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Preface

Two daunting questions face the authors of prospective textbooks. (1) For whom is
the book intended? (2) What makes it different from other books intended for the
same audience? We first address these questions.

One might think from counting the mathematical equations that the book is in-
tended for a theoretical physicist. This is partially true, for indeed we hope the
subject is presented in a way that will satisfy a rigorously inclined mathemati-
cal physicist that “valency and bonding” is not just murky chemical voodoo, but
authentic science grounded in the deepest tenets of theoretical physics.

Beyond Chapter 1 the reader may be relieved to find few if any equations that
would challenge even a moderately gifted high-school student. The emphasis on
orbital diagrams and “doing quantum mechanics with pictures” might then suggest
that the book is intended for undergraduate chemistry students. This is also partially
true. For example, we believe that our treatment of homonuclear diatomic molecules
(Section 3.2.9) should be accessible to undergraduates who commonly encounter
the topic in introductory chemistry courses.

Our principal goal has been to translate the deepest truths of the Schrödinger
equation into a visualizable, intuitive form that “makes sense” even for beginning
students, and can help chemistry teachers to present bonding and valency concepts in
a manner more consistent with modern chemical research. Chemistry teachers will
find here a rather wide selection of elementary topics discussed from a high-level
viewpoint. The book includes a considerable amount of previously unpublished
material that we believe to be of broad pedagogical interest, such as the novel
Lewis-like picture of transition-metal bonding presented in Chapter 4.

Because we are both computational chemistry researchers, we have naturally
directed the book also to specialists in this field, particularly those wishing to in-
corporate natural bond orbital (NBO) and natural resonance theory (NRT) analysis
into their methodological and conceptual toolbox. Researchers will find here a

vii



viii Preface

rather broad sampling of NBO/NRT applications to representative chemical prob-
lems throughout the periodic table, touching on many areas of modern chemical,
biochemical, and materials research.

But, we expect that the majority of readers will be those with only a rudimentary
command of quantum chemistry and chemical bonding theory (e.g., at the level of
junior-year physical chemistry course) who wish to learn more about the emerging
ab initio and density-functional view of molecular and supramolecular interactions.
While this is not a “textbook in quantum chemistry” per se, we believe that the book
can serve as a supplement both in upper-level undergraduate courses and in graduate
courses on modern computational chemistry and bonding theory.

In identifying the features that distinguish this book from many predecessors, we
do not attempt to conceal the enormous debt of inspiration owed to such classics as
Pauling’s Nature of the Chemical Bond and Coulson’s Valence. We aspire neither
to supplant these classics nor to alter substantially the concepts they expounded.
Rather, our goal is to take a similarly global view, but develop a more current and
quantitative perspective on valency and bonding concepts such as hybridization,
electronegativity, and resonance, capitalizing on the many advances in wavefunc-
tion calculation and analysis that have subsequently occurred. We hope thereby to
sharpen, revitalize, and enhance the usefulness of qualitative bonding concepts by
presenting a “twenty-first-century view” of the nature of chemical bonding.

Readers who are accustomed to seeing chemical theorizing buttressed by compar-
isons with experiments may be surprised to find little of the latter here. Throughout
this book, computer solutions of Schrödinger’s equation (rather than experiments)
are regarded as the primary “oracle” of chemical information. We specifically as-
sume that high-level calculations (e.g., at the hybrid density-functional B3LYP/
6-311++G∗∗ level) can be relied upon to describe molecular electronic distribu-
tions, geometries, and energetics to a sufficient degree of chemical accuracy for
our purposes. (In fact, the accuracy is often comparable to that of the best available
experimental data, more than adequate for qualitative pedagogical purposes.) The
viewpoint of this book is that modern ab initio theory no longer requires extensive
experimental comparisons in order for it to be considered seriously, and indeed, the-
ory can be expected to supplant traditional experimental methods in an increasing
number of chemical investigations. In the deepest sense, this is a “theory book.”

Dual authorship naturally brings a distinctive blend of perspectives. The book
reflects the influence of a “donor–acceptor” perspective based on NBO/NRT wave-
function analysis methods developed in the research group of F. W. (a physical
chemist). While NBO analyses are now rather common in the chemical literature,
the present work provides the first broad overview of organic and inorganic chemi-
cal phenomena from this general viewpoint. The book also incorporates key insights
gained from constructing valence-bond-based (VALBOND) molecular-mechanics
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potentials for transition metals and hypervalent main-group species, as carried out
in the research group of C. R. L. (an inorganic chemist). We both recognize how the
constructive synergism of our distinct cultures has added breadth and dimension to
this work.

Uppermost in our minds has been a strong concern for chemical pedagogy, which
is manifested in several ways. Because we were often prompted by such questions
ourselves, we have tended to organize the presentation around “frequently asked
questions,” with the emphasis being on individual species that hold special fas-
cination for students of bonding theory. Although leading references for further
study are provided, in few if any cases do we attempt a comprehensive survey of
the literature; indeed, such a survey would be quite impractical for many of the
evergreen bonding topics. Our treatment therefore resembles a textbook rather than
a specialist research monograph or review article. We have also taken the oppor-
tunity to include numerous examples, including worked-out problems, derivations,
and illustrative applications to chemical problems. These often serve as a parallel
presentation of important concepts, giving the student a helping hand through rough
spots and putting “some flesh on those bones” of abstract text equations.

We are grateful to numerous colleagues who contributed encouragement, advice,
criticism, and topics for study. Special thanks are due to Christine Morales for
performing the numerical applications of Chapter 4 at higher triple-zeta level, to
Mark Wendt for assistance with NBOView orbital imagery, and to Bill Jensen for
providing photographic portraits from the Oesper Collection at the University of
Cincinnati. We benefited from the excellent computing facilities at the University
of Wisconsin-Madison under the long-time direction of Brad Spencer. We also wish
to acknowledge the patience and support of our families and the kind cooperation
of our Cambridge University Press editors, who confronted the many production
challenges of the manuscript with skill and good cheer.
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Introduction and theoretical background

1.1 The Schrödinger equation and models of chemistry

The Schrödinger equation and its elements

As early as 1929, the noted physicist P. A. M. Dirac wrote1

The underlying physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too complicated to be soluble.

A similar view was echoed in a 1944 textbook of quantum chemistry:2

In so far as quantum mechanics is correct, chemical questions are problems in applied
mathematics.

The implication is that chemical phenomena are determined by the laws of quantum
mechanics, as expressed in the fundamental time-independent Schrödinger equation

ĤΨ = EΨ (1.1)

Exact answers to practically all chemical questions are, in principle, obtainable
from solutions of this equation.3 Thus, Eq. (1.1) is the ultimate oracle of chemical
knowledge.

Equation (1.1) contains three mathematical entities: (i) the Hamiltonian operator
Ĥ , determined by the choice of chemical system; (ii) the wavefunction Ψ, describing
the allowed spatial distribution of electrons and nuclei of the system; and (iii) the
energy level E associated with Ψ. The Hamiltonian Ĥ contains terms representing
kinetic- and potential-energy contributions, depending only on fixed properties
(e.g., mass, charge) of the electrons and nuclei that compose the chosen system
of interest. Hence, Ĥ is the “known” and Ψ and E are the “unknowns” of Eq.
(1.1). Mathematically, Ĥ is an operator that modifies the wavefunction Ψ(�r, �R)
appearing on its right, where we write �r = (�r1, �r2, . . ., �rN ) to denote the collective
coordinates of N electrons and �R = ( �R1, �R2, . . ., �Rν) those of ν nuclei. Only for
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2 Introduction and theoretical background

Erwin Schrödinger

exceptional choices of Ψ (“eigenstates”) does this operation give a scalar multiple
of the original wavefunction, with characteristic multiplier (“eigenvalue”) E. The
possible solutions ( Ψn, En) of Eq. (1.1) for a specific Ĥ are commonly labeled
with a quantum-number index n, ordered according to the energy of the ground
state and successive excited states of the system. However, in the present work
we shall generally restrict attention to the ground solution, so this index can be
temporarily omitted.

Perturbation theory of “model chemistry” systems

In practice, the chemist seldom requires numerically exact answers to chemical
questions. Answers that are sufficiently accurate in the context of the chemical
investigation will therefore be considered satisfactory for practical applications.
More specifically, this means that energy differences �E should be reliable to
within a few kcal mol−1 (i.e., a small percentage of a chemical bond energy), but
the necessary accuracy may be higher or lower according to context. To achieve
this goal, we introduce an approximate model Hamiltonian Ĥ (0) that is somehow
simplified (for example, by neglecting some of the potential-energy terms in Ĥ ),
but is expected to retain the most important features of the true Hamiltonian for
describing chemical phenomena. The Schrödinger-type equation associated with
the model Ĥ (0)

Ĥ (0)
Ψ

(0) = E (0)
Ψ

(0) (1.2)

may then be said to describe a “model chemistry” (in the terminology introduced by
J. A. Pople), just as Eq. (1.1) describes4 the true chemistry of Ĥ . The adequacy or
inadequacy of this model chemistry to describe the actual phenomena of chemistry
can of course be tested through direct comparisons with experimental results. How-
ever, it is also feasible to formulate Ĥ (0) in a systematically improvable manner, so
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that the model chemistry of Eq. (1.2) can be made to approach the exact solutions
of Eq. (1.1) as closely as desired (or as far as computational resources permit).
From the rate of convergence of these successive corrections, useful estimates of
theoretical accuracy that are independent of experimental data can be given. Thus,
a central goal of modern computational quantum chemistry is to formulate and im-
prove systematically model Ĥ (0)’s that can predict chemical phenomena at a useful
level of accuracy.

For our purposes, the most general way to perform systematic correction of a
specified model Ĥ (0) is by means of perturbation theory, as first developed for
such problems by Schrödinger himself.5 The difference between the true Ĥ and the
model Ĥ (0) is defined as the perturbation operator Ĥ (pert),

Ĥ (pert) = Ĥ − Ĥ (0) (1.3)

The perturbed Schrödinger equation (1.1) is rewritten in terms of the model Ĥ (0)

and Ĥ (pert) as

(Ĥ (0) + Ĥ (pert))Ψ = EΨ (1.4)

By systematic perturbation-theoretic procedures,6 the exact E can be obtained in
terms of successive orders of correction to E (0),

E = E (0) + E (1) + E (2) + · · · (1.5a)

where E (1) is the first-order correction, E (2) the second-order correction, and so
forth; Ψ is similarly expanded as

Ψ = Ψ
(0) + Ψ

(1) + Ψ
(2) + · · · (1.5b)

For example, the first-order energy correction in Eq. (1.5a) is given by

E (1) = 〈Ψ(0)|Ĥ (pert)|Ψ(0)〉 (1.5c)

where 〈 〉 is the Dirac “bra-ket” symbol7

〈Ψ(0)|Ĥ (pert)|Ψ(0)〉 =
∫

Ψ
(0)∗ Ĥ (pert)

Ψ
(0) dτ

representing integration over all coordinates, with symbolic differential dτ . (Be-
cause Eq. (1.2) remains true when Ψ(0) is multiplied by any number, we assume
without loss of generality that Ψ(0) is normalized, 〈Ψ(0)|Ψ(0)〉 = 1.) The second-order
correction E (2) can be evaluated from the variational inequality8

E (2) ≤ − 〈Ψ(0)|Ĥ (pert)|Ψ̃(1)〉2

〈Ψ̃(1)|Ĥ (0) − E (0)|Ψ̃(1)〉
(1.5d)
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where Ψ̃
(1) is any variational trial function orthogonal to Ψ(0) (〈Ψ(0)|Ψ̃(1)〉 = 0) and the

inequality becomes exact when Ψ̃
(1) = Ψ(1). Note that (1.5d) suggests a numerical

method for determining both Ψ(1) (as the Ψ̃
(1) that makes the right-hand side as

negative as possible) and E (2) (as the extremal possible value of the right-hand
side). The leading corrections E (1) and E (2) will suffice for the applications of this
book.

Example 1.1

Exercise: Use the perturbation equations (1.5) to estimate the lowest orbital energy of α spin
for a Li atom in a basis of orthogonalized 1s and 2s orbitals, for which the matrix elements
of the effective one-electron Hamiltonian operator are9 〈1s|Ĥ|1s〉 = −2.3200, 〈1s|Ĥ|2s〉 =
−0.3240, and 〈2s|Ĥ|2s〉 = −0.2291.

Solution: The desired orbital energy is an eigenvalue of a 2 × 2 matrix, which can be
identified as the “Ĥ” for the application of Eqs. (1.1)–(1.5):

Ĥ =
(

H11 H12

H12 H22

)
=

(−2.3200 −0.3240
−0.3240 −0.2291

)

To apply the perturbation-theory formalism we can first separate Ĥ into diagonal (unper-
turbed) and off-diagonal (perturbation) matrices,

Ĥ (0) =
(

H11 0
0 H22

)
=

(−2.3200 0
0 −0.2291

)

Ĥ (pert) =
(

0 H12

H12 0

)
=

(
0 −0.3240

−0.3240 0

)

The solutions of the eigenvalue equation for Ĥ (0) are evidently

E (0) = H11, Ψ(0) =
(

1
0

)

and the first-order correction is

E (1) = 〈Ψ(0)|Ĥ (pert)|Ψ(0)〉 = (1 0)

(
0 H12

H12 0

)(
1
0

)
= 0

For the second-order correction, we can recognize that the only possible normalized trial
function Ψ̃

(1)
orthogonal to Ψ(0) in this 2 × 2 case is

Ψ̃
(1) =

(
0
1

)
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so that

〈Ψ(0)|Ĥ (pert)|Ψ̂(1)〉 = (1 0)

(
0 H12

H12 0

)(
0
1

)
= H12

〈Ψ̂(1)|Ĥ (0) − E (0)|Ψ̃(1)〉 = (0 1)

(
0 0
0 H22 − H11

)(
0
1

)
= H22 − H11

E (2) = − H12
2

H22 − H11

The lowest eigenvalue (1s orbital energy) is therefore estimated as

E = E (0) + E (1) + E (2) = H11 − H12
2

H22 − H11
= −2.3702 a.u.

The corresponding estimate for the second eigenvalue (2s orbital energy) is −0.1789. These
results are in good agreement with the actual HF/STO-3G (“Hartree–Fock method with a
variational basis set of three-term Gaussians for each Slater-type orbital”10) eigenvalues:
ε1s = −2.3692 and ε2s = −0.1801.

Among various model Ĥ (0)’s that could be considered, the best such model is
evidently that for which the perturbative corrections are most rapidly convergent,
i.e., for which Ĥ (pert) is in some sense smallest and the model E (0) and Ψ(0) are
closest to the true E and Ψ. Perturbation theory can therefore be used to guide
selection of the best possible Ĥ (0) within a class of competing models, as well as
to evaluate systematic corrections to this model.

Conceptual constructs in model systems

Perturbation theory also provides the natural mathematical framework for devel-
oping chemical concepts and “explanations.” Because the model Ĥ (0) corresponds
to a simpler physical system that is presumably well understood, we can determine
how the properties of the more complex system Ĥ evolve term by term from the
perturbative corrections in Eq. (1.5a), and thereby elucidate how these properties
originate from the terms contained in Ĥ (pert). For example, Eq. (1.5c) shows that
the first-order correction E (1) is merely the average (quantum-mechanical expec-
tation value) of the perturbation Ĥ (pert) in the unperturbed eigenstate Ψ(0), a highly
intuitive result. Most physical explanations in quantum mechanics can be traced
back to this kind of perturbative reasoning, wherein the connection is drawn from
what is “well understood” to the specific phenomenon of interest.

Perturbative reasoning can be used to justify conceptual models of chemistry
that are far from evident in Eq. (1.1) itself. An important example is the concept
of molecular structure – the notion that nuclei assume a definite equilibrium con-
figuration �R0, which determines the spatial shape and symmetry of the molecule.
At first glance, this concept appears to have no intrinsic meaning in Eq. (1.1),
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because the true molecular Hamiltonian Ĥ has identical dependence on all identical
nuclei,11 and thus could not assign a distinct structural role to a particular nucleus.
Indeed, Ĥ is totally symmetric with respect to all rotation axes, mirror planes, or
inversion centers that might be chosen to classify the “structure” of the molecule,
and thus could never distinguish between, e.g., dextro and levo optical isomers,
in-plane and out-of-plane H’s of hydrocarbons, carbonyl-type and hydroxyl-type
O’s of carboxylic acids, and so forth. This means, for example, that no true eigen-
state of Eq. (1.1) can correspond to a chiral molecule of definite handedness,12

even though the experimental existence of distinct enantiomeric species is well
established.

The resolution of this paradox lies in the Born–Oppenheimer approximation,13

which is based on the fact that nuclei are thousands of times more massive than
electrons. The nuclear motions are therefore so sluggish that electrons can be consid-
ered to rearrange virtually instantaneously around each static nuclear configuration
�R0. In this limit, Ĥ can be replaced by a model Ĥ (0) = Ĥ (�r ; �R0) that depends
only parametrically on nuclear positions, which are considered fixed at �R0. Solving
Eq. (1.2) for the electronic motions alone, while holding �R0 fixed, then leads to
solutions in which the energy E (0) = E(�R0) varies with nuclear configuration, the
“potential-energy surface” for subsequent treatment of nuclear motion. The high
accuracy of the Born–Oppenheimer model, i.e., the generally negligible values of
its higher-order perturbative corrections, amply justifies the chemist’s faith in the
existence of well-defined molecular structures. More generally, such considerations
validate the direct formulation of Eq. (1.1) as an electronic Schrödinger equation
in the Born–Oppenheimer framework, as we do throughout this book.

It is also routine to assume the non-relativistic approximation14 in writing
Eq. (1.1). This is based on the fact that molecular electronic velocities are gen-
erally far less than the speed of light, and the magnetic forces arising from elec-
tronic motions can therefore be neglected compared with the dominant electrical
forces between charged particles. In this limit, the model Hamiltonian contains only
potential-energy terms corresponding to Coulomb’s law of classical electrostatics.
However, in reducing Ĥ from relativistic (Dirac-like) to non-relativistic form, one
must recognize the two possible orientations of the intrinsic “spin” angular mo-
mentum of each electron (a relativistic effect) and include suitable spin labels in
the wavefunction Ψ. Thus, we should generalize the spatial coordinate �r to include
the orientation of each electron in “spin space.” Furthermore, we must insure that
the total electronic Ψ(�r ) is antisymmetric with respect to exchange of space–spin co-
ordinates of any two electrons i and j, as required by the Pauli exclusion principle15

(Section 1.7),

Ψ(�ri , �r j ) = −Ψ(�r j , �ri ) (1.6)



1.1 The Schrödinger equation 7

However, in other respects spin plays no direct role in construction of the non-
relativistic Ĥ . If higher accuracy is desired, perturbative expressions such as (1.5)
can be used to evaluate spin-dependent corrections to the non-relativistic model.

Variational models

Still another useful approximation is introduced by reformulating Eq. (1.1) as a
variational principle,16

E ≤ E (0) = 〈Ψ(0)|Ĥ |Ψ(0)〉
〈Ψ(0)|Ψ(0)〉 (1.7)

The inequality (1.7) is true for any possible variational trial function Ψ(0), subject
only to the usual antisymmetry and boundary conditions for square-integrable func-
tions of proper symmetry, and the best such Ψ(0) is that leading to the lowest possible
value of E (0), closest to the true E. However, it can be shown17 that any such trial
function Ψ(0) and variational energy E (0) are also solutions of a Schrödinger-type
equation (1.2) for a suitably defined model Hamiltonian Ĥ (0). Thus, any variational
approximation (1.7) can be formulated in terms of a model Ĥ (0), and the errors of
this model can be systematically corrected with perturbative expressions such as
Eqs. (1.5).18 This view of variational calculations, although somewhat unconven-
tional, allows us to treat both variational and perturbative approximation methods
in a common “model chemistry” language, along the lines enunciated by Pople.19

Summing up, we may say that approximation methods in quantum chemistry
generally involve (either explicitly or implicitly) a model Ĥ (0) and associated model
chemistry that more or less mimics the true behavior of Eq. (1.1). Such models
might be closely patterned after the well-known conceptual models of empirical
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chemistry, such as valence bond or ionic models, or chosen for purely mathe-
matical reasons. Perturbation theory always allows us to choose the best among
a family of such proposed models and to calculate systematically the correc-
tions that bring the model into improved agreement with the exact Schrödinger
equation (1.1).

The primary goal of a theory of valency and bonding is to find the model Ĥ (0)

that most simply describes the broad panorama of chemical bonding phenomena,
or, as Gibbs said,20 “to find the point of view from which the subject appears in
its greatest simplicity.” In the past, conceptual models were often cobbled together
from diverse empirical patterns, guided only weakly by theory. This resulted in
a patchwork of specialized “effects,” with incommensurate seams, indeterminate
limits of applicability, and little overall theoretical coherence. However, remark-
able advances in computational technology21 now make it possible to construct
improved conceptual models directly from accurate ab initio (“first-principles”)
wavefunctions.

The fundamental starting point for a rational electronic theory of valency and
bonding is the Lewis-structure representation of the shared and unshared electrons
in each atomic valence configuration, as formulated by G. N. Lewis. In the present
work, we shall focus on a natural Lewis-structure model, based on associating the
electron pairs of the familiar Lewis-structure diagram with a set of optimal, intrin-
sic, “natural” bond orbitals (NBOs),22 as outlined in Section 1.5. This viewpoint
is deeply tied to traditional chemical bonding concepts – including hybridization,
polarization, and bond transferability – and takes advantage of a model Ĥ (0) that de-
scribes localized electron pairs and their interactions in rapidly convergent fashion.
By employing a non-empirical theoretical methodology to construct quantitative
bonding concepts, we can better achieve the goal of unifying and harmonizing con-
ceptual models of valency and bonding with the deepest principles of chemistry, as
expressed by Eq. (1.1).

1.2 Hydrogen-atom orbitals

Orbitals and electron-density distributions

In his first communication23 on the new wave mechanics, Schrödinger presented
and solved his famous Eq. (1.1) for the one-electron hydrogen atom. To this day
the H atom is the only atomic or molecular species for which exact solutions
of Schrödinger’s equation are known. Hence, these hydrogenic solutions strongly
guide the search for accurate solutions of many-electron systems.

The essence of Schrödinger’s treatment was to replace the classical orbit of
Bohr’s semi-classical (particle) model of the H-atom by a corresponding wave-
like orbital (single-electron wavefunction) Ψ. Instead of specifying the electron’s
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position at a particular point �r of its orbit (as we should expect classically), the
orbital Ψ(�r ) determines only the electron density ρ(�r ) at each spatial point �r ,

ρ(�r ) = |Ψ(�r )|2 (1.8)

The density ρ(�r ) might also be described as the fractional probability of finding
the (entire) electron at point �r . However, chemical experiments generally do not
probe the system in this manner, so it is preferable to picture ρ(�r ) as a continuous
distribution of fractional electric charge. This change from a “countable” to a
“continuous” picture of electron distribution is one of the most paradoxical (but
necessary) conceptual steps to take in visualizing chemical phenomena in orbital
terms. Bohr’s “orbits” and the associated “particulate” picture of the electron can
serve as a temporary conceptual crutch, but they are ultimately impediments to
proper wave-mechanical visualization of chemical phenomena.

Equally paradoxical is the fact that ρ(�r ) depends only on the absolute square
of the orbital, and is everywhere sensibly non-negative, whereas Ψ(�r ) oscillates in
“wavy” fashion between positive and negative values.24 The phase patterns corre-
sponding to such sign changes are of utmost importance in chemistry. Solutions
of Schrödinger’s equation are generally governed by the superposition principle,
such that two interacting orbitals may interfere with one another in wave-like con-
structive (in-phase) or destructive (out-of-phase) patterns25 that strongly alter the
form of ρ(�r ). Visualizing and understanding the subtle chemical consequences of
orbital phase patterns and superposition is a central goal of this book.

Quantum numbers and shapes of atomic orbitals

Let us denote the one-electron hydrogenic Hamiltonian operator by ĥ, to distinguish
it from the many-electron Ĥ used elsewhere in this book. This operator contains
terms to represent the electronic kinetic energy (t̂e) and potential energy of attraction
to the nucleus (v̂ne),

ĥ = t̂e + v̂ne (1.9)

The associated Schrödinger equation for the H atom can then be written as

ĥΨnlm = εnΨnlm (1.10)

Each orbital eigenstate Ψnlm = Ψnlm(�r ) is labeled by three quantum numbers:

principal: n = 1, 2, 3, . . ., ∞ (1.11a)

azimuthal: l = 0, 1, 2, . . ., n − 1 (1.11b)

magnetic: m = 0, ±1, ±2, . . ., ±l (1.11c)
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Figure 1.1 Surface plots of representative s, p, and d atomic orbitals (from the
Kr valence shell).

The energy eigenvalue εn depends only on the principal quantum number n; its
value is given (in atomic units; see Appendix C) by

εn = − Z2

2n2
a.u. (1.12)

for atomic number Z (Z = 1 for H).
The three quantum numbers may be said to control the size (n), shape (l), and

orientation (m) of the orbital Ψnlm. Most important for orbital visualization are
the angular shapes labeled by the azimuthal quantum number l: s-type (spherical,
l = 0), p-type (“dumbbell,” l = 1), d-type (“cloverleaf,” l = 2), and so forth. The
shapes and orientations of basic s-type, p-type, and d-type hydrogenic orbitals are
conventionally visualized as shown in Figs. 1.1 and 1.2. Figure 1.1 depicts a surface
of each orbital, corresponding to a chosen electron density near the outer fringes of
the orbital. However, a wave-like object intrinsically lacks any definite boundary,
and surface plots obviously cannot depict the interesting variations of orbital ampli-
tude under the surface. Such variations are better represented by radial or contour
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s

s

p

p

(a)

Figure 1.2 (a) Lowest s- and p-type valence atomic orbitals of rare-gas atoms,
showing radial profiles (left) and contour plots (right). (Each plot is 3 Å wide,
and only the four outermost contours are plotted; see note 26.) (b) Similar to
Fig. 1.2(a), for valence 4s, 4p, and 3d atomic orbitals of Kr, corresponding directly
to the surface plots of Fig. 1.1.
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p

d

d

(b)

Figure 1.2(b) (Cont.)
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plots,26 as shown in Figs. 1.2(a) and (b). Figure 1.2 illustrates representative s, p, and
d atomic orbitals for n = 1 − 4, showing each orbital in its correct proportionate
size to serve as a valence orbital of a rare-gas atom (He, Ne, Ar, or Kr). (The actual
plots are of “natural” atomic orbitals, to be described in Section 1.5, but the shapes
are practically indistinguishable from those of analytic hydrogenic orbitals, and the
diagrams are broadly representative of valence atomic orbitals to be encountered
throughout this book.)

Filled and unfilled shells

As one can see from the quantum-number limits in Eqs. (1.11), there is a total of n2

degenerate (equal-energy) orbitals for each principal quantum number n and energy
level εn . Thus, the orbitals are naturally grouped into shells: a single orbital (1s) for
n = 1, four (2s, 2px , 2py , and 2pz) for n = 2, and so forth. Only the non-degenerate
1s orbital is occupied in the ground-state H atom, whereas all other solutions are
formally vacant.

We are therefore naturally led to ask the following question. What is the phys-
ical meaning of such vacant orbitals, which make no contribution to ground-state
electron density? The answer is that these orbitals represent the atom’s capacity
for change in the presence of various perturbations. Important examples of such
changes include spectral excitations (in the presence of electromagnetic radiation),
polarization (in the presence of an external electric field), or chemical transforma-
tions (in the presence of other atoms). Indeed, from the viewpoint of valency and
chemical reactivity, the vacant (or partially vacant) orbital shells are usually far
more important than those of occupied shells. Becoming familiar with the energies
and shapes of vacant orbitals is an essential key to understanding the electronic
give and take of chemical bonding.

1.3 Many-electron systems: Hartree–Fock and correlated treatments

The Hartree–Fock model

For many-electron atoms, the Schrödinger equation (1.1) cannot be solved exactly.
For the carbon atom, for example, the six-electron Hamiltonian operator Ĥ cannot
be written simply as a sum of six one-electron operators ĥ1, . . . , ĥ6, due to addi-
tional electron–electron repulsion terms (v̂ee). Nevertheless, both theoretical and
spectral evidence suggests that the six electrons can be assigned to a configuration
(1s)2(2s)2(2p)2 of hydrogen-like orbitals, each with maximum double occupancy
per orbital (one spin “up,” one spin “down”) in accord with the Pauli principle. By
choosing the best possible orbital product wavefunction Ψ(0) = ΨHF correspond-
ing to this single-configuration picture27 we are led to the famous Hartree–Fock
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approximation, a remarkably simple and successful model of many-electron sys-
tems.28

The Hartree–Fock (HF) orbitals φi can be shown to satisfy a Schrödinger-type
eigenvalue equation

F̂φi = εiφi (1.13a)

The Fock operator F̂ for an atomic or molecular system is a modified one-electron
Hamiltonian (cf. Eq. (1.9b)),

F̂ = t̂e + v̂ne + v̂ee
(av) (1.13b)

that contains a potential-energy term (v̂ee
(av)) to represent the average (“mean-

field”) electron–electron repulsion due to the other N−1 electrons. Owing to this
mean-field approximation, the motions of a particular electron are not properly
“correlated” with the actual dynamical positions of other electrons. The correlation
energy Ecorr is defined as the variational energy difference between the true energy
and the Hartree–Fock model energy,

Ecorr = EHF − Etrue (1.14)

and serves as a measure of the error due to fluctuations in the true electron–electron
repulsions around the mean-field estimate v̂ee

(av). Ecorr is usually of the order of 1%
of the total energy, an accuracy sufficient for many chemical purposes. Note that
the Hartree–Fock model is a unique and well-defined mathematical construction
for any molecular system. Thus, in principle the Fock operator F̂ exists (as do its
eigenfunctions φi and eigenvalues εi ), even if in practice we obtain only successive
numerical approximations to these quantities in any finite-basis calculation.

Electron-correlation corrections

As usual, the Hartree–Fock model can be corrected with perturbation theory
(e.g., the Møller–Plesset [MP] method29) and/or variational techniques (e.g., the
configuration-interaction [CI] method30) to account for electron-correlation effects.
The electron density ρ(�r ) = N

∫ |Ψ|2 d3�r2 . . . d3�rN can generally be expressed as

ρ(�r ) =
∑

i

ni |φi (�r )|2 (1.15)

where ni is the number of electrons in orbital φi (0 ≤ ni ≤ 2). At the simple
HF level, the occupancies ni are restricted to integer values (0, 1, or 2), but at
higher correlated levels these occupancies are non-integer, and the summation in-
cludes fractional occupancies of many orbitals that were vacant in the starting HF
configuration.
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Example 1.2

Let us examine the fluoride ion (F−), for which variational 6-311++G∗∗ calculations give

EHF = −99.4457 a.u., EMP = −99.6976 a.u.

This leads to the estimated correlation energy

Ecorr
(MP) = 0.2519 a.u. � 158 kcal mol−1

which is only about 0.25% of the total energy (but not negligible on a chemical scale of
accuracy!). The table and figure below summarize the effects of electron correlation on the
occupancies (ni ) and radial profiles of the F− occupied orbitals φi :

φi εi (HF) ni (HF)a ni (MP)a

1s −25.8274 2.000 2.000
2s −1.0702 2.000 1.987
2p −0.1774 6.000 5.911
3s — 0.000 0.011
3p — 0.000 0.079
3d — 0.000 0.013

a Sum over ml sublevels.

p

s

s

The table shows that the HF occupancies are integers that coincide with the formal
electron configuration (1s)2(2s)2(2p)6, whereas MP occupancies exhibit slight deviations
(1%–3% of e) due to electron correlation. For example, the 2s → 3s configurational excita-
tions needed to describe radial (“in–out”) correlation lead to a shift of about 0.01e from the
valence 2s to the Rydberg 3s orbital. The figure displays radial orbital profiles, showing
that the HF and MP results are virtually indistinguishable for 1s and 2p orbitals. However,
the MP 2s orbital is seen to have stronger (more negative) amplitude at the nucleus as a
consequence of radial correlation. We can paraphrase this result by saying that correlated
electrons are slightly “smarter” in remaining close to the nucleus, where nuclear attractions
are strongest.

The small correlation effects on the ni ’s and φi ’s also lead to slight changes in the electron
density ρ(�r ) (Eq. (1.15)), which would be perceptible only on a highly expanded plotting
scale.

Although HF orbitals are, by definition, the best possible for a single-
configuration wavefunction, it is actually possible to find a better set of orbitals,
called “natural” orbitals,31 to describe the correlated ρ(�r ). The natural orbitals are
maximum-occupancy orbitals, determined from Ψ itself and guaranteed to give
fastest possible convergence to ρ(�r ), i.e., consistently higher occupancies ni than
HF orbitals in Eq. (1.15). For a HF wavefunction the natural orbitals and HF orbitals
are equivalent, but for more accurate wavefunctions the natural orbitals allow us to
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retain the most HF-like picture of a correlated electron density, leading to the most
condensed expression for ρ(�r ) in Eq. (1.15). Example 1.2 provides an illustration
of how the correlated 2s natural orbital of F− contracts near the nucleus (compared
with the corresponding HF 2s orbital), giving a better description of electron density
in this region. Further discussion of natural orbitals is presented in Section 1.5.

Density-functional methods

In recent years density-functional methods32 have made it possible to obtain or-
bitals that mimic correlated natural orbitals directly from one-electron eigenvalue
equations such as Eq. (1.13a), bypassing the calculation of multi-configurational
MP or CI wavefunctions. These methods are based on a modified Kohn–Sham33

form (F̂KS) of the one-electron effective Hamiltonian in Eq. (1.13a), differing from
the HF operator (1.13b) by inclusion of a “correlation potential” (as well as other
possible modifications of (V̂ee

(av)).
The “B3LYP” implementation34 of density-functional theory has proven partic-

ularly effective for describing accurate properties of complex chemical systems at
practically no increase in computational cost over conventional HF methods. We
shall employ the B3LYP version of density-functional theory to obtain the numer-
ical orbitals and electron densities used throughout this book. Note that qualitative
valency and bonding concepts are well established even at much simpler levels of
theory, so practically no significant changes of our discussion would result from
choosing an alternative HF, MP, or CI starting point.

Further details of the underlying computational methods and basis sets to deter-
mine the wavefunction and density are described in Appendix A. Unless otherwise
noted, all numerical examples of this book employ the B3LYP/6-311++G∗∗ level
of theory.

1.4 Perturbation theory for orbitals in the Hartree–Fock framework:
the donor–acceptor paradigm

The use of the Hartree–Fock model allows the perturbation-theory equations (1.2)–
(1.5) to be conveniently recast in terms of underlying orbitals (φi ), orbital energies
(εi ), and orbital occupancies (ni ). Such orbital perturbation equations will allow
us to treat the complex electronic interactions of the actual many-electron system
(described by Fock operator F̂) in terms of a simpler non-interacting system (de-
scribed by unperturbed Fock operator F̂ (0)). We shall make use of such one-electron
perturbation expressions throughout this book to elucidate the origin of chemical
bonding effects within the Hartree–Fock model (which can be further refined with
post-HF perturbative procedures, if desired).
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Hartree–Fock perturbation theory

For the starting HF model, the many-electron Ψ(0) is the antisymmetrized35 product
of occupied spin-orbitals φi

(0)(�ri ),

Ψ
(0)(1, 2, . . . , N ) = Â[φ1

(0)(�r1)φ2
(0)(�r2) . . . φN

(0)(�rN )] (1.16a)

E (0) is the sum of corresponding orbital energies,

E (0) = ε1
(0) + ε2

(0) + · · · + εN
(0) (1.16b)

and Ĥ (0) is a sum of one-electron unperturbed F̂ (0)
i operators,

Ĥ (0) = F̂1
(0) + F̂2

(0) + · · · + F̂ N
(0) (1.16c)

one for each electron. For example, F̂ (0) might be the Fock operator for a hypothet-
ical system of electrons in non-interacting H-atom orbitals, whereas F̂ is the actual
Fock operator for the full system. The many-electron perturbation operator Ĥ (pert),
Eq. (1.3), can therefore be written as a sum of one-electron perturbations,

Ĥ (pert) = F̂1
(pert) + F̂2

(pert) + · · · + F̂ N
(pert) (1.17a)

where, for electron µ,

F̂µ
(pert) = F̂µ − F̂µ

(0) (1.17b)

Note that the subscript (µ) of F̂µ
(pert) is the “name” of the electron described by

the unperturbed Schrödinger equation,

F̂µ
(0)φi

(0)(�rµ) = εi
(0)φi

(0)(�rµ) (1.18)

However, the Pauli principle makes all electrons equivalent, so we can generally
suppress this subscript in the equations to follow. As usual, the solutions of Eq.
(1.18) are mutually orthogonal (〈φi

(0)|φ j
(0)〉 = δi j ) and the associated εi

(0)’s are
real for any physically meaningful (Hermitian) F̂ (0).

Example 1.3

We consider again (cf. Example 1.1) the case of Li in the basis of 1s and 2s NAOs, for
which the Fock operator of α spin has the 2 × 2 matrix form

F̂ =
(−2.0294 0.0019

0.0019 −0.1340

)

From matrix elements of the operators comprising F̂ (cf. Eq. (1.13b)),36 we can decom-
pose F̂ = F̂ (0) + F̂ (pert) into unperturbed (F̂ (0)) and perturbation (F̂ (pert)) operators in many
possible ways.
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(1) kinetic plus potential energy:

F̂ (0) = t̂e =
(

3.0094 −0.6074
−0.6074 0.1678

)
, F̂ (pert) = v̂ne + v̂ee

(av) =
(−5.0388 0.6093

0.6093 −0.3078

)

(2) one-electron plus two-electron terms:

F̂ (0) = t̂e + v̂ne =
(−2.8452 0.1659

0.1659 −0.9230

)
, F̂ (pert) = v̂ee

(av) =
(

0.8158 −0.1640
−0.1640 0.7890

)

(3) diagonal plus non-diagonal terms (cf. Example 1.1):

F̂ (0) =
(−2.0294 0

0 −0.1340

)
, F̂ (pert) =

(
0 −0.0019

−0.0019 0

)

Although any of these decompositions might be employed in the formal machinery of
perturbation theory, one can expect that choices of F̂ (0) for which the perturbation elements
in F̂ (pert) are small will lead to more rapid convergence, and thus serve as better models.

By substituting Eqs. (1.16) and (1.17) into the general perturbation expressions
(1.5), we can write the total first- and second-order corrections in the form

E (1) =
∑

i

Ei
(1) (1.19a)

E (2) =
∑

i

Ei
(2) (1.19b)

where

Ei
(1) = ni

(0)〈φi
(0)|F̂ (pert)|φi

(0)〉 (1.20a)

Ei
(2) ≤ −ni

(0) 〈φi
(0)|F̂ (pert)|φ̃〉2

〈φ̃|F̂ (0) − εi
(0)|φ̃〉 (1.20b)

In these expressions, ni
(0) is the number (0, 1, or 2) of electrons occupying spatial

orbital φi
(0) in Ψ(0), and φ̃ is a variational trial function (orthogonal to φi

(0)) for the
first-order orbital correction φi

(1). The expressions (1.20) allow us to treat the pertur-
bative effects on an orbital-by-orbital basis, isolating the corrections associated with
each HF orbital φi . Equations (1.18)–(1.20) involve only single-electron operators
and integrations, and are therefore considerably simpler than (1.5c) and (1.5d).

We can further simplify the treatment by noting that E (1) is merely a constant that
can be added to Ĥ (0) and subtracted from Ĥ (pert) (leaving the total Ĥ unmodified),
giving a “shift in the zero of the energy scale” for E (0) and making E (1) = 0. Thus,
we may assume without loss of generality that Ĥ (0) and F̂ (0) are chosen to make
the first-order corrections vanish, so that (1.20b) is the leading correction.

We can also simplify (1.20b) by noting that F̂ (pert) can be replaced in the numer-
ator by F̂ , because 〈φi

(0)|F̂ (0)|φ̃〉 = 0 for any φ̃ orthogonal to φi
(0). We can further
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Figure 1.3 The two-electron stabilizing interaction between a filled donor or-
bital φi

(0) and an unfilled acceptor orbital φ j
∗(0), corresponding to perturbation

Eq. (1.24).

choose φ̃ to be a normalized trial function, and define

ε̃ = 〈φ̃|F̂ (0)|φ̃〉 (1.21)

Then (1.20b) is expressed equivalently as

Ei
(2) ≤ −ni

(0) 〈φi
(0)|F̂ |φ̃〉2

ε̃ − εi
(0)

(1.22)

Moreover, it will often occur that the best possible perturbative trial function
φ̃ is dominated by a single unperturbed orbital φ j∗ (0) (with n j∗ (0) = 0, the asterisk
denoting an initially unoccupied excited-state orbital), so that we can approximate

φ̃ = φ j∗ (0) (1.23a)

ε̃ = ε j∗ (0) (1.23b)

In this case, we can label the second-order correction as an “i→ j∗” correction and
write (1.22) as

Ei→ j∗(2) = −ni
(0) 〈φi

(0)|F̂ |φ j∗(0)〉2

ε j∗(0) − εi
(0)

(1.24)

Donor–acceptor stabilization

Equation (1.24) expresses a simple but powerful physical idea, as illustrated (for
ni

(0) = 2) in Fig. 1.3. This figure shows the unperturbed energy levels for a doubly



20 Introduction and theoretical background

occupied “donor” orbital φi
(0) and an unoccupied “acceptor” orbital φ j∗ (0), inter-

acting to give the energy lowering Ei→ j∗ (2) as expressed by Eq. (1.24). (Figure 1.3
illustrates that there is an equal and opposite raising of the perturbed level for φ j∗ (0),
but this orbital remains vacant and thus contributes no energy change to the system.)
It can be seen from Eq. (1.24) and Fig. 1.3 that the energy shift Ei→ j∗ (2) is necessar-
ily negative, because ε j∗ (0) ≥ εi

(0) for any unoccupied φ j∗ (0), and the interaction is
therefore stabilizing (regardless of the form of F̂). The donor–acceptor interaction
depicted in Fig. 1.3 is often referred to as a “two-electron stabilizing interaction” to
indicate that only the number of electrons sharing the two orbitals (rather than, e.g.,
the energies or shapes of the orbitals) is sufficient to guarantee quantum-mechanical
energy lowering. It is a quite remarkable feature of quantum-mechanical superpo-
sition that a low-lying filled orbital φi

(0) can always further lower its energy by
mixing with a higher-energy unoccupied orbital φ j∗ (0), no matter what the details
of the Hamiltonian. The general capacity of atomic and molecular species to make
judicious use of available filled and unfilled orbitals is therefore a fundamental
guiding principle of chemical valency and bonding.

Example 1.4

For the allyl anion, a localized Lewis structure for the π system is

C̈1—C2 = C3

with filled orbitals n1 and π23 and unfilled orbital π23
∗, corresponding to the electron

configuration

(n1)2(π23)2

The n1→π23
∗ donor–acceptor interaction (i.e., φi

(0) = n1, φ j∗ (0) = π23
∗ in Eq. (1.24) and

Fig. 1.3) represents a partial admixture of the configuration in which two electrons are
removed from the lone pair on C1 and transferred into the C2 — C3 antibond. This can be
represented equivalently as

(n1)0(π23)2(π23
∗)2 = (n1)0(n2)2(n3)2 = (π12)2(n3)2

where we rewrite (n1)0(n2)2 as a “polarized π bond” π12. This new configuration evidently
represents the alternative

C1 = C2—C̈3

Lewis structure. Thus, the donor–acceptor interaction in this case is equivalent to the “res-
onance” between Lewis structures

C̈1—C2 = C3 ↔ C1 = C2—C̈3

which is known to be intrinsically stabilizing.
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1.5 Density matrices, natural localized and delocalized orbitals,
and the Lewis-structure picture

We now introduce a set of quantities that are closely related to the electron density
ρ(�r ), but provide still more detailed information about one-particle subsystems of
the N-particle system described by Ψ.

The first-order density operator

The first-order reduced density operator γ̂ can be defined in terms of its kernel
function37

γ (�r1|�r1
′) = N

∫
Ψ(�r1, �r2, . . . , �rN )Ψ∗(�r1

′, �r2, . . . , �rN )d3�r2 . . . d3�rN (1.25)

for any N-electron wavefunction Ψ. (Note that the Pauli principle enforces democ-
racy among all electrons, so we normally drop the label of the preferred electron
“1” in Eq. (1.25).) As defined in Eq. (1.25), γ (�r |�r ′) is a function of two continuous
indices �r and �r ′ and thus can be treated as a type of “continuous matrix.” However,
this function is more properly regarded as the kernel of an integral operator γ̂ that
operates on a general one-particle (orbital) function f (�r ) according to the rule38

γ̂ f (�r ) = g(�r ) =
∫

γ (�r |�r ′) f (�r ′)d3�r ′ (1.26)

Usually, no confusion is incurred if we treat the kernel γ (�r |�r ′) (which defines the
operator through Eq. (1.26)) and the operator γ̂ rather interchangeably. Note that
the density operator is as unique and well defined as Ψ itself, although in practice
we obtain this operator only in finite numerical approximations.

Example 1.5

For a closed-shell HF wavefunction, with doubly occupied molecular orbitals (MOs) φ1,

φ2, . . . , φocc,

ΨHF = det|φ1
2φ2

2 . . . φocc
2|

it can be shown that the density kernel takes the form

γHF(�r1|�r1
′) = N

∫
ΨHF(�r1, �r2, . . . , �rN )ΨHF

∗(�r1
′, �r2, . . . , �rN )d3�r2 . . . d3�rN

= 2
occ∑

i

φi (�r1)φi
∗(�r1

′)

and the corresponding density operator is symbolized as

γ̂HF = 2
occ∑
i=1

|φi 〉〈φi |
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i.e., as a sum of projection operators over occupied MOs, each multiplied by its occupancy
(2). Let us use these equations to evaluate the matrix elements (γ jk) of γ̂HF in a basis of
atomic orbitals {X j }

γ jk = 〈X j |γ̂HF|Xk〉 = 2
occ∑
i=1

〈X j |φi 〉〈φi |Xk〉

Using the familiar LCAO-MO expansion of φi ,

φi =
∑

j

ci jX j

we can recognize that, for an orthonormal basis set,

〈X j |φi 〉 = ci j , 〈φi |Xk〉 = cik
∗

The matrix elements γ jk of the density operator are therefore

γ jk = (D) jk = 2
occ∑
i=1

ci j cik
∗

or, in matrix form,

D = 2
occ∑
i=1

ci ci
†

where ci is the column vector of LCAO coefficients of MO φi . In simple Hückel π-electron
theory, the density matrix D is called the “Coulson charge and bond-order matrix,” because
its diagonal element (D) j j is the π charge on atom j, and its off-diagonal element (D) jk is
the MO π bond order between atoms j and k.

In any complete, orthonormal basis set of orbitals {Xi }, γ (�r |�r ′) can be expanded
as

γ (�r |�r ′) =
∑
i, j

γi jXi (�r )X j
∗(�r ′) (1.27)

where γi j = (D)i j are elements of the density matrix D (the representation of γ̂ as
a conventional discrete matrix).39 By setting the “indices” �r and �r ′ equal in γ (�r |�r ′)
we obtain the local electron density at �r as a “diagonal element” of γ̂ ,

γ (�r |�r ) = ρ(�r ) (1.28)

However, the more general γ (�r |�r ′) allows evaluation of any single-particle prop-
erty, including non-local operators that do not depend on ρ(�r ) alone (e.g., kinetic
energy t̂e). As originally shown by Husimi,37 γ̂ allows one to address experimental
questions pertaining to one-electron subsystems of a many-electron system rigor-
ously. At the Hartree–Fock level (cf. Example 1.5), it can be shown that knowledge
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of γ̂ is equivalent to full knowledge of ΨHF, so the density operator is indeed a
formidable alternative oracle of chemical knowledge.

Natural orbitals: NAOs and NBOs

As shown by P.-O. Löwdin,40 the complete information content of γ̂ can be
obtained from its eigenorbitals, the “natural” orbitals θi , and the corresponding
eigenvalues ni ,

γ̂ θi = niθi (1.29)

where ni = 〈θi |γ̂ |θi 〉 is the occupancy of natural orbital θi . General mini-
mum/maximum properties of the eigenvalue equation for γ̂ guarantee that the θi ’s
are maximum-occupancy orbitals (highest possible ni ’s, within the general Pauli
restriction 0 ≤ ni ≤ 2), and thus lead to the most rapidly convergent possible ex-
pansions of the electron density and other one-electron properties. The exquisite
properties of these orbitals amply justify their designation as “natural” orbitals –
intrinsic to Ψ itself rather than an arbitrarily chosen basis set.

Example 1.6

Let us consider the simple case of the H atom and its variational approximation at the stan-
dard HF/3-21G level, for which we can follow a few of the steps in terms of corresponding
density-matrix manipulations. After symmetrically orthogonalizing the two basis orbitals
of the 3-21G set to obtain orthonormal basis functions X1s andX2s, we obtain the corre-
sponding AO form of the density operator (i.e., the 2 × 2 matrix representation of γ̂ in the
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basis X1s and X2s) as

γ̂ (AO) =
(

0.6431 0.4791
0.4791 0.3568

)

From this matrix we see that

γ11 = 〈X1s|γ̂ |X1s〉 = 0.6431

γ22 = 〈X2s|γ̂ |X2s〉 = 0.3568

i.e., that X1s contains 0.6431e and X2s contains 0.3568e, far below the expected maximum
occupancy of natural orbitals. In this basis set the electron density has the unwieldy form
(cf. Eqs. (1.27) and (1.28)),

ρ(�r ) = 0.6431|X1s(�r )|2 + 0.3568|X2s(�r )|2 + 2 · 0.4791X1s(�r )X2s(�r )

To find the natural orbitals {θi } of this system, we diagonalize the 2 × 2 matrix γ̂ (AO) to
obtain the eigenvectors and eigenvalues shown below:

eigenvector eigenvalue

1.

(
0.8020
0.5974

)
1.0000

2.

(
0.5974

−0.8020

)
0.0000

From the eigenvectors we obtain the natural orbitals in the form

θ1 = 0.8020X1s + 0.5974X2s,

θ2 = 0.5974X1s − 0.8020X2s,

and from the eigenvalues we obtain the corresponding occupancies

n1 = 〈θ1|γ̂ |θ1〉 = 1.0000

n2 = 〈θ2|γ̂ |θ2〉 = 0.0000

The occupancy of θ1 is obviously the maximum possible in this one-electron system, so θ1

is indeed a natural orbital. In terms of natural orbitals, the density operator takes the form

γ̂ (NO) =
(

1.0000 0.0000
0.0000 0.0000

)

and the electron density is condensed to a single term,

ρ(�r ) = |θ1(�r )|2

The natural orbital θ1 is equivalent to the variational Hartree–Fock 1s orbital in this case,
much closer to the exact hydrogenic solution discussed in Section 1.2.

By restricting the search for maximum-occupancy eigenorbitals to a localized
atomic block γ̂ associated with atom A, one can obtain the optimal set of natural
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atomic orbitals (NAOs)41 θi
(A), with occupancy ni

(A). The NAOs reduce smoothly to
the ordinary natural orbitals of isolated atoms in the dissociation limit, but they retain
the maximal-occupancy property in the molecular environment and thus continue
to serve as “best possible” AOs at all separations. By searching for the highest-
occupancy (near-pair) eigenorbitals in each diatomic A—B bonding region, one can
similarly obtain the optimal natural bond orbitals (NBOs)42 θi

(AB), with occupancy
ni

(AB). The detailed computational algorithms for determining NAOs and NBOs are
beyond the scope of this book.43 However, these algorithms are implemented in
the general NBO program44 and incorporated in a number of popular electronic
structure packages (see the NBO website45 for current implementations, tutorials,
sample output, and other background information), which make it easy to obtain
the NAOs and NBOs for any chemical system of practical interest.

Note that the NAOs, NBOs, and associated occupancies are in principle uniquely
determined by γ̂ , and thus by Ψ itself. In practice, the NBO-based quantities are
found to converge rapidly to well-defined numerical limits, independently of the
numerical basis set or other arbitrary details of approximating Ψ. In the present
work, the level of describing Ψ will be taken to be sufficiently high that we can gen-
erally ignore the small differences that distinguish numerically determined NBOs
from the infinite-basis limit.

Like the delocalized natural orbitals {θi } of the full system, the localized NAOs
{θi

(A)} and NBOs {θi
(AB)} have optimal convergence properties for describing lo-

calized atomic and bonding regions. Both NAOs and NBOs form a complete, or-
thonormal set; for example, the NAOs {θi

(A)} satisfy

〈θi
(A)|θ j

(B)〉 = δABδi j (1.30)

Thus, these orbitals can be used to represent exactly any property of the system in
localized terms. The NAOs divide naturally into a leading high-occupancy set (the
“natural minimal basis”) and a residual low-occupancy set (the “natural Rydberg
basis”), where the occupancies of the latter orbitals are usually quite negligible
for chemical purposes. Thus, even if the underlying variational basis set is of high
dimensionality (6-311++G∗∗ for the applications of this book), a perturbative
analysis couched in NAO terms has the simplicity of an elementary minimal-basis
treatment without appreciable loss of chemical accuracy.

Example 1.7

For the H2 molecule with four basis AOs χ1
(A), χ2

(A), χ1
(B), and χ2

(B) (non-orthogonal
3-21G basis), the AO density matrix is

γ̂ (AO) =




1.1540 1.3616 1.1540 1.3616
1.3616 1.6065 1.3616 1.6065
1.1540 1.3616 1.1540 1.3616
1.3616 1.6065 1.3616 1.6065






26 Introduction and theoretical background

Diagonalization of the 2 × 2 atomic subblocks (cf. Example 1.4) leads to NAOs θ1
(A),

θ2
(A), θ1

(B), and θ2
(B) that transform the density operator into

γ̂ (NAO) =




1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0




with singly occupied NAOs θ1
(A) and θ1

(B) on each atom (i.e., 〈θ1
(A)|γ̂ |θ1

(A)〉 =
〈θ1

(B)|γ̂ |θ1
(B)〉 = 1). Diagonalization of the two-atom γ̂ (NAO) matrix leads finally to four

NBOs

σAB = 0.7071θ1
(A) + 0.7071θ1

(B)

σAB
∗ = 0.7071θ1

(A) − 0.7071θ1
(B)

r∗
A = θ2

(A)

r∗
B = θ2

(B)

that transform the density operator into

γ̂ (NBO) =




2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




with doubly occupied bonding NBO σAB (i.e., 〈σAB|γ̂ |σAB〉 = 2) and three unoccupied
NBOs (antibond σAB

∗, Rydberg orbitals rA
∗ and rB

∗). In this case, γ̂ (NBO) is identical to
the density operator in the MO basis, because the occupied NBO and MO are identical.

Natural Lewis structures

The N/2 “Lewis-type” NBOs of highest occupancy (ni
(AB) � 2) can be directly

associated with the localized electron pairs of the chemist’s Lewis-structure dia-
gram.46 Each Lewis-type NBO �AB can be decomposed into constituent natural
hybrid orbitals (NHOs) hA and hB on atoms A and B,

�AB = cAhA + cBhB (1.31a)

with polarization coefficients cA and cB satisfying |cA|2 + |cB|2 = 1. The bonding
hybrids hA and hB are constructed from NAOs on atoms A and B in a manner
that closely resembles the classical Pauling hybridization picture,47 but all details
of NHO hybridization and polarization are numerically optimized to give the best
possible description of electron density. The two valence hybrids hA and hB give
rise to two valence-shell NBOs: an in-phase Lewis-type NBO (1.31a) and a corre-
sponding out-of-phase “non-Lewis” NBO �AB

∗,

�AB
∗ = cBhA − cAhB (1.31b)



1.5 Density matrices and orbitals 27

(which is unoccupied in the Lewis-structure picture). The set of Lewis-type NBOs
typically includes a one-center core (labeled “CR” in the NBO program output) and
a valence lone pair (“LP”) as well as two-center bond (“BD”) orbitals. The non-
Lewis set includes unoccupied valence nonbonding (“LP∗”) and extra-valence-shell
Rydberg (“RY∗”) orbitals as well as the valence antibonds (“BD∗”) of Eq. (1.31b).
Thus, the NBOs form a “chemist’s basis set” of Lewis-type (unstarred) and non-
Lewis-type (starred) orbitals, each member being closely associated with some
aspect of the localized Lewis structure diagram or its capacity for chemical change.

Example 1.8

Let us consider the hydrogen fluoride (HF) molecule as a simple example. The conventional
Lewis structure diagram of this molecule

corresponds to a sigma bond (σHF) and three fluorine lone pairs (nF, nF
′
, and nF

′′
), as well as

the fluorine core pair (KF). A portion of the NBO output (slightly edited) is shown below:

NATURAL BOND ORBITAL ANALYSIS:
(Occupancy) Bond orbital/ Coefficients/ Hybrids

--------------------------------------------------------------------------------------
1. (2.00000) BD ( 1) H 1- F 2

( 22.39%) 0.4732* H 1 s( 99.89%)p 0.00 ( 0.11%)
( 77.61%) 0.8810* F 2 s( 20.93%)p 3.77 ( 78.95%)d 0.01( 0.12%)

2. (1.99994) CR ( 1) F 2 s (100.00%)
3. (1.99940) LP ( 1) F 2 s ( 79.14%)p 0.26( 20.86%)d 0.00( 0.00%)
4. (1.99791) LP ( 2) F 2 s ( 0.00%)p 1.00( 99.97%)d 0.00( 0.03%)
5. (1.99791) LP ( 3) F 2 s ( 0.00%)p 1.00( 99.97%)d 0.00( 0.03%)
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NBO 1 is the σHF bond (“BD”), which can be written in the form of Eq. (1.31a) as

σHF = 0.88(sp3.77)F + 0.47(1s)H

(The fluorine sp3.77 hybrid [with 78.95% p character; see Example 2.2] also has
weak d-orbital contributions [0.12%] that can usually be ignored.) The polarization
coefficients indicate that about 77.6% of the electron density is polarized toward the
more electronegative F atom.

NBO 2 is the KF core (“CR”) orbital, of 100% s character.
NBOs 3–5 are the three fluorine lone pairs (“LP”). As shown by the occupancies and

hybrid composition, these lone pairs are inequivalent. LP(1) is the s-rich sigma-type
sp0.26 lone pair (nF

(σ ); 79% s character), directed along the bond axis. LP(2) and LP(3)
are the p-rich pi-type lone pairs (nF

(π) and nF
(π′); 99.97% p-character), perpendicular

to the bond axis. The lone “pairs” have occupancies slightly less than 2.000 00 (due
to weak delocalization into Rydberg orbitals of the adjacent H), but overall, the
correspondence with the elementary Lewis-structure description is excellent.

Contour and amplitude profile plots of the σHF bond (upper panels) and contour plots of the
nF

(σ) and nF
(π) lone pairs (lower panels) are illustrated below:
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The localized wavefunction Ψ(L) formed from N/2 doubly occupied Lewis-type
NBOs,

Ψ
(L) = Â[(�AB)2(�CD)2. . .] (1.32)

corresponds to an idealized natural Lewis-structure picture. As usual, the wave-
function (1.32) can be associated with the Hamiltonian Ĥ (L) and energy E (L) of a
strictly localized Lewis-structure “model chemistry,” with Schrödinger equation

Ĥ (L)
Ψ

(L) = E (L)
Ψ

(L) (1.33)

By taking Eq. (1.33) as the starting unperturbed Eq. (1.2), one can analyze delo-
calization corrections to the localized Lewis structure picture by the perturbative
formalism of Eqs. (1.3)–(1.5) and Section 1.4. Valency and bonding phenomena
can thereby be dissected into localized and delocalized contributions in a numeri-
cally explicit manner. This, in overview, is the strategy to be employed for chemical
phenomena throughout this book.

Example 1.9

For hydrogen fluoride, which is well described by a single Lewis structure (cf. Example
1.6), the localized natural Lewis-structure model wavefunction gives

E (L) = −100.464 27 a.u.

differing by only 0.018 11 a.u. (11.4 kcal mol−1, 0.02%) from the full energy

Efull = −100.482 38 a.u.

The error of Ψ(L) can also be expressed in terms of the “non-Lewis density” ρ∗ = ρ(NL), the
total occupancy of non-Lewis orbitals in Ψfull. For HF this quantity is

ρ∗ = 0.004 77e

which is only 0.05% of the total integrated electron density ρ (10e). Thus, by either an
energetic or a density criterion, HF is a well-localized molecule.

Example 1.10

An example of a more strongly delocalized species is the allyl anion, which is conventionally
described in terms of two resonance structures:
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In this case the energy of the natural Lewis-structure model

E (L) = −116.965 62 a.u.

differs from the full energy

Efull = −117.314 08 a.u.

by 0.348 46 a.u. (218.7 kcal mol−1, 0.30%), a much larger absolute and relative error, and
the non-Lewis density

ρ∗ = 0.643 99e

is 2.68% of the total ρ. Thus, an idealized single Lewis-structure model requires larger
perturbative corrections for the allyl anion than for hydrogen fluoride.

The overlap concept: pre-orthogonal localized orbitals

Although the NAOs and NBOs are strictly orthonormal (as eigenfunctions of any
physical Hermitian operator must be), each such orbital is associated with a cor-
responding “pre-orthogonal” orbital (e.g., PNAO θ̃

(A)
i for NAO θ

(A)
i ) that allows

one to retain the valuable concept of “overlap.” The PNAOs differ from NAOs
only in omission of the final interatomic orthogonalization step48 and have the
full symmetry of free-atom AOs, so they look like the idealized textbook AOs
of pure hydrogenic ψnlm type, or the natural orbitals of isolated atoms (to which
they reduce as the atoms separate to infinity). The PNAOs on a single atom are
mutually orthogonal (〈θ̃ (A)

i |θ̃ (A)
j 〉 = δi j ; cf. Eq. (1.30)), but those on distinct atoms

have non-vanishing overlaps (〈θ̃ (A)
i |θ̃ (B)

j 〉 �= 0). Similarly, the PNBO Ω̃AB has all
the same hybridization and polarization coefficients as the NBO ΩAB, but is built
from PNAOs rather than NAOs (or, equivalently, from PNHOs h̃A and h̃B rather
than NHOs hA and hB).

Example 1.11

The figure below compares the forms of the 2sF NAO and PNAO in hydrogen fluoride (solid
lines), which are shown against the background of the filled 1sH and 1sF orbitals (dotted
lines).

As seen, the 2sF PNAO and NAO differ mainly near the adjacent H nucleus, where the
NAO exhibits an additional nodal feature and a noticeable contraction of density in the
shoulder nearest the (1sH)2 pair. Both the PNAO and the NAO are orthogonal to 1sF (as
required on physical grounds for eigenfunctions of a Hermitian operator), but only the NAO
is orthogonal to 1sH. Thus, the PNAO passes smoothly (and unphysically, as though it were
a free-space atom) through the region occupied by the electrons associated with H, without
the additional nodal feature (and higher kinetic energy) mandated by the Pauli exclusion
principle.
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A valuable feature of the overlapping PNHO hybrids h̃A and h̃B is that they
allow the 〈hA|F̂ |hB〉 NHO interaction elements to be estimated in terms of the
corresponding PNHO overlap integral 〈 h̃A| h̃B〉by a Mulliken-type approximation49

of the form

〈hA|F̂ |hB〉 � −k〈h̃A|h̃B〉 (1.34)

where k is a constant of order unity in atomic units. Because the qualitative behavior
of the overlap SAB = 〈h̃A|h̃B〉 can be judged from the hybrid shapes, the bonding
interaction elements FAB = 〈hA|F̂ |hB〉 between hybrids can often be visually esti-
mated by “inspection of the overlap.” Similar Mulliken-type relationships apply to
interactions between NAOs or NBOs. Thus, for example, Eq. (1.24) can be replaced
by an estimate of the form

Ei→ j∗ (2) � −ni
(0) k2〈φ̃i

(0)|φ̃ j∗ (0)〉2

ε j∗ (0) − εi
(0)

= −ni
(0) k2Si j∗ 2

ε j∗ (0) − εi
(0)

(1.35)

where φ̃i
(0) is the PNBO associated with NBO φi

(0), and so forth. Approximations
such as Eq. (1.35) allow one to make semi-quantitative estimates of perturbative
delocalization effects from the qualitative shapes and energies of the orbitals. In this
manner the elementary “principle of maximum overlap”50 is essentially preserved
in NBO analysis of chemical interactions.

(For simplicity throughout this text, we shall use the generic term “NBO” to refer
both to the orbitals that appear in formulas such as Eq. (1.24) and to those displayed
in surface plots and orbital-overlap diagrams. However, in case of confusion, it
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should be recalled that the latter are properly identified as “PNBOs” [introduced for
visualization purposes only], whereas perturbative equations such as Eqs. (1.15)–
(1.18) are formulated in terms of orthonormal NBOs. Similar comments apply to
“NAOs” and “NHOs.”)

1.6 Natural resonance structures and weightings

The mathematical criterion for “resonance” description
of delocalization effects

The approximation (1.32) of a single Lewis (“resonance”) structure Ψ(L) is often
inadequate, and the associated model chemistry of Eq. (1.33) cannot accurately
describe the system of interest. Because Ψ(L) can be expressed in terms of a corre-
sponding density matrix D(L) (cf. Eqs. (1.25) and (1.27)), we can also say that the
localized density matrix D(L) does not sufficiently approximate the true delocalized
density matrix D(true) associated with Ψ.

As suggested by the original resonance theory of Pauling and Wheland,51 such
delocalization effects appear to represent some type of average of multiple reso-
nance structures. A general goal of resonance theory is to represent each property
〈P〉true of the true delocalized system in resonance-averaged form

〈P〉true =
∑

α

wα〈P〉α (1.36)

where 〈P〉α is the value of the property for localized resonance structure α and the
wα’s are positive weighting factors, summing to unity, that express the contribution
of structure α to the resonance hybrid. We are therefore led to search for additional
localized resonance-structure wavefunctions (Ψα

(L), Ψβ
(L), . . .) and associated den-

sity matrices (Dα
(L), Dβ

(L), . . .) such that a weighted average of Dα
(L)’s can be used

to represent D(true),

D(true) =
∑

α

wαDα
(L) (1.37)

Equation (1.37) is actually the necessary and sufficient condition that any one-
electron property52 〈P〉 (such as electron density, dipole moment, kinetic energy, . . .)
could be written in the resonance-averaged form (1.36). The goal of a quantitative
resonance theory is to find the resonance weights wα (if any) for which Eq. (1.37)
is most accurately satisfied.

The NRT variational criterion

The natural resonance theory (NRT) method53 offers a convenient ab initio means
to calculate such resonance weights from the “D(true)” density matrix for a Ψ of any
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form. The NRT method begins by calculating the idealized Dα
(L) for each candidate

resonance structure by a directed NBO search (analogous to the default NBO search
for the leading structure). If we let D(w) = �αwαDα

(L) denote the resonance hybrid
on the right-hand side of Eq. (1.37), we can recast this equation as a variational
principle for optimal weights {wα} that minimize the root-mean-squared deviation
(δw) between D(true) and D(w),

δw = min
{wα}

‖D(true) − D(w)‖ ≥ 0 (1.38)

where ‖ . . . ‖ denotes the norm (the square root of the trace of the squared matrix) of
the enclosed matrix.54 The residual error δw of the NRT expansion can be compared
with the error δ0 = ‖D(true) − D(L)‖ of the starting single-structure approximation,
expressed in terms of the fractional improvement fw,

fw ≡ 1 − δw

δ0
(1.39)

to give an intrinsic measure of NRT accuracy (0 ≤ fw ≤ 1).

Example 1.12

For the case of the allyl anion (cf. Examples 1.4 and 1.10), the density matrix D(true) for the
three 2pc π-type NAOs is

D(true) =

 1.4694 0.7061 −0.4650

0.7061 0.9927 0.7061
−0.4650 0.7061 1.4694




Let us consider the simplest possible localized density matrices D1 and D2 for the two
resonance structures shown in Example 1.4:

D1 =

 1 1 0

1 1 0
0 0 2


 , D2 =


 2 0 0

0 1 1
0 1 1




For example, D1 has coupled singly occupied orbitals on C1 and C2 (leading to a C1—C2

π bond) and a doubly occupied orbital on C3, corresponding to the lone pair of the first
resonance structure.

For the simplest resonance-weighted density matrix D(w) = w1D1 + w2D2 with equal
resonance weightings, w1 = w2 = 1

2 ,

D(w) =

 1.5 0.5 0

0.5 1 0.5
0 0.5 1.5




the r.m.s. error δw is found to be

δw = 0.78
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This may be compared with the error δ0 of either D1 or D2 alone,

δ0 = 1.45

Thus, the fractional improvement of the two-term resonance expansion is

fw = 0.46

Natural bond order and valency

From the optimal NRT resonance weights, one can also evaluate the natural bond
order bAB between atoms A and B as the resonance-weighted average

bAB =
RS∑
α

wαbAB
(α) (1.40)

where bAB
(α) is the number of A—B bonds in structure α. To distinguish covalent

(bAB
(cov)) and ionic (bAB

(ion)) contributions to bond order, we define the resonance-
averaged “ionic character” iAB of each A—B bond,

iAB =
∑
α

wαiAB
(α)

bAB
(1.41a)

where iAB
(α), the ionicity of the A—B bond in resonance structure α, is calculated

from NBO polarization coefficients cA and cB (Eq. (1.31a)),

iAB
(α) =

∣∣∣∣cA
2 − cB

2

cA
2 + cB

2

∣∣∣∣ (1.41b)

(averaged, if necessary, over multiple bonds). The total NRT bond order bAB is
thereby partitioned into fractional ionic and covalent contributions as

bAB
(ion) = bABiAB (1.42a)

bAB
(cov) = bAB(1 − iAB) (1.42b)

so that bAB = bAB
(cov) + bAB

(ion) for any A–B pair. (Further aspects of covalent/ionic
character in NBO and classical valence-bond descriptions will be discussed in
Section 3.2.2.)

Finally, the NRT bond orders about atom A can be summed to give the total
natural atomic valency VA as

VA =
∑
B �=A

bAB (1.43)

Just as the bond order is partitioned into ionic and covalent contributions in
Eqs.(1.42a) and (1.42b), so too can the total valency of A be written as the sum of
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formal “electrovalency” (VA
(ion)) and “covalency” (VA

(cov)), evaluated as

VA
(ion) =

∑
B �=A

bAB
(ion) (1.44a)

VA
(cov) =

∑
B �=A

bAB
(cov) (1.44b)

Unless the bonding about A is of extreme ionic or covalent type, only the total VA is
expected to match the empirical valency of an atom as reflected, e.g., in its position
in the periodic table (Appendix B).

Example 1.13

For the allyl anion the NRT weightings are found to be 47.5% each for the two leading
structures (cf. Example 1.10), plus a smattering of small values (<0.5%) for 16 other
structures. These weightings lead to C—C bond orders of 1.511, nearly equal to the classical
value 1.5 predicted by the two leading structures alone. The C—H bond orders are 0.972
on the central C and 0.986 and 0.990 on each terminal C. The total valency of the central C
is therefore

VC = 2(1.511) + 0.972 = 3.995

which is very close to the expected tetravalency. The valency of each terminal C is

VC = 1.511 + 0.972 + 0.986 = 3.488

which is close to the average value (3.5) that would be expected from the two classical
resonance forms. The valency of each H is equal to the bond order to the attached C, nearly
1 in each case. Thus the NRT bond orders and valencies are in good agreement with the
expectations of the standard two-structure resonance model.

Comparison with earlier valence concepts

The NRT resonance weights, bond orders, and valencies are generally comparable to
those of the older Pauling–Wheland theory (particularly for species of low ionicity)
and can be used to rationalize chemical phenomena in a similar fashion. Pauling’s
classic, The Nature of the Chemical Bond, brilliantly illustrates such reasoning.

However, we should emphasize that the NBO/NRT concepts of hybridization,
Lewis structure, and resonance differ in important respects from previous empirical
usage of these terms. In earlier phases of valence theory it was seldom possible to de-
termine, e.g., the atomic “hybridization” by independent theoretical or experimental
procedures, and instead this term became a loosely coded synonym for the molec-
ular topology. For example, a trigonally coordinated atom might be categorized as
“sp2-hybridized” or an octahedrally coordinated atom as “d2sp3-hybridized,” with
no supporting evidence for the accuracy of these labels as descriptors of actual
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orbital composition. Similarly, the “Lewis structure” of a molecule was inferred,
via the VSEPR logic, merely from its shape, leading to superficial assignments
of “valence electron pairs” to each atom without regard to actual electron-density
distributions. In a similar fashion, empirical resonance structures and weightings
were commonly assigned rather arbitrarily to “explain” geometry features, e.g.,
to interpret an unusually short bond by increased weighting of double-bonded or
triple-bonded resonance structures. In these extreme limits, the assigned hybrids,
Lewis structures, or resonance weightings have no independent conceptual content,
but merely serve as elaborate codewords for the experimental molecular geometry.
Many such empirical usages have deservedly fallen into disrepute.

In contrast, the NBO and NRT methods make no use of molecular geometry
information (experimental or theoretical), but instead provide optimal descriptions
of orbital composition or electron-density distributions based directly on the first-
order density operator. For this reason the NBO/NRT indices have predictive utility
for a broad range of chemical phenomena, without bias toward geometry or other
particular empirical properties.

1.7 Pauli-exchange antisymmetry and steric repulsions

Antisymmetry and indistinguishability

In its most fundamental form the Pauli exclusion principle expresses the math-
ematical requirement (cf. Eq. (1.6)) that the wavefunction Ψ change sign upon
exchange of the space–spin coordinates of any two electrons (or indeed, of any
pair of identical fermions). This “exchange antisymmetry” of Ψ represents a subtle
but profound difference between classical and quantal concepts of indistinguisha-
bility. “Indistinguishable” physical particles necessarily appear symmetrically in
the Hamiltonian operator Ĥ , so that, e.g., Ĥ (1, 2) and Ĥ (2, 1) are equivalent if
particles “1” and “2” are indistinguishable. This in turn implies that |Ψ(1, 2)|2 and
|Ψ(2, 1)|2 are identical probability distributions, leading to identical results in all
measurements. However, the physical requirement |Ψ(2, 1)|2 = |Ψ(1, 2)|2 still al-
lows either of two mathematical possibilities for the wavefunction amplitude under
exchange, Ψ(2, 1) = +Ψ(1, 2) (symmetric) or −Ψ(1, 2) (antisymmetric). For deep
reasons that we do not discuss further, the + sign is associated with particles of
integer spin (bosons) and the − sign with particles of half-integer spin (fermions,
including electrons).

The requirement of overall exchange antisymmetry of the N-electron wavefunc-
tion Ψ(1, 2, . . ., N ) can be expressed more generally in terms of formal invariance
under the N-electron antisymmetrizer operator Â

ÂΨ = Ψ (1.45)
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As was mentioned previously, simple orbital products (electron configurations)
must be converted into antisymmetrized orbital products (Slater determinants) in
order to satisfy the Pauli principle. Thus, proper many-electron wavefunctions sat-
isfy constraints of exchange antisymmetry that have no counterpart in pre-quantum
theories.

For the chemist, the most important consequence of the exchange antisymmetry
is that an allowed electron configuration may have no more than one electron of
given spin in a specified spatial orbital, i.e., the spin quantum numbers ms = ± 1

2 of
two electrons must be opposed if they are assigned to the same spatial orbital (com-
mon n, �, m spatial quantum numbers). This occupancy restriction forces successive
electron pairs to populate spatially orthogonal orbitals as they are brought into a
common spatial region. In general, maintenance of spatial orthogonality requires
increased oscillatory and nodal structure, corresponding to higher average curva-
ture and thus to higher average kinetic energy for electrons forced to occupy these
orbitals. As a result, electrons compressed into a restricted spatial volume experi-
ence an apparent destabilizing (repulsive) “force”55 opposing such compression.
Weisskopf56 has aptly described this general electronic tendency to resist spatial
compression as “kinetic-energy pressure.” Chemists call the same effect “steric
repulsion.”

Natural steric analysis

Natural steric analysis57 allows quantitative evaluation of steric repulsion on the
basis of this simple physical picture. Given the converged Fock (or Kohn–Sham)
operator F̂ , we can evaluate the average energy of each occupied NBO �i

(NBO) and
the associated pre-orthogonal PNBO �i

(PNBO) in the usual manner,

Fi,i
(NBO) = 〈�i

(NBO)|F̂ |�i
(NBO)〉 (1.46a)

Fi,i
(PNBO) = 〈�i

(PNBO)|F̂ |�i
(PNBO)〉 (1.46b)

The PNBO energy Fi,i
(PNBO) corresponds to a Pauli-violating limit in which each

constituent atomic orbital retains its isolated free-atom (PNAO) form, without
the additional nodal features required to preserve interatomic orthogonality in
the molecular environment. The energy difference between the Pauli-violating
Fi,i

(PNBO) and the actual NBO energy Fi,i
(NBO) therefore measures the effect of

increased steric pressure (for electrons in NBO i) due to proximity of other atoms.
The total NBO steric exchange energy (E tot

(st)) is evaluated by summing such dif-
ferences over all occupied NBOs,

Etot
(st) =

occ∑
i

(Fi,i
(NBO) − Fi,i

(PNBO)) (1.47)
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Example 1.14

Consider the steric repulsion between two helium atoms at various separations R. In this
case, each atom contains only a single doubly occupied 1s-like NBO and Eq. (1.47) reduces
to a single term

Etot
(st) = 2(F1s,1s

(NBO) − F1s,1s
(PNBO))

involving the energy difference between 1s-type NBOs and PNBOs on each atom. For
example, at R = 1.5Å the values are

F1s,1s
(NBO) = −0.6564, F1s,1s

(PNBO) = −0.6658

leading to steric repulsion

Etot
(st) = 2(0.0094) a.u. = 11.8 kcal mol−1

at this distance. The graph below compares Etot
(st) (dotted line) with the full �E(He · · · He)

(solid line) over a wide range of R, showing the close agreement between the NBO estimate
of steric repulsion and the actual potential-energy curve.

We can see the effect of steric repulsions on the form of the He 1s-like NBO. The plot
below compares the form of this NBO at R = 2.5 Å (for which the NBO and PNBO are
practically identical) with the forms at R = 2.0, 1.5 and 1.0 Å, for which the interatomic
nodal structure becomes increasingly apparent.

The increased “choppiness” of the 1s-like waveform is the visual manifestation of in-
creased kinetic energy and stronger He· · · He repulsion at small R.
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Steric repulsions of localized electron pairs

Although Eq. (1.47) gives an evaluation of the total steric exchange energy of the
N-electron system, it is often desirable to decompose this energy approximately
into contributions from the steric interactions of individual electron pairs i, j. For
each (i, j) pair, we can form the “partially deorthogonalized” PNBO/2 orbitals
�i

(PNBO/2) and � j
(PNBO/2) which are non-orthogonal with respect to one another,

but remain orthogonal with respect to all other NBOs. (Details of this procedure
are beyond the scope of the present work.) The partial i, j contribution Ei, j

(st) to
steric exchange is therefore estimated as

Ei, j
(st) = (Fi,i

(NBO) − Fi,i
(PNBO/2)) + (F j, j

(NBO) − F j, j
(PNBO/2)) (1.48)

By summing these contributions over all distinct pairs, we obtain an alternative
pairwise-additive estimate (Epw

(st)) of the steric exchange energy,

Epw
(st) =

∑
i< j

Ei, j
(st) (1.49)

which, however, is only an approximation to the more fundamental expression, Eq.
(1.47), for Etot

(st).
The contributions (1.48) for individual NBOs i, j allow one to make direct contact

with empirical measures of steric “bulk” or “shape” of individual atoms, atomic
shells, or other localized chemical moieties. For example, as two Ne atoms (a and
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Table 1.1. Natural atomic van der Waals radii (Å) for H—Ar

H He
1.42 1.07

Li Be B C N O F Ne
2.76 2.22 1.78 1.62 1.63 1.46 1.27 1.22

Na Mg Al Si P S Cl Ar
3.07 2.75 2.30 2.21 2.44 2.16 1.89 1.78

b) are brought together, the longest-range steric contribution (1.48) is of 2pa–2pb

type, arising from “collisions” of the outermost valence shells which establish the
effective van der Waals radius of the atom. However, at smaller R the successive
inner-shell collisions of 2pa–2sb, 2pa–1sb, . . . , 1sa–2sb type lead to further sharp
increases in steric repulsion.

Natural van der Waals radii

By choosing a standard probe species i (e.g., a helium atom) of known van der
Waals radius, one can probe the “steric surface” of any doubly occupied NBO j
by determining the locus of points for which Ei, j

(st) achieves a specified energy
value (e.g., kT of ambient thermal collisions). Ab initio atomic van der Waals radii58

determined in this manner are shown in Table 1.1.
The natural van der Waals radii of Table 1.1 are generally found to be in good

correspondence to empirical values. However, one can establish that the van der
Waals surface of a bonded atom is generally somewhat ellipsoidal (rather than
spherical), with major and minor axes respectively transverse and longitudinal to
the bond direction. One can also evaluate the “hardness” (radial derivative of steric
energy), charge dependence, and temperature dependence of van der Waals radii,
thereby obtaining many quantitative refinements of empirical steric concepts.

Further examples throughout this book will illustrate the usefulness of quanti-
fying steric repulsions in this manner.

1.8 Summary

“Models” of chemistry can be constructed from sufficiently good approximations
to Schrödinger’s equation, the ultimate source of chemical knowledge. Perturba-
tion theory provides a systematic method for choosing the best among competing
models, and for systematically correcting a chosen model. The “reality” of a model
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chemistry lies in the accuracy of the underlying unperturbed Hamiltonian operator,
i.e., its ability to describe the empirical phenomena of chemistry (to the precision
required by chemical practitioners) in the most direct and faithful manner, subject
to the fewest perturbative corrections. The constructs of the model chemistry must
then be as “real” as those employed by chemical practitioners to characterize the
empirical phenomena of chemistry. Indeed, the model constructs of an apt theoreti-
cal model can be expected to mirror faithfully the experimentally inferred concepts
that have been developed to express empirical chemical facts with comparable
accuracy.

The Hartree–Fock (molecular-orbital) approximation provides a particularly use-
ful chemical model. The HF model reduces an N-electron system to an effective
one-electron Schrödinger-like equation, preserving many features of the exactly
soluble H-atom system. Hartree–Fock perturbation theory allows the energy and
other properties to be systematically improved on an orbital-by-orbital basis. Par-
ticularly important are the perturbative corrections arising from “donor–acceptor”
interactions between filled and vacant orbitals, which provide a general stabilizing
mechanism promoting chemical affinity between initially non-interacting species.

The first-order reduced density operator succinctly summarizes the chemical
information related to electron density and other single-electron properties. Local
“natural bond orbital” eigenvectors of this operator describe electron pairs in one-
and two-center regions of the molecule, providing a direct orbital realization of the
chemist’s Lewis-structure picture. The NBO-based models provide a framework
for analyzing chemical phenomena in terms of familiar Lewis-structural concepts,
including “resonance” between multiple Lewis structures and repulsive steric inter-
actions between localized filled orbitals. The attractive donor–acceptor interactions
between Lewis-type (filled) and non-Lewis-type (vacant) valence NBOs are iden-
tified as a unifying theoretical leitmotif that governs many valency and bonding
phenomena.

Notes for Chapter 1

1. P. A. M. Dirac, Proc. Roy. Soc. 123 (1929), 714.
2. H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (New York, Wiley, 1944), p. iii.
3. Equation (1.1) is actually the stationary-state version of the more general Schrödinger-like (or
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17. See, e.g., P.-O. Löwdin, in C. H. Wilcox (ed.), Perturbation Theory and its Applications in

Quantum Mechanics (New York, Wiley, 1966), p. 255.
18. Note that every variational approximation corresponds to a model Ĥ (0), but not every model
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ranges are usually ±3 Å and ±1 a.u., respectively. However, symmetry considerations,
molecular size, or the wish to magnify orbital details will sometimes lead to altered plotting
ranges, which can usually be inferred from plotted nuclear positions.

27. Ψ(0) is formally a Slater determinant (antisymmetrized product) of occupied orbitals. Because
electronic wavefunctions are always implicitly antisymmetrized to satisfy the Pauli principle,
we can treat a configurational product of orbitals [φ1

2φ2
2 . . .] and the associated Slater

determinant det|φ1
2φ2

2 . . . | = Â[φ1
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Electrostatic and ionic bonding

2.1 Introduction

The close relationship between chemistry and electricity was surmised long be-
fore the discovery of quantum mechanics.1 The inverse-square law for the force
between electrically charged objects (“Coulomb’s law”) was established as early as
1766 by the American chemist Joseph Priestley, on the basis of a method suggested
by Benjamin Franklin. Galvani’s discoveries of 1780 and the subsequent develop-
ment of the voltaic pile sparked intensive investigations on the chemical effects of
electricity, culminating in Humphry Davy’s electrolytic discoveries of alkali ele-
ments and general recognition of the “natural electrical energies of the elements”
by about 1806. Within a decade, J. J. Berzelius had formulated his influential
“dualistic” electrochemical theory, asserting that “in every chemical combination
there is a neutralization of opposite electricities.”

Studies of electrolysis and electromagnetic induction were greatly advanced by
Davy’s assistant, Michael Faraday, who also introduced the modern terminology
of “cation” and “anion.” Long before the 1897 “discovery” of the electron by J. J.
Thomson, strong chemical evidence pointed to the existence of such “corpuscles
of electricity,” as could be inferred particularly from Faraday’s studies. Indeed, the
word “electron” was coined in 1874 by the chemist J. Stoney, who also estimated
the electronic charge from the value of Faraday’s constant. Thus, the essential com-
ponents of a simple ionic bonding picture, much as presented in current textbooks,
were available at least a half-century before the discovery of Schrödinger’s equation
and the modern quantal view of electronic behavior.

Although the Berzelius ionic theory achieved successes in interpreting inorganic
compounds, it met persistent difficulties in the emerging domain of organic chem-
istry. By about 1860, E. Frankland, F. A. Kekulé, and others had developed the
opposing concept of “valence” (and specifically, the quadrivalence of carbon) to

45
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counter the Berzelius ionic picture. Thus, the stage was set for strongly conflicting
views on the nature of chemical affinity and association.

The ionic or electrostatic picture of bonding has an engaging simplicity. Ac-
cording to classical electrostatics, the energy of interaction (Ees) of particles with
charges Q1 and Q2 at separation R is

Ees(R) = c
Q1 Q2

R
(2.1)

where c is a constant that depends on the chosen units (Appendix C). For oppositely
charged particles, this formula leads to an infinitely negative energy at R → 0, the
only stable static solution. Non-static solutions are no better, for Earnshaw’s the-
orem of classical electrostatics establishes that no dynamical system of charged
particles can achieve stable equilibrium. Hence, electrostatic potentials must be
modified by some type of “hard-sphere” potential at chosen R0 to prevent unphys-
ical collapse.

Example 2.1

For a system consisting of four ions, with Q1 = −Q2 = Q3 = −Q4 = e, the electrostatic
energy is simply a sum of six such Coulombic terms, one for each distinct pair of ions:

E = (+e)(−e)

R12
+ (+e)(+e)

R13
+ (+e)(−e)

R14
+ (−e)(+e)

R23
+ (−e)(−e)

R24
+ (+e)(−e)

R34

Let us compare the energy of linear (Elin) and square (Esq) arrangements, assuming the
same nearest-neighbor distance R for each:

Elin(R) = (+e)(−e)

R
+ (+e)(+e)

2R
+ (+e)(−e)

3R
+ (−e)(+e)

R
+ (−e)(−e)

2R
+ (+e)(−e)

R
= (−7/3)e2/R = (−2.3333 . . .)e2/R

Esq(R) = (+e)(−e)

R
+ (+e)(+e)

21/2 R
+ (+e)(−e)

R
+ (−e)(+e)

R
+ (−e)(−e)

21/2 R
+ (+e)(−e)

R
= (−4 + 21/2)e2/R = (−2.5857 . . .)e2/R

Thus, for any fixed R classical electrostatics favors a square over a linear arrangement by
10.8%, but the only true minimum is R → 0.
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It can be shown2 that solution of Schrödinger’s equation for a pair of dissociating
ions (e.g., Li+ + F−) leads to an energy that agrees with Eq. (2.1) as R → ∞. In fact,
Eq. (2.1) is nearly exact for distances R outside the “exchange region,”3 or roughly
speaking, for R values safely larger than the sum of van der Waals radii (RvdW).
Thus, Eq. (2.1) and the associated classical ionic picture are in some sense “correct”
for sufficiently large R. Nevertheless, chemical bonding and reactivity typically
involves separations well inside the RvdW contact distance, where corrections to
Eq. (2.1) cannot be safely neglected. Thus, this chapter will focus on how the
true quantal description of ionic interactions differs from the classical electrostatic
description.

2.2 Atomic and ionic orbitals

Charge and configurational variations of atomic orbitals

Although oversimplified treatments commonly speak of “the” atomic orbitals for
a given atom, it is clear that AOs must depend on the charge state and specific
configuration of the atom. Thus, the (N)AOs of an anionic atom A− will tend to be
markedly more diffuse (i.e., spread out to greater distances from the nucleus) than
those of a cationic A+.

Figure 2.1. illustrates these differences for the 2s NAOs of Li−, Li0, and Li+,
showing the strong decrease in the radius of this valence orbital as the net charge
increases. It is evident that an attempt to describe, e.g., the valence electron distri-
bution of Li+ in terms of the fixed 2s AO of Li (or Li−) would incur a large error,

Figure 2.1 Valence 2s NAOs of Li+, Li0, and Li−, showing the strong variation of
orbital radius with charge state.
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Figure 2.2 Valence 2p NAOs for ground 3P and first excited 1D states of the C atom,
showing the weak dependence of orbital shape on electron configuration.

due to the inappropriate size of the latter orbitals. In general, we must consider the
effective AOs of an atomic species to be dependent on its charge state, including
the fractional variations of charge state involved in chemical bonding.

More subtle variations of NAOs are associated with changes of electron config-
uration. As a simple example, Fig. 2.2 illustrates the 2p NAOs of an isolated neutral
carbon atom for two electronic configurations: the ground triplet state (3P) and first
excited singlet state (1D). Although these configurations differ only by a single spin
flip, the optimal 2p NAO of the excited singlet state is slightly more spatially ex-
tended than the corresponding NAO of the ground triplet state. Similar adjustments
are expected to accompany valence “promotion” during chemical-bond formation.

The natural minimal basis

The naive concept that a fixed set of valence AOs suffices for all charge states and
bonding environments is equivalent to the use of a minimum basis set (e.g., STO-
3G), which is known to be quite inadequate for quantitative purposes. Nevertheless,
if the AOs are properly allowed to adjust dynamically in the molecular environment,
one recovers a minimal-basis description that is surprisingly accurate: the “natural
minimal basis.” In the NBO framework the effective natural atomic orbitals are
continually optimized in the molecular environment, and the number of important
NAOs therefore remains close to minimal, greatly simplifying the description of
bonding.

In the following sections we shall primarily focus on the linear combinations of
NAOs that lead to optimal hybrids and NBOs, rather than on the forms of the NAOs
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themselves. Nevertheless, it should be remembered that the disarming simplicity
of the NHO/NBO description is largely due to the fact that the underlying NAOs
are themselves optimally adapted to the specific charge and bonding state. With
such optimized atomic orbitals, the elementary valence-theory assumption of an
“effective minimal basis set” is found to be vindicated even at the highest levels of
ab initio theory.

2.3 Charge transfer and hybridization in ionic bonding

Charge-“leakage” breakdown of the classical ionic picture: lithium fluoride

We shall first examine how the quantal and classical descriptions of ionic bonding
deviate for the prototypical example of lithium fluoride (Li+ + F−). Figure 2.3
shows the potential-energy curve for lithium fluoride in the near-Req region where
the bonding is primarily ionic,4 comparing the quantum-mechanical5 E (solid line)
and electrostatic Ees (dotted line), both referred to a common zero of energy at
R →∞. The quantal and classical ionic interaction energies are seen to be in rea-
sonable agreement for larger separations, differing only by the neglected small
effects of electric polarization. However, these curves exhibit quite significant dif-
ferences near Req (e.g., 0.04 a.u. �25 kcal mol−1 at R = 1.6 Å) and diverge entirely
as R →0.

Let us examine the quantal energy curve in more detail. On chemical
grounds we expect that LiF formation should be reasonably well described by a

Figure 2.3 The potential-energy curve for Li+ + F− ionic bond formation accord-
ing to quantum mechanics (solid line) or classical electrostatics (dotted line).
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Figure 2.4 Components of the Li–F potential-energy curve E(R) = E (L)(R) +
E (NL)(R), showing the localized “natural-Lewis-structure” model energy E (L)

(circles, left-hand scale) and delocalized “non-Lewis” correction E (NL) (squares,
right-hand scale). The classical electrostatic estimate Ees (dotted line) is shown
for comparison.

Lewis-structure picture, i.e., by a localized wavefunction of doubly occupied Lewis-
type NBOs as given in Eq. (1.32). The energy E (L) of this simple model wavefunc-
tion (cf. Eq. (1.33)) is plotted in Fig. 2.4 (circles, left-hand scale). The behavior
of the localized Lewis potential E (L)(R) is indeed qualitatively reasonable, leading
to an equilibrium bond length and well depth that are both within about 10% of
the full optimized values. Moreover, E (L)(R) becomes practically identical to the
classical electrostatic limit (dotted curve) beyond R � 2.5 Å, as expected for the
asymptotic long-range limit. The “error” of the localized Lewis-structure model is
the “delocalization energy” (or “non-Lewis energy”) E (NL), which can be obtained
as the variational energy difference

E (NL)(R) = E (L)(R) − E(R) (2.2)

and is also plotted in Fig. 2.4 (squares, right-hand scale). In perturbation-theory lan-
guage, E (L) = E (0) is the “zeroth-order” energy, corresponding to the unperturbed
model Hamiltonian Ĥ (0), and E (NL) is the sum of perturbative corrections (cf.
Eq. (1.5a)). As seen in Fig. 2.4, E (NL) is a relatively small correction to E (L)(∼15%
near Req and less than 1% beyond 3 Å), which should be well approximated by
second-order perturbation theory near Req. However, at smaller R the magnitude
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of the delocalization correction increases strongly (exponentially), necessitating
higher-order corrections.

Figure 2.4 shows that a classical electrostatic model provides an accurate de-
scription of ionic bonding in the long-range limit. However, this picture cannot be
expected to describe the important effects of steric repulsion (included in E (L)) and
electronic delocalization (included in E (NL)) that strongly affect the behavior near
Req. We therefore focus on quantal steric and delocalization corrections that lead
to significant deviations from the expected long-range electrostatic behavior.

To understand the behavior shown in Figs. 2.3 and 2.4, we can examine the
calculated ionic charge at each R, as shown in Fig. 2.5. This figure displays the
“charge transfer” (CT) from anion to cation, expressed as a percentage (%e) of
an electron, showing the continuous “leakage” of charge from anion to cation as
the ions approach. The CT is initially rather small (<0.5%e beyond R > 5 Å), but
increases steadily to 1%–2% in the region inside RvdW, then much more steeply
in the near-Req region. As will be seen in Section 2.4 below, a donor–acceptor
CT interaction that transfers merely 1% of an electron corresponds to an energy
lowering of roughly 5–10 kcal mol−1 (1% of an atomic unit), so the chemical forces
associated with such charge leakage are indeed significant.

The irregular shape of the CT curve near Req reflects competition of unfavor-
able donor–donor interactions (steric repulsions) and favorable donor–acceptor

Figure 2.5 Charge transfer (CT; percentage of e charge) from F− to Li+ during
ionic-bond formation. For reference, a dotted vertical line marks the equilibrium
bond length. Note the steep rise corresponding to the onset of the “ionic–covalent
transition” near R = 1 Å.



52 Electrostatic and ionic bonding

interactions as successive unfilled and filled orbital shells begin to overlap strongly.
Increasing donor–acceptor overlap in turn confers increasing two-center (covalent)
character on the shared electron pair, culminating in the “ionic–covalent transition”
to a dative covalent bond near Rc � 0.73 Å. Further aspects of this short-range
behavior are discussed in Section 2.5.

Changes of orbital radii in ionic-bond formation

As would be expected from the charge shifts shown in Fig. 2.5, strong changes
in ionic orbital radii accompany ionic-bond formation. Figure 2.6(a) compares the
2sLi valence NAOs of LiF at three separations: R = 4 Å (near the onset of strong
ionic orbital overlap), R = 1.6 Å (near Req), and R = 1 Å (near Rc). Figure 2.6(b)
shows a corresponding contour plot for the 2sLi NAO with the incoming donor 2pF

orbital at R = 1.6 Å, illustrating the adaptation of orbital size to achieve favorable
donor–acceptor overlap. The changes in orbital size associated with ionic bonding
are related to those shown in Fig. 2.1 but less dramatic, since they involve smaller
changes in fractional charge.

Ionic hybridization

Still another aspect of the Li and F valence orbitals is modified by ionic-bond
formation. In an isolated ionic or neutral species, each NAO retains the characteristic
angular shape of the pure s and p hydrogenic orbitals shown in Fig. 1.1, reflecting the
full rotational symmetry of atoms. However, in the presence of another atom or ion
this symmetry is broken, and the optimal valence orbitals acquire “spλ hybrid” form
(assumed for simplicity to include only valence s and p orbitals), as represented
mathematically by

h = 1

(1 + λ)1/2
(s + λ1/2p) (2.3)

In this expression, the hybridization parameter λ varies between 0 (pure s) and
∞ (pure p), with any integer or non-integer value in this range being physically
allowed. The general relationships between λ and percentage s and p characters are
given by

%s = 100
1

1 + λ
(2.4a)

%p = 100
λ

1 + λ
(2.4b)

or, equivalently,

λ = %p

%s
(2.5)
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(a)

(b)

Figure 2.6 (a) Valence 2s NAOs for the Li ion at R = 4 Å (near the onset of the
strong-overlap region), R = 1.6 Å (near equilibrium), and R = 1 Å (near the onset
of the ionic–covalent transition). (b) Contour plots of unhybridized 2sLi (left) and
2pF (right) valence NAOs of LiF at R = 1.6 Å (cf. the middle plot of part (a)).
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Example 2.2

An “sp0.5 hybrid” is an s-rich hybrid with

%s = 100
1

1 + 0.5
= 66.7%, %p = 100

0.5

1 + 0.5
= 33.3%

somewhat more spherical (less directional) than a standard digonal sp hybrid (50% s char-
acter). Similarly, an “sp3.5 hybrid” is a p-rich hybrid with

%s = 100
1

1 + 3.5
= 22.2%, %p = 100

3.5

1 + 3.5
= 77.8%

rather similar to a standard tetrahedral sp3 hybrid (75% p character).

How does hybridization vary during ionic-bond formation? Figure 2.7 shows
the numerical variation of percentage p character of optimal hLi and hF NHOs as
a function of R in the range 1–5 Å. At large R, the valence NHOs are nearly sp1

on Li and pure p on F. However, as bond formation proceeds, the hybridization on
Li first becomes increasingly s-like (∼sp0.3 at R � 3 Å), then sharply more p-like
(∼sp7) in the near-Req region, and finally again more s-like below R = 1.0 Å. The
F hybrid remains virtually a pure p orbital both at very long and at very short dis-
tances but acquires significant mixed hybrid character in the intermediate bonding
region (1.4 Å < R < 3 Å), becoming ∼sp5-like near Req. These strong hybridiza-
tion changes are indicative of important quantal deviations from an elementary
electrostatic picture.

Figure 2.7 Percentage p character of Li and F bonding hybrids in ionic-bond formation.
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The physical importance of the hLi hybridization “spike” near R = 1.45 Å can
be understood from Fig. 2.8. This figure displays radial (left) and contour (right)
plots of the overlapping hLi and hF hybrids for bond lengths slightly greater than
(R = 1.65 Å, upper), equal to (middle), and less than (R = 1.25 Å, lower) this
spike. As Fig. 2.8 shows, the hLi hybrid undergoes an interesting inversion near
R = 1.45 Å, which serves to maintain high 〈hLi|hF〉 bonding overlap, by pointing
the hybrid right (toward the ligand) at longer R, but left (away from F) at shorter
R, thereby avoiding the incoming node of the hF orbital. The hybridized orbitals of
Fig. 2.8 are evidently more effective at maintaining good donor–acceptor overlap
than the idealized (unhybridized) 2sLi and 2pF NAOs of Fig. 2.6(b). Figures 2.7
and 2.8 illustrate the considerable subtlety and intricacy of near-Req electronic
rearrangements, even in this most extreme case of ionic bonding.

The radial orbital profiles of Fig. 2.8 reveal another important aspect of ionic
bonding. Whereas the anionic donor hF orbital remains essentially of 2p charac-
ter at all R, the radial character of the cationic acceptor hLi orbital varies rather
strongly with distance. Only at smaller R is hLi composed primarily of 2s and 2p
NAOs, whereas at larger R this hybrid incorporates more diffuse contributions of 3s,
4s, . . . type, to maintain bonding overlap with the receding hF. Properly speaking,
no finite R is entirely “outside” the overlap region where quantal CT effects (of some
scale) could be expected. Nevertheless, vacant Rydberg (extra-valence-shell) NAOs
of higher quantum shells are increasingly diffuse and of higher energy, so quantal ef-
fects are rapidly quenched as the overlap between valence-level shells of the cationic
and anionic species diminishes. In this manner the full quantum electrostatics of or-
bital interactions grades asymptotically into the classical electrostatics picture (de-
scribed by Coulomb’s law (2.1) and its polarization corrections) at long range. Only
in the near-Req region of valence orbital interactions do the differences between clas-
sical and quantal pictures of ionic bonding become of critical chemical importance.

2.4 Donor–acceptor theory of hybridization in ionic bonding

An idealized localized picture of ionic bonding

A strictly localized picture of ionic bonding is qualitatively correct at large R, but
incurs large errors in the near-Req region. We can evaluate this error by assum-
ing an idealized localized description Ψ(L) of the Li+ · · · F− ion pair, analogous to
Eq. (1.32), with the idealized hF doubly occupied and hLi completely vacant. The
model wavefunction Ψ(L) is thereby prevented from undergoing charge-transfer
(CT) delocalization between ions, and the energy difference E (L) − E (true) measures
the error of suppressing CT. At R = 1.6 Å, for example, this energy difference is cal-
culated to be 0.0271 a.u. � 17 kcal mol−1, a chemically significant error. Obviously,
such a flawed “model chemistry” is in serious need of perturbative corrections.
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Figure 2.8 Li hybird “inversion” near 1.45 Å.
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Of the 17 kcal mol−1 total error, about half is estimated to arise from the single
hF→hLi sigma-type interaction shown in Fig. 2.8, while the remainder arises from
weaker pi-type interactions (2–3 kcal mol−1 each). For example, we can carry out
a “partially localized” variational calculation, similar to that described above but
with only hF prevented from delocalizing into hLi; this leads to a stabilization energy
(at R = 1.6 Å)

|E(delete hF→hLi) − E (true)| = 0.0124 a.u. � 7.8 kcal mol−1 (2.6a)

The corresponding estimate from NBO second-order perturbative analysis is

−E (2)(hF→hLi) = 8.3 kcal mol−1 (2.6b)

in sensibly close agreement. Let us see how an energy lowering of this magnitude
arises from the perturbation expressions of Section 1.4.

Theory of ionic donor–acceptor corrections

For the present case, the leading donor–acceptor correction EDA
(2), Eq. (1.24), can

be rewritten as

EDA
(2) = −2

〈φD|F̂ |φA〉2

εA − εD
= −2

〈hF|F̂ |hLi〉2

�ε
(2.7)

where �ε = ε(hLi) − ε(hF). Let us approximate the donor orbital hF = pF as a pure
valence 2p NAO on F, and the acceptor orbital as a variational trial function of the
form (cf. Eqs. (1.22) and (2.3))

φ̃ = h(λ) = 1

(1 + λ)1/2
(sLi + λ1/2pLi) (2.8)

where sLi and pLi are pure (unhybridized) valence NAOs of Li, and λ is an unknown
hybridization parameter. Since sLi and pLi would have exactly degenerate energies
in a hydrogenic approximation, and their actual energy difference is always much
smaller than �ε (∼500 kcal mol−1), we can see that not much error is incurred if
we take �ε to be independent of λ. The variational expression for EDA

(2) (cf. Eq.
(1.22)) then becomes

EDA
(2) ≤ − 2

1 + λ

〈pF|F̂ |sLi + λ1/2pLi〉2

�ε
(2.9)

If we denote the right-hand side of (2.9) as E(λ), we can variationally minimize
E(λ) with respect to λ by setting

dE(λ)

dλ
= 0 (2.10)
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If we further denote

fps′ = 〈pF|F̂ |sLi〉, fpp′ = 〈pF|F̂ |pLi〉 (2.11a)

F = fps′ + λ1/2 fpp′ (2.11b)

(with the primed index referring to Li acceptor NAOs), Eq. (2.10) is equivalent to

2(1 + λ)
dF

dλ
= F (2.12)

with solution

λopt = ( fpp′/fps′)2 (2.13)

For example, at R = 2 Å the NAO Fock-matrix elements are6

fps′ = 0.0348 a.u., fpp′ = 0.0650 a.u. (2.14a)

�ε = ε2s(Li) − ε2p(F) = 0.2852 − (−0.5002) = 0.7854 a.u. � 493 kcal mol−1

(2.14b)
Equation (2.13) then leads to the estimate

λopt = sp3.5 (78% p character) (2.15a)

in reasonable agreement with the actual sp3.2 (76.2% p character). When this λopt

is substituted into Eq. (2.9), one obtains

EDA
(2) = −0.0138 a.u. = −8.7 kcal mol−1 (2.15b)

in reasonable agreement with Eqs. (2.6a) and (2.6b).

Hybridization and charge transfer in ionic bonding

Why do orbitals hybridize? It is apparent from Eq. (2.9) that hybridization (λ 	= 0)
is a general mechanism for increasing the bonding strength.7 From the variational
solution (2.13), one can see that spλ hybridization is promoted by stronger fpp′ and
weaker fps′ coupling, i.e., the p character of the hybrid increases if the donor orbital
better “overlaps” the acceptor p′ than the s′ orbital. As indicated by Mulliken-type
approximations (cf. Eq. (1.34)), the spatial overlap can often be used to “visualize”
this hybridization propensity as the relative diffuseness of s and p orbitals is varied.
Thus, in second-row atoms, where the 3p orbital is relatively larger than 3s, com-
pared with the analogous 2p/2s ratio,8 there is a stronger tendency toward p-rich
hybridization than in first-row atoms.

Perturbation theory can also be used to estimate the quantity of charge (Qi→ j∗)
transferred in a donor–acceptor interaction. From first-order perturbation theory,
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it can be shown that the leading correction to the unperturbed orbital φi
(0) (cf.

Eq. (1.18)) is given by

φi
(1) =

∑
j∗

ηi, j∗φ j∗ (0) (2.16a)

where, as before (cf. Eq. (1.24)), φ j∗ (0) is an orbital that is vacant in the initial Ψ(0)

configuration, and

ηi, j∗ = −
〈
φi

(0)|F̂ |φ j∗ (0)
〉

ε j∗ (0) − εi
(0)

(2.16b)

In the same limit (cf. Eq. (1.23)) as that in which a single φ j∗(0) contribution to Ei
(2)

is dominant, the perturbed orbital φi becomes

φi = 1(
1 + ηi, j

2
)1/2

(
φi

(0) + ηi, jφ j∗(0)
)

(2.17)

For small ηi, j , the electron density transferred from φi
(0) (donor) to φ j∗(0) (acceptor)

can therefore be approximated as (cf. Eq. (1.24))

Qi→ j∗ = 2|ηi, j∗|2 = 2

(
〈φi

(0)|F̂ |φ j∗(0)〉
ε j∗(0) − εi

(0)

)2

= −Ei→ j∗(2)�ε (2.18)

With the calculated NBO values (at R = 1.6 Å)〈
φi

(0)|F̂ |φ j∗(0)
〉 = −0.0982; ε j∗(0) − εi

(0) = 0.7615 − (−0.6939) = 1.455
(2.19a)

Equation (2.18) gives the estimate

Qi→ j∗ � 0.0092e (2.19b)

which agrees reasonably with the calculated hLi occupancy of 0.0098e, about half
the total CT shown in Fig. 2.5.

Equation (2.18) establishes an important relationship connecting Ei→ j∗(2) (the
stabilization energy) and Qi→ j∗ (the charge transferred) in a general donor–acceptor
interaction. Since �ε is typically a large energy separation (of order unity in a.u.,
1 a.u. = 627.5 kcal mol−1), we can express this relationship in the approximate form

Ei→ j∗(2) � Qi→ j∗ (2.20)

when both Ei→ j∗(2) and Qi→ j∗ are in atomic units. This means, e.g., that a mere
1% e charge transfer (0.01 a.u. of charge) corresponds to a chemically significant
5–10 kcal mol−1 stabilization (∼0.01 a.u. of energy), as mentioned in Section 2.3.
(Note that, for smaller �ε, the stabilization associated with a small Qi→ j∗ will be
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even larger than the estimate suggested by Eq. (2.20).) To understand the subtleties
of chemical bonding, we must therefore consider small fractional changes of
electron density, not merely the “hopping” of full units of electron charge.

2.5 Ionic–covalent transitions

Long-range ionic–covalent “electron-hopping” transitions

The ionic portion of the potential-energy curve (Fig. 2.3) is terminated at both small
and large R by strong changes in the wavefunction signaling “transitions” to non-
ionic character. Each transition is associated with a characteristic cut-off distance
for the short-range (inner Rc

(i)) or long-range (outer Rc
(o)) limit of ionic behavior.

The nature of these two ionic–covalent transition limits will now be described, with
particular emphasis on the short-range limit.

The outer cut-off at Rc
(o) is a pure multi-configurational effect. Physically, it

can be described as a long-range “electron hopping” from the anion to the cation,
which becomes energetically favorable because the electron affinity (EA) of fluorine
(0.1249 a.u.) is less than the ionization potential (IP) of lithium (0.1982 a.u.).
The neutral Li + F limit is therefore asymptotically favored over the ionic Li+ +
F− limit by 0.0732 a.u. as R →∞, and the character of the ground-state Born–
Oppenheimer wavefunction changes rather abruptly at some intermediate crossing
point where ionic and neutral configurations become degenerate. This necessitates
a two-term configuration-interaction (CI) treatment in the crossing region, with
pronounced change of configurational character near Rc

(o). Rc
(o) can be estimated

as the distance (usually far outside the region where E(Li + F) varies appreciably)
at which the Coulombic interaction of ions, Eq. (2.1), is just sufficient to overcome
the asymptotic IP – EA energy difference favoring neutral species,

1

R
= IP(Li) − EA(F) = 0.0732 a.u. (2.21)

leading to the approximate value

Rc
(o) � 1

0.0732
a.u. � 7.2 Å (2.22)

This distance is far beyond the equilibrium region of primary chemical interest, so
we do not consider the long-range-hopping process further.

Short-range two-center delocalization

Of much greater chemical significance is the short-range ionic–covalent transition,
which marks the inevitable collapse of a purely ionic description at shorter distances.
In LiF this transition is centered around Rc

(i) � 0.73 Å, all but hidden under the
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Figure 2.9 Variations of bond order (upper panel) and charge (lower panel) near
the short-range ionic–covalent transition.

steeply rising portion of the potential-energy curve associated with the onset of
strong steric repulsions. However, the “tail” of this transition significantly affects
the near-Req region even in the present case of highest possible ionicity, and the
influence of this transition becomes increasingly prominent in more representative
ionic species discussed in this chapter.

The short-range ionic–covalent transition can be described as a continuous shift
of the highest-occupied NBO from one-center (lone-pair) to two-center (polar-
covalent-bond) form. For a general bonding NBO of the form given by Eq. (1.31a),
this shift can be quantified in terms of the ionic and covalent bond orders bLiF

(ion)

and bLiF
(cov) (cf. Eq. (1.42)). Figure 2.9 illustrates the calculated R-dependences of

Li · · · F ionic and covalent bond orders (upper panel) and lithium charge (lower
panel) in the region of the ionic–covalent transition. The ionic character of the
Li · · · F bond declines rapidly below R = 1 Å, dropping to ∼50% at R � 0.73 Å
and to virtually pure covalency at R � 0.65 Å. Correspondingly, the charge on
lithium diminishes to neutrality at R � 0.65 Å. Figure 2.10 depicts corresponding
contour plots of the bonding NBO at three distances in this range (R = 1.0, 0.73,
and 0.65 Å) to illustrate the progressive change from one-center to two-center form.

Of course, there is intrinsically no sharp physical distinction between a strongly
delocalized lone pair and a highly polarized dative bond. As shown by Eq. (1.31a),
a general NBO allows smooth variations of polarization coefficients between the
single-center ionic (cA = 0, cB = 1) and two-center covalent (cA = cB) limits.
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Figure 2.10 The bonding NBO of LiF, showing short-range transition from ionic
to covalent form.

In practice, the NBO program labels an electron pair as a “lone pair” (LP) on
center B whenever |cB|2 ≥ 0.95, i.e., when more than 95% of the electron den-
sity is concentrated on B, with only a weak (≤5%) “delocalization tail” on A.
Although this numerical threshold produces an apparent discontinuity in program
output for the best single NBO Lewis structure, the multi-resonance NRT descrip-
tion depicts smooth variations of bond order from bLiF

(ion) = 1 (pure ionic one-
center) to bLiF

(ion) = 0 (covalent two-center). This properly reflects the fact that the
ionic–covalent transition is physically a smooth, continuous variation of electron-
density distribution, rather than abrupt “hopping” from one distinct bond “type” to
another.

At still smaller distances, lithium becomes weakly anionic and the Li · · · F bond
ionicity again increases, but with opposite polarity (Li−F+). This can be readily
understood from the shapes of unfilled acceptor AOs. At short distances, the (2p)F

orbital becomes an increasingly poor acceptor, because favorable overlap with one
lobe is increasingly canceled out by unfavorable overlap with the opposite lobe, as
shown in Fig. 2.6(b). Under these circumstances, the unfilled (2s)Li orbital becomes
the best available acceptor orbital, and electron flow is actually reversed toward Li.
However, these changes occur far inside the repulsive inner wall of the potential,
so their effects will not be considered further here.

Steric effects in ionic bonding

It is also of interest to examine the steric repulsion between filled orbitals that
dominates the energetics of the short-range region. Figure 2.11 shows the calculated
steric exchange energy �Esteric (from natural steric analysis,9 a standard option of
the NBO program) in the region 1 Å≤ R ≤ 3 Å. The total repulsion is shown (solid
line) together with its individual orbital contributions (dashed lines) as the filled
(1s)Li core successively “collides” with filled orbitals of the fluoride ion, first with
the outer sigma-type (2pz)F (near 3 Å), then with (2s)F (near 1.5 Å), and finally
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Figure 2.11 Li+ + F− steric repulsions, showing total (solid) and individual orbital
contributions (dashed) for filled–filled orbital interactions near Req � 1.6 Å.

with the (1s)Li core pair (near 1 Å). (Note that the pi-type (2px,y)F lone pairs, being
automatically orthogonal to (1s)Li, pass through the lithium core region without
steric disturbance.)

What is the physical origin of steric interactions in orbital terms? Steric repul-
sions are mandated by the Pauli exclusion principle and can be pictured in terms of
the increasing nodal features (and hence, increasing oscillations and higher kinetic
energy) needed to maintain interatomic orthogonality between occupied orbitals.
This leads to a type of “steric pressure”10 as the electrons occupying a reduced
volume are forced into orbitals of higher and higher kinetic energy, as described in
Section 1.7. The increasing interatomic nodal features11 are illustrated in Fig. 2.12
for the case of (1s)Li and (2s)F NAOs at three distances: R = 2.0, 1.5, and 1.0 Å.
As can be seen in these plots, the NAO wave profiles are relatively smooth and
free-atom-like at R = 2.0 Å, but become progressively “choppier” (higher kinetic
energy) at R = 1.0 Å, corresponding to the steep rise in energy seen in the middle
dashed curve of Fig. 2.11. The additional “wavelet” that each orbital acquires in
the region of the approaching nucleus gives the NAO a rather strange appearance
compared with the free-atom forms shown in Fig. 1.2. However, it may be noted
that such interatomic nodal features are entirely analogous to the intraatomic ra-
dial oscillation of the 2s orbital near its own nucleus, which likewise maintains
orthogonality to the 1s core and prevents unphysically smooth penetration of elec-
tron density into spatial regions that are already occupied by another electron pair
(whether on the same or a different nuclear center).
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Figure 2.12 Radial profiles of filled (1s)Li (left) and (2s)F (right) NAOs, showing
the increasing nodal feature at the opposite nucleus in each orbital as R decreases.

It should be emphasized that the ionic–covalent transition is a very general
quantal phenomenon that terminates the classical-like behavior for every ionic in-
teraction. The charge leakage from anion to cation is initially so weak as to be
well described by the perturbative approximations of Section 2.4, but this leakage
finally swells to an unrestrained flow as the barriers to charge flow collapse and
ionic charges are equalized (Fig. 2.9). Thus, every ionic interaction culminates in
a short-range quantal “phase transition” to a two-center shared electron distribu-
tion. In favorable cases (such as LiF), opposing steric interactions between filled
orbitals (Fig. 2.11) cause this transition to remain inside Req, so the equilibrium
species remains primarily ionic. However, as seen in Fig. 2.3, the near-Req quantal
CT corrections are generally quite appreciable, even for ions of the greatest elec-
tronegativity difference. Hence, we shall generally need to consider fractional CT
and the associated hybridization and polarization changes even in the most nearly
ideal cases of ionic bonding.

2.6 Ion–dipole and dipole–dipole bonding

Classical electrostatic theory

When the net charge on a species is zero but its electric dipole moment �µ is non-
zero, classical electrostatics predicts that the interaction with an ion is described by
an ion–dipole interaction of the form (in atomic units)

Ees
i−d(R) = − Q1|�µ2|

R2
cos θ (2.23)

where θ is the angle between �µ2 and �R (the vector from the ion to the dipole
center). Equation (2.23) can be derived from a pairwise sum of terms like Eq. (2.1),
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including interactions for each pole of the multipole,

Ees(R) = Q1 Q2

R12
+ Q1 Q3

R13
+ Q2 Q3

R23
(2.24)

by making the assumption that the fixed dipole length (R23) is much less than the
ion–dipole separation (R = (R12 + R13)/2). Under a similar assumption for two
fixed dipoles �µ1 and �µ2 separated by large distance R, one can similarly derive the
energy expression for a dipole–dipole interaction,

Ees
d–d(R) = − �µ1·�µ2

R3
(2.25)

According to Eq. (2.23), the magnitude of the ion–dipole interaction is maximized
in collinear arrangements (|cos θ | = 1), and is attractive or repulsive according
to whether the oppositely charged pole of the dipole is aligned toward or away
from the ion. Similarly, the dipole–dipole attraction (2.25) is maximized when the
dipoles �µ1 and �µ2 are parallel (attraction) or antiparallel (repulsion).

Like Eq. (2.1), the classical ion–dipole and dipole–dipole energy expressions
(2.23) and (2.25) are engagingly simple, and can be rigorously justified at suffi-
ciently large R. However, these approximations can be expected to fail at smaller
R where quantal effects become appreciable.

Quantal ion–dipole bonding

To compare the classical and quantal descriptions of ion–dipole bonding, we con-
sider the collinear approach of a lithium ion toward the negative (fluoride) end
of a lithium fluoride molecule, with fixed equilibrium bond length 1.583 Å and
dipole moment µ = 2.50 a.u. = 6.36 D.12 Figure 2.13 shows the calculated
Li+ + F–Li potential-energy curve in the neighborhood of the equilibrium sep-
aration, R = RLi···F = 1.7 Å, comparing the full quantal calculation (circles, solid
line) with the classical ion–dipole approximation (dotted line) of Eq. (2.23). The
error of the classical ion–dipole estimate is more than 32 kcal mol−1 (∼48% of the
well depth) at R = 1.7 Å, but much of this error can be attributed to the significant
steric repulsions (estimated as ∼20 kcal mol−1 from Fig. 2.11) that are present at
such short internuclear separations. The classical ion–dipole expression (2.23) also
deviates widely from the underlying formula (2.24) from which it was derived,13

showing the invalidity of the long-range assumption in the near-Req region.

Ionic clusters and lattices

As mentioned in Section 2.1, Earnshaw’s theorem establishes that there can be no
stable static equilibrium arrangement of classical ions and dipoles. Nevertheless,
quantum mechanics allows numerous stable arrangements of ions, such as those
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Figure 2.13 The potential-energy curve for collinear Li+ · · · F–Li ion–dipole
interaction, comparing quantal (solid) and classical electrostatic (dotted) values.

illustrated in Fig. 2.14 for various (Li+)n(F−)m ion–dipole and dipole–dipole com-
plexes. Optimized geometrical parameters, binding energies, and ionic charges for
these species are summarized in Table 2.1.

The properties of many of these complexes are surprising from a classical electro-
static perspective. For example, no possible dication or dianion would be expected
from classical electrostatics, since the classical energy could always be lowered by
removing the “excess” ion to infinity. Yet FLi32+ and LiF3

2− are both stable equilib-
rium species of trigonal D3h structure, bound by ∼8–10 kcal mol−1. Furthermore,
while Eq. (2.25) would suggest the stability of linear (LiF)n dipole–dipole com-
plexes, it is quite surprising that the optimal “linear” structures (Figs. 2.14(f)–(h))
are slightly curved, and, moreover, these structures are strongly disfavored relative
to corresponding cyclic complexes (Figs. 2.14(i)–(k)). Whereas a purely ionic pic-
ture of the dimer would slightly favor the cyclic over the linear structure by about
10% (cf. Example 2.1), the structure shown in Fig. 2.14(i) is actually favored over
that in Fig. 2.14(f) by about 74%. Similarly, the binding energy of the cyclic struc-
ture is about 60% stronger than that of the linear for n = 3, and about 44% stronger
for n = 4. The cyclic (LiF)4 complex (Fig. 2.14(k)) is only slightly (<1 kcal mol−1)
less strongly bound than the cubic structure (Fig. 2.14(l)), which models the actual
crystalline ionic lattice of the salt.

Cooperative structural and energetic effects

Closer examination of the charges, distances, and energies in Table 2.1 reveals other
subtle departures from classical electrostatic expectations:
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Figure 2.14 (Li+)n(F−)m ion–dipole and dipole–dipole complexes (see Table 2.1).



68 Electrostatic and ionic bonding

(linear) (linear)
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Figure 2.14 (Cont.)
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(1) In LiFn
(n−1)− ion–dipole complexes, donor–acceptor charge leakage from F− to Li+ is

apparent in each member of the series, but the incremental CT, expressed as a percentage
of a full electronic charge, is progressively weakened with each added F− ion,

3.87% (n = 1) > 1.43% (n = 2) > 0.94% (n = 3)

(A similar trend is seen in the FLin (n−1)+ series.) This reflects an anticooperative aspect
of CT delocalization in the case in which a single acceptor orbital interacts with multiple
donor orbitals, or a single donor with multiple acceptors. For example, a F lone pair
that donates to one acceptor orbital becomes a weakened donor for similar interaction
with a second acceptor orbital (a “busy” lone pair), due to the weakening of anionic
character with each such donation. This weakening is also reflected in increasing RLi···F

bond lengths and decreasing binding energies as n increases.
(2) In linear dipole–dipole clusters, each LiF unit retains its identity along the chain, but the

two end units acquire conspicuous ionic character (cationic at one end, anionic at the
other), whereas interior units are nearly neutral. For example, in (LiF)4 the successive
QLiF charges along the chain are

+ 0.0103, +0.0015, −0.0009, −0.0109

showing that the chain acquires significant overall dipolar character, corresponding to
transfer of approximately 1% of an electron from one end to the other. This charge
pattern is an obvious consequence of the donor–acceptor CT delocalizations discussed
in Section 2.4. Each interior LiF serves both as a donor and an acceptor (to the adjacent
filled 1sLi−2pF or unfilled (2s)Li orbital on its immediate left or right, transferring about
0.01e in each case, as estimated in Eq. (2.19b)), and therefore remains essentially
electroneutral. However, end units can delocalize in one direction only, and therefore
acquire net cationic or anionic character of about ±0.01e. The net charges (and therefore
mutual attraction14) of the end groups evidently account simply for the tendency of the
complex to bend slightly, against the tendency of each interior (2p)F–(2s)Li donor–
acceptor interaction to remain as linear as possible. The energetic penalty associated
with maintaining oppositely charged ends of a linear complex can obviously be avoided
by closing the two ends to form a cyclic complex, and Table 2.1 shows that this is the
strongly preferred quantum-mechanical geometry in all cases.

(3) The RLi···F values in Table 2.1 suggest additional quantum subtleties of dipole–dipole
interactions. In the linear (LiF)n complexes, there is still a conspicuous difference (�R)
between the RLi···F distance within the LiF unit (Rintra) and that (Rinter) between units,

�R = |Rinter − Rintra|

This difference is particularly strong for end units, but diminishes toward the interior of
linear dipole chains. In linear (LiF)4, for example, �R is 0.12 and 0.10 Å for the two
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end units, but only about half this value for the two middle units. This trend is consistent
with the concept that increased CT delocalization tends to symmetrize Rintra and Rinter,
in accordance with the resonance-diagram mnemonic,

Li−F Li−F←→Li−F−Li+ F−

Such symmetrization (reduction of �R) is evidently enhanced toward the interior of
the linear complexes as CT increases, and becomes complete (�R = 0, Dnh symmetry)
in the cyclic complexes, where CT delocalization is strongest.

Open- and closed-CT structures

Generalizing from this simple example, we may say that CT delocalizations are
highly cooperative when balanced at each site, so that electron donation in one
interaction is countered by electron acceptance in another interaction to preserve
electroneutrality. A structure exhibiting such complementary pairing of donor–
acceptor interactions may be called a “closed-CT” structure, with equal numbers
of donations “in” and “out” of each site S, represented schematically as

closed-CT site: →S→
Contrarily, an “open-CT” structure contains one or more sites with unbalanced
donor–acceptor interactions, represented as

open-CT sites: S→, →S, →S←, ←S→, etc.

In this language, the cyclic (LiF)n complexes are closed-CT structures (and thus
maximally cooperative), whereas the corresponding linear complexes have “reac-
tive” open-CT sites at both ends. As shown in Table 2.1, the energetic consequences
of such open-CT versus closed-CT topology are considerable, with cyclic (LiF)n

complexes being stabilized, e.g., by more than 40 kcal mol−1 for n = 3. Thus, a
simple ion–dipole or dipole–dipole picture is clearly inadequate for chemical ac-
curacy.

The weak-dipole limit: the LiCO cation

It might be thought that the breakdown of the classical ion–dipole picture in the
LiF· · · Li+ case is due to the unusual strength and ionicity of the Li–F dipole (leading
to an unusually short ion–dipole separation that tends to invalidate the long-range
assumption). That this is not the case can be seen by examining the interaction of
a Li+ ion with carbon monoxide (CO), a covalent molecule having much weaker
dipole moment (calculated as 0.0717 D, with Cδ−−Oδ+ polarity15) and shorter bond
length (1.128 Å). Figure 2.15 shows the calculated Li+ · · · CO potential-energy
curve (circles, solid line) in comparison with the classical ion–dipole estimate
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Figure 2.15 Potential-energy curves for linear Li+ · · · CO (circles) and Li+ · · · OC
(squares) complexes, compared with the classical ion–dipole estimate (dotted line).

(dotted line), demonstrating that the relative errors of the latter are even larger
than in the Li+ · · · FLi case. Moreover, Fig. 2.15 also includes the corresponding
Li+ · · · OC potential-energy curve (squares, solid line) in which the dipole direction
has been reversed. According to Eq. (2.23), such dipole reversal should result in a
repulsive ion–dipole interaction, but the actual quantal potential-energy curve is still
robustly attractive. Figures 2.13 and 2.15 and Table 2.1 demonstrate that simple
classical formulas such as Eq. (2.23) may provide little or no useful guidance
regarding the magnitude or angular dependence of the actual quantum-mechanical
interactions in the near-Req region.

The strong Li+ · · · CO and Li+ · · · OC bonding (despite the negligible dipole
of CO) can be readily understood in donor–acceptor terms. In carbon monoxide,
the carbon and oxygen lone pairs (nC and nO) provide suitable donor orbitals for
favorable overlap with unfilled 2sLi orbitals approaching either end of the molecule,
as shown in Fig. 2.16. Since the nC NBO is somewhat more diffuse than nO (as
would be anticipated from the greater electropositivity of carbon), the nC−2sLi

interaction is somewhat stronger than nO−2sLi (as can be judged from Fig. 2.16),
and equilibrium is achieved at larger R (see Fig. 2.15). Indeed, the nC and nO

orbitals in Fig. 2.16 appear virtually “isolobal” with the two lobes of the 2pF orbital
in Li+ · · · F− (cf. Fig. 2.6(b)). The donor–acceptor orbital diagrams thereby predict
far-reaching similarities between Li+ · · · CO and Li+ · · · OC bonding (as is found),
as well as parallels to the 2pF−2sLi bonding discussed in Section 2.4. However, more
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Figure 2.16 Orbital contours comparing nC−(2s)Li (right) and nO−(2s)Li (left)
overlap, with each Li+ at R = 2.0 Å (cf. Fig. 2.15).

complete discussion of intermolecular interactions involving covalent molecules
will be deferred to Chapter 5.

2.7 Bent ionic compounds of heavy alkaline earths

Bent geometry of alkaline earth dihalides

Surprisingly, dihalides and other ionic MX2 compounds of the heavier alkaline earth
metals are found to be bent. Klemperer and coworkers16 first found experimental
molecular-beam evidence for nonlinear equilibrium geometries of BaX2 and SrX2

dihalides. In contrast, analogous Be and Mg species are known to be linear, and
the geometry of CaX2 species is indeterminate due to the extremely flat charac-
ter of the potential-energy surface for bending motions. Theoretical calculations
generally support such bending, both at Hartree–Fock and at correlated levels.17

Nonlinear X—M—X geometry conflicts with all simple bonding rationalizations,
including models of ionic, valence-shell electron-pair repulsions (VSEPR), MO
hybridization, Walsh diagrams, and valence-bond type.

Attempts to account for this bending have emphasized two physical effects, (1)
d-orbital participation,18 and (2) core polarization,19 but no clear theoretical con-
sensus has been achieved. The calculated bending in BaH2, for example, is found
to disappear with removal of either d-orbitals or a polarizable-core, suggesting that
both aspects are operative. The adequacy of the core-polarization rationale was
questioned, and an alternative rationalization based on differences in atomic “soft-
ness” between metal and ligand was proposed by Szentpaly and Schwerdtfeger.20
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The NBO donor–acceptor picture

The NBO donor–acceptor picture suggests another factor responsible for such
bending. Let us first examine an ultrasimplified treatment of the difluorides of
strontium and barium, using the LANL2DZ (double zeta with effective core poten-
tial) basis set that lacks both d-orbitals and core orbitals. Despite omission of both
physical effects mentioned above, the B3LYP/LANL2DZ equilibrium geometries
of both SrF2 and BaF2 are found to be slightly bent (by about 7–9◦). The NBO
analysis shows that the leading metal acceptor orbital is (as usual) an s-rich sp
hybrid. However, as shown in Fig. 2.17, this hybrid, denoted (sp⊥)M, has weak
directional character oriented perpendicular to the near-linear X—M—X axis, so
that the metal center appears distinctly “off-center” with respect to the s-like or-
bital contours. Thus, there is an obvious electronic driving force for each F− ligand
to break the linear symmetry, achieving improved 〈2pF|(sp⊥)M〉 overlap with the
“fatter” end of the sp⊥ metal hybrid, as shown in Fig. 2.17. In effect, bending is
favored because the metal acceptor orbital is slightly hybridized in pi-type (rather
than usual sigma-type) fashion with respect to the incoming fluoride ligands.

The following question remains: “Why are the sigma-type interactions weaker
than the pi-type interactions in this case?” This is apparently a geometrical effect,
enforced by the relative sizes of M and X valence and core orbitals in the ionic
bonding environment, and illustrated in the NAO diagrams of Fig. 2.18. We may

Figure 2.17 Leading 2pF→(sp⊥)M donor–acceptor interactions in SrF2, showing
the sp⊥ acceptor hybrid interacting with the two incoming fluoride lone pairs. Each
interaction is estimated as 8.18 kcal mol−1 by second-order perturbation theory.
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Figure 2.18 (a) BeF2 σ-type (left) and π-type (right) 〈pF|pM〉 NAO overlaps.
(b) Similar for SrF2.

first recall (cf. Fig. 2.4) that the non-Lewis donor–acceptor contributions (E (NL)) are
generally quite small compared with the dominant Lewis-type contribution (E (L)),
which in turn is dominated by the strong electrostatic attraction between ions. Thus,
if we initially ignore donor–acceptor interactions entirely, we can expect that strong
ionic X− · · · M2+ · · · X− interactions will bring each X− ligand to an equilibrium
Req separation corresponding approximately to the distance of steric “collision”
with filled M core orbitals. Looking now at how empty (pσ)M metal orbitals are
spatially distributed, relative to the ligand at fixed distance Req, we can see that, for
M = Be (Fig. 2.18(a)), the 2pσ metal orbital can still overlap favorably with the
donor pF orbital, but for M = Sr (Figure 2.18(b)) the 5pσ orbital has its outermost
lobe virtually centered on the ligand nucleus, so that overlap with the ligand pF
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is virtually nil. (A very similar situation is seen for M = Ba, where the donor pF

orbital is again virtually centered in the diffuse outer lobe of the 6pσ metal orbital,
and thus achieves no significant matrix element with this orbital.) In this geometry,
the metal pπ orbitals are actually at a more favorable separation to overlap with the
incoming donor ligand, but only by bending away from linear symmetry (to break
the cancellation between positive and negative lobes of the (pπ)M orbital) can the
ligand–pπ interaction become appreciable.

How far the X—M—X bending proceeds will of course depend on subtle de-
tails of the donor and acceptor orbitals, as well as the size and shape of the metal
core that dictates Req. Thus, both core polarization and basis-set extensions to
include d-orbital contributions may affect the equilibrium X—M—X bond angle
significantly, since both these factors affect the separation and shapes of donor and
acceptor orbitals that dictate the relative strength of pi-type versus sigma-type cou-
plings. Note that, if strong attractive ionic forces were not present, donor–acceptor
interactions would naturally increase Req to maximize the ligand–pσ overlap. Thus,
the strange bending around heavier alkaline earths can be seen as a consequence
of their unusually strong ionic attractions and spatially diffuse acceptor orbitals,
which force the metal and ligand into unaccustomed proximity such that only
pi-type donor–acceptor interactions (promoting bending) remain appreciable.

2.8 Ionic bonding in d-block elements

Ionic bonding in transition metals involves a rich new spectrum of donor–acceptor
interactions with the partially filled d-shell. Indeed, the unique optical and magnetic
properties of transition metal (TM) ions are directly attributable to the valence-shell
reservoir of unpaired d electrons, with near-degenerate orbital energy patterns that
are exquisitely “tunable” through interactions with ligands. A characteristic feature
of such open-shell systems is that the electrons of spin “up” (α) have quite different
spatial distributions than those of spin “down” (β), giving rise to different hybrids
and bonding patterns in the two spin sets (“different Lewis structures for different
spins”). In the present section we examine aspects of TM bonding to fluorine, the
ligand of highest electronegativity.

Atomic and ionic configurations

Let us first consider the charge and spin distributions for atoms and ions of the
first transition series (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn). The neutral
ground-state TM electron configurations are of generic form s2dn , except at n = 4
(Cr: s1d5) and n = 9 (Cu: s1d10) where the well-known anomalies associated with
the special stability of half-filled and filled d shells are manifested. The simplest pic-
ture of ionic bonding therefore involves metal ionization from an s orbital to give the
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s1dn “high-spin” configuration. However, when the d shell is more than half-filled,
the alternative s0dn+1 “low-spin” configuration may be energetically preferred.
Table 2.2 summarizes basic configurational and energy values for the ground-state

Table 2.2. Calculated B3LYP/6-311++G∗∗ energy values and spin properties for
ground state configurations of selected atoms and ions

Atom Experimenta NPAb 2S + 1 〈Ŝ2〉c E (a.u.)

F s2p5 s2.00p5.00 2 0.7513 −99.760 58
F− s2p6 s2.00p6.00 1 0.0000 −99.888 69
Sc s2d1 s1.96d1.04 2 0.8150 −760.620 46
Sc+ s1d1 s1.00d1.00 3 2.0004 −760.382 05
Ti s2d2 s2.00d2.00 3 2.0022 −849.352 33
Ti+ s1d2 s0.25d2.75 4d 3.7505 −849.110 65
V s2d3 s1.85d3.15 4 3.9956 −943.892 42
V+ s0d4 s0.00d4.00 5 6.0004 −943.651 81
Cr s1d5 s1.00d5.00 7 12.0002 −1044.423 60
Cr+ s0d5 s0.00d5.00 6 8.7503 −1044.165 26
Cr6+ s0d0 s0.00d0.00 1 0.0000 −1034.614 10
Mn s2d5 s2.00d5.00 6 8.7576 −1150.967 68
Mn+ s1d5 s1.00d5.00 7 12.0005 −1150.691 29
Fe s2d6 s1.80d6.19 5 6.0095 −1263.650 24
Fe+ s1d6 s1.00d6.00 6e 8.7517 −1263.355 87
Fe2+ s0d6 s0.00d6.00 5 6.0019 −1262.750 57
Fe3+ s0d5 s0.00d5.00 6 8.7508 −1261.590 21
Co s2d7 s1.99d7.00 4 f 3.7549 −1382.687 47
Co+ s0d8 s0.00d8.00 3 2.0025 −1382.419 74
Ni s2d8 s1.00d9.00 3 2.0002 −1508.250 42
Ni+ s0d9 s0.00d9.00 2 0.7514 −1507.959 46
Cu s1d10 s1.00d10.00 2 0.7504 −1640.472 26
Cu+ s0d10 s0.00d10.00 1 0.0000 −1640.176 91
Zn s2d10 s2.00d10.00 1 0.0000 −1779.353 53
Zn+ s1d10 s1.00d10.00 2 0.7504 −1779.007 02

a C. E. Moore, Atomic Energy Levels, National Bureau of Standards Circular 467
(Washington, U.S. Government Printing Office, 1949).

b Calculated natural population-analysis (NPA) values for the minimum-energy configura-
tion, unless otherwise noted.

c Deviations from exact value 〈Ŝ2〉 = S(S + 1) for a spin eigenfunction show the effect of
slight spin contamination in UB3LYP wavefunctions.

d Owing to convergence failures, no wavefunction conforming to a proper s1d2 configuration
could be determined.

e The nearly degenerate quadruplet (s0d7) state is incorrectly calculated as lower in energy:
E = −1263.363 89.

f The s1d8 configuration is incorrectly calculated as lower in energy: E = −1382.703 37.
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atoms and atomic ions to be considered below. The calculated configurational as-
signments and relative energy values are generally in reasonable agreement with
experiment, although Ni is incorrectly calculated to have a ground s1d9 configura-
tion, and the results for Ti+ and Fe+ suggest an exaggerated preference for s0dn+1

over the nearly degenerate s1dn configuration.

Example 2.3

The electron affinity (EA) of fluorine can be estimated from the first two entries of Table
2.2 as follows:

EA = E(F) − E(F−)

= −99.760 58 − (−99.888 69) = 0.128 11 a.u.

= (0.128 11 a.u.)(627.5 kcal mol−1 a.u.) = 80.39 kcal mol
−1

= (0.128 11 a.u.)(27.21 eV a.u.−1) = 3.486 eV

This is within about 2% of the experimental value of 3.40 eV.
Similarly, the energy differences of Table 2.2 can be used to compute the first ionization

potential of TM atoms for comparison with experiment, as shown in the plot below:

Since energy differences involving configurational changes are among the most challeng-
ing to compute accurately, one may conclude that B3LYP/6-311++G∗∗ reproduces the
chemical trends fairly satisfactorily (mean absolute deviation 0.22 eV).
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Table 2.3. Calculated bond lengths and energies of first-row transition metal
monofluorides in low-spin and high-spin configurations (an asterisk marks the

spin multiplicity of lowest energy)

Low-spin High-spin

Species 2S + 1 R (Å) E (a.u.) 2S + 1 R (Å) E (a.u.)

ScF 1 1.7971 −860.586 83 3∗ 1.8584 −860.606 19
TiF 2 1.7741 −949.317 00 4∗ 1.7912 −949.324 10
VF 3 1.7971 −1043.821 86 5∗ 1.7997 −1043.864 98
CrF 4 1.7861 −1144.326 30 6∗ 1.8085 −1144.363 03
MnF 5 1.7971 −1250.844 52 7∗ 1.8521 −1250.895 18
FeF 4 1.7687 −1363.579 55 6∗ 1.8000 −1363.580 93
CoF 3∗ 1.7646 −1482.613 42 5 1.8072 −1482.603 88
NiF 2∗ 1.7864 −1608.165 43 4 1.7774 −1608.126 86
CuF 1∗ 1.7828 −1740.378 95 3 1.8399 −1740.270 40
ZnF 2∗ 1.8142 −1879.218 91

Monofluorides of the first transition series

Let us first consider the charge and spin distributions in TM monofluorides MF for
the first transition series. Calculated geometrical and energetic properties of these
species are summarized in Table 2.3.

Natural population analysis of transition-metal-fluoride wavefunctions gives or-
bital populations that are generally consistent with the expected configurations,
but with large departures from an idealized ionic picture. Table 2.4 compares the

Table 2.4. Charge and spin properties of ground-state TM monofluorides,
showing the spin multiplicity (2S + 1), metal charge (QM), and idealized versus

NPA configurations (α, β spin)

Alpha (↑) spin Beta (↓) spin

Species 2S + 1 QM Ideal NPA Ideal NPA

ScF 3 0.7695 s1d1 s0.89d1.17 s0d0 s0.01d0.11

TiF 4 0.6785 s1d2 s0.83d2.31 s0d0 s0.01d0.13

VF 5 0.7060 s1d3 s0.77d3.33 s0d0 s0.02d0.13

CrF 6 0.7401 s1d4 s0.63d4.46 s0d0 s0.02d0.12

MnF 7 0.8376 s1d5 s0.92d4.98 s0d0 s0.03d0.14

FeF 6 0.7869 s1d5 s0.92d4.98 s0d1 s0.03d1.19

CoF 3 0.7586 s0d5 s0.09d4.95 s0d3 s0.32d2.86

NiF 2 0.7871 s0d5 s0.10d4.95 s0d4 s0.26d3.87

CuF 1 0.8249 s0d5 s0.14d4.88 s0d5 s0.14d4.88

ZnF 2 0.8431 s1d5 s0.93d4.99 s0d5 s0.14d4.99
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calculated NPA sx dy populations with the idealized configurations in each monoflu-
oride. The early members of the sequence all have 11%–14% of an electron in the
“empty” d(β) shell, as well as significant excess (17%–46% of an electron) over the
expected integer value in the d(α) shell. The strong differences between idealized
and actual orbital occupancies can also be seen in the tabulated ionic charges (QM),
which deviate from idealized unit charge by ∼30% for early-TM species. Even for
the most ionic late-TM species, more than 15% leakage of charge from F− to M+

is indicated.
It is noteworthy that the ionic charges do not follow a simple trend with respect

to empirical electronegativity values (which increase from Sc to Zn). If anything,
the ionicity of late-TM monofluorides tends to be somewhat higher than that of
early-TM species. Because electronegativity values reflect primarily the sigma-
electron-withdrawing strength,21 this inverted ordering is indicative of important
pi-type interactions with the fluoride ion, as will be discussed below.

We can also examine the R-dependence of charge transfer in metal-fluoride
bonding for comparison with the analogous behavior in Li—F (Figs. 2.5 and 2.9).
Figure 2.19 illustrates the R-dependent CT curve for Sc—F, which is found to ter-
minate in a short-range ionic–covalent transition like that described in Section 2.5.
Although the behavior is qualitatively similar to that found earlier for Li—F (e.g.,
Fig. 2.9), it is evident that the TM species are much closer to this transition at
their equilibrium geometry, reflecting much stronger two-center covalency effects

Figure 2.19 R-dependent variation of metal charge (QSc) in Sc—F, showing Req
(vertical dashed line) and the nearby short-range ionic–covalent transition.
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in the near-Req region. Thus, quantal deviations from a classical ionic picture are
systematically more important in TM complexes.

Transition-metal-ion hybridization

What are the expected hybrids for transition-metal bonding? In analogy with the
treatment of Section 2.4, we expect that the pF ligand donor orbital can interact with
a general spλdµ hybrid mixture of valence s, p, d orbitals of the form (cf. Eq. (2.3))

hM = 1

(1 + λ + µ)1/2

(
sM + λ1/2pM + µ1/2dM

)
(2.26)

with

λ = %p

%s
, µ = %d

%s
(2.27)

By following the treatment of Eqs. (2.8)–(2.13), we are led analogously to
variational estimates for the optimal metal hybridization,

λopt = ( fpp′/ fps′)2, µopt = ( fpd′/ fps′)2 (2.28)

where fpd′ = 〈pF|F̂ |dM〉 (cf. Eq. (2.11a)). For example, for Sc—F in the empty β

shell, these matrix elements are

fps′ = −0.0444 a.u., fpp′ = 0.0092 a.u., fpd′ = −0.1303 a.u. (2.29a)

leading to

λopt = 0.04, µopt = 8.6 (2.29b)

The simple variational estimate (2.29b) compares reasonably with the actual d-rich
sp0.01d5.48 metal NHO found in this case (i.e., predicted 90% versus actual 84%
d character). Similarly, for the mid-series Mn—F species the corresponding β-spin
matrix elements have the values

fps′ = −0.0576 a.u., fpp′ = 0.0268 a.u., fpd′ = −0.0908 a.u. (2.30a)

and lead to the variational estimate

λopt = 0.22, µopt = 2.49 (2.30b)

in favorable agreement with the actual sp0.03d2.54 NHO.
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Figure 2.20 NAO contour plots corresponding to hybridization matrix elements
(Eq. (2.30)) for Mn—F.

Why are the 3d orbitals so much superior to 4p orbitals at forming spλdµ hybrids?
Figure 2.20 shows the relevant NAO contour plots for Mn—F, corresponding to the
fps′, fpp′ , and fpd′ Fock matrix elements in Eq. (2.30). As one can see in the middle
panel of Fig. 2.20, the 4p orbital is so diffuse that its outer lobe tends to overlap
with the nodal plane (rather than the bonding lobe) of the 2pF orbital. Donor ligand
interactions with 4p metal orbitals are therefore greatly weakened compared with
those with 4s (left panel) or 3d (right panel). Similar overlap patterns are found
throughout the series, which is consistent with the general result λ << µ for metal
hybrid NBOs. Thus, to a first approximation we can virtually ignore the role of
p orbitals in the metal “spλdµ” hybrid,22 focussing instead on “sdµ hybridization”
of the TM atom. The shapes and angular bonding characteristics of general sdµ

hybrids will be discussed in Chapter 4.

Sigma- and pi-type donor–acceptor interactions

Further details of the leading hF → hM donor–acceptor interactions are gathered in
Table 2.5 and Figure 2.21. For each such interaction the table shows the hybrid form
of the donor (hF)23 and acceptor (hM) orbitals, the occupancy of the acceptor, and the
second-order estimate (cf. Eq. (1.35) or (2.7)) of the donor–acceptor stabilization
energy. Let us now discuss some of the trends displayed in Table 2.5.

The preponderance of donor–acceptor interactions naturally arises from the β

(minority) spin manifold, which retains unfilled s or d capacity throughout the
series. As remarked above, the leading sigma acceptor hybrid is essentially of sdµ

type, varying from nearly pure d in Sc—F to pure s in Zn—F. Consistently with the
electronic configurations summarized in Table 2.4, the hM hybridization changes
strongly from d-rich (for Fe—F) to s-rich (for Co—F) as the d-shell occupancy
jumps from 20% to 60% of capacity. The sigma-type hM hybrid participates in a
strong (25–40 kcal mol−1) donor–acceptor interaction with the hM donor orbital
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Figure 2.21 Leading sigma- (left) and pi-type (right) donor–acceptor interactions
of representative TM monofluorides (see Table 2.5).
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which is illustrated in Fig. 2.21 for Ti—F, Mn—F, and Ni—F (representative early-,
middle-, and late-TM species). This single interaction transfers ∼7%–15% of an
electron to the TM hybrid (generally increasing from left to right, in a manner
consistent with the electronegativity trend), and constitutes the leading single con-
tribution to CT shown in Fig. 2.19.24 However, all but the last members of the
series also exhibit strong pi-type interactions that transfer another 5%–10% of e
to the TM, as illustrated in the right-hand panels of Fig. 2.21. Such transfers are
sequentially quenched in final members of the series as the shell fills to capacity.
The right-hand panels of Fig. 2.21 illustrate the superior pi overlap achievable by
d orbitals in dM–pF interactions, demonstrating why transition metals are much
superior to other metals as pi acceptors.

In the α (majority) spin set, similar sigma-type interactions are possible only for
the first four TM species, whose valence d orbitals are not completely filled. Two pi-
type interactions are also possible for Sc—F and Ti—F, but only one for V—F, and
none for later members of the series as the shell continues to fill. Donor–acceptor
interactions in the α spin manifold are generally similar in form and magnitude to
corresponding interactions in the β manifold, as illustrated in Fig. 2.21 for Ti—F.
It is therefore evident that early-TM species (Sc—F, Ti—F) have about twice as
many strong donor–acceptor interactions as typical mid- or late-TM species. Even
if the strength of individual donor–acceptor interactions increases somewhat from
left to right (in accordance with the electronegativity trend), early-TM species
should generally manifest a lower degree of ionicity (higher overall CT), as is
observed.

Higher oxidation states

Finally, let us briefly examine some aspects of higher oxidation states in MFn com-
pounds. Table 2.6 compares geometries, charges, and bond energies of the Fe(II),
Fe(III), and Cr(VI) fluorides with corresponding M(I)F species described above. It
is apparent that the TM charge (QM) bears little relation to the formal “oxidation
number” in any of these species, and the discrepancy increases in higher oxidation
states (e.g., QCr = 1.59 in Cr(“VI”)). By all measures, the transition-metal-fluoride
ionic bond has higher covalent character and stronger CT delocalization as TM ox-
idation state increases. For example, each “F−” ion in CrF6 donates more than 73%
of e to the central chromium ion, and the associated sigma- and pi-type delocal-
ization energies �Eσ

(2), �Eπ
(2) are each about six times larger than corresponding

estimates for the monofluoride, leading to significant (>0.08 Å) shortening of the
Cr—F bond. A purely ionic picture of the bonding thus becomes increasingly un-
realistic in these species.25 An interesting aspect of the higher covalency in CrF6

is the evident importance of linear three-center, four-electron bonding interactions
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Table 2.6. Geometry, metal charge, and bond energya of TM
fluorides in higher oxidation states: Fe(I)–(III) and Cr(I) and (VI)

Species Symmetry Re (Å) QM (e) ĒMF (kcal mol−1)

FeF C∞v 1.8000 0.7869 106.8
FeF2 D∞h 1.7674 1.4889 119.2
FeF3 D3h 1.7693 1.9749 104.3
CrF C∞v 1.8085 0.7401 112.3
CrF6 Oh 1.7244 1.5889 72.0

a ĒMF is the average metal–fluoride bond energy relative to isolated
ground-state atoms.

(“ω bonds”; see Chapter 3) that can be described in the language of resonance
theory as

F:− Cr—F ←→ F—Cr :F−

However, such interactions properly lie in the domain of covalent and coordinate-
covalent chemistry, to be discussed in Chapters 3 and 4.

2.9 Summary

A purely classical picture of ionic bonding is generally inadequate to account for
the equilibrium structures and binding energies of polar compounds, even for the
cases of highest known ionic character such as lithium fluoride. The quantal inter-
actions of ions manifest continuous charge leakage from the anion to the cation.
Such inter-ionic delocalization (charge transfer) is initially weak enough to be de-
scribed by perturbation theory, but eventually leads to a dramatic transformation of
the bonding NBO from one-center to two-center character (“ionic–covalent tran-
sition”), culminating in full covalency (charge neutralization and equal sharing of
electrons) at small R.

For Li—F, the quantal ionic interaction can be qualitatively pictured in terms
of the donor–acceptor interaction between a filled 2pF orbital of the anion and the
vacant 2sLi orbital of the cation. However, ionic-bond formation is accompanied by
continuous changes in orbital hybridization and atomic charges whose magnitude
can be estimated by the perturbation theory of donor–acceptor interactions. These
changes affect not only the attractive interactions between filled and unfilled or-
bitals, but also the opposing filled–filled orbital interactions (steric repulsions) as
the ionic valence shells begin to overlap.
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An important consequence of quantal charge transfer between ions and ion pairs
(dipoles) is the appearance of non-pairwise-additive cooperative or anticooperative
contributions that have no counterpart in the classical theory. These nonlinear effects
strongly stabilize “closed-CT” systems in which each site is balanced with respect
to charge transfers “in” and “out” of the site, and disfavor “open-CT” systems in
which one or more sites serves as an uncompensated donor or acceptor. This CT
cooperativity accounts for the surprising stability of cyclic (LiF)n clusters, which
are strongly favored compared with linear structures.

Donor–acceptor interactions also lead to strangely bent geometries in heavier F—
M—F alkaline earth fluorides. Such bending can occur when strong ionic attractions
force a filled fluoride pz orbital into proximity with an orthogonal metal p⊥ orbital,
for in this case symmetry-forbidden (pz)F → (p⊥)M interactions can “turn on” only
when the strict σ/π symmetry of a linear F—M—F arrangement is broken.

Ionic bonding in d-block elements involves still more drastic breakdown of the
classical ionic picture, due to the powerful sigma- and pi-type acceptor capacity of
unfilled metal d shells. For sigma-type interactions, transition metals use pure sdµ

hybrids that are fairly analogous to the leading acceptor hybrids of non-TM ele-
ments. However for pi-type interactions, transition metals deploy off-axis dxz and
dyz orbitals whose dM–pF interactions are of much greater strength than analogous
pM–pF pi-type interactions in non-TM species. Particularly due to this enhanced
pi-acceptor capacity, leakage of charge from the donor ligand is much more pro-
nounced for a TM than for a non-TM cation, corresponding to higher covalency in
the former case. The degree of covalency is generally enhanced in MFn polyflu-
orides of high metal oxidation state, where an increasing number of dπ acceptor
orbitals becomes available to ligand pi-donor orbitals. Conversely, covalency tends
to diminish in late-TM fluorides as filling of dπ orbitals successively quenches
pi-acceptor capacity.

Notes for Chapter 2

1. J. R. Partington, A Short History of Chemistry, 3rd edn. (New York, Harper, 1957).
2. See, e.g., J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and

Liquids, 2nd corrected printing (New York, Wiley, 1964), pp. 25ff.
3. This is synonymous with the region of significant overlap of orbital charge distributions, where

the Pauli restriction (1.6) and quantal superposition effects become important.
4. The ionic portion of the interatomic potential is terminated at both smaller and larger R by

covalent–ionic transitions (electron “hopping”), which are described in Section 2.5.
5. The quantum-mechanical energy curve was calculated at the B3LYP/6-311++G∗∗ level of

hybrid density-functional theory, as described in Appendix A. However, due to B3LYP
convergence failures beyond R � 3 Å, the quantities shown in Figs. 2.4–2.8 were calculated at
HF/6-311++G∗∗ level.

6. These matrix elements can be obtained by including the FNAO keyword in the $NBO keylist, to
print out the Fock matrix in the NAO basis.
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7. Note that, if the donor and acceptor s and p orbitals refer to the same atomic center, the coupling
matrix elements fps′ and fpp′ are identically zero, and hybridization cannot lower the energy.
Hence, atomic hybridization is intrinsically a bonding effect.

8. The 2p orbital radius may be considered anomalously small (of the same order as the 2s orbital
radius) because there is no inner shell of the same angular symmetry that exerts outward steric
“pressure” due to the Pauli exclusion principle. (A similar exception causes the first transition
series to appear anomalous compared with later lanthanides, since 3d orbitals form the
innermost d shell.) The 2p → 3p expansion therefore appears to be relatively more pronounced
than 2s → 3s expansion.

9. J. K. Badenhoop and F. Weinhold, J. Chem. Phys. 107 (1997), 5406, 5422.
10. V. F. Weisskopf, Science 187 (1975), 605.
11. Note that Fig. 2.12 depicts NAOs rather than the PNAOs, since the latter do not include

interatomic nodal features.
12. The dipole moment of LiF is only about 84% of the value expected for idealized unit point

charges |QLi| = |QF| = 1 separated by Req. This reflects two factors: (1) the actual charges on
each ion are reduced by CT; and (2) the actual electronic distributions cannot be represented as
point charges, but are spatially distributed around the nuclei in accordance with the shapes of
occupied orbitals.

13. The formula (2.24) is actually in far worse agreement with the quantal energy curve. At Req, for
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Molecular bonding in s/p-block elements

3.1 Introduction

“Covalency” refers to the partial sharing of electrons that leads to mutual attraction
of atoms, the profound and characteristic mystery of chemical bonding. The concept
of covalency largely evolved from classical organic chemistry (the study of com-
pounds of carbon, hydrogen, and nearby main-group elements) and achieved con-
siderable maturity in the mid nineteenth century, long before Rutherford’s model
of atomic structure made it possible to consider the deeper electronic implica-
tions of this concept. The latter step was achieved most notably by G. N. Lewis,
who showed how the octet rule and shared-electron-pair concepts could provide
a comprehensive rationalization of structural bonding principles. The elementary
Lewis-structure picture of nonbonding (one-center) and bonding (two-center) va-
lence electron pairs forms the starting point for practically all aspects of molecular
bonding in s- and p-block elements, the subject of the present chapter. Extension
of covalency concepts to d-block elements will be considered in Chapter 4.

Let us briefly outline the topics to be addressed, which span a rather wide range of
covalent and noncovalent “effects” in the bonding of s/p-block elements. The local-
ized Lewis-structure picture of covalent and polar covalent bonding is described in
Section 3.2, starting from the simplest diatomic species (e.g., H2

+, H2, and dialkali
analogs) and proceeding through singly and multiply bonded polyatomic species.
Inadequacies of the single-Lewis-structure picture (“delocalization effects”) are
described in Section 3.3, including conjugative and aromatic “resonance” effects,
which are conventionally represented as contributions from additional Lewis struc-
tures. Weaker “hyperconjugative” delocalizations are described in Section 3.4,
including those responsible for internal rotation barriers, anomeric effects, and
other stereoelectronic phenomena. Further departures from the Lewis octet rule
are discussed in Section 3.5 (hypervalency) and 3.6 (hypovalency), which respec-
tively describe the important three-center, four-electron (3c/4e) and three-center,
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two-electron (3c/2e) bonding patterns that augment standard lone-pair (1c/2e) and
bond (2c/2e) elements of the conventional Lewis-structure model.

