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Trigonometry

Signs of the functions :
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Vector Analysis

1.1 Introduction

Electromagnetics is a branch of physics or electrical engineering which is used to
study the electric and magnetic phenomena. The electric and magnetic fields are
closely related to each other.

Let us see, what is a field ? Consider a magnet. It has its own effect in a region
surrounding it. The effect can be experienced by placing another magnet near the
first magnet. Such an effect can be defined by a particular physical function. In the
region surrounding the magnet, there exists a particular value for that physical
function, at every point, describing the effect of magnet. So field can be defined as
the region in which, at each point there exists a corresponding value of some -
physical function.

Thus field is a function that specifies a quantity everywhere in a region or a
space. If at each point of a region or space, there is a corresponding value of some
physical function then the region is called a field. If the field produced is due to
magnetic effects, it is called magnetic field. There are two types of electric charges,
positive and negative. Such an electric charge produces a field around it which is
called an electric field. Moving charges produce a current and current carrying
conductor produces a magnetic field. In such a case, electric and magnetic fields are
related to each other. Such a field is called electromagnetic field. The
comprehensive study of characteristics of electric, magnetic and combined fields, is
nothing but the engineering electromagnetics. Such fields may be time varying or
time independent.

It is seen that distribution of a quantity in a space is defined by a field. Hence to
quantify the field, three dimensional representation plays an important role. Such a
three dimensional representation can be made easy by the use of vector analysis.
The problems involving various mathematical operations related to the fields

(1)
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distributed in three dimensional space can be conveniently handled with the help of
vector analysis. A complete pictorial representation and clear understanding of the
fields and the laws governing such fields, is possible with the help of vector
analysis. Thus a good knowledge of vector analysis is an essential prerequisite for
the understanding of engineering electromagnetics. The vector analysis is a
mathematical shorthand tool with which electromagnetic concepts can be most
conveniently expressed.

This chapter gives the basic vector analysis required to understand engineering
electromagnetics. The notations used in this chapter are follwed throughout this
book to explain the subject.

1.2 Scalars and Vectors

The various quantities involved in the study of engineering electromagnetics can
be classified as,

1. Scalars and 2. Vectors

1.2.1 Scalar

The scalar is a quantity whose value may be represented by a single real
number, which may be positive or negative. The direction is not at all required in
describing a scalar. Thus,

A scalar is a quantity which is wholly characterized by its magnitude.

The various examples of scalar quantity are temperature, mass, volume, density,
speed, electric charge etc.

1.2.2 Vector

A quantity which has both, a magnitude and a specific direction in space is
called a wvector. In electromagnetics vectors defined in two and three dimensional
spaces are required but vectors may be defined ih n-dimensional space. Thus,

A vector is a quantity which is characterized by both, a magnitude and a
direction.

The various examples of vector quantity are force, velocity, displacement, electric
field intensity, magnetic field intensity, acceleration etc.

[}

1.2.3 Scalar Field

A field is a region in which a parﬁcu]ar ph}rsi{:al function has a value at each
and every point in that region. The distribution of a scalar quantity with a definite



position in a space is called scalar field. For example the temperature of
atmosphere. It has a definite value in the atmosphere but no need of direction to
specify it hence it is a scalar field. The height of surface of earth above sea level is a
scalar field. Few other examples of scalar field are sound intensity in an auditorium,
light intensity in a room, atmospheric pressure in a given region etc.

1.2.4 Vector Field

If a quantity which is specified in a region to define a field is a vector then the
corresponding field is called a vector field. For example the gravitational force on a
mass in a space is a vector field. This force has a value at various points in a space
and always has a specific direction.

Thé other examples of vector field are the velocity of particles in a moving fluid,
wind velocity of atmosphere, voltage gradient in a cable, displacement of a flying
bird in a space, magnetic field existing from north to south field etc.

1.3 Representation of a Vector

In two dimensions, a vector can be represented by a straight line with an arrow
in a plane. This is shown in the Fig. 1.1. The length of the segment is the magnitude
of a vector while the arrow indicates the direction of the vector in a given
co-ordinate system. The vector shown in the

A Fig. 1.1 is symbolically denoted as OA. The

o @n"“ﬂ“““"ﬂ point O is its starting point while A is its

/‘ terminating point. Its length is called its
magnitude, which is R for the vector OA

0
[Starting i = i
oint] shown. It is represented as DAI_R It is the

distance between the starting point and
Fig. 1.1 Representation of a vector terminating point of a vector.

Key Point: The vector hereafter will be indicated by bold letter with a bar over it.

1.3.1 Unit Vector
A unit vector has a function to indicate the
direction. Its magnitude is always unity, irrespective

H_:“‘"‘d“' A of the direction which it indicates and the co-ordinate
.}/ system under consideration. Thus for any wvector, to

/ indicate its direcion a unit vector can be used.
o /IRI Consider a unit vector 3gs in the direction of OA as

shown in the Fig. 1.2. This vector indicates the
direction of OA but its magnitude is unity.

Fig. 1.2 Unit vector
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%o vector OA can be represented completely as its magnitude R and the
direction as indicated by unit vector along its direction.

OA = |@ dpa =Ragpy

where dga = Unit vector along the direction OA and [aoa|=1

Key Point: Hereafter, letter 3 is used to indicate the unit vector and its suffix indicates the
direction of the unit vector. Thus 3, indicates the unit vector along x axis direction.

Incase if a vector is known then the unit vector along that vector can be
obtained by dividing the vector by its magnitude. Thus unit vector can be expressed
as,

oA

The idea and use of unit vector will be more clear at the time of discussion of
various co-ordinate systems, later in the chapter.

Unit vector apa =

1.4 Vector Algebra

The various mathematical operations such as addition, subtraction, multiplication
etc. can be performed with the vectors. In this section the following mathematical
operations with the vectors are discussed.

1. Scaling 2. Addition 3. Subtraction

1.4.1 Scaling of Vector

This is nothing but, multiplication by a scalar to a vector. Such a multiplication
changes the magnitude (length) of a vector but not its direction, when the scalar is
positive.

Let a = scalar with which vector is to be multiplied

Then if a>1 then the magnitude of a vector increases but direction remains
same, when multiplied. This is shown in the Fig. 1.3 (a). If a <1 then the magnitude
of a vector decreases but direction remains same, when multiplied. This is shown in
the Fig. 1.3 (b).

If a =1 then the magnitude remains same but direction of the vector reverses,
when multiplied. This is shown in the Fig. 1.3 (c).
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A A A
- o -
L — - _ - — -
ah ol ) - A
faja>1 (b)a<1 (b)a=-1

Fig. 1.3 Multiplication by a scalar

Key Point: Thus if a is negative, the magnitude of vector changes by a times while the
direction becomes exactly opposite to the original vector, after multiplication.

1.4.2 Addition of Vectors

Consider two coplanar vectors as shown in the Fig. 1.4. The vectors which lie in
the same plane are called coplanar vectors.

A

Let us find the sum of these two vectors
A and B, shown in the Fig. 1.4.

The procedure is to move one of the two
vectors parallel to itself at the tip of the other
vector. Thus move A , parallel to itself at the
tip of B.

Then join tip of A moved, to the origin.
This vector represents resultant which is the
addition of the two vectors A and B. This is
Move A shown in the Fig. 1.5.

Fig. 1.4 Coplanar vectors

Let us denote this resultant as C then
C=A+B

It must be remembered that the direction
B of C is from origin O to the tip of the vector

moved.

Fig. 1.5 Addition of vectors Another point which can be noticed that if

B is moved parallel to itself at the tip of A,

we get the same resultant C. Thus, the order of the addition is not important. The
addition of vectors obeys the commutative law ie. A+B=8B+A.
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Another method of performing the addition
of vectors is the parallelogram rule. Complete
the parallelogram as shown in the Fig. 16.
Then the diagonal of the parallelogram
. | represents the addition of the two vectors.

Resultant

o*

By using any of these two methods not
only two but any number of vectors can be
added to obtain the resultant. For example,
consider four vectors as shown in the Fig. 1.7 (a). These can be added by shifting
these vectors one by one to the tip of other vectors to complete the polygon. The
vector joining origin O to the tip of the last shifted vector represents the sum, as
shown in the Fig. 1.7 (b). This method is called head to tail rule of addition of
vectors,

Fig. 1.6 Parallelogram rule for addition

L-—

/b
N

(a) Four vectors {b) Sum of the four vectors
Fig. 1.7

Once the co-ordinate systems are defined, then the vectors can be expressed in
terms of the components along the axes of the co-ordinate system. Then by adding
the corresponding components of the vectors, the components of the resultant vector
which is the addition of the vectors, can be obtained. This method is explained after
the co-ordinate systems are discussed.

The following basic laws of algebra are obeyed by the vectors A, B and C:

R=A+B+C+D

o A

Law Addition Multiplication by scalar
Commutative A+B=B+A ah=Aa
Associative A+(B+T)=(A+¥)+C B(ar)=(Pa)A
Distributive a(A+B)=ad+ab (a+P)A =aA+BA

Table 1.1

In this table o and P are the scalars i.e. constants.
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1.4.3 Subtraction of Vectors

The subtraction of vectors can be obtained from the rules of addition. If B is to
be subtracted from A then based on addition it can be represented as,

C = A+(-B)

Thus reverse the sign of B ie. reverse its direction by multiplying it with -1 and
then add it to A to obtain the subtraction. This is shown in the Fig. 1.8 (a) and (b).

>|

(a) Vactors {b) Subtraction of vectors

Fig. 1.8
14.3.1 Identical Vectors
Two vectors are said to be identical if there difference is zero. Thus A and B are
identical if A-B=0i.e. A=B. Such two vectors are also called equal vectors.

1.5 The Coordinate Systems

To describe a vector accurately and to express a veclor in terms of its
components, it is necessary to have some reference directions. Such directions are
represented in terms of various coordinate systems. There are various coordinate
systems available in mathematics, out of which three coordinate systems are used in
this book, which are

1. Cartesian or rectangular coordinate system

2. Cylindrical coordinate system

3. Spherical coordinate system

Let us discuss these systems in detail.

1.6 Cartesian Coordinate System

This is also called rectangular coordinate system. This system has three
coordinate axes represented as x, y and z which are mutually at right angles to each
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Now the three components of this position vector Top are three vectors oriented
along the three coordinate axes with the magnitudes x;, y; and z;. Thus the position
vector of point P can be represented as,

Tor = X135 +Y1dy +213; .. (1)

The magnitude of this vector interms of three mutually perpendicular
components is given by,

|Tor| = J{m]: +(y1)? +(z1) . (2)
Thus if point P has coordinates (1,2, 3) then its position vector is,

?ﬂf‘ =1 i: +2 E’- +3 i;

andt [Tor | = (D7 +(D7 +()" =14 = 37416

Many a times the position vector is
denoted by the vector representing that
point itself i.e. for point P the position

vector is P, for point Q it is Q and so
on. The same method is used hereafter
?\ Qlxz¥222) in this book. Note the difference

0 ) -y between a point and a position vector.
Distance _ Now consider the two points in a
veciar PQ cartesian coordinate system, P and Q

with the coordinates (x,y1,2z1) and
(x2,¥2,22) respectively. The points are
shown in the Fig. 1.14. The individual
position vectors of the points are,

Fig. 1.14 Distance vector

P

Q

Then the distance or the displacement from P to Q is represented by a distance
vector PQ and is given by, '

PQ = Q-P=[x2 -x1]ax +[y2 -y1]ay +[z2 -z1] 3, . (3)
This is also called separation vector.

I

Xy Ay +}Fjir +Z)ag

X285 +Y2ay +223;

The magnitude of this vector is given by,
|ﬁ| = -J(xz -3'C1:,'l1 +(y2 "}H)z +(z2 —21}! v (4)
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This is nothing but the length of the vector PQ. The equation (4) is called
distance formula which gives the distance between the two points representing tips
of the vectors.

Using the basic concept of unit vector, we can find unit vector along the
direction PQ as,

8
Qo

. (5)

|

apg = Unit vector along PQ =

g
L=

Once the position vectors are known then various mathematical operations can
be easily performed interms of the components of the various vectors.

Let us summarize procedure to obtain distance vector and unit vector.

Step 1 : Identify the direction of distance vector i.e. starting point (x;,y1,21)
and terminating point (x2, y2,22)

Step 2 : Subtract the respective coordinates of starting point from terminating
point. These are three components of distance vector i.e. (X2 = x;) 3,
(y2-vy1) @y and (z2 -2;) 3,

Step 3 : Adding the three components distance vector can be obtained.

Step 4 : Calculate the magnitude of the distance vector using equation (4).

Step 5: Unit vector along the distance vector can be obtained by using equation
(5).
Ex. 1.1  Obtain the wunit vector in the direction from the origin towards the point
P(3,-3,-2)
Sol. : The origin O (0, 0, 0) while P (3, - 3, - 2) hence the distance vector OP is,

= (3-0)3, +(-3-0ay +(-2-0)a, =34, -3a, - 23,

|OP| = {(3)" +(-3)" +(-2)* = 4.6904

Hence the unit vector along the direction OP is,
i ﬁ _Si: -35, -zi;
oF | OP| 4.6904

= 0.6396 a, - 0.6396 a, - 04264 a;

Ex. 12 Two points A(2,2,1) and B(3,-4,2) are given in the cartesian system. Obtain the
vector from A to B and a unit vector directed from A to B.

Sol.:  The starting point is A and terminating point is B.
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23, +23y +3, and B=3a, -4a, +27,
B-A =(3-2)a, +(-4 -2)a, +(2-1)a;
E = i! _E‘a}r +Ez

This is the vector directed from A to B.

Now A
AB

Now |AB|=/(1)° +(-6)* +(1)" = 6.1644

Thus unit vector directed from A to B is,
aAB = [AB| T T 6164

0.1622 &, - 0.9733 3, + 0.1622 &,

It can be cross checked that magnitude of this unit vector is unity i.e.

J(0.1622)% +(-09733)% +(0.1622)" = 1.

1.6.4 Differential Elements in Cartesian Coordinate System

Consider a point P(x, y, z) in the rectangular coordinate system. Let us increase
each coordinate by a differential amount. A new point P' will be obtained having
coordinates (x+dx, y +dy, z+dz).

Thus, dx = Differential length in x direction
dy
dz

Differential length in y direction

Differential length in z direction

Hence differential vector length also called elementary vector length can be
represented as,

dl = dx 3, +dy a, +dz 3, e (6)

This is the vector joining original point P to new point P

Now point P is the intersection of three planes while point P' is the intersection
of three new planes which are slightly displaced from original three planes. These
six planes together define a differential volume which is a rectangular parallelepiped
as shown in the Fig. 1.15. The diagonal of this parallelepiped is the differential
vector length.

Please refer Fig. 1.15 on next page.
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Fia

]
b

Fig. 1.15 Differential elements and different length in cartesian system
The distance of P' from P is given by magnitude of the differential vector length,

|| = {/(dx)* +(dy)* +(d2)’ ()

Heice the differential volume of the rectangular parallelepiped is given by,

dv = dx dy dz .. (8)

Note that dl is a vector but dv is a scalar.

Let us define differential surface areas. The differential surface element dS is
represented as, '

dS = dS i, . (9)

where dS = Differential surface area of the element

— - z
a, = Unit vector normal to

a,

the surface dS dy i 1 ‘

dz
Thus various differential ! 3, o
surface elements in cartesian =:+ } } "
coordinate system are shown in | | I d
the Fig. 1.16. = - = '
ds, ds, ds,

X

Fig. 1.16 Differential surface elements
in cartesian system
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The vector representation of these elements is given as,

dSx = Differential vector surface area normal to x direction

= dydz a,

dS, = Differential vector surface area normal to y direction
= dxdz ay

dS, = Differential vector surface area normal to z direction

= dxdy a;

. (10)
- (11)

.. (12)

The differential elements play vmy'fmpnrtant role in the study of engineering

electromagnetics.

Ex. 1.3 Given three points in cartesian coordinate system as A(3,—2,1), H{-3,—3,5),

C(2,6,-4).

Find : i) The vector from A to C.
ii) The unit vector from B to A.
iii) The distance from B to C.

iv) The vector from A to the midpoint of the straight line joining B to C.

Sol.:  The position vectors for the given points are,
A =3a, -2a, +3, , B=-3a,-3a, +53,, C=23,+63, -43,
i) The vector from A to C is,

AC = C-A=[2-3]a, +[6-(-2)] ay +[4-1]a;

= -a, +8a, -5a,
ii) For unit vector from B to A, obtain distance vector BA first.

BA = A-B .. as starting is B and terminating is A

[3-(-3)]ax +[(-2) -(-3)] &y +[1-5]a;

= 63, +3y -4,

J(6)? +(1)* +(~4)* =7.28m

[BA|

_ BA _ 6a, +ay -4a,

" ApA = oA 720 =0.8241 &, + 0.1373 3, - 0.5494 7,

iii) For distance between B and C, obtain BC
BC

53, +9ay -9a;

I

C-B=[2-(-3)] ax +[6-(-3)]ay +[(-4)-(9)] a:
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Distance BC = /(5)° +(9) +(-9) = 13.6747

iv) Let B(x1,y1,21) and C(x2,¥2,22) then the coordinates of midpoint of BC

Xp+x3 Yi+¥z 9423
SNEEEAIES A

- Midpoint of BC = [ =42 3+6 5-4)_(_05,15,05)
2 2 2
Hence the vector from A to this midpoint is
[-0.5-3]a, + [1.5-(-2)] 3y +[0.5-1] 7,

_35 E.‘_ -+ 3‘-5‘ Er - D.E‘ iI

1.7 Cylindrical Coordinate System

The circular cylindrical coordinate system is the three dimensional version of
polar coordinate system. The surfaces used to define the cylindrical coordinate
system are,

1. Plane of constant z which is parallel to xy plane.
2. A cylinder of radius r with z axis as the axis of the cylinder.

3. A half plane perpendicular to xy plane and at an angle ¢ with respect to xz
plane. The angle ¢ is called azimuthal angle.

The ranges of the variables are,

0srsw .. (1)
0<é < 2n e (2)
- <2 £ w e (3)

The point P in cylindrical coordinate system has three coordinates r, ¢ and z
whose values lie in the respective ranges given by the equations (1), (2) and (3).

The point P(r,$1, z1) can be shown as in the Fig. 1.17(b).

Key Point : Note that angle ¢ is expressed in radians and for ¢ anticlockwise
measurement is treated positive while clockwise measurement is treated negative.
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A AR

The intersection nf;_my two surfaces out of the above three surfaces is either a
line or a circle and intersection of three surfaces defines a point P.

The intersection of z & constant and r = constant is a circle. The intersection of
¢ = constant and r = constant is a line. The point P which is intersection of all three
surfaces is shown in the Fig. 1.19.

Intersection F
of r = constant
and z = constant
IS a circla

r = constant eylinder
P(r. $.2)
z = constant plane

Intersection of
r = constant and
b = constant is.
a siraight line

¢ = constant plane

| Fig. 1.19 Repraesenting point P In cylindrical system

1.7.1 Base Vectors

Similar to cartesian coordinate system, there are three unit vectors in the
r, ¢ and z directions denoted as 3,3, and a;.

These unit vectors are shown in the
Fig. 1.20.

These are mutually perpendicular to
each other.

The @, lies in a plane parallel to the
xy plane and is perpendicular to the
surface of the cylinder at a given point,
coming radially outward.

The unit vector 3, lies also in a plane
parallel to the xy plane but it is tangent to
the cylinder and pointing in a direction of
increasing ¢, at the given point.

1.20 Unit vectors in cylindrical system
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The unit vector @, is parallel to z axi$ and directed towards increasing z.
Hence vector of point P can be represented as,

P=FR3a+Fa,+R3, e (4)
where F, is radius r, P, is angle ¢ and P, is z coordinate of point P.

Key Point: In cartesian coordinate system, the unit vectors are not dependent on the
coordinates. But in cylindrical coordinate system &, and &, are functions of $ coordinate as
their directions change as ¢ changes. Hence in integration or differentintion with respect to §
a, and @, should not be treated to be constants.

1.7.2 Differential Elements in Cylindrical Coordinate System

Consider a point P(r,$,z) in a cylindrical coordinate system. Let each coordinate
is increased by the differential amount. The differential increments in r,¢,z are
dr, d¢ and dz respectively.

Now there are two cylinders of radius r and r+dr. There are two radial planes
at the angles ¢ and ¢ +d¢. And there are two horizontal planes at the heights z and
z+dz All these surfaces enclose a small volume as shown in the Fig. 1.21.

The differential lengths in r and z directions are dr and dz respectively. In ¢
direction, d¢ is the change in angle ¢ and is not the differential length. Due to this
change d¢, there exists a differential arc length in ¢ direction. This differential
length, due to d¢, in ¢ direction is rd¢ as shown in the Fig. 1.21.

z+dz

Fig. 1.21 Differential volume In cylindrical coordinate system
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Thus the differential lengths are,
dr = Differential length in r direction e (5)
rd¢ = Differential length in ¢ direction . (6)
dz = Differential length in z direction w (7)
Hence the differential vector length in cylindrical coordinate system is given by,
dl = dra, +rdp a, +dz a, . (8)

The magnitude of the differential length vector is given by,

1] = |/(dr)? +(r d¢)? +(dz)? . (9)

Hence the differential volume of the differential element formed is given by,

dv = rdrdé dz - (10)
The differential surface areas in the three directions are shown in the Fig. 1.22.

By @
) dz rdd
dr

z

!
das,

—
ds,

Fig. 1.22 Differential surface slements in cylindrical system
The vector representation of these differential surface areas are given by,

-dS, = Differential vector surface area normal to r direction

= rd¢ dz a, - (11}
dS, = Differential vector surface area normal to ¢ direction
= dl‘ d.Z E+ ™ {11]

dS, = Differential vector surface area normal to z direction

= rdrd¢ 3, .. (13)
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The unit vector 3p is tangmt to the sphere and ﬂnented in the direction of
increasing 8. It is normal to the'conical ‘surface.

The third unit vector @, is tangent to the sphere and also tangent to the conical
surface. It is oriented in the direction of increasing ¢. It is same as defined in the
cylindrical coordinate system.

