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ROTORCRAFT AEROMECHANICS

Rotorcraft is a class of aircraft that uses large-diameter rotating wings
to accomplish efficient vertical takeoff and landing. The class encom-
passes helicopters of numerous configurations (single main rotor and
tail rotor, tandem rotors, coaxial rotors), tilting proprotor aircraft,
compound helicopters, and many other innovative concepts. Aero-
mechanics includes much of what the rotorcraft engineer needs: per-
formance, loads, vibration, stability, flight dynamics, and noise. These
topics cover many of the key performance attributes and many of
the often encountered problems in rotorcraft designs. This compre-
hensive book presents, in depth, what engineers need to know about
modeling rotorcraft aeromechanics. The focus is on analysis, and cal-
culated results are presented to illustrate analysis characteristics and
rotor behavior. The first third of the book is an introduction to rotor-
craft aerodynamics, blade motion, and performance. The remainder
of the book covers advanced topics in rotary-wing aerodynamics and
dynamics.
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Preface

Rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish
efficient vertical takeoff and landing. The class thus encompasses helicopters of
numerous configurations, tilting proprotor aircraft, compound helicopters, and many
other innovative concepts.

Defining “aeromechanics” is more difficult. Today’s dictionaries do not capture
what the term means for the rotorcraft community. The definitions are not broad
enough, and they do not reflect the multidisciplinary facet of the word as applied
to rotorcraft. In my 2010 Nikolsky Lecture for the American Helicopter Society, I
proposed the following definition:

Aeromechanics: The branch of aeronautical engineering and science dealing with equi-
librium, motion, and control of elastic rotorcraft in air.

Aeromechanics covers much of what the rotorcraft engineer needs: performance,
loads, vibration, stability, flight dynamics, and noise. These topics cover many of
the key performance attributes and many of the often encountered problems in
rotorcraft designs.

As with my previous book Helicopter Theory (written in 1976, published in 1980
by Princeton University Press, republished in 1994 by Dover Publications), this text is
focused on analysis, with only occasional reference to test data to develop arguments
or support results, and with nothing at all regarding the techniques of testing in wind
tunnels or flight. Calculated results are presented to illustrate analysis characteristics
and rotor behavior. Generally these results were obtained using computer programs
that I have developed: the rotorcraft comprehensive analysis CAMRAD II and the
sizing code NDARC.

I aim to be comprehensive in coverage, presenting in as much depth as possible
what engineers need to know about modeling rotorcraft aeromechanics. Although
connections to Helicopter Theory are apparent throughout this text, many significant
advances in the theory have occurred since 1976. I assume the reader has a general
knowledge of aeromechanics fields, such as classical dynamics, beam theory, lifting-
line theory, and two-dimensional airfoils. I do provide introductory material where
needed as a foundation for rotary-wing developments. Unlike Helicopter Theory, no
attempt is made to be comprehensive in the bibliography. Sources are cited where
considered historically important or the development is associated with a specific
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xviii Preface

work and also to direct the reader to expanded coverage of a subject. Several topics
conclude with an outline of the history of their theoretical development.

The scope of this text is still a subset of rotorcraft aeromechanics. A shaft-driven
helicopter is the primary focus, but other rotorcraft configurations are discussed, and
most of the analysis is relevant to all configurations. Based mainly on my experience
and interests, important areas such as structures, materials, and propulsion are not
covered. The topic of flight dynamics here encompasses the aircraft behavior, but
not handling qualities, which would require treatment of the control system and
the pilot. Computational fluid dynamics is covered with an emphasis on identifying
the unique aspects of the methods as applied to rotary wings. The equations are
developed with an emphasis on rotating wings, but nothing is presented regarding
solution procedures.

Chapter 1 describes the helicopter rotor and helicopter configurations. Design
trends are shown to illustrate the aircraft characteristics. A brief history of heli-
copter invention is presented. Chapter 2 summarizes the notation used in this book,
providing an important overview of the description of a rotor for analysis.

Chapters 3 to 8 constitute an introduction to rotorcraft aerodynamics and per-
formance. Chapters 9 to 14 cover advanced aerodynamic topics, and Chapters 15 to
20 cover advanced topics in dynamics.

Chapter 3 begins the analysis of aeromechanics by considering hover, which is the
key to helicopter effectiveness; it presents the first description of momentum theory,
blade element theory, and vortex theory. Chapter 4 extends the analysis to vertical
flight, both climb and descent. Chapter 5 examines the wake in forward flight in terms
of momentum and vortex theories. Aerodynamic interference is covered, including
rotor-to-airframe and rotor-to-tail effects. Chapter 6 on the edgewise flight of a rotor
is the longest chapter in the book, dealing with blade element theory calculation of
rotor forces and power and beginning the analysis of blade motion, particularly
flapping. Chapter 7 summarizes performance analysis for the isolated rotor and for
the complete aircraft. Chapter 8 discusses rotor and rotorcraft configurations further,
as well as special topics related to design.

Chapter 9 deals with wings and wakes, as the start of advanced aerodynamics.
Lifting-line theory and nonuniform inflow from a vortex wake are covered, including
free wake geometry. Chapter 10 presents unsteady aerodynamic theory, beginning
with the classical two-dimensional analysis, and covers special models and problems
for the rotary wing. Chapter 11 is on actuator disk models, concluding with dynamic
inflow theory. Chapter 12 describes dynamic stall of airfoils, stall of rotor blades,
and stall effects on rotor performance and loads. Chapter 13 on computational
aerodynamics focuses on the unique aspects of applications to rotorcraft. Chapter
14 deals with the theory of rotor-generated noise.

Chapter 15 introduces advanced dynamics by describing the mathematics of
rotating wings, including multiblade coordinates and Floquet theory, and the solution
of equations of motion. Chapter 16 on blade motion is a long chapter that derives the
equations of motion for blade flap, lag, and pitch degrees of freedom, including hub
reactions and shaft motion, and the aerodynamic loads. Solutions of these equations
are found in subsequent chapters. Chapter 17 derives linear and nonlinear beam
theory for rotor blades. Chapter 18 on rotor dynamics covers blade frequencies,
structural loads, vibration, and higher harmonic control. Chapter 19 is on the stability
and response of the blade flap motion, which is fundamental to the behavior of
helicopter rotors. Chapter 20 solves the equations of motion for several stability
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problems, including pitch-flap flutter, flap-lag dynamics, ground resonance, and whirl
flutter.

Chapter 21 analyzes rotorcraft flight dynamics, including hover and forward
flight operation, single main rotor and multi-rotor configurations, control gyros, and
flying qualities specifications.

Chapter 22 concludes the book with a discussion of rotorcraft comprehensive
analyses.

My thanks go to my wife Juliet for her support. The time I spent on this book
was as much hers as mine. I am indebted to Michael P. Scully, William Warmbrodt,
Gloria K. Yamauchi, Franklin D. Harris, Anubhav Datta, Christopher Silva, and
Gareth D. Padfield for reviewing the draft manuscript. Their numerous suggestions
have resulted in a much improved work.

I got into helicopter research through some interesting thesis topics at the Mas-
sachusetts Institute of Technology. I stay in the field because I like the multidis-
ciplinary part of aeromechanics and because we have not run out of problems to
solve. Since graduating from MIT, I have been associated with NASA and the U.S.
Army at Ames Research Center, even during the 12 years I spent working alone
as Johnson Aeronautics. My first assignment at Ames was with the 40- by 80-Foot
Wind Tunnel branch and the latest is with the Aeromechanics Branch, always doing
rotorcraft research. I have enjoyed collaboration with many capable people, both
at Ames and around the world. I am fortunate that they are good friends as well as
good engineers.

Wayne Johnson
Palo Alto, California
August 2012





1 Introduction

1.1 The Helicopter

The helicopter is an aircraft that uses rotating wings to provide lift, propulsion, and
control. Figure 1.1 shows the principal helicopter configurations. The rotor blades
rotate about a vertical axis, describing a disk in a horizontal or nearly horizontal
plane. Aerodynamic forces are generated by the relative motion of a wing surface
with respect to the air. The helicopter with its rotary wings can generate these forces
even when the velocity of the vehicle is zero, in contrast to fixed-wing aircraft,
which require a translational velocity to sustain flight. The helicopter therefore has
the capability of vertical flight, including vertical take-off and landing. The efficient
accomplishment of heavier-than-air hover and vertical flight is the fundamental
characteristic of the helicopter rotor.

The rotor must supply a thrust force to support the helicopter weight. Efficient
vertical flight means a high power loading (ratio of rotor thrust to rotor power
required, T/P), because the installed power and fuel consumption of the aircraft
are proportional to the power required. For a rotary wing, low disk loading (the
ratio of rotor thrust to rotor disk area, T/A) is the key to a high power loading.
Conservation of momentum requires that the rotor lift be obtained by accelerating
air downward, because corresponding to the lift is an equal and opposite reaction of
the rotating wings against the air. Thus the air left in the wake of the rotor possesses
kinetic energy that must be supplied by a power source in the aircraft if level flight
is to be sustained. This is the induced power, a property of both fixed and rotating
wings that constitutes the absolute minimum power required for equilibrium flight.
For the rotary wing in hover, the induced power loading is inversely proportional
to the square root of the rotor disk loading (P/T ∝ √

T/A). Hence the efficiency of
rotor thrust generation increases as the disk loading decreases.

For a given gross weight the induced power is inversely proportional to the rotor
radius, and therefore the helicopter is characterized by large diameter rotors. The
disk loading characteristic of helicopters is in the range of 5 to 15 lb/ft2. The small
diameter rotating wings found in aeronautics, including propellers and turbofan
engines, are used mainly for aircraft propulsion. For such applications a high disk
loading is appropriate, since the rotor is operating at high axial velocity (which
reduces the induced power) and at a thrust equal to only a fraction of the gross weight.
However, the use of high disk loading rotors for direct lift severely compromises the

1
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tiltrotor (XV-15) tiltrotor (V-22)

coaxial helicopter (Ka-32)compound helicopter (EC X3)

single main rotor helicopter (SH-60)

tandem helicopter (CH-47D)single main rotor helicopter (Bo-105)

single main rotor helicopter (UH-1)

Figure 1.1. Rotorcraft configurations; drawings by Eduardo Solis.



1.1 The Helicopter 3

vertical flight capability in terms of greater installed power and much reduced hover
endurance. The helicopter uses the lowest disk loading of all VTOL (vertical takeoff
and landing) aircraft designs and hence has the most efficient vertical flight capability.
The helicopter can be defined as an aircraft using large diameter, low disk loading
rotary wings to provide the lift for flight.

Because the helicopter must also be capable of translational flight, a means is
required to produce a propulsive force to oppose the aircraft drag and rotor drag
in forward flight. For low speeds at least, this propulsive force is obtained from the
rotor, by tilting the thrust vector forward. The rotor is also the source of the forces
and moments on the aircraft that control its position, attitude, and velocity. In a
fixed-wing aircraft, the lift, propulsion, and control forces are provided by largely
separate aerodynamic surfaces. In the helicopter, all three are provided by the rotor.

Vertical flight capability is not achieved without a cost, which must be weighed
against the value of VTOL capability in the desired applications of the aircraft.
The task of the engineer is to design an aircraft that accomplishes the required
operations in the most effective manner. The price of vertical flight includes a higher
power requirement than for fixed-wing aircraft, a factor that influences the purchase
price and operating cost. For most configurations, a large transmission is required to
deliver the power to the rotor at low speed and high torque. The fact that the rotor
is a mechanically complex system increases purchase price and maintenance costs.
The rotor is a source of vibration, requiring a vibration alleviation system to avoid
increased maintenance costs, passenger discomfort, and pilot fatigue. There are high
alternating loads on the rotor, reducing the structural component life and in general
resulting in increased maintenance cost. Aircraft noise is an important factor in air
transportation, as the primary form of interaction of the aircraft with a large part
of society. The helicopter is among the quietest of aircraft (or at least can be), but
utilization of VTOL capability often involves operation close to urban areas, leading
to stricter noise requirements. All these factors can be overcome to design a highly
successful aircraft. The engineering analysis required for that task is the subject of
this book.

1.1.1 The Helicopter Rotor

The conventional helicopter rotor consists of two or more identical, equally spaced
blades attached to a central hub. The blades are maintained in uniform rotational
motion, usually by a shaft torque from the engine. The lift and drag forces on these
rotating wings produce the torque, thrust, and other forces and moments of the
rotor. The large diameter rotor required for efficient vertical flight and the high
aspect ratio blades required for good aerodynamic efficiency of the rotating wing
result in blades that are considerably more flexible than high disk loading rotors such
as propellers. Consequently, there is substantial elastic motion of the rotor blades
in response to the aerodynamic forces in the rotary-wing environment. This motion
can produce high stresses in the blades or large moments at the root, which are
transmitted through the hub to the helicopter. Attention must therefore be given in
the design of the helicopter rotor blades and hub to keeping these loads small. The
centrifugal stiffening of the rotating blade results in the motion being predominantly
about the blade root. Hence the design task focuses on the configuration of the rotor
hub. Figure 1.2 shows some typical helicopter rotor hubs.
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teetering rotor (UH-1D)                                            articulated rotor (AS 355)

articulated rotor (UH-60A)                                           articulated rotor (AH-64)

hingeless rotor (Bo-105)                                              hingeless rotor (Lynx)

bearingless rotor (MD 900)                                     coaxial rotor (Ka-29)

Figure 1.2. Rotor hub configurations; photos courtesy Burkhard Domke.
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Figure 1.3. Schematic of an articulated rotor hub and root.

A common design solution that was adopted early in the development of the
helicopter is to use hinges at the blade root that allow free motion of the blade
normal to and in the plane of the disk. A schematic of the root hinge arrangement
is given in Figure 1.3. The bending moment is zero at the blade hinge and small
throughout the root area, and no hub moment is transmitted through the blade
hinges to the helicopter. This configuration makes use of the blade motion to relieve
the bending moments that would otherwise arise at the root of the blade. The motion
of the blade allowed by these hinges has an important role in the behavior of the
rotor and in the analysis of that behavior. Some current rotor designs eliminate the
hinges at the root, so that the blade motion involves structural bending. The hub
and blade loads are necessarily higher for a hingeless design. The design solution is
basically the same, because the blade must be provided with enough flexibility to
allow substantial motion or the loads would be unacceptably high even with advanced
materials and design technology. Hence blade motion remains a dominant factor in
rotor behavior, although the root load and hub moment capability of a hingeless
blade has a significant influence on helicopter design and operating characteristics.

The motion of a hinged blade consists basically of rigid-body rotation about each
hinge, with restoring moments due to the centrifugal forces acting on the rotating
blade. Motion about the hinge lying in the rotor disk plane (and perpendicular to the
blade radial direction) produces out-of-plane deflection of the blade and is called
flap motion. Motion about the vertical hinge produces deflection of the blade in the
plane of the disk and is called lag motion (or lead-lag). For a blade without hinges
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the fundamental modes of out-of-plane and in-plane bending define the flap and
lag motion. Because of the high centrifugal stiffening of the blade these modes are
similar to the rigid body rotations of hinged blades, except in the vicinity of the root,
where most of the bending takes place. In addition to the flap and lag motion, the
ability to change the pitch of the blade is required to control the rotor. Pitch motion
allows control of the aerodynamic angle-of-attack of the blade, and hence control
of the aerodynamic forces on the rotor. This blade pitch change, called feathering
motion, is usually accomplished by movement about a hinge or bearing. The pitch
bearing on a hinged or articulated blade is typically outboard of the flap and lag
hinges; on a hingeless blade the pitch bearing can be either inboard or outboard of
the major flap and lag bending at the root. There are also rotor designs that eliminate
the pitch bearings as well as the flap and lag hinges; the pitch motion then occurs
about a region of torsional flexibility at the blade root.

The mechanical arrangement of the rotor hub to accommodate the flap and lag
motion of the blade provides a fundamental classification of rotor types:

Articulated rotor: The blades are attached to the hub with flap and lag hinges.
Teetering rotor: Two blades forming a continuous structure through the hub are

attached to the rotor shaft with a single flap hinge in a teetering or seesaw
arrangement. The rotor has no lag hinges.

Gimballed rotor: Three or more blades are attached to the hub without hinges,
and the hub is attached to the rotor shaft by a gimbal or universal joint
arrangement.

Hingeless rotor: The blades are attached to the hub without flap or lag hinges,
although still with a feathering bearing or hinge. The blade is attached to
the hub with cantilever root restraint, so that blade motion occurs through
bending at the root. This rotor configuration is also called a rigid rotor.
The limit of a truly rigid blade, which is so stiff that there is no significant
bending motion, is applicable only to high disk loading rotors (such as a
propeller).

Bearingless rotor: The blades are attached to the hub without flap or lag hinges
and without load-carrying pitch bearings. Flap, lag, and torsion motion occur
through deflection of a flexbeam at the root. Pitch control is accomplished
using a torque rod or torque tube.

Chapter 8 discusses rotor configurations in more detail.

1.1.2 Helicopter Configuration

The arrangement of the rotors is the most distinctive external feature of a rotorcraft,
and is an important factor in the aircraft behavior, particularly the stability and
control characteristics. Usually the power is delivered to the rotor through the shaft,
accompanied by a torque. The aircraft in steady flight has no net force or moment
acting on it, so the rotor torque must be balanced in some manner. The method
chosen to accomplish this torque balance is the primary determinant of the helicopter
configuration. Two methods are in general use: a configuration with a single main
rotor and a tail rotor, and configurations with twin contra-rotating rotors. Chapter 8
has a further discussion of rotorcraft configurations.
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The single main rotor and tail rotor configuration uses a small auxiliary rotor
to provide the torque balance and yaw control. This rotor is on the tail boom,
typically slightly beyond the edge of the main rotor disk. The tail rotor is normally
vertical, with the shaft horizontal and parallel to the helicopter lateral axis. The
torque balance is produced by the tail rotor thrust acting on an arm about the main
rotor shaft. The main rotor provides lift, propulsive force, and roll, pitch, and vertical
control for this configuration. The tail rotor provides yaw control.

A twin main rotor configuration uses two contra-rotating rotors, of equal size
and loading, so that the torques of the rotors are equal and opposing. There is then
no net yaw moment on the helicopter due to the main rotors. This configuration
automatically balances the main rotor torque without requiring a power-absorbing
auxiliary rotor. The rotor-rotor and rotor-airframe aerodynamic interference typi-
cally absorbs about the same amount of power as a tail rotor. The most common twin
rotor arrangement is the tandem helicopter configuration: fore and aft placement of
the main rotors on the fuselage, usually with significant overlap of the rotor disks
and the rear rotor raised vertically above the front rotor. Coaxial and side-by-side
twin rotor arrangements have also found some application.

1.1.3 Helicopter Operation

Operation in vertical flight, with no translational velocity, is the particular role for
which the helicopter is designed. Operation with no velocity at all relative to the
air, either vertical or translational, is called hover. Lift and control in hovering flight
are maintained by rotation of the wings to provide aerodynamic forces on the rotor
blades. General vertical flight involves climb or descent with the rotor horizontal,
and hence with purely axial flow through the rotor disk. A useful aircraft must be
capable of translational flight as well. The helicopter accomplishes forward flight by
keeping the rotor nearly horizontal, so that the rotor disk sees a relative velocity in
its own plane in addition to the rotational velocity of the blades. The rotor continues
to provide lift and control for the aircraft. It also provides the propulsive force to
sustain forward flight, by means of a small forward tilt of the rotor thrust.

Safe operation after a loss of power is required of any successful aircraft. The
fixed-wing aircraft can maintain lift and control in power-off flight, descending in a
glide at a shallow angle. Rotary-wing aircraft also have the capability of sustaining
lift and control after a loss of power. Power-off descent of the helicopter is called
autorotation. The rotor continues to turn and provide lift and control. The power
required by the rotor is taken from the air flow provided by the aircraft descent.
The procedure on recognition of a loss of power is to set the controls as required
for autorotative descent and to establish equilibrium flight at the minimum descent
rate. Then near the ground the helicopter is flared, using the rotor stored kinetic
energy of rotation to eliminate the vertical and translational velocity just before
touchdown. The helicopter rotor in vertical power-off descent is nearly as effective
as a parachute of the same diameter as the rotor disk; about half that descent rate is
achievable in forward flight.

A rotary-wing aircraft called the autogyro uses autorotation as the normal work-
ing state of the rotor. In the helicopter, power is supplied directly to the rotor, and
the rotor provides propulsive force as well as lift. In the autogyro, no power or shaft
torque is supplied to the rotor. The power and propulsive force required to sustain
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Figure 1.4. Rotor hover performance: rotor power loading as a function of rotor disk loading
(based on projected disk area) for four rotors.

level forward flight are supplied by a propeller or other propulsion device. Hence
the autogyro is like a fixed-wing aircraft, because the rotor takes the role of the wing
in providing only lift for the vehicle, not propulsion. Sometimes the aircraft control
forces and moments are supplied by fixed aerodynamic surfaces as in the airplane,
but obtaining the control from the rotor is better. The rotor performs much like
a wing and has a fairly good lift-to-drag ratio. Although rotor performance is not
as good as that of a fixed wing, the rotor is capable of providing lift and control at
much lower speeds. Hence the autogyro is capable of flight speeds much slower than
fixed-wing aircraft. Without power to the rotor, it is not capable of actual hover or
vertical climb. Because autogyro performance is not that much better than the per-
formance of an airplane with a low wing loading, usually the requirement of actual
VTOL capability is necessary to justify a rotor on an aircraft.

1.2 Design Trends

The power of a hovering rotor is dominated by the power resulting from the wing
drag due to lift, which is called induced power. The induced power is the product
of the thrust T and induced velocity vi: Pi = Tvi (see Chapter 2 for a complete
description of notation). Dimensional analysis shows that the induced velocity scales
with the disk loading: vi = κvh, where v2

h = T/2ρA. With the factor of 2, vh is the
ideal (momentum theory) induced velocity for hover. In hover the induced power
is typically 10–15% larger than ideal, so κ = 1.10–1.15. Hence Pi/T = κ√T/2ρA,
and low power requires low disk loading, thus large disk area and a large rotor
diameter. The rotor also has a power loss due to the wing viscous drag, called profile
power Po. A figure of merit for a hovering rotor is defined as the ratio of the ideal
induced power to the total rotor power: M = T

√
T/2ρA/P. Because of profile and

non-ideal induced losses, this figure of merit must be less than 1. Figure 1.4 plots for
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Figure 1.5. Rotorcraft design: power loading of various aircraft as a function of disk loading;
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several rotors the measured power loading as a function of disk loading (based on
projected disk area), as the rotor thrust is varied. The peak figure of merit is typically
M = 0.74–0.77 for helicopters. Tiltrotors achieve a somewhat larger figure of merit,
M = 0.78–0.81, partly due to higher twist but primarily the result of operating at
larger disk loading (and thus lower power loading). Mutual interference between
coaxial rotors increases the figure of merit (for M based on the projected disk area).

The hover power required dominates the determination of installed power for a
rotorcraft, as illustrated in Figure 1.5. Each point in Figure 1.5 is for a single aircraft,
calculated from the takeoff power and the maximum takeoff weight (and sea-level-
standard air density). The aircraft figure of merit in these terms ranges from 0.40
to 0.55, smaller than the figure of merit of the rotor alone because of other power
losses (such as accessory, tail rotor, and interference losses) and the need to operate
over a range of flight conditions. As an aircraft metric, the large range of figure of
merit values reflects design choices more than rotor performance. In addition to low
disk loading, efficient hover operation depends on low propulsion system weight,
including rotor, transmission, engine, and fuel weight. At constant disk loading, the
propulsion system weight would increase faster than the gross weight. Thus for good
empty weight fraction, the design choice for disk loading tends to increase with
rotorcraft size, as shown in Figure 1.6. The power loading tends to decrease with
size (Figure 1.7). The trend lines shown are W/A = 0.15W0.4 and W/P = 18W−0.1, so
with an increase in rotorcraft size the rotor diameter increases less and the installed
power increases more than would be implied by constant disk loading.

The induced power of the rotor decreases with forward speed. Viewed as
a circular wing, the induced power of the edgewise-moving rotor at speed V is
Pi/T = κT/2ρAV . For a circular wing with uniform disk loading, hence elliptical
span loading, κ = 1. For a helicopter rotor the loading is far from uniform, because
of the asymmetry of the rotor blade aerodynamic environment, and at high speed κ



10 Introduction

1000 100,000
1

50

maximum takeoff weight, W          (lb)MTO

di
sk

 lo
ad

in
g,

 W
/A

 (
lb

/f
t2 )

10,000

20

10

5

2

helicopter

tiltrotor
tandem

coaxial trend

Figure 1.6. Disk loading as a function of maximum takeoff weight.

is much greater than 1, and the induced power can even increase with speed. Profile
power Po increases with speed, especially when that asymmetry leads to significant
areas of high Mach number or stall on the rotor disk. The helicopter in forward flight
has a parasite drag D = 1/2ρV 2 f that must be balanced by a propulsive force from
the rotor. The rotor power required to provide the propulsive force, Pp = DV , is
called parasite power. Eventually the parasite power dominates the power required.
If the installed power is determined by hover, then the maximum flight speed is
fallout and is largely determined by the aircraft drag. Figure 1.8 shows the drag area
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f = D/q as a function of takeoff weight for various helicopters and tiltrotors. The
drag area tends to scale with the 2/3 power of the weight. With operations dominated
by low speed conditions, or maximum speed limited by rotor behavior, low aircraft
drag has often not been a priority in helicopter design. Thus the drag of current
helicopters is twice that of typical turboprop aircraft.

Considered as a circular wing, the lifting rotor in edgewise flight has an effective
drag of De = (P − Pp)/V = (Pi + Po)/V . The effective lift-to-drag ratio L/De of the
rotor is a measure of the rotor efficiency in forward flight. A measure of aircraft
efficiency is the lift-to-drag ratio L/D = WV/P. The range is obtained from this
lift-to-drag ratio, together with the specific fuel consumption and the fuel weight
fraction. Figure 1.9 plots for several aircraft the lift-to-drag ratio L/D = WV/P as a
function of flight speed. The data are from flight test measurements of rotor power
(plus propeller power for the compound, but not tail rotor power). Also shown is the
rotor effective lift-to-drag ratio L/De for a typical helicopter rotor (measured in a
wind tunnel). Figure 1.10 shows L/D = WV/P for various aircraft, calculated from
the takeoff weight, cruise speed, and installed power. Each point in Figure 1.10 is for
a single aircraft. As an aircraft metric, L/D = WV/P reflects design requirements as
well as aerodynamic, structural, and propulsive efficiency.

Evident in Figure 1.10 is the fact that a helicopter is not a high-speed machine,
largely because of the asymmetric aerodynamic environment of the edgewise-flying
rotor. Integrating the blade section lift gives the rotor thrust, and the section
lift in hover can be written in terms of the section lift coefficient: T = ∫

NL dr,
L = 1/2ρ(�r)2cc�. So the mean lift coefficient of the blade is c� = 6CT/σ for the
hovering rotor, where CT = T/ρA(�R)2 is the thrust coefficient and the solidity σ
is the ratio of total blade area to rotor disk area. The asymmetry of the rotor aero-
dynamics is governed by the advance ratio μ, which is the ratio of the flight speed
and the blade tip speed. In forward flight the velocity of the blade relative to the air
is increased on the advancing side and reduced on the retreating side. Consequently
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with increasing μ, the Mach number on the advancing tip (Mat) increases, while the
lift coefficient increases on the retreating side (especially if the rotor must maintain
roll moment balance). Stall limits the maximum blade section lift coefficient. Fig-
ure 1.11 shows for various rotorcraft the design choices of rotor blade loading CT/σ

(a measure of blade lift coefficient) and maximum advance ratio μ (a measure of
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aerodynamic asymmetry), relative to rotor stall boundaries for sustained and tran-
sient flight conditions (see Chapter 12). Design CT/σ (for maximum takeoff weight
and sea-level-standard conditions) is in the range 0.07 to 0.09 for helicopters and is
higher for tiltrotors. Compressible aerodynamics of the blade tip limit the advanc-
ing tip Mach number Mat . Limitations on μ and Mat combine to restrict the design
choices for rotor tip speed and aircraft flight speed, as shown in Figure 1.12. With
design values of CT/σ and rotor tip speed constrained to relatively small ranges, the
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rotor solidity varies roughly linearly with disk loading (Figure 1.13). The low solidity
values for helicopter disk loadings imply high blade aspect ratios, typically 10 to 20.

Figure 1.14 shows the trends over time of several rotorcraft design parame-
ters. Disk loading has increased and power loading has decreased, largely due to
improvements in propulsion capability. Drag has decreased. Empty weight fraction
decreased until the mid-1960s, particularly with the introduction of the turboshaft
engine. Rotor tip speed and advancing tip Mach number have increased to the limits
imposed by compressible tip aerodynamics. Aircraft flight speed and advance ratio
have increased within the limits imposed by rotor blade stall.

1.3 History

The initial development of rotary-wing aircraft faced three major problems that
had to be overcome to achieve a successful vehicle. The first problem was to find a
light and reliable engine. The reciprocating internal combustion engine was the first
to fulfill the requirements, and the later adoption of the turboshaft engine for the
helicopter was a significant advance. The second problem was to develop a light and
strong structure for the rotor, hub, and blades while maintaining good aerodynamic
efficiency. The final problem was to understand and develop means of controlling the
helicopter, including balancing the rotor torque. These problems were essentially the
same as those that faced the development of the airplane and were solved eventually
by the Wright brothers. The development of the helicopter in many ways paralleled
that of the airplane. That helicopter development took longer can be attributed to
the challenge of vertical flight, which required a higher development of aeronautical
technology before the problems could be satisfactorily overcome.

The history of helicopters begins with toys and imagination. Among Leonardo da
Vinci’s work (1483) were sketches of a machine for vertical flight utilizing a screw-
type propeller (Figure 1.15). The Chinese flying top was a stick with a propeller



1.3 History 15

1930. 1950. 1970. 1990. 2010.
0.

5.

10.

15.

20.

25.
di

sk
 lo

ad
in

g 
(l

b/
ft

2 )

1930. 1950. 1970. 1990. 2010.
0.

3.

6.

9.

12.

15.

sc
al

ed
 d

ra
g

1930. 1950. 1970. 1990. 2010.
0.4

0.6

0.8

1.0

year

ad
va

nc
in

g 
tip

 M
at

1930. 1950. 1970. 1990. 2010.
0.0

0.2

0.4

0.6

year

ad
va

nc
e 

ra
tio

 μ
 

1930. 1950. 1970. 1990. 2010.
300.

500.

700.

900.

tip
 s

pe
ed

 (
ft

/s
ec

)

1930. 1950. 1970. 1990. 2010.
0.

80.

160.

240.

320.

sp
ee

d 
(k

no
ts

)

Vcruise
Vne
tiltrotor

1930. 1950. 1970. 1990. 2010.
0.3

0.5

0.7

0.9

em
pt

y 
w

ei
gh

t f
ra

ct
io

n

1930. 1950. 1970. 1990. 2010.
0.

4.

8.

12.

16.

year

po
w

er
 lo

ad
in

g 
(l

b/
hp

)

Figure 1.14. Design parameter development with time.

attached, which was spun by the hands and released. In the 18th century there was
some work with models. Mikhail V. Lomonosov (Russia, 1754) demonstrated a
spring-powered model to the Russian Academy of Sciences. Launoy and Bienvenu
(France, 1784) demonstrated a spring-powered model to the French Academy of
Sciences. This model had two contra-rotating rotors of four blades each, powered by
a flexed bow. Sir George Cayley (England) constructed models powered by elastic
elements and made sketches of helicopters.
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Figure 1.15. Imagination of Leonardo da Vinci.

In the last half of the 19th century many inventors were working on developing
a helicopter. There was some practical progress, but no successful vehicle. The
problem was the lack of a light and reliable engine. A number of attempts used
a steam engine. W.H. Phillips (England, 1842) constructed a 20-lb steam-powered
model. Gustave de Ponton d’Amecourt (France, 1863) built a small steam-driven
model; he also coined the word “helicopter” – helicoptere in French, from the Greek
heliko (spiral) and pteron (wing).

Alphonse Penaud (France, 1870s) experimented with models. Enrico Forlanini
(Italy, 1878) built a 3.5-kg flying steam-driven model. Thomas Edison (United States,
1880s) experimented with models. He recognized that the problem was the lack of
an adequate engine. Edison concluded that no helicopter would be able to fly until
engines were available with a weight-to-power ratio below 3 to 4 lb/hp. These were
still only models, but they were beginning to address the problem of an adequate
power source for sustained flight. The steam engine was not effective for aircraft,
especially the helicopter, because of the low power-to-weight ratio of the system.

Around 1900 the internal combustion reciprocating gasoline engine became
available, making airplane flight possible, and eventually helicopter flight as well.
Renard (France, 1904) built a helicopter with two side-by-side rotors, using a two-
cylinder engine; he introduced the flapping hinge for the helicopter rotor. G.A.
Crocco (Italy, 1906) patented a cyclic pitch design, as a means to counter the asym-
metry in aerodynamic loads on the advancing and retreating sides of the disk in
forward flight.

Early experimentation with vertical flight was limited by the lack of sufficient
power to achieve hover. Figure 1.16 shows the helicopters of this period. The
Breguet-Richet Gyroplane No.1 (France, 1907) had four rotors with four biplane
blades each (8-m diameter rotors, gross weight 580 kg, 45-hp Antoinette engine).
This aircraft made a tethered flight with a passenger at an altitude of about 2 ft for
about 1 minute. Paul Cornu (France 1907) constructed a machine that made the first
flight with a pilot. Cornu’s aircraft had two contra-rotating rotors in tandem con-
figuration with two fabric-covered blades each (6-m diameter rotors, gross weight
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        Breguet-Richet (France, 1907)                             Cornu (France, 1907)
                  Gyroplane No. 1

               Sikorsky (Russia, 1910)                        Petroczy, von Karman, Zurovec
                                                                                      PKZ-2 (Austria 1916)

Figure 1.16. Experimentation: search for power. Sikorsky image courtesy Sikorsky Historical
Archives; other images courtesy American Helicopter Society.

260 kg, 24-hp Antoinette engine connected to the rotors by belts). Control was pro-
vided by vanes in the rotor slipstream, but was not very effective. This helicopter
achieved an altitude of about 1 ft for about 20 sec, but had problems with mechani-
cal design and with lack of stability. Although often cited as the first helicopters to
achieve flight, these machines lacked sufficient power to hover, even in ground effect.
These aircraft did not have effective means of control and were quite unstable.

Emile Berliner and John Newton Williams (United States, 1909) built a two-
engine coaxial helicopter that lifted a pilot untethered. Igor Sikorsky (Russia, 1910)
built a helicopter with two coaxial three-bladed rotors (5.8-m diameter rotors, 25-hp
Anzani engine) that could lift 400 lb but not its own weight plus the pilot. Sikorsky
would return to the development of the helicopter (with considerably more success)
after building airplanes in Russia and in the United States. Boris N. Yuriev (Russia,
1912) built a machine with a two-bladed main rotor and a small anti-torque tail
rotor (8-m diameter main rotor, gross weight 200 kg, 25-hp Anzani engine). This
helicopter made no successful flight, but Yuriev went on to supervise helicopter
development in the Soviet Union. Stefan von Petroczy and Theodor von Kármán,
with the assistance of Wilhelm Zurovec (Austria, 1916), built the PKZ-2, a tethered
observation helicopter that achieved an altitude of 50 m with payload.

The development of better engines during and after World War I solved the
problem of an adequate power source, at least enough to allow experimenters to
tackle the task of finding a satisfactory solution for helicopter control (Figure 1.17).

George de Bothezat (United States, 1922) built a helicopter with four six-bladed
rotors at the ends of intersecting beams (26.5-ft diameter rotors, gross weight 1700
kg, 180-hp engine at the center). This aircraft had good control capability, utilizing
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de Bothezat (USA, 1922)                             Oemichen (France, 1924)
                                                         

                Pescara (Spain, 1924)                                Berliner (USA, 1920–1925)

von Baumhauer (Holland, 1924-1929)                    d'Ascenio (Italy, 1930)

Figure 1.17. Experimentation: search for control. Images courtesy American Helicopter
Society.

differential collective of the four rotors, and made many flights with passengers up to
an altitude of 15 ft. Collective pitch is a change made in the mean blade pitch angle
to control the rotor thrust magnitude. This was the first rotorcraft ordered by the
U.S. Army, but after the expenditure of $200,000 the project was finally abandoned
as being too complex mechanically.

Etienne Oemichen (France, 1924) built a machine with four two-bladed rotors
(two 7.6 m in diameter and two 6.4 m in diameter) to provide lift, five horizontal
propellers for attitude control, two propellers for propulsion, and one propeller in
front for yaw control – all powered by a single 120-hp Le Rhone engine. Oemichen’s
aircraft set the first helicopter distance record, 360 m. Raul Pateras Pescara (an
Argentine working in Spain, 1924) constructed a helicopter with two coaxial rotors
of four biplane blades each (7.2-m diameter rotors, gross weight 850 kg, 180-hp
Hispano-Suiza engine; a 1920 craft of similar design that used 6.4-m diameter rotors
and a 45-hp Hispano engine had inadequate lift). For control, he warped the biplane
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blades to change their pitch angle. Pescara was the first to demonstrate effective
cyclic pitch for control of the main rotors. Cyclic pitch is a sinusoidal, once-per-
revolution change made in the blade pitch to tilt the rotor disk. Pescara’s helicopter
set a distance record (736 m), but had stability problems.

Emile and Henry Berliner (United States, 1920–1925) built a helicopter using
two rotors positioned on the tips of a biplane wing in a side-by-side configuration.
They used rigid wooden propellers for the rotors and obtained control by tilting the
entire rotor. Louis Brennan (England, 1920s) built a helicopter with a rotor turned by
propellers on the blades, to eliminate the torque problem (60-ft diameter two-bladed
rotor, gross weight 3300 lb, 230-hp Bentley engine); the machine was mechanically
too complex.

A.G. von Baumhauer (Holland, 1924–1929) developed a helicopter with a single
main rotor and a vertical tail rotor for torque balance (15.2-m diameter two-bladed
main rotor, gross weight 1300 kg, 200-hp Bentley rotary engine). A separate engine
was used for the tail rotor (80-hp Thulin rotary engine mounted directly to the tail
rotor). The main rotor blades were free to flap, but were connected by cables to
form a teetering rotor. Control was by cyclic pitch of the main rotor, produced using
a swashplate. Flights were made, but never at more than 2 m altitude. There were
difficulties with directional control because of the separate engines for the main
rotor and tail rotor, and the project was abandoned after a bad crash.

Corradino d’Ascanio (Italy, 1930) constructed a helicopter with two coaxial
rotors (13-m diameter rotors, gross weight 800 kg, 95-hp Fiat engine). The two-
bladed rotors had flap hinges and free-feathering hinges. Servo tabs on the blades
produced cyclic and collective pitch changes. For several years this machine held
records for altitude (17 m), endurance (8 min 45 sec), and distance (1078 m). The
stability and control characteristics were marginal, however.

M.B. Bleecker (United States, 1930) built a helicopter with four wing-like blades.
Power was delivered to a propeller on each blade from an engine in the fuselage.
Control was by aerodynamic surfaces on the blades and by a tail on the aircraft.
The Central Aero-Hydrodynamic Institute of the Soviet Union developed a series
of single rotor helicopters under the direction of Yuriev. The TsAGI I-EA (1931)
had a four-bladed main rotor (11-m diameter rotor, gross weight 1100 kg, 120-hp
engine) with cyclic and collective control, and two small contra-rotating anti-torque
rotors.

The development of the helicopter was fairly well advanced at this point, but
the stability and control characteristics were still marginal, as were the forward flight
and power-off (autorotation) capabilities of the designs. During this period, in the
1920s and 1930s, the autogyro was developed (Figure 1.18). The autogyro was the
first practical use of the direct-lift rotary wing. It was developed largely by Juan de
la Cierva (Spanish), who coined (and trademarked) the word “Autogiro.” In this
aircraft, a windmilling rotor replaces the wing of the airplane. Essentially, it uses the
fixed-wing aircraft configuration, with a propeller supplying the propulsive force.
The initial designs even used conventional airplane-type aerodynamic surfaces for
control (ailerons, rudder, and elevator). With no power directly to the rotor, hover
and vertical flight are not possible, but the autogyro is capable of very slow flight
and in cruise behaves much like an airplane.

Juan de la Cierva had designed an airplane that crashed in 1919 due to stall near
the ground. He then became interested in designing an aircraft with a low takeoff
and landing speed that would not stall if the pilot dropped the speed excessively. He
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            Cierva C.6A (Spain, 1925) Pitcairn PCA-2 (USA, 1932–1935)
used for NACA research

Figure 1.18. Autogyros. Cierva image courtesy American Helicopter Society; Pitcairn image
from NACA.

determined from wind-tunnel tests of model rotors that, with no power to the shaft
but with a rearward tilt of the rotor, good lift-to-drag ratio could be obtained even
at low speed. The best results were at low, positive collective pitch of the rotor. In
1922, Cierva built the C.3 autogyro with a five-bladed rigid rotor and “a tendency
to fall over sideways.” He had a model with blades of flexible palm wood that flew
properly. The flexible rotor blades accounted for the successful flight of the model,
suggesting the use of articulated rotor blades on the autogyro. Cierva consequently
incorporated flapping blades in his design. The flap hinge eliminated the rolling
moment on the aircraft in forward flight due to the asymmetry of the flow over the
rotor. Cierva was the first to use the flap hinge in a successful rotary-wing aircraft.
In 1923, the C.4 autogyro was built and flown. It had a four-bladed rotor with flap
hinges on the blades (9.8-m diameter rotor, 110-hp Le Rhone engine). Control was
by conventional airplane aerodynamic surfaces. In 1924, the C.6A autogyro with
flapping rotor blades was built (11-m diameter four-bladed rotor, 100-hp Le Rhone
rotary engine). An Avro 504K aircraft fuselage and ailerons on outrigger spars were
used. The demonstration of this autogyro in 1925 at the Royal Aircraft Establishment
was the stimulus for the early analysis of the rotary wing in England by Glauert and
Lock. The C.6A is generally regarded as Cierva’s first successful autogyro (1926).

In 1925, Cierva founded the Cierva Autogiro Company in England, which was
his base thereafter. In the next decade about 500 of his autogyros were produced,
many by licensees of the Cierva Company, including A.V. Roe, de Havilland, Weir,
Westland, Parnell, and Comper in Britain; Pitcairn, Kellett, and Buhl in the United
States; Focke-Wulf in Germany; Loire and Olivier in France; and the TsAGI in
Russia. A crash in 1927 led to an appreciation of the high in-plane blade loads
due to flapping, and a lag hinge was added to the rotor blades. This completed the
development of the fully articulated rotor hub for the autogyro. In 1932, Cierva
added rotor control to replace the airplane control surfaces, which were not very
effective at low speeds. He used direct tilt of the rotor hub for longitudinal and
lateral control. Raoul Hafner (England, 1935) developed an autogyro incorporating
cyclic pitch control by means of a “spider” control mechanism to replace the direct
tilt of the rotor hub. E. Burke Wilford (United States, 1930s) developed a hingeless
rotor autogyro that also used cyclic control of the rotors.

By 1935, the autogyro was well developed in both Europe and America. Its
success preceded that of the helicopter because of the lower power required without
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Breguet-Dorand (France, 1935)                    Focke Fa-61 (Germany, 1936)

Flettner Fl-282 (Germany, 1938-1940)               Focke Fa-223 (Germany, 1941)

Sikorsky VS-300 (USA, 1939-1941)                   Sikorsky R-4 (USA, 1942)

Figure 1.19. First successful helicopters. R-4 image from U.S. Army; other images courtesy
American Helicopter Society.

actual vertical flight capability and because the unpowered rotor is mechanically
simpler. The autogyro was able to use a great deal of airplane technology, for example
in the propulsion system, and initially even the control system. Lacking true vertical
flight capability, however, the autogyro was never able to compete effectively with
fixed-wing aircraft. However, autogyro developments, including experimental and
practical experience, did influence helicopter development and design. The autogyro
had a substantial impact on the development of rotary-wing analysis. Much of the
work of the 1920s and 1930s, which forms the foundation of helicopter analysis, was
originally developed for the autogyro.

Meanwhile, the development of the helicopter continued, with the first successful
helicopters flying in Europe in the mid-1930s (Figure 1.19). Louis Breguet and Rene
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Dorand (France, 1935) built the Gyroplane Laboratoire, a helicopter with coaxial
two-bladed rotors (16.4-m diameter rotors, gross weight 2000 kg, 350-hp Hispano
engine). The rotors had an articulated hub (flap and lag hinges); control was by cyclic
for pitch and roll, and differential torque for directional control. The aircraft had
satisfactory control characteristics and held records for speed (44.7 kph), altitude
(158 m), duration (62 min), and closed-circuit distance (44 km).

Henrich Focke (Germany, 1936) constructed the Focke-Achgelis Fa-61, a heli-
copter with two three-bladed rotors mounted on trusses in a side-by-side configura-
tion (7-m diameter rotors, gross weight 950 kg, 160-hp Bramo engine). Focke had
licensed the C.19 and C.30 autogyros, and the rotor components were supplied by
the Weir-Cierva company. The rotor had an articulated hub and tapered blades.
Directional and longitudinal control were by cyclic, and roll control by differential
collective. Height control, however, was obtained by varying rotor speed. Vertical
and horizontal tail surfaces were used for stability and trim in forward flight, and the
rotor shafts were inclined inward for stability. This helicopter set records for speed
(122.5 kph), altitude (3427 m), endurance (81 min), and distance (230 km). The Fa-61
was a well-developed machine, with good control, performance, and reliability. This
aircraft was demonstrated by Hanna Reitsch inside the Berlin Deutschlandhalle in
February 1938.

C.G. Pullin (Britain, 1938) built for G. & J. Weir Ltd. helicopters with a side-by-
side configuration: in 1938 the W-5 (15-ft diameter two-bladed rotors, gross weight
860 lb, 50-hp Weir engine), and in 1939 the W-6 (25-ft diameter three-bladed rotors,
gross weight 2360 lb, 205-hp de Havilland engine). Ivan P. Bratukhin (TsAGI in
the USSR, 1939–1940) constructed the Omega I helicopter with two three-bladed
rotors in a side-by-side configuration (7-m diameter rotors, gross weight 2050 kg,
two 220-hp engines).

There was considerable effort in rotary-wing development in Germany dur-
ing World War II. Anton Flettner (Germany, 1938–1940) developed a synchropter
design, with two rotors in a side-by-side configuration but highly intermeshed (hub
separation 0.6 m). The FL-282 had two-bladed articulated rotors (12-m diameter
rotors, gross weight 1000 kg, 140-hp Siemens Halske engine). Orders were placed
for one thousand aircraft, but only about 30 were completed. Focke (Germany 1941)
developed the Focke-Achgelis Fa-223 with two three-bladed rotors in the side-by-
side configuration (rotors 12 m in diameter, gross weight 4300 kg, 1000-hp Bramo
engine). This helicopter had an absolute ceiling of 5000 m, a range of 320 km, a
cruise speed of 176 kph with six passengers, and a useful load of 900 kg. Orders were
placed for 100, with 10 delivered. These helicopter developments reached a dead
end because of World War II.

Igor Sikorsky (United States, 1939–1941) returned to helicopter development
in 1938 after designing and building airplanes in Russia and the United States. In
1941, Sikorsky built the VS-300, a helicopter with a single three-bladed main rotor
and a small anti-torque tail rotor (28-ft diameter rotor, gross weight 1150 lb, 100-hp
Franklin engine). Lateral and longitudinal control was by main rotor cyclic, and
directional control was by means of the tail rotor. The tail rotor was driven by a shaft
from the main rotor. The pilot’s controls were like the present standard (cyclic stick,
pedals, and a collective stick with a twist grip throttle). Considerable experimentation
was required to develop a configuration with suitable control characteristics. After
tethered flights in late 1939 of an aircraft with main rotor cyclic control, a more stable
and controllable configuration was flown in 1940 with three auxiliary rotors (one
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vertical and two horizontal) on the tail. In 1941, the number of auxiliary rotors was
reduced to two: a vertical tail rotor for yaw and a horizontal tail rotor for pitch control.
Finally in December 1941, the horizontal propeller was removed and main rotor
cyclic used for longitudinal control. This was Sikorsky’s 18th version: the single main
rotor and tail rotor configuration that has become the most common helicopter type.
Sikorsky also tried a two-bladed main rotor, which had comparable performance and
was simpler, but was not pursued because the vibration was considered excessive.

In 1942 the R-4 (VS-316), was constructed (38-ft diameter three-bladed rotor,
gross weight 2540 lb, 185-hp Warner engine). This helicopter model went into pro-
duction, and with the R-5 and R-6 about 600 aircraft were built and delivered by
September 1945. Igor Sikorsky’s R-4 was the first widely used, practical helicopter.
The R-4 was controllable and mechanically simple (relative to other helicopter
designs of the time at least), was produced in significant quantities, and saw opera-
tional use. In 1946 the R-5 set records for speed (178 kph), altitude (5842 m), and
distance (1132 km). The R-5 evolved to the Sikorsky S-51, which was the second
helicopter to receive commercial certification (April 1947).

The 1940s saw the development of helicopters that formed the basis for the
new industry (Figure 1.20). Arthur Young (United States, 1943) developed for Bell
Aircraft the Model 30, a helicopter with a two-bladed teetering main rotor and a
tail rotor (32-ft diameter rotor, gross weight 2300 lb, 160-hp Franklin engine), using
the gyro stabilizer bar that he invented in the 1930s. In March 1946, the Bell Model
47 (35-ft diameter rotor, gross weight 2100 lb, 178-hp Franklin engine) received the
first American certificate of airworthiness for helicopters. Frank N. Piasecki (United
States, 1943) for the P-V Engineering Forum developed the second successful heli-
copter prototype in the United States: the PV-2 single main rotor and tail rotor
helicopter (22-ft diameter rotor, gross weight 1000 lb, 90-hp Franklin engine). In
1945 Piasecki developed the PV-3, a tandem rotor helicopter (41-ft diameter three-
bladed rotors, gross weight 6900 lb, 600-hp Pratt and Whitney engine); the Navy
prototypes were designated XHRP-1. Piasecki’s company eventually became the
Boeing Vertol Company, with the tandem configuration remaining its basic produc-
tion type. Stanley Hiller (United States, 1944–1948) experimented with several types
of helicopters, including the XH-44 coaxial helicopter, eventually settling on the sin-
gle main rotor and tail rotor configuration. Hiller developed the control rotor, which
is a gyro stabilizer bar with aerodynamic surfaces that the pilot controlled to adjust
the rotor orientation. He built the Model 360 helicopter in 1947 (35.4-ft diameter
two-bladed rotor, gross weight 2100 lb, 178-hp Franklin engine). Charles Kaman
(United States, 1946–1948) developed the servotab control method of rotor pitch
control, in which the rotor blade is twisted rather than rotated about a pitch bearing
at the root. Kaman also developed a helicopter of the synchropter configuration.
The Bristol Aircraft Company (British, 1947) developed the Bristol-171 Sycamore.
Mikhail Mil’ (USSR, 1949) developed a series of helicopters of the single main rotor
and tail rotor configuration, including in 1949 the Mi-1 (14-m diameter three-bladed
rotor, gross weight 2250 kg, 570 hp engine). Nikolai Kamov (USSR, 1952) devel-
oped helicopters with the coaxial configuration, including the Ka-15 helicopter (10-m
diameter three-bladed rotors, gross weight 1370 kg, 225-hp engine).

An important development was the introduction of the turboshaft engine to
helicopters, replacing the reciprocating engine (Figure 1.21). A substantial improve-
ment in performance and reliability was realized because of the lower specific weight
(lb/hp) of the turboshaft engine. Kaman Aircraft Company (United States, 1951)
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Young, Bell Model 30 (USA, 1943)              Young, Bell Model 47 (USA, 1946)

           Piasecki PV-2 (USA, 1943)                           Piasecki HRP-1 (USA, 1945)

Hiller XH-44 (USA, 1944)                         Hiller Model 360 (USA, 1947)

Figure 1.20. Start of the helicopter industry. Model 30 image courtesy Bell Helicopter; Model
47 image from U.S. Army; other images courtesy American Helicopter Society.

constructed the first helicopter with turbine power, installing a single turboshaft
engine (175-hp Boeing engine) in its K-225 helicopter. In 1954, Kaman also devel-
oped the first twin-engine turbine-powered helicopter, an HTK-1 synchropter with
two Boeing engines (total 350 hp) replacing a single 240-hp piston engine of the
same weight in the same position. The Sud Aviation Alouette II (France, 1955)
was the first helicopter to be produced with a turboshaft engine. Since that time
the turboshaft engine has become the standard powerplant for all but the smallest
helicopters.

After the 1950s, the history of rotorcraft development involved programs and
companies, rather than inventors. So this exposition is concluded at a point where
the helicopter was successful if not mature, and the foundations of the industry were
established. In the years that followed, several helicopter designs achieved extremely
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Kaman, K-225 (USA, 1951)                  Sud Aviation, Alouette II (France, 1955)

Figure 1.21. Power from the turboshaft engine.

successful production runs, and some very large helicopters were constructed. Rotor-
craft configurations such as compound helicopters and tiltrotors have been explored,
particularly in the search for higher speed. The operational use of the helicopter has
grown to be a major factor in the air transportation system.

1.4 Books

A large number of books on helicopter aeromechanics have been published since
the 1940s. The early texts included Nikolsky (1951), Shapiro (1955), and Stepniewski
(1955). Gessow and Myers (1952) is a concise introduction, based on the excellent
NACA research program on autogyros and helicopters. Important recent books
are Bramwell (1976), Stepniewski and Keys (1979), Johnson (1980), Hodges (2006),
and Leishman (2006). Padfield (2007) covers rotorcraft flight dynamics and handling
qualities in depth. A bibliography of books on helicopter engineering, listed in
chronological order, follows.
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2 Notation

This chapter summarizes the principal nomenclature to be used in the text. The
intention is to provide a reference for the later chapters and also to introduce the
basic elements of the rotor and its analysis. Only the most fundamental parameters
are included here; the definitions of the other quantities required are presented as the
analysis is developed. A number of the basic dimensionless parameters of helicopter
analysis are also introduced. An alphabetical listing of symbols is provided at the
end of the chapter.

2.1 Dimensions

Generally the analyses in this text use dimensionless quantities. The natural refer-
ence length scale for the rotor is the blade radius R, and the natural reference time
scale is the rotor rotational speed � (rad/sec). For a reference mass the air density ρ
is chosen.

For typographical simplicity, no distinction is made between the symbols for the
dimensional and dimensionless forms of a quantity when the latter are based on ρ,�,
and R. New symbols are introduced for those dimensionless parameters normalized
using other quantities.

2.2 Nomenclature

2.2.1 Physical Description of the Blade

R = the rotor radius; the length of the blade, measured from center of rotation
to tip.

� = the rotor rotational speed or angular velocity (rad/sec).
ρ = air density.
ψ = azimuth angle of the blade (Figure 2.1), defined as zero in the downstream

direction. This is the angle measured from downstream to the blade span
axis, in the direction of rotation of the blade. Hence for constant rotational
speed, ψ = �t.

r = radial location on the blade (Figure 2.1), measured from the center of
rotation (r = 0) to the blade tip (r = R, or when dimensionless r = 1).
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Figure 2.1. Rotor disk in edgewise flight, showing definition of ψ and r.

In the United States the convention is to assume that the rotor rotation direction is
counterclockwise (viewed from above). Then the right side of the rotor disk is called
the advancing side, and the left side is called the retreating side. The variables r and
ψ usually refer to the radial and azimuthal position of the blade, but they can also
be used as polar coordinates for the rotor disk.

c = blade chord, which for tapered blades is a function of r.
N = number of blades.
m = blade mass per unit length, as a function of r.
Ib = ∫ R

0 r2m dr = moment of inertia of the blade about the center of rotation.

The rotor blade normally is twisted along its length. The analysis often considers
linear twist, for which the built-in variation of the blade pitch with respect to the root
is �θ = θtwr. The linear twist rate θtw (equal to the tip pitch minus the root pitch)
is normally negative for the helicopter rotor. The following derived quantities are
important:

A = πR2 = rotor disk area.
σ = Nc/πR = rotor solidity.
γ = ρacR4/Ib = blade Lock number.

The solidity σ is the ratio of the total blade area (NcR for constant chord) to the
rotor disk area (πR2). The Lock number γ represents the ratio of the aerodynamic
and inertial forces on the blade.
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Figure 2.2. Fundamental blade motion.

2.2.2 Blade Aerodynamics

a = blade section two-dimensional lift curve slope.
α = blade section angle-of-attack.

M = blade section Mach number.

The subscript (r, ψ) on α or M is used to indicate the point on the rotor disk being
considered; for example, the retreating-tip angle-of-attack α1,270 or the advancing-tip
Mach number M1,90 (also written Mat).

2.2.3 Blade Motion

The basic motion of the blade is essentially rigid body rotation about the root, which
is attached to the hub (Figure 2.2).

β = blade flap angle. This degree of freedom produces blade motion out of
the disk plane, about either an actual flap hinge or a region of structural
flexibility at the root. Flapping is positive for upward motion of the blade
(as produced by the thrust force on the blade).

ζ = blade lag angle. This degree of freedom produces blade motion in the disk
plane. Lagging is positive when opposite the direction of rotation of the
rotor (as produced by the blade drag forces).

θ = blade pitch angle, or feathering motion, produced by rotation of the blade
about a hinge or bearing at the root with the pitch axis parallel to the blade
spar. Pitching is positive for nose-up rotation of the blade.

The degrees of freedom β, ζ , and θ can also be viewed as rotations of the blade about
hinges at the root, with axes of rotation as follows: β is the angle of rotation about
an axis in the disk plane, perpendicular to the blade spar; ζ is the angle of rotation
about an axis normal to the disk plane, parallel to the rotor shaft; and θ is the angle
of rotation about an axis in the disk plane, parallel to the blade spar. The description
of more complex blade motion – for example, motion that includes blade flexibility –
is introduced as required in later chapters.
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Figure 2.3. Rotor disk velocity and orientation.

In steady-state operation of the rotor, blade motion is periodic around the
azimuth and hence can be expanded as a Fourier series in ψ :

β = β0 + β1c cosψ + β1s sinψ + β2c cos 2ψ + β2s sin 2ψ + . . .
ζ = ζ0 + ζ1c cosψ + ζ1s sinψ + ζ2c cos 2ψ + ζ2s sin 2ψ + . . .
θ = θ0 + θ1c cosψ + θ1s sinψ + θ2c cos 2ψ + θ2s sin 2ψ + . . .

The mean and first harmonics of the blade motion (the 0, 1c, and 1s Fourier coef-
ficients) are the harmonics most important to rotor performance and control. The
rotor coning angle is β0; β1c and β1s are, respectively, the pitch and roll angles of the
tip-path plane relative to the hub plane. The rotor collective pitch is θ0, and θ1c and
θ1s are the cyclic pitch angles.

2.2.4 Rotor Angle-of-Attack and Velocity

i = rotor disk plane incidence angle or angle-of-attack, positive for forward tilt
(as required if a component of the rotor thrust is to provide the propulsive
force for the helicopter).

V = rotor or helicopter velocity with respect to the air.
v = rotor induced velocity, normal to the disk plane and positive when down-

ward through the disk (as produced by a positive rotor thrust).

The resultant velocity seen by the rotor, resolved into components parallel and
normal to the disk plane and made dimensionless with the rotor tip speed �R, gives
the following velocity ratios (Figure 2.3):

μ = V cos i/�R = rotor advance ratio.
μz = V sin i/�R = normal velocity ratio.
λ = (V sin i + v)/�R = rotor inflow ratio (positive for flow downward through

the disk).
λi = v/�R = induced inflow ratio.

The advance ratio μ is the ratio of the forward velocity to the rotor tip speed. The
inflow ratio λ is the ratio of the total inflow velocity to the rotor tip speed.

2.2.5 Rotor Forces and Power

Rotor forces, relative to an appropriate axis system:

T = rotor thrust, normal to the disk plane and positive when directed upward.
H = rotor drag force in the disk plane; positive when directed rearward, oppos-

ing the forward velocity of the helicopter.
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Y = rotor side force in the disk plane; positive when directed toward the advanc-
ing side of the rotor.

Q = rotor shaft torque, positive when an external torque is required to turn the
rotor (helicopter operation).

P = rotor shaft power, positive when power is supplied to the rotor.

In coefficient form based on air density, rotor disk area, and tip speed these quantities
are as follows:

CT = thrust coefficient = T/ρA(�R)2.
CH = H force coefficient = H/ρA(�R)2.
CY = Y force coefficient = Y/ρA(�R)2.
CQ = torque coefficient = Q/ρA(�R)2R.
CP = power coefficient = P/ρA(�R)3.

The rotor shaft power and torque are related by P = �Q, so the coefficients are
equal, CP = CQ. The rotor disk loading is the ratio of the thrust to the rotor area,
T/A, and the power loading is the ratio of the thrust to the power, T/P. The rotor
blade loading is the ratio of the thrust to the blade area, T/Ab = T/(σA), or in
coefficient form the ratio of the thrust coefficient to solidity, CT/σ .

2.2.6 Rotor Disk Planes

The rotor disk planes (defined in section 6.1.3) are denoted by:

TPP tip-path plane
NFP no-feathering plane
HP hub plane
CP control plane

2.3 Other Notation Conventions

No true standard nomenclature is used throughout the helicopter literature, so one
must always take care to determine the definitions of the quantities used in any
particular work, including the present text.

Helicopter and rotor force, moment, and power coefficients can be based on
the quantity 1/2ρA(�R)2, instead of ρA(�R)2 as in this text, often using the same
symbols. See for example, Shapiro (1955).

One system of notation that is common enough in the literature to deserve atten-
tion is that used by the National Advisory Committee for Aeronautics (NACA).
The primary deviations of NACA notation from the practice in this text are as
follows:

b = number of blades.
x = r/R = dimensionless span variable.
θ1 = linear twist rate (from the expansion θ = θ0 + θ1r).
I1 = rotor blade flapping inertia.
λ = (V sinα − v)/�R = rotor inflow ratio, positive when upward through the

disk.
α = rotor disk incidence angle or angle-of-attack, positive

for rearward tilt.
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In addition, λ and α are assumed to refer to the no-feathering plane if there are
no subscripts or other indication that another reference plane is being used. The
blade motion is represented by Fourier series with the following definitions for the
harmonics:

β = a0 − a1 cosψ − b1 sinψ − a2 cos 2ψ − b2 sin 2ψ . . .

θ = A0 − A1 cosψ − B1 sinψ − A2 cos 2ψ − B2 sin 2ψ . . .

ζ = E0 + E1 cosψ + F1 sinψ + E2 cos 2ψ + F2 sin 2ψ . . .

A subscript s is used for quantities measured with respect to the shaft or hub plane,
for example A1s and B1s. The differences in sign from the present notation arise
because the NACA notation was designed for autogyro analysis, and quantities
were defined such that the parameters would usually have a positive value. The
complete NACA notation system for helicopter analysis is given by Gessow (1948)
and by Gessow and Myers (1952).

2.4 Geometry and Rotations

The nomenclature for geometry and rotations employs the following conventions.
A vector x is a column matrix of three elements, measuring the vector relative to a
particular basis (or axes, or frame). The basis is indicated as follows:

a) xA is a vector measured in axes A.
b) xEF/A is a vector from point F to point E, measured in axes A.

A rotation matrix C is a three-by-three matrix that transforms vectors from one basis
to another:

c) CBA transforms vectors from basis A to basis B, so xB = CBAxA.

The matrix CBA defines the orientation of basis B relative to basis A and can also be
viewed as rotating the axes from A to B. For a vector u, a cross-product matrix ũ is
defined as follows:

ũ =
⎡⎣ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤⎦
such that ũv is equivalent to the vector cross-product u × v. The cross-product matrix
enters the relationship between angular velocity and the time derivative of a rotation
matrix:

ĊAB = −ω̃AB/ACAB = CABω̃BA/B

(the Poisson equations). For rotation by an angle α about the x, y, or z axis (1, 2, or
3 axis), the following notation is used:

Xα =
⎡⎣ 1 0 0

0 cosα sinα
0 − sinα cosα

⎤⎦

Yα =
⎡⎣ cosα 0 − sinα

0 1 0
sinα 0 cosα

⎤⎦
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Zα =
⎡⎣ cosα sinα 0

− sinα cosα 0
0 0 1

⎤⎦
Thus for example, CBA = XφYθZψ means that the axes B are located relative to the
axes A by first rotating by angle ψ about the z-axis, then by angle θ about the y-axis,
and finally by angle φ about the x-axis.

2.5 Symbols, Subscripts, and Superscripts

Listed next alphabetically are the principal symbols used in this text. Symbols appear-
ing only within one chapter are not included.

a blade section two-dimensional lift-curve slope
A rotor disk area, πR2; total aircraft disk area
Ab rotor blade area, NcR = σA
B tip loss factor
c blade chord
C Theodorsen’s lift deficiency function
C′ Loewy’s lift deficiency function
cd section drag coefficient, D/(1/2ρU2c)
CH H-force coefficient, H/ρA(�R)2

c� section lift coefficient, L/( 1/2ρU2c)
cm section pitch moment coefficient, Ma/( 1/2ρU 2c2)

CMx roll moment coefficient, Mx/ρA(�R)2R
CMy pitch moment coefficient, My/ρA(�R)2R
CP power coefficient, P/ρA(�R)3

CPc climb power
CPi induced power
CPo profile power
CPp parasite power
CQ torque coefficient, Q/ρA(�R)2R
cs speed of sound
CT thrust coefficient, T/ρA(�R)2

CT/σ ratio of thrust coefficient to solidity, T/ρAb(�R)2

CY Y -force coefficient, Y/ρA(�R)2

D section aerodynamic drag force; rotorcraft drag; rotor diameter
d(CT/σ )/dr section blade loading, Fz/(ρ(�R)2c)
De rotor equivalent drag, P/V + X
e flap or lag hinge offset from center of rotation
EI, EIzz flapwise bending stiffness
EIxx chordwise bending stiffness
f equivalent drag area of rotorcraft airframe, including rotor hubs,

D/( 1/2ρV 2)

Fr section radial aerodynamic force
Fx section aerodynamic force component parallel to disk plane
Fz section aerodynamic force normal to disk plane
g acceleration due to gravity
GJ torsion stiffness
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h rotor mast height, distance of hub above helicopter center of gravity
H rotor drag force, positive rearward; blade aerodynamic in-plane shear

force coefficient (with subscript)
i rotor disk plane incidence angle or angle-of-attack, positive for for-

ward tilt
Ib characteristic inertia of the rotor blade, normally

∫ R
0 r2m dr or the

flapping moment of inertia
If blade pitch inertia,

∫ R
0 Iθ dr

Ipk generalized mass of k-th torsion mode,
∫ R

0 ξ
2
k Iθ dr

Iqk, Iβk generalized mass of k-th out-of-plane bending mode,
∫ R

0 η
2
zkm dr

Ix rotorcraft roll moment of inertia; inertial flap-pitch coupling,∫ R
0 xIrm dr

Iy rotorcraft pitch moment of inertia
Iz rotorcraft yaw moment of inertia
Iβ generalized mass of fundamental flap mode,

∫ R
0 η

2
βm dr

Iβα inertial coupling of flap and hub motion,
∫ R

0 ηβrm dr
Iβζ Coriolis flap-lag coupling,

∫ R
0 ηβηζm dr/(1 − e)

Iζ generalized mass of fundamental lag mode,
∫ R

0 η
2
ζm dr

Iζk generalized mass of k-th in-plane bending mode,
∫ R

0 η
2
xkm dr

Iζα inertial coupling of lag and hub motion,
∫ R

0 ηζ rm dr
Iθ section moment of inertia about feathering axis
I0 blade rotational inertia,

∫ R
0 r2m dr

k reduced frequency, ωb/U (ω is frequency, b airfoil semichord, and U
free stream velocity)

kx rotorcraft roll radius of gyration, Ix = Mk2
x

ky rotorcraft pitch radius of gyration, Iy = Mk2
y

kz rotorcraft yaw radius of gyration, Iz = Mk2
z

KP, KPβ pitch-flap coupling, �θ = −KPβ (KP = tan δ3), positive for flap-
up/pitch-down

KPζ pitch-lag coupling, �θ = −KPζ ζ , positive for lag-back/pitch-down
Kβ flap hinge spring constant
Kζ lag hinge spring constant
Kθ control system spring constant
L section aerodynamic lift force; rotorcraft roll moment stability deriva-

tive (with subscript); rotor wind-axis lift force
L/De rotor equivalent lift-to-drag ratio, L/(P/V + X )
L/D aircraft equivalent lift-to-drag ratio, WV/P
�tr tail rotor distance behind main rotor shaft
m blade index, m = 1 to N; aerodynamic pitch moment coefficient (with

subscript); blade mass per unit length
M hover figure of merit, Pideal/P = Tv/P = T

√
T/2ρA/P; blade sec-

tion Mach number; rotorcraft mass, including rotor; rotorcraft pitch
moment stability derivative (with subscript); blade aerodynamic flap
moment coefficient (with subscript)

ṁ mass flux through the rotor disk (momentum theory)
Ma section aerodynamic pitch moment
Mb blade mass,

∫ R
0 m dr



2.5 Symbols, Subscripts, and Superscripts 35

M f aerodynamic pitch moment
MF aerodynamic flap moment
ML aerodynamic lag moment
Mtip blade tip Mach number, �R/cs

Mx rotor hub roll moment, positive toward retreating side
My rotor hub pitch moment, positive rearward
Mat , M1,90 blade advancing-tip Mach number
M2cn blade section normal force, N/( 1/2ρc2

s c)
N number of blades; rotorcraft yaw force stability derivative (with sub-

script); blade section normal force
N� coupling parameter of flap dynamics, N� = 8

γ
(ν2 − 1)+ KP

NF blade root flapwise moment
NL blade root lagwise moment
p sound pressure
P power; rotor shaft power; rotorcraft power
pk generalized coordinate of k-th torsion mode (p0 is the rigid pitch

degree of freedom)
Q rotor shaft torque, positive when external torque is required to turn

rotor; blade aerodynamic torque or lag moment coefficient (with sub-
script)

qk, qzk generalized coordinate of k-th out-of-plane bending mode
qxk generalized coordinate of k-th in-plane bending mode
r blade or rotor disk radial coordinate
R rotor radius; blade aerodynamic radial shear force coefficient (with

subscript)
Re Reynolds number
s eigenvalue or Laplace variable
Sb blade first moment of inertia,

∫ R
0 rm dr

Sr blade root radial shear force
Sx blade root in-plane shear force
Sz blade root vertical shear force
Sβ first moment of flap mode,

∫ R
0 ηβm dr

Sζ first moment of lag mode,
∫ R

0 ηζm dr
t time
T rotor thrust, positive upward for lifting rotor or forward for propelling

rotor; blade aerodynamic thrust force coefficient (with subscript)
T/A rotor disk loading; rotorcraft disk loading
T/Ab rotor blade loading
U section resultant velocity, (u2

T + u2
P)

1/2

uG longitudinal gust velocity component
uP air velocity of blade section, perpendicular to the disk plane
uR air velocity of blade section, radial
uT air velocity of blade section, tangent to the disk plane
v rotor induced velocity (positive down through the disk)
V rotor or rotorcraft velocity with respect to the air
vG lateral gust velocity component
vh ideal hover induced velocity,

√
T/2ρA

w rotor induced velocity in the far wake
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W rotorcraft gross weight
wG vertical gust velocity component
x rotor non-rotating coordinate axis, positive aft; blade in-plane deflec-

tion; blade chordwise coordinate
X rotorcraft longitudinal force derivative (with subscript); rotor wind-

axis drag force
xA chordwise offset of blade aerodynamic center behind pitch axis
xB rotorcraft rigid-body longitudinal degree of freedom
xh hub longitudinal displacement
xI chordwise offset of blade center of gravity behind pitch axis
y rotor non-rotating coordinate axis, positive to right (advancing side)
Y rotor side force, positive toward advancing side; rotorcraft side force

stability derivative (with subscript)
yB rotorcraft rigid body lateral degree of freedom
yh hub lateral displacement
z rotor non-rotating coordinate axis, positive upward; blade out-of-

plane deflection
Z rotorcraft vertical force stability derivative (with subscript)
zB rotorcraft rigid-body vertical degree of freedom
zh hub vertical displacement
α blade section angle-of-attack
αx hub roll perturbation
αy hub pitch perturbation
αz hub yaw perturbation
α1,270 blade retreating tip angle-of-attack
β blade flap angle (positive upward)
βp precone angle
β0 coning angle
β1c longitudinal tip-path-plane tilt angle, positive forward
β1s lateral tip-path-plane tilt angle, positive toward retreating side
γ blade Lock number, ρacR4/Ib

� blade bound circulation
δ0, δ1, δ2 coefficients in expansion for section drag, cd = δ0 + δ1α + δ2α

2

δ3 pitch-flap coupling (KP = tan δ3), positive for flap-up/pitch-down
ζ blade lag angle, positive opposite the direction of rotation of the rotor
η,ηβ mode shape of fundamental flap mode
ηζ mode shape of fundamental lag mode
ηk,ηzk mode shape of k-th out-of-plane bending mode
ηxk mode shape of k-th in-plane bending mode
θ blade pitch or feathering angle, positive nose upward
θB rotorcraft rigid body pitch degree of freedom
θcon pitch control input (collective and cyclic)
θe elastic torsion deflection
θFP flight path angle, climb velocity = V sin θFP

θtw linear twist rate (negative for tip pitch smaller than root pitch)
θ0 collective pitch angle
θ1c lateral cyclic pitch angle
θ1s longitudinal cyclic pitch angle
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θ.75 collective pitch angle at 75% radius
κ induced power factor, ratio induced power to ideal power
λ rotor inflow ratio, (V sin i + v)/�R, positive down through disk
λc climb inflow ratio
λi induced inflow ratio, v/�R
λx coefficient of longitudinal variation of induced velocity
λy coefficient of lateral variation of induced velocity
λ0 rotor mean induced velocity
μ rotor advance ratio, V cos i/�R
μz rotor axial velocity ratio, V sin i/�R = μ tan i
ν, νβ rotating natural frequency of blade fundamental flap mode
νe, νβe effective flap frequency including pitch-flap coupling, ν2

e = ν2 +
(γ /8)KP

νk, νzk natural frequency of k-th out-of-plane bending mode
νxk natural frequency of k-th in-plane bending mode
νζ rotating natural frequency of blade fundamental lag mode
ξk mode shape of k-th elastic torsion mode
ρ air density; blade radial coordinate in spanwise integration
σ rotor solidity, Ab/A = Nc/πR
φ section inflow angle, tan−1 uP/uT

φB rotorcraft rigid body roll degree of freedom
ψ azimuth angle of the blade or rotor disk; dimensionless time, �t
ψB rotorcraft rigid body yaw degree of freedom
ψm azimuth position of m-th blade (m = 1 to N)
ω,ω0,ωθ natural frequency of rigid pitch motion (control system stiffness)
ωk natural frequency of k-th elastic torsion mode
� rotor rotational speed (rad/sec)

Subscripts and Superscripts

0, 1c, 1s, . . .nc, ns, . . .∞ harmonics of a Fourier series representation of a periodic
function

0, 1c, 1s, . . .nc, ns, . . .N/2 multiblade coordinate degrees of freedom (total number
N)

c climb
CP control plane
h hover
HP hub plane
i induced
m blade index, m = 1 to N
mr main rotor
NFP no-feathering plane
o profile
p parasite
p rotorcraft stability derivative due to roll rate
q rotorcraft stability derivative due to pitch rate
r rotorcraft stability derivative due to yaw rate
TPP tip-path plane
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tr tail rotor
u rotorcraft stability derivative due to longitudinal velocity
v rotorcraft stability derivative due to lateral velocity
w rotorcraft stability derivative due to vertical velocity
β rotor aerodynamic force due to blade flap displacement
β̇ rotor aerodynamic force due to blade flapping velocity or hub angular motion
ζ rotor aerodynamic force due to blade lag displacement
ζ̇ rotor aerodynamic force due to blade lagging velocity or hub yawing motion
θ rotor aerodynamic force due to blade pitch motion
θ̇ rotor aerodynamic force due to blade pitch rate
λ rotor aerodynamic force due to hub vertical velocity or induced velocity

perturbation
μ rotor aerodynamic force due to hub in-plane velocity
( )̇ d( )/dt or d( )/dψ
( )′ d( )/dr
(̂ ) normalized: rotor blade inertias divided by Ib; rotorcraft inertias divided by

1/2NIb; dimensionless section aerodynamic forces divided by c

Abbreviations

BEM combined blade element and momentum theory
BVI blade-vortex interaction
CFD computational fluid dynamics
CP control plane
HHC higher harmonic control
HP hub plane
HQR handling qualities rating
HSI high-speed impulsive
IBC individual blade control
IGE in ground effect
MBC multi-blade coordinates
NFP no-feathering plane
OGE out of ground effect
TPP tip-path plane
VRS vortex ring state
VTOL vertical takeoff and landing
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Hover is the operating state in which the lifting rotor has no velocity relative to
the air, either vertical or horizontal. General vertical flight involves axial flow with
respect to the rotor. Vertical flight implies axial symmetry of the rotor flow field, so
the velocities and loads on the rotor blades are independent of the azimuth position.
Axial symmetry greatly simplifies the dynamics and aerodynamics of the helicopter
rotor, as is evident when forward flight is considered. The basic analyses of a rotor
in axial flow originated in the 19th century with the design of marine propellers and
were later applied to airplane propellers. The principal objectives of the analysis of
the hovering rotor are to predict the forces generated and power required by the
rotating blades and to design the most efficient rotor.

3.1 Momentum Theory

Momentum theory applies the basic conservation laws of fluid mechanics (conserva-
tion of mass, momentum, and energy) to the rotor and flow as a whole to estimate the
rotor performance. The theory is a global analysis, relating the overall flow velocities
to the total rotor thrust and power. Momentum theory was developed for marine
propellers by W.J.M. Rankine in 1865 and R.E. Froude in 1885, and extended in
1920 by A. Betz to include the rotation of the slipstream; see Glauert (1935) for the
history.

The rotor disk supports a thrust created by the action of the air on the blades. By
Newton’s law there must be an equal and opposite reaction of the rotor on the air.
As a result, the air in the rotor wake acquires a velocity increment directed opposite
to the thrust. There is kinetic energy in the wake flow field, energy that must be
supplied by the rotor. This energy constitutes the induced power of a rotary wing,
corresponding to the induced drag of a fixed wing.

Momentum conservation relates the rotor thrust per unit mass flow through the
disk, T/ṁ, to the induced velocity in the far wake, w. Energy conservation relates
T/ṁ,w, and the induced velocity at the rotor disk, v. Finally, mass conservation gives
ṁ in terms of the induced velocity v. Eliminating w then gives a relation between
the induced power and the rotor thrust, which is the principal result of momentum
theory. Momentum theory is not concerned with the details of the rotor airloads or
flow, and hence is not sufficient for designing the blades. What momentum theory

39



40 Hover

provides is an estimate of the induced power requirement of the rotor and of the
ideal performance limit.

3.1.1 Actuator Disk

In momentum theory the rotor is modeled as an actuator disk, which is a circular
surface of zero thickness that can support a pressure difference (but no velocity
change) and thus accelerate the air through the disk. The loading is assumed to be
steady, but in general can vary over the surface of the disk. The actuator disk can also
support a torque, which imparts angular momentum to the fluid that passes through
the disk. The task of the analysis is to determine the influence of the actuator disk
on the flow and, in particular, to find the induced velocity and power for a given
thrust. Momentum theory solves this problem using the basic conservation laws of
fluid motion; vortex theory uses the Biot-Savart law for the velocity induced by
the wake vorticity; and potential theory solves the fluid dynamic equations for the
velocity potential or stream function. For the same model, all three methods must
give identical results.

The actuator disk model is only an approximation to the actual rotor. Distribut-
ing the rotor blade loading over a disk is equivalent to considering an infinite number
of blades. The detailed flow of the actuator disk is thus very different from that of
a real rotor with a small number of blades. The real flow field is actually unsteady,
with a wake of discrete vorticity corresponding to the discrete loading. The actual
induced power is therefore larger than the momentum theory result because of the
nonuniform and unsteady induced velocity. The approximate nature of the actuator
disk model imposes a fundamental limit on the applicability of extended momentum
or vortex theories. The principal use of the actuator disk model is to obtain a first
estimate of the wake-induced flow, and hence of the ideal induced power.

3.1.2 Momentum Theory in Hover

Consider an actuator disk of area A and total thrust T (Figure 3.1). The loading is
assumed to be distributed uniformly over the disk. Let v be the induced velocity at
the rotor disk and w the wake-induced velocity infinitely far downstream. A well-
defined, smooth slipstream is assumed, with v and w uniform over the slipstream
cross-section. The rotational energy in the wake due to the rotor torque is neglected
for now. The fluid is incompressible and inviscid. The mass flux through the disk
is ṁ = ρAv; by conservation of mass, the mass flux is constant all along the wake.
Momentum conservation equates the rotor force to the rate of change of momentum,
which is the momentum flowing out at station 1 less the momentum flowing in at
station 0 (Figure 3.1). The flow far upstream is at rest for the hovering rotor, so
T = ṁv. Energy conservation equates the work done by the rotor to the rate of
change of energy in the fluid, which is the kinetic energy flowing out at station 1
less the kinetic energy flowing in at station 0; hence Tv = 1

2 ṁw2. Eliminating T/ṁ
from the momentum and energy conservation relations gives w = 2v; the induced
velocity in the far wake is twice that at the rotor disk. This is the same result as for
an elliptically loaded fixed wing. Since the mass flux and density are constant, the
area of the slipstream in the far wake (station 1) is 1

2 A.
Alternatively, this result can be obtained using Bernoulli’s equation, which is an

integrated form of the energy equation for the fluid. The pressure in the far wake
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Figure 3.1. Momentum theory flow model for hover.

(station 1) is assumed to be at the ambient level p0; this is equivalent to neglecting
the swirl in the wake. Applying Bernoulli’s equation between stations 0 and 2 gives
p0 = p2 + 1

2ρv
2; applying it between stations 3 and 1 gives p3 + 1

2ρv
2 = p0 + 1

2ρw
2.

Combining these equations, we obtain

T/A = p3 − p2 = 1
2
ρw2 (3.1)

With ṁ = ρAv, this becomes

Tv = 1
2

ṁw2 (3.2)

as before. The total pressure in the fully developed wake is p0 + 1
2ρw

2 = p0 + T/A.
The increase in total head due to the actuator disk is equal to the disk loading T/A,
which for helicopters is very small compared to p0. Therefore, the over-pressure in
the helicopter wake is small, although the wake velocities can still be fairly high. The
pressure in the slipstream falls from p0 to p2 = p0 − 1

2ρv
2 = p0 − 1

4 T/A just above
the disk, and from p3 = p0 + 3

2ρv
2 = p0 + 3

4 T/A just below the disk to p0 in the far
wake. So there is always a falling pressure except across the rotor disk, where the
pressure increase accelerates the flow.

Momentum theory thus relates the rotor thrust to the induced velocity at the
rotor disk by T = ṁv = 2ρAv2. The induced velocity in hover is

v =
√

T/2ρA (3.3)

The induced power for hover is

P = Tv = T
√

T/2ρA (3.4)

In coefficient form, based on the rotor tip speed�R, these results becomeλ = √
CT/2

and CP = CTλ = C3/2
T /

√
2. The subscript “h” designates the ideal induced velocity

of the hovering rotor: vh = √
T/2ρA or λh = √

CT/2.
Momentum theory gives the induced power per unit thrust for a hovering rotor:

P/T = v =
√

T/2ρA (3.5)
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Figure 3.2. Momentum theory flow model for climb.

This relation determines the basic characteristics of the helicopter. Equation 3.5 is
based on the fundamental physics of fluid flow, which imply that for a low inflow
velocity and hence low induced power the air must be accelerated through the disk
by a small pressure differential. To hover efficiently requires a small value of P/T
(for low fuel and engine weight), which demands that the disk loading T/A be low.
With T/A = 5 to 15 lb/ft2, the helicopter has the lowest disk loading and therefore
the best hover performance of all VTOL aircraft. The parameter determining the
induced power is really T/ρA, so the induced velocity increases with altitude and
temperature, as the air density decreases. The dynamic pressure increase in the far
wake remains T/A, independent of density.

As for fixed wings, uniform induced velocity gives the minimum induced power
for a given thrust. This can be proved using the calculus of variations, as follows.
The problem is to minimize the kinetic energy of the wake KE ∝ ∫

v2dA for a
given thrust or wake momentum

∫
v dA. Write the induced velocity, v = v + δv, as

a mean or uniform value v plus a perturbation δv, for which
∫
δv dA = 0. Then∫

v2dA = v2A + ∫ (δv)2dA, and minimum kinetic energy requires that δv = 0 over
the entire disk; hence that the inflow be uniform. With nonuniform inflow the areas
on the disk with high local loading cost more power than is gained from the areas
with low loading.

3.1.3 Momentum Theory in Climb

Now consider momentum theory for a rotor in a vertical climb at velocity V (Fig-
ure 3.2). The basic assumptions are the same as for the hover analysis: actua-
tor disk model, uniform loading, a well-defined and smooth slipstream, uniform
induced velocity, slipstream circumferential velocities neglected, and ideal fluid. The
mass flux is now ṁ = ρA(V + v). Momentum and energy conservation give T =
ṁ(V + w)− ṁV = ṁw and T (V + v) = 1

2 ṁ(V + w)2 − 1
2 ṁV 2 = 1

2 ṁw(w + 2V ),
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respectively. The momentum conservation equation is independent of V . Elim-
inating T/ṁ gives again w = 2v, as for hover; the induced velocity in the far
wake is twice that at the rotor disk. The total pressure in the far wake is now
p0 + 1

2ρ(V + w)2 = p0 + 1
2ρV 2 + T/A.

For the climbing rotor, the relation between the thrust and induced velocity
becomes T = ṁw = 2ρA(V + v)v. Again define vh as

vh =
√

T/2ρA (3.6)

so that v(V + v) = v2
h, which has the solution

v = −V
2

+
√(V

2

)2 + v2
h (3.7)

Thus climb reduces the induced velocity v. The induced and climb power is

P = T (V + v) = T

(
V
2

+
√(V

2

)2 + v2
h

)
(3.8)

Finally, the velocity in the far wake is V + w = V + 2v =
√

V 2 + 4v2
h. For very large

climb rates the induced velocity v is approximately v2
h/V , and the power approaches

only the climb power TV . For small rates of climb (V � vh, which is generally true
for helicopter rotors), the induced power P is approximately equal to T (V/2 + vh) =
Ph + 1

2 TV . The power required increases with V , but the climb power increment is
reduced by the induced power decrease.

3.2 Hover Power

Momentum theory gives the induced power of an ideal rotor in hover,CPi = C3/2
T /

√
2.

A real rotor has other power losses as well, in particular the profile power due to
the drag of the blades in a viscous fluid. There is also an induced power due to the
nonuniform inflow of a non-optimum rotor design. The swirl in the wake due to the
rotor shaft torque is another loss, although it is usually small for helicopter rotors.
Finally, the hovering rotor has tip losses as a result of the discreteness and periodicity
in the wake, when the number of blades is finite. The distribution of the power losses
of the rotor in hover is approximately as follows:

Power component At peak efficiency Off peak

Ideal induced power 74% to 78% 65%
Profile power 10% to 19% 25%
Nonuniform inflow 5% to 7% 6%
Swirl in the wake less than 1% less than 1%
Tip losses 2% to 4% 3%

The main rotor absorbs most of the helicopter power, but there are other losses as
well. The engine and transmission absorb 3% to 5% of the total power with turbine
engines, or 5% to 9% with reciprocating engines. The turbine engine has larger
transmission losses since its high rotational speed requires more reduction, whereas
the piston engine has significant losses for cooling. The tail rotor absorbs about
7% to 9% of the total helicopter power, and there is an additional loss of about
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2% due to aerodynamic interference (rotor-fuselage and rotor-rotor). A tandem
rotor helicopter has about the same total loss of 9% to 11%, which is primarily due
to aerodynamic interference but also includes some additional drive train losses.
The tail rotor and aerodynamic interference power losses are much smaller for the
helicopter in forward flight. Because of the fuselage download produced by the rotor
wake, the rotor thrust is 4% to 7% (or more) larger than the gross weight, producing
a corresponding increase in required power.

3.3 Figure of Merit

The figure of merit is a measure of rotor hovering efficiency, defined as the ratio
of the minimum possible power required to hover to the actual power required to
hover. Thus the figure of merit compares the actual rotor performance with the
performance of an ideal rotor, which has only the inescapable induced power:

M = Pideal

P
(3.9)

Momentum theory gives the optimum induced power as Pideal = Tv = T
√

T/2ρA.
Hence the figure of merit is

M = T
√

T/2ρA
P

= C3/2
T /

√
2

CP
(3.10)

The figure of merit M = Tv/P is similar to the propulsive efficiency η = propulsive
power/input power = TV/P. The latter is appropriate for a propulsive device but
not for a hovering rotor, where the useful power is that required to produce static
thrust. The generalized efficiency factor η = T (V + v)/P can be used over the entire
range of axial flow.

In terms of the induced and profile power contributions to the rotor power,
the figure of merit can be written as M = CPideal/(CPi + CPo). Usually the profile
power CPo is at least 10% to 20% of the total power, and the induced power CPi is
10% to 15% higher than the ideal power. Thus the figure of merit is a measure of
the ratio of the profile power to the induced power. However, the figure of merit
can be misleading, since M is not directly concerned with the total hover power.
By increasing the disk loading T/A, the induced power is increased relative to
the profile power, resulting in a higher figure of merit. However, the total power
required also then increases, which is unlikely to be considered an improvement in
the rotor efficiency. The use of the figure of merit to compare rotors is thus best
restricted to constant disk loading. Within this limitation M is a valuable measure
of the rotor aerodynamic efficiency. The figure of merit is particularly useful for
comparing rotors with different airfoil sections and for examining the influence of
other design parameters such as twist or planform.

The ideal figure of merit is M = 1. M is lower for a real rotor because of profile
and non-optimum induced power losses. The figure of merit for a given rotor is
typically presented as a function of the blade loading CT/σ (the ratio of the rotor
thrust coefficient to solidity), which is a measure of the mean angle-of-attack of the
blade. For current well-designed rotors the maximum figure of merit is typically
M = 0.74 to 0.78. An inefficient rotor could have a maximum figure of merit as low
as M = 0.50. The figure of merit decreases at low CT/σ because of the reduced disk
loading, and at high CT/σ because of stall (which increases the profile power). At
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the design loading of the rotor, a figure of merit of M = 0.70 is typical. For sea level
density, the definition of the figure of merit gives T/P = 37.9M/

√
T/A when the

power loading T/P is in lb/hp and the disk loading T/A is in lb/ft2. Thus a helicopter
disk loading of 5 to 15 lb/ft2 implies a corresponding power loading of 12 to 7 lb/hp.

3.4 Extended Momentum Theory

The most important and useful results of momentum theory can be obtained by
quite simple analyses, as in section 3.1. A more detailed analysis is not easily justified
because of the basic limitations of the actuator disk model, yet there are some useful
things to be learned from an extended momentum theory for axial flow. Momentum
theory was extensively developed in the early part of the 20th century for airplane
propellers. Here we examine momentum theory more rigorously for the rotor in
climb or hover, including the effects of swirl in the rotor wake.

The integral conservation laws of fluid dynamics are as follows:

ρ

∫
q · n dS = 0 (3.11)

ρ

∫
q q · n dS +

∫
p n dS = Fbody (3.12)

ρ

∫
r × q q · n dS +

∫
p r × n dS = Mbody (3.13)∫

(p + 1
2
ρq2)q · n dS = dE

dt
(3.14)

for mass, momentum, angular momentum, and energy conservation, respectively (in
vector form). The flow is assumed to be steady (in a frame moving with the rotor) and
incompressible, and there are no viscous losses on the surface of a body in the fluid.
Here dS is the differential area at r of a surface enclosing the fluid, n is the outward
normal to the surface, and q is the velocity of the fluid. The force and moment on
the body in the fluid (the rotor in this case) are Fbody and Mbody, and dE/dt is the
power being added to the flow. Application of the mass and energy conservation
laws to a stream tube gives Bernoulli’s equation: p + 1

2ρq2 = constant, if no energy
is added. The momentum theory extensions to be developed here are based on the
application of these conservation relations to a rotor in axial flow.

Momentum theory is a calculus of variations problem. A function of the rotor
radius r must be found, such as the induced velocity v(r), that minimizes the power
for a given thrust. Consider expressions for the power and thrust as integrals over
the rotor disk: P = ∫

F (r, v)dA and T = ∫
G(r, v)dA, where dA = 2πr dr for axisym-

metric conditions. Using a Lagrange multiplier λ, let I = P − λT . The solution v(r)
for minimum P subject to the constraint T is given by the stationary values of the
first variation of I, namely

δI = δ
∫
(F − λG)dA =

∫ (
∂F
∂v

− λ∂G
∂v

)
δv dA = 0 (3.15)

Thus the optimum v(r) is given by the solution of the Euler equation,

∂

∂v

(
F − λG

)
= 0 (3.16)
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Figure 3.3. Flow model for rotor in hover or climb.

If the integrands F and G are independent of r, the Euler equation is of the form

function(v) = constant (3.17)

which has the solution v = constant.

3.4.1 Rotor in Hover or Climb

Consider a rotor with thrust T operating in hover or in vertical climb at speed
V (Figure 3.3). The rotor is represented by an actuator disk, which can support
a pressure jump but not an axial velocity discontinuity. A well-defined, smooth
slipstream is assumed, and for now the energy losses due to the angular momentum
in the wake are neglected. Consider a control volume bounded by the slipstream and
the disks of area S0 and S1 far upstream and downstream, respectively. The pressure
at station 0 is p0, and the velocity is V . At station 1, far downstream, the pressure
is again p0 since the wake swirl is neglected. Energy conservation then shows that
outside the slipstream at station 1 the velocity is everywhere equal to V . Mass and
momentum conservation give

VS0 =
∫
(V + v)dA =

∫
(V + w)dS1 (3.18)

T =
∫
�p dA =

∫
ρ(V + w)w dS1 (3.19)

where�p is the pressure difference across the rotor disk. There is a net pressure reac-
tion on the ends of the control volume equal to p0(S0 − S1), which is exactly canceled
by the pressure on the slipstream, as can be established by considering momentum
conservation for the fluid outside the slipstream. Energy conservation gives

P =
∫
�p(V + v)dA =

∫
1
2
ρ(V + w)3dS1 − 1

2
ρV 3S0 (3.20)



3.4 Extended Momentum Theory 47

or, using mass conservation,

P =
∫
�p(V + v)dA =

∫
1
2
ρ(V + w)(2Vw + w2)dS1 (3.21)

The first expression is the work done in moving the air through the disk, and the
second is the kinetic energy added to the slipstream. Subtracting TV from P gives∫
�pv dA = ∫ 1

2ρ(V + w)w2dS1, which can be interpreted as
∫
v dT = ∫ 1

2w dT .
Thus the rotor thrust and power have been expressed in terms of the induced velocity
in the far wake,w(r), which in general can vary over the wake section. Consider now
the following optimization problem: find the functionw(r) that minimizes the power
P = ∫ 1

2ρ(V + w)(2Vw + w2)dS1 for a given thrust T = ∫
ρ(V + w)w dS1. This is a

calculus of variations problem with a constraint. Since the integrands of P and T are
independent of r, the solution of the Euler equation is simply w = constant.

Bernoulli’s equation applied along streamlines above and below the rotor gives

p0 + 1
2
ρV 2 = p2 + 1

2
ρ(V + v)2 (3.22)

p2 +�p + 1
2
ρ(V + v)2 = p0 + 1

2
ρ(V + w)2 (3.23)

Combining these equations, we obtain �p = 1
2ρ(2Vw + w2). Since the wake-

induced velocity w is uniform, the disk loading �p is also uniform. At the rotor
disk, p2 + 1

2ρ(V + v)2 = constant, so the pressure and induced velocity there are
not necessarily uniform. The assumptions of uniform �p and w made in section 3.1
are thus validated, but momentum theory does not provide the distribution of the
induced velocity v at the rotor disk. This result is analogous to the Trefftz plane
analysis of a fixed wing, which shows that the minimum induced drag is obtained
with uniform downwash in the far wake and elliptical loading, but tells nothing
about the induced angle-of-attack at the wing. Lifting-line theory or lifting-surface
theory is required to find the induced angle-of-attack, which is needed to design
the wing to achieve the optimum loading. From lifting-line theory the downwash
at the wing is one-half the downwash at the far wake, and therefore the optimal
solution can be used directly in the wing design. Similarly with rotors the inflow is
assumed to be also uniform at the disk, and v = 1

2w. The assumption of uniform
inflow for the rotor in axial flight is consistent with the accuracy of the actuator disk
model.

For uniform loading �p and far wake inflow w, the conservation relations
become

(V + v)A = (V + w)S1 (3.24)

T = �p A = ρ(V + w)wS1 (3.25)

P = (V + v)T =
(

V + 1
2
w

)
T (3.26)

where v = ∫
v dA/A is the mean induced velocity at the rotor disk. The energy

balance then gives v = 1
2w, so that, although the distribution of v is not known, the

mean v has the same value as that obtained earlier assuming uniform inflow. When
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the far wake parameters S1 and w are eliminated, the rotor thrust and power are
given by

T = 2ρA(V + v)v (3.27)

P = T (V + v) (3.28)

This is the same result as in section 3.1.3, here given in terms of the mean induced
velocity.

Replacing the integral conservation relations by their differential forms is cus-
tomary:

(V + v)dA = (V + w)dS1 (3.29)

dT = �p dA = ρ(V + w)w dS1 (3.30)

dP = �p(V + v)dA = 1
2
ρ(V + w)(2Vw + w2)dS1 (3.31)

The energy equation then gives v = 1
2w, and eliminating dS1 and w gives

dT = 2ρ dA(V + v)v (3.32)

dP = dT (V + v) (3.33)

There is no strict justification for this differential form of momentum theory, which
assumes that there is no mutual interference of the disk elements. The key to the
result is the assumption that v = 1

2w is valid for individual streamlines, which allows
the thrust and power to be expressed entirely in terms of v. The differential form of
momentum theory can be applied to rotors with nonuniform loading and inflow.

3.4.2 Swirl in the Wake

Consider next the effect of the swirl velocities in the rotor wake, which are due to
the rotor induced torque. For shaft-driven rotors, the power and torque are related
by P = �Q, where � is the rotor rotational speed. The rotor must therefore add
rotational kinetic energy to the wake corresponding to the torque. For helicopter
rotors the swirl energy is small compared to the axial downwash energy, so only a
small correction to the induced power is sought. Figure 3.4 shows the flow model
considered. There are circumferential velocities u(r) just below the rotor disk and
u1(r1) in the far wake. Angular momentum conservation inside the slipstream shows
that there can be no swirl velocities above the disk; that is, the flow remains irro-
tational until it passes through the rotor. When there is a rotational velocity in the
far wake, the pressure no longer has the static value p0; instead dp1/dr1 = ρu2

1/r1,
and p1 = p0 at the boundary of the slipstream (r1 is the radial coordinate at station
1). This pressure gradient provides the centripetal force required to support the
rotational velocity of the fluid inside the wake.

Requirements for the conservation of mass, axial momentum, angular momen-
tum, and energy give the following relations:

VS0 =
∫
(V + v)dA =

∫
(V + w)dS1 (3.34)

T =
∫
�p dA =

∫
ρ(V + w)w dS1 +

∫
(p1 − p0)dS1 (3.35)
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Figure 3.4. Flow model including swirl velocities in the wake.

Q =
∫
ρ(V + v)ur dA =

∫
ρ(V + w)u1r1dS1 (3.36)

P =
∫
�p(V + v)dA +

∫
1
2
ρu2(V + v)dA (3.37)

=
∫

1
2
ρ(2Vw + w2 + u2

1)(V + w)dS1 +
∫
(p1 − p0)(V + w)dS1 (3.38)

The thrust, torque, and power can be expressed as functionals of the far wake
velocities w and u1 alone, by using

p1 − p0 = −
∫ R1

r1

ρ
u2

1

r1
dr1 (3.39)

The resulting optimization problem – finding w and u1 to minimize P subject to
the constraints of the given T and of Q = P/� – is more complex than is needed to
estimate the power losses due to swirl.

To formulate a simpler optimization problem, note that from P = �Q there
follows P = ∫

ρ(V + v)u�r dA. Then equating the expressions for power gives

∫
�p(V + v)dA =

∫
ρ(V + v)

(
�r − 1

2
u
)

u dA (3.40)

This relation can be interpreted as equating alternative expressions for the work
performed,

∫
(V + v)dT = ∫

(�− 1
2 u/r)dQ. Based on the results of section 3.4.1,

the approximation dT = �p dA ∼= ρ(V + v)2v dA is used. The thrust can then be
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written T = ∫
2ρ(V + v)v dA, and the differential form of P = �Q becomes simply

2(V + v)v = (�r − 1
2

u)u (3.41)

Thus the momentum theory for the rotor with swirl in the wake is formulated as
follows: minimize the power P for a given thrust T :

P =
∫
ρ(V + v)u�r dA (3.42)

T =
∫

2ρ(V + v)v dA (3.43)

subject to the constraint P = �Q. The Euler equation for this calculus of variations
problem,

(V + v)�r
�r − u

+ u�r
2V + 4v

= constant = (V + v0)

(
V + 3v0

V + 2v0

)
(3.44)

together with equation 3.41 determine the inflow and swirl velocities at the rotor
disk. The constant in the Euler equation is written such that v → v0 at large r
(small u).

Equations 3.41 and 3.44 can be written in terms of v/v0 and û = u/�r as functions
of �r/v0 and V/v0. For hover, the implicit solution is

�r
v0

= 3(1 − û)
√
(2 − û)û

û(3 − 2û)
(3.45)

v

v0
= 3(1 − û)(2 − û)

2(3 − 2û)
(3.46)

This scaled solution is plotted in Figure 3.5 in the form v/v0 and u/v0 as a function
of r/R, which requires specifying λ0 = v0/�R = 0.05. An approximate solution

v

v0
= (�r)2

(�r)2 + √
2v2

0

(3.47)

u
v0

= 2�r v0

(�r)2 + √
2v2

0

(3.48)

is accurate for large r (see Figure 3.5). Since this approximation gives u�r = 2v0v,
the hover power is P = ∫

ρvu�r dA = Tv0. This approximate solution for v can be
used to evaluate the thrust:

T =
∫

2ρv2dA = 2ρv2
0π

∫ R

0

[
(�r)2

(�r)2 + √
2v2

0

]2

2r dr (3.49)

= 2ρAv2
0

[
1 − 2

√
2λ2

0 ln

(
1 + 1√

2λ2
0

)
+

√
2λ2

0

1 + √
2λ2

0

]
(3.50)

where λ0 = v0/�R. Then v0 can be obtained from vh = √
T/2ρA:

v2
h

∼= v2
0

[
1 + 2

√
2λ2

h ln(
√

2λ2
h)
]

= v2
0

[
1 + 2

CT√
2

ln
CT√

2

]
(3.51)
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Figure 3.5. Radial distribution of inflow v and swirl u in hover (for λ0 = 0.05).

The factor in brackets is negative, so v0 > vh. Thus including swirl, the hover power
is P = κsT

√
T/2ρA, where

κs =
[

1 + 2
CT√

2
ln

CT√
2

]−1/2

(3.52)

For typical CT , κs
∼= 1.02, so there is about a 2% increase in the induced velocity and

induced power because of swirl in the wake, or about a 1% increase in the total rotor
power. Using v0

∼= vh, the velocities are

v ∼= vh
(�r)2

(�r)2 + √
2v2

h

(3.53)

u ∼= vh
2�r vh

(�r)2 + √
2v2

h

(3.54)

and the loading �p = dT/dA = 2ρv2 is

�p ∼= T
A

[
(�r)2

(�r)2 + √
2v2

h

]2

(3.55)

The inflow and loading distributions are nearly uniform except at the root, inboard
of say 20%R. Equation 3.48 for the swirl has a peak value at �r = 4

√
2vh, or about

r = 6%R; the exact solution has a lower peak, which is more outboard (Figure 3.5).
Vortex theory (see section 3.7) shows that for a uniformly loaded rotor the wake
vorticity is distributed on the slipstream boundary and in a line vortex along the axis
with circulation γ = 2πT/ρA�. The present solution for the swirl velocity at large
r is u ∼= 2v2

h/�r = T/ρA�r = γ /2πr, consistent with vortex theory.
The previous paragraphs derived the wake swirl velocity due to the rotor-

induced torque. The rotor also has a profile power loss, caused by the viscous drag
of the blades, and hence a profile torque that adds more rotational kinetic energy to
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the wake. In terms of the blade section drag-to-lift ratio cd/c�, the profile power can
be written as

Po =
∫
�r dD =

∫
�r

cd

c�
dT =

∫
�r

cd

c�
2ρ(V + v)v dA (3.56)

Then the differential form of P = �Q becomes

2(V + v)v + 2
cd

c�
v�r = (�r − 1

2
u)u (3.57)

replacing equation 3.41.
In summary, except for very near the rotor axis, the momentum theory solution

consists of uniform inflow v, uniform loading�p, and swirl u due to a line vortex on
the axis. The influence of the swirl velocities in the wake is small outboard of about
20% radius, and so can generally be neglected for helicopter rotors.

3.5 Blade Element Theory

Blade element theory calculates the forces on the blade caused by its motion through
the air, and hence the forces and performance of the entire rotor. Blade element the-
ory is lifting-line theory applied to the rotating wing. Each blade section is assumed
to act as a two-dimensional airfoil to produce aerodynamic forces, with the influence
of the wake and the rest of the rotor contained entirely in an induced angle-of-attack
at the section. The solution thus requires an estimate of the wake-induced velocity at
the rotor disk, which is provided by momentum theory, vortex theory, or nonuniform
inflow calculations. Lifting-line theory is based on the assumption that the wing has a
high aspect ratio. For a rotor, the aspect ratio of a single blade is related to the solid-
ity and number of blades by AR = R/c = (N/π )σ . For low disk loading helicopter
rotors, the assumption of high aspect ratio is usually valid. However, although the
geometric aspect ratio can be large, in areas where the loading or induced velocity
has high gradients the effective aerodynamic aspect ratio can still be small. Examples
of such high gradients for the rotating wing include blade sections near the tip or
near an encounter with a vortex from a preceding blade.

Blade element theory is the foundation of most analyses of helicopter aerody-
namics because it deals with the detailed flow and loading of the blade and hence
relates the rotor performance and other characteristics to the rotor design parame-
ters. In contrast, momentum theory (or any actuator disk analysis) is a global analysis,
which provides useful results but cannot alone be used to design the rotor.

3.5.1 History of Blade Element Theory

The early development of rotary-wing theory followed two separate lines, momen-
tum theory and blade element theory, which were finally brought together in the
1920s. The names “momentum theory” and “blade element theory” in fact had
somewhat different meanings from the current usage, referring in the early work
to separate and seemingly independent approaches to airscrew analysis. The key
factor was the concept of induced drag, which fluid dynamicists were still working
to understand for both fixed and rotating wings in the early decades of the 20th
century. The concept of an induced power (the power required to produce lift on a
three-dimensional wing) and its association with the velocity induced at the wing by
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the wake vorticity had to be fully developed before an accurate calculation of the
rotor loading was possible.

The origins of blade element theory can be traced to the work of William Froude
in 1878, but the first major treatment was developed by Stefan Drzewiecki between
1892 and 1920; see Glauert (1935). Drzewiecki considered the blade sections to act
independently, but he was uncertain of the aerodynamic characteristics that should
be used for the airfoils. Thus he proposed to obtain the required airfoil characteristics
from measurements on a series of propellers. This was typical of the early approaches
to blade element theory. These theories used only the velocities�r andV at the blade
section, which are due to the rotation and axial velocity of the rotor, respectively,
and then considered what airfoil characteristics to use. Momentum theory describes
the velocity at the rotor disk as V + v, which is greater than the free stream velocity
V because of the rotor lift (and also a circumferential velocity at the disk due
to the rotor torque). However, Drzewiecki maintained that there was no logical
connection between the momentum theory axial velocity and the velocity actually
experienced by the blade section. The former is a mean velocity, whereas the latter
is the local value, and a rigorous momentum theory analysis does not in fact give
information about the induced velocity at the rotor disk (momentum theory is really
concerned with the velocities in the far wake). Lacking a sound theoretical treatment
of the velocities at the rotor disk, Drzewiecki considered only the terms �r and V .
When two-dimensional airfoil characteristics were used in such an analysis, the
calculated performance exhibited a significant error that was therefore attributed to
the airfoil characteristics. For fixed wings the effective aerodynamic characteristics
clearly varied with aspect ratio, so Drzewiecki proposed that three-dimensional wing
characteristics (for the appropriate aspect ratio) be used in the rotor blade element
theory, with any remaining discrepancies to be established from tests on a series
of propellers. The results of this theory had the right general behavior, but were
quantitatively inaccurate.

There were several attempts from 1915 to 1919 to use the increased axial velocity
from momentum theory in a blade element analysis; none developed to the point
of using the two-dimensional airfoil characteristics, however, so all resorted at some
stage to experiments to establish what characteristics to use. A. Betz in 1915 used
the V + v result of momentum theory and remarked that the appropriate aspect
ratio to use was higher than that of the actual blade. While recognizing that the
aspect ratio was tending toward infinity, he still considered the correct value to
depend on the blade planform. G. de Bothezat in 1918 also used the V + v result of
momentum theory (and the corresponding circumferential velocity at the disk), but
he adopted Drzewiecki’s plan of a series of special propeller tests to determine the
airfoil characteristics. A. Fage and H. E. Collins in 1917 used an empirical fraction of
V + v; they retained the airfoil characteristics of a wing with aspect ratio 6, and hence
a correction to the induced velocity was required to handle aspect ratio variations.
Thus blade element theory remained on an empirical basis with regard to both the
magnitude of the interference flow and the appropriate airfoil characteristics.

A correct accounting for the influence of the propeller wake on the aerodynamic
environment at the blade section followed the development of Prandtl’s wing theory,
which gave a clear explanation of the role of the wake-induced velocity at the wing.
Prandtl, Lanchester, and others developed the concept that the lift on an airfoil is due
to a bound circulation, resulting in trailed vorticity in the wake that induces a velocity
at the wing. Lifting-line theory for fixed wings involved a calculation of the induced
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Figure 3.6. Blade section aerodynamics.

velocity from the vortex wake properties. Thus rotary-wing theory also turned to
consideration of the vortex wake to define the velocities seen by a blade section.
The resulting analysis is called vortex theory, and through this approach rather
than momentum theory the induced velocity was finally incorporated correctly into
blade element theory. For a rotor or propeller, the vortices in the wake are trailed
in helical paths rather than straight back as for fixed wings. This transcendental
geometry makes the mathematical task of calculating the induced velocity much
more difficult than for fixed wings. Consequently vortex theory, like momentum
theory, frequently used the actuator disk model of the rotor, for which analytical
solutions were possible.

A general airscrew theory was developed in the early 1920s on the basis of vortex
theory and Prandtl’s wing theory. By applying the concept of induced velocity, the
aerodynamic environment at the rotor disk was established from the vortex theory
results. The appropriate airfoil characteristics for this analysis are those of the two-
dimensional wing. Later work established that for the same model the momentum
theory and vortex theory results are indeed identical, so blade element theory is
now usually derived using momentum theory results for the induced velocity. In
the early development of rotary-wing analysis, however, the vortex concepts of
Prandtl had so great an impact that vortex theory completely superseded momentum
theory. Momentum theory lacked the basis for understanding the induced velocity
at the rotor disk, which was required to complete the development of blade element
theory. As a result, vortex theory became regarded as the more reliable and logical
foundation for both fixed- and rotary-wing analyses.

3.5.2 Blade Element Theory for Vertical Flight

Blade element theory is based on the lifting-line assumption; for the present deriva-
tion we also assume low disk loading and neglect stall and compressibility effects in
order to obtain an analytical solution. Figure 3.6 defines the geometry, velocities,
and forces of the blade section. The blade section has a pitch angle θ , measured from
the plane of rotation to the airfoil zero-lift line. The air velocity seen by the blade has
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components uT and uP, which are tangent to and perpendicular to the disk plane,
respectively. The resultant velocity magnitude and inflow angle are then given by

U =
√

u2
T + u2

P (3.58)

φ = tan−1 uP/uT (3.59)

The aerodynamic angle-of-attack of the blade is α = θ − φ. The air flow at the blade
section produces lift and drag forces, L and D, which are normal to and parallel to
the resultant velocity, respectively. The components of the total aerodynamic force
normal to and parallel to the disk plane are Fz and Fx. Writing the section forces in
terms of the lift and drag coefficients gives

L = 1
2
ρU2cc� (3.60)

D = 1
2
ρU2ccd (3.61)

where ρ is the air density and c is the blade chord. In general, the section coefficients
c� and cd are complicated functions of the angle-of-attack, Mach number, and other
parameters, but quite simple forms are used here. Resolving the aerodynamic forces
normal and parallel to the disk plane gives

Fz = L cosφ − D sinφ (3.62)

Fx = L sinφ + D cosφ (3.63)

Finally, the elemental thrust, torque, and power on the rotor blade are

dT = NFzdr (3.64)

dQ = NFxr dr (3.65)

dP = �dQ = NFx�r dr (3.66)

where N is the number of blades. The total forces on the rotor are obtained by
integrating over the blade span from root to tip.

For the rotor in hover or vertical flight, the normal velocity uP consists of the
climb velocity V (zero for hover) and the induced velocity v; the in-plane velocity uT

is due only to the rotation of the blades at rate�. Therefore uP = V + v and uT = �r.
Now from the assumption of low disk loading for the helicopter rotor, the inflow
ratio λ = (V + v)/�R is small. The momentum theory result for hover typically gives
λh = 0.05 to 0.07. Then uP/uT = (V + v)/�r = λ(R/r) is also small, except near the
blade root, where the dynamic pressure is low and thus the loads are negligible
anyway. Therefore the small angle assumption is appropriate for helicopter rotors,
namely φ, θ , α � 1, from which φ ∼= uP/uT , cosφ ∼= 1, sinφ ∼= φ, and U ∼= uT . The
next assumption is that stall and compressibility effects are negligible, so that the
lift coefficient is linearly related to the angle-of-attack: c� = aα. Here a is the slope
of the blade two-dimensional lift curve; typically a = 5.7, including real flow effects.
Then the blade section forces reduce to

L ∼= 1
2
ρu2

T ca(θ − uP/uT ) (3.67)

D ∼= 1
2
ρu2

T ccd (3.68)
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and

dT ∼= NL dr (3.69)

dQ ∼= N(Lφ + D)r dr (3.70)

Next, all quantities are made dimensionless, normalized with respect to the air
density, rotor speed, and rotor radius (ρ, �, and R). In coefficient form, the results
for the contribution of a blade section to the rotor thrust and power are

dCT = σa
2

(
θu2

T − uT uP
)

dr = σa
2

(
θr2 − λr

)
dr (3.71)

dCP = dCQ =
[σa

2

(
θuT uP − u2

P

)+ σcd

2
u2

T

]
r dr (3.72)

=
[σa

2

(
θrλ− λ2)+ σcd

2
r2
]

r dr (3.73)

where λ = (V + v)/�R is the inflow ratio and σ = Nc/πR is the solidity ratio. In
general this σ is a function of radius, except for constant-chord blades. Given the
blade geometry, inflow, and section drag, these expressions can be integrated numer-
ically over the blade span. With certain additional assumptions the integration can
be performed analytically – for example, with uniform inflow, constant chord, linear
twist, and constant drag coefficient.

3.5.2.1 Rotor Thrust

Blade element theory gives the rotor thrust coefficient as

CT =
∫ 1

0

σa
2

(
θr2 − λr

)
dr (3.74)

For a blade with constant chord and linear twist (θ = θ0 + rθtw = θ.75 + (r −
0.75)θtw), and assuming uniform inflow (λ = constant), we obtain

CT = σa
2

(
θ.75

3
− λ

2

)
(3.75)

where θ.75 is the pitch of the blade at 75% radius.
For uniform inflow, constant chord, and a twist distribution given by θ = θt/r,

the thrust coefficient is

CT = σa
4
(θt − λ) (3.76)

or with φ = λ/r = φt/r

CT = σa
4
(θt − φt ) = σa

4
αt (3.77)

where the subscript “t” refers to the value at the blade tip. This twist distribution,
although not physically realizable at the root, gives uniform inflow with the constant-
chord blades. It is called the ideal twist distribution, since momentum theory shows
that the minimum induced power is obtained with uniform inflow.
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3.5.2.2 Induced Velocity

Blade element theory gives the rotor thrust as a function of the pitch angle and
inflow ratio. The induced velocity is required if CT is to be expressed as a function
of θ alone. Momentum theory gives the following induced velocity for the rotor in
hover or vertical climb:

λ = λc

2
+
√(

λc

2

)2

+ CT

2
(3.78)

where λc = V/�R. In hover λ = √
CT/2, so for a constant chord, linearly twisted

blade equation 3.75 can be solved for the induced velocity:

λ =
√

CT

2
= σa

16

[√
1 + 64

3σa
θ.75 − 1

]
(3.79)

or

θ.75 = 6CT

σa
+ 3

2

√
CT

2
(3.80)

The first term in equation 3.80 corresponds to the mean angle-of-attack of the rotor
blade, whereas the second term is the additional pitch required because of the
induced inflow angle φ. These relations allow λ and CT to be obtained for a given
collective pitch θ.75, or alternatively λ and θ.75 for a given thrust.

For a constant chord, ideally twisted blade the momentum theory value for the
inflow ratio and equation 3.76 give

λ = σa
16

[√
1 + 32

σa
θt − 1

]
(3.81)

or

θt = 4CT

σa
+
√

CT

2
(3.82)

3.5.2.3 Power or Torque

The differential power coefficient can be written as

dCP =
[
λ
σa
2

(
θr2 − λr

)+ σcd

2
r3
]

dr = λ dCT + σcd

2
r3 dr (3.83)

hence

CP =
∫
λ dCT +

∫ 1

0

σcd

2
r3 dr (3.84)

The first term in CP is the climb plus induced power, CPc + CPi = ∫
λ dCT , which

arises from the in-plane component of the lift due to the induced angle-of-attack
(dPc + dPi = (V + v)dT). The second term is the profile power CPo, which is due to
the viscous drag forces on the rotor blade.

For uniform inflow the climb plus induced power is simply CPc + CPi = λCT ,
which agrees with the momentum theory result. For vertical flight, λ includes the
inflow due to the climb velocity, λc = V/�R, so that P includes the climb power
P = TV . In hover, the momentum theory result for λ gives CPi = C3/2

T /
√

2. This



58 Hover

induced velocity value is for an ideal rotor. A real rotor with a practical twist and
planform and a finite number of blades has a higher induced power than the minimum
given by momentum theory. One way to calculate the true induced power is to
integrate

∫
λ dCT using the actual induced velocity distribution, which in general

is nonuniform as well as larger than the ideal value. An alternative approach is to
use the momentum theory expression for the induced power, but with an empirical
factor to account for the additional losses of a real rotor:

CPi = κλhCT = κC3/2
T /

√
2 (3.85)

Typically the factor κ has a value around 1.15 (see section 4.1.3.1).
For a constant-chord blade, and assuming a constant drag coefficient cd = cdo,

the profile power coefficient can be evaluated as

CPo = σcdo

8
(3.86)

For an accurate calculation of the profile power, the variation of the drag coefficient
with angle-of-attack and Mach number should be included, which probably requires
a numerical integration. Consider a profile drag polar of the form

cd = δ0 + δ1α + δ2α
2 (3.87)

By properly choosing the constants δ0, δ1, and δ2 the variation of drag with lift
for a given airfoil can be well represented for angles of attack below stall. This
representation for cd was introduced by Sissingh (1939) and Bailey (1941). Bailey’s
numerical example cd = 0.0087 − 0.0216α + 0.400α2 is frequently found in early
helicopter research. See section 8.8 for a further discussion. Then the profile power
coefficient is

CPo =
∫ 1

0

σ

2

[
δ0 + δ1(θ − λ/r)+ δ2(θ − λ/r)2] r3 dr (3.88)

For a constant chord, ideally twisted rotor with uniform inflow this integrates to

CPo = σδ0

8
+ σδ1

6
(θt − λ)+ σδ2

4
(θt − λ)2 = σδ0

8
+ 2δ1

3a
CT + 4δ2

σa2
C2

T (3.89)

using θt − λ = 4CT/σa. Similarly, for a constant chord, linearly twisted blade with
uniform inflow, the profile power is

CPo = σδ0

8
+ σδ1

8

(
θ.75 + 1

20
θtw − 4

3
λ

)
+ σδ2

8

(
θ2
.75 + 1

10
θ.75θtw + 7

240
θ2

tw + 2λ2 − 8
3
θ.75λ

)
(3.90)

The simplest relation for the total hover power of a real rotor is

CP = κC3/2
T√
2

+ σcdo

8
(3.91)

This result gives the basic features of the hover performance and is reasonably
accurate when the appropriate empirical factor κ is used for the induced power and
an appropriate mean drag coefficient cdo is used for the profile power. A plot of the
power coefficient as a function of thrust coefficient (or CP/σ as a function of CT/σ )
is called the rotor polar. For an ideal rotor (no profile power and minimum induced
power, hence a figure of merit of M = 1), the polar is given by CP = κC3/2

T /
√

2. The
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polar for a real rotor has an offset compared to the ideal polar because of the profile
power, and the power increases faster with CT because of the larger induced power.
The figure of merit corresponding to the above expression for the rotor power is

M = CPideal

CPi + CPo
= C3/2

T /
√

2

κC3/2
T /

√
2 + σcdo/8

(3.92)

Even such a simple result leads to some conclusions about the rotor blade design.
Recall that the proper use of the figure of merit is for comparisons of rotors at
constant disk loading. For a given CT , high M requires a low value of σcdo. If the
rotor solidity is too low, however, high angles-of-attack are needed to achieve the
required lift, and as a result the profile drag increases. Therefore the rotor should
have as small a solidity as possible (small chord) with an adequate stall margin. The
blade loading (hence twist and chord) distribution influences both the induced and
profile power, but a more detailed calculation is required to examine such effects.

3.5.3 Combined Blade Element and Momentum Theory

The rotor performance calculations in the preceding section used the momentum
theory result for the induced velocity, which was assumed to be uniform over the
rotor disk. A nonuniform inflow distribution can be obtained by considering the
differential form of momentum theory for hover or vertical flight. The resulting
analysis is called combined blade element and momentum theory, commonly abbre-
viated “BEM.” Blade element theory describes the differential thrust on an annulus
of the disk (on all N blades) of width dr at radial station r as

dCT = σa
2
(θ − λ/r)r2dr (3.93)

From section 3.4.1, the differential form of momentum theory is dT = 2ρ dA(V +
v)v or

dCT = 4λλir dr (3.94)

where λi = v/�R is the induced inflow ratio, λc = V/�R is the climb inflow ratio,
and λ = λc + λi. By using the differential form of momentum theory, the induced
velocity at radial station r is assumed to be due only to the thrust dT at that station.
Equating the blade element and momentum theory expressions for dCT then gives

λ2 +
(σa

8
− λc

)
λ− σa

8
θr = 0 (3.95)

which has the solution

λ =
√(

σa
16

− λc

2

)2

+ σa
8
θr −

(
σa
16

− λc

2

)
(3.96)

For hover, λc = 0, the solution for the induced velocity is

λ = σa
16

[√
1 + 32

σa
θr − 1

]
(3.97)

This is the nonuniform inflow distribution; compare with the uniform inflow results
in section 3.5.2.2. For a given pitch, twist, and chord, the inflow can be calculated
as a function of r, and then the rotor thrust and power can be evaluated. Although
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the resulting rotor performance is more accurate than that obtained with uniform
inflow, differential momentum theory is still only an approximate model of the rotor.
A further refinement of the inflow calculation requires a consideration of the details
of the rotor vortex wake. Observe that for a constant-chord blade, uniform inflow is
obtained if θr = constant; that is, if the blade has the ideal twist distribution θ = θt/r.
From this uniform inflow, the ideally twisted rotor also has uniform disk loading and
the minimum possible induced power.

3.6 Hover Performance

To summarize the equations involved in the calculation of rotor hover performance,
blade element theory gives the thrust and power as

CT =
∫ 1

0

σ

2
r2c�dr (3.98)

CP =
∫
λdCT +

∫ 1

0

σ

2
r3cddr (3.99)

where the section lift and drag coefficients are functions of the angle-of-attack α =
θ − λ/r and Mach number M = rMtip. In general, the chord and pitch can be functions
of the radial station r. The most frequent case encountered is a constant chord,
linearly twisted blade: σ = constant, θ = θ0 + θtwr. If actual airfoil characteristics
are not available, the simple relations c� = aα and cd = constant can be used. From
combined blade element and momentum theory, the inflow distribution is

λ = σa
16

[√
1 + 32

σa
θr − 1

]
(3.100)

Alternatively, uniform inflow with an empirical factor can be used: λ = κ√CT/2.
In general the rotor loads must be integrated numerically over the span. Then stall
and compressibility can be included by use of the appropriate section airfoil data.
The limitations in the performance calculated according to these expressions arise
principally from the neglect of three-dimensional flow effects at the tip and the use
of the differential momentum theory for the induced velocity.

By using combined blade element and momentum theory the rotor thrust and
induced power can equivalently be written in terms of the induced velocity as dCT =
4λ2r dr and dCPi = 4λ3r dr.

The actuator disk analysis, particularly with vortex theory, requires a relation
among the rotor disk loading, blade span loading, and blade bound circulation. The
section loading L (lift per unit span) and circulation � are related by L = ρ�r�.
Hence

dT
dA

= N
2πr

L = ρ�N
2π

� (3.101)

So uniform disk loading corresponds to triangular blade loading and constant bound
circulation. In dimensionless form, for uniform disk loading and constant chord,
�/�R2 = (2π/N)CT = 2(c/R)CT/σ .
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3.6.1 Scaling with Solidity

Blade element theory results can be scaled with the solidity ratio by writing in terms
of CT/σ

2, CP/σ
3, θ/σ , and λ/σ , as observed by Knight and Hefner (1937). For

constant chord, equations 3.98, 3.99, and 3.100 become

CT

σ 2
=
∫ 1

0

a
2

(
θ

σ
r2 − λ

σ
r
)

dr (3.102)

CP

σ 3
=
∫
λ

σ
d

CT

σ 2
+ 1
σ 3

∫ 1

0

σ

2
r3cddr (3.103)

λ

σ
= a

16

[√
1 + 32

a
θ

σ
r − 1

]
(3.104)

For example, the inflow solution for linear twist (equation 3.79) becomes

λ

σ
=
√

1
2

CT

σ 2
= a

16

[√
1 + 64

3a
θ.75

σ
− 1

]
(3.105)

The simple power formula (equation 3.91) is

CP

σ 3
= κ√

2

(
CT

σ 2

)3/2

+ 1
σ 2

cdo

8
(3.106)

and

M = (CT/σ
2)3/2/

√
2

CP/σ 3
(3.107)

is the figure of merit. These relations define the influence of solidity on hover perfor-
mance. With the induced velocity obtained from a wake model, a separate influence
of the blade aspect ratio and number of blades is found, not simply the dependence
on σ = Nc/πR.

3.6.2 Tip Losses

By using momentum theory (or differential momentum theory) instead of a vortex
wake model to calculate the induced velocity at the rotor disk, blade element theory
is an approximation for lifting-line theory, but an approximation that breaks down
near the blade tips. When the chord at the tip is finite, blade element theory gives
a nonzero lift all the way out to the end of the blade. In fact, the blade loading
drops to zero at the tip over a finite distance because of three-dimensional flow
effects (Figure 3.7). Since the dynamic pressure is proportional to r2, the loading for
a rotary wing is concentrated at the tip and drops off even faster than the loading on
fixed wings. The loss of lift at the tip is an important factor in calculating the rotor
performance. If this loss is neglected, the rotor thrust for a given power or collective
is significantly overestimated. A rigorous treatment of the tip loading requires a
vortex wake model or a lifting-surface analysis. Here we consider an approximate
representation of the tip loss effects.

The tip loss can alternatively be considered in terms of the influence of the
rotor wake. With an actuator disk model, a nonzero loading extending to the edge
of the disk is perfectly acceptable. Thus the tip loss can be viewed as the influence
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Figure 3.7. Sketch of rotor blade loading, showing the loss of lift at the tip.

of the finite number of blades. The loading being concentrated on a finite number
of blades, rather than distributed around the disk, introduces the three-dimensional
flow effects. Figure 3.8 sketches the influence of the discrete wake on the flow through
the rotor. With a finite number of blades, the discrete vortices in the wake constrain
the flow to a volume smaller than the nominal wake boundary. The tip loss in this
sense is like having a smaller effective area in the wake or equivalently a higher
effective disk loading, which implies a higher induced power loss.

An approximate method to account for tip losses is to assume that the blade
elements outboard of the radial station r = BR have profile drag but produce no lift.
The parameter B is called the tip loss factor. A number of methods are available
for calculating the appropriate value of B. Prandtl gave an expression based on a
two-dimensional model of the rotor wake; for a low inflow rotor

B = 1 −
√

2CT

N
(3.108)

rotor 
disk

actual wake
boundary
streamline

discrete tip
vortices

nominal
slipstream

Figure 3.8. Influence of the discrete wake
on the flow through the rotor.
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where N is the number of blades; this result is derived in section 3.7.3.2. The tip loss
depends on the spacing of vorticity sheets in the wake, which is proportional to λ/N.
Prandtl’s result typically gives B = 0.96 to 0.98. Wheatley (1934) suggested

B = 1 − 1
2

tipchord
R

= 1 − c(r = 1)
2R

(3.109)

The outer half-chord length of the blade therefore develops no lift. Similarly, Sissingh
(1939) suggested

B = 1 − 2
3

c(r = 0.7)
R

(3.110)

Often the tip loss factor is simply set to B = 0.97, which generally gives a good
correlation with experimental data.

When the tip loss factor is included in the rotor thrust, the result from blade
element theory becomes

CT =
∫ B

0

σ

2
r2c�dr =

∫ B

0

σa
2

(
θr2 − λr

)
dr (3.111)

Then for the constant chord, linearly twisted blade with uniform inflow, it is

CT = σa
2

(
θ0

B3

3
+ θtw

B4

4
− λB2

2

)
(3.112)

and, for the ideally twisted blade,

CT = σa
4

B2 (θt − λ) (3.113)

There is about a 6% to 9% reduction in the rotor thrust for a given collective pitch
due to tip losses. The tip loss affects the required rotor power by increasing the
induced velocity. The effective disk area of the rotor is reduced by a factor of B2,
and since the induced velocity is proportional to the square root of the disk loading,
the induced velocity is higher than the momentum theory result by a factor of B−1.
Thus the rotor induced power becomes

CPi = 1
B
λhCT = 1

B
C3/2

T /
√

2 (3.114)

There is then about a 3% induced power increase due to the tip loss (κ = B−1 ∼= 1.03).
Other effects, particularly nonuniform inflow, also increase the induced power.

There are more rigorous approaches to the calculation of rotor performance
including tip losses, such as vortex theory for a finite number of blades or lifting-line
theory with a discrete vortex wake model. The tip loss factor is a crude representation
of the three-dimensional flow effects, but is widely used because of its simplicity and
reasonable accuracy.

3.6.3 Induced Power due to Nonuniform Inflow

The hover induced power is written asCPi = κC3/2
T /

√
2, where κ is an empirical factor

accounting for the additional losses of a real rotor. The losses due to nonuniform
inflow can be estimated using the momentum theory results:

CPi =
∫ B

0
4λ3r dr CT =

∫ B

0
4λ2r dr (3.115)
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For uniform inflow, these relations give CPi = 2λ3B2 and CT = 2λ2B2, or CPi =
(1/B)C3/2

T /
√

2. Hence tip loss alone gives κ = B−1 ∼= 1.03.
Considering a linear inflow distribution, λ = λt r, we obtain CPi = (4/5)B5λ3

t and
CT = B4λ2

t , or CPi = (4/5B)C3/2
T . Hence

κ = 4
√

2
5B

= 1.13
B

∼= 1.17 (3.116)

Other simple nonuniform inflow distributions give similar results. Thus the hovering
rotor is expected to have around an 8% to 12% increase in induced power due to
nonuniform inflow, and a 2% to 4% increase due to tip loss. The parameter κ is best
obtained by correlation with measured rotor performance.

3.6.4 Root Cutout

Performance losses also arise from the root cutout. The lifting portion of the blade
starts at radial station r = rR, which is typically 10% to 30% of the blade radius. The
area inboard of this station, called the root cutout, is taken up with the rotor hub,
flap and lag hinges, pitch bearing, and blade shank. Since the root cutout is aero-
dynamically an area of high drag coefficient and low lift, the blade element theory
evaluation of the thrust should use integration from r = rR to r = B: CT = ∫ B

rR
dCT .

The dynamic pressure is low in the root cutout area, so generally the correction to
the performance calculation is minor.

In hover, an effect of the root cutout is to reduce the effective rotor disk area
and hence to increase the disk loading and induced velocity. With both root cutout
and the tip loss factor, the effective disk area gives the induced power parameter κ

κ =
√

A
Aeff

= 1√
B2 − r2

R

(3.117)

For usual values of rR, the root cutout effect on the induced power is small compared
to the tip loss effect. The root cutout is an area of high drag coefficient, even with
fairings, so its effect on profile power can be significant.

3.6.5 Blade Mean Lift Coefficient

A useful measure of the aerodynamic operating state of the rotor is a mean lift
coefficient for the blades. The mean lift coefficient c� is defined to give a thrust
coefficient with the value CT = ∫

σ
2 r2c� dr when the entire blade is assumed to be

working at c�. So

CT =
∫ 1

0

σ

2
r2c�dr = 1

2
c�

∫ 1

0
σ r2dr = 1

6
σc� (3.118)

and then

c� = 6
CT

σ
(3.119)
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Thus CT/σ , the ratio of the rotor thrust coefficient to the solidity, is a measure of
the blade lift coefficient. Correspondingly, 6CT/σa can be interpreted as the mean
angle-of-attack of the blade. Now

CT/σ = T/(ρArotor(�r)2)
Ablade/Arotor

= T
ρAblade(�R)2

is the dimensionless blade loading, whereas CT is the dimensionless disk loading.
The parameter CT/σ has an important role in rotor aerodynamics, since many of the
characteristics of the rotor and helicopter depend on the blade lift coefficient. Using
the simple power expression (equation 3.91), the rotor figure of merit can be written
as

M = λhCT

κλhCT + σcdo

8

= 1

κ + 3
4

cdo/c�
λh

(3.120)

showing that a high section lift-to-drag ratio is required for a good hover figure of
merit.

3.6.6 Equivalent Solidity

In the expressions for the rotor hover performance, the rotor chord and number of
blades have been accounted for by using a local solidity, σ = Nc/πR, which varies
along the blade span if the chord is not constant. The rotor solidity then is

σrotor = blade area
rotor area

=
∫ 1

0
σ dr (3.121)

For constant-chord blades, the local solidity and rotor solidity are identical. When
comparing the performance of two rotors with different blade planforms, using
an equivalent solidity that accounts for the major effects of the varying chord is
desirable.

Rotors with tapered blades are conventionally compared to a rotor with rectan-
gular blades and an equivalent solidity ratio, operating at the same thrust coefficient.
The equivalent solidity σe is defined byCT = ∫ 1

2σ r2c�dr = 1
2σe

∫
r2c�dr, or (assuming

constant lift coefficient)

σe = 3
∫ 1

0
σ r2dr (3.122)

Equation 3.122 defines the thrust-weighted solidity, whereas equation 3.121 is the
geometric solidity. Similarly, for rotors compared on the basis of the same power or
torque, the equivalent solidity is

σe = 4
∫ 1

0
σ r3dr (3.123)

For linearly tapered blades (σ = σ0 + σ1r), the equivalent solidity is

σe =
{
σ (r = 0.75) thrust basis
σ (r = 0.80) power basis

(3.124)
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For a blade with tip taper ratio t = ctip/croot, the taper starting at r = r0 (constant
chord croot from r = 0 to r = r0, linear variation to ctip at r = 1), the thrust-weighted
and geometry solidity are

σe = σroot

4

(
1 + 3t + (1 − t)(r0 + r2

0 + r3
0)
)

(3.125)

σg = σroot

2

(
1 + t + (1 − t)r0

)
(3.126)

in terms of the root chord σroot = Ncroot/πR. The thrust-weighted (r2-weighted)
equivalent solidity is generally used for comparisons of rotor power at a given thrust.

3.6.7 The Ideal Rotor

Consider a rotor with constant chord and the ideal twist distribution θ = θt/r. Section
3.5.3 showed that this twist results in uniform induced velocity over the rotor disk
and hence corresponds to the minimum induced power. With the ideal twist, the
blade loading is triangular:

dCT = σa
2
αr2dr = σa

2
(θt − λ)r dr (3.127)

The corresponding bound circulation and disk loading are

N
π
� = 1

r
dCT

dr
= σa

2
(θt − λ) (3.128)

dT
dA

= π dCT

2πr dr
= σa

4
(θt − λ) (3.129)

Thus the ideal twist gives constant bound circulation and uniform disk loading, which
is indeed the loading required by momentum theory to produce uniform induced
velocity.

From sections 3.5.2 and 3.6.2, the performance of the ideal rotor (constant chord,
ideal twist, uniform inflow) is given by

CT = σaB2

4
(θt − λ) = σaB2

4
αt (3.130)

CP = λCT + σ

8

(
δ0 + 4

3
δ1αt + 2δ2α

2
t

)
(3.131)

Momentum theory gives the induced velocity λ =
√

CT/2B2 for hover; the pitch is
θt = αt + λ. The local angle-of-attack of the blade section is thus

α = αt

r
= 4CT/σ

B2a
1
r

(3.132)

and the section lift coefficient is c� = aα. The section lift coefficient is limited by stall
at the blade root and the ideal twist distribution is not realizable at the root, but the
inboard sections of the blade have a minor role in the rotor performance. The real
practical difficulty is that a different twist distribution is required for every operating
condition of the rotor. From α = (θt − λ)/r:

θt = αt + λ = 4CT/σ

B2a
+ 1

B

√
CT/2 (3.133)
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The ideal rotor is useful as a limiting case, if not as a practical design, indicating the
form the twist distribution must approach to achieve the best rotor hover perfor-
mance.

3.6.8 The Optimum Hovering Rotor

The ideal rotor is designed to have minimum induced power. The angle-of-attack
is α = αt/r, so only one blade section can be operating at the best lift-to-drag ratio
and the ideal rotor does not have the least profile power possible. Consider now
a rotor optimized for both induced and profile power. Minimum induced power
requires uniform inflow. Minimum profile power requires that each blade section
operate at its optimum condition, α = αopt, where the best c�/cd is achieved. These
two criteria determine the twist and taper for the optimum rotor, which has the best
hover performance.

Combined blade element and momentum theory gives

dCT = σa
2
αoptr2dr = 4λ2r dr (3.134)

or

λ2 = σa
8

rαopt (3.135)

Assuming that αopt is the same for all blade sections, uniform inflow requires σ r =
constant; hence a blade taper distribution given by σ = σt/r (c = ct/r). Then the
blade twist required is

θ = αopt + λ/r = αopt +
√
σtaαopt

8
1
r

(3.136)

The rotor thrust and profile power are

CT =
∫ B

0

σ

2
r2aαoptdr = σtaB2

4
αopt (3.137)

CPo =
∫ 1

0

σ

2
r3cddr = σt cdo

2

∫ 1

0
r2dr = σt cdo

6
(3.138)

because the blade drag coefficient is constant over the span for the optimum rotor.
The total rotor power is then

CP = C2/3
T

B
√

2
+ σt cdo

6
(3.139)

The thrust-weighted equivalent solidity for the optimum rotor is σe = 3
∫
σ r2dr =

(3/2)σt , so the profile power is

CPo = σecdo

9
(3.140)

Compared to the profile power with rectangular blades (CPo = σcdo/8), there is at
least an 11% reduction in the profile power for the optimum rotor. The difference
is even greater because of the higher value of the mean drag coefficient for the
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constant-chord blade. The figure of merit becomes

M = C3/2
T /

√
2

1
B

C3/2
T /

√
2 + σecdo

9

= 1
1
B

+ 2
3

cdo/c�
λh

(3.141)

To summarize the optimum rotor design, for a given airfoil section (which defines
αopt) the taper and twist required are

σ = 4CT

B2aαopt

1
r

(3.142)

θ = αopt +
√

CT

2B2

1
r

(3.143)

As for the ideal rotor, the design depends on the operating state, in addition to
having both the chord and twist singular at the blade root. The optimum rotor
solution shows the maximum benefits that are attainable with twist and taper of the
blade and indicates the design trends required for real rotors. In general, a washout
of the blade pitch at the tip (negative twist) is required, and the blade should be
tapered, although the performance gains with taper often cannot justify the added
manufacturing cost. In the past, most blades were designed with linear twist and
constant chord, and occasionally with linear taper as well. With modern materials
and manufacturing techniques, nonlinear twist and non-constant-chord designs are
being produced. The optimum rotor solution implies that the design of a real rotor
must always be a compromise, because a fixed chord and twist distribution cannot
be optimal for all operating conditions.

3.6.9 Elementary Hover Performance Results

Examples of hover performance results are presented in this section, based on the
expressions that have been derived for ideal and real rotors. These calculations are
for a rotor with solidity σ = 0.08 (thrust-weighted solidity for tapered blades), tip
loss factor B = 0.97, and lift curve slope a = 5.7. Where relevant, the induced power
factor is κ = 1.12, and the blade drag coefficient is cd = 0.0120. For the section drag as
a function of angle-of-attack, cd = 0.0087 − 0.0216α + 0.400α2 is used, representing
an NACA 23012 airfoil (Bailey (1941)).

Figure 3.9 shows the hover power CP as a function of thrust CT for three cases
of limiting rotor behavior: the rotor with a figure of merit M = 1, which has no
profile power and minimum induced power, so CP = C3/2

T /
√

2; the optimum rotor,
which has twist for uniform inflow and taper for constant section angle-of-attack, and
therefore minimum profile power and induced power; and the ideal rotor, which has
twist for uniform inflow, hence minimum induced power, and constant chord. The
power of the optimum rotor and of the ideal rotor are given by equations 3.139 and
3.131, respectively. For these cases the induced power is increased by the tip loss,
κ = 1/B, and the mean drag coefficient is cdo = 0.0120. The real rotor performance
in Figure 3.9 is obtained from equation 3.91 with κ = 1.12 and cdo = 0.0120. Finally,
Figure 3.9 shows the real rotor performance obtained from blade element theory
(equations 3.85 and 3.90) for constant chord and linear twist θtw = −8◦, using κ =
1.12 and cd(α). The accuracy of the simple performance estimate (equation 3.91)
depends on the proper choice of the empirical parameters κ and cdo.
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Figure 3.9. Hover performance for ideal and optimum rotors.

This performance comparison is clearer in terms of figure of merit M as a
function of blade loading CT/σ , which is also presented in Figure 3.9. The figure
of merit is small at low loading because then the induced power is small relative
to the profile power. None of the solutions account for stall, however, so the figure
of merit continues to increase for large CT/σ . The function cd = δ0 + δ1α + δ2α

2 is
intended to model the airfoil viscous drag increase with lift coefficient, but does not
model stall. The M = 1 case has only the minimum induced power; the optimum
rotor adds the minimum profile power; the ideal rotor increases the profile power
slightly because of the constant chord; and for the real rotor the induced power has
been further increased by the factor κ = 1.12.

Figure 3.10 shows the spanwise distribution of the induced velocity obtained for
CT/σ = 0.08 by the various methods. The momentum theory value is λ = √

CT/2.
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Figure 3.10. Calculated inflow distribution for a hovering rotor at CT/σ = 0.08.

For the optimum rotor and the ideal rotor, the induced velocity is increased by
the tip loss, κ = 1/B. The blade element theory results of Figure 3.9 used κ = 1.12
(equation 3.85). Figure 3.10 also shows the inflow calculated using combined blade
element and momentum theory (equation 3.100) for a constant-chord blade with
linear twist of θtw = 0, −8◦, and −16◦. Increasing the twist rate produces a more
uniform radial distribution of inflow. Tapering the blade would further improve the
inflow distribution.

The hover performance calculated using combined blade element and momen-
tum theory (equations 3.100, 3.98, and 3.99) is shown in Figure 3.11 in terms of three
metrics: hover figure of merit M, induced power factor κ = CPi/CPideal, and mean
drag coefficient cdmean = 8CPo/σ . Here κ and cdo are not specified; rather the induced
velocity is calculated by equation 3.100, from which the angle-of-attack is obtained
and then the drag coefficient cd(α). The ratio of the induced power CPi = ∫

λ dCT to
the ideal power CPideal = C3/2

T /
√

2 (momentum theory) gives κ . The profile power is
interpreted as a mean drag coefficient cdmean (in general the influence of flight speed
must be included in the definition of cdmean). Figure 3.11 give results for linear blade
twist of θtw = 0, −8◦, and −16◦; and for constant chord and taper ratio ctip/croot = 0.5.
Increasing twist and tapering the blade improve the calculated hover performance
by reducing both induced power and profile power. By accounting for the radial
variation of the inflow, combined blade element and momentum theory allows the
impact of blade twist and planform on hover performance to be considered in the
design. The model still does not account for stall, and the representation of tip loss
effects is simplistic. As a result, the power is underestimated at high thrust, and the
induced power calculation is optimistic.

3.7 Vortex Theory

The lift on a wing is associated with bound circulation; consequently vorticity is
trailed into the wake from a three-dimensional wing. On the rotating wing, the
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Figure 3.11. Rotor hover performance from combined blade element and momentum theory.

change in the blade loading occurs mostly at the tip, and the rotor wake vorticity is
therefore concentrated in tip vortices that lie in helices below the rotor disk. Unlike
the fixed wing, the rotary wing has close encounters with its own wake and the wake
from preceding blades. These encounters have a significant impact on the induced
velocity and blade loads. Vortex theory is a rotor analysis that calculates the flow
field of the rotor wake, in particular the induced velocity at the rotor disk, by using
the fluid dynamic laws governing the action and influence of vorticity (the Biot-
Savart law, Kelvin’s theorem, and Helmholtz’s laws). The simplest version of vortex
theory uses an actuator disk model. The actuator disk neglects the discreteness
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in the rotor and wake associated with a finite number of blades, and distributes
the vorticity throughout the wake volume. The actuator disk model produces a
tractable mathematical problem, at least for vertical flight. When considering the
same model as momentum theory, vortex theory must give identical results. Vortex
theory is better suited than momentum theory to extensions of the model (such as
to a nonuniform disk loading), since it is based on a consideration of the local flow
characteristics rather than global properties.

If the discreteness in the wake is retained for the vortex theory model, the wake
consists of lines and sheets of vorticity trailed behind each blade. Because of the
fundamentally transcendental geometry of the rotor wake, integration to evaluate
the induced velocity for such a model must be performed numerically. The result is a
large numerical problem, which became practical to solve only with the availability of
high-speed digital computers for helicopter engineering. With the current availability
of computers, use of a discrete vortex model to represent the rotor and wake has
become nearly universal when detailed information about the flow field and loading
is required. The name “vortex theory” is generally restricted now to the classical
work, which primarily used the actuator disk model. The use of a vortex wake model
in numerical calculations of the induced velocity is discussed in Chapter 9.

N.E. Joukowski laid the foundations for vortex theory from 1912 to 1929. He
investigated the induced velocity due to the helical wake system of a propeller, but
had to use the infinite-blade model because of the mathematical complexities. The
results of momentum theory were duplicated using this vortex theory and actuator
disk analysis. In 1918, Joukowski proposed the use of airfoil characteristics for a
cascade of two-dimensional airfoils with the induced velocity taken from vortex
theory. This approach gave the elements of modern blade element theory since the
cascade effect is negligible for helicopter rotors.

In 1919, A. Betz analyzed the vortex system of the propeller wake in detail, deter-
mining the minimum power and best thrust distribution by vortex theory. Around
1920, investigations furthering vortex theory were made by R. Wood and H. Glauert,
and by E. Pistolesi. In 1929 S. Goldstein considered more accurately the vortex wake
of a propeller with a finite number of blades. For more on the development of vortex
theory, see Glauert (1935).

The velocity vector u(x) induced by a line vortex of strength κ is given by the
Biot-Savart law:

u(x) = − κ

4π

∫
(x − y)× d�(y)

|x − y|3 (3.144)

where the integration is along the entire length of the vortex and d� is the tangent
to the vortex at position y. This result can also be written as

u(x) = − κ

4π
∇� (3.145)

where� is the solid angle subtended at x by the line vortex. For an infinite straight line
vortex, the induced velocity is entirely circumferential, with magnitude |u| = κ/2πh,
where h is the perpendicular distance to the vortex. In a real fluid, viscosity eliminates
the infinite velocity at the vortex line by diffusing the vorticity into a tube of small
but finite cross-section radius called the vortex core. Stokes’ theorem equates the
flux of vorticity through a surface S with the circulation about the boundary of that
surface. Kelvin’s circulation theorem states that for an inviscid, incompressible fluid
of uniform density the circulation � = ∮

u · d� is constant, moving with the fluid.
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Figure 3.12. Rotor vortex wake in vertical flight.

Helmholtz’s laws of vorticity then follow: a fluid initially irrotational remains so; a
vortex tube (in particular, a line vortex) moves with constant strength with the fluid;
and vortex lines must either be closed or end at solid surfaces. By means of these
laws, vortex theory determines the flow of the helicopter rotor.

3.7.1 Vortex Representation of the Rotor and Wake

Associated with the lift L at a wing section is a circulation � about the section, such
that L = ρU� (where U is the free stream velocity and ρ the air density). Thus the
rotor blade can be modeled by bound vorticity with strength determined by the rotor
lift distribution. Since vortex lines cannot end, this bound vorticity must be trailed
into the rotor wake from the blade tips and trailing edges.

With constant blade circulation (which corresponds to uniform loading), vortic-
ity is trailed into the wake only from the blade root and tip. The tip vortex is trailed
in a helix because of the combination of the rotational motion of the blade and the
axial velocity of the flow through the rotor disk (Figure 3.12). In hover, this axial
velocity is entirely due to the wake-induced inflow. There is a tip vortex from each
blade, trailed in interlocking helices. The root vortices are trailed along the axis of
the rotor in a straight line (ignoring any root cutout). With positive thrust on the
rotor, the signs of the vorticity are such that the root vortex and the axial compo-
nents of the tip spirals induce a swirl in the wake in the same direction as the rotor
rotation, and the circumferential components of the tip vortex spirals (ring vortices)
induce an axial velocity inside the wake in the opposite direction to the thrust. Thus
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the wake vortex system produces the velocities that are required by conservation of
axial and angular momentum.

More generally, the blade bound circulation varies along the span, requiring that
vorticity be trailed all along the wing trailing edge. The wake then consists of helical
vortex sheets behind each blade. For the real rotor, the edges of the vortex sheet
quickly roll up into concentrated tip vortices, which are well represented by line
vortices. There also is considerable self-induced distortion of the wake geometry
from the nominal helical form. Classical vortex theory usually ignores the rollup
of the vortex sheets, which is a successful approach for propellers, where the high
axial velocity sweeps the wake downstream. For low inflow helicopter rotors a more
detailed model for the wake is preferable. In forward flight the blade loading varies
with azimuth as well as radially, so radial vorticity in addition to the axial and
circumferential vorticity is shed into the wake. Radial vorticity can be present in
vertical flight if the blade motion is unsteady.

3.7.2 Actuator Disk Vortex Theory

Consider now vortex theory for the actuator disk model of the rotor in hover. The
bound vorticity of the blades is distributed in a sheet over the rotor disk in this
infinite-blade approximation. So the wake vorticity is distributed throughout the
volume of the wake rather than being concentrated in helical sheets or lines. This
model greatly reduces the difficulties in calculating the velocity induced by the wake.
We have considered this model already in the momentum theory analysis of the rotor.
Although the results are not new, vortex theory gives more information about their
source, which is valuable background for more sophisticated analyses.

Consider first a uniformly loaded actuator disk, for which dT/dA = constant.
The blades then have triangular loading and constant bound circulation:

� = 1
ρ�r

dT
dr

= 2π
ρ�

dT
dA

= 2π
ρ�

T
A

(3.146)

(here � is the bound circulation of all the blades). Therefore, the wake consists of
only a vortex sheet at the boundary of the slipstream and a line vortex on the axis
(Figure 3.13). The line vortex on the axis is the root vortex and is the sum of all
the bound vorticity, with strength �. The rotor disk is a sheet of radial vorticity.
Because the bound circulation of the rotor is spread over the entire disk, the radial
vorticity has strength γb = �/2πr = T/ρA�r. With uniform bound circulation the
wake consists of only tip and root vortices, and in the actuator disk limit of infinite
blades, the interlocking tip vortex spirals become a vortex sheet on the boundary of
the wake, with axial and circumferential components. The axial component of the tip
vortex sheet has strength γ = �/2πR1, where R1 is the radius of the wake. The vortex
lines form a continuous path (as required by Helmholtz’s law) consisting of the root
vortex, the radial bound circulation of the disk, and the axial vorticity components
of the tip vortex sheet. Because of the helical geometry of the tip vortices, in the
infinite-blade limit the wake also contains a circumferential component of vorticity,
which can be viewed as consisting of ring vortices. The ring vortex strength is γ =
�/h, where h is the distance the wake moves down during one rotor revolution.
Relating h to the axial velocity at the wake boundary gives h = 2πv/�, and so
γ = T/ρAv.
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Figure 3.13. Vortex theory for the actuator disk model.

The ring vorticity in the wake produces the axial velocity inside the slipstream.
The axial velocity at the rotor disk and in the far wake is due to the wake vorticity
alone, with no contributions from the bound circulation. If the wake contraction and
swirl velocity are ignored, the induced velocity at the disk is due to a semi-infinite
vortex cylinder, and the velocity in the far wake is due to an infinite cylinder. Hence
the induced velocity at the disk is one-half the velocity in the far wake, v = 1

2w.
Since the fluid is irrotational far upstream of the rotor, the flow must always be
irrotational unless it passes through the rotor disk. Thus there can be no circulation
about any path lying entirely outside the wake, and in particular a circumferential
velocity can only exist inside the rotor wake. Just above the rotor disk there is
no circumferential velocity, whereas just below the disk there is a circumferential
velocity u due to the rotor torque. The root vortex induces a circumferential velocity
component u1 = �/4πr both above and below the rotor disk; there is no contribution
to the swirl inside the wake from the vorticity on the slipstream boundary (Stokes’
theorem). The bound vorticity induces a circumferential velocity ub just below the
disk and −ub just above the disk. Satisfying the requirement of no swirl outside
the wake then requires ub = u1, and the total swirl just below the disk is u = 2u1.
Indeed, since the jump in velocity across the vortex sheet of the rotor disk equals
the vortex strength, we have 2ub = γb = �/2πr again. The velocity seen by the blade
due to its own rotation, and the wake-induced swirl is then �r − u1 = �r − 1

2 u,
which explains the appearance of this factor in the expression for the rotor torque in
section 3.4.2.

To examine the axial induced velocity further, consider the relation

u(x) = − κ

4π
∇� (3.147)

where u is the velocity induced by a line vortex of strength κ that subtends at the point
x a solid angle �. The rotor axial velocity is due to a semi-infinite cylinder of ring
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vortices with strength κ = γ dz1. The axial component of the induced velocity is thus

v(z) = −
∫ ∞

0

γ

4π
∂

∂z
� dz1 (3.148)

where � is the angle of the ring vortex at z1 as seen at z; the rotor disk is at z = 0.
Now if the wake contraction rate is slow, the change in � as the observer at z
moves is primarily due to the distance change (z − z1) and only secondarily to the
change in the ring size. Motion of the observer and of the ring are then equivalent,
∂�/∂z = −∂�/∂z1, or

v =
∫ z=∞

z=0

γ

4π
d� (3.149)

Next neglect any change in the spacing of the wake spirals, so that the ring vortex
strength is constant. With these assumptions, the induced velocity is given by

v = γ

4π
�� (3.150)

where�� is the total solid angle covered by the wake surface, as seen at the location
of v. We use this result to evaluate the induced velocity at several points in the
flow. For any point on the rotor disk, �� = 2π , so v = γ /2. Recalling that the ring
strength is γ = T/ρAv, we obtain again for the induced velocity at the rotor disk

v =
√

T/2ρA (3.151)

Moreover, the induced velocity is constant over the disk for this uniformly loaded
rotor. Consider the points still in the disk plane but now outside the rotor disk; then
�� = 0 and v = 0, so there is no axial induced velocity except at the disk. For a
point inside the far wake,�� = 4π , so w = γ ; the induced velocity is uniform in the
far wake and w = 2v, as in momentum theory. Finally, for an arbitrary point on the
central axis of the wake and at a distance z below the rotor, the induced velocity is

v = γ

4π

[
4π −�0

]
(3.152)

where �0 is the angle subtended by the rotor disk,

�0 = 2π

[
1 + z/R√

1 + (z/R)2

]
(3.153)

On the wake axis, the axial velocity is therefore

v = v(0)
[

1 + z/R√
1 + (z/R)2

]
(3.154)

which has the proper limits far above and far below the rotor (at z = −∞ and
z = ∞, respectively).

Now consider an actuator disk with nonuniform loading. With varying bound
circulation on the blade, the trailed vorticity is distributed throughout the wake
cylinder rather than concentrated on the boundary. The wake can be viewed as
constructed from shells consisting of the cylindrical sheet at radius r plus the cor-
responding inboard bound vorticity and root vortex required for conservation of
vortex lines. The bound vorticity then is built up from the contributions of all shells
outboard of r, and the change in bound vorticity at r is due to the trailed wake there.
From the previous paragraph, only the shells outboard of r contribute to the induced
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velocity v(r), since only for these is the point inside the disk. Hence the axial induced
velocity is

v =
∫ R

r

1
2
γ dr (3.155)

where γ is the strength of the trailed vorticity, which is related to the change in the
bound circulation � by

γ = − d�
dr

1
h

= − d�
dr

�

2π(V + v) (3.156)

Then

v = −
∫ R

r

�

4π(V + v)
d�
dr

dr = �

4π(V + v)�+
∫ R

r

�

4π
�

d
dr

(
1

V + v
)

dr (3.157)

In terms of the loading distribution dT/dA = ρ��/2π , this vortex theory result for
the induced velocity becomes

2ρ(V + v)v = dT
dA

+ (V + v)
∫ R

r

dT
dA

d
dr

(
1

V + v
)

dr (3.158)

Compare this result with the differential form of momentum theory, dT = 2ρ(V +
v)v dA (equation 3.32), which was obtained (without proof) by application of the
conservation laws to the annulus of the rotor disk at r. The induced velocity obtained
from differential momentum theory (such as in combined blade element and momen-
tum theory), although not exact, appears to be reasonably accurate as long as the
inflow is reasonably uniform. Similarly, recall that the relation w = 2v between the
induced velocities at the disk and in the far wake is not an exact result of momentum
theory. The assumptions required in vortex theory to duplicate these momentum
theory results give a better idea of the approximations involved in their application.

3.7.3 Finite Number of Blades

Vortex theory for vertical flight is elementary with the actuator disk model, especially
for uniform loading. With a finite number of blades, vortex theory models the wake
by vortex lines and sheets trailed in helices behind each blade. This problem is
mathematically much more difficult than the case of distributed wake vorticity, but
in axial flow some analytical solutions are still possible. Finite-blade vortex theory
is analogous to the Trefftz plane analysis of fixed wings. The wake is studied far
downstream, where the wing has negligible influence on the flow. The solution for
the wake vorticity also determines the loading on the wing. By solving the simpler
flow problem in the far wake (where there is no axial dependence), an exact loading
distribution that includes tip effects is obtained. The accuracy of the solution depends
on the wake model used. The classical analyses use approximate models, with vortex
sheets rather than concentrated tip vortices and no self-induced wake distortion.
Moreover, a far wake analysis does not provide information about the blade design
needed to obtain the desired loading; for that the induced velocity at the rotor disk
is needed.

The bound circulation � varies along the blade span and must be zero at the root
and at the tip. Trailed vorticity of strength −∂�/∂r springs from each radial station.
This vortex system is initially formed as a helical or screw surface behind each blade.
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The edges of the vortex sheet roll up, so at a sufficient distance downstream the
vorticity is concentrated in contracted, helical lines emanating from the blade tips,
of strength nearly equal to the maximum bound circulation, plus a straight root vortex
on the axis (see Figure 3.12). For an idealized model of the wake, the rollup and
contraction are ignored. For a lightly loaded propeller, the distortion of the vortex
sheets is neglected, and the helical geometry is produced by the blade rotation and
the flight speed. Assuming the flow is inviscid and irrotational, the bound circulation
gives the jump in velocity potential at the corresponding point on the screw surface.
Once the wake geometry has been established, the boundary condition of no flow
through the sheets determines the flow field, from which the vorticity strength in the
wake and hence the loading on the blade are obtained.

Betz showed that the loading distribution for a lightly loaded propeller with
minimum energy loss is such that the vorticity forms a helicoidal sheet moving
backward undeformed. Prandtl developed an approximate solution for the flow
around a helicoidal sheet, from the two-dimensional flow around a cascade of semi-
infinite sheets. Goldstein solved for the potential field and distribution of circulation
for a helicoidal vortex system for the case of a lightly loaded propeller. Theodorsen
removed the limitation to lightly loaded propellers by considering the wake far
downstream of the propeller.

3.7.3.1 Wake Structure for Optimum Performance

Let us examine the wake geometry implied for optimum performance of a propeller.
This discussion follows Betz, as described by Glauert (1935). Consider the optimum
loading in terms of the section aerodynamic lift, L = ρU�. The inflow angle φ =
tan−1(V + v)/(�r − 1

2 u) gives the normal and in-plane components of L, producing
the thrust and torque of the rotor:

T = ρN
∫
�U cosφ dr = ρN

∫
�
(
�r − 1

2
u
)

dr (3.159)

Q = ρN
∫
�U sinφ r dr = ρN

∫
�(V + v)r dr (3.160)

As in section 3.4.2, v is the inflow velocity and u is the swirl velocity induced by the
wake. These equations are consistent with momentum theory results (equations 3.42
and 3.43),

T =
∫

2ρ(V + v)v dA =
∫
ρ
(
�r − 1

2
u
)

u dA (3.161)

Q =
∫
ρ(V + v)u�r dA (3.162)

since u dA = u2πr dr = N� dr. The variational problem is to find the loading � for
minimum torque given the thrust. Using a Lagrange multiplier λ,

δQ − λδT = ρN
∫ [

r(V + v)− λ
(
�r − 1

2
u
)]
δ� dr = 0 (3.163)

The optimum solution is r(V + v)/(�r − 1
2 u) = λ = constant, or

r tanφ = constant (3.164)
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Now the surface generated by rotating the blade at� and convecting without distor-
tion the wake at constant velocity W is a helicoid or screw, described in cylindrical
coordinates (r, θ , z) by θ = �r + θ0 and z = Wt. This rigid surface has a helix angle
at r of

tanφ = 1
r

dz
dθ

= W
�r

(3.165)

The corresponding pitch of the helix is p = 2πr tanφ = 2πW/� = constant. For a
constant pitch (screw-like) helix, wake elements shed from the trailing edge at a
given instant always remain in the same horizontal radial line. The pitch angle is the
angle of the wake surface with respect to the horizontal.

Hence the optimum solution r tanφ = constant corresponds to a helicoid in
uniform axial translation. Thus Betz demonstrated that the ideal efficiency of a
propeller (minimum energy loss for a given thrust) is obtained with a blade loading
that produces a rigidly moving helicoidal wake. The flow behind the propeller is the
same as if the screw surfaces formed by the trailing vortices are rigid and moving
axially at constant velocity.

Although the wake sheets move rigidly with axial velocity W , the fluid about
the sheets has axial velocity uz, swirl velocity uθ , and radial velocity ur. The trailed
vorticity in the wake surface corresponds to a jump in the radial velocity across
the surface. No flow through the wake surface means that at the surface the nor-
mal velocity of the air must equal the velocity of the sheet: un = W cosφ. So the
components of the air velocity at the sheet must be uz = un cosφ = W cos2 φ and
uθ = un sinφ = W cosφ sinφ. These conditions are sufficient to determine the circu-
lation distribution �. With a finite number of blades, the normal velocity decreases
between the sheets, and there is radial flow as well, which decreases the lift at the
blade tip. In the limit of an infinite number of blades, the sheets are very close, and
as a consequence all the fluid is carried with the wake. There are then no losses due
to flow around the edges.

A complication of this argument is that the inflow angle φ in fact varies with
distance along the axis, from tanφ = (V + v)/(�r − 1

2 u) at the disk to tanφ =
(V + w)/(�r1 − u1) in the far wake. This complication is avoided by assuming the
propeller is lightly loaded, so tanφ ∼= V/�r.

3.7.3.2 Prandtl’s Tip Loading Solution

In 1919, A. Betz analyzed the vortex system of the propeller wake in detail, determin-
ing the minimum power and best thrust distribution by vortex theory. In an appendix
to Betz’s paper, L. Prandtl gave an approximate correction for the tip effect on the
thrust distribution of a rotor with a finite number of blades. This solution is described
by Glauert (1935).

The rotor induced velocity and loading can be obtained by considering the wake
far downstream from the rotor disk, with the solution depending on the model used
for the wake. Distributed wake vorticity implies distributed loading on the rotor disk,
hence an actuator disk model. In fact, the rotor consists of discrete lifting surfaces.
The simplest wake model including the effects of a finite number of blades consists
of helical vortex sheets trailed from each blade. The major effect of the finite number
of blades is a reduction of the loading at the blade tip. In terms of the wake flow,
there is a flow around the edges of the vortex sheets from the lower surface to the
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Figure 3.14. Two-dimensional model for the rotor wake.

upper surface that reduces the total downward momentum. Prandtl derived a tip
loss correction for a finite number of blades by using a two-dimensional model for
the vorticity in the far wake.

The system of helical vortex sheets are modeled as a series of semi-infinite,
parallel vortex lines (Figure 3.14), thereby replacing the axisymmetric wake by a
two-dimensional flow model that can be solved using complex potential methods.
Since this model is equivalent to considering the flow only near the edges of the
wake helices, for low inflow (small spacing of the sheets) the model should be fairly
accurate. A coordinate system moving downward with the wake at velocity v0 is used,
such that the wake sheets are stationary and the external flow is moving upward at
v0. The fluid velocities are u and v (see Figure 3.14), and dimensionless quantities
are used (based on ρ, �, and R). For a lightly loaded rotor, the wake spacing is

s = 2π
N

λ√
1 + λ2

∼= 2πλ
N

(3.166)

where λ is the inflow ratio and N is the number of blades.
The complex potential satisfying the condition of no flow through the vortex

sheets and the requirement that v and u approach v0 and zero, respectively, as x
approaches infinity is

w = −v0
s
π

cos−1 eπz/s

where z = x + iy. Then the velocity is

u − iv = dw
dt

= v0
eπz/s

√
1 − e2πz/s

(3.167)

For example, at y = 0 (one of the sheets)

u − iv = v0
eπx/s

√
1 − e2πx/s

(3.168)



3.7 Vortex Theory 81

In the fixed frame, the sheets are moving downward at v0, and the fluid far away
from the wake is at rest. There is air flowing up around the edges of the sheets,
however, which reduces the mean downward velocity of the air between the sheets.
Momentum conservation implies that there must be a reduction of the lift near each
blade tip. In the fixed frame, the average vertical velocity between the sheets is

1
s

∫ s

0
(v0 − v)dy = v0

2
π

cos−1 eπx/s (3.169)

or v(x) = v0F , where for the helicopter rotor with πx/s = (r − 1)N/2λ

F = 2
π

cos−1 e(r−1)N/2λ (3.170)

The function F is the principal result of this analysis. The vorticity γ in the wake
sheet (which is related to the rotor bound circulation distribution) is

γ = vy=0 − vy=s = 2v0
eπx/s

√
1 − e2πx/s

(3.171)

Then the blade bound circulation is

�(x) =
∫ 0

x
γ dx = v0s

2
π

cos−1 eπx/s = v0sF (3.172)

Substituting for s = 2πλ/N = 2π(λc + λi)/N and using v0 = 2λi gives � =
(4π/N)(λc + λi)λiF , or

dCT

dr
= 4(λc + λi)λirF (3.173)

which is simply the momentum theory result (equation 3.94), corrected for the effect
of the blade tip by the factor F (r). The function F is significantly less than unity only
over the outer 5% to 10% of the blade.

In combined blade element and momentum theory, the hover induced velocity
now becomes

λ = σa
16F

[√
1 + 32F

σa
θr − 1

]
(3.174)

The effect of the tip, expressed through the factor F , is to increase the induced
velocity and thus reduce the loading at the blade tip and increase the induced
power. The factor F also affects the planform for the optimum rotor, necessitating
the introduction of rounded tips. Figure 3.15 shows the spanwise distribution of
the induced velocity λi and the section thrust dCT/dr for a constant-chord blade
at CT/σ = 0.08, as calculated by combined blade element and momentum theory
using Prandtl’s function. For comparison, the results obtained using a simple tip
loss factor are also shown (see Figure 3.10). With Prandtl’s function, the inflow is
increased at the tip, as required to reduce the section lift to zero. The effect on
integrated performance is approximately a 2% increase in the induced power factor
κ and a 1% reduction in the peak figure of merit.

Rather than using the factor F to correct the span loading near the tips, we can
instead use this model to obtain an equivalent tip loss factor B for the rotor loading
and performance calculations. An equivalent infinite-blade model (with a smaller
effective disk area) is found that produces the same thrust for a given power as the
finite-blade rotor. If the vortex sheets were infinitely close, the fluid between the
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Figure 3.15. Inflow and loading distribution for a hovering rotor, calculated by combined
blade element and momentum theory using Prandtl’s function.

sheets would all be carried downward at velocity v0 and the fluid outside would be
at rest. With a finite distance between the sheets some fluid flows up around the
edges, reducing the downward momentum. By equating the momentum reduction
v0(1 − B) of an infinite-blade model with reduced wake area to the momentum
reduction due to the finite number of blades, the tip loss factor B can be evaluated:

1 − B = 1
v0

∫ ∞

0
(v − v0)dx =

∫ ∞

0

[
eπx/s

√
e2πx/s − 1

− 1
]

dx

= s
π

ln 2 = λ

N
2 ln 2 = 1.39

λ

N
(3.175)
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Here the quantity λ is the inflow velocity, which determines the wake spiral spacing.
For hover with linear inflow, λ = rλt = r

√
CT (section 3.6.3), so

B = 1 − 1.39

√
CT

N
∼= 1 −

√
2CT

N
(3.176)

which is the result generally cited (see equation 3.108).

3.7.3.3 Propeller Analyses of Goldstein and Theodorsen

Goldstein (1929) developed a vortex theory for propellers with a finite number of
blades in axial flow. The wake was modeled as helical trailed vortex sheets moving
axially at a constant velocity like rigid surfaces. The boundary condition of no flow
through the sheets completely defines the vortex strength in the wake, which can
be related to the bound circulation distribution on the blade. Goldstein solved the
potential flow problem of N intermeshed helical surfaces of infinite extent axially
(i.e. in the far wake) but finite radius moving with axial velocity v0. The solution
takes the form of a tip loading factor F , which is a function of the inflow ratio, the
number of blades, and the blade radial station. Assuming the propeller is lightly
loaded, the wake contraction is ignored, and the helix angle is tanφ = V/�r.

Prandtl’s function is a good approximation to Goldstein’s more complete result
for low inflow, specifically when λ/N < 0.1 or so. Thus Prandtl’s solution is good for
helicopter rotors, but Goldstein’s solution is more appropriate for propellers.

Theodorsen (1944) generalized the vortex theory solution to heavily loaded
propellers, by making the distinction between the conditions at the rotor disk and in
the wake far downstream. The analysis was based on the inflow angle in the far wake,
tanφ = (V + w)/�r. Neglecting contraction, the potential jump in the far wake can
be mapped to the bound circulation on the blade.

A vortex sheet has a singular induced velocity at its edge. Thus the trailed
vorticity rolls up about the outer edge to form a tip vortex, and the sheets roll up
at the center to form a root vortex. In models that neglect the rollup, assuming
rigid vortex surfaces, there must exist edge forces to suppress the rollup. In the
contraction region near the rotor disk, these edge forces are tilted. As a result,
the models produce a thrust that is too small and a torque that is too large. For a
propeller with small contraction, this effect is small. Moreover, such vortex theory
models neglect the interactions between blades and rolled-up tip vortices that are
important for low inflow rotors.

3.8 Nonuniform Inflow

For low inflow helicopter rotors, the trailed vorticity quickly rolls up into concen-
trated tip vortices that remain close to the disk and strongly influence the loading
near the tips of both the generating and following blades. The self-induced dis-
tortion in the wake and the resulting interference between the rotor blade and
the tip vortices have a significant influence on the rotor performance. Such effects
must be included in the vortex theory if an accurate calculation of the blade load-
ing and power is to be achieved. Such an analysis has to be numerical because
of the complexities of the vortex wake structure and geometry of a real rotor.
The modern variant of vortex theory is a numerical solution for the rotor induced
velocity, loads, and performance that uses a detailed model of the vortex wake.
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Chapter 9 presents a further exposition of nonuniform inflow and free wake geom-
etry calculation.

3.8.1 Hover Wake Geometry

The fundamental character of the wake geometry of a hovering rotor was recog-
nized by Gray (1955, 1956). He conducted flow visualization studies of hovering
rotor wakes to guide the development of improved hover performance prediction.
The flow visualization experiment involved high-speed photographs of the wake
geometry of a model rotor, the wake made visible by smoke emanating from the
blade tips. Initially a two-bladed rotor was used, but he observed the overtaking of
the tip vortex from one blade by that from the other. Gray attributed this behavior to
differences in tip vortex strength caused by differences in blade thrust. To eliminate
this interaction, a one-bladed rotor was used. The rotor had an untwisted, constant-
chord blade, with a radius of 4 ft. Based on this work, Gray developed a sketch
of the hovering rotor wake geometry (Figure 3.16). The flow visualization led to a
quantitative description of the geometry that was unexpectedly simple: exponential
contraction plus a two-stage vertical convention velocity (Figure 3.16).

Gray’s work was followed by more extensive flow visualization tests, which were
used to establish prescribed wake geometry methods for hovering rotor performance
calculation. Analyses based on this realistic wake geometry provided significantly
improved prediction of rotor performance attributes.

Landgrebe (1971, 1972) used externally generated smoke filaments to visualize
the wake of a 2.2-ft radius model rotor (Figure 3.16). The test matrix included a
range of blade number (2 to 8), twist, blade aspect-ratio (13.6 to 18.2), and collective
pitch. Landgrebe (1971) also noted the “discovery of a reduction in wake stability
with increasing distance from the rotor.” Landgrebe (1972) described the structure
of the wake:

The wake contains two primary components. The first, and most prominent, is the strong
tip vortex which arises from the rapid rolling up of the portion of the vortex sheet shed
from the tip region of the blade. The second feature is the vortex sheet shed from the
inboard section of the blade. The vertical or axial transport velocity near the outer end of
the inboard vortex sheet is much greater than that of the tip vortex. The vertical velocity
of the vortex sheet also increases with radial position, resulting in a substantially linear
cross section of the vortex sheet at any specific azimuth position. These characteristics
largely result from the velocities induced by the strong tip vortex.

From the flow visualization data, a generalized representation of the near wake
geometry was constructed. The form of the equations for contraction and convection
followed Gray.

Kocurek and Tangler (1977) conducted a flow visualization test of a model rotor
in hover. The wake of a 1.0-ft radius rotor was visualized with Schlieren techniques
(Figure 3.16). The test matrix included a range of blade number (1 to 4) and blade
aspect ratios (7.1 to 18.2) beyond that of Landgrebe, specifically covering low aspect-
ratio two-bladed rotors. The form of the equations for contraction and convection
were the same as used by Landgrebe, but with different dependence on thrust and
blade geometry.

The hover wake geometry is described by two-stage vertical convection and
exponential spanwise contraction. In terms of the dimensionless wake ageφ (azimuth
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angle in the wake, measured from the blade in the direction opposite to rotation),
the vertical and spanwise position of the wake (scaled with radius R) are

z =
{

K1φ φ < φ1

K1φ1 + K2(φ − φ1) φ > φ1
(3.177)

r = K4 + e−K3φ(1 − K4) (3.178)

where φ1 = 2π/N is the age at the encounter with the following blade (N is the num-
ber of blades). For the inside edge of the inboard sheet, r is multiplied by the root
cutout ratio. This geometry is steady relative to the moving wing, so z and r are func-
tions of only wake age φ, not time. The vertical convection is defined by K1 and K2,
the rates before and after encountering the first following blade. These are dimen-
sionless velocities, scaled with�R. The spanwise contraction is defined by K3 and K4,
the rate of contraction and the maximum contraction ratio, respectively. The con-
traction time constant is 1/K3�, and K4 is the dimensionless distance, scaled with R.

Landgrebe (1971) developed a prescribed wake model of the above form. The
vertical convection constants are

K1 K2

tip vortex 0.25(CT/σ + 0.001θtw) (1 + 0.01θtw)
√

CT

outside sheet edge 1.55
√

CT 1.90
√

CT

inside sheet edge 0 −(0.0025θ2
tw + 0.099θtw)

√
CT

for the twist rate θtw in degrees. The spanwise contraction parameters for the tip
vortex and the inboard sheet are

K3 = 0.145 + 27CT (3.179)

K4 = 0.78 (3.180)

Kocurek and Tangler (1977) revised the tip vortex geometry based on experimental
data including low aspect-ratio, two-bladed rotors, obtaining

K1 = B + C
(

CT

Nn

)m

(3.181)

K2 =
[

CT − Nn
(

−B
C

)1/m
]1/2

(3.182)

K3 = 4.0
√

CT (3.183)

where B = 0.000729θtw , C = 2.3 − 0.206θtw , m = 1.0 − 0.25e0.04θtw , and n = 0.5 −
0.0172θtw. The other constants are the same as for the Landgrebe model. These
two prescribed models are based on flow visualization results, in which typically only
four spirals of the wake are observed.

3.8.2 Hover Performance Results from Free Wake Analysis

The blade loading of a hovering rotor is strongly influenced by the tip vortex from the
preceding blade and hence is very sensitive to the radial and vertical position of that
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vortex relative to the blade. As established by the flow visualization tests described in
section 3.8.1, the tip vortex is initially convected downward (at a rate smaller than the
momentum-theory value for the mean induced velocity) and inward (the beginning
of the wake contraction). Consequently the tip vortex encounters the following
blade inboard of the tip, with a small vertical separation. The effect of this vortex is
to increase the angle-of-attack outboard of its position and to decrease the angle-of-
attack inboard. Depending on the twist and planform, the rotor performance can be
adversely affected, especially with thick tip airfoil sections at high Mach number. If
the wake contraction is neglected, then all blade stations are inboard of the vortex
and nowhere does the vortex increase the angle-of-attack. With a distributed vorticity
wake model or even simpler theories, the effects of rolled-up tip vortices cannot be
observed at all. Thus classical methods for rotor hover performance, or analyses with
an uncontracted wake, tend to underestimate the hover power required. An accurate
wake geometry is crucial to refinements in the calculation of hover performance.

Figure 3.17 shows the hover performance calculated using a free wake analy-
sis. As in section 3.6.9, these calculations are for a four-bladed rotor with solidity
σ = 0.08, and constant-chord blade with linear twist of θtw = 0, −8◦, and −16°. The
airfoil tables used (lift and drag coefficient as a function of angle-of-attack and Mach
number) corresponded to current technology sections, with a thin section at the tip.
The blade is modeled as rigid with a flap hinge; hence the blade cones in response
to the thrust. The hover performance is shown in terms of three metrics: hover
figure of merit M, induced power factor κ = CPi/CPideal, and mean drag coefficient
cdmean = 8CPo/σ . The ratio of the induced power to the ideal powerCPideal = C3/2

T /
√

2
(momentum theory) gives κ . The profile power is interpreted as a mean drag coeffi-
cient cdmean (in forward flight the influence of flight speed in the definition of cdmean

must also be considered). The corresponding results from combined blade element
and momentum theory were presented in Figure 3.11. Increasing twist improves the
calculated hover performance by reducing both induced power and profile power.
Nonuniform inflow calculation with free wake geometry changes the magnitude of
the induced power and the variation of κ with CT/σ . Because the airfoil tables
include the effect of stall on section drag, the profile power increases substantially
at high thrust, resulting in a decrease in the figure of merit.

Figure 3.18 shows for CT/σ = 0.08 the spanwise distribution of the induced
velocity, angle-of-attack, tip vortex vertical position, section thrust, and section
power. At its first encounter with the following blade, the tip vortex has moved
about 7%R inboard of the tip, and is about 3%R below the blade. There is a strong
influence of this first blade-vortex encounter on the inflow and angle-of-attack at the
tip, as well as the expected influence of the twist inboard.

3.9 Influence of Blade Geometry

3.9.1 Twist and Taper

For a given rotor thrust, radius, and tip speed, both the induced and profile power
losses can be minimized by the proper choice of the blade twist and taper. A linear
variation of chord or pitch can closely approximate the optimum distributions over
the outer portions of the blade, where the loading is most important. In fact, −8°
to −12° of linear twist produces most of the induced power gains of blades with
ideal twist, compared to untwisted blades. Linear twist is easily built into the blades,
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Figure 3.17. Rotor hover performance from free wake analysis.

with little production cost increase for a significant performance benefit. Taper
improves the rotor performance also, but because of production costs was in the
past justified only for very large rotors, and in recent designs the focus is more
often on tip planform. Table 3.1, based on the calculations presented in this chapter,
gives the percentage reduction in rotor hover power that is obtained with various
combinations of twist and taper. The reduction (positive for better performance,
lower power) is measured relative to the result for −8° twist and no taper. Also
shown are results for the ideal rotor (ideal twist, section 3.6.7) and the optimum rotor



3.9 Influence of Blade Geometry 89

0.00

0.03

0.06

0.09

in
fl

ow
 r

at
io

, λ

twist = 0

twist = -8
twist = -16

-8.

-4.

0.

4.

8.

an
gl

e-
of

-a
tta

ck
, α

-0.3

-0.2

-0.1

0.0

0.1

tip
 v

or
te

x 
z 

/ R

twist = 0

twist = -8
twist = -16

0.00

0.10

0.20

0.30

th
ru

st
, d

(C
T 

/ σ
) 

/d
r

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.008

0.016

0.024

radial station, r/R

po
w

er
, 

d(
C

P
 / σ

) 
/d

r

blade

Figure 3.18. Inflow and loading distribution for a hovering rotor, calculated by free wake
analysis.