3.2 Covalent and polar covalent bonding

3.2.1 One- and two-electron covalent bonds in hydrogen and alkali diatomics

Molecular H2 and related alkali-like diatomic species represent the simplest proto-
type of covalent bonding. Historically, the quantum theory of covalency was largely
conceived and refined in the framework of applications to H2

+ and H2, particularly
in the classic works of Heitler and London,1 Pauling,2 James and Coolidge,3 and
others.4 The one-electron H2

+ ion is the only molecular species whose Schrödinger
equation can be solved exactly in the Born-Oppenheimer framework,5 and its orbital
solutions therefore play a guiding role (comparable to that of the hydrogen atom)
in development of methods for describing many-electron molecules. Furthermore,
through the remarkable work of Kolos and Wolniewicz,6 the low-lying states of
H2 are effectively known “exactly,” i.e., to an accuracy exceeding that of the best
available experiments. Thus, these simple species provide the essential foundation
for understanding the rich phenomena of covalency in more complex chemical
systems.

Figure 3.1 illustrates the potential-energy curves for H2 and H2
+, and analogous

Li2 and Li2+ species. As the comparison shows, qualitative differences distinguish

Figure 3.1 Diatomic potential-energy curves for H2, Li2 and their cations. (The
one-electron species H2

+ is calculated at UHF/6-311++G∗∗ level; others at
B3LYP/6-311++G∗∗ level.)



3.2 Covalent and polar-covalent bonding 91

hydrogen from the other alkali diatomics. Li2 exhibits only a weak, long-range
form of bonding (with well depth less than one-fifth that of H2), and this weakening
becomes still more pronounced in Na2, K2, and heavier alkalis. Surprisingly, the
bond of Li2 is strengthened by ionization. This contrasts strongly with the normal
behavior manifested by H2, whereby ionization leads to a one-electron “half bond”
that is about half as strong as (67 versus 110 kcal mol−1) and considerably longer
(1.1 versus 0.7 Å) than that of the parent neutral species. Thus, we wish to understand
both the normal covalency of dihydrogen and the surprisingly abnormal bonding
in Li2 and other dialkalis.

One-electron covalency: the hydrogen-molecule ion

Let us first consider the hydrogen-molecule ion, H2
+. It is evident that formation

of this ion from its atomic fragments

H + H+ → H2
+

can be considered as a one-electron donor–acceptor interaction between the filled
1s(α) spin-orbital of H and the vacant 1s(α) spin-orbital of H+. Such a description
is analogous to that employed for ion–molecule bonding in Chapter 2, e.g., for the
reaction OC: + Li+→OC—Li+ (cf. Figs. 2.15 and 2.16).

However, perturbation-theoretic expressions such as Eqs. (1.24) and (2.7) are
problematic in the degenerate case when donor and acceptor orbitals have equal
energies.7 In this case we can directly formulate the interaction of orbitals φA and
φB (with equal energies εA = εB = ε, and FAB = 〈φA|F̂ |φB〉) in terms of a limiting
variational model with 2 × 2 secular determinant∣∣∣∣ε − E FAB

FAB ε − E

∣∣∣∣ = 0 (3.1)

This leads to the well-known variational solutions for the bonding-energy eigen-
values

E± = ε ± |FAB| (3.2)

as depicted in Fig. 3.2 (cf. the corresponding perturbative Fig. 1.3). Thus, in the
degenerate case we can replace Eq. (1.24) with a variational estimate of the form

�Ei→ j∗ = −ni
(0)|〈φi

(0)|F̂ |φ j∗ (0)〉| (3.3)

with ni
(0) = 1 (rather than ni

(0) = 2) for a one-electron donor–acceptor interaction
such as in H2

+.
As discussed in Section 2.5, donor–acceptor interactions generally lead to pro-

gressive charge delocalization and “ionic–covalent transition” from one-center to
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Figure 3.2 An energy-level-splitting diagram (cf. Fig. 1.3) for interaction
of orbitals φA and φB with degenerate energy ε and interaction element
FAB = 〈φA|F̂ |φB〉.

two-center form. Thus, interaction of H and H+ culminates in covalent two-center
character (H+1/2 · · · H+1/2) in which the distinction between “H atom” and “H ion”
is completely obliterated. The long-range one-electron donor–acceptor interaction
is generally expected to evolve smoothly into the familiar two-center molecular
orbital (MO) which can be approximately described as

σAB = 2−1/2(1sA + 1sB) (3.4)

and is singly occupied (half-filled) in H2
+.

Two-electron covalency: the hydrogen molecule

In a similar fashion the bonding in H2 might be formally regarded as a comple-
mentary pair of one-electron donor–acceptor interactions, one in the α (spin “up”)
and the other in the β (spin “down”) spin set.8 In the long-range diradical or “spin-
polarized” portion of the potential-energy curve, the electrons of α and β spin
are localized on opposite atoms (say, α on HA and β on HB), in accordance with
the asymptotic dissociation into neutral atoms. However as R diminishes, the α

electron begins to delocalize into the vacant 1sB(α) spin-orbital on HB, while β

simultaneously delocalizes into 1sA on HA, until the α and β occupancies on each
atom become equalized near R = 1.4 Å, as shown in Fig. 3.3. These one-electron
delocalizations are formally very similar to the two-electron (“dative”) delocal-
izations discussed in Chapter 2, and they culminate as before (cf. Fig. 2.9) in an
ionic–covalent transition to a completely delocalized two-center spin distribution at
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Figure 3.3 Percentage orbital occupancy of 1sA(α) and 1sB(α) spin-orbitals in
the spin-polarized (diradical) portion of the potential-energy curve for HA—HB
covalent-bond formation.

smaller R. Because these complementary delocalizations transfer charge in oppo-
site directions in the two spin sets, each atom remains formally electroneutral at all
R(QA = QB = 0), although the spin-charges9 on each atom are strongly varying
with R. In this manner the classical electrostatic penalty for creating net dipolar
character in mono-directional two-electron CT (B: + A → B:δ+ + Aδ−; cf. Chap-
ter 2) is completely avoided. We regard such strong, complementary, bi-directional
charge delocalization as the essential driving force of covalent-bond formation.

Each of the complementary one-electron CT delocalizations culminates in an
equivalent two-center MO (similar to that for H2

+; cf. Eq. (3.4)), one for α and
one for β spin. The final result is therefore equivalent to the conventional “doubly
occupied MO” description of the H2 ground state. Figure 3.4 shows the simple
second-order estimate (Eq. (1.24)) of the stabilization predicted for two such one-
electron donor–acceptor interactions, compared with the actual energy lowering
in the long-range region (R > 2.0 Å). As expected, the second-order estimate is
quite accurate in the long-range limit, but breaks down (reflecting the need for
higher-order corrections) as the interaction strength increases at smaller R. Although
Eq. (1.24) is quantitatively useful only at large R, and should be replaced by the
more accurate variational estimate (3.3) in the near-Req region, it is clear that the
fundamental energy lowering underlying covalent-bond formation can be traced to
the same general donor–acceptor principles as those that were employed to describe
ionic bonding in Chapter 2.
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Figure 3.4 The long-range covalent binding energy �E (kcal mol−1) of H2, com-
paring the actual value (solid line) with a second-order perturbation estimate for
bi-directional donor–acceptor interactions (dotted line).

Comparison with the LCAO-MO description

Let us describe this somewhat unconventional bi-directional-CT picture of cova-
lent bonding in greater detail. We write the spin-polarized NBO pair in terms of
component α and β spin-orbitals as

(σAB)2 = σAB
(α)σAB

(β) (3.5a)

where as usual (cf. Eq. (2.17)) the complementary spin-NBOs can be pictured in
terms of contributing donor and acceptor hybrid NHOs, chosen oppositely in the
two spin sets,

σAB
(α) = (1 + η2)−1/2(hA + ηhB)α (3.5b)

σAB
(β) = (1 + η′ 2)−1/2(hB + η′hA)β (3.5c)

Considering the α-spin electron, for example, the hybrid on HA can be written as

hA = hA(λ) = (1 + λ2)−1/2(1sA + λ · 2pA) (3.6)

consisting primarily of the 1sA AO weakly mixed with a polarizing 2pA orbital
(λ � 1).
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Following a treatment analogous to that leading to Eq. (2.13), we can estimate
the hybridization coefficient λ from the equation

λ � ( fsp′/ fss′)2 (3.7)

For example, at R = 1.0 Å the relevant NAO Fock-matrix elements are

fss′ = 〈1sA|F̂ |1sB〉 = −0.2472, fsp′ = 〈1sA|F̂ |2pB〉 = −0.0608 (3.8a)

leading to the estimate

λ � 0.06 (3.8b)

This shows (as found for the actual NBO) that hA remains practically a pure 1s
atomic orbital at all distances, with no appreciable tendency to hybridize. Thus,
we incur practically no error by picturing the spin-polarized NBO as a simple
normalized linear combination of 1s AOs

σAB = cAsA + cBsB (3.9)

as suggested by elementary valence theory. Inside R � 1.4 Å the spin-polarized
NBO reduces to the unpolarized form given in Eq. (3.4). Thus, the donor–acceptor
picture of covalent-bond formation is fully consistent with the usual LCAO-MO
description of the H2 ground state.

We can also verify that the usual LCAO-MO description (3.2) and (3.4) leads
to predicted hybridizations that are generally consistent with the donor–acceptor
estimates (3.8). Suppose that each H atom is associated with a valence spin-orbital
of hybridized form (3.6). According to Eq. (3.2), the optimal electronic energy of
bond formation is obtained by choosing the hybridization parameter λ to maximize
the magnitude of the interaction element

FAB(λ) = 〈hA(λ)|F̂ |hB(λ)〉 = fss′ + 2λ1/2 fsp′ + λ fpp′ (3.10)

where fss′ = 〈1sA|F̂ |1sB〉, fsp′ = 〈1sA|F̂ |2pB〉, and fpp′ = 〈2pA|F̂ |2pB〉. On differ-
entiating this expression with respect to λ, we obtain

dFAB

dλ
= λ−1/2 fsp′ + fpp′ = 0 (3.11a)

or

λopt = ( fsp′/ fpp′)2 (3.11b)

At R = 1.0 Å, these matrix elements are

fsp′ = −0.0608, fpp′ = 0.5375 (3.11c)
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leading to the estimate

λ � 0.01 (3.11d)

This is again consistent with the essentially pure s character of the bonding hybrids
in H2.10

The energy expression (3.2) leads to the expectation that electronic bonding
increases in proportion to

|FAB| = |〈1sA|F̂ |1sB|〉 ∝ S1s,1s (3.12)

that is, in proportion to the overlap of the 1s orbitals. We might therefore ask
“What prevents the 1s orbitals from simply overlapping perfectly (S1s,1s = 1) to
give the united-atom limit (R → 0)?” Although electrons might indeed favor such
a limit, the Coulombic repulsion between nuclei effectively prevents such collapse.
Nevertheless, it is true that the nodeless 1s orbitals favor unusually small separa-
tion (0.74 Å) and high bonding overlap (0.7602), leading to a deep potential well
(Fig. 3.1) at Req.

Inner-shell effects: the dilithium molecule

How does this picture change for Li2 and other homonuclear dialkali species?
Hydrogen is unique in having a valence s shell with no underlying core s electrons.
Thus, if we compare the 2s–2s interaction of Li2 with the corresponding 1s–1s
interaction of H2, we can recognize two principal changes.

(1) The 2s orbital presents an additional radial node that prevents the incoming acceptor
orbital from achieving perfect overlap (S2s,2s = 1) without traversing an unfavorable
intermediate region of phase mismatch, leading to strong reduction of bonding overlap.
This is illustrated in Fig. 3.5 (left), which shows the overlapping 2s-like valence hybrids
of Li2 at various R. As seen in Fig. 3.5(c) (left), the final equilibrium position (R � 2.7 Å)
occurs near the point where the outer contour of one 2s orbital begins to penetrate the
unfavorable region of opposite phase inside the radial node. Deeper penetration of a 2s
orbital into the core region yields sharply diminished electronic returns.

(2) The filled (1s)2 cores lead to additional steric repulsions with the incoming donor
hybrid. These combine with nuclear Coulomb repulsions to oppose high electronic
overlap. Figure 3.6 displays the calculated increase in steric repulsion as each filled 2s
spin-orbital of Li2 “collides” with the filled core 1s of the opposite atom. The paired
one-electron steric repulsions shown in Fig. 3.6 are similar to the ionic two-electron
steric repulsions of Fig. 2.11, and the wave-mechanical origin of the “steric pressure”
would be analogous to that described in the discussion surrounding Fig. 2.12.

These two factors combine to create a “nodal barrier” at the boundary of the inner
core region, which makes the Li2 bond much longer and weaker than that of H2.
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Figure 3.5 Overlapping natural hybrids of Li2 (left) and Li2+ (right) at (a)
R = 3.5 Å (upper), (b) R = 3.1 Å (middle, Req for Li2+), and (c) R = 2.7 Å
(lower, Req for Li2).

In general, pure s-orbital bonding is intrinsically weak due to isotropic dispersal
of bonding amplitude in all directions, with no particular bond-directional focus.
This is particularly evident when bonding is restricted to the spherical annular
region outside the outermost radial node, as occurs in all cases except 1s. Figure 3.7
illustrates the strong contrast in radial amplitude profiles for 1s–1s (upper) and 2s–2s
(lower) overlap, each at the respective equilibrium distances in H2 and Li2. From this
figure it can be seen that the 2s orbital presents only feeble bonding amplitude to the
opposite atom, with practically no radial gradient to promote closer approach of the
atoms. Covalent bonding in dialkali species is therefore characterized by elongated
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Figure 3.6 Steric repulsion energy in Li2 (note that Req = 2.70 Å).

Figure 3.7 Overlapping NAO orbital profiles for 1s–1s (upper) in H2 and
2s–2s (lower) in Li2.
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bond distances, diminished bond strengths, and remarkably softened vibrational
stretching modes, in sharp contrast to H2.

Anomalous bonding of the dilithium cation

We turn now to the paradoxical behavior of Li2+, which manifests a one-electron
bond that is stronger (but also longer) than the weakish two-electron bond of Li2.
This strongly contradicts the naive bonding notion that the doubly occupied MO
of Li2 contributes twice as much bond strength as the singly occupied MO of Li2+,
i.e., that net bonding depends only on the number of electrons in the bonding MO,
which is presumed to be of the form

σAB = 2−1/2(2sA + 2sB) (3.13)

in both species. As we shall see, the latter assumption is quite invalid.
The radically altered character of the bonding MO for Li2+ is evident from the

form of its bonding NHOs, as illustrated in Fig. 3.5 (right). Compared with Li2,
the bonding hybrids of Li2+ are obviously much more directional, corresponding
to significant sp-hybrid character. If we choose, for example, the equilibrium bond
length of Li2, R = 2.7 Å, we find the Li2+ bonding NHOs to be of sp0.21 form
(17.6% p character).11 In contrast, the corresponding hybridization in Li2 is sp0.03

(2.7% p character), which is essentially similar to Eq. (3.11d) or (3.13). This dif-
ference can be qualitatively understood from comparison plots of the 2s and 2p
NAOs for Li2 and Li2+, as shown in Fig. 3.8. One can see that the valence 2s and
(particularly) 2p NAOs of Li2+ are favorably contracted to give significantly higher
amplitude in the internuclear region of high bonding overlap (due to the stronger
attractive nuclear charge), and are thus better adapted to making effective bonding
hybrids. The numerical Fock-matrix elements confirm this visual assessment.

Figure 3.8 Orbital profiles of overlapping 2pA and 2sB NAOs in Li2 (left) and Li2+

(right), both at R = 2.70 Å.
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Let us now examine the consequences of net charge and enhanced hybridization
for the bonding in Li2+. According to Eq. (3.2), the two principal factors that dictate
the energy of the lowest bonding MO are the non-interacting hybrid energy (ε)
and the interaction element (FAB). From general H-atom considerations (see, e.g.,
Eq. (1.12)) it is apparent12 that increased net charge lowers the value of ε, namely
−0.2309 in Li2+ versus −0.0766 in Li2 at R = 2.7 Å. From variational relationships
analogous to Eqs. (3.10) and (3.11), it is also apparent13 that increased hybridization
strengthens the magnitude of the FAB interaction, namely −0.1191 in Li2+ versus
−0.0658 in Li2. From Eq. (3.2) we can therefore estimate that E = −0.2309 −
0.1191 = −0.3500 for Li2+, more than twice as low as the corresponding MO
energy estimate for Li2 (−0.1346). Both estimates are in good agreement with the
actual MO energies: −0.3493 for Li2+ and −0.1339 for Li2. Thus, even a doubly
occupied MO of Li2 cannot match the energy of the singly occupied MO of Li2+. At
internuclear distances throughout this general range, ionization of an electron from
Li2 to give Li2+ is therefore expected to be exothermic, as shown in Fig. 3.1. Note
that the net charge effect for H2

+ versus H2 is expected to be generally similar to that
for Li2+ versus Li2, so the dramatic reversal in relative neutral/cationic stabilities
of these species is to be attributed primarily to the increased 2s–2p hybridization
(and interaction strength) in Li2+, which has no counterpart in H2

+.
We can also understand the anomalous bond-length relation between Li2+ and Li2

in terms of the enhanced hybridization. As shown in Fig. 3.5(b) (right), the equi-
librium bond length of Li2+ again lies close to where the outer lobe of the bonding
hybrid just begins to penetrate the nodal barrier into the core region of the opposite
atom. Li2 and Li2+ are therefore similarly prevented from core penetration, but the
sp-hybrids of Li2+ are noticeably more elongated (by ∼0.2 Å each) along the bond-
ing axis. It follows that the nuclei in Li2+ are held at ∼0.4 Å greater internuclear
separation than those of Li2 in the equilibrium geometry. This radial elongation of
the bonding hybrid seems to account most simply for the increased bond length of
Li2+ versus Li2.

In conclusion, sp-hybrid character differs strongly between dialkali neutrals and
cations, in sharp distinction to the rather constant s character in H2 versus H2

+.
A comparison of bonding in Li2 and Li2+ therefore does not merely depend on
the number of electrons in the bonding NBO (change in formal bond order), but
rather reflects deep differences in the bonding hybrids themselves, particularly with
regard to directional p character.

3.2.2 Polar and apolar covalency: NBO and valence-bond descriptions

In this section we wish to examine the detailed nature of the changes that accompany
the gradual transformation from covalent to ionic bonding limits. We previously
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discussed LiF as a prototype of ionic bonding (Section 2.3), and we noted the
anomalously weak character of the covalent bonding in Li2 (Section 3.2.1). Let us
therefore examine the nature of the electronic changes in various AF fluorides as
the bonding varies from pure covalent (A = F) to ionic (A = Li) through a series
(A = F, Cl, Br, H, Li) of monovalent bonding partners.

NBO ionicity descriptors

For each member of the series, the molecule is well described by a Lewis-structure
diagram of the form

with distinct nF
(σ) and nF

(π) (2) lone pairs (cf. Example 1.6) and a single σAF bond
that can be written in the usual form (cf. Eq. (1.31a))

σAF = cAhA + cFhF (3.14)

The accuracy of this NBO Lewis-structure description can be quantified in terms of
%ρ(L), the percentage of the total electron density described by Lewis-type NBOs
(i.e., %ρ(L) = 100 − %ρ(NL); cf. Example 1.7). The polarity of each σAF bond can
be quantified in terms of the ionicity parameter (cf. Eq. (1.41b))

iAF = cA
2 − cF

2

cA
2 + cF

2

or the atomic charge (QF) on F.
Table 3.1 compares key bonding and ionicity descriptors for the NBO Lewis-

structure representations of the five AF diatomic fluorides in this series. From this
table it can be seen that the single-term natural Lewis-structure description Ψ (L) is
practically exact for all species (with %ρ(L) > 99.9% for A = F, Cl, Br, H, and only a

Table 3.1. NBO bonding and ionicity descriptors of AF fluorides (A = F, Cl,
Br, H, Li)

Fluoride NBOs

A %ρ(L) QF σAF nF
(σ) nF

(π)(2) |iAF|
F 99.99 0.000 0.71(sp18.9)F + 0.71(sp18.9)F sp0.05 p 0.000
Cl 99.96 −0.332 0.82(sp11.9)F + 0.58(sp18.6)Cl sp0.08 p 0.338
Br 99.98 −0.402 0.84(sp12.4)F + 0.54(sp21.8)Br sp0.08 p 0.409
H 99.95 −0.549 0.88(sp3.90)F + 0.47(s)H sp0.25 p 0.553
Lia (99.67)a −0.961 (sp11.1)F sp0.05 p 0.987

a For ionic (Li+F−) NBO structure. The iAF parameter is obtained from a corresponding
$CHOOSE structure with highly polarized Li—F bond.
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slightly lower value for the completely ionic Li+ + F− limit). The NBO polarization
coefficients cF and cA are seen to vary smoothly from the covalent (A = F; cA =
cF = 2−1/2) to the ionic (A = Li; cF � 1, cA � 0) limit. For this single-structure
description, the fluoride bond ionicity parameter (iAF) and atomic charge (QF)
serve as practically equivalent measures of bond polarity. In all these species, the F
is represented as having three similar lone pairs: two pure-p pi-type and one s-rich
(∼sp0.05) sigma-type. The p-rich bonding hybrids on F are also rather similar in all
these species, ranging from 95% p character for A = F down to 80% p character for
A = H. Thus, all these compounds are well described by a single Lewis structure
having a localized (σAF

2) “bonding electron pair” shared between A and F (as
freshman chemistry textbooks would suggest), with the only significant difference
being the progressive polarization shift of the σAF NBO as the electronegativity of
A diminishes.

Comparison with the Heitler–London description

How does this NBO description of A—F bonding compare with the classical
valence-bond (VB) picture?14 Although it is evident that the NBO Lewis-structure
description is very “VB-like” in its emphasis on localized, transferable electron-pair
bonds and lone pairs of the chemist’s Lewis diagram, there are important differences
in mathematical detail.

In the VB picture, each (σAB)2 bond pair is described by a Heitler–London
covalent function ψAB

(cov), whose spatial dependence is of the form

ψAB
(cov)(1, 2) = 2−1/2[hA(1)hB(2) + hB(1)hA(2)] (3.15)

However, ψAB
(cov) is intrinsically restricted to homopolar bonding. In order to

describe Aδ+Bδ− polar bond formation, one must therefore append contributions
from the Heitler–London ionic function ψAB

(ion),

ψAB
(ion)(1, 2) = hB(1)hB(2) (3.16)

having both electrons in hB. In the classical VB resonance theory of Pauling and
Wheland,15 each polar A—B bond is therefore described as a two-term “resonance
hybrid” of the form

ψAB
(VB)(1, 2) = ccovψAB

(cov)(1, 2) + cionψAB
(ion)(1, 2) (3.17)

with relative weightings

wion = cion
2 = iAB (3.18a)

wcov = ccov
2 = 1 − iAB (3.18b)

where 100iAB is the “percentage ionic character” of the bond.
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In contrast, the NBO picture describes (σAB)2 in terms of a doubly occupied
bond orbital pair function ψAB

(NBO) (cf. Eq. (1.31a)), with spatial dependence (in
the closed-shell singlet case)

ψAB
(NBO)(1, 2) = [cAhA(1) + cBhB(1)][cAhA(2) + cBhB(2)] (3.19)

For a normalized bond orbital, the relationship between polarization coefficients
cA and cB and fractional ionicity iAB can be expressed as (cf. Eq. (1.41a))

iAB = cA
2 − cB

2 (3.20)

for comparison with Eq. (3.18a). Thus, the NBO/NRT formalism describes polar
covalency in terms of the continuously variable polarity of a single NBO function
(and NRT resonance structure), whereas the VB formalism employs a resonance-
weighted mixture of distinct covalent and ionic bond “types” (with associated reso-
nance structures). However, these inequivalent descriptions can be related through
Eqs. (3.18) and (3.20).

Both (3.17) and (3.19) are presumed to be expressed in terms of the same hA

and hB bonding hybrids,16 and each function provides only an approximation to the
true bond pair wavefunction. In particular, in the closed-shell singlet case ψAB

(NBO)

assumes the same spatial dependence for each electron of the pair, and thus neglects
electron-correlation effects that could better be represented as

ψAB
(better)(1, 2) = N{[cAhA(1) + cBhB(1)][cA

′hA(2) + cB
′hB(2)]

+[cA
′hA(1) + cB

′hB(1)][cAhA(2) + cBhB(2)]} (3.21)

with cA 
= cA
′ and cB 
= cB

′ (“different polarizations for different spins”). Equation
(3.21) is also the spatial form of ψAB

(NBO) for an open-shell (diradical) singlet case,
but this is usually not the character of the wavefunction in the near-equilibrium
region.

With respect to the improved ψAB
(better), it can be recognized that the normal

closed-shell form of ψAB
(NBO) is obtained whenever primed and unprimed spatial

functions coincide,

ψAB
(better) → ψAB

(NBO) for cA = cA
′, cB = cB

′ (3.22a)

Correspondingly, ψAB
(cov) is obtained only when these functions differ in the most

extreme possible fashion,

ψAB
(better) → ψAB

(cov) for cA = cB
′ = 1, cA

′ = cB = 0 (3.22b)

whereas ψAB
(ion) is obtained when (3.21) and (3.19) coincide at the extreme polar-

ization limit,

ψAB
(better) → ψAB

(ion) for cA = cA
′ = 0, cB = cB

′ = 1 (3.22c)
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Figure 3.9 Similar to Fig. 3.3, for 2pA
(α) and 2pB

(α) spin-orbitals in FA—FB bonding.

Contrasting “covalent” and “ionic” limits in NBO and VB theory

For simplicity, let us now focus on the apolar case of F2, with cion = 0 in the
VB wavefunction (3.17), and with hA = hB = 2p, in accordance with the p-rich
hybridization shown in Table 3.1. For this case it can be recognized that the VB
“covalent” function (3.15) is equivalent to the spin-polarized NBO function (3.5)
in the limit η = η′ → 0, i.e., for the long-range limit where donor–acceptor de-
localizations are negligible. Paradoxically, this corresponds to what was labeled
the “ionic” or “one-center” limit in the bi-directional-CT picture of covalent-bond
formation (cf. the discussion of Figs. 3.3 and 3.4). It can readily be verified that
the assumption of extreme spin-polarized (diradical) character is quite inappropri-
ate near the equilibrium geometry of F2. This is illustrated in Fig. 3.9, where we
plot the occupancies of 2pA

(α) and 2pB
(α) spin-orbitals for FA—FB covalent-bond

formation as a function of R (cf. Fig. 3.3). From Fig. 3.9 it can be judged that spin-
polarized diradical character is fully quenched about 0.2 Å beyond Req, and that the
VB assumption of extreme diradical character cannot be appropriate for distances
much smaller than 2.4 Å, i.e., about 1.0 Å beyond Req. Thus, the VB description of
covalent bonding in F2 is literally equivalent to the NBO picture only in the limit
of large R, and becomes progressively less realistic in the near-equilibrium region.

Why is the VB description relatively more successful for H2 than for F2? From
the nodeless, directionless character of 1s orbitals, one can judge that both 1sA and
1sB orbitals of H2 are approaching a common “united-atom” form as their centers
approach, so there is not much change if one switches hA with hB for one of the
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electrons in ψAB
(cov), Eq. (3.15). That is, ψAB

(cov) for H2 looks increasingly like a
doubly occupied united-atom orbital hUA at small R,

ψAB
(cov)(1, 2) � hUA(1)hUA(2), R → 0 (3.23)

thereby somewhat resembling the MO function (but without the strict constraint
of double occupancy) near Req. In contrast, the two bonding hybrids of F2 are
oppositely directed (“in-phase”) 2pA and 2pB orbitals that each become increas-
ingly dissimilar to the united-atom limit for diminishing R, and remain sharply
distinguishable from one another when their centers coincide. Thus, ψAB

(cov) for F2

will have persistent diradical (separated-atom) character that becomes increasingly
unsuitable for representing the bonding in the near-equilibrium region.

In practice, the formal mathematical defects of the Heitler–London ψAB
(cov)

function can be largely averted by not taking the mathematics too literally! Because
actual HLSP-PP-VB calculations were usually too difficult to carry out in rigorous
ab initio fashion, effective semi-empirical VB treatments were developed by Pauling
and others that largely circumvented these formal defects.17 What strongly persists
in such semi-empirical VB formulations is essentially consistent with the NBO
picture of localized, transferable electron-pair functions that are built from Pauling-
type hybrids, mirroring the chemist’s Lewis-structure picture. In this sense, the
general NBO description is indeed “VB-like.”

In summary, polar covalency can be viewed in terms of the continuous variability
of a single localized bond orbital expression (3.14), corresponding to what was de-
scribed in VB theory as a resonance hybrid (3.17) of two distinct bonding “types.”18

The inflexible form of the Heitler–London ψAB
(cov) and ψAB

(ion) functions some-
times created an unfortunate impression of dichotomy where none exists physically.
Nevertheless, the older valence-bond concepts can be recovered through equations
such as (3.18a) and (3.20), which directly relate NBO polarization coefficients to
covalent/ionic resonance weightings. Some disadvantages of the Heitler–London
mathematical functions were highlighted, but overall, the results of NBO analysis
are found to be strongly supportive of the underlying localized bonding picture on
which classical VB theory rests.

3.2.3 Hybridization and multiple bonding in polyatomic hydrocarbons

We now turn to the bonding in polyatomic molecules, particularly the hydrocarbons
and other common species of organic chemistry. The formulation of such important
concepts as

molecular structure
valency
Lewis diagram
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multiple bonding
hybridization
resonance

originated in the framework of carbon chemistry. Hence, in developing the general
NBO perspective on hybridization, valency, and bonding in polyatomic species, we
begin with prototype single-, double-, and triple-bonded hydrocarbon species as
treated in the classic works of Pauling,19 Slater,20 Coulson,21 and others.
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General NBO theory of directed hybrids

Let us begin by sketching the general polyatomic formulation of hybridization
from the NBO viewpoint. A general hybrid hi

(A) on atom A can be expanded in the
complete orthonormal set of NAOs

{
θ i

(A)
}

on this atom:

hi
(A) =

∑
j

ai jθ j
(A) (3.24a)

We can divide the NAOs into the “natural minimal basis” (NMB), consisting of
only the formal core and valence NAOs of simple bonding theory, and the “natural
Rydberg basis” (NRB), consisting of everything else. With this partitioning, Eq.
(3.24a) is expressed as

hi
(A) =

NMB∑
j

ai jθ j
(A) +

NRB∑
k

aikθ k
(A) (3.24b)

In the spirit of elementary bonding theories, we expect that the dominant con-
tributions to hi

(A) come only from the first summation, consisting (for an s/p-
block atom) simply of the four contributions (s, px , py, pz) from the valence
shell. At this level, the hybrid can be written simply as (dropping the atom label
throughout)

hi = ai0s + aix px + aiypy + aizpz (3.25)
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Example 3.1

How valid is the minimal-basis assumption that leads from (3.24b) to (3.25)? We can
examine the accuracy of the NMB restriction (in the NAO basis!) by tabulating the percentage
of the total electron density associated with the NMB and NRB sets for some common
organic molecules, as shown below:

Moleculea nNMB %ρ(NMB) nNRB %ρ(NRB)

CH4 9 99.90 41 0.01
C2H4 14 99.73 58 0.27
C2H2 12 99.84 46 0.16
C6H6 36 99.74 114 0.26

a Fully optimized B3LYP/6-311++G∗∗ level.

Even though the number (nNMB) of NMB functions is much smaller than that (nNRB) of NRB
functions, the former are seen to make overwhelmingly greater percentage contributions
(>99%) to the total electron density, and thus, to the occupied bonding hi ’s. This conclusion
is also confirmed by the accuracy of the “sum rules” to be described below, or by examination
of individual hybrids.

If we define the hybridization parameter λi as

λi = aix
2 + aiy

2 + aiz
2

ai0
2

(3.26)

we can rewrite (3.25) in the standard form (cf. Eq. (2.3))

hi = (1 + λi )
1/2(s + λ

1/2
i pi ), i = 1−4 (3.27)

where pi is a general directional p orbital (a normalized linear combination of
px , py , and pz),

pi = dix px + diypy + dizpz (3.28)

with dix = aix/λi , etc.
It is well known that the angular dependence of each Cartesian p orbital is

simply a unit vector in the corresponding Cartesian direction (px = ûx , etc.). We
can therefore associate each pi with a Cartesian direction vector d i ,

d i = dix ûx + diyûy + dizûz (3.29a)
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Figure 3.10 The geometry of directional vectors d i and d j for two directional
hybrids (with hybrid hi shown for reference).

or, in column-matrix form,

d i =

dix

diy

diz


 (3.29b)

The components of the direction vector are related in the usual way to the azimuthal
(φ) and polar (θ ) angles of a spherical polar coordinate system,

dix = sin θ cos φ (3.30a)

diy = sin θ sin φ (3.30b)

diz = cos θ (3.30c)

The vector d i conveniently expresses the directionality of hybrid hi with respect to
the chosen molecular axis system. Note that each d i is a unit vector (d i · d i = 1),
and the scalar product of d i and d j is related to the angle (ωi j ) between these vectors
in the usual way (see Fig. 3.10),

d i · d j = cos ωi j (3.31)

Let us now recall that hi and h j are orthonormal, and that an s orbital is orthogonal
to every pi orbital. We can therefore write the hybrid orthogonality relation in the
form

δi j = 〈hi |h j 〉
= [(1 + λi )(1 + λ j )]

−1/2
(〈s + λi

1/2pi |s + λ j
1/2p j 〉

)
= [(1 + λi )(1 + λ j )]

−1/2
(〈s|s〉 + (λiλ j )

1/2〈pi |p j 〉
)

(3.32)

Furthermore, s is normalized (〈s|s〉 = 1) and

〈pi |p j 〉 = d i · d j = cos ωi j (3.33)
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We therefore see that orthogonality of hi and h j is maintained only if

cos ωi j = − 1

(λiλ j )1/2
(3.34)

Equation (3.34) is the celebrated directionality theorem of Coulson which governs
the bond angles for sp-hybridization.

Example 3.2

Exercise: Show that Eq. (3.34) gives the expected bond angles for standard sp1, sp2, sp3

equivalent hybrids.

Solution: For equivalent hybrids, with equal λi = λ j = λ, Eq. (3.34) becomes simply

cos ωi j = −1/λ

We therefore find

λ = 1 : cos ωi j = −1, so ωi j = 180◦ (digonal)
λ = 2 : cos ωi j = − 1

2 , so ωi j = 120◦ (trigonal)

λ = 3 : cos ωi j = − 1
3 , so ωi j = 109.47◦ (tetrahedral)

Example 3.3

Exercise: For an ethylene molecule in idealized trigonal geometry (120◦ bond angles),
the carbon NHOs were found to be sp2.33 toward hydrogen and sp1.48 toward the opposite
carbon. Predict how the bond angles will change when the geometry is allowed to optimize
fully.

Solution: For the given hybrids, the angle ωH,H′ between the bonding hybrids to H and H′

is determined from the directionality theorem

cos ωH,H′ = − 1

[(2.33)(2.33)]1/2
= −0.429

to be ωH,H′ = 115.4◦. Similarly, the ωH,C′ angle is found from

cos ωH,C′ = − 1

[(2.33)(1.48)]1/2
= −0.539

to be ωH,C′ = 122.6◦. Thus, in the 120◦ geometry, the CH bonds are slightly “bent” with
respect to the NHO directions. We can expect that geometry optimization will cause the H
nuclei to move into better alignment with the NHOs, i.e., that HCH angles will decrease
to about 115◦, and HCC angles will increase to about 123◦. The actual optimized values
(116.5◦ for HCH, 121.7◦ for HCC) are in rough agreement with these estimates, and the
final NHOs (with slightly readjusted hybridizations) are in improved alignment with the
nuclei.
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Example 3.4

Exercise: For what hybridization λ do equivalent hybrids hi and h j achieve the smallest
possible bond angle?

Solution: For λi = λ j = λ, we seek the extremum value for which

d(cos ωi j )

dλ
= −d(1/λ)

dλ
= 1/λ2 = 0

The only solution is λ = ∞ (pure p orbitals), for which the bond angle ωi j = 90◦.

We can see another consequence of the simplified form (3.27) by writing the
fractional s and p characters in the form (cf. Example 2.2)

f s
(i) = 1

1 + λi
(3.35a)

f p
(i) = λi

1 + λi
(3.35b)

with f s
(i) + f p

(i) = 1 for each hi . If we sum up the fractions f s
(i) for all four valence

hybrids, we merely recover the total number (1) of valence s orbitals,

4∑
i

f s
(i) = 1 (3.36a)

and the sum of fractional p characters similarly gives the number (3) of valence p
orbitals,

4∑
i

f p
(i) = 3 (3.36b)

On combining (3.35) and (3.36), we obtain the “sum rules,”

4∑
i

1

1 + λi
= 1 (3.37a)

4∑
i

λi

1 + λi
= 3 (3.37b)

which merely express the overall conservation of valence s and p character in the uni-
tary transformation from unhybridized (s, px , py, pz) to final hybrid (h1, h2, h3, h4)
orbitals.
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Example 3.5

How accurate are the sum rules (3.37a) and (3.37b) for the molecules considered in Example
3.1? The table below summarizes the hybridization parameters λi and sum-rule values for
C in each species:

Hybrids Sum rules

Molecule λ1 λ2 λ3 λ4
∑4

i=1
1

1+λi

∑4
i=1

λi

1+λi

CH4 2.99 2.99 2.99 2.99 1.003 2.997
C2H4 2.37 2.37 1.44 ∞ 1.003 2.997
C2H2 1.09 0.91 ∞ ∞ 1.002 2.998
C6H6 2.35 1.85 1.85 ∞ 1.000 3.000

The final two columns show that the actual NHO values are in nearly exact agreement with
the idealized values 1 (column 5) and 3 (column 6), reflecting the high accuracy of the NMB
approximation.

Sigma and pi NBOs of hydrocarbons: ethane, ethylene, acetylene

Let us turn now to the actual NBOs for the classical cases of equivalent spn hy-
bridization: acetylene (n = 1), ethylene (n = 2), and methane (n = 3). In each case,
the NBO results are in excellent agreement with the expected Lewis structures,

with Lewis-type orbitals of near double occupancy conforming generally to the
expected bond types, as shown in Table 3.2. Figure 3.11 shows surface and

Table 3.2. Lewis (L) and non-Lewis (NL) energy contributions and NBO
occupancies for sigma and pi bonds of the simplest alkane (CH4), alkene (C2H4),

and alkyne (C2H2) species, with aromatic benzene (C6H6) included for
comparison

Lewis accuracy NBO occupancies (e)

Molecule E(L) (a.u.) E(NL) (a.u.) %E(L) σCH σCC πCC

CH4 −40.5197 −0.0143 99.96 1.9990 — —
C2H4 −78.5207 −0.0949 99.88 1.9849 1.9952 1.9994
C2H2 −77.2744 −0.0823 99.89 1.9905 1.9909 1.9996
C6H6 −231.6491 −0.6621 99.71 1.9819 1.9820 1.6640
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Figure 3.11 Valence NBOs of ethylene, showing σCH (top), σCC (middle), and
πCC (bottom) bonds in surface (left) and contour (right) views.

contour views of prototype σCH, σCC, and πCC bond NBOs for ethylene, which
are representative of those found for all these species.

From Example 3.5 one can see that the carbon bonding hybrids to H and C are
not perfectly equivalent and the hybridizations differ slightly from integer values.
Thus, for C—H bonds, the hybridizations in methane, ethylene, and acetylene are
2.99, 2.37, and 1.09, respectively, rather than the idealized integer values 3, 2, 1.
These differences correspond to rather small changes in expected percentage p
character22 or bond angles (see Example 3.3). Furthermore, as shown in Table 3.2,
the NBO occupancies are generally very close to 2.0000 (except for the πCC bonds of
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benzene, which exhibit large “delocalization effects,” to be discussed in Section 3.3).
Thus, for example, an elementary Lewis-structure model of ethylene, having each
of the NBOs of Fig. 3.11 (plus the C core orbitals, not shown) doubly occupied,
would correctly describe the electron density to within 0.42%, and would incur a
variational energy error of only 0.12%.23 Such results (which are representative of
those found for many other simple organic species) provide strong evidence for the
accuracy of the localized Lewis electron-pair concept.

A more detailed comparison of the various carbon bonding hybrids in these
species is presented in Fig. 3.12. This figure shows that the visual changes in
hybrid shape, even for rather large changes in λ (e.g., the changes from sp1-like to
sp3-like in the left-hand panels), are rather subtle. Most obvious is the increasing

Figure 3.12 Carbon sigma hybrids for σCH bonds (left-hand panels) and σCC bonds
(right-hand panels) in CH4, C2H4, C2H2, and C6H6.
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amplitude of the backside lobe of the hybrid as p character increases. Because the
2p orbital lies higher in energy than 2s, the p-rich hybrid also becomes slightly less
electronegative, and its polarization coefficient in the σCH bond NBO diminishes
accordingly (e.g., from 0.782 in acetylene to 0.770 in ethylene). Such subtle but
chemically important variations can often be better recognized in the numerical
hybridization and polarization parameters of the NBOs than in their visual display.

3.2.4 Localized and delocalized MOs in molecules and ions

Canonical versus localized MOs

The natural localized orbitals introduced in Section 1.5 provide a useful alternative
to the “canonical” delocalized MOs (CMOs) that are usually employed to analyze
chemical bonding. The NAO and NBO basis sets may be regarded as intermediates
in a succession of basis transformations that lead from starting AOs {χi } to the final
canonical MOs {φi },

AO → NAO → NBO → LMO → CMO (3.38a)

which we shall symbolize as

{χi } → {θi } → {Ωa} → {Ω̃a} → {φ j } (3.38b)

Except for the initial AO → NAO transformation, which starts from non-orthogonal
AOs, each step in (3.38) is a unitary transformation from one complete orthonormal
set to another. Each localized set gives an exact matrix representation of any property
or function that can be described by the original AO basis.

The localized molecular orbitals (LMOs) can be defined as the unitary transfor-
mation of CMOs that (roughly speaking) makes the transformed functions as much
like the localized NBOs as possible,24

Ω̃a =
∑

j

Ua jφ j (3.39)

Further details of how to obtain the unitary matrix U are unimportant here. It suffices
to recognize25 that any unitary transformation of CMOs leaves a determinantal
wavefunction and density unchanged, and thus has no effect on the energy or other
properties that could be calculated with this wavefunction or density. Thus, at the
HF (or DFT) level we can rigorously write

E(LMO) = E(CMO) (3.40)

This identity has profound consequences for chemical concepts.
How do CMOs and LMOs differ? The CMOs are symmetry-adapted eigen-

functions of the Fock (or Kohn–Sham) operator F̂ , necessarily reflecting all the
molecular point-group symmetries of F̂ itself,26 whereas the LMOs often lack
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such symmetry. For example, if we consider a diatomic H2 “molecule” with one H
atom on Earth and another on the Moon, the CMOs are always symmetry-adapted
functions of the form

φ1 � 2−1/2(1sEarth + 1sMoon) (3.41a)

φ2 � 2−1/2(1sEarth − 1sMoon) (3.41b)

whereas the LMOs are of the form of localized atomic orbitals

Ω̃a � 1sEarth (3.42a)

Ω̃b � 1sMoon (3.42b)

Equation (3.40) tells us that the symmetry adaptation (3.39) from LMOs to CMOs
is purely decorative, with no energetic consequence. As physical intuition suggests,
we are perfectly justified in describing the HEarth—HMoon system in terms of local-
ized atom-like functions, each weakly perturbed by its remote “twin,” rather than
as a completely delocalized MO of symmetry-adapted form.

How do LMOs differ from NBOs? Each occupied LMO (Ω̃a) can be written
in terms of a parent Lewis-type NBO (Ωa) with a weak “delocalization tail” from
other non-Lewis NBOs (Ωb

∗),

Ω̃a = caaΩa +
NL∑
b∗

cab∗Ωb
∗ (3.43)

with |caa|  |cab∗ |. (The precise form and composition of the non-Lewis delocaliza-
tion tails will be discussed at length in later sections.) We can therefore separate the
total E(LMO) into contributions from the dominant Lewis-type E(L) and residual
non-Lewis E(NL) terms27 (see Table 3.2),

E(L) + E(NL) = E(LMO) = E(CMO) (3.44)

Unlike the decorative symmetry delocalizations that distinguish LMOs from CMOs,
the non-Lewis delocalizations that distinguish LMOs from NBOs have direct phys-
ical significance.

Representative well-localized species

Let us now consider the case of well-localized systems for which E(NL) is a neg-
ligibly small fraction of the total energy, so that

E(CMO) � E(L) (3.45)

Table 3.3 shows measures of localization (%ρ(L), %E(L), and E(L)) for four small
molecules that can be considered to be well localized: CO, N2, H2O, and CH4.
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Table 3.3. The accuracy of the localized Lewis (Ψ (L))
model for CO, N2, H2O, and CH4

%ρ(L) %E(L) E(L) (a.u.)

CO 99.92 99.97 −113.311 47
N2 99.89 99.94 −109.498 05
H2O 99.93 99.97 −76.438 80
CH4 99.95 99.96 −40.519 73

Table 3.4 compares the CMO and NBO descriptions of these molecules in terms of
the orbital energies

εi = 〈φi |F̂ |φi 〉 (3.46a)

εa
(L) = 〈Ωa|F̂ |Ωa〉 (3.46b)

and the orbital compositions, allowing direct comparisons of the forms of CMOs
and NBOs. The high values of %ρ(L) and %E(L) verify that (3.45) is well satisfied
for these molecules, despite the rather wide disparities between the energies of
individual NBOs and CMOs that are found in Table 3.4.

How can E(CMO) � E(L) despite the fact that energies of occupied CMO and
NBO differ significantly? The answer is suggested in Fig. 3.13, which depicts the
interaction between filled NBOs Ωa and Ωb with interaction element

Fab = 〈Ωa|F̂ |Ωb〉 (3.47)

to give MOs

φ± = 2−1/2(Ωa ∓ Ωb) (3.48)

As shown in Fig. 3.13 (cf. Eqs. (3.1) and (3.2)), the energy splittings are symmetric
about the mean of εa

(L) and εb
(L) for any Fab, so the sum of orbital energies is

invariant,

ε+ + ε− = εa
(L) + εb

(L) (3.49)

no matter how large the splitting parameter. A similar invariance applies to more
complex linear combinations than those in (3.48).

We conclude that Ωa–Ωb donor–donor interactions are generally ineffective at
lowering the total variational energy,28 whereas Ωa–Ωb

∗ donor–acceptor interac-
tions are universally stabilizing. Comparison of Fig. 3.2 (or Fig. 1.3) with Fig. 3.13
shows clearly how this fundamental difference arises from the Pauli restriction on
orbital occupancies.
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Table 3.4. (a) CMO and (b) NBO descriptions of CO, N2,H2O, and CH4

(a) CMOs and energies

εi CMO composition (as mixture of NBOs)

CO −0.3875 0.94nC − 0.25σCO + 0.20nO + · · ·
−0.4868(2) πCO
−0.5866 0.90nO − 0.33σCO − 0.28nC + · · ·
−1.1787 0.90σCO + 0.38nO + 0.15nC + · · ·

−10.2971 0.99KC + · · ·
−19.2387 0.99KO + · · ·

N2 −0.4409 0.67(nN + nN′ ) + 0.32σNN′ + · · ·
−0.4768(2) πNN′

−0.5606 0.70(nN − nN′ ) + · · ·
−1.1406 0.94σNN′ − 0.22(nN + nN′ ) + · · ·

−14.4234 0.70(KN − KN′ ) + · · ·
−14.4252 0.70(KN + KN′ ) − 0.12σNN′ + · · ·

H2O −0.3230 nO
π

−0.3968 0.86nO
σ − 0.36(σOH − σOH′ ) + · · ·

−0.5431 0.71(σOH + σOH′ ) + · · ·
−1.0232 0.60(σOH − σOH′ ) + 0.51nO + · · ·

−19.1334 0.99KO + · · ·
CH4 −0.3954(3) 0.50(σCH + σCH′ − σCH′′ − σCH′′′ ) + · · ·

−0.6966 0.50(σCH + σCH′ + σCH′′ + σCH′′′ ) + · · ·
−10.1531 0.99KC + · · ·

(b) NBOs, energies, and occupancies

εa
(L) Type Occupancy NBO hybrid composition

CO −0.4957 nC 1.9984 (sp0.33)C

−0.7961 nO 1.9913 (sp0.82)O
−0.4868(2) πCO 2.0000 0.48(p)C + 0.88(p)O
−1.2544 σCO 2.0000 0.54(sp2.59)C + 0.84(sp1.19)O

−10.1609 KC 1.9998 (s)C
−18.9661 KO 1.9997 (s)O

N2 −0.6383(2) nN 1.9928 (sp0.60)N
−0.4768(2) πNN′ 2.0000 0.71(p)N + 0.71(p)N′

−1.2744 σNN′ 2.0000 0.71(sp1.52)N + 0.71(sp1.52)N′

−14.2072 KN 1.9997 (s)N

H2O −0.3199 nO
π 1.9969 (p)O

−0.6650 nO
σ 1.9975 (sp0.87)O

−0.7546(2) σOH 1.9995 0.85(sp3.30)O + 0.52(s)H
−18.9169 KO 1.9998 (s)O

CH4 −0.5044(4) σCH 1.9990 0.76(sp2.99)C + 0.63(s)H
−10.0118 KC 1.9998 (s)O
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Figure 3.13 The energy-level-splitting diagram (cf. Figs. 1.3 and 3.2) for interac-
tion of filled NBOs Ωa and Ωb (with energies εa

(L) = εb
(L) and interaction element

Fab = 〈Ωa|F̂ |Ωb〉) to form MO levels ε±, Eq. (3.48).

Ionization and the Koopmans picture

How can the above conclusions be reconciled with the results of photoelectron
spectroscopy, which seem to show that electrons are ionized from CMOs? The latter
belief stems from naive acceptance of Koopmans’ theorem,29 which associates the
ith ionization energy (IPi ) with the corresponding CMO orbital energy εi ,

IPi = −εi (3.50)

at a very low level of approximation. In particular, Koopmans’ theorem neglects
orbital relaxation effects that are known to be chemically significant (cf. the Li2

versus Li2+ example in Section 3.2.1). Let us therefore examine this paradox for
cations of the small molecules characterized in Table 3.4.

Table 3.5 shows the ground-state energies E(M) for M = CO, N2, H2O, and CH4,
together with the first ionization energy as properly calculated from state-energy
differences30

IP1 = E(M+) − E(M) (3.51)

for both adiabatic (geometry relaxed) and vertical (“cation in neutral geometry”)
processes. We also include Koopmans-type estimates using the MO (KTMO) and
NBO (KTNBO) orbital energies, as well as experimental adiabatic ionization energies
for comparison. Corresponding optimized geometries of the neutral and cationic
species are shown in Table 3.6.
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Table 3.5. Adiabatic and vertical ionization energies of small molecules (cf.
Table 3.4), compared with Koopmans’-theorem (KT) estimates using MO or NBO

orbital energies, and with experimental adiabatic values

First ionization energy (a.u.)

E (a.u.) Adiabatic Vertical KTMO KTNBO Experimentala

CO −113.349 05 0.5215 0.5222 0.3875 0.4868 0.5150
N2 −109.559 70 0.5831 0.5835 0.4409 0.4768 0.5726
H2O −76.458 53 0.4659 0.4697 0.3230 0.3199 0.4638
CH4 −40.534 15 0.4668 0.5247 0.3954 0.5044 0.4636

a H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data 6
(1977), Supplement 1.

As seen from Table 3.5, the Koopmans-type estimates are quite unrealistic in all
cases. Such crude estimates give no real basis for judging whether the delocalized
or localized picture is preferable. If anything, the NBO orbital energies give better
estimates of this type than do the MO orbital energies!

However, we can judge from even more qualitative considerations that the as-
sumption of unrelaxed NBOs in M+ must be unfounded. Let us start from a splitting
diagram such as Fig. 3.13 for neutral M, considered to have well-localized NBOs Ωa

and Ωb with strong Fab = 〈Ωa|F̂ |Ωb〉 interaction. Removal of an electron to form
M+ will now convert the donor–donor (Ωa–Ωb) diagram to one of donor–acceptor
(Ωa–Ωb

∗) type for the ionized spin set (cf. Fig. 1.3, or Fig. 3.2 with nelec = 1), with
splitting factor Fab that now reflects the strength of Ωa → Ωb

∗ delocalization. We
therefore expect that Ωa will be strongly mixed with the vacant Ωb

∗ in the cation,
strongly distorting its form compared with the parent neutral species. For example,
if Ωa and Ωb were the two equivalent nN lone pairs of N2, we would expect from
Fig. 3.2 (with nelec = 1) that the final β spin-orbital would be of the form

φ � 2−1/2(nN + nN′) (3.52)

Table 3.6. Optimized geometries of neutral and cationic species

Neutral species Cationic species

Symmetry R (Å) �HAH (degrees) Symmetry R (Å) �HAH (degrees)

CO C∞v 1.1277 — C∞v 1.1105 —
N2 D∞h 1.0956 — D∞h 1.1087 —
H2O C2v 0.9621 105.0 C2v 1.0059 109.8
CH4 Td 1.0909 109.5 S4 1.2220 96.4,141.0
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resembling a CMO of the parent neutral species. From such considerations we
can recognize that the “delocalization” suggested by KT-like behavior pertains to
the modified NBOs in the cation, not the parent neutral species. Strong mixing of
parent NBOs to give CMO-like delocalizations in the cationic species is therefore
unsurprising and does not contradict the well-localized character of the parent
neutral species.

However, it is entirely possible that the final cation M+ achieves a well-localized
Lewis-structure form, but with different NBOs than those of the neutral species.
This is the case for three of the four ions considered above (CO+, N2

+, H2O+),
which leads to high %ρ(L) values as shown in Table 3.7. For each of the equilibrium

Table 3.7. Valence-shell NBOs of small cations in equilibrium geometry (cf.
Tables 3.4 and 3.6), with percentage Lewis density (%ρ(L)) for each species (an

asterisk denotes a formal non-Lewis orbital)

Cation valence-shell NBOs

%ρ(L) Occupancy Spin Type NBO hybrid composition

CO+ 99.68 1.0000 α σCO 0.54(sp1.80)C + 0.84(sp1.51)O
1.0000(2) α πCO 0.56(p)C + 0.83(p)O

0.9964 α nC (sp0.53)C

0.9973 α nO (sp0.65)O

1.0000 β σCO 0.57(sp0.43)C + 0.82(sp2.56)O
1.0000(2) β πCO 0.50(p)C + 0.87(p)O

0.9662 β nO (sp0.38)O

0.0346 β nC
∗ (sp2.92)C

N2
+ 99.92 1.0000 α σNN′ 0.71(sp1.65)N + 0.71(sp1.65)N′

1.0000(2) α πNN′ 0.71(p)N + 0.71(p)N′

0.9955(2) α nN (sp0.59)N

1.0000 β νNN′ 0.83(s)N + 0.56(p)N′

1.0000 β νNN′ 0.56(p)N + 0.83(s)N′

1.0000(2) β πNN′ 0.71(p)N + 0.71(p)N′

H2O+ 99.94 0.9994(2) α σOH 0.88(sp3.64)O + 0.47(s)H
0.9992 α nO

π (p)O

0.9990 α nO
σ (sp0.75)O

0.9994(2) β σOH 0.87(sp3.42)O + 0.49(s)H
0.9989 β nO

σ (sp0.83)O
0.0000 β nO

π∗ (p)O

CH4
+ 96.43 1.0000(4) α σCH 0.81(sp2.99)C + 0.59(s)H

0.8943(2) β σCH 0.84(sp1.24)C + 0.54(s)H
0.8967 β σCH′ 0.84(sp8.33)C + 0.54(s)H′
0.2709 β nH

∗ (s)H
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cationic species, this table displays the forms and occupancies of leading valence
NBOs in each spin set, for direct comparison with Table 3.4(b). The α (majority-
spin) NBOs are generally similar to those of the parent neutral species. However,
the β (ionized-spin) NBOs display a number of interesting features that we now
discuss in case-by-case fashion.

The carbon monoxide cation

Table 3.7 shows that the photoelectron was indeed removed from the formal nC

NBO (crudely equivalent to the HOMO or “5-sigma” MO of the parent neutral
species), whose occupancy has been reduced to 0.0346 in the cation. However,
an interesting switch in the hybridization at carbon (from ∼sp2.6 to ∼sp0.4) has
evidently altered the form of the β-σCO spin-NBO relative to the corresponding
σCO of the parent neutral species (Table 3.4(b)).

To understand this switch, we may first note that the linearly hybridized (nomi-
nally sp1) carbon atom is expected to employ inequivalent sigma hybrids, namely
an s-rich hybrid (hs � sp0.3) for the nonbonded nC and a p-rich hybrid (hp � sp2.6)
for the bonded σCO. This propensity is in accord with Bent’s rule (to be discussed in
Section 3.2.6), which predicts that electrons will gain low-energy s character when
held close to the nucleus (i.e., in nonbonding orbitals), but high-energy p character
when shifted toward other atoms (i.e., in polarized bonds to electronegative atoms).
If we now consider the ionized case in which the nonbonded electron is removed
to infinity, the same type of reasoning would suggest that the vacant nC

∗ orbital
should become highly p-like (since there is no longer an energy penalty associated
with high p character), while the remaining s character should concentrate in the
bonding σCO hybrid. Thus, the switch to an s-rich bonding hybrid hs in the ion is
fully consistent with the elementary Bent’s-rule picture.

Although the β-nC
∗ orbital is formally vacant in the cation, Table 3.7 shows

that a small residual population (0.0346e) survives in this orbital. This occupancy
can be attributed to a strong donor–acceptor interaction with the filled nO orbital
as depicted in Fig. 3.14. This nO→nC

∗ interaction is estimated by second-order
perturbation theory (Eq. (1.24)) to stabilize the ion by 19.5 kcal mol−1, a significant
delocalization that is primarily responsible for the slightly lower %ρ(L) value in
this ion.

Both orbital reorganization effects described above tend to strengthen the bond-
ing. The s-rich hybrid of the cation σCO is of smaller radius and lower energy than
the corresponding p-rich hybrid of the neutral species, and the attractive nO→nC

∗

interaction slightly increases the CO bond order. Thus, although the ionized elec-
tron is formally removed from a nonbonding orbital, the internuclear distance is
found to decrease significantly (0.017 Å) in the relaxed cation (Table 3.6). This
decrease is the more remarkable in view of the increased Coulombic repulsions
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Figure 3.14 The nO→nC
∗ donor–acceptor interaction in the CO+ cation.

between descreened cationic nuclei that must be overcome in order to achieve the
reduction.

In other respects, the CO+ ion exhibits the expected features of its elementary
Lewis-structure diagram, including the two polarized πCO bonds which survive
virtually unchanged from their form in the parent neutral species.

The dinitrogen cation: nu bonds

The N2 molecule exhibits the expected s-rich hybridization in nN and p-rich hy-
bridization in σNN′ . In other respects its Lewis structure appears quite ordinary,
exhibiting the expected similarities to the isoelectronic CO molecule. The α spin
set of the cation is also unexceptional.

However, the β spin set of the ion exhibits a quite remarkable transformation to
an entirely different mode of unhybridized bonding, denoted νNN′ and νNN′ (“nu
bonds”) in Table 3.7 and illustrated in Fig. 3.15. Each nu bond is composed of an
essentially pure s AO on one atom and pure p AO on the other, asymmetrically polar-
ized toward its s end (as Bent’s rule would suggest). A nu bond therefore has strong
directional (polar) character, and such bonds necessarily appear in complementary
(oppositely directed) pairs in a homonuclear diatomic molecule. Accordingly, the
β Lewis structure of N2

+ exhibits a formal quadruple bond, with two ordinary pi
bonds and two nu bonds (and no nonbonded electrons). The nu bond νNN′ may
be considered the enhanced analog of the nO (s-rich)→nC

∗(p-rich) interaction of
isoelectronic CO+, and the complementary νNN′ , is then the reformed version of
the original sigma bond needed to recover D2h symmetry.
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Figure 3.15 The nu bond (νNN) NBO of N2
+ in contour (left) and profile (right) plots.

Although our overall goal is to reduce the number of special “effects” or “types”
of bonding, it seems evident that the unsymmetric nu bonds warrant a distinctive
symbol and nomenclature. Although nu bonds are formally similar to sigma bonds
in having cylindrical symmetry about the bonding axis, they violate the parity (in-
version) symmetry that is generally associated with sigma orbitals of homonuclear
diatomics. Furthermore, unlike ordinary sigma bonds, nu bonds necessarily occur
in ν, ν complementary pairs of general form

νAB = cshA
s + cphB

p (3.53a)

νAB = cphA
p + cphB

s (3.53b)

where hs and hp denote general s-rich and p-rich hybrids, respectively. In subsequent
sections we shall investigate the details of how (n, σ) combinations of nonbonded
and sigma-bonded hybrids evolve into the curious (ν, ν) nu-bond pairs.

The unhybridized νNN bond of the cation appears to be weaker than the standard
σNN of the parent neutral species that it replaces. Thus, even though the bond order
formally increases in the cation, the added β-νNN half-bond cannot compensate
for the general increase of Coulombic nuclear repulsion and the replacement of
σNN′ by νNN in the cation, so the equilibrium bond distance slightly increases
(by 0.013 Å). This case illustrates why a general bond-order–bond-length relation
cannot be globally linear; the bond length clearly depends on the types of bonds
(e.g., pi versus sigma versus nu) as well as their number.

Despite the extensive reorganization of individual NBOs, the final cation exhibits
a well-localized Lewis structure (%ρ(L) = 99.92%), which is even more Lewis-like
than that of the parent neutral species (%ρ(L) = 99.89%).
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The water cation

TheβNBOs of H2O+ show clearly that ionization occurs out of the nO
π (not the nO

σ)
lone pair. The natural atomic charge on O is thereby reduced from its significantly
negative value in the neutral species (QO = −0.9164) to near-neutrality in the cation
(QO = −0.0792). Only slight changes are seen in the occupied NBOs, primarily
the increased polarization of σOH bonds toward oxygen in both spin sets. As a result,
the atomic charges on H increase to still more positive values in the cation (from
+0.4582 to +0.5396). The descreened protons move to positions slightly outside
the centers of the oxygen hybrids, resulting in a slight “bond bending” (about 2.5◦)
in each OH bond. Thus, as seen in Table 3.6, the H—O—H angle is increased by
about 5◦ in the cation, and the bonding appears slightly weakened as a result of this
misalignment and the general increase in Coulombic nuclear repulsions, with each
OH bond length increasing by about 0.04 Å.

The methane cation

In this case, a single-NBO structure depicts the electron as being removed from a
particular σCH bond, but the delocalization effects are obviously severe, with %ρ(L)
reduced to about 96% and each of the three surviving σCH bonds depleted in occu-
pancy by more than 0.1e. Each of the four equivalent Lewis structures of this type
is severely defective, and one should instead consider a type of “resonance hybrid”
to describe the extreme delocalization in this species. The electronic reorganization
is also reflected in the severely distorted geometry of the cation, which corresponds
to pronounced flattening from Td to S4 symmetry (opening two of the H—C—H
angles to 141◦ and closing the others to 96◦) and elongation of each C—H bond
length by 0.13 Å. Thus, this species can be discussed only in the framework of
strongly delocalized electronic systems, to be considered in Section 3.3.

3.2.5 Hydride bonding and natural electronegativity

The simplicity of the H atom often allows chemical bonding trends to be exposed in
their purest form in the A—H bonds of AHn hydrides. We shall therefore examine
the patterns of A—H NBO shape and composition in considerable detail in the
present section.

Bonds and antibonds of group 13–17 hydrides

Table 3.8 summarizes the geometries, atomic charges, and σAH NBO parameters
(ionicity and hybridization) for the first three members of each family of elements
in groups 13–17. Figures 3.16(a)–(e) show corresponding contour plots of valence
bond (σAH, left) and antibond (σAH

∗, right) NBOs for all these species.
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Table 3.8. Geometry (RAH and �HAH), atomic charges (QA and QH), and NBO
ionicity (iAH = cA

2 − cH
2) and hybridization (λ) parameters for A—H bonds of

group 13–17 AHn hydrides

Geometry Atomic charge σAH NBO

AHn RAH (Å) � (degrees) QA QH iAH λ

Group 13
BH3 1.1894 120.0 +0.3355 −0.1118 −0.1118 2.00
AlH3 1.5842 120.0 +1.1663 −0.3888 −0.3985 1.98
GaH3 1.5600 120.0 +0.9031 −0.3010 −0.3087 2.00

Group 14
CH4 1.0909 109.5 −0.8092 +0.2023 +0.2029 2.99
SiH4 1.4834 109.5 +0.6208 −0.1552 −0.1564 2.97
GeH4 1.5344 109.5 +0.4731 −0.1183 −0.1187 2.99

Group 15
NH3 1.0145 107.9 −1.0534 +0.3511 +0.3527 2.82
PH3 1.4234 93.5 +0.0538 −0.0179 −0.0167 5.85
AsH3 1.5253 92.1 +0.1142 −0.0380 −0.0368 7.21

Group 16
H2O 0.9621 105.0 −0.9164 +0.4582 +0.4614 3.30
H2S 1.3480 92.5 −0.2613 +0.1307 +0.1325 5.99
H2Se 1.4716 91.3 −0.1650 +0.0825 +0.0842 7.30

Group 17
HF 0.9222 — −0.5485 +0.5485 +0.5533 3.90
HCl 1.2870 — −0.2537 +0.2537 +0.2568 6.25
HBr 1.4270 — −0.1852 +0.1852 +0.1880 7.60

The NBOs of Figs. 3.16(a)–(e) exhibit the expected smooth variations with
respect to vertical and horizontal position in the periodic table (Appendix B). One
can recognize that NBOs of the first member of each family tend to differ more
conspicuously from subsequent family members than the last do from one another,
which is consistent with known patterns in chemical behavior on moving down a
column of the periodic table. Subtle changes in polarization associated with changes
in electronegativity of the central atom A are apparent in the NBOs. These changes
are manifested most conspicuously in the “backside” (A-end) lobe of the σAH

∗

antibond, which tends to diminish steadily from left to right along a given row,
and to increase from top to bottom along a given column (particularly in later
groups). As a result, there is often a “diagonal” resemblance pattern in which,
e.g., the σAH

∗ NBO of a middle family member more nearly resembles that of the
element to its lower right than it does those of other elements in its own row and
column (cf., for example, σSH

∗ with σBrH
∗, or σPH

∗ with σSeH
∗). Such variations
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Figure 3.16 Hydride bond (σAH, left) and antibond (σAH
∗, right) NBOs. (a)

Group 13 elements: B, Al, and Ga. (b) Group 14 elements: C, Si, and Ge. (c)
Group 15 elements: N, P, and As. (d) Group 16 elements: O, S, and Se. (e) Group 17
elements: F, Cl, and Br.

of electronegativity and A—H bond polarity (manifested most directly in the NBO
ionicity values displayed in Table 3.8) are quite consistent with well-known periodic
trends in experimental chemical behavior.

Measures of bond ionicity and electronegativity

Let us now discuss the bond polarities and charge distributions in greater detail.
For a general hydride bond NBO of the form

σAH = cA(spλ)A + cH(s)H (3.54)
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Figure 3.16 (Cont. )

one can see that the net charge (QH) on H will be approximately given by

QH � ZH − 2|cH|2 = 1 − 2|cH|2
= (|cA|2 + |cH|2) − 2|cH|2 (3.55a)

= |cA|2 − |cH|2

and thus that

QH � iAH (3.55b)

The accuracy of this approximation is shown in the entries of Table 3.8. Furthermore,
the polarization coefficients cA and cH in (3.54) are simply related to the bond



3.2 Covalent and polar-covalent bonding 129

Figure 3.16 (Cont. )

ionicity iAH by

cA = [(1 + iAH)/2]1/2 (3.56a)

cH = [(1 + iAH)/2]1/2 (3.56b)

Hence, trends in iAH control both the charge distributions and the NBO compositions
of these species.

Now the bond ionicity must be related in some manner to the “electronegativity”
xA (the ability of atom A to gain and hold electrons). Pauling originally postulated
a relationship of the form31

iAH = 1 − exp[− 1
4 (xA − xH)2] (3.57)
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Figure 3.16 (Cont. )

However, Hannay and Smyth32 obtained improved results with a quadratic equation
of the form

iAH = 0.035(xA − xH)2 + 0.16(xA − xH) (3.58)

and many alternative relationships have been proposed.33 Slight differences dis-
tinguish the original Pauling electronegativity scale34 from the scale of Allred
and Rochow35 and other proposed electronegativity measures.36 Alternative scales
of electronegativity generally originate from empirical fits to experimental dipole
moments or bond energies. Thus, the conventional electronegativity concept has an
inherently vague and empirical character that tends to obscure a simple mathemat-
ical relationship to bond ionicity.
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Figure 3.16 (Cont. )

Natural electronegativity

A simple way to bypass the vagaries of empirical fits is to define an alterna-
tive, purely theoretical electronegativity scale based on a proposed functional
relationship between iAH and xA, analogous, e.g., to Eq. (3.57) or Eq. (3.58). A
particularly simple and attractive one-parameter exponential relationship is

iAH = 1 − exp[−a(xA − xH)] (3.59)

which retains the proper limiting behavior of Pauling’s formula (3.57) (i.e., iAH → 1
as xA → ∞) but includes terms linearly proportional to xA − xH, as in Eq. (3.58).
Since xH = 2.10 has a common value on the Pauling and Allred–Rochow scales,
we can fix this reference value and choose the “a” for which Eq. (3.59) gives xA
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values most closely resembling conventional Pauling or Allred–Rochow values.
With the choice a = 0.45, Eq. (3.59) can be rewritten in a form that defines the
“natural” electronegativity scale xA

(N) as

xA
(N) ≡ xH

(N) − ln(1 − iAH)/0.45 (3.60)

with xA
(N) = 2.10 and NBO ionicities iAH taken from Table 3.8.

The definition (3.60) can even be extended to the lone-pair case, in which the
“ligand” is nonexistent, by recognizing that this corresponds to the ionicity limit
i = −1. In this case Eq. (3.60) gives for the formal “lone-pair electronegativity”
xnb

(N) the value37

xnb
(N) = 2.1 − ln(2)/0.45 = 0.56 (3.61)

Similarly, the hybridization λ+ of an empty (ionized) hybrid corresponds to the
ionicity limit i = +1, which can be formally associated with a ghost (gh) ligand of
infinite electronegativity

xgh
(N) = ∞ (3.62)

Equation (3.60) leads to xA
(N) electronegativity values that are generally in close

agreement with conventional Pauling and Allred–Rochow values, as shown in
Table 3.9 and displayed graphically in Fig. 3.17. The r.m.s. deviations of xA

(N)

from conventional empirical electronegativities are 0.12 for xA
(N) versus xA

(P) or
0.15 for xA

(N) versus xA
(AR), which are rather similar to the corresponding deviation

(0.11) for xA
(P) versus xA

(AR). The small deviations from Pauling values are of the
order of the uncertainties in these values, as judged by Pauling.38

As shown in Fig. 3.17, the natural electronegativities xA
(N) generally repro-

duce qualitative periodic trends of empirical xA
(P) and xA

(AR) values. For all three
scales, the maximum individual deviations for any element are about twice the
r.m.s. deviation. Comparing xA

(N) and xA
(P) values, for example, the maximum de-

viation occurs for the heavier halogens (Cl, Br), which are each depicted as being
0.24 units more electropositive on the natural than on the Pauling scale (deviating in
the same direction as Allred–Rochow values). The largest deviation between xA

(N)

and xA
(AR) occurs for Ga (0.32 units), for which the deviation between Pauling

and Allred–Rochow values is also largest (0.22 units). The natural scale agrees
with Pauling and Allred–Rochow values that Ga is more electronegative than Al
(though not so strongly as represented on the Allred–Rochow scale) and that Ge is
slightly more electronegative than Si (again, far less than the Allred–Rochow scale
would suggest). This reversal of the usual vertical trend (typically exaggerated by
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Table 3.9. A comparison of Pauling (xA
(P)), Allred–Rochow (xA

(AR)), and
natural (xA

(N)) electronegativity values (B3LYP/6-311++ G∗∗ level) for
leading alkali metals and group 13–17 elements

xA
(P) xA

(AR) xA
(N)

1.p.a — — 0.56

H 2.1 2.10 [2.10]b

Li 1.0 0.97 0.79
Na 0.9 1.01 0.88

B 2.0 2.01 1.86
Al 1.5 1.47 1.35
Ga 1.6 1.82 1.50

C 2.5 2.50 2.60
Si 1.8 1.74 1.78
Ge 1.8 2.02 1.85

N 3.0 3.07 3.07
P 2.1 2.06 2.06
As 2.0 2.20 2.02

O 3.5 3.50 3.48
S 2.5 2.44 2.42
Se 2.4 2.48 2.30

F 4.0 4.10 3.89
Cl 3.0 2.83 2.76
Br 2.8 2.74 2.56

a The “lone-pair” (least possible) value.
b The fixed common point of electronegativity scales.

Allred–Rochow relative to natural or Pauling values) continues toward alkali met-
als, where Na is found to be slightly more electronegative than Li (which is con-
sistent with the Allred–Rochow scale, but inconsistent with Pauling; cf. Table 3.9).
Roughly speaking, we can say that there is only weak vertical electronegativity
dependence at the left of the periodic table, but quite strong vertical dependence
toward the right, particularly between the first and second members of the family.

We conclude that the theoretical xA
(N) values (3.60) agree satisfactorily with

empirical scales, within their inherent uncertainties. However, the natural elec-
tronegativity scale offers a considerable conceptual advantage with respect to an
intrinsic (defined) association with bond ionicity, reducing the number of indepen-
dent concepts by one. Equations (3.55), (3.56), and (3.60) show that iAH can be
regarded as the key electronic parameter governing bond polarization and atomic
charge distributions. This is also the parameter that allows NBO and VB descrip-
tions to be unified in the most direct and satisfying manner.
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Figure 3.17 Electronegativities xA for elements of groups 13–17, comparing
“natural” values (circles, solid lines) with Pauling (triangles, dashed lines) and
Allred–Rochow (squares, dotted lines) values.

Electronegativity and hybridization

Let us return now to the general relationship among AHn bond ionicity, hybridiza-
tion, and geometry, as displayed in Table 3.8. It is apparent that the NBO hybridiza-
tions are virtually identical to the expected spn − 1 types (viz., sp2 for group 13, sp3

for group 14) in high-symmetry species with only σAH bond pairs. However, when
one or more lone pairs are present (groups 15–17), the corresponding nonbond-
ing hybrids hnb are generally expected to be of inequivalent form (consistent with
Bent’s rule; cf. Section 3.2.6).

To analyze the hybridization in groups 15–17, let nbond denote the number of
hydride bonds in the molecule (nbond = 3 for group 15, 2 for group 16, 1 for group
17). As usual, only nbond p orbitals are required, together with the single s orbital, to
build the sigma-bonding framework. Hence, only one sigma-type lone pair (nA

(σ))
participates in sp-hybridization, while the remaining 3 − nbond pi-type lone pairs
(nA

(π)) are assigned to unhybridized pure p orbitals (with λnb
(π) = ∞).

To estimate the hybridization of hydride bonds and lone pairs, we first rewrite
the sum rule (3.37a) for nbond hydride bonds of hybridization λH and one lone pair
of hybridization λnb,

nbond

1 + λH
+ 1

1 + λnb
= 1 (3.63)
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This equation can be solved for λnb to give

λnb = nbond

1 − nbond + λH
(3.64)

We can also express this conservation condition in terms of the fractional p character
of bonding ( fp

(AH)) and sigma nonbonding ( fp
(A:)) hybrids,

fp
(AH) = 1 − f p

(A:)/nbond (3.65)

which is convenient for the present purpose.

Example 3.6

Exercise: Estimate the hybridization parameters (λnb) for the sigma lone-pair hybrids hnb

of NH3, H2O, and HF.

Solution: On substituting values of λ = λH from Table 3.8 into Eq. (3.64), we find

for NH3 (nbond = 3, λH = 2.82): λnb = 3.66
for H2O (nbond = 2, λH = 3.30): λnb = 0.87
for HF (nbond = 1, λH = 3.90): λnb = 0.26

The actual NBO lone-pair hybridizations are found to be 3.64, 0.87, and 0.25, respectively,
nearly identical to the above estimates (within expected roundoff errors).

We can derive an approximate relationship between hybridization and natural elec-
tronegativity differences in the following manner. Even cursory inspection of the
values in Table 3.8 suggests that λH increases as the electronegativity of the central
atom decreases down a column of the periodic table. Equation (3.64) shows in turn
that λnb must diminish as central-atom electronegativity decreases. Relative to the
average fractional p character of the nbond + 1 hybrids,

f̄ p = nbond

nbond + 1
(3.66)

we might expect that the fractional p character of bonding ( f p
(AH)) and nonbonding

( f p
(A:)) hybrids would vary in simple linear proportionality to the corresponding

electronegativity differences,

fp
(AH)/ f̄ p = aH(xH − xA) + bH (3.67a)

fp
(A:)/ f̄ p = anb(xnb − xA) + bnb (3.67b)

where aH, bH, anb, and bnb, are proportionality constants that depend (at most) on
group number (or nbond), but not on the identity of A. Since xnb is the smallest
possible electronegativity, we recognize that f p

(A:) must go to zero in the limit
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xA → xnb, and thus that bnb = 0. We can therefore substitute Eqs. (3.67) into (3.65)
to obtain

aH(xH − xA) f̄ p + bH f̄ p = 1 − [anb(xnb − xA) f̄ p]/nbond (3.68)

Since this equation should be true for all A (of the same group), the terms involving
xA must cancel out from this equation, which leads to the condition

nbondaH = −anb (3.69)

With this substitution, we can rewrite (3.67b) as

f p
(A:) = −aH(xnb − xA)

nbond
2

nbond + 1
(3.70a)

and use Eq. (3.65) to evaluate f p
(AH) from this expression (which is equivalent to

finding the bH that satisfies the sum rule),

f p
(AH) = 1 + aH(xnb − xA)

nbond

nbond + 1
(3.70b)

A single-parameter best fit to the data of Table 3.8 for the remaining unknown aH

gives the value

aH = 0.125 (3.70c)

On inserting the value of xnb from Eq. (3.61), we obtain finally

fp
(A:) = (0.125xA − 0.07)nbond

2/(nbond + 1) (3.71a)

fp
(AH) = 1 − (0.125xA − 0.07)nbond/(nbond + 1) (3.71b)

The accuracy of the simple approximation (3.71) is illustrated in Fig. 3.18.
Figure 3.18 shows that the simple estimates (3.71) capture the interesting varia-

tions of bond and lone-pair p character in a semi-quantitative manner (r.m.s. error
<3%) solely on the basis of variations in electronegativity. Since the percentage
p characters (or the equivalent λnb, λH hybridization parameters) are intimately con-
nected to molecular geometry through Eq. (3.34), we recognize immediately that
variations of central-atom electronegativity (or equivalently, through Eq. (3.60),
A—H bond polarity) lead directly to variations of H—A—H bond angles.39 Con-
versely, we can appreciate that changes of bond angles must be strongly coupled
to changes in bond hybridization and polarity. This is the essence of the pro-
found generalization summarized in Bent’s rule, which we discuss in the following
section.
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Figure 3.18 Comparison of accurate (%p) and estimated (%p, Eq. (3.71))
percentage p character for hydride bond (circles) and lone-pair (triangle) hybrids
of group 15–17 AHn hydrides (r.m.s. deviation = 2.82%).

Example 3.7

Exercise: Estimate the bond angle of singlet methylene (CH2).

Solution: From the natural electronegativity of carbon (xC = 2.60; Table 3.9) and
Eq. (3.71b), with nbond = 2, we obtain

fp
(CH) = 1 − [(0.125 × 2.60) − 0.07]2/3 = 0.83

Relationship (3.35b) gives

λ = f p
(CH)

1 − f p
(CH)

= 4.88

and Eq. (3.34) becomes

cos(�HCH) = − 1

4.88
= −0.20

which corresponds to

�HCH = 102◦

This agrees well with the actual optimized value, 101.52◦.
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3.2.6 Bent’s rule: qualitative and quantitative formulations

Nearly four decades ago, American chemist Henry Bent40 formulated a remarkable
principle that relates atomic hybridization to substituent electronegativity. This
principle, now called “Bent’s rule,” was originally expressed in the following words:

Atomic s character concentrates in orbitals directed toward electropositive substituents

The principle can also be stated in corollary form expressing the enriched p character
of hybrids toward electronegative ligands:

A central atom tends to direct hybrids of higher p character toward more electronegative
substituents

The importance of Bent’s rule is that it suggests how the elementary picture
of equivalent hybrids (e.g., the four sp3 hybrids of methane) must be modified
to reflect subtle differences in hybridization to different bonding ligands (e.g., in
CHFClBr). Thus, Bent’s rule provides the first tier of corrections to the elementary
spn hybrid picture, suggesting the more accurate picture of inequivalent spλ hybrids
with higher λ for ligands of higher electronegativity.

Bent’s recognition of this general principle is the more remarkable because it was
based primarily on X-ray structural evidence concerning geometry changes (parti-
cularly, bond-angle variations) that are only inferentially connected to “hybridiza-
tion.” (It would be several decades before reliable wavefunctions and methods for
determining hybrid p character made it possible to confirm the prescience and

Henry A. Bent
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accuracy of Bent’s rule in a direct manner.) The intimate connection between geo-
metry and hybridization is expressed by the fundamental Eq. (3.34), which relates
variations of bond angles Bi —A—B j to hybridization parameters λi and λ j . Bent
showed how such an elementary hybridization picture of angular bending potentials
can be used to rationalize a broad variety of puzzling structural phenomena solely
on the basis of known electronegativity trends.

Qualitative rationalizations of Bent’s rule

The physical explanation of Bent’s rule is usually based on the difference of valence
s and p orbital energies (εs < εp) and the variational minimum-energy principle.
The overall energy is expected to be lowered if the low-energy sA orbital is reserved
for electron pairs that are more concentrated on A (i.e., a lone pair or polarized bond
pair with |cA|2  |cB|2), while the high-energy pA character is relegated to pairs that
have least density on A (i.e., they are strongly polarized toward the opposite atom,
|cB|2  |cA|2). This implies that s-rich character will be variationally concentrated
in hybrids toward electropositive ligands, while p-rich character is relegated toward
electronegative ligands, in accordance with Bent’s rule.

In the above picture, the primary factor that dictates allocation of hybrid p charac-
ter toward electronegative ligands is the “promotion energy” ∆sp, the valence-shell
s–p energy separation

∆sp = εp − εs (3.72)

Figure 3.19 illustrates the dependence of ∆sp on location in the periodic table for
each of the first three elements of main groups 13–17. The promotion energy varies
with group number in a manner similar to electronegativity (cf. Fig. 3.17). Although
∆sp is doubtless important, other factors (such as differences in orbital radii) appear
to play a role in general spd hybridization.

A somewhat different way of rationalizing Bent’s rule can be given as follows.
Let us initially assume idealized equivalent spn−1 hybrids for a given ALn species
of n ligands. If we now formally replace one L by a highly electronegative X, we
can represent the resulting species as a resonance hybrid of neutral and ionic forms

Ln−1AX ←→ Ln−1A+ + :X−

I II
(3.73)

with relative weightings wI = 1 − iAX and wII = iAX, respectively. Assuming that
the ionized A orbital in II is of pure p character, one can estimate that the fractional
p character of the A—X bond ( f p

(AX)) has the resonance-weighted value

fp
(AX) = (1 − iAX)

n − 1

n
+ iAX(1) = n − 1

n
+ iAX

n
(3.74)



140 Molecular bonding in the s/p-block elements

Figure 3.19 The ∆sp = εnp − εns valence-shell promotion energy for group 13–17
elements: n = 2 (circles), n = 3 (squares), n = 4 (triangles). (εnp is the average
orbital energy of occupied valence p AOs of α spin.)

According to Eq. (3.74) fp
(AX) increases with iAX, and therefore with the elec-

tronegativity of X, in accordance with Bent’s rule. Note that Eq. (3.74) makes no
direct reference to ∆sp and requires only the hybridizations of idealized neutral
and ionic structures. Thus, analogous resonance-type reasoning might be used to
generalize Bent’s rule for more general spd hybridization (Section 4.6).

A generalized NBO version of Bent’s rule

Let us now attempt to express Bent’s rule in more quantitative form. The dependence
of hybrid p character fp on ligand electronegativity xL is illustrated in Fig. 3.20
for a series of 40 mono-substituted ALHn hydrides, where L is chosen from the
substituent series of first- and second-row ligands

L = —BH2, —CH3, —NH2, —OH, —F, —AlH2, —SiH3, —PH2, —SH, —Cl

and A = C, N, O, or F. In each case, xL is taken as the natural electronegativity of the
non-hydride ligand atom directly bonded to A. Values of fp for second-row ligands
(—AlH2, . . ., —Cl) are plotted with dotted lines and those for first-row ligands
(—BH2, . . ., —F) with solid lines to show the trends with increasing substituent
electronegativity in each row.

As seen in Fig. 3.20, the general trends along each series of substituents L are con-
sistent with Bent’s rule. Thus, with increasing xL along a row of the periodic table,
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Figure 3.20 Fractional p character ( fp) in mono-substituted first-row ALHn

hydrides for (a) A: lone-pair hybrids (upper), and (b) A—L bond hybrids (lower),
showing trends in dependence on the substituent’s electronegativity (xL) for
first-row (solid line) and second-row (dotted line) —LHn substituents of C
(circles), N (squares), O (triangles), and F (plus signs) central atoms.
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the lone-pair hybrids of the upper panel (Fig. 3.20(a)) generally trend downward in
p character while the A—L bond hybrids of the lower panel (Fig. 3.20(b)) corre-
spondingly trend upward, as Bent’s rule suggests. Although Bent’s rule successfully
predicts the signs of the slopes in Fig. 3.20, it does not provide more quantitative
information on the rather complex fp(xL) dependence that is evident in this figure.

One can recognize that other factors than ligand electronegativity are important
in determining fp. From the gap between dotted and solid lines, for example, it is
apparent that there is systematically higher p character in bonding hybrids toward
second-row ligands L than toward corresponding ligands of the same row in the
periodic table. This results in numerous apparent inversions with respect to the
expectations of Bent’s rule. For example, from the lower two curves in Fig. 3.20(a)
for fluoride lone pairs of F—L compounds, one can see that the fluorine lone-pair
hybrid has lower p character in F—Cl ( fp = 0.0750) than in F—NH2 ( fp = 0.1662)
despite the increase in electronegativity of the ligand (xCl = 2.76 versus xN = 3.07).
It is also apparent that the fp values depend markedly on the identity of the central
atom A. This dependence becomes even more conspicuous if one includes data
for corresponding second-row A atoms (not shown), which exhibit systematically
higher fp in bonding hybrids to a given ligand. Thus, Bent’s rule provides only a
first step in relating hybrid p character to ligand electronegativity.

To develop approximate mathematical expressions for the rather complex behav-
ior depicted in Fig. 3.20, let us begin with the C—L hybridizations fp

(CL) (circles
in Fig. 3.20(b)). These follow simple linear behavior that can be approximately
represented as

fp
(CL) =

{
f̄p for L = H
0.98 − [ f̄p + 0.26(x17 − xL)]/nbond

(3.75a)

where f̄p = (nbond − 1)/nbond = 0.75, and x17 denotes the halogen (group 17) elec-
tronegativity of the given period. A similar relationship (with slightly smaller slope
and intercept) describes the corresponding hybridizations for silicon

fp
(SiL) = 0.96 − [ f̄p + 0.12(x17 − xL)]/nbond (3.75b)

Equations (3.75a) and (3.75b) satisfactorily reproduce the calculated hybridizations
of the mono-substituted methanes and silanes with r.m.s. error of about 0.7%.

For lone-pair-bearing central atoms A, let us next estimate the lone-pair p char-
acter in Fig. 3.20(a), taking the solid line for F as a starting point. We can see that
there is approximately constant slope (d fp

(LF:)/dxL � −0.23) for smaller values of
xL, with a slight upward curvature as fp

(LA:) approaches the limiting value of zero
at the highest possible electronegativity in the period (x17 = xF = 3.89). As a first
approximation we may assume that the fluorine lone pair has no p character in the
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Table 3.10. Numerical constants for Eq. (3.75c); rA denotes the row of
atom A and rL the row of ligand L in the periodic table

a1p 0.23 for rA = 1, rL = 1
0.36 for rA = 1, rL = 2
0.11 otherwise

b1p 0.11 for rA = 1
0 otherwise

fA
◦ values:

Group 15 Group 16 Group 17
rA = 1 0.54 0.21 −0.04
rA = 2 0.35 0.19 0.05

xL = x17 limit, and that fp
(LF:) thereafter increases linearly as xL decreases. As a

correction to this linear approximation, the slight upward curvature near xL = x17

can be approximated as a small exponential term (amplitude � 0.11) that decays
rapidly away from xL = x17 within about one electronegativity unit. Thus, for sub-
stituted F lone pairs (labeled LF:) we postulate an expression of the form

fp
(LF:) � 0.23(x17 − xL) + 0.11 exp[−3(x17 − xL)]

The other two solid curves in Fig. 3.20(a) are of approximately similar form, but
shifted upward by an overall constant fA

◦ for each central atom A. We can therefore
approximate each such curve by the general form

fp
(LA:) = fA

◦ + a1p(x17 − xL) + b1p exp[−3(x17 − xL)] (3.75c)

To a crude approximation, Eq. (3.75c) applies to both first- and second-row central
atoms and ligands (rA, rL = 1 or 2) with constants chosen as shown in Table 3.10.

We now assume that hydride bond p character fp
(AH) can be adequately approxi-

mated with Eq. (3.71b) (i.e., that L substitution primarily affects fp
(LA:) rather than

fp
(AH). The A—L hybridization fp

(AL) of the mono-substituted hydride can then be
determined from the sum rule (3.37b) as

fp
(AL) = nbond − (nbond − 1) fp

(AH) − fp
(LA:) (3.75d)

Equations (3.75c) and (3.75d) reproduce the hybridizations of Figs. 3.20(a) and (b)
(as well as the corresponding hybridizations of second-row A, not shown) with an
r.m.s. error of 3.0%, which is rather similar to the accuracy of Eqs. (3.71) for the
pure hydrides (cf. Fig. 3.18).

Let us now turn to the general case of a lone-pair-bearing central atom A
with arbitrary substituents L1, L2, . . . , labeled Ã: for short. In the spirit of a
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Taylor-series expansion, we can approximate fp
(A:) in terms of the unsubstituted

(pure hydride) “reference value” fp
(A:), Eq. (3.71a), and successive corrections

δLi
(A:) for each substituent

f p
(Ã:) = f p

(A:) + δL1
(A:) + δL2

(A:) + · · · (3.75e)

Each correction δL
(A:) can in turn be obtained from the change under mono-

substitution,

δL
(A:) ≡ f p

(LA:) − f p
(A:) (3.75f)

as calculated from Eqs. (3.71a) and (3.75c). For the Ã—L bonding hybrid, we shall
assume that

f p
(ÃL) = f p

(AL) (3.75g)

(which is similar to the assumption made for f p
(AH) in the previous paragraph).

Because direct estimates based on (3.75f ) and (3.75g) will generally not satisfy
Eq. (3.37b), we normalize these estimates to obtain the final values

f p
(A:) = η f p

˜(A:) (3.75h)

f p
(AL) = η f p

(ÃL) (3.75i)

with normalization factor

η = nbond

f p
(Ã:) + ∑

L′
f p

(ÃL′)
(3.75j)

to guarantee satisfaction of the sum rule. Corresponding estimates (3.75a) and
(3.75b) for a central atom A bearing no lone pairs are renormalized in analogous
manner.

Equations (3.75a)–(3.75j) constitute a more quantitative formulation of the rela-
tionship between hybrid p character and substituent electronegativity, generalizing
Bent’s rule. The accuracy of these approximations is generally of the order of a
few percent, sufficient to determine hybrid angles within 1–2◦ as illustrated in the
following examples.

Example 3.8

Exercise: Estimate the interhybrid angles in OF2.

Solution: From Table 3.10 for A = O we obtain a1p = 0.23, b1p = 0.11, and f A
◦ = 0.21.

For x17 = xF = xL, Eq. (3.75c) then gives

f p
(FO:) = 0.21 + 0.11 = 0.32
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whereas from Eq. (3.71a), with nbond = 2 and xO = 3.48,

f p
(O:) = 4/3[(0.125 × 3.48) − 0.07] = 0.487

leading to

δF
(O:) = −0.167

for each ligand. According to Eq. (3.75e), for two F ligands, the lone-pair hybridization is

f p
(Õ:) = 0.487 + 2(−0.167) = 0.153

whereas from (3.75d) and (3.75g) the two O—F hybridizations are

f p
(ÕF) = 2 − 0.757 − 0.32 = 0.923

These values are essentially unaltered by normalization (η = 1.000), so that finally

f p
(O:) = 0.153

f p
(OF) = 0.923

leading to the estimated interhybrid angle

�FOF = 94.8◦

The corresponding NHO values are

f p
(O:) = 0.142

f p
(OF) = 0.922

�FOF = 94.8◦

in excellent agreement with the above estimates. (However, the optimized F—O—F angle
is 104.2◦, corresponding to about 5◦ bond bending at each O—F bond.)

Example 3.9

Exercise: Estimate the interhybrid angles of CHF(OH)(PH2).

Solution: From the application of Eqs. (3.75a)–(3.75j) and the electronegativities of
Table 3.9 we obtain the estimated and actual (NHO) values of fp(C—X) tabulated below:

C—H C—F C—O C—P

Estimated 0.7363 0.7935 0.7396 0.7171
NHO 0.7364 0.7781 0.7520 0.7335

These lead to the interhybrid angles shown in the first two columns below, compared with
the optimized bond angles in the final column:
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� (degrees)

Angle Estimated NHO Optimized

H—C—F 108.6 107.5 106.7
H—C—O 110.1 110.6 106.5
H—C—P 111.1 111.9 110.1
F—C—O 107.9 107.3 109.7
F—C—P 108.8 108.4 105.5
O—C—P 110.3 111.7 117.9

Although the estimated and actual interhybrid angles agree well in all cases (within ∼1◦),
there is evidence of significant bond bending in the actual bond angles (e.g., ∼6◦ mismatch
in the O—C—P angle).

3.2.7 Angular strain and bond bending

As examples of the previous section have shown, bond hybrids are sometimes mis-
aligned with respect to the line of centers between nuclei, a condition described as
“bond bending.” Such bending may be considered to represent the influence of fac-
tors other than Bent’s rule. In this section we examine the origin and characteristics
of bond bending.

Cyclopropane

Angular strain and bond bending arise most familiarly in small-ring compounds,
where the constraints of ring topology require acute bond angles that cannot be
matched by any possible orthogonal spλ hybrids (Example 3.4). A well-known
example is cyclopropane, with 60◦ C—C—C angles that must deviate by at least
15◦ along each C—C bond line from minimum-angle bond hybrids (90◦, pure p).
As recognized by Coulson and Moffitt,41 the actual C3H6 hybrids are closer to
the normal ∼sp3 hybrids of acyclic alkanes than to the pure-p hybrids of small-
est interhybrid angle, and the bond bending is accordingly greater. Figure 3.21
shows the strained σCC NBO (left) and corresponding carbon bonding NHO (right)
of C3H6. The latter is found to be of sp3.46 composition, severely bent by ∼24.3◦

outside the line of nuclear centers, in good agreement with the Coulson–Moffitt pic-
ture. Owing to the strong bond “kinking,” the NBO bulges far outside the nominal
C—C bond line, conferring significant non-cylindrical character to the bonding.

Hyperconjugative interactions (Section 3.4.2) are another factor leading to bond
bending. Such interactions are associated with the “stereoelectronic” influence of
more remote bonds or lone pairs, particularly those anti (trans) to the bond of
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Figure 3.21 The bent C—C bond of cyclopropane, showing (a) the σCC NBO and
(b) the hC bonding hybrid (sp3.46), which is oriented 24.3◦ outside the line of C—C
centers.

interest, and thus can be distinguished from the inductive effects of directly bonded
atoms that are described by Bent’s rule. A characteristic of hyperconjugative inter-
actions is their pronounced dependence on the relative orientation of the interacting
bonds or lone pairs, the bond bending being largest when torsional motions bring
the hyperconjugating groups into coplanar alignment. The physical origin of hyper-
conjugative interactions and the associated torsion–bend coupling will be further
described in Section 3.4.2.

Fluoromethylamine

A simple example of hyperconjugative bond bending is provided by the fluo-
romethylamine molecule (CH2FNH2), which exhibits strong stereoelectronic in-
fluence of the amine lone pair on the vicinal C—F and C—H bonds of the fluo-
romethyl group. Figure 3.22 depicts the dependence of C—F, C—H, and C—H′

bond bending (�θ ) on the torsional angle φ (dihedral lp—N—C—F) which con-
trols the orientation of the nitrogen lone pair with respect to C—F. It can be seen
that the C—F bond is bent by ∼3.1◦ when oriented coplanar to nN (φ = 0◦ or
180◦), but the bending falls to less than 1◦ when these groups are in perpendicular
orientation (φ = 90◦). Similarly, each C—H bond is bent by ∼2.1◦ as it comes into
anti alignment with nN (and again by about 0.8◦ in syn alignment), whereas the
corresponding bending in the ground conformation is much smaller, ∼0.3◦.

Hybrid following in ammonia and phosphine

We might expect that a general displacement from equilibrium nuclear geometry
(such as that associated with a normal mode of vibration) could also lead to bond
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Figure 3.22 Bond bending, �θ = θnuclei − θNHO, in CH2F—N̈H2 for C—F
(circles, solid line), C—Hanti (squares, dotted line), and C—Hsyn (triangles, dotted
line) bonds as the amine group is twisted from φ(lp—N—C—F) = 0◦ to 180◦
(“lp” denotes the bisector of the H—N—H angle).

bending. However, Bent’s rule and Eq. (3.34) imply that nuclear geometry and
hybrid directionality are bound together in such an intimate manner that changes
of nuclear geometry can cause, as well as respond to, changes in hybrid geometry.
Thus, the degree of bond bending (if any) induced by a change in nuclear geom-
etry depends on how well the hybrid orbitals are able to “follow” the displaced
nuclei.

As a specific example, let us consider the umbrella inversion vibration of NH3,
which carries the molecule from pyramidal C3v equilibrium geometry to the equiv-
alent mirror image through a trigonal-planar D3h transition state that is calculated
as 4.1 kcal mol−1 higher in energy. If θnuclei denotes the lp—N—H umbrella angle
for the nuclei, and θNHO is the corresponding angle for the bonding hybrids, we
can examine how well θNHO follows the nuclei as they move from equilibrium
(θnuclei = 111.0◦) to planar geometry (θnuclei = 90◦) along the vibrational normal-
mode coordinate. For comparison, we also examine the corresponding behavior
for PH3, which has a much higher inversion barrier (33.6 kcal mol−1) and a more
pyramidal umbrella equilibrium angle (122.7◦). Figure 3.23 depicts the θNHO ver-
sus θnuclei behavior for NH3 (circles, solid line) and PH3 (squares, dotted line),
compared with the idealized limit (θNHO = θnuclei, dashed line) of perfect orbital
following.
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Figure 3.23 Bond bending in umbrella inversion vibration of NH3 (circles, solid
line) and PH3 (squares, dotted line), comparing the lp—A—H umbrella angle for
nuclei (θnuclei) and hybrids (θNHO). An inscribed triangle marks the equilibrium
geometry for each molecule, and the dashed line marks the limit of perfect orbital
following (θNHO = θnuclei).

Figure 3.23 shows that NH3 and PH3 exhibit quite different patterns of orbital
following and bond bending along the inversion coordinate. Both species achieve
idealized sp2 hybridization and 120◦ hybrid angles at the planar transition state,
θnuclei = 90◦. However, as PH3 begins to pyramidalize, the hp hybrids first bend
significantly ahead of the nuclei (θNHO > θnuclei), but later fall back into alignment
with the nuclei near θ � 120◦ (close to equilibrium) and thereafter lag behind the
nuclei (θNHO < θnuclei) at larger umbrella angles. In contrast, the NH3 hybrids ini-
tially follow the nuclear motion quite closely, but fall increasingly behind the nuclei
(θNHO < θnuclei) as the displacement increases, with the bond bending growing to
∼4◦ at θnuclei = 111◦ and ∼15◦ at θnuclei = 130◦. Therefore, as the inversion motion
proceeds the hybrids of PH3 must undergo significant bond bending (∼7◦) before
coming into alignment with the nuclei in the planar transition state, whereas the hy-
brids of NH3 adapt smoothly and monotonically to this transition. This pronounced
difference in the ability of the bonding hybrids to accommodate to planarity appar-
ently leads to a large (∼eight-fold) increase in barrier height on going from NH3

to PH3. Note that, in both species, the bond bending is seen to increase rapidly
for pyramidalization angles much beyond the equilibrium value, showing that the
hybrids are unable to accommodate to smaller H—A—H angles. Bond bending is
therefore closely related to the energy changes associated with vibrational motion,
as one expects intuitively.
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Figure 3.24 The bent N—H bond of NH3, showing (a) hN and hH NHOs and (b)
the σNH NBO, with the bonding hybrid oriented 3.9◦ (dashed line) below the line
of N—H centers (dotted line).

However, we note from Fig. 3.23 that the equilibrium geometries correspond to
residual bond bending in both species, e.g., about 3.9◦ for NH3. To investigate the
nature of this residual bending, we plot the contours of the overlapping hN and hH

NHOs and the σNH NBO for the equilibrium geometry of NH3 in greater detail in
Fig. 3.24. For this figure we employ a finer grid spacing and larger range of contour
values than usual in order to illustrate the inner structure of the bonding hN hybrid
near the position of the H nucleus (marked by a circled plus sign). To assist in
visualizing the small degree of bending, we have also plotted a horizontal dotted
line through the nuclear centers and a dashed line through the nitrogen nucleus
tilted by 3.9◦ to mark the nominal direction of the hN hybrid.

As shown in Fig. 3.24, the outer contours of the hN NHO and σNH NBO exhibit the
expected cylindrical symmetry about the nominal hybrid direction vector marked
by the dashed line. However, the inner contours are increasingly directed toward
the dotted line of nuclear centers. The lack of overall cylindrical symmetry is best
seen in the NBO plot of Fig. 3.24(b), where it can be seen that the H nucleus sits
accurately in the “pointy” inner contours which are closely aligned with the dotted
line of nuclear centers rather than the dashed line of nominal hybrid direction.
This example illustrates that the optimized NHOs are free to adopt complex non-
cylindrical shapes in which the apparent “directionality” varies with distance from
the nucleus. Thus, the 3.9◦ bending does not correspond to true misalignment
of the hybrid and nuclear directions at the actual bond distance, but rather reflects
the fact that inner hybrid contours are slightly skewed with respect to the nominal
average “direction” attributed to the NHO. That is, the hybrid itself (rather than the
bond) is slightly bent.
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The above example indicates that small degrees of apparent bond bending may
be rather endemic in the equilibrium geometries of acyclic molecules. Closer ex-
amination will often show that much of the apparent bending originates within
the bond hybrid itself, rather than as a result of nuclear “mistakes” in finding the
bonding angles of maximum hybrid overlap. Such complex non-cylindrical hybrid
shape evidently cannot occur in a primitive minimal basis of s and p orbitals only,
but must reflect the flexibility of polarized double- and triple-zeta basis sets to
describe variable “inner” and “outer” directionality. In particular, it has long been
recognized that polarized d- or f-orbital character is important in describing non-
cylindrical bonding hybrids.42 Extensive computational experience has also shown
that polarization basis functions are important for accurately describing inversion
potentials.43 Thus, the smaller details of the NHOs and NBOs depicted in Fig. 3.24
correspond to computational refinements that are known to be important for quan-
titative description of the vibrational potential energy surface, but lie outside the
framework of simple Bent’s-rule-type description.

In summary, true angular strain and bond bending can arise from constraints of
overall bonding topology and the steric or stereoelectronic influences of neighboring
groups. However, apparent bond bending that involves no true angular strain can
arise when the hybrids themselves are slightly curved. Such curvature of bonding
hybrids might be pictured in terms of an R-dependent generalization of Bent’s rule,
in which the effective relative electronegativities of central atom and ligand depend
somewhat on their separation (this is consistent with the idea that relative bond
polarization will change slightly with distance). Such finer details of bond bending,
however interesting, lie outside the scope of the present work.

3.2.8 Electronegativity and polarity changes in pi-bonding

As predicted by elementary hybrid bonding theory, the multiple bonds of the
chemist’s Lewis-structure diagram are usually found to correspond to two distinct
types of NBOs: (1) sigma-type, having exact or approximate cylindrical symmetry
about the bond axis (as discussed in Sections 3.2.5–3.2.7), and (2) pi-type, having
a nodal mirror plane passing through the nuclei:44

General relationships between bond polarity and atomic electronegativity, as de-
veloped in the two preceding sections for sigma-bonding, will now be extended to
pi-bonding.
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Table 3.11. Calculated bond lengths (RAC), atomic charges (QC and
QA), and pi-bond ionicity iAC

(π) for πAC bonds of group 14–16 atoms
A in unsaturated CH2=AHn hydrides

Molecule RAC (Å) QC (e) QA (e) iAC
(π)

Group 14
CH2=CH2 1.3288 −0.3667 −0.3667 0.0000
CH2=SiH2 1.7079 −1.0515 +0.9255 −0.2480
CH2=GeH2 1.7790 −0.9738 +0.7936 −0.2424

Group 15
CH2= NH 1.2673 −0.0233 −0.5869 +0.1506
CH2= PH 1.6706 −0.7515 +0.4142 −0.0726
CH2= AsH 1.7861 −0.7625 +0.4568 −0.0770

Group 16
CH2= O 1.2015 +0.2940 −0.4946 +0.3108
CH2= S 1.6155 −0.4304 +0.0769 +0.1090
CH2= Se 1.7557 −0.5127 +0.1493 +0.0824

Pi bonds and antibonds of group 14–16 hydrides

Analogously to the H atom for sigma-bonding (Section 3.2.5), we can choose the
methylene group (CH2) as the prototype for pi-bonding in group 14–16 hydrides
of general formula H2C=AHn . Table 3.11 summarizes the bond lengths, atomic
charges, and πCA NBO ionicity parameters for pi bonds of the first three group
members (cf. Table 3.8). Figure 3.25 displays the corresponding contour plots of
pi bonds πCA (left) and antibonds πCA

∗ for all these species, illustrating horizontal
and vertical trends in the periodic table.

Natural pi-electronegativity

To describe the polarity of pi-bonding, we can follow a path parallel to that which
led to Eqs. (3.59)–(3.60) for sigma-bonding, using CH2 as the common π-bonding
partner. In this manner we are led to define the pi-electronegativity xA

(π) as being
related to pi-bond ionicity iAC

(π) through the equation

iAC
(π) = 1 − exp[−a(xA

(π) − xC
(π))] (3.76)

which is analogous to Eq. (3.59). The bond ionicity iAC
(π) is related to the πAC

polarization coefficients cA
(π) and cC

(π) in the usual way:

cA
(π) = [(1 + iAC

(π))/2]1/2 (3.77a)

cC
(π) = [(1 − iAC

(π))/2]1/2 (3.77b)
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Figure 3.25 Pi-bond (πCA, left) and antibond (πCA
∗, right) NBOs in unsatu-

rated CH2=AHn compounds. (a) Group 14 elements: C, Si, and Ge. (b) Group
15 elements: N, P, and As. (c) Group 16 elements: O, S, and Se.

We again choose the value of the exponential parameter in Eq. (3.76) to be a =
−0.45 so that sigma- and pi-electronegativity scales have the same “units.” The
specification of the scale is then completed by choosing the value of xA

(π) for a
single atom. For this purpose it is convenient to assign to the carbon atom a common
value of σ- and π-electronegativity,

xC
(σ) = xC

(π) = 2.60 (3.78)

We then obtain the final expression for xA
(π) as

xA
(π) = 2.60 − ln(1 − iAC

(π))/0.45 (3.79)

for given bond ionicities from Table 3.11.
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Figure 3.25 (Cont. )

Equation (3.79) leads to the natural π-electronegativity values displayed in
Table 3.12. These values are compared with corresponding σ-electronegativities
of group 14–16 elements in Fig. 3.26.

Figure 3.26 shows that the π-electronegativity exhibits horizontal and vertical
trends similar to those for σ-electronegativity. However, the range of xA

(π) values
is seen to be significantly smaller than that of xA

(σ) values, corresponding to the
fact that πAB bonds are usually less polarized than σAB bonds. As illustrated in
Fig. 3.25, the horizontal and vertical periodic variations in pi-bond polarity corre-
spond to rather dramatic variations in the relative lobe sizes of π and π∗ orbitals;
cf., for example, the πC—Ge

∗ antibond of Fig. 3.25(a) with the πC—O
∗ antibond
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Figure 3.25 (Cont. )

of Fig. 3.25(c). Thus, these variations in pi-electronegativity are expected to corre-
spond to chemically important structural and reactivity differences.

The natural π-electronegativities of Table 3.11 are useful for estimating the bond
polarities of pi bonds, as illustrated in the following example.

Table 3.12. Pi-type natural electronegativities xA
(π) of group 14–16 elements

C Si Ge N P As O S Se

xA
(π) [2.60] 2.11 2.12 2.85 2.44 2.43 3.43 2.86 2.79
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Figure 3.26 Natural electronegativities of group 14–16 elements, comparing pi-
type xA

(π) (squares, solid line) and sigma-type xA
(σ) (circles, dotted line) values.

Note that sigma- and pi-electronegativities are defined to be equal for C.

Example 3.10

Exercise: Estimate the polarization coefficients of the sigma and pi bonds of N≡As.

Solution: From Table 3.11 the pi-electronegativities of N and As are

xN
(π) = 2.85

xAs
(π) = 2.43

and Eq. (3.76) gives

iNAs
(π) = 1 − exp[−0.45(2.85 − 2.43)] = 0.172

From Eqs. (3.77) we obtain

cN
(π) = 0.766

cAs
(π) = 0.643

These estimates compare reasonably with the calculated polarization coefficients in the
actual πNAs NBOs of N≡As,

πNAs = 0.786(p)N + 0.618(p)As

A similar calculation with the sigma-electronegativities of Table 3.9 (xN
(σ) = 3.07, xAs

(σ)
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= 2.02) gives iNAs
(σ) = 0.377, which leads to estimated σN—As polarization coefficients

cN
(σ) = 0.830 (cf. 0.827)

cAs
(σ) = 0.558 (cf. 0.562)

comparing favorably with the actual NBO values (in parentheses). As these estimates in-
dicate, the sigma bond is found to be polarized significantly more strongly than the pi
bond.

What is the nature of pi-electronegativity, and why do its values differ from “ordi-
nary” (sigma) electronegativity? Like its sigma counterpart, the pi-electronegativity
xA

(π) is a measure of the propensity of A to gain and hold electrons in bonding, and
there is no intrinsic reason why this propensity should be equivalent in sigma- and
pi-bonding. In fact, the tendency to form pi bonds is itself a distinctive characteristic
of group 14–16 elements, and therefore would be expected to be a distinguishing
aspect of their “electronegativity.”

Is the natural electronegativity an atomic or an orbital property? By referring
the values of xA

(σ,π) to prototype sigma- or pi-bonding partners and optimized
ground-state geometries, we have reduced the entries of Tables 3.9 and 3.12, as
nearly as possible, to generic “atomic” values. However, it is apparent from the
way natural electronegativity was defined that it is intrinsically an orbital property,
related to the bond polarity of a particular sigma- or pi-type NBO. Thus, one can
easily generalize Eqs. (3.59) and (3.76) to define effective electronegativities for
different orbitals, changes in geometry, changes of ionic or electronic state, and
so forth. The extent to which the electronegativity concept should be generalized
is perhaps a matter of scientific taste. However, we believe that it is heuristically
useful to refer to changes in effective electronegativity resulting from changes
in hybridization, geometry, attached substituent groups, and so forth (e.g., an sp2

-hybridized carbon atom is intrinsically more electronegative than an sp3-hybridized
carbon atom). Generalizations of Eqs. (3.59) and (3.76) make it possible to quantify
such “generalized electronegativity” values for a variety of chemical influences, as
well as extend the intrinsic atomic values of Tables 3.9 and 3.12 to other atoms or
types of bonding.

3.2.9 Homonuclear diatomic molecules

MO and NBO Aufbau

The first-row homonuclear diatomic molecules A2 of main-group elements (A =
B, C, N, O, F) exhibit a well-known diversity of ground-state multiplicities, bond
lengths, and bond energies. Calculated potential-energy curves for low-lying sin-
glet and triplet states of these species are pictured in Fig. 3.27 and summarized in
Table 3.13 (with comparison experimental values). Because these homonuclear
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Figure 3.27 Singlet (solid line) and (if lower) triplet (dotted line) potential-energy
curves for first-row homonuclear diatomics: B (circles), C (squares), N (triangles),
O (plus signs), and F (crosses); cf. Table 3.13.

species eliminate the complicating effects of electronegativity and polarity differ-
ences, they provide an important testing ground for concepts of covalent bonding, in-
cluding the distinction between delocalized MO and localized VB-like descriptions.

Textbook discussions of homonuclear diatomic molecules are commonly based
on the familiar type of MO energy diagram shown in Fig. 3.28, which underlies the
standard MO Aufbau procedure for constructing many-electron molecular config-
urations (which is analogous to the well-known procedure for atoms). Figure 3.28
purports to represent the energies and compositions of available MOs, which are

Table 3.13. Calculated spin multiplicity, bond length Re, and
dissociation energy De of first-row homonuclear diatomic

molecules, with comparison experimental valuesa in parentheses

A2 State Re (Å) De (kcal mol−1)

B2 Triplet 1.6160 (1.59) 59.49 (70)
C2 Triplet 1.3060 (1.24) 140.30 (144)
N2 Singlet 1.0956 (1.10) 224.80 (225)
O2 Triplet 1.2058 (1.21) 119.65 (118)
F2 Singlet 1.4083 (1.41) 31.77 (37)

a K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure.
IV. Constants of Diatomic Molecules. (New York, Van Nostrand, 1979).
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Figure 3.28 A schematic energy diagram for valence MOs of homonuclear di-
atomic molecules (following Mulliken). The order of σ2p and π2p MOs should be
reversed for 14 or fewer electrons.

labeled (in spectroscopic separated-atom notation) as σ2s, σ2s
∗, σ2p, . . . to designate

the in-phase or out-of-phase combinations of degenerate AOs which compose the
MO,

σ2s = 2−1/2(2s + 2s′) (3.80a)

σ2s
∗ = 2−1/2(2s + 2s′) (3.80b)

and so forth. The available levels are sequentially filled, taking account of the
Pauli occupancy restriction and the “Hund’s-rule” tendency of electron spins to
remain parallel (and thus avoid double occupancy) in the case of degenerate unfilled
orbitals. By adjusting the relative order of MOs as necessary, one can rationalize the
fact that certain diatomics (e.g., C2 and O2) display triplet spin multiplicities and
paramagnetic behavior, whereas others (e.g., N2 and F2) display the diamagnetism
characteristic of a fully spin-paired ground singlet state. This rationalization is
commonly regarded as a notable advantage of the delocalized MO viewpoint over
the localized valence-bond viewpoint.

Although the spectroscopic “σ2s, σ2p, . . . ” labels are asymptotically accurate as
R → ∞, these labels are seriously misleading in the near-equilibrium region. In
N2, for example, the bonding molecular orbital (φ3) that most nearly corresponds
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to the “σ2s” label has the actual LCAO composition near Re

φ3 � 0.579(2s) + 0.579(2s′) − 0.384(2pz) + 0.384(2pz
′) + · · · (3.81a)

and thus corresponds to the strongly mixed description

φ3 = 0.579σ2s + 0.384σ2p + · · · (3.81b)

Similar mixing, strongly dependent on R and varying from species to species, is
found for all the homonuclear diatomics. Because of this mixing, the actual MO
splitting pattern often has little relationship to the idealized diagram shown in
Fig. 3.28. Rationalizations of the MO splitting patterns and occupancies that are
based on this idealized diagram therefore have a somewhat unsatisfactory and
ad-hoc character.

Although the most naive form of valence-bond and Lewis-structure theory would
not predict the paramagnetism of O2, the “VB-like” NBO donor–acceptor perspec-
tive allows us to develop an alternative localized picture of general wavefunctions,
including those of MO type. Let us therefore seek to develop a general NBO-based
configurational picture of homonuclear diatomics to complement the usual MO
description.

We first note that a localized NBO description is an equally valid way to view
a delocalized molecular-orbital wavefunction. In the case of N2, for example, ψMO

is expressed in terms of doubly occupied MOs φi , i = 1–7,

ψMO = (φ1)2(φ2)2(φ3)2(φ4)2(φ5)2(φ6)2(φ7)2 (3.82a)

but the same wavefunction is expressed to high accuracy in localized NBO terms as

ψMO = (KN)2.000(KN′)2.000(σNN′)2.000(πNN′ x )2.000(πNN′ y)2.000(nN)1.993(nN′)1.993

(3.82b)

i.e., with 99.89% accuracy of the idealized natural Lewis structure. Thus, the
NBO description (3.82b) of the wavefunction and density is practically equivalent
(in the sense of Fock’s theorem) to the exact MO expression (3.82a), and the
MOs themselves appear less strongly mixed in terms of NBOs.45 Similarly
high accuracy of the natural Lewis-structure representation is found for the
other diatomic species. Thus, no significant loss of accuracy will be incurred by
describing the results of Fig. 3.27 and Table 3.13 in localized-NBO terms.

Let us now sketch the general LCAO-NBO formation of diatomic NBOs from
their constituent (N)AOs, employing the donor–acceptor and hybridization concepts
developed in previous sections. If we visualize the starting atomic configurations
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in terms of valence s, px , py, pz orbitals, general hybridization principles (Sec-
tion 3.2.3) determine that the s and pz AOs on each atom will mix to form a p-rich
bonding hybrid hσ and s-rich nonbonding hybrid hn along the axis of incipient bond
formation,

s, px , py, pz → hn, hσ, px , py (3.83)

leaving unhybridized off-axis px and py orbitals on each center. As usual, the hybrids
hσ and hn can be expressed in standard spλ notation as

hσ = spλσ (3.84a)

hn = spλn (3.84b)

where, according to the sum rule (3.37a) for this case,

λσλn = 1 (3.85)

Thus, we can choose the hybridization λ = λσ as the single independent parameter
in this case, with the hybridization of the nonbonding hybrids determined from
Eq. (3.85).

Example 3.11

Exercise: Derive Eq. (3.85).

Solution: For the four hybrids (3.83) of the present case,

λ1 = λn, λ2 = λσ, λ3 = ∞, λ4 = ∞

the sum rule (3.37a) becomes

1 = 1

1 + λn
+ 1

1 + λσ

+ 0 + 0

= 2 + λσ + λn

1 + λσ + λn + λσλn

The solution of this equation is Eq. (3.85).

The hybridization parameter λ can be estimated at each R by expressions such as
(3.11b), which in turn are related to visual plots of the s–pz

′ overlap. A procedure
for numerically estimating λ will be given at the end of this section. For present
purposes, we need only recognize from the percentage s characters that the relative
energies of the starting atomic hybrids satisfy

ε(hn) � ε(hσ) < ε(px ) = ε(py) (3.86)
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Table 3.14. Symmetry-allowed donor–acceptor
interactions and NBO labels for homonuclear diatomics

Donor Acceptor NBO type Symbol

px px
∗ πx

py py
∗ πy

hσ hσ
∗ σ

hn (2) hσ
∗ (2) ν(ν̄)

[hn hn
∗ σ]

These atomic hybrids are the starting point for discussing the donor–acceptor in-
teractions and two-center NBO formation at each R.

The possible donor–acceptor interactions among the valence hybrids are con-
strained by diatomic symmetry to the five possible combinations shown in
Table 3.14. For simplicity, we shall temporarily suppress the subscript atoms in
the NBO symbols (which are now simply indicated as σ, πx , . . .). We also intro-
duce a special typographic convention to denote each type of NBO (curved bonds
for πx and πy , opposed arrows for complementary ν and ν̄, and so forth), as shown
in Table 3.14. (The corresponding typographic convention for nonbonded NBOs
will consist of a short “bar” on the atomic symbol, A for hn, Ā for px , and A for
py.) We also employ the convention of attaching an asterisk (∗) to denote an unfilled
orbital, i.e., an orbital that is formally serving as an acceptor in a donor–acceptor
interaction (the star says “I’m empty”). Thus, the notation px → px

∗′ denotes an
interaction from a filled px orbital on the first atom to an unfilled px

′ on the second
atom.46

The first three entries of Table 3.14 correspond to formation of conventional pi
and sigma NBOs. The fourth (hn→hσ

∗, occurring in complementary pairs) corre-
sponds to formation of asymmetric nu bonds (ν, ν̄), as previously discussed in Sec-
tion 3.2.6 for N2

+. (The fifth [hn→hn
∗] cannot occur in the present series, because

hn is never an unfilled acceptor orbital [if hn
′ is occupied] in neutral homonuclear

diatomics.)
What are the available donor and acceptor NHOs and resulting bond types

in each diatomic species? Let us first consider B2 as an illustrative example.
Figure 3.29 exhibits the expected electronic configuration of triplet B2 in the near-
Re region, showing the ordered NHO energy levels (3.86) and the electrons on each
B atom (primed or unprimed). (The systematic Aufbau procedure used to deter-
mine the NHO bonding configuration of B2 and other species will be described
below.)
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Figure 3.29 The 3B2 bonding configuration.

From Fig. 3.2a and Table 3.14 it can be seen that the only allowed donor–acceptor
interactions in the α set of B2 are

hn→hσ
∗′ (ν) (3.87a)

hn
′→hσ

∗ (ν̄) (3.87b)

px→px
∗′ (πx ) (3.87c)

py
′→py

∗ (πy) (3.87d)

as denoted by . Similarly, in the β set the allowed interactions are

hn→hσ
∗′ (ν) (3.88a)

hn
′→hσ

∗ (ν̄) (3.88b)

as denoted by . The composite NBO configuration from (3.87) and (3.88) is
therefore

(ν)2(ν̄)2(πx )↑(πy)↑ (3.89)

These results for B2 are shown as the first row of Table 3.15, which summarizes
the expected NBO configurations for the entire series of first-row homonuclear
diatomics.

In order to derive the remaining entries of Table 3.15, it suffices to have the start-
ing NHO configuration of each diatomic species. Figure 3.30 summarizes these ex-
pected “promoted” bonding configurations, as shown in the right-hand panels. (For
example, the upper right-hand panel of Fig. 3.30 is equivalent to Fig. 3.29 for B2.)
By employing the NHO configurations of Fig. 3.30 in conjunction with Table 3.14
(following the B2 example given above) one can readily derive the remaining
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Figure 3.30 The NBO Aufbau diagram for first-row homonuclear diatomics,
showing expected NHO configurations (right-hand panels) for each species.

NBO configurations of Table 3.15. Thus, the remaining problem is to assign the
preferred NHO configuration of each species, as shown in Fig. 3.30.

Let us now describe the systematic NBO Aufbau principles for constructing
Fig. 3.30. We formally state these principles as follows.
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Molecular NBO Aufbau principles

I. The preferred configuration is that which achieves the maximum number and
strength of bonds, with σ > π > ν relative strengths.

II. The molecular version of Hund’s rule: in order to minimize electron repulsions in
pi-bonding, each added pair of electrons in the degenerate p manifold should be
assigned

(a) in parallel spin states,
(b) in perpendicular spatial planes, and
(c) on opposite atoms.

III. All else being equal, the preferred configuration is that which minimizes the spin
polarization (spin-charge) at each atom.

Principle I is rather self-evident, because formation of chemical bonds is the driving
force for overall energy lowering. Principle II implies that an added pair of π

electrons will prefer to be in configurations such as, for an α pair,

px
↑py

′↑, denoted “↑x ↑y′”

py
↑px

′↑, denoted “↑y ↑x ′”

(rather than ↑x↑x ′ , etc.) and analogously for spin β. The physical explanation of
IIa–c is again rather evident, being similar to the standard rationalizations of Hund’s
rule.47 Principle III is more subtle, expressing a type of “electroneutrality principle”
at the spin-charge level. However, this principle is invoked in only a single instance
(for N2; see below) and might be seen as a consequence of Principles I and II by
following the alternative flowchart path in Fig. 3.30, as will be described.

To construct Fig. 3.30, we first envision an idealized “singlet complementary
atom” configuration (denoted 1CA), as shown in the left-hand panels. The 1CA
configuration is formed by taking the standard atomic configuration of each atom
and “rotating” the second (primed) atom to achieve maximum bonding interac-
tions, where “rotation” involves both spin space (interchanging ↑ and ↓ spin) and
Cartesian space (interchanging px and py). This 1CA configuration might be envi-
sioned as the arrangement that maximizes the opportunities for molecular bonding
(Principle I), but within the unpromoted configuration that is dictated by Hund’s rule
for isolated atoms. The formal bond order b of each such configuration is shown
in parentheses at the bottom of the panel, and is consistent with the symmetry
restrictions of Table 3.14.

As R diminishes into the near-equilibrium region, Principles I–III dictate that
the atomic NHO occupancy patterns will be promoted to more favorable bonding
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configurations, as shown in the right-hand panels of Fig. 3.30. The formal bond
order b of each promoted configuration is again shown in parentheses at the bottom
of the panel, alongside the diatomic configurational label of overall singlet or triplet
spin symmetry. Let us now examine how Principles I–III dictate the change from
1CA to a promoted configuration (horizontal flowchart arrows) or by two-electron
Aufbau from one promoted configuration to another (vertical flowchart arrows).

Diboron
The single-bonded 1CA configuration can be improved for bonding by promoting
the two hσ electrons into the degenerate px , py manifold48 in the triplet (↑x↑y′)
pattern favored by Principle II. The resulting 3B2 configuration is formally triple-
bonded (two ν-bonds and two half-π-bonds; cf. Table 3.15) and thus corresponds to
a net increase in bond order �b = +2. We therefore expect B2 to be a paramagnetic
triplet species with overall NBO configuration (3.89).

The configurational description (3.89) applies over a wide range of R values
near equilibrium. However, in the β spin set beyond R > 2 Å the ν and ν̄ bonds
“break” to give the nonbonded B B β configuration. Similarly, at much shorter
distances R < 1.2 Å, the ν and ν̄ are replaced by full σ and π bonds to give the

β configuration. (Similar effects occur in the α spin set at slightly greater
distances from Re.) Thus, the curious ν and ν̄ bonds are seen to be a manifestation
of long-range complementary donor–acceptor interactions (partially ionic) that will
eventually be replaced by covalent σ and π bonds at shorter range. This behavior
is analogous to the short-range ionic–covalent transition discussed in Sections 2.5
(for ionic bonding) and 3.2.2 (for covalent bonding).

Dicarbon
The low-lying states of C2 have very complex character that is not well described
in the single-configuration picture. C2 was long thought to be a ground-state triplet,
but in 1963 the singlet spin state was established to lie slightly lower in energy (by
about 2 kcal mol−1!).49 Although our goal is to give the best single-configurational
description of the bonding, it should be emphasized that such a description is
fundamentally less adequate for C2 than for other homonuclear diatomics.

(Severe computational problems are encountered in describing singlet and triplet
C2 at the single-configurational level [B3LYP/6-311++G∗∗] employed throughout
this work. The “default” MOs obtained by the standard self-consistent-field pro-
cedure are fairly ordinary, well described by the NBO Lewis-structure picture, but
there is a distinct change in the character of the 1C2 configuration near 1.2 Å,
as shown in the two entries of Table 3.15. A more serious complication is that
the default configurations prove to be numerically unstable with respect to lower-
energy [“stable”] solutions that are shown in Fig. 3.27 and Table 3.13. The stable
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solutions incorrectly predict the triplet state to be the ground state and lead to an
unusually large error [∼0.07 Å] for the equilibrium bond length. Moreover, the
stable “singlet” solution is found to manifest unphysical spin contamination, which
is indicative of the need for higher-level configuration-interaction treatment.50 Still
another problem is that the lower-energy stable solutions exhibit strange symmetry
breaking and are poorly described by NBO configurations. Thus, for the sake of
simplicity the present qualitative description will be based on the default B3LYP/6-
311++G∗∗ configurations for both spin states [using, rather arbitrarily, the second
1C2 configuration in Table 3.15], but it should be remembered that this description
is fundamentally inadequate to describe the actual 1C2 and 3C2 wavefunctions.)

Figure 3.30 shows the near-degenerate promoted configurations for both singlet
and triplet C2. From the starting double-bonded 1CA configuration, the bond order
can be increased to four by promotion of two singlet-coupled electrons from hσ

to the degenerate px , py manifold. This promotion allows three donor–acceptor
interactions in each spin set,

hn →hσ
∗′ (ν) (3.90a)

hn
′ →hσ

∗ ¯(ν) (3.90b)

p′
x →px

∗ (πx) (3.90c)

in effect replacing one sigma bond by two nu bonds and an additional pi bond
(�b = +2), which is strongly favored by Principle I. Alternatively, the promoted
1C2 configuration can be seen as the result of adding a ↓y↓x ′ π-electron pair (con-
sistently with Principle II) to the 3B2 configuration. The promoted 3C2 configuration
can similarly be seen as the result of adding a ↑σ↓σ ′ σ-electron pair to the promoted
3B2 configuration. The latter alternative replaces two weak nu bonds by a single
sigma bond and thus results in formal bond order b = 2. Compared with the starting
1CA configuration, this gives no net change in bond order but serves to reduce spin
polarization (Principle III).

Which of the two promoted configurations will be preferred for C2 is unknown,
and neither is truly a satisfactory description of the system. However, either con-
figuration can be used to extend the Aufbau chain to larger diatomics in the series.

Dinitrogen
Two nitrogen atoms in their ground s2p3 quartet configuration would lead to the
spin-polarized 1CA configuration shown in the left-hand panel of Fig. 3.30. Prin-
ciple III then leads to the promoted 1N2 configuration shown in the right-hand
panel.

Alternatively, the promoted 1N2 configuration is obtained by two-electron
Aufbau from C2 if one adds (a) two sigma electrons (↑σ↓σ′) to 1C2, or (b) two
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pi electrons (↓x↓y′) to 3C2. In other words, starting from the optimal promoted
3B2 configuration, the same final 1N2 configuration is obtained by adding a sigma
pair (↑σ↓σ′) and pi pair (↓x↓y′) in either order, passing in one case (first ↓x↓y′ ,
then ↑σ↓σ′) through 1C2 and in the other (first ↑σ↓σ′ , then ↓x↓y′) through 3C2.
Thus, the result for N2 and the remainder of the Aufbau sequence is unaffected by
uncertainties in assigning the C2 configuration.

The 1N2 NHO configuration of Fig. 3.30 leads to three allowed donor–acceptor
interactions in each spin set,

hσ →hσ
∗′ (σ) (3.91a)

px →px
∗′ (πx ) (3.91a)

py
′ →px

∗ (πy) (3.91a)

corresponding to the standard Lewis structures shown in Table 3.15. This
simple NBO configurational picture is extremely stable and prevails over the entire
range of the potential curve in Fig. 3.27.

Dioxygen
When the next two electrons are added to the optimal 1N2 configuration of Fig. 3.30,
they perforce quench two of the six donor–acceptor interactions of that configura-
tion. It is clearly advantageous to preserve the strong sigma bond (by keeping hσ

and hσ
′ half-filled) rather than a weaker pi bond (Principle I). The two additional

electrons of O2 must therefore be added to the p manifold, and Principle II dictates
that they be added in ↑x↑y′ fashion (parallel spins, perpendicular planes, opposite
atoms) to give the uniquely preferred 3O2 configuration shown in Fig. 3.30.

Alternatively, starting from the 1CA configuration, the promoted 3O2 configu-
ration can be viewed as the consequence of replacing a pi bond by a sigma bond,
which is consistent with Principle I.

The three allowed donor–acceptor interactions of the β spin set are similar to
(3.91a)–(3.91c), leading to , while the single remaining donor–acceptor
interaction of the α set is

hσ→hσ
∗′ (σ) (3.92)

leading to , as shown in Table 3.15. (Note that (px )↑(py)↑(px
′)↑(py

′)↑ is
equivalent to (πx )↑(πy)↑(πx

∗)↑(πy
∗)↑.) The final O2 configuration is therefore of

triplet multiplicity and overall (spin-averaged) bond order 2, and this configurational
picture persists over the entire range of bond lengths in Fig. 3.27. Note that the 3O2

NBO configuration corresponds closely to Pauling’s description of two “three-
electron pi bonds” in mutually perpendicular planes.51
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Difluorine
The next two electrons can again be added to the weakly bonding π manifold in
the ↓x↓y′ pattern favored by Hund’s rule (Principle II) to give the 1F2 configuration
shown in Fig. 3.30. Alternatively, this result is obtained from the long-range 1CA
configuration by replacing a weak pi bond by a strong sigma bond (Principle I). In
the promoted configuration only the sigma-type donor–acceptor interaction (3.92)
remains in each spin set, corresponding to the standard Lewis structure.
This simple configurational picture again persists over the entire range of Fig. 3.27.

Second- and third-row species

Let us also briefly examine the corresponding behavior in second- and third-row
homonuclear diatomics. Figures 3.31(a) and (b) display the calculated potential-
energy curves for these species (ground-state multiplicities only) and Table 3.16
summarizes the equilibrium bond lengths and bond energies.

As shown in Table 3.16, the calculations appear to reproduce all experimen-
tal trends in qualitative or semi-quantitative fashion. A simplifying feature in the
second- and third-row series is that the group 14 member (Si2, Ge2) is unambigu-
ously a triplet, with much less evidence of multi-configurational contamination
than in the analogous C2 species. Table 3.17 shows the corresponding NBO config-
urational assignments of the higher homonuclear diatomics, for comparison with
Table 3.15.

As shown in Table 3.17, the NBO configurational assignments are all rather anal-
ogous to the corresponding first-row assignments in Table 3.15, with the exception
of the group 13 members (B2, Al2, Ga2). Even the apparent strong distinction be-
tween Al2 ( in the α set, in the β set), and B2 ( in α, in β)
is somewhat superficial, reflecting a gradual change from long-range hn→hσ

∗

donor–acceptor interactions (in Al2) to fully formed ν, ν̄ bonds (in B2); at distances
slightly below Re the corresponding pairs of nu bonds appear in the Al2 structures
(which become in the α set below R � 2.4 Å and in the β set below
R � 2.2 Å) to match the near-Re structures of B2. However, the distinction between
the α structures of Al2 ( ) and Ga2 ( ) is more profound, since Al2
employs a pair of pi bonds (unsupported by a sigma bond) whereas Ga2 employs
a conventional sigma/pi-bond pair in its α structure. This indicates that there is an
interesting near-degeneracy of sigma- and pi-bond strengths for these species, with
the usual complications of multi-configurational effects. Nevertheless, the overall
configurational patterns are strikingly similar to those discussed previously, and
the Aufbau construction of Fig. 3.30 can be carried through in a virtually identical
manner (following the triplet path through the group 14 member) that we need not
describe further.
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(a)

(b)

(kcal mol−1)
∆E

(kcal mol−1)
∆E

Figure 3.31 (a) Similar to Fig. 3.27, for second-row homonuclear diatomics.
(b) Similar to Fig. 3.27, for third-row homonuclear diatomics.

A fascinating feature of the Ga2 species occurs in the excited singlet state. The
1Ga2 species is bound by 29.0 kcal mol−1 at Re = 2.7444 Å and has ordinary-
looking bond order b = 1. However, the bonding character is remarkably different
in the α and β spin sets, corresponding to bent “banana bonds” of opposite curvature
with respect to the internuclear axis. Figure 3.32 displays the form of one of these
spin-NBOs, showing the off-axis curvature with respect to the Ga—Ga line of
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Table 3.16. Similar to Table 3.13, for second- and third-row
homonuclear diatomics

A2 State Re (Å) De(kcal mol−1)

Al2 Triplet 2.5078 (2.47) 27.12 (36)
Si2 Triplet 2.2803 (2.25) 70.68 (74)
P2 Singlet 1.8973 (1.89) 109.55 (116)
S2 Triplet 1.9272 (1.89) 94.09 (101)
Cl2 Singlet 2.0528 (1.99) 47.61 (57)

Ga2 Triplet 2.7435 (—) 31.84 (32)
Ge2 Triplet 2.4084 (—) 68.67 (65)
As2 Singlet 2.1111 (2.10) 93.42 (91)
Se2 Triplet 2.2008 (2.17) 84.11 (79)
Br2 Singlet 2.3310 (2.28) 46.93 (45)

centers. Such a formal sigma bond of “mixed” sigma/pi diradical character is highly
unusual.

How can such “mixed” sigma/pi bonds occur? In the 1Ga2 case the near-
degeneracy of sigma and pi bonds evidently allows electron repulsions to be min-
imized by putting the two bonding electrons into distinct sigma and pi spatial
orbitals. This shows that the common tendency of α and β electrons to “pair up”
their donor–acceptor interactions in a common spatial orbital (i.e., a “doubly oc-
cupied” sigma or pi orbital) is a special consequence of the typical wide energy
separation between distinct spatial options. Donor–acceptor bonding is essentially
a single-electron event; the usual restricted choice of spatial options may force two
electrons (of opposite spin) to adopt common spatial orbitals for complementary
donor–acceptor interactions – the “typical” two-electron covalent bond. However,
complementary one-electron donor–acceptor interactions in different spatial or-
bitals are equally easy to envision, and will have an obvious advantage in reducing
electron–electron Coulombic repulsions.

Distance-dependent changes in hybridization

Finally, with the diatomic NBO configurations established by Tables 3.15 and 3.17,
the only remaining unknown parameter of the NBO Lewis-structure description is
the hybridizationλof hσ, Eq. (3.84a). For values of R around Re, we can approximate
the fractional s character of hσ by

fs � e−ξ R2
(3.93a)

or, equivalently,

λ � eξ R2 − 1 (3.93b)
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Figure 3.32 Overlapping NHOs (left) and bonding NBO (right) for the α half-bond
of singlet Ga2 (R = 2.7444 Å). Each NHO is of sp19.4 hybrid composition (94.7%
p character), oriented 40.7◦ from the line of nuclear centers. (The equivalent β

half-bond is rotated by 180◦ about the Ga—Ga axis.)

Table 3.18. Parameters ξe and ξe
′ (cf. Eqs. (3.93a)–(3.93c)) for

describing hybridization λ of sigma bonds in homonuclear diatomics

α Spin β Spin

Species ξe ξe
′ ξe ξe

′

3B2 —a —a —a —a

1C2 0.684 −0.10 0.684 −0.10
3C2 0.725 −0.07 0.646 −0.10
1N2 0.768 −0.08 0.768 −0.08
1O2 1.074 −0.23 1.074 −0.23
3O2 1.112 −0.24 1.031 −0.21
1F2 1.496 −0.12 1.496 −0.12

3Al2 —a —a —a —a

3Si2 0.421 −0.04 0.376 −0.04
1P2 0.423 −0.03 0.423 −0.03
3S2 0.617 0.00 0.588 0.00

1Cl2 0.687 −0.01 0.687 −0.01
3Ga2 —a —a —a —a

3Ge2 0.546 −0.14 0.503 −0.13
1As2 0.403 0.00 0.403 0.00
3Se2 0.485 −0.01 0.472 0.00
1Br2 0.570 0.00 0.570 0.00

a Sigma bond not present in this configuration.
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which varies in the expected way from R = 0 ( fs = 1, λ = 0) to R → ∞ ( fs =
0, λ = ∞). Here ξ is a slowly varying function of R that can be approximated by
the leading terms of a Taylor-series expansion

ξ = ξe + ξe
′(R − Re) + · · · (3.93c)

Numerical values of ξe and ξe
′ for low-lying configurations of homonuclear diatomic

molecules are displayed in Table 3.18. These values make it possible to estimate
the actual diatomic hybridizations λ(R) over a fairly wide range of R values around
the equilibrium geometry.

Example 3.12

Exercise: Determine the change of hybridization λ of the sigma bond of F2 as it stretches
from Re = 1.41 Å to 1.5 Å.

Solution: From the values for F2 in Table 3.18

ξe = 1.496, ξe
′ = −0.12

we estimate from Eq. (3.93c)

ξ (Re) = 1.496

ξ (1.5) = 1.496 − 0.12(1.50 − 1.41) = 1.485

From (3.93b) the hybridizations are therefore

λ(Re) = e1.496(1.41)2 − 1 = 18.6

λ(1.5) = e1.485(1.50)2 − 1 = 27.3

(The actual NHO values are found to be 18.6 and 28.4, respectively.)

Example 3.13

Why is the bond energy of F2 less than that of Cl2? (This difference runs contrary to the
trend between other first- and second-row diatomics.)

At least two factors appear to be involved, both connected to the high electronegativity
of F compared to Cl.

(1) The steric repulsions between off-axis lone pairs at Req are stronger in F2 than in Cl2,
and the difference increases rapidly at smaller R. This is shown in the plot below, which
compares the full potential curves (solid lines) with the pairwise sum of steric repulsions
between off-axis lone pairs (dashed lines) for F2 (circles) and Cl2 (squares), both shifted
to a common origin at Req (1.4083 and 2.0528 Å, respectively):
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As shown in the plot, the steric repulsions in F2 are about 5 kcal mol−1 stronger at Req

than in Cl2, and the steric disadvantage of F2 becomes rapidly worse at smaller R.
(2) The second factor arises from the slightly higher s character (greater directionality in

the bonding direction) in Cl2 than in F2 (as can be judged from the ξe and ξe
′ values

in Table 3.18). This results in somewhat higher bonding overlap at larger R, as shown
in the NHO radial profile and overlap contour diagrams below for (a) F2 and (b) Cl2:
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As shown, the bonding overlap is about 20% greater in Cl2 than in F2 at Req, and the
advantage is relatively greater at larger R due to higher electronegativity (faster fall-off)
of the fluorine bonding hybrid. Thus, poorer hybrid bonding at larger R and greater
steric repulsion of off-axis lone pairs at smaller R both appear to play a role in the
surprising weakness of F2 bonding compared with that in Cl2 and Br2.

3.2.10 Lewis-acid–base compounds and dative bonding

Dative versus covalent sigma bonds

It was recognized by G. N. Lewis that the reaction of boron trifluoride plus ammonia

BF3 + :NH3 → F3B:NH3 (3.94)

constitutes a generalized acid–base reaction in the donor–acceptor sense. In this
reaction, BF3 plays the role of Lewis acid or electron-pair acceptor through its for-
mally vacant valence 2p orbital, while :NH3 is the Lewis base or electron-pair donor
through its valence lone pair. The product F3B:NH3 is a Lewis-acid–base “adduct”
with distinctive dative (coordinate–covalent) character of the B—N bond. From
this profound insight, Lewis achieved a rich generalization of standard Brønsted
(proton-oriented) acid–base chemistry and established the general donor–acceptor
bonding paradigm that extends to virtually every aspect of chemical structure and
reactivity.52

Reaction (3.94) is an example of general coordinate-covalent-bond formation

A + :B → A:B (3.95)

in which both members of the shared electron pair originate from the Lewis
base B,

rather than one from A and one from B as in standard covalent-bond formation,

A· + ·B → A—B (3.96)

The general Lewis-acid–base reaction (3.95) exemplifies the two-electron stabi-
lizing donor–acceptor interaction of Fig. 1.3 (namely the nN→nB

∗ interaction for
(3.94)), which may be distinguished from the complementary bi-directional donor–
acceptor interactions of covalent-bond formation (Section 3.2.1). However, this
leaves open the question of whether (or how) the equilibrium bond reflects the
formal difference between heterolytic (3.95) and homolytic (3.96) bond formation.
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What are the general NBO descriptors that distinguish a dative from a covalent
AB bond? Two qualitative criteria may be taken as characteristic of dative bonding.

(DB-1) Formation of a dative bond leads to a change of formal charge at each atom
(A−B+), so the calculated atomic charges QA(dat) and QB(dat) for a dative-bonded
pair deviate markedly from those (QA(sep) and QB(sep)) in the dissociated species
by approximately equal and opposite amounts for A and B,

QB(dat) − QB(sep) � −(QA(dat) − QA(sep)) (3.97)

(DB-2) Owing to the formal charge difference, the ionicity iAB of a dative bond deviates
markedly from the usual relationship to (neutral) electronegativity (cf. Example 3.10),

iAB(dat) 
� 1 − exp[−0.45(xA − xB)] (3.98)

In general, the R-dependent variations of natural atomic charges in dative bonds
are significantly larger than those in covalent bonds. Indeed, the QA(R) variations
in dative bonds resemble those in ionic bonds (cf. Fig. 2.9), to which they are
evidently related by similarities in donor–acceptor character. The strong dQA/dR
dependence tends to be associated with enhanced infrared vibrational intensity and
other spectroscopic signatures characteristic of ionic bonding.

Figure 3.33 displays the σBN dative bond NBO of F3B:NH3, comparing it with the
nitrogen NHO (basically, the ammonia lone-pair hybrid) of which it is principally
composed. Consistently with criterion DB-1, the atomic charges in the equilib-
rium geometry (QB(Re) = +1.2843, QN(Re) = −0.9175) differ strongly from the
values in the separated BF3(QB(∞) = +1.4071) and NH3(QN(∞) = −1.0535).

Figure 3.33 The dative sigma bond σB:N of F3B:NH3, showing the NBO (left) and
the donor nitrogen nN NHO (right).
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Figure 3.34 Atomic-charge variations �Q = Q(R) − Q(∞) for boron (circles)
and nitrogen (squares) atoms of the σBN dative bond of the F3B:NH3 Lewis-acid–
base adduct. (A dotted line marks the equilibrium bond length Re = 1.6802 Å.)

Consistently with criterion DB-2, the bond ionicity iBN = 0.6572 also differs ap-
preciably from the expected value 0.7237 calculated from Eq. (3.76).

Figure 3.34 shows the characteristic “mirror-image” variations �Q of dative-
bond atomic charges with respect to the asymptotic values at R = ∞. It can be seen
from Fig. 3.34 that the boron and nitrogen atoms have built up a charge difference
of ∼0.25e at Re (relative to the values in asymptotically separated BF3 and NH3

species), and that this “charge splitting” increases rapidly with decreasing separation
(by more than 0.5e Å−1) in the near-Re region. Thus, intense charge flow from donor
nN to acceptor nB

∗ and rapidly increasing two-center character are indicated in this
region, even though the ionic character of the NBO at the equilibrium geometry
remains relatively high (iB:N = −0.6572) in this weakly bound complex.

Amine oxides and related species

Even more pronounced examples of dative sigma bonds are obtained by using a
stronger, more electronegative Lewis acid. A particularly interesting example in-
volves the singlet oxygen atom in promoted 1S configuration, where a valence 2pz

orbital “hole” is emptied for complexation with a Lewis base. Well-known exam-
ples of such dative bonding include amine oxide (O:NH3) and analogous O:XH3

oxides of group 15 elements. Figure 3.35 displays atomic-charge-variation plots
(analogous to Fig. 3.34) for σo:x bonds of O:NH3, O:PH3, and O:AsH3, showing
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Figure 3.35 Atomic-charge variations �Q = Q(R) − Q(∞) in dative bonds of
H3NO (solid lines), H3PO (dotted lines), and H3AsO (dashed lines). Circles mark
oxygen; squares mark A atoms of O:A dative bonds.

the expected mirror-image pattern of strongly varying dipolar character that char-
acterizes dative bonding. In these cases the equilibrium ionic character is further
reduced (|iO:N| = 0.1244, |iO:P| = 0.4136, |iO:As| = 0.3290) and the charge split-
ting is correspondingly increased compared with F3B:NH3.

Owing to their dative character, the O:XH3 bonds of group 15 oxides differ rather
remarkably from ordinary covalent bonds involving the same elements. For exam-
ple, a “normal” σNO bond (e.g., in hydroxylamine, HONH2) would be estimated
from Eq. (3.76) to have iNO = −0.17, polarized toward the more electronegative
O. However, the dative σN:O NBO of O:NH3

σN:O = 0.7498(sp2.31)N + 0.6617(sp6.12)O (3.99)

is oppositely polarized, with iN:O = +0.1244. Similarly, in O:AsH3 the ionic char-
acter is strongly diminished (iAs:O = −0.3290) compared with what would be ex-
pected (�−0.48) from atomic electronegativity differences. These examples in-
dicate (cf. DB-2) that “normal” relationships between bond polarity and atomic
electronegativity will fail dramatically in cases of dative bonding.

Considerable controversy surrounds the nature of the bonding in amine oxides
and analogous phosphine and arsine oxides. These species are often depicted in text-
books as double-bonded (O=PH3, O=AsH3) in order to rationalize the unusually
short bond lengths. However, both theoretical wavefunction analysis53 and NMR
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evidence54 indicate that the bonding is better described as a single dative bond with
anionic character. The usual hyperconjugative interactions (Section 3.4.2) be-
tween oxygen lone pairs and vicinal hydride antibonds are expected to confer weak
partial double-bond character to this dative bond, but these secondary interactions
are insufficient to warrant a double-bonded Lewis-structure representation.

NBO and NRT analysis unequivocally supports this “hyperconjugatively en-
hanced single-dative-bond” picture of the bonding in group 15 trialkyl oxides. The
quantitative NRT resonance weightings in the equilibrium ONH3 geometry are

leading to NRT bond order bON = 1.077, only slightly greater than an ordinary
single bond. The corresponding NRT bond orders in phosphine oxide (bOP = 1.174)
and arsine oxide (bOAs = 1.126) are also in accord with this picture. Thus, it seems
clearly preferable to represent the bonding in nitroxides and related species with a
special dative-bond symbol (such as O:N, O←N, O−N+ or N) to depict the
strong anionic (rather than carbonyl-like) character of the oxygen atom. The same
remarks apply to phosphine oxides and higher group 15 congeners.

Dative pi bonds

Dative bonding can also occur in pi-type interactions, particularly involving the
BH2 group. A good example is H2B=NH2, isoelectronic to ethylene, which is well
described by a double-bonded NBO Lewis structure with dative πB:N bond:

Figure 3.36 shows the form of this dative πB:N bond, comparing the final polarized
NBO (left) with the overlapping NHOs (right).

Like their sigma counterparts, dative pi bonds are expected to exhibit strong
changes in polarity with bond stretching, but pi-type dipolar “switching” will
also occur in response to torsional and pyramidalization changes. In H2BNH2 the
strength of the dative πB:N bond leads to planar equilibrium geometry both at B
and at N, which is indicative of sp2-like hybridization55 as is actually found in the
NBOs,

σBN = 0.4952(sp2.29)B + 0.8688(sp1.08)N (3.100a)

πB:N = 0.3783(p)B + 0.9257(p)N (3.100b)
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Figure 3.36 The dative pi bond πB:N of H2BNH2, showing the NBO (left) and
overlapping NHOs (right).

However, the analogous pi-type interactions in H2BPH2 and H2BAsH2 are sig-
nificantly weaker, due primarily to the size mismatch in p orbitals from different
quantum shells. The latter species can therefore best be described as single-bonded,
with pyramidalized sp3-like P̈H2 and ÄsH2 groups, but with strong residual pi-type
delocalizations conferring significant partial double-bond character. Owing to the
intrinsically weaker character of pi-type interactions, true dative pi-bond NBOs such
as (3.100b) are expected to be relatively uncommon in main-group compounds.

3.3 Conjugation and aromaticity

3.3.1 Conjugation and the resonance concept

Compounds containing multiple bonds often exhibit a characteristic electronic sta-
bilization identified as “conjugation.” In such a case the molecular heat of formation
significantly exceeds the predictions of simple bond-energy-additivity schemes, and
the actual stability is found to depend sensitively on the connectivity pattern of pi
(or pi-type) bonds in highly nonlinear fashion. Phenomenologically, the bonds of
a conjugated pi network appear much less transferable than those of unconjugated
compounds. Indeed, the reactivity at a particular pi-bonding site is found to depend
sensitively on changes throughout the conjugated network, with profound conse-
quences for remote chemical control. Conjugation is also associated with character-
istic bond-length changes, which can be described in the framework of “resonance”
between distinct Lewis structures (see below). In this section we wish to describe
the nature of pi-type conjugation in NBO donor–acceptor terms, initially for a pair
of conjugated pi bonds and subsequently for complex pi-bonding networks.
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The NBO theory of diene conjugation

A characteristic feature of conjugated pi-bond networks is that each pi bond πa lies
adjacent (vicinal, s-cis or s-trans) to a coplanar pi bond πb, a pi-type lone pair nb,
or a pi-type vacancy nb

∗ (unfilled valence p orbital), e.g.,

(3.101)

The idealized Lewis structures are modified in each case by donor–acceptor inter-
actions involving the filled (Lewis) πa and unfilled (non-Lewis) πa

∗ NBOs of the
formal pi bond, πa→πb

∗ and πb→πa
∗, nb→πa

∗, or πa→nb
∗ for the three prototypes

shown in (3.101).
As described in Sections 1.4 and 1.5, a general �a−�b

∗ donor–acceptor in-
teraction between Lewis (�a) and non-Lewis (�b

∗) NBOs leads to perturbative
corrections to the zeroth-order natural Lewis-structure wavefunction

Ψ
(L) = Â[(�a)2(�b)2 · · · ] (3.102)

The starting �a NBO is thereby perturbed to a “natural localized molecular orbital”
(NLMO), distinguished by a tilde from its parent NBO

�̃a = N(�a + λ�b
∗) (3.103)

The associated energy lowering is estimated from perturbation theory as

�E(�a→�b
∗) = −2

〈�a|F̂ |�b
∗〉2

�ε
(3.104)

where

�ε = 〈�b
∗|F̂ |�b

∗〉 − 〈�a|F̂ |�a〉 (3.105)

is the energy difference of interacting NBOs. The coefficient of the delocalization
“tail” in (3.103) can also be perturbatively estimated as

λ = −〈�a|F̂ |�b
∗〉

�ε
(3.106)

However, it is more convenient to determine the NLMOs directly by a numeri-
cal procedure56 that incorporates higher perturbation corrections of all orders. As
mentioned in Section 3.2.4, the Slater determinant of semi-localized NLMOs

Ψ
(SL) = Â[(�̃a)2(�̃a)2 · · · ] (3.107)

is completely equivalent to the exact Hartree–Fock wavefunction,

Ψ
(SL) = ΨHF (3.108)
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and thus incorporates all physically meaningful delocalization effects of Hartree–
Fock theory. In the present treatment we therefore bypass the traditional discussion
of conjugation in the canonical MO framework in order to gain the advantages of the
simple perturbative expressions (3.103)–(3.106) for localized NBO donor–acceptor
interactions.

For the present case of the interactions shown in (3.101), the πa→πb
∗ donor–

acceptor interaction, for example, leads to energetic stabilization

�E(πa→πb
∗) = −2

〈πa|F̂ |πb
∗〉2

επb
∗ − επa

(3.109a)

while the corresponding πb→πa
∗ interaction leads to

�E(πb→πa
∗) = −2

〈πb|F̂ |πa
∗〉2

επa
∗ − επb

(3.109b)

The possible donor–acceptor stabilizations for the two remaining structures in
(3.101) are similarly

�E(nb→πa
∗) = −2

〈nb|F̂ |πa
∗〉2

επa
∗ − εnb

(3.109c)

�E(πa→nb
∗) = −2

〈πa|F̂ |nb
∗〉2

εnb
∗ − επa

(3.109d)

Consistently with empirical observations, the stabilization �E(πa→πb
∗), for exam-

ple, is found to be relatively negligible unless πa and πb
∗ are in a vicinal relationship,

due to the fact that the 〈πa|F̂ |πb
∗〉 matrix element falls off rapidly (exponentially)

with distance, and analogously for the other interactions in (3.109). Furthermore
(as illustrated in Example 1.4 for the nb→πa

∗ interaction), the vicinal πa→πb
∗ in-

teraction is equivalent to a partial admixture of the alternative resonance structure:

(3.110)

Consistently with this resonance picture (and with experiment), the πa→πb
∗ donor–

acceptor interaction leads to partial bond equalization of the nominal single and
double bonds, strengthening and shortening the former while weakening and length-
ening the latter. The resonance-weighted bond orders (cf. Eq. (1.40)) thus differ
from the parent idealized values, reflecting the relative weightings of the parent
Lewis (wL) and alternative (wL′) structures in (3.110). The conjugative stabiliza-
tions (3.109) may also be referred to as “quantum-mechanical resonance energy”
(QMRE).
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The NBO/NRT description of polyenes and related species

We now wish to describe qualitative trends in pi-conjugated systems in terms of
the localized NBO donor–acceptor stabilizations (3.109) and NRT bond orders.
For this purpose we consider the representative group of molecules 1–16 shown in
Fig. 3.37. Numerical bond orders and conjugative stabilization energies pertaining
to these molecules are gathered in Table 3.19.

Let us first inquire whether basic criteria for the validity of low-order perturbation
theory are actually satisfied in the present case. As described in Section 1.4, the
perturbative starting point is an idealized natural Lewis-structure wavefunction
(ψ (L)) of doubly occupied NBOs. The accuracy of this Lewis-type starting point
may be assessed in terms of the percentage accuracy of the variational energy (E (L))
or density (ρ(L)), as shown for each molecule in Table 3.20.

As seen in Table 3.20, the unperturbed localized ψ (L) is of high accuracy through-
out (>99% in energy, ∼98%–99% in density), only slightly lower than that of the
parent unconjugated ethylene molecule (99.88% for E (L) and 99.58% for ρ(L)). This
suggests that the perturbation series should be rapidly convergent for such conju-
gated species,57 and we can therefore expect that simple perturbative expressions
such as (3.109) are adequate to describe leading conjugative effects at a useful level
of chemical accuracy.

Orientational and energetic factors in donor–acceptor interactions

Let us next examine the dependence of Eqs. (3.109) on the factors in the numerator
and denominator that affect conjugative stabilization, taking Eq. (3.109a) as an
example.

On physical grounds we expect that the orbital energy difference in the denom-
inator

�ε = επb
∗ − επa (3.111a)

is rather insensitive to the orientation or separation of the interacting πa and
πb

∗ NBOs. Furthermore, this term is typically large (e.g., �ε = 0.3086 a.u.
� 200 kcal mol−1 for 1) compared with the expected variability of either επb

∗

or επa, and therefore has little influence on �E(πa→πb
∗). (For example, lowering

επa by 10 kcal mol−1 would decrease �E(πa→πb
∗) by only about 5%.)