Hence vector of point P can be represented as,
F = Pr a, +Pﬂin+P¢ E+ . . (4]
where P, is the radius r and Py, P; are the two angle components of point P.

1.8.2 Differential Elements in Spherical Coordinate System

Consider a point P(r,0,¢) in a spherical coordinate system. Let each coordinate is
increased by the differential amount. The differential increments in r, 8, ¢ are dr, d
and d¢.

Now there are two spheres of radius r and r +dr. There are two cones with half
angles 6 and 6 +d6. There are two planes at the angles ¢ and ¢ + d¢ measured from
xz plane. All these surfaces enclose a small volume as shown in the Fig. 1.30.

rsing dé

X

Fig. 1.30 Differential volume in spherical cocrdinate system

The differential length in r direction is dr. The differential length in ¢ direction is
rsin® dé. The differential length in 8 direction is r d0. Thus,

dr = Differential length in r direction .. (5)
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' rdB = Differential length in 8 direction . (6)
rsin6d¢ = Differential length in ¢ direction ' o (7)

Hence the differential vector length in spherical coordinate system is given by,

dl = dr 3, +rd0 3y +rsinfdé 3, .. (8)

the magnitude of the differential length vector is given by,

Im| = J{:dr)z +(r dﬂ)z niﬂ(rsiruEh:l'.fn)z w (9)

Hence the differential volume of the differential element formed, in spherical
coordinate system is given by,

dv = r2? sin8dr do d¢ i .. (10)

The differential surface areas in the three directions are shown in the Fig. 1.31.

rsinf dé 5*
dr %
dr
- rd0™
ds, ds,

Fig. 1.31 Differantial surface elements in spharical coordinate system
The vector representation of these differential surface areas are given by,

dS, = Differential vector surface area normal to r direction

= 12 sin0dBdé . (11)
dSg = Differential vector surface area normal to 8 direction

= rsin@drd¢ e (12)
dS, = Differential vector surface area normal to ¢ direction

= rdrde 13

1.8.3 Relationship between Cartesian and Spherical Systems

Consider a point P whose cartesian coordinates are x, y and z while the
spherical coordinates are r, ® and ¢ as shown in the Fig. 1.32.
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Plx.y.z) = P(r.0.4)

X

Fig. 1.32 Relationship between cartesian and spherical systems
Looking at the xy plane we can write,
x = rsincos¢ and y=rsinBsing
While z = rcos@

Hence the transformation from spherical to cartesian can be obtained from the
equations,

x =rsinBcosd , y=rsinfsing and z=rcos® ... (14)

Now r can be expressed as,

x?2 +y2 +2? = r2sin?0cos? ¢ + 12 sin? Osin? ¢ +r? cos? O

r2 sin? @[sin? ¢ + cos? ¢] +r? cos? 8
r? ]:siru2 B+mszﬂ] =r2

r = Jx2+y2+z?

and cosE:%

While tan¢ =

e |

As r is known, O can be obtained.

Thus the transformation from cartesian to spherical coordinate system can be
obtained from the equations,

aY ... (15)
X

r= x*+yt+z?, H=M'1liml and ¢=tan
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Remember that r is positive and varies from 0 to e, 8 varies from 0 to « radians
i.e. 0°to 180° and ¢ varies from 0 to 2n radians i.e. 0° to 360°

Key Point: While using above formulae, care must be taken to place the angles 8 and ¢ in
the correct guadrants according to the signs of x, y and z.

Ex. 1.6 Calculate the volume of a sphere of radius R using integration.
Sol.: The differential volume of a sphere is,

dv = r2sinBdrde d¢
The limits for r are 0 to R, as sphere is of radius R.

The 8 varies from 0 to © while ¢ varies from 0 to 2=

Vv =

.:,L—"i-"
=

R
J‘ r? sinBdrd0 d¢
1]

E "
[%} sin@de d¢ =R._‘;i[ [-cose]; dé
0

0

Il
51—.';"
[ m—

= R—;[—casr:-(—mﬂ)] _f dé "-R—;[_{_l} -(-1] [‘HE:

3
= %-x2x21t=%nR3
Ex. 1.7 Calculate the surface area of a sphere of radius R, by integration.

Sol. : Consider the differential surface area normal to the r direction which is,
dS;, = r?sind d6 dé

Now the limits of ¢ are 0 to 2 while 6 varies from O to &

In =

S, = j_[rzs'mﬂ dedé
0o

But note that radius of sphere is constant, given as r=R

ia =

S = R?[ [ sin® do d¢ =R*[-cose]; [o]2"
G o

= R2 x [-cnsn—(- mﬁﬂ)] x2n=R2 [—(—1}—(—1}] 2n
= 4nR?

Ex. 1.8 Use spherical coordinates and integrate to find the area of the region 0<$ <a on
the spherical shell of radius a. What is the area ifa =2n 7

Sol. :  Consider the spherical shell of radius a hence r=a is constant.
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Consider differential surface area normal to r direction which is radially
outward.

dS, = r?sin0d0d¢ =a2sinBd0d$ ..asr=a
But ¢ is varying between 0 to a while for spherical shell 8 varies from 0 to n

S = a?[ [ sin® d0d¢ =a?[-cosB]j [6],

= -}
=l T

a?-[-cosn—(-cos0)]a =2a%a

So area of the region is 2aZa.

If a =2x the area of the region becomes 4na?, as the shell becomes complete
sphere of radius a when ¢ varies from 0 to 2n

1.9 Vector Multiplication

Uptill now the addition, subtraction and multiplication by scalar to a vector is
discussed. Let us discuss the multiplication of two or more vectors. The knowledge
of vector multiplication allows us to transform the vectors from one coordinate
system to other.

Conzider two vectors A and B. There are two types of products existing
depending upon the result of the multiplication. These two types of products are,

1. Scalar or Dot product
2. Vector or Cross product
Let us discuss the characteristics of these two products.

1.10 Scalar or Dot Product of Vectors

_ The scalar or dot of the two vectors A
A and B is denoted as A + B and defined as the
product of the magnitude of A, the
magnitude of B and the cosine of the smaller
angle between them.

It also can be defined as the product of
magnitude of B and the projection of A onto
B or viceversa.

Fig. 1.33
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Mathematically it is expressed as,

A*B=|A | |B|cosBap e (1)

The result of such a dot product is scalar hence it is also called scalar product.

1.10.1 Properties of Dot Product
The various properties of the dot product are,

1. If the two vectors are parallel to each other i.e. 8 =0° then cos 845 =1 thus
A+B = |A| {B| for parallel vectors e (2)

2. If the two vectors are perpendicular to each other i.e. 8=90° then cos 845 =0
thus

A+B = 0 for perpendicular vectors v (3)

In other words, if dot product of the two vectors is zero, the two ver:tc:rs are
perpendicular to each other.

3. The dot product obeys commutative law,

A-B = B-A B ()
4. The dot product obeys distributive law,
A+(B+C) = A-B+A-C wr (5)

5. If the dot product of vector with itself is performed, the result is square of the
magnitude of that vector.

A«A = |A| |A|cos0°=]|A|? . (6)

6. Consider the unit vectors 3, ay and a, in cartesian coordinate system. All
these vectors are mutually perpendicular to each other. Hence the dot product of
different unit vectors is zero.

Agely = Ay eU =88, =0, 28, =8y +&, =5, 8y =0 e (D)
7. Any unit vector dotted with itself is unity, |

Ay 08, = Ay edy =3, 3, =1 .. (8)
8. Consider two vectors in cartesian coordinate system,
A=A,3, +Ay3, +A,a, and B=B,3, +B,a, +B;a,
Now A+B=(Axax+Ayay +A;3;)+(Bxax +Byay +B;3;)
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i

This product has nine scalar terms as dot product obeys distributive law. But
from the equation (7), six terms out of nine will be zero involving the dot products
of different unit vectors. While the remaining three terms involve the unit vector
dotted with itself, the result of which is unity.

E"E AHB;(i;'E:)‘FA}r B}-(iriir)"'.ﬁhz B:(E: 'EZ)

Ji"ﬁ = A.HB_,;‘i‘Jﬁly B}l +A2Bz, Lo (g}

1.10.2 Applications of Dot Product
The applications of dot product are,

1. To determine the angle between the two vectors.
The angle can be determined as,

0= e

2. To find the component of a vector in a given direction.

Consider a vector P and a unit vector @ as shown in the Fig. 1.34. The
component of vector P in the direction of unit vector a is P+a. This is a scalar
quantity. This is shown in the Fig. 1.34 (a).

Fig. 1.34 (a & b)

P.a=|P| |a]| cos0=|Pjcos

The sign of this component is positive if 0<0<90° while the sign of this
component is negative if 90°< 0 < 180° If the component vector of A in the direction
of unit vector @ is required then multiply the component obtained by that unit
vector, as shown in the Fig. 1.34 (b). Thus (P+a) 7 is the component vector of P in
the direction of a.
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Thus component of P in the
direction of a, is P+, ie. P, while
the component vector of P in the
direction of 3, is P, 3,.

L a R This is the geometrical meaning

Pm_jaﬁm: of of dot product, to find projection of
PonQ P in the direction of unit vector a.

Fig. 1.34 () If the projection of P on other

vector Q is to be obtained then it is
necessary to find unit vector in the direction of Q first i.e. dg.

Then the projection of P on Q is given by P« ayg,.

Asdg = 9 hen the projection of P on Q can be expressed as,

3. Physically, work done by a constant force can be expressed as a dot procut of
two vectors.

Consider a constant force F acting on a body and it causes the displacement d of
that body. Then the work done W is the product of the force and the component of
the displacement in the direction of force which can be expressed as,

W = |F|dcos0=F+d

But if the force applied varies along the path then the total work done is to be
calculated by the integration of a dot product as,

W = _[T-"-E
Ex. 1.9 Given the lwo vectors,
A =23, -53ay -4 a, and B=3a, +5a, +2a,

Find the dot product and the angle befween the two vectors.
Sol.: The dot product is,

H"ﬁ = Ax Bx +A}' B}’ +AZ BI =(2K3)+(_5)(5)+(_4:{2}
6-25-8=-27
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E'_xil = Er i i ] il {g}

But if the order of unit vectors is reversed, the result is negative of the
remaining third unit vector. Thus,

Ny X, = A, 5y X5, =—8,, 5, X 7T, =-1, .. (10)

This can be remembered by a circle indicating cyclic permutations of cross
products of unit vectors as shown in the Fig. 1.38.

ix Anticlockwise i:

{a) Positive result (b) Negative result

Fig. 1.38
While as cross product of vector with itself is zero we can write,
EI xil = Er xir = E: xiz =U ssa {11}

The result is app]i{:able for the unit vectors in the remaining two coordinate
systems.

Anticlockwise
positive

(a) Cylindrical system (b) Spherical system

Fig. 1.39
From the Fig. 1.39 we can write,

a, xdy =a,, adgxdy =a, and so on
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Key Point: The clockwise direction gives negative result.

8. Cross product in determinant form : Consider the two vectors in the cartesian
system as,

A=A,3,+A,a, +A.3; and B=B,3,+B, 3, +B, 3,

Then the cross product of the two vectors is,

AxBx(ax xax)+Ax By (ay %3y )+ A, B, (3, x3d;)
+Ay B,(i}, xi.‘)-rh}. By (i,. xa_?)+ﬁu, Bz(ir xa'.)
+Az Bx(@: xa3x) +A; By (3 x3y )+ A, B, (3 x3;)
0+AyBya, A, B,a —A, B,a, +0+A, B,

AxB

+A; Bedy -A,; Bya, +0
L (A}r B:-Az E}u )Ex +(Az_ BK_AI B;)ir +(Ax E:’l “.ﬁ.}r Bp;)sz
This result can be expressed in determinant form as,

a, &, 1,
AxB = [Ax Ay, A, .. (12(a))
B, By, B,

If A and B are in cylindrical system then

ar ay a,
AxB = |A; Ay A, - (12(b))
B, B, B,

If A and B are in spherical system then

i 3, i,
AxB = |A, Ay A, .. (12(c))
B, By B,

1.11.2 Applications of Cross Product
The different applications of cross product are,
1. The cross product is the replacement to the right hand rule used in electrical

engineering to determine the direction of force experienced by current carrying
conductor placed in a magnetic field.
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Thus if 1 .is the current flowing through conductor while T is the vector length
considered to indicate the direction of current through the conductor. The uniform
magnetic flux density is denoted by vector B. Then the force experienced by
conductor is given by,

F =1ILxB
2. Another physical quantity which can be represented by cross product is
moment of a force. The moment of a force (or torque) acting on a rigid body, which
can rotate about an axis perpendicular to a plane containing the force is defined to

be the magnitude of the force multiplied by the perpendicular distance from the
force to the axis. This is shown in the Fig. 1.40.

The moment of force F about a point
O is M. Its magnitude is |F| |¥| sin0
where |f| sin@ is the perpendicular
distance of F from O i.e. OQ.

7

~M = txF = |¥| |F| sin® ay where
ay is the unit vector indicating direction
of M which is perpendicular to the plane
ie. paper and coming out of paper
according to right hand screw rule.

Fig. 1.40

Ex. 1.11  Given the twe coplanar vectors

A=33, +43y -53, and B=-63a, +23, +47,

Obtain the unit vector normal to the plane containing the vectors A and B.
Sol.: Note that the unit vector normal to the plane containing the vectors A and
B is the unit vector in the direction of cross product of A and B.

i, a, a1,
Now AxB=|3 4 -5
-6 2 4

_a |4 S s |3 S| |3 4

Sy 4|76 4|6 2

= 2ba, +18ay +30a,
|AxB| [26)? +(18)* +(30)°
= 0.5964 a, + 04129 3, + 0.6882 &;
This is the unit vector normal to the plane containing A and B.
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1.12 Products of Three Vectors

Let A, B and C are the three given vectors. Then the product of these three

vectors is classified in two ways called,
1. Scalar triple product
2. Vector triple product

1.12.1 Scalar Triple Product

The scalar triple product of the three vectors A,B and C is mathematically

defined as,
A«(BxC)=B+(CxA) = C-(AxB) e (1)
Thus if, A= A3, +A,3, +A;3,
B = Bya, +Bya, +B;a,
C = C,a,+C, 3, +C, 1,

then the scalar triple product is obtained by the determinant,

Ax A, A,
x-(ﬁ){(—:)?— E:.; B}r B;g,
Ci & G

. (2

The result of this product is a scalar and hence the product is called scalar triple

product. The cyclic order a b ¢ is important.
1.121.1 Characteristics of Scalar Triple Product

Fig. 1.41

Et(ﬁht) = —EO(HKE)

1. The scalar triple product
represents the volume of the
parallelepiped with edges A,B
and C, drawn from the same
origin, as shown in the Fig. 1.41.

2. The scalar triple product
depends only on the cyclic order
'a b ¢’ and not on the position of
the » and X in the product. If the
cyclic order is broken by
permuting two of the vectors, the
sign is reversed.
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3. If two of the three vectors are equal then the result of the scalar triple product
is zero.
A (I X E) =0
4. The scalar triple product is distributive.

1.12.2 Vector Triple Product

The vector triple product of the three vectors A, B and C is mathematically
delined as,

Ax(BxC)=B(A+C)-C(A-B) )

The rule can be remembered as 'bac-cab' rule. The above rule can be easily
proved by writing the cartensian components of each term in the equation. The
position of the brackets is very important.

11221 Characteristics of Vector Triple Product
1. It must be noted that in the vector triple product,
(E.ﬁ)f #* I(E-E)
but (A-B)C = C(A.B)
This is because A+ B is a scalar and multiplication by scalar to a vector is

commutative.

2. From the basic definition we can write,
Bx(CxA) = C(B-A)-A(B-C) o (4)
Ex(ﬁ'x‘ﬁ) = A(C-B)-B(C-A) . (5)
But dot product is commutative hence C+A = A+ C and so on. Hence addition
of (3), (4) and (5) is zero.
ﬁx(ﬁxt)+'ﬁx(txﬁ}+_ﬁx(xxﬁ)=D .. (6)
The result of the vector triple product is a vector.
Ex. 112 The three fields are given by,
A=2d, -a,, B=2a,-a, +2a,, C=2a, -3a, +a.
Find the scalar and vector triple product.
Sol. :  The scalar triple product is,
2 0 -1
A-(BxC) =2 -1 2/=14
2 -3 1



42 Vector Analysis JNTU - EMWTL

The vector triple product is,

Ax(BxC) = B(A+-C)-C(A+B)
A-C = (@+OCY+(-DM) =3
AB = (QQ+OC)+(-)@ =2
Ax(BxC) = 3B-2C = 3[2a, -3, +2a,]-2[2a, - 33, +a,]

23, +3ay +43;

1.13 Transformation of Vectors
Getting familiar with the dot product and cross product, it is possible now to
transform the vectors from one cordinate system to other coordinate system.

1.13.1 Transformation of Vectors from Cartesian to Cylindrical
Consider a vector A in cartesian coordinate system as,
A = Aa,+Aydy +A,7T, , e (1)
While the same vector in cylindrical coordinate system can be represented as,
A= A,a3, +A,3,+A,3, o (@)

From the dot product it is known that the component of vector in the direction
of any unit vector is its dot product with that unit vector. Hence the component of
A in the direction &, is the dot product of A with 3,. This component is nothing but
A,

Ar = [A-a] e (3)
A, = [J!gk,.ﬁimF +Ay ay +A,a—,].a—,
J"’s.r = J\xﬂ_,‘ -i,i—ﬂ}-i}r -ir-l'ﬂzizlir +l:4;|

The magnitudes of all unit vectors is unity hence it is necessary to find angle
between the unit vectors to obtain the various dot products.

The Fig. 1.42 (a) shows three dimensional view of various unit vectors.

Consider a xy plane in which the angles between the unit vectors are shown, as
in the Fig. 1.42 (b).

The angle between a, and a, is ¢.
The angle between ay and a; is 90-¢.
The angle between a, and a, is 90+¢.
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o
-

z PP(xy.z)= Pré.z)
o :’ I
o N1 AL
1 ::}
vd _ 3y
ay ;, - Y
{a)
Fig. 1.42 Transfoermation of vectors
The angle between &, and a, is ¢.
ay+a, = (1)(1)cos(¢)=cosé e (5)
a,+ay, = (1)(1)cos(90+¢)=-sin¢ . (6)
ay +a;, = (1)(1)cos(90-¢)=sing e (7)
iy +ay = (1)(1)cos(¢)=cosd . (8)
and @; +3; = A, »3 = 0 as &, is perpendicular to &, and a, . (9)
and a;.a;, =1 - (10)
Substituting in (4) we get,
A, = A coshp+A,sing . (11)
Similarly finding A, as [-ﬁ[ . Ed,] and A, as [Eﬂa',] we get,
Ay = —Aysing + Ay cosd o (12)
and A, = A, .. (13)

The results of dot product are summarized in the tabular form as,

Dot operator » a a, a,
a. cosd ~-5ing 0
ay sing cosd¢ 0
a; a 0 1

Table 1.2
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The results of transformations can be expressed in the matrix form as,

cm¢ sing O0|[Ax
0 1||A;

1.13.2 Transformation of Vectors from Cylindrical to Cartesian
Now it is necessary to find the transformation from cylindrical to cartesian hence
assume A is known in cylindrical system. Thus component of A in a, direction is
given by,
i: [H-i“]=[ﬁri'+ﬁ¢i‘ +A:i;]'i:
Pll Ari['ﬁx +A.i:-‘ 'i: +.f5i; I:_ 'ig e (14}
As dot product is commutative a, @, = @y «3, =cos¢ and so on. Hence referring
Table 1.2 we can write the results directly as,

A, = A cos-A,sing .. (15)
Ay = A.sing+A,cosd .. (16)
L
A, = A, . (17)
The result can be summarized in the matrix form as,
Ay cos¢ —-sing O][A;
Ay | = |sing cos¢ O|lA,
A, 0 0 1]]A:

Ex. 113  Transform the vector field W =10@; - 8@, + 6@; to cylindrical coordinate system,
at point P(10,- 8, 6).
Sol.:  From the given field W,

W,=10, Wy =-8 and W, =6
NDW wr W*ir =[1Uiﬂ -Bir ‘I“ﬁi:] . i:

lﬂi; . ij- "‘B‘ir - i‘ +6E; . il'
10 (cos¢) - 8(sin$) + 6(0) ... Refer Table 1.2
Forpoint P, x =10 and y=-8

¢ = tan L ... Relation between cartesian and cylindrical

d

tan-! [ﬁ] =-—38.6598°
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As y is negative and x is positive, ¢ is in fourth quadrant. Hence ¢ calculated is

correct.
cosp =
W, =
Now Wy =
And W, =
W =

0.7808 and sin¢g = - 0.6246

10x (0.7808) - 8x (- 0.6246) =12.804

W. a, =10a, » 3, ~83, » 34 +63, » 34
10(-sin¢) - 8cosdp +0=10

W.a, =103, .4, - 84, -3; +63; -3,
10x0-8x0+6x1=6

12.804 a, + 6a, in cylindrical system.

Ex. 1.14  Give the cartesian coordinates of the vector field H =20, -10@y + 3., at point

P(x=5,y=2,z=

_.1}_

Sol.:  The given vector is in cylindrical system.

H, =

ﬁlii =EDEf L 5:.; _lﬂiq . Eﬂ +3§2 . i!

