

UML FOR THE IT
BUSINESS ANALYST,
SECOND EDITION:

A PRACTICAL GUIDE TO REQUIREMENTS GATHERING

USING THE UNIFIED MODELING LANGUAGE

Howard Podeswa

Course Technology PTR

A part of Cengage Learning

Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States

™

© 2010 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited
to photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems,
except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

UML is a trademark of Object Management Group (OMG).
All other trademarks are the property of their respective owners.

Library of Congress Control Number: 2009924527

ISBN-13: 978-1-59863-868-4

ISBN-10: 1-59863-868-8

Course Technology, a part of Cengage Learning

20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

UML for the IT Business Analyst,

Second Edition: A Practical Guide to

Requirements Gathering Using the

Unified Modeling Language

Howard Podeswa

Publisher and General Manager,

Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Manager of Editorial Services:

Heather Talbot

Marketing Manager:

Mark Hughes

Acquisitions Editor:

Mitzi Koontz

Project Editor:

Kate Shoup

Editorial Services Coordinator:

Jen Blaney

Copy Editor:

Kate Shoup

Interior Layout:

Shawn Morningstar

Cover Designer:

Mike Tanamachi

Indexer:

Katherine Stimson

Proofreader:

Laura Gabler

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09

eISBN-10: 1-43545-530-4

For my incredible kids, Yasha and Sam.

And for Joy Walker. You are the prototype.1

1From the song “Prototype” on the album Speakerboxxx/The Love Below, 2003, by Outkast.

F
rom 1998 to 2000, I spent part of my winters on the Cape Town peninsula in South
Africa. It was one of those rare times when all aspects of life lined up. There were times
when I prepared for an art exhibition, facilitated workshops in poor neighborhoods,

and analyzed IT systems—all in the same day. This book is one of the products of that
exciting and very productive time: Its case study is drawn from IT work my company did
there for the Community Peace Program (CPP), an organization that aims to reduce vio-
lence in poverty-stricken neighborhoods through a process of dispute resolution called
restorative justice.

One of the communities I visited often due to my work was the township of Zweletemba.
There is a point in the trip to Zweletemba when you enter a tunnel that goes right through
the mountains. Inevitably, it was at that point in the journey that I always fell asleep, awak-
ening just as we exited the tunnel into what seemed like a magical world. Zweletemba, sit-
uated in the mountainous interior of the peninsula, is a place of contradictions. There is
great poverty, with many people living in ramshackle homes built of materials salvaged
from junk piles, but there is also great physical beauty, personal warmth, music, and humor.

It was in Zweletemba that the CPP was conducting a pilot project when I arrived in South
Africa. The CPP was, at that time, interested in growing the organization using the lessons
learned from Zweletemba—and, in the years that have followed, has in fact expanded to
include numerous communities in the country. It was in advance of this expansion that
the organization had asked my company to prepare requirements for an IT solution
that would assist them in case management.

Preface

iv

The CPP’s restorative justice system came to mind when I began work on the first edition
of this book. I was looking for a case study that would be complex enough to include the
intricacies of typical systems. I chose the CPP’s system because it has stakeholders who play
multiple roles (in the same manner as customers of an insurance firm who appear
as beneficiaries, policy holders, etc.); a key business object to which events, action, and
information items are tied (similar to a customer call in a CRM system), as well as other
complex characteristics that show up time and again in business systems. And, as an
unfamiliar system, it puts the reader in the position of extreme business analysis—really
not knowing anything about the system at the start of the project.

Projects like the CPP case study exemplify what I love most about business analysis—that
it has introduced me to a variety of systems and, through them, to the people behind those
systems. Through business analysis, I have met and worked with people from all walks of
life—defense contractors, social workers, investment bankers, funeral directors—and they
have, in turn, satisfied my inquisitiveness about people and how they do things. This
quality of endless curiosity is a trait I’ve seen in many of the business analysts I’ve met. If
it describes you, you’ve found a great profession. I hope that this book will help you excel
at it so that it gives you the enjoyment it has given to me over the years.

—Howard Podeswa

Preface v

S
pecial thanks go out to Charlie Orosz, Scott Williams, Tim Lloyd, Gerry de Koning,
Fern Lawrence, Clifford Shearing, Ideaswork (formerly Community Peace Program),
and the Zweletemba Peace Committee. Many thanks, also, to Adrian Marchis and the

business analyst community at modernanalyst.com for the extensive input they have
provided with respect to planning and tailoring business activities for specific projects.
Thanks also to Adam Kahn, David Barrett, and Amy Ruddell of Diversified Business
Communications for promoting the business-analysis profession and the ideas in this book
through the BA World conferences they have organized, the Noble workshops my com-
pany has delivered there over the years, as well as their publication, Business Analyst Times.

And a personal thank you to the technical editor of the book’s first edition, Brian Lyons,
for an incredibly knowledgeable and thorough review. In the time that has passed between
the two editions, Brian was tragically killed in a road accident. I am honored to have been
able to benefit from his advice while he was alive. The experience of being put under the
Lyons microscope was a challenging one—but one I wouldn't have missed for the world.

Acknowledgments

vi

H
oward Podeswa is the co-founder of Noble, Inc. (www.nobleinc.com), a business-
analysis (BA) consulting and training company. Podeswa has contributed to
the formalization of the business-analysis profession as a subject-matter expert

for NITAS—a BA apprenticeship program (a CompTIA and U.S. federal government
initiative)—and as a member of the review team for the Business Analysis Body of Knowledge
(BABOK).

Podeswa has 30 years’ experience in many aspects of the software industry, beginning as a
developer for Atomic Energy of Canada, Ltd. and continuing as systems analyst, business
analyst, consultant, lead designer of business-analysis programs, and author of The Business
Analyst’s Handbook, a BA reference manual incorporating ITIL, the BABOK, BPMN, UML,
agile, and other best practices and standards of importance to the BA. He has provided
consulting and training services to a diverse client base, including the Mayo Clinic,
Thomson Healthcare, Canadian Air Force (MASIS), the South African Community Peace
Program, and major financial institutions (Deloitte, CIBC bank, CGU, etc.). Podeswa is
also a sought-after speaker at international BA conferences. In addition, Podeswa has
collaborated with CDI Education on object-oriented projects and training and has designed
BA training programs for numerous institutions, including Boston University Continuing
Education Center and New Horizons.

Podeswa is also a recognized visual artist whose artwork has been exhibited and reviewed
internationally and supported by the Canada Council for the Arts. His exhibition, Object
Oriented Painting Show (OOPS)—from which the images on the cover were taken—was
the first to combine his two passions: OO technology and painting. His artwork is represented
by the Peak Gallery (www.peakgallery.com).

vii

About the Author

www.nobleinc.com
www.peakgallery.com

Contact Info
The author may be contacted at howardpodeswa@nobleinc.ca. For questions and support
material related to this book, please visit the Noble Inc. Web site at www.nobleinc.ca.
For a full suite of business-analysis courses based on this and other writings by the author,
please visit the Noble Inc. Web site at www.nobleinc.ca or contact the company at
info@nobleinc.ca. To download electronic versions of business-analysis templates, please
visit http://nobleinc.ca/downloads.html.

About the Authorviii

www.nobleinc.ca
www.nobleinc.ca
http://nobleinc.ca/downloads.html

Introduction .xix

Chapter 1 Who Are IT Business Analysts? .1
Chapter Objectives .1
The IT and Non-IT BA .1
Perspective on the IT BA Role .2
Why Modeling Is a Good Thing .3
The Behavioral (Dynamic) Model .3
The Structural (Static) Model .4
For Those Trained in Structured Analysis .5
Mapping the BABOK 2 to This Book .6
Chapter Summary .13
Endnotes .14

Chapter 2 The BA’s Perspective on Object Orientation17
Chapter Objectives .17
What Is OO? .18
The UML Standard .18
Cognitive Psychology and OO .18
Objects .19

The BA Perspective .19
Attributes and Operations .19

The BA Perspective .19
Operations and Methods .20

The BA Perspective .20
Encapsulation .20

The BA Perspective .20 ix

Table of Contents

OO Concept: Classes .21
The BA Perspective .22

OO Concept: Relationships .22
OO Concept: Generalization .22
OO Concept: Association .24
OO Concept: Aggregation .25
OO Concept: Composite Aggregation (Composition) 26

OO Concept: Polymorphism .27
Polymorphic Objects .27
Polymorphic Operations .27
The BA Perspective .28

Use Cases and Scenarios .28
The BA Perspective .29

Business and System Use Cases .29
The BA Perspective .30

Chapter Summary .30
Endnotes .31

Chapter 3 Steps of B.O.O.M. .33
Chapter Objectives .33
B.O.O.M. and SDLCs .33
The B.O.O.M. Steps .34

Step 1: Initiation .34
Step 2: Discovery .35
Step 3: Construction .37
Step 4: Final Verification and Validation (V&V) 37
Step 5: Closeout .37

What Do You Define First—Attributes or Operations?37
Developing the Structural Model Alongside the Behavioral Model 38
Tailoring B.O.O.M. for Your Project .38
What Do You Show Stakeholders? .41
Chapter Summary .42
Endnotes .42

Chapter 4 Analyzing End-to-End Business Processes 43
Chapter Objectives .43
Interviews During the Phases .43
B.O.O.M. Steps .45
Step 1: The Initiation Phase .45

What Happens During the Initiation Phase? .45
How Long Does the Initiation Phase Take? .45
Deliverables of the Initiation Step: BRD (Initiation Version) 45

Step 1a: Model Business Use Cases .46

Table of Contentsx

How Do You Document Business Use Cases? .47
Step 1ai: Identify Business Use Cases (Business Use-Case Diagram) 47

Other Model Elements .48
Putting Theory into Practice .48
Case Study D1: Business Use-Case Diagrams .49
Step 1aii: Scope Business Use Cases (Activity Diagram) 63

Activity Diagrams for Describing Business Use Cases 65
Case Study D2: Business Use-Case Activity Diagram
with Partitions (Swimlanes) .73
Chapter Summary .78
Endnotes .78

Chapter 5 Scoping the IT Project with System Use Cases79
Chapter Objectives .79
Step 1b: Model System Use Cases .79
Step 1bi: Identify Actors (Role Map) .80

Finding Actors .80
Stereotypes and Actors .81
The Role Map .82
Modeling Actors with Overlapping Roles .82
What’s the Point of Defining Generalized Actors? 84

Case Study E1: Role Map .84
Step 1bii: Identify System Use-Case Packages
(System Use-Case Diagram) .86

What Criteria Are Used to Group System
Use Cases into Packages? .86
Naming Use-Case Packages .86
Diagramming System Use-Case Packages .87
What If a Use-Case Package Is Connected to
All of the Specialized Actors of a Generalized Actor?88

Case Study E2: System Use-Case Packages .89
Step 1biii: Identify System Use Cases (System Use-Case Diagram) 91

Features of System Use Cases .91
What Is the Purpose of Segmenting
the User Requirements into System Use Cases? 92
Modeling System Use Cases .92
Is There a Rule of Thumb for How
Many System Use Cases a Project Would Have?95

Case Study E3: System Use-Case Diagrams .95
Step 1c: Begin Structural Model
(Class Diagrams for Key Business Classes) .101
Step 1d: Set Baseline for Discovery (BRD/Initiation) 101
Chapter Summary .102
Endnotes .102

Table of Contents xi

Chapter 6 Storyboarding the User’s Experience 103
Chapter Objectives .103
Step 2: Discovery .104

Lifecycle Considerations .104
Step 2ai: Describe System Use Cases .104

The Use-Case Description Template .105
The Fundamental Approach Behind the Template 106

Documenting the Basic Flow .109
Use-Case Writing Guidelines .109
Basic Flow Example: CPP System/Review Case Report 110

Documenting Alternate Flows .111
Typical Alternate Flows .111
Alternate Flow Documentation .112
Example of Use Case with Alternate Flows:
CPP System/Review Case Report .113
Documenting an Alternate of an Alternate 114

Documenting Exception Flows .114
Guidelines for Conducting System Use-Case Interviews 115
Activity Diagrams for System Use Cases .115
Related Artifacts .115

Decision Tables .116
Case Study F1: Decision Table .119

Decision Trees .122
Case Study F2: Decision Tree .123

Condition/Response Table .124
Business Rules .124

Advanced Use-Case Features .125
Include .126
Extend .129
Generalized Use Case .133

Case Study F3: Advanced Use-Case Features .136
Chapter Summary .138
Endnotes .138

Chapter 7 Lifecycle Requirements for Key Business Objects 141
Chapter Objectives .141
What Is a State-Machine Diagram? .142
Step 2aii: 1. Identify States of Critical Objects .144

Types of States .144
Case Study G1: States .145
Step 2aii: 2. Identify State Transitions .147

Depicting State Transitions in UML .147
Mapping State-Machine Diagrams to System Use Cases 149

Table of Contentsxii

Case Study G2: Transitions .150
Step 2aii: 3. Identify State Activities .153
Case Study G3: State Activities .155
Step 2aii: 4. Identify Composite States .157
Case Study G4: Composite States .158
Step 2aii: 5. Identify Concurrent States .160

Concurrent State Example .160
Chapter Summary .161
Endnotes .162

Chapter 8 Gathering Across-the-Board Business
Rules with Class Diagrams .163
Chapter Objectives .163
Step 2b: Structural Analysis .164

FAQs about Structural Analysis .165
Step 2bi: Identify Entity Classes .166

FAQs about Entity Classes .167
Indicating a Class in UML .167
Naming Conventions .167
Grouping Classes into Packages .168
The Package Diagram .169
Why It's Worth Pausing to Do Some Structural
Modeling When Stakeholders Introduce New Terms 169
Interview Questions for Finding Classes .170
Challenge Questions .170
Supporting Class Documentation .171

Case Study H1: Entity Classes .172
Step 2bii: Model Generalizations .175

Subtyping .175
Generalization .175

Case Study H2: Generalizations .179
Step 2biii: Model Transient Roles .180

Example of Transient Role .181
How Does a Transient Role Differ from a Specialization?181
Some Terminology .182
Why Indicate Transient Roles? .182
Rules about Transient Roles .182
Indicating Transient Roles .182
Sources of Information for Finding Transient Roles182
Interview Questions for Determining Transient Roles 183
What If a Group of Specialized Classes Can All Play the Same Role? . .183

Case Study H3: Transient Roles .184

Table of Contents xiii

Step 2biv: Model Whole/Part Relationships .186
The “Whole” Truth .186
Examples of Whole/Part Relationships .186
Why Indicate Whole/Part Relationships? .186
How Far Should You Decompose a Whole into Its Parts? 187
Sources of Information for Finding Aggregation
and Composite Aggregation .187
Rules Regarding Aggregation and Composite Aggregation187
Indicating Aggregation and Composite
Aggregation in the UML .187

The Composite Structure Diagram .188
Interview Questions for Determining Aggregation
and Composite Aggregation .189
Challenge Question .190

Case Study H4: Whole/Part Relationships .190
Step 2bv: Analyze Associations .192

Examples of Association .192
Why Indicate Association? .192
Why Isn’t It the Developers’ Job to Find Associations? 193
Discovering Associations .193
Rules Regarding Associations .193
The Association Must Reflect the Business Reality195
Redundant Association Rule of Thumb .196
Exception to the Rule of Thumb .196

Case Study H5: Associations .199
Step 2bvi: Analyze Multiplicity .202

Example of Multiplicity .202
Why Indicate Multiplicity? .202
Indicating Multiplicity in the UML .202
Rules Regarding Multiplicity .203
Sources of Information for Finding Multiplicity204
The Four Interview Questions for Determining Multiplicity 204

Case Study H6: Multiplicity .205
Chapter Summary .208
Endnotes .209

Chapter 9 Optimizing Consistency and
Reuse in the Requirements Documentation213
Chapter Objectives .213
Where Do You Go from Here? .214

Does the Business Analyst Need to Put Every
Attribute and Operation in the Structural Model? 214

Table of Contentsxiv

Step 2bvii: Link System Use Cases to the Structural Model 215
How Do You Find the Modeling Elements Involved
in a System Use Case? .215
How Do You Document the Links Between System
Use Cases and the Structural Model? .215

Case Study I1: Link System Use Cases to the Structural Model 216
Step 2bviii: Add Attributes .221

Example .221
Why Indicate Attributes? .221
Don’t Verification Rules about Attributes
Belong with the System Use-Case Documentation? 221
Sources of Information for Finding Attributes222
Rules for Assigning Attributes .222
Derived Attributes .223
Indicating Attributes in the UML .223

Meta-Attributes .225
Case Study I2: Add Attributes .226
Step 2bix: Add Lookup Tables .231

Why Analyze Lookup Tables? .231
Example .231
Rules for Analyzing Lookup Tables .231
Challenge Question .232
Indicating Lookup Tables in the UML .232

Case Study I3: Analyze Lookup Tables .233
Step 2bx: Add Operations .236

An Example from the Case Study .236
How to Distribute Operations .237

Case Study I4: Distribute Operations .238
Step 2bxi: Revise Class Structure .241

Rules for Reviewing Structure .242
Challenge Question .242

Case Study I5: Revise Structure .242
Chapter Summary .244
Endnotes .244

Chapter 10 Designing Test Cases and Completing the Project245
Chapter Objectives .245
Step 2c: Specify Testing .246

Who Does These Tests and How Does the BA Fit In?246
What Is Testing? .247
General Guidelines .247
Structured Testing .248
When Is Testing Performed? .248

Table of Contents xv

Principles of Structured Testing (Adapted for OO) 248
Structured Walkthroughs .250
Requirements-Based (Black-Box) Testing .252
Test Template .253

Decision Tables for Testing .254
Case Study J1: Deriving Test Cases from Decision Tables 255
Boundary-Value Analysis .256
Case Study J2: Select Test Data Using Boundary-Value Analysis 258
White-Box Testing .260

Who Does White-Box Testing? .260
Limitations of White-Box Testing .260
White-Box Coverage Quality Levels .260
Sequencing of White-Box Tests .261

System Tests .263
Beyond the System Tests .266
Step 2d: Specify Implementation Plan .267

Post-Implementation Follow-Up .268
Step 2e: Set Baseline for Development .268
Chapter Summary .268
Endnotes .270

Chapter 11 What Developers Do with Your Requirements 271
Chapter Objectives .271
OO Patterns .272

Examples .272
Visibility .272

Example .273
Visibility Options .273

Control Classes .274
Boundary Classes .274
Sequence Diagrams .274

Example: A Sequence Diagram .275
Communication Diagrams .277
Other Diagrams .277

Timing Diagrams .278
Deployment Diagrams .278

Layered Architecture .278
Monolithic, Two-Tier, Three-Tier, and N-Tier Architecture279

Interfaces .279
Mix-Ins .280
Implementing OO Using an OO Language .280
Implementing OO Using Procedural Languages .281

Table of Contentsxvi

Implementing a Database from a Structural OO
Model Using an RDBMS .281
Chapter Summary .281
Endnotes .282

Appendix A The B.O.O.M. Process .283
1: Initiation .284
2: Discovery .284

Appendix B Business Requirements Document (BRD) Template 287
Business Requirements Document (BRD) .288
Table of Contents .289
Version Control .291
Executive Summary .292
Scope .294
Risk Analysis .295
Business Case .296
Timetable .296
Business Use Cases .296
Actors .296
User Requirements .298
State-Machine Diagrams .301
Nonfunctional Requirements .301
Business Rules .302
State Requirements .302
Structural Model .303
Test Plan .304
Implementation Plan .305
End-User Procedures .306
Post Implementation Follow-Up .306
Other Issues .306
Sign-Off .306
Endnote .306

Appendix C Business Requirements Document Example:
CPP Case Study .307
Business Requirements Document (BRD) .308
Table of Contents .309
Version Control .312
Executive Summary .313
Scope .314
Risk Analysis .316

Table of Contents xvii

Business Case .318
Timetable .318
Business Use Cases .319
Actors .322
User Requirements .323
State-Machine Diagrams .331
Nonfunctional Requirements .332
Business Rules .333
State Requirements .333
Structural Model .333
Test Plan .340
Implementation Plan .340
End-User Procedures .341
Post Implementation Follow-Up .341
Other Issues .341
Sign-Off .341

Appendix D Decision Table Template .343

Appendix E Test Script Template .345
Test Template .345

Appendix F Glossary of Symbols .347

Appendix G Glossary of Terms and Further Reading 353

Index .359

Table of Contentsxviii

I
began working on the first edition of this book in the year 2000. As a former developer
and current IT business analyst, I could see an approaching technological wave affecting
my colleagues. Thanks in large part to client-server applications and the Internet,

object-oriented (OO) languages like C++ and Java were taking over the development world.
This had already changed the way the technical members of an IT team (systems analysts,
coders, and so on) were working, but business analysts—the people who communicated
requirements to the developers—were still working by and large as though OO didn’t exist.
The result was BA documentation that had to first be translated into OO terms and
standards by the developers—an inefficient and error-prone step. I knew it was only a
matter of time before companies began to expect their BAs to work with OO conventions,
so I put together Business Object-Oriented Modeling (B.O.O.M.), a step-by-step program
to mentor and train BAs to work efficiently on projects using the Unified Modeling
Language (UML), the prevailing standard for modeling business and IT systems on OO
projects (though not confined to OO projects, since the standard has non-OO modeling
elements as well).

Since developing B.O.O.M., I have used it to mentor BAs working on UML projects in
wealth management, insurance, accounting, defense, government, credit-card systems,
telecommunications, hospitality, and other business areas. They have, in turn, helped me
improve the process by sharing with me their best practices, templates, and other tools they
use on the job. This knowledge has made its way back into B.O.O.M.

Thanks to contacts made through a colleague in corporate training, Charlie Orosz, I had
an opportunity to publish B.O.O.M. as a book. I believe it fills a real need. Today, BAs often
find themselves working on UML projects; yet they still have a long way to go to exploit
the technology beyond the adoption of use cases (just one part of the UML). When BAs

xix

Introduction

look for guidance in the UML, however, they find a dearth of UML literature written for
the BA. There are some BA books on narrow aspects of the UML (such as use cases) and
UML books with a technical perspective, but there is little that explains how a BA can pull
together all the UML tools and fully exploit them during an IT project. I wrote this book
to fill that gap.

This is not a “theory” book. I believe that people learn best by doing. In keeping with that,
you and I will, together, develop and validate the requirements for an IT system as we move
through the steps. By the time you have completed the book—and the case study in it—
you will have hands-on experience in using OO standards (UML 2) and techniques and in
integrating these with other, non-OO techniques over the course of an OO IT project.

Who This Book Is For
This book is intended for anyone performing the role of the information-technology busi-
ness analyst (IT BA)—an integral part of a software-development team responsible for
documenting and verifying the business and user requirements for a software system. If
you are a new IT BA, or if you are an experienced BA who is new to the UML standard,
this book is for you. This does not mean, however, that the intended reader necessarily has
“IT business analyst” as a job title. Other titles that may overlap with the IT BA role include2

business analyst, business process analyst, requirements engineer, business systems analyst,
systems analyst, data analyst, functional architect, usability/UX analyst, product manager,
and user experience analyst. If you’re doing any of these jobs and your responsibilities
include the gathering of requirements or the modeling of the business domain on a pro-
ject for an IT solution, this book is for you. For example, this book will be of benefit to the
developer who is interested in expanding his or her role to encompass IT BA activities. In
this case, you may be wondering how you can exploit the UML tools and techniques you
already know to include the gathering and documentation of business requirements. This
book will guide you through that process.

What Types of IT Projects Will Benefit from This Book?
As noted by some readers of the first edition, this book is more about a requirements-
gathering approach that happens to use the Unified Modeling Language (UML) standard than
it is about the UML per se. As such, it has applicability to both UML and non-UML projects.
That said, to use this book most directly, your project should be using the UML standard.

Introductionxx

2Thanks to Adrian Marchis for pointing out the need to expound on alternate job titles.
For a discussion on BA roles, please see the Modern Analyst article “The Roles of the Business Analyst”
at http://www.modernanalyst.com/TheProfession/Roles/tabid/73/Default.aspx.

http://www.modernanalyst.com/TheProfession/Roles/tabid/73/Default.aspx

Often, this means the contemplated solution is one that will be built using an object-
oriented (OO) language, but this is not necessarily the case because the UML contains
many diagrams that have little to do with OO—and those that do may be easily converted.3

If your project is not using the UML, you will not be able to use this book directly, but you
should be able to use the overall approach it describes in moving from the business
problem to the IT requirements. You will need, however, to replace the UML terms and
diagrams in this book with non-UML equivalents—for example, using the term business
services and processes instead of the UML term business use cases; level 1 data flow diagrams
instead of UML use-case diagrams; non-UML swimlane workflow diagrams instead of
UML activity diagrams with partitions; etc.

You may be wondering about the relevance of this book to your project based on the life-
cycle approach being used to define its phases, tasks, and roles. This book is applicable to
all lifecycle approaches. How the techniques are applied, however, must be tailored for each
lifecycle approach and, indeed, for each project. The section “Tailoring B.O.O.M. for Your
Project” in Chapter 3, “Steps of B.O.O.M.,” provides guidance in this area. In short, with
respect to lifecycle, the artifacts described in this book are produced in greater depth on
definitive (well-defined) lifecycles than on empirical (less defined, more adaptable) ones.
For example, while a large project using rational unified process (RUP)—an iterative, but
definitive, lifecycle—might require textual system use-case descriptions (specifications)
and class diagrams to a level of detail comparable to that shown in the book, a small pro-
ject using an empirical lifecycle might only require higher-level documentation: system
use-case diagrams, system use-case briefs (short descriptions of user tasks), and—only
where necessary—business class diagrams. Why go even that far on an empirical project?
You need that level of detail to estimate the cost, time, and resources for the project and to
uncover sometimes subtle and elusive business rules. However, you are unlikely to create
complete use-case textual descriptions or complete structural models (class diagrams, etc.)
on empirical projects (such as those that use an agile approach), where the guiding prin-
ciple is to do just enough documentation and to do it as late in the process as possible.

This last point brings us to the impact of the project lifecycle approach on the sequence in
which the business analysis steps described in this book are carried out. On an iterative pro-
ject, where there are numerous cycles of analysis, design, coding, and testing throughout
the project, all the analysis is not done up front but is instead done incrementally as the
project progresses (typically, during the iteration in which they will be implemented, just
before they are to be designed and coded). On the other hand, on traditional, waterfall
projects, where all the analysis is performed before design begins, all the documentation
described in this book is created up front.

What Types of IT Projects Will Benefit from This Book? xxi

3For example UML class diagrams of the business domain may be readily converted into entity relationship
diagrams (ERDs) for use in data design. The procedure for doing the conversion is described in Chapter 11,
“What Developers Do with Your Requirements,” in the section “Implementing a Database from a Structural
OO Model Using an RDBMS.”

As to which approach is best: When it is appropriate, an iterative, agile lifecycle is preferred
because business stakeholders are more likely to get what they really want when the solution
comes through a process of trial-and-error rather than from an abstract preconception of
what the requirements might be. However, I do not advocate any one particular approach
for all projects; I have been in this business long enough to know that one size will never
fit all. On one project, you might be working for a client with a low tolerance for uncer-
tainty (perhaps because of the cost or regulatory requirements) and, consequently, be using
a waterfall approach, where there are few unknowns. On another project, you might be
working with clients who are unsure of what they want (perhaps because of a rapidly
changing business environment or because the service is so new) and, therefore, be using
an agile lifecycle, where the expectation of change is built into the lifecycle approach. Over
your career as a business analyst (or as anyone whose role includes business-analysis
responsibilities), you need to be prepared to work under all these lifecycle approaches. This
book will provide you with a full spectrum of techniques available to the BA, but you
shouldn’t expect to be doing everything on every project.

How You and Your Organization
Can Benefit from B.O.O.M.
Many organizations are excellent at developing good software products. Where they are
often weak is in developing the right software product. The mismatch between what the
user wants and what the developers deliver can often be traced to poor practices in busi-
ness analysis and quality control. B.O.O.M. provides a step-by-step procedure that helps
ensure the completeness, correctness, and clarity of the requirements documentation.

In addition, many IT projects experience time and cost overruns due to the difficulty in
responding to a rapidly changing business environment. A major contributing factor to
this problem is the “ripple effect”—one change in the business that leads to many changes
in project deliverables. B.O.O.M. helps by using OO techniques to minimize redundancies
in the requirements. With “one fact in one place,”4 the requirements are easier to revise.

Finally, many project failures are due to faulty communication between those who know
the business and those who write the software. With B.O.O.M., the BA documents busi-
ness rules and requirements using the same types of diagrams, concepts, and terminology
used by OO developers, thus reducing the risk of miscommunication. Improvements in
communication are even more dramatic if the organization uses a software-development
tool like IBM Telelogic DOORS, Blueprint Requirements Center, or the RUP suite of
products. In those environments, you’ll use software tools right from the start to model busi-
ness requirements. You can then pass the model (one or more digital files) to the developers,

Introductionxxii

4Thanks to Tony Alderson for this description of non-redundancy.

who can use it as the starting point for their design. It doesn’t get much more efficient or
direct than that. (Keep in mind, however, that you don’t need to use business modeling
software to benefit from OO BA practices or from this book.)

Once You’ve Read This Book, You’ll Be Able to...
� Create a business requirements document (BRD) that conforms to the UML 2.2

standard and that incorporates use cases, class diagrams, and other object-oriented
analysis (OOA) techniques.

� Follow a step-by-step OOA process for interviewing, researching, and documenting
requirements.

� Incorporate still-useful pre-OO techniques within OOA.

� Actively use the accompanying job aids while working on the job.

� Use the following artifacts:

• Business use-case diagrams

• System use-case diagrams and use-case templates

• Package diagrams

• Class diagrams

• Composite structure diagrams

• Object diagrams

• Activity diagrams with and without partitions

• State-machine diagrams

• Decision tables

The CPP Case Study
One case study runs throughout the book. It is based on a business-analysis project my
company performed for the Community Peace Program (CPP) in Cape Town, South Africa
(with adjustments made for learning purposes). I encourage you to work through the case
study yourself. Only by trying out the ideas as you learn them will you really be able to
practically apply the techniques presented in this book.

The Appendices
This book includes a set of job aids in Appendices A through G. These appendices contain
the condensed methodology, including examples of every diagram covered in the book,
templates, lists of questions to ask at various stages of the interview, and a glossary of UML
symbols and terms.

The Appendices xxiii

Remember: It’s All Just a Game!
As you read this book, you will spend a lot of time analyzing complex relationships in a
system. It’s easy to get uptight about whether you’ve got the right solution. Well, here’s the
good news: There is no “right” solution because there is more than one way to model
the real world. So the best approach is to just play with an idea and see where it leads you.

What’s Changed in This Edition
This edition of this book—the second edition—includes updates to best practices and stan-
dards that have emerged since the book was first published. It includes a new section on
the Business Analysis Body of Knowledge (BABOK), whose most recent release, BABOK 2,
was published in March of 2009. The BABOK, a publication of the International Institute
for Business Analysis (IIBA), defines the BA profession and is the basis for a BA certifica-
tion process and exam administered by the IIBA. The new section of the book describes
the BABOK 2 knowledge areas (areas of expertise) and describes how they and their com-
ponent tasks map to this book. I hope this information will be of help to those who wish
to prepare for certification.

Also included are changes to the UML. The current version, UML 2.2, was published in
February of 2009. Changes from UML 2.0 reflected in the book include new definitions
and changes in the terminology. The terminology changes reflected in this edition are as
follows:

� Static modeling and static diagrams are now referred to as structural modeling and
structure diagrams, respectively.

� Dynamic modeling is now referred to as behavioral modeling.

� The term inclusion use case has been replaced by the term included use case.

� The term extension use case has been replaced by the term extending use case.

� The term composition has been replaced by the term composite aggregation.

Introductionxxiv

How to Decide If You’ve Made a Good Modeling Decision
You’ll know you’ve gone in a good direction if your model has these qualities:

�Elegance: A simple solution to a complex problem

�Adaptability: Can easily be changed to reflect a change in the requirements

�Non-redundancy: Does not repeat itself—each fact is “in one place”

This book also takes into account differences in lifecycle approaches. I had intended to steer
clear of these issues in the first edition because to properly cover the topic seemed beyond
the scope of this book. It has since occurred to me, however, that the unintended side effect
of this decision was to leave the impression in the minds of some readers that a waterfall
lifecycle approach is being advocated—contrary to my intention. (In a waterfall approach,
project activities in one phase, such as requirements analysis, must be completed before
the next phase begins; in iterative approaches, all activities may occur in any phase, albeit
to varying degrees.) In the current edition, I’ve introduced the issue of different lifecycle
approaches and their impact on the business analyst. Also, the phase names used in the
original edition as well as their descriptions have been changed to be generic enough to
encompass all approaches, including agile lifecycles. This has the added advantage of keep-
ing the phase names in line with those in the Business Analyst’s Handbook. The changes to
phase names are as follows:

� The second phase, previously referred to as Analysis, is now referred to as Discov-
ery to reflect the fact that, on iterative projects, requirements analysis is not the
only activity going on in this phase and that analysis is not exclusive to this phase.

� The Test phase is now referred to as Final Verification and Validation (V&V) to
better reflect the fact that other (non-final) testing activities occur elsewhere in the
lifecycle.

Finally, the instructions for using IBM Rational Rose have been removed from this edition
of the book. Since the first edition of the book was written, IBM has shifted its marketing
focus to other modeling products. There are so many modeling tools in use today and mar-
ketplace preferences are changing so rapidly that removing tool-specific instructions
seemed the best approach.

What’s Changed in This Edition xxv

This page intentionally left blank

Chapter Objectives
At the end of this chapter, you will understand the following:

� The role of the IT business analyst throughout a project’s lifecycle

� What is meant by the terms business model, process model, data model, and object
model

The IT and Non-IT BA
There are two types of business analysts. Just to clear up any possible confusion:

� A non-IT business analyst is someone who works within the context of the business.
This person is involved in process improvement, cost-cutting, and so on.

� An information technology business analyst (IT BA) works within the context of IT
projects—projects to buy, purchase, or modify some software. This person liaises
with business and technical stakeholders and is responsible for gathering the
requirements that originate from the business.

This book is directed at anyone acting as an IT BA on a project. As noted in the introduc-
tion, people with IT BA responsibilities do not necessarily have a BA or IT BA job title.
For example, they may be developers who do double duty as requirements elicitors (a com-
mon practice, for example, on agile projects), or systems analysts whose responsibilities
include modeling the business domain (as is the case on RUP projects). For a list of job
titles that may include IT BA responsibilities, please see the section “Who This Book Is For”

1

Who Are IT
Business Analysts?

Chapter 1

in the introduction. If your responsibilities include liaising with stakeholders, or eliciting,
analyzing, or documenting requirements on an IT project, you are, in effect—if not in
title—an IT BA, and the intended reader of this book. If you are a non-IT BA, you may
find some of the techniques in this book useful, as there is some overlap between the non-
IT and IT roles diagrams; other techniques in the book, however, are specific to the IT BA
role. (For example, workflow diagrams are used by both while system use cases are specific
to the IT BA.)

Perspective on the IT BA Role
The discipline of business analysis has evolved over the past few years into a mature
profession with well-defined responsibilities and areas of expertise. The National IT
Apprenticeship System (NITAS)—a BA program sponsored by the U.S. Dept. of Labor in
conjunction with the Computing Technology Industry Association (CompTIA)—began
working on a definition of the knowledge areas and activities of a BA a number of years
ago. Since then, the International Institute of Business Analysis (IIBA) has taken the lead
internationally in defining the knowledge areas required for the practice of business analy-
sis and creating a certification process for the professional BA.1 The IIBA’s Business Analysis
Body of Knowledge Version 2.0 (BABOK 2) defines business analysis and the business ana-
lyst as follows:

“Business analysis is the set of tasks and techniques used to work as a liaison among
stakeholders in order to understand the structure, policies, and operations of an orga-
nization, and to recommend solutions that enable the organization to achieve its goals.”2

“A business analyst is any person who performs business analysis activities, no matter
what their job title or organizational role may be.”3

Note that the IIBA definition, referring as it does to business analysis (rather than IT busi-
ness analysis), makes no restriction that the recommended solution involve an IT compo-
nent. Despite the potential confusion, in practice, most organizations have a pretty similar
idea of what the IT BA does: An IT BA is a liaison between the stakeholders of a software
system and the developers who create or modify it. A stakeholder is a person or an organi-
zation affected by a project: a user, a customer who does not directly use the system, a
sponsor, and so on. The IT BA’s primary function is to represent stakeholders’ interests to
designers, programmers, and other team members.

The IT BA is expected to discover, analyze, negotiate, represent, and validate the requirements
of a new or modified software system. Basically, this means capturing the requirements and
supporting the testing of the software solution to ascertain whether it meets those requirements.

Chapter 1 � Who Are IT Business Analysts?2

Why Modeling Is a Good Thing

In this book, you’ll be asked to draw a lot of diagrams. You may be wondering, “What’s the
point?” After all, most users can’t read them, and they are reluctant to sign off on anything
but text. The fast answer is that the diagrams are for the developers. That is, the diagrams
are important because they get across the requirements in an unambiguous, standardized4

way. The slow answer is that the diagrams are more than that. Here’s how to get the most
out of them:

� Use diagrams to drive the interviews. There is a logical, step-by-step process to
drawing a diagram. At each step, you have to ask the user certain questions to dis-
cover what to draw next. The act of drawing the diagram tells you what questions
to ask and when, and even when the interview is complete (which is when all the
diagram elements have been resolved).

� Use diagrams whenever you need to reconcile differing viewpoints. For example,
on a consulting job for an accountancy firm, I was asked to help the team make
changes to its customer-relations management (CRM) processes. The current
system involved too much double entry. Here, a workflow diagram5 was useful to
pool together the group’s views on what was and what should be happening during
these processes.

In this book, you’ll learn how to create two different types of diagrams, or models:

� Behavioral model (also known as the dynamic model)

� Structural model (also known as the static model)

The Behavioral (Dynamic) Model
Behavioral modeling asks—and tries to answer—the question,“What does the system do?”
It’s very verb-oriented: The behavioral model judges (analyzes) the system by its actions.

Why Modeling Is a Good Thing 3

Business Model

A business model is an abstract representation of a clearly delimited area of a business. It may
take many forms—for example, pictures with supporting text or the underlying format used by a
tool such as IBM Rational Software Modeler (RSM), Rational Rose, or Blueprint’s Requirements
Center to produce diagrams and generate code.

In this book, the artifacts that fall into this category are as follows:

� Activity (workflow) diagrams

� State-machine diagrams

� Timing diagrams

� System use-case diagrams

� Business use-case diagrams

� Sequence diagrams (described briefly)

� Communication diagrams

� Use-case descriptions (referred to in RUP as use-case specifications)

� Decision tables

� Decision trees

The Structural (Static) Model
The motto of structural modeling would be, “Ask not what you do, ask what you are.” The
structural model answers the question, “What is this system?” As a structural modeler, you
want to know what every noun used within the business really means. For example, while
working with a telecommunications team, I asked the members to define exactly what they
meant by a “product group.” I used structural modeling diagrams to help me pin down its
meaning and its relationship to other nouns, such as “line” and “feature.” This process
brought out the fact that there were two different definitions floating around among the
team members. Using structural modeling, I was able to discover these two definitions and
help the team develop a common language.

In this book, the artifacts that fall into this category are as follows:

� Class diagrams (the main diagrams used by the BA for structural modeling)

� Package diagrams

� Composite structure diagrams

� Static object diagrams

Chapter 1 � Who Are IT Business Analysts?4

Behavioral Model

A behavioral model is an abstract representation of what the system does. It is a collection of all
useful stimulus and response patterns that together define the behavior of the system.6

Not all of the diagrams and other artifacts described in this book will be created for every
project, nor will they always be created with the same level of detail. See the section
“Tailoring B.O.O.M. for Your Project” in Chapter 3, “Steps of B.O.O.M.,” for guidelines on
determining how much analysis and modeling to do on a project.

For Those Trained in Structured Analysis
The diagrams I’ve have been discussing focus on an object-oriented (OO) view of a busi-
ness or system. OO is an approach to viewing and creating a complex system as an assem-
bly of smaller components. (We’ll look more deeply into OO in the next chapter.) The OO
approach is often at odds with an older and still-used approach called structured analysis.
This being the case, those with prior experience with structured analysis may be wonder-
ing at this point whether they have to throw away everything they already know because of
OO. The good news is that despite the theoretical differences between the approaches, many
of the OO diagrams are quite similar to the structured analysis ones—at least as they are
used in a BA context. (Things are much more serious for programmers switching to OO.)

Table 1.1 lists diagrams used within structured analysis and matches them with their
approximate counterparts in the Unified Modeling Language (UML)—a widely used stan-
dard that incorporates OO concepts.

For Those Trained in Structured Analysis 5

Structure Diagram

“Structure diagrams show the static structure of the objects in a system. That is, they depict those
elements in a specification that are irrespective of time. The elements in a structure diagram rep-
resent the meaningful concepts of an application, and may include abstract, real-world and imple-
mentation concepts. For example, a structure diagram for an airline reservation system might include
classifiers that represent seat assignment algorithms, tickets, and a credit authorization service.”7

Structured Analysis Diagram UML Counterpart

Data flow diagram (DFD) There is no exact counterpart because OO views a system as

objects that pass messages to each other, while a DFD views it as

processes that move data. However, some UML diagrams have

similarities to the DFD:

� A use-case diagram is similar to a level 1 DFD.

� An activity diagram (with object states) can be used

similarly to a level 2 or higher DFD.

TABLE 1.1 Structured Analysis Diagrams and Their UML Counterparts

Table 1.2 matches terms used within structured analysis with their approximate counter-
parts in the UML.

Mapping the BABOK 2 to This Book
The Business Analysis Body of Knowledge Version 2.0 (BABOK 2) describes business
analysis through a set of areas of expertise, referred to as knowledge areas (KAs).
“Knowledge areas define what a practitioner of business analysis needs to understand and
the tasks a practitioner must be able to perform.”8 Table 1.3 summarizes the KAs of BABOK
2, lists the KA tasks that are addressed in this book, and describes where the reader may
find guidance on the performance of each of those tasks.

Chapter 1 � Who Are IT Business Analysts?6

Structured Analysis Diagram UML Counterpart

System flowchart Activity diagram

Workflow diagram Activity diagram with partitions

Entity relationship diagram (ERD) Class diagram

TABLE 1.1 Structured Analysis Diagrams and Their UML Counterparts (continued)

Structured Analysis Term UML Counterpart

Entity Class, entity class

Occurrence Instance, object

Attribute Attribute

Process Use case, operation, method

Relationship Association

TABLE 1.2 Structured Analysis Terms and Their UML Counterparts

7

KA Definition KA Task Coverage in This Text
(BABOK 2)

Business Analysis “covers how business 2.1 Plan Business For guidance on process

Planning and analysts determine which Analysis Approach models (which may be used

Monitoring activities are necessary to define and document the

in order to complete a business analysis

business analysis effort. approach), see Chapter 4,

It covers identification “Analyzing End-to-End

of stakeholders, selection Business Processes.”

of business analysis

techniques, the process For guidance on structured

that will be used to walkthroughs (which may

manage requirements, be used as a means of

and how to assess the validating a business

progress of the work.”9 analysis approach10), see

the section “Structured

Walkthroughs” in Chapter

10, “Designing Test Cases

and Completing the Project.”

2.2 Conduct On modeling business

Stakeholder stakeholders and their

Analysis relationships to business

processes (business use cases),

see Chapter 4, section

“Step 1ai: Identify Business

Use Cases (Business Use-Case

Diagram).”

For guidance on modeling

stakeholders who interact

directly with an IT solution,

see the section “Step 1bi:

Identify Actors (Role Map)”

in Chapter 5, “Scoping the

IT Project with System Use

Cases.”11

2.3 Plan Business For planning BA activities

Analysis Activities over the project lifecycle,

see Chapter 3.

TABLE 1.3 Mapping of BABOK 2 Knowledge Areas to This Book

Mapping the BABOK 2 to This Book

Chapter 1 � Who Are IT Business Analysts?8

KA Definition KA Task Coverage in This Text
(BABOK 2)

2.4 Plan Business On options for planning

Analysis communication events,

Communication see the section “Interviews

During the Phases” in

Chapter 4.

Elicitation “describes how business 3.2 Conduct Guidance on structuring the

analysts work with Elicitation Activity interview and lists of

stakeholders to identify questions for elicitation

and understand their events over the lifecycle

needs and concerns, are provided throughout the

and understand the book. For example, see

environment in which Chapter 6, “Storyboarding

they work. The purpose the User’s Experience”—

of elicitation is to ensure specifically, the sections

that a stakeholder’s actual “Guidelines for Conducting

underlying needs are System Use-Case

understood, rather than Interviews” and “A Step-by-

their stated or superficial Step Procedure for Using

desires.”12 a Decision Table During an

Interview to Analyze System

Behavior.” See also Chapter

8, “Gathering Across-the-

Board Business Rules with

Class Diagrams”—

specifically, the sections

“Interview Questions for

Finding Classes” and

“Interview Questions for

Determining Aggregation

and Composite Aggregation.”

TABLE 1.3 Mapping of BABOK 2 Knowledge Areas to This Book (continued)

Mapping the BABOK 2 to This Book 9

KA Definition KA Task Coverage in This Text
(BABOK 2)

Requirements “describes how business 4.3 Maintain On managing requirements

Management analysts manage conflicts, Requirements for maximum reuse, see

and issues, and changes in for Reuse Chapter 9, “Optimizing

Communication order to ensure that Consistency and Reuse in

stakeholders and the Requirements

project team remain in Documentation.”

agreement on the solution

scope, how requirements

are communicated to

stakeholders, and how

knowledge gained by the

business analyst is

maintained for future

use.” 13

4.4 Prepare In this book, the

Requirements requirements package

Package is referred to as a business

requirements document

(BRD). For a sample

template, see Appendix B,

“Business Requirements

Document (BRD)

Template.” For an example

of a completed BRD, see

Appendix C, “Business

Requirements Document

Example: CPP Case Study.”

4.5 Communicate On options for

Requirements communicating

requirements, see the

section “Interviews During

the Phases” in Chapter 4. On

reviewing requirements with

stakeholders, see the section

“Structured Walkthroughs”

in Chapter 10.

TABLE 1.3 Mapping of BABOK 2 Knowledge Areas to This Book (continued)

Chapter 1 � Who Are IT Business Analysts?10

KA Definition KA Task Coverage in This Text
(BABOK 2)

Enterprise Analysis “describes how business 5.2 Assess On modeling as-is and to-be

analysts identify a Capability Gaps (solution) business processes

business need, refine and in order to identify gaps, see

clarify the definition of Chapter 4. On models used

that need, and define a in the context of the

solution scope that can enterprise architecture15—

feasibly be implemented a key input to this task—see

by the business. This Chapter 4 (for business

knowledge area describes process descriptions),

problem definition and Chapter 6 (specifically, the

analysis, business case sections “Decision Tables”

development, feasibility and “Decision Trees” [for

studies, and the definition business rules]), and

of solution scope.” 14 Chapter 8 (for the definition

of business concepts and

relationships).

5.4 Define On the definition of

Solution Scope the solution scope

(for an IT solution),

see Chapter 5.

Requirements “describes how business 6.2 Organize For guidance on managing

Analysis analysts prioritize and Requirements a large number of system

progressively elaborate use cases, see the section

stakeholder and solution “Step 1bii: Identify System

requirements.... It involves Use-Case Packages” in

analyzing stakeholder needs Chapter 5.

to define solutions that

meet those needs, assessing On mapping the behavioral

the current state of the and structural models to

business to identify and each other, see the section

recommend improvements, “Step 2bvii: Link System

and the verification and Use Cases to the Structural

validation of the resulting Model” in Chapter 9.

requirements.” 16

TABLE 1.3 Mapping of BABOK 2 Knowledge Areas to This Book (continued)

Mapping the BABOK 2 to This Book 11

KA Definition KA Task Coverage in This Text
(BABOK 2)

6.3 Specify and On the definition of user classes,

Model Requirements see the section “Step 1bi: Identify

Actors (Role Map)” in Chapter 5.

On the definition of concepts and

relationships, see Chapter 8.

Techniques listed in the BABOK for

this task are covered in this text as

follows:

� Business rules analysis:

On documenting business

rules, see the section

“Business Rules” in Chapter 6.

On operative business rules, see

the section “Decision Tables” in

Chapter 6. On structural

business rules, see Chapter 8.

� Data modeling: See Chapter 8

for the UML approach (class

diagrams).

� Functional decomposition:

On the include relationship

(which allows hierarchical

composition)17, see the section

“Advanced Use-Case Features”

in Chapter 6.

� Process modeling: See Chapter 4.

� Scenarios and use cases: See

Chapter 6.

� Sequence diagram: See Chapter

11, “What Developers Do with

Your Requirements.”

� State diagrams: See Chapter 7,

“Lifecycle Requirements for Key

Business Objects.”

TABLE 1.3 Mapping of BABOK 2 Knowledge Areas to This Book (continued)

Chapter 1 � Who Are IT Business Analysts?12

KA Definition KA Task Coverage in This Text
(BABOK 2)

6.5 Verify Structured walkthroughs,

Requirements a technique used in this

task18, are discussed in

the section “Structured

Walkthroughs” in Chapter 10.

6.6. Validate Structured walkthroughs, a

Requirements technique used in this task19,

are discussed in Chapter 10

in the section “Structured

Walkthroughs.”

Solution “describes how business 7.2 Allocate The following techniques

Assessment and analysts assess proposed Requirements listed in the BABOK for this

Validation solutions to determine task21 are addressed in the

which solution best fits text:

the business need, identify � Business rules analysis:

gaps and shortcomings in On operational rules that may

solutions, and determine be managed through the

necessary workarounds software, see the section

or changes to the solution. “Decision Tables” in Chapter

It also describes how 6. On structural business

business analysts assess rules, see Chapter 8.

deployed solutions to see

how well they meet the � Process modeling: See

original need so that the Chapter 4.

sponsoring organization

can assess the performance � Scenarios and use

and effectiveness of the cases: On removal of

solution.” 20 alternate flows so they can

be later implemented

as an extending use case,

see the section “Advanced

Use-Case Features” in

Chapter 6.

TABLE 1.3 Mapping of BABOK 2 Knowledge Areas to This Book (continued)

Chapter Summary
In this chapter, you learned the following:

� The role of the IT BA is to represent the business stakeholders to the development
community.

� The main duties of the IT BA are to discover and communicate requirements to
the developers and to support testing.

� A business model is a collection of diagrams and supporting text that describes
business rules and requirements.

� A behavioral model describes what a system does.

� A structural model describes what a system is.

� The International Institute for Business Analysis (IIBA) is a professional body that
offers a professional BA certification and whose publication, the Business Analysis
Body of Knowledge (BABOK), defines knowledge areas (KAs) relevant to the practice
of business analysis.

Mapping the BABOK 2 to This Book 13

KA Definition KA Task Coverage in This Text
(BABOK 2)

7.3 Assess On process models, used

Organizational to identify activities and

Readiness stakeholders likely to be

affected by the implementation

of the solution22, see Chapter 4.

7.5 Validate For designing tests used as

Solution acceptance criteria for

validating solutions, see

Chapter 10. In particular,

see the following sections of

Chapter 10:

� “Decision Tables for

Testing”

� “System Tests” (on testing

of non-functional [service-

level] requirements)

TABLE 1.3 Mapping of BABOK 2 Knowledge Areas to This Book (continued)

Endnotes
1I was involved with both these initiatives, as subject-matter expert on NITAS and as an editor of
the BABOK.

2A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 3, 2009.

3A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 4, 2009.

4The standard used in this book is UML 2.2.

5The diagram was an activity diagram with partitions (swimlanes). It describes the sequence of
activities and who (or what) is responsible for each activity.

6The diagrams covered under the “Behavioral Model” heading are sometimes referred to as process
models (showing activities but not necessarily sequencing) and workflow models (which do show
sequencing).

7UML Superstructure Specification, v2.2, OMG, 2009, page 686. The UML (Unified Modeling
Language) is a standard used in object-oriented development.

8A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 6, 2009.

9A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 6, 2009.

10See A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, Section 2.1.5 Techniques, page 23, 2009.

11For a discussion of process modeling and use cases in the context of this task, see A Guide to the
Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International Institute of Business
Analysis, Section 2.2.5 Techniques, page 28, 2009.

12A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 7, 2009.

13A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 7, 2009.

14A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 7, 2009.

15The enterprise architecture is “a description of an organization’s business processes, IT software
and hardware, people, operations and projects, and the relationships between them.” (A Guide to
the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International Institute of
Business Analysis, page 226, 2009.)

16A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 7, 2009.

Chapter 1 � Who Are IT Business Analysts?14

17“The include relationship allows hierarchical composition of use cases as well as reuse of use cases.”
OMG Unified Modeling Language (OMG UML), Superstructure, V2.2, page 596, February 2009.

18A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 117, 2009.

19A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 120, 2009.

20A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, page 8, 2009.

21A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, Section 7.2.5 “Techniques”, page 126, 2009.

22A Guide to the Business Analysis Body of Knowledge (BABOK Guide) Version 2.0, International
Institute of Business Analysis, Section 7.3.5 “Techniques”, page 129, 2009.

Endnotes 15

This page intentionally left blank

Chapter Objectives
At the end of this chapter, you will

� Understand how OO affects the BA role on IT projects.

� Understand key OO concepts:

� Objects

� Operations and attributes

� Encapsulation

� Classes

� Entity classes

� Relationships

� Generalization

� Association

� Aggregation

� Composite aggregation

� Polymorphism

� System use cases

� Business use cases

� Unified Modeling Language (UML)

17

The BA’s Perspective
on Object Orientation

Chapter 2

What Is OO?

OO is a complete conceptual framework that covers the entire lifecycle of an IT project.

� OO affects the way the BA analyzes and models the requirements.

� OO affects the way the software engineer (technical systems analyst) designs the
system specifications.

� OO affects the way the code itself is structured. Object-oriented programming lan-
guages such as C++ and the .NET languages support OO concepts and structures.

All of these are based on the same theoretical framework—one that we’ll explore in this
chapter.

The UML Standard
UML is an acronym for Unified Modeling Language, a widely accepted standard incorpo-
rating OO concepts first developed by the “Three Amigos”—Grady Booch, Jim Rumbaugh,
and Ivar Jacobson—and now owned by the Object Management Group (OMG). The UML
standards cover terminology and diagramming conventions. This book uses the latest ver-
sion of that standard, UML 2.2.

I’ve seen many projects get bogged down over arguments about whether it’s “legal” to do
this or that according to the UML. If this happens with your team, ask what difference the
outcome of the argument will have on the quality of the resulting software. In many cases,
particularly during business analysis, there are no ramifications. In such cases, discuss it,
make a decision, and move on.

Cognitive Psychology and OO
As a business analyst, your job is to get inside the heads of your stakeholders so that you
can extract what they know about a piece of the real world—a business system—and pass
it on to the developers, who will simulate that system on a computer. If you were choos-
ing an approach for doing all this, you’d want something that goes as directly as possible
from the stakeholders’ heads to the IT solution. This approach would have to begin with
an understanding of how people actually think about the world, and would have to be

Chapter 2 � The BA’s Perspective on Object Orientation18

OO
OO is an acronym for “object-oriented.” The OO analyst sees a system as a set of objects that
collaborate by sending requests to each other.1

broad enough to take the project from requirements gathering right through to construc-
tion of the software. Object orientation is one such approach. It begins by proposing that
the object is the basic unit by which we organize knowledge. In the following discussion,
we’ll see how OO takes this simple idea and builds an entire edifice of powerful concepts
that can be used to understand and build complex systems.

Objects
OO begins with the observation that when you perceive the world, you don’t just take it in
as a blur of sensations. Rather, you distinguish individual objects, and you have internal
images of them that you can see in your mind’s eye. Taken together, these internal objects
model a segment of the real world.

The BA Perspective
You begin to analyze a business area by asking stakeholders to describe the business objects
it encompasses. A business object is something the business (and the IT system that auto-
mates it) must keep track of or that participates in business processes. Examples of such
an object might include an invoice, a customer-service representative, or a call.

Attributes and Operations
OO theory continues by examining the kind of knowledge that is attached to each inter-
nal object. Because we can recognize an object again after having seen it once, our internal
representation of an object must include a record of its properties. For example, we remem-
ber that a shirt object’s color is blue and its size is large. In OO, color and size are referred
to as attributes; blue and large are attribute values. Every object has its own set of attribute
values.

Something else we remember about an object is its function. For example, the first time
you saw a crayon, it took you some time to learn that it could be used to scribble on the
walls. Unfortunately for your parents, the next time you saw that crayon, you knew exactly
what to do with it. Why? Because you remembered that scribble was something you could
do with that object. In OO, scribble is referred to as an operation.

To sum up what we’ve established so far: Two things we remember about objects are

� The values of their attributes

� The operations that we can do with them

The BA Perspective
The next step in analyzing a business system is to find out what attributes and business
operations apply to each object. For example, two attributes that apply to an account object

Attributes and Operations 19

are balance and date last accessed; two operations that relate to the object are deposit and
withdraw.

An object’s operations usually change or query the values of its attributes. For example,
the withdraw operation changes the value of the object’s balance attribute. But this is not
always the case. For example, view transaction history—another operation that applies to
the account object—displays information about all the transaction objects tied to the
account; however, it might not refer to any of the account’s attributes.

Operations and Methods
Going one step further, you don’t just remember what you can do with an object, you also
remember how you do it. For example, you know that you can place a call with a particu-
lar mobile phone—but you also remember that to do so, you must follow a particular pro-
cedure: First you enter the phone number and then you press the Send key. In OO terms,
place a call is an operation; the procedure used to carry it out is called a method.

The BA Perspective
Next, you take each operation and ask stakeholders what procedure they use to carry it out.
You document the procedure as a method. For example, you ask stakeholders what proce-
dure they follow when withdrawing funds from an account. They tell you that they first
check to see if there is a hold on the account and whether there are sufficient funds avail-
able for withdrawal. If everything is in order, they reduce the balance and create an audit
trail of the transaction. You document this procedure as the method used to carry out the
withdraw operation.

Encapsulation
Every day you use objects without knowing how they work or what their internal struc-
ture is. This is a useful aspect of the way we human objects interact with other objects. It
keeps us from having to know too much. It also means that we can easily switch to another
object with a different internal structure as long as it behaves the same way externally.

This is the OO principle of encapsulation: Only an object’s operations are visible to other
objects. Attributes and methods remain hidden from view.

The BA Perspective
When you describe the method of an object, don’t mention the attributes of another object
or presume to know how another object performs its operations. The benefit to this
approach is that if the methods or attributes related to a business object ever change, you’ll
have to make corrections to only one part of the model.

Chapter 2 � The BA’s Perspective on Object Orientation20

OO Concept: Classes
You have seen that our ability to internally model an object allows us to use it the next time
we encounter it without relearning it. This does not automatically mean, however, that we
can apply what we’ve learned to other objects of the same type. Yet we do this all the time.
For example, once we’ve learned how use one iPhone 3G, we know how to use all iPhone
3G objects. We can do this because we recognize that all these objects belong to the same
type: iPhone 3G. In OO, the category that an object belongs to is called its class.

The minute you know that two objects belong to the class, iPhone 3G, you know a number
of things about them:

� The same attributes apply to both objects. For example, you know that both objects
will have a serial number, a phone number, and various camera settings.

� Each object will have its own values for these attributes.

� The same operations apply to both objects. For example, you can place a call and
take a picture with each of these objects.

� The same methods apply. For example, the procedure for placing a call is the same
for both phones.

See the following sidebar to find out how the Unified Modeling Language (the UML)—
the predominant standard for Object-Orientation—defines a class.

OO Concept: Classes 21

What If We Couldn’t Classify Objects?
If you weren’t able to group objects into classes, you wouldn’t realize that a blue metallic pot and
a green ceramic pot belong to the same group but that a blue metallic pot and a blue metallic car
do not. (Oliver Sacks has an interesting book on the subject, called The Man Who Mistook His Wife
for a Hat. He speaks of one of his patients who, unable to classify objects, wrongly concluded that
his wife was a hat and tried to put her on his head as he was leaving the office.)

What They Say:
“Class:A class describes a set of objects that share the same specifications of features, constraints,
and semantics.” 2 (UML)

What They Mean:
A class is a category. All objects that belong to the same category have the same attributes and
operations (but the values of the attributes may change from object to object).

Let’s summarize what we’ve learned so far:

� Attributes and operations are defined at the class level and apply to all objects
within that class.

� All objects in a class have the same attributes. This means that the same properties
are significant for all objects in a class. That said, the value of the attributes may
change from object to object within a class—e.g., the color of one pen may be blue
while the color of another is green.