In contrast, the matrix element in the numerator

Fa,b∗ = 〈πa|F̂ |πb
∗〉 (3.111b)

is smaller in magnitude (e.g., |Fa,b∗ | = 0.0608 a.u. in 1), but depends strongly both
on distance and on orientation, and its variations have much stronger leverage on
�E(πa→πb

∗). (For example, decreasing Fa,b∗ by 0.01 alters the stabilization by
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Figure 3.37 Atom numbering and parent Lewis structures for molecules 1–16
(see Table 3.19). Only pi-type lone pairs are shown explicitly.
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Table 3.19. Formal π moieties, NRT bond orders of associated atoms, and
conjugative stabilization energies for molecules 1–16 (shown in Fig. 3.37)

π Moiety NRT bond ordera Stabilizationb (kcal mol−1)

Molecule a b a b �Ea→b∗ �Eb→a∗

1 πC1C2 πC3C4 1.939 1.939 −15.0 −15.0

2 πC1C2 πC3C4 1.950 1.950 −12.8 −12.8

3 πC1N2 πC3O4 1.977 2.006 −21.2 −5.4

4 πO1C2 πC3O4 2.027 2.027 −7.1 −7.1

5 πO1C2 nN3 1.732 — -.- −59.8

6 πC1C2 nB3
∗ 1.953 — −26.2 -.-

7 πC1C2 nC3 1.512 — -.- −112.4

8 πC1C2 nC3
∗ 1.509 — −126.7 -.-

9 πC1C2 πC5C6 1.983 1.983 -.- -.-

10 πC1C2 πC2C3 1.991 1.991 -.- -.-

11 πC1C2 πC3C4 1.934 1.841 −14.5 −16.0

12 πC1C2 πC3C4 1.956 1.892 −11.7 −12.0

13 πO1C2 nN3 1.816 — -.- −47.9

14 πC1C2 nB3
∗ 1.952 — −24.2 -.-

15 πC1C2 πC3C4 1.921 1.831 −14.5 −16.2
πC3C4 πC5C6 1.831 1.831 −16.5 −16.5

16 πC1C2 πC3C4 1.924 1.818 −14.6 −16.3
πC3C4 πC5C6 1.818 1.818 −16.9 −16.8

a For reference, the C—C bond order in ethylene is 2.027.
b Entry “-.-” corresponds to the quantity being undefined or negligible (less than the printout

threshold of 0.5 kcal mol−1).

Table 3.20. Percentage accuracies of energy (E (L)) and density (ρ(L)) of the
idealized Lewis-type wavefunction ψ (L) for molecules 1–16 (shown in Fig. 3.37)

Molecule E (L) Accuracy (%) ρ(L) Molecule E (L) Accuracy (%) ρ(L)

1 99.82 99.00 2 99.82 99.05
3 99.78 98.68 4 99.81 98.79
5 99.76 98.10 6 99.81 98.96
7 99.70 97.31 8 99.71 97.33
9 99.82 99.21 10 99.78 98.92

11 99.79 98.68 12 99.81 98.99
13 99.73 97.97 14 99.78 98.84
15 99.78 98.49 16 99.77 98.36
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about 40%!) Thus, in discussing the factors governing conjugative stabilizations
we shall focus primarily on the Fa,b∗ interaction element.

The strength of the Fa,b∗ interaction and its variations with distance and orienta-
tion can be conveniently visualized in terms of the overlap of πa and πb

∗ NBOs, on
the basis of a Mulliken-type approximation (cf. Eq. (1.34)). As an example, the top
two panels of Fig. 3.38 compare the overlapping πa–πb

∗ orbital contours for trans 1
and cis 2 isomers of butadiene. As shown in Fig. 3.38, the overlap in the cis isomer
2 (S = 0.2054) is slightly weaker than that in the trans isomer 1 (S = 0.2209), due
to the unfavorable orientation of the πa across the nodal plane of the πb

∗ in the latter
case. Consistently with the weaker πa–πb

∗ overlap, the 〈πa|F̂ |πb
∗〉 interaction is

less, namely 0.0608 in 1 versus 0.0564 in 2. The delocalization tail of the π∼a NLMO
is correspondingly less than its value in the trans isomer

π̃a(1) = 0.981πa + 0.191πb
∗ + · · · (3.112a)

π̃a(2) = 0.984πa + 0.175πb
∗ + · · · (3.112b)

i.e., about 3.65% in 1 versus 3.06% in 2. (The ellipses denote residual contributions
of less than 1%.) As shown in Table 3.19, each of the two possible stabilizations
is thereby reduced from 15.0 kcal mol−1 in 1 to 12.8 kcal mol−1 in 2, so the trans
isomer 1 is favored by about 4.4 kcal mol−1 overall. Such overlap-based consider-
ations suggest correctly that s-anti conformations will be generally preferred over
s-syn conformations in conjugated dienes. (For similar reasons, synperiplanar and
antiperiplanar conformers are strongly preferred over nonplanar conformers that
twist the πa and πb

∗ out of conjugation.) In the following discussion we there-
fore consider only all-trans conformers, except (as in 12) where steric blockage
mandates otherwise.

Example 3.14

Exercise: Use perturbation theory to estimate the πb
∗ delocalization tail in the π̃a NLMOs

of 1 and 2.

Solution: From Eq. (3.106) and the values of Fa,b∗ and �ε quoted above,

λ(1) = − Fa,b∗ (1)

�ε
= 0.0608

0.3086
= 0.197

λ(2) = − Fa,b∗ (2)

�ε
= 0.0564

0.3111
= 0.181

These estimates compare favorably with the actual values computed from Eqs. (3.112),

λ(1) = 0.191

0.981
= 0.195

λ(2) = 0.175

0.984
= 0.178
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Figure 3.38 Principal conjugative interactions in 1–3 (see Fig. 3.37), showing
NBO contours 1 Å above the molecular plane (with projected nuclear positions
included for reference).
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Let us now consider other factors that are expected to affect the NBO matrix
element Fa,b∗ and conjugative stabilization according to Eq. (3.109).

Bond and antibond polarity

From the manner in which πa–πb
∗ overlap in 1 arises primarily from the region of

the connecting atoms C2 and C3, it is apparent that polarity changes that amplify
the orbitals in this connecting region will enhance the conjugative interaction.

For example, in formylimine 3 the πCN NBO is expected to be more strongly
polarized toward the connecting N atom, due to its greater electronegativity. Simi-
larly, the πCO NBO is polarized toward the electronegative O, so the corresponding
πCO

∗ is polarized oppositely toward the connecting C (cf. Eqs. (1.31)). Both polar-
ity changes increase the πCN–πCO

∗ overlap (0.2644) and interaction strength (21.2
kcal mol−1) in 3 relative to the apolar πCC–πCC

∗ interaction in 1, as shown in the
lower panel of Fig. 3.38. The stronger conjugative mixing is also reflected in the
form of the π̃CN NLMO,

π̃CN(3) = 0.975πCN + 0.217πCO
∗ + · · · (3.113a)

By the same reasoning, the oppositely directed πCO–πCN
∗ donor–acceptor pair is

weakened in overlap (0.0979) and interaction strength (5.4 kcal mol−1), and the
π̃CO NLMO is only weakly delocalized:

π̃CO(3) = 0.994πCO + 0.107πCN
∗ + · · · (3.113b)

Thus, there is net weakening of conjugative stabilization in this case, as well as net
delocalization of pi charge from the CN region into the CO region.

We can also see how polarity effects further quench the conjugative interactions
in glyoxal 4, where the symmetry of a→b∗ and b→a∗ delocalizations is restored. In
this case, the reduced pi-donor strength of the polarized πCO bond leads to overall
weakening of πCO–πCO

∗ overlap (S = 0.1838) and interaction strength (7.1 kcal
mol−1) and a relatively well localized NLMO:

π̃CO(4) = 0.992πCO + 0.123πCO
∗ + · · · (3.114)

As a result, the CO bond orders in 4 (2.027) are nearly equivalent to those of
ethylene, showing that glyoxal is more localized than 1–3 or other molecules to be
considered below.

Single-center versus two-center character

To maximize the conjugative interaction with a specified acceptor πa
∗, one could

progressively polarize the donor pi moiety until its entire amplitude is on the atom
adjacent to πa

∗. In this limit, the two-center donor reduces to a one-center nonbon-
ded orbital nb (lone pair), and the donor–acceptor interaction is of nb→πa

∗ type.
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In the limit that nearest-neighbor contributions dominate, such a one-center nb

automatically leads to an approximate 21/2-fold increase in overlap and two-fold
increase in interaction energy, compared with a two-center πb donor. A correspond-
ing enhancement results when the pi-acceptor is reduced from two-center (πb

∗) to
one-center (nb

∗) form, i.e., a valence p-type vacancy. Unlike the intrinsically bi-
directional character of conjugation between two pi bonds (πa→πb

∗, πb→πa
∗), the

interactions of a pi bond with a nonbonding center are intrinsically mono-directional
and lead to uncompensated transfer of pi charge from one moiety to the other.

Such one-center enhancement effects can be illustrated by formamide 5 for
nb→πa

∗ (3.109c) interactions. As shown in Table 3.19, the nN→πCO
∗ interaction

of 5 leads to strong conjugative stabilization (59.8 kcal mol−1) and reduced C—O
bond order (1.732), the famous “amide resonance” of peptide chemistry:

The form of the ñN NLMO also reflects the strong conjugative delocalization:

ñN(5) = 0.935nN + 0.349πCO
∗ + · · · (3.115)

As is well known, the intermediate bond orders of such a resonance hybrid corre-
spond to bond lengths (and other bond properties) that are intermediate between
the idealized single and double bonds of unconjugated species.

The corresponding enhancements for interactions of πa→nb
∗ (3.109d) type

can be illustrated by vinylborane 6. The πCC→nB
∗ conjugative stabilization in

6 (26.2 kcal mol−1) is stronger than corresponding a→b∗ interactions in 1–3, but
weaker than the nN→πCO

∗ interaction of 5. Figure 3.39 compares NBO contours
of the leading interactions in 5 and 6, showing the greater strength of conjugation
in the former case. The form of the π̃CC NLMO again reflects this conjugation,

π̃CC(6) = 0.967πCC + 0.255nB
∗ + · · · (3.116)

Ionic character

The donor or acceptor strength of a given pi moiety can be further enhanced by
giving it net anionic or cationic character. An anionic lone pair, for example, is
spatially more diffuse (leading to better overlap and an increased numerator in
(3.109c)) and higher in energy (leading to a smaller energy denominator), and
is therefore a strongly enhanced Lewis base. A cationic one-center vacancy is
correspondingly a greatly strengthened Lewis acid. In either case, the conjugative
donor–acceptor interactions will be appreciably stronger than corresponding neutral
interactions.

The ionic enhancement effects are illustrated in Table 3.19 by the allyl anion
7 and cation 8 for interaction types (3.102c) and (3.102d), respectively. In both cases
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Figure 3.39 Similar to Fig. 3.38, for principal conjugative interactions in (a) for-
mamide, 5, and (b) vinylborane, 6.

the conjugative stabilizations are indicated to be extremely large (>100 kcal mol−1)
and the π̃CC NLMOs acquire strong delocalization tails,

ñC(7) = 0.862nC + 0.497πCC
∗ + · · · (3.117a)

π̃CC(8) = 0.865πCC + 0.501nC
∗ + · · · (3.117b)

Indeed, the formal C—C bond orders (∼1.5) correspond to equal weightings of the
alternative resonance structures (cf. Example 1.12),

and complete blurring of the distinction between single and double bonds, the
characteristic signature of strong resonance. The equilibrium bond lengths and C2v

symmetry of these species clearly reflect the strong resonance stabilization.
(We note in passing that open-shell radicals often behave like spin-averaged

“hybrids” of corresponding closed-shell anionic and cationic species. For the allyl
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radical, for example, the NBOs and NRT weightings for α [majority] spin would
resemble those of the allyl anion, whereas those for β [minority] spin resemble
those of the allyl cation. Thus, similar NBO overlap-type considerations can be
applied separately to α and β spin sets to rationalize qualitative features of radical
conjugation.)

Vicinal versus non-vicinal connectivity

To illustrate the importance of vicinal connectivity of conjugating units, we consider
two dienes in non-vicinal relationships: 1,5-hexadiene, 9, and allene, 10. As shown
in Table 3.19, the direct diene conjugations are negligible in both species, on account
of spatial separation in 9 and symmetry-imposed orthogonality of the two pi planes
in 10. Consistently with the essential absence of conjugation, the unsaturated C—C
bonds of 9 and 10 have calculated bond orders characteristic of ethylene or other
unconjugated systems and the π∼CC NLMOs have essentially localized character:

π̃CC(9) = 0.995πCC + · · · (3.118a)

π̃CC(10) = 0.992πCC + · · · (3.118b)

Whereas the localized NBO description shows the clear distinction between con-
jugated and unconjugated double bonds, this distinction is far from obvious in the
canonical MO picture. For example, the highest occupied molecular orbitals (HO-
MOs) are found to have superficially similar “strongly mixed” forms in 1 and 9:

φHOMO(1) � 0.59p1 + 0.39p2 − 0.39p3 − 0.59p4 (3.119a)

φHOMO(9) � 0.51p1 + 0.45p2 + 0.45p5 + 0.51p6 (3.119b)

whereas the HOMO of 10 appears more localized on the C1—C2 bonding region,

φHOMO(10) � 0.73p1 + 0.60p2 (+ off-axis Hs) (3.119c)

Of course, by suitable comparisons of the energy splittings for higher-lying MOs
one can infer that the interactions are actually weaker for 9 than for 1, and that 9
and 10 are after all the more closely related. However, such qualitative differences
in conjugation seem to be displayed much more directly in the localized NBO
framework.

Higher networks: cooperative and anticooperative patterns

Even cursory inspection will show that conjugation alters the properties of the
participating pi bonds. For example, the vinyl πCC NBO of 6 is not homopolar as
in ethylene, but instead becomes rather strongly polarized toward C2,

πCC(6) = 0.679p1 + 0.734p2 (3.120)
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so C2 becomes more nucleophilic while the terminal C1 gains pi-acceptor capacity
(increased πCC

∗ amplitude). These alterations will in turn affect donor–acceptor
interactions with other conjugating groups. Thus, one expects that conjugated pi
networks may exhibit strong nonlinearities, such that the electronic properties of
each pi bond depend sensitively on the number and types of other pi bonds in
the network. Depending on the connectivity pattern of the network, the overall
stabilization per pi bond may be enhanced (a “cooperative” network) or diminished
(an “anticooperative” network) relative to a simple linear (additive) approximation.
We now wish to examine larger conjugated network patterns that lead to cooperative
or anticooperative stabilization.

Let us first consider the effect of extending the all-trans polyene chain from
two to five pi bonds in the series 1, 11, 15, 16. In the chain topology, each inte-
rior pi bond participates in four donor–acceptor interactions (two each with the
pi bonds on the left and right), whereas each terminal pi bond is restricted to
two such interactions. Thus, each interior pi bond would contribute about twice
as much conjugative stabilization as a terminal bond, if each donor–acceptor in-
teraction were of equal magnitude. However, as shown in Table 3.19 the individ-
ual donor–acceptor interactions actually increase toward the interior of the chain
(from about 15 kcal mol−1 for terminal sites to ∼17 kcal mol−1 for interior sites),
so the conjugative stabilization per pi bond is further increased. From the entries
in Table 3.19 one can estimate that the conjugative stabilization per pi bond in-
creases by 35% for 11, 57% for 15, and 72% for 16, relative to the base diene 1.
The increasing delocalization is also reflected in the form of the most-central π̃CC

NLMOs:

π̃CC(11) = 0.959πCC + 0.198πCC′ ∗ + 0.198πCC′′ ∗ (3.121a)

π̃CC(15) = 0.954πCC + 0.200πCC′ ∗ + 0.204πCC′′ ∗ (3.121b)

π̃CC(16) = 0.949πCC + 0.206πCC′ ∗ + 0.206πCC′′ ∗ (3.121c)

(Note that the increment per pi bond approaches constancy for sufficiently long
chain length, which is consistent with experimental results.) Such simple count-
ing arguments suggest the considerable thermodynamic advantage of unbranched
polyene networks that minimize the number of terminal pi bonds.

Example 3.15

Exercise: Justify the estimate given above for the increased conjugative stabilization
(QMRE) in 15 relative to 1.

Solution: From the entries in Table 3.19 the contributing stabilizations in 1 are (in an
obvious notation)
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Type −�E (kcal mol−1)

π1,2→π3,4
∗ 15.0

π3,4→π1,2
∗ 15.0

Total 30.0

or 15.0 kcal mol−1 per pi bond. For 15 the corresponding stabilizations are

Type −�E (kcal mol−1)

π1,2→π3,4
∗ 14.5

π3,4→π1,2
∗ 16.2

π3,4→π5,6
∗ 16.5

π5,6→π3,4
∗ 16.5

π5,6→π7,8
∗ 16.2

π7,8→π5,6
∗ 14.5

Total 94.4

or 23.6 kcal mol−1 per pi bond, 57% greater than the value for 1.

As a consequence of its asymmetric environment, each terminal πCC NBO is
somewhat polarized toward the chain interior, thus building up a slight positive
charge at the chain termini. The energetic disadvantage of such polarized end-
bonds can be illustrated by comparison of the trienes 11 and 12. Using the entries
of Table 3.19, one can estimate that the conjugative stabilization is 61 kcal mol−1

in 11 but only 47.4 kcal mol−1 in 12. Only part of this reduction can be attributed
to the less favorable cis-like vicinal interactions in 1. The polarized C3—C4 bond
in 12 must serve as a net donor to both connecting vinyl groups (a “busy donor”),
and in this competitive (anticooperative) pattern each donor–acceptor interaction
is slightly weakened relative to its value in 2.

Another such instance of anticooperativity can be seen by comparing 5 with
13. In the latter case, the two n→πCO

∗ interactions make competitive use of the
same “busy” nitrogen lone pair, and each such interaction (47.9 kcal mol−1) is
thereby weakened relative to the value (59.8 kcal mol−1) in 5. Similarly, the com-
parison of vinylborane 6 with divinylborane 14 reveals an anticooperative effect
involving competition for the nB

∗ pi acceptor, with each πCC→nB
∗ interaction

in 14 (24.2 kcal mol−1) being slightly weakened compared with its value in 6
(26.2 kcal mol−1).

We can summarize these considerations by saying that higher-order nonlinear
effects generally favor network patterns in which each pi-bond site has balanced or
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“closed-CT” character (cf. Section 2.6) with respect to conjugative delocalization
in and out of the site. Conversely, end-bonds or other unsymmetric “open-CT” sites
that have unbalanced donor–acceptor patterns are disfavored by such higher-order
nonlinear effects.

3.3.2 Aromaticity and antiaromaticity

Since its initial discovery by Michael Faraday in 1825,58 benzene (C6H6) has been
recognized as an extraordinary substance. The spectacular properties of benzene and
its derivatives (particularly the aniline dyes discovered by W. H. Perkin) initiated
dramatic growth of the pharmaceutical, dyestuff, and munitions industries in the
mid nineteenth century. The famous puzzle of the chemical structure of benzene was
solved in 1865 by August Kekulé in terms of two alternative six-membered-ring
formulas:

(3.122)

This “mesomerism” (or “resonance”)59 between equivalent Kekulé structures was
recognized as the quintessential feature underlying the “aromaticity” of benzene,
conferring highly distinctive symmetry, stability, and reactivity patterns.

Superficially, it is also possible to write two equivalent resonance structures for
cyclobutadiene (C4H4)

(3.123)

and one might suppose that this species is also resonance-stabilized in analogy
with (3.122). However, cyclobutadiene appears to be exceptionally unstable, and
is essentially nonexistent in the high-symmetry D4h form implied by (3.123). The
instability of cyclobutadiene is only partially attributable to the angular strain of
its sigma-bonding framework, which necessitates considerable bond bending (Sec-
tion 3.2.7). Rather, the cyclic pi-conjugative pattern in (3.123) appears to be net
destabilizing even when compared with the non-aromatic acyclic species 1 and 2,
and cyclobutadiene is therefore referred to as “antiaromatic.”

Given these surprising experimental facts, it is obviously important to inquire
why the cyclic conjugation patterns (3.122) and (3.123) should lead to such diamet-
rically opposite changes in conjugative stability compared with acyclic analogs. A
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simple answer to this question can be obtained in the framework of Hückel MO
theory.60 At the Hückel level it can be shown that the highest occupied MOs of
a cyclic CnHn species are bonding (i.e., lower in energy than isolated methynyl
fragment pi orbitals) for 4n + 2 electrons, but degenerate and nonbonding for 4n
electrons. For n = 1, this implies that a six-electron species such as (3.122) should
be intrinsically favored compared with a four-electron species such as (3.123). The
success of the Hückel “4n + 2 Rule” in this case appears to represent a conceptual
triumph of MO theory over resonance theory.

In the present section we wish to investigate the differences between aromatic
and antiaromatic species from the NBO donor–acceptor perspective. We shall also
investigate the “magic of six electrons” by comparing the six-electron cyclopen-
tadienyl anion (C5H5

−) with the corresponding four-electron cation (C5H5
+). We

also examine other planar six-membered cyclic species such as borazine (B3N3H6)
and quinone (C6O2H4) to determine what (if anything) distinguishes the “degree
of aromaticity” in these systems. Direct comparisons with Hückel theory will be
presented in the following Section 3.3.3. Figure 3.40 shows the structures and
atom numberings for molecules 17–24 to be discussed in this section, while Table
3.21 gives the corresponding NRT bond orders and conjugative stabilizations (cf.
Table 3.19).

Benzene

We first consider benzene, 17, the prototypical aromatic molecule. From the entries
in Table 3.21 and comparisons analogous to Example 3.15, one can recognize
that conjugative stabilizations in benzene are significantly stronger than those of
comparable species in Table 3.19. Thus, on a per-pi-bond basis, the estimated
stabilizations in benzene are 40.8 kcal mol−1, more than three times those of diene
2 (12.8 kcal mol−1), twice those of the acyclic triene 11 (20.3 kcal mol−1), and about
58% greater than the most strongly stabilized polyene, 16 (25.8 kcal mol−1).

The enhanced stabilizations of benzene are apparently due to the unique cyclic
conjugative topology in which all sites are of closed-CT type. Each site thereby
participates in complementary bi-directional donor–acceptor interactions,

with no net charge build-up at any site.
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Figure 3.40 Atom numbering and parent Lewis structures for molecules 17–24
(see Table 3.21). Only pi-type lone pairs are shown explicitly.

The vicinal πa→πb
∗ interactions of benzene are depicted in terms of overlapping

orbital contours in Fig. 3.41, for comparison with the analogous acyclic diene
interaction in Fig. 3.38(b). Unfortunately, for this large change in geometry the
overlap integral S does not accurately reflect the increased |〈πa|F̂ |πb

∗〉| interaction
element (from 0.056 a.u. in 2 to 0.067 a.u. in 17), corresponding to much stronger
conjugative stabilization in 17. However, the greater delocalization of benzene can
be clearly seen in the form of its NLMOs,

π̃CC(17) = 0.910πCC + 0.288πCC′ ∗ + 0.288πCC′′ ∗ (3.124)

compared with those of higher acyclic polyenes (3.121).
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Table 3.21. Formal π moieties, NRT bond orders of associated atoms, and
conjugative stabilization energies for molecules 17–24 in Fig. 3.40

(B3LYP/6-311++G∗∗//B3LYP/6-31G∗ level)

π Moiety NRT bond ordera Stabilizationb (kcal mol−1)

Molecule a b a b �Ea→b∗ �Eb→a∗

17 πC1C2 πC3C4 1.498 1.498 −20.4 −20.4

18 πC1C2 πC3C4 1.998 1.998 0. 0.

19 nC1 πC2C3 — 1.365 −75.9 0.
πC2C3 πC4C5 1.365 1.365 −17.8 −17.8

20 nC1
∗ πC2C3 — 1.886 0. −78.8

πC2C3 πC4C5 1.886 1.886 −7.2 −7.2

21 πB1N2 πB3N4 1.380 1.380 −36.8 0. (!)

22 πC1C2 πC3O7 1.891 1.943 −17.8 −6.6

23 nN7 πC1C2 — 1.429 −24.5 0.
πC1C2 πC3C4 1.429 1.477 −24.1 −17.3
πC1C2 πC5C6 1.429 1.480 −16.8 −22.0
πC3C4 πC5C6 1.477 1.480 −23.1 −16.4

24 nO8 πN7O9 — 1.511 −162.4 0.
πN7O9 πC1C2 1.511 1.455 −3.2 −25.5
πC1C2 πC3C4 1.455 1.482 −17.1 −23.4
πC1C2 πC5C6 1.455 1.492 −20.7 −20.3
πC3C4 πC5C6 1.482 1.492 −18.4 −21.3

a For reference, the C—C bond order in ethylene is 2.027.
b Entry “0.” corresponds to the quantity being undefined or negligible (less than the printout

threshold of 1.0 kcal mol−1).

Figure 3.41 Similar to Fig. 3.38, for the principal conjugative interaction in benzene, 17.
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The perturbative estimates of Table 3.21 may be compared with a more direct
variational estimate of the pi-type non-Lewis correction (ENL

(π)) to the localized
Lewis structure,

E (π)
NL = Etotal − E (π)

L (3.125a)

where E (π)
L is obtained by deleting the nine possible valence pi-type donor–acceptor

interactions and thus forcing the three pi bonds to remain doubly occupied and
localized.61 In the equilibrium geometry E (π)

NL is found to be

E (π)
NL /3 = −51.7 kcal mol−1 (3.125b)

which is somewhat greater than the second-order perturbative estimate cited above
and indicative of the importance of higher-order perturbative corrections for the
strong delocalization effects in this system.

To see the effect of E (π)
NL on molecular geometry, we can examine E (π)

L (�R) and
E total(�R) along a “distortion coordinate”

�R = Rs − Rd = R2,3 − R1,2 (3.126)

which measures the difference between formal single- and double-bond lengths
in the distortion toward localized “cyclohexatriene” (D3h) geometry. (We hold
Rs + Rd = 2.80 Å, RCH = 1.09 Å, and all bond angles at 120◦ during this dis-
tortion.) Figure 3.42 compares the localized EL

(π)(�R) with the full E total(�R) for
distortions up to |�R| = 0.5 Å, and Fig. 3.43 shows the behavior of ENL

(π)(�R) in
the same range. As expected, E total(�R) is minimized in the undistorted D6h geome-
try at �R = 0, whereas the localized EL

(π)(�R) exhibits minima at |�R| � 0.24 Å,
which is close to the value expected for idealized single and double bonds of un-
conjugated cyclohexatriene.

The difference in these geometrical preferences is evidently provided by ENL
(π),

which is most strongly stabilizing in the symmetric D6h geometry. Figure 3.43 also
includes the corresponding values of ENL

(π) for cis-butadiene (2, “x”), showing
that the conjugative delocalization is weaker (but non-zero!) in the acyclic case,
insufficient to symmetrize the geometry as in 17. The behavior shown in Fig.
3.42 is fully in accord with the classic concept of resonance stabilization of the
symmetric D6h geometry of benzene. However, Fig. 3.43 also emphasizes that
conjugative stabilization is appreciable even in highly distorted benzene geometries
(e.g., ENL

(π) � −30 kcal mol−1 at �R = 0.5 Å).

Cyclobutadiene

In contrast to benzene, the pi-conjugative stabilizations of D4h-symmetric cyclobu-
tadiene, 18, are found to be exactly zero. The absence of conjugative stabilization
may also be judged from the πa−πb

∗ orbital contours in Fig. 3.44. Indeed, it is
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Figure 3.42 Potential-energy curves for benzene (17), comparing the total energy
(Etotal, solid curve) with the energy of the idealized single Lewis structure (EL

(π ),
dotted curve) along a D3h distortion coordinate �R = R2,3 − R1,2 that lowers the
D6h symmetry to “cyclohexatriene” form.

Figure 3.43 The pi-conjugative non-Lewis energy (ENL
(π)) for benzene (17) along

a distortion coordinate (cf. Fig. 3.42). Corresponding values for cis-butadiene (2,
crosses) are shown for comparison. (The cusp-like behavior arises because ENL

(π)

is defined with respect to a different idealized Lewis structure on each side of
�R = 0.)
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Figure 3.44 Similar to Fig. 3.38, for the principal conjugative interaction
in cyclobutadiene, 18.

obvious by symmetry that apolar πa and πb
∗ NBOs cannot have any stabilizing

donor–acceptor interactions in the parallel geometry of 18, and thus 18 is uniquely
disfavored compared with alternative planar diene geometries. This simple distinc-
tion in NBO donor–acceptor interactions accounts quite directly for the unique
“anti”aromatic properties of cyclobutadiene 18 compared with benzene 17 and
other conjugated species.

To achieve non-zero πa−πb
∗ conjugation, the pi NBOs of 18 may polarize in

opposite directions, leading to a wavefunction of lower symmetry than the nuclear
framework. Alternatively, the nuclear framework may distort to diamond-like D2h

geometry. However, each such distortion destabilizes what is already a highly un-
favorable Lewis-structure wavefunction, so cyclobutadiene is expected to remain
highly destabilized relative to other possible polyene topologies.

Whereas the NLMOs of 18 become completely localized (in accordance with
the absence of conjugative stabilization), the canonical MOs remain highly mixed,
providing no real indication of the dramatic change of conjugation compared with
17. Thus, the HOMOs of 17 and 18 are

φHOMO(17) = 0.58p1 + 0.29p2 − 0.29p3 − 0.58p4

−0.29p5 + 0.29p6 (3.127a)

φHOMO(18) = −0.50p1 − 0.50p2 + 0.50p3 + 0.50p4 (3.127b)

both of which are apparently indicative of the “delocalized” character of the pi-
bonding. For 18 such HOMO delocalization is wholly illusory.
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The cyclopentadienyl anion and cation

To determine the distinctions (if any) between conjugative donor–acceptor inter-
actions involving six and those involving four pi electrons, we now examine the
cyclopentadienyl anion 19 and cation 20.

As shown in Table 3.21, the leading n→π∗ versus π→n∗ delocalizations of these
species are rather similar: 76 versus 79 kcal mol−1. The pi NBOs of 20 are strongly
polarized toward the ionic nonbonding center,

πCC(20) = 0.77p2 + 0.64p3 (3.128)

thus weakening their mutual conjugation across the connecting C3—C4 single bond.
Owing to the net ionic charge, the conjugative donor–acceptor interactions are
relatively strong in both species, paralleling the behavior in the acyclic species 7
and 8. One can also recognize that the conjugative effects in the dienes 19 and 20
are somewhat weakened compared with those in the corresponding allylic species
7 and 8, due to anticooperative competition for the “busy” nC or nC

∗ (as discussed
in Section 3.3.1). In all these respects, the six-electron (19) and four-electron (20)
cyclic species exhibit conjugative patterns that are “as expected,” with no sharp
distinction to be drawn between the two cases. Certainly, 20 benefits from significant
conjugative stabilization and therefore cannot be considered “antiaromatic” in the
same sense as cyclobutadiene 18.

The most conspicuous difference between anionic and cationic species involves
their structural symmetry and bond orders. The anion 19 achieves high-symmetry
D5h geometry with equal weightings of the five leading resonance structures and
equivalent C—C bond orders (1.365), whereas the cation is of C2v symmetry, with
relatively high bond order (1.886) in the two formal pi bonds of the leading reso-
nance structure. The dissimilar conjugative effects on geometry can be quantified
in terms of variations in EL

(π)(�R) and E total(�R) along a model distortion co-
ordinate for each species, similar to Fig. 3.42 for benzene. Figure 3.45 compares
such C2v distortion profiles for the cyclopentadienyl anion and cation,62 showing
that the ENL

(π) delocalization is sufficient to stabilize the undistorted D5h geometry
in the former case but not in the latter.

Despite the conspicuously lower symmetry of the four-electron cyclopentadi-
enyl cation, one can judge from comparison of Fig. 3.45(b) with Figs. 3.42 and
3.45(a) that the similarities to the six-electron aromatic species 17 and 19 are
more striking than the differences. In each case, strong conjugative stabilizations
(>100 kcal mol−1 near equilibrium) reduce the equilibrium distortion from sym-
metric geometry (e.g., from �R = 0.24 to �R = 0.16 for 20, or from 0.24 to 0.00
for 17). In fact, one can estimate from Fig. 3.45(b) that strengthening the conjuga-
tive interactions in C5H5

+ by only 10%–15% would suffice to overcome the small
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Figure 3.45 Similar to Fig. 3.42, for C2v distortion of cyclopentadienyl (a) anion,
19, and (b) cation, 20, from idealized D5h symmetry (note 62).

barrier to symmetric D5h geometry, making C5H5
+ appear as “aromatic” as 17 or

19. Thus, the conjugative stabilizations of the four-electron species 20 are only
slightly less impressive than those of 17 or 19, and one sees no real parallel to the
antiaromatic species 18, where such stabilizations are entirely absent.

Borazine

Borazine, 21, is sometimes called “inorganic benzene.” Like benzene, it achieves a
high-symmetry D6h equilibrium structure with equivalent NRT bond orders (1.380)



3.3 Conjugation and aromaticity 205

Figure 3.46 Similar to Fig. 3.38, for principal πBN→πBN
∗ conjugative interac-

tions of borazine, 21, (a) at the N end of πBN and (b) at the B end of πBN.

at each B—N bond. However, unlike benzene the pi NBOs are strongly polarized
toward the more electronegative N atom,

πBN = 0.49pB + 0.87pN (3.129)

and the complementary πa→πb
∗ and πb→πa

∗ interactions between any pair of pi
bonds are far from equivalent, as shown in the overlap contours of Fig. 3.46.

As shown in Table 3.21, the stabilization corresponding to Fig. 3.46(a)
(36.8 kcal mol−1) is nearly twice that of benzene (20.4 kcal mol−1), but the comple-
mentary interaction corresponding to Fig. 3.46(b) is essentially “switched off” (less
than 1 kcal mol−1). Thus, borazine has a strong mono-directional cyclic pattern of
conjugations that is quite unlike that of benzene.

The strong asymmetry of πBN conjugations can also be seen clearly in the form
of the borazine NLMOs,

π̃BN(21) = 0.956πBN + 0.280πBN′ ∗ + 0.080πBN′′ ∗ (3.130)

compared with (3.124) for benzene. Thus, while the magnitude of total conjugative
stabilization in borazine is comparable to that in benzene, the pattern of individual
donor–acceptor interactions is quite distinct. Borazine therefore deserves to be
recognized as having a distinctive “type” of aromaticity compared with benzene,
due to the rectified character of its donor–acceptor delocalizations.

Quinone

Quinone, 22, represents a six-membered carbon ring system with a conjugation
pattern quite unlike that of benzene. As shown by its leading Lewis structure (of
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high NRT weighting: 59.9%), the two pi bonds of the carbocyclic ring are in un-
favorable parallel geometry (cf. cyclobutadiene, 18) and thus experience no mutual
conjugative stabilization from one another. Instead, each πCC is strongly conjugated
(17.8 kcal mol−1) to the exocyclic carbonyl πCO

∗ (in a manner somewhat similar
to Fig. 3.38(c)), while the complementary πCO→πCC

∗ interaction is much weaker
(6.6 kcal mol−1). Thus, the four strong πCC→πCO

∗ interactions of quinone all tend
to delocalize pi charge out of the ring to the exocyclic carbonyl groups, in contrast
to a benzene-like pattern. The short C2—C3 and C5—C6 bond lengths and high
NRT bond orders (1.891) confirm that there is no vestige of benzene-like cyclic
conjugation in this case.

The two π̃CC NLMOs also exhibit the conjugation to the exocyclic carbonyl
groups,

π̃CC(22) = 0.960πCC + 0.192πCO′ ∗ + 0.192πCO′′ ∗ (3.131)

with no trace of conjugation between the two ring C=C bonds. In contrast, the
highest π-type canonical MO,

φ26(22) = −0.50p2 − 0.50p3 + 0.50p5 + 0.50p6 (3.132)

superficially suggests the occurrence of strong mixing of ring pC orbitals (and no in-
volvement of carbonyl orbitals), a quite misleading picture of the actual conjugative
stabilization.

Aniline and nitrobenzene: electrophilic substitution reactivity

We briefly consider the effect of pi-donor or pi-acceptor substituents on aromatic
conjugation patterns for two representative examples; aniline (23) and nitrobenzene
(24). The leading NBO interactions between ring and substituent in these species
are depicted in Fig. 3.47.

As shown in Table 3.21, the principal conjugative stabilization in aniline, 23,
linking the exocyclic substituent with the ring pi system is the nN→πCC

∗ interaction
(24.5 kcal mol−1) depicted in Fig. 3.47(a). This interaction donates pi density from
the amine group into the ring pi system (without a compensating donor–acceptor
interaction in the opposite direction) and is hence “activating” with respect to
electrophilic attack on the aromatic ring system. Furthermore, one can judge from
Fig. 3.47(a) that the vicinal C1—C2 pi bond polarizes slightly from C1 toward
C2, so that its antibond has higher amplitude at the C1 position and is thereby
better able to conjugate with the exocyclic pi donor. This in turn induces a chain
of repolarizations of the remaining pi bonds to maximize their mutual conjugative
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Figure 3.47 Similar to Fig. 3.38, for principal ring-substituent conjugative inter-
actions of (a) aniline, 23, and (b) nitrobenzene, 24. The atoms C1, C2, and N7 are
in the same relative positions in the two diagrams (note that aniline is nonplanar).

interactions, as can be seen in the forms of the NBOs:

πC1C2 = 0.678p1 + 0.735p2 (3.133a)

πC3C4 = 0.690p3 + 0.724p4 (3.133b)

πC5C6 = 0.685p5 + 0.728p6 (3.133c)

As a result of these substituent-induced polarizations, the complementary conjuga-
tive interactions at each ring site become somewhat imbalanced (so that, e.g., the
donor–acceptor interaction from C3—C4 to C5—C6 is 23.1 kcal mol−1, but that
in the opposite direction is only 16.4 kcal mol−1). From the polarization pattern
in (3.133) one can recognize that excess pi density is accumulated at the ortho
(C2, C6) and para (C4) positions, and thus that the reactivity of these sites should
increase with respect to electrophilic attack. This is in accord with the well-known
“o, p-directing” effect of amino substitution in electrophilic aromatic substitution
reactions. Although the localized NBO analysis has been carried out for the spe-
cific Kekulé structure of aniline shown in Fig. 3.40, it is easy to verify that exactly
the same physical conclusions are drawn if one starts from the alternative Kekulé
structure.

Nitrobenzene, 24, illustrates the opposite case of a strong pi-acceptor substituent.
In this case the exocyclic πNO NBO is strongly polarized toward O (away from the
ring)

πNO = 0.629pN + 0.778pO (3.134)

As a result, the vicinal πNO→πCC
∗ interaction is relatively weak (3.2 kcal mol−1)

whereas the complementary πCC→πNO
∗ interaction depicted in Fig. 3.47(b) is
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quite strong (25.5 kcal mol−1), transferring net pi charge from the ring to the nitro
substituent and thus deactivating the ring with respect to electrophilic attack. The
asymmetry of donor–acceptor interactions with the substituent again induces a
chain of polarization changes in the ring pi NBOs, namely

πC1C2 = 0.741p1 + 0.672p2 (3.134a)

πC3C4 = 0.716p3 + 0.698p4 (3.134b)

πC5C6 = 0.718p5 + 0.696p6 (3.134c)

These polarizations are seen to be in the opposite direction to those in aniline (3.133),
so that higher pi density remains at the C1 (junction) and C3 and C5 (meta) positions.
These polarity shifts are again consistent with the well-known “m-directing” effect
of nitro substituents in electrophilic aromatic substitution reactions, and the results
are again quite independent of which starting Kekulé structure is selected for the
localized analysis.63

The predicted patterns of NBO donor–acceptor interactions can of course be
associated (cf. the discussion surrounding (3.110)) with corresponding resonance
diagrams for the substituent-induced conjugation. The localized NBO description
of substituent directing/activating effects is thus perfectly equivalent to standard
textbook discussions in terms of resonance structures (or “electron pushing”), but
with considerable additional quantitative detail.

3.3.3 Comparison with the Hückel picture

In the early years of quantum theory, Hückel developed a remarkably simple form
of MO theory that retains great influence on the concepts of organic chemistry to
this day. The Hückel molecular orbital (HMO) picture for a planar conjugated pi
network is based on the assumption of a minimal basis of orthonormal p-type AOs
{pr} and an effective pi-Hamiltonian ĥ(eff) with matrix elements

hrs = 〈pr|ĥ(eff)|ps〉 (3.135)

between atomic sites r and s. Hückel assumed a constant diagonal value (α) at each
site and non-zero coupling (β) only for adjacent sites (i.e., those connected by a
sigma bond). This leads to the simple expression for HMO matrix elements

hrs = αδrs + βτrs (3.136)

where δrs is the usual Kronecker-delta symbol and τrs is an analogous “adjacency
symbol,”

τrs =
{

1 if r and s are bonded
0 otherwise

(3.137)
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With these approximations the secular determinant for the energy eigenvalue ε

is reduced to sparse banded form; for example, for a linear polyene

∣∣∣∣∣∣∣∣∣∣∣

α − ε β 0 . . . 0
β α − ε β . . . 0
0 β α − ε . . . 0
...

...
...

...
0 0 0 . . . α − ε

∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.138)

By dividing each matrix element by β (i.e., expressing all matrix elements in units
of β) and defining the unknown x as

x = α − ε

β
(3.139)

the secular determinantal polynomial can be written as

D(x) =

∣∣∣∣∣∣∣∣∣∣∣

x 1 0 . . . 0
1 x 1 . . . 0
0 1 x . . . 0
...

...
...

...
0 0 0 . . . x

∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.140)

with site diagonals “x” and non-vanishing couplings “1” only for connected sites
of the network. The ultrasimplified form (3.139) allows exact analytic solutions for
xi and Hückel eigenvalues εi in many important cases.64

Example 3.16

Exercise: Find the Hückel pi-orbital energies εi for 1,3-butadiene.
Solution: For this linear four-site problem,

the HMO secular determinant (3.140) is

D(x) =

∣∣∣∣∣∣∣∣

x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

∣∣∣∣∣∣∣∣
= 0
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Laplace expansion of the determinant gives

D(x) = x

∣∣∣∣∣∣
x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣ −
∣∣∣∣∣∣
1 0 0
1 x 1
0 1 x

∣∣∣∣∣∣
= x4 − 3x2 + 1 = 0

Setting y = x2 and solving the quadratic equation

y2 − 3y + 1 = 0

leads to

y = x2 = 3 ± 51/2

2

or, from (3.138),

ε = α ± β[(3 ± 5−1/2)/2]1/2

The HMO orbital energies are therefore

ε1 = α + 1.6180β

ε2 = α + 0.6180β

ε3 = α − 0.6180β

ε4 = α − 1.6180β

Cyclic polyenes

For the special case of cyclic polyenes, (CH)n , Frost and Musulin65 obtained the
general “circle mnemonic” for the HMO eigenvalues in the form

ε j = α + 2β cos(2π j/n), j = 1, . . . , n (3.141)

According to this expression, the eigenvalues ε j can be pictured as lying on the
periphery of a circle, centered at α and of radius 2β, such that the lowest level lies
at the bottom of the circle, and successive levels are located at successive angular
increments 2π/n (radians) around the circle. This is illustrated in Fig. 3.48 for
benzene, n = 6.

The LCAO-MO expressions corresponding to the HMO orbital energies (3.141)
for the pi MOs φ j can also be obtained, on the basis of symmetry properties of
the cyclic Cn topology.66 For benzene, for example, the results are (renumbered in
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Figure 3.48 The Frost–Musulin circle mnemonic (Eq. (3.141)) for HMO orbital
energies ε j of benzene, n = 6.

order of ascending energy)

ε1 = α + 2β, φ1 = 6−1/2(p1 + p2 + p3 + p4 + p5 + p6) (3.142a)

ε2 = α + β, φ2 = 12−1/2(2p1 + p2 − p3 − 2p4 − p5 + p6) (3.142b)

ε3 = α + β, φ3 = 2−1(p2 + p3 − p5 − p6) (3.142c)

ε4 = α − β, φ4 = 2−1(p2 − p3 + p5 − p6) (3.142d)

ε5 = α − β, φ5 = 12−1/2(2p1 − p2 − p3 + 2p4 − p5 − p6) (3.142e)

ε6 = α − 2β, φ6 = 6−1/2(p1 − p2 + p3 − p4 + p5 − p6) (3.142f)

(Note that, for the degenerate energy levels (3.142b) and (3.142c) or (3.142d) and
(3.142e), any linear combination of the chosen φ2 and φ3 or φ4 and φ5 would be
equally valid.)

Simple HMO expressions such as (3.142a)–(3.142f) are remarkably effective
at representing the qualitative features of conjugated polyenes. Nevertheless, the
entire treatment rests on only the two empirical Hückel parameters α and β of
(3.136), which cannot be expected to represent subtleties of pi conjugation and
dependencies on geometry beyond the level of elementary topology (i.e., atom
connectivity). For example, the ab initio valence pi-orbital energies of benzene are
found to be

ε1 = −0.3725, ε2 = ε3 = −0.2599,

ε4 = ε5 = −0.0180, ε6 = 0.1239 (3.143)

These exhibit the expected degeneracies but not the expected energy splittings of
the HMO energy-level pattern in Fig. 3.48. For example, if one takes

α = (ε1 + ε6)/2 = −0.1243, β = (ε6 − ε1)/4 = −0.1241 (3.144)
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to “fit” α and β to the upper and lower non-degenerate levels, one would predict

ε2(predict) = α + β = −0.2484 (cf. ε2(actual) = −0.2599) (3.145a)

ε4(predict) = α − β = −0.0002 (cf. ε4(actual) = −0.0180) (3.145b)

in appreciable disagreement (�ε2 = 7.2 kcal mol−1, �ε4 = 11.2 kcal mol−1) with
the actual levels. On the other hand, if we fit α and β to the HOMO–LUMO gap

α = (ε4 + ε2)/2 = −0.1390, β = (ε4 − ε2)/2 = −0.1210 (3.146)

the predicted non-degenerate levels are

ε1(predict) = α + 2β = −0.3810 (cf. ε1(actual) = −0.3725) (3.147a)

ε6(predict) = α − 2β = 0.1030 (cf. ε6(actual) = 0.1239) (3.147b)

in error by 5.3 and 13.1 kcal mol−1, respectively. Thus, the HMO pattern in Fig.
3.48 is only a qualitatively correct approximation to the actual pi-orbital energy
levels.

Ab initio Hückel parameters

We can obtain a more direct comparison of the ab initio and Hückel quantities in
terms of the valence pi block of the NAO Fock matrix (or Kohn–Sham matrix)
F(NAO), which provides the direct ab initio counterpart of (3.155):

F(NAO) =




−0.1102 −0.1391 0.0104 −0.0031 0.0104 −0.1391
−0.1391 −0.1102 −0.1391 0.0104 −0.0031 0.0104

0.0104 −0.1391 −0.1102 −0.1391 0.0104 −0.0031
−0.0031 0.0104 −0.1391 −0.1102 −0.1391 0.0104

0.0104 −0.0031 0.0104 −0.1391 −0.1102 −0.1391
−0.1391 0.0104 −0.0031 0.0104 −0.1391 −0.1102




(3.148)

From the diagonal and adjacent off-diagonal elements of F(NAO) one can see that
the ab initio α and β values are67

α = −0.1102 a.u. = −69.2 kcal mol−1

β = −0.1391 a.u. = −87.3 kcal mol−1 (3.149)

Diagonalization of the 6 × 6 F(NAO) (3.148) leads to orbital energies

F(NAO): − 0.3707, −0.2566 [2], 0.0154 [2], 0.1919 (3.150)
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that indeed agree closely with the accurate values (3.143) for the occupied levels,
namely

�ε1 = 1.1 kcal mol−1, �ε2 = 2.1 kcal mol−1 (occupied) (3.151a)

but place the virtual levels far too high in energy:

�ε4 = 21.0 kcal mol−1, �ε6 = 42.7 kcal mol−1 (virtual) (3.151b)

It is evident from (3.15b) that the virtual MOs include important contributions from
Rydberg 3pz , 4pz, . . . NAOs from beyond the formal valence shell. However, these
virtual MOs make no contribution to the wavefunction or any physical properties
of the molecule. We shall therefore concentrate on the occupied MOs (3.151a) for
which the HMO minimal-basis assumption appears rather satisfactory.

It is evident from (3.148) that the ab initio valence pi F(NAO) has the banded
structure

F(NAO) =




α β β ′ β ′′ β ′ β

β α β β ′ β ′′ β ′

β ′ β α β β ′ β ′′

β ′′ β ′ β α β β ′

β ′ β ′′ β ′ β α β

β β ′ β ′′ β ′ β α




(3.152)

with

β ′ = 0.0104 a.u. = 6.5 kcal mol−1, β ′′ = −0.0031 a.u. = −1.9 kcal mol−1

(3.153)

The Hückel approximation (3.136) is equivalent to neglect of β ′ and β ′′ (the “tight-
binding” approximation), leading to the simpler Hückel-type matrix h(HMO):

h(HMO) =




−0.1102 −0.1391 0.0000 0.0000 0.0000 −0.1391
−0.1391 −0.1102 −0.1391 0.0000 0.0000 0.0000

0.0000 −0.1391 −0.1102 −0.1391 0.0000 0.0000
0.0000 0.0000 −0.1391 −0.1102 −0.1391 0.0000
0.0000 0.0000 0.0000 −0.1391 −0.1102 −0.1391

−0.1391 0.0000 0.0000 0.0000 −0.1391 −0.1102




(3.154)

with eigenvalues

h(HMO): − 0.3884, −0.2493 [2], 0.0289 [2], 0.1680 (3.155)
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Comparison of these Hückel-type estimates with the full F(NAO) values of (3.150)
shows that neglect of β ′ and β ′′ leads to errors in the occupied energy levels,

�ε1 = 11.1 kcal mol−1, �ε2 = 4.6 kcal mol−1 (3.156)

that are 2–10 times larger than those in (3.151a). Thus, the errors inherent in the
tight-binding approximation (3.136) are much more severe than those associated
with the assumption (3.135) of an effective minimal-basis pi-electron Hamiltonian.

For completeness, we can also consider the corresponding 6 × 6 F(NBO) in the
NBO pi basis (i.e., the basis of π12, π34, π56, π12

∗, π34
∗, π56

∗ NBOs),

F(NBO) =




−0.2510 −0.0601 −0.0601 0.0000 0.0674 0.0674
−0.0601 −0.2510 −0.0601 0.0674 0.0000 −0.0674
−0.0601 −0.0601 −0.2510 −0.0674 −0.0674 0.0000

0.0000 0.0674 −0.0674 0.0282 −0.0814 0.0814
0.0674 0.0000 −0.0674 −0.0814 0.0282 −0.0814
0.0674 −0.0674 0.0000 0.0814 −0.0814 0.0282




(3.157)

This contains only diagonal and vicinal matrix elements of the following types:

〈πa|F̂ |πa〉 = −0.2510 (3.158a)

〈πa
∗|F̂ |πa

∗〉 = 0.0282 (3.158b)

〈πa|F̂ |πb〉 = −0.0601 (3.158c)

〈πa|F̂ |πb
∗〉 = ±0.0674 (3.158d)

〈πa
∗|F̂ |πb

∗〉 = ±0.0814 (3.158e)

Diagonalization of F(NBO) leads to the eigenvalues

F(NBO): − 0.3712, −0.2576 [2], 0.0135 [2], 0.1910 (3.159)

which agree still more closely with the full ab initio occupied levels in (3.143),

�ε1 = 0.8 kcal mol−1, �ε2 = 1.4 kcal mol−1 (3.160)

Comparison with (3.156) shows that F(NBO) is intrinsically of significantly higher
accuracy than h(HMO) for describing the actual pi interactions of benzene. Because
F(NBO) is the fundamental starting point for localized NBO analysis of conjugative
interactions, we can conclude that the NBO donor–acceptor picture is inherently
more accurate than that based on the Hückel tight-binding approximation.
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3.4 Hyperconjugation

3.4.1 Mulliken “primary” hyperconjugation

R. S. Mulliken68 first recognized that alkyl and other saturated substituents alter a
pi-bonded substrate in a manner that suggests “extension of the conjugation chain”
into the sigma-bonded moiety (albeit in weakened form). In toluene, for exam-
ple, the effects of the attached methyl group on spectroscopic π–π∗ excitations
of the aromatic ring are closely analogous to (although weaker than) character-
istic conjugative effects of pi-bonded substituents. Mulliken labeled such sigma-
extended (π–σ∗ or σ–π∗) conjugation as “hyperconjugation” to distinguish it from
more familiar conjugative interactions between pi moieties. We may also speak of
“primary” hyperconjugation to distinguish this case from the σ–σ∗ (“secondary”)
hyperconjugation to be discussed in Section 3.4.2.

While strict π–σ interactions are, of course, forbidden by symmetry, it is con-
venient to continue to refer to the “pi-like” and “sigma-like” bonds in molecules
(such as toluene) that lack strict sigma-pi symmetry. Such informal use of symme-
try labels is strongly supported by the NBOs, which clearly retain the effective σ

or π symmetry of the local bonding environment even in molecules of low sym-
metry. Thus, with a slightly relaxed usage of the symmetry labels we can refer
to “π→σ∗” or “σ→π∗” donor–acceptor interactions without essential ambiguity,
and thereby recognize these interactions as hyperconjugative generalizations of the
more familiar π→π∗ conjugative interactions discussed in Section 3.3.

Robert S. Mulliken
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A simple example of the effect of an attached saturated group X on a pi bond,

is given by propene (25, X=CH3). In this case the principal hyperconjugative effects
are associated with NBO donor–acceptor interactions between the C1— C2 pi bond
and the two out-of-plane C—H sigma bonds

Because C1, C2, C3, and H do not lie in a common plane, it is more difficult to
visualize hyperconjugation (σ–π∗ or σ∗–π) involving the sigma-bonded C3—H and
pi-bonded C1—C2 NBOs. Figure 3.49 depicts NBO contours of these interactions
in two chosen contour planes: (1) a “pi plane” 1 Å above the C3C2C1 skeletal
plane, analogous to Fig. 3.38 (on the left); and (2) a perpendicular “sigma plane”
passing through C3—C2 and bisecting the two out-of-plane C—H bonds (on the
right). Although neither view gives a completely satisfactory representation, one
can recognize that the σCH→πCC

∗ interaction (b) is somewhat stronger than the
πCC→σCH

∗ interaction (a). This is confirmed by NBO perturbative analysis, for
which the corresponding stabilizations are (a) 2.8 kcal mol−1 and (b) 4.0 kcal mol−1.
These hyperconjugative stabilizations are significantly weaker than typical π→π∗

conjugative stabilizations of Section 3.3, but nevertheless chemically appreciable.
The characteristic changes in the vinyl group resulting from hyperconjugative

interactions with a variety of substituent groups X (X=CH3, CFH2, NH2, OH, F) are
summarized in Table 3.22. For each substituent X, the table shows the vinyl C—C
bond order and polarization (percentage of πCC on C1), the form of the π̃CC and
π̃CC

∗ NLMOs, and the hyperconjugative stabilizations with available out-of-plane
NBOs of X.

We now discuss systematic hyperconjugative effects on orbital composition and
stabilization, torsion barriers, and spectroscopic properties, for the CH2=CHX
species summarized in Table 3.22.

Hyperconjugative effects on stabilization and orbital composition

From Table 3.22 one can see that typical hyperconjugative interactions of vinyl pi
bonds with hydride bonds are rather weak (2–4 kcal mol−1), but those with lone
pairs are considerably stronger (7–30 kcal mol−1). (Of course, a more polar pi bond
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Figure 3.49 Orbital contours for hyperconjugative interactions in propene:
(a) σ∗–π and (b) σ–π∗. The contour plane on the left is chosen 1 Å below (a)
or above (b) the C3C2C1 plane, while that on the right is perpendicular to the
C3C2C1 plane, passing through C3—C2.

would exhibit still stronger effects, for example the ∼60 kcal mol−1 nN→πCO
∗ sta-

bilization of amide 5 in Table 3.19.) These interactions typically polarize the vinyl
πCC NBO by 2%–5% (against the expected inductive shift due to electronegativity
differences), reduce the C—C bond order to 1.95–1.98, and add significant delo-
calization tails to one or both of the π̃CC and π̃CC

∗ NLMOs (thereby altering the
expected character of spectroscopic π→π∗ transitions, as discussed below).

The relative strengths of hyperconjugative stabilizations could be rationalized
with contour plots similar to Fig. 3.49. The most important features of such plots
could be predicted from the transferable forms of the NBOs (cf. Figs. 3.16 and 3.25)
and expected variations with electronegativity (Sections 3.2.5 and 3.2.8). As shown
in Fig. 3.49, the hyperconjugating σX and σX

∗ NBOs are typically canted away from
the pi NBOs, weakening their interactions compared with “ordinary” (π–π∗) con-
jugative stabilizations in Table 3.19. However, the dependences on bond/antibond
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polarity, single-center character, ionic character, spatial proximity, and extended
conjugation network pattern would closely parallel those discussed in Section 3.3.1.

The conjugative stabilizations in turn are clearly reflected in the forms of the
NLMOs. The polar fluoride bond of X = CFH2 has σCF

∗ strongly polarized toward
C3 and is able to act as a relatively strong pi-acceptor to πCC (6.5 kcal mol−1), which
becomes polarized toward the connecting C2. The relatively strong mixing of σCF

∗

(coefficient 0.115) into the π̃CC then leads to π̃CC being more delocalized than πCC
∗

in this case. For the remaining substituents in Table 3.22, the X group serves as a
net pi-donor into πCC

∗. The vinyl πCC accordingly polarizes toward C1, so πCC
∗

is polarized toward C2 and π̃CC
∗ acquires the more pronounced delocalization tail,

whereas π̃CC remains relatively well localized.
As shown by the comparison of vinylamine (X = NH2, Table 3.22) with ani-

line (23, Table 3.21), the hyperconjugative interactions with an aromatic ring
can be strongly enhanced compared with those with an isolated vinyl group
(24.5 kcal mol−1 versus 7.2 kcal mol−1 for the nN→πCC

∗ interaction). This reflects
the strong cooperative enhancement of the aromatic conjugation chain, which al-
lows the adjacent πCC bond to polarize more strongly (54% toward C1, Eq. (3.133a),
which is nearly as strong as the polarization in CH2=CHX for X = OH). In other
respects, hyperconjugative interactions with the NBOs of a conjugated ring are
qualitatively similar to those with a vinyl pi bond.

A particularly dramatic effect of hyperconjugation on the form of the ethylenic
double bond NBOs is shown in Fig. 3.50. This figure depicts one of the two equiv-
alent C=C bond and antibond NBOs of vinylamine, twisted slightly out of copla-
narity with the nitrogen lone pair with dihedral φ (C—C—N—lp) angle 80◦ (where

Figure 3.50 Carbon–carbon NBOs of CH2=CHNH2 at φ (C–C–N–lp)= 80◦,
showing the ethylenic “banana bond” (left) and “banana antibond” (right) for this
strongly hyperconjugating low-symmetry system. (The second bond and antibond
are symmetry-related by reflection through a plane containing the nuclei.)
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“lp” denotes the nominal lone-pair direction, in the plane bisecting the two N—H
bond vectors). As shown in Fig. 3.50, each of the two ethylenic NBOs is a “banana
bond,” deviating strongly from the usual sigma/pi forms for ethylene (Fig. 3.11).

The unusual form of the C=C NBOs in Fig. 3.50 is clearly related to hypercon-
jugative interactions with the nN lone pair. In the φ = 80◦ geometry, the nN has
comparable delocalizations into both “banana antibonds” (stabilization energies
of 8.41 and 7.06 kcal mol−1). The C=C NBOs revert rather abruptly to their usual
sigma/pi form as nN is twisted to somewhat smaller φ values (e.g., φ = 70◦), further
away from coplanarity with the formal vinyl π-bond plane, and the same limit is
recovered at the φ = 180◦ geometry

where only “secondary” nN−σCC
∗ hyperconjugation is allowed by symmetry. Such

sigma/pi breakdown suggests (correctly) that the distinction between “primary”
(π–σ∗ or σ–π∗) and “secondary” (σ–σ∗, Section 3.4.2) hyperconjugation is only
qualitatively valid. While banana bonds blur the distinction between primary and
secondary hyperconjugation, they do not appreciably alter the sum of such contri-
butions in a general low-symmetry unsaturated species.

Hyperconjugative effects on torsion barriers

The barrier to internal rotation about the C—X single bond of CH2=CHX species
reflects a complex interplay of steric, electrostatic, and hyperconjugative factors.
The orbital diagrams in Fig. 3.49 suggest why hyperconjugative interactions must
be strong contributors to conformational preferences. As shown in Fig. 3.49, each
〈πCC|F̂ |σCH

∗〉 or 〈πCC
∗|F̂ |σCH〉 interaction is maximized when the hyperconjugat-

ing orbitals are in a common plane. This dependence on geometry is analogous to
the well-known case of conjugative π–π∗ interactions, which are maximized when
the conjugating pi orbitals are coplanar.

Let us consider the torsional behavior for fluoropropene (H2=CHCFH2) as the
—CFH2 group is twisted about the connecting C—C single bond to the vinyl group
(all other geometrical variables being allowed to relax to their optimal values along
the torsional coordinate). As shown in the solid curve of Fig. 3.51, two torsional
isomers of this molecule are almost equal in energy: the planar skeletal conformer
at φCCCF = 0, having the C—F bond eclipsing the coplanar double bond, and the
twisted skeletal conformer at φ � 120, having C—F twisted out of the vinyl plane.



3.4 Hyperconjugation 221

Figure 3.51 The barrier to internal rotation about the C—C single bond of
CH2FCH=CH2, showing the total energy (solid line), localized Lewis compo-
nent E (L) (dashed line), and delocalized non-Lewis component E (NL) (dotted line)
as functions of the dihedral angle φCCCF.

Surprisingly, the coplanar s-trans conformer (φ = 180) having the C—F bond
pointed away from the vinyl group is a maximum of the torsional potential, even
though it appears to be the best configuration to alleviate “steric congestion” with
the proximal vinyl proton. Similar conformational preferences are found for other
X groups, regardless of polarity. This is a simple example of torsional preferences
that are “surprising” from a steric or electrostatic viewpoint.

Figure 3.51 also contains a dissection of the total energy (Etotal) into Lewis
(E (L)) and non-Lewis (E (NL)) components. The localized Lewis component E (L)

corresponds to more than 99.3% of the full electron density, and so incorporates
steric and classical electrostatic effects in nearly exact fashion. Yet, as shown in
Fig. 3.51, this component predicts local minima (at φ � 70◦ and 180◦) and maxima
(at φ = 0◦ and ∼130◦) that are opposite to those of the full potential. In contrast, the
non-Lewis component E (NL) exhibits a stronger torsional dependence that is able to
“cancel out” the unphysical behavior predicted by E (L), leading to minima correctly
located near 0◦ and 120◦. Thus, the hyperconjugative interactions incorporated in
E (NL) clearly provide the “surprising” stabilization of 0◦ and ∼120◦ conformers
that counter the expected steric and electrostatic effects contained in E (L).
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Figure 3.52 Leading hyperconjugative stabilizations in CFH2CH = CH2, showing
the torsional dependence of π–σ∗ (solid lines) and σ–π∗ interactions (dotted lines)
for the C—F (crosses) and two C—H bonds (triangles, circles) of the—CFH2
group. The sum of all six interactions is shown as the heavy solid line (squares),
which may be compared with the total barrier potential in Fig. 3.51.

Let us examine the hyperconjugative interactions in greater detail. Figure 3.52
illustrates the torsional dependence of each of the six possible π–σ∗ or σ–π∗

interactions in this case, together with their sum (squares, heavy solid line). One
can see, for example, that the π–σCF

∗ interaction (crosses, solid line) is largest in
magnitude (∼8.6 kcal mol−1) and exhibits the expected sine-like dependence that is
most stabilizing at φ = 90◦ where the orbitals are coplanar. The corresponding σCF–
π∗ interaction (crosses, dotted line) is also strongest at φ = 90◦, but its maximum
magnitude is weakest of the six interactions (due to the unfavorable polarization of
the σCF donor away from the πCC

∗ acceptor). Thus, the total stabilization at 90◦ is
relatively weaker than at adjacent angles, where the more “balanced” π–σCH

∗ and
σCH–π∗ become appreciable. As Fig. 3.52 shows, the total stabilization of these
six hyperconjugative interactions is strongest at 0◦ and ∼120◦, where the actual
minima of E (NL) and Etotal are found.

The rather confusing conformational dependences in Fig. 3.52 can be ratio-
nalized in a simple way. From the total of π–σ∗ and σ–π∗ stabilizations at their
respective coplanar alignments with the pi system, one can confirm that C—H bonds
are better overall hyperconjugating groups than C—F bonds. The most favorable
hyperconjugative alignment is therefore to place both C—H bonds maximally out-
of-plane (i.e., C—F in-plane) at φ = 0◦, whereas a secondary favorable alignment
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is to place C—F and C—H symmetrically out-of-plane (i.e., the other C—H in-
plane) at φ � 120◦, both in trans-like relationship to the pi bond. In other words,
the favored conformation is that in which the poorest hyperconjugating bond (C—
F) eclipses the C=C double bond (so that the remaining two C—H bonds are
maximally out of plane), while the alternative minima are those in which a C—
H bond eclipses C—C, leaving the alternative C—H and C—F bonds maximally
out-of-plane.

Still another way to picture the conformational preferences is to visualize the
C=C double bond in terms of two equivalent banana bonds (Fig. 3.50). In this
picture the preferred conformations are those with C—F in staggered orientation
with respect to the three bonds (two banana bonds and one C—H bond) of the
vinyl moiety, analogous to the preferred conformations of ethane. However, in
using this ethane-like mnemonic one should recall that its essential origin lies in
the hyperconjugative interactions of E (NL) rather than the steric and electrostatic
interactions of E (L).

From comparison of Figs. 3.51 and 3.52 one can judge that E (NL) includes contri-
butions other than the six primary hyperconjugative interactions of Fig. 3.52. These
omitted contributions are principally of “secondary” σ–σ∗ type, to be discussed in
Section 3.4.2. However, these weaker hyperconjugative interactions do not signif-
icantly alter the preferred conformational angles established by the dominant six
interactions of Fig. 3.52.

It is also interesting to note from Fig. 3.51 that the conformational dependences
of E (L) and E (NL) exhibit complementary “mirror-image” shapes (but with larger
amplitude of the dominant E (NL) term). This complementarity can be simply ratio-
nalized from consideration of the rather similar dihedral dependence of repulsive
donor–donor (π–σ) and stabilizing donor–acceptor (π–σ∗ or σ–π∗) interactions
that dominate E (L) and E (NL), respectively. Thus, any change in the carbon hybrid
of the C–F bond will be reflected both in σCF and in σCF

∗ NBOs, leading to re-
spective complementary interactions with πCC that are partly offsetting. The overall
torsional potential shown in Fig. 3.51 is therefore the net resultant of opposing inter-
actions (donor–donor versus donor–acceptor) that are inextricably linked through
the underlying Lewis and non-Lewis NBOs.

Hyperconjugative effects on spectroscopic excitations

From the repolarizations of πCC NBOs and the modified forms of the π̃CC and π̃CC
∗

NLMOs shown in Table 3.22, one expects that the spectroscopic properties of the
vinyl chromophore will be strongly altered by hyperconjugative interactions. To
examine this effect, we consider the lowest allowed valence π→π∗ singlet and
triplet electronic excitations. Figure 3.53 compares the vertical transition energies
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Figure 3.53 Vertical π→π∗ excitation energies (�Eexc for valence singlet (circles)
and triplet (triangles) excitations of substituted CH2=CHX compounds. (Singlet
states were calculated at CIS/6-311++G∗∗, triplet states at B3LYP/6-311++G∗∗
level.)

(�Eexc) for the various CH2=CHX species, with unsubstituted ethylene included
for reference.

As shown in Fig. 3.53, the trends with substitution X are generally similar for
singlet and triplet excitations. With the exception of singlet X = F (which is little
shifted), the effect of substitution in both spin states is generally to red-shift the
π→π∗ excitation relative to parent propene, showing that hyperconjugative sub-
stitution stabilizes the excited state even more than the ground state. In each case
the spectral shift is greatest for an amino group, with the effect diminishing in the
sequence X = NH2, OH, F. Because 1.3ππ∗ excited states are expected to exhibit
many similarities in a simple Hückel or Koopmans picture, we give primary at-
tention to the lower-lying triplet species, which can be calculated and analyzed by
methods parallel to those used for the ground state.

Let us consider the generic case of a lone-pair-bearing substituent Ẍ. Formal
promotion to the 3ππ∗ configuration leads to the triplet excited Lewis structure 26a
shown below, with diradical character on the adjacent carbon nuclei. However, the
nonbonded nX

↓ of the substituent is expected to donate strongly into the vacant
nC

∗↓ of the adjacent carbon, leading to a formal one-electron “half-bond” between
C and X with diradical spin density primarily on the terminal C and X atoms,
as shown in resonance structure 26b. The relative weighting (w26a, w26b) of these
two resonance structures will be increasingly shifted toward 26b as X becomes a
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stronger pi-donor, resulting in increased bCX bond order (and shorter C—X bond
length, if the excited-state geometry is allowed to relax).

The optimal NBO/NRT description of the triplet excited state corresponds
most closely to 26b, with fairly ordinary “single” bond orders for C—H (bCH =
0.98–0.99) and C—C (1.02–1.04), but significant double-bond C–X character for
X=NH2(bCN = 1.490), OH(bOH = 1.486), and F (bCF = 1.739). Thus, the “singly
filled orbitals” in these excited states do not resemble the ground-state HOMO and
LUMO (as expected in a simple Hückel or Koopmans-like picture), but instead
are primarily nonbonding nC

↑ and nX
↑ orbitals on the terminal C and X atoms.

The formally vacated valence orbital is a nonbonding nC
∗↓ on the terminal C,

acting as a strong acceptor for the πCX
↓ donor. For example, the estimated second-

order stabilization energy is 11.47 kcal mol−1 for the πCN
↓→nC

∗↓ interaction when
X = NH2.

Figure 3.54 shows the form of two singly occupied spin-NBOs in the vinylamine
triplet excited state: the πCN

↓ “half-bond” of the β spin set (Fig. 3.54(a)) and
the terminal nC

↑ radical orbital of the α spin set (Fig. 3.54(b)). Neither of these
orbitals has a true counterpart in the MOs or NBOs of the ground-state molecule.
These results emphasize that hyperconjugative reorganization is a strong feature of
the excited-state orbitals, and the oversimplified HOMO–LUMO (Koopmans-like)

Figure 3.54 Singly occupied spin-NBOs of the lowest triplet π→π∗ excited state
of vinylamine (X = NH2): (a) The πCN

↓ “half-bond,” β spin; and (b) the nC
↑ radical

orbital of the terminal C atom, α spin.
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picture may fail to provide even a qualitatively useful description of the electronic
distribution of the excited state.

For X = CH3 the hyperconjugative interactions are expected to be signifi-
cantly weaker than those with a lone-pair-bearing substituent. In this case the reso-
nance structure corresponding to 26a is dominant (w26a = 90.9%) and the bond to
the methyl carbon has only slight partial double-bond character (bCC = 1.050). The
hyperconjugative red-shift induced by the methyl group is therefore weaker and the
expected increase in the barrier to internal rotation much smaller than in the C—X
cases discussed above. Nevertheless, it is evident that a methyl group has a degree
of “conjugative” capacity with respect to other chemical moieties. We are therefore
led to investigation of the mutual conjugative interactions of methyl groups (or
other formally saturated groups), as will be taken up in the following section.

3.4.2 Secondary (σ–σ∗) hyperconjugation

Given the reality of primary (σ–π∗, π–σ∗) hyperconjugative effects in unsaturated
systems, it is reasonable to expect that corresponding “secondary” (σ–σ∗) hyper-
conjugative effects must be present in completely saturated systems, even if weak-
ened in magnitude. The distinction between “sigma” and “pi” moieties is, after all,
not rigorously symmetry-based in the vast majority of unsaturated compounds, and
sigma–pi separability is found to lose even qualitative validity in certain limits, such
as the vinylamine “banana bonds” of Fig. 3.50. From the expected continuity of
solutions of Schrödinger’s equation one can therefore conclude that the differences
among conjugative (π–π∗), primary hyperconjugative (π–σ∗, σ–π∗), and secondary
hyperconjugative (σ–σ∗) interactions must be matters of degree, not of principle. In
the present section we extend the study of hyperconjugative delocalization effects
to fully saturated molecules.

The σ–σ∗ delocalization effects tend to be weaker in magnitude and are often well
hidden in the complex non-transferable forms of MOs. Older structural and ther-
mochemical methods were often insensitive to subtle effects of long-range electron
delocalization, such as are now routinely seen in NMR spin–spin couplings, vibra-
tional shifts, photoelectron splittings, and other sensitive experimental diagnostics.
Full recognition of the structural and energetic influence of sigma-conjugative ef-
fects was therefore somewhat delayed and subject to controversy, compared with
corresponding pi-conjugative effects. However, NBO analysis (which makes no
intrinsic distinction between sigma and pi character) now provides a much more
direct way to exhibit the many parallels between sigma and pi delocalization in
accurate wavefunctions. In the present section we examine various hyperconjuga-
tive σ–σ∗ effects on torsional barriers, intramolecular vibrational coupling, and
chemical reactivity patterns.
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The internal rotation barrier of ethane

Why is there a barrier to internal rotation about single bonds? Mulliken69 first
conjectured that secondary hyperconjugation might play an important role in the
internal rotation potential of ethane-like molecules. Early attempts to account for
the famous torsion barrier of ∼3 kcal mol−1 in ethane focussed on classical elec-
trostatics, steric effects, van der Waals (dispersion) forces, and d- and f-orbital
participation, with notable lack of predictive success.70 Unfortunately, Mulliken’s
initial estimate of the secondary hyperconjugative effect was very crude, seeming
to suggest that such effects were too small to account for observed barriers, and
the idea was largely forgotten until the semi-empirical MO studies of Brunck and
Weinhold71 in the 1970s.

By that time a large number of ab initio and semi-empirical computational stud-
ies72 had shown that ethane-like rotation barriers are remarkably insensitive to
theoretical level, and that the existence of torsion barriers must therefore reflect
very qualitative wavefunction features of “low information content.”73 Brunck and
Weinhold showed how the torsional energy difference arises simply from the quali-
tative shapes of vicinal σCH and σCH

∗ bond orbitals in the characteristic anti and syn
periplanar arrangements of staggered and eclipsed conformers, as illustrated in the
two panels of Fig. 3.55. From these panels one can readily judge that the σCH–σCH

∗

donor–acceptor interactions are sharply reduced in the cis-like arrangement (Fig.
3.55(b)) compared with the trans-like arrangement (Fig. 3.55(a)), due to unfavor-
able cancellation in the latter case as the nodal plane of the C—H antibond cuts
through the main lobe of the C—H bond orbital.74 This visual estimate is confirmed
by the numerical overlap integrals shown in Fig. 3.55, which differ in magnitude
by approximately a factor of two, favoring stronger hyperconjugative stabilizations
in the staggered conformer.

Figure 3.55 Leading σCH–σCH
∗ hyperconjugative donor–acceptor interactions in

the staggered (left) and eclipsed (right) conformers of ethane.
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Figure 3.56 The rotation-barrier profile for CH3CH3 in (a) fully optimized and
(b) idealized rigid-rotor geometry, showing the total energy Etotal (circles, solid
line), vicinal σCH–σCH

∗ stabilization Eσσ∗(2) (circles, dotted line), and steric energy
Esteric (squares, dashed line).

Second-order perturbative estimates indicate that each trans-like donor–acceptor
interaction (Fig. 3.55(a)) stabilizes the molecule by 2.58 kcal mol−1, compared
with only 0.89 kcal mol−1 for the cis-like interaction (Fig. 3.55(b)). The smaller
gauche-like stabilizations (0.20 kcal mol−1 at 60◦ in the staggered conformer,
0.70 kcal mol−1 at 120◦ in the eclipsed conformer) diminish the difference some-
what, but still preserve a significant hyperconjugative advantage for the staggered
conformer.

Figure 3.56(a) shows the calculated torsional potential of ethane with fully re-
laxed geometry, comparing the full torsional profile (Etotal, solid line) with the sum
of vicinal σCH–σCH

∗ interactions Eσσ∗ (2), dotted line) and the steric energy Esteric,
dashed line) at each φ. As expected, the hyperconjugative Eσσ∗ (2) favors the stag-
gered conformer (φ = 60) and generally parallels the full Etotal. Surprisingly, the
steric term Esteric appears to favor strongly the eclipsed conformation! However,
this result is somewhat misleading. If we carry out a similar calculation for idealized
rigid rotor geometry, with no relaxation of other geometrical variables along the tor-
sional coordinate, we obtain the results shown in Fig. 3.56(b). While the curves for
the total barrier Etotal and hyperconjugative Eσσ∗ (2) are generally similar in the two
models, the steric dependence in the “pure” torsion model (b) is found to be entirely
negligible (<0.1 kcal mol−1). From comparison of Figs. 3.56(a) and (b) it becomes
clear that the steric strain in the equilibrium staggered geometry is largely induced
by changes in geometry that result from hyperconjugative interactions in the fully
relaxed geometry75 (as discussed below). The common feature of Figs. 3.56(a) and
(b) is the dominance of the hyperconjugative interactions in dictating the overall
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Figure 3.57 Similar to Fig. 3.56(b), for the uncorrelated (RHF) rigid-rotor model.
The Lewis (E (L), squares, light solid line) and non-Lewis (E (NL), circles, light solid
line) components of E(total) are shown for comparison.

conformational preference, with steric interactions (if significant at all) tending to
oppose the favored staggered geometry.

To demonstrate further that the picture of hyperconjugative control of ethane
torsions is insensitive to theoretical level, we show in Fig. 3.57 a compari-
son uncorrelated calculation (RHF/6-311++G∗∗ level) with the same idealized
rigid-rotor geometry as that employed in Fig. 3.56(b). The general similarity to
Fig. 3.56(b) is evident, showing that electron correlation effects (including van der
Waals dispersion interactions) do not appreciably affect the overall barrier profile,
or its hyperconjugative and steric contributions. Figure 3.57 also includes the dis-
section of the total energy into Lewis and non-Lewis components (analogously to
Fig. 3.51). The localized Lewis component E (L) incorporates the main steric and
electrostatic contributions, whereas the non-Lewis component E (NL) closely corre-
sponds to the hyperconjugative Eσσ∗ (2). The localized E (L) is seen to favor the
eclipsed conformation (slightly), whereas the non-Lewis E (NL) strongly favors
the staggered conformation, as expected from consideration of Fig. 3.55. Thus,
the hyperconjugative donor–acceptor interactions contained in E (NL), rather than
electrostatic and steric interactions in E (L), lead to the observed preference for the
staggered conformation by about 3 kcal mol−1.

The “four-electron destabilization” rationale

The rotation barrier of ethane is sometimes “explained” in terms of the mnemonic
energy-level-splitting diagram shown in Fig. 3.58. The figure purports to de-
pict how two filled MOs of ethane (φ− and φ+) evolve perturbatively from two
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Figure 3.58 The mnemonic energy-level-splitting diagram for the “four-electron
destabilizing” interaction of two occupied non-orthogonal orbitals.

non-orthogonal orbitals χa and χb with overlap Sab = 〈χa|χb〉. As shown in Fig.
3.58, an asymmetric splitting pattern (with �E4e ∝ Sab

2) leads to net destabilization
of the four-electron system whenever Sab 
= 0.

Figure 3.58 originated in Coulson’s remark76 concerning the variational 2 × 2
secular determinant for interacting helium atoms, where χa = 1sa and χb = 1sb

are the only two significant contributing orbitals. In this case the mnemonic dia-
gram correctly represents the net repulsive character of the variational solutions at
small R (cf. Example 1.14). A PMO (perturbative molecular orbital) rationalization
of Fig. 3.58 was subsequently developed77 and has become deeply entrenched in
the research literature of physical organic chemistry.78 For the specific case of the
ethane barrier, Fig. 3.58 is pictured as describing the interaction of two vicinal C—H
bond orbitals σCH and σC′H′ with overlap Sσσ′ = 〈σCH|σC′H′ 〉. Because Sσσ′ is envi-
sioned to be larger in the syn arrangement, the rotation barrier is “explained” as a
four-electron destabilizing steric effect, supposedly similar to He · · · He repulsion.

However, application of the four-electron destabilizing rationale to the ethane
barrier is misleading for three reasons.

(1) There is no proper perturbative basis for the mnemonic diagram in Fig. 3.58, because the
non-orthogonal “unperturbed orbitals” cannot correspond to any physical (Hermitian)
unperturbed Hamiltonian operator,79 as illustrated in Examples 3.17 and 3.18 below.
The PMO interpretation of Fig. 3.58 therefore rests on an unphysical starting point.
Removal of orbital overlap (to restore Hermiticity) eliminates the supposed “effect.”80

(2) The actual Fock-matrix elements between orthogonalized σCH and σC′H′ orbitals are
too small to account for appreciable conformational energy differences in the actual
geometry of ethane (as can be seen from the small numerical values of Esteric in Fig. 3.57).

(3) The 2 × 2 PMO treatment neglects the numerically comparable interactions with ac-
ceptor σCH

∗ and σC′H′ ∗ orbitals. Thus (unlike He · · · He), it is numerically unjustified
to consider the 2 × 2 (σCH, σC′H′ ) secular determinant as a valid approximation to the
full (σCH, σC′H′ , σCH

∗, σC′H′ ∗) variational problem.
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In fact, when the ethane problem is treated properly with inclusion of all four con-
tributing unperturbed NBOs (properly orthogonalized eigenfunctions of a properly
Hermitian unperturbed Hamiltonian Ĥ (L); cf. Section 1.5), the net “�E4e” energy
difference is found to be essentially equivalent to the two-electron σCH − σC′H′ ∗

donor–acceptor stabilization depicted in Fig. 1.3 (to within the accuracy of
Mulliken-type approximations for the various matrix elements involved).81 Thus,
there is no reason to conclude that the “four-electron destabilizing” mnemonic
presents a valid perturbative picture of the important barrier-determining interac-
tions in ethane, or that such PMO reasoning can be taken as valid evidence of a
steric origin of the rotation barrier of ethane.

Example 3.17

Exercise: For the PMO treatment of interacting non-orthogonal orbitals χa and χb, what is
the “unperturbed Hamiltonian” corresponding to setting hab = 〈χa|Ĥeff|χb〉 to zero? Is it the
same as the operator whose eigenfunctions are χa and χb, with corresponding eigenvalues
εa and εb?

Solution: Let us first choose a reference orthonormal set {φ1, φ2} to be used consistently
in displaying the various matrices and vectors under discussion. For simplicity, we choose
{φ1, φ2} to be the (“Löwdin-orthogonalized”) functions that are closest to χa and χb in the
mean-squared-deviation sense. The non-orthogonal functions χa and χb (with〈χa|χb〉 = S)
can then be expressed in terms of reference orthonormal functions as

χa = c1φ1 + c2φ2

χb = c2φ1 + c1φ2

where c1 and c2 are found to be

c1 = (1 + S)1/2 + (1 − S)1/2

2

c2 = (1 + S)1/2 − (1 − S)1/2

2

The equivalent column vectors are

χa =
(

c1

c2

)

χb =
(

c2

c1

)

and can easily be verified to have the desired scalar products

χa
†χa = χb

†χb = 1, χa
†χb = S
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Now suppose that we begin with the full (“perturbed”) secular determinant of the form

0 =
∣∣∣∣ εa − E hab − ES
hab − ES εb − E

∣∣∣∣ = det|H − ES|

where

H =
(

εa hab

hab εb

)
, S =

(
1 S
S 1

)

From the rules of determinantal algebra we can write

0 = det|S−1/2|det|H − ES|det|S−1/2|
= det|S−1/2H S−1/2 − EI|
= det|H′ − EI|

to express the secular determinant equivalently in the orthonormal reference basis. The
matrix elements of H′ = S−1/2HS−1/2 are found to be

H′ = 1

1− S2

×
(

(εa +εb)/2+ (1− S2)1/2(εa −εb)/2− Shab hab − S(εa +εb)/2
hab − S(εa +εb)/2 (εa +εb)/2− (1− S2)1/2(εa −εb)/2− Shab

)

The “unperturbed Hamiltonian” (H′(0)) corresponding to setting hab to zero is therefore

H′(0) = 1

1 − S2

×
(

(εa + εb)/2+(1 − S2)1/2(εa − εb)/2 − S(εa + εb)/2
− S(εa+εb)/2 (εa + εb)/2 − (1 − S2)1/2(εa − εb)/2

)

However, it is easy to verify that neither χa nor χb is an eigenvector of this “unperturbed
Hamiltonian,” and neither are εa and εb its eigenvalues (see Example 3.18). More generally,
since H′(0) is clearly Hermitian, it cannot have any non-orthogonal eigenvectors, by virtue
of the theorem (note 79) quoted above.

What is the “unperturbed Hamiltonian” (H′′(0)) whose eigenvectors are χa and χb and
whose eigenvalues are εa and εb? We can construct this operator explicitly from the set of
bi-orthogonal vectors χ̃a and χ̃b:

χ̃a = 1

1 − S2

(
c1 − Sc2

c2 − Sc1

)

χ̃b = 1

1 − S2

(
c2 − Sc1

c1 − Sc2

)

satisfying

χ̃a
†χa = χ̃b

†χb = 1

χ̃a
†χb = χ̃b

†χa = 0
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The operator satisfying the desired unperturbed eigenvalue equations

H′′(0)χa = εaχa

H′′(0)χb = εbχb

is therefore given by the spectral expansion

H′′(0) = εaχaχ̃a
† + εbχbχ̃b

†

or, in more explicit form, by

H′′(0) = 1

1 − S2

(
c1

2εa + c2
2εb − Sc1c2(εa + εb) c1c2(εa + εb) − S(c1

2εa + c2
2εb)

c1c2(εa + εb) − S(c1
2εb + c2

2εa) c1
2εb + c2

2εa − Sc1c2(εa + εb)

)

However, this “Hamiltonian” is manifestly non-Hermitian (unless S = 0) and therefore
cannot correspond to a physical unperturbed system. Neither of the operators H′(0) and
H′′(0) can serve as a proper unperturbed Hamiltonian for the PMO rationalization (unless
S = 0, when both are equivalent to a standard H(0) such as that underlying, e.g., Example
1.1 or Fig. 3.13).

Example 3.18

The equations of Example 3.17 can be illustrated by the simple example of HeH+ in a
minimal basis treatment with χa = 1sHe and χb = 1sH. The numerical matrix elements
(B3LYP/STO-3G at Req = 0.80 Å) are found to be

εa = −1.5727

εb = −0.8105

hab = −1.0258

S = 0.5208

with MO eigenvalues (cf. Fig. 3.58)

ε− = −1.6151

ε+ = −0.1891

In this case, the PMO unperturbed eigenvectors χa and χb are

χa =
(

0.9627
0.2705

)
, χb =

(
0.2705
0.9627

)

and the supposed PMO unperturbed H′(0) is

H′(0) =
(−2.0815 −0.8516

−0.8516 −1.1887

)

However, the actual eigenvalues of this operator are

ε1 = −2.5966, ε2 = −0.6736
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and the corresponding eigenvectors are

u1 =
(

0.8556
−0.5176

)
, u2 =

(
0.5176
0.8556

)

bearing little resemblance to the PMO unperturbed eigenvalues (εa and εb) and eigenvectors
(χa and χb) given above. The alternative unperturbed H′′(0) which does have these PMO
unperturbed eigenvalues and eigenvectors is

H′′(0) =
(−1.6380 0.2325

−0.2325 −0.7451

)

but this operator is non-Hermitian and therefore cannot correspond to any physical “unper-
turbed system.”

Examples 3.17 and 3.18 show clearly that Fig. 3.58 cannot be consistently inter-
preted in a perturbative framework. Figure 3.58 is a valid mnemonic for numerical
diagonalization of a 2 × 2 matrix, but it cannot be assigned a deeper perturbative
significance when S 
= 0. Except for visualization purposes (see Example 1.11 and
ensuing discussion), the use of non-orthogonal orbitals for interpretive purposes is
fraught with danger.82

We conclude that the four-electron stabilization rationalization lacks both physi-
cal and numerical relevance to barrier problems and should not be taken as evidence
in support of a picture of the rotation barrier of ethane based on steric repulsions.

Other ethane-like barriers

Table 3.23 summarizes the rotation barriers and leading vicinal σ–σ∗ interactions
for methyl rotors CH3—X (X = CH3, NH2, OH) as well as higher group 14 con-
geners H3M—MH3 (M = Si, Ge). Figure 3.59 shows orbital contour diagrams for
syn and anti orientations of selected vicinal donor–acceptor NBOs in these species.
We now discuss some qualitative trends of torsion barrier potentials in terms of
these examples.

In the series CH3—X (X = CH3, NH2, OH), the rotation barrier is systematically
reduced in approximate 3 : 2 : 1 ratio (2.70 : 1.93 : 1.05), corresponding to successive
replacement of hydride bonds by lone pairs. This reduction might seem surprising,
because lone pairs are typically better vicinal donors than hydride bonds (due to their
greater amplitude on the axial atom). However, the increased strength of nX→σCH

∗

interactions (Table 3.23) is countered primarily by two factors: (1) there is no
corresponding delocalization in the opposite direction (because there is no valence
acceptor orbital corresponding to a lone pair); and (2) the difference between syn
and anti nX→σCH

∗ interactions is significantly reduced, so the net contribution to
the energy difference between staggered and eclipsed rotamers is correspondingly
weakened.
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Table 3.23. Rotation barriers (Eecl − Estg) and leading σ–σ∗ donor–acceptor
stabilizations (−�Eσσ∗) in anti and syn orientations for methyl rotors

(CH3—X, X = CH3, NH2, OH) and higher ethane-like congeners

−�Eσσ∗ (kcal mol−1)
Rotation barriera

Molecule kcal mol−1 σ σ∗ anti syn

H3C—CH3 2.70 C—H C—H 2.58 0.89

H3C—CH2 1.93 C—H N—H 3.04 1.07
N—H C—H 1.97 0.72

nN C—H 7.44 6.09
H3C—OH 1.05 C—H O—H 2.42 0.29

O—H C—H 1.55 1.19
nO

π C—H 7.97 7.97
nO

σ C—H 2.25b 2.57c

H3Si—SiH3 0.94 Si—H Si—H 0.65 0.38

H3Gi—GiH3 0.63 Ge—H Ge—H 0.69 0.40

a Uncorrected for zero-point energy.
b From the eclipsed conformer.
c From the staggered conformer.

Figure 3.60 illustrates the second factor, showing the nO
π→σCH

∗ donor–acceptor
interaction between the pi-type oxygen lone pair nO

π (essentially a pure-p orbital
perpendicular to the COH plane) and a vicinal hydride antibond. As one can readily
see from Fig. 3.60, the nX–σCH

∗ overlap only changes sign (but not magnitude)
as the orbitals are twisted from “syn” to “anti” alignment, so there can be no
net contribution to the rotameric energy difference in this case, even though the
hyperconjugative interaction is quite strong (7.97 kcal mol−1 in either rotamer).

Figure 3.59a illustrates the related barrier-weakening effect in methylamine.
On comparing the nN→σCH

∗ interaction of methylamine with the corresponding
σCH→σCH

∗ interaction of ethane (Fig. 3.55), one can see that the syn/anti differ-
ence is somewhat diminished in the former case because the nodal plane of the
σCH

∗ only passes through the “edge” of the nN donor NBO. The visual estimate
is confirmed by the calculated nN→σCH

∗ hyperconjugative stabilization energies
(7.44 [anti] versus 6.09 kcal mol−1 [syn]), both of which are much stronger than
corresponding σCH→σCH

∗ stabilizations in ethane, but with a smaller difference
between staggered and eclipsed forms.

From such comparisons one can judge that the syn/anti difference is sensitive to
antibond polarity (which shifts the nodal plane relative to the adjacent donor NBO)
and to the bond angles at which donor and acceptor NBOs are canted toward one
another. Compared with C—H bonds, rotation barriers involving polar A—X bonds
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Figure 3.59 Leading vicinal σ–σ∗ donor–acceptor interactions for molecules in
Table 3.23 (cf. Fig. 3.55 for ethane), comparing orbital contours in anti (left) and
syn (right) orientations of (a) methylamine, (b) methanol, (c) disilane, and (d)
digermane.

are often reduced because the donor or acceptor NBO is unfavorably polarized away
from the torsional axis (i.e., there is an unfavorably polarized donor σAX

∗ if X is
much more electronegative than A; there is an unfavorable polarized acceptor σAX

∗

if A is much more electronegative than X). From general electronegativity and
bond-polarity considerations one expects the donor NBO strength to decrease in
the order

lone pair > σOH > σNH > σCH > σCF (3.161a)

whereas acceptor NBO strength decreases in the opposite order,

σCF
∗ > σCH

∗ > σNH
∗ > σOH

∗ (3.161b)

Further examples of the dependence on polarity and geometry will be discussed
below.
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Figure 3.59 (Cont. )

Figure 3.60 Vicinal nO
π→σCH

∗ interaction for the pi-type lone pair of methanol,
showing the equivalence of “syn” and “anti” interactions.
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As shown in Table 3.23, the rotation barrier is sharply reduced as one moves
from ethane to the later group 14 congeners SiH3SiH3 and GeH3GeH3. This is both
a distance and a polarity effect, as shown in Figs. 3.59(c) and (d). Owing to the
larger Si—Si and Ge—Ge bond lengths (2.36 and 2.44 Å, respectively), the hyper-
conjugating σMH→σMH

∗ orbitals are held much further apart than in the C—C case
(1.54 Å), appreciably reducing vicinal overlap. In addition, the lower electronega-
tivity of Si and Ge causes each σMH donor to be unfavorably polarized toward H,
thus reducing its amplitude (and donor strength) near the torsional axis, as shown in
Figs. 3.59(c) and (d). (The absence of a significant σMH “backside lobe” for interac-
tion with the middle lobe of the antibond is a particularly conspicuous aspect of this
unfavorable polarity.) These two effects combine to make the σMH–σMH

∗ stabiliza-
tions rather feeble in the favored anti arrangement (0.65 and 0.69 kcal mol−1 for Si
and Ge, respectively), only slightly greater than in the syn arrangement (0.38 and
0.40 kcal mol−1, respectively). Thus, the overall barrier falls to a small fraction of
its value in ethane, despite qualitative similarities in the vicinal donor and acceptor
NBOs that dictate torsional preference in each case.

Of course, by replacing hydride bonds by bulky groups R and R′ in CH2R—
CH2R′ compounds, one can eventually reach the limit in which direct R· · · R′ steric
contacts become the dominant factor dictating conformational preference. (In a
similar manner one can force cis CHR=CHR′ compounds out of their conjugatively
preferred planarity by having sufficiently large R and R′ groups.) However, gross
steric effects are typically less important than hyperconjugative donor–acceptor
interactions for controlling conformational preferences in the majority of cases
involving monatomic or small-group ligands.

“Steric attraction” in 1, 2-difluoroethylene

A particularly dramatic and interesting example of the dominant role of hypercon-
jugative interactions over steric and electrostatic interactions is given by cis (27a)
and trans (27b) isomers of 1,2-difluoroethylene:

Both steric and electrostatic factors appear to favor the trans configuration, in
which the bulkier and anionically charged F atoms are separated as far as possi-
ble. Nevertheless, 27a is actually found to be the energetically favored isomer by
0.80 kcal mol−1, a counterintuitive result that has been attributed to “steric attrac-
tion.”83
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Figure 3.61 Leading hyperconjugative donor–acceptor interactions in trans (upper
panels) and cis (lower panels) 1,2-difluoroethylene.

From the relative strengths of donor and acceptor groups summarized in (3.161),
one can recognize that a C—F bond, although an exceedingly good acceptor, is a
feeble donor for hyperconjugative interactions. It is therefore advantageous to orient
each σCF

∗ acceptor anti to σCH (as occurs in the cis isomer) rather than to σCF (as
occurs in the trans isomer). Figure 3.61 shows NBO overlap diagrams that illustrate
the advantageous pattern of donor–acceptor interactions in the cis isomer.

According to second-order perturbative estimates, each σCH→σCF
∗ interaction

of the cis isomer (lower left panel of Fig. 3.61) contributes 6.84 kcal mol−1 stabiliza-
tion, about twice that of the σCH→σCH

∗ (3.75 kcal mol−1) 84 or (2.29 kcal mol−1)
interactions of the trans isomer. Even though the remaining σCF→σCH

∗ interaction
of the cis isomer contributes only 1.17 kcal mol−1 stabilization, the sum of the four
anti donor–acceptor interactions favors the cis isomer by almost 4 kcal mol−1. This
hyperconjugative advantage of the cis isomer is sufficient to overcome the inherent
steric and electrostatic advantage of the trans isomer.
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Numerous small geometrical and energetic differences contribute to the cis–
trans net energy difference. However, it is evident that ordinary hyperconjugative
donor–acceptor interactions (akin to those in ethane-like molecules) can qualita-
tively account for the surprising stability of the cis configuration, without invocation
of “steric attraction” or other ad-hoc mechanisms.

The gauche effect, anomeric effect, and related phenomena

The principle that maximum hyperconjugative stabilization results from orienting
the best vicinal donors (3.161a) anti to the best vicinal acceptors (3.161b) has an
immediate corollary.

Each strong donor prefers to orient anti to a strong acceptor (rather than another strong
donor). Therefore, two strong donors (such as lone pairs) or two strong acceptors (such as
polar bonds) will tend to orient gauche to one another.

The general tendency of vicinal lone pairs or highly polar bonds to adopt mutually
gauche orientation has been called the “gauche effect.”85 In the special case of car-
bohydrate chemistry, the characteristic preference for conformations aligning polar
bonds in mutually gauche arrangements is usually termed the “anomeric effect.”86

Both “effects” were formerly attributed rather vaguely to steric or electrostatic
factors. However, the proper hyperconjugative explanation of the carbohydrate
anomeric effect (orienting oxygen lone pairs anti to vicinal polar σCO

∗ acceptors
in a general Ö—C—Ö linkage) was pointed out by Havinga and coworkers87 and
in more quantitative terms by Brunck and Weinhold. The pendulum toward recog-
nition of the hyperconjugative origin of such effects has now swung so far that all
ethane-like barrier preferences are sometimes referred to as “anomeric effects.”88

The general importance of anomeric conformational preferences in the chemistry
of carbohydrates can hardly be overestimated.

The gauche effect is manifested even in the simplest tetraatomic species that
could exhibit a rotation barrier, such as hydrogen peroxide (HOOH) and hydro-
gen disulfide (HSSH).89 In both these species the only stable rotameric form is
a twisted (C2) gauche conformation with dihedral angle φ = 111.3◦ (HOOH) or
91.0◦ (HSSH). In each case the anti arrangement that would be “expected” on
steric or electrostatic grounds is found to be an unstable (transition-state) maxi-
mum, lying 1.23 kcal mol−1 (HOOH) or 5.81 kcal mol−1 (HSSH) above the gauche
minimum. Figure 3.62 illustrates the leading nO–σOH

∗ (left) and nS–σSH
∗ (right)

hyperconjugative interactions that become available in the gauche conformer, but
are effectively quenched in the unstable planar (φ = 0◦, 180◦) rotamers. Note how
the unfavorable polarization of σOH

∗ leads to a greatly weakened interaction with
the lone pair in HOOH, whereas the greater electropositivity of S leads to a much
more favorable σSH

∗ acceptor in the corresponding interaction in HSSH.
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Figure 3.62 Leading n–σ∗ hyperconjugative donor–acceptor interactions in
gauche equilibrium geometries of (a) HOOH and (b) HSSH. The corresponding
stabilization energies are estimated as 1.37 and 4.20 kcal mol−1, respectively.

Figure 3.63 illustrates the gauche effect for vicinal lone pairs and polar C—F
bonds with the examples of (a) hydrazine and (b) 1,2-difluoroethane, respectively.
As seen in Fig. 3.63(a), the φ = 180◦ conformation in which both hydrazine lone
pairs are anti to one another (thus squandering their powerful donor strength on vici-
nal moieties with no acceptor capacity) is disfavored by 3.2 kcal mol−1 relative to the
preferred φ = 93.9◦ conformer in which each nN hyperconjugates effectively with

Figure 3.63 Rotation-barrier profiles illustrating the gauche effect for (a) lone
pairs in hydrazine and (b) polar bonds in 1,2-difluoroethane. (The angle φ = 0◦,
as φ is the dihedral between bisectors of the amine groups in hydrazine, or the
FCCF dihedral angle in 1,2-difluoroethane.) The respective torsional minima are
at (a) 93.9◦ and (b) 72.2◦.
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both out-of-plane σNH
∗ acceptors (estimated total stabilization 15.3 kcal mol−1).

Similarly, in Fig. 3.63(b), the φ = 180◦ conformation that puts the two C—F bonds
anti to one another is disfavored compared with the φ = 72.2◦ conformation in
which each strong σCF

∗ acceptor lies approximately anti to the stronger σCH donor
(as in the analogous 1,2-difluoroethylene case, cf. Fig. 3.61). In both cases the
preferred gauche conformations appear counterintuitive from a naive steric or elec-
trostatic viewpoint, but they are entirely reasonable to maximize hyperconjugative
donor–acceptor interactions.

To exhibit the powerful tendency of a strong donor and strong acceptor to
adopt the anti orientation, we consider the hypothetical molecule fluoromethy-
lamine (CH2FNH2). Favorable anti alignment of the nN donor and σCF

∗ acceptor
results in a deep minimum at φ = 0◦, 90 as shown in Fig. 3.64(a). A corresponding
contour diagram of the nN–σCF

∗ interaction (with estimated stabilization energy
21.7 kcal mol−1) is shown in Fig. 3.64(b). In fact, the tendency toward an anti
nN–σCF

∗ arrangement is so strong that the corresponding syn-like arrangement (at
φ = 180◦) does not exist on an adiabatic one-dimensional torsional potential (i.e.,
with complete optimization of all other coordinates). For dihedral angles φ > 150◦,
the amine group spontaneously inverts (via the umbrella-like pyramidalization mo-
tion) to put nN and σCF

∗ into a trans-like arrangement again. The effect of the
nN–σCF

∗ interaction (shown as a dashed line in Fig. 3.64(a)) is so pronounced as to
remove the usual three-fold character of the ethane-like barrier potential, replacing it
by a two-fold profile that crudely mirrors the nN–σCF

∗ dihedral dependence. Thus,

Figure 3.64 Torsion-barrier interactions of NH2CH2F. Left panel: the torsional
potential (solid line) and leading nN–σCF

∗ stabilization (dashed line) in the range
φ = 0−150◦, where the amine group does not spontaneously undergo inversion.
Right panel: orbital contours of the strong nN–σCF

∗ interaction at φ = 0◦.
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Figure 3.65 The prototypical nO–σCO
∗ “anomeric” donor–acceptor interaction

in dihydroxymethane (estimated second-order stabilization energy 14.43 kcal
mol−1).

Fig. 3.64 dramatically ilustrates how the hyperconjugative preference for strong
vicinal donor–acceptor interactions may overcome pyramidalization barriers and
other “expected” constraints on a torsion-barrier profile.

As a prototypical example of the anomeric effect we consider the simple case
of dihydroxymethane (methanediol). The characteristic anti alignment of the pi-
type oxygen lone pair nO with the vicinal σCO

∗ antibond is illustrated in Fig. 3.65.
This strong donor–acceptor interaction is estimated to contribute 14.4 kcal mol−1

stabilization energy, exerting a decisive influence on conformational equilibria in
general XO—C—OY linkages. Petillo and Lerner91 have demonstrated the direct
causal connection between the nO–σCO

∗ interaction of Fig. 3.65 and the complete
set of characteristic structural and spectroscopic signatures identified as “anomeric
effects.”

In comparison with previous plots of this section, the nO–σCO
∗ anomeric inter-

action of Fig. 3.65 can be seen to be a rather typical example of hyperconjugative
donor–acceptor interactions. Consequently, there seems to be no valid reason to in-
voke a special “effect” for the conformational preferences of sugars, obscuring their
essential conformity with a unified donor–acceptor picture of ethane-like rotation
barriers.

Torsional flexing and related torsion–vibration-coupling effects

At the most elementary level of valence theory, chemical bonds (and the associated
NBOs) are expected to retain approximately fixed forms during internal rotations.
At this level one can simply visualize torsional interactions in terms of frozen NBOs
moving on a frozen “rigid-rotor” geometrical framework, with NBO populations
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(and hyperconjugative stabilizations) waxing and waning as vicinal donor and ac-
ceptor NBOs rotate in and out of favorable overlap. This viewpoint corresponds
closely to the second-order perturbation framework used throughout this book (cf.
Eq. (1.24) and Fig. 1.3), with leading energy corrections expressed in terms of
fixed “unperturbed” donor and acceptor NBOs. Such an elementary viewpoint al-
lows many qualitative aspects of hyperconjugation and torsion-barrier phenomena
to be understood satisfactorily.

Nevertheless, at a higher level of approximation one expects that donor–acceptor
delocalization can alter the form (as well as the occupancies) of strongly interacting
donor and acceptor NBOs, leading to higher-order coupling effects. These effects
include the slight “flexings” of bond lengths and angles that accompany torsional
change, as mentioned in previous sections. Owing to such coupling effects, the
torsional coordinate can serve as an important “doorway” mode, allowing strong
normal-mode mixing and efficient intramolecular vibrational relaxation (IVR) be-
tween local modes of the torsion-linked chemical groups. We now wish to describe
the leading torsion–vibration coupling effects from the NBO donor–acceptor view-
point. For this purpose we employ Fig. 3.66, which depicts a generic pair of inter-
acting NBOs σAB and σCD

∗ (actually σCH and σCH
∗) in a favorable alignment for

strong donor–acceptor stabilization.
From the qualitative form of Fig. 3.66 one can predict certain changes in geometry

and NBO composition that are promoted by strong σAB–σCD
∗ interaction, and

that reciprocally enhance this interaction. We shall use the example of the strong
nN–σCD

∗ interaction of NH2CH2F (see Fig. 3.64) to illustrate these changes, as
summarized in Tables 3.24 (geometry) and 3.25 (NBO composition).

Figure 3.66 Schematic geometrical flexing to maximize the interaction
of a strong donor σAB and a strong acceptor σCD

∗.
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Table 3.24. Torsional flexing of NH2CH2F, showing relaxed RNC and RCF bond
lengths and θlpNC and θNCF valence angles with variation of the torsion angle φ

(cf. Fig. 3.64) (θlpNC denotes the angle between the lone pair and σNC NHOs at N)

φ (degrees) RNC(Å) RCF(Å) θ1pNC (degrees) θNCF (degrees)

0 1.4070 1.4332 106.3 113.6
30 1.4137 1.4275 106.3 112.9
60 1.4413 1.4064 107.7 110.3
90 1.4512 1.3926 109.4 107.7

Geometry
As depicted by the arrows in Fig. 3.66, the most obvious way to increase σAB−σCD

∗

interaction is by shortening the RBC bond length, bringing the donor and acceptor
orbitals into closer proximity. Accordingly, the RBC bond is expected to shorten
when σAB and σCD

∗ are in favorable anti alignment and lengthen when these orbitals
are twisted into unfavorable perpendicular (perp) alignment. Thus, in NH2CH2F the
RNC axial bond lengthens by more than 0.04 Å (from 1.4071 to 1.4512 Å) between
anti (φ = 0◦)91 and perp (φ = 90◦) conformations, as shown in Table 3.24. This
change is in accordance with the expected reduction in partial double-bond character
(see, e.g., Example 1.4 or Fig. 3.78) as the hyperconjugating groups are twisted out
of coplanarity.

Because the σAB−σCD
∗ overlap in Fig. 3.66 primarily involves the “shoulder”

of the σAB donor NBO and the “backside lobe” of the σCD
∗ acceptor NBO, one can

evidently enhance their interaction by the indicated angular changes, by closing
the bond angle θABC (to tilt the donor σAB shoulder toward the backside lobe of the
acceptor) or by opening the θBCD angle (to tilt the σCD

∗ backside lobe more deeply
into the interior of the donor). Table 3.24 shows that the θlpNC and θNCF angles of

Table 3.25. Torsional variation of NBO overlap (Snσ∗), stabilization energy
(�Enσ∗ (2)), occupancies, and ionicities (iAB) pertaining to nN–σCF

∗ interaction
in NH2CH2F

Occupancy (e) Ionicity

φ Snσ∗ �Enσ∗ (2) (kcal mol−1) nN σCF
∗ iCF iNC

0 0.2894 21.74 1.8926 0.0983 0.4656 0.1998
30 0.2664 17.93 1.9016 0.0853 0.4634 0.1998
60 0.1606 5.33 1.9420 0.0416 0.4582 0.1936
90 0.0100 0.00 1.9612 0.0219 0.4542 0.1898
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NH2CH2F vary strongly in the expected manner, with the donor nN NBO tilting
about 3◦ toward the rotor axis and the acceptor σCD

∗ NBO tilting about 6◦ away from
this axis as these orbitals twist from perp to anti alignment. (The relative magnitudes
of bond stretches and bends are in line with known differences in stretching and
bending force constants and generally consistent with the relatively small energetic
driving forces expected from hyperconjugative donor–acceptor interactions.)

An additional geometrical effect can be expected from the fact that the nN−σCF
∗

interaction transfers electronic population into the C—F antibond, thus significantly
lengthening and weakening this bond.92 As seen in Table 3.24, the C—F acceptor
bond of NH2CH2F is lengthened by more than 0.04 Å in the perp → anti transition,
which is consistent with this expectation.

The NBO composition
Table 3.25 shows how the main NBO descriptors vary in the perp → anti transition
of NH2CH2F. As expected, this torsional change leads to strong increases in overlap
(from Snσ

∗ = 0.01 to Snσ = 0.29) and hyperconjugative stabilization (from 0 to
21.7 kcal mol−1), as well as significant population shifts (∼0.07e) from nN to σCD

∗.
Less conspicuous are changes in the form of the NBOs themselves, particularly

those affecting the polarity (ionicity iAB) of the participating NBOs. As shown in
Fig. 3.66, the principal contributions to σAB−σCD

∗ overlap arise from the region
near the B—C torsional axis. Thus, the σAB−σCD

∗ interaction will be enhanced
by polarizing σAB toward B (to increase iAB) or by polarizing σCD

∗ toward C (i.e.,
polarizing σCD toward D, to increase iCD); cf. Eqs. (1.41). Consistently with this
expectation, the ionicity iCF of the acceptor C—F bond is found to increase from
0.45 to 0.46 as the nN and σCF

∗ NBOs are twisted into the anti arrangement. In
addition, the axial N—C bond becomes more polarized in the staggered conformer
(see the final column of Table 3.24), reflecting the tendency to maximize donor and
acceptor amplitude near the N—C torsional axis.

Small changes in hybridization are also expected to accompany torsional tran-
sitions, in accordance with Bent’s rule (Section 3.2.6) and general features of Fig.
3.66. In general, the changes in strong donor and acceptor NBOs are expected to be
of opposite character, because these orbitals reflect opposing (complementary) as-
pects of the donor–acceptor interaction. For the acceptor C—F bond of NH2CH2F,
for example, it can be expected that the amplitude of the backside lobe of σCF

∗

is increased by higher percentage p character in the hC hybrid to F, which also
promotes C—F lengthening (due to the extended range of p orbitals), and weak-
ened effective hC electronegativity (due to the higher energy of p orbitals). (One
could also predict this hybridization shift by extrapolating to RCF → ∞, where the
radical acceptor orbital on C is expected to be of increasingly high p character.)
Consistently with Bent’s rule, hyperconjugatively increased percentage p character
in the hC hybrid bonding to F leads to increased percentage s character in bonding
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hybrids to other atoms. In this manner the various “uninvolved” stretches and bends
may also become coupled to the torsional motion. However, such higher-order hy-
perconjugative effects are generally weaker than those mentioned above and will
not be discussed further.

Methyl tilt

The tendency of a strong σCD
∗ acceptor to tilt away from the connecting axis to a

strong hyperconjugating σAB donor (cf. Fig. 3.66) leads to an interesting symmetry-
breaking effect for methyl groups in asymmetric environments. Early microwave
measurements on methylamine93 established that the symmetry axis of the methyl
rotor does not coincide with the C—N axis, but instead tilts slightly (∼4◦) away from
the direction of the adjacent NH2 triangle, and toward the formal lone-pair position.
Similar “methyl-tilt” effects have been observed in methanol, dimethylether, and
many other compounds with methyl groups adjacent to lone-pair-bearing atoms.
In each case the methyl axis appears to be tilted by approximately 2–4◦ toward
the lone pair(s) of the adjacent atom.94 Considerable theoretical and spectroscopic
evidence also indicates that the C—H bond is lengthened by a few thousandths of
an ångström unit when anti to a lone pair.95

The donor–acceptor picture readily accounts for the observed methyl tilting and
distortion.96 Figure 3.67 illustrates the asymmetric bending of each C—H bond of

Figure 3.67 Methyl tilt in CH3NH2, showing individual N–C–H angle deviations
(solid lines) from the mean value (111.3 ± 0.1◦) and the overall tilt angle (dotted
line) of the methyl symmetry axis with respect to the C—N bond vector. The anti
C—H bond (circles) corresponds to Fig. 3.59(a) at φ = 0◦.
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CH3NH2, showing the ∼6◦ variation in N–C–H angle as the H rotates from gauche
to anti alignment with the vicinal nN lone pair. The overall methyl tilt (dotted line)
is evidently dominated by the strong outward tilting of the C—H bond anti to the
lone pair, as discussed above (cf. Fig. 3.66 and Table 3.24).

Secondary flexing effects and changes in steric repulsion also affect the detailed
energetics of methyl tilting. As mentioned above, the hyperconjugative nN−σCH

∗

interaction lengthens (by about 0.008 Å) and weakens (by about 100 cm−1) the
C—H bond anti to the lone pair. Such hyperconjugatively induced distortions of
idealized methyl geometry are opposed by increases in steric exchange energy (as
illustrated in Fig. 3.56). The final geometry therefore reflects a variety of hyper-
conjugative and steric influences, but the essence of the tilting phenomenon seems
to be well captured in the donor–acceptor diagram of Fig. 3.66.

Stereoelectronic effects in chemical reactivity

The bond-lengthening and -weakening influence of an antiperiplanar lone pair
leads to strong “stereoelectronic” effects on chemical reactivity.97 In molecule 28a
with lone-pair-bearing atom D adjacent to an A—B bond, a vicinal nD→σAB

∗

hyperconjugative interaction can be associated (cf. Example 1.4 and Section 3.3.1)
with a partial admixture of the alternative resonance structure 28b,

representing virtually a “head-start” toward the heterolytic bond-cleavage reaction

(3.162)

in a polar medium.98 Molecules 28a with nD oriented anti to A—B are therefore
expected to undergo the dissociative reaction (3.162) with unusual facility. Thus,
while a hyperconjugative nD→σAB

∗ interaction tends to stabilize the molecule ther-
modynamically, it may also lower the activation barrier to A—B bond dissociation,
sowing the seeds of kinetic instability.

The stereoelectronic bond-weakening effect on A—B can be further promoted
by additional vicinal nD donors in molecules of the form
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A simple example is provided by triaminomethyl (guanidinium) fluoride, 29,

in which the C—F bond can lie anti to as many as three nN donor lone pairs, each
contributing an incremental lengthening and weakening of the bond. The remark-
able stability of the guanidinium carbocation provides direct experimental evidence
for the strong stereoelectronic enhancement of the ionic resonance form 28b.

To study the stereoelectronic effect of antiperiplanar nN→σCF
∗ interactions on

C—F reactivity quantitatively, we consider the four rotameric isomers of 29 shown
in Fig. 3.68. These correspond to having zero (29ggg), one (29agg), two (29aag),
or all three (29aaa) nitrogen lone pairs anti (rather than gauche) to the target C—F

Figure 3.68 Optimized rotamers of triaminomethyl fluoride 29: (a) gauche–
gauche–gauche, (b) anti–gauche–gauche, (c) anti–anti–gauche, and (d) anti–anti–
anti. (The aaa rotamer is a transition state between equivalent aag rotamers).
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Table 3.26. Relative energies �E and other properties of triaminomethyl fluoride
rotamers (cf. Fig. 3.68) showing C—F bond length RCF, frequency νCF, NRT bond

order bCF, bond ionicity iCF, fluoride charge qF, and average second-order
stabilization energy for anti-oriented nN–σCF

∗ and nN–σCN
∗ interactions

�E RCF νCF

Species (kcal mol−1) (Å) (cm−1) bCF iCF qF (e)

Stabilization
(kcal mol−1)

nN–σCF
∗ nN–σCN

∗

29ggg 4.90 1.4041 939 0.9630 0.4596 −0.4067 — 10.61
29agg 0.75 1.4262 757 0.9483 0.4702 −0.4289 19.34 11.29
29aag 0.00 1.4650 704 0.9262 0.4830 −0.4610 19.88 11.84
29aaa 2.56 1.5288 477 0.8884 0.5024 −0.5085 20.35 —

bond, with increasing stereoelectronic weakening. Note that inductive and steric
effects should play little role in this comparison, so quantitative differences in C—F
bond length, ionicity, and dissociation energetics can be taken as direct measures
of the pure stereoelectronic (hyperconjugative donor–acceptor) influence.

Successive anti nN−σCF
∗ interactions lead to dramatic changes in the C—F bond,

as summarized in Table 3.26. On average, each anti nN−σCF
∗ is seen to have the ef-

fect of lengthening the C—F bond by ∼0.04 Å, decreasing its stretching frequency
by ∼150 cm−1, and increasing its ionic charge at F by ∼0.03e, thus appreciably al-
tering the reactivity relative to “normal” C—F bonds (idealized sp3 RCF � 1.36 Å).

Concomitant changes are also evident in the various NBO indices of Table 3.26,
including NRT bond order bCF and ionicity iCF. Figure 3.69 illustrates, for example,
how changes in bond length RCF are accurately tracked by the variations in NRT
bond order over the entire set of rotameric states.

The basic hyperconjugative nN→σCF
∗ interactions in 29 are essentially similar

to that illustrated earlier (cf. Fig. 3.64), and the corresponding stabilization energies
shown in Table 3.26 are generally similar in magnitude to the value found previously
for NH2CH2F (21.7 kcal mol−1). However, it is interesting (and somewhat puzzling)
to note that competing donations from three nN donors to the single σCF

∗ acceptor
in this case lead to somewhat increased stabilization (by about 1 kcal mol−1; see the
seventh column of Table 3.26), rather than the expected anticooperative weakening
(as shown by nN→σCN

∗ interactions, final column of Table 3.26). The answer to this
puzzle seems to lie in the manner in which the alternative nN→σCN

∗ anti arrange-
ments themselves affect molecular geometry (and thereby nN→σCF

∗ interaction
strength). Each alternative nN→σCN

∗ anti interaction is expected to lengthen the
C—N acceptor bond, thus weakening the vicinal nN→σCF

∗ interaction along this
C—N axis. Thus, replacing anti nN→σCN

∗ by anti nN→σCF
∗ strongly alters the
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Figure 3.69 C—F bond-order-bond-length correlation for rotamers of tri-
aminomethyl fluoride 29 (cf. Fig. 3.68), showing stereoelectronic bond length-
ening and bond-order reduction with each new anti nN−σCF

∗ interaction. (Points
are connected by straight lines to aid visualization.)

geometry in such a way as to promote the strength of other nN→σCF
∗ interactions,

despite the increased anticooperative competition for the single σCF
∗ acceptor. The

overall reduction in average RCN bond length (from 1.4411 Å in 29ggg to 1.4175
Å in 29aaa) reflects the more favorable skeletal geometry for nN→σCF

∗ hypercon-
jugations in the latter species.

The strong stereoelectronic effect of vicinal nN donors is also evident in the
product guanidinium cation,

(NH2)3CF → (NH2)3C+ + F− (3.163)

whose calculated geometry is shown in Fig. 3.70. In this species, strong hypercon-
jugative donation from the three nitrogen lone pairs to the formal empty carbocation
p orbital leads to three equivalent pi-bonded resonance structures, in addition to the
nominal single-bonded structure, with NRT weightings

(3.164)
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Figure 3.70 The equilibrium guanidinium cation, (NH2)3C+, (a) side view and (b)
top view. Each amino group is feathered by 12.5◦ with respect to the planar CN3
skeleton in the propeller-like (C3) equilibrium geometry.

and overall NRT bond order bCN = 1.3000. This strong partial double-bond charac-
ter naturally leads to a reduced C—N bond length (1.3349 Å) as well as to planarized
NH2 groups, which provide a pure p-type nN that is best able to donate to the empty
carbon p orbital in pi-type fashion. However, in this tightly pi-bonded skeletal
geometry the planar NH2 groups come into unfavorable steric contact, which is
relieved by “feathering” each NH2 slightly (∼12◦) out of planarity, as shown in
Fig. 3.70. The final equilibrium geometry of the ion therefore reflects the balance
between stereoelectronic stabilization (favoring planarity and C—N contraction)
and H · · · H steric repulsion (favoring nonplanarity and C—N elongation).

In the extreme carbocation limit of (3.163) and (3.164), the stereoelectronic
“secondary-hyperconjugation” effects therefore blend seamlessly into ordinary
pi-type conjugation phenomena (Section 3.3), the two extremes always being linked
by electronic continuity.

3.4.3 Through-bond and through-space interactions

Through-bond coupling in diaminoalkanes

Several lines of evidence suggest that the intramolecular interactions of remote
orbitals are often mediated by the connecting bridge of chemical bonds. The char-
acteristics that may distinguish such through-bond (TB) interactions from ordinary
through-space (TS) interactions include (1) an “inverted” MO ordering, with the
out-of-phase linear combination of orbitals lying below the corresponding in-phase
combination; and (2) strong dependence of the energy splittings on the conformation
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Figure 3.71 Through-bond (TB) splitting �ε± = ε −ε+ for idealized all-trans
diaminoalkanes NH2—(CH2)m—NH2, m = 1–4 (29–32), compared with through-
space NH3 · · · NH3 interaction in relative geometry of m = 4 (TS-4).

of the bridging atoms. Hoffmann and coworkers99 first called attention to the im-
portance of TB interactions in species such as [2.2.2]diazabicyclooctane and nor-
bornadiene:

The TB and TS interactions have subsequently been investigated for many systems
by a variety of theoretical and experimental methods.100

Simple examples of TB interactions are shown in Fig. 3.71 for a series of idealized
all-trans diaminoalkanes H2N—(CH2)m—NH2, m = 1–4 (29–32):
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In these compounds the highest occupied MOs are expected to be approximated as
in-phase or out-of-phase combinations of the two nitrogen lone pairs nN and nN′ :

φ± � 2−1/2(nN ± nN′) (3.165a)

�ε± = ε − ε+ (3.165b)

For TS interactions the in-phase combination is expected to lie lower in energy,
leading to a “normal” energy splitting �ε± of postive sign:

However, Fig. 3.71 shows that, in the diaminoalkanes, this splitting actually oscil-
lates strongly with the number m of bridging methylene groups, the splitting having
the inverted (negative) sign for even m = 2, 4, but normal (positive) sign for odd
m = 1, 3.

Figure 3.71 also compares the TB case m = 4 (32) with the corresponding TS
case of an ammonia dimer (H3N · · · NH3) having the two lone pairs at the same
distance and relative orientation. In the latter case �ε± is found to be sharply
reduced in magnitude and reversed in sign (from −15.20 to +0.24 kcal mol−1),
showing the dramatic difference between TB and TS patterns in both sign and
magnitude of the interaction.

The paradoxical TB splitting patterns can be qualitatively rationalized in terms
of the expected Fock-matrix interaction elements between each nN and the filled
and unfilled NBOs of the alkyl bridge. In the all-trans conformer, the strongest such
interactions are those connecting each nN with the adjacent vicinal σCC and σCC

∗

NBOs, whereas the direct TS nN–nN′ interaction element is essentially negligible.
Within the idealized Lewis-structure picture, the MOs can be pictured as arising
from variational mixing of the Lewis-type NBOs alone. According to the variational
principle, the highest-occupied (HOMO) level can be shown to correspond to the
most out-of-phase linear combination of filled NBOs101 (just as the ground level is
the most in-phase combination). As a result, the HOMO will have each lone pair
mixed out of phase with the vicinal NBO, and therefore in phase with one another,
if nN and nN′ share the same vicinal σCC neighbor. A further contribution to the
inverted splitting arises from nN–σCC

∗ donor–acceptor interactions, because the
nN and nN′ donors overlap constructively with opposite ends of the bridging σCC

∗
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antibond, and thus are coupled with opposite signs to any shared σCC
∗ acceptor.

Thus, both types of interactions may contribute to the puzzling case in which the
out-of-phase combination is stabilized and the in-phase combination is destabilized.

At a more quantitative level, NBO analysis has been employed in a variety of
investigations102 to dissect the detailed pathways of TB interactions. Quantitative
theoretical and experimental studies have shown the general unreliability of the
older AO-based “superexchange” model103 as a guide to TB pathways. The modern
NBO-based picture of TB/TS interactions is authoritatively described elsewhere104

and need not be elaborated here.

The relationship to ionization phenomena

Despite the strong MO mixings indicated by the �ε± splittings, one may ques-
tion to what extent the MO energy variations are reflected in measurable physical
properties. As described in Section 3.2.4, the interactions of filled NBOs lead to
symmetric second-order energy shifts with no net effect on total energy, wavefunc-
tion, and other properties. However, the assumptions of Koopmans’ theorem imply
that the vertical ionization potential (IP) is related to HOMO orbital energy by

IP � −εHOMO (3.166)

and the strong TB-induced variations of εHOMO should therefore be reflected in
corresponding variations in IP.

Specifically, if �(IP) denotes the reduction of IP with respect to a chosen refer-
ence amine (e.g., isolated ammonia),

�(IP) = IP(diamine) − IP(ref.) (3.167)

one expects from Koopmans’ theorem (3.166) that

�(IP) � |�ε±|/2 (3.168a)

Furthermore, the singly occupied radical MO (φrad) of the ionized spin set in the
cation should closely resemble either φ or φ+, according to whether �ε± is positive
or negative,

φrad �
{

φ , if ε > ε+

φ+, otherwise
(3.168b)

Perturbations of the neutral molecule that strongly alter TB coupling are there-
fore expected to alter strongly both �(IP) and the form of φrad, if the Koopmans
assumption is valid.

The contrary view of ionization developed in Section 3.2.4 is that strong elec-
tronic reorganization of the cation negates the basic assumption of Koopmans’ the-
orem. Superficial aspects of the Koopmans picture are preserved, however, because



256 Molecular bonding in the s/p-block elements

the donor–donor interactions (e.g., σCC−nN) leading to CMOs of the neutral parent
are converted into corresponding donor–acceptor interactions (e.g., σCC−nN

∗) in
the cation. A neutral amine whose lone pair nN participates in strong σCC−nN TB
interactions is therefore expected to give rise to a cationic nN

∗ orbital that is strongly
stabilized by σCC−nN

∗ donor–acceptor interactions, with a corresponding reduc-
tion of IP that somewhat mimics (3.168a). Thus, Eq. (3.168b) is likely to provide
the more unique diagnostic of whether a Koopmans-like picture is valid.

To investigate the Koopmans assumptions (3.168) numerically, let us consider
the TB-sensitive torsional variations of �ε± and �(IP), and other properties of
neutral and cationic butyldiamines 32 (m = 4). Figure 3.72 shows these variations
for two idealized torsional coordinates: (a) twisting a terminal —NH2 group about
the connecting C—N bond, and (b) twisting a terminal —CH2NH2 group about the
connecting C—C bond.

As shown in Fig. 3.72, the torsion (a) immediately twists the amine lone pair nN

out of favorable coplanarity with bridging σCC bonds, leading to strong reversal
of �ε± splitting (from −15.2 to +11.5 kcal mol−1). However, the “crankshaft”
torsion (b) retains the favorable anti alignment of nN with bridging σCC bonds
(despite bringing nN and nN′ into much closer proximity). The latter torsion therefore
preserves the inverted MO ordering for a much wider range of dihedral variations,
until the amine groups are pressed into unrealistically close proximity against the
strong steric repulsive forces. As mentioned above, such strong dependence of MO
splittings on bridge conformation provides prima-facie evidence of TB coupling in
the original sense of Hoffmann.

Despite the vivid ∼27 kcal mol−1 variation in TB splitting (�ε±, dashed line) in
Fig. 3.72(a), the total energy (Etot, solid line) exhibits only the typical ±2 kcal mol−1

variations of an ordinary alkyl amine (Table 3.23). Thus, the variations in �ε± do
not seem to reflect significant variations in stability or localization of the parent
neutral species.

However, the vertical ionization energy (�(IP), dotted line) in Fig. 3.72(a) is
indeed seen to vary in the manner suggested by Eq. (3.168a). Thus, from the max-
imum at 90◦, the IP is reduced by about 8 kcal mol−1 (versus |�ε±|/2 � 7.6 kcal
mol−1) as the nN−σCC alignment returns to anti (32) at 180◦. Similarly, for the twist
from perpendicular to syn alignment, the IP is reduced by about 4.5 kcal mol−1

(versus |�ε±|/2 � 6 kcal mol−1). Similar approximate satisfaction of (3.168a) can
be seen in Fig. 3.72(b). Thus, the plotted �(IP) curves in Figs. 3.72(a) and (b) do
indeed seem to suggest “Koopmans-like” behavior.

Nevertheless, the more direct test (3.168b) of the Koopmans assumption demon-
strates the failure of this assumption for a wide range of torsional angles. Specif-
ically, the form of the ionized radical orbital φrad is found to closely resemble
φ+ for all torsion angles shown in Figs. 3.72(a) and (b). Particularly striking is
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Figure 3.72 (a) Torsional properties of 1,4-diaminobutane, 32, showing variations
of total energy (Etot, solid line), ionization potential (IP, dotted line), and CMO
splitting (ε±, dashed line) for twisting of the terminal —NH2 group. The all-trans
conformation 32 (φCN = 180◦) is the reference zero for �Etot and �(IP) variations.
(b) Similar to (a), for twisting of the terminal —CH2NH2 group about the C—C
bond.
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the comparison between the starting aa conformer (anti–anti, τCN = 180◦) and
the fully twisted sa conformer (syn–anti, τCN = 0◦); despite the complete rever-
sal of �ε± values in the parent neutral species from −15.2 kcal mol−1 in aa to
+11.5 kcal mol−1 in sa, the cation electron configuration is identical in the two
conformers. The stability of the ionic daughter (φ )2(φ+)1 electron configuration
therefore appears to be essentially independent of the TB splitting pattern of the
parent neutral species, contrary to a Koopmans-type assumption. An even stronger
violation of the Koopmans picture is found in diaminoethane 30 (m = 2), where
the neutral TB splittings are −30.05 kcal mol−1 in the aa conformer (favoring
φrad = φ+) and +18.71 kcal mol−1 in the sa conformer (favoring φrad = φ ), but
the cationic radical MO is the in-phase φ+ in both conformers. Thus, approxi-
mate satisfaction of (3.168a) cannot guarantee that Koopmans’ theorem provides a
correct qualitative picture of cationic electronic structure.

How does the NBO donor–acceptor picture account for the observed cationic
φrad � φ+? If we let σNN′ f and σNN′ e respectively denote the “filled” and “empty”
NBOs built from the two nitrogen lone pairs of the ionized spin set, one expects
that the principal NBO donor–acceptor interactions with the bridge C—C bonds
and antibonds are

σNN′ f → σCC
∗ (3.169a)

σCC → σNN′ e (3.169b)

By symmetry, one can recognize that σNN′ f must be taken to be out of phase in order
for it to interact favorably with the bridge antibond σCC

∗ in (3.169a), and similarly
σNN′ e must be in phase to serve as an effective acceptor for the bridge bond σCC in
(3.169b). This necessitates that

σNN′ f = σNN′ ∗ � φ (out of phase) (3.170a)

σNN′ e = σNN′ � φ+ (in phase) (3.170b)

Figure 3.73 depicts the leading donor–acceptor interactions (3.169a) and
(3.169b) for the aa conformer of the diaminoethane cation 30+, where the config-
uration is (φ )2(φ+)1 (as predicted by Koopmans’ theorem). As seen in the figure,
the bridging interactions (3.169a) and (3.169b) respectively contribute 13.1 and 7.6
kcal mol−1 stabilization to the cation.

If we now twist an amine group by 180◦ to the sa geometry, the TB splitting of the
parent neutral species is strongly reversed in sign (from −30.1 to +18.7 kcal mol−1),
suggesting that ionization should now occur out of the φ MO. However, the actual
cation configuration is still (φ )2(φ+)1 and the leading donor–acceptor interactions
(3.169) still conform to (3.170), as shown in Fig. 3.74. Compared with aa geometry,
the interactions (3.169) of the sa conformer are somewhat weakened (9.7 kcal mol−1
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Figure 3.73 Leading NBO donor–acceptor interactions (and second-order stabi-
lization energies) in the aa conformer of the 1,2-diaminoethane cation 30+: (a)
σCC→σNN′ e and (b) σNN′ f→σCC

∗. Note that the two N lone-pair hybrids are in
phase (φ+) in the acceptor σNN′ e (a), but out of phase (φ ) in the donor σNN′ f (b).

for σNN′ f→σCC
∗, 6.9 kcal mol−1 for σCC→σNN′ e). However, these interactions

contribute significant cationic stabilization provided that φrad is taken as the in-
phase φ+, contrary to the Koopmans picture.

The W-effect and octant-rule interactions

The importance of specific orbital alignments in the TB propagation of remote
stereoelectronic influences can be assessed directly by structure-sensitive spectro-
scopic techniques. The results of many such studies have been summarized as vari-
ous “effects” or “rules” that express the dependence on geometrical factors, such as
the all-trans zig-zag or “W” pattern of skeletal bridge bonds. Such a “W-effect”105

Figure 3.74 Similar to Fig. 3.73, for the sa conformer.
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can evidently be related to the enhanced NBO donor–acceptor interactions charac-
teristic of vicinal antiperiplanar orbital alignments, as discussed in many examples
in this book.

A particularly useful probe of remote-substituent influences is provided by opti-
cal rotatory dispersion (ORD),106 the frequency-dependent optical activity of chiral
molecules. The quantum-mechanical theory of optical activity, as developed by
Rosenfeld,107 establishes that the rotatory strength R0k of a Ψ0 → Ψk spectroscopic
transition is proportional to the scalar product of electric dipole (�µel) and magnetic
dipole ( �mmag) transition amplitudes,

R0k ∝ 〈Ψ0| �µel|Ψk〉·〈Ψk | �mmag|Ψ0〉 (3.170)

Owing to the disparate selection rules governing electric- and magnetic-dipole
transitions, R0k vanishes (and ORD is quenched) whenever the molecular chro-
mophoric group and associated wavefunctions Ψ0 and Ψk have definite inversion or
mirror-reflection symmetry. Such rotatory character would thus be expected to be
absent from the famous n→π∗ (�290 nm) transition of ketones, which is associ-
ated with the carbonyl chromophore of nominal C2v local symmetry. Nevertheless,
detectable optical activity can result from the slight mixing of carbonyl-based or-
bitals with those of asymmetrically distributed remote substituent groups. A simple
one-electron perturbative treatment108 supports assignment of the sign of each sub-
stituent’s contribution according to its position with respect to symmetry planes
of the carbonyl chromophore, as expressed in the octant rule109 and related sector
rules.110 Thus, ORD provides a sensitive measure of differences in delocalization
pathways to chiral features of the chromophoric environment.

Let us now examine a simple numerical model for the mixing of substituent
orbitals into the spectroscopic orbitals of the carbonyl chromophore. For this pur-
pose we consider the triplet 3n→π∗ excited state of the model amine derivative of
methylethylketone shown in Fig. 3.75.

In the triplet excited state, an electron is formally removed from the oxygen nO

orbital (the in-plane py-type nonbonding orbital) of the β manifold and added to
the πCO

∗ antibond of the α manifold (formally “breaking” half the pi bond). From
the viewpoint of the amine nN donor, this excitation makes available a low-lying
half-filled nO acceptor NBO suitable for strong hyperconjugative stabilization. The
nN−nO interaction
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Figure 3.75 A model carbonyl compound with the amine group twisted
for maximum delocalization of nN into the half-filled carbonyl nO orbital of the
3n→π∗ excited state.

therefore leads to new filled (σON
f) and empty (σON

e) NLMO orbitals of β spin,
mixing the parent nN with the chromophore nO and thus altering the excited-state
spin density that enters spectroscopic transition moments. Figure 3.76 depicts the
composition of the σON

f NLMO, showing the percentages of nN and nO contribu-
tions as functions of the dihedral twisting of the amine group about the C—N bond.

As shown in Fig. 3.76, the NLMO composition varies dramatically, from virtu-
ally pure localized nN character at τCN = 180◦ (for which nN and nO are mutually

Figure 3.76 The torsion-dependent composition of the σON
f NLMO of the 3n → π∗

excited state of the model aminoketone shown in Fig. 3.75.
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Figure 3.77 Leading donor–acceptor interactions in a 3n→π∗ excited aminodi-
alkyl ketone, showing filled (σON

f) and empty (σON
e) O—N orbitals of the ionized

spin set in TB interactions with bridge σCC and σCC
∗ NBOs. (Note that σCC and

σCC
∗ appear truncated because only the C atom directly bonded to N lies in the

chosen contour plane.)

perpendicular) to ∼17% nO character at τCN = 90◦ (for which nN and nO are paral-
lel). Interestingly, the low-energy σON

f NLMO is the out-of-phase mixture, whereas
the vacated σON

e NLMO from which excitation apparently occurred is the in-phase
combination,

σON
f � 0.91nN − 0.41nO (3.171a)

σON
e � 0.41nN + 0.91nN (3.171b)

This surprising inversion shows unequivocally the role of TB coupling involving
the bridging σCC and σCC

∗ NBOs that are in favorable antiperiplanar alignments
with both nN and nO.

Figure 3.77 depicts contour diagrams of the leading excited-state TB interactions

σCC→σON
e (3.172a)

σON
f→σCC

∗ (3.172b)

at τCN = 90◦, showing the portions of these orbitals lying in a plane that con-
tains three of the four O=C—C—N skeletal atoms. The second-order stabilization
energies associated with (3.172a) and (3.172b) are 12.00 and 9.25 kcal mol−1, re-
spectively. The close similarities to Fig. 3.73 are evident, as are the general parallels
between the orbital compositions (cf. (3.170) and (3.171)) and donor–acceptor sta-
bilization patterns (cf. (3.169) and (3.172)) involving the radical orbitals. In each
case, strong hyperconjugative stabilization and long-range orbital mixing are fos-
tered by the W-like pattern of vicinal antiperiplanar interactions over the extended
donor–bridge–acceptor chain.



3.4 Hyperconjugation 263

Thus, electronic promotion to an excited state may be considered in many re-
spects analogous to “partial ionization.” In each case, distinctive opportunities
(namely (3.169) and (3.172)) become available for strong NBO donor–acceptor
delocalizations.

3.4.4 Geminal hyperconjugation

General characteristics of geminal donor–acceptor interactions

As previous sections have emphasized, the leading contributions to hyperconjuga-
tive stabilization and the associated torsional dependences typically arise from
NBOs σAB and σCD

∗ in vicinal relationship. Nevertheless, in certain cases signif-
icant stabilizations arise from geminal interactions between NBOs σAB and σBC

∗

sharing a common apex atom B. We now wish to characterize geminal delocaliza-
tion effects from the NBO donor–acceptor perspective, comparing and contrasting
these effects with the more familiar effects of vicinal hyperconjugation.

Following the procedure for vicinal interactions illustrated in Example 1.4 and
Section 3.3.1, we can associate each geminal σAB→σBC

∗ donor–acceptor inter-
action with an “arrow-pushing” diagram and partial admixture of an alternative
resonance diagram, as shown in Fig. 3.78. The formal two-electron transfer from
σAB to σBC

∗ results in the NBO configuration

(σAB)0(σBC)2(σBC
∗)2 = (nB)2(nC)2 (3.173)

Figure 3.78 Generic “arrow-pushing” diagrams (left) and secondary resonance
structures (right) for vicinal (upper) and geminal (lower) NBO donor–acceptor
interactions.
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which corresponds to the nonbonded ionic pattern illustrated in the lower-right-
hand panel of Fig. 3.78. Compared with the corresponding “double-bond–no-bond”
resonance structure of vicinal σAB→σCD

∗ interactions (upper-right-hand panel of
Fig. 3.78), geminal delocalization creates formal A+, C− character on atoms that
are in close spatial proximity,111 with no compensating gain in covalent double-
bond character elsewhere. Hence, geminal delocalization corresponds to general
loss of covalency and an increasingly ionic picture of the bonding.

As suggested by the resonance diagram in Fig. 3.78, geminal σAB−σBC
∗ inter-

actions are likely to become appreciable as ionic character increases, i.e., as elec-
tronegativity differences among atoms A, B, and C become pronounced. Strong
geminal delocalization is rather uncommon in apolar hydrocarbon species, except
in cases of strong angular strain (see below). However, geminal effects typically
become significant, e.g., in silicon analogs of common organic species, because of
electronegativity and size effects to be discussed below.

In the past the sigma-delocalization effects arising from geminal hyperconjuga-
tion have been subject to considerable controversy. In particular, Dewar112 judged
these effects to be highly important, leading to the “sigma-aromaticity” concept
(e.g., in cyclic six-electron sigma skeletons such as C3H6; see below) that was
questioned by other workers.113 It now appears that Dewar’s assessment of gemi-
nal delocalization was exaggerated due to the parameterization of such effects in the
Austin-based semi-empirical methods114 leading to large geminal couplings that
are not reproduced by ab initio wavefunctions. However, geminal delocalization
effects are indeed real, and accurate assessment of their structural and energetic
consequences is necessary for a comprehensive picture of sigma-delocalization
phenomena, as well as for comparison with the better-known vicinal effects. In
the following we summarize some leading points of the more complete analysis of
geminal delocalization given by Glendening.115

Hybrid contributions

It is inherently surprising that geminal interactions are typically weaker than vic-
inal interactions, because the former involve orbitals that are in closer spatial
proximity. The reasons for this counterintuitive distance dependence can be seen
by decomposing the geminal Fock-matrix element into individual atomic hybrid
contributions.

For this purpose, let us consider a geminal X—A—Y linkage and the associated
σAX−σAY

∗ interaction. This leads to the expected second-order energy lowering

�Egem
(2) = −2

〈σAX|F̂ |σAY
∗〉2

εσ
∗ − εσ

(3.174)
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where the variability of the energy difference in the denominator may be neglected.
The NBOs can be expressed as usual in terms of hybrids and polarization coeffi-
cients,

σAX = cAhA + cXhX (3.175a)

σAY
∗ = cYhA′ − cA′hY (3.175b)

The geminal Fock-matrix element is therefore written in terms of four contribu-
tions,

Fgem = 〈σAX|F̂ |σAY
∗〉 = cAcY FAA′ − cA′cX FXY + cXcY FA′X − cAcA′ FAY

(3.176)

which can be respectively identified as the “one-center” term,

cAcY FAA′ = cAcY〈hA|F̂ |hA′ 〉 (3.177a)

the “nonbonded” term,

cXcA′ FXY = cXcA′ 〈hX|F̂ |hY〉 (3.177b)

and the “cross-bonded” terms

cXcY FA′X = cXcY〈hA′ |F̂ |hX〉 (3.177c)

cAcA′ FAY = cAcA′ 〈hA|F̂ |hY〉 (3.177d)

The overall behavior of �Egem
(2) and 〈σAX|F̂ |σAY

∗〉 clearly depends on the strength
and degree of cancellation of these terms, which we now consider individually.

The one-center term
The one-center term (3.177a) is often the dominant contributor to the strongest gem-
inal interactions. This may seem surprising, because the contributing hybrids hA

and hA′ are mutually orthogonal and the FAA′ Fock-matrix element might naively
be expected to vanish. However (as emphasized by Dewar), this expectation re-
sults from erroneous application of a Mulliken-type approximation (Eq. (1.34)) to
hybrids on a single center, and the actual FAA′ integral is certainly non-zero.

Indeed, it has been shown by Glendening that FAA′ is related to the hybridization
parameters λA and λA′ (Eq. (3.26)) and s/p promotion energy �sp (Eq. (3.72)) by
the approximate relationship

FAA′ � [(1 + λA)(1 + λA′)]−1/2�sp (3.178)

In accord with Bent’s rule (Section 3.2.6), FAA′ is therefore expected to grow with
increasing electropositivity of the central atom A or increasing electronegativity of
either X or Y.
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However, the larger effect of polarity on the one-center term (3.177a) comes from
the dependence on the cAcY prefactor of FAA′ . The cAcY product is strongest for
electropositive X and electronegative Y, corresponding to a concerted (cooperative)
polarization pattern of the form

(3.179)

In this pattern, X acquires partial cationic character and Y partial anionic character
while the central atom A is little affected, which is consistent with the resonance
diagram of Fig. 3.78.

The nonbonded term
The nonbonded term (3.177b) is often pivotal in controlling the final strength of
〈σAX|F̂ |σAY

∗〉 and �Egem
(2). Paradoxically, this control usually results from mini-

mizing the magnitude of cXcA′ FXY, because this term appears with opposite alge-
braic sign to the dominant cAcY FAA′ one-center term. Thus, geminal delocalization
effects are weak when the one-center and nonbonded terms are similar in magni-
tude (leading to their mutual canceling out), but such effects become appreciable
when the one-center term is maximized while the nonbonded term is minimized.
(However, an entirely different limit can be achieved when the X–Y separation is so
small that (3.177b) becomes dominant compared with (3.177a); in the extreme case
of cyclopropane and related three-membered-ring compounds [as discussed below]
the “nonbonded” FXY term actually corresponds to chemically bonded atoms.)

From polarity considerations, one can recognize that the prefactor cXcA′ of the
nonbonded term is minimized by the same concerted polarization pattern as that
shown in (3.179), which is consistent with maximization of the one-center term.
This is also consistent with higher ionic character and the X+ · · · Ä · · · Y− resonance
pattern shown in Fig. 3.78.

However, the nonbonded term is more effectively minimized by reducing FXY,
i.e., by increasing the separation (reducing the overlap) between X and Y. For fixed
bond angles, such a reduction can be brought about most directly by increasing the
size of the central atom A, reducing the interpenetration of valence orbitals of X
and Y. For example, when a carbon atom is replaced by silicon as the central atom,
the covalent radius rA increases from 0.77 to 1.17 Å. Both RAX and RAY are accord-
ingly lengthened by about 0.40 Å and RXY is correspondingly increased by about
0.53 Å (for near-tetrahedral X–A–Y angle). This increase in X · · · Y separation
sharply reduces the nonbonded term, enhancing geminal delocalization as described
above. Thus, silicon compounds are generally found to exhibit much stronger
geminal delocalization effects than analogous carbon compounds. Similar remarks
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Figure 3.79 Geminal interactions in CH4 (a) and SiH4 (b), showing outline con-
tours of three (hA, hH, and hH′ ) of the four participating hybrids. Note the lesser
nonbonded interaction in SiH4 (FHH′ = −0.0105) compared with CH4 (FHH′ =
−0.0410), despite the greater hydridic character in the silane case.

pertain to replacement of first-row central atoms by second-row analogs in other
families.

Figure 3.79 illustrates some aspects of the nonbonded and cross-bonded hybrid
interactions in CH4 and SiH4, showing the weakened H · · · H nonbonded interaction
in the latter case. As a consequence, the geminal σSiH−σSiH

∗ stabilization (1.98
kcal mol−1) of SiH4 is considerably stronger than the corresponding σCH−σCH

∗

stabilization (0.19 kcal mol−1) of CH4.

The cross-bonded terms
The cross-bonded terms cXcY FA′X and cAcA′ FAY result from interaction of X and
Y with the “wrong” bonding hybrids on A. The magnitudes of these terms can
usually be judged from simple overlap considerations. Unless X and Y are of quite
dissimilar electronic character, the two cross-bonded terms are inherently of similar
magnitude and therefore tend to cancel one another out. Thus, cross-bonded terms
tend to make only minor contributions to geminal delocalization.

In summary, one can say that geminal hyperconjugation tends to be weak in ordi-
nary organic compounds due to a fortuitous balance of opposing contributions. The
picture in these compounds is therefore of individually significant hybrid–hybrid
interactions that are prevented by mutual cancellation from giving rise to significant
delocalization effects. When this fortuitous balance is broken (e.g., in X—A—Y
linkages with more electronegative X and Y or larger central atom A), geminal
delocalization effects can emerge as a significant stabilizing factor. “Ordinary” or-
ganic compounds may thus be considered to be rather exceptional compared with
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Figure 3.80 Angular dependences of (a) the second-order stabilization energy
−�Egem

(2) and (b) the geminal Fock-matrix element Fgem for the skeletal bending
coordinate θ of propane (circles) and trisilane (squares).

compounds from the remainder of the periodic table, for which geminal delocal-
ization is expected to be a more pervasive phenomenon.

Angular dependence

Compared with the vicinal delocalization effects discussed in Section 3.4.2 (see
Fig. 3.66), geminal delocalizations have a more restricted set of geometrical de-
pendences and consequences. In general, a geminal σAX−σAY

∗ interaction can be
expected to depend primarily on changes in bond lengths RAX and RA′Y and bond
angle θ = �XAY of the X—A—Y linkage. The dependence on bond stretches tends
to be small, and will be neglected in the present treatment. Much more important is
the dependence on geminal bond angle θ , which exhibits many surprising features.

The rather dramatic dependences of �Egem
(2) on θ for geminal skeletal interac-

tions in propane (C3H8) and trisilane (Si3H8) are illustrated and compared in Fig.
3.80(a). In each case the geminal A—A—A angle (A = C, Si) is varied in the range
60◦ ≤ θ ≤ 180◦, with all other variables optimized at each θ . As shown in the fig-
ure, �Egem

(2)(θ ) for propane is rather weak and featureless in the region (θ � 109◦)
of normal acyclic bond angles, but it increases steeply near the small-angle limit
θ = 60◦. The corresponding curve for trisilane is quite different, exhibiting signifi-
cant geminal stabilization throughout the range of near-tetrahedral valence angles,
but dropping to zero near 75◦ before rising steeply at smaller angles.

How can such differences arise? Figure 3.80(b) shows the dependence of the
geminal Fock-matrix element Fgem (for Fgem = 〈σCC|F̂ |σCC′ ∗〉 or 〈σSiSi|F̂ |σSiSi′

∗〉)
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on θ for C3H8 and Si3H8. It can be seen that the Fgem(θ ) curves have a gener-
ally similar shape for these two species, but shifted upward for the silicon com-
pound. The conspicuous feature of both curves is their undulatory character. Each
curve necessarily starts from an asymptotic negative value at sufficiently small θ

(where the “nonbonded” term (3.177b) is dominant), then rises to some maximum
value (which may be positive or negative116) before dipping slightly and rising
again toward θ = 180◦.

That Fgem(θ ) can (and must) undergo undulations and sign changes is evident
from the numerous mutual cancellations of one-center, nonbonded, and cross-
bonded hybrid contributions, as discussed above. For example, at sufficiently small
angles the nonbonded term must overcome the single-center term, reversing the
usual relationship at larger angles. Similarly, in the cross-bonded terms, each ter-
minal hX hybrid interacts primarily with the backside lobe of the central hA′ hybrid
at large θ but with the main hybrid lobe at sufficiently small θ , so that a sign change
in these terms necessarily occurs at some intermediate angle. This can give rise
to quite surprising angular variations in which well-localized structures of a nar-
row angular region are bounded at smaller (and/or larger) angles by delocalized
structures evincing strong geminal stabilization. The details of the band-like pat-
terns of geminal stabilization are generally dependent on the particular atoms of
the X—A—Y linkage.

Despite the rather unpredictable angular behavior of geminal donor–acceptor
interactions, their effect on molecular shape and reactivity seems to be generally
less important than that of vicinal interactions. This is particularly true for common
nonpolar organic and biochemical species, for which geminal delocalization effects
tend to be rather insignificant in near-equilibrium geometry. Except in specialized
cases as described below, geminal hyperconjugation (if significant at all) tends
to serve as a background to more chemically interesting vicinal and longer-range
donor–acceptor interactions.

Ring strain in small cyclic alkanes and silanes

In the late 1870s, the lack of evidence for the existence of small carbocycles (CH2)n

persuaded Baeyer and other chemists117 that such structures were intrinsically un-
stable due to ring strain. Efforts to synthesize three- and four-membered carbon
ring systems118 led to Baeyer’s famous ring-strain theory,119 which proposed that
ring closure to give five- and six-membered rings is facile due to preservation
of near-tetrahedral bond angles, whereas formation of smaller rings requires in-
creasingly large deviations of bond angles from the preferred tetrahedral geometry,
corresponding to an increase in destabilizing “strain energy.” Baeyer’s ring-strain
hypothesis introduced an important new elasto-mechanical aspect to the emerging
concept of molecular structure.
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It was therefore a great surprise in the early 1950s when accurate determina-
tions of heats of formation revealed that the strain energies of cyclopropane and
cyclobutane are nearly identical.120 Thus, from the perspective of Baeyer’s strain
theory, it appears that cyclopropane is abnormally stabilized or that cyclobutane is
abnormally destabilized (or both). Comparison experimental data for correspond-
ing three- and four-membered silicon ring compounds have been more difficult to
obtain, because known examples involve protection by bulky substituent groups
or other complicating factors. However, available theoretical estimates (see below)
suggest that cyclic Si3H6 is indeed much less stable than Si4H8, in accord with
Baeyer’s strain theory. As Schleyer121 was led to remark, “Perhaps Baeyer should
have been a silicon chemist!”

On the theoretical side, theoretical strain energies (TSEs) of cyclic (AH2)n

species are usually obtained122 as the energy change for the appropriate “homo-
desmotic” reaction

nA3H8 → nA2H6 + (AH2)n (TSE = �Erxn) (3.180)

which conserves the number of bonds and approximate hybrid types with respect
to corresponding unstrained acyclic species. Several investigations have shown that
such TSEs are in good agreement with strain energies determined experimentally,
even at relatively low levels of theory.123 Table 3.27 summarizes calculated TSE
values for three- and four-membered C and Si rings. The tabulated values establish

Table 3.27. Symmetry, bond lengths RAA and RAH, bond angle θHAH and
theoretical strain energy (TSE) for small cyclic alkanes (A = C) and silanes

(A = Si), with corresponding geometrical variablesa of acyclic (C2v) propane and
trisilane species for comparison

Species Symmetry RAA (Å) RAH (Å) θHAH (degrees) TSE (kcal mol−1)

A = C
C3H6 D3h 1.509 1.084 114.2 26.81
C4H8 D2d 1.554 1.092 108.5 25.74
C4H8

b D4h 1.557 1.092 107.8 26.52
C3H8 C2v 1.532 1.096 106.1 —

A = Si
Si3H6 D3h 2.347 1.484 112.6 34.88
Si4H8 D4h 2.385 1.489 108.3 15.22
Si3H8 C2v 2.357 1.490 107.6 —

a Geometrical variables for the central methylene or silylene AH2 group.
b Planar ring (D4h) structure, 0.80 kcal mol−1 above equilibrium puckered (D2d) geometry.
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that cyclotrisilane is about 8 kcal mol−1 more strained and cyclotetrasilane is about
11 kcal mol−1 less strained than their carbon analogs. Both computational and
experimental results also establish that C4H8 adopts a curious puckered (D2d) ge-
ometry, whereas the other three- and four-membered rings have skeletal mirror
planes.

Why is the stability of the cyclopropane ring so much higher than predicted
by Baeyer ring-strain theory? An answer is immediately suggested by the an-
gular dependence shown in Fig. 3.80(a). Whereas geminal stabilizations are less
than 1 kcal mol−1 for larger rings (n ≥ 4, θCCC ≥ 90◦), these interactions become
strongly stabilizing at the θ = 60◦ geometry of cyclopropane. The visual estimate
of Fig. 3.80(a) is confirmed by the actual C3H6 geminal interactions depicted in
Figs. 3.81(a)–(c). As shown in Fig. 3.81(c), each σCC−σCC′ ∗ geminal stabiliza-
tion (5.5 kcal mol−1) in C3H6 is only a little less than the corresponding value

Figure 3.81 Geminal interactions in cyclopropane and propane, showing “bent”
cyclopropane (a) bond σCC and (b) antibond σCC′ ∗ NBOs, with comparison geminal
σCC−σCC′ ∗ overlap contour diagrams for (c) cyclic and (d) acyclic species.
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(6.6 kcal mol−1) in the acyclic model of Fig. 3.80(a). The �Egem
(2) values sug-

gest that cyclopropane is stabilized by about 30 kcal mol−1 by the six geminal
σCC−σCC′ ∗ interactions, each about 5 kcal mol−1 stronger than the corresponding
value (0.5 kcal mol−1) in unstrained propane.

The geminal stabilizations of cyclobutane and the silicon three- and four-
membered rings can be judged from Fig. 3.80(a) to be much smaller than those
for cyclopropane. Thus, geminal delocalization becomes a powerful factor in over-
coming the intrinsic Baeyer ring strain of the severely bent bonds of cyclopropane,
but it plays no corresponding role in C4H8, Si3H6, and Si4H8.

(That the Baeyer strain in silicon rings is generally less than that in carbon
rings could be judged from the fact that the Si—Si bonding hybrids are more
diffuse and weakly directional [higher s character] and the Si—Si bond strengths
are significantly weaker than those in carbon analogs [53 versus 83 kcal mol−1

for standard Si—Si versus C—C bond dissociation energies]. Thus, the Si—Si
bonds are less affected by a given degree of bending, and Baeyer ring strain is
proportionately smaller for silicon than for carbon rings.)

Several other factors play a role in the differential stabilization of three- and
four-membered carbon and silicon rings.

(1) The increased p character of the skeletal hybrids in strained ring systems necessitates
increased s character in the exocyclic bonds to hydrogen, according to Bent’s rule
(Section 3.2.6.). Such a “rehybridization effect” in C3H6 therefore leads to pronounced
C—H bond shortening and strengthening that partially compensates for the bending
and weakening of C—C bonds.124 Such an effect is evident in Table 3.27, where the
C—H bond length of cyclic C3H6 is seen to be shortened by 0.012 Å (relative to acyclic
C3H8), whereas the corresponding shortening in cyclobutane is only 0.004 Å. The
rehybridization effect is also evident in θHCH bond angles, which open by more than
8◦ in C3H8, compared with only 1–2◦ in C4H8. The effect is weaker in silicon than in
carbon compounds, as can be seen in the weaker variations in RSiH and θHSiH in Table
3.27. Numerical estimates of the rehybridization effect vary widely125 but all suggest
that the TSE contributions are smaller than the geminal delocalization cited above.

(2) Planar ring geometry necessitates the eclipsing of exocyclic C—H (or Si—H) bonds.
This “torsional strain effect” involves eight hydride bonds for four-membered rings,
but only six for three-membered rings, and thus may contribute to TSE differences.
Available estimates126 indicate that eclipsing effects reduce the TSE of cyclopropane
relative to cyclobutane by about 12 kcal mol−1.

