1.248;;. (241) 

As an example of a statically indeterminate problem, let us 
consider a horizontal semicircular bar with built-in ends, 
loaded at the middle, Fig. 33%~. Considering only small 

40 ‘The calculation of C for various shapes of cross section is discussed in 
Chap. VII, Part II. For a more rigorous discussion of stresses in a portion of 
a ring see Theory of Elasticity, p. 391, 1951. 
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vertical deflections of the bar, we can entirely neglect any dis- 
placements in the horizontal plane as small quantities of a 
higher order. Hence there will be no bending of the ring in 
its plane and no forces or moments in that plane at the ends 
A and B. Considering the built-in end B, we conclude from 
the equilibrium conditions that there will act a vertical reac- 
tion P/2 and the moment Mz, = Pr/2. The moment M,, will 
also act, preventing the end section B from rotation with re- 
spect to the z. axis. The magni- 
tude of this moment cannot be 
determined from statics. We shall 
find it by using the principle of 
least work, which requires that 

au 
~ = 0. 
aM,, 

(4 

In deriving the expression for 
strain energy of the bar we rep- FIG. 338. 

resent the moments applied at the 
end B by the vectors Pr/2 and M,,, as shown in Fig. 338b. 
Then the moments Mz and M, at any cross section D are 

Pr PT- 
M, = ~- cos cp - Mzo sin C,G - ~~~ sin cp, 

2 2 (e> 

M, = I;’ sin cp + Mao cos cp - -‘$ (1 - COS CP), (f> 

and the expression for strain energy is 

Substituting this in eq. (d) and observing that 

ahI, . aw 
aM, = - s1n p' 

--- = 
ahf,, cos p, 
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we obtain 

1 dz Pr -- 
s (-- EIz 0 2 

sin2 cp f M,, sin2 cp 

Pf” 
- 1sinqcosc)& +ilTt2 [csinacosp 

P?” 
fMZ”COS2cp - -;-(1 - coscp)coscp & = 0, I 

from which 

(242) 

The minus sign indicates that the direction of M,, is opposite 
to that shown in Fig. 338a. Knowing M,,, we obtain the bend- 
ing and the twisting moments at any cross section from the 
expressions (e) and (f). 

The maximum deflection is evidently under the load and 
we readily obtain it from Castigliano’s equation: 

Substituting expression (g) for U and observing that 

aJ4z __ = 
C=IP 

cos p - sin cp), 

we obtain 

sin cp + cos cp - l), 

;) + ; - 4 + 0.3631) 

(h) 

(i> 
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In the calculation of the partial derivatives (i) we disregarded 
the fact that the twisting moment M,, is not an independent 
quantity but is a function of P as defined by expression (242). 
If we take this into consideration, then the right-hand side of 
eq. (A) will be written in the following form: 

But the second term in this expression vanishes, by virtue of 
eq. (d). Hence our previous procedure of calculating deflec- 
tion 6 is justified. 

Sometimes we have to consider curved bars for which the 
axis is not a curve in a plane, and we have a three-dimensional 
problem. Problems of such kind are encountered, for exam- 
ple, in analyzing edge reinforcements of cutouts in mono- 
coques. Here again Castigliano’s method can be used to 
advantage.41 

Problems 

1. A curved bar with circular axis and with LY = a/2 (Pig. 337) 
is loaded at end B by a twisting couple M, = T. Find the deflec- 
tion of the end B in the vertical direction. 

Answer. Assuming EI,/C = 1.3, 6 = 0.506 g. 

2. Solve the preceding problem, assuming that Lt end B a bend- 
ing coupIe, Mx = MO, is applied in the vertical plane tangent to the 
center line at B. 

Ml/ 
Answer. 6 = 1.150-. 

EIZ 
3. A semicircular bar with the center line 

in a horizontal plane is built in at A and B 
and loaded symmetrically by two vertical 
loads P at C and D, Fig. 339. Find the 
twisting moments M,, at the built-in ends. 

Answer. 
FIG. 339. 

2 
M,, = - - Pr 

7r 
5 - cos p - 0 sin P . 

41 See paper by K. Marguerre, Luftfahrt-Forsch., Vol. 18, pp. ‘X3-61, 1941; 
and lvat. &oisory ~omm. Aeronatrt. Mem. No. 1005, 1942. See also N. J. 
Hoff, lot. cit., p. 3%. 
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4. Solve the preceding problem for the case of a uniform vertical 
load of intensity q distributed along the entire length of the bar. 

Answer. Adz, = -qr2 = --0.32qr2. 

5. The horizontal semicircular bar, shown in Fig. 339 and uni- 
formly loaded as in the preceding problem, is supported at the 
middle cross section F. Find the vertical reaction N at the sup- 
port F. 

Answer. N = 2qr. 



APPENDIX A 

MOMENTS OF INERTIA OF PLANE AREAS 

I. The Moment of Inertia of a Plane Area with Respect to an 
Axis in Its Plane 

In discussing the bending of beams, we encounter integrals 
of the type 

I, = y2dA, S (243) 
A 

in which each element of area a54 is multiplied by the square 
of its distance from the z axis and integration is extended over 
the cross-sectional area A of the beam (Fig. 340). Such an 
integral is called the moment of inertia of the area A with re- 
spect to the z axis. In simple cases, moments of inertia can 

FIG. 340. FIG. 341. 

readily be calculated analytically. Take, for instance, a rec- 
tangle (Fig. 341). In calculating the moment of inertia of this 
rectangle with respect to the horizontal axis of symmetry z we 
can divide the rectangle into infinitesimal elements such as 
shown in the figure by the shaded area. Then 

.h,‘2 

I, = 2 J y’bdy = bh3/12. 
0 

417 

(244) 
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In the same manner, the moment of inertia of the rectangle 
with respect to they axis is 

b/2 
I, = 2 S, z2hdz = hb3/12. 

0 

Eq. (244) can also be used for calculating I, for the paral- 
lelogram shown in Fig. 342, because this parallelogram can be 
obtained from the rectangle shown by dotted lines by a dis- 
placement parallel to the axis z of elements such as the one 
shown. The areas of the elements and their distances from 
the z axis remain unchanged during such displacement so that 
I, is the same as for the rectangle. 

FIG. 342. FIG. 343. 

In calculating the moment of inertia of a triangle with 
respect to the base (Fig. 343), the area of an element such as 
shown in the figure is 

d/4 = h?dy 

and eq. (243) gives 

s 

h h-y 
I,= b- 

0 
h y2dy = bh3/12. 