� All objects in a class have the same operations and methods. In other words, all
objects in a class can do the same things—and they do them the same way.

� You’ll learn later that relationships (such as the relationship between a customer
and an invoice) can also be stated at the class level.

The BA Perspective
Despite the name object-oriented analysis, you’ll be spending most of your time defining
classes, not objects. The classes you’ll be interested in are those that relate to the business.
These are termed entity classes. For example, in a banking system, you’d define the char-
acteristics of an Account entity class and a Customer entity class.

OO Concept: Relationships
We often define one class in terms of another class. For example, a Car is a kind of a Vehicle.
Both Car and Vehicle are classes. The phrase “a kind of” describes a relationship between
the two classes.

The UML defines a number of types of relationships that are useful to the BA: generaliza-
tion, association, aggregation, and composite aggregation.

OO Concept: Generalization
The concept of a class allows us to make statements about a set of objects that we treat
exactly the same way. But sometimes we run into objects that are only partially alike. For
example, we may own a store that has a number of iPhone 3G objects and a number of
Motorola Razr phone objects. The iPhone 3Gs are not exactly like the Motorola Razr
phones, but they do share some characteristics—for example, the ability to place a mobile
call. We treat this situation by thinking of these objects not only as iPhone 3G or Motorola
Razr phones but also as mobile phones. A particular phone object, for example, might be
able to run a particular iPhone application by virtue of being an iPhone 3G—but it can
also place a mobile call by virtue of being a mobile phone. In OO, Mobile Phone is referred
to as the generalized class; iPhone 3G and Motorola Razr are referred to as its specialized
classes. The relationship between the Mobile Phone class and either of its subtypes (iPhone
3G or Motorola Razr) is called generalization.

Chapter 2 � The BA’s Perspective on Object Orientation22

Why do we generalize? It allows us to make statements that cover a broad range of objects.
For example, when we say that a mobile phone can receive a text message, we are stating a
rule that applies to all of its specializations.

Other terms in use include the following:

Generalized Class Specialized Class

Superclass Subclass

Base class Derived class

Parent Child

The idea that a specialized class automatically adopts the attributes, operations, and rela-
tionships of its generalized class is given a special name in OO: inheritance.

OO Concept: Relationships 23

What They Say:
“A generalization is a taxonomic relationship between a more general classifier and a more
specific classifier. Each instance of the specific classifier is also an indirect instance of the general
classifier. Thus, the specific classifier inherits the features of the more general classifier.” 3 (UML)

What They Mean:
When an object belongs to a specialized class (for example, iPhone 3G), this automatically implies
that it belongs to a generalization of that class (for example, Mobile Phone).Any attribute or oper-
ation that applies to the generalized class also applies to the specialized class. Furthermore, any
relationships specified for the generalized class also apply to the specialized class. (For example,
the relationship “Customer OWNS [one or more] Accounts,” though specified for the Account class,
applies also to Checking Account, Savings Account, and all other Account types [specialized classes
of Account].)

What They Say:
“Inheritance: The mechanism by which more specific elements incorporate structure and behavior
of more general elements.” 4 (UML 2)

What They Mean:
Inheritance refers to the mechanism by which a specialized class adopts—that is, inherits—all the
attributes, operations, and relationships5 of a generalized class.6

The BA Perspective

You look for classes of business objects that are subtypes of a more general type. For exam-
ple, Checking Account and Savings Account are two kinds (specialized classes) of Accounts.
Then you document which attributes and operations apply to all Accounts, which apply
only to Checking Accounts, and which to Savings Accounts. By structuring your require-
ments this way, you only have to document rules common to all account types once. This
makes it easier to revise the documentation if these business rules ever change. It also gives
you the opportunity to state rules about Accounts that must apply to all future account
types—even ones you don’t know about yet.

OO Concept: Association
Another way that classes may be related to each other is through association. When you
connect a mouse to a PC, you are associating mouse with PC.

The BA Perspective

You analyze how the business links objects of one class with those of another (or, some-
times, with other objects of the same class). For example, the military needs to track which
mechanics serviced each piece of equipment, what the maintenance schedule is for each
one, and so on. As a BA, you document these types of rules as associations. This is a criti-
cal part of your job. Miss an association—or document it incorrectly—and you may end
up with software that does not support an important business rule.

Chapter 2 � The BA’s Perspective on Object Orientation24

What They Say:
“An association specifies a semantic relationship that can occur between typed instances. An
instance of an association is called a link.” 7 (UML 2)

What They Mean:
An association between two classes indicates that objects (instances) of one class may be related
(linked) to objects of the other class. You specify an association at the class level; you specify a
link at the object level.

OO Concept: Aggregation
Aggregation is the relationship between a whole and its parts. For example, the trade orga-
nization CompTIA is an aggregation of member organizations; an insurance policy is an
aggregation of a basic policy and amendments to the policy, and a stamp collection is
an aggregation of stamps.

With aggregation, a part may belong to more than one whole. For example, a catalogue
object is a collection (aggregation) that consists of many product objects. However, any
particular product object may appear in more than one catalogue object.

OO Concept: Relationships 25

Why It’s Important to Analyze Associations
I once worked with a municipality that had just purchased a human-resources (HR) system. Since
they only intended to purchase ready-made software, they didn’t think it necessary to do much
analysis and, therefore, did not analyze associations. Had they done so, they would have included
in their requirements the fact that the business needed to be able to associate each employee with
one or more unions.8 (The business context for this was that some employees held a number of
positions, each covered by a different union.) As a result of the omission, not only did the munic-
ipality end up purchasing HR software that did not support this requirement, they also had to
absorb the cost of customization. Had they included the requirement, they would have been unlikely
to purchase this software in the first place—and even if they had, they would have been able to
pass the modification cost on to the vendor.

What They Say:
“Aggregation: A special form of association that specifies a whole-part relationship between the
aggregate (whole) and a component part. 9 (UML)

What They Mean:
Formally, in the UML, aggregation is considered to be a specific type of association, where the
class on one end of the association represents a whole and the class at the other end represents
a part. Aggregation may be used by the BA as an alternative to modeling an association with the
name “is a part of”.

The BA Perspective

You look for business objects that are made of other business objects. You model these rela-
tionships as aggregations. Then you focus on which rules (attributes, operations, and relation-
ships) apply to the whole and which apply to the parts. One thing this process enables you to
do is reuse the requirements of a part object in a new context. For example, you model an ATM
card as an aggregate, one of whose parts is a PIN. You define the attributes and operations of a
PIN. Later you reuse the PIN requirements for a credit-card system that also uses PINs.

OO Concept: Composite Aggregation (Composition)
Composite aggregation, also known as composition, is a special form of aggregation wherein
each part may belong to only one whole at a time.

Let’s recap what OO says about association, aggregation, and composite aggregation:

The most general relationship is association, followed by aggregation, and, finally,
composite aggregation.

Chapter 2 � The BA’s Perspective on Object Orientation26

What They Say:
“Composite aggregation is a strong form of aggregation that requires a part instance be included
in at most one composite at a time. If a composite is deleted, all of its parts are normally deleted
with it.”10 (UML)

What They Mean:
Formally, composition is a specific kind of aggregation. In aggregation, a part may belong to more
than one whole at the same time; in composite aggregation, however, the object may belong to
only one whole at a time. The parts are destroyed whenever the whole is destroyed—except for
those parts that have been removed prior to the deletion of the whole.

What If You’re Not Sure What Type of Whole-Part Relationship to Use?
Don’t get too distraught if you are unable to decide whether a particular whole-part relationship
is best described as an aggregation or composite aggregation. While the distinction (from a BA
perspective) is helpful, it is not critical. If you have any problem deciding, specify the whole-part
relationship as aggregation. If you’re not even sure whether the relationship is best described as
a whole-part relationship, then model it as an association. In fact, there is nothing wrong with
the BA modeling all whole-part relationships as simple associations. You lose a little bit of nuance
in the model – but it will make no difference to the resulting IT solution.

The BA Perspective

You model strong whole-part relationships between classes of business objects as
composite aggregation. For example, in analyzing a CRO (clinical research organization)
system, I modeled a Case Report Form as a composite aggregation of Modules. The Case
Report Form was a record of everything that was recorded about a patient with respect to
the drug being researched; each Module was a record of one visit to the clinic by the patient.
The developers understood from this model that each Module could only belong to one
Case Report Form at a time and that when a Case Report Form was removed from the
system, all of its Modules needed to be removed as well.

OO Concept: Polymorphism
Polymorphism means the ability to take on many forms. The term is applied both to objects
and to operations.

Polymorphic Objects
Suppose a financial company handles different subtypes of Funds, such as an Asia Fund,
Domestic Fund, and so on, each with its own idiosyncrasies. The BA models this situation
using a generalized class, Fund, and a specialized class for each subtype of Fund. Next, the
BA moves on to capture investment rules in an Investment class. Checking with the stake-
holders, the BA finds that one of its operations, invest capital, deals with all Funds the same
way, regardless of subtype. The BA handles this by ensuring that the documentation for
the invest capital operation refers exclusively to the generalized class Fund—not to any of
its specializations. When the operation is actually executed, though, the Fund object will
take on one of many forms—for example, an Asia Fund or a Domestic Fund. In other words,
the Fund object is polymorphic.

Polymorphic Operations
Continuing with the same example, since all the Fund subtypes have to be able to accept
deposits, the BA defines a Fund operation called accept deposit. This operation is inherited
by all the specializations. The BA can also specify a method for this Fund operation that
will be inherited by the specializations. But what if one or more of the specializations—
for example, the Asia Fund—uses a different procedure for accepting deposits? In this case,
the BA can add documentation to the Asia Fund class that describes a method that over-
rides the one inherited from the generalized class. For example, the method described might
involve supplementary charges. In practice, when capital investment causes a Fund to per-
form an accept deposit operation, the method that is used to carry out the operation will
take on one of many forms. This is what is meant by a polymorphic operation. With poly-
morphic operations, the selection of the method depends on which particular class (Asia
Fund, Domestic Fund, and so on) is carrying it out.

OO Concept: Polymorphism 27

The BA Perspective
When you define operations for a generalized class, you look for those that all specializa-
tions must be able to support. If you can, you define a method that describes how the oper-
ation is typically carried out. If any specialized classes have different ways of doing the
operation, you define a new method for it at the specialized class level. This simplifies
the documentation. You don’t need to write, “If the type is X, then do one method; if it is
Y, do another one.” Instead, you get this across by where you document the method in the
model.

Use Cases and Scenarios
A use case is a use to which the system will be put that produces an observable result and
usually provides value to one or more entities that interact with the system. It’s an exter-
nal perspective on the system from the point of view of the user. For example, some of the
use cases that customers need in a Web-based banking system are Make bill payment, Stop
payment, and Order checks.

Chapter 2 � The BA’s Perspective on Object Orientation28

One Operation, Many Methods
A polymorphic operation is one whose method may take on many forms based on the class of the
object carrying it out.

One Interface, Many Implementations
Polymorphism means “one interface, many possible implementations.” Cars, for example, are
designed with polymorphism in mind. They all use the same interface—an accelerator pedal—to
change speed, even though the internal method may differ from model to model. The auto indus-
try designs cars this way so that the drivers do not have to learn a new interface for each new
model of car.

What They Say:
“Use case: A use case is the specification of a set of actions performed by a system, which yields
an observable result that is, typically, of value for one or more actors or other stakeholders of the
system.”11 (UML 2)

For example, the Make bill payment use case may play out in one of the following ways:

� Scenario 1: Attempt to make a payment from an account and succeed in doing so.

� Scenario 2: Attempt to make a payment from an account and fail because there is a
hold on the account.

The BA Perspective
During behavioral analysis, you identify and document the use cases of the system—what
the users want to do with it. You do this by identifying and describing its scenarios—
all the ways the interaction could play out. These use cases and scenarios are your user
requirements.

Business and System Use Cases
Over time, practitioners began to distinguish between two kinds of use cases: business use
cases and system use cases. This distinction is not part of the core UML but it is a valid and
widely accepted UML extension.13

� A use case (unqualified) refers to an interaction with any type of system. The question
is, what type of system is being referring to?

� A business use case is an interaction with a business system. For example, Process
Claim is a business use case describing an interaction with an insurance company.

Business and System Use Cases 29

What They Mean:
A use case is a usage of the system that provides an observable and (usually) meaningful result.
The use-case documentation (diagrams and/or text) should delineate the series of steps that take
place during the interaction and include different ways that this interaction could play out.

What They Say:
“Scenario: A specific sequence of actions that illustrates behaviors. A scenario may be used to
illustrate an interaction or the execution of a use-case instance.”12 (UML 2)

What They Mean:
A scenario is one path through a use case—one way that it might play out.

� A system use case14 is an interaction with an IT system. For example, system use
cases that support the aforementioned business use case are Record Claim, Validate
Coverage, Assign Adjuster, and so on. Each of these describes an interaction between
a user and the computer system. A system use case typically involves one active
(primary) user and takes place over a single session on the computer. At the end of
the system use case, the user should feel that he or she has achieved a useful goal.

The BA Perspective
Early in a project, you identify and describe the business use cases that the IT project will
affect. At this point, you focus on the business aspect of proposed changes—how they will
affect workflow and the human roles within the business. Next, you analyze each business
use case, looking for activities that the IT project will cover. You group these activities into
system use cases, taking care to ensure that each system use case gives the user something
of real benefit. These system use cases then drive the whole development process. For exam-
ple, in each release, a planned set of system use cases is analyzed (unless this was done up
front), designed, coded, and implemented. With this use case–centered approach, users get
features that add real value to their jobs with each software release.

Chapter Summary
In this chapter, you learned the following concepts:

� OO is an acronym for object-oriented, an approach to analysis, design, and
programming that is based on dividing a system up into collaborating objects.

� An object is a particular “thing” that plays a role in the system and/or that the
system tracks—for example, the customer Jane Dell Ray. An object has attributes
and operations associated with it. The object is the basic unit of an OO system.

� An attribute is a data element of an object.

� An operation is a service that a class of objects can carry out.

� A method is the process used to carry out an operation.

� Encapsulation is an OO principle stating that everything about an object—its
operations and properties—is contained within the object. No other object may
refer directly to another’s attributes or rely on a knowledge of how its operations
are carried out.

� A class is a category of object. Objects of the same class share the same attributes
and methods.

� An entity class is something the business keeps information about—for example,
Customer.

Chapter 2 � The BA’s Perspective on Object Orientation30

� A relationship is a connection between classes. A number of different types of rela-
tionships were discussed in this chapter: generalization, association, aggregation,
and composite aggregation.

� Generalization is an OO property that models partial similarities among objects. A
generalized class describes the commonalities. Each variation is called a specialized
class. A specialized class inherits all the operations, attributes, and relationships of
the generalized class.

� An association between classes indicates a link between its objects—for example,
between an Account object and its Customer owner.

� Aggregation is a relationship between a whole and its parts.

� Composite aggregation is a specific form of aggregation wherein the parts have no
existence independent of the whole.

� Polymorphism is an OO concept allowing one operation name to stand for different
procedures that achieve the same end. The class of the acting object determines
which action is selected.

� A use case is a typical interaction between the user and system that achieves a useful
result for the user.

� A business use case is a business process.

� A system use case is a typical interaction with an IT system.

� The unified modeling language (UML) is a widely accepted standard for modeling
business and IT systems that incorporates OO concepts.

Endnotes
1Another way of phrasing this is that the objects pass messages to each other.

2UML Superstructure Specification, v2.2, OMG, page 49, 2009.

3UML Superstructure Specification, v2.2, OMG, page 63, 2009.

4UML 2.0: Infrastructure—Final Adopted Specification, OMG, page 10, 2003. (No definition for
inheritance appears in the latest version, UML 2.2.)

5An example of an inherited relationship is the relationship “accessed by” between a generalized
class, Account, and a Customer class. All specializations (subtypes) of Account inherit this rela-
tionship—i.e., a Checking Account is accessed by a Customer, a Savings Account is accessed by a
Customer, and so on. In this example, “accessed by” is an association relationship.

6A specialized class inherits not only the operations of the generalized class but also the methods
for carrying out those operations. However, an inherited method may be overridden by a method
specified for the specialized class. This last property is referred to as polymorphism.

7UML Superstructure Specification, v2.2, OMG, page 39, 2009.

Endnotes 31

8The “one or more” aspect of the association is known as multiplicity.

9UML 2.0: Infrastructure—Final Adopted Specification, OMG, page 4, 2003. (No definition for a
ggregation appears in the latest version, UML 2.2.)

10UML Superstructure Specification, v2.2, OMG, page 41, 2009. The term composition was defined
in the UML 2 infrastructure. The UML 2.2 contains references to the term composition in this
context but formally names the relationship composite aggregation.

11UML Superstructure Specification, v2.2, OMG, page 596, 2009.

12UML 2.0: Infrastructure—Final Adopted Specification, OMG, page 15, 2003. (No definition for
scenario appears in the latest version, UML 2.2.)

13The extensions are realized through the invention of new stereotypes for existing UML model
elements. A stereotype extends the meaning of a model element. For example, in business model-
ing, a business actor is a stereotype of the UML actor. For a more complete discussion of business
modeling, see Pan-Wei Ng,“Effective Business Modeling with UML: Describing Business Use Cases
and Realizations,” Rational Edge. UML business modeling extensions are described in the jointly
authored paper, “UML Extension for Business Modeling, Version 1.1,” by Rational Software,
Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI Systemhouse, Unisys, ICON Computing,
IntelliCorp, i-Logix, IBM, ObjecTime, Platinum Technology, Ptech, Taskon, Reich Technologies, and
Softeam, 1 September 1997.

14In some circles, the term business use case refers to an interaction with a business (conforming to
the usage in this book); use case (without a qualifier) refers to an interaction with an IT system and
is equivalent to the term system use case in this book. I prefer the term system use case as it avoids
confusion regarding the type of system involved in the interaction.

Chapter 2 � The BA’s Perspective on Object Orientation32

Chapter Objectives
At the end of this chapter, you will know the steps of Business Object Oriented Modeling
(B.O.O.M.), a procedure for eliciting, analyzing, documenting, and testing requirements
using object-oriented and complementary techniques.

B.O.O.M. and SDLCs
Many large companies adopt a systems development lifecycle (SDLC) for managing their
IT projects. The SDLC defines the specific phases and activities of a project. The names of
the phases differ from SDLC to SDLC, but most SDLCs have something close to the
following phases1:

� Initiation: Make the business case for the project. Work also begins on the user
experience and on drafts of architectural proof of concepts. The prototyping effort
during the Initiation phase should be risk-driven and limited to gaining confidence
that a solution is possible.

� Discovery: Conduct investigation leading to an understanding of the solution’s
desired behavior. (On iterative projects, requirements analysis peaks during this
phase but never disappears entirely.) During this phase, architectural proofs of
concept are also constructed.

� Construction: Complete the analysis and design, code, integrate, and test the soft-
ware. (On iterative projects, these activities are performed for each iteration within
the phase. Design and coding appear in all phases, but peak during this phase.)

33

Steps of B.O.O.M.

Chapter 3

� Final Verification and Validation (V&V): Perform final testing before the product
or service is transitioned into production. (While final testing occurs in this phase,
testing activities may occur throughout the SDLC—for example, before design or
as a replacement for it.)

� Closeout: Manage and coordinate deployment into production and close the IT
project.2

The B.O.O.M. Steps
A deeper assessment of these phases and their relationship to the B.O.O.M. steps follows.

Step 1: Initiation
The objectives of the Initiation phase are to develop the business case for the project, estab-
lish project and product scope, and explore solutions, including the preliminary architecture.
The BA assists the project manager by identifying stakeholders, business services and
processes, and IT services affected by the project. By the end of this phase, key functional-
ity is identified, such as key system use cases (user tasks) and IT services. When a non-agile
process is used, these requirements are baselined and subsequent changes to scope are
managed in a controlled manner using a change-management process.

The Initiation phase poses a conundrum for the BA. The purpose of this phase is to get a
rough cut at the business case for a proposed IT project. The trouble is that without know-
ing the requirements, it’s impossible to estimate the cost of the project; at the same time,
without a business justification for the project, it is difficult to justify much requirement
analysis. The answer is to do just enough research to be able to create a ballpark estimate.
In this book, you’ll do this using a number of UML techniques that keep you focused on
high-level needs. These techniques are as follows:

� Business use cases: A tool for identifying and describing end-to-end business
processes affected by the project.

� Activity diagrams: Used to help you and stakeholders form a consensus regarding
the workflow of each business use case.

� Actors: These describe the users and external systems that will interact with the
proposed IT system.

� System use cases: Used to help stakeholders break out the end-to-end business
processes into meaningful interactions with the IT system.

By the end of this phase, you will have a rough idea about the project as well as a fairly
comprehensive list of system use cases, and you will know which users will be involved with
each system use case. You won’t know the details of each system use case yet, but you will
know enough to be able to ballpark the project—for example, to say whether it will take
days, weeks, or months.

Chapter 3 � Steps of B.O.O.M.34

The main deliverable of this phase is an early draft of a business requirements document
(BRD). This book takes a “living document” approach to the BRD. You’ll create it in this
phase, and revise it as the project progresses. To help manage scope, you’ll save a copy of
the document at the end of each phase. This is what I mean by “set baseline” in the fol-
lowing list. Baselining allows you to see what the requirements looked like at various check-
points in order to see, for example, whether a feature requested later by a stakeholder was
within the scope as defined at that time.

Following is a list of the steps you’ll carry out during this phase.

1a) Model business use cases

i) Identify business use cases (business use-case diagram)

ii) Scope business use cases (activity diagram)

1b) Model system use cases

i) Identify actors (role map)

ii) Identify system use-case packages (system use-case diagram)

iii) Identify system use cases (system use-case diagram)

1c) Begin structural model (class diagrams for key business classes)

1d) Set baseline (BRD/Initiation)

Step 2: Discovery
The main objective of the Discovery phase is to understand the solution’s desired behav-
ior and baseline the architecture. This and the previous phase are the key phases for the
BA. Requirements analysis peaks during this phase. (In iterative processes, analysis con-
tinues throughout the lifecycle; in waterfall processes, it is completed in this phase.) Some
system use cases are selected for development during this phase in order to demonstrate
architectural proofs of concept.

BA responsibilities during this phase focus on eliciting detailed requirements from stake-
holders, analyzing and documenting them for verification by stakeholders and for use by
solution providers. You will exploit a number of UML and complementary techniques to
assist in requirements elicitation, analysis, and documentation during this phase. Some of
the main techniques you’ll use include the following:

� System use-case descriptions (specifications), storyboarding the interaction
between users and the proposed IT system as each system use case is played out

� State-machine diagrams describing the lifecycle of key business objects

� Class diagrams describing key business concepts and business rules that apply to
business objects such as accounts, investments, complaints, claims, and so on

35The B.O.O.M. Steps

Testing, in the sense used in this book, is not just the running of programs to uncover
errors; it includes other validation and verification activities as well as test planning and
preparation. Following accepted quality assurance practices, I introduce testing long before
the code is written. Hence, you’ll find some testing activities also included in this phase.
You’ll learn to specify the degree of technical testing (white-box and system testing) required
from the developers as well as how to design effective requirements-based test cases (black-
box tests). By doing this during the Discovery phase, not only do you allow for enough lead
time to set up these tests, but you also declare measurable criteria for the project’s success:
If the tests you’ve described don’t “work as advertised,” the product will not be accepted.

Following are the steps you’ll carry out during this phase

2a) Behavioral analysis

i) Describe system use cases (use-case description template)

ii) Describe state behavior (state-machine diagram)

1. Identify states of critical objects

2. Identify state transitions

3. Identify state activities

4. Identify superstates

5. Identify concurrent states

2b) Structural analysis (object/data model) (class diagram)

i) Identify entity classes

ii) Model generalizations

iii) Model transient roles

iv) Model whole-part relationships

v) Analyze associations

vi) Analyze multiplicity

vii) Link system use cases to the structural model

viii) Add attributes

ix) Add lookup tables

x) Distribute operations

xi) Revise class structure

2c) Specify testing (test plan/decision tables)

i) Specify white-box testing quality level

ii) Specify black-box test cases

iii) Specify system tests

Chapter 3 � Steps of B.O.O.M.36

2d) Specify implementation plan (implementation plan)

2e) Set baseline for development (BRD/Discovery)

Please note than on an iterative project this phase may include a number of cycles, or iter-
ations, in which case the above steps are repeated for each iteration (cycle) within the phase.
(See the section “Tailoring B.O.O.M. for Your Project” later in this chapter for a more com-
plete discussion of lifecycles and their impact on analysis steps.)

Step 3: Construction
Business-analysis activity during this phase depends on the lifecycle approach being used.
On waterfall projects, where all the analysis is done up front, there is no requirements gath-
ering or analysis during this phase; however, the BA is involved in supporting quality assur-
ance and validating that the technical design meets the requirements (for example, by
reviewing test plans and design specifications). On iterative projects, where requirements
analysis and solution development take place over a number of iterations, the steps
described for the Discovery phase (steps 2a through 2e) are carried out during each itera-
tion of the Construction phase. (See the section “Tailoring B.O.O.M. for Your Project” later
in this chapter for a more complete discussion of lifecycles and their impact on analysis.)

Step 4: Final Verification and Validation (V&V)
The business analyst supports final testing before the completed solution is deployed,
reviewing test plans and results and ensuring that all requirements are tested.

Step 5: Closeout
The business analyst supports the deployment process, reviewing transition plans and
participating in a post-implementation review (PIR) to evaluate the success of the change.

What Do You Define First—Attributes or Operations?
The OO principle of encapsulation suggests that in understanding how each object is used
in a system, it’s more important to know its operations than its attributes; operations are all
that objects see of each other. However, within the context of business analysis, it’s usually
easy to identify the attributes of a class: The attributes show up as fields on screens and
reports, and it’s often fairly obvious what class of objects they describe. Ascribing opera-
tions to classes is not quite as easy—and I like to do the easy things first. (However, when
I’m doing OOD, I start with the operations.)

Feel free to make changes to the order described for analyzing operations, attributes, or
any other step. Consider B.O.O.M. your starting point. By following it, you will get to the
end result—comprehensive requirements—relatively effortlessly. But you should, over time,

37What Do You Define First—Attributes or Operations?

customize the process as you see fit. The section “Tailoring B.O.O.M. for Your Project” in
this chapter provides some guidelines for doing this.

Developing the Structural Model Alongside
the Behavioral Model
B.O.O.M. steps 2a (behavioral analysis) and 2b (structural analysis) should be performed
in parallel. In working through the case study in this book, I’ve separated these activities
for pedagogical purposes; it’s difficult, when learning this for the first time, to jump back
and forth continually between the two types of modeling. Here’s how you should inter-
sperse these steps once you have some experience behind you:

1. During the Initiation phase, you identify system use cases in the behavioral model.
Nouns discovered during this process are added to the structural model if they
relate to new business concepts or objects. For example, the system use case
Adjudicate Loan Application introduces the term Loan Application, which you
define in the structural model. You continue working on the structural model
during the Initiation phase, describing key business classes and their relationships
to each other.

2. Following the Initiation phase, as you describe each system use case (step 2ai), you
verify it against the existing structural model. Does the system use case comply
with rules expressed in the structural model? Has the system use case introduced
new classes? You resolve any differences between the system use case and the
structural model and update the structural model if necessary.

3. By the time you have described the last system use case, the structural model
should be complete and fully verified.3

Tailoring B.O.O.M. for Your Project
The B.O.O.M. steps are meant to be used as a checklist of items for the BA to consider when
planning BA activities for a project—but not every step is required on every project. As a
BA, your guiding principle in this regard should be, “If it isn’t going to make a difference
to the outcome, don’t do it.” Yet I see a lot of confusion amongst BAs about how much
analysis to do on a given project. Are structural models (class diagrams and ERDs) always
worth doing, or are they a waste of time? How much detail should you put into the user
requirements? Obviously, blindly creating documentation without understanding its
value—or if it even has any value—is not useful. The problem is when to do what.
Following are some general guidelines.

Chapter 3 � Steps of B.O.O.M.38

The degree of documentation and analysis required for a project and the order in which
analysis activities are carried out depends on a number of factors:4

� The degree of formality versus adaptiveness of the lifecycle: The degree of a
lifecycle’s formality versus its adaptiveness (capacity to adjust to environmental
conditions) is indicated by whether it is classified as a definitive or an empirical
lifecycle. At one end of the continuum are definitive lifecycles, which follow a
formal, well-defined process. Projects using this style of lifecycle will produce much
of the documentation described in this book and to a comparable level of detail.
At the other end of the continuum are empirical processes—less formal, adaptive
processes, such as those that use an agile approach. Empirical processes require less
analysis and documentation than definitive ones. Detailed user requirements are
not documented on such projects because the requirements are in a constant state
of flux and because the process relies on a heavily collaborative process of trial and
error in order to determine what stakeholders want. On these projects, you might
analyze the impact of the proposed change on business use cases and on their
internal workflow, and identify and briefly describe system use cases and their main
alternate flows (optional and error pathways), but not create detailed system use-
case descriptions. Brief descriptions of system use cases are sufficient for project
estimation and for planning iterations, but anything more than that is generally
not necessary with this approach. Structural analysis still has a place in empirical
lifecycles, especially when it relates to the business architecture, because of its value
in defining business concepts and in discovering across-the-board business rules
that are easy to miss. However, you are unlikely to produce a complete structural
model on such projects. For empirical lifecycles, these are the rules to follow:

� Do as little documentation as you can get away with.

� Do it as late in the process as possible.

� Don’t baseline the requirements unless they are in the process of being
implemented.

� Whether an iterative approach is being used: How analysis activities are
sequenced within the development process is determined by whether the project is
using a waterfall or an iterative lifecycle. With a waterfall lifecycle, all the analysis must
be done up front before implementation begins. Hence, all the B.O.O.M. analysis
steps must be completed by the end of the Discovery phase, before the Construction
phase. On an iterative project (also referred to as iterative-incremental), the solution
is developed in cycles, called iterations. Each iteration is like a mini-project, involv-
ing some degree of analysis, design, and coding, and should result in an increment
of functionality; in other words, the user must be able to do something he or she
could not do before. On such projects, the analysis is not all performed up front

39Tailoring B.O.O.M. for Your Project

but continues through the Construction phase. For example, you might identify
and briefly describe system use cases during the Initiation phase (as shown in the
B.O.O.M. steps), fully describe those system use cases that exercise key architectural
features during the Discovery phase, and complete the description of each system
use case during the Construction iteration in which it will be implemented.

� The degree of uncertainty tolerated by the sponsor and the size of the budget:
The type of lifecycle that is most appropriate for a project—and hence the timing
and amount of analysis and documentation it entails—depends on many factors.
One is the degree of uncertainty that the project sponsor and stakeholders are
willing to accept. If the budget is large, clients are less likely to be willing to sign off
on high-level documentation that leaves many of the details unknown. They often
want to know exactly what they are paying for up front, before any development or
procurement begins. In this case, the situation may dictate that a definitive, water-
fall process be used. On the other hand, where a small budget is involved, clients
may be willing to live with more uncertainty and, hence, be comfortable with an
empirical approach.

� Regulatory requirements: Regulatory requirements have an impact on how much
of the requirements must be pinned down in writing. If they require an extensive
paper trail, the use of a definitive lifecycle is indicated.

� The size of the team and the physical distance between analyst, the solution
team, and business stakeholders: Close proximity of solution providers and
business stakeholders and small team sizes both argue for an empirical approach.
Verbal communication works fine in these settings; indeed, formal, written docu-
mentation only slows down the process. On the other hand, when large teams or
distances are involved, a definitive, well-defined process with formal documentation
may be needed to facilitate coordination and communication.

� The capabilities of developers: The greater the expertise of the developers, the less
documentation may be required. For example, if the team has deep experience
handling software internationalization, then the requirements related to this issue
need not be spelled out in detail.

� The type of solution being contemplated (in-house or vendor solution): In-house
and custom solutions favor more documentation; vendor-supplied off-the-shelf
solutions favor less documentation. Some of the business rules and requirements
for the project are likely to be standard across the industry and are, therefore, likely
to be supported in an off-the-shelf solution. These requirements entail less risk—
and hence, less need for documentation—than those that are peculiar to the client
organization.

Chapter 3 � Steps of B.O.O.M.40

� The maturity of the organization: In mature organizations, many processes and
systems may already be documented, so the extent of new analysis and documenta-
tion required on a new project is less than on a less mature organization, where
existing documentation is sparse.

What Do You Show Stakeholders?
Not every document you produce is aimed at the same audience. You need to tailor what
you show to the audience that will see it. All the artifacts described in this book are appro-
priate for developers and other analysts on your team, but not all are appropriate for
business stakeholders—at least not without some translation. The following is a summary
of the artifacts described in this book and how they are presented to business stakeholders.
You may want to re-read this section once you’ve learned more about these artifacts.

� Activity (workflow) diagrams: Show these to stakeholders, but only use the basic
modeling elements described in this book. (Examples of other elements excluded
from this book and inappropriate for stakeholders include signals and expansion
regions.) Activity diagrams with partitions (swimlanes) help business stakeholders
visualize the internal workflow of a business use case (business process); simple
activity diagrams attached to system use cases help them visualize user-IT
interactions when the flows though a system use case connect in complex ways.

� State-machine diagrams: Show business stakeholders simple diagrams only,
indicating states and transitions but excluding advanced features (such as internal
actions within a state and send events).

� Use-case diagrams: Show these to stakeholders, but only include actors and their
relationships to use cases. Business use-case diagrams provide stakeholders with an
overview of who participates in which processes; system use-case diagrams provide
a useful overview of who does what with the IT solution. However, hide other
modeling elements such as include, extend, and generalization relationships; these
are useful internally for the team in reducing redundancies but they are apt to
confuse stakeholders. (An exception may be made with respect to the include
relationship if stakeholders are comfortable with it.)

� Use-case descriptions (referred to in RUP as use-case specifications), decision
tables, and decision trees: Show these to stakeholders.

� Class diagrams: Do not show these to stakeholders. Note, however, that they do
contain important business rules; convert these to text and obtain sign-off on
them. See the section “Step 2bvi: Analyze Multiplicity” in Chapter 8, “Gathering
Across-the-Board Business Rules with Class Diagrams,” for guidance in expressing
associations and multiplicities as sentences (as in, “Each case generates zero or
more payments”).

41What Do You Show Stakeholders?

Chapter Summary
In this chapter, you learned the following concepts:

� The phases during which the B.O.O.M. steps apply are as follows

� Initiation, during which a business case is made for the project.

� Discovery, during which the eliciting, analysis, and documentation of detailed
requirements peaks. Testing activities also occur during this phase.

� Construction, during which the solution is built and—if an iterative lifecyle
approach is being used on the project—requirements, elicitation, analysis, and
documentation continue.

Endnotes
1For example, RUP has Inception, Elaboration, Construction, and Transition phases. The SDLC
described in these pages uses the generic phase names introduced in my book, The Business Analyst’s
Handbook. The B.O.O.M. steps are derived from The Noble Path, also described in that book. For a
broader discussion of lifecycle approaches and their impact on the BA and for more on the Noble
Path, see The Business Analyst’s Handbook, Chapter 1, “Overview of BA Activities Throughout the
Life Cycle.”

2For more on the impact of project attributes and lifecycles on business analysis, see The Business
Analyst’s Handbook, 1st edition, Chapter 1, “Overview of BA Activities Throughout the Life Cycle,”
pages 3–4.

3Both the behavioral and structural models are completed during the Discovery phase when a water-
fall lifecycle is used. When an iterative process is used, they continue to be developed during the
Construction phase.

4Thanks to Adrian Marchis and the many members of the BA online community at modernanalyst.com
for their contributions to this discussion. For more on this topic, see my blog post “How Much
Analysis Do You Really Need to Do?” and readers’ comments at http://www.modernanalyst.com/
Community/ModernAnalystBlog/tabid/181/articleType/ArticleView/articleId/921/How-much-
analysis-do-you-really-need-to-do.aspx#Comments.

Chapter 3 � Steps of B.O.O.M.42

http://www.modernanalyst.com/Community/ModernAnalystBlog/tabid/181/articleType/ArticleView/articleId/921/How-much-analysis-do-you-really-need-to-do.aspx#Comments
http://www.modernanalyst.com/Community/ModernAnalystBlog/tabid/181/articleType/ArticleView/articleId/921/How-much-analysis-do-you-really-need-to-do.aspx#Comments
http://www.modernanalyst.com/Community/ModernAnalystBlog/tabid/181/articleType/ArticleView/articleId/921/How-much-analysis-do-you-really-need-to-do.aspx#Comments

Chapter Objectives
By the end of this chapter, you will

� Be able to gather requirements about end-to-end business processes using business
use cases.

� Know the layout of a business requirement document (BRD).

� Know how to fill the role of the IT business analyst during the Initiation phase of a
project.

� Identify business use cases.

� Use business use-case diagrams effectively to gain consensus about which stake-
holders interact with the business as each business use case is carried out.

� Use activity diagrams to gain consensus about workflow.

Interviews During the Phases
As a BA, you’ll carry out interviews with users at various phases of a project. During the
Initiation phase, you’ll interview stakeholders in order to establish the business rationale
and scope for the project and to collect initial requirements. During the Discovery phase (and,
on iterative projects, during the Construction phase), you’ll meet with users to discover
and document the business requirements for the new (or revised) software system. As you
gather the requirements in these phases, you’ll hold review sessions with stakeholders to
verify the correctness and completeness of the requirements documentation. During the
Final V&V phase, you’ll meet with stakeholders to validate that the software meets their
requirements.

43

Analyzing End-to-End
Business Processes

Chapter 4

As you go through this book, you’ll learn what questions to ask during these interviews.
This section looks at the structure of those interviews. Table 4.1 describes different inter-
view formats and when each type is used during the project lifecycle. Please note that
on an iterative project, any interview type associated in the table with the Discovery phase
is also used during the Construction phase, since requirements analysis continues as the
solution is developed.

Chapter 4 � Analyzing End-to-End Business Processes44

Format What When Benefits Disadvantages

One-on-one During the Is easy to organize Reconciling

interviews Initiation and discrepancies is time

Discovery phases consuming

Brainstorming Group interview During Initiation Breaks old ways Does not yield

for enlisting phase and of thinking detailed requirements

new ideas whenever the

project is “stuck”

Joint Group interview During Discovery Simplifies Difficult to get all the

application to gather phase reconciling of interviewees in one

development requirements discrepancies, room at same time

(JAD) decreasing analysis

time; can be used Group-think

to create various

deliverables,

including the

following:

�BRD
�Proof of concept
�Strategy
�Screens
�Decision tables

Structured Group interview During Discovery Moves testing Difficult to get

walkthrough to verify phase, after early forward, reducing interviewees in

requirements draft of requirements the impact of one room at same

is available. During mistakes time

Construction phase,

to review technical Group-think

specifications and,

on iterative projects,

to verify remaining

requirements.

TABLE 4.1 Interview Formats

B.O.O.M. Steps
In this chapter, we’ll be walking through the following B.O.O.M. steps in the Initiation phase:

1a) Model business use cases.

i) Identify business use cases (business use-case diagram).

ii) Scope business use cases (activity diagram).

Step 1: The Initiation Phase
The first phase in a project is the Initiation phase. Different approaches to IT project man-
agement each have their own terms for this phase and the precise activities that go on within
it. Approximate counterparts for this phase include the following:

� Envisioning (Microsoft Solutions Framework—MSF): This chapter addresses the
following MSF objectives regarding the Envisioning phase: “High-level view of
project goals,” “Business requirements must be identified and analyzed.”1

� Inception (RUP)

� Initiate (PMI)

What Happens During the Initiation Phase?
During the Initiation phase, the project grows from an idea in someone’s mind into a bare-
bones proposal that outlines the main aspects of the project and describes the main rea-
sons for pursuing it. During this phase, your job as a business analyst is to identify and
analyze the business requirements for the project. You’ll identify high-level business goals
as business use cases. You’ll be working with stakeholders to analyze stakeholder partici-
pation using business use-case diagrams. And you’ll communicate to stakeholders an
emerging consensus regarding workflow using activity diagrams.

How Long Does the Initiation Phase Take?
Basically, it “should be a few days’ work to consider if it is worth doing a few months’ work
of deeper investigation.”2 For larger projects, it may take months.

Deliverables of the Initiation Step: BRD (Initiation Version)
As you work through the B.O.O.M. steps, you’ll use a single document, the business require-
ments document, or BRD, to describe business requirements throughout the project life-
cycle. You begin working on the BRD during the Initiation phase. Different organizations
handle this documentation in different ways. The BRD may be a single living document or
a requirements package that resides as separate components that are assembled in different
ways for different audiences.

45Step 1: The Initiation Phase

Some other names for the documentation produced during the Initiation phase include
the following:

� Opportunity evaluation: Documents the proposed benefits of the project

� Project vision and scope: Describes what the project hopes to achieve

� Product vision and scope: Describes the objectives for the software product

Key components of the BRD produced during the Initiation phase are as follows:

� Business use-case descriptions (referred to in RUP as specifications),
including business use-case diagrams

� Role map

� System use-case diagram

� Initial class diagram, describing key business classes

Please see Appendix B, “Business Requirements Document (BRD) Template,” to see where
these components fit into the overall requirements documentation.

Step 1a: Model Business Use Cases
In your first meetings with stakeholders, you want to identify the end-to-end business
processes that the IT project will affect. These processes are business use cases. A business use
case is a business process representing a specific workflow in the business—an interaction
that a stakeholder has with the business that achieves a business goal. It may involve both
manual and automated processes and may take place over an extended period of time.

Any IT project has the potential to change the business environment—how steps (both
manual and automated) within a business are performed and the roles and responsibili-
ties of employees. By focusing on business use cases at the outset of the project, you ensure
that this business perspective is not forgotten.

Chapter 4 � Analyzing End-to-End Business Processes46

Business Use Case

“A business use case defines what should happen in the business when it is performed; it describes
the performance of a sequence of actions that produces a valuable result to a particular business
actor [someone external to the business].” (Source: Rational Rose)

How Do You Document Business Use Cases?
Use business use-case diagrams to describe the players who take part in each business
use case. Use text or a workflow diagram (such as an activity diagram) to describe the
interaction between the players and the business as the use case is played out. Let’s start
with the business use-case diagram.

Step 1ai: Identify Business Use Cases
(Business Use-Case Diagram)
A business use-case diagram is a use-case diagram where the system that it models is the
real-world business area. It provides an overview of business processes and services (business
use cases) and the entities that use those services or participate in their implementation.

Recall that the business use-case diagram is not a part of the core UML standard, but rather
an extension of it. Because of this, the terms and symbols related to business use cases are
not as standardized as those that are part of the UML proper. Figure 4.1 shows some of the
symbols used in business use-case diagrams.

Figure 4.1 illustrates the following modeling elements:

� Business actor: Someone external to the business, such as a customer or supplier.

� Worker: Someone who works within the business, such as an employee or a
customer-service representative.

� Association: An association between an actor and a business use case indicates that
the actor interacts with the business over the course of the business use case—for
example, by initiating the use case or by carrying it out.

Step 1ai: Identify Business Use Cases (Business Use-Case Diagram) 47

Business Use-Case Diagrams

“The business use-case model is a diagram illustrating the scope of the business being modeled.
The diagram contains business actors [roles played by organizations, people, or systems external
to the business] and the services or functions they request from the business.” (Source: IconProcess)

Other Model Elements
Other types of actors are also sometimes used in business modeling. The UML Extension
for Business Modeling, version 1.1, for example, allows for the subdivision of workers into
case workers and internal workers.

� Case worker: A worker who interacts directly with actors outside the system.

� Internal worker: A worker who interacts with other workers and entities inside the
system.

In this book, we will confine ourselves to the more generic term “worker.”

Putting Theory into Practice
When the BA walks onto a project, some preliminary work has often already been done:
Someone has had an idea for the project and developed a preliminary business case for it.
Based on the business case, a decision has been made to assemble a project team. One of
the first steps for the BA is to review this preliminary documentation, often in a kick-off
meeting with stakeholders. The purpose of the meeting is to review stakeholder interests
in the project and to identify the business use cases that the project could affect.

Here is also where our case study begins. Together, we’ll walk through the B.O.O.M. steps
for analyzing and documenting the requirements of this system and, in doing so, gain
hands-on experience in being a UML business analyst. I urge you to work through each of
the steps yourself before viewing the resulting documentation. Then compare your work
to the documentation I’ve provided in this book. It’s perfectly okay for you to come up
with a different result; after all, there is more than one way to analyze a system. But you
should be able to justify any decision you’ve made.

Chapter 4 � Analyzing End-to-End Business Processes48

Figure 4.1
Business use-case diagram symbols. Note that the “stroke” in each of these symbols
differentiates them from symbols used in system use-case diagrams.

Case Study D1: Business Use-Case Diagrams 49

Case Study D1: Business Use-Case Diagrams
In Case Study D1, you’ll be introduced to the Community Peace Program (CPP)
project, a project you’ll follow throughout this book as you learn to apply
B.O.O.M. steps in practice. In this case study, you’ll see an example of BRD
documentation based on the template described in Appendix B. As the BRD is a
living document, it will change as the project progresses. Case Study D1’s version
is a draft produced during the Initiation phase of the project.

Problem Statement
As a business analyst assigned to a new project, you’ve convened a kickoff meet-
ing with stakeholders to discuss their interests in the project and to identify the
business processes potentially affected by it. Based on what you learn at the
kickoff meeting, you have put together the following first draft of a business
requirements document (BRD). Your next step is to summarize stakeholder inter-
ests, by creating a business use-case diagram, showing business use cases and the
business actors and workers involved in each use case.

Suggestions
Read through the following BRD. Then identify the stakeholders as workers or
business actors and document their involvement with each business use case in
a business use-case diagram. Do not include systems in your model at this stage;
your focus should be on the activities that need to occur and the humans
involved.

Chapter 4 � Analyzing End-to-End Business Processes50

CPP Business Requirements Document (BRD)/Initiation

Project No.: 1000

Production Priority: High
Target Date: _________

Approved by:

______________________________ _________________________

Name of user, department Date

______________________________ _________________________

Name of user, department Date

Prepared by:

______________________________ _________________________

Name of user, department Date

Filename: _____________________

Version No.: 0.1 (1st draft)

Case Study D1: Business Use-Case Diagrams 51

Table of Contents
� Version Control

� Revision History

� RACI Chart for This Document

� Executive Summary

� Overview

� Background

� Objectives

� Requirements

� Proposed Strategy

� Next Steps

� Scope

� Included in Scope

� Excluded from Scope

� Constraints

� Impact of Proposed Changes

� Risk Analysis

� Technological Risks

� Skills Risks

� Political Risks

� Business Risks

� Requirements Risks

� Other Risks

� Business Case

� Timetable

� Business Use Cases

� Business Use-Case Diagrams

� Business Use-Case Descriptions

Chapter 4 � Analyzing End-to-End Business Processes52

Version Control

Revision History

� Actors

� Workers

� Business Actors

� Other Systems

� Role Map

� User Requirements

� System Use-Case Diagrams

� System Use-Case Descriptions

� State-Machine Diagrams

� Nonfunctional Requirements

� Business Rules

� State Requirements

� Testing State

� Disabled State

� Structural Model

Case Study D1: Business Use-Case Diagrams 53

RACI Chart for This Document

RACI Chart

Each person’s connection to the BRD is documented in the following chart as *,
R, A, S, C, I. The following chart explains the meaning of each of these codes.

Codes Used in RACI Chart

* Authorize This individual has ultimate signing authority for any
changes to the document.

R Responsible Responsible for creating this document.

A Accountable Accountable for accuracy of this document (for example,
the project manager).

S Supports Provides supporting services in the production of this
document.

C Consulted Provides input (interviewee, etc.).

I Informed Must be informed of any changes.

Chapter 4 � Analyzing End-to-End Business Processes54

Executive Summary

Overview
This project is for a software system to govern the tracking and reporting of cases by
the Community Peace Program (CPP).

Background
The project is being developed for the Community Peace Program (CPP), a South
African non-profit organization that provides infrastructure for community-based jus-
tice systems based on the model of restorative justice.3 The main objective of the CPP
is to provide an effective alternative to the court system. Its advantages are improved
cost-effectiveness and a decreased recurrence rate, since problems are treated at their
source. All parties to a dispute must consent to having the case diverted to the CPP.
The advantage to the perpetrator is the avoidance of incarceration and other severe
punishment; for the complainant, the advantages lie in the possibility for a true reso-
lution to the problem and a decreased likelihood that the problem will recur. The
advantages to the justice system are as follows:

� A reduction in case volume due to the offloading of cases to the CPP and a
decrease in recurrence rates

� A decrease in the cost of processing a case

The system is being deployed in the townships of South Africa under the auspices of
the CPP and with the support of the Justice Department. Similar approaches are being
used throughout the world—for example, the “Forum,” in use by Canada’s Royal
Canadian Mounted Police (RCMP).

The CPP operates by working with local communities to set up Peace Committees.
Most of these are currently in townships on the Cape Town peninsula. Each Peace
Committee is composed of peacemakers—members of the community who are trained
in conflict-resolution procedures based on principles of restorative justice. The com-
plainants and accused must all agree to adhere to the procedure or the case is passed
on to the state justice system.

Due to increasing demand for its services in conflict resolution, the CPP is undergo-
ing a rapid expansion. Current manual practices will not be able to keep up with the
expected rise in case volume.

Case Study D1: Business Use-Case Diagrams 55

Objectives
The most urgent need is for timely statistics regarding cases handled by the CPP. Because
of the anticipated increase in caseload, these statistics will be difficult to derive using the
current, manual systems. Timely statistics will be essential in justifying the project to its
funders. Also, the tracking of funds disbursement and monitoring of cases will become
increasingly difficult as the program expands.

Requirements
The project will leave current manual systems in place for the initial recording of case
information up to and including the convening of a Peace Gathering and the completion
of subsequent monitoring. Workflow after that point will be within the scope of the
project—that is, recording of case data, validation of CPP procedures, disbursement of
payments, and the generation of statistical reports.

Proposed Strategy
An iterative SDLC will be employed as follows: The business analyst(s) will analyze all use
cases at the start for the project (the Discovery phase); the design and coding will proceed
iteratively during the Construction phase. In the first Construction iteration, general
administration and case tracking will be developed. In the second iteration, payments will
be disbursed and reports generated.

Next Steps
� Action: Select software developer

� Responsibility: J. Carter

� Expected Date: One month after acceptance of this document

Chapter 4 � Analyzing End-to-End Business Processes56

Scope

Included in Scope
The system will provide statistical reports for use by funders. Also, it will provide limited
tracking of individual cases to the degree required for statistics and, wherever possible, in
a manner that will facilitate expansion of the system to include complete case monitor-
ing. The project includes manual and automated processes. The system will encompass
those activities that occur after a case has been resolved. These are primarily as follows:
the recording of case data, the disbursement of payments, and the generation of reports.
CPP members will be the only direct users of this system.

Excluded from Scope
The system becomes aware of a case only when it has been resolved. All activities prior to
this point are not included in this project—i.e., it excludes the tracking of cases from the
time of reporting, convening of Peace Gathering, and monitoring of cases before resolu-
tion. These activities will continue to be performed manually, although the manual forms
will be changed to comply with new system requirements.

Constraints
� Eighty-percent match (minimum) between CPP’s needs and commercial-off-

the-shelf (COTS) product(s).

� One integrated solution is preferred. No more than two COTS products should
be needed.

� Mbuyisela Williams will be main liaison for the project.

� Final approval for a system is estimated to take six weeks to two months.

Impact of Proposed Changes
The following table lists the end-to-end business processes that stand to be affected by the
project. Each process is identified as a business use case. The table documents whether
the process is new (as opposed to an update to an existing process), what the stakeholder
would like the process to do, and what the process currently does. The difference between
the desired and current functionality defines the project’s scope. Each business use case
is linked to stakeholders and prioritized. Prioritization helps the project manager plan the
project and, when competing software vendors are being considered, to short-list viable
solutions.

57

Risk Analysis

Technological Risks
To Be Determined (TBD).

Skills Risks
TBD.

Political Risks
Political forces that could derail or affect the project include the following:

� Cancellation of funding: Funding for this project is provided by a foreign

government and is granted only on an annual basis after yearly inspections

of the organization and based on the government’s policy toward foreign aid.

� Likelihood: Medium.

� Cost: Cancellation of the project.

� Strategy:

� Avoid: Through regular project reports to funders and lobbying of

government ministers

� Mitigate: Search out “plan B” funders: University of Cape Town School

of Governance

Case Study D1: Business Use-Case Diagrams

Chapter 4 � Analyzing End-to-End Business Processes58

Business Risks
TBD.

Requirements Risks
TBD.

Other Risks
TBD.

Business Case
This section of the BRD describes the business rationale for the project. The estimates at
this stage are ballpark only and will be revised as the project progresses.

� Initial investment: Two person-years @ US$50,000/yr = $100,000.
Hardware: Use existing PCs at office location.

� Annual cost: One new half-time position, IT maintenance staff = US$25,000/yr.

� Annual benefits: Reduce administration staff by two due to automatic generation
of reports to funders and increased efficiency of case tracking = US$60,000/yr.

� ROI: ([annual benefit] – [annual cost]) / [initial investment] =
(60,000 – 25,000) / 100,000 = 35%.

� Payback period: [initial investment] / ([annual benefit] – [annual cost]) =
100,000 / (60,000 – 25,000) = 2.9, or approximately three years.

These numbers are expected to improve over the years as the project expands, since the
efficiencies of the IT system relative to a manual system are more pronounced the greater
the volume of the cases.

Timetable
Only a ballpark timetable can be provided at this stage:

� Discovery: To begin one month after the project is approved to go beyond the
Initiation phase.

� Construction: To begin three months after the project is approved. Verification
of requirements and planning of requirements-based testing to begin during the
Discovery and Construction phases. Actual tests of software to be run as modules
become available.

Case Study D1: Business Use-Case Diagrams 59

� Final V&V: Final testing, including system testing of nonfunctional requirements,
to occur during Final V&V phase, which is to begin 9–11 months after project
approval.

� Closeout: To begin one year after project is approved. Closeout to take one month.

Business Use Cases
This section of the BRD describes changes to the workflow of end-to-end business
processes affected by the project.

Business Use-Case Diagrams
TBD: This subsection of “Business Use Cases” identifies stakeholder involvement in each
business process.

Business Use-Case Descriptions
TBD: This subsection of “Business Use Cases” describes the interaction between
actors and the business for each business use case.

Actors

Workers
This subsection of “Actors” describes stakeholders who act within the business in
carrying out business use cases.

Business Actors
This subsection of “Actors” describes external parties, such as customers and partners,

who interact with the business.

Chapter 4 � Analyzing End-to-End Business Processes60

Other Systems

Role Map
The subsection of “Actors” models users and external systems that interact with the
IT system.

TBD: This section will be completed later during the Initiation phase.

User Requirements
TBD: Portions of this section will be completed later in the Initiation phase; other
portions will be added during the Discovery phase.

System Use-Case Diagrams
TBD: This section will be completed later during the Initiation phase.

System Use-Case Descriptions
TBD: Later in the Initiation phase, short descriptions of the system use cases will be
provided as well as detailed descriptions of selected high-risk system use cases—for
example, those that are to be developed early because they involve new and poorly under-
stood technology.

State-Machine Diagrams
TBD: This section will be completed during the Discovery phase.

Nonfunctional Requirements
TBD.

Business Rules
TBD.

Case Study D1: Business Use-Case Diagrams 61

State Requirements
TBD: This section of the BRD describes which features shall be available and which shall
be disabled when the IT system is in various states.

Testing State
TBD: This subsection of “State Requirements” describes what the user may and may not
do while the system is in the test state.

Disabled State
TBD: This subsection of “State Requirements” describes what is to happen as the system
goes down.

Structural Model
TBD: During the Initiation phase, only strategic classes are to be modeled. Other classes
are to be added during the Discovery phase.

Chapter 4 � Analyzing End-to-End Business Processes62

Case Study D1 Solution: Resulting Documentation
The following business use-case diagram was created by the BA to summarize
the business use cases potentially affected by the project and the stakeholders
involved with each one (see Figure D1.1).

Figure D1.1
Business use-case diagram.

Step 1aii: Scope Business Use Cases (Activity Diagram)
Now that you have a business use-case diagram that matches up stakeholders with busi-
ness processes, you can begin to plan the next stage of the interviews. Each interview should
focus on a subset of the business use cases. Be sure to invite all stakeholders associated with
the use case (as shown on the diagram) as well as off-stage stakeholders—those who do
not directly interact with the process but still have a stake in it, such as regulators and
high-level management.

The purpose of these interviews is to analyze the workflow of each business use case.
Workflow means the sequencing of activities and (optionally) a clear designation of who
carries out each activity. Workflow can be documented in text and/or through the use of
a workflow diagram. The business façade—the interaction between the business area and
entities outside of it—is best described in text. If you are analyzing business use cases for
the broad purpose of improving the business process, you may want to use a formal tem-
plate for documenting the interaction. In this case, use the use-case template provided
within the BRD template in Appendix B. If you are analyzing business use cases only as a
means to an end—the end being the system use cases—then an informal text description
will probably suffice. This is the situation we are presuming for the case study. In either
case, if the workflow for the interaction is too complex to describe clearly in text, append
the text with an activity diagram. To document the internal process used to carry out the
business use case (referred to in RUP as a business use-case realization), use an activity
diagram with partitions (swimlanes). Activity diagrams are UML-compliant examples of
workflow diagrams.

Table 4.2 summarizes some of the commonly used workflow diagrams.

Step 1aii: Scope Business Use Cases (Activity Diagram) 63

Diagram Description Advantages Disadvantages

System flowchart Earliest form for � Intuitive. Each type � Not compliant with UML.

depicting sequencing of input and output is

of activities. clearly marked with its � Can be hard to learn

own symbol. (many symbols).

� Includes logic

symbols.

TABLE 4.2 Diagrams for Depicting Workflow

Chapter 4 � Analyzing End-to-End Business Processes64

Diagram Description Advantages Disadvantages

Swimlane Tool used for describing � Intuitive. � Not compliant with

workflow process logic. � Can handle many UML.

diagram situations in one diagram

UML equivalent is an � Shows who is

activity diagram with responsible for which

partitions (swimlanes). action (using swimlanes).

Sequence UML tool used to � Part of UML standard. � Diagramming style is

diagram describe one path � Encourages thinking often non-intuitive for

(scenario) through a in objects. Clearly business analysts and

use case. specifies who does what. users.

� Simplifies logic: � Requires analyst to

Only one situation dealt determine not only who

with in each diagram. carries out each activity,

� Sometimes recommended but who requests it.

for business modeling.

Activity UML tool for describing � Part of UML standard. � Ability to handle

diagram logic. Used to describe � Can handle many many situations can lead

entire system, a use case, situations in one diagram. to a diagram that is too

or an activity within a � Simple diagramming complex to follow.

use case. Has two versions: conventions.

� Activity diagram � Encourages thinking

without partitions about opportunities

(swimlanes): Does not for parallel activities

show who does what. (more than one activity

� Activity diagram going on at the same time).

with partitions:

shows who does what.

Business Business process modeling � Part of BMN standard, � Not UML-compliant

process notation (BPMN) tool for managed by the OMG � Difficult to understand

diagram describing workflow � Rich symbol set can without prior training

(BPD) model complex and subtle

workflow requirements

better than activity diagrams.

TABLE 4.2 Diagrams for Depicting Workflow (continued)

Activity Diagrams for Describing Business Use Cases
The activity diagram is the one most useful to the IT BA for depicting workflow. It is simple
to understand—both for BAs and end-users.

Although some practitioners advocate sequence diagrams for this purpose, you should not
use sequence diagrams as a BA tool. Compared to activity diagrams, they are not as read-
ily understood by non-technical people. The best time to use sequence diagrams is during
the technical design of the system, an activity that is beyond the scope of the BA.

Activity Diagram (Without Partitions)

The following diagram describes the Initiate Peace Gathering process, a sub-goal of the
business use case Manage Case. Initiate Peace Gathering is the process of setting up a Peace
Gathering to deal with a case (dispute). The diagram illustrates most of the major features
of an activity diagram without partitions (swimlanes) that are useful to the IT BA. I have
added other diagrams to illustrate the remaining features.

Activity Diagram Elements

Activity diagrams may include the following elements (see Figure 4.2):

� Initial node: Indicates where the workflow begins.

� Control flow: An arrow showing the direction of the workflow.

� Activity: Indicates a step in the process.

� Decision: A diamond symbol, indicating a choice. Workflow will proceed along
one of a number of possible paths, according to the guard conditions.