20cosp ~10(-sind) +0 ... Refer Table 1.2

AtpointP, x=5 y=2 and z=-1

Now b =
cosd =

H, =

Then HF =
And H, =
H =

1.13.3 Transformation

tan-! - = tan-! 2 = 21.8014°
X 5

09284 and sing = 0.3714

20x(0.9284) +10x0.3714 =22.282

H.a, =20a, .3, —10d, .3, +3a, .a,

20sin¢ —10cosd +0

20x(0.3714) - 10 % (0.9284) = - 1.856

H.a, =204, .3, -103, . 3, +33, » 3,
20x0-10x0+3=x1=3

22282 a, - 1.856 ay + 3 a; in cartesian system.

of Vectors from Cartesian to Spherical

Let the vector A expressed in the cartesian system as,

A =

A a,+Ayay +A,;q,;
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It is required to transform it into spherical system. The component of A in &,
direction is given by,

Ay

I-ﬁr=[ﬂ; ix ‘l‘ﬁl}r ir "l'Az_E;] . Er
B f\.xi; -E-r +A}|l E}r I'it +A=i:lir e [].B]

Note : Though the radius representation r used in cylindrical and spherical
systems is same, the directions a, in both the systems are different. Infact many times
r is represented as p in cylindrical system. But p is used to represent other quantity in
this book hence r is used in cylindrical system. Hence d, « 3, will be different when
a, is of spherical system than the 3, of cylindrical system and so on.

While Ag = AeTp=[A 3, +Aya, +A;3;]. 3

= A @yeap+Ayay«ap+Aa; 3y v (19)
And Ay = A-dy=[A 3, +A; 8, +A,3;]+3,

= ATy Ty +Ay Ty o8, +A, T, o8 .. (20)

The dot products can be obtained h':,.' first taking the projection of spherical unit
vector on the xy plane and then taking the projection onto the desired axis. Thus for
a, »4,, project a, on the xy plane which is sin and then project on the x axis
which is sinfl coséd.

Ay *a, = A s.ay = sinbcosé

In the similar fashion the other dot products can be obtained. The results of the
dot products are summarized in the Table 1.3.

Dot operator » a, ap a,
a, sinBcos § cos 8 cos ¢ —gin &
3, sinBsing cos B sin § cos ¢
a; cos 0 - sin @ 0
Table 1.3

Using the results of Table 1.3, the results of vector transformation from cartesian
to spherical can be summarized in the matrix form as,
Ay sinBcos¢p sinBsing cosb |[A,
cosBeosp cosBsing -sinB||Ay
A, —sing COos 0 Ay
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1.13.4 Transformation of Vectors from Spherical to Cartesian

To find the reverse transformation, assume that the A is known in spherical
system as,

A= A a +Agap+A,a,
Hence component of A in d,,ay, and a, are given by A+a,, A-3y and A.a,
respectively.

Thus we get the results as,

Ay = A 3,48, +AgTpedy, +Ayd, 3, . (21)
Ay = Apareay +Agageay +Ayay -ay - (22)
A, = }'kr-ir «a; +Apage.a; +ﬁl¢i¢ -3, {23)
Using the Table 1.3, the results can be expressed in the matrix form as,
Ay sinfcosd cosBeoshp -sing|[A,]
Ay | = |sinOsind cosBsind cosd ||Ag
A, cos0 —sin@ 0 [|A,

1.13.5 Distances in all Coordinate Systems
Consider two points A and B with the position vectors as,

A=x3,+y1dy +213, and B=x;a, +y 3y +2:7,

then the distance d between the two points in all the three coordinate systems
are given by,

d= J(Xz —-x.)z +(y2 -yl)z +(za —z.]z ... Cartesian
d= Jrg +17 =21 12 cos(ha =¢ ) +(z2 = 21}2 ... Cylindrical
d= ‘h‘zz +17 =21 12 c056; cosBy -2 1y 8inB sinb, cos(d2 ~,) ... Spherical

These results may be used directly in electromagnetics wherever required.
Ex. 115  Obtain the spherical coordinates of 10 a, at the point P(x=-3,y=2,2=4),
Sol.:  Given vector is in cartesian system say F=103,.

Then F, = F.a, =103, +a,
= 10 sin 0 cos ¢ ... Refer Table 1.3
AtpointP, x=-3, y=2, z=4
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Using the relationship between cartesian and spherical,
x=rsinBcosdg y=rsinbsing Zz=rcosB

= _]iﬂ ']_2—=-- o
[\ tan " tan 3 33.69

But x is negative and y is positive hence ¢ must be between +90° and +180° So
add 180° to the ¢ to get correct §.

¢ = —33.69°+180°=+ 146.31°

cos ¢ = —0.832 and sin ¢ = 0.5547
And = cos'Z=cos ! —— 2%
r ||x2 +}r2 +zz

4
V7 + (7 +(49)°
cos B = 0.7428 and sin 8 = 0.6695
F. = 10x0.6695x (- 0.832) = - 5.5702
Fy = Fedp=10a, +d35 =10cos0cosd
= 10 0.7428 x (- 0.832) = 6.18

= cos-! =42.0311°

Fy = Fe3, =103, +34 =10(-sing)
= 10x (- 0.5547) = - 5.547

o - 55702 &, - 6.18 35 - 5.547 34 in spherical system.

Ex. 1.15 Express B=r23, +sin03, in the cartesian coordinates. Hence obtain B at
P(1,2,3).

Sol.: Given B is in spherical system as there is sin® in it and its cartesian

coordinates are to be obtained, Referring Table 1.3,

1l
li

By = Bed, =123, «a, +5in0 3, + 7,

= r? sinBcos¢ +sinB(-sing) . (8)
Then By = B.a, =r?a, «a, +sind a, -3,

= r? sinfsind + sin® cosd ... (b)
And B, = B+ad, =r?a, «d, +sin0 3, +3,

1]

r? cosB +sin®(0) = r? cos 0 e ()
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Mow it is known that,

FA
r=,x2+y2+z?, ¢=tan‘1% and E=c05“?

il +y? y r 2
=i

(-] 1]

X z
Fig. 1.42
From Fig. 1.43,

. Y X
SN = —— 05 =———
¢ Jx2 +y? ¢ Jx2 +y?

f 2 z

sinf = -—x——:;g—-— and cos @ :%

Using in (a), (b) and (c) we get,

B, 1.|")<1 +:,r X +.,,‘x1 +y? B y

R

B = IEI—ML-I-'XE-{.Fz X
! r J;i’:'},—z r ‘sz_,,_},z

(l::,lf]-ir-——,w‘:\t:2 +y?+2? (y)+—= =

x2+}r +z2

B, = rzwc%:{rz]:.”l'xz+}r2«1—32 (2)
B = B.a, +By 3, +B.a;

Thus Bat P (1, 2, 3) is, B =3.207 3, + 7.7504 a, + 11.2248 a,
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Examples with Solutions

Ex. 117 Given A =5a, and B=47, +B, @, then find B, such that angle between A and
B is 45° If B also has a term B, @., what relationship must exist between By and

B. ? [M.U. May-99]
Sol.: A=53a, and B=4a,+Byay, 0ap=45°

N'DW E.‘B‘ = Ax B'[ +A}- B‘y +Rz Bz
= (5x%4)+(0)+(0)=20
But A+B = |A| |B|cosBap

s
|

= J5)* x{/(4)* +(By)" x cosd5°
J16+B2 = 5.6568

B2 = 16

B, = +4
Now B = 4a, +Bya, +B,a,
Still A*B =20

20 = (5)7 xy/(4) +(By )* +(B.)? x cosds®

J16+B2 +BZ = 5.6568
B +B2 = 16

This is the required relation between By, and B,.
Ex. 118  Find the unit vector directed towards the point (xy,y1,21) from an arbitrary point
in the plane y =-5 [M.U. May-2000]
Sol.: The plane y = = 5 is parallel z
to xz plane as shown in the Fig. 1.44.

The coordinates of point P are (x,
- 5, z) as y = - 5 is constant. While Q
is arbitrary point having coordinates SEEET
(x1.¥1,21) To find unit vector along |
the direction PQ.

Qlxy |'.’|"1-3'-1.:'

irg = E-?I':g—l :I:na

Fig, 1,44



JNTU - EMWTL " Vector Analysis 51
where PQ=0-F

(x1 =) 3 +(y1-(-5) 3y +(z1 - 2)a:
J(xi —x)z +(v1 +5}2 +(z; _2)2
- (103 + (1 +9)3y + (@ - F:

(1 =) +(y1 +5)° +(z1 - 2)°
Ex. 1.19  Use the cylindrical coordinate system to find the area of the curved surface of a

right circular cylinder where r = 20 m, h = 5m and 30°< ¢ £120°,
[M.U. May-2000]

d 3
I

Sol. : The cylinder is shown in the Fig. 1.45.

It can be seen that the radius
r=20m is constant. The curved
surface area is normal to the unit
vector radially coming outward
which is a,. The differential surface
area normal to @, is r d dz.

The ¢ varies from 30° to 120°
while z varies from 0 to 5 m.

h §z2
S=[ [ rd¢dz
0 &

Note : ¢ must be used in
radians while calculating area.

Fig. 1.45
¢ = 30°=F rad and ¢,,-12n=~-$ rad
5 Inil

[ ] 20dédz=20[]2}" [2];

0 =/&

w
il

= ZG[EE—-’E][.E 0]= EﬂuTxS

= 50 nm? =157.0796 m?

Ex. 1.20 Use spherical coordinates to write the differentinl surface areas dS, and dS3 as
shown and integrate to obtain the surfaces areas A and B as shown in the
Fig. 1.46,
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Fig. 1.46

Sol. : Consider differential surface area d5;. The unit vector perpendicular to it is in
the direction of increasing ¢ i.e. 3,. Hence dS, is dS,.

d§[ = rdrde i¢

= Hrdrdﬂ

Now r is changing frumﬂtnlwmleﬂlschangmgfmmﬂtngﬂ“ (Note that 0 is
measured from z axis.).

907 1 2T
A = IIrdrdB:[T] O
00 0
But for areas angles must be taken in radians.
_ o 1 n_om_s

The differential surface area dS; is on the curved surface of sphere, the direction
normal to it is from origin radially going outward i.e. a;.

dS, = r?sin0dedea,
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Now r is constant as Im. The 0 varies from 0 to 90° i.e.

0 to n/ 2 rad while ¢ is varying from 30° to 90° i.e. n/ 6 rad to n/2 rad.

mf2ni2 m/2

[ [ @) sin0dode= [ [~cosOT; do

nié 0 nih

[O-CD]BLie=3-5=3 ™

Ex. 1.21 Given points P(r =5, =60°z =2] and Q(r=2,4 =110°,z=-1) in cylindrical
coordinate system. Find
i) LInit vector in cartesian coordinates at P directed towards
it) Unit vector in cylindrical coordinates at P directed towards Q.

Sol.: Let us obtain the cartesian coordinates of P and Q.

B

Itisknownthatx =rcos¢, y=rsing and z=2z
. P (25,433, 2) and Q (- 0.684, 1.8793, - 1)
i) The unit vector from P to Q is,

apg = PQ _Q-P e Pand Q are position vectors
IPQ| [PQ|
(- 0.684 - 2.5)3, +(1.8793 - 433)3, +(-1-2)a,

|PQ|
-3.1847, - 24507 &y - 34,
V(= 3188)% +(-2.4507)* +(-3)*

dpg = - 0.6349 , — 0.4887 &, - 0.5983 &,
i) The vector PQ = - 3.184 3, - 24507 &, -3, ... as obtained earlier.
Let us transform this into cylindrical coordinates.
(PQ), = PQ.a, =-3.1843, .3, -245073, .a, -33, -&,
= - 3.184 cos ¢ - 24507 (-sind) +0 .. Refer Table 1.2
At point P, § =60°
(PQ), = -3.184x0.5-2.4507(- 0.866) = 0.5303
(PQ), = PQ+a, = - 3.184 &, +a, - 24507 @y &, — 37, +a,
= - 3.184 (-sin¢) - 2.4507 cos ¢
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(PQ), = - 3.184 (- 0.866) — 2.4507 x 0.5 = 1.5319
and (PQ),; = PQ.+a, =-3 weByedz = dy*3;=0
PQ = 0.5303 a, + 1.5319 3, - 33,
Grg = PQ _ 0.5303a, +1.5319&, - 34,

IPQ| ,J(IJ'.SH»JI]S)2 +(‘L5\315')2 +(—3)2

1]

01553, + 04493, - 088 a3,

Iimportant Resuilts

& Cartesian coordinate system
Foint P [x, y, 1) Unit vectors 8y, 8y ond &,
Position vector of point, P = x8, + y8, + z 8x
Magnitude of P = Jx?+ y7+ 22
Unit vector in the direction o‘filﬁ = @p
Distonce between the two points = 1"[!::— )l +(yz-nf+(z2-n)
Differantial lengths are dx, dy, dz
Differential vector length di = dx &, + dy &, + dz &
Differentiol surfoce orea  dS, = dy dz &,
dS, = dx dz &,
dS, = dx dy &,
Differential volume dv = dx dy dz
&= Cylindrical coordinate system
Poind P r, &, 1) Unit vectors & , @, a;
The limits of variables 0 €< recm
02 éd<in
=m0 € F <@
Vector of @ point, P=P,&,+ P,&,+ P, &,
Diffarential lengths are dr, rd¢, dz
Differentiol vector length dl = dr &, + rd$ &, + dz &,
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Diferentiol surfoce oreas dS, = rdd dz @,
dS, =drdza,
d5, = rdrd$ &,

Differentiol volume dv = rd rd & dz

& Sphierical coordinate system

Foint P ir, 0, ¢ ) Unit vectors G, , @4, @,

Tha limits of variobles 0<rc<m
D<Ben
0=6<2n

Vectors of a point, P= P, G, + Po@ig+P, @&,

Differential lengths are dr, r dB, r sinB db

Differential vectar Iungihm =dr & + rdi@, + rsind dé &,

Differential surfoce areas dg. = rigint dii dfp &,
d5; = r sinf dr dé @,
dS; = r dr dio 3,

Differential volume dv = r? sin 0 dr dB dé

= Cartesian «» Cylindrical
Cartesion — Cylindrical Cylindrical =+ Cartesian
r= 4xf+y? X = rFeosd
1:!1':"1"'% ¥ = rsindg
I =z IL=1I

MNote : The value of 4 must be obtained by verifying the signs of x ond y. If x negotive ond
y positive add 180° and if x negative and y negative subiract 180°

& Cartesian « Spherical
Cortesion — Spherical Spherical — Cortesian
r=Jxlyyisz? %= rsin0cos
¢=MH-IE y = rsin B sin &
= cos ! = z=rcosh

r

MNote : The value of & must be obtained by verifying the signs of x and y.
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= Scalar or Dot product

A+B = |A| |B| cosu where s = smaller angle batween A and B

A+B = 0 then A is perpendicular to B

A+B = BsA ... Commuiative

A+(B+C)= A+B+ A+ C .. Distributive

The dot product of perpendicular unit veciors Is xere.

EI EF-EI'. Ez-E'l i.-ﬂ

A+R=| AP

a;* E’_-iriir-ﬂ_t!ﬂ_i.]

A+B =A, B +A,B,+A; 8, .. ln cortesion

The component of P in the direction of unit vecior @ is P =@,

(o

The component of P in the direction of @ is PeBg = Pe

1]

&~ Vector or Cross product

AxXB=|A | | B |sindgdn
where @y = Unit vector perpendicular fo the plane of A and B in the direction decided by
right hand screw rule
0.3 = Smoller angle between A and B

AXB = BXA but AXEB = -[ix'i]

Ax(B+CT)= AxB + AXC

For parallel vectors, cross product is zero.
AXA =0
E._:E. -E’.gir-i‘gil = 0
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Anhlmkﬂpmltm result
a=<a =a,

Clockwise l_ﬂﬂlﬂ:l result

axa =-a,
Applicable in all the three coordinate systems

Fig. 1.48

Mote : Tha result con be used in oll coordinote systems by proper replocement of unit vec-
tors and components.

& & 8
#l:- *" A‘l
B, B, B,

AXB = . In cartesion

& Product of three vectors
Scolar triple product is,
A, A, A,
A+(B%C) =B, B, B;| ...'abc rule
c. ¢, C,
Vector triple product is,
Ax (EXE}- i{i-E)- E{i-i) ... 'bac-cab’ rule
& Transformation of vectors
. Carteslan to qylindrical, A= A, &, +A,&, + A; &;
' Ar=ReB , Ay=RA+a, A, =RA+a;
Dot operator » A 2 a;
[ cos - sin ¢ li]
&y sin & cos & o
[ 0 i) 1
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Ay cosd  sing D) [A,
Ayl = =3sing cose 0O]|A,
Ag

0 0 1A,
2. qulmlﬂr.nl to mrl'ul_un, A = A E_+ Ay8,+ Ao,
Ay=RAs @y, Ay=As T, A=A+

Ay cosg -sing 0] A,
Ayl =|sing cosd O] A,
A, o o 1||A,

3. Caortesian to spherical, A= A8, + A, By + A, By

A =R+ &, Ag=Aea, A=A+ 5,

Dot operator » a, ag a,
Oy sind cosg cosb cosh = ging
ay sind sing cosh sing cosh
& cosd - sing 0

A, ginBecos d sinbsing cosd [A,]
Ag| = |cosBcosd cosOsing —-sind iA,
Ayl ~sing cos ¢ 0 ||A:

4, Spherical to cortesian, A=a, G + AG:+ A ,8,
Ay=A* 3, A=A+ Gy, A=A+ G,
A,] [sinBeosd cosBeosd —sind]|[A,
Ay|=|sin@sing costsing cosé | |Aa
A,J cot 0 - sin @ 0 Ay

Mote : If vector P is tronsformed from one coordinate system to other ond
Ple,y,z) =Plr, 6,2 =P 84¢) then
| P{“i ¥: l}l = I P&:*l "}l = lF{r- 8, ‘}I
This con be used to check the correctness of tronsformation.

Review Questions

1. What is a scalar and scalar field ? Give two examples.

2. What is a vector and vector field ? Give two examples.

3. What is a unit vector ? What is its significance in the vector representation ? How to find
unit vector along a particular vector ?

4. Explain cartesian coordinate system and differential elements in cartesian coordinate system.

5. Explain cylindrical coordinate system and differential elements in cylindrical coordinate

system.
6. Explain spherical coordinate system and differential elements in spherical coordinate system.
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7.
8
g,

10,
11

13.
14,

15.

Ib.
17.

18.
18,

20.

What in a dot product 7 Explain its significance and applications.
What is a cross product ? Explain its properties and applications.
Explain the relationship between cartesian and cylindrical as well as cartesian and spherical

sistems.
How to transform the vectors from one coordinate system fo other 7

Given two points A (5, 4, 3) and B (2, 3, 4).
Find : i) A+B ii) A+B iii) 045 iv) AXB
v} Unit vector normal to the plane containing A and B.
ui) Area Jf parallelogram of which A and B are adjacent sides.
[Ans.:73, +73, +734,, 34,26 762°, 0413, -0.823, +0.413,, 17.1464]

[Hint. : For area |A| | B| sin 08 -Fxﬁ| ]

. If two positions vectors given are, A=-2a, -5a, —4a; and B=2a, + 3a, +5a; then find,

i) AB ii) @y iii) @g iv) @as v) Unit vector in the direction from C to A where C is
(3,5,8).

[Ans.: 43, +8ay +9a,,-0.2983, - 0.7453y - 0.596a,, - 03243, + 04863, - 0.811a,,
0.315a, +0.63a, +0.712,,-0.304a, - 0.61a, -0.7323,]

Find the value of B such that the angle behween the vectors A =2a, +ay+4a; and

-

B=-2a,-a,+B. a. is 45° _[Ans.:7.9]
For the vectors, A =2a,-2a, +a, and B =37, +5d, -2a; find A+B, AxB and show
H'mfoBr-- BxA [Ans.: =6, -a, +7ay +16a,)
Show that A =47, - a, —a. and B =i, + 4@, -4a. are mutually perpendicular vectors.
[Hint.: Show A + B =0]
Find the angle between the vectors, A =2a, +4ay-a. and B=3a,+6 ay —4a; using dot
product and cross product, [Ans.:18.21°
Consider two vectors P =4, +10a; and Q =2, + 3@,. Find the projection of P and Q.
[Ans. : 3,328}
Given the points A(x =2, y=3,z=-1) and B(r=4,¢=-50°z=2), find the distance of
A and B from the origin. Also find distance A to B. Ans. :3.74, 447, 6.78]

Given the two points A (x = 2, y = 3, 2 = — 1) and Bfr =4,8=25°¢=120°). Find the
spherical coordinates of A, cartesian coordinates of B and distance AB.

[Ans.: A (3.74, 105.5% 56.319, B (- 0.845, 1.46, 3.627, 5.64) |
Transform the vector 5ay at Q (x = 3, y = 4, 2 = — 2} to the cylindrical coordinates.

[Ans.:33, —44a,]
aaa
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Coulomb's Law and Electric Field Intensity

2.1 Introduction

Electrostatics is a very important step in the study of engineering
electromagnetics. Electrostatics is a science related to the electric charges which are
static i.e. are at rest. An electric charge has its effect in a region or a space around it.
This region is called an electric field of that charge. Such an electric field produced
due to stationary electric charge does not vary with time. It is time invariant and
called static electric field. The study of such time invariant electric fields in a space
or vacuum, produced by various types of static charge distributions is called
electrostatics. A very common example of such a field is a field used in cathode ray
tube for focusing and deflecting a beam. Electrostatics plays a very important role in
our day to day life. Most of the computer peripheral devices like keyboards, touch
pads, liquid crystal displays etc. work on the principle of electrostatics. A variety of
machines such as X-ray machine and medical instruments used for
electrocardiograms, scanning etc. use the principle of electrostatics. Many industrial
processes like spray painting, electrodeposition etc. also use the principle of
electrostatics. Electrostatics is also used in the agricultural activities like sorting
seeds, spraying to plants etc. Many components such as resistors, capacitors etc. and
the devices such as bipolar transistors, field effect transistors function based on
electrostatics. Hence this chapter introduces the basic concepts of electrostatics.

2.2 Coulomb's Law

The study of electrostatics starts with the study of the results of the
experiements performed by an engineer from the French Army Engineers, Colonel
Charles Coulomb. The experiments are related to the force exerted between the two
point charges, which are placed near each other. The force exerted is due to the
electric fields produced by the point charges.

(60)
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F = kQ;{?z -2
where k = Constant of proportionality

2.2.1.1 Constant of Proportionality (k)

The constant of proportionality takes into account the effect of medium, in which
charges are located. In the International System of Units (SI), the charges Q; and Q;
are expressed in Coulombs (C), the distance R in metres (m) and the force F in
newtons (N). Then to satisfy Coulomb's law, the constant of proportionality is
defined as,

k = E ea (3}

where £

Permittivity of the medium in which charges are
located

The units of ¢ are farads/metre (F/m).