(3) Repulsive cross-ring interactions in cyclobutane (the “1,3-C—C effect”) might in prin-
ciple increase the TSE of cyclobutane. However, Cremer and Gauss127 showed that
the effect is actually negligible for cyclobutane, but leads to a small indirect decrease
in TSE for cyclopropane, due to the way the (small) 1,3-C—C interaction of propane
enters the TSE through the homodesmotic reaction (3.180).
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Figure 3.82 The puckered (D2d) equilibrium geometry of C4H8, showing canting
of methylene units to give alternating “axial” and “equatorial” C—H bonds.

Thus, other possible contributions to TSE appear to be less important than the
geminal delocalization effects noted above.

Why does C4H8 adopt puckered D2d geometry? As shown in Fig. 3.82, the
skeletal carbon atoms twist out of planarity (with dihedralφCCCC = 17.9◦), allowing
each methylenic hydrogen to be distinguished as axial (with φCCCH(a) = ±94.9◦)
or equatorial (with φCCCH(e) = ±138.7◦). The puckered equilibrium D2d structure
lies only 0.8 kcal mol−1 below the transition-state D4h structure.

The electronic origin of C4H8 puckering undoubtedly involves relief of eclipsing
strain and gain of vicinal hyperconjugation at the expense of somewhat increased
C—C bond bending. Investigation reveals that the principal vicinal stabilizations
are of σCC−σCH(e)

∗ type, involving delocalization from strained C—C bonds into
equatorial C—H antibonds that are most nearly in favorable anti-like alignment.
(The corresponding σSiSi−σSiH

∗ interactions in Si4H8 are too weak to support D2d

distortion.) Deletion of σCC−σCH
∗ NBO interactions and reoptimization of C4H8

geometry is found to lead back to unpuckered D4h symmetry. Thus, the competition
between bond strain and hyperconjugative stabilization is also reflected in more
subtle features of the ring structures.

Generally speaking, donor–acceptor delocalizations of both geminal and vicinal
types can be expected to increase near bent bonds and antibonds. Covalent bond
strain inherently weakens the bond and diminishes bond–antibond splitting, result-
ing in a higher-energy bond (enhanced donor) and lower-energy antibond (enhanced
acceptor) for donor–acceptor interactions. One can therefore expect that hypercon-
jugative delocalization serves as a general “softening” mechanism to counter the
adverse effects of covalent bond strain in polyatomic molecules.

The pi-complex model of cyclopropane

Finally, we briefly compare the NBO donor–acceptor picture of geminal delocal-
ization with Dewar’s “sigma-aromaticity” concept and the associated pi-complex
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model128 of cyclopropane. This model depicts C3H6 as having a strong admixture
of H2C: + H2C=C2H character,129

(3.181)

with the methylene lone pair forming a pi complex with the ethylene pi bond.
Such a picture emphasizes pi-orbital interactions near the ring center, rather than
sigma bonds bent strongly outside the ring as in the Coulson–Moffitt picture. Wave-
function analysis by Bader’s “atoms-in-molecules” method130 seems to support the
pi-complex picture, even suggesting that the wavefunction should be described
better by the three equivalent resonance structures (3.181) than by the classical
single-bonded structural formula.131

A naive orbital cartoon of “banana bonding,”

(3.182)

might seem to suggest that electron density is concentrated outside the ring periph-
ery. However, the actual electron density in the C3 plane is plotted in Fig. 3.83(a),
showing that the contours along the ring edge bend slightly inward toward the ring
center, so that the electron density in the ring interior is greater than that around the
ring periphery. Thus, the form of the electron density Fig. 3.83(a) may superficially
seem to contradict the expectations of (3.182) and support the pi-complex picture
(3.81).

However, the orbital cartoon (3.182) presents a very misleading impression of
the actual shape of the bent σCC bond, as shown in Fig. 3.81(a). Although the
contours of σCC indeed “bulge out” asymmetrically toward the outside of the ring,
a high proportion of orbital amplitude remains inside the ring. This is shown more
clearly in Fig. 3.83(b), which represents a cross-section through the midpoint of
the σCC bond both as a contour diagram (solid lines) and amplitude profile (dotted
line). From these diagrams one can judge that the σCC electron density extends
significantly into the ring interior, where it adds to the densities from the other two
C—C bonds. In fact, the amplitude of each σCC at the ring center is about 60% of
the maximum amplitude outside the ring, and the sum of three such bond densities
near the ring center easily exceeds that of a single bond outside the ring. Thus there



3.5 Hypervalency: 3c/4e “ω bonds” 275

Figure 3.83 (a) Contours of total electron density in the skeletal plane of C3H6.
(b) A cross-section of the σCC NBO in the perpendicular plane passing through
one of the CH2 groups and bisecting the opposite C—C bond (triangle), showing
orbital contours (solid lines) and the amplitude profile (dotted line) on either side
of the dividing boundary (vertical line) between “inside” and “outside” the C3H6
ring. Note that a reference dummy nucleus marks the molecular center in both
diagrams.

is no inherent conflict with the bent-bond Coulson–Moffitt picture in finding higher
electron density inside, rather than outside, the triangle edges.

The importance of “pi-complex” resonance structures such as (3.181) can also
be directly assessed with NRT analysis (Section 1.6). For the equilibrium C3H6

structure corresponding to the electron-density map in Fig. 3.81(a), the optimal
NRT resonance weightings are found to be

(3.183)

Thus, NBO/NRT analysis generally supports the Coulson–Moffitt picture and in-
dicates that pi-complex character (although present) is a relatively minor feature of
the electronic structure of cyclopropane.

3.5 Hypervalency: 3c/4e “ω bonds”

The conceptual framework and models of hypervalency

The great success of the Lewis-structure concept naturally calls attention to excep-
tional cases in which Lewis-structural principles appear to be violated. An important
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class of such exceptions is constituted by so-called hypervalent (“electron-rich”)
species containing atoms whose apparent number of nonbonded and bonded
electron pairs exceeds the octet-rule limit. (The alternative case of hypovalent
[“electron-deficient”] species, containing atoms that apparently lack the necessary
number of nonbonded and bonded electron pairs to complete the valence octet, will
be considered in Section 3.6.)

Hypervalency can be defined most simply with respect to purely empirical as-
pects of chemical periodicity. As beginning chemistry students are taught, each
chemical family is associated with a column of the periodic table and associated
valence atomic number ZA

val, such that the empirical valency VA
emp is the minimum

shift of ZA
val to reach the nearest rare gas,

VA
emp = min{ZA

val, |ZA
val − 8|} (3.184)

For example, atoms of both the alkaline-earth family (ZA
val = 2) and the chalcogen

family (ZA
val = 6) correspond to VA

emp = 2, and their stoichiometric proportion-
ality (or coordination number) to monovalent atoms is therefore commonly two
(AH2, ALi2, AF2, etc.). It is a remarkable and characteristic feature of chemical
periodicity that the empirical valency VA

emp applies both to covalent and to ionic
limits of bonding, so that, e.g., the monovalency of lithium (VLi

emp = 1) correctly
predicts the stoichiometry and coordination number of covalent (e.g., Li2), polar
covalent (e.g., LiH), and extreme ionic (e.g., LiF) molecules. Following Musher,132

we can therefore describe hypervalency as referring to cases in which the apparent
valency VA exceeds the normal empirical valency (3.184),

VA(hypervalent) > VA
emp (3.185)

Well-known examples of hypervalency include PF5, SF6, and other species com-
monly discussed in the framework of valence-shell electron-pair repulsion (VSEPR)
theory (see below).

For a general closed-shell AXm species, the Lewis-type assumption of a shared
A:X electron-pair bond for each coordinated monovalent atom X nominally requires
m orbitals on A to accommodate the 2m bonding electrons, plus additional orbitals
for any nonbonded pairs. Thus, for m bonds and � lone pairs, apparent octet-rule
violations occur whenever

m + � > 4 (3.186)

requiring more than the four standard valence AOs (s, px , py, pz) available to a
main-group element. Inequality (3.186) provides an alternative criterion of main-
group hypervalency, or apparent octet-rule violation.

Two general conceptual models of hypervalency have been proposed. The
first, “d-orbital participation,” is represented in practically every general-chemistry
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textbook, and is based on the assumption that 4 − m − � additional d-type AOs are
employed to “expand the valence shell” to five, six, or more electron pairs,

1s + 3p + (4 − m − �)d AOs → (m + �) hybrids hi (3.187)

leading, e.g., to six d2sp3 hybrids for m + � = 6. The second, “ionic resonance,” is
based on the high ionic character of the bonding and the importance of resonance
delocalization that would be represented in VB language as

X:− A—X ←→ X—A :X− (3.188)

involving ordinary octet-rule-conforming species. As pointed out by Coulson,133

the VB ionic-resonance picture is essentially equivalent to the three-center, four-
electron (3c/4e) MO model (described below) in which non-zero bond orders result
from filling both the bonding and the nonbonding MOs arising from interaction of
three valence AOs; schematically,

The ionic-resonance (or 3c/4e MO) picture implies that d orbitals play only a sec-
ondary role as polarization functions (rather than primary components of bonding
hybrids), and emphasizes that a single acceptor orbital on A may be adequate to
form strong donor–acceptor interactions with m ligand donor orbitals. Thus, no
significant “expansion of the valence shell” or other violations of Lewis-structural
principles (beyond resonance delocalization (3.188)) may be needed in order to
account for the hypervalency phenomenon. This is consistent with considerable
theoretical134 and computational135 evidence showing that d orbitals play a rela-
tively negligible role in main-group hypervalency phenomena.

A third, more extreme, conceptual model, based on a completely ionic picture
of hypervalent bonding, can also be invoked to remove perceived conflicts with
Lewis-structural principles. In PF5, for example, the completely ionic (“oxidation
number”) P5+(F−)5 representation

(3.189a)
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describes the bonding in terms of closed-shell [Ne]-like cation and [Ar]-like anions,
which is fully consistent with standard Lewis-structure representations of each ion.
(The mutual repulsions of anions would, of course, lead to the same D3h geometry
as that predicted by the VSEPR logic.) In the ionic limit (3.189a) the electrovalent
(ionic) bond order of each F− · · · PF4

+ ion pair is unity, whereas the covalent bond
order is zero,

ionic limit: bPF
(ion) = 1, bPF

(cov) = 0 (3.189b)

The exaggerated ionic picture (3.189) is doubtless unrealistic, but it is interesting
to note that the calculated natural atomic charges in PF5,

QP = +2.63, QF = −0.51(eq), −0.55(ax) (3.190)

are indeed suggestive of high ionic character,136 contrary to the “electroneutrality
principle” commonly espoused in general-chemistry textbooks.

As the discussion of Chapter 2 and the numerical charges in (3.190) suggest,
the extreme ionic picture such as (3.189a) must be modified by donor–acceptor
interactions that create partial covalency by delocalizing significant charge (∼0.5e)
from bare fluoride ions into acceptor orbitals of the central cation. Such partial-
covalency effects can be represented by resonance delocalization of the form

F:− PF4
+ ←→ F4P+ :F− (3.191)

These resonance corrections to the extreme ionic model correspond to the “ionic-
resonance model” symbolized by (3.188).

However, at first sight the ionic-resonance model would not seem applicable to
I3

− and related symmetric hypervalent species, because extreme I+I− ionicity dif-
ferences would not be expected between central and terminal atoms of intrinsically
equal electronegativity. Nevertheless, we shall show that the complementary bi-
directional resonance stabilization motif (3.188) can lead to effective three-center
bonding even if central and terminal atoms are of equal electronegativity.

The Pimentel–Rundle 3c MO model

Pimentel presented a particularly simple and lucid MO model of hypervalency
(building on physical concepts that were also recognized by Rundle)137 that is ap-
plicable to atoms of similar or dissimilar electronegativity. The Pimentel–Rundle
model is based on a general triatomic A—B—C species in which each atom con-
tributes only a single basis AO (χa, χb, χc) that interacts strongly with the AO on
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George C. Pimentel

Robert E. Rundle

each adjacent atom. From these three AOs one can construct three LCAO-MOs φi ,
one each of bonding, nonbonding, and antibonding character,

φ1 = 1
2 (χa + 21/2χb + χc) (3.192a)

φ2 = 2−1/2(χa − χc) (3.192b)

φ3 = 1
2 (χa − 21/2χb + χc) (3.192c)
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The four electrons involved in bonding can therefore be assigned to the MO con-
figuration

ΨMO = (φ1)2(φ2)2 (3.193)

with equal partial MO bond orders for A—B and B—C, which is consistent with the
resonance diagram (3.188). Thus, MO theory can account for the fact that the four
bonding electrons are accommodated in delocalized three-center MOs, leading to
partial bonds from central atom B to both terminal atoms, even though only a single
χb valence AO participates. Coulson demonstrated the close connection between
the 3c MO model and the valence-bond resonance model (3.188).

Pimentel employed this three-center, four-electron (3c/4e) MO model to discuss
the bonding in triiodide (I3

−), bifluoride (FHF−), and other prototypical hypervalent
species. In triiodide and other trihalides, for example, the relevant AOs are the
(pa, pb, pc) orbitals along the bonding axis,

whereas in bifluoride the corresponding (pa, sb, pc) valence AOs are employed,

as pictured in Fig. 3.84.
The Pimentel–Rundle 3c/4e MO model can readily be generalized to hybrid

orbitals (rather than pure AOs) and more general LCAO-MO mixing coefficients

Figure 3.84 An illustration of the Pimentel–Rundle three-center MO model of
hypervalency, showing equilibrium valence AO (χa–χb–χc) overlap patterns for
(a) 2pF−2pF−2pF NAOs of the trifluoride ion, F3

−; and (b) 2pF−1sF−2pF NAOs
of the bifluoride ion, FHF−.
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for atoms of unequal electronegativity. The model successfully suggests how ionic
resonance (3.188) can arise in the ab initio MO framework, employing only orbitals
of an octet-rule-conforming valence sp description.

The NBO donor–acceptor picture of hypervalency: hyperbonds

Let us re-examine the 3c/4e MO description from the localized NBO perspective.
NBO analysis of the MO wavefunction (3.193) may lead to the Lewis structure A:
+ B—C, with NBOs

A: B—C




nA = χa

σBC = cbχb + ccχc

σBC
∗ = cbχb − cbχc

(3.194a)

and idealized natural Lewis-structure wavefunction

ΨA:BC
(NBO) = (nA)2(σBC)2 (3.194b)

Alternatively, one may obtain the A—B + :C structure, with NBOs

A—B :C




nC = χc

σAB = caχa + cbχb

σAB
∗ = cbχa − caχb

(3.195a)

and natural Lewis-structure wavefunction

ΨAB:C
(NBO) = (nC)2(σAB)2 (3.195b)

Perturbative donor–acceptor corrections to the idealized ΨA:BC
(NBO) and ΨAB:C

(NBO)

Lewis structures are of the respective forms

nA→σBC
∗: �EA:BC

(2) = −2
〈nA|F̂ |σBC

∗〉2

εBC∗ − εA:
(3.196a)

nC→σAB
∗: �EAB:C

(2) = −2
〈nC|F̂ |σAB

∗〉2

εAB∗ − εC:
(3.196b)

Each such delocalization corresponds to an admixture of the alternative resonance
forms

A: B—C ←→ A—B :C (3.197)

wA:BC wAB:C

with respective weightings wA:BC and wAB:C. These resonance weightings (and
those of other contributing resonance structures) can be evaluated with natural
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resonance theory (Section 1.6) to obtain the total NRT bond orders and their dis-
section into ionic and covalent contributions:

bAB
(NRT) = bAB

(cov) + bAB
(ion) (3.198a)

bBC
(NRT) = bBC

(cov) + bBC
(ion) (3.198b)

Each member of the coupled pair of resonance structures in (3.197) expresses a
semi-localized bonding aspect of the general 3c/4e resonance hybrid, a structural
motif of considerable generality and importance. We believe that the electronic
and structural properties of such 3c/4e bonding motifs are so unique and charac-
teristic as to warrant a special nomenclature and symbol that clearly distinguishes
them from ordinary 2c/2e bonds; indeed, as emphasized by Musher, an intrinsic
feature of hypervalency is the appearance of two distinguishable types of bonds
in the same molecule. We therefore characterize the resonance motif (3.127) as
“hyperbonding” or “ω-bonding” and adopt the symbol ωABC to denote the 3c/4e
hyperbonded triad.138 The two “precursor” 2c/2e bonds A—B and B—C that un-
derlie the ω-bonded triad (in complementary resonance-structure representations)
can be identified as “pre-ω bonds” or “ω prebonds,” which are distinguished by
a more specific form of the omega symbol that identifies the particular resonance
depiction, namely

ωA:BC for the 2c/2e bond (e.g., σBC) of resonance form A: B—C (3.199a)

ωAB:C for the 2c/2e bond (e.g., σAB) of resonance form A—B:C (3.199b)

The ω-prebonds ωA:BC and ωAB:C might alternatively be denoted by pre-scripted
symbols such as ωσAB, ωπAB, etc., to specify further their shape and relationship to
conventional 2c/2e bonds as well as the implied modification due to hyperbonding.
In what follows, we shall generally adopt the more generic symbols (3.199) for the
ω prebonds of a given ωABC hyperbond.

The distinguishing characteristics of ωABC hyperbonds include the following:

(HB-1) linear (or near-linear) A—B—C geometry;
(HB-2) unusually long bond lengths RAB and RBC, corresponding to high populations

of σAB
∗ and σBC

∗ antibonds and strong resonance mixing (3.197);
(HB-3) pronounced three-center character, with distinctive 2 JAB geminal spin couplings,

IR vibrational couplings, and other spectroscopic signatures;
(HB-4) equal (or near-equal) resonance weightings wA:BC and wAB:C in (3.197); and
(HB-5) unusually high cationic character of central atom B and anionic character of

terminal atoms A and C, as reflected in natural atomic charges (QA, QB, QC), ionic
bond orders (bAB

(ion) and bBC
(ion)), and electrovalencies (VA

(ion), VB
(ion), VC

(ion)).
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Where appropriate, the ω prebonds in the structure diagram can be indicated by
distinctive bond symbols ( , )

A B (ωAB:C) (3.200a)

B C (ωA:BC) (3.200b)

with the terminal vertical stroke toward the terminal atom of the triad. The corre-
sponding symbol for a composite three-center bond is

A B C (ωABC) (3.200c)

to suggest the complementarity and linearity of the three-center linkage. The two
complementary ω-prebond symbols can also be combined without atomic symbols
in combinations such as

(3.201)

Each such ω bond resembles the letter “I” and evokes the “I-bond” nomenclature
introduced by Epiotis.139

Let us describe the general form of the hyperbonding functions in further de-
tail. For the symmetric A B C case in which atoms A and C are of equivalent
electronegativity, we can rewrite the antibond NBOs in (3.194) as

σBC
∗ = (1 + λ2)−1/2(λχb − χc) (3.202a)

σAB
∗ = (1 + λ2)−1/2(λχb − χa) (3.202b)

where λ is related to the bond ionicity iAB = iCB by

λ =
(

1 + iAB

1 − iAB

)1/2

(3.203)

The nA→σBC
∗ and nC→σAB

∗ delocalizations lead to semi-localized (NLMO) or-
bitals ωAB:C and ωA:BC, which can be written as

ωAB:C = (1 + µ2)−1/2(nA + µσBC
∗) (3.204a)

ωA:BC = (1 + µ2)−1/2(nC + µσAB
∗) (3.204b)

where the mixing coefficient µ is a measure of interaction strength. When ex-
pressions (3.202a) and (3.202b) are substituted into (3.204a) and (3.204b), the
orthogonality relation 〈ωAB:C|ωA:BC〉 = 0 requires that

µ = 2(1 + λ2)1/2

λ2
(3.205)
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With this replacement the two hyperbond functions are finally

ωAB:C = λ2

λ2 + 2
[χa + (2/λ)χb − (2/λ2)χc] (3.206a)

ωA:BC = λ2

λ2 + 2
[−(2/λ2)χa + (2/λ)χb + χc] (3.206b)

In addition to the two bonding functions (3.206a) and (3.206b), there remains
a third linear combination of (χa, χb, χc) of net antibonding character that may be
denoted ωABC

∗ and written as

ωABC
∗ = caχa + cbχb + ccχc

The orthogonality conditions 〈ωAB:C|ωABC
∗〉 = 〈ωA:BC|ωABC

∗〉 = 0 allow one to
establish that ca = cc and cb = 2/λ − λ/2, and therefore (taking account of the
normalization condition) that

ωABC
∗ = 2λ

λ2 + 2

(
χa − λ2 − 2

2λ
χb + χc

)
(3.206c)

Equations (3.206a)–(3.206c) express a one-parameter family of hyperbonding func-
tions (two bonding, one antibonding) that are dependent on bond ionicity through
(3.203). The bonding functions (3.206a) and (3.206b) approximate the NLMOs of
the hyperbonded triad in the neighborhood of equilibrium.

The electronic configuration (ωAB:C)2(ωA:BC)2 of the A B C hyperbonded
unit may equivalently be expressed in terms of any orthogonal linear combination
of the two occupied orbitals ωAB:C and ωA:BC, such as

φ± = 2−1/2(ωAB:C ± ωA:BC)

These are equivalent to

φ+ = λ2 − 2

21/2(λ2 + 2)

(
χa + 4λ

λ2 − 2
χb + χc

)
(3.207a)

φ− = 2−1/2(χa − χc) (3.207b)

Thus, φ− is equivalent to Pimentel’s φ2 (for any λ), while φ+ is equivalent to φ1

(and ωABC
∗ to φ3) for the special value

λ = 2 + 21/2 = 3.414 (3.208)

but (3.206a) would differ somewhat from Pimentel’s MO (3.192a) in more general
cases.
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Example 3.19

Exercise: Determine the formal MO bond orders bAB
(MO), bBC

(MO), and bAC
(MO) for the

general (ωAB:C)2(ωA:BC)2 hyperbonded electron configuration.

Solution: As noted above, the NLMO configuration (ωAB:C)2(ωA:BC)2 is equivalent to the
MO configuration (φ+)2(φ−)2. The MO bond order bAB

(MO) is defined as the coefficient of
the cross-term χaχb in the total density (φ+)2 + (φ−)2 + · · ·.
The χaχb cross-term in (φ+)2 is the only contribution to bAB

(MO) bond order (and analogously
for bBC

(MO)), so

bAB
(MO) = 2λ(λ2 − 2)

(λ2 + 2)2
= bBC

(MO)

The χaχc cross-term in (φ−)2 is − 1
2 , and that in (φ+)2 is 1

2 [(λ2 − 2)/(λ2 + 2)]2, giving the
total A—C bond order as

bAC
(MO) = − 4λ2

(λ2 + 2)2

Example 3.20

Exercise: For what ionicity iAB is the maximum MO bond order bAB
(MO) obtained? How

does this maximum value compare with that of the Pimentel MO description?

Solution: By differentiating bAB
(MO) (Example 3.19) with respect to λ, we obtain

dbAB
(MO)

dλ
= −2λ4 + 24λ2 − 8

(λ2 + 3)2
= 0

with formal solutions λ2 = 6 ± 321/2. The allowed solution corresponds exactly to Pi-
mentel’s MO solution (cf. Eq. (3.208))

λ = 2 + 21/2 = 3.414

which is equivalent (through Eq. (3.203)) to the ionicity value

iAB = 0.842

This leads to the maximum MO bond order

bAB
(MO) = 8−1/2 = 0.354

corresponding to Pimentel’s (φ1)2(φ2)2 MO description. For this optimal λ, the hyperbond
functions are

ωAB:C = 8−1/2[(1 + 21/2)χa + 21/2χb + (1 − 21/2)χc]

ωA:BC = 8−1/2[(1 − 21/2)χa + 21/2χb + (1 + 21/2)χc]

ωABC
∗ = 1

2
(χa − 21/2χb + χc)
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Linear triatomic anions

The pioneering crystallographic studies of Odd Hassel140 on trihalides and related
donor–acceptor species led to a far-reaching analysis of such “Hassel compounds”
by Henry Bent.141 The triiodide ion (I3

−, stable in aqueous solution) and other
known linear trihalide XYZ− species also served as the prototype for Pimentel’s
incisive three-center MO analysis of hypervalency. We shall therefore begin with
NBO/NRT investigation of a series of hypervalent and non-hypervalent triatomic
anions in order to make contact with these classic studies. While ab initio studies
add many quantitative details to the understanding of these species, the basic picture
sketched by Bent and Pimentel is found to be essentially preserved.

Tables 3.28–3.30 summarize the geometry, binding energies, and NBO/NRT
descriptors for a variety of linear triatomic XYZ− species. These include represen-
tatives of the p–p–p orbital motif (such as symmetric trihalides [X3− , X = F, Cl,
Br] and the mixed chlorofluorides [FFCl−, ClFCl−, FClF−, FClCl−]) as well as the
p–s–p (FHF−) and s–s–s (HLiH−, H−

3 ) orbital motifs. (Examples of transition metal
species manifesting the s–d–s and p–d–p motifs will be considered in Section 4.10.)

Let us summarize the distinguishing characteristics of ω-bonding from the pro-
totype examples of Tables 3.28–3.30. The first eight species exhibit strong ω-
bonding that may be contrasted with HLiH− (a borderline species) and H3

− (non-
hyperbonded).

As shown in Table 3.28, the ω-bond energies typically fall within the range
30–50 kcal mol−1, somewhat weaker than corresponding 2c/2e bond energies (ex-
cept for F2), but far stronger than noncovalent ion–dipole (or ion–induced-dipole)

Table 3.28. Equilibrium bond lengths RXY and RYZ of linear triatomic anions
XYZ−, including binding energy �E and bond-length increase �R with respect

to X—Y + Z− or X− + Y—Z precursor species

X—Y + Z− X− + Y—Z

XYZ− RXY, RYZ (Å) �E (kcal mol−1) �RXY (Å) �E (kcal mol−1) �RYZ (Å)

FFF− 1.7454 37.93 0.3371 37.93 0.3371
ClClCl− 2.3936 30.97 0.3678 30.97 0.3678
BrBrBr− 2.6372 33.08 0.3062 33.08 0.3062
ClFCl− 2.0750 16.52 0.3971 16.52 0.3971
FFCl− 1.8359, 1.9816 34.70 0.4276 19.25 0.3037
FClF− 1.9279 54.21 0.2500 54.21 0.2500
FClCl− 1.9330, 2.3879 36.34 0.2551 46.92 0.3351
FHF− 1.1472 46.53 0.2250 46.53 0.2250
HLiH− 1.7342 54.75 0.1411 54.75 0.1411
HHH− 0.7595, 2.4987 1.69 0.0152 1.69 0.0152
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Table 3.29. The NBO descriptors of XYZ− triatomic anions (see Table 3.28),
showing natural atomic charges (Q), percentage polarization of σXY and σYZ

NBOs toward terminal atoms, second-order nZ→σXY
∗ and nX→σYZ

∗

stabilizations (�E (2)), and occupancies of valence antibonds (σXY
∗ and σYZ

∗)
and extra-valent Rydberg orbitals (rY

∗); parenthesized values refer to Lewis
structure of lower accuracy

Bond
Atomic charge polarization (%) �E (2) (kcal mol−1) Occupancy (e)

XYZ− QX QY To X To Z X—Y :Z X: Y—Z σXY
∗ σYZ

∗ rY
∗

FFF− −0.446 −0.107 62.0 (62.0) 133.7 (133.7) 0.542 (0.542) 0.01
ClClCl− −0.444 −0.111 62.0 (62.0) 118.9 (118.9) 0.533 (0.533) 0.02
BrBrBr− −0.448 −0.105 62.5 (62.5) 111.1 (111.1) 0.526 (0.526) 0.02
ClFCl− −0.305 −0.389 47.5 (47.5) 152.8 (152.8) 0.671 (0.671) 0.02
FFCl− −0.499 −0.267 (59.9) 49.2 (290.6) 80.6 (0.751) 0.483 0.01
FClF− −0.607 +0.214 76.2 (76.2) 102.5 (102.5) 0.355 (0.355) 0.03
FClCl− −0.573 +0.071 (72.1) 68.6 (101.4) 115.5 (0.470) 0.399 0.03
FHF− −0.766 +0.533 87.0 (87.0) 166.2 (166.2) 0.225 (0.225) 0.01
HLiH− −0.826 +0.652 93.0 (93.0) 11.1 (11.1) 0.040 (0.040) 0.03
HHH− −0.124 +0.075 54.9 (54.9) 6.2 (6.2) 0.039 (0.039) 0.00

Table 3.30. The NRT descriptors of XYZ− triatomic anions (see Table 3.28),
showing bond orders (bXY and bYZ), central-atom valency (VY: total, covalent,
and ionic components), and percentage weights of leading resonance structures

(X—Y :Z−, X:− Y— Z, X—Y— Z, X:− Y+ : Z−)

Bond order Valency VY wNRT (%)a

XYZ− bXY bYZ Total Covalent Ionic X—Y :Z X: Y—Z X—Y—Z X: Y :Z

FFF− 0.466 0.466 0.932 0.488 0.444 42.7 42.7 3.9 6.7
ClClCl− 0.467 0.467 0.933 0.488 0.445 42.5 42.5 4.2 6.7
BrBrBr− 0.460 0.460 0.921 0.800 0.121 42.2 42.2 3.8 6.8
ClFCl− 0.340 0.340 0.679 0.503 0.176 29.0 29.0 4.9 4.2
FFCl− 0.245 0.565 0.809 0.540 0.269 20.4 52.4 4.1 4.9
FClF− 0.833 0.833 1.667 0.414 1.253 16.7 16.7 26.6 26.6
FClCl− 0.819 0.848 1.667 0.496 1.171 15.2 18.2 28.3 22.2
FHF− 0.684 0.684 1.368 0.223 1.145 23.6 23.6 39.3 8.0
HLiH− 0.662 0.662 1.323 0.201 1.122 23.1 23.1 43.0 8.9
HHH− 0.945 0.039 0.984 0.832 0.152 94.5 3.9 0.0 1.6

a For consistency of comparisons, the four tabulated structures were assigned as reference
structures ($NRTSTR keylist) with full density-matrix averaging (NRTFDM keyword)
for each species.
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intermolecular interactions. Indeed, the slightly weaker ωCl:FCl prebond of ClFCl−

(16.5 kcal mol−1) and ωFF:Cl prebond of FFCl− (19.3 kcal mol−1) constitute ex-
amples of unfavorable binding of the anion X− to the negative (fluoride) end of the
Y—Z (F—Cl) dipole. This shows that classical ion–dipole forces, although present,
exert only a secondary modulating effect on hyperbonding, which remains primar-
ily covalent in character. The much weaker H3

− bond energy (1.7 kcal mol−1) is
indicative of a non-hyperbonded species retaining H2 · · · H− “ion–dipole-complex”
character.

A characteristic of hyperbonding is the symmetric (or near-symmetric) linear ge-
ometry in which the possible distinction between intramolecular and intermolecular
bond lengths RXY and RYZ is erased. The ω-bond lengths fall within a distinctive
range, approximately 0.2–0.4 Å beyond normal single-bond lengths. Weaker elon-
gation (0.14 Å) is found for HLiH−, where the central Li atom is indicated (see
below) to have only weak hyperbond character.

Distinctive characteristics of ω bonds can also be recognized in the NBO de-
scriptors of Table 3.29. The natural atomic charges and NBO bond polarizations
reveal a typical ionicity pattern with the central atom significantly less anionic than
the terminal atoms, i.e., with QY exceeding QX by 0.3e or more (except when
the difference in electronegativity becomes too severe in the opposite direction).
This is particularly striking in the elemental trihalides X3

−, where the distribu-
tion of charge between “inner” and “outer” X atoms is far from democratic (e.g.,
F−0.45F−0.11F−0.45). The σXY

∗ and σYZ
∗ occupancies for each idealized Lewis struc-

ture are also quite large ((0.2–0.5)e), and the corresponding second-order energies
�E (2) are 80–120 kcal mol−1 or larger. Hyperbonded species thus manifest strong
hyperconjugative delocalizations associated with unusually strong polarization of
each bond away from Y (thereby increasing QY) in order to maximize simulta-
neously both nX→σYZ

∗ and nZ→σXY
∗ donor–acceptor interactions. In contrast,

the species HLiH− and H3
− manifest much weaker antibond occupancies (∼0.04e)

and delocalization energies (∼6–11 kcal mol−1), which are indicative of reasonably
localized Lewis structures.

It is noteworthy that Rydberg orbital occupancies on the central atom (rY
∗, final

column of Table 3.29) are relatively negligible (0.01–0.03e), showing that “d-orbital
participation” or other “expansion of the valence shell” is a relatively insignificant
feature of hyperbonded species. However, the case of HLiH− is somewhat para-
doxical in this respect. The cationic central Li is found to use conventional sp linear
hybrids to form the hydride bonds, and thus seems to represent a genuine case
of “expansion of the valence shell” (i.e., to the 2p subshell) to form two bonding
hybrids. However, the two hydride “bonds” are both so strongly polarized toward
H (93%) as to have practically no contribution from Li orbitals, so the actual oc-
cupancy of extra-valent 2pLi orbitals (∼0.03e) remains quite small in this case.
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Although HLiH− exhibits certain structural signatures of hyperbonding, it appears
more to exemplify normal hybridized bonding (with extra-valent 2pLi character)
and the limit of complete ionic H− Li+ H− character, rather than true ω-bonding.

Finally, the NRT descriptors of Table 3.30 also reflect the strong X:− Y—Z ←→
X—Y : Z− resonance mixing, leading to equal (or near-equal) bond orders bXY and
bYZ and high ionic character.142 Although the total valency VY of the central atom
sometimes exceeds unity, the covalency is always significantly smaller (0.2–0.8),
indicating that there is no real need for orbitals outside the valence shell. Thus, a
formal coordination number of two is entirely consistent with the single unfilled
valence orbital of the parent central atom.

We conclude that the first eight triatomic anions of Table 3.28 exhibit the prop-
erties (HB-1)–(HB-5) expected of hyperbonding and can be described by modified
Lewis-structural formulas employing 3c/4e ω bonds of the form

[F F F]−; . . . ; [F H F]−

whereas the final two species are adequately described by conventional Lewis
structures,

[H—Li—H]− or H− Li+ H−; H—H · · · H−

employing only ionic or conventional 2c/2e bonding.

Trigonal-bipyramidal species and nucleophilic displacement reactivity

The 3c/4e ω-bonding motif can also be achieved in nonlinear polyatomics by
“backside” attack of a nucleophile X:− on a polar Y—Z bond of a conventional
Lewis-structure molecule,

(3.209)

The complementary bi-directional resonance (3.209) leading to X Y Z ω-
bonding may be considered as the “frustrated” (interrupted) limit of a conven-
tional SN2 nucleophilic displacement reaction, in which the usual activation barrier
has progressively been lowered until a binding well is formed at the symmetric
trigonal-bipyramidal geometry that separates the two limits in (3.209). Thus, the
electronic factors that stabilize SN2 transition states and catalyze SN2 reactivity are
closely related to (i.e., weaker forms of) factors that promote axial ω-bonding in
trigonal-bipyramidal geometry.
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Table 3.31. Trigonal bipyramidal anions, comparing central-atom valency VM

(and percentage ionic character), d-orbital occupancy dM
∗, bond lengths RMX,

bond orders bMX (and percentage ionic character), and ligand atomic charges QX

for ω-bonded (SiH5
−, SiF5

−, and SiH3F2
−) versus non-ω-bonded (CH3F2

−)
species

Species Symmetry VM (% ion.) dM
∗(e) M—X RMX (Å) bMX (% ion.) QX

SiH5
− D3h 3.829 (26%) 0.03 Si—H(ax) 1.624 0.517 (40%) −0.362

Si—H(eq) 1.535 0.932 (21%) −0.231

SiF5
− D3h 4.083 (78%) 0.07 Si—F(ax) 1.686 0.593 (81%) −0.702

Si—F(eq) 1.652 0.966 (76%) −0.678

SiH3F2
− D3h 3.959 (42%) 0.04 Si—F(ax) 1.780 0.543 (81%) −0.741

Si—H(eq) 1.501 0.956 (27%) −0.271

CH3F2
− C3v 4.064 (30%) 0.01 C—F 1.454 0.833 (52%) −0.472

C· · · F 2.569 0.275 (99%) −0.957
C—H 1.084 0.985 (18%) +0.172

Table 3.31 displays geometrical and NBO/NRT indices for three ω-bonded rep-
resentatives of resonance motif (3.209),

(3.210a)

as well as a comparison non-ω-bonded “ion–dipole complex”

(3.210b)

The five-coordinate anions SiH5
−, SiF5

−, and SiH3F2
− are seen to exhibit the char-

acteristic trigonal-bipyramidal (D3h) geometry and NBO/NRT indices expected of
ω-bonding. Particularly striking is the contrast between strong, short equatorial
bonds (ordinary 2c/2e; b � 0.93–0.97; lower polarity) and weak, elongated ax-
ial bonds (ω-bonded; b � 0.52–0.59; higher polarity).143 Despite the pentacoor-
dinate D3h geometry, the central Si atom displays rather unexceptional tetrava-
lency (VM � 3.8–4.1) and negligible d-orbital participation (0.04–0.07). The con-
trasting F− · · · CH3F complex (3.210b) exhibits strongly inequivalent C—F bond
orders (0.83 and 0.28), corresponding to incomplete ω-bond formation, but the
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Figure 3.85 The NRT resonance weights for the approach of H− to SiH4 along
the C3v axis (“SN2-like” reaction coordinate), showing weightings of one-bond
H—Si :H′ and H: Si—H′ (solid lines), two-bond H—Si—H′ (dashed line), and
no-bond H: Si :H (dotted line) resonance structures. The equilibrium D3h structure
corresponds to RSi···H′ = 1.6236 Å.

“four-coordinate” central atom displays valency and d-orbital occupancy that are
rather similar to those of the five-coordinate species (3.210a).

Figure 3.85 illustrates the representative changes in NRT resonance weightings
for barrierless formation of pentacoordinate SiH5

− from the long-range H− + SiH4

complex in SN2-like approach geometry. At large RSi···H′ , the resonance weights
of H—Si + :H′− and H:− + Si—H′ structures are strongly inequivalent (as in the
equilibrium CH3F2

− species), but these structures become equivalent at RSi...H′ =
1.624 Å, the ω-bonded equilibrium geometry.

The distinctive features of ω-bonded H Si H linkages can be illustrated with
reference to the unusual IR vibrational and NMR spin-coupling properties of SiH5

−,
compared with those of the parent SiH4. A characteristic measure of hydride bond
coupling is the difference in IR frequency between asymmetric and symmetric
stretch frequencies,

δνstr = νstr(asym.) − νstr(sym.) (3.211a)

which is calculated to differ dramatically between normal-valent SiH4 and hyper-
valent SiH5

−:

δνstr(SiH4) = 9 cm−1, δνstr(SiH5
−) = 176 cm−1 (3.211b)
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Figure 3.86 Potential-energy profiles for XMH3 · · · X dissociation along an adia-
batic SN2-like reaction coordinate for SiH4 + H− (M = Si, X = H; circles, solid
line), FSiH3 + F− (M = Si, X = F; squares, solid line), and FCH3 + F− (M =
C, X = F; triangles, dashed line), showing ω-bonded equilibrium behavior in the
first two cases and transition-state behavior in the last case.

Similarly, the calculated geminal 2JHH spin couplings in SiH5
−(2JH(eq)H(eq) =

18.1 Hz, 2JH(ax)H(eq) = −4.8 Hz,2 JH(ax)H(ax) = 1.5 Hz) display the marked inequiv-
alences between bond types and the shift from normal-valent behavior (e.g.,
2JHH = 3.8 Hz for SiH4).

The similarities and contrasts between ω-bonded species (3.210a) and SN2-
precursor species (3.210b) are further illustrated in Fig. 3.86. This figure shows the
potential energy �E relative to R → ∞ along the SN2-like reaction coordinate for
the hyperbonded species SiH5

− (cf. Fig. 3.85) and FSiH3 · · · F−, compared with
that for the corresponding FCH3 · · · F− species.

As seen in Fig. 3.86, the potential-energy profiles for the first two cases lead to a
well, corresponding to equilibrium ω-bonding, whereas that for the last case leads
to a barrier, corresponding to the transition state for an activated SN2 displacement
reaction. Particularly interesting is the comparison of FMH3F− (M = C, Si) species,
where replacement of C by Si converts the pentacoordinate species from an unstable
SN2 transition-state intermediate into a stable ω-bonded molecular anion. As Fig.
3.86 suggests, a rather modest percentage increase in the nF−σCF

∗ stabilization
of the F− · · · CH3F complex (i.e., from 72 to 82 kcal mol−1 in the transition-state
geometry) would apparently suffice to convert a reactive transition-state complex
into an equilibrium species! Thus, the conditions for catalyzing SN2 reactivity are
intimately connected to those for promoting ω-bonding.
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Table 3.32. Symmetry, bond lengths, and bond angles for ordinary covalent
(M—F) and ω-bonded (M—Fω) fluoride bonds of normal-valent and

hypervalent second-row main-group fluorides MFn (M = P, S, Cl); see Fig. 3.87

Bond lengths R (Å) Bond angles θ (degrees)

Species Symmetry M—F (no.) M—Fω(no.) θσσ′ θσω θωω′

PF3 C3v 1.605 (3) — 97.4 — —
PF5 D3h 1.571 (3) 1.605 (2) 120.0 90.0 180.0
SF2 C2v 1.639 (2) — 99.0 — —
SF4 C2v 1.597 (2) 1.705 (2) 101.5 87.7 172.8
SF6 Oh — 1.607 (6) — — 90.0
ClF C∞v 1.678 (1) — — — —
ClF3 C2v 1.663 (1) 1.768 (2) — 87.5 175.0
ClF5 C4v 1.672 (1) 1.737 (4) — 86.0 172.0

Hyperbonding and the VSEPR picture

The ω-bonding model provides a more complete and fundamental description of
hypervalent molecules that are often interpreted in terms of the VSEPR model.144

In the present section we examine some MXn species that are commonly used to
illustrate VSEPR principles, comparing and contrasting the VSEPR mnemonic with
general Bent’s rule, hybridization, and donor–acceptor concepts for rationalizing
molecular geometry. Tables 3.32 and 3.33 summarize geometrical and NBO/NRT
descriptors for a variety of normal-valent and hypervalent second-row fluorides to
be discussed below, and Fig. 3.87 shows optimized structures of the hypervalent
MFn species (M = P, S, Cl; n = 3–6).

Table 3.33. NBO/NRT descriptors of molecules in Table 3.32, including atomic
charges (Q), central atom d-orbital occupancy (dM

∗), NRT bond orders, and
central-atom valency (with percentage ionic character)

Charge Bond order

Species QF(σ) QF(ω) dM
∗ M—F M—Fω VM (% ion.)

PF3 −0.560 — 0.06 0.998 — 2.994 (67%)
PF5 −0.510 −0.547 0.12 0.797 0.835 4.098 (65%)
SF2 −0.444 — 0.04 1.000 — 2.000 (51%)
SF4 −0.414 −0.523 0.10 0.833 0.748 3.161 (58%)
SF6 −0.421 −0.421 0.17 0.882 0.882 5.293 (56%)
ClF −0.332 — 0.01 1.000 — 1.000 (34%)
ClF3 −0.295 −0.457 0.05 0.817 0.681 2.178 (47%)
ClF5 −0.289 −0.398 0.11 0.813 0.828 4.126 (53%)
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Figure 3.87 Structural depictions of hypervalent molecules (see Tables 3.32 and 3.33).

In analogy with (3.209), we can picture each hypervalent MFm species as be-
ing formed from a precursor normal-valent cation Mn+Fm − n by n successive
“ω-additions” of fluoride ions,

(3.212a)

provided that m − n ≥ n, or

m ≥ 2n (3.212b)
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Because the resonance stabilization of the ω bond is always maximized in linear ge-
ometry (for which nF−σMF

∗ overlap is highest), each ω-addition characteristically
results in an additional linear F M F linkage.

For example, ClF3 may be considered to derive from a single F− ω-addition
to normal-valent Cl+F2 (which is isoelectronic to SF2), and can be represented in
analogy to (3.209) as

(3.213a)

or in ω-bonded form as

(3.213b)

Similarly, ClF5 may be considered to derive from two fluoride ω-additions to
normal-valent Cl2+F3 (which is isoelectronic to PF3)

(3.214a)

(3.214b)

and so forth.
Equivalently (but more formally), each recursive step in sequence (3.212) can

be written as (for k = 0, 1, . . . , n − 1)

F:− + Fm−n+k−1M(n−k)+—F F—M(n−k)+Fm−n+k−1 + :F− (3.215a)

equivalent to the ω-bonded product

(3.215b)

Because ω prebonds are always created in pairs, the species (3.215b) can be written
more explicitly as

(3.216)
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to distinguish the 2(k + 1) ωF:MF prebonds from the remaining m − n − k − 1 σMF

bonds. The general kth step in (3.212) can therefore be written as

(3.217)

for k = 0, 1, 2, . . ., n − 1, and the overall sequence is

(3.218)

By construction, each step in (3.218) requires only the normal-valent orbitals on
the central atom M, and maximum use of n = 4 such valence orbitals (i.e., for a
normal-valent precursor M4+F4 with four σMF bonds) allows coordination numbers
up to m = 8, which is consistent with (3.212).

Further examples of scheme (3.218) may be given for the species in Fig. 3.87.
PF5 can be formed from precursor P+F4 (which is isoelectronic to SiF4) by a single
ω-addition,

(3.219)

Similarly, SF4 is formed from S+F3 (which is isoelectronic to PF3) by a single
ω-addition,

(3.220)

and SF6 can be formed from S2+F4 (which is isoelectronic to SiF4) by two ω-
additions,

(3.221a)

However, the case (3.221a) seems to distinguish the two sets of ω bonds (along
the x and y directions) from the σ bonds (along the z direction), whereas no such
distinction exists in SF6. We can rationalize this case in two ways.

(1) Consistently with the Pimentel–Rundle 3c/4e MO model, the central atom is expected
to use a single p orbital to form each ω-bonded pair (i.e., px for the ω bonds in the x
direction and py for the ω bonds in the y direction), which leaves only s and pz orbitals
for forming the two bonds along the z direction. As a result of the inherent symmetry of
the three spatial directions and equivalence of the available orbitals for bonding in each
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direction, the σ bonds along z are thus expected to become equivalent to the ω bonds
along x and y in this limit (cf. note 143). In effect, formation of the two sets of linear
ω bonds forces the near-linearity of the remaining two bonds, which switches on the
characteristic resonance stabilization of ω-bonding.

(2) We can alternatively begin the recursion (3.218) with S3+F3 (which is isoelectronic to
hypovalent AlF3), leading thereby to

(3.221b)

This scheme suggests (correctly) that the six-coordinate SF6 geometry can actually be
achieved using only three of the four sulfur valence orbitals (i.e., without “s-orbital
participation”). Thus, while digonal sp-hybridization can be employed along any di-
rection to describe vibrational displacements from idealized Oh geometry, the high
equilibrium symmetry of SF6 actually works against s-orbital character in the bonding
σ or ω hybrids. Although ω prebonds and σ bonds are usually inequivalent, their close
relationship (i.e., through reciprocal pairs of resonance structures) implies that they can
become equivalent, and they do so in the high-symmetry limit of SF6.

What is the origin of the slight nonlinearities in ω-bonding seen (cf. Table 3.32,
final column) in SF4, ClF3, ClF5, and related species? Although ionic-resonance
delocalization is maximized in linear geometry, slight departures from this maxi-
mum incur only a small (second-order) energy penalty. Thus, asymmetries of the
ω-bonding environment can be readily accommodated by small deviations from lin-
earity, particularly those arising from asymmetric steric congestion with the sigma
system (i.e., axially non-symmetric arrangements of sigma bonds and lone pairs
in SF4 or ClF3). Rationalizations of these nonlinearities would thus be essentially
similar to those invoked in VSEPR-like models, which are couched in terms of
differential steric pressure due to surrounding bonds and lone pairs (particularly,
the higher s character and angular volume demanded for lone pairs by Bent’s rule;
see below).

The final ω-bonded formulas (3.213), (3.214), and (3.219)–(3.221) bear an obvi-
ous resemblance to the usual VSEPR representations of these hypervalent species.
Indeed, each ω-bonded structure has the same number of formal bond pairs (bp)
and lone pairs (lp) as the VSEPR representation. Furthermore, the predicted an-
gular geometries of the two models are essentially identical, with the linear (or
near-linear) ω-bonded ligands occupying axial positions in the SN2-like trigonal
bipyramidal motif.

However, the implications (HB-1)–(HB-5) of the ω-bonded model go far beyond
those of the VSEPR model. The VSEPR model addresses only the angular geometry
about the central atom, and provides no clear basis for judging the length, strength,
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polarity, or other properties of symmetry-inequivalent bonds. In contrast, the ω-
bonded model provides a clear electronic rationale for distinguishing the weaker,
longer, and more polar and reactive hyperbond pairs from ordinary covalent bonds.
More importantly, the ω-bonding model helps to explain the existence of model
VSEPR compounds, and why many apparently isovalent MLn “analogs” have no
comparable stability; because ω-bonding originates from strong ionic resonance,
this phenomenon is essentially restricted to highly electronegative fluoride ligands
and/or relatively electropositive central atoms.

For the covalent bonds of hypervalent species, the valence angles (bp–bp, bp–lp,
lp–lp) are expected to be governed by the usual Bent’s rule relationships between
central-atom hybrid p character and ligand electronegativity. Thus, as in normal-
valent main-group species, it is expected that lone-pair hybrids will have higher s
character (and, by virtue of Eq. (3.34), larger bond angles) than bond hybrids, lead-
ing to greater apparent “volume” of the former. Indeed, the approximation methods
of Section 3.2.6 could be adapted to make qualitative estimates of the bond angles
in hypervalent species (parallel to those for non-hypervalent species), going signif-
icantly beyond the VSEPR model in this respect. Thus, both for hypervalent and
for non-hypervalent main-group species, the general hybridization/Bent’s rule/ω-
bonding model seems to provide a more comprehensive and satisfactory picture of
molecular geometry and electronic distribution than the VSEPR model.

An interesting consequence of the ω-bonded structures of hypervalent species
can be recognized in the pattern of bond-dissociation energies (BDEs), as displayed
in Fig. 3.88 for SF6. Strong oscillations of S—F bond strength are evident, reflect-
ing the strongly coupled three-center character of each ω-bond pair. The integrity

Figure 3.88 Successive bond-dissociation energies (BDEs) for S—F bonds of SFn ,
showing the alternation associated with breaking of strongly coupled ω-bond pairs.
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of each F S F hyperbond pair is critically dependent on maintenance of the co-
operative three-center resonance coupling, as reflected in the high BDE for the first
member of the ω-bond pair. However, the “smoke-and-mirrors” nature of the bond-
ing is exposed as soon as the triad is disrupted, and the remaining weak 2c/3e bond
((σSF)2(σSF

∗)1) dissociates with much lower BDE. This pattern is repeated for each
ω-bonded pair until only the two covalent bonds of normal-valent SF2 remain,
with BDE values exhibiting only the (weak) degree of interdependence typical of
two-center covalent bonds.

Rare-gas compounds

The ultimate extension of the hypervalency concept involves bonding to group 18
rare-gas elements. The rare gases were long considered to be chemically “inert” until
Neil Bartlett and coworkers synthesized XeF2, XeF4, and other RgFn compounds
(particularly for Rg = Xe, Kr) in the 1960s.145 Many more such compounds are
now known.146

The ω-bonding model (3.218) can readily be extended to rare-gas central atoms
by considering the limit m = 2n. Taking M = Ar, for example, we can envision
formation of the molecule ArF2 from the normal-valent precursor Ar+F (which is
isoelectronic to ClF) through a single ω-addition:

(3.222)

Similarly, ArF4 is formed from Ar2+F2 (which is isoelectronic to SF2) by two
ω-additions,

(3.223)

while ArF6 is formed from Ar3+F3 (which is isoelectronic to PF3) by three ω-
additions,

(3.224)

Each F Ar F ω-bond pair in (3.222)–(3.224) is constructed from one of the
three orthogonal 3pAr AOs in the usual manner,
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Table 3.34. The Ar—F bond lengths R, average Ar—F bond-dissociation energies
〈BDE〉, and vibrational frequencies of ArFn species

Species Symmetry R (Å) 〈BDE〉 (kcal mol−1) IR frequency (cm−1)

ArF C∞v 2.578 0.97 111
ArF2 D∞h 1.878 6.72 224(2), 404, 616
ArF4 D4h 1.883 22.87 133, 185(2), 202, 291,

326, 385, 618(2)
ArF6 Oh 1.895 17.48 145(3), 190(3), 204(3),

302(2), 367, 607(3)

and the remaining Ar lone pairs are accommodated in residual unhybridized valence
AOs,147 namely three (s2px

2py
2) in ArF2, two (s2px

2) in ArF4, and one (s2) in ArF6.
All these species are therefore perfectly consistent with the octet rule.

Each parent closed-shell species ArF2n can be envisioned to give rise to a daughter
open-shell ArF2n−1 species by breaking one of the F Ar F triads (with high
BDE),

Ar( F)2n → Ar( F)2(n−1)F (3.225)

leaving a weakened 2c/3e Ar—F bond [(σArF)2(σArF∗)1]. However, the latter bond
is actually unstable except in ArF, and other odd-membered species (ArF5, ArF3)
apparently do not form true equilibrium structures. Such even–odd alternation of
stability for ArFn is clearly related to the zig-zag pattern of bond energies in SF6

(Fig. 3.88).
Table 3.34 summarizes the calculated geometries and energetics of various ArFn

species and Table 3.35 shows corresponding NBO/NRT descriptors.
The results of Tables 3.34 and 3.35 are in full accord with the ω-bonded rep-

resentations (3.222)—(3.225). The sole open-shell species, ArF, exhibits a very
weak (BDE < 1 kcal mol−1, ν � 100 cm−1) and long (R � 2.58 Å) Ar—F bond,

Table 3.35. Natural atomic charges (Q), d-orbital occupancies (dAr
∗), and NRT

bond orders and valencies (with percentage ionic character) for ArFn species

Charge Bond order (% ionic) Valency (% ionic)

Species QAr QF dAr
∗ Ar—F F—F Ar F

ArF +0.060 −0.060 0.00 0.031 (90%) — 0.031 (90%) 0.031 (90%)
ArF2 +0.756 −0.378 0.02 0.408 (46%) 0.138 (0%) 0.816 (46%) 0.546 (35%)
ArF4 +1.228 −0.307 0.04 0.271 (20%) 0.459 (44%) 1.082 (20%) 0.730 (35%)
ArF6 +1.512 −0.252 0.06 0.320 (33%) 0.342 (40%) 1.922 (33%) 0.677 (37%)
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Figure 3.89 Hyperbonding AOs of ArF2 (F Ar F), showing the similarity to
Fig. 3.84(a).

whereas the closed-shell ArF2n members exhibit the symmetries and short, strong
Ar F bonds (R � 1.88 Å, BDE � 6–23 kcal mol−1, ν � 600 cm−1), high polari-
ties, and strong vibrational couplings (e.g., δνstr = 212 cm−1 for ArF2) expected in
the ω-bonding model. Figure 3.89 illustrates the three hyperbonding pF–pAr–pF

AOs of ArF2, showing the essential similarity to other hyperbonded species
(cf. Fig. 3.84(a)). As usual, the d-orbital occupancies on Ar are rather negligible
(0.06e or less), and the high bond ionicity is conspicuous (with QF � −0.3, ionic
character � 20%–50%), which is consistent with achievement of strong ω-bonding
within the constraints of the octet rule.

It is noteworthy that the ω-bonded structure for ArF6 differs from that predicted
by VSEPR theory. ArF6 is predicted to be of octahedral (Oh) symmetry, with three
mutually perpendicular F Ar F triads and an s-type lone pair. In contrast, VSEPR
predicts a pentagonal bipyramid (or other seven-vertex polyhedron) with some or all
F–Ar–F angles less than 90◦. The calculated equilibrium structure is in agreement
with the ω-bonding model.

In principle, the ω-bonding sequence (3.218) could be further extended to m = 8,
n = 4, leading to ArF8 species. This corresponds to four ω-additions to Ar4+F4

(which is isoelectronic to SiF4) and can be pictured in terms of four successive
SN2-like attacks of fluoride on the Ar4+F4 tetrahedral faces. This would lead to
overall body-centered cubic structure (Oh symmetry) with each F Ar F triad
spanning one of the four body diagonals. However, it appears that such a struc-
ture remains a transition state on the ArF8 (or KrF8) surface, failing to achieve a
stable equilibrium geometry. This failure may be attributed both to extreme steric
congestion and to the difficulty of achieving the Ar4+F4 precursor species (due
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to the high electronegativity of cationic argon), as well as to forced use of the
low-energy s-orbital in the tetrahedral bonding hybrids, which further increases
the effective electronegativity of the central rare-gas atom to a deleterious degree.
Whether such a cubic RgF8 equilibrium structure could be achieved for the heavier
rare-gas elements remains unknown.

Anions of common laboratory oxyacids

Another type of “hypervalency” is encountered in textbook descriptions of the
oxyanions of common laboratory acids. Generations of chemistry students have
been taught that the “correct” representations of these species are in terms
of resonance-delocalized hypervalent Lewis-structure diagrams, such as sulfate
(SO4

2−),

(3.226a)

phosphate (PO4
3−),

(3.226b)

and perchlorate (CIO4
−),

(3.226c)

Structure (3.226c), for example, depicts a central heptavalent Cl atom (VCl = 7),
exceeding the normal valence octet by six electrons! (These excess electrons are
assumed to be accommodated in chlorine 3d orbitals, whereas “d-orbital participa-
tion” is prevented in first-row compounds.) Hypervalent structures such as (3.226a)–
(3.226c) are claimed to be justified by the “electroneutrality principle,” which stip-
ulates that second-row central atoms have zero formal charge (whereas first-row
oxyanion Lewis structures commonly violate this principle).148

Although such textbook diagrams are called “Lewis structures,” they are not the
electron-dot diagrams that G. N. Lewis originally wrote for such species. Lewis’s
depiction of SO4

2−, for example, is reproduced in Fig. 3.90. This shows a normal-
valent S2+ ion with shared-pair bonds to four O− ions, which is fully consistent with
the octet rule, with no intrinsic need for multiple resonance structures to account
for the observed Td symmetry. According to Lewis’s original concept, each ion is
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Figure 3.90 A reproduction (p. 134) from C. W. Gray, C. W. Sandifur, and H.
J. Hanna, Fundamentals of Chemistry, revised and enlarged edition (Boston,
Houghton Mifflin, 1929), showing how the “original” Lewis structure for the sul-
fate anion was first presented in general chemistry textbooks. As the authors note
(p. 132), “Dr. G. N. Lewis, of the University of California, has advanced an expla-
nation that is now generally accepted (1928–1929).”

therefore expected to be described as a single localized (but highly ionic) octet-
conforming dot diagram,

(3.227)

Thus, neither hypervalency nor strong resonance delocalization is implied by
Lewis’s original electron-dot picture, which rests on a distinctly ionic (not “elec-
troneutral”) picture of the bonding.

Natural resonance theory (NRT) allows these conflicting pictures of the oxyan-
ion electron distributions to be tested quantitatively.149 Table 3.36 compares the
geometries, NRT bond orders, atomic charges, and d-orbital occupancies for a
representative variety of first- and second-row XOm

n+ species,

first-row: CO3
2−, NO2

−, NO3
−

second-row: PO4
3−, SO4

2−, ClO4
−

and Table 3.37 summarizes the leading terms of the NRT resonance expansion for
each species.

The results in Tables 3.36 and 3.37 establish that Lewis’s original diagrams
(3.227) are far more accurate than the modern textbook diagrams (3.226). In all
cases the most highly weighted NRT structure conforms to the original (3.227),
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Table 3.36. Geometries and NBO/NRT descriptors of common oxyanions XOm
n−

(see Fig. 3.91), showing symmetry, bond length RXO, NRT bond order bXO and
central-atom valency VX, atomic charges QX and QO, and d-orbital occupancy

dX
∗ for representative first- and second-row species

Species Symmetry RXO (Å) bXO VX QX QO dX
∗

First row
CO3

2− D3h 1.308 1.333 4.000 +0.929 −0.976 0.02
NO2

− C2v 1.258 1.500 3.000 +0.180 −0.590 0.02
NO3

− D3h 1.260 1.333 4.000 +0.679 −0.560 0.02

Second row
PO4

3− Td 1.602 1.000 4.000 +2.363 −1.341 0.11
SO4

2− Td 1.527 1.000 4.000 +2.445 −1.111 0.18
ClO4

− Td 1.501 1.000 4.000 +2.370 −0.843 0.24

whereas the modern structures (3.226) gain no weighting in the NRT expansion. The
leading resonance corrections to (3.227) are the many structures of still more ionic
form (with individual weighting 1%–2%). The NRT bond orders and valencies are
also in essential agreement with the Lewis diagrams (3.227), showing no discernible
evidence of hypervalency (e.g., VCl = 4.000, not “7”). Furthermore, the large posi-
tive charges on the central atom (QX � + 2.4) confirm that the second-row species
are highly ionic (not “electroneutral”). (This increased ionicity would, of course, be
expected from the general electronegativity differences between first- and second-
row atoms [Section 3.2.5].) One can also see from Table 3.36 that the low d-orbital
occupancy (∼ (0.1−0.2)e) is far less than would be necessary for structures such
as (3.226). Thus, the “hypervalent” representations (3.226) provide a completely
misleading picture of the actual electronic distributions and should be abandoned.

In contrast, for the first-row XOm
n− species the NRT results are completely

consistent with the usual textbook descriptions, namely
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Table 3.37. Leading NRT resonance structures and weightings (with numbers of
symmetry-equivalent resonance structures in brackets) for anions of common

laboratory oxyacids

Species NRT resonance structures and weightings

(remainder)
a. 30.5% [3] b. 1.4% [3] 4.3%

1. CO3
2−

a. 48.5% [2] b. 1.5% [2]

2. NO2
−

(remainder)
a. 30.4% [3] b. 1.5% [3] 4.4%

3. NO3
−

(remainder)
a. 68.9% b. 2.6% [12] 0.5 × 10−1%

4. PO4
−

(remainder)
a. 57.9% b. 2.6% [12] 10.5%

5. SO4
−

a. 47.8% b. 4.3% [12]

6. ClO4
−
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Figure 3.91 A schematic depiction of NBO donor–acceptor relationships connect-
ing one-center (n), two-center (σ), and three-center (ω and τ) orbital “types.”

However, these involve only normal-valent Lewis structures, and hence present no
conceptual difficulties akin to those for second-row species.

3.6 Hypovalency: 3c/2e bridge bonds

The NBO donor–acceptor theory of hypovalency: three-center bridge bonds

As described in Section 3.5, the 3c/4e ω-bonding motif can be considered as the
limit of a strong donor–acceptor interaction between a one-center donor and a
two-center acceptor (e.g., nA →σBC

∗). However, three-center character can alter-
natively be achieved by a two-center donor interacting with a one-center acceptor
(e.g., σAC→nB

∗). In this case the three starting valence hybrids (hA, hB, and hC)
are occupied only by the two electrons of the two-center donor. The resulting 3c/2e
orbitals (which will be denoted τABC, τABC

(�)∗, and τABC
(π)∗) are therefore adapted

to describe “electron-deficient” (hypovalent) systems having a surplus of valence
orbitals compared with available electrons. Figure 3.91 depicts the schematic “ge-
nealogical construction” by which the two distinct types of three-centre orbitals
(ω and τ) can be built up from donor–acceptor interactions of underlying one- and
two-center orbitals.

The NBO picture of 3c/2e τ-bonding may be developed along lines parallel to
those for 3c/4e ω-bonding in Eqs. (3.194) et seq. Let us first consider the special
case of a homopolar two-center bond σAC = 2−1/2(hA + hB) interacting with a
vacant one-center orbital nB

∗ = hB to form a three-center bond τABC of the form

τABC = (1 + λ2)−1/2(σAC + λnB
∗) (3.228)
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where λ is a measure of σAC →nB
∗ interaction strength. In terms of starting hybrids

hA, hB, and hC, this bonding function can be rewritten as

τABC = (2 + 2λ2)−1/2[hA + (21/2λ)hB + hC] (3.229a)

There remain two other (net antibonding) linear combinations of hA, hB, and hC

orthogonal to τABC; these may be taken, e.g., as the unmodified σAC
∗ antibond,

τABC
(π)∗ = σAC

∗ = 2−1/2(hA − hC) (3.229b)

and the true three-center antibond

τABC
(�)∗ = λ(2 + 2λ2)−1/2[hA − (21/2/λ)hB + hC] (3.229c)

but any orthogonal transforms of (3.229b) and (3.229c) are equally valid. The two
antibonding NBOs associated with each τABC remain available to interact with
(delocalize) other filled NBOs of the Lewis-structure diagram.

The three-center orbitals (3.229a)–(3.229c) can also be considered to arise from
the 3 × 3 secular determinant for interaction of the three hybrids, with Fock-matrix
elements

〈hA|F̂ |hB〉 = 〈hB|F̂ |hC〉 = β, 〈hA|F̂ |hC〉 = γ (3.230)

As shown originally by Eberhardt, Crawford, and Lipscomb,150 three limits can
be distinguished for these matrix elements, leading to three distinct forms of the
lowest (occupied) MO φ+:

γ /β = 0: φ+ = 1

2
(hA + 21/2hB + hC) (“open”) (3.231a)

γ /β = 1: φ+ = 3−1/2(hA + hB + hC) (“central”) (3.231b)

γ /β = ∞: φ+ = 2−1/2(hA + hC) = σAC (“ordinary two-center”) (3.231c)

These correspond, respectively, to the values λ = 1 (“open”), λ = 2−1/2 (“central”),
and λ = 0 (“ordinary two-center”), in the general expression (3.229a) for τABC of
a homopolar σAC →nB

∗ interaction.
More generally, each τABC NBO can be expressed as a general linear combination

of NHOs,

τABC = cAhA + cBhB + cChC (3.232a)

with optimal coefficients and hybrids chosen for maximal occupancy. Possible
choices of the associated antibonds are the idealized two-center τABC

(π)∗,

τABC
(π)∗ = N(cChA − cAhC) (3.232b)
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and three-center τABC
(�)∗,

τABC
(�)∗ = N[cBcAhA − (cA2 + cB2)hB + cBcChC] (3.232c)

However, the two antibonding NBOs (ordered by occupancy) are more generally
expressed as

τ′
ABC

∗ = c′
AhA + c′

BhB + c′
ChC (3.233a)

τ′′
ABC

∗ = c′
AhA + c′

BhB + c′
ChC (3.233b)

to optimize the description of electron density.
Because the amplitude of a two-center donor orbital σAC is generally maximal

near the bond midpoint (rather than at the ends, where only one of the two hybrids
contributes), the preferred σBC→nB

∗ geometry is generally T-shaped,

Moreover, the strong loss of occupancy from the σAC NBO weakens and lengthens
this bond, so that B has the appearance of “bridging” the weakened A· · · C linkage.
Thus, the τABC bond is often represented with a distinctive trigonal symbol
(“Y-bond” ) or arc segment,

to depict this bridging A—(B)—C relationship.

Diborane
The structure of diborane (B2H6) and other boron hydrides presented a famous
challenge to valence theorists. Although a hydrogen-bridged structure for diborane
was proposed as early as 1921,151conflicting structural evidence delayed general
acceptance of this concept until about 1947,152 when the now-familiar τ-bridged
representation

(3.234)

was definitively established.153 Subsequently, the general theory of three-center
bonding has been strongly advanced (particularly through the work of W. N.
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William N. Lipscomb Jr.

Lipscomb and coworkers154) and various qualitative schemes for rationalizing the
bonding in boranes and other electron-deficient compounds have been developed.155

Each three-center BHB unit in (3.234) can be described by a bonding NBO τBHB

(with occupancy 1.9846)

τBHB = 0.52(sp4.59)B + 0.67(s)H + 0.52(sp4.59)B (3.235a)

and two antibond NBOs τ′
BHB

∗ and τ′′
BHB

∗ (with occupancies 0.0152 and 0.0005,
respectively),

τ′
BHB

∗ = 0.48(sp4.59)B − 0.74(s)H + 0.48(sp4.59)B (3.235b)

τ′′
BHB

∗ = 0.71(sp4.59)B − 0.71(sp4.59)B (3.235c)

Figure 3.92 shows a ball-and-stick model of the equilibrium geometry (left) and
overlapping pattern of hybrid orbitals associated with τBHB formation (right), while
Fig. 3.93 displays the forms of the boron bonding hybrid and three-center BHB
bonds and antibonds in both contour and surface plots, illustrating classic repre-
sentatives of the “open” τ-bonding motif (3.231a).

It must be emphasized that the formulation of three-center τ-bonds provides a
qualitative (not merely incremental) improvement in the accuracy of the natural
Lewis-structure description of diborane. Because a three-center orbital is intrin-
sically more mathematically flexible than a two-center orbital, the description of
any molecule is seemingly “improved” by employing three-center in place of two-
center NBOs. However, for most non-boron molecules this improvement would be
quite negligible (e.g., less than 0.1% for ethane, whose two-center Lewis-structure
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Figure 3.92 The structure of diborane B2H6 (left) and shapes of the overlapping
(sp4.59)B and (s)H natural hybrids contributing to the three-center τBHB bridge
bond (right). (Only the outermost hybrid contours are shown, in order to reduce
congestion on the diagram.)

description is already >99.9% accurate), in no way justifying the extra complexity
introduced. For diborane, in contrast, the accuracy of the two-center Lewis-structure
description is barely 86% (with more than 2.22e unaccounted for!), whereas that
of the three-center Lewis structure (3.234) is >99.6%. Thus, three-center bonds
provide a genuinely new and necessary “building block” of the Lewis-structure
concept, if the accustomed accuracy of this concept is to be preserved for electron-
deficient compounds.

The two antibond NBOs τ(�)∗ and τ(π)∗ have distinctive shapes and nodal char-
acteristics that may be characterized as follows.

(1) The τ(�)∗ antibond (Fig. 3.93(c)) is concentrated near the B· · · B midpoint and has
contributions from all three atoms. The inner region, of trilobate form, protrudes across
each edge of the bonding triangle, while the outer regions, of opposite sign, extend
outward from each vertex. The NBO label “τ(�)∗” suggests its distinctive triangular
form in the midpoint of the B· · · B region and its true three-center character;

(2) The τ(π)∗ antibond (Fig. 3.93(d)) has the form of a “bent π∗” (or banana antibond)
orbital, with nodal planes approximating those of an ordinary πBB

∗ orbital. Because the
boron bonding hybrids are canted about 45◦ between idealized sigma- and pi-bonding
directions, this NBO also resembles a dxy orbital centered at the molecular midpoint
(with slight vertical asymmetry to preserve orthogonality with the corresponding NBO
of the opposite bridge bond). The NBO label “τ(π)∗” suggests its distinctive π∗-like
form and quasi-two-center character.

The appreciable occupancy of the τBHB
(�)∗ antibond NBO indicates that the

idealized τ-bonded Lewis structure (3.324) is stabilized by significant additional
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Figure 3.93 Three-center BHB orbitals (and occupancies) in diborane, showing
(a) the three-center bond τBHB, (b) the three-center antibond τBHB

(�)∗, and (c) the
three-center antibond τBHB

(π)∗.

donor–acceptor delocalizations involving this orbital. From NBO second-order per-
turbative analysis, the most important of these is

τBHB → τBH′B
(�)∗ (6.61 kcal mol−1) (3.236)

involving the mutual delocalization of the two τ bonds. The two τ bonds in mutual
conjugation are therefore considerably stronger than the corresponding bonds in
isolation. Contour diagrams of interaction (3.236) are shown in Fig. 3.94, displaying
the favorable orbital overlap near the molecular midpoint.
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Figure 3.94 The NBO τ1→τ2
(�)∗ three-center donor–acceptor interaction in B2H6.

As a result of the strong complementary τ1→τ2
(�)∗ delocalizations (3.236), τ

bonds may be expected to appear in pairs in stable bridge-bonded structures. (This
structural principle will be further elaborated in connection with central-type τBBB

bonds, to be discussed below.)
As suggested by Pauling (note 14) one can also describe diborane bonding in

terms of multiple resonance structures of conventional one- and two-center type.
The difficulty is that such a description leads to a large number of structures of
similar weighting, complicating both numerical determination and physical inter-
pretation. For diborane, natural resonance theory (NRT) leads to nine structures of
non-negligible weighting,

(3.237)

The corresponding NRT bond orders are

bBB = 0.432, bBH(µ) = 0.391, bBH(t) = 0.993 (3.238)

where H(µ) and H(t) respectively denote bridged and terminal protons. The practical
difficulty of determining resonance weights increases rapidly as the number of
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resonance structures proliferates in more complex boron hydrides. Hence, the three-
center description will be given primary attention in this book.

Protonated ethylene and other three-center τ-bonding motifs:
agostic interactions

Results of early studies156 suggested the aptness of a “protonated-ethylene” picture
of bridge bonding. The qualitative orbital-splitting diagram for interaction of an
unfilled H+ s∗ orbital with the π and π∗ orbitals of ethylene is shown in Fig. 3.95.
The parent π∗ orbital is scarcely affected by τ-bond formation, and this orbital
therefore correlates with the quasi-two-center τCHC

(π)∗ NBO in the τ-bonded prod-
uct. However, the filled π and unfilled s∗ orbitals interact strongly to give the final
τ-bonded NBOs τCHC � N(πCC + sH

∗) and τCHC
(�)∗ � N(πCC − sH

∗).
Figure 3.96 shows the actual NBO orbital energy correlation diagram for

T-shaped approach of a proton to ethylene (along the C2 axis). It can be seen
that, inside R � 1.5 Å, the energy ordering of the τCHC

(�)∗ and τCHC
(π)∗ antibond

NBOs is inverted with respect to that shown in Fig. 3.95 by the strong πCC−sH
∗

splitting.
The equilibrium geometry and three-center NBOs of the protonated ethylene

model are displayed in Fig 3.97. The qualitative similarities to the diborane bridge
bond (Fig. 3.93) are evident. Thus, the π−s∗ model (cf. Fig. 3.91) may be considered
a useful descriptive picture of three-center τ-bond formation in diborane.

In a similar manner, many other types of 2c→1c∗ donor–acceptor interactions
may be considered as precursors to 3c/2e τ-bonds. As simple examples, let us

Figure 3.95 A schematic NBO interaction diagram for τ-bonding.
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Figure 3.96 The NBO orbital energy variations for the three-center τCHC (cir-
cles), τCHC

(�)∗ (triangles), and τCHC
(π)∗ (crosses) NBOs of protonated ethylene

(cf. Fig. 3.95). R is the distance from the proton to the C=C midpoint, with the
vertical dotted line marking equilibrium (Re = 1.064 Å).

consider only the prototypes involving elementary σ- and π-type donors such as
H2 (σ) and C2H4 (π), and s∗- and p∗-type acceptors such as H+ (s∗) and BH3 (p∗).
Any possible donor–acceptor combination arising from these precursors can be
considered a candidate for three-center τ-bond formation, including (beyond the
protonated-ethylene case already considered)

(3.239)

(Examples involving d∗-type acceptor orbitals or δ-type donor orbitals will be
considered in Chapter 4.) Figures 3.98–3.100 show the three-center NBOs and
occupancies for each of the prototype species (3.239a)–(3.239c).

Although the forms of the three-center NBOs in Figs. 3.97–3.100 vary widely,
these orbitals share several common features. The filled (Lewis-type) τ-bond NBO
in each case has an almost spherical region of high amplitude concentrated near
the center of the bonding triangle. The “true” (�-type) τ(�)∗ antibond NBO has
contributions from all three of the triangle nuclei, and has the rough appearance
of a py orbital in H3

+ (Fig. 3.98) or a d-like lobal pattern in C2H5
+ (Fig. 3.97)
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Figure 3.97 The equilibrium geometry and three-center NBOs τCHC, τCHC
(�)∗,

and τCHC
(π)∗ for protonated ethylene C2H5

+ (π→s∗ type), showing the general
similarity to the diborane bridge bond (cf. Fig. 3.93).

and BH5 (Fig. 3.99). This NBO therefore appears to be vertically oriented, and is
particularly suitable for delocalizations above the apex and below the base of the
triangle. The remaining τ(π)∗ NBO has a node passing through the apex atom and
strongly resembles a px orbital in H3

+ (Fig. 3.98) and BH5 (Fig. 3.99), or a dxy

orbital in C2H5
+ (Fig. 3.97) and H3BC2H4 (Fig. 3. 100), centered at the midpoint of

the triangle base. The τ(π)∗ NBO is therefore somewhat more horizontally oriented,
making it suitable for delocalizations along either edge of the triangle. Particularly
striking in Fig. 3.100 is the strong delocalization (estimated at 34.7 kcal mol−1)
involving interaction ofτCBC

(π)∗ with the in-planeσBH bond, which is conspicuously
lengthened and canted downward as a result of this interaction. The contour diagram
for this strong σBH→τCBC

(π)∗ interaction is shown in Fig. 3.101.
As a result of the interaction in Fig. 3.101, the in-plane B—H bond elongates

significantly (by 0.025 Å compared with the two out-of-plane B—H bonds) and
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Figure 3.98 Three-center NBOs and occupancies for H3
+ (σ→s∗ type).

the p character of the boron hybrid increases (to sp3.57 for in-plane B—H, versus
sp2.32 for out-of-plane B—H) to strengthen σBH→τCBC

(π)∗ delocalization. Indeed,
one can see that the orbital relationships are approaching those for C—(H)—C
bridge-bond formation (cf. Fig. 3.92(b)). Thus, one can recognize in this strong
σBH→τCBC

(π)∗ interaction a connection to the mutual reinforcement of facing τ

bonds (cf. Eq. (3.236)) and the strong tendency for bridging τ bonds to be formed
in pairs.

Formation of the three-center τCBC bond also has a profound effect on the residual
“σCC” bond NBO of the starting ethylene unit. As shown in Fig. 3.102, this NBO
acquires pronounced “banana-bond” character, with each bonding hybrid directed
about 23◦ from the line of C—C centers. Indeed, the disposition of the bonding
hybrids resembles that in fully formed three-center bonds (cf., e.g., the right-hand
panel of Fig. 3.92), showing that this C—C bond has been virtually “prepared”
for formation of another three-center bond across the opposite face of the original
ethylene moiety. This again emphasizes the synergistic character of three-center
bond formation which favors their formation in pairs.
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Figure 3.99 Three-center NBOs and occupancies for BH5 (σ→p∗ type).

Each of the 2c→1c∗ donor–acceptor interactions in Figs. 3.97–3.100 exemplifies
what are also termed agostic interactions. Such interactions are generally character-
ized by T-shaped (near-perpendicular) attack of an electrophile A on a filled B—C
bond (σBC or πBC):

(3.240)

to give partial or complete three-center “insertion.” In general, agostic attack may
result in

(a) a long-range donor–acceptor complex;
(b) a stable three-center τ-bonded compound; or
(c) reactive displacement of an alternative (e.g., C or A) electrophile,
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Figure 3.100 Three-center NBOs and occupancies for H3BC2H4 (π→p∗ type).
Note the high occupancy (0.2567e) of τCBC

(π)∗, largely as a result of its strong
interaction (estimated second-order stabilization 34.69 kcal mol−1) with the in-
plane B—H bond, which is thereby weakened and lengthened.

Figure 3.101 The NBO σBH→τCBC
(π)∗ donor–acceptor interaction in H3BC2H4

(cf. Fig. 3.100).
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Figure 3.102 The residual “σCC” NBO in H3BC2H4, showing the strong banana-
bond shape of the NBO and the effective “preparation” for forming a second
three-center bond (or agostic interaction) with an empty orbital approaching from
the opposite face of the original ethylene moiety.

namely

(3.241)

In complete parallel to the discussion in Section 3.5, the conditions for forming
a stable 2c→1c∗ complex or τ-bonded compound are intimately related to those
for catalyzing the corresponding electrophilic displacement reaction. Thus, the
implications of 3c/2e τ-bonding go far beyond the chemistry of boron compounds.

Boron hydrides

The classic cases of 3c/2e τ-bonding are exemplified by the boron hydrides BpHq

and their ions. Many of these species were first prepared by Stock and coworkers157

and subsequently characterized crystallographically and theoretically by Lipscomb
and coworkers. Figure 3.103 shows representative examples of the boron hydrides
(B4H10, B5H9, B5H11, B6H10), all of which were prepared originally by Stock and
are among the best studied species of this type. Corresponding comparisons of theo-
retical and experimental geometries for these species are summarized in Table 3.38.



320 Molecular bonding in the s/p-block elements

Figure 3.103 Boron hydrides (see Table 3.33), with views chosen approximately
to match Figs. 1.2–1.5 of note 154.

The comparisons of Table 3.38 establish that standard computational methods can
account quite successfully for the surprising borohydride geometries.

Some common characteristics of these species are apparent from the structures
shown in Fig. 3.103. The molecular structure tends to be a lattice-work of triangular
facets, with each near-neighbor B—B pair typically bridged by two B—(B)—B or
B—(H)—B triangles (an exception being the B4—B5 bond of B6H10, which has
only one such bridging triangle). The boron skeleton thus tends to form a trigonal
surface mesh that can wrap around to form a closed polygon (as in the icosahedral
B12H12

2− anion, to be discussed below) or can have its outer edges “stitched” with
hydridic B—(H)—B triangles. Each B atom of the mesh ordinarily has a protrud-
ing B—H bond of ordinary 2c/2e covalent type, and any left-over “end” atoms
along an unclosed edge must have an extra B—H bond (i.e., a —BH2 group) as
terminus.
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Table 3.38. Comparison of calculated (B3LYP/6-311++G∗∗) and experimental
(note 154) bond lengths and bond angles for boron hydrides (see Fig. 3.103).

“H(µ)” denotes a bridge hydrogen

Species Variable Theory Experiment

B2H6 B1—B2 (Å) 1.767 1.77
B—H (Å) 1.187 1.19
B—H(µ) (Å) 1.316 1.33
H–B–H (degrees) 121.9 121.5

B4H10 B1—B2 (Å) 1.860 1.84
B1—B3 (Å) 1.720 1.71
B—H (Å) 1.187 1.19
B1—H(µ) (Å) 1.257 1.33
B2—H(µ) (Å) 1.414 1.43
B2–B1–B4 (degrees) 98.8 98

B5H9 B1—B2 (Å) 1.695 1.69
B2—B3 (Å) 1.798 1.80

B5H11 B1—B2 (Å) 1.881 1.87
B1—B3 (Å) 1.747 1.73
B1—B4 (Å) 1.733 1.70
B1—B5 (Å) 1.903 1.87
B2—B3 (Å) 1.835 (1.77)a

B3—B4 (Å) 1.796 1.77
B4—B5 (Å) 1.740 (1.75)a

B6H10 B1—B2 (Å) 1.748 1.74
B1—B3 (Å) 1.757 1.75
B1—B4 (Å) 1.818 1.80
B2—B3 (Å) 1.801 1.79
B3—B4 (Å) 1.741 1.74
B4—B5 (Å) 1.637 1.60

B12H12
2− B1—B2 (Å) 1.787 1.77

a Assigned for consistency with the lowered symmetry of the theoretical structure.

The number (x) of such end groups (or “extra” B—H bonds) can be combined
with the numbers (s) of τBHB bonds and (t) of τBBB bonds, as well as the number
(y) of singly bridged B—B pairs, to give the well-known styx code:

s = number of τBHB bonds
t = number of τBBB bonds
y = number of singly bridged B—B pairs (σBB bonds)
x = number of “extra” σBH bonds (one per “end” B)




styx code
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When added to the p additional terminal B—H bonds (one per B), the sum of styx
values accounts for all two-electron bonds in the molecule, which must therefore
correspond to all 3p + q valence electrons of the BpHq molecule, if no lone pairs
or other bond types are present,

2(p + s + t + y + x) = 3p + q (3.243a)

or equivalently

2(s + t + y + x) = p + q (3.243b)

Furthermore, by virtue of atomic balance the total number (q) of H atoms must sum
to

q = s + x + p (3.244)

and the total number (p) of B atoms (if each is assumed to be four-coordinate) must
satisfy

p = s + t (3.245)

These constraints lead to the standard styx codes shown in Table 3.39.
Let us now consider some general aspects of the atomic charge distributions. For

the H atoms, the calculated natural atomic charges QH are found to depend most
strongly on whether the atom appears at a bridging H(µ), terminal H(t), or BH2

“extra” H(x) position. Typical QH values fall within the disjoint ranges

+0.14 ≤ QH(µ) ≤ +0.16 (3.246a)

+0.06 ≤ QH(t) ≤ +0.07 (3.246b)

0.00 ≤ QH(x) ≤ +0.03 (3.246c)

with bridging H(µ) protons significantly more acidic than non-bridging protons.
The only values falling outside the narrow ranges (3.246a)–(3.246c) occur in di-
borane, where the bridging protons are somewhat less acidic (QH = +0.09), and
in B5H11, where the oddly asymmetric proton bridging B1 and B2 is more acidic

Table 3.39. Standard allowed styx codes for some boron
hydrides BpHq (see Fig. 3.103)

B2H6 B4H10 B5H9 B5H11 B6H10

styx code(s) 2002 4012 4120 5021 4220
3103 3211 4112 3311

2302 3202 2402
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Table 3.40. Boron atomic charge distributions in boron hydrides
(see Fig. 3.103 for atom numberings), comparing Lipscomb’s

“zeroth-order” (ZO) estimates (note 154) with NPA atomic charges

Atomic charge QB

Species Atom ZO NPA

B2H6 B1 0.00 −0.092

B4H10 B1 0.00 −0.312
B2 0.00 −0.138

B5H9 B1 −1.00 −0.344
B2 +0.25 −0.122

B5H11 B1 −0.33a −0.363
B2 −0.17b −0.142
B3 +0.33 −0.196
B4 +0.33 −0.138
B5 −0.17 −0.095

B6H10 B1 −0.33 −0.286
B2 0.00 −0.188
B3 +0.33 −0.062
B4 −0.17 −0.153

a Estimate from alternative three-center structure: −0.67.
b Estimate from alternative three-center structure: 0.00.

(QH = +0.22) than normal. The boron atomic charges are found to fall within the
general range

−0.36 ≤ QB ≤ −0.06 (3.247)

Table 3.40 displays the calculated QB charges from natural population analysis
(NPA) for all unique B atoms. This table also includes comparison of the NPA
charges with corresponding “zeroth-order” (ZO) estimates given by Lipscomb,
which are based essentially on the formal charges for conjectured three-center
bond and styx-code assignments for each species (to be discussed below).

As seen in Table 3.40, the ZO estimates tend to fall within crudely the same
order as the NPA charges, but the quantitative correlation is rather poor. The ZO
estimates evidently fail to make adequate distinction between sites that NPA finds
to have strongly inequivalent charges (e.g., B1 and B2 in B4H10), and they suggest
a much more extreme range of variations (−1.00 ≤ QB

(ZO) ≤ +0.33, about four
times the range in (3.247)). It is noteworthy that NPA represents all B atoms as
somewhat anionic and all H atoms (except the borderline bridging protons of B2H6)
as somewhat cationic. One can also recognize from Table 3.40 that an apex B atom
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is the likely site for electrophilic addition, whereas an “end” (—BH2-bonded) B
atom is the likely site of nucleophilic addition.

We now describe the individual molecules in Fig. 3.103 (as well as the limiting
icosahedral B12H12

2− species to be introduced below), giving details of the NBOs,
relative weightings of alternative styx structures, and NRT bond orders for each
species.

B4 H10

Dihydrotetraborane, B4H10, is a high-symmetry (C2v) species for which both boron
and hydrogen positions have been determined by X-ray diffraction, as summa-
rized in Table 3.38. In accordance with the X-ray structure, the four B—(H)—B
bridges are found to be slightly asymmetric, with the proton lying closer (1.257
versus 1.414 Å) to the B1/B3 end of the bridge. The B—H—B angle is opened
to a somewhat larger value than in B2H6 (88.1◦ versus 84.3◦) and the two basal
B—B—H angles are distinctly unequal (42.5◦ for B1—B2—H versus 49.4◦ for
B2—B1—H). However, in other respects the τBHB bonds are qualitatively similar
to those described previously for diborane.

The bonding in B4H10 can best be represented as shown in the structure diagram
below, with s = 4 τBHB bridge bonds (depicted as arcs), six terminal σBH bonds (one
for each B atom plus x = 2 “extra” at B2 and B4), and y = 1 single B1—B3 σBB

bond:

(3.248)

This structure corresponds to the styx = 4012 bond pattern (cf. Table 3.39), with
the detailed list of bond types shown in Table 3.41(a). Other NBO/NRT descriptors
to be discussed below are also summarized in Table 3.41.

As indicated in Table 3.39, an alternative styx = 3103 structure can be envi-
sioned. This can be achieved, e.g., by replacing a chosen τBHB, σBB bond pair with
a new τBBB, σBH bond pattern, as shown in the styx = 3103 entry of Table 3.41(a).
The asymmetrical 3103 structure seems much less suitable to describe the actual
bonding features of B4H10, and the 4012 structure is therefore usually considered
to be “preferred” on intuitive grounds.
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Table 3.41. NBO/NRT descriptors for B4H10 (see Fig. 3.103(a)), showing (a)
alternative styx codes (with specific bond types) and associated non-Lewis

density “error” ρNL; (b) NHO hB and percentage polarization for NBOs of the
most accurate styx structure; and (c) approximate bBB and bBH bond orders from

a non-converged NRT procedure (see the text)

(a) Alternative styx structures

Bond types

styx code ρNL (e) τBHB τBBB σBB σBH(x)

4012 0.6072 B1HB2 B1B3 B2H
B2HB3 B4H
B3HB4
B4HB1

3103 0.8760 B1HB2 B1B3B4 B1H
B2HB3 B2H
B3HB4 B4H

(b) NBO boron hybridization and percentage polarization (for styx = 4012)

τBHB σBB σBH(t) σBH(x)

Atom hB Pol. hB Pol. hB Pol. hB Pol.

B1 sp3.00 35% sp4.60 50% sp2.12 53%

B2 sp3.69 24% sp2.39 51% sp2.60 51%

(c) Natural resonance theory

Bond order

Atom B2 B3 B4 H(µ) H(t) H(x)

B1 0.13 0.89 0.13 0.51 1.00 0.00

B2 0.00 0.13 0.00 0.33 0.00 1.00

However, the relative accuracies of the two possible structural bond patterns can
be assessed more quantitatively with NBO analysis. The NBO procedure allows
one to specify alternative Lewis structure patterns of two- and three-center bonds158

and determine the non-Lewis density “error” ρNL of each such structure. As shown
in Table 3.41(a), the non-Lewis density of the 4012 structure (0.6072e) is smaller
than that of the 3103 structure (0.8760e), which confirms that the 4012 structure
(3.248) is indeed the superior bonding description in this case.

Table 3.41(b) shows details of the NBO compositions in the optimal 4012 struc-
ture. The τBHB bridge bonds are found to be noticeably polarized toward the B1/B3
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end (35% versus 24% at the B2/B4 end), where the hybrids are also of noticeably
lower p character (sp3.00 versus sp3.69 at the B2/B4 end). The hybrids of highest s
character (sp2.1−sp2.6) are used for forming the various terminal σBH bonds, while
those of highest p character (sp4.60) form the σBB bond.

All these features are consistent with Bent’s rule (Section 3.2.6) and with the
geometrical features noted above. Specifically, the B2/B4 atoms bearing “extra”
σBH bonds must commit higher s character to the terminal B—H bonds, and hence
higher p character to the two bridge bonds, leading to smaller H—B—H interbridge
angles at B2/B4 than at B1/B3. Similarly, the polarization of τBHB toward the B1/B3

boron hybrid of higher s character (greater effective electronegativity) is in accord
with the expectations of Bent’s rule. Thus, it appears that many of the qualitative
Bent’s rule/electronegativity/geometry relationships developed in Sections 3.2.5–
3.2.7 can be extended to three-center bonding in a fairly straightforward manner.

The localized structure (3.248) is subject to strong delocalization corrections
from residual donor–acceptor interactions. By far the strongest of these are the four
equivalent interactions of the form

σBB→τBHB
(�)∗ (28.9 kcal mol−1) (3.249)

depicted in Fig. 3.104, involving delocalization from the B1—B3 bond NBO σBB

into, e.g., the B1—(H)—B2 three-center antibond NBO τBHB
(�)∗, each with es-

timated second-order stabilization 28.9 kcal mol−1. As seen in the diagram, the
relevant three-center τ∗ for the B1—(H)—B2 bridge in this case resembles an ordi-
nary two-center σBH

∗ for the B2—(H) portion of the bridge (because the H is shared
quite unsymmetrically between the two B atoms, in contrast to τBHB

∗ orbitals seen
in other examples). The orbital interaction in Fig. 3.104 thus bears some resem-
blance to vicinal σBB→σBH

∗ interactions of the type seen elsewhere in this book

Figure 3.104 One of the four equivalent strong σBB→τBHB
∗ donor–acceptor inte-

ractions in B4H10 (estimated second-order stabilization: 28.9 kcal mol−1). Note
the resemblance to a canted cis-like vicinal σB1B3→σB2H

∗ interaction.
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(Sections 3.3 and 3.4). The strong interactions (3.249) emphasize that the local-
ized structural representation (3.248), although “optimal,” fails to depict important
details of the actual electron distribution in this highly delocalized species.

As mentioned above, it is also possible in principle to describe three-center bond-
ing in terms of highly delocalized one- and two-center resonance structures, using
natural resonance theory (NRT, Section 1.6) to compute the relative weightings (cf.
Eq. (3.237)). In practice the limit of many strongly interacting resonance structures
leads to NRT numerical instability, symmetry breaking, and failure to converge to
a unique leading set of resonance structures. However, by averaging the calculated
bond orders over equivalent positions159 one can achieve a degree of convergence in
the overall bonding patterns that is adequate for qualitative purposes. Table 3.41(c)
summarizes the estimated bBB and bBH bond orders for B4H10. As suggested by the
styx structure (3.248), the B1—B3 bond is of high bond order (0.89), and each of
these atoms is weakly bonded (0.13) to each of the adjacent B2/B4 atoms, which
themselves are essentially nonbonded. The terminal B—H bonds are normal sin-
gle bonds (bBH = 1.00), while the bridging B—(H) bonds have significantly lower
bond orders, somewhat stronger toward B1/B3 (0.5) than toward B2/B4 (0.3). These
results are generally in line with the geometrical features noted above as well as
with NBO dissection of the leading three-center styx structure shown in (3.248).

B5 H9

Pentaborane, B5H9, is unusual in having a tetragonal C4v skeleton, rather than the
icosahedral fragment geometry that is typical of other boron hydrides. The unique
apex atom B1 makes four short B—B bonds to the base (1.695 Å), whereas the four
basal B—B bonds are of more typical length (1.798 Å).

No single three-center structure can adequately represent this molecule. As
shown below, the best localized structural representation is one of the four equiva-
lent structures shown in (3.250),

(3.250)
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Table 3.42. Similar to Table 3.41, for B5H9

(a) Alternative styx structures

Bond types

styx code ρNL (e) τBHB τBBB σBB σBH(x)

4120 1.2625 B2HB3 B1B4B5 B1B2
B3HB4 B1B3
B4HB5
B2HB5

“4210”a 1.3705 B2HB3 B1B2B5 B1B3
B3HB4 B1B5B4
B4HB5
B2HB5

4120′ 1.3902 B2HB3 B3B1B5 B1B2
B3HB4 B1B4
B4HB5
B2HB5

“4200”b 1.6477 B2HB3 B1B2B3
B3HB4 B1B4B5
B4HB5
B2HB5

3211 1.9201 B2HB3 B1B2B5 B1B4 B5H
B3HB4 B1B3B4
B2HB5

2302 2.3085 B3HB4 B1B2B3 B2H
B2HB5 B1B2B5 B4H

B1B3B4

aNon-standard styx code: pentacoordinate B(5).
bNon-standard styx code: tricoordinate B(1).

(b) NBO boron hybridization and percentage polarization (for styx = 4120)

τBHB
a τBBB σBB σBH(t)

Atom hB Pol. hB Pol. hB Pol. hB Pol.

B1 sp2.39 39% sp4.39 49% sp2.08 53%

B2 sp4.27 29% sp2.37 51% sp2.10 53%
sp4.32 30%

B5 sp3.03 29% sp2.19 31% sp2.05 53%

aFor two entries, the second denotes the bond to the later-numbered B atom.
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Table 3.42. (Cont.)

(c) Natural resonance theory

Bond order

Atom B2 B3 B4 H(µ) H(t) H(x)

B1 0.58 0.58 0.58 — 1.00 —
B2 — 0.07 0.07 0.40 1.00 —

with four three-center τBHB bonds (s = 4), one three-center τBBB bond (t = 1),
and two two-center σBB bonds (y = 2), corresponding to styx code 4120. Various
NBO/NRT descriptors pertaining to B5H9 are summarized in Table 3.42.

As shown in Table 3.39, three standard styx codes (4120, 3211, and 2302) are
possible for B5H9. Table 3.42(a) specifies representatives of each of these structures,
including two distinct structures (labeled 4120 and 4120′) corresponding to the
4120 motif. In addition, one may consider various non-standard styx motifs such
as the structures labeled “4210” and “4200” in Table 3.42(a), which correspond
to one or more B atoms lacking the usual tetracoordinate pattern. Table 3.42(a)
summarizes the NBO ρNL density errors associated with the six listed structures,
showing that the 4120 structure (3.250) has the smallest ρNL value and is indeed
the “best” single NBO structure.

The 4120′ structure was formerly considered “best” (note 154, Fig. 2-11), but
is seen to be markedly inferior to the structure shown in (3.250). Indeed, 4120′

is also found to be slightly inferior to the non-standard 4210 structure in which
one of the basal B atoms is pentacoordinate. The two alternative standard styx
structures 3211 and 2302 are also seen to be significantly inferior to either of the
non-standard structures 4210 and 4200. Thus, one should always give consideration
to non-standard styx bonding topologies in attempting to judge the best single
localized structural formula. The general superiority of 4120 to 4120′ has also
been recognized from a general bond-localization criterion based on improved MO
wavefunctions.160

In addition to the usual three-center τBHB bonds, B5H9 exhibits a three-center
τBBB bond of “central” type, as shown in Fig. 3.105. In this case the three
boron hybrids are mutually oriented toward the midpoint of the triangle B1B4B5

(Fig. 3.105(a)), leading to a bonding NBO of trilobate form (Fig. 3.105(b)) that
somewhat resembles the corresponding τCBC NBO in H3BC2H4 (Fig. 3.100). The
two associated antibonds (Figs. 3.105(c) and (d)) also resemble those of Fig. 3.100,
and may be analogously labeled τBBB

(�)∗ and τBBB
(π)∗ to denote their distinctive

shapes.
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Figure 3.105 Overlapping (sp2.19)B−(sp2.39)B−(sp2.19)B NHO shapes (a) and the
final τBBB bond (b) and τBBB

(�)∗ and τBBB
(π)∗ antibond (c) and (d) NBOs and

occupancies for “central” three-center B4B1B5 bond in B5H9 (styx = 4120). Only
the outermost contour is shown in the NHO plot, in order to reduce congestion on
the plot.

The alternative “open” form of τBBB bond is found in the alternative 4120′ struc-
ture, which involves a single B5B1B3 τ-bond diagonally spanning the tetragonal
pyramid. Figure 3.106 illustrates the τ bonds and antibonds found in this case.

Comparison of Figs. 3.105(a) and 3.106(a) shows that the role of the apical B1

atom differs markedly in the two cases. In the central case (Fig. 3.105(a), B1 has
no privileged role but merely contributes one of the three near-equivalent hybrids
directed into the midpoint of the triangle. However, in the open case (Fig. 3.106(a))
B1 uniquely contributes a pure p orbital whose two lobes are overlapped by the
end borons, forming an open chain with distinct center (B1) and end (B3 and B5)
links. Whereas the central-type τBBB

(c) bond resists breaking up the triangular
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Figure 3.106 Overlapping (sp2.60)B–(p)B–(sp2.60)B NHO shapes (a) and the final
τBBB bond (b) and τBBB

(�)∗ and τBBB
(π)∗ antibond (c) and (d) NBOs and occupan-

cies for the “open” three-center B3B1B5 bond in B5H9 (styx = 4120′). Only the
outermost contour is shown in the NHO plot, in order to reduce congestion on the
plot.

arrangement, the open-type τBBB
(0) allows easy rearrangements of the form

(3.251)

involving B3—B5 bond-breaking and linear intermediates. Thus, the two types of
τBBB bonds are adapted to different geometrical limits.

The dominant feature of the NBO description of B5H9 is the large delocalization
that remains even for the best possible three-center Lewis structure (3.250). The
non-Lewis density for this structure is found to be 1.2625e, or fully 3.71% of the
total of 34 electrons, even higher (on a percentage basis) than in such “highly
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Figure 3.107 Leading donor–acceptor interactions of σBB → τBBB
(�)∗ (left) and

σBB→τBBB
(�)∗ (right) type in B5H9; see Eqs. (3.252a) and (3.252b) in the text.

delocalized” systems as benzene and the cyclopentadienyl anion (Section 3.3.2).
The leading donor–acceptor delocalizations are found to involve donation from
either of the two σBB bonds into antibonds of the three connecting three-center
bonds (one τBBB and two τBHB),

σBB→τBBB
(π)∗ (50.3 kcal mol−1) (3.252a)

σBB→τBHB
(�)∗ (B1—B2→B2—H—B5

∗) (28.2 kcal mol−1) (3.252b)

σBB→τBHB
(�)∗ ′

(B1—B2→B2—H—B3
∗) (13.4 kcal mol−1) (3.252c)

These large values emphasize that strong resonance mixing is needed to describe
the bonding even after an optimal three-center starting structure has been found.
Figure 3.107 illustrates the two leading interactions (3.252a) and (3.252b), showing
the similarity to the corresponding interaction in B4H10 (cf. Fig. 3.104).

Finally, Table 3.42(c) summarizes the qualitative NRT results, confirming that
(except for terminal σBH(t) bonds) the B—B and B—H bond orders all involve
strong resonance mixing.

B5 H11

Dihydropentaborane, B5H11, presents stronger disagreements between theory and
experiment than do the other boron hydrides (Table 3.38). As shown in Fig. 3.103(c),
theory depicts one of the B1—H bonds as strongly bent out of the approximate
vertical symmetry plane to form a bridge bond to B2. Such symmetry breaking
may lead to significant fluxional disorder in the X-ray pattern, complicating the
extraction of reliable experimental geometrical parameters.
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What can be considered to be the “best” localized structural representation of
B5H11 is shown in (3.253), corresponding to styx code 4112

(3.253)

What were earlier (note 154, Fig. 2–7) considered “best” three-center structures
for this molecule were of 3203 bond topology, both having a symmetric pattern of
two τBBB bridge bonds around the B1 apex atom (B2B3B1 and B1B4B5 in 3203;
B3B1B4 and B2B1B5 in 3203′). However, as shown in Table 3.43(a), both these
structures have significantly larger ρNL errors than either the 4112 structure (3.253)
or a non-standard 4202 structure with five-coordinate B2. Although 3203 and 3203′

were thought to be of similar accuracy, the alternative 3203′ structure is actually
far inferior to 3203 (with ρNL 2−3 times as large). The NBO/NRT descriptors for
this molecule are summarized in Table 3.43.

The τBHB bridges are all rather asymmetric, as reflected in the polarizations
and hybridizations of the NBOs. The bridging proton generally lies further from
the —BH2 group (i.e., B2 and B5) than from the opposite end of the bridge, and
only B3—(H)—B4 resembles the symmetric bridge of diborane. The separations
(in ångström units) in each bridged triad are calculated to be

B1-(1.253)-H-(1.427)-B2

B2-(1.399)-H-(1.266)-B3

B3-(1.319)-H-(1.363)-B4

B4-(1.287)-H-(1.381)-B5

and the nearer boron commonly employs a hybrid of higher s character in the bridge
bond, as might have been predicted from Bent’s rule. The τBBB bond also has a
significantly higher percentage at the apex B1 (39%) than at the basal B4 and B5

(32% and 29%) atoms.
The nominal localized 4112 structure (3.253) again manifests large delocaliza-

tion corrections, of which the most important involve donation from the B1—B3σBB
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Table 3.43. Similar to Table 3.41, for B5H11

(a) Alternative styx structures

Bond types

styx code ρNL (e) τBHB τBBB σBB σBH(x)

4112 0.8343 B2HB3 B1B4B5 B1B3 B2H
B3HB4 B5H
B4HB5
B1HB2

“4202”a 0.9711 B2HB3 B1B2B3 B2H
B3HB4 B1B4B5 B5H
B4HB5
B1HB2

3203 1.0581 B2HB3 B1B2B3 B1H
B3HB4 B1B4B5 B2H
B4HB5 B5H

“4022”b 1.3906 B2HB3 B1B3 B2H
B3HB4 B1B5 B5H
B4HB5
B1HB2

3203′ 2.8878 B2HB3 B1B3B4 B1H
B3HB4 B2B1B5 B2H
B4HB5 B5H

a Non-standard styx: pentacoordinate B(2).
b Non-standard styx: tricoordinate B(4).

(b) NBO boron hybridization and percentage polarization (for styx = 4112)

τBHB
a τBBB σBB σBH

b

Atom hB Pol. hB Pol. hB Pol. hB Pol.

B1 sp3.14 37% sp2.56 39% sp4.43 50% sp2.45 53%

B2 sp3.39 25% sp2.31 51%
sp3.84 24% sp2.80 51%

B3 sp3.15 24% sp2.96 50% sp2.31 53%
sp3.93 30%

B4 sp3.08 28% sp2.44 32% sp2.37 53%
sp4.98 35%

B5 sp6.97 23% sp2.77 29% sp2.33 50%
sp2.24 50%

a For two entries, the second denotes the bond to the later-numbered B atom.
b For two entries, the first denotes σBH(t), the second σBH(x).
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Table 3.43. (Cont.)

(c) Natural resonance theory

Bond order

Atom B2 B3 B4 H(µ) H(t) H(x)

B1 0.12 0.90 0.81 0.85 1.00 —
B2 — 0.17 0.00 0.05 1.00 1.00
B3 0.17 — 0.12 0.62 1.00 —
B4 0.00 0.12 — 0.66 1.00 —
B5 0.00 0.00 0.19 0.05 1.00 1.00

bond NBO into τ∗ antibond NBOs of the four adjacent BHB and BBB groups,

B1—B3→B1B4B5
∗ (40.3 kcal mol−1) (3.254a)

B1—B3→B3—H—B4
∗ (29.9 kcal mol−1) (3.254b)

B1—B3→B1—H—B2
∗ (28.7 kcal mol−1) (3.254c)

B1—B3→B3—H—B2
∗ (26.5 kcal mol−1) (3.254d)

The NRT bond orders also reflect the strong resonance delocalization involving
all but the terminal σBH(t) and σBH(x) bonds. Figure 3.108 depicts the two leading
donor–acceptor interactions (3.254a) and (3.254b) as representative of the strong
σBB→τBBB

(�)∗ and σBB→τBHB
(�)∗ delocalizations in this molecule.

Figure 3.108 Leading donor–acceptor interactions of σBB→τBBB
(�)∗ (left) and

σBB→τBHB
(�)∗ (right) type in B5H11; see Eqs. (3.254a) and (3.254b) in the text.
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B6 H10

Hexaborane, B6H10, has the form of an icosahedral cap of reduced (C2v) symmetry,
with a vertical symmetry plane bisecting B4—B5 and passing through B1 and B2.
The unbridged B4—B5 bond has the smallest known B—B bond length (<1.64 Å).
As surmised by Lipscomb (note 154, Fig. 2-8), the optimal localized representation
has four τBHB bonds around the cap edges and two central τBBB bonds emanating
symmetrically from the apex atom to give the styx = 4220 structure shown in
(3.255). The other two standard styx codes (3311 and 2402) lead to much higher ρNL

values, as shown in Table 3.44(a), and hence play no significant role in describing
the electronic distribution. Table 3.44 summarizes the NBO/NRT descriptors of
B6H10 for direct comparison with those of other boron hydrides.

(3.255)

The B1B3B4 and B1B5B6 bridge bonds are of characteristic central form (similar
to that shown in Fig. 3.105), with somewhat higher amplitude and hybrid s character
at the apex B1 atom. Although B1—B2 and B4—B5 are both nominal σBB single
bonds, the latter employs hybrids of much higher s character (sp1.97 at B4 and B5

versus sp2.79 at B2 and sp6.73 at B1), leading to stronger and shorter bonding (due
to the low energy and smaller radius of valence s orbitals). Thus, B1—B2 is better
adapted to be a donor in subsequent donor–acceptor delocalizations.

While the 4220 structure (3.255) is the uniquely best localized representation,
strong delocalization is again evident in the strength of intramolecular donor–
acceptor interactions. Most important by far are the four interactions involving
donation from the B1—B2 bond into each pair of adjacent τBBB

(�)∗ and τBHB
(�)∗

antibonds,

B1—B2 → B1B4B5
∗(B1B5B6

∗) (34.7 kcal mol−1) (3.256a)

B1—B2 → B2—H—B3
∗(B2—H—B6

∗) (27.6 kcal mol−1) (3.256b)

as shown in Fig. 3.109. The similarities to Figs. 3.107 and 3.108 are evident, both in
form and in general magnitude. The NRT bond orders in Table 3.44(c) also reflect
the strong resonance delocalization involving all but the terminal σBH(t) bonds.
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Table 3.44. Similar to Table 3.41, for B6H10

(a) Alternative styx structures

Bond types

styx code ρNL (e) τBHB τBBB σBB σBH(x)

4220 1.2187 B2HB3 B1B4B3 B1B2
B3HB4 B1B5B6 B4B5
B5HB6
B2HB6

3311 3.0610 B2HB3 B1B4B5 B2B6 B2H
B3HB4 B1B3B4
B5HB6 B1B5B6

2402 3.7522 B2HB3 B3B2B6 B4H
B2HB6 B1B3B4 B5H

B1B5B6
B1B4B5

(b) NBO boron hybridization and percentage polarization (for styx = 4220)

τBHB
a τBBB σBB σBH(t)

Atom hB Pol. hB Pol. hB Pol. hB Pol.

B1 sp2.46 39% sp6.73 50% sp2.49 54%

B2 sp3.65 32% sp2.79 50% sp2.29 53%

B3 sp4.03 27% sp2.50 34% sp2.16 53%
sp4.07 27%

B4 sp4.49 27% sp4.86 27% sp1.97 50% sp2.25 52%

a For two entries, the second denotes the bond to the later-numbered B atom.

(c) Natural resonance theory

Bond order

Atom B2 B3 B4 B5 H(µ) H(t)

B1 0.80 0.84 0.10 0.10 — 1.00
B2 — 0.10 0.00 0.00 0.79 1.00
B3 0.10 — 0.16 0.08 0.12 1.00
B4 0.00 0.16 — 1.04 0.73 1.00
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Figure 3.109 Leading donor–acceptor interactions of σBB→τBBB
(�)∗ (left) and

σBB→τBBB
(�)∗ (right) type in B6H10; see Eqs. (3.256a) and (3.256b) in the text.

B12 H 12
2−

As a final example we consider the icosahedral B12H12
2− dianion, whose relevance

to higher extended boron structures may be motivated in the following terms.
Looking back at the four previous examples, we can recognize that a common

motif of successful styx structures is a centralσBB bond with as many as four attached
bridge bonds, each providing a strong σBB→τ(�)∗ delocalization. (The σBB bonds
are the best available donors, due to their high p character and concentration on
two nuclei, while the low-lying three-center τ(�)∗ antibonds are the best available
acceptors.) The favored motif can be represented schematically as

(3.257)

where each arc represents a three-center τBBB or τBHB bridging one edge of the
B4 “diamond” spanned by the σBB donor. As found in the examples above, each
such adjacent σBB→τ(�)∗ delocalization contributes significant stabilization (about
30 kcal mol−1 for τBHB, 40–50 kcal mol−1 for τBBB) that strongly favors such
bridged-diamond styx patterns. Thus, styx patterns in which the number of bridge
bonds is in approximate 4 : 1 proportion to the number of donor σBB bonds can be
expected to be particularly stable.
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As the number of boron atoms increases, the favored motif (3.257) is specifically
of the form

(3.258)

involving four central-type τBBB bonds clustered around σBB. Each such unit can
be connected to other such units in a hexagonal pattern. Of course, this “hexagonal”
aspect refers only to topological connectivity, since the local coordination at each B
(actually, BH(t)) apex is approximately tetrahedral. Thus, an extended mesh of such
hexagonal units (3.258) necessarily forms a curved surface in three dimensions. The
edges of this mesh may be “hemmed” by τBHB bridges, or at “corners” by an extra
hydrogen, to complete the local octet at each B. However, such truncation and
hemming of the hexagonal mesh pattern typically involves departures from the
optimal bond pattern (3.258).

A particularly elegant and stable solution is to close the hexagonal pattern
in a three-dimensional icosahedron of p = 12 apices, as shown schematically
in Fig. 3.110. (Apices labeled with small numbers must be connected to the
corresponding boldface-numbered apex to form the correct three-dimensional

Figure 3.110 Boron-atom numbering and the two-dimensional hexagonal grid
pattern of two two-center and ten three-center bonds in the 0.10.3.0 styx structure
for icosahedral B12H12

2−.
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Figure 3.111 Icosahedral B12H12
2− (with the atom numbering of note 154).

polygon.) As is easily verified from the diagram, the resulting (BH)12 bond pattern
(styx = 0.10.3.0) contains y = 3 σBB bonds,

σBB : 1—9, 4—12, 5—7 (3.259a)

and t = 10 τBBB bonds,

τBBB

{
1—4—8, 1—5—11, 2—3—6, 2—7—10, 2—10—12,

3—7—11, 3—9—11, 4—5—10, 6—8—9, 6—8—12
(3.259b)

The optimal styx pattern of three σBB, ten τBBB, and twelve σBH(t) bonds requires
a total of 2(3 + 10 + 12) = 50 electrons, whereas a neutral (BH)12 framework
provides only 12(3 + 1) = 48 valence electrons. Hence, two additional electrons
must be added to form the B12H12

2− anion that achieves the idealized icosahedral
bonding pattern (3.259). Figure 3.111 depicts the computed structure of B12H12

2−,
which indeed optimizes to perfect icosahedral symmetry with each B—B = 1.787
Å (experimental 1.77 Å) and B—H = 1.202 Å.

The specific realization (3.259) of the favored 0.10.3.0 styx pattern is only one
of many equivalent localized representations. The “central” 1—4—5 triangle of
Fig. 3.110 could equivalently be chosen as any of the 20 possible triangular facets
in Fig. 3.111, leading to 20 equivalent three-center Lewis structures that contribute
to the overall resonance delocalization of B12H12

2−. The non-Lewis density of any
such structure is found to be

ρNL = 3.706e (5.01%) (3.260)

which significantly exceeds corresponding values in benzene, cyclopentadiene, and
other “highly delocalized” species. Thus, by any criterion of delocalization density
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or number of strongly contributing resonance structures, B12H12
2− exhibits a more

impressive degree of electronic delocalization than benzene and other “aromatic”
prototypes of organic chemistry.

Icosahedral B12H12
2− is evidently the structural “parent” of many of the smaller

known boron hydrides, as well as a fundamental building block of more extended
boron structures. Indeed, by systematically removing terminal hydrogens and re-
connecting the dangling hybrids of adjacent B12 clusters through two- or three-
center intercluster bonds (sometimes with a connecting “interstitial” boron atom,
as in the tetragonal crystalline form), one recovers various solid forms of pure boron.
The known metallic polymorphs of boron all seem to be built from such icosahedral
boron clusters, varying only in the details of intercluster connections that bind these
units into an extended three-dimensional network. Thus, the electronic properties
of the boron skeleton in the prototypical icosahedral B12H12

2− species appear to
underlie the behavior of extended metallic phases of boron.

The natural atomic charges of B12H12
2− are found to be

QB = −0.1703, QH = +0.0036 (3.261)

For the two-center B—H(t) and B—B bonds the optimal NBOs and occupancies
are

σBH(t) = 0.710(sp2.83)B + 0.705(s)H (1.9876e) (3.262)

σBB = 0.707(sp5.95)B + 0.707(sp5.95)B (1.3954e) (3.263)

The severe depletion of the donor σBB bonds (due to ∼0.15e delocalization into
each of the four adjacent three-center acceptor antibonds) is particularly to be
noted.

The three-center τBBB bonds are of three types, depending on whether they lie
adjacent to two σBB bonds (1—4—8, 1—5—11, 4—5—10), one σBB bond (2—
7—10, 2—10—12, 3—7—11, 3—9—11, 6—8—9, 6—8—12), or no σBB bond
(2—3—6). Those of the first type (illustrated in Fig. 3.112, left-hand panels) have
bond and antibond NBOs and occupancies of the form (e.g., for 1—4—8)

τB1B4B8 = 0.584(sp2.42)1 + 0.564(sp1.96)8

+ 0.584(sp2.42)4 (1.8527e) (3.264a)

τB1B4B8
(�)∗ = 0.399(sp2.42)1 − 0.826(sp1.96)8

+ 0.399(sp2.42)4 (0.1589e) (3.264b)

τB1B4B8
(π)∗ = 0.707(sp2.42)1 − 0.707(sp2.42)4 (0.1013e) (3.264c)
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For the second type (e.g., 6—8—12, illustrated in the right-hand panels of
Fig. 3.112) the corresponding NBOs are

τB6B8B12
= 0.571(sp4.15)6 + 0.606(sp2.42)8

+ 0.555(sp4.15)12 (1.8296e) (3.265a)

τB6B8B12
(�)∗ = 0.502(sp4.15)6 − 0.720(sp2.42)8

+ 0.348(sp4.15)12 (0.0556e) (3.265b)

τB6B8B12
(π)∗ = 0.650(sp4.15)6 − 0.756(sp4.15)12 (0.2753e) (3.265c)

and for the third type (2—3—6) the corresponding NBOs are

τB2B3B6 = 0.577(sp1.96)2 + 0.577(sp1.96)3

+ 0.577(sp1.96)6 (1.8456e) (3.266a)

τB2B3B6
(�)∗ = 0.500(sp1.96)2 − 0.707(sp1.96)3

+ 0.500(sp1.96)6 (0.1247e) (3.266b)

τB2B3B6
(π)∗ = 0.707(sp1.96)2 − 0.707(sp

1.96
)6 (0.1247e) (3.266c)

As expected, the strongest delocalizations are the four σ→τ∗ donor–acceptor inter-
actions around eachσBB bond, including two strong interactions withτ(π)∗ antibonds
of the second type (see Fig. 3.113, left)

τB4B12→τB6B8B12
(π)∗ (37.50 kcal mol−1) (3.267a)

and two weaker interactions with τ(�)∗ antibonds of the first type (see Fig. 3.113,
right)

τB4B12
→τB1B4B8

(�)∗ (21.15 kcal mol−1) (3.267b)

(The weaker delocalization in the latter case would be expected from the anticoop-
erative nature of competitive interactions with two donors.) These interactions thus
exhibit forms and magnitudes that are generally similar to those found in smaller
boron hydrides.

In summary, we can say that all these boron hydrides exhibit a consistent pattern
of recognizable, transferable three-center NBOs and interactions. Bond patterns
that maximize the clustering of three-center τBBB bonds adjacent to donor σBB

bonds can be expected to be a rather general feature of the most stable species of
this type. Strong resonance mixing among the many equivalent structures of this
form is a characteristic of icosahedral B12H12

2−, in which the favorable pattern
of interlinked three-center bonding extends seamlessly and symmetrically over a
closed three-dimensional surface. Compared with ordinary 2c/2e or electron-rich
3c/4e motifs, one can recognize that the 3c/2e τ-bonding motif offers a much richer
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Figure 3.112 The three-center τBBB bond and antibond NBOs of type 1 (left; cf.
Eqs. (3.264)) and type 2 (right; cf. Eqs. (3.265)) in B12 H12

2−.
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Figure 3.113 Leading σ–τ∗ donor–acceptor interactions in B12H12
2−. Note that

both τ∗ orbitals appear truncated in this view (cf. Fig. 3.112) because atoms 1 and
6 fall below the chosen (4—8—12) contour plane.

choice of delocalizing acceptor orbitals (without the conflicting steric exchange
interactions among filled orbitals) with which to achieve highly favorable patterns
of donor–acceptor stabilization.

Carboranes and other aspects of the boron/carbon connection

The concept that carbon atoms and BH(t) groups are “isovalent” leads naturally
to the conjecture that many (BH)pHq boranes are related to analogous carboranes
of formula Cn(BH)p−nHq . As one such example, C2B4H8 is a close structural and
electronic analog of hexaborane B6H10 (3.255), in which the BH groups at positions
4 and 5 in Fig. 3.103(d) have been substituted by C atoms. Because C is somewhat
smaller and more electronegative than B, this substitution leads to expected small
changes in geometry and electronic distribution.161 However, the general simi-
larities in Lewis structures, NBOs, and delocalization patterns of the borane and
carborane compounds suggest that these species are indeed “isostructural” (except
for the obvious replacement of two hydride bonds by carbon lone pairs), and should
manifest many analogous chemical properties.

The borane/carborane connection is illustrated in Table 3.45, which shows de-
tails of the NBOs of C2B4H8 for direct comparison with corresponding data for
B6H10 in Table 3.44. The slight shifts in NBO hybridization and polarization are
in accord with differences in electronegativity between B and C, but the overall
similarities are apparent. As further evidence of the near-transferability of NBOs
from borane to carborane, we show direct comparisons of three-center borane τBHB

and carborane τBHC NBOs in Fig. 3.114, and we illustrate in Fig. 3.115 the leading
donor–acceptor delocalizations of C2B4H8 in a form that can be directly compared
with the analogous interactions of B6H10 in Fig. 3.109:



3.6 Hypovalency: 3c/2e “τ bonds” 345

Table 3.45. Similar to Table 3.44(b), for C2B4H8.

NBO X(= B,C) hybridization and percentage polarization (for styx = 4220)

τBHX
a τBBX σXX σBH(t)

Atom X hB/C Pol. hB/C Pol. hB/C Pol. hB Pol.

B1 sp3.08 31% sp4.35 49% sp2.15 53%

B2 sp3.61 33% sp2.86 51% sp2.27 54%

B3 sp3.19 26% sp2.41 30% sp1.93 53%
sp6.94 29%

C4 sp7.01 33% sp2.49 39% sp0.96 50%

aFor two entries, the second denotes the bond to the later-numbered X atom.

As a second illustrative aspect of the boron/carbon connection, we consider the
dicarbollide ion, C2B9H11

2−, which can be pictured as derived from B12H12
2− by

removing one BH(t) vertex and replacing two adjacent borons of the exposed pen-
tagonal face by carbon atoms, as shown in Fig. 3.116. This ion exhibits remarkable
electronic “mimicry” of the cyclopentadienyl ion (C5H5

−, Section 3.3.2), forming
similar coordination and sandwich complexes with many metallic species.162

The NBO analysis reveals the strong electronic similarities between C2B9H11
2−

and C5H5
−. The optimal NBO Lewis structure representations, (3.268a)–(3.268c),

all have two-center single bonds connecting the B7, B8, B9, C10, and C11 “rim”
atoms, with the familiar motif of a two-center B—B bond flanked by four

Figure 3.114 A comparison of the three-center τBHB of B6H10 (left) with the
corresponding τBHC of C2B4H8 (right).
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Figure 3.115 Leading donor–acceptor interactions of σBB→τBBC
(�)∗ (left) and

σBB→τBHB
(�)∗ (right) type in C2B4H8, showing the general similarity to B6H10

(Fig. 3.109).

three-center bonds forming the main “cup”:

(3.268)

Figure 3.116 The optimized structure of the dicarbollide anion, C2B9H11
2−, with

the atom numbering employed herein.
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Figure 3.117 The bent “σBC” (“πBC”) rim bond (see Eq. (3.269) in the text) in the
dicarbollide anion, C2B9H11

2−.

(The structure (3.268a) with two-center B1—B5 bond has slightly lower non-Lewis
density than the alternative structures (3.268b) and (3.268c), but the molecule should
be considered a strong resonance hybrid of the near-equivalent structures repre-
sented by (3.268).) However, each rim bond is a conspicuously bent banana bond,
similar to that seen previously when a pair of heavy atoms is bridged by only one of
the two usual three-center bonds (cf. Fig. 3.102). Thus, from the viewpoint of a co-
ordinating species approaching the five-membered rim from above, each rim bond
appears to be one of the two equivalent strained bonds of a banana-bonded ethylenic
moiety (or, equivalently, a two-center bond strongly prepared for three-center bond-
ing to an incoming empty orbital). Figure 3.117 depicts one of the strained “σBC”
rim NBOs (which might, with equal justification, be labeled a strained “πBC”
NBO),

“σBC” = 0.549(sp4.09)B + 0.836(sp3.04)C (3.269)

showing the strong bending of the hybrids (by 21.8◦ at the C end, 14.8◦ at the B
end) from the line of B—C centers (similar to the outward bending for all five rim
bonds).

The general similarities of the dicarbollide and cyclopentadienyl (Cp) ions
are also evident in the geometry and charge distributions. The dicarbollide five-
membered rim bonds are somewhat longer on average than those of Cp (1.658 Å
versus 1.414 Å), and the terminal B—H/C—H bonds are bent up 25–30◦ above the
mean plane of the five-membered ring. The dicarbollide ring angles also deviate
by ∼±5◦ from idealized pentagonal values.163 The average atomic charge on each
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dicarbollide rim atom is Q = −0.332, which is rather similar to the corresponding
value Q = −0.365 in Cp.164

τ-Bonding in higher group 13 congeners

Finally, we briefly examine some vertical aspects of three-center bonding for the
heavier group 13 elements aluminum and gallium. Both Al and Ga form dinuclear
hydrides, Al2H6 and Ga2H6, that are close analogs of the B2H6 structure (Fig. 3.92).
The three-center bridge bonds τMHM (M = Al, Ga) of these species can there-
fore be directly compared with the corresponding bonds discussed previously for
B2H6.

Figure 3.118 illustrates the form of the τMHM bond and antibond NBOs found for
M = Al, Ga, for direct comparison with Fig. 3.93. The detailed hybrid compositions
of the τ and τ∗ NBOs are found to be, for Al,

τAlHAl = 0.40(sp7.05)Al + 0.83(s)H + 0.40 (sp7.05)Al′ (3.270a)

τAlHAl
(�)∗ = 0.59(sp7.05)Al − 0.56(s)H + 0.59 (sp7.05)Al′ (3.270b)

τAlHAl
(π)∗ = 0.71(sp7.05)Al − 0.71 (sp7.05)Al′ (3.270c)

and for Ga,

τGaHGa = 0.42(sp8.50)Ga + 0.80(s)H + 0.42 (sp8.50)Ga′ (3.271a)

τGaHGa
(�)∗ = 0.57(sp8.50)Ga − 0.60(s)H + 0.57 (sp8.50)Ga′ (3.271b)

τGaHGa
(π)∗ = 0.71(sp8.50)Ga − 0.707 (sp8.50)Ga′ (3.271c)

which may be compared with the corresponding boron expressions, Eqs. (3.235a)–
(3.235c). The general graphical and functional similarities are quite apparent. As
for the previous boron case, one can clearly recognize in Fig. 3.118 the two distinct
types (τMHM

(�)∗ and τMHM
(π)∗) of Al and Ga valence antibonds, with characteris-

tically distinct contributions to electron delocalization. As expected from general
electronegativity differences and Bent’s rule, the hybrids of Al and Ga gain in-
creasing p character relative to B, and the metal-atom polarization coefficients are
reduced compared with those on the more electronegative H. Despite the apparent
weakening of hybridization and strengthening of ionic character, the general par-
allels in the forms of the NBOs suggest that many aspects of three-center bonding
in aluminum and gallium compounds should parallel those of boron.

The leading donor–acceptor delocalizations of Al2H6 and Ga2H6 are compared
in Fig. 3.119. With respect to the leading τ→τ(�)∗ interaction in B2H6 (Fig. 3.94),
the corresponding interactions in Al2H6 and Ga2H6 are evidently strengthened
(particularly for Al2H6). Moreover, the increased ionic character is manifested in the
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Figure 3.118 Three-center bond (upper row) and antibond (lower two rows) NBOs
of Al2H6 (left) and Ga2H6 (right) (cf. Fig. 3.93 for the corresponding orbitals of
B2H6).
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Figure 3.119 Leading donor–acceptor interactions in Al2H6 (left) and Ga2H6
(right), showing overlap contours in the plane of three-center bridge-bonding (the
“pi plane,” top row) and two-center skeletal bonding (the “sigma plane,” bottom
two rows), with associated second-order stabilization energies in parentheses.
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increased strength of geminal σMH–σMH′ hyperconjugation involving the terminal
MH(t) bonds (middle panels of Fig. 3.119), as well as increased delocalization from
bridging τMHM bonds into surrounding σMH(t)

∗ orbitals (lower panels of Fig. 3.119).
Further aspects of delocalization in Al and Ga compounds are beyond the scope of
the present work.

3.7 Summary

Chapter 3 has discussed a wide range of chemical phenomena involving atoms
with partially filled s and p shells. Indeed, the chemistry of these elements is so
closely tied to the energies and shapes of s/p orbitals (as well as the hybrids, bonds,
and antibonds to which they give rise) that we can virtually speak of “s/p-orbital
chemistry” as a generic type of chemical behavior.

The characteristics of s/p-orbital chemistry are associated, above all, with the
atoms H, C, N, and O that dominate organic and biochemical phenomena. Hence,
the discussion of bonding in s/p-block elements inevitably carries a “bias” toward
organic chemistry, and toward the issues and controversies that continue to animate
this most mature and advanced area of chemistry. Indeed, organic chemistry may be
considered the “cradle of covalency,” where many principles of chemical bonding
were first grasped and exploited.

Before embarking to explore the distinctive chemical phenomena associated with
partially filled d shells (Chapter 4), let us summarize the logical steps in a systematic
Aufbau of chemical bonding concepts (cf. Fig. 3.91), starting from the pure one-
center s and p atomic orbitals of isolated atoms and ions. As described in Chapter 2,
the interaction of occupied and unoccupied one-center orbitals leads to progressive
donor–acceptor delocalization (1c→1c∗) that represents the onset of covalency and
two-center (shared) character of the occupied orbitals. This regime dominates the
“bonding” of molecules which is the principal focus of Chapter 3. Each 1c→1c∗

pairing underlies an in-phase (2c bond) and out-of-phase (2c∗ antibond) orbital that
provide the starting point for donor–acceptor interactions at the next higher level
of aggregation.

In s-block elements (Section 3.2.1) the formation of two-center bond orbitals
is relatively simple, leading only to axially symmetric sigma-type bond functions.
However, in p-block elements the 1c→2c transition is significantly promoted by
hybridization and the possibility of forming either σAB or πAB bonds (or bent bonds
not strictly of either pure σ or pure π type; Section 3.2.7). Only in exceptional cases
can one neglect the hybridization effects, and in such cases one may even encounter
strange “nu bonds” (Section 3.2.9), involving paired sA–pB and pA–sB interactions
that lack the usual symmetries of sigma and pi bonds.



352 Molecular bonding in the s/p-block elements

The optimal forms of the bonding hybrids depend on geometry (Section
3.2.3) and relative electronegativity (Bent’s rule, Section 3.2.6). Optimal one- and
two-center Lewis-structure bonding patterns are commonly those that allow each
atom to engage in complementary donor–acceptor interactions that “pair up” the
incoming and outgoing delocalizations to minimize formal charge while allowing
each of the four valence orbitals to share in hosting an electron pair (the maximum
permitted by the Pauli exclusion principle). In this manner each p-block element
achieves formal valence-shell occupancy consistent with the “rule of 8” (Lewis’s
octet rule) for the optimal Lewis-structural pattern. As is well known, such simple
localized Lewis-structural concepts readily allow one to rationalize the geometry
and properties of a vast number of diatomic and polyatomic species, including those
involving dative bonding (Section 3.2.10).

Despite the successes of the localized one- and two-center Lewis-structure con-
cept, corrections are necessary for unsaturated pi-bonded molecules in order to
account for the delocalization effects of conjugation and aromaticity (Section 3.3)
that cannot be adequately described by a single Lewis (resonance) structure. Such
corrections can be formally associated with NBO donor–acceptor interactions of
1c→2c∗ (e.g., nA→πBC

∗) or 2c→2c∗ (e.g., πAB→πCD
∗) type, conferring partial

three- or four-center character on the occupied orbitals. Related hyper-conjugative
corrections of similar form (but smaller magnitude) are also necessary in purely sat-
urated molecules (Section 3.4). Particularly important are the vicinal σAB→σCD

∗

delocalizations which contribute to torsion-barrier (Section 3.4.2) and through-
bond coupling phenomena (Section 3.4.3). However, neighboring geminal (Sec-
tion 3.4.4) and remote (Chapter 5) hyperconjugative n→σ∗ and σ→σ∗ interac-
tions can also confer a degree of three or four-center character on other bond
topologies.

The breakdown of predominant one- and two-center localized behavior results in
the need for three-center extension of the Lewis-structure concept. Two important
classes of three-center bonding have generally been recognized: (1) the three-center,
four-electron (hypervalent ω-bonding) limit of 1c→2c∗ donor–acceptor interac-
tions (Section 3.5); and (2) the three-center, two-electron (hypovalent τ-bonding)
limit of 2c→1c∗ donor–acceptor interactions (Section 3.6). The former class retains
a stronger connection to the parent two-center bonding pattern, because the high-
energy 2c∗ antibond generally cannot compete as an acceptor function with the
original empty 1c∗ valence orbital that led to two-center bond formation. (In fact,
for p-block elements, the symmetric three-center geometry is often an unstable tran-
sition state connecting the two asymmetric long-range complexes corresponding to
distinct two-center bond patterns.) However, the latter (τ) class intrinsically leads to
“true” three-center character, because the 1c∗ acceptor is intrinsically competitive
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with each one-center parent of the two-center donor function. The 3c/2e τ-bonding
limit also leads to more profuse possibilites for additional donor–acceptor inter-
actions, due to the favorable 2 : 1 preponderance of the unfilled (τ(�)∗ and τ(π)∗)
orbitals that invite further stabilizing delocalizations. As shown in Section 3.6, these
delocalizations predominantly involve bridged diamond-shape (butterfly) arrange-
ments giving rise to σ→τ∗ interactions that somewhat resemble the vicinal σ→σ∗

interactions of normal-valent species, but are greatly strengthened by removal of
one of the electron pairs (and the associated steric exchange interactions) from the
underlying four-atom connectivity pattern.

Although the generalization to localized three-center bonds inevitably involves
certain complications, important simplifications of the localized Lewis-structure
picture remain. In the case of 3c/4e ω-bonding, the corrections can often be ade-
quately described in terms of two-term resonance between alternative two-center
bonding patterns. In the case of 3c/2e τ-bonding, the resonance-theoretic descrip-
tion (although possible in principle) becomes unwieldy. However, in terms of the
single best three-center localized Lewis-structure description (or the resonance
mixture of symmetry-equivalent structures), one can still identify specific localized
donor–acceptor interactions (e.g., of σ→τ(�)∗ type) that dominate the delocaliza-
tion corrections. Important localized electronic patterns appear to persist even for
such highly delocalized systems as metallic boron.
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7. In Hartree–Fock (HF) theory, the energy of a given orbital is lower when the orbital is
occupied than when it is vacant (due to the formal self-energy in the former case), and the
degeneracy is broken. Thus, perturbative HF expressions such as Eq. (2.7) often have wider
numerical validity than would be anticipated in naive MO theory.

8. Of course, in a purely formal manner we could also treat covalent H2 bond formation in terms
of the interaction between H− and H+, but such a two-electron ionic DA model is less accurate
(i.e., requires larger perturbative corrections) than the electroneutral model of complementary
one-electron DA interactions to be employed in this work.

9. The “spin-charge” QA
(α) for spin α on atom HA may be formally defined as

QA
(α) = +Z/2 − n1sA

(α)
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where Z = 1 is the nuclear charge and n1sA
(α) is the electronic occupancy of spin-orbital 1sA

(α)

on A (cf. Fig. 3.3). Noting that

n1sA
(α) = 1 − n1sA

(β), n1sB
(α) = 1 − n1sB

(β)

we find

QA
(α) = −QA

(β), QB
(α) = −QB

(β)

at all R, and the total atomic charges QA = QA
(α) + QA

(β) and QB = QB
(α) + QB

(β) are
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(1961), 3547; J. Hinze and H. H. Jaffé, J. Am. Chem. Soc. 84 (1962), 540; J. Am. Chem. Soc.
85 (1963), 148; Can. J. Chem. 41 (1963), 1315; J. Phys. Chem. 67 (1963), 1501; Fortschr.
Chem. Forsch. 9 (1967), 448; R. Ferreira, Adv. Chem. Phys. 13 (1967), 55; J. E. Huheey, J.
Phys. Chem. 69 (1965), 3284; J. E. Huheey, J. Phys. Chem. 70 (1966), 285; J. Org. Chem. 36
(1971), 204; and references therein; G. Klopman, J. Chem. Phys. 43 (1965), S124; J. K.
Wilmshurst, J. Chem. Phys. 27 (1957), 1129; A. F. Clifford, J. Phys. Chem. 63 (1959), 1227;
R. G. Parr and R. F. Borkman, J. Chem. Phys. 49 (1968), 1055; R. G. Parr, R. A. Donnelly, M.
Levy, and W. E. Palke, J. Chem. Phys. 68 (1978), 3801; A. Pasternak, Chem. Phys. 26 (1977),
101; and L. C. Allen, J. Am. Chem. Soc. 111 (1989), 9003. As pointed
out by Hinze, the qualitative concept of “electronegativity” can be traced back to J. J. Berzelius.

37. A simple linear shift of the entire electronegativity scale by −0.56 (i.e., shifting F downward
from its arbitrarily chosen value “4.0” on the Pauling scale to new value 3.44) would make
xnb

(N) = 0, the more “obvious” electronegativity of a nonexistent ligand.
38. With regard to his tabulated electronegativity values, Pauling states (note 14, p. 89) “These

values are given only to one decimal place on the scale; it is my opinion that this is the limit of
their reliability.”



356 Molecular bonding in the s/p-block elements

39. As shown in Table 3.8, the actual bond angles sometimes deviate appreciably from the values
predicted by Eq. (3.34), reflecting a degree of bond bending. An example is H2Se, where the
NHO hybridization (λ = 7.30) corresponds to an interhybrid angle of 97.9◦, whereas the
actual optimized bond angle is 91.3◦ (∼3◦ bending at each Se—H bond). The deviation in this
case can be attributed to the extremely flat character of the bending potential; changing the
H—Se—H bond angle from 91◦ to 99◦ raises the energy by less than 1 kcal mol−1.

40. H. A. Bent, Chem. Rev. 61 (1961), 275.
41. C. A. Coulson and W. E. Moffitt, Phil. Mag. 40 (1935), 1; and C. A. Coulson and W. E.

Moffitt, J. Chem. Phys. 15 (1947), 151.
42. Pauling, note 14, pp. 127ff.
43. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory

(New York, Wiley, 1986), pp. 265–266.
44. Note that no constraint of the NBO algorithm biases the multiple bonds to be of sigma/pi type

rather than, e.g., equivalent “banana bonds” (Pauling, note 14, p. 137) or other possible forms.
(The complementary nu-bond pairs of Section 3.2.4 show that quite surprising forms of NBOs
are possible.) The nearly universal appearance of NBOs having distinct sigma/pi character is
therefore direct numerical evidence that the sigma/pi picture is intrinsically more accurate than
that based on banana bonds. For a contrary case in which the banana-bond description is more
accurate, see Section 3.4.1 (vinylamine).

45. For example, the MO φ3 of Eq. (3.81) is nearly equivalent to the bonding σNN′ NBO
(φ3 � 0.941σNN′ + · · · ).

46. Normally this notation will not conflict with the other common use of “∗”, i.e., to denote an
out-of-phase two-center orbital (σAB

∗, etc.), because such “antibonds” are indeed the unfilled
orbitals in donor–acceptor interactions.

47. F. Hund, Z. Phys. 33 (1925), 345.
48. The 1CA and promoted configurations are of course exactly degenerate in the limit λ → 0 of

weak hybridization.
49. E. A. Ballik and N. F. Ramsey, Astrophys. J. 137 (1963), 84.
50. The stable “singlet” solution is found to have 〈Ŝ2〉 = 1.0315, which is indicative of severe spin
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Molecular bonding in the d-block elements

4.1 Introduction

Given the power of the concept of covalency and the deeper electronic implications
that were realized by G. N. Lewis’s octet-rule and shared-electron-pair concepts,
it is natural to wonder whether these advances are limited to s/p-block elements or
apply to the entire periodic table.

Soon after the quantum revolution of the mid 1920s, Linus Pauling and John C.
Slater expanded Lewis’s localized electronic-structural concepts with the introduc-
tion of directed covalency in which bond directionality was achieved by the hy-
bridization of atomic orbitals.1 For normal and hypovalent molecules, Pauling and
Slater proposed that spn hybrid orbitals are involved in forming shared-electron-
pair bonds. Time has proven this proposal to be remarkably robust, as has been
demonstrated by many examples in Chapter 3.

Hypervalent main-group compounds and most transition-metal complexes do
not conform to Lewis’s octet rule, because they exceed the ideal eight-electron
count. Pauling2 first addressed this issue for main-group compounds by expanding
the available valency of second- and higher-row elements by the addition of valence
d orbitals to the set of orbitals that are active in bond formation. By using spndm

hybrid orbitals to form directed covalent bonds and by considering the strong role
of resonance among ionic normal-valent structures, Pauling was able to rationalize
a large number of hypervalent structures from the p block of the periodic table.
However, as we have seen in Section 3.5, modern quantum-mechanical analyses
of electron-density distributions downplay the importance of spndm hybridization
in hypervalent p-block compounds, emphasizing instead the importance of ionic
resonance and 3c/4e bonding interactions.

Pauling further extended the spndm hybridization approach to the d-block com-
pounds.3 By varying the relative importance of p and d orbitals, Pauling was able to
construct hybrid orbitals that rationalized the geometries and magnetic properties
of many transition-metal coordination complexes. For example, the square-planar

363
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geometry and diamagnetism exhibited by “d8” transition-metal complexes such as
PtCl42− could be rationalized by making four equivalent σPtCl electron-pair bonds
with sp2d hybrid orbitals at Pt. The eight remaining valence electrons fully occupy
the four remaining pure d orbitals on the metal atom, resulting in a diamagnetic
(singlet) spin state.

Because the low-energy electronic configurations of d-block elements and their
+1 ions are invariably of sdm form (see Table 2.2, Section 2.8), it is clear that both s
and d orbitals will be involved in bond formation at transition-metal centers. What
is less clear, a priori, is what role the valence p orbitals will play in bonding of the
d-block elements.

This chapter, like the preceding Chapter 3, will examine a wide range of cova-
lent and noncovalent “effects” in the bonding of d-block elements. Section 4.2 ad-
dresses the question of the appropriate Lewis-like picture for electron-pair sharing in
transition-metal compounds, establishing an idealized normal-valent paradigm for
transition-metal bonding. In Section 4.3 we analyze the normal-valent compounds
of the d-block elements and discuss the common hybridization motifs associated
with single- and multiple-bond formation and the general connections between
hybrid-orbital directionality and molecular shape. The inadequacies of the sim-
ple Lewis-like picture are described in Section 4.4, with an emphasis on ionicity
and donor–acceptor resonance delocalization. Stronger departures from Lewis-like
structures are considered in Section 4.5, emphasizing the important role of hy-
pervalency and 3c/4e bonding in transition-metal chemistry. The remaining sec-
tions concern a variety of topics in transition-metal bonding, including pi-bonding,
hypovalency and catalytic processes, multielectron-bonding ligands, vertical peri-
odic trends, and connections between localized and delocalized bonding models of
d-block elements. Throughout this chapter we stress the close parallels to bonding
and valency concepts in p-block compounds (Chapter 3), while highlighting the im-
portant differences that give rise to the richly distinctive chemistry of the d-block
elements.

(A technical note. The 6-311++G∗∗ basis set employed elsewhere throughout
this book is currently available only for elements H–Kr. For species of the sec-
ond and third transition series, we have therefore adopted the corresponding ECP
basis set of Los Alamos triple-zeta type [comparably augmented and polarized,
labeled “LACV3P++∗∗” in the Jaguar program system] for the numerical results
reported below. However, all numerical examples were first evaluated at lower
B3LYP/LANL2DZ level [with the Gaussian program system] and subsequently
compared with the B3LYP/LACV3P++∗∗ results to verify that differences be-
tween the two levels are generally small [often affecting numerical table entries
in only the third or fourth significant figure]. The close agreement between these
theoretical levels gives considerable confidence that the conclusions drawn from
the numerical examples are not significantly basis-sensitive.)
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4.2 Lewis-like structures for the d-block elements

4.2.1 Common empirical formulas of transition-metal compounds

The development of G. N. Lewis’s octet rule for the s/p-block elements was strongly
influenced by the stoichiometric ratios of atoms found in the common compounds
and elemental forms (CH4, CCl4, CO2, Cl2, etc.). Let us therefore begin analogously
by examining the formulas of the common neutral binary chloride, oxide, and alkyl
compounds of transition metals. (Here we substitute alkyl groups for hydrogen
because only a small number of binary metal hydrides have been well characterized.)

In many instances several different compositions of the binary oxide and chlo-
ride compounds are available. In each case we designate as “most common” the
particular compound that is least expensive and available in the largest quantities
from common suppliers,4 as summarized in Table 4.1. Included with each entry
is the number (eu) of unpaired electrons determined from magnetic-susceptibility
measurements.

From Table 4.1 a remarkably simple regularity becomes apparent. If GM denotes
the group number, n the stoichiometric MLn coordination number, VL the valency
of the ligand, and eu the number of unpaired electrons, one can recognize that the
relationship

|GM − 6| + nVL + eu = 6 (4.1)

is satisfied for an overwhelming majority of common MLn species.
If we now assume, following Lewis, that each monovalent “bond” coordination

is associated with an electron pair, we can write the total number (ebp) of valence
bond-pair electrons as

2nVL = ebp (4.2a)

Furthermore, for GM ≥ 6 the maximum possible total number (e�p) of lone-pair
electrons is related to GM by

|GM − 6| = 1

2
e�p (GM ≥ 6) (4.2b)

Thus, for mid-to-late-d-block elements, Eq. (4.1) becomes

1

2
(e�p + ebp) + eu = 6 (11 ≥ GM ≥ 6) (4.3)

Formula (4.3) may be compared with the analogous Lewis-like formula for p-block
elements,

1

2
(e�p + ebp) + eu = 4 (18 ≥ GM ≥ 14) (4.4)



366 Molecular bonding in the d-block elements

Table 4.1. “Most commona” MLn compounds (L = chloride, oxide, alkyl) and
number of unpaired electronsb(eu) for group 3–12 transition metals M; asterisks

mark exceptions to Eq. (4.1)

Group M Chloride (eu) Oxide (eu) Alkyl (eu)

3 Sc ScCl3 (0) Sc2O3 (0) —
Y YCl3 (0) Y2O3 (0) —
La LaCl3 (0) La2O3 (0) —

4 Ti TiCl4 (0) TiO2 (0) Ti(benzyl)4 (0)
Zr ZrCl4 (0) ZrO2 (0) ZrMe4 (0)
Hf HfCl4 (0) HfO2 (0) HfMe4 (0)

5 V VCl4 (1) V2O5 (0) V(CH2TMS)4 (1)
Nb NbCl5 (0) Nb2O5 (0) NbMe5 (0)
Ta TaCl5 (0) Ta2O5 (0) TaMe5 (0)

6 Cr CrCl3 (3) CrO3 (0) Cr(cyclohexyl)4 (2)
Mo MoCl5 (1) MoO3 (0) Mo(cyclohexyl)4 (2)
W WCl5 (1) WO3 (0) WMe6 (0)

7 Mn MnCl2 (5)∗ MnO (5)∗ Mn[C(TMS)3]2 (5)∗
Tc TcCl4 (1–2)∗ Tc2O7 (?) —
Re ReCl5 (∼ 2)∗ Re2O7 (0) ReMe6 (1)∗

8 Fe FeCl3 (5)∗ Fe2O3 (5)∗ Fe(norbornyl)4 (0)
Ru RuCl3 (0) RuO2 (0) Ru(mesityl)4 (0)
Os OsCl3 (?) OsO2 (0)c Os(mesityl)4 (0)

9 Co CoCl2 (4)∗ Co3O4 (∼4)∗ Co(norbornyl)4 (1)
Rh RhCl3 (0) Rh2O3 (0) Rh(mesityl)3 (0)
Ir IrCl3 (0) Ir2O3 (0) Ir(mesityl)3 (0)

10 Ni NiCl2 (2)∗ NiO (4)∗ —
Pd PdCl2 (0) PdO (?) —
Pt PtCl2 (0) PtO (?) —

11 Cu CuCl (0) Cu2O (0) Cu(phenyl) (0)
Ag AgCl (0) Ag2O (0) —
Au AuCl (0)d Au2O3 (?) —

12 Zn ZnCl2 (0) ZnO (0) ZnMe2 (0)
Cd CdCl2 (0) CdO (0) CdMe2 (0)
Hg HgCl2 (0) HgO (0) HgMe2 (0)

a According to the cheapness/quantity criterion of note 4.
b Inferred from magnetic-susceptibility measurements; for a review of methods, see S. K.

Sur, J. Magn. Res. 82 (1989), 169.
c OsO4 (0) is comparable.
d AuCl3 (0) is comparable.
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which, for closed-shell species (eu = 0), can be written as

e�p + ebp = 8 (18 ≥ GM ≥ 14; eu = 0) (4.5)

the famous “rule of 8” (octet rule). Analogously for d-block elements, Eq. (4.3) can
evidently be expressed as

e�p + ebp = 12 (11 ≥ GM ≥ 6; eu = 0) (4.6)

which may be termed the “rule of 12” (duodectet rule) for stable closed-shell
transition-metal compounds. The six valence orbitals (s + 5d) of the d-block ele-
ments therefore appear to underlie the special stability of a Lewis-like duodectet
in precisely the same manner as the four valence orbitals (s + 3p) of the p-block
elements underlie the stability of the usual Lewis octet.

It must be emphasized that the duodectet rule (4.6) initially has no structural con-
notation, but is based on composition only. Indeed, the compositional regularity ex-
pressed by (4.6) encompasses both molecular species (such as the metal alkyls) and
extended lattices (such as the oxides and halides) and therefore appears to transcend
important structural classifications. Nevertheless, we expect (following Lewis) that
such a “rule of 12” may be associated with specific electronic configurations, bond
connectivities, and geometrical propensities (perhaps quite different from those of
octet-rule-conforming main-group atoms) that provide a useful qualitative model
of the chemical and structural properties of transition metals.

4.2.2 Configurations for localized single and multiple bonding

Following the obvious parallels with p-block hybridization and bonding, the forma-
tion of a duodectet-rule-conforming Lewis-like structural formula for an idealized
MLn transition-metal complex5 can be pictured as occurring in several steps.

Initially, the central M atom is “promoted” from nominal s2dk ground-state
configuration to the effective sdk+1 configuration for hybridization,

promotion: M(s2dk) → M(s1dk+1) (4.7a)

Next, formation of n sigma bonds to the ligands requires formation of n equiv-
alent sdn−1 bonding hybrids h1, h2, . . . , hn , leaving k + 1 − n unhybridized singly
occupied d spin-orbitals and 9 − k + n unoccupied d spin-orbitals,

hybridization: s1dk+1 → h1
1h2

1 . . . hn
1dk−n+1 (4.7b)

Finally, for the single-bonded closed-shell case the n monovalent ligands con-
tribute n electrons for σML bonding, and the remaining k − n + 2 d electrons must
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suffice for double occupation of the 5 − (n − 1) remaining d orbitals,

k − n + 2 = 2[5 − (n − 1)]

or

n = 10 − k (n σ bonds) (4.8a)

This leads to the effective duodectet configuration

(σ1)2 . . . (σn)2d12−2n (n σ bonds) (4.8b)

with total number of lone-pair electrons

e�p = 12 − 2n = 2k − 8 (4.8c)

For the alternative multi-bonded case, the multivalent ligands may be considered
to contribute m additional pi-bonding electrons, where

m + n = 10 − k (4.9a)

This leads to the final duodectet configuration

(σ1)2 . . . (σn)2(π1)2 . . . (πm)2d12 − 2(n + m) (n σ and m π bonds) (4.9b)

where the total number of lone-pair electrons is again

e�p = 12 − 2(n + m) = 2k − 8 (4.9c)

Thus, (4.9a) gives the general condition for an idealized covalently bonded closed-
shell Lewis-like duodectet structure (4.9b) with no formal charge on the central
metal atom. (The more general conditions for coordinative [dative] ligands and
other departures from the idealized Lewis-like formula will be discussed below.)

4.2.3 Lewis-like dot diagrams for transition-metal complexes

The distribution of six electron pairs around a duodectet-rule-conforming transition-
metal atom M can be represented with a hexagonally shaped “dot diagram”

(4.10a)

analogous to the usual square dot diagram for an octet-rule-conforming main-group
element X,

(4.10b)

As specified by (4.8) and (4.9), the six valence electron pairs in (4.10a) will generally
include n skeletal sigma-bond pairs, m pi-bond pairs, and e�p/2 nonbonded pairs.
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The general procedure for constructing Lewis-like diagrams for transition-metal
species can best be illustrated by representative examples. From Table 4.1 one
can recognize that the first transition series (Sc–Zn) includes a disproportionate
number of exceptional cases compared with later series, and illustrative examples
will therefore be drawn primarily from the third transition series (La–Hg). (The
somewhat anomalous behavior of the first transition series and general vertical
trends in the d-block elements will be discussed in Section 4.10.)

For tungsten (k = 4), for example,6 the condition (4.8a) for bonding monova-
lent ligands (e.g., H, alkyl) requires that n = 10 − k = 6, with no remaining lone
pairs (e�p = 0) according to (4.8b). The appropriate Lewis-like diagram for methyl
ligands is therefore that corresponding to hexamethyltungsten (VI),

(4.11)

where each bond stroke denotes a shared electron pair. For divalent ligands7 (e.g.,
O), condition (4.9a) similarly requires that n = m = (10 − k)/2 = 3, i.e., for WO3

(tungsten oxide)

(4.12)

(In each case, we omit lone pairs of the main-group ligand octet.)
Other solutions of (4.9a) can be found for mixed numbers of single and multiple

bonds. These include the values n = 4, m = 2 for two single and two double bonds,
for example, for molybdenyl fluoride (MoF2O2),

(4.13)

Another possible solution is that (n = 3, m = 3) corresponding to simultaneous
single, double, and triple bonding,

(4.14)

and other possible solutions for mixed single, double, and/or triple bonds can readily
be envisioned.

As an example of a late transition metal, let us consider platinum (k = 8),
for which the only Lewis-like structure with monovalent ligands corresponds to
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n = 10 − k = 2, e�p = 2k − 8 = 8. This leads, e.g., for a methyl ligand, to the
Lewis-like diagram for Pt(CH3)2,

(4.15)

For the divalent oxygen ligand, the only solution of (4.9) is n = m = 1, correspond-
ing to

(4.16)

Further illustrations of such Lewis-like diagrams are given in the examples below.

4.2.4 Saturated metal complexes, oxidation states, and coordination numbers

According to (4.9c), the number of lone pairs (n�p) in any duodectet-conforming
Lewis-like structure is

n�p = 1

2
e�p = k − 4 (4.17)

independent of coordination number. This immediately distinguishes cases with
k ≤ 3 (i.e., groups 3–5), which cannot satisfy (4.17). Elements of these groups can
be considered8 to be “electron-deficient” or hypovalent (in the same sense as group
13 of the p-block elements; Section 3.6) and will hereafter be distinguished from
the normal-valent d-block elements (groups 6–11) and the “inert” group 12:

hypovalent: groups 3−5 (k = 1–3) (4.18a)

normal-valent: groups 6−11 (k = 4–9) (4.18b)

inert: group 12 (k = 10) (4.18c)

Thus, in each series the chemistry of “early” transition metals (e.g., hypovalent
Sc, Ti, V) is expected to differ appreciably from that of mid to late members (e.g.,
normal-valent Cr, Mn, Fe, Co, Ni, Cu) and the terminal closed-shell element (e.g.,
Zn).

Furthermore, according to (4.9a) the total number of covalent M—L bonds
(n + m, both σML and πML) is 10 − k. Because main-group ligands generally are
more electronegative than the central transition-metal atom, each such covalent
M—L bond can be termed a formal one-electron oxidation of M. The duodectet-
rule-conforming oxidation number (nox) of M is therefore

nox = 10 − k (4.19)
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independently of coordination number. Such formal oxidation corresponds to re-
moving the two s electrons and 8 − k of the d electrons, leaving a formal “d count”
of d2k − 8. According to Eq. (4.8c), the formal d count of Lewis-like species corre-
sponds precisely to the total number of lone-pair electrons,

d count = e�p = 2k − 8 (4.20)

For example, the saturated Lewis-like oxidation state of chromium (k = 4) is ex-
pected to be Cr(VI), with formal d0 count, and that of nickel (k = 8) is Ni(II), with
formal d8 count, as in structures (4.11) and (4.16).

Finally, the favored coordination number (nCN = n) of Lewis-like structures
must satisfy (4.9a),

nCN = 10 − k − m (4.21a)

Highest possible coordination (nCN
max) evidently corresponds to pure single bond-

ing (m = 0),

nCN
max = 10 − k (4.21b)

whereas lowest possible coordination (nCN
min) corresponds to triple bonding

(m = 2n),

nCN
min = (10 − k)/3 (4.21c)

(Equations (4.21) also identify group 12 [k = 10] as the “inert” limit nCN = 0; cf.
(4.18c).) For example, the allowed Lewis-like coordination numbers for Cr (k = 4)
are in the range 2–6, whereas those for Ni (k = 8) are restricted to the range 1–2.

Table 4.2 summarizes the Lewis-like oxidation states, d count, and coordination
numbers for low-spin compounds of all the normal-valent transition metals. While
these represent only a subset of the empirically known species, the Lewis-like

Table 4.2. Lewis-like oxidation numbers (nox), formal d count, metal electron
configuration (e�p, ebp) and minimum and maximum coordination numbers (nCN)

for low-spin normal-valent compounds of group 6–11 transition metals

Oxidation state Configuration Coordination
Formal

Group k nox Example d count e�p ebp nCN
min nCN

max

6 4 6 Cr(VI) d0 0 12 2 6
7 5 5 Mn(V) d2 2 10 2 5
8 6 4 Fe(IV) d4 4 8 2 4
9 7 3 Co(III) d6 6 6 1 3

10 8 2 Ni(II) d8 8 4 1 2
11 9 1 Cu(I) d10 10 2 1 1
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compounds can be taken as a baseline for studying the many possible hypervalent
and high-spin modifications of the normal-valent closed-shell parent species.