� Merge: Use this symbol if you wish to adhere to strictly to the UML standard when
modeling a number of alternative flows that lead to the same activity. Rather than
terminating them at the same activity, terminate them at a merge, and draw a flow
from the merge to the activity.4 For business-analysis purposes, however, you
might want to consider relaxing the standard by dispensing with the merge as it
does hinder readability.

� Guard condition: A condition attached to a control flow. When the guard condition
is true, workflow may flow along the control flow. Guard conditions are usually
attached to control flows that come out of a decision symbol. (However, they can
also be used without the decision symbol.) A guard is shown within square brackets.

� Event: A trigger attached to a control flow. The event must occur for the flow to move
along the control flow. Declaring something as an event has a stronger implication
than calling it a guard. An event actually triggers the control flow by forcing the
previous activity to end, whereas a guard only governs whether a flow that was trig-
gered for another reason (such as the completion of the previous activity) is allowed
to flow along the control flow. An event is indicated without the use of square brackets.

Step 1aii: Scope Business Use Cases (Activity Diagram) 65

� Fork and join: Bars used to document parallel activities. In the UML, parallel
activities are those that may begin in any sequence—either at the same time or one
before the other. A fork indicates the point after which a number of activities may
begin in any order. A join indicates that workflow may commence only once the
parallel activities that flow into it have all been completed.

� Final node: Indicates the end of the process.

Chapter 4 � Analyzing End-to-End Business Processes66

Figure 4.2
Activity diagram describing workflow for the Initiate Peace Gathering business use case.

N o t e

The symbol that looks like a piece of paper with an end folded over is the UML Note icon. You can
use notes freely to add your own annotations to diagrams and you can tie your notes to diagram-
ming elements as I’ve done in Figure 4.2.

Figure 4.3 shows the use of fork and join.

Figure 4.4 shows a control flow labeled with an event.

Nested Activities

The UML enables you to put an entire mini–activity diagram inside an activity symbol (see
Figure 4.5). The inner activities are nested inside the larger one.

In Figure 4.5, the initial node indicates the beginning of the activity, Organize Interviews,
and the final node indicates its end.

Step 1aii: Scope Business Use Cases (Activity Diagram) 67

Figure 4.3
A diagram using fork and join.

Object Flows

If you find the preceding notation communicates enough about a workflow to stakehold-
ers, you won’t need the extra notations described next. But the UML does give you the
option of indicating the inputs and outputs of any activity on the diagram by adding object
flows. (If you are a reader versed in structured analysis, it may help to think of object flows
as the UML equivalent of the data flows in a data-flow diagram.)

Add object flows to your activity diagrams if you wish to show the point at which business
objects are created, changed, or required by activities. Examples of business objects that
you might think of including in this way are claims, complaints, reports, invoices, and pay-
checks. On the activity diagram, you will not only be able to identify the object, but you
can also indicate what state it’ll be in at that point.

Chapter 4 � Analyzing End-to-End Business Processes68

Figure 4.4
A control flow labeled with an event.

Figure 4.5
Activities nested within an activity symbol.

What Is a State?

Objects may be considered to be in various states during their lifetimes. For example,
invoices pass through some of the following states: Created, Due, Paid, Past 30 Days, Written
Off. To find out what these states are, simply ask the stakeholders to tell you what statuses
they consider a business object to be in. Anything they refer to as a status can generally be
treated as a UML state.

What makes some changes to a business object important enough to be considered changes
of state? The business treats the object differently because of the change: For example, there
are rules for the sequence in which the object may move in and out of the state, or the
objects’ response to external events differs. You’ll learn more about states in Chapter 7,“Life
Cycle Requirements for Key Business Objects.”

Figure 4.6 shows how object flows are depicted in the UML.

Figure 4.6 indicates that the Set Gathering Date activity causes a case to move into the
Scheduled state. After this, a Prepare Stakeholders activity is performed. This is followed
by the Convene Gathering activity, which takes as input a case in the Scheduled state. Once
the activity has been completed, the case will be in the Resolved state. The previous exam-
ple illustrates some of the main features of object flows:

� Object flow: A dashed line with an open arrowhead. An object flow connects an
object to an activity. When the arrow points away from an activity, the object flow
indicates that the object (or object state) at the tip of the flow is a result (output) of
the activity. When the arrow points to an activity, it indicates that the object at the
source of the flow is required by (input to) an activity.

Step 1aii: Scope Business Use Cases (Activity Diagram) 69

Figure 4.6
Indicating object flows on activity diagrams.

� Object: The object that is required, created, or altered by an activity. Name the
object according to the format <objectName>: <ClassName> <[statename]>—for
example, a:Case [resolved]. You may omit objectName—for example,
:Case[resolved]. As well, you may omit the statename—for example, a:Case.

An object may be a source or destination of an object flow, or both. One activity diagram
may include objects of many classes and different objects of the same class. As well, the
same object may appear more than once on an activity diagram, as in Figure 4.6.

If an activity produces an object as output, and this same object is the input for the next
activity, you may omit the control flows between the two activities. In Figure 4.7, a control
flow between the Set Up Interviews and Interview Stakeholders activities is not required.

Figure 4.8 shows a draft of an activity diagram segment for the Initiate Peace Gathering
process, with object flows added to indicate how a case changes its state during the process.

Chapter 4 � Analyzing End-to-End Business Processes70

Figure 4.7
No object flow required.

Figure 4.8
Activity diagram with object flows: draft of Initiate Peace Gathering.

The activity diagram shown in Figure 4.8 is interpreted as follows:

� The activity, Schedule Gathering Date, results in a case’s state being set to Scheduled
for Gathering.

� Next, the activity, Convene Gathering, takes a case that has been Scheduled for
Gathering and results in it being set to the Gathering Held state.

� The next activity is Assign a Reviewer.

� The next activity, Review Case, requires as its input a case that is in the Gathering
Held state.

Activity Diagram with Partitions (Swimlanes)

To indicate who performs each activity, you add partitions (commonly referred to as swim-
lanes) to the activity diagram. A partition is depicted as a column (or row) on an activity
diagram. Allocate one partition for each object that takes an active part in the process flow.
Each partition represents a stakeholder (business actor or worker) who carries out some
activity. Although you shouldn’t spend too much time focusing on technology at this time,
you may also show a computer system as a partition.

Position every activity in the partition of the object that performs it. Name each partition
at the top of the column, according to the participating object, as shown in Figure 4.9.

You may use an informal, simple name for the partition, identifying the actor who carries
out the task—for example, Problem Identifier. A better approach is to use the more
formal form <objectName> : <className>. className is the name of the role—that is, the
worker, business actor, or external system that participates in the activities. objectName
identifies a specific instance (or example) of the role—for example, Mr. Dudu: Problem
Identifier. This format is recommended because it allows you to show the participation of
more than one instance of the same actor—for example, two different Problem Identifiers
involved in the same business case. The objectName in this format is optional. If you wish
to omit it, don’t forget to leave in the colon—for example, :Peace Committee Operations.
When using a modeling tool, the formal format has the added advantage of allowing you
to conveniently name the partition by dragging actors from the browser to the partition in
the diagram window.

Step 1aii: Scope Business Use Cases (Activity Diagram) 71

Chapter 4 � Analyzing End-to-End Business Processes72

Figure 4.9
Activity diagram with partitions (swimlanes).

Case Study D2: Business Use-Case Activity Diagram with Partitions (Swimlanes) 73

Case Study D2: Business Use-Case Activity
Diagram with Partitions (Swimlanes)
The following case study walks you through the next evolution of the CPP
project. During this case study, you meet with stakeholders to discuss the work-
flow for two business use cases. During the meeting, you draw and revise activity
diagrams in order to help stakeholders work toward a consensus regarding
workflow.

Problem Statement
You’ve met individually with stakeholders involved in the Manage Case and
Administer Payments business use cases in order to discuss workflow for these
processes. Not too surprisingly, everyone has a slightly different view of how best
to sequence activities, so you decide to convene a meeting to reach a consensus.
In preparation for the meeting, you plan to create activity diagrams with parti-
tions to summarize your best understanding of the workflow for these business
processes. You won’t be including object flows, as you wish to focus on the
sequencing of the activities. You’ll distribute these to interviewees before
the meeting to give them a chance to preview it. During the meeting, you’ll post the
diagrams and make changes to them based on feedback from stakeholders.

Suggestions
Don’t get uptight about creating perfect activity diagrams right off the bat. All
you need is a reasonable first guess. The main value of the diagrams at this point
is that they give stakeholders something concrete to bounce ideas off of. During
the meeting itself, you’ll come up with a consensus regarding the workflow.
Following is an informal textual description of the business use cases, based on
your preliminary interviews. Your immediate goal is to convert these into activ-
ity diagrams with partitions—one for each business use case.

Business Use Case: Manage Case (Dispute)
The following business use case has been written fairly informally because it is
being used as a means to an end. A more formal style uses the same format as
the system use-case template. For more on the formal style, see the sections
“Documenting the Basic Flow” and “Documenting Alternate Flows” in Chapter 6,
“Storyboarding the User's Experience.”

Chapter 4 � Analyzing End-to-End Business Processes74

Despite the informal style, this example does use two sections found in the
formal template, “Pre-Conditions” and “Post-Conditions.”

� A pre-condition is something that must be true before the use case begins.
In the following example, a Peace Committee must already have been set
up before the CPP can manage a case.

� A post-condition is something that will be true after the use case ends.

� A post-condition on success is something that will be true after the use case
ends, but only if the goal (expressed in the name of the use case) is accom-
plished. In the example, the post-condition on success is that a case report
has been prepared for the case being managed during the business use case.

� A post-condition on failure (not shown in the example) is a condition that
will be true after the use case is over if it ends with abandonment of the goal.

Pre-Condition

A Peace Committee has been established in the township.

Post-Condition on Success

A case report has been prepared.

Flow

1. The Peace Committee in the area initiates a Peace Gathering.

2. The Peace Committee prepares an individual interview report for each
party to the dispute.

3. Once all reports have been taken, the facilitator summarizes the reports
to the Peace Gathering.

4. The facilitator verifies the facts in the reports with those present.

5. The facilitator solicits suggestions from the gathering.

6. The facilitator solicits a consensus for a plan of action.

7. If the gathering has decided to refer the case to the police, the facilitator
escorts the parties to the police station, after which the convener prepares
a case report as per step 10.5

8. If, on the other hand, a consensus has been reached, the facilitator
appoints a monitor.

Case Study D2: Business Use-Case Activity Diagram with Partitions (Swimlanes) 75

9. The monitor performs ongoing monitoring of the case to ensure its terms
are being met.

10. When the deadline for monitoring has been reached, the ongoing moni-
toring immediately ends. At this time, if the conditions of the case have
been met, the convener prepares a case report. If the conditions have not
been met, then the process begins again (return to step 1).

Business Use Case: Administer Payments

Pre-Condition

A case report has been submitted.

Post-Condition on Success

Payments have been made to funds and to accounts of Peace Committee mem-
bers involved in the case.

Flow

1. The convener reviews the case report to determine whether rules and
procedures have been followed.

2. If rules and procedures have been followed:

a. The convener marks the case as payable.

b. The convener then disburses payments to the various funds and to the
accounts of Peace Committee members who worked on the case.

c. The existing Accounts Payable system actually applies the payments.
(Constraint: The AP system must continue to be used for this purpose
when the project is implemented.)

3. If the rules and procedures have not been followed, the convener marks
the case as non-payable.

Case Study D2: Resulting Documentation
Following are the workflow diagrams you will have created based on the preced-
ing notes. You will have included these in the preparation notes sent to each stake-
holder who will be attending the interview session. During the meetings, you’ll
have displayed these diagrams on a flipchart, whiteboard, or projection screen,
and revised them based on comments from the interviewees.

Chapter 4 � Analyzing End-to-End Business Processes76

Figure D2.1 is an activity diagram with partitions that describes the workflow of
the business use case Manage Case.

Figure D2.1
Workflow for the business use case Manage Case.

77

Figure D2.2, an activity diagram with partitions, describes workflow for the
business use case Administer Payments.

Next Steps
Review the diagrams with stakeholders and discuss ways that the process might
be improved (if necessary) in the new system through the following:

� Changes to the sequencing of activities

� Changes to which actor is responsible for each activity

� Suggestions about which of these steps to include as part of the IT
automation project

Case Study D2: Business Use-Case Activity Diagram with Partitions (Swimlanes)

Figure D2.2
Workflow for business use case Administer Payments.

Chapter Summary
In this chapter, you learned the following concepts:

� A business use case is an interaction between a stakeholder and the business, yielding
a valuable result for the stakeholder; a business process.

� A business actor is a stakeholder outside the business that interacts with it, such as a
customer or supplier.

� A worker is a stakeholder who works within the business, such as a customer-service
representative.

� A business use-case diagram is a diagram depicting business use cases and their
associations with actors.

� An activity diagram is a diagram that depicts the sequencing of activities.

� An activity diagram with partitions (swimlanes) is a diagram that depicts the
sequencing of activities and the object that performs each activity.

� A guard is a condition that restricts flow along a transition.

� A control flow shows the direction of the workflow.

� An event is a trigger that forces the end of an activity and flow to continue along
the control flow that it labels.

� A decision is a diamond symbol that marks a point at which flows diverge based
upon some condition.

� A merge is a diamond symbol that marks a point at which flows merge. If any of
the activities leading into a merge have completed, flow will continue beyond the
merge. Use the merge to avoid having more than one incoming flow for an activity.

� A fork marks a point after which parallel activities begin. Activities that are parallel
may occur simultaneously or in any sequence.

� A join marks the end of parallel activities. All parallel activities must complete
before a flow moves beyond a join.

Endnotes
1These are described in the MSF White Paper Process Model V3.1.

2M. Fowler, UML Distilled, 1997, page 16 (in his discussion of the Initiation phase of Objectory).

3The principles of restorative justice were developed by Terry O’Connel.

4The reason for this recommendation is that, in UML 2, two incoming flows on an activity are
interpreted as an implicit join, meaning that both prior activities had to have been completed.

5The conditions described in step 10 do not apply to cases referred to police. That is, once the
parties have been escorted to the police, a case report is always prepared.

Chapter 4 � Analyzing End-to-End Business Processes78

Chapter Objectives
By the end of this chapter, you will be able to define the boundaries of the project during
the Initiation phase by carrying out the following actions:

1. Initiation

1b) Model system use cases

i) Identify actors (role map)

ii) Identify system use-case packages (system use-case package diagram)

iii) Identify system use cases (system use-case diagram)

1c) Begin structural model (class diagrams for key business classes)

1d) Set baseline for Discovery (BRD/Initiation)

New tools and diagrams you will learn to use in this chapter include the following:

� Role map

� System use-case diagram

Step 1b: Model System Use Cases
Now that you have an understanding of the end-to-end business processes, it’s time to
begin thinking about how the proposed IT system might help automate these processes.
System use cases help you imagine the IT system from a user perspective, by focusing on
the user’s goals.

79

Scoping the IT
Project with System
Use Cases

Chapter 5

If the project is large, you will need to find a way to break up the work so that a number
of analysts can work in parallel. First, you need to standardize common issues so that all
team members handle them consistently. One of these issues is the way that users of the
IT system will be documented. To address this issue, you create a diagram called a role map.
Another issue is how to break up the user requirements into manageable pieces. You address
this issue with system use-case diagrams.

Step 1bi: Identify Actors (Role Map)
In this step, you identify the IT system’s users, or actors. Previously, when we spoke of actors,
it was in relation to business use-case modeling. There we spoke of business actors and
workers. From this point onward, however, we are doing system use-case modeling and will
speak simply of actors. An actor, in this context, is a role played by a person or system that
interacts with the IT system.

Finding Actors
To find actors, go through your list of business actors and workers, eliminating any who
don’t interact with the IT system. Then add any external systems and human users who are
required because of the technology. (Remember that when you performed business
use-case modeling, your focus was not on technology, so you may have missed some of
these actors.)

Chapter 5 � Scoping the IT Project with System Use Cases80

What They Say:
An actor specifies a role played by a user or any other system that interacts with the subject.1

(UML)

What They Mean:
An actor is a type of user or an external system that interacts with the system under design.

Similar Terms:
� External agent/external entity: Equivalent terms used in structured analysis.

� Stakeholder: A term more inclusive than actor as it includes anyone who the project will affect
even if they do not have direct contact with it.

Stereotypes and Actors
A stereotype is an extension of a UML feature. Modelers can invent their own stereotypes
to create extended meanings to UML model elements.

Stereotypes in the UML can be depicted either by using a special symbol, such as the stick
figure, or by using the regular UML symbol and including the name of the stereotype inside
guillemets, as in <<stereotype-name>>. In the case of actors, some people like to reserve
the stick figure for human users and use the guillemet option for external systems. Figure
5.1 shows examples of both.

81Step 1bi: Identify Actors (Role Map)

FAQs about Actors
� Why identify actors and why do it now? By starting with the actors, you are working toward

building a system that focuses on users’ needs. This is a logical step to perform now, since at
this point, you need to establish a list of interviewees for eliciting the next level of requirements.
The actor list gives you this. This step also helps you estimate the length of the Discovery phase
of the project. More human actors means more user groups to interview and a lengthier analy-
sis. I use a ballpark figure of one day per interview—half a day to conduct the interview, the
other half-day to cover preparation, analysis, and documentation. System actors also require
increased analysis, because the interfaces to these systems need to be studied. External systems
also increase the complexity of solution development because of the technical difficulty in
getting systems to talk to each other. Later in the project, the actors you’ve identified will assist
the network administrator in specifying user groups and access privileges.

� If a user only receives reports from the system, is that user an actor? Yes (although
there is some controversy about this question).

� How do you handle system use cases that aren’t started by anybody, but just start up
automatically at a given time? Where’s the actor? Define an actor called Time to act as
the initiator of these use cases. (There is also controversy about this issue. Some practitioners,
for example, prefer to see no actor and some prefer to indicate the actor who has asked that
the use case be initiated at that time.)

� If a customer calls in a request and a customer-service representative (CSR) keys it in,
which one is the actor? Only the actor who directly interacts with the computer system is
considered an actor. In this case, it would be the CSR.Another option sometimes used is to name
the actor CSR for Customer.

The Role Map
A role map is a diagram used to standardize the treatment of users and external systems
throughout the project. A role map is a restricted form of a use-case diagram. Whereas the
use-case diagram shows actors and their associations with use cases, the role map shows
only actors.

Place icons for each of the actors you’ve identified in the role map. The role map then
becomes the central diagram team members go back to whenever they want to know how
to depict a user in the model. You can also use the role map to show the ways in which user
roles overlap.

Modeling Actors with Overlapping Roles
You document actors with overlapping roles by drawing a generalization relationship
between actors. Any time the phrase “a kind of” comes up in the discussion of actors, think
about using the generalization relationship. For example, a Bookkeeper and an Accountant
are two kinds of Accounting Staff. Exactly how you draw the generalization depends on
how the roles overlap. We’ll look at two types of situations:

� Actors whose roles partially overlap

� An actor whose role completely encompasses another’s

Actors with Partially Overlapping Roles

When two actors have some overlap in their roles, but each actor can do things with the
system that the other can’t, model the actors as specialized actors and invent an abstract

Chapter 5 � Scoping the IT Project with System Use Cases82

Figure 5.1
Depicting actors and stereotypes.

generalized actor to represent the overlap. The term generalized implies that the specialized
actors inherit something from the generalized actor. In this case, the specialized actors
inherit the ability to do all the things that the generalized actor can do. (Formally, the spe-
cialized actors inherit the associations that the generalized one has with system use cases.)
The term abstract means that the invented actor is not real. (In OO-speak, the abstract
actor is never instantiated.) The generalized actor is not a true role but an abstract concept
meant to represent the shared aspects of other roles. Figure 5.2 shows how to depict actors
with partially overlapping roles.

Modeling an Actor Whose Role Totally Encompasses Another’s

In other cases, an actor might be able to do everything that another actor can do and more.
In this situation, model the actor with the restricted role as the generalized actor, and model
the actor with the larger role as the specialized actor. This may look odd at first, since the
diagram tends to make the lesser role “more important.” This is due to the common prac-
tice of drawing the generalized actor above the specialized actor. The UML, however, does
not dictate the placement of symbols on a diagram. If your users object, just draw the dia-
gram “upside down.” But make sure that the generalization symbol still points from the
specialized actor to the generalized actor. Figure 5.3 shows how to depict such a relation-
ship among actors.

83Step 1bi: Identify Actors (Role Map)

Figure 5.2
Depicting actors whose roles partially overlap.

A Generalized Actor May Be Concrete
The generalized actor, in this case, is not an invention but a real role. It is therefore considered to
be a concrete (as opposed to abstract) actor.

What’s the Point of Defining Generalized Actors?
They simplify the drawing of use-case diagrams. Soon, you’ll be creating use-case diagrams
that indicate which actors are associated with each use case. If all of the specialized actors
of one generalized actor are associated with the same use case, you’ll be able to draw a
single association line between the generalized actor and the use case instead of lines from
each of the specialized actors.

Chapter 5 � Scoping the IT Project with System Use Cases84

Figure 5.3
Depicting actors when one’s role totally overlaps the other’s.

Case Study E1: Role Map
In this case study, we continue the analysis of the CPP system by focusing on the
actors that interact with the IT system.

Problem Statement
You’ve again met with stakeholders to determine which of the business actors and
workers involved in business use cases will interact with the proposed IT system
—either directly, by using the software, or indirectly, by receiving reports, state-
ments, and so on, from it. Also, you’ve investigated the computer systems with
which the proposed system needs to communicate. The results of this investiga-
tion follow. Your next step is to document your findings in a role map.

85Step 1bi: Identify Actors (Role Map)

Case Study E1: Resulting Documentation
Figure E1.1. shows the role map diagram resulting from Case Study E1.

Figure E1.1
Role map for Case Study E1.

Step 1bii: Identify System Use-Case Packages
(System Use-Case Diagram)
If your project supports only one business use case, you may proceed directly to the
following step, identify system use cases. But if it supports a number of business use cases,
consider creating system use-case packages. A system use-case package is a collection of
system use cases and the diagrams that describe them. The UML package icon looks like (and
acts similarly to) a Windows folder. By defining the packages now, you are, in effect, setting
up a filing system that all members of the team will use once the analysis really gets under way.

What Criteria Are Used to Group System Use Cases into Packages?
The UML does not impose any criteria, but here are some common approaches:

� Group system use cases by the main actor who uses them. For example, group
together into one package all the system use cases used by general administration.

� Create a system use-case package for each business use case. For example, in an
insurance system, the customer sees the end-to-end process, Make a Claim. To the
customer, this represents one business goal; however, to achieve it, the company’s
workers require a number of discrete interactions with the computer system:

� Record claim

� Validate policy

� Adjust claim

� Pay claim

Each of these interactions qualifies as a system use case. Since they all contribute
to the same high-level goal, a good way to group them is to bundle them all in the
use-case package Make a Claim.

The second option has the advantage of placing logically related system use cases together.
This is the approach you’ll follow as you work through the case study. Look out for system
use cases that can be reused in more than one business context. Place any of those system use
cases, if you find them, in special packages reserved for system use cases that transcend any
one business use case. Documenting commonly used system use cases in one central place
promotes reuse and consistency of treatment.

Naming Use-Case Packages
Formally, because a package is a thing—specifically, a container—it should be named with
a noun phrase. On the other hand, because of the way we are using the packages, it makes
sense to name each package according to the business use case it supports. This makes trac-
ing easier—from the business use-case model we worked on earlier to the system use-case
model we are now developing. Either approach is acceptable.

Chapter 5 � Scoping the IT Project with System Use Cases86

Diagramming System Use-Case Packages
The diagram used to represent system use-case packages is, formally, a use-case diagram—
though it looks a little odd in that it does not depict any actual use cases. Figure 5.4 shows
some of the system use-case packages for a credit-card system and the actors who interact
with them. Please note that the connecting of actors to packages, as shown in Figure 5.4,
is a B.O.O.M. extension to the UML; it is not part of the standard but is a valid extension
of it.

The direction of the arrow from the actor to the package indicates whether an actor initi-
ates system use cases in the package (in which case the arrow points away from the actor)
or whether the use cases initiate some action by the actor (the arrow points to the actor).
Note that the arrow connecting the actors to the use-case packages is a dashed line with an
open arrowhead. The dashed line indicates a dependency—a loose connection between
modeling elements that means one element has some awareness of another one—and the
arrowhead indicates the direction of the dependency. (Formally, the initiating actor is aware
of system use cases in the package; in the case of non-initiating actors, it is the system that
is aware of them.) You may avoid using the arrowheads but you must use the dashed line
as opposed to a solid line; the UML does not allow a solid line (association) between actors
and packages.

This diagram indicates that a customer-service representative can initiate use cases relat-
ing to card applications and that a CSR manager initiates updates to credit. In both cases,
the system under design will need to be able to communicate with VERIFY (an external
system that verifies the application against a person’s credit record).

87Step 1bii: Identify System Use-Case Packages (System Use-Case Diagram)

Figure 5.4
Use-case diagram showing system use-case packages and actors.

An arrow from an actor to the use-case package
means that the actor initiates use cases in the
package.

An arrow from the package to the actor indicates
that the system initiates the interaction with the
actor once use cases are already under way—for
example, to send requests or information to the
actor.

What If a Use-Case Package Is Connected to
All of the Specialized Actors of a Generalized Actor?
Connect the package to the generalized actor. For example, suppose that VERIFY was only
one of a number of systems able to verify a person’s credit and that the system under design
needed to be able to communicate with all of them.You’d indicate that as shown in Figure 5.5.
(In the section “Interfaces” in Chapter 11,“What Developers Do with Your Requirements,”
you’ll learn about another way to model this with interfaces.)

The use-case package diagram would now look like Figure 5.6.

In the diagram in Figure 5.6, there is no need to show the specializations of the generalized
Bank-to-Bank System, since they are described in the role map shown in Figure 5.5.

Chapter 5 � Scoping the IT Project with System Use Cases88

Figure 5.5
The role map updated for a system to communicate with several external systems.

Figure 5.6
Use-case package diagram updated for a system to communicate with several external systems.

89Step 1bii: Identify System Use-Case Packages (System Use-Case Diagram)

Case Study E2: System Use-Case Packages
In this case study, you organize the system use-case model into packages.

Problem Statement
Your project is large enough to justify system use-case packages. You begin by
considering the business use-case model that you identified earlier. Also, you
review the role map, which identifies users and external systems that interact with
the IT system. (I’ve repeated both of these diagrams in the “Suggestions” section
for convenience.) Based on these diagrams and the initial draft of the BRD, your
next step is to define the system use-case packages for the project. You’ll do this
by creating a use-case diagram depicting actors and system use-case packages.

Suggestions
Create a system use-case package to correspond to each business use case.
Figure E2.1 repeats the business use-case diagram and role map for the system.

Figure E2.1
Business use-case diagram and role map for the CPP system.

Chapter 5 � Scoping the IT Project with System Use Cases90

Case Study E2: Resulting Documentation
Figure E2.2 shows the system use-case package diagram resulting from
Case Study E2.

N o t e

The case study includes a Generate Reports system use-case package. Some analysts do
not create system use cases for reports, arguing that the interaction that the user has
with the computer is too trivial to warrant the use-case treatment. The arguments in
favor of including report use cases are that the generation of a report is still a user goal,
that a simple interaction is still an interaction, and that treating a report request as a
use case allows the function to be managed the way other user goals are (for example,
in planning what will be included in each release of the product).

Figure E2.2
System use-case package diagram for Case Study E2.

Step 1biii: Identify System Use Cases
(System Use-Case Diagram)
The next step is to identify the system use cases that go into the packages. You do this by
going back to the business use cases and reviewing the activities they describe. First try to
determine, with stakeholders, which of these activities fall within the scope of the IT
project. Where things are currently being done manually, you’re looking for activities that
could be either fully or partially automated by the IT project. Where things are being done
using IT, you’re looking for opportunities for improvement.

Once you’ve identified the activities, you’ll need to group them into system use cases.
Imagine the system.2 How will someone sitting at a terminal actually use this system? What
result is the user trying to achieve from the computer system with each interaction? Each of
these results, expressed as a user goal, is a system use case. For example, for a Web banking
system, some system use cases are View Transaction History, Transfer Funds, and Pay Bill.

Features of System Use Cases
A system use case is an interaction that an entity (either a human user or an external com-
puter system) has with the system under design. After executing a system use case, a user
should be able to walk away from the terminal and feel that he or she has accomplished
something of value. Purchasing stocks over the Web is a valid system use case; selecting a
From Account is not. As a rule of thumb, use the “one user, one session” rule: Each execu-
tion of a system use case should involve only one initiating actor and should take place
over a single session on the computer.

The system use-case approach involves diagrams and text. The UML provides strict rules
for drawing use-case diagrams. It does not, however, standardize the writing of use-case
text. Project-management methodologies, such as Rational Unified Process (RUP) and
books on use cases,3 have attempted to fill the gap. (I’ll discuss this further in the section
“The Use-Case Description Template” in Chapter 6,“Storyboarding the User’s Experience.”)
While textual templates for use cases differ, they are always designed in keeping with the
definition of use case; they focus, therefore, on describing the interaction that the user has
with the system, as opposed to the design. The text typically reads as a narrative: “The user
does...”; “The system does....”

91Step 1biii: Identify System Use Cases (System Use-Case Diagram)

Review
A system use case is an interaction between an actor and a computer system.

What Is the Purpose of Segmenting the
User Requirements into System Use Cases?
System use cases become the central tool that governs the management of the project. With
their user perspective, they keep the team focused on the user throughout the project. Here’s
how:

� The requirements are written from the user’s point of view. Prior to use cases,
requirements were often written as a list of capabilities, such as, “The system must
be able to....” With system use cases, the documentation is instead written as a
narrative describing the user’s experience using the system.

� System use cases help ensure that the user receives useful functionality with each
release when a project is managed iteratively. With iterative project management,
the system is analyzed, designed, coded, and often released in several passes. At each
pass, one or more system use cases (or selected use-case scenarios) are developed.
Because each system use case achieves a meaningful goal for the user, the user is
guaranteed useful functionality at the end of each iteration.

� System use cases lead to user interfaces that are organized from a user perspective.
Most people have had experience with systems that require the user to bounce
around screens or a site just to get one unit of work done. This happens because
the developers have organized the user interface from their own point of view.
When the interface is organized around system use cases, each option presented
to the user represents a complete activity from the user’s perspective.

� System use cases yield a set of test cases that encompass the ways users use the
system. Because a system use case describes the way that an interaction plays out,
it is very close to being a test script. And the way the text is typically organized, as
separate “flows,” makes it easy to identify test scenarios.

Modeling System Use Cases
Once you’ve decided what system use cases are required to support a business use case, you
document your findings in a system use-case diagram. Create one (or more if necessary)
system use-case diagram for each system use-case package.

The system use-case diagram shows which actors participate in each system use case. The
diagram does not show sequencing; you can’t tell from the diagram the order in which the
system use cases should be used or the sequence of activities within each use case. (To show
sequencing, use an activity diagram instead.) Figure 5.7 shows a system use-case diagram.

Figure 5.7 illustrates the following modeling elements:

� Primary actor: An actor who initiates a use-case interaction (indicated as an actor
at the tail end of an arrow pointing to a use case).

Chapter 5 � Scoping the IT Project with System Use Cases92

� Secondary actor: An actor that the system initiates an interaction with after the use
case has started (indicated as an actor at the tip of an arrow pointing from a use case).

� System use case: A user task (indicated as an oval).

Here’s what the diagram says:

� A CSR (customer service representative) or a manager enters credit card–application
information. (See the discussion in the following section for more on the subject of
multiple primary actors.)

� A manager may adjudicate a credit-card application. The system use case, once under
way, may involve an interaction with an external computer system, Adjudication
System—for example, by requesting a maximum allowable credit limit for the
customer based on application information and credit history. The system use
case may also involve an interaction with a bank customer—for example, by
e-mailing the customer a letter of acceptance or rejection.

How Many Primary Actors Can a Use Case Have?

In the situation modeled in Figure 5.7, either a CSR or a manager can initiate the system
use case, Enter Credit Card Application Information. In this situation, the practice followed
in this book (and in Figure 5.7) is to indicate both as primary actors—the implication being
that either the CSR or manager may initiate the interaction. Others argue against this prac-
tice, however, because they would interpret this to mean that both actors are required to
initiate the use case; those following this approach would indicate only one actor, a CSR,
for this use case, since that is the role being played regardless of the user’s job title. Be aware,
in any case, that the issue of whether multiple primary actors indicates an or (either actor
may initiate) or an and (both are required to initiate) is controversial.

93Step 1biii: Identify System Use Cases (System Use-Case Diagram)

Figure 5.7
Example of a system use-case diagram.

What if the manager is acting in a truly separate role, however, as the authorizer of infor-
mation previously entered during the use case by the CSR? In that case, all practitioners
would model the manager as an additional actor for the use case. Whether the actor is
primary or secondary depends on who initiates the interaction between the manager and
the system. If the system does—for example, by sending a request for approval to the
manager—then the manager is a secondary actor. If the manager does—for example, by
signing in and selecting the case for review—then the manager is a primary actor.

To draw a system use-case diagram, follow these steps:

1. Copy all the actors connected to the package in the main use-case package diagram
onto the new diagram. This will ensure that you don’t forget any actors.

2. Draw a system use-case symbol (an oval) to represent each user goal within the
package.

3. Connect the actors to the use cases using the UML association symbol: a solid line
that may, if desired, be adorned (as UML puts it) with an open arrowhead. The fol-
lowing steps explain the rules for drawing the association.

4. Connect an actor to a system use case if the actor participates in any way while the
use case plays out. If all you can say at this time is that the actor participates some-
how, use a solid line.

5. If the actor initiates the system use case, draw an arrow that points from the actor
to the use case. This designates the actor as a primary actor for the use case. Note
that the direction of the arrow indicates who initiated the interaction (it always
points away from the initiator). The arrow does not indicate the direction of the
data. For example, a user initiates a query transaction. The arrow points away from
the actor even though the data moves from the system to the actor.

6. If the actor gets involved only after the system use case has already begun, draw the
arrow from the use case to the actor. In this case, it is the system (of which the use
case is a part) that has initiated the interaction with the actor. This type of actor is
termed a secondary actor.

7. If several possible actors may initiate the system use case, connect all of them to
the use case as primary actors. This does not break the “one initiating actor” rule.
In any particular execution of the system use case, only one of these primary actors
is involved. (Keep in mind, however, that as previously discussed, there is contro-
versy around this issue: Some interpret two primary actors to mean that both must
be involved, as opposed to the interpretation of this book, that either may be
involved.) You may also designate more than one secondary actor for the use case,
if appropriate.

8. If all of the specialized actors of a generalized actor participate with the use case,
draw an association between the generalized actor and the use case. It implies
association with the specializations.

Chapter 5 � Scoping the IT Project with System Use Cases94

Is There a Rule of Thumb for How Many System Use Cases a Project
Would Have?
No. Ivar Jacobson recommends about 20 use cases for a 10 person-year4 project. Martin
Fowler reports about 100 use cases for a project of the same size.5

Keep in mind that one reason for splitting requirements into system use cases is to assist
the planning of releases. Try to size the system use cases so that you can roll out one or more
complete system use cases (or use-case scenarios) in each release.6

95Step 1biii: Identify System Use Cases (System Use-Case Diagram)

Case Study E3: System Use-Case Diagrams
In this case study, you’ll create system use-case diagrams that summarize who does what
with the IT solution. Following are notes gathered from follow-up interviews regarding
the business use cases for this project.

A) Manage Case
You have just conducted a meeting with stakeholders to discuss the Manage Case
business use case. You’ve circulated the following business use-case description and
activity diagram to attendees.

Business Use Case: Manage Case (Dispute)

Post-Condition on Success

A case report has been prepared.

Flow
1. The Peace Committee in the area initiates a Peace Gathering.

2. The Peace Committee prepares an individual interview report for each party to
the dispute.

3. Once all reports have been taken, the facilitator summarizes the reports to the
Peace Gathering.

4. The facilitator verifies the facts in the reports with those present.

5. The facilitator solicits suggestions from the gathering.

6. The facilitator solicits a consensus for a plan of action.

7. If the gathering has decided to refer the case to the police, the facilitator escorts
the parties to the police station, after which the convener prepares a case report
as per step 10.7

Chapter 5 � Scoping the IT Project with System Use Cases96

8. If, on the other hand, a consensus has been reached, the facilitator appoints a
monitor.

9. The monitor performs ongoing monitoring of the case to ensure its terms are
being met.

10. When the deadline for monitoring has been reached, the ongoing monitoring
immediately ends. At this time, if the conditions of the case have been met,
the convener prepares a case report. If the conditions have not been met,
then the process begins again (return to step 1).

Figure E3.1 shows the diagram that results from this flow.

Figure E3.1
Activity diagram for business use case Manage Case.

97Step 1biii: Identify System Use Cases (System Use-Case Diagram)

Here’s how the interview progresses from that point:

1. You ask stakeholders how much of this process can be automated. They tell you
that there is no budget for automation in the communities themselves, but only
at the head office. They clarify that a case moves out of the community to the
head office when the convener performs the activity Prepare Case Report.

2. Next, you ask users to rephrase this activity as a goal they would be trying to
achieve through their interaction with the IT system. They say that the goal
would be to update case information; that is, to open up a new case and later to
add information about the case if necessary. Accordingly, you name the system
use case Update Case.

B) Administer Payments
Next, you discuss the Administer Payments business use case with the users. The follow-
ing is the document, extracted from the business requirements document, that you’ve
circulated, describing the process.

Business Use Case: Administer Payments

Pre-Condition
A case report has been submitted.

Post-Condition on Success
Payments have been made to funds and to accounts of Peace Committee members
involved in the case.

Flow
1. The convener reviews the case report to determine whether rules and procedures

have been followed.

2. If rules and procedures have been followed:

a. The convener marks the case as payable.

b. The convener then disburses payments to the various funds and to the
accounts of Peace Committee members who worked on the case.

c. The existing accounts payable (AP) system actually applies the payments.
(Constraint: The AP system must continue to be used for this purpose when the
project is implemented.)

3. If the rules and procedures have not been followed, the convener marks the case
as non-payable.

Chapter 5 � Scoping the IT Project with System Use Cases98

Figure E3.2 shows the diagram that results from this flow.

Once again, you have a discussion with the stakeholders about automation. You learn
that, as originally scoped, the project will not incorporate the actual generation of pay-
ments; these will remain the responsibility of the existing AP system. However, the new
system will need to interface with the AP system. Also, the new system should be able to
assist the convener in performing all of the other steps in the process.

Next you ask stakeholders to group the activities, thinking of what they would expect to
accomplish in each session with the computer. You learn that the process of reviewing a
case and marking it as payable or non-payable is all part of the same user goal and would
happen best as one session. Stakeholders imagine a convener reviewing a case and mark-
ing it, then moving on to the next case, and so on.

Figure E3.2
Activity diagram for business use case Administer Payments.

99Step 1biii: Identify System Use Cases (System Use-Case Diagram)

They envision a separate session for disbursing the payments for cases that have earlier
been deemed payable. The transactions will be sent to the AP system at that time.

This yields the following use cases:

� Review Case

� Disburse Payments

Note how this meeting, focused on system use cases, really keeps you in tune with the
users’ experience; this is the main point of the use-case approach.

C) Other Business Use Cases
In similar meetings regarding the other business use cases, you’ve identified the follow-
ing system use cases:

� Generate Reports Package:

� Generate Funder Reports: Initiated by any CPP member. The reports are sent
to the funders.

� Generate Government Reports: Initiated by any CPP member. The reports are
sent to a government body. (This is as specific as the stakeholders can be at this
time.)

� Manage Administration Package:

� Update Peace Committees: Initiated by the CPP general administrator to add
or update information on the Peace Committees located in the communities.

� Update CPP Member List: Initiated by the CPP general administrator to add
or update information about members of the central CPP organization, work-
ing out of the head office.

� Set System Parameters: Initiated by the CPP general administrator to “tweak”
the system. Such parameters would include one-time setup operations as well
as parameters affecting performance.

Your Next Step
Create system use-case diagrams that summarize what you learned in the meeting. You’ll
present these during the next meeting as a way of summarizing your conclusions. Later,
these diagrams will serve to direct the next phase of the project, the Discovery phase.

Chapter 5 � Scoping the IT Project with System Use Cases100

Case Study E3: Resulting Documentation
Figure E3.3 shows the diagrams resulting from Case Study E3.

Figure E3.3
Use-case diagram depicting CPP system use-case packages and actors.

Step 1c: Begin Structural Model
(Class Diagrams for Key Business Classes)
As you’ve worked through the Initiation phase of the project, business terms such as “case”
and “Peace Gathering” have come up. Now is an appropriate time to begin formally defin-
ing these business concepts and their relationships to each other. You do this by beginning
the structural model, drawing class diagrams for the main business classes. We’ll explore
structural analysis in Chapter 8, “Gathering Across-the-Board Business Rules with Class
Diagrams,” which is devoted to the topic. But just to give you an idea of what you might
expect to see at this point in time, Figure 5.8 shows a class diagram describing some of the
main business classes that have come up during the Initiation phase.

Don’t be perturbed if you have trouble with this diagram right now; I’ve included it here
only to provide context. Here’s what it means:

� A Peace Committee handles a case.8

� A case is resolved through Peace Gatherings.

� A case generates payment(s).

� A Peace Committee consists of Peace Committee members.

Other information, such as the number of payments per case, can also be added to the
structural model at this stage.9 Since this is still early in the project, expect changes to be
made to the structural model as the project progresses.

Step 1d: Set Baseline for Discovery (BRD/Initiation)
Once the Initiation phase of the project is over, you need to “baseline” your analysis.
This simply means saving the state of the analysis at this point and putting it under change

101Step 1c: Begin Structural Model (Class Diagrams for Key Business Classes)

Figure 5.8
A class diagram describing several business classes discovered during the Initiation phase.

control. By baselining your documentation, you ensure that if changes are requested later,
you’ll be able to check whether they represent a change from the original scope of the pro-
ject. (Keep in mind, however, the exception for agile projects, where the requirements are
not baselined unless they are under development.) The analysis up to this point also
becomes the starting point for the next phase of the project, the Discovery phase.

Chapter Summary
In this chapter, you completed the Initiation phase of the project by identifying and mod-
eling the system use cases. These system use cases will now drive the rest of the analysis
and development effort.

New tools and concepts introduced in this chapter include the following:

� Actors are roles, organizations, or systems that use or are contacted by the system.

� A role map is a diagram indicating actors and their relationships to each other.

� A use-case package is a container that holds use cases.

� A system use-case diagram is a diagram describing the system use cases (uses to
which the IT system will be put) and the actors who interact with them.

Endnotes
1UML Superstructure Specification, v2.2, OMG, 2009, page 588.

2Thanks to Tim Lloyd for introducing me to this phrase.

3A key book in this area is Alistair Cockburn’s Writing Effective Use Cases, 2001.

410 person-years means that the number of people multiplied by the number of years that each one
works equals 10—for example, 1 person working 10 years or 10 people each working 1 year.

5Martin Fowler, UML Distilled, 1997, page 51.

6Releasing complete system use cases in each iteration helps simplify the management of the
project, but is not a hard-and-fast rule. You may decide, for example, to release only select flows
(pathways) of a use case in a particular iteration.

7The conditions described in step 10 do not apply to cases referred to police. That is, once the
parties have been escorted to the police, a case report is always prepared.

8The diagram as shown has an ambiguity regarding the direction in which it should be read. For
example, it either states that a Peace Committee handles a case or a case handles a Peace Committee.
In practice, many BAs do not worry about this, since the statement usually only makes sense in one
direction. However, the UML does allow for a solid triangular arrowhead to be placed next to the
association name (handles) to indicate the direction it should be read. More on this in Chapter 8.

9This type of requirement is termed a multiplicity in the UML. You’ll learn more about multiplic-
ity in Chapter 8.

Chapter 5 � Scoping the IT Project with System Use Cases102

Chapter Objectives
Now that you’ve defined the scope of the project, you’re ready to take your project “into
analysis.” There are various aspects to analysis. In this and the coming chapter, you’ll learn
how to analyze the dynamic aspects of the system in action.

You’ll be able to carry out these B.O.O.M. steps:

2. Discovery

2a) Behavioral analysis

i) Describe system use cases (use-case description template)

Tools and concepts you’ll learn to use in this chapter include the following:

� Use-case description template

� Activity diagram

� Decision table

� Decision tree

� Condition/response table

� Advanced use-case features

103

Storyboarding the
User’s Experience

Chapter 6

Step 2: Discovery
The Discovery phase of the project is the one that takes up most of a business analyst’s
time. The objective of requirements analysis, which peaks during this phase, is to discover
and document the requirements of the proposed system. The central product of this step,
the completed BRD, acts as a contract between the business and the developers. If a require-
ment is not in the BRD (or equivalent documentation), it’s not part of the contract, so it’s
essential to ensure that you document all necessary requirements completely, correctly, and
unambiguously. This and the following chapter will take you through a process to help you
do just that.

The Discovery phase involves a number of steps:

2. Discovery

2a) Perform behavioral analysis

i) Describe system use cases (use-case description template)

ii) Describe state behavior (state-machine diagram)

2b) Perform structural analysis (object/data model) (class diagram)

2c) Specify testing (test plan/decision tables)

2d) Specify implementation plan (implementation plan)

2e) Set baseline for development (BRD/Discovery)

This chapter deals with step 2ai, “Describe system use cases.”

Lifecycle Considerations
Please note that on waterfall projects, all requirements-analysis activities described above
are performed during the Discovery phase since they must be complete before develop-
ment may begin in the Construction phase. On iterative projects, analysis peaks during the
Discovery phase but continues during the Construction phase, since not all requirements
are gathered up front with this approach. As well, on such projects, a phase typically
consists of a number of iterations—each incorporating a complete cycle of analysis, design,
coding, and testing for the use-case scenarios selected for that iteration. Finally, for itera-
tive projects that follow an agile approach, the requirements are not baselined unless they
are being implemented.

Step 2ai: Describe System Use Cases
At the end of the Initiation phase, you identified system use cases in the BRD. This version
was baselined for step 2 (the Discovery phase). By baselining the BRD, you ensured that
you have a reference point to go back to. Updates to the BRD during the Discovery phase
are made on a new working version.

Chapter 6 � Storyboarding the User’s Experience104

For your first changes, review the list of system use cases. If needs have changed or you
have obtained further information, update the system use-case diagrams and related text
in the BRD. Once you’ve settled on a list of system use cases, your next step is to investi-
gate and document each one thoroughly.

Deliverables of Step 2ai: Describe Use Cases

This step produces a number of deliverables, as described here:

� The BRD template contains a section for system use-case diagrams. These diagrams
are updated.

� The BRD has a section called “System Use-Case Descriptions.” For each system use
case that appears in the system use-case diagrams, a use-case description is added
that includes a completed use-case description template. The text documentation
may be augmented with any of the following:

� Activity diagrams

� Decision tables

� Decision trees

� Other related artifacts containing supplementary documentation

The Use-Case Description Template
The UML, as we’ve learned, doesn’t have a lot to say about text. The following template
fills that gap by incorporating industry best practices. If you are working for an organiza-
tion that doesn’t have a template, use this as your starting point, but customize it as time
goes on. If you already have a template, compare it to the following template. You may find
features you’d like to add.

Keep one thing in mind when using this or any other template: Its main value is as a way
to institutionalize best practices in your organization. You should customize it as time goes
on, based on what works for you. As an example, this template requires the BA to keep
detailed rules about field verification out of the use case proper; these rules are documented
in class diagrams or in a data dictionary instead. But one organization I've worked with
found that it couldn't get its developers to cross-reference; if a rule was not explicitly stated
in the use case, the rule wasn't implemented in the software. Consequently, the organiza-
tion decided to include such rules in its use cases. Remember that whatever choices you
make, there is only one yardstick:

Does it work?

The Use-Case Description Template 105

The Fundamental Approach Behind the Template
The underlying principle of this template is to describe workflow using a simple narrative
style that avoids complex logic. The trick to keeping things simple is to handle variations
in a separate area of the document rather than in one all-encompassing section. First, you
document a normal, typical interaction in a section called “Basic Flow.” Next, you describe
alternative success scenarios in an “Alternate Flows” section. Finally, you describe error
handling in an “Exceptional Flows” section.

Chapter 6 � Storyboarding the User’s Experience106

Use-Case Description Template
1. Use Case: The use-case name as it appears on system use-case diagrams

Perspective: Business use case/system use case

Type: Base use case/extending/included/generalized/specialized

1.1 Brief Description: Describe the use case in approximately one paragraph.

1.2 Business Goals and Benefits: Briefly describe the business rationale for the
use case.

1.3 Actors

1.3.1 Primary Actors: Identify the users or systems that initiate the use
case.

1.3.2 Secondary Actors: List the users or systems that receive messages
from the use case. Include users who receive reports or online
messages.

1.3.3 Off-Stage Stakeholders: Identify non-participating stakeholders
who have interests in this use case.

1.4 Rules of Precedence

1.4.1 Triggers: Describe the event or condition that “kick-starts” the use
case, such as Call received; inventory low. If the trigger is time-driven,
describe the temporal condition, such as End-of-month.

1.4.2 Pre-conditions: List conditions that must be true before the use
case begins. If a condition forces the use case to occur whenever it
becomes true, do not list it here; list it as a trigger.

1.5 Post-conditions

1.5.1 Post-conditions on Success: Describe the status of the system
after the use case ends successfully. Any condition listed here is
guaranteed to be true on successful completion.

The Use-Case Description Template 107

1.5.2 Post-conditions on Failure: Describe the status of the system after
the use case ends in failure. Any condition listed here is
guaranteed to be true when the use case fails as described in the
exception flows.

1.6 Extension Points: Name and describe points at which extending use
cases may extend this use case. Example of extension point declaration:
“Preferred Customer: 2.5–2.9.”

1.7 Priority

1.8 Status: Your status report might resemble the following:

Use-case brief complete: 2005/06/01

Basic flow + risky alternatives complete: 2005/06/15

All flows complete: 2005/07/15

Coded: 2005/07/20

Tested: 2005/08/10

Internally released: 2005/09/15

Deployed: 2005/09/30

1.9 Expected Implementation Date

1.10 Actual Implementation Date

1.11 Context Diagram: Provide a system use-case diagram showing this use
case, all its relationships (include, extend, and generalization relationships)
with other use cases, and its associations with actors.

2. Flow of Events

Basic Flow: Insert basic flow steps. Numbers begin with 2.1.

Alternate Flows

2.Xa Insert the alternate flow name. The alternate flow name should
describe the condition that triggers the alternate flow. “2.X” is the
step number in the basic flow where the interruption occurs.
Describe the steps in paragraph or point form.

Exception Flows

2.Xa Insert the exception flow name. The exception flow name should
describe the condition that triggers the exception flow. An exception
flow is one that causes the use case to end in failure and for which
“post-conditions on failure” apply. “2.X” is the step number in the
basic flow where the interruption occurs. Describe the steps in para-
graph or point form.

Chapter 6 � Storyboarding the User’s Experience108

3. Special Requirements: List any special requirements or constraints that apply
specifically to this use case.

3.1 Non-Functional Requirements: List requirements not visible to the user
during the use case—security, performance, reliability, and so on.

3.2 Constraints: List technological, architectural, and other constraints on the
use case.

4. Activity Diagram: If the flows connect in complex ways, include an activity dia-
gram showing workflow for this system use case or for select parts of the use case.

5. User Interface: Initially, include description/storyboard/prototype only to help
the reader visualize the interface, not to constrain the design. Later, provide links
to screen design artifacts.

6. Class Diagram: Include a class diagram depicting business classes, relationships,
and multiplicities of all objects participating in this use case.

7. Assumptions: List any assumptions you made when writing the use case. Verify
all assumptions with stakeholders before sign-off.

8. Information Items: Include a link or reference to documentation describing
rules for data items that relate to this use case. Documentation of this sort is
often found in a data dictionary. The purpose of this section and the following
sections is to keep the details out of the use case proper so that you do not need
to amend it every time you change a rule.

9. Prompts and Messages: Any prompts and messages that appear in the use case
proper should be identified by name only, as in Invalid Card Message. The
“Prompts and Messages” section should contain the actual text of the messages
or direct the reader to the documentation that contains text.

10. Business Rules: The “Business Rules” section of the use-case documentation
should provide links or references to the specific business rules that are active
during the use case. An example of a business rule for an airline package is “Air-
plane weight must never exceed the maximum allowed for its aircraft type.”
Organizations often keep such rules in an automated business rules engine, other
electronic files (such as spreadsheets and text files) or manually in a binder.

11. External Interfaces: List interfaces to external systems.

12. Related Artifacts: The purpose of this section is to provide a point of reference
for other details that relate to this use case but would distract from the overall
flow. Include references to artifacts such as decision tables, complex algorithms,
and so on.

Documenting the Basic Flow
The basic flow describes the most common way that the use case plays out successfully.
(Some people call it the “happy scenario.”) It reads as a straightforward narrative:
“The user does...; the system does....” As a rule of thumb, the basic flow should not list any
conditions, since subsequent sections handle all errors and alternatives. To keep
documentation consistent, employ a style guideline throughout your company for writing
use-case requirements.

Use-Case Writing Guidelines
The following guidelines are compiled from standards that I have seen in practice. The
template and case study adopt the numbering scheme proposed by Alistair Cockburn.1

Many other schemes are used in the industry for numbering requirements, including the
practice of not numbering them at all.2

� Tell a story. Write sentences that describe the unfolding narrative of the user’s
interaction with the system.

� Use a simple subject-verb-object sentence structure.

� Use a consistent tense (present or future tense).

� Each step should contain one testable, traceable requirement.

� Keep the number of steps in a flow small (maximum 9 to 25 steps).

� Minimize the use of the word “if.” Use alternate and exception flows instead.

� Handle validations by writing, in the “Basic Flow” section, “The system validates
that....” Describe what happens when the validation fails in the alternate or excep-
tion flows.

� Merge data fields and use the merged data name in the use case. For example, use
the merged field Contact Information rather than the individual fields Name,
Address, and Phone Number. Describe merged fields elsewhere. (See the “Informa-
tion Items” section of the template, which links to an external document, such as
the data dictionary.)

� Do not describe the interface design within the use case. Describe the workflow
only; document design details elsewhere.

� Document the sequencing of each step clearly and consistently. For example:

� One step follows the other:

1. User provides contact information.

2. System validates user input.

� A group of steps can be triggered in any sequence:

� Steps 20 through 30 can happen in any order.

Documenting the Basic Flow 109

� A step is triggered at any time during a set of basic flow steps:

At any time between Steps 7 and 9, the user may....

� Optional steps:

� Steps 5 through 7 are optional.

Alternatively, describe optional steps in the “Alternate Flow” section
(recommended).

� Establish a standard for documenting repetitive steps. For example:

1. User selects payee.

2. System displays accounts and balances.

3. User selects account and provides payment amount.

4. System validates that funds are available.

5. User repeats steps 1 through 4 until indicating end of session.

� Standardize triggers to external systems. For example:

The user has the system query the account balance from Interac (and does not
wait for a response).

� Label the requirements. Use a numbering scheme or text labels. (In the case study,
you’ll be using numbers to label the requirements.)

� Keep the focus on the flow. Exclude anything that would distract the reader from the
narrative. Document other details elsewhere, and refer to them from the use case.

Basic Flow Example: CPP System/Review Case Report
Following is an example of some of the text that would appear in the Review Case Report
system use case, a task that enables a user to review a case report and disburse funds against
cases that qualify for payments.

2. Flow of Events

Basic Flow:

2.1 The system displays a list of resolved cases that have not been reviewed.

2.2. The user selects a case.

N o t e

Steps 2.3 and 2.4 refer the reader to 12.1, a decision table that describes the rules for paying a case.

2.3 The system validates that the case is payable. (12.1)

2.4 The system determines the payment amount. (12.1)

Chapter 6 � Storyboarding the User’s Experience110

2.5 The system marks the case as payable.

2.6 The system records the payment amount.

2.7 The system checks the Cash fund records to ensure that adequate funds exist.

2.8 The system records the fact that the case has been reviewed.

....

12. Other Related Artifacts

12.1 Case Payment Decision Table (link to table)

Documenting Alternate Flows
Document each scenario not covered in the basic flow as an alternate flow or as an exception
flow. An alternate flow is a variation that does not lead to the abandonment of the user
goal; an exception flow involves a non-recoverable error. If your team has trouble deciding
whether to list a scenario in the “Alternate Flow” or “Exception Flow” section, merge the
two sections into one and list both types of flows there.

Typical Alternate Flows
There are many situations that may be documented as alternate flows. These include the
following:

� The user selects an alternative option during a basic-flow step—for example, “User
requests same-day delivery.”

� The user selects a tool icon at any time during the use case—for example, “User
selects spell-checking.”

� A condition regarding the internal state of the system becomes true—for example,
“Item out of stock.”

� Recoverable data-entry errors are identified. For example, the basic flow states, “The
System validates withdrawal amount”; the alternate flow reports, “Funds are low.”

Documenting Alternate Flows 111

What Is an Alternate Flow?
An alternate flow is a scenario other than the basic flow that leads to success. An alternate flow
may deal with a user error as long as it is recoverable. Non-recoverable errors are handled as
exception flows.

Alternate Flow Documentation
There are a number of issues you’ll need to clarify for each flow you’ve identified. These
are as follows:

� Trigger: The event or condition that causes the process to be diverted from the
basic flow.

� Divergence point: The point within the basic flow from which the process jumps
to the alternate flow.

� Convergence point: The point at which the process returns to the basic flow.

The following standard for naming alternate flows is advocated by Cockburn. It is not
important that you use this particular standard, but it is important that you standardize
the way you treat each of the issues described here.

Trigger: Use the triggering event to name the flow. For example: Inventory low.

Divergence point: If the flow diverges from a specific step of the basic flow, use the basic
flow number and append “a” for the first alternate flow off of it, “b” for the second, and so
on. For example:

Basic flow:

2.3 The system validates that the case is payable. (12.1)

Alternate flow:

2.3a) Cash funds low but sufficient:

.1 The system marks the case as payable.

.2 The system displays the low funds warning. (See “Prompts and Messages.”)

If the flow may be triggered during a range of steps in the basic flow, specify the range and
append an “a” for the first alternate flow off of the range, “b” for the second, and so on. For
example:

Basic flow:

2.3 The system validates that the case is payable. (12.1)

2.4 The system determines the payment amount. (12.1)

2.5 The systems marks the case as payable.

Alternate flows:

2.3–2.5a) User selects option to add note:

.1 The user adds a note to the case.

Chapter 6 � Storyboarding the User’s Experience112

If the flow may be triggered at any time during the basic flow, specify “*a” for the first such
scenario, “*b” for the second, and so on. For example:

Alternate flow:

*a) User selects save option:

.1 The system saves all updates made to the case in a draft folder.

Convergence point: Clearly indicate how the flow returns back to the basic flow. I use the
following convention: If the flow returns to the step following the divergence point, I do
not indicate a convergence point (it’s understood); otherwise, I write “Continue at step x.”

Example of Use Case with Alternate Flows:
CPP System/Review Case Report

2. Flow of Events

Basic Flow:

.1 The system displays a list of resolved cases that have not been reviewed.

.2 The user selects a case.

.3 The system validates that the case is payable. (12.1)

.4 The system determines the payment amount. (12.1)

.5 The system marks the case as payable.

.6 The system records the payment amount.

.7 The system checks the Cash fund records to ensure that adequate funds exist.

.8 The system records the fact that the case has been reviewed.

Alternate flows:

2.3a Non-payable case:

.1 The system marks the case as non-payable.

.2 The user confirms the non-payable status of the case.

.3 Continue at step 8.

2.7a Cash funds low but sufficient:

.1 The system marks the case as payable.

.2 The system displays the low-funds warning. (See “Prompts and Messages.”)

Documenting Alternate Flows 113

Documenting an Alternate of an Alternate
What if there are other ways that an alternate-flow step could play out? Document these
the same way you documented the original alternate flows. For example, suppose that
in the preceding case, you want to give the user the option of overriding the non-payable
status at Step 3a.2. The system use case would now read:

2. Flow of Events

Basic Flow:

.1 The system displays a list of resolved cases that have not been reviewed.

.2 The user selects a case.

.3 The system validates that the case is payable. (12.1)

.4 The system determines the payment amount. (12.1)

.5 The system marks the case as payable.

.6 The system records the payment amount.

.7 The system checks the cash-fund records to ensure that adequate funds exist.

.8 The system records the fact that the case has been reviewed.

Alternate flows:

2.3a Non-payable case:

.1 The system marks the case as non-payable.