The method of calculation illustrated by the above examples 
can be used in the most general case. The moment of inertia 
is obtained by dividing the figure into infinitesimal strips par- 
allel to the axis and then integrating as in eq. (243). 

The calculation can often be simplified if the figure can be 
divided into portions whose moments of inertia about the axis 
are known. In such case, the total moment of inertia is the 
sum of the moments of inertia of all the parts. 
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From its definition, eq. (243), it follows that the moment of 
inertia of an area with respect to an axis has the dimensions 
of a length raised to the fourth power. Hence, by dividing the 
moment of inertia with respect to a certain axis by the cross- 
sectional area of the figure, the square of a certain length is 
obtained. This length k is called the radius of gyration with 
respect to that axis. For they and z axes, the radii of gyration 
are 

k,=1/I,lA, k, = m. (245) 

Problems 

1. Find the moment of inertia of the rectangle in Fig. 341 with 
respect to the base. 

Answer. I,# = bh3/3. 
2. Find the moment of inertia of the triangle ABC with respect 

to the axis z’ (Fig. 343). 
Solution. This moment of inertia is the difference between the 

moment of inertia of the parallelogram ABDC and the triangle BDC. 
Hence, 

I,# = bh3/3 - bh3/12 = dh3/4. 

3. Find I, for the cross sections shown in Fig. 344. 
Answer. For (a), I, = a4/12 - (n - 2h)4/12; for (d) and (c), 

I, = ba3/12 - 
(b - hI)(a - 2h)” 

12 . 

4. Find the moment of inertia of a 
respect to a diagonal of the square. 

Answer. I = a4/12. 

square with sides a with 

5. Find k, and k, for the rectangle shown in Fig. 341. 
Answer. k, = b/24, k, = h/2.6. 
6. Find k, for Figs. 344a and 3446. 
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II. Polar Moment of Inertia of a Plane Area 

The moment of inertia of a plane area with respect to an 
axis perpendicular to the plane of the figure is called the polar 
moment of inertia with respect to the point where the axis in- 
tersects the plane (point 0 in Fig. 340). It is defined as the 
integral 

I, = 
s 

radA, (246) 
A 

in which each element of area d/i’ is multiplied by the square of 
its distance to the axis and integration is extended over the 
entire area of the figure. 

Referring to Fig. 340, we have r2 = y2 + z2, and from 
eq. (246) 

I, = 
s 

(y” + z2)dA = I, + I,. (247) 
A 

That is, the polar moment of inertia with respect to any point 

FIG. 345. 

0 is equal to the sum of the moments of in- 
ertia with respect to two perpendicular 
axes y and z through the same point. 

Let us consider a circular cross section. 
W’e encounter the polar moment of inertia 
of a circle with respect to its center in dis- 
cussing the twist of a circular shaft (see 
Art. 61). If we divide the area of the cir- 
cle into thin elemental rings, as shown in 

Fig. 34.5, we have dA = 2rrrdr, and from eq. (246), 

S 
di2 

r, = 27T r3dr = rd4/32. 
0 

(248) 

We know from symmetry that in this case I, = I,, hence, from 
eqs. (247) and (248), 

I, = I, = $1, = rd4/64. (24% 

The moment of inertia of an ellipse with respect to a princi- 
pal axis z (Fig. 346) can be obtained by comparing the ellipse 
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with the circle shown in the figure by the dotted line. The 
height y of any element of the ellipse, such as the one shown 
shaded, can be obtained by reducing the height y1 of the cor- 
responding element of the circle in the ratio b/a. From eq. 
(244), the moments of inertia of these two elements with re- 
spect to the z axis are in the ratio b3/a3. The moments of 

FIG. 346. 

inertia of the ellipse and of the circle are evidently in the same 
ratio, hence, the moment of inertia of the ellipse is 

I, = ~(2a)~,‘64.b~/‘a~ = nab3/4. (250) 

In the same manner, for the vertical axis 

I, = nba3/4, 

and the polar moment of inertia of an ellipse is, from eq. (247), 

I, = I, * I, = 7rnb”/4 + 7rba3,‘4. (251) 

Problems 

1. Find the polar moment of inertia of a rectangle with respect 
to the centroid (Fig. 341). 

Answer. Ip = bh3/12 + hb3/12. 
2. Find the polar moments of inertia with respect to their cen- 

troids of the areas shown in Fig. 344. 
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III. Parallel-Axis Theorem 

If the moment of inertia of an area with respect to an 
axis z through the centroid (Fig. 347) is known, the moment of 

i 
FIG. 347. 

inertia with respect to any parallel axis 
z’ can be calculated from the following 
equation, called the parallel-axis theorem : 

Izt = I, + Ad2, (252) 

in which A is the area of the figure and d 
is the distance between the axes. 

The theorem is readily proved as we have from eq. (243): 

12, =s (Y + d12dA =sy’dA + 2syddA +snZdA. 
A A A A 

The first integral on the right side is equal to I,, the third 
integral is equal to Ad2 and the second in- 
tegral vanishes due to the fact that z passes 
through the centroid. Hence, this equa- 
tion reduces to (252). Eq. (252) is espe- 
cially useful in calculating moments of in- 
ertia of cross sections of built-up beams 
(Fig. 348). The positions of the centroids 
of standard angles and the moments of in- 
ertia of their cross sections with respect to 
axes through their centroids are given in 
handbooks. An abridged listing is also FIG. 348. 

given in Appendix B. By use of the parallel-axis theorem, the 
moment of inertia of such a built-up section with respect to 
the z axis can readily be calculated. 

Problems 

1. By the parallel-axis theorem, find the moment of inertia of a 
triangle (Fig. 343) with respect to the axis through the centroid and 
parallel to the base. 

Answer. I = bh3/36. 
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2. Find the moment of inertia I, of the section shown m Fig. 348 
if h = 20 in., b = 3 in. and the angles have the dimensions 4 X 4 
X j in. 