90 Hover

Table 3.1. Reduction of rotor hover power due to twist and taper

Twist Taper Blade element BEM with Nonuniform inflow
(degrees) ratio & momentum Prandtl’s function and free wake

0 1 −3.0% −3.1% −6.0%
−8° 1 − − −
−16° 1 1.3% 1.5% 4.2%

0 0.5 −0.5% −0.6% −6.2%
−8° 0.5 1.8% 1.9% 0.3%
−16° 0.5 2.4% 2.6% 6.1%

ideal 1 2.8% 3.4% 1.5%
optimum vary 5.4% 6.0% 4.2%

(twist and taper, section 3.6.8). All the calculations for Table 3.1 are for a blade
loading CT/σ = 0.08 and thrust-weighted solidity of σ = 0.08. The combined blade
element and momentum theory (BEM) results correspond to section 3.6.9, but with
a constant blade drag coefficient (cd = 0.0120). The results for BEM with Prandtl’s
tip loss function correspond to section 3.7.3.2. The calculated power is increased by
using the tip loss function (note the values for the ideal rotor and the optimum rotor,
compared to BEM), but the relative effects of linear twist and linear taper are about
the same as BEM (which here used B = 0.97). The free wake results correspond to
section 3.8.2 and reflect the use of airfoil tables for better section aerodynamic load
estimation, as well as the influence of the discrete tip vortices in the wake.

Negative twist improves rotor hover performance, but also tends to increase
hover download and reduce hover in-ground-effect thrust augmentation. Moderate
values of negative twist improve rotor performance in forward flight, since unload-
ing the tips delays stall on the retreating blade and compressibility effects on the
advancing blade. Large values of negative twist, although beneficial for hover per-
formance, contribute to the appearance of negative loading on the advancing side
in forward flight. Thus twist reduces forward flight maximum lift-to-drag ratio and
increases hub vibratory loads and blade alternating loads at maximum speed. Twist
also has some effect on autorotation performance.

Thus selection of the rotor twist and taper is a complex task requiring consider-
ation of all the operating conditions of the helicopter.

3.9.2 Blade Tip Shape

The angle-of-attack change produced by the tip vortex suggests modifications
to the blade tip geometry. Increasing the blade twist rate (more negative pitch)
over the outer 5–7% of the blade can counter the upwash induced by the tip vortex.
Some blade designs also use zero or positive twist rate for the last part of the blade,
intended to reduce the peak bound circulation and resulting tip vortex strength by
increasing the loading near the tip.

Anhedral or droop of the blade tip can increase the hover performance by
2–3%. With such droop, the tip vortex forms at a lower position. Because of the
wake contraction, this tip vortex encounters the following blade under the inboard
(not drooped) part of the blade, hence with increased vertical separation. Larger
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vertical separation reduces the blade-vortex interaction and improves the rotor
hover performance.

Tip taper and sweep improve rotor performance by reducing compressibility
effects near the tip. The hover figure of merit can be increased at high tip Mach
numbers. With a square tip, nose-down pitching moments at high Mach number
lead to high control loads in high-speed or high load-factor flight. With a swept tip,
the effective Mach number is reduced and the center of lift shifted aft. A swept tip
can improve the loading in the second quadrant during forward flight, since the aft
loading tends to twist the blade to counter occurrence of negative lift.

3.10 REFERENCES

Bailey, F.J., Jr. “A Simplified Theoretical Method of Determining the Characteristics of a
Lifting Rotor in Forward Flight.” NACA Report 716, 1941.

Glauert, H. “Airplane Propellers.” In Aerodynamic Theory, Durand, W.F. (Editor). New
York: Julius Springer, 1935.

Goldstein, S. “On the Vortex Theory of Screw Propellers.” Proceedings of the Royal Society
of London, Series A, 123:792 (April 1929).

Gray, R.B. “On the Motion of the Helical Vortex Shed from a Single-Bladed Hovering Model
Helicopter Rotor and Its Application to the Calculation of the Spanwise Aerodynamic
Loading.” Princeton University, Aeronautical Engineering Department Report No. 313,
September 1955.

Gray, R.B. “An Aerodynamic Analysis of a Single-Bladed Rotor in Hovering and Low-
Speed Forward Flight as Determined from Smoke Studies on the Vorticity Distribution in
the Wake.” Princeton University, Aeronautical Engineering Department Report No. 356,
September 1956.

Knight, M., and Hefner, R.A. “Static Thrust Analysis of the Lifting Airscrew.” NACA TN
626, December 1937.

Kocurek, J.D., and Tangler, J.L. “A Prescribed Wake Lifting Surface Hover Performance
Analysis.” Journal of the American Helicopter Society, 22:1 (January 1977).

Landgrebe, A.J. “An Analytical and Experimental Investigation of Helicopter Rotor Hover
Performance and Wake Geometry Characteristics.” USAAMRDL TR 71-24, June 1971.

Landgrebe, A.J. “The Wake Geometry of a Hovering Helicopter Rotor and Its Influence on
Rotor Performance.” Journal of the American Helicopter Society, 17:4 (October 1972).

Sissingh, G. “Contribution to the Aerodynamics of Rotating-Wing Aircraft.” NACA TM 921,
December 1939.

Theodorsen, T. “The Theory of Propellers.” NACA Reports 775, 776, 777, and 778, 1944.
Wheatley, J.B. “An Aerodynamic Analysis of the Autogiro Rotor with a Comparison Between

Calculated and Experimental Results.” NACA Report 487, 1934.



4 Vertical Flight

Vertical flight of the helicopter rotor at speed V includes the operating states of
hover (V = 0), climb (V > 0), and descent (V < 0) and the special case of vertical
autorotation (power-off descent). Between the hover and autorotation states, the
helicopter is descending at reduced power. Beyond autorotation, the rotor is pro-
ducing power for the helicopter. The principal subject of this chapter is the induced
power of the rotor in vertical flight, including descent. The key physics are associated
with the flow states of the rotor in axial flight. Axial flight of a rotor also encompasses
the propeller in cruise (V > 0) and static (V = 0) operation, and a horizontal axis
wind turbine (V < 0).

4.1 Induced Power in Vertical Flight

In Chapter 3, momentum theory was used to estimate the rotor induced power Pi

for hover and vertical climb. Momentum theory gives a good power estimate if an
empirical factor is included to account for additional induced losses, particularly tip
losses and losses due to nonuniform inflow. In the present chapter these results are
extended to include vertical descent. Momentum theory is not applicable for a range
of descent rates because the assumed wake model is not correct. Indeed, the rotor
wake in that range is so complex that no simple model is adequate. In autorotation,
the operating state for power-off descent, the rotor is producing thrust with no net
power absorption. The energy to produce the thrust (the induced power Pi) and turn
the rotor (the profile power Po) comes from the change in gravitational potential
energy as the helicopter descends. The range of descent rates where momentum
theory is not applicable includes autorotation.

Momentum theory gives the rotor power as P = T (V + v) (not including the
profile power). The rotor thrust T is positive. TV is the power input to the rotor
for climb at vertical speed V or for descent at speed |V |, in which case the airflow
supplies the power T |V | to the rotor. The induced power is Pi = Tv, where v is the
induced velocity at the rotor disk. The induced power is always positive, so v > 0 for
positive thrust. Since the induced velocity is seldom uniform, especially in vertical
descent, v is best viewed as being equivalent to the induced power by the definition
v = Pi/T . This view is consistent with the way v is obtained from measured rotor
performance. The induced velocity or power is a function of the speed, thrust, rotor

92
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Figure 4.1. Flow model for momentum theory in climb or descent.

disk area, and air density:

v = f (V,T,A, ρ) (4.1)

For forward flight, an additional parameter is the disk incidence angle i (see Chap-
ter 5). There are other parameters influencing the induced velocity that are not
considered here, such as the rotor tip speed and the distribution of the loading over
the rotor disk. From dimensional analysis, the functional form for v must be

v

vh
= f

(
V
vh
, i
)

(4.2)

where v2
h = T/2ρA (the momentum theory result for the hover induced velocity).

The induced power and the momentum theory hover power are Pi = Tv and Ph =
Tvh, so v/vh = Pi/Ph. The function f (V/vh, i) can be obtained by analysis (such as
momentum theory) or by experiment. A measurement or calculation of Pi and T
for a given V is plotted in the form of v/vh as a function of V/vh. Any discrepancies
in the empirical correlation of measured performance by this function are due to
other factors that influence the induced power, such as the twist distribution, number
of blades, planform and airfoil shape, and tip Mach number. For the purposes of
obtaining a first estimate of the induced power in vertical flight, v/vh = f (V/vh)

covers the primary functional dependence.

4.1.1 Momentum Theory for Vertical Flight

As in section 3.1, consider momentum theory for an actuator disk model of a uni-
formly loaded rotor. The rotor is climbing at velocity V , and therefore the flow is
downward through the rotor disk (Figure 4.1). The induced velocities v and w at the
rotor disk and in the far wake, respectively, are assumed to be uniform. The sign con-
vention (important when the descent case is considered) is that the thrust is positive
upward and the velocities positive downward. The mass flux is ṁ = ρA(V + v).
Momentum conservation gives T = ṁ(V + w)− ṁV = ṁw, and energy conser-
vation gives P = T (V + v) = 1

2 ṁ(V + w)2 − 1
2 ṁV2 = 1

2 ṁ(2Vw + w2). Eliminating
T/ṁ gives w = 2v, and hence T = 2ρA(V + v)v. On writing v2

h = T/2ρA, the
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momentum theory result for the rotor in climb becomes

v

vh

(
V
vh

+ v

vh

)
= 1 (4.3)

with solution

v = −V
2

+
√(

V
2

)2

+ v2
h (4.4)

since v must be positive. The net velocities at the disk and far downstream are then

V + v = V
2

+
√(

V
2

)2

+ v2
h (4.5)

V + w = V + 2v =
√

V 2 + 4v2
h (4.6)

The key to the momentum theory analysis is to use the correct model for the
flow. The climb model cannot be used with V < 0, because in descent the free stream
velocity is directed upward and therefore the far downstream wake is above the rotor
disk. The flow model for descent is also shown in Figure 4.1. The mass flux is still ṁ =
ρA(V + v). Now momentum and energy conservation give T = ṁV − ṁ(V + w) =
−ṁw and P = T (V + v) = 1

2 ṁV2 − 1
2 ṁ(V + w)2 = − 1

2 ṁ(2Vw + w2). V is negative
now, whereas T , v, and w are still positive. Since V + v is negative (upward flow
through the disk), P = T (V + v) is negative, and the rotor is extracting power from
the airstream in excess of the induced power. This flow condition is called the
windmill brake state. Eliminating T/ṁ gives w = 2v again. The momentum theory
result for the induced velocity in descent is T = −2ρA(V + v)v, or

v

vh

(
V
vh

+ v

vh

)
= −1 (4.7)

with solution

v = −V
2

−
√(

V
2

)2

− v2
h (4.8)

The net velocities at the disk and far downstream are

V + v = V
2

−
√(

V
2

)2

− v2
h (4.9)

V + w = V + 2v = −
√

V 2 − 4v2
h (4.10)

The other solution of the quadratic for v gives v > 0 and V + v < 0 as required, but
has V + w > 0. Thus the flow in the far wake would be downward, contrary to the
assumed flow model.

Figure 4.2 shows the momentum theory solution for the rotor in vertical climb
or descent. The dashed portions of the curves are branches of the solution that do
not correspond to the assumed flow state. The line V + v = 0 is where the flow
through the rotor disk and the total power P = T (V + v) change sign. At the line
V + 2v = 0 the flow in the far wake changes sign. The lines V = 0, V + v = 0, and
V + 2v = 0 divide the plane into four regions, where the rotor operating condition
is named the normal working state (climb and hover), vortex ring state, turbulent
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Figure 4.2. Momentum theory results for the induced velocity in vertical flight.

wake state, and windmill brake state (see Figure 4.2). For climb, the air is assumed to
be moving downward throughout the flow field (V , V + v, and V + 2v all positive).
For the branch of the solution given by V < 0, however, the flow through the disk
and in the wake is downward while the flow outside the slipstream is upward; this is
not a physically realizable condition for the entire flow field. The climb solution can
be expected to be valid for small rates of descent, however, where at least near the
rotor the flow is all downward. Thus the region of validity for the momentum theory
solution does include hover. For the rotor in descent, the air is assumed to be moving
upward throughout the flow field (V , V + v, and V + 2v all negative). For the upper
branch of the descent solution, however, V + 2v > 0, so the flow is downward in the
far wake while upward everywhere else, including outside the wake slipstream. Again
this is not a physically realizable condition. Thus, in the vortex ring and turbulent
wake states the flow outside the slipstream is upward while the flow inside the far
wake is nominally downward. Because such a flow state is not possible, there is no
valid momentum theory solution for the moderate rates of descent between V = 0
and V = −2vh. The line V + v = 0 corresponds to ideal autorotation, P = 0, and is
in the center of the range where momentum theory is not valid. The momentum
theory results become infinite at V + v = 0 because the theory implies that thrust is
produced without mass flow through the rotor disk (ṁ = 0).

In summary, momentum theory is based on a wake model consisting of a definite
slipstream and a well-defined wake downstream, with the air moving in the same
direction throughout the flow field. Since this a good model for the rotor in climb
or a high rate of descent, in the normal working state and windmill brake state,
momentum theory gives a good estimate of the induced power. The momentum
solution for climb is actually good for small rates of descent as well and hence in a
range including hover; the flow model is really incorrect, but near the rotor there
is no drastic change in the flow until perhaps V/vh < − 1

2 . For moderate rates of
descent, −2vh < V < 0, there is no valid wake model for momentum theory. The
flow would like to be upward everywhere except in the far wake, where it wants to
be downward. The result is an unsteady, turbulent flow with no definite slipstream.
Thus the induced velocity law for the vortex ring and turbulent wake states must be
determined empirically from a correlation of measured rotor performance.



96 Vertical Flight

4.1.2 Flow States of the Rotor in Axial Flight

Figure 4.3 shows sketches, more impressionistic than representational, of the flow
states of rotor in axial flight. The four states are shown: normal working state, vortex
ring state, turbulent wake state, and windmill brake state.

4.1.2.1 Normal Working State

The normal working state includes climb and hover (see Figures 4.3a and 4.3b).
For climb, the velocity throughout the flow field is downward with both V and v
positive. From mass conservation, the wake contracts downstream of the rotor. A
wake model with a definite slipstream is valid for this flow state (although the wake
really consists of discrete vorticity), and momentum theory gives a good estimate
of the performance. There is also entrainment of air into the slipstream below the
rotor and some recirculation near the disk, particularly for hover. Although such
phenomena are not included in the momentum theory model, their effect on the
induced power is secondary.

Hover (V = 0) is the limit of the normal working state. By mass conservation,
the area of the slipstream becomes infinite upstream of the rotor. Still, momentum
theory models the flow well in the vicinity of the rotor disk and hence gives a good
performance estimate, even though hover is nominally a limiting case.

4.1.2.2 Vortex Ring State

When the rotor starts to descend, a definite slipstream ceases to exist because the
flows inside and outside the slipstream in the far wake want to be in opposite
directions. Therefore, from hover to the windmill brake state the flow has large
recirculation and high turbulence. Sometimes this entire region is called the vortex
ring state, but the convention here is that the vortex ring state is defined by P =
T (V + v) > 0, so that the power extracted from the airstream is less than the induced
power. The region with P = T (V + v) < 0 is called the turbulent wake state. Partial
power descents occur in the vortex ring state, and equilibrium autorotation usually
occurs in the turbulent wake state.

Figures 4.3c and 4.3d sketch the flow about the rotor in the vortex ring state. At
small rates of descent, recirculation near the disk and unsteady, turbulent flow above
the disk begin to develop. The flow in the vicinity of the disk is still reasonably well
represented by the momentum theory model, however. Because the change in flow
state for small rates of climb or descent is gradual, the momentum theory solution
remains valid for some way into the vortex ring state. Eventually, at descent rates
beyond about V = − 1

2vh, the flow even near the rotor disk becomes highly unsteady
and turbulent. The rotor in this state experiences a high vibration level, and aircraft
motion can develop that is difficult to control. In particular, in the vortex ring state
the power required is not very sensitive to vertical velocity, and hence controlling
the descent rate is difficult in this region.

The flow pattern in the vortex ring state is like that of a vortex ring in the plane
of the rotor disk or just below it (hence the name given the state; the flow is highly
turbulent as well). The upward free-stream velocity in descent keeps the blade tip



4.1 Induced Power in Vertical Flight 97

rotor 
disk

V
thrust T

V+v

V+2v

V

rotor 
disk

rotor 
disk

thrust T

V+v

V

V+2v

V
rotor 
disk

thrust T

V+v

V

V

v

2v

thrust T

(g) boundary (V+2v = 0)                              (h) windmill brake state
 windmill brake state

(e) ideal autorotation (V+v = 0)                         (f) turbulent wake state
       turbulent wake state

(c) low descent rate                                    (d) higher descent rate
vortex ring state

(a) climb                                                (b) hover, V = 0
normal working state

Figure 4.3. Rotor flow states in axial flight.
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vortex spirals piled up under the disk, forming the ring. With each revolution of the
rotor the ring vortex builds up strength until it breaks away from the disk plane in
a sudden breakdown of the flow. The flow field is thus unsteady, the vortex ring
periodically being allowed to escape and rise into the flow above the rotor. This
behavior is a source of disturbing low-frequency vibration. In the turbulent wake
state, V + v < 0 and so the flow is nominally upward through the rotor disk. The tip
vortices are then carried upward, away from the disk again.

4.1.2.3 Turbulent Wake State

Figure 4.3e shows the flow state for ideal autorotation, V + v = 0. If the rotor had
no profile power losses, power-off descent would be at this condition, since there
P = T (V + v) = 0. Although nominally there is no flow through the disk, actually
there is considerable recirculation and turbulence. The flow state is similar to that
of a circular plate of the same area: no flow through the disk, with a turbulent wake
above.

Figure 4.3f sketches the flow for the turbulent wake state. The flow still has a
high level of turbulence, but since the velocity at the disk is upward there is much
less recirculation through the rotor. The flow pattern above the rotor disk in the
turbulent wake state is similar to the turbulent wake of a bluff body (hence the
name given the state). The rotor in this state experiences some roughness due to
the turbulence, but nothing like the high vibration in the vortex ring state.

4.1.2.4 Windmill Brake State

At large rates of descent (V < −2vh) the flow is again smooth, with a definite slip-
stream. Figures 4.3g and 4.3h show this flow condition in the windmill brake state.
The velocity is upward throughout the flow field, the slipstream expanding in the
wake above the rotor. In the windmill brake state the rotor is producing a net
power P = T (V + v) < 0 for the helicopter by the action of the airstream on the
rotor. The simple wake model of momentum theory is again applicable, and a good
performance estimate is obtained.

At the windmill brake state boundary (V + 2v = 0 at V = −2vh), the velocity in
the far wake above the rotor is nominally zero. Thus the slipstream area approaches
infinity above the disk as the flow tries to stagnate. The flow outside the slipstream
is still upward, however, so in contrast to the hover case this limit is an unstable
condition. At the boundary between the windmill brake and turbulent wake states,
the flow changes rather abruptly from a state with a smooth slipstream to one
with recirculation and turbulence as the nominal velocity in the far wake changes
direction. Thus the validity of the momentum theory solution ceases abruptly at the
windmill brake boundary.

4.1.3 Induced Velocity Curve

Figure 4.4 presents the universal law for the induced power in vertical flight in terms
of v/vh as a function of V/vh, a form originated by Hafner (1947). The induced veloc-
ity v is not measured directly, but rather the law is a correlation of measured rotor
power and thrust at various axial speeds. The ordinate is therefore best interpreted as
Pi/Ph. The measured rotor power also includes profile power (P = T (V + v)+ Po),
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Figure 4.4. Rotor induced power in vertical flight.

which must be accounted for to obtain the induced power:

V + v
vh

= P − Po

T
√

T/2ρA
= CP − CPo

C3/2
T /

√
2

(4.11)

Obtaining the induced velocity thus requires an estimate of the profile power coeffi-
cient. The simple result CPo = σcd/8 might be used, but a more detailed calculation
of CPo is desirable since any errors in CPo result in corresponding scatter in the
induced power correlation. By this means the universal induced velocity curve can
be constructed, as in Figure 4.4.

Momentum theory indeed gives a good performance estimate in the normal
working and windmill brake states. In hover and climb, the measured induced power
is higher than the momentum theory result by a small, relatively constant factor. This
power increase is due to the additional induced losses of the real rotor, particularly
nonuniform inflow and tip losses. The induced velocity correlation always shows
some scatter, due to errors in the profile power calculation, variations in the non-
optimum losses, and the influence of other design parameters, such as tip Mach
number and blade twist. At hover, for example, the result could be 5% or 10% dif-
ferent from that shown in Figure 4.4. The scatter is greatest in the vortex ring state.
Because of the highly turbulent and unsteady flow condition, the induced velocity
is not well represented by a single line in this range of descent rates. Moreover, the
vortex ring state is basically an unstable flow condition and hence is sensitive to fac-
tors such as ground proximity and wind or ground speed, making good performance
measurements in this region difficult to obtain.

An alternative presentation of the induced velocity law, developed by Lock
(1947), is in terms of (V + v)/vh as a function of V/vh (Figure 4.5). In this case the
total power P/Ph = (V + v)/vh is given, rather than just the induced power. Such a
presentation is more consistent with the way the curve is obtained and used, since
the total power is of interest in the rotor performance calculation. Figure 4.5 also
shows the lines V + v = 0 (the abscissa) and V + 2v = 0, which define the four flow
states of the rotor in axial flow. The line v = 0 goes through the origin at 45◦; the
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induced velocity v is given by the vertical distance between the inflow curve and the
v = 0 line. The abscissa, V + v = 0, is the ideal autorotation case here; for points
above ideal autorotation the rotor is absorbing power, and for points below the rotor
is producing power for the helicopter.

In the early British literature, the induced velocity curve was often plotted in
terms of 1/ f = (V/vh)

2 as a function of 1/F = ((V + v)/vh)
2, which followed from

writing the loading distribution as dT/dr = 4πrρ(V + v)2F = 4πrρV 2 f ; see Lock,
Bateman, and Townend (1925). This form is not very useful, because the sign of V
and (V + v) is lost, and by squaring the velocities their behavior near zero (including
hover) is obscured.

To interpret the scale of these inflow curves, note that for sea level density
vh = √

T/2ρA = 14.5
√

T/A ft/sec = 870
√

T/A ft/min (disk loading in lb/ft2), or
vh = 0.64

√
T/A m/sec (disk loading in N/m2). For the disk loading range typical

of helicopter rotors, T/A = 5 to 15 lb/ft2, the velocity vh = 2000 to 3400 ft/min.

4.1.3.1 Hover Performance

The measured rotor hover performance indicates that the induced power is consis-
tently higher than the momentum theory result by about 10% to 15%. The momen-
tum theory power estimate is the best possible performance. The additional induced
power is due to nonuniform inflow, tip losses, swirl, and other factors. Thus, in
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hovering performance calculations (such as in section 3.5.2.3) the induced power
can be obtained using the momentum theory result with an empirical correction
factor, CPi = κC3/2

T /
√

2. A value of κ = 1.15 is typical for hover.

4.1.3.2 Vortex Ring State

Although no theoretical inflow curve is available in the vortex ring and turbulent
wake states, a fairly accurate approximation is given by the cubic relation

V + v
vh

= a
(

V
vh

)3

− b
(

V
vh

)
(4.12)

Matching to the momentum theory results at the windmill brake state boundary
V/vh = −2 (where (V + v)/vh = −1) and in the vortex ring state at V/vh = −1
(where (V + v)/vh = (√5 − 1)/2) gives these constants: a = √

5/6 = 0.373 and
b = (4√

5 − 3)/6 = 0.991. If the empirical factor κ is included,

v

vh
= κ V

vh

[
0.373

(
V
vh

)2

− 1.991

]
(4.13)

which describes the inflow curve in the range −2 < V/vh < −1. For climb, hover, and
low rates of descent (V/vh > −1) and for high rates of descent in the windmill brake
region (V/vh < −2) the momentum theory results with an appropriate empirical
correction are valid.

However, measured data suggest that using momentum theory down to V/vh =
−1.5 is appropriate, and the extension of equation 4.13 to edgewise flow has small
jumps at the transitions from this curve to momentum theory. An alternative result
is obtained using a third-order polynomial to match momentum theory v and dv/dV
at V/vh = −1.5 and v at V/vh = −2.1. This is the basis of the lower curve for vortex
ring state that is shown in Figures 4.4 and 4.5; see Johnson (2005) for details.

4.1.3.3 Autorotation and Turbulent Wake State

The universal inflow curve crosses the ideal autorotation line V + v = 0 at about
V/vh = −1.8 (the scatter extends over roughly V/vh = −1.6 to −1.9; see Figure 4.5).
Real autorotation occurs at a higher rate of descent, in the turbulent wake state. In the
turbulent wake state the induced velocity curve can be approximated fairly well by a
straight line on the (V + v)/vh vs.V/vh plane. Joining the ideal autorotation intercept
(V + v = 0 at V/vh = −x) and the windmill brake state boundary ((V + v)/vh = −1
at V/vh = −2) gives

V + v
vh

= x
2 − x

+ 1
2 − x

V
vh

(4.14)

So for V/vh = −1.8 at ideal autorotation, we obtain

V + v
vh

= 9 + 5
V
vh

(4.15)

in the turbulent state. This relation is useful in estimating the descent rate in real
autorotation (see section 4.3).
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4.2 Vortex Ring State

The experimental data that form the basis for the empirical correction of the inflow
curve are shown in Figure 4.6. The data are from Lock, Bateman, and Townend
(1925); Glauert (1926); Lock (1947); Castles and Gray (1951); Yaggy and Mort
(1963); Empey and Ormiston (1974); Betzina (2001); and Taghizad, Jimenez, Binet,
and Heuze (2002).

A rotor is operating in vortex ring state (VRS) when descending at zero or low
forward speed with a vertical velocity that approaches the value of the wake-induced
velocity at the rotor disk. In this condition the rotor tip vortices are not convected
away from the disk rapidly enough, and the wake builds up and periodically breaks
away (Figure 4.7). The tip vortices collect in a vortex ring, producing a circulating flow
down through the rotor disk, then outward and upward outside the disk. The resulting
flow is unsteady and hence is a source of considerable low-frequency vibration and
possible control problems. For descent at forward speeds sufficiently high enough
that the wake is convected away from the rotor, vortex ring state does not develop.

Vortex ring state encounter can produce a significant increase in the descent
rate of a helicopter or a rolloff of a tiltrotor. Figure 4.8 shows flight test data for the
vertical velocity increase (and stabilization) of a helicopter, from Taghizad, Jimenez,
Binet, and Heuze (2002) and rolloff of a tiltrotor in helicopter configuration, from
Kisor, Blyth, Brand, and MacDonald, (2004). In Figure 4.8, Vz is the vertical velocity



4.2 Vortex Ring State 103

Figure 4.7. Rotor flow visualization in vortex ring state; Drees and Hendal (1951).

and Vx the horizontal velocity; also shown is a stability boundary developed by
Johnson (2005). This motion is an instability of the helicopter vertical or tiltrotor roll
dynamics. If the aircraft rate becomes sufficiently large as a result of the instability,
recovering is not possible using collective control for the helicopter or lateral cyclic
control (differential collective) for the tiltrotor. Although the response to control is
still a positive acceleration increment, the control authority is not sufficient to reverse
the motion. Hence recovery from VRS encounter requires a drop in collective and
forward cyclic for a helicopter or a forward nacelle tilt for a tiltrotor. Basically it is
necessary to fly out of the instability region. The flight test data define essentially
the same VRS boundary for a helicopter and a tiltrotor, in spite of the different
manifestation of the instability (vertical drop or rolloff), and large differences in
twist and solidity between the rotors of the two aircraft. Figure 4.8 also compares the
VRS boundaries from a number of investigations (Reeder and Gustafson (1949),
Drees and Hendal (1951), Yeates (1958), Washizu, Azuma, Koo, and Oka (1966),
Taghizad, Jimenez, Binet, and Heuze (2002), and Johnson (2005)). The ONERA
and Johnson boundaries are based on the control and flight dynamics behavior;
the other boundaries are based on the vibration and roughness that a helicopter
encounters in VRS. Of particular note are the boundaries that Washizu constructed
for thrust fluctuation levels of �T/T = 0.15 and 0.30, which are found in numerous
documents on VRS.

The instability of the aircraft in vortex ring state is a consequence of the form
of the rotor inflow as a function of the descent rate. The measured data (Figure 4.6)
show that at moderate descent rates (in VRS), the total velocity V + v increases
as the descent rate increases. As the rotor descends into VRS, the energy losses
resulting from the recirculating flow increase; hence the power (total inflow V +
v) can increase. Where d(V + v)/dV is negative (roughly V/vh = −0.5 to −1.5 in
Figures 4.5 and 4.6), the vertical motion (and roll motion of a tiltrotor) is unstable,
because an increase in descent rate at constant collective produces an increase in total
inflow and hence a reduction in thrust – which is negative heave damping of the rotor.
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Figure 4.8. Stability boundary in vortex ring state.

The experimental data exhibit considerable scatter due to the essential unsteadiness
of the flow and resulting loads, and error due to the influence of test facilities on
the flow field. Some of the data, notably that of Lock, do not show the region of
negative d(V + v)/dV . Flight test data (Figure 4.8) show where d(V + v)/dV = 0
occurs, which defines the points of entry into and recovery from VRS. This is the
basis of the upper curve for vortex ring state that is shown in Figures 4.4 to 4.6; see
Johnson (2005) for details.

This instability mechanism has been recognized in several efforts. More inves-
tigations have been focused on the unsteady nature of VRS aerodynamics. In the
range V/vh = −0.5 to −1.5, the flow is characterized by a high level of roughness.
There are large periodic variations in the velocity at the disk and hence in the rotor
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loads as the vortex ring alternately builds up and then escapes the rotor disk. The
low-frequency thrust variations produce a disturbing vibration of the helicopter that
is a dominant feature of the vortex ring state. Such roughness is a symptom of VRS
and can be a cue for the pilot, but it is the negative heave damping that is important
for the aircraft behavior. Moreover, the unsteady motion of the aircraft must be
considered and modeled, not just the quasistatic performance defined by Figure 4.5;
see Brand, Dreier, Kisor, and Wood (2007).

4.3 Autorotation in Vertical Descent

Autorotation is the state of rotor operation with no net power requirement. The
power to produce the thrust and turn the rotor is supplied either by auxiliary propul-
sion (the autogyro) or by descent of the helicopter. In an autogyro the rotor is
functioning as a wing. A component of the aircraft forward velocity directed upward
through the rotor disk supplies the power to the rotor, so the autogyro requires
a forward speed to maintain level flight. In autorotative descent of the helicopter,
the source of power is the decrease of the gravitational potential energy. More
directly, the descent velocity upward through the disk supplies the power to the
rotor. Although the lowest descent rate is achieved in forward flight, the helicopter
rotor is also capable of power-off autorotative descent in vertical flight.

The net rotor power is zero for vertical descent in autorotation: P = T (V +
v)+ Po = 0. The decrease in potential energy (TV) balances the induced (Tv) and
profile (Po) losses of the rotor. Neglecting the profile power gives ideal autorotation,
P = T (V + v) = 0. When the profile power is included, autorotation occurs at (V +
v) = −Po/T . Thus the descent rate can be obtained from the universal inflow curve
in the form (V + v)/vh vs. V/vh by finding the intercept of the curve with −Po/Ph. In
coefficient form,

V + v
vh

= − CPo

C3/2
T /

√
2

(4.16)

This intercept typically is at (V + v)/vh
∼= −0.3, which is in the turbulent wake state

at a descent rate slightly higher than ideal autorotation. Because the slope of the
inflow curve is large in this region, the increase in descent rate required to supply
the profile power is small. Tail rotor and aerodynamic interference losses should
also be included in finding the power (V + v)/vh of a real helicopter; such losses
are only 15% to 20% of the profile power and therefore contribute only a small
increase to the descent rate. The limit of the descent rate in vertical autorotation can
be obtained from the boundary of the turbulent wake state, at roughly V/vh = −1.8
to −2.

For a more quantitative estimate of the autorotative performance of real rotors,
recall the definition of the figure of merit for hover:

M = C3/2
T /

√
2

κC3/2
T /

√
2 + CPo

(4.17)

so that

CPo

C3/2
T /

√
2

= 1
M

− κ (4.18)
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Assuming now that CPo and CT do not change from hover to autorotation (hence
assuming that the blade drag coefficient and tip speed are the same), this is the
quantity required to define the autorotation point on the inflow curve. So

V + v
vh

= −
(

1
M

− κ
)

(4.19)

which typically gives (V + v)/vh = −0.2 to −0.4. Low profile power gives both good
hover performance (high figure of merit) and good autorotation performance (low
descent rate). Now we use equation 4.15 for the inflow curve in the turbulent wake
state: (V + v)/vh = 9 + 5V/vh. Combining the two relations for (V + v)/vh gives the
descent rate

V
vh

= −
[

1.8 + 0.2
(

1
M

− κ
)]

(4.20)

Typically, then, vertical autorotation takes place at V/vh = −1.85, or V = 26.8
√

T/A
ft/sec = 1610

√
T/A ft/min (disk loading in lb/ft2), or V = 1.18

√
T/A m/sec (disk

loading in N/m2), which gives V = 3600 to 6200 ft/min for the range of disk loadings
typical of helicopters.

The autorotation performance can be considered in terms of a drag coefficient
based on the rotor disk area and the descent velocity:

CD = T
1
2ρV 2A

= T/2ρA
V2/4

=
(

2
V/vh

)2

(4.21)

Hence, a low rate of descent corresponds to a high drag coefficient. This parameter is
a useful description of the performance since it is independent of the helicopter disk
loading. At the descent rates typical of real helicopters, the drag coefficient has a
value in the range CD = 1.1 to 1.2. For comparison, a circular flat plate of area A has a
drag coefficient of about CD = 1.28, and a parachute of frontal area A has CD = 1.40.
The helicopter rotor in power-off vertical descent is thus quite efficient in producing
the thrust to support the helicopter. The rotor is nearly as good as a parachute of the
same diameter. The descent rate in vertical autorotation is high because the rotor
is a rather small parachute for such a weight. A much lower descent rate is possible
in forward flight, however. The rotor flow state in autorotation is similar to that of
a bluff body of the same size, so producing comparable drag forces is reasonable.
Because the rotor efficiency is about as high as possible, a low descent rate can
be achieved only with very low disk loadings. Usually, the disk loading is selected
primarily on the basis of the rotor performance; the design of the helicopter for good
autorotation characteristics is usually concerned with the ability to maintain rotor
speed and to flare at the ground (see section 8.5).

Consider now power-off descent in terms of the blade aerodynamic loading.
The inflow ratio λ = (V + v)/�R is directed upward through the disk, so there is
a forward tilt of the lift vector (Figure 4.9). For power equilibrium at the blade
section, the inflow angle must be such that there is no net in-plane force and hence
no contribution to the rotor torque: dQ = (D − φL)r dr = 0. Because autorotation
involves induced and profile torques of the entire rotor, generally only one section
is in equilibrium, while the others are either producing or absorbing power. Since
φ = tan−1 |V + v|/�r, the inflow angle is large inboard and decreases toward the tip.
Then dQ < 0 on the inboard sections, which produce an accelerating torque on the
rotor and absorb power from the air; and dQ > 0 on the outboard sections, which
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Figure 4.9. Rotor blade section aerodynamics in autorotation.

produce a decelerating torque and deliver power to the airstream. Since there is
no net power to the rotor, the accelerating and decelerating torques must balance.
For a given descent rate, the rotor tip speed �R adjusts until this equilibrium is
achieved. Figure 4.10 illustrates the section aerodynamic environment on the rotor
in autorotation. If the equilibrium rotor speed is decreased slightly, the inflow angle
increases. Then the accelerating region moves outboard, increasing in size, and there
is a net accelerating torque on the rotor that acts to increase the rotor speed back to
the equilibrium value. Thus the rotor speed in autorotation is stable. The angle-of-
attack α = θ + φ increases inboard because of the inflow angle increase. At the blade
root, then, the sections are stalled. The negative twist that rotors generally have to
improve hover and forward flight performance further increases the angle-of-attack
of the inboard sections. Although negative twist is undesirable for autorotation, most
of the work of the rotor is done at the blade tips, where the velocity is high, so the
stall at the root does not usually have a particularly adverse effect on autorotation
performance.

In hover the inflow is downward through the disk, whereas in autorotation
(V + v) is upward. Hence between hover and autorotation, there is a net increase in
angle-of-attack due to the inflow change if the collective pitch is not changed after
the loss of power in hover. The excess decelerating torque attributable to this angle-
of-attack change decreases the rotor speed. In addition, the stall region increases
in extent, limiting the blade lift, which is required for the accelerating torque, and
increasing the drag, which produces the decelerating torque. With a stalled rotor,
autorotation may therefore not be possible. To avoid excessive blade stall and rotor
speed decrease, the blade pitch must be reduced as soon as possible after power
failure. The best collective pitch for autorotation is usually found to be a slightly
positive angle; the rotor speed can then be held near the normal value. The rate of
descent does not actually vary much with collective or rotor speed as long as large
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regions of stall are avoided, because the profile power does not change much and
the inflow curve is steep in the turbulent wake state.

For section equilibrium, recall that D − φL = 0, or D/L = cd/c� = φ. Consider
a plot of the blade airfoil characteristics, drawn to show cd/c� as a function of α
(Figure 4.11). Section equilibrium requires that cd/c� = φ = α − θ , which for a given
θ is a line on the cd/c� vs. α plane. The intersection of this line with the curve of
the airfoil characteristics determines the angle-of-attack for which equilibrium is
achieved at this section. Although only one blade section is in true equilibrium,
the inboard sections working at higher angle-of-attack and the outboard sections
at lower, the autorotation diagram (Figure 4.11) does give a good indication of the
characteristics of the entire rotor. Minimum descent rate means minimum φ, which
therefore requires that the blade operate at the angle-of-attack with lowest cd/c�,
resulting in minimum profile power. The collective pitch for this optimum opera-
tion is easily determined from the autorotation diagram. At both higher and lower
collective, the blade drag-to-lift ratio is higher and therefore the descent rate is
higher. At low angles of attack, cd/c� increases because c� is low, and it increases
at high angles because of stall. However, for many airfoils the drag-to-lift ratio
tends to be fairly flat around the minimum, so the descent rate is not too sensi-
tive to θ near the optimum value. Although the entire blade cannot be working
at the optimum angle-of-attack for autorotation, most of the blade is still at a low
value of cd/c�. The rotor tip speed is more sensitive than the descent rate to collec-
tive pitch changes. The relation cd/c� = φ = |V + v|/�r indicates that the maximum
rotor speed is obtained at the minimum cd/c�, and that the rotor slows down at
higher or lower collective pitch values. The autorotation diagram further shows that
there is a maximum collective pitch value θmax, above which equilibrium is not possi-
ble (Figure 4.11). When the angle-of-attack is high because of the high collective, the
rotor stalls and not enough lift becomes available to balance the decelerating torque
created by the high drag. The importance of reducing the collective pitch soon after
power loss derives from the necessity of avoiding this collective limit, where the
rotor speed decreases and the descent rate increases with no possibility of achieving
equilibrium.
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Blade element theory gives for autorotative descent

CP = λCT + σcdo

8
= 0 (4.22)

CT = σa
2

(
θ.75

3
− λ

2

)
(4.23)

Solving for the inflow ratio then gives

λ = θ.75

3
−
√(

θ.75

3

)2

+ cdo

2a
(4.24)

For a given collective pitch then, λ and CT can be calculated. The disk loading gives
the rotor speed from CT , and the inflow curve gives the descent rate from λ. Thus the
autorotation descent rate as a function of collective can be plotted, and the optimum
collective pitch value determined. A more detailed numerical analysis is desirable,
however, because of the importance of blade stall in the autorotation behavior
of the rotor. Blade element theory can at least be used to estimate the collective
pitch reduction required between hover and autorotation. From equation 4.23, and
assuming the tip speed �R is not changed,

�θ0 = 3
2
(λ− λh) = 3

2

(
V + v
vh

− 1
)
λh = −3

2

(
CPo

C3/2
T /

√
2

+ 1

)
λh

= −3
2

(
1
M

+ 1 − κ
)√

CT/2 (4.25)

which is typically about 5 degrees.

4.4 Climb in Vertical Flight

The momentum theory result for the power required in vertical climb is

V + v = V
2

+
√(

V
2

)2

+ v2
h

∼= V
2

+ vh (4.26)

where the last approximation is valid for small climb rates (roughly V/vh < 1; see
Figure 4.5). Then the induced velocity v ∼= vh − V/2 is reduced by the climb velocity
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Figure 4.12. Measured vertical climb performance; from Harris (1987).

because of the increased mass flow through the rotor disk. The power required in
climb is P = T (V + v)+ Po. Assuming that the profile power is unchanged by the
climb velocity, the power increment between climb and hover is

�P = P − Ph = T (V + v − vh) (4.27)

Using the small climb rate result for V + v, the excess power for climb is given by
�P/T ∼= V/2, and the climb rate for a given power increase is

V ∼= 2
�P
T

(4.28)

The power required just to increase the potential energy of the helicopter is�P/T =
V . Hence the reduction in the induced power required doubles the climb rate possible
with a given power increase. Flight test data show that the vertical rate-of-climb
achieved for a given power increment is greater than this momentum theory result
(see Figure 4.12), an effect attributed to the influence of climb on the wake geometry.

For an exact formulation, the excess power (equation 4.27) gives V = (�P/T )+
vh − v. Now the momentum theory result for climb, (V + v)v = v2

h, can be written:

v = v2
h

V + v = v2
h

�P/T + vh
(4.29)

Eliminating v then gives

V = �P
T

2vh +�P/T
vh +�P/T

(4.30)

from which the climb rate can be obtained if the excess power and rotor thrust are
specified. For small V this reduces to V ∼= 2�P/T again.
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Blade element theory can be used to estimate the collective pitch increase
required in climb. From 2CT/σa = (θ.75/3 − λ/2),

�θ = 3
2
(λ− λh) ∼= 3

4
λc (4.31)

for small climb rates where λ ∼= λh + 1
2λc (λc = V/�R). Alternatively, without the

assumption of small climb velocity,

�θ = 3
2

V + v − vh

�R
= 3

2
�P/T
�R

= 3
2
�CP

CT
(4.32)

4.5 Optimum Windmill

The momentum theory solution in the windmill brake state (see section 4.1.1) can
be written as

P = −1
2

ṁ(2Vw + w2) = −1
2
ρA
(
V + w

2

)(
2Vw + w2

)
(4.33)

Here the axial velocity V is negative, and the rotor is generating power as a windmill
(P < 0). Since w = 2v is determined by the wind speed V and the rotor thrust T
(really v2

h = T/2ρA), equation 4.33 gives the power as a function of thrust and speed.
For fixed wind speed, the maximum power is determined by dP/dw = 0, which has
the solutionw = − 2

3V . The maximum power is Pmax = 8
27ρAV 3. The energy available

from the wind flowing through the rotor disk is E = 1
2ρAV3. Hence the efficiency of

the optimum windmill is

η = Pmax

E
= 16

27
At most, 59% of the wind energy can be extracted by the windmill. This result is
called the Betz limit (see Betz (1928)), but was also obtained by Lanchester (Bergey
(1979)).

4.6 Twin Rotor Interference in Hover

The operation of two or more rotors in close proximity modifies the flow field at each,
and hence the performance of the rotor system is not the same as for the isolated
rotors. Examples of such configurations are the coaxial helicopter, the tandem rotor
helicopter (typically with 30% to 50% overlap), and the side-by-side configuration.
For most designs, all the main rotors are identical except for direction of rotation.
In particular all the rotors have the same diameter and the same disk area A. To
assess the influence of interference on the rotor performance, the power of the twin
rotors can be compared with that of isolated rotors operating at the same thrust. A
limiting case is the coaxial rotor system with no vertical separation, which has just
one-half the disk area of the isolated rotors and hence twice the disk loading. So by
operating the rotors coaxially, the induced power required is increased by a factor
of

√
2, a 41% induced power increase.
Consider the case of two rotors operating close together but with no overlap.

According to vortex theory, in the disk plane but outside the rotor disk circle there is
no normal induced velocity component and hence no interference power. With some
vertical separation there can be an interference, favorable or unfavorable, even with
no overlap of the rotors.
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For rotors with some overlap and small vertical separation, there is a common
rate of flow through the overlapped portions of the disk. For the same total thrust, the
overlap area has a higher disk loading than the isolated rotors, which increases the
local induced power. As the separation decreases, the increase in power approaches
the 41% of coaxial rotors. As the vertical separation of coaxial rotors is increased,
the wake of the top rotor contracts and thus affects less area of the lower rotor,
reducing the interference power.

The efficiency of the twin rotor system can be assessed by comparing it to the
power of an ideal system, which is taken as the momentum theory (uniform loading)
power of a single rotor with the same total thrust and an area equal to the projected
area of the twin rotor system.

4.6.1 Coaxial Rotors

Coaxial main rotors generally have better hover efficiency than the equivalent single
rotor (that is, no vertical separation), a consequence of the contraction of the wake
of the upper rotor, as well as a reduction in wake swirl losses. For vertical separation
of 10% of the rotor diameter, the upper rotor wake in hover has contracted to about
0.85R when it reaches the lower rotor (Akimov, Butov, Bourtsev, and Selemenev
(1994), based on tip vortex visualization). Far below the disk, the upper rotor wake
has contracted to 0.82R and the lower rotor wake to 0.91R, compared to the far wake
contraction of 0.78R for a single rotor.

Consider coaxial rotors with area A of each rotor and total thrust T = Tu + T�.
Define the reference velocity as v2

h = T/2ρA (based on the area of a single rotor).
For coaxial rotors with zero vertical spacing (that is, a single rotor with the same total
solidity), the momentum theory solution for ideal induced power is P = Tvh. For
two separate isolated rotors, the solution is P = 2(T/2)

√
(T/2)/(2ρA) = 2−1/2Tvh =

0.7071Tvh.
A simple approach to estimate coaxial rotor efficiency is to consider the area

of the lower rotor that is outside the upper rotor slipstream as an extra active
area of the rotor system (Bourtsev, Kvokov, Vainstein, and Petrosian (1997)). For
large separation the effective area is 3

2 A (since by momentum theory the upper rotor
wake contracts to area 1

2 A), and P = T
√

T/(2ρ(3/2)A) = (2/3)1/2Tvh = 0.8165Tvh.
For finite spacing with contraction ratio x, the effective area is Ae = (2 − x2)A,
and P = T

√
T/(2ρAe) = (2 − x2)−1/2Tvh. So for 85% contraction, P = 0.8847Tvh,

a 13% decrease in induced power. Measured rotor performance typically shows an
8–11% increase in the figure of merit for coaxial rotors.

Momentum theory can be used to determine the induced power for coaxial
rotors with very large vertical separation. Figure 4.13 illustrates the flow model at
the lower rotor, showing the velocities and areas in the flow field and the pressure
on the rotor disk. For large vertical separation, the lower rotor has no effect on the
upper rotor, and the momentum theory solution for the upper rotor is v2

u = Tu/2ρA
and Pu = Tuvu. The far wake velocity of the lower rotor wu = 2vu is uniform over
the cross-section area A/2. This far wake velocity acts on the lower rotor.

Momentum theory for the lower rotor follows the derivation of section 3.4, with
the addition of the interference velocitywu = 2vu above the rotor. Mass, momentum,
and energy conservation become

ṁ =
∫
v�dA =

∫
w�dS (4.34)
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Figure 4.13. Momentum theory model of coaxial rotors in hover.

T� =
∫
�p�dA =

∫
ρw2

�dS − ρ(2vu)
2(A/2) (4.35)

P� =
∫
�p�v�dA =

∫
1
2
ρw3

�dS − 1
2
ρ(2vu)

3(A/2) (4.36)

where S is the area in the far wake of the lower rotor. Calculus of variations shows
that the solution for minimum power with constrained thrust is w� uniform over the
wake. Thus

ṁ =
∫
v�dA = w�S (4.37)

T� =
∫
�p�dA = ρw2

�S − 2ρAv2
u (4.38)

P� =
∫
�p�v�dA = 1

2
ρSw3

� − 2ρAv3
u (4.39)

Momentum theory does not give information about the distribution of the induced
velocity over the rotor disk. Bernoulli’s equation can be used to relate the loading
on the rotor disk,�p� = dT�/dA, to the far wake velocityw�. Bernoulli’s equation is
applied from far above the rotor (where the pressure equals ambient) to just above
the rotor disk, and from just below the rotor disk to far below (where the pressure
again equals ambient), for streamlines starting from within and without the upper
rotor wake (subscripts I and O, for inboard and outboard, respectively), giving

�p�O = 1
2
ρw2

� (4.40)

�p�I = 1
2
ρw2

� − 2ρv2
u (4.41)

For an isolated rotor (without the effect of the upper rotor wake), uniform far
wake velocity w� implies uniform disk loading �p�. For coaxial rotors, the load-
ing is significantly different in the inboard and outboard regions, although uniform
in each. Roughly the inboard loading is 1/3 the outboard loading for this optimum
power solution. Let α be the ratio of the inboard or outboard local loading�p� to the
lower rotor disk loading:�p� = α(T�/A). So

∫
�p�dA = T� gives αIAI + αOAO = A
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(AI and AO are the inboard and outboard areas at the rotor disk, which can be
determined from mass conservation if v� is known). From �p�I = �p�O − 2ρv2

u,
αI = αO − v2

u/(T�/2ρA). Define the mean induced velocity v� = ∫
v�dA/A, and a

nonuniform loading parameter α = ∫
�p�v�dA/(T�v�) = ∫

αv�dA/(v�A), so the
power can be written P� = ∫

�p�v�dA = α T�v�. The loading distribution is char-
acterized by the single parameter α; in the absence of a detailed analysis, a range of
α values are considered. For an isolated rotor, the optimum solution is uniform disk
loading, hence α = 1; in general α is the average of the disk loading weighted by the
induced velocity, giving α > 1. With these definitions, the conservation equations are

ṁ = v�A = w�S (4.42)

T� = ρAv�w� − 2ρAv2
u (4.43)

P� = α T�v� = 1
2
ρAv�w2

� − 2ρAv3
u (4.44)

using the mass flux relation in the momentum and energy equations. For an isolated
rotor (vu = 0 and α = 1), w� is easily eliminated and the usual solution for the mean
induced velocity obtained. Define the lower rotor reference velocity v2

r = T�/2ρA;
recall v2

u = Tu/2ρA, so v2
h = T/2ρA = v2

u + v2
r . Substituting T� = 2ρAv2

r in equations
4.43 and 4.44, and eliminating w�, gives the relation

α v2
r v

2
� + v3

u v� = (v2
u + v2

r )
2 (4.45)

Write vr = rvu, T� = r2Tu = τTu, and v� = svu. Then equation 4.45 becomes

α τ s2 + s = (1 + τ )2 (4.46)

and the solution gives the total power P = Tuvu + α T�v� = (1 + α τ s)Tuvu or

P = (1 + τ )−3/2(1 + ατ s)Tvh (4.47)

Given τ , the ratio of the lower and upper induced velocities is

s = 1
2ατ

(√
1 + 4(1 + τ )2ατ − 1

)
(4.48)

The thrust and power ratios are then Tu/T = 1/(1 + τ ) and Pu/P = 1/(1 + ατ s).
Also, since αI = αO − 1/τ , the inboard and outboard loading ratios are
αI = 1 − AO/(Aτ ) and αO = 1 + AI/(Aτ ).

From the thrust distribution (hence τ ) and weighted loading (α), equation 4.48
gives the mean inflow (s) and then the power. The solution for equal thrust of the
two rotors follows from τ = 1:

s = 1
2α

(√
1 + 16α − 1

)
(4.49)

P = 2−3/2(1 + αs)Tvh (4.50)

For uniform loading as well (α = 1), s = 1
2 (

√
17 − 1) and P = 2−5/2(

√
17 + 1)Tvh =

0.9056Tvh. The solution for equal power of the two rotors follows from ατ s = 1:

2
ατ

= (1 + τ )2 (4.51)

P = 2(1 + τ )−3/2Tvh = 2
(

2
ατ

)−3/4

Tvh (4.52)
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Table 4.1. Coaxial rotor induced power

Power relative to
Thrust Power
share share No separation Independent rotors
Tu/T Pu/P Pi/(Tvh) Pi/(Tvh/

√
2)

No separation 0.5 0.5 1.0 1.4142

Large vertical separation
α = 1.10

equal T 0.5 0.3765 0.9382 1.3282
equal P 0.6024 0.5 0.9352 1.3226

α = 1.05
equal T 0.5 0.3832 0.9226 1.3048
equal P 0.5962 0.5 0.9208 1.3022

α = 1.00
equal T 0.5 0.3904 0.9056 1.2808
equal P 0.5898 0.5 0.9058 1.2810

Independent rotors 0.5 0.5 0.7071 1.0

For uniform loading as well (α = 1), τ (1 + τ )2 = 2 has the solution τ = 0.6956, so
P = 0.9058Tvh. The usual requirement for torque balance between the two main
rotors makes the equal power solution more relevant.

Table 4.1 gives the results for α = 1.00, 1.05, and 1.10 for both equal thrust
and equal power cases. Although the difference between upper and lower rotor
power (for equal thrust) or thrust (for equal power) is substantial, the momentum
theory solution is a weak function of the thrust ratio Tu/T . The equal thrust and
equal power results are remarkably close, so the total power depends primarily on
the nonuniform loading parameter α. Although the equal loading case α = 1.00 is
interesting, the loading on the lower rotor is far from uniform. The results for large
separation and no separation bound the performance for practical coaxial rotors,
with vertical separation typically around 10% of the rotor diameter.

In Table 4.1 the power is presented relative to no vertical separation (reference
power Tvh) and relative to independent rotors (reference power Tvh/

√
2). The coax-

ial rotor system with large vertical separation has 28–32% more induced power than
independent rotors, increasing to 41% for no separation. The hovering coaxial rotor
has at most (for large separation) 6–9% less induced power than for no separation.
So defining the hover figure of merit for the coaxial rotor in terms of the total thrust
T , the total power P, and the area A of one rotor is appropriate: M = T

√
T/2ρA/P.

4.6.2 Tandem Rotors

For a momentum theory analysis of overlapped rotors, consider two rotors of the
same radius but perhaps with different thrusts. Let mA be the overlap area; T1 and
T2 the thrusts on the two rotors, with T1 + T2 = T fixed; P1 and P2 the induced power
outside the overlap area and Pm the induced power of the overlap area; and v1, v2,
and vm the corresponding induced velocities. With uniform loading, T1(1 − m) and
T2(1 − m) are the thrusts of the areas outside the overlap, and m(T1 + T2) the thrust
of the overlap area. Negligible vertical separation is assumed, so that in the overlap
area both rotors have the common induced velocity vm. Based on the differential
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momentum theory results dT = 2ρv2dA and dP = v dT :

v1 =
√

T1/2ρA v2 =
√

T2/2ρA vm =
√
(T1 + T2)/2ρA (4.53)

P1 = T1(1 − m)v1 P2 = T2(1 − m)v2 Pm = m(T1 + T2)vm (4.54)

Then the total power is P = P1 + P2 + Pm. For the isolated rotors the total power is

Pisolated = (P1 + P2)|m=0 = (T 3/2
1 + T 3/2

2 )/
√

2ρA (4.55)

The interference power is therefore

�P = (P1 + P2 + Pm)− (P1 + P2)|m=0

= m
[
(T1 + T2)

3/2 − (T 3/2
1 + T 3/2

2 )
]
/
√

2ρA (4.56)

or, as a fraction of the power for the isolated rotors,

�P
Pisolated

= m

[
1

τ
3/2
1 + τ 3/2

2

− 1

]
(4.57)

where τ1 = T1/T and τ2 = T2/T (so τ1 + τ2 = 1) give the distribution of thrust
between the two rotors. When the thrust on the two rotors is the same, τ1 = τ2 = 1

2 ,
the interference power becomes �P/P = 0.41m, which gives 41% for coaxial rotors
(100% overlap, hence m = 1). In general, the interference power is directly propor-
tional to the fraction of area overlapped.

Alternatively, for hovering twin rotors with overlap area mA, the performance
estimate can be based on the effective disk loading of the system as a whole: P =
T
√

T/2ρAsys, where the total rotor area is Asys = A(2 − m). The ratio of the total
power to that of the isolated rotors then is

P
Pisolated

=
(

T
Tisolated

)3/2 ( 2
2 − m

)1/2

(4.58)

and for the same thrust the interference power is

�P
Pisolated

=
(

2
2 − m

)1/2

− 1 (4.59)

In the coaxial limit (m = 1) this gives �P/P = 0.41 as required. For small overlap,
however,�P/Pisolated

∼= 0.25m, and initially the power does not increase with overlap
as quickly as in the previous result. The difference is that the present model has a
lower disk loading in the overlap region than the previous model, and hence a greater
efficiency for small overlap. The larger estimate of the interference power is probably
more representative of tandem rotor behavior. Finally, with a shaft separation � the
overlap fraction is

m = 2
π

⎡⎣cos−1 �

2R
− �

2R

√
1 −

(
�

2R

)2
⎤⎦ (4.60)

For small overlap (� = 2R −��, with ��/R � 1), m ∼= 1.20(��/2R)3/2.
Stepniewski (1955a, 1955b) developed a combined blade element and momen-

tum theory for twin rotors in hover. The theory assumes that the vertical separation
of the rotors is small, so that the overlapped area has a common rate of flow through
both rotors. Outside the overlap region, the induced velocities v1 and v2 are given by
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the usual combined blade element and momentum theory expression (see section
3.5.3). Inside the overlap region, consider an area dA located at radial stations r1

and r2 on the two rotors; let λm = vm/�R be the inflow ratio in the overlap region.
Momentum theory gives dT = 2ρv2

mdA or dCT = (2/π )λ2
mdA. Blade element theory

gives dCT1 = (σ1a/4π)(θ1r1 − λm)dA and dCT2 = (σ2a/4π)(θ2r2 − λm)dA, where
θ1 and θ2 are the pitch of the two blades at r1 and r2, respectively. Equating
dCT = dCT1 + dCT2 gives a quadratic equation for λm with the solution

λm = −
(σ1a

16
+ σ2a

16

)
+
√(σ1a

16
+ σ2a

16

)2
+ σ1a

8
θ1r1 + σ2a

8
θrr2 (4.61)

Using v1, v2, and vm, the thrust and power can be evaluated from

T =
∫

2ρv2
1dA +

∫
2ρv2

2dA +
∫

2ρv2
mdA (4.62)

P =
∫

2ρv3
1dA +

∫
2ρv3

2dA +
∫

2ρv3
mdA (4.63)

where the three integrals cover, respectively, the first and second rotors outside
the overlap area, and the overlap area. Alternatively, the blade element theory
expressions for the two rotors can be used if integration is performed azimuthally
as well as radially along the blade. Stepniewski (1955a) obtained good results from
this analysis, based on a comparison of the downwash and power prediction with
test data. He found no aerodynamic interference of practical importance in hover
with no overlap, and for overlap in the range ��/rR = 0 to 0.4R, the thrust and
power were T/Tisolated

∼= 1.0 to 0.94 and P/Piso1ated
∼= 1.1 to 1.2. Here P is just the

induced power, and Pisolated is the induced power for the isolated rotors with uniform
inflow; hence the interference power also includes the nonuniform inflow losses of
the isolated rotors.

4.7 Vertical Drag and Download

The rotor downwash acting on the fuselage produces a vertical drag force or down-
load on the helicopter in hover and vertical flight. This drag force requires an increase
in the rotor thrust for a given gross weight and hence degrades the helicopter per-
formance. To estimate the vertical drag force, consider the downwash velocity in the
fully developed rotor wake. In hover wh = 2vh, and in vertical flight

V + w =
√

V2 + 4v2
h

∼= 2vh (4.64)

So V + w ∼= wh independent of the climb velocity, as long as V2/v2
h � 1. The vertical

drag characteristics of the fuselage can be described by either an equivalent drag
area f or by a drag coefficient CD based on some relevant area S, related by f = SCD.
Then the vertical drag requires a rotor thrust increase

�T = 1/2ρw
2
h f = T

A
f (4.65)

or
�T
T

= f
A

= S
A

CD (4.66)

The fuselage is very near the rotor and hence may not really be in the far wake;
moreover, the downwash field is highly nonuniform and unsteady. Such effects can
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be included in an empirical factor. Assume that the downwash velocity at the fuselage
is nvh, where the parameter n theoretically varies from 1 at the disk to 2 in the far
wake. Then

�T
T

= n2

4
f
A

= S
A

(
n2CD

4

)
(4.67)

The parameter (n2CD/4) can then be obtained from measurements of the force on
bodies in the rotor wake. Typically (n2CD/4) ∼= 0.7, but the value depends highly on
the position of the body in the wake, its size relative to the rotor, and its shape.

Glauert (1935) suggested using the following expression for the vertical drag:

�T
T

= S
A

CD

(
1.22 + 0.254/CD

)
(4.68)

The last factor is the effect of the pressure gradient in the wake on the forces acting
on the body. Makofski and Menkick (1956) suggested

�T
T

= 0.66
S
A

b
2R

(4.69)

based on measurements with rectangular panels 0.2R to 0.64R below the disk. Here
b is the panel span, so the factor b/2R accounts for the radial variation of the
downwash. Another approach is to estimate n and CD separately for the components
of the fuselage in the wake. From vortex theory for the velocity on the wake axis, at
a distance z below the disk,

n = 1 + z/R√
1 + (z/R)2

(4.70)

(equation 3.154), and the appropriate drag coefficient can be found from the standard
literature.

These approaches are crude, but fairly large errors can be tolerated since�T/T
is small. A good analysis of the problem is difficult, since an accurate model for
the helicopter wake is required, including the interference between the body and
wake, and there is not much experimental data. Acceptable results are obtained
from a properly calibrated calculation based on the rotor induced velocity and a
drag coefficient of sections of the fuselage below the rotor disk. Computational fluid
dynamics methods are useful now in calculating download.

There is a significant radial variation of the downwash in the wake, which must be
accounted for when estimating the download. There are also large periodic variations
in the drag, a possible source of helicopter vibration. In fact, the drag is largest when
the body is closest to the rotor disk, diminishing rapidly as the body moves from the
disk plane. This behavior is due to the periodic variation of the wake downwash.
Although the mean downwash does increase from the rotor disk to the far wake
about as expected from the vortex theory results, the mean dynamic pressure is
significantly increased near the disk because of the periodic components in the flow.
If the object in the wake is large enough, wake blockage must also be considered.
A reduction of the effective disk area, particularly near the tips, decreases the rotor
efficiency. Forward speed of the helicopter sweeps the wake rearward, so there is
little vertical drag above transition speeds.

Download in hover can depend on the height above the ground, an effect
depending greatly on the shape of the fuselage. For example, Flemming and Erickson
(1983) in direct measurements of the download found about �T/T = 4% at large
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height z above the ground, reducing to zero at about z = 0.65R. On some aircraft
the download is negative (an upward force) very close to the ground.

4.8 Ground Effect

The proximity of the ground to the hovering rotor disk constrains the rotor wake
and reduces the induced velocity at the rotor, which means a reduction in the power
required for a given thrust; this behavior is called ground effect. Equivalently, ground
proximity increases the rotor thrust at a given power. Because of this phenomenon,
a helicopter can hover in ground effect (IGE) at a higher gross weight or altitude
than is possible out of ground effect (OGE). The thrust increase near the ground
also helps flare the helicopter when landing. Ground effect must be considered in
testing helicopter rotors in hover, since the rotor must either be far enough above the
ground for its influence to be neglected or the data must be corrected for the influence
of the ground. Ground effect has been examined analytically using the method of
images, where a mirror-image rotor is placed below the ground plane so that the
boundary condition of no flow through the ground is automatically satisfied. Most
of the useful information about the phenomenon has come from rotor performance
measurements.

The influence of the ground can be viewed as a reduction of the rotor induced
velocity by a factor κg ≤ 1. Ground effect in hover can be described in terms of the
figure of merit M = (T 3/2/

√
2ρA)/P. Usually the test data are given as the ratio of the

thrust to OGE thrust, for constant power: T/T∞ = (M/M∞)2/3 = fg ≥ 1. The effect
on power at constant thrust is P/P∞ = (M/M∞)−1 = (T/T∞)−3/2 = f −3/2

g . Constant
thrust implies P/P∞ = v/v∞ = κg = f −3/2

g . The basic parameter is the height above
the ground z, expressed as a fraction of the rotor radius or diameter, z/D = z/2R.
There is a secondary dependence of ground effect on the rotor blade loading, CT/σ .
Ground effect is generally negligible when the rotor is more than one diameter above
the ground, z/R > 2. Ground effect decreases rapidly with forward speed, since the
wake is swept backward rather than being directed at the ground. It is also sensitive
to winds, which displace the wake from under the rotor.

Figure 4.14 shows experimental data for the influence of height above the ground
on T/T∞. The data are from Zbrozek (1947), Cheeseman and Bennett (1955), Rab-
bott (1969), Hayden (1976), Cerbe, Reichert, and Curtiss (1988), and Schmaus,
Berry, Gross, and Koliais (2012).

Zbrozek (1947) employed model and flight test data to express the influence of
the ground in terms of the thrust increase T/T∞ at constant power as a function
of rotor height and CT/σ . A curve fit of Zbrozek’s interpolation has been devel-
oped. Betz (1937) analyzed the performance of a rotor in ground effect. For small
distances above the ground (z/R � 1), he obtained the power at constant thrust:
P/P∞ = 2z/R. Knight and Hefner (1941) conducted an experimental and theoreti-
cal investigation of ground effect. They modified vortex theory to account for the
ground by including image vortices below the ground plane. For a uniformly loaded
actuator disk, the wake consisted of a cylindrical vortex sheet from the rotor to
the ground and the corresponding image vortex cylinder below the ground. They
obtained good correlation with measurements of the effect of the ground on the
rotor performance. Cheeseman and Bennett (1955) made a simple analysis based on
the method of images, representing the rotor by a source, and developed a model
using blade element theory (BE) to incorporate the influence of thrust. Law (1972)
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Figure 4.14. Ground effect: a thrust increase at constant power.

developed a method to account for the influence of the ground, based on flight test
data from seven helicopters. Hayden (1976) correlated flight test data to obtain the
influence of the ground on hovering performance. Schmaus, Berry, Gross, and Koli-
ais (2012) measured ground effect on rotor performance down to z/R = 0.1. The
following empirical ground effect models have been developed for T/T∞ = fg:

fg =
[

1 − 1
(4z/R)2

]−1

Cheeseman and Bennett (4.71)

fg =
[

1 + 1.5
σaλi

4CT

1
(4z/R)2

]
Cheeseman and Bennett (BE) (4.72)

fg =
[

1.0991 − 0.1042/(z/D)
1 + (CT/σ )(0.2894 − 0.3913/(z/D))

]−1

Law (4.73)

fg =
[

0.9926 + 0.03794
(z/2R)2

]2/3

Hayden (4.74)

fg =
[

0.9122 + 0.0544
(z/R)

√
CT/σ

]
Zbrozek (4.75)

fg =
[

0.146 + 2.090
( z

R

)
− 2.068

( z
R

)2
+ 0.932

( z
R

)3
− 0.157

( z
R

)4
]−2/3

Schmaus, Berry, Gross, and Koliais (4.76)

The data base for ground effect extends down to about z/R = 0.6, and the equations
are generally restricted to z/R ≥ 0.3. The exception is the results from Schmaus,
Berry, Gross, and Koliais (2012), which cover z/R ≥ 0.1. Figure 4.14 shows T/T∞
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Figure 4.15. Ground effect: influence of blade loading.

as a function of z/R for these models (at CT/σ = 0.05). Figure 4.15 illustrates the
variation of the models with blade loading CT/σ .
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5 Forward Flight Wake

During translational motion of the helicopter, when the rotor is nearly horizontal,
the rotor blades see a component of the forward velocity as well as the velocity
due to their own rotation (Figure 5.1). In forward flight the rotor does not have
axisymmetry as in hover and vertical flight; rather, the aerodynamic environment
varies periodically as the blade rotates with respect to the direction of flight. The
advancing blade has a velocity relative to the air higher than the rotational velocity,
whereas the retreating blade has a lower velocity relative to the air. This lateral
asymmetry has a major influence on the rotor and its analysis in forward flight. Thus
the rotor blade loading and motion are periodic with a fundamental frequency equal
to the rotor speed�. The analysis is more complicated than for hover because of the
dependence of the loads and motion on the azimuth angle.

As a consequence of the axisymmetry, the analysis of the hovering rotor pri-
marily involves a consideration of the aerodynamics. In forward flight, however, the
lateral asymmetry in the basic aerodynamic environment produces a periodic motion
of the blade, which in turn influences the aerodynamic forces. The analysis in forward
flight must therefore consider the blade dynamics as well as the aerodynamics. This
chapter covers a number of aerodynamic topics that are familiar from the analysis
of the rotor in vertical flight. In particular, we are concerned with the momentum
theory treatment of the induced velocity and power in forward flight. Then the rotor
blade motion and its behavior in forward flight are considered in Chapter 6.

5.1 Momentum Theory in Forward Flight

5.1.1 Rotor Induced Power

The momentum theory analysis of rotor induced power in forward flight was intro-
duced by Glauert (1926). As in hover, the power is represented by an induced velocity
v = Pi/T . When used in blade element theory, the induced velocity is assumed to
be uniform over the disk; although that is not as good as an assumption in forward
flight as in hover, at high forward speed the induced velocity is small compared to the
other velocity components at the rotor blade. At low forward speeds the variation
of the inflow over the disk is important, particularly for vibration and blade loads. A
uniformly loaded actuator disk is again used to represent the rotor. In forward flight
such an actuator disk can be viewed as a circular wing.
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Figure 5.1. Aerodynamic environment of the rotor in forward flight.

Fixed-wing theory gives the minimum induced drag for a thin, planar wing of
span b, operating at velocity V and lift T :

Di = T 2

2ρAV 2
(5.1)

where A = π(b/2)2 is the area of a circle with diameter b (a more familiar form per-
haps is CDi = C2

L/πAR, where the aspect ratio AR equals the span-squared divided
by the wing area). In terms of the induced velocity,

v = Pi

T
= VDi

T
= T

2ρAV
(5.2)

This minimum drag is achieved with elliptical loading of the wing. The uniformly
loaded rotor has a circular span loading, which is a special case of elliptical loading;
at high forward speeds the rotor wake vorticity is swept back in the plane of the
disk, like the fixed-wing wake. Moreover, the induced drag solution is based on a
Trefftz plane analysis in the far wake, so is valid for wings of arbitrary aspect ratio.
Therefore, v = T/2ρAV is an appropriate solution for the induced velocity of the
helicopter rotor in high-speed forward flight. For the rotor, the wing span is the rotor
diameter, so A is simply the rotor disk area. Lifting-line theory interprets v as the
actual induced velocity at the wing, uniform over the span for high aspect ratios.
For the circular wing, which has the aspect ratio AR = 4/π = 1.27, considerable
variation of the induced velocity over the disk can be expected.

Expressions for the rotor induced power are now available for the rotor in
vertical flight and in high-speed forward flight. A connection between the two regions
is required, so the inflow can be obtained for all operating conditions of the rotor.
The forward flight result can be written as T = ṁ2v, where ṁ = ρAV is the mass flux
through an area equal to the rotor disk area. This is exactly the form of the momentum
theory results for vertical flight. In hover and climb, for example, T = ṁ2v and
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Figure 5.2. Flow model for momentum theory analysis of rotor in forward flight.

ṁ = ρA(V + v). Thus a uniformly valid expression for induced velocity can be
obtained by considering the mass flux through the area A for all operating conditions.
This observation was first made by Glauert (1926).

Consider a rotor operating at velocity V , with angle of incidence i between the
free stream velocity and the rotor disk (Figure 5.2). The induced velocity at the disk
is v. In the far wake, the velocity w = 2v and is assumed to be parallel to the rotor
thrust vector. Momentum conservation gives the rotor thrust T = ṁ2v, where the
mass flux is ṁ = ρAU . The resultant velocity U is given by

U 2 = (V cos i)2 + (V sin i + v)2 = V 2 + 2Vv sin i + v2 (5.3)

Hence

T = 2ρAv
√

V 2 + 2Vv sin i + v2 (5.4)

Energy conservation gives the rotor power

P = ṁ
(

1
2

[
(V sin i + 2v)2 + (V cos i)2

]− 1
2

V 2
)

= T (V sin i + v) (5.5)

For high forward speeds (V  v) we have T = 2ρAVv, and in hover (V = 0)
T = 2ρAv2, so this expression does have the proper limits. Although there is no
strict theoretical justification for this approach at intermediate forward speeds, there
is good agreement with measured rotor performance and with vortex theory results;
thus the model can be accepted over the entire range of rotor speeds. In the expres-
sion for the rotor power (equation 5.5), the term Tv is the induced power, and the
term TV sin i is the power required to climb and to propel the helicopter forward (the
parasite power). As for vertical flight, we can write (V sin i + v)/vh = P/Tvh = P/Ph.

The solution for the induced velocity is

v = v2
h√

(V cos i)2 + (V sin i + v)2
= v2

h√
V 2

x + (Vz + v)2 (5.6)

where v2
h = T/2ρA as usual. The edgewise and axial components of the rotor veloc-

ity V are Vx = V cos i and Vz = V sin i, respectively (which are not the horizon-
tal and vertical components unless the rotor disk is horizontal). Define now the
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dimensionless components of the velocity parallel to and normal to the rotor disk,
the advance ratio μ, and the inflow ratio λ:

μ = V cos i
�R

(5.7)

λ = V sin i + v
�R

= μ tan i + λi (5.8)

Use is also made of μz = Vz/�R = V sin i/�R = μ tan i. Then in coefficient form
the induced inflow ratio is

λi = CT

2
√
μ2 + λ2

(5.9)

This is the Glauert inflow formula. In general it is a quartic equation for λi (although
it can be solved directly forμz givenμ andλ). An iterative Newton–Raphson solution
for λ is

λ̂in = λ2
h√

λ2
n + μ2

(5.10)

λn+1 = λn − λn − μz − λ̂in

1 + λ̂inλn/(λ2
n + μ2)

f (5.11)

where λ2
h = CT/2. A relaxation factor of f = 0.5 is used to improve convergence.

Three or four iterations are usually sufficient, using

λ ∼= λ2
h√

(λh + μz)2 + μ2
+ μz (5.12)

to start the solution. To eliminate the singularity of the momentum theory result at
ideal autorotation (λ = λi + μz = 0), an extension of equation 4.13 is

λ = μz

[
0.373μ2

z + 0.598μ2

λ2
h

− 0.991

]
(5.13)

The equation λ = μz(aμ2
z − bλ2

h + cμ2)/λ2
h is an approximation for the induced

power measured in the turbulent-wake and vortex-ring states. Matching this equa-
tion to the axial-flow momentum theory result at μz = −2λh and μz = −λh gives
a = √

5/6 = 0.373 and b = (4√
5 − 3)/6 = 0.991. Then matching to the forward-

flight momentum theory result at μ = λh and μz = −1.5λh gives c = 0.598. Equa-
tion 5.13 should be used when

1.5μ2 + (2μz + 3λh)
2 < λ2

h (5.14)

which covers the axial domain (−2λh < μz < −λh) exactly and gives good results for
μ > 0 (only small jumps to the momentum theory results). A good representation
of the inflow in vortex ring state requires a more complicated approach; see Johnson
(2005).

For high forward speeds (μ λ), the momentum theory solution becomes λi
∼=

CT/2μ (or v = T/2ρAV cos i, which is just the circular wing result). The usefulness
of this approximation is that iteration is not necessary to obtain λi. Figure 5.3 shows
the induced velocity in forward flight for the case i = 0, for which an exact analytical



5.1 Momentum Theory in Forward Flight 127

0. 1. 2. 3. 4.
0.0

0.5

1.0

1.5

V / vh

v 
/ v

h

λi = CT / 2μ

momentum 
theory

ideal wing

Figure 5.3. Rotor induced velocity in forward flight with i = 0.

solution is possible: v2(V 2 + v2) = v4
h, so

v2 = −V2

2
+
√(

V 2

2

)2

+ v4
h (5.15)

Forward speed reduces the induced power as a result of the increased mass flux.
Figure 5.3 also shows the approximation λi

∼= CT/2μ, which is good whenμ/λh > 1.5
or so.

In Figure 4.5 the momentum theory solution was plotted in the form of P/Ph =
(V + v)/vh as a function of the vertical velocity V/vh. For forward flight this is
generalized to P/Ph = (Vz + v)/vh as a function of the normal velocity component
Vz/vh, for a fixed value of the in-plane velocity component Vx/vh (or λ/λh as a
function of μz/λh, given μ/λh). The result is shown in Figure 5.4. The effect of
forward flight in this figure is to always reduce the induced power. The results
in Figure 5.4 have been corrected in two respects on the basis of performance
measurements; the corresponding momentum theory results are shown also. First,
the measured performance data show that the actual induced power in hover and low
speed is 10% to 15% higher than the momentum theory estimate. Thus an empirical
correction factor κ should be included in the induced power calculation, Pi = κTv.
Second, for vertical flight and for low forward speed, measured performance is the
only means to define the induced velocity curve in the vortex ring state (see section
4.1.2.2). The boundary for the negative heave damping in VRS extends to about
Vx/vh = 1 (Figure 4.8). With sufficient forward velocity a moderate descent rate of
the helicopter presents no problems, since the wake of the rotor is swept back instead
of being allowed to build up under the disk. Indeed, the momentum theory result is
also well behaved above Vx/vh = 1. Figure 5.4 shows the region of VRS instability
and roughness.

The forward speed scale is defined by vh = 8.59
√

T/A knots for sea-level-
standard density and the disk loading in lb/ft2 (vh = 1.25

√
T/A knots with disk

loading in N/m2), or typically vh = 19 to 33 knots.
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Figure 5.4. Rotor power in forward flight.

The high-speed approximation λi
∼= CT/2μ can be written v ∼= v2

h/Vx, which in
Figure 5.4 is a straight line parallel to the v = 0 line. This approximation is good
for Vx/vh > 1.5 or so, which corresponds to forward speeds above 30 to 50 knots
for the disk loadings typical of helicopters. In terms of the rotor advance ratio,
μ/λh > 1.5, which typically gives μ > 0.1. Thus, according to momentum theory,
the rotor wake system is like a circular wing except at very low speeds. The speed
range in which the rotor wake is no longer directly under the rotor but still has a
significant vertical extent, roughly 0 < μ < 0.1, is called the transition region of the
helicopter. The transition region has a number of special characteristics in addition
to the requirement for the general induced velocity expression, notably a high level
of blade loads and vibration and noise due to interactions of the blades with the
rotor vortex wake.

5.1.2 Climb, Descent, and Autorotation in Forward Flight

The power required in forward flight, including now the profile power Po, is

P = Po + TV sin i + κTv (5.16)

The term (TV sin i) combines the rotor parasite power and climb power, which
require the thrust component (T sin i) in the direction of V . To determine the rotor
disk incidence angle i, consider the equilibrium of forces on the helicopter, as shown
in Figure 5.5. The forces acting on the helicopter are the rotor thrust T , the helicopter
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Figure 5.5. Forces acting on the helicopter in forward flight.

weight W , and the helicopter drag D. Here θFP is the flight path angle, so the climb
speed is Vc = VθFP. For small angles, vertical and horizontal force equilibrium gives
i = θFP + D/T and T = W . Hence

TV sin i = TVc + DV (5.17)

where the first term is the climb power and the second is the parasite power. A
more detailed derivation of helicopter force equilibrium and performance is given
in section 6.4. For high enough forward speed, the rotor induced velocity is v ∼=
T/2ρAV cos i ∼= T/2ρAV . Thus the power equation can be solved for the climb
velocity:

Vc = P − (Po + VD + κT 2/2ρAV
)

T
(5.18)

Because the induced power in forward flight is independent of the climb or descent
rate, a simple and direct expression for Vc has been obtained. Assuming that the
rotor profile power and the helicopter drag are not influenced by the climb or
descent velocity, we have

Vc = P − Plevel

T
= �P

T
(5.19)

where Plevel is the power required for level flight at the same forward speed. The
helicopter climb or descent rate is determined simply by the excess power �P. The
climb and autorotation characteristics of the helicopter in forward flight can then
be obtained from the power available and the power required for level flight. In
particular, the maximum climb rate is achieved with maximum available power at
the speed for minimum power in level flight, and the minimum power-off descent
rate is achieved at the same forward speed. The helicopter flight performance char-
acteristics are considered in more detail in Chapter 7.

5.1.3 Rotor Loading Distribution

The basis for the Glauert inflow formula (equation 5.9) is the result for minimum
drag of a circular wing. Let us examine this solution further, following Ashley and
Landahl (1965). The induced drag of a system of wings can be calculated from the
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energy in the far wake. For the ideal case, there is no rollup or distortion of the wake
vorticity, so the wake far downstream is represented by potential jumps on lines that
are projections of the wing geometry.

Consider incompressible, irrotational flow with velocity potential φ (velocity
Q = ∇φ) satisfying ∇2φ = 0. Start with Gauss’s theorem for an arbitrary vector field
A: ∫

A · n dS = −
∫

∇ · A dV (5.20)

where n is the normal vector into the fluid. Setting A = φ∇φ ′ gives Green’s theorem:∫
φ
∂φ′

∂n
dS = −

∫ (
∇φ · ∇φ′ + φ∇2φ′

)
dV (5.21)

Now let φ = φ′, and φ be a velocity potential. Then∫
φ
∂φ

∂n
dS = −

∫
|∇φ|2dV = −

∫
Q2dV (5.22)

and the total kinetic energy in the fluid is

KE = −ρ
2

∫
φ
∂φ

∂n
dS (5.23)

For a wing, the surface of integration includes the wake. In steady flow at velocity U ,
the flow far downstream (the Trefettz plane) gives the induced drag as the change
in kinetic energy per unit distance:

Di = −ρ
2

∫
wake

φ
∂φ

∂n
dy (5.24)

where y is the spanwise coordinate. A thin planar wing with bound circula-
tion distribution �(y) generates a wake sheet of trailed vorticity strength δ(y) =
∂(�φwake)/∂y = d�/dy. Hence

�φwake(y) = �(y) (5.25)

∂φ

∂n
= ±φz = ∓ 1

2π

∫
d�
dη

dη
y − η (5.26)

where equation 5.26 is the wake-induced velocityw from the Biot-Savart law, on the
upper and lower surfaces of the wake. Then the induced drag is

Di = −ρ
2

∫
�φwakeφz(y)dy = ρ

4π

∫ ∫
�(y)

d�
dη

dη dy
y − η (5.27)

The induced drag is minimum for elliptical loading: � = �0

√
1 − (2y/b)2 (for wing

span b) gives Dimin = L2/( π2 ρU 2b2). In general the wing spanwise loading can be
written as a series: � = Ub

∑
An sin nθ , y = b

2 cos θ . Evaluating the integrals gives
the wing lift and induced drag:

L = π

4
ρU2b2A1 (5.28)

Di = π

8
ρU2b2

∑
nA2

n = Dimin

∑
n(An/A1)

2 (5.29)

These results apply to wings with arbitrary planform, and (for appropriate interpre-
tation of the integrations) to non-planar and multiple-surface wings. In terms of the



5.1 Momentum Theory in Forward Flight 131

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.002

0.000

0.002

0.004

0.006

0.008

0.010

y / R

sp
an

 lo
ad

in
g

retreating side                         advancing side

μ = 0.4

μ = 0.1

0.2

0.3

Figure 5.6. Spanwise loading distribution of rotor in forward flight.

section lift � = ρU� and the wake induced velocity w (equation 5.26), the induced
power is

Pi = UDi = 1
2

∫
�w dy =

∫
�v dy (5.30)

The lifting-line concept collapses a high aspect-ratio wing to a bound vortex line and
evaluates the induced velocity v at the bound vortex. From symmetry v = 1

2w, hence
the last result in equation 5.30.

For the circular wing as a model for the rotor in forward flight, elliptical span
loading corresponds to uniform loading over the disk. In fact, the loading on a rotor
in high-speed flight is far from uniform, and the span load distribution is far from
elliptical.

Figure 5.6 shows the span loading distribution on a rotor for several advance
ratios, calculated by integrating the blade loading from the front edge to the rear
edge of the rotor disk (and averaging over time) at a fixed lateral distance y from the
hub. A modern four-bladed rotor was used for this example. See also Prouty (1976).
The lateral asymmetry of the loading is a consequence of the asymmetry of the rotor
aerodynamic environment in forward flight. The blade on the advancing side of the
disk sees an increase in the relative air velocity, while the blade on the retreating
side sees a decrease. Because of reduced dynamic pressure, the lifting capability of
the retreating blade is limited by stall. Then the necessity for roll moment balance
means the lifting capability of the advancing blade is also constrained. As the advance
ratio increases, the loading becomes concentrated on the front and rear of the disk,
effectively lowering the span of the lifting system. Moreover, the differences in
dynamic pressure distribution mean that the loading distribution is different on the
advancing and retreating sides, a source of asymmetric span loading that persists even
if the requirement for roll moment balance is relaxed. Observe also in Figure 5.6 the
loading on the advancing tip as speed changes. At low speed, blade-vortex interaction
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Figure 5.7. Induced power factor in forward flight.

produces an increase in the loading at the tip. At a higher advance ratio, the loading
on the advancing tip can be negative, particularly with highly twisted blades.

The loading distribution that follows from the aerodynamic environment of the
rotating wing in edgewise flight produces a significant increase in the rotor induced
power. Figure 5.7 shows the induced power factor κ = Pi/Pideal as a function of
the advance ratio, calculated using a free wake analysis. The ideal power here is
from momentum theory (equation 5.9). Above an advance ratio of about μ = 0.2,
κ increases substantially. A value κ = 4.0 corresponds to an effective wing span
of one-half the rotor diameter. The induced power factor is presented for CT/σ =
0.08, two values of blade twist, and propulsive force corresponding to aircraft drag
f = D/q = 0, 0.008A, and 0.016A. Increasing rotor propulsive force increases the
induced power. Figure 5.7 also shows the ratio of the induced power to the hover



5.2 Vortex Theory in Forward Flight 133

μ
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Figure 5.8. Tip vortex geometry of the rotor wake in forward flight (without self-induced
distortion).

momentum theory value, Pi/Ph. Initially the induced power rapidly decreases with
forward speed because of the increase in mass flux through the disk. Eventually
the asymmetry of the loading becomes significant, and the induced power actually
increases with speed.

5.2 Vortex Theory in Forward Flight

In forward flight the helical vortices trailed from the blade tips are carried rearward
by the free stream velocity component parallel to the disk (μ) as well as downward by
the component normal to the disk (λ). Thus the wake geometry consists of concen-
trated vortices from each blade trailed in skewed, interlocking helices (Figure 5.8).
The wake skew angle χ = tan−1 μ/λ can be estimated fairly well using momen-
tum theory. The helicopter transition operating region 0 < μ/λh < 1.5 corresponds
approximately to wake angles from χ = 0 to χ = 60°. The relative positions of the
rotor blade and the individual wake vortices vary periodically as the blade rotates,
producing a strong variation in the wake-induced velocity encountered by the blade
and hence in the blade loading. The induced velocity is thus highly nonuniform
in forward flight. The interaction between the blades and the wake is particularly
strong on the advancing and retreating sides of the disk, where the tip vortex from
the preceding blade sweeps radially along the blade. Under certain flight conditions
where the wake is close to the rotor disk, the vortex-induced loads are very high.

The vortex wake of the rotor in forward flight rolls up in a two-stage process. The
individual tip vortices quickly roll up into concentrated lines as they are trailed from
the blades. Then the interlocking, overlapping spirals in the far wake interact, and
they roll up to form two vortices like those behind a circular wing. Such behavior has
been observed experimentally; the two tip vortices from the edges of the disk are seen
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forming several rotor radii downstream from the disk. This behavior downstream of
the rotor is of little consequence as far as the downwash and loading at the disk are
concerned, but can be significant for interference effects of the rotor far wake. The
wake behavior also demonstrates the validity of viewing the rotor as a circular wing
in high-speed flight.

Classical vortex theory for forward flight is based on the actuator disk model,
so the vorticity is distributed throughout the wake rather than being concentrated
in discrete lines. Often uniform loading is also assumed, so the vorticity is only
on the surface of the wake cylinder and in a root vortex. These assumptions yield
the simplest wake model, but in contrast to hover, the mathematical problem is
still not trivial, because of the skewed cylindrical geometry. With the exception of
a few special locations, numerical calculations are required to obtain the induced
velocity at or near the rotor disk. For uniform loading the results are the same as
from momentum theory; in particular, the high-speed results must approach the
wing theory solution. Actuator disk models in forward flight are the subject of
Chapter 11; some results are presented in the next section. Detailed calculations of
the induced velocity are best obtained from a nonuniform inflow analysis, including
a representation of the discrete vorticity in the wake (see Chapter 9).

5.2.1 Actuator Disk Results

Coleman, Feingold, and Stempin (1945) conducted a vortex theory analysis of the
induced velocity along the fore-aft diameter of the rotor disk. They considered an
actuator disk with uniform loading and decomposed the vorticity into rings and
axial lines (neglecting the latter) to calculate the induced velocity. Along the fore-
aft diameter of the disk the normal component of the induced velocity can be
obtained in closed form, but the solution involves elliptic integrals even there. A
good approximation to the numerical results was v = v0(1 + κxr cosψ), where v0 is
the usual momentum theory result and

κx = tan
χ

2
(5.31)

based on the slope of the downwash at the center of the disk. Using tanχ = μ/λ,
this result becomes

κx =
√

1 + (λ/μ)2 − |λ/μ| (5.32)

For high speeds (μ λ), κx = 1.
Drees (1949) calculated the rotor induced velocity using vortex theory. He

considered an actuator disk with radially constant bound circulation, but allowed
an azimuthal variation of the form � = �0 − �1 sinψ . The trailed vorticity is still
only on the surface of the wake cylinder, but now the cylinder is filled with shed
vorticity as well. The velocity seen by the blade is U = �r +�Rμ sinψ , so the total
blade lift and flap moment are

L =
∫ R

0
ρU�dr

= 1
2
ρ�R2�0

[
1 +

(
2μ− �1

�0

)
sinψ − 2μ

�1

�0
sin2 ψ

]
(5.33)
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M =
∫ R

0
ρU�r dr

= 1
3
ρ�R3�0

[
1 +

(
3
2
μ− �1

�0

)
sinψ − 3

2
μ
�1

�0
sin2 ψ

]
(5.34)

Requiring that the mean blade lift equal the rotor thrust per blade (L = T/N) and
that the first harmonic of the flap moment be zero (for moment equilibrium on the
articulated blade) gives the distribution of the blade bound circulation:

ρ�R2N� = 2T

1 − 3
2μ

2

(
1 − 3

2
μ sinψ

)
(5.35)

Drees found the induced velocity due to the bound, trailed, and shed vorticity
associated with this circulation distribution. The induced velocities at r = 0 and
r = 0.75 were

λ(0) = CT

2μ
sinχ (5.36)

λ(0.75) = CT

2μ

[
sinχ + (1 − cosχ − 1.8μ2) cosψ − 3

2
μ sinχ sinψ

]
(5.37)

where χ = tan−1 μ/λ is the wake skew angle. Here a factor of (1 − (3/2)μ2) in
the denominator has been omitted; although often found in vortex theory results,
Heyson (1960) showed that this factor was present only because the axial wake
vorticity was ignored. Since sinχ = μ/

√
μ2 + λ2, the mean induced velocity is

λi = CT

2
√
μ2 + λ2

(5.38)

as in equation 5.9. Assuming a linear variation of the velocity over the rotor disk,
this result can be generalized to

λi = CT

2
√
μ2 + λ2

(
1 + 4

3
1 − cosχ − 1.8μ2

sinχ
r cosψ − 2μr sinψ

)
(5.39)

Drees also suggested an empirical correction for the momentum theory results in
order to remove the singularity at ideal autorotation in vertical flight:

λi = 1.2
1√

μ2 + λ2

(
λ2

h − μ2
zCW0

4(1 + 8λ2/λ2
h)(1 + 8μ2/λ2

h)

)
(5.40)

where λ2
h = CT/2, and CW0 is the drag coefficient of the rotor in ideal autorotation.

Drees suggested CW0 = 1.38, which gives V/vh = −1.70 for ideal autorotation.
Castles and De Leeuw (1954) presented tables and graphs for the normal com-

ponent of the induced velocity in the longitudinal plane of symmetry of the flow (the
vertical plane through the center of the disk and the wake axis) and on the lateral
axis in the disk plane. The velocities were calculated numerically using vortex theory
for a uniformly loaded actuator disk. They concluded that the downwash reaches its
maximum far wake value about one rotor radius downstream of the center of the
disk for high-speed flight, that is, about at the trailing edge of the rotor disk. For
hover and low-speed flight the far wake value is achieved about 2R downstream of
the center of the disk.
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5.2.2 Induced Velocity Variation in Forward Flight

For a first (and very rough) approximation to the nonuniform inflow distribution at
the rotor in forward flight, consider a linear variation over the disk:

v = v0(1 + κxx + κyy) = v0(1 + κxr cosψ + κyr sinψ) (5.41)

(the x and y coordinates on the rotor disk are defined in Figure 5.1). Here v0 is the
mean value of the induced velocity, which can be obtained from momentum theory.
The form v = v0(1 + κxr cosψ) was first suggested by Glauert (1926). Typically κx

is positive and κy is negative, so that the induced velocity is larger at the rear of the
disk and on the retreating side. At high speeds κx is approximately 1, which gives a
velocity near zero at the leading edge of the disk and about twice the mean value
at the trailing edge; κy is generally smaller in magnitude. Both κx and κy must be
zero with axisymmetric loading in hover. An induced velocity variation of this form
is easily incorporated in the analysis of the rotor behavior in forward flight. At best,
though, a linear variation over the disk can only be expected to improve the estimate
of the mean and first harmonic quantities, assuming that good values for κx and κy

are available. The actual nonuniform induced velocity distribution in forward flight
is more complicated, and the higher harmonics of the inflow can be important.

The classical vortex theory results described in section 5.2.1 give estimates of
the factors κx and κy. Coleman, Feingold, and Stempin (1945) suggested

κx = tan
χ

2
=
√

1 + (λ/μ)2 − |λ/μ| (5.42)

where χ the skew angle of the wake at the disk. Here κx indeed approaches unity
for high speed. Drees (1949) gave

κx = 4
3

1 − cosχ − 1.8μ2

sinχ
= 4

3

[
(1 − 1.8μ2)

√
1 + (λ/μ)2 − λ/μ

]
(5.43)

κy = −2μ (5.44)

from which κx is zero at μ = 0, has a maximum of about 1.1 at μ = 0.2, and is
approximately 1 at μ = 0.35.

White and Blake (1979) developed the inflow distribution based on a horseshoe
vortex model of the rotor. Consider a bound vortex of constant strength � on the
y-axis of the disk, extending from y = −R to y = R, together with the trailed vortices
from the ends of the bound vortex. Then velocity along the x-axis induced by this
horseshoe vortex is

w = w0

[
1 + x√

x2 + R2
+ R2

x
√

x2 + R2

]
(5.45)

withw0 = �/2πR. The first two terms are from the trailed vortices and the third term
from the bound vortex. By including a small core in the bound vortex, the velocity
becomes zero at x = 0, so w0 is the induced velocity at the center of the disk. The
change of the velocity from the leading edge of the disk (x = −R) to the trailing
edge (x = R) is (wte − wle)/2 = √

2w0. Extending this result to low speed and hover
by introducing a factor sinχ gives

κx =
√

2 sinχ =
√

2
μ√

μ2 + λ2
(5.46)
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White and Blake found good agreement with measured flapping data using this
expression.

A net aerodynamic moment on the rotor disk also produces an inflow variation.
To estimate this inflow, consider the differential form of momentum theory in high
speed, dT = 2ρVv dA. The local disk loading dT/dA is assumed to have a linear
variation over the disk due to the pitch and roll moments: hence the inflow is

v = 1
2ρV

[
T
A

− 4
My

RA
r cosψ + 4

Mx

RA
r sinψ

]
(5.47)

or

λ = CT

2μ
− 2CMy

μ
r cosψ + 2CMx

μ
r sinψ (5.48)

where CMy and CMx are the pitch and roll moment coefficients. So κx = −4CMy/CT

and κy = 4CMx/CT . Thus the inflow variation is proportional to the offset of the thrust
vector from the center of rotation, which can be significant for hingeless rotors.

5.3 Twin Rotor Interference in Forward Flight

The mutual interference of a multi-rotor system can be accounted for by writing the
induced velocity at the m-th rotor as

vm = κmvim +
∑
n �=m

xmnvin (5.49)

Here vin is the ideal induced velocity for the isolated n-th rotor; κm is the correction for
the additional induced losses of a real rotor; and xmn is the interference factor at the
m-th rotor due to the thrust of the n-th rotor. For a power loss the interference factor
xmn is positive, whereas xmn is negative for favorable interference. This expression
is applicable to all speeds, including hover, although the interference factors xmn

depend on speed. In high-speed forward flight, wing theory gives the induced velocity
vin = Tn/2ρAV . The total induced power in forward flight is therefore

P =
∑

m

Tmvm = 1
2ρAV

⎛⎝∑
m

κmT 2
m +

∑
m

∑
n �=m

xmnTmTn

⎞⎠ (5.50)

(assuming that all the rotors have the same area A, which is usually the case). Since
the isolated rotor power is just Pisolated = ∑

κmT 2
m/2ρAV ,

P
Pisolated

= 1 +
∑

m

∑
n �=m xmnTmTn∑
κmT 2

m
(5.51)

The second term is the interference power, which is usually a significant positive
increment. For some configurations a modest favorable interference is possible. For
twin main rotors of equal area, the induced power of the individual rotors is

P1 = 1
2ρAV

(
κ1T 2

1 + x12T1T2
)

(5.52)

P2 = 1
2ρAV

(
κ2T 2

2 + x21T2T1
)

(5.53)
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and the total induced power is

P
Pisolated

= 1 + x12 + x21

κ1T1/T2 + κ2T2/T1
= 1 + X (5.54)

where X is the interference factor for the entire rotor system.
The wing theory of section 5.1.3 was not derived with any assumption about the

geometry of the wake surfaces far downstream. For multiple wings, equation 5.30
becomes the sum of the power on the m-th wing due to the wake of the n-th wing:

Pi =
∑

m

∑
n

Pmn =
∑

m

∑
n

∫
�mvmndym (5.55)

from which the induced power factors κm and interference factors xmn can be evalu-
ated, given the section loading �m on all the wings. With the idealization of a rotor as
an actuator disk (circular wing), this result applies to a system of rotors in forward
flight, with arbitrary loading distributions. The assumptions are high speed (wake
angle χ nearly 90°) and an infinite number of blades.

Wing theory for a single lifting surface shows that the induced power is propor-
tional to the thrust squared divided by the span squared, P ∝ (T/span)2. So the total
induced power of a multi-rotor system depends on the span of the effective lifting
surface. For twin isolated rotors of thrust T and span 2R, P = 2(T 2/2ρAV ). The
same two rotors in coaxial configuration act like a single rotor with twice the span
loading; hence the induced power is doubled, or X ∼= 1.

Wing theory shows that the total induced drag is independent of the longitudinal
separation of lifting elements (Munk’s stagger theorem). As a result, tandem rotors
with no vertical separation have about the same loss as coaxial rotors, X ∼= 1. The
distribution of the loss between the two rotors is the property that changes with
longitudinal separation. For the coaxial configuration, the two rotors are identical,
so x12 = x21 = 1. For large longitudinal separation, however, the front rotor is not
influenced by the rear rotor, while the rear rotor sees the fully developed wake of
the front one. Hence for the tandem configuration, xFR = 0 and xRF = 2 is expected
as a limit. As the vertical separation of the tandem or coaxial rotors increases, they
approach isolated rotors in forward flight; hence X < 1, decreasing to X = 0 for a
vertical spacing of about one rotor radius. The vertical spacing of the rotor wakes,
not the spacing of the disks, determines the interference.

A useful reference power is the ideal power of a single rotor (area A) with
the total thrust T of both rotors: Pref = T 2/2ρAV . Then the total induced power
can be written Pi = CPref. For uniform loading and no vertical or lateral separation
of the rotors, C = 1; for large separation, C = 1

2 . A different perspective of the
interference is given by P = (1 + X )Pisolated, where Pisolated is the sum of power with
the same distribution of thrust between the rotors. For no separation of the rotors,
X = 1; for large separation X = 0.

5.3.1 Tandem and Coaxial Configurations

In forward flight, the biplane effect reduces the induced power of twin rotors at
moderate speed, compared to the induced power for no vertical separation. From
Munk’s stagger theorem, this is true for both tandem and coaxial configurations, as
long as the vertical separation is measured in the wake.
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Figure 5.9. Ideal induced power in forward flight for twin rotors.

For the coaxial or tandem configuration, let z/D be the vertical spacing of the two
rotors. The wake spacing far downstream is assumed to equal z/D, although the
aircraft pitch angle affects the wake spacing with tandem rotors. Figure 5.9 shows
the ideal power Pi/Pref as a function of vertical separation, calculated using equation
5.55. The optimum span loading was found numerically by varying the span loading in
terms of the series in θ = cos−1 2y/b (from symmetry, the loading is the same on the
two wings). For comparison, the induced power obtained assuming elliptical loading
on each wing is shown (this is the optimum solution for zero and infinite spacing).
Also shown in Figure 5.9 is Prandtl’s biplane result for elliptical loading (quoted by
Glauert (1947)) and Stepniewski’s result (derived at the end of this section). The
optimum solution is nearly elliptical, with at most A3/A1 = 0.052 at z/D = 0.12. For
typical coaxial rotors, the benefit of the vertical spacing is 8 to 20% reduction in
induced power (compared to zero spacing), which is a significant effect at low speed,
but is overwhelmed by the effect of nonelliptical span loading at high speed.

Consider a momentum theory analysis of the tandem rotor helicopter in forward
flight. Assuming that rear rotor wake has no influence on the front rotor, and that
the rear rotor is operating in the fully developed wake of the front rotor, the total
induced velocities at the front and rear rotors are vfront = vF and vrear = vR + 2vF ,
respectively, where vF = TF/2ρAV and vR = TR/2ρAV . The total induced power is
then

P = TFvF + TR(vR + 2vF ) = T 2
F + T 2

R + 2TF TR

2ρAV
= (TF + TR)

2

2ρAV
(5.56)

The interference factor is

X = �P
Pisolated

= 2TF TR

T 2
F + T 2

R

(5.57)

which is X = 1 for equal thrust on the two rotors. Unequal thrust changes the
interference, but not the total power. This result is for zero vertical separation.
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Figure 5.10. Momentum theory analysis of tandem rotors in forward flight.

Stepniewski (1955) developed a momentum theory analysis for tandem rotors
in forward flight that includes the effect of vertical separation. Figure 5.10 shows the
configuration. Because of the elevation of the rear rotor on a pylon and the forward
tilt of the helicopter, the rear rotor wake is a distance hr above the front rotor wake;
typically hr

∼= 0.3R to 0.5R. The rear rotor sees an interference velocity less than 2vF

because of the separation of the wakes, and as a consequence the efficiency of the
rotor system is improved. Based on the idea that the wing influences a volume of
air contained in a cylinder circumscribing the wing tips (Figure 5.10), Stepniewski
proposed that the tandem rotor interference be estimated from the overlap area
Amix = m̃A of the cylinders about the two wings. The overlap fraction depends on
the separation:

m̃ = 2
π

⎡⎣cos−1 hr

2R
− hr

2R

√
1 −

(
hr

2R

)2
⎤⎦ (5.58)

so m̃ = 1 at hr = 0 (corresponding to full interference, 2vF ) and m̃ = 0 at hr ≥ 2R
(no interference). Using vrear = vR + 2vF m̃, the total induced power is

P = TFvF + TR(vR + 2vF m̃) = T 2
F + T 2

R + 2TF TRm̃
2ρAV

(5.59)

and the interference factor is

X = �P
Pisolated

= 2TF TR

T 2
F + T 2

R

m̃ (5.60)

Although this is a simple result, the approach does not give as large an effect as does
biplane theory, as shown in Figure 5.9. Stepniewski found that this theory compares
well with the measured losses of tandem rotor helicopters in forward flight. From
the effective area Ae = A(2 − m̃) follows C = Pi/Pref = 1/(2 − m̃).

5.3.2 Side-by-Side Configuration

Consider the side-by-side configuration. For zero lateral spacing (coaxial rotors),
X ∼= 1 again. When the shaft spacing is 2R (rotor disks just touching), the system is
like a single rotor with the same span loading as the two isolated rotors. Hence the
total induced power should be reduced by up to a factor of two, or X ∼= − 1

2 . This
favorable interference is due to each rotor operating in the upwash flow field of the
other. The span loading of the side-by-side configuration is far from elliptical for the
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Figure 5.11. Ideal induced power in forward flight for twin rotors.

entire system, however. Thus the actual interference, although still favorable, is not
as great as indicated by the span loading. As the lateral separation increases further,
X approaches zero again.

Let d/D be the lateral separation of the two rotors; the vertical separation is
zero. Figure 5.11 shows the ideal power Pi/Pref as a function of lateral separation,
calculated using equation 5.55. The interference factor is X = 2C − 1 for this ideal
power. The optimum span loading was found numerically for d/D > 1 (from symme-
try, the loading is the same on the two wings). For d/D < 1, the optimum loading is
elliptical for the two rotors combined; hence C = 1/(1 + d/D)2; this is not, however,
a practical loading for d/D near 1. The result in terms of the isolated rotors is

X = P
Pisolated

− 1 = 2
(1 + d/D)2

− 1 (5.61)

For comparison, Figure 5.11 shows the induced power obtained assuming elliptical
loading on each wing (this is the optimum solution for zero and infinite spacing).
Measured performance data give X ∼= −0.2 to −0.3 (C ∼= 0.4 to 0.35) with the disks
just touching, and the most favorable interference (at d/R ∼= 1.75) has X ∼= −0.25
to −0.45 (C ∼= 0.375 to 0.275). Thus measured results are close to the solution for
elliptical loading in Figure 5.11. The increased effective span of the side-by-side
configuration significantly reduces the induced power.

5.4 Ducted Fan

Ducted fans can be used in rotorcraft for primary lift, for auxiliary propulsion, or
as an alternative to the tail rotor in the single main-rotor configuration. As an anti-
torque device, a ducted fan is referred to as a FenestronTM or fan-in-fin and, being
part of the vertical tail, has a rather short duct. The effect of the duct in hover is to
keep the wake from contracting and to generate aerodynamic thrust independent
of the rotor blades. The aerodynamic force is generated by the duct acting as an
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airfoil in the entrained flow of the rotor, which guides shaping the duct cross-section.
The duct influence on the rotor wake is highly dependent on the gap between the
blade tips and the duct surface, a small gap being required for good performance.
In edgewise flight of a ducted fan, the flow usually separates on the upstream edge
of the duct, leading to complex aerodynamic interactions with the blades. In all
operating conditions of hover and forward flight, calculating the aerodynamic loads
on the duct is challenging.

Rotor momentum theory can be extended to the case of a ducted fan. Consider
a rotor system with disk area A, operating at speed V , with an angle i between V
and the disk plane. The induced velocity at the rotor disk is v, and in the far wake it
is w = fWv. The far wake area is A∞ = A/ fA. The axial velocity at the fan is fVzVz,
with fVz accounting for acceleration or deceleration through the duct. The edgewise
velocity at the fan is fVxVx, with fVx = 1.0 for wing-like behavior, or fVx = 0 for
tube-like behavior of the flow. The total thrust (rotor plus duct) is T , and the rotor
thrust is Trotor = fT T . For this model, the duct aerodynamics are defined by the
thrust ratio fT or far wake area ratio fA, plus the fan velocity ratios fVx and fVz.
The mass flux through the rotor disk is ṁ = ρAU = ρA∞U∞, where U and U∞ are,
respectively, the total velocity magnitudes at the fan and in the far wake:

U2 = ( fVxV cos i)2 + ( fVzV sin i + v)2 (5.62)

U 2
∞ = (V cos i)2 + (V sin i + w)2 (5.63)

Mass conservation ( fA = A/A∞ = U∞/U) relates fA and fW . Momentum and
energy conservation give

T = ṁw = ρAU∞w/ fA = ρAU fWv (5.64)

P = 1
2

ṁw (2V sin i + w) = T
(
V sin i + w

2

)
(5.65)

With these expressions, the span of the lifting system in forward flight is assumed
to be equal to the rotor diameter 2R. Next, the power must equal the rotor induced
and parasite power:

P = Trotor( fVzV sin i + v) = T fT ( fVzV sin i + v) (5.66)

In axial flow, this result can be derived from Bernoulli’s equation for the pressure in
the wake. In forward flight, any induced drag on the duct is being neglected. From
these two expressions for power, Vz + fWv/2 = fT ( fVzVz + v) is obtained, relating
fT and fW .

For a ducted fan, the thrust CT is calculated from the total load (rotor plus duct).
To define the duct effectiveness, either the thrust ratio fT = Trotor/T or the far wake
area ratio fA = A/A∞ is specified (and the fan velocity ratio fV ). The wake-induced
velocity is obtained from the momentum theory result for a ducted fan:

CT

2
= λ2

h = fWλi

2

√
( fVxμ)2 + ( fVzμz + λi)2 (5.67)

If the thrust ratio fT is specified, this can be written as

fVzμz + λi = λ2
h/ fT√

( fVzμz + λi)2 + ( fVxμ)2
+ μz

fT
(5.68)
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In this form, λi can be determined following the solution of equation 5.9. Then from
λi the velocity and area ratios are obtained:

fW = 2
(

fT − (1 − fT fVz)
μz

λi

)
(5.69)

fA =
√

μ2 + (μz + fWλi)2

( fVxμ)2 + ( fVzμz + λi)2
(5.70)

If instead the area ratio fA is specified, it is simplest to first solve for the far wake
velocity fWλi:

μz + fWλi = λ2
h2 fA√

(μz + fWλi)2 + μ2
+ μz (5.71)

In this form, fWλi can be determined following the solution of equation 5.9. The
induced velocity is

( fVzμz + λi)
2 = 1

f 2
A

[
μ2 + (μz + fWλi)

2
]

− ( fVxμ)
2 (5.72)

The velocity ratio is fW = ( fWλi)/λi, and

fT = μz + fWλi/2
fVzμz + λi

(5.73)

is the thrust ratio.
With no duct ( fT = fVx = fVz = 1), the far wake velocity is always w = 2v so

fW = 2, and the far wake area ratio is

fA =
√

μ2 + (μz + 2λi)2

( fVxμ)2 + ( fVzμz + λi)2
(5.74)

With an ideal duct ( fA = fVx = fVz = 1), the far wake velocity is w = v so fW = 1,
and the thrust ratio is

fT = μz + λi/2
μz + λi

(5.75)

In hover (with or without a duct), fW = fA = 2 fT , and the induced velocity is
v = √

2/ fWvh. The rotor ideal induced power is

Pideal = T
w

2
= fW

2
Tv =

√
fW

2
Tvh

For a long, constant diameter duct in hover, there is no wake contraction so fA =
fW = 1; hence half the thrust is from the rotor and half from the duct ( fT = 1

2 ).
Compared to an unducted rotor of the same area and same thrust, the induced
velocity at the rotor disk is 41% larger, v = √

2vh; but since the rotor has half the
thrust, the ideal induced power is 29% smaller, P = Ph/

√
2.

The factors required to use this momentum theory must be obtained from tests
or more sophisticated analysis. A higher fidelity analysis is needed to calculate the
loads on the duct, especially in the complex flow field of a helicopter in forward
flight.
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Figure 5.12. Influence of forward speed on ground effect.

5.5 Influence of Ground in Forward Flight

5.5.1 Ground Effect

As discussed in section 4.8, the rotor induced power is decreased by the proximity
of the ground, or equivalently the thrust is increased for a given power. In forward
flight, where the wake is swept behind the rotor, the effect of the ground dimin-
ishes rapidly with forward speed. Ground effect is negligible for speeds above about
V/vh = 1.5 to 2, or roughly μ = 0.15. Figure 5.12 illustrates the influence of forward
speed on ground effect. In hover the ground proximity significantly reduces the
helicopter power required. The effect continues at low speeds but decreases rapidly
beyond transition until ground effect is negligible at around 40 knots. A net effect
of the ground is to reduce the sensitivity of the power required to changes in speed
near hover. Very close to the ground, the power can even increase with speed, if
ground effect decreases more rapidly than translational lift develops. The sensitiv-
ity of ground effect to the helicopter velocity or, equivalently, to winds can be of
considerable importance to helicopter operations.

Cheeseman and Bennett (1955) extended their result for T/T∞ = fg in hover
to forward flight by measuring the distance to the ground along the rotor wake axis.
Hence it is only necessary to use

z
cosχ

= z
√

1 + (μ/λ)2 (5.76)

in place of z in the expressions for fg of section 4.8. Figure 5.12 was constructed from
P = Po + κgκTv, using equation 4.71 for κg = f −3/2

g , induced velocity v/vh for disk
incidence i = 0 and κ = 1.2, and a profile power estimate from hover figure of merit
M = 0.75.

5.5.2 Ground Vortex

The rotor downwash is turned outward by the ground. In low-speed forward flight
(or hovering in low winds), the outwash in the direction of flight tends to stagnate
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recirculation                                              ground vortex
Figure 5.13. Flow regimes in flight near the ground.

at some distance from the rotor, the distance decreasing as forward speed increases.
Thus a ground vortex forms in the direction of the flight, the flow swirling with the
velocity away from the helicopter at the ground and toward the helicopter above.
The ground vortex is a three-dimensional flow feature, a horseshoe vortex oriented
relative to the direction of flight or wind. This description of ground vortex and
its effects is based on Sheridan and Wiesner (1977), Sheridan (1978), Curtiss, Sun,
Putman, and Hanker (1984), Curtiss, Erdman, and Sun (1987), and Cerbe, Reichert,
and Curtiss (1988).

Two regimes of flow are observed in visualization studies: recirculation and
ground vortex. These flows are illustrated in Figure 5.13 (based on Sheridan (1978),
Curtiss, Sun, Putman, and Hanker (1984), and Cerbe, Reichert, and Curtiss (1988)).
Recirculation develops at very low speed, as part of the rotor wake flows forward
and upward and recirculates through the rotor disk. This is a large-scale flow feature,
with some unsteadiness.

As speed increases, the diameter of the recirculation pattern reduces, until the
diameter is the order of the height of the rotor above the ground, and the flow
structure passes under the leading edge of the rotor disk. At this point a well-
defined, concentrated horseshoe vortex has formed on the ground under the rotor.
The downwash through the rotor is maximum with the structure just forward of the
disk. With the ground vortex under the disk, high upwash is produced at the disk
leading edge. Consequently the ground vortex is a source of irregular changes in
the rotor hub moment, reflecting variation of the longitudinal inflow gradient with
speed and height above the ground.

As speed increases further, the vortex size decreases. Above about V/vh = 1.0
the ground vortex disappears and all of the wake flows downstream. The flow changes
from hover-like to wing-like, and super-vortices begin to form from the rotor disk
tips.

Experimental evidence for the boundaries of the recirculation and ground vortex
regimes is summarized in Figure 5.14 (based on data from Curtiss, Sun, Putman, and
Hanker (1984), Sheridan (1978), Empey and Ormiston (1974), and Nathan and
Green (2010)). The boundary depends on whether the helicopter is in forward flight
(air and ground moving relative to the rotor and its wake) or hovering in a wind (air
moving relative to the rotor, wake, and ground), with the ground vortex persisting
to higher speeds for the latter condition.

The ground vortex changes the longitudinal gradient of downwash over the
disk, so its presence is seen in the lateral cyclic required to trim the rotor (for
articulated rotors), or equivalently in hub moments. The increased mean downwash
can increase the rotor power, countering ground effect. The flow associated with
the ground vortex can also counter the reduction of download near the ground.
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The ground vortex can influence tail rotor power and effectiveness in rearward or
sideward flight and also influence engine exhaust reingestion.

5.6 Interference

Mutual aerodynamic interference between the components of a rotorcraft can have
a substantial influence on flight dynamics and performance. Often adverse effects
of interference are encountered in flight tests, requiring significant resources and
time to identify the phenomena and develop corrected designs. A helicopter tail
configuration rarely survives unchanged through the developmental flight tests. The
interference problems and solutions have been documented for a number of heli-
copters, including the BK 117 (Huber and Masue (1981)); EH 101 (Mazzucchelli
and Wilson (1981)); SA 365N (Roesch and Vuillet (1982)); CH-53E, UH-60A, S-76
(Hansen (1988)); Tiger (Cassier, Weneckers, and Pouradier (1994)); and EC 135
(Hamel and Humpert (1994)).

5.6.1 Rotor-Airframe Interference

The mean static pressure on the airframe is increased because of the energy in
the main rotor wake. The rotor wake produces unsteady pressures on the airframe
surface, largely periodic at the blade passage frequency N/rev, with fluctuations
much larger than the mean interaction. There is a large pressure pulse as the blade
passes over the airframe (from the bound circulation). The rotor tip vortices produce
low pressure peaks as the vortex impinges on the surface, with viscous effects on the
vortex as it passes around the airframe. The blade-passage effect is greatly reduced
by increasing the rotor-airframe separation, although the tip vortex effect is strong
at long distances in the wake.
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The lateral asymmetry of main rotor wake produces a side load on the tail boom,
requiring a larger anti-torque force. A strake can be used to reduce the side force,
at the cost of increased drag. On the EH 101, the tail boom side force in sideward
flight is reduced by a strake on the top, to force separation of the flow. The EH 101
reduces tail boom download by using skirts on the lower edge of the tail boom.

The rotor wake geometry is strongly affected by the airframe, particularly at low
speed. The airframe’s influence on the main rotor in forward flight can be significant,
either favorable or adverse.

5.6.2 Tail Design

The horizontal tail of a helicopter contributes to static and dynamic longitudinal
stability and to aircraft trim in cruise. The horizontal tail can be positioned to guard
the tail rotor, thereby improving safety. Typically trim requires downward lift on the
tail. An inverted cambered airfoil or a Gurney flap is used to improve maximum tail
lift. A large tail produces significant hover download. Interference of the main rotor
wake on the horizontal tail can produce a pitch attitude change in transition from
hover to forward flight.

The vertical tail of a helicopter contributes to static stability in yaw and to lateral-
directional dynamic stability. The tail typically cancels the unstable yaw moment
from the fuselage, and positive static stability comes from the tail rotor. The vertical
tail can provide the anti-torque force in cruise, unloading the tail rotor and thereby
reducing tail rotor power. The vertical tail could provide anti-torque force at low
speed in the event of tail rotor damage by operating with a large sideslip angle (on
the order of 20°). A requirement to fly home after the loss of tail rotor thrust is not
often achieved, due to competing requirements. The fin area is limited by tail rotor
blockage in hover and by the side force on the tail in sideward flight. Accommodating
a tail rotor drive shaft within the vertical tail requires a thick section.

The fin yaw moment is typically nonlinear for small sideslip, from partial shield-
ing of the fin by the fuselage and hub. The dynamic pressure loss inside the wake
reduces the tail effectiveness. Also, airfoils with large trailing-edge angles can have
an unstable lift-curve slope at small angle-of-attack. Changes to the trailing edge,
such as a Gurney flap or double trailing-edge strip, can improve the vertical tail
separation characteristics and reduce the nonlinear behavior of the lift with angle-
of-attack. Vertical tail area can be increased using a ventral fin or end plates on the
horizontal tail. A ventral fin (below the tail boom) is clear of the fuselage wake in
descent.

Static and dynamic stability problems are often encountered because of the poor
aerodynamic environment of the tail surfaces, which operate in the wake created by
the fuselage and hub.

5.6.3 Rotor Interference on Horizontal Tail

Impingement of the main rotor wake on the horizontal tail can produce a pitch up
of several degrees from hover to about 40 knots. A rapid forward displacement of
the cyclic stick is required to maintain trim as speed increases. A number of design
features have been used to counter this pitch-up phenomenon. A variable-incidence
stabilizer can be used, although it increases weight and complexity. The horizontal
tail can be located on the tail boom, so it is inside the rotor wake even in hover;
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but then the tail has a short moment arm and contributes download in hover. The
horizontal tail can be located high (on the vertical tail), as high as the main rotor
plane to keep the tail out of the wake; yet a high tail is structurally inefficient and
introduces additional vibration modes.

On the CH-53E, UH-60A, and S-76 the initial location of the horizontal tail
was at the base of the vertical fin. This location reduced wake-induced tail shake
associated with high tails and improved safety by guarding the tail rotor. Low-speed,
nose-up pitch was experienced due to impingement of the rotor wake on the tail. On
the CH-53E, the horizontal tail was moved to the top of the vertical fin, out of the
main rotor wake. On the UH-60A a stabilator (moving stabilizer) was designed, so
the incidence could be changed with airspeed to align the surface with the rotor flow.
Typically the incidence was 40° at low speed, and ±8° (depending on collective) at
high speed; the incidence increased with collective in high speed to decouple pitch
response to collective. Pitch rate feedback to the tail was used to improve handling
qualities. On the S-76 a fixed-incidence tail was acceptable, because of less tail area
and no tail rotor cant.

The Tiger helicopter started with a large tail with end plates, mounted aft
and low. Significant nose-down variation of the pitch attitude during transition was
encountered, due to the main rotor downwash on the tail, with a corresponding large
longitudinal cyclic stick displacement. A forward tail position put the tail always in
the main rotor wake during hover and transition, but the helicopter was unstable in
IGE hover, download was increased, and the tail rotor was unguarded. The tail area
was reduced to 51% of the original, with spoilers and end plates. Then the pitch and
longitudinal cyclic variations were acceptable, and the aircraft had sufficient static
stability.

The EH 101 encountered the pitch-up phenomenon: an unacceptably high pitch
increase as speed increased from hover (5° over 15 to 35 knots), from the influence
of the main rotor wake on the horizontal tail. The initial tail configuration was
symmetrical and mounted low. A high location was best for pitch up and dynamic
stability, but was not good for folding. Most of the interference in low speed (75% of
the download) was on the port side. With a single-sided, high aspect-ratio horizontal
tail, mounted low, the pitch up was acceptable (less than 2°).

5.6.4 Pylon and Hub Interference on Tail

The wake of the main rotor pylon and hub reduces the tail effectiveness. The dynamic
pressure at the tail is reduced (by 40–50%), and the flow is unsteady. The change
in the flow direction at the tail is reduced for aircraft angle-of-attack and sideslip
angle variations. The oscillatory flow results in structural vibration. These effects are
present in most helicopters, with varying intensity.

Reducing the drag of the hub and pylon generally reduces the dynamic pressure
deficit and the unsteadiness. A fairing between the top of the fuselage and rotor hub
or one on top of the hub (a hub cap) can help. Such fairings generate vortices that
reduce the dynamic pressure deficit and unsteadiness and move the interfering wake
downward.

The SA 365N encountered tail shake in high-speed descent: a structural vibration
due to intermittent tail loads, caused by unsteady wake from the main rotor hub.
In descent this wake struck high on the vertical tail. A pylon fairing was designed
(in wind tunnel tests) to depress the wake downward and attenuate the turbulence
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by creating tip vortices at the edge of the fairing top and by contouring the sides. A
hollow cap on the rotor head was used to depress the hub wake. The hub cap forms
a cambered flow vane and creates vortices that disperse before reaching the tail. The
hub cap depresses the center of the wake, and pylon reduces the dynamic pressure
loss. The fairing reduced the aircraft drag by 0.15 m2. There was an adverse effect
on directional stability, countered by increasing the vertical tail area.

The EC 135 encountered tail shake. There was a significant reduction in dynamic
pressure at the tail. The tail shake depended on speed and climb rate, reaching a
maximum in descent at moderate speed. A hub cap reduced the intensity of the
shake. An improved pylon and hub cap were designed through wind-tunnel tests.
Flight test found the tail shake to be almost eliminated.

The Tiger helicopter had upper engine cowlings shaped by drag, weight, and
access considerations. A low-frequency lateral vibration was encountered, from
erratic aerodynamic excitation of lateral bending modes by vortices from the upper
cowling. A hub cap deflected the wake down, but was not sufficient. Through wind-
tunnel tests the upper cowling was reshaped.

The BK 117 encountered tail shake (manifested as random lateral vibrations
in the cabin), which was worst at high speed and a moderate descent rate. There
was a 50% reduction in dynamic pressure at the tail, during descent centered on the
vertical tail. A hub cap was added, and the aft fuselage spoiler was removed. The
hub cap increased the aircraft drag.

The EH 101 encountered a shuffle: random vibration resulting from aerody-
namic excitation of the lateral fuselage bending by the wake shed from the main
rotor head and cowlings, and the wake striking the vertical fin and tail rotor. Drag
reduction of the hub and cowlings reduced the flow unsteadiness at the tail. The
initial design solution consisted of a large beanie (to deflect the flow downward), a
fairing of the blade tension link and arm, a horse collar and forward pylon fairing,
and a nose-up tail plane setting. This solution was not good in terms of production,
ship stowage, and blade fold. The final design solution consisted of a small beanie,
tension link fairings, horse collar, and extended engine cowling.

5.6.5 Tail Rotor

Tail rotor design and operation are strongly influenced by aerodynamic interactions,
particularly with the main rotor wake and the vertical tail. See Lynn, Robinson,
Batra, and Duhon (1970) and Cook (1978).

Blockage of the tail rotor flow by the vertical fin reduces the tail rotor thrust. For
the tractor configuration, with the fin in the wake, the thrust loss is approximately
Tloss/T = −0.75(S/A), typically 10 to 20%. Here S/A is the ratio of the blocked tail
rotor disk area to the total area. There is only a small dependence on the separation
between the fin and tail rotor. For the pusher configuration, with the fin on the
inflow side, the thrust loss is about the same as for the tractor at small separations,
but reduces as the separation increases, down to about 2% for separation d = 0.6R.
There is some reduction in rotor efficiency due to the fin blockage. Hence pusher is
the preferred configuration. The fin can be canted to increase the separation between
the fin and tail rotor. This interaction is not a factor for the fan-in-fin.

On the CH-53E, the sideward flight requirement was not met because of vertical
tail interference on the tail rotor. Removing the fin trailing edge was necessary,
although the resulting reduction in camber reduced the vertical tail effectiveness.
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On the UH-60A, the fin trailing edge was removed to reduce tail rotor power in
hover and climb and to reduce drag. On the EH 101, truncation of the trailing
edge was used to reduce the tail rotor power, but the loss of vertical tail area was
not acceptable, so a modified trailing edge and better tail rotor fairing were used
instead. The fin was also canted to increase clearance between the fin and tail rotor
for reduced blockage in hover.

Top-aft is the preferred rotation direction for the tail rotor to minimize adverse
interaction with the main rotor wake. The tail rotor effectiveness is reduced if it
rotates in the same direction as swirl in the flow field. In very low speed flight, the
main rotor downwash at the edge of the disk is downward at the front of the tail
rotor, producing a local reduction in tail rotor loading. During rearward or sideward
IGE flight, typically at 15 to 25 knots and heights less than z/D = 0.3, the tail rotor
can be operating in the ground vortex. The flow in the ground vortex swirls in the
top-forward direction. During sideward flight, the tail rotor can be immersed in the
super-vortices (rolled-up tip vortices) that emanate from the edges of the main rotor
disk in forward flight. This is the most significant interaction of the main rotor and
tail rotor, typically encountered in quartering winds (40° to 90° from left or right) at
20 to 35 knots. The swirl in these super-vortices is in the top-forward direction. Thus
with the tail rotor rotating top-forward, the helicopter has poor directional control
characteristics, particularly in sideward flight (to the left for counter-clockwise rota-
tion of the main rotor), either OGE or IGE. There is a loss of pedal effectiveness,
requiring up to 50% more tail rotor thrust capability to compensate. With the tail
rotor rotating top-aft, the directional control characteristics are acceptable. There is
also for top-aft rotation a beneficial influence of the main rotor on tail rotor VRS
encounter in sideward flight.

The main rotor tip vortices encountering the tail rotor produce non-harmonic
loading on the tail rotor, which is a source of structural loads, vibration, and noise.
The tip vortex encounters with tail rotor blades at the top of the tail rotor disk occur
at increased relative velocity if the rotation is top-forward. Thus top-aft rotation of
the tail rotor minimizes the interaction noise; see Leverton (1982).

The tail rotor and fin can adversely affect the main rotor, increasing the main
rotor hover OGE power by up to about 3%. The loss is more for the tractor configu-
ration than for the pusher configuration. The tail rotor can also increase main rotor
noise.
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6 Forward Flight

6.1 The Helicopter Rotor in Forward Flight

Efficient hover capability is the fundamental characteristic of the helicopter, but
without good forward flight performance the ability to hover has little value. During
translational flight of the helicopter, the rotor disk is moving edgewise through the
air, remaining nearly horizontal, generally with a small forward tilt to provide the
propulsive force for the aircraft. A tiltrotor cruises with the rotors tilted to operate
as propellers. A compound helicopter reduces the lift and propulsive force required
of the rotor. Yet all rotorcraft configurations execute low-speed forward flight with
the flapping rotor in edgewise flow, which is the subject of this chapter.

Thus in forward flight the rotor blade sees both a component of the helicopter
forward velocity and the velocity due to its own rotation. On the advancing side of
the disk the velocity of the blade is increased by the forward speed, whereas on the
retreating side the velocity is decreased. For a constant angle-of-attack of the blade,
the varying dynamic pressure of the rotor aerodynamic environment in forward flight
would tend to produce more lift on the advancing side than on the retreating side;
that is, a rolling moment on the rotor. If nothing were done to counter this moment,
the helicopter would respond by rolling toward the retreating side of the rotor until
equilibrium was achieved, with the rotor moment balanced by the gravitational force
acting at the helicopter center-of-gravity. The rotor moment could possibly be so
large that an equilibrium roll angle would not be achieved. A number of crashes of
early helicopter and autogyro designs as they attempted forward flight were due to
this phenomenon. In addition, the rolling moment on the rotor disk corresponds to
a large bending moment at the blade root that oscillates once per revolution, from
maximum positive on the advancing side to maximum negative on the retreating
side.

Since the rotor blade loading (T/Ablade) is limited by stall of the airfoil sections,
for a given thrust (and tip speed) the rotary wing tends to have about the same blade
area regardless of the rotor diameter. The low disk loading (T/Arotor) helicopter
rotor has low solidity σ = Ablade/Arotor and thus high aspect-ratio blades. The high
aspect-ratio, thin blades required for aerodynamic efficiency limit the structural
load-bearing capability at the root, and as a consequence the 1/rev loads due to
forward flight are a severe problem. Some means is required to alleviate the root
bending-moments and reduce the blade stresses to an acceptable level. With stiff
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Figure 6.1. Rotor blade velocity in forward flight.

blades, such as on propellers, the structure must absorb all of the aerodynamic loads.
In contrast, flexible blades respond to the aerodynamic forces with considerable
bending motion, so the blade loads can be countered by the aerodynamic forces due
to blade motion rather than by structural forces. Hence in response to the lateral
aerodynamic moment in forward flight there is a 1/rev motion of the blades out of
the plane of the disk, called flapping motion. When the inertial and aerodynamic
forces due to this flapping motion are accounted for, the net blade loads at the root
and the rolling moment on the helicopter are small.

The conventional approach has been to use a flap hinge at the blade root,
about which the blade can rotate as a rigid body to produce the flap motion (see
Figure 1.3). Since the moment at the flap hinge must be zero, no hub moment at all
can be transmitted to the helicopter (unless the hinge is offset from the center of
rotation), and the bending moment throughout the blade root must be low. A rotor
with mechanical flap hinges is called an articulated rotor. Since the 1960s, there have
been successful helicopter designs without flap hinges, which are called hingeless
rotors. With modern materials, the blade root can be strong while still flexible
enough to provide the flapping motion necessary to eliminate most of the root loads.
Because of the large centrifugal forces on the blade, the flap motion of hingeless
rotors is in fact similar to that of articulated rotors. The root loads of a hingeless
rotor are naturally higher than those of articulated rotors, and the increased hub
moments have a significant effect on the helicopter handling qualities. Regardless
of the blade root design, the flap motion of the helicopter blades has the effect of
reducing the asymmetry of the rotor lift distribution in forward flight. Thus the flap
motion is a principal concern of the analysis of the forward flight performance of the
rotor.

6.1.1 Velocity

Let us examine the velocity components seen by the rotating blades in forward
flight (Figure 6.1). The helicopter has forward velocity V and disk incidence angle i
(positive for forward tilt of the rotor). The rotor rotates with speed�. In this book the
rotation direction is counter-clockwise when viewed from above (as in Figure 6.1), so
the advancing side of the disk is to the right (starboard). The fixed-frame coordinates
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x, y, and z are aft, right, and up, respectively, with origin at the center of rotation of
the rotor. The component of the helicopter velocity in the plane of the rotor disk is
Vcos i. Define the rotor advance ratio as the in-plane forward velocity component
normalized by the rotor tip speed:

μ = V cos i
�R

(6.1)

Thus μ is the dimensionless forward speed of the rotor. The blade position is given
by the azimuth angle ψ = �t, measured from downstream. In a frame rotating
with the rotor blade, the tangential component of the velocity seen by the blade is
(�r + V cos i sinψ), and the radial component is (V cos i cosψ). The dimensionless
velocity components in the rotating frame are thus

uT = r + μ sinψ (6.2)

uR = μ cosψ (6.3)

The 1/rev variation of the tangential velocity uT has a major influence on the aero-
dynamics of the rotor in forward flight. The advance ratio μ is small for typical
helicopter cruise speeds. Early designs had a maximum speed corresponding to
μmax

∼= 0.25, whereas current helicopter designs have perhaps μmax = 0.35 to 0.40.
For a tip speed of�R = 675 ft/sec, an advance ratio of μ = 0.5 corresponds to about
V = 200 knots.

A phenomenon introduced by forward flight is the reverse flow region, an area
on the retreating side of the rotor disk where the velocity relative to the blade
is directed from the trailing edge to the leading edge. The forward velocity com-
ponent (�Rμ sinψ) is negative on the retreating side of the rotor (ψ = 180° to
360°), whereas the rotational velocity�r is positive and linearly increasing along the
blade. Consequently, there is always a region at the blade root where the rotational
velocity is smaller in magnitude than the forward speed component, so that the
flow is reversed. Specifically, for ψ = 270° the total velocity is �R(r − μ), and the
flow is reversed for blade stations inboard of r = μ. In general, the reverse flow
region is defined as the area of the disk where uT < 0, which has the boundary
(r + μ sinψ) = 0. The reverse flow boundary is a circle of diameter μ, centered at
r = μ/2 on the ψ = 270° radial on the retreating side (Figure 6.2). When μ ≥ 1, the
reverse flow region includes the entire blade atψ = 270° and has a significant impact
on the rotor aerodynamics. An advance ratio of μ = 0.35 to 0.4 is more typical of
current helicopter forward speeds. For low advance ratio, the reverse flow region
occupies only a small portion of the disk (the ratio of the reverse flow area to the total
disk area is μ2/4). Moreover, since by definition uT = 0 at the boundary, the entire
reverse flow region is characterized by low dynamic pressure until the advance ratio
gets large. The root cutout, extending to typically 10% to 25% of the rotor radius,
covers much of the reverse flow region. Thus the effects of the reverse flow region
are negligible up to an advance ratio of about μ = 0.5.

6.1.2 Blade Motion

The asymmetry of the aerodynamic environment in forward flight, which is due to
the combination of the forward velocity and rotor rotation, means that the blade
loads and motion depend on the azimuthal position ψ . For steady-state conditions,
the behavior of the blade as it revolves must always be the same at a given azimuth,
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which implies that the blade loads and motion are periodic around the azimuth,
with period 2π . In dimensional terms, the rotor blade behavior is periodic with a
fundamental frequency equal to the rotor speed� and a period T = 2π/�. Periodic
functions can be represented by a Fourier series. For example, the flap angle β can
be written

β(ψ) = β0 + β1c cosψ + β1s sinψ + β2c cos 2ψ + β2s sin 2ψ + . . .

= β0 +
∞∑

n=1

(
βnc cos nψ + βns sin nψ

)
(6.4)

The periodic function β(ψ) is then defined by the harmonics β0, β1c, β1s, and so
on. Generally only the lowest few harmonics are required to adequately describe
the rotor motion, so the complete time behavior is described by a small number
of parameters. The Fourier coefficients, or harmonics, are obtained from β(ψ) as
follows:

β0 = 1
2π

∫ 2π

0
β dψ (6.5)

βnc = 1
π

∫ 2π

0
β cos nψ dψ (6.6)

βns = 1
π

∫ 2π

0
β sin nψ dψ (6.7)

The motion of the blade degrees of freedom is described by differential equations,
which must be solved for the periodic motion in the rotating frame. One method
of solution is the substitutional method, which consists of the following steps. The
Fourier series representations of the degrees of freedom and their time derivatives
are substituted into the equations of motion. Products of harmonics are reduced
to sums of harmonics by means of trigonometric relations. All the terms in the
equation for a given harmonic are then collected, and the coefficient of each harmonic
(1, cosψ , sinψ , cos 2ψ , sin 2ψ , etc.) is set to zero. The result is a set of algebraic
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Figure 6.3. Schematic of the flap hinge, lag hinge, and pitch bearing at the hub of an articulated
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equations for the harmonics of the blade motion. An alternative approach is the
operational method, in which each of the operators

1
2π

∫ 2π

0
(. . .)dψ (6.8)

1
π

∫ 2π

0
(. . .) cosψ dψ

1
π

∫ 2π

0
(. . .) sinψ dψ (6.9)

1
π

∫ 2π

0
(. . .) cos 2ψ dψ

1
π

∫ 2π

0
(. . .) sin 2ψ dψ (6.10)

and so on, is applied to the differential equations of motion. Then the definitions of
the harmonics are used to replace the integrals of the blade motion by the Fourier
coefficients. The result is the same set of algebraic equations as obtained by the
substitutional method, although the operational method obtains the equations one at
a time. Linear differential equations reduce to linear algebraic equations for the
harmonics. The solution for the blade motion is necessarily approximate, because
the Fourier series must be truncated to obtain a finite set of equations.

The flapping hinge is needed to alleviate the root stresses and hub moments by
allowing out-of-plane motion of the blade. The flap motion also introduces aerody-
namic and inertial forces, particularly Coriolis forces, in the plane of the rotor disk.
Therefore, a lag hinge is also frequently used to alleviate the chordwise root loads
by allowing in-plane motion of the blade. The lag hinge increases the mechanical
complexity of the hub and introduces the possibility of a mechanical instability called
ground resonance, which requires a mechanical lag damper to stabilize the motion.
Ground resonance involves the coupled motion of the blades about the lag hinges
and the in-plane motion of the rotor hub, which is usually due to the flexibility of the
landing gear when the helicopter is on the ground; see section 20.3. The alternative
is to make the blade root strong and heavy enough to take the in-plane loads without
a lag hinge. A pitch bearing or hinge is also required at the blade root to allow the
blade pitch angle to be changed in response to control inputs. Thus the blade of a
fully articulated rotor has three hinges at the root: flap, lag, and feather (sketched
in Figure 6.3). The motion about the flap and lag hinges is restrained by centrifugal
forces when the blade is rotating, whereas the motion about the feathering hinge
is restrained by the control system. The phrase “rotor blade hinges” usually means
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the flap and lag hinges; specifically, a hingeless rotor does have a pitch bearing.
Mechanical considerations for fully articulated rotors require that the flap and lag
hinges be offset slightly from the center of rotation. An offset of the lag hinge is
necessary in any case, or transmitting torque from the shaft to the blades in order
to turn the rotor would not be possible. A flap-hinge offset improves the helicopter
handling qualities by allowing some pitch and roll moments to be transmitted to
the helicopter. In teetering or gimballed rotors the flap hinge is at the center of
rotation, and these rotors are designed without lag hinges. With hingeless rotors the
flap and lag motion is primarily due to bending at the blade root; such blades can be
considered as roughly equivalent to articulated rotors with large hinge offsets.

The basic blade motion is represented by the flap, lag, and pitch degrees of
freedom (Figure 6.4). The out-of-plane or flap motion is due to rigid-body rotation
about the flap hinge by the angle β (positive upward). The in-plane or lag motion is
due to rotation about the lag hinge by the angle ζ (positive aft, opposite the direction
of rotor rotation). Finally, the blade pitch or feather motion is due to rotation about
the feathering axis by the angle θ (positive when nose up). The flap and pitch angles
are measured from a disk reference plane. The various reference planes used in rotor
analyses are discussed in section 6.1.3. The steady-state flap motion is described by
a Fourier series:

β(ψ) = β0 + β1c cosψ + β1s sinψ + β2c cos 2ψ + β2s sin 2ψ + . . . (6.11)

Let us examine what these harmonics imply in terms of the rotor motion as viewed
in the fixed frame (Figure 6.5). The zero-th harmonic or mean value β0 is the con-
ing angle. When β = β0, the flap motion is independent of ψ , and therefore the
blades describe a cone as they rotate. The blade tips describe a circle that lies in
a plane parallel to the reference plane. The first harmonic β1c generates a once-
per-revolution variation of the flap angle, β = β1c cosψ . The blade out-of-plane
deflection is then z = rβ = rβ1c cosψ = xβ1c. Thus as they rotate the blades describe
a plane tilted forward about the lateral (y) axis by the angle β1c relative to the refer-
ence plane. Similarly, the first harmonic β1s generates an out-of-plane deflection of
z = rβ = rβ1s sinψ = yβ1s, which corresponds to a plane tilted to the left (toward the
retreating side) about the longitudinal axis by the angle β1s relative to the reference
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plane. The combination of the harmonics β0, β1c, and β1s forms a cone that has been
tilted laterally and longitudinally. The circular path described by the blade tips still
lies in a plane, which is called the tip-path plane. The orientation of the tip-path
plane relative to the reference plane is given by β1c and β1s. The higher harmonics
of the flap motion (β2c, β2s, etc.) produce a distortion of the tip-path plane. These
harmonics are usually small, so the rotor flap motion is described primarily by β0,
β1c, and β1s for the helicopter in forward flight.

The lag motion can also be written as a Fourier series:

ζ (ψ) = ζ0 + ζ1c cosψ + ζ1s sinψ + . . . (6.12)

The zero-th harmonic ζ0 is the mean lag angle of the blades relative to the rotor
hub and shaft (Figure 6.6). The first harmonic cyclic lag ζ1c produces a lateral shift
of the blades, to the left when ζ1c > 0 (see Figure 6.6). Neglecting the hinge offset,
the center-of-gravity of the blade is at xCG = rCG cos(ψ − ζ ) ∼= rCG(cosψ + ζ sinψ)
and yCG = rCG sin(ψ − ζ ) ∼= rCG(sinψ − ζ cosψ), where rCG is the radial location of
the center-of-gravity. The mean center-of-gravity location, which is also the center-
of-gravity for the entire rotor, is obtained by averaging over the rotor azimuth and
multiplying by the number of blades. Using the definition of the lag harmonics, we
obtain

(xCG)rotor = N
2π

∫ 2π

0
xCGdψ = N

2
rCGζ1s (6.13)

(yCG)rotor = N
2π

∫ 2π

0
yCGdψ = −N

2
rCGζ1c (6.14)

Thus the cyclic lag ζ1c produces a lateral shift of the rotor center-of-gravity. Similarly,
the cyclic lag ζ1s produces a longitudinal shift of the blades in the plane of rotation
(aft when ζ1s > 0) and a longitudinal shift in the rotor center-of-gravity.
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Figure 6.6. Interpretation of the blade lag harmonics.
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From the character of the rotor motion associated with the lowest harmonics of
flap and lag, the coning is the reaction to the mean blade lift, ζ0 is the reaction to the
mean rotor torque, the cyclic flap β1c and β1s are the response to moments on the
rotor disk, and the cyclic lag ζ1c and ζ1s are the response to in-plane motion of the
rotor hub.

The Fourier series representation for the blade pitch motion is

θ (ψ) = θ0 + θ1c cosψ + θ1s sinψ + . . . (6.15)

The zero-th harmonic θ0 is the average blade pitch, whereas the first harmonics give
a once-per-revolution variation of the pitch angle. Blade pitch or feathering motion
has two sources. First, there is the elastic deformation of the control system and
blade, described by dynamic degrees of freedom. Such motion is determined by
equilibrium of feathering moments on the blade. The second source of blade pitch
is the commanded input from the helicopter control system. The pilot controls the
helicopter by commanding the rotor blade pitch. The feathering moments on the
blade are low, and the lift changes due to pitch are large because the angle-of-attack
is directly changed. Controlling the blade pitch is therefore a very effective means of
controlling the forces on the rotor. The present chapter is concerned only with the
blade pitch as a control variable. The control inputs usually consist of just the mean
and first harmonics: θ (ψ) = θ0 + θ1c cosψ + θ1s sinψ . The mean angle θ0 is called
the collective pitch, and the l/rev harmonics θ1c and θ1s are called the cyclic pitch
angles. Basically, collective pitch controls the average blade force, and hence the
rotor thrust magnitude, whereas cyclic pitch controls the tip-path-plane tilt (that is,
the 1/rev flapping) and hence the thrust vector orientation (θ1c controls the lateral
orientation, and θ1s controls the longitudinal orientation).

The rotor must have a mechanical means of producing collective and cyclic
pitch changes on the rotor blades. The blade pitch motion takes place about a pitch
bearing or hinge (Figure 6.7). A pitch horn is rigidly attached to the blade outboard
of the pitch bearing, and a pitch link is attached to the pitch horn in such a way
that vertical motion of the link produces blade pitch motion. The top of the pitch
link is shown aligned with the flap hinge axis, so flap motion is not accompanied
by pitch motion. Then what is required is a way to produce a steady and 1/rev
sinusoidal vertical motion of the pitch link. This arrangement or its mechanical
equivalent is fairly standard in rotor designs. There are other means of producing
the blade lift control, such as the Kaman servoflap, and there are many variations
in the mechanical implementation of this arrangement. All means of controlling the
rotor can be viewed along these general lines, however.

A widely used method of providing the blade pitch control is by means of a
swashplate. A swashplate is a mechanical device that transmits the pilot’s control
motion in the nonrotating frame to the blade cyclic pitch motion in the rotating frame.
Figure 6.7 is a schematic of the swashplate arrangement. The actual mechanical
arrangement varies widely, but this figure defines the principal components that
must be present in some form. The swashplate has rotating and non-rotating rings
concentric with the shaft, with bearings between the two rings. The rotating ring is
gimballed to the shaft in an arrangement that allows an arbitrary orientation of the
plane of the swashplate relative to the rotor shaft while one ring is stationary and
the other rotates. The blade pitch links attach to the rotating ring, and links from the
pilot’s controls attach to the stationary ring. Vertical displacement of the swashplate
provides a vertical motion of the pitch links that is independent of azimuth, thereby
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Figure 6.7. Schematic of the rotor swashplate.

changing the rotor collective pitch angle θ0. If the swashplate is given a longitudinal
tilt φSP, the vertical position at the pitch link exhibits a 1/rev sinusoidal variation:
zPL = φSPxPL = φSPrPL cosψ . Similarly, lateral tilt by φSP gives zPL = φSPrPL sinψ .
The swashplate tilt in response to the pilot’s stick motion thus produces the cyclic
blade pitch control, and vertical motion of the swashplate (or its equivalent, perhaps
in an entirely separate mechanism) produces the collective pitch control. In general,
the control system can be represented by a control plane, its tilt corresponding to
cyclic control and its vertical position corresponding to collective control. Since there
can be other sources of blade pitch motion, such as kinematic pitch-flap coupling,
the control plane alone does not necessarily represent the entire blade pitch motion.

There always exists a reference plane relative to which the blade pitch has no
1/rev variation. Since the pitch angle θ as measured from this plane is constant, it is
called the no-feathering plane. To locate the no-feathering plane, consider an arbi-
trary reference plane relative to which the cyclic pitch, θ1c and θ1s, is nonzero. The
no-feathering plane then is obtained by rotating rearward about the lateral (y) axis
by θ1s, and to the left about the longitudinal (x) axis by θ1c. The component of these
rotations about the feathering axis of the blade at azimuthψ is (θ1c cosψ + θ1s sinψ),
which indeed cancels the cyclic pitch of the original reference plane. Hence the lon-
gitudinal tilt of the no-feathering plane represents the sine cyclic θ1s, whereas lateral
tilt represents the cosine cyclic θ1c. In response to control, the tip-path plane (and
with it the thrust vector) tilts parallel to the no-feathering plane. Thus θ1s provides
longitudinal control of the helicopter and is called longitudinal cyclic, whereas θ1c
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provides lateral control and is called lateral cyclic. The no-feathering plane was often
used in early rotor analyses, because the absence of cyclic pitch simplifies the cal-
culations. The no-feathering plane and control plane are not necessarily equivalent;
the former represents the total blade pitch, whereas the latter represents the control
system, hence just the commanded pitch.

6.1.3 Reference Planes

Next, consider the geometry of the blade motion relative to the tip-path plane and
the no-feathering plane. The flap and pitch angles (specifically, the 1/rev harmonics
of β and θ) define the orientation of the plane of the rotor blade relative to the
reference disk plane. We shall examine how β and θ transform as we change from
one reference plane to another while maintaining the same orientation of the blade
with respect to space. The orientation of the blade relative to space and the air has
physical meaning. The choice of a reference plane is arbitrary, although a particular
reference plane can be more useful than others for certain theories and calculations.
There are invariants of the transformation between frames, which represent the
orientation of the blade with respect to space and so must be independent of the
reference plane chosen.

Consider two reference planes, the second tilted forward by the angle φy relative
to the first. This tilt decreases β by φy at ψ = 0, and increases it by φy at ψ = 180°,
while at ψ = 90° the pitch is increased by φy and at ψ = 270° is decreased by φy.
This suggests that the cyclic flap β1c has been decreased by φy and the cyclic pitch
θ1s increased by φy as a result of the reference plane tilt. The flap and pitch angles
transform in such a way that the 1/rev harmonics of β and θ as measured relative
to the reference plane change by the same magnitude, but with a 90° shift in phase.
Similarly, with a lateral tilt of the reference plane by φx, β1s and θ1c are decreased by
the angle φx. The quantities (β1c + θ1s) and (β1s − θ1c) should therefore be indepen-
dent of the reference plane. Now let us derive the reference plane transformation
more rigorously.

The angles β and θ in the rotating frame define the orientation of the plane of
the blade with respect to a particular reference plane. The components of the blade
plane tilt in the nonrotating frame are (θ cosψ + β sinψ) laterally and (θ sinψ −
β cosψ) longitudinally. Now tilt the reference plane by the angles φx laterally and φy

longitudinally. Since the position of the blade in space is unchanged, the orientation
of the blade relative to the first and second reference planes must be as follows:

(θ )2 cosψ + (β)2 sinψ = (θ )1 cosψ + (β)1 sinψ − φx (6.16)

(θ )2 sinψ − (β)2 cosψ = (θ )1 sinψ − (β)1 cosψ − φy (6.17)

or in the rotating frame:

(θ )2 = (θ )1 − φx cosψ − φy sinψ (6.18)

(β)2 = (β)1 − φx sinψ + φy cosψ (6.19)

which defines the transformation of the flap and pitch angles (only the first harmonics
are affected). Writing β and θ as Fourier series gives

(θ1c)2 = (θ1c)1 − φx (θ1s)2 = (θ1s)1 − φy (6.20)

(β1c)2 = (β1c)1 + φy (β1s)2 = (β1s)1 − φx (6.21)
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Figure 6.8. Equivalence of flapping and feathering.

Eliminating φx and φy shows that in the transformation from one reference plane
to another the quantities (β1c + θ1s) and (β1s − θ1c) are constant. In terms of the
no-feathering plane (NFP) and tip-path plane (TPP) variables,

β1s − θ1c = (β1s)NFP = −(θ1c)TPP (6.22)

β1c + θ1s = (β1c)NFP = (θ1s)TPP (6.23)

Relative to a general reference plane, θ1c and θ1s define the orientation of the no-
feathering plane, whereas β1c and β1s define the orientation of the tip-path plane.
Figure 6.8 shows that the quantities (β1c + θ1s) and (β1s − θ1c) are simply the longi-
tudinal and lateral angles between the tip-path plane and the no-feathering plane,
which indeed must be independent of the choice of reference plane. The two planes
of no flap motion and no pitch motion are physically relevant; hence their association
with the invariants of flap and pitch in a reference plane transformation. The fact
that, by the reference plane transformation, cyclic flapping can be exchanged for
cyclic feathering, and vice versa, is referred to as the equivalence of flapping and
feathering motion.

Consider a blade with no offset of the flapping hinge or pitch bearing. Although
not mechanically practical, such a configuration is simple and well represents the
basic behavior of an articulated rotor. In this case the flap and pitch hinges form
a gimbal connecting the blade root to the hub, allowing an arbitrary orientation
of the rotor shaft while the blade remains fixed with respect to space. So the shaft
orientation has no influence on the blade aerodynamics or dynamics; only the relative
orientation of the no-feathering plane and tip-path plane is significant. The analysis
can therefore be conducted in the no-feathering plane or tip-path plane, ignoring
the shaft orientation except to determine the actual cyclic pitch control required.
Flapping-feathering equivalence simply expresses the change in β and θ for the
various possible shaft orientations. For a hingeless rotor or an articulated rotor with
offset hinges, the shaft orientation relative to the no-feathering plane and tip-path
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plane has physical importance. The reference plane perpendicular to the rotor shaft
is called the hub plane.

Figure 6.9 summarizes the various reference planes used for the helicopter
rotor in forward flight. In vertical flight, the natural reference disk plane is the
horizontal. With axial symmetry the tip-path plane and no-feathering plane are
horizontal. The hub plane is not necessarily horizontal in vertical flight unless the
helicopter center-of-gravity is on the rotor shaft axis. In Chapters 3 and 4 the hub
plane was not considered, because the hover analysis is primarily concerned with
rotor aerodynamics. In forward flight, however, a number of reference planes have
physical meaning, and due to the asymmetry of the aerodynamics in forward flight,
these planes do not in general coincide with the horizontal plane or with each other.
The tip-path plane (TPP) is parallel to the plane described by the blade tips, so there
is no 1/rev flapping motion. The orientation of the tip-path plane defines the cyclic
flapping β1c and β1s relative to any other plane. The no-feathering plane (NFP) has
no 1/rev pitch variation; its orientation thus defines the cyclic pitch θ1c and θ1s relative
to any other plane. The control plane (CP) represents the commanded cyclic pitch
from the rotor control system and can be considered the swashplate plane. The hub
plane (HP) is normal to the rotor shaft. The hub plane is the natural reference frame
when there are important physical effects of the blade orientation relative to the
hub, such as in the case of offset hinges or a hingeless rotor. Both cyclic flapping
and cyclic feathering motion occur in the hub plane. Although in general no two
of these planes coincide, there are special cases. For a flapping rotor with no cyclic
pitch control (such as the tail rotor and some autogyros), the hub plane and control
plane are equivalent; if there is no pitch-flap coupling or other pitch sources, then
the control plane and no-feathering plane coincide as well. For a feathering rotor
with no flapping (such as a propeller with cyclic pitch) the hub plane and tip-path
plane are equivalent.

Figure 6.10 summarizes the quantities defining the rotor motion, velocity, and
forces relative to a reference plane. In the non-rotating axis system, x and y lie in the
reference plane and z is normal to it. The flap and pitch angles are measured relative
to the reference plane. The forward velocity has magnitude V and lies in the x-z
plane at an incidence angle i (positive for forward tilt of the disk). The rotor induced
velocity v is assumed to be normal to the reference plane. The advance ratio μ and
inflow ratio λ are the respective dimensionless velocity components parallel to and
normal to the reference plane:

μ = V cos i
�R

(6.24)

λ = V sin i + v
�R

= μ tan i + λi (6.25)
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For small disk inclination, μ ∼= V/�R and λ = μi + λi, so that although i (hence
also λ) depends on the reference plane orientation, the advance ratio μ is approx-
imately independent of the reference plane used. The rotor force components are
also defined relative to the reference plane chosen: the thrust T is normal to the
disk, whereas the rotor drag force H and side force Y are in the reference plane. The
coefficients are defined as

CT = T/ρA(�R)2 (6.26)

CH = H/ρA(�R)2 (6.27)

CY = Y/ρA(�R)2 (6.28)

Similarly, the hub moments CMx and CMy and the torque CQ are defined relative to
this reference plane. The resultant force of the rotor must be independent of the
reference plane. Since the thrust is normally much greater than the drag or side force,
the rotor thrust is approximately independent of the reference plane. Invariants of
the velocity and forces under a transformation of reference planes can be obtained
by extending the derivation of the invariants of the blade motion, (β1c + θ1s) and
(β1s − θ1c) (equivalence of flapping and feathering). Thus in terms of quantities in
the no-feathering plane or tip-path plane,

λ = λNFP + μθ1s = λTPP − μβ1c (6.29)

i = iNFP + θ1s = iTPP − β1c (6.30)

H = HNFP + Tθ1s = HTPP − Tβ1c (6.31)

Y = YNFP − Tθ1c = YTPP − Tβ1s (6.32)



6.2 Aerodynamics of Forward Flight 165

and

λ = μi + λi = μ(iNFP + θ1s)+ λi = μ(iTPP − β1c)+ λi (6.33)

for the inflow ratio.

6.2 Aerodynamics of Forward Flight

Now we begin the analysis of the aerodynamics and dynamics of the helicopter
rotor in forward flight. At first only the simplest possible case is considered: a fully
articulated rotor with constant chord, no hinge offset, no hinge spring, and no pitch-
flap coupling; rigid flapping is the only blade motion, with rigid pitch control; and
the effects of reverse flow, tip loss, and root cutout are neglected. The aerodynamics
of the blade in forward flight are derived, and the forces on the rotor obtained. Then
the dynamics of the blade flapping motion are investigated. The remaining sections
of the chapter consider some of the factors neglected with this simple model.

This section derives the aerodynamic forces on the rotor blade in forward flight.
A fully articulated rotor is considered, with no hinge offset. The blade motion
consists of rigid flapping β and rigid pitch due to collective and cyclic control inputs.
Elastic bending and torsion of the blade are neglected. Such a model is sufficient to
determine the performance and control characteristics of an articulated rotor. Blade
element theory is used to find the section aerodynamic forces. The effects of the
reverse flow region are neglected for now. A general reference plane is considered.

Blade element theory assumes that each blade section acts as a two-dimensional
airfoil for which the influence of the rotor wake consists entirely of an induced
velocity at the section. Two-dimensional airfoil characteristics can then be used to
evaluate the section loads in terms of the blade motion and aerodynamic environ-
ment at that section alone. The induced velocity can be obtained by various means:
momentum theory, vortex theory, or nonuniform inflow calculations. Blade element
theory requires that the aspect ratio be high, which is normally true for rotary wings.
However, near the blade tip or in the large induced velocity gradients of a vortex-
blade interaction, advanced aerodynamic theories should be used for best results.

Consider the velocities seen by the blade section (Figure 6.11). The blade section
pitch θ is measured from the reference plane to the zero-lift line; θ includes the
collective and cyclic pitch control and the built-in twist of the blade. The components
of the velocity of the air relative to the blade are uT (tangential to the disk plane,
positive toward the trailing edge), uP (perpendicular to the disk plane, positive
downward), and uR (radial, positive outward). The resultant velocity and inflow

angle of the section are U =
√

u2
T + u2

P and φ = tan−1 uP/uT . The section angle-of-
attack then is α = θ − φ. The velocity seen by the blade is due to the rotor rotation,
the helicopter forward speed and induced velocity, and the blade flap motion. To
lowest order the tangential and radial components uT and uR are due solely to the
rotor rotation and advance ratio (see Figure 6.12):

uT = r + μ sinψ (6.34)

uR = μ cosψ (6.35)

These components are then also independent of the reference plane used. The
normal velocity uP has three terms:�Rλ, which is the induced velocity plus the com-
ponent of the free stream velocity normal to the rotor disk (recall λ = μi + λi);
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Figure 6.11. Aerodynamics of the rotor blade section.

rdβ/dt, which is the angular velocity of the blade about the flap hinge; and
�Rβμ cosψ , which is a component of the radial velocity uR normal to the blade
when the blade is flapped up by the angle β (see Figure 6.12). Thus the dimension-
less normal velocity is

uP = λ+ rβ̇ + βμ cosψ (6.36)

Each term in uP depends on the reference plane. In deriving these expressions for
the velocity components, the flap angle β was assumed to be small. Finally, although
the pitch angle and velocity components depend on the reference plane, the section
aerodynamic environment defined by the resultant velocity and angle-of-attack must
not. For small angles U ∼= uT , and α ∼= θ − uP/uT is easily shown to be invariant
during a reference plane transformation.

Figure 6.11 also shows the aerodynamic forces on the blade section. The aero-
dynamic lift and drag (L and D) are, respectively, normal to and parallel to the

x
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Ω

uR

uT

β

uR

Ω
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uRβ
blade

the βu   term of uR                    P
in-plane velocity 

components u    and u
T              R

Figure 6.12. Air velocity relative to the blade in forward flight.
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resultant velocity U . The components of the section lift and drag resolved in the
reference plane are Fz and Fx (normal and in-plane, respectively). The radial force
on the section is Fr, defined to be positive when outward. The section forces can be
expressed in terms of the lift and drag coefficients:

L = 1
2
ρU2c c� (6.37)

D = 1
2
ρU2c cd (6.38)

where c� and cd are in general functions of the section angle-of-attack α and the Mach
number M = MtipU . Here ρ is the air density (which is omitted when dimensionless
quantities are used), c is the blade chord, and Mtip = �R/cs is the tip Mach number.
The normal and in-plane forces are

Fz = L cosφ − D sinφ (6.39)

Fx = L sinφ + D cosφ (6.40)

The first term in Fx is the induced drag, and the second term is the profile drag. The
blade radial force is

Fr = −βFz + Dradial (6.41)

The first term in Fr is the radial component of the normal force when the blade
flaps up. The second term is a radial drag force due to radial flow along the blade,
which is neglected until sections 6.22 and 6.23. Now substitute for L and D in terms
of the section coefficients, divide by the chord c and the section two-dimensional
lift-curve slope a, and use dimensionless quantities. The resulting section forces in
the reference axis system are

Fz

ac
= U2

( c�
2a

cosφ − cd

2a
sinφ

)
(6.42)

Fx

ac
= U2

( c�
2a

sinφ + cd

2a
cosφ

)
(6.43)

Fr

ac
= −β Fz

ac
(6.44)

Next we make the small angle assumption and neglect stall and compressibility
effects. Assuming λ, β, φ, and θ are all small angles, it follows that uP/uT and
α are small; that φ ∼= uP/uT , sinφ ∼= φ, and cosφ ∼= 1; and that U 2 ∼= u2

T and α ∼=
θ − uP/uT . Assuming a constant lift-curve slope and absorbing the zero-lift angle
in the definition of blade pitch, the lift coefficient is c� = aα. Neglecting stall gives
cd/c� � 1, so with the small angle assumption Fz

∼= L and Fx
∼= Lφ + D. Hence the

section aerodynamic forces become

Fz

ac
= 1

2
u2

Tα = 1
2

(
u2

Tθ − uPuT
)

(6.45)

Fx

ac
= u2

T

(α
2
φ + cd

2a

)
= 1

2

(
uPuT θ − u2

P

)+ cd

2a
u2

T (6.46)

Fr

ac
= −β Fz

ac
(6.47)
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6.3 Rotor Aerodynamic Forces

Now we derive the aerodynamic forces acting on the rotor. A general reference
plane is used, although some of the results are examined in the no-feathering plane
and tip-path plane. The thrust T is normal to the rotor disk; the rotor drag force
H is in the disk plane, positive aft; and the rotor side force Y is in the disk plane,
positive toward the advancing side (see Figure 6.10). The rotor drag and side forces
are usually small in the tip-path plane, so in general H/T and Y/T are of the order
of the tip-path-plane tilt angles. In addition, there is a torque moment Q on the
rotor, positive for a rotor absorbing power. For an articulated rotor with no flap
hinge offset, there can be no net pitch or roll moment transmitted to the rotor hub.
The rotor forces are obtained by integrating the blade section forces along the span.
The rotor thrust is due to the normal force Fz, the drag and side forces are due to the
in-plane forces Fx and Fr resolved in the non-rotating frame, and the torque is due
to the in-plane force Fx. Multiplying by the number of blades N to obtain the forces
on the entire rotor, the aerodynamic forces are

T = N
∫ R

0
Fzdr (6.48)

H = N
∫ R

0

(
Fx sinψ + Fr cosψ

)
dr (6.49)

Y = N
∫ R

0

(−Fx cosψ + Fr sinψ
)
dr (6.50)

Q = N
∫ R

0
rFxdr (6.51)

It is also necessary to average these expressions over the azimuth to obtain the steady
forces, by operating with 1

2π

∫ 2π
0 (. . .)dψ . The rotor thrust coefficient is

CT = T
ρA(�R)2

= N
π

∫ R

0

Fz

ρR(�R)2
dr
R

=
∫ R

0

Nc
πR

Fz

ρc(�R)2
dr
R

(6.52)

or, using dimensionless quantities, CT = ∫ 1
0 σ (Fz/c)dr. In general, the blade chord

can be a function of r, but here only a constant chord is considered. Then the solidity
σ is a constant. Hence the rotor coefficients are

CT

σa
=
∫ 1

0

Fz

ac
dr (6.53)

CH

σa
=
∫ 1

0

(
Fx

ac
sinψ + Fr

ac
cosψ

)
dr (6.54)

CY

σa
=
∫ 1

0

(
−Fx

ac
cosψ + Fr

ac
sinψ

)
dr (6.55)

CQ

σa
=
∫ 1

0
r

Fx

ac
dr (6.56)
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Assuming small angles, and neglecting the tip loss and root cutout, substitute for the
section forces to obtain

CT

σa
=
∫ 1

0

1
2

(
u2

T θ − uPuT
)
dr (6.57)

CH

σa
=
∫ 1

0

{
sinψ

[
1
2

(
uPuT θ − u2

P

)+ cd

2a
u2

T

]
−β cosψ

[
1
2

(
u2

Tθ − uPuT
)]}

dr (6.58)

CY

σa
=
∫ 1

0

{
− cosψ

[
1
2

(
uPuT θ − u2

P

)+ cd

2a
u2

T

]
−β sinψ

[
1
2

(
u2

Tθ − uPuT
)]}

dr (6.59)

CQ

σa
=
∫ 1

0
r
[

1
2

(
uPuTθ − u2

P

)+ cd

2a
u2

T

]
dr (6.60)

where

uT = r + μ sinψ (6.61)

uP = λ+ rβ̇ + βμ cosψ (6.62)

β = β0 + β1c cosψ + β1s sinψ + β2c cos 2ψ + β2s sin 2ψ + . . . (6.63)

θ = θ0 + θtwr + θ1c cosψ + θ1s sinψ (6.64)

Linear twist has been assumed, and usually uniform inflow is used in this chapter.
The flap motion has been written as a complete Fourier series, but in fact only the
mean and first harmonics are considered for most of this chapter.

The moments on the rotor hub can be obtained in a similar fashion. The pitch
moment My and roll moment Mx (positive rearward and toward the retreating side,
respectively) are

My = −N
∫ R

0
cosψ rFzdr (6.65)

Mx = N
∫ R

0
sinψ rFzdr (6.66)

Then in coefficient form

CMy

σa
= −

∫ 1

0
cosψ

Fz

ac
r dr (6.67)

CMx

σa
=

∫ 1

0
sinψ

Fz

ac
r dr (6.68)

The root flapping moment on a single blade in the rotating frame is MF = ∫ R
0 rFzdr.

Writing MF as a Fourier series and remembering that the rotor forces and moments
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must be averaged over the azimuth, the pitch and roll moments are

My = −N
2

MF1c (6.69)

Mx = N
2

MF1s (6.70)

Hence the 1/rev flap moments at the center of rotation lead to the steady pitch and
roll moments on the helicopter. In the case of an articulated rotor with the flap
hinge at the center of rotation there is no moment on the hinge, and for that reason
there can be no hub moment acting on the helicopter. In general, the pitch and roll
moment can be related to the rotor tip-path-plane tilt, which is a measure of the
1/rev flapping moments.

It is convenient to separate the drag and side forces and the torque into two
terms: a profile term due to the drag coefficient cd, and an induced term due to
the lift coefficient c�. The former is denoted by the subscript “o” and the latter
by “i”. Although such a separation is suggested by the division of induced and
profile power, it is not quite consistent here because the induced terms include
the inflow ratio λ, part of which is due to the disk tilt necessary to counter the
rotor profile drag CHo. The division here is strictly formal, based on whether the
source of the section force is the drag coefficient or the lift coefficient. In section 6.4
the rotor profile power and induced power are obtained. Thus CH = CHi + CHo,
CY = CYi + CYo, and CQ = CQi + CQo; the rotor thrust has no drag terms (with the
small angle assumption). The profile terms are

CHo =
∫ 1

0

σcd

2
sinψ u2

T dr (6.71)

CYo =
∫ 1

0

σcd

2

(− cosψ
)
u2

T dr (6.72)

CQo =
∫ 1

0

σcd

2
ru2

T dr (6.73)

and the induced terms are

CHi = σa
2

∫ 1

0

(
uTθ − uP

)(
uP sinψ − uTβ cosψ

)
dr (6.74)

CYi = σa
2

∫ 1

0

(
uTθ − uP

)(−uP cosψ − uTβ sinψ
)
dr (6.75)

CQi = σa
2

∫ 1

0
r
(
uPuT θ − u2

P

)
dr (6.76)

Furthermore,

uP sinψ − uTβ cosψ = λ sinψ + rβ̇ sinψ − rβ cosψ (6.77)

uP cosψ + uTβ sinψ = λ cosψ + rβ̇ cosψ + rβ sinψ + μβ (6.78)
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The next step is to average over the rotor azimuth. By using the definitions of
the Fourier coefficients, integrals of β and θ can be replaced by the appropriate
harmonics. For example, the rotor thrust requires the term

1
2π

∫ 2π

0
θu2

T dψ = 1
2π

∫ 2π

0
θ

[
r2 + 2rμ sinψ + 1

2
μ2(1 − cos 2ψ

)]
dψ

= (θ0 + rθtw)

(
r2 + μ2

2

)
+ θ1srμ− θ2c

μ2

4
(6.79)

where the definitions

θ0 = 1
2π

∫ 2π

0
θ dψ, θ1s = 1

π

∫ 2π

0
θ sinψ dψ, θ2c = 1

π

∫ 2π

0
θ cos 2ψ dψ (6.80)

have been used. Also required is the term

1
2π

∫ 2π

0
uPuT dψ = 1

2π

∫ 2π

0

(
λ+ rβ̇ + μβ cosψ

)(
r + μ sinψ

)
dψ = λr + μ2

4
β2s

(6.81)
using the definition of β2s and noting that∫ 2π

0

(
r2β̇ + rμβ̇ sinψ + rμβ cosψ

)
dψ =

∫ 2π

0

d
dψ

(
r2β + rμβ sinψ

)
dψ = 0 (6.82)

since the quantity (r2β + rμβ sinψ) is periodic. There is no higher harmonic control,
so θ2c = 0; and the higher harmonics of flapping are small, so β2s is neglected. Thus
the rotor thrust coefficient is

CT = σa
2

∫ 1

0

[
(θ0 + rθtw)

(
r2 + μ2

2

)
+ θ1srμ− λr

]
dr

= σa
2

[
θ0

3

(
1 + 3

2
μ2
)

+ θtw

4

(
1 + μ2)+ μ

2
θ1s − λ

2

]
(6.83)

Similarly, the induced drag and side force terms are

CHi = σa
2

[
θ0

3

(
−β1c + 3

2
μλ

)
+ θtw

4
(−β1c + μλ)

− 1
6
θ1cβ0 + 1

4
θ1s (−μβ1c + λ)

+ 3
4
λβ1c + 1

6
β0β1s + 1

4
μ
(
β2

0 + β2
1c

)]
(6.84)

CYi = −σa
2

[
θ0

3

(
β1s

(
1 + 3

2
μ2
)

+ 9
4
μβ0

)
+ θtw

4

(
β1s
(
1 + μ2)+ 2μβ0

)
+ 1

4
θ1c (λ+ μβ1c)+ 1

6
θ1s
(
β0
(
1 + 3μ2)+ 3μβ1s

)
− 3

4
λβ1s + 1

6
β0β1c

(
1 − 6μ2)− 3

2
μλβ0 − 1

4
μβ1cβ1s

]
(6.85)
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The induced torque is considered in section 6.4. For the profile terms, the section
drag coefficient is assumed to be constant over the entire rotor disk and has an
appropriate mean value cdo. Then averaging over the azimuth gives

CHo =
∫ 1

0

σcd

2
sinψ u2

T dr =
∫ 1

0

σcd

2
rμdr = σcdo

4
μ (6.86)

CYo =
∫ 1

0

σcd

2
(− cosψ)u2

T dr = 0 (6.87)

CQo =
∫ 1

0

σcd

2
ru2

T dr =
∫ 1

0

σcd

2
r
(

r2 + μ2

2

)
dr = σcdo

8

(
1 + μ2) (6.88)

The profile side force is always zero because of the longitudinal symmetry of the
flow, as long as the variation of the drag coefficient is neglected. These results have
been obtained neglecting reverse flow and radial flow effects. In section 6.23 the
profile drag force, torque, and power are extended to include reverse flow, radial
flow, and the radial drag force. Since the radial drag cannot produce a torque on the
rotor, and CYo remains zero because of symmetry, the only influence of radial drag
is on CHo.

In terms of the blade pitch at 75% radius (θ.75 = θ0 + 3
4θtw) and the inflow in the

no-feathering plane (λNFP = λ− μθ1s), the rotor thrust in forward flight is

CT = σa
2

[
θ.75

3

(
1 + 3

2
μ2
)

− θtw

8
μ2 − λNFP

2

]
(6.89)

Although this is the most compact form, the inflow relative to the tip-path plane (λ−
μθ1s = λTPP − μ(β1c + θ1s)) has the most physical significance, since the incidence
angle of the tip-path plane is determined directly by the drag of the helicopter
and rotor. Thus the angle of the tip-path plane relative to the no-feathering plane
(β1c + θ1s) is needed to complete the evaluation of the thrust.

Relative to the tip-path plane, the rotor drag force is

CHTPP = σcdo

4
μ+ σa

2

[
1
2
μλTPP

(
θ0 + 1

2
θtw

)
− 1

6
θ1cβ0 + 1

4
θ1sλTPP + 1

4
μβ2

0

]
(6.90)

Then for a general reference plane the rotor drag is found by adding the term due
to tilt of the thrust vector, CH = CHTPP − β1cCT . Similarly, CH in the no-feathering
plane can be found by dropping the θ1c and θ1s terms from the general result, and
then CH = CHNFP + θ1sCT . The rotor side force in the tip-path plane is

CYTPP = −σa
2

[
3
4
μβ0

(
θ0 + 2

3
θtw

)
+ 1

4
θ1cλTPP + 1

6
θ1sβ0

(
1 + 3μ2)− 3

2
μβ0λTPP

]
(6.91)

and then CY = CYTPP − β1sCT or CY = CYNFP − θ1cCT . Since CHTPP/CT and
CYTPP/CT are usually small, the rotor thrust vector is tilted from the normal to
the tip-path plane by only 0.5° to 1.0° or less in forward flight (the tilt is proportional
to μ).
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6.4 Power in Forward Flight

The expression for the rotor torque obtained in section 6.3 is

CQ

σa
=
∫ 1

0
r

Fx

ac
dr =

∫ 1

0
r
[

1
2

(
uPuTθ − u2

P

)+ cd

2a
u2

T

]
dr (6.92)

By integrating this expression over the disk, as for the rotor force coefficients, the
torque can be evaluated. With all power transmitted to the rotor through the shaft,
P = �Q or CP = CQ. An alternative procedure, which yields a simpler result, is the
energy balance formulation of the rotor power. The energy expression is also more
general, since many of the assumptions required in the force-balance method are
not necessary.

Consider the general expressions for the rotor thrust, drag force, and torque in
terms of the section forces normalized by blade chord:

CT =
∫ 1

0
σ F̂zdr = CTi + CTo (6.93)

CH =
∫ 1

0
σ
(
F̂x sinψ + F̂r cosψ

)
dr = CHi + CHo (6.94)

CQ =
∫ 1

0
σ F̂xr dr = CQi + CQo (6.95)

As usual, an average over the azimuth is also required. The subscripts “i” and “o”
refer to the contributions from c� and cd. In terms of the section lift and drag,

F̂z = Fz

c
= U2

(c�
2

cosφ − cd

2
sinφ

)
= U

2
(c�uT − cduP) (6.96)

F̂x = Fx

c
= U2

(c�
2

sinφ + cd

2
cosφ

)
= U

2
(c�uP + cduT )

= tanφ F̂z + U 2 cd

2
1

cosφ

= uP

uT
F̂z + U 3

uT

cd

2
(6.97)

F̂r = Fr

c
= −η′β F̂z + F̂ro (6.98)

where tanφ = uP/uT and U2 = u2
T + u2

P. No small angle assumptions have been
made here. The radial drag term F̂ro is dealt with in sections 6.22 and 6.23. An
important generalization has been introduced. The out-of-plane blade deflection is
z = βη, where η(r) is an arbitrary radial mode shape. For rigid flapping η = r, but
with hinge offset or a hingeless rotor a more complicated mode shape is required.
Then the normal velocity becomes uP = λ+ ηβ̇ + η′βμ cosψ , and the radial force
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due to tilt of Fz is Fr = −η′βFz. Substituting for F̂x and F̂r in terms of F̂z gives

CH =
∫ 1

0
σ F̂z

(
uP

uT
sinψ − η′β cosψ

)
dr

+
∫ 1

0

σcd

2
U3

uT
sinψ dr +

∫ 1

0
σ F̂ro cosψ dr

= CHz + CHx (6.99)

CQ =
∫ 1

0
σ F̂z

uP

uT
r dr +

∫ 1

0

σcd

2
U 3

uT
r dr

= CQz + CQx (6.100)

The subscript “z” designates the terms produced by the section normal force F̂z. The
remainder (subscript “x”) depends on the section drag (cdo and F̂ro). Now consider
the quantity CQz + μCHz:

CQz + μCHz =
∫ 1

0
σ

(
r

uP

uT
+ μ sinψ

uP

uT
− η′βμ cosψ

)
F̂zdr

=
∫ 1

0
σ
(
uP − η′βμ cosψ

)
F̂zdr

=
∫ 1

0
σ
(
λ+ ηβ̇) F̂zdr (6.101)

The second term is zero, as is now shown. Since ηβ̇ = ż is the velocity of the out-of-
plane motion of the blade,∫ 2π

0
ηβ̇Fzdψ =

∫ 2π

0
żFzdψ =

∮
Fz dz (6.102)

is the work done on the blade section by the periodic aerodynamic force Fz during
one revolution of the rotor. The total energy of the blade from one revolution to the
next must be unchanged, since the steady-state rotor motion is periodic. Then the
net work done on the blade during one revolution must be zero. This result can also
be obtained by considering the dynamics of the blade flap motion. The differential
equation for the blade flapping motion (derived in section 6.5) is

β̈ + ν2β = γ
∫ 1

0
η

Fz

ac
dr (6.103)

where ν is the natural frequency. Averaging over the azimuth gives

1
2π

∫ 2π

0

(∫ 1

0
ηβ̇

Fz

ac
dr

)
dψ = 1

2π

∫ 2π

0
β̇

(∫ 1

0
η

Fz

ac
dr

)
dψ

= 1
2π

∫ 2π

0

1
γ
β̇
(
β̈ + ν2β

)
dψ

= 1
2π

∫ 2π

0

1
2γ

d
dψ

(
β̇2 + ν2β2) dψ

= 0 (6.104)
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Figure 6.13. Longitudinal forces acting on the helicopter.

since the energy of the out-of-plane motion (β̇2 + ν2β2) is periodic. This result is
for an arbitrary flapping mode shape and frequency and hence applies to all rotors.
The same result is obtained when more than one mode is used to represent the
out-of-plane blade deflection. Thus

CQz + μCHz =
∫ 1

0
σλF̂zdr =

∫
λ dCT (6.105)

The rotor power can be written

CP = CQ = (
CQz + μCHz

)− μCH + (CQx + μCHx
)

=
∫
λ dCT − μCH + (CQx + μCHx

)
=
∫
λi dCTi +

(
CQx + μCHx +

∫
λi dCTo

)
+ μzCT − μCH (6.106)

where the inflow ratio λ = μ tan i + λi = μz + λi has been substituted in the last
step. From equation 6.96, dCTi = 1

2σUuT c�dr and dCTo = − 1
2σUuPcddr. Figure 6.13

shows the rotor velocity V , disk incidence angle i, and the rotor forces T and H
relative to the reference plane. The rotor wind-axis lift L (perpendicular to V) and
drag X (parallel to V , positive aft) are

L = T cos i + H sin i = (
Tμ+ Hμz

)
/

√
μ2 + μ2

z (6.107)

X = H cos i − T sin i = (
Hμ− Tμz

)
/

√
μ2 + μ2

z (6.108)

which implies i = tan−1(H/T )− tan−1(X/L). From equation 6.108,

μzCT − μCH = −
√
μ2 + μ2

zCX = −(V/�R)CX (6.109)

The product of the propulsive force −X and the rotor speed V is the propulsive
power, which is the sum of parasite and climb power: Pp + Pc = −XV . Thus

CP =
∫
λi dCTi +

(
CQx + μCHx +

∫
λi dCTo

)
− (V/�R)CX

= CPi + CPo − (V/�R)CX (6.110)
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or

P = Pi + Po − VX (6.111)

introducing the induced power CPi = ∫
λidCTi and profile power CPo. This result is

applicable to all rotors, lifting or propelling, in hover or axial or edgewise flight. In
terms of isolated rotor performance, separating parasite power and climb power is
not possible.

To identify the contributions to the rotor drag force X , consider force equilib-
rium for the helicopter in steady flight (Figure 6.13). The rotor thrust T and drag H
are defined relative to the reference plane used. The helicopter drag D is directed
opposite to the free stream velocity V . The remaining force on the helicopter is
the weight W , which is vertical. Auxiliary propulsion or lifting devices on the heli-
copter can be included by subtracting their forces from W and D. The helicopter
flight path angle θFP gives a climb speed Vc = V sin θFP (and λc = Vc/�R). For small
angles W = L, and longitudinal force equilibrium gives D + H = T (i − θFP). The
disk incidence is then

i = θFP + D
W

+ CH

CT
(6.112)

and

μz = μ tan i ∼= μi = λc + μD
W

+ μCH

CT
(6.113)

Since the in-plane forces on the rotor are small when measured in tip-path-plane
axes, the tip-path-plane incidence iTPP is nearly the sum of the climb angle θFP

and the tilt of the rotor thrust vector needed to provide a propulsive force equal
to the helicopter drag. A derivation valid for large angles is given in section 6.21.
Longitudinal force equilibrium in the direction of the velocity gives

−X = D + W sin θFP = D + W
Vc

V
(6.114)

(without small angle assumptions). So Pp + Pc = −XV = DV + WVc defines the
parasite power and climb power.

Substituting for the rotor drag force, the power is

CP =
∫
λi dCTi +

(
CQx + μCHx +

∫
λi dCTo

)
+ DV
ρA(�R)3

+ VcW
ρA(�R)3

= CPi + CPo + CPp + CPc (6.115)

CPi is the rotor induced power, which is required to produce the thrust; CPo is the
rotor profile power, required to turn the rotor in a viscous fluid; Pp = DV is the rotor
parasite power, required to overcome the drag of the helicopter; and Pc = WVc is
the rotor climb power, required to increase the gravitational potential energy. This
is the energy balance expression for the helicopter performance in forward flight,
relating the power required to all the sources of energy loss. The energy balance
expression is independent of the reference plane used.