4.3 Hybridization and molecular shape

4.3.1 General hybrid orbital functions and natural bond angles

Pauling’s landmark 1931 paper9 established the fundamental principles of the di-
rected covalent bond:

(1) the bond is formed through the interaction of two singly occupied orbitals, one on each
atom; and

(2) for a given singly occupied bonding orbital, the bond will tend to be formed in the
direction in which the orbital amplitude is greatest.

By allowing the mathematical superposition of atomic orbitals, i.e., hybridization,
as a mechanism for forming the strongest possible bonds, Pauling derived the set
of equivalent and orthogonal hybrids that underlie common Lewis-structural bond
patterns. The sp3 hybrid orbitals point to the corners of a regular tetrahedron, thus
providing theoretical justification for the tetrahedral geometry of methane. Simi-
larly, sp2 hybrids have maxima pointing to the corners of an equilateral triangle and
sp hybrids have maxima pointing in opposite directions along a line. The correla-
tion of hybridization with geometry (sp3 � tetrahedral, sp2 � trigonal planar, sp �
linear) is so powerful and so ingrained in our chemical training that we frequently
use hybridization to describe geometry and vice versa (cf. Section 1.6).

We now use a Pauling-like approach to show how hybrid orbitals for a variety of
combinations of s, p, and d orbitals may be formulated.10 We assume that the radial
dependences of the s, p, d orbitals are similar so that they can be neglected. The
angular parts of the orbital wavefunctions are given by the following expressions
(in the usual spherical coordinates θ, φ):

s = 1 (4.22a)

px = 31/2 sin θ cos φ (4.22b)

py = 31/2 sin θ sin φ (4.22c)

pz = 31/2 cos θ (4.22d)

dz2 = 51/2/2(3 cos2 θ − 1) (4.22e)

dx2−y2 = (151/2/2) sin2 θ cos(2φ) (4.22f)

dxy = (151/2/2) sin2 θ sin(2φ) (4.22g)

dxz = 151/2 sin θ cos θ cos φ (4.22h)

dyz = 151/2 sin θ cos θ sin φ (4.22i)
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We shall now construct two “concentrated” spd hybrid orbitals that are equiv-
alent, orthonormal, and have maximum concentration of electron density in their
respective bonding directions. We can choose any arbitrary direction for the two
bond hybrids that we construct. The judicious choice for the direction of the first
bond hybrid is along the z axis, because only one of the five d-orbital functions
(dz2 ) can contribute to a bond in this direction. The largest value of the angular part
of the first hybrid function (i.e., the maximum concentration of electron density)
along the z axis for a chosen spλdµ hybrid orbital h1 is insured by choosing both
the p and d components to lie along the z direction,

h1 = (1 + λ + µ)−1/2
(
s + λ1/2pz + µ1/2dz2

)
(4.23)

The maximum amplitude, |h1|max, of h1 along the bonding axis can therefore be
evaluated as

|h1|max = (1 + λ + µ)−1/2[1 + (3λ)1/2 + (5µ)1/2] (4.24)

for chosen λ and µ. Such concentrated hybrids (with p and d components co-
aligned, most focussed possible d component, and largest possible |h1|max for given
λ and µ) are expected to be variationally optimal for strong covalent bonding.

Example 4.1

Let us evaluate the maximum amplitude |h1|max of h1 for several different hybridizations.
Because h1 lies in the z direction, the maximum amplitude is found by setting θ = 0 (φ =
anything) in the angular expressions (4.22d) and (4.22e). For a pure s orbital (λ = 0, µ = 0),
this leads to unit amplitude,

s orbital: |h1|max = 1

Similarly, a pure p hybrid orbital (λ = ∞, µ = 0) leads to

p orbital: |h1|max = 31/2 = 1.732

For an sp1 hybrid (λ = 1, µ = 0), the maximum amplitude is

sp1 hybrid: |h1|max = 2−1/2(1 + 31/2) = 1.932

showing that such a hybrid has more concentration of electron density in the z direction
than does either a pure s or a pz orbital. The sp3 hybrid (λ = 3, µ = 0) has a still greater
value,

sp3 hybrid: |h1|max = 4−1/2(1 + 31/231/2) = 2.000

and it can easily be shown that an sp3 hybrid has the greatest possible concentration of
electron density of any spλ hybrid (no d character).



374 Molecular bonding in the d-block elements

Example 4.2

Problem: Show that the maximum possible hybrid amplitude is |h1|max = 3.000, corre-
sponding to sp3d5 hybridization.

Solution: The mathematical requirement for maximization of |h1|max, Eq. (4.24), is ex-
pressed by the partial derivative conditions(

∂|h1|max

∂λ

)
µ

=
(

∂|h1|max

∂µ

)
λ

= 0

which lead to the equations

(3/λ)1/2 = (5/µ)1/2 = 1 + (3λ)1/2 + (5µ)1/2

1 + λ + µ

The first equality above requires that

µ = 5λ/3

and the remaining equality then becomes

(1 + 8λ/3)(3/λ)1/2 = 1 + (3λ)1/2 + 5(λ/3)1/2

One can readily show (by multiplying both sides by (λ/3)1/2) that the only solution of
this equation is λ = 3. This in turn implies that µ = 5λ/3 = 5, corresponding to sp3d5

hybridization. Substituting these optimal values into (4.23) leads finally to the maximum
possible hybrid amplitude

|h1|max = 3 (λ = 3, µ = 5)

Let us now choose to locate a second equivalent, though not necessarily orthog-
onal, hybrid orbital h2 in the x–z plane. The axis of h2 will be chosen to make the
angle α with the axis of h1. In order for h1 and h2 to be equivalent, the values of the
angular parts of the hybrids must be identical in their respective directions. This
condition is satisfied for any separation angle α by the following expression for h2:

h2 = (1 + λ + µ)−1/2

[
s + λ1/2(cos α pz + sin α px )

+ µ1/2

(
3 cos2 α − 1

2
dz2 + 31/2 sin2 α

2
dx2−y2 + 31/2 sin α cos αdxz

)]

(4.25)

(The equation for h2 can be derived by re-expressing h1 in a rotated coordinate
system, then relating the rotated p and d functions back to those in the original
coordinate system.) For h2 the spherical coordinates have the values θ = α, φ = 0
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in the direction of maximum amplitude. With these substitutions, |h2|max can be
verified to be identical to |h1|max, Eq. (4.24), for any angle α.

We now have two normalized, equivalent hybrid orbitals, one directed along the
z axis and the other making an angle of α with the first. However, these orbitals are
not necessarily orthogonal to each other for arbitrary α. The allowed hybrid angles
α are those for which the overlap integral 〈h1|h2〉 vanishes

〈h1|h2〉 =
1 + λ cos α + µ

3 cos2 α − 1

2
1 + λ + µ

(4.26a)

which is equivalent to the condition

3µ

2
cos2 α + λ cos α + (1 − µ/2) = 0 (4.26b)

The quadratic equation (4.26b) can be readily solved for cos α to give

cos α = −λ ± [λ2 − 3µ(2 − µ)]1/2

3µ
(4.27)

Equation (4.27) defines the “natural” bond angles α appropriate for concentrated,
equivalent spλdµ bonding hybrids of chosen λ and µ.11

For the more general case of inequivalent spd hybrids, the expressions have to be
modified to allow for different hybridization parameters on the two hybrids, namely
λ1 and µ1 for h1 and λ2 and µ2 for h2. The general 〈h1|h2〉 overlap integral now
takes the form

〈h1|h2〉 = 1 + (λ1λ2)1/2 cos α + (µ1µ1)1/2(3 cos2 α − 1)/2

[(1 + λ1 + µ1)(1 + λ2 + µ2)]1/2
(4.28a)

and the allowed hybrid angles satisfy the orthogonality condition, similar to (4.26b),

3(µ1µ2)1/2

2
cos2 α + (λ1λ2)1/2 cos α + [1 − (µ1µ2)1/2/2] = 0 (4.28b)

The solution of (4.28b) is

cos α = −(λ1λ2)1/2 ± {λ1λ2 − 3(µ1µ2)1/2[2 − (µ1µ2)1/2]}1/2

3(µ1µ2)1/2
(4.29)

which is equivalent to (4.27) with the replacements

λ = (λ1λ2)1/2, µ = (µ1µ2)1/2 (4.30)

i.e., with geometric-mean values of the hybridization parameters. Equation (4.29)
provides a simple extension of the powerful directionality theorem (3.34) which is
valid for general inequivalent spd hybrids.



376 Molecular bonding in the d-block elements

Example 4.3

Problem: Evaluate the natural bonding angle(s) α for equivalent sp3d2 hybrids.

Solution: On putting λ = 3 and µ = 2 into Eq. (4.27), we obtain

cos α = −3 ± [9 − 6(2 − 2)]1/2

6
= −3 ± 3

6
= 0 or − 1

The two allowed solutions are therefore

α1 = cos−1(0) = 90◦

α2 = cos−1(−1) = 180◦

corresponding to the bond angles of a regular octahedron.

We can also generalize the “sum rules” (3.37) for a general set of inequivalent
spλdµ hybrids. Each of the nine possible hybrids can be expressed as

hi = (1 + λi + µi )
−1/2

(
s + λ

1/2
i p̂i + µ

1/2
i d̂i

)
, i = 1–9 (4.31)

where p̂i and d̂i are the normalized p- and d-type contributions (not necessarily
pointing in the same direction) to hybrid hi . Summation over all hybrids of the
squared coefficients (fractional character) of each symmetry type must recover the
total number of contributing s, p, and d orbitals,

9∑
i=1

1

1 + λi + µi
= 1 (s-orbital conservation) (4.32a)

9∑
i=1

λi

1 + λi + µi
= 3 (p-orbital conservation) (4.32b)

9∑
i=1

µi

1 + λi + µi
= 5 (d-orbital conservation) (4.32c)

Only two of these three sum rules are independent.

4.3.2 Idealized sdµ hybrids and bond angles

Let us now specialize to the case of pure sd hybridization, which underlies the
duodectet-rule-conforming Lewis-like structures described in Sections 4.2.2 and
4.2.3. For equivalent sdµ hybrids, Eq. (4.27) becomes

cos α = ±
(

µ − 2

3µ

)1/2

(µ ≥ 2) (4.33)
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Table 4.3. Natural bond angles (αacute and αobtuse), percentage d
character, and hybrid concentration (|h|max) of equivalent sdµ hybrids

αacute αobtuse
Hybrid µ (degrees) (degrees) % d |h|max

sd1 1 90.00 90.00 50.00 2.288a

sd2 2 90.00 90.00 66.67 2.403
sd3 3 70.53 109.47 75.00 2.436
sd4 4 65.91 114.09 80.00 2.447
sd5 5 63.43 116.57 83.33 2.449
sd10 10 58.91 121.09 90.91 2.434
d ∞ 54.74 125.26 100.00 2.236

a Reduced strength in the ligand direction.

and the maximum amplitude (“concentration”) along the axis is

|sdµ|max = 1 + (5µ)1/2

(1 + µ)1/2
(4.34)

Note from (4.33) that sdµ hybrids present two possible angles of maximum con-
centration, the acute angle (αacute) and the obtuse angle (αobtuse):

αacute = cos−1

[
+

(
µ − 2

3µ

)1/2
]

(4.35a)

αobtuse = cos−1

[
−

(
µ − 2

3µ

)1/2
]

(4.35b)

Table 4.3 summarizes the natural bond angles (αacute and αobtuse), percentage d
character, and concentration (|h|max) for various cases of equivalent sdµ hybrids
(including the sd1 case to be discussed below).

The natural angles (Table 4.3) for each sdµ type can be readily visualized from
the shape of the hybrid orbital, particularly the angles of its nodal surfaces. In effect,
two equivalent hybrids can remain orthogonal only if each is oriented approximately
along one of the nodal directions of the other. This is illustrated in Fig. 4.1 for the
case of an sd3 orbital, for which the acute (70.53◦) and obtuse (109.47◦) natural
angles are shown nearly to coincide with the nodal angles that separate regions
of positive and negative phase. Increasing s character tends to shift the two nodal



378 Molecular bonding in the d-block elements

Figure 4.1 A hybrid sd3 orbital, showing idealized bonding angles αacute = 70.53◦
and αobtuse = 109.47◦ lying near the nodal “hollows” of the hybrid.

angles closer together, until they coincide at 90◦ in the limiting case of sd2 hybrids
(33% s character).

The important case µ = 1 (sd1-hybridization, ML2 bonding) requires special
treatment. Although two equivalent maximum-strength sd1 hybrids h1 and h2 cannot
be orthogonal at any angle α, we recognize from (4.26a) that the overlap S = 〈h1|h2〉
is minimized (to S = 1

4 ) at α = 90◦ (where dS/dα = 0). At this angle the expressions
(4.23) and (4.25) for h1 and h2 become

h1 = 2−1/2(s + dz2 ) (4.36a)

h2 = 2−1/2[s − 1
2 dz2 + (31/2/2)dx2−y2 ] (4.36b)

To restore orthogonality, while preserving as far as possible the desirable features
of h1 and h2, we carry out Löwdin’s symmetric orthogonalization procedure12

(
h̄1

h̄2

)
= S−1/2

(
h1

h2

)
(4.37)

where S−1/2 is the inverse square root of the 2 × 2 overlap matrix (Si j ) = 〈hi |h j 〉.
The Löwdin transformation (4.37) is guaranteed to produce the unique set of or-
thonormal hybrids h̄1 and h̄2 that “resemble” h1 and h2 as closely as possible (in the
mean-square-deviation sense). For this case the orthogonalized hybrids are found
to be

h̄1 = 1.025h1 − 0.130h2 (4.38a)

h̄2 = −0.130h1 + 1.025h2 (4.38b)
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Example 4.4

Problem: Justify Eqs. (4.38a) and (4.38b).

Solution: It is convenient to rewrite the 2 × 2 overlap matrix S in terms of an angle θ such
that

S =
(

1 sin(2θ )
sin(2θ ) 1

)

where

S = sin(2θ )

The inverse-square-root matrix is then

S−1/2 = 1

cos(2θ )

(
cos θ − sin θ

− sin θ cos θ

)

(as can be verified by matrix multiplication). The desired Löwdin-orthogonalized hybrids
are therefore

h̄1 = 1

cos(2θ )
[(cos θ )h1 − (sin θ )h2]

h̄2 = 1

cos(2θ )
[−(sin θ )h1 + (cos θ )h2]

For the present case (S = 1
4 ), the angle θ is

θ = sin−1(S)

2
= 7.239◦

so

h̄1 = 1

cos(14.478◦)
[cos(7.239◦)h1 − sin(7.239◦)h2]

h̄2 = 1

cos(14.478◦)
[− sin(7.239◦)h1 + cos(7.239◦)h2]

which are equivalent to Eqs. (4.38a) and (4.38b).

By combining (4.36) and (4.38), we can write the normalized orthogonal hybrids
in terms of atomic s and d functions as

h̄1 = 0.632s + 0.790dz2 − 0.112dx2−y2 (4.39a)

h̄2 = 0.633s − 0.451dz2 + 0.627dx2−y2 (4.39b)

The new orthogonal hybrids have 60% d character (sd1.5 hybridization) as a result
of the Löwdin procedure. However, because these expressions involve three atomic
orbitals, there must be one other hybrid (in addition to the two bonding hybrids)
affected by the orthogonalization transformation. This hybrid, denoted n(h), belongs
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to the same subspace as the three atomic orbitals that contribute to h̄1 and h̄2, and
so can be written as

n(h) = c1s + c2dz2 + c3dx2−y2 (4.40a)

The two orthogonality conditions (〈n(h)|h̄1〉 = 〈n(h)|h̄2〉 = 0) plus the overall nor-
malization condition (〈n(h)|n(h)〉 = 1) then allow n(h) to be uniquely determined
as

n(h) = 0.447s − 0.450dz2 + 0.775dx2−y2 (4.40b)

Equation (4.40b) shows that n(h) corresponds to an sd4.00 hybrid (80% d character).
If the bond hybrids h̄1 and h̄2 are directed toward ligands along the x and z axes,
then n(h) is oriented in the y direction, perpendicular to the skeletal bonding plane.

The formation of idealized ML2 skeletal hybrids (90◦ bond angle) from the initial
manifold of s and d orbitals on M can therefore be represented as

(s, dz2, dx2−y2, dxy, dxz, dyz) → (h̄1, h̄2, n(h), dxy, dxz, dyz) (4.41)

where three orbitals are affected by hybridization. Although the hybridized n(h)

is “d-rich,” it differs appreciably from the unhybridized dxy, dxz, and dyz orbitals
in its interactions with other orbitals, particularly in pi-bond formation. Because
admixture of s character reduces the ability of n(h) to participate in pi-bonding, n(h)

will tend to be relegated to nonbonding “lone-pair” status as pi bonds are added
to the sigma skeleton. However (as shown in Section 4.4.3 below), the s character
of n(h) can be advantageous in delta-bonding, leading to a distinctive ML2 type
of “edge-on” δ-bonding involving dz2 orbitals (which in other MLn cases are fully
committed to the sigma skeleton). Thus, the ML2 (sd1-hybridization) bonding motif
is unique in several respects.

Example 4.5

Problem: Orthogonal equivalent hybrids for µ = 1 could also be achieved by adding p char-
acter (spλd1 hybrids). For what minimum λ value is orthogonality achieved? What is the
corresponding bond angle α of the spλd1 hybrids?

Solution: Real solutions of the orthogonality condition (4.27) are obtained only if

λ2 ≥ 3µ(2 − µ)

The p character required in order to restore orthogonality is therefore given by

λ = [3µ(2 − µ)]1/2 = 31/2 = 1.732

corresponding to sp1.73d1 hybridization, with 26.8% s character, 46.4% p character,
and 26.8% d character. According to Eq. (4.27), the corresponding bond angle α satisfies
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cos α = −3−1/2, or

α = 109.5◦

However, this hybridization generally seems to be higher in energy for ML2 systems than
the sd1(α = 90◦) hybridization discussed above.

For completeness, let us also briefly summarize the hybrid-conservation sum
rules and bond angles for inequivalent sdµ hybrids. For pure sdµ hybridization, the
sum rules (4.32) reduce to the simplified form

6∑
i=1

1

1 + µi
= 1 (s-orbital conservation) (4.42a)

6∑
i=1

µi

1 + µi
= 5 (d-orbital conservation) (4.42b)

where only one of these equations is independent. For inequivalent sdµ hybrids h1

and h2, the idealized interhybrid angle α (4.29) reduces to the simplified form

cos α± = ±{[1 − 2(µ1µ2)−1/2]/3}1/2 (4.43)

where α+ gives the acute angle and α− the obtuse angle of bonding.

4.3.3 Shapes of idealized Lewis-like structures

To relate the hybrid angles of Table 4.3 to idealized molecular shapes, let us now
consider a general MLk species with k monovalent ligands L.13 In general, k equiva-
lent sd hybrids of sdk−1 composition (i.e., µ = k − 1) are needed to form the sigma
skeleton

hσi = (sdk−1)i , i = 1, 2, . . ., k (4.44)

leaving 6 − k unhybridized d orbitals for multiple bonding or lone pairs.
By combining the skeletal hybrid composition (4.44) with the bond angles of

Table 4.3, we can recognize the idealized molecular shape(s) corresponding to each
MLk coordination.

ML2 (sd1-hybridization)

Only less strongly concentrated sd1 hybrids (4.39) at 90◦ bond angles are available
in this case, leading to strongly bent C2v geometry:

(4.45)
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ML3 (sd2-hybridization)

The unique interhybrid angle in this case is 90◦ (αacute = αobtuse), leading to a
trigonal pyramidal shape of C3v symmetry:

(4.46)

ML4 (sd3-hybridization)

Three distinct isomeric forms (Td, C3v, C4v) having all bond angles perfectly equal
to either αacute = 70.53◦ or αobtuse = 109.47◦ can be envisioned to derive from
equivalent sd3 hybrids:

(4.47a)

(4.47b)

(4.47c)

Note that “inversion” of one leg of the open Td form through the opposite trigonal
face produces the more cramped C3v form.

ML5 (sd4-hybridization)

No possible spatial arrangement of five ligands can correspond to the high sym-
metry of five equivalent sd4 hybrids. The “best” structures for sd4 hybridization
therefore inevitably involve a degree of mismatching with idealized αacute = 65.91◦

and αobtuse = 114.09◦ bond angles. Two possible choices (Cs and C4v) are shown
schematically:

(4.48a)

(4.48b)
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The actual structures are likely to involve frustrated competition among several such
equally unsatisfactory isomeric forms (none resembling the D3h trigonal bipyra-
mid).

ML6 (sd5-hybridization)

Four distinct isomeric forms (two each of C3v and C5v symmetry) having all bond
angles perfectly equal to either αacute = 63.43◦ or αobtuse = 116.57◦ can be envi-
sioned to derive from equivalent sd5 hybrids:

(4.49a)

(4.49b)

(4.49c)

(4.49d)

The second “i” (in, or inverted) form (4.49b) of C3v symmetry can be visualized
to arise from the “o” (out, or ordinary) form (4.49a) by inverting the small-angle
trigonal pyramid into the middle of the large-angle pyramid. Similarly, the “i” form
(4.49d) of C5v symmetry arises upon inverting the stem of the “o” form (4.49c) into
the middle of the opposite pentagonal pyramid. Note that none of these structures
resembles the octahedral Oh geometry that might be “expected” in six-coordinate
compounds.

Figures 4.2–4.5 show accurate perspective ball-and-stick diagrams of the ideal-
ized structures in (4.45)–(4.49), in order to aid visualization of the rather unfamiliar
shapes associated with equivalent sdµ hybrids. Note that a surprising proportion of
these hypothetical sdµ geometries corresponds to placing all ligands on one side
of a plane through the metal nucleus (see, e.g., Figs. 4.3(b) and (c) and 4.4(b) and
(d)), and will thus be disfavored on steric or electrostatic grounds. Hence, the most
“reasonable” structures are those shown in Figs. 4.3(a), 4.4(a) and (b), and 4.5(a)
and (c), which have fewer cramped αacute angles and fill space more equitably.

The shapes of the idealized Lewis-like sdµ structures can also be visualized
in another surprising way,14 as depicted in Figs. 4.6(a)–(d). For most of these



384 Molecular bonding in the d-block elements

Figure 4.2 Idealized molecular shapes of ML2 (left, sd) and ML3 (right, sd2)
Lewis-like species (cf. (4.45) and (4.46) in the text), with optimal L—M—L bond
angles α = 90◦ for all ligands.

Figure 4.3 Idealized ML4 molecular shapes for equivalent sd3 hybridization (cf.
(4.47a)–(4.47c) in the text), with optimal L—M—L bond angles αacute = 70.53◦
or αobtuse = 109.47◦ for all ligands.
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Figure 4.4 Idealized ML5 molecular shapes having (limited) similarity with op-
timal L—M—L bond angles αacute = 65.91◦ and αobtuse = 114.09◦ of equivalent
sd4 hybridization.

Figure 4.5 Idealized ML6 molecular shapes for equivalent sd5 hybridization (cf.
(4.49a)–(4.49d) in the text), with optimal L—M—L bond angles αacute = 63.43◦
or αobtuse = 116.57◦ for all ligands.
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sd1 hybridization sd2 hybridization

sd5 hybridization

sd3 hybridization

C2v

C3v

C5v

C3v

C3vC4v
Td

Figure 4.6 Relationships of idealized sdn−1-hybridized MLn molecular shapes to
simple polyhedra. Each panel shows the hybrid-orbital axes in dumbbell “dz2 ”-
like form embedded within the polyhedron, together with the associated allowed
(no-trans-vertex) dispositions of ligands on the polyhedral vertices (with the un-
marked metal atom occupying the polyhedral centroid in each case): (a) sd1 square,
(b) sd2 octahedron, (c) sd3 cube, and (d) sd5 icosahedron.

hybridizations, Eq. (4.43) dictates that the sdµ orbitals point to the vertices of simple
polyhedra. However, due to the centrosymmetric nature of these orbitals, placement
of ligands in trans positions (i.e., making two M—L bonds with a single hybrid
orbital) is strongly disfavored. The n equivalent sdn−1 hybrids of an idealized Lewis-
like MLn species can therefore be embedded in a centrosymmetric polyhedron of
2n vertices, with M at the center and a single L occupying one or the other of each
opposed pair of vertices, as follows.

(a) In idealized ML2 bonding, two centrosymmetric sd1 hybrids have lobes that point to
the vertices of a square. Each hybrid-orbital axis lies along the diagonal, and one can
view the resulting molecular shape (4.45) as a cis-divacant square plane, as shown in
Fig. 4.6(a).
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(b) In idealized ML3 bonding, the sd2-hybrid axes form the body diagonals of an octa-
hedron. As shown in Fig. 4.6(b), placement of ligands such that no trans vertices are
occupied leads (uniquely) to a facially trivacant octahedral molecular shape (4.46) of
C3v symmetry.

(c) In idealized ML4 bonding, the sd3-hybrid axes form body diagonals of a cube. However,
there are now three distinct ways (“colorings”) to distribute the four ligands among the
eight vertices without any opposed pair of ligands, leading to the distinct shapes (4.47a)–
(4.47c) as shown in Fig. 4.6(c).

(d) ML5 bonding is irregular, as noted above. Indeed, no regular ten-vertex polyhedron
exists, so in this case there can be no idealized polyhedral shape corresponding to the
five equivalent sd4-hybrid orbital directions, and only irregular shapes such as (4.48a)
and (4.48b) are possible.

(e) Finally, for idealized ML6 bonding, the sd5 hybrids form the body diagonals of the
12-vertex icosahedron, with four distinct colorings that satisfy the no-trans-vertex rule,
as shown in Fig. 4.6(d). The four distinct shapes (4.49a)–(4.49d) can be visualized as
follows. Perpendicular to the three-fold axis of an icosahedron lies a stack of four parallel
triangles. Two opposing trigonal faces of an icosahedron form the two “outer” (smaller)
triangles of the stack, while the two “inner” (larger) triangles lie on opposite sides
of the icosahedral centroid. Two C3v geometries result from the allowed colorings (no-
trans-vertex) of triangles. Thus, coloring adjacent inner and outer triangles produces
the “i” form (4.49b), whereas the “o” form (4.49a) utilizes non-adjacent inner and
outer triangles. Coloring the six vertices of only outer or only inner triangles is not
allowed because it results in trans ligand dispositions. Similarly, stacking along the five-
fold symmetry axis of an icosahedron follows the pattern vertex–pentagon–pentagon–
vertex, with the two lone vertices lying on the five-fold axis and the pentagonal planes
perpendicular to the axis. Occupation of a lone vertex and either the proximal or the
distal pentagon leads to the C5v “i” and “o” structures, respectively.

The idealized Lewis-like shapes are therefore exquisitely adapted to crystallo-
graphic packing patterns.

4.4 Covalent and polar-covalent bonding

4.4.1 Metal hydrides and alkyls

Let us begin by considering the duodectet-rule-conforming metal hydrides of the
third transition series (W–Au), which have the Lewis-like diagrams

(4.50)



388 Molecular bonding in the d-block elements

Figure 4.7 Optimized geometries of saturated group 6–11 third series transition-
metal hydrides MHn (see Table 4.4).

As usual, these diagrams depict the atomic connectivity and assignment of bonding
and nonbonding electron pairs of the localized Lewis-like wavefunction, but not
(necessarily) the molecular shape or symmetry.

The actual optimized structures of the MHn species are shown in Figs. 4.7(a)–
(f). From these figures one can immediately recognize the close connection of the
optimized geometries to the idealized sdµ shapes discussed in the previous section.
For example, the WH6 structure (Fig. 4.7(a)) closely resembles the idealized ML6
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Figure 4.8 Alternative C3v and C4v isomers of OsH4, which are calculated (without
zero-point-energy correction) to lie 3.51 and 5.16 kcal mol−1, respectively, above
the ground Td form (Fig. 4.7(c)). Note the close resemblance to the respective
idealized sd3 geometries in Figs. 4.3(b) and (c).

C3v “o” shape (Fig. 4.5(a)), ReH5 (Fig. 4.7(b)) resembles the idealized ML5 Cs

shape (Fig. 4.4(a)), OsH4 (Fig. 4.7(c)) is the idealized ML4 Td shape (Fig. 4.3(a)),
and so forth. Thus, the rather unusual hydride geometries immediately suggest the
role of sdµ hybridization and covalency, leading to molecular shapes quite unlike
those expected from simple ionic or packing (“VSEPR-like”15) forces.16

Even the “normal” tetrahedral geometry (Fig. 4.7(c)) of OsH4 is somewhat mis-
leading with respect to the possible usefulness of VSEPR-like concepts for ratio-
nalizing the puzzling metal hydride geometries.17 Two other isomeric forms of
dissimilar shape (C3v and C4v) but similar energy (both within ∼5 kcal mol−1 of
the Td structure) are shown in Fig. 4.8. These alternative structures are evidently
in close correspondence with the corresponding idealized ML4 structures (Figs.
4.3(b) and (c)), both of which are rather peculiar from a VSEPR viewpoint.

The near-degeneracy of these three isomers is not attributable to any intrinsic
“flatness” or lack of structural rigidity of the potential-energy surface, for each
isomer appears to be separated by reasonably high kinetic barriers from the others.
Figure 4.9 illustrates the adiabatic potential-energy curve connecting the C3v and Td

isomers along the “umbrella” inversion coordinate (θHOsH), showing the significant
barrier (>8 kcal mol−1) between the two potential wells. More strikingly, the square-
planar isomer (D4h symmetry) that could be a transition state between equivalent
pyramidal or tetrahedral isomers lies more than 370 kcal mol−1 above the equivalent
equilibrium species! Similar remarks apply to comparisons between VSEPR-like
and actual geometries of other metal hydrides. For example, compared with the
“strange” C3v isomer of WH6 (Fig. 4.7(a)), the “expected” VSEPR-like octahedral
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Figure 4.9 The potential for the “umbrella” inversion motion of OsH4, showing
distinct minima for metastable C3v(i) and stable Td isomers.

isomer lies about 540 kcal mol−1 higher in energy! Thus, no useful purpose seems
to be served by thinking about these structures in VSEPR-like terms.

The visual resemblance of optimized (Fig. 4.7) and idealized (Figs. 4.2–4.5)
MHn structures is confirmed by the quantitative geometrical values summarized in
Table 4.4. As expected, the optimized bond lengths and angles distort slightly from
“equivalency” where permitted by point-group symmetry (for example, the C3v

structure of WH6 has slightly different RWH bond lengths, 1.67 Å versus 1.71 Å, in
“upper” and “lower” triangular faces). Nevertheless, within these slight distortions
the agreement with idealized sdµ hybridization angles is striking. For example,
the two acute angles (63.1◦ and 67.8◦) of WH6 closely resemble the idealized
value αacute = 63.4◦, and the two obtuse angles (113.6◦ and 119.9◦) are in similarly
close agreement with the idealized αobtuse = 116.6◦. Similar agreement is seen
for all these species (except the ReH5 case, which is expected to have the highly
fluctional “frustrated” character of sd4 hybridization). Geometrical parameters of
the alternative OsH4 isomers (Fig. 4.8) are also in quite satisfactory agreement with
the “strange” predictions of the sdµ-hybridization picture.

The aptness of the idealized sdµ Lewis-like model is also confirmed by the quan-
titative NBO descriptors, as summarized in Table 4.5. This table displays the overall
accuracy of the Lewis-like description (in terms of %ρL, the percentage accuracy of
the natural Lewis-like wavefunction for both valence-shell and total electron den-
sity) as well as the metal hybridization (hM), bond polarity toward M (100cM

2), and
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Table 4.4. Bond lengths RMH and angles θHMH of saturated metal hydrides MHn

of the third transition series (see Fig. 4.7)

MHn Symmetry RMH (Å) Bond angle θHMH (◦)

WH6 C3v 1.707(3), 1.668(3) 63.1(3), 67.8(3),
113.6(3), 119.9(6)

ReH5 Cs 1.636, 1.623(4) 54.3, 58.9, 62.0, 73.4(3),
103.9, 120.8, 127.4

Cs 1.656, 1.620(2), 1.644(2) 53.0, 74.2(2), 108.0(2), 119.0(2)
C4v 1.59, 1.62(4) 61.2(4), 76.5(4), 122.3(2)
C5v 1.624(5) 62.8(4), 114.7(4)

OsH4 Td 1.601(4) 109.5(6)
C3v 1.586(3), 1.567 70.8(3), 109.7(3)
C4v 1.582(4) 72.6(4), 113.8(2)

IrH3 C3v 1.548(3) 92.0(3)

PtH2 C2v 1.520(2) 86.5

AuH C∞v 1.542

Table 4.5. The NBO descriptors of group 6–11 MHn metal hydrides of the third
transition series, showing the percentage accuracy (%ρL) of the Lewis-like

description (valence shell and total), metal hybrid (hM), percentage polarization
toward M (100cM

2), and occupancy of bonding σMH NBOs (see Fig. 4.8)

%ρL σMH

MHn Valence Total hM 100cM
2 Occupancy (e) (No.)

WH6 97.40 99.56 sd6.35 49.76 1.9201 (3)
sd3.98 42.36 1.9759 (3)

ReH5 (Cs) 98.31 99.70 sd3.07 48.28 1.9876 (1)
sd4.59 52.68 1.9140 (2)
sd3.98 46.72 1.9856 (2)

OsH4(Td) 99.93 99.95 sd2.97 48.56 1.9981 (4)

OsH4(C3v) 98.83 99.78 sd2.66 55.80 1.9191 (4)
sd3.10 50.48 1.9808

IrH3 99.41 99.87 sd2.01 52.68 1.9768 (3)

PtH2 99.31 99.87 sd1.21 54.22 1.9622 (2)

AuH 99.93 99.98 sd0.20 49.40 2.0000 (1)
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Figure 4.10 Metal hydride bond (σMH) and antibond (σMH
∗) NBOs of saturated

group 6–11 transition-metal hydrides MHn of the third transition series.

occupancy of each of the metal hydride σMH NBOs. The accuracy of the Lewis-like
description is seen to be quite high (>97% for valence-shell ρL, 99.57%–99.98%
for total ρL), rather comparable to values for common organic species (cf. Ta-
bles 3.2 and 3.3). Electron-“pair” occupancies of the localized NBOs are also quite
respectable, with all M—H bonds exceeding the standard NBO threshold (1.90e)
for a well-localized electron pair. The metal hydride bond NBOs are also found
to be surprisingly covalent, with bond polarities toward M in the near-50% range
(43%–56%) for all species. Finally, the individual metal NBO hybrid compositions
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Figure 4.10 (Cont.)

all fall strikingly close to idealized sdn−1 values, with average hybridizations sd5.17

(versus sd5), sd4.04 (versus sd4), sd2.97 (versus sd3), sd2.01 (versus sd2), sd1.21 (ver-
sus sd1), and sd0.20 (versus sd0) for MHn hydrides of n = 6 through 1, respectively.
(Note that the p character of the natural hybrids is found to be negligibly small in
all these species.) Thus, the accuracy of a localized Lewis-like model of transition-
metal hydrides appears to be fully comparable to that of main-group compounds.
A Lewis-like description of OsH4 is as “perfect” as that of CH4!

The recognizability and transferability of localized metal hydride bond and an-
tibond NBOs is also quite high, as demonstrated in Fig. 4.10. The gradual decrease
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in d character on going from W (∼sd5, 83% d) to Pt (∼sd, 50% d) and the relatively
constant bond polarity leads to barely perceptible changes in the form of the σMH

and σMH
∗ NBOs across the entire span of mid to late (group 6–10) transition metals.

However, the abrupt increase of s character at Au (∼sd0.20, 17% d) results in quite
distinctive NBO shapes in this case. Simply on the basis of this abrupt change in
the form of its localized hybrids and NBOs, the coordination chemistry of gold (or
other group 11) hydrides would be expected to differ conspicuously from that of
earlier transition-series members.

We can also consider the early (group 3–5) transition-series members in anal-
ogous fashion. Whereas groups 6–11 comprise the “normal-valent” members of
the d block, the earlier groups 3–5 are formally hypovalent (analogous to group
13 of the p block), with 1–3 vacant valence orbitals in their atomic ground-state
high-spin configuration. Nevertheless, in the Lewis-like picture the skeletal hydride
bonding of hypovalent transition metals is expected to be analogous to that of the
normal-valent later members. Thus, the saturated hydrides of the early members of
the third transition series are expected to be LaH3, HfH4, and TaH5, corresponding
to idealized sd2, sd3, and sd4 hybridization, respectively. The optimized geome-
tries conform reasonably to this simple picture, as shown in Fig. 4.11. The NBO
hybridizations (averaged if necessary) also agree closely with the expected values,
sd3.98 (versus sd4) for TaH5 and sd2.94 (versus sd3) for HfH4.18 Figure 4.12 shows
the (σMH and σMH

∗) NBOs of hypovalent hafnium and tantalum hydrides to illus-
trate their similarities to the normal-valent NBOs of Fig. 4.10. Thus, the simple
sdµ-hybridization picture seems to apply well over the entire span of hypovalent
(group 3–5) and normal-valent (group 6–11) d-block elements.

Although orbital hybridizations and molecular shapes for hypovalent metal hy-
drides of the early transition metals and the normal-valent later transition metals are
similar, the M—H bonds of the early metals are distinctly more polar. For example,
metal-atom natural charges for YH3 (+1.70), HfH4 (+1.75), and TaH5 (+1.23) are
all significantly more positive than those (ranging from +0.352 to −0.178) for the
homoleptic hydrides from groups 6–10. Indeed, the empirical chemistry of early
transition-metal hydrides commonly reveals greater “hydricity” than does that of
the later transition-metal hydrides.

A consequence of high ionic characters for early transition-metal hydrides is
a tendency toward more symmetric shapes. For LaH3 the H—M—H bond angles
(107.4◦) are considerably more open than the idealized 90◦ angles expected for
sd2 hybridization. One can understand this structural modification by interpolating
between the idealized ionic (trigonal planar, 120◦) and covalent (90◦) C3v extremes.
Similar reasoning applies to HfH4 and TaH5, although not so strikingly because the
covalent extremes are already quite symmetric.
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Figure 4.11 Optimized structures and symmetries of the hypovalent group 3–5
hydrides LaH3, HfH4, and TaH5, showing the general resemblance to idealized
sdµ geometries (Figs. 4.2(b), 4.3(a), and 4.4(b)).

What shape would an early transition-metal hydride adopt if the ionic component
were reduced? Structural analysis of the cation HfH3

+ (which is isovalent with
LaH3) provides insight. The molecular cation exhibits bond angles (98.1◦) that
are nearly 10◦ less than those of LaH3, even though the Hf—H bond ionicity
(100cHf

2 = 36.35%) still deviates appreciably from the covalent limit.
The general correlations of ionicity, d character, and molecular shapes are distinc-

tive features of d-block bonding that warrant further examination. Normal-valent
and hypovalent MH4 molecules cannot adequately illustrate these correlations be-
cause tetrahedral shapes are expected both in the ionic and in the covalent bonding
extreme. However, strong ionic-versus-covalent differences are expected in MH2

(180◦ ionic versus 90◦ covalent) and MH3 (120◦ ionic versus 90◦ covalent) cases.
Table 4.6 summarizes the geometrical and NBO features for all possible simple di-
hydrides and trihydrides of the third transition series, illustrating how the deviations
from idealized covalent geometry vary with metal charge (QM). (For open-shell
species, the state of highest spin multiplicity has been selected in order to minimize
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Figure 4.12 Metal hydride bond (σMH) and antibond (σMH
∗) NBOs for hypovalent

M = Hf, Ta.

complications arising from multiple near-degenerate configurations.) Table 4.6 dis-
plays how increasing ionic character (higher QM) of M—H correlates strongly with
increasing deviation of θHMH from 90◦ and higher d character in the M—H bond
hybrids. As we shall see later in this chapter, such correlations are general across
the transition series and form the basis of a d-block generalization of Bent’s rule.

From the polarities of the maximum-valency MHn NBOs, one can infer the
natural electronegativity xM

(N) of each transition metal M, following the procedure
outlined in Section 3.2.5. For cases in which two or more inequivalent M—H
bonds are present (e.g., ReH5), we employ the average value of cM

2 (or of the
bond ionicity iMH) to evaluate xM

(N) from Eq. (3.60). Table 4.7 presents the natural
electronegativity values for all three series of the d-block elements.

Finally, let us briefly consider the analogous behavior of MRn metal alkyl com-
pounds. Tables 4.8 and 4.9 summarize geometrical and NBO data for monomethy-
lated complexes of the form MHnMe. In agreement with simple Lewis-like pictures
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Table 4.6. Geometries and NBO descriptors of MH2 and MH3 metal hydrides of
the third transition series of various spin multiplicities (2S + 1), illustrating the
correlations of metal charge (QM) with metal hybrid d character (%d, taken as
the average of α and β hybrids for open-shell species), bond length (RMH) and
angle (θHMH), and average absolute deviation (Dev. = average |θHMH − 90◦|),

from idealized covalent geometry

MHn 2S + 1 RMH (Å) θHMH (◦) %d Dev. QM

HfH2 3 1.845 120.1 75.0 30.1 0.994

TaH2 4 1.767 116.7 63.2 26.7 0.727

WH2 5 1.707 112.0 67.5 22.0 0.516

ReH2 4 1.615 72.8 66.3 17.2 0.123

OsH2 3 1.602 102.1 62.7 12.2 0.137

IrH2 2 1.547 91.9 61.3 1.8 −0.002

PtH2 1 1.514 85.6 54.3 4.4 −0.142

HfH3 2 1.841 118.7 73.2 28.7 1.447

TaH3 3 1.762(2) 121.8(2) 73.7 30.0 1.086
1.784 116.4

WH3 4 1.703 111.4 71.6 21.4 0.695

ReH3 3 1.626(2) 110.3(2) 69.5 15.9 0.271
1.639 82.8

OsH3 2 1.594 104.4 69.1 14.4 0.106

IrH3 1 1.541 90.4 66.7 0.4 −0.178

and hybridization schemes, the structures of these normal-valent alkyl complexes
bear striking resemblance to the corresponding hydrides, with overall hybridizations
closely approximating the predicted sdn values. However, a significant feature of
M—Me versus M—H bonding is the higher polarity of the former, with average
100cM

2 values (∼36% for M—Me versus ∼45% for M—H) appreciably shifted
from the idealized covalent limit (50%). As mentioned previously, increased bond
polarity tends to be associated with higher percentage d character of M—Me bond
hybrids and greater H—M—Me bond angles. Thus, for methyl metal hydrides the
individual bond hybridizations can be viewed as deviations from idealized sdn val-
ues resulting from competition for s character: the more covalent the bond, the
higher (more nearly ideal) the s character.

The specific examples of PtHMe and PtMe2 are illustrative. According to the el-
ementary Lewis-like picture, stable monomethyl and dimethyl platinum analogs of
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Table 4.7. Natural electronegativity values xM
(N) (“Pauling units”) for d-block

(group 3–11) elements of the first three transition series (Sanderson values19

xM
(S) for the first transition series are given in parentheses)

First series Second series Third series

Group M xM
(N) (xM

(S)) M xM
(N) M xM

(N)

3 Sc 1.16 (1.20) Y 1.09 La (1.0)a

4 Ti 1.55 (1.32) Zr 1.43 Hf 1.34
5 V 1.79 (1.45) Nb 1.67 Ta 1.54
6 Cr (2.1)a (1.56) Mo 2.16 W 1.94
7 Mn (2.0)a (1.60) Tc 2.25 Re 2.20
8 Fe 2.03 (1.64) Ru 2.31 Os 2.17
9 Co 1.96 (1.70) Rh 2.23 Ir 2.22

10 Ni 1.87 Pd 2.04 Pt 2.30
11 Cu 1.47 Ag 1.48 Au 2.01

a Interpolated (no satisfactory normal-valent hydride is available).

PtH2 should exist, with dot diagrams such as (4.15) and expected ∼sd1 hybridization
leading to strongly bent geometry analogous to that shown in Fig. 4.6(c). These
expectations are generally fulfilled, as depicted in the optimized structures shown
in Fig. 4.13. The H—Pt—C angle in HPtCH3 is 93.2◦, which is very close to the
idealized ML2 value of 90◦ (Fig. 4.2(a)). The corresponding C—Pt—C angle in
Pt(CH3)2 is somewhat larger (102.4◦), apparently due to the somewhat higher bond
polarity and unfavorable steric interactions. The hybridization is also found to be
generally similar to that in PtH2 (sd1.19), but with slightly higher d character in
hybrids to carbon (sd1.41 in HPtCH3, sd1.31 in Pt(CH3)2). The similarities between

Table 4.8. Bond lengths (RMC and RMH) and angles (θCMH and θHMH) of saturated
metal methylhydrides MHnMe of the third transition series

MHnMe Symmetry RMC (Å) RMH (Å) θCMH (degrees) θHMH (degrees)

WH5Me ∼C5v 2.061 1.682(4) 113.4 65.1(5), 121.4(5)

ReH4Me ∼Cs 2.012 1.672(2), 115.2(2), 63.9, 75.4, 76.2,
1.632, 1.637 119.1(2) 122.9(2)

OsH3Me ∼C3v 2.001 1.598(3) 111.6(3) 107.3(3)

IrH2Me ∼Cs 2.004 1.545(2) 100.1(2) 90.3

PtHMe ∼Cs 2.004 1.518 93.2

AuMe C∞v 2.048
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Table 4.9. The NBO descriptors for the species of Table 4.8, showing the
percentage accuracies (%ρL) of the Lewis-like description (valence shell and
total), metal hybrid (hM), percentage polarization toward M (100cM

2), and
occupancy of σMC and σMH NBOs

%ρL σMC σMH

MHnMe Valence Total hM 100cM
2 Occupancy (e) hM 100cM

2 Occupancy (e)

WH5Me 97.54 99.44 sd5.06 31.97 1.998 sd4.98 48.1 1.935

ReH4Me 98.31 99.62 sd5.72 37.67 1.996 sd3.20(2) 49.3 1.973

sd4.27(2) 52.2 1.941

OsH3Me 99.23 98.80 sd4.01 40.92 1.990 sd2.74 49.9 1.989

IrH2Me 99.68 99.79 sd2.32 43.40 1.977 sd1.94 53.0 1.966

PtHMe 99.78 99.82 sd1.41 46.03 1.962 sd1.09 53.3 1.952

AuMe 99.85 99.97 sd0.25 43.30 1.999

transition-metal hydrides and alkyls therefore appear to parallel closely those in
main-group compounds, as the Lewis-like picture would suggest.

4.4.2 Metal alkylidenes and alkylidynes

The Lewis-like picture suggests20 that saturated metal alkylidenes (carbenes)
HnM=CH2 of special stability should correspond to duodectet-rule-conforming

Figure 4.13 Optimized geometries of monomethylplatinum(0) and dimethylplat-
inum(0) compounds, showing strongly bent structures analogous to PtH2
(Fig. 4.7(c)).
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structures of the form, e.g., for M = W–Pt

(4.51)

In each case the central metal atom of HnMCH2 is expected to form a skeleton of
n + 1 sigma bonds (n to H, one to C) using approximate sdn hybridization.

However, the important new feature of metal alkylidenes (4.51) is metal–carbon
pi-bonding. As discussed in Section 2.8, pi bonds between transition metals and
main-group elements are of dπ−pπ type, much stronger than corresponding pπ−pπ

bonds between heavier main-group elements. Compared with simple metal hydrides
and alkyls, metal–carbon pi-bonding in metal alkylidenes affects the selection of
metal d orbitals available for hybridization and skeletal bond formation, somewhat
altering molecular shapes.

Optimized geometries for the metal alkylidenes (4.51) are shown in Fig. 4.14,
and the corresponding bond lengths and angles are summarized in Table 4.10. The
role of covalency and hybridization is immediately suggested by the highly unusual
metal bond angles, which are certainly “strange” from an electrostatic, steric, or
VSEPR perspective. The NBO descriptors of each compound are summarized in
Table 4.11, showing the excellent quality of the Lewis-like description in each case
(99.6%–99.9%ρL). We shall now consider how the shapes of these compounds can
be related to details of the sigma and pi NBO compositions.21

Construction of the metal–alkylidene sigma skeleton can be visualized in the
following manner. Suppose that the M—C bond is taken to lie along the z axis, with
the two C—H bonds in the y−z plane,

(4.52)

The metal sigma hybrid to carbon is of standard form,

hσ = (1 + µ)−1/2(s + µ1/2dz
2) (4.53a)

while the corresponding metal pi-bonding orbital is the pure dxz atomic orbital

hπ = dxz (4.53b)

The remaining metal hybrids to hydrogen (hσ
′) must therefore be chosen orthogonal

to both hσ and hπ. The orthogonality constraint 〈hπ|hσ
′〉 = 0 has no effect on hydride

bonds lying in the y−z plane of the methylene group, but it mandates that those
lying out of plane must lie close to the nodal angle of the dxz orbital, i.e., pointing
in the ±x direction perpendicular to the M—C bond axis. Thus, the out-of-plane
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Figure 4.14 Optimized geometries of saturated group 6–10 third-series transition-
metal alkylidenes HnM=CH2 (M = W–Pt).

hydride bonds should be nearly at right angles to the M—C bond, while the in-plane
hydride bonds can adopt more nearly ideal angles of equivalent sdµ hybridization.

For n = 1 (HIrCH2) or n = 2 (H2OsCH2) the idealized sdµ angles are already
90◦, so that orthogonality to the πMC bond is achieved automatically. However,
for n = 3 (H3ReCH2) and n = 4 (H4WCH2) the in-plane hydride bonds can make
angles that deviate strongly from perpendicularity, whereas the out-of-plane M—H
bonds are constrained to lie nearly at right angles (92–95◦) to the M—C axis. Of
course, three equivalent in-plane hybrids must make bond angles of 120◦, and the
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Table 4.10. Optimized bond lengths RMC and RMH and angles θHMC and θHMH of
transition-metal alkylidenes HnM=CH2 in Fig. 4.14. (The subscripts “i” and “o”
distinguish H—M—H angles that are respectively “in plane” and “out of plane”

with respect to the methylene group.)

HnMCH2 Symmetry RMC (Å) RMH (Å) θHMC (degrees) θHMH (degrees)

H4WCH2 Cs 1.872 1.688(2), 1.734 94.5 (2), 117.8, 123.8i, 125.1o,
1.687 118.4 64.1 (2), 111.1 (2)

H3ReCH2 Cs 1.839 1.656 (2), 1.629 92.1, 117.4 (2) 119.4i, 100.9o

H2OsCH2 Cs 1.827 1.599 (2) 95.4 (2) 108.0

HIrCH2 Cs 1.796 1.549 97.4

PtCH2 C2v 1.796

values that are actually found (θHMC = 117−118◦, θHMH = 119−124◦) lie close to
this limit. Thus, the geometries of Fig. 4.14, although “strange” from a VSEPR-
like or main-group perspective, are quite reasonable in the framework of the sdµ

Lewis-like picture.
The detailed NBO hybridizations shown in Table 4.11 are in general accord

with this picture. The metal hybridization toward C has slightly higher d character
than ideal sdµ would suggest (as expected due to the higher polarity of the M—C
bonds) whereas hybrids toward in-plane H atoms have correspondingly reduced
d character, but the overall pattern of agreement with an idealized sdµ picture is
striking. As in the pure hydrides, metal p character appears to play no significant
role in the hybridization and bonding of metal alkylidenes.22

The forms of the localized metal–carbon pi bond and antibond NBOs are again
highly recognizable and transferable from species to species. This transferability is

Table 4.11. The NBO descriptors of the HnMCH2 metal alkylidenes in Fig. 4.14,
showing the percentage accuracies (%ρL) of the Lewis-like description (valence
shell and total), metal hybrid (hM), percentage polarization toward M (100cM

2),
and occupancies of bonding σMC and πMC NBOs

%ρL σMC πMC

HnMCH2 Valence Total hM 100cM
2 Occupancy (e) 100cM

2 Occupancy (e)

H4W=CH2 98.24 99.61 sd4.15 36.81 1.989 47.66 1.976

H3Re=CH2 98.94 99.74 sd4.16 40.18 1.982 51.59 1.986

H2Os=CH2 99.11 99.78 sd6.63 49.32 1.986 49.37 1.959

HIr=CH2 99.36 99.84 sd1.55 43.35 1.979 59.85 2.000

Pt=CH2 99.71 99.93 sd0.51 39.93 1.997 68.05 2.000
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Figure 4.15 Metal–carbon pi-bond (πMC) and antibond (πMC
∗) NBOs of saturated

group 6–10 transition-metal alkylidenes HnM=CH2.

exhibited in Fig. 4.15, which shows contour diagrams of πMC and πMC
∗ NBOs for

the entire range M = W–Pt of saturated metal alkylidenes. Some “bond bending”
(as discussed below) is evident both in the σ and in the π Re—C bonds, as seen in
H3Re=CH2 (Fig. 4.15(b)), and H2Os=CH2 (Fig. 4.15(c)), but the effective diatomic
“π” label of the NBOs is generally descriptive for all these species.

It is noteworthy from Table 4.11 that σMC and πMC bonds differ in their polariza-
tions, with σMC polarized slightly more toward carbon and πMC exhibiting either no
polarization or a slight preference for the metal. The πMC bond polarization reflects
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Figure 4.15 (Cont.)

excellent balance between metal d and carbon p orbitals in forming electron-pair
pi bonds.

From the pi-bond polarities in Table 4.11 we can readily infer natural pi elec-
tronegativity values for each metal atom, following the procedure outlined in Section
3.2.8. Numerical values of such pi electronegativities for the first three transition
series are presented in Table 4.12.

Comparison of the pi electronegativities in Table 4.12 with the sigma electro-
negativities of Table 4.6 reveals similar trends but a more constricted range, with
a slight tendency toward higher metal electronegativities in forming pi bonds. We
have seen in Chapter 3 that p-block elements exhibit similar trends, but the vertical
ranges for d-block pi electronegativities are even more compressed.

A corresponding Lewis-like picture can be developed for triply bonded metal
alkylidynes (HnMCH), such as the duodectet-rule-conforming examples

(4.54)
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Table 4.12. Natural pi electronegativity values (xM
(π), “Pauling units”) for the

d-block elements (pi-bonding elements of groups 3–10) in the first three
transition series

First series Second series Third series

Group M xM
(π) M xM

(π) M xM
(π)

3 Sc 1.89 Y 1.78 La (1.7)a

4 Ti 2.29 Zr 2.11 Hf 1.96
5 V 2.54 Nb 2.32 Ta 2.18
6 Cr 2.42 Mo 2.54 W 2.50
7 Mn 2.34 Tc 2.39 Re 2.53
8 Fe 2.17 Ru 2.19 Os 2.57
9 Co 2.23 Rh 2.03 Ir 2.20

10 Ni 1.97 Pd 1.69 Pt 1.92

a Extrapolated estimate; no stable La(CH2)H structure has been found.

Because the two metal–carbon pi bonds now extend into both dimensions perpen-
dicular to the axis of the metal–carbon bond, the residual metal–hydride bonds are
all constrained to lie essentially orthogonal to the M—C axis (i.e., in the nodal “hol-
lows” of the pi-bonding dxz and dyz orbitals). The optimized structures, as shown
in Fig. 4.16, all reveal this common structural tendency, with near-perpendicular
(91–96◦) H—M—C bond angles in all cases.

Finally, one can readily visualize various duodectet-rule-conforming alkyli-
dene/alkylidyne complexes with more extensive multiple bonding, such as

(4.55)

(Recall that such Lewis-like diagrams are intended to convey only the localized
electron-pair assignments about the central hexavalent metal atom, not the molec-
ular shape.) Here Os(CH2)2 typifies allene-like bonding, while HW(CH2)(CH),
W(CH)2, and W(CH2)3 represent cases of higher central-atom bond order that are
unachievable with main-group elements.

The optimized geometries of (4.55a)–(4.55d) are shown in Fig. 4.17 and selected
geometrical parameters are summarized in Table 4.13. The molecular shapes and
NBO descriptors (not presented) generally agree with the idealized Lewis-like sdµ

picture for Os(CH2)2, HW(CH2)(CH), and W(CH2)3. However, the C—W—C angle
(42◦) in the ground state of W(CH)2 is much smaller than expected for idealized sd1

geometry, and the optimal NBO description corresponds to a metallacyclopropene,
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Figure 4.16 Optimized structures of transition-metal alkylidynes HnMCH (M = W–Ir).

with two W—C single bonds and a C=C double bond rather than the acyclic
triple-bonded structure (4.55c); the latter is in this case a metastable species (also
a true local minimum) lying about 30 kcal mol−1 above the metallacyclopropene
isomer.

The failure of W(CH)2 to achieve “expected” dialkylidyne structure (4.55c)
can be readily understood from the number and types of available d orbitals. Let
us suppose that the CWC skeleton is taken to lie in the x–y plane and that the
dx2−y2 orbital is used to construct perpendicular sd1 sigma hybrids along the x
and y axes. We can then employ dxz and dyz orbitals to construct one out-of-plane
pi bond to each ligand, but this leaves only one remaining in-plane (dxy) metal
orbital for an orthogonal in-plane pi bond, and two full triple bonds are therefore
impossible. Thus, the existence of a duodectet-rule-conforming Lewis-like formula
may be insufficient to guarantee that the corresponding electronic bonding pattern
can actually be achieved within the constraints of sdµ hybridization.

More detailed examination of the structures, orbitals, and energetics of
Ir(CH2)H, Os(CH2)2, and W(CH2)3 reveals some unexpected nuances in the nature
of σ and π bonds at transition-metal centers. Figure 4.18 illustrates the idealized
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Figure 4.17 Optimized structures of compounds (4.55) with high degrees of mul-
tiple bonding (see Table 4.13): (a) Os(CH2)2, (b) HW(CH2)(CH), (c) W(CH)2, and
(d) W(CH2)3.

Table 4.13. Selected geometrical parameters of highly multiple-bonded
species (see Fig. 4.17)

Molecule M RMC (Å) θCMC (degrees) θMCH (degrees) θCMH (degrees)

Os(CH2)2 Os 1.824 106.4 125.2(2)
120.0(2)

HW(CH2)(CH) W 1.886 100.3 136.7 95.5
1.750 108.6 94.3

167.7

W(CH)2 W 1.909 41.7 148.0

W(CH2)3 W 1.902 109.4 123.2(3)
122.7(3)
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Figure 4.18 Idealized structural isomers of Ir(CH2)H ((a) pl and (b) tw) and
Os(CH2)2 ((c) pl and (d) tw), and W(CH2)3 (e).

structural isomers one might predict for these three species. At the zeroth order
of approximation, Ir(CH2)H and Os(CH2)2 each make two perpendicular σ bonds
from metal sd1 hybrids; due to the higher polarity of M—C bonds we actually expect
somewhat more d character than sd1 and some opening of the bond angles. Addition
of π bonds, one for the iridium complex and two for the osmium, completes the
bonding. Accordingly, both molecules are expected to exhibit bent coordination
geometries at the metal with bond angles slightly greater than 90◦. Consideration
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of idealized orientations of the CH2 planes leads to two isomers, labeled planar
(pl) and twist (tw), of presumably similar energy, for each molecule. As shown in
Figs. 4.18(a)–(d), these isomers differ in orientation of the π bonds with respect to
the plane defined by the two σ bonds. (Note that a third isomer of Os(CH2)2 with
both π bonds lying in the OsC2 plane is prohibited, since it would require both π

bonds to form from the same in-plane d orbital.) Because W(CH2)3 makes three
M=C double bonds, just one isomer (Fig. 4.18(e)) with 90◦ C—W—C bond angles
(∼sd2 hybridization) and three π bonds lying in mutually orthogonal planes would
be expected.

However, DFT computations demonstrate a significantly different picture. The
idealized isomers are not near-degenerate (nor even all stable minima!) and the
CH2 planes of the low-energy structures distort away from mutual orthogonality,
with distinct “banana bonding” (loss of σ/π symmetry) in the case of W(CH2)3.
Although the tw structures of Ir(CH2)H and Os(CH2)2 superficially appear less
crowded, they are actually found to be unstable transition states (13–16 kcal mol−1

higher in energy, with strong imaginary frequencies for H—M—C—H torsions:
809i for M= Ir, 601i for M=Os) between the equilibrium pl structures, as shown for
Os(CH2)2 in Fig. 4.17(a). Table 4.14 compares energetic and NBO characteristics
of the calculated pl/tw isomeric species, showing the expected similarity in NBO
descriptions despite the surprising difference in torsional energy. The optimized
structure for W(CH2)3, Fig. 4.17(d), also shows strong distortion away from the
idealized tri-orthogonal structure depicted in Fig. 4.18(e). Clearly the idealized
sigma/pi-bonding picture is inadequate in these cases.

Table 4.14. Relative energies (Erel) and NBO characteristics of optimized pl and
tw isomers of Ir(CH2)H, Os(CH2)2, and W(CH2)3 (see Fig. 4.18), showing
Lewis densities (ρL), hybridizations (hM), and bond polarizations (100cM

2)
for each species

ρL(%) σMC πMC

Species Erel (kcal mol−1) Valence Total hM 100cM
2 hM 100cM

2

Ir(CH2)H tw +12.9 98.92 99.77 sd2.01 44.0 ∼d 63.1
pl 0.0 99.28 99.83 sd1.55 43.4 ∼d 59.8

Os(CH2)2 twa +16.0 98.86 99.70 sd2.10 42.8 ∼d 53.8
sd1.70 41.6 ∼d 57.6

pl 0.0 99.06 99.74 sd1.71 41.9 ∼d 54.7

W(CH2)3 98.44 99.54 sd2.01 35.9 ∼d 46.3

a For this isomer the two —CH2 groups are inequivalent due to minor distortion of one of
the M—C—H bond angles.
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Figure 4.19 The “σWC” (left) and “πWC” (right) NBOs of W(CH2)3, showing
significant deviations from idealized σ/π symmetry. The W atom is on the left and
the contour plane is perpendicular to the plane of WCH2 nuclei.

The strongly bent nature of the NBOs of W(CH2)3 is depicted in Fig. 4.19,
confirming the inadequacy of a simple σ/π-bonding picture for this species. Both
contour plots are plotted in a plane perpendicular to the CH2 plane, showing the
expected bending of the nominal σ- and π-bond-forming hybrids centered both on
M and on C in directions above and below the internuclear M—C axis. While the
NBOs can still be crudely described with nominal “σ” and “π” labels, incipient
“banana-bond” character is clearly significant.

Why do metal-alkylidene complexes deviate from the idealized structural and
energetic expectations of a simple σ/π Lewis-like bonding model? Some factors,
such as >90◦ C—M—C bond angles are attributable to M—C bond polarity and
concomitant increase in d character of the sigma hybrids. However, this does not
lend insight into the substantial energy differences of pl and tw isomers. (Unlike
main-group torsional variations, which are typically of hyperconjugative origin
[see Section 3.4.2], the pl/tw energy difference in Ir(CH2)H and Os(CH2)2 seems
to be strongly established in the idealized Lewis limit, and thus reflects an inherent
preference for pl over tw assignments of the primary Lewis-like skeletal hybrids,
rather than a secondary delocalization effect.) A significant disadvantage of the tw-
like Lewis structure may arise from the fact that the three metal bond pairs (two σ,
one π) are forced into a common plane in tw geometry, increasing steric exchange
repulsion, whereas π−σ exchange interactions are averted when πMC remains
perpendicular to the sigma plane, as in pl geometry. Another factor may involve
the odd n(h) hybridized lone pair of sd1 hybridization (Eqs. (4.36)–(4.41)), which
requires still more complex hybrid mixing in order for it to remain orthogonal to
the in-plane πMC bond required by the tw isomer, and thus may tend to oppose σ/π

coplanarity and promote σ/π breakdown in some unusually strong fashion for the
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Figure 4.20 A schematic illustration comparing parent hydride and symmetry
(above; cf. Figs. 4.2(b), 4.3(c), and 4.5(b)) with the derivative alkylidene (below)
in the idealized “banana-bonded” limit for Ir(CH2)H (left), Os(CH2)2 (center), and
W(CH2)3 (right).

sd1 case. Whatever the proper rationalization for these tendencies, the anomalous
character of pi versus banana bonding in transition-metal species should be noted.

Consideration of M=C double bonds in the limit of two banana-like single bonds
provides intriguing insight into the relative stabilities of the idealized isomers, as
depicted schematically in Fig. 4.20 for Ir(CH2)H, Os(CH2)2, and W(CH2)3. In the
limit of pure banana-bond character, the orbital picture for Ir(CH2)H consists of
three ∼sd2 hybrids and three pure d lone pairs at Ir and four ∼sp3 hybrids at C.
Accordingly, the three sd2 hybrids lie along the Cartesian axes with H on one
axis and the M—C line of centers bisecting the other two axes. (The M—C bond
hybrids are expected to have somewhat higher d character due to higher M—C bond
polarity.) More importantly for our purposes, this picture requires that the M—H
bond lie in the methylidene plane (pl rotamer), as shown on the left in Fig. 4.20.

Similar reasoning can rationalize the structure of Os(CH2)2. The bent-bond
model for Os(CH2)2 prescribes four ∼sd3 hybrids and two lone pairs at Os. As
seen earlier in this chapter, the lobes of four centrosymmetric sd3 hybrids point to
the corners of a cube, yielding three imaginable four-coordinate isomers (Td, C3v,

and C4v). For the present case, the C4v-type motif would appear to be preferred,
because it allows each methylidene to make two such bonds at small angles (71◦),
prevents a strongly disfavored linear C—Os—C arrangement, and maintains equiv-
alency in each of the bonds. The C4v bent-bond motif corresponds to placing the
two C atoms at the midpoints of two parallel edges of one face of the cube. Neces-
sarily, the two methylidenes are coplanar and the C—Os—C angle is strongly bent,
corresponding to the favored pl structure represented in Fig. 4.20 (middle).

To view W(CH2)3 in the corresponding limit of six sd5 hybrid banana bonds,
begin with the distorted trigonal prismatic C3v isomer. Place the three methylidene
carbons midway along the three vertical edges of the prism with the methylidene
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planes normal to each edge. The result is a “bowl-shaped” structure closely resem-
bling the calculated structure shown in Fig. 4.17(d) and schematically depicted in
Fig. 4.20 (right). In striking contrast to the idealized structure based on perfect σ/π

separation (Fig. 4.18(e)), the methylidene planes are far from orthogonal and the
C—W—C bond angles (109.6◦) deviate strongly from 90◦.

Incorporation of partial bent-bond character into the electronic description of
metal alkylidenes helps us to understand preferences among structural isomers, but
why should this be a more conspicuous feature of transition-metal–ligand bonding?
It is important to recall that some instances of bond-bending were found in the p
block, such as the hyperconjugated vinylamine and Ga2 dimer discussed in Chap-
ter 3. (However, we cannot concur with the conclusion of Messmer and Schultz23

that bent bonds are generally the superior description of multiple-bonding in p-
block compounds.) The vinylamine example makes clear how strong π-type interac-
tions (namely nN

(π)→πCC
∗ hyperconjugation) can alter the expectations of a simple

σ-hybridization skeletal model, and we might expect on this basis that the character-
istically stronger π-type dM−pC interactions in transition-metal complexes would
tend to increase the number of such “exceptional” cases in d-group chemistry.
However, a more prosaic reason for the “conspicuous” σ/π breakdown in d-block
chemistry is that the consequences of bond-bending are more readily perceived in
this case. Owing to the limited valencies and shapes for p-block elements, there
are few structural keys to distinguish the limits of σ/π versus banana-bonding pic-
tures qualitatively; for example, regardless of which model we employ, we predict
that H2CCH2 and PH(CH2) will feature coplanarity of all atoms. Only for covalent
d-group compounds do the limits of pure banana bonding versus σ/π bonding differ
conspicuously.

As a further aspect of M=C double bonding, we can briefly mention metal
alkylidenes of “Fischer-carbene” type.24 The distinguishing feature of Fischer car-
benes is heteroatom substitution at carbon, usually in the form of an alkoxy or
amido group (both strong π-type hyperconjugative groups). The reaction chem-
istry of these carbenes features susceptibility to attack by nucleophiles, similar to
that expected of activated esters or imides. In contrast, the unsubstituted metal
alkylidenes (“Schrock-type carbenes”25) tend to act as nucleophiles. The NBO
analysis of the model Fischer carbene, Ir(CHOH)H, reveals significant differences
from the Schrock-carbene analog, IrCH2H. The geometrical features of the two
compounds are rather similar, but the electronic structures exhibit telling differ-
ences. As expected, heteroatom substitution with an electronegative oxygen atom
increases the positive charge at C (QC = +0.212 versus −0.297), rendering it rel-
atively electrophilic. Relative to the Schrock-type carbene, the M—C sigma bond
of the Fischer carbene is therefore more polarized toward carbon, but the π-bond
is strongly polarized toward the metal, enhancing the expected strong nO→πMC

∗
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interaction (∼45 kcal mol−1) of the adjacent oxygen lone pair with the metal–carbon
pi antibond. Thus, the vicinal hyperconjugative modifications of M=C double
bonds appear to parallel those of main-group double bonds in a satisfying man-
ner (cf. Section 4.8).

4.4.3 Metal–metal bonding

Multiple bonding in dinuclear hydrides

Let us first consider metal–metal bonding26 in simple dinuclear hydrides HnMMHn .
For M = Re, for example, the four possible duodectet-rule-conforming Lewis-like
structures are

H4R̈e—R̈eH4 H3R̈e=R̈eH3 H2R̈e≡R̈eH2 HR̈e==R̈eH (4.56)

corresponding to increasing metal–metal multiple-bonding (up to quadruply
bonded HRe==ReH for n = 1) as n decreases. Figure 4.21 displays the optimized
geometries of these four species, showing the expected “weird” ReHn bond angles
of sdn−1 hybridization at each terminus. However, our present focus is on the nature

Figure 4.21 Optimized structures of saturated HnReReHn, n = 1–4.
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Table 4.15. Calculated metal–metal (RMM) and average metal–hydride (R̄MH)
bond lengths, NBO Lewis-like structures, and percentage accuracies of the
localized description (%ρL) for saturated HnMMHn hydrides (M = Ta–Pt)

HnMMHn (%)L

M n RMM (Å) R̄MH (Å) Natural Lewis structure Valence Total

Ta 4 (τ=bonded)a

3 2.648 1.773 H3Ta=TaH3 98.93 99.85
2 2.303 1.777 H2Ta≡TaH2 98.27 99.79
1 2.233 1.842 HTa==TaH 95.64 99.61

W 5 (dissociated)a

4 2.389 1.723 H4W=WH4 96.11 99.46
3 2.238 1.717 H3W≡WH3 98.05 99.72
2 2.198 1.708 H2W==WH2 98.67 99.81
1 2.098 1.707 HW==−−WH 99.11 99.87

Re 4 2.235 1.660 H4Re−−ReH4 89.34 98.47
3 2.188 1.670 H3Re=ReH3 90.73 98.73
2 2.167 1.654 H2Re≡ReH2 98.08 99.73
1 2.106 1.654 HRe==ReH 98.28 99.78

Os 3 2.341 1.614 H3Os−−OsH3 97.15 99.56
2 2.257 1.613 H2Os=OsH2 97.69 99.68
1 2.165 1.606 HOs≡OsH 98.63 99.80

Ir 2 2.417 1.553 H2Ir−−IrH2 98.56 99.77
1 2.233 1.543 HIr = IrH 99.30 99.89

Pt 1 2.483 1.520 HPt−−PtH 99.17 99.87

a See the text.

of the 5−n metal–metal bonds that complete the formal valence duodectet about
each rhenium atom. Similar metal–metal bonding is expected in dinuclear hydrides
of all the normal-valent group 6–10 transition metals, as well as in neighboring
hypovalent members of the early transition series.

Table 4.15 summarizes optimized bond lengths and NBO Lewis-like structures
for 15 saturated normal-valent HnMMHn compounds (M = W–Pt) as well as corre-
sponding hydrides of hypovalent Ta for comparison. The accuracy of the localized
Lewis-like description (as measured by %ρL) is found to be reasonably high both
for normal-valent and for hypovalent species, typically >98% of the valence-shell
density and >99.5% of the total density.

However, significantly lower accuracy is found for single-bonded (maximally
hydrogenated) members of the series (e.g., %ρL

(val) = 89.3% for H4Re—ReH4).
Furthermore, in two such cases, depicted in Fig. 4.22, the optimized geometry and
NBO description do not correspond to the “expected” single-bonded structure.
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Figure 4.22 Optimized structures of H4TaTaH4 and H5WWH5 (not conforming to
the expected single-bonding picture).

For hypovalent H4TaTaH4, two bridging τTaHTa bonds are formed in addition
to four σTaH bonds and one σTaTa bond (Fig. 4.22(a)). For sterically congested
H5WWH5, a dihydrogen H2 moiety is split off at each end to give triple-bonded
H3W≡WH3 + 2H2 (Fig. 4.22(b)). Thus, fully hydrogenated dimetallic species ap-
pear to exhibit stronger delocalization effects than do their formally “unsaturated”
(multiply bonded) counterparts.

As in main-group chemistry, hypovalent hydrides of the transition series have
pronounced tendencies to form bridging tau bonds. In addition to H4TaTaH4, the
multiply bonded species HTaTaH features two symmetrically bridging hydrides.
Despite the complexity introduced by such tau bonds, the Ta–Ta interaction clearly
has high bond order, as simple Lewis-like structures prescribe.

Figure 4.23 graphically displays the metal–metal bond lengths (cf. Table 4.15)
and their dependences on the formal bond order of the Lewis-like formula. These
plots all show the expected decrease of RMM with increasing bond order, but with
somewhat different rates of decrease for different metal atoms. Thus, the multiple-
bonding of the Lewis-like picture readily accounts for the variations of metal–metal
bond length in these hydrides.

What is the nature of the multiple metal–metal bonds? Let us consider the spe-
cific example of HW==−−WH, whose NBO Lewis structure exhibits five metal–metal
bonds. Figure 4.24 displays the strongly trans-bent geometry of HW==−−WH and
contour diagrams of the five metal–metal bond NBOs, each drawn in a chosen
contour plane (specified in the lower-left-hand corner of the panel) to emphasize
its distinguishing characteristics.

Each bond NBO is identified by the usual diatomic symmetry label (σ, π, or δ)
to indicate its angular symmetry about the W—W axis.
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Figure 4.23 Variations of metal–metal bond length with nominal formal “bond
order” (the number of bonds in the natural Lewis structure) in duodectet-rule-
conforming dinuclear hydrides HnMMHn (see Table 4.15).

Sigma: The sigma bond σWW is isotropic (s-like shape) around the bond axis and has the
profile (Fig. 4.24(a)) to be expected from the sdµ hybrids discussed in the preceding
section (cf. Fig. 4.9).

Pi: Each pi bond has one axial nodal plane (p-like shape) and the longitudinal profile,
(Figs. 4.24(b) and (c)) to be expected from π-type overlap of d orbitals. The two
pi bonds are labeled πW

(o) (out of plane) or πWW
(i) (in plane) to distinguish their

orientation with respect to the molecular plane.
Delta: Each delta bond has two axial nodal planes (d-like shape) around the bond axis, but

they differ according to whether the axial shape is dz2 -like (δWW
(h), “edge-on” overlap;

Fig. 4.24(d)) or dxy-like (δWW
(u), “face-on” overlap; Fig. 4.24(e)). In the former case

the axial nodal planes are at 55◦ angles, so the participating metal d orbitals can mix
(hybridize) with the metal s orbital to form a δWW

(h) bond of greater strength (which
may also be pictured as arising from the one-center n(h) hybrid (4.40b)). In the latter
case, the axial nodal planes are mutually perpendicular (preventing s-orbital mixing)
and the resulting δWW

(u) bond therefore involves unhybridized d orbitals. Recall that,
for a metal making two sd1 hybridized single bonds, orthogonality requirements
lead to two ∼sd1.3 bond hybrids and another hybrid with sd4 hybridization. In this
instance σWW and δWW

(h) bond hybrids “compete” for the available metal s orbital
at each center. Interestingly, and unlike the simple case of PtH2, the result of this
competition is that the most d-rich hybrid is used to make the second delta bond,
leaving the more directed sd3.97 hybrid to make the first delta bond.
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Figure 4.24 Metal–metal bond NBOs of quintuply bonded HW ==−− WH(ρL =
99.87%), showing the hybrid composition (above) and chosen contour plane (be-
low) for each bond.

Table 4.16 displays the energies and occupancies of the five bond and corre-
sponding antibond NBOs of HW==−−WH. Successive metal–metal bonds would be
expected to be formed in the order shown in Table 4.16 (i.e., σ before π before δ),
on the basis of the spatial range and energy of each overlap type.

Although the classification of metal–metal bonds into distinct σ, π, and δ types is
reasonably clear in HW==−−WH (C2h), such diatomic symmetry labels may become
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Table 4.16. Orbital energies and occupancies of metal–metal bond and antibond
NBOs of quintuply bonded HWWH

Bond Antibond

Type Energya (a.u.) Occupancy (e) Energya (a.u.) Occupancy (e)

σWW −0.3675 1.9944 −0.0667 0.0446
πWW

(i) −0.2493 1.9739 −0.0018 0.0096
πWW

(o) −0.2478 1.9977 −0.0004 0.0187
δWW

(h) −0.2028 1.9840 −0.0676 0.0153
δWW

(u) −0.1751 1.9975 −0.0655 0.0023

a The expectation value of the one-electron Hamiltonian operator.

problematic in species of lower symmetry. This is illustrated in Fig. 4.25 for two of
the four metal–metal bonds of HRe==ReH. In both cases the bonding d-type NHOs
are seen to be rather strongly tilted with respect to the Re—Re bond axis, so that the
designation of “π-type” overlap (left) or “δ-type” overlap (right) is only vaguely
descriptive. (The remaining two bonds [not shown] are much more recognizably
of σ and π(i) types.) As has been emphasized elsewhere in this book, the optimal
NHOs and NBOs are free to adopt “bent-bond” forms that depart significantly
from diatomic-symmetry prototypes, and such departures are likely to become
more common in the multiple bonds of low-symmetry d-block compounds.

Figure 4.25 Bent “π(o)-like” (left) and “δ(h)-like” (right) metal–metal bonding
overlap in HReReH, showing tilting of bonding NHOs with respect to the bond
axis (the contour plane is perpendicular to one of the two Re—Re—H groups).
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Polynuclear metal–metal bonding

Owing to their wide range of valencies (1–6) and unusual sdµ hybrid angles, tran-
sition metals of groups 6–11 offer unique structural possibilities beyond those of
main-group elements. To illustrate both the similarities and the differences be-
tween main-group and transition-metal species, let us compare “analogous” com-
pounds built from formally isovalent atoms of the p and d blocks. For this purpose
we shall compare compounds of tetravalent osmium with the corresponding well-
known compounds of carbon, the prototypical tetravalent building block of organic
chemistry.

We have previously seen examples of the carbon-like formulas of mononuclear
and dinuclear osmium compounds, namely the “methane-like” tetrahydride (4.50c),
“ethylene-like” H2Os=CH2 (4.51c) and H2Os=OsH2 (Table 4.15), “acetylene-
like” HOs≡CH (4.54c) and HOs≡OsH (Table 4.15), “allene-like” H2C=Os=
CH2 (4.55a), and so forth. While the coordination numbers and Lewis-like formulas
are formally analogous, the actual structures of Os and C species may be quite
similar (e.g., the Td structures of OsH4 and CH4) or dissimilar (e.g., the strongly
bent Cs structure of H2Os=CH2 [Fig. 4.13(c)] versus the planar D2h structure of
H2C=CH2).

As further illustrative examples of Os-based carbon-like compounds, we can
mention “butadiene-like” Os4H6 (H2Os=OsH—OsH=OsH2), “cyclopropane-
like” Os3H6, and “cubane-like” Os8H8. Figure 4.26 displays optimized geometrical
structures of these Os-based compounds. All have geometries and NBO Lewis-like
descriptions corresponding closely to the analogous C-based compounds, but with
the strangely bent, hydride bond angles expected for transition-metal hybridization.
Thus, osmium and other group 8 transition metals (perhaps better than Si) appear
capable of mimicking many aspects of C-based organic chemistry.

In addition to analogs of known C-based structures, transition metals offer novel
bonding possibilities having no known precedents in main-group chemistry. As
a variation on the cubane-like cage motif of Fig. 4.26(c) built from tetravalent
osmium, we can envision construction of the analogous naked metal cage compound
Ir8

(4.57)

of trivalent iridium. Because the expected sd2 hybrids have natural 90◦ angles
(Fig. 4.2), such a cubic geometry is expected to have unstrained skeletal bonds (as
displayed in Fig. 4.27) and a well-localized Lewis-like bonding description, as is
found.



420 Molecular bonding in the d-block elements

Figure 4.26 Optimized structures of osmium hydride “hydrocarbon-like” com-
pounds: (a) butadiene-like H2Os=OsH—OsH=OsH2; (b) cyclopropane-like
Os3H6; and (c) cubane-like Os8H8.

Figure 4.27 The directed sd1.98 NHO (a) and the σIrIr NBO (b) in cubic Ir8

(RIrIr = 2.537 Å).
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4.4.4 Metal halides, oxides, and nitrides: Bent’s rule for transition metals

Main-group elements X such as monovalent F, divalent O, and trivalent N are
expected to form families of transition-metal compounds MX (M—F fluorides,
M=O oxides, M≡N nitrides) that are analogous to the corresponding p-block com-
pounds. In this section we wish to compare the geometries and NBO descriptors
of transition-metal halides, oxides, and nitrides briefly with the “isovalent” hydro-
carbon species (that is, we compare fluorides with hydrides or alkyls, oxides with
alkylidenes, and nitrides with alkylidynes). However, these substitutions also bring
in other important electronic variations whose effects will now be considered.

Two main features distinguish MX compounds (5 ≤ GX ≤ 7) from isovalent
MR hydride and alkyl compounds: (i) the higher electronegativity of X, lead-
ing to increasingly polar M—X bonds; and (ii) the availability of one or more
lone pairs on X, leading to the possibility of dative π-type interactions with low-
lying empty metal orbitals.27 The former change may result in changes of metal
hybridization and bond angles akin to those expressed by Bent’s rule (Section
3.2.6) for main-group elements,28 whereas the latter may involve hyperconjuga-
tive nX→nM

∗ or nX→σMR
∗ donor–acceptor interactions that also alter an idealized

metal-center geometry. We primarily consider Bent’s rule-type effects in the present
section.

As described in Section 3.2.6, Bent’s rule encompasses the relationships be-
tween bond polarity (ligand electronegativity) and central-atom geometry through
their mutual connection to central-atom hybridization. Such relationships for
d-block compounds are expected to differ significantly from those for p-block
compounds, due to the quite different idealized angles for sdµ hybridization (Sec-
tion 4.3.3) as well as the altered way in which s/d hybridization depends on bond
polarity. In particular, in MLn compounds with n > 3, two possible angles (αacute

and αobtuse) are associated with each idealized hybridization, so the effect of bond
polarization on geometry will generally depend on which isomeric angle is con-
sidered. Furthermore, for n > 2 the d orbitals required for the sdn−1 hybrids of the
sigma-bond skeleton are essentially disjoint from those remaining for lone pairs or
multiple-bond formation (unlike the corresponding situation for main-group lone
pairs, which must be involved in hybridization unless they are spatially perpendic-
ular to the entire sigma skeleton). Finally, the relative energies of transition-metal
s and d orbitals (which are often reversed by a simple change of configuration or
ionization) are no longer so widely separated as to allow rationalization of Bent’s
rule along the lines originally employed by Bent.

A robust generalization of Bent’s rule for d-block compounds can be based on the
following simple argument (cf. Section 3.2.6): increased electronegativity of ligand
X in an MHnX compound may be considered equivalent to a higher admixture of
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dissociated MHn
++ :X− ionic character, the latter requiring only idealized sdn−1

(rather than sdn) hybrids for skeletal bonding:

MHnX → MHn
++ :X− (4.58)

(sdn) (sdn−1)

Thus, increased ionic character of the M—X bond should generally result in de-
creased d character (or increased s character) in the remaining apolar M—H bonds,
which corresponds to increased d character (decreased s character) in the polar
M—X bond itself. We have already seen for simple metal hydrides and alkyls
this general correlation: increased d character in hybrids is associated with more
polarized bonds.

This general argument may be summarized as follows.

Bent’s rule for d-block elements. Increased metal s character tends to go to the M—L bonds
of higher covalent character, and increased d character to the bonds of higher ionic character.

Note that the association of higher d character with higher bond ionicity ex-
tends to polarity of either sign, a subtle but important difference with respect to
corresponding Bent’s rule statements for p-block elements.29

From the idealized hybrid angles summarized in Table 4.3, we can now draw cer-
tain geometrical inferences connected with Bent’s-rule-like bond-polarity changes
in d-block MLn compounds. For n = 2, 3, little geometrical effect is expected from
a change in bond polarity or percentage d character, because the idealized hybrid
angles are invariant (90◦) for n = 3 and n = 2. For n ≥ 4 some geometrical effect
is expected, but the change of bond angle with increased d character will be of op-
posite sign depending on whether the isomer with acute (αacute) or obtuse (αobtuse)
bond angle is selected. We can summarize the expected geometrical consequences
of Bent’s rule as follows.

Geometrical consequences of Bent’s rule. Relative to idealized MLn angles, increased
d character (increased bond polarity) tends to decrease acute angles and increase obtuse
angles for n ≥ 4, but has little effect for n ≤ 3 (near-perpendicular bond angles).

Compared with main-group compounds, one can therefore expect that Bent’s rule-
like geometrical variations in transition-metal compounds are somewhat muted (or
exhibit conflicting patterns of increases and decreases, dependent on the isomer
chosen), as the examples below will indicate.

Halides

As a simple example of isovalent replacement of hydride by halide ligands, let us
first consider the set of monohalide substitutions on tetrahedral OsH4 and pyramidal
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IrH3:

OsH3X and IrH2X, X = F, Cl, Br, I

Table 4.17 summarizes the optimized bond angles θXMH and θHMH and M—X and
M—H hybrid and bond-polarity descriptors for these species.

As shown in Table 4.17, the metal hybrids and bond angles do vary in the manner
expected from the generalized version of Bent’s rule stated above. For the OsH3X
series, the d character of the polar M—X bond increases (to sd5.70 for X = F) and that
of the less polar Os—H bonds correspondingly decreases as the electronegativity
difference between Os and X increases. Compared with idealized tetrahedral bond
angles (αobtuse = 109.5◦) of sd3 hybridization, the X—Os—H angles also increase
(to 113.4◦ for X = F) as bond polarity increases, with concomitant reduction in
H—Os—H bond angles. In keeping with the ionic/covalent model that underlies
the d-block version of Bent’s rule, we expect that the IrH2X series will exhibit
constant H—Ir—H bond angles of 90◦, because the idealized bond angles for sd2

(the covalent limit) and sd1 (the ionic limit) hybridization of the Ir—H bonds
are equal. In accordance with this expectation, the IrH2X structures exhibit only
minuscule variations in H—Ir—H angles, whereas the X—Ir—H angles increase
significantly (to 105.3◦ for X = F) with increasing electronegativity of X.

We can estimate the numerical trends more directly from the statement of Bent’s
rule based on (4.58). Noting that the Os—H bond of OsH4 is almost perfectly
covalent (i.e., 49.6% polarization to Os, QH � 0 in OsH4), we can expect for a
substituted OsH3X compound that the charge QX of a general monovalent X will
vary from QX = −1 in the pure ionic case to QX = 0 in the pure covalent case.
As a crude measure of the fractional weightings fion and fcov of ionic and covalent
forms in (4.58), we can therefore write

fion = −QX, fcov = 1 − fion = 1 + QX (4.59)

According to these fractional weightings, the percentage d character of each Os—H
bond hybrid is therefore expected to vary between 75% (for sd3 hybrids, the covalent
limit) and 66.7% (for sd2 hybrids, the ionic limit) with changing electronegativity
of X:

(%d)OsH = fcov(75%) + fion(66.7%) = 75% + QX(8.3%) (4.60a)

From the sum rule (4.42b) we can furthermore recognize that

(%d)OsX = 3[100 − (%d)OsH] (4.60b)

The d-character estimates (4.60a) and (4.60b) can in turn be expressed as µH and
µX values to estimate bond angles with the help of (4.43), as illustrated in the
following example.
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Example 4.6

Problem: Compare the OsH3X hybridizations and bond angles predicted by the simple
Bent’s rule estimates (4.59) and (4.60) with the actual values of Table 4.17.

Solution: From (4.60a) and (4.60b), the estimated and actual percentage d characters of the
Os—H and Os—X hybrids in each OsH3X compound are found to be

%d character of Os—H hybrid %d character of Os—X hybrid

X = F X = Cl X = Br X = I X = F X = Cl X = Br X = I

Estimated 71.1% 72.6% 73.2% 73.9% 86.7% 82.2% 80.3% 78.2%
Actual 71.5% 73.9% 74.2% 74.8% 83.8% 75.9% 74.1% 72.2%

From the relationship %d = µ/(1 + µ), we can estimate, for example, that the Os—H
hybrids in OsH3F are of sd2.46 type (versus actual sd2.51), leading through (4.43) to an
estimated H—Os—H bond angle of 104.5◦ (versus actual 105.2◦). In a similar manner the
estimated and actual H—Os—H angles in each OsH3X compound are found to be

H—Os—H bond angle (degrees)

X = H X = F X = Cl X = Br X = I

Estimated 109.5 104.5 106.6 107.4 108.2
Formal NHO 109.4 105.1 108.3 109.0 109.8
Actual 109.5 104.8 108.8 109.7 110.3

The qualitative trends are reproduced fairly well by these simple estimates.

One might also consider the effect of halogen substitution on the C3v(i) “in-
verted” isomer of OsH4 (Fig. 4.7(a)). However, it is found that the substituted
OsH3X halide species no longer exhibit this isomeric form as a distinct equilibrium
geometry. Instead, the potential surface for umbrella-like deformations exhibits a
strong inflection feature near the expected C3v(i)-like geometry, as illustrated for
OsH3F in Fig. 4.28. The IR angular vibrations of OsH3F and other OsH3X halides
are therefore expected to exhibit anomalous anharmonicity effects corresponding
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Figure 4.28 The potential for “umbrella” inversion motion of OsH3F, showing the
inflection feature near idealized C3v(i) geometry (∼70◦).

to the “missing” inverted C3v(i) isomer, but further aspects of Bent’s rule alteration
of hybridization for this isomer cannot be examined directly.

Let us now consider the effects of full substitution with more electronegative
fluoride ligands in the saturated third-series metal fluorides MFn corresponding to
hydrides:

(4.61)

Figure 4.29 and Table 4.18 show the optimized geometries of these fluorides for
direct comparison with those of the corresponding hydrides in Fig. 4.6 and Ta-
ble 4.4.

The visual impression conveyed by comparison of Figs. 4.6 and 4.29 is that
fluoride bond angles are “opened up” relative to corresponding hydride angles.
This is confirmed by the numerical values in Tables 4.4 and 4.17, showing that the
strongly acute hydride bond angles are replaced by more nearly perpendicular or
obtuse bond angles in the fluorides (in which only three F—Re—F angles remain
significantly acute). Because the idealized hybrids for equivalent ligand bonding
would be expected to be the same for H as for F, the increased F—M—F angles
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Figure 4.29 Optimized geometries of saturated group 6–11 third series transition-
metal fluorides MFn (see Table 4.18).

presumably reflect the repulsive effects of higher charges and/or steric demands of
anionic fluoride ligands. This generalized opening of bond angles is accompanied
by a dramatic change of symmetry: tungsten hexafluoride achieves Oh symmetry,
versus C3v for WH6.

Why is WF6 octahedral but WH6 is not? The acute sd5-like angles of WH6 are
clearly associated with the strong role of covalency and directional hybridization
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Table 4.18. Bond lengths RMF and angles θFMF of saturated metal fluorides MFn

of the third transition series (see Fig. 4.29)

MFn Symmetry RMF (Å) Bond angle θFMF (degrees)

WF6 Oh 1.866(6) 90.0(12), 180.0(3)

ReF5 Cs 1.854, 1.870(4) 81.5(2), 79.0, 124.1(2),
84.1(2), 151.5(2), 107.8

OsF4 Td 1.90(4) 109.5

IrF3 C3v 1.871(3) 116.7(3)

PtF2 C2v 1.886(2) 128.1

AuF C∞v 1.982

in the apolar hydrides. For WH6, a very good approximation to the electronic
structure is that a neutral W atom and six neutral H atoms form six pure covalent
bonds. Not surprisingly, such a pure covalent description of W—F bonding is a very
poor starting point for WF6. Natural charges for WF6 (QW = +2.80, QF = −0.47)
indicate a better zeroth-order approximation: WF3

3+ + 3F− ions. For now, let us
focus on a strictly localized Lewis-like description of the WF3

3+ fragment, keeping
in mind that resonance and 3c/4e hyperbonding (described in later sections) will
be needed to describe the final WF6. Hybridization prescriptions suggest ∼ sd2

hybridization, and hence 90◦ bond angles, at the WF3
3+ fragment. A duodectet

count at the metal can be completed by making each of the W–F interactions a
double bond. Hence, we can crudely consider the “core” of the WF6 electronic
structure to be represented by the pyramidal fragment WF3

3+ with Lewis-like
structure as shown below:

(4.62)

(Geometry optimization of WF3
3+ leads to a pyramidal fragment with F—W—

F bond angles of 100.9◦.) Successive linear 3c/4e F− hyperbonding additions to
each W=F bond of (4.62) then lead to the final resonance-stabilized WF6 species
of Oh symmetry. The overall pattern of comparison between Figs. 4.6 and 4.29
indicates that oversimplified models of bonding (whether of VSEPR/electrostatic
or idealized hybrid type) will encounter greater difficulties in rationalizing the
structures of transition-metal compounds than they will in rationalizing structures
of corresponding main-group compounds.
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Oxides and hydroxides

Is the valency of oxygen rigorously, or even commonly, limited to two? For the
p-block compounds, few deviations from simple divalency occur, with group V
oxides and various oxyacids making notable exceptions. However, with d-block
elements the strong driving force to achieve duodectet bonding, combined with
the increased bonding opportunities enabled by valence s and d orbitals, results in
oxygen valencies varying from one to four.

Consider, for example, the sequences of hydridometal oxides (H3MO, M =
Ta, Re, Ir) and corresponding hydroxides (H3MOH, M = Hf, W, Os) and their
duodectet-rule-conforming Lewis-like structures (noting as usual that such dia-
grams do not depict geometrical arrangements):

(4.63)

For such series, the fidelity of Lewis-like predictions can be measured readily by
monitoring both the molecular shapes and the NBO analyses. In each molecule
the sigma-bond framework prescribes ∼sd3 hybridization. Owing to the high elec-
tronegativity of oxygen we expect greater d character in the M—O metal hybrid
and correspondingly less in the M—H hybrids. Thus, from the sigma-bonding per-
spective, we expect C3v symmetry with O—M—H bond angles somewhat greater
than 109◦. The effects of pi-bonding are readily predicted: a single pi bond lowers
the symmetry by forcing one O—M—H angle to a smaller value, whereas two pi
bonds restore effective C3 symmetry but with all O—M—H angles lowered. Fur-
thermore, the hydroxide series is expected to exhibit increasing M—O—H angles
as the number of pi bonds is increased, maximizing at 180◦ for H3HfOH. As the
data in Table 4.19 indicate, all of these expectations are met and the best NBO
configuration closely resembles the Lewis-like picture.

Transition-metal oxo complexes are routinely depicted as having M=O double
bonds, but, as these remarkable series demonstrate, the best single configuration
description of the M—O bond can vary from a single bond (as in H3IrO) to a
triple bond (as in H3WO). Examined in detail, the M—O bonds are highly polar
(8%–41% metal character), and vicinal hyperconjugations contribute appreciable
resonance stabilizations beyond the formal Lewis-like structure. Nonetheless, or-
derly variations in the Lewis-like bonding pattern are revealed compellingly by the
changes in molecular shape, spanning variations in formal oxygen valency from
one (H3IrO) to four (H3HfOH).
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Let us briefly make connection with monoxides of the p-block elements. Both
in terms of molecular geometry and in terms of valency, H3IrO (which is a simple
model for the fascinating oxygenation catalysts30 based on (mesityl)3IrO), is a
d-block cousin of H3PO, phosphine oxide. Both complexes can better be depicted
as involving polar M—O single bonds rather than the double bonds that dominate
literature representations.

Even for conventional M=O bonding, gradual replacement of two hydride lig-
ands with a single oxide leads to increasingly ionic structures and more com-
plex bonding patterns, such as in the series H4WO, H2WO2, WO3, or H2OsO and
OsO2:

(4.64)

Figure 4.30 displays the equilibrium structures of (4.64a)–(4.64e) and Table 4.20
lists corresponding optimized bond lengths and angles. It is immediately suggested
by the strangely acute bond angles in H4WO (e.g., 62.0◦ and 69.4◦ H—W—H
angles) that hybridization effects continue to control the monoxide geometry. Sim-
ilarly, WO3 and OsO2 exhibit the respective pyramidal and bent structures that
are seen in the corresponding alklyidene complexes. Thus, consistently with the
Lewis-like formulas (4.64), substantial covalency and M=O double-bond charac-
ter appears to be a general characteristic of metal–oxide bonding throughout this
series.

In contrast with the M=C bonds of tungsten and osmium alkylidenes, the oxide
M=O bonds are significantly more polar and the metal centers acquire substan-
tial positive charge. The NBO analysis generally confirms the Lewis-like M—O
description of metal–oxide bonding in these species, but substantial delocalization
effects are present, which lower the accuracy of a single Lewis-like representation.
Delocalization effects will be discussed in later sections, but we can emphasize
at this point that deviations from the idealized Lewis-like prescriptions are ex-
pected whenever the charge distributions deviate strongly from pure covalency, as
in comparing, e.g., WF6 with WH6.

Nitrides and imides

Trends in metal–nitrogen bonding can be illustrated by series of nitrido (H3MN,
M = W, Os) and imido (H3MNH, M = Ta, Re, Ir) complexes, isovalent counterparts
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Figure 4.30 Optimized structures of tungsten and osmium oxides (4.64a)–(4.64e).

of corresponding oxide and hydroxide complexes of the previous section:

(4.65)

Optimized structures of these species are shown in Fig. 4.31 and geometrical and
NBO descriptors are summarized in Table 4.21. As shown by comparisons with
Table 4.19, the geometrical features of the nitride and imide complexes exhibit
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Table 4.20. Optimized geometrical parameters, metal charge (QM) and Lewis
accuracy (%ρL) of tungsten and osmium oxides (4.64a)–(4.64e); see Fig. 4.30

θOMO θHMO θHMH

Species Symmetry RMH(Å) RMO(Å) (degrees) (degrees) (degrees) QM %ρL

H4WO C1 1.683, 1.689 109.7, 60.3(2), 1.195 95.96
1.695, 118.4 120.5,
1.761(2) 99.1(2) 109.8(2),

131.9

H2WO2 C2v 1.721 1.708 109.4 106.9 119.8 1.746 94.89

WO3 C3v 1.734 107.2 1.980 95.65

H2OsO C2v 1.632 1.653 116.6 126.7 0.729 97.56

OsO2 C2v 1.699 123.2 1.074 95.04

strong parallels with the analogous oxide and hydroxide complexes. The overall
symmetry and specific bond angles are in close correspondence to those expected
from the Lewis-like picture. Further support is provided by NBO analysis, which
indicates reasonably high Lewis accuracies, of the order of 97%–99%, with the
exception of two notable outliers. Conspicuously lower Lewis accuracies of 93.7%
and 94.4% characterize the complexes H3OsN and HNIrH3, respectively, both of
which represent the rather unusual N formal charge of −1 (two lone pairs, two
bonds). The “best” NBO assignment also differs (by an additional “πMN” bond of
low occupancy and distorted form) from the idealized Lewis-like representations
in (4.65b) and (4.65e), indicating the occurrence of strong resonance delocaliza-
tion of the anionic N lone pair into adjacent M—H antibonds. Given the rather
small differences in electronegativities for Os, Ir, and N, we are led to conclude
(in accordance with Pauling’s “electroneutrality principle”) that Lewis structures
with excessive formal charge have a diminished probability of describing realistic
bonding.

The un-VSEPR-like bond angles in Fig. 4.31 again reflect the strong role of
hybridization in controlling nitride geometry. The NBO descriptors in Table 4.21
show the expected similarities to metal–alkylidene bonding, and the variations
of hybrid d character and bond polarity are in general accord with the d-block
generalization of Bent’s rule as formulated above.

In summary, the Lewis-like model seems to predict the composition, qualitative
molecular shape, and general forms of hybrids and bond functions accurately for a
wide variety of main-group derivatives of transition metals. The sd-hybridization
and duodectet-rule concepts for d-block elements therefore appear to offer an ex-
tended “zeroth-order” Lewis-like model of covalent bonding that spans main-group
and transition-metal chemistry in a satisfactorily unified manner.



434 Molecular bonding in the d-block elements

Figure 4.31 Optimized structures of transition-metal nitrides and imides (4.65).

4.5 Coordinative metal–ligand bonding

4.5.1 A preliminary overview of metal–ligand coordination

Werner’s model of coordinative bonding

Much confusion in the early history of aqueous transition-metal chemistry stemmed
from the inability to distinguish “free” formula ions (serving merely as solvent-
separated counterions) from those that remain in direct “coordinated” contact with
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Alfred Werner

the transition metal. A classic case is provided by ammoniated complexes of
cobalt(III) chloride, with empirical formulas such as

CoCl3 · 6NH3 (4.66a)

CoCl3 · 5NH3 (4.66b)

CoCl3 · 4NH3 (4.66c)

Surprisingly, the compound (4.66c) can be obtained in two distinct isomeric forms
(of distinct colors, etc.) whereas (4.66a) and (4.66b) each correspond to unique
chemical species. Plausible structural formulas for such species presented a great
mystery to nineteenth-century chemists.

The structural and formulaic questions concerning compounds such as (4.66a)–
(4.66c) were largely resolved by Alfred Werner,31 the first inorganic chemist to
receive a Nobel Prize (1913). Werner carefully studied the total number of free
ions contributing to ionic conductivity, as well as the number of free chloride ions
that could be precipitated (exchanged with a more soluble ion) under conditions of
excess Ag+, namely

CoCl3 · 6NH3 →
{

4 total ions
3 free Cl−

(4.67a)

CoCl3 · 5NH3 →
{

3 total ions
2 free Cl−

(4.67b)

CoCl3 · 4NH3 →
{

2 total ions
1 free Cl−

(4.67c)
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From such evidence, Werner deduced the aqueous forms of these compounds to
be

[Co(NH3)6]3+(aq) + 3Cl−(aq) (4.68a)

[Co(NH3)5Cl]2+(aq) + 2Cl−(aq) (4.68b)

[Co(NH3)4Cl2]+(aq) + Cl−(aq) (4.68c)

A striking feature of the formulas (4.68a)–(4.68c) is that the “coordination num-
ber” (CN) of ligands bonded to Co is six (CN = 6) in each case. Werner conjec-
tured that such six-fold coordination corresponds to idealized octahedral geometry
about the central Co ion, which leads to unique structures for [Co(NH3)6]3+ and
[Co(NH3)5Cl]2+ but distinct cis and trans isomers for [Co(NH3)4Cl2]+, as ob-
served. X-ray studies subsequently confirmed the accuracy of Werner’s brilliant
structural inferences.

These and many similar examples resulted in a highly successful general picture
of transition-metal ions M coordinated by closed-shell ligands L (anionic or neutral)
to form complex cluster ions [MLn]q in solution. The characteristic coordination
shell of each M corresponds to a specific number of sites, with idealized geometry
that dictates the possible number of distinct [M(L1)n(L2)m . . .]q structural isomers.
Each cluster ion is subject to equilibria with other cluster ions or dissociated ligands
in solution,

[M(L1)n(L2)m . . .]q + L2 � [M(L1)n−1(L2)m+1 . . .]q ′ + L1 (4.69)

reflecting the relative “lability” (ease of dissociative exchange) of the coordinated
ligands. Each complex cluster ion also has distinct magnetic and spectroscopic
properties (within the kinetic time scale of ligand-exchange reactions such as (4.69))
that serve as fingerprints of the coordinative environment of M.

Because the low-lying spectroscopic transitions of these species commonly lie in
the visible region of the spectrum, coordinated transition metals underlie the colors
of many natural and synthetic dyestuffs. Coordinated transition metals are also
conspicuous features of the active sites of metalloproteins and play an important
role in living systems.

Crystal-field and ligand-field theories of metal–ligand coordination

As early as 1929, H. A. Bethe32 constructed a simple perturbative “crystal-field the-
ory” for energy levels and spectroscopic transitions of coordinated transition-metal
ions. Bethe’s theory begins from the atomic spectroscopy of the bare transition-
metal cation M, perturbed by the electrostatic field of incoming ligands L in the
(assumed) geometry of the coordination shell. Each ligand is pictured as an anionic
point charge that electrostatically destabilizes proximal metal d orbitals. Metal d
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orbitals pointed toward the ligands are thereby raised in energy relative to those
directed between ligands, splitting the initially degenerate metal d levels into non-
degenerate sets.

For example, in the octahedral crystal field of six ligands along the ±x, ±y, and
±z axes, the dz2 and dx2−y2 orbitals (the “eg” set) have their lobes pointing directly
toward the ligands, and are thus raised in energy relative to the dxy, dxz, and dyz

orbitals (the “t2g” set) whose lobes point between ligands. This can be represented
by the orbital-splitting diagram

(4.70)

As shown in (4.70), the crystal-field splitting energy is labeled “10Dq” and can be
identified with low-lying experimental spectroscopic transitions between t2g and eg

levels, leading to a characteristic measure of the crystal-field interaction strength
of each ligand type. From such measured crystal-field splitting parameters, one can
order various common ligands in a “spectrochemical series” of apparent interaction
strength,

10Dq: SCN− < Cl− < F− < OH− < H2O < NCS− < NH3

< NO2
− < CH3

− < CN− < CO (4.71)

The spectrochemical series generally predicts the direction of ligand-exchange
equilibria such as (4.69), with ligands to the right being more tightly bound (and
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thus less labile with respect to exchange) than those to the left. For each formal
d count (>3) the splitting diagram (4.70) also dictates whether metal d electrons
remain unpaired in the high-spin configuration that places some electrons in the
high-energy eg set (if 10Dq is small), or pair up in the low-spin configuration
that maximizes occupancy of the low-energy t2g set (if 10Dq is large). Combined
with the spectrochemical series (4.71), the crystal-field splitting diagrams (4.70)
for various coordination symmetries thereby allow many chemical, magnetic, and
spectroscopic properties of transition-metal complexes to be rationalized in a qual-
itatively satisfactory manner.

However, brief examination of the spectrochemical series (4.71) reveals that the
ordered 10Dq values are not related in any obvious way to electrostatic properties
of the ligands (net charge, dipole moment, etc.). Indeed, the strongest crystal-field
splitting in (4.71) corresponds to the CO ligand that has neither net charge nor an
appreciable dipole moment. Conversely, the ionic F− ligand (which should best
correspond to the “point-charge” assumption of crystal-field theory) is among the
weaker ligands in this series. Thus, there are obvious chemical inconsistencies with
the simple ionic picture that underlies crystal-field theory.

J. H. Van Vleck and others33 subsequently refined the ionic crystal-field theory to
incorporate covalent effects expected from Mulliken’s MO treatment of main-group
compounds. The resulting “ligand-field theory” is often taken as synonymous with
full MO treatment of the transition-metal complex. Ligand-field theory emphasizes
the mixing of metal and ligand orbitals that leads to energetic shifts of metal-
based MOs (and thus to typical crystal-field splitting patterns) as well as associated
changes in ligand-based MOs (such as “pi-backbonding”; see Section 4.5.4 below)
that led to overall stabilization and aggregation even in the absence of net charge or
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strong ionic character. As usual, the full MO description tends to obscure localized
aspects of metal–ligand interactions due to symmetry and near-degeneracy mixings
in the canonical MOs that exaggerate the apparent “delocalized” character.

The localized Lewis-like picture of metal–ligand coordination: two- versus
three-center aspects

From the localized Lewis-like perspective, we can picture coordinative metal–
ligand interactions as involving two distinct “types” of localized bonding (which
have already been discussed in the context of main-group chemistry; Sections 3.2.11
and 3.5):

(1) 2c/2e dative bonding (of nL→dM
∗ type); and

(2) 3c/4e hypervalent ω-bonding (of nL→σML
∗ or L: M—L ←→ L—M :L type).

Given the plethora of unfilled metal d orbitals, one could expect that dative-type
interactions with closed-shell Lewis bases would become more common for group
3–12 transition metals than for main-group elements (e.g., B or Al of group 13).
However, even more striking is the greater facility of transition metals to participate
in hypervalent ω-bonding. In most cases, interaction of M and :L to form a dative
M—L bond (of formal M−—L+ polarity) is accompanied by hypervalent L: +
M—L attack by a second :L ligand to form a pair of (near-linear) ωL:ML and
ωL−M:L prebonds, in accord with the Pimentel–Rundle three-center MO picture
(Section 3.5). Thus, formal hypervalency is a ubiquitous feature of transition-metal
coordination complexes.

In order to make a formal separation between two- and three-center aspects of
coordinative bonding, we shall first consider various aspects of simple two-center
dative M—L coordination within the framework of normal-valent transition-metal
complexes. Aspects of hypervalent ω-bonding to form higher-coordinate com-
plexes (the more common experimental species) will subsequently be considered
in Section 4.5.3.

4.5.2 Sigma coordinative bonding

A transition metal with partially filled d shell can evidently participate either as a
Lewis acid or as a Lewis base in 2c/2e dative interactions,

M + :B → M−—B+ (4.72a)

M: + A → M+—A− (4.72b)

As shown in (4.72a) and (4.72b), such interactions give rise to formal sigma bonds
(σMB or σMA) that are expected to be oppositely polarized, with atomic charges of
opposite sign on the metal atom depending on whether donation is to (4.72a) or
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Table 4.22. Geometrical and NBO parameters for ammine, phosphine, and
carbonyl coordination complexes of Os and Re hydrides, showing bond angles,
valence Lewis accuracy (%ρL), and metal bond hybrid (hM) and polarization

(%cM
2) of σML and σMH NBOs

Angles (degrees) %ρL σML σMH

Species θHMH θLMH QM Valence Total hM %cM
2 hM %cM

2

OsH2NH3 107.7 95.8 −0.046 98.53 99.88 sd3.07 15.6 sd1.89 44.8

OsH2PH3 102.5 90.9 −0.295 97.80 99.55 sd1.93 33.7 sd2.12 47.9

OsH2CO 98.5 90.2 −0.045 96.25 99.13 sd2.30 34.7 sd1.90 49.9

ReH3NH3 111.2(2) 108.2(2) 0.278 99.53 99.87 sd3.63 13.5 sd2.81 41.9
110.7 107.1 sd2.79 41.9

ReH3PH3 117.0 100.0 0.007 98.01 99.59 sd2.43 29.3 sd3.20 43.9

ReH3CO 119.6 93.5 0.272 96.36 99.15 sd2.59 32.7 sd3.13 45.5

from (4.72b) the metal atom.34 Of the two types of dative interactions, coordinative
bonding of M with a closed-shell Lewis base :L (4.72a) is by far the more important
case, and we give primary attention to such bonding in the present section.

As simple examples of (4.72a), let us first consider coordinative additions of three
common ligand classes – ammines (represented by NH3), phosphines (represented
by PH3), and carbonyl (CO) – to simple metal fragments to yield OsH2L and ReH3L
complexes. Owing to the approximate respective isovalency of OsH2L and ReH3L
with IrH2X and OsH3X (X = H or halide), we can compare directly the nature of the
Lewis donor–acceptor bonding interaction with that of the covalent bonds discussed
previously. Table 4.22 summarizes relevant bond angles, metal charges, and other
NBO descriptors for the three ligand classes. Overall hybridizations are seen to
follow the Lewis-like formulas with ∼sd2 hybridization for the OsH2L complexes
and ∼sd3 for ReH3L. As expected for bonds that dissociate in heterolytic fashion,
all of the M—L bond polarities shown in Table 4.22 are distinctly polarized toward
L (%cM

2 = 15.6%–34.7%).
Do dative bonds for d-block acceptors exhibit the critical attributes we have

previously seen for the p block? Figure 4.32 demonstrates clearly that dissociation
of NH3 from the OsH2 fragment results in “mirror-image” profiles of 	Q versus
distance that are strikingly similar to the dative bond in F3B:NH3 (Section 3.2.10).
Decreased charge at the metal (acceptor) atom is clearly seen at shorter distances;
as the donor ligand is pulled away, charge at the metal increases to yield a net 	Q
of ∼0.17 at long range.
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Figure 4.32 “Mirror-image” atomic charge variations 	Q = Q(R) − Q(∞) for
Os (circles) and nitrogen (squares) atoms of the σOsN dative bond (Req = 2.087 Å)
of the OsH2NH3 coordination complex (see Fig. 3.34).

Also characteristic of dative bonding is substantial deviation of bond ionicity
from those calculated according to electronegativity differences. In this regard,
the phosphine complex OsH2PH3 is illustrative. Because Os (χOs = 2.57) is more
electronegative than P (χp = 2.06), simple electronegativity considerations predict
a bond ionicity iOsP = 0.205, polarized 60.2% toward Os. However, as the data
in Table 4.22 show, the dative bond is strongly polarized in the opposite direction
(%cOs

2 = 33.7%). Nonetheless, the relationship between hybridization and bond
polarity follows the expected trend. For the example of OsH3NH3, N (χN = 3.07)
has high electronegativity relative to H (χH = 2.10) and therefore makes bonds
with higher metal hybrid d character (sd3.07 versus sd2 ideal). Correspondingly in
OsH3PH3, the bonds to the less electronegative P atom have lower d character
(sd1.93 versus sd2 ideal).

To illustrate further aspects of the interplay between covalent and coordi-
nate bonding, let us consider the successive coordinative additions of ammo-
nia molecules (ammine ligands, :NH3) to tungsten hydrides in the series H6−2n

W(NH3)n, n = 1 − 3,

+NH3 +NH3 +NH3

WH6 −→ H4W(NH3) −→ H2W(NH3)2 −→ W(NH3)3

−2H −2H −2H
(4.73)
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Figure 4.33 Optimized structures of H6−2n W(NH3)n coordination complexes:
(a) H4W(NH3), (b) H2W(NH3)2, and (c) W(NH3)3.

Each coordinated complex in (4.73) is a normal closed-shell duodectet,

(4.74)

with lone pairs and coordinative W←:N donor–acceptor bonds successively re-
placing pairs of W—H covalent bonds in the closed W valence shell.

Figure 4.33 displays optimized structures of the amminated coordination
complexes H6−2nW(NH3)n, n = 1 − 3. Table 4.23 summarizes the metal atomic
charges (QW) and energies (	En) of successive coordination reactions in (4.73),

	En = E[H6−2nW(NH3)n] − E[H6−2(n−1)W(NH3)n−1] − E[NH3] + E[H2]
(4.75)

and the forms of the σWN dative-bond NBOs in each coordination complex.
As shown in the third column of Table 4.23, replacement of two H

.
radicals by a

coordinative ammine ligand becomes successively more endothermic for increasing
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Table 4.23. Metal (QW) and ligand (QL) charges, the energy (	En) of the
coordination reaction (4.75), and the form of the σWL coordinative bond NBO for

H6 − 2nWLn complexes, L = NH3 (see Fig. 4.33)

n Species 	En (kcal mol−1) QW QL
a σWL

1 H4W(NH3) +11.34 +0.424 +0.188 0.327(sd3.99)W+
0.945(sp2.52)N

2 H2W(NH3)2 +2.42 +0.226 +0.164 0.323(sd5.61)W+
0.946(sp2.37)N

3 W(NH3)3 +37.74 −0.238 +0.079 (nN→nW
∗)b

a Average value for inequivalent ligands.
b Strong donor–acceptor interactions (second-order energies: 75–90 kcal mol−1) from ni-

trogen lone pair (∼sp5) to unfilled tungsten orbital (∼sd3).

n (although each species remains a stable equilibrium structure, with all positive fre-
quencies). As expected, each ammine ligand becomes somewhat positively charged
and the charge on tungsten shifts toward negative values as n increases, in accor-
dance with the formal charge assignments in (4.72a). However, the progressive
difficulty of successive coordinative donations is seen in the decreasing charges
on the donor ammine ligands on going from n = 1 (+0.19) to n = 3 (+0.08). This
effect can also be seen in the form of the coordinative σWN bond, which becomes
increasingly polarized toward the ligand until the coordinative interaction is no
longer recognized as a formal “bond” (but only a strong nN→nW

∗ donor–acceptor
interaction) for n = 3. Evidently, each dative L→M interaction tends to disfavor
further interactions of this type (in the expected anticooperative pattern of successive
donor–acceptor interactions; cf. Section 2.6), due to the increasingly unfavorable
build-up of negative charge on the metal atom.

Figure 4.34 shows the form of the interacting metal and ligand NHOs and the
final σWN NBO for H4W(NH3), n = 1. (Corresponding plots for n = 2 and 3 are
very similar.) The complementary “lock-and-key” overlap of the donor and accep-
tor hybrids is apparent in Fig. 4.34(a). The localized ammine→metal (nL→nM

∗)
interaction depicted in Fig. 4.34(a) is representative of “sigma donation” in a large
number of metal–ligand complexes.

Coordination is further promoted by secondary donor–acceptor interactions be-
tween orbitals of the metal fragment and the ligand. Representative examples of
such interactions are shown in Fig. 4.35 for the special case of H2W(NH3)2 (cf.
Fig. 4.33(b)).

Leading vicinal interactions of nW→σNH
∗ and σWH→σNH

∗ type that are char-
acteristic of a single ammine ligand are shown in Figs. 4.35(a) and (b). These
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Figure 4.34 The coordinative σWN bond in H4W(NH3) in terms of (a) overlapping
NHOs and (b) the final NBO.

Figure 4.35 Leading hyperconjugative donor–acceptor interactions between am-
mine ligand and amminated metal fragment in H2W(NH3)2; cf. Fig. 4.33(b).



446 Molecular bonding in the d-block elements

interactions are rather analogous (and similar in magnitude) to the hyperconjuga-
tive n→σ∗ and σ→σ∗ interactions discussed in Section 3.4.2. As shown in Fig. 4.35,
these interactions are maximized in coplanar arrangements and evidently contribute
to torsional potentials about the metal–ligand bond, as do their main-group analogs.
Each nW→σNH

∗ and σWH→σNH
∗ interaction transfers partial charge from metal

to ligand (which is the opposite to the main coordinative nN→nW
∗ interaction) and

thus constitutes a weak form of “backbonding” to unfilled ligand σ∗ orbitals, which
are expected to be present in many coordination species.35 In view of their relative
weakness and the general similarity to main-group hyperconjugative analogs, such
backbonding-type metal–ligand interactions will not be discussed further here.

The strong vicinal σNH→σWN′ ∗ interaction that is characteristic of two or more
coordinative ligands is shown in Fig. 4.35(c). This interaction is again formally
similar to the hyperconjugative main-group interactions discussed in Section 3.4.2,
and acts as usual to stabilize conformations in which each W—N coordinative
bond is anti to a ligand N—H bond. Because the coordinative σWN′ ∗ antibond is
strongly (and favorably) polarized toward the metal end of the torsional N—W axis,
the σNH→σWN′ ∗ interaction is much stronger than in analogous non-coordinate
systems, and the effects on geometry (namely the conspicuously closed H—N—W
angle to the σNH donor and open N—W—N angle to the σWN

∗ acceptor; cf. Section
3.4.2) are correspondingly more pronounced.

The remaining strong geminal σWN→σWN′ ∗ interaction (8.18 kcal mol−1; Fig.
4.35(d)) is closely related to the hypervalent 3c/4e (nN→σWN

∗) interactions to be
described in Section 4.6 below. As is evident in Fig. 4.35(d), this interaction is
strengthened by more linear N—W—N′ alignments and thus contributes to the
conspicuously large bond angle (θNWN′ = 145.0◦) between ligands in Fig. 4.33(b).
The strangely “T-shaped” geometry of the triammine (Fig. 4.33(c)) also reflects
the tendency of ligands to “pair up” in near-linear L—M—L arrangements, op-
posing the expected symmetry of equivalent metal hybrids. Thus, hyperconjuga-
tive interactions such as depicted in Fig. 4.35 play an important role in distorting
the coordinative geometry away from the “expected” idealized sdµ-hybrid forms
characteristic of covalent organometallic compounds. These interactions are also
responsible for the alternating pattern of 	En values in Table 4.23.

Each closed-shell parent species in (4.74) also gives rise to daughter radical
species of higher spin by successive removal of hydrogen atoms; that is, starting
from the parent tetrahydride,

−H −H −H
H4WNH3 −→ H3WNH3 −→ H2WNH3 −→ · · ·

singlet doublet triplet
radical diradical

(4.76)
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The specified spin multiplicity in (4.76) is in each case that expected from Hund’s
rule, with electrons maximally unpaired in remaining orbitals of the tungsten va-
lence shell. Further discussion of daughter radical species is beyond the scope of this
work, but certain aspects of open-shell coordination complexes will be considered
in Section 4.6.4. below.

4.6 Beyond sigma bonding: transition-metal hyperbonding
and pi back/frontbonding

The metal complexes discussed thus far bear little resemblance to the vast majority
of common transition-metal complexes. Transition-metal chemistry is dominated
by octahedral, square-planar, and tetrahedral coordination geometries, mixed ligand
sets, and adherence to the 18-electron rule. The following three sections introduce
donor–acceptor interactions that, although not unique to bonding in the d block,
make the chemistry of the transition metals so distinctive.

4.6.1 Energetics and geometry of transition-metal hyperbonding

As described in Section 3.5, any polar M—L bond is susceptible to “backside”
attack by a Lewis base L′: to form a linear (or near-linear) 3c/4e hyperbonded
L′ M L triad, equivalent to strong resonance mixing of the form

L′: M—L ←→ L′—M :L (4.77)

The two “omega prebonds” (ωL′:ML and ωL′M:L) of the triad are distinguishable
from ordinary covalent or dative bonds by their high ionicity, strong collinearity,
and distinctive spectroscopic signatures (vibrational splitting, 2 JLL′ scalar coupling,
and so forth). At the NBO level, such triads are characterized by unusually strong
nL′→σML

∗ (or nL→σML′ ∗, according to the parent resonance structure selected)
donor–acceptor interactions and high NRT weightings of both resonance struc-
tures in (4.77). In accordance with the Pimentel–Rundle three-center MO model or
Coulson’s ionic–covalent resonance picture (Section 3.5), the bonding in (4.77)
involves only valence orbitals of the central atom M, and hence requires no “ex-
pansion of the valence shell” in order to achieve the formal hypervalency (additional
two-electron “count”) on M.

Whereas 3c/4e hypervalent interactions (4.77) tend to be relatively uncommon
and fragile in main-group compounds (often leading to transition states for nucle-
ophilic displacement reactions, rather than stable equilibrium species), the corre-
sponding interactions in transition-metal coordination compounds are ubiquitous
and robust. The far higher prevalence of hypervalent ω-bonding in transition-metal
chemistry may be attributed to three major factors.
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(1) Simple 2c/2e bonds to the transition metals commonly are weaker than the correspond-
ing sigma bonds from the p-block elements, resulting in lower-lying acceptor σML

∗

antibonds and increased electronic delocalization.
(2) The characteristically lower electronegativity of transition metals intrinsically promotes

increased polarity of the metal–ligand σML bond (which is further accentuated for dative
bonds), insuring that the corresponding σML

∗ antibond is polarized toward M, and hence
highly exposed to backside nL′→σML

∗ attack.
(3) Owing to the gerade symmetry of both s and d orbitals, the sdµ metal hybrid hM

is intrinsically symmetric between “forward” and “backward” bonding directions (in
contrast to the strongly directional character of main-group spλ hybrids), so bonding to
either ligand in (4.77) is practically equivalent.

Indeed, the general tendency toward 3c/4e bonding in transition-metal complexes
is so pronounced that such hypervalency should be considered the rule, rather than
the exception, in transition-metal chemistry.

As a result of the strong tendency toward 3c/4e hypervalent bonding, each M—L
coordinative bond of a normal-valent MLn transition-metal complex will be sus-
ceptible to successive ω-additions by other coordinative ligands L′ cf. (3.212a):

(4.78)
As shown in (4.78), each ω-addition creates another L′ M L linear triad and
adds two electrons to the formal “count” at the metal center, increasing the formal
hypervalency.

While each member of the sequence (4.78) may be stable as an isolated species,
the availability of excess unreacted L′ in the reaction vessel normally implies that
successive L′ ligands will tend to be added (driven by the favorable resonance
stabilization in (4.77)), up to the maximum imposed by steric congestion or space-
charge limitations. Thus, dependent on the steric bulk or electrostatic charge of the
ligands L and L′, stable species of formal 14e, 16e, 18e, or even higher electron
count may be obtainable. Because each linear L′ M L triad will tend to “block
out” one of the three mutually orthogonal spatial directions, the sequence (4.78)
must normally terminate after three ω-additions (if not before). Thus, from purely
three-dimensional spatial considerations, hypervalent transition-metal complexes
are typically limited to formal 18e counts (or less). This is evidently the basis
for the well-known “18-electron rule” (or “effective-atomic-number” [EAN] rule)
which characterizes many observed transition-metal coordination complexes. How-
ever, as shown in (4.78), stable coordination complexes satisfying a 12-electron,
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14-electron, or 16-electron “rule” may also be expected, as dictated by specific
steric or space-charge limits on the ligands.

As prototypical examples of hypervalent coordinative bonding, let us first con-
sider the series of tungsten carbonyls, W(CO)n . The monocarbonyl and dicarbonyl
are radicals of higher spin multiplicity (pentuplet and triplet, respectively). The tri-
carbonyl, W(CO)3, is a duodectet-rule-conforming (12e count) closed-shell singlet,
and the higher carbonyls (n = 4–6) then correspond to successive ω-additions as
in (4.78). Optimized structures for the full sequence n = 1–6 are shown in Fig. 4.36,
and corresponding geometrical and energetic properties are summarized in Table
4.24.

As shown in Figs. 4.36(a)–(c) and Table 4.24, the normal-valent n=1–3 members
have the geometries expected from idealized sdn − 1 hybridization (Section 4.3.2).
The skeletal 90◦ bond angles of the parent normal-valent W(CO)3 are essentially
preserved as carbonyl ligands successively add to form the ω-bonded OC W
CO linear triads that are clearly evident in the structures, up to the limit of three
orthogonal triads in W(CO)6. As shown in Table 4.24, there is a characteristic
elongation by ∼0.1 Å as each RWC is converted from σ-type to ω-type, and this
change occurs practically independently in each of the three orthogonal triads. The
strong exothermicity of ω-addition is also remarkably constant from n = 4 to 6
(41.8 ± 0.5 kcal mol−1), showing that the 3c/4e hypervalent interactions along each
orthogonal direction are virtually independent.

Only the octahedral W(CO)6 final product of the ω-addition sequence has a
“VSEPR-like” structure (but the three additional lone pairs on W would also lead
to a different prediction for this case if strict VSEPR reasoning were applied).
The intermediate 12e W(CO)3, 14e W(CO)4, and 16e W(CO)5 molecules are all
perfectly stable as isolated species. However, it is clear that, in the presence of
excess CO, only the 18e W(CO)6 species will remain as a final product, and the
18e configuration will therefore appear to exhibit “special stability.”

The NBO descriptors of the normal-valent W(CO)3 and hypervalent
W(CO)n (n = 4−6) species are summarized in Table 4.25. The carbonyl net charges
(QCO) and metal hybridization (hW) exhibit the same clear distinction between σ-
bonded and ω-bonded ligands as is evident in the geometrical structures (Fig. 4.36).
In each case the carbonyl ligands of the ω-bonded triads are noticeably stronger
net donors to the metal (with ω-bonded carbonyl charges about 0.02e more pos-
itive than σ-bonded carbonyls, reflecting changes in both sigma- and pi-bonding
interactions). The metal hybridization differs systematically, with metal σ hybrids
of approximate sd3 form (showing the persistent connection to idealized sdn−1 hy-
bridization of the normal-valent n = 3 parent species) and ω-hybrids of sd2 form
in all these species. Note that there is no appreciable involvement of tungsten 6p
orbitals in any of these hybrids, so the formal hypervalent extension to 14e, 16e, or
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Figure 4.36 Optimized structures of W(CO)n , n = 1–6 (see Table 4.24).

18e count certainly occurs without significant “expansion of the valence shell” to
include metal p orbitals.

From the above considerations, we can recognize that an “ideal” hypersaturated
coordination complex would arise from what may be denoted as a “3ω/3σ/3n”
metal configuration, with three orthogonal ω bonds (3ω; one each in the x, y, and
z directions) built from three parent sigma bonds (3σ; from sd2 hybrids at 90◦ an-
gles), and with three lone pairs (3n; pure d orbitals) in the duodectet of the parent
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Table 4.24. Bond lengths RWC, angles θCWC, and incremental CO binding
energies 	E(+CO) for σ and ω bonds of W(CO)n complexes (see Fig. 4.36)

RWC (Å) θCWC (degrees)

Species σ ω σσ σω ωω 	E(+CO) (kcal mol−1)

W(CO) 1.915 — — — — —

W(CO)2 1.922 — 99.0 — — −46.2

W(CO)3 1.919 — 89.1 — — −66.3

W(CO)4 1.938 2.055 89.1 90.5 178.7 −42.4

W(CO)5 1.955 2.065 — 90.0 90.7 −41.6
178.6

W(CO)6 — 2.070 — — 90.0 −41.3
180.0

Lewis-like structure. Such an ideal 3ω/3σ/3n complex is perforce of formal 18e
count and overall six-coordinate octahedral geometry, as is observed to be the
most ubiquitous bonding motif in transition-metal chemistry. Only slightly less
ideal is the hypersaturated 2ω/2σ/4n pattern of a 16e, four-coordinative square-
planar geometry, which is again a ubiquitous bonding motif. In this manner we
can see (starting from a large number of potential normal-valent Lewis-like “par-
ents”) how exothermic coordinative hyperbonding selects a few “ideal” motifs of
maximally hypercoordinated character (within allowed constraints of two- or three-
dimensional geometry) that are expected to exhibit exceptional thermodynamic and
kinetic stability.

Table 4.25. The NBO descriptors of W(CO)n complexes (n = 3–6),
showing carbonyl net charge (QCO) and tungsten hybridization (hW)

for σ- and ω-bonded carbonyl ligands (see Fig. 4.36)

QCO hW

Species σ ω σ ω

W(CO)3 −0.044 — sd2.65 —
W(CO)4 +0.018 +0.041 sd2.63 sd1.47

W(CO)5 +0.072 +0.103 sd3.18 sd1.88

W(CO)6 — +0.155 — sd2.00
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4.6.2 Pi backbonding

As mentioned in Section 4.5.2, some degree of “backbonding” may be expected
in all sigma-coordinated ligands, partially compensating for the dative flow of
charge from ligand to metal. However, these backbonding interactions become
particularly important for ligands with unfilled π∗ orbitals, which are ideally suited
for secondary nM→πL

∗ interactions with filled metal d orbitals. In such a case the
ligand acts both as a strong pi acceptor (acid) and as a sigma donor (base), and
the net flow of charge between ligand and metal can actually be reversed if the
former property predominates over the latter. The synergistic interplay between pi
backbonding and sigma bonding thereby alleviates the unfavorable build-up of a
dipole and greatly strengthens overall coordination.

A closely related synergism exists for ligands bereft of empty π∗ orbitals, but
instead having low-lying σ∗ orbitals that can act as “pi-type” (off-axis) acceptors
of electron density from the metal. Consider, for example, the important case of
phosphine (PR3) ligands. Donation of electrons from metal d-orbital lone pairs
(nM) into empty σ PR

∗ orbitals is favored both by spatial overlap and by the small
gap in nM−σ PR

∗ orbital energies. Figure 4.37 shows comparison NBO diagrams
for nOs→πCO

∗ (carbonyl ligand) versus nOs→σPH
∗ (phosphine ligand) interac-

tions in H2Os:CO versus H2Os:PH3 coordination complexes, illustrating salient
features of the “pi-backbonding” in each species. Figure 4.37(c) also compares
the corresponding nOs→σNH

∗ interaction for H2Os:NH3, showing the significantly
weaker pi-type backbonding interactions for ammine compared with phosphine
ligands.

Whether of nM→πL
∗ or n→σL

∗ (off-axis) type, pi-backbonding interactions
correspond to partial inclusion of ionic resonance structures featuring a metal–
ligand double bond, as illustrated schematically in (4.79) for phosphine ligands:

(4.79)

We can quantify the tendency of various donor ligands to engage in backbonding by
returning to the H2OsL and H3ReL (L = NH3, PH3, and CO) complexes discussed
in Section 4.5.2. Tables 4.26 and 4.27 give key geometrical and NBO metrics for the
free ligands (Table 4.26) and the various nM→σNH

∗, nM→σ PH
∗, and nM→πCO

∗

backbonding interactions in the metal complexes.
Tables 4.26 and 4.27 clearly reveal that the strength of metal-to-ligand pi-

backbonding in MHmXYn complexes (expressed in terms of either 	EM→L∗ (2)
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Figure 4.37 Comparisons of pi-type backbonding interactions in H2Os:L
complexes for (a) L = CO, (b) L = PH3, and (c) L = NH3.

or ligand antibond occupancy) is maximized when the ligand acceptor orbitals are
highly polarized toward X and low in energy. Other features, such as net charge
distributions, are affected both by the sigma dative interaction of X with the metal
(which tends to decrease electron density on the ligand) and by pi-backbonding
(which increases electron density on the metal). In accordance with conventional
wisdom, the net balance of ligand dative and backbonding interactions with the
metals indicates that NH3 is primarily a σ-donor, CO is a powerful π-acceptor, and
PH3 is both a strong sigma-donor and a good pi-acceptor ligand.

As a prototype for strong nM→πL
∗ pi-backbonding interactions, let us now

consider the carbonyl (CO) ligand in the series of coordinated tungsten complexes
H6 − 2nW(CO)n, n = 1–3, analogous to (4.71):

+CO +CO +CO
WH6 −→ H4W(CO) −→ H2W(CO)2 −→ W(CO)3

−2H −2H −2H
(4.80)
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Table 4.26. Geometrical (RXY) and NBO descriptors of XYn

ligands (NH3, PH3, and CO), illustrating natural atomic charges
(QY) and NBO occupancy (Occ∗), polarity (%pol = 100cX

2),
and orbital energy (ε∗) of σNH

∗, σ PH
∗ or πCO

∗ acceptor orbitals
in the free ligands

XYn RXY(Å) QY Occ∗ %pol ε∗(a.u.)

NH3 1.015 +0.352 0.000 32.4 0.4360
PH3 1.423 −0.176 0.003 50.8 0.1838
CO 1.127 −0.480 0.000 76.9 0.0210

Figure 4.38 shows the optimized geometries of these complexes, and Table 4.28
summarizes the successive coordination energies,

	En = E[H6 − 2n W(CO)n] − E[H6 − 2(n − 1) W(CO)n − 1] − E[CO] + E[H2]
(4.81)

metal and ligand charges, and form of the coordinate σWC bond NBO in each
species. Note the remarkable un-VSEPR-like structure of H4W(CO) (Fig. 4.38(a))
in which all non-metal atoms are found to lie on one side of a plane passing through
the metal atom.

In contrast to ammine ligation (Table 4.18), successive coordinations to carbonyl
ligands are typically rather exothermic (third column of Table 4.28), with 	En val-
ues ranging from −0.9 kcal mol−1(n = 1) to −28.9 kcal mol−1(n = 3). Moreover,

Table 4.27. Geometrical (RXY) and NBO descriptors of MHmXYn complexes
(MHm = ReH3, OsH2; XYn = NH3, PH3, CO), illustrating ligand charges

(QL), M→L∗ delocalization type, occupancy (Occ∗) of respective σNH
∗, σ PH

∗,
and πCO

∗ ligand acceptor orbitals, and associated second-order delocalization
energies (	EM→L∗ (2))

Species RXY (Å) QL M→L∗ type Occ∗ 	EM→L∗ (2) (kcal mol−1)

ReH3NH3 1.024 +0.219 nM→σNH
∗ 0.052 8.1

ReH3PH3 1.426 +0.344 nM→σ PH
∗ 0.234 28.6

ReH3CO 1.127 −0.017 nM→πCO
∗ 0.642 122.8

OsH2NH3 1.023 +0.212 nM→σNH
∗ 0.045 4.7

OsH2PH3 1.423 +0.368 nM→σ PH
∗ 0.231 27.4

OsH2CO 1.165 +0.038 nM→πCO
∗ 0.616 87.8
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Figure 4.38 Optimized structures of H6−2nW(CO)n coordination complexes:
(a) H4W(CO), (b) H2W(CO)2, and (c) W(CO)3.

the net charge of the coordinated CO ligand is seen to be negative in all cases, in-
dicating that pi-backbonding (pi acidity) contributes even more strongly than does
sigma dative bonding (sigma basicity) to coordinative charge displacement in these
complexes. The σWC bond to carbonyl is seen to have appreciably higher covalent
character than the corresponding σWC bond to ammine ligand. Furthermore, the
nW→πCO

∗ pi-backbonding interaction is so strong that the best Lewis-structure
representation for each species contains a formal W=C double bond to each

Table 4.28. Similar to Table 4.23, for L = CO (see Fig. 4.38)

n Species 	En (kcal mol−1) QW QL σWL

1 H4W(CO) −0.9 +0.328 −0.030 0.548(sd2.65)W + 0.837(sp0.59)C

2 H2W(CO)2 −26.6 +0.427 −0.037 0.506(sd3.06)W + 0.863(sp0.57)C

3 W(CO)3 −28.9 +0.132 −0.044 0.496(sd3.22)W + 0.869(sp0.57)C
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ligand,

(4.82)

All these features are consistent with the greater strength of metal–carbonyl coor-
dination and higher ranking of CO in the spectrochemical series (4.69).

Figure 4.39 depicts the coordinative σWC and πWC metal–carbonyl bonds of
H4W=C=O both in NBO (right) and in overlapping NHO (left) representations.
Although the allene-like (W=C=O) representation is the “best” single Lewis
structure (in the maximum-density sense; Section 1.5), significant admixtures of
single-bonded (W—C≡O) and nonbonded (W :C≡O) resonance structures are also

Figure 4.39 CoordinativeσWC (upper) andπWC (lower) bonds in H4W(CO), shown
in terms of overlapping NHOs (left) and the final NBO (right).
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indicated by the quantitative NRT resonance weightings:

(4.83)

The corresponding NRT bond orders (bWC = 1.330, bCO = 2.460) clearly reflect
the significant multiple-bond character of the metal–carbonyl interaction and con-
comitant weakening of the carbonyl CO bond. The latter is manifested in numerous
spectroscopic signatures of bond weakening (e.g., lengthening of RCO, red-shifting
of νCO vibrational frequencies) relative to free carbon monoxide. As the resonance
weightings in (4.83) and orbital diagrams in Fig. 4.39 make clear, strong synergistic
σ/π covalency reorganization (rather than long-range “crystal-field” electrostatic
interaction) is the central electronic phenomenon of metal–carbonyl coordination.

Still other effects of carbonyl coordination are evident on the structure of the
metal hydride moiety. As is evident in Fig. 4.38(a), the two “perpendicular” W—H
bonds in H4W(CO) (θHWC = 89.0◦) are strongly inequivalent to the two “trigonal”
W—H′ bonds (θH′WC = 121.3◦), with bond angles of both sets deviating signifi-
cantly from idealized sd3 or sd4 hybridization. This inequivalency is largely due to
the strong σWH→σWC

∗ donor–acceptor interaction depicted in Fig. 4.40, which is
by far the largest hyperconjugative stabilization between WH4 and CO moieties (es-
timated as 11.6 kcal mol−1 by second-order NBO perturbation theory). As shown
in Fig. 4.40, each σWH interacts principally with the off-axis “horse-collar” lobe of
the metal dz2-like NHO, and thus aligns approximately perpendicular to the main

Figure 4.40 Hyperconjugative σWH→σWC
∗ interaction in H4W(CO) (cf.

Fig. 4.38(a)), with estimated second-order stabilization energy 11.6 kcal mol−1.



458 Molecular bonding in the d-block elements

Figure 4.41 Pi-backbonding nNi→πL
∗ interactions in NiL complexes: (a) L = CO,

(b) L = CN−, (c) L = NC−.

W—C bonding axis. (Weaker σWH→πCO
∗ interactions further tilt these bonds

slightly toward the adjacent carbonyl moiety.) As a result of such hyperconjugative
interactions, each W—Hperp has slightly reduced NRT bond order (bWH = 0.902)
compared with corresponding W—Htrig bonds (bWH′ = 0.954). Further details of
such hyperconjugative interactions (which are clearly secondary to the primary
sigma-bonding and pi-backbonding coordinative events discussed above) are be-
yond the scope of the present treatment.

As a further illustration of the dependence of nM→πL
∗ pi-backbonding inter-

actions on metal and ligand character, we may compare simple NiL complexes
of nickel with carbonyl (CO), cyanide (CN−), and isocyanide (NC−) ligands, as
shown in Fig. 4.41. This figure shows that the nNi→πL

∗ pi-backbonding interaction
decreases appreciably (from 28.5 kcal mol−1 in NiCO to 6.3 kcal mol−1 in NiNC−,
estimated by second-order perturbation theory) as the polarity of the πL

∗ acceptor
shifts unfavorably away from the metal donor orbital. The interaction in NiCO
is stronger than that in NiCN− partially due to the shorter Ni—C distance in the
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former case (1.684 versus 1.775 Å), which is itself evidence of stronger bonding.
However, the corresponding difference in geometry between NiCN− and NiNC−

is much smaller (RNiC = 1.775 Å versus RNiN = 1.772 Å), and the difference in
pi-backbonding is almost entirely due to the unfavorable polarity reversal of the
πL

∗ antibond when nNi attacks the ion from the “wrong” (N) end.
As one can judge from comparison of Fig. 4.41(a) with Fig. 4.39, the nM donor

orbital is more compact for M = Ni than for M = W, reflecting the general contrac-
tion of metal d orbitals along the transition series. Because of this effect, the lobes
of the dNi orbital are somewhat less well “matched” to the size of the carbonyl πCO

∗

orbital, and general nM→πCO
∗ interaction strength is correspondingly reduced in

the nickel case. The weakened pi-backbonding interactions of Ni are also reflected in
the altered ratios of Ni=L versus Ni—L resonance structures in the NRT description
of these species (compared, e.g., with corresponding tungsten compounds (4.83)):

(4.84a)

(4.84b)

(4.84c)

Whereas the pi-backbonded M = L form constituted the leading resonance structure
in (4.83), it becomes only a minor (<5%) feature in the NRT description (4.84c)
of NiNC−. Thus, pi-backbonding is seen to be a highly variable feature of coor-
dination bonding that can strongly modulate the overall interaction strength, but
remains clearly “secondary” to the primary sigma donation (a universal feature of
coordinative bonding) in the majority of cases.

4.6.3 Pi-frontbonding

In the previous section we found that metal lone pairs may donate into low-energy
ligand antibonding orbitals (either σ∗ or π∗) to make backbonds. Can the situation
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Table 4.29. The NBO characteristics for OIrH3 and OPH3, demonstrating that
σMH

∗ antibonds have significant coefficients at M (%polM = 100cM
2), low orbital

energies (εσ∗), substantial occupancies (Occσ∗), and strong nO→σMH
∗

delocalizations (	En→σ∗ (2))

Species %polM εσ∗ Occσ∗ 	En→σ∗ (2) (kcal mol−1)

OIrH3 46.6 0.192 0.576 71.2
OPH3 51.7 0.120 0.360 64.0

be reversed, i.e., can a ligand lone pair (nL) delocalize into a metal–ligand antibond?
The prescription for such an “inverted” delocalization seems clear: a lone pair on
a ligand that is spatially oriented for overlap with metal–ligand antibonds that
are appreciably polarized toward the metal. Here we briefly consider such “pi-
frontbonding” interactions in the context of OIrH3 and its chemical cousin OPH3.

Recall from Section 4.4.4 that the best single-configuration description of OIrH3

features an Ir—O single bond that is highly polarized toward oxygen. Two of the
oxygen lone pairs lie perpendicular to the Ir—O bond in pure p orbitals, whereas the
remaining hybridized (sp0.1) lone pair is collinear with the Ir—O bond. The Ir—H
σIrH and σIrH

∗ orbitals are relatively apolar, with 34.6% of σIrH
∗ at Ir. As shown in

Table 4.29, the Ir–O interaction exhibits the hallmarks of pi-backbonding seen in
metal–phosphine complexes, but now the direction of charge transfer is reversed.
Critical NBO properties of OIrH3 can be seen to include the low energy and high
occupancy of σIrH

∗ orbitals with substantial metal character. Delocalization energies
for the nO→σIrH

∗ frontbonding interactions have magnitudes rather similar to those
of normal pi backbonds. Also shown in Table 4.29 are corresponding NBO metrics
for phosphine oxide, OPH3 (cf. Section 3.2.10), which demonstrate the remarkable
kinship between simple oxides of iridium and phosphine. Figure 4.42 compares
the nO→σMH

∗ NBO interaction diagrams for M = Ir and P to illustrate this orbital
analogy.

The net consequence of nO→σMH
∗ delocalizations is that OIrH3 and OPH3

acquire partial double-bond character due to resonance contributions as shown in
(4.85):

(4.85)

The “inverse” relationship to pi-backbonding interactions as shown in (4.79) is
apparent.
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Figure 4.42 A comparison of “pi-frontbonding” interactions of nO→σMH
∗

(off-axis) type for (a) OIrH3 and (b) OPH3.

4.6.4 Higher spin states and magnetic properties

While our primary focus has been on stable closed-shell (or low-spin) coordination
species in which covalency effects are pronounced, it is also useful to examine the
opposite extreme of weak coordinate bonding and “free-atom” -like spin multiplic-
ities, corresponding to the original assumptions of crystal-field theory.

For this purpose, we consider the classic case of the hexaaquomanganese(II)
cation [Mn(H2O)6]2+, a prototypical high-spin species of octahedral coordina-
tion. The isolated Mn(II) ion is isoelectronic with ferromagnetic Fe(III) and ex-
hibits a similarly high magnetic moment associated with five unpaired electron
spins. According to crystal-field theory (Section 4.5.1), the weak-field H2O lig-
and lies rather low in the spectrochemical series (4.69), corresponding to a small
crystal-field-splitting parameter 10Dq in (4.68). In this case the splitting of eg and
t2g levels is insufficient to induce pairing of electrons in the lower t2g orbitals,
against the intrinsic preference for unpaired spins expressed by Hund’s rule. The
ground-state d-shell configuration of [Mn(H2O)6]2+ is therefore expected to be
high-spin (hextuplet) (dxy)1(dxz)1(dyz)1(dx2 − y2 )1(dz2 )1 rather than low-spin (dou-
blet) (dxy)2(dxz)2(dyz)1(dx2 − y2 )0(dz2 )0. Magnetic measurements are fully consis-
tent with this simple crystal-field picture.

Figure 4.43 shows the optimized structure of [Mn(H2O)6]2+ (hextuplet spin mul-
tiplicity). Consistently with the expected weak-field limit, the NBO Lewis structure
of [Mn(H2O)6]2+ is found to correspond to an isolated manganese cation and six
surrounding H2O molecules. The charge on the central metal ion is QMn = +1.691,
corresponding to net transfer of 0.052e from each H2O ligand to the central man-
ganese cation.
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Figure 4.43 The optimized structure of the hexaaquomanganese(II) ion (spin 5
2 ,

RMnO = 2.220 Å). Note that the bond “sticks” between Mn and O are merely to
aid visualization.

The occupancies of metal 4d and 5s orbitals correspond to an overall s0.15d5.15

configuration, deviating noticeably from the nominal s0d5 assignment. The d spin-
orbitals of α spin are essentially completely filled (0.993–0.995), and thus chemi-
cally inert. However, the nominally “empty” spin-orbitals of β spin exhibit signif-
icant non-zero occupancies (0.063 in each member of the eg set and 0.017 in each
member of the t2g set), and appreciable occupancy of both spins is also found in the
5s orbital (0.088 α, 0.082 β). These “unexpected” occupancies (which would be
strictly absent in the isolated ion) can be associated with the leading donor–acceptor
interactions, namely

nO
(σ)→sMn

∗ (17.6 kcal mol−1) (4.86a)

nO
(σ)→dMn

∗(eg) (5.7 kcal mol−1) (4.86b)

In each case the ligand donor orbital is the in-plane σ-type oxygen lone pair nO
(σ) =

(sp1.11)O pointing directly toward the metal center. (The corresponding out-of-plane
π-type oxygen lone pair nO

(π) is relatively uninvolved in coordination, with each
nO

(π)→dMn
∗(t2g) interaction contributing only 1.07 kcal mol−1 to stabilization.)

The dMn
∗(eg) acceptor orbitals in (4.86b) are the dx2 − y2 and dz2 orbitals that point

directly toward the ligand donors, whereas the corresponding t2g orbitals (dxy, dxz ,
and dyz) can only participate in weaker interactions with donor nO

(π) orbitals. Fig-
ure 4.44 shows orbital contours of the NBO interactions in (4.86a) and (4.86b), each
of which represents a one-electron donor–acceptor stabilization of approximately
half the magnitude that might be expected from a two-electron donor–acceptor
interaction of comparable overlap in a closed-shell system.
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Figure 4.44 Leading donor–acceptor interactions (β spin set) from a sigma-type
oxygen lone pair to unfilled manganese valence orbitals of (a) s-type and (b) d-type
in [Mn(H2O)6]2+ (cf. Fig. 4.43).

It is evident that the interactions (4.86b) depicted in Fig. 4.44 strongly distinguish
the “strong-acceptor” eg set from the “weak-acceptor” t2g set in [Mn(H2O)6]2+.
More generally, it is evident that a metal configuration (t2g)1(eg)0 will be much
more favorably stabilized by donor–acceptor interactions with surrounding octa-
hedral ligands than will a corresponding (t2g)0(eg)1 configuration, because partial
filling of an eg orbital naturally quenches the stronger nL→dM

∗(eg) interactions.
The energy difference between these two configurations (roughly six times the
stabilization energy in (4.86b), minus the corresponding stabilization energies of
nO

(π)→dMn
∗(t2g) interactions) corresponds directly to the spectroscopic t2g→eg

excitation energy in crystal-field theory, i.e., to the splitting parameter “10Dq” in
(4.68). The crystal-field 10Dq parameter can also be crudely associated with the
energy difference between t2g-type and eg-type metal d natural localized molecu-
lar orbitals (NLMOs), which incorporate the weak donor–acceptor mixings with
ligands (Section 1.5),

	εNLMO = εNLMO (eg) − εNLMO (t2g) = −0.2438 − (−0.2775) a.u.

� 21 kcal mol−1 (4.87)

Thus, the ligand-stabilized d-orbital splitting pattern is qualitatively consistent with
the expectation of crystal-field theory, but the physical origin of this splitting should
be attributed to attractive donor–acceptor interactions such as (4.86b) rather than to
any inherent electrostatic “repulsions” toward the incoming ligands. More accurate
treatment of the spectroscopic 10Dq value should, of course, be based on separate
consideration of the two spectroscopic states.
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We conclude that the qualitative patterns of eg–t2g splitting can also be under-
stood from the NBO donor–acceptor viewpoint in the limit of weak-field, high-spin
coordination complexes. In such a case the NBOs of the central metal atom retain
the essentially one-center character of an isolated ion, sdµ hybridization is negligi-
ble, and the effect of the coordination environment is seen in the subtle energetic
and occupancy shifts that accompany weak donor–acceptor interactions such as
(4.86b). (However, it is noteworthy that the related five-coordinate Mn(H2O)5

5+

and Cr(H2O)5
3+ ions distort significantly from trigonal bipyramidal toward a mono-

vacant octahedral geometry, which is indicative of a structural role of hybridization
even in some weak-field, high-spin cases.)

As ligand–metal interaction increases, the energy gain from converting each one-
electron donor–acceptor interaction into a corresponding two-electron interaction
eventually mandates a configurational change in which metal electrons are paired
up in the weak-acceptor t2g orbitals, allowing full two-electron interactions between
the strong-acceptor eg set and the ligand lone pairs. Such a configurational change
to low spin can be further promoted by metal sd hybridization, pi-backbonding,
and other characteristic features of the closed-shell limit of strong covalency. Thus,
the NBO donor–acceptor description can smoothly span the entire range of co-
ordinative interactions from weak perturbation of atomic ions to strong covalent
reorganization, hybridization, and multiple bonding.

4.6.5 Spectrochemical series and the nephelauxetic effect

A strong focus of the original crystal-field theory (Section 4.5.1) was to rationalize
the ligand-induced spectroscopic shifts in metal d-orbital energies. For an octahedral
crystal-field-splitting pattern (4.68), the spectroscopic effects of various ligands are
summarized in the spectrochemical series (4.69). As remarked in Section 4.5.1, this
series has no obvious connection to ionic or dipolar properties of the ligands, and the
observed spectroscopic effects may therefore be presumed to involve more covalent
aspects of the interaction of metal d orbitals with ligand orbitals.

For simplicity, let us consider the case of mono-ligation to a low-spin metal cation
having one empty d orbital. For this purpose we consider the Pt2+ cation in its low-
spin (singlet) (dxy)2(dxz)2(dyz)2(dx2 − y2 )2(dz2 )0 configuration. In the presence of the
coordinating ligand, the vacant d∗(dz2 ) atomic orbital (NAO) of the metal cation
mixes covalently with the filled nL orbital of the ligand, leading to the corresponding
semi-localized molecular orbitals (NLMOs)

d∗(NAO) → d∗(NLMO) (4.88a)

nL(NBO) → nL(NLMO) (4.88b)



4.6 Beyond sigma-bonding 465

Figure 4.45 A metal–ligand nL→d∗ orbital splitting diagram depicting interaction
of the metal-atom d∗ NAO and ligand nL NBO to form semi-localized NLMOs of
the coordination complex, with splitting energy 	εd∗ = εd∗ (NLMO) − εd∗ (NAO).

whose energies are respectively raised and lowered by the interaction, as depicted
schematically in Fig. 4.45. The energy splitting 	εd∗

	εd∗ = εd∗(NLMO) − εd∗(NAO) (4.89)

may therefore be taken as a measure of the ligand-induced shift of spectroscopic
energy when the d∗ (dz2 ) NAO becomes occupied in an excited configuration.

In effect, filling of the vacant dz2 orbital sacrifices the stabilizing energy of the
ground-state nL→dz2 donor–acceptor interaction, so that the ligand increases the
spectroscopic transition energy (“raises the energy of the dz2 orbital”) required
to populate this orbital in the excited configuration. Thus, the energy shift 	εd∗

in (4.89) should be crudely proportional to the “crystal-field-splitting parameter”
that governs relative position in the spectrochemical series. Of course, full treat-
ment of the spectroscopic d-orbital energy shifts involves other gains and losses of
metal–ligand interaction in each configuration (namely the “pi-backbonding” in-
teractions of a filled d orbital that become unavailable when the orbital is vacated).
Nonetheless, the sigma-coordinative term (4.89) should be a leading correlator to
the characteristic splitting parameter 10Dq for each ligand.

Figure 4.46 displays the nL→d∗ orbital contour diagrams and 	εd∗ energy split-
tings for Pt(II)–ligand interactions involving three representative members of the
spectrochemical series: F−, NH3, and CO. As seen in Fig. 4.46, the d-orbital shift
	εd∗ in the equilibrium geometry is far greater for the “strong-field” carbonyl lig-
and (0.242 a.u.) than for the “weak-field” fluoride ligand (0.138 a.u.), whereas the
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Figure 4.46 Pt(II)–ligand nL→d Pt
∗ interactions for representative ligands of

the spectrochemical series: (a) L = F−, (b) L = NH3, and (c) L = CO. The
σ-coordinative d∗-orbital destabilization, 	εd∗ = εd∗ (NLMO) − εd∗ (NAO), is
shown in parentheses.

ammine ligand (0.148 a.u.) is intermediate, in accordance with the empirical order-
ing (4.69).

As a result of metal–ligand coordinations such as depicted in Fig. 4.46, the sizes
of metal d orbitals are also expected to be altered. The generalized changes in metal
d-orbital radii upon coordinating to ligands are often referred to as nephelauxetic
(literally, “cloud-expanding”) effects.36 One obvious source of orbital expansion
is the change of effective nuclear charge on the metal cation, resulting in more
diffuse metal orbitals as the cationic character is reduced by ligand coordination.
However, d-orbital radii will also be sensitive to detailed shapes and energies of
coordinating ligand orbitals. Slight changes of this type are already visible in the
d-orbital contours of Fig. 4.46, but further details of nephelauxetic effects in metal–
ligand coordination are beyond the scope of this book.
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4.6.6 Static Jahn–Teller distortions and lower-symmetry structures

In 1937 Jahn and Teller applied group-theoretical methods to derive a remarkable
theorem: nonlinear molecules in orbitally degenerate states are intrinsically un-
stable with respect to distortions that lower the symmetry and remove the orbital
degeneracy.37 Although Jahn–Teller theory can predict neither the degree of dis-
tortion nor the final symmetry, it is widely applied in transition-metal chemistry to
rationalize observed distortions from an “expected” high-symmetry structure.38 In
this section we briefly illustrate the application of Jahn–Teller theory and describe
how a localized-bond viewpoint can provide a complementary alternative picture
of transition-metal coordination geometries.

The gas-phase structure of MnF3 in the quintet state39 offers a beautiful illustra-
tion of how the Jahn–Teller theory can be used to rationalize molecular-structure
distortions. The starting point is to assume a “zeroth-order” molecular structure
of high symmetry, e.g., D3h for MnF3, which leads to an orbitally degenerate MO
pattern. The qualitative canonical MO picture for high-spin MnF3 in D3h geometry
is shown on the left-hand side of Fig. 4.47, with each d-type MO conventionally
labeled by its irreducible representation (e′′, a1

′, or e′). The depicted MO config-
uration (e′′)2 (a1

′)1 (e′)1 leads to doubly degenerate 5E′ state symmetry, which is
subject to Jahn–Teller distortion. In this case, the molecular symmetry can be low-
ered from D3h to C2v by an in-plane bending mode of e′ symmetry, converting the
degenerate 5E′ into the non-degenerate 5A1 state, as shown on the right-hand side of
Fig. 4.47. Lowered energy accompanies this distortion primarily because the de-
generate and asymmetrically filled e′ orbitals of the D3h point group are split into
the low-energy b2 and high-energy a1 orbitals of C2v. Thus, Jahn–Teller theory

Figure 4.47 A qualitative Jahn–Teller MO diagram (metal d-orbital manifold),
depicting lowering of orbital degeneracy (and total energy) through a vibrational
distortion (of e′ symmetry) from high-symmetry D3h (left) to lower-symmetry C2v
(right) geometry of MnF3. The MO levels are labeled by conventional symmetry
symbols for irreducible representations of the respective point groups.
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indicates that a high-symmetry D3h structure cannot be stable, and that a vibrational
distortion along the e′ mode should proceed without barrier through a structure with
C2v symmetry, as is observed. Note, however, that application of the Jahn–Teller
theorem involves assuming both the “zeroth-order” symmetry and the existence
of a vibrational mode of proper symmetry to break the degeneracy, so that, prop-
erly speaking, neither the extent of the distortion nor the final geometry can be
determined by simple application of the theorem.