Solution. I, = 203/(2 x 12) + 4[7.70 + 5.44(10 - 1.27)'] = 
2,022 in.4 

3. Find the moment of inertia with respect to the neutral axis 
of the cross section of the channel in Prob. 2, p. 104. 

IV. Product of Inertia. Principal Axes 

The integral 

I,, = S yzdA, 
A 

(253) 

in which each element of area dA is multiplied by the product 
of its coordinates and integration is extended over the entire 
area A of a plane figure, is called the product of inertia of the 
figure. If a figure has an axis of symmetry which is taken for 
they or z axis (Fig. 349), the product of inertia is equal to zero. 
This follows from the fact that in this case for any element 
such as dA with a positive z there exists an equal and sym- 
metrically situated element dA’ with a negative z. The cor- 
responding elementary products yzdA cancel each other, hence 
integral (253) vanishes. 

7 

dA ‘, ,dA 

.? 

In the general case, for any point of any plane figure, we 
can always find two perpendicular axes such that the product 
of inertia for these axes vanishes. Take, for instance, the axes 
y and x, Fig. 350. If the axes are rotated 90” about 0 in the 
clockwise direction, the new positions of the axes are y’ and 
z’ as shown in the figure. There is then the following relation 
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between the old coordinates of an element dA and its new 
coordinates: 

y’ = z, ZI = -y. 

Hence, the product of inertia for the new coordinates is 

I ,f*’ = 
S 

y’z’dA = - y&4 = -I,,. 
A S A 

Thus, during this rotation, the product of inertia changes its 
sign. As the product of inertia changes continuously with the 
angle of rotation, there must be certain directions for which 
this quantity becomes zero. The axes in these directions are 
called the principal axes. Ilsually the centroid is taken as the 
origin of coordinates and the corresponding principal axes are 
then called the centroidal principal axes. If a figure has an II, 4 

A 

b 
c z 

b 

2’ 

Frc. 351. 

axis of symmetry, this axis and an 
axis perpendicular to it are princi- 
pal axes of the figure, because the 
product of inertia with respect to 
these axes is equal to zero, as ex- 
plained above. 

If the product of inertia of a 
figure is known for axes y and z 

(Fig. 351) through the centroid, the product of inertia for 
parallel axes y’ and Z’ can be found from the equation: 

I g’z’ = I,, + Aab. (254) 

This is the parallel-axis theorem for product of inertia and is 
proved by noting that the coordinates of an element dA for 
the new axes are 

Hence, 
y’ =y + 4 z’ = z + n. 
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The last two integrals vanish because C is the centroid and 
the equation reduces to (254). 

Problems 

1. Find lU,,, for the rectangle in Fig. 341. 
Answer. I,,,, = b”h2/4. 
2. Find the product of inertia of the angle section (Fig. 352) with 

respect to they and z axes; also for the y1 
and .z1 axes. Y 

Solution. Dividing the figure into two 
T 

/zc / 
rectangles and using eq. (254) for each of 
these rectangles, we find 

/ / Q / 
Y, / 
\ 

I,, = a2h2/4 + h2(a2 - P)/4. 
\ 
‘1 
1 

,45” 
/’ \ / I 

From the symmetry condition l,,z, = 0. 1, 
3. Determine the products of inertia L: ,‘k-- a 

IUz of the sections shown in Fig. 344 if C FIG. 352. 
is the centroid. 

Solution. For Figs. 344~ and 3446, IUz = 0 because of symmetry. 
In the case of Fig. 344c, dividing the section into three rectangles 
and using eq. (254) we find 

I,, = -2(b - h&3 (3). 

V. Change of Direction of Axes. Determination of the 
Principal Axes 

Suppose that the moments of inertia 

I, = S y2dA, I, = z2dA 
A s A 

(a> 

and the product of inertia 

I,, = 
s 

yzdA 
A 

(8 

are known, and it is required to find the same quantities for 
the new axes y1 and z1 (Fig. 353). Considering an elementary 
area dA, the new coordinates from the figure are 

Zl = z cos p + y sin ‘p, y1 = y cos p - 2 sin cp, (c) 
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ITIC. 353. 

in which cp is the angle between z and zl. Then, 

I,, =Ly12dA =L(y cos Q - z sin cp)2&? 

= S y2 cos2 cpdA + z2 sin2 pdA - 2yz sin p cos CpdA, _ 
A S A S A 

or by using (a) and (b) 

I,, = I, (308~ Q + I, sin2 cp - I,, sin 2~. 

In the same manner 

(2.55) 

I,, = I, sin2 p f I, cos2 p + I,, sin 2~. (255’) 

By taking the sum and the difference of eqs. (255) and (255’) 
we find 

Izl - I,, = (Iz - I,) cos 2p - 21,, sin 2~. (257) 

These equations are very useful for calculating I,, and I,,. 
For calculating Illla,, we find 

I 2/121 = S y&A = A(~ S COSQ - zsincp)(zcos(o 
A 

+ y sin cp)dA = S y2 sin p cos CpdA 
A 

- S z2 sin (o cos CpdA + yz(cos2 p - sin2 p)dA, 
A S A 

or by using (a) and (b), 

I ylzl = vz - m sin 2~ + I,, COS 2Q. (258) 
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The product of inertia is zero for the principal axes. 
Thus the axes y1 and z1 in Fig. 353 are principal axes if the 
right-hand side of eq. (258) vanishes, or 

(I, - I,)+ sin 2~ + I,, cos 2~ = 0. 
This gives 

tan 2~ = 21,,/(1, - 1,). W) 

Eq. (2.59) may also be obtained by differentiating eq. (255) 
with respect to cp and then equating the resulting expression 
to zero. This shows that the moments of inertia about the 
principal axes are maximum and minimum. 

Let us determine, as an example, the directions of the 
principal axes of a rectangle through a corner of the rectangle 
(Fig. 341). In this case, 

r,t = w/3, rut = w/3, ryrzJ = w/4. 

Hence, 
b2h2 

tan 2~ = 
2(1zb3/3 - bh3/3) 

= 3bh/2(b2 - h”). (4 

The direction of cp is determined by noting that in the deriva- 
tion of eq. (259), the angle q was taken as positive in the coun- 
ter-clockwise direction (Fig. 353). Eq. (d) gives two different 
values for cp differing by 90”. These are the two perpendicular 
directions of the principal axes. Knowing the directions of the 
principal axes, the corresponding moments of inertia can be 
found from eqs. (256) and (257). 

The radii of gyration corresponding to the principal axes 
are called principal radii of gyration. 