The rotor induced power is CPi = ∫
λidCTi, where dCTi is the c� terms in dCT =

σ F̂zdr (and an average over the azimuth is required as well). With uniform inflow this
is simply CPi = λiCT . For edgewise forward flight above about μ = 0.1, λi

∼= κCT/2μ
is a good approximation; hence CPi =∼= κC2

T/2μ. The empirical factor κ accounts for
tip loss, nonuniform inflow, and other losses.
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The profile power is

CPo = CQx + μCHx +
∫
λi dCTo

=
∫ 1

0

σcd

2

(
r
U 3

uT
+ μ sinψ

U3

uT
− λiUuP

)
dr +

∫ 1

0
σ F̂roμ cosψ dr

∼=
∫ 1

0

σcd

2
U 3dr (6.116)

where U2 = u2
T + u2

P. This result neglects reverse flow, yawed flow, and radial
drag (see section 6.23). The λiUuP term is small compared to U 3 and is absent
if CPi = ∫

λidCT is used for the induced power. Equation 6.116 can be written
CPo = ∫ 1

0 (σ/c)DU dr, where DU is the power absorbed by the blade section. In
terms of the profile (cd) contributions,

CPo = CQo + μCHo − μzCTo +
∫
σcd

2
UuP(ηβ̇)dr (6.117)

Assuming constant chord, a mean value for the drag coefficient, and low inflow
edgewise flight so U3 ∼= u3

T , we obtain

CPo = σcdo

2

∫ 1

0
u3

T dr = σcdo

2

∫ 1

0

(
r3 + 3

2
rμ2

)
dr = σcdo

8

(
1 + 3μ2) (6.118)

which could also have been obtained using CQo = (σcdo/8)(1 + μ2) and CHo =
(σcdo/4)μ from section 6.3. Two-thirds of the increase of the profile power with
speed is thus due to CHo. When reverse flow and radial drag effects are included, a
further increase of CPo with speed is found. The simple expression

CPo = σcdo

8

(
1 + 4.65μ2) (6.119)

can be used for low advance ratio. Section 6.23 gives better approximations for the
speed dependence of the profile power.

The parasite power is CPp = DV/ρA(�R)3 ∼= μ(D/W )CT . If the helicopter drag
is written in terms of an equivalent area f , so D = 1

2ρV 2 f , then

CPp = 1
2

V 3 f
(�R)3A

∼= 1
2
μ3 f

A
(6.120)

or P = DV = 1
2ρV 3 f . The climb power is Pc = VcW , or CPc

∼= λcCT .
In summary, the helicopter rotor power in edgewise forward flight can be esti-

mated from the individual sources of energy loss:

CP = CPi + CPo + CPp + CPc

∼= κC2
T

2μ
+ σcdo

8

(
1 + 4.65μ2)+ 1

2
μ3 f

A
+ λcCT (6.121)

which gives the power required as a function of gross weight and speed. The per-
formance estimate can be improved by using a nonuniform induced velocity distri-
bution; by considering the actual drag coefficient of the rotor blade, which requires
the angle-of-attack distribution over the disk; and by refining the helicopter drag
representation.
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Figure 6.14. Rotor blade flapping moments.

Numerical calculations of the helicopter performance generally use the force
balance method, obtaining the power from the rotor torque by CP = ∫ 1

0 σ F̂xr dr.
The energy breakdown of the power follows from the definitions of induced power,
CPi = ∫

λidCT and the propulsive power (sum of parasite and climb power), Pp +
Pc = −XV ; then the profile power is CPo = CP − (CPi + CPp + CPc).

6.5 Rotor Flapping Motion

To complete the solution for the rotor behavior in forward flight, the harmonics of
the blade flapping motion are required, particularly the coning and tip-path-plane tilt
angles (β0, β1c, and β1s). The angle of the tip-path plane relative to the no-feathering
plane is derived in this section. From the tip-path-plane orientation (established by
equilibrium of forces on the helicopter) the no-feathering-plane orientation can be
found, and hence the cyclic pitch control required to fly the helicopter in the given
operating condition. The blade flapping motion is determined by equilibrium of
inertial and aerodynamic moments about the flap hinge. To introduce the analysis of
the flapping motion, the simplest model is used: a rigid articulated rotor blade with
no flap-hinge offset or spring restraint.

Consider equilibrium of the inertial and aerodynamic moments about the flap-
ping hinge (Figure 6.14). The out-of-plane deflection is z = βr for rigid motion with
no hinge offset. Acting on a mass element mdr (m is the blade mass per unit length)
at radial station r are the following section forces:

i) an inertial force mz̈ = mrβ̈ opposing the flap motion, with moment arm r about
the flap hinge

ii) a centrifugal force m�2r directed radially outward, with moment arm z = rβ
iii) an aerodynamic force Fz normal to the blade, with moment arm r

Recall that for small angles Fz is just the section lift L. The centrifugal force is
the influence of the blade rotation. Since the centrifugal force always acts radially
outward in a plane normal to the rotation axis, it acts as a spring force opposing the
blade flap motion.

The moments about the flap hinge are given by integrals over the span of
the section forces times their corresponding moment arms. Since there is no
flap-hinge spring, the sum of the moments must be zero. Thus the equation of
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motion for the flap motion is∫ R

0
mrβ̈r dr +

∫ R

0
m�2r(rβ)dr −

∫ R

0
Fzr dr = 0 (6.122)

or (∫ R

0
r2m dr

) (
β̈ +�2β

) =
∫ R

0
rFzdr (6.123)

Now define the moment of inertia about the flap hinge, Ib = ∫ R
0 r2m dr, and use

dimensionless quantities based on ρ, �, and R. Then

β̈ + β = 1
Ib

∫ 1

0
rFzdr (6.124)

The dimensionless time variable is the rotor azimuth, ψ = �t. Next define the blade
Lock number γ :

γ = ρacR4

Ib
(6.125)

The Lock number is a dimensionless parameter representing the ratio of aerody-
namic forces to inertial forces on the blade. Typically γ = 8 to 10 for articulated
rotors and γ = 5 to 7 for hingeless rotors. Note that γ contains the sole influence of
the air density on the flap motion. Assuming a constant chord and introducing the
Lock number, the flapping equation becomes

β̈ + β = γ
∫ 1

0
r

Fz

ac
dr = γMF (6.126)

The left-hand side is a mass-spring system with a natural frequency of l/rev (�
dimensionally) due to the centrifugal spring. The right-hand side is the aerodynamic
forcing moment. So 1/rev aerodynamic forces excite the blade flap motion at its
resonant frequency. The amplitude of a system forced at resonance is determined
by its damping alone, which in this case comes from the aerodynamic forces. The
phase of the 1/rev response is exactly a 90° lag, regardless of the magnitude of the
damping.

The aerodynamic force normal to the blade is Fz/ac = L/ac = 1
2 u2

Tα = 1
2 (u

2
T θ −

uPuT ). The aerodynamic flap moment is therefore

MF =
∫ 1

0
r

Fz

ac
dr =

∫ 1

0
r

1
2

[(
r + μ sinψ

)2
θ − (λ+ rβ̇ + μβ cosψ

)(
r + μ sinψ

)]
dr

(6.127)
Assuming uniform inflow and linear twist, the integration over the span can be
performed:

MF = Mθ θcon + Mtwθtw + Mλλ+ Mβ̇ β̇ + Mββ (6.128)

= θcon

(
1
8

+ μ

3
sinψ + μ2

4
sin2 ψ

)
+ θtw

(
1
10

+ μ

4
sinψ + μ2

6
sin2 ψ

)
− λ

(
1
6

+ μ

4
sinψ

)
− β̇

(
1
8

+ μ

6
sinψ

)
− βμ cosψ

(
1
6

+ μ

4
sinψ

)
(6.129)
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where θcon = θ0 + θ1c cosψ + θ1s sinψ is the collective and cyclic pitch control. The
flapping equation of motion is thus

β̈ + β = γ (Mθ θcon + Mtwθtw + Mλλ+ Mβ̇ β̇ + Mββ
)

(6.130)

The aerodynamic coefficients are the flap moments due to angle-of-attack changes
produced by the blade pitch, twist, inflow, flapping velocity, and flapping displace-
ments, respectively. A flapping velocity produces an angle-of-attack perturbation
that changes the blade lift to oppose the motion; hence the blade has aerodynamic
damping given by the coefficient Mβ̇ .

The steady-state solution for the blade flapping is required, namely the harmon-
ics of the periodic motion. Only the mean and first harmonics are derived for now.
Without higher harmonic control (2/rev and above), the higher harmonics of flap-
ping are small. The solution procedure involves operating on the flapping equations
with

1
2π

∫ 2π

0
(. . .)dψ,

1
π

∫ 2π

0
(. . .) cosψ dψ,

1
π

∫ 2π

0
(. . .) sinψ dψ (6.131)

By using the definitions of the Fourier coefficients expressed in terms of the integrals
of β(ψ) and θ (ψ), linear algebraic equations are obtained for the harmonics of β.
This operational method evaluates the mean and 1/rev flap moments; the latter cor-
respond to pitch and roll moments on the rotor disk (see section 6.3). An alternative
approach is the substitutional method discussed in section 6.1.2. For the inertial and
centrifugal terms we obtain

1
2π

∫ 2π

0
(β̈ + β)dψ = 1

2π

∫ 2π

0
β dψ = β0 (6.132)

1
π

∫ 2π

0
(β̈ + β) cosψ dψ = 1

π

∫ 2π

0
(−β cosψ + β cosψ)dψ = 0 (6.133)

1
π

∫ 2π

0
(β̈ + β) sinψ dψ = 1

π

∫ 2π

0
(−β sinψ + β sinψ)dψ = 0 (6.134)

where the β̈ cosψ and β̈ sinψ terms have been integrated by parts twice. The cen-
trifugal force gives an average flap moment when the rotor is coned by β0. The
1/rev components of the inertial and centrifugal forces exactly cancel. So with no
flap spring or hinge offset, the 1/rev components of the aerodynamic flap moments
must also be zero. The requirement of zero aerodynamic pitch and roll moment
on the rotor disk determines the tip-path-plane tilt angles β1c and β1s. The inertial
and spring terms exactly cancel because the 1/rev aerodynamic forces are forcing
the flap motion at its resonant frequency. Thus with no aerodynamic forces, there
would be no means of controlling the rotor, because the tip-path plane would be in
equilibrium for any orientation.

Applying the operators to the flapping equation of motion, using the aerody-
namic coefficients given in equation 6.129, and neglecting second and higher har-
monics of flap and pitch, we obtain

β0 = γ
[
θ0

8

(
1 + μ2)+ θtw

10

(
1 + 5

6
μ2
)

+ μ

6
θ1s − λ

6

]
(6.135)
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0 = 1
8
θ1c

(
1 + 1

2
μ2
)

− 1
8
β1s − μ

6
β0 − μ2

16
β1s (6.136)

0 = 1
8
θ1s

(
1 + 3

2
μ2
)

+ μ

3
θ0 + μ

4
θtw − μ

4
λ+ 1

8
β1c − μ2

16
β1c (6.137)

With λ− μθ1s = λNFP, the solution for the rotor flapping motion is

β0 = γ
[
θ.8

8

(
1 + μ2)− μ2

60
θtw − λNFP

6

]
(6.138)

β1s − θ1c = − 4
3μ

1 + 1
2μ

2
β0 (6.139)

β1c + θ1s = − 8
3μ

1 − 1
2μ

2

[
θ.75 − 3

4
λNFP

]
(6.140)

Alternatively, in terms of λTPP = λNFP + μ(β1c + θ1s),

β0 = γ
[
θ.8

8

(
1 + μ2)− μ2

60
θtw − λTPP

6
+ μ

6
(β1c + θ1s)

]
(6.141)

β1s − θ1c = − 4
3μ

1 + 1
2μ

2
β0 (6.142)

β1c + θ1s = − 8
3μ

1 + 3
2μ

2

[
θ.75 − 3

4
λTPP

]
(6.143)

Although the expression for β0 is simpler using λNFP, the expressions using λTPP are
more appropriate since the tip-path-plane orientation has a direct physical meaning:
because rotor in-plane forces are small relative to the tip-path plane, the tip-path-
plane orientation specifies the thrust vector orientation, which is determined by
helicopter longitudinal force equilibrium. The singularity of the (β1c + θ1s) solution
atμ = √

2 also disappears when the tip-path-plane inflow is used. In any case,μ = √
2

is beyond the range of validity of these expressions; including reverse flow removes
the singularity even for the expression in terms of λNFP. The coning angle, roughly
β0

∼= 3
4γ (CT/σa), is proportional to the blade loading. The first harmonics β1c and

β1s are proportional to the advance ratio μ and to CT/σ . Typically β0 and β1c have
values of a few degrees, whereas the lateral flapping β1s is somewhat smaller.

For hover the flapping solution reduces to

β0 = γ
(
θ.8

8
− λ

6

)
(6.144)

β1s − θ1c = 0 (6.145)

β1c + θ1s = 0 (6.146)

Recall that (β1c + θ1s) and (β1s − θ1c) give the orientation of the tip-path plane
relative to the no-feathering plane. The hover solution for the flap motion is thus
that the tip-path plane and no-feathering plane are always parallel. The flap motion
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in hover can be obtained as follows. The aerodynamic coefficients are constant when
μ = 0, and Mβ = 0. There are no net 1/rev flap moments due to the inertial forces,
the inflow, or the twist. Consequently, the equation of motion reduces to

Mθ θ + Mβ̇ β̇ = 0 (6.147)

which has components Mθ θ1c + Mβ̇β1s = 0 and Mθ θ1s − Mβ̇β1c = 0. Hence the solu-
tion is β1s/θ1c = −β1c/θ1s = −Mθ/Mβ̇ . As expected, the phase of the response of
flapping to cyclic pitch is exactly 90°, with the magnitude determined by the ratio of
the control moment to the damping. For the present simple model, Mθ = −Mβ̇ = 1

8 ,
so −Mθ /Mβ̇ = 1, and the tip-path plane is always parallel to the no-feathering plane.
In forward flight, the rotor operating state uniquely determines the relative orienta-
tion of the tip-path plane and no-feathering plane, because (β1c + θ1s) and (β1s − θ1c)

are obtained as functions of the helicopter speed and loading alone. As the no-
feathering plane is tilted in response to pilot control inputs, the rotor tip-path plane
and hence the thrust vector are tilted. By this means the pilot can control the attitude
of the helicopter, using cyclic pitch (swashplate tilt) to produce moments about the
helicopter center-of-gravity by tilting the thrust vector.

Let us examine further the role of inertial and aerodynamic forces in the rotor
flap response. For the case of no aerodynamic forces, the rotor without flap hinge
offset or restraint has the equation of motion β̈ + β = 0. The solution of this equation
isβ = β1c cosψ + β1s sinψ , whereβ1c andβ1s are arbitrary constants. The orientation
of the rotor is thus arbitrary, but fixed in space since in the absence of aerodynamic
forces or a hinge offset there is no means by which blade pitch or shaft tilt can produce
a moment on the disk. The rotor behaves as a gyro, maintaining its orientation
relative to inertial space in the absence of external moments. The rotor in air has the
capability of producing an aerodynamic flap moment due to blade pitch (Mθ), which
can be used to precess the rotor and hence control its orientation. If Mθ were the
only moment, the rotor would respond to cyclic with a constant rate of tilt. However,
the rotor also has aerodynamic flap damping moments (Mβ̇). A tilt of the tip-path
plane by β1c or β1s produces a flapping velocity in the rotating frame. Consequently,
a moment due to control-plane tilt precesses the rotor, tilting the tip-path plane until
the flapping produces through Mβ̇ a moment just sufficient to counter the control
moment on the disk. Because the moments due to θ and β̇ balance, the rotor has
achieved a new equilibrium position.

Thus there are two ways to view the rotor flap dynamics. The rotor blade can be
considered a system with natural frequency of 1/rev, so that aerodynamic moments
due to cyclic pitch excite the system at resonance. The response has a phase lag of
exactly 90° (one quarter of a cycle, which at 1/rev means an azimuth angle of 90°
also) and a magnitude determined by the damping. Alternatively, the rotor can be
considered a gyro, with the flap hinges at the center of rotation forming the gyro
gimbal. A control moment on the disk due to cyclic pitch precesses the rotor with a
90° phase lag characteristic of a gyro, until the flap damping produces a moment to
stop the precession.

The rotor coning is proportional to the Lock number γ because the coning is
determined by the balance of the centrifugal and aerodynamic flap moments. The
coning is essentially proportional to the rotor thrust coefficient, the difference arising
because of the extra factor r in the integrand to obtain the flap moment rather than
the total blade lift force. Because the rotor thrust produces a flap moment, the rotor
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cones upward until a centrifugal flap moment sufficient to cancel the aerodynamic
moment is generated.

Since the longitudinal flap motion (β1c + θ1s) is negative, in forward flight the tip-
path plane tilts backward relative to the no-feathering plane. The lateral asymmetry
of the blade velocity uT in forward flight means that for constant pitch (i.e., relative
to the no-feathering plane) the blade has a higher lift on the advancing side than on
the retreating side of the disk. The result is a lateral flap moment on the rotor disk.
In the rotating frame, where this flap moment is at the resonant frequency 1/rev, the
blade responds with a 90° phase lag, the maximum flap displacement occurring on
the front of the disk. The tip-path plane therefore tilts longitudinally (rearward) in
response to the lateral moment. Now β1c gives a flapping velocity β̇ = −β1c sinψ ,
which has maximum amplitude at the sides of the disk. Through the flap damping, the
tip-path-plane tilt then produces a lateral flap moment. The rotor flaps back until
this lateral moment due to the flap damping is just enough to counter the lateral
moment due to the aerodynamic asymmetry. With this balance of the aerodynamic
forces the new equilibrium orientation is achieved.

Since the lateral flap motion (β1s − θ1c) is negative, in forward flight the tip-path
plane tilts toward the advancing side relative to the no-feathering plane. When the
blade is at the coning angle β0 there is a component of the forward velocity normal to
the blade surface: β0μ cosψ (see Figure 6.12). The angle-of-attack due to this normal
velocity term is maximum positive at the front of the disk and maximum negative
at the rear of the disk, hence producing a longitudinal aerodynamic moment on the
rotor. The blade responds to this 1/rev aerodynamic forcing in the rotating frame
with a maximum flap amplitude 90° after the maximum moment; that is, with a
lateral (to the advancing side) tilt of the tip-path plane. Now β1s gives a flapping
velocity β̇ = β1s cosψ , which through the flap damping also produces a longitudinal
moment. The rotor flaps to the advancing side until the longitudinal moment due to
the flap damping balances the longitudinal moment due to the coning, and the rotor
is in equilibrium with this orientation of the tip-path plane.

The tip-path-plane tilt is roughly proportional to the advance ratio μ. To keep
the thrust vector orientation fixed as the speed increases, the no-feathering plane
must be tilted forward and toward the retreating side to counter the increased
tip-path-plane tilt. Thus as speed increases, a forward cyclic stick displacement is
required in addition to the forward displacement to increase the propulsive force.
An increasing cyclic stick displacement to the retreating side is also required. The
control required to trim the helicopter is determined by helicopter force and moment
equilibrium. As found in section 6.4, longitudinal force equilibrium determines the
orientation of the tip-path plane relative to the horizontal (iTPP, and also λTPP). The
equilibrium of pitching moments on the helicopter determines the orientation of the
hub plane relative to the horizontal (iHP) as a function of the helicopter longitudinal
center-of-gravity position and the aerodynamic forces on the aircraft (see section
6.21). The combination then determines the longitudinal flapping in the hub plane:
β1cHP = iTPP − iHP. Rotor flapping equilibrium determines the orientation of the tip-
path plane relative to the no-feathering plane, and from this the longitudinal cyclic
control θ1sHP can be obtained. Similarly, side force and roll moment equilibrium on
the helicopter give the lateral flapping β1sHP and therefore the lateral cyclic control
θ1cHP.

The flapping solution has not been obtained in a form that can be directly used
to calculate the cyclic required from the tip-path-plane tilt. The CT and β1c equations
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must be solved simultaneously for the collective pitch and longitudinal cyclic. Then
the coning angle can be evaluated and the lateral cyclic obtained from β0. The result
is

θ.75 = 1
�

[(
1 + 3

2
μ2
)(

6CT

σa
+ 3

8
μ2θtw

)
+ 3

2
λTPP

(
1 − 1

2
μ2
)]

(6.148)

θ1s = −β1c − 1
�

[
8
3
μ

(
6CT

σa
+ 3

8
μ2θtw

)
+ 2μλTPP

(
1 − 3

2
μ2
)]

(6.149)

β0 = γ /8
�

[(
1 − 19

18
μ2 + 3

2
μ4
)

6CT

σa
+
(

1
20

+ 29
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μ2 − 1
5
μ4 + 3

8
μ6
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θtw

+λTPP

(
1
6

− 7
12
μ2 + 1

4
μ4
)]

(6.150)

θ1c = β1s +
4
3μ

1 + 1
2μ

2
β0 (6.151)

where � = 1 − μ2 + 9
4μ

4. Using these equations, the collective and cyclic control
can be obtained from the thrust, tip-path-plane incidence, and flapping relative to
the hub plane.

6.6 Linear Inflow Variation

As a first approximation to the effects of nonuniform inflow in forward flight, consider
an induced velocity of the form

λi = λ0
(
1 + κxr cosψ + κyr sinψ

)
(6.152)

This is a linear variation over the rotor disk, with λ0 being the mean induced velocity.
The coefficients κx and κy are functions ofμ, since they must be zero in hover. For high
speed, κx is around 1 and κy is somewhat smaller in magnitude and negative. Section
5.2.2 discussed a number of estimates for κx and κy. This linear inflow variation can
be considered the first term in an expansion of the general nonuniform induced
velocity λi(r, ψ). The lowest order terms are important for the rotor performance
and flapping, whereas the higher order terms (which can be large in certain flight
conditions) are important for the blade loads and vibration. So far in this chapter a
uniform inflow distribution has been used. Now additional contributions to the rotor
forces and blade motion are found, produced by the inflow increment

�λ = λ0
(
κxr cosψ + κyr sinψ

) = λxr cosψ + λyr sinψ (6.153)

Here λx gives the longitudinal induced velocity variation and λx the lateral variation.
The rotor thrust increment is

�CT = σa
2

∫ 1

0

(−�λ uT
)
dr = σa

2

∫ 1

0

(
−1

2
λy

)
rμdr = σa

2

(
−1

4
λyμ

)
(6.154)
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Hence

CT = σa
2

[
θ.75

3

(
1 + 3

2
μ2
)

− θtw

8
μ2 − 1

2

(
λNFP + μ

2
λy

)]
(6.155)

where λNFP is the mean inflow. Thus there is a change of order μ2 in the thrust for a
given collective. The increments in the rotor drag and side forces are

�CHTPP = σa
2

[
λx

(
μ

16
θ1c + 1

6
β0

)
+λy

(
1
6
θ.75 + 3μ

16
θ1s − 1

2
λTPP

)]
(6.156)

�CYTPP = σa
2

[
−λx

(
1
6
θ.75 + μ

16
θ1s − 1

2
λTPP

)
+λy

(
μ

16
θ1c − 1

6
β0

)]
(6.157)

The flap moment increment is

�MF =
∫ 1

0

(−�λ)1
2

(
r2 + rμ sinψ

)
dr = −(λx cosψ + λy sinψ

) (1
8

+ μ

6
sinψ

)
(6.158)

The flap equations become

β0 = γ
[
θ.8

8

(
1 + μ2)− μ2

60
θtw − 1

6

(
λNFP + μ

2
λy

)]
(6.159)

0 = 1
8
(θ1c − β1s)

(
1 + 1

2
μ2
)

− μ

6
β0 − 1

8
λx (6.160)

0 = 1
8
(θ1s + β1s)

(
1 − 1

2
μ2
)

+ μ

3
θ.75 − μ

4
λNFP − 1

8
λy (6.161)

with solutions for the tip-path-plane tilt as follows:

β1s − θ1c = 1

1 + 1
2μ

2

[
−4

3
μβ0 − λx

]
(6.162)

β1c + θ1s = 1

1 − 1
2μ

2

[
−8

3
μ

(
θ.75 − 3

4
λNFP

)
+ λy

]
(6.163)

There is an order μ2 change in the coning angle, as for the thrust, because the lateral
inflow λy decreases (for λy < 0) the mean value of λuT ; this effect is small. The inflow
variation has a significant influence on the tip-path-plane tilt. There are longitudinal
and lateral angle-of-attack changes on the disk due, respectively, to λx and λy, which
produce lateral and longitudinal flapping. The longitudinal flapping (and hence the
longitudinal cyclic trim) change is small but not negligible, whereas the change in
the lateral flapping and cyclic is large. Thus the rotor cyclic flapping and cyclic pitch
trim are sensitive to nonuniform inflow.
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Nonuniform inflow gives an increment in the rotor induced power:

�CPi =
∫
�λ dCT = σa

∫ 1

0
�λ

Fz

ac
dr (6.164)

Here we shall consider an arbitrary induced velocity distribution λ(r, ψ). To evaluate
�CPi, expand the inflow as a Fourier series in azimuth and radially in terms of the
orthogonal blade bending modes:

�λ =
∞∑

n=1

∞∑
i=1

(
λi

nc cos nψ + λi
ns sin nψ

)
ηi(r) (6.165)

The functions ηi are the mode shapes of the out-of-plane bending of the blade
with corresponding natural frequencies νi (a general blade is considered, but for
an articulated rotor with no hinge offset η1 = r and ν1 = 1). In section 16.3.2 the
differential equation for the blade bending modes is derived:

Îi
(
q̈i + ν2

i qi
) = γ

∫ 1

0
ηi

Fz

ac
dr (6.166)

where Îi is the generalized mass of the i-th mode. Then the integration over the span
and azimuth in �CPi can be performed, giving

�CPi = σa
∞∑

n=1

∞∑
i=1

1
2π

∫ 2π

0

(
λi

nc cos nψ + λi
ns sin nψ

) ∫ 1

0
ηi

Fz

ac
dr dψ

= σa
∞∑

n=1

∞∑
i=1

1
2π

∫ 2π

0

(
λi

nc cos nψ + λi
ns sin nψ

) Îi

γ

(
q̈i + ν2

i qi
)

dψ

= σa
2

∞∑
n=1

∞∑
i=1

Îi(ν
2
i − n2)

γ

(
λi

ncqi
nc + λi

nsq
i
ns

)
(6.167)

where qi
nc and qi

ns are the harmonics of the steady-state response of the i-th bending
mode. IntegratingCPi = ∫

λidCT numerically is simpler. For a linear inflow variation,
only the n = 1 terms are present. Considering in addition just the first mode of an
articulated blade with no hinge offset (so v1 = 1) gives �CPi = 0.

6.7 Higher Harmonic Flapping Motion

Consider next the solution of the flapping equation of motion for the second har-
monics β2c and β2s. The higher harmonics of the blade motion are strongly influenced
by nonuniform inflow and elastic blade bending, but the present solution serves as a
guide to the basic behavior of the higher harmonics. Assuming that β2c and β2s are
much smaller than β1c and β1s, the previous results for the first harmonic flapping
are not changed. The algebraic equations for β2c and β2s are obtained by operating
on the flap differential equation with

1
π

∫ 2π

0
(. . .) cos 2ψ dψ,

1
π

∫ 2π

0
(. . .) sin 2ψ dψ (6.168)

By neglecting the influence of the second harmonics on the mean and first harmonics,
it is only necessary to solve these two additional equations for β2c and β2s rather than
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five simultaneous equations for all five coefficients. The inertial and centrifugal terms
give

1
π

∫ 2π

0
(β̈ + β) cos 2ψ dψ = −3β2c (6.169)

1
π

∫ 2π

0
(β̈ + β) sin 2ψ dψ = −3β2s (6.170)

Since the 2/rev flap moments are acting above the system resonant frequency, the
response is dominated by the blade inertia. In general the equations for βnc and
βns have the terms (1 − n2)βnc and (1 − n2)βns from the inertial and centrifugal
forces. As a result, the higher harmonic flapping in response to the aerodynamic flap
moments decreases rapidly with harmonic order, roughly as n−2. When the blade
bending modes with natural frequencies above 1/rev are considered, there is again a
possibility of large-amplitude motion due to excitation near resonance.

With the aerodynamic terms as well, the equations of motion for β2c and β2s are

−3β2c = γ
(

−μ
2

8
θ0 − μ2

12
θtw − μ

6
θ1s − 1

4
β2s − μ

6
β1c + μ

12
λy

)
(6.171)

−3β2s = γ
(
μ

6
θ1c + 1

4
β2c − μ

6
β1s − μ2

8
β0 − μ

12
λx

)
(6.172)

A linear inflow variation has been included. The solution for the second harmonic
flapping is(

β2c

β2s

)
= 6γ

144 + γ 2

[
1 γ

12

− γ

12 1

](
μ2θ.67 + 4

3μ(β1c + θ1s)− 2
3μλy

μ2β0 + 4
3μ(β1s − θ1c)+ 2

3μλx

)
(6.173)

Note that β2c and β2s are smaller than the first harmonic flapping by at least order μ.
Typically the second harmonics have values of a few tenths of a degree. In general
the solution for βnc and βns is of order μn/n2 (with uniform inflow).

The primary excitation of the higher harmonics of blade motion is provided by
nonuniform inflow, which has not been considered except for the simple linear vari-
ation. With nonuniform inflow the higher harmonic blade motion has a significantly
larger amplitude than that found here. In addition, the blade bending modes must
also be included for a consistent and accurate calculation of the blade response at
higher frequencies. The higher harmonic motion usually has little influence on the
rotor performance and control, but is important for the helicopter vibration and
blade loads.

Let us examine the response to higher harmonic pitch control. Consider a hov-
ering rotor only, so that there is no inter-harmonic coupling of the pitch control and
flap response as occurs in forward flight because of the periodic aerodynamics of
the blade. Then n/rev blade pitch gives just n/rev flapping. The flapping equation of
motion in hover is

β̈ + β = γ

8

(−β̇ + θ) (6.174)
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Figure 6.15. Rotor blade section aerodynamics in normal and reverse flow.

For an input of θ = θ cos[n(ψ + ψ0)], the flap response is β = β cos[n(ψ + ψ0)−
�ψ]. The equation of motion gives the magnitude and phase of the response:

β/θ = γ /8√
(nγ /8)2 + (n2 − 1)2

(6.175)

�ψ = 90° + tan−1 n2 − 1
nγ /8

(6.176)

For the first harmonic, β/θ = 1 and �ψ = 90° as expected. For large harmonic
numbers, the amplitude decreases as β/θ ∼= γ /8n2, since the blade inertia dominates
the response, and the phase lag approaches �ψ = 180°. The effectiveness of 1/rev
cyclic pitch in controlling the rotor lies in the fact that the flap motion is being excited
at resonance.

6.8 Reverse Flow

The reverse flow region is a circle of diameter μ on the retreating side of the rotor
disc (Figure 6.2). For low advance ratio the influence of reverse flow is small, since
reverse flow is confined to a small area where the dynamic pressure is low. Generally,
reverse flow effects can be neglected up to about μ = 0.5. At higher advance ratios,
the reverse flow region occupies a large portion of the disk and must be accounted
for in calculating the aerodynamic forces on the blade. An elementary model for the
blade aerodynamics in the reverse flow region is developed here. Near the reverse
flow boundary at least, there is significant separated and radial flow, which requires
a better model.

Figure 6.15 compares the section aerodynamics in the normal and reverse flow
regions. Section 6.2 gives the normal aerodynamic force for small angles and neglect-
ing stall:

Fz

ac
∼= L

ac
∼= 1

2
u2

Tα = 1
2

uT
(
uTθ − uP

)
(6.177)

This result also neglects reverse flow. The positive directions of the various quantities
are as follows: Fz and L upward, θ nose up, uP downward, and uT from the leading
edge to the trailing edge. Figure 6.15 shows that in the reverse flow region the
angle-of-attack is

α = θ + φ = θ + uP

|uT | = θ − uP

uT
(6.178)
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just as in normal flow. However, in reverse flow a positive α gives a negative (down-
ward) lift:

L
ac

= −1
2

u2
Tα = 1

2
|uT |uTα (6.179)

Thus an expression valid in both reverse and normal flow is

Fz

ac
∼= L

ac
∼= 1

2
|uT |uTα = 1

2
|uT |(uTθ − uP

)
(6.180)

This convention is appropriate with the small angle assumption, specifically the
angle-of-attack α small in both normal and reverse flow. A different convention is
required when airfoil tables are used, because then reverse flow is associated with
an angle-of-attack near 180°.

The inertial and centrifugal flap moments are unaffected by reverse flow, so the
only change to the flap dynamics is in the aerodynamic moment:

MF =
∫ 1

0
r

Fz

ac
dr =

∫ 1

0

1
2
|uT |(uT θ − uP

)
r dr

= Mθ θcon + Mtwθtw + Mλλ+ Mβ̇ β̇ + Mββ (6.181)

The reverse flow introduces a change in sign, so that the aerodynamic coefficients
now require integrations of the form

∫ 1
0 sign(uT ) f (r, ψ)dr. The evaluation of this

integral depends on the azimuth angle. Assuming μ ≤ 1, it is only necessary to
distinguish between the advancing and retreating sides of the disk:∫ 1

0
sign(uT ) f (r, ψ)dr =

{∫ 1
0 f dr 0° < ψ < 180°∫ 1
0 f dr − 2

∫ −μ sinψ
0 f dr 180° < ψ < 360°

(6.182)

Thus on the advancing side the aerodynamic coefficients are identical to the results
already obtained, whereas on the retreating side a correction for the changed sign
in the reverse flow region is required. If μ > 1, there is also a region extending from
ψ = 270° − cos−1(1/μ) to ψ = 270° + cos−1(1/μ), where the blade is entirely in the
reverse flow region, so that∫ 1

0
sign(uT ) f (r, ψ)dr = −

∫ 1

0
f dr (6.183)

which is just the negative of the expression for the advancing side. Evaluating the
flapping aerodynamic coefficients for μ ≤ 1 gives

Mθ = 1
8

+ μ

3
sinψ + μ2

4
sin2 ψ (6.184)

Mtw = 1
10

+ μ

4
sinψ + μ2

6
sin2 ψ (6.185)

Mλ = −
(

1
6

+ μ

4
sinψ

)
(6.186)

Mβ̇ = −
(

1
8

+ μ

6
sinψ

)
(6.187)

Mβ = −μ cosψ
(

1
6

+ μ

4
sinψ

)
(6.188)
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Figure 6.16. Flap damping and pitch control coefficients.

on the advancing side (equation 6.129) and

Mθ = 1
8

+ μ

3
sinψ + μ2

4
sin2 ψ − μ4

12
sin4 ψ (6.189)

Mtw = 1
10

+ μ

4
sinψ + μ2

6
sin2 ψ + μ5

30
sin5 ψ (6.190)

Mλ = −
(

1
6

+ μ

4
sinψ − μ3

6
sin3 ψ

)
(6.191)

Mβ̇ = −
(

1
8

+ μ

6
sinψ + μ4

12
sin4 ψ

)
(6.192)

Mβ = −μ cosψ
(

1
6

+ μ

4
sinψ − μ3

6
sin3 ψ

)
(6.193)

on the retreating side.
Figure 6.16 shows the flap damping coefficient Mβ̇ and pitch control coefficient

Mθ for several advance ratios. The flap damping is always positive (Mβ̇ < 0). In
hover, the damping is constant at Mβ̇ = −0.125; when μ > 0, the damping is higher



6.8 Reverse Flow 191

on the advancing side and lower on the retreating side. Whenμ > 0.794, the damping
reaches a minimum value of Mβ̇ = −0.0258 on the retreating side, with a local
maximum at ψ = 270°. The pitch control has a value Mθ = 0.125 for hover, and it is
higher on the advancing side and lower on the retreating side in forward flight. When
μ > 0.641, Mθ is negative on the retreating side. The twist coefficient Mtw behaves
like Mθ , whereas the inflow coefficient Mλ and flap spring Mβ/(μ cosψ) are similar
to Mβ̇ . The flap damping is always positive, even when μ > 1, but the aerodynamic
flap spring Mβ is negative on the front of the disk because of the μ cosψ factor.

To solve the flapping equations, the aerodynamic coefficients are expressed as
Fourier series. Because of the symmetry of the flow, half of the harmonics are found
to be zero:

Mθ = M0
θ + M1s

θ sinψ + M2c
θ cos 2ψ + M3s

θ sin 3ψ + . . . (6.194)

and similarly for Mtw, Mβ̇ , Mλ; and

Mβ = M1c
θ cosψ + M2s

θ sin 2ψ + M3c
θ cos 3ψ + . . . (6.195)

For an articulated rotor, the equations for the flap harmonics β0, β1c, and β1s then
become

β0 = γ
[
θ0M0

θ + θtwM0
tw + θ1s

1
2

M1s
θ

+β1c

(
1
2

M1c
β − 1

2
M1s
β̇

)
+ λM0

λ

]
(6.196)

0 = θ1c

(
M0
θ + 1

2
M2c
θ

)
+ β1s

(
M0
β̇

+ 1
2

M2c
β̇

+ 1
2

M2s
β

)
+ β0M1c

β (6.197)

0 = θ0M1s
θ + θtwM1s

tw + θ1s

(
M0
θ − 1

2
M2c
θ

)
+ β1c

(
−M0

β̇
+ 1

2
M2c
β̇

+ 1
2

M2s
β

)
+ λM1s

λ (6.198)

To be consistent, the second harmonics of the flap motion should be considered when
the advance ratio is high enough to require modeling reverse flow. Such a calculation
is best performed numerically. Using λ = λNFP + μθ1s = λTPP − μβ1c, the solution is

β0 = γ
[
θ0M0

θ + θtwM0
tw + θ1s

(
1
2

M1s
θ + μM0

λ

)
+β1c

(
1
2

M1c
β − 1

2
M1s
β̇

)
+ λNFPM0

λ

]
(6.199)

β1s = −β0M1c
β − θ1c

(
M0
θ + 1

2 M2c
θ

)
M0
β̇

+ 1
2 M2c

β̇
+ 1

2 M2s
β

(6.200)

β1c = θ0M1s
θ + θtwM1s

tw + θ1s
(
M0
θ − 1

2 M2c
θ + μM1s

λ

)+ λNFPM1s
λ

M0
β̇

− 1
2 M2c

β̇
− 1

2 M2s
β

(6.201)

= θ0M1s
θ + θtwM1s

tw + θ1s
(
M0
θ − 1

2 M2c
θ

)+ λTPPM1s
λ

M0
β̇

− 1
2 M2c

β̇
− 1

2 M2s
β + μM1s

λ

(6.202)
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Evaluating the required harmonics then gives

β0 = γ
[
θ.8

8

(
1 + μ2 − μ4

8

)
− θtw

60

(
μ2 − 9

8
μ4
)

− λNFP

6

(
1 + 2

3π
μ3
)

− μ4

15π
(β1c + θ1s)

]
(6.203)

β1s − θ1c = − 4
3μ
(
1 + 4

15π μ
3
)

1 + 1
2μ

2 − 1
24μ

4
β0 (6.204)

β1c + θ1s = − 8
3μ

1 − 1
2μ

2 + 7
24μ

4

[
θ.75

(
1 + 4

15π
μ3
)

− 23
75π

θtwμ
3

− 3
4
λNFP

(
1 − 1

4
μ2
)]

(6.205)

= − 8
3μ

1 + 3
2μ

2 − 5
24μ

4

[
θ.75

(
1 + 4

15π
μ3
)

− 23
75π

θtwμ
3

− 3
4
λTPP

(
1 − 1

4
μ2
)]

(6.206)

Thus reverse flow introduces flap motion of order μ4. When μ > 0.5, stall and com-
pressibility must be considered, as well as reverse flow, and other blade degrees of
freedom also become important. For example, the lift acting at the three-quarter
chord in the reverse flow region produces a significant response in the blade elastic
pitch above μ ∼= 0.7, which alters the blade loading. Generally a numerical calcula-
tion of the blade loading and motion is required at high advance ratio in order to
use a consistent model.

The rotor thrust coefficient including the effects of reverse flow is

CT = σa
∫ 1

0

1
2
|uT |(uT θ − uP

)
dr

= σa
2

[
θ.75

3

(
1 + 3

2
μ2 − 4

3π
μ3
)

− θtw

8

(
μ2 − 8

3π
μ3 + 1

4
μ4
)

− λNFP

2

(
1 + 1

2
μ2
)

− 1
8
μ3(β1c + θ1s)

]
(6.207)

Reverse flow primarily introduces terms of higher order in μ. The λμ2 term is the
one effect of reverse flow aerodynamics that is significant even at fairly low advance
ratio.

6.9 Blade Weight Moment

The force of gravity, approximately normal to the helicopter rotor disk, acts on the
blade to produce a weight moment about the flap hinge. The blade weight opposes
the lift force and thereby reduces the coning angle. The gravitational force on a
blade element is mg, directed downward, with a moment arm r about the flap hinge.
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The additional flap moment is thus∫ R

0
mgr dr = g

∫ R

0
rm dr = gSb (6.208)

where Sb = ∫ R
0 rm dr = MbrCG is the first moment about the flap hinge (Mb is the

blade mass, and rCG is the radial location of the center-of-gravity). This flap moment
is added to the equation of motion, dimensionless quantities are used, and the
equation is normalized by dividing by Ib. The result is

β̈ + β = γ
∫ 1

0
r

Fz

ac
dr − Ŝb

g
�2R

(6.209)

where

Ŝb = RSb

Ib
=
∫ 1

0 rm dr∫ 1
0 r2m dr

∼= 3
2

(6.210)

The approximation Ŝb
∼= 3

2 is for a uniform mass distribution. The value of the
dimensionless gravitational constant g/�2R is small, typically around 0.002. Assum-
ing a constant tip speed, it scales with R, whereas for a given radius it is inversely
proportional to the square of the tip speed.

The term Ŝbg is a constant, so it only affects the solution for the coning angle.
The coning is decreased by �β0 = −Ŝb(g/�2R), typically −0.1° to −0.2°, which is
small enough to be neglected for most purposes. The deflection due to the blade
weight can be significant for very large rotors or very low tip speeds.

The dimensionless gravitational constant g/�2R can be viewed as the ratio of
gravitational forces to centrifugal forces on the blade. Its small value implies that the
rotor behavior is dominated by the centrifugal forces, and the blade weight generally
has only a small influence.

6.10 Compressibility

Compressibility of the air influences the rotor performance and motion by its effects
on the blade forces. Of particular importance are the increase in lift-curve slope
with Mach number and the sharp increase in drag and pitching moment above a
certain critical Mach number. When the blade is operating at high, unsteady angle-
of-attack, as on the retreating side with high rotor loading, compressibility effects
are important even at a low Mach number. The primary effect of compressibility on
the rotor performance is a rapid increase in the profile power CPo when the tip Mach
number exceeds the critical Mach number for drag divergence. The critical Mach
number depends on the angle-of-attack and is increased by the three-dimensional
flow at the tip. The larger compressible lift-curve slope has little effect on β1c or
β1s/β0 (which involve only a balance of aerodynamic moments), but significantly
increases the rotor thrust and coning angle at high tip speeds. The only practical
means of accounting for the compressibility effects in detail is to use data for the
airfoil aerodynamic characteristics expressed as a function of Mach number and
angle-of-attack in a numerical calculation of the rotor loads and motion.

The blade normal Mach number in forward flight is

M = uT

cs
= Mtip

(
r + μ sinψ

)
(6.211)
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where Mtip = �R/cs is the Mach number based on the tip speed and cs is the speed
of sound. Write Mr,ψ for the Mach number at radial station r and azimuth angle ψ .
The highest Mach number occurs on the tip of the advancing blade:

Mat = M1,90 = Mtip(1 + μ) (6.212)

for edgewise flight. Mtip is a good parameter to represent the average effects of
compressibility, whereas the advancing tip Mach number Mat = M1,90 is a measure
of the extreme effects. Compressibility limits the maximum speed of the helicopter.
Since Mat = (�R + V )/cs, the critical Mach number of the blade constrains the
forward speed of the helicopter, because the tip speed cannot be decreased too
much without encountering other limits (see section 8.4).

The effect of the increased lift-curve slope on the helicopter loads and flapping
can be estimated by using the Prandtl-Glauert relation for the lift-curve slope a:

a = aincomp√
1 − M2

(6.213)

Because the Mach number varies over the disk, the compressible lift-curve slope
does as well. Thus the Prandtl-Glauert factor 1/

√
1 − M2 should be included in the

integrands, which then cannot be evaluated analytically. Alternatively, an averaged
lift-curve slope can be used for the entire rotor; for example, a slope based on the
mean Mach number at effective radius re:

a = aincomp√
1 − (reMtip)2

(6.214)

Peters and Ormiston (1975) found that when the advancing tip Mach number is less
than 0.9, this simple correction based on the 75% radius is sufficient. When Mat is
above about 0.9, the radial and azimuthal variations of the compressibility effects
must be included.

Gessow and Crim (1956) calculated the effects of high tip Mach number on
the flapping, thrust, and power of a helicopter rotor in forward flight, using models
similar to those developed in this chapter. They found a minor increase in the rotor
flapping and thrust due to compressibility. The largest effect was an increase in profile
power on the advancing side of the disk when the drag-divergence Mach number
was exceeded. The increase in profile power correlated well with �Md, the amount
by which the advancing tip Mach number Mat exceeded the section drag-divergence
Mach number, roughly according to the expression

�CPo/σ = 0.007�Md + 0.052(�Md )
2 (6.215)

Such an estimate of compressibility effects on power can be useful, particularly
for conceptual design studies, but the constants depend on the rotor technology
considered (the results of Gessow and Crim (1956) are for a 12% thick airfoil).

6.11 Reynolds Number

The effect of an increase in Reynolds number on two-dimensional airfoil charac-
teristics is to reduce the drag and increase the maximum lift. In terms of rotor tip
speed and chord, the Reynolds number is Re = �Rc/ν, with ν = μ/ρ the kinematic
viscosity. For fixed velocities and air properties, the Reynolds number increases with
the size of the rotorcraft. Hence a small-scale model has higher profile power and
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an earlier onset of stall compared to the full-scale aircraft. The Reynolds number
for an aircraft decreases as the operating altitude increases, due to the increase in
kinematic viscosity ν for the standard atmosphere.

Static airfoil table data consist of lift, drag, and moment coefficients as a function
of angle-of-attack and Mach number. The Reynolds number Re = Vc/ν and Mach
number M = V/cs both depend linearly on the velocity, so the Reynolds number of
the airfoil table is proportional to the Mach number (Re = M(csc/ν)), if the airfoil
test is conducted at constant temperature and pressure. Typically the wind-tunnel
temperature increases with speed for airfoil tests, so the relation is not quite linear.

If the Reynolds number Re of the rotor section does not equal the Reynolds
number Ret of the airfoil table, the drag and lift coefficients can be corrected:

c� = Kc�2D

(
(α − αz)/K + αz

)
(6.216)

cd = 1
K

cd2D (6.217)

where K = (Re/Ret )
n. Experimental data for turbulent flow suggest n = 0.125 to 0.2

for the exponent; see Yamauchi and Johnson (1983). The 1/5-th power law for a
turbulent flat plate boundary layer implies n = 0.2. If the Reynolds number is larger
for the airfoil than for the table, then K > 1, and these corrections reduce the drag
coefficient and increase the maximum lift coefficient.

6.12 Tip Loss and Root Cutout

The decrease of the lift to zero over a finite distance at the blade tip can be accounted
for by using a tip loss factor B such that the blade has drag but no lift when r > BR.
In addition, the rotor has a root cutout, so that the blade airfoil starts at radial station
rR rather than at r = 0. When tip loss and root cutout are taken into account, the
expression for the rotor thrust becomes

CT = σa
2

∫ B

rR

[
(θ0 + rθtw)

(
r2 + μ2

2

)
+ λNFPr

]
dr

= σa
2

[
θ0

3

(
B3 − r3

R + 3
2
(B − rR)μ

2
)

+ θtw

4

(
B4 − r4

R + (B2 − r2
R)μ

2
)

− λNFP

2
(B2 − r2

R)

]
(6.218)

The principal effect of the tip loss is to reduce the thrust for a given collective pitch,
roughly by a factor B3. The root cutout has only a minor influence on CT . The tip
loss has a similar effect on the coning, reducing it for fixed collective, but has less of
an effect on β1c or β1s/β0.

6.13 Assumptions and Examples

Simplifying the model was necessary to obtain an analytical solution for the rotor
forces and flap motion. In particular, this analysis has neglected stall and compress-
ibility effects in the rotor aerodynamics; nonuniformities in the induced velocity
distribution, beyond the simplest linear variation; the higher harmonics of blade flap
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motion; and all degrees of freedom except for the fundamental flap mode. In gen-
eral, small angles have been assumed. The section aerodynamic characteristics have
been described by a constant lift-curve slope and a mean profile drag coefficient.
The effects of stall, compressibility, and radial flow have been neglected. The blade
has constant chord and linear twist.

So far in this chapter, only rigid flap motion and collective and cyclic pitch control
have been considered. In this model there is no elastic flap motion and no lag or
pitch degree of freedom. The rotor is articulated, with no flap-hinge offset, spring
restraint, or pitch-flap coupling.

The solutions for thrust and flapping of the helicopter rotor in edgewise flight
are thus

CT = σa
2

[
θ0

3

(
1 + 3

2
μ2
)

B3 + θtw

4

(
1 + μ2)B4

− 1
2

(
λNFP + μ

2
λy

)(
1 + 1

2
μ2
)

B2
]

(6.219)

β0 = γ
[
θ0

8

(
1 + μ2)B4 − θtw

10

(
1 + 5

6
μ2
)

B5

− 1
6

(
λNFP + μ

2
λy

)
B3
]

− Ŝb
g
�2R

(6.220)

β1s − θ1c = 1

1 + 1
2μ

2

[
−4

3
μβ0 − λx

]
(6.221)

β1c + θ1s = 1

1 − 1
2μ

2

[
−8

3
μ

(
θ.75 − 3

4
λNFP

)
+ λy

]
(6.222)

including the principal effects of tip loss factor B, reverse flow (just the μ2λ term
in CT ), linear inflow gradient (λx and λy), and the weight moment (Ŝbg). These
expressions are nearly as accurate as the results of Bailey (1941) for speeds up to
μ = 0.5.

Peters and Ormiston (1975) extended the calculation of the rotor steady-state
flapping to hingeless rotors, considering the influence of various elements in the
analytical model on the solution. Their work produced the following conclusions
regarding the modeling requirements for the rotor flapping and loads analysis. For
an accurate calculation of the n/rev flapping harmonics (βnc and βns), the analysis
must include all the harmonics up to m/rev, where m = n for 0 < μ < 0.4, and
m = n + 1 for 0.4 < μ < 1.0. Reverse flow is required only for μ > 0.6. The tip loss
factor is always important, but the root cutout must be accounted for only above
μ = 1.0. The effects of compressibility are important, but when the advancing tip
Mach number Mat < 0.9, a simple correction based on the 75% radius is sufficient.
The equivalent hinge spring and offset model is not really a very good representation
of the hingeless rotor mode shape; the use of the actual elastic cantilever modes is
preferred. To calculate the rotor motion, it is necessary to include only a single
flapwise mode for 0 < μ < 0.6, two modes for 0.6 < μ < 1.2, and three modes for
1.2 < μ < 1.6.



6.13 Assumptions and Examples 197

The solution obtained under these approximations provides information about
the rotor behavior and is reasonably accurate over a wide range of helicopter operat-
ing conditions. For a helicopter operating in more extreme flight conditions, includ-
ing high speed, high tip Mach number, and high gross weight, one or more of the
assumptions is no longer valid and a better model is required. Moreover, even
at operating conditions for which a simple model gives a good estimate of per-
formance and flapping, a better model is required to calculate blade loads and
vibration.

Lifting-line theory is a fundamental assumption of rotor aerodynamics and is
valid except near the blade tip or in the vicinity of a tip vortex from a preced-
ing blade. The lag and pitch degrees of freedom and blade bending are important
for vibration, blade loads, and aeroelastic stability, but can often be neglected for
helicopter performance and control. Similarly, the higher harmonic blade motion,
important for vibration and loads, can be neglected. Reverse flow can be neglected
up to about μ = 0.5, which covers the speed range of most helicopters. Neglect
of stall and compressibility limits the validity of the theory at extreme operating
conditions (high μ or high CT/σ ). Uniform inflow can be satisfactory for perfor-
mance calculations at high speed (with the appropriate empirical factor κ), but leads
to significant errors in the calculation of flap motion, particularly β1s. Nonuniform
inflow is also important for rotor loads and vibration. The constant-chord, linearly
twisted blade is a typical rotor design, but more complex planform and twist are now
common.

As an example of the solutions developed in this chapter, consider an articulated
rotor with solidity σ = 0.08, Lock number γ = 8, and twist θtw = −8°. Ideal aerody-
namics are used, ignoring stall and compressibility: linear lift c� = aα with lift-curve
slope a = 5.7 and constant drag cd = 0.0080. The tip loss factor is B = 0.98, and the
blade has no root cutout. The induced velocity is obtained from momentum theory
(uniform inflow), using κ = 1.2. The only blade motion is rigid flap and pitch, with
no hinge offsets from the center of rotation. The influence of twist is examined by
considering θtw = 0 and θtw = −16°.

The baseline operating condition is thrust CT/σ = 0.08 and propulsive force
corresponding to fuselage drag f/A = 0.008. Thrust variations of CT/σ = 0.12 and
CT/σ = 0.16 are examined, as are propulsive force variations of f/A = 0 and f/A =
0.016. At high advance ratio, this rotor can attain CT/σ = 0.16 only because stall has
been neglected. The calculations were performed by adjusting collective pitch and
shaft incidence to match the required thrust and propulsive force, with cyclic pitch
for zero flapping relative to the shaft. Hence the shaft incidence angle is also the
tip-path-plane incidence.

Figure 6.17 shows the inflow, disk incidence, coning, and collective and cyclic
pitch control as a function of advance ratio. The inflow is

λTPP = λi + μ tan iTPP = κCT

2
√
μ2 + λ2

+ 1
2
μ3 f/A

CT
(6.223)

using iTPP = θFP + D/W + HTPP/T ∼= D/W for level flight (equation 6.112). At low
speed the inflow relative to the tip-path plane is due to the induced velocity, whereas
at high speed it is due to the rotor propulsive force. The mean wake-induced veloc-
ity actually increases at high speed because of the asymmetric loading on the rotor
disk (see Figure 5.7), an effect not shown here because κ = 1.2 is fixed. The inflow
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Figure 6.17. Helicopter rotor inflow, disk incidence, coning, and collective and cyclic pitch
control variation with edgewise forward speed (uniform inflow).

variation is essentially the power variation as well, since with this simple blade aero-
dynamic model the profile power is nearly the same for all conditions. The disk
incidence reflects the propulsive force; increasing the thrust requires less iTPP to
produce the required propulsive force. The collective pitch control tends to fol-
low the variation of the inflow, since fixed rotor CT/σ implies fixed mean blade
angle-of-attack, which equates to the difference between pitch and inflow. The
coning angle depends primarily on the rotor thrust. The flapping relative to the
no-feathering plane is basically proportional to thrust and to speed. Figure 6.17
also shows the lateral flapping β1s obtained using the White and Blake (1979) and
Coleman, Feingold, and Stempin (1945) formulas for longitudinal inflow gradient λx

(described in section 5.2.2). There is little effect of twist on the parameters shown in
Figure 6.17.

Figure 6.18 shows the variation of the section angle-of-attack as the blade
moves around the rotor disk, for the baseline condition (CT/σ = 0.08, f/A = 0.008,
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θtw = −8°) at advance ratios ofμ = 0.15, 0.30, and 0.45. With the linear aerodynamic
model and small angle assumption, the angle-of-attack is given by

α = θ − uP/uT = θ0 + rθtw + (β1c + θ1s) sinψ

− (β1s − θ1c) cosψ − λTPP + μβ0 cosψ
r + μ sinψ

(6.224)
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Forward speed reduces the angle-of-attack on the advancing side and increases the
angle-of-attack on the retreating side as the blade flaps to maintain the same lift
on both sides of the disk in the asymmetric aerodynamic environment of forward
flight (really, to maintain zero 1/rev flapping moment). In forward flight the working
angles-of-attack are concentrated on the front and rear of the disk. The maximum
angle-of-attack occurs in the third quadrant of the disk (around ψ = 240°) for this
twist, and it increases with advance ratio. At high speed the angle-of-attack on the
advancing tip is negative.

The blade angle-of-attack distribution depends on the operating condition
(thrust and propulsive force) and twist, as shown in Figure 6.19. The blade is well into
stall angles-of-attack on the retreating side for CT/σ = 0.12 (here there are no nega-
tive consequences of high angle-of-attack, such as high drag and power). Increasing
propulsive force increases the areas of high angle-of-attack on the retreating side,
which implies a degradation of rotor efficiency. Note the significant change in angle-
of-attack distribution for the rotor with zero twist. In forward flight, negative twist
reduces the maximum angle-of-attack and shifts the stall region inboard from the
blade tip. Although a twist of θtw = −16° is good for hover performance, it leads to
negative angle-of-attack on the advancing tip even for μ = 0.30. All these results
are for uniform inflow, however. The interference from discrete tip vortices in the
rotor wake, captured by a nonuniform inflow calculation, can significantly alter the
angle-of-attack distribution (see section 9.6).

The blade bound circulation (�/�2R) and section lift (d(CT/σ )/dr =
Fz/(ρ(�R)2c)) corresponding to the angle-of-attack distribution are shown in Fig-
ure 6.20 for the baseline condition. The change in pattern is produced by the addi-
tional factors of uT = r + μ sinψ . Figure 6.21 shows the radial and azimuthal varia-
tion of the blade section lift at advance ratios ofμ = 0.15, 0.30, and 0.45, for the base-
line condition (CT/σ = 0.08, f/A = 0.008, θtw = −8°). Observe that at high speed,
the requirement for roll moment balance between the advancing and retreating
sides is achieved with very different radial distribution of the loading, a consequence
of rigid flap and rigid pitch motion in the aerodynamic environment of forward
flight. The result is negative lift on the advancing blade tip at high advance ratio.
The small variation of loading with azimuth at low advance ratio follows from the
assumption of uniform inflow. Blade-vortex interaction in fact produces substantial
higher-harmonic loading variation at low speed.

At high advance ratio, the rotor behavior changes significantly. Figure 6.22 shows
the derivatives of rotor thrust and flapping as a function of advance ratio. Simple
calculations (uniform inflow and rigid blade) and complex calculations (nonuniform
inflow and elastic blade) are compared with measurements. The baseline calculations
are for 2° collective, zero shaft angle, and 1/rev flapping trimmed to zero. The
measurements were derived by Harris (1987) from wind-tunnel tests of teetering
and articulated rotors by McCloud, Biggers, and Stroub (1968) and Charles and
Tanner (1969); and by Datta, Yeo, and Norman (2011). As advance ratio increases,
the thrust change with collective pitch (∂(CT/σ )/∂θ) decreases, becoming negative
aroundμ ∼= 1. The thrust change with shaft angle (∂(CT/σ )/∂i) continues to increase
with μ, with a positive thrust increment for aft tilt of the shaft. So at high speed,
collective is not effective in controlling the rotor thrust, but rotor shaft or aircraft
incidence remains effective. Rotor cyclic can still control rotor flapping (∂β1c/∂θcyc

and ∂β1s/∂θcyc) at high advance ratio.



6.14 Flap Motion with a Hinge Spring 201

10
9

8 7 6 5
4

3

2

1
11

10

9
8 7 6

5
4

3

2

ψ = 270 ψ = 902

14
12 10 8

6

416

14
12 10 8

6

416
ψ = 180

ψ = 901

10
9

8 7 6
5

4
3

211

10

9 8 7
6

5
4

3

2
11

3

ψ = 180

ψ = 270
10

9

8
7 6 5 4

3
2

1

0

11

8
7 6 5 4

3
2

1
9

ψ = 0

ψ = 270
0

12

10
9 8 7 6 5

4
3

2

1

11

2

12

10 9 8 7 6 5
4

3
11

ψ = 0

ψ = 90-1

12
10
8

6
4

2

0

10

8 6 4
2

0
CT /σ = 0.08

  f / A = 0.008

f / A = 0 f / A = 0.016

CT /σ = 0.12

CT /σ = 0.16

twist = 0 twist = -16°

baseline
twist = -8°

ψ = 180

ψ = 270 ψ = 903

14 12
10

8
6

4

1618
20
22

24

14 12
10

8
6

4

16
18

20

22

Figure 6.19. Variation of blade angle-of-attack distribution at μ = 0.30 (in degrees) with
thrust CT/σ , propulsive force f/A, and twist θtw (uniform inflow).

6.14 Flap Motion with a Hinge Spring

Consider an articulated rotor blade with no hinge offset from the center of rotation,
but now with a spring about the flap hinge that produces a restoring moment on
the blade (Figure 6.23). Such a spring might be used to augment the rotor control
power, because with a spring the flap motion not only tilts the rotor thrust vector but
also directly produces a moment on the hub. Since a hingeless rotor has a structural
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spring at the blade root, consideration of the blade with a flap-hinge spring serves
as a guide to hingeless rotor behavior as well. The blade motion is assumed to still
consist of only rigid rotation about the flap hinge, so the out-of-plane deflection
is z = rβ. For a very stiff spring the blade root restraint would approach that of a
cantilevered blade, introducing considerable bending into the fundamental flapping
mode shape. The spring stiffness that might be used on a rotor blade would be small
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Figure 6.21. Blade section lift (d(CT/σ )/dr) for CT/σ = 0.08, f/A = 0.008, θtw = −8°, σ =
0.08 (uniform inflow); μ = 0.15, 0.30, 0.45.

compared to the centrifugal stiffening, however, so the rigid flapping assumption is
reasonable. With rigid flapping motion, the equations for the rotor forces and power
are unchanged. The hinge spring does change the rotor flapping equation of motion,
introducing an additional flap moment. Because the spring moment is proportional
to the flapping displacement relative to the shaft, the hub plane is the appropriate
reference plane in this case.
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In the derivation of the flapping equation of motion, the only addition is the flap
moment due to the hinge spring: Kβ (β − βp), where Kβ is the spring rate and βp is
the precone angle. With a spring at the flap hinge, the blade coning would produce
a steady root moment except for the precone angle, which biases the hinge moment
to zero for β − βp. Then the flapping equation becomes

Ib
(
β̈ +�2β

)+ Kβ (β − βp) =
∫ R

0
rFzdr (6.225)

or

β̈ + ν2β = (ν2 − 1)βp + γ
∫ 1

0
r

Fz

ac
dr (6.226)

where

ν2 = 1 + Kβ
Ib�

2
(6.227)

is the dimensionless natural frequency of the flap motion in the rotating frame. For
practical flap springs, ν is just slightly greater than 1. When ν > 1, the aerodynamic
forces acting at 1/rev are no longer forcing the flap motion exactly at resonance.
Thus the rotor responds to this excitation with a reduced magnitude, and the lag is
somewhat less than 90° in azimuth due to the spring quickening the response. Flap-
hinge offset or cantilever root restraint also increases the natural frequency of the
flapping. By considering the articulated blade with a hinge spring, the fundamental
influence of the flap frequency is isolated, since the hinge spring changes nothing
else. If the present problem is considered a model for an arbitrary rotor with flap
frequency ν, the approximation lies in using rigid flapping for the blade mode shape.

The aerodynamic flap moments are unchanged by the hinge spring, but the
inertial, centrifugal, and spring terms of the flapping equation now give

1
2π

∫ 2π

0

(
β̈ + ν2β − (ν2 − 1)βp

)
dψ = ν2β0 − (ν2 − 1)βp (6.228)

1
2π

∫ 2π

0

(
β̈ + ν2β − (ν2 − 1)βp

)
cosψ dψ = (ν2 − 1)β1c (6.229)

1
2π

∫ 2π

0

(
β̈ + ν2β − (ν2 − 1)βp

)
sinψ dψ = (ν2 − 1)β1c (6.230)

The flapping equations thus become

ν2β0 = (ν2 − 1)βp + γ
[
θ.8

8

(
1 + μ2)− μ2

60
θtw − λNFP

6

]
(6.231)

(ν2 − 1)β1c = γ
[

1
8
(θ1c − β1s)

(
1 + 1

2
μ2
)

− μ

6
β0

]
(6.232)

(ν2 − 1)β1s = γ
[

1
8
(θ1s + β1c)

(
1 − 1

2
μ2
)

+ μ

3
θ.75 − μ

4
λNFP

]
(6.233)

The solution for the coning is

β0 = ν2 − 1
ν2

βp + γ

ν2

[
θ.8

8

(
1 + μ2)− μ2

60
θtw − λNFP

6

]
(6.234)
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The flap spring reduces the coning angle. The solution can be written in terms of the
coning with no spring:

β0 = 1
ν2
βideal + ν2 − 1

ν2
βp (6.235)

where βideal is the coning angle for ν = 1. The role of the hub precone angle is to
reduce the steady moments in the blade root. The mean hinge spring moment is

(ν2 − 1)(β0 − βp) = ν2 − 1
ν2

(βideal − βp) (6.236)

The mean moment is thus nonzero when ν > 1, unless the precone angle is selected
to be βp = βideal. With ideal precone, the coning angle β0 = βideal is independent of
the flap frequency. Although the proper choice of precone reduces the root loads,
the ideal value is a function of the rotor loading, and therefore the precone must be
selected for a particular design operating condition.

Now consider the tip-path-plane tilt. In hover the equations become

β1s + ν2 − 1
γ /8

β1c = θ1c (6.237)

β1c − ν2 − 1
γ /8

β1s = −θ1s (6.238)

which have the solution

β1s = 1
1 + N2

�

(
θ1c + N�θ1s

)
(6.239)

β1c = 1
1 + N2

�

(−θ1s + N�θ1c
)

(6.240)

The parameter N� = 8
γ
(ν2 − 1) is the ratio of the hinge spring to the aerodynamic

flap damping. The inertia and centrifugal forces still exactly cancel, so the spring and
damping forces determine the response. The effect of a flap frequency ν greater than
1 is to introduce lateral flapping due to θ1s and longitudinal flapping due to θ1c. Write
the cyclic flapping as β cos(ψ + ψ0 −�ψ) and the cyclic pitch as θ cos(ψ + ψ0). Then
the magnitude and phase of the response are

β/θ = 1√
1 + N2

�

(6.241)

�ψ = 90° − tan−1 N� (6.242)

Increasing the flap frequency so that the system is excited below resonance slightly
reduces the amplitude of the flap response to cyclic and, most importantly, reduces
the lag in the response. For example, with ν = 1.15 and γ = 8, the amplitude is
reduced only about 5%, but the lag becomes 72° instead of the 90° of an articu-
lated rotor. This phase change constitutes a coupling of the lateral and longitudinal
response of the tip-path plane to the no-feathering-plane control inputs. As far as
control of the helicopter is concerned, such coupling can be eliminated by introduc-
ing a compensating phase shift between the control plane and no-feathering plane.
That is, the control system geometry is changed so that the rotor still responds with
purely longitudinal tip-path-plane tilt due to longitudinal cyclic stick displacements.
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In forward flight, the solution for the cyclic required to trim the helicopter is

θ1c = β1s + 1

1 + 1
2μ

2

[
N�β1c + 4

3
μβ0

]
(6.243)

θ1s = −β1c + 1

1 + 3
2μ

2

[
N�β1s − 8

3
μ

(
θ.75 − 3

4
λTPP

)]
(6.244)

The tip-path-plane tilt relative to the hub plane (β1c and β1s) is determined by the
equilibrium of helicopter forces and moments. The second term in these expressions
gives the phase shift arising when ν > 1. Forward speed has an influence on the phase
shift, and moreover that influence is not the same for both axes of cyclic. The ideal
control rigging to compensate for the lateral-longitudinal coupling varies with speed
(by typically 5% to 15% between hover and maximum speed) and is not the same
for lateral and longitudinal cyclic. The influence of forward flight is only of order μ2,
so a single value for the control system phase can be chosen that is satisfactory over
the entire speed range of the helicopter.

The helicopter is controlled by using the rotor to produce moments about the
aircraft center of gravity. An articulated rotor (with no hinge offset) has no moment
at the blade root and thus can produce moments on the helicopter only by tilting the
rotor thrust vector. With a hinge spring, tilt of the rotor tip-path plane also produces
a moment on the rotor hub. In the rotating frame, the hub moment due to the flap
deflection of a single blade is

M = Kβ (β − βp) = (ν2 − 1)Ib�
2(β − βp) (6.245)

The pitch and roll moments on the hub are obtained by resolving the flap moment
in the non-rotating frame, multiplying by the number of blades, and averaging over
the azimuth:

My = − N
2π

∫ 2π

0
cosψM dψ, Mx = N

2π

∫ 2π

0
sinψM dψ, (6.246)

(see also section 6.3). In coefficient form, the hub pitch moment CMy and roll moment
CMx are

2CMy

σa
= − ν

2 − 1
γ

β1c (6.247)

2CMx

σa
= ν2 − 1

γ
β1s (6.248)

The in-plane forces on the rotor can be written HHP = HTPP − Tβ1c and YHP =
YTPP − Tβ1s. Neglecting the forces relative to the tip-path-plane, the pitch and roll
moments about the helicopter center-of-gravity a distance h below the hub are
My = hHHP = −hTβ1c and Mx = −hYHP = hTβ1s. Combining the moments due to
the thrust tilt and the hinge spring, the total moments about the helicopter center-
of-gravity due to the rotor tip-path-plane tilt are⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠ =
(
ν2 − 1
γ

+ h
2CT

σa

)(
β1c

β1s

)
(6.249)



208 Forward Flight

Ω

hub plane

rotor 
shaft

bladeflap hinge 
with spring

r

ze

Figure 6.24. Blade flap motion with hinge offset.

The moment generating capability of the helicopter is increased greatly when ν > 1.
An articulated rotor normally obtains about half its moment from hinge offset and
half from the thrust tilt. For a hingeless rotor the direct hub moment can be two to
four times the thrust tilt term. Moreover, the direct hub moment term is independent
of the helicopter load factor.

Including the effect of the flap frequency ν, the solution for the collective and
cyclic control from the thrust, tip-path-plane incidence, and flapping relative to the
hub plane is

θ.75 = 1
�

[(
1 + 3

2
μ2
)(

6CT

σa
+ 3

8
μ2θtw

)
+ 3

2
λTPP

(
1 − 1

2
μ2
)

− 3
2
μN�β1s

]
(6.250)

θ1s = −β1c − 1
�

[
8
3
μ

(
6CT

σa
+ 3

8
μ2θtw

)
+ 2μλTPP

(
1 − 3

2
μ2
)

−
(

1 + 3
2
μ2
)

N�β1s

]
(6.251)

β0 = γ /8ν2

�

[(
1 − 19

18
μ2 + 3

2
μ4
)

6CT

σa
+
(

1
20

+ 29
120

μ2 − 1
5
μ4 + 3

8
μ6
)
θtw

+ λTPP

(
1
6

− 7
12
μ2 + 1

4
μ4
)

− μ

6

(
1 − 3μ2)N�β1s

]
+ ν2 − 1

ν2
βp (6.252)

θ1c = β1s + 1

1 + 1
2μ

2

[
4
3
μβ0 + N�β1c

]
(6.253)

where� = 1 − μ2 + 9
4μ

4 (see section 6.5). This result neglects tip losses and reverse
flow, assumes uniform inflow, and uses η = r for the flap mode shape.

6.15 Flap-Hinge Offset

Consider next an articulated rotor with the flap-hinge offset from the center of
rotation by a distance eR (Figure 6.24). Such an arrangement is usually mechanically
simpler than one with no offset and in addition has a favorable influence on the
helicopter handling qualities, because the offest produces a flap frequency above
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1/rev. Articulated rotors typically have an offset of e = 0.03 to 0.05. The analysis
in this section also considers a hinge spring. The blade radial coordinate r is still
measured from the center of rotation. The blade motion is rigid rotation about the
flap hinge, with degree of freedom β and mode shape η(r), such that the out-of-plane
deflection is βη.

Rigid rotation about a flap-hinge offset by e corresponds to a mode shape

η =
{

k(r − e) r ≥ e
0 r < e

(6.254)

where k is a constant determined by the mode shape normalization. The normal-
ization used here requires that the mode shape be equal to unity at the blade
tip: η(1) = 1. Thus k = 1/(1 − e), and the mode shape is η = (r − e)/(1 − e). This
reduces to η = r for the case of no offset. Normalizing the mode shape to unity at
the tip means that the degree of freedom β can be interpreted as the angle between
the disk plane and a line extending from the center of rotation to the blade tip. This
normalization is easily extended to the higher bending modes. An alternative mode
shape is η = (r − e), which makes β the actual angle of rotation about the flap hinge.
The physically relevant quantities of the solution, such as the out-of-plane deflection
z = βη, must of course be independent of the normalization chosen for the mode
shape.

The normal velocity of the blade with an arbitrary flapping mode shape becomes

uP = λ+ ż + uR
dz
dr

= λ+ ηβ̇ + η′βμ cosψ (6.255)

There are no other changes to the blade aerodynamics. The rotor thrust is then

CT = σa
∫ 1

0

1
2

(
u2

Tθ − uPuT
)
dr

= σa
2

[
θ.75

3

(
1 + 3

2
μ2
)

− θtw

8
μ2 − 1

2

(
λ− μθ1s

)− μ

2
β1c

e
1 − e

]
(6.256)

So the effect of the hinge offset on CT is small. Similar results can be obtained for
CH and CY . Recall that the rotor power was derived for a general mode shape. The
principal influence of the hinge offset is on the rotor flapping motion.

Consider again equilibrium of moments about the flap hinge. The forces acting
on the blade section are as follows:

i) an inertial force mz̈ = mηβ̈ opposing the flap motion, with moment arm (r − e)
about the flap hinge

ii) a centrifugal force m�2r directed radially outward, with moment arm z = ηβ
iii) an aerodynamic force Fz normal to the blade, with moment arm (r − e)

There is also a spring moment at the flap hinge, Kβ (β − βp), as in section 6.14. For
now a general mode shape η = k(r − e) is allowed. On integrating over the blade
span, equilibrium of the flap moments gives∫ R

e
η(r − e)m dr β̈ +

∫ R

e
ηrm dr�2β + Kβ (β − βp) =

∫ R

e
(r − e)Fzdr (6.257)

Now use dimensionless quantities and multiply by k = η(1)/(1 − e):∫ 1

e
η2m dr β̈ + k

∫ 1

e
ηrm dr β + Kβk

�2
(β − βp) =

∫ 1

e
ηFzdr (6.258)
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Let Ib = ∫ 1
e η

2m dr, and

k
∫ 1

e
ηrm dr =

∫ 1

e
η2m dr + ke

∫ 1

e
ηm dr = Ib + eη(1)

1 − e

∫ 1

e
ηm dr (6.259)

Then the flapping equation of motion is

β̈ + ν2β = Kβη(1)
Ib�2(1 − e)

βp + γ
∫ 1

e
η

Fz

ac
dr (6.260)

The Lock number is defined as γ = ρacR4/Ib again, but here the definition of the
characteristic moment of inertia Ib depends on the mode shape. If the definition Ib =∫ 1

0 r2m dr were retained, the normalized flapping inertia Îβ = ∫ 1
e η

2m dr/Ib would be
introduced on the left-hand side of the flap equation. Such an approach is best when
more degrees of freedom are considered, but here using the flapping generalized
mass for Ib and γ is simplest.

The natural frequency of the flap motion for the blade with hinge offset and
spring is

ν2 = 1 + e
1 − e

η(1)
∫ 1

e ηm dr∫ 1
e η

2m dr
+ Kβ

Ib�2(1 − e)
(6.261)

The first term is the centrifugal spring, the second term is the hinge offset effect (also
due to the centrifugal forces), and the third term is the hinge spring. For a uniform
mass distribution and no hinge spring, the result is

ν2 = 1 + 3
2

e
1 − e

(6.262)

In general the flap frequency can be written ν2 = 1 + erCGM/I, where M is the blade
mass, I the moment of inertia about the flap hinge, and rCG the radial center-of-
gravity location relative to the hinge. Hinge offset thus raises the flap frequency
above 1/rev. For the offsets of articulated rotors the increase is small, typically giving
ν = 1.02 to 1.04. This increase in flap frequency is the primary influence of the hinge
offset. The flap dynamics of a rotor with ν > 1 were examined in section 6.14. With a
hinge offset there are also small changes in the aerodynamic flapping moments, due
to the mode shape change.

Now consider the aerodynamic forces. Again defining the aerodynamic coeffi-
cients by

MF =
∫ 1

0
η

Fz

ac
dr = Mθ θcon + Mtwθtw + Mλλ+ Mβ̇ β̇ + Mββ (6.263)

we obtain

Mθ = 1
8

c2 + μ

3
c1 sinψ + μ2

4
c0 sin2 ψ (6.264)

Mtw = 1
10

c3 + μ

4
c2 sinψ + μ2

6
c1 sin2 ψ (6.265)

Mλ = −
(

1
6

c1 + μ

4
c0 sinψ

)
(6.266)

Mβ̇ = −
(

1
8

d1 + μ

6
d0 sinψ

)
(6.267)

Mβ = −μ cosψ
(

1
6

f1 + μ

4
f0 sinψ

)
(6.268)
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where cn = (n + 2)
∫ 1

e ηrndr, dn = (n + 3)
∫ 1

e η
2rndr, and fn = (n + 2)

∫ 1
e ηη

′rndr.
With the mode shape η = (r − e)/(1 − e), the required constants are

c0 = 1 − e (6.269)

c1 = 1 − (e + e2)/2 (6.270)

c2 = 1 − (e + e2 + e3)/3 (6.271)

c3 = 1 − (e + e2 + e3 + e4)/4 (6.272)

d0 = 1 − e (6.273)

d1 = 1 − (2e + e2)/3 (6.274)

f0 = 1 (6.275)

f1 = 1 + e/2 (6.276)

These constants should actually be evaluated by integrating from rR (root cutout) to
B. The solution of the flapping equations is now

β0 = Kβ
ν2Ib�2(1 − e)

βp + γ

ν2

[
θ.8

8

(
c2 + μ2c0

)
+ θtw

10

(
c3 − c2 + μ2

(
5
6

c1 − c0

))
− λNFP

6
c1 + β1c

μ

12
(d0 − f1)

]
(6.277)

(
c2 + 1

2
μ2c0

)
θ1c =

(
d1 + 1

2
μ2 f0

)
β1s + ν2 − 1

γ /8
β1c + 4

3
μ f1β0 (6.278)

(
c2 − 1

2
μ2c0

)
θ1s = −

(
d1 − 1

2
μ2 f0

)
β1c + ν2 − 1

γ /8
β1s

− 8
3
μ

(
θ.75c1 + 3

4
θtw(c2 − c1)− 3

4
λNFP

)
(6.279)

Thus the hinge offset produces small changes in the constants arising from the
aerodynamic forces. The primary effect of the hinge offset on the flap response is the
coupling of the lateral and longitudinal control that arises because ν > 1. For hover,
the phase lag between the flapping response and cyclic pitch input is reduced by

�ψ = − tan−1 ν
2 − 1
γ /8

∼= − 12
γ

e (6.280)

which is small for articulated rotors (the hinge spring term has been omitted here).
Finally, consider the hub moment for a rotor with offset flapping hinges. The

contributions to the moment about the hub (r = 0) are

i) the inertial force mz̈ = mηβ̈, with moment arm r
ii) the centrifugal force m�2r, with moment arm z = ηβ

iii) the aerodynamic force Fz, with moment arm r

Then the flapwise moment on the hub produced by one blade is

M = −(β̈ + β) ∫ 1

e
mηr dr +

∫ 1

e
rFzdr (6.281)
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Substituting for β̈ from the flapping equation gives

M = −
[

Kβη(1)
Ib�2(1 − e)

βp + 1
Ib

∫ 1

e
ηFzdr + (1 − ν2)β

]∫ 1

e
ηrm dr +

∫ 1

e
rFzdr

(6.282)
The precone term is constant, so does not contribute to the pitch or roll moments
on the hub. Using r = (1 − e)η + e,

−
∫ 1

e
ηFzdr

∫ 1

e
ηrm dr +

∫ 1

e
η2m dr

∫ 1

e
rFzdr

= e

[
−
∫ 1

e
ηFzdr

∫ 1

e
ηm dr +

∫ 1

e
η2m dr

∫ 1

e
Fzdr

]
(6.283)

The factor in brackets is zero if the lift distribution is proportional to the mode shape,
Fz ∝ (r − e). In general, this sum is second-order small and can be neglected. The
hub moment thus reduces to

M = Ib(ν
2 − 1)β (6.284)

and the pitch and roll components from the N blades give⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠ = ν2 − 1
γ

(
β1c

β1s

)
(6.285)

This is the same result as that obtained for the hinge spring alone. A more general
derivation of the result is given in Chapter 16. Although all the other effects of hinge
offset examined have been only small refinements of the basic rotor behavior, the
hub moment capability with offset hinges is important. Articulated rotor helicopters
generate about half the moment about the center of gravity by the thrust tilt and
about half by the direct hub moment.

6.16 Hingeless Rotor

Hingeless rotors have no flap or lag hinges; instead the blades are attached to the hub
with a cantilever root restraint. Such a rotor has the advantages of a mechanically
simple hub and generally improved handling qualities. The fundamental out-of-plane
bending mode of a hingeless rotor blade is similar to the rigid flapping mode of an
articulated blade, because of the dominance of the centrifugal stiffening relative
to the structural stiffening. The fundamental natural flap frequency of a hingeless
blade is thus not far above 1/rev, although significantly greater than the frequency
achieved with offset-hinged blades. Typically the flap frequency ν = 1.10 to 1.15 for
hingeless rotors.

In section 6.15, the flapping equation was obtained for an arbitrary mode shape:

β̈ + ν2β = γ
∫ 1

0
η

Fz

ac
dr (6.286)

With the proper value for the flap frequency ν, this equation can be used for the
hingeless rotor blade as well. We have seen that the influence of the mode shape is
secondary to that of the flap frequency. Thus a hingeless rotor can be modeled by
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using the correct flap frequency, but with a simple approximate mode shape. The
flap frequency is either specified in the investigation or must be obtained from a free
vibration analysis of the blade. An appropriate mode shape is that of rigid rotation
about an offset hinge, η = (r − e)/(1 − e). The offset e can be chosen by matching
the slope of the actual mode shape at an appropriate station such as 75% radius:
e = 1 − 1/η′(0.75). Although such an approximate model must be used with care, it
does give the fundamental behavior of the hingeless rotor. When other degrees of
freedom (such as the lag or torsional motion) are involved, a more accurate model
of the rotor motion that includes the correct mode shapes must be used.

The hingeless rotor flap frequency is often described in terms of an equivalent
hinge offset. From equation 6.262 for a uniform offset-hinge blade, follows

eequiv =
2
3 (ν

2 − 1)

1 + 2
3 (ν

2 − 1)
(6.287)

Flap frequencies of ν = 1.10 to 1.15 thus are characterized as offsets eequiv = 0.12 to
0.18.

6.17 Gimballed or Teetering Rotor

A gimballed rotor has three or more blades attached to the hub without flap or
lag hinges (cantilever root restraint), and the hub is attached to the rotor shaft by
a universal joint or gimbal. The motion of the gimballed hub relative to the shaft
is described by two degrees of freedom: the longitudinal and lateral tilt angles β1c

and β1s, which correspond to the tip-path-plane tilt of an articulated rotor by cyclic
flapping. The hub can include spring restraint of the gimbal motion. During the
coning motion of the blades the hub does not tilt, because there is no net pitch or
roll moment on the rotor. Hence for the coning motion the blades behave as on a
hingeless rotor. For the higher harmonics of the flap motions (β2c, β2s, etc.) the hub
also remains fixed.

The flapwise moment on the m-th blade of a gimballed rotor is

M(m)

Ib�
2

= −(β̈ + ν2β
)+ γ

∫ 1

0
r

Fz

ac
dr (6.288)

(see section 6.15). The mode shape η = r that has been used corresponds to rigid
body motion of the rotor about the gimbal. The equations of motion for longitudinal
and lateral tilt of the gimbal are obtained from equilibrium of moments on the entire
rotor. Summing the pitch moments from all N blades, adding a hub spring moment,
and averaging over the azimuth gives

Mspring

Ib�2
+ 1

2π

∫ 2π

0

[
N∑

m=1

cosψm
M(m)

Ib�2

]
dψ = 0 (6.289)

whereψm = ψ + m(2π/N) is the azimuth position of the m-th blade. For the steady-
state solution, since all the blades have the same periodic motion, the sum over N
blades followed by the average over ψ is equivalent to N times the average for one
blade:

Mspring

Ib�2
+ 1

2π

∫ 2π

0

[
N cosψ

M(m)

Ib�2

]
dψ = 0 (6.290)
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Now the longitudinal hub spring moment is

Mspring = −Kββ1c = −Kβ
1
π

∫ 2π

0
β cosψ dψ (6.291)

Thus the equation of motion is

1
π

∫ 2π

0
cosψ

[
− Kββ

1
2 NIb�2

+ M
Ib�2

]
dψ = 0 (6.292)

Similarly, for roll moments on the rotor we obtain

1
π

∫ 2π

0
sinψ

[
− Kββ

1
2 NIb�2

+ M
Ib�2

]
dψ = 0 (6.293)

The operators 1
π

∫ 2π
0 (. . .) cosψ dψ and 1

π

∫ 2π
0 (. . .) sinψ dψ are those used to obtain

the equations for β1c and β1s of the articulated rotor. The equations of motion for
the gimbal tilt are therefore the same as for the tip-path-plane tilt of an equivalent
single blade with differential equation

β̈ + ν2β = γ
∫ 1

0
η

Fz

ac
dr (6.294)

and the solution is then the same as for the articulated rotor. Here the flap natural
frequency is

ν2 = 1 + Kβ
1
2 NIb�2

(6.295)

Unless there is a hub spring, the frequency is ν = 1 as for an articulated blade with
no hinge offset. With a gimbal, the hub spring can be put in the non-rotating system,
so it does not have to operate with a continual 1/rev motion. Moreover, different
spring rates can then be used for longitudinal and lateral motions. For the coning
and the second and higher harmonics of the flap motion the blade acts as a hingeless
rotor. Again the solution can be obtained by considering an equivalent single blade
and using the flap frequency corresponding to the cantilevered blade.

A teetering rotor has two blades attached to the hub without flap or lag hinges.
The hub is attached to the shaft by a single flapping hinge, the two blades forming a
single structure. The flapping motion is like that of a seesaw or teeter board, hence
the name given this rotor. Such a hub configuration has the advantage of being
mechanically very simple. As for the gimballed rotor, the coning motion gives no
net moment about the teeter hinge and in effect the blades have cantilever root
restraint. In general, the steady-state motion of the teetering rotor must be obtained
by considering equilibrium of moments on the entire rotor. Since both blades must
be executing the same periodic motion, the root flapping moment of the m-th blade
is a periodic function of ψm:

M(m) = M0 +
∞∑

n=1

Mnc cos nψm + Mns sin nψm (6.296)

where ψ1 = ψ + π and ψ2 = ψ . This can be written as

M(m) = M0 +
∞∑

n=1

(−1)mn(Mnc cos nψ + Mns sin nψ
)

(6.297)
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The total flap moment about the teeter hinge is then

M = M(2) − M(1) =
∞∑

n=1

[1 − (−1)n]
(
Mnc cos nψ + Mns sin nψ

)
= 2

∑
n odd

(
Mnc cos nψ + Mns sin nψ

)
(6.298)

So for all even harmonics (including the coning motion) the flap moments from the
two blades cancel each other. Only the odd harmonics, in particular the tip-path-
plane tilt degrees of freedom β1c and β1s, produce a net moment about the hinge and
hence teetering motion of the blade.

For the odd harmonics of the teetering rotor flap motion, the hinge moment
consists of the root flapping moments from the two blades (which is equivalent to
twice the moment of one of the blades) and a possible hub spring moment:

− Kββ
Ib�2

+ 2

[
−(β̈ + ν2β

)+ γ
∫ 1

0
η

Fz

ac
dr

]
= 0 (6.299)

The equation of motion is therefore

β̈ + ν2β = γ
∫ 1

0
η

Fz

ac
dr (6.300)

where the natural frequency of the flapping is

ν2 = 1 + Kβ
2Ib�2

(6.301)

Usually a teetering rotor does not have a hub spring, so ν = 1. The tip-path-plane
tilt motion of the teetering rotor is thus the same as that of an articulated rotor with
no hinge offset.

To summarize the behavior of gimballed and teetering rotors, for those harmon-
ics of the flap motion that give a net moment on the hub, including the tip-path-plane
tilt, the blade acts as an articulated rotor with no hinge offset (η = r and ν = 1). For
those harmonics (including the coning motion) where the flap moments are reacted
internally in the hub, the blade acts as a hingeless rotor of high stiffness. With these
considerations, the solutions obtained for an articulated rotor are also applicable to
gimballed and teetering rotors.

6.18 Pitch-Flap Coupling

Pitch-flap coupling is a kinematic feedback of the flapping displacement to the blade
pitch motion, which can be described by�θ = −KPβ. For positive pitch-flap coupling
(KP > 0), flap up decreases the blade pitch and hence the blade angle-of-attack. The
resulting lift reduction produces a change in flap moment that opposes the original
flap motion. Thus positive pitch-flap coupling acts as an aerodynamic spring on the
flap motion.

Pitch-flap coupling can be obtained entirely by mechanical means. The simplest
approach is to skew the flap hinge by an angle δ3, so the hinge is no longer perpendic-
ular to the radial axis of the blade (Figure 6.25). Then a rotation about the hinge with
a flap angle β must also produce a pitch change of −β tan δ3. The feedback gain for
this arrangement is KP = tan δ3. Pitch-flap coupling is usually defined in terms of the



216 Forward Flight

blade
pitch 
horn

pitch bearing

flap hinge

blade

flap hinge
Ω Ω

hub hub

δ3
δ3

from flap hinge geometry                        from control system geometry

Figure 6.25. Pitch-flap coupling of a rotor blade.

delta-three angle. Positive coupling δ3 > 0 represents negative feedback, decreas-
ing the blade pitch for a flap increase. Pitch-flap coupling can also be introduced
by the control system geometry (Figure 6.25). When the pitch bearing is outboard
of the flap hinge (the usual arrangement), the blade experiences a pitch change due
to flapping if the pitch link is not in line with the axis of the flap hinge. For a fixed
swashplate position, the flap motion can be viewed as occurring about a virtual hinge
axis joining the end of the pitch horn and the actual flap hinge. The δ3 angle then is
the angle between this virtual hinge axis and the real flap hinge axis. Another source
of pitch-flap coupling is the mean lag angle due to the rotor torque. If the flap hinge
is outboard of the lag hinge, the mean lag angle is equivalent to a skew of the flap
hinge, so δ3 = ζ0. There are similar coupling effects on hingeless rotors. Although
pitch-flap and other couplings are determined for an articulated rotor by the hub,
root, and control system geometry, for hingeless rotors the structural and inertial
characteristics of the blade must also be considered. Often the δ3 angle depends on
the blade pitch because of changes in the control system geometry with collective, so
in general KP = −∂θ/∂β must be evaluated for a given collective, coning, and mean
lag angle of the blade.

The equation of motion for the blade flapping was derived in section 6.5 consid-
ering only the pitch due to the control system input, θcon. The solution relates the flap-
ping to the actual blade pitch. That solution remains valid with pitch-flap coupling,
but the root pitch and the control input are no longer identical. The difference can be
accounted for by noting that the root pitch is now (θ − KPβ) if θ retains its meaning
as the control input. Pitch-flap coupling thus changes the relative orientation of the
control plane and no-feathering plane, whereas the solution for the orientation of
the no-feathering plane relative to the tip-path plane is unchanged. Since pitch-flap
coupling acts on the flapping with respect to the hub plane, θHP = θCP − KPβHP is
the actual blade root pitch. The flapping solution of section 6.5 determines θHP in
terms of βHP. There are two possible approaches to analyze the effects of pitch-flap
coupling. The quantity θCP − KPβHP can be substituted for θHP in the differential
equation of motion for the flapping, the solution of which then gives the control
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required θCP and shows the other effects of KP. Alternatively, the previous solutions
can be used directly, with θCP = θHP + KPβHP determining the control required.

Consider the differential equation obtained for the flap motion of a rotor with
flap frequency ν. Substitute (θcon − KPβ) for θcon, giving

β̈ + ν2β = γ (Mθ (θcon − KPβ)+ Mtwθtw + Mλλ+ Mβ̇ β̇ + Mββ
)

(6.302)

For hover this becomes

β̈ + γ

8
β̇ +

(
ν2 + γ

8
KP

)
β = γ

8
θcon + γ

10
θtw − γ

6
λ (6.303)

The mode shape η = r has been used to evaluate the aerodynamic coefficients. Thus
pitch-flap coupling introduces an aerodynamic spring that increases the effective
natural frequency of the flap motion to

ν2
e = ν2 + γ

8
KP (6.304)

The flapping response to cyclic depends on the effective spring νe. However, pitch-
flap coupling does not produce a hub moment, which is still determined by (ν2 − 1).
The solution for the cyclic pitch control is

θ1c = β1s + KPβ1c + 1

1 + 1
2μ

2

[
8
γ
(ν2 − 1)β1c + 4

3
μβ0

]
(6.305)

θ1s = −β1c + KPβ1s + 1

1 + 3
2μ

2

[
8
γ
(ν2 − 1)β1s

− 8
3
μ

(
θ.75 − 3

4
λTPP

)
+ 8

3
μKPβ0

]
(6.306)

or in hover

θ1c = β1s +
(
ν2 − 1
γ /8

+ KP

)
β1c = β1s + N�β1c (6.307)

θ1s = −β1c +
(
ν2 − 1
γ /8

+ KP

)
β1s = −β1c + N�β1s (6.308)

with N� = 8
γ
(ν2 − 1)+ KP = 8

γ
(ν2

e − 1). The magnitude and phase of the tip-path-
plane response to cyclic are

β/θ = 1√
1 + N2

�

(6.309)

�ψ = 90° − tan−1 N� (6.310)

For an articulated rotor (ν = 1), the result is

β/θ = 1√
1 + K2

P

= cos δ3 (6.311)

�ψ = 90° − tan−1 KP = 90° − δ3 (6.312)

Thus the swashplate phasing required is equal to the δ3 angle.
Now consider the effect of pitch-flap coupling in terms of the change of

the control-plane orientation relative to the no-feathering plane. The relation
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θCP = θHP + KPβHP gives the collective and cyclic pitch required:⎛⎝ θ0

θ1c

θ1s

⎞⎠
CP

=
⎛⎝ θ0

θ1c

θ1s

⎞⎠
HP

+ KP

⎛⎝ β0

β1c

β1s

⎞⎠
HP

(6.313)

For a given thrust and positive pitch-flap coupling, the collective input must thus
be increased to counter the feedback of the coning angle and keep the actual root
collective at θ0HP. Similarly, the cyclic pitch required can be determined from these
relations. A special case is that of a rotor with no cyclic pitch control, an important
example of which is the tail rotor. In that case the helicopter operating condition
fixes the orientation of the control plane instead of the tip-path plane. With no cyclic
in the control plane, θCP = θHP + KPβHP gives

θ1cHP + KPβ1cHP = 0 (6.314)

θ1sHP + KPβ1sHP = 0 (6.315)

The orientation of the tip-path plane relative to the no-feathering plane,

β1cNFP = β1cHP + θ1sHP (6.316)

β1sNFP = β1sHP − θ1cHP (6.317)

is fixed by flap moment equilibrium. Eliminating θHP gives

β1cHP = 1
1 + K2

P

(β1cNFP + KPβ1sNFP) (6.318)

β1sHP = 1
1 + K2

P

(β1sNFP − KPβ1cNFP) (6.319)

or

|β|HP = 1√
1 + K2

P

|β|NFP

Thus pitch-flap coupling reduces the flapping magnitude relative to the rotor
shaft. Negative coupling is as effective as positive coupling, because the effect of KP is
to move flap motion from resonant excitation. The sign of the feedback influences the
phase of the response, and large negative pitch-flap coupling does have an adverse
effect on the flapping stability. Using 45° of delta-three on tail rotors (KP = 1) is
common, to reduce the transient and steady-state flapping relative to the shaft.

The “delta-three” notation for pitch-flap coupling has its origins in a conven-
tion for describing flap and lag hinge orientation that was developed at the Cierva
Autogiro Company; see Bennett (1961). When flap and lag hinge inclination was
introduced on the autogyro rotors, the inboard (flap) hinge was designated the
“delta hinge,” and the outboard (lag) hinge designated the “alpha-hinge.” A general
orientation of each hinge was described in terms of the angles made by the hinge
axis as projected on each of the three planes of the axis system (Figure 6.26). With
this definition, a flap hinge has δ2 about 90°, and a lag hinge has α1 about 90°. A
“delta-three hinge” is in the x-y plane, at an angle δ3 from the x-axis. A lag hinge
tilted from the z-axis in the y-z plane produced an automatic change of the blade
pitch for a jump takeoff of the autogyro; it was called an “alpha-one hinge” and
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Figure 6.26. Geometry of the delta hinge.

introduced lag-pitch coupling. An “alpha-two hinge” introduced lag-flap coupling
and was used to improve ground resonance stability. The angle δ3 is still used to
characterize pitch-flap coupling of a rotor blade. Less common is the characteriza-
tion of pitch-lag coupling by an α1 angle, and likely the convention is that α1 is the
tilt of the lag hinge from the z-axis, or tanα1 = −∂θ/∂ζ .

6.19 Tail Rotor

The tail rotor of a single main rotor helicopter is a small diameter rotary wing
with the functions of balancing the main rotor torque and providing yaw control,
which are achieved through the action of the tail rotor thrust on a longitudinal
arm (usually somewhat longer than the main rotor radius) about the main rotor
shaft. The tail rotor is usually a flapping rotor with a low disk loading, to which the
analysis developed in this chapter is applicable. The special features of the tail rotor
configuration make the use of the analysis somewhat different than for a main rotor.
First, the tail rotor has no cyclic pitch control, just collective to control the thrust
magnitude. Second, the tail rotor shaft angle is fixed by the geometry of the tail
rotor installation and the helicopter yaw angle, instead of being determined by force
equilibrium of the rotor. The tail rotor drag or propulsive force adds to the airframe
drag and is balanced by the main rotor.

When there is no cyclic pitch control, the expressions for blade flap moment equi-
librium give the flapping produced, rather than the cyclic required for the rotor oper-
ating state. The tail rotor usually has pitch-flap coupling, which gives the actual pitch
in the hub plane in terms of the flapping: θ1cHP = −KPβ1cHP and θ1sHP = −KPβ1sHP.
A delta-three value of 45° is typical; hence KP = 1. With the shaft orientation fixed,
the hub-plane angle-of-attack iHP is known, and then the tip-path-plane incidence
depends on the longitudinal flapping. Hence the inflow ratio is

λTPP = λHP + μβ1cHP = λi + μ(iHP + β1cHP) (6.320)

and the tail rotor drag force, which must be reacted by the main rotor, is

Dtr = HTPP − TiTPP = HTPP − T (iHP + β1cHP) (6.321)
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Figure 6.27. Rotor blade lag moments.

6.20 Lag Motion

In addition to flap motion, the helicopter rotor blade has motion in the plane of
the disk, called lag or lead-lag. An articulated rotor has a lag or drag hinge, so the
lag motion consists of rigid-body rotation about a vertical axis near the center of
rotation. Generally the lag motion requires a more complicated analysis than does
the flap motion. The flapping motion produces in-plane inertial forces that couple the
flap and lag degrees of freedom of the blade. Also, for low inflow rotors the in-plane
forces on the blade are small compared to the out-of-plane forces, and consequently
more care is required in analyzing the motion resulting from lag moment balance.
The present section is only an introduction to the topic; the rotor lag dynamics are
covered in more detail in Chapter 16.

Consider the in-plane motion of a blade with a lag-hinge offset by a distance eR
from the center of rotation (Figure 6.27). If there is no lag-hinge spring, the offset
cannot be zero, or there would be no way to deliver torque to the rotor. Rigid-
body rotation about the lag hinge is represented by the lag degree of freedom ζ ,
defined to be positive for motion opposing the rotor rotation direction. With a mode
shape η = (r − e)/(1 − e), the in-plane deflection is x = ηζ . A lag-hinge spring with
constant Kζ is included. The in-plane forces acting on the blade section at r, and
their moment arms about the lag hinge at r = e, are as follows:

i) an inertial force mz̈ = mrζ̈ opposing the lag motion, with moment arm (r − e)
about the lag hinge

ii) a centrifugal force m�2r directed radially outward from the center of rotation,
hence with moment arm x(e/r) = ηζ (e/r) about the lag hinge

iii) an aerodynamic force Fx in the drag direction, with moment arm (r − e)
ii) a Coriolis force 2�żz′m = 2�β̇βrm in the same direction as the inertial force,

with moment arm (r − e)

If the lag hinge were at the center of rotation the centrifugal force would produce
no lag moment. The Coriolis force is due to the product of the rotor angular velocity
� and the radially inward section velocity żz′. This radial velocity is the in-plane
component of the flap velocity ż = rβ̇, produced when the blade is coned upward at
angle z′ = β. The Coriolis force is in the blade lead direction when ββ̇ > 0.
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Equilibrium of moments about the lag hinge, including a spring moment Kζ ζ ,
gives the equation of motion:∫ R

e

[
(mηζ̈ )(r − e)+ m�2r

(e
r
ηζ
)

+ 2�ββ̇rm(r − e)
]

dr + Kζ ζ =
∫ R

e
Fx(r − e)dr

(6.322)
Expressed in terms of dimensionless quantities and divided by (1 − e), the equation
becomes

Ibζ̈ +
[

e
1 − e

∫ 1

e
ηm dr + Kζ

�2(1 − e)

]
ζ + 2Ibββ̇ =

∫ 1

e
ηFxdr (6.323)

with Ib = ∫ 1
e η

2m dr. Introducing the blade Lock number γ = ρacR4/Ib (here in terms
of the lag moment of inertia), the differential equation for the blade lag motion is

ζ̈ + ν2
ζ ζ + 2ββ̇ = γ

∫ 1

e
η

Fx

ac
dr (6.324)

The lag dynamics are described by a mass and spring system excited by the in-plane
aerodynamic forces (profile and induced drag) and a Coriolis force due to the blade
flapping. The aerodynamic forces damp the lag motion, but much less effectively
than out-of-plane motion. The natural frequency of the lag motion is

ν2
ζ = e

1 − e

∫ 1
e ηm dr∫ 1

e η
2m dr

+ Kζ
Ib�2(1 − e)

(6.325)

The first term, the centrifugal spring on the lag motion, is zero if there is no hinge
offset. For uniform mass distribution and no hinge spring, the result is simply

ν2
ζ = 3

2
e

1 − e
(6.326)

Articulated rotors typically have a lag frequency of νζ = 0.2 to 0.3/rev. With hingeless
rotors (or with a lag-hinge spring) a higher lag frequency can be attained. To avoid
excessive blade loads, the lag frequency must not be too near 1/rev. Thus hingeless
rotors naturally fall into two classes: soft in-plane rotors, for which the lag frequency
is below 1/rev (typically ν = 0.65 to 0.75/rev); and stiff in-plane rotors, for which the
lag frequency is above 1/rev (typically ν = 1.4 to 1.6/rev). Articulated rotors are soft
in-plane. Gimballed and teetering rotors usually are in the stiff in-plane class. Soft
in-plane rotors exhibit a mechanical instability called ground resonance (see section
20.3) if the lag frequency or the lag damping is too low. For this reason an articulated
rotor and even some soft in-plane hingeless rotors must have mechanical dampers.

The Coriolis force is a second-order term, but because all the in-plane forces on
the blade are small it is an important factor in the blade behavior. The purpose of
the lag hinge on an articulated rotor is alleviation of the in-plane loads generated by
Coriolis forces due to blade flapping. Linearizing the Coriolis term about the blade
position (appropriate for aeroelastic stability analysis) gives

ββ̇ ∼= βtrim δβ̇ + β̇trim δβ (6.327)

For hover, or when averaged trim values are used in forward flight, this becomesββ̇ ∼=
β0 δβ̇. The Coriolis force is therefore due primarily to the radial component of the
flapping velocity of the blade coned at a trim angle β0. For the steady-state solution,
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the Coriolis term acts as a forcing function and can be evaluated by considering the
coning and first harmonics of the flap response:

ββ̇ = (
β0 + β1c cosψ + β1s sinψ

) (−β1c sinψ + β1s cosψ
)

= β0β1s cosψ − β0β1c sinψ + β1cβ1s cos 2ψ + 1
2

(
β2

1s − β2
1c

)
sin 2ψ (6.328)

Consider the steady-state lag motion, which is periodic and therefore can be
written as a Fourier series. The inertial and Coriolis forces have zero mean values,
so the mean lag angle is

ζ0 = γ

ν2
ζ

CQ

σa
(6.329)

since the mean value of
∫ 1

0 r(Fx/ac)dr is the rotor torque coefficientCQ/σa. The mean
lag angle is typically a few degrees, varying from slightly negative in autorotation to
perhaps 10° at maximum power.

The solution for the first harmonic lag motion due to the aerodynamic and
Coriolis forces is

ζ1c = 1
1 − ν2

ζ

(−γ (CQ/σa)1c + 2β0β1s
)

(6.330)

ζ1s = 1
1 − ν2

ζ

(−γ (CQ/σa)1s − 2β0β1c
)

(6.331)

A lag frequency near 1/rev gives large 1/rev lag motion and hence high in-plane blade
loads. The damping, which determines the response amplitude for νζ = 1, is low for
the blade lag motion and therefore does not alter this conclusion. (An articulated
blade with high damping from a mechanical damper also has a small lag frequency.)
Thus the lag frequency of a soft in-plane rotor is generally a compromise between the
requirements of low blade loads (low lag frequency) and ground resonance stability
(high lag frequency). These expressions for ζ1c and ζ1s are somewhat misleading,
because there are actually flap terms in the 1/rev aerodynamic lag moments that
cancel part of the Coriolis excitation.

The solution for the 2/rev lag motion due to the Coriolis forces alone is

�ζ2c = 2β1cβ1s

4 − ν2
ζ

(6.332)

�ζ2s = β2
1s − β2

1c

4 − ν2
ζ

(6.333)

or

|�ζ |2/rev =
√
ζ 2

2c + ζ 2
2s = β2

1c + β2
1s

4 − ν2
ζ

= |β|21/rev

4 − ν2
ζ

(6.334)

The Coriolis forces thus produce a 2/rev lag motion proportional to the square of
the 1/rev flap amplitude.
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Figure 6.28. Helicopter force equilibrium.

6.21 Helicopter Force and Moment Equilibrium

The operating condition of the rotor is determined by force and moment equilibrium
on the entire helicopter. In this section the longitudinal and lateral equilibrium for
a helicopter in steady unaccelerated flight is examined. In the case of longitudinal
force equilibrium the result for large angles is derived. This result is then used to
determine the rotor power required. Although in numerical calculations the simul-
taneous equilibrium of all six components of force and moment on the helicopter
can be found, the basic behavior is illustrated by considering lateral and longitudinal
equilibrium separately.

Longitudinal force equilibrium considers the forces in the vertical, longitudinal
plane of the helicopter (Figure 6.28; see also section 6.4). The helicopter has speed
V and a flight path angle θFP, so the climb or descent velocity is Vc = V sin θFP. The
forces on the rotor are the thrust T and rotor drag H, defined relative to the reference
plane used. The reference plane has angle-of-attack i with respect to the forward
speed (i is positive for forward tilt of the rotor). The forces acting on the helicopter
are the weight W (vertical) and the aerodynamic drag D (in the same direction as
V). Auxiliary propulsion or lifting devices can be accounted for by including their
forces in W and D. From vertical and horizontal force equilibrium,

W = T cos(i − θFP)− D sin θFP + H sin(i − θFP) (6.335)

D cos θFP + H cos(i − θFP) = T sin(i − θFP) (6.336)

which for small angles is W = T and D + H = T (i − θFP). So the rotor thrust equals
the helicopter weight, and horizontal force equilibrium gives the angle-of-attack:

i = θFP + D
W

+ H
T

= λc

μ
+ D

W
+ CH

CT
(6.337)

where λc = Vc/�R ∼= μθFP. Then with H = HTPP − β1cT ,

i = λc

μ
+ D

W
+ CHTPP

CT
− β1c (6.338)

and the inflow ratio is

λ = λi + μi ∼= λi + λc + μD
W

+ μCH

CT
(6.339)
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This is the same result as in section 6.4. If HTPP is neglected, the tip-path-plane
inclination is determined by the helicopter drag and climb velocity alone: iTPP

∼=
θFP + D/W .

For large angles, using the horizontal force equation to eliminate the drag force
allows the vertical force equation to be written:

W = T cos i
cos θFP

(
1 + H

T
tan i

)
(6.340)

Then the horizontal force equation can be written as

D
T cos i

+ H
T
(1 + tan i tan θFP) = tan i − tan θFP (6.341)

or

D
W cos θFP

(
1 + H

T
tan i

)
+ H

T
(1 + tan i tan θFP) = tan i − tan θFP (6.342)

Solving for tan i gives

tan i = tan θFP + D
W cos θFP

+ H
T

1 − H
T

(
tan θFP + D

W cos θFP

) (6.343)

from which the inflow ratio λ = μ tan i + λi can be obtained. This result can be
written:

i = tan−1
(

tan θFP + D
W cos θFP

)
+ tan−1 H

T
= i|H=0 + tan−1 H

T
(6.344)

For small angles this reduces to the previous result. In summary, a forward tilt of the
disk is required to produce the propulsive force opposing the helicopter and rotor
drag, and to provide the climb velocity.

Lateral force equilibrium (Figure 6.28) determines the roll angle φ of the refer-
ence plane relative to the horizontal. The rotor thrust T and side force Y are defined
relative to the reference plane used. The forces on the helicopter are the weight W
and a side force YF (such as that due to the tail rotor). Horizontal and vertical force
equilibrium give

YF + Y cosφ + T sinφ = 0 (6.345)

W = T cosφ − Y sinφ (6.346)

with the solution

tanφ = −YF
W − Y

T

1 − YF
W

Y
T

(6.347)

or

φ = − tan−1 YF

W
− tan−1 Y

T
(6.348)

The rotor disk must roll to provide a component of thrust to cancel the side forces
of the helicopter and rotor. For small angles the result is φ = −YF/W − CY/CT , or
using Y = YTPP − β1sT ,

φ = −YF

W
− CYTPP

CT
+ β1s (6.349)
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Figure 6.29. Helicopter moment equilibrium.

Next consider the equilibrium of pitch moments on the helicopter (Figure 6.29),
which determines the angle-of-attack of the rotor shaft relative to the vertical, is.
Moments are taken about the rotor hub so that the rotor forces are not involved and
the rotor reference plane does not enter the problem. The rotor hub moment My

must be included, however. Acting at the helicopter center-of-gravity are the weight
W , the aerodynamic drag D, and an aerodynamic pitch moment MyF . The position
of the helicopter center-of-gravity is defined relative to the rotor shaft (that is, in the
hub plane axis system). The center-of-gravity is located a distance h below the hub
and a distance xCG forward of the shaft. So xCG is the longitudinal center-of-gravity
position. For small angles, the moment equilibrium about the rotor hub gives

My + MyF + W (his − xCG)− hD = 0 (6.350)

which can be solved for the shaft angle-of-attack:

is = iHP − θFP = xCG

h
+ D

W
− MyF

Wh
− My

Wh
(6.351)

The shaft angle (the orientation of the hub plane relative to the horizontal) has
also been written in terms of the hub-plane tilt (relative to the aircraft velocity) and
the flight path angle (between the velocity and the horizontal). Now the rotor hub
moment is given by the tilt of the tip-path plane relative to the hub plane:

My

Wh
= CMy

hCT
= − (ν2 − 1)/γ

h2CT/σa
β1cHP (6.352)

Next, recall that longitudinal force equilibrium gave

iHP − θFP − D
W

= HHP

T
= HTPP

T
− β1cHP (6.353)

After combining the force and moment equilibrium results to eliminate (iHP − θFP −
D/W ), solving for β1cHP gives

β1cHP = 1

1 + (ν2−1)/γ
h2CT /σa

(−xCG

h
+ MyF

hW
+ CHTPP

CT

)
(6.354)
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and then the shaft angle

iHP = D
W

+ 1

1 + (ν2−1)/γ
h2CT /σa

(
xCG

h
− MyF

hW
+ (ν2 − 1)/γ

h2CT/σa
CHTPP

CT

)
(6.355)

The rotor shaft angle and the tip-path-plane tilt relative to the shaft are determined
by helicopter moment equilibrium. From β1cHP the flapping solution then gives
the longitudinal cyclic control required, θ1sHP. A forward center-of-gravity position
requires a rearward tilt of the rotor and a forward tilt of the helicopter so that the
center-of-gravity remains under the hub and the rotor thrust remains vertical. A flap
frequency above 1/rev reduces the tilt required for a given center-of-gravity offset
and hence reduces the cyclic control travel.

Similarly, roll moment equilibrium gives the shaft roll angle φs (Figure 6.29).
The rotor hub roll moment is Mx, and the forces on the helicopter are the weight W ,
side force YF , and aerodynamic roll moment MxF . The helicopter center-of-gravity
is offset to the right of the rotor shaft by the distance yCG. Then for small angles, roll
moment equilibrium about the rotor hub gives

Mx + MxF + W (hφs − yCG)+ hYF = 0 (6.356)

or

φs = φHP = yCG

h
− YF

W
− MxF

Wh
− Mx

Wh
(6.357)

Now the rotor hub moment is

Mx

Wh
= CMx

hCT
= (ν2 − 1)/γ

h2CT/σa
β1sHP (6.358)

and from lateral force equilibrium

φHP + YF

W
= −YHP

T
= −YTPP

T
+ β1sHP (6.359)

Solving for β1sHP yields

β1sHP = 1

1 + (ν2−1)/γ
h2CT /σa

(
yCG

h
− MxF

hW
+ CYTPP

CT

)
(6.360)

and

φs = −YF

W
+ 1

1 + (ν2−1)/γ
h2CT /σa

(
yCG

h
− MxF

hW
− (ν2 − 1)/γ

h2CT/σa
CYTPP

CT

)
(6.361)

From the lateral tip-path-plane tilt β1sHP, the flapping solution gives the lateral cyclic
control required, θ1cHP.

6.22 Yawed Flow and Radial Drag

The loading on an infinite wing yawed at an angle � to the free stream velocity V is
not the same as the loading on an unyawed wing. The spanwise flow on the yawed
wing influences the boundary layer and hence the wing drag and stall characteristics.
Spanwise flow along the wing generates a spanwise component of the viscous drag
force on the wing sections. For rotor blade aerodynamic analysis, the loading on
the yawed wing must be estimated using corrections to two-dimensional (unyawed)
airfoil data.
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Yawed flow over the rotor blade section can be accounted for by using the equiv-
alence assumptions for swept wings: that the yawed section drag coefficient is given
by two-dimensional airfoil characteristics, and the normal section lift coefficient is
not influenced by yawed flow below stall. Since the wing viewed in a frame moving
spanwise at a velocity V sin� is equivalent to an unyawed wing with free stream
velocity V cos�, except for changes in the boundary layer, there should be no effect
of spanwise flow on the loading below stall. Also, the total viscous drag force is
assumed to be in the direction of the yawed flow. These assumptions are largely
verified by experimental data for yawed wings.

Consider a wing with both yaw � of the free stream and sweep ε of the quarter
chord relative to the analysis section (Figure 6.30). For a rotor blade, the reference
axis typically is a straight radial line through the center of rotation. The analysis
section is in a plane perpendicular to the wing reference line. Hence the wing sweep
angle ε is the angle between the tangent to the quarter-chord locus and the tangent
to the reference line. The total sweep angle of the free stream relative to the quarter
chord is (�+ ε). The normal section is in a plane perpendicular to the quarter-chord
locus. The yawed section is in the direction of the free stream V . The yaw angle �
varies with azimuth in forward flight of the rotor, whereas the sweep angle ε is a fixed
geometric angle of the blade. Figure 6.30 illustrates a blade section at radial station
r, with the normal, yawed, and analysis sections separated for clarity. In the context
of lifting-line theory, the section analysis is based on an infinite wing in uniform,
yawed flow, so the loading is the same at all spanwise stations.

The section lift, drag, and moment coefficients are based on chord and dynamic
pressure of that section, related as cn = c cos ε = cy cos(�+ ε) and qn/ cos2(�+
ε) = q/ cos2� = qy, using the subscripts “n” for the normal section and “y” for the
yawed section. The pressure on the wing is independent of the spanwise position, so
the chordwise integrals are ∫

p
dx
c

= qc� = constant (6.362)∫
p

x
c

dx
c

= qcm = constant (6.363)
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Thus

cos2(�+ ε)c�n = cos2� c� = c�y (6.364)

cos2(�+ ε)cmn = cos2� cm = cmy (6.365)

The total drag force is in the yawed flow direction. The force acting on a section of
width �r is independent of the section orientation: cdq(c�r)/ cos(yaw) = constant.
Thus

cdnqn(cn�rn)

cos(�+ ε) = cdq(c�r)
cos�

= cdyqy(cy�ry) (6.366)

where the area (c�r) is the same for all sections, or

cos(�+ ε)cdn = cos� cd = cdy (6.367)

The radial drag force is R = D tan� (analysis section). For a given upwash at the
blade section (due to blade motion and wake-induced velocity), the product Vα is
constant. Hence the angle-of-attack is

cos(�+ ε)αn = cos�α = αy (6.368)

In summary,

c�n = 1
K2
ε

c� = 1
cos2(�+ ε)c�y (6.369)

cmn = 1
K2
ε

cm = 1
cos2(�+ ε)cmy (6.370)

cdn = 1
Kε

cd = 1
cos(�+ ε)cdy (6.371)

αn = 1
Kε
α = 1

cos(�+ ε)αy (6.372)

where Kε = cos(�+ ε)/ cos�. Since ∂c�y/∂αy = cos(�+ ε)∂c�n/∂αn, the lift-curve
slope of the yawed section is reduced relative to that of the normal section. These
are geometric relations. The only aerodynamic assumption so far is that the total
drag force is in the yawed flow direction.

Assume now that in the linear range, the normal section lift and moment coef-
ficients are not affected by the spanwise component of the flow, so

c�n = c�2D (αn) (6.373)

cmn = cm2D (αn) (6.374)

where c�2D = c�α(α − αz) and cm2D = cmα(α − αz)+ cmz for the linear range. The
yawed section coefficients are to be evaluated from the two-dimensional character-
istics, but at an effective angle-of-attack αe:

c�y = c�2D (αe) (6.375)

cmy = cm2D (αe)+ B (6.376)

with no change in the zero-lift angle:

αe − αz = A(αn − αz) (6.377)
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Then A = cos2(�+ ε) and B = (cos2(�+ ε)− 1)cmz. Compressibility effects
depend on the Mach number of the normal section:

Mn = KεM = cos(�+ ε)My (6.378)

Assume also that the drag is determined by the yawed section aerodynamics: cdy =
cd2D (αe), with αe = αy.

The equivalence assumptions for swept wings thus lead to the following expres-
sions for the analysis section aerodynamic coefficients in terms of two-dimensional
airfoil characteristics:

c� = 1
cos2�

c�2D (αe) (6.379)

cm = 1
cos2�

(cm2D (αe)− cmz)+ K2
ε cmz (6.380)

αe − αz = cos2(�+ ε)
(

1
Kε
α − αz

)
(6.381)

cd = 1
cos�

cd2D (αe) (6.382)

αe − αz = cos(�+ ε)
(

1
Kε
α − αz

)
(6.383)

cr = cd tan� (6.384)

at the normal Mach number Mn = KεM. The sweep parameter is

Kε = cos(�+ ε)
cos�

= cos ε − sin ε tan� (6.385)

These yawed flow corrections must be washed out for angles-of-attack approaching
±90°. Equation 6.384 follows from the assumption that the drag force on the section
has the same sweep angle as the local section velocity, but actually only the skin
friction drag has a spanwise component, not the pressure drag. The chordwise drag at
zero lift can be used as an estimate of the skin friction drag, so cr = cdz tan� instead.
The actual spanwise drag is probably between these two estimates. Moreover, the
skin friction is in the direction of the velocity at the bottom of the boundary layer,
which does not have the same yaw angle as the outer flow.

Without sweep (ε = 0), the analysis section is the normal section, and the yawed
flow correction is simply

c�(α) = c�2D (α cos2�)/ cos2� (6.386)

cd(α) = cd2D (α cos�)/ cos� (6.387)

cm(α) = cm2D (α cos2�)/ cos2� (6.388)

(for αz = 0 as well). These are the normal section coefficients in terms of the normal
section angle-of-attack α and Mach number M, the flow yaw angle �, and two-
dimensional airfoil characteristics. For angles-of-attack in the linear range, there is
no effect of yaw on the lift and moment coefficients. With these transformations,
yaw does delay lift and moment stall, since αmax = αmax2D/ cos2�. The longer chord
of the yawed section gives the boundary layer more time to grow, increasing the
drag coefficient by the factor (cos�)−1. Yaw delays drag stall as well. The airfoil
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shape (including thickness and camber ratios and the leading-edge radius) for the
two-dimensional characteristics should be that of the yawed section.

For a rotor blade with a straight quarter-chord line, the appropriate reference
line for all stations is the blade radial coordinate (the r-axis). The blade section
aerodynamic environment has a yaw angle in forward flight due to the radial velocity
uR = μ cosψ :

cos� =
√

U 2

U 2 + u2
R

=
√

u2
P + u2

T

u2
P + u2

T + u2
R

(6.389)

Modern rotors often have swept tips, which could be modeled using either the r-axis
as the reference line for the entire blade (so ε is the sweep angle of the tip relative to
this reference line) or a reference line tangent to the local quarter-chord locus. The
choice of the analysis section (which is in the plane perpendicular to the reference
line) should not change the results. Using a straight reference line for the entire blade
is generally simpler; in particular, the incremental blade area remains c dr regardless
of the tip planform geometry.

Although the airfoil shape considered for the two-dimensional aerodynamic
characteristics should be that of the yawed section, that shape varies with azimuth
as the yaw angle varies. In hover, or in forward flight at the mean yaw angle, this
yawed section is in planes perpendicular to the r-axis. How airfoil sections are used in
building a blade with a swept tip is an entirely separate issue from what airfoil sections
should be used in the analysis. Rotor blades have been built with airfoil sections in
the swept tip defined relative to the straight blade radial coordinate. Rotor blades
have also been built with sections defined relative to the swept quarter-chord line.

6.23 Profile Power

The contributions of blade profile drag to the rotor forces, torque, and power were
derived in section 6.4:

CTo =
∫ 1

0
σ F̂zodr (6.390)

CHo =
∫ 1

0
σ
(
F̂xo sinψ + F̂ro cosψ

)
dr (6.391)

CQo =
∫ 1

0
σ F̂xor dr (6.392)

(equations 6.93, 6.94, 6.95), and the profile power

CPo = CQo + μCHo − μzCTo (6.393)

(equation 6.117, neglecting the flap motion term). The average over the azimuth is
also required. Because of the symmetry of the flow environment, the side force CYo

is zero for all the models considered in this section. The blade section vertical and
in-plane forces (divided by chord) due to the drag coefficient are

F̂zo = − cd

2
UuP (6.394)

F̂xo = cd

2
UuT (6.395)
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where U 2 = u2
P + u2

T . No small angle approximations have been made in these equa-
tions, so they are applicable to all operating conditions, including hover, edge-
wise flight, and high inflow axial flight. From equation 6.384, the radial drag is
Dr = D tan�, so

F̂ro = 1
2

U 2cd
uR

U
= cd

2
UuR (6.396)

The section yaw angle is cos� = U/W and the resultant section velocity is W ;
W2 = U 2 + u2

R = u2
P + u2

T + u2
R. Fxo is positive opposing the rotor rotation, so has

the sign of uT and changes direction in the reverse flow region. The radial drag Fro is
in the direction of the radial velocity, so has the sign of uR. From equation 6.387, the
drag coefficient corrected for yawed flow is cd = cd2D (α cos�)/ cos� = cd2DW/U .
The section forces are then

F̂zo = − cd2D

2
WuP (6.397)

F̂xo = cd2D

2
WuT (6.398)

F̂ro = cd2D

2
WuR (6.399)

The section velocities are uT = r + μ sinψ , uR = μ cosψ , and uP = μz (neglecting
blade motion terms in uP). Thus

CTo =
∫ 1

0

σcd2D

2
W (−μz)dr (6.400)

CHo =
∫ 1

0

σcd2D

2
W (uT sinψ + uR cosψ)dr =

∫ 1

0

σcd2D

2
W (r sinψ + μ) dr (6.401)

CQo =
∫ 1

0

σcd2D

2
WuT r dr (6.402)

CPo =
∫ 1

0

σcd2D

2
W
(
uT r + μ(r sinψ + μ)+ μ2

z

)
dr =

∫ 1

0

σcd2D

2
W 3dr (6.403)

with the resultant velocity W2 = u2
P + u2

T + u2
R = r2 + 2rμ sinψ + μ2 + μ2

z. Thus the
energy form of the rotor power gives the profile power as the product of the total
section drag (cdW2) and the resultant velocity (W). In terms of the section losses,

dCPo

dr
= σcd2D

2
W 3 = σcd2D

2
U
(
U 2 + u2

R

) = σcd2D

2
U2
(
U + uR

uR

U

)
(6.404)

or

dPo

dr
= UD + uRDr (6.405)

which is the sum of the losses due to the normal drag D and the radial drag Dr. Given
the angle-of-attack distribution over the rotor disk and the section drag coefficient
data (as a function of angle-of-attack and Mach number), these expressions can be
numerically integrated.
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To proceed analytically, we use a mean drag coefficient cd2D (α cos�) = cdo and
a mean solidity σ (or constant chord). The coefficients are then scaled with the hover
profile power:

CTo = σcdo

8

∫ 1

0
4W (−μz)dr = σcdo

8
FT (μ,μz) (6.406)

CHo = σcdo

8

∫ 1

0
4W (r sinψ + μ) dr = σcdo

8
FH (μ,μz) (6.407)

CQo = σcdo

8

∫ 1

0
4WuT r dr = σcdo

8
FQ(μ,μz) (6.408)

CPo = σcdo

8

∫ 1

0
4W 3dr = σcdo

8
FP(μ,μz) (6.409)

defining the functions FT , FH , FQ, and FP that account for the influence of rotor
edgewise and axial velocity. Analytical evaluation of the integrals is not possible for
μ �= 0, but numerical integration is straightforward. For high-speed flight (μ 1 or
μz  1) the profile terms are to highest order

CTo
∼=
∫ 1

0

σcd

2

(
μ2 + μ2

z

)−1/2
(−μz)dr = −σcdo

8
4Vμz (6.410)

CHo
∼=
∫ 1

0

σcd

2

(
μ2 + μ2

z

)−1/2
(μ)dr = σcdo

8
4Vμ (6.411)

CPo
∼=
∫ 1

0

σcd

2

(
μ2 + μ2

z

)3/2
dr = σcdo

8
4V3 (6.412)

whereV 2 = μ2 + μ2
z is the rotor velocity. The profile power at high speed approaches

Po = 1
2ρV 3Abcd = (qAbcd)V (for dimensional total rotor velocity V , q = 1

2ρV 2). The
total drag area of the stopped rotor is thus D/q = Abcd.

For axial flight (μ = 0), W =
√

r2 + μ2
z and the integrals are

CTo = σcdo

8

∫ 1

0
4
(
r2 + μ2

z

)1/2
(−μz)dr

= σcdo

8

⎡⎣√1 + μ2
z (−2μz)− 2μ3

z ln
1 +

√
1 + μ2

z

μz

⎤⎦ (6.413)

CHo = 0 (6.414)

CQo = σcdo

8

∫ 1

0
4
(
r2 + μ2

z

)1/2
r2dr

= σcdo

8

⎡⎣√1 + μ2
z

(
1 + 1

2
μ2

z

)
− 1

2
μ4

z ln
1 +

√
1 + μ2

z

μz

⎤⎦ (6.415)

CPo = σcdo

8

∫ 1

0
4
(
r2 + μ2

z

)3/2
dr

= σcdo

8

⎡⎣√1 + μ2
z

(
1 + 5

2
μ2

z

)
+ 3

2
μ4

z ln
1 +

√
1 + μ2

z

μz

⎤⎦ (6.416)
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Figure 6.31. Profile power factor in edgewise flight.

For the rotor in edgewise flight (μz = 0), W =
√

u2
T + u2

R and

CTo = 0 (6.417)

CHo = σcdo

8

∫ 1

0
4
(
u2

T + u2
R

)1/2
(r sinψ + μ) dr (6.418)

CQo = σcdo

8

∫ 1

0
4
(
u2

T + u2
R

)1/2
uT r dr (6.419)

CPo = σcdo

8

∫ 1

0
4
(
u2

T + u2
R

)3/2
dr (6.420)

The following are approximate expressions for the case μz = 0:

CHo = σcdo

8

(
3μ+ 1.98μ2.7) (6.421)

CQo = σcdo

8

(
1 + 1.5μ2 − 0.37μ3.7) (6.422)

CPo = σcdo

8

(
1 + 4.5μ2 + 1.61μ3.7) (6.423)

These expressions are accurate to 1% up to μ = 1, meaning that the error is less
than 1% relative to numerical integration. Accurate evaluation of the profile power
also depends on the mean drag coefficient. A frequently used approximation is

CPo = σcdo

8

(
1 + 4.65μ2) (6.424)

which has an error less than 1% up to μ = 0.35, and less than 4% up to μ = 0.5.
The factor (1 + 4.65μ2), which gives the profile power increase with speed, has the
following contributions: (1 + μ2) from the rotor torque and 2μ2 from the rotor
drag CHo due to the normal blade drag force; μ2 from CHo due to the radial drag
force; 0.45μ2 due to the yawed-flow increase of the drag coefficient; and 0.20μ2

due to reverse flow. Figure 6.31 shows the profile power factor FP as a function of
advance ratio, comparing the exact result (equation 6.409) with the approximation
FP = 1 + 4.65μ2. Also shown is the power factor with no radial flow or reverse flow,
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and the profile torque factor FQ. The profile power increase is significant at moderate
μ and is very large at high μ. At high speeds, stall and compressibility effects must
also be included in the evaluation of CPo.

Harris (2008) developed approximations valid for all μ and μz by integrating
analytically in r (using mathematics software) and approximating the integration in
ψ :

FT
∼= −μz

√
1 + V2

(
2 + 1

2
μ2 1 + 2V 2

(1 + V 2)2

)

− μz
(
2μ2

z + μ2) ln
1 + √

1 + V 2

V
(6.425)

FH
∼= μ

√
1 + V2

(
3 + 1

4
μ2 V2 − 1
(1 + V 2)2

)

+ μ
(
μ2

z + 3
4
μ2
)

ln
1 + √

1 + V 2

V
(6.426)

FQ
∼=
√

1 + V2

(
1 + 1

2
V2 + 1

8
μ2 4 + V2 − 4V 4

(1 + V 2)2
+ 3

16
μ4

1 + V2

)

−
(

1
2
μ4

z + 1
2
μ2

zμ
2 + 3

16
μ4
)

ln
1 + √

1 + V 2

V
(6.427)

FP
∼=
√

1 + V2

(
1 + 5

2
V2 + 3

8
μ2 4 + 7V2 + 4V4

(1 + V 2)2
− 9

16
μ4

1 + V2

)

+
(

3
2
μ4

z + 3
2
μ2

zμ
2 + 9

16
μ4
)

ln
1 + √

1 + V 2

V
(6.428)

with here V 2 = μ2 + μ2
z. These expressions have an error less than 1% for all speeds.

They are exact for axial flow (μ = 0). Note that FP
∼= 4V 3 for large V .

It is useful to examine separately the effects of reverse flow, radial drag, and
the yawed-flow drag coefficient. The integrals for edgewise flight (μz = 0) can be
written as

CHo = σcdo

8

∫ 1

0

4
cos�

(uT sinψ + uR cosψ) |uT |dr (6.429)

CQo = σcdo

8

∫ 1

0

4
cos�

uT |uT |r dr (6.430)

CPo = σcdo

8

∫ 1

0

4
cos�

(
u2

T + u2
R

) |uT |dr (6.431)

since W = |uT |/ cos�. Reverse flow gives the absolute value of uT (the integrals are
handled as in equation 6.182). Radial drag contributes the uR terms. The (cos�)−1

factor is the increase of the drag coefficient due to yawed flow. Neglecting all three
effects reduces the model to that considered in section 6.4:

CHo = σcdo

8

∫ 1

0
4u2

T sinψ dr = σcdo

8
2μ (6.432)
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CQo = σcdo

8

∫ 1

0
4u2

T r dr = σcdo

8

(
1 + μ2) (6.433)

CPo = σcdo

8

∫ 1

0
4u3

T dr = σcdo

8

(
1 + 3μ2) (6.434)

Including the radial drag force gives

CHo = σcdo

8

∫ 1

0
4uT

(
r sinψ + μ)dr = σcdo

8
3μ (6.435)

CQo = σcdo

8

∫ 1

0
4u2

T r dr = σcdo

8

(
1 + μ2) (6.436)

CPo = σcdo

8

∫ 1

0
4
(
u2

T + u2
R

)
uT dr = σcdo

8

(
1 + 4μ2) (6.437)

The radial drag increases the rotor H-force by 50%, which increases the profile
power in forward flight. Including reverse flow only (a form frequently encountered
in the literature) gives

CHo = σcdo

8

∫ 1

0
4uT |uT | sinψ dr = σcdo

8

(
2μ+ 1

2
μ3
)

(6.438)

CQo = σcdo

8

∫ 1

0
4uT |uT |r dr = σcdo

8

(
1 + μ2 − 1

8
μ4
)

(6.439)

CPo = σcdo

8

∫ 1

0
4u2

T |uT |dr = σcdo

8

(
1 + 3μ2 + 3

8
μ4
)

(6.440)

for μ ≤ 1. With both the radial drag and reverse flow included,

CHo = σcdo

8

∫ 1

0
4 (r sinψ + μ) |uT |dr = σcdo

8

(
3μ+ 3

4
μ3
)

(6.441)

CQo = σcdo

8

∫ 1

0
4uT |uT |r dr = σcdo

8

(
1 + μ2 − 1

8
μ4
)

(6.442)

CPo = σcdo

8

∫ 1

0
4
(
u2

T + u2
R

) |uT |dr = σcdo

8

(
1 + 4μ2 + 5

8
μ4
)

(6.443)

The effect of reverse flow is smaller than the radial drag force effect, because of the
low dynamic pressure in the reverse flow region.

Glauert (1926) obtained the energy expression for the profile power, as an
extension of the propeller (axial flow) result:

CPo =
∫ 1

0

σcd

2

(
u2

T + u2
R

)3/2
dr (6.444)

and by blade element theory,

CPo =
∫ 1

0

σcd

2
u3

T dr = σcdo

8

(
1 + 3μ3) (6.445)

(neglecting reverse flow and radial flow). To evaluate the energy expression, he
averaged the values at ψ = 0°, 90°, 180°, and 270° (where the radial integration
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can be performed analytically). Writing this average as CPo = (σcdo/8)(1 + nμ2), he
obtained

FP = 1 + nμ2 ∼= 1
2

(
1 + 6μ2 + μ4)+ 1

4

(
2 + 5μ2)√1 + μ2

+ 3
8
μ4 ln

√
1 + μ2 + 1√
1 + μ2 − 1

(6.446)

To orderμ2 this gives n = 4.5. Atμ = 1 this approximation gives n = 6.13. Equation
6.446 has an error less than 1% up to μ = 1.9. This result was largely ignored, even
by Lock and those who built on the work of Glauert and Lock. Subsequent work
started with blade element theory rather than the energy method, hence omitting
the radial flow effects.

Cierva (1933) developed an approximation for CPo by introducing a change
of variables in the integration. Since U 2 = u2

T + u2
R = (r + μ sinψ)2 + (μ cosψ)2, it

follows that dr = (U/uT )dU = dU/(cos�); so

CPo = σcdo

2

∫ 1

0
U 3dr = σcdo

2

∫ √
1+μ2+2μ sinψ

μ

U 3

cos�
dU (6.447)

Setting the lower limit to zero and neglecting the (cos�)−1 factor (compensating
errors), the integrations over U and ψ can be performed:

CPo = σcdo

2

∫ √
1+μ2+2μ sinψ

0
U 3dU = σcdo

8

(
1 + 4μ2 + μ4) (6.448)

which has an error less than 1% only up toμ = 0.15, and less than 4% up toμ = 0.30.
Bennett (1940) derived an expression for CPo by expanding the integral for small

μ:

CPo = σcdo

8

(
1 + 9

2
μ2 − 3

4
μ4 lnμ+ 3

16
μ6 − 3

128
μ8 + . . .

)
(6.449)

Expressed as CPo = (σcdo/8)(1 + nμ2), equation 6.449 gives n = 4.5 at μ = 0 and
n = 4.66 at μ = 1. Bennett suggested using n = 4.65 (the origin of equation 6.424),
although the expansion is only valid for small μ. Equation 6.449 has an error less
than 1% up to μ = 0.3, and less than 4% up to μ = 0.5.

The best calculation of profile power is obtained by using the force balance
method to evaluate the rotor torque, then subtracting induced and propulsive power
(section 6.4). A simple calculation of profile power, as for a conceptual design
analysis, is obtained using equations 6.409 and 6.428, with an estimate of the mean
drag coefficient. The expressions for CPo with various assumptions and approximates
illustrate the contributions to the profile power. In particular, equations 6.434, 6.440,
and 6.424 are encountered in the literature. The distribution of profile power over
the rotor disk is given by equation 6.405. A measure of the rotor profile power is
the mean drag coefficient, cdmean = (8CPo/σ )/FP, where FP (from equation 6.428)
accounts for the increase of the mean dynamic pressure with rotor edgewise and
axial flight speed.
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Figure 6.32. C.6A autogyro at Farnborough.

6.24 History

6.24.1 The Beginning of Aeromechanics

Rotorcraft aeromechanics analysis began with Glauert. In a remarkable November
1926 report for the British Aeronautical Research Council and a paper read two
months later to the Royal Aeronautical Society, H. Glauert of the Royal Aircraft
Establishment presented the foundations of induced and profile power analysis for
rotors, and introduced blade element theory for performance and hub loads of flap-
ping rotors in forward flight (Glauert (1926, 1927)). The impetus for this work was
given by the demonstration flights in Britain of the Cierva C.6A autogyro, carried
out at Farnborough in October 1925 (Figure 6.32), and a lecture by Juan de la Cierva
that was read to the Royal Aeronautical Society on October 22 (Cierva (1926)). The
Royal Aircraft Establishment (RAE) work was motivated by the need to check
the claims that Cierva was making for his aircraft. The first general account of
Cierva’s invention was received in Britain in February 1925, which led immediately
to preliminary wind-tunnel tests and a theoretical investigation. Following the C.6A
demonstration, wind-tunnel tests were conducted at the National Physical Labora-
tory (NPL) and RAE (1926–1927), and model autogyro drop tests were also done
(1926). The more detailed theory (Glauert (1926)) provided a satisfactory estimate
of maximum lift, an account of flapping, and a qualitative explanation of the side
force. The theory was extended by C.N.H. Lock of the National Physical Laboratory
in ARC reports of March and May 1927 (Lock (1927)). The history is documented
in the original reports, especially Glauert and Lock (1928); see also Johnson (2011).

Glauert proposed an expression (equation 5.9) for the rotor induced velocity,
making the connection between propeller and wing induced power. He characterized
the result as a “logical generalization of the ordinary aerofoil formula,” reducing for
small incidence angle to the standard formula for the normal induced velocity of
a wing of span 2R, and for incidence angles nearly 90° to the ordinary momentum
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formula for an airscrew. “It is anticipated therefore that the formula will be valid
over a wide range of angle of incidence.” The key fact permitting this generalization
is that the mass flow affected by a wing is that through a circle around the wing span.
Glauert recognized that for a circular wing this circle has the same area as the rotor
disk.

In an appendix, Glauert (1926) considered the energy losses of an autogyro.
“Two main sources of loss of energy are considered, due respectively to the induced
velocity caused by the thrust and to the profile drag of the blades. An additional
source of loss of energy is the periodic distribution of thrust over the disc of the
windmill but no simple method has been found of estimating its magnitude.” First
considering just the blade section tangential velocity, the energy loss due to the
drag of the blades was written as in equations 6.118 and 6.445, ignoring the axial
velocity and the blade section radial velocity. The effect of the former is small
for edgewise flight of the helicopter rotor, but the effect of the radial velocity is
important. Including the radial velocity gave the profile energy loss as in equations
6.409 and 6.446. This result for the profile power was developed as a check of the
blade element theory result, particularly at low disk incidence and high speed. Since
the connection between the two approaches is complex, the blade element theory
form was viewed as the primary result. That was unfortunate since the energy form
was in fact more accurate and predicted better performance for the autogyro.

Glauert introduced blade element theory for edgewise-moving rotors. “The
autogyro is essentially a windmill of low pitch working in a sidewind, and it is natural
to apply to it the modern methods of strip theory combined with the Prandtl theory
of interference, which have been so successful in the case of the monoplane wing
and the ordinary airscrew” (Lock (1927)). Expressions were developed for the blade
section velocities including flight speed, rotation, flapping, and induced velocity. The
section analysis was based on two-dimensional airfoil characteristics with a constant
lift-curve slope and a mean drag coefficient. “The aerodynamic characteristics of the
aerofoil section must be taken to correspond to two dimensional motion or infinite
aspect ratio in accordance with modern aerofoil and airscrew theory” (Glauert
(1927)). The flapping equation of motion was derived from equilibrium of inertial,
centrifugal, aerodynamic, and weight moments about the flap hinge (with no hinge
offset).

Glauert neglected squares and higher powers of advance ratio μ. Considering
the breakdown of the small angle assumption near reverse flow, he viewed the limit
of validity to be μ < 0.5. The maximum speed of the C.6A gave about μ = 0.4,
although later autogyros would operate at much higher advance ratios. However,
an order μ blade element analysis led to performance estimates more pessimistic
than obtained by energy methods. In a report published the next year, Lock (1927)
eliminated the order μ assumption of the blade element analysis and verified that
the blade element analysis and energy method gave identical performance results.
He also added cyclic pitch and solved for the higher harmonics of flap motion.

The results for lateral flapping and side force in Glauert’s model implied a lat-
eral shaft-axis force proportional to thrust and forward speed, the direction being to
port (the retreating side) with curved blades and to starboard with straight blades.
This did not agree with the observed lateral movement of the shaft on the Cierva
autogyro. The discrepancy was attributed to the assumption of uniform inflow over
the rotor disk. Considering the wake of a circular wing, the induced velocity is
expected to increase from the front to the rear of the disk. So Glauert introduced an
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increment of the induced velocity proportional to the distance behind the center of
the disc; hence v + v1(r/R) cosψ for the total, with an estimate of v1

∼= v. The result-
ing correction improved the prediction of the lateral shaft angle, but the correction
was not sufficiently large.

Between them, Glauert and Lock established many of the key concepts and
even the notation of rotor aeromechanics. Glauert (1926) introduced the concept
of the tip-path plane, and derived the expression for the mean lift coefficient. He
used β for the blade flap angle (but not a Fourier series expansion), and σ for rotor
solidity. Lock (1927) described the equivalence of flapping and feathering and used
a negative Fourier series for the flap motion (to become NACA notation). He used
μ = V cos i/�R for the advance ratio. Lock introduced the parameter representing
the ratio of aerodynamic and inertial forces on the blade, γ = ρacR4/Ib, which con-
sequently bears his name (though differing by a factor of 2 from the U.S. definition,
because of the different convention for the lift coefficient).

Cierva sent a letter as his contribution to the discussion of Glauert’s 1927 RAS
lecture, in which he strongly objected to Glauert’s results and conclusions. Glauert
replied to the discussion: “I believe that [the autogyro] is less economical than
an aeroplane, but that it has very considerable advantages as regards safety and
ease of landing.” There would seem to be common ground with Cierva’s remark:
“The autogyro will have performance at least as good as, and possibly better than,
the aeroplane, since lift/drag is not the sole criterion of performance.” However,
there was direct disagreement regarding the values of the lift-to-drag ratio and
vertical rate of descent, Glauert’s estimate of the performance being significantly
less favorable than Cierva’s statements. From today’s perspective, Glauert’s analysis
is considered optimistic. Cierva was likely most concerned about the possible impact
of Glauert’s results on his continued development of the autogyro, for he concluded
his letter with a remark on “the risk of mistake which is necessarily involved in trying
to limit from the beginning the possibilities and improvements of any new system.”

6.24.2 After Glauert

In the decades following Glauert’s work, development of the basic analysis of aut-
ogyro and helicopter rotors progressed in a series of steps built on the foundation
provided by Glauert. Glauert considered a flapping rotor with no twist, constant
chord, no hinge offset, and no cyclic pitch, as well as small angle aerodynamics with
constant lift-curve slope and mean drag coefficient. The rotor loads and flapping
(coning and first harmonic) were obtained, with only first-order terms in advance
ratio retained. Lock (1927) extended Glauert’s analysis by including higher powers
of advance ratio, second harmonic flapping, and cyclic pitch. He showed the equiv-
alence of no-feathering plane and tip-path plane analyses, and the equivalence of
the blade element theory and energy method results for power (though neglecting
radial flow and reverse flow).

Wheatley (1934) extended the theory of Glauert and Lock and evaluated the
accuracy of the theory by comparing calculations with test results. He considered
a flapping rotor with no hinge offset; linear twisted, constant-chord blades; the tip
loss factor; and linear induced velocity variation. Wheatley included reverse flow
(accounting for the sign of lift and drag in the reverse flow region), but still with small
angle aerodynamics, and he neglected radial flow and radial drag effects in the profile
power. The calculations were compared with test data for the Pitcairn autogyro.
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The comparison was generally good up to about μ = 0.5. A significant discrepancy
was in the calculation of lateral flapping, which was typically 1.5° low in magnitude.
Including an estimate of the longitudinal inflow gradient (κx = 0.5) reduced the error
to about 1.0°. Wheatley considered the likely source of this discrepancy to be the
simple induced velocity variation used.

Sissingh (1939) extended Wheatley’s analysis, considering a flap-hinge offset and
eliminating the assumption of a constant (mean) drag coefficient by using a general
drag polar of the form cd = δ0 + δ1α + δ2α

2.
Bailey (1941) put Wheatley’s analysis in practical form for routine use by express-

ing all quantities (thrust, torque, and profile power) as direct functions of the blade
collective pitch and no-feathering-plane inflow ratio. The coefficients of these expres-
sions depend on the rotor twist, Lock number, tip loss factor, and advance ratio.
Bailey considered a flapping rotor with linearly twisted, constant-chord blades and
a drag polar cd = δ0 + δ1α + δ2α

2. The aerodynamic model included reverse flow (to
order μ4), but still assumed small angles to evaluate the angle-of-attack and used
a constant lift-curve slope, c� = aα. The theory used uniform inflow and neglected
stall, compressibility, radial flow, and radial drag. Bailey developed a method to find
the coefficients δ0, δ1, and δ2 from the aerodynamic characteristics of the airfoil sec-
tion (see section 8.8). The expression cd = 0.0087 − 0.0216α + 0.400α2 was obtained
for the NACA 23012 airfoil at Re = 2 × 106, which gives the drag accurately to about
α = 12°. This expression has been used often for the blade drag in rotor analyses,
even for other airfoil sections. He considered the blade stall limit, in terms of when
the quadratic expression for cd is no longer valid. Bailey presented a solution proce-
dure for the rotor performance. The procedure was iterative for helicopter rotors,
but for autogyros involved solving CQ = 0 directly for the inflow ratio. Bailey and
Gustafson (1944) and Gustafson (1953) presented helicopter performance charts
based on Bailey’s theory.

Castles and New (1952) extended the theory of Wheatley and Bailey to large
angles of pitch and inflow. They represented the section aerodynamic coefficients as
c� = a sinα and cd = ε0 + ε1 sinα + ε2 cosα; substituted trigonometric expansions of

sinα = sin(θ − φ) = sin θ cosφ − sinφ cos θ (6.450)

cosα = cos(θ − φ) = cos θ cosφ + sinφ sin θ (6.451)

and used large angle expressions sinφ = uP/(u2
T + u2

P)
1/2 and cosφ = uT/(u2

T +
u2

P)
1/2. They considered an articulated blade with arbitrary twist and chord dis-

tributions, and root cutout. A linear inflow distribution was used.
Gessow and Crim (1952) also extended the theory of Wheatley and Bailey

to large pitch and inflow angles, for a linearly twisted, constant-chord blade. The
angle-of-attack α = θ − φ was still assumed to be small. They observed that the
flow at high speeds during powered operation is usually stalled in the reverse flow
region, so reverse flow aerodynamics were approximated by using stalled values of
lift and drag coefficients: constant c� = 1.2 and cd = 1.1 for powered flight, c� = 0.5
and cd = 0.1 for autorotation. Based on this theory, Tapscott and Gessow (1956)
presented charts of the calculated blade flap motion, and Gessow and Tapscott
(1956) prepared performance charts.

Gessow and Crim (1955) developed the equations and a solution procedure for
the numerical integration of the transient flap motion. They considered an articulated
rotor with offset flapping hinge (or a teetering rotor); large angles of flapping, inflow,
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and pitch; and general airfoil characteristics (lift and drag coefficients as a function
of angle-of-attack and Mach number). The solution was obtained by numerical
integration using a digital computer. The analysis was developed for investigations
of the flap dynamic stability (from the transient motion) and rotor performance
(from the converged periodic solution). By using numerical integration, general
aerodynamic characteristics could be considered, including stall, compressibility, and
reverse flow (assuming that the required airfoil characteristics are available). Gessow
(1956) further developed the equations for numerical calculation of the aerodynamic
characteristics of rotors in a form intended for digital computer applications. The
model included arbitrary blade twist, chord, and mass distribution; general two-
dimensional aerodynamic coefficients for the blade airfoil; and large angles of pitch
and inflow. The blade flap angle was assumed to be small, and radial flow effects were
still neglected. The solution procedure solved the flap equation of motion directly
for the harmonics of the blade motion. Gessow and Tapscott (1960) presented tables
and charts of calculated rotor performance, including flight conditions well into the
stall range, based on the analyses of Gessow and Crim (1955) and Gessow (1956).
Tanner (1964a, 1964b) developed a performance calculation method based on the
analysis of Gessow and Crim, and prepared performance charts and tables.

This series of analytical developments was accompanied by a shift of the work
from Britain (RAE and NPL) to the United States (NACA), and from autogyros to
helicopters. The progression from Glauert was clear up to the introduction of the
digital computer, which changed the way problems would be formulated and solved.

6.25 REFERENCES

Bailey, F.J., Jr. “A Simplified Theoretical Method of Determining the Characteristics of a
Lifting Rotor in Forward Flight.” NACA Report 716, 1941.

Bailey, F.J., Jr., and Gustafson, F.B. “Charts for Estimation of the Characteristics of a Heli-
copter Rotor in Forward Flight; I – Profile Drag-Lift Ratio for Untwisted Rectangular
Blades.” NACA ACR L4H07, August 1944.

Bennett, J.A.J. “Rotary-Wing Aircraft.” Aircraft Engineering, 12:133 (March 1940).
Bennett, J.A.J. “The Era of the Autogiro.” The Journal of the Royal Aeronautical Society,

65:610 (October 1961).
Castles, W., Jr., and New, N.C. “A Blade-Element Analysis for Lifting Rotors That Is Appli-

cable for Large Inflow and Blade Angles and Any Reasonable Blade Geometry.” NACA
TN 2656, July 1952.

Charles, B.D., and Tanner, W.H. “Wind Tunnel Investigation of Semirigid Full-Scale Rotors
Operating at High Advance Ratios.” USAAVLABS TR 69-2, January 1969.

de la Cierva, J. “The Development of the Autogyro.” The Journal of the Royal Aeronautical
Society, 30:181 (January 1926).

de la Cierva, J. “Engineering Theory of the Autogiro; Theory of Stresses on Autogiro Rotor
Blades.” 1933.

Coleman, R.P., Feingold, A.M., and Stempin, C.W. “Evaluation of the Induced-Velocity Field
of an Idealized Helicopter Rotor.” NACA ARR L5E10, June 1945.

Datta, A., Yeo, H., and Norman, T.R. “Experimental Investigation and Fundamental Under-
standing of a Slowed UH-60A Rotor at High Advance Ratios.” American Helicopter
Society 66th Annual Forum, Virginia Beach, VA, May 2011.

Gessow, A. “Equations and Procedures for Numerically Calculating the Aerodynamic Char-
acteristics of Lifting Rotors.” NACA TN 3747, October 1956.

Gessow, A., and Crim, A.D. “An Extension of Lifting Rotor Theory to Cover Operation at
Large Angles of Attack and High Inflow Conditions.” NACA TN 2665, April 1952.



242 Forward Flight

Gessow, A., and Crim, A.D. “A Method for Studying the Transient Blade-Flapping Behavior
of Lifting Rotors at Extreme Operating Conditions.” NACA TN 3366, January 1955.

Gessow, A., and Crim, A.D. “A Theoretical Estimate of the Effects of Compressibility on
the Performance of a Helicopter Rotor in Various Flight Conditions.” NACA TN 3798,
October 1956.

Gessow, A., and Tapscott, R.J. “Charts for Estimating Performance of High-Performance
Helicopters.” NACA Report 1266, 1956.

Gessow, A., and Tapscott, R.J. “Tables and Charts for Estimating Stall Effects on Lifting-
Rotor Characteristics.” NASA TN D-243, May 1960.

Glauert, H. “A General Theory of the Autogyro.” ARC R&M 1111, November 1926.
Glauert, H. “The Theory of the Autogyro.” The Journal of the Royal Aeronautical Society,

31:198 (June 1927).
Glauert, H., and Lock, C.N.H. “A Summary of the Experimental and Theoretical Investiga-

tions of the Characteristics of an Autogyro.” ARC R&M 1162, April 1928.
Gustafson, F.B. “Charts for Estimation of the Profile Drag-Lift Ratio of a Helicopter Rotor

Having Rectangular Blades with -8 deg Twist.” NACA RM L53G20a, October 1953.
Harris, F.D. “Rotary Wing Aerodynamics – Historical Perspective and Important Issues.”

American Helicopter Society National Specialists’ Meeting on Aerodynamics and Aeroa-
coustics, Arlington, TX, February 1987.

Harris, F.D. “Rotor Performance at High Advance Ratio; Theory versus Test.” NASA CR
2008-215370, October 2008.

Johnson, W. “Milestones in Rotorcraft Aeromechanics.” NASA TP 2011-215971, May 2011.
Lock, C.N.H. “Further Development of Autogyro Theory.” ARC R&M 1127, March 1927.
McCloud, J.L., III, Biggers, J.C., and Stroub, R.H. “An Investigation of Full-Scale Helicopter

rotors at High Advance Ratios and Advancing Tip Mach Numbers.” NASA TN D-4632,
July 1968.

Peters, D.A., and Ormiston, R.A. “Flapping Response Characteristics of Hingeless Rotor
Blades by a Generalized Harmonic Balance Method.” NASA TN D-7856, February 1975.

Sissingh, G. “Contribution to the Aerodynamics of Rotating-Wing Aircraft.” NACA TM 921,
December 1939.

Tanner, W.H. “Charts for Estimating Rotary Wing Performance in Hover and at High For-
ward Speeds.” NASA CR 114, November 1964a.

Tanner, W.H. “Tables for Estimating Rotary Wing Performance at High Forward Speeds.”
NASA CR 115, November 1964b.

Tapscott, R.J., and Gessow, A. “Charts for Estimating Rotor-Blade Flapping Motion of High-
Performance Helicopters.” NACA TN 3616, March 1956.

Wheatley, J.B. “An Aerodynamic Analysis of the Autogiro Rotor with a Comparison Between
Calculated and Experimental Results.” NACA Report 487, 1934.

White, F., and Blake, B.B. “Improved Method of Predicting Helicopter Control Response
and Gust Sensitivity.” American Helicopter Society 35th Annual Forum, Washington, DC,
May 1979.

Yamauchi, G.K., and Johnson, W. “Trends of Reynolds Number Effects on Two Dimensional
Airfoil Characteristics for Helicopter Rotor Analyses.” NASA TM 84363, April 1983.



7 Performance

The calculation of rotorcraft performance is largely a matter of determining the
power required and power available over a range of flight conditions. The power
information can then be translated into quantities such as payload, range, ceiling,
speed, and climb rate, which define the operational capabilities of the aircraft. The
rotor power required is divided into four parts: the induced power, required to
produce the rotor thrust; the profile power, required to turn the rotor through
the air; the parasite power, required to move the aircraft through the air; and the
climb power, required to change the gravitational potential energy. The aircraft has
additional contributions to power required, including accessory and transmission
losses and perhaps anti-torque power. In hover there is no parasite power, and
the induced power is 65% to 75% of the total. As the forward speed increases, the
induced power decreases, the profile power increases slightly, and the parasite power
increases until it is dominant at high speed. Thus the total power required is high at
hover, because of the induced power with a low but reasonable disk loading. At first
the total power decreases significantly with increasing speed, as the induced power
decreases; then it increases again at high speed, because of the parasite power.
Minimum power required occurs roughly in the middle of the helicopter speed
range.

The task in rotorcraft performance analysis is the calculation of the rotor forces
and power. Procedures to perform these calculations have been developed in the
preceding chapters. There are two basic approaches to the calculation of rotor per-
formance: the force-balance method and the energy-balance method. In the force-
balance method, the blade section forces are integrated to obtain the net rotor
forces and torque. The solution also requires knowledge of the rotor induced veloc-
ity and blade motion to define the blade angle-of-attack distribution. The aircraft is
trimmed to force and moment equilibrium to determine the rotor forces and atti-
tude required to maintain the specified flight condition. Even in its simplest form,
the force-balance method is complicated, so is best suited for numerical calcula-
tions, when it can be used with the most advanced models of the rotor motion and
aerodynamics.

The second approach to rotorcraft performance analysis is the energy-balance
method, in which the power required is expressed in terms of the individually
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identifiable sources of energy loss in the aircraft. In section 6.4, the energy-balance
expression was derived from the force-balance relations, showing that the two meth-
ods are equivalent and must give identical results when the same assumptions are
used. The energy-balance method is most useful for routine performance calcula-
tions for a number of reasons. First, the aircraft longitudinal force equilibrium has
already been considered, so the power is obtained directly without the necessity of
calculating the rotorcraft trim as well. Second, the parasite and climb power are
given in simple yet exact forms, and with separate expressions given for the induced
and profile power, using approximate results for these terms is straightforward. With
the simplest approximations for the induced and profile power, the energy-balance
method is fast and reasonably accurate and hence is well suited for use in conceptual
design. For more detailed performance analyses a better estimate of the induced and
profile power is needed, requiring again a calculation of the blade angle-of-attack
distribution. Thus with numerical methods the force-balance and energy-balance
methods are computationally equivalent, although separating the total power into
the induced, profile, parasite, and climb components is still useful to interpret the
results.

A comprehensive analysis of rotorcraft performance must consider an arbi-
trary rotor, including general chord, twist, and profile distributions, and it must be
applicable to extreme flight conditions, such as high loading or high speed. The
climb and parasite power can be obtained exactly, assuming that the aircraft flight
path angle and the parasite drag are known. Thus efforts to improve the calcu-
lation of rotorcraft performance have been primarily concerned with the induced
power and profile power. Improving the estimate of the induced power requires
a calculation of the nonuniform induced velocity distribution, as well as an accu-
rate loading distribution. The profile power estimate is improved by considering
the actual angle-of-attack and Mach number distribution in calculating the sec-
tion drag. Obtaining the blade angle-of-attack requires the nonuniform induced
velocity calculation and also a solution for the blade motion. At extreme oper-
ating conditions, more blade degrees of freedom than the fundamental flapping
mode must be considered. Thus an improved performance analysis is a complicated
numerical problem requiring more attention to the details of the rotor and its aero-
dynamics.

Thus rotorcraft performance analysis generally takes one of two forms: the
energy-balance method, using fairly simple expressions for the induced and profile
power, or a numerical calculation by the force-balance method, using as detailed a
model as is possible and appropriate. Before digital computers were widely avail-
able, rotor performance charts were commonly prepared. These charts were based
on analytical or numerical solutions, usually by the force balance method. Now
computational resources permit routine numerical calculations of performance for
particular rotor parameters and operating conditions, beginning early in the design
process.

The equations for rotor performance in hover and forward flight are summarized
in this chapter, and the attributes that describe the rotorcraft performance capabil-
ities are discussed, including maximum speed, rate of climb and descent, ceilings,
range, and endurance. In a broader sense, the helicopter performance requirement
is the ability to complete a specified mission most efficiently, and the capability to
calculate these specific performance quantities is required not only to define the
operational limits of the aircraft but also to perform a mission analysis.
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7.1 Rotor Performance Estimation

7.1.1 Hover and Vertical Flight Performance

The rotor power required in vertical flight has been obtained in the form CP =
CPi + CPo + CPc, where the induced, profile, and climb power coefficients are given
by

CPi =
∫ B

rR

λidCT (7.1)

CPo =
∫ 1

rR

σcd

2
r3dr (7.2)

CPc = λcCT (7.3)

(equation 3.84). In dimensional form

P = Pi + Po + Pc =
∫ B

rR

(V + v)dT + ρA(�R)3CPo (7.4)

The induced power CPi is the energy created in the rotor wake by imparting a down-
ward momentum to the air, from which the lift reaction on the rotor is obtained.
Momentum theory gives the simplest estimate of the induced power. Using a cor-
relation of measured rotor performance data to define the law in regions where
momentum theory is not applicable, the sum of induced and climb power in verti-
cal flight is given by a universal curve of (V + v)/vh = P/Ph as a function of V/vh,
where v2

h = T/2ρA; see Figure 4.5. For hover, the induced velocity is v = κvh =
κ
√

T/2ρA, where κ is an empirical factor correcting for the additional losses, prin-
cipally tip losses and losses due to nonuniform inflow. Typically κ = 1.10 to 1.15
(section 3.3).

The profile power CPo is the energy dissipated by the viscous drag of the blade.
A rough estimate of CPo is obtained by using a mean blade drag coefficient: CPo =
σcdo/8 for hover. A more accurate estimate requires an integration of the drag
coefficient over the span of the blade, using the actual angle-of-attack distribution
and Mach number of the blade.

Hover performance can be expressed in terms of the polar of CP as a function
of CT . The approximate expression for the hover polar is

CP = κC3/2
T√
2

+ σcdo

8
(7.5)

(equation 3.91), or

P = κT 3/2

√
2ρA

+ ρA(�R)3
σcdo

8
(7.6)

In vertical flight the polar is CP = (λi + λc)CT + σcdo/8, where for small climb or
descent rates λi + λc

∼= κλh + 1
2λc (equation 4.26).

The rotor hovering efficiency is expressed in terms of the figure of merit:

M = T
√

T/2ρA
P

= C3/2
T /

√
2

CP
(7.7)
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(equation 3.10). The figure of merit is a measure of the relative contributions of the
induced and profile power in hover. Typically the profile power is at least 10% to
20% of the total power, and the nonideal induced power is 10% to 15% of the ideal
power, giving a maximum figure of merit of M = 0.74 to 0.78, and typically M = 0.70
at design loading (section 3.3).

The helicopter power available is obtained from the performance data for the
engine. The engine power usually decreases as the altitude or temperature increases,
and there is some influence of speed. Thus the variations in the power available are
important in calculating the helicopter performance. There are power losses in the
engine and transmission that must also be accounted for, including gear train losses,
any power required to cool the transmission and engine, and the power required to
drive accessories such as the generator and oil pump. These losses can be expressed
in terms of an overall efficiency factor η < 1, relating the total power required to the
rotor power: Preq = 1

η
Protor. Typically the engine and drive train losses correspond to

η = 0.95 to 0.96 with turbine engines.
The helicopter has power losses in addition to those of the isolated main rotor.

Rotor-rotor and rotor-fuselage aerodynamic interference losses can be a significant
fraction of the total power, particularly for a tandem helicopter configuration. For
the single main rotor helicopter, the tail rotor power must be included. The tail
rotor performance calculation is complicated by the fact that the tail rotor operates
in the wake of the main rotor and fuselage. Aerodynamic interference reduces the
efficiency of the tail rotor and in particular increases its loads and vibration. During
yawing maneuvers, the tail rotor can even be operating in the vortex ring state, which
reduces the control power and greatly increases the vibration. The tail rotor thrust
is given by the main rotor torque Ttr = Q/�tr, where �tr is the tail rotor moment arm
about the main rotor shaft. Given Ttr, the tail rotor performance can be calculated.
As a first approximation, all power losses except for the isolated main rotor power
can be accounted for using an overall helicopter efficiency η. Including tail rotor
power and aerodynamic interference in addition to engine and transmission losses,
typically η = 0.84 to 0.87 for hover. The efficiency usually improves in forward flight
as the interference and tail rotor power decrease.

7.1.2 Forward Flight Performance

The rotor torque coefficient can be expressed as an integral of the in-plane compo-
nent of the blade section forces:

CP = CQ =
∫ 1

0
σ F̂xr dr =

∫ 1

0
σ

U 2

2

(
c� sinφ + cd cosφ

)
r dr (7.8)

where U 2 = u2
T + u2

P and tanφ = uP/uT (equation 6.92). The c� term is the accel-
erating torque, and the cd term is the decelerating torque. From this, the energy
balance relation for the helicopter power required in forward flight was derived:

CP = CPi + CPo + CPp + CPc (7.9)

where the induced, profile, parasite, and climb power terms are

CPi =
∫ B

rR

λidCT (7.10)
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CPo = CQx + μCHx +
∫
λidCTo (7.11)

CPp = DV
ρA(�R)3

(7.12)

CPv = VcW
ρA(�R)3

(7.13)

(sections 6.4 and 6.21). This result required no small angle assumptions, so is appli-
cable to all operating conditions, including hover, edgewise flight, and high-speed
axial flight. Forward flight introduces the helicopter parasite power Pp = DV , which
is the power required to move the helicopter through the air against the drag
force D.

The ideal power (no profile power) of the rotor in forward flight is P = Pi +
Pp + Pc = T (V sin i + v) (equation 5.5). Figure 5.4 presents the solution, based on a
combination of momentum theory and experimental results, for (V sin i + v)/vh =
P/Ph as a function of (V cos i)/vh and (V sin i)/vh. The momentum theory result for
the induced velocity in forward flight is

λi = CT

2
√
μ2 + λ2

(7.14)

where λ = λi + μ tan i. For all but the lowest speeds, a good approximation in edge-
wise forward flight is λi

∼= CT/2μ (section 5.1.1). This result is independent of the
climb or descent velocity. Including the empirical correction factor κ , the induced
power in forward flight is CPi = λiCT = κC2

T/2μ or Pi = κT 2/2ρAV .
From section 6.23, the rotor profile power is

CPo = CQo + μCHo − μzCTo =
∫ 1

0

σcd

2

(
u2

P + u2
T + u2

R

)3/2
dr (7.15)

which includes the effects of reverse flow, radial flow, and the radial drag force. Using
a mean section drag coefficient, CPo = (σcdo/8)FP(μ,μz) (equation 6.409), with FP

given accurately for all axial and edgewise speeds by equation 6.428. A less accurate
but often used approximation for edgewise flight up to speeds of about μ = 0.5 is

CPo = σcdo

8

(
1 + 4.65μ2) (7.16)

(equation 6.424). For helicopter rotors at high speeds or high blade loading, stall and
compressibility must be included in calculating the profile power, and this requires a
numerical solution including a determination of the blade angle-of-attack distribu-
tion in forward flight. A lightly loaded rotor, slowed down to maintain a reasonable
advancing tip Mach number, can operate at high edgewise advance ratio μ without
significant stall or compressibility losses.

When the helicopter drag is written in terms of an equivalent parasite drag area,
D = 1

2ρV 2 f , the parasite power is Pp = DV = 1
2ρV 3 f , or

CPp = 1
2

(
V
�R

)3 f
A

∼= 1
2
μ3 f

A
(7.17)

(equation 6.120). Alternatively, in terms of the drag force we have CPp
∼=

μ(D/W )CT . The helicopter climb power is Pc = VcW , where Vc = V sin θFP is the
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climb velocity and W is the helicopter weight. In terms of λc = Vc/�R then

CPc = λc
W

ρA(�R)3
∼= λcCT (7.18)

Thus the energy-balance method gives the following estimate of the helicopter
rotor power required in edgewise forward flight:

CP = κC2
T

2μ
+ σcdo

8

(
1 + 4.65μ2)+ 1

2
μ3 f

A
+ λcCT (7.19)

from which the power as a function of gross weight or speed can be found. At low
speed, the induced power must be calculated instead from CPi = κC2

T/2
√
μ2 + λ2,

which is valid down to hover. At high speed, the neglect of stall and compressibility
effects in the profile power becomes a significant consideration. In addition, at high
speed, the small angle approximations made for the parasite and climb power in this
result may not be correct, but the exact results can be easily used instead.

In edgewise forward flight, the induced power is essentially independent of
the disk inclination or climb speed: CPi

∼= κC2
T/2μ. This approximation is valid for

μ > 0.1 or so, or for speeds above V = 30 to 50 knots. The rotor profile power is
also not very sensitive to climb or descent in forward flight, assuming that there is no
great change in the blade angle-of-attack distribution; neither is the parasite power
if the change in the helicopter drag with angle-of-attack is neglected. With these
assumptions, only the climb power Pc = VcW depends on the climb or descent rate
in edgewise flight, and the power required can be written

P = Pi + Po + Pp + Pc
∼= (

Pi + Po + Pp
)

Vc=0 + Pc = Plevel + Pc (7.20)

which gives the climb rate

Vc = P − Plevel

W
= �P

W
(7.21)

(equation 5.19). Here Plevel is the power required for level flight at the given thrust
and speed, and �P is the excess power available. The helicopter climb and descent
characteristics in forward flight can be determined from the power required for level
flight and the power available. At low forward speeds (μ < 0.1 or so), the change
in induced power with climb speed becomes significant. The climb rate approaches
Vc

∼= 2�P/W for vertical flight (equation 4.28).

7.1.3 D/L Formulation

The rotor power required can be written in terms of an equivalent drag force D by the
definition P = DV . Hence D = Di + Do + Dp + Dc, or in terms of the drag-to-lift
ratio, (

D
L

)
total

=
(

D
L

)
i
+
(

D
L

)
o
+
(

D
L

)
p
+
(

D
L

)
c

(7.22)

where L = T cos i + H sin i = W cos θFP is the rotor lift. The rotor equivalent drag-
to-lift ratio is defined as (

D
L

)
e
=
(

D
L

)
i
+
(

D
L

)
o

(7.23)
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The drag-to-lift ratio can also be written as

D
L

= P
VL

∼= P
TV cos i

= CP

μCT
(7.24)

For edgewise flight, the induced, profile, parasite, and climb powers give(
D
L

)
i
= CPi

μCT

∼= κCT

2μ2
(7.25)

(
D
L

)
o

= CPo

μCT

∼= σcdo

8
1 + 4.65μ2

μCT
= 3

4
cdo

c�

1 + 4.65μ2

μ
(7.26)

(
D
L

)
p

= Pp

VL
= D

W cos θFP
(7.27)

(
D
L

)
c
= Pc

VL
= V sin θFPW

VW cos θFP
= tan θFP (7.28)

where c� = 6CT/σ has been used in the expression for the parasite power. These
results take a simpler form if the induced power and parasite power are written in
terms of an aircraft lift coefficient CL, defined as

CL = L
1
2ρV 2A

(7.29)

Then (
D
L

)
i
= T 2/2ρAV

LV
∼= L

2ρAV 2
= CL

4
(7.30)

(
D
L

)
p

= DV
LV

=
1
2ρV 2 f

L
= f/A

CL
(7.31)

The induced power result is simply the induced drag of a circular wing: for aspect
ratio AR = 4/π , the drag-to-lift ratio is Di/L = CDi/CL = CL/πAR = CL/4. Thus,
in terms of CL the aircraft power required is(

D
L

)
total

= CL

4
+
(

D
L

)
o
+ f/A

CL
+ tan θFP (7.32)

The lift coefficient CL is calculated from the gross weight and speed, and the profile
power (D/L)o can be estimated from these simple expressions, performance charts,
or numerical calculations.

The D/L formulation was developed for autogyro performance calculations. The
lift coefficient CL is used because the rotor on an autogyro functions like a fixed wing.
Consequently, many early rotor analyses express the results for improved profile
power calculations in terms of (D/L)o. For helicopter performance calculations this
formulation is only applicable in forward flight, since the drag-to-lift ratio D/L =
P/VL is singular at hover.

7.1.4 Rotor Lift and Drag

Theoretical and experimental rotor performance data are often expressed in terms
of the rotor lift and drag, defined as the wind-axis components of the total force on
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wind axis
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Figure 7.1. Rotor lift and drag forces (wind axes).

the rotor hub (Figure 7.1). In terms of the rotor thrust and H-force, defined relative
to some reference plane such as shaft axes, the coefficients CL and CX are

CL = CT cos i + CH sin i (7.33)

CX = CH cos i − CT sin i (7.34)

Here CL = L/ρA(�R)2 (rotor coefficient form), which is not the same quantity
used in the preceding section. The calculated and measured results can be presented
in terms of CL/σ and CX/σ . The rotor propulsive force is the negative of the X -
force. By using a wind-axis presentation of the data, performance charts can be
directly interpreted in terms of the helicopter operating condition. The helicopter
gross weight determines the rotor lift required, and the helicopter parasite drag
determines the rotor propulsive force.

The rotor equivalent drag De is defined as the aircraft equivalent drag P/V minus
the propulsive force:

De = P
V

+ X (7.35)

The rotor equivalent lift-to-drag ratio (L/D)e is useful as a measure of the rotor
efficiency in edgewise flight. Moreover, (L/D)e can be obtained directly from rotor
performance measured in a wind tunnel: lift, drag, and power. The rotor propulsive
force is determined by the helicopter parasite drag and climb velocity (−X = D +
WVc/V), so the rotor equivalent drag-to-lift ratio is(

D
L

)
e
= P/V + X

L
=
(

D
L

)
total

−
(

D
L

)
p
−
(

D
L

)
c
=
(

D
L

)
i
+
(

D
L

)
o

(7.36)

which is consistent with equation 7.23.

7.1.5 P/T Formulation

It is also useful to express the power required in terms of the power-to-thrust ratio
P/T . In contrast with the drag-to-lift formulation (D/L = P/VL), P/T is not singular
at hover. In coefficient form

CP

CT
= P
�RT

(7.37)
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So (
CP

CT

)
total

=
(

CP

CT

)
i
+
(

CP

CT

)
o
+
(

CP

CT

)
p
+
(

CP

CT

)
c

(7.38)

and (
CP

CT

)
i
= λi

∼= κCT

2μ
(7.39)

(
CP

CT

)
o

∼= σcdo

8
1 + 4.65μ2

CT
= 3

4
cdo

c�

(
1 + 4.65μ2) (7.40)

(
CP

CT

)
p

= DV
�RT

∼= μ D
W

(7.41)

(
CP

CT

)
c
= VcW
�RT

∼= λc (7.42)

are the induced, profile, parasite, and climb power terms for edgewise forward flight.

7.1.6 Rotorcraft Performance

Consider the level flight performance of rotary-wing aircraft with lifting and pro-
pelling rotors. The power required is the sum of the induced, profile, and propulsive
power of all rotors:

P =
∑

rotors

(Pi + Po + Pp) (7.43)

plus transmission and accessory losses. The induced power is characterized by the
factor κ : Pi = κTvi. Including interference losses, the power for rotor m is

Pim = Tm

⎛⎝κmvim +
∑
n�=m

xmnvin

⎞⎠ (7.44)

(equation 5.50). The profile power is characterized by the mean drag coeffi-
cient cd mean: Po = ρA(�R)3(σcd mean/8)FP = ρAb(�R)3(cd mean/8)FP. The propul-
sive power is given by the rotor drag force X : Pp = −XV .

If the shaft power P is specified for a rotor, then the propulsive power is Pp =
P − (Pi + Po), and the rotor drag is

X = − P − (Pi + Po)

V
(7.45)

In terms of the rotor inflow, X > 0 corresponds to a rearward tilt of the disk. Then
there is a component of the forward velocity flowing upward through the disk,
providing the additional energy required by the rotor when (Pi + Po) is greater than
the shaft power P. If the shaft angle is fixed for a rotor, the performance solution
gives the power required and the rotor propulsive or drag force. The forces and
moments required to balance this rotor must be supplied by the rest of the aircraft.

For a helicopter with one or more lifting and propelling rotors (no wing or aux-
iliary propulsion), the rotor lifts sum to the aircraft weight and the rotor propulsive
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forces sum to the aircraft drag:
∑
(−X ) = Daircraft. Thus the total aircraft propulsive

power is

Pp =
∑

rotors

Pp = DaircraftV (7.46)

The arrangement and lift distribution of the main rotors influence the induced and
interference power.

For the single main rotor and tail rotor configuration, the drag force of the tail
rotor must be countered by the main rotor, adding to its propulsive power. The tail
rotor drag force is Xtr = HHP − TtriHP. Since the rotor thrust is nearly perpendicular
to the tip-path plane,

Xtr = HTPP − Ttr(iHP + β1cHP) ∼= −Ttr(iHP + β1cHP) (7.47)

Thus finding the rotor drag or propulsive force with the shaft angle fixed requires
a solution for the longitudinal flapping relative to the shaft (β1cHP), which gives the
tip-path-plane angle. In the case of the tail rotor there is no cyclic pitch, and usually
there is a large pitch-flap coupling. After the tail rotor drag Xtr is obtained, the
power absorbed is calculated from Ptr = Pi + Po + Pp, where the propulsive power
Pp = −XtrV .

The tail rotor has two contributions to the power required for the entire heli-
copter: the power absorbed directly through the tail rotor shaft, including the
tail rotor propulsive power, (Pp)tr = −XtrV , and the main rotor propulsive power
required because of the tail rotor drag force, (�Pp)mr = XtrV . The total power
attributed to the tail rotor is thus

(Ptotal)tr = Pshaft + Pdrag = (Pi + Po + Pp)tr +�(Pi + Po + Pp)mr

= (Pi + Po)tr +�(Pi + Po)mr (7.48)

So the total power loss due to the tail rotor is independent of the tail rotor drag
force, which simply determines the distribution of the total loss between the tail
rotor and main rotor shaft powers. The helicopter performance can be analyzed
by ignoring the tail rotor drag or propulsive force. The result is a small change in
the main rotor disk inclination, as determined by horizontal force equilibrium, but
the tail rotor flapping solution for its tip-path-plane orientation is not needed. This
approach neglects the influence of a main rotor propulsive force increase on the
main rotor induced and profile power (�(Pi + Po)mr).

A compound helicopter has a wing to off-load the rotor in cruise and/or auxiliary
propulsion systems. Consider a helicopter with just a wing. The aircraft drag includes
the wing drag:

Dwing = D0 + q
(
L/q − (L/q)0

)2
πeb2

(7.49)

where b is the wing span, e the Oswald efficiency, and q = 1/2ρV 2. The rotor propul-
sive power is increased by �Pp = DwingV . Off-loading the rotor reduces the ideal
induced power Tvi, but likely increases κ and reduces the profile power (cd mean).

The tiltrotor in cruise generates all the lift by the wing, with the rotors operating
as propellers to provide only propulsive force. Tilting the nacelles reduces the aircraft
drag substantially. The rotor thrust in cruise is reduced compared to hover by a
factor equal to the airframe lift-to-drag ratio. Hence the rotor ideal induced power



7.1 Rotor Performance Estimation 253

is reduced, although the hover-cruise compromise in blade twist can increase κ . The
axial speed of the rotor increases the profile power through FP(μz). The profile power
is reduced substantially by operating the rotors at lower tip speed, which is possible
since the required rotor thrust is small compared to hover. If the aircraft trims with
the rotor shaft not horizontal, the rotors produce some lift (in-plane force). The
mutual interference between the rotor and wing can be significant and is beneficial
with the rotors turning top-blades-outward.

Consider a helicopter or autogyro with propellers for propulsion. The aircraft
trim determines the drag X of each main rotor, with the total Xmr = ∑

X . The total
rotor propulsive power is then (Pp)mr = −XmrV . The aircraft drag is the sum of the
airframe drag and rotor drag, D = Da f + Xmr. The propeller power is then

Pprop = (Pi + Po)prop + DV = DV
η

(7.50)

in terms of the propeller propulsive efficiency η. The rotorcraft power is then

P = (Pi + Po)mr − XmrV + (Pi + Po)prop + DV = (Pi + Po)mr + (Pi + Po)prop + Da fV
(7.51)

So if the energy balance sums the induced and profile power of both rotors and
propellers, the aircraft propulsive power is

Pp = Da fV = ηPprop − XmrV (7.52)

Alternatively, if only the main rotors are considered for the induced and profile
power, the aircraft propulsive power is

Pp = Pprop − XmrV = 1
η

Da fV +
(

1
η

− 1
)

XmrV (7.53)

In both approaches, the propeller shaft power Pprop is not a separate component of
the energy-balance description of rotorcraft required power, but instead is just part
of the propulsive power.

For an autogyro, the rotor shaft power is zero, so the rotor drag is

Xmr = Pi + Po

V
(7.54)

In terms of the drag-to-lift formulation, the result is

X
W

=
(

D
L

)
i
+
(

D
L

)
o

=
(

D
L

)
e

(7.55)

(the flight path angle θFP = 0 for level flight). The autogyro rotor acts like a wing:
aircraft lift is supplied at the cost of induced and profile drag. The rotor drag is
balanced by the aircraft propulsion system. The autogyro can also have a wing to
off-load the rotor in high-speed flight, but the aircraft always requires a rotor lift
sufficient to generate the accelerating torque for rotor equilibrium at zero power.

7.1.7 Performance Charts

Measured or calculated rotor performance characteristics covering a range of oper-
ating conditions can be summarized in graphical form. This section presents common
and useful formats for rotor performance charts. The examples are from calculations
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for a single, articulated rotor with solidity σ = 0.08 and −8◦ linear twist. The rotor
forces and power were obtained at V/�R = 0.4 and Mtip = 0.6, over a range of shaft
incidence is (positive forward) and collective pitch θ.75.

For autogyros, a single performance chart can cover a range of flight speeds,
showing for example profile power CPo/σ or profile drag-to-lift ratio (D/L)o as
a function of rotor lift CL/σ , for a range of advance ratio μ and collective pitch.
Extending this format to helicopters, a set of charts can be constructed, with each
chart showing a specified value of rotor power or rotor drag-to-lift ratio; see Bailey
and Gustafson (1944) and Gustafson (1953). Use of such charts is straightforward
for autogyros (rotor power P = 0), but requires interpolation between charts for
helicopters.

Figure 7.2 illustrates performance results as obtained in a wind-tunnel test (for
example, McCloud, Biggers, and Stroub (1968)). The data are for the rotor trimmed
to zero 1/rev flapping (so the shaft incidence equals the tip-path-plane incidence),
over a matrix of shaft incidence angles (−10◦ to 10◦) and collective angles (2◦ incre-
ments). Only quantities that can be measured in a wind tunnel are shown: rotor
wind-axis lift and drag forces (X is positive for drag, negative for a propulsive
force), power, and no-feathering-plane incidence (iNFP = is + θ1s). The non-ideal
power is obtained by subtracting the propulsive power and ideal induced power:
CPn = CP + (V/�R)CX − CT/2μ.