.2 The user confirms the non-payable status of the case.

.3 Continue at step 8.

2.3a.2a User overrides non-payable status:

.1 The user indicates that the case is to be payable and enters a reason for the
override.

....

2.7a Cash funds low but sufficient:

.1 The system marks the case as payable.

.2 The system displays the low-funds warning. (See “Prompts and Messages.”)

Documenting Exception Flows
List each error condition that leads to the abandonment of the user goal in the “Exception
Flows” section. Typical exception flows include cancellation of a transaction by the user
and system errors that force a transaction to be canceled. Documentation rules are the same
as for the alternate flows except that there is often no convergence point, since the goal is
abandoned. In that case, the last line of the flow should read, “The use case ends in failure.”

Chapter 6 � Storyboarding the User’s Experience114

Guidelines for Conducting System Use-Case Interviews
Now that you have a solid idea of what the flows look like, let’s put it all together in the
context of an interview:3

1. Ask interviewees to describe the basic flow.

2. Go through the basic flow, step by step, and ask if there is any other way each step
could play out. List each of these as an alternate or exception flow—but don’t let
the interview veer off into the details of what happens within each of these flows.
Your aim at this point is merely to list the flows.

3. Ask interviewees if there are any alternatives or errors that could happen at any
time (as opposed to at a specific step) during the basic flow. Add these to the alter-
nate or exception flows.

4. Now that you have a comprehensive list, ask interviewees to describe each flow in
detail.

5. Finally, go over each of the steps in the alternate and exception flows, asking if
there are any other ways those steps could play out.

Activity Diagrams for System Use Cases
The basic, alternate, and exception flows do an excellent job of describing scenarios—one
at a time. If the flows connect to each other in complex ways, add an activity diagram as a
supplement to the use-case description in order to clarify how all the flows fit together. You
draw the diagram using the same conventions you used earlier when modeling the work-
flow of business use cases.

Related Artifacts
The template contains a number of sections that point the reader to other artifacts related
to the use case. For example, there are sections titled “User Interface,” “Prompts and
Messages,”“Business Rules,”“Class Diagrams,”“Information Items,” and a catch-all “Other
Related Artifacts” for anything else not included in the other sections. The point of these
sections is to give you a convenient place to refer to details that are relevant to the use case,
but that would distract from the overall flow. For example, at a particular point in a use
case, the system may need to adjudicate a request for a credit limit increase. If the use case
were to include the complex rules for doing that right in the flows, the details would dis-
tract from the narrative. The solution of the template is to describe these details in another
artifact and refer to it from the use case. The flow step refers to the line number in the
template where the artifact is described. For example, in the system use case Review Case
Report, there were a couple of references to a decision table.

Related Artifacts 115

Basic flow:

2.3 The system validates that the case is payable. (12.1)

2.4 The system determines the payment amount. (12.1)

....

12. Other Related Artifacts

12.1 Case Payment Decision Table (link to decision table)

There is an added benefit to listing details separately from the use case when they apply
across a number of use cases: Revisions to the documentation will have to be made in only
one place should these details ever change. For example, if a data field has a valid range
that applies wherever the field is referred to, document the rule in the class model or as an
information item. If the valid range ever changes, you’ll only have to change the docu-
mentation in one place.

Next, you’ll look at examples of some of the artifacts that supplement the use case.

Decision Tables
One of the useful artifacts to which you can link a use case is a decision table. (In the tem-
plate, link to this document in the section “Other Related Artifacts.”)

Chapter 6 � Storyboarding the User’s Experience116

Are Use Cases All You Need?

People often ask me if the use cases are all of the requirements or whether they are all you need
to create test cases.The answer to both questions is, “No.” First of all, they are not all of the require-
ments because they only address the user requirements, omitting other requirements such as
security requirements. Secondly, they focus on the flow of the conversation between the system
and the actors—the storyboard of the interaction. Other issues, such as screen designs and data-
validation rules, are defined in other artifacts that the use case links to. To fully document and test
a system, you need use cases and these other artifacts.

Decision Tables

Use a decision table to describe the system response to a number of interrelated factors. If each
factor can be looked at separately, do not use a decision table; just use the alternate and excep-
tional flows or, alternatively, a condition/response table.

For example, the CPP use case Review Case Report referred to a decision table that describes
the logic for validating whether a case is payable and for determining the payment amount.
The rules for these steps could have been described in the use case proper, but that would
have made the text harder to follow. Instead, the rules are extracted into an accompanying
decision table, appended to the use case.

The Underlying Concept

Instead of explaining the logic that underlies a decision, you simply list every possible sit-
uation and document how the system treats it. The method for completing the table ensures
that you have accounted for every mathematically possible combination of factors.

When Are Decision Tables Useful?

Use decision tables during the interview process to ensure that you have questioned the inter-
viewee about all possible combinations of factors that affect the outcome of a use case.
Document decision tables as appendices to system use cases or in an external document, for
example, in a business rules folder. During testing, use decision tables to derive test cases that
cover all combinations of related factors; each column of the table represents a test case. (You’ll
learn more about this in Chapter 10, “Designing Test Cases and Completing the Project.”)

Example of a Use Case with a Decision Table

System Use Case: Process Life Insurance Application

2. Flow of Events

Basic flow:

.1 User enters application information.

.2 System validates eligibility. (12.1)

.3 System adds application to adjuster queue.

Alternate flows:

3a. Referred application:

.1 System adds application to referral queue.

.2 The use case ends.

Exception flows:

3b. Rejected application:

.1 System adds application to rejection queue.

.2 The use case ends in failure.

....

12. Other Related Artifacts

12.1 Validate eligibility decision table (link to table)

Related Artifacts 117

A decision table, as shown in Figure 6.1, is appropriate here because all of the conditions
are interrelated: You need to evaluate them together to determine how to process an
application.

A Step-by-Step Procedure for Using a Decision
Table During an Interview to Analyze System Behavior

One of the great things about decision tables is the way they simplify the interview process
when dealing with the business’s response to a complex and interrelated set of factors.
Rather than getting bogged down trying to sort out the logic of the business response, the
business analyst can break the interview up into a series of simple, easy-to-execute steps.
Use the following guidelines when using decision tables to structure the interview:

1. Prompt interviewees for conditions (factors) that may affect the outcome. List each
condition on a separate row in the top-left portion of the diagram. For example,
in the previous decision-table example, the conditions are “Medical condition,”
“Substance abuse?” and “Previous rejections?”

2. Prompt interviewees for a complete list of possible values for each condition and
list these next to the corresponding condition—for example, “Medical condition
(‘Poor,’ ’Good’).”

Chapter 6 � Storyboarding the User’s Experience118

Figure 6.1
Decision table: validate eligibility.

3. Prompt interviewees for a complete list of actions that the system may perform
(regardless of the reason) and list each on a separate row in the bottom-left portion
of the table—for example, “Reject.” Do not let the interview wander into the issue
of which actions are taken under what circumstances.

4. Calculate the number of cases by multiplying the number of values for condition 1
times the number of values for condition 2, and so on. This yields the number of
columns you’ll need to complete in the right portion of the table. For example, the
preceding decision table has eight cases: two (for “Medical condition”) times two
(for “Substance abuse?”) times two (for “Previous rejections?”)

5. Start with the bottom row. Alternate possible condition values, moving from left to
right until all cells are filled. For example, in Figure 6.1, the bottom row (“Previous
rejections?”) is Y N Y N Y N Y N Y N.

6. Move one row up. Cover the first set of values appearing below with the first value
for the condition on the current row. Cover the second set with the second value and
repeat until all cells are filled. (If you run out of values, start again.) For example,
in Figure 6.1, the second-to-last row (“Substance abuse?”) is filled as follows:

Y Y (covering one YN set of values for “Previous rejection?”)

N N (covering the next YN set)

Y Y N N to finish off the row

7. Move one row up and repeat until all rows are filled.

8. Each column now describes a distinct scenario. Read down each column and ask
the interviewee what actions the system should take for the case it describes. Make
sure that you also verify which actions the system does not take.

Related Artifacts 119

Case Study F1: Decision Table
During an interview regarding the use case Review Case Report, the user describes
the requirements as follows:

1. Payments depend on whether the Community Peace Project (CPP)
code of good practice was followed, whether the steps and procedures
(outlined by the CPP) have been followed, and how many Peace
Committee (PC) members were involved in the case.

2. If there were fewer than three PC members present during the Peace
Gathering, the case is marked “not payable.”

Chapter 6 � Storyboarding the User’s Experience120

3. If the code of good practice was not followed, the case is marked as “not
payable.”

4. If the steps and procedures were followed and three to five PC members
were present, then mark the case “payable” and pay the standard amount
unless there is another reason for marking it “not payable.”

5. If the steps and procedures were followed and there were six or more
PC members involved, mark the case as “payable” and pay double the
standard amount. (This is the preferred number of PC members.)

6. If the steps and procedures were not followed and three or more PC
members were present, mark as “payable” and pay half the standard
amount.

You decide that the best way to deal with these requirements is with a decision
table because a number of conditions need to be evaluated together in order to
make a decision. Your plan is to create a decision table based on your notes and
use this during a follow-up interview. In the follow-up, you’ll go over each
column with stakeholders and verify whether each scenario has been captured
properly. Once verified, the decision table will be documented as a related arti-
fact to which the use case links. The table will also act as a source document for
designing test cases.

Suggestion
Create a decision table for validating a case and determining the amount paid
against it based on the preceding interview notes for the use case Review Case
Report. Use the following instructions to create the table:

1. First read through the interview notes looking for individual conditions
and actions.

2. Use the procedure you’ve learned to fill in the upper portion of the
columns.

3. Then pick a column and read through the interview notes to determine
which actions apply. Continue until all columns are complete.

Related Artifacts 121

Case Study F1: Resulting Documentation
Figure F1.1 shows the resulting decision table.

Figure F1.1
Decision table: Validate case and determine payment amount.

Decision Trees
A decision tree is an alternative to a decision table.4 Instead of a table, you use a picture to
describe the system’s behavior, as shown in Figure F1.2.

Creating a Decision Tree

Following are steps for creating a decision tree:

1. List conditions along the top. (Start a few inches to the right of the left edge.)

2. List actions down the right side of the drawing.

3. Draw an origin point at the left edge in the middle of the page.

4. From this point, draw one branch for each value of the first condition.

5. From each of these points (or tips), draw one branch for each value of the next
condition.

6. Continue until you finish the last condition.

7. Connect each final tip to the appropriate action.

8. To avoid too many crossed lines, you may list the same action separately each time
it is needed.

Chapter 6 � Storyboarding the User’s Experience122

Figure F1.2
Decision tree example.

Related Artifacts 123

Case Study F2: Decision Tree
You decide to provide a decision tree for the previous case to accommodate stake-
holders who prefer a pictorial presentation.

Case Study F2: Resulting Documentation
Figure F2.1 shows the resulting decision tree.

Figure F2.1
Decision tree: Validate case and determine payment amount (alternative representation to
a decision table).

Condition/Response Table
If the input conditions contributing to a decision can be evaluated one by one, use a
condition/response table instead of a decision table (or tree). Note the following example:

System use case: Prepare Taxes

Basic flow:

....

11. The user enters net income.

12. The system determines tax bracket. (See Tax Bracket condition/response table
in Appendix A.)

13. The system displays tax bracket.

...

Appendix A:

Tax bracket condition/response table:

Condition Response

Under minimum No tax payable

Minimum–$18,000 Tax bracket A

$18,000.01–$60,000 Tax bracket B

$60,000.01–$500,000 Tax bracket C

Over $500,000 Tax bracket D

Business Rules
Other business rules (beyond those expressed in decision tables) represent another type
of documentation that should be pulled from the use case proper and referred to in a ded-
icated section (Section 10 of the template: Business Rules). Business rules are rules from
the business area that constrain business processes. These rules are documented separately
because they would distract from the flow of the use case and because they often apply to
more than one system use case. For example, an airline system might include a rule that
the weight of an airplane must never exceed its maximum weight capacity. This rule is
active during a number of use cases, for example, Check In Passenger and Load Cargo.
Rather than restate this rule in every use case that it applies to, list it separately as a busi-
ness rule and refer to the rule from the use cases.

Business rules may be stored the “low-tech” way—for example, in a book. At the other end
of the spectrum are rules engines—software that manages and enforces business rules. Either
way, it’s not enough to record the rules; you must also specify which rules apply to which

Chapter 6 � Storyboarding the User’s Experience124

use cases. This makes it easy to identify which use cases need to be tested when a rule
changes. When an automated rules engine is used, there is another advantage to linking
use cases to a rule: It is inefficient to have the software, at run time, check all business rules
for every use case when only some apply.

Advanced Use-Case Features
Once you have written up some system use cases, you may notice that certain steps appear
in more than one use case. For example, the same steps for obtaining a valid policy may
show up in the use cases Query Policy, Amend Policy, and Make a Claim Against a Policy.
Keep an eye out for cases like this; they represent opportunities for reuse. Reuse is a good
thing. It means that you only have to go through the effort of documenting the steps once;
it means that if the steps ever change, you’ll only have to change the documentation in one
place; and it means that the steps will be treated consistently throughout the documenta-
tion. Often, these inconsistencies arise when, due to a change in requirements, one of the
affected use cases is changed but the other is not.

The UML has provided some advanced use-case features to help you increase reuse in the
use cases. Use the advanced features for internal documentation; don’t show them to
the users. For example, show business stakeholders use-case diagrams that include only the
basic system use cases discussed up to this point; distribute diagrams with the added,
advanced features to the internal team. Finally, don’t go overboard. The addition of an
advanced use-case feature adds complexity to the model; use it only when necessary. In
some organizations, teams can get bogged down in theoretical discussions about whether
to use this or that advanced feature. Rather than theoretically working out which feature
to use, just write out the system use cases, as proscribed in B.O.O.M.5

The advanced use-case features have an impact on diagrams and on the written docu-
mentation. The purpose of the diagrams is to help the team organize (or structure) the
requirements documentation. The diagrams later serve as a reference: They tell the reader
which use-case documentation refers to other use-case documentation and the nature of
the reference. These diagrams are also invaluable when changes are made to the textual
documentation of a use case: The diagram clearly points out which other use cases are
potentially affected.

Some organizations have a bias against use-case diagrams, especially when they contain
advanced features. In my experience, this is often because they don’t have a clear under-
standing of the purpose of the advanced diagramming features, mistakenly assuming, for
example, that they are for the benefit of users rather than for organizing documentation.
But if your organization is adamant about this issue, use the advanced features only for
textual documentation and ignore the diagramming component.

Advanced Use-Case Features 125

The UML includes the following advanced use-case features:

� Include: Extract the common requirements into a “mini use case.” The main use
cases are said to include this mini use case. This approach is useful whenever a set
of steps appears in more than one system use case.

� Extend: You leave one main system use case intact and create a new use case that
extends the original one. The extending use case contains only the requirements
that differ from the original. This approach is useful, for example, for enhanced
versions of earlier software releases.

� Generalization: You create a new generalized use case that contains general rules.
Other use cases are created as “specializations”; they contain the non-generic
requirements. This approach is useful when a set of system use cases represents
variations on a theme.

Now let’s have a closer look at each of these options.

Include
Use this feature when a sequence of steps is performed exactly the same way in different use
cases.

Chapter 6 � Storyboarding the User’s Experience126

What They Say:
“An include relationship between two use cases means that the behavior defined in the including
use case is included in the behavior of the base use case. The include relationship is intended to
be used when there are common parts of the behavior of two or more use cases. This common
part is then extracted to a separate use case, to be included by all the base use cases having this
part in common. Since the primary use of the include relationship is for reuse of common parts,
what is left in a base use case is usually not complete in itself but dependent on the included parts
to be meaningful. This is reflected in the direction of the relationship, indicating that the base use
case depends on the addition but not vice versa.” 6 (UML)

What They Mean:
When the same set of steps appears in more than one use case, extract them into a separate use
case—called an included use case—and refer to them from the main use cases—referred to as
base use cases. When modeling an include relationship between two use cases, draw a dashed
arrow, pointing from the base use case to the included use case.

How It Works

You avoid repetition by extracting the common steps into a separate use case. (If you’re
a programmer, it helps to think of an included use case as a routine, called by the base
use case.)

Terminology
� The original use cases are referred to as base use cases (also referred to as including

use cases).

� The new use case is called the included (or inclusion) use case7.

� Each of the other original use cases is said to include this new use case.

Examples of Included Use Cases

A Web-based banking system has two base use cases: Pay Bill and Transfer Funds. Each of
these includes the use case Debit Account.

In an air-travel system, a Make Reservation use case and a Change Reservation use case
both include the use case Check Available Seats.

How to Draw an Included Use Case

Figure 6.2 shows how to diagram an included use case.

Advanced Use-Case Features 127

Figure 6.2
An included use case.

Inclusion Rules
� An included use case is triggered by a step in a base use case.

� An included use case does not have to be a complete task (and it usually isn’t).

� A use case that appears in one context as an included use case may, in another
context, act as a base use case triggered directly by an actor. (Be aware, however,
that there is some controversy surrounding this issue.)8

� An included use case may include other included use cases for as many levels as
necessary.

� The base use case may include as many included use cases as necessary.

� The inclusion does not have to be triggered every time the base use case is executed.
(This issue also has some controversy associated with it.)9 For example, the base
use case may trigger the inclusion within an alternate flow scenario that is only
conditionally executed.

� The included use case must not refer to the base use case; however, it should verify
that the inclusion has completed successfully if there is any way the inclusion can
fail.

� Write the inclusion so that it will apply regardless of which base use case triggers it.

How Does an Include Relationship Affect Use-Case Documentation?

To grasp the consequence of the include relationship, it is important to understand its effect
on the textual documentation. The following example shows how a base use case refers to
an included use case in the text, and how the included use case is written. (Keep in mind
that the UML does not dictate a standard way to handle the text.)

In the example shown in Figure 6.2, a base use case, Make Reservation, includes the use
case Check Available Seats. This is documented in the base use case Make Reservation as
follows:

2. Flow of Events

Basic flow:

.1 The agent selects a trip.

.2 Include (Check Available Seats).

.3 The agent confirms the reservation.

Exception flows:

2.2a No available seats: (This flow handles the failure of the included use case)

.1 Cancel the transaction.

Chapter 6 � Storyboarding the User’s Experience128

The included use case Check Available Seats is documented as follows:

Description: Other reservation use cases reference this included use case.

2. Flow of Events

Basic flow:

.1 The system verifies that seats are available.

.2 The system determines and displays the maximum number of seats for the trip.

.3 The system determines and displays the number of seats currently reserved.

.4 The system determines and displays the number of seats currently available.

Exception flows:

2.1a Seats not available: (This flow handles failure of step 2.1 of the basic flow.)

.1 The system displays a “seats unavailable” warning message.

.2 Continue with basic flow at step 2.2.

Extend
Use this feature whenever you need to add requirements to an existing use case without
changing the original text. The following are some common reasons for an extension:

� Seldom-used options that the user can choose at any time (known as asynchronous
interruptions): An extending use case will allow you to handle these options in
separate extending use cases and keep the base use case free of the seldom-used
requirements. Aside from the clarity this provides, it is also useful for planning
software iterations: You may plan to implement the base use case in an early
iteration and add the extending use cases later.

� Customization of a generic product: The generic product is described in the base
use case. The extending use case describes the customization.

Advanced Use-Case Features 129

What They Say:

Extend: “This relationship specifies that the behavior of a use case may be extended by the behavior
of another (usually supplementary) use case. The extension takes place at one or more specific
extension points defined in the extended use case. Note, however, that the extended use case is
defined independently of the extending use case and is meaningful independently of the extending
use case. On the other hand, the extending use case typically defines behavior that may not neces-
sarily be meaningful by itself. Instead, the extending use case defines a set of modular behavior
increments that augment an execution of the extended use case under specific conditions.”10 (UML)

How It Works

The base use case is written as a normal use case. It describes the interaction, except for the
steps that are in the extension. (If you’re a programmer, it helps to think of an extending
use case as a “patch”11 on the base use case.) The base use case does not contain any ref-
erence to the extending use case. However, it does contain labels within the textual docu-
mentation that mark points at which it might be extended. The extending use case contains
all the steps that are inserted at these points.

Terminology
� The original use case is referred to as the base use case.

� The use case that is based on it is called the extending (or extension)12 use case.

� A point at which the base use case might be extended is called an extension point.

� The circumstance that causes the extension to be activated is the condition.

Examples of Extending Use Cases

A word-processing system has a base use case Edit Document that is extended by the use
case Check Spelling. The condition is User Selects Spell-Checking Option.

A school’s tuition package has a base use case Assign Tuition Fee that is extended by Apply
Subsidy. The extension point is Calculate Final Amount, a label that marks the point just
before a final fee is calculated. The condition is Student Is Eligible for Subsidy.

Another Way to Think of Extending Use Cases

Recall that the system use-case template contains a “Basic Flow” section describing the
normal success scenario, “Alternate Flows” for alternate pathways, and “Exception Flows”
for paths that lead to abandonment of the goal. Instead of putting all the alternate and
exception flows in one base system use case, you can extract some of them into an extend-
ing use case.

Chapter 6 � Storyboarding the User’s Experience130

What They Mean:
You may extract a group of alternate flows that are triggered by the same conditions into a sep-
arate use case, referred to as an extending use case. In the main (extended) use case, you define
locations (extension points) where the flow may be interrupted; in the extending use case, you
document the extracted flows, the conditions that trigger them, and the location where each alter-
nate flow interrupts the extended use case.

How to Draw an Extension

Figure 6.3 shows how to draw an extending use case.

The example in Figure 6.3 shows the following:

� The extended (base) use case is Make Reservation.

� The extending use case is Make 1st Class Reservation.

� The extension point is Set Seat Class.

� The condition is Passenger Requests 1st Class Seating.

Advanced Use-Case Features 131

What You Need to Remember About an Extending Use Case

An extending use case represents one or more alternate or exception flows that are executed due
to the same condition.

Figure 6.3
An extending use case.

Extension Rules
� The extended use case must be complete on its own.

� An extended base use case may have more than one extending use case.

� The extending use case interrupts the flow of the extended use case at defined
extension points and under specified conditions.

� An extending use case may interrupt the extended use case at more than one
extension point.

� The conditions attached to the extension are evaluated once, when the first extension
point is reached inside the extended use case; the conditions are not reevaluated
when subsequent points are reached.

� Once the system confirms that the extension applies, the extending use case will be
invoked at all its extension points.

� The extended use case must not refer to the extending use case or even “know” that
it is being extended. Exception: A section in the extended use case documentation
may describe extension points.

� Connect actors to the extended use case; they automatically apply to the extension.
Exception: If the extension introduces a new actor, connect the new actor to the
extending use case.

How Does an Extend Relationship Affect Use-Case Documentation?

The extended (base) use case should not make any reference to the new extending use case.
However, the extended use case must contain extension points—marked spots in the
document to which the extending use case may refer.

The following example shows how the textual documentation of an extended use case
indicates an extension point and how an extending use case refers to an extension point.

Extended Use Case: Make Reservation

Extension Points: Set Seat Class: Step 3
Basic flow:
...
3. Assign coach seat.
...

Extending Use Case: Make 1st Class Reservation

Description: This use case extends the Make Reservation use case. It contains
changes to the flow when the reservation is first-class.
Flows:

Set Seat Class:
Assign first-class seat.

Chapter 6 � Storyboarding the User’s Experience132

Generalized Use Case
Use this feature when a number of use cases represent variations on a theme. Common
reasons for a generalized use case are the following:

� Technology variations: The same user goal is achieved using different technologies.
Define a generalized use case to hold rules that apply regardless of technology;
handle the technology variations as specialized use cases.

� Similar process but different business artifacts: The business has a standard
process for handling different kinds of artifacts (for example, different kinds of
application forms), but the process differs slightly depending on the artifact.
Handle the generic rules in a generalized use case and describe the peculiarities
in specialized use cases—one for each artifact.

Advanced Use-Case Features 133

What They Say:
Generalization [between use cases]: “A taxonomic relationship between a more general classifier
[use case] and a more specific classifier [use case]. Each instance of the specific classifier [use case]
is also an indirect instance of the general classifier [use cases]. Thus, the specific classifier [use
case] indirectly has features of the more general classifier [use case].”13 (UML)

What They Mean:
The UML does not have a specific definition for generalized use cases, but its broader definition
applies to use cases. If one use case could be considered a specific type of another, the general
one may be modeled as a generalized use case and the specific type as a specialized use case. For
example, if there are three types of use cases for processing a transaction—a Canadian, a U.S.,
and a Mexican version—then the general interaction (non-specific to any country) may be mod-
eled as the generalized use case Process Transaction, and the more specific interactions modeled
as the specialized use cases Process Transaction (Canada), Process Transaction (U.S.), and Process
Transaction (Mexico).

Anything true for the generalized use case is true for all of its specialized use cases. For example,
if the model indicates that an actor is associated with the generalized use case Process Transaction,
then this implies that the actor is associated with Process Transaction (Canada), Process Transac-
tion (U.S.), and Process Transaction (Mexico).

How It Works

Write workflow steps that apply across a group of use cases in a generalized use case. Specify
variations on how the steps are handled in the specialized use cases.

Terminology
� The generic use case is referred to as the generalized use case.

� Each variation is called a specialized use case.

� Each specialized use case has a generalization relationship with the generalized use
case. The relationship points from the specialized use case to the generalized one.

� The specialized use cases inherit features of the generalized use case.

Examples of Generalized Use Cases

Following are examples of generalized and specialized use cases:

� A banking system that has a generalized use case Pay Bill and specialized use cases
Pay Bill Through ATM, Pay Bill over the Web, and Pay Bill Through Teller

� A clinical research organization (CRO) that has a generalized use case File Documents
and specialized use cases File Case Documents and File Regulatory Documents

How to Draw a Generalized Use Case

Figure 6.4 shows how to draw a generalized use case.

Chapter 6 � Storyboarding the User’s Experience134

Figure 6.4
A generalized use case.

In Figure 6.4, Deposit Check is a generalized use case containing generic steps for depositing
a check. Any overriding or additional steps are described in the specialized use cases Deposit
Check via Teller and Deposit Check via ATM.

Rules for Generalized Use Cases

The UML does not provide much guidance regarding textual documentation. The following
rules comply with the spirit of the UML generalization relationship and are useful exten-
sions to the standard:

� The specialized use cases must comply with requirements documented in the
generalized use case (including all sections: “Actors,” “Flows,” and so on).

� The specialized use case may not exclude any flows or steps inherited from the
generalized use case. However, it may override them or add to them.

� The generalized use case should be abstract:

� According to the UML, the generalized use case may be either abstract
(conceptual) or concrete (real). An abstract use case is an invention used to pool
together common requirements; a concrete use case is a full-blown, actual use
case, containing everything necessary to describe the interaction. Since the
extension relation is the widely accepted mechanism for creating a new use case
from a concrete one, I suggest that all your generalized use cases be abstract.

How Does a Generalization Relationship Affect Use-Case Documentation?

One practice is to write generic steps in the generalized use case and write only the over-
riding and additional steps in the specialized use cases. Alternatively, you can write each
specialized use case in its entirety, as long as it conforms to the rules set out in the gener-
alized use case. The following example demonstrates the first approach.

In the diagram shown in Figure 6.4, a generalized use case Deposit Check holds generic
rules for check deposits. The label (Hold check) marks the place it will be overridden with
more specific steps. The specialized use cases contain the overriding or extra steps. The
generalized use case, Deposit Check, is documented as follows:

Description: This generalized use case contains a generic workflow for depositing
checks.

Basic flow:

The user identifies the deposit account and the amount of the check.

(Hold Check) The system places a hold on the check, blocking withdrawal of the
check amount for the period of the hold.

The system credits the account with the check amount.

Advanced Use-Case Features 135

The specialized use case Deposit Check via ATM is documented as follows:

Description: This use case is a specialization of the use case Deposit Check. Only
steps that override or are inserted into the generalized use case are documented
herein.

Basic flow:

(Hold Check) Hold check for one business day.

The specialized use case Deposit Check via Teller is documented as follows:

Description: This use case is a specialization of the use case Deposit Check. Only
steps that override or are inserted into the generalized use case are documented in
Deposit Check via Teller.

Basic flow:

(Hold Check) Hold check for five business days.

Chapter 6 � Storyboarding the User’s Experience136

Case Study F3: Advanced Use-Case Features

In this case study, you’ll employ advanced use-case features to increase
re-use and reduce redundancies in the requirements documentation.

Problem Statement
You can now examine the system use cases, looking for places where the same
steps apply to more than one system use case. You will note that while carrying
out the system use case Update Case, the user may become aware that the case
involves a new Peace Committee or that information about an existing commit-
tee has changed. Users want the option of updating Peace Committee informa-
tion without leaving the Update Case function. They also may want to add or
update CPP Members without leaving the Update Case function. There is a
redundancy here due to the fact that the Manage Administration package has
already described both of these functions, Update Peace Committees and Update
CPP Members, as system use cases.

Your Next Step
You review existing system use-case diagrams to restructure the use cases for
maximum reuse. You’ll be making changes to the use-case diagram for the
Manage Case package.

Advanced Use-Case Features 137

Figures F3.1 and F3.2 are the existing diagrams relevant to Case Study F3.

Case Study F3: Resulting Documentation
Figure F3.3 shows the diagram developed for Case Study F3.

Figure F3.1
Existing diagram: Manage Administration package.

Figure F3.2
Existing diagram: Manage Case package.

Figure F3.3
Updated use-case diagram for Manage Case package containing advanced features.

Chapter Summary
In this chapter, you performed the following B.O.O.M. steps:

2. Discovery

2a) Behavioral analysis

i) Describe system use cases (use-case description template)

You learned about the following new tools and concepts in this chapter:

� A use-case description template is a format for describing a system use case.

� A decision table is a table for describing requirements when conditions need to be
evaluated together.

� A decision tree is a graphic alternative to a decision table.

� A condition/response table is a simpler table you can use to evaluate conditions one
by one.

� Advanced use-case features include the following:

� Included use case: For steps that occur the same way in more than one use case.

� Extending use case: To add flows to an existing use case while leaving the original
documentation intact.

� Generalized use case: To be used when a number of use cases represent variations
on a theme.

Endnotes
1Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.

2Some templates use named labels to avoid extensive renumbering every time the use case is
amended.

3These guidelines are described by Alistair Cockburn in his book, Writing Effective Use Cases,
Addison-Wesley Professional (October 15, 2000)

4An activity diagram may also be used for this purpose, but the format is different. On a decision
tree, each possible value for an input condition is represented as a node; on an activity diagram, the
values are represented as guards along the connecting lines. Many BAs and users find the decision
tree format to be more intuitive than that of an activity diagram for requirements of this sort.

5Thanks to Brian Lyons for his contribution to the sequencing of B.O.O.M. steps on this and other
issues.

6UML Superstructure Specification, v2.2, OMG, 2009, page 595.

7For use of the term inclusion use case, please see OMG, “UML 2.0: Infrastructure—Final Adopted
Specification”, 2003, page 10. The most recent specification, UML 2.2, uses the term included
use case.

Chapter 6 � Storyboarding the User’s Experience138

8Some analysts insist that an inclusion use case must never represent a complete user goal. Others
allow it. (See Schneider and Winters, Applying Use Cases, 2nd edition, Addison Wesley, 2001.) I side
with those who allow it because BAs often encounter processes that in one context are a side-goal
and in others are main goals. For example, a licensing system has a Renew License use case. As a
side-goal, the use case includes steps for changing the address if the licensee has moved. On the
other hand, the system also has a Change Address use case to handle situations where the licensee
calls a CSR specifically to report a move. This is most elegantly treated by defining a use case Change
Address that is included by the Renew License use case but that also appears in the model as a base
use case that interacts directly with the CSR actor.

9I have also seen this handled differently in different organizations. Some show an include
relationship only if the base use case activates the inclusion every time. I don’t see the benefit in
restricting the use of such an effective feature in this way.

10UML Superstructure Specification, v2.2, OMG, 2009, page 591.

11This turn of phrase was coined by Rebecca Wirfs-Brock.

12For use of the term extension use case, please see OMG,“UML 2.0: Infrastructure—Final Adopted
Specification”, 2003, page 9. The most recent specification, UML 2.2, uses the term extending
use case.

13The definition is written so that it applies to any generalization. I’ve added the phrase “use case”
in brackets after each use of the term “classifier” so you can see how the rule applies to use cases.

Endnotes 139

This page intentionally left blank

Chapter Objectives
In this chapter, you’ll learn how to define the lifecycle of critical business objects.

You’ll be able to carry out the following steps in bold:

2a) Behavioral analysis

i) Describe system use cases (use-case description template)

ii) Describe state behavior (state-machine diagram)

1. Identify states of critical objects

2. Identify state transitions

3. Identify state activities

4. Identify composite states

5. Identify concurrent states

Tools and concepts that you’ll learn to use in this chapter include the following:

� State-machine diagram

� State

� Transition

� Event

� Guard

� Activity

� Composite state

� Concurrent states
141

Lifecycle
Requirements for
Key Business Objects

Chapter 7

What Is a State-Machine Diagram?
A state-machine diagram is a picture that describes the different statuses (states) of an object
and the events and conditions that cause an object to pass from one state to another. The
diagram describes the life of a single object over a period of time—one that may span
several system use cases.1 For example, a state-machine diagram might show the different
statuses of an insurance claim (Received, Validated, Under Adjustment, Adjusted, Paid, Not
Paid, and so on).

Chapter 7 � Lifecycle Requirements for Key Business Objects142

What They Say:
State: “A state models a situation during which some (usually implicit) invariant condition holds.
The invariant may represent a static situation such as an object waiting for some external event
to occur. However, it can also model dynamic conditions such as the process of performing some
behavior (i.e., the model element under consideration enters the state when the behavior
commences and leaves it as soon as the behavior is completed).”2 (UML)

What They Mean:
A state is a status that an object may have. The object may be in a dormant (static) state, which
it exits once an event it is waiting for finally occurs; an example is the state Waiting for Receipt of
Proposal, which ends once a proposal has been received. Alternatively, an object may be in an
active state, which it exits once activities associated with the state have been completed; an example
is the state Under Adjudication, which ends once adjudication activities have been completed.

What They Say:
State machine: “State machines can be used to express the behavior of part of a system. Behavior
is modeled as a traversal of a graph of state nodes interconnected by one or more joined
transition arcs that are triggered by the dispatching of series of (event) occurrences. During this
traversal, the state machine executes a series of activities associated with various elements of the
state machine.” 3 (UML)

State-machine diagram: “State machine diagrams specify state machines.”4 (UML)

What They Mean:
A state machine is a model of the statuses through which an object passes; the model describes
the events and conditions that cause it to move from state to state and the activities associated
with each state. The model may be depicted as a state-machine diagram.

The terms state machine and state-machine diagram are almost synonymous: The state
machine is the behavior, and the state-machine diagram depicts it. Other names for the
diagram are state diagram and statechart diagram. The diagram was originally developed
by David Harel.

Why Draw a State-Machine Diagram?

The behavior of an object over time could be surmised by analyzing system use-case
descriptions, activity diagrams, and so on. For example, one could gain an understanding
of an Insurance Claim object by noting how it is handled during the system use cases
Receive Claim, Validate Claim, Adjust Claim, and Pay Claim. But if the state of the object
is critical to the system, it is helpful to be able to get the full picture for the object as it
passes through the system.

State-Machine Diagram Example: Credit-Card Application

In the next steps, we’ll walk through the creation of a state-machine diagram. To give you an
idea of where we’re headed, Figure 7.1 shows an example derived from a credit-card system.

143What Is a State-Machine Diagram?

Figure 7.1
A state-machine diagram for a credit-card system.

Step 2aii: 1. Identify States of Critical Objects
Define a new state for the object if the system treats the object differently because of a
change or if the object itself behaves differently. If there is no difference, then only a piece
of information about the object has changed. You can modify a piece of information about
the object by using attributes (which you’ll learn about in Chapter 9, “Optimizing
Consistency and Reuse in the Requirements Documentation,” in the section “Step 2bviii:
Add Attributes”).

Examples of states and attributes include the following:

� Red and Blue are not two states of a Product object, but merely indicate different
values of a color attribute.

� However, Sold and Unsold may be considered states because they affect how the
product is handled.

Other examples of states include the following:

� Telephone line states: Busy, Off-the-Hook, Not-in-Use

� Invoice states: Entered, Paid, Unpaid, Canceled

� Student registrant states: Wait-Listed, Pre-Screened, Accepted, Attending, Gradu-
ated, On Leave, Left Institution

Types of States
Many of the elements that appear on a state-machine diagram fall into one of the follow-
ing categories, which are shown in Figure 7.2. Thinking in terms of these categories will
help you discover states.

� Initial pseudostate: This is shown as a dot on the diagram. It is the start point for
the object. The UML classifies this, as well as some other modeling elements, as
pseudostates rather than states. Pseudostates mark points that transitions may leave
from or go to, but they do not represent actual states of the object.

� Final state: This appears as a bulls-eye. It represents the final state of the object.
The final state may be named, and there may be more than one final state for an
object. There are a number of restrictions on how you can use the final state:
It may not have any outgoing transitions, and you cannot associate specific
behaviors, such as entry, exit, or ongoing activities. (You’ll learn how to specify
these activities for other kinds of states in the section “Step 2aii: 3. Identify State
Activities.”)

Chapter 7 � Lifecycle Requirements for Key Business Objects144

Other states are shown as a rounded rectangle. These typically fall into one of the follow-
ing categories:

� Wait state: The object isn’t doing anything important; it is simply waiting for an
event to happen or a condition to become true. In the credit-card example in
Figure 7.1, the state Waiting for Income Verification is of this type.

� Ongoing state: The object is performing some ongoing process and stays in this
state until some event interrupts the process. For example, a system to manage the
work of health inspectors has an inspector state Monitoring Compliance that ends
only when management instructs the inspector to discontinue.

� Finite state: The object is performing some work that has a definite end. Once the
work is over, the object passes out of the state.

145Step 2aii: 1. Identify States of Critical Objects

Figure 7.2
Drawing states in UML.

Case Study G1: States
During interviews with the CPP, you’ve identified a case (a dispute handled by
the CPP) as a critical business object tracked by the system. You ask the inter-
viewees what states a case can be in, and learn that they are as follows:

� Initiated: When the initial report has been made.

� Scheduled for Gathering: Once a Peace Gathering has been scheduled.

� Gathering Held: Once a Peace Gathering has been held.

� Monitored: While it is being monitored.

� Resolved/No Gathering

� Referred to Police

Chapter 7 � Lifecycle Requirements for Key Business Objects146

� Awaiting Review: Indicating the case has been resolved and is awaiting
a review to determine whether it is payable.

� Under Review: While it is being reviewed.

� Payable: Once the case has been reviewed and deemed payable.

� Not Payable: Once the case has been reviewed and deemed not payable.

� Paid: Once all payments for the case have been made.

� Final State

Your next step is to begin the drawing of a state-machine diagram by depicting
these states.

Case Study G1: Resulting Diagram
Figure G1.1 shows the diagram that results from these interviews.

Figure G1.1
Diagram resulting for case study G1.

Step 2aii: 2. Identify State Transitions
The next step is to establish what causes the object to pass—or transition—from one state
to another. There are two ways that this transition may occur.

A transition may occur automatically when activities taking place while the object was in
a previous state have been completed. For example, while an insurance claim is in the state
Under Adjustment, it is evaluated by an adjuster. As soon as the adjuster completes the
evaluation, the object automatically transitions out of the state. This type of transition is
called a completion transition.

Alternatively, a transition may occur because an event interrupts the previous state. For
example, an application in the state Waiting for Income Verification stays there indefinitely
until it receives the event Income Verified. This type of transition is a labeled transition.

Depicting State Transitions in UML
Figure 7.3 shows a first draft of a diagram showing state transitions for the Case object.
The example shows a number of elements involved in documenting a transition.

The model elements that appear on this diagram are the following:

� Transition: A change of state, indicated with an arrow.

� Event: A trigger that fires—or forces—a transition. To document an event, simply
write the event name beside the transition symbol.

� Transition activity: A quick, uninterruptible activity that happens whenever the
transition occurs. To document an activity, precede the activity name with a slash,
as in /Assign Temporary Case Number.

� Send event: A message that is sent to another object whenever the transition
occurs. To document a send event, identify the target (the object receiving the
request) and the event (or message) that is sent as follows: ^Target.Event. For
example, ^Convener.Notify Central Office means “Tell the convener to notify the
central office.” You can also identify any information (parameters) that you need to
send to the object. For example, if the convener needs to know the temporary case
number, then specify ^Convener.Notify Central Office(Temporary Case Number).

147Step 2aii: 2. Identify State Transitions

Transition
A transition is a change of state.

If you find the notation of a send event cumbersome, or if the diagram is to be
presented to business stakeholders, don’t use this feature. Document it as a regular
event and clarify who performs the job with a note if necessary.

� Guard: A condition that must be true for the transition to occur. A guard is
somewhat like an event in that both determine whether a transition may occur.
The difference is that an event forces the previous state to end; a guard is only
checked once the previous state has already ended for some other reason. Show
a guard in square brackets, as in [Consensus Reached].

Chapter 7 � Lifecycle Requirements for Key Business Objects148

Figure 7.3
Draft of a diagram depicting state transitions for the Case object.

You can also use the diamond decision symbol the same way you used it in activity dia-
grams, as shown in Figure 7.4. The official UML term for this is choice pseudostate.

Mapping State-Machine Diagrams to System Use Cases
You can use state-machine diagrams to compile a comprehensive picture of how system
use cases change the states of objects. To do this, use the names of the system use cases for
events and the names of flows for guards. For example, a transition labeled Review Report
[Not Payable] means that the transition occurs when the Not Payable flow of the system
use case Review Report is executed.

This naming convention can also lead to pre-conditions and post-conditions for the rele-
vant use case. For example, in Figure 7.5, the system use case Review Application is used
to name the transition of an application from Pending to Waiting for Income Verification.
A pre-condition for this use case is that the application is in the Pending state. A post-
condition is that the application is in the state Waiting for Income Verification. You can
also explicitly document other use-case pre-conditions and post-conditions right on the
transition label. These look like regular guards but are distinguished by where they appear
relative to the use-case name. Use the form [pre-condition] use-case name/[post-condition].
For example, if the transition in Figure 7.5 were labeled [valid reviewer has been identified]
review application/[request for income sent], the implication is that, for the use case Review
Application, the following interpretations apply:

� The pre-conditions are that a valid reviewer has been identified and that the
application is pending.

� The post-conditions are that a request for income had been sent and the application
is waiting for income verification.

149Step 2aii: 2. Identify State Transitions

Figure 7.4
Using a choice pseudostate when documenting state transitions.

Chapter 7 � Lifecycle Requirements for Key Business Objects150

Figure 7.5
Naming a transition as a use case.

Case Study G2: Transitions
You continue your interview, with the aim of identifying state transitions for the
Case object. Here’s what you find out:

1. The CPP first becomes aware of a case when someone makes an initial
report to a Peace Committee. Once that happens, the case has the status
Initiated. Whenever a case makes the transition to the Initiated state (from
the initial pseudostate), a temporary case number is assigned to the case.

2. The case then moves automatically to the Scheduled for Gathering state.

3. When a Peace Gathering meets to deal with the case, the case moves to a
new state: Gathering Held. Also, whenever the Peace Gathering meets, the
convener must notify the central office.

4. If, during the gathering, no consensus was reached, the case returns to the
Initiated state so that it can make its way through the system again.

5. If, during the gathering, the parties agreed to refer the case, the case
passes from Gathering Held to Referred to Police.

a) After the police have dealt with a case, the case status changes auto-
matically to Awaiting Review (see step 10).

6. If, during the gathering, a consensus was reached and no monitoring was
required, then the case passes from Gathering Held to Awaiting Review
(see step 10).

151Step 2aii: 2. Identify State Transitions

7. If a consensus was reached during the gathering and monitoring is
required, then the case status moves from Gathering Held to Monitoring.

8. While a case is being monitored, when the deadline for compliance comes
up, the case transitions out of the Monitoring state.

a) If the monitoring conditions have not been met, the case is put back
into the system, returning to the Initiated state.

b) If the monitoring conditions have been met, the case passes from
Monitoring to Awaiting Review.

9. A case remains in the Awaiting Review state until the case report is
selected for review, at which time it is placed in the Under Review state.

10. At the end of the review, the case will have been deemed either payable or
non-payable:

a) If the case was deemed payable (as a result of the review), the case state
becomes Payable.

b) On the other hand, if the case was deemed non-payable, its status
becomes Not Payable. From there it moves to its final state.

11. Once a check has been issued for a Payable case, it becomes Paid. From
there, it moves to its final state.

12. If, at any time while a case is Initiated or Scheduled for a Gathering, the
parties agree to dismiss the case, then its status is recorded as
Resolved/No Gathering. From there it moves to its final state.

Your next step is to document these transitions on the state-machine diagram
you began earlier.

Chapter 7 � Lifecycle Requirements for Key Business Objects152

Case Study G2: Resulting Documentation
Figure G2.1 shows the state-machine diagram you’ve developed for the Case
object.

Figure G2.1
State-machine diagram for the Case object.

Step 2aii: 3. Identify State Activities
The next step is to identify what activities occur while the object is in each state.

List activities inside the state symbol. You’ll need to identify when each activity occurs with
a prefix, as follows (the UML keywords are in bold):

Entry/ activity The activity occurs whenever the object enters this state.

Do/ activity The activity occurs while the object is in this state.

Eventname/ activity The activity occurs in response to an external event. (Deviating
from the UML standard, Rational Rose uses the keyword event
before this phrase. Some of the diagrams in this book were
produced from Rose and use this keyword inside the state symbol.)

Exit/ activity The activity occurs whenever the object leaves the state.

Name the activity informally, such as Monitor Case. If you want to specify that a different
object carries out the activity, handle it as a send event, as in ^Monitor.Monitor Case. (As
before, if you find the notation of a send event cumbersome, don’t use it. Document it as
a regular event and clarify who performs the job with a note if necessary.) Figure 7.6 shows
the various types of activities associated with the Monitored state of a Case object in the
CPP system.

153Step 2aii: 3. Identify State Activities

State Activity
A state activity is a process that occurs while an object is in a certain state. An activity within a
state may take some time. (This is in contrast to an activity on a state transition, which always
occurs quickly.)

Figure 7.6
Documenting the Monitored state.

Chapter 7 � Lifecycle Requirements for Key Business Objects154

Case Study G3: State Activities
Further interviews with the users reveal that the following activities are carried
out for a case based upon its state:

� Initiated: While a case is in this state, the Peace Committee interviews the
parties to the dispute and sets a date for the Peace Gathering.

� Referred to Police: When a case enters this state, the Peace Gathering
escorts the parties to the police station.

� Resolved no Gathering: As soon as a case enters this state, a case report
must be entered.

� Under Review: While a case is in this state, the convener reviews the case.

� Monitored: Whenever a case enters this state, the convener is asked to
appoint a monitor. While the case is in this state, the monitor provides
ongoing monitoring. If the monitor becomes ill while the case is in this
state, the convener is to appoint a temporary monitor. Whenever the case
leaves this state, the monitor is to submit a monitoring report.

Case Study G3: Resulting Diagram
Your next step is to add these activities to the state-machine diagram you have
been developing, as shown in Figure G3.1. Please note that this diagram was pro-
duced using Rational Rose and, therefore, uses the Event keyword for activities
in a state that are triggered by an external event. As noted earlier, the UML does
not advise the use of the Event keyword in this context.

155Step 2aii: 3. Identify State Activities

Figure G3.1
Adding state activities to the state-machine diagram

Step 2aii: 4. Identify Composite States
If a number of states share one or more transitions, you can simplify the drawing by using
composite states.

For example, an ATM transaction initially passes through the states Checking Access,
Getting Input, and Checking Balance. If the user cancels the transaction while it is any of
these states, the transaction immediately changes to a Cancelled state. Rather than show
three transitions, you invent a composite state, In Progress, and use it as shown in Figure 7.7.

Chapter 7 � Lifecycle Requirements for Key Business Objects156

Composite State
A composite state is a state that contains other states. It represents a general state for an object
that encompasses any number of more specific states, called substates. A substate inherits the
transitions of its composite state. Place an initial pseudostate inside the composite state so that
you can indicate the first state that the object moves to as it enters the composite state.

Figure 7.7
Adding a composite state to the state-machine diagram.

157Step 2aii: 4. Identify Composite States

Case Study G4: Composite States
You examine the state diagram you have developed so far, looking for an oppor-
tunity to simplify it through the use of composite states.

Suggestion
Look for two transitions that have the same label and that go to the same state.
Model the states at the origin of these transitions as substates.

Case Study G4: Resulting Documentation
Figure G4.1 shows the state-machine diagram after you’ve incorporated com-
posite states.

Chapter 7 � Lifecycle Requirements for Key Business Objects158

Figure G4.1
State-machine diagram for a case with composite states.

159Step 2aii: 5. Identify Concurrent States

Step 2aii: 5. Identify Concurrent States
If, according to one criterion, an object can be in one of a set of states and, according to
another criterion, can be in another state at the same time, use concurrent states to model
the object.

The UML refers to the state that holds the concurrent states as an orthogonal state. An
orthogonal state contains more than one region; each region holds states that can vary inde-
pendently of the states in the other regions.

Concurrent State Example
If the payment on an insurance claim is large, it is not paid right away. Rather, it is sched-
uled for payment, during which payments are made at regular intervals. At the same time,
the claim also undergoes monitoring for a specified period. One way to model this is with
concurrent states, as shown in Figure 7.8.

Concurrent States
An object is in concurrent states when it is considered to be in more than one state at the
same time.

Figure 7.8
State-machine diagram with concurrent states

In Figure 7.8, the claim object moves from the Accepted state into the concurrent states if
the amount of the claim is large. In this case, the vertical bar indicates a fork—a point after
which the following transitions occur in any order: a transition to Payments Scheduled and
a transition to Monitored. Once all payments have been completed, the case makes the
transition out of the Payments Scheduled state. When the monitoring period is over, it
makes the transition out of the Monitored state. When both these transitions have occurred
(indicated by the second vertical bar, or a join), the object moves into the Payment Issued
state. On the other hand, if the amount of an accepted payment is small, it immediately
goes into the Payment Issued state.

This is a simple example to introduce the concept of concurrent states. Concurrent states
can get much more complicated. For example, each half of the diagram typically depicts a
series of state transitions.

Chapter Summary
In this chapter, you performed the following B.O.O.M. steps:

2. Discovery

2a) Behavioral analysis

i) Describe use cases (use-case description template)

ii) Describe state behavior (state-machine diagram)

1. Identify states of critical objects

2. Identify state transitions

3. Identify state activities

4. Identify composite states

5. Identify concurrent states

New tools and concepts you learned in this chapter include the following:

� A state-machine diagram is a picture indicating how an object changes from one
state to another.

� State refers to the status that an object may have at any given time. The state of the
object determines what activities are performed, how the object responds to events,
and so on.

� A transition is a change of state.

� An event is something that happens, causing the state of an object to change.

� A guard is a condition.

� A state activity is a process that occurs while an object is in a given state. It may be
specified as Entry, Do, Exit, and so on.

Chapter 7 � Lifecycle Requirements for Key Business Objects160

161Endnotes

� A composite state is a general state that encompasses more precise substates.
Substates inherit the transitions of the composite state.

� Concurrent states are states that may occur or may apply to an object at the same
time. The state holding the concurrent states is referred to by the UML as an
orthogonal state.

Endnotes
1Unlike many of the other concepts in the UML, there is no single programming equivalent to
a state—but they can be programmed. An object’s state is often tracked with a state attribute; the
object’s operations can then be written so that they depend upon this state attribute. Other
programming mechanisms involve design patterns that use a combination of associations and
generalizations to model states.

2UML Superstructure Specification, v2.2, OMG, 2009, page 550.

3UML Superstructure Specification, v2.2, OMG, 2009, page 554.

4UML Superstructure Specification, v2.2, OMG, 2009, page 582.

This page intentionally left blank

Chapter Objectives
In this chapter, you will do the following:

� Learn a step-by-step interviewing process for uncovering business rules regarding
the precise relationships between business classes.

� Document these relationships in accordance with the UML.

� Through this process, decrease the likelihood that the developers will introduce
database and screen-design errors.

B.O.O.M. steps covered in this chapter include the following:

2b) Structural analysis

i) Identify entity classes

ii) Model generalizations

iii) Model transient roles

iv) Model whole/part relationships

v) Analyze associations

vi) Analyze multiplicity

163

Gathering
Across-the-Board
Business Rules with
Class Diagrams

Chapter 8

You’ll learn to use the following tools/concepts in this chapter:

� Entity class

� Class diagram

� Inheritance

� Aggregation

� Composite aggregation

� Association

� Multiplicity

� Object diagram

� Link

Step 2b: Structural Analysis
In Chapter 7, “Lifecycle Requirements for Key Business Objects,” you worked with state-
machine diagrams. You looked at state-machine diagrams together with activity diagrams
because those are your main options for describing the dynamic nature of the business—
the sequencing of business events and activities. If you want to highlight activities, use
activity diagrams; if you want to shine the spotlight on a specific object and how it changes
in response to conditions and events, use the state-machine diagram.

The state-machine diagram started you thinking about the dynamic nature of business
objects. Objects are the fundamental “atoms” that make up a business system. In this chap-
ter, you’ll learn to analyze the static, structural nature of business objects—the rules that
apply irrespective of time. An example of such a rule is the maximum number of Peace
Committees that can handle a case. The rule about this maximum does not change over
time and is, therefore, part of the structural model.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams164

Structural Model
A structural model is an abstract representation of what the system is. It represents the aspects
of a system that are not related to time, such as the kinds of subjects tracked by the system, how
these subjects are related to each other, and the information and business rules that relate to each
one. The main diagram you’ll be using for structural modeling is the class diagram.

Output from this step consists of the following:

� Class diagram

� Package diagram

� Composite structure diagram

� Object diagram

FAQs about Structural Analysis
You may be wondering why the business analyst should bother with structural modeling
when business stakeholders are primarily concerned with what they can do with the sys-
tem—an issue that is addressed in the behavioral model. In this section, we’ll look at this
and other frequently asked questions.

Why Isn’t the Business Analyst’s Job Over after Behavioral Analysis?

The dynamic, behavioral requirements lack a complete description of the “nouns” of the
business. Also, the precise numerical relationship between the nouns is undefined. For
example, in Chapter 2, “The BA’s Perspective on Object Orientation,” you read about a
municipality with a human-resources (HR) system. Because they had not worked out the
numerical relationship between employees and unions, they ended up purchasing an HR
system that allowed an employee to belong to only one union when in fact some employ-
ees belonged to more than one. As a result, the software could make only a single deduc-
tion of union dues for each paycheck, the data tables were set up incorrectly, and the input
screens used to assign employees to unions were incorrect. Guess who had to pay for all
those corrections? (Answer: the municipality.) Had the BAs performed a proper structural
analysis, they would have included the employee-union rule in the requirements docu-
mentation, diminishing the chances that it would be missed in the software and ensuring
that, at the very least, the cost of the fix would be borne by the developers.

Aren’t These Issues Addressed in the Behavioral Analysis?

It is true that many of these issues are contained within the system use-case descriptions.
For example, in a banking system, the relationship between customers and accounts might
be found in an Open New Account system use case. However, because behavioral analysis
does not include a rigorous approach to examining the “nouns,” it is likely that some impor-
tant requirements will be missed. Also, because these rules are dispersed throughout the
use cases, there is the possibility for internal inconsistency within the BRD. For example,
a system use case Open New Account might allow up to three people to co-own an account,
while a system use case Query Account Activity allows for only one owner. In addition,
future requirements for enhancements to the system may add new inconsistencies.

Step 2b: Structural Analysis 165

What Does Structural Analysis Have to Do with This?

Structural analysis focuses on the “nouns” of the system. It provides a rigorous method for
ensuring that all of these nouns are fully analyzed and documented. Requirements that cut
across system use cases but relate to the same classes of objects (nouns) are centralized in
a set of diagrams and accompanying documentation. This makes it easier to ensure internal
consistency within the BRD. Each system use-case description is verified against the struc-
tural model. As future system use cases are added, these too are checked against the
structural model, ensuring that business rules are obeyed in future enhancements.

What Is the Context for Structural Modeling?

Use the structure diagrams as a guide for asking questions and as a form of shorthand dur-
ing interviews. Later, include the diagrams in the BRD. They enable a seamless transition
to development, since they present the business model in a form widely understood by OO
developers.

What Issues Are Addressed During Structural Analysis?

OO structural analysis provides a step-by-step procedure for documenting the attributes
and operations that apply to each type of business object and the numerical relationships
between business objects, such as the fact that many customers may co-own a particular
account.

Step 2bi: Identify Entity Classes
In this step, you identify the categories of business objects that must be tracked by the IT
solution. These categories are referred to as entity classes.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams166

Entity Class
An entity class is a category of business object, tracked by the system.

Rules about Objects and Classes
All objects of the same class must share the same operations, methods, and attributes.

FAQs about Entity Classes
Following are some frequently asked questions about entity classes and how they are ana-
lyzed by the business analyst.

Why Use the Term Entity Class? Why Not Just Class?

The term entity is used to differentiate these classes from other types of classes introduced
into the system during the development stage.1 An entity class describes objects that are
tracked by the business. Since all the classes we’ll be interested in as BAs are entity classes,
I will sometimes just use the simpler term class.

What Are Some Examples of Entity Classes?

Some examples of entity classes are Payment and Customer.

What Attributes Are Specified for a Class?

The attributes specified for an entity class are information items typically stored by the
business for a long period, such as the date and amount of a payment, the name and address
of a customer, and the price of a product. Attributes usually show up in the user interface
as field names on screens and reports. In the database, they show up as data fields (also
called columns).

How Do You Come Up with a List of Entity Classes?

Review the system use-case documentation and human-interface requirements (screen
mock-ups, report layouts, and so on). Any noun phrase appearing in these, such as
Wholesale Customer, is a candidate class. (I use the term candidate class because the noun
may represent something else, such as an attribute.) Consider also conducting interviews
specifically for the purposes of structural analysis. Interview questions for finding classes
and other structural modeling elements are interspersed throughout this chapter.

Indicating a Class in the UML
Figure 8.1 shows how to indicate classes in the UML.

Naming Conventions
Name a class with a singular noun phrase, such as Invoice or Retail Customer. Although
the UML includes more formal naming conventions, these are more relevant to develop-
ers than to business analysts. As a BA, your prime interest is to enhance communication
between business stakeholders and the technical team, and an informal naming conven-
tion works best for this purpose.2

Step 2bi: Identify Entity Classes 167

Grouping Classes into Packages
If the model contains a large number of classes, it’s worth grouping them so they’ll be eas-
ier to manage. The UML provides the package symbol to stand for a container. We’ve seen
this before with respect to use cases. Here, we will use the package to contain classes and
class diagrams. Class packages may contain other packages for as many levels as necessary.

It’s helpful to depict all of the packages on a single diagram—a simple form of the class
diagram. When using a modeling tool such as Rational Rose, it is a good practice to make
this the top-level main diagram. Used this way, the diagram acts as a navigation map—
each package icon links to the class diagram that depicts all of the classes in the package.

There is no rule (although there are suggestions3) for how to group the classes into pack-
ages. One recommended approach, applicable to many business contexts, is to define pack-
ages according to the common “flavors” of business classes: People and Organizations,
Products and Services, and Events/Transactions. Figure 8.2 shows this approach, which
you’ll use in the case study.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams168

Figure 8.1
Classes in UML.

Figure 8.2
Example: Class packages for business entities in the CPP system.

The Package Diagram
A package diagram is simply a large package symbol with the package’s classes drawn inside
it. This form of diagram was valid in previous versions of the UML standard, but the name
for the diagram, package diagram, is new to UML 2.4 Figure 8.3 is an example of an early
draft of the package diagram for the Product and Services package for a telecommunica-
tions company.

The best way to organize the diagrams is to use the package diagram to show only classes,
their attributes, and operations; show relationships between the classes on separate dia-
grams. (An exception may be made for generalization relationships, which are often shown
on the package diagram.) Don’t try to say too much on any one diagram. Instead, draw a
new diagram to highlight a specific aspect of the system, such as a particular inheritance
hierarchy. This way, each diagram gets across one main idea, making it easy to interpret.

Why It's Worth Pausing to Do Some Structural
Modeling When Stakeholders Introduce New Terms
I once worked on the model for a telecommunications system. My contacts in the com-
pany kept talking about “product groups.” It was only after I began to develop the struc-
tural model that it became apparent there was no consensus on the meaning of this business
term. Half the people on the project thought it referred to a group of products and ser-
vices marketed together under one package price; others thought it referred to a particu-
lar telephone line and all the services attached to it. This type of ambiguity often crops up
in the requirements and can lead to serious errors in the software. By creating a structural
model, you’ll ensure that there is a clear understanding of each business noun that appears
in the requirements.