If y1 and z1 are the principal axes of inertia (Fig. 354) and 
k,, and k,, the principal radii of gyration, the ellipse with k,, 
and k,, as semi-axes, as shown in the figure, is called the ellipse 
of inertia. Having this ellipse, the radius of gyration k, for any 
axis z can be obtained graphically by drawing a tangent to the 
ellipse parallel to Z. The distance of the origin 0 from this 
tangent is the length of k,. The ellipse of inertia gives a pic- 
ture of how the moment of inertia changes as the axis z rotates 
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in the plane of the figure about the point 0, and shows that 
the maximum and minimum of the moments of inertia are the 
principal moments of inertia. 

FIG. 354. 

A Mohr’s circle construction can also be used to find 
moments of inertia about inclined axes. The graphical pro- 
cedure is entirely analogous to the procedure discussed in 
Chap. II for stresses. It is only necessary to replace uz, uy 
and r by I,, I, and Illz, respectively. 

Problems 

1. Determine the directions of the centroidal principal axes of 
the 2 section (Fig. 344~) if h = hi = 1 in., 6 = 5 in., a = 10 in. 

2. Find the directions of the centroidal principal axes and the 
corresponding principal moments of inertia for an angle section 
5 X 2+ X 3 in. 

Answer. Tan 2+0 = 0.547; I,,, = 9.36 in.4; 1min = 0.99 in.4 
3. Determine the semi-axes of the ellipse of inertia for an ellipti- 

cal cross section (Fig. 346). 
Answer. k, = b/2, k, = a/2. 
4. Under what conditions does the ellipse of inertia become a 

circle? 
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TABLES OF STRUCTURAL SHAPES 

Note: In Tables 16-20 the properties of a few structural 
shapes are presented. These tables are very incomplete and 
are presented solely to enable the student to solve problems in 
the text. The data in the tables was taken from the Steel 
Construction Manual of the American Institute of Steel Con- 
struction, 1954. 

429 



430 

Section 

__- 

36 w 300 
36 w 245 

30 w 210 
30 W 172 

24 W 160 
24 ‘A= 120 

18 W 114 
18 W 85 

16 W 96 
16 W 50 

14 w 202 
14 w 103 
14 W84 
14 W 38 

12 w 190 
12 w 106 
12w72 
12 w31 

10 w 112 
10 W 72 
10 w 45 
10 w 25 

8 W67 
8W48 
8W40 
8 W28 

_- 
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TABLE 16: ELEMENTS OF WIDE FLANGE SECTIONS 

(ABRIDGED LIST) 

2 

Weight 
Per Area 

Foot 

Lb In.2 
____ 

300 88.17 
245 72.03 

__-- 
210 61.78 
172 50.65 

__~- 
160 47.04 
120 35.29 

___-- 

114 33.51 
85 24.97 

~__ 

96 28.22 
50 14.70 

____ 

202 59.39 
103 30.26 

84 24.71 
38 11.17 

____ 
190 55.86 
106 31.19 

72 21.16 
31 9.12 

-~ 

112 32.92 
72 21.18 
45 13.24 
25 7.35 

____ 
67 19.70 
48 14.11 
40 11.76 
28 8.23 

Deptl- 

Ill. 

36.72 16.655 
36.06 16.512 

30.38 15.105 
29.88 14.985 

24.72 14.091 
24.31 12.088 

18.48 11.833 
18.32 8.838 

16.32 11.533 
16.25 7.073 

15.63 15.750 
14.25 14.575 
14.18 12.023 
14.12 6.776 

14.38 12.670 
12.88 12.230 
12.25 12.040 
12.09 6.525 

11.38 10.415 
10.50 10.170 
10.12 8.022 
10.08 5.762 

9.00 8.287 
8.50 8.117 
8.25 8.077 
8.06 6.540 

Width 

In. 

Axis l-l 
Web -__ 

In. Ill. Ill.4 
__--__ 

1.680 0.945 20290 
1.350 0.802 16092 
--__-~ 

1.315 0.775 9872.4 
1.065 0.655 7891.5 

1.135 0.656 SllO.? 
0.930 0.556 3635.3 
__--__ 

0.991 0.595 2033.8 
0.911 0.526 1429.9 
-~-___ 

0.875 0.535 1355.1 
0.628 0.380 655.4 
~-.-- 

1.503 0.930 2538.8 
0.813 0.495 1165.8 
0.778 0.451 928.4 
0.513 0.313 385.3 
__-__ 

1.736 1.060 1892.5 
0.986 0.620 930.7 
0.671 0.430 597.4 
0.465 0.265 238.4 

1.248 0.755 718.7 
0.808 0.510 420.7 
0.618 0.350 248.6 
0.430 0.252 133.2 
--__- 

0.933 0.575 271.8 
0.683 0.405 183.7 
0.558 0.365 146.3 
0.463 0.285 97.8 

Z k 

In.3 In. 

1105.1 15.17 
8Y2.5 14.95 

649.9 12.64 
528.2 12.48 

413.5 10.42 
299.1 10.15 

220.1 7.79 
156.1 7.57 

166.1 6.93 
80.7 6.68 

324.9 6.54 
163.6 6.21 
130.9 6.13 

54.6 5.87 

263.2 5.82 
144.5 5.46 

97.5 5.31 
39.4 5.11 

126.3 4.67 
80.1 4.46 
49.1 4.33 
26.4 4.26 

60.4 3.71 
43.2 3.61 
35.5 3.53 
24.3 3.45 

- 

Axis 2-2 

I Z 

-~~ 

Ill.’ In.” 
____ 
1225.2 147.1 
944.7 114.4 

707.9 93.7 
550.1 73.4 

____ 

492.6 69.9 
254.0 42.0 

255.6 43.2 
99.4 22.5 

207.2 35.9 
34.8 9.8 

-__ 

979.7 124.4 
419.7 57.6 
225.5 37.5 

24.6 7.3 
-__ 
589.7 93.1 
300.9 49.2 
195.3 32.4 

19.8 6.1 
-.~ 
235.4 45.2 
141.8 27.9 

53.2 13.3 
12.7 4.4 

____ 
88.6 21.4 
60.9 15.0 
49.0 12.1 
21.6 6.6 

k 

- 

In. 

3.73 
3.62 
- 
3.38 
3.30 

3.23 
2.68 

2.76 
2.00 

2.71 
1.54 

- 

4.06 
3.72 
3.02 
1.49 

3.25 
3.11 
3.04 
1.47 
- 
2.67 
2.59 
2.00 
1.31 

2.12 
2.08 
2.04 
1.62 
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TABLO 17: ELEMENTS OF AMERICAN STANDARD I-BEAM SECTIONS 

(ABRIDGED LIST) 

2 

I- ---I 

I 
2 

Web 
I‘hick 
ness 

III. 