Measured or calculated performance obtained by trimming to a specified rotor
lift CL/σ and zero 1/rev flapping can be presented in a carpet plot (Figure 7.3; for
example, Tanner (1964)). For each CL/σ value, a sweep of shaft incidence or collec-
tive pitch (using the other variable to trim the lift) generates a curve of power CP/σ

as a function of drag CX/σ , which is plotted with an offset power scale. Connecting
points where the constant-lift curves intersect the vertical grid generates constant-
power curves. Thus given the required rotor lift and drag (from the helicopter force
balance), the rotor power can be found. Other quantities of the operating condition
can be plotted (probably by interpolation) on the lift-drag grid (Figure 7.3).

Calculated performance obtained by trimming to a specified rotor power CP/σ

and zero 1/rev flapping can be plotted in terms of rotor lift CL/σ as a function of rotor
drag CX/σ (Figure 7.4; see Kisielowski, Bumstead, Fissel, and Chinsky (1967)). In a
test, trimming to a specified power is more difficult than trimming to a specified lift.
Given the required rotor lift and drag (from the helicopter force balance), the rotor
power can be found. Using (CX/σ )/μ

2 = X/qAblade for the abscissa is appropriate,
since then the operating condition for a helicopter at fixed weight W and drag D/q
is at the same point on charts for different speeds. For each CP/σ value, a sweep
of shaft incidence (trimming power with collective) generates a curve. Figure 7.4
also shows a boundary for mean drag coefficient cd mean = 0.0200 (obtained from the
profile power; see section 7.3), as an indication of rotor stall.

7.2 Rotorcraft Performance Characteristics

7.2.1 Hover Performance

The rotor hovering performance can be expressed in terms of CP as a function of
CT , using collective pitch as the parameter (Figure 7.5). At low thrust, the primary
loss is the profile power; at moderate thrust levels CP increases as C3/2

T because of
the induced power rise; and at high thrust there is a steep increase in the profile
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Figure 7.2. Helicopter rotor performance; V/�R = 0.4 and Mtip = 0.6.

power as a result of stall of the rotor blade. The maximum figure of merit occurs at
minimum CP/C

3/2
T . Without stall, the maximum figure of merit would be achieved

at very high thrust; that is, at very high disk loading where M approaches 1 because
of the induced power increase. With stall included in the rotor profile power, the
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Figure 7.3. Helicopter rotor performance; V/�R = 0.4 and Mtip = 0.6.

maximum figure of merit is achieved at a value of CT/σ just above the inception of
stall.

The hover power required increases with gross weight, the induced power (which
accounts for most of the hover power) varying as Pi ∝ W3/2. The air density decreases
as the altitude or temperature increases, reducing the rotor profile power because
of the smaller drag forces on the blades but increasing the induced power because
of the higher effective disk loading. Except at very low disk loadings, the induced
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Figure 7.4. Helicopter rotor performance; V/�R = 0.4 and Mtip = 0.6.

power increase dominates, and the total power required increases with altitude and
temperature. The hover polar also depends on ground effect, which reduces the
power required at a given gross weight for small distances above the ground (Figure
7.5).

Consider now the disk loading for the best power loading of a hovering rotor.
Without the profile power, the solution is T/A = 0, which implies zero induced
power. The design guidance is simply that low disk loading gives good power loading.
Including the profile power, the hover power per unit thrust can be written

P
T

= κ
√

T/2ρA + σcdo

8
(�R)3

T/ρA
(7.56)

or

CP

CT
= κ

√
CT

2
+ σcdo

8CT
(7.57)
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Figure 7.5. Helicopter rotor power in hover.

Minimizing CP/CT as a function of CT (which for fixed tip speed means minimizing
P/T as a function of T/ρA) gives the optimum solution

CT = 1
2

(σcdo

κ

)2/3
(7.58)

which occurs at the point where Pi = 2Po, so

CP

CT
= 3

CPo

CT
= 3

4

(
κ2σcdo

)1/3
(7.59)

Dimensionally, the solution is

T
A

= 1
2
ρ(�R)3

(σcdo

κ

)2/3
(7.60)

which is the disk loading for best power loading. For a given gross weight, this disk
loading determines the optimum radius of the rotor. As the profile power increases,
the optimum disk loading increases, and therefore the rotor radius decreases. This
solution also gives a figure of merit of

M = T
√

T/2ρA
P

= C3/2
T /

√
2

CP
= 2

3κ
(7.61)

The figure of merit for the rotor hovering at best power loading is a constant,
depending only on the induced power factor κ . For κ = 1.10, this figure of merit is
M = 0.61. From the fixed value of the figure of merit, at this optimum the power
scales with size as P ∝ W 3/2. This optimum solution gives a lower disk loading than is
normally used, because considerations in addition to power loading are involved in
selecting the disk loading. The weight of the rotor blade and transmission decreases
as the radius is reduced, and the aircraft weight depends on the engine specific weight
(engine weight per unit power) and specific fuel consumption. The variation of P/T
with T/A is fairly small near the optimum value, so the designer has some latitude in
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choosing the rotor radius. Modern helicopters use significantly higher disk loading
than the optimum value from equation 7.60.

Given a constraint on blade loading CT/σ , the disk loading for best power
loading gives a solidity of

σ = 1
8
(cd/κ)

2

(CT/σ )3
(7.62)

which is rather low. The same solution is obtained if the power loading is optimized
as a function of CT/σ for fixed solidity. Alternatively, consider the optimum power
loading for a given disk loading. Then the induced power is fixed, and minimizing the
profile power requires a low value of σ (�R)3. With a constraint on blade loading,

σ (�R)3 =
(

T/ρA
CT/σ

)
�R =

(
T/ρA
CT/σ

)3/2

σ−1/2 (7.63)

There is no absolute minimum to this problem, unless system weight is considered.
The design guidance therefore is that low tip speed and high solidity are desired to
reduce profile power.

7.2.2 Power Required in Level Flight

Figure 7.6 illustrates the power variation with speed for a single main-rotor helicopter
in level flight. It shows the power required and power available for design gross
weight at sea level and at 10000-ft altitude, and for maximum takeoff weight. The
power-required components are main rotor induced, profile, and parasite power
(which sum to main rotor power); tail rotor power; and losses (accessory power
and transmission losses). The induced power is the largest component in hover,
but quickly decreases with speed. The profile power exhibits a slight increase with
speed. The parasite power is negligible at low speeds, but increases proportional to
V 3 to dominate at high speed. Thus the total power required is high at hover, has
a minimum value in the middle of the helicopter speed range, and then increases
again at high speed because of the parasite power. At very high speeds, stall and
compressibility effects also increase the profile power, and induced power begins to
increase due to the low loading on the edges of the rotor disk. Tail rotor power is
highest in hover, since the vertical tail contributes to the anti-torque force in forward
flight. Ground effect significantly reduces the power required at hover and very low
speeds, but has little influence at high speeds.

The effect of gross weight is primarily on the induced power until the loading
is high enough to increase profile power because of stall. For different aircraft the
parasite drag increases with the gross weight, roughly as f ∝ W 2/3. So the parasite
power increases with helicopter size, but P/T decreases with size. The effect of
altitude is to increase rotor induced power, decrease profile and parasite power, and
reduce the engine power available. In Figure 7.6, at 10000 ft the helicopter can hover
only in ground effect.

For a given weight, there is a speed at which the helicopter power required is a
minimum. The point at which the power required is a minimum is important, since
it determines the best endurance, best climb rate, and minimum descent rate of the
aircraft. The speed for minimum power is determined from the power-required curve
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7.2 Rotorcraft Performance Characteristics 261

0. 40. 80. 120. 160. 200.
0.

500.

1000.

1500.

2000.

2500.

3000.

speed (knots)

po
w

er
 (

hp
)

VbrVbe Vbr (99%)

maximum 
speed

minimum 
speed

minimum P

minimum P/V
Vmax

power 
available

power
required

Figure 7.7. Operating speeds from power required and power available.

(Figure 7.7). To estimate this speed, consider the power in edgewise level flight:

CP = κC2
T

2μ
+ σcdo

8

(
1 + 4.65μ2)+ 1

2
μ3 f

A
(7.64)

(equation 7.19). Since the profile power increase relative to hover is initially small, the
minimum power point is primarily determined by the changes in the induced power
and parasite power. Neglecting the variation of CPo, minimum CP as a function of μ
is at

μ =
(
κC2

T

3 f/A

)1/4

= λh

(
4κ

3 f/A

)1/4

(7.65)

or

V = vh

(
4κ

3 f/A

)1/4

(7.66)

where v2
h = T/2ρA as usual. This solution occurs where Pi = 3Pp. The speed for

minimum power is typically 60 to 90 knots. Because it is proportional to vh, the
speed for minimum power increases with altitude and gross weight.

We are also interested in the speed for minimum P/V , which is required for
the best range and best descent angle. The speed for minimum P/V is found on the
power-required curve as the point where a straight line through the origin is tangent
to the curve (see Figure 7.7).

7.2.3 Climb and Descent

The vertical climb rate can be calculated for a given excess power. For the low rates
typical of helicopters, Vc

∼= 2�P/T (equation 4.28). The climb rate at maximum
power is reduced by gross weight, because of both the factor T in the denominator
and the increase in hover power. The climb rate slows with increasing altitude and
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temperature because of the hover power increase and the reduction in available
engine power. The altitude at which the climb rate is zero defines the absolute hover
ceiling. The descent rate in power-off vertical autorotation is proportional to vh

(section 4.3), so increases with gross weight and altitude.
In edgewise forward flight, the climb or descent rate is Vc = (P − Plevel)/W =

�P/W (equation 5.19; the influence of climb rate on the induced power is neglected
in this approximation). The maximum climb rate is thus achieved at maximum �P,
or at the speed for minimum level-flight power required (neglecting the variation of
the power available with speed). The best angle of climb is achieved at maximum
Vc/V = �P/WV . If the helicopter can hover at the given gross weight and altitude,
the best angle is vertical. Above the hover ceiling, the speed for the best angle
of climb lies between the minimum speed and the speed for minimum power. The
minimum power increases and hence the best climb rate decreases with gross weight.
The climb rate decreases with altitude. The point where the maximum climb rate
reaches zero defines the absolute ceiling of the aircraft.

The descent rate in power-off autorotation in forward flight is Vd = Plevel/W .
The minimum descent rate thus occurs at the speed for minimum level-flight power
required. This descent rate is typically about one-half the rate in vertical autorotation.
The minimum angle of descent, Vd/V = P/WV , is attained at the speed for minimum
level-flight P/V . Usually this angle is between 30◦ and 45◦ from the horizontal. After
power failure at high altitudes above the ground, the pilot establishes equilibrium
autorotation at the forward speed giving the minimum descent rate. Near the ground
the aircraft is flared to reduce both the vertical and forward speed to zero just
before contacting the ground. When power failure occurs near the ground, there
is not enough time to achieve a stabilized descent; for a power failure in hover,
the optimum descent is purely vertical. Helicopter autorotation characteristics are
discussed further in section 8.5.

7.2.4 Maximum Speed

The minimum and maximum velocities of a rotorcraft are determined by the inter-
section of the power-required and power-available curves for a given gross weight
and altitude (Figure 7.7). For V > Vmax there is insufficient power available to sus-
tain level flight. If the helicopter can hover, the minimum speed is zero, but at high
altitude or high gross weight the power available can be insufficient to hover as well,
so Vmin is positive. The maximum speed of the helicopter may not be power limited,
however. The maximum speed might be determined by retreating blade stall and
advancing blade compressibility effects, which produce severe vibration and loads at
high speed. There can also be drive-train torque limits that define maximum speed.
The power-limited maximum speed can be estimated by neglecting the variation
of induced power and profile power with speed, compared to the parasite power
increase. The result is

Vmax =
[

2
ρ f

(
Pavail − Pi − Po

)]1/3

(7.67)

or

μmax =
[

2
f/A

(
CPavail − CPi − CPo

)]1/3

(7.68)
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If the power required at maximum speed is about the same as the power
required to hover (a balanced design), then Pavail − Pi − Po

∼= Phover − Po
∼= Pihover =

κT
√

T/2ρA, which gives

Vmax
∼= vh

(
4κ
f/A

)1/3

(7.69)

The maximum speed is increased by increasing the installed power or by decreasing
the rotorcraft drag. The parasite power rise is proportional to V 3, so a large change
in drag or power is needed to achieve a significant maximum speed increment. The
parasite power decreases with altitude, so initially the maximum speed may increase.
Eventually the reduction in air density reduces the power available, and then the
maximum speed decreases with altitude. Above the hover ceiling there is a non-zero
minimum speed also. At still higher altitude, the minimum and maximum speeds
approach each other until they coincide (together with the speed for minimum
power) at the absolute ceiling of the rotorcraft (Figure 7.8).

7.2.5 Ceiling

The rotorcraft ceiling is the altitude at which the maximum power available is just
equal to the power required. At a higher altitude, maintaining level flight is not
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possible (see Figure 7.8). This absolute ceiling is also defined as the altitude at which
the climb rate becomes zero. Since the absolute ceiling can be approached from
below only asymptotically, working with the service ceiling can be more meaningful.
The service ceiling is defined as the altitude where the climb rate is reduced to some
small, nonzero value (typically around 100 ft/min). The principal factors defining
the ceiling are the reduction of engine power with increasing altitude, the increase
in power required with altitude and gross weight, and the variation of the power
required with speed.

Several ceilings are of particular interest for the rotorcraft. The hover ceiling out
of ground effect (OGE) is where the power available equals the power required to
hover at a given gross weight. The hover ceiling in ground effect (IGE) is substantially
larger than the OGE hover ceiling, since ground effect reduces the induced power
required. The fact that ground effect increases the operational ceiling or weight of
the rotorcraft can be used advantageously in operating the aircraft. The maximum
ceiling is encountered in forward flight at the speed for minimum power. In both
calculations and flight tests these ceilings are obtained by measurements of the
rotorcraft climb rate at maximum power. Extrapolating the curves to zero climb rate
gives the absolute ceiling.

7.2.6 Range and Endurance

The fuel burn rate is the product of the engine power and the engine specific fuel
consumption: Ẇf = P(sfc). The rotorcraft specific range and specific endurance are

dR
dWf

= V

Ẇf
= V

P sfc
(7.70)

dE
dWf

= 1

Ẇf
= 1

P sfc
(7.71)

Conventional units (speed in knots, range in nautical miles, specific fuel consump-
tion (sfc) in lb/hp-hr or kg/kW-hr) require introducing a conversion factor in these
equations. The rotorcraft range is calculated by integrating the specific range over
the total fuel weight, for a given initial gross weight and flight condition:

R =
∫ landing

takeoff

dR
dW

dW = −
∫

dR
dWf

dWf = −
∫

V
P sfc

dWf (7.72)

Similarly, the endurance is obtained by integrating the specific endurance:

E =
∫ landing

takeoff

dE
dW

dW = −
∫

dE
dWf

dWf = −
∫

1
P sfc

dWf (7.73)

Generally dR/dWf and dE/dWf vary during a flight even if the aircraft is oper-
ated at the optimum conditions. Moreover, the power depends on the altitude and
gross weight, and the specific fuel consumption depends on the power and altitude.
Consequently, these expressions must be numerically integrated for an accurate
determination of range and endurance.

The speeds for best range and endurance can be found by examining the specific
range and endurance data as a function of velocity. Assuming that the specific
fuel consumption is independent of velocity (which is not really true, because of
the dependence of the sfc on the engine power), the minimum fuel consumption
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per unit distance and hence the maximum range are achieved at the speed for
minimum P/V (Figure 7.7). This is the best-range speed. The variation of fuel burn
rate with speed is not large, so a significant reduction in flight time can be obtained
with little loss of range by operating at the speed for 99% maximum specific range
(Figures 7.7 and 7.8). Similarly, the maximum endurance is achieved at the speed
for minimum P. The speeds for which fuel consumption is a minimum are more
accurately obtained from P(sfc) as a function of speed for a given altitude and gross
weight. The speed for best endurance is at the minimum of P(sfc), whereas the speed
for best range lies at the point where a straight line through the origin is tangent to
the curve.

Assuming that P/W , the best-range or best-endurance speed, and the specific
fuel consumption are independent of the aircraft weight, the range and endurance
can be evaluated analytically. Write

dW
dR

= −dWf

dR
= −P sfc

V
= −

(
P

WV
sfc
)

W (7.74)

Integrating from the takeoff weight W = Wto to the landing weight W = Wto − Wf

gives the range

R = WV/P
sfc

ln
Wto

Wto − Wf
(7.75)

where Wf is the total fuel burned. Introducing an equivalent lift-to-drag ratio for the
rotorcraft, defined as L/D = WV/P, gives the Breguet range equation:

R = L/D
sfc

ln
Wto

Wto − Wf
(7.76)

for an aircraft with shaft power engines (sfc based on power not on thrust). This
expression accounts for the decrease in the gross weight as the fuel is used, a factor
that reduces the fuel consumption, since (P/WV ) sfc is assumed to be constant. Equa-
tion 7.76 is obtained assuming that the aircraft can fly the mission at constant L/D,
which is easily achieved with an airplane but not for a helicopter. The corresponding
result for endurance is

E = W/P
sfc

ln
Wto

Wto − Wf
= L/D

Vsfc
ln

Wto

Wto − Wf
(7.77)

Alternatively, writing P = WV (D/L) ∝ W 3/2 (assuming that the aircraft flies at con-
stant C3/2

L /CD, in order to eliminate V from the expression) leads to a different
dependence on Wto/(Wto − Wf ).

Figure 7.9 shows the payload-range diagram for a helicopter, for design gross
weight and maximum takeoff weight. Each line is the range for constant takeoff
weight Wto. The payload is obtained from the operating weight empty WO and the
usable fuel Wf : Wp = Wto − WO − Wf . The payload is maximum for zero range,
which only requires fuel for mission segments that are independent of range (such
as taxi and reserve). The range increases as fuel increases and payload decreases, for
constant useful load. The corner point is the range of the rotorcraft for maximum
internal fuel, with payload as fallout. The slope dWp/dR reflects the efficiency of
the aircraft (inverse of the specific range). A slightly higher range can be achieved
by reducing the payload with maximum fuel on board, since the reduced gross
weight improves the fuel consumption. Cruising at higher altitude can increase the
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Figure 7.9. Helicopter payload-range diagram.

efficiency, hence increase the range. The vertical jumps in the payload-range curve
with auxiliary fuel tanks are due to the additional weight of an auxiliary tank.

7.2.7 Referred Performance

The general analysis of rotor performance is formulated in terms of coefficients,
thereby scaling results with air density ρ, rotor disk area A = πR2, and tip speed
�R (Chapter 2). When accounting for scale is not necessary, as for the flight manual
of a specific helicopter, referred performance parameters can be used. Referred
performance parameters scale results to standard sea level atmospheric conditions,
while retaining dimensional form. Define the density, temperature, and pressure
ratios: σ = ρ/ρ0, θ = T/T0, and δ = p/p0 (subscript “0” indicates standard sea level
values). From p = ρRT there follows δ = σθ . Hence density scales as ρ ∝ δ/θ ; speed
of sound (and other velocities) scales as cs ∝ √

θ ; and dynamic pressure scales as
ρc2

s ∝ δ. We also use the rotor speed ratio ω = �/�0, based on the normal rotor
speed �0. Table 7.1 shows the correspondence between coefficients and referred
parameters.

7.3 Performance Metrics

A number of performance indices are useful in assessing the efficiency of the heli-
copter and its rotor. Let W be the aircraft weight, T the rotor thrust, V the flight
speed, and A the rotor disk area. The rotor power P = Pi + Po + Pp + Pc is a function
of the rotor wind-axis lift L and drag X , with the propulsive power (sum of parasite
and climb power) Pp + Pc = −XV .

The hover figure of merit compares the actual power with the ideal power of the
hovering rotor:

M = Pideal

P
= Tv

P
= T

√
T/2ρA
P

(7.78)
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Table 7.1. Helicopter referred performance

Coefficient Referred parameter

rotor speed Mtip = �R
cs

ω√
θ

flight speed M = V
cs

V√
θ

advance ratio μ = V
�R

V
ω

weight CW = W
ρA(�R)2

W
σω2

weight
CW

M2
tip

= W
ρAc2

s

W
δ

power CP = P
ρA(�R)3

P
σω3

power
CP

M3
tip

= P
ρAc3

s

P

δ
√
θ

(section 3.3). Momentum theory gives the minimum induced power as Pideal = Tv =
T
√

T/2ρA. In hover there is no parasite or climb power, so M = Pideal/(Pi + Po).
The figure of merit is a measure of the relative contributions of the induced and
profile power in hover. With twin main rotors, an appropriate expression for the
ideal power is Pideal = T

√
T/2ρAp, where T is the total thrust of both rotors and

Ap = (2 − m)A is the projected disk area. The overlap ratio is m = 1 for the coaxial
configuration and m = 0 for no overlap. With this convention, the reference power
for coaxial rotors is the ideal induced power of a single rotor of area A (the limit of
no vertical separation).

The aircraft hover figure of merit is M = W
√

W/2ρAp/P, in terms of the air-
craft weight and total aircraft power. The aircraft weight is greater than the rotor
lift because of download, and the aircraft power includes transmission losses and
auxiliary power as well as rotor shaft power, so the aircraft hover figure of merit is
significantly less than the isolated rotor figure of merit.

For the rotor operating as a propeller (axial flow at high inflow ratio μz), the
propulsive efficiency is

η = TV
P

= 1 − Pi + Po

P
(7.79)

where TV is the parasite power. The hover figure of merit and propeller propulsive
efficiency can be combined into a single metric

Ma = Pideal

P
= T (V + v)

P
(7.80)

applicable to axial flow in general.
The rotor equivalent drag is defined as De = P/V + X , so the rotor equivalent

lift-to-drag ratio is

L
De

= L
P/V + X

= LV
Pi + Po

(7.81)
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(section 7.1.4). Here L and X are the wind-axis rotor lift and drag forces, so L/De

depends only on quantities that can be measured in a wind tunnel.
The aircraft equivalent drag is defined as De = P/V ; hence the equivalent lift-to-

drag ratio of the aircraft is L/D = WV/P. Figure 7.10 shows typical aircraft and rotor
lift-to-drag ratio variation with speed and rotor thrust, for a conventional helicopter
configuration.
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For a given operating condition, the specific range is the ratio of the speed to the
fuel flow: V/Ẇf = V/(Psfc) = (L/D)/(Wsfc) (nm/lb or nm/kg). From the Breguet
range equation, the range for fuel equal 1% of the gross weight is

R1%GW = L/D
sfc

ln
(

1
.99

)
(7.82)

using the aircraft lift-to-drag ratio L/D = WV/P (section 7.2.6). A fuel efficiency
measure is the product of the payload and specific range: e = Wpay(V/ẇ) (ton-nm/lb
or ton-nm/kg). A productivity measure is p = WpayV/WO (ton-kt/lb or ton-kt/kg),
where WO is the operating weight.

A fuel efficiency measure for a mission is the product of the payload and range
divided by the fuel weight: e = WpayR/Wburn (ton-nm/lb or ton-nm/kg). A produc-
tivity measure for a mission is p = WpayV/WO (ton-kt/lb or ton-kt/kg), where WO

is the operating weight and V the block speed, or p = WpayV/Wburn (ton-kt/lb or
ton-kt/kg). Metrics that include the payload weight are useful only in the context of
a specific mission (including takeoff conditions and range or endurance) to account
for fuel burn.

In a wind tunnel it is not possible to measure separately the induced and profile
power, only the sum Pi + Po = P − XV . The induced and profile power can be
separated in calculations of rotor performance and characterized by an induced
power factor κ and a mean drag coefficient cd mean. The induced power factor for a
single rotor is

κ = Pi

Pideal
(7.83)

where Pideal = Tvideal is the momentum theory solution (sections 5.1.1 and 5.1.3).
With twin main rotors, the induced power factor can be defined using a reference
power, κ = P/Pref . It is best to use as the reference power the ideal momentum
theory power of the actual rotor configuration, including the effect of vertical or
lateral separation of the two rotors. A simpler approach is to use Pref = T

√
T/2ρAp

in hover (as for the figure of merit) and Pref = T 2/(2ρAV ) in cruise. This cruise
reference is the ideal induced power of a single rotor of area A, carrying the total
rotor thrust T (the limit of no separation, vertical or longitudinal or lateral). Using
a reference power independent of rotor separation means κ = P/Pref provides an
absolute comparison of induced powers.

The mean drag coefficient is a measure of the rotor profile power:

cd mean = 8CPo/σ

FP
(7.84)

where FP(μ,μz) accounts for the increase of mean dynamic pressure with rotor
speed, both axial and edgewise (equation 6.409). The function FP should be consistent
with the assumptions in the calculation of CPo (see section 6.23). For edgewise
flight, including reverse flow and radial flow, FP = 1 + 4.5μ2 + 1.61μ3.7 is a good
approximation (equation 6.423). For general operating conditions, equation 6.428
should be used.

Although it is not possible experimentally to separate induced and profile pow-
ers, or propulsive and lifting efficiencies, local derivatives of the power provide some
information. From propeller power in terms of the thrust and propulsive efficiency,
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P = TV/η, a local propulsive efficiency of the rotor can be defined:

1
η

= − 1
V
∂P
∂X

= 1 − 1
V
∂(Pi + Po)

∂X
(7.85)

From rotor induced power in terms of lift and induced power factor, Pi = κL2/2ρAV ,
the local derivative of the power gives

κ = 2ρAV
∂P
∂L2

(7.86)

which, however, also includes the variation of the profile power with lift. The power
required for an aircraft with separate lift and propulsion is

P = TV
η

= V
η

(
D0 + (L − L0)

2

qπeb2

)
(7.87)

where η is the propeller efficiency and e the Oswald efficiency of the aircraft. Hence
the local derivative of the power gives a lift efficiency:

κ = 1
e

= 2ηρAV
∂P
∂L2

= 2η
V
�R

∂CP

∂C2
L

(7.88)

Conventionally e does include the aircraft parasite drag variation with lift.
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8 Design

8.1 Rotor Configuration

The helicopter rotor type is largely determined by the construction of the blade
root and its attachment to the hub. The blade root configuration has a fundamental
influence on the blade flap and lag motion and hence on the helicopter handling
qualities, vibration, loads, and aeroelastic stability. The basic distinction between
rotor types is the presence or absence of flap and lag hinges, and thus whether the
blade motion involves rigid-body rotation or bending at the blade root. A simple
classification of rotor hubs has the categories articulated, teetering, hingeless, and
bearingless, as sketched in Figures 8.1 to 8.4. With real designs (see Figure 1.2) the
distinctions are not as clear as in these drawings.

An articulated rotor has its blades attached to the hub with both flap and lag
hinges (Figure 8.1). The flap hinge is usually offset from the center of rotation
because of mechanical constraints and to improve the helicopter handling qualities.
The lag hinge must be offset for the shaft to transmit torque to the rotor. The purpose
of the flap and lag hinges is to reduce the root blade loads (since the moments must
be zero at the hinge) by allowing blade motion to relieve the bending moments that
would otherwise arise at the blade root. With a lag hinge a mechanical lag damper
is also needed to avoid a mechanical instability called ground resonance, involving
the coupled motion of the rotor lag and hub in-plane displacement. The articulated
rotor is the classical design solution to the problem of the blade root loads and hub
moments. The design is conceptually simple, and the analysis of the rigid body motion
is straightforward. The articulated rotor is mechanically complex, however, involving
three hinges (flap, lag, and feather) and a lag damper for each blade. The flap and lag
bearings must transmit both the blade thrust and centrifugal force to the hub and so
operate in a high-load environment. The hub also has the swashplate and the rotating
and non-rotating links of the control system. The resulting hub requires a high level of
maintenance and contributes substantially to the helicopter parasite drag. Recently,
the use of elastomeric bearings has been introduced. Replacing the mechanical
bearings with elastomeric bearings eliminates a major maintenance problem.

The teetering rotor (also called the semi-articulated or semi-rigid or seesaw
rotor) has two blades attached to the hub without flap or lag hinges, and the hub
is attached to the rotor shaft with a single flap hinge (Figure 8.2). The two blades
form a single structure that flaps as a whole relative to the shaft. The hub usually
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Figure 8.1. Sketch of an articulated rotor hub.

has a built-in precone angle to reduce the steady coning loads, and perhaps also an
undersling to reduce Coriolis forces. The blades have feathering bearings. Without
lag hinges, the blade in-plane loads must be reacted by the root structure. Torsional
flexibility of the rotor shaft and drive train also serves to alleviate lag moments on
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Figure 8.2. Sketch of a teetering rotor hub.
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Figure 8.3. Sketch of a hingeless rotor hub.

the blade and hub. The rotor coning produces structural loads, except at the design
precone angle. To accommodate these loads the rotor requires additional structure
and weight relative to an articulated rotor. This factor is offset by the mechanical
simplicity of the teetering configuration, which eliminates all the lag hinges and
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Figure 8.4. Sketch of a bearingless rotor hub.
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dampers and all but a single flap hinge. The flap hinge also does not have to carry the
centrifugal loads of the blade, only the rotor thrust, since the centrifugal forces are
reacted in the hub. The teetering configuration is the simplest for a small helicopter,
but is not practical for large helicopters because a large chord is required to obtain
the necessary blade area with only two blades. A gimballed rotor has three or more
blades attached to the hub without flap or lag hinges (but with feathering bearings);
the hub is attached to the shaft by a universal joint or gimbal. The gimballed rotor
is the multiblade counterpart of the teetering rotor and similarly has the advantage
of a simpler hub than articulated rotors. The teetering and gimballed rotors are
characterized by a flap hinge at the center of rotation, giving a flap frequency of
exactly 1/rev. The improvements in handling qualities due to offset hinges are not
available. For example, flight at low or zero load factor is not possible with a teetering
or gimballed rotor, since the control power and damping of the rotor are directly
proportional to the thrust. A hub spring can be used to increase the flap frequency,
although in the teetering rotor a hub spring leads to large 2/rev loads as well. The
lag mode of teetering and gimballed rotors is usually stiff in-plane motion, with a
natural frequency above 1/rev.

The hingeless rotor (also called a rigid rotor) has its blades attached to the rotor
hub and shaft with cantilever root constraint (Figure 8.3). Although the rotor has
no flap or lag hinges, there are hinges or bearings for the feathering motion. The
fundamental flap and lag motion involves bending at the blade root. The structural
stiffness is still small compared to the centrifugal stiffening of the blade, so the fun-
damental mode shape is not too different from the rigid body rotation of articulated
blades and the flap frequency is not far above 1/rev: typically ν = 1.10 to 1.15 for
hingeless rotors. Depending on the structural design of the root, the blade can be
either soft in-plane (lag frequency below 1/rev, typically 0.65 to 0.75/rev) or stiff
in-plane (lag frequency above 1/rev). The soft in-plane hingeless rotor is suscepti-
ble to ground resonance, and although the blade lag damping required can be an
order of magnitude less than that required by an articulated rotor, a mechanical
lag damper can still be needed. A lag frequency above 0.6/rev is desired for ground
resonance and air resonance stability, and the frequency should be below about
0.8/rev for acceptable loads. Without hinges, there can be considerable coupling of
the flap, lag, and pitch motions of the blade, which leads to significantly different
aeroelastic characteristics than with articulated blades. A matched-stiffness design
minimizes couplings, but requires a lag frequency about 0.5/rev. A stiff in-plane
rotor has no ground or air resonance problems, but has higher loads. The hingeless
rotor is capable of producing a large moment on the hub due to the tip-path-plane
tilt. This moment capability has a significant influence on the helicopter handling
qualities, including not only increased control power and damping but also increased
gust response. The hingeless rotor is a simple design mechanically, with potentially
low maintenance requirements and a low hub drag. A stronger hub and blade root
are required to take the hub moments, which increases the blade and hub weight.
Acceptable loads and strength have been achieved by the use of advanced materials,
and most often by the selection of the soft in-plane configuration for main rotors.
Acceptable stability can be achieved by designing the rotor for minimum coupling
of the blade modes (such as by using a matched-stiffness design), or by designing the
rotor for favorable values of pitch-lag and flap-lag couplings. The pitch bearing can
be a source of lag damping on a hingeless rotor.

Bearingless rotor designs eliminate the blade pitch bearings as well (Figure 8.4).
The flap, lag, and torsion motion occur through deflection of a torsionally soft
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flexbeam at the root. Pitch control is accomplished using a torque rod or torque tube.
Eliminating the highly loaded pitch bearings is another step in simplifying the design,
which should reduce cost and maintenance of the rotor hub. However, simplification
of the design is accompanied by complication of the analysis. The flap frequency of
the bearingless rotor can be lower than that of a hingeless rotor (which is considered
too high), since the flap flexure can be put close to the center of rotation. The
first applications of bearingless rotor concepts were stiff in-plane tail rotor designs.
Bearingless main rotors are generally soft in-plane, with a lag frequency below 1/rev
(typically 0.65 to 0.75/rev). Without the pitch bearing, the pitch-bending coupling
(from kinematics as well as due to nonlinear structural dynamics) can be quite
complicated. Much design flexibility is possible with the bearingless configuration,
but production rotors share common characteristics. A stiff torque tube surrounding
a soft flexbeam is a good choice for the structure. Since a long flexbeam is needed
to accommodate all the motion, the torque tube and flexbeam are connected to the
aerodynamic surface of the blade rather far outboard, at say 25% radius. The torque
tube does not usually have an airfoil shape, but it can at least be considered an
aerodynamic fairing for the large root cutout. A snubber attaches the inboard end
of the torque tube to the hub or flexbeam, free in rotation and axial motion, but
constraining vertical motion in order to control pitch-flap coupling and to produce
pure pitch rotation due to control from vertical motion of the pitch link. The snubber
is then also a place where lag damping can be introduced through an elastomeric (or
more complicated) damper of chordwise motion. Such snubbers are expensive and
do not provide much damping, but are sufficient to deal with ground resonance.

Most rotor designs have a hinge or bearing at the blade root to allow the feath-
ering or pitch motion of the blade for collective and cyclic control. Although it is
the most common design solution, the pitch bearing operates under adverse condi-
tions, transmitting the centrifugal and thrust loads of the blade while undergoing a
periodic motion due to the rotor cyclic pitch control. Thus there have been other
approaches to achieving blade pitch control. To simplify the mechanical design a
hinge can be used instead of a bearing, or an elastomeric bearing can be used instead
of a mechanical one. Another approach is to allow the pitch motion to take place
about torsional flexibility at the root or to use tension-torsion straps between the
blade and hub. Kaman developed a rotor that uses a servoflap on the outboard
portion of a torsionally flexible blade. Servoflap deflection causes the blade to twist,
which can be used for the collective and cyclic control of the rotor in place of root
pitch.

Figure 8.5 shows the flap frequency (per-rev) and Lock number for various rotor
designs. Recall that a large Lock number implies a lightweight blade. Teetering rotors
have a flap frequency of ν = 1, whereas articulated rotors have hinge offsets of 3%
to 6%; hence flap frequencies of ν = 1.02 to 1.04 typically. Hingeless rotors have
had a flap frequency above ν = 1.1. Modern bearingless rotors have flap frequencies
between ν = 1.05 and 1.07. Hingeless rotors tend to have a low Lock number. The
tiltrotors shown have gimballed, stiff in-plane hubs, and their coning frequency has
been plotted.

8.2 Rotorcraft Configuration

Definition of the rotorcraft configuration involves the number and orientation of
the main rotors, the means for torque balance and yaw control, and the fuselage
arrangement. Figure 1.1 shows the principal rotorcraft configurations. The basic rotor
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Figure 8.5. Rotor blade flap frequency and Lock number.

analysis is applicable to all helicopter types, but the configuration of the helicopter
does have an influence on its behavior, notably on its control characteristics and
handling qualities.

A single main rotor and tail rotor is the most common configuration. The tail
rotor is a small auxiliary rotor used for torque balance and yaw control. It is mounted
vertically on a tail boom, with the thrust acting to the right for a counter-clockwise-
rotating main rotor. The moment arm of the tail rotor thrust about the main rotor
shaft is usually slightly greater than the main rotor radius. Pitch and roll control
of this configuration is achieved by tilting the main rotor thrust using cyclic pitch;
height control by changing the main rotor thrust magnitude using collective pitch;
and yaw control by changing the tail rotor thrust magnitude using tail rotor collective
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pitch. The configuration is simple, requiring only a single set of main rotor controls
and a single main transmission. The tail rotor gives good yaw control, but absorbs
power in balancing the torque, which increases the helicopter power requirement by
several percent. The single main rotor configuration typically has a limited center-
of-gravity range, although the range is larger with a hingeless rotor. The tail rotor is
also a hazard to ground personnel unless it is located very high on the tail, and it can
strike the ground during operation of the helicopter. The tail rotor operates in an
adverse aerodynamic environment (as do the vertical and horizontal tail surfaces)
due to the wake of the main rotor and fuselage, which reduces the aerodynamic
efficiency and increases the tail rotor loads and vibration. The single main rotor
and tail rotor configuration is the simplest and lightest for small and medium-sized
helicopters.

With two (or more) contra-rotating main rotors, torque balance is inherent in the
configuration, and no specific anti-torque device with its own power loss is required.
However, there are aerodynamic losses from the interference between the main
rotors and between the rotors and fuselage; these losses reduce the overall efficiency
of twin main rotor configurations to about the same level as for the single main
and tail rotor configuration. The mechanical complexity is greater with twin main
rotors because of the duplication of control systems and transmissions. Rotor and
transmission weight fractions increase with rotor diameter for a fixed disk loading,
which favors twin main rotors for large aircraft.

The tandem rotor helicopter has two contra-rotating main rotors with longitu-
dinal separation. The main rotor disks are usually overlapped, typically by 30% to
50% (the shaft separation is around 1.7R to 1.5R). To minimize the aerodynamic
interference created by the operation of the rear rotor in the wake of the front rotor,
the rear rotor is elevated on a pylon, typically 0.3R to 0.5R above the front rotor.
Longitudinal control is achieved by differential change of the main rotor thrust mag-
nitude, from differential collective; roll control by lateral thrust tilt with cyclic pitch;
and height control by main rotor collective. Yaw control is achieved by differential
lateral tilt of the thrust on the two main rotors using differential cyclic pitch. A large
fuselage is inherent in the design, being required to support the two rotors. The tan-
dem helicopter also has a large longitudinal center-of-gravity range because of the
use of differential thrust to balance the helicopter in pitch. Tandem helicopters tend
to have lower disk loading than a single-main-rotor helicopter of the same weight,
resulting in better hover power loading. The smaller diameter of each rotor means
that the effective span of the lifting system in forward flight is lower, resulting in
lower cruise efficiency. The operation of the rear rotor in the wake of the front rotor
is a significant source of vibration, oscillatory loads, noise, and power loss. The high
pitch and roll inertia, unstable fuselage aerodynamic moments, and low yaw control
power adversely affect the helicopter handling qualities. There is a structural weight
penalty for the rear rotor pylon. Generally the tandem rotor configuration is suitable
for medium and large helicopters.

The side-by-side configuration has two contra-rotating main rotors with lateral
separation. The rotors are mounted on the tips of wings or pylons, with usually no
overlap (so the shaft separation is at least 2R). Control is as for the tandem helicopter
configuration, but with the pitch and roll axes reversed. Roll control is achieved by
differential collective pitch, and helicopter pitch control by longitudinal cyclic pitch.
The structure to support the rotors is only a source of drag and weight, unless the
aircraft has a high enough speed to benefit from the lift of a fixed wing.
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The coaxial rotor helicopter has two contra-rotating main rotors with concentric
shafts. Some vertical separation of the rotor disks (typically 8% to 10% of the diam-
eter) is required to accommodate lateral flapping. Pitch and roll control is achieved
by main rotor cyclic, and height control by collective pitch, as in the single main
rotor configuration. Yaw control is achieved by differential torque of the two rotors,
and probably rudders in forward flight. The concentric configuration complicates
the rotor controls and transmission, but the extensive cross-shafting of other twin
rotor configurations is not required. Yaw control by differential torque is typically
weak, especially in descent. The symmetry of the configuration (for small vertical
separation) results in largely decoupled longitudinal and lateral flight dynamics. The
large mast height increases the control power. This helicopter configuration is com-
pact, having small diameter main rotors and requiring no tail rotor. The coaxial rotor
has better hover efficiency than the equivalent single rotor (same radius, chord, and
number of blades, but no vertical separation), due to the contraction of the upper
rotor wake before it encounters the lower rotor, the reduction of swirl in the wake,
and the absence of tail rotor power loss. The disk loading of a coaxial rotor (based
on projected disk area) tends to be higher than a single main-rotor helicopter of the
same weight, resulting in worse hover power loading. In forward flight, the biplane
effect of the two rotors operating with small vertical separation reduces the induced
power, but the effective span of the lifting system in forward flight is lower than a
single main-rotor helicopter, resulting in lower cruise efficiency. The phase of the
rotors (whether blades cross at 0° or 90° azimuth) affects the vibration resulting from
oscillatory hub loads.

The synchropter has two contra-rotating main rotors with small lateral separa-
tion. The rotors are nearly operating in the coaxial configuration, but the design is
simpler mechanically because of the separate shafts.

The manner in which the actions of the main and auxiliary rotors are combined
to produce the required control moments and forces depends on the helicopter
configuration. Table 8.1 summarizes how control is accomplished for the major
helicopter configurations. Rotor cyclic pitch tilts the tip-path plane, and thereby
tilts the thrust vector and produces a hub moment. Even with a very stiff hingeless
rotor, cyclic pitch can tilt the thrust vector for control, although the tip-path-plane
tilt is reduced; see section 19.5. The rotor collective changes the thrust magnitude.
For all configurations, vertical control is accomplished by changing the main rotor
thrust magnitude using collective pitch. Longitudinal and lateral control is generally
obtained using cyclic pitch to tilt the tip-path plane of the main rotor. When there
are two main rotors with longitudinal or lateral separation of the shaft, one axis of
the helicopter can be controlled by means of differential main rotor collective pitch
changes. How a yaw moment is produced for directional control is closely related
to the manner in which balance of the main rotor torque is achieved, and as a result
varies with the helicopter configuration.

In most helicopter designs the power is delivered to the rotor by a mechanical
drive, through the rotor shaft torque. Such designs require a transmission and a
means for balancing the main rotor torque. An alternative is to supply the power by
a jet reaction drive of the rotor, using cold or hot air ejected out of the blade tips or
trailing edges. Helicopters have also been designed with ram jets on the blade tips
or with jet flaps on the blade trailing edges that use compressed air generated in the
fuselage. Since there is no torque reaction between the helicopter and rotor (except
for the small bearing friction), no transmission or anti-torque device is required,
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Table 8.1. Helicopter control

longitudinal lateral height directional
control control control control

helicopter torque pitch roll vertical yaw
configuration balance moment moment force moment

single main tr mr mr mr tr
rotor and thrust long lat coll coll
tail rotor cyc cyc

tandem mr mr mr mr mr
diff diff lat coll diff
torque coll cyc cyc

side-by-side mr mr mr mr mr
diff long diff coll diff
torque cyc coll cyc

coaxial mr mr mr mr mr
diff long lat coll diff
torque cyc cyc coll

Notes: mr = main rotor, tr = tail rotor, coll = collective, diff = differential, cyc = cyclic, long = longitudinal,
lat = lateral.

resulting in a considerable weight saving. With a jet reaction drive, the propulsion
system is potentially lighter and simpler, although the aerodynamic and thermal
efficiency are lower. The helicopter must still have a mechanism for yaw control.
Fixed aerodynamic surfaces (a rudder) can be used, but at low speeds they are not
very effective, depending on the forces generated by the rotor wake velocities.

The autogyro uses autorotation as the normal working state of the rotor. In the
helicopter, power is supplied directly to the rotor, and the rotor provides propulsive
force as well as lift. In the autogyro, the rotor is free to rotate on the shaft, and
no power or shaft torque is supplied to the rotor. The propulsive force required to
sustain level flight is supplied by a propeller or other propulsion device. The rotor
operates with aft tilt of the tip-path plane, the rotation driven by the resulting air
flowing upward through the disk. Sometimes the aircraft control forces and moments
are supplied by fixed aerodynamic surfaces as in the airplane, but obtaining the
control from the rotor is better. The rotor performs much like a wing (although
the aspect ratio AR = 4/π is low) and has a fairly good lift-to-drag ratio. Although
rotor performance is not as good as that of a fixed wing, the rotor is capable of
providing lift and control at much lower speeds than fixed-wing aircraft, because
lift on the blades is generated by both the rotation and the forward speed. The
power required is less than that of a helicopter, and the weight is less due to the
absence of a transmission. Without power being supplied to the rotor, the autogyro
is not capable of actual hover or vertical climb. Because autogyro performance is
not that much better than the performance of an airplane with a low wing loading,
usually the requirement of actual VTOL capability is necessary to justify a rotor on
an aircraft. The autogyro enjoyed some success, until helicopter development was
completed.
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The maximum speed of a rotor in edgewise flight is limited by the asymmetry
of the aerodynamic environment. The advancing blade tip encounters shocks and
increased drag at high Mach number. The retreating blade encounters high angle-of-
attack and stall near the reverse flow region. The asymmetric dynamic pressure seen
by the blade, the requirement for roll moment balance on the rotor, and generation
of a propulsive force combine to limit helicopter flight speed (see Figure 1.12). There
are numerous ideas for modifications to the basic helicopter configuration that are
aimed principally at achieving higher speed in level flight. Many of these concepts
have been tested in flight.

With auxiliary propulsion (usually a propeller for good efficiency), a propulsive
force is not needed from the rotor, resulting in better rotor effective lift-to-drag ratio
and delayed rotor stall. If a wing is added to the helicopter, its lift in forward flight
allows the rotor loading to be reduced, thus delaying stall effects. Since the rotor lift
is also the source of the helicopter propulsive force, significantly reducing the rotor
loading requires an auxiliary propulsion device as well. The result is the compound
helicopter configuration. Unless a hingeless rotor is used, fixed aerodynamic control
surfaces are required to maintain control in forward flight at low rotor thrust. The
dual systems for lift and propulsion increase the complexity of the aircraft and
increase its empty weight fraction. In forward flight, the rotor and especially the hub
are just contributing drag to the aircraft, reducing the cruise efficiency.

With reaction drive of the main rotor, a transmission is required only for the
propulsion system. The net effect on the empty weight fraction can be favorable for
large aircraft. In cruise the rotor can be operated as an autogyro, with the reaction
drive turned off. The noise produced by tip jets in hover and low speed flight is a
significant issue. The Fairey Rotodyne demonstrated the compound helicopter using
reaction drive (Hislop (1959)).

Avoiding compressibility limits in high-speed cruise flight requires that the rotor
be slowed. The slowed and unloaded rotor might then be stopped completely and
stowed, to minimize the aircraft drag at high speed. There are also concepts for
stopping the rotor and using it as a fixed wing in high-speed forward flight.

The lift-offset rotor maintains lift on the advancing side of the rotor disk in
high-speed forward flight by eliminating the requirement for roll moment balance
of the rotor. With the rotor lift center-of-action at 0.2R to 0.3R from the hub on the
advancing side, retreating side stall can be avoided. Such operation requires very
stiff hingeless rotors (flap frequency around ν = 1.45 has been used) to carry the roll
moment. With good blade design and choice of airfoils, the lift offset substantially
reduces the growth of induced and profile power with speed. Roll moment balance of
the aircraft is achieved using twin main rotors, with counter-acting hub roll moments.
The coaxial configuration requires stiff blades also to maintain flapping clearance.
The stiff hingeless rotor brings increased control power and damping of the flight
dynamics, but also high vibratory hub loads and increased blade and hub weight. As
with all high-speed edgewise rotor concepts, reducing hub drag is a major issue. The
Sikorsky XH-59A (Advancing Blade Concept) demonstrated the lift-offset rotor in
the coaxial configuration (Ruddell (1977)).

In the tilting proprotor configuration, the rotors are tilted forward to act as pro-
pellers in cruise, thus avoiding the many problems resulting from the asymmetric
aerodynamics of rotors in edgewise flight. The tiltrotor configuration was demon-
strated with the Bell XV-15 (Tilt Rotor Research Aircraft; Wernicke and Magee
(1979)), and is now in production. The tiltrotor is the simplest of the high-speed
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rotorcraft configurations, using a single rotor system for helicopter mode lift and
control, and propulsion in all flight regimes. This rotorcraft can cruise efficiently
at 300 to 350 knots, with about 10% increase in empty weight fraction. Relative
to a side-by-side helicopter, the tiltrotor adds the wing for high-speed capability.
Relative to a turboprop aircraft, it adds rotor blade area and complexity, and gains
VTOL capability. The basic tiltrotor has two rotors mounted in nacelles at the wing
tips. The design can tilt the engine with the rotor or not. If the engines tilt, then
the engine residual thrust contributes to aircraft lift in hover, but interaction of the
engine exhaust with the ground becomes an issue. The typical design couples the
wing span and rotor radius (with a requirement for clearance between the rotor tip
and the fuselage). A wing extension, outboard of the nacelle, can be used to increase
the wing aspect ratio. A cross shaft between the rotors is required for one-engine
inoperative conditions. With a rotor spinner and appropriate shaping of the nacelle,
the aircraft drag in cruise can be comparable to that of a turboprop.

Fixed-wing aerodynamic surfaces are used for control in airplane mode. The
wing brings good cruise efficiency, especially at high altitude, and increased maneu-
ver capability. The wing also is responsible for a large hover download (10% is
typical), and avoiding the coupled rotor and wing aeroelastic instability called whirl
flutter requires a thick wing section and increased wing stiffness. High lift-to-drag
ratio in cruise implies that the rotor thrust requirement as a propeller is an order of
magnitude less than the requirement in hover. The tiltrotor design usually has a high
disk loading T/A, for lighter rotors and a high hover blade loading CT/σ , since the
wing off-loads the rotor in helicopter mode forward flight. Nonetheless, the blade
area required for hover is much more than is needed as a propeller in cruise. To
reduce the profile power and increase propulsive efficiency, the rotor is slowed for
airplane mode operation. The engine power-turbine speed can be reduced by 15%
to 25% before the specific fuel consumption is affected significantly.

The difference in aerodynamic environments between hover and cruise opera-
tion leads to compromises in the blade design, particularly twist, which is too much
for hover and too little for cruise. For counter-clockwise rotation of the right rotor,
there is a favorable influence of the rotor wake on the wing in cruise, reducing the
wing induced power. Further reducing the rotor speed, to 40% or 50% of hover,
can produce further improvements in propulsive efficiency, both by reducing the
profile power and increasing the influence of the rotor on the wing induced drag.
Moreover, with large rotor speed reduction a compromise in the rotor blade design
is no longer necessary, the twist required for hover being about the same as that
required for cruise. Such large changes in rotor speed must be accomplished using
a variable-geometry engine or by a variable-speed transmission and is accompanied
by an increase in rotor torque.

8.3 Anti-Torque and Tail Rotor

A large number of design solutions have been considered for torque reaction in the
single main-rotor configuration. In addition to countering the main rotor torque in
hover and low-speed flight, the device must provide directional control and should
contribute to yaw damping and directional stability. Factors influencing the choice
of device are performance, weight, cost, handling qualities, and noise.

The tail rotor is efficient, provides good directional control, and has inherent
yaw damping. However, there are safety issues with a tail rotor, notably hazard to



282 Design

personnel and the possibility of ground contact. On many helicopters the tail rotor is
a source of high noise, but there are design choices to alleviate the noise, especially
lower tip speed and unequal blade spacing.

The tail rotor must produce thrust, both positive and negative, with the air veloc-
ity from all directions. The tail rotor size is typically determined by the requirement
to hover in wind (up to 35–45 knots) from any direction, plus maneuver requirements
such as yawing at low speed. The tail rotor operates in an adverse aerodynamic envi-
ronment, with substantial interference from the main rotor, airframe, vertical tail,
and ground. It has only collective control, no cyclic. Usually pitch-flap coupling is
used to reduce flapping, δ3 = 35° to 45°. The preferred configuration is top-aft and
pusher, to minimize adverse interference (see section 5.6.5).

In sideward flight (to the left for counter-clockwise rotation of the main rotor)
at 10 to 25 knots (depending on the disk loading), the tail rotor can encounter vortex
ring state (VRS). The flow unsteadiness and reversed sign of thrust change with axial
speed in vortex ring state (section 4.2) produce difficulties in directional trim, high
oscillatory pedal motions, and large oscillatory yaw of the aircraft. Interaction with
the main rotor and the ground influences the tail rotor VRS characteristics.

Upward cant of the tail rotor shaft improves the helicopter performance, partic-
ularly in hover and vertical climb (see Hansen (1988)). Having the tail rotor share
the lift is efficient, even though the required tail rotor thrust is larger. For example,
with 20° of cant, 34% of the tail rotor thrust contributes to vertical lift, for a 6%
loss in the anti-torque component. With lift from the tail rotor, the aircraft center-
of-gravity range is increased, and the aircraft trims with the center-of-gravity aft of
the shaft. Cant reduces the tail rotor susceptibility to vortex ring state in sideward
flight, especially with bank angle. The canted tail rotor must be a tractor (the fin
on the intake side of the disk), but the bottom of the tail rotor is farther from the
fin, which reduces the interference. Tail rotor cant introduces control couplings.
Pitching moments would be produced by pedal because of the cant and by collective
because of the aft center-of-gravity position, requiring pilot’s pedal and collective
control to produce longitudinal cyclic pitch. Tail rotor cant also introduces couplings
in the flight dynamics; in particular, tail rotor thrust changes due to sideslip produce
a pitching moment.

A successful alternative to the tail rotor must have satisfactory stability, control
power, autorotation capability, weight, and power loss. The tail rotor has satisfactory
characteristics in all these areas and excellent characteristics in some. Most candidate
replacements are seriously deficient in at least one area.

The most common alternative to the tail rotor is the ducted fan, implemented
as a shrouded fan in the vertical tail. The primary deficiencies of the tail rotor are
its hazard to personnel, noise, and vibration. The ducted fan offers improvements in
safety and vulnerability, particularly regarding personnel hazard. The fan-in-fin tail
rotor, or FenestronTM, has been developed and taken to production by Eurocopter.
The control and handling qualities with a fan-in-fin are similar to those with a tail
rotor. The power required and weight are somewhat increased. The duct is not long,
and the flow around the inlet is complex in forward flight.

Also in production is a circulation-control tail boom (operating in the main rotor
wake, for anti-torque in hover) with a reaction jet for yaw control. There is a fan inside
the boom, driving air out slots in the boom and a jet at the tail. Torque reaction is
obtained from the side force on the tail boom, generated by boom circulation control
in the wake of the main rotor. Vanes or other devices vary the jet direction for yaw



8.4 Helicopter Speed Limitations 283

control. Relative to the tail rotor, safety is better and the noise is low, but there is
no contribution to directional stability. The flow around the tail boom is complex.

8.4 Helicopter Speed Limitations

As for fixed-wing aircraft, the maximum speed of a helicopter in level flight is lim-
ited by the power available, but with a rotary wing there are a number of other
speed limitations as well, among them stall, compressibility, and aeroelastic stability
effects. The primary limitation with many current designs is retreating blade stall,
which at high speed produces an increase in the rotor and control system loads and
in helicopter vibration, severe enough to limit the flight speed. The result of these
limitations is a cruise speed for a pure helicopter between 150 and 180 knots with
current technology. To achieve a higher cruise speed requires either an improve-
ment in rotor and fuselage aerodynamics or a significant change in the rotorcraft
configuration.

The absolute maximum level flight speed is the speed at which the power
required equals the maximum power available. At high speed, parasite power dom-
inates the power required. To increase the power-limited speed requires an increase
in the installed power of the helicopter or a reduction in the hub and body drag.
Because the parasite power is proportional to V 3, a substantial change in drag or
installed power is required to noticeably influence the helicopter speed. At suffi-
ciently high speed, the rotor profile power also shows a sharp increase as a result of
stall and compressibility effects.

A measure of the compressibility effects on the rotor blade in edgewise forward
flight is the Mach number of the advancing tip,

Mat = M1,90 = Mtip(1 + μ) = �R + V
cs

(8.1)

where cs is the speed of sound and Mtip = �R/cs. The magnitude of compressibility
effects on speed and power depends primarily on whether Mat is above or below
the critical Mach number for the angle-of-attack of the advancing tip. Above the
critical Mach number, compressibility increases the rotor profile power due to drag
divergence, and the high periodic forces on the blade increase the helicopter vibra-
tion and rotor loads. Dynamic stability problems (flapping or flap-pitch flutter) due
to compressibility can also be encountered. An increasingly important limit on the
rotor Mach number is the rotor noise level. Power and vibration effects do not
appear until a significant portion of the rotor disk is above the critical Mach number,
so usually a value of Mat that is 5% to 10% above the section critical Mach number
can be tolerated. If rotor noise is considered, a substantially lower rotor speed may
well be required. An alternative to reducing the rotor speed to avoid compressibility
effects is to increase the critical Mach number, notably by using thin airfoil sections
and sweep at the blade tip. Since the compressibility limitation on the advancing-tip
Mach number basically provides a maximum value for (�R + V ), the designer must
compromise between the rotor speed and flight speed.

A measure of stall effects on the rotor is the ratio of the thrust coefficient to
solidity, CT/σ , which represents the mean lift coefficient of the blade. In hover,
high values of CT/σ can be achieved before the profile power increase due to stall
is encountered. In forward flight, however, the angle-of-attack increases on the
retreating side of the disk to maintain the same loading as on the advancing side
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(see section 6.13), so that stall is encountered at significantly lower values of CT/σ .
The rotor profile power increases when a substantial portion of the disk is stalled,
and more importantly there is a sharp increase in the rotor loads and vibration,
particularly in the control system, as a result of the high transient pitch moments
on the periodically stalling blade. Stall of the helicopter rotor is discussed fully in
Chapter 12. The stall-limited CT/σ in forward flight decreases as either forward
speed or propulsive force increases, since both increase the nonuniformity of the
blade angle-of-attack distribution. Alternatively, for a given CT/σ severe rotor stall
effects are encountered at some critical advance ratio, which increases as the blade
loading is reduced. Since the amount the blade area can be increased to reduce CT/σ

is limited by the weight and performance penalties, the advance ratio restriction due
to stall is an important helicopter design criterion.

The maximum advance ratio at which the helicopter can be operated depends
on several factors. As μ increases, the aeroelastic stability of the blade motion
decreases, the blade and control loads increase because of the asymmetry of the
flow, and the aerodynamic efficiency and propulsive force capability of the rotor
decrease. Retreating blade stall often constitutes the primary restriction on μ. For a
specified maximum advance ratio μ = V/�R, the designer must increase the rotor
tip speed to obtain a high forward speed of the helicopter. However, compressibility
limits the possible tip speed and thus limits the helicopter speed.

Compressibility effects on the advancing blade and stall effects on the retreating
blade combine to restrict the maximum forward speed of the helicopter rotor. The
advancing-tip Mach number and advance ratio specify the sum and ratio of the tip
speed and velocity:

Mat = (�R + V )/cs (8.2)

μ = V/�R (8.3)

Solving for V and �R gives

V = csMat
μ

1 + μ (8.4)

�R = csMat
1

1 + μ (8.5)

A high helicopter speed thus requires a high tip Mach number and a high advance
ratio. This relationship is shown graphically in Figure 8.6, which plots �R as a
function of V for constant advancing-tip Mach number and advance ratio of the
rotor in edgewise forward flight. From this diagram the maximum helicopter speed
for given limits on Mat and μ can be determined. For example, a critical Mach
number of Mat = 0.9 and a maximum advance ratio of μ = 0.5 produce a tip speed
�R = 670 ft/sec (200 m/sec) and a maximum velocity V = 200 knots.

The rotor tip speed is selected largely as a compromise between the effects of
stall and compressibility. A high tip speed increases the advancing-tip Mach number,
leading to high profile power, blade loads, vibration, and noise. A low tip speed
increases the angle-of-attack on the retreating blade until limiting profile power,
control loads, and vibration due to stall are encountered. Thus there is only a limited
range of acceptable tip speeds, which becomes smaller as the helicopter velocity
increases.
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Figure 8.6. Rotor speed and velocity limits for edgewise flight (sea-level-standard speed of
sound).

8.5 Autorotation, Landing, and Takeoff

After engine failure, the helicopter has the capability of making an autorotation
landing, in which the rotor lift is maintained while the aircraft descends at a steady
rate. Because the equilibrium descent rate of the helicopter is fairly high, even in
forward flight, autorotational descent is normally an emergency procedure. More-
over, the pilot must take prompt and correct action to establish the optimum flight
path both at the beginning and end of the maneuver.

After power failure, the rotor slows down as profile and induced power absorb
the rotor kinetic energy, which is the only power source available until the helicopter
begins to descend. As the descent rate builds up, the inflow up through the rotor disk
increases and therefore the blade angle-of-attack increases. Possibly the helicopter
can then achieve an equilibrium descent rate in these conditions, with the angle-
of-attack increase countering the rotor speed loss to maintain thrust equal to gross
weight. Stall places a limit on the angle-of-attack, and the rotor kinetic energy must be
conserved for the end of the maneuver. To keep the angle-of-attack in autorotation
low and maintain rotor speed, after a power failure the pilot must reduce collective
pitch. The transient lift capability of a rotor is higher than its static capability, which
gives the pilot some additional time to react, but still the pilot must recognize the
power loss and drop the collective within 2 or 3 seconds to prevent excessive rotor
speed decay. The collective pitch required in autorotation is usually a small positive
angle. On a single main rotor helicopter, the rotor torque loss also requires a pedal
control change to reduce the tail rotor thrust. After the initial control actions, the
pilot must establish equilibrium power-off flight at the minimum possible descent
rate. The lowest autorotation descent rate is achieved in forward flight at the speed
for the minimum power required for level flight (see section 7.2.3); the value is about
one-half the descent rate in vertical autorotation.
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Near the ground the pilot must flare the helicopter, reducing the vertical and
horizontal velocities for touchdown. Ideally, the helicopter has zero velocity just at
the instant it contacts the ground. The flare maneuver requires that the collective be
raised to increase the thrust and decelerate the helicopter and that aft longitudinal
cyclic be used to reduce the forward speed (producing a significant pitch-up motion
as well). The power for the rotor during the flare maneuver is supplied by the
rotational kinetic energy stored in the rotor. This is a limited power source, so the
flare maneuver must be well timed by the pilot. Because the rotor slows down when
the collective is increased, blade stall limits the flare capability of the helicopter.
The total kinetic energy of the rotor is KE = 1

2 NIb�
2 (where NIb is the rotational

moment of inertia of the entire rotor), but the fraction of the energy available before
the rotor stalls and the thrust is lost is only (1 −�2

f/�
2
i ). Here �i and � f are the

rotor speeds at the beginning and end of the flare. Assuming that the rotor thrust
remains fairly constant,

�2
f

�2
i

= (CT/σ )i

(CT/σ ) f
(8.6)

The rotor speed and CT/σ at the beginning of the maneuver are close to the normal
operating values of the helicopter, and (CT/σ ) f is determined by the rotor stall limit
(taking into account the lift overshoot possible in a transient maneuver).

If a power failure occurs when the helicopter is near the ground, establishing an
equilibrium descent condition is not possible. Then the entire power-off landing is
a transient maneuver, and the best flight path is somewhat different. If the power
loss occurs in hover, the minimum contact velocity at the ground is achieved with a
purely vertical flight path. Thus the pilot should not attempt to establish the forward
velocity for lowest equilibrium descent rate, but only maintain enough speed to give
a view of the landing spot.

Good autorotation characteristics depend on a number of the helicopter primary
design parameters. The descent rate in autorotation is proportional to the square
root of the rotor disk loading, so the disk loading should be low. Therefore a low
autorotation descent rate is associated with low hover power. Helicopter flare capa-
bility is even more important for power-off landings than the steady-state descent
rate, particularly since the choice of disk loading is influenced primarily by per-
formance considerations. The flare capability depends on the rotor kinetic energy,
which requires a high rotor speed and a large blade moment of inertia. The stall
margin should be high, both for good flare characteristics and for a minimal loss of
rotor speed before the collective is reduced just after the power failure. Thus the
helicopter operating CT/σ should be low. The rotor inertia is the most effective
parameter for improving helicopter autorotation characteristics.

The helicopter must have a free-wheeling or overriding clutch so that the engine
can drive the rotor but not the other way around. Then when a power failure occurs,
the engine automatically disengages from the rotor, and the rotor does not have
the drag of the engine during autorotation. The tail rotor of a single main rotor
helicopter must be geared directly to the main rotor, so that yaw control can be
maintained in the event of power failure.

Figure 8.7 shows the height-velocity diagram, which summarizes the helicopter
behavior after engine power failure. If the power loss occurs high above the ground,
the pilot has time to establish equilibrium descent. The normal rotor speed can be
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Figure 8.7. Helicopter height-velocity diagram.

recovered by a momentary increase in the descent rate, so that the flare can be
initiated with the maximum possible stored energy in the rotor. If the power loss
occurs near the ground, it is not possible before the flare is started to make up for
the rotor speed drop at the beginning of the maneuver, particularly when the pilot
reaction time is accounted for. The result for most helicopters is that there is a range
of altitudes for which the flare cannot be initiated with sufficient rotor energy and
low enough descent rate to avoid excessive vertical velocity at ground contact. Thus
there is a region at low speed on the helicopter height-velocity diagram (Figure 8.7)
in which the helicopter should not be operated, because a safe landing after power
loss is not possible. The boundary of this region is called the deadman’s curve. Above
the high hover point (point A) the rotor speed can be recovered sufficiently, and
the descent rate kept low enough, to make a safe landing. With enough altitude,
equilibrium autorotation descent can be established. For very low heights (below
point B in Figure 8.7), the ground is reached before the helicopter has time to
accelerate to an excessive velocity. With sufficient forward speed (point C) a safe
landing is again possible because of the reduction in autorotative descent rate with
forward flight. The high hover point is at 300 to 500 ft altitude for light helicopters,
perhaps at 2500 ft for medium helicopters. The low hover point is typically 10 to 15
ft above the ground. The maximum forward speed of the avoid region is at 30 to
60 knots. There is also usually a restriction on high-speed flight near the ground, as
shown in Figure 8.7. If a power failure occurs at high speed and low altitude, either
there is not time to reduce the horizontal velocity sufficiently to avoid damage to
the landing gear (particularly for helicopters with skid-type gear), or cyclic flare to
reduce the speed would lead to contact of the tail with the ground.

The two avoid regions on the height-velocity diagram combine to constrain the
helicopter takeoff and landing to a specific corridor. The limit on the operational use
of the helicopter is not particularly restrictive, however. A purely vertical takeoff or
landing is not usually made because of the avoid region. Rather, after a vertical climb
to about 15 ft altitude the pilot begins to accelerate the helicopter forward. With two
or more engines, the avoid region of the helicopter operation disappears or at least
becomes much smaller. The concern with multi-engine helicopters is more with the
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one-engine-inoperative (OEI) performance capability than with the consequences
of a complete power failure.

Consider the initial rate of descent and rotor speed decay following power
failure, but before the pilot reacts to the situation, so that the collective pitch is
unchanged. The following analysis was introduced by McCormick (1956). The equa-
tion of motion for the vertical acceleration of the helicopter is Mḧ = T − W , where
h is the helicopter height above the ground, W the gross weight, T the rotor thrust,
and M = W/g the helicopter mass. The equation of motion for the rotor speed is
NIb�̇ = −Q, where NIb is the total rotor moment of inertia and Q is the decelerating
torque on the rotor. Before the power failure (at time t = 0), the rotor thrust equals
the gross weight and the rotor speed is constant. After the power failure, the engine
torque no longer balances the rotor decelerating torque, so the rotor slows down; Q
then is just due to the rotor power requirement. Since the collective is assumed to be
unchanged from the hover value, and at least initially the descent rate has not built
up sufficiently to change the inflow ratio, the rotor thrust and torque coefficients (CT

and CQ, which are functions of θ.75 and λ) must remain fixed at the same values as at
the instant of power failure. The rotor thrust and torque are then changed only by
variations in the rotor speed: T = W (�/�0)

2 and Q = Q0(�/�0)
2. Here �0 is the

initial rotor speed and Q0 the rotor torque required in level flight, so P = �0Q0 is
the helicopter power required for level flight. The equation of motion of the rotor
speed for t > 0 then becomes NIb�̇ = −Q0(�/�0)

2, which integrates to

�

�0
=
(

1 + tQ0

NIb�0

)−1

= τ

t + τ (8.7)

and the helicopter vertical velocity (negative for descent) has the solution

ḣ = −gt2 Q0

NIb�0

(
1 + tQ0

NIb�0

)−1

= − gt2

t + τ (8.8)

The time constant in the final expressions is

τ = NIb�0

Q0
= 2

KE
P

(8.9)

where P is the rotor power required for level flight and KE = 1
2 NIb�

2
0 is the kinetic

energy stored in the rotor. These expressions describe the helicopter behavior fairly
well for the first few seconds after power failure.

The flare is a more important part of the power-off landing, but McCormick’s
analysis introduces the parameter τ = 2 KE/P as a measure of helicopter autoro-
tation characteristics. A small decay of the rotor speed requires a large value of τ ;
hence, a high rotor kinetic energy and a low required power. The helicopter power
enters as a measure of the torque acting to decelerate the rotor after engine power
is lost. Typically, KE/P = 2 to 3 seconds, so the time for a significant decay of the
rotor speed is around 1 to 2 seconds. The largest permissible reaction time can be
estimated by setting the rotor speed decrease equal to the stall limit:

�2

�2
0

= CT/σ

(CT/σ )stall
(8.10)
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from which

tmax = 2
KE
P

[(
(CT/σ )stall

CT/σ

)1/2

− 1

]
(8.11)

Typically tmax = 1.5 to 2.5 sec.
A number of autorotation performance indices have been proposed as measures

of overall autorotation characteristics such as represented by the height-velocity
diagram:

time delay t/K = KE
P

(
1 − CT/σ

0.8(CT/σ )max

)
(8.12)

usable kinetic energy E = KE
W

(
1 − CT/σ

(CT/σ )max

)
(8.13)

autorotation index AI = KE
P

(8.14)

energy factor h = KE
W

(8.15)

flare index FI = KE
W (ρ0W/ρA)

(8.16)

Increasing values of an index imply better autorotation characteristics. Here KE =
1
2 NIb�

2 is the rotor kinetic energy, P the installed power of the helicopter, W the
gross weight, (CT/σ )/(CT/σ )max the ratio of rotor blade loading to stall-limited blade
loading, and (ρ0W/ρA) the referred disk loading. Wood (1976) and White, Logan,
and Graves (1982) discussed the origin of these parameters. Wood (1976) presented
a correlation of the first four indices with autorotation characteristics for lightweight,
heavy rotor helicopters. The index t/K is based on the decay time of rotor speed
after power failure, taken as a measure of how the rotor rotational energy is used
during the flare to touchdown or of the time the touchdown can be delayed. The
factor K in t/K is included to acknowledge the differences between these events at
the start and at the end of the landing. The index E represents the minimum energy
level for safe landing, as limited by the stall blade loading. The index AI = KE/P
(sec) and energy factor h = KE/W (ft or m) are measures of the relative amount of
kinetic energy. Based on hover power required, P ∝ W

√
ρ0W/ρA, so the indices t/K

and AI have an additional factor of
√
ρ0W/ρA in the denominator, relative to the

indices E and h. Thus t/K and AI have a greater sensitivity to disk loading (smaller
values of the indices for high disk loading). The flare index FI was developed by
Fradenburgh (1984), based on the ratio of energy available (KE) to energy required
(P�t) during flare. For a given load factor to produce the deceleration, the time
of the flare maneuver is proportional to the rate of descent; hence �t ∝ √

ρ0W/ρA
and P�t ∝ W (ρ0W/ρA). So FI is more sensitive to disk loading than t/K and AI.
This flare index has not been correlated with helicopter autorotation characteristics.
Fradenburgh gave values of FI for a number of Sikorsky helicopters (disk loadings
from 4 to 12 lb/ft2) and noted that all have been landed safely without power.

A simple point-mass model combined with optimal control is effective in cal-
culating the takeoff and landing behavior of rotorcraft, including landing after loss
of power. Such an analysis can predict the shape of the height-velocity diagram,
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although as an optimum solution often predicts a smaller avoid area. See Johnson
(1977), Lee, Bryson, and Hindson (1988), Lee (1990), Zhao, Jhemi, and Chen (1996),
Carlson, Zhao, and Chen (1998), and Carlson (2001).

Consider a rotorcraft with horizontal motion x (positive forward), height h
(positive upward), and rotational speed �; these are the degrees of freedom of
the motion. The forces acting on the rotorcraft are weight W (downward), drag D
(opposite the total velocity), and tip-path-plane thrust T . The decelerating torque is
Q = P/�, where P is the rotor power required. The tip-path-plane thrust T and angle
relative to horizontal i (positive forward) are the control variables. The equations of
motion are

Mḧ = T cos i − Dḣ/V − W (8.17)

Mẍ = T sin i − Dẋ/V (8.18)

IR�̇ = Qeng − Q (8.19)

where M = W/g is the rotorcraft mass, IR = NIb the total rotational inertia, and
V =

√
ẋ2 + ḣ2 the rotorcraft velocity. The drag is defined by the area f = D/( 1/2ρV 2)

and must cover hover download as well as forward flight parasite drag. The torque
Q = P/� = ρA(�R)2RCP can be obtained from energy balance expressions, such
as equation 6.121. The rotor induced velocity is obtained from Glauert’s formula
(equation 5.9), including corrections for the singularity at ideal autorotation (equa-
tion 5.13) and ground effect. Using a differential equation for the rotor inflow is best,
both to simplify solution of the equations and to introduce a time lag that filters the
inflow variation. The model can also include a wind velocity. For powered flight, dif-
ferential equations are required for the engine torque Qeng, representing the engine
dynamics, governor and fuel control, and perhaps throttle command. Constraints are
defined for the magnitude and rate of change of the control variables and perhaps
to model effects such as CT/σ limits due to stall.

Inverse simulation methods can find the solution following a takeoff or landing
trajectory. Optimal control theory can find the control schedules to minimize a cost
function. For the problem of landing after power loss, the goal is to minimize the
velocity at touchdown, so the cost function can be a sum of the horizontal and
vertical kinetic energies: J = 1

2

(
ḣ2

f + ẋ2
f

)
, evaluated at the final time t f . The initial

conditions are level flight: altitude h0, flight speed ẋ0, and rotor speed �0 at time
t = 0. Since the final altitude (h f = 0) is known, but not the final time, the equations
can be expressed in terms of altitude h as the independent variable and vertical
speed ḣ as the dependent variable: d(. . .)/dt = ḣ d(. . .)/dh. The cost function can
be transformed to an integral over h.

According to Airworthiness Standards for Transport Category Rotorcraft (Fed-
eral Aviation Regulation Part 29), transport helicopters can be certified as either
Category A or Category B. Rotorcraft with a maximum weight greater than 20000 lb
and 10 or more passenger seats must be certified as Category A. An important
aspect of the certification is the capability of a multi-engine aircraft in one-engine-
inoperative (OEI) conditions. The rotorcraft design and operating procedures must
meet the requirements of Category A takeoff:

If one engine fails at any time during the takeoff, it must be possible to return to and stop
safely on the takeoff area, or to continue the takeoff and climb-out.
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The takeoff decision point (TDP) is the first point that continued takeoff is assured
and the last point that rejected takeoff is assured. The TDP is established as a function of
two parameters (such as airspeed and height), including the pilot reaction time following
engine failure. If an engine fails before TDP, takeoff must be rejected; if an engine fails
after TDP, takeoff must be continued.

The takeoff path must be clear of the avoid regions of the height-velocity diagram.
The path cannot descend below 15 ft above the takeoff surface, when the takeoff decision
point is above 15 ft. For elevated heliports, the path may descend below the takeoff
surface, if the aircraft remains clear of all obstacles. The takeoff safety speed VTOSS is
the speed at which the required OEI climb performance can be achieved. After attaining
VTOSS, the steady rate of climb must be at least 100 ft/min until 200 ft above the takeoff
surface (out of ground effect, at approved engine rating).

The takeoff distance is the horizontal distance from start of the takeoff until the
rotorcraft attains and remains at least 35 ft above the takeoff surface, attains and maintains
a speed of at least VTOSS, and establishes a positive rate of climb.

Certification is typically obtained for takeoff from runways, ground-level helipads,
and elevated helipads. For Category B takeoff, it is only necessary that the landing
can be made safely at any point along the flight path if an engine failure occurs; there
is no requirement for a capability to continue flight.

8.6 Helicopter Drag

The estimation of helicopter parasite drag is an important aspect of performance
calculation because it establishes the propulsive force and power requirement at high
speed. The helicopter drag is commonly expressed in terms of the parasite drag area
f , such that D = 1

2ρV 2 f . Except for compressibility or Reynolds number effects,
f = D/q is independent of speed. The variation of the parasite drag with fuselage
angle-of-attack is important for accurate performance calculations. The parasite drag
area can be calculated from the drag coefficients of the various components of the
airframe by

f =
∑

n

CDnSn (8.20)

where Sn is the component wetted area or frontal area, on which CDn is based.
A major contributor to the helicopter drag is the rotor hub, which typically

accounts for 25% to 50% of the total parasite drag area. Blade shank drag can be
significant and is usually book-kept with the hub drag. The drag of even a clean
helicopter is significantly greater than that of an airplane of similar gross weight,
partly because of the large rotor hub drag and partly because of higher fuselage
drag. Early helicopter designs in particular tended to have high drag levels. Thus
helicopters offer significant potential for drag reduction: main rotor hub fairings,
retractable gear, streamlined fuselage, tail rotor hub fairings, and momentum losses.
Well-designed hub fairings can reduce the hub drag by 30% to 40%, although they
can introduce maintenance issues.

Figure 8.8 shows the parasite drag of various rotorcraft as a function of size
(weight or disk area). The helicopter drag can be estimated based on the maximum
takeoff weight, f = D/q = k(WMTO/1000)2/3. Based on historical data, k = 9 for old
helicopters, k = 2.5 for current low-drag helicopters, k = 1.6 for current tiltrotors,
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Figure 8.8. Rotorcraft parasite drag.

and k = 1.4 for turboprop aircraft (English units, so f in ft2 and WMTO in lb). Alter-
natively, the parasite area can scaled with the rotor disk area, f = ArotorsCD, where
Arotors is the projected area of the rotors. Based on historical data, the drag coeffi-
cient CD = 0.02 for old helicopters and CD = 0.008 for current low-drag helicopters.
These trends would imply A ∝ W 2/3, whereas section 1.2 found disk loading scaling
as W/A = 0.15W 0.4.

Similarly hub drag can be estimated based on the gross weight, using a squared-
cubed relationship or a square-root relationship, or it may be scaled in terms of a
drag coefficient CD based on the rotor disk area A (Figure 8.9). Based on historical
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Figure 8.9. Helicopter hub parasite drag.

data, the drag coefficient CD = 0.004 for typical hubs, CD = 0.0024 for current low-
drag hubs (30% of the total drag), and CD = 0.0015 for faired hubs (40% reduction).
For the squared-cubed relationship, fhub = k(WMTO/1000)2/3. Based on historical
data, k = 1.4 for typical hubs, k = 0.8 for current low-drag hubs (30% of the total
drag), and k = 0.5 for faired hubs (English units). For the square-root relationship,
fhub = k

√
WMTO/Nrotor (where WMTO/Nrotor is the maximum takeoff gross weight

per lifting rotor). Based on historical data (Keys and Rosenstein (1978)), k = 0.074
for single rotor helicopters, k = 0.049 for tandem rotor helicopters (probably a blade
number effect), k = 0.038 for hingeless rotors, and k = 0.027 for faired hubs (English
units).
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8.7 Rotor Blade Airfoils

The airfoils for a rotor blade are chosen to give the rotor good aerodynamic efficiency
while allowing the structural requirements of the blade to be satisfied. Selecting an
airfoil section or designing airfoils specifically for rotor blades is difficult because
of the complex aerodynamic environment in which the rotary wing operates. The
airfoil used must balance the many constraints imposed by the rotor flow. Although
the rotary-wing aerodynamic environment is highly three-dimensional and unsteady,
significant improvements in rotor performance and loads can be achieved by con-
sidering the two-dimensional, static airfoil characteristics.

The figure of merit is a useful measure of the aerodynamic efficiency of the
hovering rotor. The figure of merit can be written

M = λhCT

κλhCT + σcdo

8

= 1

κ + 3
4

cdo/c�
λh

(8.21)

(equation 3.120 in section 3.6.5). Thus for a fixed disk loading, the key parameter
is the blade section drag-to-lift ratio. A high figure of merit requires that the airfoil
section have a low drag for moderate to high lift coefficients.

Good stall characteristics are important for any wing, including the rotor blade.
The rotor airfoil should have a high maximum lift coefficient, which allows the rotor
to be designed to operate at a high CT/σ value and hence have a low tip speed
and blade area. The strictest limitation imposed by stall is on the retreating blade in
forward flight, so a high lift coefficient is required at low to moderate Mach numbers.
In forward flight, stall occurs periodically as the blade rotates, so really the airfoil
must have good unsteady stall characteristics (see Chapter 12). Generally, good static
stall characteristics imply good dynamic stall characteristics, so the airfoil selection
can reasonably be based on static data.

At high forward speeds, the advancing-tip Mach number is high. The rotor airfoil
should therefore have a high critical Mach number for drag divergence and shock
formation at the low angles-of-attack characteristic of the advancing side of the disk.

Aerodynamic pitch moments on the blade are transmitted to the control system.
A low moment about the airfoil aerodynamic center is required to avoid excessive
control system loads, particularly in forward flight, where there is a large periodic
variation in angle-of-attack and dynamic pressure. If the control system is entirely
mechanical, the aerodynamic pitch moments on the blade are also transmitted to
the pilot’s cyclic and collective control sticks. A reflexed trailing edge can be added
to a cambered airfoil section to reduce the pitch moment.

Figure 8.10 illustrates the principal concerns in selecting or designing an airfoil
for a helicopter rotor blade. The rotor blade section operates over a wide range of
conditions. Low drag is required at the working conditions of the rotor in hover,
namely moderately high angles-of-attack and Mach number. Good stall character-
istics, including a high maximum lift coefficient, are required at the low to moderate
Mach numbers of the retreating blade in forward flight. A high critical Mach number
is required at the low angle-of-attack of the advancing blade in forward flight. The
hover criterion is intended to give good lifting performance by the rotor, whereas
the forward flight requirements are primarily based on achieving low vibration and
loads at high speed. In addition, the airfoil should have a small pitching moment. In
general, the stall and compressibility requirements (high maximum lift coefficient at
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moderate Mach numbers and high critical Mach number at low lift) demand signifi-
cant compromise if met with a single contour. The best approach is to use different
airfoils at the tip (where compressibility effects dominate) and at midspan (where
stall effects dominate).

A symmetrical, moderately thick airfoil section was frequently the choice for
rotor blades in early designs, with the same section over the entire span for sim-
plicity of construction. A symmetrical section assures a zero pitching moment. The
thickness ratio (typically 10% to 15%) is a compromise between the thin section
desired because of compressibility effects and the thick section desired for struc-
tural efficiency. Fortunately, extremely thick sections are required only at the blade
root. The NACA 0012 airfoil was a frequent selection for past rotor designs and
has come to be considered the standard or reference rotor airfoil. With improved
aerodynamic, structural, and manufacturing technology, more sophisticated blade
designs are used for current helicopters. A number of airfoils have been developed
with characteristics optimized for the rotary-wing environment, and using thinner
sections at the blade tip is common.

As a guide in the evaluation and selection of a rotor blade airfoil, both the section
operating conditions and the airfoil characteristics can be plotted as a function of
angle-of-attack and Mach number (Figure 8.11). The airfoil characteristics shown
as a function of Mach number for a hypothetical airfoil are the angles-of-attack for
maximum lift coefficient (αmax) and for drag divergence or supercritical flow (αcrit).
Also plotted is the operating condition for several radial stations as the blade moves
around the azimuth (a closed curve is generated in forward flight, converging to a
single angle-of-attack and Mach number for hover). The tip sections of the blade
show the highest Mach numbers, whereas sections somewhat inboard (such as at
75% radius) show the largest angle-of-attack. Thus the requirements dictated by the
aerodynamic environment of the blade vary with the radial station. The requirements
for a given rotor operating state can be compared with the stall and compressibility
characteristics of a particular airfoil by a plot such as shown in Figure 8.11. This
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plot can also be used to graphically compare the characteristics of different airfoil
sections; an improved airfoil should show increased angle-of-attack limits over the
entire Mach number range.

Figure 8.12 shows the maximum lift coefficient (c�max at M = 0.4) and drag-
divergence Mach number (Mdd) for rotor blade airfoil sections. The drag-divergence
Mach number is typically defined as where ∂cd/∂M = 0.1. Families of airfoil sections
have been designed specifically for rotor blades, with thin sections for the tip and
thicker sections for inboard stations. The symmetric NACA sections (NACA 00xx)
found use for their zero pitching moment; the cambered sections (NACA 230xx)
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Figure 8.13. Contours of rotor airfoils.

have much higher maximum lift coefficients. The generations of rotor airfoil designs
shown cover the 1960s to the 1990s. Figure 8.13 shows the contours of a number of
these airfoils.

As airfoil analysis and design methodology improves, more detailed criteria have
been developed, tailored to specific rotorcraft and specific design conditions. For heli-
copter rotor blade airfoil design criteria see Gustafson (1949), Davenport and Front
(1966), Benson, Dadone, Gormont, and Kohler (1973), Dadone and Fukushima
(1975), Dadone (1978a, 1978b), Thibert and Gallot (1981), Thibert and Philippe
(1982), Horstmann, Koster, and Polz (1982, 1984), McCroskey (1987), and Bousman
(2002, 2003). Narramore (1987) gives design criteria for tiltrotor airfoils. Typical
design criteria for rotor airfoils are as follows:

For good hover performance, need low drag at the lift coefficient and Mach number
of hover: cd ≤ 0.0080 at c� = 0.6 and M = 0.6 (c�/cd ≥ 75). Laminar flow should be
extended, especially on the lower side, and trailing-edge contours causing premature
trailing-edge separation should be avoided.
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For stall of the retreating blade, need high maximum lift at moderate Mach number:
c�max > 1.5 at M = 0.4 to 0.5. Good c�max at M = 0.5 requires a compressible design
method. Maximum lift depends on the leading edge contour and camber. The buildup of
velocity at the leading edge must be balanced with the onset of trailing-edge separation,
which is complicated by the requirement for low cm.

For compressibility effects on the advancing tip, need low drag at high Mach number:
Mdd ≥ 0.8 at c� = 0 to 0.2 inboard, Mdd ≥ 0.84 to 0.9 at the tip. High Mdd requires a
relatively flat upper and lower surface.

To minimize loads in forward flight, especially control loads, need small pitch
moment about the aerodynamic center: |cm| ≤ 0.010 at M = 0.3 and c� = 0. Small cm0

with little lift and drag penalties can be obtained by shaping the trailing-edge contour,
particularly reflex of the mean line at the trailing-edge.

For constant cm0, camber and thickness changes can improve c�max or Mdd, but not
both. A camber increase produces an increase in c�max but a decrease in Mdd. A
thickness decrease improves Mdd: Mdd increases by about 0.012 for a 1% reduction
in thickness ratio. A thin section, t/c = 6% to 8%, is required for Mdd > 0.85. For
reductions in airfoil thickness below 11% there is a substantial deterioration of
c�max. Rotor airfoils can have a trailing-edge tab (perhaps for manufacturability),
with reflex to reduce cm0. Tab upward deflection reduces c�max as well: approximately
dc�max/dδ = 0.02 and dcm/dδ = −0.006, where δ is the tab angle in degrees (Bousman
(2002)). The tab deflection has little effect on drag for δ < 3°.

Airfoil aerodynamic characteristics are used in rotorcraft analyses in the form of
tables of lift, drag, and moment coefficients as a function of angle-of-attack and Mach
number. An airfoil table format was introduced by Davis, Bennett, and Blankenship
(1974) for the Rotorcraft Flight Simulation Program C81. The format consists of a
square (angle-of-attack and Mach number) array of data for the coefficients, in a
fixed form designed for an IBM card: 10 columns, each 7 characters wide. The C81
airfoil deck remains a useful standard for communicating airfoil table data between
organizations and between codes.

8.8 Rotor Blade Profile Drag

The calculation of rotor performance requires a knowledge of the blade section pro-
file drag coefficient, including its dependence on angle-of-attack and Mach number.
There are other factors that influence the drag coefficient in the three-dimensional,
unsteady aerodynamic environment of the rotor blade in forward flight. In particular,
it can be necessary to account for the radial flow, the time-varying angle-of-attack,
and three-dimensional flow effects at the tip. Roughness and blade construction
quality also influence the section drag, often increasing the drag coefficient by
20% to 50% compared to its value for smooth, ideally shaped airfoils. The gen-
eral practice in numerical work is to rely on tabular data for c�, cd, and cm as a
function of α and M for the particular profile used, with semi-empirical correc-
tions to account for the other factors that are considered important. The measured
aerodynamic characteristics can be sensitive to small variations in the airfoil or test
facility, leading to different properties for airfoils that are nominally identical. Often
obtaining a complete and reliable set of even static, two-dimensional airfoil data is
difficult.

The simplest rotor analyses can use a mean profile drag coefficient to represent
the overall effects of the blade drag on the rotor. The mean drag coefficient can
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be evaluated using the mean lift coefficient of the rotor, and the Mach number and
Reynolds number at some representative radial station (say 75% radius). The use of
a mean drag coefficient greatly simplifies the analysis; it has been frequently used in
the preceding chapters to obtain elementary expressions for the rotor profile power.
Such an analysis is sufficiently accurate for some purposes, such as preliminary
design, or when detailed aerodynamic characteristics for the blade section are not
available. A mean drag coefficient is not appropriate when localized aerodynamic
phenomena, such as stall and compressibility effects in forward flight, are important.
Additional corrections or more detailed analyses are required for rotors at extreme
operating conditions.

Helicopter performance analyses can use a drag polar of the form cd = δ0 +
δ1α + δ2α

2 (see sections 3.5.2.3 and 6.24.2). This is a better representation than a
mean value and is simple enough to allow analytical treatment. The constants δ0,
δ1, and δ2 depend on the airfoil section. Hoerner (1965) suggested the following
procedure for estimating the profile drag polar. A basic skin friction coefficient
is obtained for the appropriate section Reynolds number. As an example, for a
turbulent boundary layer in the Reynolds number range 106 < Re < 108, Hoerner
suggested

c f = 0.44Re−1/6 (8.22)

The minimum profile drag coefficient for the airfoil is then twice c f , multiplied by
a factor accounting for the airfoil thickness. For the NACA 4-digit or 5-digit airfoil
series the result is

cdmin = 2c f
(
1 + 2(t/c)+ 60(t/c)4

)
(8.23)

where t/c is the section thickness ratio. The term 2(t/c) accounts for the velocity
increase due to thickness, and the term 60(t/c)4 is due to the pressure drag. Hoerner
then gave the effect of lift on the profile drag as

cd
∼= cdmin

(
1 + c2

�

)
(8.24)

which completes the construction of the drag polar.
Bailey (1941) developed a procedure for identifying the constants in the drag

polar cd = δ0 + δ1α + δ2α
2, given the basic section characteristics. Using this method,

the polar cd = 0.0087 − 0.0216α + 0.400α2 was obtained for an NACA 23012 airfoil
at Re = 2 × 106. This particular result is quoted and used often in the helicopter
literature. Bailey started by writing the profile drag as cd = cdmin +�cd and assuming
that the minimum drag depends on the Reynolds number and �cd depends on the
angle-of-attack. For many airfoil sections�cd is approximately a unique function of

� = c� − c�opt

c�max − c�opt
(8.25)

where c�max is the maximum lift coefficient of the airfoil and c�opt is the lift coefficient
at minimum drag. Bailey wrote the profile drag function as

cd = K0 + K1�+ K2�
2 = 0.0003 − 0.0025�+ 0.0229�2 (8.26)

with the constants determined by matching the function to the empirical curve at
� = 0.125, 0.4, and 0.675. This expression is a good approximation to about � = 0.8.
At higher lift the stall effects are large, and the drag is significantly underestimated
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by this expression. Using c� = aα (the zero-lift angle is ignored), the constants in the
drag polar cd = δ0 + δ1α + δ2α

2 can then be evaluated:

δ0 = cdmin + K0 − K1c�opt

c�max − c�opt
+ K2c2

�opt(
c�max − c�opt

)2 (8.27)

δ1 = aK1

c�max − c�opt
− 2aK2c�opt(

c�max − c�opt
)2

(8.28)

δ2 = a2K2(
c�max − c�opt

)2 (8.29)

Thus, given cdmin, c�max, c�opt, and a = c�α at the required Reynolds number, the
profile drag polar can be constructed. Bailey’s expression for �cd does not reduce
to zero at c�opt; rather �cd = 0.0003 there; the minimum occurs at � = 0.055, where
�cd = 0.0002. Alternative constants that are nearly as accurate and give a minimum
�cd = 0 at c� = c�opt are K0 = K1 = 0 and K2 = 0.0200. Bailey’s expression is more
accurate in the working range of blade angle-of-attack. The limit � = 0.8 gives

α < αlimit = 1
a

(
0.8c�max + 0.2c�opt

)
(8.30)

This limit is the drag rise due to stall at high angle-of-attack.
As an example, Bailey considered the NACA 23012 airfoil at Re = 2 × 106. For

this airfoil, cdmin = 0.0066, c�max = 1.45, c�opt = 0.08, and a = 5.73. The minimum
drag was increased by 25% to account for roughness, so cdmin = 0.0082. The resulting
polar is cd = 0.0087 − 0.0216α + 0.400α2. The limit on the accuracy of this expression
is α < 11.8°.

Consider the NACA 0012 airfoil at Re = 2 × 106. From cdmin = 0.0065
(increased to cdmin = 0.0081 for roughness), c�max = 1.08, c�opt = 0, and a = 5.73;
the drag polar is cd = 0.0084 − 0.0133α + 0.645α2. The limit on the accuracy of this
expression is α < 8.6°.

Airfoil aerodynamic characteristics (c�, cd, and cm) depend on the section
Reynolds number: Re = ρVc/μ, where ρ is the air density, μ the viscosity, V the
velocity, and c the chord. The principal effects of Reynolds number are a decrease in
drag and an increase in maximum lift as Re increases. Thus a small-scale model has
worse performance than the full-scale rotor, with larger profile power and stall at
lower thrust. The Reynolds number can be written in terms of Mach number instead
of speed: Re = Mρ(cs/μ)c. So in a wind-tunnel test of an airfoil, the Reynolds
number is proportional to the Mach number if the temperature and pressure remain
constant during the test. Tabular airfoil characteristics constructed by analysis should
also have Re proportional to M. In applications of an airfoil table to a specific rotor,
it is often necessary to account for a difference in chord (scale) or a difference
in atmospheric conditions (particularly altitude). A simple correction for Reynolds
number is

cd(α) = 1
K

cdtable (α) (8.31)

c�(α) = Kc�table (α/K) (8.32)
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where K = (Re/Retable)
n is a function of the Reynolds number ratio. Experimental

data for airfoils in turbulent flow suggest n = 1
8 to 1

5 for the exponent; see Yamauchi
and Johnson (1983); n = 1

5 is the 1/5-th power law for a turbulent flat plate boundary
layer. For analysis of a small-scale model using full-scale airfoil data (Re < Retable),
K < 1 and the correction increases the drag and decreases the maximum lift. For
example, a 20% scale model has K = 0.72 to 0.82.

8.9 REFERENCES

Bailey, F.J., Jr. “A Simplified Theoretical Method of Determining the Characteristics of a
Lifting Rotor in Forward Flight.” NACA Report 716, 1941.

Benson, G.R., Dadone, L.U., Gormont, R.E., and Kohler, G.R. “Influence of Airfoils on Stall
Flutter Boundaries of Articulated Helicopter Rotors.” Journal of the American Helicopter
Society, 18:1 (January 1973).

Bousman, W.G. “Airfoil Design and Rotorcraft Performance.” American Helicopter Society
58th Annual Forum, Montreal, Canada, June 2002.

Bousman, W.G. “Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils.” NASA
TP 2003-212265, December 2003.

Carlson, E.B. “An Analytical Methodology for Category A Performance Prediction and
Extrapolation.” American Helicopter Society 57th Annual Forum, Washington, DC, May
2001.

Carlson, E.B., Zhao, Y.J., and Chen, R.T.N. “Optimal Trajectories for Tiltrotor Aircraft in
Total Power Failure.” American Helicopter Society 54th Annual Forum, Washington, DC,
May 1998.

Dadone, L.U. “Design and Analytical Study of a Rotor Airfoil.” NASA CR 2988, May 1978a.
Dadone, L. “Rotor Airfoil Optimization: An Understanding of the Physical Limits.” Ameri-

can Helicopter Society 34th Annual National Forum, Washington, DC, May 1978b.
Dadone, L.U., and Fukushima, T. “A Review of Design Objectives for Advanced Helicopter

Rotor Airfoils.” American Helicopter Society 31st Annual National Forum, Washington,
DC, May 1975.

Davenport, F.J., and Front, J.V. “Airfoil Sections for Helicopter Rotors – A Reconsidera-
tion.” American Helicopter Society 22nd Annual National Forum, Washington, DC, May
1966.

Davis, J.M., Bennett, R.L., and Blankenship, B.L. “Rotorcraft Flight Simulation with Aeroe-
lastic Rotor and Improved Aerodynamic Representation.” USAAMRDL TR 74-10, June
1974.

Fradenburgh, E.A. “A Simple Autorotative Flare Index.” Journal of the American Helicopter
Society, 29:3 (July 1984).

Gustafson, F.B. “The Application of Airfoil Studies to Helicopter Rotor Design.” NACA TN
1812, February 1949.

Hansen, K.C. “Handling Qualities Design and Development of the CH-53E, UH-60A, and
S-76.” Royal Aeronautical Society International Conference on Helicopter Handling Qual-
ities and Control, London, UK, November 1988.

Hislop, G.S. “The Fairey Rotodyne.” Journal of the Helicopter Association of Great Britain,
13:1 (February 1959).

Hoerner, S.F. Fluid-Dynamic Drag. New Jersey: Published by the Author, 1965.
Horstmann, K.H., Koster, H., and Polz, G. “Development of New Airfoil Sections for

Helicopter Rotor Blades.” Eighth European Rotorcraft Forum, Aix-en-Provence, France,
September 1982.

Horstmann, K.H., Koster, H., and Polz, G. “Improvement of Two Blade Sections for Heli-
copter Rotors.” Tenth European Rotorcraft Forum, The Hague, The Netherlands, August
1984.

Johnson, W. “Helicopter Optimal Descent and Landing After Power Loss.” NASA TM 73244,
May 1977.



302 Design

Keys, C.N., and Rosenstein, H.J. “Summary of Rotor Hub Drag Data.” NASA CR 152080,
March 1978.

Lee, A.Y. “Optimal Autorotational Descent of a Helicopter with Control and State Inequal-
ity Constraints.” Journal of Guidance, Control, and Dynamics, 13:5 (September-October
1990).

Lee, A.Y., Bryson, A.E., Jr., and Hindson, W.S. “Optimal Landing of a Helicopter in Autoro-
tation.” Journal of Guidance, Control, and Dynamics, 11:1 (January-February 1988).

McCormick, B.W., Jr. “On the Initial Vertical Descent of a Helicopter Following Power
Failure.” Journal of the Aeronautical Sciences, 23:12 (December 1956).

McCroskey, W.J. “A Critical Assessment of Wind Tunnel Results for the NACA 0012 Airfoil.”
NASA TM 100019, October 1987.

Narramore, J.C. “Airfoil Design, Test, and Evaluation for the V-22 Tilt Rotor Vehicle.”
American Helicopter Society 43rd Annual Forum, St. Louis, MO, May 1987.

Ruddell, A.J. “Advancing Blade Concept (ABC) Development.” Journal of the American
Helicopter Society, 22:1 (January 1977).

Thibert, J.-J., and Gallot, J. “Advanced Research on Helicopter Blade Airfoils.” Vertica, 5:3
(1981).

Thibert, J.J., and Philippe, J.J. “Studies of Aerofoils and Blade Tips for Helicopters.” La
Recherche Aerospatiale, 1982:4 (1982).

Wernicke, K.G., and Magee, J.P. “XV-15 Flight Test Results Compared with Design Goals.”
AIAA Paper No. 79-1839, August 1979.

White, G.T., Logan, A.H., and Graves, J.D. “An Evaluation of Helicopter Autorotation Assist
Concepts.” American Helicopter Society 38th Annual Forum, Anaheim, CA, May 1982.

Wood, T.L. “High Energy Rotor System.” American Helicopter Society 32nd Annual
National V/STOL Forum, Washington, DC, May 1976.

Yamauchi, G.K., and Johnson, W. “Trends of Reynolds Number Effects on Two Dimensional
Airfoil Characteristics for Helicopter Rotor Analyses.” NASA TM 84363, April 1983.

Zhao, Y., Jhemi, A.A., and Chen, R.T.N. “Optimal Vertical Takeoff and Landing Helicopter
Operation in One Engine Failure.” Journal of Aircraft, 33:2 (March-April 1996).



9 Wings and Wakes

9.1 Rotor Vortex Wake

The behavior of the airloading of a helicopter rotor blade in forward flight is illus-
trated in Figure 9.1. At low speed, there is impulsive loading on the blade as it flies
over the tip vortices from the preceding blade (see Figure 5.8). This phenomenon is
called blade-vortex interaction (BVI). There is a down-then-up pulse on the advanc-
ing side and an up-then-down pulse on the retreating side, the magnitude of the pulse
depending on the extent of the rollup process and the proximity of the distorted tip
vortices to the tip-path plane. At high speed, although blade-vortex interaction
loading can still be observed, negative loading on the advancing tip is common, a
consequence of flap moment balance with stall-limited loads on the retreating side.
With a flapping rotor the pitch and roll moments on the hub must be small. In for-
ward flight, the lift capability on the retreating side is limited by the combination of
low dynamic pressure and stall of the airfoil sections. The lift on the advancing side
must then also be small to maintain roll balance, and at sufficiently high speed the
advancing-tip lift can become negative.

Associated with the lift of a rotor blade is a bound circulation. On the three-
dimensional blade, conservation of vorticity requires that the bound circulation be
trailed into the wake from the blade tip and root (Figure 9.2). Vorticity is also left
in the rotor wake as a consequence of radial and azimuthal changes in the bound
circulation. The trailed vorticity γt , which is generated by the radial variation of the
bound circulation, is parallel to the local free stream at the instant the vorticity leaves
the blade. The shed vorticity γs, generated by the azimuthal variation of the bound
circulation, is oriented radially in the wake. The strength of the rotor trailed and
shed vorticity is

γt = ∂�

∂r

∣∣∣∣
ψ−φ

(9.1)

γs = − 1
uT

∂�

∂ψ

∣∣∣∣
ψ−φ

(9.2)

where the derivatives of the bound circulation are evaluated at the time the wake
element left the blade; namely, the current blade azimuth angle ψ less the wake
age φ (in dimensionless time). The existence of shed vorticity implies that the trailed
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Figure 9.1. Characteristic rotor blade loading in forward flight (from flight and wind-tunnel
measurements of blade pressures); M2cn = sectionnormalforce/( 1/2ρc2

s c).

vorticity strength varies along the length of the vortex filaments. Similarly, the trailed
vorticity implies that the shed vorticity strength varies radially. Specifically,

− ∂

∂r
uTγs = ∂

∂ψ
γt (9.3)
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Figure 9.2. Trailed and shed vorticity in rotor wake.

Because of the rotation of the blade, the lift and circulation are concentrated at
the tip, as sketched in Figure 9.3. Although the circulation drops to zero at the tip
over a finite distance, the rate of decrease is still very high. The result is a large
trailing vorticity strength at the outer edge of the wake, causing the vortex sheet
to quickly roll up into a concentrated tip vortex. The formation of this tip vortex is
also influenced by the blade tip geometry. The rolled-up tip vortex quickly reaches a
strength nearly equal to the maximum bound circulation of the blade. The vorticity
is distributed over a small but finite region because of the viscosity of the fluid. The
vortex core radius is defined at the maximum tangential velocity. The tip vortex has
a small core radius that depends on the blade geometry and loading.

On the inboard portion of the blade, the bound circulation drops off gradually to
zero at the root. Hence there is an inboard sheet of trailed vorticity in the wake, with
opposite sign to the tip vortex. Since the gradient of the bound circulation is low, the
root vortex is generally much weaker and more diffuse than the tip vortex. When
the bound circulation varies azimuthally, either as a result of the periodic loading in
forward flight or because of transient loads, there is also an inboard sheet of shed
vorticity in the wake.

The trailed and shed vorticity of the rotor wake is deposited in the flow field as
the blades rotate, and then it is convected with the local velocity in the fluid. This
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Figure 9.3. Radial distribution of blade lift L, bound circulation �, and trailed vorticity γt .
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Figure 9.4. Tip vortices of hovering helicopters.

local velocity consists of the free stream velocity and the wake self-induced velocity.
The wake is transported downward, normal to the disk plane, by a combination of
the mean wake-induced velocity and the free stream velocity. The component of the
free stream velocity that is normal to the disk is a result of tilt of the disk plane in
forward flight or axial velocity in vertical flight. The wake is transported aft of the
rotor disk by the in-plane component of the free stream velocity. The self-induced
velocity of the wake produces substantial distortion of the vortex filaments as they
are convected with the local flow. Thus the wake geometry consists of distorted
interlocking helices, one behind each blade, skewed aft in forward flight.

The strong concentrated tip vortices are by far the dominant feature of the rotor
wake (Figure 9.4). When the atmospheric conditions are just right and condensation
makes the rotor wake visible, the only vortex structures observed are the tip vortices.
Because of its rotation, a rotor blade encounters the tip vortex from the preceding
blade in both hover and forward flight. A vortex passing close to a blade induces a
large velocity and hence a large change in loading on the wing. Such vortex-induced
loading is a principal source of the rotor higher harmonic airloading. Thus the rotor
wake plays a key role in most problems of helicopters: high vibration, excessive noise,
large oscillatory blade and hub loads, poor performance, and adverse aerodynamic
interference.

9.2 Lifting-Line Theory

The principal method for calculating rotary-wing airloads has long been lifting-line
theory: a wing model to obtain the loading from the section aerodynamic environ-
ment and a wake model to evaluate the induced velocity at the wing, from a wake
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geometry that includes the self-induced distortion. A rotor analysis must treat vis-
cous and compressible flow effects, which are present to some degree in almost
all helicopter operating conditions. This is accomplished in lifting-line theory by
using experimental data for the two-dimensional airfoil characteristics. Lifting-line
theory allows the combination of three-dimensional influences (the wake) with two-
dimensional solutions that include stall and compressibility effects. The rotation of
the wing introduces a number of features that require special attention, notably the
returning vortex wake, the time-varying free stream and radial flow, and a funda-
mentally transcendental geometry of the wake that necessitates either approximate
or numerical solutions.

A three-dimensional wing is characterized by a drag due to lift, called the induced
drag, which arises because of the energy convected downstream in the vortex wake
of the wing. For high-aspect-ratio wings, the induced drag can be associated with the
induced velocity at the wing. The aerodynamic solution for the three-dimensional
wing includes the induced drag (the rotor torque for the rotating wing) in the total
drag. In addition, the concepts of lifting-line theory allow the induced power to
be independently evaluated from the product of the wing loading and induced
velocity.

Lifting-line theory assumes that the wing has a high aspect ratio or, more gen-
erally, that spanwise variations of the aerodynamic environment are small. This
assumption allows the problem to be split into separate wing and wake models,
which are solved individually and combined. Classical lifting-line theory was devel-
oped by Prandtl (1921). The classical theory treats the case of a high-aspect-ratio,
planar, fixed wing in steady flow. In the linearized model both the wing and wake
are represented by thin planar sheets of vorticity.

The assumption of a high aspect ratio splits the three-dimensional wing aerody-
namic problem (unsteady, compressible, and viscous) into two parts: a wing model
and a wake model (Figure 9.5). In the context of perturbation theory, these are called
inner and outer problems. Combining the two parts of the lifting-line theory gives the
solution for the spanwise loading of the three-dimensional wing. The outer problem
is the wake, consisting of trailed and shed vorticity behind the wing, which is just a
bound vortex line. The inner problem is a two-dimensional airfoil or, more generally,
an infinite wing in a uniform, yawed free stream. The influence of the wake and the
rest of the wing is represented entirely by an induced downwash at the section (an
induced angle-of-attack change). Two-dimensional airfoil theory or experimental
section characteristics are used to obtain the blade section aerodynamic loads (lift,
drag, and pitching moment). The wing and wake problems are connected through
the wake-induced velocity and the bound circulation. The outer problem calculates
the induced velocity at the wing, from a wake with strength determined by the
bound circulation. The induced velocity is not needed at an arbitrary point, just at
the lifting line. The inner problem calculates the bound circulation from the aero-
dynamic environment, with the wake-induced velocity included in the free stream.
The pressure on the wing is not needed, just the bound circulation (as well as the
section lift, drag, and moment in order to calculate performance and couple with the
structural dynamics). Compared to the full aerodynamic solution, the assumption of
a high aspect ratio in lifting-line theory leads to important simplifications. The inner
problem has simpler geometry (two-dimensional) but complex flow (Navier-Stokes
equations). In the outer limit the inner solution can be considered irrotational. The
outer problem has complex geometry (the vortex wake) but irrotational flow. In the
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Figure 9.5. Lifting-line theory.

inner limit the outer solution has simple geometry. In the matching domain there
are both simple geometry and irrotational flow.

Uniform inflow from ideal-wing (momentum or vortex) theory is an approxima-
tion for the solution of the outer problem (the wake). This approximation introduces
effects requiring additional treatment, particularly the tip loss factor.

Blade element theory is essentially lifting-line theory for the rotary wing. The
linearized wake model consists of helical vortex sheets trailed behind each blade.
For a fixed wing the distortion of the wake geometry and the rollup of the tip vortices
can generally be neglected, because the wake is convected downstream away from
the wing. In contrast, the rotary wing encounters the wake from preceding blades
of the rotor. Consequently, a more detailed and more accurate model of the wake
is required to obtain an estimate of the induced velocity in lifting-line theory for
the rotary wing. The blade vorticity quickly rolls up into concentrated tip vortices,
which are best represented by line vortex elements instead of sheets. In many flight
conditions the self-induced distortion of the tip vortex helices must also be accounted
for to accurately obtain the blade loads. An entirely analytical solution analogous
to that of the fixed wing is not possible for the rotary wing because of the helical
geometry of the wake, except in the case of the continuous wake of an actuator
disk model. To obtain a tractable mathematical problem for calculating the induced
velocity, the vorticity in the wake is usually modeled by a series of discrete vortex
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elements. Even in steady-state forward flight the blade loading is periodic in the
rotating frame, and the rotor analysis requires unsteady aerodynamic theory.

The basic assumption of lifting-line theory, that the wing has a high aspect
ratio, is almost always satisfied with a helicopter main rotor blade. However, the
assumption that there be no rapid spanwise change in the aerodynamic environment
of the blade is often not satisfied, notably at the blade tip and near blade-vortex
interaction. The loading near a wing tip must drop to zero in a finite distance. The
loading on a rotor blade is concentrated at the tip because of the higher velocities
there, so the gradient of the lift at the tip is particularly high, and any small distortion
of the loading due to three-dimensional flow effects is very important. In certain flight
conditions the rotor blade passes quite close to a tip vortex from a preceding blade.
The vortex-induced velocity gradients at the blade are large for such close passages,
and classical lifting-line theory significantly overestimates the loading produced.
Hence lifting-line theory must be extended, modified, or corrected to handle some
of the aerodynamic problems of the rotary wing.

Formal lifting-line theory is the solution of the three-dimensional wing load-
ing problem using the method of matched asymptotic expansions. Based on the
assumption of a large wing aspect ratio, the problem is split into separate outer
(wake) and inner (wing) problems, which are solved individually and then combined
through a matching procedure. In general wings with swept and yawed planforms
in unsteady, compressible, and viscous flow must be considered. The lowest-order
solution is Prandtl’s theory (steady and no sweep). Development of higher-order
lifting-line theory originated with Weissinger (1947) for intuitive methods and with
van Dyke (1963) for singular perturbation methods. The lifting-line theory devel-
opments found in the literature, although they include higher orders and unsteady,
transonic, and swept flow, are generally analytical methods. They obtain analyti-
cal solutions for both the inner and outer problems and are in quadrature rather
than integral-equation form. Often the inner solution is inviscid or even a thin air-
foil. These theories are not therefore directly applicable to the general case, but do
provide a guide and sound mathematical foundation for the development of a rotary-
wing analysis. For the rotor blade, stall (high angles-of-attack) must be included in
the inner solution, and the distorted, rolled-up wake geometry in the outer solution.
Hence the objective is to obtain from lifting-line theory a separate formulation of the
inner and outer problems, with numerical not analytical solutions, and a matching
procedure that is the basis for an iterative solution. A key consideration is the need to
retain the two-dimensional airfoil tables in the inner solution because of the viscous
and compressible effects embodied in such tables. Hence whatever approximations
that are required to retain the tables are accepted.

Higher-order theory is used to improve the calculation of the airloads without
actually resorting to lifting-surface or more advanced methods. Several investiga-
tions have shown that second-order lifting-line theory gives nearly the same results
as lifting-surface theory, including the lift produced in close blade-vortex interac-
tions. In addition, second-order theory should also improve the load calculations for
swept tips, yawed flow, and low-aspect-ratio wings. Second-order lifting-line theory
is developed in section 9.3; the results are summarized here. In the second-order
outer problem (the wake), the wing is a dipole line plus a quadrupole line, which
for a thin airfoil (with no thickness or camber) is equivalent to a dipole at the
quarter chord. The dipole solution is a wake of vortex sheets. In the second-order
inner problem (the wing), the boundary condition is a wake-induced velocity that
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varies linearly in space. For a thin airfoil, the same lift is obtained with a uniform
induced velocity by using the value at the three-quarter chord. The correct moment
is not obtained, however, since a linear induced velocity variation over the chord
produces a moment about the quarter chord, but a uniform induced velocity does
not. A remainder solution must be defined that is the second-order solution after
accounting for the induced velocity at the three-quarter chord. This remainder solu-
tion is ignored in practice, so becomes an error estimate. The lift error is small, as
is the moment error except for the moment about the quarter chord produced by a
linearly varying induced velocity. To retain use of the airfoil tables, the only parts of
the second-order theory that can be used are placing the lifting-line at the quarter
chord and the collocation point at the three-quarter chord.

The perturbation solution procedure alternates between the inner and outer
problems, using only the solution up to the previous order. Combining and then
solving all orders simultaneously is equivalent in terms of the perturbation expan-
sions. Combining the inner problems is a natural step. The lowest-order inner prob-
lem is the airfoil with just geometry boundary conditions, and the first-order inner
problem has the wake-induced velocity boundary conditions. These problems are
easily combined because the wake just gives an angle-of-attack change. Combining
the outer problems means evaluating the induced velocity using the total bound
circulation from the combined inner problem, rather than just from the lowest-order
inner problem. This changes the nature of the solution from direct quadrature to
an integral equation. Inverting the integral equation is necessary, but with airfoil
tables an iterative solution is required anyway. Moreover, the solution of the inte-
gral equation is well behaved, whereas the direct solution is singular at the wing tips
for normal wing planforms.

An examination of the simplified inner problem shows the differences between
the common formulations of lifting-line theory. Let θ be the geometric angle-of-
attack of the wing section. The inner problem solution (steady and unswept) can be
analytical or numerical:

analytical, thin airfoil:
�

πc
= Uθ − v (9.4)

numerical, airfoil tables:
�

πc
= U

2π
c�(θ − v/U ) (9.5)

where � is the bound circulation, c the chord, U the free stream velocity, c�(α) the
lift-coefficient as a function of angle-of-attack, and v the wake-induced velocity. The
thin airfoil theory result is the lift L = ρU� due to the upwash w = Uθ − v, with a
lift-curve slope of 2π . The outer problem can obtain the induced velocity v at the
quarter chord or three-quarter chord by integrating the effects of all wake vorticity
(excluding the bound vortex). The following implementations of lifting-line theory
are of interest:

a) First-order perturbation theory obtains v from �0 = πcUθ :

�

πc
= Uθ − vc/4(θ ) (9.6)

b) Prandtl’s integral equation is first order, but obtains v from �:

�

πc
= Uθ − vc/4(�) (9.7)
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c) A common implementation for wings is the first-order theory, but using airfoil
tables:

�

πc
= U

2π
c�(θ − vc/4(�)/U ) (9.8)

d) A second-order implementation uses v at the three-quarter chord:

�

πc
= U

2π
c�(θ − v3c/4(�)/U ) (9.9)

e) Weissinger’s L-theory includes the contribution of the bound vortex in evaluat-
ing v at the three-quarter chord, and it equates the induced angle-of-attack to
the geometric angle-of-attack:(

�

πc
+ v3c/4(�)

)
= Uθ (9.10)

which is equivalent to using the thin-airfoil solution of the inner problem in
second-order theory.

The second-order theory (d) is a good basis for rotary-wing analysis.
Large sweep angles can be included in the second-order theory, but small cur-

vature must be assumed so the wake-induced velocity effects in the inner problem
remain two-dimensional. For many wings the curvature is small, except at kinks in
the quarter-chord line. The analysis relies on the integral-equation form and span-
wise discretization to keep the loading well behaved at such kinks. With unsteady
motion and loading, the inner problem is an unsteady, two-dimensional airfoil with a
shed wake, and the outer problem excludes both the bound vortex and the inner shed
wake when calculating the induced velocity. The shed wake is retained in the outer
rather than the inner problem, so the shed wake and trailed wake can be treated
identically, especially since subtracting the inner shed wake from the outer problem
is difficult with complex wake geometry. Then the induced velocity from all vorticity
(except the bound vortex still) is evaluated at the three-quarter chord and treated as
a uniform flow for the inner problem. The shed wake is thus a boundary condition
of the inner solution, not a part of the inner model. The assumption that the shed-
wake-induced velocity is constant over the chord is a major approximation. With the
induced velocity evaluated at a single point, the shed wake model must be modified
to obtain the unsteady loads correctly. The Theodorsen and Sears functions (the
shed wake effects in two-dimensional airfoil theory) are well approximated for low
frequency if the shed wake in the outer problem is created a quarter chord aft of the
collocation point, not at the bound vortex as for the trailed wake (see section 10.2).

Guided by the results of perturbation theory, the following is a practical imple-
mentation of lifting-line theory. The outer problem is an incompressible vortex wake
behind a lifting-line, with distorted geometry and rollup. The lifting-line (bound vor-
tex) is at the quarter chord, as an approximation for the quadrupole line introduced
by second-order loading. The trailed wake begins at the bound vortex. The shed wake
is created a quarter chord aft of the collocation point on the wing (the lifting-line
approximation for unsteady loading). The three components of wake-induced veloc-
ity are evaluated at the collocation points, excluding the contributions of the bound
vortex. The collocation points are at the three-quarter chord (in the direction of the
local flow), as an approximation for a linearly varying induced velocity introduced by
the second-order wake. The induced velocity calculated at the three-quarter chord is
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used only to calculate the angle-of-attack for the loading solution. The local section
aerodynamic environment, including the orientation of the lift and drag and hence
the magnitude of the induced power, is still obtained from the induced velocity at
the quarter chord. The inner problem consists of unsteady, compressible, viscous
flow about an infinite wing, in a uniform flow consisting of the yawed free stream
(including rigid and elastic motion of wing through the air) and three components
of wake-induced velocity. This problem is split into two-dimensional, steady, com-
pressible, viscous flow (airfoil tables), plus corrections. The corrections account for
unsteady flow (small angle-of-attack non-circulatory loads, without any shed wake);
dynamic stall (an empirical model); swept and yawed flow (the equivalence assump-
tion for a swept wing); tip flow; and Reynolds number.

This formulation is almost second order (in the inverse of the aspect ratio)
accurate for lift, including the effects of sweep and yaw, but is less accurate for
section moments (basically still first order). In particular, with typical blade-vortex
separations, second-order lifting-line theory is as accurate as lifting-surface theory
for vortex-induced lift calculations. For a steady, incompressible, non-rotating wing,
this theory is equivalent to Weissinger’s L-method for tapered and swept wings.
Weissinger (1947) found the L-method to be as accurate as a simplified lifting-
surface theory. DeYoung and Harper (1948) showed that the L-method gave good
predictions of measured span loading for wings with a wide range of aspect ratio,
sweep, and taper. Brower (1981) compared vortex lattice lifting-surface theory,
Prandtl’s (first-order) lifting-line theory, and Weissinger’s lifting-line theory for non-
rotating blade-vortex interaction. The L-method gave excellent results even for very
small blade-vortex separation. Kocurek and Tangler (1977) and Kocurek, Berkowitz,
and Harris (1980) compared lifting-surface theory, the L-method (as a one-chordwise
panel version of the lifting-surface method), and first-order lifting-line theory for a
hovering rotor blade. The one-panel lifting-surface theory gave results nearly as
good as those from the theory with five or seven chordwise panels, whereas the
first-order lifting-line theory gave significantly different results.

9.3 Perturbation Solution for Lifting-Line Theory

Formal lifting-line theory is the solution for the three-dimensional wing loading
using the method of matched asymptotic expansions, based on the small parameter
ε = c/R = 1/AR. The lowest-order three-dimensional solution for a non-rotating,
steady, unswept wing in incompressible flow is Prandtl’s theory. Beginning with the
work of van Dyke (1963), higher-order theories have been developed by singular
perturbation methods, extending lifting-line theory to swept, unsteady, transonic,
rotating wings; see Johnson (1986). Ashley and Landahl (1965) provided an intro-
duction to perturbation methods in aerodynamics.

Fixed-wing theories are applicable almost directly to the rotor problem, because
the key to the method is the matching process, and in the matching domain, the
rotor appears almost the same as the non-rotating wing. For the rotary wing, swept
and yawed planforms, unsteady motion, and compressible or transonic flow must
be considered. High angle-of-attack (stall) must be included in the inner solution
and the helical, distorted, and rolled-up wake geometry in the outer solution. So
the rotor theory must use numerical solutions of the inner and outer problems.
Simplifications are possible. With undistorted geometry, the wake integrals can be
evaluated analytically in the radial direction, although the helical nature requires a
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numerical integration over the wake age. Analytical solutions can be obtained for
the linearized, inviscid inner problem, just as for fixed wings, although the solutions
for higher-order lifting-line theory are not simple. The value of lifting-line theory in
rotor problems, however, lies in the complexities that can be retained in the inner
and outer problems. In the matching domain, the inner and outer problems can
always be consistently simplified without requiring that they be simple in their own
domains. Lifting-line theory for the rotor blade provides the formulation of the inner
and outer problems and the matching that couples them as the basis for an iterative
numerical solution.

In the method of matched asymptotic expansions, the inner and outer solutions
are expanded as series, with each term an order ε smaller than the previous term.
Then the n-term/m-order inner solution is matched to the m-term/n-order outer
solution. At each level, matching provides boundary conditions for the next term in
the inner or outer expansion, from the solution at previous levels.

With a high aspect ratio, the inner problem has simpler geometry (two-
dimensional), but complex flow (Navier-Stokes equations). In the outer limit, the
inner solution can be considered irrotational. The outer problem has complex geom-
etry (the vortex wake), but irrotational flow. In the inner limit, the outer solution
has simple geometry. In the matching domain, there are both simple geometry and
irrotational flow. From irrotational flow in the matching domain, the theory can be
developed in terms of the velocity potential φ (relative to still air). The wing geom-
etry is defined in moving axes (translating and rotating for the rotor blade), with x
chordwise (positive toward the trailing edge) and y spanwise. The wing span is R
and the chord is c(y). The wing surface is at z = g(x, y) and is a function of time for
the unsteady problem. It is assumed that ε = c/R � 1.

Consider second-order lifting-line theory for an unswept, steady, fixed wing in
incompressible, inviscid flow. The velocity U is in the x-axis direction. The velocity
potential satisfies Laplaces’s equation ∇2φ = 0, with boundary conditions φ = 0 at
infinity and

φz = (U + φx)gx + φygy (9.11)

on the wing surface. The inner problem is defined by small ε (large aspect ratio) for
fixed chord, so x, z = O(ε) and y = O(1). Write Laplace’s equation as ∇2

2Dφ = −φyy,
and expand φ = φ0 + φ1 + φ2 + · · ·, such that φn = O(εn). Then the inner equation
of motion and boundary condition on the wing, for each order, are

order 0: ∇2
2Dφ0 = 0 φ0z = (U + φ0x)gx (9.12)

order 1: ∇2
2Dφ1 = 0 φ1z = φ1xgx (9.13)

order 2: ∇2
2Dφ2 = −φ0yy φ2z = φ2xgx + φ0ygy (9.14)

The outer problem is defined by small ε (large aspect ratio) for fixed span, so x, y, z =
O(1). Expand the outer solution φ = φ0 + φ1 + φ2 + · · ·, such that φn = O(εn). The
outer equation of motion and boundary condition at each order are ∇2φn = 0 and
φn = 0 at infinity. Matching is required to complete the problem definition in the
two domains.

The outer limit of the inner solution is obtained by substituting xI = xO/ε and
letting ε → 0 with xO (outer variable) fixed, so xI → ∞. The inner limit of the
outer solution is obtained by substituting xO = xIε and letting ε → 0 with xI (inner
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variable) fixed, so xO → 0. The inner expansion has the form

φ ∼ Uixi − �

2π
θ + cixi

r2
+ · · · (9.15)

using cylindrical coordinates θ and r. In the inner domain, all terms are order ε; in
the outer domain, the terms are order 1, ε, ε2. The outer expansion has the form

φ ∼ φ + φxi xi + φxix j xix j + · · · (9.16)

In the outer domain, all terms are order 1; in the inner domain, the terms are order
1, ε, ε2. Matching gives the boundary condition for the next term in the expansion.
The terms become increasingly singular. The solution proceeds as follows.

Inner φ0. In the outer problem, the chord goes to zero as ε → 0, so to lowest
order there is no wing (φ0 = 0).

inner 1-term/1-order: φ = u0ixi (9.17)

outer 1-term/1-order: φ = φ0 = 0 (9.18)

Matching gives the inner solution boundary condition φ0 = 0 at infinity. So
the order-0 inner problem is a two-dimensional airfoil (thickness, camber, and
geometric angle-of-attack) in a uniform free stream produced by the wing
velocity U .

Outer φ1. The outer limit of the inner solution is the solution of ∇2
2Dφ = 0, which

for regular boundary conditions can be expanded (for larger inner variables) as
a uniform flow plus a bound vortex plus a quadrupole:

φ ∼ Uixi − �

2π
θ + cixi

r2
+ O

(
1
r2

)
(9.19)

For an airfoil with chord c, � ∼ c and ci ∼ c2; so

inner 1-term/2-order: φ = − �0

2π
θ (9.20)

outer 2-term/1-order: φ = φ1(0, y, 0) (9.21)

Matching gives −(�0/2π)θ = φ1(0, y, 0). The order-1 outer solution is a line of
dipoles produced by the inner bound circulation �0 (the bound vortex). So the
outer problem for φ1 is a lifting line.

Inner φ1. In the inner limit, the outer solution appears to be an infinite vortex line
and the associated trailed vorticity. The solution can be expanded as a regular
part and a singular part:

φ ∼ − �

2π
θ + �′′

4π
(z2θ − zx ln r)+ Az + Bxz (9.22)

(the last two terms represent the regular part of the expansion). So

inner 2-term/2-order: φ = − �0

2π
θ + u1ixi (9.23)

outer 2-term/2-order: φ = − �0

2π
θ + ∂φ1

∂xi
xi (9.24)

Matching gives u1ixi = (∂φ1/∂xi)xi, so the inner solution boundary condition is
φ1 = v1ixi at infinity. The order-1 inner problem is a two-dimensional airfoil, with
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zero boundary conditions at the airfoil surface and the wake-induced velocity at
infinity (a uniform free stream). Note v1i is the regular part of the expansion and
excludes the bound vortex. In general the cross-flow velocity ∂φ1/∂y is retained,
although it has no effect on the inviscid inner solution. This is Prandtl’s first-order
theory, obtained by perturbation methods.

Outer φ2.

inner 2-term/3-order: φ = − �0

2π
θ + c0ixi

r2
+ u1ixi − �1

2π
θ (9.25)

outer 3-term/2-order: φ = − �0

2π
θ + ∂φ1

∂xi
xi + φ2(0, y, 0) (9.26)

Matching gives (c0ixi/r2)− (�1/2π)θ = φ2(0, y, 0), so the outer solution for φ2

is a quadrupole line from the inner φ0 and a dipole line from the inner φ1. Note
that φ2 (with a quadrupole) is more singular in the inner limit than φ1 (a dipole
line); hence the need for singular perturbation methods.

Inner φ2. The inner limit of the outer solution requires an expansion of a
quadrupole line:

φ ∼ cx
x
r2

− 1
2

c′′
x(2zθ − x ln r)+ αx

+ cz
z
r2

− 1
2

c′′
z(z + z ln r)+ βz (9.27)

So

inner 3-term/3-order: φ = − �0

2π
θ + c0ixi

r2
+ u1ixi − �1

2π
θ + φ2 (9.28)

outer 3-term/3-order: φ = − �0

2π
θ + ∂φ1

∂xi
xi + 1

2
∂2φ1

∂xi∂x j
xix j

+ �′′
0

4π
(z2θ − xz ln r)− �1

2π
θ + ∂φ2

∂xi
xi + c0ixi

r2

− 1
2

c′′
0x(2zθ − x ln r)− 1

2
c′′

0z(z + z ln r) (9.29)

and matching gives

φ2 = 1
2
∂2φ1

∂xi∂xj
xix j + �′′

0

4π
(z2θ − xz ln r)+ ∂φ2

∂xi
xi

− 1
2

c′′
0x(2zθ − x ln r)− 1

2
c′′

0z(z + z ln r) (9.30)

which is the boundary condition at infinity for the inner solution. The order-2
inner problem is an inhomogeneous equation, with a particular solution pro-
duced by the spanwise derivative of the order-0 solution. The boundary condi-
tion for φ2 is a regular part (uniform and linearly varying induced velocity) plus
a singular part.

As perturbation expansions, equivalent solutions are obtained if the inner problems
are combined and all orders solved simultaneously. Up to second order, the equation
of motion is ∇2

2Dφ = −φ0yy, with boundary condition φz = (U + φx)gx + φ0ygy on the
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surface (z = g) plus the Kutta condition. The behavior of the solution at infinity is

φ ∼ − �

2π
θ + vixi + 1

2
∂vi

∂x j
xix j + �′′

4π
(z2θ − xz ln r)+ cixi

r2

− 1
2

c′′
x(2zθ − x ln r)− 1

2
c′′

z(z + z ln r) (9.31)

The combined outer problem consists of a bound vortex line due to � = �0 + �1,
plus a quadrupole line due to �0.

The order-2 outer solution has a quadrupole line produced by the order-0 inner
solution (�0). The outer limit of the inner φ0 is the same if the quadrupole strength
is zero, but the bound vortex is offset. For axes with the origin at the wing midchord,
the outer limit of the inner solution is

φ = uixi − �

2π
θ + cixi

r2
+ O(r−2) (9.32)

Now consider just a bound vortex, no quadrupole term, located at x = ξ and z = ζ ;
the same outer limit (r  ξ, ζ ) is obtained if (�/2π)ξ = −cz and (�/2π)ζ = cx.
For a thin airfoil, the bound vortex must be at the quarter chord (ξ = −c/4 and
ζ = 0). Camber and thickness introduce additional chordwise and vertical shifts,
respectively. The quadrupole strengths resulting from camber and thickness are not
proportional to the bound circulation, so these shifts depend on the lift. Using a
bound vortex at the quarter chord means that the outer problem only requires the
solution for a line of dipoles; that is, a wake of vortex sheets.

The boundary condition for the order-2 inner problem involves a linear variation
of downwash over the chord, w = w0 + w1x, from the wake-induced velocity and
the wing motion. Thin airfoil theory gives the solution for the lift and moment:
c� = −2πw3QC/U and cmQC = π

8w1c/U , wherew3QC is the downwashw at the three-
quarter chord point. So the correct lift is obtained by using the wake-induced velocity
evaluated at a single point on the section, the three-quarter chord. However, a
linearly varying velocity would give a pitching moment, which the constant velocity
does not, so without the gradientw1 a second-order moment term has been neglected.
This version of the second-order theory can be compared with Weissinger’s method,
in which the induced velocity is evaluated at the three-quarter chord, including
the effect of the bound vortex at the quarter chord, and equated to the geometric
angle-of-attack. Weissinger’s method is equivalent to using thin-airfoil theory for
the inner solution (Pistolesi’s theorem states that the velocity at one-half chord from
the bound vortex gives the correct boundary condition) and combines the inner and
outer solutions.

A remainder problem is defined by the order-2 inner problem, after accounting
for the use of the induced velocity evaluated at the three-quarter chord. This problem
was solved by van Dyke (1963) for a wing at constant angle-of-attack and by van
Holten (1975, 1977) for a constant chord wing. In practical implementation of lifting-
line theory this remainder problem is usually neglected, so the analytical solutions
are useful as error estimates. The lift error is second-order small, and so is the
moment error, except probably the neglected moment from the linear variation of
induced velocity.

Combining and then solving all orders simultaneously is equivalent in terms
of the perturbation expansions. The combined inner problem is a two-dimensional
airfoil in a uniform free stream, consisting of the wing motion and the wake-induced
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velocity. The induced velocity (three components) is evaluated at the three-quarter
chord from the wake associated with a bound vortex line at the quarter chord
(excluding the bound vortex, which has already been accounted for in the matching).
Combining the inner problems is a natural step, since only an angle-of-attack change
produced by the induced velocity is required.

The perturbation solution procedure alternates between the inner and outer
problems, using only the solution up to the previous order. The two-dimensional
airfoil with no wake is solved for �0; the wake-induced velocity produced by �0

is calculated; then the airfoil in the wake flow field is solved for �1. Combining
the outer problems means evaluating the induced velocity using the total bound
circulation from the combined inner problem rather than just from the lowest-order
inner problem. This changes the nature of the solution from direct quadrature to an
integral equation (as in Prandtl’s theory).

Higher-order lifting-line theories have been developed for swept, unsteady,
transonic, rotating wings; see Johnson (1986). Van Holten (1975, 1977) developed
a second-order lifting-line theory for a rotary wing using the method of matched
asymptotic expansions. For swept wings, the inner limit of the dipole and quadrupole
lines has singular terms proportional to �′ tan� (where � is the local sweep angle).
Matching gives an inner problem boundary condition at infinity that consists not
only of the induced velocity (regular part of the swept wake solution) but also of
these singular terms produced by sweep. If the induced velocity is calculated at the
three-quarter chord and these new swept wing boundary conditions are ignored,
the wing lift is correct but there is a moment error. Experience with the L-method
confirms that this is a good approximation to the second-order lifting-line theory
for the wing lift distribution. If the wing curvature is order ε2 small, the differential
equations for the inner problem remain two-dimensional. Small curvature is typical
of rotor blades, except at kinks in the planform. At kinks, the asymptotic expansion
used is invalid to any order, and the integral-equation formulation must be relied on
to keep the solution well behaved.

In the unsteady theory, the order-0 inner problem is an unsteady two-
dimensional airfoil in a swept free stream produced by the wing motion with a two-
dimensional shed wake. The order-1 outer problem is again a lifting line, matching
both the bound vorticity and the order-0 inner shed wake. The boundary condition at
infinity for the order-1 inner problem again consists of the induced velocity (regular
part) and a singular part produced by sweep, from which must be excluded now not
only the bound vortex but also the inner shed wake, since both have already been
accounted for. The unsteady wake-induced velocity is a function of (t − x/U ), like a
convected gust. It is also possible in unsteady lifting-line theory to consider the shed
wake not in the inner problem, but as part of the boundary conditions for the inner
problem. Then only the bound vortex would be excluded from the induced velocity.
The entire shed wake would be part of the outer problem and would be excluded
from the inner problem. For complex wing motion and wake geometry (such as with
a rotor blade), ensuring consistency between the outer and inner wake models is
easier with this approach. However, one difficulty is that the inner shed wake begins
at the trailing edge, whereas the outer wake emanates from the bound vortex line.
Treating the shed wake and trailed wake identically is also a natural step: evaluating
the induced velocity at the three-quarter chord and using it as a uniform free stream
in the inner problem. Piziali (1966) combined the outer wake and inner shed wake by
evaluating the induced velocity along the blade chord from all sources and applying
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thin-airfoil theory. Miller (1964a) used the induced velocity at the three-quarter
chord and modified the shed wake model as required to obtain the correct unsteady
loads. For unsteady airfoil motion, the shed wake effect is matched well with the
induced velocity evaluated at the three-quarter chord and the shed wake started at
the trailing edge.

9.4 Nonuniform Inflow

The wake-induced velocity distribution over the rotor disk is highly nonuniform,
because the requirements for uniform inflow (constant bound circulation and a very
large number of blades) are far from satisfied with real rotors. The dominant factor
in the rotor induced velocity is the discrete tip vortices trailed in helices from each
blade. Because of the rotation of the wing, the wake is laid down in spirals close to
the rotor disk, to be encountered again by the blades. In particular, a blade passes
close to the tip vortex from the preceding blade, both in hover and forward flight. A
line vortex induces a tangential velocity that varies inversely with the distance from
the vortex and has a maximum value at the vortex core radius. Thus the tip vortices
in the wake induce a highly nonuniform flow field through which the blades must
pass.

In hover, the tip vortex is convected downward only slightly until after it encoun-
ters the next blade, and there is little radial contraction (see Figure 3.16). The vortex-
blade encounter takes place near the tip, with the vortex a small distance from the
blade. The vortex produces a large variation in the loading at the tip and has a
substantial influence on the rotor hover performance (see section 3.8). In forward
flight the rotor wake is convected downstream, so the tip vortices are swept past
the entire rotor disk instead of remaining in the tip region. The close vortex-blade
encounters occur primarily on the advancing and retreating sides of the disk, where
the blades sweep over the vortices (see Figure 5.8). Thus in forward flight there is
a large azimuthal variation of the induced velocity, which produces a large higher
harmonic content of the loading. Nonuniform inflow is an important factor in heli-
copter vibration, loads, and noise during forward flight. Even the influence on the
1/rev loading, and hence on the cyclic control of the rotor, is large. The effects of
nonuniform inflow in forward flight vary greatly with the flight condition, being
largest in states such as transition, where the wake is closest to the rotor. In a tandem
helicopter, the rear rotor also encounters the wake of the front rotor in forward
flight, in particular resulting in large vortex-induced loads on the forward portion of
the rear rotor disk. Figure 9.1 shows examples of the rotor blade loading in forward
flight. The vortex-induced loading is apparent in the low speed loads.

The accurate calculation of the wake-induced nonuniform velocity, and the
resulting airloads and blade motion, is a prerequisite for the satisfactory prediction of
rotor blade loads, rotor noise, helicopter vibration, and even the rotor performance
and cyclic control. A complicated, detailed model of the rotor aerodynamics and
dynamics is clearly required for such a calculation, and only a numerical solution is
practical. The wake-induced velocity is obtained by integrating the Biot-Savart law
over the vortex wake elements in the rotor wake. The wake strength is determined by
the radial and azimuthal variation of the bound circulation. For the wake geometry,
a simple assumed model, experimental measurements, or a calculated geometry can
be used. Given the vorticity strength and geometry, the induced velocity can be
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evaluated. For line elements the Biot-Savart law is

u(y) = − 1
4π

∫
γ (x)

s × dl(x)
s3

(9.33)

where s = y − x is the distance between the vortex element γ dl and the point where
the induced velocity u is required. With the helical geometry of the rotary-wing wake
such integrals cannot be evaluated analytically, even if the self-induced distortion
of the wake is neglected. Moreover, a direct numerical integration is usually not
satisfactory, because the large variations of the induced velocity at close vortex-blade
encounters would require a very small step size for accurate results. Calculating the
nonuniform inflow with the wake modeled using a set of discrete vortex elements is
most accurate and most efficient. The vortex elements used are chosen such that the
Biot-Savart law can be integrated efficiently, generally by analytical integration. A
finite-length line segment, straight or curved, is the usual choice. Then the induced
velocity at any point in the flow field is obtained by summing the contributions
from all the elements in the rotor wake. The vortex line segment is particularly
important since the helical tip vortices can be modeled very well by a connected
series of such elements. The approximations involved in such models of the rotor
wake include replacement of the curvilinear geometry by a series of straight-line or
planar segments; simplified distribution of vorticity over the discrete wake elements
(usually constant or linear); and perhaps physical approximations, such as the use
of line elements to represent the vortex sheets. A practical model must balance the
accuracy and efficiency of such approximations.

A discretized wake model is developed by assuming that the wing bound circu-
lation is known at discrete points along the span and in the past. Thus the bound
circulation �(r, t) is calculated at the aerodynamic span stations ri, i = 1 to M, and at
the wake ages φk = k�φ, k = 0 to K. A linear variation of � between these points
means the wing generates a wake of sheet elements behind the wing (Figure 9.6).
The strength of the trailed and shed vorticity in an element can be obtained from �

at the time that the vorticity was created. Thus the strength can be characterized by
the bound circulation corresponding to the four corners of the element. The element
leading edge corresponds to � at (ψ − φk), and the trailing edge to � at the earlier
time (ψ − φk+1). A spanwise change in � produces trailed vorticity γt . A linear vari-
ation of � means that the strength γt is constant spanwise, but linear along its length.
A time change in � produces shed vorticity γs. A linear variation of � means that
the strength of γs is constant in age, but linear along its length. The wake geometry
provides the locations of the four corners of the element.

For calculation of performance and structural loads, typically 20 or so radial
stations are used, concentrated at the tip where the greatest loading changes occur;
the typical azimuthal resolution is 5° to 15°.

An economical approximation for the sheet element is to use line segments,
with a large core to avoid velocity singularities near the line. Hence a vortex lattice
model is obtained by collapsing all sheet elements to finite-strength line segments
(Figure 9.7). The line segments are in the center of the sheet element, so the points
at which the induced velocity are calculated (collocation points) are at the midpoints
of the vortex lattice grid, both spanwise and in time. Locating the collocation points
midway between the trailers is a standard practice, used to avoid the singularities
at the lines. Locating the collocation points midway in time is required to correctly
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Figure 9.6. Discretized wake model: sheet elements generated by linear variation of bound
vorticity, plus line elements for the rolled-up tip vortices.

obtain the unsteady aerodynamic effects of the shed wake. With the sheets collapsed
to lines, the strength of the line segments varies linearly along their length. A further
approximation is stepped (piecewise constant) variation in strength. Then instead of
a linear variation along the line, there is a jump in the strength at the center of the
element where the shed and trailed lines cross. This wake model corresponds to a
stepped distribution of the bound circulation, both spanwise and in time.

The implementation of lifting-line theory involves primarily the wake directly
behind the bound vortex where the induced velocity is calculated. The most impor-
tant requirement is to model the detailed variation of the wake strength, both span-
wise and in time, to accurately obtain the classical three-dimensional (Prandtl) and
unsteady (Theodorsen) effects of the wake on the wing loading. A vortex lattice,
rather than sheet elements, is best used for the near wake. Discretization of the wake
is better behaved with line segments than with sheet elements. With sheet elements,
numerical difficulties arise from the edge and corner singularities (particularly when
planar-rectangular elements are used, which introduce mismatched edges) and the
fact that nonplanar-quadrilateral elements cannot be integrated analytically. Also,
the most important case of the downwash from the two sheet elements adjoining the
collocation point requires a higher-order element or some other special treatment.
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Figure 9.7. Discretized wake model: line elements to approximate vortex sheets, plus line
elements for the rolled-up tip vortices.

For rotors, the distortion of the wake can lead to close encounters of the blade with
its near wake lattice, requiring that the line elements have a core. By using a small
core radius, velocity singularities can be avoided while not changing the induced
velocity at the blade for normal wake configurations. To implement second-order
lifting-line theory, the geometry of the collocation points involves placing them at
the three-quarter chord in the local flow direction. The collocation points are part
of the geometry of the wake rather than the wing. The wake geometry is obtained
from the position of the lifting line at the current and past time steps. Thus the wake
geometry can be used to get the local flow direction for the collocation points.

When the wake reaches a following blade or some other aerodynamic surface
(such as the tail rotor, another main rotor, fuselage, or tail), the rolled-up tip vor-
tices are the most important part of the model. The rollup problem involves three-
dimensional, unsteady, viscous fluid dynamics. The vortex core is largely formed at
the wing trailing edge, so the problem is not the inviscid rollup of a vortex sheet.
Moreover, discretization of the wake for a rollup calculation is difficult. Thus with
a vortex model of the rotor wake, the rollup process is usually not calculated but
rather modeled, meaning that the structure and properties of the rolled-up wake are
determined from assumptions and input parameters and from the spanwise distribu-
tion of the bound circulation where the wake was created. The model must account
for the influence of the strength of the tip vortex when it encounters a following
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blade, the influence of the core radius when the vortex is fully rolled up, and the
effect of the vortex rollup on the tip load of the generating blade.

The inboard vorticity plays a smaller role in any interactions than the con-
centrated tip vortices, so more approximations are acceptable. The entrainment of
vorticity into the tip vortex and the accompanying stretching and distortion of the
inboard vortex sheet are details likely not included in the modeling of the tip vortex
rollup process. Thus Figures 9.6 and 9.7 show an abrupt change from the vortex
lattice behind the blade to the rolled-up structure in the far wake. The use of a
single vortex panel reflects the loss of information about the strength and geometry
of the inboard vorticity. Options for modeling the inboard wake elements include
vortex sheets, either nonplanar-quadrilateral or planar-rectangular, or line segments
in the middle of the elements. Line segments are commonly used, producing a vortex
lattice model for the entire wake. Line segments that approximate sheet elements
require a large core size, not as a representation of a physical effect, but to eliminate
any singularities in the velocity for the close passage of following blades.

In many operating conditions, the rotor blade loading is positive all along the
blade span (as sketched in Figure 9.2), with peak bound circulation�max. The simplest
model of the rollup for such a case assumes that in the far wake (where the rollup
process is complete) there are concentrated tip vortices with strength equal to the
value of �max at the time that the wake element was created. If the root vortex is
not rolled up, there is corresponding negative trailed vorticity with total strength
−�max in the inboard sheet. The tip vortex model then is a line segment with this
strength and a small core radius. The peak bound circulation �max is the maximum
possible strength of the tip vortex, obtained by entrainment of all the trailed vorticity
between the peak and the tip. The strength is smaller if more or less trailed vorticity
is entrained. The error in the assumed strength must be compensated for by the value
of the core radius. In the absence of a calculation of the stretching and distortion
produced by the rollup, the inboard vorticity is modeled as a single sheet element with
trailed and shed vorticity. This is an efficient model, consisting of only two elements
with a total of three line segments at each age, which minimizes computation, and it
depends only on �max, which minimizes storage.

Although Figure 9.2 shows a monotonic change in circulation from the peak to
the blade tip, blades with more complicated geometry could exhibit more than one
local maximum in the loading. A geometric feature such as the edge of a trailing-edge
flap or a rapid change in blade chord can produce a large spanwise gradient in the
bound circulation. The vortex rollup model can be extended to such a case by assum-
ing that a concentrated trailed vortex (represented by line segments) emanates from
each geometric feature. The models can also be made more complex by introducing
gradual entrainment of the trailed vorticity into the tip vortex or by prescribing the
tip vortex strength as a fraction of the peak bound circulation.

The blade loading at a given time need not be all positive or all negative. For
example, a helicopter rotor in high-speed forward flight often has negative lift on the
advancing tip, particularly in the second quadrant. With a flapping rotor, the net pitch
and roll moment on the hub must be small (zero if there is no flap hinge offset). In
forward flight, the lift capability on the retreating side is limited by the combination of
low dynamic pressure and stall of the airfoil. Consequently the lift on the advancing
side must also be small to maintain roll balance. At sufficiently high speed, the lift on
the advancing tip can become negative. Large twist of the blade (built in or elastic)
increases the negative loading. A tiltrotor blade can have negative tip loading on
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Figure 9.8. Far wake model for dual-peak blade loading.

the entire advancing side at even low-speed edgewise flight. The vortex-induced
loading on following blades shows that negative tip loading produces substantial
negative trailed vorticity in the wake. Over much of the disk, � is still positive all
along the span. However, there is a range of azimuth on the advancing side with
a negative peak near the tip and a positive peak inboard. Figure 9.8 illustrates the
wake structure. At the current blade position (say on the front of the disk) the blade
loading is positive. At an earlier azimuth (say on the advancing side) the wake was
generated by blade loading that was positive inboard and negative at the tip (called
“dual peak”). At a still earlier time (say on the back of the disk), the wake was
generated from single-peak loading. For rotors in high-speed flight with negative tip
loading, the experimental evidence (Hooper (1984)) implies that the entrainment
of trailed vorticity into the tip vortex occurs from the outboard (negative) peak
bound circulation, not from the inboard (large positive) peak. Thus the tip vortex
that forms from the wake generated by dual-peak loading has the opposite sign and
smaller strength than the tip vortices corresponding to single-peak loading (Miller
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Figure 9.9. Far wake model with multiple trailers and consolidation.

(1985)). The simplest model of the dual-peak rollup assumes that the tip vortex
has strength and sign equal to the outboard bound circulation peak. The inboard
sheet has then both positive and negative trailed vorticity, divided at a span station
corresponding to the inboard peak (Figure 9.8). The trailed vorticity between the
two peaks can partially roll up as well, which can be modeled by using a line segment
with a physically meaningful core radius. The single-peak model (Figure 9.7) applied
to a case of dual-peak loading at least has the appropriate tip vortex strength and
sign if the rollup is always driven by the outboard peak, not by the bound circulation
maximum magnitude.

For a more detailed representation of the wake, the vortices trailed between
collocation points on the blade can be extended into the far wake. The rollup is
not well calculated even with many trailed vortex lines, because of the coarse dis-
cretization and the neglect of viscosity. Hence it is useful to impose consolidation of
individual trailed vortex lines into a small number of rolled-up vortices (illustrated
in Figure 9.9). The trailed vorticity at each wake age is partitioned into sets of adja-
cent lines that have the same sign (bound circulation increasing or decreasing). It is
assumed that all the vorticity in a set eventually rolls up into a single vortex, located
at the centroid of the original vorticity distribution (Betz (1932) and Rossow (1973)).
For each set, the total strength �, centroid rC, and moment (radius of gyration) rG

of the trailed vorticity in the set are calculated. The rate of consolidation scales with
the characteristic time r2

G/� (Bilanin and Donaldson (1975) and Quackenbush, Lam,
Wachspress, and Bliss (1994)). For a set of trailed lines at the edge of the wake, the
rollup is probably dominated by the flow over the wing tip, so the final position of the
consolidated lines is at the edge rather than at the centroid. With these assumptions,
the structure of the wake adjusts to accommodate dual-peak loading (Figure 9.9) or
even more complicated variations of the bound circulation with azimuth and radial
station. Note the vortex lines shifting between rolled-up vortices in the dual-peak
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case of Figure 9.9. Since each of the trailed vortex lines arise from a fixed radial loca-
tion on the blade, the movement of a line from one rolled-up structure to another
reflects an azimuthal shift in the radial location of a bound circulation peak, resulting
in a change in sign of a particular trailed element. An alternative approach is to dis-
cretize the rotor wake using curved lines of constant strength instead of a fixed radial
location on the blade, as illustrated in Figure 9.10. Azimuthal and radial variation
of the bound circulation then produces wake filaments that follow the resultant vor-
ticity in the sheets, instead of a vortex lattice of separate trailed and shed elements.
This model has been implemented using curved vortex elements; see Bliss, Dadone,
and Wachspress (1987) and Quackenbush, Wachspress, and Boschitsch (1995).

Numerous wake models are found in applications. The strong, concentrated
tip vortices are well represented by line elements with an appropriate viscous core
radius, and the helical geometry can be reasonably approximated using a connected
series of finite-length segments. Model variations for the rolled-up structures in the
wake involve the vortex core representation and the choice of straight or curved
elements. The influence of the inboard vorticity is much less than that of the tip
vortices, allowing greater latitude in developing a model while retaining accuracy.
Model variations for the vortex elements include the choice of line or sheet elements,
and the vorticity detail captured. Early work in particular involved far wake modeling
assumptions intended to minimize computational effort, such as neglecting shed
wake elements or neglecting all wake elements except the rolled-up tip vortices.

The induced velocity is evaluated by integrating over all vorticity in the wake. For
a given wake geometry and incompressible flow, the Biot-Savart law gives a linear
relation between the induced velocity and the wake strength. The wake strength is
linearly related to the wing bound circulation at the current and past times. Hence
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the induced velocity produced by one blade at a collocation point P takes the form:

vP(ψ) =
∫ ∞

0

∫ 1

0
C(ψ, φ; r)�(ψ − φ; r)dr dφ (9.34)

where � is the blade bound circulation and C the influence coefficients (calculated
from the wake geometry and modeling assumptions). C is actually a differential
operator, since the wake strength depends on the time and span derivatives of
the bound circulation. The blade span variable is r. At dimensionless time ψ (blade
azimuth angle), a wake element and its position in the wake are identified by the wake
age φ, such that (ψ − φ) is the time that the element was created. Hence the strength
of that element depends on the bound circulation at (ψ − φ), and the induced velocity
is evaluated by an integral equation. The age goes from φ = 0 at the current blade
position to φ = ∞ far behind the blade.

The bound circulation is discretized spanwise, evaluated at the aerodynamic
stations ri, i = 1 to M. The wake must have a consistent spanwise discretization. The
strength of the wake directly behind the blade depends on the circulation at all radial
stations, but in the rolled-up wake the strength depends only on the peak circulation
values. The wake age is discretized by using the geometry and strength only at a set
of ages φk = k�φ, k = 0 to K, for fixed wake age increment �φ. Thus the integral
equation for the wake-induced velocity becomes

vP(ψ�) =
∑

blades

[ ∑
peaks

K∑
k=0

Cpeak(ψ�, φk)�peak(ψ� − φk)

+
K∑

k=0

M∑
i=1

C(ψ�, φk; ri)�(ψ� − φk; ri)

]
(9.35)

including a summation over all blades. The summation over “peaks” depends on the
structure of the far wake (such as multiple rollup, dual peak, multiple trailer with
consolidation). The induced velocity is calculated at a set of times ψ�, as determined
by the solution procedure. The influence coefficients C depend primarily on the gross
character of the wake (such as determined by advance ratio μ and thrust CT ) and
are usually weak functions of the bound circulation.

9.5 Wake Geometry

In the close encounters of the rotating helicopter rotor blade with the wake from
preceding blades, the induced airloads are sensitive to the relative position of the tip
vortex and blade. Thus the geometry of the rotor vortex wake is a major factor in
determining the nonuniform inflow and aerodynamic loading.

The wake geometry describes the position of the wake vorticity in space. The
undistorted geometry is obtained from the motion of the wing: as the blade moves
through the air, trailed and shed vorticity is created, and this vorticity is then con-
vected by the wind as the blade continues to move. So the wake geometry reflects
the past history of the blade motion. Relative to the rotor disk, the wake is con-
vected downward (normal to the disk plane) by the mean induced velocity and free
stream, and aft in forward flight by the in-plane component of the free stream. The
self-induced velocity produces substantial distortion of the vortex filaments as they
are convected. The wake geometry thus consists of distorted, interlocking helices,



9.5 Wake Geometry 327

μ = 0.10

μ = 0.075

μ = 0.05

μ = 0.025

μ = 0

μ = 0.15

μ = 0.20

μ = 0.25

μ = 0.35

μ = 0.45

Figure 9.11. Calculated wake geometry of helicopter rotor tip vortices.

one behind each blade, skewed aft in forward flight. Figure 9.11 shows the calculated
wake geometry of tip vortices for a helicopter rotor operating from hover to high-
speed forward flight. The idealized wake geometry in hover is a contracted helix,
as discussed in section 3.8.1. In forward flight, the distorted wake geometry exhibits
an overall pattern in which the edges of the wake arising from the rotor disk roll
up to form vortices, as behind a circular wing (Figure 9.11). These super-vortices
consist of the helical tip vortices from individual blades. The consequence of this
pattern is that near the rotor the tip vortices tend to move upward on the sides of the
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Figure 9.12. Calculated induced power in forward flight.

disk, and they tend to move downward in the middle of the disk. So the self-induced
distortion moves the tip vortices closer to the blades on the advancing and retreating
sides (compared to a rigid geometry), thereby increasing the blade-vortex interaction
loads. The transition from hover-like to wing-like behavior occurs around μ ∼= 0.05
or V/vh

∼= 1. Simons, Pacifico, and Jones (1966) in a flow visualization experiment
found that at low speed the trailing vortices from the leading edge of the rotor disk
tend to pass upward through the disk first and then downward. At the rear of the
disk the vortices tend to be convected downward at a rate higher than the mean
inflow.

The wake geometry distortion has a large influence on the blade airloading in
hover and low-speed flight, typically at advance ratios below about 0.20–0.25. At
higher speeds, the helicopter rotor has a large tip-path-plane incidence relative to
the free stream, typically several degrees forward, to provide the propulsive force. In
such flight conditions the wake is convected rapidly aft as well as downward relative
to the disk by the normal component of the free stream, and the distorted geometry
is less important. Figure 9.12 shows the typical influence of the wake geometry on the
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Figure 9.13. Construction of rotor wake geometry.

rotor induced power in forward flight. If the self-induced distortion is not included
in the calculations, the induced power is underestimated at low speed.

The blade rotation together with the rotor flight speed creates the basic helical
geometry of the wake. Figure 9.13 illustrates the construction of the wake geometry
relative to the rotor hub plane. The figure shows a wake element created at radial
station r on the blade, with current age φ. The blade is now at azimuth angle ψ =
�t (dimensionless time). The wake element was created when the blade was at
azimuth (ψ − φ), and the position of the blade at that time was x = r cos(ψ − φ),
y = r sin(ψ − φ), and z = rβ(ψ − φ) (including just the rigid flap motion of the
blade). Since leaving the blade, the wake element has been convected with the local
flow. Consider just the mean convection velocity, which has components λ and μ
in the hub plane. The inflow ratio λ includes the mean induced velocity. Then the
current position of the wake element is

x = r cos(ψ − φ)+ μφ (9.36)

y = r sin(ψ − φ) (9.37)

z = rβ(ψ − φ)− λφ (9.38)

which defines the basic skewed helix of the rotor wake in forward flight. Actually,
there are N such helices, one behind each blade, which are obtained by substituting
for ψ the azimuth angle of the m-th blade: ψm = ψ + m�ψ (m = 1 to N, �ψ =
2π/N). As at the rotor disk, the induced velocity throughout the wake is highly
nonuniform. When the nonuniform induced velocity is included in the convection of
the wake element, the vertical position becomes

z = rβ(ψ − φ)−
∫ φ

0
λ dφ (9.39)
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which defines the distorted wake geometry; the distortion in the x and y directions
is required as well.

A number of wake geometry models are used in rotary-wing analyses. The rigid
wake model is the undisturbed helical geometry, in which all the wake elements are
convected with the same mean velocity. An elementary extension is the semi-rigid
wake model, in which each element is convected downward with the induced velocity
of the point on the rotor disk where it was created. The free wake or nonrigid wake
model includes the distortion from the basic helix as each wake element is convected
with the local flow, in particular the distortion caused by the wake self-induced
velocities. The distorted geometry can be calculated or measured experimentally.
When measured wake geometry information is used, it is often called a prescribed
wake model.

The rigid wake model is the simplest geometry, requiring a negligible amount
of computation. It is also the furthest from the true rotor wake geometry, which
can involve significant distortion. If the flight condition is such that the wake is
convected away from the disk (large tip-path-plane incidence at high speed, or high
climb rates), and hence there is no significant vortex-blade interaction, then a rigid
wake geometry can be a satisfactory model. The semi-rigid wake geometry does
not require additional computation, using only the nonuniform inflow at the rotor
disk. The assumption that the wake elements are convected with the velocity at the
disk should be good for small age, but not very accurate by the time the vortex
encounters the following blade. Thus the semi-rigid wake model generally offers
little improvement over the rigid wake model. When the helicopter operating state
is such that the wake remains close to the rotor disk, the distortion of the wake
geometry has a large effect on the loading, and the free wake model is required.
Calculating the distorted wake geometry requires evaluating the induced velocity
throughout the wake rather than just at the rotor disk, and therefore it involves a very
large amount of computation. The use of a prescribed wake model is limited by the
necessity of performing measurements for the required rotor and flight condition.
The choice of the wake geometry model is usually a balance between accuracy and
economy.

The basic undistorted geometry is calculated from the position in the air at which
the wake element was created, plus convection by the wind. Then the distortion
produced by the self-induced velocities is added. Letψ be the current time and φ the
age of the element in the wake. Thus δ = ψ − φ is the time when the vorticity was
created and identifies a particular element in the wake. The position of a the wake
element in space is

rW (ψ, φ) = rQ(ψ − φ)+ Wφ + D(ψ, φ) (9.40)

or

rW (ψ, δ) = rQ(δ)+ W (ψ − δ)+ D(ψ, δ) (9.41)

Here rQ is the blade position, including rotor forward and axial speed, evaluated at
past times. Convection by the wind or gusts gives the distortion

∫ ψ
ψ−φ W dψ = Wφ if

the velocity W is constant. The wake geometry distortion D(ψ, φ) is the perturbation
of the position from the undistorted geometry. By definition the wake geometry
connects to the wing at φ = 0, so D(t, 0) = 0. The undistorted part of the wake
geometry can be evaluated at any time ψ and age φ as required. The geometry and
distortion are functions of time ψ and of either wake age φ or the element creation
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time δ. It is convenient to store the geometry information as a function of age φ, but
following the motion of a wake element is done for fixed δ.

The rigid geometry is calculated by assuming that the wake elements are all
convected by the average interference velocity λmean. This uniform convection gives
D(ψ, φ) = λmeanφ.

The prescribed distortion for a hovering rotor is described by two-stage vertical
convection and exponential spanwise contraction; see section 3.8.1. The vertical and
spanwise distortion (scaled with radius R) are

Dz =
{

K1φ φ < φ1

K1φ1 + K2(φ − φ1) φ > φ1
(9.42)

Dr = (
1 − e−K3φ

)
(1 − K4) (9.43)

where φ1 = 2π/N is the age at the encounter with the following blade (N is the
number of blades). Section 3.8.1 summarizes the prescribed wake geometry models
of Landgrebe (1971, 1972) and Kocurek and Tangler (1977). This geometry is steady
relative to the moving wing, so Dz and Dr are functions of only wake age φ, not
time. The vertical convection is defined by K1 and K2, the rates before and after
encountering the first following blade. The spanwise contraction is defined by K3

and K4, the rate of contraction and the maximum contraction ratio, respectively.
The major issue in a free wake analysis is developing an efficient yet accurate

procedure for performing the calculations. Conceptually, the free wake calculation
is simple. At each time step, the induced velocity is evaluated at every element
in the wake by summing the contributions from all elements in the wake (as in a
calculation of the nonuniform inflow at the rotor disk). Then the convection velocities
are numerically integrated to obtain the positions of the wake elements at the next
time step. Developing special procedures for economic calculation of the distorted
wake is important. Among the techniques developed are the following:

a) When calculating the velocity at a collocation point, the wake is divided into
“near wake” and “far wake” regions. The velocity contribution of the far wake
is small, so when the velocity is required again in the algorithm, only the contri-
bution of the near wake need be recalculated (Landgrebe (1969)).

b) During the basic time step, the existing wake is convected by the wind and
the induced velocity with little relative distortion, while the blades move and
generate new wake behind the trailing edges. Thus the minimal update of the
induced velocities involves just adding the contribution of this new vorticity
(Scully (1975)).

c) Integration of the blade-induced velocity in time is approximately equal to
the average velocity from the bound vortex (a vortex line segment), which is
equivalent to the velocity from a vortex sheet element (Scully (1975)).

d) For steady-state operating conditions, the distortion is constant or periodic (in an
appropriate frame). Thus the convergence of the calculation can be improved by
including an iteration between revolutions with distortion increment relaxation
and propagation as well as an outer iteration with distortion relaxation (Scully
(1975), Johnson (1995)).

e) The effect of the core vorticity distribution on the self-induced velocity of a
vortex arc is obtained using an appropriate cutoff distance (Bliss, Teske, and
Quackenbush (1987)).
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f) Implicit time integration methods (with relaxed iteration) are used for stability.
In the predictor-corrector form, these methods require only one evaluation of
the velocity per time step (Bagai and Leishman (1995), Bhagwat and Leishman
(2001)).

g) If a group of wake elements is a large distance from a group of collocation points
where the induced velocity is required, a multipole representation of the wake
elements can be developed and the velocity calculated at the collocation points
using a Taylor series expansion (Wachspress, Quackenbush, and Boschitsch
(2003)).

Efficiency of computation continues to be a priority, as advances in computational
capability are used to enable the solution of larger and more complicated problems.

Following Helmholz, a point on a vortex wake is convected with the local fluid
velocity. Thus the equation of motion of a wake node, identified by the time when
the vorticity was created (δ = ψ − φ), is

drW (ψ, δ)

dψ
= W + q(ψ, δ) (9.44)

with q the self-induced velocity and W the wind. Integrating over time from ψ − φ
to ψ gives

rW (ψ, δ) = rW (ψ − φ, δ)+ Wφ +
∫ ψ

ψ−φ
q(ψ = σ, δ)dσ

= rQ(ψ − φ)+ Wφ + D(ψ, φ) (9.45)

So the distortion is calculated by integrating just the self-induced velocity q over
time:

D(ψ, φ) =
∫ ψ

ψ−φ
q(ψ = σ, φ = σ − δ)dσ (9.46)

for fixed δ. The induced velocity at a given time is evaluated by integrating over all
vorticity in the wake. For incompressible flow, the Biot-Savart law gives the velocity
as an integral of the wake strength times an influence coefficient:

q(ψ) =
∫ ∫

C(ψ, φ; r)G(ψ, φ; r)dr dφ (9.47)

where φ is the wake age and r the wing span variable, so the integral is over the
wake surface. The influence coefficient C depends on the wake geometry. The wake
strength G depends on the wing bound circulation at past times, �(ψ − φ; r). The
wake age is discretized by using the geometry and strength only at a set of ages
φk = k�φ, k = 0 to K, for fixed wake age increment �φ. Time is discretized in the
distortion calculation, with fixed increment �ψ . Typically implementation of the
integration algorithm requires that the time increment and the wake age increment
be equal. The discretized integral is

D(ψ, φ) = D(ψ −�ψ,φ −�ψ)+
∫ ψ

ψ−�ψ
q(ψ = σ, φ = σ − δ)dσ

= D(ψ −�ψ,φ −�ψ)+�D (9.48)

where �D is the distortion increment, evaluated from the velocity at the current
and past times, and constant δ. An integration algorithm that consists of a predictor
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followed by an iterated corrector with relaxation has the following form:

predictor: �Dj = �ψ P(q j−1, . . .)

evaluate qj from Dj

relaxation: q j = λR q j + (1 − λR)qjold

corrector: �D j = �ψC(qj, . . .)

where subscript j indicates q or D at time ψ = j�ψ . Several integration algorithms
have been implemented. For all of the following, the predictor is �Dj = �ψ qj−1.

a) Euler (first order): corrector �Dj = �ψ qj. Using only the predictor gives
explicit Euler integration (similar to Johnson (1995)).

b) Trapezoidal (second order): corrector �Dj = �ψ

2 (qj + qj−1). A single pass (no
iteration) gives the trapezoidal predictor-corrector algorithm. The result with
one iteration and λR = 1

2 is similar to the PIPC algorithm of Bagai and Leishman
(1995).

c) Backward difference (second order): corrector �Dj = − 2
3 D j−1 + Dj−2 −

1
3 Dj−3 + 2

3�ψ(q j + q j−1). The result with one iteration and λR = 1
2 is similar

to the PC2B algorithm of Bhagwat and Leishman (2001).

If the relative distortion of the wake from ψ −�ψ to ψ is ignored, then during
this time the only change is the addition of the new wake of age φ = 0 to �ψ
directly behind the wings. Then q(ψ, φ) ∼= q(ψ −�ψ,φ −�ψ)+ q1(ψ), where q1

is the velocity of the new wake generated behind the wing duringψ −�ψ toψ . With
this approximation, trapezoidal integration gives�D/�ψ = q(ψ −�ψ,φ −�ψ)+
1
2 q1(ψ). Johnson (1995) used this integration method. Similarly, Scully (1975) used
q(ψ −�ψ,φ −�ψ) ∼= q(ψ, φ)− q1(ψ); hence �D/�ψ = q(ψ, φ)− 1

2 q1(ψ).
Since the velocity and distortion are periodic in time, relaxation of the distortion

increment can be introduced to improve convergence. In addition, propagation
of the distortion information can be included in the trim solution. The distortion
increment �D = q�ψ is not the same as that calculated during the last revolution;
the difference is δD = �D −�Dold. The difference δD affects all future values of
D at this ψ − φ. Since the trim distortion is periodic, δD also affects values of D at
past times and larger age. Thus the propagation procedure adds δD to all values of
D(ψ, φ) at future time ψ and fixed ψ − φ.

The distortion can be required at an age φ beyond which it has been calculated.
Just stopping the wake model at some age produces inaccurate results, characterized
by spurious instabilities. At the last age where the distortion is required, the calcula-
tion of induced velocity must include several revolutions of wake beyond that point.
Extrapolation of the geometry is accomplished by following the path of a specific
wake element in time; hence by considering the geometry for a fixed value of the
time that a wake element was created, δ = t − φ. Let φ last be the maximum age of
the available distortion. The distortion is extrapolated by assuming that the vortex
element is convected for time (φ − φ last) by a constant velocity:

D(ψ, φ) = D
(
ψ − (φ − φlast), φlast

)+ (φ − φlast) λconv (9.49)
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The convection velocity λconv can be obtained from the average distortion increment
at φlast:

λconv = 1
2π

∑
ψ

(
D(ψ, φlast)− D(ψ −�ψ,φlast −�ψ)) 1

�ψ
(9.50)

where the average is over the last revolution of the free wake.
Generally the calculation of the wake-induced velocities on the nodes of the

wake is similar to the calculation of nonuniform inflow at points on the rotor disk.
However, special treatment is required for the induced velocity from vortex ele-
ments adjacent to a collocation point. For a collocation point on a rolled-up trailed
vortex line, the induced velocity from the two adjacent line segments is calculated
by replacing them by circular-arc vortex line segments. The effect of the core vor-
ticity distribution on the self-induced velocity of a vortex arc is obtained using an
appropriate cutoff distance (Bliss, Teske, and Quackenbush (1987); see section 9.7).
The cutoff distance is proportional to the vortex core radius. If instead straight line
segments are used adjacent to the collocation point, these segments do not con-
tribute to the self-induced velocity, and the model is equivalent to a cutoff distance
proportional to the wake age discretization.

Integration of the blade-induced velocities gives a distortion increment:

�D =
∫ ψ

ψ−�ψ
qwing dt = qB�ψ (9.51)

so qB is the average blade-induced velocity. For an instantaneous value of the blade-
induced velocity, a good model of the flow about the wing would be required. For
the average value, representing the blade by a bound vortex appears to be adequate.
The average velocity from the bound vortex (a line vortex) as the blade moves from
time ψ −�ψ to time ψ is equivalent to the velocity produced by a vortex sheet
defined by the (convected) blade positions.

For a three-dimensional wing, the Kutta condition requires that the wake leave
the trailing edge tangent to the wing surface (Hess (1974)). In the absence of a
calculation of the detailed flow field near the wing, this requirement can be satisfied
by using an initial convection velocity qK = �/πc, where � and c are the section
bound circulation and chord. With the bound vortex at the quarter chord, this is its
induced velocity at the three-quarter chord. This result is obtained using the zero-lift
chord line for the trailing-edge bisector, and a lift-curve slope of 2π . The velocity
direction can be obtained from the geometry of the bound vortex and the collocation
point. The initial velocity qK is used at φ = 0, and the wake-induced velocity q is used
at ages greater than some φK, with φK selected based on correlation with measured
wake geometry and performance.

In the undistorted wake geometry, the initial span station of the tip vortex can
be obtained from Betz rollup, which is calculated assuming that the centroid of the
rolled-up trailed vorticity is conserved (Betz (1932) and Rossow (1973)). Consider
the bound vorticity from rA to rB, rolling up into a trailed line. The centroid of the
trailed vorticity is at rC:

rC(�A − �B) =
∫ rB

rA

−∂�
∂r

r dr = �ArA − �BrB +
∫ rB

rA

� dr

= �ArA − �BrB − (rA − rB)�M (9.52)

in terms of the mean bound circulation �M.
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A factor in the wake geometry is the stability of the vortex elements. A vortex line
is susceptible to short wavelength instabilities, and a helical vortex also exhibits long
wavelength instabilities due to the interaction of successive turns of the helix. Such
instabilities are generally of secondary importance for the loading, since they occur
in the wake some distance from the rotor. Also, the concept of a unique geometry
is an idealization, because in the real flow, turbulence and vortex instabilities can
produce significant variations in the wake geometry with time, even for a nominally
steady operating state.

A wake stability analysis begins with the equation for convection of vortex
elements: dr/dψ = V(r), where r is a point on the vortex and V is the velocity induced
there by all vorticity in the wake; see Bhagwat and Leishman (2000). The periodic
solution of this equation for a given operating condition (convection velocity and
wake strength) is r0. The perturbation of the wake geometry relative to this solution
is governed by the equation

d
dψ
δr = V(r0 + δr)− V(r0) = δV(δr) (9.53)

The model is discretized by considering a finite set of collocation points and expand-
ing δV in terms of all the δr variables. The differential equations for the collection of
δr generate an eigenvalue problem when it is assumed that the perturbation position
is proportional to eαψ+iωφ , with φ the wake age. Here α is the growth rate and ω is the
wave number (ω cycles per rotor revolution). The solution for the eigenvalues gives
the maximum α as a function ofω. Typically α has peaks at half-integer values ofω/N
(ω = (k + 1

2 )N, where N is the number of blades), for which the vortex filaments are
out-of-phase.

Widnall (1972) examined the stability of a vortex filament of finite core size and
infinite extent, considering small sinusoidal displacements of the vortex center-line.
A helical vortex filament under its own influence rigidly translates and rotates. Three
modes of instability were found. The first mode is a very short-wave instability, char-
acteristic of curved line vortices. The principal length scale is the local radius of
curvature. The second mode is a long-wave mode, typically appearing as a displace-
ment of the helix boundary. The third mode is a mutual-inductance mode, which
appears as the pitch of the helix decreases and the neighboring turns of the helix
begin to interact strongly, analogous to the instability of a line of two-dimensional
point vortices or a vortex sheet. Typically the maximum growth rate occurs when
the perturbation is 180° out-of-phase on successive turns. Accounting for the vortex
core is essential to the analysis of these instabilities. The wavelength of the short-
wave mode decreases as core radius decreases. Decreasing the core radius increases
the amplification rate of the long-wave mode, but decreases the amplification rate
of the mutual-inductance mode. At large amplitudes, the mutual-induction mode
results in adjacent turns of the helix wrapping around each other. In a vertical cross-
section of the wake, vortex pairing occurs, with vortices rotating about each other
until they change places, a phenomenon observed experimentally in hovering rotor
tests by Landgrebe (1972), Tangler, Wohlfeld, and Miley (1973), Caradonna et al.
(1999), and Martin, Bhagwat, and Leishman (1999).

9.6 Examples

As an example of the influence of the wake model on rotor aerodynamics, con-
sider an articulated rotor with solidity σ = 0.08, Lock number γ = 8, and twist



336 Wings and Wakes

θtw = −8°. Section 6.13 presented results based on momentum theory inflow and
ideal aerodynamics. The calculations here include nonuniform inflow with a free
wake geometry. Also, airfoil tables for advanced helicopter airfoils give the effects
of stall and compressibility (the airfoils used have a zero-lift angle-of-attack of about
−1.6°). The section aerodynamic model includes attached flow, unsteady aerody-
namic loads, but not dynamic stall. The rotor has four blades and a root cutout of
12%R. The only blade motion is rigid flap and pitch, with no hinge offsets from the
center of rotation.

The influence of twist is examined by considering θtw = 0 and θtw = −16°. The
baseline operating condition is thrust CT/σ = 0.08 and propulsive force correspond-
ing to fuselage drag f/A = 0.008. A thrust variation of CT/σ = 0.12 is examined, as
are propulsive force variations of f/A = 0 and f/A = 0.016. The calculations were
performed by adjusting collective pitch and shaft incidence to match the required
thrust and propulsive force, with cyclic pitch for zero flapping relative to the shaft.

Figure 9.14 shows the variation of the section angle-of-attack as the blade
moves around the rotor disk, for the baseline condition (CT/σ = 0.08, f/A = 0.008,
θtw = −8°) at advance ratios of μ = 0.15, 0.30, and 0.45. Figure 6.18 shows the cor-
responding uniform inflow results. To compare the two figures, 1.6° must be added
to the nonuniform inflow results, because of the positive lift at zero angle-of-attack.
With nonuniform inflow, the angle-of-attack distribution exhibits blade-vortex inter-
action at low speed and somewhat more negative loading on the advancing tip at high
speed. At high speed, uniform-inflow theory predicts that the maximum angle-of-
attack occurs on the tip of the retreating blade (r = 1 and ψ ∼= 240°), while nonuni-
form inflow shifts the stall inboard and into the third quadrant. Moreover, the vortex
wake increases the rate of change of angle-of-attack, which influences the dynamic
stall occurrence. Thus nonuniform inflow substantially alters the angle-of-attack
distribution.

The blade angle-of-attack distribution depends on the operating condition
(thrust and propulsive force) and twist, as shown in Figure 9.15. Figure 6.19 shows
the corresponding uniform inflow results. With the effects of stall included, this rotor
cannot achieve CT/σ = 0.16 at high speed. With nonuniform inflow there is much
less difference between the twisted and untwisted blades than with uniform inflow.
With the vortex wake model, the angle-of-attack distribution for zero twist is very
different from that obtained using uniform inflow, particularly on the retreating
side of the disk. As with uniform inflow, large twist (θtw = −16°) leads to negative
angle-of-attack on the advancing tip even for μ = 0.30.

Figure 9.16 shows the radial and azimuthal variation of the blade section lift
at advance ratios of μ = 0.15, 0.30, and 0.45, for the baseline condition (CT/σ =
0.08, f/A = 0.008, θtw = −8°). Figure 6.21 shows the corresponding uniform inflow
results. Figure 9.17 shows the radial and azimuthal variation of the wake-induced
downwash. Blade-vortex interaction on the advancing and retreating sides of the disk
is evident in the loading and downwash at low speed. At high speed, the downwash
is far from uniform over the rotor disk, with substantial influence on the loading
(compare to Figure 6.21). For reference, momentum theory gives the inflow value
λ = 0.021, 0.011, and 0.007 at μ = 0.15, 0.30, and 0.45.

The section lift (Figures 9.16 and 6.21) is presented as d(CT/σ )/dr =
Fz/(ρ(�R)2c). In an aerodynamic investigation, commonly the section normal force
is presented as M2cn = N/( 1/2ρc2

s c). Both forms are scaled using a constant velocity
(�R or cs). The lift coefficient c� = L/(1/2ρU 2c) would show the occurrence of stall,
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Figure 9.14. Blade angle-of-attack distribu-
tion (in degrees) for CT/σ = 0.08, f/A =
0.008, and θtw = −8° (nonuniform inflow);
μ = 0.15, 0.30, 0.45.

but neither the lift L (local wind-axis force) nor the section resultant velocity U is
available from measurements or high-fidelity analyses.

There is also a significant effect of the wake-induced velocities on the blade
motion, even the mean and 1/rev flapping, and hence on the collective and cyclic
pitch control angles required for a given flight state. A major influence of nonuniform
inflow is to increase the lateral flapping and hence the lateral cyclic required to
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Figure 9.15. Variation of blade angle-of-attack distribution at μ = 0.30 (in degrees) with
thrust CT/σ , propulsive force f/A, and twist θtw (nonuniform inflow).

trim the rotor. Figure 9.18 compares measured lateral flapping at low speed (from
Harris (1972)) with calculations using free wake, rigid wake, and momentum theory
inflow models. The rotor was articulated, with a small hinge offset (2.3%R) and
solidity σ = .0891. The operating condition is CT/σ = 0.08, fixed cyclic control, and
shaft angle for iTPP = 1.0°. Momentum theory (uniform inflow, without an empirical
inflow gradient over the disk) predicts a small negative β1s that increases steadily
with μ. The experimental results show instead a large lateral flap magnitude at low
speed, with a peak around μ = 0.08 in Figure 9.18. A free wake geometry analysis is
required to satisfactorily calculate the lateral flapping. In contrast, the longitudinal
flapping angles are well predicted even with simple inflow models. Examination of
the solution identifies the blade-vortex interaction on the advancing and retreating
sides of the rotor disk as the source of a large longitudinal inflow variation (see
Figure 9.17), the 1/rev component of which is responsible for a lateral flapping angle
increment. Interaction with the rolled-up tip vortices produces large peak inflow
values. The self-induced distortion of the wake moves the tip vortices close to the
blades (much closer than suggested by rigid wake geometry), thereby increasing the
strength of the blade-vortex interaction.
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Figure 9.16. Blade section lift (d(CT/σ )/dr) for CT/σ = 0.08, f/A = 0.008, and θtw = −8°
(nonuniform inflow); μ = 0.15, 0.30, 0.45.

9.7 Vortex Core

A line vortex is an idealization in which a finite amount of vorticity is concentrated
into a line of infinitesimal cross-section. There is a singularity at such a vortex line,
with the induced velocity increasing as the inverse of the distance from the line. In
the real fluid, viscosity eliminates this singularity by diffusing the vorticity over a
small but finite region, called the vortex core. The maximum induced velocity occurs
at some distance from the center of the line vortex, which is defined as the core
radius. The vortex core is an important factor in the induced velocity character,
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Figure 9.17. Wake-induced velocity for CT/σ = 0.08, f/A = 0.008, and θtw = −8° (nonuni-
form inflow); μ = 0.15, 0.30, 0.45.

determining the maximum velocities near the tip vortices. Because the rotor blade
often passes very close to the tip vortices from preceding blades, the vortex core has
a significant role in the wake-induced velocity of the rotor and must be included in
the representation of the wake vorticity.

Consider the tangential or circumferential velocity v about a line vortex, at
a distance r from the line. The vortex strength is given by the circulation �. For
a potential line vortex (no core), v = �/2πr. For small r, viscosity reduces the
magnitude of v by spreading the vorticity over a nonzero domain instead of a line. The
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Figure 9.18. Influence of wake model on calculated lateral flapping; measured data from
Harris (1972).

core radius is defined at the point of maximum tangential or circumferential velocity:
the core radius rc is the distance r at which the maximum value of v is encountered.
Figure 9.19 shows the circumferential velocity as a function of r for the same vortex
strength and several values of the core radius: 100%, 75%, 50%, and 33% of the
nominal radius r0. At large distances from the center, the velocity approaches that
of a potential vortex, but the peak velocity is inversely proportional to rc.