T i p

Dedicate interview time specifically for the purpose of structural modeling. This helps you learn the
business terminology relevant to the project.

Step 2bi: Identify Entity Classes 169

Figure 8.3
A package diagram for a telecommunications company.

Interview Questions for Finding Classes
The first step of structural modeling is to identify the classes of objects that comprise the
business. These may be found through a review of existing documentation (for example,
by searching for business nouns in the use-case model) and through direct interview
questions.

To discover candidate classes, ask stakeholders:

� What people and organizations does the system keep track of? Examples include
customer, card holder, and board member.

� What events and transactions does the system keep a record of? An example is a
sale.

� What products and services does the system keep a record of? Examples include
checking accounts (products) and check returns (services).

Challenge Questions
Ask these follow-up questions about candidate classes:

� Is it important that the business track this class? If not, exclude it from the list of
classes. For example, in a point-of-sale system for a corner grocery store, you would
exclude the class Customer because the store doesn’t keep track of its customers.

� If two candidate classes appear similar, is there any attribute, operation, method,
or relationship that applies to one class but not the other? If the answer is yes,
treat each candidate as a separate class.5 Otherwise list one class only for both.
For example, Digital Cell Phone and Analog Cell Phone each have specialized
attributes, although they also share others. List them as two separate classes.6

On the other hand, Green Cell Phone and Blue Cell Phone share the same
attributes and operations and do not represent distinct classes. (A Color attribute
in the Cell Phone class will suffice to distinguish between them.)

� Is the candidate class merely a piece of information about something else? If the
answer is yes, you are not dealing with a class at all, but an attribute. For example,
Customer Name is not a class; it’s an attribute of the Customer class.

� Is the candidate class an alias for a previously recorded class? Sometimes, business
stakeholders use two names for the same thing. If this is the case, ask them to settle
on one phrase as the main name; document this as the class name. Treat the other
one as an alias—an alternative name for the class.7 For example, Client is an alias
for Customer. If your BRD includes a business glossary (a dictionary of business
terms), then add the alias to this glossary.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams170

Here are some follow-up questions to ask users about selected classes:

� Could you provide a brief description of the class? (The description should be one
paragraph.)

� Could you provide a couple of examples of the class?

� Could you tell me a few pieces of information (attributes) that you’d track about
each example (object)?

Supporting Class Documentation
Document the following for each class:

� Class (use a singular noun phrase to name the class)

� Alias

� Description

� Examples

� Sample attributes

Here is an example:

Class: Customer

Alias: Client

Description: Person or company that does business with us

Examples: Stan Plotnick, Minelli Enterprises

Sample Attributes: Name, Mailing Address, Credit Rating

Step 2bi: Identify Entity Classes 171

For Now, Focus on the Classes
The goal of this step is to produce a simple list of classes. Anything else you pick up at this stage
is gravy. For example, if you pick up any attributes now, by all means record them, but don’t spend
too much time on them.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams172

Case Study H1: Entity Classes
Seeking to define the nouns used within the CPP, you conduct an interview with
business subject matter experts. You ask them what types of people and organi-
zations are tracked by the CPP, what types of events or transactions occur, and
what products and services are offered by the CPP. Here’s what you learn:

� The organization consists of CPP members who work for the head office.
It administers a network of Peace Committees throughout South Africa.

� When a Peace Committee member is informed about a case (dispute), he
or she alerts the Peace Committee, which then meets with each party to
the dispute and organizes a Peace Gathering.

� Various attendees participate in the Peace Gathering. An attendee may be
a person or may represent an agency involved in the case.

� All attendees at a gathering must be recorded. Extra information is kept
about attendees who are there as observers (for example, information
about an observer’s relationship to the parties involved in the dispute is
recorded).

� When a case has been dealt with, various payments are disbursed to the
personnel involved in dealing with the case and to various community
funds. (The next several items explain the disbursement of funds.)
Payments are not made to the parties involved in the dispute.

� The Peace Committee members involved with the case are paid a
standard amount.

� Also, payments are made into three fund accounts, which the system
tracks internally: Admin Fund Account, Peace Building Fund Account,
and Microenterprise Fund Account. The same fields are tracked for each
of these funds.8

� Payments are also deposited into Peace Committee (PC) member
accounts for each PC member involved in the case.

� Internal accounts are kept so that the CPP is aware of the current
balances and payments for all fund accounts, Peace Committee member
accounts, and the cash account.

Your Next Step
Start developing the structural model, showing only the classes you’ve derived
from the notes.

Step 2bi: Identify Entity Classes 173

Suggestions
First, create a main diagram showing only the People and Organizations, Products
and Services, and Events/Transactions packages. Then create a package diagram
for each package. Use the aforementioned interview questions and challenge
questions to pick out the classes mentioned in the preceding notes. When you
discover a class, add it to the appropriate package diagram.

Case Study H1: Resulting Documentation
Figure H1.1 shows the diagrams that you’ve developed after determining the
entity classes.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams174

Notes on the Model
The model includes classes such as Person and Agency because they came up dur-
ing the interviews, and it seems likely that they will each have special attributes.
For example, every person in the system is likely to be tracked with attributes
(such as name and address) that stay with the person, whether that person is a
CPP member, a party in the dispute, or so on.

Only one Fund Account class is included, because the system treats all fund
accounts the same way: a single process for calculating payments to a fund could
be described, the attributes kept on each fund are the same, and so on. Cash
Account is treated as a separate class because it is different from other funds and
accounts. For example, payments are not deposited to a cash account when a case
is processed, whereas payments may be deposited to all the other accounts and
funds.

A PC member and his or her corresponding account could have been modeled
with a single class, but two classes were used because the organization often treats
them separately. There are many instances where account information is irrele-
vant and only biographical information and operations should be accessible.

Figure H1.1
Diagrams reflecting the entity classes for the CPP system.

Step 2bii: Model Generalizations
The upcoming steps deal with the issue of subtyping.9 Subtypes allow you to model
business objects that share some things in common but have other, distinguishing charac-
teristics.

Subtyping
A subtype is a smaller category within a larger category. Subtyping is useful because it allows
the business analyst to make statements about general types that automatically apply to all
subtypes. You’ll need to distinguish between two kinds of subtypes: full-time and part-time.

Full-Time Subtypes

A general category can be split into a number of full-time subtypes if objects cannot change
from one subtype to the other over their lifetime. For example, in a non-coed dormitory
where dormers are processed differently according to their sex, Male Dormer and Female
Dormer are two full-time subtypes of Dormer. Use the generalization relationship to
describe full-time subtypes.

Part-Time Subtypes

Part-time subtypes are unstable. Use part-time subtypes to model objects that may change
from subtype to subtype during their lifespan. For example, in a welfare system, there are
two subtypes of Client: Employed Client and Unemployed Client. Because a client might
change from one to the other, the two subtypes are part-time. The UML does not have a
specific relationship icon for part-time subtypes. B.O.O.M. uses the UML association rela-
tionship, stereotyped as Plays Role, and refers to the relationship as a transient role. (More
on this relationship in the section “Step 2biii: Model Transient Roles” later in this chapter.)

Generalization
Use the generalization relationship to model full-time subtypes. The relationship points
from the subtype (specialized class) to the more general type (generalized class).

Step 2bii: Model Generalizations 175

Memory Jog: Generalization
If class x is a kind of class y, then class x is said to be a specialized class (or specialization) of the
generalized class y. Objects of class x inherit all the features of class y, such as attributes, operations,
and relationships. To this definition, we now add the following: For proper use of generalization,
the subtypes must be full-time. An object cannot change from one specialized class to another
during its lifetime.10

Why Model Generalizations?

Use of generalization reduces redundancy in the requirements; requirements that apply
across a number of classes may be stated only once. Also, generalization allows you to spec-
ify rules that extend into the future; rules stated for a generalized class apply to all current
and future specialized classes.

Sources of Information for Finding Generalizations

Ask leading questions during your interviews:

� Use the initial class diagrams of classes you drew in the previous step as a guide
for questions. Ask interviewees if any of the classes are variations on others.
(A more detailed guide to questions follows in this section.)

� Review the system use-case documentation. Anywhere the documentation indicates
that there is more than one “kind of” something (for example, two kinds of
accounts), generalization may be indicated.

Rules Regarding Generalization
� The specialized class inherits all the attributes, operations, and relationships of the

generalized class.

� The specialized class may have additional attributes, operations, and relationships
beyond those inherited from the generalized class.

� The specialized class may have a unique polymorphic11 method for carrying out an
operation it inherits from the generalized class.

� According to the UML, a specialized class may inherit from more than one
generalized class. This is called multiple inheritance. Many IT organizations limit
the use of multiple inheritance because it can lead to ambiguities. For example, if a
specialized class inherits two methods for the same operation from two generalized
classes, which one applies? Check with your organization before using multiple
inheritance.

Generalization Example from the Case Study

An observer is an (that is, a kind of) attendee. The specialized class is Observer; the gen-
eralized class is Attendee. The specialized class Observer inherits all the attributes, opera-
tions, and relationships of the generalized class Attendee. Observer may also have additional
attributes, operations, and relationships. Also, through polymorphism, an object belong-
ing to the class Observer may perform an operation inherited from the generalized Attendee
class in its own unique way.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams176

Don’t Go Overboard

Remember that the use of generalization is meant to make life easier for the BA (ultimately).
If the addition of a generalized class doesn’t buy you anything, there is no reason to model it.

If you are unsure whether to list a generalized class, include it for now and reassess your
decision later. If, toward the end of analysis, there are no generic attributes, operations, or
relationships that you can specify for the generalized class, you may discard it then.

Remember that the specializations must be full-time: An object of a specialized class can-
not change into a different specialization. For example, a Fund Account does not turn into
a Peace Committee Member Account. (Part-time subtypes are dealt with in the next step.)

Indicating Generalization in the UML

Figure 8.4 demonstrates how you express generalization in a diagram.

Interview Questions for Finding Generalizations

Use the following list of questions during an interview to identify possible cases of gener-
alization. (Verify any decision made at this point using the challenge questions that follow.)

� Can the following statement be made about any two classes? “Class A is a kind of
class B.” If the answer is yes, model class A as a specialized class of B. Model B as
the generalized class. For example, a Cash Account is a kind of Internal Account.

� Are any classes the same in some respects but different in others? If the answer is
yes, the two classes are specializations of a generalized class. For example, Peace
Committee Member Account and Fund Account are similar but different. Both are
specializations of Internal Account.

Step 2bii: Model Generalizations 177

Figure 8.4
Indicating generalization in the UML.

� Is there any point where the business treats two otherwise distinct classes in a
generic fashion? If the answer is yes, the two classes are specializations of a
generalized class. For example, a report on account activity for all objects of
the generalized class Internal Account prints the same information about all
kinds of accounts, regardless of whether they are of subtype Fund Account,
Cash Account, or Peace Committee Member Account.

Challenge Questions
� Can you substitute a specialized class wherever the generalized class is used in

the requirements and still have valid specs? (This is called the rule of substitution.)
If the answer is no, then don’t use generalization.

� Is there at least one generic rule (an attribute, operation, or relationship) that can
be stated for the generalized class? If not, it may not be a worthwhile generalization.
For example, Telephone Line and Gas Line are two kinds of lines but they’re treated
as specialized classes of the Line class only if they have some things in common.
If you think that you may uncover some commonalities later in the analysis, keep
the generalization for now and reassess your decision later.

Advanced Challenge Questions

With generalization, the subtype of an object must be full-time—that is, stable during its
lifetime—otherwise, a transient role is indicated. The following challenge questions can
help determine whether the subtyping can be treated through generalization:

� Can the object change its subtype during its lifetime? If it can, then don’t use
generalization or specialization to describe the relationship between the classes.
For example, an Employee changes from being On Leave to Working. These are
not considered as specializations of Employee.12

� Can an object be more than one subtype at the same time? If it can, don’t use
generalization or specialization. For example, a person might be a CPP member and
a Peace Committee member at the same time. CPP Member and Peace Committee
Member are not treated as specialized classes of Person.13

� Can an object act as more than one instance of the subtype? If it can, then don’t
use generalization. For example, a person might be classified as a Party to a Dispute
twice, once for each involvement; you cannot use generalization to describe the
relationship between Person and Party to Dispute.14

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams178

Step 2bii: Model Generalizations 179

Case Study H2: Generalizations
Interviews to identify generalizations yield the following notes:

1. An observer is a special kind of attendee (at a gathering). Extra data is
tracked about observers over and above that kept for other attendees.

2. A person may be a CPP member as well as a Peace Committee member.
The person may become a CPP member or a Peace Committee member
at any time.

3. A party to dispute is a person or an agency. One person may be viewed as
many parties to dispute. For example, if one person were a party to five
disputes in five different cases, that person would be considered as five
separate instances of a party to a dispute. One record of biographical
information is kept for the person and one for each involvement.

4. All internal accounts are identified with a generic account number, and
some common information is kept for all accounts (account balance
and so on). However, additional information is kept on an account based
on its type, which would be either Cash Account, Fund Account, or Peace
Committee Member Account.

Your next step is to model the generalization relationships that these notes imply.

Suggestions
Create a new diagram for each grouping of full-time subtypes. Use the challenge
questions to ensure that you’ve used generalization properly. If you discover any
part-time subtypes, make a note about them; you’ll add them to the model later.

Case Study H2: Resulting Documentation
Figure H2.1 shows the resulting diagrams for each group of full-time subtypes.

Notes on the Model
The numbers in the following list correspond to those used earlier for the interview notes:

1. Observer is a specialized class of Attendee.

2. CPP Member is not a specialized class of Person because the same person may also
be classified as Peace Committee Member15 and because the subtype is not full-time.

3. Generalization does not apply. To be a specialization, a particular person could
only be viewed as at most one party to a dispute, which is clearly not the case here.

4. Generalization applies. Internal Account is the generalized class, with each Account
type being a specialization.

Step 2biii: Model Transient Roles
Next, you model the part-time subtypes that you skipped over in the previous step. A
transient role is a part-time subtype representing a role that an object may play at one time
or another during its existence—but may not play at other times.16 (The term is not part
of the UML.)

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams180

Figure H2.1
Full-time subtypes.

Example of Transient Role
An employee is assigned the role of a business analyst when hired but later changes roles
to become a systems analyst. Business Analyst and Systems Analyst are transient roles of an
Employee object.

How Does a Transient Role Differ from a Specialization?
� An object’s specialization cannot change during its lifetime; an object’s transient

role may.

� Objects of a specialized class inherit properties from the generalized class. Inheritance
does not apply, however, to transient roles.

Step 2biii: Model Transient Roles 181

Is It a State or a Transient Role ?
You may be wondering if you can handle part-time subtypes as states on a state-machine
diagram.The answer is that, in fact, a part-time subtype can be modeled both ways—in the state-
machine diagrams as a state and on class diagrams as a transient role. It’s a question of what you
want to communicate. If you want to get across how the object changes in response to events,
use the state diagram; if you want to communicate the rules that govern how an object, acting in
a given role, is related to other objects, use the class diagram with transient roles.

For example, in the case study, it is important to describe the lifecycle of a Case object as it goes
from the Initiated state through its intermediate states, and all the way to Paid and Not Payable
in response to events and conditions. The state-machine diagram explains this best. On the other
hand, it is not important to explain how a Case object’s relationships to other classes change based
on its evolving states—so there is little value in treating these states as transient roles in the struc-
tural model.

The situation is different for a Participant object. Here, there isn’t much to be gained by explain-
ing the lifecycle of a Participant object as he or she changes from being in the state CPP Member
to Peace Committee Member and so on, since the events that cause these changes are fairly
self-evident. (For example, a participant becomes a Peace Committee member by joining a Peace
Committee.) For that reason, a state-machine diagram of a participant adds little value. However,
it is important to nail down exactly how the various Participant object roles—such as CPP Member,
Peace Committee Member, Attendee, and so on—are related to other classes, such as Case, Peace
Committee, and Peace Gathering. This is best explained by including these roles in the class
diagrams.

Some Terminology
If objects belonging to class A have a part-time role, B, then:

� A is the primary class

� B is the transient role

� The relationship between A and B is “plays a role.”

(These terms are not part of the UML.17)

Why Indicate Transient Roles?
The developers need to know whether the subtyping you indicate is full-time (generalization)
or part-time (transient role). Different design and coding solutions apply in each case.18

The only people who really know how stable the relationship is are the users—and as their
ombudsperson, you are in the best position to find this out.

Also, by indicating a subtype as a transient role rather than as a specialization, you are
signaling to yourself that you need to follow up with extra questions that do not apply to
specializations. (These involve multiplicity, discussed in the section “Step 2bvi: Analyze
Multiplicity” later in this chapter.)

Rules about Transient Roles
� It is possible (though not necessary) for objects of the primary class to have more

than one transient role at a time.

� An object may change its transient role during its lifetime.

� By indicating that a primary class plays a role, you are not specifying that every
object of the primary class has to play this role—only that it might do so.

Indicating Transient Roles
The concept of a transient role is not part of the UML. However, the UML allows for exten-
sions to the language through specialized use of its symbols, referred to as stereotyping.
We’ll invent a <<plays role>> association stereotype to convey this relationship, as shown
in Figure 8.5.

Sources of Information for Finding Transient Roles
Interview the stakeholders regarding the classes that you discovered in the previous steps.
A guide to questions follows.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams182

Interview Questions for Determining Transient Roles
To find transient roles, ask the following questions:

� Can an object wear many hats? If the answer is yes, each “hat” is a transient role.
For example, can an employee have more than one role in the organization? If so,
create a new class for each transient role, and draw a Plays Role relationship
between the primary class and the roles.

� Can an object of a given class change its subtype during its lifespan? If the answer
is yes, the subtype is a transient role. For example, any person in the CPP organiza-
tion may change from being a CPP member to a Peace Committee member, so
these are considered transient roles of Person.

What If a Group of Specialized Classes Can All Play the Same Role?
If all specializations of a generalized class can play the same role, indicate the generalized
class as the primary class.19 For example, if members of the classes Person and Agency
(two specializations of Participant20) may attend a Peace Gathering, indicate that
Participant (generalized class) plays the role of Attendee. It is understood that this means
that a person can be an attendee and that an agency can be an attendee.

Step 2biii: Model Transient Roles 183

Figure 8.5
Indicating a transient role as an association stereotype.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams184

Case Study H3: Transient Roles
You continue your interviews, intending to elicit requirements about transient
roles. You review the classes in the People and Organization package that relate
to a role that a person or agency plays when involved with the CPP. You verify
that there are no additional roles. Your next objective in the interview is to find
out whether each role can be played only by a person, only by an agency—or
either a person or an agency. To simplify the next series of questions, you work
with stakeholders on defining a term that means “either a person or an agency.”
You settle on the term participant. To record and explain this new class, you draw
a new class diagram. (Hint: The diagram should treat Person and Agency as
two kinds of Participant objects.) Next, referring to the existing People and
Organization package, you select each class that represents a role and ask stake-
holders whether it can be played only by a person, only by an agency, or by any
participant. You record each answer on the model as you get it by drawing the
appropriate transient role relationship. Here’s what you learn in response to your
questions:

� Any participant (that is, a person or an agency) may be a party to a
dispute. Each time a participant acts as a party to a dispute, separate
statistics and data are recorded about the involvement.

� Any participant (that is, a person or an agency) may be an attendee at a
Peace Gathering. Each time a participant is an attendee at a gathering,
separate statistics and information are tracked.

� Only a person may be a CPP member or a Peace Committee member
(that is, an agency may not be a member). Furthermore, a person may
cease being a CPP member at any time and become a Peace Committee
member. A person may also be a member of both organizations at the
same time.

Your next step is to finalize the class diagrams describing the new class,
Participant, and the new transient roles.

Case Study H3: Resulting Documentation
Figure H3.1 shows the diagrams that describe the transient roles that you
identified.

Step 2biii: Model Transient Roles 185

Figure H3.1
Transient roles of participants.

Step 2biv: Model Whole/Part Relationships
Some objects consist of other objects. In OO, you model these relationships using aggrega-
tion and composite aggregation.

The “Whole” Truth
Aggregation (without a qualifier) and composite aggregation (also known as composition)21

describe the relationship between a whole and its parts. Aggregation is the more general
term: It just means that there is some kind of whole/part relationship. Composite aggre-
gation is more specific: It means that the whole owns the part entirely; the part may not
belong simultaneously to any other whole. Use the following guidelines to decide which of
these relationships to use:

� If a part can belong to more than one whole and the part continues to exist when
the whole is destroyed, model the relationship as Aggregation. Words that suggest
aggregation include collection, list, and group.

� If a part is totally “owned” by the whole and the part ceases to exist when the whole
is destroyed, model the relationship as Composite Aggregation. (Keep in mind,
however, that even in composite aggregation, a part can be preserved if it is
detached and saved before the whole is destroyed.) Words that suggest composite
aggregation include composed of and component.

� If you are not sure, specify Aggregation.

Examples of Whole/Part Relationships
The relationship between a catalog and the products that it includes is aggregation. On the
other hand, the relationship between the catalog and the catalog line items (that refer to
these products) is composite aggregation because, if the catalog is discontinued, so are its
line items.

The relationship between a travel booking and its flight, hotel, and car-rental reservations
is composite aggregation, since the cancellation of a booking also removes its reservations.

Why Indicate Whole/Part Relationships?
Aggregation is a strategy for reuse. If the same kind of part is used in more than one whole,
the requirements for the part’s class only need to be written once. Later, if requirements
for the part change, they need to be specified only once to apply throughout the project.

These relationships also help the business analyst to distinguish between properties that
are important for the whole and properties that are relevant to the parts. For example, in
a mechanic’s garage system, requirements that apply to a vehicle might include the attribute

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams186

Assembly Date and the rule that each vehicle may be owned by one or more owners;
requirements that apply to vehicle’s part might include the attributes Replacement Date
and Part #.

How Far Should You Decompose a Whole into Its Parts?
Take things as far as the business requires. For example, a used-car lot might have only a
Vehicle class to describe its inventory, whereas a service garage might require a Vehicle class
as well as a Vehicle Component class. The difference is that only the service garage needs
to keep track of the components of a vehicle.

Sources of Information for Finding Aggregation and Composite
Aggregation
Conduct interviews with stakeholders. Base your interview questions on the list of classes
you compiled in the previous steps. A guide to questions follows. You can also discover
whole/part relationships by reviewing screens, reports, layouts, and so on. Parts are often
displayed along with the whole to which they belong. Also, review the system use-case
descriptions; if you discover any reference to parts, part attributes, or business operations
related to parts, include the parts in the model. For example, a system for an auto-repair
shop may include a system use case Service Vehicle that refers to the next inspection dates
for various parts of an automobile.

Rules Regarding Aggregation and Composite Aggregation
� Parts do not inherit attributes, operations, or relationships from the whole—or

vice versa.22

� Aggregation and composite aggregation do not imply full-time links between
objects. The whole can drop or add parts during its lifetime.

� If a part dies when the whole dies, model the relationship between them as
composite aggregation. For example, the relationship between a policy and the
riders attached to a policy is a composite-aggregation relationship.

� Specify any other whole/part relationship, for which the preceding rule does not
apply, as aggregation.

� Don’t lose too much sleep over whether a whole/part relationship is aggregation or
composite aggregation. If you’re not sure, specify aggregation.

Indicating Aggregation and Composite Aggregation in the UML
Figure 8.6 shows how to indicate aggregation and composite aggregation in a UML diagram.

Step 2biv: Model Whole/Part Relationships 187

The Composite Structure Diagram
UML 2 has introduced a new diagram for indicating composite aggregation, the composite
structure diagram,23 which gives a more intuitive view of a composite. The idea is simply
to show the component parts inside the icon representing the whole, as shown in Figure 8.7.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams188

Figure 8.6
Aggregation and composite aggregation.

Figure 8.7
Composite structure diagram.

This type of diagram is useful for describing the connections between component parts.
For example, Figure 8.8 shows some of the component parts of a Vehicle object.

The lines between the components indicate that the parts are connected. The numbers in
the diagram are multiplicities, which are covered in the section “Step 2bvi: Analyze
Multiplicity” later in this chapter. The diagram in Figure 8.8, for example, specifies that
each wheel is attached to one axle, and each axle to two wheels.

Interview Questions for Determining Aggregation
and Composite Aggregation
� Is one object a part of another object? If the answer is yes, indicate either composite

aggregation or aggregation.

� Is one object a collection or list of other objects? If the answer is yes, then a
whole/part relationship is indicated. The last two questions in this list will help you
decide whether to use aggregation or composite aggregation. As a rule of thumb,
in most cases a list or collection is handled with aggregation. For example, an
inventory is a collection—that is, an aggregation—of products.

� Is one object an organization consisting of individual members? If the answer
is yes, then indicate a whole/part relationship. Whether you use aggregation or
composite aggregation depends on the precise nature of the two classes involved.
If you are specifying the relationship between the organization and a membership
in the organization, use composite aggregation. If you are specifying the relationship
between the organization and the independent bodies that belong to it, specify
aggregation. If you’re not sure, use aggregation.

� When you destroy the whole, do you destroy its parts? If the answer is yes, use
composite aggregation. For example, when an invoice is removed from the system,
all line items must also be removed.

The Composite Structure Diagram 189

Figure 8.8
Showing component parts.

� Can one object be a part of more than one group? If the answer is yes, then indicate
aggregation. For example, a passenger might be part of two passenger manifests
(lists)—one for each flight. Passenger List is an aggregate of Passengers.

Remember: If you are still not sure what to specify for a whole/part relationship, specify
aggregation.

Challenge Question
� Does it really make sense to say that A is a part of B? If the answer is no, then you may

not be dealing with aggregation or composite aggregation but with a more general
relationship called an association (which is discussed later). For example, an Insurance
Policy object is linked to a Customer object, but one is not part of the other.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams190

Keep This in Mind
It is not a “big mistake” to confuse aggregation and another relationship you’ll soon learn about,
association. In fact, sometimes it’s just a matter of semantics.

Case Study H4: Whole/Part Relationships
You continue your structural modeling session with subject matter experts, now
focusing on whole/part relationships. First, you examine your model for organi-
zations and notice the Peace Committee class. You ask stakeholders if it is impor-
tant for the CPP to track the Peace Committee members who belong to each
Peace Committee. Next, you look for objects that might be composed of other
objects. Noting that a case is a record of everything that happens with respect to
a dispute, you ask stakeholders to identify what its components might be—using
existing classes as your guide. You also note that a Peace Gathering is a collection
of attendees and ask stakeholders if it is important for the CPP to track which
attendees showed up at which gatherings. This is what you find out:

1. The Peace Committee is an organization composed of Peace Committee
members.

2. A case is a conglomerate of everything that is known and all actions taken
with respect to a dispute. This includes Peace Gathering events, which are
held as many times as necessary for a case. Each case also consists of a
number of parties to the dispute.

The Composite Structure Diagram 191

3. Every time a Peace Gathering event is held, the CPP must keep track of all
the attendees who made up the gathering.

4. One case may require many Peace Gatherings. Only one case is ever
discussed during a Peace Gathering.

Your next step is to create a draft of the diagrams required to document your
findings. Consider creating a separate diagram to describe each whole object’s
relationship to its parts.

Case Study H4: Resulting Documentation
Figure H4.1 shows the diagrams resulting from the information your interviews
uncovered about whole/part relationships.

Figure H4.1
Diagrams reflecting whole/part relationships.

Step 2bv: Analyze Associations
The next step is to discover all the remaining ways that the system tracks one class of
business objects against another. Each of these relationships is called an association.

Examples of Association
Information about one object refers to information about another object. For example,
invoice data refers to product information (such as description and price), so Invoice is
associated with Product.

To carry out a business operation relating to one object, an operation relating to another
object must be performed. For example, when a booking is canceled (an operation of
Booking), flights must be updated to reflect the newly available seat. Booking is thus
associated with Flight.

Why Indicate Association?
First, associations become part of the user’s contract with the developers, ensuring that the
software supports the business requirement to link business objects. Second, the modeling

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams192

Notes on the Model
� When a Peace Committee disbands, all of its memberships are meaningless.

Consequently, composite aggregation was used between Peace Committee
and Peace Committee Member.

� A Case object is a record of everything that happened with respect to
the dispute. This includes actions taken to deal with the dispute, such as
Peace Gatherings. Since without a case there is no Peace Gathering, and
a Peace Gathering object cannot be a component of more than one Case
object, composite aggregation was used. This situation is similar to the
composite aggregation relationship between a call taken in a call center
and all of the actions resulting from the call.

� If there is no case, there are no parties to it. Consequently, the Case object
is a composite aggregation of Party to Dispute.

� There is no meaning to an Attendee object unless there is a Peace
Gathering event to attend; consequently, composite aggregation was used.

of associations is a necessary preliminary step toward getting more detailed requirements
(known as multiplicities, discussed later in this chapter). Finally, associations are an impor-
tant input for design. In the design phase, associations implemented both in the code
(as pointers) and in the database (as foreign keys). Keep in mind, though, that you are not
dictating to the developers how to design the software; you are merely instructing them,
through the associations you model, that the software needs to support the relationships—
for example, that the software needs to track a case to the payments made against it.

Why Isn’t It the Developers’ Job to Find Associations?
You can’t know what the associations are without knowing the way the business works. For
example, only the business side knows whether payments are made against individual bills
or against an account. It is the BA’s role—not the developers’—to discover and document
the rules that govern the business.

Discovering Associations
� Conduct interviews focused on the issue. Use the class diagrams you compiled in

the previous steps for this purpose. Starting with key classes, interview users about
possible associations to other classes.

� Review the system use-case model. A requirement of the form [noun] [verb]
[noun]—where both nouns represent classes—often suggests an association.
For example, Customer Makes Claim implies an association between Customer
and Claim; the association is labeled Makes.

Rules Regarding Associations
� Most associations are binary—an object of one class is related to an object

(or objects) in a different class. For example, each Case object is associated with
Payment objects.

� An association may be reflexive, meaning that an object of the class is associated
with another object of the same class. For example, one employee (the manager)
manages other employees (team members).

� An association does not have to be named—but it is a good idea to do so in order
to clarify its meaning. If you do name the association, make sure the name is not
already used by any other association or class in the package. You may also add a
small triangular arrowhead, shown in Figure 8.9, after the association name to
indicate to the reader the direction in which to read the association.24 This arrow-
head is not required by the UML. It is often omitted by business analysts because
the associations usually only make sense when read in one direction and because,
by convention, the associations are read from left to right and top to bottom.

Step 2bv: Analyze Associations 193

(Keep in mind, though, that the UML standard does not attach any formal signifi-
cance to the relative placement—left, right, etc.—of an element on a diagram.)
It is recommended that you use the arrowhead wherever you feel there might be
any confusion about how to read the association.

� As an alternative (or in addition) to an association name, you may specify role
names,25 such as manager and team member (see Figure 8.10).

� Indicate associations as far up an inheritance hierarchy as possible. For example, if
a transaction log were kept for all internal accounts, indicate an association from
Transaction Log to the generalized class Internal Account, not to the specialized
classes Fund Account, Peace Committee Member Account, and so on.

� If you are not sure if something is an aggregation or association, specify it as an
association.

Figure 8.10 shows how to indicate associations in the UML.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams194

Figure 8.9
This triangular arrowhead, placed after the association name,
indicates to the reader the direction in which to read the association.

Figure 8.10
Indicating associations in the UML.

The Association Must Reflect the Business Reality
It all sounds so easy! And it often is. However, be careful; sometimes there are subtleties. For
example, Figure 8.11 shows a diagram modeling a system that manages credit-card accounts.

In Figure 8.11, a payment is made against an account, not against a bill. One consequence
is that the system will not be able to track which bills have been paid and how much was
paid on each bill. This may be adequate for credit-card payments, since they are not tar-
geted to specific bills. Contrast this with Figure 8.12, which shows the model for a small
business’s accounts-receivable system.

Step 2bv: Analyze Associations 195

Figure 8.11
Bills and payments for credit-card accounts.

Figure 8.12
A small business’s accounts-receivable system.

In Figure 8.12, the tracking of payments is more detailed; each payment is linked to a
specific bill (or to specific bills). This type of tracking is usually required in an accounts-
receivable system.

Redundant Association Rule of Thumb
As a rule of thumb, if your model includes an indirect way to get from class A to class B
and a shortcut that goes right from A to B, throw out the shortcut. Figure 8.13 illustrates
this type of redundancy.

In Figure 8.13, the associations that run along the top of the diagram require the system
to track all the invoices billed to a customer and for each invoice, to track all the products
appearing on it. This implies that the system is required to track the products purchased
by each customer. The shortcut adds nothing new, so it is removed.

Exception to the Rule of Thumb
Don’t throw out the shortcut if it adds a new rule. Figure 8.14 shows an example.

In Figure 8.14, the top path requires that the system track all of the sales made by a sales-
person, and for each sale the customer to whom it was billed. This implies that the system
is required to track all the customers to whom a salesperson has made sales. But that’s not
what the shortcut says. It requires the system to associate salespeople with the customers
for whom they are the prime contact. This is not the same as the first rule. For example, a
salesperson may make sales to customers for whom he or she is not the prime contact—
perhaps because the prime contact was away that day. As well, a salesperson may be the
prime contact for a customer, yet not have made any sales to that customer—perhaps
because the customer was only recently assigned to the salesperson. Since the two rules are
distinct, the shortcut is retained.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams196

Figure 8.13
An example of redundant association

Modeling Object Links with Object Diagrams

Sometimes, you can get an idea across better by diagramming a connection between objects
rather than a connection between classes. For example, suppose you wanted to show that
a transfer is debited from a From Account and credited to a To Account. You could show
the requirement using classes and associations as shown in Figure 8.15.

However, since From Account and To Account belong to the same class but play quite dif-
ferent roles, it might be clearer to diagram the business rule as shown in Figure 8.16.

Because the diagram in Figure 8.16 shows objects rather than classes, it is not a class dia-
gram but another UML structure diagram called an object diagram. Note the following
ways that this diagram differs from a class diagram:

Step 2bv: Analyze Associations 197

Figure 8.14
An example of a non-redundant association.

Figure 8.15
Showing requirements using classes and associations.

� The names inside the boxes are names of objects, not classes. The following rules
apply to object names:

� Object names are underlined.

� The full format of an object name is object-name: class-name.
An example is from account: Account.

� You may omit the object name, as in :Transfer.

� Alternatively, you may omit the class name, as in to account.

� The relationship between the objects is referred to as a link (as opposed to an
association, which relates classes). The link name should be underlined.

T i p

Use an object diagram instead of a class diagram if the situation you are trying to describe involves
two objects that belong to the same class but act in different roles.

How to Discover Associations
� During system use-case interviews, look out for statements of the form X [verb] Y,

where X and Y represent business objects. They often reveal associations.
For example, in the sentence “A Peace Committee supervises a case,” Peace
Committee is associated with Case; the association name is Supervises.

� Conduct interviews focused on associations using existing class diagrams. Try to
match each class symbol with each of the other classes. Ask interviewees, “Do you
need to be able to track one of these [objects] against one of those?” If the answer
is yes, model the connection as an association on the diagram. Although this can
be tedious when there are many classes, it does ensure that no associations slip
through the cracks. For example, looking at Payment, you ask, “Do you need to
match up a payment to a Peace Gathering, a case, a Peace Committee member
account, an observer...?” From the answers, you note that Payment is associated
with Case, since each payment must be tracked to a specific case. You also find out
that Payment is associated with Peace Committee Member Account, since a payment

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams198

Figure 8.16
Diagramming objects of the same class with different roles.

will be deposited into the account of each Peace Committee member who worked
on a case. There is no direct association, however, between Payment and Peace
Gathering, because a payment is not tracked to each Peace Gathering of a case.

� Examine screens, report layouts, and so on. If a screen or report ties together infor-
mation about two objects, the objects are probably associated with each other.26

For example, an invoice form includes a box for customer information: Customer
is associated with Invoice.

� Look out for redundant associations. Use the rule of thumb you learned in this
chapter: If there is a long, indirect route to get from one class to another and a
shortcut, the shortcut is probably redundant. Just to be sure, ask whether the
shortcut expresses anything new. If it does, keep it; if not, remove it.

� If there is a fine point about an association that you can’t get across with the nota-
tions you’ve learned, add a note to explain the issue and attach it to the association.
For example, in the following case study, a payment may be associated with either
a Peace Committee member account or a fund account—but not both at the same
time. There are sophisticated UML features, such as the Object Constraint Language
(OCL), that allow the modeler to formally make these kinds of distinctions. These
UML features are of great value to developers, particularly if they intend to generate
code from UML design diagrams. However, features such as OCL are of limited
use to the business analyst, who can best get across these distinctions to his or her
audience with simple, informal notes.

Step 2bv: Analyze Associations 199

Case Study H5: Associations
Next, you try to elicit from stakeholders the associations the CPP needs to keep
track of. To do this, you use the existing class diagrams as your guide, asking stake-
holders to identify any time one object needs to be tracked against another. For
example, you ask, “Does the CPP need to keep track of what payments go with
each case?” If the answer is yes, you draw an association line between the classes
and prompt stakeholders for a meaningful verb to use as its name. At this point,
you may learn that a case generates payments, providing the association name
Generates. Based on this line of questioning, you learn the following:

� Each case generates a number of payments (subject to certain conditions).

� Each payment is withdrawn from the cash account and deposited into
one of the fund accounts or into a Peace Committee member account.
Each Peace Committee member owns a Peace Committee member
account so that these deposits can be made.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams200

Follow-up interviews regarding the system use case Update Cases results in the
following notes:

� A Peace Committee handles a case throughout its lifespan.

� There is a special requirement for observers who attend a Peace Gather-
ing: Each observer must be related in some way to one of the parties to
the dispute.

Your Next Step
Create a draft of these associations (with descriptive text, if necessary) so they
can be distributed to and verified by stakeholders.

Case Study H5: Resulting Documentation
Figure H5.1 shows the diagrams you’ve developed in determining the associa-
tions for the CPP.

Step 2bv: Analyze Associations 201

Please note that, in the “Payments Disbursement” diagram, a note was used to
explain a fine point about the associations between a Payment object, a Peace
Committee Member Account object, and a Fund Account object.

Figure H5.1
Associations required by the CPP.

Step 2bvi: Analyze Multiplicity
In this step, you model business rules that deal with the number of business objects that
may be linked to each other.

Example of Multiplicity
In the CPP, each Case object generates zero or more Payment objects. Each Payment object
is generated by one and only one Case object.

Why Indicate Multiplicity?
If you don’t specify multiplicity, the software may not support important business rules,
such as the number of customers who can co-own an account or the number of benefi-
ciaries who can be listed for an insurance policy.

Indicating Multiplicity in the UML
Figure 8.17 shows how to indicate multiplicity in the UML.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams202

Multiplicity
An indication of the number of objects that may participate in a transient role,27 association,
aggregation, or composite aggregation.

Figure 8.17
Multiplicity in UML.

Rules Regarding Multiplicity
� Indicate multiplicity at every tip of every UML symbol indicating a transient role,

association, aggregation, or composite aggregation.

� Indicate a multiplicity as follows:

0..1 Zero or one

0..* Zero or more

* Zero or more (an alternative to 0..*)

1..* One or more

1 One and only one

a..b From a through b, as in 1..5

� Each association generates two different sentences, one in each direction. When
reading an association from class A to class B, ignore the multiplicity next to class
A. When reading from left to right, piece together the sentence as follows: “Each
[class name on left side of association] [association name] [multiplicity on right side]
[class name on right side].” For example, “Each Case generates 0 or more Payments.”
When reading from right to left, reverse the process. For example, “Each Payment is
generated by one and only one Case.”

� Do not specify multiplicity along a generalization arrow.

� In a composite aggregation, the multiplicity adjacent to the class representing the
whole must not be greater than one. (This is just the diagramming implication of
the rule that, in a composite aggregation relationship, a part may not belong to
more than one whole.)

Step 2bvi: Analyze Multiplicity 203

Figure 8.17
Multiplicity in UML (continued).

Sources of Information for Finding Multiplicity
Conduct interviews, using your class diagrams as a guide for interviewing. A guide for ques-
tioning follows.

The Four Interview Questions for Determining Multiplicity
Conduct an interview using all your existing class diagrams as source documents. The inter-
view is over when you have answered all the following questions for each transient role,
association, aggregation, or composite aggregation in the model:

� Consider one object belonging to class A. What is the minimum number of class B
objects to which it could be tied? (Common answers are zero and one.) Just to be
sure, follow up with, “Is there any way it could be zero?” For example, looking at
one case, “What is the minimum number of payments that might be posted against
it? Is there any way there might be no payments on a case?” (The answer is that
there may be zero payments for two reasons: The case may not have advanced to
the payment stage yet, or the case was deemed Not Payable.)

� Consider one object belonging to class A. What is the maximum number of class B
objects to which it could be tied? (Common answers are one and many.) For
example, looking at one case, ask, “What is the maximum number of payments
that might be posted against it?” (The answer is many.)

� Consider one object belonging to class B. What is the minimum number of class A
objects to which it could be tied? (Common answers are zero and one.) Just to be
sure, follow up with, “Is there any way it could be zero?” For example, looking at
one payment, ask, “What is the minimum number of cases that it is generated by?
Could a payment exist that was not generated by a case?” (Answer: A Payment
object must be generated by a Case object, so the minimum multiplicity is one.)

� Consider one object belonging to class B. What is the maximum number of class A
objects to which it could be tied? (Common answers are one and many.) For
example, looking at one payment, ask “What is the maximum number of cases
that might have generated it?” (The answer is one.)

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams204

Step 2bvi: Analyze Multiplicity 205

Case Study H6: Multiplicity
You conduct interviews with users in order to work out the business rules
governing the numerical relationships between business objects. With your class
diagrams to guide you, you inquire about the multiplicities of the associations,
aggregations, composite aggregations, and transient roles that appear in the
diagrams. For example, you ask, “How many participants constitute a party to a
dispute? Could two participants be considered a single party if, for example, they
were part of the same group? How many times can a participant be involved as
a party to a dispute?” In this manner, you ask your stakeholders about every
single relationship other than generalization that appears in the class diagrams.
Here’s what your interviewees may tell you:

� Some participants are never involved as a party to a dispute. Some partic-
ipants play the role of party to a dispute once. Others play the role many
times—once for each time they are involved in a dispute. (Considering
each involvement as a separate occurrence of Party to Dispute allows for a
new set of business information—for example, the party’s testimony—to
be tracked for each involvement.)

� Any party to a dispute must be listed with the CPP as a Participant
(either Agency or Person).

� A person can take out only one CPP membership.

� A person may be a member of more than one Peace Committee at the
same time.

� Each case generates zero or more payments (one for each fund and one
for each Peace Committee member). Each payment must be for one and
only one case.

� A case must involve two or more parties to the dispute. Each involvement
as party to a dispute refers to one and only one case.

� An observer must be related to at least one party in a dispute. There is no
limit to the number of parties to which the observer can be related. A
party to a dispute does not have to have any observers present on his or
her behalf; there is no limit to the number of observers that may be
related to a party.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams206

� If a case is deemed payable, then payments are made to various accounts.
Each payment is withdrawn from the one cash account in the system and
is deposited into one of the fund accounts (such as Microenterprise) or to
one Peace Committee member account.

� A Peace Committee may be set up without any members. As members
join, they are added to the committee.

� There must be at least one attendee at a Peace Gathering. (This excludes
parties to the dispute, who are expected to be at each Peace Gathering
and are not considered attendees.)

� Every Peace Committee member owns one Peace Committee member
account. Every Peace Committee member account is owned by one and
only one Peace Committee member.

� A case may have no Peace Gatherings either because it has not progressed
to that point yet or because it has been resolved without a gathering.
A case is typically dealt with in one gathering; however, more than one
gathering may be required if the first fails to resolve the problem. A Peace
Gathering always discusses one and only one case.

� A Peace Committee handles zero or more cases. Every case is handled by
one and only one Peace Committee.

Your Next Step
Document the preceding notes as multiplicities on the existing class diagrams.

Case Study H6: Resulting Documentation
Figure H6.1 shows the diagrams resulting from your examination of the preceding
multiplicities.

Step 2bvi: Analyze Multiplicity 207

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams208

Figure H6.1
Multiplicities in the CPP system.

Chapter Summary
In this chapter, you learned to complete the following B.O.O.M. steps:

2b) Structural analysis

i) Identify entity classes

ii) Model generalizations

iii) Model transient roles

iv) Model whole/part relationships

v) Analyze associations

vi) Analyze multiplicity

By following these steps, you were able to elicit from stakeholders the precise meaning of
business nouns and the ways that the business needs to be able to relate business objects
to each other.

New tools and concepts you learned in this chapter include the following:

� An entity class is a category of business object tracked by the business.

� A class diagram describes classes and the relationships between classes.

� Inheritance is a property related to generalization. The specialized class is said to
inherit all the attributes, operations, and relationships of the generalized class.

� Aggregation is a relationship between a whole and its parts.

� Composite aggregation is a special kind of whole/part relationship, where a part
cannot belong to more than one whole at the same time and where the destruction
of the whole causes the destruction of its parts.

� An object diagram can be used in place of a class diagram to describe situations
that involve more than one object of the same class acting in different roles, as in a
payment that is withdrawn from a From Account and deposited into a To Account.
In an object diagram, a connection between the objects is called a link.

Endnotes
1These include control classes, which encapsulate process logic; boundary classes that act as
interfaces; utility classes, like Date; special design classes to support multi-tiered architecture; and
so on. In the UML, the kind of class can be shown with a stereotype. The stereotype may be shown
as <<Control>>, <<Entity>>, and so on, when the class appears on a class diagram, or special
symbols may be used.

2The UML does include other naming conventions for classes, attributes, and operations. I use these
during the design stage. These standards include the following:

� For a class name: Begin the name with an uppercase letter.

� For an attribute name: Begin the name with a lowercase letter.

� For an operation name: Begin the name with a lowercase letter. Follow the name with paren-
theses; these will be used to surround parameters and help identify the name as an operation.

� For any name: If there are two or more words to the name, join the words into a single name;
mark the beginning of each new name with an uppercase letter.

3Some methodologies use a package for each group of classes within an inheritance or aggregation
arrangement. Others design packages so that collaboration between classes in separate packages will
be at a minimum and/or unidirectional.

4Previously, the diagram was treated as a form of the class diagram.

5You may also add a new class to act as a generalized class for common attributes, though you will
focus on this later.

6A new class Cell Phone may also be added to contain rules applying to all cell phones. More on
this when we discuss inheritance.

Endnotes 209

7There must be a one-to-one association between two terms or they are not aliases but separate
classes. For example, Account and Customer cannot be considered aliases if a customer can have
more than one account. Additionally, if different operations apply to each or they are used in
different contexts, they must be considered as separate classes rather than aliases.

8Note that while the Fund Manager actor referred to elsewhere represents an external software
system, the listed fund accounts (Admin Fund Account, Peace Building Fund Account, and so on)
refer to the internal records of the accounts.

9I use the word subtype here instead of subclass because I don’t yet want to dictate the OO
relationship to be used.

10Some object-oriented languages do, in fact, allow an object to change its type during its lifetime,
but even in these cases, you’ll need to let the developers know whether a subtype is full-time or
part-time. By distinguishing between these kinds of subtypes, as described in this book, you’ll be
able to clarify this issue to the developers.

11The quality whereby a number of classes can have different implementations of the same
operations is called polymorphism.

12They might be viewed as transient roles or merely distinguished by a Status attribute.

13They would be viewed as transient roles of a person.

14Party to Dispute is a transient role of a Person object and of an Agency object.

15An object may not belong to two specialized classes simultaneously. Another mechanism (role)
must be used to model the relationship.

16Booch, Rumbaugh, and Jacobson, in their book The Unified Modeling Language User Guide
(Addison-Wesley, 1999, page 165), refer to this concept as a dynamic type. They suggest modeling
this situation by showing the primary class (in their example, Person) as a specialized class and the
roles as generalized classes. The important thing is not how you model part-time subtypes, but that
you have a consistent and clear way of indicating them. B.O.O.M. uses transient roles because they
lend easily to the analysis of association, multiplicities, etc. right on the class diagram.

17Formally, this relationship is modeled as a UML association, stereotyped as Plays Role.

18Technical note: In the code, transient roles may be handled as aggregations; the aggregate object
is composed of an object of the primary class plus objects representing each of its roles. Inheritance
does not apply, but special operations (referred to as wrapper operations) may be written to allow
public access to role operations.

19If only some of the specialized classes can play the role, indicate those specializations as primary
classes.

20Recall that the term participant used in this context is a project-specific term that refers to any
body (person or organization) that may have standing at a Peace Gathering. It is not to be confused
with the UML term participant (meaning any person or system that interacts with a use case).

21In UML 2.0, this relationship was named composition. In the current version, UML 2.2, it is named
composite aggregation, though the previous term, composition, is sometimes used to describe the
relationship.

Chapter 8 � Gathering Across-the-Board Business Rules with Class Diagrams210

22To make component (part) operations usable at the aggregate (whole) level, you need to define
special operations, called wrapper operations, for the aggregate. A wrapper operation may have the
same name as that used by the component(s). The wrapper asks the components to execute their
version of the operation.

23Prior to UML 2, an equivalent diagram could have been constructed using context diagramming.

24At the time of this writing, many modeling tools, such as Rational Rose, do not support this
feature.

25Don’t confuse the UML role name—which defines the role an object plays in an association—
with Plays Role—a B.O.O.M. stereotype.

26Be careful not to include redundant associations—that is, ones that can already be derived
indirectly.

27Recall that in B.O.O.M., a transient role is an association stereotype. Multiplicity applies to
transient roles because an object may, in theory, play any number of roles—even if they are of the
same type. For example, a person may be playing many attendee roles, one for each Peace Gathering.
Consequently, you’d indicate: “Each person may play the role of zero or more attendees. Each
attendee role is played by one and only one person.”

Endnotes 211

This page intentionally left blank

Chapter Objectives
In this chapter, you will do the following:

� Connect system use cases to the structural model.

� Promote consistency and reuse of requirements by adding rules about attributes,
operations, and lookup tables to the model.

B.O.O.M. steps covered in this chapter include the following:

2b) Structural analysis

vii) Link system use cases to the structural model

viii) Add attributes

ix) Add lookup tables

x) Distribute operations

xi) Revise class structure

Tools and concepts that you’ll learn to use in this chapter include the following:

� Association classes

� Attribute

� Meta-attribute

� Operation

� Pre-condition

� Post-condition
213

Optimizing Consistency
and Reuse in the
Requirements Documentation

Chapter 9

Where Do You Go from Here?
At this point, your structural model identifies the classes of objects that are used within the
business domain as well as the business rules dictating the relationships between them.1

You also have documented some system use cases—a result of the behavioral modeling going
on prior to and concurrently with the structural modeling. This is a good time to consider
the issue of traceability between the behavioral and structural model. You should be able to
trace (link) any system use case to elements of the structural model because the structural
model contains details that apply to the use case but are not explicitly mentioned in it—for
example, data-validation rules.2 The upcoming B.O.O.M. step walks you through this.

Next, you’ll be adding detail to your structural model by documenting rules about the
attributes and operations related to each class. By adding each rule to the structural model,
you’re giving it one centralized place to reside in the documentation, ensuring it will be
consistently applied. You’ll also learn to carry out this step in this chapter.

Once the structural model has been set up, make sure that you actively use it. Every time
a system use case is added or revised, check to see if the changes are consistent with the
structural model and resolve any differences.

Does the Business Analyst Need to Put Every Attribute
and Operation in the Structural Model?
No. Focus on elements and that have the broadest application and that, if not included in
the model, carry a risk that they will not be implemented properly in the solution. Here
are some guidelines to help you make that judgment call:

� What is the lifespan of the software and how stable are the requirements? If the
software is to be short-lived or the business requirements are deemed to be fairly
stable, you lose some of the benefit of structural modeling: reduced time to identify
and make changes to the business requirements documentation. Such cases would
lean you toward doing less structural modeling.

� Is the software going to be bought off the shelf (OTS)? If so, concentrate on
high-priority attributes and operations.

� And, of course, how much time do you have? If you haven’t been given enough
time to do a complete model, concentrate on the high-priority attributes and
operations described next.

The following considerations will help you pick out the high-priority attributes and
operations to concentrate on during structural modeling if time is tight. Time spent
documenting these in the structural model will give you the highest payback. Concentrate
on attributes and operations that

� Apply across a number of system use cases.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation214

� Have a high risk of being inappropriately handled in the software. For example,
focus on non–industry-standard attributes when buying an OTS system.

� Will have a large negative impact on the outcome of the project if incorrectly handled.

Step 2bvii: Link System Use Cases to the Structural Model
In this step, you review any existing system use-case documentation for references to struc-
tural modeling elements, such as classes and associations.

How Do You Find the Modeling Elements
Involved in a System Use Case?
Look for nouns that represent categories of business objects, such as customer and invoice;
these are often classes. Next, pick out the verbs linking these nouns. For example, a sales-
person makes a sale; these are often the relationships. (In the section “Step 2bviii: Add
Attributes” later in this chapter, you’ll also learn to look for fields; these correspond to
attributes in the structural model.)

How Do You Document the Links Between
System Use Cases and the Structural Model?
If you have a requirements-tracing tool, use it to tie each system use case to the structural
modeling elements to which it refers. The approach used in this book documents the link
in a special section of the system use-case documentation. This section appears in the
template as follows.

6. Class Diagram

Include all classes that participate in the system use case. If any of the classes are part of
an inheritance hierarchy, describe the related generalizations and specializations in the
diagram or add another diagram depicting them.

If you’re using a drawing tool, such as Rational Rose, a recommended approach is to
create a dedicated class diagram within the tool for classes that participate in the system
use case. Then add a macro in the system use-case text document to retrieve this diagram
from the drawing tool when the document is opened. (If using Rational Rose, you’ll need
to investigate a product called SoDa for this purpose.) A second-best option is to manu-
ally copy and paste the diagram right into the text document.

There are many good reasons for providing traceability between the behavioral and struc-
tural models. As mentioned at the beginning of this chapter, one reason is to be able to
direct the reader to the appropriate parts of the structural model that contain additional
rules relevant to the system use case. Another reason is so that you will be able to identify
which system use cases are affected by a change in the structural model; these are the

Step 2bvii: Link System Use Cases to the Structural Model 215

system use cases that might need to be revised and retested if rules about the affected classes
are updated in the structural model. Traceability also makes it easier for you to verify that
any rules that appear in the system use case comply with the across-the-board rules
expressed in the structural model.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation216

Case Study I1:
Link System Use Cases to the Structural Model
You analyze the system use case, Review Case Report, documented below, look-
ing for structural modeling elements so that you can cross-check the models to
see if there are any discrepancies between the system use-case documentation
and the class diagrams.

Suggestions
1. Begin by scanning the document for noun phrases. These are often

classes. Verify that each class you’ve identified appears in the structural
model. If it doesn’t, add it to the structural model.

2. Next, scan the document for phrases of the form <<class>> <<verb
phrase>> <<class>>, for example, “A Peace Committee is assigned to a
case.” The verb phrase is often a relationship—typically an association.
Verify that each relationship you’ve identified is currently present in the
model. Be careful not to add an association if there already is an indirect
but equivalent association. If you discover a relationship that is not
handled in any way in the structural model, add it.

3. Next, scan the documentation for any rules regarding multiplicity. For
example, a system use case might presume that there is only one Peace
Committee assigned to a case. Verify that these multiplicities are consis-
tent with those in the structural model and resolve any inconsistencies.

4. Based on your analysis, create a draft of the class diagram that depicts
only the classes that participate in the system use case, and then insert
it into section 6 of the use-case documentation. If you needed to make
any assumptions, document them in the “Assumptions” section of the
template so that you will remember to verify them with stakeholders.

Step 2bvii: Link System Use Cases to the Structural Model 217

Following is your source document:

System use case: Disburse Payments

...

1.3 Triggers: Convener selects disburse payments option.

1.4 Pre-conditions

1.4.1 The case is in the payable state and a payment amount for the
case has been determined.

1.5 Post-conditions

1.5.1 Post-conditions on Success

1.5.1.1 Payments are made into the accounts of all Peace
Committee members involved in the case and into the
fund accounts.

1.5.1.2 The case is in the Paid state.

2. Flow of Events

Basic Flow:

2.1 The system displays a list of payable cases.

2.2 The user selects a case.

2.3 The system displays the amount payable for the case.

2.4 The system displays each Peace Committee member assigned to the case.

2.5 The system displays the Peace Committee member account owned
by each of the displayed Peace Committee members.

2.6 The system displays the payment amounts to be deposited into each
Peace Committee member account and invested into each fund.

2.6.1 TBD (To be determined): The formula for disbursing payments
to the various accounts.

2.7 The user approves the disbursement.

2.8 The system creates payments for the case.

2.8.1 Each payment invests a specified amount from the cash
account into one of the fund accounts or deposits an amount
into one Peace Committee member account.

2.8.2 The system sends a notice letter to a Peace Committee
member whenever a deposit is made to the member’s account.

2.9 The system marks the case as Paid.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation218

Alternate Flows:

2.7a User does not approve disbursement amounts:

.1 The user overrides the disbursement amounts.

.2 The system confirms that the total payable for the case has
not changed.

2.7a.2a Total payable has changed:

.1 The system displays a message indicating the amount of the
discrepancy.

.2 Continue at step 2.7a.1.

2.8a Payment causes a withdrawal from cash that pushes balance
below a specified trigger point:

.1 The system sends a notice to Admin requesting new cash
funds.

...

6. Class Diagram

(Include class diagram depicting business classes, relationships, and
multiplicities of all objects participating in this use case.)

7. Assumptions

(List any assumptions made when writing the use case. Verify all
assumptions with stakeholders before sign-off.)

Case Study I1: Resulting Documentation
1. Upon reviewing the system use case, you listed the following classes:

� Case

� Peace Committee Member

� Payment

� Peace Committee Member Account

� Fund Account

� Cash Account

Checking the structural model, you happily noted that it includes all of
these classes.

Step 2bvii: Link System Use Cases to the Structural Model 219

2. Next, searching for relationships, you scanned the textual documentation
for verbs connecting the classes. At this point, you discovered that the
following relationship did not appear to be anywhere in the model:

� A Peace Committee member is assigned to a case.

You checked to see if there were any indirect associations between the
classes but nothing hit the mark. For example, although the model showed
that each Peace Committee handles a case and each Peace Committee is
composed of Peace Committee members, the model did not indicate a
requirement to track which of these members is assigned to each case.
Based on this analysis, you added these two associations to the model.

3. Next, you attempted to assign multiplicities to the associations. You
guessed that each case may have zero or more assigned Peace Committee
members because some cases are resolved without a Peace Gathering. You
included your best guesses for the multiplicities but made a note in the
“Assumptions” section to verify them with stakeholders.

4. Finally, you created a class diagram describing the classes involved in this
system use case, incorporating the newly discovered relationships. Because
the account classes belong to an inheritance hierarchy, you included a
diagram depicting the hierarchy as well. Figure I1.1 shows the diagrams
that you inserted into section 6 (“Class Diagram”) of the use-case
documentation.

5. Based on the analysis above, you have added the following to the use-case
documentation:

7. Assumptions

7.1 Minimum Peace Committee members assigned to a case is zero.

7.2 Maximum Peace Committee members assigned to a case is many.
(There is no upper limit.)

7.3 Each Peace Committee member owns exactly one Peace Committee
member account.

7.3 Each Peace Committee member account is owned by exactly one
Peace Committee member.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation220

Figure I1.1
Class diagram showing classes involved in the Disburse Payments use case.

Step 2bviii: Add Attributes
The next step is to find out and document the attributes that are kept by the business for
each class.

Example
Some of the attributes the CPP might need to keep track of include the following:

� Peace Gathering class: The date that the gathering was held

� Party to Dispute class: The testimony given by the party

Why Indicate Attributes?
Attributes are part of the user’s contract with the developers. If you miss an attribute in
your model, you run the risk that the system will not track that attribute. Another reason
to indicate attributes is that you then have a place in your model to “hang” rules about each
attribute, such as valid ranges and other verifications.