In general e is expressed as,

€ = EgEy . (4)

I¥

where £p Permittivity of the free space or vacuum

Il

£; Relative permittivity or dielectric constant of the
medium with respect to free space

e = Absolue permittivity
For the free space or vacuum, the relative permittivity e, =1, hence

E = Ep

1 QiQ2
F = i o (5)

The value of permittivity of free space &g is,

8o = "3%?10-9 ~8.854 %102 F/m e (6)

Lo 1 1

- 9 9
4““-4“”&354“1“‘11 8.98x10° 9% 10 m/F w (7)
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Hence the Coulomb's law can be expressed as,

T dneR2

Q1Q:

. (8)

This is the force between the two point charges located in free space or vacuum.

Key Point: As Q is measured in Coulomb, R in metre and F in nﬂut:}n, the units of g

©© _

(N) (m?) N-m?

CZ

1

W o—

" N-m m

1l

are,
Unit of gy =
2
But Nom
Unit of g

2.2.2 Vector Form of Coulomb’s Law

Farad which is practical unit of capacitance

F/m

Fig. 2.2 Vector form of Coulomb's law

The force exerted between the two
point charges has a fixed direction
which is a straight line joining the two
charges. Hence the force exerted
between the two charges can be
expressed in a vector form.

Consider the two point charges Q,
and Q; located at the points having
position vectors T; and i‘; as shown in
the Fig. 2.2.

Then the force exerted by Q; on Qa acts along the direction Ri2 where &, is
unit vector along Ri2. Hence the force in the vector form can be expressed as,

E =

=

where an
a1z
where | Ri2 I

1

QlQ:
i - (9
20, (9)
Vector
Unit vector along Rz = Magnitude of vector
_b-h _H-h « (10)

|Eu| |R1=| Iﬁ -T|

R = distance between the two charges
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The following observations are important :

1. As shown in the Fig. 2.3, the force R is the force exerted on Q; due to Q3. It

can be expressed as,

Q:Q: :1Q:

- n-n
F a - (11
' T TneoRy, T TGneoRd, [m-m] )
But f-T = —[f-T]
ay = —dn
Hence substituting in (11),
= Q1Q2
- —F )=— - (12
4ng R%l( a)= (12)

Hence force exeﬂed by the two charges on each other is equal but opposite in
direction.

2. The like charges repel each other while the unlike charges attract each other.
This is shown in the Fig. 2.3. These are experiement conclusions though not reflected
in the mathematical expression.

Q, Q, Q, Q,
@O OO
1 (a) 2 1 (b) 2
Q1 0‘2 Q1 Qz
1 2 1 td] 2
(<)

Fig. 2.3

3. It is necessary that the two charges are the point charges and stationary in
nature.

4. The two point charges may be positive or negative. Hence their signs must be
considered while using equation (9) to calculate the force exerted.

5. The Coulomb’s law is linear which shows that if any one charge is increased
n' times then the force exerted also increass by n times.

F: = -Fi nF2 =-nF

then

where n scalar
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2.2.3 Force Due to n Number of Charges

If there are mor than two point charges, then each will exert force on the other,
then the net force on any charge can be obtained by the principle of superposition.

Consider a point charge Q
Q, ' surrounded by three other point
,,;i‘ charges Q;, Q2 and Qs, as shown
_ o0 in the Fig. 2.4.
Q, 2 r‘-r"l‘ i
220 e J The total force on Q in such a
f h"::"‘f _____ / case is vector sum of all the forces
Fz,' _,," _ﬂ__..--"'"*?‘ exerted on Q due to each of the
P L . other point charges Q;, Q; and
:n ,::.:-*"" ‘\\ifu Qs.
a— SR o .
Origin Fy 3 Consider force exerted on Q
o due to Q;. At this time, according
to principle of superposition effects
Fig. 2.4 of Q2 and Qi are to be
suppressed.
Foo = —29 4, .. (13)
! 41"5!:{]1212':
where ag = f_:j
¢ [
Similarly force exerted due to Q; on Q is,
Q.Q _
= — . (14
F’Q‘:Q 4 TLEuR.?_,Q a0 (14)
_ -5
where axg =
R EEEY
And force exerted due to Q3 on Q is,
_ _Qs:Q
.E:JQ 4““% a;Q Bas {15]
I-T;

where igq =
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Hence the total force on Q is,

Fy = Fg,q +Fo,0 +Fos O
In general if there are n other charges then force exerted on Q due to all other n
charges is,

]

Fo = Foq +Faq +-tFaag - (17)

?Q - Q < Qi?'fi
4“““:‘.-1 RLIQ[T_-TII

... (18)

2.2.4 Steps to Solve Problems on Coulomb's Law
Step 1: Obtain the position vectors of the points where the charges are located.

Step 2 : Obtain the unit vector along the straight line joining the charges. The
direction is towards the charge on which the force exerted is to be
calculated.

Step 3 : Us‘mg Coulomb's law, express the force exerted in the vector form.

Step 4 : If there are more charges, repeat steps 1 to 3 for each charge exerting a
force on the charge under consideration.

Step 5 : Using the principle of superposition, the vector sum of all the forces
calculated earlier is the resultant force, exerted on the charge under
consideration.

Ex. 21 A charge Q1 =-20uC is located at P (- 6, 4, 6) and a charge Q» =50uC is
located at R (5, 8, —= 2) in a free space. Find the force exerted on Q2 by Qy in
vector form. The distances given are in metres.

Sol. :  From the co-ordinates of I’ and R , the respective position vectors are -

-63, +43a, +63;

P
and. ﬁ = SE: +SEJ|' _EE:
is

The force on Q; is given by,
£ oo _QiQo
Fz dneoRS, gz

Ru = Rer =R-P=[5-(-6)] & +(8-4) 3, +[-2-(6)a]
=113, +4Er -8a,
J A1) +(4)? +(-8)2 =14.1774

| Ruz
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Fig. 2.5

Rz 113, +43a, -8a,
dyr = =

R 14.1774

B

[l

[xs
1]

|
H
I

0.7758 a, +0.2821 ay -0.5642 3,

—20x 106 x50x10-% [512]
Anx 8.854 1012 x(14.1774)2 & 2

—0.0447 [0.7758 ax +0.2821 3y - 0.5642 a; |
-0.0346 3, - 0.01261 3y +0.025223; N

. (A)
. (B)

This is the required force exerted on Q2 by Q.
The magnitude of the force is,

|F2| = J(0.0346) +(0.01261)% +(- 0.02522)7 =44.634 mN

Key Point: Note that as the two charges are of opposite polarity, the force Fa is atfractive
in nature. As shownm in the Fig. 2.5, it acts in opposite direction lo 3:2, as indicated by

. negative sign in the equation (A).
Ex. 2.2 Four point charges each of 10 uC are placed in free space at the poinis (1, 0, 0),
(-1, 0, 0), (0, 1, 0) and (0, - 1, 0) m respectively. Determine the force on a point
charge of 30 uC located at a point (0, 0, 1) m. (JNTU-June 2002)

Sol.: Use the principle of superposition as there are four charges exerting a force
on the fifth charge. The locations of charges are shown in the Fig. 2.6.
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P Q(0.0.1)
RN
fi S
/s N —
f/ lI'II'I \.\'H‘_‘Rm ?2100]
— / \ = Ll }
Raa /7 / N \,oa
/ 1 -
/7 "f f’xx
/ / Iy N =
/ / s N Riq
/ ..r‘|r o Q3
0. i 0 i 0.1.0 =Y
Q, (0.-1,0) Ria/ (0,1.0)
1
Q
A
(1,0,0)
Fig. 2.6

The position vectors of four points at which the charges Q, to Qg4 are located
can be obtained as,

E=ix; E=_ix, E=ir Ell'td ﬁ=_i}r

while position vector of point P where charge of 30 uC is situated is,

P = a,
Consider force on QQ due to Q; alone,
= QQy QQ:  Rig
Fl = e ¥ = " g
4meoRig 1 4meoRi, |qu|
where Rig = P-A =3, -3, and |l_hq[=-u|13 +12 =2

= 30x 106 x10x10-6 [E,—E;:|
1 = 3
47x 8.854x10-12 x (+2) V2

= 0.9533 [3; —ax ] o (1)
It can be seen from the Fig. 2.6 that due to symmetry,

[Roa| = [Reo| = [Roa| = [Ruo] = 12
Now Rig = P-B = 3, +a,, Ay = 3, +3, /42
R = P-T =3, -3,, =35 -3,/V2
Rig = P-D = &, +3,, a4 =7,+a,/42
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F: = Force on Q due to Q3 =iﬁm
: "-lﬂE.uR%Q
Fz = Force on Q due to Q3 = QQ; ag
4?1:!:131'{_%,:_
Fs = Force on Q due to Q4 = QQs —= 040
4‘1.‘!.0]?.40
QQ: - QQ; _ QQy 30%10° x10%x10-°
4nauR§Q 4ﬂﬂnR23Q 4:1:!.:“R§Q 41::-:8,854:-:1[}‘11:&(\5)2
= 1.3481
— -El +E;- = =
F: = 1.3481 =0.9533(a, +a, s (2)
S |S0R @ +a) (
= i (3, -dy | P
Fa = 13481 5 =0.9533 (a, -3y, ) . (3)
= [a, +3a, | )
Fa = 1.3481 ﬁ” =0.9533 (a, +ay ) - (4)

Hence the total force F, exerted on Q due to all four charges is vector sum of
the individual forces exerted on Q, by the charges.

I

F,

—

F,+F +F +F
0.9533 [aI ~dy +3; +3, +3, -3y +3; +a‘],]
3813a, N

2.3 Electric Field Intensity

Consider a point charge Q, as shown in Fig. 2.7 (a).

(b)

Fig. 2.7 Electric fiald
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If any other similar charge Q; is brought near it, Q2 experiences a force. Infact
if Q2 is moved around Q;, still Q; experiences a force as shown in the Fig. 2.7 (a).

Thus there exists a region around a charge in which it exerts a force on any
other charge. This region where a particular charge exerts a force on any other
charge located in that region is called electric field of that charge. The electric field
of Q; is shown in the Fig. 2.7 (b).

The force experienced by the charge Q; due to Q, is given by Coulomb’s law
as,

= aj;
4reoRE,

Fryl
"

Thus force per unit charge can be written as,
F2 Qg - ()

Q: ~ TmoRE "

This force exerted per unit charge is called electric field intensity or electric
field strength. It is a vector quantity and is directed along a segment from the
charge Q; to the position of any other charge. It is denoted as E.

B Q-
E = —=1__ e (2
4EBDR12P ap (2)
where P = position of any other charge around Q;

The equation (2) is the electric field intensity due to a single point charge Q; in
a free space or vacuum.

Another definition of electric field intensity is the force experienced by a unit
positive test charge i.e. Q2 = 1C.

Consider a charge Q; as shown
in the Fig. 2.8. The unit positive
charge Q; = 1C is placed at a
distance R from ;. Then the force
acting on Q; due to Q, is along the
unit vector g. As the charge Q; is
unit charge, the force exerted on Q-
is nothing but electric field intensity
E of Q; at the point where unit

charge is placed.

Fig. 2.8
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- ag - (3)

4nepR2

If a charge Q; is located at the center of the spherical coordinate system then
unit vector ag in the equation (3) becomes the radial unit vector a, coming radially
outwards from Q. And the distance R is the radius of the sphere r.

F._Q

dnepr

-~ @, in spherical system . (4)

2.31 Units of E
The definition of electric field intensity is,

E = Force _ (N) Newtons
~ Unit charge B (C) Coulomb

Hence units of E is N/C. But the electric potential has units J/C i.e. Nm/C and
hence E is also measured in units V/m (volts per metre). This unit is used
practically to express E.

2.3.2 Method of Obtaining E in Cartesian System

Consider a charge Q; located at
7 point A(x;,y1,21) as shown in the
Fig. 2.9. It is required to obtain E at
_ any point B(x,y,z) in the cartesian
*y2)_~E system. Then E at point B can be

A a e R 8 obtained using following steps :
{11-?111} —_
?5«'-’ B y Step 1 : Obtain the position
A’ ~0 vectors of points A and B.
s = A while T=B from
their coordinates
Fig. 2.9 E In cartesian system S A=x 3, +ydy +213; and

B = xa, +ya, +za,.
Step 2 : Find the distance vector R directed from A to B.
R = B-A=(x-x1)ax +(y - y1)ay +(z-2z1)a:
Step 3 : Find the unit vector ag along the direction from A to B.

_ R B-A
an = = ==

IR [B-A|
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q, B-200)

iy o

-

Fig. 2.13

E. is field at P due to Q;, and will act along aap. Eg is field at P due to Q;
and will act along agp.

5 _ Q- Q

E a ® P
A 4neq R3, AP dmeg RZ, |]5_

Eg = Q. - = Q

5 N F-B
= ————— dgp = R
dmeg RE, 4neg R2, |P_B|

1 Q1 P-A L Q F-B
dneg I-"|P AI BI-"|P B|

'.Ei!.fP:rEq +E]] =

1 1[—a, +23, +23, Q2 [33 +23, +28a, ]
" Ao ) +@* +@* (41_?) J3? +(2 +(2?

1 |-ac+2a,+23, Q: [3a, +2a, +2a,]
= Treq 27 * 70.0927

The y mmpnnent of E must be zero.

EQZ =0
2? ?GUQZ?

2700927
Q: = Efx 5 = 259 C

This is the required charge Q. to be placed at (-2,0,0) which will make
y component of E zero at point P.
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2.4 Types of Charge Distributions

Uptill now the forces and electric fields due to only point charges are
considered. In addition to the point charges, there is possibility of continuous
charge distributions along a line, on a surface or in a volume. Thus there are four
types of charge distributions Iwhich are,

1. Point charge 2. Line charge 3. Surface charge 4. Volume charge

2.4.1 Point Charge

It is seen that if the dimensions of a surface carrying charge are very very small
compared to region surrounding it then the surface can be treated to be a point. The
corresponding charge is called point charge. The point charge has a position but not
the dimensions. This is shown in the Fig. 2.14 (a). The point charge can be positive
or negative.

2.4.2 Line Charge

It is possible that the charge may be spreaded all along a line, which may be
finite or infinite. Such a charge l,mif«‘:url.'nl‘].nr distributed along a line is called a line
charge. This is shown in the Fig. 2.14 (b).

PL
Q .
- 2 e === = =
Q L
+® 3
(a) Point charges {b) Line charges

Fig. 2.14 Charge distributions

The charge density of the line charge is denoted as p;. and defined as charge
per unit length,

_ Total charge in coulomb

Total length in metres (C/m)

PL

Thus pr is measured in C/m. The pi is constant all along the length L of the
line carrying the charge.
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bs = Total charge in coulomb
5

= C / m?
Total area in square metres ( £ )

Thus ps is expressed in C/ m?. The ps is constant over the surface carrying the
charge.
2.4.3.1 Method of Finding Q from ps

In case of surface charge distribution, it is necessary to find the total charge Q
by considering elementary surface area dS. The charge dQ on this differential area is
given by ps dS. Then integrating this dQ over the given surface, the total charge Q
is to be obtained. Such an integral is called a surface integral and mathematically
given by,

Q = [ dQ=[psdS - (3)
5 5

.

The plate of a charged parallel plate capacitor is an example of surface charge
distribution. If the dimensions of the sheet of charge are very large compared to the
distance at which the effects of charge are to be considered then the distribution is
called infinite sheet of charge.

2.4.4 Volume Charge
If the charge distributed uniformly in a volume then it is called volume charge.
The volume charge is shown in the Fig. 2.16.

Fig. 2.16 Volume charge distribution
The volume charge density is denoted as p, and defined as the charge per unit
volume.

Py

_ Total charge in coulomb C
" Total volume in cubic metres (E:’T

Thus p, is expressed in C / m3.
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24.4.1 Method of Finding Q from p.,

In case of volume charge distribution, consider the differential volume dv as
shown in the Fig. 2.16. Then the charge dQ possessed by the differential volume is
pvdv. Then the total charge within the finite given volume is to be obtained by
integrating the dQ throughout that volume. Such an mteg‘ral is called volume
integral. Mathemahcally it is given by,

= ] py dv ' e (4)
vol

The charged cloud is an example of volume charge.

Key Point: In all the integrals line, surface and volume a single mtegral sign is used but
practically for surface integral it becomes double integration while to integrate throughout
the volume it becomes triple integration. Similarly ps and p, can be functions of the
co-ordinates of the system used e.g. ps = 4xy Cinr’, py = 20z & ™% Cfim’ etc.

Ex. 2.6  Find the total charge inside a volume having volume charge density as
10z2 e=™M* sinry C / m*. The volume is defined between -2sx<2,0sy<1and

dsz=4.
Sol.: Given py =102? e- % *singy C/m3
Consider differential volume in cartesian system as,
dv = dxdydz
dQ = py dv =1022 e"%*sinwy dx dy dz
Q= [pvav
vol
But now it becomes triple integration
1 1 2
Q = f J _[ 10z? e~ *sinny dx dy dz
z=3 y=0%=-1

i1 _oax?
. e- 01
J' jl[}zzsmm:y dy dz
=01
z=3 y=0 -2

J‘m [ n }[m —o1| 4

z=3

371 -
= 10/ 2| |zeos®_—cos0| 4 hoe7
3 3 T

T

- 10[43 ~3 M}‘ 1]4025?

3
= 316.162 C



80 Coulomb's Law and Electric Field Intensity JNTU EMWTL

2.5 Electric Field Intensity Due to Various Charge Distributions
It is known that the electric field intensity due to a point charge Q is given by,
= Q
E =

———3
4 neyR2 R
Let us consider various charge distributions.

2.5.1 E Due to Line Charge

Consider a line charge
distribution having a charge
density pL as shown in the
Fig. 2.17.

The charge dQ on the
differential length dl is,

dQ =F|L l:”

Hence the differential
electric field dE at point P

Fig. 217
s due to dQ is given by,
& dQ prdl _
dE = =_rb - o (1
4 teg R2 R 4ntgq R2 - (1)

Hence the total E at a point P due to line charge can be obtained by integrating
dE over the length of the charge.

dl
E = PL 5 - (2
[ 4neg R2 = @

The @g and dl is to be obtained depending upon the coordinate system used.

2.5.2 E Due to Surface Charge

Consider a surface charge distribution
having a charge density ps as shown in

the Fig. 2.18.

The charge dQ on the differential
surface area dS is,

dQ = ps dS

Fig. 2.18
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~ where Ep,E;,Es and E, are the field intensities due to point, line, surface and
volume charge distributions respectively.
Let us discuss and learn the method of obtaining electric field intensities under
widely varying charge distributions.

2.6 Electric Field Due to Infinite Line Charge

Consider an infinitely long straight line carrying uniform line charge having
density p. C/m. Let this line lies along z-axis from —w to « and hence called
infinite line charge. Let point P is on y axis at which electric field intensity is to be
determined. The distance of point P from the origin is 't as shown in the Fig. 2.20.

=4
|

L=

(00z2) d n

Fig. 2.20 Field due to infinite line charge

Consider a small ditferential length dl carrying a charge dQ, along the line as
shown in the Fig. 2.20. It is along z axis hence dl = dz.

dQ = pLdl =p dz . (1)

The coordinates of dQ are (0, 0, z) while the coordinates of point P are (0, r, D).
Hence the distance vector R can be written as,

R = T -1y =[r3, -za,]
R| = Vit
_ R riy —zd, @

A = —_— =
IR} JiZ + 22
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dE = 9Q 5 . pLdz [ri,r —za‘=] @3)
4 e R? tl-m:n\(Jm)2 Jr? 422

Note : For every charge

f on positive z axis there is
@t equal charge present on
“‘u‘ £, negative z axis. Hence the
‘a’ Ny _ z component of electric
T B2 field intensities produced
N: — .y by such charges at point P
,:’J - will cancell each other.
P 1 Hence effectively there will
=™ not be any z component of
E at P. This is shown in
E Bl = oo the Fig. 2.21.
Fqual and oppaslle ~ Hence the equation of
dE can be written by
Fig. 2.21 elliminating a, component,
dE = P dz ray o (4)

dmey (Ve 122) Ve v

Now by integrating dE over the z axis from —= to = we can obtain total E at

point P.
_ o
E = PL 373 rdzay
e -‘1’11;:;;;,(r1 +'.-cz)

Note : For such an integration, use the substitution

A
tan

rtan @ ie r=

A

dz rsectd do

Here r is not the variable of integration.

= = -1{—- = =T = - 2
For z=-w, B=tan"'(-w)=-n/2=-90 }changing the limits

+wm, 0=tan"!(w)=n/2=490°

For z
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ni2

E PL
p=_ns2 $7EQ [1'2 +r? tan? H]

2 —
575 Txrsec 0 do a,

- PL ‘j-fz r? sec? 0do

dy
dneo 1, r3[1+tan20]>?
But 1+tan?8 = seclB
E . _PL xi2 sec?0d0
4 neg i rsec3d
nS2 1
= 411_50 ’[nn:t:-sl';‘lu;ilEIa:Ir ‘"mﬂ=Fus_ﬁ
— H _ p]'_, . W A b | s
- -htcu [sin ay = dmegr |z M 7|y
= 4““ [1-(-1] a =4ﬂﬂ x2 Ay
E=-PL a v/ (5)
- 2*.'1:1-:4;.1'31r m

Key Point : If without considering symmetry of charges and without cancelling z
component from dE, if integration is carried out, it gives the same answer. The integration
results the z component of E fo be mathematically zero.

The result of equation (5) which is specifically in cartesian system can be
generalized. The 3, is unit vector along the distance r which is perpendicular
distance of point P from the line charge. Thus in general 3, = a,.