Let us now consider how one would devise a structure for the quintet state of ten-
electron MnF3 using localized-bond “building blocks.” A quintet state implies four
unpaired electrons in pure d orbitals, thus blocking four of the five d orbitals from ac-
tive participation in skeletal bonding. As a result, the remaining six electrons can be
accommodated only by forming one 2c/2e bond and one ω bond. In resonance lan-
guage, this corresponds to the two Lewis-like resonance structures shown in (4.90):

(4.90)

In each parent Lewis-like structure of (4.90), the metal center is expected to adopt
sd1 hybridization (90◦ natural bond angles). The usual trans linear alignment of an
ω-bonding triad then results in a T-shaped geometry (C2v symmetry). However,
from the high electronegativity of fluorine one might expect appreciable contri-
butions from more ionic structures (Mn2+=F + 2F−, etc.) for which the nominal
expected geometry is trigonal planar (D3h). Hence, the actual C2v geometry is
expected to distort somewhat from an idealized T-shaped geometry (trans= 180◦;
cis= 90◦). Both calculations and experiment (gas-phase electron-diffraction data)
yield the expected planar C2v geometry for MnF3, with “trans” bond angles of
∼143◦ and “cis” bond angles of ∼106◦. The computed natural charge at Mn is
+1.8, suggesting the existence of significant Mn2+=F + 2F− ionic character.
Thus, the localized bonding picture recovers the Jahn–Teller-like conclusion of
sub-D3h symmetry, but with a more specific rationale for the strong tendency toward
T-shaped geometry and associated ω-bonded features of the electronic distribution.

Two more brief examples may serve to compare the Jahn–Teller and localized-
bonding approaches to predicting molecular geometry.

(1) We have already seen that hybridization considerations predict that singlet IrH3 will
be pyramidal with ∼90◦ bond angles, in accordance with ∼sd2 hybridization. The
alternative Jahn–Teller approach would be to start from the MO occupancy pattern of
a high-symmetry D3h structure. However, placing six d electrons in the canonical MOs
for this symmetry leads to the (e′′)4(a1

′)2 configuration and a totally symmetric non-
degenerate ground state of 1A1 symmetry. Hence, the Jahn–Teller approach predicts
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no distortion from D3h symmetry, which is strongly at odds with the actual structure.
(Higher levels of Jahn–Teller theory [known as second-order or pseudo-Jahn–Teller
theory] can be used to rationalize structures such as IrH3, but unambiguous structural
predictions are even more difficult to obtain in this way.)

(2) Finally, let us consider the singlet and triplet states of the d2 complex WH4. In terms
of Lewis-like structures, the triplet (3A2) state consists of two singly occupied d or-
bitals for the nonbonded electrons together with four 2c/2e bonds of sd3-hybridized
form (tetrahedral bond angles). However, the singlet states have two possible limiting
configurations: (i) a singlet diradical (UHF-like) species, with unpaired electrons in
two pure d orbitals, or (ii) a paired (RHF-like) species with one pure d lone pair and
one unoccupied d orbital (see Appendix A). However, the two d orbitals involved are
equivalent by symmetry, so the resulting states (1E and 1A1) comprise mixtures of these
configurations. Simple localized-bond constructs for this hypovalent molecule predict
tetrahedral geometry in both singlet and triplet states, because both have sd3 skeletal hy-
bridization and the paired or unpaired electrons in pure d orbitals are stereochemically
inert. For the triplet state, DFT calculations confirm the non-degenerate configuration
and Td structure. However, for the doubly degenerate 1E state the structure must distort
from nominal tetrahedral symmetry in accordance with the Jahn–Teller theorem. Such
distortion is indeed found, but its energetic and structural consequences are rather small,
leading to average |θHWH| changes of ∼5.4◦ and energy lowering by only ∼1kcal mol−1.

The example of WH4 illustrates that the Jahn–Teller theorem specifies the neces-
sary conditions for instability of a particular point-group symmetry (whose specific
identity must be inferred by other means), but it cannot predict the magnitude of
the structural distortions and energy lowering. The localized Lewis-like bonding
model is also inadequate in this instance, because the predicted structure is of high
symmetry and implies use of two symmetry-equivalent d orbitals to accommodate
one singlet-coupled lone pair. Effectively, the energy is lowered by removing the
equivalency of the two d orbitals, allowing the lone pair to become more “loca-
lized” in a single d orbital (e.g., to take advantage of specific hyperconjugative
interactions in a broken-symmetry structure). One may expect similar distortions
to occur whenever the zeroth-order Lewis-like picture requires unequal occupation
of symmetry-equivalent lone-pair or singly occupied orbitals.

In summary, the Jahn–Teller theorem brilliantly spells out conditions whereby
some distortion must occur, but it does not indicate the ultimate geometry or the
magnitude of the distortion. Why then is the Jahn–Teller theorem invoked with such
frequency? The answer seems to be that an initial “zeroth-order” geometry is often
assumed to be of high symmetry, e.g., on the basis of VSEPR-type reasoning. How-
ever, the localized Lewis-like picture often provides a much better “zeroth-order”
structure (as illustrated by the examples of MnF3 and IrH3) in which the electronic
origins of the lowered symmetry are already apparent in the optimized pattern
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of σ- and ω-bonding interactions. For cases in which the localized Lewis-like pic-
ture predicts a high-symmetry degenerate configuration (such as singlet WH4),
Jahn–Teller considerations refine the analysis to account for the effects of local-
ized orbital equivalencies at high-symmetry centers. However, the energetic and
structural consequences of such symmetry breaking are often rather insignificant,
because the involved electrons are commonly nonbonding lone pairs.

4.6.7 Common coordination motifs of hyperbonded complexes and
the “trans influence”

Transition-metal bonding interactions span a broad range. Strong electrostatic inter-
actions and free-ion-like electron configurations characterize highly charged com-
plexes with weak-field dative ligands (e.g., Mn(H2O)6

2+), whereas strong covalent
bonds involving directional sdn hybrids typify transition-metal hydrides and alkyls
(e.g., Ir(mesityl)3). The vast majority of transition-metal complexes lie between
these two extremes, with ω-bonding playing a leading role. We begin by addressing
the distribution of “common” electron counts and bonding motifs for organometallic
compounds across the transition series, with specific reference to ω-bonding and
its ubiquitous role in the empirical trend known as “trans influence.”

Statistical frequencies for the most “common” electron counts, empirical for-
mulas, and bonding assignments (lone pairs, two-center bonds, ω bonds, formal
hybridization) can be extracted40 from the Dictionary of Organometallic Com-
pounds, as summarized in Table 4.30. We express the empirical formula in Green’s
“MLX” nomenclature,41 where L represents a closed-shell dative ligand (a two-
electron donor such as PR3) and X represents an open-shell “covalent” ligand (a
one-electron radical donor such as CH3 or Cl). The total number of ligands bound to
an MLlXx compound is given by l + x . Assignment of a formal Lewis-like parent
structure and the associated hyperbonding pattern permits one to describe any metal
complex as a net collection of 1c/2e (lone pairs), 2c/2e (σ, π, or δ bonds, with for-
mal sdn hybridization) and 3c/4e (ω bond) bonding interactions at the metal center,
as shown (with representative examples) in Table 4.30.

As the statistical data in Table 4.30 reveal, organotransition-metal complexes
with 18e counts are common, but not to the exclusion of other electron counts;
in fact, 18-electron species constitute a statistical majority in only four of the
eight groups. Clearly, transition-metal complexes commonly involve hypervalent
ω-bonding (>12e count), and a particularly prevalent bonding motif is that for
three ω bonds (formed from three parent sd2-hybridized σ bonds) and three lone
pairs (cf. Section 4.6.1). It is unsurprising that complexes exhibiting this “ideal”
bonding pattern (in which all low-lying acceptor orbitals are maximally engaged
in donor–acceptor interactions) are (i) invariably octahedral, (ii) often imbued with
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Table 4.30. Statistical frequency distributions of electron countsa, common
formulasa, and localized bonding descriptions (in terms of number of

metal-centered lone pairs, 2c/2e bonds, ω bonds, and average sdn hybridization)
for organometallic complexes of groups 3–10

Electron-count
frequency (%) Localized bonding

Group 14 16 18 Formula Examples l.p. 2c/2e ω sdn

3 27 30 18 ML5X3 Cp2YMe(THF) 0 4 2 sd5

ML4X3 Cp2Y-t-Bu 0 5 1 sd5

4 4 55 21 ML4X4 Cp2ZrCl2 0 4 2 sd5

5 13 15 45 ML6X CpNb(CO)4 2 1 3 sd3

ML5X3 Cp2Nb(CO)Cl 1 2 3 sd4

6 1 7 82 ML5X2 CpMo(CO)3Me 2 1 3 sd3

ML6 Mo(CO)6 3 0 3 sd2

ML4X4 Cp2MoMeBr 1 2 3 sd4

7 2 2 90 ML5X Re(CO)5Me 3 0 3 sd2

ML4X3 CpRe(CO)2Me2 2 1 3 sd3

8 1 1 97 ML4X2 Ru(PPh3)(CO)3Cl2 3 0 3 sd2

9 1 25 72 ML3X Rh(PPh3)2(CO)Cl 4 0 2 sd1

ML3X3 Rh(PMe3)2(CO)Cl3 3 0 3 sd2

10 1 70 27 ML2X2 Pd(PMe3)2(Me)I 4 0 2 sd1

a Data taken from a preliminary survey of compounds in the Dictionary of Organometallic
Compounds, compiled by G. Parkin and C. Zachmanoglou.

unusual thermodynamic or kinetic stability (e.g., Co(NH3)6
3+), and (iii) well suited

to additional pi-backbonding interactions with π-acceptor ligands that can interact
strongly with the metal lone pairs.

Let us now explain how the formal MLX and bonding assignments are obtained,
using Cp2Nb(CO)Cl as an example. A niobium atom has five valence electrons. A
cyclopentadienyl (Cp) ligand has formal Lewis structure

(4.91)

which can be considered to make one covalent electron-pair bond (through the
unpaired radical electron) and two dative electron-pair bonds (through the two
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π bonds), and is hence classified as an “L2X” ligand. The CO ligand is of dative
type (L) and the Cl radical is of covalent type (X). (In effect, all assignments of L or
X character are based on a neutral ligand starting point.) Overall, the formulation is
ML5X3, giving a total electron count of 18 electrons (five from Nb, plus three from
three X ligands, plus ten from five L ligands). As discussed in Section 4.6.1, each
pair of electrons in excess of the duodectet requires one ω bond (three ω bonds
in this example). Subtracting the six ligands and 12e involved in ω-bonding from
the totals of eight ligands and 18e leaves two ligands to make 2c/2e bonds and one
remaining lone pair. The nominal hybridization at Nb will be sd4, because the lone
pair will occupy one d orbital, thus excluding its participation in bonding. Other
entries in Table 4.30 can be worked out in a similar manner, leading in each case
to specific structural predictions based on the inferred sdn hybridization.

Example 4.7

Problem: Rationalize the following geometries:

(i) Rh(PPh3)3
+, T-shape;

(ii) RuH2(PPh3)2, seesaw-shape, with trans PPh3 ligands; and
(iii) Rh(C6F5)5

2−, monovacant octahedral.

Solution:

(i) The 14e complex [Rh(PPh3)3]+ contains one ω bond, one 2c/2e bond, and four lone
pairs, and has overall sd1 hybridization. Idealized bond angles are 90◦ for sd1 hy-
bridization and 180◦ for ω-bonding, resulting in a T-shaped molecule that bears a
strong geometrical and electronic resemblance to ClF3.

(ii) The 14e complex RuH2(PPh3)2 has one ω bond, two 2c/2e bonds, three lone pairs, and
overall sd2 hybridization (90◦ angles). A seesaw structure enables the 2c/2e bonds to
maintain 90◦ angles with all other ligands while accommodating the 180◦ preference for
the ω-bonded PPh3 ligands. Strong chemical kinship between SF4 and RuH2(PPh3)2

is revealed by this analysis.
(iii) Rh(C6F5)5

2− has a 16e count featuring two ω bonds, three lone pairs, and a single 2c/2e
bond. A square-pyramidal structure with 90◦ and 180◦ bond angles (better described
as a monovacant octahedron) neatly satisfies both sd2 and ω-bonding requirements.

Example 4.8

Problem: Devise a bonding description for (H2C)RuCl2(PPh3)2 and predict the structure.

Solution: The electron count is 16e (eight from Ru, two from each phosphine, one from
each Cl, and two from methylene, assumed to make a Ru=C double bond). Two ω bonds
result, leaving four electrons to make the σRuC and πRuC bonds and two lone pairs. Skeletal
sigma-bonding of the parent Lewis-like structure requires three sd2 hybrids (90◦ angles),
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whereas the lone pairs and πRuC bond are made with pure d orbitals. The 90◦ hybrid angles
combine with the trans preferences for ω bonds to produce a monovacant octahedral geom-
etry with methylene at the unique apex and symmetric Cl M Cl and Ph3P M PPh3 ω

bonds.

Let us now consider certain characteristic structural aspects of ω-bonding, fo-
cussing particularly on the “trans influence” 42 that one ligand exerts on the length
of a trans-disposed metal–ligand bond, a pervasive phenomenon in transition-metal
structural chemistry. Localized-bonding considerations provide a particularly sim-
ple and attractive description of the electronic features underlying this important
structural phenomenon. (Associated energetic aspects of successive ω-additions
and possible limits on coordination number and electron count will be considered
in Section 4.6.8.)

The trans influence can be recognized most directly in the geometry of square-
planar complexes, in which any pair of ligands can be described as being in a cis
(∼90◦) or trans (∼180◦) relationship about the metal center. For specificity, let us
consider cis and trans isomers of square-planar platinum diphosphine complexes
of the general form PtHX(PH3)2, where X = H, F, Cl, Br, or I, and where the cis
or trans designation refers to the disposition of the two PH3 ligands. Table 4.31
summarizes the bond lengths RPtH, RPtX, and RPtP, in each case positioned trans to
the ligand shown in parentheses. In this series, the trans influence of ligand X on
RPtP can be seen to follow the approximate ordering

H > I > Br ∼ Cl ∼ PH3 > F (4.92)

Table 4.31. Computed Pt—H, Pt—X, and Pt—PH3 bond lengths for cis and trans
isomers of PtHX (PH3)2 (X = H, F, Cl, Br, I), showing marked variations

depending on the trans ligand (in parentheses)

X Isomer RPtH (Å) RPtX (Å) RPtP (Å)

H cis 1.588(P) 1.588(P) 2.368(H)
trans 1.656(H) 1.656(H) 2.274(P)

F cis 1.576(P) 2.034(P) 2.436(H), 2.216(F)
trans 1.565(F) 2.104(H) 2.293(P)

Cl cis 1.570(P) 2.373(P) 2.442(H), 2.243(Cl)
trans 1.570(Cl) 2.472(H) 2.297(P)

Br cis 1.570(P) 2.554(P) 2.433(H), 2.246(Br)
trans 1.570(Br) 2.649(H) 2.300(P)

I cis 1.572(P) 2.703(P) 2.427(H), 2.254(I)
trans 1.576(I) 2.799(H) 2.300(P)



474 Molecular bonding in the d-block elements

with bond-length variations in the 0.1–0.2 Å range. The order of influence in (4.92)
is clearly connected with the natural polarity of the M—X bond and thus with
the expected degree of covalency: more covalent M—X bonds exert a larger trans
influence than polar bonds. Irrespective of whether the bond considered is M—H,
M—halide, or M—PH3, it is always longest when trans to H and shortest when
trans to F.

Because trans dispositions commonly result from ω-bonding (the near-linear
alignment of the hyperbonding 3c/4e X—M· · ·:L triad), it is not surprising that the
origin of the trans influence can be traced to the resonance nature of ω-bonding.
When H is placed trans to a halide or PH3, the dominant resonance structure will
be that with a 2c/2e M—H bond and a donor pair of electrons on the halide or
phosphine ligand, as depicted on the left in (4.93):

H—M :L ←→ H:− M+—L
primary secondary

(4.93)

Thus, the M—H bond will be shorter (of higher bond order) while the M—X or
M—P bond will be longer (of lower bond order) in the H· · ·M· · ·L resonance hybrid.
When two H atoms are placed trans to one another, higher weighting of the second
resonance structure bearing a pair of electrons localized on H cannot be avoided,
and the M—H bonds lengthen. One can expect more generally that those ligands
which tend to form apolar bonds with metals (e.g., H and alkyls) will lengthen the
bond of any trans-disposed ligand.

This same reasoning accounts for the usual site preferences in complexes with
mixtures of 2c/2e and ω bonds: ligands making apolar covalent bonds will tend
to occupy the 2c/2e bonds. For example, the seesaw-shaped RuH2(PPh3)2 and
monovacant-octahedral Ru(CH2)(PPh3)2Cl2 complexes adopt structures with the
H and CH2 ligands in sites lacking a trans ligand.

4.6.8 Steric and electrostatic limits of hyperbonding

To illustrate the dependence of hypervalency on steric and electrostatic factors, let
us consider ω-additions of neutral or ionic ligands to [PtF4]2+, a duodectet-rule-
conforming Pt(VI) species with Lewis-like formula

(4.94)

(We note that such a species is expected to be a highly reactive oxidant,43 allowing
these addition reactions to be safely carried out only in a computer!) As shown
in Fig. 4.48, the equilibrium Cs structure of [PtF4]2+ is slightly distorted from
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Figure 4.48 The optimized structure of [PtF4]2+.

idealized sd3 tetrahedral geometry (by geminal hyperconjugation effects). Each of
the four Pt(VI)—F− dative bonds may now be subjected to backside attack by a
coordinative ligand L in order to form hypervalent L Pt F ω bonds, up to the
maximum supported by the Pt valence shell.

Starting from the parent [PtF4]2+ Pt(VI) species of Fig. 4.48, let us now consider
the successive additions of fluoride ligands, L = F−,

[PtFn + 3](3 − n)+ +F−→ [PtFn + 4](2 − n)+, n = 1–4 (4.95a)

corresponding to the series

[PtF4]2+ +F−−→ [PtF5]+
+F−−→ [PtF6]0 +F−−→ [PtF7]−

+F−−→ [PtF8]2−

12e 14e 16e 18e 20e
(4.95b)

It is evident from the net charges in (4.95b) that steps n = 1 and 2 are strongly fa-
vored by Coulombic cation–anion attraction, step n = 3 (involving a neutral [PtF6]0

precursor) is little affected by ionic forces, and steps n = 4 and beyond are strongly
opposed by anion–anion repulsion. Thus, the sequence of ω-additions is expected
to terminate at n = 3 or 4, depending on whether attractive ω-bonding interactions
can overcome the repulsive steric and ionic penalties of the [PtF8]2− species for
n = 4. Figure 4.49 shows the optimized structures corresponding to each addition
product in (4.95a), and Table 4.32 summarizes some bond lengths, fluoride binding
energies, and Pt atomic charges of each species.

From Fig. 4.49(d) and the last row of Table 4.32 one can see that the quadruply
hyperbonded [PtF8]2− dianion is indeed a (meta)stable local equilibrium species,
formally of 20e “count” at the metal atom. Owing to highly unfavorable anion–anion
repulsion, the binding of F− to [PtF7]− is endothermic, but this species is neverthe-
less a true local equilibrium structure (RPtF = 2.04 Å, all positive frequencies) of Oh
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Figure 4.49 Hypervalent complexes resulting from successive additions of fluoride
ions to PtF4

2+; see (4.95a) and (4.95b) in the text.

Table 4.32. Average bond lengths R̄PtF, incremental F− binding
energies 	E(+F−), and platinum atomic charge QPt for

PtFn
(6 − n)+ complexes (see Fig. 4.49)

R̄PtF (Å)

Species σ ω 	E(+F−) QPt

[PtF4]2+ 1.846 — — +2.296
[PtF5]+ 1.864 1.913 −396.4 +2.219
[PtF6]0 1.893 1.917 −268.7 +2.175
[PtF7]− 1.964 1.973 −97.4 +2.201
[PtF8]2− — 2.040 +54.7 +2.137
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Figure 4.50 Interacting nF–hPt–nF NHOs of a F Pt F hyperbonded triad in [PtF8]2−.

cubic symmetry. As seen in Fig. 4.49(d), the four F W F triads are aligned along
the four body diagonals of a cube at tetrahedral (rather than orthogonal 90◦) angles.
The metal hybrid acceptor NHOs are in each case of sd3.04 form, and their overlaps
with the two donor nF orbitals are depicted in Fig. 4.50. Evidently the strong 3c/4e
donor–acceptor interactions depicted in Fig. 4.50 are able to withstand the severe
repulsions due to electrostatic space-charge and steric congestion to achieve the
final step of (4.95), a metastable molecular dianion of 20e count. The platinum
partial charges are similar (QPt � +2.2) throughout the hyperbonded series, which
is indicative of the shared connection to the [PtF4]2+ normal-valent parent species.

From the examples shown in Fig. 4.43, we may conclude that the 18e triply
hyperbonded complexes are often the stable end-products of successive ligand
ω-additions to normal-valent parent species, which is consistent with the well-
known “18-electron rule.” However, incompletely hyperbonded complexes of 12e,
14e, or 16e count are certainly stable as isolated equilibrium species, and in favor-
able cases the sequence of ω-additions may also achieve equilibrium configurations
exceeding the 18e count, as the example of [PtF8]2− has demonstrated.44

4.6.9 Non-d coordination and hypervalency: hexaamminezinc(II)

Although ligands commonly coordinate to vacant metal d orbitals (i.e., nL→dM
∗

interactions), such coordination is also possible with the unfilled metal s orbital (i.e.,
nL→sM

∗ interactions) for metal ions with completely filled d shells. An example is
Zn2+(d10s0), where the vacant 4s orbital serves as the acceptor orbital for donor–
acceptor interactions of nL→sZn

∗ type.
One can expect that nL→sM

∗ interactions are typically weaker than correspond-
ing nL→dM

∗ interactions, because the isotropic metal s orbital is not “focussed”
toward any particular donor ligand nL, whereas a d orbital or sdµ hybrid has strong
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Figure 4.51 The optimized structure of [Zn(NH3)6]2+. (Bond sticks between
Zn and N atoms have been added to aid visualization.)

directionality along a particular coordination axis. A second factor is that all avail-
able nL donor orbitals must coordinate to the single sM

∗ acceptor orbital, with the
inevitable anticooperative weakening of competitive nL→sM

∗ interactions.
Note that there is no intrinsic restriction on the number of donor nL orbitals that

can interact with a single sM
∗ acceptor orbital, as long as the total sM

∗ occupancy
remains less than the maximum two electrons permitted by the Pauli principle.
Thus, the final number of ligands able to participate in nL→sM

∗ coordination is
essentially limited only by steric congestion, and may commonly extend to the
closest-packing limit of six when the steric radius of the coordinating ligand atom
is not much greater than that of the metal ion. In such a case the metal-atom s orbital
occupies the octahedral hole formed by the surrounding six ligands.

As a simple example of non-d coordination, let us consider the hexaammine-
zinc(II) cation [Zn(NH3)6]2+, whose optimized structure is shown in Fig. 4.51. Each
ammine ligand serves as a formal two-electron sigma donor, and the total electron
count at Zn therefore corresponds to a 22e system, again violating the “18-electron
rule.” Each ammine ligand is bound to the Zn2+ cation by about 60.7 kcal mol−1,
which is in part attributable to classical electrostatic interactions of ion–dipole type.

However, significant stabilization is also contributed by nN→sZn
∗ donor–

acceptor interactions, each with estimated second-order interaction energy 49.4
kcal mol−1, as depicted in Fig. 4.52. Each ammine ligand thereby donates about
0.061e to the zinc cation, primarily to the “vacant” 4s orbital which acquires about
0.371e total occupancy. As before, the high formal hypervalency at the metal center
is achieved within the limits of the duodectet rule, i.e., without significant involve-
ment of extravalent metal p orbitals.

As in the examples of Section 4.6.2, one may expect that Zn(II) complexes of
lower coordination number also form stable equilibrium species, if considered in
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Figure 4.52 The leading donor–acceptor (nN→sZn
∗) interaction between the donor

ammine lone pair and the acceptor 4s metal orbital in 22e [Zn(NH3)6]2+ (cf.
Fig. 4.51). (Note that the inner nodal structure of the Zn 4s orbital is absent in the
“effective-core-potential” representation of the metal atom.)

isolation from excess ligands. Owing to the isotropic sZn
∗ orbital that “anchors”

the coordinated ligands, the geometry of these species can be expected to conform
to the VSEPR-like shapes that minimize ligand steric repulsions. Thus, one can
predict that 20e [Zn(NH3)5]2− (trigonal bipyramidal) is also an apparent exception
to the 18-electron rule. However, such incompletely coordinated species will not
be considered further in this work.

4.7 Hypovalency, agostic interactions, and related aspects of catalytic
activation at metal centers

Like boron and other group 13 semi-metals, transition metals of groups 3–5 are
formally “hypovalent” (Section 4.2.4). Such early transition elements are therefore
expected to demonstrate parallels to boron chemistry, such as a propensity to form
Lewis acid–base adducts with electron-pair donors or to form three-center bridge
bonds with other hypovalent species. In the present section we consider repre-
sentative hypovalent transition-metal species and their interactions with prototype
sigma and pi donors to yield Lewis acid–base adducts or other products. Specifi-
cally, we examine donor ligands in which electron density is shared between two
atomic centers (two-center ligand donors, such as C—H sigma bonds and C=C
pi bonds) interacting with a formally vacant one-center orbital at the metal (a 1c∗

metal acceptor).
It should be noted that the hypovalent Lewis acid–base interactions of the present

section are in principle closely related to the general metal–ligand coordination in-
teractions discussed in Section 4.5. However, in normal-valent transition-metal
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complexes, the metal ground-state electron configuration typically involves partial
or full occupancy of all valence orbitals, and formation of a coordination complex
therefore requires effective “promotion” from high-spin to low-spin configuration
that frees (vacates) a 1c∗ metal orbital for dative coordination, raising the energetic
cost of complexation. Such normal-valent coordination typically requires stronger
ligand donors of one-center type, such as the usual lone-pair ligands of the spec-
trochemical series (4.71). In contrast, “early” (hypovalent) transition-metal species
offer the requisite 1c∗ vacant orbital in their ground configuration, and weaker two-
center donor ligands are therefore able to coordinate effectively with these metals.
In the present section we shall therefore focus primarily on the 2c→1c∗ donor–
acceptor interactions that are a distinctive feature of the coordination chemistry of
early transition-metal species.

A characteristic feature of 2c→1c∗ transition-metal adducts (whether of in-
tramolecular or intermolecular type) is the approximate T-shaped geometry between
the two-center donor bond and 1c∗ metal acceptor orbital. Such arrangements are
often identified as “agostic” interactions between the metal center and bond, tending
toward bond scission, metal insertion, or metallacycle formation as the interaction
strength increases. Thus, the examples below span a range of phenomena pertain-
ing to interactions of hypovalent metal atoms with closed-shell molecular species,
touching on many interesting aspects of metal catalysis and reactivity.

4.7.1 Isolated transition-metal Lewis acids

Owing to the inherent reactivity of species containing one or more formally vacant
valence orbitals, few such transition-metal species are known as isolable com-
pounds.

One well-known example is the mineral rutile, TiO2. We consider the TiO2

molecular species, which may be approximately formulated as O=Ti=O, with
sigma and pi bonds of d-rich metal character, as expected for such electronegative
ligands. The metal valence shell also includes “vacant” d-type (n(d)∗) and s-type
(n(s)∗) metal orbitals, as depicted in Fig. 4.54. However, these “vacant” orbitals
have significant occupancy (0.44e in n(d)∗, 0.30e in n(s)∗) associated with partial
triple bonding to oxygen (dative interactions with in-plane oxygen lone pairs), and
the Lewis-acid character at the metal center is thus strongly attenuated.

Another putative example is TiCl4, a distillable Lewis acid. At first glance,
one expects an electronic structure comprising four Ti—Cl σ bonds (with ∼sd3

hybridization) and two empty Ti valence orbitals. However, closer examination
reveals virtually complete filling of the “empty” valence orbitals as a result of strong
donation from Cl lone pairs, imparting significant multiple-bond character to the
Ti–Cl interaction. This example again illustrates how formal vacancies on a central
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Figure 4.53 “Vacant” d-like (n(d)∗) and s-like (n(s)∗) Ti nonbonding orbitals of TiO2
(with actual occupancies in parentheses).

Figure 4.54 Optimized structures of hypovalent metal hydrides: (a) YH3, (b) ZrH4,
and (c) NbH5.
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Table 4.33. Metal charge (QM) and metal bonding (σMH) and nonbonding (nM
∗)

NBOs and occupancies of hypovalent transition-metal hydrides (see Fig. 4.54)

Bonding Nonbonding

Species QM No. σMH Occupancy No. nM
∗ Occupancy

YH3 + 1.723 3 0.46(sd2.41)Y + 0.89(s)H 1.994 1 ∼pd2.32 0.002
1 ∼pd2.31 0.000
1 ∼pd6.48 0.000

ZrH4 + 1.572 4 0.61(sd2.99)Zr + 0.79(s)H 2.000 2 ∼pd0.25 0.000

NbH5 + 1.009 4 0.60(sd4.08)Nb + 0.80(s)H 1.998 1 ∼pd1.69 0.000
1 0.64(sd3.89)Nb + 0.77(s)H 1.970

metal atom may be partially filled by lone pairs on adjacent bonded atoms, reducing
metal acidity.

As idealized computational models of metal hypovalency, let us therefore con-
sider the early second-series transition-metal hydrides YH3, ZrH4, and NbH5

(avoiding both the complications of lone-pair-bearing ligands and those associated
with the lanthanide series). Figure 4.54 shows optimized structures of these species,
and Table 4.33 summarizes the bonding (σMH) and nonbonding (nM

∗) orbitals and
occupancies at the metal center.

As indicated in Table 4.33, the optimal Lewis-like description is in good agree-
ment with the expected idealized sdn hybridization of the sigma framework (sd2

for YH3, sd3 for ZrH4, sd4 for NbH5). Each structure also has the expected number
of vacant nM

∗ valence orbitals (three for YH3, two for ZrH4, one for NbH5), with
occupancies so small (≤0.002e) as to be negligible. Thus, these species conform
well to the idealized hypovalent Lewis-like description.

On the other hand, replacement of H by other monovalent substituents often
leads to a distinct change of electronic character (as is also shown by the example
of TiCl4 noted above). This can be illustrated by the species YF3 and Y(OH)3,
whose bonding and nonbonding orbitals are summarized in Table 4.34 for direct
comparison with YH3 in Table 4.33. Although some superficial similarities exist,
both YF3 and Y(OH)3 really fall closer to the pure ionic limit (e.g., Y3+(F−)3

and Y3+(OH−)3) and the distinction between “bonding” and “nonbonding” metal
orbitals becomes problematic. This transition in electronic character is seen most
dramatically in Y(OH)3, which exhibits a planar D3h (!) structure with Y—O single-
“bond” NBOs that are of π (not σ!) type, essentially oxygen pπ-type lone pairs with
slight (<5%) delocalization tails extending into available Y3+ orbitals. While the
“transition” from covalent to ionic limits is of course mathematically continuous,
strong changes in chemical behavior are expected to distinguish hydrides or alkyls
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Table 4.34. Metal charge (QY) and metal bonding (σYX) and nonbonding (nY
∗)

NBOs and occupancies of trisubstituted yttrium YX3 compounds (X = F, OH)

Bonding Nonbonding

Species QY No. “σYX” Occupancy No. nY
∗ Occupancy

YF3 +2.296 3 0.24(sd8.01)Y 2.000 2 ∼d 0.103
+0.97(sp4.21)F 1 ∼pd7.25 0.006

Y(OH)3 +2.273 3 0.19(pd2.00)Y 1.988 2 ∼d 0.268
+0.98(pπ )O 1 ∼sd2.75 0.237

from other substituents. This distinction should be kept in mind in the remainder
of this section, which is restricted to hydridic and alkyl species that might not be
representative of other “isovalent” substituents.

4.7.2 Agostic interactions and bridge bonding

The characteristic tendency of hypovalent transition metals to interact in a side-
on (T-shaped) manner with nearby alkyl C—H bonds has been designated as the
“agostic” effect.45 Agostic M· · ·C—H interactions can also be identified with gen-
eral 3c/2e donor–acceptor interactions of 2c→1c∗ type. Availability of suitable 1c∗

acceptor orbitals is a signature of hypovalent early transition metals.
As an illustration of the agostic effect, let us consider the simple example of

YH2(C2H5), the ethyl derivative of the parent YH3 species (Fig. 4.54(a)). The
optimized structure of YH2(C2H5) is shown in Fig. 4.55, exhibiting the distortive

Figure 4.55 The optimized structure of YH2(C2H5), showing the T-shaped
geometry of the agostic Y· · ·C—H interaction.
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Figure 4.56 The agostic σCH→nY
∗ interaction in YH2(C2H5); cf. Fig. 4.55.

influence of the metal atom on the alkyl radical. This is particularly evident in the
abnormally small C—C—Y angle (89.7◦), the unusual eclipsed conformation of
the ethyl moiety, and the conspicuously elongated (RCH = 1.093 Å) and canted
(θCCH = 112.1◦) in-plane C—H bond of the terminal methyl group. As originally
characterized,46 the agostic M· · ·C—H interaction corresponds to simultaneous
partial covalency of the terminal H atom to both M and C atoms, which is evidently
related to the three-center H-bridging interactions of carboranes.

The leading σCH→nY
∗ NBO interaction associated with agostic distortions is

shown in Fig. 4.56. As indicated, second-order perturbation theory suggests that
this interaction stabilizes the structure by ∼9 kcal mol−1, easily surmounting the
normal ∼3 kcal mol−1 barrier to eclipsing. The NBO analysis also shows that the
occupancy of the in-plane σCH(in) bond is noticeably depleted (to 1.948e, versus
1.989e for out-of-plane σCH(out) bonds), representing a slight formal reduction of
bond order. The metal d-type nY

∗ orbital correspondingly acquires weak occupancy
(0.044e), which can be primarily attributed to the single σCH(in)→nY

∗ interaction.
Except for the replacement of p-type by d-type metal acceptor orbitals, the agostic
M· · ·C—H interactions of transition metals appear quite analogous to those of
boron and other main-group hypovalent elements (Section 3.6).

Strong similarities to boron chemistry are also evident in the dimerization
reactions

2MHn → M2H2n (4.96)

As shown in Fig. 4.57, the hypovalent hydrides YH3, ZrH4, and NbH5 (Fig. 4.54)
lead to H-bridged species that can be respectively identified as “diyttrane” (Y2H6,
Fig. 4.57(a)), “dizirconane” (Zr2H8, Fig. 4.57(b)), and “diniobane” (Nb2H10,
Fig. 4.57(c)) to indicate their obvious structural relationship to diborane (B2H6,
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Figure 4.57 Optimized structures of transition-metal diborane analogs:
(a) diyttrane, Y2H6; (b) dizirconane, Zr2H8; and (c) diniobane, Nb2H10.

Fig. 3.92). Some geometrical properties of these species are summarized in
Table 4.35.

The three-center τMHM bridge bonds and antibonds of these species display the
expected similarities to the diborane NBOs (Fig. 3.93), as illustrated for Y2H6 in
Fig. 4.58. The two three-center antibond orbitals can again be identified as being
of “	-type” (τYHY

(	)∗, Fig. 4.58(c)) or “π-type” (τYHY
(π)∗, Fig. 4.58(d)) according

Table 4.35. Geometrical bond lengths R and angles of M2H2n species
(see Fig. 4.57)

Species R̄MH (Å) RM···M (Å) RM···H (Å) θH···M···H (degrees) θM···H···M (degrees)

Y2H6 1.98 3.53 2.16 70.3 109.7
Zr2H8 1.85a 3.39 2.00 63.5 116.5

Nb2H10 1.75a 3.00 1.85 71.5 108.5

aAverage of inequivalent M—H bonds.
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Figure 4.58 The three-center bridge bond of Y2H6, showing (a) overlapping
NHOs, (b) the three-center bond τYHY, and the associated antibonds (c) τYHY

(	)∗
and (d) τYHY

(π)∗.

to their symmetric or antisymmetric character with respect to a perpendicular
reflection plane through the two bridging atoms. Following the discussion of Sec-
tion 3.6, these antibonds can be expected to play distinctive roles in aggregation
phenomena leading to the formation of larger clusters and extended phases, should
one succeed in synthesizing such polyhydrides.

Some comparisons of the NBO descriptors for two-center σMH and three-center
τMHM bonds of group 1–3 dimetallanes are summarized in Tables 4.36 and 4.37. The
accuracy of the τ-bonded natural Lewis-structure description is quite satisfactory
in all cases (99.3%–99.8% ρL). In accord with the electronegativity trend along the
series, the metal charge decreases and the polarity of two- and three-center bonds
decreases on going from Y to Nb. The three-center τYHY NBO has particularly
high ionic (hydridic) character (as is also apparent in Fig. 4.58(b)), but τ-bond
covalency more nearly resembles that of diborane as the series progresses. The oc-
cupancies of three-center τYHY

(	)∗ and τYHY
(π)∗ antibonds are also seen to increase

along the series, in accord with the increasing number of possible σMH→τMHM
∗
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Table 4.36. The NBO descriptors of M2H2n species (see Fig. 4.57); namely the
accuracy of the natural Lewis structure (%ρL), metal charge (QM), metal hybrid

(hM), percentage polarization toward metal (%M), and occupancies (Occ.) of
two-center bonds and antibonds

Two-center σMH

Species %ρL QM hM %M Occ. (σ) Occ. (σ∗) No.

Y2H6 99.87 +1.710 sd2.88 22.2 1.984 0.018

Zr2H8 99.77 +1.432 sd2.97 31.8 1.994 0.015 2
sd3.56 33.6 1.979 0.029 1

Nb2H10 99.30 +0.608 sd5.02 43.3 1.976 0.041 2
sd2.94 43.2 1.963 0.092 1
sd6.74 45.4 1.902 0.070 1

delocalizations. Further aspects of H-bridged bimetallic and polymetallic structures
are beyond the scope of this work.

4.7.3 General aspects of catalytic bond activation at transition-metal centers:
molecular hydrogen

Underlying the widespread application of transition metals as catalysts for organic
transformations is the remarkable ability of transition metals to “activate” normally
unreactive bonds, such as carbon–carbon π bonds and the H2σ bond. For example,
mixtures of H2 and simple alkenes can normally coexist without reaction for
decades, despite there being a strong thermodynamic driving force toward hydro-
genation reactions, but addition of a small amount of an appropriate transition-metal
complex catalyzes the reaction to proceed rapidly to its thermodynamic conclusion.
In recent decades a wide variety of transition-metal-catalyzed organic transfor-
mations47 (such as hydroformylation, alkene metathesis, alkene polymerization,
alcohol carbonylation, amination, epoxidation, dihydroxylation, allylation, and
borylation) have streamlined synthetic procedures for a host of important

Table 4.37. Similar to Table 4.36, for three-center bonds and antibonds

Three-center τMHM

Species hM %M Occ. (τ) Occ. (τ(	)∗) Occ. (τ(π)∗)

Y2H6 sd3.96 9.3 1.983 0.012 0.009
Zr2H8 sd5.66 14.6 1.971 0.020 0.011

Nb2H10 sd6.07 21.9 1.913 0.056 0.009
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pharmaceutical and commodity chemicals. A spectacular example of transition-
metal catalysis is the asymmetric hydrogenation reaction48

(4.97)

In this reaction, a rhodium atom complexed to a chiral diphosphine ligand (∗P—P∗)
catalyzes the hydrogenation of a prochiral enamide, with essentially complete enan-
tioselectivity and limiting kinetic rates exceeding hundreds of catalyst “turnovers”
per second. While precious metals such as Ru, Rh, and Ir are notably effective for
catalysis of hydrogenation reactions, many other transition-metal and lanthanide
complexes exhibit similar potency.

Why are transition metals so well suited for catalysis? A complete treatment of
this critical question lies well beyond the scope of this book, but we can focus on
selected aspects of bond activation and reactivity for dihydrogen and alkene bonds
as important special cases. Before discussing specific examples that involve formal
metal acidity or hypovalency, it is convenient to sketch a more general localized
donor–acceptor overview of catalytic interactions in transition-metal complexes
involving dihydrogen49 (this section) and alkenes (Section 4.7.4).

General donor–acceptor motifs in metal–dihydrogen interactions

The donor–acceptor viewpoint provides the language and constructs needed for
explaining various limiting forms of metal–substrate interactions. Metals have both
acceptor capacity – most commonly empty valence nonbonding orbitals (nM

∗) or
metal–ligand antibonds (σML

∗) – and donor capacity – most commonly metal lone
pairs (nM) or metal–ligand bonds (σML). The substrate H2 may donate electrons from
the H—H σ bond or accept electrons via the σ∗ antibond (ethylene presents similar
donor–acceptor possibilities through the π and π∗ orbitals). Restricting discussion
to non-radical processes, we can identify six distinct M/H2 reaction types (A)–(F)
and the corresponding donor–acceptor motifs, as summarized in Table 4.38 and
described below.

(A) Dative H2 coordination. Metals with empty orbitals can accept charge from the donor
σHH bond of H2 to yield a simple complex of molecular hydrogen. Alternatively, this
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Table 4.38. Non-radical reaction types for interactions of transition metals (M)
with H2, showing principal donor–acceptor combinations in each case (the

symbol denotes a vacant valence orbital [formal hypovalency] on
the metal atom)

Schematic reaction Reaction type Donor(s) Acceptor(s)

Dative H2 σHH nM
∗ (or σML

∗)
coordination

Electrophilic H2 σHH nM
∗ (or σML

∗)
cleavage

Synergistic H2 σHH/nM nM
∗ (or σML

∗)/
coordination σHH

∗

“Oxidative addition” σHH/nM nM
∗ (or σML

∗)/
(insertion) σHH

∗

Sigma-bond σHH/σMR nM
∗ (or σML

∗)/
metathesis σHH

∗

Nucleophilic H2 nM σHH
∗

cleavage

interaction can be termed an agostic (3c/2e) bond between H2 and a metal. Dihydrogen
is a rather poor donor ligand, so this type of coordination is expected to be relatively
weak.

(B) Electrophilic H2 cleavage. If the metal complex has significant positive charge and
the M—H bond enthalpy is high, H2 dative coordination may evolve into a heterolytic
cleavage of H2, yielding H+ and a new M—H bond. Additional driving force for
this type of dihydrogen activation can be supplied by a base, provided that it cannot
outcompete H2 for binding to the metal.

(C) Synergistic H2 coordination. When the metal has both donor and acceptor orbitals,
interaction with the σHH and σHH

∗ orbitals of H2 can act synergistically (cooperatively)
in the Dewar–Chatt–Duncanson mode. Such self-reinforcing charge flow enables a
significantly stronger interaction than does simple dative coordination of H2.

(D) “Oxidative addition” (insertion). In the limit of strong synergism, the H—H bond can
be broken and two new M—H bonds formed. Although termed “oxidative addition,”
this reaction does not necessarily deplete the metal of electron density (i.e., oxidize
the metal). Rather, this reaction is fundamentally an insertion of the metal into the
H—H bond. In the process, a lone pair of electrons at the metal and the electron pair
of the H—H bond are “uncoupled” and then “recoupled” to form two M—H bonds.
Whether synergistic H2 coordination or insertion prevails depends largely on the relative
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strengths of the M—H and H—H bonds. In principle, resonance between the two limits
could lead to a variety of structures intermediate between the two extremes, but the
H—H bond enthalpy varies so rapidly with distance that most observed structures lie
clearly at the “molecular-hydrogen complex” or “metal-dihydride” limit. The reverse
reaction, termed “reductive elimination,” can also occur without significant gain or loss
of electron density at the metal center.

(E) Sigma-bond metathesis. Dihydrogen is observed to react with transition-metal–alkyl
bonds even when the metal lacks lone pairs. In this case the reaction cannot be explained
in terms of the “oxidative-addition” or “reductive-elimination” motif. Instead, we can
view this reaction as a special type of insertion reaction whereby the σMR bond pair
takes the “donor” role of the metal lone pair and donates into the σHH

∗ antibond. When
the M—R bonds are highly polarized as M+R−, the process could also be described
as a concerted electrophilic H2 activation in which R− acts as the “base” accepting
H+.

(F) Nucleophilic H2 activation. Although conceptually possible, this type of reactivity is
limited by the relatively low nucleophilicity of metal lone pairs and the high energy of
the H− anion.

With the general framework of Table 4.37 in mind, let us now examine specific
examples of the major coordination and reaction motifs resulting from metal–H2

interaction, with a specific focus on hypovalent metals.

Dative and synergistic complexation of dihydrogen

Direct observation of complexation of molecular H2 at metal centers is a relatively
recent phenomenon. Virtually all such complexes exhibit relatively minor elonga-
tion of the H—H bond, indicating that description of these species as “molecular-
H2 complexes” (rather than, e.g., metal dihydrides or some intermediary resonance
mixture) is well justified. Experimentally observed molecular H2 complexes of the
“synergistic” type are common, but those of simple “dative” type are not.

Purely dative coordination of H2 apparently requires a hypovalent metal complex,
such as HfH4 or TaH5. Figure 4.59 displays the geometrical structures and leading
donor–acceptor interactions resulting from coordination of H2 to these fragments.

When coordination of dihydrogen is limited to uni-directional dative bonding,
as in Fig. 4.59, the metal—H2 distances are long (RHf—H2 = 2.60 Å, RTa—H2 =
2.00 Å) relative to ordinary M—H distances (RHfH � 1.82 Å, RTaH � 1.75 Å) and
only a small quantity of charge is transferred from H2 to the metal (0.05e for
Hf and 0.12e for Ta). In both cases the H—H bond lengths (0.75 Å for Hf and
0.80 Å for Ta) elongate slightly relative to that in free H2 (0.74 Å). As shown
in Fig. 4.59, the σHH→nM

∗ delocalizations yield estimated stabilizations of 14.8
and 54.7 kcal mol−1 for Hf and Ta complexes, respectively. Owing to the more
congested structure of TaH5(H2), separations between molecular H2 and Ta—H
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Figure 4.59 The geometry (left) and leading σHH→n∗
M donor–acceptor interaction

(right) for molecular-dihydrogen complexes: (a) HfH4· · ·H2 and (b) TaH5· · ·H2.

bonds are small. As a result, some backbonding occurs, with charge flowing from
σTaH bonds into the σHH

∗ antibond. These σ→σ∗ interactions, which emulate the
early stages of the σ-bond-metathesis reaction pathway, contribute 28.5 kcal mol−1

of stabilization as estimated from NBO second-order perturbation theory. Thus,
the TaH5(H2) complex exhibits significant synergism in bonding and appreciably
stronger coordination of H2. By virtue of these significant donor–acceptor interac-
tions, exchange of hydrogens with H2 via σ-bond metathesis is an expected pathway
for hypovalent hydride complexes.

Let us next examine an interesting molecular-H2 complex that exhibits syner-
gistic interactions involving a metal σ∗ antibond as the acceptor and a filled nM

nonbonding orbital as the donor: [Pt(PH3)2H(H2)]+. By the methods described in
Section 4.6.7, this cationic complex can be classified as a 16e ML2X2 species
(note that, although H2 and PH3 are normally two-electron “L” donors, the net + 1
charge dictates that one of the “L” ligands be denoted “X” in the MLX scheme).
Thus, a square-planar complex is expected, with two ω-bonds originating from
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Figure 4.60 Geometry and the primary donor–acceptor interactions of [Pt(PH3)2
(H)(H2)]+: (a) from the H2 σ-bond into the Pt—H σ∗ antibond and (b) from the
dPt lone pair into the σHH

∗ antibond.

the sd1-hybridized (90◦) 2c/2e bonds of the underlying normal-valent species. The
optimized structure does indeed exhibit such square-planar geometry, as shown in
Fig. 4.60. Key geometrical features include the distances RHH = 0.80 Å, RPtH =
1.56 Å, and RPt—H2 = 1.87Å, which clearly justify the label of “molecular-H2

complex of a metal hydride” rather than a “metal trihydride.”50 Figure 4.60 also
illustrates the strong orbital overlaps that facilitate synergistic donation of electron
density from the σHH bond into the in-plane σPtH

∗ antibond orbital (estimated 66.7
kcal mol−1 stabilization) and back-donation from the dPt lone pair into the σHH

∗

antibond (13.8 kcal mol−1 stabilization). It may be noted that the dihydrogen lig-
and exhibits a slight preference (∼1.2 kcal mol−1) for perpendicular over parallel
orientation with respect to the square-planar environment.

Insertion of metals into dihydrogen

If M is hypovalent, 3c/2e interactions dominate the initial metal–dihydrogen-
bonding picture. One reaction pathway that may result, should M have sufficient
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MR donor bonds, is σ-bond metathesis. Alternatively, as the Lewis-acid strength of
M increases, the tendency toward agostic or bridging interactions can finally result
in H—H bond scission and formal migration of hydride to the metal atom,

(4.98a)

leading to the products of heterolytic fission. However, if M is lone-pair-bearing,
the corresponding agostic interaction can either create a stronger coordination of
dihydrogen or lead to full metal insertion to form neutral products,

(4.98b)

In the latter case, complementary donor–acceptor interactions of 1c→2c∗ type (e.g.,
nM→σAH

∗) can augment the 2c→1c∗ (e.g., σAH→nM
∗) interactions described in

the previous section. Such complementary pairs of oppositely directed interactions
are intrinsically favored compared with single (uni-directional) donor–acceptor
interactions, which lead to unfavorable charge separation. Hence, stronger agostic
interactions leading to full metal insertion (4.98b) will tend to be associated with
transition-metal atoms having favorable donor (nM) and acceptor (nM

∗) capacity.
To illustrate some simple aspects of the insertion of metal atoms into sigma bonds,

let us first consider the example of titanium in various spin states inserting into H2.
The lowest energy configuration of the Ti atom is expected to be of triplet spin
multiplicity (spin S = 1), with paired electrons filling the low-energy s orbital and
the remaining unpaired electrons in the d manifold, whereas higher configurations
have a singly occupied or vacant s orbital,

3Ti: s2d1
↑d2

↑ < s↑d1
2d2

↑ < s0d1
2d2

↑d3
↑ (4.99a)

The high-spin quintet states (S = 2) can be achieved only in s1 or s0 configurations,

5Ti: s↑d1
↑d2

↑d3
↑ < s0d1

↑d2
↑d3

↑d4
↑ (4.99b)

while the low-spin singlet states (S = 0) correspond to fully paired configurations
that are strongly opposed by Hund’s rule,

1Ti: s2d1
2 < d1

2d2
2 (4.99c)

Figure 4.61 displays the potential-energy curves for insertion in the three spin
states. All three spin multiplicities lead to local minima at small R, but only the
triplet is strongly bound with respect to asymptotic 3Ti + H2 dissociation products,
and we focus primarily on this species.

The prominent feature of the triplet curve in the long-range region R ≥ 1.8 Å is
a double-humped repulsive barrier. This is evidently associated with successive
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Figure 4.61 Potential-energy curves for reactions inserting singlet (circles), triplet
(triangles), and quintet (squares) Ti into H2. The reaction coordinate R is the
distance between Ti and the midpoint of H2, and the zero of energy corresponds
to R = ∞ for ground-state (triplet) Ti + H2.

valence promotions from long-range s2 to short-range sd1.47 configurational char-
acter, where only the latter configuration allows full insertion to form the deep
titanium dihydride well. Such a progression is expected because the final configu-
ration will approximate two ∼sd1 hybridized Ti—H bonds and two singly occupied
d orbitals. Near R = 1.8 Å, the effective Ti configuration has been promoted to
(4s)0.83(3d)2.75, which is apparently sufficiently low in s occupancy to allow the
onset of attractive donor–acceptor interactions. (Note that the “cusped” region of
the potential curve near R = 1.8 Å has strong multi-configurational character re-
quiring higher levels of theory than employed here, so the details of this region
depicted in Fig. 4.61 should be considered to have only qualitative significance.)

Inside R = 1.8 Å the Ti· · ·H2 species is strongly stabilized by synergistic
2c→1c∗(σHH→dTi) and 1c→2c∗(dTi→σHH

∗) interactions leading to H—H bond
breaking and formation of H—Ti—H. Figure 4.62 depicts these interactions at
R = 1.8 Å. At this distance the “pi-acid” interaction (Fig. 4.62(b)) is stronger than
the “sigma-base” interaction (Fig. 4.62(a)), but these two interactions play comple-
mentary roles in binding H2 to the metal atom. At shorter distances, the attractive
well eventually results in directed sd1.47 hybrids and an effective Ti (4s)0.51(3d)2.55

configuration at the equilibrium geometry (Re � 0.90 Å) of the dihydride product
species.

From this example one can judge that insertions of metal atoms into sigma bonds
may be precluded by unfavorable spin or steric/promotion factors, despite the formal
possibility of attractive interactions such as depicted in Fig. 4.62. Long-range s2

steric/promotion barriers may be expected to block direct insertion of metal atoms
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Figure 4.62 Ti· · ·H2 donor–acceptor interactions at R = 1.8 Å (with estimated
second-order stabilization energies in parentheses): (a) σHH→nTi

∗ and (b)
nTi→σHH

∗.

into sigma bonds for other early transition-metal species, even if isolated favorable
regions of stable H—M—H character exist on the potential-energy surface.

For comparison, let us also consider the experimentally well-documented51 sin-
glet reactions of H2 with group 9 metal carbene cations to give metal dihydride
insertion products, e.g., for M = Ir,

(4.100)

The Lewis-like structure of the metallic cation

(4.101)

has a formal unfilled nIr
∗ as well as three filled nIr orbitals. The effective Lewis

acidity of the metal is strongly enhanced by cationic net charge, as well as its
exposed terminal position in the carbene. Compared with the hypovalent “early”
3Ti radical discussed above, the Ir cation (4.101) is just two electrons short of a
completed valence duodectet, and is expected to exhibit the higher electronegativity
associated with “late” transition-metal ions. Furthermore, the singlet CH2Ir+ cation
configuration (∼s0d8.1) will not require extensive promotion of s lone pairs in order
to prepare the complex for making two new Ir—H σ bonds.

Figure 4.63 displays the optimized CH2=IrH2
+ product species, and Fig. 4.64

shows the deep attractive well (>50 kcal mol−1) for bond insertion (4.100),
which is of about four times the exothermicity of the corresponding 3Ti reaction
(Fig. 4.61). Figure 4.64 also includes the leading donor–acceptor interactions of
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Figure 4.63 The optimized CH2=IrH2
+ product of the insertion reaction (4.100).

2c→1c∗(σHH→nIr
∗) and 1c→2c∗(nIr→σHH

∗) types, as estimated by NBO second-
order perturbation theory. These short-range attractions become significant near
R � 2.5 Å, and are evidently instrumental in overcoming the long-range steric
barrier that prevails at greater distances.

Figure 4.65 shows contour diagrams of the σHH→nIr
∗ and nIr→σHH

∗ interactions
at R = 1.8 Å, permitting direct comparisons with Fig. 4.62. In this case the metal
acceptor nIr

∗ orbital is of high s character (sd0.13), and the σHH→nIr
∗ interaction

Figure 4.64 The potential energy for the CH2=Ir+ + H2→CH2=IrH2
+ reac-

tion (circles, solid line), with leading long-range donor–acceptor interactions of
nIr→σHH

∗ (triangles, dotted line) and σHH→nIr
∗ (crosses, dashed line) types for

R ≥ 1.6 Å (where the optimal Lewis structure is of reactant form). R is the distance
from Ir to the midpoint of H2.
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Figure 4.65 Ir· · ·H2 donor–acceptor interactions of the insertion reaction (4.100)
at R = 1.8 Å (with estimated second-order stabilization energies in parentheses):
(a) σHH→nIr

∗ and (b) nIr→σHH
∗.

(∼54 kcal mol−1) is significantly stronger than the corresponding Ti interaction in
Fig. 4.62(a). The corresponding nIr→σHH

∗ “back-donation” (∼28 kcal mol−1) is
nearly identical in form to, but slightly weaker in magnitude than, the analogous
Ti interaction in Fig. 4.62(b) which is consistent with the expected difference in
electronegativity.

At shorter distances the H—H bond is completely ruptured and replaced by
the two Ir—H bonds of the equilibrium product species (Fig. 4.63). The geometry
at the metal atom exhibits the expected sd2-like geometry (cf. Fig. 4.2(b)), and
the final σIrH NHOs and NBO conform closely to this description, as shown in
Fig. 4.66.

Figure 4.66 The overlapping NHOs (left) and NBO (right) for the σIrH bond of
the product CH2=IrH2

+ (cf. Fig. 4.63).
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The conventional nomenclature of “oxidative addition” warrants brief comment
in this case. According to the oxidation-state formalism, the addition of H2 to
IrCH2

+ takes the formal Ir oxidation state from III to V (hence the term “oxida-
tive” addition). However, consideration of natural atomic charges clearly reveals
that Ir gains electron density over the course of this reaction; insertion of IrCH2

+

into the H—H bond lowers the charge at Ir from +0.829 to +0.363, making the
addition process more “reductive” than “oxidative” for the metal. For the more
electronegative late transition metals, particularly those with net positive charge, it
is apparent that addition of H2 will generally tend to have net reductive character.
In contrast, addition of H2 to neutral early-transition-metal complexes will yield
M—H bonds that are polarized toward H and hence of net oxidative character (as
conventional nomenclature suggests); for example, addition of H2 to triplet HfH2

increases the charge on Hf from +0.994 to +1.749. These examples serve as useful
reminders that assignment of oxidation state is merely a formalized “bookkeeping”
protocol that assists in identifying the number of metal nonbonding d electrons (the
dn count), but is quite misleading if understood in any literal physical sense. Pre-
sumed correlations between these assignments and the physical electron-density
distribution are spurious and should be avoided in all instances.

In conclusion, the insertion of transition metals into sigma bonds is seen to
exhibit a common orbital motif (namely synergistic 2c→1c∗ and 1c→2c∗ interac-
tions) both in early (hypovalent) and in late (normal-valent) series members that
bear lone pairs. Subtle shifts in electronegativity, orbital shape, and s→d promotion
energies will alter the magnitudes and “balance” of the two contributing donor–
acceptor contributions, affecting the kinetics and thermodynamics of the insertion
in important ways. The oxidative addition (insertion) reaction often bears no sig-
nificant “oxidative” character. Rather, the critical attribute of the insertion reaction
is the uncoupling of a lone pair into two electron-pair bonds. As emphasized in the
Pross–Shaik two-configuration mixing model,52 both the thermodynamics and the
kinetics of insertion should correlate with the singlet–triplet gaps of the reactants.
Such correlations arise not because the reaction occurs via an actual spin-state
change, but because the singlet–triplet gap approximates the “uncoupling” energy
needed to prepare from the lone pair the diradical-like character needed to form
two new 2c/2e bonds.

Sigma-bond metathesis at hypovalent metal centers

Thermodynamically, reaction of H2 with a metal–carbon bond to produce new C—H
and M—H bonds is a favorable process. If the metal has a lone pair available, a
viable reaction pathway is initial “oxidative addition” of H2 to form a metal alkyl
dihydride, followed by stepwise “reductive elimination” (the microscopic reverse
of oxidative addition) of alkane. On the other hand, hypovalent complexes lack the
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Figure 4.67 The potential-energy profile for the transition-state region of the model
σ-metathesis reaction (4.102).

lone pairs required for insertion–elimination sequences and must therefore adopt a
different pathway (i.e., different donor–acceptor interactions) in order to proceed.
The sigma-bond metathesis reaction, (E) in Table 4.38, is a pathway of considerable
importance, particularly as employed industrially to control polyalkene molecular
weights by addition of H2 to a variety of early-transition-metal-catalyzed alkene-
polymerization reactions.53

As a simple model for the σ-metathesis pathway, let us examine the key orbital
interactions for reaction of H2 with HfH3Me to produce HfH4 and methane:

(4.102)

Figure 4.67 depicts the potential-energy curve for reaction (4.102) along an adi-
abatic reaction coordinate (R = RHMe) obtained by stepping along the H—CH3

stretching coordinate with full optimization of geometries at each step. As shown
in Fig. 4.67, the reaction exhibits a substantial barrier (∼20.5 kcal mol−1) and over-
all exothermicity.

As H2 approaches the methyl group of the Hf complex, electron density is donated
from the σHfC bond into the σHH

∗ antibond while the σHH bond donates into the
Hf metal center. Somewhat surprisingly, however, the primary metal acceptor is
not an empty metal d orbital but rather a σHfH

∗ antibonding orbital. The reason is
revealed by the transition-state structure, as displayed in Fig. 4.68. The approach
found in this reaction trajectory (which is not necessarily the minimum-energy
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Figure 4.68 The geometry and primary donor–acceptor interactions of the ap-
proximate transition state for the model σ-bond-metathesis reaction HfH3CH3 +
H2→HfH4 + CH4: (a) from the Hf—C σ bond into the H—H σ∗-antibond and (b)
from the H—H bond into the Hf—H antibond.

“intrinsic reaction coordinate” for the reaction) is seen to place the incipient H—Hf
bond almost perfectly trans to one of the original Hf—H bonds (θHHfH = 167◦).
Therefore, at this geometry the best overlap is found with the Hf—H antibond,
emphasizing the importance of metal-centered antibonds as acceptors in reactions
at metal centers. Such donor–acceptor interactions are particularly strong when
the M—H bonds are polarized toward H (maximal hydridic character), as is the
case with the early transition metals. At R = 1.69 Å, NBO analysis yields H2 and
HfH3Me as the dominant Lewis-like configuration (with valence ρL = 97.8%).
As depicted in Fig. 4.68, strong donation from the σHfC bond into the σHH

∗ orbital
yields stabilization of 48.9 kcal mol−1 according to NBO second-order perturbation
analysis. Also depicted are the orbitals involved in the σHH→σHfH

∗ donor–acceptor
interactions, which contribute an additional 38.2 kcal mol−1 stabilization.

Essential to the σ-bond-metathesis reaction is donation of M—R bond density
into the H—H antibonding orbital. As a consequence, lower barriers should result
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from increasing donor ability of the R group. For example, the more basic secondary
and tertiary alkyls of highly polarized (carbanion-like) early-transition-metal alkyls
should react faster with H2 than analogous complexes of methyl or primary alkyls.
Recent experimental evidence appears to support this analysis. The significance of
this phenomenon for catalytic alkene polymerization is that the responsivity of the
relative molecular mass to H2 as a chain-transfer agent will depend critically on
the regioselectivity of the alkene insertion (i.e., whether insertion of alkene into the
growing polymer preferentially makes secondary or primary alkyls; C. R. Landis,
D. J. Sillars, and J. M. Batterton, unpublished results).

4.7.4 Catalytic activation of alkene bonds

The π bond of an alkene differs significantly from the σ bond of H2. Most im-
portantly, the π bond is weaker, but, even if it is broken, the two carbon centers
cannot separate by more than ∼0.2 Å due to the residual σ-bonding. In conse-
quence, complete cleavage of the C=C bond (unlike cleavage of the H—H bond)
is impractical, and sharp distinctions between limiting reaction types will not be
so obvious as for H2. For example, H2 binds to transition metals to give either a
molecular-dihydrogen complex or a metal dihydride, and the steep dependence of
H—H binding energy on bond length dictates that reaction products will tend to
fall clearly into one limit or the other, with little resonance mixing except in the
immediate region of the transition state. Coordinated alkenes present a dramati-
cally different picture. Most common transition-metal complexes lie somewhere
“between” the extremes of limiting reaction types, as depicted in Table 4.39 (cf.
Table 4.38 for H2). In such cases, extensive configurational mixing is expected
to complicate the analysis but enrich the chemistry of metal–alkene interactions
(relative, e.g., to the simpler metal–H2 interactions considered in Section 4.7.3). In
this section we shall examine coordination modes of alkenes at metal centers and
briefly discuss their principal reactivity patterns.

As shown in Table 4.38, three major reaction pathways are available to hypova-
lent metals in the presence of an alkene: (A) and (C) dative and synergistic coor-
dination; (B) carbocation formation; and (D) and (E) metallacyclic and migratory
insertions. The latter types are of particular importance in metal-catalyzed alkene
polymerizations and will be given primary attention in the discussion that follows.

Alkene coordination

As a simple example of weak dative coordination of an alkene, we consider the
complex formed between C2H4 and the C4v structure of hypovalent HfH4, which
is analogous to the HfH4· · ·H2 complex discussed in Section 4.7.3. Figure 4.69
displays the optimized structure and leading πCC → nHf

∗ NBO interaction of the
HfH4· · ·C2H4 complex.
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Table 4.39. Non-radical reaction types for interactions of transition metals (M)
with alkenes (||), showing principal donor–acceptor combinations in each case

(the symbol denotes a vacant valence orbital [formal hypovalency] on the
metal atom)

Schematic reaction Reaction type Donor(s) Acceptor(s)

Dative C=C πCC nM
∗ (or σML

∗)
coordination

Carbocation πCC nM
∗ (or σML

∗)
formation

Synergistic C=C πCC/nM nM
∗ (or σML

∗)/πCC
∗

coordination

Metallacyclic πCC/nM nM
∗ (or σML

∗)/πCC
∗

insertion

Migratory πCC/σMR nM
∗ (or σML

∗)/πCC
∗

insertion

Carbanion nM πCC
∗

formation

As shown in Fig. 4.69, the HfH4· · ·alkene complex exhibits expected paral-
lels with the HfH4· · ·H2 complex (Fig. 4.59), both in terms of molecular shape
and in terms of valence interactions. The characteristic features of such weak da-
tive bonding include long Hf—C distances (2.82 Å), normal C=C bond length
(1.34 Å), planar alkene bond angles, and small binding energy (15.1 kcal mol−1).

Figure 4.69 The geometry and leading πCC→nM
∗ donor–acceptor interaction for

the HfH4· · ·C2H4 dative coordination complex.
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Figure 4.70 The optimized metallacycle product of the Ti· · ·C2H4 insertion reac-
tion (4.103).

The NBO analysis characterizes the πCC→nHf
∗ interaction as relatively modest

(25.0 kcal mol−1), with∼0.09e charge transfer from ethylene to HfH4. Accordingly,
the coordinated alkene is somewhat activated toward nucleophilic attack, but the
chemical effects are minor compared with those for other donor–acceptor motifs
to be discussed below.

Metallacyclic pi-bond insertions

In contrast to the severe difficulty of “cracking” a sigma bond, insertion of a tran-
sition metal into a pi bond can proceed in facile fashion. This can be illustrated by
the attack of Ti on the pi bond of ethylene, which leads to metallacycle formation
in the reaction

(4.103)

with the final reaction product as shown in Fig. 4.70. Reactions of this type are
commonly rationalized in terms of the Dewar–Chatt–Duncanson model.54 Here we
describe the mechanism in terms of the NBO donor–acceptor framework.

Figure 4.71 shows the barrierless potential-energy reaction profile for the
Ti(singlet) + C2H4 insertion reaction (4.103). In parallel with the picture for
sigma-bond insertion (Fig. 4.62), the principal donor–acceptor interactions lead-
ing to reaction (4.103) are expected to be of synergistic 2c→1c∗(πCC→nTi

∗) and
1c→2c∗(nTi→πCC

∗) types. The magnitudes of these stabilizations in the long-range
region are included in Fig. 4.71, for comparison with Fig. 4.62. Contour diagrams
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Figure 4.71 The potential-energy curve for the Ti· · ·C2H4 insertion reaction
(4.103) (circles, solid line), with leading long-range donor–acceptor interactions
of nTi→πCC

∗ (triangles, dotted line) and πCC→nTi
∗ (crosses, dashed line) types.

(R is the distance from Ti to the midpoint of C2.)

of the interacting NBOs at R = 1.8 Å are shown in Fig. 4.72. These exhibit evident
similarities to the analogous diagrams (Figs. 4.54 and 4.57) for sigma insertions.

The equilibrium hybrids and NBOs of the final titanacyclopropane ring bonds
are shown in Fig. 4.73. Although some bond strain is evident, the degree of bond-
bending appears appreciably less than that in cyclopropane (cf. Fig. 3.21). The
relatively gentle degree of bending of metal hybrids is particularly noteworthy in

Figure 4.72 The Ti· · ·C2H4 donor–acceptor interactions of the insertion reaction
(4.103) at R = 2.4 Å (with estimated second-order stabilization energies in paren-
theses): (a) πCC→nTi

∗ and (b) nTi→πCC
∗.
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Figure 4.73 The overlapping NHOs (left) and NBO (right) for σTiC (upper)
and σCC (lower) bonds of the product titanacyclopropane (cf. Fig. 4.70).

view of the small bond angle (43.2◦) at the metal apex. This is testimony to the
flexibility of metal sdµ hybrids to span a much wider range of bond angles than those
of main-group compounds. The net charge at titanium is QTi = +0.870, which is
indicative of the rather polar character of the σTiC bonds.

Similarly to the Ti atom, the singlet state of HfH2 undergoes barrierless coordi-
nation of ethylene to make a metallacyclopropane dihydride. Both structural and
NBO metrics strongly suggest that we should describe this complex as a simple
metallacycle. The characteristics of this class seem to be well represented by the
TiC2H4 prototype.

Intermediary metal–alkene species

We now consider some simple examples of the more common alkene coordination
mode that is intermediate between the limiting extremes of weak dative coordina-
tion and strong metallacyclopropane insertion. Our model systems are the simple
ethylene adducts of the group 10 metals Ni, Pd, and Pt. Because these metals exhibit
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Table 4.40. Key bond lengths RMC and RCC, bond-angle sum about
carbon

∑
θC, metal-atom charge QM, and percentage valence Lewis

density %ρL for M—C2H4 adducts of the group 10 metals M = Ni,
Pd, and Pt

M RMC (Å) RCC (Å)
∑

θC (degrees) QM %ρL

Ni 1.905 1.425 354.6 +0.260 96.2

Pd 2.137 1.395 356.9 +0.132 97.3

Pt 2.054 1.436 354.1 +0.038 95.0

distinct atomic ground-state configurations (Ni(s2d8), Pd(s0d10), and Pt(s1d9)), they
are expected to require varying amounts of promotion energy in order to achieve
the idealized sd1 hybridization for metallacyclopropane formation. The Pt com-
plex is expected to form metallacycles with the least amount of promotion energy,
whereas both Ni and Pd will require extensive reorganization of the ground-state
atomic configuration.

Table 4.40 shows key geometrical and NBO parameters for the three M—C2H4

adducts, including distances (RMC and RCC), deviations from alkene planarity
(
∑

θC = θHCH′ + θHCC + θH′CC), metal charge (QM), and accuracy of the Lewis-
like description (percentage valence Lewis density %ρL). The conspicuously low
values of %ρL – 96.2% for Ni, 97.3% for Pd, and 95.0% for Pt – indicate that charac-
terization of these adducts as “intermediary” is clearly appropriate. Interestingly, in
all cases the coordination with ethylene causes net charge flow from the metal to the
alkene, resulting in small positive charges at the metal centers (+0.04 to +0.26). In
keeping with electronegativity trends, charge is released in the order Ni > Pd > Pt.
The Pt complex exhibits the longest C—C distance and greatest deviation from
planarity at C, indicating that it has the highest metallacycle character.

Natural resonance theory (Section 1.6) provides a quantitative gauge of the con-
tributions of various resonance structures to the total electronic density. The results
are shown in Table 4.41 demonstrating the remarkable “intermediacy” in the nature
of metal–alkene interaction relating metallacycle, nonbonded, and carbanion-type
resonance forms.

As judged by NRT weightings in Table 4.41, metallacyclic character is strongest
for Pt (52.3%), followed by Ni (40.1%) and then Pd (26.8%), whereas nonbonded
M· · · || character trends in the opposite direction. However, no single bonding de-
scription achieves more than a bare majority of the NRT weightings. Perhaps most
importantly, the occurrence of multiple resonance structures signals that the den-
sity distribution is easily perturbed, thus making available the possibility of many
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Table 4.41. The NRT weightings of leading resonance forms (metallacyclic,
nonbonded complex, and open carbanion) in intermediary M—C2H4 adducts,

M = Ni, Pd, and Pt

NRT resonance weightings

M Cyclic Nonbonded Carbanion Others

Ni 40.1% 37.8% 13.7% 8.4%
Pd 26.8% 53.6% 11.4% 8.2%
Pt 52.3% 27.0% 8.0% 12.7%

reaction chemistries, as is observed. More specifically, we expect the reactivity pat-
terns of coordinated alkenes to depend sensitively on coordination geometry, alkene
substituents, and other ligands of the metal complex, exhibiting an “intermediary”
character quite unlike that of typical M—H2 adducts.

As a further demonstration of the mutable nature of metal–alkene bonding, con-
sider the hypervalent complex ion, trans-[Pt(PH3)2H(C2H4)]+. In contrast with co-
ordination of ethylene to the bare Pt atom, this complex exhibits little elongation of
the C=C bond (RCC = 1.362 Å), a nearly planar alkene geometry (

∑
θC = 358.5◦),

and rather long Pt—C distances (RPtC = 2.411Å). Thus, the dominant resonance
structure in this case corresponds to the dative-bonding motif, in Table 4.39(A). Un-
like neutral Pt(C2H4), this cationic complex exhibits net charge flow of 0.11e from
alkene to metal, as expected for dative coordination. Owing to the hypervalent na-
ture of trans-[Pt(PH3)2H(C2H4)]+, the best acceptor orbital for πCC electron density
is the σPtH

∗ antibond; this donor–acceptor interaction generates 59.7 kcal mol−1 of
stabilization according to NBO second-order perturbation analysis. The companion
πCC→nPt

∗ stabilization is 20.4 kcal mol−1. Overall, these parameters indicate that
coordination of ethylene to the cationic Pt fragment yields only slight carbocationic
character, with charge flow dominated by the πCC→σPtC

∗ dative interaction.
Although steric influences also make some contribution, the geometry of

[Pt(PH3)2H(C2H4)]+ appears to be dominated by significant covalency (partial
metallacyclopropane character) of the Pt–alkene interaction. Consider the expected
structure for pure metallacyclopropane (or more simply, metal dialkyl) bonding.
A dialkyl complex [Pt(PH3)2HR2)]+ of formal ML2X3 type has 16e count, corre-
sponding to two ω bonds. The normal-valent parent of this hypervalent molecule is
therefore formulated as having two ω prebonds, one ordinary 2c/2e sigma bond, and
three pure-d lone pairs, requiring nominal sd2 hybridization. The natural 90◦ bond
angles of the parent sd2-hybridized MX3 and 180◦ angles of the two ωLMX triads
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then dictate a monovacant octahedral coordination geometry, with one of the two R
groups perpendicular to the plane of the two ω bonds. For the particular example of
the trans [Pt(PH3)2H(C2H4)]+ ion, the relatively low metallacyclopropane charac-
ter and short C—C bond length are insufficient to enforce this idealized asymmetric
geometry of the alkene, with one C remaining in the plane (and participating in
ω-bonding) and one C approaching the axial position perpendicular to the plane.
Nevertheless, the significant preference for the alkene to “twist” with respect to the
principal coordination plane can be seen to be an immediate consequence of its
partial metallacyclopropane character.

The alkene-orienting phenomenon is quite general and can be stated as follows:
transition-metal-coordinated alkenes will tend to adopt geometries that approximate
those of the corresponding dialkyls. A striking example of this tendency in the op-
posite “untwisted” sense is given by coordination of ethylene to Fe(CO)4. Viewed
in the metallacyclopropane or dialkyl limit, the preferred geometry of this ML4X2

18e complex is expected to exhibit the octahedral geometry of three ω bonds, with
three lone pairs and nominal sd2 hybridization (90◦ bond angles). As a result, the
preferred orientation55 of Fe(CO)4(C2H4) places the C—C bond in plane with two
cis-disposed CO groups (i.e., in ω-bonding position) rather than parallel to the axis
of two trans-disposed CO groups. The actual geometry of Fe(CO)4C2H4 reflects this
tendency of the alkene to orient itself in a plane so that each C lies approximately
trans to a coplanar CO group, thereby achieving the stabilizing effect of partial
M—C covalency and ωLMC bonding, despite the apparently “more crowded” re-
quirement of the octahedral-like (versus trigonal-bipyramidal-like) coordination
geometry.

Finally, let us briefly consider the structural consequences of substitution of an
alkene by an electron-withdrawing group such as a nitrile. Owing to the unsym-
metric nature of acrylonitrile (CH2CHCN), one expects a distinct asymmetry in
the preference of the two vinyl C atoms to occupy the in-plane versus out-of-plane
positions in the overall monovacant octahedral coordination pattern – but which
way should it occur? The nature of the hypervalent bonding, extrapolated toward
the metallacyclopropane limit, provides the essential insight: the carbon atom that
is best able to stabilize the partial build-up of negative charge associated with
ω-bonding should lie closest to the coordination plane, leaving the other carbon
to make a conventional 2c/2e bond in the unique axial position. Accordingly, the
CN-substituted carbon atom is expected (and observed) to preempt the in-plane
ω-bonding position whenever possible, despite the “more crowded” sterics that
seem to be required.

Asymmetry in metal–alkene coordination plays a critical role in asymmetric
catalysis, with implications far beyond the scope of the present treatment. An in-
structive example is provided by catalytic asymmetric hydrogenation of enamides,
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in which results of computational studies have recently shown the importance of
such asymmetric coordination in determining the sense of enantioselection based
on a fascinating “anti-lock-and-key” mechanistic motif.56

4.7.5 Catalysis of alkene polymerization

The ability of transition-metal complexes to activate substrates such as alkenes and
dihydrogen with respect to low-barrier bond rearrangements underlies a large num-
ber of important catalytic transformations, such as hydrogenation and hydroformy-
lation of alkenes. However, activation alone is insufficient if it is indiscriminate.
In this section we examine a particularly important class of alkene-polymerization
catalysts that exhibit exquisite control of reaction stereoselectivity and regioselec-
tivity as well as extraordinary catalytic power, the foundation for modern industries
based on inexpensive tailored polymers.

The chain-carrying catalytic species of alkene-polymerization reactions is com-
monly a tri-coordinate group 4 transition-metal cation of the general form L2M+Pn ,
where Pn is the polyalkene chain. A family of commercially important examples
is based on the complex titanium ion57

(4.104)

where the Cp (cyclopentadienyl) ring is in sandwich-like coordination with Ti. Start-
ing from the methylated reactant species (n = 0), successive H2C=CHR molecules
can be inserted in stereoregular manner under mild conditions, yielding polymeric
chains whose length n can be effectively controlled by addition of H2 to quench
chain propagation (via the σ-bond-metathesis pathway discussed in Section 4.7.3).
As we shall see in more detail, the critical alkene-activation event is generation
of carbocationic character through electrophilic attack by the positively charged
metal.

As a simple computational model for the catalysis of alkene polymerization, let
us consider some aspects of the general chain-propagation reaction

L2MR + H2C=CHR′→L2MCH2CHRR′ (4.105)

starting from a methyl precursor reagent (R = CH3) for polymerization of ethy-
lene (R′ = H) with chlorinated titanium cation (L = Cl, M = Ti+) as the catalytic
Lewis acid. We note that the actual polymerization catalysts used in industry ex-
hibit additional features (such as stereoselectivity, pronounced counterion effects,
strong variations in relative molecular mass and variable co-monomer-incorporation
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proclivities) that such a simple model cannot address. Our focus here lies on the
principal orbital interactions that lead to alkene activation and chain growth. (Un-
like other examples in this chapter, the present system was treated only at B3LYP/
LANL2DZ level.)

According to the general “migratory-insertion” mechanism proposed by
Cossee,58 chain propagation (4.105) is a two-step process in which the precur-
sor metal reagent (I) forms an intermediate alkene complex (II) that subsequently
rearranges to the insertion product (III),

(4.106)

A prominent feature of this mechanism is that the growing polymer chain alternately
swings between two cis-disposed coordination sites during each monomer insertion.
General mechanistic outlines of this reaction have been extensively examined by
large-scale computations and confirmed by experimental means.59 Our present goal
is to clarify the localized donor–acceptor-orbital interactions that underlie (4.106),
particularly the nature of the alkyl–alkene complex II.

Figure 4.74 shows optimized structures of species I–III of the propagation re-
action (4.106). All three structures are true equilibrium species (positive frequen-
cies), with intermediate and final product species bound by 39.2 kcal mol−1 (II) and
46.9 kcal mol−1 (III) with respect to the starting reagents (I + C2H4). As expected
from the elementary sd2-hybridization picture (Section 4.3), the trigonal TiRCl2
geometry is strongly pyramidalized about the metal atom, with a 6.48 kcal mol−1

barrier to inversion. Furthermore, from comparison of Figs. 4.74(a) and 4.74(c) one
can recognize that, if the Ti—C bond is held, e.g., in fixed horizontal orientation,
the terminal TiCl2 triangle alternately flips from “up” to “down” orientation as each
—CH2CH2—segment is inserted into the polymer tail, the so-called chain-swinging
(“bell–clapper”) mechanism.

The leading metal–alkene interactions contributing to stabilization of the inter-
mediate complex II are depicted in Fig. 4.75. As shown in this figure, two vacant Ti
orbitals (n′

Ti
∗ and n′′

Ti
∗) interact strongly with the πCC bond NBO of the alkene in the

expected 2c→1c∗ manner, holding the alkene in nearly parallel orientation to the
metal–carbon bond as it approaches from the “backside” (metal) end of the reac-
tant σTiC bond (Fig. 4.74(b)). The “backward-canted” n′′

Ti
∗ orbital (Fig. 4.75(b)) can

evidently interact with the alkene pi bond at large separation, while the “forward-
canted” n′

Ti
∗ orbital (Fig. 4.75(a)) assists in sliding the alkene forward into nearly
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Figure 4.74 Optimized structures of (a) the reactant I, (b) the intermediate complex
II, and (c) the product III of the model ethylene-polymerization reaction (4.106),
with labeled methyl (Cm), proximal (Cp), and distal (Cd) carbon atoms.

Figure 4.75 The leading donor–acceptor interactions of the Cl2TiCH3
+· · ·C2H4

complex (cf. Fig. 4.74(b)), with stabilization energies in parentheses.
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Table 4.42. Skeletal geometries and charges of equilibrium and transition-state
species in the model propagation reaction (4.106); cf. Fig. 4.74

I II II‡ III

Distances (Å)
Ti—Cm 1.975 1.984 2.046 2.233
Ti—Cd ∞ 2.862 2.121 1.964
Ti—Cp ∞ 2.301 2.506 2.405
Cd—Cp 1.348 1.373 1.419 1.573
Cp—Cm ∞ 3.407 2.260 1.612

Angles (degrees)
Cm—Ti—Cp — 105.1 58.5 40.5
Cm—Ti—Cd — 133.2 92.4 81.0
Ti—Cd—Cp — 52.5 87.8 84.9
Ti—Cp—Cd — 99.2 57.7 54.4
Cm—Cp—Cd — 133.2 107.5 118.2

Charges (a.u.)
Ti +1.135 +0.877 +0.734 +0.776
Cm −0.882 −0.881 −0.790 −0.718
Cd −0.403 −0.147 −0.573 −0.575
Cp −0.403 −0.604 −0.248 −0.445

	E (kcal mol−1)a (0.0) −39.2 −32.3 −46.9

a Relative to separated I + CH3CH=CH2.

square alignment with the Ti—C bond to be broken. Thus, the two donor–acceptor
(partial τ-bridging) interactions pictured in Fig. 4.75 virtually clamp the alkene
into parallel alignment and provide the low-energy pathway to the (approximately
square) transition-state geometry in which the precursor πCC and σTiC bonds can
rearrange to form the σTiC and σCC bonds of the product polymer tail.

Table 4.42 summarizes some geometrical and charge descriptors of the alkyl–
alkene complex II that provide clues as to how the catalytic bond-switching is
facilitated. The comparison values for I and III show that the charge distribution
and geometry of the intermediate complex II differ markedly from those of the
reactant and product species. The two strong donor–acceptor interactions in Fig.
4.75 lead to considerable intermolecular charge flow (0.305e) from the incoming
alkene to the metal cation, partially neutralizing the cation and creating considerable
carbocation character in the alkene. This is particularly true at the distal carbon atom
Cd (0.457 less-negative charge than on the proximal Cp), whereas the proximal Cp

center (of higher π-bond amplitude) begins to pyramidalize conspicuously as shown
in Fig. 4.74(b). The strongly unsymmetric interaction of the ethylene moiety with
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Figure 4.76 Side and end views of the 90◦-twisted ethylene complex (0.5 kcal
mol−1 above the untwisted equilibrium complex, Fig. 4.74(b)), showing the inter-
action of the unsymmetric pi bond with Ti.

Ti is further illustrated in Fig. 4.76, which shows the structure of the 90◦-twisted
complex (lying about 0.5 kcal mol−1 above the untwisted equilibrium geometry),
with significant carbocationic character at the —CH2 group canted away from the
titanium atom. Thus, alkene activation in this species has fundamentally different
electronic character from that of, e.g., the titanium insertion complex (4.103) in
Section 4.7.4, and corresponds rather to the electrophilic carbocationic formation
reaction type of (B) in Table 4.39.

As the alkene continues to approach alignment with the polar metal–carbon bond
of the reagent in the untwisted complex, the interaction in Fig. 4.75(b) evolves into
the σTiC(d) bond with the distal alkene carbon (which has switched to become
the less cationic alkene center), while the proximal (more cationic) carbon moves
closer to the “methide-like”60 unit bound to titanium. As the alkene approaches,
this methide-like unit can merely reorient its bonding hybrid from the partially
cationic metal atom toward the partially cationic Cp to complete the product bond
topology. Thus, the flow of charge from alkene to metal that accompanies the donor–
acceptor interactions (Fig. 4.75) serves to create the partial cationic vacancy at Cp

that eventually induces the CH3
− moiety to realign its filled nC orbital away from

the metal and toward the incoming alkene, completing the carbon–carbon product
bond. Because the rearrangement intimately involves all four labeled atoms in Fig.
4.74 (Ti, Cm, Cp, and Cd), the transition state is expected to have pronounced four-
center character.

Figure 4.77 displays the transition state (II‡) between the alkyl–alkene complex
II and the final product species III. In this figure one can see that the methide-like
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Figure 4.77 The optimized structure of the transition state II‡ for the ethylene-
insertion reaction II→III (4.106), with forward activation energy 	Ef

‡ = 6.90
kcal mol−1 relative to the metal–ethylene complex II.

unit has indeed reoriented itself about half-way between Ti and Cp, directing its
bonding hybrid toward the opposite (Cd) apex of the Ti—Cd—Cp—Cm quadri-
lateral. The natural bond orders of the transition state (b(Ti—Cm) = 0.46, b(Ti—
Cd) = 0.77, b(Cd—Cp) = 1.14, b(Cp—Cm) = 0.35) also indicate that the Ti—Cd—
Cp unit is approaching its final (single-bonded) form, while Cm makes approximate
“half-bonds” both to Ti and to Cp. The forward activation energy (without zero-
point correction) is calculated as 6.90 kcal mol−1, and the entire II → II‡ → III
transition region lies far below the energy of separated reactants (I + C2H4), so the
required activation energy is readily available in the excess energy of the alkyl–
alkene complex II. Table 4.42 includes geometrical and charge parameters of the
transition state for comparison with those of the equilibrium species.

Figure 4.78 depicts some details of product NBOs and interactions in the product
species III. Particularly important are the agostic interactions of Ti with the out-
of-plane C—H bonds and the newly formed C—C bond of the terminal methyl
group (Figs. 4.78(a) and (b)), which lock the propyl ligand into the highly strained
geometry shown in Fig. 4.74(c). The “new” σTiC bond exhibits strong bending (Fig.
4.78(c)), reflecting the highly activated character of the nascent product species.
This high degree of strain in turn helps to surmount the barrier for the ensuing
alkene insertion, facilitating further chain propagation.

On the basis of this simple orbital picture, we can also consider the effect of
alternative alkene pendant groups R′ in the catalytic propagation reaction (4.105).
In the case of propylene (R′ = CH3), for example, one can envision two distinct
isomers of the alkyl–alkene complex, with either the primary or the secondary
alkene carbon atom as the proximal “Cp.” This leads to the alternative primary and
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Figure 4.78 Leading agostic interactions involving (a) the C—H bond and (b) the
C—C bond of the terminal methyl group, and (c) the bent metal–carbon bond NBO
of product III (cf. Fig. 4.74(c)).

secondary insertion reactions shown below (analogously to (4.106)):

(4.107a)

(4.107b)
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Understanding the factors controlling primary versus secondary insertion of alkenes
is critically important to practical applications, because regioerrors (i.e., occasional
secondary insertions in a polymer predominantly formed by primary insertions) can
adversely affect relative molecular masses, responsivities to hydrogen, and melting
points of polymers.

From the known polarization of the propylene πCC bond away from —CH3 (in
accordance with the familiar pi-donor character of methyl substituents), it is easy to
predict that πCC→nTi

∗ interactions will be stronger for IIsec than for IIpri (because
the former has the high-amplitude end of the πCC donor favorably oriented toward
the nTi

∗ acceptor). In accord with this picture, the leading πCC→nTi
∗ stabilization

(analogously to Fig. 4.75(a)) is 59.3 kcal mol−1 in IIsec versus 42.4 kcal mol−1 in
IIpri. Relative to asymptotic I + CH3CH=CH2 reactants, the complex IIsec (−49.2
kcal mol−1) is more than 7 kcal mol−1 more stable than IIpri (−42.1 kcal mol−1). The
cationic charge of the propylene moiety is also significantly higher in IIsec(+0.364)
than in IIpri (+0.327), which is consistent with the stronger πCC→nTi

∗ interactions
in the former case.

However, the enhanced stability of IIsec is clearly deleterious to formation of
the reaction product IIIsec (relative energy −47.7 kcal mol−1), because the inser-
tion step (4.107a) is now significantly endothermic. In contrast, the primary-Cp

reaction (4.107b) to form IIIpri (relative energy −45.8 kcal mol−1) remains favor-
ably exothermic. Thus, as is found experimentally, the primary-Cp reaction product
IIIpri should be formed in metal-catalyzed polymerization of propylene. (Some cat-
alysts do generate secondary M-alkyls, but the majority of 1-alkene polymerization
catalysts appear to bring about propagation by primary insertions.)

Figure 4.79 displays the optimized structures of secondary-Cp (IIsec) and
primary-Cp(IIpri) complexes, and Table 4.43 includes geometrical and charge pa-
rameters of these propylene complexes for comparison with those of the corre-
sponding ethylene complex in Table 4.42. The IIsec complex can be seen to have
smaller Ti—Cp metal–alkene separation (by ∼0.1 Å) and other evidence of tighter
metal–alkene binding than that in the IIpri complex, in accordance with the donor–
acceptor stabilizations discussed above.

Figure 4.80 shows the transition state (IIpri
‡) and final product (IIIpri) of the

actual primary-Cp propylene-insertion reaction (4.107b). Geometrical parameters,
charge distributions, and energetics of these species are included in Table 4.43
for comparison with those for the corresponding ethylene reaction in Table 4.42.
Compared with the ethylene reaction, reaction with propylene has served to lower
the exothermicity (from 7.7 to 3.7 kcal mol−1) and the forward activation energy
(from 6.9 to 6.2 kcal mol−1). The propylene transition state (Fig. 4.80(a)) is very
similar to the ethylene transition state (Fig. 4.77), except for slight displacement
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Figure 4.79 Optimized structures of the alternative propylene complexes IIsec and
IIpri in insertion reactions (4.107a) and (4.107b).

Table 4.43. Skeletal geometries and atomic charges of the alternative
secondary-Cp (IIsec) and primary-Cp (IIpri) propylene complexes, as well as

of the transition state (IIpri
‡) and actual product ( IIIpri) of the model

propylene-polymerization reaction (4.107); cf. Figs. 4.79 and 4.80

IIsec IIpri IIpri
‡ IIIpri

Distance (Å)
Ti—Cm 1.987 1.994 2.060 2.225
Ti—Cd 2.928 2.732 2.066 1.960
Ti—Cp 2.235 2.336 2.511 2.414
Cd—Cp 1.390 1.374 1.449 1.579
Cp—Cm 3.370 3.487 2.175 1.620

Angle (degrees)
Cm—Ti—Cp 105.8 107.0 55.8 40.6
Cm—Ti—Cd 132.3 136.1 89.9 80.3
Ti—Cd—Cp 47.4 58.7 89.4 85.3
Ti—Cp—Cd 105.4 91.1 55.4 54.0
Cm—Cp—Cd 138.9 123.2 105.3 115.6

Charge (a.u.)
Ti +0.888 +0.835 +0.750 +0.772
Cm −0.892 −0.877 −0.792 −0.722
Cd +0.092 −0.244 −0.603 −0.578
Cp −0.666 −0.319 −0.052 −0.228

	E (kcal mol−1)a −49.2 −42.1 −35.9 −45.8

a Relative to separated I + CH3CH=CH2.
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Figure 4.80 Optimized structures of (a) the transition state (IIpri
‡) and (b) the

product (IIpri) of the model propylene-insertion reaction (4.107b).

of Cm out of the Ti—C—Cp plane (apparently due to steric pressure of the methyl
substituent). Thus, the pronounced effect of methyl substitution on the initial car-
bocationic alkene complex is followed by rather modest changes in the remainder
of the potential-energy profile.

In summary, transition-metal-catalyzed alkene-polymerization reactions high-
light the metal-induced electrophilic activation of C—C π bonds to form carbo-
cation-like alkene complexes. Considerations involving substituent pi-donor or pi-
acceptor strength (i.e., tendency toward carbocation formation) will be useful in
similarly rationalizing polymerization reactions (4.105) for more general alkenes.

Computations and experimental kinetic isotope effects suggest that the poly-
merization occurs in two discrete steps:61 (1) alkene binding to form carboca-
tionic intermediates, followed by (2) migration of an alkide-like group. However,
the distinction between this stepwise process and a concerted migratory inser-
tion is subtle. The actual mechanism of catalytic polymerization will depend on
the nature of the ligands, counterion, solvent, and other variables. Irrespective of
whether the insertion is concerted or stepwise, the orbital interactions are essentially
unchanged.

Why are transition metals well suited for catalysis of this process? Certainly
the electrophilicity of cationic metal centers is important, as is the relative weak-
ness of transition-metal–carbon bonds. However, similar electrophilicities and bond
strengths could be found among main-group cations as well. A key to the effec-
tiveness of Ti catalysts is the presence of two metal-based acceptor orbitals. In
effect, two such orbitals are needed to choreograph the reversal of net charge flow
at the two alkene carbons as the intermediate alkene complex moves through the
transition state toward the final product.
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4.8 Hyperconjugative effects

Although certain formal parallels between transition-metal hydrides and the “anal-
ogous” hydrocarbon species (see, e.g., the discussion surrounding Fig. 4.23) have
been noted, it is also important to recognize the profound differences between cor-
responding MnHm and CnHm compounds. These differences are particularly appar-
ent with reference to hyperconjugative delocalization effects, which have entirely
different strengths and patterns (as well as increased basis sensitivity) in transition-
metal compared with hydrocarbon species. A small selection of these effects will
now be examined.

The strikingly different characteristics of transition-metal hyperconjugative in-
teractions are particularly apparent in their influence on internal rotation barriers. To
illustrate, let us first consider “ethane-like” Os2H6, whose optimized staggered and
eclipsed conformations (displaying conspicuous deviations from those of ethane)
are shown in Fig. 4.81.

While the energy difference between staggered and eclipsed conformers
(15.1 kcal mol−1) is about five times that of ethane, Os2H6 exhibits the “expected”
preference for staggered geometry. One might therefore assume that this preference
originates in vicinal σOsH−σOsH

∗ delocalizations analogous to those in ethane-like
molecules (Section 3.4.2), but such interactions are found to be rather negligible
in Os2H6. Instead, the leading barrier-determining interactions are those depicted
in Fig. 4.82, involving vicinal nOs→σOsH

∗ delocalization of metal lone pairs into
adjacent antibonds. In fact, these interactions are so strong that the geometries are
significantly distorted from the idealized ethane-like structure. Furthermore, in the
eclipsed geometry the optimal NBO structure actually includes a formal Os=Os
double bond! Even in the staggered geometry, which the single best NBO structure
depicts as having a single bond between the two Os centers, NRT analysis yields

Figure 4.81 Staggered and eclipsed conformers of “ethane-like” Os2H6.
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Figure 4.82 Leading vicinal nOs→σOsH
∗ donor–acceptor interactions of Os2H6 in

(a) staggered and (b) eclipsed conformations.

an Os—Os bond order of 1.38. Thus, while vicinal hyperconjugative interactions
are indeed responsible for torsional barriers both in ethane (Fig. 3.55) and in Os2H6

(Fig. 4.82), the donor–acceptor stabilization in the latter case is much stronger due
to the unique d-type donor orbitals available to metal atoms.

A still more dramatic example is given by the saturated decahydride of ditungsten,
H5WWH5, which has the formal Lewis-like structure

(4.108)

This species contains no valence lone pairs, and so may be considered a “purer”
example for comparison with H3C—CH3. However, an attempt to twist the—WH5

group about the tungsten–tungsten single bond incurs a torsion barrier of more than
60 kcal mol−1, comparable to the energy of breaking covalent bonds! In this case,
the staggered and eclipsed forms are both found to be of much higher energy (36.1
and 61.0 kcal mol−1, respectively) than an equilibrium twisted form with reference
H—W—W—H dihedral angle φ = 76.1◦, as shown in Fig. 4.83.

From the structures in Fig. 4.83 one can readily see that the —WH5 groups
undergo strong rearrangements under “internal rotation,” with varying numbers of
hydride bonds that make unusually acute W—W—H bond angles: four in the equi-
librium geometry of Fig. 4.83(c), two in the staggered geometry of Fig. 4.83(a),
none in the eclipsed geometry of Fig. 4.83(b). Each such acutely bent hydride bond
is able to enter into strong σWH−σWH

∗ hyperconjugative interaction with an ap-
proximately coplanar obtusely bent hydride antibond, as depicted in Fig. 4.84. As
seen in Fig. 4.84, such acutely bent σWH−σWH

∗ interactions are extremely strong
(corresponding to partial τHWH-bridging in the alternative resonance structure
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Figure 4.83 Optimized “conformers” of W2H10, showing (a) staggered (φ =
180◦), (b) eclipsed (φ = 0◦), and (c) equilibrium (φ = 76.1◦) isomers (φ is a par-
ticular H—W—W—H torsional angle). Note the severe hydride rearrangements
that accompany internal rotation.

Figure 4.84 The leading vicinal σWH−σWH
∗ interaction in equilibrium W2H10

(Fig. 4.83(c)), involving an acutely bent σWH bond with an obtusely oriented
vicinal σWH

∗ antibond in approximately coplanar alignment.
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representation), with stabilization energies in the 35–40 kcal mol−1 range. Only
in the high-energy eclipsed arrangement (Fig. 4.83(b)) are such acute σWH−σWH

∗

interactions fully prevented by steric repulsions. Indeed, due to the highly distortive
strength of acute σWH−σWH

∗ interactions, the concept of a pure “internal rotation”
mode (involving more-or-less-fixed —WH5 torsional groups) becomes problem-
atic, and true parallels with main-group torsional phenomena cannot be drawn.

As a general conclusion, we can say that vicinal hyperconjugative interactions
in transition-metal species tend to be much stronger than those in main-group com-
pounds. Torsional degrees of freedom are therefore much more strongly hindered
in metallic species, and the notion of “pure” torsional motion of simple rigid-rotor
form lacks physical relevance in this limit.

The differences in hyperconjugative interactions are evidently related to charac-
teristic mechanical properties of metallic versus non-metallic materials. Whereas
organic materials typically have soft torsional modes that can accommodate defor-
mations while preserving covalent-bond angles, the corresponding saturated metal
hydrides incur strong distortions of skeletal bond angles when metal–metal bonds
are twisted. Thus, the latter materials exhibit a tendency toward fractures and brit-
tleness under applied stresses, instead of the rubbery elasticity that is characteristic
of organic polymers. However, further discussion of these differences is beyond the
scope of this book.

4.9 Multielectron coordination

4.9.1 Polydentate coordination and the chelate effect

The discussion of coordinative metal–ligand bonding in Section 4.5 was implicitly
restricted to the simplest type of electron-pair-donor ligand L:, namely a monoden-
tate (two-electron) Lewis base. However, numerous ligands are known to donate
multiple electron pairs to a Lewis acid, and hence can participate in polydentate co-
ordination to a transition-metal atom. In the extreme case, such higher-order ligands
(termed “chelates”) may coordinate to multiple sites around a metal atom (up to
eight sites for the ethylenediaminetetraacetate [EDTA] ion), enveloping and seques-
tering the atom in a complex of high stability. In the present section, we examine
simple aspects of bidentate (two-pair) :L—R—L: ligation in metal complexes of
the form

(4.109)

Such bidentate chelation is found to be favored over monodentate complexation in
many cases, this being the so-called “chelate effect.”
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Figure 4.85 (a) Monodentate and (b)–(e) bidentate ligands for M(ligand)+ complexes.

Figure 4.85 illustrates a variety of the free ligands to be discussed below. The
chosen ligands include monodentate ammine (Fig. 4.85(a)) and a variety of neutral
and anionic bidentate donors: acetylene (Fig. 4.85(b)), the allyl anion (Fig. 4.85(c)),
ethylenediamine (“en”, Fig. 4.85(d)), and the acetylacetonate anion (“acac”, Fig.
4.85(e)). We shall examine these bidentate ligands in complexes with transition-
metal ions having one or two vacant valence orbitals, comparing these species with
corresponding M(NH3)2

+ diammine species of two free monodentate ligands.
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Iridium monocation complexes

Let us first consider the eight-electron Ir+ ion as a prototype “two-pair-acceptor”
species, forming 12e IrL2

+ complexes. Optimized Ir(ligand)+ structures for the
monodentate and bidentate ligands of Fig. 4.85 are shown in Fig. 4.86. As shown

Figure 4.86 Some Ir+ complexes (see Tables 4.44 and 4.45).



4.9 Multielectron coordination 525

Table 4.44. Properties of bicoordinate metal–ligand complexes for M = Ir+ (see
Fig. 4.86): binding energy 	E and geometrical parameters (bond length RML

and valence angle �LML)

Ligand(s) Cycle Symmetry 	E(kcal mol−1) RML(Å) �LML(degrees)

(a) Ammine — C2v 159.2 2.032 101.3

(b) Acetylene 3 C2v 125.4 1.854 43.3

(c) Allyl aniona 4 Cs 362.8 2.036 72.3
(2.060) (41.5)

(d) en 5 C2 166.9 2.026 84.1

(e) acac Anion 6 C2v 259.6 1.935 100.0

a Parenthesized values refer to the middle C atom in the symmetry plane.

in Fig. 4.86, the chosen ligands lead to successively increasing ring sizes with
the Ir+ ion on going from the three-membered Ir-alkyne (Fig. 4.86(b)) to the six-
membered Ir-acac (Fig. 4.86(e)). Some energetic, geometrical, and NBO descriptors
of these Ir+ complexes are summarized in Tables 4.44 and 4.45. For each complex,
Table 4.44 shows the total binding energy (	E) (with respect to singlet Ir+ and
free ligand(s)), point-group symmetry, and metal–ligand coordinative bond length
(RML) and angle (φLML), while Table 4.45 summarizes various NBO descriptors
of the complexes, including the metal charge (QM), metal hybridization (hM) and
polarization (%polM) of the σML bond, and the NRT bond order (bML). These
tables provide the basis for overall comparisons of the complexes to be discussed
individually below.

Table 4.45. Properties of bicoordinate metal–ligand complexes for M =
Ir+ (see Fig. 4.86): metal charge QM, bonding hybrid hM, percentage

polarization toward the metal atom (%polM), and NRT bond order bML

of the σML NBO

Ligand(s) QM hM %polM bML

(a) Diammine 0.281 sd1.58 19.9 0.989

(b) Acetylene 0.568 sd1.26 45.2 0.906

(c) Allyl aniona 0.056 sd2.52 49.1 0.889
(sd2.49) (53.1) (0.783)

(d) en 0.250 sd1.62 20.9 0.775

(e) acac Anion 0.409 sd1.77 18.9 1.009

a Parenthesized values refer to the middle C atom in the symmetry plane.
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If we consider the “ideal” interhybrid angle for a divalent metal to be 90◦ (as
expected for sd1 hybridization; Section 4.3.2), we can recognize from the values in
Table 4.44 that the �LML angles are too small for three- and four-membered rings,
about right for five-membered rings, and too large for six-membered rings. (The
extremely small �LML angle in smaller rings is virtually dictated by the much larger
covalent radius of the metal atom.) Thus, on the basis of the hybridization picture
we can expect that five-membered rings will tend to be favored relative to other
sizes of metal-chelating ring.

By comparing the similar binding energies (159.2 and 166.9 kcal mol−1) for
the acyclic diammine (Fig. 4.86(a)) and the corresponding cyclic chelate complex
(Fig. 4.86(d)), we can recognize that there is little enthalpic advantage in the chelated
complex. Thus, the chelate effect (the strong thermodynamic tendency to favor
chelated over non-chelated complexes) is primarily entropic in origin.62 In the
case of Ir(en)+ chelate, the ligand evidently overcomes an unfavorable torsional
barrier to achieve the eclipsed equilibrium chelate geometry. This disadvantage is
offset by the favorable (electron-releasing) effect of the alkyl bridging group, which
enhances the Lewis-base donor strength of secondary (Fig. 4.86(d)) versus primary
(Fig. 4.86(a)) amine groups, as one can judge from the relative metal charges in the
two complexes.

The binding energies in Table 4.44 show the expected strong preference for
anionic over neutral ligands in complexes of the metal cation. However, the ge-
ometries and other properties of these complexes reflect strong covalency effects
(albeit enhanced by net ionic attraction) that will principally be considered.

Particularly striking in this respect is the evidence in Table 4.44 for strong charge
reorganization that accompanies metal–ligand complexation. Compared with the
bare ion, QM is sharply reduced by transfer of 43%–94% of the metal “cation”
charge onto the ligand. This charge transfer is expected to alter the chemical prop-
erties of the ligands profoundly, tending to diminish their usual reactivity toward
electrophiles but instead increase the vulnerability to nucleophilic attack (the so-
called “Umpolung effect.”63 Other chemical changes in ligand properties induced
by metal complexation will be detailed below.

Gold monocation complexes

For comparison, let us also consider the ten-electron M(ligand)+ complexes for
M+ = Au+ as a prototype “one-pair-acceptor” species. (For convenience, we refer
to these species as formal “Au+ complexes,” but it should be understood that the
actual bonding is far more covalent than the ionic label “Au+” might seem to
suggest.) Optimized structures for the AuL2

+ complexes are shown in Fig. 4.87
for direct comparison with the Ir+ complexes in Fig. 4.86. Similarly, the energetic,
geometrical, and NBO descriptors of these Au+ complexes are summarized in



4.9 Multielectron coordination 527

Figure 4.87 Some Au+ complexes (see Tables 4.46 and 4.47).

Tables 4.46 and 4.47 for direct comparison with the Ir+ complexes in Tables 4.44
and 4.45.

Comparison of the binding energies 	E for Ir+ and Au+ species shows that
the latter are much more weakly bound (by roughly 60–80 kcal mol−1) for all
the bidentate ligands. This large difference merely reflects the fact that a two-pair
donor interacts more effectively with a two-pair acceptor (e.g., Ir+) than with a one-
pair acceptor (e.g., Au+), a simple consequence of the chemical donor–acceptor
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Table 4.46. Similar to Table 4.44, for M = Au+ (see Fig. 4.87)

Ligand(s) Cycle symmetry 	E(kcal mol−1) RML(Å) �LML(◦)

(a) ammine — D3h 132.4 2.092 180.0

(b) Acetylene 3 C2v 53.4 2.184 32.9

(c) Allyl anion 4 Cs 292.7 2.059 (49.2)a

(3.042) (26.0)b

(3.370) (49.2)a

(d) en 5 C2 92.8 2.321 80.5

(e) acac Anion 6 C2v 185.4 2.196 97.5

a The angle between the bonded and the outermost C atom.
b The angle between the bonded and the middle C atom.

character of the interaction, thus providing a striking example of the thermodynamic
consequence of exceeding the duodectet configuration.

As expected, the weaker binding to Au+ is also reflected in the geometry and
charge distribution of the bidentate complexes. Thus, except for the allyl case (to
be discussed below), the metal–ligand distances RML are ∼0.3 Å longer for Au+

than for corresponding Ir+ complexes. Similarly, the charge transfer from donor
to acceptor is considerably less in the weaker Au+ complexes, an effect that is
particularly conspicuous for the ethylenediamine ligand (∼0.4e difference in QM).

Against this backdrop of weakened bidentate complexation to Au+, the rela-
tive strength of the Au(NH3)2

+ diammine complex is quite remarkable. While
Au(NH3)2

+ is indeed somewhat less strongly bound than Ir(NH3)2
+, the reduc-

tion is only about 10%–15%, far less than the corresponding reduction (∼40%)
for the “analogous” ethylenediamine bidentate ligand. Thus, in this case there is a
strong enthalpic anti-chelate effect that favors the unchelated Au(NH3)2

+ over the
Au(en)+ chelate complex, opposing the intrinsic entropic advantage of the latter.

Table 4.47. Similar to Table 4.45, for M = Au+ (see Fig. 4.87)

Ligand(s) QM hM %polM bML

(a) Diammine 0.482 (sd0.28) (16.4) (0.503)a

(b) Acetylene 0.796 (∼s) (0.0) (0.13)b

(c) Allyl anion 0.128 sd0.26 44.6 0.850

(d) en 0.674 (∼s) (9.3) (0.39)c

(e) acac Anion 0.710 (∼s) (8.2) (0.60)c

a 3c/4e N—Au—N hyperbond.
b No M—L bonds in the leading NBO structure.
c One M—L bond in the leading NBO structure.
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The explanation for this enthalpic anti-chelate effect is apparent from exam-
ination of the NBOs. The Au(NH3)2

+ complex exhibits a classic 3c/4e ω-bond
interaction motif, described in resonance terms as H3N: M+—NH3 ←→ H3N—
M+ : NH3, or in NBO terms as a strong nN→σAuN

∗ interaction. The interacting
NHOs correspond closely to the Pimentel–Rundle three-center MO picture (Sec-
tion 3.5) of hypervalent bonding, based on an s-type valence hybrid on gold and the
two p-type AOs on nitrogen. As discussed in Sections 3.5 and 4.6, such nN→σAuN

∗

stabilizations are characteristically maximized in linear arrangements, but this fa-
vorable geometry is not achievable in the chelated complex (with �NAuN = 83◦).
Thus, the acyclic diammine can be strongly stabilized by hypervalent (3c/4e) reso-
nance, whereas the corresponding stabilization is quenched in the chelate geometry.

4.9.2 Hapticity

The geometries in Figs. 4.86 and 4.87 suggest an important distinction in the multi-
center “hapticity” character of ligand attachment to the metal atom. Hapticity refers
to the number of atoms in a ligand that are coordinated to the metal. In the Ir+

diammine complex (Fig. 4.86(a)), the metal attaches to each of two nN donor lone
pairs in simple monohapto (one-center, η1) fashion. However, in the Ir+ complexes
with HCCH or C3H5

− the metal attaches to the face of the pi bond or three-center
allylic pi system in dihapto (two-center, η2) or trihapto (three-center, η3) fashion,
respectively. The hapticity label “ηn” therefore conveniently denotes the delocalized
n-center character of the donated electron pair(s) and the geometry of the resulting
coordination complex.

It is useful to consider the possible formulations of alkyne and allyl bonding to
metals in terms of Green’s MLX formalism.64 Coordination of an alkyne in a simple
dative two-electron fashion is denoted ML, whereas the limit of metallacyclobutene
formation is denoted MX2. For the allyl ligand, three imaginable coordinations are
possible: simple η1 coordination is denoted MX, but η3 coordination can encompass
both MLX (one σ bond plus a dative alkene coordination) and MX3 (three M—C
σ bonds).

The effects of altered hapticity can be seen by comparing the η3, four-electron
allyl complex of Ir+ (Fig. 4.86(c)) with the corresponding complex of Au+

(Fig. 4.87(c)). Because Au+ requires only two electrons to complete its formal
duodectet, the metal–allyl complexation now involves only the anionic nC center of
a localized allylic H2C̈—CH=CH2 moiety, and the hapticity “slips” from η3 to η1:

Ir(C3H5) versus Au(C3H5)
η3, four electrons η1, two electrons

(4.110)

The resulting change in electronic character of the η3 versus η1 ligand is reflected
in the altered symmetry, bond lengths, and NRT bond orders of allylic C—C bonds,
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Table 4.48. Comparison bond lengths RAB and bond orders bAB in
η3, four-electron (M = Ir+) versus η1, two-electron (M = Au+)

metal–allyl complexes (see Figs. 4.85(c) and 4.86)

Atoms M = Ir+ (η3) M = Au+ (η1)

A B RAB (Å) bAB RAB (Å) bAB

C1 C2 1.451 1.118 1.495 1.044

C2 C3 1.451 1.118 1.330 1.951

M C1 2.060 0.899 2.059 0.850

M C2 2.036 0.783 3.042 0.001

M C3 2.060 0.899 3.370 0.041

as summarized in Table 4.48. In particular, the NRT bond orders of Au(C3H5)
correspond closely to the completely localized Au—CH2—CH=CH2 description
of the η1 complex.

The leading NBO Lewis structures for the two allyl complexes are

(4.111)

and the corresponding metal–carbon-bond NBOs of each structure are displayed in
Fig. 4.88. As indicated, the η3-bonded structure (4.111a) has three metal–carbon
single bonds, two “edge” bonds (Fig. 4.88(a))

σIrC(edge) = 0.70(sd2.52)Ir + 0.71(sp6.73)C (4.112a)

and a central bridge bond (Fig. 4.88(b))

σIrC(middle) = 0.73(sd2.49)Ir + 0.72(sp5.64)C (4.112b)

The C—C bonds are close to being ordinary single bonds (bCC � 1.12, RCC =
1.45 Å), showing that little vestige of allylic resonance remains (as the geometry
in Fig. 4.86(c) makes apparent), and the η3 species (4.111a) is therefore better
characterized as a metallabicyclobutane. For the η1 complex (4.111b), the single
σAuC bond (Fig. 4.87(c)) has the approximate composition

σAuC = 0.67(sd0.26)Au + 0.74(sp5.64)C (4.112c)
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Figure 4.88 Metal–carbon bond NBOs in M(allyl) complexes for (a) edge σIrC
and (b) middle σIrC bonds of Ir(η3-C3H5), and (c) the σAuC bond of Au(η1-C3H5);
cf. Fig. 4.87.

In other words, the gold complex is of formal MX type. Thus, the NBO description
of the bonding goes considerably beyond the hapticity labels in (4.110) and suggests
that only a severely distorted and reorganized form of the “allyl anion” exists in
either of these complexes.

Because the localized H2C̈—CH=CH2 form of the ligand has the carbanionic nC

coordinated directly to the metal acceptor orbital, the η1 coordination is expected
to be strongest on a per-electron-pair basis. The metal charges (QM = +0.126 [ Ir]
versus +0.157 [Au]) and metal–ligand binding energies (	E = −312.1 kcal mol−1

[Ir] versus −253.9 kcal mol−1 [Au]) also indicate that the per-pair donor–acceptor
interaction is significantly stronger in the η1 than in the η3 allyl complex.

4.9.3 Two- versus four-electron coordination of alkynes

Whereas changes in hapticity are normally required for changes in the number of
coordinated electron pairs, acetylene and other triple-bonded ligands exhibit the
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Table 4.49. Comparison bond lengths R, angles, and C—C bond orders bCC

of M(HCCH)+ complexes (M = Ir, Au) and free ligand (cf. Figs. 4.86(b)
and 4.87(b))

M RMC (Å) RCC (Å) �HCC (degrees) �CMC (degrees) bCC

Ir 1.854 1.367 147.0 43.3 1.43

Au 2.184 1.236 166.4 32.9 2.75

— — 1.199 180.0 — 3.00

interesting ability of being able to serve as either two- or four-electron donors
without change in hapticity.65

To see the effects of alteration in number of alkyne electron-pair donations, let
us compare the four-electron ML2 Ir(HCCH)+ complex in Fig. 4.86(b) with the
corresponding two-electron ML Au(HCCH)+ complex,

Ir(HCCH)+ versus Au(HCCH)+

η2, four electrons η2, two electrons
(4.113)

as shown in Fig. 4.87(c). The gold complex is found to exhibit a triangular η2-type
structure rather similar to that of the iridium complex, but with significantly greater
metal–ligand separation (2.184 versus 1.854 Å), weaker binding (53.4 versus 125.4
kcal mol−1), and diminished ligand→metal charge transfer (0.205e versus 0.432e).
Table 4.49 compares some geometrical features of these complexes, confirming
the “less perturbed” character of the HCCH ligand in the η2, two-electron Au+

complex.
The leading NBO Lewis structure of the less strongly bound Au(HCCH)+ com-

plex does indeed correspond to separated Au+ · · · HCCH reactants. Figure 4.89
illustrates the principal NBO donor–acceptor interactions for the Au(HC≡CH)+

complex, which are seen to be rather similar to those for the long-range
Ti(H2C=CH2) complex (Fig. 4.72). Thus, for a transition metal with only one
vacant valence orbital, acetylene and ethylene πCC bonds function rather similarly
as two-electron donors, and the “η2, two-electron complex” description is apt.

However, for the “η2, four-electron” Ir(HCCH)+ complex, the metal–ligand
interactions are so strong that a better NBO description corresponds to either of the
two following equivalent metallacyclopropene insertion products:66

(4.114)
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Figure 4.89 The leading NBO donor–acceptor interactions of [Au· · · HCCH]+
arising from η2, two-electron complexation (with stabilization energies in
parentheses).

The σIrC and πIrC bonds of the equilibrium metallacyclopropene have the approxi-
mate compositions

σIrC = 0.67(sd1.26)Ir + 0.74(sp3.47)C (4.115a)

πIrC = 0.94(d)Ir + 0.35(p)C (4.115b)

The overlapping hybrids of the NBOs (4.115) are shown in Fig. 4.90, exhibiting
the strong “bond bending” of the sigma skeletal framework.

In summary, the detailed electronic character of dihapto metal–acetylene com-
plexes depends strongly on the Lewis-acceptor capacity of the metal. Formal two-
versus four-electron η2 ligation to a transition metal can lead to breaking of one
or both π bonds, dramatically altering the structure and reactivity of the alkynyl

Figure 4.90 Overlapping hybrids for the σIrC and πIrC NBOs of the Ir(HCCH)+
metallacyclopropene (“η2, four-electron-complex”) species (4.112).
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moiety. The Ir+ complex with acetylene clearly lies toward the MX2 extreme,
whereas the Au+ complex is best formulated as ML. (Given the strong M=C char-
acter of Ir(HCCH)+, afficianados of the Green labeling scheme would be well
justified in classifying the complex as “MX3Z,” with X’s representing the two σMC

bonds and one πMC bond, and Z representing the carbenium ion.) Thus, an over-
simplified “η2, four-electron” label fails to do justice to the rich chemistry that can
be expected on the basis of the more complete NBO description.

4.9.4 Resonance enhancement

We now turn to the acetylacetonate (acac) ligand, for which resonance of the form

(4.116)
is expected (oxygen lone pairs are not shown), with actual NRT weightings as
shown in parentheses. The bidentate ML2Ir(acac) complex in Fig. 4.86(e) can be
compared with the corresponding Au+ complex,

Ir(acac) versus Au(acac)
four electrons two electrons

(4.117)

whose optimized structure is shown in Fig. 4.87(e). Comparison geometrical,
charge, and bond-order values for free and complexed acetylacetonate ligands are
summarized in Table 4.50.

Table 4.50. Comparison bond lengths R, atomic charges QA, and
NRT bond orders bAB of M(acac) complexes (M = Ir, Au) and

free acetylacetonate ligand (cf. Figs. 4.86(e) and 4.87(e));
“C(m)” denotes the central methyne carbon atom

M RCC(m) (Å) RCO(Å) QC(m) QO bCC(m) bCO

Ir 1.404 1.293 −0.449 −0.578 1.389 1.465
Au 1.414 1.275 −0.475 −0.724 1.390 1.496
— 1.424 1.242 −0.562 −0.677 1.316 1.696
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Figure 4.91 Principal NBO interactions in the Ir(acac) complex (cf. Fig. 4.86(e)),
showing (a) the sigma-type Ir—O coordination bond (hIr = sd1.77) and (b) powerful
pi-type nC→πCO

∗ interactions (in a contour plane 1.0 Å above the skeletal sigma
plane), with associated second-order stabilization energies shown in parentheses.

As shown in (4.118), the leading resonance structure for the Ir(acac) resonance
hybrid,

(4.118)
corresponds to structure III of the free ligand (4.116), with the addition of two σIrO

bonds formed by in-plane O lone pairs and Ir sd1.77 hybrid orbitals, illustrated in
Fig. 4.91(a). Because these bonding interactions lie within the skeletal sigma plane,
they do not directly compete with the pi-type acac resonance interactions. The reso-
nance shift from leading III-type structure to I- and II-type structures corresponds
to very strong pi-type nC→πCO

∗ donations, as shown for the metal–ligand com-
plex in Fig. 4.91(b) (essentially similar to the corresponding interaction of the free
ligand). In contrast to the allyl anion (Section 4.9.2), for which pi-type resonance is
essentially quenched by metal complexation, acac resonance delocalization is ge-
ometrically and electronically compatible with complexation to a metal atom. Put
simply, acac interacts with Ir in essentially pure sigma fashion, averting destructive
interference with the resonance-stabilized pi system.

Indeed, it is evident that acac resonance can shift to promote metal–ligand co-
ordination. Thus, by giving increased weight to I and II at the expense of III, the
system readjusts to give higher anionic character at each oxygen, thereby increasing
the Lewis basicity of the ligand and strengthening metal–ligand coordination. The
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numerical values in Table 4.50 show the trend toward increased anionic charge QO

at oxygen (and reduced anionic character at carbon) that accompanies metal com-
plexation. The NRT bond orders bCO and bCC exhibit the corresponding increase in
C—O single-bond character and C=C double-bond character associated with the
III → I, II resonance shift. The corresponding changes in bond lengths RCO and
RCC are also consistent with these bond-order shifts.

One can recognize that such resonance enhancement of donor–acceptor bonding
is a rather general phenomenon. Indeed, one can generally expect intramolecular
resonance shifts to be strongly coupled to intermolecular complexation in such a
way that metal coordination promotes ligand resonance shifts (and accompanying
structural and charge rearrangements) and vice versa. Such cooperative coupling of
intramolecular and intermolecular delocalization is virtually dictated by the overall
variational stabilization of the metal–ligand complex.

Even the allyl anion can be seen as an example of resonance-enhanced coordina-
tion. As shown in Section 4.9.2, η1-C3H5

− complexation is accompanied by a shift
toward the localized H2C̈−—CH=CH2 resonance structure that places maximum
anionic character at the metal-coordinated carbon atom. In effect, the carbanionic
lone pair nC is “shared” between intramolecular nC→πCC

∗ (allylic resonance) and
intermolecular nC→nM

∗ (metal coordination) delocalizations, and the former can
be diminished to promote the latter, if greater overall stabilization of the metal–
ligand complex is achieved thereby.

4.9.5 Sandwich complexes

Among the most remarkable examples of higher coordination and hapticity are
the metallocene “sandwich complexes” for which E. O. Fischer and G. Wilkinson
received the Nobel Prize in 1973.67 Well-known prototypes include ferrocene,
Fe(C5H5)2, and nickelocene, Ni(C5H5)2, whose optimized singlet structures are
shown in Fig. 4.92. However, analogous “double-decker” and “triple-decker” metal
sandwich compounds are known for a variety of transition metals and aromatic
ring sizes (CnHn, n = 4−8), indicating the great generality of metallocene forma-
tion. In particular, M(C5H5)n cyclopentadienyl (Cp) derivatives are now known for
every main-group and d-block transition metal, as well as for many of the f-block
metals.68 Thus, the electronic origins of metallocene formation must be manifested
in very general features of metal–alkene coordination.

The Fe(Cp)2 and Ni(Cp)2 structures in Fig. 4.92 illustrate the important variation
in hapticity that often distinguishes M(Cp)2 complexes for metal atoms of different
acceptor characters. Thus, high-symmetry ferrocene (S10) corresponds to highest
η5 hapticity, whereas singlet nickelocene (lowered C2v symmetry) exhibits lower η3

coordination to each Cp ring. (The crystallographic structure of triplet nickelocene



4.9 Multielectron coordination 537

Figure 4.92 M(cyclopentadienyl)2 sandwich complexes for (a) M = Fe and
(b) M = Ni in their singlet states; see Table 4.51. (Metal–carbon bond sticks
have been drawn to assist visualization.)

exhibits a similar, though less pronounced, shift toward η3 coordination, as will be
discussed below.) The change in hapticity evidently reflects strong differences in the
electronic and geometrical characteristics of the Cp ring. As shown in Table 4.51,
Fe(η5-C5H5)2 corresponds to fully delocalized high-symmetry (D5h) aromatic-ring
geometry, whereas Ni(η3-C5H5)2 corresponds to low-symmetry localized Cp ge-
ometry, with strong bond alternation and nonplanar puckering (by ∼8◦) of the
uncoordinated C2H2 relative to the coordinated allylic C3H3 portion of each Cp
ring. The dependence of the hapticity and delocalization of Cp on the acceptor
character of the coordinated metal somewhat parallels the corresponding situation
for allyl ligands discussed in Section 4.9.2.

As a simple conceptual model, let us initially formulate M(Cp)2 with the metal
and Cp ligand in their neutral forms: an idealized transition-metal diradical com-
plexed to two cyclopentadienyl radicals. The NBO analysis strongly suggests the
accuracy of such a neutral-Cp starting picture, with virtually negligible net charge
(e.g., −0.085 in the ferrocene case) on each Cp ring. Each Cp ligand can be visu-
alized in three progressively delocalized forms:

(4.119)

These idealized depictions may be considered as resonance hybrids of (a) one, (b)
two, and (c) all five of the equivalent localized structures corresponding to (4.119a).
We shall now consider the possible interactions of these distinct “versions” of the
Cp ligand with Fe, Ni, and other metal acceptors.
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Table 4.51. Comparison geometrical parameters of M(Cp)2

sandwich complexes, M = 1Fe, 1,3Ni (see Fig. 4.92)

Parameter M = Fe M = 1Ni M = 3Ni (exp.c)

Point group S10 C2 ∼S10

Distances (Å)
M–ring a 1.682 1.784 1.817

M—C 2.074(5) 2.052(1) 2.164(1)
2.115(2) 2.171(1)
2.460(2) 2.191(1)

2.192(1)
2.174(1)

C—C 1.426(5) 1.459(2) 1.414(1)
1.422(2) 1.417(1)
1.375(1) 1.407(1)

1.411(1)
1.415(1)

Angles (degrees)
�CCC 108.0(5) 106.1(1) 108 ± 0.3(5)

107.9(2)
108.4(2)

Ring pucker b 0.0 8.0 0.0

a The shortest distance to the ring: ring midpoint (for Fe and 3Ni) or allyl
C· · · C midpoint (for 1Ni).

b The angle between the allyl plane and the residual Cp ring plane.
c P. Seiler and J. D. Dunitz, Acta Crystallogr. B36, (1980), 2255.

Green’s MLX notation is useful for classifying the three idealized resonance hy-
brids bound to a metal: (a) η1 = MX; (b) η3 = MLX; and (c) η5 = ML2X. Thus,
ferrocene can be immediately classified as an 18e ML4X2 complex featuring three
ω bonds, three lone pairs, and overall sd2 hybridization, the ω-saturated “ideal
pattern” (cf. Section 4.6.1) expected to be of highest possible stability. In contrast,
16e nickelocene is formulated as ML2X2, with two ω bonds, four lone pairs, and
nominal sd1 hybridization, again a highly favored (ω-saturated) pattern for the
underlying 12e (MX2) Lewis-like structure. For both metals, these two MLX for-
mulations are very common. As a further contrast, we may also consider the highly
reactive 16e tungstenocene, whose analogous formulation is ML4X2 with two ω

bonds, two ordinary 2c/2e bonds, and two lone pairs, corresponding to nominal sd3

hybridization. Representative examples of such localized metallocene MLX and
Lewis-like assignments (including spin multiplicity, formal d count, ω/σ bonds,
and nominal hybridization) are shown in Table 4.52.
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Table 4.52. A synopsis of localized electronic structures for simple
metallocenes in terms of MLX formulation, spin-state multiplicity,

nonbonding d electrons (d count) and orbitals (nd), ordinary (2c/2e) and
ω (3c/4e) bonds, and nominal sdn hybridization

Bonds

Metallocene MLX d Count nd 2c/2e ω sdn
Spin-state

multiplicity

HfCp2 ML4X2 1 2 1 4 1 sd4

3 2 2 2 2 sd3

WCp2 ML4X2 1 4 2 2 2 sd3

3 4 3 0 3 sd2

FeCp2 ML4X2 1 6 3 0 3 sd2

NiCp2 ML2X2 1 8 4 0 2 sd1

MLX 3 8 5 0 1 ∼s

Nickelocenes

As anticipated by its ML2X2 formulation (Table 4.52), the computed structure of
singlet nickelocene approximates a square-planar di-allylic coordination mode. We
can deconstruct each η3-Cp to Ni interaction into an electron-pair bond (M—X)
with the “radical” carbon and a dative interaction (M—L) with the πCC bond,
symbolized as shown below with a half-filled circle ( ) to represent the radical
site and a filled circle ( ) to represent the dative π-bond site:

(4.120)

In turn, each M—X bond engages in 3c/4e ω bonds with the opposite L donor
of the other η3-Cp ring. Thus, the following resonance structures summarize the
primary bonding pattern, which can be compactly described as two ω bonds:

(4.121)

In the resonance representation (4.121), each Cp ring is seen from the edge (dashed
lines), with the characteristic L: M—X ←→ L—M :X resonance interactions form-
ing the two ω-bonded triads that link the sandwich fragments.

Examined in detail, we expect some deviation from this idealized localized-
bonding description. In particular, the allylic LX groups of Cp cannot span the full
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90◦ bond angles of a nominal sd1 square-planar geometry as depicted in (4.121).
As a result, the ω bonds are strained toward a more rectangular geometry, and the
bonding hybrids acquire greater d character than the nominal sd1 hybridization in
order to alleviate bond strain.

It should be emphasized that each resonance structure in (4.121) represents only
one localized aspect of the complex resonance hybrid. Each ω bond is equivalent
to two distinct resonance forms, and the specific Cp depicted in (4.120) is only one
of five equivalent resonance forms that could be enumerated for a particular ωLMX

triad, rendering a complete NRT resonance description impractical. Although the
lowest-energy structure of nickelocene exhibits strong asymmetry in Ni—C dis-
tances and a pronounced shift toward η3 coordination, one can expect the resonance
hybrid to exhibit a highly fluxional potential-energy surface. Because the ideal-
ized square-planar structure is already strained away from 180◦ ωCNiC triads and
90◦ bond angles, the additional strain needed to swap Ni—C bonding interactions
among all five carbons should be minimal. Such plasticity likely will result in dis-
ordered structures of singlet nickelocene that depend strongly on the environment.

For nickelocene in the triplet state, a very different bonding picture can be ex-
pected (Table 4.52). The two unpaired electrons now require two nonbonding d
orbitals (beyond the three filled d orbitals for the remaining six electrons), so that
only a valence s orbital remains for 2c/2e bonding. This leads to formal M—Cp+ and
nonbonded Cp− fragments at the 1c/2e Lewis-like level, which naturally interact
with strong three-center ω-bonding resonance of the form

(4.122)

In terms of the Green formalism, this bonding might be considered as being of “η1-
MLX” type (see Table 4.52). This description seems apt to describe the majority-
spin (α) electrons and the single remaining ω bond (or “half-bond,” since only
α electrons are restricted to the single three-center resonance motif depicted in
(4.122)). However, in the minority-spin (β) subset, the bonding motif now cor-
responds to the “ideal pattern” of three occupied nd, three Lewis-like two-center
coordination bonds, and three three-center ω-interactions, a formal ferrocene-like
bonding pattern (as discussed below) that can apparently more than compensate
for the formal loss of one three-center ω-bonding interaction in the α subset. Thus,
a more descriptive Green-like labeling might be formulated as “M(LX)α(L4X2)β,”
to indicate that the overall properties of the “spin hybrid” should be intermediate
between formal η1-MLX(α) and η5-ML4X2(β) bonding patterns, with the latter
“ideal” pattern expected to dominate structurally and energetically. Qualitatively,
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one can thereby understand the tendency of triplet nickelocene to adopt a more
ferrocene-like (S10) geometry than singlet nickelocene, and, indeed, to become the
energetically preferred spin multiplicity (due both to increased ω-bonding and to
favorable exchange interactions). Further discussion is beyond the scope of this
work.

Ferrocene

Ferrocene has long been put forth as a prime example of the general superiority of
the delocalized (symmetry-based) MO viewpoint over localized bonding models.
Indeed, a complete accounting of all formal resonance structures is cumbersome
at best; for example, Pauling presented a valence-bond model of ferrocene that
invoked over 500 resonance configurations, a depiction that has been described as
“repulsive.”69 However, as we shall show, a semi-localized Lewis-like formulation
built from lone pairs, ω bonds, and sd2 bonding hybrids provides a compact and
compelling description of the electronic structure of ferrocene that accounts natu-
rally for its extraordinary properties, without recourse to assumptions of a particular
symmetry or geometry.

Whereas d8 Ni selects the rectangular di-allylic hyperbonding pattern in (4.121),
d6 Fe of ferrocene offers an additional vacant d orbital and hence opens up new
geometrical possibilities of an additional ω bond. In concert with the three ω

bonds and nominal sd2 (90◦) hybridization (Table 4.52), the two Cp ligands are
naturally expected to coordinate in η5 (L2X) fashion to occupy the six octahedrally
arrayed coordination sites of the metal. Visualization of this coordination mode is
aided by considering the possible patterns of L-type (filled circles; πCC) and X-type
(half-filled circles; radical) sites of L2X Cp

(4.122)

The effective FeL4X2 topology is simply an octahedral array of ligands, where
each Cp provides the three ligands for one of a pair of parallel triangular faces.
The downward view toward one of the octahedron’s triangular faces is depicted in
(4.123a), showing one possible disposition of L and X apices:

(4.123a)

Alternatively, this pattern is shown in two forms in (4.123b) as an orthogonal ω-
bonded structure, which can be viewed from the upper left to see the projection
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shown in (4.123a):

(4.123b)

The pattern shown is only one of a large number of distinct ways of choosing the
L/X labels in (4.122) and (4.123), corresponding to the large number of equivalent
resonance structures that could be written. However, such an exercise adds little
value to the simple picture of ferrocene bonding provided by the localized bonding
units.

The hallmark features of ferrocene – parallel Cp rings, η5 coordination, and ex-
traordinary stability – arise from the general stability and geometrical requirements
of transition metals with three ω bonds, three lone pairs, and sd2 hybridization.
At first glance, this topological description of ferrocene may suggest that special
stability is associated with the staggered arrangement of the Cp rings, but a more
detailed examination reveals that near-linear ω bonds are equally possible in the
eclipsed geometry due to the five different arrangements of L/X sites on each Cp
ring. Thus, ferrocene exhibits only a modest barrier to rotation of the parallel rings.

In contrast with ring rotation, deformation of the ferrocene Cp rings from the
parallel arrangement must be accompanied by rather steep increases in energy.
Owing to the rigid framework of three reinforcing ω-bond axes spanning the body
diagonals of the octahedron, bending the rings away from parallel must weaken
all 3c/4e bonds. Thus, crystallographic structures of ferrocene and its derivatives
should exhibit little deviation from parallel ring orientation. In similar spirit, strap-
ping the two rings together with short hydrocarbon or silyl chains to make ansa
ferrocenes should result in substantial strain.

Tungstenocene

Unlike ferrocene, tungstenocene has only a fleeting existence before inserting into
an alkane C—H bond to make the bent metallocene, Cp2W(R)H.70 It is therefore
instructive to consider how the change from ferrocene to tungstenocene (including
changes in spin state) can significantly alter metallocene geometry and reactivity.

Whereas the removal of two valence d electrons on going from nickelocene to
ferrocene enables both an increase in ω-bonding and a change in hybridization
from sd1 to sd2, the corresponding loss of valence-electron count on going from
ferrocene to tungstenocene results in a decrease in the number of ω bonds (to two)
and a further change in hybridization (to sd3), as shown in Table 4.52. Therefore
W(η5-Cp)2 in its closed-shell singlet state is formulated as ML4X2 and comprises
two ω bonds, two 2c/2e bonds, two lone pairs, and sd3 hybrids.



4.9 Multielectron coordination 543

We recall (Section 4.3.3) that the lobes of sd3 hybrids point toward the vertices
of a cube. The effective bonding topology of closed-shell singlet tungstenocene can
therefore be constructed by considering arrangements of six ligands (two L2X sets)
at the cube corners, leaving two corners vacant. The three possible distinct arrange-
ments are shown in (4.124a)–(4.124c), with the top and bottom faces representing
the two Cp rings, and with dashed lines marking vacant vertices:

(4.124)

Of the three structures shown above, the one with three trans pairs, namely
(4.124c), should be most disfavored, because it has more trans arrangements than
ω bonds. The two remaining structures both provide two trans pairs for the two
ω bonds, but (4.124b) requires a distorted Cp geometry (with, e.g., one X—L
distance exceeding the other). Thus, only structure (4.124a) is suited to accommo-
date the electronic requirements of singlet WCp2. However, it is easy to recognize
that (4.124a) requires the metallocene to be bent. (Only the least-favored structure
(4.124c) can give linear Cp—W—Cp geometry for the singlet.) Indeed, results of
DFT computations of singlet tungstenocenes typically give bent structures with
Cp—W—Cp angles near 150◦, in reasonable agreement with the idealized sd3

bonding geometry (Exercise 4.9).
Tungstenocene in the triplet state (and presumably in the diradical singlet state

as well) presents a different bonding configuration. Construction of triplet tung-
stenocene from a closed-shell starting point involves uncoupling one lone pair, thus
making one fewer d orbital available for bonding. As a result, triplet tungstenocene
must make three ω bonds with sd2 hybridization, leaving four nonbonding elec-
trons in three d orbitals. Other than the distribution of nonbonding electrons, this
bonding description is identical to that of ferrocene. Thus, one expects a strong
preference for a “linear” structure for 3WCp2. If the molecular axis of the linear
structure is taken to be the z axis, the four nonbonding electrons are distributed
among the dz2, dxy , and dx2−y2 orbitals (the dxy and dx2−y2 orbitals are essentially
equivalent). As we have seen in Section 4.6.6, this electronic situation is subject to
Jahn–Teller distortion. However, such distortion should be rather small, due to the
strong driving force for maximization of ω-bonding and the nonbonding charac-
ter of the partially occupied orbitals. In accord with the above expectations, DFT
computations of triplet tungstenocene give a linear structure.
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In summary, the localized-bond viewpoint provides sophisticated insight into the
progression of metallocene structures from η3-nickelocene to linear η5-ferrocene to
linear (triplet) or softly bent (singlet) η5-tungstenocene. The localized-bonding for-
mulation is useful despite the obviously high level of delocalization (and daunting
number of resonance structures) in these compounds. In contrast with the symmetry-
based canonical MO viewpoint, the localized-bond model does not require as-
sumption of an initial structure or symmetry. Instead, the electronic structure and
molecular geometry are built from elementary one-center (lone pair), two-center
(ordinary σ or π bonds), and three-center (ω bond) orbitals formed from the requi-
site sdn hybrids. When it is combined with classification schemes such as Green’s
MLX categorization, a particularly pleasing, portable, and compact description of
transition-metal complexes that is based on general bonding principles that apply
equally well to the rest of the periodic table can be achieved.

Example 4.9

Problem: Estimate the θCpWCp bending angle of singlet tungstenocene from the idealized
sd3 cubic bonding diagram in (4.124a).

Solution: If the two Cp rings are labeled “a” and “b,” the disposition of radical (X) and
dative (L′ and L′′) coordination sites may be assigned to the oriented sd3 cube (4.124a) as
shown in the diagram below, with Cpa as the upper face (+z direction) and Cpb the lower
face (−z direction):

From the central metal atom as the origin, we can construct oriented (unnormalized) vectors
pointing toward each occupied corner of the cube with Cartesian (x, y, z) coordinates as
shown below:

Apex x y z

�Xa −1 −1 +1
�L ′

a −1 +1 +1
�L ′′

a +1 −1 +1
�Xb +1 −1 −1
�L ′

b +1 +1 −1
�L ′′

b −1 −1 −1
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The centroids �a and �b of Cpa and Cpb rings can therefore be associated with the vectors

�a = 1

3
( �Xa + �L ′

a + �L ′′
a ) = (−1

3
, −1

3
, +1)

�b = 1

3
( �Xb + �L ′

b + �L ′′
b) = (+1

3
, −1

3
, −1)

The angle θab between these vectors is determined by the geometrical formula

cos(θab) = �a · �b
|�a||�b|

with �a · �b = −1, |�a| = |�b| = (11/9)1/2, leading to

cos(θab) = −9/11 = −0.818

or

θab = 144.9◦

Because a Cp ring cannot fully span the three idealized cubic coordination sites, the cube is
expected to elongate along the z axis to accommodate the resulting strain. The final Cp—
W—Cp angle is therefore expected to be a little greater than this idealized value, in good
agreement with observed values (∼150◦).

4.10 Vertical trends in transition-metal bonding

4.10.1 Relativistic effects on hybrids and bonding

The d-block elements span a wide range of atomic numbers from Z = 21 (Sc)
in the first transition series to Z = 80 (Hg) in the third series. Because Z (the
number of units of positive charge at the nucleus) governs the kinetic and potential
energy of the electrons, high-Z elements are associated with high electronic kinetic
energies, corresponding eventually to velocities that approach the speed of light
(c). In this limit the non-relativistic Schrödinger equation (Section 1.1) is no longer
adequate, but must be corrected for the effects of special relativity (i.e., with Dirac-
like treatment). Vertical trends in transition-metal chemistry are therefore intimately
related to relativistic corrections to the standard low-Z solutions of the Schrödinger
equation.

A convenient measure of the importance of relativistic corrections is given by
the ratio ξrel of Z to the “fine-structure constant” (e2/(�c) � 137, a dimensionless
ratio of fundamental physical constants)

ξrel = Z

e2/(�c)
� Z

137
(4.125)
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For the lighter elements ξrel is much less than unity (e.g., ξrel = 0.15 for Sc) and
the relativistic corrections are small. However, these corrections become much
larger for heavier elements (e.g., ξrel = 0.58 for Hg, about four times larger than
for Sc) and the perturbative correction procedure breaks down completely as ξrel

approaches unity. Thus, while relativistic corrections are largely ignorable for the
first transition series, these corrections become of dominant chemical importance
in later series, particularly after filling of the lanthanide f shell.

Two of the leading relativistic effects can be summarized in physical terms as
follows.

(1) (R1) As a result of the relativistic “speed limit,” inner-shell s electrons (those most
exposed to the large nuclear charge) fall into tighter orbits about the nucleus (much as
a satellite falls into a lower orbit as its speed is reduced). Relativistic core electrons
therefore occupy 1s orbitals of smaller average radius than their non-relativistic coun-
terparts, and higher s orbitals can accordingly contract and lower their energy while
still maintaining orthogonality to the shrunken s core.

(2) (R2) As a result of the inner-s contraction (R1), valence d electrons (occupying “less-
penetrating” orbitals of higher angular momentum) are better screened from the nuclear
charge. The reduced effective nuclear charge will therefore lead to relativistic valence d
orbitals of higher energy and greater diffuseness than their non-relativistic counterparts.

(The relativistic effects (R1) and (R2) can be simulated by adjusting the sizes of
basis functions used in a standard variational treatment. This adjustment is usually
combined with an “effective-core-potential” [ECP] approximation in which inner-
shell electrons are replaced by an effective [pseudo] potential of chosen radius. The
calculations of this chapter were carried out with such ECP basis sets in order to
achieve approximate incorporation of the leading relativistic effects.)

Because the valence s orbital governs apparent atomic size, the relativistic effect
(R1) is responsible for the well-known “lanthanide contraction” that sharply alters
vertical periodic trends in density, bond lengths, and related properties of post-
lanthanide third-series elements, compared with those of the first and second series.
The relativistic shifts (R2) in orbital energies and sizes of valence s and d levels
also lead to numerous post-lanthanide anomalies in ionization energy and associated
electrical, optical, and chemical properties (the high reflectivity of gold, liquidity
of mercury, and so forth).71 In the transition series, the lanthanide contraction most
noticeably serves to make third- and second-row elements more similar in terms of
bond lengths and strengths than would be predicted from the large changes in such
properties on going from the first to the second row.

Figure 4.93 illustrates some aspects of the “break” in the vertical trend of atomic
orbital energies εs and εd for early, middle, and late transition elements, showing the
contrasting behavior of third-series versus first- and second-series elements. The
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Figure 4.93 Orbital energies for s-type (left) and d-type (right) valence NAOs of
group 4 (circles; solid line), group 6 (squares; dashed line), and group 10 (triangles;
dotted line) elements of the first three transition series.

solid lines show the vertical trends for the early elements of group 4 (Ti, Zr, Hf) while
the dashed lines show corresponding trends for the elements of group 6 (Cr, Mo, W)
and the dotted lines represent the late transition elements of group 10 (Ni, Pd, Pt).72

Relativistic effects associated with the lanthanide contraction clearly emerge in the
large decrease of valence s-orbital energies on moving from the second to the third
transition series of all groups. Naturally such effects maximize at the right-hand
end of the transition series due to the increase in nuclear charge. The “promotion-
energy” gap between s- and d-orbital energies (εs − εd) systematically decreases
on moving from the first to the second transition series.73 Thus, s–d promotion and
hybridization are much more favored for the second- and third-row transition metals.

Figure 4.94 similarly exhibits the vertical trend in orbital sizes of valence s and d
orbitals for group 4 (left), group 6 (middle), and group 10 (right) elements. One can
see that the valence d-orbital radius tends to lie well inside that of the valence s orbital
for the first two members of the group (this is particularly apparent in Group 10),
whereas the d orbital expands somewhat in the third member to “match” the s-orbital
radius better. This improved match of s- and d-orbital radii naturally tends to favor
sd hybridization in the post-lanthanide third series compared with the first two
series. Thus, as was already apparent from purely empirical considerations (Sec-
tion 4.2.1), the chemistry of the third transition series better conforms to the simple
Lewis-like hybridization picture than does that of the first two series. Nevertheless,
one can judge from Figs. 4.93 and 4.94 that the vertical shifts in s- and d-orbital
energies and radii are rather subtle (often less dramatic than corresponding horizon-
tal shifts in the same transition series), and relativistic and nuclear-charge effects
therefore serve mainly to modulate general sd-hybridization tendencies that are
present throughout the d block.
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Figure 4.94 Valence s and d NAOs for series 1–3 transition metals of group 4 (Ti,
Zr, Hf), group 6 (Cr, Mo, W), and group 10 (Ni, Pd, Pt).

4.10.2 Vertical trends in covalent bonding

Metal–hydride and metal–alkyl bonding

As prototypes of covalent bonding, let us first consider the σMH bonds of saturated
metal hydrides MHn for the group 4, 6, and 10 metals considered above. Figure
4.95 illustrates optimized structures of the saturated (but hypovalent) MH4 tetrahy-
drides of group 4 (left), the saturated MH6 hexahydrides of group 6 (middle), and
the MH2 dihydrides of group 10 (right). (Note, however, that CrH6 is unstable
with respect to formation of the molecular-H2 complex; the structure used here
was therefore frozen at the H—M—H bond angles of MoH6 and the M—H bond
lengths [only] were adjusted to reach the lowest energy.) The structural similari-
ties down a column allow the lighter hydrides of each group to be compared with
the corresponding third-series hydrides, as previously discussed in Section 4.4.1.
Table 4.53 presents numerical comparisons of bond lengths and bond angles in these
species. The numerical values verify the strong visual impression from Fig. 4.95
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Figure 4.95 Vertical trends in geometry of saturated MHn hydrides of group 4 (Ti,
Zr, Hf), group 6 (Cr, Mo, W), and group 10 (Ni, Pd, Pt). (Note that CrH6 was
optimized with MoH6-like angular geometry to prevent formation of the Cr(H2)3
dihydrogen complex.)

of the pronounced vertical similarities within each group (except for CrH6). Thus
(with this exception), the structures in Fig. 4.95 suggest that electronic patterns of
hybridization and covalency are qualitatively similar within each group, and that
the vertical modulations due to relativistic and other effects are rather subtle.

The computational bond-length variations in Table 4.53 exhibit the expected
periodic trends. Most noticeably, third- and second-series elements for groups 4,
6, and 10 exhibit similar bond lengths, i.e., the post-lanthanide “contraction” with
respect to the ordinary increase of atomic size with increasing Z.

Subtle variations in relative M—H bond lengths of second- versus third-row
transition metals can be traced to anomalies in ground electronic configurations for
the metal atoms (Appendix B). Consider group 4, for which all members have s2d2

ground electronic configurations, as a reference point. The M—H bond lengths of
this group order as Ti < Hf < Zr, which is consistent with a strong lanthanide-
contraction effect that makes the apparent bonding radius of Hf smaller than that
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Table 4.53. Comparison bond lengths RMH and angles θ HMH for saturated metal
hydrides of groups 4, 6, and 10 (H′ and H′′ denote inequivalent short and long

hydride bonds in MH6 compounds)

Species RMH′ (Å) RMH′′ (Å) θH′MH′ (degrees) θH′MH′′ a (degrees) θH′′MH′′ (degrees)

Group 4
TiH4 1.688 109.5
ZrH4 1.850 109.5
HfH4 1.832 109.5

Group 6
CrH6

b 1.516 1.568 61.4 64.1 116.8
MoH6 1.642 1.690 61.4 64.1 116.8
WH6 1.662 1.707 63.1 67.8 113.5

Group 10

NiH2 1.417 85.4
PdH2 1.522 71.3
PtH2 1.520 86.6

a The angle between the closest (“eclipsed”) H′ and H′′.
b Optimized with H—M—H bond angles identical to those of MoH6 (see the text).

of Zr. In contrast, the MH6 hydrides of group 6 exhibit a slightly longer computed
bond length for the third-row element (W) than for the second-row element (Mo).
The failure of the W—H bond to “contract” in the expected way can be understood
as a vestige of the underlying s2d4 configuration of elemental W versus the s1d5

configuration of Mo. Apparently, the added promotional energy needed to create
six sd5 hybrid orbitals at W (which is not required for the s1d5 configuration at Mo)
results in an “uncontracted” bond. This does not mean that the relativistic effects
associated with the transition from the second to third transition series are absent;
rather it indicates that the effects act to increase the W bond length by favoring
the s2d4 configuration over the s1d5 configuration. (Other expected consequences
of the lanthanide contraction are clearly apparent in elemental properties of W and
Mo such as the larger ionization energy of W.)

Similarly, the molecular shapes of group 10 dihydrides exhibit strong perturba-
tions that correlate with atomic ground-state configurations. Among this collection
of MH2 dihydrides, PdH2 clearly is the outlier with its strongly acute H—M—H
angle. This structural deviation of the Pd complex correlates with the d10 atomic
ground-state configuration of Pd, which is “unpromoted” relative to the Ni (s2d8)
and Pt (s1d9) ground states.

Further details of vertical hybridization and covalency trends are presented in
the NBO descriptors of Table 4.54. Ignoring for the moment the exceptional case
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Table 4.54. The NBO descriptors of group 4, 6, and 10 metal hydrides,
showing percentage accuracies of NBO Lewis structures (%ρL), metal

charges (QM), and metal hybrids (hM) and percentage polarization (%polM)
of σMH NBOs (primes denote longer M—H bonds)

Species %ρL QM hM %polM hM
′ %polM′

Group 4
TiH4 99.71 +1.232 sd2.96 34.7 — —
ZrH4 99.97 +1.571 sd2.95 30.5 — —
HfH4 99.64 +1.789 sd2.93 27.6 — —

Group 6
CrH6

a 93.01 −0.106 sd5.56 54.6 sd4.44 48.2
MoH6 99.02 +0.047 sd5.37 53.3 sd4.65 46.6
WH6 99.56 +0.481 sd6.26 49.8 sd4.08 42.4

Group 10
NiH2 99.87 +0.211 sd1.07 44.6 — —
PdH2 99.47 +0.049 sd1.07 49.1 — —
PtH2 99.88 −0.143 sd1.21 54.2 — —

a Optimized with H—M—H bond angles identical to those of MoH6 (see the text).

of CrH6, we can recognize that all these species are well described (>99%ρL)
by the idealized Lewis-like picture, but the third series is indeed “best” in this
respect. The average hybridization conforms closely to the expected sdn−1 for all
the MHn species, and the average covalency is uniformly high (within ±5% of
idealized 50%polM for non-hypovalent species). Thus, the idealized Lewis-like
picture of covalent metal–hydride bonding retains its general accuracy throughout
the vertical group, enhanced (if anything) by lanthanide contraction.

The most striking vertical trend concerns the metal–hydride bond strengths, as
summarized in Table 4.55. We define the first M—H bond strength (	EMH(1)) for
each species as the energy needed to break the first M—H bond:

	EMH(1) = |E(MHn) − [E(MHn − 1) + E(H)]| (4.126)

As shown in Table 4.55, this quantity increases going down the periodic column
in each group, a trend that is known to hold generally throughout the d-block
elements. This d-block trend is in contrast to the corresponding main-group trend
for bond strengths to diminish down a periodic column.

The vertical trend in d-block bond energies can be rationalized in terms of the
relative sizes of s and d valence orbitals. As shown in Fig. 4.94, the d orbitals typi-
cally are contracted to lie inside the valence s orbital, but this disparity diminishes
on going down a column as the d orbitals grow in size. This growth is physically
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Table 4.55. First M—H bond dissociation energies 	EMH(1) for
group 4, 6, and 10 metal hydrides

Group 4 Group 6 Group 10

Series M 	EMH(1) M 	EMH(1) M 	EMH(1)

1 Ti 62.3 Cr 48.0a Ni 51.4
2 Zr 74.3 Mo 65.4 Pd 64.2
3 Hf 81.6 W 67.7 Pt 81.0

a CrH6 and CrH5 were optimized at the H—M—H bond angles of MoH6
and MoH5 (see the text).

attributable to (1) d-core steric repulsion, which sharply increases the radius of 4d
and higher nd shells relative to the initial 3d shell; and (2) the relativistic screening
effect (Section 4.10.1), which further expands nd relative to the (n + 1)s radius for
higher n.

As a result of this vertical d-shell expansion, the outer lobe of the metal
hM (sdn − 1) hybrid extends to greater radial distance from the core boundary
(roughly, the first negative contour of the s orbital in Fig. 4.94), and therefore
more effectively overlaps with the incoming hH orbital. Figure 4.96 shows contour
(left) and radial-profile (right) plots of the interactions of hM and hH for each σMH

of the group 10 dihydrides. A convenient measure of the “effectiveness” of the
interaction is given by the off-diagonal 〈hM|F̂ |hH〉 Fock-matrix element between
the hybrids,74 as shown in Fig. 4.96. As the radial profiles in Fig. 4.96 show most
clearly, the bonding lobe of the hM hybrid for Ni is too contracted to match that of
the incoming hH orbital (which is prevented from penetrating into the metal core
region) effectively. However, the metal bonding lobe gradually spreads to larger
radial distance for Pd and Pt, and the two hybrid maxima come into improved
congruence, as reflected in the increased magnitude of 〈hM|F̂ |hH〉. Because the
size-mismatch between the sd and sp angular components of bonding hybrids has
the opposite sense for d-block and p-block elements, the general vertical trend in
bonding effectiveness is also opposite in the two blocks.

The influences of ground-state atomic configurations and promotional effects
are again brought to light in the bond-dissociation-energy trends. Recall (Ap-
pendix B) that W has s2d4 whereas Mo has s1d9 atomic configuration. The built-in
promotional-energy penalty of WH6 results in an unexpectedly weak W—H bond
dissociation energy, which is nearly equal to that of MoH6 rather than following
the trend of group 4 and being significantly stronger. For the group 10 dihydrides,
the bond dissociation energy of Pd (d10 atomic configuration) is also weakened by
∼17 kcal mol−1 compared with that of Pt (s1d9 configuration).
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Figure 4.96 Contour plots (left) and radial-profile plots (right) of overlapping hM
and hH NHOs of σMH bonds for group 10 dihydrides (NiH2, PdH2, and PtH2).
Numerical 〈hM|F̂ |hH〉 Fock-matrix interaction elements are shown for each case.

For comparison, we can consider the corresponding metal–methyl (M—Me)
bond energies in analogous MHnMe species as representative of general metal–
alkyl bonding trends. Table 4.56 summarizes the statistical distributions (means
and standard deviations) of bond dissociation energies (BDEs) for M—H and M—
Me bonds throughout the three transition-metal series. As shown in Table 4.56,
M—Me bond energies tend to track the corresponding M—H values. Although
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Table 4.56. Statistical means and standard deviations (SD) for bond dissociation
energies (BDEs) of M—H and M—Me bonds of saturated MHnX (X = H, Me)

transition-metal complexes from the first three series of the d block

M—H BDE (kcal mol−1) M—Me BDE (kcal mol−1)

Series Mean SD Mean SD

1 (Sc–Cu) 54.2 8.6 49.7 8.2

2 (Y–Ag) 66.0 6.9 57.1 9.3

3 (La–Au) 72.8 7.4 67.0 7.0

the BDEs exhibit a degree of overall similarity, the statistical variations appear too
large to justify any presumed “constant-BDE” value. Salient features of Table 4.56
include (1) the uniformly high bond energies associated with the third transition
series, (2) conspicuously lower bond energies for the first transition series, and (3)
generally greater strengths of M—H bonds compared with M—Me bonds. The
last feature is in agreement with available empirical values. However, experimen-
tal bond-dissociation enthalpies for transition-metal species are rather sparse and
difficult to obtain. In the future it is likely that computed bond energies such as
those summarized in Table 4.56 will play a prominent role in developing a more
fundamental understanding of metal–ligand interactions.

Within the overall statistical comparisons between series, as summarized in
Table 4.56, the individual BDEs reflect significant variations along each periodic
row, as shown both for M—Me and for M—H bonds in Fig. 4.97. It can be seen
that bonds to the earlier transition metals tend to be stronger than those to the
later transition metals (particularly for the first two rows), due to the higher ionic
character in the M—H and M—Me bonds. Prominent features of the M—H bond
energies discussed above (e.g., Tables 4.53–4.55 and surrounding text) are mirrored
in the corresponding M—Me values. For example, compared with the general trend-
line in Fig. 4.97, the Pd—Me bond is found to be conspicuously weak. This effect
can be traced to the d10 ground configuration of Pd; as bonds are removed from
divalent Pd complexes, the original “cost” of promotion from the atomic d10 to the
molecular s1d9 configuration is “recovered,” thus lessening the energy required to
break the bond.