0.798 
0.625 
0.500 

0.687 
0.460 
0.350 

0.465 
0.230 

0.326 
0.190 

= 
I 

- 

/ 

= 
I 

= 1 

1 

-- 

-- 

- 

Axis l-l Axis 2-2 Flange 

Width 

In. 

8.048 
7.815 
7.000 

6.251 
6.000 

5.471 
5.250 
5.000 

4.171 
4.000 

3.860 
3.660 

3.565 
3.330 

3.284 
3.000 

2.796 
2.660 

-- 

2 k I 

-- 

In.3 Ill. 
~- 

250.9 9.26 
234.3 9.53 
173.9 9.46 
~- 

101.9 6.70 
88.4 7.07 

Ill.4 

84.9 
78.9 
42.9 

24.5 
21.2 

50.3 4.55 16.0 
44.8 4.77 13.8 
36.0 4.83 9.5 

16.0 3.09 
14.2 3.26 

__- 
12.0 2.68 
10.4 2.86 

4.4 
3.8 

3.1 
2.7 

26.0 8.1 2.28 
21.8 7.3 2.46 

-- 

- 

2.3 
1.8 

6.0 1.87 
4.8 2.05 

3.3 1.56 
3.0 1.64 

1.7 
1.2 

0.91 
0.7; 

- 

z k 

In.3 
-. 

21.1 
20.0 
12.2 

-. 
7.8 
7.1 

-. . . 
5.8 
5.3 
3.8 

.~ 
2.1 
1.9 

-. 
1.6 
1.5 

Ill. 

1.56 
1.60 
1.36 

1.09 
1.15 

1.05 
1.08 
1.01 

0.81 
0.84 

0.74 
0.78 

1.3 
1.1 

_. 
1.0 
0.82 

.- 
0.65 
0.58 

0.68 
0.72 

0 63 
0.65 

0.58 
0.59 

- 

MeatI 
Thick- 
ness 

In. 

1.102 
1.102 
0.871 

0.691 
0.691 

0.659 
0.659 
0.544 

0.425 
0.425 

0.392 
0.392 

0.359 
0.359 

0.326 
0.326 

0.293 
0.293 

Veight 
Per 

Foot 

Y 

1 

1 

-  

- 

_- 

i 
1 

_- 

_- 

- 

- 

-- 

-- 

-- 

-- 
L 

- 

3epth Area Section 

I 

-- 

In.4 Lb Ill.2 III. 

24.00 
24.00 
24.00 

24 I 120 
24 I 105.9 
24 179.9 

120.0 
105.9 
79.9 

70.0 
54.7 

35.13 
30.98 
23.33 

20.46 
15.94 

1010.8 
!811.5 
!087.2 

917.5 
795.5 

18 170.0 
18 154.7 

12 150 
12 140.8 
12 131.8 

50.0 
40.8 
31.8 

14.57 
11.84 
9.26 

6.71 
5.34 

__ 
5.83 
4.43 

12.00 
12.00 
12.00 

8.00 
8.00 

7.00 
7.00 

301.6 
268.9 
215.8 

64.2 
56.9 

8 123 
8 118.4 

23.0 
18.4 

41.9 
36.2 

7120 
7 115.3 

20.0 
15.3 

17.25 
12.5 

5.02 
3.61 

6.00 
6.00 

6 I 17.25 
6 I 12.5 

5 114.75 
5 I 10 

14.75 
10.0 

4.29 
2.87 

2.76 
2.21 

5.00 
5.00 

4.00 
4.00 

- 

15.0 
12.1 

6.7 
6.0 

9.5 
7.7 

4 19.5 
4 17.7 

- 
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TABLE 18: ELEMENTS OF AMERICAN STANDARD CHANNEL SECTIONS 

(ABRIDGED LIST) 

zzzz=== E.z 
I 

Web 
rhick 
ness 

I& 

0.716 
0.520 

Deptt 

zz 

-. 

-. 

-. 

-. 

-. 

-  

= 

i 

1  

1 

Axis l-l Axis 2-2 

Mean 
Nidth Thick 

ness 

In. Ill. 

3.716 0.650 
3.520 0.650 

3.033 0.436 
2.739 0436 

0.673 
0.379 

2.527 0.390 
2.260 0.390 

0.487 

0.220 

2.157 0.343 
1.920 0.343 

_- 
0.437 
0.200 

1.720 0.296 0.320 
1.580 0.296 0.180 

-  

k c 

-  

0.80 
0.78 
-  

0.68 
0.70 

In. 
- 
0.87 
0.89 

.- 

0.77 
0.81 

. . 

0.67 / 

o.io / 

.~ 

0.60 / 

0.63 / 

0.53 , 

0.54 , 

0 46 , 

0.45 / 

L  - 

In. 

0.6.i 

0.61 
-  

Cl.57 
0 58 
-~ 

3.52 

3.SL 
-  

L-16 
0.46 

-  

Weight 
Per 

Foot 

4.64 
1.70 

Section 

Z 

III. 

15.00 
15.00 

12.00 
12.00 

In.3 

3.8 
3.4 

In.4 In.3 In. In.4 

401.4 53.6 5.24 11.2 
346.3 46.2 5.44 9 3 
~-__-_ 

161.2 26.9 4.28 5.2 
128.1 21.4 4.61 3.9 

-___-_ 

103.0 20.6 3.42 4.0 
78.5 15.7 3.66 2 8 

43.7 10.9 2.82 2.0 

Lb 

50.0 
40.0 

15u50 
lSU40 

12 u 30 
12 u 20.7 

30.0 8.79 
20.7 6.03 

2.1 
1.7 

30.0 8.80 
20.0 5.86 

10 u 30 
lOU20 

-- 
5.49 
3.36 
- 
3.81 
2.39 

10.00 

10.00 

1.7 
1.3 

8 u 18.75 
8U 11.5 

18.75 
11.5 

~__ 
13.0 

8.2 

8.00 

x.00 

1.0 

0.79 32.3 32.3 8.1 3.10 8.1 3.10 1.3 1.3 

17.3 17.3 5.8 2.13 5.8 2.13 1.1 1.1 

13.0 13.0 4.3 2.34 4.3 2.34 0.70 0.70 

4.5 4.5 2.3 1.47 2.3 1.47 0.44 0.44 
3.8 3.8 1.9 1.56 1.9 1.56 0.32 0.32 

6 ”  13.0 

6 L- 8.2 

6.00 
6.00 

- 
4.00 
4.00 

0.65 
0.50 

4 U 7.25 
4 u 5.4 

7.25 2.12 
5.4 1.56 

035 
0.29 



In. 