Hence the result of E can be expressed as,

= PL =
E = Vv . (B
2negr & V/m ©)

where r = Perpendicular distance of point P from the line charge
a, = Unit vector in the direction of the perpendicular distance of point P
from the line charge

Very important notes : 1. The field intensity E at any point has no component
in the direction parallel to the line along which the charge is located and the
charge is infinite. For example if line charge is parallel to z axis, E can not have i,
component, if line charge is parallel to y axis, E can not have i, component. This
makes the integration calculations easy.
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2. The above equation consists r and 3, which do not have meanings of
cylindrical coordinate system. The distance r is to be obtained by distance formula

while a, is unit vector in the direction of T

Key Point: This result can be used as a standard result for solving other problems.

2.7 Electric Field Due to Charged Circular Ring

Consider a charged circular ring of
radius r placed in xy plane with centre
at origin, carrying a charge uniformly
along its circumference. The charge
density is p;, G/m.

The point P is at a perpendicular
distance 'z' from the ring as shown in
the Fig. 2.22.

Consider a small differential length
dl on this ring. The charge on it is dQ.

dQ = pp di
_opudl _
dE = dng RE R @ Fig. 2.22
where R = Distance of point P from d!

Consider the cylindrical coordinate system. For dl we are moving in ¢ direction
where dl = r dj.

dl
Now R?

e do . (2)
r? +z? ... from Fig. 2.22

While R can be obtained from its two
components, in cylindrical system as shown in
the Fig. 2.23(a). The two components are,

]

1) distance r in the direction of -3,
radially inwards i.e. —ra,.

2) distance z in the direction of a, ie. z 3,

S R=-ra, +za, v (3)
Key Point: This method can be used conveniently to
obtain R by identifying its components in the direction
of unit vectors in the co-ordinate system considered.

Fig. 2.23(a)
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IR| = J(=1)° +(2)* =17 +22 (4
_ it —rd, +za;
= — = - . (5
iR ] ey ()
JE = pL dl y —ri, + 23,
-T-l'tt‘.n(‘\.l'l‘z+zi }z Jr? +2z?
df = Pu(rd) [-ra, +za,] . (6)

4 MEn (I‘2 +22 )3”

Note : The radial components of E at point I’ will be symmetrically placed in the
plane parallel to xy plane and are going to cancel each other. This is shown in the
Fig. 2.23 (b). Hence neglecting 3, component from dE we get,

Fo_pulrdd) o )
z component of E ac = 4 e .[r2 +22)”2 Ll g
Q
Radial components
are symmelrical -
canceling = - purdé
each other S = s .
; 4=0 41!51:(12 +2?) /
pPLT

- 57 2 bl

dneg(r? +22)

... Integration w.r.t. ¢

pPLTZ

. E = 75 Az v (B)
2e9(r?+22)""

Fig. 2.23 (b) where r = Radius of the ring

z = Perpendicular distance of point P from the ring along
the axis of the ring

This is the electric field at a point P (0, 0, 2) due to the circular ring of radius r
placed in xy plane.
Ex. 2.7 Prove that the electric field intensity at a point P located at a distance r from an

PL
2negr

infinite line charge with uniform charge density of py C/m is, E = a, in
cylindrical coordinate system.

Sol.: Consider that the line charge is located along z axis as shown in the

Fig. 2.24.
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Consider  the  differential
length dl carrying the charge dQ.

Now dl = dz ... along z axis
;odQ =ppdi=pp dz
= dQ _
- LdE=s ———
Y 4 neq R2 ar

In  cylindrical  coordinate
X i system the distance vector R has
two components as shown in the
Fig. 2.24 (a) Fig. 2.24 (b).

1) The component along
negative z direction i.e. — z a,

- 2) The component along a,
which is r @,. (Radial component).

. R=ra -za,

]
—
—

[

+
0
N

]

Il

—

¥}

+

o]

"

~ R

A = R ra,-za,

Fig. 2.24 (b) B IRl Jr2 422

dE = pL dz [ri, -zi,]

F A e
41'|:Eﬂ.(-u'r2 + 72 :ln r? +z?

Hence E can be obtained by integrating dE along z axis from - to . It can be
noted that due to symmetry z component will cancell in E but let us prove it
mathematically.

L=

dz
E = PL N
Fu—m ‘iﬂﬁu(rz +z'2 }3;’2 [ra.'r z.ﬂl]
m m
= rdz a zdz _ ‘ |
: - Fa ., an3i2 wnw h hl
dmeq _L (r2 + 72 )352 a _'j; {:rz +12)M2 az] Separa ng variables
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Put Z r tan 0 le. r=——

I

dz r sec? B do

_ = tan-1{—o) = - F = _
For z=-wo, 8 =tan {"“‘)— 5 .. Change of limits

For z =+wm, @ =tan™'(x) =+;=+9I)“

Y E*=f»'2 r x rsec? 003, B’fu rtan@rsec? 0d0 a,
dmeo | 4 (r? +r? tan? E)an o="rs2 (r* +1? tan? E)yz

risect

3 3
D=—gi2 " sec ﬂ =-xi2

G=a/2 2 2 B=mrl2 ) -
_ PL { I I* sec Edﬁi,n ,[ rtanBrsec Bdaa’}...iﬂanzﬁr—seczﬁ

Gu=r /2 Om-n/2

f=n/2 d=n/2
_ PL 1 = 1 nd 1 =
" dne, { J rsect do a, I r sech do 3,

O=5!2

Qagn /2 1 1 ]
= 4 J‘ - cosfdb a, - j - sinBdé a; » . = cosh
4 e o Pmmx /2 T Gorn/2 r ECﬂ
= o=
_—..;M {[ﬁmﬂ] oy ar =[~cos0]" ", az}
PL_ 1 N gin X —sin[ -2 |a, ~|~cos 2~ ~cos-Z ||a
41'::[} 2 2 r 2 2 z
-
2 a ) ascosEecos 0
E= 4m:g r{ 2) a = 21{&51‘ Ar « Proved.

MNote : Mathematically also z component is getting cancelled. Hence looking at
the symmetry and cancelling the terms, makes the mathematical exercise much more
easier.
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Ex. 2.8 A uniform line charge py = 25 nC/in lies on the line x=-3 m and y=4m in free

space. Find the electric field intensity at a point (2, 3, 15) m.  [V.T.U. Aug-2000]
Sol. :  The line is shown in the Fig. 2.25. The line with x = = 3 constant and y = 4
P(2.3.15) constant is a line parallel to z axis as z can
take any value. The Eat P (2, 3, 15) is to
be calculated.

The charge is infinite line charge hence
E can be obtained by standard result,

4 E-= L =
3 e ] E?Iﬂurar

To find T, consider two points, one on
/ the line which is (-3, 4, z) while P (2, 3,

15). But as line is parallel to z axis, E can
not have component in d, direction hence
z need not be considered while
calculating 7.

t = [2-(-3)]a« +[3-4]a, =53, -3, ... Z not considered

15| = (5)° +(-1)* =26

f Sih_ﬁy

I = o = ——=
|| V26

Ea- P | Sﬁx—a,1= 25x10-% [5a, - ay |
2neo 26 | 26 J 2 8.854 x 1012 x 26

= 86423, -172843, V/m
2.8 Electric Field Due to Infinite Sheet of Charge

Consider an infinite sheet of
charge having uniform charge density

P ps C/m?, placed in xy plane as
i z=0.xyplane | shown in the Fig. 2.26. Let us use

cylindrical coordinates.

The point P at which E to be
calculated is on z axis.

Consider the differential surface
area dS carrying a charge dQ. The

Fig. 2.26
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Hence while integrating dE there is no need to consider a, component. Though
if considered, after integration procedure, it will get mathematically cancelled.

- ] oameff perdrdd

d=0r=0 nn 41‘“‘“{1‘2"22}

.__,l_«*

RV {":'12}

Put r2 422 =u? hence 2rdr=2udu

For r=0, u=2z and r==, u=w . changing limits

-
s

© o
jan”{u - —dbh z 2

o ey

[H

._J_- f Ps dU. [!_ Ez]

£p u?
" - = -1
- ps |_1 as | Lofu2=2__..1
f d ey d za, L L:I1—|J?_ ISJ. n? J 4 -1 u
L P Pt (-1 (1 2
dmey [ﬂ(' (‘HI}EH ( r]] n:m( ™ 3
E=253 Vm ... For points above xy plane

Now a, is direction normal to differential surface area dS considered. Hence in
general if a, is direction normal to the surface containing charge, the above result
can be generalized as,

E = é[}éb;' iy V/m - (6)
where a, = Direction normal to the surface charge
Thus for the points below xy plane, 3, =~ a; hence,

E=-P53 V/m ... For points below xy plane.

2eg

Note : The equation (6) is standard result and can be used directly to solve the
problems.
Key Point: Thus electric field due to infinite sheet of charge is everywhere normal to the

surface and its magnitude is independent of the distance of a point from the plane containing
the sheet of charge.
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Important Observations :

1. E du- to infinite sheet of charge at a point is not dependent on the distance of
that point from the plane containing the charge.

2. The direction of E is perpendicular to the infinite charge plane.

3. The n »~nitude of E is constant every where and given by |E| =ps / 2&,.

Ex. 26  Charge lies in y = — 5m plane in the form of an_infinite square sheet with a
uniform charge density of ps =20 nC/m’. Determine E at all the points.
Sol.: The plane v = = 5 m constant is parallel to xz plane as shown in the
Fig. 2.29.
z

y=-5 *

Fig. 2.29

For y > - 5, the E component will be along +3, as normal direction to the plane
Yy =-5misay.

an, = ay
E = Ps 3 =ﬂ-_
2e0 #n 2en Ay
20=10-7 _ —
= = 1129, vV
2x8.854 %1012 Y SAC L

For y < -5, the E component will be along —a, direction, with same magnitude.

= DS fey_
E = 2—5"(—3,,,.)-—1]29.43 i}- V/m

At any point to the left or right of the plar., |E| is constant and acts normal to
the plane.
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Ex. 210  Find E at P (1, 5, 2) m in free space if a point charge of 6 pC is located at (0,0,1),
the uniform line charge density py = 180 nC/m along x axis and uniform sheet of
charge with ps =25 nC/ni’ over the plane z =-1.

Sol.: (Case 1: Point charge Q; =6 pCat A (0,0, 1) and P (1, 5, 2)

ML R ©| [ﬁar

= dApAP = T
dney R, 4neo R, || Rapl

Rar = (1-0)a, +(5-0)a, +(2-1)a, = a, +5a, +a,
IRarl = {()? +(5)* +(1)* =427
= hx100 a; +5dy +3,
B = -
47x8.854 %102 x(v27) V27
ﬁl = 384375 3, + 1921.879 S, + 3843755, V/m

Case 2 : Line charge p, along x axis.

It is infinite hence using standard result,

EIZF'L—_ P r

err:u.ra' - Im:grﬁ

Consider any point on line charge i.e. (x, 0, 0) while P (1, 5, 2). But as line is
along x axis, no component of E will be along a, direction. Hence while calculating
T and a,, do not consider x co-ordinates of the points.

T = (5-0)a, +(2-0)a, =53, +2a,

VO +(D)* =V

2| =
E, = pL Say +2a, | _ 180> 10-7 [53, +2a,]
2neg x+4/29 J29 2nx 8.854 x 10712 x 29

557.859 3, + 223.1443, V/m

z

Case 3 : Surface charge ps
over the plane z = - 1. The «P(1.5.2)
plane is parallel to xy plane
and normal direction to the
plane is @, =3;, as point P is

above the plane. At all the a, Y
points above z = — 1 plane the e e =
5 e R R o e T S et e o
E is constant along a, s iz" ¢ R R B
direction. Lo
X P5
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RI = \I;—ii; t [31: = vt +9
= R -rd, +23,
TR TR

104 dr de [ ra, +3d, |

Jri 49 |

d? T e———

4 e (w: + @)2

It can be seen that due to symmetry about z axis, all radial components will
cancell each other. Hence there will not be any component of E along a,. So in
integration &, need nol be considered.

4 104drdd

s=0r=0 4meo (12 1-9]”-'

E (3a;)

As there is no r dr in the numerator, use
r = 3tan B, dr=3sec?h dO
For r=0, 8, =0 }

} ... Change of limits
For r=4, 0y=tan14/3

In by -4 2 a
E= | 10 3sec?  d dﬁz (35.)
h=0 B =0 411[:1] [gtﬂn:ﬂ b 9}
o % 2995914 x 10? sec? 0d0 d¢ <
- z
b=l §ui® [1 1‘111?'.“.2 H]JIZ
In By 3
_ f 2995914 x10° 4o 40 5
sech
e=0 0 =0"
n By
= 299.5914 x 103 d6 dé [cos0]a,
=0 @y —0*
= 299.5914 x 10° [[;" [sinB ;. 3, ... Separating variables
= 1.8823 x 106 sin 0, a, .. sin0°=0
4 4
Now 8., = tan‘lﬁ i.e. tanB, =3
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P _ 4
sinfl; = g—IIII.E-
E = 1.8823x106x0.8 3,

1.5059 x 10¢ a; V/m
= 1.5059 a, MV/m
Examples with Solutions

Ex. 212 Q, and Q, are the point charges located at (0,—4,3) and (0,1,1). If Q; #s 2nC,
find Q2 such that the force on a test charge at (0,-3,4) has no z component.

Sol. :  The charges are shown in the Fig. 2.34.

The position vectors of the points z
A, B and C are,
A = -43, +37,
B = &y +a,
C = -3a, +417,
Rig = C-A=a, 43, | —commmomeee -Y
and Ry = C-B=-4a, +33,
i-ﬁmf - W:‘E X

and [Rag| = (-4)* +(3)° =5 Flg. 234

R Force on Q due to Qi a

- dneg R‘"L 1Q
B _QQ.
and F, = Force on Q due to Q; = e e:.]R.m
Fo= Rrh=gl {E‘ff_‘ am% im]

-9 2(3;;;9[52;,] ;2[—45,;35,]

= 4_% [?.[)?I:clﬂ"m (ay +iz)+?—2§(-4iy +3a, ]]
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~. Total z component of F, is,

- Q —10 3Q3
- 41.“:“ [?,ﬁ?lxlﬂ ""‘ﬁ Ez

To have this component zero,

70711010 +§§-5?- =0 as Q is test charge and can not be zero.
10 :
Qs = —?'m“‘lg 125 _ 29,462 nC

Ex. 213 In a Millikan oil drop experiment, the weight of a 1.6x10°1 kg drop is exactly
balanced by the electric force in vertically directed 200 kV/m field. Calculate the
charge on the drop in units of the electronic charge (e=16x10"1C).

[M.U. May-2002]
Sol.: Given E =200kV/m, m = 16x10"" kg

|F|
E| = .
El = 35
|F|
200x10% = !
Q
|F| = 200x10°Q N e (1)

This is balanced by the weight mg
|F| = mg=16x10""x9.81
= 15696 x 10-3 N . (2)
Equating (1) and (2),
200x10* Q = 1.5696 x 10713

Q = 7848 x10Y C ... Charge on drop
Now e=1.6x10"" C hence Q in terms of e is,
19
0 = ?,548)(“_] i
1.6x101
= 4905 C

Ex. 214 In a free space, let Qy = 10 nC be at P, (0,—4,0) and Q2 = 20 nC be at
P, (0,0,4). Where should be a 40 nC point charge be located so that E = 0 at the
origin.

Sol.:  The charges Q; and Q; are shown in the Fig. 2.35.

Let us find E at the origin due to Q; and Q3.
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P, = -43,, P=437, $:
Q, ¢ P200.04)

a = -P =_H(-453') =3 1raz

| Py 4 Y
— -P, -4a, _

and @ = —=——=-2
| P2 4 :
|Rp|n! = 4 and |Rﬁgl =4 Fig. 2.35
E= E‘_[ +E2= Ql a sz as
4 ey Rﬁn 4dneg o
-4 -5

Now let Q3 = 40 nC is at point P; (x, y, 2).
T’g = xdy +yay +za,

and Rpo = Xl +yZ+z?

The field intensity due to Q3 at the origin is,
E, Qs Qs

56173 ay - 11.2346 a, V/m

—XaAy — Y ady —Za;

4 TMEp R?"_;O

D —_
‘Hrﬁu R%'_;CI

Jx2 +y2 422

The total E has to be zero with E; added to E; and Ea.

El -i-ﬁz +E3 =0

In E; +E,, there is no x component and to have x component of E with E; zero,

x =1L

The y component of Es must cancel y component of Ey +Ez.

yQ = - 56173

47eg RE o yx* +y? +2?

[Rpao| = JxP eyt az?
y Qs
dmeo(x? +y? +z’:}1‘h:= +y?+22

Now

= 5.6173
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. y 2.6173 =4 gy
. = = 0.01562 = 40 nC
(x* +y? +zz)3-'2 40x10-* 2 "
But x = 0 hence,
Y = 001562 o (@)

(y?+2?)"
Similarly z component of E; must cancel z component of E; + Ea.

~2Qs = 112346
dneg R%.JD Jxl +y? 422

Substituting Q3 , Rpp and x = 0 we get,

FA

—_— = - 003124 . (b)
(y2+22)""
1.2y Y _
From (a), (y? +2?) SO1EE = 640204 y
' F L
Putting in (b), m = - 003124
7 = —2}? [C:l
Using (c) in (a),
y -
: —77 = 0.01562
[y?+(2y)°]
Y = 0.01562
y .
Fys - 0.01562
y? = 57261
y = +£2.3929 and z = ¥ 4.7858

But y must be positive and z must be negative in Ps, to get E=0
Hence Q3 must be located at (0, + 2.3929, — 4.7858) to have E zero at origin.
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Ex. 215 The charge is distributed along the z axis fmmf =—5mto —wand z=4+5m to
+oo with a charge density of 20 nCfm. Find E at (2,0,0) m. Also express the

answer in cylindrical coordinates. [P.U. Dec-98, 2000, M.U. Dec-2001]
Sol.: The charge is shown as in the
Fig. 2.36.
Key Point : If pu is not distributed n
all along the length then standard result da
can not be used. The basic procedure is to
be used. _ 5
ap

As charge is not infinite, let us use
basic procedure of considering

differential charge. Rf 0 -y
Consider the differential element di
in the z direction hence, (2,0,0) :
dl = dz -5
~dQ = p di=p dz s L
2 dﬁ=%in=ﬁ;“ "L
Fig. 2.36

Any point on z axis is (0, 0, z)
while point P at which E to be calculated is (2.0,0).

R = (2-0)a, +{D-z}i;=25,-zi',

IR| = 1! () +(-2)* =d+2?

_ Zi ~Za;

agp =
|R| ~.|'4+9:2

i - )
4nsu(\i'4+.c~ ) Virz2

PL{.IZ -
= 2a, -za,

4n£u(4+zz)3” ( )

Now there is no charge between — 5 to 5 hence to find E. dE to be integrated in
two zones —o to — 5 and 5 to = in z direction.

i"""rl-
l'-l'l'l—‘a
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Looking at the symmetry it can be observed that z component of E produced by
charge between 5 to « will cancel the z component of E produced by charge
between — 5 to —w. Hence for integration 3, component from dE can be neglected.

© PpLdz(2d) +T P dz(23,)

‘- |

o 4ncg(4+zz)3” 4rmn(4+zz]3”
Put z = 2tan 0
dz = 2sec?b dé
For z=-w, 8=-n/2, For z=-50=tan"! —%:—ﬁﬂ.l‘.g“

w

For z=+w, 0=+n/2, For z=+5 0=tan” izﬁﬂ.]&l"
L po 2P E'='J-""“"' 2sec20d0 “T" 2sec? 0.d0
dneo | . (4 +4tan? 3)3” gmis1ee (4 + 4 tan? 3)3”

_ 2P @, {““f’”‘““ 2sec? 0dO “J?“ Eseczﬁdﬁ}

= S— -
4 e 3/2 3 3/2 3
0 o 4°/% gec? anw.wﬁ sec’ O

20, 7. (2 f= = 68 19 0= 50"
"a‘{){ | 1 4o+ f LI

) 4“5“(4”2) = — B0 sect u-m.au*seca

P, 3 .
g {[sin0 5" + [sin0[3, }

20x10°%, . o _
= Bux 8854 x10-19 {sin(- 68.19°) - sin(~ 90°) + sin(90°) - sin(68.19°)}

=12873a, =133, V/m

To find cylindrical coordinates find the dot product of E with a,,3, and a,, at
point P, referring table of dot products of unit vectors.

E, = E.a, =133, .3, =13 cosd
Ey = E+«3y =133,+3, = -13 sind
| E; = E+3; =133,.3; =0
Atpoint P, x=2,y=0,2=0
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r = Jx*+y? =2 and ¢=tan‘1%=tan‘1ﬂ=ﬂ""

cos¢p =1 and sing=0
Er = 13’ E‘ = u,- EI = D
Hence the cylindrical coordinate systems E is,
E = E, a, +Eya3, +E. 3,
E =133, V/m

Ex, 216 A uniform line charge with charge density ). =35 pC/m lies along x axis. Show that
E at (3, 2, 1) is given by,

2a, +a-
E = 0'356[ Ty +4- ]pV;’m
0 V5 [M.U. May-97]
Sol.:  The line charge is shown in the
Fig. 2.37.

As the charge is infinite line charge,
the field E can be obtained by standard
result.

E = P -

- 2WMEg T

Now the line charge is along x axis
hence E will not have any component
along a, direction. Hence while finding

T and a,, x coordinate should not be Fig. 2.37
considered.
T = (2-0)ay +(1-0)a; =23y +7; ... X not considered
8] = V22412 =45
o 1Tl _ 23, +a
N J5
P = h =5uC/m

el
I

5x10-6 [H, +3, ] _ 3.558x10-7 [Ei, +a;
© 2mxeg x(‘_/.':'ﬁ J5 Eo J5

_0.356 [2ay +a,
- N

] pV/m ... Proved
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Ex. 217 A line charge density Py = 24 nC/m is located in free space on the line y =1 and

z=2m.

a) Find E at the point P (6, -1, 3).

b) What point charge Q4 should be located at A (-3, 4, 1) to make y component

of total E zero at point P.
Sol. : a) The line charge is shown in
the Fig. 2.38.