One can see more generally that irregular behavior in Fig. 4.97 tends to be
concentrated near groups 5 and 6, a region where configurational anomalies (s1dn

versus s2dn − 1) are rather common. However, an additional complication of this
region arises from the occurrence of sd4 hybridization, in either the pre- or the
post-dissociation complex; recall (Section 4.3.3) that no molecular geometry can
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Figure 4.97 Periodic trends in bond dissociation energies (BDE) for M—CH3
bonds (left) and M—H bonds (right) of saturated MHnX (X = CH3, H) compounds
of row 1 (circles, solid line), row 2 (squares, dashed line), and row 3 (triangles,
dotted line) of the d block. (For these comparisons [only], all calculations were
carried out at lower B3LYP/LANL2DZ level.)

strainlessly accommodate the idealized bond angles of sd4 hybridization. As a
result, the structures of this region tend to be rather plastic, making the location of
the global minimum structure difficult to establish, and possibly leading to unusual
environmental sensitivity or disorder in experimental structures.

Metal–metal bonding

Whereas M—H bonds closely approximate the limit of idealized metal sigma bond-
ing (due to the extreme simplicity of H as a bonding partner), corresponding metal–
metal bonds often exhibit bewildering complexity, due to the much greater variety
of donor–acceptor interactions available to each metal atom. Thus, the idealized
Lewis-like picture often breaks down (or is only one of many alternative resonance
structures contributing to the electronic distribution) and vertical trends in metal–
metal bonding become increasingly “irregular” compared with those for metal–
hydride bonding. In the present section we examine a few representative vertical
bonding trends in metal–metal single- and multiple-bonding of group 6 and 10
transition metals for comparison with the corresponding metal–hydride bonding
patterns discussed above.

Table 4.57 summarizes geometrical and NBO descriptors of multiple-bonded
HMMH compounds of groups 6 and 10 for ensuing discussion. These include
metal–metal bond lengths (RMM) and M—M—H angles (θMMH), metal charge
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Table 4.57. Geometrical and NBO descriptors of multiple-bonded HMMH
compounds of groups 6 and 10 (see Fig. 4.98)

θMMH DEMM

Species RMM (Å) (degrees) QM %ρL bMM NEC (kcal mol−1)

Group 6
HCrCrH 1.642 88.6 +0.376 99.16 4.96 s0.60d5.03 −58.5
HMoMoH 2.025 90.8 +0.260 99.65 4.92 s0.70d5.06 51.3
HWWH 2.098 92.9 +0.229 99.87 4.96 s0.87d4.91 80.1

Group 10
HNiNiH 2.186 84.2 +0.222 98.61 0.92 s0.59d9.18 12.9
HPdPdH 2.737 35.4 +0.146 98.85 0.53 s0.23d9.62 52.3
HPtPtH 1.592 94.9 −0.056 99.17 0.96 s0.90d9.15 49.3

(QM), percentage accuracy of the leading NBO Lewis structure (%ρL), NRT metal–
metal bond order (bMM), NAO valence-electron configuration of the metal centers
(natural electron configuration, NEC), and the energy (DEMM) required to dissociate
the metal–metal bonding into two MH fragments (of sextet multiplicity for group
6 or doublet multiplicity for group 10).

Vertical irregularities in metal–metal bonding are already apparent in the simplest
“single-bonded” HMMH dihydrides of group 10 dimetallic species. Figure 4.98
displays optimized structures for the three M2H2 species (M = Ni, Pd, Pt; right-
hand panels), showing that particularly the Pd member differs significantly from the
Pt member previously considered (Table 4.54). Whereas the HNiNiH and HPtPtH
structures are structurally analogous and show evidence of only slight distortions
from idealized sd1 hybrid forms (namely the slightly acute M—M—H angles of
HNiNiH and the twisted 107◦ dihedral angle of HPtPtH, due to secondary geminal
and vicinal interactions), the structure of Pd2H2 is radically different. The di-bridged
C2v structure is slightly folded (dihedral HPdPdH = 168.4◦) and highly delocalized.
The “expected” H—Pd—Pd—H single-bonded form is only a minor resonance
structure of the full NRT description, which has leading contributions such as

(4.127a)
The resonance-averaged NRT bond orders are

bPdPd = 0.53, bPdH = 0.59, bHH = 0.27 (4.127b)
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Figure 4.98 Optimized structures of M2H2 compounds of group 6 (Cr, Mo, W)
and group 10 (Ni, Pd, Pt) transition metals.

showing that a substantial amount of Pd—Pd + H2 bonding character is also present
in this species, despite the 1.95-Å separation of the two H atoms.

The distinction between Pd compounds and those of Ni and Pt is also evident in
the NAO valence configurations of metal atoms in the three final HMMH species
of Table 4.57. The values show that Ni and Pt have more nearly the promoted s1d9

configuration for hybridized bonding, whereas Pd is more nearly the unhybridized
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s0d10 configuration.75 As we have seen before, the weakened role of sd hybridization
in HPdPdH is evident in the atomic ground-state d10 configuration of Pd. The
irregular vertical trend in bonding could thus be attributed to the periodic effects
on the s–d promotion gap for group 10 metals.

We can also consider the opposite limit of high multiple metal–metal bonding
in the HMMH compounds of group 6. Optimized structures of these species are
shown in Fig. 4.98 (left-hand panels) and selected geometrical and NBO descriptors
are summarized in the first three rows of Table 4.57. As can be seen, the structures
and NBO descriptors of group 6 HMMH species are fairly uniform and follow
expected periodic trends. Both Cr–Cr and Mo–Mo interactions exhibit the expected
quintuply bonded structure; as shown in Fig. 4.99, the σMM, πMM, and δMM bonds
are quite analogous to those of HWWH (Fig. 4.24). The much shorter Cr—Cr
distance, compared with Mo—Mo and W—W distances, largely follows the trends
seen in M—H bond lengths. Nuances attributable to periodic effects of metal-atom
configuration are also apparent, giving rise to slightly longer bonds at W and higher
s character in the NAO metal-atom valence configuration.

The energy (DEMM) for dissociating each of the M—M quintuple bonds into
sextet MH fragments is a somewhat misleading measure of “bond strength,” for
although the apparent vertical M—M dissociation energy tends to increase with in-
creasing atomic number, dissociation of HCrCrH is computed to be highly exother-
mic! The origin of this behavior lies in the very strong exchange interactions of
the MH sextet fragments. Exchange interactions among the five aligned spins of
each MH fragment create substantial stabilization relative to the completely cou-
pled state of the HMMH dimer, particularly for the compacted 3d orbitals of Cr.
Combined with the expected weaker bonds of a first-row metal, this leads to a
net thermodynamic driving force toward dissociation of the five Cr—Cr bonds.
Nevertheless, the quintuply bonded HCrCrH species is indeed computed to be a
metastable local equilibrium species.

As an improved metric of M—M quintuple-bond strength, let us instead consider
the energetics of hydrogenation of HMMH to form two MH6 metal hydrides,

HMMH + 5H2 → 2MH6 (4.128)

an “isodesmic” reaction that removes the strong dependence on differential ex-
change interactions. For group 6 metals we calculate the heats of hydrogena-
tion in (4.128) to be + 62.5 kcal mol−1 for Cr, +1.7 kcal mol−1 for Mo, and
−52.5 kcal mol−1 for W. Thus, relative to making ten M—H bonds, the forma-
tion of M—M quintuple bonds is most favorable for Cr, the metal with shortest
M—M distance and weakest M—H bonds (note, however, that these estimates are
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Figure 4.99 Representative σMM, πMM, and δMM NBOs from quintuply bonded
HCrCrH (left) and HMoMoH (right), for comparison with HWWH (Fig. 4.24).

based on CrH6 adopting the molecular shape of MoH6). Thus, the interpretation of
M—M bonding strength depends strongly on the reference point chosen. In par-
ticular, this analysis illustrates the very large contribution of exchange energies to
the computation of homolytic bond dissociation energies for electron-pair bonds at
metal centers.
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Figure 4.100 M(CO)3 structures of group 6 transition metals (Cr, Mo, W).

4.10.3 Vertical trends in coordinate bonding and hyperbonding

As illustrative examples of vertical trends in coordination bonding and hyperbond-
ing, let us consider the carbonyl complexes of group 6 transition metals: M(CO)n

(M = Cr, Mo, W; n = 1–6). These complexes exhibit a high degree of struc-
tural homology, as illustrated for the normal-valent C3v tricarbonyl complexes in
Fig. 4.100. Analogous structural similarity characterizes the hypervalent (n = 4–6)
higher members of the sequence. Hence, the vertical variations in dative and hyper-
valent coordinate bonding correspond to subtle variations in bond lengths and bond
energies, against a backdrop of strong overall similarity to the picture sketched in
Sections 4.5 and 4.6.

Figure 4.101 displays the subtle variations in metal–carbonyl bond lengths in the
group 6 M(CO)n complexes. In each case one can clearly distinguish the coordinate
σMC bonds (solid lines) from the hypervalent ωMC prebonds (dashed lines). The
latter are about 0.1Å longer, but exhibit a similar vertical variation within the group.

The general order of metal–carbonyl bond lengths is found to be Cr � W <

Mo, similar to what is seen for other M—X bond lengths, except that W and Mo
bond lengths are usually similar, with bonds at W being slightly longer (a feature
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Figure 4.101 Metal–carbon bond lengths RMC for dative σMC (solid line) or hy-
pervalent ωMC prebonds (dashed line) in M(CO)n compounds of group 6 metals
Cr (circles), Mo (squares), and W (triangles).

that is attributable to the underlying s2d4 ground-state configuration). However, the
RMC distance is also modulated by the strength of π-backbonding (which pulls the
ligand into closer binding), and such nM→πCO

∗ backbonding interactions become
significantly stronger for W than for Mo, due to the relativistically induced diffuse-
ness and higher energy of the metal d-type donor orbital. The π-backbonding in the
post-lanthanide series is further enhanced by the relativistic core contraction, which
permits closer approach of the ligand to the metal. Thus, stronger π-backbonding
and reduced core size are both factors in the apparent “lanthanide contraction” of
W– versus Mo–carbonyl bond lengths.

Figure 4.102 displays vertical comparisons of the overlapping NHOs for σMC

coordination (left) as well as the nM→πCO
∗ pi-backbonding interactions (right) in

the three M(CO)3 species. In this figure, one can see the improved NBO overlap and
strengthened stabilization energy (in parentheses) of nM→πCO

∗ pi-backbonding
interactions on moving down the periodic column. The slightly closer approach of
the carbonyl lone pair to the Cr nucleus (Fig. 4.102(a)) is also discernible.

We can also examine the energetics of carbonyl bonding in the successive binding
energies 	En for CO addition;

	En(+CO) = |E[M(CO)n] − {E[M(CO)n−1] + E[CO]}| (4.129)

Vertical trends in carbonyl binding energies are displayed graphically in Fig. 4.103.
As seen in this figure, the strengths of the initial σMC bonds (n = 3) are appreciably
greater than those of subsequent ωMC prebonds (n = 4–6). Because the energet-
ics of carbonyl coordination is dominated by π-backbonding (Section 4.5), 	E3
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Figure 4.102 A comparison of coordinative σMC hybrids (left) and nM→πCO
∗

pi-backbonding interactions (right) for M(CO)3 compounds of group 6.

increases steadily with the relative size of metal d orbitals (Fig. 4.96): W > Mo ∼Cr.
As hypervalent triads are created by the addition of CO to M(CO)3 fragments, de-
localized bonds are formed both in the σ- and in the π-bonding framework. Within
the σ framework, 3c/4e ω bonds are formed, which share four electrons (three from
each CO) among the metal and two ligands. In contrast, the π-bonding framework
involves hypovalent 3c/2e (τπ) bonding, with the two electrons formally originating
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Figure 4.103 Incremental CO binding energies, Eq. (4.129), for M(CO)n com-
plexes of group 6 metals: Cr (circles), Mo (squares), and W (triangles). For n = 3,
the quantity plotted is the average energy of dissociating all three carbonyls from
M(CO)3.

from a metal lone pair that interacts with two ligand πCO
∗ orbitals. The net result is

that, on a per-ligand basis, σ-donation and π-backbonding interactions are weak-
ened for hypervalent complexes relative to the parent M(CO)3 duodectet species.
Note that, because hypervalent additions involve mutually orthogonal triads (and
are therefore virtually independent), the hyperbond energies 	En for n = 4–6 are
nearly constant for all three metals.

In summary, bonding of metals to carbonyls has a strong π-backbonding com-
ponent in addition to the usual σ-donation contribution. The resulting periodic
variations in bond lengths and energies represent the composite effect, with
π-backbonding overlap increasing down a column, but with closer ligand approach
permitted for the first-row element. For group 6, the net result is that M—CO bond
energies for Cr and Mo are similar, despite the fact that their M—C bond lengths
are very different. Although M—H and M—Me bond energies for Mo and W are
quite similar, the significantly greater strength of W—CO bonds relative to Mo—
CO bonds arises from the substantially greater π-backbonding for the tungsten
carbonyls.

4.11 Localized versus delocalized descriptions of transition-metal
bonding and hyperbonding

The NBO-based “VB-like” description of localized transition-metal bonding and
hyperbonding (as espoused throughout this chapter) differs significantly from more
familiar descriptions of transition-metal complexes in delocalized MO terms. In this
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concluding section, we wish to highlight some of these differences in terms of a
simple representative example (PtH4

2−) that illustrates how the localized NBO-type
and delocalized MO-type descriptions are related. This example can also serve to
address other common questions arising from the NBO Lewis-like description, such
as the role of p orbitals and the validity of Pauling-type hybridization schemes (i.e.,
the classic dsp2 hybrids for square-planar D4h complexes such as PtH4

2−).

Qualitative splitting and nodal patterns for a simplified three-center MO model

Let us first characterize the localized σ- and ω-bonding in PtH4
2−, using the anal-

ogy to the simple three-center MO model of hyperbonding in rare-gas compounds
(Section 3.5). Figure 4.104 illustrates the analogy for a hypothetical single ω bond
of XeH2 (left-hand panels) or two mutually perpendicular ω bonds of XeH4 (cen-
ter panels), where each atom contributes one valence AO (sH, pXe, and sH′) to the
three-center MOs. The left-hand panels show XeH2 (D∞h point group), in which
the three-center mixing leads to bonding (φb, lower: σu

+), nonbonding (φn, middle:
σg

+), and antibonding (φa, upper: σu
+) MOs along the chosen axis,

φb � η(sH + pXe + sH′) (4.130a)

φn � η(sH + sH′) (4.130b)

φa � η(sH − pXe + sH′) (4.130c)

with D∞h symmetry label, nodal pattern, and electronic occupancy as shown in
each panel. If px lies along the chosen bonding axis, then the orthogonal (py and pz)
orbitals remain as “unused” (but fully occupied) nonbonding levels of πu symmetry
(shown in lighter gray to indicate their passive role in skeletal bonding). The center
panels show the corresponding two orthogonal three-center MOs and D4h symmetry
labels for square-planar XeH4, in which only a single filled pz orbital (a2u) remains
“unused” in bonding. Finally, the right-hand panels show the analogous levels, sym-
metries, and nodal patterns for PtH4

2−, where the only complication is that the cen-
tral Pt now uses sd hybrids (one of dz2 and one of dx2−y2 character) to make the three-
center MO combinations. If we neglect the central-atom orbitals which are passive
(gray-colored), the following trend emerges: for n 3c/4e bonding interactions, there
will be n filled bonding orbitals and n filled ligand-based orbitals. Thus, one can see
how the complex PtH4

2− MO pattern on the right evolves rather simply from such
localized three-center “building blocks,” a representative example of how localized-
bonding concepts can assist intelligent analysis of a complex MO energy-level
diagram.



4.11 Localized versus delocalized descriptions 565

Figure 4.104 Model MO diagrams for XeH2, XeH4, and PtH4
2−. Light-gray

coloration indicates atom-centered orbitals that are not involved in bonding.

Molecular-orbital- versus valence-bond-type descriptions

Let us now examine the connection between localized and delocalized descriptions
in somewhat more formal terms, using the actual numerical energy levels of PtH4

2−

to illustrate the formal connections. Inevitably, this discussion entails somewhat
more technical detail concerning computational MO methodology than required
elsewhere in this book, and we assume a general familiarity with Sections 1.4 and
1.5, Appendix A, and other sections mentioned below.

It is important first to recall that the distinctions drawn here between localized
“VB(NBO)-type” and delocalized “MO-type” descriptions are essentially indepen-
dent of the actual ab initio or DFT computational method on which the analysis
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happens to be based. The computational examples examined throughout this book
are in fact all based on MO-like hybrid density-functional (B3LYP) calculations
(leading to familiar LCAO-MO expansions of the Kohn–Sham MOs in terms of AO
basis functions), but the details of the NBO-based Lewis-like description would be
essentially identical for any computational method that achieves comparable ac-
curacy in describing the chemical phenomena. Furthermore, if the wavefunction
were not calculated in some type of MO framework (as is the nearly universal
practice today), one could readily envision its analysis in terms of the delocalized
multi-center natural orbitals (NOs; see Section 1.5) to obtain an “MO-like” de-
scription that is essentially parallel to that for actual MO-based wavefunctions. It
is also important to recall (Section 3.2.2) that the “VB-like” localized NBOs have
mathematical forms that are fundamentally different from those envisioned in the
classic Heitler–London–Slater–Pauling formulation of valence-bond theory; see
Section 3.2.4 for other aspects of the general comparison between localized and
delocalized MO descriptions.

In order to contrast the MO-type and VB-type descriptions, we may say that the
former attempts to describe the MOs (or NOs) in terms of general mixings of AO
basis functions (LCAO-MO description),

delocalized-type : AOs → MOs (4.131a)

whereas the latter attempts to interpolate the intermediate steps of localized hybrid
and bond formation, culminating in a set of (semi-)localized molecular orbitals
(LMOs) that are mathematically equivalent to the symmetry-adapted canonical
molecular orbitals, but are considerably simpler to understand in perturbative terms.
In the NBO framework, the sequential steps leading from initial atomic orbitals
(NAOs) to final localized molecular orbitals (NLMOs) (or delocalized canonical
MOs) can be represented by the successive basis transformations

localized-type : NAOs → NHOs → NBOs → NLMOs → MOs (4.131b)

involving intermediate localized hybrid (NHO) and bond (NBO) orbitals. The lo-
calized description therefore attempts to break down the “straight-shot” LCAO-MO
description (4.131a) into a succession of smaller steps (4.131b) that can be indi-
vidually comprehended in simple perturbative terms.

Figure 4.105 depicts overall aspects of the localized versus delocalized analysis
of MOs of PtH4

2− (B3LYP/LANL2DZ level), showing (on a consistent vertical
energy scale) the basis AOs (left), occupied valence MOs (center), and NAOs (right)
for each type of analysis. As shown by the connecting tie-lines in the left-hand half
of the diagram, nearly all the 30 basis AOs of the LANL2DZ set make appreciable
(>5%) contributions to one or more of the 12 occupied valence MOs (corresponding
to non-negligible “perturbations” for the delocalized LCAO-MO analysis (4.131a)),
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Figure 4.105 A schematic “perturbative-analysis” diagram for occupied valence
MOs (center) of PtH4

2− (B3LYP/LANL2DZ level), showing tie-lines for analysis
in terms of AO basis functions (left) versus NAOs (right). (A tie-line is shown
when the AO or NAO contributes at least 5% to the connected MO.) Note the
much smaller number of contributing orbitals, the sparser tie-line patterns, and the
more realistic physical range of atomic orbital energies for NAOs than for standard
Gaussian-basis AOs.

whereas a much smaller number of tie-lines is needed in the right-hand half to depict
the overall LCAO-MO analysis (4.131b). It is immediately apparent from Fig.
4.105 that the contributing basis “AOs” span an unphysically large energy range,
virtually squeezing the entire band of occupied MOs and NAOs into unrecognizably
narrowed form when shown on a common energy scale. Indeed, it would be a
Herculean task to provide a “perturbative MO” analysis of the AO→MO tie-lines
on the left, because (i) the required “perturbative shifts” are orders of magnitude
greater than the actual MO energy splittings (or, indeed, the entire range of MO
energies!), and (ii) a large number of such perturbative tie-lines would be required
in order to achieve any reasonably complete LCAO-MO description. (The situation
in the more accurate augmented triple-zeta AO basis set would be vastly worse than
that depicted in Fig. 4.105.)

In fact, the artificially large span of “AO energies” in Fig. 4.105 is entirely an
artifact of the unphysical nature of the basis “AOs” themselves. Basis AOs are
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commonly chosen (purely for computational convenience) as non-orthogonal
Gaussian- or Slater-type functions, radially nodeless and thus unable to incorporate
even qualitative aspects of Pauli core repulsion and other exchange-repulsion phe-
nomena in a variationally consistent manner. The “AO energies” that underlie the
LCAO-MO tie-lines are therefore essentially unrelated to physical energy levels of
the constituent atoms at any distance (unlike the NAO energies, which correctly
evolve to the proper free-atom values as the atoms separate to infinity). Thus, we
give no further attention to analyis based on these AOs.

Let us now focus instead on the localized sequence (4.131b) for the NAO→MO
tie-lines on the right-hand side of Fig. 4.105. Figure 4.106 shows this portion of
the energy-level diagram on an expanded scale, which allows key features of the
successive localized transformations (4.131b) to be clearly recognized. Selected
orbitals are marked with conventional NAO, NHO, NBO, NLMO, or MO labels
to assist identification, and only those perturbative tie-lines involving significant
(>5%) orbital mixing are included. In particular, four of the five metal d orbitals
merely “pass through” the diagram from left to right as nonbonding orbitals of
essentially unaltered form and need not be considered further (5dxz and 5dyz become
eg MOs, 5dxy becomes b2g, and 5dz2 becomes a1g; cf. Fig. 4.103). Note that the
relevant orbital energies ε1 (a.u.) all occur at positive values in the PtH4

2− dianion.
It can be seen from Fig. 4.106 that only a few significant interaction tie-lines are

involved in the localized transformations (a) NAO → NHO, (b) NHO → NBO, and
(c) NBO → NLMO. Figure 4.107 depicts each of these interactions as a perturbation
diagram, showing how precursor orbitals evolve to form successor orbitals in the
localized sequence (4.131b). Each diagram has a simple physical interpretation.
Figure 4.107(a) depicts formation of the metal hybrid (∼sd1.24) from constituent
6s and 5dx2 − y2 NAOs, qualitatively

hPt � 2−1/2(s + dx2 − y2 ) (4.132a)

or, more quantitatively,

hPt = 0.650(6s) + 0.697(5dx2 − y2 ) + · · · (4.132b)

Figure 4.107(b) depicts formation of two-center bonding and antibonding (σPtH and
σPtH

∗) NBOs from the constituent hybrids hPt and hH:

σPtH = 0.645(sd1.24)Pt + 0.765(s)H (4.133a)

σPtH
∗ = 0.765(sd1.24)Pt − 0.645(s)H (4.133b)

Finally, Fig. 4.107(c) depicts the nH→σPtH
∗ interaction that results in the three-

center ωH:PtH NLMO (as well as the corresponding virtual ω∗ NLMO),

ωH:PtH = 0.820nH + 0.476σPtH
∗ + · · · (4.134)
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Figure 4.106 Valence orbital energy-level diagrams for PtH4
2− relating atomic

NAOs to molecular MOs through intermediate localized NHO, NBO, and NLMO
steps, with final occupied NLMOs and MOs (cf. Fig. 4.104) shown on the right of
the diagram. Dashed tie-lines represent all significant (>5%) mixing coefficients in
the successive transformations: (a) NAO → NHO, (b) NHO → NBO, (c) NBO →
NLMO, and (d) NLMO→MO. The metal 6p orbitals are shown for the NAO and
NBO steps (in the latter case, identified as Rydberg rPt

∗), but these orbitals make
no significant contribution to occupied NBOs, NLMOs, or MOs.

As illustrated elsewhere in this book, each of the interactions (a)–(c) can be well
approximated by low-order perturbation theory.

The remaining step (d) in Fig. 4.106 (NLMO→MO) involves more complex
tie-line patterns, but fortunately these are all superfluous and can be ignored as
having no physical consequence! This remark follows from the general (unitary)
equivalence of MO determinantal wavefunctions formed either from NLMOs or
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Figure 4.107 Perturbative interaction diagrams (on a common vertical energy
scale; cf. Fig. 4.106) depicting significant localized bonding interactions for
PtH4

2−: (a) metal hybrid formation (NAO→NHO), (b) interaction of bonding
hybrids to form bonding (σ) and antibonding (σ∗) NBOs (NHO→NBO), and (c)
nH→σPtH

∗ interaction to form the ωH:PtH three-center NLMO (NBO→NLMO).

from MOs (Section 3.2.4), which implies that the replacement of MOs by NLMOs
in the MO wavefunction cannot affect the energy, density, or any other observable
property. Therefore, no physical insights are lost (and considerable simplicity is
gained) by focussing on the easy construction of localized NLMOs, rather than
delocalized canonical MOs.

For completeness, Fig. 4.108 displays orbital contour diagrams to compare the
forms of the localized NBOs (left) and delocalized MOs (right) of PtH4

2−. As
shown by their symmetry labels, the high-symmetry MOs transform as irreducible
representations of the D4h point group, but their forms are very sensitive to slight
geometrical distortions or other chemical perturbations. In contrast, the lower-
symmetry NBOs (which form a basis for reducible representation of D4h) have
robust and transferable forms that are highly recognizable even in strongly altered
chemical environments. Thus, the localized NBOs offer considerable advantages
as conceptual “building blocks” for visualizing the persistent features of chemical
fragments under chemical transformations.

p-Orbital participation?

A persistent feature of qualitative models of transition-metal bonding is the sup-
posed importance of p orbitals in the skeletal hybridization.76 Pauling originally
envisioned dsp2 hybrids for square-planar or d2sp3 hybrids for octahedral bonding,
both of 50% p character. Moreover, the “18-electron rule” for transition-metal com-
plexes seems to require participation of nine metal orbitals, presumably the five d,
one s, and three p orbitals of the outermost [(n − 1)d]5[ns]1[np]3 quantum shell.
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Figure 4.108 Contour plots of principal valence NBOs (left) and MOs (right) of
PtH4

2− (B3LYP/LANL2DZ level).

However, we have shown how the 18-electron rule is commonly satisfied in
the absence of any significant p-orbital participation, on the basis of hypervalent
3c/4e ω-bonding interactions wholly within the framework of normal-valent sdn

hybridization. Results of NBO and Mulliken analyses of high-level wavefunctions
for transition-metal complexes commonly exhibit only paltry occupation of the
outer p orbitals (comparable in this respect to the weak contributions of d-type
“polarization functions” in main-group bonding).

The square-planar PtH4
2− species presents an optimal opportunity for high cova-

lency (to overcome the massive electrostatic disadvantage of doubly anionic charge)
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and high p character (to achieve the “expected” dsp2 skeletal hybridization). How-
ever, the Pt 6p orbitals are found to be rather high in energy (Fig. 4.106) and to
make only minor contributions to skeletal hybrids. The quantitative form of the
hPt valence hybrid, Eq. (4.132b), does indeed reveal slight p-orbital contributions
(totalling about 5.5%), but these are far smaller than the dominant contributions
shown in (4.132b), which are clearly of sd1-like, rather than dsp2-like, character.
None of the significant tie-lines in Fig. 4.106 involves p-orbital participation, and
it is clear that a near-quantitative description of the NLMO bonding pattern (Fig.
4.107) can be achieved within the framework of primary metal 6s/5d hybridization,
with only a secondary “polarization” role of the 6p orbitals. As in the analogous
case of “d-orbital participation” in hypervalent main-group compounds (Section
3.5), it seems that the issue of significant “p-orbital participation” in hypervalent
d-block compounds can be safely dismissed for all known species. Hypervalent
complexes of square-planar or octahedral geometry (Example 4.10) can generally
be described quite well by localized sdn hybridization and ω-bonding models that
invoke no significant contribution of outer p orbitals.

Example 4.10

Problem: Give a comparable sdn-based localized 2c/2e and 3c/4e description of octahedral
FeH6

4−(which, like PtH4
2−, is an experimentally synthesized and characterized species)

and compare it with the delocalized MO description. For the latter, assume Oh symmetry
and employ the 15 AOs spanning the irreducible representations shown below:

one 4sFe (a1g), five 3dFe (eg, t2g), six 1sH (a1g, eg, t1u)

Identify the overall pattern of occupation of bonding and nonbonding orbitals in the
approximate MO diagram, and associate this (if possible) with the corresponding number
of 3c/4e interactions determined by application of the Lewis-like model.

Solution: The total electron count is

8 (from Fe) + 6 (from six H) + 4 (net charge) = 18

As previously recognized (e.g., Table 4.52), this corresponds to the “ideal pattern” of three
ω bonds, three lone pairs, and sd2 (90◦) hybridization, locking in a rigid octahedral structure.
On the basis of the formally duodectet-rule-consistent parent species FeH3

−, the overall
ω-bonding is compactly described by the two resonance structures

which summarize the localized description.
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For the delocalized MO description, symmetry considerations (in assumed Oh geome-
try) indicate that three bonding MOs arise from the interaction of Fe a1g (4s) and doubly
degenerate eg (3d) orbitals with symmetry-adapted linear combinations of H 1s orbitals.
This leaves the triply degenerate Fe t2g and ligand t1u sets to form nonbonding orbitals. The
Fe t2g set corresponds to “inactive” lone pairs, by virtue of their orthogonality to bonding
Fe—H orbitals (analogously to the distinction made for PtH4

2−). Thus, the filled “active”
MOs are three bonding (a1g and eg) and three nonbonding (t1u, ligand-based) orbitals, while
the antibonding a1g and eg orbitals are unoccupied. As seen previously for PtH4

2− (Fig.
4.104), this conforms well to the three-center MO description of 3c/4e ω-bonding, wherein
three filled bonding and three (ligand-based) nonbonding orbitals lead to three ω bonds.
The qualitative MO diagram is shown below:

4.12 Summary

The present chapter has provided but an outline of the broad, fascinating domain
of the d-block elements. Because theoretical understanding and synthetic control
of transition metals has lagged behind that of main-group elements, much of d-
block chemistry remains a scientific frontier area, rich with the prospects of future
chemical discoveries.

Practically every topic addressed in this chapter bears witness to the remarkable
prescience of the localized-bonding concepts introduced by G. N. Lewis. Indeed,
Lewis’s two most celebrated concepts – the shared-pair electron-dot diagrams of
molecular structure and the electron-pair donor–acceptor picture of acid–base re-
actions – find productive and symbiotic unification in virtually every aspect of
transition-metal chemistry. Enhanced with the quantum mechanical concepts of
hybridization and resonance, the familiar Lewis–Pauling–Bent picture of local-
ized chemical bonding exhibits the numerous relationships between d-group and
main-group chemistries, allowing the phenomena of covalency, hypovalency, and
hypervalency to be addressed in quite parallel terms.

Yet, despite the numerous parallels, the specifics of the localized Lewis-like
picture of transition-metal bonding differ so remarkably from those of bonding in
main groups as to create the impression of a bizarre wonderland of new chemical
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structures and phenomena, unprecedented in main-group chemistry. Thus, while
dot diagrams, hybrids, two- and three-center bonding, Bent’s rule, resonance,
and general Lewis-acid–base donor–acceptor concepts generalize immediately to
transition-metal chemistry, these concepts acquire decidedly “weird” and unfamil-
iar characteristics compared with their main-group analogs.

(1) The “rule of 12” replaces the “rule of eight” as the guiding principle of Lewis-like dot
diagrams.

(2) Idealized sd-hybrids replace sp-hybrids for skeletal hybridization, with resulting weird
(non-VSEPR) bond angles.

(3) Higher-order bonding motifs appear, with quadruple or higher metal–metal bond orders.
(4) The relative strengths of conjugative and hyperconjugative interactions are sharply

altered, and general delocalization phenomena become much more pronounced near
transition metals, where the abundance of low-lying unfilled valence orbitals provides
many new pathways for donor–acceptor stabilization.

(5) The possibilities for coordinative bonding and related types of “acid : base adduct”
association with closed-shell species are strongly increased, leading to an enhanced
tendency toward intermolecular aggregation and condensation.

(6) Hypervalent 3c/4e bonding becomes a ubiquitous feature of transition-metal bonding
(to the extent that normal-valent coordination complexes may appear the “exceptional”
case!).

(7) The abundance of accessible donor and acceptor orbitals in common transition-metal
complexes facilitates low-energy bond rearrangements such as insertion (“oxidative-
addition”) reactions, thus enabling the critically important catalytic potential of metals.

Thus, while numerous parallels between main-group and transition-metal
chemistries can be identified, the actual structural and reactivity patterns of
transition-metal compounds differ in richly distinctive ways from those familiar
in main-group organic and inorganic chemistry. For example, as a consequence
of the strong role of 3c/4e ω-bonding in transition-metal complexes, the specific
nature of the ligands and their geometrical arrangement strongly modulate metal
reactivity. Chemical exploitation of such sensitivities is well advanced in the biolog-
ical domain, where metalloenzymes perform spectacular chemical transformations
of crucial importance to life processes. Future advances in industrial applications of
catalysis will also rely heavily on constructing new inner- and outer-coordination-
sphere environments in order to enable novel latent reactivities to emerge.

Although rich with distinctive chemical possibilities, bonding at transition met-
als makes use of localized-bond “building blocks” that are familiar to main-group
inorganic and organic chemists. Importantly, these building blocks are consistent
with the best electron-density distributions that are currently available. Common-
ality of bonding concepts across the periodic table and consistency with high-
level electronic-structure computations should be reassuring qualities to thoughtful
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students of chemistry, for they obviate the need for radical conceptual changes
(such as crystal-field theory) in passing from p-block to d-block elements, and they
suggest the enduring significance of conceptual constructs that survive rigorous
ab initio scrutiny. The strong connection between bonding in the main group and
in transition series even suggests that some of the “unique” features of transition
metals, including their catalytic potential, might be realized in the main group with
proper “tweaking” of the coordination environment.

Full understanding and control of transition-metal species in biotic and abiotic
processes is still in its relative infancy. In the ongoing twenty-first-century ex-
ploration of this fascinating domain, ab initio theory can be expected to play an
increasingly important role.
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Supramolecular bonding

5.1 An introductory overview of intermolecular forces

5.1.1 Molecular and supramolecular units

The firm establishment of John Dalton’s atomic theory in the early nineteenth
century ushered in a long period of preoccupation with the nature of molecules1 and
the bond types responsible for molecule formation. By the mid twentieth century,
a molecule was commonly defined2 in operational terms as “the smallest part of
a chemical substance that can exist free in the gaseous state, with retention of the
composition and chemical properties that are possessed by the gaseous material in
bulk,” or in more theoretical terms as “an aggregate of atoms which is held together
by relatively strong (valence) forces, and which therefore acts as a unit.”

Let us first seek to give a more rigorous and operational ab initio characterization
of such “units.” The important physical idea underlying the above definitions is that
of the connecting covalent bonds that link the nuclei. One can therefore recognize
that a molecular unit is equivalently defined by the covalent-bond network that
contiguously links the nuclei included in the unit. We can re-state the definition
of a “molecular unit” in a way that emphasizes the electronic origin of molecular
connectivity.

(D1) A molecular unit is an aggregate of atoms that is linked by a topologically connected
network of covalent bonds; equivalently, an electronic distribution that links a collection
of nuclei by a contiguous network of covalent bonds.

Because the electronic distribution of a system is determined by |ψ |2 for a specific
solution of Schrödinger’s equation, definition (D1) allows us to determine “molecu-
lar” character directly from the form of the system’s wavefunction ψ , corresponding
to some definite point on the Born–Oppenheimer potential-energy surface.3

If we now understand “covalent bond” to correspond to a specific form of two-
center (or three-center) NBO in the optimal localized description of the electron
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distribution |ψ |2, we can give a fully operational NBO procedure for determining
molecular units. Specifically, for a general N-electron system we may use the NBO
procedure to search |ψ(�r1, �r2, . . . , �rN )|2 for the optimal localized NBO description
(Section 1.5) that determines the linkages of nuclei into molecular units. Each
molecular unit is thereby associated with the number of electrons required to fill
the idealized Lewis-structure pattern of localized bonded and nonbonded NBOs.
This leads to a composite set of nuclei and electrons that may be neutral or ionic,
with either open- or closed-shell character, according to the numbers and types of
occupied α and β spin NBOs. The definition (D1) therefore implicitly includes such
species as H2

+, B2H6, NO, and numerous other open- and closed-shell neutral and
ionic aggregates that would properly be considered “molecular” species (in their
near-equilibrium geometry) from the modern theoretical viewpoint. Note that this
procedure can in principle be applied equally to |ψ |2 for an isolated molecule or a
system of many molecules.4

Already in the early twentieth century it was realized that definitions such as (D1)
do not adequately cover all “units” of interest in chemistry. Thus, by 1902 Werner
had demonstrated (Section 4.5.1) that numerous covalently saturated “ligand” (L)
species (L = CO, NH3, H2O, etc.) could exist both as free molecular species and
in coordinated form as components of transition-metal complexes MLn with open-
shell metals M,

M + nL ←→ MLn (5.1)

By 1920 it had also become apparent that weak associations existed between closed-
shell hydride-bearing molecules (AH) and lone-pair-bearing bases (:B), leading to
“hydrogen-bonded”5 species of the form

AH + :B ←→ AH· · ·:B (5.2)

which can even persist strongly into the high-temperature vapor phase (e.g., formic
acid6). A particularly striking example is the bifluoride ion (FH· · ·F−), which ex-
hibits symmetric F· · ·H distances that obliterate any perceived distinction between
“H-bond” and “covalent bond.” In the 1950s, Mulliken7 noted the appearance of
characteristic spectroscopic lines in solutions of I2 in benzene (and many related
solution pairs) that could not be attributed to either pure component, but instead
reflect the presence of weakly linked “charge-transfer complexes”

I2 + C6H6 ←→ I2· · ·C6H6 (5.3)

In the 1960s, Hassel8 studied the structures of many mixed crystals whose unit
cells correspond to noncovalently linked “donor–acceptor complexes,” such as the
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V-shaped I5
− ion that can be formulated as

2I2 + I− ←→ I2 · · · I− · · · I2 (5.4)

Each of the examples (5.1)–(5.4) illustrates the linking of molecules into
supramolecular species that constitute new “units” of liquid, gaseous, or solid
phases. Other provocative examples of supramolecular aggregation include the al-
lotropic phases of sulfur (composed of a variety of linear and cyclic polymeric
chains)9 and the remarkable Zintl salts (with anions composed of variable metal
clusters).10

Let us, for the moment, simply refer to each dotted linkage in (5.1)–(5.4) as a
“noncovalent bond,” without prejudice to a particular physical interpretation. In
parallel to (D1) we can therefore make the following definition:

(D2) a supramolecular unit is an aggregate of molecular units that is linked by a topologi-
cally connected network of noncovalent bonds; equivalently, an electronic distribution that
links a collection of molecular units by a contiguous network of noncovalent bonds.

Here, the concept of linkage implies only that each intermolecular noncovalent bond
is sufficiently large compared with kT to withstand ambient thermal collisions. Thus,
for near-standard-state conditions (where kT � 0.6 kcal mol−1), even weak non-
covalent interactions of 1–2 kcal mol−1 may be adequate to yield supramolecular
complexes with stable equilibrium populations, thereby becoming true constituent
units of the phase of lowest free energy.

As in the molecular case (D1), the definition (D2) allows the supramolecular
unit(s) to be determined by an operational NBO search of a given electron distri-
bution |ψ(�r1, �r2, . . . , �rN )|2. Given the NBO molecular units of the distribution, we
can search the intermolecular interactions (e.g., the table of perturbative donor–
acceptor stabilizations) to determine the connecting noncovalent bonds that satisfy
the required thermal threshold, and thereby determine the contiguously bonded
supramolecular unit(s) by (D2).

Supramolecular aggregations are commonly referred to by a variety of terms,
including “adduct,” “complex,” and “van der Waals molecule.” In this chapter we
shall primarily employ the more neutral term “cluster,” which may, if desired, be
qualified with the type of intermolecular interaction leading to clustering (e.g.,
“H-bonded cluster”). General and specific “types” of intermolecular forces are
discussed in the following sections.

As defined above, the viability of a supramolecular cluster is temperature-
dependent. This is also true for molecular species, but the strength of covalent
bonds is so great compared with ambient thermal energies that we can normally
ignore this dependence except at extremely high temperatures. The strength of inter-
molecular binding determines whether a given cluster has appreciable equilibrium
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population at a given temperature, and thus should be considered a significant
“unit” of the equilibrium phase at that temperature. For example, a weakly bound
He2 dimer is a physically significant component of the gaseous helium phase only
at extremely low temperatures (<<1 K), whereas H-bonded (H2O)n clusters domi-
nate both solid and liquid phases of water and aqueous solutions up to much higher
temperatures. Our primary focus will therefore be on stronger forms of molecular
association that lead to significant clustering in equilibrium phases under standard-
state conditions.11 Because terrestrial chemical and biological processes usually
occur in aqueous solutions, where H-bonding and other forms of molecular associ-
ation are ubiquitous, supramolecular clustering plays a critical role in a vast range
of chemical and biochemical phenomena.

It is scarcely necessary to remark that a stable equilibrium population of clusters
does not imply an infinite (or even very long) lifetime of an individual cluster. In-
deed, even in the case of “stable” molecules in equilibrium, NMR evidence clearly
demonstrates that individual atoms are often in rapid exchange with the surround-
ings, and the analogous dynamical exchange (or other reactive) processes in clusters
are expected to be still more facile. The temporal history of any individual atom
or molecular fragment may therefore reflect frequent shuttling between clusters,
as well as dynamical rearrangements within clusters. Just as the lifetime of an
organization may transcend that of its individual members, the persistence of a
supramolecular cluster will often exceed that of individual atomic or molecular
fragments of which it is composed.

On the experimental side, the characteristic “floppiness” and dynamical ex-
change rates of supramolecular clusters present a strong challenge to determination
of their structures and abundancies. The useful structural information provided
by any particular spectroscopic technique is sharply limited by how the intrin-
sic measurement time scale compares with the rates of dynamical exchange and
rearrangement processes. Under these circumstances, ab initio theory provides a
powerful source of information concerning the structures, energetics, and thermo-
dynamic abundances of supramolecular clusters.12 Future progress in understanding
supramolecular clustering is likely to depend on ever more determined use of ab
initio theory as a primary structural tool, as well as development of creative new
spectroscopic techniques to address the unique structural questions presented by
clusters.

5.1.2 Conceptual and perturbative models of supramolecular bonding

The nature of the noncovalent bonds that link molecules into supramolecular clus-
ters has inspired discussion and speculation throughout the history of valence theory.
Werner’s transition-metal studies originally led to the concept of “near-valence”



5.1 Intermolecular forces 583

(Nebenvalenz) to describe the chemical forces underlying formation of “inner
complexes,” and G. N. Lewis’s general concept of the Lewis-acid–base adduct
allowed many types of coordinate bonding to be recognized as simple extensions
of Lewis-like covalent concepts.

The nature of the H-bonding linkage in Eq. (5.2) has been particularly controver-
sial. Latimer and Rodebush13 stated that “The hydrogen nucleus held by two octets
constitutes a weak bond.” G. N. Lewis14 wrote, in a section with the provocative
title “Bivalent hydrogen,”

It seems to me that the most important addition to my theory of valence lies in the suggestion
of what has become known as the hydrogen bond . . . This suggestion is that an atom of
hydrogen may at times be attached to two electron pairs of two different atoms, thus acting
as a loose bond between these atoms.

However, in his early papers on H-bonding15 Pauling argued that16

A hydrogen atom, with only one stable orbital, cannot form more than one pure covalent
bond, and the attraction of two atoms observed in hydrogen-bond formation must be due to
ionic forces.

These contrary views set the stage for a protracted battle between proponents
of the “partial-covalency” and “electrostatic” explanations of H-bonding.17 In
its most extreme form (expressed in practically all elementary chemistry text-
books), the electrostatic viewpoint emphasizes the importance of dipole-dipole
and other long-range Coulombic forces of purely classical origin, with no appre-
ciable resonance-type contributions. However, the recent discoveries of long-range
quantum-mechanical phase coherence18 and NMR J-couplings19 across hydrogen
bonds have provided powerful new evidence for the conclusion that “the electro-
static model does not account for all of the phenomena associated with H-bond form-
ation.”20

Let us attempt to pose the question of the chemical units and their interactions
in a more rigorous mathematical manner. We start from the exact Hamiltonian Ĥ
for a system composed of N electrons (coordinates {�ri }) and ν nuclei (coordinates
{ �RA}),

Ĥ = Ĥ (�r1, �r2, . . ., �rN; �RA, �RB, . . .) (5.5)

At this (non-Born–Oppenheimer) level, all equivalent nuclei (like all electrons)
appear in a completely symmetric manner, and the concept of “chemical structure”
is absent.

As a specific example, let us suppose that the system is composed of 24 electrons,
one carbon, two oxygen, and two hydrogen nuclei. To the chemist, this system might
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correspond to any of the following Lewis structures:

(5.6)

However, the form of Ĥ does not allow us to distinguish one structure from another;
neither can we distinguish “ionizable H” from “non-ionizable H” in (5.6a) (any more
than we can distinguish one electron from another). Thus, the exact Hamiltonian
alone gives no help in choosing which (if any) structure is “correct” in the chemical
sense, because Ĥ is identical for all the species in (5.6).

Nevertheless, very-long-lived quasi-stationary-state solutions of Schrödinger’s
equation can be found for each of the chemical structures shown in (5.6a)–(5.6d).
These are virtually stationary on the time scale of chemical experiments, and are
therefore in better correspondence with laboratory samples than are the true station-
ary eigenstates of Ĥ .21 Each quasi-stationary solution corresponds (to an excellent
approximation) to a distinct minimum on the Born–Oppenheimer potential-energy
surface. In turn, each quasi-stationary solution can be used to construct an alterna-

tive model unperturbed Hamiltonian Ĥ
(0)

and perturbative interaction V̂ (int),

Ĥ = Ĥ a
(0) + V̂ a

(int) = Ĥ b
(0) + V̂ b

(int) = Ĥ c
(0) + V̂ c

(int) = Ĥ d
(0) + V̂ d

(int) (5.7)

In any given region of the Born–Oppenheimer potential-energy surface, we can
judge which structure of (5.6a)–(5.6d) is best by determining which perturbative
decomposition in (5.7) is numerically most rapidly convergent.

More generally, for any chosen assignment of chemical units we can rewrite Ĥ
as

Ĥ = Ĥ units
(0) + V̂ units

(int) (5.8)

The best choice of Ĥ units
(0) in turn determines the form of the interaction V̂ units

(int)

between units. For example, if the best model is Ĥ b
(0), corresponding to the H-

bonded complex (5.6b), the corresponding V̂ b
(int) is characteristic of hydrogen

bonding, whereas if Ĥ d
(0) is best, the corresponding V̂ d

(int) is characteristic of an
ionic interaction.22 Thus, by using the fact that a general variational model can be re-

formulated as a perturbative Ĥ
(0)

(Section 1.1), we can use the machinery of pertur-
bation theory both (i) to determine the optimal molecular (or supramolecular) units
describing a particular region of the potential-energy surface, and (ii) to identify
rigorously the corresponding interaction V̂ units

(int) between these units. The NBO
technique permits one to determine the optimal ψunits

(NBO) and Ĥ units
(0) for such a



5.1 Intermolecular forces 585

perturbative description of the interactions between molecular or supramolecular
units in a very general fashion (most commonly within the framework of the Born–
Oppenheimer approximation).

Note that, in contrast to other forms of intermolecular perturbation theory to be
considered below, the NBO-based decomposition (5.8) is based on a full matrix
representation of the supermolecule Hamiltonian Ĥ . All terms in (5.8) are therefore
fully consistent with the Pauli principle, and both Ĥ units

(0) and V̂ units
(int) are properly

Hermitian (and thus, physically interpretable) at all separations.

5.1.3 Classical and non-classical intermolecular bonding forces

London’s perturbation theory of long-range intermolecular forces and its limits

The standard classification of “types” of intermolecular forces goes back to
London’s perturbation theory of the 1930s.23 Before introducing these types, we
briefly review the premises and terminology of London’s theory, particularly the
fundamental distinction between short-range and long-range forces.

The starting point for London’s treatment is a partitioning of the N electrons and
ν nuclei of a composite Hamiltonian Ĥ into two subunits (distinguished by prime
and double-prime symbols) associated with respective Hamiltonian operators Ĥ ′

and Ĥ ′′,

Units Ĥ ′ Ĥ ′′

Electrons (i) 1, 2, . . . , j j + 1, . . . , N
Nuclei (α) 1, 2, . . . , λ λ + 1, . . . , ν

(5.9)

As indicated, we shall denote electrons and nuclei with Roman (i) and Greek (α)
indices, respectively. In terms of kinetic-energy operators for electrons (t̂e) and
nuclei (T̂N) and the Coulombic potential-energy interactions of electron–electron
(v̂ee), nuclear–nuclear (V̂NN), and nuclear–electron (V̂Ne) type, we can write the
supermolecule Hamiltonian as

Ĥ = Ĥ ′ + Ĥ ′′ + V̂int (5.10)

where, for example, the Hamiltonian Ĥ ′ is

Ĥ ′ = t̂e′ + T̂N′ + v̂e′e′ + V̂N′N′ + V̂N′e′ (5.11a)

and the interaction V̂int is

V̂int = v̂e′e′′ + V̂N′N′′ + V̂N′e′′ + V̂N′′e′ (5.11b)
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Fritz London

In terms of electronic (�ri ) and nuclear ( �Rα) coordinates, the first three terms of
(5.11b) are

v̂e′e′′ =
∑

i ′

∑
j ′′

e2

|�ri ′ − �r j ′′ | (5.12a)

V̂N′N′′ =
∑
α′

∑
β ′′

(Zα′e)(Zβ ′′e)

| �Rα′ − �Rβ ′′ | (5.12b)

V̂N′e′′ =
∑
α′

∑
i ′′

(Zα′e)(−e)

| �Rα′ − �ri ′′ | (5.12c)

and the remaining term is written analogously.
Now let the centers of mass of each unit be denoted �Rc

′ and �Rc
′′, respectively,

and write the Hamiltonian (5.10) in standard perturbative form

Ĥ = Ĥ
(0) + V̂int (5.13)

Then, in the long-range limit

R = | �Rc
′ − �Rc

′′| → ∞ (5.14)

the unperturbed operator and eigenfunction are assumed to be

Ĥ
(0) = Ĥ ′( �Rc

′) + Ĥ ′′( �Rc
′′) (5.15a)

ψ (0) = ψ ′( �Rc
′) · ψ ′′( �Rc

′′) (5.15b)
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where

Ĥ ′ψ ′ = E ′ψ ′ (5.16a)

Ĥ ′′ψ ′′ = E ′′ψ ′′ (5.16b)

From this starting point, London employed standard techniques of Rayleigh–
Schrödinger perturbation theory to evaluate the leading effects of the intermolecular

V̂int on the non-interacting molecules described by Ĥ
(0)

.
Equation (5.15b) is the fundamental assumption underlying London’s theory,

which is essential both for numerical evaluation and for physical interpretation of
the perturbative expressions. Whereas short-range intramolecular interactions in
(5.16a) and (5.16b) must be described with properly antisymmetric eigenfunctions
satisfying

Âψ ′ = ψ ′, Âψ ′′ = ψ ′′ (5.17a)

London assumed that the unperturbed system Ĥ
(0)

of (5.15a) can be adequately
approximated by the non-antisymmetric ψ (0) of (5.15b):

Âψ (0) �= ψ (0) (5.17b)

The neglect of intermolecular exchange effects in (5.15b) greatly simplifies the
numerical evaluation of the first-order correction

E (1) = 〈ψ (0)|V̂int|ψ (0)〉 (5.18)

(as well as higher perturbative corrections) and leads to an appealing classical
interpretation of contributions to E (1) (see below). Because “exchange effects” are
purely quantum mechanical in nature, associated with mathematical terms that grow
exponentially as intermolecular distance diminishes, the approximation (5.15b) is
only tenable in the long-range limit (5.14).

London introduced a second approximation by expanding V̂int as a “multipole”
power series in 1/R (inverse intermolecular separation)

V̂int =
∑

n

V (n)

Rn
(5.19)

whose successive terms depend on permanent multipoles (dipole, quadrupole, . . .)
of the separated species. The multipole expansion (5.19) is valid (convergent) only
if the intermolecular separation is much greater than the effective molecular radii
(e.g., empirical van der Waals radii)

R >> 〈| �Rc
′ − �ri ′ |〉max + 〈| �Rc

′′ − �r j ′′ |〉max (5.20)
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Like (5.15b), the multipole approximation (5.19) is dependent on the long-range
assumption (5.14); both approximations fail (for different reasons) if the molecular
wavefunctions ψ ′ and ψ ′′ overlap appreciably.

Note that failure to satisfy (5.20) has far more serious theoretical consequences
than mere failure of convergence of the multipole series (5.19). This can be seen by
examining excited-state solutions ψ i

′ and ψ j
′′ of (5.16a) and (5.16b), the higher

“unperturbed eigenfunctions” of Ĥ
(0)

:

ψ i j
(0) = ψ ′

i ( �Rc
′) · ψ ′′

j ( �Rc
′′) (5.21)

In the overlap region these “unperturbed eigenfunctions” can no longer remain
mutually orthogonal,

〈ψi j
(0)|ψk�

(0)〉 �= δikδ j� (5.22a)

and the corresponding “unperturbed Hamiltonian” Ĥ
(0)

therefore cannot be a
Hermitian operator,24

Ĥ
(0) �= Ĥ

(0)†
(5.22b)

Thus, attempts to extend the London theory to distances at which (5.20) is vio-
lated must lead to unphysical (non-Hermitian) “perturbation corrections,” with in-
creasingly severe mathematical and physical contradictions. These difficulties are
in contrast to the corresponding NBO-based decomposition (5.8), which remains
Pauli-compliant and Hermitian at all distances.

From the beginning, London’s theory was recognized as an expedient, but some-
what arbitrary, device to simplify numerical evaluations and recover quasi-classical
interpretations of selected “long-range contributions” to the total intermolecular in-
teraction; in the words of a classic text,25

It is convenient, although artificial to divide intermolecular forces into two types – long-
range (van der Waals) forces and short-range (valence or chemical) forces.

It is remarkable that London’s approximate treatment allowed the “long-range
forces” to be described with considerable accuracy some three or four decades
before the short-range “chemical” forces became comparably tractable. Before
proceeding to the description of the short-range valence or chemical forces (with
which this book is principally concerned), we briefly review the leading London
long-range types.

London identified three major types of long-range forces: (LR-1) electrostatic,
(LR-2) induction, and (LR-3) dispersion. (A fourth [“degeneracy” or “resonance”]
type occurs only in specialized cases involving identical molecules, one of which is
in a degenerate excited state,26 and will not be considered further.) Of these, (LR-1)
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and (LR-2) have direct classical counterparts and occur in the first-order correction
(5.18), whereas (LR-3) is a higher-order correction that is intrinsically quantum
mechanical in nature. We now briefly describe each force type in turn.

(LR-1) electrostatic forces
The multipole expansion (5.19) includes a potentially infinite number of terms
depending on net charges (Ca, Cb), dipole moments (µa, µb), quadrupole moments
(Qa, Qb), and higher electric multipole moments of the isolated molecules a and b.
The leading term of each type can be written in terms of an R-dependent coefficient
and an angular factor (typically of order unity in the most favorable orientation). We
summarize below the multipoles and radial dependences of the leading few terms,
neglecting details of the angular factors (which are given in standard references27):

ionic: CaCb/R (5.23a)

ion–dipole: Caµb(angular)/R2 (5.23b)

ion–quadrupole: Ca Qb(angular)/R3 (5.23c)

dipole–dipole: µaµb(angular)/R3 (5.23d)

dipole–quadrupole: µa Qb(angular)/R4 (5.23e)

quadrupole–quadrupole: Qa Qb(angular)/R5 (5.23f)

Note that two distinct types of interactions (ion–quadrupole and dipole-dipole)
contribute to an overall R−3 dependence, and the number of distinct multipole
types having similar R−n dependences continues to increase with increasing n. For
uncharged systems, the dipole-dipole interaction (5.23d) is expected to dominate,
with an angular term that favors parallel alignment of the two dipoles.

(LR-2) induction forces
For polarizable charge distributions, additional classical-type interactions arise
from the induced dipole, quadrupole, and higher moments on each monomer,
which are proportional to the fields created by the asymmetric charge distribution
on the other monomer. The proportionality constants for each multipole field are
the monomer polarizabilities αa and αb (α(µ) for dipole fields, α(Q) for quadrupole
fields, etc.). The leading two induction interactions are:

ion-induced dipole: −1

2
Ca

2αb/R
4 (5.24a)

dipole-induced dipole: − µa
2αb(angular)/R6 (5.24b)

Whereas the electrostatic forces arising from permanent moments can be attrac-
tive or repulsive (depending on orientation), the induction forces are intrinsically
attractive. In the large-R limit, these interactions are generally negligible (i.e., of
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the same order as neglected terms in the permanent multipole series (5.23)) unless
lower-order permanent moments are absent. Thus, if (5.19) and (5.20) are valid for
neutral species, the leading induction term (of dipole-induced-dipole type) should
be negligible compared with leading permanent-moment terms in (5.23).

(LR-3) dispersion forces
The most celebrated result of London’s theory is the dispersion interaction

dispersion: −Dab/R
6 (5.25)

so named because the coefficient Dab can be expressed in terms of the same oscillator
strengths and spectral energy differences as those that appear in the theory of the
dispersion of light. The London dispersion force is also called the “van der Waals
force” (and Dab the “van der Waals force constant”) because its R−6 dependence is
consistent with the attractive term in the well-known van der Waals equation of state
for gases. The dispersion interaction affects even the most spherically symmetric
charge distributions (i.e., those of rare-gas atoms) and hence leads to aggregation
and condensation of all matter at sufficiently low temperature.

The physical origin of the dispersion interaction is often described in terms of
a quasi-classical induced-dipole–induced-dipole picture. The quantum-mechanical
fluctuations of the electronic distribution about its spherically symmetric average
can be pictured as leading to an instantaneous (snapshot) dipole µa

(inst) on monomer
a, which in turn induces an instantaneous dipole µb

(inst) on b. Thus, if the dipole
fluctuations of the two monomers are properly correlated, a net attraction of the
form (5.25) results. As remarked by Hirschfelder et al.28

The classical explanation of the dispersion forces between two atoms . . . seems qualitatively
correct and quite plausible. This mechanism, however, is not apparent from the quantum me-
chanical derivations. On this account, it is best if we do not stress the classical significance
of these forces.

Casimir and Polder29 later showed that the dispersion interaction constant Dab can
be expressed in the surprising form

Dab = 3

π

∫ ∞

0
αa(iω)αb(iω)dω (5.26)

where αa(iω) is the dynamical (frequency-dependent) electric polarizability of
monomer a at imaginary frequency iω. The deep quantum-electrodynamical rea-
soning that underlies this remarkable expression is beyond the scope of this
book.
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Casimir and Polder also showed that, at very long range (i.e., separations greater
than a characteristic distance R0 of a few hundred ångström units), the dispersion
interaction takes the modified asymptotic form

very-long-range dispersion: −Dab
(rel)/R7 (5.27)

weakened by a factor 1/R as a result of relativistic retardation. Qualitatively, this
effect can be attributed to the finite speed of light and resulting slight time delay for
an initial µa

(inst) on a to make its presence felt as an induced fluctuation µb
(inst) on

b; retardation allows the dipole fluctuations to “wobble” out of perfect alignment,
weakening the dispersion interaction with respect to its non-relativistic form (5.26).
The relativistic weakening of dispersion interactions has important effects on the
stability of colloids30 and demonstrates that the range of validity of an R−6-type
dispersion contribution is limited both at large and at small R.

Summing up, we can say that the underlying assumptions (5.15b) and (5.17b) of
London’s theory are valid only in the long-range region where quantum-mechanical
exchange effects are truly negligible. Just as it would be meaningless to employ
(5.27) as the “dispersion contribution” for R < R0 (because there is no such physical
interaction of this mathematical form at shorter distances), it is similarly unjusti-
fied to assume that classical-type expressions (5.23) retain validity in the short-
range region where quantum exchange effects are significant. While such quasi-
classical extrapolations are sorely tempting,31 they necessarily lead to unphysical
violations of Hermiticity and antisymmetry (sterics) as noted in (5.22b). For this
reason, we make no attempt to separate quasi-classical London-like terms from
the full quantum expressions, but instead adopt the NBO-based perturbative de-
composition (5.8) that is inherently fully quantal and applicable at all distances.
As shown by Glendening and coworkers using the natural-energy-decomposition-
analysis (NEDA) method,32 one can indeed define NBO-based “electrostatic” and
“polarization” components that reduce properly to the expected classical asymptotic
forms in the long-range limit. However, the equilibrium geometries of important
supramolecular complexes lie well inside the distance of van der Waals contact,33

where exchange effects are certainly non-negligible, i.e., where exponential quantal
exchange effects supplant the benign power-law behavior of the classical long-range
limit.

The short-range valence or chemical forces: “resonance bonding”

Virtually by definition, the forces between molecules cannot be ascribed to “cova-
lent bonds” such as those that link atoms within molecules. Hence, such forces
may be (and often are) tautologically labeled as “noncovalent” to distinguish
them from the strongest 2c/2e “covalent” bonds that underlie the formation of
molecules. (Nearly as uninformative is the designation “weak bonding,” which
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is supposed to be contrasted with the “strong bonding” of conventional 2c/2e
covalency.)

A rather impoverished view of chemical valency and bonding interactions might
suggest that standard 2c/2e covalent bonds exhaust the possibilities of quantal
exchange phenomena, and that remaining intermolecular interactions should be
considered to be of classical long-range type (as described above). However, even
chemists of the pre-quantum era recognized the necessity of generalizing the sim-
plest 2c/2e bonding picture to accommodate the effects of “electromerism” or
“resonance,” schematically represented as a kind of averaging between distinct
bonding patterns, e.g.,

A=B—C ←→ A—B=C (5.28a)

The essence of the resonance concept is partial (non-integer) bond order, interme-
diate between, e.g., the idealized single- and double-bond patterns in (5.28a).

A similar resonance concept may be envisioned in cases in which a bond linking
A, B, and C is lacking in one or the other resonance structure,

A—B—C ←→ A=B C (or A—B C̈, or A B=C or Ä B—C) (5.28b)

Still other resonance possibilities refer to molecular fragments that are completely
disconnected (though in different ways) in both resonance structures,

A—B C ←→ A B—C (5.28c)

Such “disconnected” resonance structures correspond to intermolecular resonance,
i.e., to partial bond orders between distinct “molecular units.” Resonance diagrams
such as (5.28b) and (5.28c) suggest that the distinction between “intramolecular”
and “intermolecular” partial bonding must be, at most, a matter of degree.

Resonance such as (5.28a)–(5.28c) is inherently a quantal phenomenon, with no
classical counterpart. In NBO language, each of the resonance interactions (5.28a)–
(5.28c) corresponds to a donor–acceptor interaction between a nominally filled
(donor; Lewis-type) and unfilled (acceptor; non-Lewis-type) orbital, the orbital
counterpart of G. N. Lewis’s general acid–base concept. As mentioned above, Lewis
and Werner (among others) had well recognized the presence of such valence-like
forces in the dative or coordinative binding of free molecular species. Thus, the
advent of quantum mechanics and Pauling’s resonance theory served to secure
and justify chemical concepts that had previously been established on the basis of
compelling chemical evidence.

Because the resonance-type interactions (5.28b) and (5.28c) that lead to par-
tial bond order between molecular species are essentially similar to those within
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molecules (5.28a), it is clear that the term “noncovalent bonding” is seriously inade-
quate and misleading with respect to the underlying covalent (or partially covalent)
nature of these interactions. Instead, we suggest that such interactions are better
characterized as “resonance forces” to indicate clearly their close association with
other chemical bonding and resonance phenomena. In this chapter we describe the
most important intermolecular forces of this type, emphasizing the close relation-
ship of intermolecular resonance forces to other NBO donor–acceptor phenomena
studied throughout this book.

5.2 Hydrogen bonding

As remarked in Section 5.1.2, the discovery of hydrogen bonding provoked on-
going controversy between proponents of a “partial covalency” and advocates of
an “electrostatic” picture of H-bond formation. The former group emphasized the
importance of resonance-type chemical forces of quantum-mechanical origin that
could be represented as

B: · · · H—A ←→ B—H+ · · · :A−

wcov wion
(5.29a)

whereas the latter emphasized the importance of dipole–dipole and other electro-
static forces of classical origin.

The persistent and seductive appeal of classical electrostatic models is in part
attributable to the fact that the simplest Coulombic approximation (with plausible
atomic charges and the given H-bonded geometry) leads to binding energies of
the correct order of magnitude (see Example 5.1). Commenting on this fortuitous
agreement, Coulson wrote,34

It is tempting to argue that in view of the close agreement between this electrostatic energy
and the hydrogen bond energy, a true account has been obtained of the most important
factors involved. But this is not so.

Coulson concluded that the most important contribution to H-bonding is “ionic
resonance” (5.29a). However, generations of empirical modelers have found it con-
venient to employ simple pairwise-additive Coulombic formulas with empirically
fitted point charges to model H-bonds, and such empirical models have tended to
encourage uncritical belief in the adequacy of a classical electrostatic picture of
H-bonding.
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Example 5.1

Problem: Given the monomer natural charges (Qi ) and the equilibrium Cartesian coordi-
nates (xi , yi , zi ) of the water dimer, H2O· · ·H2O

Atom i Qi xi (Å) yi (Å) zi (Å)

O −0.916 −0.006 183 1.525 447 0.000 000
H +0.458 0.036 726 0.556 520 0.000 000
H +0.458 0.909 465 1.817 564 0.000 000

O −0.916 −0.006 183 −1.376 675 0.000 000
H +0.458 −0.423 629 −1.782 131 0.767 110
H +0.458 −0.423 629 −1.782 131 −0.767 110

evaluate the apparent electrostatic binding energy from the classical Coulomb formula

	ECoulomb =
3∑

i=1

6∑
j= 4

Qi Q j

| �Ri − �R j|

Solution: 	ECoulomb = −8.2 kcal mol−1. (The actual H-bond energy is 	EH-bond = −5.8
kcal mol−1.)

In NBO language, the resonance hybrid (5.29a) corresponds to a two-electron
intermolecular donor–acceptor interaction of the form

nB→σAH
∗ (5.29b)

in which electron density from the lone pair nB of the Lewis base B: delocalizes
into the unfilled σAH

∗ hydride antibonding orbital of the Lewis acid AH. Such
intermolecular delocalization also corresponds to partial charge transfer (CT) from
the Lewis base to the Lewis acid, conferring partial positive charge on the former
and negative charge on the latter, as depicted in the right-hand resonance structure in
(5.29a). Stronger nB→σAH

∗ delocalization therefore leads to increased weighting
of the ionic resonance form (wion) in the resonance hybrid (5.29a).

Hydrogen bonds may be considered special types of 3c/4e interactions, closely
related to other forms of hypervalency in main-group (Section 3.5) and d-block (Sec-
tion 4.6) compounds. However, the fundamental nB→σAH

∗ interaction of B:· · · HA
hydrogen bonding displays unusual characteristics compared with other “three-
center MO” phenomena, due mainly to the unique properties of the H atom, whose
valence shell contains only the isotropic 1s orbital for construction of σAH and σAH

∗

NBOs.
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On the basis of known shapes of hydride bonds and antibond NBOs (Sec-
tion 3.2.6) and their dependence on the relative electronegativity of A and H, we can
predict certain geometrical, energetic, and dielectric features of B:· · · HA hydrogen
bonding, all related to the strength of nB→σAH

∗ charge-transfer delocalization.

(1) Hydrogen-bonded complexes will tend to adopt the near-linear geometry corresponding
to strongest nB→σAH

∗ interaction (“maximum nB−σAH
∗ overlap”), i.e.,

|〈nB|F̂ |σAH
∗〉| = maximum (5.30a)

for the highest-energy, most diffuse lone pair nB and the lowest-energy, most polar
hydride antibond σAH

∗.
(2) Owing to the increased occupancy of the σAH

∗ antibond, the covalent A—H bond will
be lengthened and weakened (stretching frequency νAH red-shifted):

	RAH > 0 (5.30b)

	νAH < 0 (5.30c)

(3) To maximize nB−σAH
∗ overlap, the σAH bond will repolarize to withdraw electron

density from H (increasing ionicity iAH), thereby increasing the amplitude of σAH
∗ on

H,

	iAH > 0 (5.30d)

(4) The monomer AH becomes slightly anionic and B becomes slightly cationic as a
result of the nB→σAH

∗ intermolecular charge transfer, with resultant net charge transfer
QCT = QB − QAH from Lewis base to Lewis acid:

QAH < 0, QB > 0 (QCT > 0) (5.30e)

The simple nB–σAH
∗ predictions (5.30a)–(5.30e) can be tested and compared with

expectations of classical electrostatic models for each of the H-bonded complexes
to be discussed below.

Note that the repolarization effect (5.30d) can lead to a paradox (Example 5.2),
namely, that net electron density is diminished around the H-bonded proton, even
though slight electron population is added to AH in H-bond formation. Combined
with the loss of occupancy from B, this has the consequence that an electron-density-
difference map will usually show net reduction (not “pile-up”) of electronic charge
in the B· · · H region. The resolution of this paradox can be expressed by saying that
the charge transfer is into the σAH

∗ antibond, whose induced repolarization often
shifts a larger quantity of charge in σAH away from the proton.
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Example 5.2

Problem: In a certain B· · · HA hydrogen bond, the σAH bond repolarizes by 1% from its
free form

σAH(f) = (0.60)1/2hA + (0.40)1/2hH

to its H-bonded form

σAH(b) = (0.61)1/2hA + (0.39)1/2hH

and 0.030e of charge is transferred from nB to σAH(b)
∗. In this process, does the formal

electron population at H increase or decrease?

Solution: Assuming double occupancy of σAH, the 1%-repolarization effect reduces the
electron population at H by

(0.40 − 0.39)(2e) = 0.020e

whereas the 0.030e added occupancy of the antibond σAH(b)
∗ = (0.39)1/2hA − (0.61)1/2hH

increases the electron population at H by

0.61(0.030e) = 0.018e

Thus, the net electron population on H is reduced (by 0.002e), even though AH becomes
more anionic overall.

Although (1)–(4) involve “polarization” and other terms that are reminiscent
of a classical dipole–dipole picture, it must be re-emphasized that the nB–σAH

∗

picture is formulated entirely in the quantal framework (including full consistency
with the Pauli exclusion principle). Thus, while vague connections to concepts of
classical electrostatics can be drawn, the NBO donor–acceptor picture of H-bonding
is essentially based on overlap-type “ionic resonance” (5.29a), not on “ionic forces”
(or the like) of classical type.

5.2.1 Binary H-bonds

Prototype H-bonded complexes

As simple prototypes of hydrogen bonds, let us first consider the three binary
complexes

H3N· · ·HOH HF· · ·HF H2CO· · ·HNH2

(a) (b) (c)
(5.31)

as shown in Fig. 5.1. The H3N· · ·H2O complex (Fig. 5.1(a)) serves as a prototype
of the hydrogen bond of amine bases in aqueous solution, where the phenomenon
of H-bonding was first clearly recognized.35 The HF· · · HF dimer (Fig. 5.1(b)) is
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Figure 5.1 Hydrogen-bonded B:· · ·HA binary complexes (left) and leading
nB→σHA

∗ donor–acceptor interactions (right), with second-order stabilization en-
ergies in parentheses (cf. Table 5.1). (Note that the H atom falls slightly out of
the contour plane in the upper-right panel, so that the cross-hairs symbol for this
nucleus is absent.)
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Table 5.1. Properties of binary B:· · ·HA hydrogen-bonded complexes
(see Fig. 5.1), showing the H-bond energy 	EB···H, H-bond length RB···H,
van der Waals contact distance RB···H(vdW), and covalent-bond elongation

	RAH (relative to isolated monomer)

Species 	EB···H (kcal mol−1) RB···H (Å) RB···H(vdW) (Å) 	RAH (Å)

H3N· · ·HOH 7.27 1.96 3.05 0.0149
HF· · ·HF 5.05 1.83 2.69 0.0069
H2CO· · ·HNH2 1.41 2.35 2.88 0.0018

noteworthy for the simplicity of its component monomers, each a simple diatomic
of high polarity that approximates an ideal dipole. The H2CO· · ·H3N complex
(Fig. 5.1(c)) serves as a prototype of the C=O· · ·H—N hydrogen bond that is
ubiquitous in proteins, and hence critical to life processes. Table 5.1 summarizes
some structural and energetic parameters for these species.

All three species in Fig. 5.1 exhibit equilibrium structures that are distinctly
peculiar from a classical electrostatic viewpoint. Each monomer has a pronounced
dipole,

µNH3 = 1.69 D (5.32a)

µH2O = 2.16 D (5.32b)

µHF = 1.98 D (5.32c)

µH2CO = 2.45 D (5.32d)

directed, in each case, along the principal rotation axis (with the negative pole toward
the electronegative heavy atom and the positive pole toward the hydrogens). Yet
even in the “ideal-dipole” HF-dimer case, one monomer is strongly canted out of
collinearity, nearly perpendicular to the direction that would maximize dipole–
dipole attraction. In H2CO· · ·H3N the two monomer–dipole orientations (although
roughly parallel) are displaced far from the expected collinearity, and in H3N· · ·H2O
the relative orientation of dipoles is again far (>50◦) from that expected to maximize
dipole–dipole attraction. Thus, a classical dipole–dipole picture gives little or no
useful guidance as to the actual structures assumed by these H-bonded complexes.
Neither do the magnitudes of monomer dipoles (all within ∼20% of µ̄ = 2.1 D)
correlate in any obvious manner with H-bond strengths (which vary by more than
a factor of five).
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The reason for the failure of a long-range electrostatic picture is evident from
comparison of the actual RB···H H-bond distance (second column of Table 5.1) with
the corresponding sum of van der Waals radii RB···H(vdW) (third column). As this
comparison shows (cf. note 33), the actual monomer separations are far inside van
der Waals contacts, by distances ranging from 0.5 Å to more than 1.1 Å! Hence,
the condition (5.20) for the validity of the London long-range approximation is
grossly violated, and it is not surprising that the resulting classical-like electro-
static formulas have little relevance for the actual equilibrium region of H-bonded
species.

The importance of overlap-type interactions is also apparent from the nB→σAH
∗

NBO contour diagrams shown in the right-hand panels of Fig. 5.1. These interac-
tions lead to stabilizations of 1–12 kcal mol−1, sufficient to overcome the significant
steric barrier that must be present at such short equilibrium distances. In each case
the observed geometry is close to that expected (cf. (5.30a)) from maximizing
the intermolecular overlap of the donor lone pair nB and the acceptor antibond
σAH

∗ orbitals.36 Thus, the simple nB→σAH
∗ picture predicts a qualitatively cor-

rect H-bonding geometry, on the basis of general overlap principles similar to
those employed for other donor–acceptor interactions surveyed throughout this
book.

Example 5.3

Let us examine the balance between steric and donor–acceptor forces in greater detail for the
case of HF· · · HF. The graph below plots the adiabatic potential-energy curve for H-bond
formation (solid line, circles), as well as the steric repulsion energy37 	Esteric (dotted line)
and n–σ∗ donor–acceptor attraction energy 	En→σ∗ (2) (dashed line) at each RF···H.
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As shown in the figure, the valence-type interactions 	Esteric and 	En→σ∗ (2) are rather
negligible beyond ∼2.5 Å, and the longer-range attraction may be attributed primarily to
classical dipole–dipole forces. However, the steric repulsions and n–σ∗ attraction both grow
rapidly at shorter distances, until, at RF···H = 1.8 Å,

	Esteric = +6.7 kcal mol−1

	En→σ∗ (2) = −7.6 kcal mol−1

	Erem = −4.1 kcal mol−1

where 	Erem is the remainder that may be ascribed to residual classical electro-
static interactions. (Note that this quantity is again fortuitously close to the net H-
bond energy, as though steric and donor–acceptor contributions were absent.) Thus,
the donor–acceptor (ionic-resonance) interaction 	En→σ∗ (2) is found to be the largest
contribution to net binding at equilibrium. This analysis for (HF)2 is also consistent
with the early conclusion of Coulson concerning the sources of binding in the water
dimer.

Table 5.2 presents further details of the interacting nB and σAH
∗ NBOs and

their diagonal (εn and εσ∗) and off-diagonal (Fnσ∗) matrix elements, and Table 5.3
summarizes the charge transfer (	QB→A), A—H-bond ionicity (iAH), and (P)NBO
overlap integrals (Snσ and Snσ∗) in the H-bonding region. The entries of Table 5.2
allow one to estimate the nB→σAH

∗ interaction strengths, as shown in the right-hand
panels of Fig. 5.1.

Table 5.2. The NBOs nB and σAH
∗ and associated orbital energies (εn and εσ∗) of

binary B:· · · HA H-bonded complexes (cf. Fig. 5.1), with Fnσ∗ = 〈nB|F̂ |σAH
∗〉

interaction matrix element (note that two oxygen lone pairs contribute to
H-bonding in H2CO· · · H3N)

Donor Acceptor

Complex nB εn (a.u.) σAH
∗ εσ∗ (a.u.) Fnσ∗

H3N· · ·HOH (sp3.44)N −0.3717 0.49(sp2.67)O − 0.87(s)H +0.4746 −0.0924

HF· · · HF (sp4.61)F −0.6363 0.46(sp3.44)F − 0.89(s)H +0.4239 −0.0753

H2CO· · ·HNH2 (sp0.68)O −0.7441 0.56(sp2.67)N − 0.83(s)H +0.4733 −0.0239
(p)O −0.3082 −0.0206
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Table 5.3. The NBO descriptors of binary B · · · HA H-bonded complexes
(see Fig. 5.1), showing net intermolecular charge transfer 	QB→A, σAH

bond ionicity iAH, and PNBO overlap integrals for attractive
nB–σAH

∗ (Snσ∗) and repulsive nB–σAH (Snσ) interactions

Complex 	QB→A iAH Snσ∗ Snσ (Snσ∗/Snσ)2

H3N· · ·HOH 0.0269 0.5102 0.2922 0.1534 3.63

HF· · ·HF 0.0124 0.5744 0.2022 0.1050 3.71

H2CO· · ·HNH2 0.0026 0.3744 0.0692 0.0684 1.02
0.0576 0.0448 1.65

Example 5.4

Problem: Use the data in Table 5.2 to verify the values given in Fig. 5.1 for the stabilization
associated with each nB→σAH

∗ interaction.

Solution: According to the general second-order perturbation theory presented in Sec-
tion 1.4 (cf. Fig. 1.3), we can rewrite Eq. (1.24) for the present case (φi

(0)= nB, φ j∗ (0) =
σAH

∗) as

En→σ∗ (2) = −2
Fnσ∗ 2

εσ∗ − εn

From the entries in Table 5.2 we obtain

H3N· · ·HOH: En→σ∗ (2) = −2
(−0.0924)2

0.4746 − (−0.3717)
= −0.0202 a.u.

HF· · ·HF: En→σ∗ (2) = −2
(−0.0753)2

0.4239 − (−0.6363)
= −0.0107 a.u.

H2CO· · ·HNH2 : En→σ∗ (2) = −2
(−0.0239)2

0.4733 − (−0.7441)
= −9.384 × 10−4 a.u.

En′→σ
(2) = −2

(−0.0206)2

0.4733 − (−0.3082)
= −1.086 × 10−3 a.u.

With the conversion factor 1 a.u. = 627.5 kcal mol−1, these values correspond to the stabi-
lizations given in Fig. 5.1 (in the last case, the summed contribution for two oxygen lone
pairs).

Consistently with (5.30b)–(5.30e), the intermolecular charge transfer 	QB→A

(Table 5.3, first column) clearly correlates with the strength of nB→σAH
∗ inter-

actions (Fig. 5.1), the 	EB···H binding energy (Table 5.1, first column), and the
(inverse) RB···H distance (Table 5.1, second column). Furthermore, the transferred
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charge (of the order of 1% of an electron) appears as increased occupancy of the
antibonding σAH

∗ orbital, which is correlated in the expected manner with the
covalent-bond elongation 	RAH (Table 5.1, fourth column).

The charge transfer is in turn strongly correlated with the overlap Snσ∗ of nB and
σAH

∗ orbitals. Columns 3 and 4 of Table 5.3 compare the values of the attractive
donor–acceptor (Snσ∗) and repulsive donor–donor (Snσ) overlaps (the latter of which
is related to the steric repulsions between filled nB and σAH NBOs). The ratio
(Snσ∗/Snσ)2, shown in the final column of Table 5.3, gives a rough measure of
the energetic balance between attractive and repulsive terms in the equilibrium
geometry. When both Snσ∗ and (Snσ∗/Snσ)2 are favorable, the shortest and strongest
H-bonds result. The ratio (Snσ∗/Snσ)2 depends most strongly on acceptor polarity
(i.e., the ionicity factor iAH in Table 5.3, second column), and is therefore most
favorable for σHF

∗. However, as shown in Example 5.4, the nF of electronegative
fluorine is too low in energy to be a favorable donor. The HF · · · HF H-bond is
therefore weaker than that of H3N· · · H2O, which has slightly less favorable acceptor
polarity (Snσ∗/Snσ)2 but a much more favorable donor energy εn. In this manner,
finer details of the net H-bond strength can be related to details of the key nB, σAH

and σAH
∗ NBOs of the H-bonding region. The patterns exhibited by these three

complexes are broadly representative of those found for a much larger number of
H-bonded systems that have been examined by NBO analysis.38

Further evidence of the importance of intermolecular donor–acceptor interac-
tions can be obtained by deleting these interactions from the variational calculation,
and recalculating the optimized geometries with charge transfer (CT) omitted. The
structures resulting from such CT-deleted species are shown in Fig. 5.2. Energetic
and structural properties of CT-deleted species are summarized in Table 5.4 for
direct comparison with the actual H-bonded species in Table 5.1.

As a glance at Fig. 5.2 makes clear, the CT-deleted structures bear almost no
recognizable relationship to the true H-bonded structures (Fig. 5.1). It should be
stressed that deleting the intermolecular donor–acceptor interactions corresponds
to an almost imperceptible change (<0.05%) in the monomer charge densities, so
all significant steric and electrostatic properties of the monomers remain essen-
tially unaltered. All three CT-deleted complexes take the geometries that might be
expected in a simple dipole–dipole model, but the net binding energies are virtually
negligible (<1 kcal mol−1, of the order of ambient thermal energies kT) and the
distance RB···H elongates to large separations beyond van der Waals contact. Thus,
the CT-deleted species bear almost no resemblance to H-bonded species, though
they conform well to the expectations of a London long-range picture. While the
London-like terms are always present in the full calculation, their influence ap-
pears to be very weak compared with that of covalent-type donor–acceptor interac-
tions in the near-equilibrium region of H-bonded species. Further examples of the
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Table 5.4. Properties of “CT-deleted” B:· · · HA complexes (see Fig. 5.2),
showing binding energies 	EB···A and intermolecular bond distances

RB···H and RB···A, compared with van der Waals contact distances
RB···A(vdW) for heavy atoms A and B (note that optimum intermolecular

separations are imprecisely determined on the extremely flat
potential-energy surface)

Species 	EB···A (kcal mol−1) RB···H (Å) RB···A (Å) RB···A(vdW)(Å)

H3N· · ·H2O 0.16 5.80 6.09 3.09
HF· · ·HF 0.84 3.65 4.57 2.54
H2CO· · ·H3N 0.14 6.72 7.02 3.09

Figure 5.2 Optimized structures of “CT-deleted” complexes, with all intermolec-
ular donor–acceptor interactions removed.
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relative unimportance of classical dipole–dipole interactions to H-bond structure
and energetics will be given below.

Hydrogen-bond isomerization

Lewis bases having two or more lone-pair-bearing atoms can exhibit a form of
isomerism in H-bonding. This can be illustrated most simply with carbon monoxide,
which has sigma-type lone pairs both on C and on O, and thus is expected to form
n→σ∗ H-bonds of either OC · · ·HA or CO · · ·HA type with a hydride-bearing Lewis
acid. For example, complexation of CO with HF gives rise to distinct OC· · ·HF or
CO· · ·HF complexes.39 The two possible isomeric forms are shown in Fig. 5.3,
both bound by rather typical H-bond energies:

FH· · ·CO (	EB···H = 3.64 kcal mol−1) (5.33a)

FH· · ·OC (	EB···H = 1.83 kcal mol−1) (5.33b)

Figure 5.3 Isomeric FH· · ·CO and FH· · ·OC complexes (left) and leading donor–
acceptor interactions (right), with estimated second-order stabilization energies in
parentheses.
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Table 5.5. Hydrogen-bond energies 	EB···H, HF monomer net
charge QHF, H-bond lengths RB···H, and covalent-bond stretchings

	RAH for CO· · ·HF and OC· · ·HF isomers (see Fig. 5.3)

B· · ·HA 	EB···H (kcal mol−1) QHF RB···H (Å) 	RAH (Å)

OC· · ·HF 3.64 −0.0280 2.06 0.0078
CO· · ·HF 1.83 −0.0028 2.07 0.0022

Both species exhibit the expected linear geometry that maximizes the dominant
n→σ∗ interaction. However, these isomers are rather perplexing from a dipole–
dipole viewpoint. The dipole moment of CO is known to be rather small (calculated
µCO = 0.072 D), with relative polarity C−O+.40 While the linear equilibrium struc-
ture(s) may appear to suggest a dipole–dipole complex, robust H-bonds are formed
regardless of which end of the CO dipole moment points toward HF! This isomeric
indifference to dipole directionality shows clearly that classical dipole–dipole in-
teractions have at most a secondary influence on the formation of a hydrogen bond.

The right-hand panels of Fig. 5.3 show the two strong n→σ∗ donor–acceptor
interactions responsible for H-bonding,

nC→σHF
∗ (F—H· · ·:C≡O:) (5.34a)

nO→σHF
∗ (F—H· · ·:O≡C:) (5.34b)

As expected, the nC lone pair on electropositive carbon is a better donor than that on
electronegative oxygen, so the FH· · ·CO isomer is more strongly bound. Table 5.5
summarizes some energetic, structural, and charge properties of these isomers that
clearly demonstrate the stronger intermolecular charge transfer in (5.33a). Thus,
the stronger nC→σHF

∗ interaction in OC · · ·HF is seen to lead to about ten times
higher anionic character on HF, a shorter H-bond length (despite the larger van der
Waals radius of C), and significantly greater lengthening (and weakening) of the
covalent H—F bond than in the CO· · ·HF isomer.

We can also examine isomeric pairs of H-bonded complexes in which the roles
of electron-pair donor and acceptor are reversed, and the mutual dipole orientations
are therefore fundamentally altered. As an example, Fig. 5.4 shows the isomeric
pair of complexes between ammonia and hydrogen fluoride,

H3N· · ·HF (	EB···H = 14.28 kcal mol−1) (5.35a)

HF· · ·HNH2 (	EB···H = 1.05 kcal mol−1) (5.35b)
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Figure 5.4 Isomers of the NH3· · ·HF complex (left) and leading donor–acceptor
interactions (right), with estimated second-order stabilization energies in paren-
theses. (Note that a second nF

′→σHN
∗ stabilization [with orthogonal nF

′ directed
along the H—F axis] competes with that shown in (b) to control the HF· · ·HNH2
geometry.)

which illustrate such donor–acceptor reversal. The right-hand panels of Fig. 5.4
show the respective n→σ∗ interactions that dictate the direction of charge transfer in
each complex. Table 5.6 summarizes energetic, structural, and charge characteristics
of these isomers.

As shown in Table 5.6, the directions of charge flow in the two complexes
are opposite, making HF significantly anionic in the strong H3N· · ·HF isomer

Table 5.6. Similar to Table 5.5, for H3N· · ·HF and HF· · ·H3N isomers
(see Fig. 5.4)

B· · ·HA 	EB···H (kcal mol−1) QHF RB···H (Å) 	RAH (Å)

H3N· · ·HF 14.28 −0.0721 1.67 0.0392
HF· · · HNH2 1.05 +0.0012 2.34 0.0007
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but slightly cationic in the weak HF· · ·HNH2 isomer. The geometrical parameters
also indicate the much stronger effect of delocalization in the H3N· · ·HF isomer,
including the extremely short N· · ·H bond length (∼1.4 Å inside van der Waals
contact) and the significantly elongated covalent HF bond (∼0.04 Å longer than in
isolated HF). These changes are all in accord with the expected greater weighting
of the alternative proton/charge-transferred resonance structure in (5.29a).

On the basis of relative electronegativities (Section 3.2.5), the order of donor
(nA) strengths of group 5–7 AHn hydrides is expected to be

Lewis base: H3N > H2O > HF (5.36a)

whereas the corresponding order of acceptor (σAH
∗) strengths is expected to be

Lewis acid: HF > H2O > H3N (5.36b)

Thus, among possible binary complexes that can be formed from these monomers,
the H3N· · ·HF (best donor, best acceptor) complex is expected to be strongest,
whereas the “inverted” HF· · ·HNH2 (worst donor, worst acceptor) complex should
be weakest. These extreme differences in donor–acceptor strength are consistent
with the wide disparity in H-bond energies (5.35a) and (5.35b).

The examples cited above are only two of the many possible cases of H-bond
isomerization. Because of the low kinetic barriers separating these species, equi-
libration of H-bonded isomer populations to limiting thermodynamic values is
generally expected to be much faster than for covalent isomers. Methods of quan-
tum statistical thermodynamics can be used to calculate partition functions and
equilibrium population distributions for H-bonded isomers,41 just as in the parallel
case for covalent isomers and conformers.

Hydrogen-bonding to water

Hydrogen bonds to water are of special importance because of their pervasive role
in aqueous solution phenomena. Some general trends in H-bonding to water can
be illustrated by the series of binary H-bonded complexes

H2O· · ·HA, A = F, OH, NH2, CH3 (5.37)

involving first-row hydride molecules. Figure 5.5 displays optimized structures
and the leading n→σ∗ interaction for each complex, and Table 5.7 compares the
energetics, geometries, and charge distributions of these species.

The H-bonded species in Fig. 5.5 exhibit smooth variations of H-bond length
and strength with respect to position in the periodic table, in a manner consistent
with the expected ordering (5.36b) of Lewis-acid strengths. In each case the inter-
molecular interaction is dominated by the nO→σAH

∗ donor–acceptor stabilization
shown in the right-hand panel. Energetic, geometrical, and vibrational properties of
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Figure 5.5 Optimized structures (left) and leading n→σ∗ donor–acceptor interac-
tions (right) for H2O complexes (5.37).
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Table 5.7. Hydrogen-bond energies 	EO···H, bond lengths RO···H and RAH,
covalent-bond stretching 	RAH, and frequency change 	νAH for H2O· · ·HA

complexes

H2O· · ·HA 	EO···H (kcal mol−1) RO···H (Å) RAH (Å) 	RAH (Å) 	νAH (cm−1)

H2O· · ·HF 10.10 1.704 0.942 0.0194 −426
H2O· · ·HOH 5.83 1.934 0.970 0.0078 −162
H2O· · ·HNH2 2.66 2.212 1.018 0.0034 −48
H2O· · ·HCH3 0.41 2.586 1.091 −0.0001 +31

the complexes are all found to vary in a smooth and physically reasonable manner
with the strength of this interaction, as shown in Fig. 5.6. Thus, the increase in n–σ∗

interaction strength (and associated charge transfer) leads in the manner predicted
by (5.30b)–(5.30e) to increased H-bond strength (Fig. 5.6(a)), decreased H-bond

Figure 5.6 Correlated variations of energetic (	EO···H), geometrical (RO···H
and 	RAH), and vibrational (	νAH) properties of H-bonded water complexes
(H2O· · ·HA, A = F [crosses], OH [circles], NH2 [triangles], and CH3 [squares]
with respect to donor–acceptor interaction 	Enσ∗ (2) (abscissa, 1 kcal mol−1 tick
marks). Vertical tick marks in each panel correspond to the quantity being plotted:
(a) 	EO···H, 1 kcal mol−1; (b) RO···H, 0.1 Å; (c) 	RAH, 0.001 Å; and (d) 	νAH,
100 cm−1. (See Table 5.7 for numerical values.)
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length (Fig. 5.6(b)), lengthened A—H covalent bond (Fig. 5.6(c)), and red-shifted
νAH stretching frequency (Fig. 5.6(d)). Dependences such as shown in Fig. 5.6 are
typical of those found in a wide variety of H-bonded complexes,42 demonstrating
that the characteristic features of H-bonding arise from, and are strongly coupled
to, the single strong 〈n|F̂ |σ∗〉 matrix element.

It is noteworthy that CH4 falls in line with the trends shown by other H2O· · ·HnA
complexes. The formation of this complex is doubly perplexing from an electro-
static viewpoint, because CH4 lacks an overall dipole moment (or other large mul-
tipole moments) as well as any significant bond dipole43 for electrostatic bonding.
While the H-bonding to methane is quite weak (∼0.4 kcal mol−1), CH4 possesses
antibonding σCH

∗ orbitals that allow it to act as a (weak) Lewis acid. From the
donor–acceptor viewpoint, therefore, the formation of a weak CH· · ·O hydrogen
bond is to be expected.

An exceptional feature of CH· · ·O hydrogen bonding, contrary to expectations
(5.30b) and (5.30c), is evident in the 	RAH and 	νAH values of Table 5.7. Whereas
H-bonding typically leads to lengthening and vibrational red-shifting of the covalent
bond (due to increased occupancy of σ∗), the H-bonded CH bond of H2O· · ·HCH3

is instead slightly shortened and blue-shifted with respect to isolated CH4. The
bond-length difference is even more apparent within the complex, where the
H-bonded RCH(b) (1.0908 Å) is shortened by 0.0008 Å relative to the three free
RCH(f) values. Certain spectroscopic tests that are sometimes considered to be di-
agnostic signatures of H-bonding will therefore fail for CH · · ·O bonds.

The H-bond-induced asymmetries in C—H bonds are also apparent in the forms
of the NBOs:

σCH(b) = 0.783(sp2.87)C + 0.622(s)H (5.38a)

σCH(f) = 0.774(sp3.04)C + 0.634(s)H (5.38b)

While the σCH(b)
∗ antibond has the expected higher occupancy (0.0022e, versus

0.0004e for σCH(f)
∗), other induced changes in the form of the σCH and σCH

∗ NBOs
apparently act in such a way as to shorten the CH(b) bond. The physical origin of
this shortening can be explained as follows.

The relative apolarity of C—H bonds makes the degrees of overlap of an in-
coming nO donor orbital with σCH

∗ and σCH NBOs rather comparable, so nO–σCH
∗

attraction tends to be offset by comparable nO–σCH steric repulsion, with little net
bonding. However, by increasing the s character of the C—H(b) hybrid (to sp2.87,
versus sp3.04 for free CH), the electronegativity of carbon is effectively increased,
and the σCH(b) NBO repolarizes to expose σCH(b)

∗ more to attack by nO. However,
the slight increase of s character (in accord with Bent’s rule) is accompanied by
a slight reduction in size of the carbon hybrid (because valence s orbitals have
smaller average radius than p orbitals), so that the C—H(b) bond contracts slightly
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Table 5.8. The NBO descriptors of H-bonded water complexes H2O· · ·HA,
showing the net intermolecular charge transfer from Lewis base to Lewis

acid (QCT), change in covalent-bond polarity (	iAH), and (P)NBO overlaps
(Snσ∗, Snσ) of nO with antibond σAH

∗ and σAH orbitals

H2O· · ·HA QCT 	iAH Snσ∗ Snσ

H2O · · · HF 0.0339 +0.0406 0.3564 0.1833
H2O · · · HOH 0.0138 +0.0356 0.2516 0.1486
H2O · · · HNH2 0.0034 +0.0274 0.1474 0.1266
H2O · · · HCH3 0.0020 +0.0242 0.0849 0.0722

as it repolarizes. The repolarization-induced contraction apparently overcomes the
effect of increased antibond occupancy, leading to a slight net shortening σCH(b)

even as the occupancy of σCH(b)
∗ increases.44

Table 5.8 summarizes the NBO descriptors of the net charge transfer from
Lewis base to Lewis acid (QCT), change in covalent-bond polarization (	iAH),
and (P)NBO overlap of nO with bond (Snσ) and antibond (Snσ∗) orbitals of the
Lewis acid. The entries in Table 5.8 show the unfavorable diminution of |Snσ∗/Snσ|
and reduced charge transfer as the Lewis acid changes from polar HF to apo-
lar CH4. These NBO descriptors can also be closely correlated with quantities in
Table 5.7, showing their mutual dependence on the strength of n–σ∗ donor–acceptor
interaction.

5.2.2 Charge-assisted (±CAHB) H-bonds

The strength of the nB–σAH
∗ donor–acceptor interaction is expected to be greatly

enhanced if the Lewis base is an anion and/or the Lewis acid is a cation. Anionic
character of B increases the diffuseness (average orbital radius) and raises the energy
of the nB donor orbital, while cationic character of AH increases the polarity and
lowers the energy of the σAH

∗ acceptor orbital. All these effects act to strengthen
	Enσ∗ (2) stabilization. Thus, H-bonding is expected to be strongly “assisted” when
the donor or acceptor monomers acquire net charge. Gilli et al.45 have labeled
such positively or negatively charge-assisted H-bonds as being of “±CAHB” type,
and have identified many experimental examples of the distinctive structures and
chemistry of charged hydrogen bonds.

Anion-assisted H-bonds: hydroxide complexes

As simple examples of anion-assisted H-bonds, let us consider the complexes
formed between the hydroxide ion and the series of first-row Lewis acid accep-
tors considered in the previous subsection,

HO− · · · HA, A = F, OH, NH2, CH3 (5.39)
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Figure 5.7 Optimized structures (left) and leading n→σ∗ donor–acceptor inter-
actions (right) for HO− · · · HA complexes (A = OH, NH2, CH3). (Note that the
hypothetical complex “HO− · · · HF” is not shown, because this species undergoes
proton transfer to form HOH· · · F−.)

In the case of A = F, there is apparently no local minimum corresponding to the
HO− · · · HF isomer, and instead the proton transfers to form HOH· · · F− as the
only stable equilibrium species. However, in the case of the weaker HA Lewis
acids, stable HO− · · · HA structures are found. Figure 5.7 displays optimized struc-
tures of these complexes and the dominant n–σ∗ interaction in each case, while
Table 5.9 summarizes energetic and structural properties of these complexes for
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Table 5.9. Similar to Table 5.7, for HO− · · · HA complexes (see Fig. 5.7)

HO− · · · HA 	EO···H (kcal mol−1) RO···H (Å) RAH (Å) 	RAH (Å) 	νAH (cm−1)

(HO− · · · HF)a (52.18)b (1.058) (1.401) — —
HO− · · · HOH 29.39 1.363 1.117 0.1547 −2201
HO− · · · HNH2 17.09 1.685 1.073 0.0585 −969
HO− · · · HCH3 6.48 1.979 1.112 0.0211 −245

a The actual species corresponds to proton-transferred HOH· · · F−.
b Binding energy with respect to OH− + HF monomers; the corresponding energy with

respect to H2O + F− is 28.71 kcal mol−1.

direct comparison with the corresponding neutral complexes in Table 5.7. The trends
in Table 5.9 are all consistent with the expected order (5.36a) of Lewis-acid strength,
and strikingly inconsistent with the ordering of monomer dipole moments (5.32).

The structures of anionic HO− · · · HA complexes are conspicuously similar to
those of the isoelectronic HF· · · HA complexes (cf., e.g., Figs. 5.4(b) and 5.7(b)),
but the H-bonding is evidently much stronger in the anionic case. Judging from
comparison of net binding energies, covalent-bond stretching 	RAH, second-order
stabilization 	Enσ∗ (2), charge transfer, or other measures of intermolecular n–σ∗

interaction strength, one can say that the anionic H-bonds are very roughly an order
of magnitude stronger than those of corresponding neutral complexes. Thus, if we
compare neutral H2O · · · HNH2 with anionic HO− · · · HNH2, we can see that the
H-bond energy increases by a factor of 6.4 (from 2.66 to 17.09 kcal mol−1), A—H
elongation by a factor of 17.2 (from 0.0034 to 0.0585 Å), and 	Enσ∗ (2) stabilization
by a factor of 10.1 (from 3.08 to 31.07 kcal mol−1). Even the weak Lewis acid CH4

makes an anionic HO− · · · HCH3 H-bond with roughly the same strength as that of
the H2O · · · H2O complex (6.48 versus 5.83 kcal mol−1).

While strong ion–dipole forces are present in these species, it is apparent from
the structures in Fig. 5.7 that valence-type forces must still be playing a leading
role. This can again be confirmed by deleting all intermolecular NBO interactions
and reoptimizing the CT-deleted structures, as shown in Fig. 5.8. The CT-deleted
structures conform well to the expectations of the classical ion–dipole picture,
but they are far from the actual H-bonded structures. As shown in Table 5.10,
the binding energies of CT-deleted ion–dipole complexes are less than 20% of
the true H-bond energies, and the intermolecular distances are far (∼1 Å) beyond
those of the actual H-bonded complexes. The actual anionic H-bonded species
involve increasing violations of the London long-range assumption (5.20) (or even
chemical-bond rearrangements in the case of HO− · · · HF), so empirical models or
rationalizations based on classical electrostatics and induction become increasingly
unrealistic.
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Figure 5.8 Optimized structures of CT-deleted “ion–dipole complexes” HO− · · ·
HA (A = F, OH, NH2, CH3).

The trends in charge transfer, increase in polarity of AH, and n–σ versus n–σ∗

(P)NBO overlaps are all rather parallel in HO− · · · HA and H2O · · · HA complexes,
except for the proportionally greater strength of the anionic H-bonds. Table 5.11
summarizes these NBO descriptors for anionic HO− · · · HA complexes in a form
that allows direct comparison with Table 5.8. Note that the overlap integrals Snσ∗

and Snσ increase to ever larger values (>0.5!), which is grossly inconsistent with
classical models based on neglect of exchange-type interactions.

Table 5.10. Similar to Table 5.4, for CT-deleted hydroxide complexes
HO− · · · HA (A = F, OH, NH2, CH3)

Species 	Ecomplex (kcal mol−1) RO···H (Å) RO···A (Å) RO···A(vdW) (Å)

HO− · · · HF 12.5 2.32 3.24 2.73
HO− · · · HOH 5.5 2.68 3.19 2.92
HO− · · · HNH2 1.6 6.76 7.08 3.09
HO− · · · HCH3 0.2 2.71 3.81 3.08
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Table 5.11. Similar to Table 5.8, for hydroxide-ion complexes

OH− · · · HA QCT 	iAH Snσ∗ Snσ

OH− · · · HOH 0.1886 +0.1786 0.5959 0.3416
OH− · · · HNH2 0.0859 +0.1422 0.4375 0.2884
OH− · · · HCH3 0.0400 +0.1350 0.2987 0.2064

All the above comparisons lead to the common conclusion that the anion-assisted
H-bonds involve n–σ∗ interactions that are different in quantity, but not in quality,
from those of corresponding neutral H-bonds. Classical electrostatic models (e.g.,
of ion–dipole type) are even less able to treat anionic H-bonds than neutral H-bonds,
because the former tend to be closer to the chemical limit of full charge transfer
to the isomeric proton-transferred species. Neutral and anionic-assisted H-bonds
therefore appear to represent different (overlapping) ranges from a continuum of
H-bond strengths, all sharing common n–σ∗ characteristics. The donor–acceptor
description applies consistently from the weakest neutral H-bonded species, in
which “H-bond” and “covalent bond” are clearly distinct (e.g., H2O · · · H4C, in
which RO···H − RCH � 1.6 Å) to the strong anion-assisted limit, where the dif-
ference between H-bonds and covalent bonds becomes increasingly blurred (e.g.,
HO− · · · H2O, in which RO···H − ROH � 0.2 Å). Thus, no sharp distinction should
be drawn between the weakest H-bonds and those for which proton transfer is
complete, except with reference to the strength of the n–σ∗ interactions (or the
relative weightings of resonance structures in (5.29a)) that underlie the full range
of H-bonding phenomena.

Example 5.5

Problem: Use the data in Tables 5.7 and 5.8 and Figs. 5.5 and 5.7 to estimate the relative
importance of donor–acceptor interactions in neutral versus ionic H-bond complexes.

Solution: If we compare the ratio of estimated donor–acceptor interaction (	Enσ∗ (2)) with
the full H-bond energy (	Efull) for ionic HO− · · · HA versus neutral H2O· · · HA complexes,
we find the following values:

HA = H2O: 	Enσ∗ (2)/	Efull = 98.7/29.4 = 3.4 (ionic) versus 7.5/5.8 = 1.3 (neutral)

HA = H3N: 	Enσ∗ (2)/	Efull = 31.1/17.1 = 1.8 (ionic) versus 3.1/2.7 = 1.1 (neutral)

HA = H4C: 	Enσ∗ (2)/	Efull = 10.9/6.5 = 1.7 (ionic) versus 0.9/0.4 = 2.3 (neutral)

Thus, with the exception of the weak neutral methane complex, it appears that the ratio
	Enσ∗ (2)/	Efull increases with H-bond strength, and the relative importance of 	Enσ∗ (2)

tends to be higher in ionic than in neutral complexes.
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Figure 5.9 Structures (left) and leading nB→σNH
∗ donor–acceptor interactions

(right) for NH4
+ · · · B complexes (B = FH, OH2, NH3).

Cation-assisted H-bonds: ammonium complexes

The effect of cationic charge on the Lewis acid can be similarly illustrated for the
case of NH4

+ H-bonded to various first-row hydride Lewis bases,

NH4
+ · · · B, B = FH, OH2, NH3 (5.40)

Figure 5.9 displays the equilibrium structures assumed by these cation-assisted
H-bond complexes, and Table 5.12 summarizes energetic and structural properties
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Table 5.12. Similar to Table 5.7, for NH4
+ · · · B complexes (see Fig. 5.9)

NH4
+ · · · B 	EH···B (kcal mol−1) RH···B (Å) RNH (Å) 	RNH (Å) 	νNH (cm−1)

NH4
+ · · · FH 12.90 1.766 1.035 0.0087 −158

NH4
+ · · · OH2 22.01 1.637 1.064 0.0373 −642

NH4
+ · · · NH3 28.23 1.550 1.143 0.1168 −1748

of the complexes for comparison with those of corresponding neutral (Table 5.7)
and anionic complexes (Table 5.9). Table 5.13 similarly displays various NBO
descriptors (charge transfer, change in polarity, and n–σ and n–σ∗ overlaps) of the
ammonium complexes that can be directly compared with those of corresponding
neutral (Table 5.8) and anionic (Table 5.11) complexes.

As expected, the properties of the ammonium complexes vary smoothly with the
relative strength (5.36a) of the Lewis base (rather than, e.g., with dipole-moment or-
dering). While the order of enhancement of magnitude of H-bond strength with net
charge is similar to that in the anion-assisted case, the patterns of this enhancement
are somewhat different in the cation-assisted case. In particular, the hydride bond
of the ammonium cation is more strongly polarized than that of the neutral NH3

monomer, so that the ratio (Snσ∗/Snσ)2 is more favorable for weak as well as strong
H-bonds. As a result, the net H-bond energy for given 	Enσ∗ (2) donor–acceptor
stabilization is generally higher for cationic than for anionic H-bonds. Because of
the higher bond polarity that is already present in the monomer, the H-bond-induced
increase 	iNH is somewhat weaker in the ammonium complexes. The shorter N—H
bond of ammonium also allows somewhat closer approach and greater charge trans-
fer in the cation-assisted case. In general, however, the overall picture is that adding
net positive charge to the Lewis acid or negative charge to the Lewis base will both
powerfully strengthen the n–σ∗ H-bonding interaction.

To facilitate comparison of ±CAHB complexes, we tabulate some properties
of the N—H· · ·O hydrogen bond of the cation-assisted NH4

+· · ·OH2 complex
(Fig. 5.9(b)) for direct comparison with those of analogous neutral and

Table 5.13. Similar to Table 5.8, for ammonium-ion
complexes

NH4
+ · · · B QCT 	iNH Snσ∗ Snσ

NH4
+ · · · FH 0.0198 0.0304 0.2431 0.1270

NH4
+ · · · OH2 0.0644 0.0650 0.4449 0.2457

NH4
+ · · · NH3 0.1691 0.1140 0.5939 0.3399
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Table 5.14. Comparisons of N—H· · ·O hydrogen bonds in cation-assisted,
neutral, and anion-assisted complexes

	EH···O RH···O RNH 	RNH 	Enσ∗ (2)

Complex Type (kcal mol−1) (Å) (Å) (Å) QCT (kcal mol−1)

NH4
+· · ·OH2 +CAHB 22.01 1.637 1.064 0.0373 0.1691 30.09

NH3· · ·OH2 Neutral 2.66 2.212 1.018 0.0034 0.0034 3.08
NH3· · ·OH− −CAHB 17.09 1.685 1.073 0.0585 0.0589 31.07

anion-assisted NH3 complexes (Figs. 5.5(c) and 5.7(b)) in Table 5.14. These com-
parisons may be taken as representative of a wide variety of ±CAHB complexes.

Symmetric no-barrier H-bonds

The bifluoride ion (F− · · · HF) and H5O2
+ hydronium ion (H3O+· · ·OH2) both merit

special attention as examples of strong, symmetric ionic H-bonds. The bifluoride ion
played an important role in historical recognition of the H-bonding phenomenon46

and is widely recognized as the strongest known example (>40 kcal mol−1) of
H-bonding. The H5O2

+ ion appears to be an important species in aqueous acid
solutions, and hence (together with hydrated complexes of OH−) plays a leading
role in aqueous acid–base chemistry.

Figure 5.10 displays optimized structures of FHF− and H5O2
+ (left), together

with the leading n–σ∗ interaction from a single localized Lewis-structure represen-
tation (i.e., F−· · ·HF or H2OH+· · ·OH2). As can be seen in Fig. 5.10, each species
adopts a symmetric structure in which any possible distinction between the “H-
bond” and the “covalent bond” is obliterated, corresponding to equal weighting of
proton/charge-transferred resonance structures

F−· · ·H—F ←→ F—H· · ·F− (5.41a)

H2OH+· · ·OH2 ←→ H2O· · ·HOH2
+ (5.41b)

Each n→σ∗ donor–acceptor interaction pictured in Fig. 5.10 is therefore completely
equivalent to the interaction for the alternative Lewis structure. This resonance
description is in perfect correspondence with the Pimentel–Rundle three-center
MO picture of hypervalent bonding (Section 3.4). The H-bonded complexes HF2

−

and H5O2
+ are also obvious analogs of the hypervalent transition-metal complexes

discussed in Section 4.6.
Because FHF− epitomizes the limit of strong hydrogen bonding in a particularly

simple geometrical form, let us examine some further aspects of its potential-energy
surface. The triatomic species can generally be described in terms of three variables,
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Figure 5.10 Optimized structures (left) and leading n→σ∗ interactions (right) of
symmetric (a) F−· · ·HF and (b) H2OH+· · ·OH2 ions. The “H-bond” distances are
(a) 1.147 Å and (b) 1.198 Å, only ∼0.2 Å beyond normal covalent distances in the
isolated monomers.

the covalent bond rHF (shorter), the H-bond RF ··· H (longer), and the bending angle
θFHF. Adiabatic one-dimensional potential-energy profiles can be obtained for each
coordinate by optimizing the two remaining coordinates along the adiabatic path.

Figure 5.11 depicts the conventional H-bonding potential-energy curve for ap-
proach of F− to HF (solid curve, circles). This figure also displays the nF→σHF

∗

attractive donor–acceptor interaction 	En→σ∗ (2) (dashed curve) and the steric re-
pulsion energy (Section 1.7; dotted curve) at each RF ··· H. As seen in Fig. 5.11,
there is a strong attractive interaction that extends far beyond the distance of appre-
ciable steric or donor–acceptor interaction (>2.5 Å). This evidently corresponds
to the expected ion–dipole interaction in the long-range limit of classical electro-
statics (Section 5.1.3).47 However, the “real” H-bond may be considered to corre-
spond to the incremental binding that begins with the onset of strong valence-type
steric and donor–acceptor interactions near RF ··· H � 2.5 Å, i.e., the contributions
that distinguish FHF− from ordinary ion–dipole complexes. Against the expo-
nentially growing steric repulsions, the attractive donor–acceptor interactions are
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Figure 5.11 The adiabatic potential-energy curve for F− · · · HF hydrogen-bond
formation (solid line, circles), with the steric repulsion energy (dotted line) and es-
timated nF−σHF

∗ donor–acceptor attraction (dashed line) included for comparison.

able to bring the closed-shell species into remarkably short equilibrium separation
(RF ··· H � 1.15 Å), far inside that expected for a classical ion–dipole complex.

Figure 5.12 depicts the corresponding adiabatic one-dimensional potential for
the covalent rHF proton-transfer coordinate, showing the barrierless switch-over at
equilibrium between FH · · · F− and F− · · · HF bond patterns. The potential well is
seen to be extremely flat in the neighborhood of equilibrium, corresponding to the
extremely low IR frequency of the proton-transfer mode (1299 cm−1, red-shifted

Figure 5.12 The adiabatic proton-transfer potential for rHF displacements from
equilibrium toward one or the other F in F · · · H · · · F (the tick-mark separation is
0.1 Å).
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by 2800 cm−1 from νHF in isolated HF). The calculated proton chemical shielding
at equilibrium, 15.93 ppm, also corresponds to strong downfield displacement (by
more than 14 ppm) from the corresponding shielding in isolated HF. This no-barrier
limit of H-bonding therefore leads to a highly unusual regime of proton-transfer
dynamics and shielding with many interesting aspects that are beyond the scope of
the present book.48

Finally, Fig. 5.13 shows the adiabatic bending potential for nonlinear deforma-
tions. The angular dependence appears similar to a cosine-like (or dipole–dipole)
behavior near equilibrium, but departs conspicuously from this mathematical form
at larger deformation angles. The potential shows the strong propensity for lin-
ear F · · · H · · · F H-bonding arrangements consistent with maximization of n–σ∗

donor–acceptor overlap.
It is evident that charged no-barrier H-bonds such as those in HF2

− and H5O2
+

provide an extremely facile pathway for proton-exchange reactions and accompany-
ing charge “switching” (formal electron transfer) between protonated species. Such
processes are essential features of aqueous acid–base chemistry, electrochemistry,
and many important biological functions. The species (5.41a) and (5.41b) vividly il-
lustrate that H-bonding is essentially a partial proton/charge-transfer reaction whose
limiting form indeed corresponds to symmetric proton/charge sharing between the
competing Lewis bases.

The resonance description of charged and uncharged H-bonds

To gain a more comprehensive overview of the full range of H-bond strengths, let
us compare all 19 neutral and charged B· · ·HA complexes considered previously in

Figure 5.13 The adiabatic bending potential for the F−· · ·HF ion.
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Table 5.15. A comparison of neutral and charged H-bond complexes B· · ·HA
from Sections 5.2.1 and 5.2.2 (ordered by H-bond strength), showing net

H-bond energy 	EHB, leading n→σ∗ stabilization 	En→σ∗ (2), net charge
transfer QB→AH, and NRT bond orders bA—H and bB···H

Lewis base/acid Energy (kcal mol−1) Bond orders

No. B HA Charge 	EHB 	En→σ∗ (2) QB→AH (e) bA—H bB···H

1. H2O HCH3 0 0.4 0.9 0.0020 0.999 0.001
2. HF HNH2 0 1.1 0.6 0.0012 1.000 0.000
3. H2CO HNH2 0 1.4 1.2 0.0026 0.921 0.071
4. CO HF 0 1.8 1.5 0.0280 0.988 0.009
5. H2O HNH2 0 2.7 3.1 0.0034 0.990 0.008
6. OC HF 0 3.6 10.4 0.0280 0.941 0.059
7. HF HF 0 5.1 6.7 0.0124 0.967 0.026
8. H2O HOH 0 5.8 7.5 0.0138 0.969 0.030
9. HO− HCH3 − 6.5 10.9 0.0400 0.957 0.043

10. H3N HOH 0 7.3 12.6 0.0269 0.951 0.049
11. H2O HF 0 10.1 18.0 0.0339 0.902 0.074
12. HF HNH3

+ + 12.9 8.9 0.0198 0.957 0.034
13. H3N HF 0 14.3 34.9 0.0721 0.826 0.164
14. OH− HNH2 − 17.1 31.1 0.0859 0.856 0.143
15. H2O HNH3

+ + 22.0 30.1 0.0644 0.868 0.117
16. H3N HNH3

+ + 28.2 75.6 0.1691 0.685 0.306
17. HO− HOH − 29.4 63.4 0.1886 0.634 0.365
18. H2O HOH2

+ + 36.7 168.4 0.2365 0.500 0.500
19. F− HF − 46.5 166.2 0.2336 0.500 0.500

this chapter. In addition to the NBO descriptors presented previously, it is useful to
compare the relative NRT weightings wcov and wion of covalent and ionic resonance
contributions (5.29a). Equivalently, we can examine the formal covalent (bA—H)
and H-bonded (bB···H) NRT bond orders, which are closely related to covalent/ionic
resonance weights through the approximate expressions

bA—H � wcov

wcov + wion
(5.42a)

bB···H � wion

wcov + wion
(5.42b)

Overall trends in covalent/ionic resonance will be compared with net charge transfer
and other descriptors previously correlated with H-bond strength.

Table 5.15 compares the neutral and charged H-bonded complexes of Sections
5.2.1 and 5.2.2, ordered by H-bond strength from weakest (H2O· · ·H4C) to strongest
(F· · ·H· · ·F−). For each B· · ·AH complex, the table shows the total charge, the
energy of the H-bond (	EHB) and the leading n→σ∗ stabilization (	En→σ∗ (2)),
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the net charge transfer from Lewis base to Lewis acid (QB→AH), and the calculated
NRT bond orders for covalent (bA—H) and H-bond (bB···H) linkages.

It is clear from Table 5.15 that neutral and ionic H-bonds fall on a continuum of
H-bond strengths, ranging from <1 kcal mol−1 to >40 kcal mol−1. While it is true
that the weakest H-bonded complexes 1–8 are all neutral, and the strongest com-
plexes 14–19 are all charged, the middle group of complexes 9–13 includes a mix
of charged and uncharged H-bonds of comparable strengths (�6–15 kcal mol−1).
Other properties of these H-bonded complexes also vary rather uniformly over
a wide range of values, with broadly overlapping ranges for neutral and ionic
complexes. From this viewpoint there is neither any sharp distinction to be drawn
between neutral and ±CAHB H-bonds, nor any apparent discontinuity in the mech-
anism of H-bonding up to the strongest known cases. Because substantial charge
transfer must be present in the bifluoride ion, the overall continuity of properties in
Table 5.15 strongly suggests the role of charge transfer throughout this series.

The overall increase in H-bond energies (by about two orders of magnitude)
is mirrored by increases of comparable magnitude in the charge transfer (from
0.2% to >20% of an electron), n–σ∗ stabilization (from 1 to >100 kcal mol−1),
and bB···H bond order (from 0.001 to 0.500). The general trends of the data in Table
5.15 can be more clearly displayed in graphical form. Figure 5.14 shows how the
energies 	EHB and 	En→σ∗ (2) vary in a highly correlated manner with QB→AH.
The increasing gap between 	En→σ∗ (2) and net 	EHB can be attributed to the ever

Figure 5.14 Correlation of net H-bond energy (	EHB, squares) and principal
n–σ∗ stabilization energy (	En→σ∗ (2), circles) with intermolecular charge transfer
(QCT); cf. Table 5.15. (Approximate trend-lines are shown for each quantity to aid
visualization.)
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Figure 5.15 The correlation of NRT bond orders bAH of covalent bonds (circles)
and H-bonds (plus signs) with intermolecular charge transfer (QCT); cf. Table 5.15.
(Approximate trend-lines are shown to aid visualization.)

increasing steric repulsion that must be overcome in the shortest, strongest forms
of H-bonding.

Figure 5.15 shows the corresponding correlation of QCT with H-bond and
covalent-bond orders. The progressive strengthening of covalent/ionic resonance
(and the associated shifts in bond lengths and frequencies) can be seen to be directly
proportional to the increase in net charge transfer, as the covalent/ionic-resonance
picture suggests. Intermolecular charge transfer therefore appears as a convenient
single order parameter that underlies the strong correlations among numerous prop-
erties of H-bonded complexes.

In summary, the covalent/ionic-resonance picture can be used to describe the
entire range of neutral and charged H-bonding phenomena. The NRT resonance
weights (wcov and wion) and bond orders (bA—H and bB···H) are correlated in the
expected manner with bond lengths, IR frequencies, intermolecular charge transfer,
and other properties.

Dihydrogen bonds

A novel form of Y · · ·HX hydrogen bonding49 results when the Lewis base Y
is itself a hydride ion (H−). Because the electron affinity of a hydrogen atom is
extremely weak (21 kcal mol−1), the H− ion is among the most weakly bound and
diffuse anionic species known, and hence a powerful Lewis base. In this case,
the H−· · ·HX complex can be referred to as a “dihydrogen bond”50 to denote the
unusual H-bonding between hydrogen atoms. A water complex of this type was
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Figure 5.16 The optimized structure and leading n→σ∗ donor–acceptor interac-
tion in H−· · ·HOH. The geometrical parameters are RH···H = 1.446 Å, rOH(b) =
1.031 Å, rOH(f) = 0.963 Å, θH···HO = 171.8◦, and θHOH = 100.6◦.

first characterized by Lineberger and coworkers,51 and can be formulated as

H−· · ·HOH (5.43a)

Ionic or semi-ionic Y—H bonds of sufficient hydridic character (Y+—H−) can also
be expected to make dihydrogen bonds of the form

Y—H· · ·H—X (5.43b)

in which the Lewis-base donor orbital is formally a two-center σYH bond (rather than
the usual one-center nY lone pair). Complexes of the form (5.43b) have now become
rather widely recognized.52 In the present section we examine some prototype
examples of anionic dihydrogen bonding involving both one-center (nH) and two-
center (σYH) hydridic donor orbitals.

Let us first consider the aqueous H3O− species (5.43a), which is found to be
bound by 19.86 kcal mol−1 (relative to H− + H2O). Figure 5.16 shows the opti-
mized structure of this species together with the leading nH→σAH∗ donor–acceptor
interaction. As seen in Fig. 5.16, the hydridic s-type lone pair nH has an extremely
large radius and complete lack of directionality, leading to the strong interaction
(	En→σ∗ (2) = −51.48 kcal mol−1) with the proximal σOH

∗ of the water molecule.
Because the electron affinity of H− is so weak and the energy of the donor orbital
so high (εn = +0.055 45 a.u.), the charge transfer to the Lewis base is unusually
large (QCT = 0.2172) for the given degree of n–σ∗ overlap. Thus, the H−· · ·H—O
dihydrogen bond exhibits certain anomalies because of the unusual properties of
the s-type nH donor orbital, but it conforms in general respects to the n–σ∗ picture.
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Figure 5.17 The optimized structure and leading σ→σ∗ donor–acceptor in-
teraction in H3BH−· · ·HOH. The geometrical parameters are RH···H = 1.704 Å
rOH(b) = 0.981 Å, rOH(f) = 0.962 Å, rBH(b) = 1.244 Å, rBH(f) = 1.230 Å, θH···HO =
174.6◦, θBH···H = 107.4◦, and θHOH = 100.6◦.

As a second example of dihydrogen bonding, let us consider the borohydride
anion (BH4

−) in complexation with water (as analyzed by Jackson53),

H3BH−· · ·HOH (5.44)

In this case the formal donor orbital is the two-center σBH, so the complex is formally
of type (5.43b). The optimized structure of BH4

−· · ·HOH is shown in Fig. 5.17,
together with the dominant σBH→σOH∗ donor–acceptor interaction.

As seen in Fig. 5.17, the σBH donor makes a sideways (rather than end-on)
approach to the acceptor σOH

∗ orbital, approaching the T-shaped geometry that is
common in agostic interactions (Sections 3.6 and 4.7) involving a σ-bond donor.
However, the greater orbital amplitude of σBH is at the hydride end (rather than
the midpoint of the bond), so the resulting geometry is more nearly L-shaped. As
usual, the dihydrogen bond is nearly in linear alignment (θH···HO = 174.6◦) with
the coordinated O—H bond, which is lengthened and weakened in the expected
manner. The coordinated B—H donor bond of the Lewis base is also somewhat
lengthened compared with free B—H bonds. As expected, the donor and acceptor
NBOs have opposite polarities,

σBH(b) = 0.67(sp3.17)B + 0.75(s)H (5.45a)

σOH(b) = 0.87(sp2.73)O + 0.49(s)H (5.45b)

and the natural charges of the donor and acceptor hydrogen-bridge atoms reflect
the strongly zwitterionic (BH−· · ·H+O) character of the charge distribution

QH(BH) = −0.1025, QH(OH) = +0.5053 (5.46)
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Figure 5.18 Weak σOH→σBH
∗ back-transfer involving (left) H-bonded and (right)

free B—H antibonds of the borohydride ion. Note that the nodal plane of the σBH(b)
∗

precludes significant net overlap with σOH in the L-shaped geometry.

The net charge transfer from Lewis base to Lewis acid is QCT = 0.0208e, about an
order of magnitude weaker than the corresponding charge transfer in H−· · ·HOH.
Other measures of H-bond strength are proportionately weaker in the σ−σ∗ com-
plex (5.44) than in the n–σ∗ complex (5.43a). As in other anionic complexes, there
is a large background attraction that can be attributed to classical ion–dipole forces.

It is interesting to note the slight back-transfer of σOH→σBH
∗ type from H2O to

BH4
−. Such reciprocal CT interactions might well be expected from the inherent

symmetry of the BH· · ·HO dihydrogen bridge. However, this weak back-transfer
(estimated stabilization 0.44 kcal mol−1) involves not the directly bonded σBH(b)

∗,
but rather the free B—H(f) oriented anti to the dihydrogen bond. Figure 5.18 depicts
both these interactions, showing the unfavorable overlap with the proximal σBH(f)

∗

as well as the somewhat more favorable overlap with the backside lobe of the distal
σBH(f)

∗.

5.2.3 Resonance-assisted H-bonds (RAHBs)

As pointed out by Gilli et al.,54 B · · ·HA hydrogen bonding appears to be sys-
tematically enhanced whenever the individual monomers B and HA exhibit strong
resonance delocalization, leading to what are termed “resonance-assisted” H-bonds
(RAHBs). This interesting effect appears to be of special importance in the biolog-
ical domain, where resonance delocalization is a conspicuous feature of H-bonding
moieties such as the amide groups of proteins, the purine and pyrimidine bases of
DNA, and the histidine and glutamate residues that often play a key role in the
active sites of enzymes. Thus, it appears that the RAHB phenomenon is manifested
by the most fundamental H-bonds of molecular biology.
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Resonance-assisted amide complexes

The RAHB effect may be illustrated by the ubiquitous C=O· · ·H—N hydrogen
bond of protein chemistry. As shown in Section 5.2.2, the simplest non-RAHB
“prototype” for such bonding, the formaldehyde–ammonia complex (5.31c), has
only a feeble H-bond (1.41 kcal mol−1). However, when the carbonyl and amine
moieties are combined in the resonating amide group of, e.g., formamide, with
strong contributions of covalent (I) and ionic (II) resonance structures,

(5.47)

the strength of the resulting amide· · ·amide H-bond is enhanced by more than a
factor of four (to 6.19 kcal mol−1). Figure 5.19 depicts the optimized structure of

Figure 5.19 The optimized structure of the linear formamide dimer and leading
nO→σNH

∗ interactions with distinct σ-type nO
(σ) and in-plane p-type nO

(y) lone
pairs.
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the formamide dimer (H2NCHO)2, together with the two main nO→σHN
∗ donor–

acceptor interactions, for direct comparison with the corresponding non-RAHB
interaction in Fig. 5.1(c). The in-plane p-type oxygen lone pair is labeled nO

(y) to
distinguish it from the σ-type nO

(σ) along the bond axis.
The electronic origin of RAHB enhancement can be readily judged from the

resonance diagrams (5.47). To the extent that the resonance hybrid has significant
weighting of II, the nO donor acquires anionic character and the σNH

∗ acceptor
acquires cationic character. Thus, significant resonance weighting wII implies that
H-bonding will automatically be enhanced through the ±CAHB effect discussed
in the previous section.

However, the coupling between intramolecular resonance (5.47) and the strength
of H-bonding goes beyond a static picture of the resonance hybrid (5.47). Because
±CAHB character strongly promotes the strength of bonding, one can expect that
the resonance weightings (5.47) will be shifted toward higher wII by H-bond for-
mation. Conversely, perturbations of the amide moiety that affect resonance delo-
calization (substituent effects, changes in geometry, formation of another H-bond,
etc.) must also be expected to affect the strength of H-bonding. In other words,
the intermolecular and intramolecular resonance hybrid weightings in (5.29a) and
(5.47) are expected to be coupled in a mutually reinforcing (cooperative) man-
ner. Because each resonance structure in (5.29a) and (5.47) corresponds to distinct
structural, IR, and charge properties, the concept of intra/intermolecular resonance
coupling (i.e., of resonance-assisted H-bonding, or equivalently, H-bond-assisted
resonance shifts) has immediate implications for geometrical, dynamical, and di-
electric changes associated with H-bonding.

Consistently with this picture, the relative NRT weighting of the ionic resonance
structure II is found to be significantly higher in both members of the H-bonded
complex. Such weighting is reflected in increased bCN bond order (from 1.303 to
1.339) and decreased bCO bond order (from 1.744 to 1.703) in the Lewis base.
Consistently with these bond-order shifts, the CO bond is found to be slightly elon-
gated (by 0.006 Å) and the CN bond slightly shortened (by 0.008 Å) relative to the
free monomer, whereas other bonds are much less affected. Although these small
changes in geometry would be difficult to detect directly, the corresponding vibra-
tional red-shift of νCO (∼25 cm−1) is a well-known signature of H-bond formation.

Further synergistic enhancement of amide resonance and H-bonding occurs when
both monomers can participate in two complementary H-bonds, once as a Lewis
base and once as a Lewis acid. Such concerted (cooperative) pairs of H-bonds
occur in the cyclic formamide dimer, as illustrated in Fig. 5.20. In this case the
strength of each H-bond is further enhanced (to 6.61 kcal mol−1, about 4.7 times
that of the “prototype” (5.31c)), the bond orders bCN and bCO are further shifted (to
1.384 and 1.655, respectively), and the bond lengths undergo further shifts in the
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Figure 5.20 Similar to Fig. 5.19, for the cyclic formamide dimer.

direction suggested by increased weighting of II. The H-bond properties also shift
in the manner expected with increased n–σ∗ interaction strength; the H-bond RO···H
shortens from 1.987 to 1.886 Å while the covalent rNH(b) bond lengthens from 1.015
to 1.026 Å.

Table 5.16 summarizes the H-bond energies and NRT bond orders for
C=O · · · H—N hydrogen bonds in a variety of binary formamide complexes, in-
cluding those shown in Figs. 5.19 and 5.20 as well as the “half-RAHB” species
H2NCHO· · ·HNH2 and H2CO· · ·HNHCHO in which only one member of the com-
plex is strongly resonance-stabilized. The species in Table 5.16 all exhibit the clear
trend toward increased O· · ·HN bond strength (with increased bO···H and decreased
bNH) as the N—C=O ←→ N=C—O resonance delocalization increases in either
monomer (with increased bCN and decreased bCO). Thus, the bCO bond orders of
the half-RAHB complexes are decreased to values (1.723 and 1.726) intermediate
between those of isolated formamide (1.744) and the cyclic dimer (1.655), while
the bCN bond orders are correspondingly increased to values (1.320 and 1.322)
intermediate between those for the monomer (1.303) and cyclic dimer (1.384).



5.2 Hydrogen-bonding 631

Table 5.16. A comparison of H-bond energy (	EHB) and NRT bond orders (bAB)
for C=O· · ·H—N hydrogen bonds in binary formamide complexes

Lewis base Lewis acid

Complexa 	EHB (kcal mol−1) bCO bCN bCO bCN bO···H bNH

H2NCHO· · ·H3N 3.81 1.723 1.320 — — 0.005 0.993
H2CO· · ·H2NCHO 4.17 2.058 — 1.726 1.322 0.007 0.987
H2NCHO· · ·H2NCHO 6.19 1.703 1.339 1.716 1.331 0.010 0.983
Cyclic (H2NCHO)2 2(6.61) 1.655 1.384 1.655 1.384 0.012 0.974

a The bond orders of isolated H2NCHO are bCO = 1.744, bCN = 1.303, and bNH = 0.993.

Intramolecular RAHB coupling

As a further illustration of the phenomenon of H-bond resonance coupling let us
consider the intramolecular H-bond of β-hydroxyacrolein (O=CHCH=CHOH),
a prototypical “enolone” (2-en-3-ol-1-one, or enol isomer of β-diketone).55 This
molecule may be envisioned as existing in two distinct isomeric forms, according
to the position of the proton in the O· · ·H—O hydrogen bond:

(5.48)

If the O· · ·H· · ·O bridging were symmetric (as in the C2v transition state between
the inequivalent O· · ·H—O and O—H· · ·O isomers), the two Lewis structures in
(5.48) would contribute equivalently to the resonance hybrid. However, in the ac-
tual equilibrium structures, the proton is in a double-well potential lying closer to
one or the other oxygen, and the resonance structures in (5.48) make inequivalent
contributions to the resonance hybrid in either isomer. Thus, proton transfer in the
O· · ·H—O moiety is expected to be strongly coupled to keto–enol resonance in the
conjugated backbone, providing for strong RAHB enhancement.

The cyclic H-bonded form (5.48) may be compared with the open conformer
(5.49) in which the hydroxyl group is twisted away from the favorable H-bonding
geometry.

(5.49)
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Figure 5.21 Optimized structures of β-hydroxyacrolein in its H-bonded (left) and
“open” (right) conformers.

In this case, resonance delocalization along the conjugated backbond is expected to
be reduced, due to loss of the synergistic RAHB coupling to H-bond formation. The
optimized structures of β-hydroxyacrolein conformers are depicted in Fig. 5.21,
and Table 5.17 compares bond lengths and NRT bond orders of the two conformers.
Despite the conspicuously bent H-bonding geometry in Fig. 5.21(a), the H-bonded
conformer is found to be favored by almost 13 kcal mol−1 (an unusually strong
example of neutral O· · ·H—O bonding).

As shown in Table 5.17, the unusually robust intramolecular H-bond in Fig.
5.21(a) is accompanied by pronounced bond-length and bond-order shifts along
the enolone backbone, which is consistent with the greater weighting of the right-
hand (proton-transferred) resonance structure in (5.48). Thus, the nominal C2O1

“double” bond is elongated by more than 0.02 Å in the H-bonded form (consistently
with the reduction of NRT bond order by 0.06), while the adjacent C2—C3 “single”

Table 5.17. Comparison bond lengths RAB and NRT
bond orders bAB for H-bonded and open forms of

β-hydroxyacrolein (see Fig. 5.21 for atom numberings)

H-bonded Open

A—B RAB (Å) bAB RAB (Å) bAB

O1—C2 1.238 1.932 1.214 1.990
C2—C3 1.439 1.092 1.465 1.044
C3—C4 1.364 1.638 1.347 1.745
C4—O5 1.320 1.297 1.343 1.205
O5—H 0.997 0.961 0.962 0.991
O1· · ·H 1.700 0.022 3.850 0.000
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Figure 5.22 Optimized structures of H-bonded (left) and “open” (right) conformers
of the maleate anion (see Table 5.18).

bond is correspondingly shortened and strengthened, and so on (in alternating fash-
ion) around the enolone backbone. Cursory examination of the pattern of skeletal
geometry reveals the pronounced sensitivity of enolone resonance to H-bond for-
mation, and the conjugative resonance shift evidently underlies the unusually strong
H-bonding in this system.

An even stronger case of intramolecular RAHB coupling is provided by the
maleate ion (HOOCCH=CHCOO−), whose H-bonded and open conformers are
shown in Fig. 5.22. Skeletal bond lengths and bond orders of these conformers
are compared in Table 5.18. As shown in Fig. 5.22, the H-bonded conformer is
favored in this case by more than 26 kcal mol−1, which is indicative of a pow-
erful intramolecular nO→σOH

∗ interaction (estimated second-order stabilization
104 kcal mol−1) that is sufficient to overcome the severe steric repulsion of the
extremely short H· · ·O nonbonded distance (∼1.3 Å).56

In this case, the principal resonance delocalization accompanying H-bond for-
mation involves only the two alternative forms of the terminal carboxylate moiety,

(5.50)

The favored structure (5.50a) evidently places higher anionic character on the
Lewis base O, thus conferring higher O−· · ·H—O (anion-assisted) character. In
effect, a shift of the maleate resonance hybrid toward the localized structure
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Table 5.18. Similar to Table 5.17, for the maleate anion
(see Fig. 5.22 for atom numberings)

H-bonded Open

A—B RAB (Å) bAB RAB (Å) bAB

O1—C2 1.283 1.398 1.243 1.468
C2—O3 1.238 1.618 1.243 1.574
C2—C4 1.521 0.978 1.552 0.952
C4—C5 1.344 1.935 1.349 1.927
C5—C6 1.506 0.996 1.474 1.026
C6—O7 1.228 1.675 1.226 1.736
C6—O8 1.307 1.323 1.344 1.229
O8—H 1.099 0.895 0.969 0.987
O1· · ·H 1.328 0.071 3.676 0.000

(5.50a) concentrates negative charge where it is most effective in promoting strong
nO→σOH

∗ donor–acceptor interaction.
Consistently with this picture, the net charge at O1 in the H-bonded conformer

is appreciably more negative (−0.755 versus −0.736) and the C2—O1 bond order
is appreciably smaller (1.398 versus 1.468) than in the open conformer. Corre-
spondingly, at the opposite H—O8 (Lewis-acid) end of the H-bond, charge and
bond-order shifts of the opposite sign accompany the partial proton transfer. The
combined resonance shifts in the two carboxylate groups thus synergistically pro-
mote H-bond strength and partial proton transfer. The bond lengths in Table 5.18
are also consistent with this overall pattern of NRT bond-order shifts.

In contrast, resonance delocalization and bond alternation in the C—C=C—C
backbone are only slightly affected by H-bond formation (namely, the C4—C5

bond order varies by only 0.008 between H-bonded and open conformers), because
such resonance shifts do not intrinsically alter the charge distribution in the H-
bonded O· · ·H—O triad. This example illustrates the principle that H-bonding is
not generally coupled to resonance per se, but only to such resonance as leads to
effective ±CAHB enhancement (Section 5.2.2).

Gilli and coworkers57 have recognized many other examples of the RAHB phe-
nomenon from the Cambridge Structural Database, documenting the structural
correlations that strongly support the hypothesis of the covalent nature of these
H-bonds. The computational examples presented in this section are fully consis-
tent with their RAHB model, and similar NBO/NRT patterns would be expected
to characterize the many interesting classes of compounds that were considered by
these workers, but are beyond the scope of the present work.
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5.2.4 Cooperativity and non-transferability in H-bonded clusters

Non-additive cooperative effects are among the most distinctive signatures of quan-
tal donor–acceptor interactions. Whereas Coulomb’s law of classical electrostatics
(Section 2.6) epitomizes a potential-energy function of pairwise-additive (non-
cooperative) form, the quantum-mechanical interactions of the short-range ex-
change region are known to exhibit significant non-additivity. For covalent bonds,
this non-additivity is often a fairly small percentage (∼5%) of the total molecular
binding energy, and a “sum-of-bond-energies” approximation can then give a qual-
itatively useful estimate of thermochemical properties.58 For H-bonds, however,
we shall see that the corresponding non-additivity errors tend to be significantly
larger, and a pairwise-additive model of H-bonding (e.g., of simple-point-charge
[SPC] type59) fails to give an adequate description of H-bonding energetics.60

The assumption of additivity that underlies many empirical intermolecular po-
tentials can be stated more formally as follows. Suppose that A, B, C, . . . represent
chosen molecules in a given spatial configuration. The potential-energy function
V(A, B, C, . . .) (relative to isolated molecules61) will be said to be “pairwise addi-
tive” (and denoted VPW) if

VPW(A, B, C, . . .) = V(A, B) + V(A, C) + V(B, C) + · · · (all pairwise terms)
(5.51)

where V(A, B), etc. are the corresponding potentials for pairs of molecules. The
non-pairwise-additive percentage error (%npw) of the approximation (5.51) for the
chosen configuration can be expressed as

%npw = VPW(A, B, C, . . .) − V(A, B, C, . . .)

VPW(A, B, C, . . .)
× 100 (5.52)

The interactions will be described as “cooperative” or “anticooperative” (for the
chosen configuration) according to whether the deviations are positive or negative,

%npw > 0 (“cooperative”) (5.53a)

%npw < 0 (“anticooperative”) (5.53b)

i.e., according to whether VPW underestimates or overestimates the true binding
energy Vtrue = V(A, B, C, . . .). Familiar examples of pairwise-additive potentials
(5.51) include SPC, Lennard-Jones,62 and many similar forms composed of point-
charge and atom–atom interaction terms.

A special case of pairwise additivity (for sufficiently short-range potentials) is the
limit of pair (“bond”) transferability or constancy from one environment to another.
As mentioned above, such transferability is found to hold rather well for covalent
bonds, but the corresponding transferability of H-bonds cannot be assumed without
further justification. Such H-bond-additivity or -transferability assumptions often
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lie at the heart of disagreements concerning the energetics of H-bonded clusters. In
the ensuing discussion we shall therefore focus on non-additivity of H-bond energies
(or non-transferability of a given H-bond from one environment to another) as the
central chemical issue,63 making use of clusters built from simple HF, H2NCHO,
and H2O monomers.

HF clusters: tests of pairwise-additive models

Let us first consider higher clusters (HF)n of the prototype “ideal-dipole” HF
molecule, whose dimer was described in Section 5.2.1. Figure 5.23 displays the
geometries of a number of open and cyclic (HF)n clusters (n = 3–5) that may be
compared with that of the dimer (cf. Fig. 5.1(b) and Table 5.1).

The geometries of the open (HF)n clusters in Figs. 5.23(a)–(c) were chosen to
mimic (and extend) the bent structure of the dimer in the manner that might be
expected from a simple dipole–dipole picture. In these species the θHF···F angle
was constrained to be the same for each monomer, thus creating a zig–zag one-
dimensional chain of an extended herringbone pattern (but with θHF···F and all other

Figure 5.23 Model (HF)n clusters (n = 3–5), with calculated net binding energies
in parentheses. Only the cyclic pentamer (d) is a true equilibrium structure (see
the text).
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geometrical variables optimized for each species). Such model chains correspond
to the simplest dipole-aligned configurations that still preserve (approximately) the
characteristic canted geometry of each adjacent dimer pair; cf. Fig. 5.1(b). How-
ever, such dipole-aligned chains (although cooperatively stabilized relative to the
dimer; see below) are unstable structures, which, upon relaxation of the constraint,
will spontaneously rearrange to the more stable cyclic geometry (such as the cyclic
pentamer shown in Fig. 5.23(d)).64 Thus, the model chain clusters (Figs. 5.23(a)–
(c)) allow us to sample spatial configurations that are of interest with respect to the
expectations of a dipole–dipole model, but are otherwise unrealistically high in en-
ergy, corresponding to quite unimportant regions of the potential-energy surface.65

By simply expressing the net binding energy of each (HF)n in terms of the
nominal number of H-bonds in each species, namely

(HF)2, 5.05 kcal mol−1 (5.54a)

open (HF)3, 2(5.82 kcal mol−1) (5.54b)

open (HF)4, 3(6.35 kcal mol−1) (5.54c)

open (HF)5, 4(6.73 kcal mol−1) (5.54d)

cyclic (HF)5, 5(8.05 kcal mol−1) (5.54e)

one can recognize that the binding energy on a per-H-bond basis is increasing
in a conspicuously non-additive fashion, so a “sum-of-bond-energies” scheme for
H-bonds will have far greater errors than in the covalent-bond case. The error is
rather modest (∼15%) for the open trimer, but grows to about 60% for the cyclic
pentamer.

The values in (5.54a)–(5.54e) reflect cooperative increases in average H-bond
strength (for complete fragmentation to monomers), but the energies required to
break particular H-bonds are still larger. Thus, while the average H-bond strength
in the (HF)5 chain is only 6.73 kcal mol−1 (enhanced by 33.3%), the energy of
breaking a single H-bond

(HF)5 → (HF)k + (HF)5−k (5.55)

is 7.85 kcal mol−1 (55.4%) for separation into monomer plus tetramer (k = 1),
or 10.22 kcal mol−1 (102.4%) for separation into dimer plus trimer (k = 2).
Cooperativity-induced enhancements of H-bond strength can therefore be of the or-
der of 100% even in the weaker chain isomers. As shown by comparison of (5.54d)
and (5.54e), these enhancements become still larger in cyclic topologies.

However, comparisons such as (5.54a)–(5.54e) cannot yet be used for direct es-
timation of the formal non-additivity (5.52), because they neglect the contributions
of non-adjacent pairs in (5.51). Table 5.19 summarizes details of the individual
V(A, B) contributions and non-pairwise errors (%npw) for two of these cases: the
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Table 5.19. Energies of single monomers (Emon) and dimer pairs (Epair) leading to
evaluation of V(pair),VPW, and %npw (Eqs. (5.51) and (5.52)) for the open trimer

and cyclic pentamer of HF (note [see note 61] that, for these comparisons,
V(pair),Vtrue, and VPW are all expressed with respect to the energies of monomers

frozen in the geometry of the complex)

Monomer Emon (a.u.) Pair No. Epair (a.u.) V(pair) (kcal mol−1)

Open trimer (Fig. 5.23(a))
A −100.482 366 1 A, B 1 −200.972 578 0 −5.02
B −100.482 204 2 A, C 1 −200.965 739 4 −0.68
C −100.482 294 6 B, C 1 −200.972 582 0 −5.07

VPW (kcal mol−1) −10.77
Vtrue (kcal mol−1) −11.81

%npw +9.7%

Cyclic pentamer (Fig. 5.23(d))
A −100.481 274 4 A, B 5 −200.968 683 9 −3.85(5)

A, C 5 −200.964 376 0 −1.15(5)

VPW (kcal mol−1) −25.00
Vtrue (kcal mol−1) −43.75

%npw +75.0%

open trimer (5.54b) and cyclic pentamer (5.54e). From these entries one can see that
%npw is about 10% in the former case and 75% in the latter case, slightly different
from (but of the same general magnitude as) the percentage errors that would be
inferred from the simpler comparisons in (5.54a)–(5.54e). Thus, by either criterion,
the deviations from pairwise additivity tend to be far greater in the H-bonding than
in the covalent-bonding case.

The values of %npw in Table 5.19 give inherent limits on the errors due to
non-pairwise-additive effects, regardless of the form of V(pair). However, it is
also useful to examine the specific errors of a simple electrostatic potential VCoul,
which is inherently of pairwise-additive form. For this purpose we assume that each
monomer is characterized by point charge q,

q = qH = −qF (5.56a)

and that VCoul simply includes all intermolecular Coulombic interactions between
these point charges,

VCoul =
inter∑
i< j

qi q j

Ri j
(5.56b)



5.2 Hydrogen-bonding 639

where Ri j is the distance between charges i and j. In this case, the charge q appears
quadratically in each term on the right-hand side of Eq. (5.56b). The q2-dependence
may be factored out to give

VCoul = q2
inter∑
i< j

±1

Ri j
(5.56c)

where the summation includes only geometrical factors for charges of like (+) or
unlike (−) sign.

It is clear from (5.56c) that q can be chosen to give VCoul any desired value, i.e.,
to make (5.56c) “work” for a chosen cluster species. Thus, it is meaningful only
to compare how a single value of q fits two or more different clusters, in order to
assess how well VCoul describes Vtrue.

For simplicity, let us focus on the HF dimer (dim) and cyclic pentamer (5c). If
we choose q to fit the dimer exactly, namely

q = qdim = 0.442 (5.57a)

then the corresponding Coulombic point charge for the cyclic pentamer is under-
estimated:

VCoul(5c) = 35.7 kcal mol−1 versusVtrue = 40.3 kcal mol−1 (12.9% too low)
(5.57b)

Conversely, if we choose q to fit the cyclic pentamer, namely

q = q5c = 0.469 (5.58a)

then the dimer binding energy is correspondingly overestimated:

VCoul(dim) = 5.7 kcal mol−1 versusVtrue = 5.1 kcal mol−1 (5.58b)

(The actual natural charge in the cyclic pentamer is qnat = 0.570, which makes the
Coulombic point-charge estimate entirely unrealistic.) Thus, no matter how q is
chosen, a simple Coulombic point-charge model will give >10% errors for one or
the other of these clusters.

Errors of this magnitude obviously have an important effect on calculated equi-
librium distributions. For example, under ambient conditions the Coulombic point-
charge binding energy (5.57a) would underestimate the Boltzmann factor for the
cyclic pentamer by two or three orders of magnitude, relative to the actual equi-
librium population. Of course, q could also be chosen to make the equilibrium
averages “come out right,” but this would still lead to significant errors in the
individual cluster populations.

In contrast to a classical dipole–dipole or point-charge picture, the quantal donor–
acceptor picture readily accounts for the observed cooperativity. Each HF· · ·HF



640 Supramolecular bonding

hydrogen bond corresponds to intermolecular nF→σHF
∗ CT delocalization that

confers slight cationic character on one monomer and slight anionic character on
the other. The directionality of charge transfer in each bond can be conveniently
denoted by an arrow depicting the direction of charge flow,

HF· · ·>HF (5.59)

similar to the vector-like symbols employed for the other donor–acceptor inter-
actions throughout this book. Such CT-dipolar character prepares the cationic
monomer as an enhanced Lewis acid, and the anionic monomer as an enhanced
Lewis base, for extension of the chain of H-bonds in either direction:

· · ·>HF· · ·>HF· · ·>HF· · ·> (5.60)

In this manner one can see that the terminal monomers of the chain acquire net
ionic character (because they can participate in CT only in a single direction),
whereas interior monomers remain relatively electroneutral (due to there being
equal numbers of CT interactions “in” and “out”).

The concerted charge transfers in (5.60) lead to a distinctive pattern of monomer
charges along the chain, as displayed in Fig. 5.24. The trend-lines for terminal
monomers (circles) suggest that the net monomer charge (QHF) at each end of
the chain approaches an asymptotic value of 2%–3% of an electron as the chain
length n increases. The energy employed to “charge up” the chain can of course be

Figure 5.24 Monomer charges (QHF) in model (HF)n chain clusters (Figs. 5.23(a)–
(c)). For each n, distinct symbols identify monomers at the end (circle), second from
end (triangle), and third from end (square) positions of the chain, with connecting
dotted lines to aid visualization. Note the strong CT-polarization pattern from the
cationic to the anionic end of chain.
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Figure 5.25 The strongest (innermost) nF→σHF
∗ interactions in (HF)n chain (a)–

(c) and cyclic (d) clusters (cf. Fig. 5.23), with estimated second-order stabilization
energies in parentheses. These innermost interactions best approximate the limiting
case of an infinite cyclic structure.

recovered by bringing the chain ends together to form a cyclic cluster, leading to
the strong stabilization observed on going from (5.54d) to (5.54e).

Charge-transfer delocalization thereby provides a powerful mechanism for stabi-
lizing cluster topologies in which a maximal number of monomers achieve closed-
CT character (Section 2.6). Particularly favored are H-bonded cycles in which each
monomer participates equally as a Lewis base and as a Lewis acid in a concerted
pair of CT delocalizations. In general, the favored patterns such as (5.60) corre-
spond to matching CT arrows in and out of each monomer, with each such balanced
extension further strengthening CT delocalization in the interior monomers. Fig-
ure 5.25 displays the innermost (and strongest) nF→σHF

∗ interaction in each (HF)n

cluster, showing the progressive strengthening of this interaction, particularly in
the cyclic topology (Fig. 5.25(d)).

In contrast to cooperative CT patterns such as (5.60), one may also consider
anticooperative patterns in which two or more CT delocalizations are put into
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Figure 5.26 (a) The isomeric “anticooperative” open (HF)3 structure (fully opti-
mized), and (b) the leading nF→σHF

∗ interaction with one of the two equivalent
Lewis-acid monomers (with the second-order stabilization energy in parentheses).
The net binding energy is 7.92 kcal mol−1.

antagonistic competition. A simple example is the isomeric FH· · ·F(H)· · ·HF trimer

FH <· · ·HF· · ·>HF (5.61)

in which the central monomer serves twice as a Lewis base. Figure 5.26 displays the
optimized structure of this isomer, together with one of the two equivalent nF→σHF

∗

NBO delocalizations from the central monomer to a terminal monomer. Compared
with the cooperative structures (5.54a)–(5.54e), the H-bonds in this isomer are
appreciably weakened,

anticooperative (HF)3 isomer, 2(3.96 kcal mol−1) (5.62)

by about 21.6% with respect to the dimer value (5.54a). (Again, the value in (5.62)
is only an average for complete cluster dissociation; to break a single H-bond of
(5.61) requires only 2.87 kcal mol−1, about 43% less than required to dissociate the
dimer.)

From the examples given above, it becomes apparent that, by suitably alter-
ing the pattern of surrounding H-bonds in cooperative or anticooperative fashion,
the strength of a given HF· · ·HF hydrogen bond can be modulated over a wide
range of values. Thus, it hardly makes sense to speak of “the H-bond energy” in
the absence of knowledge about the surrounding network of H-bonds, because the
cooperative or anticooperative modulating effect of the environment may be of the
same order as the intrinsic strength of the isolated H-bond itself! Cooperativity
effects, far from being a small perturbation, will often be found to be the dominant
feature of the H-bond energy landscape.
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Example 5.6

Problem: From the table of interatomic distances (in atomic units; 1 a.u. = 0.529 (Å) for
the linear (HF)3 trimer (Fig. 5.23),

H2 H3 F1 F2 F3

H1 4.5380 9.0614 6.1903 10.6319
H2 4.5796 3.2957 6.2386
H3 7.5951 3.3471
F1 5.0566 9.0804
F2 5.1040

estimate the binding energy from the simple-point-charge approximation, using the esti-
mated charge (q = 0.469) that “fits” the cyclic pentamer. Compare your result with the
actual value.

Solution: From the Coulombic point-charge formula

	ECoul =
∑
i< j

qi q j

Ri j

and the Ri j values of the table, we obtain

	ECoul = +q2

(
1

4.5380
+ 1

9.0614
+ 1

4.5796
+ 1

5.0566
+ 1

9.0804
+ 1

5.1040

)

− q2

(
1

6.1903
+ 1

10.6319
+ 1

6.2386
+ 1

3.2957
+ 1

7.5951
+ 1

3.3471

)

= (0.469)2(−0.0968) = −0.0213 a.u.

= −13.4 kcal mol−1

which is about 15% larger than the actual binding energy (11.6 kcal mol−1).

Linear formamide clusters

The energetics of H-bonding is perhaps nowhere more important than in protein
chemistry. The characteristic secondary structures of proteins, such as α helices and
β sheets, are characterized by repetitive patterns of C=O· · ·HN hydrogen bonds
between the skeletal amide groups of extended polypeptide chains. The structure
and function of biological enzymes appear to be critically dependent on the H-
bonds gained and lost as the polypeptide chain sheds solvent molecules to fold into
the unique native conformation in which it is biologically active. The ubiquitous
role of amide moieties as H-bonding connectors for complex biological structures
emphasizes the importance of accurately understanding the cooperative energetics
of extended amide· · ·amide H-bonded chains.
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Figure 5.27 Formamide clusters (with net binding energies in parentheses).

As a simple prototype of extended amide· · ·amide H-bonded chains, let us con-
sider the series of linear formamide clusters, (H2NCHO)n , extending the linear
dimer (Fig. 5.19) that was previously considered. As noted in Section 5.2.3, it is
critical that the C=O· · ·HN hydrogen bonds be modeled with resonance-stabilized
amide moieties (rather than, e.g., with unconjugated carbonyl and amine moieties),
due to the important role of RAHB coupling. We examine the cooperative increases
in the binding energy (	En) for successively extending the H-bonded amide chain
by a single unit,

(H2NCHO)n−1 + H2NCHO → (H2NCHO)n (5.63)

which is critical for the initiation and propagation of the folding sequence toward
the proper secondary structure of a polypeptide.

Figure 5.27 depicts the next three members (n = 3–5) of the extended formamide
sequence, showing the spontaneous cyclization that occurs at n = 5 (with further
cooperative H-bond strengthening). Table 5.20 compares various energetic, struc-
tural, and charge properties of the n = 2–4 linear clusters. This table immediately
displays the strong non-additivity of amide H-bonding, including progressive shifts
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Table 5.20. Cooperative (n-dependent) properties of linear
formamide chains (see Figs. 5.19 and 5.27), showing the

incremental binding energy 	En, average H-bonded RO···H and RNH

distances, and partial charges Q1 and Qn on terminal monomers of
the (H2NCHO)n chain (for comparison, the cyclic pentamer in Fig.
5.27(c) has R̄O···H = 1.879 Å, R̄NH = 1.024 Å, and average H-bond

energy 7.92 kcal mol −1)

n 	En (kcal mol−1) R̄O···H (Å) R̄NH (Å) Q1 Qn

2 6.19 1.987 1.0146 +0.0141 −0.0141
3 7.79 1.939 1.0169 +0.0173 −0.0194
4 8.34 1.911 1.0186 +0.0181 −0.0214

in intramolecular and intermolecular bond lengths, charge distribution, and H-bond
energies that will now be considered.

Figure 5.28 displays the cooperative (n-dependent) increase in binding energy
	En for the chain-propagation reaction (5.63). As the dotted trend-line shows, each
chain step makes successive additions increasingly exothermic, strongly promoting
chain growth at the expense of shorter segments. For example, the H-bond that
results from joining two dimers to form a tetramer is about 61% stronger than
that which results from joining two monomers to form a dimer. Under ambient
conditions, this energetic difference converts into a large Boltzmann factor favoring

Figure 5.28 Cooperative increases in binding energy (−	En) for successive ex-
tensions of the linear formamide chain (5.63). (The horizontal dashed line marks
the “reference” dimer value.)
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the tetramer over two dimers. Thus, the cooperativity of amide H-bonding has
significant implications for the spontaneous formation of extended H-bonded chains
at the expense of shorter fragments.