Don’t Verification Rules about Attributes
Belong with the System Use-Case Documentation?
Generally, no. The best place to put an attribute rule is right in the structural model, since
it gives the rule greater scope: The class diagrams in the OO model apply across the board4.
On the other hand, if a rule applies to the attribute only within the context of a specific
system use case, include the rule with the system use-case documentation. Yet another
option for documenting these rules is along with the screens that are developed to handle
the graphical user interface (GUI) for the system use case. Use this option if the rule only
applies whenever the screen is used but does not apply across the board. As discussed
in point 3 in the next section, screens are not considered a business-analysis artifact as
they relate to the solution design, but you may request the designer to add in rules you’ve
identified.

Step 2bviii: Add Attributes 221

Attribute

An attribute is an item of information about an object that is tracked by the business. An attribute
is specified at the class level. All objects of that class have the same attributes, but the value of
the attributes may differ from object to object.3

Sources of Information for Finding Attributes
� Using the class diagrams as a guide, interview the user about each class.

� Inspect existing system use cases for references to attributes. For example, the
system use case Disburse Payments refers to a Payment Amount—an attribute
of a Payment.

� Inspect artifacts created by other members of the project. These include screens,
reports, forms, and interfaces to external computer systems. Artifacts such as these
are not formally within the scope of the BA because they deal with invention (the
“how”), whereas the BA is concerned with discovery (the “what”). However, the BA
should inspect them as they become available because they provide a rich source of
attributes: The fields in these artifacts typically represent attributes in the structural
model.

� Inspect business rules expressed in the system use cases or in a separate business
rules document. (These rules are sometimes stored electronically in a rules engine.)
Sometimes they require new attributes. For example, the Disburse Funds system
use case contains a rule that whenever the cash balance falls below a trigger point,
a message is to be sent to administration. This rule requires that the Cash Account
class have a Trigger Point attribute and a Current Balance attribute.

Rules for Assigning Attributes
� Check each candidate attribute to ensure that it isn’t already listed as a class. For

example, you might be tempted to list Peace Committee Member Account as an
attribute of Peace Committee Member because it represents information tied to
a member. However, there is no need to do so, since this requirement is already in
the model in another form: the Peace Committee Member Account class is associ-
ated with Peace Committee Member.

� Take care to assign the attribute to the right class. The attribute should describe a
property of objects in the class. Also, the attribute should be a property that the
system tracks individually for each object in the class. For example, Dispute Date
is not listed as an attribute of Peace Gathering because it is constant for all gather-
ings related to the same case; rather, Dispute Date is listed as a Case attribute. An
attribute for Peace Gathering is one that is kept for each gathering, like Gathering
Date.

� List an attribute as far up an inheritance hierarchy as possible. (Keep in mind that
if you list an attribute in a generalized class, it must apply to all specialized classes.)

� For aggregations and compositions, take care to differentiate between an attribute
that is related to the whole and an attribute that is tracked at the part level.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation222

� Attributes that the business tracks about an object regardless of the role are listed
with the primary class. Attributes that are kept once for each role are listed with the
role. For example, a person’s name is kept regardless of one’s role, but the date that
person became a member of a Peace Committee is recorded once for each Peace
Committee membership.

Derived Attributes
A derived attribute is one whose values can be derived in more than one way from the
model. If an attribute can be derived from other attributes in the model, either do not
include it or document it as a derived attribute. In the UML, you mark a derived attribute
with a slash (/)—for example, /extended price. The documentation for a derived attribute
should explain how the attribute value is determined from other aspects of the model. For
example, /extended price is a derived attribute of an invoice line item that can be calcu-
lated from other attributes as follows: /extended price = unit price × quantity.

Why Is It Important for the BA to Indicate Which Attributes Are Derived?

Derived attributes can lead to data integrity problems if they pass unnoticed from the
requirements into the database design. For example, consider a student final average that
can be derived directly by querying a Final Mark attribute and, indirectly, by calculating it
from the student’s individual marks. Since there are two ways to derive this mark, there is
always the possibility that they will yield different results. One solution (referred to as nor-
malization) prevents the problem by eliminating the Final Mark attribute entirely from the
model. If there is no duplication, there is no inconsistency. Eliminating the redundancy
also means less storage requirements, since the Final Mark attribute of each student is no
longer kept on file but is recalculated as needed. On the other hand, this recalculation uses
up system resources at run-time. The decision on how to handle a derived attribute is up
to the database designer. But for that person to do his or her job properly, the BA needs to
clearly mark which attributes are derived and how they are derived.

Indicating Attributes in the UML
Figure 9.1 shows how to indicate attributes in the UML by listing them in an attribute com-
partment (or box) that sits just below the class name. (The empty box below it is the oper-
ation compartment.) In the figure, /Number Members is marked as derived because it can
be determined by counting the number of Peace Committee members in the Peace
Committee.

Step 2bviii: Add Attributes 223

For business-analysis purposes, this notation, along with supporting text, is usually suffi-
cient. The UML does offer, however, a more formal way of declaring attributes. I’ll describe
it here for completeness, but you probably won’t need to be this formal:

attributeName: AttributeType [Multiplicity] = default

For example:

contactNumber: PhoneNumber [0..2] = “(416) - ”

where

� attributeName is the name of the attribute—for example, contactNumber. During
analysis, use informal names. Later, in design, use the formal format: one term
(no spaces) beginning with a lowercase letter, with each subsequent word beginning
in uppercase.

� AttributeType characterizes the attribute—for example, PhoneNumber. Use one
of the following approaches to naming the AttributeType (listed in order of
preference from a BA perspective):

� A user-defined type, formally defined elsewhere as another class. For example:
PhoneNumber is defined as a class with its own attributes of AreaCode and
Number.

� Units of measurement5, such as Inches.

� A data-type supported by the programming environment. For example:

� Integer: A whole number (no fractions)

� Boolean: A yes/no field

� String: Text (any string of characters). Use this for free-form text and for
codes even if they are numeric.

� Double: A decimal number.

� Date

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation224

Figure 9.1
Indicating attributes in the UML.

� Multiplicity is the number of times the attribute appears. Use the same notation
you used when describing multiplicities for associations. For example,
contactNumber: PhoneNumber [0..2] means that zero through two contact
numbers may appear.

� Default is the attribute’s initial value.

Once you’ve added the attributes and their rules to classes in the structural model, ideally,
you should remove these details anywhere they appear in the system use cases. For example,
once you’ve added a rule to the Date Formed attribute (that is, the date the committee was
established) of a Peace Committee, this rule should be removed from the Manage Peace
Committees system use case. The reader will be referred to the rule because the “Class
Diagram” section of the use-case documentation will have included the Peace Committee
class. This approach ensures consistent treatment and makes it easier to change rules if cir-
cumstances require it. Many organizations balk at this point, however, partly because this
approach requires too much cross-referencing on the part of the reader. A second-best
approach is to add the rule to the structural model, include a reference from the system
use case to the model, but leave the explicit rule itself in place in the system use case. While
this approach means that some requirements will reside in more than one place, it still pro-
vides the benefit of a centralized reference (the structural model) for verifying that each
system use case is consistent with project-wide rules. Similar considerations will apply when
you look at pulling operation rules out of the system use cases.

Meta-Attributes
A meta-attribute is an attribute of an attribute—a fancy way of referring to the verifica-
tion rules and other properties of an attribute. To document an attribute fully, you need
to describe its meta-attributes. In the previous discussion on the UML declaration of attrib-
utes, you read about the following:

� Attribute type

� Multiplicity

� Default value

These are examples of meta-attributes. You also learned to document that an attribute is
derived by including a slash before its name. Other meta-attributes worth documenting
include the following

� Unique?: A “yes” indicates that the value of the attribute is unique for each object in
the class—in other words, no two objects may have the same value for this attribute.

� Range of acceptable values, such as:

� Quantity on Hand: Range is 0–10.

� Invoice Date: Range is (any past date) through (current date).

Meta-Attributes 225

� List of acceptable values, such as:

� Gender: Values are Male and Female.6 However, if the list of acceptable values
is subject to change, define the whole attribute as a lookup table (described in
the section “Step 2bix: Add Lookup Tables” later in this chapter).

� Accuracy such as:

� Balance: 9,999.99 (stored to nearest cent).

� Length: The length of the field, such as:

� Name (maximum 30 characters long).

� Dependencies on other attributes, such as:

� Date Resolved (must be on or after date reported).

Document these meta-attributes using an informal style.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation226

Case Study I2: Add Attributes
You ask stakeholders about the items of information the business tracks about
each class that appears in your model. Also, you examine screen mockups and
report layouts that have been created by the designers. You list each field you find
and verify with stakeholders what class they describe. Through your interviews,
you discover the following.

People/Organizations
� A unique participant ID (PID) must be given to each person or agency

involved with the CPP.

� The date that a person was first entered into the system must be recorded.
The system must also record the following for each person: mailing
address, last name, sex, and date of birth.

� The date that an agency was first entered into the system must be
recorded. The system must record the following for each agency: mailing
address and name. Some reports need to indicate whether an agency is a
government agency.

� The testimony of each party to a dispute appears on case reports.

� Descriptive information about each Peace Committee includes township
and ward number.

Meta-Attributes 227

� For each Peace Committee member, the system must record the date the
person joined and a status indicating whether the person is active.

� For each CPP member, the system must record the date the person joined
and a status indicating whether the person is active.

� The system must track the type of relationship (such as neighbor, family
member, and so on) each observer has to a party to the dispute. If the
observer has a relationship with more than one party, then each relation-
ship must be tracked.

Events/Transactions
� A payment report shows one line per payment with a unique payment

sequence number, payment date, amount, and the account to which it
was paid.

� The meeting date of each Peace Gathering for a case appears on the case
report.

� The case report also shows the date of the dispute, the conflict type
(a predefined code), a status code describing the progress of the case, an
indication of whether the rules were followed, a predefined reason code
describing why a gathering was not held (if applicable), and whether
monitoring was required for the case.

� If monitoring was required, the conditions imposed appear on the case
report, as well as the deadline for monitoring and whether the monitoring
conditions have been met.

� Payable cases appear on a separate report.

Products and Services
� All accounts are identified by a unique account number.

� For Peace Committee member accounts, information items are Balance,
Date Last Accessed, and Overdraft Limit.

� For fund accounts, information items are Balance, Date Last Accessed,
and Access Code.

� For cash accounts, information items are Balance, Date Last Accessed, and
Low Trigger—the balance below which new cash funds are requested.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation228

Your Next Step
Based on these notes, you aim to discover the attributes and assign them to the
appropriate classes.

Suggestions
� If an attribute applies to all specializations of a generalized class, assign

the attribute to the generalized class.

� For any generalization hierarchy, show attributes of the classes involved
on the same diagram that shows the generalization relationships. That
way, the reader will be able to see which attributes are inherited by spe-
cialization classes.

Case Study I2: Resulting Documentation
Your analysis of the CPP system’s attributes results in the diagrams shown in
Figure I2.1.

Meta-Attributes 229

Figure I2.1
CPP system attributes.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation230

Association Classes
The UML offers another way to treat the attribute Relationship to Party, speci-
fied for the Observer class. Rather than treat it as an attribute of Observer, you
could consider it to be an attribute of the association between Observer and Party
to Dispute. The rationale for this is that the value of the Relationship to Party
attribute changes for each instance of an association between one observer and
one party. To handle the attribute this way, you need to introduce a new kind of
class to the model called an association class. An association class is considered by
the UML to be both an association and a class. Each instance of the class describes
one link between an object on one association end and an object at the other end.
Association classes are useful at design time but are confusing during business
analysis, as they are not likely to be readily understood by business stakeholders.
They are mentioned in this book just in case you run into them and wonder what
they’re all about.

Figure I2.2 shows an example of an association class between Observer and Party
to Dispute. Note how the Relationship to Party attribute has been removed from
Observer and added to the class, Observer Related to Party. The multiplicity of
the attribute has changed from [1..*] to [1] because each Observer Related to
Party object represents a single link between the objects at both ends; each link
only requires one value of the attribute.

Figure I2.2
Association class.

Step 2bix: Add Lookup Tables
A lookup table is a file that lists the allowable values of an attribute. The term is not part of
UML. An example is a relation code describing a relationship between two individuals,
where PC = Parent/Child, EE = Employer/Employee, and so on.

Why Analyze Lookup Tables?
Analyzing lookup tables leads to enormous savings in future modifications to the system.
When implemented, lookup tables enable the user to add new acceptable values without
calling on a programmer. How? For each lookup table that you identify, the developers will
create data-entry screens to add, change, and delete standardized codes. These screens allow
users to modify codes interactively without programmer intervention.

Example
While you’ve been analyzing the CPP system, you’ve noticed that stakeholders have revised
the list of allowable relationship codes (Spouse, Neighbor, and so on) a number of times.
You verify that these codes are, in fact, subject to change, so you define a lookup table.

Rules for Analyzing Lookup Tables
� Look for candidate lookup tables:

� If a screen uses pull-down menus to allow the user to select the value of an
attribute, the attribute is a candidate lookup table. (That said, see the upcoming
challenge question to determine whether the table is worth defining.) For
example, the attribute Relationship to Party to Dispute includes a pull-down
menu of relationship codes.

� If any statistics are compiled based on the number of objects that match
a particular attribute value, that attribute is a candidate lookup table.
For example, statistics based on conflict type are candidates for a table.

� If the attribute appears in more than one context, and standardization of its
values makes business sense, the attribute is a candidate for a lookup table. For
example, in a later enhancement to the CPP system, a relationship code is used
to describe the relationship of one party to another party involved in a dispute
(in addition to its current use to describe Observer Relation to a Party). It makes
sense to standardize the relationship codes so that the same ones are used
throughout the system.

� If you have any lookup tables to add, create a package called Lookup Tables
and add the tables to this package. For example, add the new classes Dispute
Parameter and Relation Parameter to a Lookup Table package. Another r
ecommendation is to declare the stereotype for this new class to be
<<Lookup Table>> to clarify its purpose to the reader.

Step 2bix: Add Lookup Tables 231

� For each new class you’ve added:

� Add attributes. For example, add the following attributes to Dispute Parameter:
Description and Criminal Offense. (The Criminal Offense attribute would be
defined as a Boolean attribute, meaning it can take on the values of Yes or No.)

� Indicate associations to each of the classes that use the lookup table. For example,
Dispute Parameter is associated with Case.

� Indicate multiplicities for each of the associations. For example, each dispute
parameter is associated with zero or more cases. Each case is associated with one
and only one dispute parameter.

� Make sure that no other attributes related to the lookup table appear in any of
the associated classes. For example, Conflict Type should no longer appear as
an attribute of Case; the requirement is captured through an association with a
dispute parameter.

Challenge Question
� Can you be sure that these codes will always stay the same? If the answer is yes, you

don’t need to define the attribute they describe as a lookup table. For example, a
Sex code (M/F) does not require a lookup table.

Indicating Lookup Tables in the UML
Figure 9.2 shows how to indicate a lookup table in the UML.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation232

Figure 9.2
Indicating a lookup table in the UML.

Step 2bix: Add Lookup Tables 233

Case Study I3: Analyze Lookup Tables
You analyze the following report layouts, looking for opportunities to define a
lookup table.

Peace Gathering Report
There is a section filled out by each observer at a Peace Gathering that includes
the following:

Which party are you related to? _____________

How are you related? (Please select one: ___)

1. Married

2. Relative/near

3. Relative/far

4. Neighbor

5. Friend

6. Lover: boyfriend/girlfriend

7. Acquaintance

8. Stranger

9. Professional: employer/employee

10. Client/service provider

11. Tenant/landlord

12. Other agency

Governmental Report
� Percentage of cases where no gathering was held because the dispute was

resolved in the meantime: ___%.

� Percentage of cases where no gathering was held because the relationship
between the parties improved: ___%.

� Percentage of cases where no gathering was held because someone
rejected the process: ___%.

� Percentage of cases where no gathering was held because the case was
taken over by another agency: ___%.

� Percentage of cases where no gathering was held because the case was
referred to another agency by the CPP: ___%.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation234

Dispute Frequency Report
� Money lending % cases: ____

� Theft (burglary of dwelling) % cases: ____

� Failure to make payments on goods received % cases: ____

� Assault without weapon % cases: ____

� Assault with sharp object % cases: ____

� Assault with blunt object % cases: ____

� Assault with gun % cases: ____

� Robbery with violence % cases: ____

� Spatial dispute urination, encroachment % cases: ____

� Loan of goods % cases: ____

� Extramarital affair % cases: ____

� Other sexual affair % cases: ____

� Spousal abuse % cases: ____

� Child abuse % cases: ____

� Insult (direct disrespect or damage to identity and reputation) % cases:

� Housing dispute—ownership, head of house % cases: ____

� Moral issues—e.g., sister living with boyfriend % cases: ____

� Attempted rape/indecent assault % cases: ____

� Rape % cases: ____

� Gossip % cases: ____

� Drunkenness % cases: ____

� Child/spouse % cases: ____

� Witchcraft % cases: ____

� Percentage of cases involving disputes representing criminally indictable
offenses: ___

Case Study I3: Resulting Documentation
Figure I3.1 shows the diagrams resulting from your analysis of lookup tables.

Step 2bix: Add Lookup Tables 235

Figure I3.1
Adding lookup tables to the CPP system.

Step 2bx: Add Operations
Recall that a class can hold both attributes and operations. You added attributes to the
structural model’s classes in order to ensure that the rules for these attributes are treated
consistently in the requirements. Also, by encapsulating attribute rules within the class’s
documentation, you created a self-contained unit of documentation that can be easily
reused in other contexts. The same arguments apply to a class’s operations. On the other
hand, while there is a good argument for modeling the operations of a class, in practice,
few business analysts currently carry out this step—so check with your organization before
including operations in your model.

An Example from the Case Study
The CPP has a business rule stating that whenever a withdrawal from cash pushes the cur-
rent balance below a certain minimum (a trigger point), a notice must be sent to the admin
requesting new cash funds. This requirement now resides in the Disburse Payments use
case. But what if this rule about the cash account must be applied to all other systems that
withdraw from this account? Your solution is to add the operation Withdraw Funds to the
Cash Account class. You attach the rule about sending a notice to the admin to this oper-
ation. In the future, any BA documenting requirements for any other system that involves
the cash account will be able to include the Cash Account class documentation that you
created, ensuring consistent handling of withdrawals and other Cash Account rules.

As discussed earlier in this chapter, the generally preferred approach is to remove the rule
from the system use case once it’s been added to the structural model in order to avoid
duplication. At one extreme, this would mean removing the entire alternate flow describ-
ing the low cash balance situation. However, this may place too heavy a burden on the
reader—in particular a stakeholder from the business side not accustomed to this sort of
cross-referencing. A workable solution is to keep the alternate flow condition but refer the
reader to the Cash Account class for details on the system’s response to the condition. For
example:

2.8a Payment causes a withdrawal from cash that pushes balance below a specified
trigger point:

.1 The system responds as described in the Withdraw operation of the
Cash Fund specifications. (See structural model.)

This allows you to clearly describe the condition that is checked while leaving the docu-
mentation of the response in one place. If the required response changes later, it will still
be easy to revise. If even this degree of cross-referencing is too much for your readers, then
update the Withdraw operation in the Cash Fund class but leave the entire rule in place
(including the response) in the system use case. This, at least, gives you a central place to

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation236

return to when writing other use cases that involve the cash account so that you can ver-
ify that withdrawals are consistently handled.

How to Distribute Operations
Use the following guidelines to model operations and distribute them amongst the classes
in the structural model:

� Examine the flow steps that appear in the system use-case documentation. If you
find an activity that pertains to a class and needs to be handled consistently regard-
less of the system use case, add it as an operation of the class. For example, add
Withdraw Funds to Cash Account. Then attach any relevant rules to the operation,
such as “When funds fall below trigger point, send notice to the admin.”

� If the operation applies to all subtypes, list the operation with the generalized class.
For example, if the rule about sending a notice to the admin applies to withdrawals
from all kinds of accounts, list the operation Withdraw Funds and its requirements
with the generalized class Account. Each specialized class inherits this operation
from the generalized class, but it may have its own method (procedure) for carry-
ing it out (due to polymorphism). If it does, attach documentation about the new
method to the specialized class.

Figure 9.3 shows how to indicate operations in the UML. The operations are placed in a
special operations compartment—a box below the attribute compartment in the class icon.
Each operation is followed by parentheses.

This informal naming of operations is sufficient for most BA purposes. The UML offers
the following formal format for declaring operations:

operationName (argument1:Argument1Type,argument2:Argument2Type, ...): ReturnType

Example: takeLeaveOfAbsence (EffectiveDate: Date): Boolean

The preceding operation, takeLeaveOfAbsence, requires an effective date, whose type is
Date. The operation returns a Boolean answer (True or False) indicating success or failure.

Step 2bx: Add Operations 237

Figure 9.3
Indicating operations in UML.

Also, you can document a pre-condition and post-condition for each operation. A pre-
condition is something that must be true before the operation begins. A post-condition is
something that must be true once it has been completed.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation238

Case Study I4: Distribute Operations
You examine the system use-case documentation, looking for operations that
could be reused in other contexts, and find the following requirements in the
Disburse Payments system use case:

System use case: Disburse Payments

...

1.3 Triggers: Convener selects disburse payments option.

1.4 Pre-conditions

1.4.1 The case is in the payable state and a payment amount for the
case has been determined.

1.5 Post-conditions

1.5.1 Post-conditions on Success

1.5.1.1 Payments are made into the accounts of all Peace
Committee members involved in the case and into the
fund accounts.

1.5.1.2 The case is in the Paid state.

2. Flow of Events

Basic Flow:

2.1 The system displays a list of payable cases.

2.2 The user selects a case.

2.3 The system displays the amount payable for the case.

2.4 The system displays each Peace Committee member assigned to the
case.

2.5 The system displays the Peace Committee member account owned
by each of the displayed Peace Committee members.

Step 2bx: Add Operations 239

2.6 The system displays the payment amount to be deposited into each
Peace Committee member account and invested into each fund.

2.6.1 To be determined (TBD): The formula for disbursing payments
to the various accounts.

2.7 The user approves the disbursement.

2.8 The system creates payments for the case. Each payment deposits
a specified amount from the cash account into one of the fund
accounts or into one Peace Committee member account. The
system sends a notice letter to a Peace Committee member
whenever a deposit is made to the member’s account.

2.9 The system marks the case as Paid.

Alternate Flows:

2.7a User does not approve disbursement amounts:

.1 The user overrides the disbursement amounts.

.2 The system confirms that the total payable for the case has not
changed.

2.7a.2a Total payable has changed:

.1 The system displays s message indicating the amount of the
discrepancy.

.2 Continue at step 2.7a.1.

2.8a Payment causes a withdrawal from cash that pushes balance below a
specified trigger point:

.1 The system sends a notice to admin requesting new cash funds.

...

6. Class Diagram: See Figure I4.1

7. Assumptions: List any assumptions made when writing the use case.
Verify all assumptions with stakeholders before sign-off.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation240

Your Next Step
You look for rules applying to the classes mentioned in this use case that might
apply to other system use cases and/or systems. You add these as annotated oper-
ations of the appropriate classes.

Case Study I4: Resulting Documentation
Figure I4.2 shows the diagram that results from your addition of operations
to the structural model. To illustrate your options for documenting operations,
the withdraw() operation has been documented using the formal format; the
deposit() operation has been documented informally.

Figure I4.1
Classes participating in the system use case Disburse Payments.

Step 2bxi: Revise Class Structure
As a last step, make a final review of the model and revise it if necessary. You may need to
add some generalizations and drop some others. For example, you may find a generalized
class with no requirements (attributes, operations, or relationships) and decide to discard
it because it’s simply cluttering up the model and not adding value. On the other hand,
you may discover classes with shared attributes, operations, or relationships. In such cases,
you’ll want to consider adding a generalized class.

Step 2bxi: Revise Class Structure 241

Figure I4.2
Documenting operations in the CPP structural model.

Rules for Reviewing Structure
� Look for any classes that have the same associations to other classes. Consider

adding a generalized class for them.

� Look for any classes that have the same attributes or operations as other classes.
Consider adding a generalized class to hold the common attributes.

� Whenever you add a generalized class, move the common associations, attributes,
and operations from the specialized classes to the generalized class.

� Can you justify every generalized class in the model? The point of introducing a
generalized class is to provide a convenient, single place to put rules that affect a
number of specialized classes. There should be at least one attribute, operation, or
relationship that can be ascribed to the generalized class.

� As rule of thumb, each generalized class should have at least two specializations.
There are two exceptions to this rule, however:

� The generalized class is concrete. For example, in the case study, Attendee is a
concrete generalized class of Observer.

� You anticipate that you will need to add more specializations in the future.

Challenge Question
� Are any of the subtypes already specializations of some other generalized class? If

so, you have a case of multiple inheritance. Some companies do not allow this type
of structure, or do so only if certain rules are followed. Make sure your model
complies with your company’s policy on this.7

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation242

Case Study I5: Revise Structure
You review the existing class diagrams looking for generalized classes that can be
discarded due to a lack of attributes, associations, and so on. Also, you are look-
ing for classes with common attributes, operations, and/or associations.

Suggestions
Notice that that there are properties common to all members, regardless of the
organization to which they belong.

Step 2bxi: Revise Class Structure 243

Case Study I5: Resulting Documentation
Figure I5.1 shows the diagrams that result from your review of the CPP system’s class
structure. You’ve added a Member class as a generalized class of Peace Committee
Member and CPP Member and moved the common attributes to it. This left no
attributes or operations in the specialized member classes; however, you’ve retained
these classes because they have special multiplicities and associations.

Notes on the Model
A new generalized class, Member, has been added to the People and Organizations
package. The common attributes Date Joined and Active Member have been
moved from the specialized classes Peace Committee Member and CPP Member
to the new class, Member.

Figure I5.1
The CPP system’s revised class structure.

Chapter Summary
In this chapter, you completed the structural model of the system. You linked the system
use cases to the structural model and you added detail to the structural model by includ-
ing attributes and operations. Finally, you revised the structural model, adding classes to
promote reuse and removing unused classes.

Tools and concepts introduced in this chapter for the first time or in a new context include
the following:

� An attribute is a piece of information that the business tracks about a class of
objects.

� A meta-attribute is a property of an attribute, such as a valid range.

� An association class is a class that describes an association. Each object represents
one link between instances of the classes at both ends of the association.

� A lookup table is a table of codes for an attribute. The user can change the table’s
list of allowable values and their meanings.

� An operation is an activity that all objects of a class can perform.

� An operation pre-condition is a condition that must be true before the operation is
performed.

� An operation post-condition is a condition that will be true after the operation has
completed.

Endnotes
1The structural model in this state is sometimes referred to as the conceptual structural model.

2Tracing in the opposite direction—from the structural model to the behavioral model—is also
useful as it makes it easy to identify which system use cases are affected when changes are made to
the structural model.

3You may also specify a special kind of attribute that allows one value only to be shared by all objects
of the class. Such an attribute is termed a class attribute.

4Another option that provides the same coverage is to place the rule in a data dictionary.

5This approach is particularly useful during analysis, but during design, it will be converted to one
of the options listed here.

6This can also be defined by declaring an enumeration data type, which is not covered in this book.

7Multiple inheritance can lead to ambiguities about attributes if the same attribute is inherited from
two generalizations, particularly if there is a diamond inheritance—that is, both parent classes inherit
from the same grandparent.

Chapter 9 � Optimizing Consistency and Reuse in the Requirements Documentation244

Chapter Objectives
In this chapter, you’ll learn how to design test cases that are most likely to uncover errors—
an activity that should begin during the Discovery phase, before the Construction phase
(design and coding). By specifying these tests up front, you add measurable quality require-
ments to your contract with the developers—clear-cut criteria that will be used to judge
the acceptability of the software.

Steps covered in this chapter include the following (highlighted in bold):

2. The Discovery phase

a) Behavioral analysis

b) Structural analysis (object/data model) (class diagram)

c) Specify testing (test plan/decision tables)

i) Specify white-box testing quality level

ii) Specify black-box test cases

iii) Specify system tests

d) Specify implementation plan

e) Prepare BRD/Discovery

f) Set baseline for development

245

Designing Test
Cases and Completing
the Project

Chapter 10

Tools and concepts that you’ll learn about in this chapter include the following:

� Structured testing principles

� Structured walkthroughs for testing

� White-box testing criteria (statement coverage, decision coverage, condition
coverage, and multiple-condition coverage)

� Black-box testing

� Use-case scenario testing

� Decision tables

� Unit testing

� Boundary-value analysis

� System tests

� Regression testing

� Volume testing

� Stress testing

� Usability testing

� Security testing

� Performance testing

� Storage testing

� Configuration testing

� Compatibility testing

� Reliability testing

� Recovery testing

� Implementation plan

Step 2c: Specify Testing
The testing process includes technical tests of the software’s components and architecture
(white-box tests), tests to see if it works as advertised (requirements-based tests), and tests
that see whether the software does these things “well enough” (system tests).

Who Does These Tests and How Does the BA Fit In?
The BA’s responsibility is to support testing. What this means, exactly, depends on the orga-
nization. Some organizations have a quality-assurance (QA) team responsible for testing.
The BA is often a member of this team. In fact, many organizations have people with a BA
title who do nothing but testing. Business analysts are particularly well suited to this work

Chapter 10 � Designing Test Cases and Completing the Project246

due to their role as representatives of the business stakeholders, and because they are often
the authors of the business requirements against which the software is being measured.

If you’re a BA involved in testing, most of your testing time will be absorbed by require-
ments-based testing. If your organization does not have specifically trained usability testers,
you may also be asked to specify and/or run usability tests (discussed later in this chapter
under the section “System Tests”). You’ll need to know how to design effective tests and how
to write them up. This chapter will give you techniques and templates to help you do that.

In general, the rest of the tests (white-box and most system tests) are too “techie” for the
business analyst. You still need to know enough about them to know what to ask for and
to be able to understand the significance of the results, however. You’ll learn about these
tests later in this chapter.

What Is Testing?
Testing is any activity aimed at proving that the software system does not do what it is sup-
posed to. The negative phrasing is intentional. Each time a test uncovers a bug, it has proven
itself—it means the bug won’t be released to the end-user. The term quality assurance is
sometimes used because it suggests that more than the physical testing of the software may
be required. For example, verifying a draft of a system use-case description with stake-
holders is a testing activity.

General Guidelines
Ivar Jacobson, a founder of OO, advises that you derive test cases from system use cases as
follows:

� Test scenarios that cover the basic flow of each use case

� Tests scenarios that cover the alternate and exception flows1 of each use case

� Tests of line-item requirements2 in the BRD, where the requirements are traced to
use case(s)

� Tests of features in the user documentation, where the documentation is traced to
use case(s)

Step 2c: Specify Testing 247

What Exactly Is a Bug?
We’ll take the broad view. A bug is any variance between what the system is supposed to do and
what it actually does. Some of these bugs are going to be introduced by the programmers. But
others are introduced earlier on by business analysts through inaccurate, ambiguous, or missing
requirements. It’s your job to eliminate as many of these bugs as possible.

You’ll need more than these suggestions to plan appropriate testing. Fortunately, much
groundwork regarding testing has been done prior to OO. This pre-OO approach is called
structured testing. In this chapter, we’ll look at how structured analysis can be integrated
with OO techniques and applied to an OO project.

Structured Testing
In 1976, Glenford Myers pioneered the field of testing with his book The Art of Software
Testing. He laid out a discipline he termed structured testing. His work remains the basis
for testing to this day.

When Is Testing Performed?
Different activities occur at various phases of project development:

� Structured walkthroughs are performed throughout the project.

� During the Discovery phase, the test cases are designed. On an iterative project,
architectural proofs of concept are implemented and tested as well during this phase.

� During the Construction phase, unit testing (tests of the individual software
components) is carried out.

� As system use-case scenarios are implemented during the Construction phase,
requirements-based (black-box) tests are performed to verify compliance with
the requirements.

� Before acceptance of the product, the developers or technical testers perform
system tests.

� During the Closeout phase, the user performs and supervises user acceptance
testing (UAT).

Principles of Structured Testing (Adapted for OO)
You begin by establishing some principles, adapted from structured testing to OO projects.
Why not go directly to the techniques? A sound understanding of basic principles helps
avoid the kinds of institutional problems that lead to buggy systems. (The real-life story in
the accompanying sidebar helps illustrate this point.)

Chapter 10 � Designing Test Cases and Completing the Project248

Structured Testing
Structured testing is the process of using standardized techniques to locate flaws (bugs).
Flaws detected by structured testing include those introduced during business analysis, design,
and programming.

The principles of structured testing are as follows:

� The purpose of testing is to locate bugs.

� A bug is any aspect of a system that does not meet the requirements of the
business and of users.

� A bug can be introduced at any time during the project.

� Be a pessimist: Work under the assumption that the analysis work was
incomplete and inaccurate and that the system is full of programming errors.

� The goal of testing is to locate the maximum number of errors in the available
time.

� It is theoretically impossible to guarantee a 100-percent error-detection rate, so
you have to settle for this more realistic goal.

� Clearly define the expected results of each test so that test results are easy to analyze.

� If possible, create electronic versions of expected output files so that the actual
outputs can be verified automatically. If not, use hard copy.

� The more removed the test designer is from the project team, the better the test.

� An outsider is likely to take a more critical approach than an insider, and is less
likely to be operating under the same (sometimes mistaken) assumptions as
insiders do.

Step 2c: Specify Testing 249

Why Testers Need to Have Good Principles
One of my first jobs in IT was a programming stint for a company that designed and built nuclear
reactors. I was working on a computer program that simulated a loss-of-coolant accident at a
nuclear power plant. I found it odd that even though I had not yet graduated from university,
the company relied on me to test my own programs. Sure enough, in my first programming assign-
ment, I introduced a bug into the system—one that was found out only once the program had
been put into production. (Fortunately, the error was minor.)

This incident suggested a systemic flaw in the way the organization handled quality assurance.This
was borne out a number of years later when the company released a software-controlled
medical device to deliver radiation to brain tumors. The device occasionally malfunctioned, causing
a number of deaths. A testing specialist was eventually called in to determine the source of the
problem. He found the bug—but he also warned of systemic problems that would continue
to result in new bugs unless corrected.

� A complete test plan covers the following:

� Scenarios based on the basic flow of each system use case.

� Scenarios based on all the alternate flows of each system use case—that is, all
valid but rarely occurring cases.

� Scenarios based on all the exceptional flows of each system use case.

� All line-item BRD requirements not included in the preceding (for example,
general quality requirements).

� All features described in the requirements documentation. (The features should
be traceable to system use cases.)

� The domain (valid range) of each input variable of each system use case.3

� All requirements regarding input/output relationships for each system use case.

� Verification of the specified relative frequency of system use cases.

� Sequential dependencies among use cases.

� Save test plans, test cases, and test results.

� By saving tests, you can reuse them in future regression tests.

� Concentrate on the lemons.

� If your time is limited, concentrate your testing efforts on the areas of the system
that have been most problematic in the past.

� Check for unwanted side-effects.

� Unintended side-effects of a programming change are common sources of
errors. When testing a programming change, make sure areas of the system that
the change was not supposed to affect are still working correctly.

� Execute tests in a safe testing environment.

Table 10.1 summarizes when to use the testing techniques covered in this chapter.

Structured Walkthroughs
Most people think of testing as a process involving the execution of a program by the
computer. This is only one type of testing—referred to, appropriately, as computer-based
testing. Testing, however, also includes non-computer-based tests. How can you test a system
without actually executing it? You walk through some aspect of the system manually with
a group of participants. The formal method for doing this is the structured walkthrough.

Chapter 10 � Designing Test Cases and Completing the Project250

Why Are Structured Walkthroughs an Important Aspect of Testing?

Errors are often thought to be exclusively due to bad programming; in fact, they can be
introduced at any stage of a project. The beauty of walkthroughs is that, unlike computer-
based testing, they can be performed before the software is written.

Step 2c: Specify Testing 251

To Do the Following Use These Tools

Ensure that all of the code has been covered White-box techniques: statement, decision,

properly during testing condition, multiple condition coverage

Test the requirements for completeness and accuracy Structured walkthrough

Test functional requirements for end-to-end High-level integration tests based on

business process business use cases

Test the system’s response to simple conditions Condition response tables

Test the system’s response to a group of input Decision tables, decision trees

conditions that might occur in any combination

Design test data most likely to uncover bugs Boundary-value analysis

Test how the system handles high volume Volume test (a type of system test)

Test how the system handles a high level of Stress test (a type of system test)

activity within a short period of time

Test for user-friendliness Usability test (a type of system test)

Test speed Performance test (a type of system test)

Ensure processes that should remain Regression test (a type of system test)

unaffected by the release work as before

Submit the system for final acceptance by the user User acceptance testing (UAT)

TABLE 10.1 Testing Techniques

Structured Walkthrough
A structured walkthrough is a peer-review process for testing the completeness and accuracy
of a project deliverable, such as a portion of the BRD.

Early testing means early detection of errors. The sooner errors are found, the easier they
are to fix. Also, unlike computer-based tests, walkthroughs tend to find the cause of a prob-
lem, not just its symptom. For example, a computer-based test may find symptoms, such
as scattered situations where credit is advanced to non-worthy applicants; a walkthrough
may uncover the cause—an incorrectly documented decision table for evaluating credit
applications.

Requirements-Based (Black-Box) Testing
The purpose of requirement-based testing is to find variances between the software and the
requirements. The business requirements document (BRD) acts as the reference point for
these tests. The term black-box tests is also used for these types of tests, since the tester does
not need to know anything about the internals of the software, such as the code and table
structure, to design and run them. This is in contrast to white-box tests, which are techni-
cal tests that are based on a knowledge of the inner workings of the IT system.

Limitations of Requirements-Based Testing

Since no knowledge of the code is assumed with requirements-based testing, the only way
to know definitively the effect that a particular set of inputs will have on the system is to
test the system’s response to it. This means that for full coverage, you’d have to test every
possible set of input values and conditions. In practice, this is an unachievable standard,
so instead you use techniques that help you design black-box tests that will uncover the
greatest number of bugs in a given amount of time.

Use-Case Scenario Testing

Use-case scenario testing is one approach to requirements-based testing that tests the vari-
ous scenarios of each use case. Use cases lend themselves well to testing. Because of the
narrative style of the use case documentation, it is already very close to being a testing
script. And the way the use cases are organized—into end-to-end business use cases and
user-goal system use cases—matches the way the tests are organized. I have often been
asked if use cases, then, are all you need to design the test. The answer is no. To design tests,
you need more detail, such as graphical user interface (GUI) screens, the structural model
(which provides validation rules for attributes), and the documentation on business rules
(stored in a business rules engine or kept manually in a folder). The system use cases may
refer to these artifacts, but the artifacts are not part of the use-case documentation itself.

Deriving Use-Case Scenario Tests

Recall that your processing requirements were grouped around system use cases, each with
their own group of scenarios. The flows were chosen so that they would cover all impor-
tant scenarios:

Chapter 10 � Designing Test Cases and Completing the Project252

� Basic flow: The normal path through the use case

� Alternate flows: Rarely occurring flows and other variations from the norm

� Exception flows: Unrecoverable errors and any other flows that result in the
interaction ending without the user achieving the goal of the use case

Use the flows of the system use case to derive scenarios, then test each scenario. For exam-
ple, one test scenario might walk through the basic flow. You might be able to design
another test scenario that walks through the basic flow and all of the alternate flows. At a
bare minimum, you’ll want to ensure that the basic flow and each of the alternate and
exception flows are covered at least once in the test scenarios. But you may also be inter-
ested in designing key tests that use certain combinations of the alternate flows. For exam-
ple, one alternate flow for a stock-trading site may be “non-standard lot size” and another
may be “order can only be partially filled.” The software may be able handle each of these
alternates one at a time but not when they occur together. To test the system’s response to
this situation, you’ll want to include a test scenario that walks through both alternate flows.
If you need to ensure you’ve covered all possible combinations of a set alternate flows, use
decision tables, covered later in this chapter.

During test execution, you’ll be looking to see whether the sequence of events during
the test matches that described in the use case. One way to do this is to use the steps of the
system use case as the source for the following test template. Place steps that begin with
“The user...” in the “Action/Data” column of the template; place steps that begin with “The
system...” in the “Expected Result/Response” column.

Step 2c: Specify Testing 253

Test Template

Test #: ______________________ Project #: ________________________

System: _____________________ Test environment: ________________

Test type (e.g., regression/ requirements-based, etc.):

Test objective: __

System use case: _____________ Flow: ____________________________

Priority: ____________________

Next step in case of failure: __

Planned start date: ______________ Planned end date: ________________

Actual start date: _______________ Actual end date: __________________

Times to repeat: ______________

Pre-conditions (must be true before test begins): ____

Decision Tables for Testing
When the input conditions affecting a system use case are interrelated, it is not enough to
test for each input condition separately; you must test all combinations of input conditions.
An input condition is any condition that will have an impact on the system response.
Examples from a Web retail site include Item on Sale, Customer Discount, and Fast Delivery
Method Selected. You’ll find some input conditions documented in the system use case as
alternate flows—for example, the alternate flow Non-Standard Lot Size. You might also see
them already documented as part of the requirements in a decision table appended to a
step of the use case or to the use case as a whole. In this case, you can reuse the decision
table for testing purposes.

Chapter 10 � Designing Test Cases and Completing the Project254

Test Template (continued)

Tester ID: ______________________

Pass/fail: _______________________ Severity of failure: ________________

Solution: ___

Comments: ___

Sign-off: ___

(Req # is short for requirement number and corresponds to the number used to
identify the requirement in the BRD. Many organizations number their require-
ments so that they can be traced forward to test cases and other project artifacts.
The numbering may be manual, or automatically generated with the use of a tool
such as Rational RequisitePro.)

From a testing perspective, each column in the table identifies a test scenario. Keep in mind,
though, that the column only identifies the test scenario; it does not fully specify it. To
properly specify a test, you need to complete the test template for each test scenario you’ve
identified from the columns. Also, as discussed in the upcoming section “Boundary-Value
Analysis,” you may need to create more than one test scenario per column.

The use of decision tables in this context may be complex, but that does not mean that this
approach to testing is “white box.” The input conditions and the expected system responses
are still derived from the requirements—not from an examination of the code. This clas-
sifies the technique as “black box.” (Later in this chapter, you’ll learn that decision tables
can also be used by programmers for white-box testing—but that is another matter.)

Decision Tables for Testing 255

Case Study J1:
Deriving Test Cases from Decision Tables
You are designing test cases for the system use case Review Case Report.
Fortunately, you earlier created a decision table as part of the requirements
documentation, as shown in Figure J1.1. Note how each column in the table
identifies the nature of the input data and systems response for each test scenario.

Figure J1.1
Validate case and determine payment amount.

Boundary-Value Analysis
Boundary-value analysis is a technique for targeting test data most likely to reveal bugs. The
technique is based on the premise that the system is most error-prone at points of change.

Boundary-value analysis can help you pinpoint test data for any requirements-based (black-
box) test. If you are working from a decision table, then boundary-value analysis can
help you decide which data to use for the test(s) indicated by each column of the table. The
technique covers both positive and negative testing:

� A positive test is one that tests the system’s response to valid conditions (success
scenarios).

� A negative test is one that tests the system’s response to invalid conditions (errors).

The following is a summary of boundary-value analysis rules:

� If the condition states that the number of input (or output) values must lie within a
specific range:

� Create two positive tests, one at either end of the range.

� Create two negative tests, one just beyond the valid range at the low end and one
just beyond the high end.

For example, for the system use case Update Case that accepts 2–10 parties to
a dispute, the positive tests would have the user enter exactly 2 and exactly 10
parties. Negative tests would try for 1 and 11 parties.

Chapter 10 � Designing Test Cases and Completing the Project256

What the Decision Table Does Not Say about Testing
The decision table shows only the net result of each test; it does not show the
required sequencing of steps. For this reason, you need to complete the test tem-
plate for each test scenario, indicating the expected sequence of actions. Use the
system use-case description to work out the expected workflow for each case.

Also, each column tells you something about the input data for a given test, but
does not specify exactly which data to test for. For example, for the test corre-
sponding to column 2 in Figure J1.1, the number of Peace Committee members
may be three, four, or five. Which of these should you use? What about tests for
invalid data? These issues are addressed by boundary-value analysis.

� Similarly, if an input or output value must lie within a range of values and the
whole range is treated the same way:

� Create two positive tests, one at either end of the range.

� Create two negative tests, one just beyond the valid range at the low end and one
just beyond the high end.

For example, if the Ward Number attribute of the Peace Committee class has a
valid range of 1–100, create two positive tests: 1, 100. Also create two negative
tests: 0, 101.

� If an input or output value must lie within a range of values and different valid
ranges are treated differently:

� Create a positive test for each end of each valid range.

� Create two negative tests, one just below the smallest acceptable value and one
just above the highest.

For example, the decision table for the system use case Review Case Report
indicates that system response depends on # Peace Committee Members. The
valid ranges are 0–2, 3–5, and 6–99. The positive test values are 0, 2, 3, 5, 6, and
100. The negative tests are –1 and 100.

� If an input or output value must be one of a set of valid options and all options are
treated the same way:

� Create one test for valid data using any value from the set.

� Create one invalid test using any value not in the set.

For example, the Reason Code No Gathering attribute of Case must match the
code of one of the reason codes in the lookup table. Create one positive test
where the code is found in the table and one negative test where it is not.

� If an input or output value must belong to a set of values and each one is treated
differently:

� Create one test for each valid option.

� Create one invalid test using a value not in the set.

For example, if the system treats criminal offenses differently from civil offenses,
create a positive test for a case whose dispute code refers to a criminal dispute
and another test where the code refers to a civil one. Also, create a negative test
for where the dispute code is not found in the lookup table.

� If the requirements state that a certain condition must be true:

� Create one valid test where the condition is satisfied.

� Create one invalid test where the condition is not satisfied.

For example, the Testimony attribute of Party to Dispute must be non-null.
Create a positive test where testimony is entered and a negative test where it is not.

Boundary-Value Analysis 257

� To limit the number of tests you have to run, you can combine as many valid tests
as possible in a single run. However, you may not combine invalid tests.

� Look out for any boundaries not covered in the preceding rules. For example, for
any reports or screens, test one case where exactly one page or screen is filled and
one test where the output goes over by one line. Wherever sorting occurs, test cases
where everything is presorted; where all values are the same; and where one value is
the lowest possible, and one is the highest. For input values, try negative numbers
and zero. Try entering no value at all.

Chapter 10 � Designing Test Cases and Completing the Project258

Case Study J2: Select Test Data
Using Boundary-Value Analysis
You once again refer to the decision table for the system use case’s review case
report. Earlier, you noted that each column represents one or more test cases.
Now you create precise test cases based on what you’ve learned about boundary-
value analysis, as shown in Figure J2.1. (For the purposes of this case study, I’ve
set an upper limit of 99 on the number of Peace Committee members.)

Figure J2.1
Selecting test data using boundary-value analysis.

Boundary-Value Analysis 259

Case Study J2: Resulting Documentation
Boundary value analysis leads you to design the test cases in Table J2.1.

Decision Code # PC
Test # Table Col # Followed? Steps? Members

1 1 Y Y 0

2 2 Y Y 3

3 3 Y Y 6

4 4 Y N 2

5 5 Y N 3

6 6 Y N 6

7 7 N Y 2

8 8 N Y 5

9 9 N Y 6

10 10 N N 2

11 11 N N 3

12 12 N N 99

13 X Y 2

14 – Y 3

15 Y – 5

16 N X 2

17 1

18 X

19 100

20 N Y –

*Rows 13–20 are negative tests.

TABLE J2.1 Test Cases Resulting from Boundary-Value Analysis*

White-Box Testing
White-box testing is a testing methodology based on knowledge of the internal workings
of the IT system.

Who Does White-Box Testing?
Developers perform these tests, since knowledge of programming code is required. But as
a business analyst, you have a supporting role: You may be required to specify the level of
white-box testing that the software must pass through before it is accepted. And after the
tests are run, you might be called on to inspect evidence that the white-box tests have been
carried out successfully. This proof sometimes comes in the form of a report produced by
an automated testing product, confirming the level of white-box testing to which the soft-
ware has been exposed. To support white-box testing, you need a basic understanding
of what such testing can and cannot achieve and of the meaning of the white-box testing
levels.

Limitations of White-Box Testing
To ensure that software is completely error-free, white-box testing would have to include
enough tests to thoroughly “exercise” the code. In practice, however, this is impossible. Why?
At first glance, it might seem sufficient to execute a set of tests that causes every statement
to be executed at least once. Unfortunately, this does not supply sufficient coverage, because
some errors show up only when a program’s execution follows a specific path through the
code. To white-box test a program fully, then, you would need to try all possible paths of
statement execution. Because the number of tests usually required for full coverage is so
high, other approaches are used to winnow the set of tests to a manageable size.

White-Box Coverage Quality Levels
The following coverage levels are used to specify the degree of thoroughness of white-box
testing, listed in order of increasing coverage. Depending on the level of risk, you may spec-
ify one of the following coverages:

Chapter 10 � Designing Test Cases and Completing the Project260

Even Small Programs Can Have an Astronomical Number of Pathways
Consider an operation containing 20 statements that are repeated up to 20 times. The body of the
loop includes several nested IF-THEN-ELSE statements. It would take about 1014 tests to cover all
of the possible sequences in which those statements could be executed.

� Statement coverage: Every coding statement is executed at least once. This coverage
level is considered to be too low to be acceptable.

� Decision coverage: Every decision in the code has taken all possible outcomes at
least once during the tests. Decision coverage is the minimum acceptable level of
coverage. For example, if the source code contained the decision AGE OVER 20
AND LICENCE IS UNDER SUSPENSION, this expression would have to evaluate
to both true and false at least once during the tests.

� Condition coverage: Every simple condition takes all possible outcomes at least
once. For example, in the preceding example, the decision is actually a complex
condition made of two simple conditions: AGE > 20 and LICENSE IS UNDER
SUSPENSION. For this level of coverage, the tests must include cases where the
condition AGE > 20 takes true and false outcomes and the condition LICENSE IS
UNDER SUSPENSION takes true and false outcomes.

� Multiple condition coverage: Every combination of outcomes for simple conditions
making up a complex condition is tested. For example, for the complex condition
AGE > 20 AND LICENSE IS UNDER-SUSPENSION, you’d test the following

� AGE > 20 is true and LICENSE IS UNDER SUSPENSION is true.

� AGE > 20 is true and LICENSE IS UNDER SUSPENSION is false (that is, the
license is not under suspension).

� AGE > 20 is false (i.e., AGE <= 20) and LICENSE IS UNDER SUSPENSION
is true.

� AGE > 20 is false and LICENSE IS UNDER SUSPENSION is false.

You might be wondering if decision tables play any part here. There is a role for decision
tables—but not the in the context you learned to use them earlier in this chapter. The con-
ditions and actions in the tables discussed earlier were based on the requirements. The
coverage tests we’re currently dealing with, however, involve condition expressions and
actions written in the source code. (These condition expressions may sometimes have
parallel conditions in the requirements—but they often do not.) Decision tables can be
used in a programming context to derive multiple condition coverage tests, using source-
level conditions and actions. Use of decision tables in this way is beyond your role as BA
because of the programming knowledge it requires.

Sequencing of White-Box Tests
When software is written, it is developed in modules, or units. In structured systems, the
software unit is the process, known by various terms such as subroutine, function, or
subprogram. In OO, the basic software unit is the class, which contains code for attributes
and operations. In both structured and OO environments, a plan must be put together to
sequence the testing of these units and their proper integration within the software. The
process of planning and executing these piecemeal tests is called unit testing.

White-Box Testing 261

Unit Testing and the BA

While the developers usually carry out unit testing, the BA needs to be able to consult with
the developers about the planning and scheduling of these tests. Since most systems in large
organizations involve a hybrid of structured software (typically for back-end legacy
systems) and OO (typically for Web-enabled front-end systems), as a BA, you’ll need a basic
understanding of unit testing in both environments.

Big Bang Approach to Unit Testing

There are a number of approaches for the sequencing of unit tests. In the big bang approach,
each unit is first tested individually. Once this is complete, all units are integrated and tested
in one “big bang” test.

In a structured system, these units are subroutines or functions. In an OO system, they are
classes. In either environment, the developers often need to create “dummy” software to
stand in for other units not being tested at that time. One of the disadvantages of the big
bang approach is that, since units are first tested in complete isolation from the rest of the
program, a large amount of dummy software has to be written. Another disadvantage is
that the final big bang test is the first opportunity to test whether the units have been inte-
grated properly in the software. If an integration problem shows up at this time, it will be
very hard to diagnose. For this reason, the big bang approach is not advised—but is still
used because it is easy to manage.

Incremental Approaches to Unit Testing

A preferred approach is the incremental approach, where each unit is added to the system
one by one. With each incremental test, the internal workings of a unit and its integration
with the rest of the system are tested. Since not much is being added with each test, diag-
nosis is easier.

In a structured environment, there are two types of incremental testing to choose from:
top-down or bottom-up.

Top-Down Testing

In top-down testing, the units are tested starting from the mainline program (the high-
level module that coordinates the major functions) and advances toward the low-level units
that carry out basic functions. The advantage of this sequence is that it mirrors the order
in which software units are usually developed. The disadvantage is that since high-level
subroutines are tested before the low-level routines on which they depend, the tester must
create stubs—“fake” units that take the place of the real low-level routines during testing.

Chapter 10 � Designing Test Cases and Completing the Project262

Bottom-Up Testing

In bottom-up testing, the order is reversed: First the low-level routines are tested, followed
by higher-level routines. The advantage of this approach is that it does not require the
overhead of creating stubs. It does, however, require the creation of other stand-in software,
called drivers, but these are usually easier to develop. The big disadvantage is that this
sequence may not match the order in which the units are actually coded.

Incremental Testing in an OO Environment

In an OO environment, the units are not organized top to bottom. Rather, objects are seen
as being on the same level, collaborating with each other to carry out system use cases. It
makes no sense, therefore, to speak of a “top-down” or “bottom-up” approach. Instead, the
system use cases direct the sequencing of tests. When software is developed iteratively (as
is commonly the case with OO systems), a set of system use cases is developed and released
(internally or to the user). During each iteration, only the classes and operations required
for the scheduled use cases are developed and tested. With each iteration, more classes and
operations are developed and tested until the entire system has been covered.

System Tests
Once the black-box tests have been completed, another battery of tests is executed. These
are called system tests. With the exception of usability testing (a type of system test), you
will not typically perform these tests, but you may be involved in planning them and in
verifying that the tests have been conducted, so you should be aware of the tests in this
category. The term system tests refers to a grab-bag of tests that go beyond functionality.
The purpose of system tests is to test compliance with the non-functional requirements,
also known as service-level requirements, or SLRs. The non-functional requirements spec-
ify the required level of service—for example, the maximum acceptable response time.

The idea behind system testing is that even if the code has been adequately tested for cov-
erage (white-box testing) and has been shown to do everything expressed in the user
requirements, it may still fail because it doesn’t do these things well enough. It may not
meet other objectives—such as those related to security, speed, and so on. Myers laid out
a set of system tests designed to catch these kinds of failures.4 These tests are still widely
in use today. Following are some of the more popular of these tests.

System Tests 263

Myers on System Testing
Myers defines system testing as follows: “The purpose of system testing is showing that the
product is inconsistent with its original objectives.”

� Regression testing: Regression testing validates whether features that were supposed
to be unaffected by a new release still work as they should. The test helps avoid the
“one step forward, two steps backward” problem: a programming modification
designed to fix one problem inadvertently creating new ones. How much regression
testing should you do? That depends on the level of risk. Often, organizations create
a problem review board to set standards for regression testing and to evaluate on a
case-by-case basis the degree of regression testing required.

� Volume testing: Volume testing verifies whether the system can handle large volumes
of data. Why is this necessary? Some systems break down only when volume is
high, such as a system that uses disk space to store files temporarily during a sort.
When the volume is high, the system crashes because there isn’t enough room
for these temporary files. Also, some systems may become unbearably slow when
volume is high. Often, this is due to the fact that the data tables become so large
that searches and lookups take an inordinate amount of time.

� Stress testing: Stress testing subjects the system to heavy loads within a short period
of time. What distinguishes this from volume testing is the time element. For
example, an automated teller system is tested to see what happens when all
machines are processing transactions at the same time, or a network server is tested
to see what happens when a large number of users all log on at the same time.

� Usability testing: Usability testing looks for flaws in the human-factors engineering
of the system. In other words, it attempts to determine whether the system is
user-friendly. Isn’t it enough that the system does what it’s supposed to do? No.
Users may reject it due to frustration with the user interface.

Chapter 10 � Designing Test Cases and Completing the Project264

Usability Testing Questions
Questions investigated during usability testing include the following:

� Is the user interface appropriate for the educational level of the users?

� Are system messages written in easy-to-understand language?

� Do all error messages give clear, corrective direction? The user must always be given a “way out.”

� Are there any inconsistencies in the user interfaces of the system? Look for inconsistencies with
respect to screen layout, response to mouse clicks, and so on.

� Does the system provide sufficient redundancy checks on key input? Important data should be
entered twice, or in two complementary ways—for example, a social security number and a
name for financial transactions.

� Security testing: Security testing attempts to find holes in the system’s security
procedures. For example, the tests will attempt to hack through password protection
or to introduce a virus to the system.

� Performance testing: Performance testing locates areas where the system does not
meet its efficiency objectives. Performance tests include the measuring and evalua-
tion of the following:

� Response time: The elapsed time it takes the system to respond to a user request.

� CPU time: The amount of processing time required.

� Throughput: The number of transactions processed per second.

� Storage testing: Storage testing checks for cases where storage objectives are not met.
These objectives include requirements for random access memory (RAM) and disk
requirements.

� Configuration testing: Configuration testing checks for failure of the system to
perform under all of the combinations of hardware and software configurations
allowed for in the objectives. For example, these tests look for problems occurring
when a supported processor, operating system revision, printer driver, or printer
model is used.

� Compatibility/conversion testing: Often, the goal of an IT project is to replace
some part of an existing system. The objective of compatibility testing is to verify
whether the replacement software produces the same result as the original modules
(with allowance for new or revised features) and is compatible with the existing
system. Conversion testing verifies whether the procedures used to convert the old
data into new formats work properly.

� Reliability testing: Reliability testing checks for failure to meet specific reliability
objectives. For example, the objectives for one of my early programs—a food-testing
program—stated that an automated count of bacteria grown on a grid be correct
to a given accuracy. Reliability testing would verify whether this objective was met.
Another metric that falls in this category is mean time to failure (MTTF).

System Tests 265

� Are all system options and features actually useful to the user? Unused “extras” make the
system harder to learn and clutter the interface.

� Does the system confirm actions when necessary? The system must confirm important actions,
such as the receipt of a customer’s online order.

� Does the flow dictated by the system support the natural flow of the business?

� Recovery testing: Recovery testing checks for failure of the recovery procedures to
perform as stated in the objectives. For example, an online financial update program
keeps a log of all activity. If the master files are corrupted, the objectives state that
a recovery procedure will be able to restore files to their state just before the crash
by processing the day’s transaction log against a backup of the previous day’s files.
A recovery test would look for failure of this procedure to recover the files.

Beyond the System Tests
The BA should plan for a final set of tests to take place after the system tests are complete.
These are UAT, beta testing, parallel testing, and installation testing.

� User acceptance testing (UAT): Acceptance testing is the final testing of the system
before the users sign off on it. This test is often performed by the users themselves,
although in some organizations, the BA performs the test while the user looks on.
There are two alternative approaches to UAT—a formal and an informal approach.

Chapter 10 � Designing Test Cases and Completing the Project266

Formal UAT Versus Informal UAT
In the formal approach, the developers and users sign a document beforehand that lays out the
terms of the UAT. The document stipulates that if the users carry out the UAT under the terms
described in the agreement and if the tests are successful, the users will accept the system. By
having participants sign off on this document before the UAT, the BA sets the stage for a clean
end to the project.

Proponents of the informal approach argue that the formal approach is inappropriate. In their view,
users should have free reign to experiment with the system to make sure it can let them do their
jobs, which might involve unexpected variations of usage. For example, IBM’s RUP methodology
states:

“In informal acceptance testing, the test procedures for performing the test are not
as rigorously defined as for formal acceptance testing. The functions and business
tasks to be explored are identified and documented, but there are no particular test
cases to follow. The individual tester determines what to do. This approach to accep-
tance testing is not as controlled as formal testing and is more subjective than the
formal one.”

� Beta testing: Alpha testing is the testing of the system by the manufacturer. These
are the kinds of tests you have been reading about until this point. Beta testing
occurs after the alpha testing is complete. In beta testing, copies of the system are
distributed to a wide group of users, selected to represent the various configura-
tions, volume, stress, and functional needs of the target user population. The
developers correct any errors uncovered by beta testing before releasing the
production version. Beta testing is often used for systems that will have a wide
distribution.