It is parallel to the x axis as y = 1
constant and z = 2 constant. The line
charge is infinite hence using the
standard result,

= _ P _
E = 2mEg T a

To find &,, consider a point on the
line charge (x, 1, 2) while P (6, -1, 3).
As the line charge is parallel to x axis,

P{6,-1.3} :

Fig. 2.38

do not consider x coordinate while finding a,.
T = (-1-1)a, +(3-2)a, =-2a, +4,

17 = (-2 +(1)* =5

-
-
1

il
I

- 2WEq -u'rg

\5
- 172.564 3, + 86.282 3, V/m

T 2nx8.854 x10712 x5

PL [—25,, +'i,,] _ 24x107(-23, +3,)

b) Consider a point charge Q4 at A (-3, 4, 1).
The electric field due to Qu at P (6, -1, 3) is,

= aar
]
4dneg Rip

[6-(-3)]ax +[-1-4]a, +[3-1]a, =93, 53y +23,

JO)? +(-5)* +(2)* = 10.4888
ﬁﬁr _ gﬁu _SEY +Zil

Ea
Rap

| Rael
ETNS

10.4888
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E Qa [Qa—, -5ay +2a—,]
" dmeg x{lﬂ.dﬂﬁﬂ)z 10.4888

1]

The total field at P is now,

The y component of total E; is to be made zero.

-172.564 - 5Qa |3y =0
4 me x(10.4888)
2Qa T = - 172.564
4 nteo x(10.4888)
~ 172,564 x 4 7x 8.854 x 10-12 x(10.4888)°
Qa = 5
= —4.4311 uC

Ex. 218 A circular ring of charge with radius 5 m lies in z = 0 plane with centre at origin.
If the pp. = 10 nChmn, find the point charge Q placed at the origin which will
produce same E at the point (0, 0, 5) m.

Sol. : The ring is shown in the %
Fig. 239 (a), in z = 0 ie xy
plane.

The point P (0, C, 5) m.
Consider the differential length
dl of the ring. It is in the ¢
direction hence dl = r d¢.

The charge on dl is dQ =pyd!

dQ = Py rdb
dg = 9Q

——a
dneg R2 R

pLrdd _ Fig. 2.39 (a)
4meg R2 R

]

=l

Now ag =i'l:ﬁ and R can be resolved into two components as shown in the
Fig. 2.39 (b).
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The two components in cylindrical
coordinate system are,

1. Along -a, direction i.e. —ra,.

2. And z component in 3, direction
i.e. z a,.

R=-=ra +za,

hence |_R-L| =1,||[r)2 +z2

io = R _ -ri-r +ZE:
. IRl Jr? 422

2
4r1:£'.|;.(~«.l'rz +2%)

Fig. 2.39 (b)

_‘rir +ZH-:
Vr? + 22

Note : The E at P will have two components, in radial direction and z direction
but radial components are symmetrical about z axis, from all the points of the ring
and hence will cancel each other. So there is no need to consider a, component in
integration. Though if considered, mathematicallvy will get cancelled.

f=1In
E pL rd¢

= z3, ... Limit ford = 0 to 2n
o0 4mEQ (1'2 +z2 )Mz
F"[ rz =
= = dé | a; W = 5m, z = 5m
d e (r2 +z?)3'IFI I"£ :|
PLrz _ 10=10"Y x5=x5=2n
= 573 (2n) 3, = = 75 Az
4o (r2 +22) 41x 8,854 x 10-12 x [25 + 25T
E = 399314 3, V/m . (1)
Let Q be the point charge at the origin. From Q to point P, the distance vector
R=5 dz.
- Q _
5 E duet tP e —
ue to Q a Tre, I agp
R 53,

where g = — = =a
R qu 5 r
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~EduetoQatP = J—z i, . (2)
4 ey (5)
Equating (1) and (2),
Q -
Treox2 - 39.9314
Q = 111.071 nC

Ex. 219 A line charge density Pr is uniformly distributed over a length of 2a with centre
as origin along x axis. Find E at a point P which is on the z axis at a distance d.

[P.U. May-2000]

Sol.: The line charge is shown
in the Fig. 240. As the charge :
distribution is not uniform, let us
use the basic method of
differential  length.  Consider
differential length d! along the
line charge. As it is along x axis,
dl = dx.

dQ

Py dl
Py dx

_dQ  _
Now dE = T ag

= —— 7 g- 2.40
4 teq R2 R

To find R, consider any point on the line charge which is say (x, 0, 0). And
Pﬂ‘mt P {U: ﬂ.r d].

R = (0-x)ax +(d-0)a, =—xa, +da;
|R| = Vx¥+d?
g = R _ZX& +da;
IR| Jx2 +d?
d4E = Py dx [-xi, +di‘,}
4“30(.,-',,.21_{11 )2 Jx? + g2

But as charge is along x axis, E at P can not have any component in the
direction of ax. Hence ax component need not be considered in integration.
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The line charge Py, is to be located along y = 0, z = 0 line i.e. x axis.

For z = - 5 plane, the nnrma.l direction is 3, = a; as the plane is parallel to xy

plane. For y = - 5 plane, the normal direction is 3.2 = @y as the plane is parallel to
xz plane.
E = Zp:u S = ;ﬂsn A
and Ex =%EM=%EY
EatP = E +F; = % [3, +3.] V/m e (D)

Consider line charge along x axis. As it is infinite,

= L = PL T
E = a = =
2REQT Encur[l?l]

For T, consider a point on the line charge (x, 0, 0) while P (4, 2, 2). But as line
charge is along x axis, E will not have component in a, direction so the x coordinate
should not be considered while calculating t.

F

7|

J@ +(2* =V8 |
P [Zi, +2iz]
2neg (JE) V8

PL
Breg

E =

[ay +3.] V/m - (2)

To have same E at P (4, 2, 2) equate (1) and (2)

Ps _ P
2ep 8neg
_ 10
P, = dnx—— = 0666 nC/m
6n

This is the required line charge density.
Ex. 222 A line charge Py = 50 nC/m is located along the line x = 2, y = 5 in free space.
a) Find Eat P (1,3, - 4)
b) If the surface x = 4 contains a uniform surface charge density, Ps =18nC / m?,
at what point in the z = 0 plane is total E=07?
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While Ey and E; are zero as a; «ay and &, -3, are zero for 8 =90° and ¢ =0°

. E = 014243, V/m
Ex. 226  Ten identical charges of 500 uC each are spaced equally around a circle of radius
2m. Find the force on a charge of —20 pC located on the axis, 2m from the plane
of the circle. [V.T.U. March-99]
Sol.: Consider the circle consisting of charges placed in xy plane and charge of
=20pC is on z axis, 2m from the plane of the circle. This is shown in the Fig. 2.50.

E.l 4 Eﬂ

Fig, 2.50

The charges are placed equally i.e, at an interval of 360°/10 = 36° between each
cther, Five pairs of charges which are dimetrically opposite to each other, exists on
the circumference of a circle, Consider a pair A and B, The field By due to Q at A,
at point P is shown in the Fig, 2,50,

1(0Q) =2m, [(OP)=2m
£ZPAO = 45°
.. y component of Ey ie. Epy =E, cosd5®
Similarly { (OB) = 2m, I (OP) = 2m
£PBO = 45°
:. y component of B i.e. Epy = Bp cos45°

But Eay is in =@y direction while Epy is in dy direction. From symmetry of the
arrangement [Eqy |=[Epy| Hence they cancell each other.
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While z components of E5 and Ep help each other as both are in @, direction.
Eﬁz - "E'-n;-_ Z(Eﬁ GI‘EE) sin 45° E:

Similarly there are 4 more pairs of charges which will behave identically and
their y components are going to cancell while z components are going to add.

Thus total z component of E at P is,

Ewwl = (E due to any charge) x10x sin45°a,

- _Q i 45
= TR x 10xsin45°a,
where R = (2 +(2)° =8
5
Eotal = M_leﬂxsindﬁ“iz
4meg x(-\fﬁ)

= 3972 x10°3, V/m
Fr = Qp Epw =—20x10-6x3.972x 103,
- -79.44 (3,) N

This is the force on the charge at P. In general, force acts normal to the plane in
which circle is kept, i.e. — 79.44 3, where a@, is unit vector normal to the plane
containing the circle.

Ex. 227 A metallic sphere of 1m diameter is immersed in oil of relative permittivity 2.5 and
dielectric strength of 8x10% V/m. Calculate maximuwm amount of charge that can
be held on the sphere. [P.U. May-98]

Sol. :  The dielectric strength means |E| = 8x10° V/m which indicates maximum

| E| which can exist in the dielectric without breakdown. For any | E| more than this,

the dielectric will breakdown.

Now |E| = T;E{SEF and ¢, =25
_d_1_ _
where R = E—E-{I.Sm and E=ggg,;
Bx10% = Q

4nx 8.854 x10712 x 2.5x (0.5)°

Q = 556.31 uC
The sphere can hold maximum of 556.31 pC without breakdown.

+
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Ex. 228 A 5 nC point charge is located at A (2, - 1, 3) in free space.
a) Find E at origin.
b) Plot [Eﬁx 0,0)| agmnst x, -10<x<10 m.

¢) What is | E (x,0,0)| [P.U. Dec-90, Dec.-2003]

Sol.:* a) A(2,-1,3) and P (0,0,0)

- Q _

tPm =
Ea P Rip aap
Now Sap = (0-2)ax +[0-(-1)]ay +[0-3]a;
JEP +()? +(3)?
E = 5x10- [—H, +ay —31,]
47x 8.854 x10-12 x(Y14)’ V14

b) Let point P is now (x, 0, 0).

IJ_AP| {:a;—Z) +(1} +.|:,3}
E = (x z)al""a] -3a;
T e | W
) N X—2)ay +a -3a;
4m:u[{x-2)2 +1n]3” (x-2) y ]
T 442'933-3!2 [(K-Z}ix+i], —35;]
(x-2)" +10]
El = 44,938 —N2 +(1) +(-3)
. [(x-2) +10] o7+ 07+ 7]
SR - V/m
[(x-2)* +10]

To find x at which | E| is maximum,
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d|E] _
dx 0
-2(x-2
44938 <=3 .
[(x-2? +10]
(x-2) =0
x = 2 where | E| is maxium.

The graph of | E| against x is shown in the Fig. 2.51.

[E] in Wm
4.49

Fig. 2.51
¢) Hence | E|max is at x = 2,
[Elnx = 2222 = 44938 V/m
Important Results

& Coulomb's law
Fo 23 FakQQ

k = e for free space or vacuum

£ = B.854 x 10°"? F/m

. _ Eu: _ Gy Qs i-:—il
Vector form :  Fg = dnco Ry 07 drneo R |E:~i'li

This is force exerted by Gh on Q.
[Fa| = [F | but Fa=-Fs

If there ore n charges O to Q. then the resultont force on the charge Q is,

F.-E @Q Oig
i 4nen Rg
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23.

24,

5.

27.

28.

29,

30.

On the line x = 4 and y = — 4, there is a uniform charge distribution with density
P =25 nC/m. Determine E al (-2, -1, 4) m. [Ans.:-59.92a, +29.96 3, V/m]
The infinite line charge parallel to z axis is at x = 6, y = 10. Find E at the general point
P(x,y.z) in cartesian system.

[Ans, :

L =[x —6)a, +(y—10)a, -
2"‘”[{"—5]=+{y~1n)’][( 6)ax +(y-10)a ]V / m}

Find E at (10, 0, 0) due to a charge of 10 nC which is distributed uniformly along x axis

between x = — 5 to + 5m in free space. [Ans.: 184, Vim]
A line charge density 24 nC/m is located in free space on the liney =1,z = 2.

a) Find E at P (6, -1, 3).
b) What point charge Qa should be located at (<3, 4, 1) to cause y component of E to be

zeroat P 7 [Ans.:-172.56a, + 86.28 3, V/m, 4.43 uC]
Find E at P (0, 0, 2) m due to the infinite sheet of charge in xy plane with density
10nC / m?. [Ans.:564.71 @ V/m]

Two infinite sheets of charge each with density Pg are located at x =42 m. Determine E in
all directions. [Ans.: Forx -:—2:-':—5 ay,For-2<x<2:0,Forx>2: P;‘f @, in V/m]
0

Four infinite sheets of charges with uniform charge densities 20 pChn?, — 8 pChu?, 6 pC/m?

and =18 pCfn? are located at y = 6, y = 2, y = = 2 and y = = 5 respectively. Find E at

[Ans. :-2.26 @, V/m, - 1.355a, V/m, - 2.03 a, V/m, 0 V/m]

A sheet of charge with Ps=2nC /m? is in the plane x = 2 in free space and a line charge
PL=20nCfmis located at x =1,z =4
a) Find E at P (0, 0, 0). b) E at (4, 5, 6).

c) What is the force per unit length on the line charge ?
[Ans.:- 1347, - 85a, V/m, 196, + 55.31a; V/m, - 2.26 d, pn N/m]
Qao
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Electric Flux Density and Gauss's Law

3.1 Introduction

Uptill now Coulomb's law and electric field intensity are discussed. The various
possible charge distributions and corresponding electric field intensities are also
discussed in the last chapter. Another important concept in electrostatics is electric
flux. If a unit test charge is placed near a point charge, it experiences a force. The
direction of this force can be represented by the lines, radially coming outward from
a positive charge. These lines are called streamlines or flux lines. Thus the electric
field due to a charge can be imagined to be present around it interms of a quantity
called electric flux. The flux lines give the pictorial representation of distribution of
electric flux around a charge. This chapter explains the concept of electric flux,
electric flux density, Gauss's law, applications of Gauss's law and the divergence
theorem.

3.2 Electric Flux

In 1837, Michael Faraday performed the experiment on electric field. He showed
that the electric field around a charge can be imagined in terms of presence of the
lines of force around it. He suggested that the electric field should be assumed to be
coomposed of very small bunches containing a fixed number of electric lines of
force. Such a bunch or closed area is called a tube of flux. The total number of
tubes of flux in any particular electric field is called as the electric flux.

Key Point: Thus the total number of lines of force in any particular electric field is called
the electric flux. It is represented by the symbol . Similar to the charge, unit of electric flux
is also coulomb C.

3.2.1 Properties of Flux Lines

The electric flux is nothing but the lines of force, around a charge. Such electric
flux lines have following properties,

(124)
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1. The flux lines start from positive S e .
charge and terminate on the negative r’ o ""\,.\ \
charge as shown in the Fig. 3.1. e T

| | e I

2. If the negative charge is absent, then e o
the flux lines terminate at infinity as shown \ ‘»:::"'""'__:,"’ .
in the Fig. 3.2. (a). While in absence of W TenT Flul ines
positive charge, the electric flux terminates

on the negative charge from infinity. This

. . . Fig. 3.1 Flux lines
is shown in the Fig. 3.2 (b).

Flux linas Flux linas

N % A
Tow - . — - @ -— From=
/l\ /T\

(b)

Fig. 3.2

3, There are more number of lines i.e. crowding of lines if electric field is
stronger.

4, These lines are parallel and never cross each other.
5, The lines are independent of the medium in which charges are placed.
6. The lines always enter or leave the charged surface, normally,

7. If the charge on a body is # Q coulombs, then the total number of lines
originating or terminating on it is also Q. But the total number of lines is nothing
but a flux.

Electric flux y = Q coulombs (numerically)

This is according to SI units. Hence if Q is Iérge then flux y is more surrounding
the charge and viceversa.

The electric flux is also called displacement flux.

The flux is a scalar field. Let us define now a vector field associated with the
flux ealled electric flux density.
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3.3 Electric Flux Density (D)

Consider the two point charges as shown in the Fig. 3.3. The flux lines
originating from positive charge and terminating at negative charge are shown in
the form of tubes.

Fig. 3.3 Concept of electric flux density

Consider a unit surface area as shown in the Fig. 3.3. The number of flux lines
are passing through this surface area.

The net flux passing normal through the unit surface area is called the electric
flux density. It is denoted as D. It has a specific direction which is normal to the
surface area under consideration hence it is a vector field.

Consider a sphere with a charge Q placed at its centre. There are no other
charges present around. The total flux distributes radially around the charge is
y =Q. This flux distributes uniformly over the surface of the sphere.

Now. v = total flux
While, S = total surface area of sphere

then electric flux density is defined as,

D = % in magnitude e (1)
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Fig. 3.7

Ex. 3.2 A point charge of 6 uC is located at the origin, a uniform line charge density of
180 nC/m lies along x-axis and uniform sheet of charge equal to 25 nC/m* lies in
the z = 0 plane. Find i) D at A (0, 0, 4), i) D at B (1, 2, 4) and iii) Total
electric flux leaving the surface of the sphere of 4 m radius centered at the origin.

[M.U. May-98, May-2000, P.U. Dec-89]
Sol.: i) Case 1: Point charge Q = 6 uC at P (0, 0, 0).
While D to be obtained at A (0, 0, 4).

r

Ll

T

(4-0)3, =43, |7|=|@)? =4, @ =

<. Y = 6108 - . e 2
Dy = e ar_-'!;n’)({‘;}z a, =2984x10"%a, C/m

Case 2 : Line Charge p. = 180 nC/m along x-axis. 50 any point P on the
charge is (x, 0, 0), while A (0, 0, 4). As charge is along x-axis, no component of D is
along x-axis. So do not consider x co-ordinate while obtaining T.

As charge is infinite,

= PL 3 =IED:~:1U“’

— = =9 2
D1 = T r Tnxd il —?.lﬁlxlﬂ i; qm

Case 3 : Uniform sheet of charge lies in z = 0 plane. So the direction normal to
it is z direction as plane is xy plane. Hence a, = a3, and ps = 25 nC/m?.
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As sheet is infinite,

= Ps_ 25x10-7
D:} = Tba“ '=T

a, =125x10"%a, ¢/m?

D = Di+D:+D3=49501x10-%a, C/m?
ii) The point at which D is to be obtained is now B (1, 2, 4).
Case 1 : Point charge Q = 6 pC at P (0, 0, 0).
T =(1-0a,+((2-0)ay +(4-0) a; = a, +2a, +4a,
It = J(1)2 +(22 +(4)2 =21

- T Ay +Ziy +4a,

EE

— Q _  6x10°6 F, +2ay +4a,
a, =
4mr? drx(+/21)2 L J 21

= 4961x10"%a, +9923x10"a, +1.9845x10-%a, C/m?

Case 2 : Line charge : The point on the charge is (x, 0, 0).

As charge is along x-axis, do not consider x co-ordinate.

= (2-0)ay +(4-0) 3, =2a, +4a. ~asB(1,24)
7 = J@7+@®? =20

_ ¥ 2d, +43,

-

dy & —=————
| 7| J20

ﬁz = pl:_ r=lﬂﬂxlﬂug 25}- +4iz
2nr 2nx+/20 J20

= 28647 x10-9 3, +5.7295x10-9 &, C/m?
Case 3 : Infinite sheet of charge in z = 0 plane.

The point B ( 1, 2, 4) is above z = 0 plane hence @, =a, and D3 remains same
as before.

— =g
Dy = %En =E-5x2liz =12.5=% 1[}'93; c.",l'rl'l."l.2
D = D1+D:2+Ds
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Consider a rectangular box as a Gaussian surface which is cut by the sheet of
chaige to give dS = dx dy.

D acts normal to the plane i.e. 3, = 3, and -3, = -3, direction.
Hence D = 0 in x and y directions.

Hence the charge enclosed can be written as,

‘F D+dS= § D-+dS+ f D-dS+ § D-+dS
5 sides top bottom

Q
i

I

But fo D+dS = 0 as D has no component in x and y directions

sides
Now D = D.,a, for top surface
and dS = dxdya,

D+dS = D?_dxdy(ﬁz -E,}=Dzdx dy
and D = D.(-d.) for bottom surface.
and dS = dxdy(-3;)

D-dS = Dzdxdy(iz-a',)zﬂzdxdy
Q = f D;dxdy+ § D;dxdy

toip bottom
Now § dxdy = § dxdy = A = Area of surface
top bottom
Q = 2DA
But Q = psx A aspg = Surface charge density
ps = 2D,
= Ps
D, = 5
D = D,a, J’TS i, C/m? . (11)
E _ E_ Ps =
E = P Yo a, V/m - (12)

The results are same as obtained by the Coulomb's law for the infinite sheet of
charge.
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3.8.5 Spherical Shell of Charge
Consider an imaginary spherical shell of radius 'a".

The charge is uniformly distributed over its surface with a density ps C/m?. Let
us find E at a point P located at a distance r from the centre such that r > a and
r < a, using Gauss's law.

The shell is shown in the Fig. 3.14.

Case 1 : Point P outside the shell. Spherical ,,
(r>a)

Consider a point P at a distance r
from the origin such that r > a. The
Gaussian surface passing through
peoint P is a concentric sphere of radius
r. Due to spherical Gaussian surface, surface
the flux lines are directed radially
outwards and are normal to the
surface. Hence electric flux density D
is also directed radially outwards at point P and has component only in &,
direction. Consider a differential surface area at P normal to &, direction hence
dS=r?sin® dO d¢ in spherical system.

dy = D+dS =[D,3, ]-[rzsinﬂ do dé a-,]

;
.
< r=a

------
faw

Fig. 3.14 Spherical shell of charge

= D, r2sinf do dé

in
y = ,E D; r2sin® d0 dp =D, r* [ [ sin® db d¢
5 #=0 0=0
v = D, r?[-cos8] 0]~ =4nr?D, . (13)
But y = Q .. Gauss's law
Q = 4nr?D,
_ _Q
Dr = 4nr?
ﬁ = Dr ir =4EZ i[ qmz . {14}

And E=2-_92 5 v/m . (15)
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Thus for r > a, the field E is inversely proportional to the square of the distance
from the origin.

If the surface charge density is ps C/m? then

Q) = pg = Surface area of shell
Q = psx4dma’
E o= Psdm o Psats yim .. (16)
4megr? £pr2
_ _ 2
and D = eE=2"73|C/m . (17)
r

Case 2 : Point P is on the shell { r = a)
On the shell, r = a

The Gaussian surface is same as the shell itself and E can be obtained using
r = a in the equation (15).

E=—-9 3 V/m . (18)
41&'.[;&2 .