From Table 5.20 one can also see that the terminal monomers become increas-
ingly cationic or anionic (bearing charges of about ±2% e) as the chain extends.
This net ionic character at each end gives rise to a longer-range ion–dipole Coulom-
bic interaction with nearby monomers, tending to reorient them for attachment to
the growing chain. It must be emphasized that this growing CT-dipolar character
is in addition to the ordinary vector sum of monomer dipole moments. Thus, the
macroscopic dipole of the H-bonded amide chain is itself cooperatively enhanced
with each addition to the chain, further facilitating the proper orientation and addi-
tion of monomers at each end.

Table 5.20 shows that the structural parameters of individual monomers are
also shifted by enhanced H-bonding in longer chains. Thus, in each NH· · ·O re-
gion the covalent RNH bond is progressively lengthened (and weakened) while the
RO···H H-bond is correspondingly shortened, in the manner expected for stronger
H-bonding. The NRT bond orders (not shown) are also shifted in the manner ex-
pected for enhanced RAHB coupling, with associated small changes in geometry,
vibrational frequency, chemical shielding, and other spectroscopic properties within
each monomer. While Table 5.20 shows the average changes in RNH and RO···H for
all monomers of the chain, it should be noted that the effects are strongest on the
most interior monomers, and tend to diminish toward the chain ends. Thus, each
amide monomer virtually carries a signature of its location within the chain, as
well as the overall length of the chain in which it resides. As Ludwig has shown,66

these cooperativity-induced positional shifts of spectroscopic properties of each
amide moiety are often comparable to the substituent effects of varying amino-acid
residues. Thus, a spectroscopic method that is sufficiently sensitive to distinguish,
e.g., a valine from a serine residue in an α-helical segment may also give useful
information about the overall length of the segment and the serial position of each
residue along the helical axis.

Further aspects of the fascinating properties of H-bonded clusters in biomole-
cules67 are beyond the scope of the present work.

Water clusters

Liquid water is an essential component of most terrestrial chemical processes, in-
cluding those of living organisms. The cooperativity of H-bonding in water clusters
is therefore of primary importance for understanding the structure and dynamics
of pure water, as well as a vast spectrum of aqueous solvation phenomena in biotic
and abiotic systems. In the present section we examine cooperativity effects for a
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Figure 5.29 Fully cooperative cyclic water clusters (with net binding energies in
parentheses).

variety of water clusters, illustrating both enthalpic and entropic consequences of
alternative H-bond connectivity patterns.

Two of the water clusters that appear to exhibit particular thermodynamic stability
under ambient conditions of the liquid phase are shown in Fig. 5.29: a cyclic
pentamer (W5c) and a cyclic hexamer (W6c). The characteristic factors (F1)–(F3)
that distinguish these clusters from other possible isomeric forms can be identified
as follows:

(F1) cooperative closed-CT proton ordering, with H-bonds arranged to make complemen-
tary pairs of nO→σOH

∗ donor–acceptor interactions emanating from each monomer
(i.e., with each monomer serving an equal number of times as a donor and an acceptor);

(F2) two-coordinate cyclic topology, employing two of the four possible H-bond coordina-
tion sites at each monomer; and

(F3) unstrained H-bonds, with near-linear O· · ·H—O alignments at each monomer.

The enthalpic and entropic advantages associated with each of these factors will now
be discussed in comparison with alternative isomeric forms of lower thermodynamic
stability.

Three alternative pentameric isomers (Wdaccc, Wdcacc, and Wdadac) that lack
the cooperative closed-CT factor (F1), but satisfy (F2) and (F3), are shown in
Figs. 5.30(a)–(c) (these are representative near-stationary configurations, but not
true equilibrium species; see the figure caption). All three retain two-coordinate
cyclic topology, but each exhibits two or more open-CT monomers having unbal-
anced double-donor (d) or double-acceptor (a) character, as labeled in the figure.
Thus, “Wdaccc” denotes the isomer with monomer 1 as a double-donor, monomer
2 a double-acceptor, and the remaining monomers 3–5 of closed-CT (c) character
(with monomers numbered clockwise from the top of the figure). The Wdaccc and
Wdcacc isomers have two open-CT monomers (near-neighbor or non-near-neighbor,
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Figure 5.30 Alternative water pentamer isomers having partial anticooperativity,
(a)–(c), or higher coordination and ring strain, (d). Labels in (a)–(c) correspond to
clockwise monomer numbering from the top (see the text). (Species (a)–(c) have
been optimized under the constraint of planar equilateral skeletal geometry to
prevent rearrangement to W5c [Fig. 5.29(a)] and are therefore only near-stationary
points on the potential-energy surface.)

respectively), while Wdadac has four alternating open-CT monomers. As shown in
Figs. 5.30(a)–(c), the net binding energies of these isomers are sharply reduced (by
∼25%–45%) as the cooperative proton ordering is progressively reduced. Thus,
the unique (fully cooperative) proton ordering in Fig. 5.29(a) is seen to have a
significant enthalpic advantage over alternative cyclic pentamers that might seem
equivalent in a pairwise-additive approximation.

The alternative pentamer W5ice in Fig. 5.30(d) contains only closed-CT monom-
ers, but exhibits ice-like four-coordinate topology at the central monomer. This
isomer may be pictured as two corner-sharing cyclic trimers (spiro topology), but it
results from any starting geometry with four-coordinate central monomer. Although
the bicyclic W5ice isomer has six H-bonds (instead of the usual five in monocyclic
isomers), each H-bond is seen to be badly strained from linearity in the small 3-ring
geometry. This isomer therefore satisfies (F1), but fails to satisfy (F2) and (F3), and
is again seen to be enthalpically inferior (by 16%) to the W5c isomer.
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While the pentameric W5ice has two short cooperative 3-cycles attached to the
central monomer, one can recognize that contiguous four-coordinate sites lead to
increasing frustration of cyclic cooperative proton-ordering patterns. In the fully
four-coordinate structure of crystalline ice-I, it is recognized68 that there is no
net long-range proton-ordering, so that cooperative and non-cooperative connec-
tivities of adjacent H-bond sites become equally likely. Although four-coordinate
monomers enjoy an obvious enthalpic advantage in having four H-bonds rather
than two, this advantage is considerably offset by the inherent loss of cooperativity
in a proton-disordered tetrahedral lattice.

While the advantage of W5c over alternative pentamers in Figs. 5.30(a)–(d) is
primarily enthalpic, there is an additional entropic (and thus, T-dependent) advan-
tage over W5ice and related isomers that lack (F2) and (F3). This advantage stems
from the favorable vibrational flexibility of W5c, particularly the low-frequency
“torsional” modes that dominate the vibrational contribution to the cluster partition
function. Because each H-bond has high axial symmetry, and, thus, little resistance
to torsional motions, the energy required in order to twist a monomer of W5c about
a pair of connecting H-bonds is quite small, corresponding to extremely soft vibra-
tional frequencies in the 10–20-cm−1 range. However, this mode becomes strongly
hindered when the monomer forms additional H-bonds, corresponding to higher-
dimensional three- or four-coordinate connectivity. Thus, the librational modes of
the central monomer in W5ice are greatly raised in frequency (>100 cm−1), appre-
ciably lowering the vibrational entropy compared with W5c. Torsional motions in
the remaining monomers of W5ice are also significantly hindered by H-bond bending
that lowers cylindrical symmetry. Thus, both because of its higher-dimensional con-
nectivity and because it contains highly strained H-bonds, the ice-like W5ice cluster
is strongly disfavored entropically compared with W5c. Similar entropic disadvan-
tages oppose other high-coordinate cluster patterns, except at low temperature.

Owing to the aforementioned enthalpic and entropic advantages, cooperatively
ordered ring and chain clusters may be expected to win out over four-coordinate
polyhedral clusters as principal constituents of a stable equilibrium phase within
a limited temperature range. It appears highly likely that this unique domain of
stability of proton-ordered rings and chains can be identified with the liquid phase.
The essential topological continuity of such a phase to a monomeric gaseous limit,
as well as its essential discontinuity from the solid tetrahedral-lattice limit, give
credence to this identification, which is supported by recent experiments.69

Intermediate between the extended four-coordinate connectivities that dominate
the low-T solid phase and the two-coordinate ring/chain connectivities that dom-
inate at higher T are certain three-coordinate polyhedral structures that retain a
degree of cooperative proton ordering. Two examples of such trigonally coordi-
nated “buckyball” clusters, a 24-mer and a 28-mer, are shown in Fig. 5.31. The
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Figure 5.31 Water “buckyball” clusters (with net binding energies in parentheses).
(Geometries were optimized at lower 6-31+G∗ (24-mer) or 6-31G∗ (28-mer) basis
level, with quoted energetics evaluated at full B3LYP/6-311+ + G∗∗ level. Hence,
the actual binding energies and H-bond strengths are, if anything, stronger than
those quoted in the text.)

buckyball structures are closely related to the clathrate cages found for many crys-
talline hydrates,70 the basis for Pauling’s clathrate model of liquid water.71

Closed buckyball polyhedra are known to be composed of cyclic pentameric
and hexameric faces (see Fig. 5.29), with exactly twelve pentamers and variable
numbers of hexamers (n6). Because each vertex is shared by three faces, the total
number of vertices (nvertex) must satisfy the topological constraint

3nvertex = 5 × 12 + 6n6 (5.64)

where n6 = 1, 2, . . . Thus, the buckyball clusters in Fig. 5.31 with (a) nvertex = 24
and (b) nvertex = 28 vertices correspond to n6 = 2 and n6 = 4 hexamers, respec-
tively. The two hexameric faces of (H2O)24 appear at the top and bottom in
Fig. 5.31(a), while the four hexameric faces of (H2O)28 are distributed in a tetrahe-
dral pattern (each surrounded by six pentagons) in Fig. 5.31(b).

Each vertex of a buckyball cluster is attached by three H-bonds, and hence
must have net donor (2D1A) or acceptor (1D2A) character that seems to preclude
significant cooperativity. However, by suitably pairing each donor and acceptor
monomer, one may produce connected dimers that are each of effective 3D3A
pseudo-closed-CT character. Such cooperative dimer units may then be joined
in proton-ordered fashion to form closed polyhedra that retain a high degree of
cooperative stabilization.

Both clusters in Fig. 5.31 exhibit considerable cooperative proton-ordering that
distinguishes them from many alternative proton-disordered (and destabilized) iso-
meric forms that could be imagined. For example, the 24-mer (Fig. 5.31(a)) has two
fully cooperative W6c-like “caps” as well as a fully cooperative 12-ring “girdle,”
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joined together by H-bonds (shared pentamer edges) of alternating CT direction,
such that the two connecting hemispheres have complementary CT character at
every juncture. The 36 H-bonds of the 24-mer have an average bond strength of
7.23 kcal mol−1, and the 42 H-bonds of the 28-mer have an average strength of
6.76 kcal mol−1, both significantly enhanced (by 24% and 16%, respectively) by
the cooperative ordering.

The average binding energy per monomer is actually greater for the 24-mer
(10.84 kcal mol−1) and the 28-mer (10.14 kcal mol−1) of Fig. 5.31 than for W5c

(8.17 kcal mol−1) or W6c (8.45 kcal mol−1). Thus, the large buckyball cage clusters
will compete with smaller ring clusters at sufficiently low temperatures; although
the cage clusters are not present in significant concentrations under standard state
conditions, they begin to appear as a minor (1%–2%) constituent near the lower
end of the liquid range.72 Similar icosahedral clusters are also known to occur
as basic structural units of alternative ice phases (such as ice-VI) that are only
slightly less stable than ice-I. Thus, the three-coordinate cage structure appears
to compete both with the two-coordinate W5c and W6c ring structures and with
extended four-coordinate lattice structures near the ice point. The surprising ability
of proton-ordered three-coordinate cages to compete thermodynamically with four-
coordinate lattices again reflects the strong enthalpic role of cooperativity and the
fact that “not all H-bonds are created equal.”

Owing to the relative rigidity and large excluded inner cavity of a buckyball, the
average entropy (on a per-monomer basis) and density are appreciably lower than
in W5c and W6c ring structures. Thus, even a small percentage of buckyball clusters
in the low-T liquid distribution will tend to decrease the density and entropy near
the freezing point. While the reduction of entropy at lower T is not unusual, the
corresponding decrease in density below ∼5 ◦C is one of the well-known anomalies
of liquid water.

An interesting feature of cage structures is their ability to encapsulate small
molecules or molecular fragments, removing them from competition for H-bonding
sites (which are all directed outward from the cage). This is particularly advanta-
geous in the case of hydrophobic alkyl fragments that are otherwise highly disruptive
of effective H-bonding. Figure 5.32 illustrates this possibility for the case of a stable
mixed ethanol–water cluster (H2O)23HOC2H5, in which one equatorial vertex of
the 24-mer (Fig. 5.31(a)) has been replaced by amphiphilic C2H5OH. In this case
the polar —OH head group of the amphiphile participates in skeletal H-bonding,
while the hydrophobic tail is sequestered within the cage.

Such “hydrophobic H-bonding” naturally leads to an appreciable reduction in
volume, and is therefore increasingly favored at higher pressures. Similarly, in the
spirit of LeChâtelier’s principle, one may expect that the presence of a hydropho-
bic solute promotes formation of cage structures, i.e., tends to shift the cluster
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Figure 5.32 The mixed (H2O)23HOC2H5 buckyball cluster (cf. Fig. 5.30(a)), show-
ing the encapsulation of the hydrophobic alkyl group.

equilibrium

C2H5OH + (23/5)W5c � (H2O)23HOC2H5 (5.64)

to the right. In this shift, high-entropy ring structures are converted into low-entropy
cage structures, accompanied by the strong enthalpy release of the associated ring→
cage conversion. Both the volume reduction and the anomalous entropy–enthalpy
changes (evoking the imagery of “flickering clusters”73) are well-known features of
hydrophobic solvation. However, further discussion of this interesting phenomenon
is beyond the scope of the present work.

5.2.5 Proton transfer

Hydrogen-bonding is essentially a partial proton-transfer reaction. Thus, the ionic-
resonance mnemonic (5.29a), which expresses the partial covalency of H-bonding,
suggests an immediate relationship to the “degree of completion” of the actual
proton-transfer reaction

A—H · · ·:B → [A: · · · H · · · B]‡ → A:− · · · H—B+ (5.65)

The two H-bonded species in (5.65) can be visualized as points along an intrinsic
reaction coordinate that connects reactant and product species through the tran-
sition state (‡). In this manner we can gain a more global perspective on how
each H-bonded species is related to overall progress along the chemical reaction
pathway.

For simplicity (and to avoid strong net change in dipolar character), we examine
the simple proton-transfer reaction between two strong anionic Lewis bases, H−
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Figure 5.33 The optimized structure and leading n→σ∗ donor–acceptor interac-
tion of H2· · ·OH−. The geometrical parameters are rHH = 0.821 Å, RO···H = 1.689
Å, rOH = 0.966 Å, θHH···O = 177.8◦, and θH···OH = 106.4◦.

and OH−,

H—H + OH− → [H· · ·H· · ·OH]− → H− + H2O

reactants TS products (5.66)

The H-bonded H− · · · HOH product species was previously depicted in Fig. 5.16,
while the structure and leading n→σ∗ interaction for the corresponding H2· · ·OH−

reactant species are shown in Fig. 5.33. Figure 5.34 similarly depicts the structure
of the transition-state species and principal n−σ∗ interaction for the reactant-like
Lewis structure that better describes the resonance hybrid (see below).

Figure 5.35 displays a schematic energy-level diagram for each stationary species
along the proton-transfer reaction coordinate. Although Pauling bond strengths

Figure 5.34 The optimized structure and leading n→σ∗ donor–acceptor in-
teraction of the [H· · ·H· · ·OH]− transition state. The geometrical parameters
are RH···H = 0.910 Å, RO···H = 1.417 Å, rOH = 0.966 Å, θH···H···O = 179.5◦, and
θH···OH = 101.3◦.



654 Supramolecular bonding

Figure 5.35 A schematic energy-level diagram for key stationary points along the
H2 + HO−→H− + HOH proton-transfer reaction coordinate.

both for the reactant H—H and for the product H—O bond are quite large (>100
kcal mol−1), the H-bond-catalyzed proton-transfer process (5.66) is seen to occur
with very small activation energy (<4 kcal mol−1) in either the forward (	Ef

‡) or
the reverse (	Er

‡) direction:

	Ef
‡ = 0.2 kcal mol−1, 	Er

‡ = 3.5 kcal mol−1 (5.67)

Thus, only a gentle perturbation (much weaker than the strength of H-bonding
itself) is sufficient to transfer the proton from one well to the other, interchanging
the identities of the formal covalent bond and hydrogen bond.74

Table 5.21 presents details of the binding-energy profile (	E , relative to asymp-
totic H− + H2O), the net charge (QH) transferred to the product hydride ion, and the
H· · ·H· · ·O bond lengths (RHH and ROH) and NRT bond orders (bHH and bOH) along
the reaction coordinate. All these entries support the idea that both H−· · ·HOH and
H2· · ·OH− are electronically closer to the half-transferred TS‡ limit than to disso-
ciated reactants or products. Thus, the charge at the terminal H in H2 · · · OH− is
already 35% of its final value (−1), and the bHH bond order (0.825) is closer to
the TS‡ value (0.733) than to its nominal value (1.00) in isolated reactants. Similar
comparisons can be made for the product-like H−· · ·HOH complex at the opposite
end of the reaction coordinate. Thus, as suggested by the energy profile in Fig. 5.35,
proton transfer (and the associated charge and bond-order transfer) is already well
advanced in either of the H-bonded complexes.

Figure 5.36 displays the global behavior of bond orders and charge transfer along
a segment of the reaction coordinate s, showing the relatively smooth progression
from reactant-like to product-like values. The fractional weightings of the leading
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Table 5.21. Variations of binding energy 	E, charge transferred to terminal
hydrogen QH, bond lengths RHH and ROH, and NRT bond orders bHH and bOH

along the intrinsic reaction coordinate in proton-transfer reaction (5.66)

Bond length (Å) Bond order
Reaction Binding CT

coordinate 	E (kcal mol−1) QH (e) RHH ROH bHH bOH

H2 + OH− −8.99 0.000 0.744 ∞ 1.000 0.000

H2· · ·OH− −16.59 −0.277 0.821 1.689 0.849 0.138

−0.2 −16.46 −0.352 0.868 1.513 0.825 0.175
−0.1 −16.41 −0.376 0.886 1.467 0.805 0.195

0.0 −16.39 −0.406 0.910 1.417 0.733 0.250
0.1 −16.43 −0.442 0.943 1.363 0.702 0.275
0.2 −16.58 −0.483 0.986 1.311 0.686 0.312
0.3 −16.92 −0.527 1.032 1.257 0.629 0.354
0.4 −17.49 −0.576 1.087 1.203 0.587 0.396
0.5 −18.23 −0.626 1.148 1.150 0.571 0.429
0.6 −18.95 −0.675 1.215 1.100 0.508 0.492

H−· · ·H2O −19.86 −0.783 1.446 1.031 0.381 0.617

H− + H2O 0.00 −1.000 ∞ 0.962 0.000 1.000

resonance structures

H—H · · · OH− ←→ H− · · · H2O

wR wP (5.68a)

are approximately related to the bond orders by

bH···H � wR, bO···H � wP (5.68b)

As shown in Fig. 5.36, wR and wP become equal near s � 0.6, whereas the charge
transfer is half-complete near s � 0.3, and the energetic TS is at s = 0. Different
criteria therefore lead to different estimates of the progress of reaction, but by all
criteria the shifts of partial charge and covalency are quite pronounced in the H-
bonded complexes. The net charge transfer QH to the evolving hydride Lewis base
is seen to parallel bOH closely, as the resonance picture (5.68a) suggests.

Finally, Fig. 5.37 displays the bond-order–bond-length relationship for O· · ·H
and H · · · H bonds over the entire range of the proton-transfer reaction. Both curves
display nonlinear dependences tending to RAB→∞ as bAB→0, and to the standard
single-bond distance as bAB→1. The points for the H-bonded complexes (those
at largest R and smallest b) evidently join smoothly to the more global behavior.



656 Supramolecular bonding

Figure 5.36 The NRT bond orders bHH (circles) and bOH (squares) and terminal-
hydrogen charge QH (crosses) along the intrinsic reaction coordinate for the
H2 · · · OH− → H− · · · HOH proton-transfer reaction.

Thus, by virtue of the continuity of the bond-order–bond-length relationship across
the entire proton-transfer region, the interpretation of the H-bonded complexes in
terms of partial proton transfer (with associated charge and covalent-bond transfer)
can hardly be avoided. (Additional discussion of the properties of transition-state
species in relation to the associated reactant and product species will be presented
in Section 5.4.)

Figure 5.37 The NRT bond-order–bond-length relationships for O—H (squares)
and H—H (circles) bonds along the H · · · H · · · O intrinsic reaction coordinate of
the H2 + OH− → H− + HOH proton-transfer reaction (cf. Fig. 5.36).
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In summary, we may say that the NBO/NRT description of partial proton transfer
in the equilibrium H-bonded complex(es) is fully consistent with the observed
behavior along the entire proton-transfer coordinate, including the transition state.
At the transition state the importance of partial covalency and bond shifts can hardly
be doubted. Yet the isomeric H-bonded complexes may approach the TS limit quite
closely (within 0.2 kcal mol−1 in the present example) or even merge to form a single
barrierless reaction profile (as in FHF− or H5O2

+). Hence, the adiabatic continuity
that connects isomeric H-bond complexes to the proton-transfer transition state
suggests once more the essential futility of attempting to describe such deeply
chemical events in terms of classical electrostatics.

5.2.6 Hydrogen-bonding to transition metals

Although transition metals M are not considered as standard hydrogen-bonding
partners, they exhibit a number of properties that favor H-bond complexation to
suitable Lewis acids or bases, namely

M: · · · H—A (5.69a)

B: · · · H—M (5.69b)

Because of their low intrinsic electronegativities, neutral late transition metals (bear-
ing an abundance of lone pairs) can serve as good donors in nM→σAH

∗ interactions
of the form (5.69a). Furthermore, transition-metal–hydride bonds (Section 4.4.1)
often display sufficient covalency or polar-covalency (particularly in transition-
metal cations) to serve as good acceptors in nB→σMH

∗ interactions of the form
(5.69b). In the present section we shall briefly examine the simple example of plat-
inum dihydride (PtH2) as a “water-mimic” in binary H-bonded complexes with
H2O,

H2Pt· · ·HOH (5.70a)

H2O· · ·HPtH (5.70b)

as well as with another PtH2,

H2Pt· · ·PtH2 (5.70c)

Figure 5.38 displays the optimized structure and primary nPt→σOH
∗ donor–

acceptor interaction of the complex (5.70a) in which PtH2 serves as the Lewis-base
donor. The qualitative similarity to the water dimer structure (Fig. 5.5(b)) is immedi-
ately apparent, including the short Pt · · · H distance (2.47 Å, more than 0.5 Å inside
van der Waals contact), the roughly linear Pt · · · H—O angle (161◦), and the char-
acteristic elongation of the H-bonded versus free O—H bond of the water monomer
(by 0.01 Å). The leading nPt→σOH

∗ donor–acceptor interaction in Fig. 5.38(b) is
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Figure 5.38 The optimized structure and leading n→σ∗ donor–acceptor interac-
tion in the H-bonded H2Pt · · · HOH complex.

primarily responsible for the net charge transfer QCT = 0.019e from PtH2 to H2O.
(However, two additional weak σPtH→σOH

∗ interactions also contribute to stabi-
lization [each contributes 1.49 kcal mol−1], leading to the curiously bent nPt→σOH

∗

overlap and Pt· · ·O—H bond angle in Fig. 5.38.) In most respects, PtH2 is a sur-
prisingly faithful water-mimic as the Lewis base in H-bonding interactions with
water.

Figure 5.39 displays the corresponding complex (5.70b) in which PtH2 serves
as the Lewis acid. Again, the general similarity to (H2O)2 is apparent, except for
the 180◦ torsion about the H-bond (a very-low-energy deformation mode in both
H2O· · ·HOH and H2Pt· · ·HOH). The characteristic short O· · ·H distance (1.95 Å),
near-linear O· · ·H—Pt bond angle (175◦), and relative elongation of the H-bonded
versus free Pt—H bond (by 0.01 Å) are all rather typical signatures of H-bonding.
The stronger nO→σPtH

∗ interaction in Fig. 5.39(b) also leads to stronger charge
transfer (QCT = 0.045e) than in (5.70a). Despite the stronger charge transfer, the net

Figure 5.39 The optimized structure and leading n→σ∗ donor–acceptor interac-
tion of the H-bonded H2O· · ·HPtH complex.
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Figure 5.40 The optimized structure and leading n→σ∗ donor–acceptor interac-
tion of the “anti-H-bonded” H2Pt · · · PtH2 complex.

H-bond energy is weaker in (5.70b) than in (5.70a), apparently due to weaker steric
repulsions in the geometry of Fig. 5.38(a). Overall, PtH2 again serves surprisingly
well as a mimic for H2O in the role of Lewis acid.

Finally, Figure 5.40 displays the surprising structure of the (PtH2)2 dimer, an
“anti-H-bond” n−σ∗ donor–acceptor complex. As expected, the leading NBO
donor–acceptor interaction is of nPt→σPtH

∗ type, but the attack by nPt is now on
the backside of the σPtH

∗ NBO, leading to unusual Pt:· · ·Pt—H coordination to the
hydride antibond as depicted in Fig. 5.40b.

The rather surprising geometry of the (PtH2)2 complex can be readily under-
stood from the NBO interaction diagram in Fig. 5.40(b). Because of the similar
electronegativity of Pt relative to H, the σPtH bond is not polarized toward H nor the
σPtH

∗ antibond toward the metal atom, which is unfavorable for normal Pt: · · · H—Pt
coordination to H. Moreover, the d-rich hybrid on Pt has no strong directionality in
the bonding direction, so backside attack on the metal end of the σPtH

∗ antibond be-
comes strongly favored. The strong (∼33 kcal mol−1) stabilization associated with
this backside nPt→σPtH

∗ interaction results in the “backward” H-bond in (5.70c)
being much stronger than either of the H-bonds in (5.70a) and (5.70b). The charge
transfer, QCT = 0.092e, is also significantly higher in the homodimer. Other as-
pects of the anti-H-bond in Fig. 5.40(a) are rather typical, including the anomalously
short Pt · · · Pt distance (2.66 Å), the near-linear Pt · · · Pt—H angle (165◦), and the
differential elongation (by 0.03 Å) of the anti-H-bonded versus free Pt—H bond.

The Pt:· · ·Pt—H anti-H-bond linkage can also be viewed as a hypervalent 3c, 4e
(ω-bond) resonance hybrid of the form

Pt:· · ·Pt—H ←→ Pt—Pt · · ·:H (5.71)

In this form, the bonding is analogous to many similar examples of X:· · ·M—
Y←→X—M· · · :Y hypervalency studied in Section 4.6. The accessible M+H−
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character of transition-metal bonds allows the hydride ligand to effectively serve
as the Lewis base in such three-center combinations. Thus, the geometry of the
(PtH2)2 dimer, although somewhat anomalous, conforms in all essential respects to
that expected for strong n−σ∗ donor–acceptor interaction.

5.2.7 Summary: the uniqueness of hydrogen-bonding

The examples of Section 5.2 can be summarized by saying that H-bonds are an
unusually strong form of n−σ∗ donor–acceptor interaction exhibiting the expected
strong cooperative effects associated with intermolecular charge transfer.

However, the question “What makes hydrogen unique in forming such bonds?”
remains to be answered. More specifically, what makes A—H bonds (and antibonds)
so distinctively suitable for strong A—H· · · :B interactions with general lone-pair-
bearing atoms B? We now briefly address this question in the context of examples
cited above.

It is clear that A—H bonds make no claim to having distinctively large dipole
moments or other electrostatic properties that would account for their unique chem-
ical behavior from a classical electrostatic viewpoint. Indeed, numerous examples
cited above illustrate the rather striking indifference of H-bonding to the magnitude
(or even the orientation) of monomer dipoles.

Nevertheless, there is an evident advantage in choosing A of high electronega-
tivity, so as to polarize the σAH bond toward A and the σAH

∗ antibond toward H.
Such A—H bond polarity has two significant quantum-mechanical advantages: (i)
it reduces steric exchange repulsions as the filled nB approaches the H terminus of
the filled σAH; and (ii) it increases attractive n–σAH

∗ interaction by increasing the
amplitude of the σAH

∗ acceptor orbital near H for favorable overlap with the in-
coming nB donor orbital. While a large A—H-bond dipole is therefore conducive to
B:· · ·H—A hydrogen-bonding, it is not a necessary prerequisite for H-bond forma-
tion (as, e.g., the example of H2 · · · OH− makes clear). Thus, bond-polarity factors
are of only secondary importance in explaining why hydride A—H bonds lead to
distinctively strong nB–σAH

∗ interactions.
Of much greater importance are two quantum-mechanical features that are

unique to the hydrogen-atom valence shell:

(H1) the only available hydrogen valence orbital is an isotropic s-type orbital with no
angular nodes; and,

(H2) because the H atom has no electronic core underlying the valence shell, its valence
orbital also has no radial nodes.

The hydrogenic 1s orbital is therefore unique in presenting no strong angular or
radial barriers toward approaching atoms.75
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The unique absence of angular and radial nodes in the H-atom valence orbital
has two important consequences for the efficacy of nB–σAH

∗ interaction at the
H-terminus.

(H1′) The H-terminus of the σAH
∗ antibond presents a spherical, nodeless, high-amplitude

lobe for favorably overlapping the incoming nB donor orbital in a broad range of
directions around the A—H axis. At the opposite (A) end of the antibond, the backside
lobe of the spn hybrid is of weak amplitude, and is surrounded by a conical nodal
surface (within ∼70◦ of the A—H axis) that adversely limits high overlap with an
incoming donor orbital along this direction.

(H2′) Because the H-end of the σAH
∗ antibond encloses no electronic core, the incoming

nB donor orbital can overlap with practically the entire hydride end of the antibond,
rather than merely the outer annular region that lies beyond the nodal boundary of
the core region.

Of these factors, (H1) (or (H1′)) is shared to some degree with other alkali metals,
and indeed, analogous “lithium bonding” is known to exhibit some characteristics
of hydrogen bonding.76 However, factor (H2) (or (H2′)) is unique to the hydrogen
atom and is by far the more important factor allowing high n–σ∗ overlap and donor–
acceptor stabilization. (A similar factor was found [Section 3.2] to be responsible
for the covalent bonding in Li2 being relatively weak compared with that in H2.)

In summary, we can say that, because of the unique absence of angular and
radial nodes in the H-atom valence shell, the hydride σAH

∗ orbital is uniquely
suited to strong n–σ∗ donor–acceptor interactions with Lewis bases. In turn, the
unique energetic and angular features of nB–σAH

∗ interactions (or equivalently, of
B: H—A ←→ B—H+:A− covalent–ionic resonance) can be directly associated
with the distinctive structural and spectroscopic properties of B:· · ·H—A hydrogen
bonding.

5.3 Charge-transfer complexes

5.3.1 Mulliken charge-transfer complexes

The general concept of a “charge-transfer complex” was introduced by Mulliken77

to describe a form of association between donor (D) and acceptor (A) molecules
that could be represented in resonance language as

D· · ·A ←→ D+· · ·A− (5.72)

The key distinguishing feature of charge-transfer (CT) complexation is that the
partial admixture of ionic D+A− character in the resonance hybrid (5.72) confers
a tendency toward association that is absent in the purely covalent D· · ·A limit,
i.e., in the absence of covalent–ionic resonance. The mechanism of CT binding is
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therefore wholly quantum mechanical in nature, acting even in species such as the
1 : 1 benzene : halogen complexes

C6H6· · ·X2 ←→ C6H6
+· · ·X2

− (X = I, Br, . . .) (5.73)

where the isolated monomers have no net charge or dipole moment that would be
expected to lead to complex formation. As expressed by Herzberg,78 “the resonance
supplies the whole of the binding energy.”

The spectroscopic signature of CT-complex formation is the appearance of in-
tense spectral features (“charge-transfer bands,” near 3000 Å for benzene : iodine
and other arene : halogen complexes) that are not present in the pure monomers.
These bands thus reflect the presence in solution of associated D· · ·A species whose
electronic properties differ from those of isolated D and A. Because of the remark-
able intensity of the CT bands and their appearance against a null background,
conspicuous color changes can result from even the loosest forms of D · · · A asso-
ciation. Charge-transfer spectroscopy therefore provides a highly sensitive probe
for subtle microstructural clustering features of the liquid. Mulliken adduced further
experimental evidence for specific donor–acceptor associations from the fixed stoi-
chiometric compositions and curiously oriented D· · ·A arrangements in crystalline
solids.

Mulliken recognized that the essential feature of CT-complex formation is the
complementary (electron) donor and acceptor characters of the two monomers.
From the starting point of G. N. Lewis’s broad acid–base conception in terms of
electron pairs,79 Mulliken chose to adopt Sidgwick’s80 more general and descrip-
tive terminology of “donors” and “acceptors” (of electrons) for Lewis bases and
acids, respectively. Mulliken also recognized the close connection to Ingold’s cat-
egorization of “nucleophilic” and “electrophilic” reagents81 in organic chemistry,
but he sought to remove certain restrictions implicit in the older terminology that
might tend to inhibit “fullest or freest use of the inherent possibilities of the donor–
acceptor concept.”82

Mulliken emphasized particularly “the nature of partial electron transfer” (his
emphasis) that is implied by the resonance description. For this purpose he intro-
duced a heuristic “charge-transfer coordinate,” with values varying from 0 to 1 to
represent the range from charge-localized precursors to complete intermolecular
charge transfer. Mulliken employed this coordinate to depict schematic potential-
energy diagrams for a wide variety of CT phenomena, including “inner,” “outer,”
and activated complexes on the pathway from neutral reactants to heterolytic dis-
sociation products. On the basis of such diagrams, Mulliken also proposed an
elaborate classification of CT complexes (using special prefixes, superscripts, and
subscripts for each D and A, somewhat resembling spectroscopic labels), but this
has not found wide usage.83
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Despite strong similarities to Mulliken’s basic donor–acceptor framework, the
NBO description of CT complexes differs in several respects from Mulliken’s the-
ory. The important NBO donor–acceptor interactions are determined by an ab initio
procedure, rather than inferred from empirical ionization properties of monomers
or the geometry of the complex. Contributing NBO interactions may include syn-
ergistic donation and back-donation through different orbital pairings between
monomers, as well as background contributions of classical electrostatic type.84

The forms of donor and acceptor NBOs are intrinsically free to vary continuously
along a chosen reaction coordinate (including deviations from idealized σ- or π-
bond symmetry), thus blurring the distinction between Mulliken’s distinct “types”
of CT complexes. Furthermore, the Mulliken resonance description (5.72) suggests
partial ion radical (open-shell D+·A−·) character, whereas the two-electron NBO
donor–acceptor stabilization is better described in resonance terms as

D: A ←→ D+—A− (5.74)

involving purely closed-shell species (similar to general coordinate bonding).
Nevertheless, in cases where NBOs of clear n, σ, or π symmetry participate in
a single dominant donor–acceptor stabilization, the qualitative agreement with
Mulliken’s description can be recognized.

It is also apparent that intermolecular charge transfer confers partial D+· · ·A−

zwitterionic character, leading to long-range Coulombic attractions of classical
type. Thus, the covalent–ionic resonance in (5.74) leads both to covalent short-range
and to ionic long-range attractive forces that contribute to binding. A characteristic
feature of Mulliken-type CT complexes is that valence donor–acceptor interac-
tions are inadequate to account for the total binding, and the role of (CT-induced)
electrostatic interactions therefore becomes relatively more important. Numerical
evidence for long-range Coulombic attractions in CT complexes will be presented
below.

As an example of Mulliken CT complexation, let us consider the ben-
zene : bromine complex, whose optimized structure and leading intermolecular
NBO interaction are displayed in Fig. 5.41. NBO charge analysis of the C6H6· · ·Br2

complex reveals the presence of slight CT (0.0021e) from C6H6 to Br2, which is
consistent with the Mulliken description. Both monomers are altered by complex
formation, with the Br—Br bond NBO becoming noticeably polarized away from
the benzene ring,

σBrBr = 0.702(p)Br(near) + 0.712(p)Br(far) (5.75)

thereby polarizing the σBrBr
∗ antibond orbital favorably toward the ring donor or-

bitals. Given the weakness of the binding (of the order of standard-state kT), it
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Figure 5.41 The optimized structure and one of three equivalent leading π→σ∗
donor–acceptor interactions of the C6H6· · ·Br2 charge-transfer complex. (The scale
in (b) is 9 Å along each edge, 50% larger than in other such plots in this book.)

is remarkable that the optical properties of benzene : halogen binary pairs allowed
these species to become recognized as prototypes of Mulliken CT complexation.

The principal intermolecular donor–acceptor interactions of this weakly bound
complex are found to be of πCC–σBrBr

∗ form (3 × 0.20 kcal mol−1), as illustrated
in Fig. 5.41(b). A prominent feature of Br2 (and other heavy halogens) is the
nearly pure-p character of the bromine bonding hybrid, resulting in a conspicuous
backside lobe on the σBrBr

∗ antibond (see Fig. 5.41(b)) that is effective in end-
on complexation to the pi-donor face of benzene. The unusually small energy
separation between donor and acceptor NBOs,

εσ∗(BrBr) − επ(CC) = 0.15 a.u. (5.76)

also contributes to effective CT stabilization. The C6H6· · ·Br2 complex may there-
fore be categorized as being of π–σ∗ type, which is consistent with the NBO
πCC–σBrBr

∗ donor–acceptor interaction (Fig. 5.41(b)) corresponding to the reso-
nance description in (5.74).

In principle, related CT complexes are possible for donor NBOs of n, σ, or π

type, and for acceptor NBOs of n∗, σ∗, or π∗ type. Table 5.22 cites examples of such
CT complexes for various types of donor (rows) and acceptor (columns) NBOs,
including species to be discussed below.

Charge-transfer complexes involving one-center n∗ acceptor orbitals (n–n∗,
σ–n∗, and π–n∗ Lewis-base–Lewis-acid adducts) have been discussed in Sections
3.2.10 and 3.6. Many CT complexes involving σ∗ acceptors have been illustrated for
H-bonds (n–σ∗) and dihydrogen bonds (σ–σ∗), as well as for the C6H6· · ·Br2 (π–σ∗)
example above. In the remainder of this section we shall therefore focus on CT
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Table 5.22. “Types” of donor–acceptor complexes, tabulating prototype
examples (and text references) for n-, σ-, and π-type donor (vertical)

and acceptor (horizontal) orbitals

n∗ σ∗ π∗ 

F3N· · · BH3 H-bonds H3N · · · NO+
n (nN–nB

∗ ) (n–σ∗ ) (nN–πNO
∗ )

Fig. 3.33 Section 5.2 Fig. 5.42

H2· · · BH3 Dihydrogen bonds H2· · · NO+
σ (σHH–nB

∗ ) (σ–σ∗ ) (σHH–πNO
∗ )

Fig. 3.98 Fig. 5.17 Fig. 5.44
C2H4· · · BH3 C6H6· · · Br2 C2H4· · · NO+

π (πCC–nB
∗ ) (πCC–σBrBr

∗ ) (πCC–πNO
∗ )

Fig. 3.99 Fig. 5.41 Fig. 5.45

complexes involving π∗ acceptor orbitals (n–π∗, σ–π∗, or π–π∗), using the strong
π-acid NO+ (the nitrosyl cation) as an illustrative acceptor monomer.85

5.3.2 n–π∗ Complexation

Figure 5.42 displays an example of n–π∗ CT complexation in the H3N· · ·NO+ com-
plex. The strong binding of this complex (∼44 kcal mol−1) is partially attributable
to long-range ion–ion and ion–dipole attraction, but the NBOs of Fig. 5.42(b) ex-
hibit the strong influence of n–π∗ donor–acceptor stabilization. As expected, NO+

has a triple-bonded Lewis structure, with both σ and π bonds polarized toward elec-
tronegative oxygen. The low-energy πNO

∗ acceptor orbitals are therefore oppositely
polarized to place large amplitude lobes at the nitrogen end. Favorable overlap of
the ammonia lone pair nN with one of these πNO

∗ lobes therefore requires a canted
N· · ·NO geometry, with θN···NO = 112◦, as depicted in Fig. 5.42(a). While such
canted geometry is strange from the classical ion–dipole perspective, it is clearly
optimal for effective n–π∗ overlap and may be taken as a characteristic geometrical
signature of the participation of a π∗ acceptor.

In parallel to the properties of H-bonded complexes (Section 5.2), the monomer
properties in the CT complex of Fig. 5.42 are strongly altered by n–π∗ stabiliza-
tion. Tables 5.23 and 5.24 summarize geometrical and NBO descriptors of the
H3N· · ·NO+ complex that illustrate these changes.

As seen in Table 5.23, nearly 40% of an electronic charge is formally transferred
from ammonia to NO+, and the resulting increase in πNO

∗ antibond density leads
to elongation of RNO by 0.035 Å (relative to the isolated monomer), which is quite
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Figure 5.42 The optimized structure (a) and leading nN–πNO
∗ donor–acceptor

interaction (b) of the H3N· · ·NO+ charge-transfer complex.

substantial86 considering the high bond order and large stretching force constant.
The πNO

∗ acceptor NBO becomes increasingly polarized toward the nN donor NBO
in the complex (increasing its acceptor strength). The lone pair of the complexed
ammonia monomer also acquires significantly higher p character (increasing its
donor strength) and becomes distinctly less pyramidal, effectively reducing the
dipole moment of the monomer (contrary to the expectations of an ion–dipole
model). Consistently with the resonance description (5.74), the bN···N bond order
becomes appreciable (0.45), and the short RN···N distance (2.06 Å) is well inside
van der Waals contact. The geometrical and charge properties of the complex are
therefore well accounted for in terms of a simple nN−πNO

∗ CT-interaction picture.
The importance of n–π∗ CT delocalization can also be assessed by deleting

these interactions (with the $DEL option) and reoptimizing the structure, as shown
in Fig. 5.43. For this purpose we deleted all three valence antibonds of NO+(σNO

∗

and two πNO
∗ NBOs) to suppress the leading possible valence CT delocalizations

from Lewis base to Lewis acid. Note that these three NBOs have zero occupancy

Table 5.23. Comparative geometrical properties of H3N· · ·NO+ (Fig. 5.42(a))
and isolated H3N and NO+ monomers

Bond length (Å) Bond angle (degrees)

Species RNH RNO RN···N θHNH θN···NO

H3N· · ·NO+ 1.021 1.095 2.057 110.1 112.4
Monomers 1.015 1.060 ∞ 107.9 —
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Table 5.24. Comparative NBO/NRT properties of H3N· · ·NO+ (Fig. 5.42(a)) and
isolated H3N and NO+ monomers

QNO bN···N nN πNO
∗

H3N· · ·NO+ +0.603 0.450 sp11.5 0.58(sp7.8)N + 0.81(sp14.0)O

Monomers +1.000 0.000 sp3.65 0.60(p)N + 0.80(p)O

in isolated NO+, so the CT-deleted potential-energy surface becomes identical to
the full surface in the long-range limit.

As shown in Fig. 5.43, the CT-deleted species differs dramatically from the
true H3N· · ·NO+ n–π∗ complex in Fig. 5.42. The CT-deleted binding energy is
reduced to 20.4 kcal mol−1, which is rather typical of the value expected for an
ion–dipole complex but less than half the true value. In the CT-deleted structure,
the characteristic canted N· · · NO geometry is lost, the intermolecular separation
increases by almost 1 Å (to RN···N = 3.11 Å, RN···O = 2.99 Å), and the monomer
geometries revert essentially to their long-range limits, without the characteristic
distortions (NH3 flattening, NO+ elongation) of the actual complex (Table 5.23).
Thus, although ion–dipole forces of classical type provide important background
attraction, the signature energetic and geometrical features of the H3N· · ·NO+

complex appear to be uniquely associated with the n–π∗ interaction depicted in
Fig. 5.42(b).

Figure 5.43 The optimized structure of CT-deleted H3N· · ·NO+ (with valence an-
tibonds of NO+ deleted to suppress intermolecular nN–πNO

∗ delocalization). The
shortest intermolecular N· · ·O and N· · ·N distances are 2.99 and 3.11 Å, respec-
tively, and the net binding energy is 20.4 kcal mol−1 (cf. Fig. 5.42 and Table 5.23).
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Figure 5.44 The optimized structure and leading σHH→πNO
∗ donor–acceptor in-

teraction of the H2· · ·NO+ complex. (a The sum of two near-equivalent interactions,
0.85 kcal mol−1 each.)

5.3.3 σ –π∗ Complexation

Figure 5.44 displays a simple example of σ–π∗ complexation in the H2· · ·NO+

complex. The canted geometry of the optimized complex again suggests the impor-
tant role of the πNO

∗ acceptor orbital, as shown in the donor–acceptor interaction of
Fig. 5.44(b). Owing to the much weaker donor strength of σHH compared with the
amine lone pair, the overall strength of σ–π∗ binding (∼3 kcal mol−1) and charge
transfer from H2 to nitrosyl (QCT = 0.063e) are considerably weaker than in the
H3N· · ·NO+ case. The changes in monomer properties (not tabulated) are similar
in direction but weaker in magnitude than those discussed above for H3N· · ·NO+.

The relative weakness ofσ–π∗ compared with n–π∗complexation can be rational-
ized as follows. The general second-order estimate of donor–acceptor stabilization
in the σ–π∗ case is

	Eσπ∗ (2) = −2
〈σ|F̂ |π∗〉2

επ∗ − εσ

(5.77a)

whereas that for n–π∗ stabilization is

	Enπ∗ (2) = −2
〈n|F̂ |π∗〉2

επ∗ − εn
(5.77b)

Two general differences are apparent. The Fock-matrix element 〈σ|F̂ |π∗〉 involving
the two-center σ donor is generally weaker than the corresponding 〈n|F̂ |π∗〉 for
the one-center n donor, because of the general reduction of σ-orbital amplitude
at each center (by the normalization factor 2−1/2) as well as the more directed
p-rich character of n compared with σ. For the present comparison this results in a
difference

〈σ|F̂ |π∗〉 � 0.021 a.u., 〈n|F̂ |π∗〉 � 0.093 a.u. (5.78a)
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which strongly increases the numerator in (5.77b) compared with (5.77a). Further-
more, the energy (εσ) of a sigma bonding orbital is lowered compared with that
(εn) of a lone-pair orbital, so the energy denominator in (5.77b) is greatly reduced
compared with that in (5.77a),

επ∗ − εσ � 0.65 a.u., επ∗ − εn � 0.37 a.u. (5.78b)

The combined effect is a strong decrease in the magnitude of επ∗ − εσ compared
with επ∗ − εn, and thus a weakening of the bonding in H2· · ·NO+ compared with
that in H3N· · ·NO+.

The smaller energy denominator, 	ε = επ∗ − εn, also leads to an altered pro-
portionality between the donor–acceptor stabilization energy and the quantity of
charge transferred (QCT), as discussed in Chapter 2 (see the discussion surrounding
Eq. (2.18)). From the general proportionality

QCT � 	ε 	ECT
(2) (5.79)

one can recognize that, for n−π∗ delocalizations, a given QCT corresponds to weak-
ened stabilization (or a given stabilization to increased charge transfer) compared
with σ−π∗ delocalizations.

5.3.4 π–π∗ Complexation

Alkene π–π∗ complexes

Let us begin by considering ethylene (C2H4) as a prototypical localized pi donor and
the nitrosyl cation as the Lewis pi acceptor. Figure 5.45 illustrates the interesting
structure of the ethylene–nitrosyl π–π∗ CT complex. As shown in Fig. 5.45(a),
the optimized complex (Cs symmetry) exhibits the characteristic x· · ·NO canted
geometry (x is the midpoint of the C—C bond) that is expected to bring the nitrosyl
πNO

∗ acceptor NBO into favorable overlap with the πCC donor NBO, as shown in
Fig. 5.45(b).

The short intermolecular distance (RxN = 2.445 Å), the tilt angle (θx···NO =
115.4◦), and the elongation of NO (by 0.031 Å) largely reflect the influence of
the dominant πCC−πNO

∗ donor–acceptor delocalization depicted in Fig. 5.45(b).
The large intermolecular charge transfer from C2H4 to NO+ (QCT = 0.374e) is also
consistent with the expected enhancement (cf. Eq. (5.79)) due to the small energy
denominator for this case

	ε = επ∗ − επ � 0.34 a.u. (5.80)

Thus, the energetic, structural, and charge properties of this species are aptly sum-
marized by the designation as a “π–π∗ CT complex.”
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Figure 5.45 The optimized structure and leading intermolecular π→π∗ donor–
acceptor interaction of the C2H4· · ·NO+ complex.

However, the important role of long-range Coulombic forces is also indicated
by the fact that the net binding (28.6 kcal mol−1) far exceeds the leading valence
πCC–πNO

∗ stabilization (9.7 kcal mol−1). At the equilibrium C· · ·N intermolecular
separation of ∼2.4 Å, the CT-induced net monomer charge (±0.37e) corresponds to
long-range Coulombic attraction of ∼20 kcal mol−1, which is sufficient to account
for this deficit. Of course, this “classical” electrostatic interaction is itself a conse-
quence of quantal intermolecular charge transfer, which has no classical counterpart.

The strong substituent effect of adjacent alkyl groups on the ethylenic pi bond
can be seen by comparison with the corresponding propylene : nitrosyl complex,
as shown in Fig. 5.46. In this case, the charge transfer (QCT = 0.475e) and bind-
ing energy (37.56 kcal mol−1) are significantly increased, relative to bare ethylene
donor.

In the CH3CH=CH2· · ·NO+ complex, the nitrosyl cation retains the charac-
teristic canted geometry indicative of strong πCC–πNO

∗ interaction (Fig. 5.46(c)).
However, the electrophilic attack shifts toward the terminal C of the pi bond, away
from the methyl substituent. Such anti-Markovnikov complexation is, of course,
to be expected from the relative polarization of the propylene pi bond toward the
terminal C (so that the πCC

∗ antibond is polarized toward the alkyl pi-donor).
However, as NO moves away from the plane between the pi-bonded C atoms

(the nodal plane of the πCC
∗ antibond), a complementary nN–πCC

∗ “back-donation”
becomes appreciable, as depicted in Fig. 5.46(d). Thus, both monomers act syn-
ergistically as both donors and acceptors in this complex (in distinct pairs of con-
jugated donor and acceptor orbitals). The net donation is from alkene to nitrosyl,
and the clear dominance of the interaction in Fig. 5.46(c) justifies the designation
of C3H6· · ·NO+ as a “πCC→πNO

∗ CT complex.”
Owing to the compensating back-donation (Fig. 5.46(d)) that arises as nitrosyl

is displaced from the midpoint of C=C (where the donor amplitude tends to be
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Figure 5.46 Optimized structure views, (a) and (b), and leading donor–acceptor
interactions, (c) and (d), in the C3H6· · ·NO+ charge-transfer complex. The contour
plane of (c) and (d) corresponds approximately to view (a).

highest), little energy is required to shift NO+ from one end of the πCC bond to the
other. The nitrosyl moiety can therefore migrate readily from one end of the pi bond
to the other (dependent on the relative pi-donor strength and electronegativity of
substituent(s) on the pi bond), even though the θC···NO tilt angle and RN···C separation
remain rather tightly constrained. Further aspects of this interesting pi-migratory
mobility are beyond the scope of the present work.

Table 5.25 compares some energetic, structural, and NBO electronic properties
of the nitrosyl π–π∗ complexes (including those to be discussed below). The binding
energies, charge transfers, and monomer distortions are all seen to be significantly
enhanced in CH3CHCH2· · ·NO+ compared with C2H4· · ·NO+, which is consistent
with the trend in π–π∗ donor–acceptor interaction strength. The increasing QCT

values (∼0.5e) also correspond to increasing long-range Coulombic attractions
(∼30–40 kcal mol−1) in these species.

We can also illustrate the interesting non-additivity of multiple donor–acceptor
interactions involving the same monomer. For this purpose we consider the ternary
NO+(C2H4)2 complex in which two ethylene molecules donate to the same
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Table 5.25. Comparative binding energies 	E, intermolecular charge transfer
QCT, bond lengths, and θC···NO angle of nitrosyl π–π∗ CT complexes

Species 	E QCT
a(e) RNO (Å) RC···N (Å) θC···NO (degrees)

NO+ — — 1.060 — —
C2H4· · ·NO+ 28.6 0.374 1.091 2.445 b 115.4 b

CH3CHCH2· · ·NO+ 37.6 0.475 1.102 2.234 119.4
(C2H4)2· · ·NO+ 41.4 0.509 1.102 2.500 112.5
C6H6· · ·NO+ 47.8 0.537 1.101 2.385 b 135.0 b

a QCT = 1 − QNO.
b Referred to the midpoint of the nearest C=C bond.

nitrosyl acceptor. As seen in numerous other examples in this book (e.g., Sec-
tions 2.6, 3.3.1, and 5.2.4), such an open-CT donor–acceptor pattern is expected
to result in anticooperative weakening of each ON+· · ·C2H4 coordination. Figure
5.47 displays the optimized structure, (a) and (b), and weakened πCC→πNO

∗ inter-
action (c) of the ternary complex, while the entries of Table 5.25 show that each
πCC· · ·πNO

∗ donor–acceptor bond lengthens by about 0.06 Å, the average bond
strength weakens by about 28%, and the charge transfer is reduced by about 32%,
relative to the binary NO+(C2H4) complex. Two weak nN−πCC

∗ back-donations
(not shown) are also present, each with estimated stabilization 1.36 kcal mol−1, but
the complex clearly warrants designation as a π–π∗ CT complex.

As shown most clearly in Fig. 5.47(b), the mutual coordination to nitrosyl brings
the two ethylene ligands into conspicuously close proximity (RC···C = 3.41Å). The
canted angle between the two pi bonds (θC···C=C = 110.9◦) is also favorable for
two weak πCC−πCC

∗ interactions between the C2H4 units (estimated second-order
stabilization 0.20 kcal mol−1 each) that also contribute marginally to the overall
stability of the complex (Fig. 5.47(d)). Thus, the nitrosyl CT complex appears
to pin the two coordinated ethylenic units into a mutual arrangement that may
be conducive to chemical reactivity, but further study of the interesting potential-
energy surface of this species is beyond the scope of the present work.

Aromatic π–π∗ complexes

Nitrosyl CT interaction with pi bonds is further strengthened in the interesting com-
plexes with benzene and other aromatic species. Figure 5.48 shows the equilibrium
structure and leading intermolecular NBO interaction for the C6H6· · ·NO+ com-
plex, and Table 5.25 includes geometrical and charge properties of this species. The
aptness of the term “charge-transfer complex” is evident from the fact that more
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Figure 5.47 Optimized-structure views, (a) and (b), and donor–acceptor interac-
tions, (c) and (d), in NO+(C2H4)2.

than half of the net cationic charge resides on the benzene moiety, continuing the
trend found in weaker π–π∗ CT complexes.

Kochi and coworkers87 succeeded in characterizing C6H6· · ·NO+ and many other
nitrosyl–arene complexes by X-ray crystallography as well as optical and vibra-
tional spectroscopy. The experimentally determined properties of these species –
including the canted geometry of the nitrosyl over the edge of the benzene ring,
the benzene-ring distortions (to be described below), and the strong charge transfer
from nitrosyl to arene – are in accord with the theoretical characterization presented
in Fig. 5.48 and Table 5.25.

As shown in Figs. 5.48(c) and (d), the nitrosyl accepts electron density in each
of the two orthogonal πNO

∗ NBOs. The πNO
∗ protruding out of the plane of Fig.

5.48(b) accepts electron density primarily from the proximal C=C pi bond beneath
NO (Fig. 5.48(d)), while that lying in the plane has two equivalent interactions
(Fig. 5.48(c)) with the two remaining distal πCC NBOs. Thus, the charge-donation
pattern corresponds to the lower symmetry of a particular localized Kekulé structure
rather than the D6h-symmetric pi cloud of the entire ring.
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Figure 5.48 Optimized-structure views, (a) and (b), and leading πCC→πNO
∗

donor–acceptor interactions, (c) and (d), in the C6H6· · ·NO+ charge-transfer com-
plex. The contour planes of (c) and (d) correspond, respectively, to in-plane and
orthogonal out-of-plane cuts through the NO moiety in view (a).

The CT interaction is manifested not only in pronounced lengthening of the
nitrosyl bond (Table 5.25) but also in more subtle structural changes in the benzene
ring. In the distorted C2v ring geometry, the proximal C=C bond beneath NO is
appreciably elongated (1.406 Å) relative to the opposite C=C bond (1.399 Å), while
the two remaining pairs of C=C bonds exhibit intermediate distortions (1.404 and
1.401 Å), according to their proximity to the nitrosyl moiety.

These structural distortions are also mirrored in the asymmetric charge distribu-
tion around the benzene ring. Thus, the total valence pi occupancy (the sum of πCC

and πCC
∗ occupancies) is slightly lower in the two distal C=C bonds (1.8166e) than

in the proximal C=C bond (1.8262e), in accordance with the relative strengths of
donor–acceptor interactions shown in Figs. 5.48(c) and (d) and the RCC variations
quoted above. The polarization coefficients of the three πCC NBOs and total natural
charges of each C also reflect the lowered symmetry of donor–acceptor interac-
tions with nitrosyl. This example again illustrates how a localized NBO description
of benzene (cf. Section 3.3.2) provides certain advantages over the canonical MO
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description in elucidating details of π interactions with specific substituents or
complexing agents.

5.3.5 Other charge-transfer complexes

Let us briefly mention some other binary A· · · B charge-transfer complexes involv-
ing neutral monomers A and B chosen rather arbitrarily from the large number of
possible species of this type. These examples serve to illustrate interesting aspects
of the general CT phenomenon and exhibit the strong commonality with donor–
acceptor interactions considered elsewhere in this book.

In analogy to its complexes with nitrosyl cation (as described above), benzene
can form donor–acceptor adducts with a variety of metallic and non-metallic Lewis
acids. These lead to materials with novel optical and electrical properties that can
be tuned through substituents on the aromatic ring.

Benzene–tricarbonylchromium

A simple example of aromatic CT complexation to transition metals is illustrated in
the Cr(CO)3· · ·C6H6 complex shown in Fig. 5.49. In the geometry of this complex,
each of the three polar σCrC

∗ acceptor orbitals of Cr(CO)3 is oriented to point the d-
type metal hybrid lobe toward one of the benzene C=C bonds, somewhat analogous
to the nitrosyl positioning shown in Fig. 5.48(b).

Owing to the πCC–σCrC
∗ CT interactions, the usual equivalence between the two

Kekulé structures of benzene is broken and the ring distorts strongly to D3h sym-
metry, with pronounced alternation (by 0.02 Å) of C=C bond lengths. Complexes
of this type are evidently closely related to the metallocene sandwich compounds
discussed elsewhere in this book (Section 4.9.5), with the benzene molecule de-
scribed as a “tridentate ligand” in the language of metal coordination chemistry.

Figure 5.49 The structure of the benzene–chromiumtricarbonyl CT complex (C3v
symmetry).
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Owing to the close connection with other metal–ligand coordination phenomena
discussed in Sections 4.5–4.9, we do not consider this example further.

Benzene–TCNE

A well-known example of benzene coordination to a non-metallic neutral Lewis
acid is given by the binary CT complex with tetracyanoethylene (TCNE),88

(5.81)

as shown in Fig. 5.50. The optimized geometry places the cyano πCN
∗ antibonds

in favorable orientation for weak πCC–πCN
∗ interactions with the benzene πCC

bonds, as depicted in Fig. 5.50(b). Table 5.26 summarizes geometrical and charge
characteristics of the benzene–TCNE complex.

Despite the relatively weak net attraction, characteristic CT-induced shifts of
geometry and charge distribution are apparent in both monomers. As shown in
Table 5.26, the benzene ring distorts slightly in quinoid-like fashion, and each
C—H bond polarizes to put increased anionic charge at C, thereby increasing the
Lewis-base strength. On the TCNE monomer, each C≡N bond also repolarizes
to give increased πCN

∗ acceptor strength. In addition, however, each cyano group
bends out of planarity by 1–2◦ (giving the bowl-shaped concavity in the view of
Fig. 5.50(a)) to emulate slightly the canted geometry of other π–π∗ complexes. All
these changes are in the direction expected to strengthen the valence πCC–πCN

∗ CT
interaction of Fig. 5.50(b).

Figure 5.50 The optimized structure (a) and leading πCC–πCN
∗ donor–acceptor in-

teraction (b) of the benzene–tetracyanoethylene (TCNE) charge-transfer complex.
(The contours of πC1C2 –πCN

∗ interaction in panel (b) are in the plane of benzene
C2 and the marked C and N atoms of TCNE shown in (a).) The intermolecular
separation is 3.63 Å and the net charge transfer from benzene to TCNE is 0.0179e.



5.3 Charge-transfer complexes 677

Table 5.26. Selected geometrical parameters (bond length R,
valence angle θ , and dihedral angle φ) and atomic charges Q

(for atoms involved in the πCC–πCN
∗ interaction) of the

benzene· · · TCNE complex compared with isolated
monomers; see Fig. 5.50

Variable Complex Isolated

Benzene
RC1C2 (Å) 1.396 1.398
RC2C3 (Å) 1.395 1.398
θHC1C4 (degrees) 179.6 180.0
QC1 −0.211 −0.205
QC2 −0.209 −0.205

TCNE
RC=C (Å) 1.367 1.368
θCCN (degrees) 178.5 180.0
φNC=CN(t) (degrees) 177.3 180.0
QC +0.262 +0.253
QN −0.201 −0.188

He–BeO

A quite different type of CT complex is the linear He· · ·BeO species shown in
Fig. 5.51. This is one of an interesting series of complexes between rare-gas
atoms and beryllium oxide that were first discovered computationally by Koch
and coworkers.89

As shown by NBO analysis, the BeO molecule is highly ionic (roughly
Be+1.6O−1.6), making the beryllium end a powerful Lewis acid. The filled σBeO

NBO is strongly polarized toward oxygen, so the unfilled σBeO
∗ antibond is vir-

tually entirely composed of the sp hybrid on beryllium. Both the backside of this
σBeO

∗ antibond and the vacant nBe
∗ orbital (the oppositely directed sp hybrid on Be)

can interact strongly with the filled nHe orbital, as shown in Figs. 5.51(b) and (c).
Despite the strong steric repulsions that are present at the close He· · ·Be approach
distance (1.51 Å), the complex is bound by a healthy 6.4 kcal mol−1.

The backside nHe−σBeO
∗ donor–acceptor interaction in Fig. 5.51(c) is particu-

larly noteworthy. This interaction displays the advantage of the compact nHe radius
(which is normally a strong deterrent to effective Lewis basicity) in overlapping
with the contracted backside lobe of σBeO

∗ while avoiding the surrounding angular
nodes (and resulting loss of overlap). This example illustrates that the “donor” or
“acceptor” character of a monomer involves specific orbital pairings of the two
monomers, rather than, e.g., a generic property of the monomer that is independent
of the identity of the other monomer. Thus, while the He atom is well known to
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Figure 5.51 The optimized structure (a) and leading donor–acceptor interactions,
(b) and (c), of the He· · · BeO charge-transfer complex (RHe···Be = 1.506 Å, RBeO =
1.320 Å, QCT = 0.039e).

be “inert” with respect to most Lewis acids, its compact size is a clear asset with
respect to effective CT interactions with the contracted Be 2s and 2p orbitals of
BeO. Whether He can appear chemically active to serve as an effective Lewis base
evidently depends critically on whether suitable matching orbitals can be found on
the Lewis acid.

More generally, we can recognize that an acceptor orbital of unusual size or shape
may demand an “unusual” Lewis base to offer a suitable matching donor orbital.
The CT complexes formed by a monomer therefore provide a direct reflection of
the shapes, sizes, and energies of its filled and unfilled valence orbitals. The rich
diversity of donor–acceptor chemistry can be largely attributed to the richly varie-
gated forms of donor and acceptor orbitals, which is consistent with the strongly
quantum-mechanical character of donor–acceptor phenomena.

5.4 Transition-state species

5.4.1 Chemical reactions and transition-state complexes

According to Eyring’s reaction-rate theory,90 the elementary bimolecular chemical
reaction between reactant species A and B proceeds through a transition-state
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complex A· · · B‡ along the reaction path leading to product species P:

A + B → [A· · ·B‡] → P (5.82)

The transition-state (TS) complex A· · · B‡ is considered to correspond to a topo-
logical saddle-point along the minimum-energy pathway (intrinsic reaction co-
ordinate s) that connects the reactant and product equilibrium minima on the
potential-energy surface. Alternatively, A· · · B‡ corresponds to a maximum on the
one-dimensional (Arrhenius-like) reaction profile that connects reactant and prod-
uct minima (Fig. 5.52). Just as vacationers at Winter Park must make the difficult
climb over Berthoud Pass before descending to Denver, so must chemical travelers
A and B on the potential-energy landscape climb over the high-energy TS pass
before descending to the low-energy valley of final products.

Like other supramolecular complexes, a TS complex A· · · B‡ is a true stationary
point on the potential-energy surface, with vanishing forces at every nucleus. How-
ever, unlike other complexes discussed above, a TS complex sits atop a repulsive
hill rather than at the bottom of an attractive energy well of the potential-energy
surface. In the A· · · B‡ case, intermolecular donor–acceptor stabilizations serve to
soften the repulsions between A and B, rather than create an energy well (or deepen
an existing well) relative to asymptotically separated systems A and B at rest. In
other respects the donor–acceptor stabilizations of an A· · · B‡ species are fully
analogous to those of an A· · · B equilibrium species in counteracting the repulsive
forces that may otherwise be present at the chosen configuration.

Donor–acceptor stabilizations of a TS A· · · B‡ complex are intimately related
to the general theory of catalysis. Reduction of the repulsive TS barrier between
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Figure 5.52 A schematic reaction energy profile for the bimolecular elementary
reaction (5.82).

reactants and products reduces the activation energy of reaction in both forward
and reverse directions:

Ea
f = E(A· · ·B‡) − E(reactants) (5.83a)

Ea
r = E(A· · ·B‡) − E(products) (5.83b)

thereby accelerating (catalyzing) the reaction rate relative to the unstabilized TS
barrier. The general catalytic influence of a TS-stabilizing interaction refers both
to this net energy lowering at TS geometry (an enthalpic effect) and to general
softening of the potential with respect to vibrational displacements (an entropic
effect). Both influences contribute to the reduction of the Gibbs free energy of
activation (	G‡) that accelerates the reaction rate.

In accord with general Eyring TS theory, we may consider every elementary
chemical reaction to be associated with a unique A· · · B‡ supramolecular complex
that dictates the reaction rate. In the present section we examine representative TS
complexes from two well-known classes of chemical reactions: SN2 nucleophilic
displacement reactions

X:− + H3C—Y → [X· · ·CH3· · ·Y]− → X—CH3 + :Y− (5.84a)

and Diels–Alder 4 + 2 cycloaddition reactions

(5.84b)

The TS complex for an illustrative proton transfer reaction,

A—H + :B− → [A· · ·H· · ·B]− → A:− + H—B (5.84c)



5.4 Transition-state species 681

was previously described in Section 5.2.5, and that for a model olefin-
polymerization reaction was described in Section 4.7.5.

Consistently with the discussion in Section 4.7.5, we can describe the entire
reaction profile from reactant (R) to product (P) species,

R → [TS‡] → P (5.85)

in terms of NRT weightings and bond orders along the intrinsic reaction coordi-
nate91 (IRC) s. Near the reactant limit (s � sR) the weighting wR of reactant-like
resonance structure is near unity, while that (wP) of product-like resonance structure
is negligible,

s � sR: wR � 1, wP � 0 (5.86a)

and at the opposite product limit these relative weightings are reversed,

s � sP: wR � 0, wP � 1 (5.86b)

AswR(s) andwp(s) vary between these limits, they necessarily cross in the neighbor-
hood of the transition state. The TS‡ complex therefore corresponds to a resonance
hybrid of nearly equal reactant-like and product-like contributions,92

wR(s) � wP(s) at s = s‡ (5.86c)

Equation (5.86c) also expresses the chemically reasonable condition that nascent
product bonds are approximately half-formed and reactant bonds half-broken (NRT
bond order � 1

2 ) at s = s‡.
The NRT description of TS complexes is closely related to the general two-state

valence bond model of Shaik and Pross.93 This model emphasizes the coupled
changes in two adiabatic states that evolve from distinct diabatic valence-bond
(VB) configurations φR and φP in the neighborhood of a degeneracy. As the non-
interacting VB states cross in energy at s = s‡,

ER(s) = EP(s) at s = s‡ (5.87a)

the VB interaction element

∆RP = 〈φR|Ĥ |φP〉 (5.87b)

leads to an avoided crossing in the corresponding adiabatic states E±(s)

E±(s) � ER + EP

2
± |∆RP| (5.87c)

such that the lower (ground) state E (s) passes through a maximum and the upper
(excited) state E+(s) through a minimum at s = s‡. The NRT description (5.86)
of the ground-state TS complex is consistent with (but does not require) such
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mirror-like behavior in the potential-energy surfaces of the coupled states. Only the
behavior of the ground-state surface will be examined in the following examples.

The NRT formalism will be used to describe the interacting species along the
entire reaction coordinate. Such a continuous representation allows the TS complex
to be related both to asymptotic reactant and product species and to other equilib-
rium bonding motifs (e.g., 3c/4e hypervalent bonding; Section 3.5). A TS complex
can thereby be visualized as intermediate between two distinct chemical bonding
arrangements, emphasizing the relationship between supramolecular complexation
and partial chemical reaction.

5.4.2 SN2 Reactions

As a simple prototype of nucleophilic displacement reactions (5.84a), let us consider
the symmetric case X = Y = F,

F− + H3CF → [F· · ·CH3· · ·F]− → FCH3 + F− (5.87)

for fluoride exchange with methyl fluoride. In this case the TS complex is the
trigonal-bipyramidal (D3h-symmetric) species shown in Fig. 5.53(a), exhibiting
strong resonance delocalization that can be clearly attributed to 3c/4e hypervalent
ω-bonding (the Pimentel–Rundle three-center MO picture; Sections 3.5 and 4.6).
Such bonding is expressible in resonance terms as

F− + H3C—F ←→ F—CH3 + F− (5.88)

or in NBO terms as a strong intermolecular nF−σCF
∗ donor–acceptor delocalization

(Fig. 5.53(b)).
In the [F· · ·CH3 · · · F]− TS complex there is evidently a perfectly symmetric

relationship between the two outer pF orbitals and the central pC orbital that form

Figure 5.53 The transition-state complex for the F− + CH3F fluoride-exchange
reaction (5.87): (a) the optimized structure and (b) the leading nF−σCF

∗ donor–
acceptor interaction.
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the three-center bonding MO. The 3c/4e interaction is also representable as an
ωF:CF = ωFC:F hyperbond in a structural formula of the form

(5.89)

As previously described (see, e.g., the discussion surrounding Fig. 3.86), there
is an intimate connection between certain equilibrium hyperbonded species (e.g.,
FMH3F, M = Si, Ge, . . . ) and the corresponding transition species (e.g., FMH3F,
M = C) in isovalent systems. Only a slight strengthening (by ∼10 kcal mol−1)
of the nF−σCF

∗ interaction in Fig. 5.52(b) would suffice to convert (5.89) from
a supramolecular TS “complex” into a stable “molecule.” This viewpoint allows
one to see the essential electronic continuity that unites many molecular and super-
molecular species. The NBO donor–acceptor interactions that contribute to stable
species are also expected to be present in isovalent unstable species of correspond-
ing geometry.

Figure 5.54 displays the IRC reaction profile for the fluoride-exchange reaction
(5.87). Because the reaction coordinate is the IRC rather than RFC, the barrier profile
differs somewhat from that shown in Fig. 3.86. The activation energy is calculated
to be 9.54 kcal mol−1 (without zero-point-energy correction), corresponding to an
appreciable rate of chemical exchange under ambient thermal conditions.

The stabilizing effect of the intermolecular nF−σCF
∗ interaction (Fig. 5.53(b))

can also be assessed by deleting the 〈nF|F̂ |σCF
∗〉 interaction-matrix element and

recalculating the potential-energy surface Edel(s) in the absence of this interaction.

Figure 5.54 The potential-energy reaction profile (along the IRC) for the F− +
H3CF → FCH3 + F− reaction.
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Figure 5.55 A comparison of the reaction energy profiles for the full calculation
(circles) and the CT-deleted calculation (crosses), with the nF−σCF

∗ NBO inter-
action deleted in the latter case.

Figure 5.55 illustrates the strong difference between the CT-deleted Edel (crosses)
and the actual potential-energy values for the full calculation (circles) on the product
side of the IRC. Clearly, a low-energy TS pass from reactant to product species is
possible only when the intermolecular nF−σCF

∗ stabilization is included. Even
in the far wing of the reaction profile at s = 2.5, the synergistic geometrical and
electronic distortions of the evolving TS complex are seen to be so pronounced that
the simple second-order estimate of nF−σCF

∗ interaction strength (Fig. 5.53(b)) is
quite inadequate to represent the actual numerical magnitude of the intermolecular
stabilization.

Figure 5.56 illustrates the variation of NRT bond orders bCF for reactant and
product C—F bonds along the reaction coordinate, and Fig. 5.57 illustrates the
corresponding variations of natural atomic charge on the two F atoms. Despite the
numerical scatter, one can see in Fig. 5.56 that the reactant (bCF) and product (bCF′)
bond orders respectively diminish and increase while preserving approximately
constant total bond order in the shifting ωF:CF′ hyperbond,

bCF + bCF′ � 1 (5.90)

paralleling the behavior in H-bonded proton-transfer complexes (cf. Fig. 5.36). The
charge transfer also progresses in the expected manner from the TS complex (where
QF = QF′ = −0.708) toward dissociated products (QF → −1, QF′ → −0.395),
as depicted in Fig. 5.57. Note particularly that the supramolecular complex displays
continuous variation of charge transfer along the reaction coordinate (rather than,
e.g., discontinuous electron “hopping”), which is consistent with Mulliken’s con-
cept of using a charge-transfer coordinate to track the progress of electron transfer.
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Figure 5.56 Variations of reactant (circles) and product (triangles) C—F bond
orders bCF on going from the TS complex (s = 0) toward the final product.

The results above confirm that a TS supramolecular complex exhibits partic-
ularly strong chemical-exchange effects, but is recognizably related by electronic
continuity to other types of complexes and stable molecules. Against the steeply re-
pulsive forces of steric interactions, NBO donor–acceptor interactions are evidently
responsible for opening a gateway pass through a repulsive barrier region into a
new valley of chemical stability. Thus, even more important than their role in sta-
bilizing equilibrium species is the fact that donor–acceptor interactions serve to
soften repulsive regions and open up low-lying reactive pathways that serve to
channel and guide chemical species toward productive chemical rearrangements
on the potential-energy surface.

Figure 5.57 Variations of fluorine atomic charge QF on going from the TS complex
(s = 0) toward the final product for initially bonded (circles) and free (triangles) F.
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5.4.3 Diels–Alder reactions and Woodward–Hoffmann rules

Since its recognition and systematic exploration by Otto Diels and Kurt Alder in
the 1920s, the Diels–Alder reaction motif (5.84b) has provided one of the most
powerful tools of organic synthesis. The Diels–Alder reaction led directly to the
dramatic pre-World War II development of the chemical industry for production of
synthetic rubber and other polymeric materials. Today, the commercial impact of
Diels–Alder methods extends to virtually all areas of agricultural, pharmaceutical,
and natural-products chemistry.

Elucidation of the mechanism of Diels–Alder and related pericyclic reactions
was also associated with noteworthy advances in bonding theory. These advances94

culminated in the remarkable “selection rules” formulated by Robert B. Woodward
and Roald Hoffmann in the 1960s.95 The Woodward–Hoffmann rules provide a uni-
fied framework for assessing favorable (“allowed”) and unfavorable (“forbidden”)
MO phase patterns in a cyclic transition state of the type that governs Diels–Alder
cycloaddition and related electrocyclic and sigmatropic reactions. General recogni-
tion of the importance of the conservation of orbital symmetry in organic reaction
mechanisms constituted one of the most dramatic paradigm shifts in twentieth-
century chemical thinking.

As shown in (5.84b), the characteristic feature of the Diels–Alder reaction is
the addition of an ethylenic double bond (dienophile) across the 1, 4-positions of a
conjugated diene to give a cyclohexene ring product. The ethylenic bond is usually
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activated by adjacent carbonyl, carboxyl, cyano, or nitro groups, and many sub-
stituents also serve to activate the diene. Although the simplest butadiene + ethylene
reaction is immeasurably slow under ambient conditions, this limiting prototype
provides a suitable model system for examining general features of the Diels–Alder
transition state, as well as a baseline for discussing substituent effects.

Figure 5.58 depicts two views of the Diels–Alder TS complex, which lies about
25.5 kcal mol−1 above isolated butadiene + ethylene reactants (or 54.1 kcal mol−1

above the cyclohexene product). Figure 5.58b shows clearly the strong departures
from planarity that signal reorganization from trigonal sp2 to tetrahedral sp3 bonding
in the TS complex.

Figures 5.58(c) and (d) display the leading strong donor–acceptor stabilizations
of the TS complex in terms of reactant NBOs (each panel depicting one of two
equivalent interactions). As shown in Fig. 5.58(c), each pi bond (π12 and π34)
of the diene delocalizes strongly into the ethylenic pi antibond (π56

∗), with esti-
mated 34 kcal mol−1 total stabilization. Figure 5.58(b) shows how each butadiene
terminal —CH2 group twists to orient its pπ orbital toward the corner lobe of the
ethylene πeth

∗ antibond (as also shown by the canted πbuta orbital in Fig. 5.58(c)).
However, strong synergistic CT delocalization in the opposite direction (with esti-
mated total 23 kcal mol−1 stabilization) is provided by the two strong πeth→πbuta

∗

interactions shown in Fig. 5.58(d). The net result of this closed-CT pattern of π−π∗

donor–acceptor interactions is therefore to stabilize the TS complex by more than
57 kcal mol−1, providing the relatively low-energy TS pass between reactant and
product valleys with little net accumulation of charge on either monomer.

To achieve the strong delocalizations shown in Fig. 5.58(c), it is obviously crucial
that the two πbuta donor NBOs are free to adopt opposite overall phases (as is
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Figure 5.58 Views of the model Diels–Alder transition state, (a) and (b), and
leading donor–acceptor interactions, (c) and (d), in reactant-type NBOs (one of
the two equivalent interactions of each type).

always possible for two distinct pi bonds), so that each can overlap constructively
with oppositely phased lobes of the ethylene πeth

∗ antibond. Similarly, in Fig.
5.58(d), it is crucial that the two πbuta

∗ antibonds can orient lobes of the same phase
toward the πeth donor NBO. Thus, if the upper C1 and C4 atoms in Figs. 5.58(c)
and (d) were directly bonded by π14 and π14

∗ NBOs (as in the analogous 2 + 2
cycloaddition reaction), the corresponding π14→π56

∗ and π56→π14
∗ stabilizations

would be strictly vanishing, as in the cyclobutadiene example of Section 3.3.2. This
simple consequence of localized π–π∗ interaction patterns is the localized NBO
analog of the Woodward–Hoffmann rules.

Alternatively, we can also analyze the TS complex with respect to NBOs of the
product-like Lewis structure (by using the standard $CHOOSE option of the NBO
program). Figure 5.59(a) depicts an alternative view of the TS geometry, with bond
sticks drawn to emphasize the relationship to the product cyclohexene molecule.
Figures 5.59(b)–(d) depict the leading donor–acceptor stabilizations in the product
NBO Lewis structure.
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Figure 5.59 A view of the model Diels–Alder transition state (a) and leading
donor–acceptor interactions (b)–(d) in product-type NBOs.

The principal hyperconjugative delocalizations are from the two nascent sigma
bonds (σ1,5 and σ4,6) to the cyclohexene π2,3

∗ antibond, each contributing
24.7 kcal mol−1 (Fig. 5.59(b)). Synergistically, the cyclohexene pi bond π2,3 back-
donates to the new antibonds σ1,5

∗ and σ4,6
∗, giving strong stabilization (Fig.

5.59(c)) and a closed-CT delocalization pattern. Finally, the two coplanar nascent
sigma bonds hyperconjugate strongly with one another, each such σ–σ∗ interaction
contributing 19.0 kcal mol−1 stabilization (Fig. 5.59(d)). Overall, the TS complex is
stabilized (relative to a perfectly localized cyclohexene Lewis structure of distorted
TS geometry) by more than 120 kcal mol−1 due to the strong valenceπ→σ∗, σ→π∗,
and σ→σ∗ delocalizations depicted in Figs. 5.59(b)–(d).

It is again clear from these diagrams that theσ1,5 and σ4,6 skeletal sigma bonds are
“allowed” to adopt opposite phases for favorable σ1,5–π2,3

∗ and σ4,6–π2,3
∗ overlap

with the oppositely phased lobes of π2,3
∗ (and similarly for the two complementary

π2,3→σ1,5
∗ and π2,3→σ4,6

∗ interactions). In contrast, the corresponding interac-
tions with a bridging σ1,4 bond (if present) would be “forbidden” to benefit from
such stabilization.
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Figure 5.60 The transition-state region of the reaction profile (along the IRC)
for the model butadiene + ethylene Diels–Alder reaction. (The zero of energy
corresponds to the cyclohexene product.)

The localized product-NBO view also makes clear the importance of the non-
planarity of the TS in achieving favorable hyperconjugative stabilizations, because
interactions of π–σ∗ and σ–π∗ type necessarily vanish in planar geometry. Indeed,
one can see that favorable vicinal π–σ∗ or σ–π∗ overlap should primarily involve
one end (hybrid) of each NBO, oriented, if possible, in the anti conformation for
maximum stabilization. This viewpoint allows one to recognize the importance of
angular and orientational factors that would not be evident in a purely topological
framework.

Figure 5.60 displays a portion of the Diels–Alder reaction profile in the neigh-
borhood of the TS complex. In this case the IRC profile is rather unsymmetric
around s = 0, ascending slowly from the reactant side toward the TS summit,
then plummeting rapidly toward the product cyclohexene limit, which lies about
29 kcal mol−1 below the reactants (and 54 kcal mol−1 below the TS).

Figure 5.61 displays the variations of NRT carbon–carbon bond orders (bCC)
along the reaction coordinate (with the atom numberings shown in Fig. 5.59(a)).
As shown in Fig 5.61, the strengths of the reactant pi bonds π1,2, π3,4, and π5,6

are steadily diminishing, while those of the product π2,3, σ1,5, and σ4,6 bonds are
steadily increasing through the TS region. The variation of b5,6 closely parallels
that of b1,2 (or b3,4), showing that the dissolution of the three reactant πCC bonds is
highly synchronous. The crossing point b1,2 = b2,3 (where the wR = wP degeneracy
condition (5.86c) is satisfied) occurs at s = +0.1, very close to the actual transition
state.
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Figure 5.61 Variations of NRT C—C bond orders b1,2 (triangles), b2,3 (squares),
b1,5 (circles), and b5,6 (plus signs) along the IRC for the model Diels–Alder reaction
(see Fig. 5.59(a) for the atom numbering).

In accord with general resonance-theory concepts, we may expect that each
bond order in Fig. 5.61 can be approximated in terms of an effective product-like
weighting wP by

b2,3 � 1 + wP (5.91a)

b1,2 � b5,6 � 2 − wP (5.91b)

b1,5 � wP (5.91c)

corresponding to idealized single (b2,3 = 1) and double (b1,2 = b5,6) reactant bonds
when wP = 0. Furthermore, the product weighting wP should vary from zero at
s = −∞ to unity at s = ∞, a behavior that is approximately described by the
simple trigonometric function

wP(s) � 1

2
+ 1

π
tan−1(s) (5.92)

(where the arctangent function is evaluated in radians). Figure 5.62 plots these
approximations for comparison with the calculated NRT bond orders in Fig. 5.61,
showing that the simple estimate (5.92) well describes the actual bond-order vari-
ations.

Finally, Fig. 5.63 plots the NRT bond-order–bond-length relationship for all
C—C bond variations in the IRC range (−2 ≤ s ≤ 2) of Fig. 5.60. The bCC–RCC

curve is approximately linear in the region 1 ≤ bCC ≤ 2,

RCC � −0.20bCC + 1.71 (bCC = 1.5 ± 0.4 Å) (5.93a)
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Figure 5.62 Similar to Fig. 5.61, as estimated from Eqs. (5.91) and (5.92).

and, with a different slope, in the region around bCC � 0.5,

RCC � −0.61bCC + 2.51 (bCC = 0.5 ± 0.3 Å) (5.93b)

These crude approximations allow the C—C skeletal geometry variations to be
simply estimated from the bond-order variations in Figs. 5.61 and 5.62.

Example 5.7 (below) illustrates how the variations in Figs. 5.61–5.63 can be
related through the approximate relationship (5.92) that expresses the composition

Figure 5.63 The NRT bond-order–bond-length correlations for C1—C2 (trian-
gles), C2—C3 (squares), C1—C5 (circles), and C5—C6 (plus signs) bonds in the
model Diels–Alder reaction (see Fig. 5.59(a) for the atom numbering).
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of the resonance hybrid along the IRC. Together with a picture of the interacting
reactant-like and product-like NBOs (Figs. 5.58 and 5.59), these combined approx-
imations lead to a useful qualitative description of key bond lengths and angles that
govern transition-state stabilization and “allowed” passage along the IRC.

Example 5.7

Problem: Use the approximations (5.91)–(5.93) to estimate the Diels–Alder RCC bond
lengths at s = 0.5.

Solution: From the estimate (5.92) we obtain

wP(s = 0.5) = 0.5 + tan−1(0.5)

π
= 0.5 + 0.4636

3.1416
= 0.65

From Eqs. (5.91a)–(5.91c), the corresponding bond orders are

b1,2 = 1.35

b2,3 = b5,6 = 1.65

b1,5 = b4,6 = 0.65

The bond-order–bond-length relations (5.93a) and (5.93b) therefore predict

R1,2 = 1.38 Å (actual: 1.38 Å)

R2,3 = R5,6 = 1.44 Å (actual R2,3 = 1.41 Å, R5,6 = 1.42 Å)

R1,5 = R4,6 = 2.11 Å (actual: 2.15 Å)

The simple approximations (5.91)–(5.93) give a reasonable qualitative description of Diels–
Alder bond orders and bond lengths over the range of IRC values shown in Fig. 5.60, showing
that the changes in geometry leading to the transition-state complex are effectively governed
by a single resonance-hybrid composition parameter wP.

5.5 Coupling of intramolecular and intermolecular interactions

5.5.1 The theory of resonance-assisted coupling of H-bonding and torsions

The preceding Section 5.4 dealt with limiting transition-state complexes in which
interacting monomers are severely distorted and electronically rearranged from
their isolated forms. Nevertheless, in stable equilibrium complexes the perturba-
tion of monomer properties due to intermolecular interactions is often considered
to be negligible (as is explicitly assumed, e.g., in the London long-range theory;
Section 5.1.3). Authors of earlier studies (Sections 5.2 and 5.3) therefore tended
to ignore intramolecular effects of supramolecular complexation, except those in-
volving monomer bonds whose NBOs are most active participants in intermolecular
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charge delocalization. In the present section we discuss some surprising effects of
supramolecular complexation on monomer properties that might appear to be well
insulated from such perturbations.

As described in Section 3.4.2, the intramolecular couplings between torsions
and vibrations are principally due to hyperconjugative NBO donor–acceptor inter-
actions that are conveniently expressed in the language of resonance theory. The
intermolecular donor–acceptor interactions of H-bonding can also be formulated
in resonance language (see, e.g., (5.29a) or (5.72)). Thus, couplings between in-
tramolecular and intermolecular interaction modes should also be describable in
resonance-theoretic terms, with increased strength for monomers exhibiting in-
creased resonance delocalization.

A particularly interesting sensitivity to intermolecular interactions occurs when
a torsional group (e.g., R = CH3) is attached to the central atom of a resonance-
stabilized allylic-like system,

(5.94)

Examples of this motif include the carboxylate, amide, and imidazole derivatives
shown below:

(5.95)

These moieties (particularly (5.95b)) are prominent in protein chemistry, and mech-
anisms for controlling their torsional stiffness have obvious potential implications
for protein-folding processes.

As described in Section 3.4.2, hyperconjugative donor–acceptor stabilizations
favor conformers in which one of the rotor C—H bonds eclipses an adjacent dou-
ble bond. (This is equivalent to an ethane-like staggered preference if the double
bond is pictured in terms of two bent “banana bonds.”) Hence, in the case of a
perfectly localized Lewis structure I, the methyl group would be expected to adopt
the preferred “pseudo-cis” conformation Ia (with in-plane C—H syn to A=C),



5.5 Coupling of interactions 695

(5.96)

whereas localized structure II would prefer the “pseudo-trans” conformation IIb,

(5.97)

The rotation barrier (	E rb
(I)) for structure I,

	E rb
(I) = E(Ib) − E(Ia) (5.98)

and that (	E rb
(II)) for structure II,

	E rb
(II) = E(IIa) − E(IIb) (5.99)

might both be expected to be similar to those (1–2 kcal mol−1) of the propene
derivatives discussed in Section 3.4.1.

However, in the limit of equal resonance weights (wI = wII) in the resonance
hybrid (5.94), the rotameric forms Ia and IIa or Ib and IIb become equivalent, and
the rotation barrier (	E rb

(hyb)) of the resonance hybrid is expected to vanish,96

	E rb
(hyb) � 0 (5.100)

More generally, for unequal weightings (wI �= wII) we may expect the rotation
barrier to be approximated by

	E rb
(hyb)(wI, wII) � |wI − wII|(wI 	E rb

(I) + wII 	E rb
(II)) (5.101a)

or, equivalently,

	E rb
(hyb)(wI, wII) � 	b 	E rb

(av) (5.101b)

where 	b = |bAC − bBC| � |wI − wII| is the (absolute) difference in NRT bond
orders and 	E rb

(av) is the resonance-average of barriers of the two localized struc-
tures.

According to (5.101) the rotation barrier varies linearly with the shift in resonance
weights (or bond orders) on going from one resonance form to the other. Thus,
resonance hybrids with particular sensitivity to intermolecular interactions (such
as resonance-assisted H-bonds, Section 5.2.3) can be expected to exhibit strong



696 Supramolecular bonding

variations in the stiffness of adjacent torsional bonds with changes of solvation or
complexation. (Of course, H-bonding will also alter bond lengths and charges in
the resonating A=C—B ←→ A—C=B moiety, but the more distant couplings to
torsional groups are of primary interest in this section.)

5.5.2 Hydrogen-bond modulation of torsion barriers in amides

As a simple example of the influence of H-bonding on torsions, let us consider the
methyl torsions in the acetamide molecule (5.95b). By bringing various H-bonding
species into complexation with the carbonyl oxygen and/or amine group of the
amide moiety, we can alter the relative weightings of covalent (wcov) versus dipolar
(wdip) amide resonance forms,

(5.102)

and thereby raise or lower the barrier 	Erb to torsions of the methyl group (or other
alkyl substituents at the Cα position). In fact, by sufficiently reversing the relative
weightings wcov and wdip, we expect to reverse the preference of the methyl rotor
for the pseudo-cis or pseudo-trans conformation,

(5.103)

To be specific, let us define

	Erb ≡ E(pseudo-trans) − E(pseudo-cis) (5.104)

With this definition, the switch in conformational preference is reflected in the sign
of 	Erb:

	Erb > 0 for wcov >> wdip (5.105a)

	Erb < 0 for wcov << wdip (5.105b)

Figure 5.64 displays optimized structures for a variety of acetamide· · ·X com-
plexes, with X chosen from common ionic (X = H+, OH−, NH4

+) and neutral
(X = H2O monomer and dimer, HCOOH, acetamide) complexing agents. Distinct
isomers are possible in several cases, such as those for O-protonation (Fig. 5.64(a))
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or N-protonation (Fig. 5.64(k)), and those for H2O acting as a Lewis base (Fig.
5.64(h)) or as a Lewis acid toward O (Fig. 5.64(f)) or N (Fig. 5.64(j)). In the case
of the hypothetical “acetamide· · ·OH−” complex (Fig. 5.64(b)), an amide proton
spontaneously transfers to OH− to form a water· · ·imide complex, but this retains
the fundamental allylic-like resonance motif “seen” by the methyl rotor. Only in
the case of N-protonated acetamide (Fig. 5.64(k)) is this motif fully quenched by
removal of the nN from conjugation with πCO

∗.

Figure 5.64 Hydrogen-bonded and fully protonated acetamide complexes, show-
ing the optimized pseudo-cis conformer for each species.
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Figure 5.64 (Cont.)

Each complex in Fig. 5.64 is shown with the methyl rotor in the pseudo-cis
(PC) conformation; the corresponding pseudo-trans (PT) conformers have similar
appearance, except for the 60◦ methyl rotation. The displayed PC conformer rep-
resents a top-of-barrier transition state for complexes (a)–(i) in Fig. 5.64, but is the
stable equilibrium geometry for complexes (j) and (k).97

The complexes in Figs. 5.64(a)–(i) are ordered according to the algebraic value
of 	Erb, as shown in Table 5.27 (with values expressed in wavenumbers; 1
kcal mol−1 = 350 cm−1). Table 5.27 also includes the amide CO/CN bond lengths
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Table 5.27. Methyl rotation barriers 	Erb for various H-bonded and protonated
acetamide · · · X complexes (cf. Fig. 5.64), with comparison NRT bond orders bCO

and bCN and bond lengths RCO and RCN of the amide moiety in each complex

X 	Erb (cm−1) bCO bCN RCO (Å) RCN (Å)

(a) H+ (to O) −418 1.397 1.580 1.298 1.310
(b) OH− −232 1.531 1.506 1.250 1.330
(c) NH4

+ −183 1.555 1.445 1.248 1.337
(d) HCOOH −140 1.595 1.412 1.237 1.347
(e) OC(CH3)NH2 −129 1.611 1.400 1.233 1.351
(f) HOH −111 1.654 1.357 1.229 1.357
(g) (H2O)2 −97 1.677 1.336 1.223 1.362
(h) OH2 −95 1.680 1.334 1.225 1.362
(i) (free) −65 1.715 1.301 1.218 1.369
(j) HOH (to N) +72 1.745 1.264 1.214 1.390
(k) H+ (to N) +235 2.283 0.682 1.167 1.652

and NRT bond orders for all complexes. The barriers are seen to vary over a
total range of about 650 cm−1(∼2.7 times kT under normal ambient conditions)
from the most PT-favored to PC-favored species. However, for PT-favored com-
plexes alone, the barrier height increases from the low value for free acetamide (65
cm−1) to about 230 cm−1 for the OH− complex, corresponding to an overall H-
bond-induced increase in barrier height of about 170 cm−1 for this conformer. The
H-bond interactions are accompanied by variations of ∼0.2 in individual CO/CN
bond orders, in accord with the RAHB phenomenon discussed in Section 5.2.3.

The intimate connection between methyl torsional stiffening and the variation in
amide CO/CN bond orders is illustrated in Fig. 5.65. This plot shows that the methyl
rotation barrier 	Erb varies roughly linearly with the difference 	b in CO/CN bond
orders,

	Erb (cm−1) = 360 	b − 230 (5.106)

in accordance with Eq. (5.101b). The slope of this line (360 cm−1 per bond) corre-
sponds approximately to the barrier height in the limit of ideally localized C=O/C—
N or C—O/C=N amide bonds.

Figure 5.65 provides theoretical evidence that resonance-assisted H-bonding can
serve as an effective mechanism for switching a methyl rotor from one preferred
conformation to another, or for controlling the stiffness of torsional motions in alky-
lated amides. In particular, the torsional potentials of proteins (more specifically,
the Ramachandran ψ angle at Cα) should be sensitive to N—H· · ·O and related
H-bonding interactions involving the amide backbone. In principle, this electronic
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Figure 5.65 The dependence of the acetamide methyl-rotation barrier (	Erb) on
NRT bond-order differences in the amide group (	b = bCO − bCN) for various
H-bonded complexes of the pseudo-cis (φOCCH(in) = 0◦) rotamer (see Table 5.27).
The dashed line (of slope 360 cm−1 per bond) shows the approximate trend of the
data points.

effect allows protein-backbone torsions to be “steered” by local H-bond patterns
toward successful folding shapes, which is possibly an important mechanistic fea-
ture of complex protein-folding pathways. Direct experimental evidence for (or
against) this interesting coupling effect would be highly desirable.

Further evidence for H-bond-induced resonance shifts and NRT bond-order–
bond-length correlations is presented in Fig. 5.66. As shown in this figure, the
calculated bond orders bCO and bCN are highly correlated with corresponding op-
timized values of RCO and RCN in all the H-bonded acetamide · · · X complexes.
For all the H-bonded complexes (b)–(j) these correlations are rather accurately
expressed by the linear equations

RCO = −0.168bCO + 1.508 (5.107a)

RCN = −0.211bCN + 1.644 (5.107b)

Furthermore, the sum of amide bond orders bCO and bCN is essentially constant (to
within better than 1%),

bCO + bCN � 3.00 (5.108)

as would be expected from their mutual dependence on the relative weighting
of resonance structures in (5.102). Thus, the changes in amide geometry and Cα

torsional variations in acetamide · · · X complexes seem to be very satisfactorily
described with a single measure of the amide resonance weighting in (5.102), which
in turn depends on the strength of RAHB coupling as described in Section 5.2.3.
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Figure 5.66 Bond-order–bond-length correlations for amide CO (circles) and CN
(squares) bonds in the acetamide · · · X complexes of Fig. 5.64 (see Table 5.27).
The dotted and dashed lines correspond to Eqs. (5.107a) and (5.107b), respectively.

Example 5.8

Problem: What is the critical weighting wdip of the alternative dipolar amide resonance
structure in (5.102) that would reverse the preference for pseudo-cis over pseudo-trans
geometry at Cα? What are the corresponding bond lengths RCO and RCN at this critical
resonance weighting?

Solution: According to Eq. (5.106), 	Erb changes sign (vanishes) when

	b = 230/360 = 0.639

which can be related to wdip through the equation

	b = bCO − bCN = wcov − wdip = 1 − 2wdip

The critical resonance weighting is therefore

wdip = (1 − 	b)/2 = 0.361/2 = 0.181

From general bond-order concepts we can also write

bCO = 2wcov + wdip = 2(1 − wdip) + wdip = 1.819

bCN = wcov + 2wdip = (1 − wdip) + 2wdip = 1.181

From the bond-order–bond-length correlations (5.107), we obtain finally

RCO = −0.168(1.819) + 1.508 = 1.202 Å

RCN = −0.211(1.181) + 1.644 = 1.395 Å
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In the foregoing we have emphasized the role of H-bonding in modulating
or switching the amide C—Cα torsion barrier. However, a similar effect can be
achieved by any perturbation that shifts the relative weighting of resonance forms
wcov and wdip in (5.102). In particular, pyramidalization or twisting of the —NH2

group out of coplanarity with C=O will sharply diminish nN→πCO
∗ delocalization,

increasing wcov relative to wdip and driving C—Cα torsions toward the pseudo-cis
geometry (cf. Example 5.8). Such nonplanar distortions of the amide moiety might
result from a steric or other geometrical constraint (e.g., buckling of a proline ring)
as well as H-bonding to nN. Thus, opportunities for controlling torsional (fold-
ing) processes through remote electronic or structural influences are realized to an
extravagant degree in amides.

The resonance-mediated coupling mechanisms described above involve sub-
tle quantal intramolecular/intermolecular donor–acceptor effects that tend to be
inadequately described by current-generation empirical potentials. “Simulations”
based on these potentials are therefore likely to be inherently defective for describ-
ing realistic folding processes in proteins. However, approximations such as those
illustrated in Example 5.8 may ultimately make it feasible to incorporate additional
resonance-mediated effects into empirical force fields of tractable form.

5.6 Summary

The concept of the molecule as primary building block of matter is deeply imbued
in chemists, who often define their discipline as “the study of molecules.” Yet the
existence of reactant, product, and other molecular isomeric forms on the same
potential-energy surface warns that the molecular concept must have fuzzy bound-
aries at the quantum-mechanical level. Only in the London long-range limit of
negligible exchange interactions can a rigid distinction between “intramolecular”
and “intermolecular” regimes be upheld.

At shorter distances, particularly those characteristic of H-bonded and other
charge-transfer complexes, the concepts of partial covalency, resonance, and “chem-
ical” forces must be extended to supramolecular species. In such cases the distinc-
tion between, e.g., the “covalent bond” and the “H-bond” may become completely
arbitrary. The concept of supramolecular clusters as fundamental chemical units
presents challenges both to theory and to standard methods of structural charac-
terization. Fortunately, the quantal theory of donor–acceptor interactions follows
parallel lines for intramolecular and intermolecular cases, allowing seamless de-
scription of molecular and supramolecular bonding in a unified conceptual frame-
work. In this sense, supramolecular aggregation under ambient thermal conditions
should be considered a true chemical phenomenon.
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Because of its pervasive influence in solution-phase and biophysical phenomena,
hydrogen-bonding plays a particularly important role in the theory of supramolec-
ular aggregation. Compared with fully formed covalent bonds, H-bonds exhibit a
lower degree of transferability and bond-energy additivity, and, thus, higher sensi-
tivity to environmental influences such as the pattern of surrounding H-bonds. Such
non-additive cooperative or anticooperative aspects of H-bonded clusters confer the
capacity for nonlinear responses that are strikingly more complex than those of sin-
gle molecules. The complex nonlinearities of H-bonded clusters doubtless underlie
their pervasive role in life processes.

Mulliken’s general concept of charge-transfer complexes can be given explicit
and quantitative reformulation in the NBO framework. This allows one to recognize
the essential electronic continuity that relates CT complexes of different “types,”
including H-bonded species (n–σ∗ CT complexes). Particular attention was paid to
the interesting π–π∗ CT complexes of NO+ and related pi-acids, which exemplify
the distinctive quantal dependence on the shapes of donor and acceptor orbitals.

The unique intermediate character of transition-state complexes allows these
species to be analyzed as cases of supramolecular bonding for two distinct limiting
sets of molecular units (reactant-like or product-like). In either limit, stabilizing
donor–acceptor interactions of the transition-state complex can be related to se-
lection rules (of Woodward–Hoffmann type) for successful low-energy passage-
ways from reactant to product channels on the adiabatic potential-energy surface.
Topological and geometrical criteria for optimal NBO donor–acceptor interactions
provide a localized extension of the conventional Woodward–Hoffmann rules for
pericyclic reactions.

The close relationship between intramolecular and intermolecular donor–
acceptor interactions, as well as their convenient mutual description in resonance
terms, allows one to identify possible resonance-assisted coupling mechanisms that
enable intramolecular structure and dynamics to be controlled by intermolecular
coordination (and vice versa). A particularly interesting example involves H-bond
switching of the equilibrium C—Cα (ψ) rotation angle of peptides, as well as
H-bond control of the rotation-barrier height for either conformer. Such H-bond-
induced switching mechanisms may underlie the complex folding pathways of
biological proteins.

The examples cited in this chapter are but a rather small and arbitrary selection
from the richly varied possibilities for supramolecular bonding. Recognition of the
intrinsic chemical (partially covalent, exchange-type) character of supramolecular
interactions leads inevitably to an extended definition of “chemistry” that includes
many aspects of nanoscale aggregation, structure, and function in the biophysical
and material-science domains. From this viewpoint, the molecule is seen to be
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but one plateau in a hierarchy of chemical units leading from isolated atoms to
aggregated clusters and superclusters at mesoscopic and macroscopic scales.
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Appendix A. Methods and basis sets

A quantum-mechanical calculational model can be uniquely specified by identifying
(i) the method of approximation and (ii) the orbital basis set that underlies the model. The
model is conventionally specified by a keyword label of the form method/basis, where
method and basis are suitable identifying abbreviations or acronyms. Simple examples are
“RHF/6-31G∗” (for the RHF restricted Hartree–Fock method and the 6-31G∗ basis set) or
“B3LYP/6-311+ +G∗∗” (for the B3LYP hybrid density functional method and the
6-311+ +G∗∗ basis set). In this appendix we briefly describe the principal method and
basis types that are now well established in the literature,1 particularly as implemented in
the Gaussian program.2 Consult notes 1 and 2 for background information and original
references.

Methods

Quantum-mechanical approximation methods can be classified into three generic types:
(1) variational, (2) perturbative, and (3) density functional. The first two can be
systematically improved toward exactness, but a systematic correction procedure is
generally lacking in the third case.

Variational methods

Variational approximation methods are identified by the form of the variational trial
function, particularly by the number and types of Slater determinants.

The simplest approximation corresponds to a single-determinant wavefunction. The
best possible approximation of this type is the Hartree–Fock (HF) molecular-orbital
determinant. The HF wavefunction is constructed from the minimal number of occupied
MOs (i.e., N/2 for an N-electron closed-shell system), each approximated as a variational
linear combination of the chosen set of basis functions (vide infra).

To distinguish between closed-shell and open-shell configurations (and determinants),
one may generally include a prefix to specify whether the starting HF wavefunction is of
restricted closed-shell (R), restricted open-shell (RO), or unrestricted (U) form. (The
restricted forms are total Ŝ2 spin eigenfunctions, but the unrestricted form need not be.)
Thus, the abbreviations RHF, ROHF, and UHF refer to the spin-restricted closed-shell,
spin-restricted open-shell, and unrestricted HF methods, respectively.

More accurate multi-determinant “configuration-interaction” (CI) wavefunctions are
described by specifying the types of substitutions (“excitations”) from the starting HF
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determinant, replacing sets of occupied MOs with corresponding virtual MOs. The
substitutions may include all singles (S), doubles (D), triples (T), or quadruples (Q),
leading to designations such as CIS (inclusion of all single excitations), CISD (all single
and double excitations), and so forth. Such wavefunctions are termed “single-reference”
type, because all allowed substitutions originate from the starting HF configuration using
MOs optimized for this configuration. The spin restrictions on these CI wavefunctions can
be specified by prefixes analogous to those for the reference HF configuration; for
example, the abbreviations RCISD, ROCISD, and UCISD specify restricted closed-shell,
restricted open-shell, and unrestricted CISD, respectively.

“Multi-reference” wavefunctions can be formed by choosing two or more reference
configurations and allowing the MOs to reoptimize self-consistently for the
multi-configuration form. An important special case is the CASSCF (complete
active-space self-consistent-field) method, in which the set of reference configurations is
generated by including all excitations from a chosen “active space” of occupied and
virtual MOs. Another special case is the GVB (generalized valence-bond) method, in
which reference configurations are selected to match the spin-pairing pattern of a chosen
valence-bond structure. Further aspects of multi-reference variational wavefunctions are
beyond the scope of this appendix.

Quadratic CI (QCI) and coupled cluster (CC) exemplify more complex methods that are
not strictly variational in character, but include physical corrections similar to those of
higher-order perturbation theory. Keywords for these methods also include a specification
of substitutions from the reference HF configuration, such as QCISD or CCSD,
respectively, for QCI or CC methods with all single and double substitutions. More
complete descriptions of these methods are beyond the scope of this appendix.

Perturbative methods

Perturbative approximation methods are usually based on the Møller–Plesset (MP)
perturbation theory for correcting the HF wavefunction. Energetic corrections may be
calculated to second (MP2), third (MP3), or higher order. As usual, the open- versus
closed-shell character of the wavefunction can be specified by an appropriate prefix, such
as ROMP2 or UMP2 for restricted open-shell or unrestricted MP2, respectively.

An important advantage of MP2 and higher-order perturbation methods is their
size-consistency at every order. This is in contrast to many variational CI methods, for
which the calculated energy of two identical non-interacting systems might not be equal to
twice that of an individual system. Size-consistent scaling is also characteristic of QCI and
CC methods, which are therefore preferable to standard CI-type variational methods for
many applications.

Density-functional methods

Density-functional methods are based on approximating the HF exchange operator and
post-HF correlation corrections by certain functionals Ex[ρ], Ec[ρ] of the electron density
ρ (and possibly its gradient). A density-functional method is uniquely identified by its
exchange and correlation functionals. Examples of the former include the original Becke
(B), Becke one-term (B1), Becke three-term (B3), Perdew–Wang (PW), and modified
one-term Perdew–Wang (mPW1) exchange functionals. Examples of the latter include the
Lee–Yang–Parr (LYP) and Perdew–Wang (PW) correlation functionals.

(Note that several Ex[ρ] “functionals” [such as the popular Becke three-term
approximation B3] include an admixture of the true HF exchange operator with the usual
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functional of electron density. Such methods are referred to as “hybrid density-functional
methods” to indicate their closer connection to ab initio methods.)

The keyword for a given density-functional method is formed by concatenating the
symbols for its exchange and correlation functionals. For example, combining the Becke
three-term (B3) exchange functional with the Lee–Yang–Parr (LYP) correlation functional
leads to the popular B3LYP density functional method.

As usual, a density-functional method (such as B3LYP) can be further specified as
being of restricted closed-shell (RB3LYP), restricted open-shell (ROB3LYP), or
unrestricted (UB3LYP) form.

Basis sets

Contemporary basis sets are usually formed from atomic-orbital basis functions Xµ of
“contracted Gaussian” form,

Xµ =
r∑

i = 1

aµi gi

where the gi ’s are “primitive” Gaussian-type orbitals, the aµi ’s are fixed contraction
coefficients, and r is the length of the contraction. An r-term-contracted Gaussian-type
orbital (CGTO) is often denoted in the form “rG” (e.g., “3G” for a three-term contraction).

Each CGTO Xµ can be considered as an approximation to a single Slater-type orbital
(STO) with effective nuclear charge ζ (zeta). The composition of the basis set can
therefore be described in terms of the number of such effective zeta values (or STOs) for
each electron. A “double-zeta” (DZ) basis includes twice as many effective STOs per
electron as a single-zeta “minimal basis” (MB) set, a “triple-zeta” (TZ) basis three times as
many, and so forth. A popular choice, of so-called “split-valence” type, is to describe core
electrons with a minimal set and valence electrons with a more flexible DZ (or higher) set.

Pople-style basis sets

The keyword label of a standard Pople-style split-valence basis specifies the sp sets
(groups of CGTOs of s and p symmetry) with distinct zeta values for each atomic shell, as
well as the contraction length of each CGTO. The keyword contains the following
syntactical components:

(1) the contraction length nc of the core-level set;
(2) (after a hyphen) the contraction lengths nv

′, nv
′′, nv

′′′, . . . of valence-level sp sets for
each distinct zeta value;

(3) (preceding the character “G”) a “+” if a diffuse sp set is added to each heavy (non-H)
atom, or “++” if also a diffuse s function is added to each H; and

(4) (following the “G”) a “∗” if polarization functions are added to each heavy atom, or
“∗∗” if they are added also to H.

(“Diffuse” functions refer to extra-valent Rydberg-like functions of very small effective ζ ,
which are suitable for describing anions or the very-long-range tails of electronic
distributions. “Polarization” functions refer to components of higher angular momentum
than required in the atomic ground configuration, e.g., an added set of five d orbitals on
each C, or three p orbitals on each H.)

The generic symbol to represent a Pople-style basis set is of the form

nc −nv
′nv

′′ . . . (++)G(∗∗)
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where parenthesized (diffuse and polarization) extensions are optional. Some examples of
this notation are given below, with a corresponding verbal description of the basis
composition:

3-21G minimal 3G (nc = 3) core and double-zeta 2G (nv
′ = 2), 1G (nv

′′ = 1) valence
sp sets, with no diffuse or polarization functions

6-31G∗ minimal 6G (nc = 6) core and triple-zeta 3G (nv
′ = 3), 1G (nv

′′ = 1) valence
sp sets, with polarization functions on heavy atoms

6-311++G∗∗ minimal 6G (nc = 6) core and triple-zeta 3G (nv
′ = 3), 1G (nv

′′ = 1),
1G (nv

′′′ = 1) valence sp sets, with diffuse and polarization functions on all atoms

Higher polarization functions can also be specified by replacing “∗∗” by a parenthesized
list of polarization sets for heavy atoms and (after a comma) for hydrogen. For example,
“(2d1f,2p)” would specify two additional d sets and one additional f set on each heavy
atom, as well as two additional p sets on each H.

Some exceptions to this general syntax may be noted.

(1) The label “STO-3G” (equivalent to 3-3G in the notation described above) denotes a
minimal basis 3G set for both core and valence shells (nc = 3, nv = 3).

(2) The label “3-21G(∗)” denotes a 3-21G set for atoms up to neon (Z = 10), but
inclusion of a d set for heavier atoms.

(3) Polarization functions may be optionally chosen to be of “pure” or “Cartesian” form
(by another keyword). In the former case, one includes the expected number of
angular-momentum components (i.e., five d orbitals, seven f orbitals, etc.), whereas in
the latter case some additional component(s) of lower angular momentum are
included (e.g., a Cartesian “d set” includes five d orbitals plus one s orbital, a
Cartesian “f set” includes seven f orbitals plus three p orbitals, and so forth).

Effective-core-potential (ECP) basis sets

The ECP basis sets include basis functions only for the outermost one or two shells,
whereas the remaining inner core electrons are replaced by an “effective core” or
“pseudopotential.” The ECP basis keyword consists of a source identifier (such as LANL
for “Los Alamos National Laboratory”), the number of outer shells retained (1 or 2), and a
conventional label for the number of ζ sets for each shell (MB, DZ, TZ, . . .). For example,
“LANL1MB” denotes the minimal LANL basis with minimal basis functions for the
outermost shell only, whereas “LANL2DZ” is the set with double-zeta functions for each
of the two outermost shells. The ECP basis set employed throughout Chapter 4 (denoted
“LACV3P” in Jaguar terminology) is also of Los Alamos type, but with full triple-zeta
valence flexibility and polarization and diffuse functions on all atoms (comparable to the
6-311++G∗∗ all-electron basis used elsewhere in this book).

An important advantage of ECP basis sets is their ability to incorporate approximately
the physical effects of relativistic core contraction and associated changes in screening on
valence orbitals, by suitable adjustments of the radius of the effective core potential. Thus,
the ECP valence atomic orbitals can approximately mimic those of a fully relativistic
(spinor) atomic calculation, rather than the non-relativistic all-electron orbitals they are
nominally serving to replace. The partial inclusion of relativistic effects is an important
physical correction for heavier atoms, particularly of the second transition series and
beyond. Thus, an ECP-like treatment of heavy atoms is necessary in the non-relativistic
framework of standard electronic-structure packages, even if the reduction in number of



714 Appendix A

basis orbitals obtained through neglect of atomic core electrons were of no practical
importance. For this reason, all-electron basis sets (such as 6-311G and its extensions) are
commonly unavailable for atoms beyond the first transition series.

Correlation-consistent basis sets

Dunning has developed a series of “correlation-consistent” polarized valence n-zeta basis
sets (denoted “cc-pVnZ”) in which polarization functions are systematically added to all
atoms with each increase in n. (Corresponding diffuse sets are also added for each n if the
prefix “aug-” is included.) These sets are optimized for use in correlated calculations and
are chosen to insure a smooth and rapid (exponential-like) convergence pattern with
increasing n. For example, the keyword label “aug-cc-pVDZ” denotes a valence
double-zeta set with polarization and diffuse functions on all atoms (approximately
equivalent to the 6-311++G∗∗ set), whereas “aug-cc-pVQZ” is the corresponding
quadruple-zeta basis which includes (3d2f1g,2p1d) polarization sets.

Related basis sets in common usage include the original Dunning full and valence
double-zeta sets, denoted D95 and D95V, respectively (built from nine s-type and five
p-type primitives). These sets may be augmented in the usual way with diffuse and/or
polarization functions, as in the example “D95++∗∗” (diffuse and first-polarization sets
on all atoms).

Notes for Appendix A
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(New York, Wiley, 1986).
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Appendix B. Chemical periodicity

Introduction

Figure B.1 depicts the periodic table of the elements in the current IUPAC-approved form,
with US-style assignments of group numbers as used throughout this book. This standard
textbook table (STT) provides an accepted common vocabulary for the “row” (period) and
“column” (group) assignments of each chemical element, and is thus an asset to clear
pedagogical communication.

However, the STT somewhat muddles the natural groupings into s block, p block, d
block, and f block of filling valence shells, which, from a fundamental perspective, is the
most important feature of elemental electron configuration. The STT evolved from
Mendeleev’s original conception1 of serially ordering the elements in periodic tabular
repeat patterns to reflect conspicuous chemical groupings (such as maximum oxidation
number, physical state under standard-state conditions, and the like), long before the
discovery of quantum theory and realization of the close associations between chemical
and spectroscopic behavior. The STT chemical groupings reflect subtle biases toward
ambient thermal conditions or the ambiguities arising from selected chemical criteria or
the current extent of chemical knowledge. For theoretical purposes, certain alternative
representations of chemical periodicity may therefore be advantageous in depicting the
fundamental valence-electron occupancy patterns that underlie both chemistry and
spectroscopy.2

The theory of periodicity in electronic Aufbau of atomic configurations

According to the general Sturm–Liouville theory,3 the eigenvalues of any one-
dimensional Schrödinger-type eigenvalue equation can be monotonically ordered
according to the number of nodes (oscillations between negative and positive values) in
the corresponding eigenfunctions. This result corresponds to the expected physical
association of wave energy with the oscillatory curvature or “choppiness” of the
waveform. The energy–node relationship is also implicit in Bohr’s general quantum
relationship E = hν between energy and oscillation frequency ν. The number of
oscillatory nodes is therefore a strict “quantum number” for arranging the numerical
sequence of one-dimensional eigenstates into monotonically increasing energetic order.

In a molecular-orbital-type (Hartree–Fock or Kohn–Sham density-functional) treatment
of a three-dimensional atomic system, the field-free eigenfunctions ψn� can be rigorously
separated into radial (r ) and angular (θ ) components, governed by respective quantum
numbers n and �. In accordance with Sturm–Liouville theory, each increase of n (for
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Figure B.1 The periodic table of the elements in IUPAC-approved standard textbook-table (STT)
form, showing the US-style labeling of group number 1–18.

fixed �) is associated with an additional radial node and an increase of radial energy.
Similarly, each increase in � (for fixed n) is associated with an additional angular node and
an increase in angular energy. Therefore, one can generally expect that the total (radial +
angular) energy varies monotonically with the total number of nodes, and hence with
n + � (the total number of radial and angular modes, including that at infinity). This is the
essential physical and mathematical basis of the “n + � rule” (Madelung rule)4 that
governs the order of orbital energy Aufbau in many-electron systems.

A highly exceptional limit occurs for the single-electron hydrogenic atom, where the
potential energy is of pure Kepler-like 1/r form. In this case (only), the � variations lead
to energetic degeneracy, which can be attributed to Fock’s dynamical symmetry.5

However, any deviation from the Kepler-like, potential symmetry (due, e.g., to
interactions with other electrons) restores the expected Sturm–Liouville variation of
energy with n + �. Many-electron atoms therefore exhibit the expected variation of energy
with � (e.g., ε3s < ε3p < ε3d) rather than the degenerate pattern of the one-electron
hydrogen atom (ε3s = ε3p = ε3d).

Within each (n + �) manifold, the dependence on n (or �) can also be readily
understood. The hydrogen-like tendency toward near-degeneracy of � values, but strong
dependence on n, tends to persist even in many-electron atoms. As a result, the orbital
energies continue to depend much more strongly on n than on �. The lowest-energy orbital
of the (n + �) manifold is therefore that of lowest n (or, equivalently, highest �), e.g.,

εnd < ε(n + 1)p < ε(n + 2)d

This is equivalent to saying that the smaller number of radial nodes (rather than angular
nodes) tends to dictate the favored low-energy orbital in orbital Aufbau, i.e., the orbital of
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Figure B.2 The left-step table (LST) of the chemical elements.

highest � (or lowest n) will be of lowest energy in a given (n + �) manifold. This leads to
the familiar “lowest n + �; highest �” rule for building the electron-configuration
sequence that underlies the periodic table.

The left-step table

Figure B.2 displays the alternative left-step table (LST) of the elements, as first suggested
by Janet6 and strongly advocated (among others) by Mazurs and Bent.7 Because the rows
of the LST are labeled by n + � and the columns by � blocks, this form of table
automatically gives the correct “highest n + �, highest �” sequence of configurational
orbital filling when read in the standard left-to-right, top-to-bottom order. The LST is
therefore optimal for visualizing an element’s correct valence-electron configuration (up
to the usual near-degenerate exceptions discussed below).

As emphasized by Bent, the LST properly places H and He with the s block and
realigns the � shells into the actual sequence of configurational orbital filling. The LST
therefore avoids the curious STT-based implication that the d-block elements (� = 2) are
somehow the “transition” between the s block (� = 0) and p block (� = 1).

The LST also allows one to achieve a better recognition of the pattern of dissimilarities
that characteristically separate the first from the second (and successive) congeners of a
given � block. These are most dramatic in the case of 1s versus 2s (i.e., H versus Li, or He
versus Be), but they remain conspicuous for 2p versus 3p (e.g., C versus Si, or N versus P)
and even for 3d versus 4d (as discussed, e.g., in Sections 2.8, 3.2.1, 3.2.9, 4.10, and 5.2.7).
The abrupt changes between the first and later fillings of a given � shell can be generally
attributed to the core-exclusion effect, i.e., the dramatic difference in “inner-core
pressure” (due to the Pauli principle) that prevents the valence shell from shrinking into
the region of its own nucleus, or making deep-penetrating bonding overlap into the
nuclear region of another similar valence shell, when there exists a deeper core shell of the
same � symmetry.

Although the LST presents many attractive features, its row/column rearrangements
inevitably invite “period” and “group-number” designations that are inconsistent with
either US or UK STT-based conventions. The LST and STT representations therefore tend
to promote confrontational rather than complementary usage among their proponents,
somewhat negating the beneficial contribution of the LST to chemical understanding.8
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The ascending periodic helix

The monotonically ascending periodic progression of orbital energy filling can be
alternatively exhibited by arranging the elements along a continuous band that wraps in
spiraling fashion onto a three-dimensional cylindrical surface (as shown in cut-out
planarized form in Fig. B.3). In this manner the “table” of elements acquires the topology
of a three-dimensional helix, with “turns” replacing “periods” and a continuous spiraling
ascent replacing the discrete rows and “carriage returns” of a planar tabular display.9 The
periodicities of such a helical display appear in the circular repeat patterns that align
parallel to the helical axis. The close conceptual kinship to a tabular LST representation is
clearly evident, but the quasi-continuous nature of the Aufbau progression is emphasized
by the fact that successive � blocks are encountered along a continuously spiraling
pathway, where successive (n, �) subshells automatically appear in proper sequence
(. . . 3d . . . 4p . . . 5s . . . 4f . . .), without abrupt vertical shifts or dislocations. We refer to
this variant as the ascending periodic helix (APH), to emphasize its distinctive features
with respect to the STT and LST forms.

The three-dimensional APH display may be conveniently chosen to map onto a simple
cylindrical surface (e.g., a coffee cup) by adding blank filling space to each helical turn in
order to maintain a constant radius of curvature. Figure B.3 provides a simple planar
template that one can cut and paste to form the APH cylindrical display.

Alternatively, each loop of the APH design may be constructed with variable radius to
connect continuously (with no filling space) into an ascending “Guggenheim-staircase” pat-
tern. In this construction the APH arcs upward from H (Z = 1) in ever-increasing energetic
and atomic-number spirals, to the as-yet undiscovered realm at the head of the staircase.

In either construction, each element of the APH can be assigned a unique turn (t)10 and
angular step (�–n) along the helical pathway, measured from the s-block origin that forms
the natural “spine” of the spiral pattern (the heavy vertical line in Fig. B.3). For example,
the element chromium (Cr) can be denoted as the “t5/d4” element, to locate it at the “d4”
angular step (the fourth element of the d block) on the “t5” tier of the helix. In this manner,
the distinctive form, topology, and orientation of the APH effectively complement

Figure B.3 The ascending periodic helix (APH) of the chemical elements, showing the evident
relationship to the LST form (Fig. B.2). The heavy vertical line marks the start of each new turn. The
diagram can be pasted onto a smooth cylindrical surface by joining element 88 with element 89 and
element 56 with element 57 at the cylindrical seam.
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standard STT-based concepts and terminology, while displaying periodic relationships in
a fresh and stimulating visual image to students of chemistry.

Table B.1 summarizes the ground-state electron configuration and formal APH indices
(turn number t, angular number �–n) for each known element, together with atomic
number (Z ) and relative atomic mass). As shown by the asterisks in the final column, 20
elements exhibit anomalous electron configurations (including two that are doubly
anomalous – Pd and Th), compared with idealized t/�–n APH descriptors. These are
particularly concentrated in the first d-block series, as well as among the early actinides.
Such anomalies are indicative of configurational near-degeneracies that may require
sophisticated multi-reference approximation methods for accurate description.

It is noteworthy that He is the natural turn-terminator for t = 1, the level which is
expected to exhibit greatest energetic separation from higher t levels in any
Schrödinger-type eigenvalue problem. Helium therefore retains its traditional role
(together with Ne, Ar, . . .) as the terminus of a filling cycle, exhibiting the expected
closed-shell stability just prior to entering a new cycle. The relocation of He to the s block
(which appears somewhat heretical from the STT viewpoint) therefore promotes
recognition that He, Ne, Ar, . . . are true chemical congeners, and indeed that helium is the
“noblest of the noble” in this respect.

Table B.1. The currently known chemical elements, showing atomic number (Z), chemical
symbol, name, relative atomic mass, ground-state electron configuration, and APH indices
(t = turn number; l–n = angular number); asterisks (∗, ∗∗) symbolize “anomalous” (APH

non-conforming) ground-state electronic configurations, which are indicative of
configurational near-degeneracy

Relative atomic Electron
Z Symbol Name mass (amu) configuration

APH

t �–n

1 H Hydrogen 1.008 (1s)1 1 s1
2 He Helium 4.003 (1s)2 = [He] 1 s2

3 Li Lithium 6.941 [He](2s)1 2 s1
4 Be Beryllium 9.012 [He](2s)2 2 s2
5 B Boron 10.81 [He](2s)2(2p)1 2 p1
6 C Carbon 12.011 [He](2s)2(2p)2 2 p2
7 N Nitrogen 14.007 [He](2s)2(2p)3 2 p3
8 O Oxygen 15.999 [He](2s)2(2p)4 2 p4
9 F Fluorine 18.998 [He](2s)2(2p)5 2 p5

10 Ne Neon 20.179 [He](2s)2(2p)6 = [Ne] 2 p6

11 Na Sodium 22.990 [Ne](3s)1 3 s1
12 Mg Magnesium 24.305 [Ne](3s)2 3 s2
13 Al Aluminum 26.982 [Ne](3s)2(3p)1 3 p1
14 Si Silicon 28.086 [Ne](3s)2(3p)2 3 p2
15 P Phosphorus 30.974 [Ne](3s)2(3p)3 3 p3
16 S Sulfur 32.06 [Ne](3s)2(3p)4 3 p4
17 Cl Chlorine 35.453 [Ne](3s)2(3p)5 3 p5
18 Ar Argon 39.948 [Ne](3s)2(3p)6 = [Ar] 3 p6

19 K Potassium 39.098 [Ar](4s)1 4 s1
20 Ca Calcium 40.08 [Ar](4s)2 4 s2
21 Sc Scandium 44.956 [Ar](4s)2(3d)1 4 d1

Cont.
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Table B.1. (Cont.)

Relative atomic Electron
Z Symbol Name mass (amu) configuration

APH

t �–n

22 Ti Titanium 47.9 [Ar](4s)2(3d)2 4 d2
23 V Vanadium 50.942 [Ar](4s)2(3d)3 4 d3
24 Cr Chromium 51.996 [Ar](4s)1(3d)5 4 d4∗
25 Mn Manganese 54.938 [Ar](4s)2(3d)5 4 d5
26 Fe Iron 55.847 [Ar](4s)2(3d)6 4 d6
27 Co Cobalt 58.933 [Ar](4s)2(3d)7 4 d7
28 Ni Nickel 58.7 [Ar](4s)2(3d)8 4 d8
29 Cu Copper 63.546 [Ar](4s)1(3d)10 4 d9∗
30 Zn Zinc 65.38 [Ar](4s)2(3d)10 4 d10
31 Ga Gallium 69.72 [Ar](4s)2(3d)10(4p)1 4 p1
32 Ge Germanium 72.59 [Ar](4s)2(3d)10(4p)2 4 p2
33 As Arsenic 74.922 [Ar](4s)2(3d)10(4p)3 4 p3
34 Se Selenium 78.96 [Ar](4s)2(3d)10(4p)4 4 p4
35 Br Bromine 79.904 [Ar](4s)2(3d)10(4p)5 4 p5
36 Kr Krypton 83.8 [Ar](4s)2(3d)10(4p)6 = [Kr] 4 p6

37 Rb Rubidium 85.468 [Kr](5s)1 5 s1
38 Sr Strontium 87.62 [Kr](5s)2 5 s2
39 Y Yttrium 88.906 [Kr](5s)2(4d)1 5 d1
40 Zr Zirconium 91.22 [Kr](5s)1(4d)3 5 d2∗
41 Nb Niobium 92.906 [Kr](5s)1(4d)4 5 d3∗
42 Mo Molybdenum 95.94 [Kr](5s)1(4d)5 5 d4∗
43 Tc Technetium 98. [Kr](5s)2(4d)5 5 d5
44 Ru Ruthenium 101.07 [Kr](5s)1(4d)7 5 d6∗
45 Rh Rhodium 102.906 [Kr](5s)1(4d)8 5 d7∗
46 Pd Palladium 106.4 [Kr](4d)10 5 d8∗∗
47 Ag Silver 107.868 [Kr](5s)1(4d)10 5 d9∗
48 Cd Cadmium 112.41 [Kr](5s)2(4d)10 5 d10
49 In Indium 114.82 [Kr](5s)2(4d)10(5p)1 5 p1
50 Sn Tin 118.69 [Kr](5s)2(4d)10(5p)2 5 p2
51 Sb Antimony 121.75 [Kr](5s)2(4d)10(5p)3 5 p3
52 Te Tellurium 127.6 [Kr](5s)2(4d)10(5p)4 5 p4
53 I Iodine 126.905 [Kr](5s)2(4d)10(5p)5 5 p5
54 Xe Xenon 131.3 [Kr](5s)2(4d)10(5p)6 = [Xe] 5 p6
55 Cs Cesium 132.905 [Xe](6s)1 6 s1
56 Ba Barium 137.33 [Xe](6s)2 6 s2
57 La Lanthanum 138.906 [Xe](6s)2(5d)1 6 f1∗
58 Ce Cerium 140.12 [Xe](6s)2(5d)1(4f)1 6 f2∗
59 Pr Praseodymium 140.908 [Xe](6s)2(4f)3 6 f3
60 Nd Neodymium 144.24 [Xe](6s)2(4f)4 6 f4
61 Pm Promethium 145. [Xe](6s)2(4f)5 6 f5
62 Sm Samarium 150.4 [Xe](6s)2(4f)6 6 f6
63 Eu Europium 151.96 [Xe](6s)2(4f)7 6 f7
64 Gd Gadolinium 157.25 [Xe](6s)2(4f)7(5d)1 6 f8∗
65 Tb Terbium 158.925 [Xe](6s)2(4f)9 6 f9
66 Dy Dysprosium 162.5 [Xe](6s)2(4f)10 6 f10
67 Ho Holmium 164.930 [Xe](6s)2(4f)11 6 f11
68 Er Erbium 167.26 [Xe](6s)2(4f)12 6 f12
69 Tm Thulium 168.934 [Xe](6s)2(4f)13 6 f13
70 Yb Ytterbium 173.04 [Xe](6s)2(4f)14 6 f14
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Table B.1. (Cont.)

Relative atomic Electron
Z Symbol Name mass (amu) configuration

APH

t �–n

71 Lu Lutetium 174.967 [Xe](6s)2(4f)14(5d)1 6 d1
72 Hf Hafnium 178.49 [Xe](6s)2(4f)14(5d)2 6 d2
73 Ta Tantalum 180.948 [Xe](6s)2(4f)14(5d)3 6 d3
74 W Tungsten 183.85 [Xe](6s)2(4f)14(5d)4 6 d4
75 Re Rhenium 186.207 [Xe](6s)2(4f)14(5d)5 6 d5
76 Os Osmium 190.2 [Xe](6s)2(4f)14(5d)6 6 d6
77 Ir Iridium 192.22 [Xe](6s)2(4f)14(5d)7 6 d7
78 Pt Platinum 195.09 [Xe](6s)1(4f)14(5d)9 6 d8∗
79 Au Gold 196.967 [Xe](6s)1(4f)14(5d)10 6 d9∗
80 Hg Mercury 200.59 [Xe](6s)2(4f)14(5d)10 6 d10
81 Tl Thallium 204.37 [Xe](6s)2(4f)14(5d)10(6p)1 6 p1
82 Pb Lead 207.2 [Xe](6s)2(4f)14(5d)10(6p)2 6 p2
83 Bi Bismuth 208.980 [Xe](6s)2(4f)14(5d)10(6p)3 6 p3
84 Po Polonium 209. [Xe](6s)2(4f)14(5d)10(6p)4 6 p4
85 At Astatine 210. [Xe](6s)2(4f)14(5d)10(6p)5 6 p5
86 Rn Radon 222. [Xe](6s)2(4f)14(5d)10(6p)6 = [Rn] 6 p6
87 Fr Francium 223.020 [Rn](7s)1 7 s1
88 Ra Radium 226.025 [Rn](7s)2 7 s2
89 Ac Actinium 227.028 [Rn](7s)2(6d)1 7 f1∗
90 Th Thorium 232.038 [Rn](7s)2(6d)2 7 f2∗∗
91 Pa Protactinium 231.036 [Rn](7s)2(5f)2(6d)1 7 f3∗
92 U Uranium 238.029 [Rn](7s)2(5f)3(6d)1 7 f4∗
93 Np Neptunium 237.048 [Rn](7s)2(5f)4(6d)1 7 f5∗
94 Pu Plutonium 244. [Rn](7s)2(5f)6 7 f6
95 Am Americium 243. [Rn](7s)2(5f)7 7 f7
96 Cm Curium 247. [Rn](7s)2(5f)7(6d)1 7 f8∗
97 Bk Berkelium 247. [Rn](7s)2(5f)9 7 f9
98 Cf Californium 251. [Rn](7s)2(5f)10 7 f10
99 Es Einsteinium 252. [Rn](7s)2(5f)11 7 f11

100 Fm Fermium 257. [Rn](7s)2(5f)12 7 f12
101 Md Mendelevium 258. [Rn](7s)2(5f)13 7 f13
102 No Nobelium 259. [Rn](7s)2(5f)14 7 f14
103 Lr Lawrencium 260. [Rn](7s)2(5f)14(6d)1 7 d1
104 Rf Rutherfordium 261. [Rn](7s)2(5f)14(6d)2 7 d2
105 Dd Dubnium 262. [Rn](7s)2(5f)14(6d)3 7 d3
106 Sg Seaborgium 263. [Rn](7s)2(5f)14(6d)4 7 d4
107 Bh Bohrium 262. [Rn](7s)2(5f)14(6d)5 7 d5
108 Hs Hassium 265. [Rn](7s)2(5f)14(6d)6 7 d6
109 Mt Meitnerium 266. [Rn](7s)2(5f)14(6d)7 7 d7
110 Ds Darmstadtium 271. [Rn](7s)2(5f)14(6d)8 7 d8

Notes for Appendix B

1. D. I. Mendeleev (translation), J. Chem. Soc. (London) 55 (1889), 634.
2. E. G. Mazurs, Graphic Representations of the Periodic System During One Hundred Years, 2nd

edn. (Tuscaloosa, AL, University of Alabama Press, 1974). Mazurs identifies 146 distinct
graphical representations of chemical periodicity that have appeared in the literature.
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8. For example, E. G. Mazurs (note 2, p. 105) expresses the discord as follows: “The periodicity of
atomic structure must be accepted as a Natural Law. Therefore, scientists have to change their
minds, get away from the conservatism that accepts only Mendeleev’s chemical table as right,
and adjust the other phenomena to this phenomenon; that is, derive the chemical and physical
properties of the elements from the electronic structure of the atoms.”

9. Helix-based displays of chemical periodicity have many precedents, going back to Mendeleev
himself; see, e.g., B. K. Emerson, Am. Chem. J. 45 (1911), 160; B. K. Emerson, Science 34,
(1911), 640; H. Stintzing, Z. Physik. Chem. 91 (1916), 500; and E. G. Mazurs, note 2, pp. 52–54.

10. Usage of the “tier” or “turn” index t (t = n + �) also has many precedents; see, e.g.,
W. J. Wiswesser, J. Chem. Educ. 22 (1945), 314; Y. Ta, Ann. Phys. (Paris) 1 (1946), 88;
and E. G. Mazurs, note 2, pp. 99–100.
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A physical unit system is implicitly defined by the choice of three underlying base units,
which suffice to determine dimensionally consistent units for other measurable physical
quantities. (Why three such base units are required is as yet an unanswered physical
question.) Although the choice of units may superficially appear arbitrary, it was
recognized by Gibbs (in his first scientific communication)1 that one can rationally
address the question of the “conditions which it is most necessary for these units to fulfil
for the convenience both of men of science and of the multitude.”

Gibbs noted that “in causing a constant factor (or divisor) to disappear, the solution of
mechanical problems is simplified by the choice of appropriate units.” Accordingly, one
should select appropriate units that “greatly simplify the relations of the numerical
representatives of the quantities and expedite the calculation.” We can paraphrase this
viewpoint by stating that a criterion for selecting the most appropriate system of units is to
simplify the most fundamental theorems and equations underlying the given area of
scientific inquiry. For chemical purposes, the Gibbs criterion can be extended to include
the electrical phenomena that underlie the electronic structure of atoms and molecules.

We can apply this criterion to two unit systems in common usage. Among electronic
structure theorists, pervasive use is made of atomic units (a.u.), for which the three base
units are

me = base unit of mass = mass of the electron2 (C.1a)

e = base unit of charge = charge of the electron (C.1b)

� = base unit of angular momentum = Planck’s constant/(2π ) (C.1c)

Because its base units directly underlie the quantum theory of electrons (i.e., the mass,
charge, and angular momentum of the electron itself ), the atomic units naturally
simplify the fundamental Schrödinger equation for electronic interactions. (Indeed, with
the choice me = e = � = 1, the Schrödinger equation reduces to pure numbers, and the
solutions of this equation can be determined, once and for all, in a mathematical
form that is independent of any subsequent re-measurement of e, me, and � in chosen
practical units.) In contrast, textbooks commonly employ the Système International
d’Unités (SI), whose base units were originally chosen without reference to atomic
phenomena:

kilogram (kg) = base unit of mass = a platinum−iridium bar (kept in a

guarded chateau near Paris3) (C.2a)

723



724 Appendix C

Table C.1. Conversion factors from atomic to SI units

Atomic unit (base units) SI value Name (symbol)

Mass (me) 9.10939(−31) kg Mass of the electron
Charge (e) 1.602188(−19) C Electronic charge
Angular momentum (�) 1.05457(−34) J s rad−1 Planck’s constant/2π

Energy (mee4/�
2) 4.35975(−18) J Hartree (H)

Length (�2/(mee2)) 5.29177(−11) m Bohr; Bohr radius (a0)
Time (�3/(mee4)) 2.41888(−17) s Jiffy
Electric dipole moment 8.47836(−30) C m 2.541 765 D (Debye units)

(�2/(mee))
Magnetic dipole moment 9.27402(−24) J T−1 Bohr magneton (µB)

(e�/(2me))

Table C.2. An energy-conversion table for non-SI units

Value in non-SI units

Unit a.u. kcal mol−1 eV cm−1 Hz K

a.u. 1 6.27510(2) 2.72114(1) 2.19475(5) 6.57968(15) 3.15773(5)
kcal mol−1 1.59360(−3) 1 4.33641(−2) 3.49755(2) 1.04854(13) 5.03217(2)
eV 3.67493(−2) 2.30605(1) 1 8.06554(3) 2.41799(14) 1.16044(4)
cm−1 4.55634(−6) 2.85914(−3) 1.23984(−4) 1 2.99792(10) 1.43877
Hz 1.51983(−16) 9.53708(−14) 4.13567(−15) 3.33564(−11) 1 4.79922(−11)
K 3.16683(−6) 1.98722(−3) 8.61739(−5) 6.95039(−1) 2.08367(10) 1

Table C.3. Fundamental constants, in atomic and SI units

Physical constant Symbol Value (a.u.) Value (SI)

Rydberg constant R∞ 2.29253(2) 1.09737(−23) m−1

Planck constant h 6.28319(= 2π ) 6.62608(−34) J s
Speed of light c 1.37036(2) 2.99792(8) m s−1

Proton mass mP 1.83615(3) 1.67262(−27) kg
Atomic mass unit amu 1.82289(3) 1.66054(−27) kg
Fine-structure constant α 7.29735(−3) 7.29735(−3)

Table C.4. Other constants and conversion factors

Quantity (symbol) SI value or equivalent

Avogadro’s number (N0) 6.022 14(23) mol−1

Kilocalorie (kcal) 4.184 00(3) J
Kelvin (K) ◦C − 273.15
Boltzmann constant (k) 1.380 66(−23) J K−1

Faraday constant (F) 9.648 53(4) C mol−1



Appendix C 725

meter (m) = base unit of length = originally, a metal stick whose length

represented the King’s arm or a certain

fraction of the Earth’s circumference (now

redefined in terms of atomic constants) (C.2b)

second (s) = base unit of time = originally, a certain fraction of a day (now

redefined in terms of atomic constants) (C.2c)

Two of the three SI base units have in the meantime acquired redefinitions in atomic
terms (e.g., the “second” is now defined as 9 192 631 770 hyperfine oscillations of a
cesium atom). However, the definitions (C.2a)–(C.2c) conceal another unfortunate aspect
of SI units that cannot be overcome merely by atomic redefinitions. In the theory of
classical or quantal electrical interactions, the most fundamental equation is Coulomb’s
law, which expresses the potential energy V of two charged particles of charge q1 and q2 at
separation R as

V = cunits
q1q2

R
(C.3)

where cunits depends on the choice of units. Adoption of atomic units causes this constant
factor to “disappear” (ca.u. = 1), giving Coulomb’s law its simplest possible form,
whereas adoption of SI units leads irreducibly to an appendage (cSI = 1/(4πε0), where
the SI “permittivity of a vacuum” ε0 = 8.854 . . . × 10−12 unnecessarily complicates
Coulomb’s law. In this sense, atomic units better satisfy the Gibbs criterion for description
of fundamental electronic phenomena.

Tables C.1–C.4 provide conversion factors from a.u. to SI units and a variety of practical
(thermochemical, crystallographic, spectroscopic) non-SI units in common usage. Numer-
ical values are quoted to six-digit precision (though many are known to higher accuracy) in
an abbreviated exponential notation, whereby 6.022 14(23) means 6.022 14 × 1023. In this
book we follow a current tendency of the quantum chemical literature by expressing relative
energies in thermochemical units (kcal mol−1), structural parameters in crystallographic
ångström units (Å), vibrational frequencies in common spectroscopic units (cm−1),
and so forth. These choices, although “inconsistent” according to SI orthodoxy, seem
better able to serve effective communication between theoreticians and experimentalists.

Notes for Appendix C

1. J. W. Gibbs, “The proper magnitude of the units of length and of other quantities used
in mechanics,” read before the Connecticut Academy of Sciences, March 21, 1866;
reprinted in Appendix II of L. P. Wheeler, Josiah Willard Gibbs: The History of a Great
Mind (Hambden, CT, Archon Books, 1970).

2. Properly speaking, me should be the reduced mass for the specific nuclear mass of the
system. The values given in Table C.1 for me and R∞ pertain to the infinite-mass limit,
which suffices for practical purposes (and can be easily corrected, if necessary).

3. New York Times (May 27, 2003): “Scientists Struggling to Make the Kilogram Right
Again: For mysterious reasons, a platinum–iridium cylinder that defines the kilogram
has been losing weight. So scientists are looking for other ways to set the standard.”





Chemical-species index

(Common organic or laboratory species are alphabetically listed in the Common names index, whereas remaining
species/reactions are listed in the following Chemical formula index, grouped (rather arbitrarily) by the “main”
element of the species. The indexed species (with few exceptions) are those for which explicit computational
results are provided in the text, whereas species merely mentioned in passing are generally excluded.)

Common names

acetamide (CH3CONH2)
rotation barrier modulation, 696–702
complexes, 697–699

acetylacetonate anion (acac; H3COCHCOCH3
−)

as bidentate ligand, 523–526
resonance, 534–536

acetylene (HCCH)
localization, 110
hybrids, 112, 114
as bidentate ligand, 523–526, 531–534

acrylonitrile (CH2CHCN), 508
allene (H2C=C=CH2), 186
allyl (CH2CHCH2)

anion, 20
Lewis structure, 29–30
resonance, 33–34
valencies, 35
as bidentate ligand, 523–526, 536

conjugation, 186
hapticity, 529

amine oxide (H3NO), 179–181
ammine (NH3) ligand, 440–446, 454–455
ammonia (NH3)

adduct with BF3, 177–179
dimer, 254
complexes, 596, 607, 611, 630, 665–667
as monodentate ligand, 523–526

ammonium cation (NH4
+), 616

complexes, 616
aniline (C6H5NH2), 198, 206–208

benzene (C6H6)
complexes, 580, 663, 672–675
discovery, 196
hybrids, 112
localization, 108
π–π∗ interactions, 198

β-hydroxyacrolein (O=CHCH=CHOH), 631
bifluoride anion (FHF−), 280, 286, 580, 618, 657
borazine (B3N3H6), 198, 204–205
butadiene (H2C=CHCH=CH2), 186, 209–210

carbonate anion (CO3
2−), 302–306

carbonyl (CO) ligand, 440–446, 453–458
carbon monoxide (CO), 604

complexes with HF, 601
complexes with Li+, 71–72
CMO versus LMO description, 116–118

cyanide (:CN−) ligand, 458–459
cyclobutadiene (C4H4), 196, 200–202
cyclobutane (C4H8), 270–273
cyclohexene (C6H10), 680, 686–693
cyclopentadienyl (C5H5), 198, 203–204

compared to dicarbollide, 345–348
as polydentate ligand, 471–472
in alkene polymerization catalyst, 509
in sandwich complexes, 536–545

cyclopropane (C3H6)
Coulson–Moffitt picture, 146
Dewar picture, 264

decapentaene (CH2=CH(CH=CH)3CH=CH2), 186
diaminoalkanes H2N(CH2)nNH2, n = 1–4, 253–259

727
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diazabicyclooctane (DABCO; N(CH2CH2)3N), 253
dicarbollide anion (C2B9H11

2−), 345–348
difluoroethane (CH2FCH2F), 241–242
difluoroethylene, 238–240

ethane (H3CCH3), 227–231
ethylene/ethene (H2C=CH2), 108, 110, 112–114

complexes, 669–672
protonated, 313–316
reactions, 501–509, 680–682, 686–693

ethylenediamine (en; H2NCH2CH2NH2), 523–526
ethylenediaminetetraacetate (EDTA) ion, 522

ferrocene (Fe(C5H5)2), 536, 541–542
fluoropropene (CH2=CHCH2F), 216, 220–223
formaldehyde (H2C=O), 596, 630
formamide (H2NCHO), 628

dimer, 628
complexes, 630
clusters, 643–646

glyoxal (O=CHCH=O), 186
guanidinium (triaminomethyl) fluoride (C(NH2)3F),

249–252

hexadiene (H2C=CHCH2CH2CH=CH2), 186
hexatriene (H2C=CHCH=CHCH=CH2), 186
hydrazine (N2H4), 241
hydrogen peroxide (HOOH), 240–241
hydronium cation (H3O· · ·OH2), 618, 657
hydroxide anion (OH−), 611, 653

complexes, 611, 653, 697–699

isocyanide (:NC−) ligand, 458–459

maleate anion (HOOCCH=CHCOO−), 633
methane (CH4), 610, 108, 112, 114, 116–118

complexes, 607, 611
cation (CH4

+), 120–122, 125
geminal delocalizations, 267

methanediol (dihydroxymethane, CH2(OH)2), 243
methide (CH3

−), 513
methylamine (CH3NH2), 234–236, 247–248
methylene (CH2), 137

nickelocene (Ni(C5H5)2), 536, 539–541
nitrate anion (NO3

−), 302–306
nitrite anion (NO2

−), 302–306
nitrobenzene (C6H5NO2), 198, 206–208
nitrosyl (nitrosonium) cation (NO+), 665–675

octatetraene (H2C=CH(CH=CH)2CH=CH2), 186

perchlorate anion (ClO4
−), 302–306

propane (C3H8), 270–273

propylene/propene (CH3CH=CH2), 216
complexes, 670–672
polymerization reaction, 514–518

quinone (C6H4O2), 198, 205–206

sulfate anion (SO4
2−), 302–306

tetracyanoethylene (TCNE, C(CN)2=C(CN)2),
676–677

tungstenocene (W(C5H5)2), 538, 542–545

vinylamine (H2C=CHNH2), 216, 219–220

water (H2O), 116–118, 649
cation (H2O+), 120–122, 125
complexes, 596, 607, 616, 625–626, 653, 657,

697–699
clusters, 646–652

Chemical formula

Al
Al2, 170–172
Al2H6 (dialuminane), 348–351
As
As2, 172–173
H3AsO (arsine oxide), 179–181
Au
AuH, 387–397
AuF, 426–428
Au(CH3), 396–399
Au(acac), 526–529, 534–536
Au(C3H5), 526–534
Au(en)+, 526–529
Au(HCCH)+, 526–529
Au(NH3)2

+, 526–529
Ar
ArFn , n = 1, 2, 4, 6, 299–302

B
B2, 158, 163–167, 170
BF3, 177–179
BH4

− (borohydride anion), 626
B2H6 (diborane), 308–313

compared with protonated ethylene, 313–317
analogs, 348–351, 483–487

BH2AsH3, 182
BH2PH2, 182
B4H10 (tetraborane), 319–327
B5H9, 319–324, 327–332
B5H11, 319–324, 332–335
B6H10, 319–324, 336–338, 344–346
B12H12

−, 338–344
Be
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BeF2, 74–76
HeBeO, 677
Br
Br2, 172–173, 663–664
Br3

− (tribromide anion), 286

C, 48
C2, 158, 164–165, 167–168
CH2=X (X=CH2, SiH2, GeH2, NH, PH, AsH, O,

S, Se), 152–155
CH2=CHBHCH=CH2, 186
CH2=CHC(=CH2)CH=CH2, 186
CHONHCHO, 186
CH2=NCH=O, 186
CHF(OH)PH2, 145–146
CH2FNH2, 242–247, 250
CH3COCH2CH2NH2, 260–263
CH3F2

−, 290
C2B4H8, 344–346
C2H4· · ·BH3, 314–317
Cl
Cl2, 172–173, 175–177
ClF, 293
Cl3− (trichloride anion), 286
ClFCl−, 286
ClF5, 293
ClF3, 293
Co, 77–78
CoF, 79–81
Cr, 77–78, 548
CrF, 79–81
CrF6, 85–86
CrH6, 549–553
Cr(CO)3, 560–563

complex with benzene, 675–676
Cr2H2, 555–560
Cu, 77–78
CuF, 79–81

F
F2, 104–105, 158, 164–165, 170, 175–177
F3

− (trifluoride anion), 280, 286
FClF−, 286
FClCl−, 286
FFCl−, 286
HF (hydrogen fluoride), 27–31

dimer 596
clusters, 636–643
complexes, 601, 607, 611, 616

F− compounds
AF, A = F, Cl, Br, H, Li, 101–102
of transition metals, 79–86

Fe, 77–81
FeF2, 85–86
FeF3, 85–86

FeH6
4−, 572–573

Fe(CO)4(C2H4), 508
Fe(C5H5)2 (ferrocene), 536, 541–542

Ga
Ga2, 171–174
Ge
Ge2, 172–173
H3GeGeH3 (digermane), 237–238, 348–351

H, 8–10, 23–24
H−, 625, 653
H2, 25–26, 90–96

complexes, 668–669
metal reactions, 498–501

H2
+, 90–92

H3
+, 314–316

H3
− (trihydride anion), 286

He, 38
He2, 38, 582
HeBeO, 677
HeH+, 233–234
Hf, 548
HfH2, 397
HfH3, 397
3HfH2 + H2 reaction, 498
HfH3(CH3) + H2 reaction, 499–501
HfH3(OH), 429–430
HfH4, 549–553
HfH4(H2), 490–491
HfH4 + C2H4 reaction, 501–503

I
I2, 580
I3

− (triiodide anion), 278, 280, 286
Ir
Ir(acac), 524–529, 534–536
IrH2, 397
Ir(CH), 404, 406
IrH(CH2), 400, 406–412
IrH2(CH3), 396–399
IrH2X, X = F, Cl, Br, I, 423–426
IrF3, 426–428
IrH3, 387–397, 468–469
H3Ir(NH), 431–434
H3IrO, 429–430, 460–461
(H2C)Ir + H2 insertion reaction, 495–497
Ir(C3H5), 524–534
Ir(en)+, 524–529
Ir(HCCH)+, 524–529
Ir(NH3)2

+, 524–529
H2IrIrHn , n = 1, 2, 413–418
Ir8, 419–420

Kr, 10–12
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Li, 4–5, 17–18, 47–48, 53–56
Li+, 71–73
Li2, 90–91, 99–100
Li2+, 90–91, 99–100
LiF, 49–64, 86
LiF· · ·Li+, 65–66
(Li+)n(F−)m clusters, 66–71
HLiH−, 286, 288

Mn, 77–78
MnF, 79–81, 83–84
MnF3, 467–468
Mn(H2O)6

2+, 461–464
Mo, 548
MoH6, 549–553
Mo(CO)3, 560–563
MoO2F2, 369
HMoMoH, 555–560

N
N2, 116–118, 158, 164–165, 168–169
N2

+, 120–124
Nb
NbH5, 481–483
Nb2H10 (diniobane), 484–487
CpNb(CO)Cl, 471–472
Ni, 77–78, 548
NiF, 79–81, 83–84
NiH2, 549–553
HNiNiH, 555–560
Ni + C2H4 reaction, 505–509
Ni(CN), 458–459
Ni(CO), 458–459
Ni(NC), 458–459
Ni(C5H5)2 (nickelocene), 536, 539–541

O
O2, 158, 164–165, 169
Os
OsH2, 397
OsH3, 397
OsH4, 387–397, 419
OsH3(CH3), 396–399
Os(CH2)2, 405–412, 419
OsO2, 431–432
OsHCH, 404, 406, 419
H2OsO, 431–432
H2Os(CO), 441–442, 452–453
H2Os(NH3), 441–442, 452–453
H2Os(PH3), 441–442, 452–453
H3OsN, 431–434
H3Os(OH), 429–430
H3OsX, X = F, Cl, Br, I, 423–426
OsF4, 426–428

HnOsOsHn , n = 1, 3, 413–419, 519–520
Os3H6, 419–420
Os4H6, 419–420
Os8H8, 419–420

P
P2, 172–173
PF3, 293
PF5, 277–278, 293
:PH3 (phosphine ligand), 440–446, 452, 454
H3PO (phosphine oxide), 179–181, 460
Pd, 548
PdH2, 549–553
Pd + C2H4 reaction, 505–509
HPdPdH, 555–560
Pt, 548
PtH2, 387–397, 549–553, 416

dimer and complexes, 657–660
PtH4

2−, 564–573
Pt(CH2), 400
Pt(CH3)2, 370, 398–399
PtH(CH3), 396–399
PtO, 370
PtF2, 426–428
[Pt(CO)]2+, 465–466
[PtF]+, 465–466
[PtF4+n](n−2)−, n = 0–4, 474–477
PtCl42−, 364
[Pt(NH3)]2+, 465–466
PtH(PH3)2X, X = H, F, Cl, Br, I, 473–474
[PtH(PH3)2(H2)]+, 491–492
[PtH(PH3)2(C2H4)]+, 507–509
HPtPtH, 413–418, 555–560
Pt + C2H4 reaction, 505–509

Re
ReH2, 397
ReH3, 397
ReH5, 387–397
H2Re(CH), 404, 406
H2Re(CH2), 400
H3Re(NH), 431–434
H3Re(NH3), 441–442, 452–453
H3ReO, 429–430
H3Re(CO), 441–442, 452–453
H3Re(PH3), 441–442, 452–453
H4Re(CH3), 396–399
ReF5, 426–428
HnReReHn , n = 1–4, 413–418
Rh
[Rh(C6F5)5]2−, 472
[Rh(PPh3)3]+, 472
H2Ru(PPh3)2, 472
Ru(CH2)Cl2(PPh3)2, 472–474
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S
S2, 172–173
HSSH, 240–241
Sc, 77–78
ScF, 79–81
Se
Se2, 172–173
Si
Si2, 172–173
SiH3F2

−, 290
SiH4 (silane), 267
SiH5

−, 290
SiF5

−, 290
H3SiSiH3 (disilane), 237–238
Si3H8 (trisilane), 270–273
Si3H6 (cyclotrisilane), 268–273
Si4H8 (cyclotetrasilane), 270–273
Sr
SrF2, 73–76
S
SF2, 293
SF4, 293
SF6, 293

Ta
TaH2, 397
TaH3, 397
H3Ta(NH), 431–434
H3TaO, 429–430
TaH5(H2), 490–491
HnTaTaHn , n = 1–4, 413–418
Ti, 77–81, 83–84, 548
TiH4, 549–553
TiCl4, 480
TiO2 (rutile), 480
Ti + H2 insertion reaction, 493–495
Ti + C2H4 insertion reaction, 503–505, 532
Cl2TiCH3 + C2H4 polymerization reaction, 509–518
Cl2TiCH3 + CH3CHCH2 polymerization reaction,

514–518

V, 77–81
VF, 79–81

W, 548
WH2, 397

WH3, 397
WH4, 469–470
WH6, 387–397, 549–553
W(CH3)6, 369
H5W(CH3), 396–399
HWNO, 369
H2WO2

H3W(OH), 429–430
H3W(CH), 404, 406
H3W(CH2), 400
H3WN, 431–434
H4WO, 431–432
W(CH)2, 405–407, 406
W(CH2)3, 405–407, 406–412
W(CO)3, 560–563
W(CO)n , n = 1–6, 449–451
WO3, 369, 431–432
HW(CH)(CH2), 405–407
WH6−2n(CO)n , n = 1–3, 453–458
WH6−2n(NH3)n , n = 1–3, 442–446
WF3

3+, 428
WF6, 431, 426–428
HWWH, 555–560
H5WWH5, 520–522
HnWWHn , n = 1–5, 413–418
W(C5H5)2 (tungstenocene), 538,

542–545

Xe
XeH2, 564
XeH4, 564

Y
YH3, 481–483
H2Y(C2H5), 483–484
YF3, 482–483
Y(OH)3, 482–483
Y2H6 (diyttrane), 484–487

Zn, 77–78
ZnF, 79–81
Zn(NH3)6

2+, 477–479
Zr, 548
ZrH4, 481–483, 549–553
Zr2H8 (dizirconane), 484–487
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