8X8 
8x8 

6X6 
6X6 

5x5 
5x5 

__~ 

4x4 
4x4 

3; x 3+ 
33 x 33 

3x3 
3x3 

APPENDIX B 

TABLE 19: ELEMENTS OF ANGLES-EQUAL LEGS 

Thick- 
ness 

In. 

1 
i 

Weight 
Per 

Foot 

Axis l-l and Axis 2-2 

- 

I Z 

Lb In.’ In.4 In.3 

51.0 15.00 89.0 15.8 
26.4 7.75 48.6 8.4 

37.4 
19.6 

-- 

27.2 
16.2 

__- 

18.5 
9.8 

-- 

11.1 
5.8 

11.00 
5.75 

8.6 
4.6 

7.98 
4.75 

35.5 
19.9 

__- 
17.8 
11.3 

5.2 
3.2 

5.44 7.7 2.8 
2.86 4.4 1.5 

3.25 3.6 1.5 
1.09 2.0 0.79 

9.4 
4.9 

2.75 2.2 1.1 
1.44 1.2 0.58 

(ABRIDGED LIST) 

2 
c 

t-l 

I 

- 

- 

-. 

-. 

.- 

.- 

-. 

- 

k 

In. 

2.44 
2.50 

1.80 
1.86 

1.4’) 
1.54 

1.19 
1.23 

1.06 
1.09 

_- 

c kmin 

In. In. 

2.37 1.56 
2.19 1.59 

1.86 
1.68 

1.17 
1.18 

1.57 
1.43 

1.27 
1.14 

0.97 
0.98 

__- 
0.78 
0.79 

1.06 0.68 
0.97 0.69 

0.93 0.58 
0.84 0.59 

- 

433 

Axis 
3-3 
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TABLE 20: ELEMENTS OF ANGLES-UNEQUAL LEGS 

t V&h 

Per 
Foot 

I 

Lb In.2 In.4 

44.2 
23.0 

13.00 80.8 
6.75 44.3 

30.2 8.86 42.9 
17.9 5.25 26.7 

27.2 7.98 27.7 
16.2 4.7.5 174 

19.8 
10.4 

5.81 13.9 
3.05 7.8 

3.75 
1.94 

~- 

3.98 
2.48 

9.5 
5.1 

13.6 
8.5 

6.0 
4.0 

- 

= 

-. 

-. 

-. 

-. 

- 

Axis 2-2 Axis 3-3 Axis l-l 
Thick- 

ness 
z k 

In.” 

15.1 
8.0 

9.7 
5.8 

7.2 
4.3 

4.3 
2.3 

2.9 
1.5 

2.3 
1.5 I - 

In. 
.- 

2.49 
2.56 

.- 
2.20 
2.25 

.- 
1.86 
1.91 

_.- .~ 
1.55 
1.60 

.- 
1.59 
1.62 

.- 
1.23 
1.26 

- 

- 

k 

In. Ill. 

1.73 1.65 
1.79 1.47 

1.07 1.05 
1 II 0.92 

I.11 
1.15 

0.98 
1 .O2 

1.12 
0.99 

1.00 
O.86 

0.83 
0.86 

0.75 
0.66 

0.85 
0.88 

0.87 
0.78 

kmin 

-  

Ill. 

1.28 
1.30 

-- 

0.86 
0.87 

0.86 
0.87 

0.75 
0.76 

0.65 
0.66 

0.64 
0.64 

Size 

In. 

d 

In. 

2.65 
2.47 

2.55 
2.42 

2.12 
1.99 

1.75 
1 61 

1.75 
1.66 

1.37 
1.28 

- 

- 

.- 

.- 

.- 

. . 

- 

Tan a 
-- 

0.543 
0.558 

0.318 
0.335 

0.421 
0.440 

0.464 
0.486 

I z 
-~ 

In.4 In.3 

38.8 8.9 
21.7 4.8 

In. 

8X6 
8X6 

7x4 
7x4 

- -~ 

6X4 
6X4 

1 
t 

H 
+ 

__- 

: 
4 

10.2 3.5 
6.5 2.1 

9.8 3.4 
6.3 2.1 

5.6 2.2 
.x2 1.2 

2.6 1.1 
1.4 0.61 

_~- 

2.9 1.4 
1.9 0.87 

5 x 3f 
5 x3: 

_~~~ 

5X3 
5x3 

4x3 
4x3 

0.357 
0.371 

0.534 
0.551 

- 
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SUBJECT INDEX 

Numbers rtfer to pages 
A 

Allowable stress, 8, 62, 271, 278 
Angle of twist, 284, 288, 290 
Angle sections, properties of, 433 

shear center of, 239, 243 
Arches, 394-398 
Area-moment method, 147 
.4reas, properties of, 149 
Assembly stresses, 26 
;\xial load and bending, 245-258 
Axial loads (see Columns) 
Axial stress, l-30, 3744 

Mohr’s circle for, 40 
strain energy for, 301 

B 

Beams, bending moments in, 72-91 
bending of, 92-136 
buckling of, 102 
built-up, 130 
cantilever, 70 
circular, 102, 120 
conjugate, 155, 171, 213 
continuous, 198-209 
curvature of, 95, 138, 171, 230 
curved, 362416 
deflection of, 137-175, 213, 318, 330 
design of, 106 
lateral contraction of, 93 
normal stresses in, 9.5 
of two materials, 217 
of uniform strength, 210, 317 
of variable cross section, 210 
on three supports, 198 
overhanging, 70 
principal stresses in, 125 
reactions of, 70, 176 
reinforced concrete, 221 
shapes of, 100 
shearing forces in, 72-91 

Beams (Cont.) 
shearing stresses in, I 13 
simple, 70 
statically determinate, 70 
statically indeterminate, 176-209 
strain energy in, 316 
strains in, 93, 118 
stresses in, 92-136 
supports of, 176 
thermal stresses in, 99, 189 
types of, 70 
unsymmetrical, 227, 235 
with axial load, 245-258 