For fixed vortex strength �, the peak velocity depends on the distribution of
vorticity in the core. From the swirl velocity v, the circulation is γ = 2πrv and
the vorticity is ζ = 1

r
d
dr rv. For the potential vortex, v = �/2πr, so γ = � and all the

vorticity is concentrated at r = 0. With a finite core, let γ = f (r)� be the circulation
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Figure 9.19. Tip vortex core radius and peak velocity.



342 Wings and Wakes

0.0

0.5

1.0

1.5

ci
rc

um
fe

re
nt

ia
l v

el
oc

ity
, v

/(
Γ/

2 π
 r c

)

potential vortex
Rankine core

Oseen core

Vatistas (n = 2)
Scully core
Vatistas (n = 3/4)

0. 1. 2. 3.
0.0

0.5

1.0

1.5

distance from vortex center, r/rc

vo
rt

ic
ity

,  
 ζ

 /(
Γ/

π
 r

c2 )
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at r( f (0) = 0 and f (∞) = 1); so v = f�/2πr. Then for fixed strength � and core
radius rc, the maximum velocity about the vortex is determined by the value of f at
rc. The peak velocity magnitude is reduced as the vorticity outside of rc is increased.
Figure 9.20 compares the circumferential velocity for several distributions of vorticity
in the core.

A Rankine vortex core has solid body rotation of the fluid inside rc, produced
by a uniform vorticity distribution concentrated entirely within the core radius. The
velocity and circulation are

v = �

2πrc

⎧⎨⎩
r/rc r < rc

1
r/rc

r > rc
(9.54)

γ = �
{
(r/rc)

2 r < rc

1 r > rc

(9.55)

and the vorticity is �/πr2
c for r < rc.



9.7 Vortex Core 343

Oseen (see Lamb (1932)) obtained the solution of the Navier-Stokes equations
for decay of a laminar vortex:

v = �

2πr

(
1 − e−r2/4νt

)
= �

2πr

(
1 − e−ar2/r2

c

)
(9.56)

introducing the core radius r2
c = a4νt. Here a ∼= 1.2564 is the solution of ea = 1 + 2a,

so rc = 2.2418
√
νt (ν is the kinematic viscosity). The vorticity is

ζ = �

πr2
c

(
ae−ar2/r2

c

)
(9.57)

At the core radius, f = γ /� = 2a/(1 + 2a) ∼= 0.7153.
A simple model for a distributed vorticity core has the circulation proportional

to f = r2/(r2 + r2
c ), so half the vorticity is outside the core radius. Then

v = �

2πr
r2

r2 + r2
c

(9.58)

ζ = �

πr2
c

r4
c

(r2 + r2
c )

2
(9.59)

This is the Scully model, developed based on the form of the Biot-Savart solution
for vortex-induced velocity. It was introduced for rotor wake analysis by Scully
(1975), although there are earlier uses of the model in other fields (see Bhagwat and
Leishman (2002)).

Vatistas, Kozel, and Mih (1991) defined a power-law core:

v = �

2πr
r2

(r2n + r2n
c )

1/n
(9.60)

ζ = �

πr2
c

r2n+2
c

(r2n + r2n
c )

(1+1/n)
(9.61)

The peak velocity vmax = 2−1/n(�/2πrc) increases with n. The Scully model is
obtained with n = 1, and the Rankine core with n = ∞. For n = 2 the Vatistas
model is close to the Lamb-Oseen distribution (see Bagai and Leishman (1995)).

The peak circumferential velocity (at r = rc) is proportional to �/rc and a factor
that depends on the vorticity distribution:

Rankine vmax = �

2πrc
(9.62)

Oseen vmax = �

2πrc

(
1 − e−a) = �

2πrc

2a
1 + 2a

= �

2πrc
0.7153 (9.63)

Scully vmax = �

2πrc
0.5 (9.64)

Vatistas vmax = �

2πrc
2−1/n = �

2πrc
0.7071 (n = 2) (9.65)

The Rankine core has all the vorticity inside r = rc, so has the largest possible peak
velocity given � and rc (equal to the potential vortex velocity). The Scully core has
half the vorticity inside and half the vorticity outside of r = rc. Vorticity outside
the core reduces the peak velocity for fixed � and rc. Measurements of the velocity
distributions about tip vortices show that the maximum tangential velocity is much
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less than �/2πrc, indicating that a substantial fraction of the vorticity is outside the
core radius. Measurements of rotor tip vortices imply n = 1 to n = 2 in the Vatistas
model.

The self-induced velocity at a collocation point on a curved vortex line is finite
only with a nonzero core radius. Bliss, Teske, and Quackenbush (1987) showed that
the correct induced velocity is obtained from a line of concentrated vorticity (zero
core radius) if the integration over the line stops a cutoff distance d either side
of the collocation point. Assuming that the ratio of the core radius to the vortex
radius-of-curvature is small, the required cutoff distance is

d/rc = 1
2

e
1
2 −A+C (9.66)

The quantities A and C follow from the kinetic energy in the viscous core:

A = lim
r→∞

[∫ r

0
rv2dr − ln r

]
(9.67)

C =
∫ ∞

0
2rw2dr (9.68)

Here r is the distance from the center of the core (scaled with the core radius rc),
and v and w are the swirl and axial velocities (scaled with the circulation �/2πrc).
The integral A depends on the vortex core model:

Rankine A = 1
4

from v = min(r, 1/r) (9.69)

Oseen A = 1
2

(
γ + ln

a
2

) ∼= 0.0562 from v = 1
r

(
1 − e−ar2

)
(9.70)

Scully A = −1
2

from v = r/(r2 + 1) (9.71)

Vatistas A ∼= 1
4
(n + 3)(n − 2)
(n + 1)n

from v = r/(r2n + 1)1/n (9.72)

Vatistas A = 0 from v = r/
√

r4 + 1 (n = 2) (9.73)

(where γ ∼= 0.5772 is Euler’s constant). Hence the cutoff distance is

Rankine d/rc = 1
2

e1/4 ∼= 0.6420 (9.74)

Oseen d/rc = 1√
2a

e(1−γ )/2 ∼= 0.7793 (9.75)

Scully d/rc = 1
2

e ∼= 1.3591 (9.76)

Vatistas d/rc = 1
2

e1/2 ∼= 0.8244 (n = 2) (9.77)

(ignoring the axial velocity, so C = 0). Use of this cutoff distance is equivalent to
solving for the velocity field using the method of matched asymptotic expansions
(Widnall, Bliss, and Zalay (1971)).

After the initial formation of the vortex at the trailing edge of the wing tip,
the strength increases as trailed vorticity is entrained, and the core radius grows
due to viscous diffusion. The Oseen solution of the Navier-Stokes equations for
decay of a laminar vortex gives rc = √

a4νt = 2.2418
√
νt, where t is the time since
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Figure 9.21. Measured vortex core growth for rotors in hover. Data are from various tests
collected by Ramasamy and Leishman (2007) and McAlister, Schuler, Branum, and Wu
(1995).

the vortex element was created (dimensional wake age). Squire (1965) introduced
an eddy viscosity to account for turbulence, replacing ν with ν + ε = δν. Assuming
the eddy viscosity is proportional to the vortex strength gives δ = 1 + k�/ν, where
�/2πν = (�/2πrc)rc/ν is a Reynolds number based on the core radius and the
peak swirl velocity. In terms of dimensionless wake age, t = (φ + φ0)/�, including
effective origin since the core radius is finite at the trailing edge, so

r2
c =

(
4aδν
�

)
(φ + φ0) = r2

c0 +
(

4aδν
�c2

)
c2φ = r2

c0 +
(

4aδ
(c/R)Re

)
c2φ (9.78)

where Re = (�R)c/ν is the blade Reynolds number. This result can be interpreted
in terms of the wake age φ1 required for the core to grow by 100% of the blade
chord:

φ1 = (c/R)Re
4aδ

(9.79)

Figure 9.21 shows the vortex core radius as a function of wake age, measured for a
number of hovering rotors; the data are from Ramasamy and Leishman (2007) and
McAlister, Schuler, Branum, and Wu (1995). Most of the rotors tested were small,
with diameters up to about 6 feet. The Oseen and Squire results for the core size
were calculated for a blade Reynolds number of (c/R)Re = 30000. For Figure 9.21,
δ = 8 to 16 matches the measurements, with rc0 = 0.03c. The core radius is about
5% of the chord at the blade trailing edge, 5–10% chord at the encounter with the
first following blade, and about 10% chord after one revolution (for hover).

9.8 Blade-Vortex Interaction

The encounter of rotor blades with a tip vortex from a preceding blade is called
blade-vortex interaction (BVI). The tip vortex induces a large aerodynamic loading
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Figure 9.22. Vortex-induced blade loading.

for the small vortex-blade separations characteristic of the helicopter rotor in both
hover and forward flight. A vortex that is a distance h below the blade induces a
downwash velocity (the component normal to the blade surface) that is zero directly
over the vortex and has positive and negative peaks a distance h on either side of the
intersection. The induced bound circulation and loading have the same general form
as the induced velocity distribution (Figure 9.22), although the peaks are somewhat
further apart than 2h because of lifting-surface effects. The spanwise gradient of the
bound circulation produces trailed vorticity in the wake behind the blade. Because
this induced wake vorticity has a direction parallel to the free tip vortex, if the free
vortex is not perpendicular to the blade span there is actually a radial component of
the trailed vorticity (shed wake). If the vortex is not perpendicular to the span, the
vortex-blade intersection sweeps radially along the blade as the vortex is convected
with the free stream, and the aerodynamic-loading is unsteady.

A model problem for blade-vortex interaction is an infinite-aspect-ratio, non-
rotating wing in a subsonic free stream, encountering a straight, infinite vortex at an
angle � with the wing (Figure 9.23). The wing has chord c; the vortex lies in a plane
parallel to the wing, a distance h below it. The vortex is convected past the wing by
the free stream. For the linear aerodynamic solution the distortion of the vortex-line
geometry by the interaction with the blade is neglected, and the blade and wake are
represented by a planar distribution of vorticity. This model problem can be solved
for the case of a sinusoidal induced velocity distribution with wave fronts parallel to
the vortex line. The vortex-induced velocity distribution can be obtained by a suitable
combination of sinusoidal waves of various wavelengths (a Fourier transform), so
the same superposition applied to the loading solution gives the vortex-induced
loading.

Figure 9.23 shows the limiting cases: the perpendicular encounter (� = 90°),
which is a steady, three-dimensional aerodynamic problem, and the parallel
encounter (� = 0°, also called airfoil-vortex interaction), which is an unsteady, two-
dimensional problem. The perpendicular encounter is characteristic of the blade
interaction with the tip vortex from the preceding blade, on the advancing and
retreating sides of the disk in forward flight, and is a factor in vibration and struc-
tural loads. The parallel encounter is characteristic of the blade interaction with
vortices one revolution or so old, especially in the first quadrant, and is a factor
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in BVI noise generation. The general interaction has the vortex at angle � in a
compressible free stream with Mach number M (in blade axes, Figure 9.23). As
the vortex is convected, the intersection with the blade sweeps spanwise at speed
M/ tan�. In axes moving with this intersection, the problem is stationary (reducing
from four space-time dimensions to just three dimensions), with a speed parallel
the vortex of M/ sin�. The aerodynamic equations in the moving axes are ellipti-
cal (more three-dimensional, including the perpendicular encounter) for M < sin�.
The equations are hyperbolic (more unsteady, including the parallel encounter) for
M > sin�.

Consider a straight, infinite line vortex of strength�, perpendicular to an infinite-
aspect-ratio blade with spanwise coordinate y. The vortex lies in a plane parallel to
the wing surface, a distance h below it. The normal w and spanwise u components
of the vortex-induced velocity are required on the wing at y (at y sin� for the non-
perpendicular case or (y sin�− Mt cos�) to include the unsteady, two-dimensional
limit). For a potential vortex, the swirl velocity is �/2πr, where r =

√
y2 + h2 is the
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distance from the vortex center to blade point. So

w = �

2πr
y
r

= �

2π
y

y2 + h2
(9.80)

u = �

2πr
h
r

= �

2π
h

y2 + h2
(9.81)

The downwash has peaks at y = ±h, of magnitudewpeak = �/4πh (Figure 9.24). This
normal velocity induces a loading on the blade with a similar radial variation. The
spanwise component of the induced velocity has a peak at y = 0 of upeak = �/2πh.

For h = 0 the downwash is w = �/2πy, which is singular at the vortex line
(y = 0). So for small h and y, a vortex core must be included in the wake model
to obtain physically realistic calculations of the induced velocity. For the Rankine
(equation 9.54), Scully (equation 9.58), and Vatistas (equation 9.60, with n = 2) core
models, the downwash is

Rankine w = �

2π

⎧⎪⎨⎪⎩
y
r2

c
r < rc

y
r2

r > rc

(9.82)

Scully w = �

2π
y

r2 + r2
c

= �

2π
y

y2 + h2 + r2
c

(9.83)

Vatistas w = �

2π
y

(r4 + r4
c )

1/2
(9.84)

where r =
√

y2 + h2. With the Scully model, the effect of the core is equivalent to
moving the vortex farther away from the blade, to heq = (h2 + r2

c )
1/2; such a simple
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Figure 9.25. Magnitude and position of peak downwash velocity.

correction can be useful for analytical work. The downwash peaks are

potential wpeak = �

2π
1

2h
at y = ±h (9.85)

Rankine wpeak = �

2π

√
r2

c − h2

r2
c

at y = ±
√

r2
c − h2

(
h <

rc√
2

)
(9.86)

Scully wpeak = �

2π
1

2
√

h2 + r2
c

at y = ±
√

h2 + r2
c (9.87)

Vatistas wpeak = �

2π
1√

2h2 + 2
√

h4 + r4
c

at y = ± 4

√
h4 + r4

c (9.88)

Figure 9.25 shows the spanwise location and magnitude of the downwash peaks as a
function of separation h.
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The airloads produced by blade-vortex interaction depend on numerous physical
effects, including the extent of the tip vortex rollup; the tip vortex strength; the size of
the viscous core; the distorted wake geometry; lifting-surface effects on the induced
loading; and possibly even vortex bursting, vortex-induced stall on the blade, or
blade-induced geometry changes. The peak-to-peak value of the vortex-induced
loading dominates the measured and calculated airloads. Physical factors influence
the peak-to-peak loading. The rollup process, at the generating blade and in the
wake, produces the strength and core size of the tip vortex at the encounter with
a following wing. The strength is less than or equal to the peak bound circulation,
and the core size is typically 5–20% of the chord. If the strength is assumed to equal
the peak bound circulation when in fact the strength is less, then the analysis over-
predicts the loading. In close blade-vortex encounters, the induced loading varies
rapidly along the span, so the interaction has a small effective aspect ratio. First-order
lifting-line theory over-predicts such loading, especially if the radial and azimuthal
resolution in the wake are not small enough. Second-order lifting-line theory or
lifting-surface theory is needed for accurate prediction of BVI loads (as well as the
airloading for swept tips, yawed flow, and low-aspect-ratio blades). Lifting-surface
effects reduce the peak induced loading by 20-40% for a vortex-blade separation
equal to 25% of the chord. This effect can be approximated by increasing the viscous
core size by about 15% chord. There are compressibility and viscous effects involved
in the interaction and possibly vortex bursting. The high radial pressure gradients on
the blade might cause vortex-induced stall. The geometry of the vortex is distorted
locally by the blade. The vortex interacts with the trailed wake it induces behind
the blade, with the effect of diffusing and reducing the circulation in the vortex.
Measured data exhibit unsteadiness and noise. If in nominally periodic loading the
azimuth at the occurrence of the blade-vortex interaction changes from revolution
to revolution, then an averaging process reduces the measured peak loads, and the
analysis over-predicts the loading.

Computational factors also influence the loading. If the calculated blade-vortex
separation is too large, as when a rigid wake geometry is used, then the analysis
under-predicts the loading. Typically the radial and the azimuthal (age) resolution
of the wake are too large for close blade-vortex interactions, so the analysis over-
predicts the loading. If the radial and azimuthal (time) discretization of the calculated
airloading are too large, the analysis under-predicts the loading.

The core size rc is a convenient parameter with which to control the amplitude
of the calculated blade-vortex interaction loads, since it determines the maximum
tangential velocity about the vortex (inversely proportional to rc). Moreover, the
core size is often neither measured nor calculated, so is an input parameter of the
analysis. The approach is to model all effects possible in the theory as accurately as
possible and then to use the value of rc to account for the actual viscous core radius,
as well as for all phenomena of the interaction that are not otherwise modeled (or
are inaccurately modeled). A goal for the development of better models is that the
vortex core size represents the actual physical core (5–20% chord) and nothing else.

9.9 Vortex Elements

Calculations of the rotor nonuniform inflow and free wake geometry are based on
the induced velocity produced by discrete elements of the vortex wake. The basic
building blocks are straight line and quadrilateral sheet elements. A connected series
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of finite-length vortex line segments can represent the tip vortex spirals, and a vortex
lattice can represent the inboard shed and trailed vorticity.

9.9.1 Vortex Line Segment

Figure 9.26 shows the geometry for a finite-length, straight vortex line element. The
line segment extends from point 1 to point 2 in space, and the velocity is required
at point P. The vortex strength varies linearly from �1 at point 1 to �2 at point 2.
The convention for positive circulation is about the vector from point 1 to point 2.
The geometry is defined by the position vectors r1 and r2 from the ends of the line
segment to P. The geometry is actually specified by vectors from a common origin
to points 1, 2, and P, from which r1 and r2 can be calculated. The velocity is obtained
in the same axes as used to describe the position vectors. The Biot-Savart law gives
the induced velocity produced by this line segment:

�v = − 1
4π

∫
� r × dσ

r3
(9.89)

where r is the vector from the element dσ on the segment to the point P, and r = |r|.
The coordinate σ is measured along the vortex segment, from s1 to s2:

s1 = 1
s
(r1 · r2 − r2

1) = 1
s

r1 · (r2 − r1) (9.90)

s2 = 1
s
(r2

2 − r1 · r2) = 1
s

r2 · (r2 − r1) = s1 + s (9.91)

where s is the length of the segment:

s2 = |r1 − r2|2 = r2
1 + r2

2 − 2r1 · r2 (9.92)

Write r = rm − σ ε̂, where rm is the minimum distance from the vortex line (including
its extension beyond the end points of the segment) to the point P, and ε̂ is the unit
vector in the direction of the vortex:

rm = 1
s2

(
r1(r2

2 − r1 · r2)+ r2(r2
1 − r1 · r2)

) = 1
s
(r1s2 − r2s1) (9.93)

ε̂ = 1
s
(r1 − r2) (9.94)
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The vectors rm and ε̂ are perpendicular, and

r2
ms2 = |r1s2 − r2s1|2 = r2

1r2
2 − (r1 · r2)

2 (9.95)

The vortex strength varies linearly along the segment:

� = 1
s

(
�1(s2 − σ )+ �2(σ − s1)

)
= 1

s

(
(�1s2 − �2s1)+ σ (�2 − �1)

)
= �m + σ�s (9.96)

Hence

�v = r1 × r2

4πs

∫ s2

s1

�m + σ�s

(r2
m + σ2)3/2

dσ

= r1 × r2

4πs

[
�mσ/r2

m − �s

(r2
m + σ2)1/2

]∣∣∣∣σ=s2

σ=s1

= r1 × r2

4πsr2
m

[
�m

(
s2

r2
− s1

r1

)
− �sr2

m

(
1
r2

− 1
r1

)]

= r1 × r2

4πsr2
m

[
�1

{
s2

s

(
s2

r2
− s1

r1

)
+ r2

m

s

(
1
r2

− 1
r1

)}

−�2

{
s1

s

(
s2

r2
− s1

r1

)
+ r2

m

s

(
1
r2

− 1
r1

)}]
= �1�v1 + �2�v2 (9.97)

is the induced velocity of the vortex line segment with linearly varying circulation.
The velocity increment from a constant-strength element is obtained using �m = �
and �s = 0. The induced velocity of a vortex line segment with stepped variation
of circulation (�1 from point 1 to the midpoint, �2 from the midpoint to point 2) is
obtained by applying the constant-strength result to the two pieces.

The influence of the vortex core is accounted for by multiplying the induced
velocity of the line segment by the factor f :

Rankine f = min(r2
m/r

2
c, 1) (9.98)

Scully f = r2
m/(r

2
m + r2

c ) (9.99)

Vatistas (n = 2) f = r2
m/

√
r4

m + r4
c (9.100)

Vatistas f = r2
m/(r

2n
m + r2n

c )
1/n (9.101)

Oseen f =
(

1 − e−ar2
m/r

2
c

)
(9.102)

The core radius rc is the location of the maximum tangential velocity. Thus the vortex
core is accounted for by using the factor f/r2

m instead of 1/r2
m in the expression for

�v. Using the Scully core is particularly simple: replace r2
m in the denominator with

r2
m + r2

c .
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Figure 9.27. Vortex sheet element.

9.9.2 Vortex Sheet Element

A vortex sheet element can be used to model the inboard shed and trailed vorticity.
Figure 9.27 shows the geometry for a nonplanar, quadrilateral vortex sheet element.
The four corners of the sheet element are at points 1 to 4 in space, and the velocity
is required at point P. The strength of the sheet vorticity is defined in terms of the
wing bound circulation associated with the four corners (�1, �2, �3, and �4). The
geometry is defined by the position vectors r1, r2, r3, and r4, from the corners to P.
The geometry is actually specified by vectors from a common origin to points 1, 2,
3, 4, and P, from which the vectors from the corners to P can be calculated. The
velocity is obtained in the same axes as used to describe the position vectors. The
velocity induced by a vortex sheet element is required in the form

�v = �1�vt1 + �2�vt2 + �3�vt3 + �4�vt4

= (�1 − �3)�vt1 + (�2 − �4)�vt2 (9.103)

for the trailed vorticity, and

�v = �1�vs1 + �2�vs2 + �3�vs3 + �4�vs4

= (�1 − �2)�vs1 + (�3 − �4)�vs3 (9.104)

for the shed vorticity.
For the general case of a nonplanar-quadrilateral element, the induced velocity

must be evaluated by numerical integration. For the case of a planar-rectangular ele-
ment the integrations can be performed analytically. The planar-rectangular element
can be used as an approximation for the general element. The edges of adjacent ele-
ments do not join with this approximation, but the amount of computation required
is reduced. As a further approximation, the sheet can be replaced by trailed and shed
line segments, with large core radii to avoid high induced velocities near the lines.

The sheet geometry is defined by the vectors s and t joining the midpoints of the
sides (Figure 9.27). These vectors always intersect; the vector from the intersection
to P is r0. The vector between the midpoints of the diagonals is u. The sheet surface
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is described by the coordinates σ and τ , each varying from −1/2 to 1/2; the origin
σ = τ = 0 is at r0. Then the vector from (σ, τ ) on the sheet to P is

r = r0 − σ s − τet = r0 − σes − τ t = r0 − σes − τet + 2στu (9.105)

where the vectors in the trailed and shed directions are et = t + 2σu and es = s + 2τu.
The bound circulation corresponding to the four corners is known, but not the actual
vorticity distribution over the sheet. A linear variation of the trailed vorticity δ(τ )
and shed vorticity γ (σ ) is assumed:

δ = − 1
|es| (�t + 2τ�u) (9.106)

γ = − 1
|et | (�s + 2σ�u) (9.107)

where �s = 1
2 (�2 + �4 − �1 − �3), �t = 1

2 (�3 + �4 − �1 − �2), and �u = 1
2 (�2 +

�3 − �1 − �4). So the differential vorticity on the sheet is

ω dA =
[
γ

es

|es| + δ et

|et |
]

|es| dσ |et | dτ

= [
(�s + 2σ�u)es − (�t + 2τ�u)et

]
dσ dτ (9.108)

The Biot-Savart law gives the induced velocity produced by this sheet element:

�v = − 1
4π

∫
r × ω

r3
dA

= − 1
4π

∫ 1/2

−1/2

∫ 1/2

−1/2
[(�s + 2σ�u)(r × es)− (�t + 2τ�u)(r × et )]

dσ dτ
r3

(9.109)

and hence

�vt1 = 1
4π

∫ ∫
−
(

1
2

+ τ
)
(r × et )

dσ dτ
r3

(9.110)

�vt2 = 1
4π

∫ ∫
−
(

1
2

− τ
)
(r × et )

dσ dτ
r3

(9.111)

�vs1 = 1
4π

∫ ∫ (
1
2

+ σ
)
(r × es)

dσ dτ
r3

(9.112)

�vs3 = 1
4π

∫ ∫ (
1
2

− σ
)
(r × es)

dσ dτ
r3

(9.113)

The velocity from an infinitesimally thin vortex sheet has a logarithmic singularity
near the edges. To avoid this singularity, r3 in the integrand denominator is replaced
by

(r2 + d2
vs)

3/2 (9.114)

The parameter dvs can be considered a viscous core size (compare with the role
of a core radius for a line segment). The introduction of dvs also improves the
convergence of the numerical integration when the collocation point is close to the
sheet surface.
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For a planar-rectangular element, the velocity integrals can be evaluated ana-
lytically. The planar assumption means u = 0; the rectangular assumption means
s · t = 0. Hence define

ρ = r0 − σ s − τ t = rm − (σ − σm)s − (τ − τm)t (9.115)

where the minimum distance between P and the plane of the sheet gives σm =
r0 · s/|s|2, τm = r0 · t/|t|2, and rm = r0 − σms − τmt. Note that rm · s = 0 and rm · t = 0.
So

ρ2 = ρ2
m + (σ − σm)

2s2 + (τ − τm)
2t2 (9.116)

ρ2
m = r2

m + d2
vs (9.117)

ρ × s = rm × s − (τ − τm)t × s (9.118)

ρ × t = rm × t − (σ − σm)s × t (9.119)

Then the induced velocity can be written as the planar-rectangular result plus a
correction term:

�vt1 = (�vt1)PR + 1
4π

∫ ∫
−
(

1
2

+ τ
)(

r × et

r3
− ρ × t

ρ3

)
dσ dτ (9.120)

and similarly for �vt2, �vs1, and �vs3. If the element is actually a planar rectan-
gle, then the correction term is zero (r × et/r3 = ρ × t/ρ3). The planar-rectangular
expressions can be integrated analytically:

(�vt1,2)PR = 1
4π

∫ ∫
−
(

1
2

± τ
)
(ρ × t)

dσ dτ
ρ3

= − rm × t
4π

[(
1
2

± τm

)
I1 ± I2

]
+ s × t

4π

[(
1
2

± τm

)
I3 ± I4

]
(9.121)

(�vs1,3)PR = 1
4π

∫ ∫ (
1
2

± σ
)
(ρ × s)

dσ dτ
ρ3

= rm × s
4π

[(
1
2

± σm

)
I1 ± I3

]
− t × s

4π

[(
1
2

± σm

)
I2 ± I4

]
(9.122)

where

I1 =
∫ ∫

dσ dτ
ρ3

= 1
ρmst

tan−1 (σ − σm)(τ − τm)st
ρmρ

(9.123)

I2 =
∫ ∫

(τ − τm)dσ dτ
ρ3

= 1
st2

ln (ρ − s(σ − σm)) (9.124)

I3 =
∫ ∫

(σ − σm)dσ dτ
ρ3

= 1
s2t

ln (ρ − t(τ − τm)) (9.125)

I4 =
∫ ∫

(σ − σm)(τ − τm)dσ dτ
ρ3

= − ρ

s2t2
(9.126)

each evaluated for σ = −1/2 to 1/2 and τ = −1/2 to 1/2. For the general case of a
nonplanar quadrilateral, the correction terms are evaluated numerically.
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The basic induced velocity of a vortex sheet is given by the arc-tangent term,
which produces for the point P approach the surface

�v → ±1
2

(
δε̂s − γ ε̂t

)
(9.127)

where ε̂s and ε̂t are unit vectors. The plus sign is for just above the sheet and the
minus sign is for just below. So there is a jump across the sheet that is equal to the
vorticity strength. For a point approaching an edge, there velocity is

�v → 1
2π
γmε̂n ln rm (9.128)

(for a side edge), where εn is the unit normal. There is a logarithmic singularity at
the edge of the vortex sheet. At the side edges of the rotor wake, the trailed vorticity
produces a large velocity normal to the sheet, which is responsible for the rollup of
the tip vortices. Elsewhere in the wake the logarithmic singularity is a result of the
discreteness of the model, since replacing a curved sheet by a series of flat panels
introduces infinite curvature where the edges join.

An economical approximation is to replace the vortex sheet by a line segments,
with either a linear or a stepped circulation distribution, and a large core size to
eliminate the high induced velocity near the lines. The strength and position of the
line segments are determined from the circulation and position of the four corners
of the sheet. The core radius can be specified arbitrarily, or rc = |s|/2 can be used
for the trailed vorticity and rc = |t|/2 for the shed vorticity.

9.9.3 Circular-Arc Vortex Element

The entire wake can be modeled using curved vortex elements, as in Figure 9.10.
Even when the wake is modeled using straight line elements, the curvature must
be considered in evaluating the self-induced velocity for a free wake geometry
calculation. There is no induced velocity contribution from elements adjacent to a
collocation point on the vortex if these adjacent elements are straight line elements.
This is equivalent to using a cutoff distance equal to the length of the vortex elements,
instead of on the order of the vortex core radius. So a circular-arc element should be
used for the adjacent elements. This section only considers the case of a collocation
point at one end of the curved element.

Figure 9.28 shows the geometry for a circular-arc vortex line element. The line
segment extends from point 1 to point 2 in space, and the velocity is required at
point P. Here P is located at one end of the segment; hence the velocity is required
at point 1 or at point 2. To define a curved line, a third point is required, either point
0 (before point 1) or point 3 (after point 2). A circular arc of radius R is defined
by points (0,1,2) or (1,2,3), and the vortex line segment is that portion of the arc
extending from point 1 to point 2. The vortex strength varies linearly from �1 at
point 1 to �2 at point 2. The convention for positive circulation is about the vector
from point 1 to point 2. The geometry is defined by the position vectors r1 and r2

from a common origin to the ends of the line segment, plus the vector r0 or r3 to a
third point. The velocity is obtained in the same axes as used to describe the position
vectors. The velocity induced by a vortex line segment is required in the form

�v = �1�v1 + �2�v2 (9.129)
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Figure 9.28. Circular-arc vortex element.

A non-zero core radius is needed to obtain a finite induced velocity on the line seg-
ment. The correct induced velocity is obtained from a line of concentrated vorticity
(zero core radius) if the integration over the line stops a cutoff distance d before the
collocation point; see section 9.7.

The Biot-Savart law gives the induced velocity produced by this line segment:

�v = − 1
4π

∫
� r × dσ

r3
(9.130)

where r is the vector from the element dσ on the segment to the point P, and r = |r|.
The coordinate σ is measured along the vortex segment. The circular arc has radius
R and angular length �θ (Figure 9.28). The vector n is normal the plane of the arc.
Consider the case with the collocation point P at end point 1. Distance along the
vortex segment is defined by the angle θ , measured from point 1. Then

r = R

⎛⎝ 1 − cos θ
− sin θ

0

⎞⎠ (9.131)
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dσ = R dθ

⎛⎝− sin θ
cos θ

0

⎞⎠ (9.132)

r = 2R sin
θ

2
(9.133)

r × dσ = −nR2dθ 2 sin2 θ

2
(9.134)

The vortex strength along the segment is assumed to be

� = �1 + (�2 − �1)
sin θ/2

sin�θ/2
= �m + �θ sin

θ

2
(9.135)

which is a linear variation for small�θ (for analytical integration, a factor of sin θ/2
is needed instead of θ/2). Assuming small d/R,

�v ∼= n
8πR

∫ �θ

d/R

[
�m

dθ
2 sin θ/2

+ �θ dθ
2

]
= n

8πR

[
�m ln tan

θ

4
+ �θ θ2

]∣∣∣∣θ=�θ
θ=d/R

∼= n
8πR

[
�m ln

(
4R
d

tan
�θ

4

)
+ �θ �θ2

]

= n
8πR

[
�1

(
ln
(

4R
d

tan
�θ

4

)
− �θ/2

sin�θ/2

)
+ �2

(
�θ/2

sin�θ/2

)]
= �1�v1 + �2�v2 (9.136)

is the induced velocity of the circular-arc vortex segment with linearly varying circu-
lation (P at 1). The self-induced velocity of a vortex ring is given by twice the above
result for �θ = π :

�v = n�
4πR

ln
4R
d

(9.137)

The result for the collocation point P at end point 2 is obtained in a similar manner.
To complete the evaluation of the induced velocity, the quantities n, R, and �θ

must be obtained from the geometry of the circular arc. Consider the arc defined
by points (0,1,2). The chord and normal vectors are a = r2 − r1, b = r1 − r0, n =
b × a/|b × a| (Figure 9.28). The vectors c and d from the chord vectors to the center
of the arc can be constructed from b and n. Then

R = ab
2

|a + b|
|b × a| (9.138)

n = 2R
b × a

ab |a + b| (9.139)

sin
�θ

2
= a

2R
= |b × a|

b |a + b| (9.140)

For the arc defined by points (1,2,3), the chord vectors are a = r3 − r2 and b = r2 − r1.
Then the results for R and n are unchanged, and a and b are interchanged in sin�θ/2.
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9.10 History

Computation of harmonic airloading on a helicopter rotor blade in forward flight
using realistic wake models began with Miller of the Massachusetts Institute of
Technology (MIT) and Piziali and DuWaldt of the Cornell Aeronautical Laboratory
(CAL). Miller (1962a, 1964b) described the problem:

The determination of the air loads acting on rotor blades in forward flight presents an
interesting and challenging problem in applied aerodynamics. Of particular importance
for design purposes are the oscillatory components of this loading occurring at harmonics
of the rotor speed. Unlike a wing, the trailing and shed vortex system of the blade
generates a spiral wake that returns close to the blade. Because of its close proximity to
the blade, the wake cannot be considered as rigid. Also, since the resulting loads are highly
time-dependent, unsteady aerodynamic effects become important. . . . The oscillatory air
loads occurring at harmonics of the rotor speed are the primary source of the blade
stresses that establish the fatigue life of the structure and of the periodic hub loads that
determine the fuselage vibration level.

With a uniform or linear inflow distribution, the predicted harmonic blade loading
is of the order μn (where n is the harmonic number), in contrast to the large fifth or
sixth harmonics that are measured in certain flight states such as transition or flare.
This large harmonic loading is the source of the roughness and noise associated with
such flight states and is due primarily to the wake-induced velocities. The work at
MIT and CAL was the extension of non-rotating wing and two-dimensional airfoil
unsteady aerodynamic theory to the complicated wake of the helicopter rotor in
forward flight, which was made possible by the digital computer.

According to Miller (1963), experimental work at MIT in the 1950s made clear
the importance of unsteady aerodynamics for rotor blades:

The tests . . . clearly indicated the need for an analytical tool for computing blade down-
wash velocities which would take into account the individual blade wake geometry and
also introduce the effects of unsteady aerodynamics. Attempts to obtain a closed form
solution to this problem, or one based on tabulated integrals, were not successful and it
was evident that extensive computer facilities would be required to explore this problem
and, hopefully, to provide a basis for obtaining simplified solutions suitable for engineer-
ing applications. In 1960 the availability of an IBM 709 computer at the MIT Computation
Center and funds from a Carnegie grant permitted initiation of such a program.

Miller’s rotor model consisted of a sheet of distributed vorticity for the blade and
a wake of shed and trailed vorticity. The Biot-Savart law gave the induced velocity
increment caused by trailed vorticity (from radial change in bound circulation),
simplified to the case of a lifting line in which the variation over the chord is neglected.
Integrating from the blade to infinity down the spiral was necessary and was initially
accomplished with numerical integration. From Miller (1964a),

Computations of air loads is complicated by the existence of singularities in the solution.
These occur as the shed wake approaches the trailing edge of the rotor and whenever
the blade passes through a trailing vortex line generated by itself or another blade. The
treatment of the singularities and of the non-uniform flow field presents no basic problem
providing lifting-surface theory is used. However, this requires the numerical evaluation
of the downwash at several chordwise as well as spanwise stations and hence, usually
involves a prohibitive amount of machine computation time. Approximate methods
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have therefore been used to evaluate the unsteady aerodynamic effects. . . . One of the
most troublesome of the singularities is that associated with a shed vortex approaching
the blade. In the simplest solution for the blade air loads it is convenient to replace the
blade by a single vortex line and normally the high aspect ratio of conventional rotors
would suggest that this is a reasonable approach.

The initial approach (Miller (1962a)) was to use a combined analytical and numeral
procedure. Miller (1962b) developed a simpler method, in which the induced velocity
was calculated at a single point on the airfoil chord, but only using the shed wake
up to a small distance behind the collocation point. Thus in evaluating the induced
velocity, the integral over wake age began at the bound vortex for the trailed wake,
but a quarter chord behind the bound vortex for the shed wake. Miller (1964b)
presented analytical work to support the assumptions and simplifications. Three-
dimensional solutions for forward flight were obtained by numerical integration on
a high-speed digital computer. Comparisons were made with airloads measured on
rotor blades (Miller (1964b)):

More recent experimental data, however, have supported the prediction of these abrupt
changes in downwash near the 90° and 180° azimuth positions. . . . The computations of
[Miller (1962a)] indicated that this abrupt load change is largely dominated by the vortex
generated by the immediately preceding blade.

Scully (1965) dealt with the efficiency of the wake model, which led to replacing the
numerical integration over the wake helices by a wake model consisting of finite
straight-line vortex elements. Scully (1975) conducted an extensive investigation of
the inboard trailed and shed wake representation and concluded that a model using
a small number of line vortex elements, with a large core to better simulate the sheet
vorticity, is the best in terms of both accuracy and economy.

The work by Piziali and DuWaldt was motivated in part by flight test experience
with high oscillatory blade loads, attributed to nonuniform inflow velocities at blades.
Piziali (1962, 1963) concentrated on the aerodynamic aspect of the problem:

Any accurate method of computing the airloads must adequately predict the wake-
induced velocities at the blades because the airloads are strongly influenced by these
velocities. However, because the vortical wake of the rotating wing is extremely complex
and difficult to adequately represent mathematically, the practical solution of the aeroe-
lastic problem has been delayed. Early attempts to solve this problem analytically were
based on relatively drastic simplifications of the wake of the rotor to make them compu-
tationally feasible. The modern high-speed computing machines of today have made it
possible to account for much more of the detail of the wake than has been possible in the
past and thus permit an adequate aerodynamic representation of the blades and wake to
be formulated which will enable accurate computation of the rotor airload distributions.

Piziali and DuWaldt (1962) started with a vortex-lattice model of the wake. The
Biot-Savart law gave the induced velocity at the collocation points (three-quarter
chord) on the rotor disk. Simultaneous equations were formulated for the bound
circulation at the collocation points and an iterative solution implemented. The early
work did not consider the issue of the near shed wake, but Piziali (1966) dealt with
the effects of discretization of the shed wake. The analysis permitted important
observations regarding the aerodynamic environment and performance of rotors.
“It is interesting to note that the computed induced velocity distributions are always
such as to oppose the retreating blade tip stall which has always been predicted on
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the basis of an assumed uniform inflow distribution” (Piziali and DuWaldt (1962)).
Piziali and DuWaldt (1963) also looked at the calculated induced drag of the blades:
“Induced power calculated from the induced drag distributions was found to be more
than three times that calculated on the assumption of a uniform induced velocity.”

Crimi (1966) developed a method for calculating the induced velocity at any
point in the flow field, including a calculation of the distorted wake geometry and
the effects of a fuselage. The wake model consisted of just the tip vortices; the inboard
shed and trailed wake were neglected entirely. The blade loading and circulation
were assumed to be known, so that only the wake geometry had to be calculated.

Landgrebe (1969) developed a method for calculating the rotor distorted wake
geometry. The wake model consisted of up to 10 trailed vortex lines; the shed wake
vorticity was neglected. Only the geometry of the tip vortices was calculated. To
reduce the computation required, Landgrebe divided the wake elements into far
wake and near wake regions. The near wake elements were those that were found in
the first iteration to contribute significantly to the induced velocity at a given point
in the wake. For successive iterations, only the induced velocity contributions of the
near wake elements were updated. The result is a reduction of about an order of
magnitude in the computation required to obtain the free wake geometry.

Clark and Leiper (1970) developed a method for calculating the distorted wake
geometry of a hovering rotor. Their wake model consisted of a number of constant-
strength trailed vortex lines; in hover there is no shed vorticity in the wake. The far
wake was approximated by segments of ring vortices. The distorted geometry of all
the trailers was calculated. A substantial influence of the distorted geometry on the
loading distribution was found, particularly near the tip, and hence on the hover
performance of the rotor.

Landgrebe (1971, 1972) conducted an experimental investigation of the per-
formance and wake geometry of a model hovering rotor; see section 3.8.1. The
wake geometry was measured by flow visualization, and the data were used to
develop expressions for the axial convection and radial contraction of the tip vor-
tices and inboard vortex sheets. This generalized wake geometry information was
used in calculations of the rotor performance and produced a significant improve-
ment in correlation with measured performance, compared to the results based on an
uncontracted, rigid wake model. Landgrebe also calculated the distorted tip vortex
geometry for the hovering rotor, and concluded that, although the wake geometry
calculation was qualitatively good, the important first blade-vortex interaction was
not well predicted. Landgrebe found a reduction in the stability of the wake vortices
with increasing distance from the rotor disk in both the measurements and the cal-
culations. An instability in which successive coils of the helices rolled around one
another was observed in many of the model rotor flow visualizations. Shortly beyond
this instability, further observation of the tip vortices was difficult. In no case was a
smoothly contracting tip vortex observed for a large enough distance below the rotor
disk to definitely preclude the possibility of an instability. Usually three or four turns
of the helices were clearly evident, and then nothing of the wake structure could be
seen.

Scully (1967, 1975) developed a method for calculating the free wake geometry
of a helicopter rotor. The emphasis in this work was on developing efficient yet
accurate computation techniques for the wake geometry and inflow calculations.
Since the case of steady-state flight was considered, the solution was periodic. Only
the geometry of the tip vortices was obtained. Shed vorticity and inboard trailed
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vorticity were retained (circulation was conserved), with rigid geometry. An efficient
calculation of the wake geometry requires many variations on the basic numerical
integration procedure. Scully adopted Landgrebe’s near wake and far wake scheme
for reducing the computation. The other major consideration for minimizing the
computation was the matter of updating the induced velocity calculation. As time
increases, the entire wake is convected downstream and the rotor blades move
forward, adding new trailed and shed vorticity to the beginning of the wake. If there
were no distortion of the wake during this time increment, the induced velocity
at a given wake element would not change except for the contributions from the
newly created wake vorticity just behind the blade. Thus the induced velocity could
be obtained by just adding at each step the contribution from the new wake just
behind the blade. The wake does distort as it is convected and as the estimate of
the distortion improves, so updating the calculation of the induced velocity in the
wake was necessary. The distortion was extrapolated beyond the last calculated age
as required for the accurate evaluation of the velocities. The induced velocity from
tip vortex elements adjacent to a collocation point was calculated using the result for
the self-induced velocity of a vortex ring, which gives the effect of the core radius.
Scully found that the wake geometry has a significant influence on the predicted
rotor aerodynamic loading, because the distorted wake tends to be much closer to
the blades than the rigid wake model would indicate.

Bliss, Teske, and Quackenbush (1987) developed a free wake geometry calcula-
tion using curved vortex elements. Only the tip vortices were modeled. An approx-
imate integration of the Biot-Savart law for the induced velocity of a parabolic arc
was obtained. The parabolic arc is close to a circular arc passing through the same
mid and end points, up to fairly large arc angles. Quackenbush, Bliss, and Wach-
spress (1989) developed a free wake geometry analysis of a hovering rotor, using
curved elements. An influence coefficient method was used to find the wake geome-
try by solving directly for the positions (steady in the rotating frame) that satisfy the
equilibrium conditions, without numerical integration. Quackenbush, Wachspress,
and Boschitsch (1995) developed the constant vorticity contour (CVC) model for a
rotor wake. The sheet of vorticity behind each blade was discretized by laying out
vortex filaments along contours of constant sheet strength. These filaments were
constructed of curved vortex elements that distort in response to the local velocity
field. This approach captured the free geometry and nonuniform inflow of the full
wake. A vortex lattice (lifting surface) model was used for the blade. To reduce com-
putation time, Quackenbush, Boschitsch, and Wachspress (1996) introduced a new
algorithm (generalized periodic relaxation) for finding the geometry that satisfies
the equations for convection of the vortex nodes. They also used a fast hierarchical
vortex method in which, if a group of wake elements is a large distance from a group
of collocation points where the induced velocity is required, a multipole representa-
tion of the wake elements is developed and the velocity calculated at the collocation
points using a Taylor series expansion.

Crouse and Leishman (1993) produced an improved method for calculating
rotor free wake geometry, using a predictor-corrector algorithm for the numerical
integration. The predictor was based on explicit integration and the corrector on
implicit integration. Bagai and Leishman (1995) developed a high-order pseudo-
implicit predictor-corrector (PIPC) relaxation method for solution of the equa-
tions of the wake self-induced motion. The equation of motion of a wake node
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(equation 9.44) is formulated in terms of ψ and φ instead of ψ and δ = ψ − φ:

drW (ψ, φ)

dψ
+ drW (ψ, φ)

dφ
= W + q(ψ, φ) (9.141)

so the integration algorithm involves discretization of the wake age φ as well as time
ψ . A Vatistas core model was used, with n = 2. The actual growth of the viscous
core is small, but a larger value of the Squire parameter δ can improve convergence
of the solution. A value of δ = 104 was used as a compromise between good con-
vergence without suppressing the distortion. To improve computational efficiency,
Bagai and Leishman (1998) introduced adaptive grid sequencing and velocity field
interpolation, which reduced the number of induced velocity evaluations in the
free wake solution. Bhagwat and Leishman (2001, 2003) developed a time-accurate
free-vortex method for rotors during maneuvers, based on a predictor-corrector
2nd-backward (PC2B) integration algorithm.
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10 Unsteady Aerodynamics

10.1 Two-Dimensional Unsteady Airfoil Theory

Since the aerodynamic environment of the rotor blade in forward flight or dur-
ing transient motion is unsteady, lifting-line theory requires an analysis of the
unsteady aerodynamics of a two-dimensional airfoil. Consider the problem of a
two-dimensional airfoil undergoing unsteady motion in a uniform free stream. Lin-
ear, incompressible aerodynamic theory represents the airfoil and its wake by thin
surfaces of vorticity (two-dimensional vortex sheets) in a straight line parallel to the
free stream velocity. For the linear problem the solution for the thickness and camber
loads can be separated from the loads due to angle-of-attack and unsteady motion.
In the development of unsteady thin-airfoil theory, the foundation is constructed for
a number of extensions of the analysis for rotary wings, which are presented in later
sections of this chapter.

The airfoil and shed wake in unsteady thin-airfoil theory are modeled by planar
sheets of vorticity, as shown in Figure 10.1. An airfoil of chord 2b is in a uniform free
stream with velocity U . Since the bound circulation of the section varies with time,
there is shed vorticity in the wake downstream of the airfoil. The vorticity strength
on the airfoil is γb, and in the wake γw. The blade motion (Figure 10.2) is described by
a heaving motion h (positive downward) and a pitch angle α about an axis at x = ab
(positive for nose upward). The aerodynamic pitch moment is evaluated about the
axis at x = ab. The airfoil motion produces an upwash velocity relative to the blade
of

wa = Uα + ḣ + (x − ab)α̇ (10.1)

In addition to the velocity wa, at the blade section there is also a downwash velocity
λ due to the shed wake, and wb due to the vorticity representing the blade surface.
From the strength of the vortex sheets representing the airfoil and shed wake, these
induced velocities are

wb(x) = 1
2π

∫ b

−b

γb

x − ξ dξ (10.2)

λ(x) = 1
2π

∫ ∞

b

γw

x − ξ dξ (10.3)
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U

z

x, ξ
–b b

γ  dxb

airfoil                               wake

γ   dxw

Figure 10.1. Unsteady thin airfoil theory model of the two-dimensional wing and wake.

The boundary condition of no flow through the wing surface,wb + λ− wa = 0, gives
an integral equation for the bound vorticity γb:

1
2π

∫ b

−b

γbdξ
x − ξ = wa − λ (10.4)

From the bound circulation γb the chordwise pressure loading can be found. The
shed wake vorticity is given by the time rate of change in the total bound circulation
� = ∫ b

−b γbdx:

γw = − 1
U

d�
dt

(10.5)

evaluated at the time the element was shed, t − (x − b)/U . So the wake-induced
velocity λ is also defined by the blade vorticity γb. The boundary condition of no
pressure difference across the wake requires that the shed vorticity be convected with
the free stream, so γw = γw(x − Ut). Finally, the Kutta condition of finite velocity at
the blade trailing edge requires γb = 0 at x = b.

With the Kutta condition, the integral equation inverts to

γb = − 2
π

√
b − x
b + x

∫ b

−b

√
b + ξ
b − ξ

wa − λ
x − ξ dξ (10.6)

Now write for the wake-induced velocity and the upwash due to the airfoil motion,

λ =
∞∑

n=0

λn cos nθ (10.7)

wa =
∞∑

n=0

wn cos nθ (10.8)

U

z

x
–b b

airfoil

ab

h

α

Figure 10.2. Unsteady pitching and heaving motion of the airfoil.
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where x = b cos θ (θ = 0 at the trailing edge and θ = π at the leading edge). Then
the solution for γb reduces to

γb = 2
∞∑

n=0

(
wn − λn

)
fn(θ ) (10.9)

where fn is the Glauert series:

fn(θ ) =
{

tan(θ/2) n = 0
sin nθ n ≥ 1

(10.10)

In terms of x rather than θ , the expansion of the normal velocity is

wa = w0 + w1
(
x/b

)+ w2
(
2x2/b2 − 1)+ . . . (10.11)

For the blade motion considered,w0 = Uα + ḣ − abα̇ (wa at the midchord),w1 = bα̇,
and wn = 0 for n ≥ 2. The first terms in the Glauert series are

f0 =
√

b − x
b + x

(10.12)

f1 =
√

1 − (x/b)2 (10.13)

f2 = 2(x/b)
√

1 − (x/b)2 (10.14)

The coefficients wn can be evaluated for a particular blade motion. To complete the
solution, the wake-induced velocity λ is required.

On substituting for γb, the airfoil bound circulation becomes

� =
∫ b

−b
γbdx = 2πb

[(
w0 + 1

2
w1

)
−
(
λ0 + 1

2
λ1

)]
(10.15)

Next divide γb into two parts: the circulatory vorticity γbC , which gives � but corre-
sponds towb = 0 and so has no effect on the boundary conditions; and the noncircu-
latory vorticity γbNC , which satisfies the boundary conditions but gives � = 0. Hence
γb = γbC + γbNC , and the expressions

γbC = 2
sin θ

[(
w0 + 1

2
w1

)
−
(
λ0 + 1

2
λ1

)]
(10.16)

γbNC = − 2
sin θ

[
(w0 − λ0) cos θ + 1

2
(w1 − λ1) cos 2θ

]
+ 2

∞∑
n=2

(wn − λn) fn(θ )

(10.17)

give ∫ b

−b
γbC dx = � (10.18)

∫ b

−b
γbNC dx = 0 (10.19)
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1
2π

∫ b

−b

γbC

x − ξ dξ = 0 (10.20)

1
2π

∫ b

−b

γbNC

x − ξ dξ = wa − λ (10.21)

as required. The relation

1
π

∫ π

0

cos nθ dθ
cos θ − cosφ

= sin nφ
sinφ

(10.22)

is used to establish the last two results.
The pressure is obtained by linearizing the unsteady Bernoulli equation:

p = −ρ
(

U
∂φ

∂x
+ ∂φ

∂t

)
(10.23)

where φ is the velocity potential. The differential pressure on the airfoil surface is
then

−�p = ρ
(

U
∂�φ

∂x
+ ∂�φ

∂t

)
(10.24)

where �p is the upper surface pressure minus the lower surface pressure. The
velocity parallel to the blade surface is u = ∂φ/∂x, and the blade vorticity strength
is γb = �u. Then

∂�φ

∂x
= �u = γb (10.25)

∂�φ

∂t
= ∂

∂t

∫ x

−∞
�u dx = ∂

∂t

∫ x

−b
γbdx (10.26)

The differential pressure is thus

−�p = ρ
(

Uγb + ∂

∂t

∫ x

−b
γbNC dx

)
(10.27)

Only the non-circulatory vorticity contributes pressure through the ∂φ/∂t term. The
unsteady circulatory vorticity produces pressure through the shed-wake-induced
velocity λ. Substituting the expressions for γbC and γbNC gives

−�p = ρUγb + ρb
∫ π

θ

γ̇bNC sin θ dθ

= 2ρU
∑
n=0

(wn − λn) fn + ρb
(

2(ẇ0 − λ̇0) sin θ + 1
2
(ẇ1 − λ̇1) sin 2θ

−
∑
n=1

(ẇn+1 − λ̇n+1)
sin nθ

n
+
∑
n=3

(ẇn−1 − λ̇n−1)
sin nθ

n

)

=
∑
n=0

pn fn(θ ) (10.28)

where

p0 = 2ρU (w0 − λ0) (10.29)

p1 = 2ρU (w1 − λ1)+ ρb
(
2(ẇ0 − λ̇0)− (ẇ2 − λ̇2)

)
(10.30)
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and

pn = 2ρU (wn − λn)+ ρb
n

(
(ẇn−1 − λ̇n−1)− (ẇn+1 − λ̇n+1)

)
(10.31)

for n ≥ 2.
The net aerodynamic forces on the airfoil are the lift L (positive upward) and

moment M about the axis at x = ab (positive nose upward):

L =
∫ b

−b
(−�p)dx (10.32)

M =
∫ b

−b
(−�p)

(−x + ab
)
dx (10.33)

Substituting for �p gives

L = ρ
(

U� − ∂

∂t
�
(1)
NC

)
(10.34)

M = −ρ
(

U�(1) − 1
2
∂

∂t
�
(2)
NC

)
(10.35)

where

�(n) =
∫ b

−b
xnγbdx (10.36)

�
(n)
NC =

∫ b

−b
xnγbNC dx (10.37)

The required circulations can be evaluated by substituting for γb:

� = 2πb
[(
w0 + 1

2
w1

)
−
(
λ0 + 1

2
λ1

)]
(10.38)

�(1) = 2πb2
[
−
(

1
2

+ a
)((

w0 + 1
2
w1

)
−
(
λ0 + 1

2
λ1

))
+1

4

(
(w1 + w2)− (λ1 + λ2)

)]
(10.39)

�
(1)
NC = 2πb2

[
−1

2

(
w0 − 1

2
w2

)
+ 1

2

(
λ0 − 1

2
λ2

)]
(10.40)

�
(2)
NC = 2πb3

[
a
((
w0 − 1

2
w2

)
−
(
λ0 − 1

2
λ2

))
− 1

8
((w1 − w3)− (λ1 − λ3))

]
(10.41)

For the blade motion considered here,

w0 + 1
2
w1 = Uα + ḣ +

(
1
2

− a
)

bα̇ = w.75c (10.42)

w0 − 1
2
w2 = Uα + ḣ − abα̇ = w.5c (10.43)

w1 + w2 = bα̇ (10.44)

w1 − w3 = bα̇ (10.45)
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where w.75c is the upwash at the three-quarter chord and w.5c is the upwash at the
midchord. The coefficients λn in the expansion of the induced velocity over the chord
can be written in terms of the wake vorticity as follows:

λn = 2
π

∫ π

0
λ cos nθ dθ

= 2
π

∫ π

0

[
1

2π

∫ ∞

b

γwdξ
x − ξ

]
cos nθ dθ

= − 1
π

∫ ∞

b
γw

[
1
π

∫ π

0

cos nθ
ξ − b cos θ

dθ
]

dξ

= − 1
π

∫ ∞

b
γw

⎡⎢⎣
(
ξ −

√
ξ 2 − b2

)n

bn
√
ξ 2 − b2

⎤⎥⎦ dξ (10.46)

So

λ0 + 1
2
λ1 = − 1

2πb

∫ ∞

b
γw

(√
ξ + b
ξ − b

− 1

)
dξ (10.47)

λ1 + 1
2
λ2 = − 1

πb2

∫ ∞

b
γw

(
ξ −

√
ξ 2 − b2

)
dξ (10.48)

λ1 + λ2 = − 1
πb2

∫ ∞

b
γw

(
ξ −

√
ξ 2 − b2

)(√ξ + b
ξ − b

− 1

)
dξ (10.49)

λ1 − λ3 = − 2
πb3

∫ ∞

b
γw

(
ξ −

√
ξ 2 − b2

)2
dξ (10.50)

The circulations required for the airfoil lift are then

� = 2πb
(

Uα + ḣ +
(

1
2

− a
)

bα̇
)

+
∫ ∞

b

(√
ξ + b
ξ − b

− 1

)
γwdξ (10.51)

and

∂

∂t
�
(1)
NC = ∂

∂t

[
−πb2 (Uα + ḣ − abα̇

)−
∫ ∞

b

(
ξ −

√
ξ 2 − b2

)
γwdξ

]
= −πb2 (U α̇ + ḧ − abα̈

)− U
∫ ∞

b

∂

∂ξ

(
ξ −

√
ξ 2 − b2

)
γwdξ

= −πb2 (U α̇ + ḧ − abα̈
)− U

∫ ∞

b

(
1 − ξ√

ξ 2 − b2

)
γwdξ (10.52)

The airfoil lift now is

L = 2πρUb
(

Uα + ḣ +
(

1
2

− a
)

bα̇
)

+ ρπb2 (U α̇ + ḧ − abα̈
)

+ ρU
∫ ∞

b

b√
ξ 2 − b2

γwdξ

= LQ + LNC + LW (10.53)
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LQ is the quasistatic lift, which is the only term present for the steady case (L =
2πρU2bα); LNC is the non-circulatory lift, which is due to ∂�(1)NC/∂t; and LW is the
lift due to the shed-wake-induced velocity. For the unsteady case LQ is due to the
angle-of-attack at the three-quarter chord. From equations 10.34, 10.38, and 10.40,
the terms in L = LQ + LNC + LW can be written

LQ = 2πρUb
(
w0 + 1

2
w1

)
(10.54)

LNC = ρπb2
(
ẇ0 − 1

2
ẇ2

)
(10.55)

LW = −2πρUb
(
λ0 + 1

2
λ1

)
− ρπb2

(
λ̇0 − 1

2
λ̇2

)
(10.56)

Now the bound circulation is

� = LQ

ρU
+
∫ ∞

b

(√
ξ + b
ξ − b

− 1

)
γwdξ (10.57)

and conservation of vorticity requires � = − ∫∞
b γwdξ ; hence

LQ = −ρU
∫ ∞

b

√
ξ + b
ξ − b

γwdξ (10.58)

and

LC = LQ + LW = −ρU
∫ ∞

b

ξ√
ξ 2 − b2

γwdξ (10.59)

The lift can therefore be written as

L =
∫∞

b
ξ√
ξ2−b2

γwdξ∫∞
b

√
ξ+b
ξ−b γwdξ

LQ + LNC (10.60)

The effect of the shed wake is to multiply the quasistatic lift LQ by a factor that
depends on γw , and hence on the airfoil motion. To evaluate this factor, a specific time
history of motion must be considered. Assume that the airfoil has purely harmonic
motion at frequency ω: α = αeiωt and h = heiωt . Then the wake vorticity γw must
also be periodic in time and has the form γw = γ weiω(t−ξ/U ) when the requirement of
convection with the free stream velocity is applied as well. Then γweiωt factors out of
the integrals over the wake, giving

L = C(k)LQ + LNC

= 2πρUbC(k)
(

Uα + ḣ +
(

1
2

− a
)

bα̇
)

+ ρπb2 (U α̇ + ḧ − abα̈
)

(10.61)

where C(k) is a function depending only on the dimensionless frequency k = ωb/U .
C(k) is the Theodorsen lift deficiency function (Theodorsen (1935)). Since the mag-
nitude of C varies from 1 at low frequency to 0.5 at high frequency, the effect of the
shed wake is to reduce the circulatory lift below the quasistatic value.
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The circulations required for the aerodynamic moment about the axis x = ab
are obtained by similar manipulations:

�(1) = −b
(

1
2

+ a
)
�+ 1

2
πb3α̇ + 1

2

∫ ∞

b

(
ξ −

√
ξ 2 − b2

)(√ξ + b
ξ − b

− 1

)
γwdξ

(10.62)

1
2
∂

∂t
�
(2)
NC = −b

(
1
2

+ a
)
∂

∂t
�
(1)
NC − 1

2
πb3

(
U α̇ + ḧ +

(
1
4

− a
)

bα̈
)

+ 1
2

U
∫ ∞

b

(
ξ −

√
ξ 2 − b2

)(√ξ + b
ξ − b

− 1

)
γwdξ (10.63)

Thus the moment is

M = b
(

1
2

+ a
)

L + MQC

= b
(

1
2

+ a
)

L − 1
2
ρπb3

(
2U α̇ + ḧ +

(
1
4

− a
)

bα̈
)

= b
(

1
2

+ a
)

C(k)LQ + ρπb3
(

aḧ −
(

1
2

− a
)

U α̇ −
(

1
8

+ a2
)

bα̈
)

(10.64)

MQC is the moment about the quarter chord, which is the aerodynamic center pre-
dicted by thin-airfoil theory. With the pitch axis at the quarter chord (a = − 1

2 ) there
is no moment due to the lift. The virtual mass terms (ḧ and α̈) arise both from MQC

and from the non-circulatory lift LNC. The non-circulatory pitch damping moment
is due to lift acting at the three-quarter chord; for a = 1

2 this moment is zero.
Let us now examine the Theodorsen lift deficiency function C(k), which defines

the influence of the shed wake on the aerodynamic loads during unsteady motion.
Recall that to evaluate the wake influence, harmonic motion at frequency ω was
assumed, giving γw = γ weiω(t−ξ/U ). Hence

C(k) =

∫∞
b

ξ√
ξ 2 − b2

γwdξ

∫∞
b

√
ξ + b
ξ − b

γwdξ

=

∫∞
1

ξ√
ξ 2 − 1

e−ikξdξ

∫∞
1

√
ξ + 1
ξ − 1

e−ikξdξ

= H (2)
1 (k)

H (2)
1 (k)+ iH (2)

0 (k)
(10.65)

where H (2)
n = Jn − iYn is the Hankel function, and the reduced frequency is k =

ωb/U . The real and imaginary parts are defined by C = F + iG. Figure 10.3 shows
the magnitude and phase of the lift deficiency function for reduced frequencies up
to k = 1. For k = 0, C = 1 as is required of the static limit; for large frequencies
the magnitude approaches |C| = 0.5, so the shed wake reduces the circulatory lift to
one-half the quasistatic value. There is a moderate phase shift that has a maximum
just above 15◦ at about k = 0.3 and approaches zero again at high frequencies. For
small frequencies, the lift deficiency function is approximately

C(k) ∼=
(

1 − π

2
k
)

+ ik
(

ln
k
2

+ γ
)

(10.66)

where γ = 0.5772156 . . . is Euler’s constant. For a rotor, the frequency of the blade
motion can be expressed in terms of the rotational speed �. Consider n/rev motion,
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Figure 10.3. Theodorsen lift deficiency function.

where ω = n�. The free stream velocity in hover is �r, and the semi-chord is c/2,
so the reduced frequency becomes k = nc/2r. For the high-aspect-ratio blades of
rotors, typically k ∼= 0.05n. For the lower harmonics, the reduced frequency is small,
and the lift deficiency function is near unity. For 1/rev motion there is perhaps a 5%
reduction in the lift due to the shed wake. Thus the neglect of the shed wake and
other unsteady aerodynamic effects in the analysis of the rotor performance and
flap motion of the earlier chapters is justified. For the higher harmonics, the reduced
frequency is large enough that the shed wake effects must be accounted for to obtain
an accurate estimate of the loads.

An alternative form of the unsteady thin-airfoil result is a Glauert series for the
pressure, developed by Cicala (1951):

−�p = ρU2eiωt
∞∑

n=0

an fn(θ ) (10.67)

where x = b cos θ . Expand the upwash due to the blade motion as a cosine series:

wa = Ueiωt

(
A0 + 2

∞∑
n=1

An cos nθ

)
(10.68)

Then the solution can be written as

a0 = 2
(
A0 + A1

)
C(k)− 2A1 (10.69)

an = − 2ik
n
(An+1 − An−1)+ 4An (10.70)

with the lift and moment given by

L = ρU 2bπ
(

a0 + 1
2

a1

)
eiωt (10.71)

MQC = −ρU2b2π

4

(
a1 + a2

)
eiωt (10.72)



10.1 Two-Dimensional Unsteady Airfoil Theory 375

| S(k) |

phase
(deg)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
-20.

0.

20.

k

Figure 10.4. Sears function for sinusoidal gust loading.

For example, consider an encounter with a sinusoidal gust of wavelength 2πb/k, so
the airfoil sees the upwash velocity

wa = w0eiω(t−x/U ) = w0eiωt e−ikx/b = w0eiωt e−ik cos θ (10.73)

Expanding e−ik cos θ as a cosine series in θ gives

An = w0

U
(−1)n Jn(k) (10.74)

where Jn is the Bessel function. Thus

a0 = w0

U
2
[
(J0(k)− iJ1(k))C(k)+ iJ1(k)

]
(10.75)

an = w0

U
2ik
n
(−1)n−1

[
Jn+1 + Jn−1 − 2n

k
Jn

]
= 0 (10.76)

The pressure then has only the first term in the Glauert series:

− �p
ρU 2

= eiωtw0

U
2S(k)

√
b − x
b + x

(10.77)

The lift is

L
ρU2b

= eiωtw0

U
2πS(k) (10.78)

and MQC = 0. Here S(k)is the Sears function,

S(k) = (J0(k)− iJ1(k))C(k)+ iJ1(k) (10.79)

which is shown in Figure 10.4; see Sears (1941). Since any gust can be Fourier
analyzed, the resulting aerodynamic lift always acts at the quarter chord. At k = 0,
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the Sears function is S = 1. For large frequency, S is approximately

S(k) ∼ 1√
2πk

ei(k−π/4) (10.80)

so the magnitude approaches zero (in contrast to the Theodorsen function), while
the phase is linear with k.

10.2 Lifting-Line Theory and Near Shed Wake

Two-dimensional airfoil theory shows that the shed wake is an important factor in
determining the unsteady aerodynamic loading at frequencies characteristic of rotor
blade motion. Unlike the two-dimensional model, the rotary-wing shed wake is in
a helical sheet behind the blade, but the major effects are produced by the shed
wake nearest to the trailing edge. The near shed wake (extending 15◦ to 45◦ in wake
age behind the blade) must be modeled appropriately in a calculation of induced
velocity and airloading on the rotating wing. Helicopter airloads analyses generally
use lifting-line theory to calculate the wake-induced velocity at the bound vortex.
Although for the trailed vorticity the wing in lifting-line theory is collapsed to a
bound vortex and the induced velocity evaluated at a single point on the chord, the
near shed vorticity properly is part of the wing problem. The two-dimensional loads
due to the shed wake are obtained from the distribution of induced velocity over
the chord (in terms of the inflow coefficients λ0, λ1, and λ2), the evaluation of which
requires calculation of the inflow at many points along the chord. In a numerical
implementation of lifting-line theory, treating both the shed and trailed vorticity
in the wake problem is desirable, by evaluating the induced velocity from all wake
elements at a single chordwise collocation point.

Miller (1964) considered a lifting-line theory approximation for the near shed
wake. Since the lifting-line assumption of high aspect ratio also implies low reduced
frequency, the result is expected to be equivalent to a low-frequency approximation.
The approach is to determine what treatment of the shed wake in the lifting-line
evaluation of the induced velocity correctly gives the unsteady loads on the two-
dimensional airfoil, particularly the lift deficiency function. Evaluating the induced
velocity at a single point on the airfoil, equation 10.56 becomes LW = −2πρUbλ,
and the circulatory lift is

LC = LQ − 2πρUbλ (10.81)

where the induced velocity is obtained from the shed wake vorticity:

λ = 1
2π

∫ ∞

b

γw

x − ξ dξ (10.82)

In the lifting-line approximation, the airfoil is collapsed to a bound vortex at the
quarter chord (x = −b/2), and the wake vorticity is extended up to bound vortex.
So

λ = − 1
2π

∫ ∞

− b
2

γw

ξ + b
2

dξ (10.83)

The wake vorticity is given by the time variation of the bound circulation:

γw = − 1
U

d�
dt

(10.84)
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Figure 10.5. Lifting-line approximations for the Theodorsen lift deficiency function.

now at t − (ξ + b
2 )/U . Assuming harmonic motion so that � = �eiωt , γw is

γw = − iω
U
�e−iω(ξ+ b

2 )/U (10.85)

and the induced velocity becomes

λ = iω
U
�

1
2π

∫ ∞

− b
2

e−iω(ξ+ b
2 )/U

ξ + b
2

dξ

= � ik
2πb

∫ ∞

0

e−ikξ

ξ
dξ

= � k
2πb

(∫ ∞

0

sin kξ
ξ

dξ + i
∫ ∞

0

cos kξ
ξ

dξ
)

(10.86)

The cosine integral is not finite, so is omitted for now. The remaining integral (the
real part) is

λ = � k
2πb

∫ ∞

0

sin kξ
ξ

dξ = � k
4b

= LC

2πρUb
π

2
k (10.87)

Then the unsteady lift is LC = LQ − 2πρUbλ = LQ − LC
π
2 k, or

LC = LQ

1 + π
2 k

(10.88)

Thus an approximate lift deficiency function has been obtained:

C = 1
1 + π

2 k
(10.89)

which is a correct approximation to order k for the Theodorsen lift deficiency func-
tion. Figure 10.5 compares this result with Theodorsen’s function. The approximation
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Figure 10.6. Integration limit for near shed wake model in lifting-line theory.

is good even for fairly large values of reduced frequency, but at high k the correct
value for C(k) is significantly underestimated.

The lifting-line approximation gives the proper results, except that actually the
integral over the wake vorticity is divergent. The difficulty is due to the singularity
in the induced velocity at the edge of the vortex sheet, which was extended up to the
quarter chord. To correct the model, consider stopping the shed wake a distance bε
behind the quarter chord (where the induced velocity is evaluated). Hence λ is

λ = iω
U
�

1
2π

∫ ∞

− b
2 +bε

e−iω(ξ+ b
2 )/U

ξ + b
2

dξ = � ik
2πb

∫ ∞

ε

e−ikξ

ξ
dξ

= � k
2πb

I = LC

2πρUb
kI (10.90)

where

I =
∫ ∞

ε

sin kξ
ξ

dξ + i
∫ ∞

ε

cos kξ
ξ

dξ (10.91)

The resulting lift deficiency function is

C = 1
1 + kI

(10.92)

Requiring that this approximation give exactly the Theodorsen function determines
the parameter ε; actually there are two values, εc and εs, for the cosine and sine
integrals, respectively. The important parameter is εc, which prevents the divergence
of the cosine integral. The limit for low frequency is εc = 1

2 . Figure 10.6 shows the
results for εc and εs over a range of frequencies. For k = 0 to 1, ε = 1

2 is a good
approximation, particularly for the cosine integral.

Figure 10.5 shows the lift deficiency function obtained from equation 10.92 using
ε = 1

2 . To first order in k, equation 10.92 gives

C = 1
1 + kI

∼= 1 − kI ∼=
(

1 − π

2
k
)

+ ik (ln kε + γ ) (10.93)

which matches the expansion of Theodorsen’s function (equation 10.66) if ε = 1
2 . It

is concluded that the near shed wake in the lifting-line model should be extended
to a quarter chord (bε = b/2 = c/4) behind the point where the induced velocity is
being calculated.
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Figure 10.7. Models for shed wake of a two-dimensional airfoil.

For a sinusoidal gust, the lifting-line approximation uses the downwash at the
three-quarter chord. Equation 10.73 becomes wa = w0eiωt e−ik/2, and A0 = w0

U e−ik/2

for the cosine series. Then

S = 1
2

(
a0 + 1

2
a1

)
U
w0

= 1
2

(
2A0C + ikA0

)U
w0

= A0

(
C + ik

2

)
U
w0

= e−ik/2
(

C(k)+ ik
2

)
(10.94)

is the lifting-line approximation for the Sears function.
Piziali (1966) considered the effect of a discrete vortex representation of the rotor

wake on the shed wake influence. The spirals of the rotary-wing wake are most easily
represented by a lattice of finite-strength line vortex segments. In two-dimensional
airfoil theory, the corresponding shed wake model is a series of point vortices (Figure
10.7). The distance between the vortices in the wake is d = 2πU/Nω, for N vortices
per cycle of oscillation. The induced velocity is calculated N times per cycle. The
discrete shed vortices correspond to a step change in the airfoil bound circulation.
The distance of the first vortex behind the trailing edge is D. Piziali calculated the
ratio of the unsteady lift and moment to their quasisteady counterparts for this model
and then compared this ratio with the Theodorsen function for pitch and heaving of
the airfoil at various frequencies. It was found that D = d does not give good results
even with a large number of points per cycle. However, if the entire discrete wake
model is advanced closer to the trailing edge so that D = d/3, reasonable results
are obtained over the frequency range of interest. The conclusion was that with a
vortex lattice wake model in a rotary-wing airloads analysis, the shed wake elements
should be advanced by about 70% of the azimuthal spacing, so the first elements are
closer to the blade trailing edge. A linear variation of bound circulation between the
azimuthal collocation points generates vortex sheet elements in the wake. Collapsing
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each sheet element to a point vortex at the center of the element implies D = d/2.
Daughaday and Piziali (1966) found that the calculation of the lift and moment at
high frequency can be improved by representing the shed wake just behind the blade
as a continuous distribution of vorticity, replacing the first few discrete elements in
the vortex lattice (Figure 10.7).

Lifting-line theory calculates the blade loads from the velocity induced at the
section by the shed and trailed vorticity in the wake. For the inflow calculation,
the blade is modeled by the bound vortex at the quarter chord, and the trailed
vorticity (due to the spanwise lift variation) is extended up to the bound vortex.
The induced velocity is then evaluated along the bound vortex or at the three-
quarter chord. The simplest and most economical representation of the complex
wake structure is a lattice of finite-strength vortex-line elements. A line vortex is in
fact a good representation of the rolled-up tip vortices of the blades. Based on the
two-dimensional airfoil analyses discussed in this section, such a lifting-line model
can be used for the shed wake as well, and the shed-wake-induced velocity can be
calculated at a single chordwise point. To correct for the neglect of the chordwise
variation of the induced velocity, the shed wake is not extended all the way to
collocation point, but is stopped a quarter chord behind it.

10.3 Reverse Flow

Extending thin-airfoil theory to reverse flow (U < 0) introduces several sign changes
in the results. The variable θ still runs from θ = 0 at the trailing edge to θ = π at
the leading edge, so x = ±b cos θ . The convention is that in the double sign (±) the
upper sign is for normal flow, and the lower sign is for reverse flow. The differential
pressure −�p is still positive upward, but the vorticity (γb) changes direction in
reverse flow. In reverse flow, equation 10.27 becomes

−�p = ρ
(

−Uγb + ∂

∂t

∫ b

x
γbNC dx

)

= −ρUγb + ρb
∫ π

θ

γ̇bNC sin θ dθ

=
∑
n=0

pn fn(θ ) (10.95)

and the absolute value of U is used in equations 10.29, 10.30, and 10.31. The circula-
tion and section loads are now

� = ±
∫ b

−b
γbdx = ±2πb

[(
w0 + 1

2
w1

)
−
(
λ0 + 1

2
λ1

)]
(10.96)

L = ±
∫ b

−b
(−�p)dx = ±πb

(
p0 + 1

2
p1

)
= ±2πρ|U |b

[(
w0 + 1

2
w1

)
−
(
λ0 + 1

2
λ1

)]
± πρb2

[(
ẇ0 − 1

2
ẇ2

)
−
(
λ̇0 − 1

2
λ̇2

)]
(10.97)
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Figure 10.8. Trailing-edge flap geometry.

MQC =
∫ b

−b
(−�p)

(
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dx

= − π
4

b2
(

p0(2 ∓ 2)+ p1 ± p2

)
= −1

2
πρ|U |b2

[
(w0(2 ∓ 2)+ w1 ± w2)− (λ0(2 ∓ 2)+ λ1 ∓ λ2)

]
− 1

2
πρb3

[(
ẇ0 − 1

2
ẇ2

)
−
(
λ̇0 − 1

2
λ̇2

)]
∓ 1

8
πρb3 [(ẇ1 − ẇ3)−

(
λ̇1 − λ̇3

)]
(10.98)

These unsteady loads are used with static airfoil characteristics from a wind-tunnel
test, in which the lift is positive upward as the angle-of-attack varies from −180◦ to
180◦. Positive upwash w with reverse flow corresponds to a positive angle-of-attack
near 180◦, for which the lift is downward; hence the ± signs on L. MQC is the moment
about the theoretical aerodynamic center (quarter chord), positive nose up.

10.4 Trailing-Edge Flap

For an airfoil with a trailing-edge flap, the unsteady loads are derived following
Küssner and Schwarz (1941) and Theodorsen and Garrick (1942). Figure 10.8 shows
the geometry. The flap chord is � f c, with the hinge axis �hc aft of the leading edge. The
flap angle is φ. The flap leading-edge coordinate is x f = b(1 − 2� f ), so cos θ f = (1 −
2� f ). The flap hinge coordinate is xh = b(−1 + 2�h). The distance of the hinge aft
of the leading edge is xa = xh − x f = 2b(� f + �h − 1). An aerodynamically balanced
flap (flap leading edge forward of the hinge) has xa > 0.

Thin airfoil theory is linear, so the effects of the trailing-edge flap can be exam-
ined separately from the other airfoil motion. The vertical deflection of the airfoil is
z = −(x − xh)φ = −(x − x f )φ + xaφ for x > x f . So the upwash along the section is

w = −
(

U
∂z
∂x

+ ∂z
∂t

)
= Uφ + (x − xh)φ̇ − Uxaδ(x f )φ (10.99)

The last term is present only with a sealed leading-edge gap. For an open gap, the
step change in displacement at x = x f is assumed not to contribute to the upwash.
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The coefficients in the cosine Fourier series for w are

w0 = 1
π

[
Uθ fφ + (bS1 − xhθ f

)
φ̇ − U

xa/b
S1
φ

]
(10.100)

w1 = 2
π

[
US1φ +

(
b
2

(
θ f + S2

2

)
− xhS1

)
φ̇ − U

(xa/b)C1

S1
φ

]
(10.101)

wn = 2
π

[
U

Sn

n
φ +

(
b
2

(
Sn−1

n − 1
− Sn+1

n + 1

)
− xh

Sn

n

)
φ̇ − U

(xa/b)Cn

S1
φ

]
(10.102)

where Sk = sin kθ f and Ck = cos kθ f . Reverse flow is not considered here. The total
airfoil loads are obtained from equations 10.96 to 10.98. The flap lift and hinge
moment are

L f =
∫ b

x f

(−�p)dx

= b

[
p0(θ f − S1)+ 1

2
p1

(
θ f − S2

2

)
+
∑
n=2

1
2

pn

(
Sn−1

n − 1
+ Sn+1

n + 1

)]
(10.103)

M f = −
∫ b

x f

(−�p)(x − xh)dx

= b2
[

p0

((
1
2

+ xh/b
)
θ f + S1

(
1 − xh/b

)
+ 1

4
S2

)
+p1

(
1
4

(
S1 − S3

3

)
+ xh/b

2

(
θ f − S2

2

))
+p2

(
1
4

(
θ f − S4

4

)
+ xh/b

2

(
S1 − S3

3

))

+
∑
n=3

pn

(
1
4

(
Sn−2

n − 2
− Sn+2

n + 2

)
+ xh/b

2

(
Sn−1

n − 1
− Sn+1

n + 1

))]
(10.104)

with pn given by equations 10.29 to 10.31. The series converge with about 10 pressure
terms, except that the aerodynamic balance terms produced by static flap deflection
(xaφ terms) do not converge at all for flap lift and hinge moment. These static loads
for a flap with sealed gap must be obtained from tests or a more appropriate theory.

10.5 Unsteady Airfoil Theory with a Time-Varying Free Stream

The rotating blade of a helicopter rotor in forward flight sees a periodically varying
free stream velocity: uT = r + μ sinψ = r(1 + (μ/r) sinψ). For either high advance
ratio or the inboard sections, the 1/rev variation of the velocity is a significant fraction
of the mean. In such cases the time-varying free stream must be included in the
unsteady airfoil theory, both for its direct effects and for its influence through the
shed wake. Only the case μ/r < 1 is considered. If μ/r > 1, the blade section passes
through the reverse flow region, and a simple wake model is not applicable.

Consider the two-dimensional airfoil and wake model described in section 10.1.
Only a few modifications are required to account for a time-varying free stream
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velocity U . The time derivative acts on the velocity now, so equations 10.52 amd
10.63 become

∂

∂t
�
(1)
NC = −πb2

(
d
dt
(Uα + ḣ)− abα̈

)
− U

∫ ∞

b

(
1 − ξ√

ξ 2 − b2

)
γwdξ (10.105)

1
2
∂

∂t
�
(2)
NC = −b

(
1
2

+ a
)
∂

∂t
�
(1)
NC − 1

2
πb3

(
d
dt
(Uα + ḣ)+

(
1
4

− a
)

bα̈
)

+ 1
2

U
∫ ∞

b

(
ξ −

√
ξ 2 − b2

)(√ξ + b
ξ − b

− 1

)
γwdξ (10.106)

Then the lift and moment are

L = LC + LNC

= LQ + ρU
∫ ∞

b

b√
ξ 2 − b2

γwdξ + ρπb2
(

d
dt
(Uα + ḣ)− abα̈

)
(10.107)

M = b
(

1
2

+ a
)

L + MQC

= b
(

1
2

+ a
)

L − 1
2
ρπb3

(
d
dt
(Uα + ḣ)+ U α̇ +

(
1
4

− a
)

bα̈
)

(10.108)

with the quasistatic lift still

LQ = 2πρUb
(

Uα + ḣ +
(

1
2

− a
)

bα̇
)

(10.109)

The only changes are U̇α terms added to the non-circulatory lift and moment. The
quasistatic lift and circulatory lift are still given in terms of the wake vorticity:

LQ = −ρU
∫ ∞

b

√
ξ + b
ξ − b

γwdξ (10.110)

LC = −ρU
∫ ∞

b

ξ√
ξ 2 − b2

γwdξ (10.111)

Relating LQ and LC in terms of a lift deficiency function requires a knowledge of
the dependence of γw on ξ . The criterion that there be no pressure difference across
the vortex sheet gives

−�p = ρ
(
∂

∂t
+ U

∂

∂ξ

)
�φ = 0 (10.112)

which implies (
∂

∂t
+ U

∂

∂ξ

)
∂�φ

∂ξ
=
(
∂

∂t
+ U

∂

∂ξ

)
γw = 0 (10.113)

the solution of which has the form

γw = γw
(
ξ −

∫ t

U dt
)

(10.114)

If the free stream velocity is constant, the wake vorticity is convected at a constant
rate and γw is a function of (ξ − Ut) as before. Considering the rotor blade in forward
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flight, the dimensionless free stream velocity is U = r + μ sinψ , so

γw = γw
(
ξ − rψ + μ cosψ

)
(10.115)

Here ψ = �t is the dimensionless time variable. Now assume periodic motion of
the blade. For the flow field to be entirely periodic, the blade motion can consist
only of harmonics of the fundamental frequency� of the free stream variation. The
period of the flow is then 2π/�. The wake vorticity must be a periodic function of
ξ , with a wavelength equal to the distance the wake is convected during the period:∫ 2π

0 U dψ = 2πr. Next, write the periodic function γw as a Fourier series in ξ with
period 2πr:

γw =
∞∑

m=−∞
γwm (ψ)e

−imξ/r (10.116)

Since γw must be a function of the quantity (ξ − rψ + μ cosψ) alone,

γw =
∞∑

m=−∞
γmeim(ψ−(μ/r) cosψ)−imξ/r (10.117)

where γm are constants. For μ = 0 this reduces to γw = γ weiω(t−ξ/U ) as before.
With the structure of the wake vorticity established, the relation between the

quasistatic and circulatory lift can be constructed. Substituting for γw gives

LQ = −ρU
∞∑

m=−∞
γmeim(ψ−(μ/r) cosψ)

∫ ∞

b

√
ξ + b
ξ − b

e−imξ/rdξ (10.118)

LC = −ρU
∞∑

m=−∞
γmeim(ψ−(μ/r) cosψ)

∫ ∞

b

ξ√
ξ 2 − b2

e−imξ/rdξ (10.119)

Noting that

1
2π

∫ 2π

0

(
1 + (μ/r) sinψ

)
ein(ψ−(μ/r) cosψ)dψ = 1 (10.120)

if n = 0 and is zero otherwise, the harmonics γm can be evaluated:

γm = − ∫ 2π
0

(
1 + (μ/r) sinψ

)
e−im(ψ−(μ/r) cosψ)LQdψ

2πρU
∫∞

b

√
ξ+b
ξ−be−imξ/rdξ

(10.121)

Thus the circulatory lift is

LC = 2πρUb
∞∑

m=−∞
eim(ψ−(μ/r) cosψ)C(mb/r)

1
2π

∫ 2π

0

(
1 + (μ/r) sinψ

)
e−im(ψ−(μ/r) cosψ)Q dψ (10.122)

where C(mb/r) is the Theodorsen lift deficiency function at reduced frequency
k = mb/r (ω = m� and an average velocity U = �r), and

Q = LQ

2πρUb
= Uα + ḣ +

(
1
2

− a
)

bα̇ (10.123)
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If now the quasistatic circulation is written as a Fourier series, Q = ∑∞
n=−∞ Qneinψ ,

then the lift can be written in a form analogous to the constant velocity result:

LC = 2πρUb
∞∑

n=−∞
QneinψCμ(n, ψ) (10.124)

where Cμ(n, ψ) is the modified lift deficiency function for the n-th harmonic of the
blade motion with free stream velocity U = r + μ sinψ :

Cμ(n, ψ) =
∞∑

m=−∞
eim(ψ−(μ/r) cosψ)−inψC(mb/r)

1
2π

∫ 2π

0

(
1 + (μ/r) sinψ

)
e−im(ψ−(μ/r) cosψ)+inψdψ (10.125)

For a constant free stream velocity (μ = 0), the integral is non-zero only for m = n,
and hence Cμ=0(n, ψ) = C(nb/r) as required. An alternative form is

LC = 2πρUb
∞∑

n=−∞
Qn

[ ∞∑
�=−∞

C�nei�ψ

]
(10.126)

where

C�n =
∞∑

m=−∞

[
1

2π

∫ 2π

0
eim(ψ−(μ/r) cosψ)−i�ψdψ

]
C(mb/r)

[
1

2π

∫ 2π

0

(
1 + (μ/r) sinψ

)
e−im(ψ−(μ/r) cosψ)+inψdψ

]
(10.127)

The coefficients C�n are the harmonics in a Fourier series expansion of einψCμ(n, ψ).
This form shows that the time-varying free stream couples the harmonics of the
circulation and lift through the influence of the shed wake.

The integrals appearing in the lift deficiency function for a time-varying free
stream can be evaluated in terms of Bessel functions:

Imn = 1
2π

∫ 2π

0

(
1 + (μ/r) sinψ

)
e−im(ψ−(μ/r) cosψ)+inψdψ

= n
m

1
π

∫ π

0
eim(μ/r) cosψ cos(n − m)ψ dψ

=
{

n
m i|n−m|J|n−m|(mμ/r) m > 0
n
m (−i)|n−m|J|n−m|(|mμ/r|) m < 0

(10.128)

and

Imn = 1
2π

∫ 2π

0

(
1 + (μ/r) sinψ

)
einψdψ

=

⎧⎪⎨⎪⎩
1 n = 0
i
2μ/r n = 1

0 n ≥ 2

(10.129)
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Figure 10.9. Lift deficiency function with a time-varying free stream, for the second harmonic
(n = 2) and b/r = 0.04.

for m = 0. Figure 10.9 shows typical results for Cμ(n, ψ), with n = 2 and b/r = 0.04.
The 1/rev variation in the free stream velocity produces a basic 1/rev variation
of C with ψ . The largest influence occurs nearest the reverse flow boundary, at
ψ = 270◦. Most of the range of velocities and radial stations of interest are covered by
0 < μ/r < 0.7. The model breaks down forμ/r > 1, when the section passes through
the reverse flow region. For small μ/r, the lift deficiency function is approximately

Cμ(n, ψ) ∼=
∞∑

m=−∞
ei(m−n)ψ (1 − im(μ/r) cosψ

)
C(mb/r)

1
2π

∫ 2π

0

(
1 + (μ/r)(sinψ + im cosψ)

)
ei(n−m))ψdψ

= Cn + (μ/r) in
2

[
cosψ(Cn+1 + Cn−1 − 2Cn)+ i sinψ(Cn+1 − Cn−1)

]
(10.130)

where Cn means C(nb/r). Assuming as well small values of b/r gives

Cμ(n, ψ) ∼= C(nb/r)−
[
(nb/r)(μ/r) sinψ

]
C′(nb/r)

∼= C(nb/(r + μ sinψ)) (10.131)

Thus for small variations in the free stream velocity (small nbμ/r2), the lift deficiency
function is nearly the same as the Theodorsen function C(k), with the reduced
frequency based on the local velocity, k = ωb/U . This approximation works well for
moderate n. Figure 10.9 shows the basic dependence on the local reduced frequency.
On the advancing side, the increased velocity lowers the reduced frequency, and
hence the lift deficiency function is nearer unity. On the retreating side there is the
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greatest accumulation of shed vorticity in the wake near the trailing edge, and thus
the greatest reduction in the lift.

In summary, a time-varying free stream has the following influence on the
unsteady aerodynamics of a two-dimensional airfoil: there are additional non-
circulatory lift and moment terms due to d(Uα)/dt; there is coupling by the wake
of all the harmonics of the quasistatic and unsteady circulation; and there is a sig-
nificant influence on the lift deficiency function due to stretching and compressing
of the vorticity in the shed wake. For the free stream variation of the rotor blade in
forward flight, all these effects basically produce 1/rev variations of the loads. The
non-circulatory lift and moment terms are valid for a general time variation ofU . The
simple approximation Cμ(n, ψ) ∼= C(k) using the local reduced frequency is good up
to μ/r ∼= 0.7. For small enough μ/r the cruder approximation Cμ(n, ψ) ∼= C(nb/r)
using the mean reduced frequency can be chosen, neglecting entirely the influence
of a time-varying free stream on the shed wake.

10.6 Unsteady Airfoil Theory for the Rotary Wing

Application of unsteady airfoil theory to rotary wings is often done in the context
of lifting-line theory (see section 9.2). Thus the steady two-dimensional loads are
obtained from measured airfoil data as a function of angle-of-attack and Mach
number. The angle-of-attack is evaluated from the blade motion at the quarter
chord. The influence of the near shed wake is in the induced velocity calculated
from a vortex wake model, along with the influence of the tip vortices, trailed wake,
and far shed wake. What is required from thin-airfoil theory are expressions for the
unsteady loads in attached flow.

The airfoil upwash velocity for thin air-foil theory is written in terms of the
upwash at the quarter chord, wQC, and the gradient of the upwash along the chord,
w′ = dw/dx:

wa = wQC +
(

x + c
4

)
w′ = w0 + w1 cos θ (10.132)

with x = ±b cos θ . Thusw0 = wQC + c
4w

′ andw1 = ± c
2w

′. Equations 10.97 and 10.98
for the lift and moment, which include reverse flow, become

L = ±2πρ|U |b
[
wQC − λ+

(
b
2

± b
2

)
w′
]

± πρb2
(
ẇQC + b

2
ẇ′
)

(10.133)

M = b
(

1
2

+ a
)

L − 1
2
πρ|U |b2

[(
wQC − λ) (2 ∓ 2)+ b

4
w′
]

− 1
2
πρb3

(
ẇQC + 3b

4
ẇ′
)

(10.134)

where the upper sign in ± or ∓ is for normal flow, and the lower sign is for reverse
flow. The lift term in brackets is the quasistatic lift LQ, and the ẇ terms are the
non-circulatory lift LNC. Multiplying by a/2π introduces the real lift-curve slope
a. The chord c = 2b is used instead of the semi-chord, and the section velocity is
written U = uT . The distance of the aerodynamic center (quarter chord for thin-
airfoil theory) aft of the pitch axis is xA = −b

( 1
2 + a

)
. The lift and moment about
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the pitch axis are then

L = ±a
1
2
ρ|uT |c (wQC − λ)± aρ

c2

8

((
1
2

± 1
2

)
2|uT |w′ + ẇQC + c

4
ẇ′
)

(10.135)

M = −xAL − c
2

(
1
2

∓ 1
2

)[
±a

1
2
ρ|uT |c (wQC − λ)]− aρ

c3

32

(
|uT |w′ + ẇQC + 3c

8
ẇ′
)

(10.136)

= −
(

xA + c
2

(
1
2

∓ 1
2

))[
±a

1
2
ρ|uT |c (wQC − λ)]

∓ aρxA
c2

8

((
1
2

± 1
2

)
2|uT |w′ + ẇQC + c

4
ẇ′
)

− aρ
c3

32

(
|uT |w′ + ẇQC + 3c

8
ẇ′
)

(10.137)

The terms proportional to (wQC − λ) are the thin-airfoil theory results for the static
lift and moment, the lift acting at the three-quarter chord in reverse flow. If these
loads are accounted for in the measured static airfoil data, they are excluded from the
unsteady loads. The lift and moment can also be expressed in terms of the upwash
at the pitch axis:

L = ±a
1
2
ρ|uT |c (wPA + xAw

′ − λ)
± aρ

c2

8

((
1
2

± 1
2

)
2|uT |w′ + ẇPA + xAẇ

′ + c
4
ẇ′
)

(10.138)

M = −xAL − c
2

(
1
2

∓ 1
2

)[
±a

1
2
ρ|uT |c (wPA + xAw

′ − λ)]
− aρ

c3

32

(
|uT |w′ + ẇPA + xAẇ

′ + 3c
8
ẇ′
)

(10.139)

= −
(

xA + c
2

(
1
2

∓ 1
2

))[
±a

1
2
ρ|uT |c (wPA + xAw

′ − λ)]
∓ aρxA

c2

8

((
1
2

± 1
2

)
2|uT |w′ + ẇPA + xAẇ

′ + c
4
ẇ′
)

− aρ
c3

32

(
|uT |w′ + ẇPA + xAẇ

′ + 3c
8
ẇ′
)

(10.140)

since wQC = wPA + xAw
′.

In thin-wing theory, the blade is defined by a surface a distance zb(r, x, t) above
the disk plane, with r the radial coordinate and x the chordwise coordinate (from
the pitch axis, positive toward the trailing edge). The blade has time-varying velocity
relative to the air, with velocity perpendicular and radial components. The upwash
is

wa = − D
Dt

zb = −
[
∂

∂t
+ (�r +�Rμ sinψ

) ∂
∂x

+ (−�x +�Rμ cosψ
) ∂
∂r

]
zb

(10.141)
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If the total derivative in equation 10.24 for the differential pressure on the blade
surface includes a radial velocity term, the result is slender-body loads, which are
best ignored in the context of lifting-line theory. Let the blade motion consist of
vertical deflection of the elastic axis z0 and nose-up pitch about the elastic axis by θ :

zb = z0(r, t)− xθ (r, t) (10.142)

Then the upwash is

wa = −ż0 + xθ̇ + (�r +�Rμ sinψ
)
θ − (−�x +�Rμ cosψ

)(
z′

0 − xθ ′)
= uT θ − (ż0 + uRz′

0

)+ x
(
θ̇ +�z′

0 + uRθ
′)− x2�θ ′

= wPA + xw′ (10.143)

neglecting the x2 term. For just rigid flap and rigid pitch motion, zb = rβ − xθ , and
the upwash is

wa = −rβ̇ + xθ̇ + (�r +�Rμ sinψ
)
θ − (−�x +�Rμ cosψ

)
β

= uTθ − (rβ̇ + uRβ
)+ x

(
θ̇ +�β)

= wPA + xw′ (10.144)

In terms of the classical description of the airfoil motion in terms of heaving h and
pitch angle α (Figure 10.2), the rotor motion gives

Uα + ḣ = uTθ − (rβ̇ + uRβ
) = wPA (10.145)

α̇ = θ̇ +�β = w′ (10.146)

For hover, wa depends on the quantities r(�θ − β̇ ) and (θ̇ +�β), as required to
maintain the equivalence of flapping and feathering. The term r�θ is the component
of upwash when the blade is pitched up relative to the free stream �r. The term
�β is the component of the rotational speed � that is a pitch rate when the blade is
flapped by β.

The distinction between angle-of-attack and pitch angle is important. In the con-
text of flight dynamics, angle-of-attack is produced by a perturbation of the aircraft
velocity, whereas pitch angle is produced by a perturbation of the aircraft orienta-
tion. For thin-airfoil theory, angle-of-attack (α + ḣ/U ) gives a uniform distribution
of upwash along the chord, whereas pitch rate α̇ gives the linear variation of upwash
along the chord.

The moment due to pitch rate is particularly important. From the contributions
�ẇPA = uT θ̇ and �w′ = θ̇ ,

∂M

∂θ̇
= −aρ|uT |

[
±
(

xA+ c
2

(
1
2

∓ 1
2

))
c
2

xA ± xA
c2

8

((
1
2

± 1
2

)
2 ± 1

)
+ c3

32
(1 ± 1)

]

= ∓aρ|uT | c
2

[(
xA + c

4

)(
xA + c

2

(
1
2

± 1
2

))]

=

⎧⎪⎨⎪⎩
−aρ|uT | c

2

(
xA + c

4

) (
xA + c

2

)
normal flow

+aρ|uT | c
2

(
xA + c

4

)
xA reverse flow

(10.147)
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or ∂M/∂θ̇ = 2πρ|U |b3a
( 1

2 ∓ a
)
. This unsteady aerodynamic load is the source of

damping for the blade pitch and torsion motion. For the pitch axis at the aerodynamic
center (xA = 0 or a = − 1

2 ), the damping in normal flow is ∂M/∂θ̇ = −aρuT
c3

16 , from
the non-circulatory moment (negative derivative is positive damping). For the pitch
axis at the aerodynamic center, the damping in reverse flow is zero.

Incompressible thin-airfoil theory provides the principal unsteady load needed
to model rotor blades. Closed-form solutions are not possible for the compressible
case. A number of approximations have been developed for the thin-airfoil theory
solutions in compressible flow.

The ONERA EDLIN (Equations Differentielles Lineaires) theory for unsteady
loads was presented by Petot (1989). The extended model includes the effects of
heave and pitch, as well as the time-varying free stream. In the absence of stall,
thin-airfoil theory results compared well with measured behavior. To include the
effects of compressibility, Küssner’s coefficients are used, as tabulated by van der
Vooren (1964) and curve-fit by Petot (1989). Omitting the static terms, the lift and
quarter-chord moment are

LUS = ±aρ
c2

8

((
1
2

± 1
2

)
2|uT |w′ + ẇ fL0 + c

4
ẇ′ fL1

)
+ a

1
2
ρ|uT |L1 (10.148)

MUS = −aρ
c3

32

(
|uT |w′ fM0 + ẇ fM0 + 3c

8
ẇ′ fM1

)
(10.149)

L̇1 + λL1 = μ
[
±ẇ + ẇ′ c

2

(
1
2

± 1
2

)]
(10.150)

where

fL0 = β [1 + 5(β0.57 − 1)
]

(10.151)

fL1 = β [1 + 3.92(β − 1)] (10.152)

fM0 = β [1 + 1.4M2] (10.153)

fM1 = β [−1.2625 + 1.5330 tan−1 (10.5 − 15M)
]

(10.154)

λ = 2|uT |
c
λ0(1 − 0.76M) (10.155)

μ = −1
4
(3 − β) (10.156)

with β = √
1 − M2, and M is the section Mach number. These factors give a good

representation of Küssner’s coefficients, except that the moment produced by heave
is always real, when it should exhibit a phase shift for nonzero Mach number. The L1

term accounts for the airfoil shed wake effects (lift deficiency function). A constant
was changed so the incompressible circulatory loads match the lift deficiency function
value of C = 0.5 at high frequency. Petot (1989) used the Prandtl-Glauert correction
for the lift-curve slope, a = 2π/β, and gave λ0 = 0.17.

The Leishman-Beddoes theory for unsteady loads in attached flow was presented
by Leishman (1988), Leishman and Beddoes (1989), Leishman and Nguyen (1990),
and Hariharan and Leishman (1996). The theory is based on the indicial response of
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a thin airfoil in compressible flow to heave and pitch motions. The indicial response
is a combination of impulsive (small time) and circulatory (long time) terms, each
approximated by exponential functions of time. In this form, the equations for the
loads can be transformed from indicial response to the Laplace domain, and thence
to state equations (ordinary differential equations in time). The impulsive indicial
response is derived using piston theory, which is valid for nonzero Mach number
and small enough time. While giving nonsingular results at zero Mach number,
this theory does not include the incompressible limit exactly. The amplitude of
the circulatory indicial response is obtained from the quasistatic incompressible
response, scaled with β = √

1 − M2. The resulting unsteady loads are obtained from
first-order differential equations for both the impulsive and the circulatory terms.
This theory includes the effects of the airfoil shed wake, but not entirely in the
“circulatory” terms. Care must be taken with a vortex wake or dynamic inflow
model to ensure that the shed wake effects are neither omitted nor duplicated. The
equations for unsteady lift, moment, and drag were given in Johnson (1998).

10.7 Two-Dimensional Model for Hovering Rotor

The wake of a rotor in hover or vertical flight consists of helical vortex sheets below
the disk, one from each blade. Even in hover, rotor stability and loads involve
unsteady motion. Unsteady motion of the rotor blade produces shed vorticity in the
wake spirals. With low disk loading the wake remains near the rotor disk and there-
fore passes close to the following blades. Thus the wake vorticity is not convected
downstream of the airfoil as with fixed wings, and the shed vorticity sheets below
the rotor disk must be accounted for to correctly estimate the unsteady loads. For
high inflow or forward flight, the rotor wake is convected away from the blades, so
the returning shed wake influence is primarily a concern of vertical flight. Assuming
a high aspect ratio of the blade, lifting-line theory requires a knowledge of the loads
on the blade section, and the returning shed wake of the rotor must be incorporated
into the two-dimensional unsteady airfoil theory. The wake far from the blade sec-
tion has little influence, so the emphasis is on modeling the wake near the blade,
which for low inflow consists of vortex sheets that are nearly planar surfaces parallel
to the disk plane. Based on these considerations, a two-dimensional model for the
unsteady aerodynamics of the rotor can be constructed.

Loewy (1957) developed a two-dimensional model for the unsteady aerodynam-
ics of the blade of a hovering rotor, including the effect of the returning shed wake;
Figure 10.10 shows the model. Consider first a single-bladed rotor, so all the vorticity
comes from the same blade. There is a two-dimensional thin airfoil, with a shed wake
vortex sheet extending downstream from the trailing edge to infinity. The surfaces of
the wake spiral below the blade are modeled as a series of planar, two-dimensional
vortex sheets with vertical separation h, extending from infinity upstream to infinity
downstream. All the wake vortex sheets are parallel to the free stream velocity.
Except for the wake-induced velocity, the model and its analysis are the same as in
section 10.1. The free stream velocity U is constant here.

Assuming harmonic blade motion at frequency ω, the strength of the vortex
sheet directly behind the blade (n = 0; see Figure 10.10) is still γw = γ weiω(t−x/U ).
Since the sheets below the blade represent the successive spirals of a single helix,
the vorticity strength must be related to that of the first sheet. Consider a point x
on a sheet. Moving one rotor revolution downstream must be equivalent to going
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Figure 10.10. Two-dimensional model of hovering rotor (single-blade case).

directly downward to the next sheet at the same x. So, the vortex strength must
be a function of the quantity (x + n�x), where n is the index of the wake sheets
and �x is the distance the wake is convected in a single revolution of the rotor:
�x = 2πr = 2π(�r)/� = 2πU/�. Furthermore, since all the vorticity is convected
downstream at the velocity U , the vortex strength in the sheets must also be a
function of (t − x/U ). Assuming harmonic motion requires the time dependence of
the wake strength to be eiωt , and the wake structure is completely specified:

γwn = γ weiω(t−x/U−n2π/�) = γ weiωt e−ikx/be−in2π(ω/�) (10.157)

where γwn the strength of the n-th sheet. The reduced frequency is k = ωb/U , and
the wavelength is 2πb/k. If ω/� is an integer, the loading is at a harmonic of the
rotor speed. Since ein2π(ω/�) = 1 in that case, the vorticity in all the sheets is exactly
in phase.

The analysis of the unsteady aerodynamics proceeds as in section 10.1. With the
present wake model, the wake-induced velocity is

λ(x) = 1
2π

∫ ∞

b

γw

x − ξ dξ +
∞∑

n=1

1
2π

∫ ∞

−∞

γwn(x − ξ )
(x − ξ )2 + h2n2

dξ (10.158)

The second term is the additional contribution of the returning shed wake. Substi-
tuting for γwn gives

�λ =
∞∑

n=1

1
2π

∫ ∞

−∞

γwn(x − ξ )
(x − ξ )2 + h2n2

dξ

= γ weiωt
∞∑

n=1

e−in2π(ω/�) 1
2π

∫ ∞

−∞

eikξ/b(x − ξ )
(x − ξ )2 + h2n2

dξ

= γ weiωt
∞∑

n=1

i
2

e−ikx/be−n((kh/b)+i2π(ω/�))

= i
2
γ weiωt e−ikx/bW (10.159)
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where

W =
∞∑

n=1

e−n((kh/b)+i2π(ω/�)) = 1
ekh/bei2π(ω/�) − 1

(10.160)

To evaluate the unsteady loads on the airfoil, the wake-induced velocity is expanded
as a series:

λ =
∞∑

n=0

λn cos nθ (10.161)

where x = cos θ . Using the following expression for the Bessel function,

Jn(k) = in

π

∫ π

0
e−ik cos θ cos nθ dθ (10.162)

we obtain

�λ0 = 1
π

∫ π

0
�λ dθ = i

2
γ weiωtWJ0(k) (10.163)

�λ1 = 2
π

∫ π

0
�λ cos θ dθ = γ weiωtWJ1(k) (10.164)

�λ2 = 2
π

∫ π

0
�λ cos 2θ dθ = −iγ weiωtWJ2(k) (10.165)

Then

�

(
λ0 + 1

2
λ1

)
= γ weiωtW

1
2

(
J1(k)+ iJ0(k)

)
(10.166)

b
U
∂

∂t
�

(
λ0 − 1

2
λ2

)
= −γ weiωtW

k
2

(
J2(k)+ J0(k)

)
= −γ weiωtWJ1(k) (10.167)

The changes in the bound circulation and lift are

�� = −2πb�
(
λ0 + 1

2
λ1

)
= −2πbγ weiωtW

1
2

(
J1(k)+ iJ0(k)

)
(10.168)

�L = −2πρUb
[
�

(
λ0 + 1

2
λ1

)
+ 1

2
b
U
∂

∂t
�

(
λ0 − 1

2
λ2

)]
= −2πρUbγ weiωtW

i
2

J0(k) (10.169)

The total lift is now

L = LQ + LNC + ρU
∫ ∞

b

b√
ξ 2 − b2

γwξ − 2πρUbγ weiωtW
i
2

J0 (10.170)

with LQ and LNC as in section 10.1. The total circulation is

� = LQ

ρU
+
∫ ∞

b

(√
ξ + b
ξ − b

− 1

)
γwdξ − 2πbγ weiωtW

1
2

(
J1 + iJ0

) = −
∫ ∞

b
γwdξ

(10.171)
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which gives

LQ = −ρU
∫ ∞

b

√
ξ + b
ξ − b

γwdξ + 2πρUbγ weiωtW
1
2

(
J1 + iJ0

)
(10.172)

On substituting γw = γ weiω(t−ξ/U ), the last expression gives γ w in terms of LQ, which
can then be used to evaluate the circulatory lift in terms of LQ. The result is

L = C′LQ + LNC (10.173)

where

C′(k, ω/�,h) = 1 +
− ∫∞

1

1√
ξ 2 − 1

e−ikξdξ + π iJ0W

∫∞
1

√
ξ + 1
ξ − 1

e−ikξdξ − π(J1 + iJ0)W

(10.174)

=

∫∞
1

ξ√
ξ 2 − 1

e−ikξdξ − πJ1W

∫∞
1

√
ξ + 1
ξ − 1

e−ikξdξ − π(J1 + iJ0)W

(10.175)

= H (2)
1 (k)+ 2J1(k)W

H (2)
1 (k)+ iH (2)

0 (k)+ 2(J1(k)+ iJ0(k))W
(10.176)

is Loewy’s lift deficiency function. The only influence of the returning shed wake
on the two-dimensional unsteady loads of an airfoil is in the lift deficiency function,
with Loewy’s function replacing Theodorsen’s. The modification of the lift deficiency
function by the returning shed wake is determined by the quantity W . For a single
blade

W (kh/b, ω/�) = 1
ekh/bei2π(ω/�) − 1

(10.177)

As h approaches infinity, W approaches zero, and hence Loewy’s function C′ reduces
to the Theodorsen function C(k). In addition to the reduced frequency k, the rotor
model introduces the parameters h/b and ω/�. The wake spacing is given by h/b,
and ω/� determines the relative phase of the vorticity in the successive wake sheets.
When ω/� is equal to an integer, the strengths of all the sheets are exactly in phase.
Only the fractional part of ω/� is important.

Now consider the case of an N-bladed rotor. Again the two-dimensional model
of the rotor wake is a series of parallel vortex sheets with vertical spacing h arrayed
below the blade. Here only every N-th sheet is due to a given blade, however. Let n
be the index of the rotor revolutions as above, and let m = 0, 1, 2, . . . ,N − 1 be the
blade index (see Figure 10.11). When n = 0 and m ≥ 1, all the wake sheets should
extend upstream to a blade. Extending these sheets upstream to infinity is consistent
with the two-dimensional model. The shed vorticity of sheets from a given blade
(fixed m) must again be a function of (x + n�x) = (x + nπU/�). To determine the
relation between the vorticity strength in sheets from different blades, assume that
all the blades have the same motion, but that the motion of each blade leads to the
following one by the time �t = �ψ�. Then moving directly down to the next sheet
must be equivalent to moving downstream a distance (�x/N − U�t), where�x/N is
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Figure 10.11. Two-dimensional wake model of an N-bladed rotor (three-bladed case shown).

the spacing between the blades. Therefore the shed vorticity must also be a function
of (x + m(�x/N − U�t)). For harmonic blade motion at frequency ω

γnm = γ weiω(t−x/U−n2π/�+m�t−2πm/N�)

= γ weiωt e−ikx/be−i2π(ω/�)(n+m/N)+imω�t (10.178)

The wake-induced velocity for the N-bladed rotor is then

λ(x) = 1
2π

∫ ∞

b

γw

x − ξ dξ +
N−1∑
m=1

1
2π

∫ ∞

−∞

γ0m(x − ξ )
(x − ξ )2 + h2m2

dξ

+
∞∑

n=1

N−1∑
m=0

1
2π

∫ ∞

−∞

γnm(x − ξ )
(x − ξ )2 + h2(Nn + m)2

dξ (10.179)

Substituting for γnm gives

�λ = γ weiωt
∞∑

n=0

N−1∑
m=0

{
e−i2π(ω/�)(n+m/N)+imω�t 1

2π

∫ ∞

−∞

e−ikξ/b(x − ξ )
(x − ξ )2 + h2(Nn + m)2

dξ
}

− γ weiωt 1
2π

∫ ∞

b

e−ikξ/b

x − ξ dξ

= i
2
γweiωt e−ikx/bW (10.180)
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where

W = −1 +
∞∑

n=0

N−1∑
m=0

e−i2π(ω/�)(n+m/N)+imω�t e−kh(Nn+m)/b

= 1 +∑N−1
m=1

(
ekNh/bei2π(ω/�)

)1−m/N
eimω�t

ekNh/bei2π(ω/�) − 1
(10.181)

This is the same form for �λ as for the single blade, so the same result for the
unsteady loads, and in particular for the lift deficiency function C′, is obtained. The
number of blades influences the solution only through the function W appearing in
C′. For the special case ω�t = (2π/N)�, with � an integer,

W = 1(
ekNh/bei2π(ω/�−�))1/N − 1

= 1
ekh/bei2π(ω/N�−�/N) − 1

(10.182)

which is the single-blade result with the equivalent phase (ω/�)e = ω/N�− �/N.
The multiblade coordinate transform (section 15.4) introduces degrees of free-

dom that describe the motion of the rotor as a whole. The rotating-frame degree of
freedom of the m-th blade is obtained from the multiblade coordinates by

β(m) = β0 +
∑

n

(βnc cos nψm + βns sin nψm)+ βN/2(−1)m (10.183)

where ψm = �t + m2π/N is the azimuth angle of the m-th blade. Each of the non-
rotating modes (collective β0, cyclic βnc and βns, and reactionless βN/2) defines the
relative motion of the N blades of the rotor, and hence the relationship between the
shed vorticity in successive sheets of the wake. So for each non-rotating mode the
function W and then the lift deficiency function C′ can be evaluated.

In the collective mode the motions of all the blades are exactly in phase, and the
only phase shift in the wake vorticity is due to the spacing between the blades. The
time phase shift �t = 0, for which

W = 1
ekh/bei2π(ω/N�) − 1

(10.184)

The collective mode thus is equivalent to a single-bladed rotor with wake spacing
he = h and (ω/�)e = ω/N�. The relative phase between the vorticity in successive
wake sheets is determined by the two parameters �ψ and ω/� for the N-bladed
rotor, but only by ω/� with a single blade. All the wake sheets are in phase ((ω/�)e
is an integer) only if the collective mode oscillation occurs at a frequency that is a
multiple of N/rev.

For the reactionless mode (the βN/2 degree of freedom, which is present only
with an even number of blades) successive blades have identical motion except for
opposite signs. Reactionless motion βN/2 = βeiωt gives

β(m) = βeiωt (−1)m = βeiωt eimπ (10.185)

so ω�t = π , or � = N/2. The blades are 180◦ out-of-phase and

W = 1

ekh/bei2π(ω/N�− 1
2 ) − 1

(10.186)

The reactionless mode is also equivalent to a single-bladed rotor, with he = h and
(ω/�)e = ω/N�− 1

2 .
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Figure 10.12. Magnitude of Loewy’s lift deficiency function C′ as a function of reduced fre-
quency and wake spacing, for ω/� = integer.

The cyclic degrees of freedom βnc and βns are coupled. There are two modes,
with eigenvectors βns = ±iβnc, the upper sign for the regressive mode and the lower
sign for the progressive mode. The corresponding eigenvalues are s = sR ∓ in, where
sR is the rotating frame eigenvalue. Thus the cyclic motion βnc = βeiωNRt gives

β(m) = βeiωNRt (cos nψm ± i sin nψm) = βeiωNRte±inψm

= βei(ωNR±n�)te±inm2π/N = βeiωt eimω�t (10.187)

So the rotating frequency gives ω = ωNR ± n, and the phase is ω�t = ±n2π/N or
� = ±n. The cyclic modes give W equivalent to a single-bladed rotor, with he =
h and (ω/�)e = (ω/�− n)/N for regressive modes or (ω/�)e = (ω/�+ n)/N for
progressive modes. For example, the first cyclic modes (β1c and β1s) of a four-bladed
rotor have (ω/�)e = (ω/�∓ 1)/4.

Next let us examine the behavior of Loewy’s lift deficiency function,

C′ = H (2)
1 (k)+ 2J1(k)W

H (2)
1 (k)+ iH (2)

0 (k)+ 2(J1(k)+ iJ0(k))W
(10.188)

The N-bladed rotor case is equivalent to a single-bladed rotor, using the same wake
spacing and a value of ω/� such that the successive wake sheets have the proper
relative phase. It is sufficient therefore to consider the single-bladed rotor case, for
which

W = 1
ekh/bei2π(ω/�) − 1

(10.189)

Figures 10.12 to 10.16 show the magnitude and phase of C′ for the cases of ω/� =
integer, integer + 1

4 , integer + 1
2 , and integer + 3

4 . Plots on the plane of real and
imaginary C′ are also interesting; see Anderson and Watts (1976). The limit as h
approaches infinity is W = 0, and thus C′ = C(k), the Theodorsen function. The
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Figure 10.13. Loewy’s lift deficiency function C′ for ω/� = integer.

case h = 0 is not a physically realistic limit, but does show the behavior of C′ for
small wake separation. With h = 0,

W = 1
ei2π(ω/�) − 1

(10.190)

Then

C′ = J1

J1 + iJ0
for ω/� = integer (10.191)

C′ = Y1

Y1 + iY0
for ω/� = integer + 1

2
(10.192)

These Bessel functions give C′ an oscillatory behavior at large k (see Figure 10.12).
The real part F ′ oscillates between 0 and 1, and the imaginary part between −0.5
and 0.5, with a period of π . Since |C′| = √

F ′ for these cases, the magnitude of C′

goes to zero at certain frequencies. For large reduced frequency the lift deficiency
function is

C′ ∼ 1
2

(
1 + ie−kh/be−i2π(ω/�)ei2k) (10.193)

Hence the oscillatory behavior observed in Figure 10.12 is a general result for large
k. The period is π , and the amplitude of the oscillation diminishes with increasing
wake spacing h.



10.7 Two-Dimensional Model for Hovering Rotor 399

| C '  |

h / b = ∞
h / b = 2
h / b = 0.5

h / b = 0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
-90.

-60.

-30.

0.

30.

60.

90.

k

phase
(deg)

Figure 10.14. Loewy’s lift deficiency function C′ for ω/� = integer + 1
4 .

For small reduced frequency the lift deficiency function is approximately

C′ ∼= 1 − iπ2 k2W

1 + π
2 k − ik

(
ln k

2 + γ )+ (1 − i
2 k
)
πkW

(10.194)

where γ is Euler’s constant. If ω/� is not equal to an integer, W is of order 1 or
smaller for all h; then to order k,

C′ ∼= 1

1 + π
2 k − ik

(
ln k

2 + γ )+ πkW
(10.195)

This gives C′ = 1 at k = 0, independent of the wake spacing h (see Figures 10.14 to
10.16). For ω/� = integer, W ∼= b/kh, so to order 1

C′ ∼= 1
1 + πkW

= 1
1 + π

h/b

(10.196)

These results for small reduced frequency are of most interest for helicopter rotors.
If ω/� is not an integer, there is only an order k correction of the Theodorsen
function due to the returning shed wake. For oscillations at harmonics of the rotor
speed (ω/� = integer), the shed wake reduces the lift deficiency function at low
frequency to C′ = h/(h + πb). Figure 10.13 shows that this low-frequency result is
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Figure 10.15. Loewy’s lift deficiency function C′ for ω/� = integer + 1
2 .

a good approximation even to k = 0.2 or so. C′(0) �= 1 now; in fact, C′(0) = 0 when
h = 0, because of the returning shed wake.

The wake spacing h/b is determined by the rate at which the helical vortex sheets
of the rotor are convected downward. Using the mean induced velocity at the rotor
disk for the convection velocity of the wake near the rotor, the distance the wake
moves in a single rotor revolution is Nh = v(2π/�), or

h
b

= v2π
�Nb

= 4λ
σ

(10.197)

where λ is the inflow ratio and σ is the rotor solidity. The lift deficiency function for
low k and harmonic oscillations is then

C′ ∼= 1
1 + πσ

4λ

(10.198)

Typically λ ∼= 0.07 for the hovering helicopter rotor, which gives h/b ∼= 3 or 4, and
so C′ ∼= 0.5.

Thus the reduction of the unsteady loads due to the returning shed wake can be
large, with serious consequences for rotor control, loads, and stability in the critical
circumstances of low inflow and harmonic oscillations. The vorticity in successive
wake sheets below the blade is exactly in phase for critical values of ω/�, which
depend on whether the motion occurs in collective, cyclic, or reactionless modes.
Important examples of such motion in rotor dynamics are cyclic pitch control and
flapping, which give 1/rev motion in the rotating frame, and flutter instabilities with
a natural frequency at n/rev. The reduction of the circulatory lift at low frequency
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Figure 10.16. Loewy’s lift deficiency function C′ for ω/� = integer + 3
4 .

decreases the rotor response to collective and cyclic pitch control. At high reduced
frequencies C′ has an oscillatory behavior, with minima near zero for small wake
spacing. The result is a decrease in the damping of the flap motion and the flapwise
bending modes, thereby increasing the response of the blade vibration to harmonic
airloads.

Wake-excited flutter has been observed on rotors operating in hover at low
collective. The returning shed wake reduces the circulatory loads that are responsible
for flap damping, which can lead to a pitch-flap flutter instability. The circulatory lift
does not influence the pitch moment for oscillation about the quarter chord, but the
blade pitch damping moments are also influenced by the returning shed wake if the
pitch axis is off the aerodynamic center. For oscillation near certain harmonics of
the rotor speed, about the leading edge or about the midchord, the damping in pitch
can be negative. Thus a single-degree-of-freedom instability is possible.

Similar unsteady aerodynamic theories were developed by Timman and van de
Vooren (1957) and by Jones (1958). Timman and van de Vooren (1957) considered
the limit of no vertical convection, with all shed sheets in the plane of the airfoil.
They performed two-degree-of-freedom flutter calculations, including comparisons
with experiment. Jones (1958) considered the same two-dimensional aerodynamic
model as Loewy, but did not obtain Loewy’s result for the lift deficiency function.

Loewy’s aerodynamic theory was verified experimentally. Daughaday,
DuWaldt, and Gates (1957) conducted an experimental investigation of the bend-
ing load amplification on model helicopter rotor blades, with particular attention to
the effect of the returning shed wake on the aerodynamic damping of the bending
modes. They conducted a test of a one-bladed, teetering model rotor, varying the
mass characteristics, pitch spring, and pitch-flap coupling. Using excitation through
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a moment at the flap hinge, forced response was measured and damping obtained
from the free decay. For the damping of the first bending mode in hover, a reduction
of damping ratio when the frequency was near 3/rev was observed experimentally
and predicted using Loewy’s theory. This wake effect was significant at zero collec-
tive, but reduced for 4◦ collective. The second bending mode damping was reduced
near 7/rev and 8/rev. Pitch-flap flutter was investigated for a two-bladed rotor with
large pitch-flap coupling, varying rotor speed, and blade chordwise center-of-gravity
position. A stabilizing effect of the returning wake was observed for pitch mode
frequency near 2/rev and predicted using Loewy’s theory.

Ham, Moser, and Zvara (1958) measured blade flap response to collective pitch
and to vertical hub motion on a two-bladed articulated rotor model with rectangular,
untwisted blades. At low blade pitch, significant effects of the returning shed wake
were observed for excitation frequencies near an integer. In the hover flap response
to collective, for zero mean collective, the magnitude of the response was nearly
quasistatic (good prediction using C = 1) except near 2/rev, where the reduced
magnitude observed experimentally was predicted using Loewy’s C′. The phase
was nearly quasistatic at low frequency, with significant phase shift above 1.5/rev,
predicted using Loewy’s function. In the hover flap response to vertical hub motion,
for zero collective, a large increase in the magnitude was observed experimentally
at frequencies near a multiple of 2/rev and was predicted using Loewy’s C′. At
collectives of 5◦ and 10◦ in hover, the measured response was reduced. Forward
flight (μ = 0.1 and 0.2) produced little effect on the measured response to hub
motion for zero collective.

Silveira and Brooks (1959) conducted an experimental study of the damping of
the flapwise bending modes of a two-bladed hovering rotor at low pitch (and hence
low inflow). They tested two-bladed teetering and articulated rotors in hover, for
collective pitch angles of 0◦ and 3◦. For the teetering rotor, the flap bending modes
were excited by vertical motion of the hub and then the damping was obtained from
free decay. The measured damping of the second and third elastic flap modes exhib-
ited a reduction in damping at multiples of 2/rev, which was successfully predicted
using the real part of Loewy’s function, F ′.

The lifting-line approximation was examined in section 10.2 for the near shed
wake in unsteady two-dimensional airfoil theory. Following Miller (1964), this anal-
ysis is now extended to include the returning shed wake. The lifting-line approxima-
tion involves calculating the induced velocity at a single point on the chord, rather
than using the distribution over the chord. Because the treatment required for the
near shed wake in this approximation has already been derived, here the near shed
wake is treated correctly and the lifting-line approximation is used only for the wake
sheets below the airfoil. Equation 10.159 for the additional induced velocity due to
the returning shed wake, evaluated at the quarter chord (x = −b/2), is

�λ = i
2
γ weiωt e−ikx/bW = i

2
γ weiωt e−ik/2W (10.199)

Since the lifting-line approximation corresponds to low reduced frequency in the
unsteady aerodynamics, the approximation e−ik/2 ∼= 1 can also be used. The bound
circulation and lift increments are then

�� = −2πbγ weiωtW
i
2

(10.200)

�L = −2πρUbγ weiωtW
i
2

(10.201)
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from which the lift deficiency function is

C′ = H (2)
1 (k)

H (2)
1 (k)+ iH (2)

0 (k)+ 2iW
(10.202)

This result can be obtained from Loewy’s function by using the order 1 approxima-
tions of the Bessel functions. It is a good approximation to Loewy’s function at least
up to k = 0.5 for the complete range of wake spacing. The greatest error is in the
imaginary part of C′ (hence the phase shift) at low h/b. Thus the lifting-line analysis
is a satisfactory treatment for the returning shed wake as well as for the trailed wake.
Only the near shed wake requires special treatment.

Miller (1964) also considered a further approximation to Loewy’s analysis, mod-
eling the wake sheets below the blade by a continuous vorticity distribution. This
model is analogous to the actuator disk representation of the rotor and thus serves
to illustrate the connection between the continuous vorticity analysis for the rotor
and the discrete wake model of Loewy’s two-dimensional theory. Only the case of
harmonic blade motion is considered, ω/� = integer. Since the loading on the blade
is periodic, the vorticity strength in the wake is independent of the vertical position.
Also assuming low reduced frequency, the variation of the induced velocity over the
chord is neglected. The wake-induced velocity at x = 0 on the airfoil is then

λ = − 1
2π

∫ 0

−∞

∫ ∞

−∞

ξ

ξ 2 + z2
γ dξ dz (10.203)

where γ (ξ, t) is the strength of the continuous vorticity distribution below the airfoil.
Since each discrete wake sheet with strength γw has now been spread over the
distance h, γ = γw/h. The shed wake strength is obtained from the time derivative
of the bound circulation �. If sinusoidal motion at frequency ω is assumed,

γ = − 1
Uh

d
dt
�(t − ξ/U ) = − iω

Uh
�eiω(t−ξ/U ) = − ik�/b2

h/b
e−iωξ/U (10.204)

With the wake convected downward by the mean inflow ratio λ0, the wake spacing
is h/b = 4λ0/σ (equation 10.197). So

γ = − ik�/b2

4λ0/σ
e−iωξ/U (10.205)

After substituting for γ , the velocity induced by the shed wake is

λ = ik�/b2

4λ0/σ

1
2π

∫ 0

−∞

∫ ∞

−∞

ξ

ξ 2 + z2
e−ikξ/bdξ dz = k�/b2

4λ0/σ

1
2k/b

= πσ

4λ0

L
2πρUb
(10.206)

Then from L = LQ − 2πρUbλ = LQ − (πσ/4λ0)L, L = C′LQ, with the lift defi-
ciency function

C′ = 1
1 + πσ

4λ0

(10.207)

which is the low-frequency limit of Loewy’s function for the case of harmonic oscil-
lation (equation 10.198).

10.8 Blade-Vortex Interaction

The model problem for blade-vortex interaction is an infinite wing encountering a
straight infinite vortex in a subsonic, compressible free stream (Figure 10.17). The
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Figure 10.17. Blade-vortex interaction.

wing and vortex lie in parallel planes with separation h. The wing semi-chord is b.
The angle between the wing axis and the vortex is �: � = 90◦ for a perpendicular
interaction, and � = 180◦ for a parallel interaction. The wing spanwise variable r
is measured from the vortex-midchord intersection. The vortex-induced downwash
velocity at the midchord is

w = − �

2π
r

r2 + h2
(10.208)

for the perpendicular interaction (equation 9.80). The effect of the viscous core can
be included by using a larger effective separation, heq = (h2 + r2

c )
1/2, based on the

distributed vorticity model of the Scully core (see section 9.8).
For linear aerodynamic analysis, applying the Fourier transform to the vortex-

induced downwash and lift reduces the problem to finding the loading produced by
a convected sinusoidal gust. For the perpendicular interaction, any downwash field
can be represented by a superposition of sinusoidal gusts:

w(r) =
∫ ∞

−∞
eiνr/bw(ν) dν (10.209)

Here ν is the dimensionless wave number, corresponding to wavelength λ = 2πb/ν.
For the vortex-induced downwash, the Fourier transform of equation 10.208 gives
the spectrum

w/U
�/2πUb

= i
2

signν e−|ν|h/b (10.210)

The loading function gL(ν) gives the section lift produced by a sinusoidal gust:

gL(ν) = − L(ν)/2πρU2b
w(ν)/U

(10.211)
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The w spectrum is 10% of the long wavelength value at νh/b ∼= 2.3, and for wing-
vortex separation equal to the quarter chord (h/b = 0.5) the wave number is ν ∼= 4.6,
with wavelength λ ∼= 1.4b.

Lifting-line theory obtains the wing bound circulation� from the vortex-induced
downwash w and the upwash from the trailed wake:

� = −2πb(w − wi) = −2πbw − b
2

∫ ∞

−∞

d�
dρ

dρ
r − ρ (10.212)

For a sinusoidal gust, � = �eiνr/b and w = weiνr/b, so

� = −2πbw − iν
2
�

∫ ∞

−∞
eiν(ρ−r)/b dρ

r − ρ = −2πbw − π

2
ν� (10.213)

and the loading function is

gL = − �

2πbw
= 1

1 + π
2 ν

(10.214)

with a continuous trailed wake sheet. Consider a discretized wake, with trailed lines
uniformly spaced, a distance d apart. The bound circulation �m is evaluated at the
collocation points r = md. The trailers at ρ = (

n + 1
2

)
d have strength δ = �n+1 − �n.

Then

�m = −2πbwm − b
2

∞∑
n=−∞

�n+1 − �n

md − (n + 1
2

)
d

(10.215)

Substituting � = �eiνr/b and w = weiνr/b gives

� = −2πbw − 1
2
�

∞∑
n=−∞

eiν(n+1−m)d/b − eiν(n−m)d/b(
m − n − 1

2

)
d/b

= −2πbw − π

2
ν

∣∣∣∣ sin νd/2b
νd/2b

∣∣∣∣� (10.216)

and the loading function is

gL = − �

2πbw
= 1

1 + π
2 ν

∣∣∣ sin νd/2b
νd/2b

∣∣∣ (10.217)

This discretized wake solution is a good approximation for the continuous wake
solution up to νd ∼= 2b. So the trailer spacing should be d ∼= 2b/ν = bλ/π , or d ∼= 0.5b
(quarter chord) for ν = 4. For spacing equal to the wavelength (d = λ), gL = 1.
Figure 10.18 compares the lifting-line solutions for the loading function with the
lifting-surface solution. For small separation between the wing and vortex, the lifting-
line loading is significantly larger than the lifting-surface loading.

For the parallel interaction, the Fourier transform introduces the reduced fre-
quency k instead of the wave number, and the incompressible loading function is the
Sears function of two-dimensional, unsteady airfoil theory. The lifting-line approxi-
mation is

gL = S = e−ik/2
(

C(k)+ ik
2

)
(10.218)

(equation 10.94). Figure 10.19 compares the lifting-line solution with the exact
unsteady, two-dimensional solution. This is a low-frequency approximation, accurate
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Figure 10.18. Loading function for perpendicular interaction.

to about k ∼= 0.5. To order k,

S ∼= C ∼= 1
1 + π

2 k
(10.219)

which approximates the magnitude well even for large k, but neglects the phase shift
entirely. The phase shift of the Sears function S leads to significant asymmetry in
the blade-vortex interaction loads for the parallel interaction, with the first peak (in
time) larger than the second peak.
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Figure 10.19. Loading function for parallel interaction.
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For the large variations of downwash along the wing that are produced by a
close vortex, lifting-line theory does not produce accurate loading. Second-order
lifting-line theory can give the section lift accurately for the vortex-blade separa-
tions typical of helicopter rotors, but in practical implementations the moment and
pressure results are still essentially first order (section 9.2). Moreover, for the two-
dimensional, parallel interaction, analytical solutions are only possible for incom-
pressible flow. Thus compressible lifting-surface theory is next developed for the
blade-vortex interaction problem of Figure 10.17. The solution is obtained in the
form of an aerodynamic influence function for an infinite in an oblique, sinusoidal
gust. The development follows Johnson (1970, 1971).

The vortex is convected past the blade by the free stream, so the vortex-induced
downwash in the plane of the wing is a one-dimensional field, depending only on
the perpendicular distance from the vortex. For � = 90◦, the problem becomes
the steady, three-dimensional flow due to a vortex perpendicular to the wing. For
� = 180◦, the problem is the unsteady, two-dimensional flow of a point vortex past
an airfoil. Some singular behavior of the problem can be expected, because the
first of these limits is an elliptic problem, whereas the second is hyperbolic (due to
the time dependence). The transition between the elliptic and hyperbolic problems
occurs at M = sin�.

Figure 10.17 shows the coordinate systems used. The (x, y) system is fixed,
and all the others are moving. Because of the infinite geometry of the model, the
problem is steady in a coordinate system with its origin translating along the blade
centerline, following the projection of the convected vortex. A natural coordinate
system for such a translating frame of reference has one coordinate (s′) aligned in
the direction of the free vortex (Figure 10.17). In this frame the vortex is stationary,
so the problem is steady and there is no shed vorticity (wake vorticity normal to the
direction of the relative free stream, generated by time-varying blade circulation).
Both the induced-wake vorticity behind the wing and the relative free stream velocity
in this coordinate system must be in the direction of the vortex (the s′ direction). The
relative free stream Mach number in this translating coordinate system is M/ sin�,
and the wing is swept at an angle� relative to this velocity component. The relative
free stream attains a sonic value (M/ sin� = 1) at the transition between the elliptic
and hyperbolic domains.

Linear lifting-surface theory is used to obtain the solution to the model prob-
lem in the form of an integral equation relating the pressure and downwash at the
wing surface. This integral equation is a double integral over the wing surface; it is
transformed into a single (chordwise) integral by the use of the Fourier transform
with respect to the span variable. In what follows all quantities are dimensionless,
based on the fluid density, the wing semi-chord, and the free stream velocity (ρ, b,
and U). The several coordinate systems used are shown in Figure 10.17. The (s′, r′)
system is the translating coordinate system, with s′ aligned in the vortex direction.
The problem is solved for the loads in the (sA, rA) system. One coordinate is along
the span (so the Fourier transform can be used), and the other is in the chordwise
direction (the integration direction to obtain the section airloading). The blade lead-
ing and trailing edges are given by sA = ±1; this system is orthogonal. The problem
is solved for the circulation in the (s, r) system. One coordinate is along the span
(so the Fourier transform can be used), and the other is in the s′ direction (the
integration direction to obtain the circulation). The s metric has been stretched so
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that the blade leading and trailing edges are still given by s = ±1; this system is not
orthogonal.

The solution is most conveniently formulated in terms of the acceleration poten-
tial ψ . The linearized equation of motion is{

∇2 − M2
(
∂

∂x
+ ∂

∂t

)2
}
ψ = 0 (10.220)

where

ψ =
(
∂

∂x
+ ∂

∂t

)
φ = −p (10.221)

Here φ is the velocity potential and p is the perturbation pressure. The boundary
conditions are

∂φ

∂z

∣∣∣
z=0

= w on the airfoil (10.222)

�ψ = −�p = 0 off the airfoil (10.223)

where�means the difference between the quantities at z = 0+ and at z = 0−. Here
the downwash w is a function of r′ only. In the (s′, r′) system the equation of motion
becomes {[

1 − (M/ sin�)2
] ∂2

∂s′2 + ∂2

∂r′2 + ∂2

∂z2

}
ψ = 0 (10.224)

ψ = −p = 1
sin�

∂φ

∂s′ (10.225)

It is seen that in this system the problem is indeed steady and is elliptic or hyperbolic
as M/ sin� is less than or greater than one.

The elementary lifting solution for the acceleration potential is the dipole solu-
tion, denoted by ψd. Using superposition, the acceleration potential at an arbitrary
point due to a lifting surface is written

ψ(sA, rA, z) =
∫ ∞

−∞

∫ 1

−1
LA(σA, ρA)ψd(s′

0, r
′
0, z)dσA dρA (10.226)

where s′
0 = s′ − σ ′, r′

0 = r′ − ρ ′, and LA(σA, ρA) = −�p = �ψ is the differential
pressure across the lifting surface. The advantage of the acceleration potential is that
the boundary condition off the airfoil, �ψ = −�p = 0, is automatically satisfied by
placing the elementary solutions only on the lifting surface. Integration of equation
10.225 and application of the boundary condition on the airfoil give

w(r′) = lim
z→0

∂

∂z

∫ ∞

0
ψ
∣∣
s0=s0−λdλ (10.227)

where s0 = s − σ ; the notation in the integrand means that ψ is expressed as a
function of s by means of the coordinate transformations between the (sA, rA),
(s′, r′), and (s, r) systems, and then the quantity s0 is replaced by the quantity (s0 − λ).
Substitution of ψ from equation 10.226 gives the integral equation:

w(r′) =
∫ ∞

−∞

∫ 1

−1

LA(σA, ρA)

2π/α

{
lim
z→0

∂

∂z

∫ ∞

0
ψd
∣∣
s0=s0−λdλ

2π
α

}
dσAdρA (10.228)
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where α = √
1 − M2 is the Prandtl-Glauert compressibility factor. Writing

LA(sA, rA) as a Fourier integral

LA(sA, rA) =
∫ ∞

−∞
L

A
(sA, ν)eiνrA

dν (10.229)

and taking the Fourier transform of the integral equation give∫ 1

−1
G

A
(σA, ν̂ )KA(σA

0 , ν̂ )dσ
A = −eiν̂sA cos� (10.230)

where sA
0 = sA − σA and ν̂ = ν/ sin�. The downwash now is just an oblique, sinu-

soidal gust, eiν̂sA cos�. The kernel function is

KA(σA
0 , ν̂ ) = −2π

α

∫ ∞

−∞
e−iνrA

0 lim
z→0

∂

∂z

∫ ∞

0
ψd

∣∣
s0=s0−λdλdrA (10.231)

and the aerodynamic influence function is

G
A
(σA, ν̂ ) = L

A
(σA, ν̂ )

(2π/α)w(ν̂)/ sin�
(10.232)

Note that 2π/α is the theoretical subsonic lift-curve slope. Here w(ν̂)/ sin� is the
Fourier transform of w(r′) with respect to rA, at sA = 0. The wave number has been
written in the form ν̂ = ν/ sin�, which is the wave number of the sinusoidal gust.
This quantity is the span wave number for � = 90◦, and the reduced frequency for
� = 180◦. The vortex-induced downwash for general interaction angle is

w(rA sin�) = − �

2π
rA sin�

(rA sin�)2 + h2
(10.233)

which has the Fourier transform

w(ν̂) = �

2π
i
2

signν̂ e−|ν̂|h (10.234)

For the two-dimensional, unsteady limit � = 180◦, the span variable rA sin�
becomes the time variable.

The kernels depend on the parameters M and �. In particular, they depend on
the sign of the quantity

β2 = −B2 = 1 − (M/ sin�)2 (10.235)

hence whether the flow is in the elliptic or hyperbolic domain. The derivation of
the kernel functions follows the standard techniques of aerodynamic theory, partic-
ularly Possio’s method; see Bisplinghoff, Ashley, and Halfman (1955). The detailed
derivation of the kernels has given by Johnson (1970).

The elliptic domain is defined by M < sin�, or β2 = 1 − (M/ sin�)2 > 0. The
elliptic kernel is

KA
β (s

A
0 , ν̂ ) = eiν̂sA

0 cos�

{
eiaμsA

0

[
±aK1(a|sA

0 |)+ iaμK0(a|sA
0 |)
]

− iν̂
2α

[
iπ + ln

α − cos�
α + cos�

]
± ν̂

β sin�

∫ a|sA
0 |

0
e±iμξK0(ξ )dξ

}
(10.236)
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where

± = sign sA
0 a = ν̂ β sin�

α2
μ = − cos�

β sin�

aμ = ν̂− cos�
α2

β sin� =
√

sin2�− M2

and K0, K1 are modified Bessel functions. For � = 90◦, the kernel is

KA
β (s

A
0 , ν̂ ) = − 1

2α

∫ ∞

−∞
e−iνrA

0
1

(rA
0 )

2

⎡⎣1 + sA
0√

(sA
0 )

2 + α2(rA
0 )

2

⎤⎦ drA
0 (10.237)

which is the Fourier transform of the steady, three-dimensional, lifting-surface
kernel.

The hyperbolic domain is defined by M > sin�, or B2 = (M/ sin�)2 − 1 > 0.
The hyperbolic kernel is

KA
B (s

A
0 , ν̂ ) = eiν̂sA

0 cos�

{
iπ
2

eiaμsA
0

[
∓aH (2)

1 (a|sA
0 |)− iaμH (2)

0 (a|sA
0 |)
]

− iν̂
2α

[
ln

− cos�+ α
− cos�− α

]
∓ iπν̂

2B sin�

∫ a|sA
0 |

0
e±iμξH (2)

0 (ξ )dξ

}
(10.238)

where

± = sign sA
0 a = ν̂B sin�

α2
μ = − cos�

B sin�

aμ = ν̂− cos�
α2

B sin� =
√

M2 − sin2�

and H (2)
0 , H (2)

1 are Hankel functions. For� = 180◦, and writing ν̂ = ν/ sin� = k (the
reduced frequency), the kernel function is Possio’s form of the kernel for unsteady,
compressible flow about a two-dimensional thin airfoil:

KA
2 (s

A
0 ,k) = e−iksA

0

{
iπ
2

eiksA
0 /α

2
[
∓aH(2)

1 (a|sA
0 |)− ik

α2
H (2)

0 (a|sA
0 |)
]

− ik
2α

[
ln

1 + α
1 − α

]
∓ iπk

2

∫ k|sA
0 |/α2

0
e±iξH (2)

0 (Mξ )dξ

}
(10.239)

where a = kM/α2; see Bisplinghoff, Ashley, and Halfman (1955). Also for this limit,
the compressed span variable rA sin� should be interpreted as the time variable.

The kernels in the two domains can be obtained from each other by noting
that β = iB. For ν̂ = 0 the kernel reduces to KA(sA

0 , 0) = 1/sA
0 . For this kernel the

integral equation inverts directly to give

G
A
(sA, 0) = − 1

π

√
1 − sA

1 + sA
(10.240)

The limit ν̂ = 0 corresponds to a wavelength of the sinusoidal gust that is very large
compared with the wing chord. The problem reduces to a two-dimensional airfoil
in a uniform downwash, and equation 10.240 is the standard result from thin-airfoil
theory.
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The transitional case is M = sin�, or β = B = 0. The equation of motion
becomes Laplace’s equation in two dimensions (z and r′). The limit of either the
elliptic or the hyperbolic kernel at M = sin� gives the transitional kernel:

KA
T (s

A
0 , ν̂ ) = e−iν̂sA

0 α

{
ei(ν̂/α)sA

0

sA
0

− iν̂
α

[
γ + iπ

2
+ ln(ν̂/α)|sA

0 |
]

− iν̂
α

∫ (ν̂/α)|sA
0 |

0

e±it − 1
t

dt

}
(10.241)

This is the kernel for the integral equation that is the solution of the linear prob-
lem, but for most of the transitional domain the appropriate equation of motion is
nonlinear. The equation for the first-order potential when M ∼= sin� has the same
form as the equation for three-dimensional, steady, transonic flow, which is exactly
the problem in the � = 90◦ case (M ∼= 1). With � > 90◦, the flow is not transonic
for the transitional case M = sin�, but there is a velocity that has become sonic:
the vector sum of the Mach number and the sweep velocity of the vortex along the
wing, M/ sin� (Figure 10.17). When this combination of physical and geometric
velocities is sonic, disturbances produced by the downwash follow it as both are con-
vected along the blade. Thus the aerodynamic problem is nonlinear in an order M2

region near M = sin�. The two-dimensional, incompressible problem at M = 0 and
� = 180◦ is a special case for which the linear equations are appropriate. For this case
alone the integral equation can be solved in closed form by classical techniques. The
loading on a two-dimensional airfoil due to a sinusoidal gust in an incompressible
flow is

G
A
(sA, ν̂ ) = − 1

π

√
1 − sA

1 + sA
S(ν̂) (10.242)

where S is the Sears function.
To solve the integral equations, the influence function for the pressure can be

written as a Glauert series:

G
A
(sA, ν̂ ) =

∞∑
n=0

gA
n (ν̂) fn(θ ) (10.243)

where sA = cos θ and fn is defined by equation 10.10. Substituting for this expansion

of G
A

and evaluating the integral equation at a set of collocation points along the
chord, a set of algebraic equations is obtained. Given the wave number ν̂, these
algebraic equations can be solved for gn. The section lift, moment, and circulation
are then obtained by integration over the chord. The resulting loading influence
functions are

gL(ν̂) = L(ν̂)
(2π/α)w(ν̂)/ sin�

= π
[
gA

0 (ν̂)+
1
2

gA
1 (ν̂)

]
(10.244)

gM(ν̂) = MQC(ν̂)

(2π/α)w(ν̂)/ sin�
= −π

4

[
gA

1 (ν̂)+ gA
2 (ν̂)

]
(10.245)

gC(ν̂) = �(ν̂)

(2π/α)w(ν̂)/ sin�
= π

[
g0(ν̂)+

1
2

g1(ν̂)
]
eiν̂ cos� (10.246)

All these functions are Fourier transforms with respect to rA, with w(ν̂)/ sin� the
Fourier transform of the downwash w(r′) with respect to rA, at sA = 0.
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An important character of the model problem is that it includes as limits in M
and � several types of flow about a lifting wing. The elliptical domain includes the
steady, three-dimensional loading. The hyperbolic domain includes the unsteady,
two-dimensional loading. The transitional region, separating the elliptic and hyper-
bolic domains, joins transonic, three-dimensional (nonlinear) and incompressible,
two-dimensional flows.
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11 Actuator Disk

The analysis of the wake is considerably simplified if the rotor is modeled as an actu-
ator disk, which is a circular surface of zero thickness that can support a pressure
difference and thus accelerate the air through the disk. The actuator disk neglects
the discreteness in the rotor and wake associated with a finite number of blades, and
it distributes the vorticity throughout the wake volume. The actuator disk model is
the basis for momentum theory (sections 3.1.1 and 5.1.1). The simplest version of
vortex theory uses an actuator disk model, which produces a tractable mathematical
problem, at least for axial flight (section 3.7). In contrast to hover, the mathemat-
ical problem in forward flight is still not trivial, because of the skewed cylindrical
geometry (section 5.2). Some results from actuator disk models were presented in
section 5.2.1.

The focus of this chapter is the unsteady aerodynamics of the rotor associ-
ated with the three-dimensional wake. In particular, the dynamic inflow model is
developed. This is a finite-state model, relating a set of inflow variables and loading
variables by differential equations. Such a model is required for aeroelastic stability
calculations and real time simulation. Vortex theory uses the Biot-Savart law for
the velocity induced by the wake vorticity. Potential theory solves the fluid dynamic
equations for the velocity potential or acceleration potential.

11.1 Vortex Theory

For the actuator disk in axial flow, the wake is a right circular cylinder (Figure
11.1). With uniform loading, the bound circulation is constant over the span, and
the trailed vorticity is concentrated in root and tip vortices. The tip vortex spi-
rals form a continuous distribution of ring vortices on the surface of this cylinder.
Continuity of vorticity requires a root vortex on the axis of the wake and axial vor-
ticity on the surface of the cylinder. Such axial vorticity does not contribute to the
axial induced velocity at the rotor disk. Thus the wake consists of radial vorticity
on the actuator disk (the bound circulation), a root vortex on the axis of symme-
try, a surface distribution of axial vorticity on the cylinder, and a vortex tube of
ring vortices. With nonuniform loading, there is trailed and shed vorticity within
the wake cylinder due to radial and azimuthal variation of the bound circulation,
respectively.
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Figure 11.1. Actuator disk models for vortex theory. Axial flow wake is a right circular
cylinder; forward flight wake is a skewed cylinder.

The velocity produced by a distribution of vorticity ω in incompressible, invisid
flow is

u(x) = − 1
4π

∫
s × ω

s3
dV (x′) (11.1)

where s = x − x′. The velocity can also be obtained from the vector potential B:

B(x) = 1
4π

∫
ω

s
dV (x′) (11.2)

such that ∇2B = −ω, u = ∇ × B. In two-dimensional or axisymmetric flow, the vec-
tor potential is the stream function. The velocity produced by a line vortex with
circulation κ is

u(x) = − 1
4π

∫
κ s × d�(x′)

s3
(11.3)

B(x) = 1
4π

∫
κ

s
d�(x′) (11.4)

substituting
∫
ωdV = κd� (d� is the tangent to the vortex at x′). This result can also

be written u = −(κ/4π)∇�, where

�(x) =
∫

s · n
s3

dA(x′) (11.5)

is the solid angle subtended by the line vortex at point x (ndA is the element of area
on the surface bounded by the line vortex).

Consider a rotor with N blades, each with bound circulation �. The vertical
convection of the wake is (V + v), where V is the climb velocity of the rotor and v is
the induced velocity at the disk. The wake is convected a distance Nh = V+v

�/2π in one
revolution, where h is the distance between wake sheets. The wake pitch angle is
φ = tan−1 V+v

�r . For uniform loading (constant �), the strength of the circumferential
or ring vorticity on the wake surface is γ = �/h, so the induced velocity at the disk
is

v = 1
2
γ = 1

2
�

h
= 1

2
N�

2π/�
1

V + v = T
2ρA(V + v) (11.6)
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which is the momentum theory result; see section 3.7.2. This result is based on the
assumptions of no contraction (a right circular cylinder for the wake); wake spacing
from the velocity at the disk (V + v) (which can be interpreted as the velocity at
the edge of the far wake, (V + w

2 )); and vorticity strength γ independent of axial
distance z. In fact, from mass conservation the wake free surface must contract, and
the convection velocity and vorticity strength must depend on z. The cylindrical
surface of wake vorticity in this model is not a streamline; rather there must be flow
through the wake surface; see Castles (1957) for examples. For hover, half the flow
in the far wake comes through the disk, and half through the wake cylinder.

For nonuniform loading, the vorticity within the wake cylinder is

ω dV =
(
γser − γt (eψ + ez tanφ)

)
r dψ dr dz (11.7)

where (r, ψ, z) are cylindrical coordinates (Figure 11.1), with unit vectors er, eψ , ez.
The trailed, shed, and axial vorticity strengths are obtained by spreading the wake
sheets over the vertical distance h:

γt = − 1
h
∂�

∂r
(11.8)

γs = − 1
hr
∂�

∂ψ
(11.9)

γz = γt tanφ = − tanφ
h

∂�

∂r
= − N

2πr
∂�

∂r
(11.10)

For this general case,

s = (r cosψ − r′ cosψ ′)ex + (r sinψ − r′ sinψ ′)ey + (z − z′)ez (11.11)

s2 = r2 + r′2 − 2rr′C + (z − z′)2 = (r′ − rC)2 + (rS)2 + (z − z′)2 (11.12)

ω = γse′
r − γte′

ψ − γze′
z

= (γt sinψ ′ + γs cosψ ′)ex + (−γt cosψ ′ + γs sinψ ′)ey − γzez

= (−γtS + γsC)er + (−γtC − γsS)eψ − γzez (11.13)

where C = cos(ψ − ψ ′) and S = sin(ψ − ψ ′). The transformation between Carte-
sian and cylindrical coordinates gives ex = er cosψ − eψ sinψ and ey = er sinψ +
eψ cosψ . Then the velocity at an arbitrary point is

ur = − 1
4π

∫ 0

−∞

∫ 2π

0

∫ R

0

1
s3

[
(z − z′)(γtC + γsS)− γzr′S

]
r′ dr′ dψ ′ dz′ (11.14)

uψ = − 1
4π

∫ 0

−∞

∫ 2π

0

∫ R

0

1
s3

[
(z − z′)(−γtS + γsC)+ γz(r − r′C)

]
r′ dr′ dψ ′ dz′ (11.15)

uz = − 1
4π

∫ 0

−∞

∫ 2π

0

∫ R

0

1
s3

[
γt (r′ − rC)− γsrS

]
r′ dr′ dψ ′ dz′ (11.16)

B = 1
4π

∫ 0

−∞

∫ 2π

0

∫ R

0

1
s

[
(−γtS + γsC)er + (−γtC − γsS)eψ − γzez

]
r′ dr′ dψ ′ dz′

(11.17)
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The shed wake terms (γs) are zero if the bound circulation � is constant. The terms
with the factor S = sin(ψ − ψ ′) are zero if γ does not depend on azimuth, since s is
symmetric in (ψ − ψ ′). Analytical results can be obtained for a number of special
cases.

Consider the velocity produced by the circumferential or ring vorticity, for γt

independent of azimuth. With the change of variables ψ − ψ ′ = 2θ − π :

s2 = (z − z)2 + (r + r′)2 − 2rr′(1 + cos(ψ − ψ ′)) = A2(1 − k2 sin2 θ ) (11.18)

where A2 = (z − z)2 + (r + r′)2 and k2 = 4rr′/A2. Then the axial velocity, radial
velocity, and stream function are

uz = − 1
4π

∫ 0

−∞

∫ R

0

{∫ 2π

0

r′ − rC
s3

dψ ′
}
γt r′ dr′ dz′

= − 1
2π

∫ 0

−∞

∫ R

0

{
2r′

A3

∫ π/2

0

(r + r′)− 2r sin2 θ

(1 − k2 sin2 θ )3/2
dθ

}
γtdr′ dz′

= − 1
2π

∫ 0

−∞

∫ R

0

1
Ar

{
Kr − E

r(1 − k2/2)− r′k2/2
1 − k2

}
γt dr′ dz′ (11.19)

ur = − 1
4π

∫ 0

−∞

∫ R

0

{∫ 2π

0

(z − z′)C
s3

dψ ′
}
γt r′ dr′ dz′

= − 1
2π

∫ 0

−∞

∫ R

0

{
2r′(z − z′)

A3

∫ π/2

0

2 sin2 θ − 1
(1 − k2 sin2 θ )3/2

dθ

}
γtdr′ dz′

= 1
2π

∫ 0

−∞

∫ R

0

z − z′

Ar

{
K − E

1 − k2/2
1 − k2

}
γtdr′ dz′ (11.20)

rBψ = − 1
4π

∫ 0

−∞

∫ R

0

{∫ 2π

0

C
s

dψ ′
}
γt r′ dr′ dz′

= − 1
2π

∫ 0

−∞

∫ R

0

{
2rr′

A

∫ π/2

0

2 sin2 θ − 1
(1 − k2 sin2 θ )1/2

dθ

}
γtdr′ dz′

= − 1
2π

∫ 0

−∞

∫ R

0
A
{

K(1 − k2/2)− E
}
γtdr′ dz′ (11.21)

where K and E are complete elliptic integrals:

K(k) =
∫ π/2

0

1√
1 − k2 sin2 θ

dθ (11.22)

E(k) =
∫ π/2

0

√
1 − k2 sin2 θ dθ (11.23)

It is also possible to transform the integration over azimuth into integrals of Bessel
functions.
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For the vorticity γ independent of axial distance, the integration over z′ can be
evaluated. Write a2 = r2 + r′2 − 2rr′C, s2 = (z − z′)2 + a2. Then

ur = − 1
4π

∫ 2π

0

∫ R

0

{
(γtC + γsS)

1√
z2 + a2

− γzr′S
1
a2

[
1 − z√

z2 + a2

]}
r′ dr′ dψ ′

(11.24)

uψ = − 1
4π

∫ 2π

0

∫ R

0

{
(−γtS + γsC)

1√
z2 + a2

+ γz(r − r′C)
1
a2

[
1 − z√

z2 + a2

]}
r′ dr′ dψ ′ (11.25)

uz = − 1
4π

∫ 2π

0

∫ R

0

{
(γt (r′ − rC)− γsrS)

1
a2

[
1 − z√

z2 + a2

]}
r′ dr′ dψ ′ (11.26)

On the axis (r = 0, so a = r′), this becomes

ur = − 1
4π

∫ 2π

0

∫ R

0

{
(γtC + γsS)

r′
√

z2 + r′2 − γzS
[

1 − z√
z2 + r′2

]}
dr′ dψ ′

(11.27)

uψ = − 1
4π

∫ 2π

0

∫ R

0

{
(−γtS + γsC)

r′
√

z2 + r′2 − γzC
[

1 − z√
z2 + r′2

]}
dr′ dψ ′

(11.28)

uz = − 1
4π

∫ 2π

0

∫ R

0

{
γt

[
1 − z√

z2 + r′2

]}
dr′ dψ ′

= − 1
2

∫ R

0
γ t

[
1 − z√

z2 + r′2

]
dr′ (11.29)

using γ t = 1
2π

∫ 2π
0 γtdψ , since for the axial velocity the azimuth integration acts only

on the vorticity strength. If the bound circulation is constant radially, γt = − 1
h
∂�
∂r =

�
h δ(R) gives

uz = − 1
2
�

h

[
1 − z√

z2 + R2

]
(11.30)

See also section 3.7.2; here uz and z are positive upward. At the disk (z = 0 and
r = 0), the downwash is again v = −uz = 1

2
�
h = T

2ρA(V+v) . At the disk (z = 0) for
arbitrary radial station,

ur = − 1
4π

∫ 2π

0

∫ R

0

{
(γtC + γsS)

1
a

− γz
r′S
a2

}
r′ dr′ dψ ′ (11.31)

uψ = − 1
4π

∫ 2π

0

∫ R

0

{
(−γtS + γsC)

1
a

+ γz
r − r′C

a2

}
r′ dr′ dψ ′ (11.32)

uz = − 1
4π

∫ 2π

0

∫ R

0

{
(γt (r′ − rC)− γsrS)

1
a2

}
r′ dr′ dψ ′ (11.33)
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If the bound circulation is constant radially (γt only at the tip) and azimuthally
(γs = 0),

uz = − 1
4π

∫ 2π

0

∫ R

0
γt

r′ − rC
a2

r′ dr′ dψ ′

= − 1
2
�

h
1

2π

∫ 2π

0

R2 − rRC
r2 + R2 − 2rRC

dψ ′

= − 1
2
�

h
1

2π

∫ 2π

0

∞∑
m=0

( r
R

)m
cos m(ψ − ψ ′)dψ ′

= − 1
2
�

h
(11.34)

So for uniform loading (constant bound circulation), the downwash is uniform over
the disk. Using the expansion

S = r′ − rC + irS
r2 + r′2 − 2rr′C

= r′ − rC + irS
(r′ − rC)2 + (rS)2

= 1
r′ − rC − irS

= 1
r′ − rei(ψ−ψ ′)

= 1
r′

1
1 − (r/r′)ei(ψ−ψ ′) = 1

r′

∞∑
m=0

( r
r′
)m

eim(ψ−ψ ′) (11.35)

for r′ > r, and

S = − 1
rei(ψ−ψ ′)

1
1 − (r′/r)e−i(ψ−ψ ′ ) = − 1

rei(ψ−ψ ′)

∞∑
m=0

(
r′

r

)m

e−im(ψ−ψ ′ )

= − 1
r′

∞∑
m=1

(
r′

r

)m

e−im(ψ−ψ ′ ) (11.36)

for r′ < r, it follows that

1
2π

∫ 2π

0

r′(r′ − rC)
r2 + r′2 − 2rr′C

dψ ′

=

⎧⎪⎪⎨⎪⎪⎩
1

2π

∫ 2π
0

∑∞
m=0

( r
r′
)m

cos m(ψ − ψ ′)dψ ′ = 1 r′ > r

1
2π

∫ 2π
0 −∑∞

m=1

(
r′

r

)m

cos m(ψ − ψ ′)dψ ′ = 0 r′ < r
(11.37)

So with a radial variation of bound circulation,

uz = − 1
2

∫ R

0
γt

{
1

2π

∫ 2π

0

r′(r′ − rC)
r2 + r′2 − 2rr′C

dψ ′
}

dr′ = − 1
2

∫ R

r
γtdr′

= 1
2h

∫ R

r

∂�

∂r′ dr′ = −1
2
�(r)

h
(11.38)
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Next consider harmonic variation of the bound circulation: �n = �c cos nψ ′ +
�s sin nψ ′. Because the circulation is periodic, the sheets of wake vorticity are in
phase, and γ can be taken as independent of z. With no radial variation, γt = �n

h δ(R)
and γs = − 1

hr′
d�n
dψ ′ . The axial velocity at the disk is

uz = − 1
4π

∫ 2π

0

{∫ R

0
γt

r′ − rC
r2 + r′2 − 2rr′C

r′ dr′ −
∫ R

0
γs

rS
r2 + r′2 − 2rr′C

r′ dr′
}

dψ ′

= − 1
4π

∫ 2π

0

{
�n

h
R2 − rRC

r2 + R2 − 2rRC
+ 1

h
d�n

dψ ′

∫ R

0

rS
r2 + r′2 − 2rr′C

dr′
}

dψ ′

= − 1
4π

∫ 2π

0

{
�n

h

∞∑
m=0

( r
R

)m
cos m(ψ − ψ ′)

+ 1
h

d�n

dψ ′

∫ r

0

1
r′

∞∑
m=1

(
r′

r

)m

sin m(ψ − ψ ′)dr′

+ 1
h

d�n

dψ ′

∫ R

r

1
r′

∞∑
m=0

( r
r′
)m

sin m(ψ − ψ ′)dr′
}

dψ ′

= − 1
2

{
�n

h
1
2

( r
R

)n
+ �n

h
n
2

[∫ r

0

1
r′

(
r′

r

)n

dr′ +
∫ R

r

1
r′
( r

r′
)n

dr′
]}

= − 1
2

{
�n

h
1
2

( r
R

)n
+ �n

h
1
2

[
2 −

( r
R

)n]}
= − 1

2
�n(ψ)

h
(11.39)

using

1
2π

∫ 2π

0
�n(ψ

′) cos m(ψ − ψ ′)dψ ′ = 1
2
�n(ψ) (11.40)

1
2π

∫ 2π

0

d
dψ ′�n(ψ

′) sin m(ψ − ψ ′)dψ ′ = n
2
�n(ψ) (11.41)

Finally, for both radial and harmonic variation of the bound circulation, γt = − 1
h
∂�
∂r′

and γs = − 1
hr′

∂�
∂ψ ′ , and

uz = − 1
4π

∫ 2π

0

{∫ R

0
γt

r′ − rC
r2 + r′2 − 2rr′C

r′ dr′ −
∫ R

0
γs

rS
r2 + r′2 − 2rr′C

r′ dr′
}

dψ ′

= − 1
4π

∫ 2π

0

{
−
∫ R

0

1
h
∂�

∂r′
r′ − rC

r2 + r′2 − 2rr′C
r′ dr′

+
∫ R

0

1
h
∂�

∂ψ ′
rS

r2 + r′2 − 2rr′C
dr′
}

dψ ′
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= − 1
4π

∫ 2π

0

{∫ r

0

1
h
∂�

∂r′

∞∑
m=1

(
r′

r

)m

cos m(ψ − ψ ′)dr′

−
∫ R

r

1
h
∂�

∂r′

∞∑
m=0

( r
r′
)m

cos m(ψ − ψ ′)dr′

+
∫ r

0

1
hr′

∂�

∂ψ ′

∞∑
m=1

(
r′

r

)m

sin m(ψ − ψ ′)dr′

+
∫ R

r

1
hr′

∂�

∂ψ ′

∞∑
m=0

( r
r′
)m

sin m(ψ − ψ ′)dr′
}

dψ ′

= − 1
2

{∫ r

0

1
h
∂�

∂r′
1
2

(
r′

r

)n

dr′ −
∫ R

r

1
h
∂�

∂r′
1
2

( r
r′
)n

dr′

+
∫ r

0

�

hr′
n
2

(
r′

r

)n

dr′ +
∫ R

r

�

hr′
n
2

( r
r′
)n

dr′
}

= − 1
2

{
�

h
1
2

(
r′

r

)n ∣∣∣r
0
− �

h
1
2

( r
r′
)n ∣∣∣R

r
−
∫ r

0

�

h
n

2r′

(
r′

r

)n

dr′ −
∫ R

r

�

h
n

2r′
( r

r′
)n

dr′

+
∫ r

0

�

hr′
n
2

(
r′

r

)n

dr′ +
∫ R

r

�

hr′
n
2

( r
r′
)n

dr′
}

= − 1
2

{
�

h
1
2

(
r′

r

)n ∣∣∣r
0
− �

h
1
2

( r
r′
)n ∣∣∣R

r

}
= − 1

2
�(r, ψ)

h
(11.42)

It is remarkable that uz = −�/2h is obtained for both uniform and nonuniform
loading. These results were derived by Miller (1964).

In summary, for uniform loading, the vortex theory result for the induced velocity
at the disk of a rotor in axial flight is uniform downwash:

v = −uz = 1
2
�

h
= 1

2
N�

2π/�
1

V + v = T
2ρA(V + v) (11.43)

using (V + v) for the vertical convection h. For nonuniform loading, vortex theory
gives

vn(r, ψ) = −uz = 1
2
�(r, ψ)

h
= 1

2
N�n

2π/�
1

V + v = dTn(r, ψ)/dA
2ρ(V + v) (11.44)

again using h = V+v
N�/2π . This is the perturbation inflow vn due to the perturbation

loading dTn/dA, using the mean axial velocity (V + v) to define the vorticity distri-
bution in the wake cylinder. Equation 11.44 is not the same as differential momentum
theory, which obtains the total induced velocity v(r, ψ) from the total local loading
dT (r, ψ)/dA: 2ρ(V + v)v = dT/dA. Using the local convection h for each wake
cylinder at r leads to equation 3.157.

The induced velocity distribution can be evaluated now for a number of loading
distributions. Consider steady loading with bound circulation distribution� = �0g(r)
(here the radial coordinate r is dimensionless). Using T = ρ�NR2

∫
�r dr, the
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induced velocity is related to the thrust:

v = 1
2
�

h
= T

2ρA(V + v)
g

2
∫ 1

0 gr dr
(11.45)

Thus

v = T
2ρA(V + v) for constant �, g = 1 (11.46)

v = T
2ρA(V + v)

3
2

√
1 − r2 for g = √

1 − r2 (11.47)

v = T
2ρA(V + v)

15
4

r2
√

1 − r2 for g = r2
√

1 − r2 (11.48)

For 1/rev loading distribution,� = (�c cosψ + �s sinψ) f (r), and the moment on the
disk is Mx = ρ�NR3 1

2π

∫ ∫
�(r sinψ)r dr dψ , giving

v = 1
2
�

h
= −My cosψ + Mx sinψ

ρAR(V + v)
f

2
∫ 1

0 f r2dr
(11.49)

Thus

v = −My cosψ + Mx sinψ
ρAR(V + v) 2r for f = r (11.50)

v = −My cosψ + Mx sinψ
ρAR(V + v)

15
4

r
√

1 − r2 for f = r
√

1 − r2 (11.51)

These vortex theory results can be interpreted as a lift deficiency function. The
n-th harmonic of the loading produces the n-th harmonic of the induced velocity,
and bound circulation constant spanwise produces an induced velocity independent
of r. The rotor thrust can be written Tn = TnQ − TnW , where TnQ is the quasistatic
thrust and TnW is the thrust due to the harmonic inflow:

TnW = −N
∫ R

0

1
2
ρ(�r)c 2πvn dr = −1

2
NρA�cvn = −1

4
NρA�c

�n

h
= − π

h/b
Tn

(11.52)
where b = c/2. So Tn = TnQ − π

h/bTn = C′TnQ, with the lift deficiency function

C′ = 1
1 + π

h/b

= 1
1 + πσ

4λ0

(11.53)

for the rotary wing. Note that C′ is independent of the harmonic number. The wake
spacing is given by h/b = V+v

Nb(�/2π) = 4λ0
σ

, with λ0 the mean flow through the disk.
Remarkably, this lift deficiency function is identical to the function obtained using a
two-dimensional, continuous wake model (equation 10.207) and is the low-frequency
approximation to Loewy’s function for harmonic loading (equations 10.196 and
10.198). For nonuniform loading (bound circulation varying radially as well as
azimuthally), vortex theory gives nonuniform induced velocity that depends only
on the local load. The total section lift is Ln = LnQ − LnW = LnQ − 1

2ρ(�r)c2πvn =
LnQ − πσ

4λ0
Ln, or Ln = C′LnQ with

C′ = 1
1 + πσ

4λ0

(11.54)
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again. Since the lift deficiency function is independent of r as well as of frequency,
the loading can be integrated over the span to obtain Tn = C′TnQ, as for the case of
constant bound circulation.

The vortex theory model for the wake in forward flight is a skewed cylinder
(figure 11.1); see Coleman, Feingold, and Stempin (1945) and Drees (1949). The
wake skew angle χ is obtained from the velocity components at the disk:

tanχ = V cos i
V sin i + v = μ

λ
(11.55)

So χ = 0 in climb (i = 90◦), and approaches χ = 90◦ in high-speed forward flight
(i ∼= 0). The convection along the wake axis gives h = U

N�/2π , using the resultant
velocity U 2 = (V cos i)2 + (V sin i + v)2.

For nonuniform loading, the vorticity within the wake cylinder is now

ω dV =
(
γser − γteψ − γz(ez cosχ − ex sinχ)

)
r dψ dr dζ (11.56)

where dζ = dz/ cosχ . For this general case,

s = (r cosψ − r′ cosψ ′ − (z − z′) tanχ)ex + (r sinψ − r′ sinψ ′)ey + (z − z′)ez

(11.57)

s2 = r2 + r′2 − 2rr′C − 2(r cosψ − r′ cosψ ′)(z − z′) tanχ + (z − z′)2(1 + tan2 χ)

(11.58)

ω = (γt sinψ ′ + γs cosψ ′ + γz sinχ)ex + (−γt cosψ ′ + γs sinψ ′)ey − γz cosχez

(11.59)

and

(s × ω)z = γt
(
r′ − rC + (z − z′) tanχ cosψ ′)+ γs

(−rS − (z − z′) tanχ sinψ ′)
+ γz

(−r sinψ + r′ sinψ ′) sinχ (11.60)

The z-component of the induced velocity is

uz = − 1
4π

∫ 0

−∞

∫ 2π

0

∫ R

0

1
s3 cosχ

[
(s × ω)z

]
r′ dr′ dψ ′ dz′ (11.61)

For the vorticity γ independent of axial distance, the integration over z′ can be
performed. The induced velocity at the disk, due to just γt , is

uz = − 1
4π

∫ 2π

0

∫ R

0
γt

[
1 − r2 − rr′ cos(ψ − ψ ′)− rs cosψ sinχ

s2 − s(r cosψ − r′ cosψ ′) sinχ

]
dr′ dψ ′ (11.62)

For uniform loading, γt = �
h δ(R):

uz = −v0
1

2π

∫ 2π

0

[
1 − r2 − rR cos(ψ − ψ ′)− rs cosψ sinχ

s2 − s(r cosψ − R cosψ ′) sinχ

]
dψ ′ (11.63)

with v0 = 1
2
�
h . On the longitudinal axis, ψ = 0:

uz = −v0
1

2π

∫ 2π

0

[
1 − r2 − rR cosψ ′ − rs sinχ

s2 − s(r − R cosψ ′) sinχ

]
dψ ′ (11.64)
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where s2 = r2 + R2 − 2rR cosψ ′ now. So at the center of the disk (r = 0), uz = −v0.
The gradient of the induced velocity along the longitudinal axis, at the center of the
disk is

duz

dr
= −v0

R
1

2π

∫ 2π

0

cosψ ′ + sinχ
1 + cosψ ′ sinχ

dψ ′ = −v0

R
1 − cosχ

sinχ
= −v0

R
tan

χ

2
(11.65)

See Coleman, Feingold, and Stempin (1945). Section 5.2.1 presented results from
vortex theory in forward flight.

11.2 Potential Theory

Consider incompressible, potential flow about a rotor, which is modeled as an actua-
tor disk that can support a pressure jump. An analytical solution can be obtained for
a circular wing or disk by writing Laplace’s equation in ellipsoidal coordinates and
expanding the potential in associated Legendre functions (spherical harmonics). The
derivation follows Kinner (1937), Mangler (1948a, 1948b), and Mangler and Squire
(1950).

Let � = p/ρ be the perturbation pressure or acceleration potential and xi the
flow field coordinates. The acceleration potential satisfies Laplace’s equation ∇2� =
0, with boundary conditions that the perturbation pressure is zero at infinity and
the pressure discontinuity on the rotor disk is the loading. Figure 11.2 shows the
geometry. The rotor wake is a skewed cylinder in a free stream V . The wake skew
angle is χ measured from the z-axis or i measured from the disk plane. All lengths
are dimensionless, scaled with the rotor radius R. The Cartesian coordinates are
(x, y, z). The origin is at the center of the rotor disk, and x–y is the disk plane. The
axes are moving with the rotor disk, with the x-axis downstream and the z-axis in
the positive thrust direction. The coordinate ξ is aligned with the velocity vector,
positive upstream. The rotor wake is a skewed cylinder. Figure 11.2 also shows the
ellipsoidal coordinates (ν, η, θ ), defined as follows:

x =
√

1 − ν2
√

1 + η2 cos θ (11.66)

y =
√

1 − ν2
√

1 + η2 sin θ (11.67)

z = νη (11.68)

θ = tan−1(y/x) (11.69)

ν = signz√
2

√
1 − s +

√
(1 − s)2 + 4z2 (11.70)

s = x2 + y2 + z2 = 1 − ν2 + η2

η = z/ν (11.71)

The range of the ellipsoidal coordinates is −1 ≤ ν ≤ 1, 0 ≤ η ≤ ∞, 0 ≤ θ ≤ 2π , with
signν = signz. The variable θ is the disk azimuth angle, measured from the x-axis. On
the rotor disk, η = 0 so ν = ±

√
1 − (x2 + y2) = ±√

1 − r2. In the x–y plane outside
the rotor disk, ν = 0 so η = √

r2 − 1. On the z-axis, ν = ±1 so η = |z|.
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Figure 11.2. Geometry and elliptical coordinates.

In ellipsoidal coordinates (and dropping a factor of (ν2 + η2)−1), Laplace’s equa-
tion ∇2� = 0 is

∂

∂ν

[
(1 − ν2)

∂�

∂ν

]
+ ∂

∂η

[
(1 + η2)

∂�

∂η

]
+ ∂

∂θ

[
ν2 + η2

(1 − ν2)(1 + η2)

∂�

∂θ

]
= 0 (11.72)

Using the method of separation of variables, write � = �1(ν)�2(η)�3(θ ). Then

∂

∂ν

[
(1 − ν2)

∂�1

∂ν

]
+
[
− m2

1 − ν2
+ n(n + 1)

]
�1 = 0 (11.73)

∂

∂η

[
(1 + η2)

∂�2

∂η

]
+
[

m2

1 + η2
− n(n + 1)

]
�2 = 0 (11.74)

∂2�3

∂θ 2
+ m2�3 = 0 (11.75)

The solution for �3 is periodic if m is an integer. The solution for �1 is finite for
ν = ±1 (on the z-axis) if n is an integer (n ≥ m). The solutions are �1 = Pm

n (ν)

and Qm
n (ν), the associated Legendre function of the first kind; �2 = Pm

n (iη) and
Qm

n (iη), the associated Legendre function of the second kind; and �3 = sin(mθ ) or
cos(mθ ). This family of distributions does not encompass all solutions. In particular,
a uniformly loaded disk (constant pressure) is not included.
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The associated Legendre functions Pm
n (ν) (n ≥ m) are related to Legendre poly-

nomials Pn(ν):

Pm
n (ν) = (−1)m (1 − ν2)m/2

dm

dνm
Pn(ν) (11.76)

The following stable recurrence relation can be used to evaluate Pm
n (ν):

Pm
m = (−1)m (2m − 1)!! (1 − ν2)m/2 (11.77)

Pm
m+1 = ν (2m + 1)Pm

m (11.78)

(k − m)Pm
k = ν (2k − 1)Pm

k−1 − (k + m − 1)Pm
k−2 (11.79)

The double-factorial notation means that for n even/odd, n!! is the product of all
even/odd integers less than or equal to n:

n!! =
{

n(n − 2)(n − 4) . . . 2 n even

n(n − 2)(n − 4) . . . 1 n odd
(11.80)

with 0!! = 1 and 1!! = 1. The first few associated Legendre functions are

P0
1 (ν) = ν (11.81)

P0
3 (ν) = 1

2
(5ν3 − 3ν) (11.82)

P1
2 (ν) = −3ν

√
1 − ν2 (11.83)

Q0
1(iη) = η

(π
2

− tan−1 η
)

− 1 (11.84)

Q0
3(iη) = −1

2
η(5η2 + 3)

(π
2

− tan−1 η
)

+ 5
2
η2 + 2

3
(11.85)

Q1
2(iη) = −3η

√
1 + η2

(π
2

− tan−1 η
)

+ 3η2 + 2√
1 + η2

(11.86)

The functions are orthogonal:∫ 1

0
Pm

n (ν)P
m
n′ (ν)dν =

{
0 n �= n′

1
2n+1

(n+m)!
(n−m)! n = n′ (11.87)

The Legendre polynomial Pn(ν) contains even/odd powers of ν for n even/odd. So
dmPn/dνm has (1, . . . , νn−m) terms for n and m either both odd or both even and
(ν, . . . , νn−m) terms for only n or m odd (n + m odd). The factor (1 − ν2)m/2 = rm on
the rotor disk, where ν = ±√

1 − r2.
Qm

n (ν) is infinite on ν = ±1 (the z-axis), and Pm
n (iη) is infinite for η → ∞. So

the solution is a series in the terms Pm
n (ν)Q

m
n (iη). On the rotor disk, η = 0 and ν =

±√
1 − r2, with ν > 0 above the disk and ν < 0 below the disk. Qm

n (iη) is continuous
at η = 0. So the pressure difference on the disk is

�p
ρ

= �(ν < 0, η = 0)−�(ν > 0, η = 0) ∼ Pm
n (ν < 0)− Pm

n (ν > 0) (11.88)

So Pm
n (ν) with n + m even does not produce a pressure discontinuity on the disk,

since it is an even function of ν. Only terms for n + m odd are retained, and�p/ρ =
−2�(ν > 0, η = 0). Also, Pm

n (ν) is only defined for n ≥ m.
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Thus the solution of Laplace’s equation is a series for the acceleration potential:

� = p
ρ

= (�R)2
∞∑

m=0

∞∑
n=m+1,m+3,...

Pm
n (ν)Q

m
n (iη)

(
cm

n cos mθ + dm
n sin mθ

)
(11.89)

and hence for the rotor loading:

�p = −2ρ(�R)2
∞∑

m=0

∞∑
n=m+1,m+3,...

Pm
n (ν)Q

m
n (i0)

(
cm

n cos mθ + dm
n sin mθ

)
(11.90)

The coefficients cm
n and dm

n are constant for steady loading and functions of time for
unsteady loading. The coordinates are dimensionless, so cm

n and dm
n are scaled with

the tip speed squared. The bound circulation is N� = 2π
ρ�

dT
dA = 2π

�

−�p
ρ

.
The thrust is obtained by integrating �p over the rotor disk, for m = 0:

T =
∫
�p dA = R2

∫ 2π

0

∫ 1

0

(
plower − pupper

)
r dr dθ

= ρ(�R)22πR2
∑

n=1,3,...

Q0
n(i0)c

0
n

∫ 1

0

(
P0

n (ν)lower − P0
n (ν)upper

)
r dr

= ρ(�R)22πR2
∑

n=1,3,...

Q0
n(i0)c

0
n

(
−
∫ 0

−1
P0

n (ν)lowerν dν +
∫ 0

1
P0

n (ν)upperν dν

)

= −ρ(�R)22πR2
∑

n=1,3,...

Q0
n(i0)c

0
n

∫ 1

−1
Pm

n (ν)ν dν

= −ρ(�R)22πR2Q0
1(i0)c

0
1

2
3

= ρA(�R)2
4
3

c0
1 (11.91)

or c0
1 = 3

4CT . The thrust is produced solely by the P0
1 (ν) = ν = √

1 − r2 loading term.
It is conventional to consider a pressure distribution that is zero at the center, as well
as at the tips, by including the n = 3 term. At r = 0 or ν = 1,

P0
1 (1)Q

0
1(i0)c

0
1 + P0

3 (1)Q
0
3(i0)c

0
3 = 0 (11.92)

So c0
3 = 3

2 c0
1 = 9

8CT , and

�p
ρ(�R)2

= 2
(

3
4

P1(ν)− P0
3 (ν)

)
CT = 15

4
ν(1 − ν2)CT = 15

4
r2
√

1 − r2 CT (11.93)

is the loading.
The pitch moment My (positive front edge up) and roll moment Mx (positive

right edge up) are

−My =
∫
�p x dA = R3

∫ 2π

0

∫ 1

0

(
plower − pupper

)
(r cos θ )r dr dθ

= ρ(�R)2πR3
∑

n=2,4,...

Q1
n(i0)c

1
n

∫ 1

0

(
P1

n (ν)lower − P1
n (ν)upper

)
r2dr

= −ρ(�R)2πR3
∑

n=2,4,...

Q1
n(i0)c

1
n

∫ 1

−1
P1

n (ν)
√

1 − ν2ν dν

= ρ(�R)2πR3Q1
2(i0)c

1
2

4
5

= ρAR(�R)2
8
5

c1
2 (11.94)
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Mx =
∫
�p y dA = R3

∫ 2π

0

∫ 1

0

(
plower − pupper

)
(r sin θ )r dr dθ

= ρ(�R)2πR3
∑

n=2,4,...

Q1
n(i0)d

1
n

∫ 1

0

(
P1

n (ν)lower − P1
n (ν)upper

)
r2dr

= −ρ(�R)2πR3
∑

n=2,4,...

Q1
n(i0)d

1
n

∫ 1

−1
P1

n (ν)
√

1 − ν2ν dν

= ρ(�R)2πR3Q1
2(i0)d

1
2

4
5

= ρAR(�R)2
8
5

d1
2 (11.95)

or c1
2 = − 5

8CMy and d1
2 = 5

8CMx. The moments are produced solely by the P1
2 =

−3ν
√

1 − ν2 = −3r
√

1 − r2 loading term.
In summary, the solution that produces thrust is

� = (�R)2
[

P0
1 (ν)Q

0
1(iη)+

3
2

P0
3 (ν)Q

0
3(iη)

]
3
4

CT (11.96)

�p = 2ρ(�R)2
[
P0

1 (ν)− P0
3 (ν)

]3
4

CT (11.97)

where P1
0 = ν = √

1 − r2 and P0
1 − P0

3 = 5
2 (ν − ν3) = 5

2 r2
√

1 − r2. The P0
3 term is

included so the loading is zero at the center of the disk. The solution that produces
moments is

� = (�R)2
[
P1

2 (ν)Q
1
2(iη)

]5
8

(
−CMy cos θ + CMx sin θ

)
(11.98)

�p = 2ρ(�R)2
[
−P1

2 (ν)
]5

4

(
−CMy cos θ + CMx sin θ

)
(11.99)

where −P1
2 = 3ν

√
1 − ν2 = 3r

√
1 − r2.