Case 3 : Point P inside the shell (r < a)

The Gaussian surface, passing through the
point P is again a spherical surface with radius
r<a.

But it can be seen that the entire charge is
on the surface and no charge is enclosed by the
spherical shell. And when the Gaussian surface
is such that no charge is enclosed, irrespective

of any charges present outside, the total charge Fig. 3.15
enclosed is zero.
v = Q :§ D+dS=0 ... As per Gauss's law
5
Iz =
Now {; ds = j J‘ r2sin® do d¢ =4nr?
[ 4=00=0
Thus $d5 = 0

5
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Hence to satisfy that total charge enclosed is zero, inside the spherical shell.

|

D=0 and E=—=0 .. (19)

~
k=1

Thus electric flux density and electric field at any point inside a spherical shell
is zero.

3.8.5.1 Variation of E Against r

The variation of E against the radial [E} in Vim
distance r measured from the origin is
shown in the Fig. 3.16. aQ
— | 9 reee-
Forr < a, E=0 4ncgd
r>a
Forr=a, E = QIE, o
4mepa 0 r=a T nm
Forr > a, E:—IQ—E, —
dmeqr? Fig. 3.16 Variation of | E| against r
After r = a, the E is inversely

proportional to the square of the radial distance of a point from the origin. The
variation of ]ﬁ| against r is also similar. For the medium other than the free space,
£p must be replaced by e=gq£,.

3.8.6 Uniformly Charged Sphere

Consider a sphere of radius 'a’' with a
uniform charge density of p, C/m?. Let
us find E at a point P located at a radial
distance r from centre of the sphere such
that r< a and r > a, using Gauss's law.

The sphere is shown in the Fig. 3.17.

Case 1 : The point P is outside the
sphere (r > a).

Gaussian
surface

_The Gaussian surface passing through Fig. 3.17 Uniformly charged sphere
point P is a spherical surface of radius r.

The flux lines and D are directed radially outwords along a, direction.

The differential area dS is considered at point P which is normal to &, direction.

dS = r2 sin0 do d¢
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= D, r? sind dO d¢ o (Fe o7 =1)

y = Q:fﬁ'ds =T TDrrzsinﬂdﬂddl
S 420 6=0

= D; 12 [-cosO]} " =D, r2 4=

_ Q

D = 3
_ _Q

b= L& C/m .. (20)
_D_ Q .

E = . urzar V/m .. (21)

The total charge enclosed can be obtained as,

I = a
Q = J‘p,,dv= J‘ J‘ j py r2sin® drdodé
v 4= B=0r=0
_ 3 * n
=Pyl [~cos0]] [¢ﬂ
0
= %naﬂ‘pv C .. (22)
zmadpy 3
E 4115'} ]'2 ar aﬁﬂrz al' - ( ]
3
While D - *’3:‘;‘“ 3 . (24)

These are the expressions for D and E outside the uniformly charged sphere.
Case 2 : The point P on the sphere (r = a).

The Gaussian surface is same as the surface of the charged sphere. Hence results
can be obtained directly substituting r = a in the equation (23) and (21).

_ 3 a
E = a Pv Fy =p., a e (25
3ggal | 3ep ar (25)
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and | D = g E = %i, ... (26) Gaussian

Case 3 : The piont P is inside the
sphere (r < a) the Gaussian surface is a
spherical surface of radius r where r < a.

Consider differential surface area dS as
shown in the Fig. 3.18.

Again d§ and D are directed radially

outwards. Fig. 3.18
D = D,a, while dS = r? sin0 d6 d¢ &,
dy = D+dS =D, r? sinf d6 d¢ ...(ir-a_r =1)
w:Q:fﬁ-dS:j jDrrzsianﬁd:iu
5 4=0 B=0

D, r? [-cosO]] [0]" = 4nr2D;

n

_Q
Dr = dmr?
= (J _ .
D = =3 C/m .. (27)

Now the charge enclosed is by the sphere of radius r only and not by the entire
sphere. The charge outside the Gaussian surface will not affect D.

dx = ¢
Q = Ipudv=j j‘ j’ r2sin® drdodé
¥ $=00=0r=0
4
= gﬂr:"p-1~r wherer < a ... (28)
Using in (27) we get,
2 xrdp,
D=3 a
4rr?
D = %pv e e O<r<a - (29)
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r

k= EBD

j—

Py & O<r<a .. (30)

s |dl

Key Point: The results obtained here can be used as the standard results while solving the
problems.

If the sphere is in a medium of permittivity £, then £y must be replaced by
E=EE,.

3.8.6.1 Variation of E Against r

From the equations (21), (23)
and (28) it can seen that for r > [E] in Vim
a, the E is inversely ’
proportional to square of the
distance while for r < a it is B [T
directly proportional to the
pva
ey My |
d i =l

epends on the radius of the
charged sphere.

distance r. At r = a, IE|=

o -

r=a T inm

For r > a, the graph of |E| 0
against r is parabolic while for
r < a it is a straight line as Fig. 3.19 Varlation nf[Elagalnstr
shown in the Fig. 3.19.

The graph of | D| against r is exactly similar in nature as | E| against r.

3.9 Gauss's Law Applied to Differential Volume Element

Uptill now we have considered the various cases in which there exists a
symmetry and component of D is normal to the surface and constant everywhere on
the surface. But if there does not exist a symmetry and Gaussian surface can not be
chosen such that normal component of D is constant or zero everywhere on the
surface, Gauss's law can not be directly applied.

In such a case a differential closed Gaussian surface is considered. The closed
surface is so small that D is almost constant everywhere on the surface. Finally
results can be obtained by decreasing the volume enclosed by Gaussian surface to
approach to zero.

Consider a cartesian co-ordinate system and a point P in it such that the electric
flux density at P is given by,

ﬁ = Dxix +D}- i}r +Dziz [1}
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Consider the closed Gaussian differential surface in the form of rectangular box,
which is a differential volume element. The sides of this element are Ax, Ay, and Az.
The position of this element is such that the point P is at the centre of the element

and treated to be origin. Hence D at P can be denoted as Do. This is shown in the
Fig. 3.20.

n
|

Y
| Ay ——|
x
Fig. 3.20 Differential volume elemant
Let D = Do=Dya, +Dyay +Dya,  at point P

The components Dy, Dy and Dy vary with distance in the respective directions.

According to Gauss's law,

5

The total surface integral is to be evaluated over six surfaces front, back, leftside,
rightside, top and bottom.

§ﬁ-d3:{j+§+j+[+[+j‘ D-dS e (3)
3 front back lefiside rightzide top  boltom

Consider the front surface of the differential element. Though D is varying with
distance, for small surface like front surface it can be assumed constant.

And dS
while D
j D-dS

frant

AyAz ay ... a5 Ay 15 normal to front
Diornt  constant

L]

i

rifrcmt - (ﬁ}’ﬁz] ay - (4)

But Diont = D front 3x ... (5)
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J‘ D+*dS = DgonAyAz as 3y +dy =1 e (6)
fromt

It has been mentioned that Dy gom is changing in x direction. At P, it is Dy
while on the front surface it will change and given by,

D - Dunst Rate of change . Distance of surface
% front = A0 of D, withx from P
_ 0Dy Ax
Dy o = Do +_5}{_T - A7)

* The point P is at the centre so distance of surface in x direction from P is %

¢ The rate of change is expressed as partial derivative as Dx varies with y and

z co-ordinates also.

AyAz ... (8)

Consider the integral over the back surface,

J- ﬁ'dg = Ebuk 'dg
back

where Dhaa = Dy back {E,)
dS = AyAz(-3y)

Key Point: Note that the flux is entering from back side and leaving from front in positive
x direction hence @, is used positive for Dback. While the surface considered from point P is
in negative x direction hence =3y is used for expressing dS.

Dback +dS = —Dy back AyAz [:i, . a3, =1)
I D+dS = Dy back AyAz e (3)
back

Now Dy pack is changing with x. At P it is Dy while on the back side it will be
different and can be obtained as,

D Rate of change istance of surface
= - x
bt 0 of D, withx from P
Ax 9D,
Diback = Do -5 =2 .. (10)

2

The negative sign is used as the surface is in negative direction of x from P.
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Substituting in (9) we get,

—_ = Ax 8D,
[ D-dS = —[Dm—? ax].&yﬁz
back
[D-ds = [—D,ﬂ+%a§;]ﬁyﬁz . (11)
back
Combining (8) and (11),
_ ., AxaD,
J'+I = ZxTax AyAz
front  back
_ dDy
I + j = =X AxAyAz - (12)
front  back
Similarly we can write,
aD
I + J = —L AxAyAz .. (13)
left  rmight a}tf
cD,
I + I = Eﬁx&.}rﬂz .. (14)
top  bottom
§ D+dS = [ﬂ[}, +&|A:I’r +6Pz] AxAyAZ
d X ay oz
But AxAyAz = Differential volume Av
— _ ~ _[@D, @Dy D,
§Dd§-o_[ax+ay+az Av ... (15)
5
Thus the charge enclosed in volume Av is given by,
_ : _(@Dy Dy éD,
Q = Charge enclosed in volume Av —[ Ew + 3y + . ]ﬂv
... (16)

This result leads to the concept of divergence.
Ex. 3.3  The flux density D =% a, nC/m* is in the free space :

a) Find E at r = 0.2 m.
b) Find the total electric flux leaving the sphere of r = 0.2 m.

¢) Find the total charge within the sphere of r = 0.3 m. [P.U. Dec-92]
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o —22619x10° L = D xrx2nl
- - _
Dy = 2.2619x10 _ ﬂ'aﬁxlﬂ'ﬁ
2nr r
D: = _{':36 a, pC/m? forr>3
D =Di1+D: = &E?S a uC/m?  forr>3

3.10 Divergence
Applying Gauss's law to the differential volume element, we have obtained the

relation,
_(8Dx 6Dy @D,
Q_[ax"'ay +az Av - (1)

This is the charge enclosed in the volume A v.
But Q = f D-+dS by Gauss's law . (2)
5

To apply Gauss's law, we have assumed a differential volume element as the
Gaussian surface, over which D is constant. Hence equations (1) and (2) can be
equated in limiting case as Av — (.

dD
0Dx 00y +aD*1ﬁv

fﬁ'dﬁ = lim [
5

av=0| dx 3y EZJ
oD, @Dy 8D ﬁﬁ.dg
Toox +ay Y T A AV " A Ay - 3)

Thus in general if A is any vector*say force, velocity, temperature gradient etc.
then,
§ A-dS
EA,‘FEJELY +3A, _ s

ax = ay 8z  Avs0 AV - (4)

This mathematical operation on A is called a divergence. It is denoted as div A.
Hence mathematically divergence is given by,
§ A-dS

R A, dAy; BA
= li 5 = X y z
div A &I‘:r{nm Av ax ay "5z

- (5)
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3.10.1 Physical Meaning of Divergence

From the equation (5), the physical meaning of divergence can be obtained. Let
A be the flux density vector then,

the divergence of the vector flux density A is the outflow of flux from a small
closed surface per unit volume as the volume shrinks to zero.

Hence the divergence of A at a given point is a measure of how much the field
represented by A diverges or converges from that point. If the field is diverging at
point P of vector field A as shown in the Fig. 3.23 (a), then divergence of A at point
P is positive. The field is spreading out from point P. If the field is converging at
the point P as shown in the Fig. 3.23 (b), then the divergence of A at the point P is
negative. It is practically a convergence ie. negative of divergence. If the field at
point P is as shown in the Fig. 3.23 (c), so whatever field is converging, same is
diverging then the divergence of A at point P is zero.

NN T

-— p— — Sp-— op
SN I
(a) Positive (b) Negative (c) Zero

Fig. 3.23 Divergence at P

Practically consider a tube of a vehicle in which air is filled at a pressure. If it is
punctured, then air inside tries to rush out from a tube through a small hole. Thus the
velocity of air at the hole is greatest while away from the hole it is less. If now any
closed surface is considered inside the tube, at one end velocity field is less while from
other end it has higher value, as air rushes towards the hole. Hence the divergence of
such velocity inside is positive. This is shown in the Fig. 3.24 (a) and (b).

As seen from the Fig. 324 (b), the air velocity is a function of distance and
hence divergence of velocity is positive. The density of lines near hole is high
showing higher air velocity. The source of such velocity lines is throughout the tube
and hence anywhere inside the tube, at any point the divergence is positive.

If there is a hollow tube open from both ends then air enters from one end and
passes through the tube and leaves from other end. This is shown in the Fig. 3.24 (c).
The velocity of air is constant everywhere inside the tube. In such a case the
divergence of the velocity field is zero, inside the tube.
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Tube
a— Tube

' 'Y |

(a) Tube (b) Punctured tube (c) Hollow tube

Fig. 3.24 Concept of divergence
A positive divergence for any vector quantity indicates a source of that vector
quantity at that point. A negative divergence for any vector quantity indicates a
sink of that vector quantity at that point. A zero divergence indicates there is no
source or sink exists at that point.

In short, if more lines enter a small volume than the lines leaving it, there is
positive divergence. If more lines leave a small volume than the lines entering it,
there is negative divergence. If the same number of lines enter and leave a small
volume, the field has zero divergence. Note that the volume must be infinitesimally
small, shrinking to zero at that point, where divergence is obtained.

As the result of divergence of a vector field is a scalar, the divergence indicates
how much flux lines are leaving a small volume, per unit volume and there is no
direction associated with the divergence.

3.10.2 The Vector Operator V
The divergence of the vector field A is given by,

DA, 0A; BA,

div A = ﬂx+ay +ﬂz.

The divergence of a vector is a scalar quantity.

The divergence operation can be represented by the use of mathematical
operator called del operator V which is a vector operator. It is given by,
a - 2  9_
vV = — — —
ﬂxlx +aya! +Eza: {61
Now the A is a vector field and V is also a vector. The result of divergence is a
scalar. Thus to get the scalar from the two vectors, it is necessary to take dot
product of the two.
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If A

Axdy +Aydy +A,3; then

2 s+l el si]. [Axa+Ayd, +A 5]

VA
A ax * dy ¥ dz

N‘Dw i: 'Ex =EJ|- 'ir =iz 'it = l
While other dot products such as d@, «3; etc. are zero.

x a(a,) E(A},) ﬂ[ﬂ.z} dA BAF ﬂhz
dx ay oz dx  dy dz

VeA = divA (7
Note the following observations regarding V :

1. V is a mathematical operator and need not be involved always in the dot
product.

Ve

2. It may be operated on a scalar field to obtain vector result. Thus if m is a
scalar field then,

(8. a_ 9_). _ om_ am_ om_
Vm—(ﬁa, +Eﬂ.r +Ea;)m = Ha, +-a?ﬂr +E dy

3. The V operator does not have any other specific form in different coordinate
systems. Whatever may be the coordinate system in which A is represented, V+A
represents a divergence of A.

3.10.3 Divergence in Different Coordinate Systems

In a cartesian system, the differential volume unit is given by dv = dx dy dz
while in cylindrical system it is given by dv = r dr d dz. In the spherical system it
is given by dv = r? sin@drd@d¢. Thus the expressions for divergence in different
coordinate systems are different.

These expressions of divergence, in different coordinate systems are given by,

dA
VA = divA = 28x 08y 0A, .. Cartesian
dx dy dz
i qox 10 10A, 0A, L
VA =divA -—E-I: A )+ eaa (smBAa) o0 0% Spherical

The reIatimls are frequently required in the engineering electromagnetics.
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3.10.4 Properties of Divergence of Vector Field
The various properties of divergence of a vector field are,

1. The divergence produces a scalar field as the dot product is involved in the
operation. The result does not have direction associated with it.

2. The divergence of a scalar has no meaning. Thus if m is a scalar field then
Ve+m has no meaning. Note that V operator can operate on scalar field but dot
product i.e. divergence of a scalar has no meaning.

3. V+(A+B)=V-A+V.B
3.11 Maxwell's First Equation
The divergence of electric flux density D is given by,
§ D-ds
divD = lim S_E'.r_- w (1)

_ oD, 3D, oD,
T dx  dy oz

According to Gauss's law, it is known that

y = Q:fﬁ-dﬁ w (2)
5
Expressing Gauss's law per unit volume basis
§ D+dS
ﬁr =55 - )
Taking lim A v =0 i.e. volume shrinks to zero,
§ DedS
But alETn% = py at that point . (5)

The equation (5) gives the volume charge density at the point where divergence
is obtained.

Equating (1) and (5),
div D = p, = . (6)
i.e. VeD = p,
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Ex. 38 Let ﬁ:Erzi,rrﬂmzﬁrrr{ﬂﬂBmmdD-Eﬁ, mC/m? for r > 0.08 m.

i) Find charge density for r = 0.06 m.
ii) Find charge density for r = 0.1 m. [V.T.U. Aug-2001]

Sol.: Assuming given D is in spherical coordinate system. From the Gauss's law
in point form,

VD = p,,.

12D,

- 1
. D ——
and VeD = = Er( De)*+ e Baﬂ (sin® Do)+ 55 5o

i) For r<0.08 D=5r2a mC/m?
- Dy=5r2, Dy=0, Dy =0

— ‘Zﬂ tE
VsD = ——(r1 r? 'r_ﬂﬁ( )= 5 = 20r=p,
At r=006 m, p,=20x(0.06) = 1.2 mC/m?
ii) For r > 0.08, ﬁ=% a, mC/m?
0.1
D; = = Dp=0, Dy=0
- 1 d 0.1 1 &
VD = rz ,ﬂ[[rj xr—!]=-ﬁa(ﬂ.1)=[]=p¥
py =0 at r=01m
3.12 Divergence Theorem
From the Gauss's law we can write,
Q = j;E-ds (1)
3
While the charge enclosed in a volume is given by,
Q = J py dv . (2)
v
But according to Gauss's law in the point form,
VeD = po e (3)
Using in (2),
Q = I ('F-U) dv [ {‘]
v
Equating (1) and (4),

fﬁ-ds = J‘ (v+D) dv ... (5)
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The equation (5) is called divergence theorem. It is also called the Gauss -
Ostrogradsky theorem. The theorem can be stated as,

The integral of the normal component of any vector field over a closed surface is
equal to the integral of the divergence of this vector field throughout the volume
enclosed by that closed surface.

The theorem can be applied to any vector field but partial derivatives of that
vector field must exist. The equation (5) is the divergence theorem as applied to the
flux density. Both sides of the divergence theorem give the net charge enclosed by
meiglnsed surface i.e. net flux crossing the closed surface.

With the help of the divergence theorem, the surface integral can be converted
into a volume integral, provided that the closed surface encloses certain volume.
Thus volume integral on right hand side of the theorem must be calculated over a
volume which must be enclosed by the closed surface on left handside. The theorem
is applicable only under this condition.

Points to remember while solving problems.
1. Draw the sketch of the surface enclosed by the given conditions.

2. D acts within the region bounded by given conditions towards the various
surfaces. Thus note the direction of surface with respect to region in which D is
given to give proper sign to the unit vector while defining dS. For example,
consider the region bounded by two planes as shown in the Fig. 3.25. For surface 1,
with respect to D in the region, dS is in -3y direction. While for surface 2, with
respect to D in the region, dS is in +3, direction.

Fig. 3.25
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3. Then evaluate § D - dS over all the possible surfaces.
s

4. Evaluate f ('1? . ﬁ) dv to verify the divergence theorem. Take care of variables

in the partial derivatives.

Ex. 3.9 Given that A=30e" @, -2z @5 in the cylindrical coordinates. Evaluate both sides
of the divergence theorem for the volume enclosed by r = 2, z = 0 and z = 5.

[M.U. Dec-99, May-2002]
Sol. :  The divergence theorem states that
fﬁ-dg J(?-E)du
5

v

[§ +§+ § }I-.ﬁ

side top bottom

Now f A.dS
5

Consider dS normal to a, direction which is for the side surface.

dS = rdp dza,

K"dg = (BU'E" i" _hi:}"rd'*‘ d.z-ig
= 30re " (&, -a,)d¢dz =30re" d¢ dz
. n 5
A-dS = J‘ jaure-'dq:dz with r=2
side $=0z=0

30x2xe? x[p]3" x [z] = 255.1

The dS on top has direction 3, hence for top surface,

dS = rdrdé,
A+dS = (30er&, -223, ) rdrdd 4,
= =2zrdrdb e (Ay 8 =1)
n 2
fIadS = J J' -2zrdrd¢ with z=5
top §=0r=0

I

2
-2x5x% [%} x [¢ﬁ“ =-40n
o
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While dS for bottom has direction -3, hence for bottom surface,

d
A-d

wl

w

But z = 0 for the bottom surface,
as shown in the Fig. 3.26.

{; A+dS = 2551 -40 n+0
5

= 129.4363
This is the left hand side of

divergence theorem.

Now evaluate I (T«' . E) dv
LY

~ 138
"F-A-?a—{ r)

and A, =30ef, Ay =0, A;=-2z

VeA

[ (7R

I

I

rdrdé (-a;)
(30 era, -22za;)- rdrd¢ (-3;)
2zrdrdd - (3z -3z =1)

am aaz
E!z

]

% (30 re")+ﬂ+% (-22)

—

= {30r(-er)+30e" (1)} +(-2)

r

—30e- +3_r” et -2

_5[ T j(-&ﬂe"+$e*‘—2) r dr df dz

g=lp=lr=

T T } (-30rer +30e~ -2r) drd$ dz

z=0¢=0r=10

T
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Obtained using integration by parts.
= [30re* +30e -30er - ’1]§ Bl[2=]

= [60e2 -2?] [10x] = 129.437

This is same as obtained from the left hand side.
2
Ex. 3.10 Given that D =5; @, C / m?. Evaluate both the sides of divergence theorem for

the volume enclosed by r = 4m and 0 = /4. [P.U. May-2000, May-2001]

Sol.: The given D is in spherical
coordinates. The wvolume enclosed is
shown in the Fig. 3.37.

According to divergence theorem,
§ D-ds = [ (v-D)
5 v

dv
The given D has only radial y
-1 4
component as given. Hence Dr=5;

while Dy =D, =0.