� Parallel testing: On some projects, the system undergoes parallel testing before
final acceptance. With this approach, the new system is put into place and used
while the old system is run concurrently. Both systems should provide equivalent
outputs (except for any variations resulting from new enhancements and modifica-
tions). Parallel testing minimizes risk. If errors arise, the user can quickly revert to
the old system until the problem is resolved.

� Installation testing: Installation testing is performed after the software is installed.
Its purpose is to check for errors in the installation process itself. This test checks
whether all files that should have been installed are, indeed, present; whether the
content of the files is correct; and so on.

Step 2d: Specify Implementation Plan
The BRD must include an implementation plan so that steps required when releasing the
system can be planned for in advance. The issues addressed typically include the following:

Training:

� Who is to be trained?

� How will training be done?

� What resources (hardware, software, training rooms, trainers, administration, and
so on) will be required?

Conversion:

� Identify existing data that will need to be converted (due to new file formats, new
database management software, and so on).

� Plan promotion of programs (from the current version to the new one).

� Plan granting of privileges to the users.

� Schedule jobs (for batch systems).

� Advise operations of which jobs to add to the production run: daily, weekly,
monthly, quarterly, semi-annually, or annually.

Step 2d: Specify Implementation Plan 267

� Ensure that the job is planned to be executed in the right sequence— that is, after
certain jobs are run and before others.

� Advise operations of the reports to be printed and the distribution list for reports
and files.

Rollout:

� Advise all affected users of the promotion date for the project.

End-user procedures:

� Write up the procedures for the affected departments.

� Distribute an end-user procedures document to affected departments.

Post-Implementation Follow-Up
Follow up within a reasonable time frame after implementation to ensure that the project
is running successfully and to verify that the project is achieving high-level goals. For exam-
ple, check back six months after installation to see whether market share has indeed
increased 6 percent as described in the BRD. Determine whether any further enhancements
or changes are needed to ensure the success of the project. Also, the post-implementation
follow-up offers a good opportunity to review lessons learned from the project.

Step 2e: Set Baseline for Development
Once the BRD is complete, freeze all analysis documentation. Save this “frozen copy” so
that team members will be able to refer back to it later. This copy becomes the “baseline”—
or beginning point—for the next step: the actual development of the software.

Chapter Summary
In this chapter, you learned how to design test cases that are most likely to uncover
software bugs using the tools and principles of structured testing as applied to OO projects.
Also, you learned about the features of an implementation plan and the need for a post-
implementation follow-up.

Tools and concepts that you learned about in this chapter include the following:

� Structured testing is the process of using standardized techniques to locate flaws
(bugs). Flaws detected by structured testing include those introduced during
business analysis, design, and programming.

� A structured walkthrough is a peer-review process for testing the completeness and
accuracy of a project deliverable, such as a portion of the BRD.

� White-box tests are technical tests that are based on a knowledge of the inner
workings of the IT system.

Chapter 10 � Designing Test Cases and Completing the Project268

� The purpose of requirement-based testing is to find variances between the software
and the requirements. The business requirements document (BRD) acts as the
reference point for these tests. The term black-box tests is also used for these types
of tests, since the tester does not need to know anything about the internals of the
software, such as the code and table structure, to design and run them.

� Use-case scenario testing is one approach to requirements-based testing that tests
the various scenarios of each use case.

� A decision table shows only the net result of each test.

� When software is written, it is developed in modules, or units. In both structured
and OO environments, a plan must be put together to sequence the testing of these
units and their proper integration within the software. The process of planning and
executing these piecemeal tests is called unit testing.

� Boundary-value analysis is a technique for targeting test data most likely to reveal
bugs. The technique is based on the premise that the system is most error-prone at
points of change.

� Once the black-box tests have been completed, another battery of tests is executed.
These are called system tests. These are a grab-bag of tests that go beyond function-
ality. The purpose of system tests is to test compliance with the non-functional
requirements, also known as service-level requirements, or SLRs. The non-functional
requirements specify the required level of service—for example, the maximum
acceptable response time.

� Regression testing validates whether features that were supposed to be unaffected by
a new release still work as they should.

� Volume testing verifies whether the system can handle large volumes of data.

� Stress testing subjects the system to heavy loads within a short period of time.

� Usability testing looks for flaws in the human-factors engineering of the system.

� Security testing attempts to find holes in the system’s security procedures.

� Performance testing locates areas where the system does not meet its efficiency
objectives.

� Storage testing checks for cases where storage objectives are not met.

� Configuration testing checks for failure of the system to perform under all of the
combinations of hardware and software configurations allowed for in the objectives.

� Often, the goal of an IT project is to replace some part of an existing system.
The objective of compatibility testing is to verify whether the replacement software
produces the same result as the original modules (with allowance for new or
revised features) and is compatible with the existing system.

� Reliability testing checks for failure to meet specific reliability objectives.

Chapter Summary 269

� Recovery testing checks for failure of the recovery procedures to perform as stated
in the objectives.

� The BRD must include an implementation plan so that steps required when releasing
the system can be planned for in advance.

Endnotes
1Recall that an alternate flow is an alternative to the normal path of events for a use case; for
example, in the use case Withdraw Funds, the alternate flow is Maximum Daily Limit Exceeded.
An exception flow is a path taken when a non-recoverable error occurs, such as Communications
Down.

2For example, over and above that in the flows described previously.

3Boundary-value analysis provides rules for selecting input values within and outside of the domain.

4G. Myers, The Art of Software Testing, 1978, page 106.

Chapter 10 � Designing Test Cases and Completing the Project270

Chapter Objectives
As the project moves into the Construction phase, the developers (systems analyst, systems
architect, database administrator, and so on) start the work of adapting your business
model for technical use. On a waterfall project, this is the point at which your active
participation stops. On an iterative project, you continue gathering requirements during
the Construction phase, completing the requirements needed for the selected use-case
scenarios before they are implemented in an iteration. In either case, once design and
coding are under way, you need to be available to answer the questions that inevitably arise
during the development process. To assist you in communicating with the developers, this
chapter looks at some of the issues that occupy them as they turn your business model into
a design specification.

Tools and concepts that you’ll be introduced to in this chapter include the following:

� OO analysis patterns

� Visibility

� Control classes

� Boundary classes

� Sequence diagrams

� Communication diagrams

� Timing diagrams

� Deployment diagrams

� Layered architecture

271

What Developers Do
with Your Requirements

Chapter 11

� Interfaces

� Implementing OO using procedural languages

� Implementing OO using RDBMS

OO Patterns
Some problems are difficult to design a solution for, yet are common to many systems. The
idea of patterns is to provide a “best practices” solution for these common problems. A
pattern consists of a problem description, one or more diagrams (class diagrams, sequence
diagrams, and communication diagrams) that describe a design solution to the problem
and, often, a segment of code that implements the design. It is typically the systems ana-
lyst who adapts the business model by incorporating these patterns.

Examples
Following are some examples of OO patterns:

� The business structural model states that an object has many roles and that some
operations and attributes apply to all roles. The strategy pattern offers a combination
of aggregation and inheritance to standardize role handling.

� An object is composed of other objects that may be composed of other objects, and
so on. Any composition level may be skipped. If one object at any level needs to be
operated on, all the objects below it or above it will require a similar operation
(for example, a recall of all components). The composite pattern offers a combination
of aggregation and inheritance to turn this complicated issue into a simple design
solution.

Visibility
Visibility is a property that can be used to describe a class member.

Visibility determines whether other classes can refer to a class member, and whether other
objects can “see” (and therefore use) this attribute or operation.

Chapter 11 � What Developers Do with Your Requirements272

Member
A member of a class is an attribute or operation.

Example
The CashAccount class has an operation, DepositFunds(), that other classes use. This oper-
ation entails adjusting the general ledger, a process described in the internal operation
EnterDepositIntoGeneralLedger(). The systems analyst specifies the visibility of
DepositFunds() as Public, meaning that operations in other classes can refer to it. The
visibility of EnterDepositIntoGeneralLedger(), on the other hand, is specified as Private,
meaning that only operations of the CashAccount class can refer to it.

Visibility Options
The options for specifying visibility are as follows:

� Private: Code for the class may refer to the member by name. Code in other
classes may not. Specializations inherit the member but may not refer to it by
name. The symbol for private is a minus sign (–). For example, a specialized
CheckingAccount class inherits a private attribute, balance, from a generalized
Account class. Every CheckingAccount object will have a Balance attribute but the
attribute will be accessible only by operations defined for the Account class.

� Protected: The rules for a protected member are similar to those for a private
member, except that specializations may refer to the member by name. The symbol
for protected is a pound sign (#). For example, a specialized CheckingAccount class
inherits a protected attribute, #AccountNumber, from a generalized Account class.
Every CheckingAccount object will have an AccountNumber attribute and be
accessible to operations defined in the CheckingAccount class.

� Public: Any element may access the member. The symbol for public is a plus sign (+).

Visibility 273

What They Say:
Visibility: “The visibility attribute provides the means to constrain the usage of a named element,
either in namespaces or in access to the element. It is intended for use in conjunction with import,
generalization, and access mechanisms.1...VisibilityKind is an enumeration of the following literal
values: public; private; protected; package.”2 (UML)

What They Mean:
Visibility is a property of a model element such as a class member. Visibility may have only spe-
cific values.These values—Public, Private, Protected, and Package—describe whether the element
can be seen outside of the context in which it is defined.

� Package: The member is visible to all elements within the nearest enclosing package.
Outside the nearest enclosing package, the member is not visible. The symbol for
package is a tilde (~).

Control Classes
In this book, we have only dealt with entity classes. Developers add other types of classes
to the system, however. One of these is the control class. Ivar Jacobson introduced control
classes to address one of the shortcomings of OO3. He noted that while it is often easier
to modify OO systems than the older “structured” systems, some changes are more diffi-
cult in OO. In particular, OO makes it harder to change the sequencing of the operations
required by a system use case. The problem is that, in OO, these operations are scattered
among the classes involved in the use case instead of being listed in a single controlling
program. To correct the problem, he suggested the addition of a control class to encapsu-
late, in one software unit, the sequencing logic of a use case. As a rule of thumb, one
control class is introduced for each system use case.

Boundary Classes
Systems should be insulated as much as possible from changes in other systems. Otherwise,
a change in one would create an unacceptable ripple effect on others. The OO approach is
to define a boundary class for each external system. This creates a bottleneck to the other
system: The only way that the system under design is allowed to communicate with another
is by sending a message to the boundary object. The advantage of this approach is that any
changes or bugs affecting communication with the external system will be localized in the
boundary class—and, therefore, easy to fix or modify4. As a rule of thumb, one boundary
class is allocated for each external system and one for each interaction between a human
actor and a system use case, as depicted on the system use case diagrams.

Sequence Diagrams
A sequence diagram describes the sequence of operations during one scenario of a system
use case and determines which object carries out each operation.5 The UML categorizes
it as an interaction diagram—a diagram that highlights how objects interact with each other.

Some business analysts use sequence diagrams as an alternative to activity diagrams with
partitions (swimlanes). Instead of drawing one complex activity diagram to cover all
scenarios, the BA draws one simple sequence diagram for each scenario. Each diagram is
simple, since it describes only one scenario. The disadvantage of sequence diagrams for
this purpose is that they require the BA to work out not only which object performs each
action but also which object requests the action. This is often difficult to determine in a
business context. In addition, BAs tend to have more difficulty using this diagram than its

Chapter 11 � What Developers Do with Your Requirements274

counterpart, the activity diagram with partitions. For these reasons, sequence diagrams are
not advised for BA use. On the other hand, sequence diagrams are an excellent way to
design the distribution of operations among classes for programming purposes.

Example: A Sequence Diagram
Figure 11.1 shows how a systems analyst might attempt to design the object interactions
required for the steps within the Disburse Payments system use case required to create a
payment to a Peace Committee member. An excerpt from the use case follows:

System use case: Disburse Payments

2. Flow of Events

Basic Flow:

...

2.2 The user selects a case.

2.3 The system displays the amount payable for the case.

2.4 The system displays each Peace Committee member assigned to the case.

2.5 The system displays the Peace Committee member account owned by each of
the displayed Peace Committee members.

...

2.7 The user approves the disbursement.

2.8 The system creates payments for the case.

2.9 The system marks the case as Paid.

Using modeling tools (such as those in the Rational suite of products) the operations iden-
tified during the drawing of the sequence diagram can be automatically added to the classes
involved, making the design process easier.

The diagram in Figure 11.1 indicates the following:

� The convener selects a case on the Disbursement GUI (graphical user interface)
screen.

� The Disbursement GUI sends the message QueryCase() to the Disbursement
Control object, requesting it to query payment-related details about the case.

� The Disbursement Control object services this request by passing a number
of messages to the Case object. These include GetPaymentAmount(),
GetPcMember(), and GetPcAccount(). These are requests to retrieve payment
and Peace Committee member information relevant to the case. (To keep the
diagram simple, only one Peace Committee member account is shown, though
more are involved.)

Sequence Diagrams 275

� The convener approves the disbursement for the case.

� The GUI responds to the approval by sending the message CreatePayments() to the
Disbursement Control object.

� The Disbursement Control object responds by sending a Create() message to each
required Payment object. (The diagram only shows one of these.) Though not
shown on this draft of the diagram, payment details such as the destination and
amount of the payment are passed at this time as arguments.

� The Payment object sends a Withdraw() message to the cash account and a
Deposit() message to the Peace Committee member account.

� The Disbursement Control object finishes the process by sending the message
SetPaidStatus() to the Case object to indicate that payments have been made.

Later, the systems analyst could add more steps to the diagram to indicate how payments
are also made to the fund accounts.

Chapter 11 � What Developers Do with Your Requirements276

Figure 11.1
Designing object interactions with a sequence diagram.

Communication Diagrams
Like the sequence diagram, the communication diagram is categorized in the UML as an
interaction diagram. Both diagrams can show the sequencing of operations for a scenario
and indicate which object does which operation. However, each highlights a different aspect
of the collaboration: The communication diagram highlights structure—the ways in which
objects are linked to each other—while the sequence diagram highlights timing —the order
in which messages are sent between objects.

In a communication diagram, objects are connected by solid lines (links). The messages
are indicated as labeled arrows above the links. Each message is numbered to indicate
sequencing. The communication diagram in Figure 11.2 illustrates the scenario shown in
the previous sequence diagram shown in Figure 11.1.

Other Diagrams
The UML contains other diagrams you might come across occasionally. Following is a brief
introduction to two of these—the timing diagram and the deployment diagram.

Other Diagrams 277

Figure 11.2
Designing object interactions with a communication diagram.

Timing Diagrams
The timing diagram is a new UML 2 feature. It can be used to show the length of time that
an object stays in each state. For example, suppose that rules dictated that a Peace Gathering
had to spend 30 minutes in a fact-finding state, 60 minutes in deliberation, and 15 minutes
in closing. A timing diagram might show all of this, as shown in Figure 11.3.

Deployment Diagrams
Deployment diagrams indicate how the software is to be installed across systems—for
example, what will be installed on the server and what will be installed on the admin PCs.

Layered Architecture
Layered architecture is an approach to splitting up software into packages. The term refers
to breaking up a software application into distinct layers or tiers7. These levels are arranged
above one another, each serving distinct and separate tasks. Software in one tier may only
access software in another tier, according to strict rules. In an OO system, systems analysts
create class packages for each tier and populate these with classes that implement the archi-
tecture. For example, they might add a class to handle the saving and retrieving of objects
from the database.

Chapter 11 � What Developers Do with Your Requirements278

Timing Diagram
“Timing Diagrams are used to show interactions when a primary purpose of the diagram is to rea-
son about time. Timing diagrams focus on conditions changing within and among Lifelines along
a linear time axis. Timing diagrams describe behavior of both individual classifiers and interactions
of classifiers, focusing attention on time of occurrence of events causing changes in the modeled
conditions of the Lifelines.”6 (UML)

Figure 11.3
A timing diagram.

There are a number of approaches to layered architecture:

� Monolithic (One-tier)

� Two-tier

� Three-tier

� N-tier

Monolithic, Two-Tier, Three-Tier, and N-Tier Architecture
Any software application can be seen as consisting of three broad areas:

� Data logic: The software to manage the data

� Business (processing) logic: The software that enacts the business rules

� Presentation (interface) logic: The software that manages the presentation of the
output (such as screens)

In monolithic architecture, these three areas are all bundled together in a single application.
Monolithic architecture is often employed on mainframe systems.

The common approach for new systems is to separate the application into various layers,
or tiers. In two-tier architecture, there are two layers: a server (a central computer system)
and a client (one system at each desk). In the “thin client, fat server” variation on this theme,
the presentation logic and minimal business logic reside on the client system; the rest is on
the server. In “fat client, thin server,” the presentation logic and much of the business logic
reside on the client.

In three-tier architecture, there are three layers, or subsystems: a client system, loaded with
presentation logic; an application server8 with business logic; and a data server with data
logic.

Finally, in N-tier architecture any number (N) of levels is arranged, each serving distinct
and separate tasks.

Interfaces
Developers may also add to the classes introduced by the BA by designing interfaces. An
interface9 acts like a generalized class except that it has no attributes and no process logic;
only operation names and standard rules for invoking them are defined. Each class that
obeys the interface must conform to the interface’s rule regarding the operations. A class
that obeys the interface is said to be a type of the interface.

Layered Architecture 279

There are a number of ways to indicate an interface in the UML. The simplest way is to use
the simple box notation, with the stereotype <<Interface>>. The types are connected to
the interface with an arrow that looks like the generalization relationship, except that it is
dashed, as shown in Figure 11.410. The figure shows three different systems for checking
a person’s credit: Verify, CCCheck, and CCRater. Each must have methods for performing
the operations defined in the interface Bank-to-Bank Common Interface—but the methods
may differ from system to system.

Mix-Ins
A mix-in is a generalized class used to add functionality to any class that inherits from it,
such as the mix-in Saveable to Disk. Mix-ins are added to the model to avoid the problems
usually associated with multiple inheritance.

Implementing OO Using an OO Language
Once the systems analyst has added to and adapted the classes defined by the BA, the next
step is to create code that conforms to the model. When the target programming language
is OO-compliant (such as the .NET languages and C++), specifications for the classes and
their relationships, attributes, and operations can all be converted to code in a straight-
forward manner. In fact, tools such as Rational Rose can do this automatically. Some tools
rely on the class diagrams for code generation. Others rely on the state-machine diagrams.

Chapter 11 � What Developers Do with Your Requirements280

Interface
“A named set of operations that characterize the behavior of an element.” (UML 2)

Figure 11.4
An interface.

Implementing OO Using Procedural Languages
The developers may use object-oriented design approaches despite the fact that the target
programming language is written in a non-OO, procedural language such as COBOL.11

In fact, I worked in such an environment many years ago. The organization decided on this
path because it wanted to take advantage of OO’s reusability without having to convert to
a new language. Non-OO languages can be used so that they emulate OO languages. The
key is to use the available units—subroutines—and make them act like classes. In most
cases, however, OO design is usually used only when the implementing language is object-
oriented.

Implementing a Database from a
Structural OO Model Using an RDBMS
You’ve learned that the class diagrams provide guidance in the design of the database. OO
database management systems that support OO ideas such as inheritance do exist, but
currently, they are rarely used. Most organizations use another technology called relational
database management systems (RDBMS). Examples of RDBMS technology are DB2, SQL,
and Access.

RDBMS does not directly support OO features such as inheritance and class operations.
Nevertheless, with a little effort, you can implement the class diagrams of OO using
RDBMS; in fact this is commonly done. To do this, each entity class is implemented as a
table (file) in the RDBMS database. The attributes are implemented as fields. Extra attrib-
utes (called foreign keys) are added, when necessary, in order to link records to each other.

While RDBMS databases do not directly support inheritance and aggregation, they can be
adapted to behave as though they do. For example, each generalized and specialized class
is implemented as a table. Each specialized object appears twice: once as a record in the
generalized file and once in the specialized file. The records share the same unique identi-
fier (primary key).

Chapter Summary
In this chapter, you were introduced to advanced OO topics. Tools and concepts in this
chapter included the following:

� OO analysis patterns describe best practices for modeling commonly occurring
situations.

� Visibility defines the degree to which a model element may be accessed by other
elements.

� Control classes manage the sequencing of steps over the course of a use case.

Chapter Summary 281

� Boundary classes handle communication between the system and external systems.

� Sequence diagrams depict workflow for a particular scenario and are used primarily
in design.

� Communication diagrams depict the passing of messages between objects in a way
that highlight structure.

� Timing diagrams can depict how long an object stays in each state.

� Deployment diagrams indicate how software is to be installed.

� Layered architecture is an approach to splitting up software into distinct tiers.

� An interface defines the operations that classes that conform to it must be able to
support.

� OO models may be implemented as code using procedural languages and as RDBMS
tables even though those target development environments were not originally
designed to support OO.

Endnotes
1UML Superstructure Specification, v2.2, OMG, 2009, page 99.

2UML Superstructure Specification, v2.2, OMG, 2009, page 139.

3However, the control stereotype (used to identify this type of class) is not a predefined, standard
UML stereotype.

4Please note that boundary is not a predefined, standard UML stereotype.

5This is a feature it shares with activity diagrams with partitions.

6UML Superstructure Specification, v2.2, OMG, 2009, page 521.

7The terms layer and tier are often used synonymously. The term tier emphasizes the “one-above-
the-other” arrangement of the levels.

8Also called middle tier.

9This is not to be confused with classes that define user interfaces.

10Other notations are the lollipop and ball-and-socket notations.

11OO COBOL exists but is not widely used.

Chapter 11 � What Developers Do with Your Requirements282

Adapt the following process to your project-management methodology. For example, on
iterative projects, step 2 peaks during the Discovery phase, but continues afterward because
not all requirements are gathered before design and coding begin. As well, on such pro-
jects, an entire cycle of analysis, design, coding, and testing occurs during each iteration of
a phase. Moreover, on agile projects, the requirements are not baselined because they may
be changed at any time as long as they are not being implemented. (For a complete dis-
cussion of the impact of the lifecycle approach on BA activities, see the section “Adapting
the Noble Path” in Chapter 2, “Overview of BA Activities Throughout the Life Cycle” in
The Business Analyst’s Handbook, by this author.)

Please note that, in the following steps, artifacts created or revised by each activity are shown
in brackets.

283

The B.O.O.M. Process

Appendix A

1: Initiation
The purpose of the Initiation phase is to make the business case for the project and create
UI prototypes and architectural proofs of concept. (Prototypes at this stage are likely to be
disposable. Any proofs of concept are largely paper-based.)

1a) Model business use cases

i) Identify business use cases (business use-case diagram)

ii) Scope business use cases (activity diagram)

1b) Model system use cases

i) Identify actors (role map)

ii) Identify system use-case packages (system use-case diagram)

iii) Identify system use cases (system use-case diagram)

1c) Begin structural model (class diagrams for key business classes)

1d) Set baseline for Discovery (BRD/Initiation)

2: Discovery
The purpose of this phase is to conduct investigations leading to an understanding of the
solution’s desired behavior. Requirements analysis peaks during this phase but never
disappears entirely. During this phase, the BA elicits detailed requirements from stake-
holders, analyzes them, and documents them for verification by stakeholders and for use
by the developers. Architectural proofs of concept are also constructed during the Discovery
phase.

2a) Behavioral analysis

i) Describe system use cases (use-case description)

ii) Describe state behavior (state-machine diagram)

1. Identify states of critical objects

2. Identify state transitions

3. Identify state activities

4. Identify superstates

5. Identify concurrent states

Appendix A � The B.O.O.M. Process284

2b) Structural analysis (class and object diagrams): Perform in parallel with 2a

i) Identify entity classes

ii) Model generalizations

iii) Model transient roles

iv) Model whole/part relationships

v) Analyze associations

vi) Analyze multiplicity

vii) Link system use cases to the structural model

viii) Add attributes

ix) Add lookup tables

x) Distribute operations

xi) Revise class structure

2c) Specify testing (test plan/decision tables)

i) Specify white-box testing quality level

ii) Specify black-box test cases

iii) Specify system tests

2d) Specify implementation plan (implementation plan)

2e) Set baseline for Construction (BRD/Discovery)

2: Discovery 285

This page intentionally left blank

Following is a template for a business requirements document (BRD). The document
includes many best practices in use today. Don’t be limited by the template, however; adapt
it to your needs, adding or subtracting sections as required.

Once your organization has settled on a template, adjust it regularly based on lessons
learned from previous projects. After each project, ask, “What type of requirements docu-
mentation did we miss on this project?”“Where did we go into more detail than we needed
to?” Based on the responses to these questions, your organization may decide to add,
contract, or remove entire sections of the BRD.

The best way to use the template is to allow for some flexibility: Allow individual projects
to deviate from the template, but define how and when deviations may occur, and require
any project that uses an altered template to justify the deviation. The BRD template that
follows gives each technique covered in this book a “home” in the final requirements
documentation.

Keep in mind, as well, that the BRD may not actually reside in one place, but may be assem-
bled from separate components, with different assemblies geared for different audiences.

287

Business Requirements
Document (BRD)
Template

Appendix B

Appendix B � Business Requirements Document (BRD) Template288

Business Requirements Document (BRD)

Project No.: _________

Production Priority: ___

Target Date: _________

Approved by:

______________________________ _________________________

Name of user, department Date

______________________________ _________________________

Name of user, department Date

Prepared by:

______________________________ _________________________

Name of user, department Date

Filename: _____________________

Version No.: __________________

289

Table of Contents
� Version Control
� Revision History
� RACI Chart

� Executive Summary
� Overview
� Background
� Objectives
� Requirements
� Proposed Strategy
� Next Steps

� Scope
� Included in Scope
� Excluded from Scope
� Constraints
� Impact of Proposed Changes

� Risk Analysis
� Technological Risks
� Skills Risks
� Political Risks
� Business Risks
� Requirements Risks
� Other Risks

� Business Case
� Timetable
� Business Use Cases
� Business Use-Case Diagrams
� Business Use-Case Descriptions

� Actors
� Workers
� Business Actors
� Other Systems
� Role Map

Appendix B � Business Requirements Document (BRD) Template290

� User Requirements
� System Use-Case Diagrams
� System Use-Case Descriptions

� State-Machine Diagrams
� Nonfunctional Requirements
� Performance Requirements
� Stress Requirements
� Response-Time Requirements
� Throughput Requirements

� Usability Requirements
� Security Requirements
� Volume and Storage Requirements
� Configuration Requirements
� Compatibility Requirements
� Reliability Requirements
� Backup/Recovery Requirements
� Training Requirements

� Business Rules
� State Requirements
� Testing State
� Disabled State

� Structural Model
� Class Diagrams: Entity Classes
� Entity-Class Documentation

� Test Plan
� Implementation Plan
� Training
� Conversion
� Scheduling of Jobs
� Rollout

� End-User Procedures
� Post-Implementation Follow-Up
� Other Issues
� Sign-Off

291

Version Control
Completing the following table makes it easy to come back later and track what
changes were made to the requirements at each point in the project, who made
them, and why they were made. This is a way of implementing change control on
the BRD.

Revision History

RACI Chart for This Document
The RACI chart identifies the persons who need to be contacted whenever changes
are made to this document. RACI stands for responsible, accountable, consulted,
and informed. These are the main codes that appear in a RACI chart, used here
to describe the roles played by team members and stakeholders in the production
of the BRD. They are adapted from charts used to assign roles and responsibili-
ties during a project.

Appendix B � Business Requirements Document (BRD) Template292

The following describes the full list of codes used in the table:

Codes Used in RACI Chart
* Authorize Has ultimate signing authority for any changes to the document.

R Responsible Responsible for creating this document.

A Accountable Accountable for accuracy of this document

(for example, the project manager).

S Supports Provides supporting services in the production of this document.

C Consulted Provides input (such as an interviewee).

I Informed Must be informed of any changes.

RACI Chart

Executive Summary
The “Executive Summary” section should be a précis of the entire document.
It should summarize, in a page or two, the context for the document (why it was
written), the main issues raised within, and the main conclusions of the document.
The purpose of the summary is to provide just enough detail for a high-level
stakeholder (who may not have time to read the whole thing) and to help
any other potential reader ascertain whether it is worth reading the rest of the
document.

293

This is a one-page summary of the document, divided into the following
subsections.

Overview
This subsection of Executive Summary is a one-paragraph introduction that
explains the nature of the project.

Background
This subsection of Executive Summary provides details leading up to the project
that explain why the project is being considered. Discuss the following where
appropriate: marketplace drivers, business drivers, and technology drivers.

Objectives
This subsection of Executive Summary details the business objectives addressed
by the project.

Requirements
This subsection of Executive Summary is a brief summary of the requirements
addressed in this document.

Proposed Strategy
This subsection of Executive Summary recommends a strategy for proceeding
based on alternatives.

Next Steps
This subsection of Executive Summary describes specific actions to be taken next.
Complete the following for each action.

� Action: Describe the specific action to be taken.

� Responsibility: State who is responsible for taking this action.

� Expected Date: State when the action is expected to be taken.

Appendix B � Business Requirements Document (BRD) Template294

Scope
The “Scope” section defines what is to be included and excluded from the pro-
ject, what has been predetermined about the project (constraints), the business
processes affected by the project, and the impact of the project on stakeholders.

Included in Scope
This subsection of Scope is a brief description of business areas covered by the
project.

Excluded from Scope
This subsection of Scope briefly describes business areas not covered by the
project.

Constraints
This subsection of Scope documents predefined requirements and conditions.

Impact of Proposed Changes
This subsection of Scope describes the impact of proposed changes in the business
area. Use the following table to document the impact.

295

Risk Analysis
In this section of the BRD, you describe risks. A risk is something that could affect
the success or failure of a project. Analyze risks regularly as the project progresses.
While you may not be able to avoid every risk, you can limit each risk’s impact
on the project by preparing for it beforehand.

For each risk, you’ll note the likelihood of its occurrence, the cost to the project
if it does occur, and the strategy for handling the risk. Strategies include the
following

� Avoid: Do something to eliminate the risk.

� Mitigate: Do something to reduce damage if risk materializes.

� Transfer: Pass the risk up or out to another entity.

� Accept: Do nothing about the risk. Accept the consequences.

Technological Risks
This subsection of “Risk Analysis” specifies new technology issues that could affect
the project.

Skills Risks
This subsection of “Risk Analysis” specifies the risk of not getting staff with the
required expertise for the project.

Political Risks
This subsection of “Risk Analysis” identifies political forces that could derail or
affect the project.

Business Risks
This subsection of “Risk Analysis” describes the business implications if the pro-
ject is canceled.

Requirements Risks
This subsection of “Risk Analysis” describes the risk that you have not correctly
described the requirements. List areas whose requirements were most likely to
have been incorrectly captured.

Appendix B � Business Requirements Document (BRD) Template296

Other Risks
In this subsection of “Risk Analysis,” document any other risks not covered in the
prior subsections.

Business Case
Describe the business rationale for this project. This section may contain esti-
mates on cost/benefit, return on investment (ROI), payback (length of time for
the project to pay for itself), market-share benefits, and so on. Quantify each cost
or benefit so that business objectives may be measured after implementation.
Revise estimates periodically as the project progresses.

Timetable
In this section of the BRD, provide a timetable for the project.

Business Use Cases
Complete this section if the project involves changes to the workflow of end-to-
end business processes. Document each end-to-end business process affected by
the project as a business use case. If necessary, describe existing workflow for the
business use case as well as the new, proposed workflow.

Business Use-Case Diagrams
Business use-case diagrams describe stakeholder involvement in each business
use case.

Business Use-Case Descriptions
Describe each business use case with text and/or an activity diagram. If you are
documenting with text, use an informal style or the use-case template described
in the upcoming “User Requirements” section.

Actors
In this section, describe the actors (people, organizations, or other entities) that
participate in the execution of business processes, that interact with the business
and/or interact with the IT system.

297

Workers
List and describe stakeholders who act within the business in carrying out
business use cases.

Business Actors
List and describe external parties, such as customers and partners, who interact
with the business.

Other Systems
List computer systems potentially affected by this project. Include any system that
will be linked to the proposed system.

Role Map
The role map describes the roles played by actors (users and external systems)
that interact with the IT system.

Appendix B � Business Requirements Document (BRD) Template298

User Requirements
This section describes requirements for automated processes from a user
perspective.

System Use-Case Diagrams
System use-case diagrams describe which users use which feature and the
dependencies between use cases.

System Use-Case Descriptions
During the Initiation phase, only short descriptions of the use cases are pro-
vided. During the Discovery phase, the following template is filled out for each
medium- to high-risk use case. Low-risk use cases may be described infor-
mally. This template may also be used to document the business use cases
included earlier in the BRD.

Use-Case Description Template
1. Use Case: The use-case name as it appears on system use-case diagrams

Perspective: Business use case/system use case

Type: Base use case/included/extending/generalized/specialized

1.1 Brief Description: Describe the use case in approximately one paragraph.

1.2 Business Goals and Benefits: Briefly describe the business rationale for the
use case.

1.3 Actors

1.3.1 Primary Actors: Identify the users or systems that initiate the use case.

1.3.2 Secondary Actors: List the users or systems that receive messages from
the use case. Include users who receive reports or online messages.

1.3.3 Off-Stage Stakeholders: Identify non-participating stakeholders
who have interests in this use case.

1.4 Rules of Precedence

1.4.1 Triggers: Describe the event or condition that “kick-starts” the use
case (for example, “User calls Call Center; inventory low”). If the
trigger is time-driven, describe the temporal condition, such as
“end-of-month.”

1.4.2 Pre-Conditions: List conditions that must be true before the use
case begins. (If a condition forces the use case to occur whenever it
becomes true, do not list it here; list it as a trigger.)

299

1.5 Post-Conditions

1.5.1 Post-Conditions on Success: Describe the status of the system after
the use case ends successfully. Any condition listed here is guaran-
teed to be true on successful completion.

1.5.2 Post-Conditions on Failure: Describe the status of the system after
the use case ends in failure. Any condition listed here is guaranteed
to be true when the use case fails as described in the exception flows.

1.6 Extension Points: Name and describe points at which extension use cases
may extend this use case.

1.6.1 Example of Extension Point Declaration: “Preferred Customer:
2.5–2.9.”

1.7 Priority

1.8 Status: Your status report might resemble the following:

Use-case brief complete: 2005/06/01.

Basic flow + risky alternatives complete: 2005/06/15

All flows complete: 2005/07/15

Coded: 2005/07/20

Tested: 2005/08/10

Internally released: 2005/09/15

Deployed: 2005/09/30

1.9 Expected Implementation Date

1.10 Actual Implementation Date

1.11 Context Diagram: Include a system use-case diagram showing this use
case, all its relationships (includes, extends, and generalizes) with other use
cases, and its associations with actors.

2. Flow of Events

Basic Flow

2.1 (Insert basic flow steps.)

Alternate Flows

2.X.a (Insert the Alternate Flow Name): The alternate flow name should
describe the condition that triggers the alternate flow. “2.X” is the step
number within the basic flow where the interruption occurs. Describe the
steps in paragraph or point form.

Appendix B � Business Requirements Document (BRD) Template300

Exception Flows

2.Xa (Insert the Exception Flow Name): The exception flow name should describe
the condition that triggers the exception flow. An exception flow is one
that causes the use case to end in failure and for which “post-conditions
on failure” apply. “2.X” is the step number within basic flow where the
interruption occurs. Describe the steps in paragraph or point form.

3. Special Requirements: List any special requirements or constraints that apply
specifically to this use case.

3.1 Non-Functional Requirements: List requirements not visible to the user
during the use case—security, performance, reliability, and so on.

3.2 Constraints: List technological, architectural, and other constraints on
the use case.

4. Activity Diagram: If it is helpful, include an activity diagram showing
workflow for this use case or for select parts of the use case.

5. User Interface: Initially, include description/storyboard/prototype only to
help the reader visualize the interface, not to constrain the design. Later,
provide links to screen-design artifacts.

6. Class Diagram: Include a class diagram depicting business classes, relation-
ships, and multiplicities of all objects participating in this use case.

7. Assumptions: List any assumptions you made when writing the use case.
Verify all assumptions with stakeholders before sign-off.

8. Information Items: Include a link or reference to documentation describing
rules for data items that relate to this use case. Documentation of this sort is
often found in a data dictionary. The purpose of this section and the follow-
ing sections is to keep the details out of the use case proper so that you do not
need to amend it every time you change a rule.

9. Prompts and Messages: Any prompts and messages that appear in the use
case proper should be identified by name only, as in “Invalid Card Message.”
The “Prompts and Messages” section should contain the actual text of the
messages or direct the reader to the documentation that contains text.

10. Business Rules: The “Business Rules” section of the use-case documentation
should provide links or references to the specific business rules that are active
during the use case. An example of a business rule for an airline package is
“Airplane weight must never exceed the maximum allowed for its aircraft
type.” Organizations often keep such rules in an automated business rules
engine or manually in a binder.

11. External Interfaces: List interfaces to external systems.

12. Related Artifacts: The purpose of this section is to provide a point of reference
for other details that relate to this use case, but would distract from the overall
flow. Include references to artifacts such as decision tables, complex algorithms,
and so on.

301

State-Machine Diagrams
Insert state-machine diagrams describing the events that trigger changes of state
of significant business objects.

Nonfunctional Requirements
Describe across-the-board requirements not covered in the use-case documen-
tation. Details follow.

Performance Requirements
Describe requirements relating to the system’s speed.

Stress Requirements

This subsection of performance requirements describes the degree of simultaneous
activity that the system must be able to support. For example, “The system must
be able to support 2,000 users accessing financial records simultaneously.”

Response-Time Requirements

This subsection of performance requirements describes the maximum allowable
wait time from the moment the user submits a request until the system comes
back with a response.

Throughput Requirements

This subsection of performance requirements describes the number of transac-
tions per unit of time that the system must be able to process.

Usability Requirements
Describe quantitatively the level of usability required. For example, “A novice
operator, given two hours of training, must be able to complete the following
functions without assistance....” Also, refer to any usability standards and guide-
lines that must be adhered to.

Security Requirements
Describe security requirements relating to virus protection, firewalls, the functions
and data accessible by each user group, and so on.

Appendix B � Business Requirements Document (BRD) Template302

Volume and Storage Requirements
Describe the maximum volume (that is, the number of accounts) that the
system must be able to support, as well as random access memory (RAM) and
disk restrictions.

Configuration Requirements
Describe the hardware and operating systems that must be supported.

Compatibility Requirements
Describe compatibility requirements with respect to the existing system and
external systems with which the system under design must interact.

Reliability Requirements
Describe the level of fault-tolerance required by the system.

Backup/Recovery Requirements
Describe the backup and recovery facilities required.

Training Requirements
Describe the level of training required and clearly state which organizations
will be required to develop and deliver training programs.

Business Rules
List business rules that must be complied with by the solution. For example,
a flight-reservation system might have a rule that the baggage weight on an
aircraft must never exceed a given maximum. If an external rules engine is
being used, this section should refer the reader to the location of these rules.

State Requirements
Describe how the system’s behavior changes when in different states. Describe
the features that will be available and those that will be disabled in each state.

Testing State
Describe what the user may and may not do while the system is in the test
state.

303

Disabled State
Describe what is to happen as the system goes down (that is, how it “dies grace-
fully”). Clearly define what the user will and will not be able to do.

Structural Model
The structural model describes business concepts and categories of business
objects that are tracked by the business and that must be tracked by the solution.
The model also includes business rules pertaining to those objects, such as the
rule that an account may be tied to more than one customer.

Class Diagrams: Entity Classes
Insert class diagrams representing classes of business objects and relationships
among the classes. This section centralizes rules that govern business objects, such
as the numerical relationships among objects, the operations associated with each
object, and so on.

Entity Class Documentation
Insert documentation to support each of the classes that appear in the class
diagrams. Not every class needs to be fully documented. First do a risk analysis
to determine where full documentation would most benefit the project. Complete
the following for each class you document.

� Class Name: Name the class, as it appears in the structural model.

� Alias: List any other names by which the class is known within the
business domain.

� Description: Provide a brief description of the class.

� Example: Provide an example of an object of this class.

� Attributes: These may be documented in a table as follows:

Appendix B � Business Requirements Document (BRD) Template304

When your requirements are complete up to this point and approved by the
appropriate people, submit them to developers. You can then work on the test
plan, implementation plan, and end-user procedures.

Test Plan1

To standardize the testing, you should develop a test-plan document for analysts
to follow when constructing the project’s test plans. Although every project is dif-
ferent, the following may be used as a guideline. Each project should consider the
following stages during testing:

1. Submit the requirements to the technical team. The technical team com-
pletes development. Concurrently, the BA builds numbered test scenarios
for requirements-based testing. Consider using decision tables to identify
scenarios and boundary-value analysis to select test data. The technical
team conducts white-box testing to verify whether programs, fields, and
calculations function as specified. The BA or technical team specifies the
required quality level for white-box testing, such as multiple-condition
coverage.

2. Perform requirements-based testing. The BA or dedicated quality-
assurance (QA) staff administers or supervises tests to prove or disprove
compliance with requirements. Ensure that all formulae are calculated
properly. Describe principles and techniques to be used in black-box test-
ing, such as structured testing guidelines and boundary-value analysis.

3. Conduct system testing. Ensure that the integrity of the system and data
remain intact. For example:

� Regression test: Retest all features (using a regression test bed).

� Stress test: Test multiple users at the same time.

� Integration tests: Make sure that the changes do not negatively affect
the overall workflow across IT and manual systems.

� Volume test: Test the system with high volume.

4. Perform user-acceptance testing. Involve the end-users at this stage.
Choose key users to review the changes in the test environment. Use the
testing software as a final check.

305

Implementation Plan
In this section of the BRD, describe plans for deploying the solution into
production.

Training
In this subsection of “Implementation Plan,” describe training plans. For example:

� Specify who is responsible for training.

� Specify who is to be trained.

� Specify how training will be done.

Conversion
In this subsection of “Implementation Plan,” describe plans for converting
and upgrading the existing infrastructure, data, and software. For example:

� Specify existing data that must be converted.

� Specify how software will be promoted to new release.

� Specify plans for granting privileges to the users.

Scheduling of Jobs
In this subsection of “Implementation Plan,” specify plans for adding batch jobs
to the production run. The plans should include instruction regarding the
following issues:

� Advising IT operations of which jobs to add to the production run.
Specify the frequency of the run: daily, weekly, monthly, quarterly,
semi-annually, or annually.

� Ensuring that the job is placed in the correct sequence.

� Advising IT operations of the reports to be printed and the distribution
list for reports and files.

Rollout
Advise all affected users when the project is promoted.

Appendix B � Business Requirements Document (BRD) Template306

End-User Procedures
Write up the procedures for the affected departments. Distribute this document to
members of those departments in addition to providing any hands-on training.

Post-Implementation Follow-Up
Follow up within a reasonable time frame after implementation to ensure that
the project is running successfully. Determine whether any further enhancements
or changes are needed to ensure success of the project.

Other Issues
In this section of the BRD, add any other issues that were not addressed in prior
sections.

Sign-Off
Use this section of the BRD for sign-offs on the requirements. Sign-offs should
include the sponsor and representatives of the solution provider.

Endnote
1These requirements are often described in a separate test plan. If they are not addressed elsewhere,
describe them here in the BRD.

307

Business Requirements
Document Example:
CPP Case Study

Appendix C

Appendix C � Business Requirements Document Example: CPP Case Study308

Business Requirements Document (BRD)

Project No.: _________

Production Priority: ___

Target Date: _________

Approved by:

______________________________ _________________________

Name of user, department Date

______________________________ _________________________

Name of user, department Date

Prepared by:

______________________________ _________________________

Name of user, department Date

Filename: _____________________

Version No.: __________________

309

Table of Contents
� Version Control

� Revision History

� RACI Chart for This Document

� Executive Summary

� Overview

� Background

� Objectives

� Requirements

� Proposed Strategy

� Next Steps

� Scope

� Included in Scope

� Excluded from Scope

� Constraints

� Impact of Proposed Changes

� Risk Analysis

� Technological Risks

� Skills Risks

� Political Risks

� Business Risks

� Requirements Risks

� Other Risks

� Business Case

� Timetable

� Business Use Cases

� Business Use-Case Diagrams

� Business Use-Case Descriptions

� Business Use Case: Manage Case (Dispute)

� Business Use Case: Administer Payments

Appendix C � Business Requirements Document Example: CPP Case Study310

� Actors

� Workers

� Business Actors

� Other Systems

� Role Map

� User Requirements

� System Use-Case Diagrams

� System Use-Case Descriptions

� Package: Manage Administration

� Package: Administer Payments

� State-Machine Diagrams

� State Machine Diagram: Case

� Nonfunctional Requirements

� Performance Requirements

� Stress Requirements

� Response-Time Requirements

� Throughput Requirements

� Usability Requirements

� Security Requirements

� Volume and Storage Requirements

� Configuration Requirements

� Compatibility Requirements

� Reliability Requirements

� Backup/Recovery Requirements

� Training Requirements

� Business Rules

� State Requirements

� Testing State

� Disabled State

311

� Structural Model

� Main Entity-Class Diagram

� Package: People and Organizations

� Package: Products and Services

� Package: Events/Transactions

� Package: Lookup Tables

� Account Ownership

� Entity-Class Documentation

� Test Plan

� Implementation Plan

� Training

� Conversion

� Scheduling of Jobs

� Rollout

� End-User Procedures

� Post-Implementation Follow-Up

� Other Issues

� Sign-off

Appendix C � Business Requirements Document Example: CPP Case Study312

Version Control

Revision History

RACI Chart for This Document
* Authorize This individual has ultimate signing authority for any changes

to the document.

R Responsible This individual is responsible for creating this document.

A Accountable This individual is accountable for the accuracy of this document

(e.g., project manager).

S Supports This individual provides supporting services in the production

of this document.

C Consulted This individual provides input (interviewee, etc.).

I Informed This individual must be informed of any changes.

313

Executive Summary

Overview
This project is for a software system to govern the tracking and reporting of cases
by the Community Peace Program (CPP).

Background
The project is being developed for the Community Peace Program (CPP), a South
African non-profit organization that provides infrastructure for community-
based justice systems based on the model of restorative justice. The main objec-
tive of the CPP is to provide an effective alternative to the court system. Its
advantages are improved cost-effectiveness and a decreased recurrence rate, since
problems are treated at their source. All parties to a dispute must consent to hav-
ing the case diverted to the CPP. The advantage to the perpetrator is the avoid-
ance of incarceration and other severe punishment; for the complainant, the
advantages lie in the possibility for a true resolution to the problem and a
decreased likelihood that the problem will recur. The advantages to the justice
system are as follows:

� A reduction in case volume due to the offloading of cases to the CPP and
a decrease in recurrence rates.

� A decrease in the cost of processing a case.

The system is being deployed in the townships of South Africa under the auspices
of the CPP and with the support of the Justice Department. Similar approaches
are being used throughout the world—for example, the Forum, in use by Canada’s
Royal Canadian Mounted Police (RCMP).

The CPP operates by working with local communities to set up Peace Committees.
Most of these are currently in townships on the Cape Town peninsula. Each Peace
Committee is composed of “peacemakers”—members of the community who are
trained in conflict-resolution procedures based on principles of restorative
justice. The complainants and accused must all agree to adhere to the procedure
or the case is passed on to the state justice system.

Due to increasing demand for its services in conflict resolution, the CPP is under-
going a rapid expansion. Current manual practices will not be able to keep up
with the expected rise in case volume.

Appendix C � Business Requirements Document Example: CPP Case Study314

Objectives
The most urgent need is for timely statistics regarding cases handled by the
CPP. Because of the anticipated increase in caseload, these statistics will be difficult
to derive using the current manual systems. Timely statistics will be essential in
justifying the project to its funders. Also, the tracking of funds disbursement and
monitoring of cases will become increasingly difficult as the program expands.

Requirements
The project will leave current manual systems in place for the initial recording of
case information up to and including the conduct of a Peace Gathering and the
completion of subsequent monitoring. Workflow after that point will be within
the scope of the project—i.e., recording of case data, validation of CPP procedures,
disbursement of payments, and the generation of statistical reports.

Proposed Strategy
An iterative SDLC will be employed as follows: The business analyst(s) will analyze
all use cases at the start for the project (the Discovery phase); the design and cod-
ing will proceed iteratively. In the first iteration, general administration and case
tracking will be developed. In the second iteration, payments will be disbursed and
reports generated.

Next Steps
� Action: Select software developer

� Responsibility: J. Carter

� Expected Date: One month after acceptance of this document

Scope

Included in Scope
The system will provide statistical reports for use by funders. Also, it will provide
limited tracking of individual cases to the degree required for statistics and, wher-
ever possible, in a manner that will facilitate expansion of the system to include
complete case monitoring. The project includes manual and automated processes.
The system will encompass those activities that occur after a case has been resolved.

315

These are primarily the recording of case data, the disbursement of payments,
and the generation of reports. CPP members will be the only direct users of this
system.

Excluded from Scope
The system becomes aware of a case only when it has been resolved. All activities
prior to this point are not included in this project—i.e., it excludes the tracking
of cases from the time of reporting, convening of Peace Gathering, and monitor-
ing of cases. The activities will continue to be performed manually, although the
manual forms will be changed to comply with new system requirements.

Constraints
1. Eighty-percent match (minimum) between CPP’s needs and COTS

(commercial-off-the-shelf) product(s).

2. One integrated solution is preferred. No more than two COTS products
should be needed.

3. M. Williams will be main liaison for the project.

4. Final approval for a system is estimated to take six weeks to two months.

Impact of Proposed Changes

Business New? Desired Current Stakeholders/ Priority
Use Case Functionality Functionality Systems

(If a Change)

Manage Yes General Manual systems CPP general High
administration administrative only in place administration

functions, e.g.,
creation/updating
of Peace
Committees,
members, etc.

Manage case Yes Manage a case: Manual systems Peace High
identify new cases, only in place Committee,
update case facilitator,
information, etc. monitor,

convener

Appendix C � Business Requirements Document Example: CPP Case Study316

Business New? Desired Current Stakeholders/ Priority
Use Case Functionality Functionality Systems

(If a Change)

Administer Yes Make payments Manual systems Convener, Peace Medium
payments to individuals who only in place Committee

assisted in a case member, AP
and to various system
funds

Generate Yes Report on cases Manual systems Any worker High
reports by region and by only in place (members of the

period; compile CPP), government
stats on caseload, body (any
cases per type of governmental
conflict, etc. organization

receiving reports),
funder

Risk Analysis
Strategies for dealing with risk include the following:

� Avoid: Do something to eliminate the risk.

� Mitigate: Do something to reduce damage if risk materializes.

� Transfer: Pass the risk up or out to another entity.

� Accept: Do nothing about the risk. Accept the consequences.

Technological Risks
� Risk: Difficulty linking database management system (DBMS) to pro-

gramming language. Programmers have had experience using proposed
DBMS but not with accessing it from proposed programming language.

� Likelihood: Medium.

� Cost: Project delays.

� Strategy: Mitigate. Build early proof-of-concept in order to iron out
problems early.

Skills Risks
TBD.

317

Political Risks
� Risk: Source of funding for the organization discontinued. Funding for

this organization is provided by a foreign government and is granted only
on an annual basis after yearly inspections of the organization and based
on the government’s policy toward foreign aid.

� Likelihood: Low.

� Cost: Shutting down of the organization.

� Strategy:

� Avoid: Avoid through regular project reports to funders and lobbying
of government ministers.

� Mitigate: Search out “plan B” funders: University of Cape Town School
of Governance.

Business Risks
� Risk: IT project cancelled.

� Likelihood: Medium.

� Cost: Increase in administration costs to handle growing volume. Inabil-
ity to produce timely progress reports may lead to loss of funder.

� Strategy: Mitigate. Plan early release of highest-priority system use cases.

Requirements Risks
� Risk: Payment disbursement rules improperly documented. Rules regard-

ing payments made due to a case are volatile and complex and therefore
may not be accurately described to programmers.

� Likelihood: High.

� Cost: Faulty payments, software modifications.

� Strategy: Plan structured walkthroughs with stakeholders. Review again
before coding begins.

Other Risks
TBD.

Appendix C � Business Requirements Document Example: CPP Case Study318

Business Case
� Initial investment: Two person-years @ US$50,000/yr = $100,000.

Hardware: Use existing PCs at office location.

� Annual cost: One new half-time position, IT maintenance staff =
US$25,000/yr.

� Annual benefits: Reduce administration staff by two due to automatic
generation of reports to funders and increased efficiency of case tracking
= US$60,000/yr.

� Return on investment (ROI): ([Annual benefit] – [Annual cost])/
[Initial investment] = (60,000 – 25,000)/100,000 = 35%.

� Payback period: [Initial investment]/([Annual benefit] – [Annual cost])
= 100,000/(60,000–25,000) = 2.9 or approximately 3 years.

These numbers are expected to improve over the years as the project expands,
since the efficiencies of the IT system relative to a manual system are more
pronounced the greater the volume of the cases.

Timetable
� Discovery: Complete 08/2011

� Construction: TBD

� Final V&V: TBD

� Closeout: TBD

319

Business Use Cases

Business Use-Case Diagrams

Business Use-Case Descriptions

Business Use Case: Manage Case (Dispute)

(Semi-formal style)

Pre-condition: A Peace Committee has been established in the township.

Post-conditions on success: A case report has been prepared.

Flow:

1. The Peace Committee in the area initiates a Peace Gathering.

2. The Peace Committee prepares an individual interview report for each
party to the dispute.

3. Once all reports have been taken, the facilitator summarizes the reports to
the Peace Gathering.

Appendix C � Business Requirements Document Example: CPP Case Study320

4. The facilitator verifies the facts in the reports with those present.

5. The facilitator solicits suggestions from the gathering.

6. The facilitator solicits a consensus for a plan of action.

7. If the gathering has decided to refer the case to the police, the facilitator
escorts the parties to the police station, after which the convener prepares
a case report as per step 10.

8. If, on the other hand, a consensus has been reached, the facilitator
appoints a monitor.

9. The monitor performs ongoing monitoring of the case to ensure its terms
are being met.

10. When the deadline for monitoring has been reached, the ongoing moni-
toring immediately ends. At this time, if the conditions of the case have
been met, the convener prepares a case report. If the conditions have
not been met, then the process begins again (return to step 1).

10.1 The conditions described in step 10 do not apply to cases referred
to police. That is, once the parties have been escorted to the police,
a case report is always prepared.

Activity diagram with partitions for business use case Manage Case.

321

Business Use Case: Administer Payments

(Semi-formal style)

Pre-condition: A case report has been submitted.

Post-conditions on success: Payments have been made to funds and to accounts
of Peace Committee members involved in the case.

Flow:

1. The convener reviews the case report to determine whether rules and
procedures have been followed.

2. If rules and procedures have been followed:

a) The convener marks the case as payable.

b) The convener then disburses payments to the various funds and to the
accounts of Peace Committee members who worked on the case.

c) The existing accounts payable system actually applies the payments.
(Constraint: The AP system must continue to be used for this purpose
when the project is implemented.)

3. If the rules and procedures have not been followed, the convener marks
the case as non-payable.

Activity diagram with partitions for business use case Administer Payments.

Appendix C � Business Requirements Document Example: CPP Case Study322

Actors

Workers

Department/Position General Impact on Project

Convener (Member of the CPP.) Will use IT to update cases and administer
payments.

CPP General Admin (Member of the CPP.) Will use IT to perform administrative
functions such as updating Peace Committees and members in
the system.

Business Actors

Actor General Impact on Project

Facilitator A member of the community trained to facilitate Peace
Gatherings. Current manual processes will remain with slight
changes to forms as required for reporting purposes.

Monitor A member of the community assigned to monitor parties’
compliance with plan of action agreed to during Peace
Gathering. Current manual process will remain in place.

Peace Committee An organization set up within a community and consisting of
local members of the community, trained by the CPP to assist in
dispute resolution. Current manual process will remain in place.
Will need to report to head office about any changes to the
organization, membership, etc.

Peace Committee member A member of a Peace Committee. A local, trained by the CPP to
assist in dispute resolution. Will receive notification of payment
for services by the IT system.

Government body Represents any government organization that receives reports
from the new system.

Funder Source of CPP funding. Will receive analytical reports from IT
system.

Other Systems

System General Impact of Project on External System

AP System Existing system for tracking accounts payable. This system must
remain in place.

323

Role Map

User Requirements

System Use-Case Diagrams

Appendix C � Business Requirements Document Example: CPP Case Study324

325

System Use-Case Descriptions

Package: Manage Administration

Following is an example of a brief description used for a low-risk use case.

� System use case: Update Peace Committees

� Description: Add/change/delete Peace Committees; update Peace
Committee membership.

Package: Administer Payments

Following is an example of a formal use-case description:

System Use Case: Review Case Report
1. Use Case: Review Case Report

Perspective: System use case

Type: Base use case

1.1 Brief Description: Review a case report in order to determine whether it is
payable based on adherence to rules and procedures. Mark case as
payable/non-payable.

1.2 Business Goals and Benefits: IT tracking of payments will allow for
generation of up-to-date reports to funders upon request, required for
continuance of funding for the organization.

1.3 Actors

1.3.1 Primary Actors: Convener

1.3.2 Secondary Actors: N/A

1.3.3 Off-Stage Stakeholders: Funders

1.4 Rules of Precedence

1.4.1 Triggers: Convener calls up Review option.

1.4.2 Pre-conditions: Case has transitioned from Monitored state and
monitoring conditions have been met, or case has transitioned from
Referred to Police state. Case must not have already been reviewed.

1.5 Post-conditions

1.5.1 Post-conditions on Success: Case is marked as Reviewed and
prevented from being reviewed again.

1.5.2 Post-conditions on Failure

1.6 Extension Points

1.7 Priority: High

Appendix C � Business Requirements Document Example: CPP Case Study326

1.8 Status

Use-case brief complete: 2012/06/01

Basic flow + risky alternatives complete: 2012/06/15

All flows complete: 2012/07/15

1.9 Expected Implementation Date: TBD

1.10 Actual Implementation Date: TBD

1.11 Context Diagram

2. Flow of Events

Basic Flow:

2.1 The system displays a list of resolved cases that have not been reviewed.

2.2 The user selects a case.

2.3 The system validates that the case is payable. (12.1)

2.4 The system determines the payment amount. (12.1)

2.5 The system marks the case as payable.

2.6 The system records the payment amount.

2.7 The system checks the cash fund records to ensure adequate funds exist.

2.7.1 No funds shall be removed from cash fund or disbursed at this time.

2.8 The system records the fact that the case has been reviewed.

Alternate Flows:

2.3a Non-payable case

2.3a.1 The system marks the case as non-payable.

2.3a.2 The user confirms the non-payable status of the case.

2.3a.3 Continue at step 2.8.

2.3a.2a User overrides non-payable status:

2.3a.2a.1 The user indicates that the case is to be payable and enters a
reason for the override.

2.7a Cash funds low but sufficient:

2.7a.1 The system marks the case as payable.

2.7a.2 The system displays the low funds warning. (9.1)

327

Exception Flows:

2.7b Insufficient cash funds:

2.7b.1 The system informs the user that funds are not available.

2.7b.2 The use case ends in failure.

3. Special Requirements

3.1 Nonfunctional requirements

3.1.1 Security: Case details must only be accessible by CPP members.

3.2 Constraints: List technological, architectural, and other constraints on the
use case.

4. Activity Diagram: N/A

5. User Interface: TBD

6. Class Diagram

7. Assumptions

8. Information Items

9. Prompts and Messages

9.1 Low Funds Warning: See external design specifications/messages

10. Business Rules:

Rule 103: Cash fund low trigger point

11. External Interfaces

12. Related Artifacts

12.1 Decision Table A: Validate case and determine payment amount.

Appendix C � Business Requirements Document Example: CPP Case Study328

System Use Case: Disburse Payments
1. Use case: Disburse Payments

Perspective: System use case

Type: Base use case

1.1 Brief Description: Create record of payments made for the case to Peace
Committee members and fund accounts.

1.2 Business Goals and Benefits: IT tracking of payments will allow for
generation of up-to-date reports to funders upon request, required for
continuance of funding for the organization.

1.3 Actors

1.3.1 Primary Actors:
Convener

1.3.2 Secondary Actors:
Peace Committee Member, AP System

1.3.3 Off-Stage Stakeholders:
Funders

1.4 Rules of Precedence

1.4.1 Triggers: The user calls up the Disburse Payments option.

1.4.2 Pre-conditions: The case is in the Payable state and a payment
amount for the case has been determined.

1.5 Post-conditions

1.5.1 Post-conditions on Success

1.5.1.1 Payments are made into the accounts of all Peace Committee
members involved in the case and into the fund accounts.