The velocities are obtained from the momentum equation. For small distur-
bances relative to the velocity V (Figure 11.2), the linearized equation of momentum
conservation is

∂ui

∂t
− V

∂ui

∂ξ
= −∂�

∂xi
(11.100)

where ui are the components of the perturbation velocity; and xi the flow field
coordinates. The convection term has been written in terms of the coordinate ξ :
ζ = x cosχ + z sinχ and ξ = −x sinχ + z cosχ , so

Vx
∂

∂x
− Vz

∂

∂z
= V

(
sinχ

∂

∂x
− cosχ

∂

∂z

)
= −V

∂

∂ξ
(11.101)

For steady flow, the equation for the normal velocity is

V
∂uz

∂ξ
= ∂�

∂z
(11.102)

Integrating � along a streamline ξ from upstream to the disk gives the downwash
v = −uz:

v(x0, y0) = 1
V

∫ ∞

−x0 sinχ

∂�

∂z
dξ (11.103)
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using coordinates (x0, y0) on the rotor disk: x0 = r cosψ and y0 = r sinψ . The inte-
gration is over ξ for fixed ζ = x0 cosχ , so

x = x0 cos2 χ − ξ sinχ (11.104)

y = y0 (11.105)

z = x0 cosχ sinχ + ξ cosχ (11.106)

from which elliptical coordinates (ν, η, θ ) are determined, and then

R
∂�

∂z
= 1
ν2 + η2

[
η(1 − ν2)

∂

∂ν
+ ν(1 + η2)

∂

∂η

]
� (11.107)

The induced velocity λ = v/�R is represented by the truncated series:

v = v0 + vcr cosψ + vsr sinψ (11.108)

where

v0 = 1
π

∫ 2π

0

∫ 1

0
vr dr dψ = 1

A

∫
v dA (11.109)

vc = 4
π

∫ 2π

0

∫ 1

0
vr2 cosψ dr dψ = 4

A

∫
vr cosψ dA (11.110)

vs = 4
π

∫ 2π

0

∫ 1

0
vr2 sinψ dr dψ = 4

A

∫
vr sinψ dA (11.111)

are the inflow variables.
For axial flow (χ = 0), ξ = z and at the disk z = 0 or η = 0. So

v = 1
V

∫ ∞

0

∂�

∂z
dz = − 1

V
�(η = 0) = 1

2ρV
�p (11.112)

This result does not depend on the solution for �, and hence is independent of the
loading distribution. Compare with the vortex theory result

v(r, ψ) = 1
2
�(r, ψ)

h
= dT (r, ψ)/dA

2ρ(V + v) = �p
2ρ(V + v) (11.113)

(equation 11.44). The inflow variables are thus

v0 = 1
2ρV

1
A

∫
�p dA = T

2ρAV
(11.114)

vc = 1
2ρV

4
A

∫
r cosψ�p dA = − 2My

ρARV
(11.115)

vs = 1
2ρV

4
A

∫
r sinψ�p dA = 2Mx

ρARV
(11.116)

or in coefficient form ⎛⎝ λ0

λc

λs

⎞⎠ = 1
V

⎡⎣ 1
2 0 0
0 2 0
0 0 2

⎤⎦⎛⎝ CT

−CMy

CMx

⎞⎠ (11.117)
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for axial flow (V = μz). This result holds for the loading distributions from the
separation of variables solution

�p
ρ(�R)2

= 15
4

r2
√

1 − r2CT + 15
2

r
√

1 − r2
(
−CMy cos θ + CMx sin θ

)
(11.118)

or
�p

ρ(�R)2
= 3

2

√
1 − r2CT + 15

2
r
√

1 − r2
(
−CMy cos θ + CMx sin θ

)
(11.119)

and for the simpler loading distribution

�p
ρ(�R)2

= CT + 4r
(
−CMy cos θ + CMx sin θ

)
(11.120)

From both potential theory and vortex theory, the induced velocity depends only on
the local pressure on the actuator disk in axial flight. So uniform plus linear loading
distribution on the disk (equation 11.120) corresponds to uniform plus linear inflow
distribution (equation 11.108). The potential theory result is a perturbation relative
to the rotor velocity V . To cover low speed, including hover, vortex theory implies
replacing V with V + v. Vortex theory gives the perturbation inflow due to the
perturbation loading for fixed wake geometry, which is determined by the axial
convection velocity V + v. That is an appropriate model for moment perturbations,
but low-frequency thrust changes should approach the momentum theory result.
Perturbing (V + v)v = T/2ρA gives

δv = δT
2ρA(V + 2v)

(11.121)

Hence for the thrust loading, replacing V with V + 2v extends the potential theory
result to hover.

For edgewise flow (χ = 90◦), ξ = −x and at the disk z = 0 or η = 0. The inte-

gration over ξ goes from x = −∞ to −
√

1 − y2
0 ahead of the rotor (ν = 0) and from

x = −
√

1 − y2
0 to x0 on the disk (η = 0). So

v = 1
V

∫ ∞

−x0

∂�

∂z
dξ = 1

V

∫ x0

−∞

∂�

∂z
dx

= 1
V

[∫ −
√

1−y2
0

−∞

∂�

∂z

∣∣∣
ν=0

dx +
∫ x0

−
√

1−y2
0

∂�

∂z

∣∣∣
η=0

dx

]
(11.122)

Integrating over r and ψ , the inflow variables are⎛⎝ λ0

λc

λs

⎞⎠ = 1
V

⎡⎢⎣
1
2 − 15π

64 0
15π
64 0 0

0 0 4

⎤⎥⎦
⎛⎝ CT

−CMy

CMx

⎞⎠ (11.123)

using the loading from equation 11.118. If instead the loading from equation 11.119
is used, the only change is λc = 1

V
3π
8 CT .

For arbitrary flow angle, Mangler (1948b) found the Fourier series for the
induced velocity produced by thrust:

v = 1
V

[
3
4

√
1 − r2 + 3π

8
r cosψ

√
1 − cosχ
1 + cosχ

]
CT (11.124)
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for the loading of equation 11.119, or

v = 1
V

[
15
8

r2
√

1 − r2 + 15π
128

(9r2 − 4)r cosψ

√
1 − cosχ
1 + cosχ

]
CT (11.125)

for the loading of equation 11.118. The longitudinal inflow variation, ∂λc/∂CT , is
proportional to √

1 − cosχ
1 + cosχ

= tan
χ

2
(11.126)

as from vortex theory. Pitt (1980) found the inflow due to moments for arbitrary
flow angle, completing the matrix:

⎛⎝ λ0

λc

λs

⎞⎠ = 1
V

⎡⎢⎢⎢⎣
1
2 − 15π

64

√
1−cosχ
1+cosχ 0

15π
64

√
1−cosχ
1+cosχ

4 cosχ
1+cosχ 0

0 0 4
1+cosχ

⎤⎥⎥⎥⎦
⎛⎝ CT

−CMy

CMx

⎞⎠ (11.127)

with V =
√
μ2 + μ2

z and tanχ = μ/μz (for large velocity). Note 2 cosχ
1+cosχ = 1 − X 2 and

2
1+cosχ = 1 + X 2, where X =

√
1−cosχ
1+cosχ .

The potential theory result is a perturbation relative to the velocity V =√
μ2 + μ2

z. To be useful for helicopter rotors, this result must be extended to the
case of small rotor velocity, including hover, by using an effective velocity Veff in
place of V in the relation between inflow and loading variables. Momentum theory
gives the mean induced velocity due to thrust:

λi = CT

2
√
μ2 + λ2

(11.128)

whereλ = μz + λi. Vortex theory interprets the denominator as the mean convection
velocity or mean wake separation, so ∂λi/∂CT = 1/(2

√
μ2 + λ2), which implies

Veff =
√
μ2 + λ2 (11.129)

using the mean induced velocity in λ = μz + λi. Then for hover Veff = |λi| and for
forward flight Veff = μ. Equation 11.129 is appropriate for harmonic variation of the
loading, including hub moments. Differential momentum theory allows the convec-
tion velocity and wake separation to vary with thrust:

∂λi

∂CT
= 1

2
√
μ2 + λ2

− CTλ

2(μ2 + λ2)3/2

∂λi

∂CT
= 1

2

√
μ2 + λ2

μ2 + λ(λ+ λi)
(11.130)

which implies

Veff = μ2 + λ(λ+ λi)√
μ2 + λ2

(11.131)

Then for hover Veff = 2|λi|, and for forward flight Veff = μ. Equation 11.131 is the
correct limit for slow variation of the thrust. The wake skew angle is tanχ = μ/|λ|.
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Then cosχ = |λ|/
√
μ2 + λ2, and

tan
χ

2
=
√

1 − cosχ
1 + cosχ

= μ√
μ2 + λ2 + |λ|

(11.132)

1
1 + cosχ

=
√
μ2 + λ2√

μ2 + λ2 + |λ|
(11.133)

cosχ
1 + cosχ

= |λ|√
μ2 + λ2 + |λ|

(11.134)

Applying differential momentum theory δλ = 1
2Veff
δCT to the loading of equation

11.120 gives ⎛⎝ λ0

λc

λs

⎞⎠ = 1
Veff

⎡⎣ 1
2 0 0
0 2 0
0 0 2

⎤⎦⎛⎝ CT

−CMy

CMx

⎞⎠ (11.135)

It is still best to use Veff =
√
μ2 + λ2 for the moment terms. Differential momentum

theory and potential theory give the same results for axial flow, but are different for
forward flight.

For unsteady flow, the linearized momentum equation for uz = −v is

∂v

∂t
− V

∂v

∂ξ
= ∂�

∂z
(11.136)

A result for the time delay of the inflow response to loading is obtained by writing
the momentum equation for axial flow (χ = 0) and hover (V = 0):

v̇ = ∂�

∂z

∣∣∣
z=0

(11.137)

on the rotor disk. Then the time derivatives of the inflow variables are

v̇0 = 1
π

∫ 2π

0

∫ 1

0

(
∂�

∂z

∣∣∣
z=0

)
r dr dψ = 1

M0
CT (11.138)

v̇c = 4
π

∫ 2π

0

∫ 1

0

(
∂�

∂z

∣∣∣
z=0

)
r2 cosψ dr dψ = − 1

Mc
CMy (11.139)

v̇s = 4
π

∫ 2π

0

∫ 1

0

(
∂�

∂z

∣∣∣
z=0

)
r2 sinψ dr dψ = 1

Ms
CMx (11.140)

Although lacking rigor (V = 0 is not a meaningful case for this problem), the result
gives the same values as the apparent mass of an impermeable disk: M0 = 8

3π or
M0 = 128

75π (for the loadings of equations 11.119, and 11.118, respectively); and Mc =
Ms = 64

45π .

11.3 Dynamic Inflow

The wake-induced velocities at the rotor disk play an important role in rotor unsteady
aerodynamics and therefore must be accounted for in determining both the periodic
and transient blade loading. The best representation for the wake is a vortex model,
but for stability analysis and real-time simulations a finite-state model of the wake is
needed. A dynamic inflow model is a set of first-order differential equations relating
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inflow variables and aerodynamic loading variables. The simplest model has three
inflow states, consisting of uniform (λ0) and linear (λc, λs) perturbations of the
wake-induced downwash at the rotor disk:

λ = λ0 + λcr cosψ + λsr sinψ (11.141)

The loading variables are the integrated section lift of all blades: thrust CT , pitch
moment CMy, and roll moment CMx (aerodynamic contributions only). The dynamic
inflow equations are

LM

⎛⎝ λ̇0

λ̇c

λ̇s

⎞⎠+
⎛⎝ λ0

λc

λs

⎞⎠ = L

⎛⎝ CT

−CMy

CMx

⎞⎠ (11.142)

Dynamic inflow is a global, low frequency model for the wake-induced velocity. The
model is generally sufficient to capture wake effects on the dynamic behavior of the
lowest-frequency blade modes and the aircraft flight dynamics.

Pitt and Peters (1981) developed dynamic inflow based on the potential theory
solution of Mangler and Squire (1950), giving the derivative matrix:

L = 1
Veff

⎡⎢⎢⎢⎣
1
2 − 15π

64

√
1−cosχ
1+cosχ 0

15π
64

√
1−cosχ
1+cosχ

4 cosχ
1+cosχ 0

0 0 4
1+cosχ

⎤⎥⎥⎥⎦ (11.143)

(see equation 11.127), with

Veff = μ2 + λ(λ+ λi)√
μ2 + λ2

(11.144)

for the thrust terms and

Veff =
√
μ2 + λ2 (11.145)

for the moment terms; Peters (1974) and Pitt and Peters (1981) used equation 11.144
for all terms of L. The mass matrix was obtained from the virtual mass of an imper-
meable disk in translation or rotation:

M =

⎡⎢⎣
128
75π 0 0

0 64
45π 0

0 0 64
45π

⎤⎥⎦ (11.146)

The time lag is given by the matrix LM; the values are supported by experimental
data. Omitting the time lag produces a quasistatic model, the effects of which are
given by a constant lift deficiency function C′. From section 6.3, the aerodynamic
thrust of the rotor is

CT

σa
= 1

2π

∫ 2π

0

∫ 1

0

Fz

ac
dr dψ (11.147)

Substituting δ(Fz/ac) = − 1
2 uT δλ ∼= − 1

2 rλ0,

CT

σa
=
(

CT

σa

)
QS

− 1
4
λ0 =

(
CT

σa

)
QS

− 1
4

1
2Veff

CT = C′
(

CT

σa

)
QS

(11.148)
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The subscript QS means the quasistatic loading, consisting of all loads except those
due to the wake-induced velocities. The lift deficiency function is

C′ = 1
1 + σa

8Veff

=
{ 1

1+σa/16λi
hover

1
1+σa/8μ forward flight

(11.149)

The aerodynamic hub moments are

−2CMy

σa
= 1
π

∫ 2π

0

∫ 1

0
cosψ

Fz

ac
r dr dψ (11.150)

2CMx

σa
= 1
π

∫ 2π

0

∫ 1

0
sinψ

Fz

ac
r dr dψ (11.151)

Substituting δ(Fz/ac) = − 1
2 uTδλ ∼= − 1

2 r2(λx cosψ + λy cosψ),⎛⎜⎝− 2CMy

σa
2CMx

σa

⎞⎟⎠ =

⎛⎜⎝− 2CMy

σa
2CMx

σa

⎞⎟⎠
QS

− 1
8

(
λc

λs

)

=

⎛⎜⎝− 2CMy

σa
2CMx

σa

⎞⎟⎠
QS

− 1
8

1
Veff

⎛⎜⎝− 4 cosχ
1 + cosχ

CMy

4
1 + cosχ

CMx

⎞⎟⎠

= C′

⎛⎜⎝− 2CMy

σa
2CMx

σa

⎞⎟⎠
QS

(11.152)

The lift deficiency function for pitch moment is

C′ = 1

1 + σa
8Veff

2 cosχ
1+cosχ

=
{

1
1+σa/8λi

hover

0 forward flight
(11.153)

and for roll moment is

C′ = 1

1 + σa
8Veff

2
1+cosχ

=
{ 1

1+σa/8λi
hover

1
1+σa/4μ forward flight

(11.154)

The aerodynamic thrust is reduced by the wake effects, but the influence of the wake
in hover is greater for moments because of the shed vorticity. Typical values of these
lift deficiency functions are C′ ∼= 0.8 for forward flight; C′ ∼= .7 for thrust changes
in hover; and C′ ∼= 0.5 for moment changes in hover. If the dominant aerodynamic
forces are lift perturbations caused by angle-of-attack changes, then the aerodynamic
influence is described by the blade Lock number γ = ρacR4/Ib, which contains the
lift-curve slope. Then the effects of the quasistatic dynamic inflow model are largely
represented by an effective Lock number: γe = γC′ (Curtiss and Shupe (1971)).
However, often the time lag is needed to properly represent the effects of the
unsteady aerodynamics.

The dynamic inflow model must also include the effects of the rotor motion:

LM

⎛⎝ λ̇0

λ̇c

λ̇s

⎞⎠+
⎛⎝ λ0

λc

λs

⎞⎠ = L

⎛⎝ CT

−CMy

CMx

⎞⎠+ U
(
δμ

δμz

)
+ A

(
α̇yTPP

−α̇xTPP

)
(11.155)
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Perturbing the momentum theory result λi = CT/2
√
μ2 + λ2 gives

δλ = − λi(μδμ+ λδμz)

μ2 + λ(λ+ λi)
=

⎧⎪⎪⎨⎪⎪⎩
− 1

2δμz hover

− λi
μz+2λi

δμz axial

−λi
μ
δμ− λλi

μ2 δμz forward flight

(11.156)

or

U =
⎡⎣− λiμ

μ2+λ(λ+λi)
− λiλ

μ2+λ(λ+λi)

0 0
0 0

⎤⎦ (11.157)

for the influence of in-plane and normal changes of the rotor velocity.
The last term in equation 11.155 is the effect of tip-path-plane pitch and roll

rate: α̇yTPP = α̇y − β̇1c and α̇xTPP = α̇x + β̇1s. Assuming axisymmetric response of the
inflow to tip-path-plane angular motion gives

A =
⎡⎣ 0 0

KR 0
0 KR

⎤⎦ (11.158)

These terms have been identified with the curvature of the wake geometry in hover
and low-speed flight. KR > 1 changes the sign of the low-frequency off-axis response
of the flapping to shaft angular rate, a phenomenon identified in aircraft off-axis
pitch and roll rate response to cyclic control in hover. In flight tests of helicopter
low-frequency control, on-axis response (pitch rate due to longitudinal cyclic and
roll rate due to lateral cyclic) has a phase of 0◦ whereas the off-axis response (pitch
rate due to lateral cyclic and negative roll rate due to longitudinal cyclic) has a phase
of 180◦. Using momentum theory or dynamic inflow, the magnitude and phase of
the on-axis response are predicted well, but the predicted off-axis phase is 0◦. See
Takahashi (1990), Harding and Bass (1990), Chaimovich, Rosen, Rand, Mansur, and
Tischler (1992), and Arnold, Keller, Curtiss, and Reichert, (1998). Vortex theory
provides a simple estimate of the effect. The induced velocity in hover is the ratio of
the loading and the vertical convection of the wake: v = �/2h = T/2ρAvconv. From
v = κ√T/2ρA, with κ the factor increasing the induced velocity due to nonuniform
loading, vconv = 1

κ

√
T/2ρA. Here the loading is fixed and the vertical convection is

perturbed by the tip-path-plane motion: δvconv = −α̇yx + α̇xy. So

λcx + λsy = δv = − T
2ρAv2

conv
δvconv = −κ2δvconv = −κ2(−α̇yx + α̇xy) (11.159)

This result, KR = κ2, gives the sign of the effect but underestimates the magnitude.
For hover, KR = 1.5 to 2.2 has been found using vortex theory, free wake anal-

ysis, and parameter identification. Keller (1996) used vortex theory to calculate the
induced velocity along the rotor center-line in hover and found an approximately
linear variation (λc) due to pitch rate, with KR = 1.5. Including this effect in the
dynamic inflow model changed the sign of the off-axis response (pitch rate due to
lateral cyclic and roll rate due to longitudinal cyclic), as found in flight test. Keller
and Curtiss (1998) used the tip-path-plane rate instead of just the shaft rate. For
forward flight, they found KR

∼= 0 by μ = 0.1 to 0.15. Bagai, Leishman, and Park
(1999) found KR = 1.75 to 2.25 using a free wake analysis. Fletcher (1995) predicted
the off-axis response by introducing a phase lag in the blade aerodynamic loads,
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equal to an azimuthal phase shift of ψa in the non-rotating frame. By identifica-
tion from flight test data, ψa = 39◦ in hover and ψa = 15◦ at 80 knots. Mansur and
Tischler (1998) identified ψa = 39◦ in hover and ψa = 16◦ at μ = 0.19 for the UH-
60A, and ψa = 36◦ in hover and ψa = 19◦ at μ = 0.14 for the AH-64. The phase lag
approaches the two-dimensional value (ψa

∼= 11◦) for μ = 0.25. Schulein, Tischler,
Mansur, and Rosen (2002) found by identification for the UH-60A eitherψa = 43 to
45◦ or KR = 1.7 to 2.0. Fixingψa = 11◦, they found KR = 1.4. Arnold, Keller, Curtiss,
and Reichert (1998) identified ψa = 38◦ or KR = 2.2 from UH-60A flight test data.
Kramer, Gimonet, and von Grunhagen (2002) identified from Bo-105 flight test data
KR = 2.5 in hover and KR = 1.1 at 80 knots for the roll response, and KR = 1.7 in
hover and KR = 1.6 at 80 knots for the pitch response.

A higher-order dynamic wake model for rotor induced velocity was developed
by Peters and He (1995). This is an unsteady wake theory for lifting rotors, based on
the acceleration potential for an actuator disk. The induced inflow at the rotor disk
is expressed in terms of a Fourier series azimuthally and polynomials radially, so the
inflow velocity is defined by the degree of freedom vector α. The rotor loading is
represented by the generalized force vector τ . The dynamic wake model is a system
of first-order, ordinary differential equations for the inflow states α:

LMα̇ + α = Lτ (11.160)

where the derivative matrix is L = ∂α/∂τ and the diagonal mass matrix M gives the
time lag LM.

11.4 History

Carpenter and Fridovich (1953) examined rotor response to collective changes in
hover, motivated by helicopter jump takeoff. They tested a three-bladed articulated
rotor, measuring the transient thrust and flapping response. To predict the effect of
a rapid blade-pitch increase, they extended momentum theory by adding a time lag:
T = mv̇ + 2πR2ρv(v + Vv ), where v is the instantaneous induced velocity. Regard-
ing the mass m, they wrote,

If the induced velocity is assumed to be uniform over the rotor disk, the initial flow field
[for sudden increase in pitch angle] is exactly analogous to the flow field produced by an
impervious disk which is moved normal to its plane. The “apparent additional mass” of
fluid associated with an accelerating impervious disk is given in [Munk (1924)] as 63.7
percent of the mass of fluid in the circumscribed sphere.

or 2
π

( 4
3πa3

)
ρ; Munk cited Tuckerman (1925). Rebont, Valensi, and Soulez-Lariviere

(1960a, 1960b, 1961) considered the response of hovering rotor thrust to collec-
tive pitch changes, making the distinction that their interest was descending flight
(landing) and near autorotation, not takeoff as in Carpenter and Fridovich. They
extended momentum theory “by adding an inertia term, mλ̇iU [U is the tip speed],
where m represents the virtual mass associated with the disk, which can be assumed
equal to that associated with a solid disk in nonuniform translation perpendicular to
its plane.” The model was verified by experiments.

Curtiss and Shupe (1970) considered the influence of quasistatic inflow variation
on hingeless rotor response, expressing the result as an effective Lock number.
Essentially this was a derivation of the static lift deficiency function, appearing in
the Lock number by way of the lift-curve slope.
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Ormiston and Peters (1972) investigated the modeling requirements for accu-
rate prediction of hingeless rotor response. “Simplified models of the nonuniform
induced inflow were derived, using momentum and vortex theory, and found to be
the most important factor in improving correlation with the data.” The inflow vari-
ables were the mean and 1/rev terms in a Fourier series, uniform along the blade
for a given azimuth (not uniform plus linear over the disk). The three inflow vari-
ables were expressed as a linear combination of the rotor aerodynamic thrust and
hub moment perturbations. For high advance ratio it was necessary to identify the
inflow derivatives with load from wind-tunnel test data of hingeless rotor response,
consisting of steady thrust and hub moment response to collective and cyclic
pitch control. These identified derivatives exhibited anomalous behavior around
μ = 0.8.

Hohenemser and Crews (1973) tested a two-blade hingeless rotor in hover and
at μ = 0.2, measuring the blade flap response to cyclic pitch (stick stir). Crews,
Hohenemser, and Ormiston (1973) developed an analysis to predict this test data.
Following Carpenter and Fridovich (1953), they introduced a time lag in the inflow
model: τ λ̇+ λ = L(2γ /σa)C, for the cosine and sine 1/rev harmonics of the inflow
(λ), in response to hub aerodynamic pitch and roll moments (C). For three-bladed
rotors, the result is a lift deficiency function or effective Lock number that depends
on excitation frequency. When appropriate values (dependent on collective) of τ and
L were used, good prediction of the measured flap response was obtained. Banerjee,
Crews, Hohenemser, and Yin (1977) identified values of τ and L. Although the tests
were conducted by measuring rotor frequency response, the analysis was no longer
in the frequency domain (as with Theodorsen and Loewy), but rather finite state
models in the time domain.

Peters (1974) continued the investigation of modeling requirements for hingeless
rotor response, using a dynamic rather than quasistatic inflow model, and compar-
ing it with frequency response as well as static measurements. Peters characterized
previous work in this way: “Unfortunately, while some success has been achieved
using simple models of the rotor induced flow in hover, a completely satisfactory
induced flow model for forward flight has not been found, not even for the condi-
tion of steady response. In addition, neither the physical values of the induced flow
time constants nor the frequency range in which they are important is known.” The
three state dynamic inflow model was used, with inflow variables representing uni-
form and linear variation over the disk. Following Carpenter and Fridovich (1953),
who obtained good agreement with transient thrust measurements, a time lag was
included in the relation between inflow and loading variables. “An approximation
to the apparent mass terms of a lifting rotor can be made in terms of the reaction
forces (or moments) on an impermeable disk which is instantaneously accelerated
(or rotated) in still air” (Peters (1974)). These apparent mass values were obtained
from Tuckerman (1925). The resulting non-dimensional constants (τ = Km/2v for
uniform variable, τ = 2KI/v for linear first-harmonic variables) were Km = 8

3π and
KI = 16

45π , the latter agreeing with the identified τ value of Crews, Hohenemser,
and Ormiston (1973). Good agreement with hingeless rotor response measurements
was obtained using inflow/loading derivatives from momentum theory for hover and
from the empirical model of Ormiston and Peters (1972) for forward flight.

Kinner (1937) used the acceleration potential approach of Prandtl to solve for
the flow around a circular wing. The paper begins, “This work was intended initially
as a contribution to the autogiro theory. In order to limit the scope the cross-flow
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of the disk was assumed to be zero, thus the disk can be replaced as a fixed wing in
stationary flow.” A footnote to this paragraph stated that the idea originated from
Dr. Küssner, AVA Göttingen. The work was Kinner’s dissertation at the University
of Göttingen under Prof. Ludwig Prandtl. Kinner developed a separation of variables
solution for a circular wing.

Mangler (1948a, 1948b; Mangler and Squire 1950) used separation of variables
in elliptical coordinates to solve Laplace’s equation for the acceleration potential of
a circular actuator disk. He had available an English translation of Kinner’s paper.
Mangler evaluated for hover the derivatives of uniform and linear inflow variables
with thrust and hub moment loading variables. In an amazing analytical effort, he
evaluated the integrals required to obtain the uniform and longitudinal inflow due
to thrust for the actuator disk in forward flight (a skewed cylindrical wake).

The dynamic inflow model of Pitt and Peters (1981) was based on the actuator
disk models of Kinner (1937) and Mangler and Squire (1950), as presented by
Joglekar and Loewy (1970). Pitt and Peters described the objective of their work
and its background:

A linear, unsteady theory is developed that relates transient rotor loads (thrust, roll
moment, and pitch moment) to the overall transient response of the rotor induced-flow
field. The relationships are derived from an unsteady, actuator-disc theory; and some are
obtained in closed form. . . .

It has been known for some thirty years that the induced-flow field associated with a
lifting rotor responds in a dynamic fashion to changes in either blade pitch (i.e. pilot
inputs) or rotor flapping angles (i.e. rotor or body dynamics) [Amer (1950), Sissingh
(1951), Carpenter and Fridovich (1953)]. In recent years, it has been found that dynamic
inflow for steady response in hover can be treated by an equivalent (i.e. reduced) Lock
number [Shupe (1970)]. For more general conditions, such as transient motions or a
rotor in forward flight, it has been determined that the induced flow can be treated by
additional “degrees of freedom” of the system. Each degree of freedom represents a
particular inflow distribution, and each has its own particular gain and time constant
[Ormiston and Peters (1972), Peters (1974), Crews, Hohenemser, and Ormiston (1973)].

Although the above results have provided some impressive correlation with experimental
data, there is still no general theory to predict the gains and time-constants of dynamic
inflow. Values from momentum theory give excellent results in hover, but are clearly
inadequate in forward flight [Ormiston and Peters (1972), Peters (1974)]. A simple vortex
model [Ormiston and Peters (1972)], gives some improvement in forward flight but is still
not satisfactory. An empirical model based on the best fit of response data [Ormiston
and Peters (1972), Peters (1974)] gives excellent results; but several peculiar singularities
remain unexplained. Thus there is a need to determine the dynamic-flow behavior from
fundamental, aerodynamic considerations.

Representing the inflow distribution over the rotor disk by uniform plus linear
terms, λ = λ0 + λcr cosψ + λsr sinψ , “the dynamic inflow models of Peters (1974)
and Crews, Hohenemser, and Ormiston (1973) assume that the inflow is related to
the aerodynamic loads in a linear, first-order fashion. . . . The purpose of this research
is to find the elements of L and M from basic aerodynamic principles and to also
investigate the validity of this linear, first-order form” (Pitt and Peters (1981)).

Pitt and Peters (1981) obtained a solution for the incompressible potential flow
about the rotor, which was represented by an actuator disk. The coefficients of the
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loading distribution are related to the integrated forces on the disk, with thrust and
pitch and roll moments obtained only from the lowest-order solutions. The induced
velocity is represented by a series. Exact, analytical solutions are possible for axial
and edgewise flow. Mangler (1948b) derived the Fourier series for the induced
velocity (uniform and longitudinal gradient) from thrust, as analytical functions
of the wake skew angle χ . Pitt numerically evaluated the roll and pitch moment
response, matching the exact values for axial and edgewise flow, and, from these
results, identified analytical functions for the moment terms in χ . In summary,

An actuator-disc theory has been used to obtain gains and time constants (i.e. the L
and M matrices) for both 3-degree-of-freedom and 5-degree-of-freedom dynamic-inflow
models. . . . In axial flow (e.g. hover), the gains are identical to those obtained from simple
momentum theory. . . . The apparent mass terms (the M matrix) for the simplest pressure
distributions are identical to the apparent mass terms of an impermeable disc, but these
values vary significantly with lift distribution. (Pitt and Peters (1981))

The result was the unsteady, actuator disk theory that is the basis of dynamic inflow
models of the rotor wake.

Gaonkar and Peters (1986, 1988) summarized dynamic inflow research and the
verification of the Pitt and Peters model by comparison of hingeless rotor response
measurements (particularly the data from Kuczynski and Sissingh (1972)), both static
and dynamic, in hover and in forward flight.
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12 Stall

To maintain low drag and high lift, the flow over an airfoil section must remain
smooth and attached to the surface. This flow has a rapid acceleration around the
nose of the airfoil to the point of maximum suction pressure, and then a slow
deceleration along the remainder of the upper surface to the trailing edge. The
deceleration must be gradual for the flow to remain attached to the surface. At
a high enough angle-of-attack, stall occurs: the deceleration is too large for the
boundary layer to support, and the flow separates from the airfoil surface. The
maximum lift coefficient at stall is highly dependent on the Reynolds number, Mach
number, and the airfoil shape. Figure 8.12 shows c�max values from 1.0 to 1.6 for
various airfoils, corresponding to stall angles-of-attack of 10° to 16°. The unstalled
airfoil has a low drag and a lift coefficient linear with angle-of-attack. The airfoil in
stall at high angles-of-attack has high drag, a loss of lift, and an increased nose-down
pitch moment caused by a rearward shift of the center of pressure. The aerodynamic
flow field of an airfoil or wing in stall is complex, and for the rotary wing there are
important three-dimensional and unsteady phenomena as well.

Stall of a helicopter rotor blade is characteristically manifested as high control
system loads and helicopter vibration, accompanied by an increase in profile power.
The alternating control loads show a gradual increase with speed until stall occurs
and then show a sharp and large rise in magnitude (Figure 12.1). The rapid growth
of the blade torsion and control system loads associated with stall is a major con-
straint on the helicopter speed, lift, and maneuver capability. Because of the flow
axisymmetry, stall of a hovering rotor occurs as a limit cycle torsional oscillation
of the blade, called stall flutter. In the periodically varying aerodynamic environ-
ment of the rotor in forward flight, stall occurs on the retreating blade. This stall
phenomenon of forward flight is often called stall flutter as well. Sometimes stall
has a role in the dynamic stability of the rotor, but usually the problem is the
extremely high loads on the blade and control system. Because of the high rate of
increase of the stall loads with speed or load factor, increasing the structural flight
envelope by strengthening the control system is not very effective. Stall also lim-
its the aerodynamic performance of the helicopter. When the rotor blade stall in
forward flight persists into the highly loaded fourth quadrant of the disk, there is
an increase in power required, a loss of lift and propulsive force capability, and a
loss of control power. Rotor stall produces a significant vibration of the helicopter,
which serves as a signal to the pilot of the onset of stall. With a mechanical control
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Figure 12.1. Influence of blade stall on rotor pitch link loads; from Tarzanin (1972).

system, the stall-induced torsional loads also produce a significant vibration in the
cyclic and collective control sticks. Such vibration can be severe enough to be a
limiting factor in itself. As a principal limitation of rotor performance and source of
high loads and vibration in extreme operating conditions, stall is a major factor in
the aerodynamic and structural design of the helicopter rotor and control system.
Stall must be included in the analysis of the helicopter performance and aeroelastic
behavior. It is difficult, however, to predict stall and all its effects, particularly in
the complex three-dimensional and unsteady aerodynamic environment of the rotor
blade.

12.1 Dynamic Stall

Dynamic stall is a flow phenomenon of rotor blades that involves large-scale,
unsteady viscous effects. Although the yawed flow on a rotor blade does have
an influence, the fundamental behavior is contained in the two-dimensional prob-
lem. Dynamic stall has been described by Carr, McAlister, and McCroskey (1977),
McCroskey (1981), McCroskey and Pucci (1982), and Bousman (1998, 2001).

For an airfoil oscillating in pitch, a rapid increase in angle-of-attack can delay
stall. When dynamic stall does occur, it is more severe and more persistent than
static stall, with a large amount of hysteresis. The character of dynamic stall is
determined primarily by the maximum angle-of-attack during the oscillation, with



444 Stall

four regimes identifiable (McCroskey and Pucci (1982)). In the no-stall regime,
the viscous-inviscid interaction is weak, and the vertical scale of the viscous zone
is of the order of the boundary-layer thickness. For an NACA 0012 airfoil, this
regime extends up to αmax = 13° (for low Mach number). In this regime, there is
little separation and the viscous effects are small. In the stall-onset regime (around
αmax = 14° for an NACA 0012 airfoil), there is some separation during part of the
oscillation cycle. This regime gives the maximum lift possible with no significant
penalty on section moment or drag. In the light-stall regime (around αmax = 15° for
an NACA 0012 airfoil), the viscous-inviscid interaction is strong, and the vertical
scale of the viscous zone is of the order of the airfoil thickness. The airfoil loads
show the usual static stall effects, plus phase lags and hysteresis. The pitch damping
can be negative, a tendency strongest in this regime. The loads are most sensitive to
the airfoil geometry, pitch rate, maximum angle-of-attack, and Mach number in the
light-stall regime. In the deep-stall regime (around αmax = 20° for an NACA 0012
airfoil), the flow is dominated by viscosity, with the vertical scale of the viscous zone
on the order of the airfoil chord. The viscous zone exists over the upper surface
during most of the cycle. The flow is characterized by shedding of a large vortex-like
disturbance from the leading edge, which passes over the upper surface and produces
section loads far in excess of the static values while the angle-of-attack is increasing;
it is also characterized by a large amount of hysteresis.

Figure 12.2 illustrates the dynamic stall events on an oscillating airfoil
(McCroskey (1981)). Point 1 is in the unseparated domain, with a thin, attached
boundary layer. The section loads behave as predicted by linear, unsteady theory.
At point 2, above the static stall angle, flow reversal within the boundary layer
develops, but the lift continues to increase, extrapolated from the linear domain. For
airfoils exhibiting trailing-edge stall (as in Figure 12.2), the reversed flow starts at
the trailing edge and moves forward. For airfoils exhibiting leading-edge stall, the
reversed flow develops quickly and very locally just downstream of the suction peak
on the upper surface. For both types of airfoil, a vortex begins to evolve near the
leading edge and spreads rearward over the upper surface (at less than half the free
stream velocity), producing an area of high suction moving aft. At point 3, the pitch-
ing moment diverges (moment stall) and the drag begins to rise, but the lift is still
increasing as a result of the vortex. At point 4, with the vortex near the trailing edge,
the maximum lift (lift stall), drag, and moment occur (not simultaneously), followed
by rapid drops. Secondary vortices can be shed, producing further load fluctuations
(point 5). At point 6, the angle-of-attack is decreasing, with large hysteresis as the
reattached flow develops from the leading edge.

The key characteristics of dynamic stall are the delay of the occurrence of stall
and the vortex shed from the leading edge. Associated with the stall delay is signif-
icant hysteresis of the section lift and moment. The pressure disturbance produced
by the leading-edge vortex as it passes over the airfoil upper surface first results
in a large increase in lift and then in a large nose-down moment, followed rapidly
by a large reduction of section loads and large-scale separation of the flow. The
leading-edge vortex convection velocity is 25% to 40% of the free stream (Green,
Galbraith, and Niven (1991)). The peak lift and moment depend primarily on the
value of the angle-of-attack rate (α̇c/V) at the time stall occurs, as shown in Fig-
ure 12.3. At high pitch rates the peak lift coefficient can be as high as c�max = 3.0
and the peak nose-down moment coefficient as high as cmmax = −0.7. Bousman
(2001) showed that there is a general relation between the maximum lift coefficient,
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Figure 12.2. Dynamic stall events on an oscillating airfoil; adapted from McCroskey (1981).

minimum moment coefficient, and maximum drag coefficient measured during
unsteady airfoil motion. The value of the unsteady c�max for small cmmin is 0.05
to 0.12 higher than the static c�max, reflecting the overshoot of lift in the light-stall
regime. This is the lift increment that can be obtained during unsteady motion with-
out a moment or drag penalty. The moment and additional lift produced by the
leading-edge vortex are similar for all airfoils and exhibit only limited sensitivity to
the mean pitch angle, alternating pitch angle, and reduced frequency. So increasing
the airfoil static c�max is the most effective way to improve the airfoil (and hence
rotor) dynamic lift capability. For cmmin < −0.1, there is generally just one loading
peak in lift and moment. For cmmin < −0.4 or −0.5, two loading peaks are often
observed, indicating secondary vortices have been shed.

Stall flutter can be examined in terms of the aerodynamic damping, or net aero-
dynamic work per cycle, of an airfoil oscillating in pitch. The data exhibit hysteresis
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loops; see Figure 12.4. The work done on the fluid by the airfoil is W = − ∮ cmdα.
For oscillations below or in stall, the damping is positive. For oscillations about
a mean angle-of-attack near stall, the net pitch damping can be negative, and the
airfoil extracts energy from the air. The largest negative damping typically occurs
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Figure 12.4. Typical unsteady moment data for an airfoil oscillating in pitch below, through,
and in stall.
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at a reduced frequency k = ωc/2V ∼= 0.3 (Ham and Young (1966)). If the structural
natural frequency is such that the airfoil oscillates at this frequency, a single-degree-
of-freedom, limit cycle instability can occur. At a mean angle-of-attack near static
stall, where the pitch damping is negative for small motion, the amplitude of the
oscillatory motion increases until the net damping in pitch is zero.

Dynamic stall experiments have been conducted on two-dimensional airfoils,
three-dimensional wings, and rotors. A convenient experimental arrangement con-
sists of a two-dimensional airfoil oscillating about a pitch axis in a wind tunnel. The
mean angle, oscillation amplitude, and oscillation frequency are typical of the aero-
dynamic environment of a rotary wing. The mean and oscillatory angles should be
large and about equal, and the oscillation frequency should correspond to the rotor
speed (for a 1/rev angle-of-attack variation). The pressure, section loads, and other
quantities are measured during the oscillation cycle. Figure 12.2 is an example of
such oscillatory airfoil data. There is actually a large scatter in the measured loads,
particularly for decreasing angle-of-attack. The delay of stall due to the airfoil pitch
rate is seen, as are the higher loads than in the static case. Such a presentation also
shows the hysteresis of the unsteady loads: the lift and moment depend not just on
the current angle-of-attack but also on the past history of the motions. The dynamic
stall loads measured during oscillating airfoil tests and ramp angle-of-attack tests
are similar, and both simulate well the loading measured on rotor blades in forward
flight; see Figure 12.5. So the three-dimensional nature of the rotor flow does not
fundamentally alter the section stall behavior.
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12.2 Rotary-Wing Stall Characteristics

The effects of stall on the aerodynamics of the entire rotor follow from the effects
on the blade section. The limit on the blade lift capability together with the drag
increase results in a limit on the rotor thrust, a sharp increase in the rotor profile
power at high loading, a reduced propulsive force capability, and high flapwise and
chordwise bending stresses. The section center-of-pressure shift produces high blade
torsional and control system loads. The helicopter vibration increase is due to the
rapid change of the aerodynamic forces when the blade stalls. Stall over a limited
portion of the disk can be tolerated, but as the stall area increases these effects
eventually become objectionable.

Significant stall of the rotary wing is encountered when the helicopter is operating
in a condition requiring the blades to work at high angles-of-attack, particularly
high thrust and high speed. The rotor blade loading is a measure of the mean
lift coefficient: c� = 6CT/σ for hover (section 3.6.5). The lateral asymmetry of the
aerodynamic environment in forward flight increases with the advance ratio μ, so at
a given thrust stall eventually occurs on the retreating side. Thus the limiting thrust of
the rotor, CT/σ , is a decreasing function of the advance ratioμ. Figure 12.6 illustrates
the stall limit in terms of the demonstrated lift capability of various helicopters. The
rotor can encounter stall during maneuvers of the helicopter or in aerodynamic
turbulence. Turns, pull-ups, and similar maneuvers involve an increase in the rotor
thrust and therefore are limited by stall. Both the maneuver and the gust encounter
cases benefit from the transient nature of the angle-of-attack changes, which tend to
delay the occurrence of stall. As a result, the transient maneuver capability of the
rotor is greater than the static load capability. The highest CT/σ points in Figure 12.6
were obtained in maneuvers. Nonuniform inflow has a major influence on the angle-
of-attack distribution on rotor blades (section 9.4) and hence on the rotor stall
behavior.



12.2 Rotary-Wing Stall Characteristics 449

In hover the flow is axisymmetric, so stall is expected to occur in an annulus
on the rotor disk (ignoring the effects of blade motion and unsteady aerodynam-
ics). As the thrust is increased, the blade angle-of-attack change is greatest at the
tip because the induced velocity increase with thrust produces the smallest inflow
angle change there. The tip region stalls first on a hovering rotor, at least for low
twist. Large twist shifts the peak angle-of-attack inboard (Figure 3.18). In autorota-
tion, where the net inflow is upward through the disk, the angle-of-attack is largest
at the root. For the autorotating rotor, the root sections are expected to stall first
(Figure 4.10). Maximizing the hover CT/σ capability requires large negative twist
of the blade, so most sections reach the maximum lift coefficient at the same time.
If a hovering rotor is operating at high lift, a gust or other disturbance can trig-
ger dynamic stall of the blade. The resulting blade torsion motion can establish an
oscillation in and out of stall. The energy to sustain the oscillation comes from the
hysteresis of the moment coefficient as a function of angle-of-attack during dynamic
stall (see Figure 12.4). The oscillation is a limit cycle in which the balance of the
negative damping in stall and the positive damping below stall determine the oscil-
lation amplitude. This single-degree-of-freedom limit cycle instability is called stall
flutter.

In forward flight, the largest lift coefficients occur on the retreating blade and
increase with speed and thrust. The stall angle-of-attack is reached in the third
quadrant, inboard at moderate CT/σ and μ, extending outward along the blade
at high thrust and speed; see Figures 9.14 and 9.15. The maximum angle-of-attack
increases with propulsive force and extends farther outward for small twist. With
a uniform inflow model, the calculated peak angles-of-attack occur in the third
quadrant and midspan, the stall region extending to the tip at high thrust and speed;
see Figures 6.18 and 6.19. Uniform inflow calculations show the maximum angles-
of-attack on the retreating tip for zero twist. Early work on rotor stall was based
on such uniform inflow results. Generally, the induced velocity tends to be higher
at the retreating tip than is indicated by the mean inflow value, which alleviates the
high angles-of-attack at the tip. The stall region is thus moved inboard and into the
third quadrant of the disk. Nonuniform inflow also tends to increase the maximum
angle-of-attack on the disk and to increase the rate of change of a near stall.

The high blade loads, control loads, and vibration characteristic of helicopter
rotor stall are manifestations of the blade aeroelastic response to the high aerody-
namic loads in stall. The blade motion, in turn, influences the angle-of-attack, and
hence the aerodynamic forces. In particular, the large nose-down pitch moments due
to stall produce substantial torsional motion of the blade, which directly changes the
angle-of-attack. A calculation of the effects of stall on the helicopter rotor cannot
be concerned with the aerodynamic forces alone, but instead, a complete aeroelas-
tic analysis that includes the dynamic response of the blades is required. The local
angle-of-attack must be calculated from the actual wake-induced, nonuniform inflow
and the elastic torsion motion of the blade.

The aerodynamic environment of the rotor blade is three-dimensional and
unsteady, and for stall in particular, the effects of this complex environment must be
accounted for. The radial velocity along the blade results in significant yaw angles.
Yawed flow delays the occurrence of stall, and also influences the nature of the
separated flow. The rotor blade section in forward flight has a large 1/rev variation
in angle-of-attack, so the section loads involve dynamic stall. An unsteady increase
in the angle-of-attack delays the occurrence of stall, so the section is capable of
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higher lift in unsteady conditions than can be sustained under static conditions.
After dynamic stall does occur, the transient lift and nose-down moment are much
greater than the static stall loads. From the delay of stall, in forward flight, the rotor
is capable of a higher thrust with no more stall effects than is implied by the static
airfoil characteristics. The large transient loads on the section when dynamic stall
occurs are the source of the high vibration and loads associated with rotor stall, par-
ticularly the blade torsion and control system loads, in response to the pitch moment
of dynamic stall. When stall occurs on the retreating blade in forward flight, the
resulting large transient moment twists the blade nose down. If the blade is suffi-
ciently flexible in pitch, this nose-down motion reduces the angle-of-attack enough
for the flow to reattach. With the return of attached flow loads, the blade rebounds
up in pitch, overshooting the static stall level. The overshoot in pitch increases the
angle-of-attack so that the blade stalls again. A rotor operating at sufficiently high
thrust or speed can exhibit two or three dynamic stall events.

Figure 12.7 illustrates dynamic stall on a helicopter rotor, showing the occurrence
of lift and moment stall, and the regions of separated flow; the maps were developed
by Bousman (1998). The top map is for the UH-60A in level flight at high blade
loading. The bottom map is for the UH-60A executing the UTTAS maneuver, at
2.1 g load factor (revolution 14). Moment stall was identified from the drop in
moment coefficient, associated with formation of the leading edge vortex. Lift stall
was identified from the drop in normal force coefficient, produced when the vortex
moves downstream of the airfoil. Boundary layer separation was identified from the
upper surface pressure at 96.3% chord. These features were essentially the same as
observed in two-dimensional wind-tunnel tests. Figure 12.8 shows the airloads and
structural loads for the level flight condition. Lift stall lags moment stall by the time
the vortex takes to pass over the airfoil. Large separated flows occur at the trailing
edge when the vortex leaves the trailing edge. The pressure data also show shocks
moving forward on the blade in the second quadrant, reaching the leading edge as the
first dynamic stall vortex forms. The dynamic stall events are thus compressible flow
phenomena, with M = 0.3–0.5 on the retreating side. Stall occurs largely outboard
on the UH-60A blade, extending to the blade tip. In contrast, a three-dimensional
oscillating wing does not show tip stall. The first stall event on the retreating blade
is triggered by the basic 1/rev variation in angle-of-attack, occurring first inboard.
The second and third stall events reflect the torsion motion of the blade, occurring
over the outer part of the blade nearly simultaneously, at a frequency of 4–5/rev. In
the high load-factor case, the blade pitch oscillation persists into the first quadrant,
producing the third dynamic stall event. The resulting large blade torsion moments
and control loads typically size the control system.

Rotor stall is a major consideration in the design of a helicopter. The limit
on the thrust coefficient to solidity ratio CT/σ is determined by the requirement
for an adequate stall margin in forward flight. So for a given gross weight, the
quantity Ablade(�R)2 is determined. The combination of an advancing-tip Mach
number limit (due to compressibility effects on performance and noise) and an
advance ratio limit (due to stall and other factors) constrains the tip speed �R
(section 8.4). Then the minimum blade area that must be provided to meet the
stall margin requirement is defined. The fact that the blade loading limit decreases
with speed suggests using a fixed wing on the helicopter to reduce the rotor lift
required in forward flight. Reducing the helicopter drag (hence the rotor propulsive
requirement) is also effective in improving the rotor stall characteristics, raising the
limits onCT/σ andμ. Stall is also a major concern in selecting the blade airfoil section
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Figure 12.7. Dynamic stall rotor map, based on airloads measurements on UH-60A in flight;
from Bousman (1998).

(section 8.7). An airfoil with high maximum lift coefficient at low to moderate Mach
number is desired for the retreating blade stall environment.

12.3 Elementary Stall Criteria

The blade angle-of-attack or lift coefficient (the actual value or some representative
value) is the primary criterion for stall of rotary wings. The rotor exhibits effects of
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Figure 12.8. Influence of dynamic stall on airloads and structural loads of UH-60A at CT/σ =
0.13 and μ = 0.23; from Bousman (1998).

stall when the blade section angle-of-attack is above the stall angle over a significant
portion of the rotor disk. Translation of a local aerodynamic criterion into rotor
operating limits is complicated, and useful stall criteria have some empirical basis.

The NACA conducted a series of investigations directed at developing a means
of predicting helicopter rotor stall; these investigations were summarized by Gessow
and Myers (1952). The critical angle-of-attack on the rotor disk was identified by
the following arguments. As the rotor thrust increases, the angle-of-attack change
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due to the larger induced velocity is smallest at the tip. Consequently, the blade
stalls first on the tip of the retreating blade, and the stall criterion is based on the
angle-of-attack at r/R = 1 and ψ = 270°, denoted α1,270. For an unpowered rotor in
forward flight (an autogyro), the rotor induced and profile losses increase as speed
or thrust increases, requiring a larger rearward tilt of the tip-path plane to supply the
rotor power. The resulting increased upward inflow velocity produces the greatest
angle-of-attack increase on the inboard sections of the blade, and the autogyro
rotor stalls first on the inboard sections of the retreating blade. The sections near
the reverse flow region and at the root are at low dynamic pressure; the stall is of
concern at radial stations where the normal velocity uT is not too small. So for a rotor
near autorotation, the stall criterion is based on the angle-of-attack at uT = 0.4 and
ψ = 270°, denoted αμ+.4,270. The calculated maximum angle-of-attack is different
when a nonuniform inflow model is used. The induced velocity tends to be higher at
the retreating tip than is indicated by the mean inflow value, which alleviates the high
angles-of-attack at the tip. The stall region is thus moved inboard and into the third
quadrant of the disk. Nonuniform inflow also tends to increase the maximum angle-
of-attack on the disk. Although nonuniform inflow is important for calculations of
the actual rotor aerodynamics, a stall criterion based on uniform inflow analysis can
still be useful, on the basis of correlation with measured stall effects.

Using an analysis such as Bailey (1941) to calculate the rotor performance and
flapping in forward flight, the angle-of-attack on the retreating blade (the most critical
of α1,270 and αμ+.4,270) can be evaluated. This angle-of-attack depends primarily on
CT/σ andμ, with some dependence on total rotor power or tip-path-plane incidence.
On the basis of rotor tuft behavior and the pilot’s assessment of the vibration and
control characteristics, Gustafson and Myers (1946) found that the angle-of-attack
of the retreating blade tip correlated well with the helicopter stall behavior. This
correlation with flight test results is the basis for using α calculated by a simple
theory (uniform inflow, no stall in the airfoil lift and drag) as a criterion for the
rotor stall. It was found that α1,270 = αss corresponds to incipient stall and that
α1,270 = αss + 4° corresponds to excessive stall, where αss is the airfoil static stall
angle-of-attack. For the NACA 0012 airfoil of the helicopter involved, αss = 12°,
and hence the boundaries of interest are α1,270 = 12° and α1,270 = 16°. Below the
boundary of incipient stall, there are no noticeable stall effects; above this boundary
the vibration, loads, and power increase because of stall. At the boundary of excessive
or objectionable stall, the helicopter is still controllable, but the loads and vibration
have reached the limit for practical operation. Near autorotation these limits are
applicable to αμ+.4,270. Gustafson and Gessow (1947) found by flight tests that the
increase in rotor profile power also correlated well with α1,270 (Figure 12.9). The ratio
of the measured rotor profile power to the calculated value (obtained using a theory
without stall effects) was around unity until α1,270 reached the static stall angle (12°).
Above αss there was a sharp rise in the measured profile power, to about twice the
predicted (no-stall) value at α1,270 = αss + 4 = 16°. At still higher angles-of-attack
there are control difficulties as well. The observed effects of stall on the rotor were
first a large increase in the rotor profile power and then vibration and loads large
enough to limit the helicopter operation.

Fradenburgh (1960) introduced a criterion for rotor stall. Since stall effects
can be identified by a rapid increase in the blade profile torque on the retreating
side, the criterion is based on the maximum value of NCQo/σ = 1

2

∫
cdu2

T r dr over
180° < ψ < 360°; see Tanner (1964). A moderate degree of stall or the onset of
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Figure 12.9. Variation of profile power ratio with calculated retreating tip angle-of-attack;
from Gustafson and Gessow (1947).

significant stall phenomena occurs when NCQo/σ = 0.004, corresponding to cd = 0.1
and uT = 0.4. The limit beyond which operation is undesirable is NCQo/σ = 0.008
(Tanner (1964)).

McHugh (1978) conducted a wind-tunnel test to determine rotor aerodynamic
lift limits in forward flight. Figure 12.10 shows the results for four values of propul-
sive force. The maximum rotor lift achievable for each speed and propulsive force
was determined by blade stall, not power or structural load limitations. Wind-tunnel
measurements provide the steady-state, sustained operation limit. A maneuvering
helicopter can exceed this limit, as illustrated in Figure 12.6. Typical current heli-
copter drag levels correspond to X/qD2σ = CD/(

4
π
σ ) = 0.10 (section 8.6). Reducing

aircraft drag and hence rotor propulsive force requirement increases the lift capa-
bility. Yeo (2003) used comprehensive analysis to calculate the limits for this rotor.
Good correlation with test data was obtained when the airfoil tables were corrected
for the model-scale Reynolds number (lower calculation results in Figure 12.10).
Using full-scale airfoil tables increased the lift limit by about �CT/σ = 0.01. Fig-
ure 12.10 also shows wind tunnel measurements for a model rotor (Floros, Gold, and
Johnson (2004)), and the full-scale UH-60A rotor (Norman, Shinoda, Peterson, and
Datta (2011)). McCloud and McCullough (1958) conducted wind-tunnel tests of the
stall characteristics of a rotor in forward flight at μ = 0.3 to 0.4. They investigated
the performance gains possible when blade airfoil sections with increased maximum
lift due to camber were used to delay retreating blade stall. The stall boundary was
defined by a marked change in the rotor torque and in the characteristics of the blade
torsional moment. These two criteria gave essentially the same boundaries of max-
imum CT/σ as a function of μ. The improved stall characteristics of the cambered
airfoil increased the rotor lift capability by about 15% (Figure 12.10). All the rotors
involved in these tests had first-generation airfoils (see Figure 8.12).

Blade element theory for a hovering rotor provides estimates of the stall limit
on rotor lift capability. The ideal rotor (section 3.6.7) has twist θ = θt/r to obtain
uniform inflow. The angle-of-attack isα = αt/r = (θt − λ)/r, so the ideal rotor always
stalls at the blade root. From equation 3.132, c� = 4

B2r (CT/σ ). As long as the stall
region is confined to the root, where the dynamic pressure is low, stall effects are
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Figure 12.10. Measured rotor aerodynamic lift limits.

not significant. When stall occurs outboard of a critical radius rcrit, stall effects are
objectionable. So the hover limit is(

CT

σ

)
max hover

= B2

4
rcrit c�max (12.1)

The observed limits in hover correspond to about rcrit = 0.5. The optimum rotor
(section 3.6.8) has twist and taper for uniform inflow and constant angle-of-attack, so
the entire blade stalls at once. From equation 3.137, c� = 6

B2 (CT/σe) (using equivalent
solidity σe = 3

2σt). Then the maximum hover lift capability is(
CT

σe

)
max hover

= B2

6
c�max (12.2)

This is the best possible performance, since at stall the entire blade is working at the
maximum lift coefficient. For the optimum rotor both the twist and taper depend on
the operating condition.

For a simple stall criterion in forward flight, the lift coefficient on the retreating
blade is estimated in terms of the mean lift coefficient. The lateral asymmetry of the
rotor angle-of-attack is due to the variation of dynamic pressure with azimuth, so
the blade loading u2

T c� is equated to the mean loading r2c�, giving c� = c�(r/uT )
2.

The rotor mean lift coefficient is proportional to the blade loading, c� = 6(CT/σ )K,
where from hover the empirical parameter K is expected to be approximately 1.
The maximum lift coefficient occurs on the retreating blade at ψ = 270°. Thus the
estimate of the rotor lift limit is

CT

σ
= c�max

6K

(
1 − μ

r

)2
(12.3)
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Figure 12.11. Elementary stall criteria.

The parameters in this criterion are chosen on the basis of experimental data to give
the stall limit in forward flight atμ = 0.2 to 0.4 typically. The resulting value atμ = 0
is higher than the hover stall limit. A number of parameter values are found in the
literature:

r c�max/K

Hafner (1949) 0.75 c�max

Stepniewski (1955) 1.0 1.2
NACA, incipient stall 0.87 1.08
NACA, objectionable stall 0.89 1.35
Sikorsky (1960), infinite blade life 1.0 0.9
McCormick (1967) 1.0 c�max/(1.06 − 0.9θtw)

Sikorsky’s result is the limit of infinite blade life, based on helicopter flight tests
for μ = 0.15 to 0.35. Gessow and Myers (1952) presented curves for an untwisted
rotor, based on the NACA stall research, which are approximated (for D/L = 0.1)
using the parameters in the table. Figure 12.11 plots these criteria, using c�max =
1.5 for Hafner and c�max = 1.45 for McCormick. For reference, McHugh’s wind-
tunnel results are also shown. These criteria represent early helicopter technology.
Figure 12.11 shows approximate modern technology lift limits for sustained and
transient operation.

Harris (1987) developed a stall criterion for forward flight by considering a blade
lift coefficient with a 1/rev variation: c� = c�0 − c�s sinψ − c�c cosψ . The thrust is
CT = σ

2

∫
u2

T c�dr (averaged over azimuth). Zero pitch moment requires c�c = 0, and
zero roll moment gives c�s = 8

3μc�0/(1 + 3
2μ

2). Thus

CT

σ
= c�0

(
1
6

+ 1
4
μ2
)

− c�s
μ

4
= c�0

6

1 − μ2 + 9
4μ

4

1 + 3
2μ

2
(12.4)
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The maximum lift coefficient is on the retreating blade atψ = 270°: c�max = c�0 + c�s.
Thus the rotor lift limit in forward flight is

CT

σ
= c�max

6

1 − μ2 + 9
4μ

4

1 + 8
3μ+ 3

2μ
2

(12.5)

This limit is plotted in Figure 12.11 using c�max = 1.25 and c�max = 1.5, matching
the symmetrical and cambered airfoil results of McCloud and McCullough (1958)
(Figure 12.10). From

∫
c�u2

T dr = c�
∫

u2
T dr, the mean lift coefficient in forward flight

is

c� = 6
CT

σ

1

1 + 3
2μ

2
(12.6)

So c� decreases in forward flight because of the increased mean dynamic pressure.

12.4 Empirical Dynamic Stall Models

Calculation of the loads on an airfoil or wing or rotor blade undergoing dynamic
stall is challenging. In vortex methods, discrete vortices are shed from the airfoil and
tracked in the flow field, generally using the Biot-Savart equation. Vortex methods
readily predict the effects of the leading-edge vortex, but the viscous aspects of
the problem are prescribed, modeled, or approximated. Navier-Stokes calculations
of dynamic stall are now often performed, but issues still remain in treating large
separation regions, particularly concerning turbulence models.

Empirical models are used for efficient calculation of dynamic stall on rotors,
particularly in rotorcraft comprehensive analyses. Typically these are finite-state
differential-equation models for the section loads, based on measured dynamic
and static data. Published empirical models always match the data (generally from
oscillating airfoil tests) used in their development. The models are less accurate
in the context of rotor loads calculations. Empirical models require many parame-
ters, which must be identified for each airfoil from unsteady load measurements or
calculations.

Dynamic stall is characterized by a delay in the occurrence of separated flow
produced by the wing motion and by high transient loads induced by a vortex shed
from the leading edge when stall does occur. Empirical models should still use airfoil
tables for the steady characteristics, evaluated at an angle-of-attack that includes the
dynamic stall delay, perhaps with a dynamic stall increment for the coefficients. By
using the airfoil table data, the basic characteristics associated with airfoil shape are
retained, and the dynamic effects are isolated from the static loads. Let αd be the
delayed angle-of-attack, calculated from the angle-of-attack α. Then the corrected
coefficients are

c� =
(
α − αz

αd − αz

)
c�2D (αd)+�c�DS (12.7)

cd =
(
α − αz

αd − αz

)2 (
cd2D (αd)− cdz

)
+ cdz +�cdDS (12.8)

cm =
(
α − αz

αd − αz

) (
cm2D (αd)− cmz

)
+ cmz +�cmDS (12.9)
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where αz is the zero-lift angle-of-attack and cdz and cmz are the corresponding
drag and moment. The form of the lift and moment corrections ensures that the
coefficients below stall are unchanged. The �cDS’s are increments defined by the
dynamic stall model, generally attributed to the leading-edge vortex. The angle-of-
attack delay and coefficient increments are functions of the rate α̇c/V or time delay
V�t/c.

Many empirical dynamic stall models have been developed. Three models are
described here. The Boeing model is notable for its simplicity. The Leishman-
Beddoes model requires only a small number of parameters, some obtained from the
static airfoil data. The ONERA EDLIN model was from the beginning formulated
as differential equations. Johnson (1998) gives more details of these models.

The Boeing dynamic stall model uses an angle-of-attack delay proportional to
the square root of α̇, which produces the basic hysteresis effects. The coefficient incre-
ments produced by the leading-edge vortex are not used in this model. The Boeing
model was developed by Harris, Tarzanin, and Fisher (1970), Tarzanin (1972), and
Gormont (1973). The onset of dynamic stall is assumed to occur at αDS = αSS +�α,
where αSS is the static stall angle and �α is proportional to

√
α̇. Lift and moment

coefficients are obtained from static airfoil data using a delayed angle-of-attack:

αd = α − τd

√
|α̇c/2U | sign α̇ (12.10)

The time constant τd depends on airfoil geometry and Mach number and is different
for lift and moment stall. Values of τd are obtained from oscillating airfoil tests. The
model does not correct the section drag coefficient.

The Leishman-Beddoes dynamic stall model uses a delayed angle-of-attack, plus
lift and moment increments from the leading-edge vortex. The model is documented
in Leishman and Beddoes (1986, 1989) and Leishman and Crouse (1989). This model
characterizes the airfoil static stall behavior by the trailing-edge separation point
f (fraction of chord from leading edge) and a critical lift coefficient c�CR at the
separation onset boundary (leading-edge separation at low Mach number, shock
reversal at high Mach number). The airfoil data for lift are used to identify constants
s1, s2, and αs that generate f (α) as follows:

f =
{

1.− .3e(|α−αz|−αs)/s1 |α − αz| ≤ αs

.04 + .66e(αs−|α−αz|)/s2 |α − αz| > αs

(12.11)

Then |α − αz| = αs or f = .7 is taken as the definition of stall. The parameters c�CR ,
s1, s2, and αs for an airfoil depend on Mach number. The Leishman-Beddoes model
for unsteady flow is based on fd = f (αd) at the delayed angle-of-attack.

Leishman and Beddoes (1989) write the static normal force, moment, and drag
as functions of f :

cn2D = cnα(M)KN( f )(α − αz) (12.12)

cm2D = cmz + cnKM( f ) (12.13)

cd2D = cdz + (1 − ηKD( f ))(α − αz)
2 (12.14)

The Kirchhoff expression KN = 1
4 (1 +√ f )2 is used; several functional forms of KM

and KD are found in the literature. In unsteady flow, a delayed separation point
fd is calculated from f , the loads are evaluated using fd, and an increment for the
leading-edge vortex is added. Since fd corresponds to a delayed angle-of-attack, the
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analytical functions K can be replaced with the loads from airfoil tables:

cn = cnα(M)KN ( fd )(α − αz)+�cnDS

=
(
α − αz

αd − αz

)
cnα(M)KN( fd)(αd − αz)+�cnDS

=
(
α − αz

αd − αz

)
cn2D (αd )+�cnDS (12.15)

The model can use the static loads directly from the airfoil tables, instead of fitting
the static loads to analytical functions.

The delayed angle-of-attack αd is calculated including static hysteresis around
stall, a lag in the leading-edge pressure relative to c�, and an additional lag in the
boundary layer response. There are separate αd equations for lift and moment to
allow different behavior during reattachment. Vortex lift accumulation begins at
the onset of stall, driven by the difference between the linear and nonlinear lifts,
cv = c�L − c�. The vortex loads �cDS are obtained from cv with a time lag. Thus the
model has first-order differential equations for the delayed angle-of-attack and the
leading-edge vortex lift.

The ONERA EDLIN (Equations Differentielles Lineaires) dynamic stall model
uses a stall delay plus lift, drag, and moment increments calculated from second-order
differential equations. The model is documented in Petot (1989, 1997). The extended
model of Petot includes the effects of heave and pitch, as well as time-varying free
stream. Generalizations based on Petot’s pitch model (Peters (1985)) lead to more
complicated equations. The load is divided into two parts. The first part is the load
in the absence of stall, which gives the unsteady load for attached flow. The second
part of the load is driven by the difference between the linear load extrapolated to
the unstalled domain and the real nonlinear static load. Tests show that dynamic
stall occurs at a higher angle-of-attack than does static stall. The absence of stall is
preserved in the model by forcing the difference between the linear and nonlinear
loads to be zero for a time τd after exceeding the static stall angle.

The dynamic stall loads of the ONERA EDLIN model are calculated from
second-order differential equations:

L̈2 + aL̇2 + bL2 = −bU �c� − eU α̇ (12.16)

M̈2 + aṀ2 + bM2 = −bU �cm − eU α̇ (12.17)

D̈2 + aḊ2 + bD2 = −bU �cd − eU α̇ sign(α − αz) (12.18)

These equations are driven by the difference between the linear and non-
linear loads: �c� = c�L − c� = c�α(α − αz)− c�, �cm = cmL − cm = cmα(α − αz)+
cmz − cm, �cd = cdL − cd = cdz − cd; where c�, cm, and cd are the static coefficients,
without the unsteady or leading-edge vortex terms. Then the load increments are

�c�DS = 1
U
(L2 + U �c� + dU α̇) (12.19)

�cmDS = 1
U
(M2 + U �cm + dU α̇)+ M3 (12.20)

�cdDS = 1
U
(D2 + U �cd + dU α̇ sign(α − αz)) (12.21)
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The stall delay is accounted for by setting the right-hand side of the differential
equation to zero if τSS < τd, where tSS = τSSc/2U is the time since the static stall
angle was exceeded. Petot (1997) described a refined transition model, intended to
accommodate airfoils that exhibit larger nose-down pitching moments at dynamic
stall. The refined transition model assumes that the extra lift from dynamic stall is
convected aft from the quarter chord after moment stall occurs, producing the extra
moment term M3. The coefficients in these equations (a, b, d, e) depend on the lift
difference�c�. Values of the parameters for various airfoils are given in Petot (1983,
1984).
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13 Computational Aerodynamics

Rotary-wing flow fields are as complex as any in aeronautics. The helicopter rotor
in forward flight encounters three-dimensional, unsteady, transonic, viscous aerody-
namic phenomena. Rotary-wing problems provide a stimulus for development and
opportunities for application of the most advanced computational techniques.

Inviscid, potential aerodynamics is the starting point for many computational
methods for rotors, allowing practical solutions of compressible and unsteady prob-
lems. Lifting-surface theory solves the linearized problem by using the result for
a moving singularity, often of the acceleration potential. Panel methods use sur-
face singularity distributions to solve problems with arbitrary geometry. Tran-
sonic rotor analyses use finite-difference techniques to solve the nonlinear flow
equation.

The rotor wake is a factor in almost all helicopter problems. A major issue in
advanced aerodynamic methods is how the wake can be included. Wake formation
must at some level be considered a viscous phenomenon, and the helical geometry
of the helicopter wake means that the detailed structure is important even at scales
on the order of the rotor size. A useful rotor aerodynamic theory must account for
the effects of viscosity, such as wake formation and blade stall, which are important
for most operating conditions. Solution of Navier-Stokes equations for rotor flows
is now common. Hybrid methods can be used for efficiency, typically using Navier-
Stokes solutions near the blade and some vortex method for the rest of the flow
field.

Sources for the derivations of the equations are Lamb (1932), Morse and Fesh-
back (1953), Garrick (1957), Ashley and Landahl (1965), and Batchelor (1967).

13.1 Potential Theory

Potential theory requires the assumptions that the flow field is inviscid, irrotational,
and isentropic. With concentrated vorticity in the wake and weak shocks on the rotor
blades, these are generally good assumptions. In spite of the inviscid assumption,
wake formation, stall, and drag must be addressed in some manner. Often the addi-
tional assumption of incompressibility is introduced for rotor analyses, particularly
for unsteady problems.

462
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Consider a fixed reference frame (x, y, z, t), with the fluid at rest at infinity.
The equations of mass and momentum conservation for inviscid flow without body
forces are

D
Dt
ρ + ρ ∇ · v = 0 (13.1)

D
Dt

v = − 1
ρ

∇p (13.2)

where v is the velocity, ρ the density, p the pressure, and D
Dt = ∂

∂t + v · ∇. An initially
irrotational, uniform, inviscid fluid remains irrotational. Irrotationality (∇ × v = 0)
implies the existence of the velocity potential φ, such that velocity v = ∇φ. A wing
moving relative to a fluid at rest is considered because of the need to deal with
both rotating and translating wings. Although v and φ can therefore be considered
perturbations, they are not necessarily small. Introducing a coordinate system
moving with the wing influences the equations and boundary conditions, but does
not change the definition of φ as the potential relative to the fluid at rest.

For an irrotational flow, uniform and at rest at infinity, the inviscid equation of
momentum conservation integrates to Kelvin’s equation:

φt + 1
2
v2 +

∫ p

p∞

dp
ρ

= 0 (13.3)

since 1
ρ
∇p = ∇ ∫ dp

ρ
always, and (v · ∇)v = 1

2∇v2 for irrotational flow (v = |v|). For
isentropic flow, the local adiabatic speed of sound is a2 = γRT (where γ is the ratio
of specific heats), or a2 = dp/dρ = γ p/ρ. So p/p∞ = (ρ/ρ∞)γ , and the differential
da2 = γd(p/ρ) = (γ − 1)dp/ρ integrates to∫ p

p∞

dp
ρ

= a2
∞

γ − 1

(
a2

a2∞
− 1

)
(13.4)

The pressure is

p
p∞

=
(
ρ

ρ∞

)γ
=
(

T
T∞

)γ /(γ−1)

=
(

a2

a2∞

)γ /(γ−1)

=
[

1 − γ − 1
a2∞

(
φt + 1

2
v2
)]γ /(γ−1)

(13.5)

Then the equation for mass conservation gives

a2∇2φ = − a2

ρ

Dρ
Dt

= − 1
γ − 1

Da2

Dt
=
(
∂

∂t
+ v · ∇

)(
φt + 1

2
v2
)

(13.6)

with v = ∇φ and

a2 = a2
∞ − (γ − 1)

(
φt + 1

2
v2
)

(13.7)

So the equation for the velocity potential relative to still air, in tensor form, is

a2∇2φ =
(
∂

∂t
+ φxi

∂

∂xi

)(
φt + 1

2
φxjφx j

)
= φtt + 2φxiφtxi + φxiφxjφxix j (13.8)

The corresponding conservative form is (ρφxi )xi = ρt . The linearized equation of
motion is the wave equation a2∇2φ = φtt , with (p − p∞)/ρ∞ = −φt . For incom-
pressible flow, the potential equation reduces to the Laplace equation, ∇2φ = 0,
with (p − p∞)/ρ∞ = − (φt + 1

2v
2
)
.
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The acceleration potential ψ can be defined by considering the momentum
equation, Dv/Dt = −(∇p)/ρ = ∇ψ , so

ψ = −
∫

dp
ρ

= φt + 1
2
v2 = Dφ

Dt
(13.9)

which is a nonlinear relation between the acceleration and velocity potentials. Small
disturbances are assumed in order to relate ψ and φ in a practical manner. The
linearized relation is

ψ ∼= − p − p∞
ρ

∼= φt (13.10)

and the acceleration potential is a solution of the wave equation, a2∇2ψ = ψtt .
The boundary condition at infinity is v = 0 and p = p∞ (still air); hence ∇φ =

φt = 0, which implies φ = 0. For an inviscid fluid, the boundary condition at a solid
body defined by the surface F (x, t) = 0 is DF

Dt = Ft + v · F = 0. The time derivative
of F = 0 (on the body surface) yields Ft = −∇F · vb, where vb is the body surface
velocity. So the boundary condition is that there be no flow normal to the surface:
n · v = ∂φ

∂n = n · vb, where the body normal is n = ∇F/|∇F |. For inviscid flow, there
can be tangential velocity at the body surface. If the body is defined by F = z − g = 0
or z = g(x, y, t), then the boundary condition is vz = gt + vxgx + vygy on z = g. The
linearized boundary condition is vz

∼= gt on z = 0.
A wake is a vortex surface, which allows a tangential velocity jump but no

normal velocity or pressure difference: �vn = 0 and �p = 0 (where � means the
upper surface value minus the lower surface value). Kelvin’s equation gives

�φt + 1
2
�(v2) = �φt + 1

2
(vu + vl ) ·�v = �φt + vw · ∇�φ = 0 (13.11)

with vw = 1
2 (vu + vl ). The potential difference�φ is constant for a point on the wake

surface that is convected with the velocity vw.

13.2 Rotating Coordinate System

Consider the transformation from inertial axes (t, r) relative to the still air, to mov-
ing axes (t ′, r′) that contain the principal translation and rotation of the rotor (Fig-
ure 13.1). Typically the rotating y′ coordinate is the rotor blade span axis, although
in fact the rotor can be placed anywhere in the moving frame. The rotor is rotating
at rate �, with the azimuth angle ψ = �t measured from downstream. The rotor
has translation velocity V∞ in the x–z plane, with the angle i relative to the x-axis
(positive for climb). So the rotation and translation vectors are

� = ( 0 0 � )T (13.12)

μ = μ�R (−1 0 tan i )T = (−μ�R 0 λ�R )T (13.13)

where μ = V∞ cos i/�R is the advance ratio and R the rotor radius. The inflow ratio
λ = μ tan i = μz, or λ = μz + λi if the induced velocity at the rotor disk is included.
The coordinate transformation is r = μt ′ + Tr′ and t = t ′, with the rotation matrix

T = Z90−ψ =
⎡⎣ sinψ cosψ 0

− cosψ sinψ 0
0 0 1

⎤⎦ (13.14)
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Ω

ψ = Ω t

μ

x

y'

y

x'

z, z'

Figure 13.1. Rotating and translating
axes.

The inverse transformation is r′ = −μ′t + T T r, with

μ′ = T Tμ = μ�R (− sinψ − cosψ tan i )T (13.15)

Then the derivatives are ∇ = ∇′ and

∂

∂t
= ∂

∂t ′
+ V · ∇′ (13.16)

where V is the velocity of the air relative to the moving frame,

V = ∂r′

∂t
= −�′ × r′ − μ′ =

⎛⎜⎝ �y′ + μ�R sinψ

−�x′ + μ�R cosψ

−μ�R tan i

⎞⎟⎠ (13.17)

V̇ = dV
dt

=
(
∂

∂t ′
+ V · ∇′

)
V =

⎛⎜⎝�
2x′ + 2�Vy

�2y′ − 2�Vx

0

⎞⎟⎠ (13.18)

After the transformation to the rotating frame has been accomplished, the primes
can be omitted for simplicity.

The potential equation is transformed by substituting for the derivatives. The
scalar φ remains a perturbation potential, although not necessarily small, defined
relative to the still air. Writing U = V + ∇φ, the potential equation in tensor form
becomes

a2∇2φ =
(
∂

∂t
+ Ui

∂

∂xi

)(
φt + Vjφx j + 1

2
φx jφx j

)
= φtt + 2Uiφtxi + UiUjφxix j + V̇iφxi (13.19)

and

a2 = a2
∞ − (γ − 1)

(
φt + Vjφx j + 1

2
φxjφxj

)
(13.20)

As a result of rotation, the velocity V varies with time and space, and Coriolis and
centrifugal terms are introduced in the form of V̇. The linearized potential equation
is obtained by setting U ∼= V. The incompressible equation is still ∇2φ = 0.
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The boundary condition on a solid body F = 0 becomes Ft + U · ∇F = 0, or
n · v = ∂φ

∂n = n · (vb − V), where now vb is the body velocity relative to the moving
frame. With F = z − g, the boundary condition is Uz = gt + Uxgx + Uygy on z = g,
which linearizes to vz = gt + Vxgx + Vygy − Vz on z = 0.

13.3 Lifting-Surface Theory

Lifting-surface theory solves the linearized equation of motion, generally using the
acceleration potential. The development of the theory provides the result for a
moving singularity, which is needed for acoustic theory as well.

The acceleration potential satisfies the wave equation. For a thin wing surface,
�ψ = −�p/ρ∞, whereas on the wake surface�ψ = 0, since the wake does not sup-
port a pressure jump. Hence the wing is represented by a distribution of singularities
over the planform. The linearized boundary condition is ∂φ/∂z = w, with the veloc-
ity potential obtained from the integral of φt = ψ . That the acceleration potential
automatically accounts for the wake is an advantage, but precludes any simple incor-
poration of a rolled-up, distorted wake geometry. So acceleration-potential methods
are not a basis for a general analysis, but can be a sound starting point for simplified
models.

13.3.1 Moving Singularity

A solution of the wave equation is a stationary dipole at position y

ψd = ∂

∂ny

f (t − s/a)
4πs

(13.21)

where s = x − y, f (t) is an arbitrary function of time, and ∂(. . .)/∂ny = n · ∇y is the
gradient in direction n. Evaluating the acceleration potential near a surface distri-
bution of dipoles (ψ(x) = ∫

ψddA(y) in the limit x → surface A) gives ψu = f/2
and ψl = − f/2, so f = �ψ = −�p/ρ∞, the force in the normal direction. Another
solution is a stationary velocity potential source,

φs = q(t − s/a)
4πs

(13.22)

A surface distribution of sources (∂φ(x)/∂nx = ∫
(∂φs/∂nx)dA(y) in the limit x → A)

gives vu = −q/2 and vl = q/2, so q = −�∂φ/∂n = −�vn and hence can represent
the wing thickness.

The derivation of a moving singularity follows Garrick (1957). For the potential
at x produced by a source at y(τ ), replace f (t) with f (τ )δ(τ − t) and integrate
over τ :

ψs =
∫ t

−∞

f (τ )δ(τ − t + s/a)
4πs

dτ =
∫ s/a

−∞

f (τ )δ(τ ∗)
4πs

dτ
dτ ∗ dτ ∗

= f
4πs

dτ
dτ ∗

∣∣∣∣
τ ∗=0

=
[

f
4πs(1 − Mr)

]
(13.23)

where the square brackets denote the retarded time τ ∗ = τ + s/a − t = 0 or the
solution of τ = t − s/a, and aMr = −ds/dτ = s · (dy/dτ )/s = a(s · M)/s. Mr is the
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Mach number of the source in the observer direction. Then the moving dipole is

ψd =
[
∂

∂ny

f
4πs(1 − Mr)

]
=
[

f n · s
4πs3(1 − Mr)

+ ∂

∂t
f n · s

4πas2(1 − Mr)

]
(13.24)

Including a potential source, the result is

ψd =
[

f n · s
4πs3(1 − Mr)

+ ∂

∂t
f n · s

4πas2(1 − Mr)
+ ∂

∂t
q

4πs(1 − Mr)

]
(13.25)

which is the acoustic formulation used by Farassat (1975). The thickness term is
not considered further here. For aerodynamic problems, the surface pressure is
the unknown to be obtained from the boundary condition on the velocity potential.
Integrating the acceleration potential gives the velocity potential for a moving dipole,

φd(x, t0) =
∫ t0

−∞
ψ(τ = t − s/a)dt =

∫ τ0

−∞
ψ(τ )(1 − Mr)dτ

=
∫ τ0

−∞

f n · s
4πs3

dτ + f n · s
4πas2(1 − Mr)

∣∣∣∣
τ0

(13.26)

where τ0 is the solution of τ0 = t0 − s(τ0)/a. This is the aerodynamic formulation used
by Dat (1973). Farassat (1982) noted the equivalence of the acoustic and aerodynamic
formulations and discussed the aerodynamic applications.

Represent the wings by a surface of dipoles and apply the boundary condition
to obtain a singular (Mangler-type) integral equation for the loading f = −�p/ρ∞:

w(x, t0) = lim
x→A

∂φ

∂nx
= lim

x→A

∂

∂nx

∫
wings

φddA(y)

=
∫

wings
lim
x→A

∂

∂nx

{∫ τ0

−∞

f n · s
4πs3

dτ + f n · s
4πas2(1 − Mr)

∣∣∣∣
τ0

}
dA(y) (13.27)

where s = x(t0)− y(τ ), sMr = s · My, and τ0 = t0 − s(τ0)/a. The integral is over the
surface of all wings. For incompressible flow, τ0 = t0, the second term is zero, and
the normal derivative can be evaluated; the integral equation becomes

w(x, t0) =
∫

wings
lim
x→A

∂

∂nx

{∫ τ0

−∞

f ny · s
4πs3

dτ
}

dA(y) (13.28)

=
∫

wings
lim
x→A

{∫ τ0

−∞

f
4π

(
ny · nx

s3
− 3ny · s nx · s

s5

)
dτ
}

dA(y) (13.29)

For compressible flow, the derivative with respect to nx can also be evaluated ana-
lytically, but the result is much more complicated. The required derivatives are of
the form

∂

∂nx
Gny · s = Gny · nx + ∂G

∂nx
ny · s (13.30)

for some quantity G. The vector s connects a point on the present wing surface (x)
with a point on the wing at a retarded time (y). So ny · s = 0 and ny · nx = 1 if the
wing and wake are planar. For a fixed wing, neglecting any warp of the wing and
wake surfaces is consistent with the linearization. For a rotary wing, neglecting the
warp may also be possible. The important effect of rotation is that the denominator
becomes periodically small as the wake passes under the blade. With a planar wing
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and wake, the integral equation is

w(x, t0) =
∫

wings

{∫ τ0

−∞

f
4πs3

dτ + f
4πas2(1 − Mr)

∣∣∣∣
τ0

}
dA(y) (13.31)

For steady or harmonic loading, f = eiωt�/ρ∞, and the magnitude of the loading
factors from the integral over the wake. Then the integral equation can be written
in terms of a kernel function:

w(x, t0) = eiωt0

∫
�

ρ∞
K dA(y) (13.32)

where

K = lim
x→A

∂

∂nx

{∫ τ0

−∞

eiω(τ−t0)n · s
4πs3

dτ + eiω(τ0−t0 )n · s
4πas2(1 − Mr)

∣∣∣∣
τ0

}
dA(y) (13.33)

In general, K is a function of t0, so there is inter-harmonic coupling for the periodic
loading of a rotor blade in forward flight (each loading harmonic gives many induced
velocity harmonics). When s is a function of (t0 − τ ), as for fixed wings or the rotor
in axial flight, (τ0 − t0) and the kernel K are independent of t0, and there is no
inter-harmonic coupling.

A lifting-line theory can be obtained by applying the chordwise integral to the
wing loading only. An integral equation for the section lift is obtained, with the
kernel function evaluated at one chordwise location only.

13.3.2 Fixed Wing

The fixed-wing problem is useful as a guide and a contrast to the rotor theory.
Consider a thin wing on the z = 0 plane, moving in the negative x direction and
undergoing harmonic loading. Following Garrick (1957), transform now to the mov-
ing frame: x = (x − Vt0, y, z)T and y = (ξ − Vτ, η, 0)T . The equation a(t − τ ) = s
for the retarded time is a quadratic, with solution

τ = t + Mσ − S
β2a

(13.34)

where σ = x − ξ − V (t0 − t), S2 = σ 2 + β2(y − η)2 + β2z2, and β2 = 1 − M2. The
retarded distance is then s(1 − Mr) = S. Working directly from the acceleration-
potential source (ψs = f (τ )/4πS, f = (l/ρ)eiωτ ) gives the integral equation

w = lim
z→0

∂φ

∂z
= lim

z→0

∂

∂z

∫ ∫
φddξ dη = lim

z→0

∂

∂z

∫ ∫ ∫ t0

−∞

∂ψs

∂z
dt dξ dη

= lim
z→0

∂

∂z

∫ ∫
1
V

∫ x−ξ

−∞

∂ψs

∂z
dσ dξ dη

= Veiωt0

∫ ∫
l
ρV 2

K dξ dη (13.35)

with the kernel

K = lim
z→0

∂2

∂z2
e−iω(x−ξ )/V

∫ x−ξ

−∞
eiω(σ−MS)/Vβ2 1

4πS
dσ (13.36)

which is the form given by Watkins, Runyan, and Woolston (1955).
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Working from the moving dipole solution (equation 13.26), the retarded time is
required only at t0:

τ0 = t0 + (M(x − ξ )− S
)
/aβ2 (13.37)

So with σ0 = x − ξ − V (t0 − τ0) = (x − ξ − MS)/β2, s2 = σ 2 + (y − η)2, and S2 =
(x − ξ )2 + β2(y − η)2 + β2z2, the kernel is

K = V
∫ τ0

−∞

eiω(τ−t0 )

4πs3
dτ + Meiω(τ0−t0 )

4πs0S

= e−iω(x−ξ )/V
{∫ σ0

−∞

eiωσ/V

4πs3
dσ + Meiωσ0/V

4πs0S

}
(13.38)

which is the form given by Landahl (1967). The integral in K can be reduced to a
function of two parameters and is a good form for series evaluation. For the steady
case

K =
∫ σ0

−∞

1
4πs3

dσ + M
4πs0S

=
∫ (x−ξ )/β

−∞

1
4πs3

dσ

= 1
4π

1
(y − η)2 + z2

(
1 + x − ξ

S

)
(13.39)

which shows that the compressible kernel is obtained by scaling (x − ξ ) with β.

13.3.3 Rotary Wing

To complete the development of the theory for the rotary wing, the trans-
formation to the rotating and translating coordinate system is introduced: s =
μ(t − τ )+ Tt x′ − Tτy′ and aM = dy/dτ = μ+�× Tτy′, where x′ = (x, y, z)T and
y′ = (ξ , η, 0)T . From

s2 = |μ|2(t − τ )2 + 2μ · (Ttx′ − Tτy′)(t − τ )+ |Ttx′ − Tτy′|2 (13.40)

the equation for the retarded time (a(t0 − τ0) = s at z = 0), becomes(
a2 − (�R)2(μ2 + λ2)

)
(t0 − τ0)

2

+ 2μ�R
(
x sin�t0 + y cos�t0 − ξ sin�τ0 − η cos�τ0

)
(t0 − τ0)

− (x2 + y2 + ξ 2 + η2 − 2(xξ + yη) cos�(t0 − τ0)

− 2(xη − yξ ) sin�(t0 − τ0)
) = 0 (13.41)

and

aS = as(1 − Mr) = a2(t0 − τ0)− as · M

= (
a2 − (�R)2(μ2 + λ2)

)
(t0 − τ0)+ μ�2R (ξ cos�τ0 − η sin�τ0) (t0 − τ0)

+ μ�R
(
x sin�t0 + y cos�t0 − ξ sin�τ0 − η cos�τ0

)
−� ((xξ + yη) sin�(t0 − τ0)− (xη − yξ ) cos�(t0 − τ0)) (13.42)

With these results the kernel can be evaluated, but because of the basic heli-
cal geometry, a transcendental equation must be solved for the retarded time,
and even for steady or incompressible or axial flight, integrating analytically over
the wake (τ ) is not possible. The linearized wing is taken as the z = 0 plane,
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so n · s = λ�R(t − τ )+ z ∼= z for low inflow, and on the wing n · s ∼= 0 (planar wing
and wake assumption). The rotor consists of N separate wing surfaces. In steady
forward flight, the N blades have identical, periodic loading.

The mean wake-induced velocityλi should be included in the vertical convection,
λ = μ tan i + λi, when evaluating s in the kernel (but not for the boundary condition).
Integrating the acceleration potential along the undisturbed air path is equivalent to
using the undistorted wake geometry defined by the translation and rotation of the
coordinate system. Including λi in λ is a first approximation to the distorted wake
geometry, needed to avoid unrealistically extreme interactions of the wing with the
returning wake when the rotor incidence angle is small.

Then for harmonic loading of the rotary wing, the integral equation is

w = �Reiωt0

∫ ∫
l

ρ(�R)2
K dξ dη (13.43)

with the kernel function

K = �R
∫ τ0

−∞

eiω(τ−t0 )

4πs3
dτ + Mtipeiω(τ0−t0)

4πs2(1 − Mr)

∣∣∣∣
τ0

(13.44)

The distance s is a function of t0, τ , x′, and y′. Even in the steady case, there is no
simple analytical evaluation of the integral over the helical wake. A transcendental
equation must be solved for the retarded time τ0. In forward flight the kernel is a
function of t0, but in axial flight the retarded time can be written τ0 = t0 −ϒ0(x′, y′).
In terms of polar coordinates (x = r sin , y = r cos , ξ = ρ sin θ , η = ρ cos θ),(

a2 − (�R)2(μ2 + λ2)
)
(t0 − τ0)

2

+ 2μ�R
(
r cos( −�t0)− ρ cos(θ −�τ0)

)
(t0 − τ0)

− (r2 + ρ2 − 2rρ cos( − θ −�(t0 − τ0))
) = 0 (13.45)

aS = (
a2 − (�R)2(μ2 + λ2)

)
(t0 − τ0)+ μ�2Rρ sin(θ −�τ0) (t0 − τ0)

+ μ�R
(
r cos( −�t0)− ρ cos(θ −�τ0)

)
+�rρ sin( − θ −�(t0 − τ0)) (13.46)

Then the kernel for axial flow is

K = e−iω( −θ )/�
{∫ σ0

−∞

eiωσ/�

4πs3
R dσ + Mtipeiωσ0/�

4πs0S

}
(13.47)

where σ0 =  − θ −�(t0 − τ0) and

β2
λR2(σ0 − − θ )2 − M2

tip

(
r2 + ρ2 − 2rρ cos σ0

) = 0 (13.48)

aS = −β2
λ (a

2/�)(σ0 − − θ )+�rρ sin σ0 (13.49)

s2 = λ2R2(σ − − θ )2 + r2 + ρ2 − 2rρ cos σ (13.50)

β2
λ = 1 − (λMtip)

2 (13.51)

This result is superficially similar to the fixed-wing kernel (equation 13.38), but the
differences are significant. The use of rectangular coordinates is more appropriate
for typical helicopter blade planforms. The integral in the kernel is a function of
five parameters, not two, and a series evaluation does not work as well as for the
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fixed wing, because s is periodically small. Even in the steady, axial flow case, a tran-
scendental equation must be solved for the retarded time. Even for incompressible
flow, when the retarded time is not needed, the kernel involves an integral over
the helical wake geometry. In forward flight, the kernel introduces inter-harmonic
coupling. Although the lifting-surface problem as formulated is much simpler for
axial flight, in hover the wake geometry is so important that the wake contraction,
wake convection, and blade-vortex interaction have a first-order influence on the
loading.

Under the assumption that the retarded time (τ0 − t0) is small, the equation is
quadratic and an analytical solution can be obtained:

τ0
∼= t0 + (V · (x′ − y′)/a − S

)
/aβ2 (13.52)

where

S2 = (V · (x′ − y′)/a)2 + β2|x′ − y′|2 (13.53)

β2 = 1 − (|V|2 + V̇ · (x′ − y′)
)
/a2 (13.54)

and s(1 − Mr) = S. Here V and V̇ are the velocity and acceleration of the coordinate
system at the observer point x (and are functions of t0). Except for the acceleration
term in β2, this is the solution for a fixed wing at velocity V(x). Equation 13.52
illustrates the dependence of (τ0 − t0) on t0 for forward flight, but not for axial flight.
For axial flow and polar coordinates, the result is

τ0 = t0 + ((�/a)rρ sin( − θ )− S
)
/aβ2 (13.55)

S2 = (
(�/a)rρ sin( − θ ))2 + β2(r2 + ρ2 − 2rρ cos( − θ )) (13.56)

β2 = 1 − (�/a)2(λ2R2 + rρ cos( − θ )) (13.57)

The above approximations are based on �(t − τ )� 1, which with a(t − τ ) = s
implies s�/a � 1, or Mtip(s/R)� 1. This requirement might be valid even at high
tip Mach numbers, since the kernel is dominated by locations with small s/R.

Lifting-surface analyses of rotary wings have been developed based on the inte-
gral equation (Dat (1973), Runyan and Tail (1983, 1985)), and based on vortex-lattice
models (Kocurek and Tangler (1973), Quackenbush, Bliss, and Wachspress (1989),
and Wachspress, Quackenbush, and Boschitsch (2003a)).

13.4 Boundary Element Methods

Boundary element or panel methods use a surface singularity distribution to solve the
linear potential equation for arbitrary geometry. The use of the velocity potential for
inviscid, irrotational flow reduces the problem to the solution of an integral equation
for a scalar function on a two-dimensional surface. The derivation is usually based
on Green’s theorem. Most of the work for helicopters has dealt with incompressible
flow.

13.4.1 Surface Singularity Representations

The derivation of the incompressible integral equation follows Lamb (1932). The
velocity potential satisfies Laplace’s equation, ∇2φ = 0, in either the fixed or mov-
ing frame. The boundary condition is that ∂φ/∂n = w on the body surface, and
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the potential jump in the wake is convected from the blade trailing edge. Thus for
incompressible flow the partial differential equation is linear without further approx-
imation, and unsteady effects enter only through the boundary conditions and the
wake. Assume φ and ψ are single-valued functions satisfying Laplace’s equation in
a volume V bounded by a surface A. Using Green’s theorem and substituting for
Laplace’s equation gives∫ (

φ
∂ψ

∂n
− ψ ∂φ

∂n

)
dA = −

∫ (
φ∇2ψ − ψ∇2φ

)
dV = 0 (13.58)

For multiply connected regions (such as in two-dimensional problems or for an
actuator disk), branch cuts and corresponding circulations can be introduced. Let
ψ be a unit source at x: ψ = 1/(4πs), where s = x − y. The volume V is the space
external to the body and wake, excluding a small sphere around the singularity at x.
Evaluating the surface integral over this small sphere (radius ε → 0),

1
4π

∫ (
−φ ∂
∂n

1
s

+ ∂φ

∂n
1
s

)
dA = 1

4π

(
φ

1
ε2

+ ∂φ

∂n
1
ε

)
4πε2 = φ(x) (13.59)

gives

4πφ(x) =
∫ (

φ
∂

∂n
1
s

− 1
s
∂φ

∂n

)
dA(y) (13.60)

which is a representation of φ as a surface distribution of sources and doublets. This is
an integral equation, since specifying both φ and ∂φ/∂n on the surface is not possible.
If the point x is inside the body (outside V), the left-hand side of equation 13.60 is
zero. The integral of the dipole distribution is singular as x approaches the surface.
Accounting for the singular part (excluding a small circle about x), the left-hand side
becomes 2πφ.

To obtain a representation in terms of sources or doublets alone, consider the
potential φ′ of an arbitrary flow inside the body. For x outside the body,

0 =
∫ (

φ′ ∂
∂n

1
s

− 1
s
∂φ′

∂n

)
dA(y) (13.61)

so

4πφ(x) =
∫ [

(φ − φ ′)
∂

∂n
1
s

− 1
s

(
∂φ

∂n
− ∂φ′

∂n

)]
dA(y) (13.62)

For a source representation, let φ = φ′ on the surface:

4πφ(x) = −
∫

1
s

(
∂φ

∂n
− ∂φ′

∂n

)
dA(y) = −

∫
σ

s
dA(y) (13.63)

so the tangential velocity is continuous and the normal velocity discontinuous at the
surface. For a doublet representation, let ∂φ/∂n = ∂φ′/∂n on the surface:

4πφ(x) =
∫
(φ − φ′)

∂

∂n
1
s

dA(y) =
∫
σ
∂

∂n
1
s

dA(y) (13.64)

so the tangential velocity is discontinuous and the normal velocity continuous at the
surface.

The surface must be collapsed into a thin layer in order to model a wake and
for the thin-wing approximation. For a thin layer, the surface integral is taken over
the upper surface only, and the integrand is the difference between the upper and
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lower surface singularity strengths. With a source distribution, �σ = �∂φ/∂n and
�φ = 0. The tangential velocity is the same on both sides, so sources can represent
the wing thickness, but cannot be used to model a wake. With a doublet distribution,
�σ = �φ and �∂φ/∂n = 0. The normal velocity is the same on both sides, but the
tangential velocity can jump. A doublet distribution is a vortex sheet, which can
represent a wake or a lifting wing without thickness. For a thin layer, equation 13.60
involves only �∂φ/∂n = �w, so the lifting boundary condition is lost. An integral
equation based on equation 13.60 is not proper for a thin wing.

13.4.2 Integral Equation

Evaluating x in equation 13.60 on the surface produces an integral equation for φ on
the surface:

2πφ(xs) =
∫

body

(
φ(ys)

∂

∂n
1
s

− 1
s
∂φ

∂n

)
dA(y)+

∫
wake

�φ(ys)
∂

∂n
1
s

dA(y) (13.65)

The wing boundary condition gives ∂φ/∂n, and �φ in the wake is convected from
the trailing edge. Generally, both the integral equation and the dependent vari-
able (potential rather than velocity) are well behaved, producing a well-conditioned
numerical problem (Maskew (1982a)), even for cases such as a wake cutting another
body (Clark and Maskew (1985)). Other integral equations (discussed later) involve
higher-order singularities for lifting problems. Equation 13.65 is not applicable to
thin wings, but practical thicknesses present no difficulties (Morino (1974)). The sin-
gular part of the doublet integral has already been included on the left-hand side. For
a flat, constant-strength panel, there is no other contribution from the singular part
produced by the local panel; hence, the singularity of the integral is of no concern.

A panel method is produced when the surface is approximated by a connected
set of small elements. Typically, the panels are quadrilaterals, although sometimes
they are approximated by flat quadrilaterals or triangles. Usually the singularity
strength is constant over a panel. A constant-strength doublet panel representation is
equivalent to a vortex lattice. Higher-order distributions are also used, but constant-
strength panels are more efficient and are generally satisfactory for subsonic flow.
The integral equation is evaluated at collocation points, normally the panel centers.
Thus, a set of algebraic equations for the potential φk on the panels is obtained:

2πφk =
∑
body

Ak jφ j +
∑
body

Bk j
∂φ j

∂n
+
∑
wake

Dk j�φ j (13.66)

The influence coefficients depend only on the geometry (not the boundary condi-
tions) and so are fixed for rigid-body motion and a prescribed wake geometry.

To evaluate the pressure, φt and the velocity ∇φ are required (probably in the
moving frame):

p − p∞
ρ∞

=
{− (φt + 1

2 (∇φ)2
)

fixed frame
− (φt + V · ∇φ + 1

2 (∇φ)2
)

moving frame
(13.67)

On the body, the boundary condition defines the normal velocity and the tangential
velocity; φt can be obtained by numerical differentiation of the surface potential. A
piecewise constant representation of φ must be fit to a polynomial distribution over
several nearby panels before being differentiated.
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In practice, the Kutta condition or Joukowski hypothesis is implemented by
attaching the wake to the wing trailing edge (thereby specifying where the vorticity
leaves the body), evaluating the wake strength from �φ of the panels at the trailing
edge, and convecting �φ in the wake with the local velocity (for an undistorted
wake geometry, approximated by the free stream). The theory behind the Kutta
condition is more complex and subtle than practice would suggest. Mangler and
Smith (1970) showed that at a finite angle trailing edge, the wake should be tangent
to the upper or lower surface, depending on local flow conditions. The implications
for a panel method have been discussed by Hess (1974), Summa (1975), and Morino,
Kaprielian, and Sipcic (1985). The trailing-edge bisector can usually be used for the
wake direction. The Kutta condition must be used in a form such that the results are
not sensitive to the geometric details of its implementation.

Other integral equations can be obtained from equations 13.62 to 13.64 by
evaluating the normal derivative of the potential, ∂φ/∂nx, on the body surface:

4π
∂φ

∂nx
= −

∫
σ
∂

∂nx

1
s

dA(y) = 2πσ (x)−
∫
σ
∂

∂nx

1
s

dA(y) (13.68)

4π
∂φ

∂nx
=
∫
σ

∂2

∂nx∂ny

1
s

dA(y) (13.69)

4π
∂φ

∂nx
=
∫ (

σd
∂2

∂nx∂ny

1
s

− σs
∂

∂nx

1
s

)
dA(y) (13.70)

In each case, ∂φ/∂nx is evaluated from the boundary condition, and the equation
is solved for the singularity strength σ . A source distribution cannot represent a
wake, so equation 13.68 is applicable only to non-lifting bodies. The second form of
equation 13.68 shows the singular part of the integral. For a flat, constant-strength
panel, there is no more contribution from the local panel, so the singularity is of no
concern. The doublet distribution (equation 13.69) can represent a lifting wing, but
not thickness if the wing surface is modeled as a thin layer. On a wake, the singularity
difference is convected from the trailing edge. Equation 13.69 has a Mangler-type
singularity, which is of a higher order than the singularities in equations 13.65 and
13.68 and requires more care to evaluate. However, a constant-strength doublet
panel is equivalent to a vortex lattice, for which the singularity is of no concern.
The combination of source and doublet singularities (equation 13.70) is not a unique
representation. Prescribing the distribution of the doublet or source strength over the
body or adding boundary conditions to the problem is necessary. Such flexibility can
be used to improve the numerical conditioning of the integral equation. To obtain
the velocity and pressure, even on the body surface, the singularity distribution must
be integrated over the entire body (unless the thin-wing model is used).

13.4.3 Compressible Flow

Helicopter rotor blades normally operate at speeds involving compressible flow.
For a helicopter fuselage, separation rather than compressibility effects is the pri-
mary concern. Consider subsonic potential flow with an arbitrary geometry. The
small perturbation velocity potential (relative to still air) satisfies the wave equa-
tion: a2∇2φ = φtt . The derivation of the integral equation is guided by Morse and
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Feshback (1953), where Green’s function was used to solve the problem for a fixed
body.

Using Green’s theorem, substituting for the wave equation, and then bringing
the time derivative outside the volume integral for a moving body, gives∫ (

φ
∂ψ

∂n
− ψ ∂φ

∂n

)
dA = −

∫ (
φ∇2ψ − ψ∇2φ

)
dV

= − 1
a2

∫ (
φψττ − ψφττ

)
dV

= − 1
a2

∫ (
φψτ − ψφτ

)
τ
dV

= − 1
a2

∂

∂τ

∫ (
φψτ − ψφτ

)
dV

+ 1
a2

∫
∂F
∂τ

1
|∇F |

(
φψτ − ψφτ

)
dA (13.71)

The body is defined by F (y, τ ) = 0, so

∂F
∂τ

1
|∇F | = −n · ∂y

∂τ
= −an · M (13.72)

where n is the body normal and M the surface Mach number. Let ψ = δ(τ ∗)/4πs,
where τ ∗ = τ − t + s/a and s = x − y, and δ(τ ∗) is the Dirac delta function. Then ψ
is singular at x, and the volume V must exclude a small sphere around x. Evaluating
the singular part of the left-hand side integral over the surface around x gives∫

φ
∂

∂n
δ(τ ∗)
4πs

dA = φδ(τ ∗)
4πs

∣∣∣∣
s=0

∫
∂

∂n
1
s

dA = φδ(τ − t)
4π

(−4π) = −φ(x, τ )δ(τ − t)

(13.73)
Next, the equation is integrated over time, from τ = −∞ to ∞. The remaining
volume integral is zero, since φ = φτ = 0 at τ = −∞ (fluid at rest), and ψ = ψτ = 0
at τ = ∞ (no effect if t < τ ). To proceed further, the order of the time and area
integrations is interchanged. First the coordinates are transformed to a moving
frame, y′ = h(y, τ ) and τ ′ = τ , such that the body surface is at rest in the moving
frame (F is not a function of τ ′). The time derivative transforms as

∂

∂τ
= ∂

∂τ ′ + V · ∇′ ≡ d
dτ ′ (13.74)

where V = ∂h/∂τ is the velocity of the air relative to the moving frame. For rigid-
body motion, a rotating and translating (and in general accelerating) coordinate
transformation is required, such as derived earlier for the rotor. For a flexible body
the transformation is more complex. Hence

φ(x, t) =
∫ ∫ ∞

−∞

[(
φ
∂ψ

∂n
− ψ ∂φ

∂n

)
− 1

a2

∂F
∂τ ′

1
|∇F |

(
φ
∂ψ

∂τ ′ − ψ ∂φ
∂τ ′

)]
dτ ′ dA(y′)

(13.75)
To transform ψ to the moving frame, note that τ ∗ = τ ′ − t + s(τ ′)/a. So

δ(τ ∗) = δ(τ ′ − τr)
∂τ ′

∂τ ∗ = δ(τ ′ − τr)
1

1 − Mr
(13.76)

where the retarded time τr is the solution of τ ∗ = 0, and aMr = −ds(τ ′)/dτ ′. Finally,
ψ = δ(τ ′ − τr)/

(
4πs(1 − Mr)

)
.
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Thus the integral equation for a moving body in compressible flow is

4πφ(x, t) =
∫ [(

φ
∂

∂n
1
S

− 1
1 − Mr

∂s
∂n

∂

∂τ ′
φ

aS
− 1

S
∂φ

∂n

)
− n · M

(
φM · ∇ 1

S
+ ∂

∂τ ′
φ

aS
Mr

1 − Mr

− 1
S

M · ∇φ + 2
aS
∂φ

∂τ ′

)]
dA(y′) (13.77)

where the square brackets imply evaluation at the retarded time, and S = s(1 − Mr).
For x on the body surface, the left-hand side becomes 2πφ when the singular part
of the right-hand side is accounted for. The surface A(y′) includes both wings and
wakes. Collapsing the wake to a thin layer gives integrals of the potential jump �φ
over the wake surface. The first two terms on the right-hand side are recognized
as the moving dipole, and the third term is a moving source. The operator (n · ∇ −
n · M M · ∇) accounts for the normal on the moving body. For zero body slope in
the flow direction, n · M = 0, only the first three terms remain on the right-hand
side, and the result is just an extension of the incompressible equation using moving
singularities. For a thin wing, n · M ∼= 0 can be a good approximation. For a fixed
body (M = 0 and Mr = 0), the equation becomes

4πφ(x, t) =
∫ [

φ
∂

∂n
1
s

− ∂φ

∂τ

1
as
∂s
∂n

− 1
s
∂φ

∂n

]
τ=t−s/a

dA(y′) (13.78)

which is Kirchhoff’s equation, a mathematical statement of Huygen’s principle
(Lamb (1932), Garrick (1957)).

For a fixed wing, M = (−M 0 0)T (neglecting motion relative to the uniform
flight speed), so s(1 − Mr) = S and τr = t − ϒ , with S and ϒ constant:

S2 = (x − ξ )2 + β2(y − η)2 + β2(z − ζ )2 (13.79)

ϒ = (
S − M(x − ξ ))/β2a (13.80)

The integral equation becomes

4πφ(x, t) =
∫ [(

φ
∂

∂n
1
S

− φ̇

aS(1 − Mr)

∂s
∂n

− 1
S
∂φ

∂n

)
−n · iM

(
φM

∂

∂ξ

1
S

− φ̇Mr

aS(1 − Mr)
− 1

S
M
∂φ

∂ξ
− 2φ̇

aS

)]
τ=t−ϒ

dA(y′) (13.81)

For steady flow, the result becomes

4πφ(x, t) =
∫ [

φ

(
∂

∂n
− M2i · n

∂

∂ξ

)
1
S

− 1
S

(
∂φ

∂n
− M2i · n

∂φ

∂ξ

)]
dA(y′) (13.82)

The substitution x = βx̂, ξ = βξ̂ scales this to the solution of the incompressible
problem ∇̂2φ = 0, with S = ŝ/β and

∂

∂n
− M2i · n

∂

∂ξ
= ∂

∂n̂
(13.83)

identified as the body normal derivative in the scaled coordinate frame. Prandtl-
Glauert scaling is obtained if the body slope is small in the flow direction, so n ∼= n̂.
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The foundations of panel methods are in fixed-wing applications. Hess and
Smith (1974) pioneered the use of equation 13.68 for steady, nonlifting bodies.
Rubbert and Saaris (1969, 1972) and Hess (1974) developed equation 13.70 for
steady lifting problems, using a surface distribution of sources and an internal or
surface distribution of doublets. Djojodihardjo and Widnall (1969) used equation
13.69 for unsteady problems. Morino (1974) and Morino and Kuo (1974) developed
a panel method for unsteady, compressible flow based on equation 13.81. Maskew
(1982a, 1982b) developed a panel method based on equation 13.65.

Panel methods have been used to analyze helicopter fuselages, particularly to
determine the body flow and the velocity induced at a rotor. Appropriately for
helicopters, the methods used have been generally incompressible, but there have
been many attempts to include a model of separated flow. Panel methods have been
developed for rotating blades and the helicopter airframe; see Summa (1976), Summa
and Maskew (1981), Summa (1985), Gennaretti and Morino (1992), Quackenbush,
Lam, and Bliss (1994), Gennaretti, Luceri, and Morino (1997), Ahmed and Vidjaja
(1998), Morino, Bernardini, and Gennaretti (2003), Wachspress, Quackenbush, and
Boschitsch (2003b), Gennaretti and Bernardini (2007), and D’Andrea (2008). Issues
for applications to rotary wings are incorporating drag and stall and implementation
or integration of a free wake analysis.

13.5 Transonic Theory

Transonic rotor analyses use finite-difference techniques to solve the nonlinear
equations for the flow about the blade. Transonic flow is normally encountered
on rotors in high-speed forward flight, so the problem is unsteady. There is a once-
per-revolution variation in the velocity seen by the blade (corresponding to a low
reduced frequency), as well as higher harmonics from the blade surface boundary
conditions. In spite of the fact that shocks are not isentropic, the potential equation
is a good approximation up to a local normal-shock Mach number of about 1.3; when
the error resulting from the isentropic assumption is large, the inviscid assumption
is probably also inappropriate.

The equation for the velocity potential relative to the still air as derived for a
rotating and translating coordinate system is

a2∇2φ = φtt + 2Uiφtxi + UiUjφxix j + V̇iφxi (13.84)

a2 = a2
∞ − (γ − 1)

(
φt + Vjφxj + 1

2
φxjφxj

)
(13.85)

p/p∞ = (
a2/a2

∞
)γ /(γ−1)

(13.86)

(equations 13.19 and 13.20), with the boundary condition Uz = gt + Uxgx + Uygy on
z = g. In full potential methods, the exact equation and tangent boundary condition
are solved.

13.5.1 Small-Disturbance Potential

The equation for small disturbances is useful both to understand the essential char-
acter of the problem and to reduce the computational effort. The small-disturbance
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equation is simpler than the full potential equation, and the linearized boundary con-
dition means that a simpler grid can be used. The small-disturbance approximation
is generally valid for moderate airfoil thickness and angle-of-attack, but is always
incorrect at the leading edge. The derivation of the small-disturbance equation is
guided by Isom (1974).

The small parameter τ is a measure of the disturbance produced by the wing
thickness and angle-of-attack. Hence, the wing surface is defined by g .= cτ , where
c is the blade chord (and “ .=” indicates “order of”). Let the order of the velocity
potential be defined by the small parameter δ, such that φ .= �Rcδ. The chord and
tip speed are measures of the displacement and velocity in the chordwise direction:
x .= c and Vx

.= �R. Small disturbance implies a linearized boundary condition: Vz +
φz = gt + Vxgx + Vygy on z = 0. Requiring φz

.= Vxgx, it follows that z .= cδ/τ . For
Vz
.= Vxgx, the tip-path-plane incidence i .= τ or less.
For subsonic flow, δ .= τ is assumed, and the linearized potential equation is

obtained: (
a2

∞δi j − ViVj
)
φxix j = φtt + 2Viφtxi + V̇iφxi (13.87)

This equation can be simplified further for the rotor. For small tip-path-plane inci-
dence, all the Vz terms are higher order and the �x term in Vy can be neglected.
Relative to a2

∞φxx, the V̇iφxi terms are order c/R small. Relative to a2
∞φxx, φtt is order

(ωc/�R)2
.= k2 and Viφtxi is order k. So all of the unsteady terms must be retained if

k .= 1. For a 1/rev variation, k .= c/R is small and the equation is quasisteady. Hence,
the equation for subsonic flow is(

a2
∞ − V 2

x

)
φxx − 2VxVyφxy +

(
a2

∞ − V2
y

)
φyy + a2

∞φzz = φtt + 2Vxφtx + 2Vyφty

(13.88)
where the right-hand side is neglected for frequencies ω .= �; Vx = �y + μ�R sinψ
and Vy = μ�R cosψ .

With transonic flow at the advancing tip, Mx
∼= 1 or Vx

∼= a∞, and the subsonic
ordering assumptions are contradicted. So for transonic flow, it is necessary to retain
some of the nonlinear terms. For small disturbances, the φ2

x j
term in a2, the order φ3

terms, and the nonlinear unsteady terms can always be neglected. Thus[(
a2

∞ − (γ − 1)
(
φt + Vkφxk

))
δi j − ViVj − Vjφxi − Viφxj

]
φxix j

= φtt + 2Viφtxi + V̇iφxi (13.89)

To derive the transonic ordering, assume that the advancing-tip Mach number is
near 1, so a2

∞ − V 2
x
.= (�R)2�, for a small parameter �. Then the nonlinear terms

are required only for the coefficient of φxx. Requiring that the largest terms in the
coefficient of φxx be the same order (a2

∞ − V 2
x
.= Vxφx) implies� .= δ. For a nontrivial

problem, the φzz term must be the same order as the φxx term; hence δ .= τ 2/3 and
z .= cτ−1/3. For the problem to be three-dimensional, the φyy term must be of the
same order as the φxx term; hence y .= cτ−1/3. For yawed flow, the φxy term being
the same order as the φxx term requires that the spanwise velocity be moderately
small: Vy

.= �Rτ 1/3. For small tip-path-plane incidence, the remaining terms on the
left-hand side are of a higher order.

For unsteady flow, requiring that the φtx term be the same order as the φxx

term implies k .= τ 2/3. For 1/rev time variation, k .= c/R; so the problem is unsteady
if c/R .= τ 2/3 and is marginally unsteady if c/R .= τ . Alternatively, if c/R .= τ is
assumed, the frequency must be ω/� .= τ−1/3 for an unsteady problem. If k .= 1,
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the problem is more unsteady than transonic, and the entire ordering scheme must
change. The φt term (compared to Vxφx) and the φtt term (compared to Vxφtx) are
order k small; nevertheless, they are sometimes retained to improve the numerical
convergence of the solution. The V̇iφxi terms (compared to the φxx term) and �x in
Vy or V̇x are of order τ−1/3c/R. For c/R .= τ these terms are of second order, but for
c/R .= τ 2/3 (required for the problem to be unsteady with 1/rev time variation), they
are only moderately small.

In summary, the transonic scaling requires φ .= �Rcτ 2/3, 1 − M2
x
.= τ 2/3, x .= c, y

and z .= cτ−1/3, My
.= τ 1/3, and k .= τ 2/3; exactly as for fixed-wing problems.

In the boundary condition, the Vz term must be retained for i .= τ , but
Vygy/Vxgx

.= τ 2/3 and gt/Vxgx
.= k are small. Hence φz = Vxgx − Vz on z = 0. For

small disturbances, the pressure is approximately

p − p∞
ρ∞

∼= −
(
φt + Viφxi + 1

2
φxiφxi

)
(13.90)

which with the transonic scaling (as for a2) becomes (p − p∞)/ρ∞ ∼= −Vxφx.
The transonic domain of the rotor is defined by (1 − M2

x )
.= τ 2/3, where Vx =

�y + μ�R sinψ . The maximum Mach number Mat = (1 + μ)�R/a is at the advanc-
ing tip (y = R and ψ = 90°). Then for Mat

∼= 1, the radial extent of transonic flow
is y/R .= τ 2/3. So c/R .= τ gives y .= cτ−1/3, which is consistent with the differential
equation being three-dimensional; for c/R .= τ 2/3 the transonic domain is some-
what larger, y .= c. The azimuthal extent of transonic flow is μ(ψ − π/2)2 .= τ 2/3,
or k .= μ1/2τ−1/3c/R (using ω .= 1/(ψ − π/2)). Then μ .= 1 and c/R .= τ , or μ .= τ 2/3

and c/R .= τ 2/3, gives k .= τ 2/3, which is consistent with the equation being unsteady.
For the transonic domain to be consistent with the equation being quasisteady
(k .= τ 4/3) requires either a very small advance ratio or a very small c/R. Inside the
transonic domain on the rotor tip, the radial velocity Vy

∼= μ�R cosψ .= �Rμ1/2τ 1/3,
which is consistent with the requirement Vy

.= �Rτ 1/3.
The transonic small-disturbance equation for potential flow on a rotary wing is

thus (
a2

∞ − V2
x − (γ + 1)Vxφx − (γ − 1)φt

)
φxx − 2VxVyφxy + a2

∞φyy + a2
∞φzz

= φtt + 2Vxφtx + (2Vy�+�2x
)
φx + (−2Vx�+�2y

)
φy (13.91)

which is nonlinear, unsteady, and three-dimensional. The V̇iφxi terms on the right-
hand side are almost of a higher order. Without them, the equation is identical to that
for a fixed wing, except thatVx andVy vary over the rotor disk. So the transonic nature
dominates the equation of motion, while the effects of rotation enter through the
variation of the wing velocities. The small-disturbance equations for the boundary
condition and pressure are quasistatic and not affected by radial flow. A number of
versions of equation 13.91 have been used, such as the following:

a) Without the V̇iφxi terms, and neglect �x in Vy for the φxy term
b) Without the φtt and φtφxx terms, without the V̇iφxi terms, and neglect �x in Vy

for the φxy term
c) Hover (Vx = �y and Vy = −�x) and steady
d) Hover, steady, and without the V̇iφxi and φxy terms

Retaining all linear terms (the unsteady and radial flow terms) in the boundary
condition and pressure poses no difficulties.
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The nonlinear terms were retained in equation 13.91 based on the assumption
that the flow is in the x direction in the rotating coordinates. In fact, a rotor blade has
yawed flow, except exactly at ψ = 90°. Retaining the nonlinear terms for arbitrary
yawed flow produces the following small-disturbance equation:(

a2
∞ − V2

x − (γ + 1)Vxφx − (γ − 1)Vyφy
)
φxx

+
(

a2
∞ − V 2

y − (γ − 1)Vxφx − (γ + 1)Vyφy

)
φyy

+ (a2
∞ − (γ − 1)Vxφx − (γ − 1)Vyφy

)
φzz − 2

(
VxVy + Vxφy + Vyφx

)
φxy

= 2Vxφtx + 2Vyφty + (2Vy�+�2x
)
φx + (−2Vx�+�2y

)
φy (13.92)

Type-dependent differencing is applied in the direction of the local flow, at yaw
angle � = tan−1 Vy/Vx. Ignoring the variation of Vx and Vy with y and x, the second
derivative in the local flow direction is φss = C2φxx + 2CSφxy + S2φyy, where C =
cos� and S = sin�. Rearranging the left-hand side of equation 13.92, and retaining
the nonlinear terms only in the coefficient of φss, gives[

a2
∞ − (V 2

x + V 2
y )− (γ + 1)(Vxφx + Vyφy)

] (
C2φxx + 2CSφxy + S2φyy

)
+ a2

∞
(
S2φxx − 2CSφxy + C2φyy + φzz

)
= 2Vxφtx + 2Vyφty + (2Vy�+�2x

)
φx + (−2Vx�+�2y

)
φy (13.93)

When using equation 13.92 or equation 13.93, the radial flow terms are retained in
the boundary condition and pressure as well.

The transonic equation for a rotor is solved by a finite-difference method adapted
from fixed-wing research, using type-dependent differencing (central differencing in
subsonic flow, backward differencing in supersonic flow) for the x derivative or in
the local flow direction. The small-disturbance equation can be solved faster than
the full potential or Euler equations, but the former is not valid for angles-of-attack
above about 5° and never at the leading edge. To reduce the computation time,
the quasistatic equations can be solved: all of the time derivatives in the potential
equation are neglected, although the correct instantaneous velocities and bound-
ary conditions are used. To define the loading on the advancing blade tip, the
unsteady equation must be solved at many more azimuth locations than is nec-
essary with the quasistatic equation. Based on comparison with measured pressures
on a non-lifting rotor, quasistatic solutions are not accurate on the advancing side
except near ψ = 90°, so solutions of the unsteady equations are required; see Chat-
tot and Philippe (1980). Calculations and comparison with experiment have also
demonstrated the fundamental three-dimensional nature of transonic flow on the
advancing blade tip (Caradonna and Isom (1976)) and the importance of radial flow
(Grant (1979)).

13.5.2 History

The first application of computational fluid dynamics to the rotary wing was by
Caradonna and Isom (1972). They derived the rotating-frame equation for poten-
tial flow about a rotor blade and from it the equation for small-disturbance, tran-
sonic flow. Only hover was considered, so the equations were steady in the rotat-
ing frame. Solutions were obtained for a non-lifting rotor with rectangular blades
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and 6% thick biconvex airfoil sections. Isom (1974) extended the derivation of
the small-disturbance potential equation to forward flight, using a rotating and
translating coordinate system and transonic scaling as appropriate for rotor blades.
The unsteady, three-dimensional small-disturbance equations were solved for a non-
lifting, rectangular planform rotor at an advance ratio of μ = 0.4 by Caradonna and
Isom (1976). The differences between unsteady and quasisteady results were sig-
nificant, particularly in the decelerating flow of the second quadrant of the rotor
disk.

In 1975, ONERA conducted a test of an Alouette II tail rotor in the S2-Ch
wind tunnel; see Caradonna and Philippe (1978). The rotor had two blades, no twist,
and symmetrical NACA sections. A blade was instrumented with 30 upper-surface
pressure transducers at three tip radial stations. Rectangular planform and swept
tip blades were tested with transonic tip flow at high-speed forward flight (μ = 0.4
to 0.55), non-lifting. The resulting data proved to be crucial to establishing the
validity of the CFD analyses being developed. Chattot and Philippe (1980) showed
correlation with-small disturbance calculations and compared results from a number
of researchers with these test data. To obtain data on a lifting rotor, ONERA tested
a three-bladed rotor in the S2-Ch wind tunnel; see Philippe and Chattot (1980). The
blades were articulated, twisted, with straight or swept-parabolic tips. There were
pressure transducers at three tip radial stations. The rectangular planform blade was
tested in hover and forward flight, for advance ratios up to μ = 0.43.

Chattot (1980) extended the method of Caradonna and Isom for solving the
transonic small-disturbance equation, including application to a nearly arbitrary
planform. Arieli and Tauber (1979) at NASA obtained quasistatic, full-potential
solutions for rotors. Grant (1979) at RAE obtained quasistatic, small perturbation.
Philippe and Chattot (1980) summarized the calculations of ONERA, U.S. Army,
RAE, and NASA, compared with the non-lifting ONERA data.

Caradonna, Tung, and Desopper (1984) calculated the three-dimensional,
unsteady, lifting flow on a rotor blade in forward flight, based on the transonic
small-disturbance equations. The influence of the wake and the blade motion was
accounted for by using an effective angle-of-attack in the blade boundary condition,
calculated from a simple inflow model and the measured flapping and pitch control.
The calculations were compared with the test data of Philippe and Chattot (1980).
Desopper (1985) presented further comparisons of calculations with lifting rotor
test data, for both rectangular and swept-tip blades. This was the start of work that
included blade motion and the rotor wake effectively in the computational model
and extended the physics modeled by the fluid equations.

13.6 Navier-Stokes Equations

Solutions of the compressible, turbulent Navier-Stokes equations are required for
the three-dimensional, unsteady, transonic, viscous flows about helicopter rotors.
Rotary-wing problems have always been challenging for computational methods.
In particular, modeling the returning wake demands an accurate computational
domain over a volume with dimensions on the order of the rotor diameter, while
also modeling flow features on the scale of the boundary layer and vortex core.
Assume about 10 grid points are required to resolve the fine-scale features, with the
vortex core size about 10% chord. A typical aspect ratio of the blade is R/c = 15. The
wake influence extends 4 diameters or so. Hence a uniform grid requires about 1012
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points. The complexity of a nonuniform grid is essential, permitting finer resolution
near the bodies and capturing wake vorticity, with coarser resolution in the far field.
Overset grids are needed to accommodate such geometries and to implement parallel
solutions. Dynamic stall is important for rotor blades, and massive separation for
helicopter airframes. Models of turbulence and transition must be appropriate for
flows in the rotating frame. In addition to the basic rotation of the rotor, the blades
have substantial rigid-body and elastic motion. The aerodynamic grids must follow
the blade motion, and the airloads must be transferred to a structural model to
calculate the motion.

By the mid-1980s, solutions for rotor blade flow were published using the full-
potential equations: see Arieli and Tauber (1979), Chang and Tung (1985), Egolf and
Sparks (1985). Sankar and Prichard (1985), Steinhoff and Ramachandran (1986), and
Strawn and Tung (1986). By the late 1980s, the Euler equations were being solved for
rotor blades: see Roberts and Murman (1985), Kroll (1986), Sankar and Tung (1986),
Sankar, Wake, and Lekoudis (1986), Agarwal and Deese (1987), Chang (1987),
Chen, McCroskey, and Ying (1988), and Kramer, Hertel, and Wagner (1988). The
Euler equations retain the inviscid but not irrotational and isentropic assumptions.
Solutions of the full Navier-Stokes equations appeared first around 1990, based
on preliminary work in the 1980s: see Liu, Thomas, and Tung (1983), Agarwal and
Deese (1988), Srinivasan and McCroskey (1988), Wake and Sankar (1989), Aoyama,
Saito, and Kawachi (1990), Smith and Sankar (1991), Srinivasan and Baeder (1991),
and Duque (1992).

Current solutions of Reynolds-averaged Navier-Stokes (RANS) equations offer
significant improvements in the calculation of blade airloads, compared to methods
based on lifting-line theory. Potsdam, Yeo, and Johnson (2006) presented results
from RANS calculations for high-speed (transonic flow), low-speed (blade-vortex
interaction), and high-thrust (dynamic stall) flight conditions, showing good correla-
tion with flight test measurements of blade airloads. The computational fluid dynam-
ics (CFD) code used high fidelity, overset grid methodology with first-principles-
based wake capturing. A comprehensive analysis calculated blade motion and trim,
coupled to the CFD code through the normal force, chord force, and pitching
moment. Normal force and pitching moment magnitudes were accurately captured
in the coupled solutions, and the shape of the airloads curves was well predicted. The
phase of the airloads when compared with test data was very good for all flight con-
ditions, resolving past problems of airloads phase prediction using comprehensive
analysis. The blade-vortex interaction airloads were well predicted for the low-speed
case, even though the far field grid resolution (10% or 5% chord) was not sufficient
to resolve tip vortex cores. Dynamic stall events were evident in the calculations,
although more improvement was needed.

13.6.1 Hover Boundary Conditions

Whether computational or experimental, a hovering rotor needs a very large oper-
ating domain to avoid significant effects of the walls, such as large-scale recirculation
and major performance changes. With overset grids, solid walls (zero velocity bound-
ary conditions) very far from the rotor can be used. An alternative is to prescribe
velocity boundary conditions in the far field to keep the flow solution well behaved.
See Srinivasan, Raghavan, Duque, and McCroskey (1993) and Strawn and Djomehri
(2002).
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From momentum theory, the outflow below the rotor is wout = �R2
√

CT/2.
This outflow occurs on a circle where the contracted wake cuts the lower boundary,
with radius (1/

√
2)R ideally, and about 0.78R from flow visualization. By mass

conservation, there must be inflow velocities on the rest of the bounding surfaces.
These inflow velocities far from the rotor can be estimated based on a sink at the
rotor hub, with strength required to match the mass flux of the outflow:

win = �R
4

√
CT

2

(
R
d

)2

(13.94)

where d is the distance from the hub center. The velocity direction is radially inward
toward the hub, on the surfaces of the box bounding the computational domain.
Alternatively, free stream pressure can be prescribed at the outflow area, with the
mass outflow automatically adjusted to match the inflow. A sink at the rotor hub is
not actually part of the computation, but is just the basis for estimating the velocity
boundary conditions. With the far-field boundaries reasonably far from the rotor,
the solution is not sensitive to the strength of the sink.

13.6.2 CFD/CSD Coupling

Computational fluid dynamics (CFD) offers advances in modeling the complex aero-
dynamics of rotors, but for forward flight the solution must include the structural
dynamic motion of the blades and trim of the aircraft. Typically, the latter tasks are
handled using a rotorcraft comprehensive analysis (designated CSD for symmetry).
The information exchanged between the CFD and CSD codes consists of integrated
section aerodynamic loads and the blade section motion or, more generally, blade
pressures and deformations. To combine the CFD and CSD codes requires a fluid-
structure interface definition and a coupling strategy. In rotorcraft terminology, the
interface methods are classified as tight coupling or loose coupling. For tight cou-
pling, information is exchanged at every time step, often with staggered integration
of the aerodynamic and structural dynamic equations, with an outer loop to handle
trim. Tight coupling is required for problems involving time history solutions, such as
aircraft maneuvers or aeroelastic stability assessment. Use of a time history solution
method for steady-state operating conditions poses problems, particularly finding
the periodic motion and the trim controls in the presence of low-damped or unstable
modes; these problems are exacerbated by the computationally intensive nature of
CFD. In loose coupling, information is exchanged for the entire revolution of peri-
odic loads or motion, with separate time integration in the CFD and CSD codes, and
trim (adjusting controls to achieve target rotor state) is part of the comprehensive
analysis (CSD) as usual. The loose coupling methodology was developed by Johnson
for Tung, Caradonna, and Johnson (1986). The history and application of the loose
and tight coupling methods have been summarized by Datta, Nixon, and Chopra
(2007) and Tung and Ormiston (2009).

Loose coupling is based on an iteration between the CFD and CSD codes, each
obtaining the solution over the entire revolution of the rotor. The procedure has the
following steps:

a) The comprehensive analysis solves for the blade motion and rotorcraft trim,
using its internal aerodynamic model. The blade motion is transmitted to the
CFD analysis.
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b) The CFD analysis solves for the flow field, using the periodic blade motion to
move the aerodynamic surface and with it the computational grid.

c) The difference between the total loading from the CFD analysis and the total
loading from the comprehensive analysis is a loading increment. The compre-
hensive analysis solves for the blade motion and rotorcraft trim, using its internal
aerodynamic model, plus this increment as a prescribed loading.

d) Steps (b) and (c) are repeated until the solution converges, as measured by the
change in blade loading, blade motion, and trim controls from one iteration to
the next. At convergence, the total loading in the CSD analysis equals the total
loading from the CFD analysis, yielding a completely consistent solution.

The blade motion is typically described by the linear and angular motion of points
along the blade axis, hence assuming rigid chordwise motion, which is consistent with
beam models of the comprehensive analysis and is easily accommodated in the CFD
grid motion. Section loads are typically used in the comprehensive analysis, again
for beam models, requiring integration of pressure loading from the CFD analysis.
Consistent collocation points for the loading in the CFD and CSD analyses must
be used, so the loads are conserved. Each iteration of the comprehensive analysis
produces a converged periodic solution for the motion, but it is most efficient if
each iteration of the computationally intensive CFD calculations is not carried to a
periodic solution for the loading. In practice, a CFD iteration can solve for just 1/N
revolution (where N is the number of blades), and full convergence of the coupled
CFD/CSD solution is achieved with a total of two or three revolutions of the CFD
calculation. Limiting the number of revolutions required in the CFD solution is a
major advantage of loose coupling.

Simply setting the lift coefficient in the comprehensive analysis to the value
calculated by the CFD analysis would not account for changes in the angle-of-attack
as the wing motion and trim are updated. The key to the coupling is to keep the
comprehensive analysis aerodynamics active, responding to changes in blade motion
and trim. The comprehensive analysis aerodynamics function as an estimate of the
CFD airloads due to these changes. As long as this estimate is a sufficiently accurate
approximation of the CFD load in the next iteration, the process converges. This
approach is also called the delta-coupling method, since the correction can be written

cn(α) = cnCFD (αold)+ cnα (α − αold)

= cnCFD (αold)+ cnCA (α)− cnCAold (αold)

= cnCA (α)+
(
cnCFD (αold)− cnCAold (αold)

)
= cnCA +�cn (13.95)

where cnCFD is the normal force obtained from the CFD analysis, cnCA is the normal
force calculated by the comprehensive analysis, and cnCAold is the normal force calcu-
lated by the comprehensive analysis in the previous cycle. The correction is formu-
lated in a similar manner for chord force and pitching moment. Section axes (normal
force and chord force) must be used since the CFD analysis (or blade pressure mea-
surements) does not involve the section angle-of-attack. Loading coefficients are
best based on the speed of sound (M2cn form) to avoid inconsistencies in the use of
the section velocity. Better still is to use dimensional forces and moments (F ) with
components in a frame fixed to the rotating hub, thereby avoiding inconsistencies
in the normalization and axes of the section coefficients. With a three-dimensional
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structural model, the delta-coupling method can use pressures and shear stresses on
the surface, rather than section loading.

Equation 13.95 requires the loading that the comprehensive analysis calculates
without the prescribed delta (cnCA ). Using an updated delta formulation is more
convenient:

(�F )k+1 = (FCFD)k − (FCAold)k

= (FCFD)k − (FCAtotal −�F )k

= (�F )k + (FCFD − FCAtotal)k (13.96)

since then the total comprehensive analysis load is required (FCAtotal), not the load
without the increment (FCAold). The update of the loading increment is the current
difference between the CFD loading (FCFD) and the total comprehensive analysis
loading (FCAtotal, including the prescribed delta). Convergence is achieved when
(FCFD − FCAtotal) approaches zero.

Early applications of loose coupling involved CFD methods with limited com-
putational domains, which did not encompass the entire blade wake or even the
entire blade surface. In such cases the boundary condition on the blade surface was
implemented in terms of a partial angle-of-attack, accounting not only for the blade
motion but also for the induced velocity from the wake outside the CFD domain.
The accuracy and convergence of current implementations of loose coupling owe
much to the use of CFD models that simulate all the blades and all the flow field.
Even if the computationally intensive Navier-Stokes calculations are limited to the
blade near field, with a hybrid or approximate model of the wake, the complete
aerodynamic model belongs in the CFD part of the iteration, not the comprehen-
sive analysis. Then the interface for the CFD boundary conditions consists of just the
blade motion. A key to accurate calculation of airloading on rotor blades is moment
coupling, since blade torsion motion has a direct influence on the loading. Improving
the loading calculation (and avoiding convergence problems) depends on accurate
pitch moment calculation by the CFD analysis. The loose coupling methodology is
stable, convergent, and robust with full coupling of normal force, pitching moment,
and chord force.

13.7 Boundary Layer Equations

The classical ordering assumptions applied to equations of viscous flow near a surface
produce the boundary layer equations, with centrifugal and Coriolis terms due to
the rotation of the wing. The Navier-Stokes equations for incompressible flow are

∇ · v = 0 (13.97)(
∂

∂t
+ v · ∇

)
v = − 1

ρ
∇p + ν∇2v (13.98)

with ν = μ/ρ the kinematic viscosity. Transforming to rotating and translating coor-
dinates, with v now the velocity relative to the moving frame, gives

∇ · v = 0 (13.99)(
∂

∂t
+ v · ∇

)
v +�×�× r + 2�× v = − 1

ρ
∇p + ν∇2v (13.100)
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where � = ( 0 0 � )T , so

�×�× r + 2�× v =
⎛⎝−�2x − 2�v

−�2y + 2�u
0

⎞⎠ (13.101)

Following Fogarty (1951), we now introduce boundary layer coordinates: x the
curvilinear coordinate parallel to the blade surface, and z normal to the blade surface.
When the radius of curvature is large and the z-axis is nearly parallel to the axis
of rotation, the surface curvature does not change the equations of motion. The
assumption that the pressure gradient through the boundary layer is small holds if
the boundary layer thickness is small relative to the curvature. The boundary layer
assumptions imply that for large Reynolds number Re, the normal velocity w and
normal coordinate z are order Re1/2. Thus the equations for laminar boundary layers
are

ux + vy + wz = 0 (13.102)

ut + uux + vuy + wuz −�2x − 2�v = − 1
ρ

px + νuzz (13.103)

vt + uvx + vvy + wvz −�2y + 2�u = − 1
ρ

py + νvzz (13.104)

0 = − 1
ρ

pz (13.105)

As found by Prandtl, the pressure gradient through the boundary layer is negligible.
The pressure and velocity boundary conditions are from the solution for the inviscid
external or outer flow, and no-slip at the wall: u = v = w = 0 at z = 0, and u, v
approach the outer solution as z → ∞. In cylindrical coordinates (x = r sin θ and
y = r cos θ , with now u the tangential velocity and r the radial velocity),

1
r

uθ + vr + v

r
+ wz = 0 (13.106)

ut + u
r

uθ + vur + wuz + uv
r

− 2�v = − 1
ρr

pθ + νuzz (13.107)

vt + u
r
vθ + vvr + wvz − u2

r
−�2r + 2�u = − 1

ρ
pr + νvzz (13.108)

0 = − 1
ρ

pz (13.109)

In hover the external flow gives Vy/Vx = −x/y, which is order c/y and hence is
small except at the blade root. So in the boundary layer u/v is order c/y small, and
x is order c. Assuming c/y � 1 and u/v .= (c/y) (not near the reverse flow region or
the blade root), the boundary layer equations become

ux + wz = 0 (13.110)

ut + uux + wuz = − 1
ρ

px + νuzz (13.111)

vt + uvx + wvz −�2y + 2�u = − 1
ρ

py + νvzz (13.112)
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Now the mass conservation and u-momentum equations are the same as for two-
dimensional flow, with the effects of rotation only entering through the outer flow
and pressure; the cross-flow v-momentum equation is decoupled from the other
equations. The unsteady terms are order x/ut .= nc/y and hence are small for 1/rev
variation (n = 1).

13.8 Static Stall Delay

Propeller tests of Himmelskamp (1945 tests cited in Schlichting (1979)) show very
large measured values of the lift coefficient at the blade root, suggesting that rotation
postpones stall. Stall at the propeller root is expected from the large pitch angles,
but the three-dimensional flow results in pressure distributions much different from
either attached or stalled two-dimensional flow; see Tung and Branum (1990). The
effect depends on the local chord ratio c/r, which is a measure of the flow curvature,
large at the blade root. The centrifugal forces on the air in the boundary layer can
significantly affect the flow character, including separation.

Banks and Gadd (1963) used boundary layer calculations to examine the effect
of rotation on separation. They assumed that the tangential velocity outside the
boundary had the form ue = �r(1 − Kθ ) (in cylindrical coordinates), where K is
a constant that gives a decelerating flow. Then 1

ρr pθ = r�2K(1 − Kθ ) and 1
ρ

pr =
r�2K2θ2. The onset of separation occurs when ∂u/∂z = 0 at the surface. For K very
large, the problem is two-dimensional flow with a linear adverse velocity gradient,
which stalls at Kθ = 0.136. For K ≤ 0.55, the separation condition is not reached, so
the boundary layer is stabilized completely against separation.

Corrigan and Schillings (1994) solved the boundary layer equations with external
velocity ue = U∞(1 − Kθ ), to find the value of θTE at separation. Based on these
results, they developed a correction as a stall delay: c� = c�2D (α −�α)+ c�α�α,
where �α = f (c�max/c�α ). The factor is given as f = (KθTE/.136)n − 1, with θTE

∼=
c/r and c/r = .1517K−1.084. This correction is equivalent to using c� = Kc�2D

(
(α −

αz)/K + αz
)
, with

K = f + 1 =
(

c/r
.136

( .1517
c/r

)1/1.084
)n

=
(

1.291(c/r).0775
)n

(13.113)

The exponent n = 0.8 to 1.8, with the larger values typically giving better correlation.
Du and Selig (1998) solved the boundary layer equations with external velocity

ue = U∞(1 − Krθ ). They found the laminar separation point and approximated its
position as a function of c/r. The delay of separation was identified by comparing with
two-dimensional, non-rotating solutions and was used to construct a stall washout
correction:

c� = c�2D + Ksd
(
c�α(α − αz)− c�2D

)
(13.114)

cd = cd2D + Ksd
(
cdz − cd2D

)
(13.115)

For a rotor in axial flow, they give the following stall delay factor:

Ksd = 1
2π

[
1.6 c/r
0.1267

a − (c/r)D
b + (c/r)D − 1

]
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with D = d/(�r/R) for lift and D = d/(2λr/R) for drag; � = �R/
√

V 2 + (�R)2.
The constants a, b, and d are approximately 1. Here c is the chord, R the blade
radius, r the distance from the center of rotation, V the rotor axial velocity, and
� the rotational speed. This expression is not valid for c/r > 1. Raj (2000) revised
this model, particularly for an increase rather than a decrease in drag, using D =
(r/R)/(d�) and including an additional factor in Ksd of (1 − r/R) for lift and (2 −
r/R) for drag.

Snel and van Holten (1994) proposed the stall washout model based on boundary
layer analysis, with Ksd = tanh(3(c/r)2).

The static stall delay phenomenon is important for tilt rotors in hover and for
wind turbines. The phenomenon depends on the rotation of the blade, so can be
active on all rotors in hover. A helicopter rotor has low twist, so has low angle-of-
attack and low loading at the root and hence exhibits little effect of stall delay on
performance. The large twist typical of tilt rotors means that in hover the angle-of-
attack is high at the root. The loading is small inboard, but because of the static stall
delay the blade can carry more loading at the root and hence less loading outboard,
with a net reduction in power; see Corrigan and Schillings (1994). The static stall
delay phenomenon must be accounted for in the analysis, either by solving the
Navier-Stokes equations or by using one of the earlier empirical corrections, in
order to accurately calculate hovering rotor performance. The stall delay shifts the
drop in the hover figure of merit caused by stall to higher CT/σ . The static stall delay
also improves the performance of highly twisted tilt rotors in low-speed edgewise
flight (Johnson (2000)).
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14 Noise

14.1 Helicopter Rotor Noise

The helicopter is the quietest VTOL aircraft, but its noise level can still be high
enough to compromise its utility unless specific attention is given to designing for
low noise. As the restrictions on aircraft noise increase, the rotor noise becomes
an increasingly important factor in helicopter design. The complex aerodynamics
of rotors lead to a number of significant noise mechanisms. Helicopter rotor noise
tends to be concentrated at harmonics of the blade passage frequency N�, because
of the periodic nature of the rotor as seen in the non-rotating frame. There is sound
radiated because the mean thrust and drag forces rotate with the blades and because
of the higher harmonic loading as well. The spectral lines are broadened at the higher
harmonics because of the random character of the rotor flow, particularly variations
in the wake-induced loads. The acoustic pressure signal is basically periodic in time
(the period is 2π/N�), with sharp impulses due to localized aerodynamic phenomena
such as compressibility effects and vortex-induced loads. Figure 14.1 illustrates the
spectrum of rotor-generated sound. The contributions to helicopter rotor noise can
be classified as vortex or broadband noise, rotational noise, and impulsive noise or
blade slap. Although the distinction between these types of rotor noise is not as sharp
as was once thought, the classification remains useful for purposes of exposition. Cox
(1973), Burton, Schlinker, and Shenoy (1985), and Brentner and Farassat (1994,
2003) have presented summaries of helicopter rotor noise mechanisms and analysis.

The blade passage frequency N� is typically 10 to 20 Hz for a main rotor. N�
is low for two-bladed rotors, as well as for large rotors unless the number of blades
is large. It can be 30 Hz or higher for small helicopters or with a large number of
blades. For tail rotors and propellers the blade passage frequency is higher, typically
50 to 100 Hz.

Broadband or vortex noise is a high-frequency swishing sound produced by the
rotor and modulated in frequency and amplitude at the blade passage frequency.
Broadband noise is random sound radiated as a result of random fluctuations of
the forces on the blades, caused by random flow field fluctuations (turbulence). The
sound energy is distributed over a substantial portion of the spectrum in the audible
range, typically extending for main rotors from about 150 Hz to 1000 Hz, with a peak
around 300 or 400 Hz. There is also a high-frequency range of main rotor broadband
noise, occurring at around 2 to 5 kHz. Rotor broadband noise mechanisms are
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Figure 14.1. Helicopter rotor sound spectrum.

described by Burley and Brooks (2004). Dominant at frequencies up to 2 or 3 Hz
is turbulence ingestion noise, from the blade encountering atmospheric and wake
turbulence. Blade-wake interaction (BWI) noise is produced by the random lift
fluctuations resulting from operation of the blade in the wake flow field, with random
wake position and strength variations. Also contributing to BWI are recirculation
when the rotor is near the ground, main rotor wake interaction with the tail rotor, and
the interaction of twin main rotors. Blade self-noise, occurring at higher frequencies
(3 to 6 kHz), is caused by the formation and shedding of self-induced boundary
layer turbulence. Self-noise mechanisms include turbulent boundary layer, trailing-
edge noise; boundary layer separation, especially large-scale separation in deep
stall; laminar boundary layer, vortex shedding noise; blunt trailing-edge noise; and
tip vortex formation and shedding noise. The random noise of rotating wings was
originally associated with the shedding of vortices, as from a cylinder; hence the
name “vortex noise.”

Rotational noise is a thumping sound at the blade passage frequency, or at a
multiple of N� if the fundamental is inaudible. As the higher harmonic content
increases, the thumps sharpen into bangs and eventually into blade slap. The spec-
trum varies greatly with the rotor geometry and the operating condition. Rotational
noise is a purely periodic sound pressure radiated as a result of the periodic forces
exerted by the blade on the air. The spectrum of rotational noise thus consists of
discrete lines at harmonics of the blade passage frequency N�. Rotational noise
dominates the low-frequency end of the spectrum, for the main rotor from below
audible frequencies to about 150 Hz. It is found to extend even higher if a narrow
band measurement is made, with a gradual progression to broadband noise. The
fundamental frequency and perhaps also the first or second harmonic are below
the threshold of hearing. The sound identified at the blade passage frequency is the
higher harmonics and the vortex noise modulated at N/rev. Therefore the higher
harmonics of main rotor rotational noise are important subjectively. For a tail rotor
the fundamental frequency is higher, which so increases the subjective importance
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of the rotational noise that it becomes the dominant component. Rotational noise is
produced by the force periodically exerted on the air at any fixed point on the rotor
disk because of the rotation of the mean and unsteady loading with the blade. The
higher harmonic blade loading is responsible for the large high-frequency content
of helicopter rotor rotational noise. Rotational noise also includes thickness noise,
from the periodic displacement of the fluid by the rotating blade.

Impulsive noise or blade slap is a sharp cracking, popping, or slapping sound
occurring at the blade passage frequency and produced by the main rotor in certain
flight conditions. Blade slap is a periodic, impulsive sound pressure disturbance,
so is an extreme case of rotational noise. The impulsive character of blade slap
results in a substantial increase of the sound level over the entire spectrum, covering
a range of about 20 to 1000 Hz for a main rotor. When it occurs, blade slap is the
dominant noise source, due to the high overall sound pressure level and objectionable
impulsive character. Blade slap tends to occur most often in such maneuvers as flare
to landing, shallow descents, and decelerating steep turns, as well as at high forward
speeds. With some helicopters, blade slap occurs in level flight at moderate speeds.
The principal sources of blade slap are blade-vortex interactions (BVI noise) and the
effects of thickness and compressibility at high Mach number (high-speed impulsive,
or HSI noise). Such aerodynamic phenomena produce a large, localized, transient
force on the blade, which results in impulsive sound radiation. BVI noise is caused
by lift on the blade and radiates forward and below the disk plane. BVI noise occurs
in particular in descent, usually significant at the certification flight condition. A
tandem helicopter has blade slap as a result of the interaction of the rear rotor
blades with the tip vortices in the wake of the front rotor. HSI noise radiates noise
in the plane of the rotor disk, due to transonic flow on the advancing blade. At high
Mach numbers, thickness noise is an HSI noise source.

The sources of main rotor noise, in order of importance, are impulsive noise
(when it occurs), broadband noise, and rotational noise. The rotational noise is most
intense at very low frequency, but the first few harmonics are possibly below the
threshold of hearing. Thus although rotational noise is the primary determinant of
the overall sound pressure level, it is not the most important source in terms of sub-
jective annoyance. When the sound level is corrected for frequency content based
on human perception, the broadband noise often dominates. Rotational noise can
be important when its level increases at high frequencies; hence in cases approach-
ing blade slap. It can also produce acoustic fatigue and vibration of the helicopter
structure. The low frequencies propagate best in the air, with the high frequencies
being attenuated most with distance. Consequently, at very large distances from the
helicopter the impulsive and rotational noise of the main rotor are most important.
The acoustic detectability of the helicopter is often determined by the rotational
noise.

On many helicopters the tail rotor is the source of the most noticeable and
disturbing noise (next to blade slap), unless some effort is made to quiet it. The
design limitations for a quiet tail rotor (mainly low tip speed) impose little aircraft
performance degradation, because the tail rotor accounts for a small part of the
total weight and power loss. The tail rotor noise mechanisms are the same as the
main rotor mechanisms, but have a higher fundamental frequency. Hence tail rotor
rotational noise is important subjectively. Interaction of the main rotor wake with
the tail rotor produces noise at combinations of the main rotor and tail rotor blade
passage frequencies. A fan-in-fin anti-torque system has a much higher blade passage
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frequency (300 to 800 Hz) and hence increased annoyance. The helicopter transmis-
sion and engine are sources of high-frequency sound, which is important mainly for
the internal and near field noise. Since the high frequencies attenuate most with
distance, the rotors are the primary source of far field noise.

The most important parameter influencing the noise level of a rotor is the blade
tip speed. The vortex noise, rotational noise, and blade slap can all be significantly
reduced by operating the rotor at a lower tip speed. At high Mach number, decreas-
ing the tip speed is particularly effective in reducing the rotational noise and blade
slap. The vortex noise generally decreases slowest, so at low tip speed becomes the
dominant noise source. The vortex noise can also be reduced by lowering the rotor
thrust or the blade loading T/Ab, and the rotational noise and blade slap can be
reduced by lowering the thrust or the disk loading T/A. Decreasing the rotational
speed of the rotor also lowers the frequency range of the rotor noise, which can be
beneficial for large rotors. Increasing the number of blades tends to decrease the
magnitude of the rotational noise harmonics, although the fundamental frequency
also increases. Decreasing the higher harmonic content of the rotor airloads reduces
the rotational noise; in particular, this requires decreasing the blade-vortex interac-
tion loads, which also reduces blade slap.

The blade tip planform and section can influence the rotor noise by altering the
tip aerodynamic loads and the structure of the trailed tip vortex. The airfoil section
shape and thickness ratio at the tip should be chosen for good characteristics at high
Mach number, because of the importance of compressibility effects in rotational
noise and blade slap. An appropriate planform shape can minimize the tip vortex
roll up and thus reduce the blade-vortex interaction loads.

The parameters influencing rotor noise, particularly tip speed, disk loading,
and number of blades, are also major factors in determining rotor performance. So
any improvement in the aerodynamic efficiency of the rotor can be used to design
a quieter helicopter while maintaining the current level of performance and cost,
rather than being used exclusively to improve the helicopter performance.

14.2 Rotor Sound Spectrum

Let us examine the statistics of the rotor sound field. Because sound consists of pres-
sure waves radiated in a fluid, the noise analysis is concerned with the perturbation of
the pressure from the atmospheric level. The rotor aerodynamic loading and hence
the sound pressure are random signals with periodic (hence nonstationary) statistics.
The fundamental frequency is the blade passage frequency, so the period is 2π/N�.
The expected value of the sound pressure perturbation generated by the rotor is
p(t) = E(p(t = ψ/�)). The expected value (designated by the operator E(. . .)) is
the sum or integration over all instances, weighted by the probability function. The
Fourier transform of the auto-correlation R gives the spectrum S. For a stationary
function p̃, the mean and auto-correlation do not depend on τ , so

R(τ ) = E
(
p̃(t)p̃(t + τ )) =

∫ ∞

−∞
eiωτS(ω)dω (14.1)

S(ω) = 1
2π

∫ ∞

−∞
e−iωτR(τ )dτ (14.2)

and the mean-squared value is σ 2 = R(0) = ∫∞
−∞ S(ω)dω.
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Since the pressure signal of a rotor is nonstationary, the expected value p is not
constant. It is a periodic function of ψ , so can be written as a Fourier series:

p =
∞∑

m=−∞
pmeimN�t (14.3)

where pm are the harmonics of the discrete spectrum of p. The auto-correlation of
p̃ = p − p is

Rp(t1, t2) = E( p̃(t1)p̃(t2)) (14.4)

Since the rotor noise is nonstationary, Rp is not a function of (t1 − t2) alone, but rather
is a periodic function for constant (t1 − t2). Define the variables s1 = 1

2 (t1 + t2) and
s2 = t2 − t1. The auto-correlation Rp is then periodic in s1:

Rp(s1, s2) = E
(
p̃(t1 = s1 − s2/2)p̃(t2 = s1 + s2/2)

)
=

∞∑
m=−∞

Rm
p (s2)eimN�s1

=
∞∑

m=−∞
eimN�s1

∫ ∞

−∞
eiωs2 Sm

p (ω)dω (14.5)

The spectrum is obtained from the auto-correlation:

Sm
p (ω) = N�

(2π)2

∫ ∞

−∞

∫ 2π/N�

0
e−imN�s1 e−iωs2 Rp(s1, s2)ds1ds2 (14.6)

The standard deviation of the pressure at a particular instant in the period (ψ = �s1)
can be obtained from the auto-correlation:

σ 2
p (ψ) = E p̃2 = Rp(t1 = t2) = Rp(s2 = 0) (14.7)

Hence the spectral decomposition of σ 2
p is

σ 2
p (ψ) =

∞∑
m=−∞

Rm
p (s2 = 0)eimNψ =

∞∑
m=−∞

(∫ ∞

−∞
Sm

p (ω)dω
)

eimNψ (14.8)

So E p2 = p2 + σ 2
p , and the rms sound pressure is given by

(rms p)2 = lim
T→∞

1
T

∫ T

0
p2dt = lim

K→∞
1
K

K∑
k=1

N�
2π

∫ 2πk/N�

2π(k−1)/N�
p2dt

= N
2π

∫ 2π/N

0
E p2 dt =

(
p2 + σ 2

p

)
average over ψ

=
∞∑

m=−∞
|pm|2 +

∫ ∞

−∞
S0

p(ω)dω (14.9)
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where

S0
p(ω) = 1

2π

∫ ∞

−∞
e−iωs2

(
N�
2π

∫ 2π/N�

0
Rp(s1, s2)ds1

)
ds2

= 1
2π

∫ ∞

−∞
e−iωs2 Rp(s2)ds2 (14.10)

The expected value of the sound pressure p is the rotational noise (and blade slap
if impulsive enough); the auto-correlation Rp is the broadband noise. Included in
Rp is the standard deviation of the periodic pressure waveform, σ 2

p . The root-mean-
square pressure, which is generally used for noise assessment, is then the average of
E p2 = p2 + σ 2

p over one period. The spectral decomposition of the rotational noise
gives the discrete harmonics pm. The spectral analysis of the rms pressure involves
in addition the spectrum of the average of the auto-correlation, S0

p(ω). Because
the rotor noise is not stationary, there is more information about the broadband
noise that is not considered by the rms pressure (such as the spectrum of σ 2

p). This
additional information can be important for the subjective perception of rotor noise.

Sound is measured in units of decibels (dB), defined as

10 log10
sound power

reference power
(14.11)

A logarithmic scale is used because of the need to handle orders-of-magnitude
differences in the sound levels encountered and because the human ear has basically
a logarithmic response to sound. The energy flux at a given point in the sound field is
given by the acoustic intensity I = E(pu). Here p is the perturbation pressure and u
is the velocity due to the sound waves, so the instantaneous intensity pu is the power
radiated per unit area. In the far field, the velocity and pressure disturbances of a
sound wave are related by u = p/ρ0cs, so the intensity is

I = E(pu) = E(p2)

ρ0cs
= p2

rms

ρ0cs
(14.12)

whereρ0 is the mean air density and cs is the speed of sound. Thus the rms pressure is a
measure of the acoustic intensity. Moreover, the human ear and the aircraft structure
respond to the pressure deviations from the mean atmospheric value. Hence noise
is measured in terms of the sound pressure level, defined as

SPL = 10 log
p2

rms

p2
ref

= 20 log
prms

pref
(14.13)

in units of dB (re pref). For the reference pressure, pref = 20 μPa is normally used.
The spectrum of the rms pressure can then be regarded as the distribution of the
sound energy over frequency.

The overall sound pressure level (OSPL) is the total rms pressure. Common
practice is to measure and present the noise data in terms of its spectrum, either by
octave band, third-octave band, or narrow band measurements. Since the subjective
perception of sound depends on the frequency content, a number of frequency-
weighted measures of the sound pressure level have been developed, notably the
A-weighted sound level (dBA) and the perceived noise level. The A-weighted sound
level is intended to account for the sensitivity of the human ear. The perceived noise
level (PNL) is a metric developed for aircraft, using a weighting that depends on both
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the magnitude and the frequency of the spectrum, based on the sound annoyance
level. Further corrections have been developed for aircraft noise. The effective
perceived noise level (EPNL) accounts for the sound duration and the presence
of discrete frequency tones. PNL and EPNL are defined in FAR Part 36 (U.S.
Government (2012)).

The estimate of the subjective level of helicopter noise is difficult, however,
because no standard has yet been formulated that is well suited to the noise charac-
teristic of rotors: a random pressure disturbance with periodic statistics, composed
of low-frequency rotational noise, high-frequency broadband noise, and often sig-
nificant impulsive noise.

14.3 Broadband Noise

Rotor broadband or vortex noise is a high-frequency sound produced by random
fluctuations of the forces on the blade. For an elementary analysis of vortex noise,
consider a blade of length � in a flow at speed V with a random lift force (per
unit length) Fz(t) induced by the turbulence and vorticity in the wake. Assuming
impulsive loading over the chord, the section force is a vertical dipole, for which the
sound pressure p is

p = − 1
4π

∂

∂z
Fz(t − s/cs)

s
(14.14)

where s is the distance from the dipole Fz to the observer and z is the vertical
coordinate. From ∂s/∂z = z/s, the sound pressure in the far field (s very large) is

p = − 1
4πcs

z
s2

[
Ḟz(t − s/cs)− cs

s
Fz(t − s/cs)

]
∼= − 1

4πcs

z

s2
0

Ḟz = − 1
4πcs

sin θ0

s0
Ḟz (14.15)

where s0 is the distance from the blade to the observer and θ0 is the angle of the
observer from the disk plane (sin θ0 = z/s0). Integrating over the length of the rod
gives the total sound pressure:

p = − 1
4πcs

sin θ0

s0

∫ �

0
Ḟzd�1 (14.16)

The rms pressure is then

p2
rms = E(p2) =

(
sin θ0

4πcss0

)2 ∫ �

0

∫ �

0
E
(
Ḟz(�1)Ḟz(�2)

)
d�1d�2 (14.17)

Now write Ḟz = ωFz for a force at frequency ω, and define

R f f = E
(

Fz(�1)Fz(�2)
)

= E
(

Fz(�2 + �3)Fz(�2)
)

(14.18)

so

p2
rms =

(
sin θ0

4πcss0

)2

ω2
∫ �

0

∫ �

0
R f f d�1d�2 (14.19)



500 Noise

Assuming that the force correlation is homogeneous over the length of the blade, it

depends only on �3 = �1 − �2: R f f = F
2
R(�3), where F is the rms level of the section

lift (so R(0) = 1). Then∫ �

0

∫ �

0
R f f d�1d�2 = 1

2
F

2
∫ �

−�

∫ 2�−|�3|

|�3|
R(�3)d�4d�3 = F

2
∫ �

−�
(�− |�3|)R(�3)d�3

(14.20)
where �4 = �1 + �2. A perfect correlation of the force over the blade length would
give R(�3) = 1. A small correlation length over the blade is more appropriate, so
assume R(�3) is small except for distances of order �c from the origin:∫ �

0

∫ �

0
R f f d�1d�2 = F

2
��c (14.21)

where the correlation length �c = 2
∫ �

0 (1 − �3/�)R(�3)d�3
∼= 2

∫ �
0 R(�3)d�3 is here

much less than �. Hence

p2
rms =

(
sin θ0

4πcss0

)2

ω2F
2
��c (14.22)

In terms of the rms lift coefficient CL = F/ 1
2ρV 2d and the Strouhal number S =

ωd/2πV (where d is a characteristic dimension of the section), the result is

p2
rms = ρ2

16c2
s

(
sin θ0

s0

)2

C2
LS2V 6��c (14.23)

Yudin (1947) obtained essentially this result. He interpreted broadband noise on
a rotating rod as being due to the oscillating forces induced on the section by the
shed vortices, such as in a von Kármán vortex street. By considering the solution for
a vortex street, he related the oscillatory lift force produced by the vortices to the
steady drag force on the rod. Yudin quoted experimental data that indicate the sound
is proportional to (sin θ0)

2V 5.5�, verifying the dipole character of the vortex noise
and the assumption of small correlation length (a large correlation length would give
p2 ∼ �2). Yudin attributed the slightly smaller growth with speed to the dependence
of the drag coefficient on V .

For the rotating blade, s0 is the distance from the hub to the observer, at an
angle θ0 above the disk plane; the section lift coefficient is proportional to the blade
loading CT/σ ; the tip speed �R is used for the speed V ; and the Strouhal number
is assumed constant (so the noise frequency scales with V/d). The blade radius R is
used for the length �, and the correlation length �c is assumed to be proportional to
the blade chord c. The sound power must be multiplied by the number of blades N,
so the sound is proportional to N��c ∼ NRc = Ab, the total blade area. The rotor
vortex noise is then

p2
rms = constant × ρ2

c2
s

(
sin θ0

s0

)2

Ab(�R)6(CT/σ )
2 (14.24)

A constant Strouhal number implies that the rotor vortex noise frequency scales
with �R/c, but since the blade velocity varies linearly along the span and varies in
direction relative to the observer, the noise is spread over a considerable frequency
range. The assumption that the sound is due to lift fluctuations implies the directivity
of a vertical dipole: maximum on the rotor axis (θ0 = 90°) and zero in the rotor disk
plane (θ0 = 0°). The far field sound varies with distance from the rotor as s−2

0 , which
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Figure 14.2. Measured hovering rotor noise as a function of CT/σ compared with several
empirical vortex noise expressions; adapted from Widnall (1969).

is required for constant total radiated power. For fixed CT/σ and blade area, the
vortex noise is proportional to the tip speed to the sixth power, because of the scaling
of Fz with speed. Alternatively, in terms of the rotor thrust, p2 ∼ T 2(�R)2/Ab.

Equation 14.24 for the vortex noise can be generalized to

p2
rms = constant × ρ2

c2
s

(
sin θ0

s0

)2

Ab(�R)6 f (CT/σ ) (14.25)

Figure 14.2 shows measured hovering rotor noise in terms of

SPL150 − 10 log(�R)6Ab (14.26)

as a function of CT/σ , where SPL150 is the sound pressure level on the rotor axis at
150 m from the hub (with �R in m/sec and Ab in m2; subtract 41.3 dB for ft/sec and
ft2). The sound level at an arbitrary observer point is then

SPL = SPL150 + 20 log
(

sin θ0

s0/150

)
(14.27)

At blade loadings typical of helicopter rotor operation, the relationship p2 ∼
(CT/σ )

2 is reasonable. For low loading the noise is constant or even increases again,
probably as a result of the proximity of the rotor wake.

A number of empirical expressions have been developed to predict vortex noise,
based on correlation of measured rotor noise and on the functionality indicated by
simple theories. Figure 14.2 shows the results of three such expressions, which predict
the same overall sound pressure level to within a few decibels. Davidson and Hargest
(1965) obtained from measurements of rotor noise in hover,

SPL150 = 10 log
[
(�R)6Ab(CT/σ )

2]− 36.7 dB (14.28)



502 Noise

They also suggested corrections for hovering in a wind, for forward flight, and
for perceived noise level (PNdB). Schlegel, King, and Mull (1966) developed an
empirical expression equivalent to

SPL150 = 10 log
[
(�R)6Ab(CT/σ )

2]− 42.9 dB (14.29)

for predicting vortex noise. The vortex noise spectrum extended from 150 to 9600
Hz, with the greatest intensity over 300 to 600 Hz. The peak frequency correlated as
f = 0.20�R/h, where h is the projected thickness of the blade. They gave generalized
octave-band spectra for the vortex noise below and above stall conditions, scaled to
this peak frequency. When the rotor stalled there was a sharp increase in the 1200
to 2400 Hz octave band, and the previous empirical expression under-predicted the
vortex noise. Stuckey and Goddard (1967) found that the vortex noise measurements
of a rotor on a whirl tower correlated best with the expression

SPL150 = 10 log
[
(�R)6Ab(CT/σ )

1.66]− 39.9 dB (14.30)

The broadband noise spectrum peak frequency was given by f = 0.45�R/c Hz
(where c is the blade chord), and the spectrum fell off at about a constant rate of 7.5
dB per octave on either side of the peak. Widnall (1969) correlated existing data on
main rotor vortex noise, identifying the trends shown in Figure 14.2. The measure-
ments shown in Figure 14.2 are those used to develop these empirical expressions.
Such simple methods are only accurate to about 5 dB at best.

Lowson and Ollerhead (1969) found that with very narrow band measurements
the rotational noise harmonics are identifiable up to 400 Hz at least, in contrast
with wide band measurements, the latter leading to the impression that random
noise dominates the main rotor sound above about 150 Hz. Thus there is a gradual
transition from harmonic (rotational) to broadband (vortex) noise as the frequency
increases. They found that the vortex noise directivity is basically that of a dipole,
but not exactly zero in the disk plane. They noted that there was increased noise at
high collective because of stall and at low collective because of wake interference.
Leverton and Pollard (1973) obtained noise measurements of a helicopter rotor
on a whirl tower and found using a narrow band analysis that the spectrum in the
frequency range generally associated with vortex noise was actually a combination
of rotational and broadband components. They found that the broadband noise
spectrum did not show a peak, but was flat out to a fundamental frequency of 325 to
450 Hz (depending on the thrust) and fell off at a roughly constant decibel-per-octave
rate after that.

14.4 Rotational Noise

Rotor rotational noise is a periodic sound pressure disturbance. The rotational noise
spectrum consists of discrete lines at the harmonics of the blade passage frequency
N�, which dominate the low-frequency portion of the rotor noise. With a narrow
band analysis many harmonics of the rotational noise are identifiable. As the fre-
quency increases, the random pressure fluctuations become more important until
the discrete harmonics can no longer be discriminated from the broadband noise
spectrum.

Rotational noise is produced by the periodic lift and drag forces acting on the
blade. The blade exerts equal and opposite reaction forces on the air, and these rotate
with the blade, so that at any fixed point in the rotor disk plane there is a periodic
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Figure 14.3. Rotor disk plane coordinate axes,
and the observer position.

application of a force as the blades pass (at the fundamental frequency N�). Such an
unsteady force results in dipole radiation of a periodic pressure disturbance into the
fluid, which is the rotational noise. The force acting on the air is unsteady because
of the rotation of the blades and the periodic variation of the blade loading. For the
rotational noise analysis, the section forces rotating with the blade (Fx, Fz, and Fr;
respectively the chordwise, vertical, and radial forces) are replaced by an equivalent
distribution of periodic forces on the surface of the rotor disk in the non-rotating
frame (with components Gx, Gy, and Gz). Figure 14.3 shows the rotor coordinate
axes used: the x-axis is aft, the y-axis is to the right, and the z-axis is upward. The
rotor disk is in the x–y plane, with the blade at an azimuth angle ψ = �t. The forces
on the rotating blades can thus be represented by a distribution over the rotor disk
of dipoles that do not rotate but have periodically varying strength. The rotor disk
with the non-rotating dipole distribution then moves with the helicopter at a steady
velocity in vertical or forward flight. Figure 14.3 also defines the position of an
observer, where the rotor noise is detected, by the range s0, azimuth angle ψ0, and
elevation θ0.

14.4.1 Rotor Pressure Distribution

The differential pressure on the surface of the rotating blade,�p(r, x, ψ), is a periodic
function of the blade azimuth angle ψ for steady-state operation of the rotor. Here
x and r are rectangular coordinates rotating with the blade, respectively, chordwise
(positive aft) and spanwise. Thus�p is nonzero only within the area bounded by the
blade leading and trailing edges (xle < x < xte) and by the root and tip (rR < r < R).
This pressure is written in terms of the section lift L and a chordwise loading func-
tion �:

�p(r, x, ψ) = L(r, ψ)�(x, ψ) (14.31)

where by definition
∫ xte

xle
�dx = 1. The rotational noise analysis requires a knowledge

of the pressure distribution over the rotor disk �p1(r1, ψ1, t), where r1 and ψ1 are
the polar coordinates of the point on the disk. With N blades,�p1 is periodic in time
t with period 2π/N�. The pressure �p1, at a fixed point (r1, ψ1) on the rotor disk,
as a function of time t, must be related to the pressure �p at a point (x, r) on the
rotating blade at azimuth angle ψ .
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Each of the N blades produces an identical pressure pulse of duration c/�r as,
one at a time, each sweeps past a given point on the rotor disk. So only the pressure
produced by the reference blade when its azimuth angle ψ is in the vicinity of the
disk point at ψ1 must be considered. The pressure on the disk in rotating and non-
rotating coordinates is �p1(r1, ψ1, t) = �p(r, x, ψ), and the blade coordinates and
azimuth (r, x, ψ) must be determined for a given time and point on the rotor disk
(r1, ψ1, t). The reference blade is at azimuth angleψ = �(t − t0), where t0 is an initial
time. Now given ψ and the disk point polar coordinates r1 and ψ1, the chordwise
and radial coordinates of the corresponding point on the disk are

x = r1 sin(ψ − ψ1) (14.32)

r = r1 cos(ψ − ψ1) (14.33)

For a high-aspect-ratio blade x/r is small, so x ∼= r1(ψ − ψ1) and r ∼= r1. Then the
distribution of pressure over the rotor disk is

�p1(r1, ψ1, t) = �p
(

r1, x = r1
(
�(t − t0)− ψ1

)
, ψ = �(t − t0)

)
(14.34)

This determines �p1 for a time interval of length T = 2π/N� about t = t0 + ψ1/�,
and hence for all time since �p1 is periodic.

Now write the disk pressure distribution as a Fourier series in time:

�p1 =
∞∑

m=−∞
�pmeimN(�t−ψ1 ) (14.35)

where the harmonics are obtained from

�pm = N�
2π

∫
�p
(

r1, x = r1
(
�(t − t0)− ψ1

)
, ψ = �(t − t0)

)
e−imN(�t−ψ1 )dt

(14.36)
The integral is over the period T = 2π/N�. Transforming the integration variable
to x = r1

(
�(t − t0)− ψ1

)
gives

�pm = N
2πr1

e−imN�t0

∫ xte

xle

�p
(

r1, x, ψ = ψ1 + x/r1

)
e−imNx/r1 dx (14.37)

Hence the harmonics of the pressure distribution on the rotor disk can be obtained
from an integral of the blade pressure distribution over the chord. Separating the
blade loading into the section lift and a chordwise distribution factor, write �p =
L(r, ψ)�(x, ψ). For steady loading, L and � are independent of ψ , so

�pm = N
2πr1

e−imN�t0 L(r1)�mN (14.38)

where

�mN =
∫ xte

xle

�(x)e−imNx/r1 dx (14.39)

Thus even a steady lift on the rotating blade produces an unsteady pressure on the
air in the nonrotating frame. For the general case of periodic blade loading,

L =
∞∑

n=−∞
Ln(r)einψ (14.40)
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and the lift still factors out of the chordwise integration, giving

�pm = N
2πr1

e−imN�t0

∞∑
n=−∞

Ln(r1)�mN−n(ψ1) (14.41)

where now

�mN =
∫ xte

xle

�(x, ψ = ψ1 + x/r1)e−imNx/r1 dx ∼=
∫ xte

xle

�(x, ψ1)e−imNx/r1 dx (14.42)

The factors �mN account for the influence of the blade chordwise loading distribution
on the pressure at a disk point. If the chordwise loading factor �(x, ψ) is independent
of the blade azimuth position, then so is �mN ; but �mN always varies with the radial
station. Impulsive chordwise loading, �p = L(r, ψ)δ(x), gives

�pm = N
2πr1

e−imN�t0 L(r1, ψ1) (14.43)

So the disk loading at the fixed point (r1, ψ1) is then simply an N/rev impulse of
strength NL/2πr1.

Consider the chordwise distribution factor �n for some specific cases. In general

�0 =
∫ xte

xle

�(x)dx = 1 (14.44)

by the definition of �(x), and for small nx/r, �n
∼= 1 − inxCP/r, where xCP = ∫

�x dx
is the location of the center of pressure. For impulsive loading or in the limit of small
chord, �(x) = δ(x), so that �n = 1 for all n. A rectangular distribution of pressure
over the blade chord, �(x) = 1/c, gives

�n = e−inxm/r sin cn/2r
cn/2r

(14.45)

where xm is the coordinate of the blade midchord. From thin-airfoil theory, a loading
distribution more appropriate for the lift on an airfoil is

�(x) = 2
πc

√
1 − ξ
1 + ξ (14.46)

where ξ = 2(x − xm)/c, which gives

�n = e−inxm/r
(

J0(nc/2r)+ iJ1(nc/2r)
)

(14.47)

with J0 and J1 Bessel functions. When the loading is distributed over a finite chord,
the factors �n are reduced in magnitude relative to the impulsive loading result
�n = 1. The approximation of impulsive loading is simple and conservative, but for
best accuracy the actual chordwise distribution must be accounted for.

14.4.2 Hovering Rotor with Steady Loading

Consider the rotational noise of a hovering rotor. The rotor disk is stationary in
space, and with axisymmetric flow the loading on the blades is steady. The section
aerodynamic forces are Fz(r) normal to the disk plane and Fx(r) in the disk plane.
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For steady loading, write Fz and Fx in terms of the rotor thrust and torque:

Fz = 1
N

dT
dr

(14.48)

Fx = 1
Nr

dQ
dr

(14.49)

Since the sound is due to the pressure reaction on the fluid, the rotor profile torque
should not be included in Q. Following section 14.4.1, the corresponding pressure
distribution on the rotor disk in the nonrotating frame is

gz =
∞∑

m=−∞

N
2πr

Fz�mNeimN(�t−ψ) (14.50)

gx =
∞∑

m=−∞

N
2πr

Fx�mNeimN(�t−ψ) (14.51)

Here gz and gx are the normal and in-plane components of the pressure acting at the
point (r, ψ) on the disk (gx is still in the chordwise direction along the blade). An
initial time t0 = 0 has been used, so the reference blade azimuth is ψ = 0 at t = 0.
The normal and in-plane pressures would have different chordwise distributions in
general, but for now impulsive loading is assumed, which gives �mN = 1. Considering
just the m-th harmonic, the pressure on the rotor disk is thus

gz = 1
2πr

dT
dr

eimN(�t−ψ) (14.52)

gx = 1
2πr2

dQ
dr

eimN(�t−ψ) (14.53)

The components of the pressure in the rectangular coordinate system (Figure 14.3)
are then Gx = −gx sinψ , Gy = gx cosψ , and Gz = gz. This pressure is equivalent to
a distribution of dipoles over the surface of the rotor disk.

The dipole solution for the sound pressure p detected at an observer point
(x, y, z) and due to a concentrated force with components Gx, Gy, and Gz at the
point (x,y1, z1) is

p = − 1
4π

[
∂

∂x
Gx(t − s/cs)

s
+ ∂

∂y
Gy(t − s/cs)

s
+ ∂

∂z
Gz(t − s/cs)

s

]
(14.54)

where s is the distance from the dipole to the observer,

s2 = (x − x1)
2 + (y − y1)

2 + (z − z1)
2 (14.55)

and t − s/cs is the retarded time, which accounts for the finite time s/cs required for
a sound wave emitted at the source to travel to the observer. In the present case, the
forces acting on the rotor disk are periodic with fundamental frequency N�. Thus
the sound pressure is also periodic:

p =
∞∑

m=−∞
pmeimN�t (14.56)
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Since Gx, Gy, and Gz have the time dependence eimN�t , the m-th harmonic of the
sound pressure is

pm = − 1
4π

[
Gx
∂

∂x
+ Gy

∂

∂y
+ Gz

∂

∂z

]
e−iks

s
(14.57)

where k = mN�/cs, and the factor e−iks is due to the retarded time. The force is at
the disk point x1 = r cosψ , y1 = r sinψ , and z1 = 0 so

−
[

Gx
∂

∂x
+ Gy

∂

∂y

]
e−iks

s
= gx

[
sinψ

∂

∂x
− cosψ

∂

∂y

]
e−iks

s

= gx

[
− sinψ

∂

∂x1
+ cosψ

∂

∂y1

]
e−iks

s

= gx
1
r
∂

∂ψ

e−iks

s
(14.58)

Then integrating over the rotor disk area dS = r dr dψ gives the total m-th harmonic
of the rotational noise:

pm = 1
8π2

∫ 2π

0

∫ R

0

[
dT
dr

∂

∂z
+ 1

r2

dQ
dr

∂

∂ψ

]
e−iks

s
e−imNψdr dψ (14.59)

Now

∂

∂z
e−iks

s
= e−iks

s

(
− ikz

s
− z

s2

)
(14.60)

and the torque term is integrated by parts with respect to ψ , giving

pm = − imN�
8π2cs

∫ 2π

0

∫ R

0

[
dT
dr

z
s

(
1 − i

ks

)
− cs

�r2

dQ
dr

]
e−iks

s
e−imNψdr dψ (14.61)

The rotational noise has a discrete spectrum, with harmonics at the frequencies
mN�. The sound pressure level is obtained by summing the contributions from all
harmonics:

p2
rms = N�

2π

∫ 2π/N�

0
p2dt =

∞∑
m=−∞

|pm|2 (14.62)

That discrete spectrum is two sided, extending from m = −∞ to m = ∞. It is also
common to work with a one-sided spectrum, defined for m > 0 only. Since pm and
p−m are complex conjugates, the one-sided spectrum with the same p2

rms is obtained
by multiplying the harmonics of the two-sided spectrum by

√
2:

|pm| = mN�

4
√

2π2cs

∣∣∣∣∣
∫ 2π

0

∫ R

0

[
dT
dr

z
s

(
1 − i

ks

)
− cs

�r2

dQ
dr

]
e−iks

s
e−imNψdr dψ

∣∣∣∣∣
(14.63)

This is the rotational noise spectrum of a hovering rotor with steady thrust and
torque loading.

The far field approximation allows the integration over the rotor azimuth to be
evaluated analytically. Assume that the observer is far from the rotor, so that s  R.
Then to order R/s0,

s =
√

z2 + (x − r cosψ)2 + (y − r sinψ)2 ∼= s0 − xr cosψ
s0

− yr sinψ
s0

(14.64)



508 Noise

where s2
0 = z2 + x2 + y2 is the distance from the hub to the observer. For the rotor

thrust term the following approximation is made:

z
s

(
1 − i

ks

) ∼= z
s0

(14.65)

which requires not just that s  R but also that s be much greater than the wavelength
of the sound, ks  1. With k = mN�/cs, this criterion can be written as s/R 
1/(mNMtip). Since Mtip is of order 1 for helicopter rotors, the criterion reduces to
s  R again. Furthermore, we make the approximation

1
s

e−iks ∼= 1
s0

e−iks0 eikr(x/s0 ) cosψ (14.66)

The last factor accounts for the difference in retarded time over the rotor disk and
is the only influence of the order R/s0 term in s to be retained. Since the hovering
rotor is axisymmetric, the observer is assumed to be at y = 0, in the x–z plane. The
sound pressure in the far field is thus

pm = − imN�eiks0

8π2css0

∫ R

0

[
dT
dr

z
s0

− cs

�r2

dQ
dr

] ∫ 2π

0
eikr(x/s0 ) cosψ−imNψdψ dr (14.67)

The integral over ψ can be evaluated in terms of Bessel functions using the relation∫ 2π

0
eiz cosψ−inψdψ = 2π inJn(z) (14.68)

Hence the far field sound pressure is

pm = − imN�imNe−imN�s0/cs

4πcss0

∫ R

0

[
dT
dr

z
s0

− cs

�r2

dQ
dr

]
JmN

(
mN�r

cs

x
s0

)
dr (14.69)

The far field approximation eliminates the integration over ψ and introduces the
Bessel functions. In terms of the elevation angle θ0 of the observer above the disk
plane, z = s0 sin θ0 (see Figure 14.3), so

pm = − imN�imNe−imN�s0/cs

4πcss0

∫ R

0

[
dT
dr

sin θ0 − cs

�r2

dQ
dr

]
JmN

(
mN�r

cs
cos θ0

)
dr

(14.70)

The far field approximation is usually valid beyond four or five rotor radii from the
rotor hub.

As a further approximation, evaluate the integrand at an effective radius re,
which is equivalent to assuming that the loading is all concentrated at re. Then the
integration over the blade span can be eliminated, giving for the one-sided spectrum

|pm| = mN�

2
√

2πcss0

[
T sin θ0 − cs

�r2
e

Q
]

JmN

(
mN�re

cs
cos θ0

)
(14.71)

or

|pm| = mNMtip

2
√

2πRs0

[
T sin θ0 − R

Mtipr2
e

Q
]

JmN
(
mNMtip(re/R) cos θ0

)
(14.72)

in terms of the tip Mach number Mtip = �R/cs.
The far field sound pressure level p2

rms is proportional to s−2
0 , as required for

energy conservation. The rotational noise due to the thrust is zero on the rotor axis,
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where cos θ0 = 0 and therefore JmN = 0, and in the disk plane, where sin θ0 = 0. The
sound thus has a broad maximum at an angle between the disk plane and rotor axis,
typically around θ0 = ±30°. The noise due to the torque is zero on the rotor axis, with
the same phase as the thrust noise below the disk (sin θ0 < 0) and the opposite phase
above the disk. The sound is thus greatest below the disk plane. For the helicopter
rotor the effect of the torque term is small, Qcs/�R2T � 1, except near the disk
plane where the thrust noise is small. The rotational noise of the hovering rotor has
the functional form

|pm|2 = T 2/A

s2
0

f (mN,Mtip, θ0) (14.73)

Thus the noise is proportional to the rotor thrust and disk loading. Because of the
Bessel function behavior, the rotational noise harmonics fall off rapidly with har-
monic number m (for steady loading of the blades). Increasing the number of blades
N reduces the rotational noise harmonics, in addition to increasing the fundamental
frequency N�. At a constant thrust coefficientCT , the sound pressure level is propor-
tional to (�R)6 (neglecting the effect of the Bessel function). Hence the rotational
noise increases with about the sixth power of the tip speed or tip Mach number.