Bending, and axial load, 245-258 
and torsion, 295 
normal stresses in, 95 
of beams, 92-136 
of bimetallic strip, 219 
of curved bars, 362-416 
of curved tubes, 405 
principal planes of, 228 
pure, 92, 227, 362 
shear stresses in, 113 
simple, 235, 244 
strain energy in, 316 
unsymmetrical, 227-244, 257 
without torsion, 235 

Bending moment, 72-91, 367 
diagrams, 78-91 
equivalent, 297 
maximum, 82 
modified diagram, 212 
sign convention, 75 

3iaxial stress, 44 
3imetallic strip, 219 
3oiler, cylindrical, 44 
3olted joint, 63 
3ond strcsscs, 2% 
3uckling, of beams, 102 

of columns, 258 
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Built-up beams, 130 
Bulk modulus of elasticity, 67 

C 

Cantilever beam, 70 
Castigliano’s theorem, 328 

beam deflections, 330 
curved bar deflections, 378 
indeterminate problems, 340 
truss deflections, 335 

Center line of curved bars, 362 
Center of shear, 235-244 
Centroids of areas, 149 
Channel sections, properties of, 432 

shear center of, 239, 242 
Circle of stress (see Mohr’s circle) 
Circular beam, 102, 120 
Circular ring, 31, 379 
Circular shaft, 281,295 

strain energy in, 313 
Circumferential stress, 45 
Columns, 245-280 

critical load of, 263 
deflections of, 259, 262, 267 
design of, 268-280 
eccentrically loaded, 249, 258 
formulas for, 277 
short, 245-258 
slender, 258-280 

Combined stresses, 44 
Mohr’s circle for, 46 

Compression, 4 
eccentric, 249, 258 
sign convention, 5, 40 

Conical spring, 294 
Conjugate beam, 155, 171,213 
Continuous beams, 198-209 
Contraction, lateral, 7, 53 

of beams, 93 
Core of a section, 254 
Crane hooks, 374 
Critical load, 263 
Curvature, due to heating, 99 

of curved bars, 366, 402 
radius of, 93, 138, 230, 363, 402 

Curvature of beams, 95, 138, 171,230 
lateral, 93 
radius of, 93, 138, 230, 363,402 

Curved bars, 362-416 

Curved bars (Cont.) 
deflection curve for, 401 
deflection of, 378, 384, 412 
pure bending of, 362 
stresses in, 365 

Curved tubes, 405 
Cylindrical vessel, 44 

D 
Deflection curve, differential equation of, 

137,404 
Deflections, impact, 305, 320 

of bars in tension, 3 
of beams, 137-175 

by area-moment, 147-162 
by Castigliano’s theorem, 330 
by conjugate beam, 155, 171, 213 
by fictitious loads, 331 
by integration, 139-146 
by strain energy, 318 
by superposition, 162 
due to impact, 320 
due to shear, 170,318 

of columns, 259, 262, 267 
of curved bars, 378, 384,412 
of frames, 190 
of springs, 212, 293, 314, 390 
of thick rings, 381 
of thin rings, 379 
of trusses, 335 

Dynamic loads (see Impact) 

E 
Eccentric loading of columns, 249, 258 
Elastic curve, equation of, 137, 404 
Elastic strain energy (see Strain energy) 
Elasticity, 2 

bulk modulus of, 67 
modulus of, 3,4 
shear modulus of, 59, 284 

Ellipse of inertia, 229, 427 
Elliptical ring, 389 
Elongation, 3 

in compression, 4 
in tension, 3 
under combined stress, 54, 66 
unit, 4 

Equal strength, in bending, 210, 317 
in compression, 19 
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Equation, of three moments, 204 
of deflection curve, 137, 404 

Equivalent bending moment, 297 
Equivalent section, 218 
Euler load, 263 
Expansion, of circular ring, 31 

thermal, 26, 99, 219 
unit volume, 53, 66 

F 
Factor of safety, 9, 62, 271 
Flexural rigidity, 95 
Flexure formula, 95 

for curved bars, 365 
Flywheel, 398 
Form of equal strength, 19, 210,317 
Frames, 190 

G 

Gordon-Rankine formula, 278 
Gradually applied load, 306 

H 

Helical spring, 290, 314 
Hollow shaft, 287 
Hooke’s law, 2 

for biaxial stress, 54 
for shear, 59 
for triaxial stress, 66 

Hooks, 374 
Hoop stress, 31, 44 
Horizontal shear in beams, 113 
Horsepower and torque, 284 
Hydrostatic pressure, 67 

I 

I beams, properties of, 431 
shear stresses in, 122 

Impact, in bending, 320 
in tension, 305 
in torsion, 315 

Indeterminate problems, 176-209 
by Castigliano’s theorem, 340 
by least work, 340 
in bending, 176-209 
in tension and compression, 20 
in torsion, 286 

Inertia, ellipse of, 229,427 
moment of, 95,417 

Inertia (Cont) 
polar moment of, 283, 420 
product of, 228, 423 

Influence lines, 355 
Isotropic materials, 53 

J 
Joints, bolted, 63 

riveted, 63 

K 
Kern (see Core of a section) 
Keys, 115, 131 

L 
Lateral contraction, 7, 53 

of beams, 93 
Lateral stability of beams, 102 
Leaf spring, 212 
Least work, 340 
Line of zero stress, 250, 254 
Limit of proportionality, 6 
Longitudinal force in curved bars, 367 
Lueders’ lines, 39 

M 

Materials, mechanical properties of, 5 
isotropic, 53 

Maxwell’s theorem, 353 
Mechanical properties of materials, 5 
Modified area, 365 
Modified bending moment diagram, 212 
Modulus of elasticity, 3, 4 

bulk, 67 
shear, 59, 284 

Modulus of resilience, 302 
Modulus of rigidity, 59 
Modulus, section, 96, 258 
Mohr’s circle, 40-66 

for combined stresses, 46 
for moments of inertia, 428 
for simple tension, 40 
for strain, 57 
for stress in three directions, 65 