Hence D has a value only on the
surface r = 4m. Fig. 37

Consider dS normal to the @, direction i.e. r? sin6d6d¢
dS = r2sin@de d¢ a,

D+dS = (r? slnﬂdadcp)(?-?-]:% rt sinBdodé o (&g oF, =1)
In /4 5 :
§DedS = | ]‘ 7 1 sin6 dods
5 é=00=0

% r4 [-cos8]“ 4" and r=dm

3 [-eosf-(-con) | ]

588.896 C
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To evaluate right hand side, find V « D.

1 6D¢
rsin® dd

-1 0|25
= ?:'--a—r[l' (EI ]:|+D+U—-—zﬁ( )

= %(41‘3):51'

In spherical coordinates, dv = r? sinfdrd0d¢

J' (V-D)dv

B = L9 1
v-D = rl ar(’ Dr)"—rsmﬂﬂﬂ (sin@Ds) +

Iz n/4

,[ ,[ I(ST)(r sinOdr dod¢)

guliulr=0

5]:%]: [cos8];“ oL

4
5x3 —cos= —(~cos0) [x2x
3 3
588.896 C
Ex. 3.11  Find the total charge in a volume defined by the six planes for which 1sx<2,

2<y<3 3<z<4if

D=4x @, +3y? a, +22% @, C/m?. [V.T.UJ. Aug-2000]
Sol.: The volume bounded by the given planes is a cube. To evaluate total
charge use Gauss's law.

Q = $§D.dS
5

But to evaluate D «dS, it is necessary to consider all six faces of the cube. Let us
find dS for each surface.

1) Front surface (x = 2), dS = dy dz, direction = &, d5 = dy dz &,

2) Back surface ( x = 1), dS = dy dz, direction = -&,, d5 = - dy dz &,
3) Right side (y = 3), dS = dx dz, direction = Ty, d§ = dx dz &,

4) Left side (y = 2), dS = dx dz, direction = Xy, d5 = - dx dz &y

5) Top side (z = 4), dS = dx dy, direction = @, d5 = dx dy @,

6) Bottom side (z = 3), dS = dx dy, direction = — 3., dS = - dx dy a;
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As the plane is infinite, half the total flux originating from charge will pass
through the plane.

25

=5 =125 uC v AS Wit = Qiotal

Ex. 313 In a certain region of space,
D=2xy @, +3yzdy +4zxa;. Evaluate the amount of clectric flux that passes
through the portion bounded by -1<y<2and 0=z <4 in the x=3 plane using
Gauss's law. [V.T.U. March-2001]

Sol.: The portion is shown in the Fig. 3.31.

I,lf:

Sl

Z
L

Bounded by

/-—1‘3:2. Oszegd

x=3

ds

Fig. 3.31

The unit vector perpendicular to the plane x = 3 is @, as the plane is parallel to
yz plane. The portion of the plane i+ bounded by -1<y <2 and 0< z< 4. Consider
the differential area dS of the portioa normal to 3, direction.

dS = dydza,
D-dS = 2xydydz v (@x * Ax =1, B¢ » Ty =0, Ay + 3, =0)
According to Gauss's law,

v §ﬁ-ds=i i 2 xy dy dz
5

z=0y=-1

2x f [-3"2—2]: dz = 2x[z]) {%-ﬁ'—;t] o

z=0
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= Mxx4x15=12x
But x = 3 for the portion,
y = 12x3=36C

This is flux passing through the surface.
Ex. 3.14 The flux density within the cylindrical volume bounded by r = 5m, z = 0 and
2=2m is given by,
D=30e"d, -2z@,C/m?
What is the total outward flux crossing the surface of the cylinder ?
Sol. : The cylinder is shown

in the Fig. 3.32

As the total outward flux is
asked all surfaces, lateral, top
and bottom must be considered.

Case 1 : Consider the lateral
surface, the normal direction to
which is a,.

Consider differential surface

area normal te a, which is 7= =Y
dS=r {HI dz.
_ Bottom
.dS=rdp dzd,
Fig. 3.32
D-dS = [30ed, -2z3,]+ rdp dz &,
= 30re* do dz (i, -3, =1,3,+3, =u)
According to Gauss's law,
2 Ix
Wy, = f D.dS = _[ J'S{]rr'-' d¢ dz ... r = 5 constant
lateral z=04=0
= 30rer [pL" [z] .. T = 5 constant

30x5xe3 x2ax2=127C

i
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Case 2 : Top surface, for which normal direction is a;. The differential area
dS = rdr dé normal to ;.

dS = rdrdé a, and z =2 for top surface
D-dS = (30ea, -224, ). (rdrdéa,)
= =2zrdr d¢ o (g #3, =1, 7, +7, =0)
W2 = fﬁ «d§ = j f-zzrdrd¢ with z = 2
Gl rmi
- 22|% BL" = 2 constant
= z -i- . e &= L CONS

= —2x2x125x 2n=- 3141592 C

Case 3 : Bottom surface, for which normal direction is -3, with respect to
region. The differential area dS = r dr d$ normal to a;.

dS = rdrd¢ (-3;) and z =0 for bottom
D.dS = (30era, -2za, )+ rdrdé (-3.)
= 2zrdrdd with z=0
= 0
ys = § D+dS=0 as z=0 for bottom
bottom

Wnet = W;+yz+yy =-3014592 C

Ex.3.15 A nonuniform surface charge density of (5r / r? +1)nC / m? lies in the plane
z=2wherer<5and ps =0 forr > 5.
a) How much electric flux leaves the circular region r <5, z=27
b) How much electric flux crosses the z = 0 plane in —ay direction ?

Sol. :  a) The flux leaving is charge enclosed.

The dS = r dr d¢ as the ps is in plane z = 2, to which the normal direction is
a;, as shown in the Fig. 3.33.
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Fig. 3.33

-7

p=0r

Now [ 250 = 35 ke (<42
= SRBL* [Tr ~(tan-? [r]}]: wa=c=1

5x2nx[5-tan"15] = 113.932 nC ... use radian mode

b) Half of the flux leaves in a, direction while other half leaves in —a, direction.

113.932
2

5
5r2
drd
Iﬂr2+l ¢

.-
I

y leaving in -a, direction = = 56.966 nC

Ex. 316 IfD=12xa, -3z3@, -9yz2a@,C/ m? in free space, specify the point within
the cube 1< x,y,zs2 at which the following quantity is maximum and give that
maximum value.

a) |D| b]]p,[ c) pe [P.U. Dec-91]
Sol. :  a) From given D

|D|

J(12x2) +(-323)? +(-9y2?)

= Jld-‘tx"' +92z5+81y?2 z4

The | D|is maximum, when x, y and z are maximum in the given region.

x =y =2 = 2 ... maximum values
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o At P (2,2, 2),|D| will be maximum.

|‘.|5|m = A144x24 +9x26 +81x22x24 =898 C/ m?

b) According to Gauss's law in point form,

"'?il_]=pv
_ 8D, 8Dy D, _
v.D = % t oy * oz =24x+0-18yz

pv = 4 x-18yz
|pv| will be maximum when x is minimum and yz are maximum. ie. x = + 1
and y = z= 2,
|pv|m = |24x(+1)—18x2x2|=]'+24-?2|=48C;’m3
c) py is maximum when x is maximum ie. 2 and y, z are minimum i.e.
y =z = 1. Thus p, is maximum at P (2, 1, 1).
py Mmax = 24x2-18x1x(+1) = 30C/ m?

Ex. 317 Determine the net flux of the vector field D(x,y,z)=2x2ya, +2ay +ya:
emerging from the unit cube 0S x,y,z< 1. [M.U. May-2002]

Sol.: The x, y and z coordinates are all positive for the cube. Hence the cube is
as shown in the Fig. 3.34.

Fig. 3.34
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Case II : Uniform line charge

For a uniform line charge, the flux density D in a cylindrical coordinate system
is given by,
ﬁ = '&ir

2nr

'_p_L = =
Thus for r > 0, D"Zm- and Dy=D;=0

V-ﬁ:l
r

=0 . PL s constant
2n

Thus everywhere except at r = 0, the divergence of flux density due to uniform
line charge is zero.

Key Point:As D=cE and € is a constant, the divergence of E due to point charge and
uniform line charge is also zero everywhere except r= 0 where it is indelerminate.
Ex.3.21 Let D=10xyza, +(6x? z+5yz)a, +(6x2y+4y2)a.C/m? then find the

incremental amount of charge in a volume of 10* m?3 located at,
a)(0,0,0) b)(4,2,-3) o4,y -3
d) At what location in the cubical region 02 x,y,z< 3 should the small volume be
located to contain @ maximum charge ? Find the maximum charge.”
Sol.: The volume is incremental so dv = 10# m3
According to divergence theorem,

Q = I (V-ﬁ)dv

dQ = (?-ﬁ]dvzlnu'emenl:al charge in dv

aD, 0Dy 4D, _
VD = ﬂx+ﬂy+ﬁz_luﬂ+sz+ﬂ
= 10 yz + 5z

a) At P(0,0,0), Vv-D=0
dQ = Oxdv=0C

b) AtP (4,2, ~3), VoD =10x2x(-3)+5x(-3) =75
dQ = -75x10% = - 0.75 uC
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O AtP(4,y,-3), VoD =10y (-3)+(5)(-3)=-30y - 15
dQ = (-30y -15)x10®% =—(0.3 y +0.15) uC
d) dQ will be maximum when V+D is maximum. For this, y and z must be

maximum. For given region 0< x, y, z <3, the maximum values of y and z are 3.
Hence at point (x, 3, 3) the dQ is at its maximum, x can take any value.

dQ (max) = V+D| _ , xdv =[(10x3x3)+(x3)] dv

= 105x10-% = 1.05 pC

Ex. 3.22 A charge configuration is given by,

po =5re’¥ (C/m*)

Find D using Gauss's law. [M.U. May-99]
Sol.: Assume given p, is in z
cylindrical coordinates. Let the Gaussian
surface be a right circular cylinder of
length L and radius r, with z axis as its ]
axis, as shown in the Fig. 3.35. The
charge density is a function of r alone
hence flux is in radial direction and D L
also is directed radially outwards.

D = D;a,

I

-

~ .-—"-dﬁ

X

g —-'—

|

Consider the differential surface area
dS normal to 3, direction.
dS = rdp dza,

%

Fig. 3.35
ﬁ'ds = Dj‘ I'l'.‘l.ﬂ) d?.. wan (il ‘i[ -’1)
L n
Q = § D+dS= | !J‘ D, rd¢dz = D, rfz] pL"
5 z=0 §=0
Q =D, r2xlL o ()

Let us find charge enclosed by right circular cylinder of length L.
dv = rdrdp dz

Q

Ip\.dv=l_f zf ere'”rdrddmdz
v z=0 §=0 r=(

T
5[z]; BL* I r2 e dr ... Use integration by parts
r=0
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Now Iuvdx=ujvdx-]lu'jvdxdx
I r2 e dr = rzj e‘zrdr—~f 2r| e¥dr dr

= r?j e-2r dr—_[ EI[E_-:

]dr

_ ale® 2 i
= 1| — +j re~¥ dr ... Again by parts
= —%rz e~ +r‘|' e-ir dr—j lf e drdr
_ __1_ 2 a-lr ﬂ. - E.-..EL
= -5rle +r[ = _|' —-dr
N I ST IPRD SIS ey
—[ 21‘ e 2I.'E!‘ 4E ;
Yo a1 a1 a1 ing Limi
= -Er e -EIE -EE +E ... Putting limits
- o 1 1,1
Q EKZRL{ 5 e —gre¥ —ze ¥+ - (I0)
Equating (I) and (II),
5 1 1 1
pD. =21_1 22 _ -2r -2 2
. r{ 5 rte re 7€ +4}
-2 I aedr
ﬁ--Drir'%{_ Zez Tez —E‘l +;}EICJ’FH11
5sin0 cosé

Ex, 3.23  Given that the field D =

a) Volume charge density
b) The total electric flux leaving the surface of the spherical volume of radius 2m.
[P.U. Dec-2001]

a,C / m2, Find

Sol.:  a) For py, use Gauss's law in point form.

v.D = p,
Given D in spherical coordinates and Dy =Dy =0.

19, 1 8 (r?5sinBcosd
12 ar 2ar r

"i""ﬁ = znr)z
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_ 5sinBcos¢ a(r) ar
- r? dr " ar

py = 2O ¢ /2

b) Surface of cylindrical volume r = 2m. Using divergence theorem,

v = § D«dS=[ (V+D)dv
5 v
dv = r?sin0drd0d¢ in spherical system
v = T f J:'E_s_i'.n_%f_.m_txrlsinﬂdrdﬂd(b
420 0=0 =0 T
I
= 5[ [-sin¢ " x [ sin20 do
B=0

in
5x2x0x _[ sin28de =0 C

"

Students can verify the result by divergence theorem.

Ex. 3248  Deterntine the flux crossing 1 mm by 1 mm area on the surface of the cylindrical
sheetat r=10m, z =2 m, § = 53.2°if,
D =2va, +2(1-y)d, +4za, C / m2. [M.U. May-2000, Dec-2000]

Sol.: The given D is in gartesian coordinates hence converting point
P(10,53.2°, 2) to cartesian,
x =rcos$=10cos 532°=6
y = rsing =10sin 53.2°=8andz=2
. P (6, 8, 2) in cartesian system.

Now D = 124, -143, +83, C/m? at point P. Substituting x = 6, y = 8 and
z=2in D.

The given area 1 mm x Imm = 10*m? is very very small ie. differential dS
compared to the large radius of the cylinder.

dS = dSa, _
where @; = MNormal unit vector to dS
and dS = Magnitude of area = 10-® m?
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According to Gauss's law,
dy = DsdS

and there is no need to integrate
it as the area itself is differential
hence flux crossing it is also dy.

But D-dS is required as that
component of D which is in same
direction as 3, and will decide the
amount of flux. Hence obtain 3,
and find D.dS. It is not just
multiplication of magnitude of D at
point P and area at point P.

To find 3,, consider the cylinder
as shown in the Fig. 3.36.

Fig. 3.36

The normal 3, is a, in the cylindrical coordinates to dS. But to obtain 3, in
cartesian coordinates, the point P is radially extended to meet axis of cylinder at A.
Now A is (0, 0, 2). The vector AP is now in radial direction at P and represents

direction of 3, to dS at P.

_ (6-0)a. +(8-0)a, +(2-2)a, _ - 6a, +8a,
T et .o O
= 0.6, + 08 a,
dS = dSa, =10 [0.6a, +0.583,]
dy = D-dSat P = (124, -143, +8a, )10 [0.63, +0.8a,]

All other dot products are zero.

10 {(12x 0.6)(+ + 7<) - (14) (08) (3y -3y )}

= 106 (7.2 - 11.2) =10 {4} = - 4 uC
Ex. 325 The spherical region, 0<r<10 cm contains a uniform volume charge density

Po =4].I.c f :Iﬂ"!.
a) Find Quu, 0 < r< 10 cm

c) The nonuniform volume charge densily,
nC / m3, exists for 10 cm < r < a. Find a such that the total

_ =3
Po _(r3 +0001)
charge, 0 < r < a, is zero.

b) Find D,, 0 < r < 10 cm

[P.U. May-91, Dec.-2003]
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Sol.: a) To find Qi use standard result as p._; is constant.

4
Qui = [ by dv= 3107y

_4 3
es ! dv —i'ﬂ'(r)

r=10cm

% %(01)° x 4 = 0016755 uC

8 Imx 0Mdm
j' j j py r2 sin@dr d0dé = 0.016755 pC
Bl ¢=0 re=l

b) To find D,, consider a
Gaussian surface as a sphere of
radius r as shown in the Fig. 3.37.
Consider dS at point P. The D is in
a, direction hence D=D, 3, and dS
normal to &, is r2 sin0d0 dé.

-~ dS =12 sin0 do d¢ 7,

Alternatively, Qi

Q

f D.dS= j _[ D; r?sin0dodé o (&e 43, =1)
4=0 6=0

Q = D r?[-cos0]; #*

_Q i}
D, = yp and D Tor? a
But Q:iurapv for a sphere of r

3

% nrd 4 %106

4nr?

D

I

=1333r pC/ m?
c) Let charge between 10 cm < r < a is Q.

Q = Ipu dv—I J Ipvrlsmﬁdrdﬂdtt

$=0 0=0 r=0.1

[-eos0; (b1 J r3_f ET oot *

Put r? + 0.001

]

u
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3ridr = du

T du a
rx2x I -T=4n[-htu]r_n_1
r=[L1

Q

Resubstitute u = r3 + 0.001,

3
Qi = ~4nfinr? +l1l.l'.‘llL'I1]'£'._1 =-—4r:[|fr:_':'l +ﬂ.ﬂﬂ1} nC

2x10-3
Hence the total charge for 0 < r < « is, Quu +Q) i.e. resultant charge Qg is

a? +0.001

= =6 _ -5
Qr 0.016755 =< 10 dnin { 57103 ]x 10-° C

But required Qg =0

e +0.001

: 9 _ %
- ah:.'n|: Py }qu 0.016755 x 10

3
In [Lm} = 1.3333

2x10-3
ad +0.001 _ a4 _
axios o ¢ - 279%
al = 65872 x 10

a = 01874 m = 18.74 cm
Ex. 3.26 A spherical volume charge density is given by,
Pv = Po [1 --r-;-], rsa
a
=0 , r>a
a) Calculate the total charge Q.
b) Find E outside the charge distribution.

c) Find E for r < a.
d) Show that the maximum value of E is at r = 0.745 a. Obtain | E| max.

[M.U. Dec-96]

Sol.: Note that the p, is dependent on the variable r. Hence though the charge
distribution is sphere of radius 'a’ we can not obtain Q just by multiplying p» by

(%ml:’] as py is not constant. As it depends on r, it is necessary to consider

differential volume dv and integrating from r = 0 to a, total Q must be obtained.
Thus if py depends on r, do not use standard results.
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a) dv = r?sinBdrdodé ... Spherical system
Ix n a
Q = jp,, dv = J‘ ]‘ J‘ pu[l-f;—]rzsinﬂdrdﬁd#
v =0 0=0 r=0 -

po[-coso]; BE" | {’1“;_:} o

=0

oa [-D-(D]A[ 5 - |

3 3
_ 2a3 8= 3
- pnx‘l‘.rr!{ 15 —Hpna C

Outside sphere, py, =0s0 Q=0forr > a.
b) The total charge enclosed by the sphere can be assumed to be point charge
placed at the centre of the sphere as per Gauss's law.
Q

= —— @ at r>a
4nr2 "

.. Outside the charge distribution i.e. r > a,

8n 3
B = -9 -T55°°__ 2 poa’

4megr?  4megr? 15 Eg

HH] -

_ 2 poa? 1 _
E = E Tr—: ar 'me
Thus E varies with r, outside the charge
distribution.
<) For r < a, consider a Gaussian surface as a
sphere r having r < a as shown in the Fig. 3.38.

Consider dS at point P normal to 3, direction,
as D and E are in 3, direction.

dS = r2sin0deds a,
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ﬁ = DI ﬁr
D+dS = D, r2sin0dfdé
Qi = §D-.dS
5
I =
= J‘ jn, r? sin0 do dé
$=0 D=0

= D, rz'[—msﬂ]; {q;];‘ =4nr? D,

where Qi = Charge enclosed by Gaussian surface
_ O
D = 4nr?
_ O
D = 4rrl i

E:E—- Ql a,

Eo  4megr?

Let us find Q,, charge enclosed by Gaussian surface of radius r.

r & 1 r2
Q = f I Ipu(l——ﬁ]rzﬁnﬂdrdﬂdti
$=0 0=0 r=0

n r |.'5 f
= po[-cos8f; 4] {?_ﬁ}
o
1 npn( 3 5a? )
Using in the equation of E, field intensity for r < a is,
S
- 4nEg 12 f

_pofr 3 |_
= EE[TW]" V/m
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d) To find E to be maximum, inside the sphere i.e. r < a obtain,

dE
dr
d _n(s_iJ -0
dr |ggl3 5a?
1 3r? 0
E—‘?— das Pu#ﬂ; £ﬂ=u
2
r = 0745 a ... Proved
B - B0 0.745a _(0.745a)°
max g 3 5a?

_ 01656apo
- —

Important Resuits

& E and D for various charge distributions
Charge distribution ﬁlldhﬂn‘ui‘!ri in ¥/m Flux density D=cgE inC/m?
. Q - Q _
. Point charge G C Anggrl ¥ T
Infinite line charge having [} [
:htuilypl_r?_"fm dneg r & 2nr &
Infinite surface charge having j'i—i Ps &
density ps C/m? £ 2
Volume charge having !p"'ﬁ py v _
density p, C /m? YT dnr? o~
& Gauss's law

The slectric flux passing through any closed surfoce is equal fo the tolal charge enclosed by that surfoce.
Mathematical representotion, y = Q = § D+d §
1
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Charge configuration Charge enclosed

Paint charges Q, Qz, ... Ga y=Q -;Q
Line charge py ‘F'“'!PH‘L
Surface charge ps "=°=£P=='5

Yolume charge p. "'Q'Ip'm
v

& Steps to apply Gauss's law to obtain DorE
1. Select the Goussian surfoce such that D is normal to the surfoce.
2. ldantify direction of D in given coordinate system, thus D =D, 8 n

Select d5 and write d5 = dS @, where @, it normal fo d5 selected, os

3. per the coordinate systemn.
4. *Find D *d5 i.e. dot product.
Integrate over the surfoce i.e. f. D * d5. Keep D, os unknown. This is
3. 5
flux y i.e. charge Q.
. Evaluaie Q for the surfoce selected.
Equating known Q to * D +d5 obtained, the unknown D, can be
7. %
obtained.
B. Thus D =D, Gn ond E =D/ g in free spoce.
&= Applications of Gauss's law
E=rfL G a<r=<bh
2
1. Coaxiol cable et
Inner rodius o n:-z%a, a<r<h
Outer radius b o
Psjouter) = = §P5inner)
' = pg _
E Ea— 0z
2. Infinite sheet of chorge ps C/m? lying T

inz =0 plane D=

|
P
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