To account for the actual chordwise distribution of the blade loading in the
rotational noise expressions, the factor

�mN =
∫ xte

xle

�(x)e−imNx/rdx (14.74)

is introduced inside the integral over the blade span (since �mN depends on r).
Garrick and Watkins (1954) compared �mN for several elementary distributions.
In section 14.4.1, expressions are given for rectangular and thin-airfoil chordwise
pressure distributions. In general the factors �mN decrease in magnitude as mNc/2r
increases. Above about the 10-th harmonic the reduction in the rotational noise by
the chordwise pressure distribution is significant. If a rectangular pressure distri-
bution is assumed, the rotational noise is under-predicted, since the harmonics are
reduced proportional to (2r/cmN) at high harmonic number. With the more appro-
priate thin-airfoil theory pressure distribution, �mN decreases much more slowly,
proportional to (2r/cmN)1/2 at high harmonic number.

Gutin (1948) developed a theory for the rotational noise of propellers, obtaining
the previous result for the far field noise of a stationary rotor with steady loading.
Deming (1940) extended Gutin’s result by considering the distribution of the loading
over the blade span, instead of using an effective radius. Hubbard and Regier (1950)
extended Gutin’s analysis to include the near field noise calculation as well. They
found that the far field result significantly underestimates the sound pressure in the
near field, which extends to about 5R from the rotor hub.

The Gutin result is generally accurate for the rotational noise of static propellers.
Reasonable agreement with the measured noise is found for the first few harmonics,
and it is an adequate estimate of the overall sound pressure level. For the rotor of a
hovering helicopter, however, the error is large. Stuckey and Goddard (1967) found
that the Gutin result significantly underestimated all but the first harmonic of the
rotational noise of a hovering rotor, although the trends with tip speed and thrust
were given correctly. They found that eliminating the effective radius and far field
approximations by integrating numerically over the rotor disk did not improve the
predictions. The predicted rotational noise falls off rapidly with harmonic number,
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while the measured noise falls slowly or is even constant, apparently because of peri-
odic blade loads that exist in even a nominally hovering condition. Schlegel, King,
and Mull (1966) found that the rotational noise predicted by the Gutin theory was
about 4 dB low for the fundamental harmonic of a helicopter rotor, and it deterio-
rated rapidly with harmonic number. Ollerhead and Lowson (1969) concluded that
the Gutin theory significantly underestimates the rotational noise of a helicopter
rotor because of the neglect of the higher harmonic airloads.

14.4.3 Vertical Flight and Steady Loading

Consider a helicopter rotor in vertical flight, still with steady blade loading. For a
helicopter, the Mach number of the vertical velocity, M = Vc/cs = λcMtip is small.
This case also includes a propeller in forward flight, for which M is not small. The
observer is assumed to be moving with the rotor. The rotor is represented by a
distribution of forces over the disk, but now the solution for the sound generated by
a dipole moving with uniform velocity in the z-direction must be used:

p = − 1
4π

[
∂

∂x
Gx(t − σ/cs)

S
+ ∂

∂y
Gy(t − σ/cs)

S
+ ∂

∂z
Gz(t − σ/cs)

S

]
(14.75)

where

S2 = β2(x − x1)
2 + β2(y − y1)

2 + (z − z1)
2 (14.76)

σ = [
S + M(z − z1)

]
/β2 (14.77)

and β2 = 1 − M2. The m-th harmonic of the rotational noise is then

pm = − 1
4π

[
Gx

∂

∂x
+ Gy

∂

∂y
+ Gz

∂

∂z

]
e−ikσ

S
= 1

4π

[
gz
∂

∂z
+ gx

1
r
∂

∂ψ

]
e−ikσ

S
(14.78)

where k = mN�/cs. The total sound is obtained by integrating over the rotor disk
area. Using

∂

∂z
e−ikσ

S
= e−ikσ

S

(
− ikM
β2

− ikz
β2S

− z
S2

)
(14.79)

and integrating the torque term by parts with respect to ψ gives the sound pressure
for the rotor with steady loading in axial flight:

pm = − imN�
8π2cs

∫ 2π

0

∫ R

0

[
dT
dr

(
M
β2

+ z
β2S

− iz
kS2

)
− cs

�r2

dQ
dr

]
e−ikσ

S
e−imNψdr dψ

(14.80)

When M = 0, this reduces to the result of the last section.
The far field approximation now gives

S ∼= S0 − β2xr cosψ
S0

− β2yr sinψ
S0

(14.81)

where S2
0 = z2 + β2x2 + β2y2. Assuming the observer is at y = 0, then

1
S

e−ikσ ∼= 1
S0

e−ikσ0 eikr(x/S0) cosψ (14.82)
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and the far field sound pressure is

pm = − imN�imNe−imN�σ0/cs

4πcsS0

∫ R

0

[
dT
dr

(
M + z

S0

)
1
β2

− cs

�r2

dQ
dr

]
JmN

(
mN�r

cs

x
S0

)
dr (14.83)

Now in terms of the range and elevation angle of the observer (s0 and θ0 in Fig-
ure 14.3), z = s0 sin θ0 and x = s0 cos θ0. Hence S2

0 = s2
0(1 − M2 cos2 θ0), and

pm = − imN�imNe−imN�σ0/cs

4πcss0

√
1 − M2 cos2 θ0

∫ R

0

[
dT
dr

(
M + sin θ0√

1 − M2 cos2 θ0

)
1
β2

− cs

�r2

dQ
dr

]
JmN

(
mN�r

cs

cos θ0√
1 − M2 cos2 θ0

)
dr (14.84)

The principal influence of the rotor axial velocity is an order M increase in the
thrust-induced noise above the disk when the helicopter is climbing. There is also a
small (order M2) increase in the magnitude of the noise since S0 < s0, and there is a
shift in the directivity pattern.

Garrick and Watkins (1954) derived the rotational noise of a rotor in axial flight.
They considered a propeller in forward flight, for which the axial Mach number can
be large. Watkins and Durling (1956) extended the analysis to include more general
chordwise loading distributions.

14.4.4 Stationary Rotor with Unsteady Loading

Consider next a stationary rotor with unsteady loading. The helicopter rotor in
forward flight has periodic aerodynamic forces acting on the blades. If the effects of
the helicopter translation on the sound radiation are neglected, the present model
is obtained. In any case, it is useful to examine separately the influence of unsteady
loads before the effects of the forward motion are included as well.

Assuming impulsive chordwise loading of the blades, section 14.4.1 gives the
pressure distribution on the rotor disk as

gz =
∞∑

m=−∞

N
2πr

L(r, ψ)eimN(�t−ψ) (14.85)

where L(r, ψ) is the blade section lift, now depending on the blade azimuth as well
as the radial station. The sound due to in-plane blade forces is no longer included
in the analysis, since it is small compared to the sound due to the lift. Using the
stationary dipole solution, the analysis proceeds as in section 14.4.2 to obtain the
m-th harmonic of the sound pressure:

pm = − imN2�

8π2cs

∫ 2π

0

∫ R

0
L(r, ψ)

z
s

(
1 − i

ks

) e−iks

s
e−imNψdr dψ (14.86)

The section lift is a periodic function of ψ , so

L =
∞∑

n=−∞
Ln(r)einψ (14.87)
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For the far field approximation,

s ∼= s0 − r
s0
(x cosψ + y sinψ) = s0 − r cos θ0 cos(ψ − ψ0) (14.88)

where ψ0 is the azimuth angle of the observer (Figure 14.3). The loading is not
axisymmetric now, so examining only observer points in the x–z plane is not suffi-
cient. The rotational noise in the far field is then

pm = − imN2� sin θ0e−imN�s0/cs

8π2css0

∞∑
n=−∞∫ R

0
Ln

∫ 2π

0
eikr cos θ0 cos(ψ−ψ0 )−imNψ+inψdψ dr

= − imN2� sin θ0e−imN�s0/cs

4πcss0

∞∑
n=−∞

ei(n−mN)(ψ0−π/2)

∫ R

0
LnJmN−n

(
mN�r

cs
cos θ0

)
dr (14.89)

So every harmonic of the blade loading contributes to the m-th harmonic of the sound
pressure. In particular, the maximum sound produced by the loading harmonic Ln

occurs at the sound harmonic mN = n. The higher harmonic loading contributes
substantially more than the mean loading to the high-frequency rotational noise.
To predict the rotational noise, which is significant up to m = 20 or 30, accurate
data (measured or calculated) for the blade loads to very high harmonic number
are required. At such high harmonics a deterministic loading does not really exist,
however. A combined analysis of rotational and broadband noise is required to
properly calculate the high frequency noise.

14.4.5 Forward Flight and Steady Loading

Consider next the helicopter rotor in steady forward flight at advance ratio μ. The
higher harmonic loads on the blade are large and important to the rotational noise,
but here only the mean loading is considered in order to examine the influence of
forward motion of the rotor on the sound radiation. The rotor disk is represented
by a distribution of vertical dipoles moving in the negative x-direction with Mach
number M = μMtip. The observer is moving with the rotor velocity also. The sound
pressure due to a moving vertical dipole is

p = − 1
4π

∂

∂z
Gz(t − σ/cs)

S
(14.90)

where

S2 = (x − x1)
2 + β2(y − y1)

2 + β2(z − z1)
2 (14.91)

σ = [
S − M(x − x1)

]
/β2 (14.92)

and β2 = 1 − M2. The m-th harmonic of the rotational noise is then

pm = − 1
4π

Gz
∂

∂z
e−ikσ

S
= 1

4π
Gz

e−ikσ

S

(
ikz
S

+ β2z
S2

)
(14.93)
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where

Gz = − 1
2πr

dT
dr

eimN(�t−ψ) (14.94)

Integrated over the rotor disk, the sound pressure due to the rotor thrust in forward
flight is

pm = − imN�
8π2cs

∫ 2π

0

∫ R

0

dT
dr

z
S

(
1 − β2i

kS

)
e−ikσ

S
e−imNψdr dψ (14.95)

The far field approximation here gives

S ∼= S0 − xr cosψ
S0

− β2yr sinψ
S0

(14.96)

so in the retarded time

σ ∼= σ0 − 1
β2

(
x
S0

− M
)

r cosψ − y
S0

r sinψ (14.97)

where σ0 = (S0 − Mx)/β2. Note that

1
β2

(
x
S0

− M
)

= x − Mσ0

S0
(14.98)

(x − Mσ0)
2 + y2 = σ 2

0 − z2 (14.99)

Then

σ ∼= σ0 −
√(

x − Mσ0

S0

)2

+
(

y
S0

)2

r cos(ψ − ψr) = σ0 − σ0

S0
r cos θr cos(ψ − ψr)

(14.100)
where ψr = tan−1 y/(x − Mσ0) and θr = sin−1 z/σ0. Here σ0 is the distance from the
rotor hub to the observer at the time the sound was emitted; that is, at the retarded
time t − σ0/cs (if the observer had been stationary while the rotor moved). Hence θr

and ψr are the elevation and azimuth angle of the (fixed) observer at the retarded
time. Finally, we can write

S0 = β2σ0 + Mx = σ0

(
1 − M

−x + Mσ0

σ0

)
= σ0(1 − M cos δr) (14.101)

where δr is the angle between the observer and the forward velocity of the rotor at the
retarded time, so that M cos δr is the Mach number of the forward speed component
in the direction of the observer. The sound pressure in the far field is thus

pm = − imN�
4πcs

sin θr

σ0(1 − M cos δr)2
e−imN�σ0/cs−imN(ψr−π/2)

∫ R

0

dT
dr

JmN

(
mN�r cos θr

cs(1 − M cos δr)

)
dr (14.102)

For the stationary rotor (M = 0), the elevation angle θr = θ0, and the result of sec-
tion 14.4.2 is recovered.

Since sin θr/σ0(1 − M cos δr)
2 = z/S2

0 and S0 < s0, in forward flight there is an
increase in the magnitude of the rotational noise harmonics. The effect of the (1 −
M cos δr) factor in the argument of the Bessel function is to increase the sound
radiated forward of the rotor and to decrease the sound behind the rotor. Comparing
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the present result for the rotor in forward flight with the hovering rotor result in
section 14.4.2, we observe that the forward flight noise is obtained if the hover
expression is evaluated at the range S0 = σ0(1 − M cos δr), the elevation θr, and an
effective Mach number Meff = Mtip/(1 − M cos δr). Ahead of the rotor the effective
tip Mach number is greater than Mtip, so the noise is increased, and behind the rotor
Meff < Mtip and the noise is decreased.

14.4.6 Forward Flight and Unsteady Loading

Now let us consider the case of a helicopter rotor in forward flight, with periodic load-
ing on the rotating blades. With impulsive chordwise loading, the normal pressure
distribution on the rotor disk is the same as with steady loading:

Gz = − N
2πr

L(r, ψ)eimN(�t−ψ) (14.103)

except that now the section lift L varies withψ . Hence the spectrum of the rotational
noise in forward flight is

pm = − imN2�

8π2cs

∫ 2π
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0
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kS

)
e−ikσ

S
e−imNψdr dψ (14.104)

When the section lift is written as a Fourier series,

L =
∞∑

n=−∞
Ln(r)einψ (14.105)

the far field sound pressure is

pm = − imN2�

4πcs

sin θr

σ0(1 − M cos δr)2
e−imN�σ0/cs

∞∑
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0
LnJmN−n

(
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cs(1 − M cos δr)

)
dr (14.106)

Accounting for the actual chordwise pressure distribution gives instead

Gz = − N
2πr

∞∑
n=−∞

Ln�mN−neimN(�t−ψ)+inψ (14.107)

(see section 14.4.1), so the factor �mN−n must be included in the spanwise integra-
tion to evaluate the far field noise (assuming the chordwise distribution factor � is
independent of ψ). Alternatively, equation 14.37 for the m-th harmonic of the disk
pressure can be used directly in the form

Gz = − N
2πr

eimN(�t−ψ)
∫ xte

xle

�p(r, x, ψ + x/r)e−imNx/rdx

= − N
2πr

eimN(�t−ψ)
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n=−∞
Gzneinψ (14.108)

where

Gzn = 1
2π

∫ 2π

0
e−inψ

∫ xte

xle

�p(r, x, ψ + x/r)e−imNx/rdx dψ (14.109)
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which can be evaluated numerically, given the actual variation of the pressure over
the surface of the blade and around the azimuth. With this form, Ln in the present
result for impulsive loading is simply replaced by Gzn.

Loewy and Sutton (1966) developed a theory for helicopter rotor rotational
noise in forward flight, including a treatment of unsteady airloads on the blades. They
numerically integrated over the rotor disk to obtain the sound due to the dipole dis-
tribution at an arbitrary point in the near or far field. The blade flap motion and disk
tilt were accounted for in determining the orientation of the dipoles. The rotor blade
loading was assumed to be an input to the analysis. Simple chordwise distributions
of the lift and drag, not impulsive loading, were used. An azimuth increment of 1°
or less was required in the numerical integration, and the far field result significantly
underestimated the noise in the near field. The principal effect of forward flight was
to raise the level of the higher harmonics. The correlation with measured noise was
good for the low harmonics, but the predicted noise harmonics (based on measured
loadings) fell off rapidly with harmonic number while the measured values did not.

Schlegel, King, and Mull (1966) developed a theory for calculating helicopter
rotor rotational noise in forward flight. They considered a stationary rotor (and
hence used the stationary dipole solution), but included the unsteady airloads, as in
section 14.4.4. The measured or calculated blade loading was assumed to be given,
and a rectangular chordwise distribution of the lift was used. The sound pressure at
an arbitrary field point was calculated by numerically integrating over the rotor disk.
Comparison with flight test measurements of the rotational noise showed that the
prediction of the first harmonic in forward flight had been improved (compared to
predictions using the Gutin theory, which is accurate for the first harmonic in hover
but underestimates the noise in forward flight). However, the prediction of the third,
fourth, and higher harmonics was still poor. Schlegel and Bausch (1970) modified
this analysis to use the actual chordwise loading distribution. Measured data for
the pressure distribution over the rotating blade were converted to a distribution
of pressure on the rotor disk, which was then harmonically analyzed. With this
approach, good correlation with the measured noise was found up to at least the
fourth harmonic, in both forward flight and hover. They presented examples of
the theoretical influence that the higher harmonic airloads have on the noise and
concluded that at least mN harmonics of the loads were required to obtain the m-th
harmonic of the rotational noise.

Lowson and Ollerhead (1969) developed a theory for rotational noise of a rotor
in forward flight, including the effects of unsteady airloads and the rotor motion.
The derivation was based on the solution for the sound radiated by a rotating and
translating dipole. The total rotational noise was calculated by representing the
pressure distribution on the rotating blade as a distribution of such dipoles and then
integrating over the surface of the blade. Assuming an impulsive chordwise loading
reduces the calculation to an integral over the blade span of the section lift, drag, and
radial forces. They examined the m-th harmonic of the sound pressure due to the
n-th harmonic of the rotor loading and concluded that to calculate pm the loading
harmonics in the range

mN(1 − 0.8Mtip) < n < mN(1 + 0.8Mtip) (14.110)

are required. They concluded that the discrepancies in earlier analyses were due to
the neglect of the very high harmonics of the loading, but that a practical calcula-
tion procedure should not rely on having such high-frequency aerodynamic data.
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Lowson and Ollerhead also developed a simplified analysis that made the far field
approximation and assumed a certain behavior of the higher harmonic airloads. An
analytical evaluation of the integrals was then possible. In this simplified analysis,
they considered impulsive chordwise loading (which is conservative); used an equiv-
alent radius (the loads were concentrated at a single radial point as well); and from
an examination of measured rotor loads assumed that the magnitude of the higher
harmonics of the airloads varied with harmonic number n according to Fn = F0n−k,
where F0 is the mean loading. The best correlation was obtained with k = 2 (for
10 harmonics of airloading, all outboard stations of the blade, and operating condi-
tions from hover to μ = 0.2). The spanwise variation of the loading was assumed to
have a correlation length proportional to 1/n, which had the approximate effect of
increasing the exponent of the loading law to k = 2.5, giving Fn = F0n−2.5. Since no
trend was observed in the phase of the measured loading, the phase was assumed
to be random; hence |pm|2 = ∑

n |pmn|2. They found that the calculated and mea-
sured rotational noise agreed fairly well for the first harmonic. In forward flight the
predicted levels of the higher harmonics tended to be lower than measured, but the
shape of the spectrum from about m = 3 to m = 30 was given well.

14.4.7 Doppler Shift

The rotational noise of the rotor in forward or vertical flight has been derived for an
observer moving with the helicopter. For a fixed observer, these solutions can still be
used to evaluate the time history of the sound pressure by using the instantaneous
observer position relative to the rotor. The relative motion between the observer
and the rotor produces a shift of the frequencies of the perceived sound, which is
the Doppler effect. An acoustic source at frequency ω produces a sound pressure
proportional to eiωτ , where τ = t − s(τ )/cs is the retarded time. The frequency of
this sound at the observer then is

ωobs = ∂

∂t
ωτ = ω ∂τ

∂t
= ω

1 − Mr
= ω

1 − M cos δr
(14.111)

since dt/dτ = d(τ + s/cs)/dτ = 1 − Mr, with Mr = M cos δr the Mach number of
the helicopter in the direction of the observer. A fixed observer hears a frequency
increase as the helicopter approaches and a frequency decrease as the helicopter
recedes.

14.4.8 Thickness Noise

The helicopter rotor produces both periodic (rotational) noise due to the thickness
of the blades and noise due to the pressure forces. By periodically pushing the air
aside, each blade produces a pressure disturbance. The sound pressure is linearly
related to the blade lift and thickness, so the rotational noise due to the two sources
can be evaluated separately and then added. Consider therefore a rotor blade with
finite thickness but no lift. A symmetric section is assumed, so the pressure forces due
to camber need not be considered. The thickness of the blade produces a velocity
of the air normal to the section, first upward and then downward as the blade
passes (considering only the air above the disk plane). This displacement velocity is
determined by the boundary condition that the flow must be tangent to the airfoil
surface. Let v(r, x) be the velocity normal to the surface of the rotating blade due to
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thickness. Such a velocity can be modeled by a distribution of sources over the blade,
with strength proportional to v. For simplicity, v is assumed to be independent of ψ ,
although in forward flight v is periodic since it is proportional to the blade tangential
velocity uT . A source is a more effective radiator of sound than a dipole, but here
the net source strength over the blade chord is zero (for a closed airfoil section), so
the same order of noise as from a dipole is expected.

The sources on the rotating blade are now transformed to a distribution of fixed
sources on the rotor disk, as required to give the periodic normal displacement
velocity due to thickness. Following the approach of section 14.4.1, the distribution
of normal velocity over the disk is

v1(r, ψ, t) =
∞∑

m=−∞

N
2πr

vm(r)eimN(�t−ψ) (14.112)

where

vm =
∫ xte

xle

v(r, x)e−imNx/rdx (14.113)

For a hovering rotor, these sources on the rotor disk are stationary. The sound
pressure due to a stationary but time-varying source of strength 2v1ρdA (considering
both upper and lower surfaces of the rotor disk) is

p = ρ

2πs
∂

∂t
v1(t − s/cs)dA (14.114)

On integrating over the rotor disk (dA = r dr dψ), the m-th harmonic of the sound
becomes

pm = ρ imN2�

4π2

∫ 2π

0

∫ R

0
vm(r)

e−iks

s
e−imNψdr dψ (14.115)

In the far field, s ∼= s0 − r cos θ0 cos(ψ − ψ0) as usual, so

pm = ρ imN2�

4π2s0
e−imN�s0/cs

∫ R

0
vm

∫ 2π

0
e−ikr cos θ0 cos(ψ−ψ0 )−imNψdψ dr

= ρ imN2�

2πs0
e−imN�s0/cs e−imN(ψ0−π/2)

∫ R

0
vmJmN

(
mN�r

cs
cos θ0

)
dr (14.116)

is the spectrum of the rotational noise due to thickness. This noise is zero on the
rotor axis, because of the cos θ0 factor in the Bessel function.

To complete the analysis of the thickness noise, vm must be evaluated. For thin
sections, the velocity normal to the airfoil is given by the slope of the surface times
the free stream velocity:

v(r, x) = �r
1
2

dt
dx

(14.117)

where t(x) is the thickness of the section. Then

vm =
∫ xte

xle

�r
1
2

dt
dx

e−imNx/rdx = imN�
1
2

∫ xte

xle

te−imNx/rdx = imN�
1
2

AxsamN

(14.118)
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where

amN = 1
Axs

∫ xte

xle

te−imNx/rdx (14.119)

and Axs is the area of the blade cross-section. Substituting for vm then gives

pm = − ρ(mN�)2N
4πs0

e−imN�s0/cs e−imN(ψ0−π/2)

∫ R

0
AxsamNJmN

(
mN�r

cs
cos θ0

)
dr (14.120)

The coefficients amN can be evaluated for a given thickness distribution t(x). For
an impulsive thickness distribution (small chord), t(x) = Axsδ(x), so amN = 1. Then
only the section area is required. As an example, the area of the NACA 4-and 5-digit
airfoils is Axs = 0.685τc2, where c is the chord and τ is the maximum thickness ratio
(tmax/c). The thickness noise is usually small compared to the lift noise for the lower
harmonics, but for high harmonic number and high tip Mach number the thickness
noise can be large. The thickness noise consists of an impulsive type of pressure
disturbance that is significant at high speeds.

Deming (1937, 1938) analyzed the rotational noise due to thickness, for a pro-
peller at zero thrust. He found the theory predicted the propeller noise fairly well for
the first five harmonics, and he found good agreement with the measured directivity.

14.5 Sound Generated Aerodynamically

The rotational noise analysis developed in section 14.4 follows classical linear acous-
tic analysis, using dipoles and sources that are stationary or moving with constant
velocity. These singularities are distributed over the surface of the rotor disk, with
time variation to model the periodic passage of the rotor blades. A more rigorous
aeroacoustic theory is required to handle arbitrary motion of the rotor blades and
the noise from nonlinear mechanisms.

14.5.1 Lighthill’s Acoustic Analogy

Motivated by the problem of turbojet engine noise, Lighthill (1952) derived equa-
tions for analysis of sound generated aerodynamically. The Navier-Stokes equations
for mass and momentum conservation are

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 (14.121)

ρ
∂ui

∂t
+ ρu j

∂ui

∂xj
= − ∂p

∂xi
+ ∂τi j

∂x j
(14.122)

where ui is the velocity relative to still air, ρ is the density, and p is the pressure; see
Batchelor (1967). The viscous stress tensor is

τi j = μ
(
∂ui

∂x j
+ ∂uj

∂xi
− 2

3
δi j
∂uk

∂xk

)
(14.123)

with μ the viscosity. The local adiabatic speed of sound is c2
s = dp/dρ (isentropic

derivative). Here cs is the still air value (also written cs∞, or a∞, or a0). For small



14.5 Sound Generated Aerodynamically 519

(isentropic) disturbances the pressure and density perturbations are related by
p̃ = c2

s ρ̃.
Adding ui times the mass conservation equation to the momentum conservation

equation gives

∂

∂t
ρui = − ∂

∂x j
ρuiu j − ∂p

∂xi
+ ∂τi j

∂xj
= − ∂

∂xj

(
ρuiu j + δi j p − τi j

)
(14.124)

or
∂

∂t
ρui + c2

s
∂ρ

∂xi
= − ∂Ti j

∂x j
(14.125)

where Ti j is Lighthill’s turbulent stress tensor:

Ti j = ρuiuj + δi j(p − c2
sρ)− τi j (14.126)

Now combine the mass and momentum equations:

∂2ρ

∂t2
= − ∂

∂t
∂ρuj

∂x j
= − ∂

∂x j

∂ρu j

∂t
= ∂2

∂xix j

(
ρuiuj + δi j p − τi j

) = c2
s
∂2ρ

∂x jx j
+ ∂2Ti j

∂xix j
(14.127)

which gives a wave equation for ρ, with a quadrupole source:

∂2ρ

∂t2
− c2

s ∇2ρ = ∂2Ti j

∂xix j
(14.128)

This is Lighthill’s acoustic analogy. It is a rearrangement of the Navier-Stokes equa-
tions, derived without approximation. See also Curle (1955). In terms of perturba-
tion quantities, Ti j = ρuiu j + δi j( p̃ − c2

s ρ̃ )− τi j. For small disturbances (designated
by the tilde),

2 p̃ = 1
c2

s

∂2 p̃
∂t2

− ∇2 p̃ = ∂2Ti j

∂xix j
(14.129)

This is the wave equation for the acoustic (perturbation) pressure p̃. The operator
is 2 = 1

c2
s

∂2

∂t2 − ∇2. The approximation p̃ = c2
s ρ̃ is only introduced on the left-hand

side of the equation, requiring that the observer be in the linear region.
The tensor Ti j accounts for the generation of the sound and also for non-

linear propagation, reflection, and dissipation. The terms in Ti j are the convec-
tion of momentum, ρuiu j; viscous stresses, τi j ; and the effects of heat convection,
p − c2

sρ = p∞ − c2
sρ∞ + O(M4). These quantities, hence Ti j , are known from the

aerodynamic solution and are typically significant only within a limited volume of
the fluid. For the jet noise problem, Lighthill used the approximation Ti j

∼= ρ∞uiuj .

14.5.2 Ffowcs Williams-Hawkings Equation

Ffowcs Williams and Hawkings (1969) extended Lighthill’s acoustic analogy to
include moving surfaces. Consider a surface S defined by the function f (x) = 0.
The normal to the surface is ni = 1

|∇ f |∂ f/∂xi, and the normal velocity of the surface

is vn = − 1
|∇ f |∂ f/∂t. The surface divides the volume into interior ( f < 0) and exte-

rior ( f > 0) domains. The normal and normal velocity are outward, directed into
the exterior domain. It is possible to define f such that |∇ f | = 1 on the surface.

The Navier-Stokes equations are required in the volume V , bounded in the far
field by the surface A and including the moving surface S. Mass conservation requires
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that the rate of change of the mass in V equal the mass flux through the surfaces A
and S:

∂

∂t

∫
ρ dV = −

∫
ρujn jdA +

∫
ρ(uj − v j)njdS (14.130)

in the exterior domain, and

∂

∂t

∫
ρ dV = −

∫
ρujn jdA −

∫
ρ(uj − v j)njdS (14.131)

in the interior domain; n is the outward normal, and v is the surface velocity. Summing
gives momentum conservation for the entire system:

∂

∂t

∫
ρ dV = −

∫
ρujn jdA +

∫
�
[
ρ(uj − v j )

]
njdS

= −
∫
∂ρuj

∂x j
dV +

∫
�
[
ρ(uj − v j)

]
n j|∇ f |δ( f )dV (14.132)

where�[...] means the jump at the surface (exterior minus interior). Gauss’s theorem
has been used to transform the first term on the left-hand side to a volume integral,
and the second term follows using:∫

Q dS =
∫ (∫

Qδ( f )df
)

dS =
∫ (∫

Q|∇ f |δ( f )dn
)

dS =
∫

Q|∇ f |δ( f )dV

(14.133)
Here δ( f ) is the Dirac delta function. The Heaviside function H( f ) is also used
(H = 1 for f > 0, H = 0 for f < 0). The differential equation of mass conservation
is then

∂ρ

∂t
+ ∂ρuj

∂x j
= �[ρ(uj − v j)

]
n j|∇ f |δ( f ) (14.134)

Momentum conservation requires that the rate of change of the momentum in V
equal the momentum flux through the surfaces A and S plus the normal forces acting
on the surfaces:

∂

∂t

∫
ρuidV = −

∫
(ρui)ujn jdA +

∫
σi jn jdA

+
∫
�
[
(ρui)(uj − v j)

]
njdS −

∫
�
[
σi j
]
njdS (14.135)

where σi j = −pδi j + τi j. Then

∂ρui

∂t
+ ∂

∂x j
(ρuiu j − σi j) = �[− σi j + ρui(uj − v j )

]
nj|∇ f |δ( f ) (14.136)

is the differential equation of momentum conservation.
Now take the interior flow to be at rest: u = 0, ρ = ρ0, p = p0. Assume the

surface S is impermeable, so the normal fluid velocity at the surface equals the
surface velocity: un = vn. Then the Navier-Stokes equations are

∂ρ

∂t
+ ∂ρuj

∂x j
= ρ0vn|∇ f |δ( f ) (14.137)

∂ρui

∂t
+ ∂

∂x j
(ρuiuj − σi j) = (− σi j − p0δi j

)
nj|∇ f |δ( f ) (14.138)
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Following Lighthill,

∂

∂t
ρui + c2

s
∂ρ

∂xi
= − ∂Ti j

∂x j
+ ((p − p0)δi j − τi j

)
nj|∇ f |δ( f ) (14.139)

and the wave equation for ρ becomes

∂2ρ

∂t2
− c2

s ∇2ρ = ∂2

∂xix j

(
Ti jH( f )

)− ∂

∂xi

(
(p − p0)δi j − τi j

)
nj|∇ f |δ( f )

+ ∂

∂t

(
ρ0vn|∇ f |δ( f )

)
(14.140)

This is the Ffowcs Williams-Hawkings (FW-H) equation, which is the foundation of
current rotor noise calculations. It is a rearrangement of the Navier-Stokes equations
(without approximation) to an inhomogeneous wave equation for the density, with
two surface source terms and a volume source term. Equation 14.140 was derived
by adding an artificial interior flow to the exterior flow, so the equations of motion
are for the flow in unbounded space, with discontinuities at the moving surface. So
the free-space Green’s function can be used to solve the wave equation.

For small disturbances, the wave equation for the acoustic pressure p̃ = c2
s ρ̃ is

2 p̃ = ∂2

∂xix j

(
Ti jH( f )

)− ∂

∂xi

(
�i|∇ f |δ( f )

)+ ∂

∂t

(
ρ0vn|∇ f |δ( f )

)
(14.141)

where �i = Pi jn j = (
(p − p0)δi j − τi j

)
nj. The three terms on the right-hand side are

quadrupole, dipole, and monopole sources of noise, respectively. The quadrupole
term is Lighthill’s turbulent stress tensor, in the volume exterior to the surface S.
The dipole term is from the loading, the surface forces on S; the stress τi j is usually
not a significant contribution to �i. The monopole term is from the thickness, the
volume displacement of the surface.

Ffowcs Williams and Hawkings (1969) gave the mass and momentum equations
(equations 14.134 and 14.136) for a general surface in the flow. From this result
di Francescantonio (1997) developed the permeable surface FW-H equation. Let
f = 0 now be a closed moving surface, permeable to the fluid and enclosing the solid
surface that interacts with the fluid. Now the mass and momentum conservation
equations are

∂ρ

∂t
+ ∂ρu j

∂x j
= (
ρ0vn + ρ(un − vn)

)|∇ f |δ( f ) (14.142)

∂ρui

∂t
+ ∂

∂x j
(ρuiu j − σi j) = [(

(p − p0)δi j − τi j
)
nj

+ ρui(un − vn)
]|∇ f |δ( f ) (14.143)

The wave equation for the acoustic pressure is

2 p̃ = ∂2

∂xix j

(
Ti jH( f )

)− ∂

∂xi

(
Li|∇ f |δ( f )

)+ ∂

∂t

(
ρ0Vn|∇ f |δ( f )

)
(14.144)

with

Li = Pi jn j + ρui(un − vn) = �i + ρui(un − vn) (14.145)

ρ0Vn = ρ0vn + ρ(un − vn) (14.146)
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Here u is the fluid velocity, and v is the surface velocity. The potential advantage of
the permeable surface FW-H equation is when the surface encloses all quadrupole
sources producing significant noise. Then the quadrupole term in the wave equation
is not required in the volume outside the surface, just the dipole and monopole
sources at the surface.

14.5.3 Kirchhoff Equation

The Kirchhoff method solves the wave equation for the propagation of the acoustic
pressure p̃, from the pressure on a surface S that encloses all physical sources.
The method is applicable to any phenomenon governed by the wave equation. For
aerodynamically generated sound, the solution is an approximation appropriate in
the linear domain. Given that p̃ satisfies the wave equation outside S, the surface is
introduced by applying the wave equation to the generalized function p̃H( f ). The
resulting Kirchhoff equation is

2 p̃ = −
(
vn

c2
s

∂ p̃
∂t

+ ∂ p̃
∂n

)
δ( f )− ∂

∂t

(
vn

c2
s

p̃δ( f )
)

− ∂

∂xi

(
p̃niδ( f )

)
(14.147)

Brentner and Farassat (1998) showed that the permeable surface FW-H equation
can be written as

2 p̃ = −
(
vn

c2
s

∂ p̃
∂t

+ ∂ p̃
∂n

)
δ( f )− ∂

∂t

(
vn

c2
s

p̃δ( f )
)

− ∂

∂xi

(
p̃niδ( f )

)
+ ∂

∂t

(
( p̃ − c2

s ρ̃ )
vn

c2
s
δ( f )

)
+ ∂

∂t

(
p̃ − c2

s ρ̃
)vn

c2
s
δ( f )

− ∂

∂xi

(
ρuiunδ( f )

)− ∂

∂xi

(
ρuiuj

)
niδ( f )+ ∂2

∂xix j

(
Ti jH( f )

)
(14.148)

This result is exact, so the last two lines show what is neglected by using the Kirchhoff
equation and hence the linear solution for wave propagation. The additional terms
are second order in perturbation quantities, so can reasonably be neglected in the
linear domain (p̃ ∼= c2

s ρ̃ and small fluid velocities). The Kirchhoff equation is not
adequate if the integration surface intersects shocks, vortices, inhomogeneous flow,
or heat flux.

14.5.4 Integral Formulations

The free-space Green’s function can be used to obtain the solution of the inhomoge-
neous wave equation as integrals of source terms over the surface and volume. For
the acoustic analogy, the result is not an integral equation; rather the source flow field
is considered to be an input to the acoustic solution. This approach allows separation
of the aerodynamic problem (for the sources) from the acoustic problem (for the
sound). Computational fluid dynamics calculations of the near field provide input
needed for the acoustic integral formulations to calculate the radiated noise. The
acoustic analogy is particularly effective if the volume sources can be ignored, requir-
ing only integrals over surfaces. The alternative of solving the aeroacoustic problem
out to the noise observation locations has numerical difficulties and requires signifi-
cantly more computation. The integral formulation is not unique. The choice among
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the numerous manipulations possible is based on implementation considerations, as
well as facilitating exposition.

To illustrate the derivation of the integral forms, consider the inhomogeneous
wave equation 2φ = Q(x, t)δ( f ), where Q is the source and f (x, t) = 0 defines the
source surface. The free-space Green’s function for an observer at (x, t) and a source
at (y, τ ) is

G =
{ 0 τ > t
δ(g)
4πr

τ ≤ t
(14.149)

where r = |x − y| and g = τ − t + r/cs. The solution for a fixed observer is then

4πφ(x, t) =
∫ t

−∞

∫
Q(y, τ )δ( f )

δ(g)
r

dy dτ (14.150)

The integral is over all space and τ = −∞ to t. Now transform from y to moving
coordinates η, such that f = 0 is independent of time. Then only δ(g) involves τ , not
δ( f ). A unit Jacobian J = |∂η/∂y| = 1 is assumed, as for rigid-body motion. Usually
the area change (J �= 1) of a more complicated transformation can be neglected.
Next transform from τ to g. Then

4πφ(x, t) =
∫ ∫

Q(y, τ )δ( f )
δ(g)

r|∂g/∂τ |dy dg

=
∫ [

Q(y, τ )
r|1 − Mr|δ( f )

]
g=0

dy

=
∫

f=0

[
Q(y, τ )

r|1 − Mr|
]

g=0
dS (14.151)

where S is the surface f = 0; |∇ f | = 1 has been assumed. The position of the observer
relative to the source is r = x − y, and r = |x − y|, so r̂ = r/r is the unit vector in the
radiation direction. The velocity of the source relative to the undisturbed fluid is vi =
∂yi/∂τ , and Mr = r̂ivi/cs is the Mach number of the source (point y) in the radiation
direction. The derivatives of r are ∂r

∂xi
= r̂i, ∂r

∂yi
= −r̂i, and ∂r

∂τ
= ∂r

∂yi

∂yi

∂τ
= −r̂ivi = −vr.

The Doppler factor is

∂g
∂τ

= 1 + 1
cs

∂r
∂yi

∂yi

∂τ
= 1 − r̂ivi

cs
= 1 − Mr (14.152)

The solution of g = τ − t + |x − y(τ )|/cs = 0 is the retarded time, or emission time
τe. At τe, the emission position is ye, and the emission distance is re = |x − ye| =
cs(t − τe). For subsonic sources, g = 0 has only one solution, so there is only one
emission point and time. Thus

4πφ(x, t) =
∫

f=0

[
Q(y, τ )

r(1 − Mr)

]
ret

dS (14.153)

The subscript “ret” means the integrand is evaluated at the retarded time, τ = t −
r/cs, the time when the sound was emitted. Often the retarded time is indicated simply
by square brackets, omitting the subscript “ret.” Solutions of the wave equation with
time or space derivatives of the source follow directly, by taking the derivative of
both the equation and the solution and redefining φ.
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A number of formulations of the integration have been developed; see Farassat
(1975) and Brentner (1997b). Equation 14.153 is the retarded time formulation. The
numerical implementation of this solution is robust and efficient. One approach is
to fix the observer time t and to solve for the retarded time τ as the integration over
S is performed. An alternative is to fix the source time τ , find t to which the retarded
surface element contributes (simple for a fixed observer), and then interpolate to
get the required observer time. The Doppler singularity at Mr = 1 is integrable, but
for supersonic source motion the retarded time equation can have multiple roots.

Writing dy = (csd�/ cos θ )df dg gives the collapsing sphere formulation:

4πφ(x, t) =
∫ t

−∞

∫
f=g=0

Q(y, τ )
r sin θ

csd� dτ (14.154)

where θ is the angle between the radiation direction r̂ and the surface outward nor-
mal. The surface g = τ − t + r/cs = 0 is a collapsing sphere, and � is the intersection
of the collapsing sphere and the source surface ( f = 0). The collapsing sphere for-
mulation does not exhibit the Doppler singularity, but is singular when the surface
normal is parallel to the radiation vector (sin θ = 0).

Writing dy dτ = (d�/�)dF dg gives the emission surface formulation:

4πφ(x, t) =
∫ ∫

Q(y, τ )δ(F )
δ(g)

r|∇F |d� dF dg =
∫

F=0

1
r

[
Q(y, τ )
�

]
ret

d� (14.155)

Here F = 0 is the surface at the retarded time: F = [ f (y, τ )]ret = f (y, t − r/cs).
From ∂F

∂yi
= ∂ f

∂yi
+ 1

cs

∂ f
∂t
∂r
∂yi

= ni − Mnr̂i, with Mn the surface normal Mach number,

there follows � = |∇F | = (1 + M2
n − 2Mn cos θ )1/2. The emission surface � is the

set of points in space and time that emit signals that reach the observer at the same
time. The emission surface formulation does not exhibit the Doppler singularity,
but is singular when the surface normal is perpendicular to the radiation vector
(cos θ = 1) and the surface normal velocity is sonic (Mn = 1).

Now let us apply these Green’s function solutions to the Ffowcs Williams-
Hawkings equation. Considering only the thickness and loading terms (surface
sources), equation 14.141 is

2 p̃ = ∂

∂t

(
ρ0vnδ( f )

)− ∂

∂xi

(
�iδ( f )

)
(14.156)

(assuming |∇ f | = 1). From equation 14.150, the solution is

4π p̃(x, t) = ∂

∂t

∫ t

−∞

∫
ρ0vnδ( f )

δ(g)
r

dy dτ − ∂

∂xi

∫ t

−∞

∫
�iδ( f )

δ(g)
r

dy dτ (14.157)

The spatial derivatives can be eliminated by using

∂

∂t
δ(g)

r
= − δ

′(g)
r

(14.158)

in

∂

∂xi

δ(g)
r

=
(

− δ(g)
r2

+ δ′(g)
csr

)
∂r
∂xi

= − r̂iδ(g)
r2

− ∂

∂t
r̂iδ(g)

csr
(14.159)
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Then

4π p̃(x, t) = ∂

∂t

∫ t

−∞

∫ (
ρ0vn + �ir̂i/cs

)δ( f )δ(g)
r

dy dτ +
∫ t

−∞

∫
�ir̂i
δ( f )δ(g)

r2
dy dτ

= ∂

∂t

∫
f=0

[
ρ0vn + �r/cs

r(1 − Mr)

]
ret

dS +
∫

f=0

[
�r

r2(1 − Mr)

]
ret

dS (14.160)

where �r = �ir̂i is the loading in the radiation direction. This is Farassat’s Formulation
1; see Farassat (1975, 1981). The loading is

�i = Pi jn j = (
(p − p0)δi j − τi j

)
nj

∼= (p − p0)ni (14.161)

so

�r = Pi jn jr̂i
∼= (p − p0)nir̂i = (p − p0) cos θ (14.162)

where θ is the angle between the surface normal and the radiation direction.
Although the spatial derivatives have been eliminated, the time derivative remains,
requiring numerical differential in implementations.

To move the time derivative inside the integral, note that

∂

∂t

[
Q(y, τ )

]
ret

=
[
∂Q/∂τ
|∂t/∂τ |

]
ret

=
[

1
(1 − Mr)

∂Q
∂τ

]
ret

(14.163)

Then

4π p̃(x, t) =
∫

f=0

[
1

(1 − Mr)

∂

∂τ

ρ0vn + �r/cs

r(1 − Mr)

]
ret

dS +
∫

f=0

[
�r

r2(1 − Mr)

]
ret

dS

(14.164)
Now define v̇n = ∂vn/∂τ = ∂(vini)/∂τ , and �̇r = �̇ir̂i = (∂�i/∂τ )r̂i. From

∂

∂τ

1
r(1 − Mr)

= − 1
r2(1 − Mr)2

∂

∂τ
(r − rMr)

= − 1
r2(1 − Mr)2

∂

∂τ
(r − rivi/cs)

= − 1
r2(1 − Mr)2

(−r̂ivi + v2
i /cs − riv̇i/cs)

= 1
r2(1 − Mr)2

(csMr − csM2 + rṀr) (14.165)

∂�r

∂τ
= ∂(�ir̂i)

∂τ
= ∂�i

∂τ
r̂i + �i

r̂ivr − vi

r

= �̇ir̂i + cs

r

(
�rMr − �iMi

)
(14.166)

there follows

4π p̃(x, t) =
∫

f=0

[
ρ0v̇n + �̇r/cs

r(1 − Mr)2
+ �r − �iMi

r2(1 − Mr)2

+ρ0vn + �r/cs

r2(1 − Mr)3

(
rṀr + csMr − csM2)]

ret
dS (14.167)

This is Farassat’s Formulation 1A, which is well suited for numerical evaluation of
the noise from helicopter rotors with subsonic tip speeds; see Farassat and Succi
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(1980) and Brentner (1986). The solution in the far field is

4π p̃(x, t) ∼=
∫

f=0

[
1

r(1 − Mr)

∂

∂τ

ρ0vn + �r/cs

1 − Mr

]
ret

dS

∼=
∫

f=0

[
ρ0

r(1 − Mr)2

(
∂vn

∂τ
+ vn

1 − Mr

∂Mr

∂τ

)]
ret

dS

+
∫

f=0

[
r̂i

csr(1 − Mr)2

(
∂�i

∂τ
+ �i

1 − Mr

∂Mr

∂τ

)]
ret

dS

=
∫

f=0

[
ρ0

r(1 − Mr)

∂

∂τ

vn

1 − Mr

]
ret

dS

+
∫

f=0

[
r̂i

csr(1 − Mr)

∂

∂τ

�i

1 − Mr

]
ret

dS (14.168)

Lowson (1965) derived the far field loading result.
The thickness and loading terms of the Ffowcs Williams-Hawkings equations

are responsible for most of the noise in many helicopter operating conditions, but
when nonlinear flow phenomena are active, notably shocks that are responsible for
high-speed impulsive noise, the quadupole terms become important. Considering
the quadrupole term (volume sources), equation 14.141 is

2 p̃ = ∂2

∂xix j

(
Ti jH( f )

)
(14.169)

Farassat and Brentner (1988) wrote the solution as

4π p̃(x, t) = ∂2

∂xix j

∫ t

−∞

∫
Ti jH( f )

δ(g)
r

dy dτ

= ∂2

∂xix j

∫
F>0

Ti j

r
csd�dτ

= 1
cs

∂2

∂t2

∫
F>0

Trr

r
d�dτ + ∂

∂t

∫
F>0

3Trr − Tii

r2
d�dτ

+ cs

∫
F>0

3Trr − Tii

r3
d�dτ (14.170)

where d� is an element of the surface of the sphere r = cs(t − τ ), and Trr = Ti jr̂ir̂ j.
The integration is over the volume external to the surface F = [ f (y, τ )]ret = 0. The
time derivatives can be moved inside the integrals, if the Mr = 1 singularity is not
an issue. See also Brentner (1997a). Some approximations are useful, particularly
for in-plane observers or far field. In particular, if an approximate integration over
the vertical coordinate is introduced, the result just requires a surface integral. If
approximations are not appropriate, evaluating the quadrupole noise involves com-
plicated volume integrals and requires the aerodynamic source solution throughout
the volume.

Brentner, Burley, and Marcolini (1994) established the sensitivity of acoustic
calculations to aspects of the numerical method. The blade motion is important,
particularly flap and pitch motion. The compact chordwise loading approximation is
reasonable, but the thickness noise requires integration over the chord in any case.
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Blade-vortex interaction calculations require about 1024 points per revolution to
accurately calculate the time derivative of the loading. In-plane noise calculation is
very sensitive to the analysis parameters and requires the quadrupole sources at high
speed.

With the motivation of avoiding the quadrupole integral, the noise can be
obtained using a surface of acoustic sources off the body either through the Kirchhoff
method or the permeable surface FW-H method. If significant quadrupole sources
exist only in a finite (perhaps small) region around the body, the surface can be
placed outside this region. Then quadrupole sources can be neglected, at the cost
of evaluating the aerodynamic dipole and monopole sources out to this surface. For
the Kirchhoff method, the solution of equation 14.147 is

4π p̃(x, t) = − 1
cs

∂

∂t

∫
f=0

[
p̃(Mn − r̂ini)

r(1 − Mr)

]
ret

dS

−
∫

f=0

[(
Mn

1
cs

∂ p̃
∂τ

+ ∂ p̃
∂n

)
1

r(1 − Mr)

]
ret

dS

+
∫

f=0

[
p̃r̂ini

r2(1 − Mr)

]
ret

dS (14.171)

For the permeable surface FW-H method, the solution of equation 14.144 follows by
simply replacing �i and vn in the integral solution of the Ffowcs Williams-Hawkings
equation with Li and Vn (equations 14.145 and 14.146).

The Kirchhoff method has limitations that present problems for rotor noise
calculations. It is valid only in the linear propagation domain (inviscid, isentropic,
small disturbances), the extent of which is not generally known. Consequently the
solution is sensitive to placement of the surface. The Kirchhoff formulation depends
only on the acoustic pressure, but space derivatives of the pressure are required and
the pressure data must satisfy the wave equation.

The permeable surface Ffowcs Williams-Hawkings method is a unified theory
for thickness, loading, and quadrupole noise, based on the conservation laws of the
flow. The method requires the velocity, density, and pressure of the flow, all provided
by computational fluid dynamics calculations of the near field. The solution should
be insensitive to the placement of the surface, with the effect of quadrupole sources
enclosed within the surface appearing in the surface sources. A non-rotating surface
(enclosing the entire rotor) can be used, thereby avoiding the Doppler singularity.
For both methods, moving the surface off the body decouples the acoustic calcu-
lations from the detailed geometry of the body. For the permeable surface FW-H
method, the surface must still be placed outside significant quadrupole sources, while
keeping the surface as close to the body as possible to minimize the domain required
of the aerodynamic analysis. Quadrupole sources are not negligible if the surface is
crossed by shocks or vorticity, which is difficult to avoid for flow fields producing
impulsive noise.

14.5.5 Far Field Thickness and Loading Noise

The classical acoustic analyses of section 14.4 are based on acoustic sources that
are stationary or moving with constant velocity, distributed over the rotor disk with
time variation to simulate rotating blades. The Ffowcs Williams-Hawkings equation
is the basis for analyses using rotating acoustic sources. The far field sound due to
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thickness and loading (equation 14.168) is

4π p̃(x, t) =
∫ [

ρ0

s(1 − Mr)

∂

∂τ

vn

1 − Mr

]
ret

dS

+
∫ [

ŝini

css(1 − Mr)

∂

∂τ

p − p0

1 − Mr

]
ret

dS (14.172)

writing now s = x − y, s = |s| for consistency with section 14.4. The integrals are
over the surfaces of all N blades, with the integrands evaluated at the retarded
time τ = t − s(τ )/cs. The first term is the thickness noise, produced by the velocity
normal to the surface, vn. The second term is the loading noise, produced by the
surface normal force �i

∼= (p − p0)ni.
Consider a thin blade, so that the upper and lower surfaces coincide. Then

only the difference in pressure and normal velocity between the upper and lower
blade surfaces is required. The differential pressure on the blade surface, in rotating
coordinates x and r, is written�p = L(r, ψ)�(x) (see section 14.4.1). The chordwise
pressure distribution is assumed to not vary over the disk. The normal velocity due
to the blade thickness (see section 14.4.8) has the same magnitude on the upper and
lower surfaces. so

�vn = VT Axs
da
dx

(14.173)

where a(x) = t(x)/Axs is the normalized thickness distribution, and VT = �r +
Vx sinψ is the free stream velocity seen by the blade. The velocity normal to the
blade surface actually is

vn = VT
t ′/2√

1 + (t ′/2)2
(14.174)

at zero angle-of-attack. Since the arc length along the airfoil chord is ds =√
1 + (t ′/2)2dx, the monopole strength is �vndS = VTt ′dx dr, which gives a(x) =

t(x)/Axs as earlier. The surface of the blade is defined by the root and tip and by
the leading and trailing edges in the rotating coordinate system with axes r and x.
The blade azimuth position is ψ = �τ . Instead of integrating over all the blades, it
is equivalent to multiply the rotational noise due to one blade by N. The rotor is
assumed to have a forward velocity Vx and a vertical velocity Vz. The position of a
source on the blade surface is then

y(τ ) =
⎛⎝ x1 − Vxτ

y1

z1 − Vzτ

⎞⎠ =
⎛⎝ r cos�τ + x sin�τ − Vxτ

r sin�τ − x cos�τ
Vzτ

⎞⎠

=
⎛⎝

√
r2 + x2 cos(�τ − tan−1(x/r))− Vxτ√
r2 + x2 sin(�τ − tan−1(x/r))

Vzτ

⎞⎠ (14.175)

where the components x1, y1, and z1 represent the position relative to a tip-path-
plane axis system moving with the rotor (as shown in Figure 14.3). The Mach number
of a point on the blade is then

M =
⎛⎝−(�/cs)

√
r2 + x2 sin(�τ − tan−1(x/r))− Mx

(�/cs)
√

r2 + x2 cos(�τ − tan−1(x/r))
Mz

⎞⎠ (14.176)
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The observer position is also defined relative to the axis system moving with the
rotor hub:

x(τ ) =
⎛⎝ x0 − Vxt

y0

z0 − Vzt

⎞⎠
The observer should actually be fixed in space, so that the time derivative does not
operate on x when the sound pressure is evaluated, but for the present far field
analysis a moving observer can be used with no difficulty. The observer position is
evaluated at the present time t, not at the retarded time τ . The observer location
relative to the rotor hub can be defined in terms of the range, elevation, and azimuth
(see Figure 14.3); we have more need for these quantities at the retarded time.

The radial distance at the retarded time is s = |x − y|, or

s2 = (x0 − x1 − Vx(t − τ ))2 + (y0 − y1)
2 + (z0 − z1 − Vz(t − τ ))2

= (x0 − x1 − Mxs)2 + (y0 − y1)
2 + (z0 − z1 − Mzs)2 (14.177)

since s(τ ) = cs(t − τ ). The solution of this quadratic equation for s is

s = (
S − Mx(x0 − x1)+ Mz(z0 − z1)

)
/β2

where β2 = 1 − M2
x − M2

z and

S2 = β2((x0 − x1)
2 + (y0 − y1)

2 + (z0 − z1)
2)+ (Mx(x0 − x1)− Mz(z0 − z1)

)2

(14.178)
Defineσ0 = s and S0 = S as the values from the center of the rotor (x1 = y1 = z1 = 0),
so

σ0 =
√
(x0 − Mxσ0)2 + y2

0 + (z0 − Mzσ0)2

= (
S0 − Mxx0 + Mzz0

)
/β2 (14.179)

S2
0 = β2(x2

0 + y2
0 + z2

0

)+ (Mxx0 − Mzz0
)2

(14.180)

Let M cos δr be the value of Mr = Miŝi at the center of the rotor:

M cos δr = M2
x + M2

z − Mxx0 − Mzz0

σ0
(14.181)

Note that S0 = σ0(1 − M cos δr). Here σ0 is the range of the observer from the rotor at
the retarded time, and M cos δr is the Mach number of the rotor toward the observer.

The acoustic far field is defined by the condition S0/R  1 (σ0 = S0/(1 −
M cos δr) > S0, so the condition σ0/R  1 is less critical). Expanding S and then
s for large S0/R gives

s ∼= σ0 − 1
S0

(
(x0 − Mxσ0)x1 + y0y1 + (z0 + Mzσ0)z1

)
= σ0 − 1

S0

√
r2 + x2

(
(x0 − Mxσ0) cos(�r − tan−1(x/r))

+ y0 sin(�r − tan−1(x/r))
)

= σ0 − 1
S0

√
r2 + x2

√
(x0 − Mxσ0)2 + y2

0 cos(�r − tan−1(x/r)− ψr)

= σ0 − cos θr

1 − M cos δr

√
r2 + x2 cos(�r − tan−1(x/r)− ψr) (14.182)
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whereψr = tan−1 y0/(x0 − Mxσ0) and θr = sin−1(z0 + Mzσ0)/σ0 are the azimuth and
elevation of the observer at the retarded time. The far field approximation also gives

niŝi
∼= z0 + Vz(t − τ )

σ0
= z0 + Mzσ0

σ0
= sin θr (14.183)

The relative Mach number Mr = Miŝi is

Mr = �

cs

√
r2 + x2

(
− x0 − Mxs

s
sin(�τ − tan−1(x/r))

+y0

s
cos(�τ − tan−1(x/r))

)
− Mx

s

√
r2 + x2 cos(�τ − tan−1(x/r))

− Mz
x0 − Mxs

s
+ Mz

z0 + Mzs
s

(14.184)

∼= M cos δr − �

cs

√
r2 + x2 cos θr sin(�τ − tan−1(x/r)− ψr) (14.185)

in the far field. In summary, the far field approximation gives

s ∼= σ0 (14.186)

1 − Mr
∼= (1 − M cos δr)(1 + α sinψ) (14.187)

niŝi
∼= sin θr (14.188)

τ = t − s/cs
∼= t − σ0/cs + (α/�) cosψ (14.189)

where

ψ = �τ − tan−1(x/r)− ψr (14.190)

α = �
√

r2 + x2

cs

cos θr

1 − M cos δr
(14.191)

and so

�t = ψ − α cosψ + �σ0

cs
+ tan−1(x/r)+ ψr (14.192)

is the dimensionless time.
The far field rotational noise due to the thickness and lift of the rotating blade

is thus

p̃(x, t) = N�ρ0

4πσ0(1 − M cos δr)2

∫ R

0

∫ xte

xle

Axsa′

1 + α sinψ
∂

∂ψ

VT

1 + α sinψ
dx dr

− N� sin θr

4πcsσ0(1 − M cos δr)2

∫ R

0

∫ xte

xle

�

1 + α sinψ
∂

∂ψ

L
1 + α sinψ

dx dr (14.193)
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The sound pressure is periodic with fundamental frequency N�, so

p̃ =
∞∑

m=−∞
pmeimN�t (14.194)

where the m-th harmonic is

pm = �

2π

∫ 2π/�

0
e−imN�t p̃ dt = 1

2π

∫ 2π

0
e−imN�t p̃(1 + α sinψ)dψ (14.195)

since �dt = (1 + α sinψ)dψ . The blade section lift L and velocity VT can be
expanded as a Fourier series:

L =
∞∑

n=−∞
Ln(r)ein�τ (14.196)

VT = �r + Vx sin�τ = �r
∞∑

n=−∞
Vn(r)ein�τ (14.197)

(where V0 = 1 and V±1 = ±Vx/(2i�r)). The chordwise loading distributions � and a
are assumed to be independent of time. The m-th harmonic of the rotational noise
is thus

pm = N�
4πσ0(1 − M cos δr)2

∫ R

0

∫ xte

xle

e−imN(�σ0/cs+ψr+tan−1(x/r))

∞∑
n=−∞

ein(ψr+tan−1(x/r))
(
ρ0Axsa′�rVn − sin θr

cs
�Ln

)
1

2π

∫ 2π

0
e−imN(ψ−α cosψ) ∂

∂ψ

einψ

1 + α sinψ
dψ dx dr (14.198)

Integrating by parts gives

1
2π

∫ 2π

0
e−imN(ψ−α cosψ) ∂

∂ψ

einψ

1 + α sinψ
dψ

= imN
1

2π

∫ 2π

0
e−imN(ψ−α cosψ)+inψdψ

= imNimN−nJmN−n(mNα) (14.199)

using the Bessel function relation

1
2π

∫ 2π

0
eiz cosψ−inψdψ = inJn(z) (14.200)

Next assume x/r � 1 so that the chordwise and spanwise integrals separate. Since
tan−1 x/r ∼= x/r and

√
r2 + x2 ∼= r, the Bessel functions do not depend on x. In addi-

tion, the thickness term is integrated by parts with respect to x. Define the chordwise
loading factors �n and an as before:

�n =
∫ xte

xle

�(x)e−inx/rdx (14.201)

an =
∫ xte

xle

a(x)e−inx/rdx (14.202)
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Impulsive loading gives �n = an = 1 for all n. Then the far field rotational noise due
to the rotor blade thickness and lift is

pm = − (mN�)2Nρ0

4πσ0(1 − M cos δr)2
e−imN�σ0/cs

∞∑
n=−∞

e−i(mN−n)(ψr−π/2)
(

1 − n
mN

)
∫ R

0
AxsamN−nVnJmN−ndr

− imN2� sin θr

4πcsσ0(1 − M cos δr)2
e−imN�σ0/cs

∞∑
n=−∞

e−i(mN−n)(ψr−π/2)

∫ R

0
�mN−nLnJmN−ndr (14.203)

where the Bessel function has the argument

mN�r
cs

cos θr

1 − M cos δr
(14.204)

This result agrees with the solutions for the lift and thickness rotational noise that
were derived in section 14.4. Working directly with the loading and motion of the
rotating blade as here is more convenient for developing advanced analyses of the
rotor noise.

14.5.6 Broadband Noise

Analysis of broadband noise requires a statistical approach, as in section 14.2. The
far field loading noise (equation 14.168) is

4π p̃(x, t) =
∫ [

r̂i

csr(1 − Mr)

∂

∂τ

�i

1 − Mr

]
τ=t−r/cs

dS (14.205)

Considering the broadband noise produced by random loading with deterministic
motion, in this section p̃ and �i are random perturbations relative to the periodic
expected value: p̃ − E( p̃) and �i − E(�i). The relation between the auto-correlation
of the acoustic pressure, Rp(t1, t2) = E( p̃(t1)p̃(t2)), and the auto-correlation of the
loading, R�i j(τ1, τ2) = E(�i(τ1)� j(τ2)), is

Rp(t1, t2) =
∫ ∫

Ci j(τ1, τ2)R�i j(τ1, τ2)dS1dS2 (14.206)

since the expected value operator only acts on the random loading. The influence
function is

Ci j(τ1, τ2) =
(

1
4πcs

)2 [ r̂i

r(1 − Mr)

∂

∂τ

1
1 − Mr

]
τ1

[
r̂i

r(1 − Mr)

∂

∂τ

1
1 − Mr

]
τ2

(14.207)
From equation 14.6, the sound spectrum is

Sm
p (ω) = N�

(2π)2

∫ ∞

−∞

∫ 2π/N�

0
e−imN�s1 e−iωs2

(∫ ∫
Ci j(τ1, τ2)R�i j(τ1, τ2)dS1dS2

)
ds1ds2 (14.208)
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The integration can be changed from (s1, s2) to (τ1, τ2), with the Jacobian ∂(s1,s2 )

∂(τ1,τ2 )
=

∂t1
∂τ1

∂t2
∂τ2

= (1 − Mr)1(1 − Mr)2. From equation 14.5, the loading spectrum gives

R�i j(τ1, τ2) =
∞∑

n=−∞
ein�σ1

∫ ∞

−∞
eiνσ2Sn

�i j(ν)dν (14.209)

where σ1 = 1
2 (τ2 + τ1) and σ2 = τ2 − τ1. Substituting,

Sm
p (ω) =

∫ ∫ ∞∑
n=−∞

∫ ∞

−∞
Sn
�i j(ν)

(
N�
(2π)2

∫ ∞

−∞

∫ 2π/N�

0
e−imN�s1 e−iωs2

Ci j(τ1, τ2)ein�σ1 eiνσ2 ds1ds2

)
dνdS1dS2 (14.210)

or

S0
p(ω) =

∫ ∫ ∫ ∞

−∞
S0
�i j(ν)

(
1

2π

∫ ∞

−∞
e−iωs2Ci j(σ2)eiνσ2 ds2

)
dνdS1dS2 (14.211)

for rms pressure (m = 0) due to average loading (n = 0). Spectral decomposition
of S�i j in space can be introduced as well, perhaps to model a convected gust or
blade-vortex interaction.

To proceed further, consider hover and one blade (no significant blade-to-
blade correlation of the random loading) and compact chordwise loading so
�p = L(r, t)δ(x). Following section 14.5.5, the random acoustic pressure due to
random loading is

p̃(x, t) = −� sin θr

4πcss0

∫ R

0

[
1

1 + α sinψ
∂

∂ψ

L
1 + α sinψ

]
τ

dr (14.212)

and for the far field geometry

s0 =
√

x2
0 + y2

0 + z2
0 (14.213)

ψ = �τ − ψr (14.214)

�t = �τ + �s0

cs
− α cosψ = ψ − α cosψ + �s0

cs
− ψr (14.215)

α = �r
cs

cos θr (14.216)

with θr = sin−1 z0/s0. For hover, ψr = tan−1 y0/x0 can be ignored. The sound spec-
trum (m = 0 for rms noise) is

S0
p(ω) =

(
� sin θr

4πcss0

)2
�

(2π)2

∫ ∞

−∞

∫ 2π/�

0
e−iωs2

(∫ ∫ [
1

1 + α sinψ
∂

∂ψ

L
1 + α sinψ

]
τ1

[
1

1 + α sinψ
∂

∂ψ

L
1 + α sinψ

]
τ2

RL(τ1, τ2)dr1dr2

)
ds1ds2 (14.217)
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Changing the integration from (s1, s2) to (ψ1, ψ2), and integrating by parts with
respect to ψ , gives

S0
p(ω) =

(
(ω/�) sin θr

4πcss0

)2
�

(2π)2

∫ ∫ (∫ ∫
e−iωs2 RL(τ1, τ2)dψ2dψ1

)
dr1dr2

(14.218)
Next introduce the loading spectrum:

S0
p(ω) =

(
(ω/�) sin θr

4πcss0

)2
�

(2π)2

∫ ∫ ∞∑
n=−∞∫ ∞

−∞
Sn

L(ν)

(∫ ∫
e−iωs2+iνσ2+in�σ1 dψ2dψ1

)
dνdr1dr2 (14.219)

Using the expansion e−iz cosβ = ∑
k(−i)kJk(z)e−ikβ , the integrals over ψ can be eval-

uated: ∫ ∞

−∞

∫ −ψ1+4π

−ψ1

e−iωs2+iνσ2+in�σ1 dψ2dψ1

=
∫ ∞

−∞
e−i(ω/�)α cosψ1+i(ω/�−ν/�+n/2)ψ1

(∫ −ψ1+4π

−ψ1

ei(ω/�)α cosψ2−i(ω/�−ν/�−n/2)ψ2 dψ2

)
dψ1

=
∫ ∞

−∞

∑
k

(−i)kJk(αω/�)ei(ω/�−ν/�+n/2−k)ψ1

(∫ −ψ1+4π

−ψ1

∑
j

i jJj(αω/�)e−i(ω/�−ν/�−n/2− j)ψ2 dψ2

)
dψ1

= 2π
∑

k

(−i)kJk(αω/�)δ(ω/�− ν/�+ n/2 − k)

4π i jJj(αω/�)
∣∣

j=ω/�−ν/�−n/2

= 8π2
∑

k

(−i)nJk(αω/�)Jk−n(αω/�)δ(ω/�− ν/�+ n/2 − k) (14.220)

So the broadband noise spectrum is

S0
p(ω) =

(
ω sin θr

4πcss0

)2 ∞∑
n=−∞

∞∑
k=−∞∫ ∫

(−i)nJk

(αω
�

)
Jk−n

(αω
�

)
2Sn

L(ω −�(k − n/2))dr1dr2 (14.221)

or

S0
p(ω) =

(
ω sin θr

4πcss0

)2 ∞∑
k=−∞

∫ ∫ (
Jk

(ωr
cs

cos θr

))2

2S0
L(ω − k�)dr1dr2 (14.222)

for rms pressure (m = 0) due to average loading (n = 0). For small loading correla-
tion length, this spectrum has peaks at low harmonics of the blade passage frequency,
transitioning to a smooth spectrum at high frequency.
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Figure 14.4. Flight test measurement of blade-vortex interaction noise; from Boxwell and
Schmitz (1982).

14.6 Impulsive Noise

Blade-vortex interaction (BVI) noise is characterized by a set of sound pressure
pulses occurring at the blade passage frequency, as illustrated in Figure 14.4. BVI
noise is caused by the vortex-induced loading pulses on the rotor blade. The impulsive
loading and resulting impulsive noise are strong at low speed and descent, as the
noise is radiated forward and below the disk plane.

Let us examine the locus of blade-vortex interaction on the rotor disk. Consider
the undistorted tip vortices of an N-bladed rotor. The blade is at radial station r and
azimuth ψ ; hence at disk plane coordinates

x = r cosψ (14.223)

y = r sinψ (14.224)

The vortex from the n-th preceding blade, with age φ, is at

x = cos(ψ + n�ψ − φ)+ μφ (14.225)

y = sin(ψ + n�ψ − φ) (14.226)

where �ψ = 2π/N is the inter-blade spacing. At the intersection of the blade and
vortex these coordinates are equal. Eliminating r gives

μφ sinψ + sin(φ − n�ψ) = 0 (14.227)

Taking wake age φ as the parameter of the intersection, solve for ψ and then r:

sinψ = sin(n�ψ − φ)
μφ

(14.228)

r = sin(ψ + n�ψ − φ)
sinψ

= cos(ψ + n�ψ − φ)+ μφ
cosψ

(14.229)

Given sinψ , there are two values for the azimuth in the range ψ = 0 to 2π . The
solution represents an intersection if 0 ≤ r ≤ 1 and | sinψ | ≤ 1. The direction v of
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the vortex and the direction b of the blade are

v =
(

x′/
√

x′2 + y′2

y′/
√

x′2 + y′2

)
(14.230)

x′ = ∂x
∂φ

= sin(ψ + n�ψ − φ)+ μ (14.231)

y′ = ∂y
∂φ

= − cos(ψ + n�ψ − φ) (14.232)

b =
(

cosψ
sinψ

)
(14.233)

Then the angle between the blade and the vortex at the intersection is γ = cos−1(v ·
b). The trace speed or phase speed of the intersection is obtained using

dx
dψ

= − sin(ψ + n�ψ − φ)
(

1 − ∂φ

∂ψ

)
+ μ ∂φ

∂ψ
(14.234)

dy
dψ

= cos(ψ + n�ψ − φ)
(

1 − ∂φ

∂ψ

)
(14.235)

The derivative of the equation 14.227 gives μφ cosψ + μφ′ sinψ + cos(φ −
n�ψ)φ′ = 0, so

φ′ = ∂φ

∂ψ
= − μφ cosψ

μ sinψ + cos(φ − n�ψ)
(14.236)

and the trace Mach number is Mtrace = Mtip

√
(dx/dψ)2 + (dy/dψ)2. Noise radiation

is strong for supersonic trace speed, with directivity γ ± cos−1(1/Mtrace).
Figure 14.5 shows the loci of blade-vortex intersection on the rotor disk for a

four-bladed rotor at advance ratios ofμ = 0.15 andμ = 0.3. The heavy lines indicate
supersonic trace speed (for Mtip = 0.65). The vortex direction tends to be aligned
with the intersection locus. On the front of the disk and on the advancing (ψ = 90°)
and retreating (ψ = 270°) tips, the interaction with the blade is nearly perpendicular.
On the back of the disk the interaction is nearly parallel. These parallel interactions
lead to supersonic trace speeds. Thus a four-bladed rotor at μ = 0.15 is expected
to produce BVI noise due to interaction of the blade with the vortices from the
5th, 6th, and 7th preceding blades. A pattern similar to Figure 14.5 is observed in
blade pressure and airloads measurements, although the BVI loading should be zero
directly above the intersection, with peaks occurring a distance h (the blade-vortex
separation) either side of the intersection. Figure 14.6 illustrates the blade-vortex
interaction airloads on the advancing and retreating sides of the rotor that are
responsible for strong BVI noise.

High-speed impulsive (HSI) noise occurs at high advancing-tip Mach number,
with directivity primarily in the disk plane. In the rotating frame, the sonic cylinder
is where the rotational velocity equals the undisturbed sound speed: at r/R = 1/Mtip

for hover. At low tip speed the flow is subsonic near the blade, and the sonic cylinder
is far from the disk. As the tip Mach number increases, the effects of compressibility
and nonlinear aerodynamics increase, and the sonic cylinder comes closer to the
blade tip. Pockets of supersonic flow form on the blade, and eventually the shocks
extend beyond the tip. At a large enough tip Mach number, the supersonic flow
reaches the sonic cylinder, an event called “delocalization”; see Yu, Caradonna,
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Figure 14.6. Blade-vortex interaction airloads, measured on a four-bladed model rotor at
μ = 0.15, CT/σ = 0.057, and iTPP = −4.2°; from Gmelin, Heller, Mercker, Philippe, Preisser,
and Yu (1995).

and Schmitz (1978). Disturbances at the sonic cylinder propagate strongly, so at
delocalization the amplitude of the noise increases and becomes more impulsive.
Before delocalization, the thickness and loading noise sources account for most of
the rotor noise. After delocalization, the quadrupoles are a major contributor to HSI
noise.

Boxwell, Yu, and Schmitz (1979) conducted a hover test of a 1/7-scale UH-1H
two-bladed rotor, measuring noise for high tip Mach numbers. The sound pressure
was measured in the tip-path plane, 1.5 diameters from the hub. Figure 14.7 shows
the measured high-speed impulsive noise for Mtip = 0.8 to Mtip = 0.962, presented
for a common time increment that corresponds to an azimuth increment of 30° to
36°. Note the order-of-magnitude change in the pressure scale. At low Mtip the sound
pressure pulse is small and symmetric. The waveform changes from symmetric to
saw-tooth over a small tip speed range around Mtip = 0.89; this is delocalization.
The large, sharp rise in pressure is produced by a radiated shock wave. Beyond
Mtip = 0.9, the rise of the peak pressure is slower.

Figure 14.8 shows the measured peak negative sound pressure level, as well as
calculations using several models. Linear thickness noise theory (monopole) under-
predicts the peak, and the theoretical pressure pulse is symmetric even at Mtip = 0.9.
Nonlinear models, sufficient to capture the noise associated with shocks, are required
for HSI noise calculation. Schmitz and Yu (1981) obtained good correlation up
to Mtip = 0.9 by using an approximate integration of the quadrupole term in the
Ffowcs Williams-Hawkings equation. At higher tip Mach numbers the quadrupole
calculations over-predicted the peak. Baeder (1991) obtained good correlation up
to Mtip = 1.0 by solving the Euler equations out to the noise measurement location.
The Euler equations can model shocks correctly (since the isentropic assumption
of full potential methods is eliminated) and can model nonlinear propagation of
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from Boxwell, Yu, and Schmitz (1979).
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Figure 14.8. Measured and calculated peak negative sound pressure for high-speed impulsive
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acoustic waves as well as convention of entropy and vorticity. The FW-H equa-
tion is equivalent to the Navier-Stokes equations, so the difference between the
quadrupole and Euler calculations reflects the approximate representation used for
the quadrupole strength. Using computational fluid dynamic solutions to the acous-
tic far field is not efficient and currently not practical. The challenge is to accurately
calculate the flow variables at a surface, as well as the quadrupole sources external
to the surface, accurately enough to use the FW-H equation for the sound pressure
calculation.

14.7 Noise Certification

Noise limits for certification of civil helicopters are established by the ICAO (Inter-
national Civil Aviation Organization) and national regulations (such as FAR Part
36 (2012)). Noise limits have been established for three reference flight profiles:
approach, takeoff, and flyover. Figure 14.9 shows the stage 2 limits (the U.S. require-
ments as of 2012) and the results of certification flight tests as summarized by Marze
(1982) and Cox (1993).

The flight tests are conducted at maximum certified weight. Noise in EPNdB
(effective perceived noise level) is measured at three microphone locations on the
ground, on the centerline of the flight path, and ±150 m to each side. The arithmetic
mean of the three microphone measurements is used. At least six measurements are
made, such that the mean has less than 1.5 EPNdB error with 90% confidence level.
The reference condition is sea level pressure, 25° C temperature, 70% humidity, and
zero wind; corrections are permitted for actual atmospheric conditions. The flight
path must be flown to specified limits in speed, altitude, and lateral position.



14.7 Noise Certification 541

100000.500.

weight (kg)
1000.                                        10000.

approach

takeoff

flyover

85.

90.

95.

100.

105.

110.
E

PN
dB

stage 2 limit

stage 3 limit
1982

1993

85.

90.

95.

100.

105.

110.

E
PN

dB

85.

90.

95.

100.

105.

110.

E
PN

dB

Figure 14.9. Helicopter noise certification limits and measurements.

The approach flight condition is a 6° flight path angle to 120-m altitude at the
microphones. The speed is the greater of the best climb speed or the lowest approved
approach speed. The principal concern is blade-vortex interaction noise. The takeoff
flight condition starts at an altitude of 20 m, 500 m from the microphones. The test
is conducted using maximum takeoff power, at speed for the best rate of climb. Tail
rotor and engine noise are typically significant. The flyover flight condition is at an
altitude of 150 m and at a specified speed based on level flight speed at maximum
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continuous power and the never-exceed speed. The noise source of concern is high-
speed impulsive noise.

As shown in Figure 14.9, the stage 2 noise limits for each profile are a function
of aircraft weight, in EPNdB:

weight: ≤ 800 kg 800 to 80000 kg ≥ 80000 kg

approach 90 110
takeoff 89 3.01 EPNdB per double 109
flyover 89 108

Figure 14.9 also shows the stage 3 limits. Negative and positive variations can
be traded, subject to no exceedance greater than 3 EPNdB and the sum of the
exceedances not more than 4 EPNdB. There is an alternate certification procedure
for helicopters with a maximum certified takeoff weight of less than 7000 lb.
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15 Mathematics of Rotating Systems

This chapter presents some mathematics that are useful in the analysis of periodic
dynamic systems, specifically an N-bladed helicopter rotor rotating at speed �. The
period for a single blade is T = 2π/�. In terms of the dimensionless time, measured
by the azimuth angle ψ , the period is 2π . For the entire rotor, viewed in the non-
rotating frame, the period is T = 2π/N�. We are interested in the steady-state
behavior of a rotating system, which in the rotating frame must be periodic, and thus
a Fourier series analysis is appropriate. We are also concerned with the transient
behavior of a rotating system, particularly the dynamic stability.

15.1 Fourier Series

A Fourier series is a representation of a periodic function β(ψ) as a linear combina-
tion of sine and cosine functions with fundamental period 2π :

β(ψ) = β0 + β1c cosψ + β1s sinψ + β2c cos 2ψ + β2s sin 2ψ + . . .

= β0 +
∞∑

n=1

(
β2n cos nψ + βns sin nψ

)
(15.1)

It is assumed that the time scale has been normalized so that the dimensionless period
is 2π . The Fourier coefficients or harmonics are constants, which can be evaluated
from integrals of β(ψ) as follows:

β0 = 1
2π

∫ 2π

0
β dψ (15.2)

βnc = 1
π

∫ 2π

0
β cos nψ dψ (15.3)

βns = 1
π

∫ 2π

0
β sin nψ dψ (15.4)

A more concise representation is given by the complex form of the Fourier series:

β(ψ) =
∞∑

n=−∞
βneinψ (15.5)

545
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where

βn = 1
2π

∫ 2π

0
βe−inψdψ (15.6)

Since β is real, βn and β−n are complex conjugates. The real and complex harmonics
are related by

βn = 1
2

(
βnc − iβns

)
(15.7)

for n ≥ 1; β0 has the same definition in both forms. The complex form can be useful
in manipulating the equations of a periodic system, since a single expression defines
all the harmonics. To interpret the results, the real form must still be considered.

The Fourier series is a linear transformation between a representation of a
periodic motion by a continuous function β(ψ) over one period, and a representation
by an infinite set of constants (β0, β1c, β1s, . . . ). The Fourier coefficients represent the
motion in the non-rotating frame, as for the flap and lag motion discussed in section
6.1.2. The usefulness of the Fourier series description of steady-state rotor motion is
based on the fact that only the lowest few harmonics have significant magnitude, so
that the complete periodic motion is described by a small set of numbers.

The Fourier coefficients describing the blade motion are the steady-state solution
of the linear differential equation for the motion. An example is equation 6.130 for
the flap motion:

β̈ + β = γ (Mθ θ + Mλλ+ Mβ̇ β̇ + Mββ
)

(15.8)

In general, the coefficients of the equations of motion (in this case the aerody-
namic flap moments Mθ , Mλ, Mβ̇ , and Mβ) are periodic functions of ψ . There are
two approaches to solving the equations of motion for the Fourier coefficients: the
substitutional method and the operational method. In the substitutional method, the
degrees of freedom (and their time derivatives) as well as the equation coefficients
are written as Fourier series. Then products of sines and cosines are reduced to sums
of sines and cosines by using trigonometric relations. Next, all the coefficients of
like harmonics in the equation (that is, the coefficients of 1, cosψ , sinψ , cos 2ψ ,
sin 2ψ , . . . ) are collected. Finally, the collected coefficients of sin nψ and cos nψ are
individually set to zero. The result is an infinite set of linear algebraic equations for
the harmonics (β0, β1c, β1s, . . . ). The Fourier series representation must be truncated
to obtain a finite set of algebraic equations, which can then be solved for the required
harmonics.

In the operational method, the following operators are applied to the differential
equation of motion:

1
2π

∫ 2π

0
(. . .)dψ

1
π

∫ 2π

0
(. . .) cos nψ dψ

1
π

∫ 2π

0
(. . .) sin nψ dψ (15.9)

The periodic coefficients are again written as Fourier series, and products of har-
monics are reduced to sums of harmonics. The operation here is simpler than in the
substitutional method since Fourier series have not been introduced for the degrees
of freedom. The integral operators only act on the product of the degrees of freedom
and a cosine or sine harmonic; hence on terms of the form β cos kψ or β sin kψ . The
definitions of the Fourier coefficients are then used to replace these integrals by
the appropriate harmonics of the blade motion. The result is the set of linear alge-
braic equations, which can be solved for the required harmonics. The substitutional
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and operational methods produce the same algebraic equations. The operational
method has the advantage of obtaining the equations one at a time. The method can
be interpreted as resolving into the non-rotating frame the moment equilibrium that
produced the equation of motion.

15.2 Sum of Harmonics

To determine the total influence of a rotor with N blades undergoing identical
periodic motion, sums of harmonics of the form

∑N
m=1 cos nψm or

∑N
m=1 sin nψm

must be evaluated. Here the azimuth angle of each blade is ψm = ψ + m�ψ , with ψ
the dimensionless time variable (and the azimuth angle of the reference blade), and
�ψ = 2π/N is the azimuthal spacing between the blades. The summation is over all
the blades: m = 1 to N. The result for the sum of these harmonics is

1
N

N∑
m=1

cos nψm = fn cos nψ (15.10)

1
N

N∑
m=1

sin nψm = fn sin nψ (15.11)

1
N

N∑
m=1

einψm = fneinψ (15.12)

where fn = 1 only if n = pN for p some integer, and fn = 0 otherwise. Hence the
sum is zero unless the harmonic number is a multiple of the number of blades.

To prove this result, consider the sum

S =
N∑

m=1

einm�ψ =
N∑

m=1

e2π im(n/N) (15.13)

After factoring einψ from
∑N

m=1 einψm , what must be proved is that S = N fn. If n/N
is an integer, then (

e2π i)(n/N)m = (1)(n/N)m = 1 (15.14)

for all m, and so S=
∑N

m=1 1 = N. For the case of n/N not an integer, multiplying the
series S by e2π in/N is equivalent to subtracting the first (m = 1) term and adding an
m = N + 1 term:

Se2π in/N = S + e2π i(n/N)(N+1) − e2π i(n/N) = S + e2π ine2π i(n/N) − e2π i(n/N) = S (15.15)

since e2π in = 1. But e2π i(n/N) �= 1 if n/N is not an integer, so necessarily S = 0. Hence
S = N fn as required.

In rotor dynamics, sums of the following form are also encountered:

1
N

N∑
m=1

(−1)m cos nψm = gn cos nψ (15.16)

1
N

N∑
m=1

(−1)m sin nψm = gn sin nψ (15.17)
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1
N

N∑
m=1

(−1)meinψm = gneinψ (15.18)

where gn = 1 only if n = N/2 + pN for p some integer, and gn = 0 otherwise. Thus
the sums are zero unless the harmonic number equals an odd multiple of N/2, which
also requires that the rotor have an even number of blades. The proof of this result
is similar to that given earlier; note that (−1)m = ei(N/2)m�ψ .

15.3 Harmonic Analysis

In numerical work, a periodic function f (ψ) is typically evaluated at j equally
spaced points around the azimuth: f j = f (ψ j), whereψ j = j2π/J for j = 1 to J. The
function f can be estimated at points between the known values using the Fourier
interpolation formula:

f̂ (ψ) =
K∑

k=−K

Fkeikψ (15.19)

for K ≤ (J − 1)/2, where

Fk = 1
J

J∑
j=1

f je−ikψ j (15.20)

is a numerical evaluation of the harmonics of a Fourier series representation of
f (ψ). If L < (J − 1)/2, this expression is a least-squared-error representation of f .
If L = (J − 1)/2, it gives f̂ (ψ j ) = f j exactly.

Although if matches the periodic function exactly at the known values, the
Fourier interpolation formula can be a poor representation elsewhere. Fourier inter-
polation can give large excursions because of the higher harmonics and does not
estimate derivatives of the function well. For numerical harmonic analysis, using
linear interpolation is better:

f̂ (ψ) = f (ψ j )+ ψ − ψ j

ψ j+1 − ψ j

(
f (ψ j+1)− f (ψ j)

)
(15.21)

for ψ j ≤ ψ ≤ ψ j+1. This interpolation is equivalent to

f̂ (ψ) =
∞∑

k=−∞
Fkeikψ (15.22)

with the harmonics

Fk =
(

sinπk/J
πk/J

)2 1
J

J∑
j=1

f je−ikψ j (15.23)

The factor (sin(πk/J)/(πk/J))2 reduces the magnitude of the higher harmonics,
but now an infinite number of harmonics are required. By truncating the Fourier
series (k = −K to K) the corners of the linear interpolation are rounded off. Usually
K ∼= J/3 is satisfactory.
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15.4 Multiblade Coordinates

Typically the rotor equations of motion are derived in the rotating frame, with
degrees of freedom describing the motion of each blade separately. An example is
the flapping equation as derived in section 6.5. In fact, the rotor responds as a whole
to excitation from the non-rotating frame, such as aerodynamic gusts, control inputs,
or shaft motion. Working with degrees of freedom that reflect this behavior is desir-
able. Such a representation of the rotor motion simplifies the analysis and facilitates
understanding its behavior. For the steady-state solution, the appropriate represen-
tation of the blade motion is a Fourier series, the harmonics of which describe the
motion of the rotor as a whole; see section 6.1.2. The equations of motion in the non-
rotating frame are simply algebraic equations for the harmonics. Now, instead of the
steady-state solution we are concerned with the general dynamic behavior, including
the transient response of the rotor. The degrees of freedom that describe the motion
of the rotor in the non-rotating frame are called multiblade coordinates (MBC).

The appropriate transformation of the degrees of freedom and the equations of
motion to the non-rotating frame is of the Fourier type. There are many similari-
ties between this coordinate change and Fourier series, Fourier interpolation, and
discrete Fourier transforms. The common factor is the periodic nature of the sys-
tem. Multiblade coordinates were introduced to rotor dynamics analysis by Coleman
(1943), who used the transformation for the blade lag motion in ground resonance
analysis, and they were fully developed by Hohenemser and Yin (1972).

The use of multiblade coordinates is crucial for problems involving the rotor
motion coupled with the fixed frame, such as hub motion, swashplate control, or
dynamic inflow. MBC are a physically relevant, non-rotating frame representation
of the rotor motion; for example, coning and tip-path-plane tilt for blade flapping.
Consequently, introduction of MBC separates the coupling of the rotor and fixed
frame into subsets and, most importantly eliminates periodic coefficients (except for
two-bladed rotors). MBC also reduce the periodicity of the equations resulting from
edgewise flight aerodynamics.

15.4.1 Transformation of the Degrees of Freedom

Consider a rotor with N blades equally spaced around the azimuth at ψm = ψ +
m�ψ , where ψ is the dimensionless time variable (ψ = �t for constant rotational
speed) and�ψ = 2π/N is the azimuthal spacing between blades. The blade index m
ranges from 1 to N. Let β(m) be the degree of freedom in the rotating frame for the
m-th blade. The multiblade coordinate transformation is a linear transformation of
the degrees of freedom from the rotating to the non-rotating frame. The following
new degrees of freedom are introduced:

β0 = 1
N

N∑
m=1

β(m) (15.24)

βnc = 2
N

N∑
m=1

β(m) cos nψm (15.25)

βns = 2
N

N∑
m=1

β(m) sin nψm (15.26)
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βN/2 = 1
N

N∑
m=1

β(m)(−1)m (15.27)

These degrees of freedom describe the motion of the rotor in the non-rotating frame.
As an example, for the rotor flap motion, β0 is the coning degree of freedom, whereas
β1c and β1s are the tip-path-plane tilt degrees of freedom. The remaining degrees of
freedom are called reactionless modes, since they involve no net force or moment
on the rotor hub. The corresponding inverse transformation is

β(m) = β0 +
∑

n

(
βnc cos nψm + βns sin nψm

)+ βN/2(−1)m (15.28)

which gives the motion of the individual blades again. The summation over the
harmonic index n goes from n = 1 to (N − 1)/2 for N odd, and from n = 1 to
(N − 2)/2 for N even. The degree of freedom βN/2 appears in the transformation
only if N is even.

The variables β0, βnc, βns, and βN/2 are degrees of freedom and hence are func-
tions of time, just as the variables β(m) are. These degrees of freedom describe the
motion of the rotor as a whole in the non-rotating frame, whereas β(m) describes
the motion of an individual blade in the rotating frame. Thus we have a linear,
reversible transformation between the N degrees of freedom β(m) in the rotating
frame (m = 1 . . .N) and the N degrees of freedomβ0,βnc,βns,βN/2 in the non-rotating
frame. Compare this coordinate transformation with a Fourier series representation
of the steady-state solution. In the latter case, where β(m) is a periodic function of
ψm, the motions of all the blades are identical. So the motion in the rotating frame
can be represented by a Fourier series, the coefficients of which are constant in time
but infinite in number. Thus there are similarities between multiblade coordinates
and the Fourier series, but they are by no means identical.

The collective and cyclic modes (β0, β1c, and β1s, where in general β can be
any degree of freedom of the blade) are of particular importance because of their
fundamental role in the coupled motion of the rotor and the non-rotating system.
For axial flow only, the collective and cyclic modes of the rotor degrees of freedom
couple with the fixed system, whereas the reactionless modes (β2c, β2s, . . . , βnc, βns,
βN/2) correspond to purely internal rotor motion. Nonaxial flow to some extent
couples all the rotor degrees of freedom and the fixed system variables, but still the
collective and cyclic motions dominate the rotor dynamic behavior.

The multiblade coordinate transform can be applied to a configuration with
blades that are not equally spaced or not identical. If the blade-to-blade differences
are small, the benefits of the transform can still be expected.

Now consider the transformation of time derivatives of the motion. The deriva-
tives of equation 15.28 are

β̇ (m) = β̇0 +
∑

n

[
(β̇nc + n�βns) cos nψm + (β̇ns − n�βnc) sin nψm

]
+ β̇N/2(−1)m

(15.29)

β̈(m) = β̈0 +
∑

n

[
(β̈nc + 2n�β̇ns + n�̇βns − n2�2βnc) cos nψm

+ (β̈ns − 2n�β̇nc − n�̇βnc − n2�2βns) sin nψm

]
+ β̈N/2(−1)m (15.30)
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where� = ψ̇ . The�’s are omitted for dimensionless equations, and usually the trim
rotor speed is constant (or its perturbations are represented by a separate degree of
freedom), so �̇ = 0. Then the harmonics of the time derivatives are

1
N

N∑
m=1

β̇ (m) = β̇0 (15.31)

2
N

N∑
m=1

β̇ (m) cos nψm = β̇nc + nβns (15.32)

2
N

N∑
m=1

β̇ (m) sin nψm = β̇ns − nβnc (15.33)

1
N

N∑
m=1

β̇ (m)(−1)m = β̇N/2 (15.34)

and

1
N

N∑
m=1

β̈(m) = β̈0 (15.35)

2
N

N∑
m=1

β̈(m) cos nψm = β̈nc + 2nβ̇ns − n2βnc (15.36)

2
N

N∑
m=1

β̈(m) sin nψm = β̈ns − 2nβ̇nc − n2βns (15.37)

1
N

N∑
m=1

β̈(m)(−1)m = β̈N/2 (15.38)

The transformation of the velocity and acceleration from the rotating frame intro-
duces Coriolis and centrifugal terms in the non-rotating frame.

The steady-state blade motion is periodic and identical for all blades; hence
it can be represented by a Fourier series. Using a complex representation of the
harmonics, β(m) = ∑

n βneinψm , gives

β0 = 1
N

∑
m

∑
n

βneinψm =
∑

n

βn
1
N

∑
m

einψm =
∑

n

βneinψ for n = pN (15.39)

βkc = 1
N

∑
m

∑
n

βn2einψm cos kψm =
∑

n

βn
1
N

∑
m

(
ei(n+k)ψm + ei(n−k)ψm

)
=
∑

n

βn
(
ei(n+k)ψ + ei(n−k)ψ) for n ± k = pN (15.40)

βks = 1
N

∑
m

∑
n

βn2einψm sin kψm =
∑

n

βn
1
N

∑
m

(−i)
(
ei(n+k)ψm − ei(n−k)ψm

)
=
∑

n

βn(−i)
(
ei(n+k)ψ − ei(n−k)ψ) for n ± k = pN (15.41)
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βN/2 = 1
N

∑
m

∑
n

βneinψm (−1)m =
∑

n

βn
1
N

∑
m

einψm ei(N/2)m�ψ

=
∑

n

βneinψ for n = N/2 + pN (15.42)

So the Fourier series for the multiblade coordinates have only harmonics at multiples
of the number of blades (except for βN/2).

15.4.2 Matrix Form

Let βrot = (
β(m)

)
be the vector of rotating frame variables (length N), and βnon =(

β0 βnc βns βN/2
)T be the vector of multiblade coordinates (also length N). The multi-

blade coordinate transformation is

βrot = Tβnon (15.43)

β̇rot = T β̇non + Ṫβnon (15.44)

β̈rot = T β̈non + 2Ṫ β̇non + T̈βnon (15.45)

where the m-th row of T is

tm = (
1 cos kψm sin kψm (−1)m

)
(15.46)

This is a linear, time-varying transformation of the variables. Note the following
properties of the transformation:

DT T T = I (15.47)

DTT Ṫ = E1 (15.48)

DT T T̈ = E2 = E2
1 (15.49)

or

T−1 = DT T = ST (15.50)

Ṫ = TE1 (15.51)

T̈ = TE2 (15.52)

where

D =

⎡⎢⎢⎣
1
N

2
N

2
N

1
N

⎤⎥⎥⎦ (15.53)

E1 =

⎡⎢⎣
0

0 k�
−k� 0

0

⎤⎥⎦ (15.54)
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E2 =

⎡⎢⎣
0

−k2�2

−k2�2

0

⎤⎥⎦ (15.55)

Thus the transformation from rotating to non-rotating variables is

βnon = T−1βrot = DT Tβrot (15.56)

β̇non = DT T β̇rot − E1DT Tβrot (15.57)

β̈non = DT T β̈rot − 2E1DT T β̇rot + E2DT Tβrot (15.58)

It is also necessary to transform the motion or output equations, which is conven-
tionally accomplished by multiplying the equations by ST .

The MBC transformation matrix T can be factored into a multiblade part T0

and a rotating to non-rotating frame part R:

T = T0R =

⎡⎢⎣
...

1 cos km�ψ sin k�ψ (−1)m
...

⎤⎥⎦
⎡⎢⎣

1
cos kψ sin kψ

− sin kψ cos kψ
1

⎤⎥⎦
(15.59)

So βrot = T0Rβnon and βnon = RT DTT
0 βrot.

That the transformation is reversible, hence that the rotating and non-rotating
degrees of freedom describe the same motion, follows from T−1 = DT T , or
T T T = D−1. Using a complex representation of the multiblade coordinates, βn =
1
N

∑
m β

(m)e−inψm , gives

T T T =
⎡⎣ 1
. . . e−i�ψm . . .

(−1)m

⎤⎦
⎡⎢⎣

...
1 eikψm (−1)m

...

⎤⎥⎦

=
∑

m

⎡⎣ 1 eikψm (−1)m

e−i�ψm ei(k−�)ψm (−1)me−i�ψm

(−1)m (−1)meikψm 1

⎤⎦

=
⎡⎣N 0 0

0 N/2 0
0 0 N

⎤⎦ (15.60)

using the results of section 15.2 to sum the harmonics.

15.4.3 Conversion of the Equations of Motion

The multiblade coordinate transformation must be accompanied by a conversion of
the differential equations of motion from the rotating to the non-rotating frame. This
conversion is accomplished by operating on the rotating-frame equation of motion
with the following summation operators:

1
N

N∑
m=1

(. . .)
2
N

N∑
m=1

(. . .) cos nψm
2
N

N∑
m=1

(. . .) sin nψm
1
N

N∑
m=1

(. . .)(−1)m (15.61)
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The result is N differential equations in the non-rotating frame, obtained by sum-
ming the rotating equation over all N blades. These same operators are involved in
transforming the degrees of freedom. The conversion of the equations is not com-
plete, however, until the summation operator is eliminated by using it to transform
the degrees of freedom to multiblade coordinates.

A procedure analogous to the substitutional method for Fourier series consists
of the following steps. The periodic coefficients in the rotating-frame equation of
motion are written as Fourier series, and the multiblade coordinates are introduced
for the degrees of freedom and their time derivatives. Then products of harmonics
are written as sums of harmonics using trigonometric relations. Next, all coefficients
of 1, cosψm, sinψm, . . . , cos nψm, sin nψm, (−1)m are collected and individually set to
zero, producing the required differential equations. A difficulty with this approach
arises because, unlike the Fourier series case, only N equations are to be obtained.
Thus any harmonics cos kψm and sin kψm with k > N/2 must be rewritten as products
of harmonics in the proper range (k < N/2) and harmonics of N/rev. For example,
consider a second harmonic appearing in the equations for a three-bladed rotor. By
writing

cos 2ψm = cos 3ψm cosψm + sin 3ψm sinψm (15.62)

sin 2ψm = sin 3ψm cosψm − cos 3ψm sinψm (15.63)

the second harmonics contribute 3/rev terms to the cosψm and sinψm equations. A
better approach is to apply the summation operators given earlier instead of trying
to collect coefficients of like harmonics. Then, since the summation over all blades
acts only on the harmonics, only terms of the form

N∑
m=1

cos kψm

N∑
m=1

sin kψm

N∑
m=1

(−1)m cos kψm

N∑
m=1

(−1)m sin kψm (15.64)

must be evaluated to complete the equations. These sums can be evaluated using
the results of section 15.2. Recall that the first two sums give harmonics of N/rev if
k is a multiple of N, and the sums involving (−1)m give harmonics of (N/2)/rev if k
is an odd multiple of N/2.

An operational method, which requires less manipulation of the harmonics,
proceeds as follows. Again the periodic coefficients of the rotating equations are
written as Fourier series, and the summation operators are applied to the equations.
Products of harmonics are reduced to sums of harmonics. Since the rotating degrees
of freedom are still present, terms of the form

2
N

N∑
m=1

β(m) cos kψm
2
N

N∑
m=1

β(m) sin kψm (15.65)

2
N

N∑
m=1

β(m)(−1)m cos kψm
2
N

N∑
m=1

β(m)(−1)m sin kψm (15.66)

must be evaluated. If k < N/2, the first two sums are simply the definitions of the
non-rotating degrees of freedom βkc and βks. For the general case, write k = n + pN,
where p is an integer and n is the principal value of the harmonic, such that n < N/2.
Then if the complex form is used and the definition of the non-rotating degrees of
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freedom (for n, which now has the proper range) is applied,

1
N

N∑
m=1

β(m)e−ikψm = 1
N

N∑
m=1

β(m)e−inψm e−ipNψm

= e−ipNψ 1
N

N∑
m=1

β(m)e−inψm

= e−ipNψβn (15.67)

since e−ipNm�ψ = e2π ipm = 1. If N is even, the case k = n + pN with n = N/2 must
also be considered, for which

1
N

N∑
m=1

β(m)e−ikψm = e−i(p+1/2)NψβN/2 (15.68)

The real form is as follows. Writing k = n + pN where n < N/2, then

2
N

N∑
m=1

β(m) cos kψm = βnc cos pNψ − βns sin pNψ (15.69)

2
N

N∑
m=1

β(m) sin kψm = βnc sin pNψ + βns cos pNψ (15.70)

or if n = N/2

1
N

N∑
m=1

β(m) cos kψm = βN/2 cos(p + 1/2)Nψ (15.71)

1
N

N∑
m=1

β(m) sin kψm = βN/2 sin(p + 1/2)Nψ (15.72)

Similarly, for the summations involving (−1)m, write k = n + (p − 1/2)N, where
n < N/2. Then

2
N

N∑
m=1

β(m)(−1)m cos kψm = βnc cos(p − 1/2)Nψ − βns sin(p − 1/2)Nψ (15.73)

2
N

N∑
m=1

β(m)(−1)m sin kψm = βnc sin(p − 1/2)Nψ + βns cos(p − 1/2)Nψ (15.74)

or if n = N/2

1
N

N∑
m=1

β(m)(−1)m cos kψm = βN/2 cos pNψ (15.75)

1
N

N∑
m=1

β(m)(−1)m sin kψm = βN/2 sin pNψ (15.76)

With these results the construction of the differential equations in the nonrotating
frame is straightforward.
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Two assumptions have been made in outlining these procedures for the conver-
sion of the equations to the non-rotating frame: first, that the number of degrees
of freedom involved is small enough for an analytical construction to be practical;
and second, that analytical expressions are available for the periodic coefficients as
Fourier series. For comprehensive dynamics analyses neither assumption is valid,
and a procedure better suited to numerical work is required. The rotating degrees
of freedom are written in terms of the multiblade coordinates:

β(m) = β0 +
∑

n

(
βnc cos nψm + βns sin nψm

)+ βN/2(−1)m (15.77)

with similar expressions for the time derivatives, and the summation operators are
applied to the rotating equation. Then it is necessary to evaluate summations over
all N blades that involve the periodic coefficient multiplied by two factors: a factor
of 1, cos nψm, sin nψm, or (−1)m from the multiblade coordinates, and a factor of
1, cos kψm, sin kψm, or (−1)m from the summation operators. The construction of
the non-rotating equations in this manner is simple, and the evaluation is easily
performed numerically. The value of an analytical approach is that with simple
periodic coefficients many of these summations are exactly zero, which simplifies
the non-rotating equations of motion.

With a constant coefficient differential equation, the conversion to the non-
rotating frame is elementary. The summation operators then act only on the degrees
of freedom, not on the equation coefficients, and the definitions of the non-rotating
degrees of freedom (and their derivatives) can be applied directly. Consider for
example a mass-spring-damper system of the form

β̈ (m) + γ

8
β̇ (m) + ν2β(m) = γ

8
θ (m) (15.78)

(the flapping equation in hover). The resulting non-rotating equations are

β̈0 + γ

8
β̇0 + ν2β0 = γ

8
θ0 (15.79)

for β0,

(
β̈nc

β̈ns

)
+
⎡⎣ γ

8
2n

−2n
γ

8

⎤⎦( β̇nc

β̇ns

)
+
⎡⎣ ν2 − n2 n

γ

8

−n
γ

8
ν2 − n2

⎤⎦(βnc

βns

)
= γ

8

(
θnc

θns

)
(15.80)

for βnc and βns, and

β̈N/2 + γ

8
β̇N/2 + ν2βN/2 = γ

8
θN/2 (15.81)

for βN/2. These equations show the basic manner in which inertia, damping, and
spring terms transform to the non-rotating frame. The conversion introduces Coriolis
and centrifugal terms to the βnc and βns equations. The only coupling of the non-
rotating degrees of freedom occurs in the βnc and βns equations. The number of
blades influences only the number of degrees of freedom and equations that must
be analyzed.

The equations and the procedure by which they are obtained are much more
complicated with periodic coefficients. Consider the differential equation for the
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flapping motion in forward flight:

β̈ (m) +
(γ

8
+ γ

6
μ sinψm

)
β̇ (m) +

(
ν2 + γ

6
μ cosψm + γ

8
μ2 sin 2ψm

)
β(m)

=
(γ

8

(
1 + μ2)+ γ

3
μ sinψm − γ

8
μ2 cos 2ψm

)
θ (m) −

(γ
6

+ γ

4
μ sinψm

)
λ (15.82)

(see section 6.5). The inertia and centrifugal-structural spring terms
(
β̈(m) + ν2β(m)

)
transform as hover. The transformation of the aerodynamic terms to the non-rotating
frame is given in section 16.8.4 for the cases of two, three, and four blades. As the
number of blades increases, the periodic coefficients are cleared from the lower
degrees of freedom and equations. There are always periodic coefficients in the
complete set of equations, though, regardless of the number of blades. The higher
harmonics of the coefficients in the rotating frame contribute to the mean values
of the coefficients in the non-rotating frame (see section 16.8.4). Only multiples of
N/rev harmonics appear in the equations for the N-bladed rotor. This follows from
the results for

∑
m β

(m) cos kψm and
∑

m β
(m) sin kψm given earlier. Hence, although

the rotating equations have period 2π , the equations in the non-rotating frame
have a period T = 2π/N, as expected with identical blades. The exception is that
(N/2)/rev harmonics (in general, odd multiples of (N/2)/rev) appear in the matrix
elements coupling the βN/2 mode with the other degrees of freedom. So for a rotor
with an even number of blades, when the βN/2 degree of freedom is included in the
analysis, the period is T = 4π/N. The period is twice the expected result because
the blades are no longer identical: the βN/2 mode identifies alternate blades with a
plus or minus amplitude by the (−1)m factor. Thus the period of 4π/N follows from
the mathematical description of the rotor motion; the solution must still correspond
to a physical system with period 2π/N.

The equations of motion for the rotor in edgewise forward flight must always
have periodic coefficients, whether they are written in the rotating or non-rotating
frame. The solutions of such equations have distinctive behavior and are also more
difficult to obtain than the solutions of constant coefficient equations (see section
15.6). When the equations are only weakly periodic, there might be some constant
coefficient system that closely represents the behavior of the true system. An example
is the periodic coefficients arising from the aerodynamics of forward flight, which
have higher harmonics only of orderμ and smaller. It is necessary to establish the best
means to construct such a constant coefficient approximation and to determine its
range of validity. The constant coefficient system can be constructed by retaining only
the mean values of the original periodic coefficients. Clearly a better approximation
results if the coefficients are averaged in the non-rotating frame, because the higher
harmonics in the rotating equation contribute to the mean values of the coefficients
in the non-rotating equations. By working in the non-rotating frame, more equations
must be solved. The constant coefficient approximation is an important tool in the
analysis of rotor dynamics.

15.4.4 Reactionless Mode and Two-Bladed Rotors

The reactionless mode βN/2 = 1
N

∑
m β

(m)(−1)m, present for rotors with an even
number of blades, introduces special behavior and some difficulties. In this mode all
the blades have identical motion, but the displacement alternates the sign from one
blade to the next around the azimuth. Identification of the blades by ±1 is artificial
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and leads to N
2� periodic terms in the non-rotating frame equations, when only N�

periodicity is expected for identical blades. For a two-bladed rotor the non-rotating
degrees of freedom are the coning and teetering modes:

β0 = 1
2

(
β(2) + β(1)) (15.83)

β1 = 1
2

(
β(2) − β(1)) (15.84)

In this case β1 replaces the cyclic modes β1c, and β1s and therefore couples with the
fixed system. Because of the absence of the cyclic modes, two-bladed rotor dynamics
are fundamentally different from the dynamics of rotors with three or more blades.
Specifically, there is no tip-path-plane representation of the flap motion, and coupling
with the fixed frame exhibits 1/rev periodicity.

Defining degrees of freedom β(N/2)c and β(N/2)s as for βnc and βns, would give

β(N/2)c = 2
N

N∑
m=1

β(m) cos
N
2
ψm = 2

N

N∑
m=1

β(m)(−1)m cos
N
2
ψ = 2βN/2 cos

N
2
ψ

(15.85)

β(N/2)s = 2
N

N∑
m=1

β(m) sin
N
2
ψm = 2

N

N∑
m=1

β(m)(−1)m sin
N
2
ψ = 2βN/2 sin

N
2
ψ

(15.86)

So β(N/2)c and β(N/2)s defined in this manner are not independent variables and are
not useful. Consider a more general definition:

β(N/2)c = βN/2C − αN/2S (15.87)

β(N/2)s = βN/2S + αN/2C (15.88)

where C = cos N
2 ψ and S = sin N

2 ψ , which inverts to

βN/2 = β(N/2)cC + β(N/2)sS (15.89)

αN/2 = −β(N/2)cS + β(N/2)sC (15.90)

and

β̇N/2 = β̇(N/2)cC + β̇(N/2)sS + N
2
�αN/2 (15.91)

α̇N/2 = −β̇(N/2)cS + β̇(N/2)sC − N
2
�βN/2 (15.92)

The new degree of freedom αN/2 is being added to the system (total N + 1 degrees
of freedom now), which requires a new equation as well. Following Hoffman (1976),
the variable N

2�αN/2 = β̇N/2 is used, so the states βN/2 and β̇N/2 are replaced by β(N/2)c
and β(N/2)s. Equation 15.91 gives the constraint equation

β̇(N/2)cC + β̇(N/2)sS = 0 (15.93)

There follows

β̇N/2 = N
2
�(−β(N/2)cS + β(N/2)sC) (15.94)
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β̈N/2 = N
2
�(−β̇(N/2)cS + β̇(N/2)sC)−

(
N
2
�

)2

βN/2 (15.95)

Peters (1994) described other possible definitions of αN/2.
The equation of motion for βN/2 is obtained from EN/2 = 1

N

∑
m E(m)(−1)m.

Together with a constraint equation EC, two equations of motion for β(N/2)c and
β(N/2)s are obtained from(

E(N/2)c
E(N/2)s

)
=
[

2C 2S
2S −2C

](
EN/2

EC

)
(15.96)

For a second-order equation of motion (EN/2 = Mβ̈N/2 + . . .), using equation 15.95
for the acceleration and equation 15.93 for the constraint, this becomes(

E(N/2)c

E(N/2)s

)
=
[

2C 2S

2S −2C

]{
M

N
2
�

[−S C

C S

](
β̇(N/2)c

β̇(N/2)s

)

−M
(

N
2
�

)2 [C S

0 0

](
β(N/2)c

β(N/2)s

)}
+ . . .

= M
N
2
�

[
0 2

−2 0

](
β̇(N/2)c

β̇(N/2)s

)

− M
(

N
2
�

)2 [ 2C2 2CS

2CS 2S2

](
β(N/2)c

β(N/2)s

)
+ . . . (15.97)

So the second-order equation for βN/2 plus the constraint equation becomes two
first-order equations for β(N/2)c and β(N/2)s.

This approach gives a representation of the tip-path-plane motion of a two-
bladed rotor:

β1 = β1cC + β1sS (15.98)

β̇1 = −β1c�S + β1s�C (15.99)

where C = cosψ and S = sinψ ; with the constraint equation

β̇1cC + β̇1sS = 0 (15.100)

These equations do not imply any approximation. They provide an adequate rep-
resentation of the teeter motion β1 for slow variation of β1c and β1s. The inverse
is

β1c = β1C − 1
�
β̇1S (15.101)

β1s = β1S + 1
�
β̇1C (15.102)

The states β1 and β̇1 are replaced by β1c and β1s. The acceleration is

β̈1 = −β̇1c�S + β̇1s�C −�2β1 (15.103)

The equation of motion for the teeter flap degree of freedom in hover,

β̈1 + γ

8
β̇1 + ν2β1 = γ

8
(θ1c cosψ + θ1s sinψ) (15.104)
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becomes[
0 2

−2 0

](
β̇1c

β̇1s

)
+
[− γ

8 2CS + (ν2 − 1)2C2 γ

8 2C2 + (ν2 − 1)2CS

− γ

8 2S2 + (ν2 − 1)2CS γ

8 2CS + (ν2 − 1)2S2

](
β1c

β1s

)

= γ

8

[
2C2 2CS

2CS 2S2

](
θ1c

θ1s

)
(15.105)

which are first-order equations with periodic coefficients. Averaging the coefficients
gives [

0 2

−2 0

](
β̇1c

β̇1s

)
+
[
ν2 − 1 γ

8

− γ

8 ν2 − 1

](
β1c

β1s

)
= γ

8

(
θ1c

θ1s

)
(15.106)

which does produce the correct static solution for the tip-path-plane tilt.

15.4.5 History

In developing the equations of motion for ground resonance of a rotor with three
or more blades, Coleman (1943) noted “a proper choice of coordinates leads to
equations with constant coefficients.” For an N-bladed rotor, each blade with lag
degree of freedom β(m), he introduced “special linear combinations of the hinge
deflections”:

θn = bi
N

N∑
m=1

β(m)einm�ψ (15.107)

ζn = θnein�t (15.108)

where b is the distance from the lag hinge to the blade center of mass. The θn

variables represent the hinge motion in the rotating coordinate system, whereas the
ζn variables are in the fixed system. “Geometrically, θ1 or ζ1 is the complex vector
representing the displacement due to hinge deflection of the center of mass of all the
blades.” Only ζ1 couples with the in-plane shaft motion. “The physical meaning of
this partial separation of variables is that a blade motion represented by ζ1 involves
a motion of the common center of mass of the blades and, thus, a coupling effect
with the pylon. Blade motions in which the common center of mass does not move
are represented by ζ2, . . . , ζn.” The variables ζ0 and ζ1 are recognized as the mean
and first-harmonic multiblade coordinates:

β0 = 1
N

N∑
m=1

β(m) = 1
bi
ζ0 (15.109)

β1c + iβ1s

2
= 1

N

N∑
m=1

β(m)einψm = einψ 1
N

N∑
m=1

β(m)einm�ψ = 1
bi
ζ1 (15.110)

Coleman used complex combinations of the lag degrees of freedom and the shaft
motion degrees of freedom to facilitate derivation and solution of the ground res-
onance equations, for an axisymmetric system working with two complex equa-
tions instead of four real equations. Coleman and Feingold (1947) analyzed ground
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resonance of two-bladed rotors, using the collective and reactionless multiblade
coordinates: θ0 = b

2

(
β(2) + β(1)) and θ1 = b

2

(
β(2) − β(1)).

Coleman recognized the physical relevance of MBC, the separation of the cou-
pling of rotor and shaft motion, and the fact that MBC lead to equations with con-
stant coefficients. Unfortunately, the character of the multiblade coordinates was
obscured by the use of complex coordinates. Appropriate notation proved elusive
in the development of multiblade coordinates.

Miller (1948) conducted an evaluation of the stability and control characteristics
of several different types of helicopters, in which multiblade coordinates were used
for the blade flap motion:

The equations of motion are derived by considering the displacement of the helicopter
and its blades relative to a system of axes fixed in space. . . . x is the displacement at
any time t of the rotor hub in the X direction and α1, β1, the corresponding angular
displacements of the helicopter and tip path plane. . . . The blade flapping can be expressed
as βψ = β0 + β1 cos�t + β2 sin�t higher harmonics of flapping having no effect on the
stability of the helicopter as a whole. β1 and β2 are functions of time. β0 is constant since
the thrust is constant.

Thus β1 and β2 were the longitudinal and lateral tip-path-plane tilt relative to space,
whereas β1 − α1 and β2 − α2 were the tip-path-plane tilt relative to the hub. The
rotating frame flap equation of motion was derived from the equilibrium of inertial,
aerodynamic, and hinge spring moments. Then the fixed frame flap equations were
obtained by setting to zero separately the coefficients of 1, cos�t, and sin�t. Cit-
ing Coleman, Miller also used complex combinations of variables for the airframe
in-plane and angular motion and the rotor flap motion, to reduce the number of
equations from six to three.

Grodko (1968) in the ground resonance chapter of Mil’s book cited Coleman,
but used multiblade coordinates instead of Coleman’s variables:

Investigations conducted by Coleman and B.Ya. Zherebtsov showed that, for a rotor
with a number of blades n ≥ 3, this system of equations can be reduced to a system of
linear equations with constant coefficients, if we replace [the lag variables] ξk(t) by new
variables xc(t) and zc(t) representing the coordinates of the center of gravity of the blade
system.

The work presented the corresponding transformation for the time derivatives of
ξk(t) and the approach for transforming the equations of motion.

Young and Lytwyn (1967) used multiblade coordinates in an examination of
the dynamic stability of low disk loading propeller-rotors. The motion analyzed
consisted of nacelle pitch and yaw degrees of freedom, plus flapping freedoms for an
N-bladed rotor (N ≥ 3). They noted that “the N blade freedoms are reduced to two
quasi coordinates by observing that of all possible patterns of blade motion, only
the two representing longitudinal and lateral tilting of the tip path plane provide a
possibility of an unstable coupling with the nacelle freedoms.” The notation βc and
βs was used for the quasi-coordinates.

Johnson and Hohenemser (1970) investigated tilting moment feedback control
on a hingeless rotor. They defined cyclic pitch as θcyc = −θI sinψk + θII cosψk, and
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the feedback control as

θ̇I = −k11

n∑
k=1

βk cosψk − k12

n∑
k=1

βk sinψk

θ̇II = −k21

n∑
k=1

βk cosψk − k22

n∑
k=1

βk sinψk

where βk is the flap degree of freedom of the k-th blade. Then they observed,

Because of the inclusion of azimuth position, a two-axis resolution of the equations of
motion is necessary. For this purpose the following definitions are made.

βI =
n∑

k=1

βk cosψk

βII =
n∑

k=1

βk sinψk

. . . By use of the preceding expressions, the equations of motion in terms of the re-
defined variables are obtained by first multiplying the blade equations of motion by
cosψk, summing from k = 1 to n and then making the appropriate substitutions. The
process is then repeated for sinψk.

The use of Roman numeral subscripts “I” and “II” for the first-harmonic multiblade
coordinates followed from the nomenclature for cyclic control.

Hohenemser and Yin (1972) introduced the terminology “multiblade coordi-
nates.” They cited Coleman (1943) and Young and Lytwyn (1967), and then gener-
alized MBC for an N-bladed rotor:

The multiblade coordinates represent collective flapping or coning, differential collective
flapping (only for even bladed rotors), and cyclic flapping of various orders, defining tilting
or warping of the rotor plane.

The flapping angle βk of the k-th blade in terms of multiblade flapping coordinates
is

βk = β0 + βd(−1)k + βI cosψk + βII sinψk

+ βIII cos 2ψk + βIV sin 2ψk

+ βV cos 3ψk + βVI sin 3ψk + . . .
where ψk = t + (2π/N)(k − 1) is the azimuth angle of the k-th blade. For an N-bladed
rotor only the first N terms are retained, whereby βd occurs only in even-bladed rotors.

Hohenemser and Yin gave the inverse transformation and described the method
for transforming the rotating frame equations of motion to the non-rotating frame.
They also analyzed the periodic differential equations of flapping motion in edgewise
forward flight using Floquet theory and demonstrated the utility of the constant
coefficient equations obtained by dropping periodic terms after applying the MBC
transformation.

15.5 Eigenvalues and Eigenvectors of the Rotor Motion

We now examine the characteristics of the rotor motion, in particular the eigenvalues
and eigenvectors of the system described by the non-rotating frame degrees of
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freedom and equations. Consider a constant-coefficient, mass-spring-damper system
in the rotating frame; for example, the rotor flapping equation in hover:

β̈ (m) + γ

8
β̇(m) + ν2β(m) = 0 (15.111)

The homogeneous equation is sufficient, since only the roots and mode shapes are
required here. The uncoupled motion of all the rotor degrees of freedom (lag,
pitch, elastic bending, and so on) is described by similar equations. To be general, an
arbitrary level of damping (γ /8) is allowed, and a natural frequency (ν) is considered
that unlike the flap motion is not necessarily near 1/rev. The eigenvalues of the
rotating equation are the solution of the quadratic equation s2

R + (γ /8)sR + ν2 = 0,
or

sR = − γ

16
+ i

√
ν2 −

( γ
16

)2
(15.112)

and its conjugate.
In the non-rotating frame, the equations for β0 and βN/2 are identical to the

rotating equation:

β̈0 + γ

8
β̇0 + ν2β0 = 0 (15.113)

β̈N/2 + γ

8
β̇N/2 + ν2βN/2 = 0 (15.114)

The roots of both equations are then the same as the rotating roots: s = sR and its
conjugate. The differential equations for βnc and βns are(

β̈nc

β̈ns

)
+
⎡⎣ γ

8
2n

−2n
γ

8

⎤⎦( β̇nc

β̇ns

)
+
⎡⎣ ν2 − n2 n

γ

8

−n
γ

8
ν2 − n2

⎤⎦(βnc

βns

)
= 0 (15.115)

(equation 15.80), or⎡⎣ s2 + γ

8
s + ν2 − n2 2ns + n

γ

8

−
(

2ns + n
γ

8

)
s2 + γ

8
s + ν2 − n2

⎤⎦(βnc

βns

)
= 0 (15.116)

The transformation to the non-rotating frame introduces centrifugal and Coriolis
terms that couple the βnc and βns equations. The roots are the solution of the char-
acteristic equation: (

s2 + γ

8
s + ν2 − n2

)2
+
(

2ns + n
γ

8

)2
= 0 (15.117)

or

s = − γ

16
± in + i

√
ν2 −

( γ
16

)2
= sR ± in (15.118)

and their conjugates. Hence the non-rotating eigenvalues for the βnc and βns degrees
of freedom are simply the rotating roots shifted in frequency by n/rev: s = sR ± in.
The corresponding eigenvectors are βnc/βns = i for s = sR + in, and βnc/βns = −i for
s = sR − in.

The eigenvalues s = sR ± in correspond to a coupled motion of βnc and βns,
which is a damped oscillation at frequency Ims = ImsR ± n/rev or ω = ωR ± n/rev.
The exponential decay rate, Res = ResR = −γ /16, is the same as for the rotating
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roots. The s = sR + in root has frequencyω = ωR + n/rev, and βnc = iβns implies that
the motion of βnc leads that of βns by a phase of 90◦, meaning by one-quarter of the
oscillation period 2π/(ωR + n). Thus s = sR + in is a high-frequency, progressive
mode. The frequency ωR + n/rev is always greater than the rotor speed. The s =
sR − in root has frequency |ωR − n|. If ωR > n/rev, then βnc = −iβns implies that
the motion of βnc lags βns by 90◦. If, however, ωR < n/rev, so that the frequency
ωR − n/rev is negative, then βnc = −iβns implies that βnc leads βns by 90°. Thus
s = sR − in is a low-frequency mode (the frequency can be below 1/rev if the rotating
frequency is near n/rev), regressive if ωR > n/rev and progressive if ωR < n/rev.

Consider the important case of the cyclic modes (n = 1) for the flap and lag
motion of the rotor. For the flap motion, the rotating natural frequency ωR is usually
slightly below 1/rev for articulated rotors and perhaps slightly above 1/rev for hinge-
less rotors. Then for the high-frequency mode s = sR + i, β1c leading β1s means that
the tip-path plane is wobbling in the same direction as the rotor rotation, at a speed
around 2/rev. For the low-frequency mode s = sR − i, the tip-path plane wobbles at
a low rate, again in the same direction as the rotor rotation if the rotating frequency
is below 1/rev, but in the opposite direction if ωR is above 1/rev.

For the lag motion, articulated and soft in-plane hingeless rotors have a rotating
frequency below 1/rev. The high-frequency lag mode is a progressive mode in which
the rotor center-of-gravity whirls in the same direction as the rotor rotation at a
speed above l/rev. The low-frequency lag mode is also a progressive whirling, but
with a low frequency in the non-rotating frame. For stiff in-plane rotors the rotating
lag frequency is above 1/rev, and the low frequency lag mode is a regressive mode
in which the rotor center-of-gravity whirls in the opposite direction to the rotor
rotation.

Figure 15.1 summarizes the transformation of the eigenvalues describing the
rotor dynamics from the rotating to the non-rotating frame. The case of a three-
bladed rotor with a rotating frequency just below 1/rev is shown. In the rotating
frame there are triple roots at sR and its conjugate corresponding to the three
independent blades, or in general there are N pairs of roots for an N-bladed rotor.
In the non-rotating frame there are still N pairs of roots at sR and its conjugate again
for the β0 and βN/2 modes and at sR ± in and their conjugates for the coupled βnc and
βns motion. Thus the transformation leaves the real part of the roots unchanged and
shifts the frequency by ±n/rev. Figure 15.1 shows the collective, high-frequency, and
low-frequency modes for the three-bladed rotor case. When the individual blades
of the rotor are not independent, but rather are coupled through the fixed system
(such as by the control system or shaft motion), the non-rotating modes are not all
influenced in the same manner, and the real parts of the roots are not necessarily
identical nor are the frequencies separated by exactly n/rev. The basic character
illustrated by Figure 15.1 still dominates the roots in the non-rotating frame.

15.6 Analysis of Linear, Periodic Systems

The aeroelastic behavior of the rotor or helicopter is described in many cases by linear
differential equations with periodic coefficients. The periodic coefficients arise as a
result of the aerodynamic forces in forward flight or a basic asymmetry in the rotor
system (such as with a two-bladed rotor). Helicopter analysis therefore requires
a means for obtaining the dynamic behavior of periodic systems, in particular the
eigenvalues describing the stability.
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Figure 15.1. Transformation of eigenvalues from the rotating to the non-rotating frame
(shown for N = 3).

Consider a physical system described by linear ordinary differential equations
of second order:

A2ẍ1 + A1ẋ1 + A0x1 = B0v (15.119)

Here x1 is the vector of degrees of freedom; v is the vector of input variables; and
A2, A1, A0, and B0 are matrices of the coefficients of the equations of motion.
For a time-invariant system, the coefficient matrices are constant. Of interest for
rotorcraft problems is the more general case of time-varying coefficients, especially
periodic coefficients. Dealing with these equations in a standard first-order form
is convenient, both in the mathematical development of the theory and the actual
computation of the dynamic response. Thus we define x2 = ẋ1, so

ẋ2 = ẍ1 = −A−1
2

(
A1ẋ1 + A0x1 − B0v

)
(15.120)

Then the equations of motion become(
ẋ2

ẋ1

)
=
[−A−1

2 A1 −A−1
2 A0

I 0

](
x2

x1

)
+
[

A−1
2 B0

0

]
v (15.121)

or

ẋ = Ax + Bv (15.122)

where

x =
(

x2

x1

)
=
(

ẋ1

x1

)
(15.123)

is the state variable vector, consisting of the displacement and velocity of all second-
order degrees of freedom. By transforming from second order to first order, the
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degree of the system (the dimension of x) has been doubled. The spring terms can
be absent for a degree of freedom (zero column in A0), so the degree of freedom is
actually first order. Such lower order variables should be represented as a single state
to avoid spurious zero eigenvalues. The degrees of freedom are reordered so that the
second-order variables x1 appear first and the first-order variables x0 appear last in
the vector. Then the last columns of A0 corresponding to x0 are zero: A0 = [ Ã0 0 ].
The differential equations are⎛⎝ ẍ1

ẍ0

ẋ1

⎞⎠ =
[−A−1

2 A1 −A−1
2 Ã0

I 0 0

]⎛⎝ ẋ1

ẋ0

x1

⎞⎠+
[

A−1
2 B0

0

]
v (15.124)

or ẋ = Ax + Bv, which is again the standard first-order form.

15.6.1 Linear, Constant Coefficient Equations

The analysis of a linear, time-invariant system is developed first, as a background for
the periodic system analysis. Moreover, the time-invariant case is more practical to
solve and hence more widely used. Consider the system described by ordinary dif-
ferential equations of the form ẋ = Ax + Bv, where A and B are constant matrices.
The state vector x has dimension n. The dynamic behavior of this system is deter-
mined by the eigenvalues and eigenvectors of the matrix A. For a system of order
n, there are n eigenvalues λi (i = 1, . . . , n) and corresponding eigenvectors ui, which
are the solution of the algebraic equations (A − λiI)ui = 0. These homogeneous
equations have a non-zero solution for u only if the determinant of the coefficients
is zero: det(A − λI) = 0. This determinant defines a polynomial of order n in λ,
called the characteristic equation. Define � as the diagonal eigenvalue matrix, and
define the modal matrix M as the matrix with the eigenvectors as columns (ordered
to correspond to the eigenvalues in �). Then the eigenvalue equation becomes
AM − M� = 0, or A = M�M−1.

To show the relation between the eigenvalues and the linear differential equa-
tion, consider the homogeneous equation ẋ = Ax. Expand the state vector x in terms
of the eigenvectors of A:

x(t) =
n∑

i=1

αi(t)ui (15.125)

where the αi are scalar functions of time. This expansion is possible because the
eigenvectors ui form a complete linearly independent set, so the constants αi can be
found for any x. Substituting for x in ẋ = Ax, and using Aui = uiλi, gives α̇i = λiαi. The
solution isαi = cieλit , where the ci are scalar constants. The solution of the differential
equation has now been obtained in terms of the eigenvalues and eigenvectors:

x(t) =
n∑

i=1

cieλit ui (15.126)

The constants ci are obtained from the initial conditions x(0) = ∑n
i=1 ciui. This

expression is called the normal mode expansion of the response.
In matrix form, the expansion of the state vector in terms of the eigenvectors is

accomplished by the linear transformation x = Mq, where M is the modal matrix and
q is the vector of the normal coordinates (equivalent toαi(t)). Then using AM = M�,
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the differential equation ẋ = Ax becomes q̇ = �q. Since the eigenvalue matrix � is
diagonal, the differential equations for qi are decoupled and easily integrated, giving

q = e�t q(0) (15.127)

or

x = Me�tq(0) (15.128)

Solving the initial conditions x(0) = Mq(0) for q(0) and substituting gives

x = Me�tM−1x(0) = eAtx(0) (15.129)

which is the solution of the homogeneous differential equation.
Analysis of a linear time-invariant system thus requires an evaluation of the

eigenvalues and eigenvectors of A. The normal mode expansion shows that the
solution is unstable if Re(λi) > 0 for any mode, since in that case eλit increases
without bound as time increases. The eigenvalues determine the stability of the
system, a fact that is often shown graphically as the variation of the roots with some
parameter in the plane of Imλ vs. Reλ. The system is stable if all the roots are in
the left half-plane of the root locus diagram. The eigenvectors ui describe the mode
shape of the state variable x corresponding to each eigenvalue. The eigenvalues of the
real matrix A must be either real or occur in complex conjugate pairs. Complex roots
are described in terms of the frequencyω = Imλ, the natural frequencyωn = |λ|, and
the damping ratio ζ = Reλ/|λ|. The motion is a decaying oscillation at frequency
ω. The roots are on the imaginary axis (neutrally damped) when ζ = 0 and on the
real axis when ζ = 1, so ζ is thus the fraction of critical damping. For an unstable
oscillation, ζ < 0. Real roots are described by the time constant τ = −1/λ or by the
time to decay to one-half amplitude τ1/2 = 0.693τ . The eigenvectors corresponding
to complex eigenvalues must be complex conjugates also, and the corresponding
initial values of the normal coordinates (q(0) = M−1x(0)) are conjugates. Hence the
total contribution of the pair of complex roots to the state vector,

�x = u1eλ1tq1(0)+ u2eλ2tq2(0) = 2Re
(
u1eλ1t q1(0)

)
(15.130)

is real, as required of a physical system.
Now consider the response to input v. Using x = Mq, the normal form of the

differential equation ẋ = Ax + Bv becomes q̇ = �q + M−1Bv. Since � is diagonal,
these equations are readily integrated to obtain

q(t) = e�(t−t0)q(t0)+
∫ t

t0
e�(t−τ )M−1Bv dτ (15.131)

The first term is the transient response and depends on the initial conditions, whereas
the second term is the forced response to the input v occurring after t0. In a stable
system, the transient dies out as t increases. In terms of the state vector, the solution
is

x(t) = eA(t−t0 )x(t0)+
∫ t

t0
eA(t−τ )Bv dτ (15.132)

The matrix �(t, t0) = eA(t−t0 ) is called the state transition matrix; it relates the state
at t to the state at t0. As an example of forced response of the system, consider a
sinusoidal input v = v̂eiωt . A property of a linear, time-invariant system is that the
forced response must also be a sinusoid at frequency ω: x = x̂eiωt . Integrating the
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expression for x(t) (with t0 = −∞), or substituting into the differential equation and
solving directly, gives

x̂ = −(A − iωI)−1Bv̂ = −(A + iωI)
(
A2 + ω2I

)−1
Bv̂ (15.133)

This is in the form x̂ = Hv̂, where H(ω) is the matrix of the transfer functions of the
system response. Also useful is the step response, obtained by integrating v = 0 for
t < 0 and v = v̂ for t > 0:

x = A−1 (eAt − I
)

Bv̂ (15.134)

The limit as time approaches infinity is the steady-state response, x = −A−1Bv̂.

15.6.2 Linear, Periodic Coefficient Equations

Now let us consider a linear, time-varying dynamic system described by ordinary
differential equations of the form ẋ = A(t)x + B(t)v. The coefficient matrices A
and B are functions of time. We are particularly interested in periodic systems, for
which A(t + T ) = A(t), where T is the period. The analysis of periodic coefficient
equations is called Floquet-Lyapunov theory. Floquet theory is a numerical method
for extracting the stability of a linear, periodic dynamic system in terms of eigenvalues
and periodic eigenvectors, and it was described as a numerical recipe in texts on linear
systems in the 1960s (such as DeRusso, Roy, and Close (1965)). As a numerical
solution method, Floquet theory was made practical by the digital computer, which
made possible investigations of the unique dynamic behavior of periodic systems.

The solution of ẋ = A(t)x must be of the form x(t) = �(t, t0)x(t0), since for
a linear system the degrees of freedom at t must always be a linear combination
of the degrees of freedom at t0. The matrix �(t, t0) is called the state transition
matrix. By definition,�(t0, t0) = I and�(t2, t0) = �(t2, t1)�(t1, t0), and letting t2 = t0

gives �(t1, t0) = �−1(t0, t1). By substituting x(t) = �x(t0) into ẋ = Ax, the differen-
tial equation for � is obtained: �̇ = A�, with initial conditions �(t0, t0) = I. When
the response to the input v is included, the state transition matrix gives the complete
solution:

x(t) = �(t, t0)x(t0)+
∫ t

t0

�(t, τ )B(τ )v(τ )dτ (15.135)

Thus the analysis of a linear system involves finding the state transition matrix. For
a time-invariant system, �must have the further property of depending only on the
difference t − t0. The result for a constant coefficient equation is � = eA(t−t0 ).

Now restrict the system to the periodic coefficient case, A(t + T ) = A(t). The
differential equation for � becomes

d
dt
�(t, t0) = A(t)�(t, t0) (15.136)

and

d
dt
�(t + T, t0) = A(t + T )�(t + T, t0) = A(t)�(t + T, t0) (15.137)

So �(t + T, t0) must be a linear combination of �(t, t0), since both are solutions of
the same equation:

�(t + T, t0) = �(t, t0)α (15.138)



15.6 Analysis of Linear, Periodic Systems 569

where α is a constant matrix, depending on the system. Write the state transition
matrix as �(t, 0) = P(t)eβt or, more generally,

�(t, t0) = P(t)eβ(t−t0 )P−1(t0) (15.139)

where β is a constant matrix defined by α = eβT . Now

P(t + T ) = �(t + T, 0)e−β(t+T ) = �(t, 0)αe−βT e−βt = �(t, 0)e−βt = P(t) (15.140)

Hence the matrix P is periodic, with initial conditions P(0) = I. Thus the solution of
a periodic system must take the form of an exponential factor with decay or growth
determined by the constant matrix β, multiplied by a purely periodic factor P. This
is the principal result of Floquet-Lyapunov theory.

From �(t + T, t0) = �(t, t0)α, it follows that �(t + NT, t0) = �(t, t0)αN . Con-
sequently, all the information about the solution is contained in the state transition
matrix for a single period. Since by definition α = �(t0 + T, t0), the solution for all
other times can be constructed from that data. Let  be the eigenvalue matrix of
α, and S the corresponding modal matrix, so that α = S S−1. Then αN = S NS−1;
hence the system is unstable, with the state transition matrix increasing without
bound as time increases if |θi| > 1 for any eigenvalue of α. The more conventional
roots of the system are the eigenvalues of β. Let � be the eigenvalue matrix of β,
and S the modal matrix, so that β = S�S−1 (α and β have the same eigenvectors).
From the definition α = eβT , the eigenvalues are related by  = e�T or

� = 1
T

ln (15.141)

The solution is thus unstable if Reλi > 0 for any eigenvalue. The logarithm of a
complex function has many branches, giving values for λi that differ in frequency by
multiples of 2π/T . The principal value of λi can be used, or we can use the value
with the frequency expected from physical considerations.

The state transition matrix for a periodic system can be written in a normal form
analogous to that of a time-invariant system. Using the eigenvalues of β gives

�(t, t0) = P(t)eβ(t−t0)P−1(t0) = [P(t)S] e�(t−t0) [P(t0)S]−1
(15.142)

which can be compared with the result for a time-invariant system,

�(t, t0) = eA(t−t0 ) = Me�(t−t0 )M−1 (15.143)

The periodic matrix PS can therefore be considered the modal matrix (the eigen-
vectors) of the periodic system, with the eigenvalues � determining the principal
frequency and damping of the modes. Thus the expansion in normal coordinates q
is defined as x = PSq. The transient solution x(t) = �(t, t0)x(t0) gives the solution
for the normal coordinates, simply q(t) = e�(t−t0 )q(t0) as for the time-invariant case.
When u is written for the columns of PS, the normal form of the solution is

x(t) = P(t)Se�tq(0) =
∑

i

ui(t)eλitqi(0) (15.144)

with the initial conditions being obtained from q(0) = S−1x(0). Compared to the
time-invariant system, the periodic system is also described by normal modes ui

and roots λi, but now the eigenvectors are periodic functions rather than constants:
ui(t + T ) = ui(t) follows from the periodicity of P. If the substitution � = Peβt is
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made, the differential equation for � gives

Ṗ = AP − Pβ (15.145)

From this there follows a differential equation for the eigenvectors ui, which are the
columns of PS:

u̇i = (A − λiI)ui (15.146)

The requirement that ui be periodic is then sufficient to determine the eigenvalues
λi. For the time-invariant case (A constant) the only “periodic” solution is ui =
constant, and the problem reduces to (A − λiI)ui = 0 as earlier.

The analysis of the dynamic behavior of a system of linear, periodic coefficient
equations therefore requires that the state transition matrix � be obtained over
one period, t = 0 to T , by integrating �̇ = A� with �(0) = I. The eigenvalues and
eigenvectors of the matrix α = �(T ) are then obtained, and the roots of the system
are � = 1

T ln . The mode shapes are given by PS = �Se−�t , or ui = eλit�vi (where
vi are the eigenvectors of α). The system is unstable if |θi| > 1 or Reλi > 0 for any
mode. Because the time-varying eigenvectors of a periodic system involve a great
deal of information, often the analysis is only concerned with the eigenvalues.

Including the forced response to the input v, the solution for x can be obtained
from the state transition matrix. Alternatively, by using x = PSq, the normal equa-
tions can be integrated to obtain

q(t) = e�(t−t0 )q(t0)+
∫ t

t0
e�(t−τ )(PS)−1B(τ )v(τ )dτ (15.147)

Although this is formally similar to the solution for the time-invariant case, here
PS and B are periodic matrices. In addition to making it difficult to evaluate the
response, this periodicity has a fundamental influence on its character. For example,
the response to sinusoidal excitation at frequency ω is not at that same frequency
alone, but rather is composed of harmonics at frequenciesω ± n2π/T for all integers
n, where 2π/T is the fundamental frequency of the system. Thus the frequency
response of a periodic system is not described by a single transfer-function matrix,
but rather by a transfer function Hn(ω) for each of the harmonics ω + n2π/T .

Finally, let us examine in more detail the behavior of the eigenvalues of a
periodic system. The eigenvalues θi of the matrix α = �(T ) are either real or occur
in complex conjugate pairs. The roots λi are obtained from λ = 1

T ln θ , or

λ = 1
T

(
ln |θ | + i� θ

)+ in
2π
T

(15.148)

where � θ is the argument or phase angle of θ . The principal part of the eigenvalue is

λP = 1
T

(
ln |θ | + i� θ

)
(15.149)

and a multiple of the fundamental frequency 2π/T can be added, depending on the
branch of the logarithm that the root is on. A complex conjugate pair for θ gives
a conjugate pair for the roots λP also. A real, positive θ gives a principal root λP

with zero imaginary part, so that the frequency of λ is a multiple of the fundamental
frequency of the system (i.e., n/rev). For a real and negative θ , the frequency of
the principal root λP is π/T , one-half the fundamental frequency; the frequency of
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λ is (n + 1/2)/rev. So when θ is real, the λ roots are complex, but do not have a
corresponding conjugate. To interpret these roots, two questions must be answered:
how is the branch of the logarithm selected, that is, what multiple of the fundamental
frequency is added to the frequency of λP; and what is the meaning of the λ roots
associated with real θ? As for the interpretation of complex roots of a time-invariant
system, these concerns are resolved by considering the actual physical response x(t)
rather than the eigenvalues and eigenvectors separately. The principal value λP is
uniquely determined from θ , and there is a corresponding principal value of the
mode shape u. The physical response of the system depends on the product ueλt .
Hence adding a multiple of the fundamental, n2π/T , to the frequency of the root
corresponds to multiplying the mode by the periodic function e−in(2π/T )t . Since the
theory only requires that the mode shape u(t) be periodic, no guidance is offered on
apportioning this periodicity between the eigenvalue and eigenvector. If the system
being analyzed is time invariant for some limit, then the frequencies of the roots
are determined by the requirement that the roots be continuous as the periodicity
is introduced. For example, the periodic coefficients due to the rotor aerodynamic
forces in forward flight drop out in the hover limit, μ = 0. One way to mechanize
this choice of frequencies is to require that the mean value of the eigenvector have
the largest magnitude; then the harmonic of largest magnitude in the eigenvector
corresponding to the principal value of the eigenvalue gives the frequency n2π/T .
This criterion gives the correct results for the time-invariant case. The frequencies
of the roots can also be established by using a knowledge of the uncoupled natural
frequencies of the system or of other considerations of the physical characteristics
of the response.

For a real and positive θ root, there is a single complex λ root with a frequency
equal to a multiple of the system fundamental frequency. The principal value λP is
on the real axis, however, so requiring that the contribution to x(t) be real means
that the corresponding principal value of the eigenvector is also real. Giving λ a
frequency n2π/T then corresponds to multiplying the mode shape by e−in(2π/T )t

without changing the product ueλt . For a real and negative θ root, the principal
value λP has a frequency of one-half the system fundamental, λP = 1

T (ln |θ | + iπ).
Requiring that ueλt be real implies that the function w(t) = u(t)ei(π/T )t is real, and
since u is periodic it follows that w is anti-periodic: w(t + T ) = −w(t). Thus the
implication of the (1/2)/rev frequency of λ is that the contribution to the response
is of the form �x = ciw(t)e(t/T ) ln |θ |, where w(t) is a real, anti-periodic function.
Therefore, while as eigenvalues of the real matrix α the roots θ must appear as real
numbers or complex conjugate pairs, the λ roots are under no such restriction. A
real θ gives a single λ root with a frequency equal to a multiple of one-half the
fundamental frequency of the system. The property of the solution that allows such
behavior is the corresponding periodicity of the eigenvectors.

Figure 15.2 sketches a root locus that might be encountered with a periodic sys-
tem. The behavior illustrated is typical of systems with strongly periodic coefficients.
If the parameter being varied, for example the advance ratio μ, is such that at μ = 0
the system is time invariant, the roots start out as complex conjugates on both the
θ and λ planes (point A). As μ increases, the system periodicity increases, and the
roots change. The λ roots remain complex conjugates, though, as long as the θ roots
are complex. If the θ roots reach the real axis (point B), one increases along the real
axis while the other decreases. On the λ plane the roots have reached an n/rev fre-
quency for some critical μ (or (n + 1/2)/rev for negative, real θ), and as μ increases
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Figure 15.2. Sketch of a possible root locus for a periodic system.

further, the real part of one root increases and that of the other decreases while the
frequency remains fixed at n/rev. The criterion for instability is |θ | > 1 or Reλ > 0,
so a stability boundary is crossed when the locus moves outside the |θ | = 1 circle on
the θ plane or into the right half-plane on the λ plane. With a time-invariant system,
two types of instabilities are possible: a complex conjugate pair of roots can cross
the Imλ axis at a non-zero frequency, or a single root on the real axis can go through
the origin into the right half-plane. With periodic systems a third type of instability
is introduced and, in fact, dominates the behavior for strong periodicity. Figure 15.2
illustrates this instability of periodic systems. After the θ roots reach the real axis,
one becomes less stable and the other more stable. Often the root being destabilized
eventually crosses over the stability boundary. For a time-invariant system, such a
splitting of the branches of the root loci on the λ plane can only occur at the real
axis. With periodic systems this behavior is generalized so that it can occur at any
frequency that is a multiple of one-half the fundamental frequency of the system.
The interpretation of this behavior is that the instability occurs with the oscillatory
motion locked to the frequency of the system.

Floquet theory is a subject that was often entwined with multiblade coordinates
(section 15.4) in early work, the connection being the periodic coefficients of rotor
equations of motion, particularly with edgewise aerodynamics or two-bladed rotors.
There are problems in rotor analysis that do not require both Floquet theory and
MBC. For example, multiblade coordinates are needed to represent the blade motion
of a rotor in axial flow when coupling with the non-rotating system is involved (such
as shaft motion or control inputs), but the rotor is then a constant coefficient system.
Alternatively, for the shaft-fixed dynamics of a rotor in forward flight, a single blade
representation in the rotating frame can be used, but there are periodic coefficients
due to the forward flight aerodynamics, and Floquet analysis is needed to determine
the system stability.
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15.7 Solution of the Equations of Motion

Solving the rotor equations of motion for any but the simplest of problems requires
a numerical integration technique. The steady-state (periodic) response and the
maneuver response must be obtained. Integration in time is accomplished using
the standard methods of numerical analysis (Runge-Kutta), structural dynamics
(Newmark, Hilber-Hughes-Taylor), or multibody dynamics. Special techniques have
been developed to solve rotor equations of motion in steady-state flight, taking
advantage of the periodicity of the equations and the solution. Simply integrating
the equations until the solution converges to periodic motion presents convergence
and accuracy issues in general and cannot be expected to work for low-damped or
unstable systems. Solution methods based on the assumption of periodicity are best
for the problem of the rotor in steady-state flight.

15.7.1 Early Methods

Gessow (1956) developed a harmonic analysis method for integrating the differential
equation for the blade flap motion. The equation of motion for flapping in the rotating
frame is

β̈ + ν2β = γMF (15.150)

where MF is the aerodynamic flap moment and the flap natural frequency ν is near
1/rev. Gessow’s procedure is to calculate MF at a finite number of points around
the azimuth from the current estimate of the blade motion. Then the harmonics of
a Fourier expansion of MF can be evaluated:

MF =
∞∑

n=0

(
MFnc cos nψ + MFns sin nψ

)
(15.151)

Assuming periodic motion, the solution of the flap equation is then

βnc = γMFnc

ν2 − n2
(15.152)

βns = γMFns

ν2 − n2
(15.153)

where βnc and βns are the harmonics of the flap motion. With this new estimate of the
blade motion, the flap moments can be recalculated. The successive calculations of
the flap moments and blade motion are repeated until the solution converges, which
is indicated when the change in blade motion from one iteration to the next falls
below a specified tolerance level. With the converged solution for the blade motion,
the rotor forces and performance can then be calculated. The only difficulty lies with
the first harmonics of the flap motion, β1c and β1s. For n = 1 the flap equation gives

(ν2 − 1)β1c = γMF1c (15.154)

(ν2 − 1)β1s = γMF1s (15.155)

For an articulated rotor (ν = 1) the left-hand side vanishes, and in general a different
approach is required because the tip-path-plane tilt is primarily determined by the
balance of aerodynamic moments on the blade. Expand the lateral flap moment
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about the current (k-th) iteration:

ν2 − 1
γ

β1s = MF1s
∼= (

MF1s

)
k + ∂MF1s

∂β1c

(
β1c − β1ck

)
(15.156)

Recall that the balance of lateral moments on the disk determines the longitudinal
tip-path-plane tilt β1c. So

(β1c)k+1 =
[
β1c − MF1s − β1s(ν

2 − 1)/γ
∂MF1s/∂β1c

]
k

(15.157)

(β1s)k+1 =
[
β1s − MF1c − β1c(ν

2 − 1)/γ
∂MF1c/∂β1s

]
k

(15.158)

The derivatives of the flap moment can be estimated from a simple analysis, since
they do not affect the final solution, but only the convergence to it. Gessow gives

∂MF1s

∂β1c
= 1

8

(
1 − 1

2
μ2
)

(15.159)

∂MF1c

∂β1s
= −1

8

(
1 + 1

2
μ2
)

(15.160)

With these expressions the 1/rev flap motion can be updated from the current calcu-
lation of the flap moments.

Tanner (1964), Berman (1965), and others have used a numerical integra-
tion method designed specifically for the periodic, steady-state case. If the 2/rev
and higher harmonics are neglected, so that β = β0 + β1c cosψ + β1s sinψ , then the
motion at time-step ψk+1 = ψk +�ψ is obtained exactly from the motion at ψk:

βk+1 = βk + β̇k sin�ψ + β̈k(1 − cos�ψ) (15.161)

β̇k+1 = β̇k cos�ψ + β̈k sin�ψ (15.162)

This technique can be extended to the case of transient motion of an arbitrary degree
of freedom, as follows. Consider the equation of motion

β̈ + ν2β = g(β, β̇, ψ) (15.163)

It is assumed that the forcing function is constant over the interval from ψk to
ψk+1: g ∼= gk. Then the linear differential equation β̈ + ν2β = gk can be integrated
analytically, with initial conditions βk and β̇k atψk. Evaluating the solution atψk+1 =
ψk +�ψ gives

βk+1 = βk cos ν�ψ + β̇k
sin ν�ψ
ν

+ gk
1 − cos ν�ψ

ν2

= βk + β̇k
sin ν�ψ
ν

+ β̈k
1 − cos ν�ψ

ν2
(15.164)

β̇k+1 = β̇k cos�νψ − βkν sin ν�ψ + gk
sin�ψ
ν

= β̇k cos�νψ + β̈k
sin�ψ
ν

(15.165)

For small (ν�ψ) these equations reduce to the Taylor series expansion. A damping
estimate Cβ̇ can be added to both sides of the equation to improve the solution
behavior.
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15.7.2 Harmonic Analysis

Harmonic analysis or harmonic balance methods are based on representing the
motion solution as Fourier series. Application of the inverse Fourier transform
then leads to algebraic equations for the harmonics. The algebraic equations can
be solved by a Newton-Raphson method. A frequency domain approach not only
enforces periodicity of the solution but also allows the use of a large time-step, if the
solution is adequately described by a small number of harmonics.

Johnson (1981) developed a harmonic solution method. The equations to be
solved take the form Hu = R, where H = M(d2/dt2)+ C(d/dt)+ K is a differential
operator (mass, damper, and spring). In general R depends on time and on u and its
derivatives, and the problem is nonlinear. The solution is assumed to be periodic, so
the motion u can be represented by a Fourier series:

u = u0 +
N∑

n=1

unc cos nψ + uns sin nψ (15.166)

In the derivation that follows, a complex Fourier series representation is used for
simplicity. The force Rj = R(ψ j) is evaluated at azimuth steps ψ j = j�ψ , �ψ =
2π/J, for j = 1 to J. The harmonics Rn are obtained from Rj over one period by

Rn = Kn

J

J∑
j=1

e−inψ j R j (15.167)

The factor Kn determines the interpolation option: Kn = 1 for Fourier interpolation,
and

Kn =
(

sinπn/J
πn/J

)2

(15.168)

for linear interpolation (harmonics of a linear interpolation between the data at Rj ;
see section 15.3). The harmonics obtained by Fourier interpolation represent the
force as a function of time that matches the discrete points Rj at ψ j exactly, but the
behavior is uncontrolled in between. The harmonics obtained by linear interpolation
represent a smoothed curve, close to the discrete points. Linear interpolation of R is
usually required for convergence. The harmonics of the left-hand side of the equation
Hu are obtained by Fourier analysis. To improve convergence of the method, an
estimate of the damping can be added to both sides of the equation of motion:

Hnun =
[
H(in)+ inKnD

]
un = (R + Du̇)n = Rn (15.169)

The damping term is added to R before the harmonic analysis is performed. The
factor of Kn on the left-hand side is included so that this added damping is treated
exactly the same on both sides of the equation. Consequently the value of D affects
convergence but not the final solution for u, its primary function being to prevent
problems near resonances.

By assuming a Fourier series representation of the solution, the differential
equations are converted to algebraic equations, to be solved for the harmonics. An
iterative solution is required. Each iteration finds the solution over a period and
hence has a time loop. At each time step over the period, the equation force Rj

is evaluated. To ensure convergence of nonlinear problems, this force is relaxed:
Rj = λRj + (1 − λ)R jold, where the old force is from the previous iteration. Then
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the damping term is added to R j and the harmonics Rn evaluated. The solution for
the degrees of freedom is un = H−1

n Rn. At the end of each iteration (the end of
each period), convergence is tested. Since the correct solution for u is not known,
convergence must be tested by comparing the values of two successive iterations:
error = ‖u − uold‖ ≤ tolerance, where the error is some norm of the difference
between iterations, typically the root-mean-squared value of the response.

15.7.3 Time Finite Element

A time finite element solution method has been widely applied to solving rotor
equations, notably by Chopra and Sivaneri (1982) and Bir, Chopra, and Nguyen
(1990). The equations to be solved take the form Hu = R, where H = M(d2/dt2)+
C(d/dt)+ K is a differential operator (mass, damper, and spring). In general R
depends on time and on u and its derivatives, and the problem is nonlinear. For a
periodic structural dynamic system (period T), Hamilton’s principle in weak form
gives

0 = δ
∫ T

0
L dt =

∫ T

0

[
δu̇T Mu̇ + δuT (R − Cu̇ − Ku)

]
dt (15.170)

Integrating the kinetic energy term by parts, and using the assumption of periodicity,
gives

0 =
∫ T

0
δuT [R − (Mü + Cu̇ + Ku)] dt =

∫ T

0
δuT [R − Hu] dt =

∫ T

0
δuT R̂ dt

(15.171)
The finite element method expands the response as u(t) = h(t)T q, where h are the
shape functions in time and q are the finite element variables. Then the equations

0 =
∫ T

0
hT R̂ dt (15.172)

are to be solved for q, typically by a Newton-Raphson algorithm. As with spatial
finite elements, the period can be divided into Nt elements, with polynomial shape
functions over each element:

ui(t) = h(s)qi (15.173)

with s = (t − ti−1)/(ti − ti−1), for i = 1 to Nt . Typically h are Lagrange polynomials,
and Gaussian integration is used over each element. The variables qi are identified
so u is continuous at the ends of each element and from the end to the beginning of
the period.

It is also possible to use harmonics for the shape functions, with the advantage
that only a few variables q are required to represent low-frequency motion. Let the
variables q be the coefficients in a Fourier series representation of u:

u = hT q = u0 +
N∑

n=1

unc cos nψ + uns sin nψ (15.174)

and then

0 =
∫ T

0
hT R̂ dt =

∫ T

0
hT [R − Hu] dt (15.175)
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are the harmonics of the equations of motion. The equations to be solved take
the form R̂ = R − Hu = 0, where H is a time-invariant operator. The force Rj =
R(ψ j) is evaluated at azimuth steps ψ j = j�ψ , �ψ = 2π/J, for j = 1 to J. The
harmonics Rn are obtained from Rj over one period. Then the equation residuals
are evaluated: R̂n = Rn − Hnun. By introducing time finite elements, the differential
equations are converted to algebraic equations, R̂n(un) = 0. In this form a Newton-
Raphson method is applicable. Including a relaxation factor λ and writing D for the
derivative matrix, the iteration is

unk+1 = unk − λD−1R̂(unk ) (15.176)

The derivative matrix is

D = ∂R̂n

∂un
= ∂Rn

∂un
− Hn (15.177)

The derivative matrix is usually not available analytically, so must be obtained by
an identification process. A simple estimate follows the assumption that most of the
dependence on the motion is in the operator H, so D ∼= −Hn = −(H(in)+ Dein),
including the damping estimate De to avoid singularities at resonant harmonics. With
this result for D, the iteration is

unm+1 = unm + λH−1
n (Rn − Hnunm ) = λH−1

n Rn + (1 − λ)unm (15.178)

At the end of each iteration (the end of each period), convergence is tested. Since
the correct solution for u is not known, convergence must be tested by comparing the
values of two successive iterations: error = ‖u − uold‖ ≤ tolerance, where the error
is some norm of the difference between iterations, typically the root-mean-squared
value of the response.

15.7.4 Periodic Shooting

Periodic shooting is a solution procedure with a foundation in Floquet theory; see
Peters and Izadpanah (1981). Consider the equation of motion in state variable form:

ẋ = Ax + b (15.179)

with A and b periodic. Following section 15.6, the solution of the homogeneous
equation (b = 0) is described by the state transition matrix �: x(t) = �(t)x(0), for
0 ≤ t ≤ T . The state transition matrix is obtained by integrating �̇ = A�. What is
required is the periodic solution of the inhomogeneous equation. Equation 15.179
can be integrated with zero initial conditions to obtain the motion xF . Then from
linearity, x(t) = xF (t)+�(t)x(0) is also a solution of equation 15.179, and requiring
x(T ) = x(0) gives the initial conditions x(0) = (I −�(T ))−1xF (T ), so

x(t) = xF (t)+�(t)(I −�(T ))−1xF (T ) (15.180)

is the periodic solution.
For nonlinear equations, ẋ = f (x), an iterative solution is necessary. With the

k-th estimate of the initial conditions, xk(0), the equations are integrated to obtain
xk(t). Then a perturbation δx is needed, such that xk + δx is periodic. The perturba-
tion satisfies the linearized equation

δẋ = ∂ f
∂x
δx = A(t)x (15.181)
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which has the state transition matrix �. Rather than linearizing f and integrating
�̇ = A�, the initial conditions xk(0) can be perturbed and ẋ = f (x) integrated (the
“shooting” step) to generate�. Then δx(0) is obtained from x(t) = xk(t)+�(t)δx(0)
and the periodicity requirement x(T ) = x(0), and

xk+1(0) = xk(0)+ (I −�(T ))−1 (xk(T )− xk(0)) (15.182)

is the new estimate of the initial conditions.
Friedmann (1983, 1986) developed a solution method more directly related to

Floquet theory. From equation 15.135), the general solution of the linear problem
ẋ = Ax + b is

x(t) = �(t)x(0)+�(t)
∫ t

0

[
�(τ )

]−1
b(τ )dτ (15.183)

The state transition matrix is the solution of �̇ = A�with initial conditions�(0) = I.
Then x(T ) = x(0) gives x(0) = (I −�(T ))−1�(T )

∫ T
0 �

−1b dτ , so

x(t) = �(t)
[
(I −�(T ))−1�(T )

∫ T

0
�−1b dτ +

∫ t

0
�−1b dτ

]
(15.184)

is the periodic solution. The equations for the rotor are usually nonlinear: Mÿ + Cẏ +
Ky = F (y, ẏ, ÿ, t), or in state variable form ẋ = f (x, ẋ, t). The equation of motion is
linearized about the current solution estimate xk(t):

ẋk+1
∼= fk + ∂ f

∂x
(xk+1 − xk)+ ∂ f

∂ ẋ
(ẋk+1 − ẋk) = Akxk+1 + bk (15.185)

which is solved for xk+1. The iterative method thus solves a sequence of linearized
equations. When the iteration has converged, the stability of the system is obtained
from the eigenvalues of the last state transition matrix �.

15.7.5 Algebraic Equations

The analysis of rotors leads to nonlinear algebraic equations, used either directly
such as to find the trim controls needed to achieve a steady-state flight condition
or to balance the induced velocity and blade loading, or indirectly such as to find
the periodic solution of differential equations. Nonlinear algebraic equations can
be written in two forms: fixed point, x = G(x), and zero point, f (x) = 0. Here x,
G, and f are vectors. Efficient and convergent methods are required to find the
solution x = α of these equations. Note that f ′(α) = 0 or G′(α) = 1 means that α is
a higher-order root. For nonlinear problems, the method is iterative: xn+1 = F (xn).
The operation F depends on the solution method. The solution error is

εn+1 = α − xn+1 = F (α)− F (xn) = (α − xn)F ′(ξn) ∼= εnF ′(α) (15.186)

Thus the iteration converges if F is not too sensitive to errors in x: |F ′(α)| < 1 for
scalar x. When x is a vector, the criterion is that all the eigenvalues of the derivative
matrix ∂F/∂x have magnitude less than one. The equations in this section are gen-
erally written for scalar x; the extension to vector x is straightforward. Convergence
is linear for F ′ nonzero and is quadratic for F ′ = 0.
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15.7.6 Successive Substitution

The successive substitution method (with relaxation) is an example of a fixed point
solution. A direct iteration is simply xn+1 = G(xn), but |G′| > 1 for many practical
problems. A relaxed iteration uses F = (1 − λ)x + λG:

xn+1 = (1 − λ)xn + λG(xn) (15.187)

with relaxation factor λ. The convergence criterion is then

|F ′(α)| = |1 − λ+ λG′| < 1 (15.188)

so a value of λ can be found to ensure convergence for any finite G′. Specifically, the
iteration converges if the magnitude of λ is less than the magnitude of 2/(1 − G′)
(and λ has the same sign as (1 − G′)). Quadratic convergence (F ′ = 0) is obtained
with λ = 1/(1 − G′). Over-relaxation (λ > 1) can be used if |G′| < 1.

Since the correct solution x = α is not known, convergence must be tested by
comparing the values of two successive iterations: error = ‖xn+1 − xn‖ ≤ tolerance,
where the error is some norm of the difference between iterations (typically abso-
lute value for scalar x). The effect of the relaxation factor is to reduce the differ-
ence between iterations: xn+1 − xn = λ(G(xn)− xn

)
. Hence a reduction of λ must

be accompanied by a reduction in the tolerance to maintain the same convergence
accuracy.

The successive substitution method fails if G′(α) = ∞. In such a case, the itera-
tion typically oscillates about the correct solution, the magnitude of the oscillation
decreasing as λ approaches zero. But at λ = 0 the iteration is turned off, so the
correct solution can never be found.

15.7.7 Newton-Raphson

The Newton-Raphson method (with relaxation and identification) is an example of
a zero point solution. A problem specified as h(x) = htarget becomes a zero point
problem with f = h − htarget. The Taylor series expansion of f (x) = 0 leads to the
iteration operator F = x − f/ f ′:

xn+1 = xn − [ f ′(xn)]
−1 f (xn) (15.189)

which gives quadratic convergence. The behavior of this iteration depends on the
accuracy of the derivative f ′. Typically the analysis can evaluate directly f , but not
f ′. So f ′ must be evaluated by numerical perturbation of f , and for efficiency the
derivatives should not be evaluated for each xn. These approximations compromise
the convergence of the method, so a relaxation factor λ is introduced to compensate.
Hence a modified Newton-Raphson iteration is used, F = x − C f :

xn+1 = xn − C f (xn) = xn − λD−1 f (xn) (15.190)

where the derivative matrix D is an estimate of f ′. The convergence criterion is then

|F ′(α)| = |1 − C f ′| = |1 − λD−1 f ′| < 1 (15.191)

since f (α) = 0. The iteration converges if the magnitude of λ is less than the magni-
tude of 2D/ f ′ (and λ has the same sign as D/ f ′). Quadratic convergence is obtained
with λ = D/ f ′. The Newton-Raphson method ideally uses the local derivative in the
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gain factor, C = 1/ f ′, so has quadratic convergence:

F ′(α) = f f ′′

f ′2 = 0 (15.192)

since f (α) = 0 (if f ′ �= 0 and f ′′ is finite; if f ′ = 0 then there is a multiple root,
F ′ = 1/2, and the convergence is only linear). A relaxation factor is still useful, since
the convergence is quadratic only sufficiently close to the solution.

The derivative matrix D is obtained by an identification process, either perturba-
tion or recursive. In the secant method, the derivative of f is evaluated numerically
at each step:

f ′(xn) ∼= f (xn)− f (xn−1)

xn − xn−1
(15.193)

It can be shown then that the error reduces during the iteration according to

|εn+1| ∼= | f ′′/2 f ′| |εn| |εn−1| ∼= | f ′′/2 f ′|.62|εn|1.62 (15.194)

which is slower than the quadratic convergence of the Newton-Raphson method
(ε2

n), but still better than linear convergence. In practical problems, whether the
iteration converges at all is often more important than the rate of convergence.
A Newton-Raphson method has good convergence when x is sufficiently close to
the solution, but frequently has difficulty converging elsewhere. Hence the initial
estimate x0 that starts the iteration is a important parameter affecting convergence.
Convergence of the solution for x can be tested in terms of the required value (zero)
for f : error = ‖ f‖ ≤ tolerance, where the error is some norm of f (typically an
absolute value for scalar f ).
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16 Blade Motion

The differential equations of motion for the rotor blade are derived in this chapter.
First the focus is on the inertial and structural forces on the blade, with the aero-
dynamics represented by the net forces and moments on the blade section. Then
the aerodynamic loads are analyzed in more detail to complete the equations. In
subsequent chapters the equations are solved for a number of fundamental rotor
problems, including flap response, aeroelastic stability, and aircraft flight dynamics.
In Chapter 6 the flap and lag dynamics of an articulated rotor were analyzed for only
the rigid motion of the blade, including hinge spring or offset. The present chap-
ter extends the derivation of the equations of motion to include a hingeless rotor,
higher blade bending modes, blade torsion, and pitch motion. The corresponding
hub reactions and blade loads are derived, and the rotor shaft motion is included in
the analysis.

The rotor blade equations of motion are derived using the Newtonian approach,
with a normal mode representation of the blade motion. The chapter begins with a
discussion of the other approaches by which the dynamics can be analyzed. Engineer-
ing beam theory is commonly used in helicopter blade analyses. The blade section
is assumed to be rigid, so its motion is represented by the bending and rotation of a
slender beam. This is normally a good model for the rotor blade, although a more
detailed structural analysis is required to obtain the effective beam parameters for
some portions of the blade, such as flexbeams and at the root.

16.1 Sturm-Liouville Theory

The results of Sturm-Liouville theory are required to deal with the normal modes of
the blade bending and torsion motion. Consider an ordinary differential equation of
the form Ly + λRy = 0, where L is a linear differential operator of the form

L = d2

dx2
S

d2

dx2
+ d

dx
P

d
dx

+ Q (16.1)

Here S, P, Q, and R are symmetric operators. (An operator S is symmetric if φ1Sφ2 =
φ2Sφ1 for all functions φ1 and φ2.) With the appropriate boundary conditions at the
end points x = a and x = b, this is an eigenvalue problem for λ.

582
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Consider any two distinct eigenvalues λ1 and λ2 and their corresponding eigen-
functions φ1 and φ2. Using the differential equations satisfied by these functions, and
integrating twice by parts, we obtain

(λ2 − λ1)

∫ b

a
φ1Rφ2 dx =

∫ b

a

(
φ2Lφ1 − φ1Lφ2

)
dx

=
[
φ2

(
d

dx
S

d2φ1

dx2
+ P

dφ1

dx

)
− φ1

(
d

dx
S

d2φ2

dx2
+ P

dφ2

dx

)] ∣∣∣b
a

−
[

dφ2

dx
S

d2φ1

dx2
− dφ1

dx
S

d2φ2

dx2

] ∣∣∣b
a

(16.2)

The right-hand side is zero for boundary conditions of the following form:

d
dx

S
d2y
dx2

= K1y and S
d2y
dx2

= K2
dy
dx

(16.3)

or S = 0, and

P
dy
dx

= K3y (16.4)

or P = 0, where Kl , K2, and K3 are constants. With such boundary conditions∫ b

a
φ1Rφ2dx = 0 (16.5)

so the eigen-solutions are orthogonal over the interval from a to b, with weighting
function R. For a beam in bending, the following end restraints satisfy these boundary
conditions:

a) a free end, for which d2y/dx2 = d3y/dx3 = 0 and P = 0
b) a hinged end, for which y = 0 and Sd2y/dx2 = Kdy/dx, where K is the hinge

spring constant (d2y/dx2 = 0 with no spring)
c) a cantilever end, for which y = 0 and dy/dx = 0 (which is also the limit of K = ∞

with a spring)

For a rod in torsion (so S = 0), the following end restraints satisfy these boundary
conditions:

a) a free end with dy/dx = 0
b) a fixed end with y = 0
c) a restrained end with Pdy/dx = Ky, where K is the spring constant

A proper Sturm-Liouville problem has boundary conditions of the form given
earlier, and R and P of opposite sign to S and Q. These conditions are satisfied for
the blade bending and torsion problems encountered in this chapter. Then the eigen-
solutions are orthogonal, the eigenvalues λ are real and positive, and an expansion of
an arbitrary function over the interval x = a to x = b as a series in the eigen-solutions
converges.
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The eigenvalue λ can be obtained from the eigen-solutions as follows:

−λ
∫ b

a
φRφ dx =

∫ b

a
φLφ dx

=
[
φ

d
dx

S
d2φ

dx2
− dφ

dx
S

d2φ

dx2
+ φP

dφ
dx

] ∣∣∣b
a

+
∫ b

a

[
d2φ

dx2
S

d2φ

dx2
− dφ

dx
P

dφ
dx

+ φQφ
]

dx (16.6)

For example, for a beam with a free end at x = b and a general restrained end at
x = a,

−λ
∫ b

a
φRφ dx = dφ

dx
K

dφ
dx

∣∣∣
x=a

+
∫ b

a

[
d2φ

dx2
S

d2φ

dx2
− dφ

dx
P

dφ
dx

+ φQφ
]

dx (16.7)

and for a rod with a free end at x = b and a restrained end at x = a,

λ

∫ b

a
φRφ dx = φKφ

∣∣
x=a +

∫ b

a

[
dφ
dx

P
dφ
dx

− φQφ
]

dx (16.8)

The exact value forλ is obtained if the exact eigen-function is used. These expressions
are also useful to estimate λ by using approximate mode shapes.

16.2 Derivation of Equations of Motion

The equations of motion for the rotor blade are derived in this chapter using an
integral Newtonian method to obtain the partial differential equations for bending or
torsion and using a normal mode expansion to obtain ordinary differential equations
for the normal coordinates. The choice of this approach was based on the physical
insight that is gained by working directly with the forces and accelerations of the
blade. Other methods are also used to derive the equations of motion for analyses of
rotor dynamics. As a guide to what may be encountered in the literature, this section
outlines several of these alternative approaches.

Rotor dynamics analyses are frequently based on Lagrange’s equations,

d
dt
∂T
∂q̇i

− ∂T
∂qi

+ ∂U
∂qi

= Qi (16.9)

where T and U are the kinetic and potential energies of the entire system, qi are
the generalized coordinates (degrees of freedom), and Qi are generalized forces.
Usually T gives the inertial terms, U the structural terms, and Qi the aerodynamic
terms of the equations of motion. The derivation of the equations of motion by
Lagrange’s equations is simply formulated and routinely (if somewhat laboriously)
executed. Consequently, Lagrangian methods are often used in the development of
the most comprehensive models found in the literature.

To illustrate the various derivation methods, consider the bending of a cantilever
beam (Figure 16.1). A distributed loading p(r), tip force FT , and tip moment MT

are included. The spanwise variable is r and the bending deflection is z. The beam is
not rotating, since the present purpose is to examine the methods of analysis rather
than the rotor blade behavior. The objective is to obtain a set of ordinary differential
equations (in time) describing the bending motion z(r, t) of the cantilever beam.
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z
r

FT

MT

p(r)

Figure 16.1. Bending of a cantilever beam (non-rotating).

16.2.1 Integral Newtonian Method

Newtonian methods derive the equations of motion from the equilibrium of forces
on the body. In the case of the cantilever beam, the moment on the section at r
consists of the tip moment MT , the tip force FT with moment arm (R − r), and the
section loading (p − mz̈) integrated over the portion outboard of r with moment
arm (ρ − r):

M(r) =
∫ R

r
(p − mz̈)(ρ − r)dρ + MT + (R − r)FT (16.10)

Equating this to M(r) = EIz′′ from engineering beam theory, and taking the second
derivative, gives the required partial differential equation for bending:(

EIz′′)′′ + mz̈ = p (16.11)

Boundary conditions are needed to complete the problem formulation. Evaluat-
ing M(r) and M′(r) at the tip gives EIz′′ = MT and (EIz′′)′ = −FT at r = R. The
boundary conditions for the cantilever root are just z = z′ = 0 at r = 0.

16.2.2 Differential Newtonian Method

The equation of motion can also be derived from the equilibrium of forces and
moments on the differential beam element extending from r to r + dr. Let S and M
be the shear and moment on the section at r, and S + dS = S + S′dr and M + dM =
M + M′dr the reactions on the section at r + dr. Force balance on the differential
element gives

p dr + (S + S′dr)− S = mz̈ dr (16.12)

or

p + S′ = mz̈ (16.13)

Moment balance gives

(M + M′dr)− M + S dr = 0 (16.14)

or

M′ + S = 0 (16.15)

Eliminating S then gives the partial differential equation

M′′ + mz̈ = p (16.16)
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which with M = EIz′′ becomes (
EIz′′)′′ + mz̈ = p (16.17)

16.2.3 Lagrangian Method

Lagrangian methods derive the equation of motion from energy considerations
instead of from the equilibrium of forces. Hamilton’s principle states that the motion
of a dynamic system is determined by the condition∫ t2

t1

(
δT − δU + δW)

dt = 0 (16.18)

where T is the system kinetic energy, U the potential energy, and δW the virtual
work of non-conservative forces. Since for a conservative system the criterion is that∫ t2

t1
(T − U )dt has a minimum value, this principle is also called the principle of least

action.
For the cantilever beam, the kinetic and potential energy are

T =
∫ R

0

1
2

mż2dr (16.19)

U =
∫ R

0

1
2

EIz′′2dr (16.20)

and the virtual work by the distributed force and tip loads is

δW = MTδz′(R)+ FT δz(R)+
∫ R

0
pδz dr (16.21)

Hamilton’s principle thus requires∫ t2

t1

[∫ R

0

(
p − mz̈ − (EIz′′)′′) δz dr + (−EIz′′ + MT

)
δz′(R)

+
((

EIz′′)′ + FT

)
δz(R)

]
dt = 0 (16.22)

It is necessary to integrate the kinetic energy term by parts with respect to t and
the potential energy term twice by parts with respect to r. Since the variational δz is
arbitrary, (

EIz′′)′′ + mz̈ = p (16.23)(
EIz′′) |r=R = MT (16.24)(
EIz′′)′ |r=R = −FT (16.25)

These expressions are the partial differential equation for bending of the beam, and
the boundary conditions at the tip.

16.2.4 Normal Mode Method

This chapter uses an expansion of the bending deflection as a series in the normal
modes of free vibration to obtain the ordinary differential equations of motion.
Consider the cantilever beam, but with no tip force or moment. The differential
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equation for free vibration is (
EIz′′)′′ + mz̈ = 0 (16.26)

Assuming z = η(r)eiνt , the modal equation(
EIη′′)′′ − ν2mη = 0 (16.27)

with boundary conditions η = η′ = 0 at r = 0, and η′′ = η′′′ = 0 at r = R, is obtained.
This is a proper Sturm-Liouville eigenvalue problem, with a series of eigen-solutions
ηk and eigenvalues ν2

k. The mode shapes are orthogonal with weighting function m,
so if i �= k, ∫ R

0
ηiηkm dr = 0 (16.28)

Sturm-Liouville theory also gives for the eigenvalues

ν2 =
∫ R

0 EIη′′2dr∫ R
0 η

2m dr
(16.29)

Finally, Sturm-Liouville theory shows that an expansion of a function as a series in
qk converges.

The bending deflection is expanded as a series in the free vibration modes,

z(r, t) =
∞∑

k=1

ηk(r)qk(t) (16.30)

where qk is the degree of freedom for the k-th mode. Substituting this expansion in
the partial differential equation gives

∞∑
k=1

[(
EIη′′

k

)′′ qk + mηkq̈k

]
= p (16.31)

Using the equation satisfied by qk, the structural term is replaced by the natural
frequency:

∞∑
k=1

[
mηk

(
q̈k + ν2

kqk
)] = p (16.32)

Operating with
∫ R

0 (. . .)ηkdr, and using the orthogonality of the modes, gives(∫ R

0
η2

km dr
) (

q̈k + ν2
kqk
) =

∫ R

0
ηk p dr (16.33)

which is the ordinary differential equation of motion for the k-th bending mode.
Using the energy expression for ν2

k, this equation can be written as(∫ R

0
η2

km dr
)

q̈k +
(∫ R

0
EIη′′2

k dr
)

qk =
∫ R

0
ηk p dr (16.34)

By using the orthogonal modes of free vibration, the structural and inertial terms of
the equations of motion are uncoupled.

The limitation of using normal modes is that since each of the modes satisfies a
homogeneous boundary condition, the solution z must do the same. Thus directly
including the tip force and moment in this approach is not possible.
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16.2.5 Galerkin Method

The Galerkin method also uses a modal expansion of the bending deflection to obtain
the ordinary differential equations of motion, but not necessarily the normal modes
of free vibration. Let z = ∑

k ηk(r)qk(t), where qk are the generalized coordinates
describing the motion and ηk are a series of modes. Each of the modes ηk must
satisfy the boundary conditions at the root, and the total deflection z must satisfy the
boundary conditions at the tip. The true solution satisfies the differential equation(

EIz′′)′′ + mz̈ = p (16.35)

The Galerkin solution does not in general satisfy this equation exactly, since a finite
number of modes is used. Therefore, define an error function

ε = p − (EIz′′)′′ − mz̈ (16.36)

The equations of motion are obtained from the requirement that the equation error
ε be small and specifically that ∫ R

0
ηiε dr = 0 (16.37)

Substituting for ε and employing the modal expansion for z gives∑
k

∫ R

0
mηiηkdr q̈k +

∑
k

∫ R

0
ηi
(
EIη′′

k

)′′
dr qk =

∫ R

0
ηi p dr (16.38)

Now integrating twice by parts and using the boundary conditions, the structural
term can be written:∑

k

∫ R

0
ηi
(
EIη′′

k

)′′
dr qk

=
∑

k

[
ηi
(
EIη′′

k

)′ qk − η′
i

(
EIη′′

k

)
qk

]R

0
+
∑

k

∫ R

0
EIη′′

i η
′′
kdr qk

=
[
ηi
(
EIz′′)′ − η′

i

(
EIz′′)]R

0
+
∑

k

∫ R

0
EIη′′

i η
′′
kdr qk

= −ηi(R)FT − η′
i(R)MT +

∑
k

∫ R

0
EIη′′

i η
′′
kdr qk (16.39)

Thus the equation of motion for the i-th mode is∑
k

Mikq̈k +
∑

k

Kikqk =
∫ R

0
ηi p dr + ηi(R)FT + η′

i(R)MT (16.40)

where Mik = ∫ R
0 mηiηkdr and Kik = ∫ R

0 EIη′′
i η

′′
kdr. The normal mode expansion gave

a similar result. With the Galerkin method the mass and spring matrices are not
diagonal because the free vibration modes are not necessarily used, but the excitation
by the tip force and moment are now included. The Galerkin method is equivalent
to the Rayleigh-Ritz method (discussed later) when the proper weighting function
is used for the equation error integral (ηi in this case). The Rayleigh-Ritz procedure
has a stronger physical and mathematical basis, but the Galerkin procedure allows
the use of a Newtonian approach to derive the equation of motion.
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If the free vibration modes are used in the Galerkin method, the mass and spring
matrices are diagonal and the equations of motion become(∫ R

0
η2

km dr
) (

q̈k + ν2
kqk
) =

∫ R

0
ηk p dr + ηk(R)FT + η′

k(R)MT (16.41)

This is just the normal mode result, but now with the excitation due to the tip loading
included. This suggests that the equations of motion for the rotor can be derived
using the normal mode procedure, and then the influence of point loads on the blade
can be accounted for by adding terms according to the Galerkin procedure. Such an
approach is useful, for example, in adding a lag damper to the normal mode analysis
or for the control system force and moment at the pitch bearing.

16.2.6 Rayleigh-Ritz Method

If the energy and virtual work are expressed in terms of the generalized coordinates qi

T = T (qi, q̇i) (16.42)

U = U (qi) (16.43)

δW =
∑

i

Qiδqi (16.44)

then application of Hamilton’s principle leads to Lagrange’s equations,

d
dt
∂T
∂q̇i

− ∂T
∂qi

+ ∂U
∂qi

= Qi (16.45)

By means of Lagrange’s equations the ordinary differential equations of motion for
the generalized coordinates describing the motion are obtained directly from the
expressions for the system energy, without going through the partial differential
equation.

Consider again a modal expansion for the bending deflection, as in the Galerkin
method: z = ∑

k ηkqk. Substituting for z gives the energy and virtual work in terms
of the generalized coordinates:

T =
∑

i

∑
k

1
2

∫ R

0
ηiηkm dr q̇iq̇k =

∑
i

∑
k

1
2

Mikq̇iq̇k (16.46)

U =
∑

i

∑
k

1
2

∫ R

0
EIη′′

i η
′′
k dr qiqk =

∑
i

∑
k

1
2

Kikqiqk (16.47)

δW =
∑

i

Qiδqi =
[∫ R

0
ηi p dr + ηi(R)FT + η′

i(R)MT

]
δqi (16.48)

Application of Lagrange’s equations then gives directly

∑
k

Mikq̈k +
∑

k

Kikqk =
∫ R

0
ηi p dr + ηi(R)FT + η′

i(R)MT (16.49)

which is identical to the result obtained by the Galerkin method.
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Figure 16.2. Rotor blade flapping moments.

16.2.7 Lumped Parameter and Finite Element Methods

In lumped parameter or finite element methods the continuous physical system is
modeled by a series of discrete elements. For example, the cantilever beam consid-
ered in Figure 16.1 might be represented by finite masses located at a series of points
and be connected by massless elastic elements with uniform properties (lumped
mass model) or represented by finite-length beam segments (finite element model).
The equations of motion are usually derived by Lagrangian methods. The greatest
advantage of finite element methods is that they generally have the flexibility to treat
complex configurations. The problem for a new system is to specify its geometry and
properties in the manner required by the method used, rather than developing an
entirely new analysis.