Moment, bending (see Bending moment) 
Moment-area method, 147 
Moment of inertia, 95, 417 

polar, 283, 420 
tables, 430 



SUBJECT INDEX 

N 

Neutral axis, 93, 95, 229, 363 
Neutral surface, 93 
Normal force in curved bars, 367 
Normal stress, 38 

in beams, 95 
sign convention, 40 

P 

Parabolic formula for columns, 278 
Parallel axis theorem, 422 
Permanent set, 2, 8 
Piston ring, 391 
Plane stress, 44 
Poisson’s ratio, 53 
Polar moment of inertia, 283, 420 
Potential energy of strain (see Strain en- 

ergy) 
Pressure, hydrostatic, 67 
Pressure vessels, 44 
Principal axes, 228, 423 
Principal planes, 49 

of bending, 228 
Principal stresses, 49 

in beams, 125 
in shafts, 297 

Principle of least work, 340 
Principle of superposition, 162, 261 
Product of inertia, 228, 423 
Proportional limit, 6 
Pure bending, 92, 227 

of curved bars, 362 
Pure shear, 57, 281 

R 
Radius of curvature, 93, 138, 230, 363, 

402 
Radius of gyration, 251, 419 
Reactions of beams, 70, 176 
Reciprocal theorem, 351 
Rectangular shaft, 289 
Reduced mass, 309, 322 
Redundant reactions, 177 
Reinforced concrete beams, 221 
Resilience, modulus of, 302 
Rigid frames, 190 
Rigidity, flexural, 95 

modulus of, 59 
torsional, 290 

Ring, elliptical, 389 
piston, 391 
rotating, 31 
thick, 381 
thin circular, 31, 379 

Riveted joint, 63 
Rivets, bending in, 112 

in built-up beams, 132 
tension in, 63 

s 
Safe stress, 8 
Safety factor, 9, 62, 271 
Secant formula, 275 
Section modulus, 96, 258 

tables, 430 
Shafts (see Torsion) 
Shear, deflections due to, 170, 318 

diagrams, 78-91 
in beams, 113 
in bolts, 63 
in rivets, 63, 132 
modulus of elasticity in, 59, 284 
pure, 57, 281 
strain energy in, 312 
working stress in, 62 
yield point in, 62 

Shear center, 235-244 
Shearing force, 72-91, 367 

deflections due to, 170, 318 
diagrams, 78-91 
sign convention, 76 

Shearing strain, 58 
in beams, 118, 170 
in torsion, 282 

Shearing stress, 38 
in beams, 113 
in reinforced concrete beams, 225 
in rivets and bolts, 63 
in tension, 38 
in torsion, 282, 288, 289 
maximum, 51,66 
on perpendicular planes, 41, 48 
sign convention, 40 

Shell, spherical, 69 
Shrink fit, 34 
Sign convention, bending moment, 75 

compression, 5, 40 
normal stress, 40 
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Sign convention (Cont.) 
shearing force, 76 
shearing stress, 40 
tension, 5, 40 

Simple beam, 70 
Simple bending, 235, ‘244 
Slenderness ratio, 269 
Spherical shell, 69 
Spiral spring, 390 
Spring, conical, 294 

helical, 290, 314 
leaf, 212 
spiral, 390 

Statically determinate beams, 70 
Statically indeterminate beams, 176-209 
Statically indeterminate problems, 176- 

209 
by Castigliano’s theorem, 340 
by least work, 340 
in bending, 176-209 
in tension and compression, 20 
in torsion, 286 

Straight-line formula, 278 
Strain, 4 

compressive, 4 
in beams, 93, II 8 
lateral, 7, 53 
Mohr’s circle for, 57 
shearing, 58, 118, 170, 282 
tensile, 4 
under combined stress, 54, 66 
unit, 4 

Strain circle, 57 
Strain energy, 301-361 

due to impact, 305, 315, 320 
for curved bars, 378, 412 
in bending, 316 
in shear, 312 
in tension, 301 
in torsion, 312 
of an arch, 395 
of thick ring, 382 
per unit volume, 302, 312, 327 
per unit weight, 302 

Strength, ultimate, 5, 7, 8 
form of equal, 19,210,317 

Stress, 4 
allowable, 8, 62, 271, 278 
assembly, 26 

Stress (Cont.) 
axial, l-30, 37-44 
biaxial, 44 
bond, 226 
circumferential, 45 
combined, 44 
compressive, 4 
hoop, 31,44 
impact, 305,315,320 
in beams, 92-136 
in beams of two materials, 217 
in crane hooks, 374 
in curved bars, 365 
in cylindrical vessel, 44 
in flywheel, 398 
in shafts, 281 
in springs, 212, 290 
in thick ring, 381 
in thin ring, 31, 379 
in three directions, 65 
in two directions, 44 
in unsymmetrical bending, 227-244, 

257 
Mohr’s circle for, 40-66 
normal, 38 
on inclined planes, 37 
plane, 44 
principal, 49, 125, 297 
safe, 8 
shearing, 38 
shrink fit, 34 
tcnrile, 4 
thermal, 26, 99, 189, 219 
trajectories of, 128 
unit, 4 
working, 8, 62, 271, 278 

Stress circle (see Mohr’s circle) 
Stress-strain diagram, 6 
Strut, short, 245-258 
Suddenly applied load, 307 
Superposition, 162, 261 

T 

Tensile test, 3, 6 
Tension, 1 

impact in, 305 
in rivets, 63 
strain energy of, 301 

Thermal stresses, 26 
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Thermal stresses (Cont.) 
in beams, 99,189 
in bimetallic strip, 219 

Thick ring, 381 
Thin ring, 31, 379 
Thin walled cylinders, 44 
Three moment equation, 204 
Thrust, in curved bars, 367 

of an arch, 395 
Torsion, 281-300 

and bending, 295 
of circular shaft, 281 
of hollow shaft, 287 
of rectangular shaft, 289 
strain energy in, 312 

Torsional rigidity, 290 
Transformed section, 218 
Trajectories of stress, 128 
Triaxial stress, 65 
Truss deflections, 335 
Tubes, curved, 405 
Twist (see Torsion) 

U 

Ultimate strength, 5, 7, 8 
of columns, 265 

Uniform strength, in bending, 210, 317 
in compression, 19 

Unit strain, 4 

Unit stress, 4 
Unit volume expansion, 53,66 
Unsymmetrical bending, 227-244, 257 

V 

Variable cross section, bars of, 18 
beams of, 210 

Vessels, cylindrical, 44 
spherical, 69 

Vertical shear (see Shearing force) 
Volume change, 53,66 

W 

Web, shear in, 123 
Wide flange beams, properties of, 430 

shear center of, 236 
shear stresses in, 122 

\\‘ork, least, 340 
Cl’orking stress, 8 

in shear, 62 
in columns, 271,278 

Y 

Yield point, 5, 7, 8 
in shear, 62 

Yielding of metal, 39 
Young’s modulus (see Modulus of elas- 

ticity) 
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