1.5.1.2 The case is in the Paid state.

1.6 Extension Points

1.7 Priority: High

1.8 Status

Basic flow + risky alternatives complete: 2005/06/20

All flows complete: 2005/07/27

1.9 Expected Implementation Date: TBD

1.10 Actual Implementation Date: TBD

329

1.11 Context Diagram

2. Flow of Events

Basic Flow:

2.1 The system displays a list of payable cases.

2.2 The user selects a case.

2.3 The system displays the amount payable for the case.

2.4 The system displays each Peace Committee member assigned to the case.

2.5 The system displays the Peace Committee member account owned by each
of the displayed Peace Committee members.

2.6 The system displays the payment amounts to be disbursed to each Peace
Committee member account and invested into each fund.

2.6.1 Payments are made to Peace Committee member accounts
according to a standard rate, set by the CPP director.

2.6.2 The remaining amount payable for the case is disbursed evenly
amongst the fund accounts.

2.7 The user approves the disbursement.

2.8 The system creates payments for the case.

2.8.1 Each payment invests a specified amount from the cash account
into one of the fund accounts or deposits an amount into one Peace
Committee member account.

2.8.2 The system sends a notice letter to a Peace Committee member
whenever a deposit is made to the member’s account.

2.9 The system marks the case as Paid.

Appendix C � Business Requirements Document Example: CPP Case Study330

Alternate Flows:

2.7a User does not approve disbursement amounts:

2.7a.1 The user overrides the disbursement amounts.

2.7a.2 The system confirms that the total payable for the case has not changed.

2.7a.2a Total payable has changed:

2.7a.2a.1 The system displays a message indicating the amount of the
discrepancy.

2.7a.2a.2 Continue at step 2.7a.1

2.8a Payment causes a withdrawal from cash that pushes balance below a
specified trigger point:

2.8a.1 The system sends a notice to admin requesting new cash funds.

6. Class Diagram

7. Assumptions

8. Information Items

9. Prompts and Messages

10. Business Rules

11. External Interfaces

12. Related Artifacts

331

State-Machine Diagrams

State-Machine Diagram: Case

Appendix C � Business Requirements Document Example: CPP Case Study332

Nonfunctional Requirements

Performance Requirements

Stress Requirements

The system must be able to support 10 users accessing case records simultane-
ously.

Response-Time Requirements

Three seconds.

Throughput Requirements

TBD.

Usability Requirements
System must conform to usability guidelines V2.1.

Security Requirements
Case details must only be accessible to CPP officials.

Volume and Storage Requirements
First iteration of the system must support a volume of 60 Peace Committees and
a total case load of 25,000 cases/year.

Configuration Requirements
PC-compatible. Microsoft XP Professional.

Compatibility Requirements
System must interface with existing AP system.

Reliability Requirements
Total daily downtime must not exceed 1 hour during normal business hours
(9:00 a.m.–5:00 p.m.).

333

Backup/Recovery Requirements
Daily backup of data files onto DVD. Weekly backup of entire system.

Training Requirements
Software development company to be responsible for end-user training.

Business Rules
See business rules engine. BR09-35.

State Requirements

Testing State
TBD.

Disabled State
TBD.

Structural Model

Main Entity-Class Diagram

Appendix C � Business Requirements Document Example: CPP Case Study334

Package: People and Organizations

335

Appendix C � Business Requirements Document Example: CPP Case Study336

Package: Products and Services

Package: Events/Transactions

337

Appendix C � Business Requirements Document Example: CPP Case Study338

Package: Lookup Tables

Account Ownership

Entity-Class Documentation

Example of entity-class documentation: Payment.

339

� Class name: Payment

� Alias: Payout

� Description: One of many possible payments made per case. Each payment is

deposited into a single account, such as a Peace Committee member account.

� Example: Payment #111000 for Case #134567 to the Microenterprise Fund.

� Attributes: See Table C.1.

Attribute Derived? Derivation Type Format Length Range Dependency

payment Char 999999 6 000001–

seq num 999999

case ID

withdrawal

account

num

deposit Must not

account be same as

num withdrawal

account

num

payment Num 999,999.99 0–

amount 999,999.99

payment Date yy/mm/dd On or

date before

system date

TABLE C.1

Appendix C � Business Requirements Document Example: CPP Case Study340

Test Plan
1. Submit the requirements to the technical team.

2. The technical team completes development. Concurrently, the BA builds
numbered test scenarios for requirements-based testing. Use decision
tables to identify scenarios and boundary-value analysis to select test
data. The technical team conducts white-box testing to verify whether
programs, fields, and calculations function as specified. The BA or
technical team specifies the required quality level for white-box testing,
such as multiple-condition coverage.

3. Perform requirements-based testing. The BA or dedicated quality-
assurance (QA) staff administers or supervises tests to prove or disprove
compliance with requirements. Ensure that all formulae are calculated
properly. Describe principles and techniques to be used in black-box
testing, such as structured testing guidelines and boundary value analysis.

4. Conduct system testing. Ensure that the integrity of the system and data
remain intact. Conduct the following tests:

� Regression test: Retest all features (using a regression test bed).

� Stress test: Test multiple users at the same time.

� Integration tests: Make sure that the changes do not negatively affect
the overall workflow across IT and manual systems.

� Volume test: Test the system with high volume.

5. Perform user acceptance testing. Involve the end-users at this stage.
Choose key users to review the changes in the test environment. Use the
testing software as a final check.

Implementation Plan

Training
� IT firm is responsible for training.

� Training audience: Conveners, general administrators, director.

� Forum: Four one-day sessions on-site.

341

Conversion
� Convert existing manual case records to electronic records.

� Scheduled completion date: 07/15/2012

� Grant privileges to the users.

� Scheduled date: 07/20/2012

Scheduling of Jobs
� Government reports to be run on demand and at end of month.

� Funder reports to be run on demand and at end of year.

Rollout
Advise all affected users when the project is promoted.

End-User Procedures
TBD.

Post-Implementation Follow-Up
TBD.

Other Issues

Sign-Off

This page intentionally left blank

343

Decision Table
Template

Appendix D

This page intentionally left blank

345

Test Script Template

Appendix E

Test Template

Test #: ______________________ Project #: ________________________

System: _____________________ Test environment: ________________

Test type (e.g., regression/ requirements-based, etc.):

Test objective: __

System use case: _____________ Flow: ____________________________

Priority: ____________________

Next step in case of failure: __

Planned start date: ______________ Planned end date: ________________

Actual start date: _______________ Actual end date: __________________

Times to repeat: ______________

Pre-conditions (must be true before test begins): ____

Appendix E � Test Script Template346

Tester ID: ______________________

Pass/fail: _______________________ Severity of failure: ________________

Solution: ___

Comments: ___

Sign-off: ___

(Req # is short for requirement number and corresponds to the number used to
identify the requirement in the BRD. Many organizations number their require-
ments so that they can be traced forward to test cases and other project artifacts.
The numbering may be manual, or automatically generated with the use of a tool
such as Rational RequisitePro.)

Business Use-Case Diagram

347

Glossary of Symbols

Appendix F

System Use-Case Diagram

Appendix F � Glossary of Symbols348

Package Diagram

Class Diagram
Allowable multiplicities1:

1 One and only one

0..1 Zero or one

0..* Zero or more

1..* One or more

n n and only n (for example, 5)

n..m n through m (for example, 5..10)

349

Object Diagram

Appendix F � Glossary of Symbols350

Composite Structure Diagram

Timing Diagram

Activity Diagram

351

State-Machine Diagram

Endnote
1Discontinuous multiplicities such as 5, 8 were dropped from the standard in UML 2.

Appendix F � Glossary of Symbols352

A
activity: (UML term) A task or process.

activity diagram: (UML term) A diagram that describes the sequencing of business activities.
An activity diagram with partitions (swimlanes) also describes which object is responsible for
each activity.

actor: (UML term) A type of user or an external system that interacts with a use case. For
example, the Customer actor initiates the use case Deposit Funds.

aggregation: (UML term) The relationship that exists between a whole and its parts. For
example, the relationship between Line-Of-Products and Product is an aggregation.

association: (UML term) A relationship defined at the class level that describes a link that the
business maintains between objects belonging to classes at either end of the association. Objects
may be linked because information about one is tied to data about the other, for example, infor-
mation about an invoice object is associated with data about a Customer object. Other reasons
for an association between objects include the following: One object collaborates with another
to complete a task (for example, an ATM object collaborates with an Account object during
cash withdrawal); one object acts on the other object (for example, a manager manages an
employee).

attribute: (UML term) An attribute is defined at the class level to identify a property that the
system tracks for all the objects of that class. Similar to the term “field.” (Field is used within
the context of database design.) For example, an attribute of Car is Year of Manufacture.

353

Glossary of Terms
and Further Reading

Appendix G

B
behavioral model: (UML term) The part of the model that describes dynamic behavior—what
the system does and how it does it. Diagrams included as part of the behavioral model include
use-case diagram, activity diagram, state-machine diagram.

black-box test: (structured testing term) A test that can be designed without knowledge of the
inner workings of the system. (See requirements-based testing.)

business model: An abstract representation of a business system.

C
class: (UML term) A category that a group of objects may belong to. Objects in the same class
share the same attributes and operations.

class diagram: (UML term) Describes how classes are related to other classes.

composite aggregation: (UML term) Describes the association between a whole and its parts
in cases where the whole completely owns the part and where destruction of the whole causes
destruction of the part. For example, an invoice is composed of line items; when the Invoice
object is destroyed, so are the Line Item objects.

E
encapsulation: (OO term) A principle that states that the description of a class encompasses
both its operations (actions) and attributes (data) and that no object may refer directly to
another’s attributes or rely on a knowledge of how its operations are carried out. Encapsulation
requires that objects only interact by passing messages—that is, by asking other objects to
perform operations.

entity class: (UML term) A subject that the business tracks. For example, Customer, Invoice.

ERD: (data-modeling term) ERD stands for entity relationship diagram. An ERD describes the
relationships between subjects tracked by the business—for example, the relationship between
customers and their accounts. ERDs were developed prior to OO. The UML class diagram
encompasses everything that can be depicted in an ERD.

extend: (UML term) A use case can be described as extending a base use case if it adds to or
alters the behavior of the base at specified extension points and under a specified condition.
For example, the use case Apply for Preferred Mortgage extends the base use case Apply for
Mortgage.

F–G
fork: (UML term) A bar on an activity diagram that indicates a point after which parallel
activities are executed. Parallel activities may begin in any order after the fork.

Appendix G � Glossary of Terms and Further Reading354

generalized class: (UML term) A class that describes features common to a group of classes.
For example, Account is a generalized class that describes features that the specialized classes
Checking Account, Power Account, and Savings Account all have in common. (Also called
generalization class, superclass, parent class, base class.) Specialized classes inherit the attributes,
operations, and relationships of the generalized class.

guard: (UML term) A condition that must be true before something may occur. For example,
a deposit transaction may only be processed if the guard Funds Available in Account is True.
Guards may appear on activity diagrams and state-machine diagrams.

I
include: (UML term) When a number of use cases share some common requirements, the
commonalities may be factored out into an included use case. Each of the original use cases is
said to include this new use case. For example, each of the two use cases Withdraw Cash and
Pay Bills includes the use case Check Available Funds.

inheritance: (UML term) A relationship that models partial similarities between elements.
In the context of classes, inheritance is used when a number of classes share some but not all
features. The shared features are described in a generalized class. Each variation is described as
a specialized class. A specialized class inherits all the operations, attributes, and relationships
of the generalized class. For example, Checking Account inherits the attributes, etc., of Account.

instance: (UML term) An object is an instance (specific case) of a class. For example, the
customer Jane Dell Ray is an object—an instance of the class Customer.

J–M
join: (UML term) A bar on an activity diagram marking the end of parallel activities. All
parallel activities flowing into it must end before flow can proceed beyond the join.

merge: (UML term) A diamond on an activity diagram marking the point where divergent
paths off of a previous decision converge back to a common flow.

method: The procedure used to carry out an operation.

multiplicity: (UML term) Defines the number of objects that may be associated with each
other. In structured analysis, the equivalent term is cardinality. For example, a mortgage is
signed by at least one and at most three parties.

O
object: (UML term) A thing that is a part of the system. In business analysis, something is
considered an object if it is responsible for carrying out business activities or if the business
needs to track information about it. An object is an instance (specific case) of a class. For example,
the customer Jane Dell Ray is an object—an instance of the class Customer.

355

object-oriented: (UML term) An approach to analysis, design, and coding based upon a view
of a system as a composition of basic units, called objects, each of which represents information
and operations related to one aspect of the system. A system described as object-oriented must
also support other concepts such as classes and inheritance.

OMG: Object Management Group. Sets OO standards.

OO: See object-oriented.

operation: (UML term) A function that an object may carry out or that is carried out on the
object. For example, Apply Price Increase is an operation of Product. Alternative terms: service,
message.

P
package: (UML term) A container used to organize model elements into groups. Packages may
be nested within other packages. Alternative term: subsystem.

package diagram: (UML term) A diagram that depicts how model elements are organized into
packages and the dependencies among them, including package imports and package extensions.

polymorphism: (UML term) May take many forms. The term is applied to objects and
operations. With respect to operations, it means that the same operation may be carried out in
different ways (that is, using different methods) by different classes. For example, Checking
Account and Savings Account each have their own polymorphic version of the operation
Determine Service Charge.

R–S
requirements-based testing: (structured testing term) Testing techniques that determine the
degree to which a system complies with the requirements set out in the business requirements
document (BRD). The test cases are designed based on knowledge of the requirements, but not
on the inner workings of the system. Equivalent term: black-box testing.

sequence diagram: (UML term) A diagram that depicts how operations are sequenced and
which objects carry them out.

specialized class: (UML term) If a group of classes shares some but not all features, then the
commonalities are described in a generalized class and the peculiarities of the subtypes are
described in specialized classes. A specialized class acquires all the relationships, attributes, and
operations of the generalized class. A specialized class should be used only for full-time
subtypes. (Part-time subtypes are described as transient roles.) For example, a Checking Account
is a specialization of Account. Alternative terms: subclass, child class, derived class.

state-machine diagram: (UML term) A diagram that depicts the different states of an object
and the rules that govern how it passes from state to state. For example, a state-machine
diagram for Insurance Claim describes how the claim’s state passes from Initiated to Adjusted
to Paid.

Appendix G � Glossary of Terms and Further Reading356

structural model: (UML term) The portion of a business model that describes static,
structural aspects of a system—in particular, business classes and their relationships.

structured analysis: Structured analysis is a set of techniques for analyzing a system by
organizing processes hierarchically—from general to specific. Predates OO analysis.

subclass: (OO term) See specialized class.

superclass: (OO term) See generalized class.

T–U
transient role: (B.O.O.M. term) A role that may change during an object’s lifetime. (If the role
is not likely to change, describe it instead as a specialized class.) For example, PTA Board
Member is a transient role played by a parent in a school.

UML: Unified Modeling Language. A standard notation owned by the Object Management
Group (OMG), a not-for-profit computer industry–specifications consortium. The UML is
used for the specification, visualization, and modeling of the structure and behavior of
business and software systems.

use case: (UML term) An interaction between an actor and a system that achieves an observ-
able and (usually) useful result for the actor.

use-case diagram: (UML term) A diagram that depicts the main services that the system
performs and the actors that interact with the system during each use case.

Further Reading
Booch, Grady. The Unified Modeling Language User Guide. Addison-Wesley Professional: 2005.

Cockburn, Alistair. Writing Effective Use Cases. Pearson Education Canada: 2000.

Eriksson, Hans-Erik, and Magnus Penker. Business Modeling with UML: Business Patterns and
Business Objects. Wiley: 1999.

Eriksson, Hans-Erik, Magnus Penker, Brian Lyons, and David Fado. UML 2 Toolkit. Wiley: 2003.

Fowler, Martin, and Kendall Scott. UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 2nd Edition. Addison-Wesley Professional: 2003.

Gamma, Erich, Richard Helm, and Ralph Johnson. Design Patterns: Elements of Reusable Object-
Oriented Software. Pearson Education Canada: 1994.

Hoffer, Jeffrey A. Modern Systems Analysis and Design. Pearson Education Canada: 2004.

Jacobson, Ivar. The Unified Software Development Process. Pearson Education Canada: 1999.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design
and Iterative Development. Prentice Hall PTR: 2004.

Leffingwell, Dean, and Don Widrig. Managing Software Requirements: A Unified Approach. Pearson
Education Canada (Addison-Wesley): 1999.

357

Marshal, Chris. Enterprise Modeling with UML: Designing Successful Software through Business
Analysis. Pearson Education Canada: 1999.

Podeswa, Howard. The Business Analyst’s Handbook. Cengage: 2008.

Robertson, Suzanne, and James Robertson. Mastering the Requirements Process. Pearson Education
Canada: 1999.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference
Manual, 2nd Edition. Addison-Wesley Professional: 2004.

Schneider, Geri, and Jason P. Winters. Applying Use Cases: A Practical Guide. Addison Wesley
Longman: 2001.

Wiegers, Karl. Software Requirements. Microsoft Press: 2003.

Related Sites
Please be advised that Web site URLs are always subject to change.

www.nobleinc.ca
Home page for Noble Inc., a business analysis training and consulting organization, offering
a business analysis program designed by the author.

www.ideaswork.org
Home page for Ideaswork, the organization behind the South African restorative justice
project that is the basis of the CPP case study.

www.omg.org
Home page for the OMG—the organization that sets standards for OO.

www.theiiba.org
Home page for the International Institute of Business Analysis.

www.uwsg.iu.edu/usail/network/nfs/network_layers.html
ISO/OSI Network Model, Trustees of Indiana University.

www.15seconds.com/issue/011023.htm
The article is called “Application Architecture: An N-Tier Approach—Part 1” by Robert Chartier,
INT Media Group, Inc.

www-128.ibm.com/developerworks/rational/rationaledge
For business use-case modeling, see “Effective Business Modeling with UML:
Describing Business Use Cases and Realizations” by Pan-Wei Ng of the Rational Edge at
www.therationaledge.com/content/nov_02/t_businessModelingUML_pn.jsp.

Appendix G � Glossary of Terms and Further Reading358

www.nobleinc.ca
www.ideaswork.org
www.omg.org
www.theiiba.org
www.uwsg.iu.edu/usail/network/nfs/network_layers.html
www.15seconds.com/issue/011023.htm
www-128.ibm.com/developerworks/rational/rationaledge
www.therationaledge.com/content/nov_02/t_businessModelingUML_pn.jsp

359

INDEX

A
abstract generalized actors, 83
Access, 281
Accounts package in Community Peace Plan

(CPP) case study, 338
activity. See also state activities

defined, 353

element in activity diagram, 65–66

in state transition, 147

activity diagrams, 3, 5–6
business use cases, documenting, 47

defined, 353

elements of, 65–67

in Initiation phase, 34

nested activities, 67–68

object flows in, 68–71

stakeholders, presentation to, 41

symbols, glossary of, 351

for system use cases, 115

without partitions, 65–68

workflow, depicting, 63–64

activity diagrams with partitions, 6, 64, 71–72
for Community Peace Program (CPP)

case study, 73–77

example of, 72

actors. See also generalized actors; role maps;
specialized actors; system use-case
diagrams; system use-case packages
BRD template section for, 296–297

in business use-case diagrams, 47–48

in Community Peace Program (CPP)
case study, 59–60, 322–323

defined, 353

FAQs about, 81

generalization relationship between, 82–84

in Initiation phase, 34

overlapping roles, modeling actors with,
82–84

with partially overlapping roles, 82–83

stereotypes and, 81–82

system use-case diagram, identifying in,
80–82

totally overlapping roles, actors with, 83–84

adaptability of lifecycle, 39
advanced use-case features, 125–137

in Community Peace Program (CPP) case
study, 136–137

aggregation. See also composite aggregation
challenge questions about, 190

in Community Peace Program (CPP) case
study, 190–192

composite structure diagrams, 188–191

defined, 353

indicating, 187–188

information sources for finding, 187

interview questions for determining, 189–190

in OO (object orientation), 25–26

rules about, 187

and whole/part relationships, 186

alias for class, 170
alpha testing, 267
alternate-alternate flow, documenting, 114
alternate flows

alternate-alternate flow, documenting, 114

Community Peace Program (CPP) case study
for, 113

defined, 111

documenting, 111–114

typical alternate flows, 111

use-case scenario testing for, 253

“Application Architecture: An N-Tier
Approach—Part 1” (Chartier), 358

Applying UML and Patterns: An Introduction
to Object-Oriented Analysis and Design and
Iterative Development (Larman), 357

Applying Use Cases: A Practical Guide
(Schneider & Winters), 358

The Art of Software Testing (Myers), 248
artifacts

attributes, information sources for finding, 222

generalized use cases and, 133

and use-case description templates, 115–125

associations. See also multiplicity
analysis of, 25

business reality, reflection of, 195–196

in business use-case diagrams, 47–48

in Community Peace Program (CPP) case
study, 199–201

defined, 6, 353

discovering, 193, 198–199

examples of, 192

indicating, 192–193, 194

naming conventions for, 193–194

notes explaining issues and, 199

object diagrams, modeling object links with,
197–198

in OO (object orientation), 24–25

part-time subtypes and, 175

redundant association rule of thumb,
196–199

rules about, 193–194

asynchronous interruptions, 129
attributes

adding attributes, 221–230

Community Peace Program (CPP) case study,
adding attributes in, 226–230

defined, 6, 353

defining, 37–38

derived attributes, 223

for entity classes, 167

importance of derived attributes, 223

indicating, 221, 223–225

information sources for finding, 222

meta-attributes, 225–226

multiplicity of, 225

in OO (object orientation), 19

rules for assigning, 222–223

in structural models, 214–215

verification rules about, 221

B
backup requirements

in BRD template, 302

in Community Peace Program (CPP) case
study, 333

base class, 23
baseline

for analysis, 101–102

for development, 268

in Initiation phase, 35

basic flow
Community Peace Program (CPP) case study,

110–111

documenting, 109–111

extend feature and, 132

generalized use cases and, 135–136

and include feature, 129

use-case scenario testing for, 253

behavioral analysis
in Discovery phase, 36

structural analysis and, 165–166

behavioral models, 3–4
B.O.O.M, developing in, 38

defined, 354

beta testing, 267
big bang tests, 262
binary associations, 193
black-box testing, 252–254

defined, 354

Blueprint’s Requirements Center, 3
Booch, Grady, 18, 357, 358

Index360

B.O.O.M. See also specific phases
behavioral model, developing, 38

customizing for specific project, 38–41

and SDLCs (systems development lifecycles),
33–34

stakeholders, presentations to, 41

structural model, developing, 38

bottom-up testing, 263
boundary classes, 274
boundary-value analysis, 256–259

in Community Peace Program (CPP) case
study, 258–259

brainstorming interviews, 44
BRD. See business requirements document (BRD)
budgets and B.O.O.M, 40
bugs, 247. See also testing
Business Analysis Body of Knowledge Version 2.0

(BABOK 2), 2, 6–13
business analysis planning/modeling, 7–8
The Business Analyst’s Handbook (Podeswa),

283, 358
business case

in BRD template, 296

in Community Peace Program (CPP) case
study, 58, 319

Business Modeling with UML: Business Patterns
and Business Objects (Eriksson & Penker), 357

business models, 3
defined, 354

Business Object Oriented Modeling. See B.O.O.M
business process diagrams (BPDs) for

workflow, 64
business requirements document (BRD).

See also implementation plans
baseline for development, setting, 268

in Community Peace Program (CPP) case
study, 49–62, 307–341

in Discovery phase, 104–105

in Initiation phase, 35

and requirements-based testing, 252

template for, 287–306

test plan document for, 304

business rules, 124–125
attributes, finding, 222

in BRD template, 3023

in Community Peace Program (CPP) case
study, 333

business use-case descriptions, 319–321
in BRD template, 296

business use-case diagrams, 47–48
in BRD template, 296

case study on, 49–62

in Community Peace Program (CPP) case
study, 62, 319

symbols, glossary of, 347

business use cases, 29–30. See also activity
diagrams
in BRD template, 296

business use-case diagrams, 47–48

in Community Peace Program (CPP) case
study, 59, 319–321

documenting, 47

in Initiation phase, 34, 46–48

system use-case packages for, 86

C
candidate classes, 167

alias for, 170

follow-up questions on, 170–171

case workers, 48
cases, 101. See also system use cases
Chartier, Robert, 358
choice pseudostate, 149
class diagrams, 6, 164

defined, 354

in Discovery phase, 35–36

stakeholders, presentation to, 41

symbols, glossary of, 349–350

class name, 170
classes. See also candidate classes; entity classes

association of, 24

boundary classes, 274

control classes, 274

defined, 6, 354

generalization and, 22–24

interview questions for finding, 169–170

lookup tables and, 231–232

mix-ins, 280

in OO (object orientation), 21–22

revising class structure, 241–243

rules about, 166

in UML (Unified Modeling Language), 21

visibility of members, 272–274

Index 361

Closeout phase, 37
of SDLC, 34

COBOL, 281
Cockburn, Alistair, 109, 112, 357
cognitive psychology and OO, 18–19
communication diagrams, 277
Community Peace Program (CPP) case study

activity diagrams with partitions for, 73–77

advanced use-case features in, 136–137

alternate flow in, 113

associations in, 199–201

attributes, adding, 226–230

basic flow example, 110–111

boundary-value analysis, selecting test data
using, 258–259

business requirements document (BRD) for,
49–62, 307–341

business use-case diagrams for, 62

composite states in, 157–158

decision tables in, 119–121, 255–256

decision tree, 123

distribute operations in, 238–241

entity classes in, 172–174

generalizations in, 179–180

linking system use case to structural model,
216–220

lookup tables in, 233–235, 338

multiplicity in, 205–208

revising class structure, 241–243

role map for, 84–85

state activities in, 154–155

state transitions in, 150–152

states in, 145–146

system use-case diagrams in, 95–100

system use-case packages in, 89–90

test cases from decision tables, deriving,
255–256

transient roles in, 184–185

whole/part relationships in, 190–192

compatibility requirements
in Community Peace Program (CPP) case

study, 332

testing for compatibility, 265

completion transitions, 147i

composite aggregation, 26–27
challenge questions about, 190

in Community Peace Program (CPP) case
study, 190–192

composite structure diagrams, 188–191

defined, 354

indicating, 187–188

information sources for finding, 187

interview questions for determining, 189–190

multiplicity and, 203

rules about, 187

and whole/part relationships, 186

composite patterns, 272
composite states, 156–158

in Community Peace Program (CPP) case
study, 157–158

composite structure diagrams, 188–191
symbols, glossary of, 351

computer-based testing, 250
Computing Technology Industry Association

(CompTIA), 2
concrete generalized actors, 83
concurrent states, 159–160
condition/response tables, 124
conditions

extend feature and, 130

white-box testing, coverage of, 261

configuration requirements
in BRD template, 302

in Community Peace Program (CPP) case
study, 332

testing, 265

constraints on scope in Community Peace
Program (CPP) case study, 315

Construction phase, 37
interviews during, 43–44

of SDLC, 33

control flow in activity diagram, 65–66, 68
convergence point for alternate flow, 112
conversion plan, 267–268

in BRD template, 305

in Community Peace Program (CPP) case
study, 341

testing, 265

customer-relations management (CRM), 3

Index362

D
data flow diagrams (DFDs), 5
database, implementing, 281
DB2, 281
decision coverage in white-box testing, 261
decision element in activity diagram, 65–66
decision tables, 116–121

in Community Peace Program (CPP) case
study, 119–121

example of, 117–118

stakeholders, presentation to, 41

step-by-step procedure for using, 118–119

template for, 343

for testing, 254–256

underlying concept for, 117

usefulness of, 117

decision trees, 122–123
in Community Peace Program (CPP) case

study, 123

stakeholders, presentation to, 41

dependency in system use-case package, 87
deployment diagrams, 278
derived attributes, 223
derived class, 23
Design Patterns: Elements of Reusable

Object-Oriented Software (Gamma,
Helm & Johnson), 357

developers and B.O.O.M, 40
diagrams. See also specific types

importance of, 3

disabled state requirements in BRD template,
303

Discovery phase, 35–37, 104–105
interviews during, 43–44

lifecycle considerations, 104

purpose of, 284–285

of SDLC, 33

use-case description template, 105–108

distribute operations, 237–241
in Community Peace Program (CPP) case

study, 238–241

divergence point for alternate flow, 112
Do/activity, 153
dynamic models. See behavioral models

E
“Effective Business Modeling with UML:

Describing Business Use Cases and
Realizations” (Ng), 358

elicitation, 8
encapsulation, 20

defined, 354

end-to-end business processes, 43–78
end-users

BRD template, procedures in, 306

and Community Peace Program (CPP) case
study, 341

implementation plan addressing, 268

enterprise analysis, 10
Enterprise Modeling with UML: Designing

Successful Software through Business
Analysis (Marshal), 358

entity, defined, 6
entity classes, 166–174. See also candidate

classes
attributes specified for, 167

BRD template, documentation in, 303–304

in Community Peace Program (CPP) case
study, 172–174, 338–339

defined, 354

examples of, 167

FAQs about, 167

lists of, 167

naming conventions, 167–168

package diagram for, 169

packages, grouping classes into, 168

supporting documentation, 171

entity relationship diagrams (ERDs), 6
defined, 354

Entry/activity, 153
Envisioning phase (Microsoft Solutions

Framework), 45
Eriksson, Hans-Erik, 357
event

in activity diagram, 65–66, 68

in state transition, 147

Eventname/activity, 153
Events/Transactions package, Community

Peace Program (CPP) case study, 336–337

Index 363

exception flows
documenting, 114

and include feature, 129

use-case scenario testing for, 253

executive summary
in BRD template, 292–293

in Community Peace Program (CPP) case
study, 54, 313–314

Exit/activity, 153
extend feature, 129–132

defined, 354

drawing an extension, 131

examples of extending use cases, 130

rules for, 132

use-case documentation, extend relationship
affecting, 132

extension point, 130
external agents/external entities, 80

F
Fado, David, 357
FAQs

on actors, 81

on entity classes, 167

on structural analysis, 165–166

final node in activity diagram, 66
final states, 144
Final Verification and Validation (V&V) phase,

37
interviews during, 43

of SDLC, 34

finite state, 145
flexibility in BRD template, 287
follow-up plan

in BRD template, 306

in Community Peace Program (CPP) case
study, 341

forks
in activity diagrams, 66–67

defined, 354

formality of lifecycle, 39
Fowler, Martin, 95, 357
full-time subtypes, 175
further reading, 357–358

G
Gamma, Erich, 357
generalizations, 175–180

actors, generalization relationship between,
82–84

advanced challenge questions, 178

challenge questions on, 178

in Community Peace Program (CPP) case
study, 179–180

example, 176

indicating in UML, 177

information sources for, 176

interview questions for finding, 177–178

in OO (object orientation), 22–24

overuse of, 177

reasons for modeling, 176

rules on, 176

subtypes, 175

generalized actors, 83–84
system use-case package and, 88

generalized classes, 23
defined, 355

generalized use cases, 133–136
drawing, 134–135

examples of, 134

rules for, 135

use-case documentation, effect on, 135–136

generic products, extend feature and, 129
glossaries

symbols, glossary of, 347–352

terms, glossary of, 353–357

guard condition
in activity diagram, 65–66

defined, 355

in state transition, 148–149

GUI (graphic user interface) and attributes, 221

H–I
Helm, Richard, 357
Hoffer, Jeffrey A., 357

IBM Rational Software Modeler (RSM), 3
ideaswork.org, 358
IF-THEN-ELSE statements, 260

Index364

implementation plans, 267–268
in BRD template, 305

in Community Peace Program (CPP) case
study, 340–341

in-house solutions and B.O.O.M, 40
include feature, 126–129

defined, 355

drawing included use case, 127

rules, 128

use-case documentation, include relationship
and, 128–129

incremental approaches to unit testing,
262–263

information technology business analysts
(IT BAs), 1–2

inheritance, 23–24
defined, 355

mix-ins, 280

multiple inheritance, 176

and transient roles, 181

initial node of activity diagram, 65–66
initial pseudostates, 144
Initiate phase (PMI), 45
Initiate phase (RUP), 45
Initiation phase, 34–35

activities during, 45–46

business requirements document (BRD) in,
45–46

business use cases in, 46–48

purpose of, 284

of SDLC, 33

installation testing, 267
instance, defined, 6, 355
interaction diagrams. See sequence diagrams
interfaces, 279–280
internal workers, 48
International Institute of Business Analysis

(IIBA), 2
interviews

classes, questions for finding, 169–170

decision tables in, 118–119

diagrams and, 3

formats for, 44

generalizations, questions for finding,
177–178

during phases of project, 43–44

second round of, 63

system use-case interviews, guidelines for, 115

transient roles, questions for determining, 183

ISO/OSI Network Model, Trustees of Indiana
University, 358

iterative approach and B.O.O.M, 39–40

J
Jacobson, Ivar, 18, 95, 247, 274, 357, 358
job scheduling

in BRD template, 305

in Community Peace Program (CPP) case
study, 341

Johnson, Ralph, 357
join elements

in activity diagram, 66–67

defined, 355

joint application development (JAD), 44

K–L
knowledge areas (KAs), 6–13

labeled transitions, 147
Larman, Craig, 357
layered architecture, 278–279
Leffingwell, Dean, 357
links

associations as, 24

in communication diagrams, 277

object diagrams, modeling object links with,
197–198

structural models, linking system use cases to,
215–220

LOCA, 249
lookup tables, 231–235

in Community Peace Program (CPP) case
study, 233–235, 338

example of, 231

indicating, 232

rules for analyzing, 231–232

Lyons, Brian, 357

M
Managing Software Requirements: A Unified

Approach (Leffingwell & Widrig), 357
The Man Who Mistook His Wife for a Hat

(Sacks), 21

Index 365

Marshal, Chris, 358
maturity of organization and B.O.O.M, 41
mean time to failure (MTTF), 265
measurement units for attributes, 224
merge element

in activity diagram, 65–66

defined, 355

meta-attributes, 225–226
examples of, 225–226

methods
defined, 6, 355

in OO (object orientation), 20

mix-ins, 280
Modern Systems Analysis and Design (Hoffer),

357
monolithic architecture, 279
multiple condition coverage in white-box test-

ing, 261
multiple inheritance, 176
multiplicity, 182, 202–208

and associations, 193

of attributes, 225

in Community Peace Program (CPP) case
study, 205–208

composite aggregation and, 203

and composite structure diagrams, 189

defined, 355

example of, 202

indicating, 202–203

information sources for, 204

interview questions for determining, 204

rules about, 203

Myers, Glenford, 248, 263

N
naming conventions

for associations, 193–194

for attributes, 224

for entity classes, 167–168

in state-machine diagrams, 149

in system use-case packages, 86

National IT Apprenticeship System (NITAS), 2
nested activities in activity diagram, 67–68
Ng, Pan-Wei, 358
nobleinc.ca, 358

non-computer-based testing, 250
non-IT business analysts, 1
nonfunctional requirements

in BRD template, 301–302

in Community Peace Program (CPP) case
study, 332–333

Note icon, 67
N-tier architecture, 279

O
Object Constraint Language (OCL), 199
object diagrams

object links, modeling, 197–198

symbols, glossary of, 350

object flows
in activity diagrams, 68–71

main features of, 69–71

Object Management Group (OMG), 18
defined, 356

objects
in communication diagrams, 277

defined, 6, 356

object diagrams, modeling object links with,
197–198

and object flow, 69–70

polymorphic objects, 27

rules about, 166

states of, 69–71

occurrence, defined, 6
omg.org, 358
one-on-one interviews, 44
ongoing state, 145
OO language, implementing OO with, 280
OO (object orientation), 5

aggregation, 25–26

association, 24–25

attributes and operations in, 19–20

classes in, 21–22

cognitive psychology and, 18–19

comparison to the UML (Unified Modeling
Language), 5–6

composite aggregation, 26–27

control classes, 274

database, implementing, 281

defined, 18, 356

encapsulation principle, 20

Index366

generalization in, 22–24

inheritance, 23–24

methods in, 20

objects, perception of, 19

OO language, implementing with, 280

patterns, 272

polymorphism, 27–28

procedural languages, implementing with,
281

RDBMS, implementing with, 281

relationships in, 22–27

structured testing and, 248–250

unit testing, 261–263

OO patterns, 272
operations

adding, 236–241

declaring operations, formal format for, 237

defined, 6, 356

defining operations, 37–38

distribute operations, 237–241

example of adding, 236–237

in OO (object orientation), 20

polymorphic operations, 27–28

in structural models, 214–215

opportunity evaluation in Initiation phase, 46
orthogonal states, 159

P
package diagrams

defined, 356

for entity classes, 169

symbols, glossary of, 349

packages. See also system use-case packages
defined, 356

entity class packages, 168

visibility, 274

parallel testing, 267
part-time subtypes, 175
partitions. See activity diagrams with partitions
payments, 101
Peace Committee, 101
Peace Gatherings, 101
Penker, Magnus, 357
People and Organizations package, Community

Peace Program (CPP) case study, 334–335

performance requirements
in BRD template, 301

in Community Peace Program (CPP) case
study, 332

testing, 265

Podeswa, Howard, 358
polymorphism

defined, 356

in OO (object orientation), 27–28

and specialized class, 176

post-conditions, 74
on failure, 74

in state-machine diagrams, 149

on success, 74

post-implementation review (PIR), 37
pre-conditions, 74

in state-machine diagrams, 149

preliminary business case, 48
private visibility, 273
process, defined, 6
Process Transaction and generalized use cases,

133
product vision/scope in Initiation phase, 46
products, extend feature and, 129
Products and Services package, Community

Peace Program (CPP) case study, 336
project vision/scope in Initiation phase, 46
protected visibility, 273
pseudostates, 144

choice pseudostate, 149

public visibility, 273

Q–R
quality assurance, 247

teams, 246

white-box coverage quality levels, 260–261

RACI chart
in BRD template, 291–292

for Community Peace Program (CPP) case
study, 53, 312

Rational RequisitePro, 254
Rational Unified Process (RUP), 91

Initiate phase, 45

reading resources, 357–358

Index 367

recovery requirements
in BRD template, 302

in Community Peace Program (CPP) case
study, 333

testing, 266

redundant association rule of thumb, 196–199,
199

reflexive associations, 193
regression testing, 264
regulatory requirements and B.O.O.M, 40
related Web sites, 358
relational database management systems

(RDBMs), 281
relationships

defined, 6

in OO (object orientation), 22

reliability requirements
in BRD template, 302

in Community Peace Program (CPP) case
study, 332

testing, 265

requirements analysis, 10–13
requirements-based testing, 252–254

defined, 356

requirements management/communication, 9
response-time requirements

in BRD template, 301

in Community Peace Program (CPP) case
study, 332

Review Case Report in Community Peace Pro-
gram (CPP) case study, 110–111

revising class structure, 241–243
in Community Peace Program (CPP) case

study, 241–243

revision history
for BRD template, 291

for Community Peace Program (CPP) case
study, 312

risk analysis
in BRD template, 295–296

in Community Peace Program (CPP) case
study, 57–58, 316–317

role maps, 80, 82
in Community Peace Program (CPP) case

study, 84–85

role of IT BA, 2

rollout information
addressed in implementation plan, 268

in BRD template, 305

in Community Peace Program (CPP) case
study, 341

rule of substitution, 178
rules engines, 124–125
Rumbaugh, James, 18, 358
RUP. See Rational Unified Process (RUP)

S
Sacks, Oliver, 21
scenarios, 29

alternate flows as, 111

use-case scenario testing, 252–253

Schneider, Geri, 358
scope of project

in BRD template, 294

in Community Peace Program (CPP) case
study, 56–57, 314–316

Scott, Kendall, 357
SDLCs (systems development life cycles), 33–34
security

BRD template, security requirements in, 301

in Community Peace Program (CPP) case
study, 332

testing, 265

send event in state transition, 147–148
sequence diagrams, 274–276

defined, 356

example of, 275–276

for workflow, 64

sign-offs
in BRD template, 306

in Community Peace Program (CPP) case
study, 341

Software Requirements (Wiegers), 358
solution assessment/validation, 12–13
source code for white-box testing, 261
specialized actors, 83–84

system use-case package and, 88

specialized classes, 23
defined, 356

same role by, 183

transient roles compared, 181

SQL, 281

Index368

stakeholders
actors and, 80

B.O.O.M and, 40

interviews with, 43–44

liaisons with, 2

presentations to, 41

state activities, 153–155
in Community Peace Program (CPP) case

study, 154–155

state-machine diagrams, 142–143
in BRD template, 301

in Community Peace Program (CPP) case
study, 60–61, 331

defined, 356

in Discovery phase, 35

example of, 143

mapping, 149–150

reasons for drawing, 143

stakeholders, presentation to, 41

symbols, glossary of, 352

transient roles and, 181

state requirements
in BRD template, 302–303

in Community Peace Program (CPP) case
study, 61, 333

state transitions, 147–152
in Community Peace Program (CPP) case

study, 150–152

depicting in UML, 147–149

statement coverage in white-box testing, 261
states, 69–71. See also composite states

in Community Peace Program (CPP) case
study, 145–146

concurrent states, 159–160

critical objects, identifying states of, 144–146

defined, 142

orthogonal states, 159

transient roles compared, 181

types of, 144–145

static models. See structural models
stereotypes

and actors, 81–82

interface stereotype, 280

storage requirements
in BRD template, 302

in Community Peace Program (CPP) case
study, 332

testing, 265

strategy patterns, 272
stress requirements

in BRD template, 301

in Community Peace Program (CPP) case
study, 332

testing, 264

structural models, 3, 4–5
attributes in, 214–215

in BRD template, 303–304

classes, identifying, 169–170

in Community Peace Program (CPP) case
study, 216–220, 333–339

context for, 166

defined, 164, 357

developing in, 38

interview time for, 169

operations in, 214–215

system use cases, linking, 215–220

structured analysis, 164–166
behavioral analysis and, 165–166

defined, 357

diagrams, comparison of, 5

in Discovery phase, 36

FAQs about, 165–166

issues addressed during, 166

terms, comparison of, 6

structured testing, 248
principles of, 248–250

structured walkthroughs, 44, 250–252
importance of, 251–252

subclasses, 23
defined, 357

subtypes, 175. See also generalizations;
transient roles

superclass, 23
defined, 357

swimlanes. See activity diagrams with partitions
symbols, glossary of, 347–352
system flowcharts, 6

for workflow, 63

system tests, 263–266
system use-case descriptions

in BRD template, 298–300

in Community Peace Program (CPP) case
study, 325–335

system use-case diagrams, 91–100

Index 369

actors, identifying, 80–82

adorning in, 94

in BRD template, 298

in Community Peace Program (CPP) case
study, 60, 95–100, 323–324

modeling elements, 93–95

overlapping roles, modeling actors with,
82–84

primary actors in, 93–94

secondary actors in, 94

steps in drawing, 94

symbols, glossary of, 348

system use-case packages, 86–90
in Community Peace Program (CPP) case

study, 89–90

diagramming, 87

generalized actors and, 88

naming, 86

specialized actors and, 88

system use cases, 29–30
activity diagrams for, 115

advanced features, 125–137

in Community Peace Program (CPP) case
study, 60, 216–220

in Discovery phase, 35, 104–105

documenting links, 215

features of, 91

identifying, 91–100

in Initiation phase, 34

interviews, guidelines for, 115

modeling, 93–95, 215

number of, 95

segmenting user requirements of, 92

structural model, links to, 215–220

T
table of contents

in BRD template, 289–290

in Community Peace Program (CPP) case
study, 51, 309–311

tables. See also decision tables; lookup tables
condition/response tables, 124

teams
in B.O.O.M, 40

quality-assurance (WA) teams, 246

technology and generalized use cases, 133
templates. See also use-case description templates

business requirements document (BRD)
template, 287–306

decision table template, 343

test script template, 345–346

test template, 253–254

test plan
in BRD template, 304

in Community Peace Program (CPP) case
study, 340

testing, 246–254. See also structured testing
alpha testing, 267

beta testing, 267

big bang tests, 262

bottom-up testing, 263

boundary-value analysis, 256–259

BRD template, testing statement requirements
in, 302

compatibility testing, 265

complete test plan, 250

configuration testing, 265

conversion testing, 265

decision tables for, 254–256

defined, 247

in Discovery phase, 36–37

guidelines for, 247–248

parallel testing, 267

performance testing, 265

principles for testers, 249

recovery testing, 266

regression testing, 264

reliability testing, 265

requirements-based testing, 252–254

security testing, 265

storage testing, 265

stress testing, 264

structured walkthroughs, 250–252

system tests, 263–266

template for, 253–254

test script template, 345–346

time for performing, 248

top-down testing, 262

unit testing, 261–263

usability testing, 264–265

use-case scenario testing, 252–253

Index370

user acceptance testing (UAT), 266

volume testing, 264

white-box testing, 260–263

theiiba.org, 358
three-tier architecture, 279
throughput requirements

in BRD template, 301

in Community Peace Program (CPP) case
study, 332

timetable
in BRD template, 296

in Community Peace Program (CPP) case
study, 58–59, 318

timing diagrams, 278
symbols, glossary of, 351

top-down testing, 262
totally overlapping roles, actors with, 83–84
tracing system use case, 214
training requirements

in BRD template, 302, 305

in Community Peace Program (CPP) case
study, 333

in implementation plan, 267

transient roles, 175, 180–185. See also
multiplicity
in Community Peace Program (CPP) case

study, 184–185

defined, 357

example of, 181

indicating, 182–183

information sources for, 183

interview questions for determining, 183

rules about, 182

specialization distinguished, 181

states compared, 181

transitions. See state transitions
trigger event for alternate flow, 112
two-tier architecture, 279
types of attributes, 224

U
UML Distilled: A Brief Guide to the Standard

Object Modeling Language, 2nd Edition
(Fowler & Scott), 357

The UML Extension for Business Modeling, 48
UML Note icon, 67

UML 2 Toolkit (Eriksson, Penker, Lyons &
Fado), 357

UML (Unified Modeling Language)
classes, defining, 21

defined, 357

standard, 18

structured analysis diagrams compared, 5–6

uncertainty and B.O.O.M, 40
The Unified Modeling Language Reference

Manual, 2nd Edition (Rumbaugh, Jacobson
& Booch), 358

The Unified Modeling Language User Guide
(Booch), 357

The Unified Software Development Process
(Jacobson), 357

unit testing, 261–263
incremental approaches to, 262–263

usability requirements
in BRD template, 301

in Community Peace Program (CPP) case
study, 332

testing, 264–265

use-case description templates, 105–108
alternate-alternate flow, documenting, 114

alternate flows, documenting, 111–114

basic flow, documenting, 109–111

exception flows, documenting, 114

related artifacts, 115–125

use-case diagrams
defined, 357

stakeholders, presentation to, 41

use cases, 5, 28–29. See also business use cases;
generalized use cases; system use cases
defined, 6, 357

scenario testing, 252–253

user acceptance testing (UAT), 266
user requirements

in BRD template, 298–300

in Community Peace Program (CPP) case
study, 59–60, 323–324

system use cases and, 92

V
validation. See also Final Verification and

Validation (V&V) phase
solution assessment/validation, 12–13

Index 371

vendor solutions, 40
verification. See also Final Verification and

Validation (V&V) phase
attributes, rules about, 221

meta-attributes and, 225–226

version control
for BRD template, 291–292

for Community Peace Program (CPP) case
study, 52, 312

viewpoints, diagrams for reconciling, 3
visibility, 272–274

example of, 273

options for, 273–274

volume requirements
in BRD template, 302

in Community Peace Program (CPP) case
study, 332

testing, 264

W
wait state, 145
waterfall projects

in Construction phase, 37

in Discovery phase, 104

white-box testing, 260–263
limitations of, 260

sequencing of tests, 261–263

whole/part relationships, 186–188. See also
aggregation; composite aggregation
challenge questions about, 190

in Community Peace Program (CPP) case
study, 190–192

composite structure diagrams, 188–191

decomposing whole into parts, 187

examples of, 186

indicating, 186–187

information sources for finding, 187

interview questions for determining, 189–190

rules about, 187

Widrig, Don, 357
Wiegers, Karl, 358
Winters, Jason P., 358
workers in business use-case diagrams, 47–48

workflow. See also activity diagrams; basic flow;
exception flows
alternate-alternate flow, documenting, 114

alternate flows, documenting, 111–114

interviews for analyzing, 63

use-case description template for, 105–108

workflow diagrams, 6. See also activity
diagrams

Writing Effective Use Cases (Cockburn), 357

Index372

	Table of Contents
	Introduction
	Chapter 1 Who Are IT Business Analysts?
	Chapter Objectives
	The IT and Non-IT BA
	Perspective on the IT BA Role
	Why Modeling Is a Good Thing
	The Behavioral (Dynamic) Model
	The Structural (Static) Model
	For Those Trained in Structured Analysis
	Mapping the BABOK 2 to This Book
	Chapter Summary
	Endnotes

	Chapter 2 The BA’s Perspective on Object Orientation
	Chapter Objectives
	What Is OO?
	The UML Standard
	Cognitive Psychology and OO
	Objects
	The BA Perspective

	Attributes and Operations
	The BA Perspective

	Operations and Methods
	The BA Perspective

	Encapsulation
	The BA Perspective

	OO Concept: Classes
	The BA Perspective

	OO Concept: Relationships
	OO Concept: Generalization
	OO Concept: Association
	OO Concept: Aggregation
	OO Concept: Composite Aggregation (Composition)

	OO Concept: Polymorphism
	Polymorphic Objects
	Polymorphic Operations
	The BA Perspective

	Use Cases and Scenarios
	The BA Perspective

	Business and System Use Cases
	The BA Perspective

	Chapter Summary
	Endnotes

	Chapter 3 Steps of B.O.O.M.
	Chapter Objectives
	B.O.O.M. and SDLCs
	The B.O.O.M. Steps
	Step 1: Initiation
	Step 2: Discovery
	Step 3: Construction
	Step 4: Final Verification and Validation (V&V)
	Step 5: Closeout

	What Do You Define First—Attributes or Operations?
	Developing the Structural Model Alongside the Behavioral Model
	Tailoring B.O.O.M. for Your Project
	What Do You Show Stakeholders?
	Chapter Summary
	Endnotes

	Chapter 4 Analyzing End-to-End Business Processes
	Chapter Objectives
	Interviews During the Phases
	B.O.O.M. Steps
	Step 1: The Initiation Phase
	What Happens During the Initiation Phase?
	How Long Does the Initiation Phase Take?
	Deliverables of the Initiation Step: BRD (Initiation Version)

	Step 1a: Model Business Use Cases
	How Do You Document Business Use Cases?

	Step 1ai: Identify Business Use Cases (Business Use-Case Diagram)
	Other Model Elements

	Putting Theory into Practice
	Case Study D1: Business Use-Case Diagrams
	Step 1aii: Scope Business Use Cases (Activity Diagram)
	Activity Diagrams for Describing Business Use Cases

	Case Study D2: Business Use-Case Activity Diagram with Partitions (Swimlanes)
	Chapter Summary
	Endnotes

	Chapter 5 Scoping the IT Project with System Use Cases
	Chapter Objectives
	Step 1b: Model System Use Cases
	Step 1bi: Identify Actors (Role Map)
	Finding Actors
	Stereotypes and Actors
	The Role Map
	Modeling Actors with Overlapping Roles
	What’s the Point of Defining Generalized Actors?

	Case Study E1: Role Map
	Step 1bii: Identify System Use-Case Packages (System Use-Case Diagram)
	What Criteria Are Used to Group System Use Cases into Packages?
	Naming Use-Case Packages
	Diagramming System Use-Case Packages
	What If a Use-Case Package Is Connected to All of the Specialized Actors of a Generalized Actor?

	Case Study E2: System Use-Case Packages
	Step 1biii: Identify System Use Cases (System Use-Case Diagram)
	Features of System Use Cases
	What Is the Purpose of Segmenting the User Requirements into System Use Cases?
	Modeling System Use Cases
	Is There a Rule of Thumb for How Many System Use Cases a Project Would Have?

	Case Study E3: System Use-Case Diagrams
	Step 1c: Begin Structural Model (Class Diagrams for Key Business Classes)
	Step 1d: Set Baseline for Discovery (BRD/Initiation)
	Chapter Summary
	Endnotes

	Chapter 6 Storyboarding the User’s Experience
	Chapter Objectives
	Step 2: Discovery
	Lifecycle Considerations
	Step 2ai: Describe System Use Cases

	The Use-Case Description Template
	The Fundamental Approach Behind the Template

	Documenting the Basic Flow
	Use-Case Writing Guidelines
	Basic Flow Example: CPP System/Review Case Report

	Documenting Alternate Flows
	Typical Alternate Flows
	Alternate Flow Documentation
	Example of Use Case with Alternate Flows: CPP System/Review Case Report
	Documenting an Alternate of an Alternate

	Documenting Exception Flows
	Guidelines for Conducting System Use-Case Interviews
	Activity Diagrams for System Use Cases
	Related Artifacts
	Decision Tables

	Case Study F1: Decision Table
	Decision Trees

	Case Study F2: Decision Tree
	Condition/Response Table
	Business Rules

	Advanced Use-Case Features
	Include
	Extend
	Generalized Use Case

	Case Study F3: Advanced Use-Case Features
	Chapter Summary
	Endnotes

	Chapter 7 Lifecycle Requirements for Key Business Objects
	Chapter Objectives
	What Is a State-Machine Diagram?
	Step 2aii: 1. Identify States of Critical Objects
	Types of States

	Case Study G1: States
	Step 2aii: 2. Identify State Transitions
	Depicting State Transitions in UML
	Mapping State-Machine Diagrams to System Use Cases

	Case Study G2: Transitions
	Step 2aii: 3. Identify State Activities
	Case Study G3: State Activities
	Step 2aii: 4. Identify Composite States
	Case Study G4: Composite States
	Step 2aii: 5. Identify Concurrent States
	Concurrent State Example

	Chapter Summary
	Endnotes

	Chapter 8 Gathering Across-the-Board Business Rules with Class Diagrams
	Chapter Objectives
	Step 2b: Structural Analysis
	FAQs about Structural Analysis

	Step 2bi: Identify Entity Classes
	FAQs about Entity Classes
	Indicating a Class in UML
	Naming Conventions
	Grouping Classes into Packages
	The Package Diagram
	Why It's Worth Pausing to Do Some Structural Modeling When Stakeholders Introduce New Terms
	Interview Questions for Finding Classes
	Challenge Questions
	Supporting Class Documentation

	Case Study H1: Entity Classes
	Step 2bii: Model Generalizations
	Subtyping
	Generalization

	Case Study H2: Generalizations
	Step 2biii: Model Transient Roles
	Example of Transient Role
	How Does a Transient Role Differ from a Specialization?
	Some Terminology
	Why Indicate Transient Roles?
	Rules about Transient Roles
	Indicating Transient Roles
	Sources of Information for Finding Transient Roles
	Interview Questions for Determining Transient Roles
	What If a Group of Specialized Classes Can All Play the Same Role?

	Case Study H3: Transient Roles
	Step 2biv: Model Whole/Part Relationships
	The “Whole” Truth
	Examples of Whole/Part Relationships
	Why Indicate Whole/Part Relationships?
	How Far Should You Decompose a Whole into Its Parts?
	Sources of Information for Finding Aggregation and Composite Aggregation
	Rules Regarding Aggregation and Composite Aggregation
	Indicating Aggregation and Composite Aggregation in the UML

	The Composite Structure Diagram
	Interview Questions for Determining Aggregation and Composite Aggregation
	Challenge Question

	Case Study H4: Whole/Part Relationships
	Step 2bv: Analyze Associations
	Examples of Association
	Why Indicate Association?
	Why Isn’t It the Developers’ Job to Find Associations?
	Discovering Associations
	Rules Regarding Associations
	The Association Must Reflect the Business Reality
	Redundant Association Rule of Thumb
	Exception to the Rule of Thumb

	Case Study H5: Associations
	Step 2bvi: Analyze Multiplicity
	Example of Multiplicity
	Why Indicate Multiplicity?
	Indicating Multiplicity in the UML
	Rules Regarding Multiplicity
	Sources of Information for Finding Multiplicity
	The Four Interview Questions for Determining Multiplicity

	Case Study H6: Multiplicity
	Chapter Summary
	Endnotes

	Chapter 9 Optimizing Consistency and Reuse in the Requirements Documentation
	Chapter Objectives
	Where Do You Go from Here?
	Does the Business Analyst Need to Put Every Attribute and Operation in the Structural Model?

	Step 2bvii: Link System Use Cases to the Structural Model
	How Do You Find the Modeling Elements Involved in a System Use Case?
	How Do You Document the Links Between System Use Cases and the Structural Model?

	Case Study I1: Link System Use Cases to the Structural Model
	Step 2bviii: Add Attributes
	Example
	Why Indicate Attributes?
	Don’t Verification Rules about Attributes Belong with the System Use-Case Documentation?
	Sources of Information for Finding Attributes
	Rules for Assigning Attributes
	Derived Attributes
	Indicating Attributes in the UML

	Meta-Attributes
	Case Study I2: Add Attributes
	Step 2bix: Add Lookup Tables
	Why Analyze Lookup Tables?
	Example
	Rules for Analyzing Lookup Tables
	Challenge Question
	Indicating Lookup Tables in the UML

	Case Study I3: Analyze Lookup Tables
	Step 2bx: Add Operations
	An Example from the Case Study
	How to Distribute Operations

	Case Study I4: Distribute Operations
	Step 2bxi: Revise Class Structure
	Rules for Reviewing Structure
	Challenge Question

	Case Study I5: Revise Structure
	Chapter Summary
	Endnotes

	Chapter 10 Designing Test Cases and Completing the Project
	Chapter Objectives
	Step 2c: Specify Testing
	Who Does These Tests and How Does the BA Fit In?
	What Is Testing?
	General Guidelines
	Structured Testing
	When Is Testing Performed?
	Principles of Structured Testing (Adapted for OO)
	Structured Walkthroughs
	Requirements-Based (Black-Box) Testing
	Test Template

	Decision Tables for Testing
	Case Study J1: Deriving Test Cases from Decision Tables
	Boundary-Value Analysis
	Case Study J2: Select Test Data Using Boundary-Value Analysis
	White-Box Testing
	Who Does White-Box Testing?
	Limitations of White-Box Testing
	White-Box Coverage Quality Levels
	Sequencing of White-Box Tests

	System Tests
	Beyond the System Tests
	Step 2d: Specify Implementation Plan
	Post-Implementation Follow-Up

	Step 2e: Set Baseline for Development
	Chapter Summary
	Endnotes

	Chapter 11 What Developers Do with Your Requirements
	Chapter Objectives
	OO Patterns
	Examples

	Visibility
	Example
	Visibility Options

	Control Classes
	Boundary Classes
	Sequence Diagrams
	Example: A Sequence Diagram

	Communication Diagrams
	Other Diagrams
	Timing Diagrams
	Deployment Diagrams

	Layered Architecture
	Monolithic, Two-Tier, Three-Tier, and N-Tier Architecture

	Interfaces
	Mix-Ins
	Implementing OO Using an OO Language
	Implementing OO Using Procedural Languages
	Implementing a Database from a Structural OO Model Using an RDBMS
	Chapter Summary
	Endnotes

	Appendix A: The B.O.O.M. Process
	1: Initiation
	2: Discovery

	Appendix B: Business Requirements Document (BRD) Template
	Business Requirements Document (BRD)
	Table of Contents
	Version Control
	Executive Summary
	Scope
	Risk Analysis
	Business Case
	Timetable
	Business Use Cases
	Actors
	User Requirements
	State-Machine Diagrams
	Nonfunctional Requirements
	Business Rules
	State Requirements
	Structural Model
	Test Plan
	Implementation Plan
	End-User Procedures
	Post Implementation Follow-Up
	Other Issues
	Sign-Off
	Endnote

	Appendix C: Business Requirements Document Example: CPP Case Study
	Business Requirements Document (BRD)
	Table of Contents
	Version Control
	Executive Summary
	Scope
	Risk Analysis
	Business Case
	Timetable
	Business Use Cases
	Actors
	User Requirements
	State-Machine Diagrams
	Nonfunctional Requirements
	Business Rules
	State Requirements
	Structural Model
	Test Plan
	Implementation Plan
	End-User Procedures
	Post Implementation Follow-Up
	Other Issues
	Sign-Off

	Appendix D: Decision Table Template
	Appendix E: Test Script Template
	Test Template

	Appendix F: Glossary of Symbols
	Appendix G: Glossary of Terms and Further Reading
	A
	B
	C
	E
	F–G
	I
	J–M
	O
	P
	R–S
	T–U

	Index
	A
	B
	C
	D
	E
	F
	G
	H–I
	J
	K–L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W