16.3 Out-of-Plane Motion

16.3.1 Rigid Flapping

We begin the development of the equations of motion for a rotor blade by considering
the rigid flap motion of an articulated rotor, a derivation presented in detail in
Chapter 6. The degree of freedom β is the angle of rotation about the flap hinge
(Figure 16.2), so the out-of-plane deflection is z = βr. There is no flap-hinge offset
or spring restraint. The equation of motion is obtained from the equilibrium of
moments about the flap hinge. Based on the results of section 6.9, the gravitational
moments are neglected in this chapter. The section forces and their moment arms
about the flap hinge are as follows:

i) an inertial force mz̈ = mrβ̈ opposing the flap motion, with moment arm r about
the flap hinge

ii) a centrifugal force m�2r directed radially outward, with moment arm z = rβ
iii) an aerodynamic force Fz normal to the blade, with moment arm r

Here m is the blade mass per unit length at radial station r. The equilibrium of
moments about the flap hinge gives(∫ R

0
r2m dr

) (
β̈ +�2β

) =
∫ R

0
rFzdr (16.50)
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On dividing by the flap moment of inertia Ib = ∫ R
0 r2m dr and using dimensionless

quantities,

β̈ + β = 1
Ib

∫ 1

0
rFzdr = γ

∫ 1

0
r

Fz

ac
dr (16.51)

where γ = ρacR4/Ib is the blade Lock number. This is the equation of motion for
the rigid flapping of an articulated rotor blade. The centrifugal spring gives a natural
frequency of ν = 1/rev in the rotating frame.

With an offset flap hinge, the blade out-of-plane deflection due to rigid rotation
about the hinge becomes z = βη, where β is the degree of freedom and the mode
shape is η = (r − e)/(1 − e) (e is the flap-hinge offset). Since the mode shape has
been normalized to η = 1 at the tip, β is the angle that a line from the center of
rotation to the blade tip makes with the hub plane. The section forces are now

i) an inertial force mz̈ = mηβ̈, with moment arm (r − e)
ii) a centrifugal force m�2r, with moment arm z = ηβ

iii) an aerodynamic force Fz, with moment arm (r − e)

Including a hinge spring (with precone angle βp), the moment equilibrium about the
flap hinge becomes∫ R

e
η(r − e)m dr β̈ +

∫ R

e
ηrm dr�2β + Kβ (β − βp) =

∫ R

e
(r − e)Fzdr (16.52)

Divide by (1 − e) and write Iβ = ∫ R
e η

2m dr for the generalized mass of the flap mode.
Then

Iβ
(
β̈ + ν2β

) = Kβ
�2(1 − e)

βp +
∫ 1

e
ηFzdr (16.53)

where the natural frequency of the flap motion is

ν2 = 1 + e
1 − e

∫ 1
e ηm dr∫ 1

e η
2m dr

+ Kβ
Iβ�2(1 − e)

(16.54)

Finally, divide by the characteristic inertia Ib to obtain

Îβ
(
β̈ + ν2β

) = Kβ
Ib�2(1 − e)

βp + γ
∫ 1

e
η

Fz

ac
dr (16.55)

where Îβ = Iβ/Ib and the Lock number is again γ = ρacR4/Ib. The flap frequency
ν = 1/rev if there is no hinge offset or spring. For a uniform mass distribution

ν2 = 1 + 3
2

e
1 − e

+ Kβ
Iβ�2(1 − e)

(16.56)

so in general ν > 1/rev.
The practice in this chapter is to use Ib for the characteristic inertia of the

rotor blade. This parameter normalizes the generalized masses of the blade motion
(such as Îβ = Iβ/Ib) and represents the blade inertial forces in the Lock number,
γ = ρacR4/Ib. The actual value of Ib has no influence on the numerical solution,
since the entire equation of motion is divided by Ib. A good choice for the blade
inertia is Ib = ∫ R

0 r2m dr, even for blades with hinge offset or no flap hinge at all. This
is a well-defined parameter of the blade that can be obtained from the rotary inertia
about the shaft and avoids any dependence on the flap mode shape.
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16.3.2 Out-of-Plane Bending

Consider now the out-of-plane bending of a rotor blade with arbitrary root con-
straint. This model includes the higher bending modes of articulated blades and
covers the case of a hingeless rotor blade with cantilever root restraint. In Chapter 6,
hingeless rotor dynamics were discussed in terms of the fundamental flapping mode.
The present analysis adds the equation by which the frequency and mode shape
can be calculated, as well as a derivation of the differential equation of motion.
The equation of motion is obtained by considering the equilibrium of aerodynamic,
inertial, and structural bending moments on the blade portion outboard of radial
station r. Let z(r) be the out-of-plane deflection of the blade. The forces acting on
the blade section at radial station ρ, with their moment arm about the radial station
at r, are as follows:

i) an inertial force mz̈(ρ), with moment arm (ρ − r)
ii) a centrifugal force m�2ρ, with moment arm (z(ρ)− z(r))

iii) an aerodynamic force Fz, with moment arm (ρ − r)

The moment on the blade section at r due to the forces acting on the blade outboard
of r is then

M(r) =
∫ R

r

[(
Fz − mz̈

)
(ρ − r)− m�2ρ

(
z(ρ)− z(r)

)]
dρ (16.57)

Now engineering beam theory relates the structural moment to the bending curva-
ture of the blade:

M(r) = EI
d2z
dr2

(16.58)

where E is the modulus of elasticity of the blade section and I is the modulus-
weighted area moment about the chordwise principal axis. The equilibrium distri-
bution of the structural, inertial, and aerodynamic moments on the section gives

EI
d2z
dr2

+
∫ R

r
m�2ρ

(
z(ρ)− z(r)

)
dρ +

∫ R

r
mz̈(ρ − r)dρ =

∫ R

r
Fz(ρ − r)dρ

(16.59)
The second derivative then gives the partial differential equation for the out-of-plane
bending of a rotor blade:

d2

dr2
EI

d2z
dr2

− d
dr

[∫ R

r
m�2ρ dρ

dz
dr

]
+ mz̈ = Fz (16.60)

The boundary conditions are as follows. The blade tip is a free end, with zero moment
and shear force, so d2z/dr2 = d3z/dr3 = 0 at r = R. The root of an articulated blade
has a hinge, with zero displacement and moment, so z = d2z/dr2 = 0 at r = e (allow-
ing for a hinge offset). The root of a hingeless rotor has cantilever restraint, with zero
displacement and slope, so z = dz/dr = 0 at r = e (allowing for a very stiff hub). The
root restraint can be generalized by considering a hinge with spring constant Kβ , so
that EI(d2z/dr2) = Kβ (dz/dr) at r = e. For Kβ = 0 this reduces to the articulated
rotor case, and for Kβ = ∞ it reduces to the hingeless rotor case.

The partial differential equation for the blade bending is solved by the method
of separation of variables, which leads to ordinary differential equations (in time)
for the degrees of freedom, as for rigid flapping. Thus the out-of-plane deflection
z(r, t) is expanded as a series in mode shapes describing the spanwise deformation.



16.3 Out-of-Plane Motion 593

A single equation of motion is obtained for the degree of freedom corresponding
to each mode. First, an appropriate series of mode shapes for the rotating blades
must be obtained. When the mode shapes are chosen such that the forced response
of the blade is well described by the first few modes, the rotor dynamics problems
can be solved by considering the smallest number of degrees of freedom. Consider
the free vibration of the rotating blade at frequency ν. In the homogeneous partial
differential equation for the bending (without the aerodynamic force Fz in this case),
write z = η(r)eiνt , where η is the spanwise mode shape. The result is

d2

dr2
EI

d2η

dr2
− d

dr

[∫ R

r
m�2ρ dρ

dη
dr

]
− ν2mη = 0 (16.61)

with the same boundary conditions on η as given earlier for z, for a hinged or
cantilevered blade as appropriate. Since the aerodynamic force has been dropped,
this result can be viewed as the equation for vibration in a vacuum, involving the
equilibrium of structural, centrifugal, and inertial moments alone. This modal equa-
tion and its boundary conditions constitute an eigenvalue problem for the natural
frequencies ν and mode shapes η(r). According to section 16.1 it is a proper Sturm-
Liouville problem, so there exists a series of eigen-solutions ηk(r) and corresponding
eigenvalues ν2

k. The mode shapes are orthogonal with weighting function m:∫ R

0
ηkηim dr = 0 (16.62)

if i �= k. Moreover, an expansion of an arbitrary function of r (such as the actual
blade bending deflection) as a series in these modes converges. The modal equation
is linear, so the solutions are only defined to within a multiplicative factor. The mode
shapes are normalized to unit deflection at the blade tip: η(1) = 1 (or η(R) = R with
dimensional quantities). The series of natural frequencies ν1, ν2, ν3, and so on, are
ordered by magnitude, such that the fundamental mode ν1, has the lowest frequency.
When the modes are ordered in this fashion, the k-th mode shape has k − 1 nodes
where η(r) = 0 (not counting the root, where η = 0 always).

Now the bending deflection z is expanded as a series in the rotating natural
mode shapes:

z(r, t) =
∞∑

k=1

ηk(r)qk(t) (16.63)

The degrees of freedom of the bending motion are qk(t). With the modes normalized
to unit deflection at the tip, qk represents the angle from the hub plane made by a
line from the center of rotation to the tip for the k-th mode. Since orthogonal modes
are being used, the equations for qk are simple. Substitute this expansion for z into
the partial differential equation for bending:∑

k

((
EIη′′

k

)′′ − [∫ R

r
m�2ρ dρ η′

k

]′)
qk +

∑
k

mηkq̈k = Fz (16.64)

The differential equation satisfied by the mode shape qk states that the terms in
brackets equal (ν2

kmηk), giving

∞∑
k=1

mηk
(
q̈k + ν2

kqk
) = Fz (16.65)
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Next, operate on this equation with
∫ R

0 (. . .)ηkdr. Define the generalized mass of the
k-th bending mode

Iqk =
∫ R

0
η2

km dr (16.66)

and recall that
∫ R

0 ηkηim dr = 0 if i �= k. Then the bending equation becomes

Iqk
(
q̈k + ν2

kqk
) =

∫ R

0
ηkFzdr (16.67)

Using the free vibration modes of the rotating blade has allowed the structural and
centrifugal terms to be replaced by the natural frequencies νk, and because these
modes are orthogonal the differential equation for the k-th mode is not coupled with
other bending modes (except through the aerodynamic force). Dividing by Ib, and
using dimensionless quantities, gives

Îqk
(
q̈k + ν2

kqk
) = γ

∫ 1

0
ηk

Fz

ac
dr (16.68)

where Îqk = Iqk/Ib. This is the differential equation of motion for the k-th out-of-
plane bending mode of the elastic rotor blade. A further result of Sturm-Liouville
theory (section 16.1) is that the natural frequencies can be obtained from the mode
shapes by

ν2 =
Kβ [η′(e)]2 + ∫ R

0

[
EIη′′2 + ∫ R

r m�2ρ dρ η′2
]

dr∫ R
0 η

2m dr
(16.69)

The dimensionless frequency is obtained by dividing by �2. This relation can be
interpreted as an energy balance: ν2

∫
η2m dr is the maximum kinetic energy of the

vibrating blade,
∫

EIη′′2dr is the maximum potential energy of bending, Kβ [η′(e)]2

is the potential energy in the hinge spring, and
∫∫

m�2ρ dρ η′2dr is the potential
energy in the centrifugal spring. This relation can be written as ν2 = K1 + K2�

2,
which is the Southwell form. The Southwell coefficients K1 and K2 (representing the
structural and centrifugal stiffening, respectively) are constants involving integrals
of the blade mode shape, which in fact are also somewhat sensitive to the rotor
speed �. However, the Southwell form gives the basic dependence of the blade
bending frequencies on the rotor speed (for a further discussion see section 18.1).
This energy relation gives the exact frequency when the correct mode shape (which
must be obtained by solving the modal equation) is used. Equation 16.69 is also the
basis for obtaining estimates of the natural frequencies by using approximate mode
shapes. Since the modes are integrated, the accuracy of the frequency estimate is
good as long as the modes are fairly close to the correct shape.

The fundamental flapping mode is the lowest frequency solution of the modal
equation. For an articulated rotor with no hinge offset or spring, η = r satisfies the
differential equation with dimensionless natural frequency ν = 1/rev, which is also
obtained from

ν2 =
∫ 1

0

∫ 1
r mρ dρ dr∫ 1
0 r2m dr

=
∫ 1

0 ρm
∫ ρ

0 dr dρ∫ 1
0 r2m dr

= 1 (16.70)
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The equation thus reduces to that for rigid flapping. With a hinge offset and spring,
the mode shape η = (r − e)/(1 − e) gives the equation of motion and the natural
frequency as in section 16.3.1:

ν2 =
∫ 1

e

∫ 1
r mρ dρ dr

(1 − e)2
∫ 1

e η
2m dr

+ Kβ
Iβ�2(1 − e)2

=
∫ 1

e mρ(ρ − e)dρ

(1 − e)2
∫ 1

e η
2m dr

+ Kβ
Iβ�2(1 − e)2

= 1 + e
1 − e

∫ 1
e ηm dr∫ 1

e η
2m dr

+ Kβ
Iβ�2(1 − e)2

(16.71)

except for an additional factor of (1 − e) in the spring term, due to a different
definition of the spring constant Kβ . The modal equation is actually not quite satisfied
if η = (r − e)/(1 − e), but the bending involved in the fundamental mode of an
articulated blade is small. For a hingeless rotor, there must be bending at the blade
root, where the cantilever restraint requires zero slope. However, the centrifugal
stiffening dominates the fundamental mode of even the hingeless blade, as indicated
by the fact that the natural frequency is only slightly above 1/rev (typically ν = 1.10
to 1.15). Except in the root region, therefore, the mode shape of the hingeless blade
does not differ substantially from that of the articulated rotor. The natural frequency
is the dominant parameter of the blade bending mode, not the mode shape. Even
the small increase of the fundamental frequency above 1/rev for the hingeless blade
has a major impact on the root loads of the blade and on the behavior of the rotor
in general.

The second flapwise bending mode has a rotating natural frequency typically
around 2.6 to 2.8/rev. As the modal number increases, so do the number of nodes
and the curvature of the mode shape. The higher modes thus play an important
role in the blade bending loads and their calculation. For an articulated blade, the
second out-of-plane mode is often called the first bending mode, since the funda-
mental flap mode does not involve elastic motion of the blade. If no better estimate
is available, η = 4r2 − 3r can be used as an approximation for the second out-of-
plane mode shape of an articulated rotor blade. This expression is orthogonal to
the first mode, η = r; however, the boundary conditions of zero moment at the root
and tip are not satisfied. The expression η = r − (π/3) sinπr satisfies all the con-
ditions except for zero shear at the tip. Such approximate mode shapes are useful
for evaluating the inertial and aerodynamic coefficients in a dynamics analysis, par-
ticularly for estimating the natural frequency of the second mode from the energy
relation.

The utility of the normal mode representation of the blade motion depends
on being able to use only a small number of modes to solve most rotor problems.
The frequency content of the forces exciting the blade provides a good guide to the
number of modes that must be included. In many cases, the fundamental flap mode is
a sufficient representation of the blade for both articulated and hingeless rotors. For
problems such as the calculation of oscillatory rotor loads or helicopter vibration,
up to three to five out-of-plane modes can be required.
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16.3.3 Non-Rotating Frame

The degrees of freedom and equations of motion in the nonrotating frame are
obtained using multiblade coordinates (section 15.4). The equations derived for the
out-of-plane bending are for each blade of an N-bladed rotor in the rotating frame.
The multiblade coordinate transformation introduces N degrees of freedom (β0, β1c,
β1s, . . . βnc, βns, βN/2) to describe the rotor motion in the non-rotating frame. The
corresponding N equations of motion are obtained by operating on the rotating
equation with

1
N

N∑
m=1

(. . .)
2
N

N∑
m=1

(. . .) cos nψm
2
N

N∑
m=1

(. . .) sin nψm
1
N

N∑
m=1

(. . .)(−1)m (16.72)

as appropriate. The inertial and structural terms of the equation that are encountered
in this chapter have constant coefficients. These summation operators therefore act
only on the rotating degrees of freedom and their time derivatives. By using the
definitions of the non-rotating degrees of freedom (and the corresponding trans-
formations of the time derivatives, given in section 15.4.1), the conversion of the
equations of motion to the non-rotating frame is straightforward.

With independent blades the equations of motion in the rotating frame can be
used directly. Unless there is some coupling of the blades through the fixed frame,
there is no reason to use multiblade coordinates, except that the constant coefficient
approximation for the aerodynamics in forward flight is better made in the non-
rotating frame. The usefulness of multiblade coordinates is more apparent later in
this chapter, when rotor shaft motion is involved.

Consider the fundamental flap mode of an articulated or hingeless rotor blade.
The equation of motion for the m-th blade (m = 1 to N) in the rotating frame is

Îβ
(
β̈ (m) + ν2β(m)

) = γ
∫ 1

0
η

Fz

ac
dr = γM(m)

F (16.73)

Applying the summation operators, which act only on β̈ (m) and β(m), gives

Îβ
(
β̈0 + ν2β0

) = 1
N

N∑
m=1

γM(m)
F = γMF0 (16.74)

Îβ
(
β̈nc + 2nβ̇ns + (ν2 − n2)βnc

) = 2
N

N∑
m=1

γM(m)
F cos nψm = γMFnc (16.75)

Îβ
(
β̈ns − 2nβ̇nc + (ν2 − n2)βns

) = 2
N

N∑
m=1

γM(m)
F sin nψm = γMFns (16.76)

Îβ
(
β̈N/2 + ν2βN/2

) = 1
N

N∑
m=1

γM(m)
F (−1)m = γMFN/2 (16.77)

The influence of this transformation on the eigenvalues and eigenvectors of the rotor
dynamics is discussed in section 15.5.
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16.3.4 Bending Moments

The flapwise bending moment on the blade was obtained in section 16.3.2 as

M(r) =
∫ R

r

[(
Fz − mz̈

)
(ρ − r)− m�2ρ

(
z(ρ)− z(r)

)]
dρ (16.78)

Substituting for the modal expansion of z and using dimensionless quantities gives

M(r) =
∫ 1

r
Fz(ρ − r)dρ −

∑
k

[
q̈k

∫ 1

r
mηk(ρ − r)dρ + qk

∫ 1

r
mρ
(
ηk(ρ)− ηk(r)

)
dρ

]
(16.79)

This is a force-balance formula for the bending moment, integrating the applied
(aerodynamic) and body (inertial and centrifugal) forces acting on the blade sections.
Now expand the aerodynamic loading as a series in the bending mode shapes:
Fz = ∑

k Fzkmηk(r). The constants are Fzk = ∫ 1
0 ηkFzdr/Iqk. On substituting for the

expansion of Fz into the bending moment, and noting that the equation of motion
for the k-th bending mode gives Fzk = q̈k + ν2

kqk, the bending moment becomes

M(r) =
∑

k

qk

[
ν2

k

∫ 1

r
mηk(ρ − r)dρ −

∫ 1

r
mρ
(
ηk(ρ)− ηk(r)

)
dρ

]
(16.80)

Thus the bending moment can be evaluated from the response of the blade modes
and from the corresponding mode shapes and frequencies. The bending moment can
also be obtained from the blade curvature:

M(r) = EI
d2z
dr2

=
∑

k

qk
(
EIη′′

k

)
(16.81)

which is equivalent to equation 16.80, as can be shown by integrating the differential
equation for qk twice.

Generally the force-balance approach (equation 16.79) gives the best results. The
structural dynamics of the blade filter the blade response, so a small number of modes
is usually adequate to describe the inertial and centrifugal loading, but representing
the aerodynamic loading by a modal expansion usually requires a large number of
modes. Truncation of the series representation of the aerodynamic loading leads to
significant differences between bending moments calculated using equations 16.79
and 16.80. Calculating the bending moment from the curvature (equation 16.81)
often is not acceptable because the beam representation of rotor blades usually
involves step changes in the stiffness EI. The bending moment must be a continuous
function of r (except where there are discrete loads acting on the section), so a step
change in stiffness must be accompanied by a step in curvature. A step in curvature
cannot be modeled well with a small number of modes. A finite element model has
a similar problem within the element, since a small number of polynomial shape
functions cannot model well a step in curvature, but at least nodes can be put at step
changes in properties.

The blade loads need not be expressed in terms of the modal response. The mode
shapes and frequencies may not be available, and better accuracy can be possible by
calculating the bending moments directly from the aerodynamic loading. The partial
differential equation for out-of-plane deflection (equation 16.60) can be integrated
along the span for a given loading Fz. Integrating a fourth-order equation and then
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differentiating the deflection twice to obtain the moment is not a good approach
for numerical work. Working directly in terms of the bending moment is preferable.
The equilibrium of forces outboard of r gives equation 16.57, which can be written

M(r) =
∫ 1

r
Fz(ρ − r)dρ −

∫ 1

r

[
z̈(ρ − r)+ ρ(z(ρ)− z(r)

)]
m dρ (16.82)

where z is obtained from the integral of M = EIz′′. If periodic loading is consid-
ered, the exciting force Fz and the blade response are expanded as Fourier series:
Fz = ∑

Fneinψ , M = ∑
Mneinψ , and z = ∑

zneinψ . Then the equations for the n-th
harmonic of the bending moment are

Mn =
∫ 1

r
Fn(ρ − r)dρ +

∫ 1

r

[
n2zn(ρ − r)− ρ(zn(ρ)− zn(r)

)]
m dρ (16.83)

zn = zn(1)− (1 − r)z′
n(1)+

∫ 1

r

Mn

EI
(ρ − r)dρ (16.84)

These equations are numerically integrated, starting at the tip where the boundary
conditions are Mn(1) = M′

n(1) = 0 are automatically satisfied by the equation for
Mn. The values of zn(1) and z′

n(1) must be chosen to satisfy the two boundary
conditions at the root. These equations can be linear or nonlinear, depending on
the aerodynamic model for Fz. The linear problem can be solved by superposition,
whereas the nonlinear problem can be solved using some search algorithm. This
bending moment equation is the same as equation 16.79, but here depends directly
on the deflection z rather than on the modal response, so no modal truncation is
involved. The aerodynamic force might be calculated using a simpler model (such
as just rigid flapping motion), but the aerodynamic damping is important for the
high-frequency response, so the lift due to ż must be included in Fz.

Cierva (1926) gave an approximate method for calculating blade bending
moments, using the airloading and motion obtained when rigid flapping alone is
considered. Elastic bending of the blade significantly reduces the loads and so must
be accounted for. Consider the limit of a rigid blade. For an articulated rotor the
blade motion then is just rigid flapping, z = βr, and the bending moment on the rigid
blade is

MR =
∫ 1

r
Fz(ρ − r)dρ − (β̈ + β)

∫ 1

r
ρ(ρ − r)m dρ (16.85)

which implies a radius of curvature

rR = 1
d2z/dr2

= EI
MR

(16.86)

In the limit of zero structural stiffness (EI = 0), the blade has only centrifugal
stiffness, and the partial differential equation of bending reduces to

− d
dr

[∫ 1

r
mρ dρ

dz
dr

]
= Fz − mz̈ (16.87)

or

− d
dr

[∫ 1

r
mρ dρ

dze

dr

]
= Fz − mr(β̈ + β) (16.88)
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where ze is the blade elastic deflection (z = βr + ze) and the inertial force mz̈e has
been neglected. This equation integrates to∫ 1

r
mρ dρ

dze

dr
=
∫ 1

r
Fzdρ − (β̈ + β)

∫ 1

r
mρ dρ (16.89)

or T (dze/dr) = SR, where SR is the vertical shear force calculated for the rigid blade
and T is the centrifugal tension force. The radius of curvature is then

rF = 1
d2z/dr2

= 1
d2ze/dr2

= 1
d(SR/T )/dr

(16.90)

Define MF as the moment on the blade with stiffness EI, but with the curvature of the
zero stiffness solutions: MF = EI/rF = EId(SR/T )/dr. Now construct a composite
solution for the radius of curvature of the blade with stiffness EI, valid for both the
limits EI = ∞ and EI = 0:

rC = rR + rF = EI
MR

+ 1
d(SR/T )/dr

(16.91)

Then the bending moment on the actual blade is

M = EI
rC

= EI
EI
MR

+ 1
d(SR/T )/dr

= MRMF

MR + MF
= MR

1

1 + MR

EI d(SR/T )/dr

(16.92)

The last form is a correction of the rigid blade moment for the effects of bending.
Thus the bending moment on the blade can be obtained from the moment MR and
shear force SR calculated considering rigid flap motion alone. Flax (1947) discussed
the analytical basis of this method.

16.4 In-Plane Motion

16.4.1 Rigid Flap and Lag

Chapter 6 introduced the lag dynamics of an articulated rotor. Here the coupled
equations for rigid flap and lag motion are derived in more detail. Consider an
articulated rotor with both flap and lag hinges. Hinge offsets and springs are included,
and the flap and lag offsets are not necessarily equal. The degree of freedom for
rigid rotation about the flap hinge is again β, with mode shape ηβ = (r − e)/(1 − e).
The in-plane motion consists of rigid rotation about the lag hinge, generating an
in-plane displacement x = ζηζ , where ζ is the lag degree of freedom with mode
shape ηζ = (r − e)/(1 − e). The flap motion is positive upward, and the lag motion
is positive in the direction opposite the rotor rotation. The equations of motion are
obtained from the equilibrium of moments about the hinges.

The section forces producing flap moments remain the same as in section 16.3.1,
with the addition of a Coriolis force due to the lag motion. The Coriolis acceleration
is twice the cross-product of the angular velocity vector and the velocity vector
relative to the rotating frame. The inertial force in the d’Alembert sense is then in
the opposite direction. The product of the rotor rotational velocity� and the in-plane
velocity of the section ẋ gives a Coriolis force 2�ẋm = 2�ζ̇ηζm, directed radially
inward. This force has a moment arm z = ηββ about the flap hinge, producing a total
moment of

−
∫ R

e

(
2�ζ̇ηζm

)(
ηββ

)
dr (16.93)



600 Blade Motion

Ω

m dr

r

x

inertial force and 
Coriolis force

e

blade

centrifugal
force

aerodynamic
force

Figure 16.3. Rotor blade lagging moments.

Including this term in the moment equilibrium gives for the flap equation of motion

Îβ
(
β̈ + ν2

ββ
)− Îβζ2βζ̇ = Kβ

Iβ�2(1 − e)
βp + γ

∫ 1

e
ηβ

Fz

ac
dr (16.94)

where Îβζ = ∫ 1
e ηβηζm dr/

(
(1 − e)Ib

)
.

The in-plane forces acting on the blade section (Figure 16.3) and their moment
arms about the offset lag hinge are as follows:

i) an inertial force mẍ = mηζ ζ̈ opposing the lag motion, with moment arm (r − e)
about the lag hinge

ii) a centrifugal force m�2r directed radially outward from the center of rotation,
with moment arm x(e/r) = ηζ ζ (e/r) about the lag hinge

iii) an aerodynamic force Fx in the drag direction, with moment arm (r − e)
ii) a Coriolis force 2�żz′m = 2�β̇βηβη′

βm in the same direction as the inertial
force, with moment arm (r − e)

Since the out-of-plane velocity ż has a radially inward component ż(dz/dr) when
the blade is flapped up, the Coriolis force arises from the product of the rotational
speed of the rotor and this radial velocity of the blade. The equilibrium of moments
about the lag hinge gives(∫ R

e
(r − e)ηζm dr

)
ζ̈ +

(∫ R

e
eηζm dr

)
�2ζ

+
(∫ R

e
ηβηζm dr

)
2�ββ̇ + Kζ ζ =

∫ R

e
(r − e)Fxdr (16.95)

Dividing by (1 − e) and using dimensionless quantities gives(∫ 1

e
η2
ζm dr

)
ζ̈ +

(
e

1 − e

∫ 1

e
ηζm dr

)
ζ + Kζ

�2(1 − e)
ζ

+
(

1
1 − e

∫ 1

e
ηβηζm dr

)
2ββ̇ =

∫ 1

e
ηζFxdr (16.96)
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Next, define the lag inertia as Iζ = ∫ R
e η

2
ζm dr and divide by Ib, to obtain

Îζ
(
ζ̈ + ν2

ζ ζ
)+ Îβζ2ββ̇ = γ

∫ 1

e
ηζ

Fx

ac
dr (16.97)

which is the equation of motion for the rigid lag of an articulated blade.
The rotating natural frequency of the lag motion is

ν2
ζ = e

1 − e

∫ 1
e ηζm dr∫ 1
e η

2
ζm dr

+ Kζ
Iζ�2(1 − e)

(16.98)

The lag hinge must have an offset or spring to obtain a nonzero lag frequency. For
a uniform mass distribution and no spring,

ν2
ζ = 3

2
e

1 − e
(16.99)

More generally, the lag frequency is given by ν2
ζ = eSζ /Iζ , where Iζ is the second

moment of inertia about the lag hinge and Sζ is the first moment. Sζ equals the
product of the blade mass and the radial distance of the center of gravity from the
lag hinge. Assuming the same mode shapes and spring constants for the flap and lag
motion, the expressions for the natural frequencies here and in section 16.3.1 give

ν2
β = 1 + ν2

ζ (16.100)

For an articulated blade with coincident flap and lag hinges, the mode shapes are
in fact identical and this result is correct. In general, this relation is an expression
of the fundamentally different role of centrifugal forces in flap and lag dynamics.
The centrifugal force always acts as a spring on the flap motion to produce a natural
frequency of at least 1/rev. However, since the centrifugal force goes through the
center of rotation, the lag motion must depend on the hinge offset to obtain a
centrifugal spring.

The flap and lag equations of motion are coupled by nonlinear terms due to the
blade Coriolis forces: −Îβζ2βζ̇ in the flap equation and Îβζ2ββ̇ in the lag equation.
For a linear stability analysis, these terms are linearized about the trim motion:

�(βζ̇ ) = βtrim�ζ̇ + ζ̇trim�β ∼= β0�ζ̇ (16.101)

�(ββ̇) = βtrim�β̇ + β̇trim�β ∼= β0�β̇ (16.102)

where β0 is the trim coning angle. The last approximation is based on using the mean
values of the periodic trim lag and flap motion; the result is exact for hover. Thus
a blade with a finite coning angle has a flap moment due to lag velocity and a lag
moment due to flap velocity. Since the Coriolis terms are nonlinear, these coupling
moments are small. However, all the lag moments are small compared to the flap
moments, so the Coriolis force due to flapping velocity is an important factor in the
lag dynamics.

Since an articulated rotor has a mechanical lag damper, the term Ĉζ ζ̇ should be
added to the lag equation of motion. Here Ĉζ = Cζ /Ib�, andCζ is the lag moment due
to angular velocity about the lag hinge. For hingeless rotors the structural damping
of the blade should be included by adding the term Îζgsνζ ζ̇ to the lag equation,
where gs is the structural damping coefficient; typically gs = 0.01 to 0.03 (0.5 to 1.5%
critical damping). The structural damping is small, but can be important to the lag
dynamics because the in-plane forces are all small.
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16.4.2 Structural Coupling

Structural coupling between the flap and lag motion can have an important effect,
because a small amount of out-of-plane motion can significantly increase the aero-
dynamic damping of the lag mode. Ormiston and Hodges (1972) introduced a simple
model for structural coupling of rigid flap and rigid lag motion. The degrees of free-
dom β and ζ still represent purely out-of-plane and purely in-plane motion, respec-
tively, so the inertial and aerodynamic loads are unchanged. The structural restraint
at the flap and lag hinges consists now of flexibility both inboard and outboard of
the pitch bearing (all at a single point). The inboard springs Kβh and Kζh (subscript
“h” for hub) are parallel and normal to the hub plane. The outboard springs Kβb

and Kζb (subscript “b” for blade) are in axes rotated by the pitch angle θs. The total
rotation of the blade is the sum of the rotations in the hub and blade springs:(

β

ζ

)
=
(
βh

ζh

)
+
[

C −S
S C

](
βb

ζb

)
(16.103)

or x = xh + Txb, where C = cos θs and S = sin θs. The moment transmitted through
the springs must be equal:(

Mβ

Mζ

)
=
[

Kβh 0
0 Kζh

](
βh

ζh

)
=
[

C −S
S C

] [
Kβb 0

0 Kζb

](
βb

ζb

)
(16.104)

or M = Khxh = TKbxb. Hence xb = K−1
b T T Khxh, the total rotation is

x = (I + K−1
b T T Kh)xh, and M = (K−1

h + TK−1
b TT )−1x. For matched stiffness

(equal flap and lag stiffnesses in each spring set), this reduces to M = (Kh + Kb)x;
there is no influence of θs and no structural coupling. For the uncoupled case
(θs = 0), the stiffness is K = (K−1

h + K−1
b )

−1. Now define

1
Kβ

= 1
Kβh

+ 1
Kβb

1
Kβb

= χβ

Kβ

1
Kβh

= 1 − χβ
Kβ

(16.105)

1
Kζ

= 1
Kζh

+ 1
Kζb

1
Kζb

= χζ

Kζ

1
Kζh

= 1 − χζ
Kζ

(16.106)

where χβ and χζ are measures of the distribution of stiffness. For χ = 0, all the
flexibility is inboard (uncoupled); for χ = 1 all the flexibility is outboard of the pitch
bearing (fully coupled). A total coupling parameter is χ(Kζ − Kβ ) = χβKζ − χζKβ .
Then the stiffness matrix can be written:

K = (
K−1

h + TK−1
b T T )−1 =

⎡⎢⎢⎣
1

Kβh
+ C2

Kβb
+ S2

Kζb
SC
(

1
Kβb

− 1
Kζb

)
SC
(

1
Kβb

− 1
Kζb

)
1

Kζh
+ S2

Kβb
+ C2

Kζb

⎤⎥⎥⎦
= 1
�

[
Kβ + S2χ(Kζ − Kβ ) −SCχ(Kζ − Kβ )

−SCχ(Kζ − Kβ ) Kζ − S2χ(Kζ − Kβ )

]
(16.107)

where � = 1 + S2χ(1 − χ)(Kζ − Kβ )2/(KζKβ ). For small θs this is

K ∼=
[

Kβ −χ(Kζ − Kβ )θs

−χ(Kζ − Kβ )θs Kζ

]
(16.108)

The off-diagonal terms can be included in equations 16.94 and 16.97 to account for
structural coupling.
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16.4.3 In-Plane Bending

Consider the pure in-plane motion of a rotating blade, including now the blade
bending and an arbitrary root restraint. The in-plane forces due to out-of-plane
motion are important, but are neglected for now to concentrate on the in-plane
natural frequencies and mode shapes. The section forces and their moment arms
about the blade section at r are as follows:

i) an inertial force mẍ(ρ), with moment arm (ρ − r)
ii) a centrifugal force m�2ρ, with moment arm (r/ρ)x(ρ)− x(r)

iii) an aerodynamic force Fx, with moment arm (ρ − r)

The lag moment at r, due to the inertial and aerodynamic forces on the section
outboard of r, is thus

M(r) =
∫ R

r

[(
Fx − mẍ

)
(ρ − r)− m�2ρ

(
x(ρ)

r
ρ

− x(r)
)]

dρ (16.109)

Engineering beam theory gives the structural bending moment as Mx(r) =
EIxxd2x/dr2, where E is the modulus of elasticity and Ixx the modulus-weighted
area moment about the vertical principal axis of the section. Equating the structural
moment to the inertial and aerodynamic moments, and taking the second derivative,
gives the partial differential equation for the in-plane bending motion of the rotating
blade:

d2

dr2
EIxx

d2x
dr2

− d
dr

[∫ R

r
m�2ρ dρ

dx
dr

]
−�2mx + mẍ = Fx (16.110)

The boundary conditions for articulated and hingeless blades are as discussed for
out-of-plane bending in section 16.3.2. The modal equation is obtained by assuming
free vibration of the rotating blade. Substituting x = η(r)eiνt in the homogeneous
equation then gives

d2

dr2
EIxx

d2η

dr2
− d

dr

[∫ R

r
m�2ρ dρ

dη
dr

]
−�2mη − ν2mη = 0 (16.111)

This is again a proper Sturm-Liouville eigenvalue problem, for which there exists a
series of orthogonal eigen-solutions ηxk and corresponding eigenvalues ν2

xk.
The in-plane displacement can now be expanded as a series in the normal modes:

x(r, t) =
∞∑

k=1

ηxk(r)qxk(t) (16.112)

where qxk are the in-plane bending degrees of freedom. This modal expansion is
substituted into the partial differential equation, and the modal equation is used
to replace the structural and centrifugal spring terms by the natural frequency νxk.
Operating with

∫ R
0 (. . .)ηxkdr and using the orthogonality of the modes gives

Îζk
(
q̈xk + ν2

xkqxk
) = γ

∫ 1

0
ηxk

Fx

ac
dr (16.113)

where Îζk = ∫ R
0 η

2
xkdr/Ib. This is the equation of motion for pure in-plane bending of

the blade.
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The natural frequency can be obtained from the mode shape by using the energy
relation from Sturm-Liouville theory:

ν2 =
Kζ [η′(e)]2 + ∫ R

0

[
EIη′′2 + ∫ R

r m�2ρ dρ η′2 −�2mη2
]

dr∫ R
0 η

2m dr
(16.114)

Assuming the same mass and stiffness distributions, this is formally equivalent to
ν2

flap = 1 + ν2
lag, which can also be deduced by comparing the modal equations for in-

plane and out-of-plane bending (see section 16.3.2). However, the chordwise bending
stiffness (EIxx) is much greater than the flapwise bending stiffness (EIzz), typically by
a factor of 20 to 40. Moreover, the in-plane and out-of-plane mode shapes are not the
same. Thus the relation ν2

flap = 1 + ν2
lag really is only applicable to the fundamental

modes of an articulated blade with coincident hinges. The similarity between the
out-of-plane and in-plane modal problems can be used to advantage in numerical
solutions for the modes.

16.4.4 In-Plane and Out-of-Plane Bending

Now the equations of motion for in-plane and out-of-plane bending are derived. This
derivation is a generalization of the rigid flap and lag results. Assuming that there
is no structural coupling of the bending motion, the displacement z is still purely
out of plane and the displacement x is purely in plane. With this assumption, the
only coupling of the equations of motion is due to the Coriolis forces, and it is only
necessary to add the Coriolis terms to the results of sections 16.3.2 and 16.4.3.

For out-of-plane bending, there is a Coriolis force 2�ẋm directed radially inward,
with moment arm (z(ρ)− z(r)) about the blade station at r. The flapwise bending
moment at r then becomes

M(r) =
∫ R

r

[(
Fz − mz̈

)
(ρ − r)− (m�2ρ − 2�ẋm

)(
z(ρ)− z(r)

)]
dρ (16.115)

and the partial differential equation for out-of-plane bending is

(
EIzzz′′)′′ − [∫ R

r
m�2ρ dρ z′

]′
+ mz̈ +

[
z′
∫ R

r
2�ẋm dρ

]′
= Fz (16.116)

When the aerodynamic force and the Coriolis term are dropped, the same modal
equation as in section 16.3.2 is obtained. The out-of-plane deflection is now expanded
as a series in the modes ηzk:

z =
∑

z

ηzk(r)qzk(t) (16.117)

where qzk are the degrees of freedom. This expansion is substituted into the par-
tial differential equation, and the modal equation is used to replace the structural
and centrifugal spring terms with the natural frequency νzk. Then the operation∫ R

0 (. . .)ηzkdr produces the ordinary differential equation for the k-th out-of-plane
bending mode of the rotating blade:

Iβk
(
q̈zk + ν2

zkqzk
)+

∫ 1

0
ηzk

[
z′
∫ 1

r
2ẋm dρ

]′
dr =

∫ 1

0
ηzkFzdr (16.118)
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Integrating by parts and changing the order of integration converts the Coriolis term
to ∫ 1

0
ηzk

[
z′
∫ 1

r
2ẋm dρ

]′
dr = −2

∫ 1

0
ẋm

∫ r

0
η′

zkz′dρ dr ∼= −2β0

∫ 1

0
ẋηzkm dr

(16.119)
The last approximation follows from linearizing ẋz′ about the trim condition, using
the mean trim values of ẋ and z′ and assuming that the trim blade slope is principally
due to the coning angle β0. For rigid flap and lag this Coriolis force reduces to the
previous result, −2Iβζ β0ζ̇ (the extra factor of (1 − e) was lost when we assumed
z′ ∼= β0 instead of z′ = η′β = β/(1 − e)).

There are two Coriolis forces that must be considered for in-plane bending.
First, the lag velocity ẋ and rotor speed � give a radially inward Coriolis force
2�ẋm. This is the same force that produces a flapwise bending moment. It also
produces a chordwise moment, with moment arm (x(ρ)− x(r)) about the blade
station at r. Second, the in-plane and out-of-plane deflection produces a nonlinear
radial shortening of the blade by

−1
2

∫ ρ

0

(
x′2 + z′2)dρ∗ (16.120)

and thus there is a radially inward velocity of the blade section equal to

−
∫ ρ

0

(
x′ẋ′ + z′ż′)dρ∗ (16.121)

The cross-product of this velocity and the rotor rotational speed gives an in-plane
Coriolis force with moment arm (ρ − r) about the blade station at r (see Figure 16.3).
The total lag bending moment is thus

M(r) =
∫ R

r

[(
Fx − mẍ

)
(ρ − r)− m�2ρ

(
x(ρ)

r
ρ

− x(r)
)

+2�ẋm
(
x(ρ)− x(r)

)− 2�m
∫ ρ

0

(
x′ẋ′ + z′ż′)dρ∗(ρ − r)

]
dρ (16.122)

and the partial differential equation for in-plane bending becomes

(
EIxxx′′)′′ − [∫ R

r
m�2ρ dρ x′

]′
−�2mx + mẍ

+
[

2�x′
∫ R

r
ẋm dρ

]′
+ 2�m

∫ r

0

(
x′ẋ′ + z′ż′) dρ = Fx (16.123)

After the in-plane deflection is expressed in terms of the normal modes, x =∑
k ηxkqxk, the ordinary differential equation for the k-th in-plane bending mode

can be obtained by the usual steps:

Iζk
(
q̈xk + ν2

xkqxk
)+

∫ 1

0
ηxk2m

∫ r

0

(
x′ẋ′ + z′ż′) dρ dr

+
∫ 1

0
ηxk

[
x′
∫ 1

r
2ẋm dρ

]′
dr =

∫ 1

0
ηxkFxdr (16.124)
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The two Coriolis terms can then be written:

2
∫ 1

0
ηxkm

∫ r

0

(
x′ẋ′ + z′ż′)dρ dr − 2

∫ 1

0
ẋm

∫ r

0
η′

xkx′dρ dr

∼= 2
∫ 1

0
ηxkm

∫ r

0
z′ż′dρ dr

∼= 2β0

∫ 1

0
żηxkm dr (16.125)

For rigid lag motion, where x′ is independent of r, the two in-plane velocity terms
cancel exactly. Similarly, they cancel if the trim lag displacement is primarily due to
the rigid mode. Therefore these two terms have been neglected for the general case.

Substituting the modal expansions for ẋ in the flap equation and for ż in the
lag equation then completes the coupled equations of motion for out-of-plane and
in-plane bending:

Îβk
(
q̈zk + ν2

zkqzk
)−

∞∑
i=1

Îβkζi 2β0q̇xi = γ
∫ 1

0
ηzk

Fz

ac
dr (16.126)

Îζk
(
q̈xk + ν2

xkqxk
)+

∞∑
i=1

Îβiζk 2β0q̇zi = γ
∫ 1

0
ηxk

Fx

ac
dr (16.127)

where Îβk = ∫ R
0 η

2
zkdr/Ib, Îζk = ∫ R

0 η
2
xkdr/Ib, and β0Îβkζi = z′

trim

∫ R
0 ηzkηxidr/Ib.

However, this set of equations is not a sufficient model for the out-of-plane and
in-plane bending of a rotor blade in most cases. Unless the blade is untwisted and
operating at zero pitch, there is considerable structural coupling of the in-plane and
out-of-plane deflections. The structural principal axes are rotated by the blade pitch
angle, whereas the centrifugal forces always act relative to the shaft axes. Therefore,
when the blade pitch is non-zero the axes of structural and centrifugal stiffening do
not coincide, and the free vibration modes of the blade are not purely out-of-plane
or purely in-plane as was assumed here. Section 16.4.2 described a simple model
for flap-lag coupling of the fundamental modes. A better analysis must use a single
series of coupled flap-lag bending modes to represent the blade deflection. The blade
torsional motion must be included in such an analysis, since the coupling between
bending and pitch can have a major influence on the dynamics.

16.5 Torsional Motion

16.5.1 Rigid Pitch and Flap

The rotor dynamics analysis is now extended to include the blade pitch degree of
freedom. Consider an articulated rotor, with no flap-hinge offset (Figure 16.4). A
general flap frequency can be obtained by using a hinge spring. In addition, we now
consider the blade pitch motion, consisting of rigid rotation about the feathering axis,
restrained by the rotor control system. If there is flexibility in the control system,
the blade rigid pitch motion is a degree of freedom, not just a control input (as in
Chapter 6). The pitch bearing is assumed to be outboard of the flap hinge, and there
is no pitch-flap coupling (δ3). The chordwise position of the blade section of gravity
is a distance xI behind the feathering axis (Figure 16.4).
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Figure 16.4. Articulated rotor blade with flapping and feathering motion.

The flap degree of freedom β is the angle of rigid rotation about the flap hinge.
The out-of-plane deflection of the blade is thus z = rβ. Let θ be the degree of
freedom for the pitch motion, defined as the nose-up angle of rigid rotation about
the feathering axis. The built-in twist of the blade is not considered here, since it is
only involved in the trim forces on the blade. The rotor control system commands a
pitch angle θcon, while the actual blade pitch angle is θ . The difference (θ − θcon) is due
to control system flexibility and produces a restoring moment about the feathering
axis equal to Kθ (θ − θcon), where Kθ is the control system spring constant.

The flapping equation of motion is obtained as usual from the equilibrium of
moments about the flap hinge. The forces acting on the blade section center-of-
gravity are now

i) an inertial force m(z̈ − xI θ̈ ) = m(rβ̈ − xI θ̈ ), with moment arm r
ii) a centrifugal force m�2r, with moment arm z − xIθ = rβ − xIθ

iii) an aerodynamic force Fz, with moment arm r

Including the hinge spring moment, the equation of motion becomes

∫ R

0
m
(
rβ̈ − xI θ̈

)
r dr +

∫ R

0
m�2r

(
rβ − xIθ

)
dr + Kββ =

∫ R

0
rFzdr (16.128)

or (∫ R

0
r2m dr

) (
β̈ + ν2β

)−
(∫ R

0
xIrm dr

) (
θ̈ +�2θ

) =
∫ R

0
rFzdr (16.129)

where ν is the rotating natural frequency of the flap motion. Define Ib = ∫ R
0 r2m dr

and Ix = ∫ R
0 xIrm dr. Dividing by Ib and using dimensionless quantities then gives

β̈ + ν2β − Îx
(
θ̈ + θ) = γ

∫ 1

0
r

Fz

ac
dr (16.130)

where Îx = Ix/Ib. Thus the pitch motion introduces inertial and centrifugal flap
moments when the center-of-gravity is offset from the feathering axis.
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Figure 16.5. Blade section pitch moments.

The pitch equation of motion is obtained from the equilibrium of moments
about the feathering axis (Figure 16.5). The forces acting on the blade section and
their moment arms about the feathering axis are as follows:

i) an inertial moment I0θ̈ about the section center-of-gravity
ii) an inertial force m(rβ̈ − xI θ̈ ) acting on the center-of-gravity, with moment arm

xI about the feathering axis
iii) a propeller moment Iθ�2θ about the feathering axis, acting to oppose the pitch

motion
iv) a flapping centrifugal spring force m�2rβ acting at the center-of-gravity, with

moment arm xI about the feathering axis
v) a nose-up aerodynamic moment Ma about the feathering axis

Here I0 is the pitch moment of inertia of the section about the center-of-gravity, and
Iθ = I0 + x2

I m is the section moment of inertia about the feathering axis. When the
blade flaps up, the centrifugal force has a component m�2rβ normal to the blade.
This force is responsible for the centrifugal flap moment, and when the center-
of-gravity is offset from the feathering axis it also produces a pitch moment. The
propeller moment is also due to centrifugal forces. The centrifugal force on a blade
mass element dm acts on a line through the center of rotation (Figure 16.6). For an
element a distance x behind the feathering axis, there is then a chordwise component
of this centrifugal force equal to(√

r2 + x2�2dm
) x√

r2 + x2
= x�2dm (16.131)

When the blade is pitched up by the angle θ , this chordwise force acts on a line a
distance xθ below the feathering axis (see Figure 16.6). For mass elements forward
of the feathering axis, the centrifugal force component is directed forward and acts
on a line above the feathering axis. Thus there is a centrifugal feathering moment
opposing the pitch motion. The propeller moment is obtained by integrating over
the blade section:∫

section
(xθ )(x�2dm) = θ�2

∫
section

x2dm = θ�2Iθ (16.132)

where Iθ is the section moment of inertia about the feathering axis.
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Figure 16.6. Origin of the propeller moment.

The equilibrium of moments about the feathering axis gives∫ R

0

[
I0θ̈ − (rβ̈ − xI θ̈

)
xIm + Iθ�2θ − m�2rβxI

]
dr + Kθ

(
θ − θcon

) =
∫ R

0
Madr

(16.133)
or (∫ R

0
Iθdr

) (
θ̈ +�2θ

)−
(∫ R

0
xIrm dr

) (
β̈ +�2β

)+ Kθ
(
θ − θcon

) =
∫ R

0
Madr

(16.134)
The restoring moment from the control system, Kθ (θ − θcon), has been included; θcon

is the pitch angle commanded by the control system, and Kθ is the effective spring
constant of the flexible control system. Now define the total moment of inertia about
the feathering axis as If = ∫ R

0 Iθdr, and write

ω2 = Kθ
If�2

(16.135)

where ω is the dimensionless natural frequency of the blade pitch motion. Dividing
by Ib and using dimensionless quantities gives the pitch equation of motion,

Î f
(
θ̈ + (ω2 + 1)θ

)− Îx
(
β̈ + β) = γ

∫ R

0

Ma

ac
dr + Î fω

2θcon (16.136)

where Î f = If/Ib. Here ω is the non-rotating natural frequency of the pitch motion,
and the propeller moment gives a spring equivalent to a 1/rev natural frequency.
The rotating pitch natural frequency is therefore (ω2 + 1)1/2. Typically the control
system stiffness gives ω = 3 to 5/rev, so the propeller moment is small compared to
the structural spring.

To summarize, the equations of motion for rigid flapping and rigid pitch about
the feathering axis are

β̈ + ν2β − Îx
(
θ̈ + θ) = γ

∫ 1

0
r

Fz

ac
dr (16.137)

Î f
(
θ̈ + (ω2 + 1)θ

)− Îx
(
β̈ + β) = γ

∫ 1

0

Ma

ac
dr + Î fω

2θcon (16.138)

where Îx = ∫ R
0 xIrm dr/Ib and I f = ∫ R

0 Iθdr/Ib. The flap and pitch motions are cou-
pled by inertial and centrifugal forces when the blade center-of-gravity is offset from
the feathering axis. Here ν is the rotating natural frequency of the flap motion, and
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ω is the non-rotating pitch natural frequency due to the control system stiffness. Iθ
is the pitch moment of inertia of the section about the feathering axis, and xI is the
offset of the section center-of-gravity behind the feathering axis. For constant xI

we have Îx = xI
∫ R

0 rm dr/Ib = xIŜb
∼= 3

2 xI . Since the center-of-gravity offset is usu-
ally a small fraction of the chord, xI (which is normalized using the rotor radius)
is a second-order-small quantity. The ratio of the pitch inertia to the flap inertia
is roughly Î f

∼= 0.1(c/R)2. In general, all the pitch moments are two orders smaller
than the flap moments.

In the limit of a very stiff control system, the restoring moment Kθ (θ − θcon)

must remain finite while Kθ → ∞, since the restoring moment is equal to the sum
of the inertial and aerodynamic pitch moments on the blade. Then θ → θcon in this
limit, and the pitch motion is just the input commanded by the control system.
Alternatively, in the limit of ω → ∞ the equation for the pitch motion reduces to
Î fω

2θ = Î fω
2θcon, or θ = θcon again. Kinematic pitch-flap coupling due to the control

system geometry is a feedback of the flap angle to the commanded pitch of the form
�θcon = −KPβ. The equation of motion becomes

Î f
(
θ̈ + (ω2 + 1)θ

)− Îx
(
β̈ + β)+ KPÎfω

2β = γ
∫ 1

0

Ma

ac
dr + Î fω

2θcon (16.139)

and in the limit of infinite control, system stiffness reduces to θ = θcon − KPβ as
required.

16.5.2 Structural Pitch-Flap and Pitch-Lag Coupling

The order of the flap and pitch hinges or, for a hingeless rotor, the distribution of
bending inboard and outboard of the pitch bearing has an important influence on the
blade dynamics. The preceding analysis assumed that the pitch bearing was outboard
of the flap hinge, so that flap motion tilts the feathering axis along with the blade. If
the pitch bearing is inboard of the flap hinge, the feathering axis remains in the hub
plane when the blade flaps, resulting in different moment arms of the section forces
about the feathering axis.

Consider the rigid flap and rigid pitch of an articulated rotor blade, now with
the pitch bearing inboard of the flap and lag hinges. The flapping equation is not
changed, at least for small angles of flap and pitch. However, there is a change in
the manner in which the centrifugal forces produce pitch moments. The centrifugal
force m�2r does not now have a component about the feathering axis when the blade
flaps, because the centrifugal force and feathering axis are both parallel to the hub
plane. However, the chordwise component of the centrifugal force has a moment
arm of (xθ − rβ) about the feathering axis, so the propeller moment becomes∫

section
(xθ − rβ)(x�2dm) = θ�2Iθ − (m�2rβ)xI (16.140)

Thus there is no net change in the pitch moment due to the centrifugal forces, but
there are a number of nonlinear effects of the flap and lag motion that must be
considered when the pitch bearing is inboard. The trim flap and lag motion displaces
the blade section from the feathering axis, so that all in-plane and out-of-plane forces
have a moment arm to produce pitch moments. In particular, the pitching motion
produces an in-plane acceleration when the blade is flapped up and an out-of-plane
acceleration when the blade is lagged back. Hence the effective pitch inertia with
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the flap and lag hinges outboard is increased to

I =
∫ R

0

(
Iθ + z2

trimm + x2
trimm

)
dr

=
∫ R

0
Iθ dr + β2

trim

∫ R

0
η2
βm dr + ζ 2

trim

∫ R

0
η2
ζm dr

∼= I f + (β2
0 + ζ 2

0 )Ib (16.141)

The resulting increase in pitch inertia and decrease in the effective pitch natural
frequency can be substantial.

If the flap and lag motion occur outboard of the pitch bearing, there is a coupling
of the pitch moment with the flap and lag moments that is particularly important for
hingeless rotors. Consider the pitch moment resulting from the flap and lag motion
of a rigid blade, with hinge springs to obtain general frequencies. The hinge spring
moments are zero with the blade at the precone angle βp and the sweep angle ζs. The
pitch axis is coned at βp + βd; the droop βd and sweep ζs occur outboard of the pitch
bearing. The forces on the deflected blade section and their moment arms about the
feathering axis are as follows:

i) the normal force Fz − mrβ̈ − mr�2β, with moment arm rζ due to the lag motion
ii) the in-plane force Fx − mrζ̈ − 2�mrββ̇, with moment arm r(β − βp − βd) due

to the flap motion

Then using the flap and lag equations of motion from sections 16.3.1 and 16.4.1, the
nose-down moment about the feathering axis is

�Mθ = ζ
[∫ 1

0
rFzdr − (β̈ + β)

∫ 1

0
r2m dr

]

− (β − βp − βd )

[∫ 1

0
rFxdr − (ζ̈ + 2ββ̇

) ∫ 1

0
r2m dr

]
= ζKβ (β − βp)− (β − βp − βd )Kζ (ζ − ζs)

= ζMβ − (β − βp − βd)Mζ (16.142)

where K̂β = Kβ/Ib�
2 = ν2

β − 1 and K̂ζ = Kζ /Ib�
2 = ν2

ζ are the hinge spring con-
stants. This result can be interpreted as follows. The net flap moment at the root
Mβ = Kβ (β − βp) has a nose-down component about the feathering axis when the
blade is lagged by ζ . Similarly, the lag moment Mζ = Kζ (ζ − ζs) has a nose-up pitch
component when the blade is flapped by (β − βp − βd ) relative to the pitch bearing.
Then the total pitch moment is �Mθ = ζMβ − (β − βp − βd )Mζ .

Here β and ζ are the total flap and lag angles. The pitch moment in terms of the
elastic flap deflection βe = β − βp and the elastic lag deflection ζe = ζ − ζs is

�Mθ = ζKβ (β − βp)− (β − βp − βd)Kζ (ζ − ζs)

= (Kβ − Kζ )(β − βp)(ζ − ζs)+ Kβ (β − βp)ζs + Kζ βd(ζ − ζs)

= (Kβ − Kζ )βeζe + Kββeζs + Kζ βdζe (16.143)

Although nonlinear in the flap and lag motion, this pitch moment can be significant.
The principal effect of this moment is to produce a static pitch deflection due to
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the control system flexibility, �θ = −�Mθ/Kθ . Thus the effect on the linearized
dynamics is to introduce an effective pitch-flap and pitch-lag coupling. The pitch-
flap coupling is

KPβ = − ∂θ
∂β

= 1
Kθ

[
(Kβ − Kζ )ζe + Kβζs

]
(16.144)

for a given trim lag deflection, and the pitch-lag coupling is

KPζ = −∂θ
∂ζ

= 1
Kθ

[
(Kβ − Kζ )βe + Kζ βd

]
(16.145)

for a given trim flap deflection. These couplings depend on the trim elastic coning
and lag angles, which depend on the rotor thrust and torque and also on the precone
(see Chapter 6). The couplings are proportional to the difference in flap and lag
stiffnesses, K̂β − K̂ζ = ν2

β − 1 − ν2
ζ . For an articulated rotor with no springs but with

coincident flap and lag hinges, ν2
β = 1 + ν2

ζ , the pitch moment is zero and this coupling
disappears.

A similar result can be derived for the torsional moment at an arbitrary blade
section. Consider bending of a blade with out-of-plane deflection z(r) and in-plane
deflection x(r). The forces acting on the blade outboard of r produce a torsional
moment on the section at r:

�Mr =
∫ R

r

(
[z(ρ)− z(r)− (ρ − r)z′(r)] Gx − [x(ρ)− x(r)− (ρ − r)x′(r)] Gz

)
dρ

(16.146)
where Gx is the total section in-plane force, including both inertial and aerodynamic
contributions, and Gz is the total section out-of-plane force. Then the nose-down
torsional loading on the section is

�T = ∂Mr

∂r
= x′′

∫ R

r
(ρ − r)Gzdρ − z′′

∫ R

r
(ρ − r)Gxdρ (16.147)

Now Mx = ∫ R
r (ρ − r)Gzdρ and Mz = ∫ R

r (ρ − r)Gxdρ are, respectively, the flapwise
and chordwise bending moments on the section at r, so

�T = Mxx′′ − Mzz′′ (16.148)

In terms of the flapwise and chordwise bending stiffnesses, the torsional loading is
thus

�T = MxMz

(
1

EIxx
− 1

EIzz

)
= x′′z′′ (EIzz − EIxx) (16.149)

The coupling is proportional to the product of the in-plane and out-of-plane deflec-
tions and the difference between the flapwise and chordwise bending stiffnesses.
For a blade with EIzz = EIxx, the torsion-bending coupling disappears. This is called
the matched-stiffness case and corresponds to the condition ν2

β = 1 + ν2
ζ for a rigid

blade. For a hingeless rotor with νβ = 1.10 to 1.15/rev, matched stiffness implies
νζ = 0.46 to 0.57/rev. The matched-stiffness blade has equal non-rotating flap and
lag frequencies. Usually the chordwise stiffness of a rotor blade is much greater than
the flapwise stiffness. However, the matched-stiffness condition can be achieved with
a soft in-plane hingeless rotor, at least at the root, where it is most important for the
fundamental modes.

The effects that have been discussed in this section are primarily important for
a hingeless rotor, which requires a more complete model of the bending and torsion
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Figure 16.7. Origin of the centrifugal bending moment m�2rxIθ .

dynamics for an accurate analysis. Flap or lag bending outboard of the feathering
bearing produces substantial torsional moments. The resulting effective pitch-lag
and pitch-flap couplings are important factors in hingeless rotor dynamics.

16.5.3 Torsion and Out-of-Plane Bending

Consider now the torsion and out-of-plane bending motion of an elastic blade.
Excluding the in-plane motion from such an analysis is not entirely consistent. For
example, the in-plane forces on the blade produce torsional moments when there
is out-of-plane bending, as was seen from the preceding section. These forces are
relieved by the blade lag motion, however, so they should not be considered unless
the model includes the in-plane motion as well. For hingeless rotors in particular, a
fully coupled flap-lag-torsion analysis is required to adequately represent the dynam-
ics. Thus we are primarily concerned here with extending the rigid flap and rigid pitch
analysis of section 16.5.1 to include the higher bending modes and elastic torsion and
with laying the foundation for the development of more complete models.

The blade is assumed to have a straight elastic axis coincident with the feathering
axis. The blade pitch now consists of the rigid pitch angle p0 due to control system
flexibility and a deflection θe due to elastic torsion of the blade: θ = p0 + θe. The
built-in twist only influences the trim forces and so can be ignored. The notation
for the rigid pitch angle is chosen to be consistent with the modal expansion that is
introduced for the elastic torsion θe.

The equation of motion for bending is obtained from the equilibrium of moments
on the blade outboard of r. The section forces at radial station ρ and their moment
arms about the elastic axis at r are as follows:

i) an inertial force m(z̈ − xI θ̈ ), with moment arm (ρ − r)
ii) a centrifugal force m�2ρ acting on the center of gravity, with moment arm
(z − xIθ − z(r)) about the elastic axis at r

iii) a centrifugal force (m�2rxI )θ (r)
iv) an aerodynamic force Fz, with moment arm (ρ − r)

The centrifugal moment m�2rxIθ (r) at r due to the forces at ρ arises as follows.
Figure 16.7 shows that the centrifugal force m�2(ρ2 + x2

I )
1/2 acting on the section

center-of-gravity has a moment arm xIr/(ρ2 + x2
I )

1/2 about the elastic axis at r,
producing an in-plane bending moment m�2rxI . The section at r has a pitch angle
θ (r), so the flapwise component of this bending moment on the blade is m�2rxIθ (r).
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Thus the total moment on the blade section at r is

M(r) =
∫ R

r

[(
Fz − m(z̈ − xI θ̈ )

)
(ρ − r)

−m�2ρ
(
z(ρ)− xIθ − z(r)

)− θ (r)m�2rxI
]

dρ (16.150)

By equating this expression to M(r) = EId2z/dr2 and taking the second derivative,
the partial differential equation for bending of the elastic axis is obtained:

d2

dr2
EI

d2z
dr2

− d
dr

[∫ R

r
m�2ρ dρ

dz
dr

]
+ mz̈ − mxI θ̈ + d

dr

[
d(rθ )

dr

∫ R

r
�2xIm dρ

]
= Fz

(16.151)
The out-of-plane deflection can be expanded as a series in the normal modes, z(r, t) =∑

k ηk(r)qk(t), where qk are the bending degrees of freedom. The modal equation is
the same as in section 16.3.2. By substituting for z and operating with

∫ R
0 (. . .)ηkdr,

the equation of motion for the k-th bending mode is obtained:

Iqk
(
q̈k + ν2

kqk
)−

∫ R

0
ηkxI θ̈m dr +

∫ R

0
ηk

d
dr

[
d(rθ )

dr

∫ R

r
�2xIm dρ

]
dr =

∫ R

0
ηkFzdr

(16.152)
The θ term can be written as∫ R

0
ηk

d
dr

[
d(rθ )

dr

∫ R

r
�2xIm dρ

]
dr = −

∫ R

0
xI�

2m
∫ r

0
η′

k(ρθ )
′dρ dr (16.153)

For rigid pitch and flap (η = r and θ independent of r) this equation of motion
reduces to equation 16.129.

The equations of motion for rigid pitch and elastic torsion are obtained from
equilibrium of torsion moments about the elastic axis. The forces acting on the blade
section at ρ and their moment arms about the elastic axis at r are as follows:

i) an inertial moment I0θ̈ about the section center of gravity;
ii) an inertial force m(rz̈ − xI θ̈ ) acting on the center-of-gravity, with moment arm

xI about the elastic axis
iii) a nose-down propeller moment Iθ�2θ − xI�

2m(z − z(r)) about the elastic axis
iv) a nose-up centrifugal moment (m�2xIr)z′(r)
v) a nose-up aerodynamic moment Ma about the elastic axis

The propeller moment is due to the in-plane centrifugal force component x�2dm
(Figure 16.6) acting with moment arm (z(r)− (z − xθ )) about the elastic axis at r,
so ∫

section

(
z(r)− (z − xθ )

)
x�2dm = Iθ�2θ − xI�

2m
(
z − z(r)

)
(16.154)

The centrifugal moment (m�2xIr)z′(r) is due to the in-plane bending moment
m�2xIr discussed for the flapping equation (see Figure 16.7). When the blade is
flapped up by the angle z′(r), this moment has a torsional component (m�2xIr)z′(r)
about the elastic axis at r. The total nose-up torsional moment on the blade section
at r is thus

Mr =
∫ R

r

[
Ma − Iθ θ̈ − Iθ�2θ + mxIz̈ + xI�

2m
(
z − z(r)+ rz′(r)

)]
dρ (16.155)



16.5 Torsional Motion 615

The equation of motion for rigid pitch is obtained from the equilibrium of moments
about the pitch bearing at r = 0. The inertial and aerodynamic pitch moments of the
blade are reacted by a moment from the control system:

Mr(0) = Kθ (θ (0)− θcon) (16.156)

where Kθ is the control system stiffness, θcon is the root pitch angle commanded by
the control system, and θ (0) is the actual root pitch. We define the elastic torsion of
the blade to be zero at the pitch bearing, θe(0) = 0, so that the root pitch equals the
rigid pitch degree of freedom; that is, θ (0) = p0. The differential equation of motion
for rigid pitch is thus∫ R

0

[
Iθ θ̈ + Iθ�2θ − mxIz̈ − mxIz�2] dr + Kθ

(
p0 − θcon

) =
∫ R

0
Madr (16.157)

For rigid flap and pitch this reduces to the result of section 16.5.1.
Engineering beam theory relates the torsional moment to the elastic torsion

deflection by

Mr = GJ
dθe

dr
(16.158)

where GJ is the torsional rigidity of the blade section. If the expressions for the
structural moment on the section and the total inertial and aerodynamic moment
are equated and the derivative taken with respect to r,

− d
dr

GJ
dθe

dr
+ Iθ θ̈ + Iθ�2θ − mxIz̈ + r

d
dr

[
dz
dr

∫ R

r
m�2xIdρ

]
= Ma (16.159)

This is the partial differential equation for elastic torsion of the rotating blade. The
boundary conditions are dθe/dr = 0 at r = R (a free end at the tip) and θe = 0 at
r = 0 (a fixed end at the root). Consider free torsional vibration of the non-rotating
blade:

− d
dr

GJ
dθe

dr
+ Iθ θ̈e = 0 (16.160)

Solving this equation by separation of variables, write θe = ξ (r)eiωt , which gives

d
dr

GJ
dξ
dr

+ ω2Iθ ξ = 0 (16.161)

with the boundary conditions ξ (0) = 0 and ξ ′(R) = 0. This is a proper Sturm-
Liouville eigenvalue problem, for which there exists a series of eigen-solutions
ξk(r) and corresponding eigenvalues ω2

k. Since the mode shapes are orthogonal with
weighting function Iθ : ∫ R

0
ξkξiIθ dr = 0 (16.162)

if k �= i. The eigenvalues are ordered according to size (ω1 is the smallest torsion
frequency) and the mode shapes are normalized to unit deflection at the tip, ξ (R) = 1.
According to Sturm-Liouville theory, the natural frequencies can be obtained from
the mode shapes by

ω2 =
∫ R

0 GJξ ′2dr∫ R
0 Iθ ξ 2dr

(16.163)
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The free vibration of a non-rotating blade with uniform GJ and Iθ distributions has
the exact solution,

ξk = sin
[(

k − 1
2

)
π

r
R

]
(16.164)

with the corresponding natural frequencies

ωk =
(

k − 1
2

)
π

√
GJ

IθR2
(16.165)

for k = 1 to ∞. These functions are useful in solving the modal equation for the
true mode shapes, such as by the Galerkin method, and serve as approximate mode
shapes when better estimates are not available. The simple function ξ1 = r/R can also
be used as an approximation to the first mode shape. For torsion the non-rotating
free vibration modes are used. Rotating modes could be used instead by retaining
the centrifugal spring term (the propeller moment) in the modal equation. For the
torsional stiffness typical of rotor blades, the rotation has little effect on the free
vibration frequencies and mode shapes. Thus it is reasonable to use the non-rotating
modes, which are generally simpler to calculate.

Now the torsional deflection is expanded as a series in the normal modes:

θe(r, t) =
∞∑

k=1

ξk(r)pk(t) (16.166)

where pk are the degrees of freedom of elastic torsion. With the mode shapes
normalized to ξk = 1 at the tip, pk is the pitch angle at the tip for the k-th mode.
Using a mode shape p0 = 1 for rigid pitch, the total blade pitch can be written as

θ = p0 + θe =
∞∑

k=0

ξk(r)pk(t) (16.167)

Next, the expansion for θe is substituted into the partial differential equation for
torsion, the modal equation satisfied by ξk is used to replace the torsional stiffness
term by the natural frequency ω2

k, and the equation is operated on with
∫ R

0 (. . .)ξkdr.
Using the orthogonality of the elastic torsion modes (the rigid pitch and elastic
torsion modes are not orthogonal), the following differential equation is obtained
for the k-th mode:

Ipk
(
p̈k + (ω2

k +�2)pk
)+

(∫ R

0
Iθ ξkdr

) (
p̈0 +�2 p0

)−
∫ R

0
ξkmxIz̈ dr

+
∫ R

0
ξkr

d
dr

[
dz
dr

∫ R

r
�2mxIdρ

]
dr =

∫ R

0
ξkMadr (16.168)

where Ipk = ∫ R
0 ξ

2
k Iθdr is the generalized mass of the mode. The bending term can

be written as∫ R

0
ξkr

d
dr

[
dz
dr

∫ R

r
�2mxIdρ

]
dr = −

∫ R

0
xI�

2m
∫ r

0
z′(ρξk)

′dρ dr (16.169)
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Now substituting the expansion θ = ∑∞
k=0 ξk pk into the equation of motion for rigid

pitch gives

Ip0
(
p̈0 + (ω2

0 + 1)�2 p0
)+

∞∑
j=1

(∫ R

0
Iθ ξ jdr

) (
p̈ j +�2 p j

)−
∫ R

0
mxIz̈ dr

−
∫ R

0
mxIz�2dr =

∫ R

0
Madr + Ip0ω

2
0�

2θcon (16.170)

where Ip0 = ∫ R
0 Iθdr is the pitch moment of inertia of the blade and ω0 is the natural

frequency of the rigid pitch motion due to control system flexibility:ω2
0 = Kθ /(Ip0�

2).
Finally, substitute the modal expansion for z into the torsion and pitch equations,

and the expansion for θ into the bending equation; divide by Ib, and use dimensionless
quantities. The equations of motion for out-of-plane bending, rigid pitch, and elastic
torsion of the rotating blade result:

Îqk
(
q̈k + ν2

kqk
)−

∞∑
j=0

(
Îqk p̈ j p̈ j + Îqk p j p j

)
= γ

∫ 1

0
ηk

Fz

ac
dr (16.171)

Îp0
(
p̈0 + (ω2

0 + 1)p0
)+

∞∑
j=1

Îp0 p j

(
p̈ j + pj

)−
∞∑
j=1

(
Îq j p̈0 q̈ j + Îq j p0 q j

)

= γ
∫ 1

0

Ma

ac
dr + Îp0ω

2
0θcon −

∞∑
j=1

Îp0ω
2
0KP jq j (16.172)

Îpk
(
p̈k + (ω2

k + 1)pk
)+ Îp0 pk

(
p̈0 + p0

)−
∞∑
j=1

(
Îq j p̈k q̈ j + Îq j pk q j

)
= γ

∫ 1

0
ξk

Ma

ac
dr (16.173)

where the inertial coefficients are

Îqk = 1
Ib

∫ 1

0
η2

km dr (16.174)

Îqk p̈ j = 1
Ib

∫ 1

0
ηkξ jxIm dr (16.175)

Îqk p j = 1
Ib

∫ 1

0
xIm

∫ r

0
η′

k(ρξ j)
′dρ dr (16.176)

Îpk = 1
Ib

∫ 1

0
ξ 2

k Iθ dr (16.177)

Îp0 pk = 1
Ib

∫ 1

0
ξkIθ dr (16.178)

The bending and torsion equations are coupled by inertial and centrifugal forces if
the section center-of-gravity is offset from the elastic axis. Kinematic pitch-bending
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coupling of the form�θcon = −∑ j KP jq j has been included. For rigid flap and pitch,
these equations reduce to those obtained in section 16.5.1.

Because the rigid pitch mode is not orthogonal to the elastic bending modes,
the equations for p0 and pk (k ≥ 1) are coupled by inertial and centrifugal forces.
The problem can also be formulated without the separate rigid pitch degree of
freedom. Then the p0 degree of freedom and equation of motion are dropped,
and θe represents the complete pitch motion, including that due to control system
flexibility. The boundary condition for the torsion equation becomes

GJ
dθe

dr
= Kθ

(
θe − θcon +

∑
k

KPkqk

)
(16.179)

at r = 0. The modal equation for free vibration can be solved with the boundary
condition

GJ
dξ
dr

= Kθ ξ (16.180)

for a general restrained end. The solution is a single series of orthogonal modes
including both control system flexibility and blade torsional flexibility. However,
this series of modes always gives GJθ ′

e = Kθ θe at the pitch bearing, which implies
that the commanded pitch control and the pitch-bending feedback are zero. This is a
typical result for normal modes, implying that discrete forces and moments applied
at the end points cannot be handled. The problem also arises in treating the lag
damper of an articulated blade, where the normal modes imply that the moment at
the hinge is always zero. For this reason the rigid pitch and elastic torsion motion
were separated in the present normal modes analysis. This is a rigorous approach
and is easily implemented in a numerical solution. Moreover, rigid pitch alone is
a sufficient model of the blade pitch motion for many rotors. The coupled rigid
pitch/elastic torsion modes can be used in the rotor analysis, including a proper
representation of the end conditions, with the Rayleigh-Ritz or Galerkin methods
(see section 16.2).

16.5.4 Non-Rotating Frame

The rotor control system couples the pitch motion of the individual blades. Each
non-rotating mode of pitch motion has a different load path in the fixed control
system, and hence a different effective stiffness. This coupling can be accounted
for by using a separate natural frequency for each non-rotating degree of freedom.
Consider the pitch equation of motion for the m-th blade in the rotating frame:

Î f
(
θ̈ (m) + (ω2 + 1)θ (m)

) = γ
∫ 1

0

Ma

ac
dr = γM(m)

f (16.181)

The corresponding equations of motion in the non-rotating frame are

Î f
(
θ̈0 + (ω2

0 + 1)θ0
) = γM f0 (16.182)

Î f
(
θ̈nc + 2nθ̇ns + (ω2

nc + 1 − n2) θnc
) = γM fnc (16.183)

Î f
(
θ̈ns − 2nθ̇nc + (ω2

ns + 1 − n2) θns
) = γM fns (16.184)

Î f
(
θ̈N/2 + (ω2

N/2 + 1)θN/2
) = γM fN/2 (16.185)
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where a separate natural frequency has been introduced for each equation. This is
equivalent to assuming that the restoring moment provided by the control system
responds to the nonrotating modes in such a way that

M(m)
θ = K0

(
θ0 − θ con

0

)+
∑

n

Knc
(
θnc − θ con

nc

)
cos nψm

+
∑

n

Kns
(
θns − θ con

ns

)
sin nψm + KN/2

(
θN/2 − θ con

N/2

)
(−1)m (16.186)

instead of Mθ = Kθ (θ − θcon) as in section 16.5.1. Thus ω0 is the stiffness of the
collective control system, whereas ω1c and ω1s are the stiffnesses of the cyclic control
system. The higher multiblade coordinates produce no net force in the non-rotating
control system and so are only due to flexibility in the pitch horn and pitch link
and to swashplate bending. Thus for the reactionless modes (ω2c, ω2s, . . . , ωN/2) the
frequencies are usually much higher than for the collective and cyclic modes.

This technique of using different natural frequencies in the non-rotating frame
is also useful for the flap and lag motion. A gimballed rotor can be modeled by using
ν = 1 for the β1c and β1s rigid flap degrees of freedom and by using the appropriate
cantilever frequency and mode shape for the coning and other degrees of freedom.

16.6 Hub Reactions

The net forces and moments at the root of the rotating blade are transmitted to
the helicopter airframe. The steady and low-frequency components of these hub
reactions in the non-rotating frame are the forces and moments required to trim and
control the aircraft. The higher frequency components are responsible for helicopter
vibration. When the shaft motion is included in the model, these rotor forces and
moments determine the helicopter flight dynamics. Figure 16.8 shows the root shears
and moments on the rotating blade, as well as the rotor forces and moments acting
on the hub in the non-rotating frame. The vertical shear force Sz produces the rotor
thrust, and the in-plane shear forces Sx and Sr produce the rotor side and drag forces.
The flapwise root moment NF produces the rotor pitch and roll moments, and the
lagwise moment NL produces the rotor shaft torque. Positive rotor hub reactions are
acting on the helicopter, with the exception of the rotor torque Q, which is defined
as the moment on the rotor (the torque reaction of the rotor on the hub is positive
in the direction opposing the rotor rotation). Figure 16.8 indicates the positive direc-
tions of the rotor thrust T , drag force H, side force Y , pitch moment My, and roll
moment Mx.

16.6.1 Rotating Loads

The net root forces and moments on the rotating blade are obtained by integrating the
section inertial and aerodynamic forces, as in the derivation of the blade equations
of motion. Consider an articulated rotor with no hinge offset, as in section 16.3.1.
The vertical forces acting on the blade section are the inertial force mz̈ = mrβ̈ and
the aerodynamic force Fz. The centrifugal force is always parallel to the hub plane;
see Figure 16.9. The vertical shear force at the blade root is therefore

Sz =
∫ R

0
Fzdr − β̈

∫ R

0
rm dr (16.187)
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Figure 16.8. Rotor forces and moments acting on the hub.

In section 16.3.1 for the equation of flapping motion, the root flap moment was
obtained from integration of the inertial, centrifugal, and aerodynamic forces on the
section:

NF =
∫ R

0
rFzdr − (β̈ +�2β

) ∫ R

0
r2m dr (16.188)

The root moment is simply the hinge moment in this case, since there is no offset of
the flap hinge; the moment can be nonzero only with a hinge spring. The moment

Ω

aerodynamic 
force

hub plane

blade

inertial
force

centrifugal
force

Figure 16.9. Blade section forces producing the vertical shear and flapwise moment at the
root.
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transmitted to the hub through the hinge spring is NF = Kβ (β − βp), or since ν2
β =

1 + Kβ/(Ib�
2),

NF = Ib�
2(ν2

β − 1
)
(β − βp) (16.189)

From section 6.15, this relation applies when there is a hinge offset as well.
Next consider the case of general out-of-plane bending motion, including both

articulated and hingeless rotors. The forces acting on the blade section are described
in section 16.3.2, and the equation of motion for the normal bending modes is derived.
The vertical shear force at the root is obtained by integrating the aerodynamic and
inertial forces on the blade:

Sz =
∫ R

0

(
Fz − mz̈

)
dr (16.190)

Substituting for the modal expansion z = ∑
k ηkqk gives

Sz =
∫ R

0
Fzdr −

∑
k

q̈k

∫ R

0
ηkm dr (16.191)

The root moment is obtained from the flap moments due to the aerodynamic, inertial,
and centrifugal forces on the blade section (Figure 16.9) or simply by evaluating the
flapwise bending moment expression given in section 16.3.2 at the root:

NF =
∫ R

0

[(
Fz − mz̈

)
r − m�2rz

]
dr

=
∫ R

0
rFzdr −

∑
k

(
q̈k +�2qk

) ∫ R

0
rηkm dr (16.192)

Recall that the differential equation of motion for qk is

Iqk
(
q̈k + ν2

kqk
) =

∫ R

0
ηkFzdr (16.193)

The aerodynamic loading Fz therefore contributes directly to the root shear and
moment, but it also excites the blade bending motion, which then cancels part of the
hub reaction. Indeed, the flap hinge was introduced so that the blade motion rather
than the structure would absorb the root moments. Since the mode shapes qk form
a complete series, the aerodynamic loading can be expanded as Fz = ∑

k Fzkηkm,
where the coefficients are Fzk = ∫ R

0 ηkFzdr/
∫ R

0 η
2
km dr. When the expansion for Fz is

substituted, the root moment becomes

NF =
∑

k

(
Fzk − q̈k −�2qk

) ∫ R

0
rηkm dr (16.194)

The equation of motion for qk gives Fzk = q̈k + ν2
kqk, so

NF =
∑

k

qk�
2(ν2

k − 1
) ∫ R

0
rηkm dr (16.195)

For an articulated rotor with no hinge offset, ν1 = 1 and η1 = r for the first mode,
and all the higher mode shapes are orthogonal to η1 = r; hence NF = 0, as required.
If only a single flap mode is used and the mode shape is approximated by η ∼= r,
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the expression reduces to

NF = Ib�
2(ν2

β − 1
)
β (16.196)

as earlier. Thus the hub moment can be obtained from the flap deflection and the
natural frequency of the fundamental flap mode. The simplicity of this result makes
it very useful. In a similar fashion the vertical shear force of the root can be expressed
as

Sz =
∑

k

(
Fzk − q̈k

) ∫ R

0
ηkm dr =

∑
k

qk�
2ν2

k

∫ R

0
ηkm dr (16.197)

It is more convenient, though, to relate the vertical shear, and hence the rotor thrust,
directly to the aerodynamic force.

If the number of modes is large, the same result should be obtained for the
hub moment regardless of whether the forces are integrated along the blade or
equation 16.195 is used. With the latter approach, using a finite number of modes
is equivalent to truncating the expansion Fz = ∑

k Fzkηkm, which may not be an
adequate representation of the loading if only a small number of modes are used.
Thus better results are generally to be expected from using the integrals of the blade
section forces to obtain the hub reactions, although in some cases the improved
accuracy may not be as valuable as a simple equation.

Next let us examine the in-plane shear forces and torque moment at the blade
root, including the in-plane blade motion. Consider an articulated blade with an
in-plane displacement given by x = ηζ ζ . There are three forces acting in the radial
direction:

i) a centrifugal force m�2r
ii) a radially inward Coriolis force 2�ẋm = 2�ηζ ζ̇m

iii) a radial aerodynamic force Fr, due to the radial drag and an in-plane component
of the lift when the blade flaps

The Coriolis force is due to the product of the rotor rotational speed � and the
in-plane velocity ẋ; this is the force responsible for the βζ̇ flap moment (see section
16.4.1). Thus the radial shear force at the root is

Sr =
∫ R

0

(
Fr + m�2r − 2�ηζ ζ̇m

)
dr

=
∫ R

0
Frdr +�2

∫ R

0
rm dr − 2�ζ̇

∫ R

0
ηζm dr (16.198)

The centrifugal force is constant and is reacted by the identical centrifugal forces on
the other blades. Hence only the aerodynamic and Coriolis forces contribute to the
hub reactions in the non-rotating frame.

Figure 16.10 shows the in-plane forces normal to the r axis that act on the blade
section:

i) an inertial force mẍ = mηζ ζ̈
ii) a centrifugal force m�2x = m�2ηζ ζ

iii) an aerodynamic force Fx, consisting of profile and induced drag terms

The second force arises because the centrifugal force m�2r has a component
(m�2r)(x/r) normal to the r axis that acts in the same direction as the lag motion
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Figure 16.10. Blade section forces producing the in-plane shear at the root.

(Figure 16.10). The in-plane Coriolis force due to the flapping motion is small com-
pared to the centrifugal force and has been neglected. Thus the total in-plane shear
force at the blade root is

Sx =
∫ R

0

(
Fx − mηζ ζ̈ + m�2ηζ ζ

)
dr

=
∫ R

0
Fxdr − (ζ̈ −�2ζ

) ∫ R

0
ηζm dr (16.199)

The torque moment acting on the rotor hub is due to the section in-plane forces as
discussed in deriving the lag equation of motion:

i) an inertial force mẍ
ii) a Coriolis force 2�żz′m

iii) an aerodynamic force Fx

These forces have moment arm r about the center of rotation. The centrifugal force
always passes through the shaft axis and so does not contribute to the torque. The
moment at the root is thus

NL =
∫ R

0
r
(
Fx − mηζ ζ̈ − 2�mββ̇ηβη′

β

)
dr

=
∫ R

0
rFxdr − ζ̈

∫ R

0
rηζm dr − 2�ββ̇

∫ R

0
ηβη

′
βrm dr (16.200)

These results are readily extended to the case of general in-plane bending. As
in section 16.4.3, expand the in-plane deflection as a series in the normal modes:
x = ∑

k ηxkqxk. Then the radial and in-plane shear forces are

Sr =
∫ R

0

(
Fr + m�2r − 2�ẋm

)
dr

=
∫ R

0
Frdr +�2

∫ R

0
rm dr − 2�

∑
k

q̇xk

∫ R

0
ηxkm dr (16.201)

Sx =
∫ R

0

(
Fx − mẍ + m�2x

)
dr

=
∫ R

0
Fxdr −

∑
k

(
q̈xk −�2qxk

) ∫ R

0
ηxkm dr (16.202)
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Neglecting the Coriolis terms, the torque moment is

NL =
∫ R

0
r (Fx − mẍ)dr

=
∫ R

0
rFxdr −

∑
k

q̈xk

∫ R

0
rηxkm dr (16.203)

By expanding the aerodynamic loading Fx as a series in the bending mode shapes as
for the hub moment, the in-plane shear force and the torque moment can be written
as

Sx =
∑

k

qxk�
2(ν2

xk + 1
) ∫ R

0
ηxkm dr (16.204)

NL =
∑

k

qxk�
2ν2

xk

∫ R

0
rηxkm dr (16.205)

These results are not as useful as the corresponding expression for the flap moment,
however, since the blade lag motion qxk must be found in order to evaluate Sx

and NL in this manner. If the in-plane shear and torque are left in terms of the
integrated aerodynamic forces, they can be evaluated even if the analysis neglects
the lag motion.

16.6.2 Non-Rotating Loads

The total forces and moments acting on the rotor hub are obtained by resolving the
rotating forces in the non-rotating frame and summing over all N blades:

T =
N∑

m=1

Sz (16.206)

H =
N∑

m=1

(
Sr cosψm + Sx sinψm

)
(16.207)

Y =
N∑

m=1

(
Sr sinψm − Sx cosψm

)
(16.208)

Mx =
N∑

m=1

NF sinψm (16.209)

My = −
N∑

m=1

NF cosψm (16.210)

Q =
N∑

m=1

NL (16.211)
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where ψm is the azimuth angle of the m-th blade. Working with the hub reactions in
rotor coefficient form is convenient. In terms of dimensionless quantities,

T
NIb

= T/ρR4�2

NIb/ρR5
= ρacR4

Ib

T/ρA(�R)2

(Nc/πR)a
= γ CT

σa
(16.212)

Thus the equations for the hub reactions are divided by NIb, giving

γ
CT

σa
= 1

N

N∑
m=1

Sz

Ib
= γ

N

N∑
m=1

Sz

ac
(16.213)

and similar results for the other forces and moments.
Consider first the rotor thrust. Equation 16.197 for the vertical shear force of

the m-th blade in terms of dimensionless quantities is

Sz

Ib
= γ

∫ 1

0

Fz

ac
dr −

∑
k

Ŝqkq̈(m)k (16.214)

where Ŝqk = ∫ 1
0 ηkm dr/Ib. So

γ
CT

σa
= γ

N

N∑
m=1

∫ 1

0

Fz

ac
dr −

∑
k

Ŝqk

(
1
N

N∑
m=1

q̈(m)k

)
(16.215)

Now from the definition of multiblade coordinates (section 15.4.1), the acceleration
of the coning degree of freedom of the k-th bending mode is

β̈
(k)
0 = 1

N

N∑
m=1

q̈(m)k (16.216)

Hence the rotor thrust becomes

γ
CT

σa
= γ

N

N∑
m=1

∫ 1

0

Fz

ac
dr −

∑
k

Ŝqkβ̈
(k)
0 (16.217)

The first term is the net aerodynamic lift on the rotor, and the second term is the
vertical acceleration due to the coning motion of the blades.

Equation 16.195 for the root flapwise moment on the rotating blade is

NF

Ib
=
∑

k

Îqkαq(m)k

(
ν2

k − 1
)

(16.218)

where Îqkα = ∫ 1
0 rηkm dr/Ib. The pitch and roll moments on the rotor hub are then

−γ 2CMy

σa
=
∑

k

Îqkα

(
ν2

k − 1
) 2

N

N∑
m=1

q(m)k cosψm (16.219)

γ
2CMx

σa
=
∑

k

Îqkα

(
ν2

k − 1
) 2

N

N∑
m=1

q(m)k sinψm (16.220)
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For a rotor with three or more blades, the definitions of the cyclic degrees of freedom
β
(k)
1c and β(k)1s then give⎛⎜⎝−γ 2CMy

σa

γ
2CMx

σa

⎞⎟⎠ =
∑

k

Îqkα

(
ν2

k − 1
) (β(k)1c

β
(k)
1s

)
(16.221)

Using just a single flap mode, the hub moments are then simply proportional to the
rotor tip-path-plane tilt:⎛⎜⎝−γ 2CMy

σa

γ
2CMx

σa

⎞⎟⎠ = Îβ
(
ν2
β − 1

) (β1c

β1s

)
(16.222)

This result was obtained in sections 6.14 and 6.15 for more limited models of the
blade motion. If instead

NF

Ib
= γ

∫ 1

0
r

Fz

ac
dr −

∑
k

Îqkα

(
q̈(m)k + q(m)k

)
(16.223)

(equation 16.192) is used as the expression for the moment, then

−γ 2CMy

σa
= 2γ

N

N∑
k=1

cosψm

∫ 1

0
r

Fz

ac
dr −

∑
k

Îqkα

(
β̈
(k)
1c + 2β̇ (k)1s

)
(16.224)

γ
2CMx

σa
= 2γ

N

N∑
k=1

sinψm

∫ 1

0
r

Fz

ac
dr −

∑
k

Îqkα

(
β̈
(k)
1s − 2β̇ (k)1c

)
(16.225)

In the steady-state case, the tip-path-plane tilt is constant. Then only the aerodynamic
forces contribute to the hub pitch and roll moment, which is the result derived in
section 6.3.

The rotor drag and side forces are obtained by resolving into the non-rotating
frame the in-plane and radial shear forces on the root of the rotating blade:

Sx

Ib
= γ

∫ 1

0

Fx

ac
dr − Ŝζ

(
ζ̈ (m) − ζ (m)) (16.226)

Sr

Ib
= γ

∫ 1

0

Fr

ac
dr − 2Ŝζ ζ̇ (m) (16.227)

where Ŝζ = ∫ 1
0 ηζm dr/Ib (equations 16.199 and 16.198). Only the fundamental lag

mode has been considered for simplicity, and the centrifugal force has been dropped
from Sr since it does not contribute to the total hub forces. Now the definitions of
the cyclic lag degrees of freedom in multiblade coordinates give

2
N

N∑
m=1

[(
ζ̈ (m) − ζ (m)) sinψm + 2ζ̇ (m) cosψm

]
= (
ζ̈1s − 2ζ̇1c − ζ1s − ζ1s

)+ 2
(
ζ̇1c + ζ1s

) = ζ̈1s (16.228)

2
N

N∑
m=1

[(
ζ̈ (m) − ζ (m)) cosψm − 2ζ̇ (m) sinψm

]
= (
ζ̈1c + 2ζ̇1s − ζ1c − ζ1c

)− 2
(
ζ̇1s − ζ1c

) = ζ̈1c (16.229)
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(again assuming the rotor has three or more blades). Hence the rotor drag and side
forces are

γ
2CH

σa
= 2γ

N

N∑
m=1

[
cosψm

∫ 1

0

Fr

ac
dr + sinψm

∫ 1

0

Fx

ac
dr

]
− Ŝζ ζ̈1s (16.230)

γ
2CY

σa
= 2γ

N

N∑
m=1

[
sinψm

∫ 1

0

Fr

ac
dr − cosψm

∫ 1

0

Fx

ac
dr

]
+ Ŝζ ζ̈1c (16.231)

The in-plane forces on the rotor have inertial reactions due to the longitudinal
and lateral shifts of the rotor center-of-gravity that are associated with the cyclic
lag degrees of freedom. Recall that in Chapter 6 the steady-state rotor forces
were expressed as H = β1cT + HTPP and Y = −β1sT + YTPP. To write the present
results in terms of the tilt of the thrust vector with the tip-path plane requires
a detailed consideration of the aerodynamic forces Fx and Fr, which is given in
section 16.8.

Finally, equation 16.200 for the torque on a single blade (neglecting the Coriolis
term), is

NL

Ib
= γ

∫ 1

0
r

Fx

ac
dr − Îζαζ̈ (m)) (16.232)

where Îζα = ∫ 1
0 rηζm dr/Ib. Then the total rotor torque is

γ
CQ

σa
= γ

N

N∑
m=1

∫ 1

0
r

Fx

ac
dr − Îζα ζ̈0 (16.233)

since the collective lag degree of freedom is 1
N

∑
m ζ̈

(m) = ζ̈0.
For a two-bladed rotor the cyclic flap and lag degrees of freedom in the non-

rotating frame do not exist, so different results are obtained. Instead of the cyclic
degrees of freedom such as β1c and β1s, the two-bladed rotor has a single teetering
degree of freedom, β1. Determining the hub moment requires an evaluation of the
sums:

2
N

N∑
m=1

β(m) sinψm = 2 sinψ
1
N

N∑
m=1

β(m)(−1)m = 2β1 sinψ (16.234)

2
N

N∑
m=1

β(m) cosψm = 2 cosψ
1
N

N∑
m=1

β(m)(−1)m = 2β1 cosψ (16.235)

where β1 = 1
2

(
β(2) − β(1)) is the teetering degree of freedom. Then the hub moments

are

−γ 2CMy

σa
= Îβ

(
ν2
β − 1

)
2β1 cosψ (16.236)

γ
2CMx

σa
= Îβ

(
ν2
β − 1

)
2β1 sinψ (16.237)
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Figure 16.11. Definition of the linear
and angular shaft motion.

Similarly, the rotor drag and side force depend on the differential lag degree of
freedom ζ1 = 1

2

(
ζ (2) − ζ (1)):
γ

2CH

σa
= 2γ

N

N∑
m=1

[
cosψm

∫ 1

0

Fr

ac
dr + sinψm

∫ 1

0

Fx

ac
dr

]

− 2Ŝζ
(
(ζ̈1 − ζ1) sinψ + 2ζ̇1 cosψ

)
(16.238)

γ
2CY

σa
= 2γ

N

N∑
m=1

[
sinψm

∫ 1

0

Fr

ac
dr − cosψm

∫ 1

0

Fx

ac
dr

]

+ 2Ŝζ
(
(ζ̈1 − ζ1) cosψ − 2ζ̇1 sinψ

)
(16.239)

Although the steady-state, periodic motion of the two-bladed rotor is the same as for
rotors with three or more blades, the transient dynamics are fundamentally different
because of the absence of the cyclic degrees of freedom.

16.7 Shaft Motion

So far only the motion of the rotor has been considered. The shaft motion is also
an important factor, both for helicopter flight dynamics involving the rigid-body
degrees of freedom and for aeroelastic problems involving the coupled motion of
the airframe and rotor. Figure 16.11 defines the linear and angular hub motion. The
perturbation of the hub position from the equilibrium flight path is given by the
displacements xh, yh, and zh. The perturbed orientation is given by the hub rotations
αx, αy, and αz. For now an inertial reference frame is used, so that the coordinate
frame remains fixed in space during the perturbed motion of the hub.

The shaft motion introduces additional out-of-plane and in-plane acceleration
terms that must be included in the bending equations of motion. Consider the rigid
flap and lag model developed in sections 16.3.1 and 16.4.1. The additional section
accelerations producing flap moments are as follows:

i) an angular acceleration r(α̈x sinψm − α̈y cosψm)

ii) a Coriolis acceleration 2�r(α̇x cosψm + α̇y sinψm)

iii) a vertical acceleration z̈h
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Each of these terms gives a downward inertial force on the section, with moment arm
(r − e) about the offset flap hinge. The angular acceleration (α̈x sinψm − α̈y cosψm)

is the flapwise component of the pitch and roll acceleration of the hub. The Cori-
olis acceleration arises from the cross-product of the angular velocity (α̇x cosψm +
α̇y sinψm) of the rotor disk about the blade radial axis and the rotational velocity of
the section �r. Integrating these forces over the blade span gives the additional flap
moment(∫ R

0
ηβrm dr

)((
α̈x + 2�α̇y

)
sinψm − (α̈y − 2�α̇x

)
cosψm

)
+
(∫ R

0
ηβm dr

)
z̈h

(16.240)
The flap equation of motion becomes

Îβ
(
β̈ + ν2

ββ
)− Îβζ2βζ̇ + Îβα

((
α̈x + 2α̇y

)
sinψm − (α̈y − 2α̇x

)
cosψm

)
+ Ŝβ z̈h = γ

∫ 1

e
ηβ

Fz

ac
dr = γMF (16.241)

where Îβα = ∫ 1
0 rηβm dr/Ib and Ŝβ = ∫ 1

0 ηβm dr/Ib. The shaft motion appears in the
blade equation of motion with periodic coefficients, because it is defined in the
non-rotating frame.

The additional in-plane accelerations producing lag moments on the blade are

i) a hub angular acceleration rα̈z

ii) a hub in-plane linear acceleration (ẍh sinψm − ÿh cosψm)

The angular acceleration term gives an inertial force in the lag direction, and the
linear acceleration gives a force opposing the lag motion; both have moment arms
(r − e) about the lag hinge. Integrating over the span gives the lag moments

−
(∫ R

0
rηζm dr

)
α̈z +

(∫ R

0
ηζm dr

)
(ẍh sinψm − ÿh cosψm) (16.242)

so that the lag equation of motion becomes

Îζ
(
ζ̈ + ν2

ζ ζ
)+ Îβζ2ββ̇ − Îζαα̈z + Ŝζ (ẍh sinψm − ÿh cosψm) = γ

∫ 1

0
ηζ

Fx

ac
dr = γML

(16.243)
where Îζα = ∫ 1

0 rηζm dr/Ib and Ŝζ = ∫ 1
0 ηζm dr/Ib.

Next, transform the flap and lag equations of motion to the non-rotating frame.
The hub acceleration and velocity are independent of the blade index, so the summa-
tion operators act only on the sinψm and cosψm factors. The hub motion contributes
only to the collective and cyclic equations in the non-rotating frame (at least for the
inertial forces). The result for the flap motion is

Îβ
(
β̈0 + ν2

ββ0
)− Îβζ2βtrimζ̇0 + Ŝβ z̈h = γMF0 (16.244)

Îβ
(
β̈1c + 2β̇1s + (ν2

β − 1
)
β1c
)− Îβζ2βtrim

(
ζ̇1c + ζ1s

)− Îβα
(
α̈y − 2α̇x

) = γMF1c

(16.245)

Îβ
(
β̈1s − 2β̇1c + (ν2

β − 1
)
β1s
)− Îβζ2βtrim

(
ζ̇1s − ζ1c

)+ Îβα
(
α̈x + 2α̇y

) = γMF1s

(16.246)
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and for the lag motion:

Îζ
(
ζ̈0 + ν2

ζ ζ0
)+ Îβζ2βtrimβ̇0 − Îζαα̈z = γML0 (16.247)

Îζ
(
ζ̈1c + 2ζ̇1s + (ν2

ζ − 1
)
ζ1c
)+ Îβζ2βtrim

(
β̇1c + β1s

)− Ŝζ ÿh = γML1c (16.248)

Îζ
(
ζ̈1s − 2ζ̇1c + (ν2

ζ − 1
)
ζ1s
)+ Îβζ2βtrim

(
β̇1s − β1c

)+ Ŝζ ẍh = γML1s (16.249)

In the non-rotating frame the inertial coupling between the rotor and shaft motion
is thus quite limited. The coning mode responds to vertical acceleration, the cyclic
flap modes respond to the pitch and roll motion, the collective lag responds to yaw
acceleration of the shaft, and the cyclic lag modes respond to the longitudinal and
lateral hub acceleration. There is no coupling at all of the shaft motion with the
equations of motion for the reactionless degrees of freedom (2c, 2s, . . . , nc, ns, N/2).

All three of the vertical inertial forces due to the shaft motion that produce flap
moments must also be included in the root shear force, which becomes

Sz =
∫ R

0
Fzdr − β̈

∫ R

0
ηβm dr − z̈h

∫ R

0
m dr

− ((α̈x + 2α̇y
)

sinψm − (α̈y − 2α̇x
)

cosψm
) ∫ R

0
rm dr (16.250)

Similarly, the root hub moment is

NF =
∫ R

0
rFzdr − (β̈ +�2β

) ∫ R

0
rηβm dr − z̈h

∫ R

0
rm dr

− ((α̈x + 2α̇y
)

sinψm − (α̈y − 2α̇x
)

cosψm
) ∫ R

0
r2m dr (16.251)

Alternatively, the expression NF = Ib�
2
(
η2
β − 1

)
β can be used here.

The radial acceleration (ẍh cosψm + ÿh sinψm) due to the in-plane hub motion
must be added to the radial shear force:

Sr =
∫ R

0
Frdr − 2�ζ̇

∫ R

0
ηζm dr − (ẍh cosψm + ÿh sinψm)

∫ R

0
m dr (16.252)

The in-plane inertial forces due to the shaft motion that produce lag moments must
be included in the in-plane root shear force and the blade torque:

Sx =
∫ R

0
Fxdr − (ζ̈ −�2ζ

) ∫ R

0
ηζm dr + α̈x

∫ R

0
rm dr

− (ẍh sinψm − ÿh cosψm)

∫ R

0
m dr (16.253)

NL =
∫ R

0
rFxdr − ζ̈

∫ R

0
rηζm dr − 2�ββ̇Iβζ + α̈x

∫ R

0
r2m dr

− (ẍh sinψm − ÿh cosψm)

∫ R

0
rm dr (16.254)

The results for the rotor forces and moments, obtained by summing the root
reaction over all N blades, are simpler because many of the new terms cancel.
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The rotor thrust (equation 16.217) is

γ
CT

σa
= 1

N

N∑
m=1

Sz

Ib
=
(
γ

CT

σa

)
aero

− Ŝβ β̈0 − M̂bz̈h (16.255)

where Ŝβ = ∫ R
0 ηβm dr/Ib and M̂b = ∫ R

0 m dr/Ib. M̂b is the normalized mass of a single
blade. For the pitch and roll moments, we can still use equation 16.222, or equations
16.224 and 16.225 become

−γ 2CMy

σa
= −

(
γ

2CMy

σa

)
aero

− Îβα
(
β̈1c + 2β̇1s

)+ Î0
(
α̈y − 2α̇x

)
(16.256)

γ
2CMx

σa
=

(
γ

2CMx

σa

)
aero

− Îβα
(
β̈1s − 2β̇1c

)− Î0
(
α̈x + 2α̇y

)
(16.257)

where Îβα = ∫ R
0 rηβm dr/Ib and Î0 = ∫ R

0 r2m dr/Ib. The rotor drag and side forces
(equations 16.230 and 16.231) become

γ
2CH

σa
= 2

N

N∑
m=1

(
Sr

Ib
cosψm + Sx

Ib
sinψm

)
=
(
γ

2CH

σa

)
aero

− Ŝζ ζ̈1s − 2M̂bẍh

(16.258)

γ
2CY

σa
= 2

N

N∑
m=1

(
Sr

Ib
sinψm − Sx

Ib
cosψm

)
=
(
γ

2CY

σa

)
aero

+ Ŝζ ζ̈1c − 2M̂bÿh

(16.259)

Finally, the rotor torque (equation 16.233) becomes

γ
CQ

σa
= 1

N

N∑
m=1

NL

Ib
=
(
γ

CQ

σa

)
aero

− Îζα ζ̈0 + Î0α̈z (16.260)

The only inertial contributions to the thrust, drag, and side forces of the rotor are the
reactions to the linear acceleration of the total rotor mass. The angular acceleration
reactions of the entire rotor produce moments on the hub.

The utility of multiblade coordinates is apparent in the interaction between
the rotor and the non-rotating system. The shaft motion appears in the rotating
equations of motion with periodic coefficients, which are eliminated by conversion
to the non-rotating frame. Summing the blade root forces to obtain the total rotor
hub reactions naturally leads to the non-rotating degrees of freedom for the rotor
motion. Moreover, the coupling between the rotor and the fixed system is limited,
because the non-rotating degrees of freedom define the motion of the rotor as
a whole in certain patterns that naturally lead to an association with only certain
components of the shaft motion and hub forces. Specifically, the rotor tip-path-plane
tilt appears with the shaft pitch and roll motion and also with the hub pitch and roll
moments. The cyclic lag degrees of freedom, which produce an in-plane shift of
the rotor center-of-gravity, are associated with the hub in-plane displacements and
forces. The rotor coning motion appears with the vertical shaft displacement and the
rotor thrust, whereas the collective lag motion appears with the shaft yaw and rotor
torque. Finally, the reactionless rotor modes do not couple with the shaft motion
and hub forces at all. In axial flow, there is some additional coupling of the dynamics
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by the aerodynamic forces, but the motion still separates into a vertical system (zh

and αz), a lateral-longitudinal system (xh, yh, αx, and αy), and the reactionless modes.
In forward flight the aerodynamic forces couple all the degrees of freedom of the
helicopter, but this basic decomposition remains a dominant characteristic of the
behavior.

The influence of the shaft motion is different for the case of a two-bladed rotor
because of the absence of the cyclic modes. The equations for β1c and β1s are replaced
by the teetering equation, which including the shaft motion is

Îβ
(
β̈1 + ν2

ββ1
)− Îβζ2βtrimζ̇1 + Îβα

((
α̈x + 2α̇y

)
sinψ − (α̈y − 2α̇x

)
cosψ

) = γMF1

(16.261)
Similarly, an equation for the differential lag motion ζ1 replaces the ζ1c and ζ1s

equations:

Îζ
(
ζ̈1 + ν2

ζ ζ1
)+ Îβζ2βtrimβ̇1 + Ŝζ (ẍh sinψ − ÿh cosψ) = γML1 (16.262)

The equations of motion for β0 and ζ0 given earlier are valid for both N ≥ 3 and
the two-bladed rotor case, as are the results for the rotor thrust and torque. For the
in-plane hub forces, the inertial reaction to the rotor acceleration must be added to
equations 16.238 and 16.239:

�

(
γ

2CH

σa

)
= −2M̂bẍh (16.263)

�

(
γ

2CY

σa

)
= −2M̂bÿh (16.264)

The pitch and roll moments of the two-bladed rotor were obtained in terms of the
tip-path-plane motion and so are unchanged; the shaft motion influences the hub
moments through the solution for β1. The most notable feature of the coupling
between the fixed frame and the two-bladed rotor in both the hub forces and the
shaft motion is the periodic coefficients due to the lack of axisymmetry of the rotor.
As a result, the analysis of the dynamics of a two-bladed rotor is distinctly different
from that for rotors with three or more blades.

In flight dynamics analyses, for helicopters as well as for airplanes, a body axis
system is most frequently used. With a body axis system the coordinate axes remain
fixed in the body during its perturbed motion, whereas an inertial axis system remains
fixed relative to space. Since the trim velocity of the aircraft is defined relative to the
reference axes, the angular velocity of the body axes must rotate the velocity vector
as well, which implies a centrifugal acceleration relative to inertial space:(

dv
dt

)
inertial axes

=
(

dv
dt

)
body axes

+ ω × v (16.265)

The results that have been derived in this section for the shaft motion require
knowing the hub acceleration in inertial space. The rotor in steady flight has trim
velocity components μ in the disk plane and (μ tan i) normal to the disk plane. Then
the inertial accelerations in terms of the body axis motion are

(ẍh)inertial = (
ẍh + α̇yμ tan i

)
body axes (16.266)

(ÿh)inertial = (ÿh − α̇zμ− α̇xμ tan i)body axes (16.267)

(z̈h)inertial = (
z̈h + α̇yμ

)
body axes (16.268)
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In hover, where the trim velocity of the helicopter is zero, there is no difference
between the inertial axes and body axes for a linear analysis of the inertial forces.
The use of body axes affects as well the formulation of the rotor aerodynamic forces
due to shaft motion.

16.8 Aerodynamic Loads

This section derives the aerodynamic forces required to complete the differential
equations describing the helicopter rotor blade motion. So far in this chapter, the
inertial and structural terms of the equations of motion have been derived, and the
net aerodynamic forces required have been defined in terms of integrals of the sec-
tion forces and pitch moment over the blade span. Now these aerodynamic forcing
terms are expressed as functions of the blade and shaft motion and the rotor loading.
Blade element theory is the basis of the rotor aerodynamic model, so the section
loads depend on the aerodynamic environment at that radial station alone, with the
wake influence given by the induced velocity. For the blade torsion dynamics in par-
ticular, unsteady aerodynamic effects must be considered. The forces on the blade
section are derived for the general case of large pitch and inflow, but small angles
must be assumed in order to obtain analytical expressions for the aerodynamic coef-
ficients. For the same reason the effects of stall, compressibility, and reverse flow are
neglected. The small angle assumption is usually very good for the low disk loading
helicopter rotor, and compressibility can be accounted for in a rough fashion by
using the lift-curve slope at the Mach number of a representative blade radius. The
neglect of reverse flow restricts the model to advance ratios below about μ = 0.5,
which covers the speed range of most current helicopters. When the aerodynamic
coefficients are to be evaluated numerically, a more complex aerodynamic model is
easily implemented. The linear differential equations describing the rotor dynamics
are completed by expressing the aerodynamic forces in terms of the perturbation
blade motion. The resulting equations are solved in subsequent chapters. The anal-
ysis begins with a derivation of the forces acting on the blade section.

16.8.1 Section Aerodynamics

Consider the air velocity and aerodynamic forces at the rotor blade section, as shown
in Figure 16.12. A hub plane reference axis system is used for the aerodynamic
analysis. The hub plane is fixed relative to the shaft and thus is tilted and displaced
by the shaft motion. The pitch angle θ is measured from the reference plane. The
velocities uT , uP, and uR are the components of the air velocity seen by the blade,
resolved in the hub plane axis system. The tangential velocity uT is in the hub plane,
positive in the blade drag direction; the radial velocity uR is positive when directed
radially outward; and the perpendicular velocity uP is normal to the reference plane,
positive when directed down through the disk. The resultant velocity in the section
is U = (u2

T + u2
P)

1/2 and the inflow angle is φ = tan−1 uP/uT . Then the blade section
angle-of-attack is α = θ − φ. The aerodynamic lift and drag forces (L and D) are,
respectively, normal to and parallel to the resultant velocity U . Fx and Fz are the
components of the section lift and drag resolved into the hub plane axes. The radial
force Fr is positive outward (in the same direction as uR); Fr consists of a radial
drag force and an in-plane component of the blade lift due to flapwise bending of
the blade. The section aerodynamic moment at the elastic axis is Ma, positive in
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Figure 16.12. Rotor blade section aerodynamics.

the nose-upward direction. The aerodynamic center of the section is a distance xA

behind the elastic axis.
The blade lift and drag forces can be written in terms of the section coefficients:

L = 1
2
ρU 2cc� (16.269)

D = 1
2
ρU 2ccd (16.270)

where ρ is the air density and c is the rotor chord. Dimensionless quantities are used
from this point on in the analysis, so the air density ρ is omitted. The section forces
resolved relative to the hub plane axes are

Fz = L cosφ − D sinφ = (
LuT − DuP

)
/U (16.271)

Fx = L sinφ + D cosφ = (
LuP + DuT

)
/U (16.272)

The section lift and drag coefficients, c� = c�(α,M) and cd = cd(α,M), are functions
of the angle-of-attack and Mach number:

α = θ − φ (16.273)

M = MtipU (16.274)

where Mtip is the tip Mach number (the tip speed �R divided by the speed of
sound) in hover. In fact, the lift and drag of the rotor blade depend on other param-
eters as well, such as the local yaw angle of the flow and unsteady angle-of-attack
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changes. Such effects can be included in a numerical analysis, but are neglected here.
The nose-up moment about the elastic axis is

Ma = −xAL + MAC + MUS = −xA
1
2

U 2cc� + 1
2

U 2c2cmac + MUS (16.275)

where xA is the distance that the aerodynamic center is behind the elastic axis, MAC

is the moment about the aerodynamic center, and MUS is the unsteady aerodynamic
moment.

The radial force on the section is

Fr = uR

U
D − z′Fz = 1

2
UuRccd − z′Fz (16.276)

The first term is the radial drag force, obtained by assuming that the viscous drag
force on the section has the same yaw angle as the local velocity (see section 6.22).
The second term in Fr is the radial component of the normal force Fz due to the
local flapwise bending slope z′. An exact analysis would transform the aerodynamics
forces (L, D, and radial drag) on the section tilted by flap and lag bending (z′ and x′)
to forces relative to the hub plane axes (Fz, Fx, Fr). The bending slopes are assumed
to be small, so Fz and Fx are obtained by just rotating the lift and drag by the inflow
angle φ, neglecting the section tilt. The radial component of the section lift and drag
is then −z′(L cosφ − D sinφ) = −z′Fz. The corresponding term due to lag bending
(x′Fx) is neglected.

Next, substitute for L and D in terms of the section coefficients, and divide by
the two-dimensional lift curve slope a and the section chord c. The result is

Fz

ac
= U

(
uT

c�
2a

− uP
cd

2a

)
(16.277)

Fx

ac
= U

(
uP

c�
2a

+ uT
cd

2a

)
(16.278)

Fr

ac
= UuR

cd

2a
− z′ Fz

ac
(16.279)

Ma

ac
= −xAU 2 c�

2a
+ U2c

cm

ac
+ MUS

2a
(16.280)

The integrals of these forces over the blade span are required in the rotor equations
of motion. The section pitch moment Ma is not considered further until section
16.8.10.

The objective is to obtain the aerodynamic forces in the rotor blade equations
in terms of the perturbed motion of the blade. Thus the perturbation section forces
must be expressed in terms of the perturbations of the velocities and pitch angle.
Each component of the velocity seen by the blade has a trim term, due to operation
of the rotor in its equilibrium state, and a perturbation due to the perturbed motion
of the system. The latter term is due to the system degrees of freedom and is assumed
to be small in deriving linear differential equations describing the rotor dynamics.
Thus the blade pitch and section velocities are written as trim plus perturbation
terms:

θ = (
θ
)

trim + δθ (16.281)

uT = (
uT
)

trim + δuT (16.282)
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uP = (
uP
)

trim + δuP (16.283)

uR = (
uR
)

trim + δuR (16.284)

After this substitution has been made, the subscript “trim” can be dropped. The
perturbation of the angle-of-attack, resultant velocity, and Mach number are

δα = δθ − (uT δuP − uPδuT
)
/U 2 (16.285)

δU = (
uTδuT + uPδuP

)
/U (16.286)

δM = MtipδU (16.287)

and the perturbations of the section coefficients are

δc� = ∂c�
∂α
δα + ∂c�

∂M
δM = c�αδα + c�MδM (16.288)

δcd = ∂cd

∂α
δα + ∂cd

∂M
δM = cdαδα + cdMδM (16.289)

The perturbations of the section aerodynamic forces are obtained by carrying out
the differential operation on the relations for Fz, Fx, and Fr, using the above results to
express the perturbation forces in terms of δθ , δuT , δuP, and δuR. The coefficients of
the perturbation quantities are evaluated at the trim state. The result for the section
forces is as follows:

δ
Fz

ac
= U

(
uT

c�α
2a

− uP
cdα

2a

)
δθ

+
[
−uT

U

(
uT

c�α
2a

− uP
cdα

2a

)
+ uT uP

U

( c�
2a

+ M
c�M
2a

)
− u2

P

U

( cd

2a
+ M

cdM

2a

)
− U

cd

2a

]
δuP

+
[

uP

U

(
uT

c�α
2a

− uP
cdα

2a

)
+ u2

T

U

( c�
2a

+ M
c�M
2a

)
− uT uP

U

( cd

2a
+ M

cdM

2a

)
+ U

c�
2a

]
δuT

= Fzθ δθ + FzPδuP + FzTδuT (16.290)

δ
Fx

ac
= U

(
uP

c�α
2a

+ uT
cdα

2a

)
δθ

+
[
−uT

U

(
uP

c�α
2a

+ uT
cdα

2a

)
+ u2

P

U

( c�
2a

+ M
c�M
2a

)
+ uT uP

U

( cd

2a
+ M

cdM

2a

)
+ U

c�
2a

]
δuP

+
[uP

U

(
uP

c�α
2a

+ uT
cdα

2a

)
+ uT uP

U

( c�
2a

+ M
c�M
2a

)
+ u2

T

U

( cd

2a
+ M

cdM

2a

)
+ U

cd

2a

]
δuT

= Fxθ δθ + FxPδuP + FxTδuT (16.291)
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δ
Fr

ac
= U

(
uR

cdα

2a

)
δθ

+
[
−uT uR

U
cdα

2a
+ uPuR

U

( cd

2a
+ M

cdM

2a

)]
δuP

+
[uPuR

U
cdα

2a
+ uT uR

U

( cd

2a
+ M

cdM

2a

)]
δuT

+
[
U

cd

2a

]
δuR −

(
Fz

ac

)
δz′ − (z′)δ Fz

ac

= Frθ δθ + FrPδuP + FrT δuT + FrRδuR (16.292)

These equations are applicable to low or high inflow and to axial or edgewise flight.
Since the low disk loading helicopter rotor in edgewise flight is characterized by

low inflow, small angles can be assumed in the aerodynamic analysis. Specifically, θ ,
φ, and cd/c� are all assumed to be small compared to unity. So α and uP/uT are also
small, U ∼= uT , and φ ∼= uP/uT . The section forces are then

Fz

ac
∼= L

ac
∼= u2

T
c�
2a

(16.293)

Fx

ac
∼= uT uP

c�
2a

+ u2
T

cd

2a
(16.294)

Fr

ac
∼= uT uR

cd

2a
− z′ Fz

ac
(16.295)

It is usually consistent with the small angle approximation to also assume a constant
lift-curve slope and neglect stall and the zero-lift angle. Then the lift coefficient is
simply c� = aα = a(θ − uP/uT ), and

Fz

ac
= 1

2
u2

Tα = 1
2

(
u2

Tθ − uT uP
)

(16.296)

Fx

ac
= 1

2
uT uPα + u2

T
cd

2a
= 1

2

(
uT uPθ − u2

P

)+ u2
T

cd

2a
(16.297)

With the small angle assumption, the perturbation forces become

δ
Fz

ac
= 1

2
u2

T δθ − 1
2

uT δuP + 1
2

(
uP + 2uTα

)
δuT (16.298)

δ
Fx

ac
= 1

2
uT uPδθ + 1

2

(
uTα − uP

)
δuP +

(
1
2

uPθ + 2uT
cd

2a

)
δuT (16.299)

δ
Fr

ac
= uR

cd

2a
δuT + uT

cd

2a
δuR −

(
Fz

ac

)
δz′ − (z′)δ Fz

ac
(16.300)

In the process of making the small angle approximation we have also neglected
reverse flow, and the terms due to cdα , c�M, and cdM have been dropped. In this
form, the section forces can be integrated analytically, while retaining the basic
characteristics of the rotor aerodynamics.

To complete the specification of the perturbation forces, the trim and perturba-
tion velocities are required. The trim terms are as follows. The components of the
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Figure 16.13. Rotor hub motion and
aerodynamic gust components.

helicopter trim forward speed in the hub plane axes are the advance ratio and inflow
ratio:

μ = V cos iHP

�R
(16.301)

λHP = λi + μ tan iHP (16.302)

The in-plane trim velocity seen by the rotor blade is due to the rotor rotation and the
advance ratio, giving uT = r + μ sinψ and uR = μ cosψ (section 6.1.1). Any aero-
dynamic forces involving uT and uR alone depend only on the advance ratio μ. The
blade pitch θ and normal velocity uP depend on the operating condition of the rotor,
in particular on the thrust coefficient, as well as on the advance ratio. So the aerody-
namic forces involving the trim values of θ or uP require the solution for the blade
angle-of-attack and loading at the given operating state. The velocity and loading of
the rotor blade in edgewise forward flight are periodic because of the rotation of the
blade relative to the forward speed of the helicopter. Hence the aerodynamics of
forward flight introduce periodic coefficients in the equations of motion describing
the dynamics. For hover, or vertical or axial flight, the aerodynamic environment is
axisymmetric, so the differential equations have constant coefficients.

The perturbation velocities depend on the degrees of freedom considered in the
model of the blade motion. The following sections of this chapter are concerned
with deriving the perturbation velocities corresponding to the various models of the
rotor motion and with integrating the resulting perturbation forces to obtain the
required aerodynamic terms in the equations of motion. The rotor shaft motion is
also included in the blade velocity perturbations. The definitions of the displacements
and rotations of the rotor hub are shown in Figure 16.13. The dimensionless shaft
motion variables are assumed to be small. In addition, the excitation of the rotor
by aerodynamic turbulence is considered. The gust velocity components defined
relative to the non-rotating hub plane axes are uG, vG, and wG (longitudinal, lateral,
and vertical components, respectively, as shown in Figure 16.13). The gust velocity
components are assumed to be both uniform throughout space and small (in terms
of the dimensionless velocities, based on the rotor tip speed �R). The aerodynamic
forces due to a uniform perturbation of the wake-induced inflow velocity are also
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found. Such an inflow perturbation can be used to model the unsteady aerodynamics
of the rotor.

16.8.2 Flap Motion

Consider the rigid flap motion of a blade with no hinge offset (section 16.3.1). The
aerodynamic flap moment is

MF =
∫ 1

0
r

Fz

ac
dr (16.303)

For small angles Fz/ac ∼= L/ac ∼= 1
2 u2

Tα, so the perturbation force is

δ
Fz

ac
=
(

1
2

u2
T

)
δθ −

(
1
2

uT

)
δuP (16.304)

The only degree of freedom for the blade is the rigid flap motion β. The blade pitch
control is included, as is a uniform perturbation of the inflow velocity. Hence δθ and
δuP are here

δθ = θ − KPβ (16.305)

δuP = λ+ rβ̇ + βuR (16.306)

The perturbation pitch angle consists of the control input and the kinematic pitch-
flap coupling. The perturbation normal velocity consists of the inflow perturbation,
flapping velocity, and the normal component of the radial velocity uR when the blade
is flapped up. Here θ , λ, and β are small perturbations of the trim quantities. Recall
from Chapter 6 that the pitch angle and normal velocity for the steady-state flapping
solution are

θ = θcon + θtwr − KPβ (16.307)

uP = λHP + rβ̇ + βμ cosψ (16.308)

Since θ and uP are linear functions, the perturbation quantities have the same form.
Substituting for δFz in the flap moment gives

MF = Mθ

(
θ − KPβ

)+ Mλλ+ Mβ̇ β̇ + Mββ (16.309)

where the aerodynamic coefficients are

Mθ =
∫ 1

0

1
2

ru2
T dr = 1

8
+ μ

3
sinψ + μ2

4
sin2 ψ (16.310)

Mλ = −
∫ 1

0

1
2

ruT dr = −
(

1
6

+ μ

4
sinψ

)
(16.311)

Mβ̇ = −
∫ 1

0

1
2

r2uT dr = −
(

1
8

+ μ

6
sinψ

)
(16.312)

Mβ = −
∫ 1

0

1
2

ruT uRdr = uRMλ (16.313)

Including the tip loss factor, the upper limit of integration should be r = B rather
than r = 1. All of these flap moments are due to the lift increment produced
by the blade angle-of-attack change. The identical coefficients were derived in
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section 6.5, where the steady-state solution for the flap motion was obtained by
assuming a Fourier series for the flap response. Here we have a linear differential
equation for the perturbed flap motion. In hover (μ = 0) this differential equa-
tion has constant coefficients. In forward flight the aerodynamic coefficients in the
equation of motion are periodic functions of the azimuth angle ψ .

For a fundamental flapping mode that is applicable generally to offset-hinge
articulated rotors and hingeless rotors, the required flap moment is

MF =
∫ 1

0
η

Fz

ac
dr (16.314)

where η(r) is the out-of-plane mode shape. With the deflection z = ηβ now, the
normal velocity is

δuP = λ+ ż + z′uR = λ+ ηβ̇ + η′βuR (16.315)

The flap moment is again written as

MF = Mθ

(
θ − KPβ

)+ Mλλ+ Mβ̇ β̇ + Mββ (16.316)

where the aerodynamic coefficients are

Mθ =
∫ 1

0

1
2
ηu2

T dr = 1
8

c2 + μ

3
c1 sinψ + μ2

4
c0 sin2 ψ (16.317)

Mλ = −
∫ 1

0

1
2
ηuT dr = −

(
1
6

c1 + μ

4
c0 sinψ

)
(16.318)

Mβ̇ = −
∫ 1

0

1
2
η2uT dr = −

(
1
8

d1 + μ

6
d0 sinψ

)
(16.319)

Mβ = −
∫ 1

0

1
2
ηη′uT uRdr = −μ cosψ

(
1
6

f1 + μ

4
f0 sinψ

)
(16.320)

with cn = (n + 2)
∫ 1

0 ηrndr, dn = (n + 3)
∫ 1

0 η
2rndr, and fn = (n + 2)

∫ 1
0 ηη

′rndr (see
also section 6.15).

For the case of out-of-plane bending of the blade (section 16.3.2) the aerody-
namic force is

MFk =
∫ 1

0
ηk

Fz

ac
dr (16.321)

and z = ∑
i ηiqi gives

δθ = θ −
∑

i

KPiqi (16.322)

δuP = λ+
∑

i

ηiq̇i +
∑

i

η′
iqiuR (16.323)

Then

MFk = Mqkθ

(
θ −

∑
i

KPiqi

)
+ Mqkλλ+

∑
i

(
Mqkq̇i q̇i + Mqkqi qi

)
(16.324)
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where the aerodynamic coefficients are

Mqkθ =
∫ 1

0

1
2
ηku2

T dr (16.325)

Mqkλ = −
∫ 1

0

1
2
ηkuT dr (16.326)

Mqkq̇i = −
∫ 1

0

1
2
ηkηiuT dr (16.327)

Mqkqi = −
∫ 1

0

1
2
ηkη

′
iuT uRdr (16.328)

The influence of the rotor wake on the unsteady aerodynamic forces of the blade
can be accounted for by using an appropriate model for the inflow perturbation λ.
Alternatively, the quasistatic lift can be multiplied by a lift deficiency function C′(k).
Then the factorC′ must be included in the integrands of the aerodynamic coefficients;
for example

Mθ =
∫ 1

0
C′(k)

1
2

ru2
T dr (16.329)

The reduced frequency and therefore C′ vary along the blade span, but often the lift
deficiency function can be evaluated just at an effective radius (typically 0.75R),in
which case

Mθ
∼= C′(ke)

∫ 1

0

1
2

ru2
T dr (16.330)

The lift deficiency function is based on harmonic motion and hence is applica-
ble to the frequency response or flutter boundary calculation. In forward flight,
Theodorsen’s function should be used for C′(k). If the lift deficiency function is
to be integrated numerically, the reduced frequency should be based on the local
free stream velocity: k = ωb/uT . For the low harmonics of flap motion the reduced
frequency is small, and the near shed wake effects are small (Theodorsen’s function
C ∼= 1). In hover at low thrust, the returning shed wake effects can be significant,
and Loewy’s lift deficiency function should be used for C′ (see section 10.7). When
the spacing between the wake spirals is small and oscillation occurs at a harmonic of
the rotor speed so that the layers of wake vorticity are in phase, Loewy’s function
substantially reduces the blade lift.

16.8.3 Flap and Lag Motion

The aerodynamic forces required for the fundamental flap and lag motions of a rotor
blade are

MF =
∫ 1

0
ηβ

Fz

ac
dr (16.331)

ML =
∫ 1

0
ηζ

Fx

ac
dr (16.332)
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(see section 16.4.1). Here ηβ and ηζ are the mode shapes for the flap (purely out-
of-plane) and lag (purely in-plane) motion, respectively. The perturbations of the
section forces are

δ
Fz

ac
= 1

2
u2

T δθ − 1
2

uT δuP + 1
2

(
uP + 2uTα

)
δuT (16.333)

δ
Fx

ac
= 1

2
uT uPδθ + 1

2

(
uTα − uP

)
δuP +

(
1
2

uPθ + 2uT
cd

2a

)
δuT (16.334)

In the case of the lag degree of freedom, the in-plane force and velocity must be
considered. The in-plane velocity perturbation δuT produces dynamic pressure and
small angle-of-attack changes. The resulting lift perturbation is much smaller than
the lift due to δθ and δuP, which directly produce angle-of-attack changes. The in-
plane forces are due to the induced drag perturbations and hence are much smaller
than the out-of-plane forces. The δuT term of δFx also has a profile drag change
due to the dynamic pressure perturbation. The blade pitch and normal velocity
perturbations are

δθ = θ − KPβ (16.335)

δuP = λ+ ηββ̇ + η′
ββuR (16.336)

as earlier. The lag motion produces a perturbation of the in-plane blade velocity:

δuT = −ηζ ζ̇ − η′
ζ ζuR (16.337)

Substituting for the force and velocity perturbations then gives the flap and lag
moments:

MF = Mθ

(
θ − KPβ

)+ Mλλ+ Mβ̇ β̇ + Mββ + Mζ̇ ζ̇ + Mζ ζ (16.338)

ML = Qθ

(
θ − KPβ

)+ Qλλ+ Qβ̇ β̇ + Qββ + Qζ̇ ζ̇ + Qζ ζ (16.339)

where the aerodynamic coefficients are

Mθ =
∫ 1

0

1
2
ηβu2

T dr (16.340)

Mλ = −
∫ 1

0

1
2
ηβuT dr (16.341)

Mβ̇ = −
∫ 1

0

1
2
η2
βuT dr (16.342)

Mβ = −uR

∫ 1

0

1
2
ηβη

′
βuT dr (16.343)

Mζ̇ = −
∫ 1

0

1
2
ηβηζ

(
uP + 2uTα

)
dr (16.344)

Mζ = −uR

∫ 1

0

1
2
ηβη

′
ζ

(
uP + 2uTα

)
dr (16.345)

Qθ =
∫ 1

0

1
2
ηζuT uPdr (16.346)

Qλ =
∫ 1

0

1
2
ηζ
(
uTα − uP

)
dr (16.347)
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Qβ̇ =
∫ 1

0

1
2
ηζ ηβ

(
uTα − uP

)
dr (16.348)

Qβ = uR

∫ 1

0

1
2
ηζ η

′
β

(
uTα − uP

)
dr (16.349)

Qζ̇ = −
∫ 1

0
η2
ζ

(
1
2

uPθ + 2uT
cd

2a

)
dr (16.350)

Qζ = −uR

∫ 1

0
ηζ η

′
ζ

(
1
2

uPθ + 2uT
cd

2a

)
dr (16.351)

The coefficients Mθ , Mλ, Mβ̇ , and Mβ are the flap moments produced by the
lift changes due to angle-of-attack perturbations. These coefficients are therefore
defined entirely by the rotor advance ratio and the flapping mode shape of the
blade. The remaining coefficients involve either in-plane velocity or in-plane force
or both, and therefore they require the solution for the trim blade motion and load-
ing (that is, θ , uP, and α as well as uT and uP) to be evaluated. These coefficients
then depend on the rotor operating state, particularly the thrust coefficient.

In hover or vertical flight, where the trim solution for the blade loading is
axisymmetric, the aerodynamic coefficients are more easily evaluated than in forward
flight. The trim velocities in vertical flight are uT = r, uP = λHP, and uR = 0; the
blade angle-of-attack becomes α = θ − λHP/r. To evaluate the integrals analytically,
assume that the induced velocity λHP is uniform over the rotor disk and that the
blade mode shapes are ηβ = ηζ = r. If the coefficients are evaluated numerically, the
actual mode shapes can be used, and perhaps also the combined blade element and
momentum theory result for nonuniform inflow. For hover or vertical flight,

Mθ =
∫ 1

0

1
2

r3dr = 1
8

(16.352)

Mλ = −
∫ 1

0

1
2

r2dr = −1
6

(16.353)

Mβ̇ = −
∫ 1

0

1
2

r3dr = −1
8

(16.354)

Mζ̇ = −
∫ 1

0

1
2

r2(λHP + 2rα
)
dr = −

(
λHP

6
+ 2

∫ 1

0

1
2

r3α dr

)
(16.355)

Qθ =
∫ 1

0

1
2

r2λHPdr = λHP

6
(16.356)

Qλ =
∫ 1

0

1
2

r
(
rα − λHP

)
dr =

∫ 1

0

1
2

r2α dr − λHP

4
(16.357)

Qβ̇ =
∫ 1

0

1
2

r2(rα − λHP
)
dr =

∫ 1

0

1
2

r3α dr − λHP

6
(16.358)

Qζ̇ = −
∫ 1

0
r2
(

1
2
λHPθ + 2r

cd

2a

)
dr = −

(
λHP

∫ 1

0

1
2

r2θ dr + cd

4a

)
(16.359)

and Mβ = Mζ = Qβ = Qζ = 0. These coefficients can be expressed directly in terms
of the rotor thrust. Momentum theory relates the induced velocity and thrust: for
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example, in hover λHP = κ√CT/2. Recall that the definition of the thrust coefficient
is

CT

σa
=
∫ 1

0

Fz

ac
dr =

∫ 1

0

1
2

r2α dr (16.360)

So integrals of the blade angle-of-attack distribution can be related to the thrust.
With α = θ − λHP/r = θ0 + θtwr − λHP/r,

CT

σa
= θ.75

6
− λHP

4
(16.361)

So ∫ 1

0

1
2

r3α dr = θ.8

8
− λHP

6
= 3

4
CT

σa
+ λHP

48
+ θtw

160
(16.362)∫ 1

0

1
2

r2θ dr = CT

σa
+ λHP

4
(16.363)

The results for the aerodynamic coefficients are

Mζ̇ = −
(

3
2

CT

σa
+ 5

24
λHP + 1

80
θtw

)
(16.364)

Qλ = CT

σa
− λHP

4
(16.365)

Qβ̇ = 3
4

CT

σa
− 7

48
λHP + 1

160
θtw (16.366)

Qζ̇ = −
[
λHP

(
CT

σa
+ λHP

4

)
+ cd

4a

]
(16.367)

The rotor thrust coefficient thus defines these aerodynamic coefficients.

16.8.4 Non-Rotating Frame

The aerodynamic flap moment on the m-th blade of an N-bladed rotor has been
obtained in the following form:

M(m)
F = Mθ

(
θ (m) − KPβ

(m))+ Mλλ+ Mβ̇ β̇
(m) + Mββ

(m) (16.368)

The aerodynamic forces in the non-rotating frame are obtained by introducing multi-
blade coordinates and evaluating the summations,

MF0 = 1
N

N∑
m=1

M(m)
F (16.369)

MFnc = 2
N

N∑
m=1

M(m)
F cos nψm (16.370)

MFns = 2
N

N∑
m=1

M(m)
F sin nψm (16.371)

MFN/2 = 1
N

N∑
m=1

M(m)
F (−1)m (16.372)
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where ψm = ψ + m�ψ is the azimuth angle of the m-th blade (�ψ = 2π/N). When
the aerodynamic coefficients are independent of ψm, as for the hovering rotor, the
summation operators act only on the degrees of freedom, not on the aerodynamic
coefficients. The summations are easily evaluated using the definitions of the non-
rotating degrees of freedom and the corresponding results for their time derivatives
(see section 15.4.1). The result for constant coefficients is

MF0 = Mθ (θ0 − KPβ0)+ Mλλ+ Mβ̇ β̇0 (16.373)

MFnc = Mθ (θnc − KPβnc)+ Mβ̇

(
β̇nc + nβns

)
(16.374)

MFns = Mθ (θns − KPβns)+ Mβ̇

(
β̇ns − nβnc

)
(16.375)

MFN/2 = Mθ

(
θN/2 − KPβN/2

)+ Mβ̇ β̇N/2 (16.376)

(recall that Mβ = 0 in hover). In forward flight the aerodynamic coefficients are
periodic functions ofψm, and the evaluation of the summations is more complicated.
In section 15.4.3 the techniques for converting the equations of motion to the non-
rotating frame were discussed. The solutions of differential equations with periodic
coefficients have a number of unique characteristics. A transformation of the degrees
of freedom cannot change the physical behavior of a system, although it can make the
analysis easier. Therefore, periodic coefficients must appear in the rotor equations
in the non-rotating frame if they appear in the rotating frame. Moreover, with
periodic coefficients the differential equations in the non-rotating frame depend on
the number of blades. Using the forward flight aerodynamic coefficients given in
section 16.8.2, the flap moments in the non-rotating frame are as follows. In these
matrices, Cn = cos nψ and Sn = sin nψ . For a two-bladed rotor (N = 2),

(
MF0

MF1

)
=
[ 1

8

(
1 + μ2

)− μ2

8 C2
μ

3 S1

μ

3 S1
1
8

(
1 + μ2

)− μ2

8 C2

](
θ0 − KPβ0

θ1 − KPβ1

)

−
[ 1

8
μ

6 S1

μ

6 S1
1
8

](
β̇0

β̇1

)

−
[ μ2

8 S2
μ

6 C1

μ

6 C1
μ2

8 S2

](
β0

β1

)
+
[ − 1

6

−μ

4 S1

]
λ (16.377)

For a three-bladed rotor (N = 3),⎛⎝ MF0

MF1c

MF1s

⎞⎠

=
⎡⎣ 1

8

(
1 + μ2

) −μ2

16 C3
μ

6 − μ2

16 S3

−μ2

8 C3
1
8

(
1 + 1

2μ
2
)+ μ

6 S3 −μ

6 C3
μ

3 − μ2

8 S3 −μ

6 C3
1
8

(
1 + 3

2μ
2
)− μ

6 S3

⎤⎦⎛⎝ θ0 − KPβ0

θ1c − KPβ1c

θ1s − KPβ1s

⎞⎠

−
⎡⎣ 1

8 0 μ

12
0 1

8 + μ

12 S3 − μ

12C3
μ

6 − μ

12C3
1
8 − μ

12C3

⎤⎦⎛⎝ β̇0

β̇1c

β̇1s

⎞⎠
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−
⎡⎣ 0 μ2

16 S3 −μ2

16 C3
μ

6 + μ2

8 S3
μ

6 C3
1
8

(
1 + 1

2μ
2
)+ μ

6 S3

−μ2

8 C3 − 1
8

(
1 − 1

2μ
2
)+ μ

6 S3 −μ

6 C3

⎤⎦⎛⎝ β0

β1c

β1s

⎞⎠

+
⎡⎣− 1

6
0

−μ

4

⎤⎦ λ (16.378)

For a four-bladed rotor (N = 4),⎛⎜⎝
MF0

MF1c

MF1s

MF2

⎞⎟⎠

=

⎡⎢⎢⎢⎣
1
8

(
1 + μ2

)
0 μ

6 −μ2

8 C2

0 1
8

(
1 + 1

2μ
2
)− μ2

16 C4 −μ2

16 S4
μ

3 S2
μ

3 −μ2

16 S4
1
8

(
1 + 3

2μ
2
)+ μ2

16 C4 −μ

3 C2

−μ2

8 C2
μ

6 S2 −μ

6 C2
1
8 (1 + μ2)

⎤⎥⎥⎥⎦

×

⎛⎜⎝
θ0 − KPβ0

θ1c − KPβ1c

θ1s − KPβ1s

θ2 − KPβ2

⎞⎟⎠

−

⎡⎢⎢⎣
1
8 0 μ

12 0
0 1

8 0 μ

6 S2
μ

6 0 1
8 −μ

6 C2

0 μ

12 S2 − μ

12C2
1
8

⎤⎥⎥⎦
⎛⎜⎝
β̇0

β̇1c

β̇1s

β̇2

⎞⎟⎠

−

⎡⎢⎢⎢⎣
0 0 0 μ2

8 S2
μ

6
μ2

16 S4
1
8

(
1 + 1

2μ
2
)− μ2

16 C4
μ

6 C2

0 − 1
8

(
1 − 1

2μ
2
)− μ2

16 C4 −μ2

16 S4
μ

6 S2
μ2

8 S2
μ

6 C2
μ

6 S2 0

⎤⎥⎥⎥⎦
⎛⎜⎝
β0

β1c

β1s

β2

⎞⎟⎠

+

⎡⎢⎣
− 1

6
0

−μ

4
0

⎤⎥⎦ λ (16.379)

For the two-bladed rotor the pitch control variables are collective pitch θ0 = 1
2

(
θ (2) +

θ (1)
)

and differential pitch θ1 = 1
2

(
θ (2) − θ (1)). The usual swashplate control gives

θ1 = θ1c cosψ + θ1s sinψ . Also observe that increasing the number of blades has the
effect of clearing the periodic coefficients from the lower degrees of freedom and
equations, although the periodicity always remains in the higher elements of the
matrices.

The analysis of the time-invariant system response is much simpler than the anal-
ysis of the periodic system response, and more powerful tools are available. Thus
we are interested in the possibility of an accurate constant coefficient representation
of the rotor dynamics. Such a representation can only be approximate, since it can
never correctly model all the behavior of a periodic system. From these equations
for the flap moments, it is clear that the constant coefficient approximation should
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be introduced in the non-rotating frame, after the introduction of multiblade coor-
dinates. If the mean values of the aerodynamic coefficients in the rotating frame are
used, all the influence of forward flight is lost except for an increase of orderμ2 in Mθ .
The mean values of the coefficients in the non-rotating frame include some of the
higher harmonics of the coefficients in the rotating frame. From the earlier results
for three-bladed and four-bladed rotors, the constant coefficient approximation for
the flap moments is⎛⎝ MF0

MF1c

MF1s

⎞⎠ =
⎡⎣ 1

8

(
1 + μ2

)
0 μ

6
0 1

8

(
1 + 1

2μ
2
)

0
μ

3 0 1
8

(
1 + 3

2μ
2
)
⎤⎦⎛⎝ θ0 − KPβ0

θ1c − KPβ1c

θ1s − KPβ1s

⎞⎠
−
⎡⎣ 1

8 0 μ

12
0 1

8 0
μ

6 0 1
8

⎤⎦⎛⎝ β̇0

β̇1c

β̇1s

⎞⎠
−
⎡⎣ 0 0 0
μ

6 0 1
8

(
1 + 1

2μ
2
)

0 − 1
8

(
1 − 1

2μ
2
)

0

⎤⎦⎛⎝ β0

β1c

β1s

⎞⎠
+
⎡⎣− 1

6
0

−μ

4

⎤⎦ λ (16.380)

There are additional degrees of freedom and equations for N ≥ 4. Since increas-
ing the number of blades tends to sweep the periodic coefficients to the higher
degrees of freedom, it is expected that for a rotor with a large number of blades
the constant coefficient approximation is a good representation of the dynamics
involving primarily the collective and cyclic degrees of freedom (β0, β1c, and β1s

here).
Alternatively, the constant coefficient approximation is readily obtained directly

from the rotating equation. Consider a typical term in the non-rotating equation, of
the form

2
N

N∑
m=1

(
M(m)
θ θ (m)

)
cosψm (16.381)

Substituting the multiblade coordinates for θ (m) gives

2
N

N∑
m=1

M(m)
θ

[
θ0 cosψm + θ1c

1
2

(
1 + cos 2ψm

)+ θ1s
1
2

sin 2ψm

]
(16.382)

If the complete (periodic) coefficient is required, the evaluation of the summation
over M(m)

θ is rather complicated and also depends on N. If only the mean value of the
coefficient is required, the summation operator simply picks out the corresponding
harmonic in the Fourier series expansion of M(m)

θ . Hence in the present example we
obtain

θ0M1c
θ + θ1c

(
M0
θ + 1

2
M2c
θ

)
+ θ1s

1
2

M2s
θ (16.383)
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where Mnc
θ and Mns

θ are the Fourier series harmonics of Mθ . The complete result for
the β0, β1c, and β1s flap moments is⎛⎝ MF0

MF1c

MF1s

⎞⎠ =
⎡⎣ M0

θ 0 1
2 M1s

θ

0 M0
θ + 1

2 M2c
θ 0

M1s
θ 0 M0

θ − 1
2 M2c

θ

⎤⎦⎛⎝ θ0 − KPβ0

θ1c − KPβ1c

θ1s − KPβ1s

⎞⎠

+

⎡⎢⎣ M0
β̇

0 1
2 M1s

β̇

0 M0
β̇

+ 1
2 M2c

β̇
0

M1s
β̇

0 M0
β̇

− 1
2 M2c

β̇

⎤⎥⎦
⎛⎝ β̇0

β̇1c

β̇1s

⎞⎠

+

⎡⎢⎢⎣
0 1

2

(
M1c
β − M1s

β̇

)
0

M1c
β 0 M0

β̇
+ 1

2

(
M2c
β̇

+ M2s
β

)
0 −M0

β̇
+ 1

2

(
M2c
β̇

+ M2s
β

)
0

⎤⎥⎥⎦
⎛⎝ β0

β1c

β1s

⎞⎠

+
⎡⎣ M0

λ

0
M1s
λ

⎤⎦ λ (16.384)

Use has been made of the fact that all the odd-cosine and even-sine harmonics of
Mθ , Mβ̇ , and Mλ are zero, as are the even-cosine and odd-sine harmonics of Mβ .
Expressions are available for the harmonics of the coefficients Mθ , Mβ̇ , Mβ , and Mλ

in forward flight. Substituting the results for the harmonics calculated with ηβ = r
gives the previous result for the constant coefficient approximation.

Often it is neither necessary nor possible to obtain explicit expressions for
the periodic coefficients in the non-rotating frame, as was done here for the flap
moments. Because the conversion of the equations to the non-rotating frame is
rather tedious and must be repeated for every value of N, such an approach is jus-
tified only for analytical investigations with a small number of degrees of freedom.
Moreover, with any but the simplest models the harmonics of the coefficients in the
rotating frame must themselves be evaluated numerically. Thus a general procedure
is desired for converting the rotor blade equations of motion to the non-rotating
frame, one that can easily be implemented in numerical investigations. Consider
again the flap moment (equation 16.368), where the aerodynamic coefficients are
periodic functions of ψm. Substituting multiblade coordinates for θ (m) and β(m),
and applying the summation operators to convert the equations to the non-rotating
frame, the equations are⎛⎝ MF0

MF1c

MF1s

⎞⎠ = 1
N

N∑
m=1

⎡⎣ Mθ MθC MθS
Mθ2C Mθ2C2 Mθ2CS
Mθ2S Mθ2CS Mθ2S2

⎤⎦⎛⎝ θ0 − KPβ0

θ1c − KPβ1c

θ1s − KPβ1s

⎞⎠
+ 1

N

N∑
m=1

⎡⎣ Mβ̇ Mβ̇C Mβ̇S
Mβ̇2C Mβ̇2C2 Mβ̇2CS
Mβ̇2S Mβ̇2CS Mβ̇2S2

⎤⎦⎛⎝ β̇0

β̇1c

β̇1s

⎞⎠
+ 1

N

N∑
m=1

⎡⎣ Mβ MβC − Mβ̇S MβS + Mβ̇C
Mβ2C Mβ2C2 − Mβ̇2CS Mβ2CS + Mβ̇2C2

Mβ2S Mβ2CS − Mβ̇2S2 Mβ2S2 + Mβ̇2CS

⎤⎦⎛⎝ β0

β1c

β1s

⎞⎠
+ 1

N

N∑
m=1

⎡⎣ Mλ

Mλ2C
Mλ2S

⎤⎦ λ (16.385)
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where C = cosψm and S = sinψm. The summation of the coefficients over all the
blades (m = 1 to N) is to be performed numerically now. The corresponding rows
and columns of these matrices are easily obtained for the βnc, βns, and βN/2 degrees of
freedom as required, depending on the number of blades. Each row of a matrix has
one of the factors 1, 2 cos kψm, 2 sin kψm, or (−1)m from the summation operator.
Each column has one of the factors 1, cos nψm, sin nψm, or (−1)m from the multiblade
coordinates (or 0, −n sin nψm, n cos nψm, 0 for the Coriolis terms resulting from
the transformation of time derivatives). The form of this result does not depend
on the number of blades, except for the size of the matrices. It is the result of
the summations over all the blades that depends on N. See also the discussion in
section 15.4.3.

The constant coefficient approximation requires the mean values of the equa-
tion coefficients in the non-rotating frame, which are obtained by applying the
operator

1
2π

∫ 2π

0

(
. . .
)
dψ (16.386)

to the matrices above. This operator produces harmonics of the coefficients,
which can be evaluated using numerical integration. The result is the replace-
ment of the summation over the number of blades by a summation over the rotor
azimuth:

1
N

N∑
m=1

{
. . .
}

M(ψm)→ 1
J

J∑
j=1

{
. . .
}

M(ψ j) (16.387)

with the coefficient evaluated at J points equally spaced around the azimuth, so
ψ j = j�ψ and �ψ = 2π/J.

16.8.5 Hub Reactions in Rotating Frame

To evaluate the net rotor forces acting on the hub, first the shears and moments at
the root of an individual blade must be found. The blade motion considered is the
fundamental flap and lag modes. The perturbation forces and velocities for this case
were given in section 16.8.3. The vertical shear forces at the root are∫ 1

0

Fz

ac
dr = Tθ

(
θ − KPβ

)+ Tλλ+ Tβ̇ β̇ + Tββ + Tζ̇ ζ̇ + Tζ ζ (16.388)

where the aerodynamic coefficients are the same as for the flap moments, but without
the factor ηβ in the integrands:

Tθ =
∫ 1

0

1
2

u2
T dr = 1

6
+ μ

2
sinψ + μ2

2
sin2 ψ (16.389)

Tλ = −
∫ 1

0

1
2

uT dr = −
(

1
4

+ μ

2
sinψ

)
(16.390)

Tβ̇ = −
∫ 1

0

1
2
ηβuT dr = −

(
1
6

+ μ

4
sinψ

)
(16.391)

Tβ = −uR

∫ 1

0

1
2
η′
βuT dr = −uR

(
1
4

+ μ

2
sinψ

)
(16.392)
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Tζ̇ = −
∫ 1

0

1
2
ηζ
(
uP + 2uTα

)
dr (16.393)

Tζ = −uR

∫ 1

0

1
2
η′
ζ

(
uP + 2uTα

)
dr (16.394)

Here Tβ̇ and Tβ have been evaluated using ηβ = r. For hover, Tζ = 0 and

Tζ̇ = −
(
λHP

4
+ 2

∫ 1

0

1
2

r2α dr

)
= −

(
λHP

4
+ 2CT

σa

)
(16.395)

assuming that the induced velocity is uniform and ηζ = r. The behavior of these
aerodynamic coefficients for thrust is similar to the behavior of the flap moments,
with just a change in the numerical constants because the factor ηβ has been removed
from the integrands.

The flapwise aerodynamic moment at the rotor hub is
∫ 1

0 r(Fz/ac)dr, which can
be evaluated from the flap moment MF by simply replacing the mode shape ηβ by
r. Alternatively, the hub moment can be obtained directly from the flap response
using NF = Ib�

2(ν2
β − 1)β.

The perturbation of the section radial force is

δ
Fr

ac
= uR

cd

2a
δuT + uT

cd

2a
δuR −

(
Fz

ac

)
δz′ − (z′)δ Fz

ac
(16.396)

=
(

−z′ 1
2

u2
T

)
δθ +

(
z′ 1

2
uT

)
δuP +

(
uR

cd

2a
− z′ 1

2

(
uP + 2uTα

))
δuT

+
(

uT
cd

2a

)
δuR −

(
Fz

ac

)
δz′ (16.397)

The perturbation velocities are given in section 16.8.3. Here we also require δuR =
η′
ζ ζμ sinψ and δz′ = η′

ββ. Then the radial aerodynamic shear force at the blade root
is ∫ 1

0

Fr

ac
dr = Rθ

(
θ − KPβ

)+ Rλλ+ Rβ̇ β̇ + Rββ + Rζ̇ ζ̇ + Rζ ζ (16.398)

where

Rθ = −
∫ 1

0
z′ 1

2
u2

T dr (16.399)

Rλ =
∫ 1

0
z′ 1

2
uT dr (16.400)

Rβ̇ =
∫ 1

0
z′ 1

2
ηβuT dr (16.401)

Rβ = −
∫ 1

0

Fz

ac
η′
βdr + uR

∫ 1

0
z′ 1

2
η′
βuT dr (16.402)

Rζ̇ = −
∫ 1

0
ηζ

(
uR

cd

2a
− z′ 1

2

(
uP + 2uTα

))
dr (16.403)

Rζ =
∫ 1

0
η′
ζ

[
−uR

(
uR

cd

2a
− z′ 1

2

(
uP + 2uTα

))+ uT
cd

2a
μ sinψ

]
dr (16.404)
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Most of the terms in these aerodynamic coefficients are due to the radial tilt of the
thrust vector. The coefficient Rβ , which gives the radial force due to flap displace-
ment, is particularly important. Assuming ηβ = r, the first term in Rβ is

−
∫ 1

0

Fz

ac
dr = − Sz

ac
= − CT

σa
(16.405)

where Sz = T/N is the thrust of a single blade. So this term gives a radial force
�R = −(T/N)β, which is just the in-plane component of the blade thrust when it
is tilted by flap deflection of the blade. Because of the importance of this term, we
write

Rβ = − CT

σa
+ R̂β (16.406)

where

R̂β =
∫ 1

0

(
CT

σa
− 1

2
u2

Tαη
′
β

)
dr + uR

∫ 1

0
z′ 1

2
η′
βuT dr (16.407)

R̂β is non-zero if η′
β �= 1 or in forward flight where the radial velocity uR is nonzero

and the blade lift varies around the azimuth.
Assuming that the trim slope of the blade z′ is independent of r (hence written

z′ = η′
ββ = βtrim), the radial force aerodynamic coefficients can be related to the

corresponding vertical force coefficients. For example,

Rθ ∼= −z′
∫ 1

0

1
2

u2
T dr = −z′Tθ (16.408)

The coefficients can be readily evaluated for the hover case. Assuming uniform
inflow, ηβ = ηζ = r, and constant z′, we obtain

Rθ = −z′

6
(16.409)

Rλ = z′

4
(16.410)

Rβ̇ = z′

6
(16.411)

Rζ̇ = z′
(
λHP

4
+ 2CT

σa

)
(16.412)

and R̂β = Rζ = 0.
The in-plane aerodynamic shear force at the blade root is obtained from the

section drag force Fx as was the lag moment, giving∫ 1

0

Fx

ac
dr = Hθ

(
θ − KPβ

)+ Hλλ+ Hβ̇ β̇ + Hββ + Hζ̇ ζ̇ + Hζ ζ (16.413)

with the aerodynamic coefficients as follows:

Hθ =
∫ 1

0

1
2

uT uPdr (16.414)

Hλ =
∫ 1

0

1
2

(
uTα − uP

)
dr (16.415)
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Hβ̇ =
∫ 1

0

1
2
ηβ
(
uTα − uP

)
dr (16.416)

Hβ = uR

∫ 1

0

1
2
η′
β

(
uTα − uP

)
dr (16.417)

Hζ̇ = −
∫ 1

0
ηζ

(
1
2

uPθ + 2uT
cd

2a

)
dr (16.418)

Hζ = −uR

∫ 1

0
η′
ζ

(
1
2

uPθ + 2uT
cd

2a

)
dr (16.419)

The coefficient Hβ̇ , which gives the in-plane force due to flapping velocity, is of
particular importance. For hover,

Hβ̇ =
∫ 1

0

1
2

(
r2α − rλHP

)
dr = CT

σa
− λHP

4
(16.420)

assuming ηβ = r. The first term is an in-plane force �H = (T/N)β̇. The flapping
velocity gives an angle-of-attack change δα = −ηββ̇/r = −β̇ that tilts the thrust vec-
tor backward and thus produces an in-plane shear force on the blade. This coefficient
is therefore written as

Hβ̇ = CT

σa
+ Ĥβ̇ (16.421)

where

Ĥβ̇ =
∫ 1

0

(
1
2
ηβuTα − CT

σa
− 1

2
ηβuP

)
dr (16.422)

Even for hover there is a non-zero inflow contribution, Ĥβ̇ = −λHP/4, which can
be a significant fraction of the thrust term in Hβ̇ . The aerodynamic coefficients for
hover are

Hθ = λHP

4
(16.423)

Hλ = 3
2

CT

σa
− 5

8
λHP − θtw

48
(16.424)

Hβ̇ = −λHP

4
(16.425)

Hζ̇ = −
[
λHP

(
3
2

CT

σa
+ 3

8
λHP − θtw

48

)
+ cd

3a

]
(16.426)

and Hβ = Hζ = 0.
The aerodynamic torque moment acting on the rotor hub at the center of rotation

can be obtained from the lag moment ML (derived in section 16.8.3) by replacing
the mode shape ηζ by r:∫ 1

0
r

Fx

ac
dr = Qθ

(
θ − KPβ

)+ Qλλ+ Qβ̇ β̇ + Qββ + Qζ̇ ζ̇ + Qζ ζ (16.427)

Since we have been using the approximation ηζ ∼= r to evaluate the aerodynamic
coefficients, there is no need to distinguish in the notation between the lag and
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torque moments. For numerical work the proper mode shapes for the flap and lag
motion can be used.

16.8.6 Hub Reactions in Non-Rotating Frame

The total aerodynamic forces and moments acting on the rotor hub were derived
in section 16.6.2. The aerodynamic thrust, torque, drag force, and side force of the
rotor are obtained by summing the root reactions of all N blades:

(
CT

σa

)
aero

= 1
N

N∑
m=1

∫ 1

0

Fz

ac
dr (16.428)

(
CQ

σa

)
aero

= 1
N

N∑
m=1

∫ 1

0
r

Fx

ac
dr (16.429)

(
2CH

σa

)
aero

= 2
N

N∑
m=1

[
cosψm

∫ 1

0

Fr

ac
dr + sinψm

∫ 1

0

Fx

ac
dr

]
(16.430)

(
2CY

σa

)
aero

= 2
N

N∑
m=1

[
sinψm

∫ 1

0

Fr

ac
dr − cosψm

∫ 1

0

Fx

ac
dr

]
(16.431)

(equations 16.217, 16.233, 16.230, and 16.231). Expressions for the root forces and
moments were derived in the preceding paragraphs as linear functions of the rotating
degrees of freedom of the blade. In hover, since the aerodynamic coefficients in these
expressions are constants, the summation operators in the total hub reactions act
only on the blade degrees of freedom. Hence for this constant coefficient case the
summations are easily evaluated using the definitions of the degrees of freedom in
the non-rotating frame (multiblade coordinates). In hover the thrust and torque only
involve the rotor collective degrees of freedom (here the coning and collective lag
modes). The result is

CT

σa
= Tθ

(
θ0 − KPβ0

)+ Tλλ+ Tβ̇ β̇0 + Tζ̇ ζ̇0 (16.432)

CQ

σa
= Qθ

(
θ0 − KPβ0

)+ Qλλ+ Qβ̇ β̇0 + Qζ̇ ζ̇0 (16.433)

For hover, the rotor in-plane hub forces involve only the cyclic degrees of
freedom in the non-rotating frame. Neglecting the forces due to the blade lag motion,
which are much smaller than those due to the flap motion, the rotor drag and side
forces in hover are⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = − 2CT

σa

(
β1c

β1s

)
+
[

Rβ̇ Hβ̇

−Hβ̇ Rβ̇

](
β̇1c

β̇1s

)
+
[−Ĥβ̇ Rβ̇

−Rβ̇ −Ĥβ̇

](
β1c

β1s

)

+
[

Rθ Hθ

−Hθ Rθ

](
θ1c − KPβ1c

θ1s − KPβ1s

)
(16.434)
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using Rβ = −CT/σa and Hβ̇ = CT/σa + Ĥβ̇ . Substituting for the aerodynamic coef-
ficients gives⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = − 2CT

σa

(
β1c

β1s

)
+

⎡⎢⎣ 0
CT

σa

−CT

σa
0

⎤⎥⎦( β̇1c

β̇1s

)

+

⎡⎢⎣ −z′

6
λHP

4

−λHP

4
−z′

6

⎤⎥⎦(−β̇1c − β1s + θ1c − KPβ1c

−β̇1s + β1c + θ1s − KPβ1s

)
(16.435)

This result is of the form (
H
Y

)
= −T

(
β1c

β1s

)
+
(

HTPP

YTPP

)
(16.436)

Thus the rotor drag and side hub forces consist of the in-plane component of the
thrust vector tilted with the tip-path plane, plus the in-plane forces relative to the
tip-path plane. Consequently, the flapping response is a principal factor in the rotor
hub reactions. Recall that the rotor hub moments can also be related to the tip-
path-plane tilt. The total moment about the helicopter center-of-gravity a distance
h below the hub is then⎛⎜⎝−2CMy

σa
− h

2CH

σa
2CMx

σa
− h

2CY

σa

⎞⎟⎠ =
[

Îβ (ν2
β − 1)

γ
+ h

2CT

σa

](
β1c

β1s

)
(16.437)

plus the moments due to the in-plane forces relative to the tip-path plane.
The in-plane force due to the tilt of the rotor thrust vector with the tip-path

plane arises from two sources, one-half from Rβ and one-half from Hβ̇ . The slope
of the blade due to flap deflection tilts the blade lift radially, producing an in-plane
component of the thrust (Rβ). The rotating-frame flap velocity due to tip-path-plane
tilt changes the blade angle-of-attack, which tilts the blade lift chordwise and thereby
produces an in-plane component of the thrust (Hβ̇). Although Rβ acts only on the
flap displacement, the Hβ̇ coefficient produces forces due to tip-path-plane tilt rate
(β̇1c and β̇1s) as well. Also, any blade pitch change, flap displacement, or flap velocity
changes the blade lift magnitude. Since the lift has an in-plane component due to
the trim induced velocity, in-plane hub forces are produced by these lift magnitude
changes (through −Ĥβ̇ = Hθ = λHP/4).

For a two-bladed rotor the cyclic flap degrees of freedom β1c and β1s are replaced
by the teetering mode β1, so the above results are applicable only when N > 3. When
N = 2 the in-plane hub forces become⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ =
(

Rβ2C

Rβ2S

)
β1 +

[
Rβ̇2C + Hβ̇2S

Rβ̇2S − Hβ̇2C

]
β̇1

+
[

Rθ2C + Hθ2S

Rθ2S − Hθ2C

]
(θ1 − KPβ1) (16.438)

where C = cosψ and S = sinψ . Thus even in hover the two-bladed rotor dynamics
are described by periodic coefficient differential equations.
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The derivation of the hub reactions in forward flight follows the derivation
for the flap moment in the non-rotating frame (section 16.8.4). For the constant
coefficient approximation we obtain⎛⎜⎜⎜⎜⎜⎝

CT

σa
2CH

σa
2CY

σa

⎞⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎣
T 0
β̇

1
2 T 1c
β̇

1
2 T 1s
β̇

R1c
β̇

+ H1s
β̇

R0
β̇

+ 1
2

(
R2c
β̇

+ H2s
β̇

)
H0
β̇

+ 1
2

(
R2s
β̇

− H2c
β̇

)
R1s
β̇

− H1c
β̇

−H0
β̇

+ 1
2

(
R2s
β̇

− H2c
β̇

)
R0
β̇

− 1
2

(
R2c
β̇

+ H2s
β̇

)
⎤⎥⎥⎦
⎛⎝ β̇0

β̇1c + β1s

β̇1s − β1c

⎞⎠

+

⎡⎢⎣
T 0
β

1
2 T 1c
β

1
2 T 1s
β

R1c
β + H1s

β R0
β + 1

2

(
R2c
β + H2s

β

)
H0
β + 1

2

(
R2s
β − H2c

β

)
R1s
β − H1c

β −H0
β + 1

2

(
R2s
β − H2c

β

)
R0
β − 1

2

(
R2c
β + H2s

β

)
⎤⎥⎦
⎛⎝ β0

β1c

β1s

⎞⎠

+

⎡⎢⎣ T 0
θ

1
2 T 1c
θ

1
2 T 1s
θ

R1c
θ + H1s

θ R0
θ + 1

2

(
R2c
θ + H2s

θ

)
H0
θ + 1

2

(
R2s
θ − H2c

θ

)
R1s
θ − H1c

θ −H0
θ + 1

2

(
R2s
θ − H2c

θ

)
R0
θ − 1

2

(
R2c
θ + H2s

θ

)
⎤⎥⎦
⎛⎝ θ0 − KPβ0

θ1c − KPβ1c

θ1s − KPβ1s

⎞⎠

+

⎡⎢⎣ T 0
λ

R1c
λ + H1s

λ

R1s
λ − H1c

λ

⎤⎥⎦ λ (16.439)

The superscripts denote the harmonics of the Fourier series expansions of the aero-
dynamic coefficients for forward flight. With more than three blades there are addi-
tional degrees of freedom and equations, but the coupled dynamics of the fixed
frame and rotor are dominated by these collective and cyclic modes. The forces
due to the lag motion have also been neglected. For hover only the mean terms
remain in the matrices, and these equations reduce to the previous results. Perhaps
the most important effect of forward flight is the coupling of the vertical and the
lateral-longitudinal dynamics.

16.8.7 Shaft Motion

The linear and angular shaft motions were defined in Figure 16.13. The perturba-
tion linear velocity of the hub has components ẋh, ẏh, and żh, whereas the orien-
tation of the shaft relative to the inertial reference frame is given by the perturba-
tion angles αx, αy, and αz. We also consider aerodynamic turbulence with velocity
components uG, vG, and wG (normalized by the rotor tip speed �R). Including
the shaft motion and gust, the perturbation velocities of the rotor blade section
become

δuP = (
λ+ żh − wG − μαy

)
+ r
(
β̇ + α̇x sinψ − α̇y cosψ

)+ μ cosψβ (16.440)
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δuT = −r
(
ζ̇ − α̇z

)− μ cosψ
(
ζ − αz

)
− (ẋh − uG − λHPαy

)
sinψ + (ẏh + vG + λHPαx

)
cosψ (16.441)

δuR = μ sinψ
(
ζ − αz

)
− (ẋh − uG − λHPαy

)
cosψ − (ẏh + vG + λHPαx

)
sinψ (16.442)

The vertical velocity of the hub contributes to δuP, and the in-plane velocity resolved
in the rotating frame contributes to δuT and δuR. The influence of the aerodynamic
gust components is analogous to the hub velocities. The angular rates of pitch and
roll of the rotor disk give a normal velocity of the blade section (δuP), whereas the
yaw motion of the hub produces velocity perturbations in a manner similar to the
blade lag motion. Finally, the trim velocity of the rotor (with components μ and
λHP) is defined relative to the unperturbed inertial reference frame. Pitch and roll
rotations of the shaft (αy and αx) therefore produce perturbation components of
these velocities relative to the hub plane. Since the resulting λHPαx and λHPαy terms
in the velocity perturbations are an order smaller than the other terms, they can
usually be neglected for low inflow helicopter rotors. The blade pitch is measured
from the hub plane, so δθ = θ − KPβ still. Only first mode flap and lag motion has
been considered for the rotor blade. Since the equivalent mode shape for the angular
motion of the hub is exactly η = r, the blade mode shapes have been approximated
by ηβ = ηζ = r. Then the same aerodynamic coefficients can be used in many cases
for both the blade and shaft motion, simplifying the analysis. For numerical work the
actual blade mode shapes can be used, which modifies the aerodynamic coefficients
of the rotor degrees of freedom slightly, but does not greatly influence the basic
behavior of the rotor.

With these velocity perturbations, the aerodynamic flap and lag moments now
become

MF = Mθ

(
θ − KPβ

)+ Mλ

(
λ+ żh − wG − μαy

)
+ Mβ̇

(
β̇ + α̇x sinψ − α̇y cosψ

)+ Mββ + Mζ̇

(
ζ̇ − α̇z

)+ Mζ

(
ζ − αz

)
+ Mμ

(
(−ẋh + uG) sinψ + (ẏh + vG) cosψ

)
(16.443)

ML = Qθ

(
θ − KPβ

)+ Qλ

(
λ+ żh − wG − μαy

)
+ Qβ̇

(
β̇ + α̇x sinψ − α̇y cosψ

)+ Qββ + Qζ̇

(
ζ̇ − α̇z

)+ Qζ

(
ζ − αz

)
+ Qμ

(
(−ẋh + uG) sinψ + (ẏh + vG) cosψ

)
(16.444)

Since the velocity produced by the shaft motion is similar to that produced by the
blade motion already considered, only two new aerodynamic coefficients appear:

Mμ =
∫ 1

0
r

1
2

(
uP + 2uTα

)
dr (16.445)

Qμ =
∫ 1

0
r
(

1
2

uPθ + 2uT
cd

2a

)
dr (16.446)
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which are the flap and lag moments due to in-plane velocity of the blade. For hover
these coefficients are

Mμ = 2CT

σa
+ λHP

4
(16.447)

Qμ = λHP

(
3
2

CT

σa
+ 3

8
λHP − θtw

48

)
+ cd

3a
(16.448)

On transforming to the non-rotating frame, the flap moments in hover become

MF0 = Mθ

(
θ0 − KPβ0

)+ Mλ

(
λ+ żh − wG

)+ Mβ̇ β̇0 − Mζ̇ α̇z (16.449)

MF1c = Mθ

(
θ1c − KPβ1c

)+ Mβ̇

(
β̇1c + β1s − α̇y

)+ Mμ

(
ẏh + vG

)
(16.450)

MF1s = Mθ

(
θ1s − KPβ1s

)+ Mβ̇

(
β̇1s − β1c + α̇x

)+ Mμ

(−ẋh + uG
)

(16.451)

for a rotor with three or more blades. If N > 4 there are additional degrees of
freedom and equations, but in hover they are not influenced by the shaft motion.
The characteristic pattern of limited interaction between the shaft motion and non-
rotating degrees of freedom, already found in the inertial terms, is also observed in
the hover aerodynamics. There are coning moments due to the vertical velocity and
yaw rate of the hub and due to the vertical gusts. There is a longitudinal flap moment
due to the lateral in-plane velocity and pitch rate of the hub and due to the lateral
gusts. Finally there are lateral flap moments due to the longitudinal in-plane velocity
and roll rate of the hub and due to longitudinal gusts. For a two-bladed rotor the
aerodynamic flap moment for the teetering mode is instead

MF1 = Mθ

(
θ1 − KPβ1

)+ Mβ̇

(
β̇1 + α̇x sinψ − α̇y cosψ

)
+ Mμ

(
(−ẋh + uG) sinψ + (ẏh + vG) cosψ

)
(16.452)

Thus there are periodic coefficients coupling the rotor and shaft motion, even in
hover.

The vertical and in-plane aerodynamic shear forces at the blade root due to the
shaft motion are

�

∫ 1

0

Fz

ac
dr = Tλ

(
żh − wG − μαy

)+ Tβ̇
(
α̇x sinψ − α̇y cosψ

)− Tζ̇ α̇z − Tζ αz

+ Tμ
(
(−ẋh + uG) sinψ + (ẏh + vG) cosψ

)
(16.453)

�

∫ 1

0

Fx

ac
dr = Hλ

(
żh − wG − μαy

)+ Hβ̇

(
α̇x sinψ − α̇y cosψ

)− Hζ̇ α̇z − Hζ αz

+ Hμ

(
(−ẋh + uG) sinψ + (ẏh + vG) cosψ

)
(16.454)

As for the flap and lag moments, there are only two new aerodynamic coefficients,
which are due to the in-plane velocity perturbations:

Tμ =
∫ 1

0

1
2

(
uP + 2uTα

)
dr (16.455)

Hμ =
∫ 1

0

(
1
2

uPθ + 2uT
cd

2a

)
dr (16.456)
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and which for hover are

Tμ = 3CT

σa
+ λHP

4
− θtw

24
(16.457)

Hμ = λHP

(
3CT

σa
+ 3

4
λHP − θtw

8

)
+ cd

2a
(16.458)

The radial aerodynamic force due to the shaft motion is

�

∫ 1

0

Fr

ac
dr = Rλ

(
żh − wG − μαy

)+ Rβ̇
(
α̇x sinψ − α̇y cosψ

)− Rζ̇ α̇z − Rζ αz

+ Rμ
(
(−ẋh + uG) cosψ − (ẏh + vG) sinψ

)
+ Rr

(
(−ẋh + uG) sinψ + (ẏh + vG) cosψ

)
(16.459)

The two new aerodynamic coefficients in the radial force are due to the in-plane
velocity perturbations resolved in the radial direction (Rμ) and in the chordwise
direction (Rr):

Rμ =
∫ 1

0

cd

2a
uT dr = cd

2a

(
1
2

+ μ sinψ
)

(16.460)

Rr =
∫ 1

0

[
cd

2a
uR − z′ 1

2

(
uP + 2uTα

)]
dr = cd

2a
μ cosψ − z′Tμ (16.461)

In hover Rμ is the single contribution of the radial drag force to the rotor dynamics.
All the other radial forces are due to the tilt of the thrust vector by the blade flap
deflection. The torque moment at the hub center of rotation is here identical to the
lag moment (since ηζ = r has been assumed), giving

�

∫ 1

0
r

Fx

ac
dr = Qλ

(
żh − wG − μαy

)+ Qβ̇

(
α̇x sinψ − α̇y cosψ

)− Qζ̇ α̇z − Qζ αz

+ Qμ

(
(−ẋh + uG) sinψ + (ẏh + vG) cosψ

)
(16.462)

Summing the root forces for all N blades gives the total rotor hub reactions in
the non-rotating frame. For hover, the thrust and torque perturbations including the
shaft motion are

CT

σa
= Tθ

(
θ0 − KPβ0

)+ Tλ
(
λ+ żh − wG

)+ Tβ̇ β̇0 + Tζ̇
(
ζ̇0 − α̇z

)
(16.463)

CQ

σa
= Qθ

(
θ0 − KPβ0

)+ Qλ

(
λ+ żh − wG

)+ Qβ̇ β̇0 + Qζ̇

(
ζ̇0 − α̇z

)
(16.464)

The rotor drag and side forces due to the shaft motion are

�

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠ =
[−Rβ̇ Hβ̇

Hβ̇ Rβ̇

](
α̇y

α̇x

)

+
[−(Hμ + Rμ) Rr

−Rr −(Hμ + Rμ)

](
ẋh − uG

ẏh + vG

)
(16.465)
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(for three or more blades). The flap response to the rotor shaft motion tilts the rotor
thrust vector and by this means also contributes to the hub in-plane forces.

With a two-bladed rotor, the summation of the root shears over both blades
to obtain the hub in-plane forces does not eliminate the sinusoidal variation of the
coefficients. The contributions of the shaft motion to the hub forces are for this case

�

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠ =
[−Rβ̇2C2 − Hβ̇2CS Rβ̇2CS + Hβ̇2S2

−Rβ̇2CS + Hβ̇2C2 Rβ̇2S2 − Hβ̇2CS

](
α̇y

α̇x

)

+
[ −Hμ2S2 − Rμ2C2 − Rr2CS Hμ2CS − Rμ2CS + Rr2C2

−Hμ2CS − Rμ2CS − Rr2S2 −Hμ2C2 − Rμ2S2 + Rr2CS

](
ẋh − uG

ẏh + vG

)
(16.466)

where C = cosψ and S = sinψ .
For aircraft flight dynamics analyses, a body-axis reference frame is most fre-

quently used. With the inertial axis system considered so far, angular motion of the
shaft tilts the axes relative to the trim velocity components μ and λHP, which are
fixed in space, producing perturbations of the air velocity as seen in the reference
frame. With body axes, however, the helicopter trim velocity vector remains fixed
relative to the reference axes when the shaft is tilted. Thus for body axes the velocity
perturbations are

δuP = (
λ+ żh − wG

)+ r
(
β̇ + α̇x sinψ − α̇y cosψ

)+ μ cosψβ (16.467)

δuT = −r
(
ζ̇ − α̇z

)− μ cosψζ − (ẋh − uG
)

sinψ + (ẏh + vG
)

cosψ (16.468)

δuR = μ sinψζ − (ẋh − uG
)

cosψ − (ẏh + vG
)

sinψ (16.469)

So the μαy, μαz, λHPαy, and λHPαx terms are dropped from the rotor equations of
motion and the hub reactions. The use of body axes adds corresponding terms to the
inertia forces.

The shaft motion contributions to the non-rotating equations of motion in for-
ward flight can be derived following section 16.8.4. The constant coefficient approx-
imation for the aerodynamic flap moments in forward flight is

�

⎛⎝ MF0

MF1c

MF1s

⎞⎠ =

⎡⎢⎣ 0 1
2 M1s
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− 1
2 M2c
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⎤⎥⎦
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−α̇z

⎞⎠

+
⎡⎣ M0

λ
1
2 M1s

μ
1
2 M1c

μ

0 1
2 M2s

μ M0
μ + 1

2 M2c
μ

M1s
λ M0

μ − 1
2 M2c

μ
1
2 M2s

μ

⎤⎦⎛⎝ żh − wG

−ẋh + uG

ẏh + vG

⎞⎠ (16.470)

This result is for body axes, since the problem considered in this text involving
the shaft motion is that of the helicopter flight dynamics. Similarly, the constant
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coefficient approximation for the hub forces is

�
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⎤⎥⎦

×
⎛⎝ żh − wG

−ẋh + uG

ẏh + vG

⎞⎠ (16.471)

Again observe that forward flight fully couples the dynamics of the rotor and shaft
motion.

16.8.8 Summary

Let us summarize the results derived for the hover aerodynamics, including the hub
reactions and shaft motion. For simplicity, the cyclic lag degrees of freedom are
omitted, and the special case of a two-bladed rotor is not considered. The axisym-
metry of the aerodynamics in vertical flight separates the dynamics into a vertical
group, consisting of the coning moment and the rotor thrust and torque:

MF0 = Mθ

(
θ0 − KPβ0

)+ Mλ

(
λ+ żh − wG

)+ Mβ̇ β̇0 + Mζ̇

(
ζ̇0 − α̇z

)
(16.472)(

CT

σa

)
aero

= Tθ
(
θ0 − KPβ0

)+ Tλ
(
λ+ żh − wG

)+ Tβ̇ β̇0 + Tζ̇
(
ζ̇0 − α̇z

)
(16.473)(

CQ

σa

)
aero

= Qθ

(
θ0 − KPβ0

)+ Qλ

(
λ+ żh − wG

)+ Qβ̇ β̇0 + Qζ̇

(
ζ̇0 − α̇z

)
(16.474)

and a lateral-longitudinal group, consisting of the pitch and roll flap moments and
the rotor in-plane hub forces:(

MF1c

MF1s

)
= Mθ

(
θ1c − KPβ1c

θ1s − KPβ1s

)
+ Mβ̇

(
β̇1c + β1s − α̇y

β̇1s − β1c + α̇x

)
+ Mμ

(
ẏh + vG

−ẋh + uG

)
(16.475)

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠
aero

= Rβ

(
β1c

β1s

)
+
[

Rβ̇ Hβ̇

−Hβ̇ Rβ̇

](
β̇1c + β1s − α̇y

β̇1s − β1c + α̇x

)
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+
[

Rθ Hθ

−Hθ Rθ

](
θ1c − KPβ1c

θ1s − KPβ1s

)
+
[−(Hμ + Rμ) Rr

−Rr −(Hμ + Rμ)

](
ẋh − uG

ẏh + vG

)
(16.476)

The aerodynamic coefficients for hover can be evaluated analytically assuming uni-
form induced velocity, ηβ = ηζ = r and neglecting the tip losses:

Mθ = −Mβ̇ = 1
8

(16.477)

Mλ = −1
6

(16.478)

Mμ = 2CT

σa
+ λHP

4
(16.479)

Mζ̇ = −
(

3
2

CT

σa
+ 5

24
λHP + 1

80
θtw

)
(16.480)

Tθ = −Tβ̇ = 1
6

(16.481)

Tλ = −1
4

(16.482)

Tζ̇ = −
(

2CT

σa
+ λHP

4

)
(16.483)

Qθ = λHP

6
(16.484)

Qλ = CT

σa
− λHP

4
(16.485)

Qβ̇ = 3
4

CT

σa
− 7

48
λHP + 1

160
θtw (16.486)

Qζ̇ = −
(
λHP

(
CT

σa
+ λHP

4

)
+ cd

4a

)
(16.487)

Hθ = λHP

4
(16.488)

Hβ̇ = CT

σa
− λHP

4
(16.489)

Hμ + Rμ = λHP

(
3CT

σa
+ 3

4
λHP − θtw

8

)
+ 3cd

4a
(16.490)

Rθ = −Rβ̇ = −βtrim

6
(16.491)

Rr = −βtrim

(
3CT

σa
+ λHP

4
− θtw

24

)
(16.492)

Rβ = − CT

σa
(16.493)
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The behavior of a particular aerodynamic coefficient depends primarily on whether
it is an out-of-plane or in-plane force and whether it is due to the blade pitch or
an out-of-plane or in-plane velocity. Hence a set of six aerodynamic coefficients is
sufficient to establish the basic behavior of the forces; for example,

Mθ =
∫ 1

0
rFzθdr =

∫ 1

0

1
2

ru2
T dr (16.494)

Mβ̇ =
∫ 1

0
r2FzPdr = −

∫ 1

0

1
2

r2uT dr (16.495)

Mμ =
∫ 1

0
rFzT dr =

∫ 1

0
r

1
2

(
uP + 2uTα

)
dr (16.496)

Hθ =
∫ 1

0
Fxθdr =

∫ 1

0

1
2

uT uPdr (16.497)

Hβ̇ =
∫ 1

0
rFxPdr =

∫ 1

0

1
2

r
(
uTα − uP

)
dr (16.498)

Hμ =
∫ 1

0
FxT dr =

∫ 1

0

(
1
2

uPθ + 2uT
cd

2a

)
dr (16.499)

The remaining coefficients are all similar to ones from this set, as can be seen in the
expressions for hover given earlier.

Evaluating the aerodynamic coefficients in forward flight is a more involved
task than evaluating them in hover. The trim pitch and velocities are then periodic
functions of the rotor azimuth:

uT = r + μ sinψ (16.500)

uR = μ cosψ (16.501)

uP = λHP + rβ̇ + βμ cosψ

= λHP + r
(
β1s cosψ − β1c sinψ

)
+ (β0 + β1c cosψ + β1s sinψ

)
μ cosψ (16.502)

θ = θ0 + rθtw + θ1c cosψ + θ1s sinψ (16.503)

(see Chapter 6). A complete trim solution is thus required, not just a specification
of the rotor thrust coefficient. Helicopter force and moment equilibrium gives the
tip-path-plane tilt, and the hub-plane inflow ratio λHP = λTPP − μβ1c. The thrust
coefficient and flapping equations can then be solved for the collective and cyclic
pitch control and the coning angle. As for hover, the coefficients can be integrated
analytically over the span assuming uniform inflow and ηβ = r. It is simplest to leave
the expressions in terms of the harmonics of the trim pitch and flap motion, rather
than trying to obtain the explicit dependence on the parameters of the operating
condition (such as thrust coefficient) as for hover. The results for the basic set of six
aerodynamic coefficients are as follows:

Mθ = 1
8

+ μ

3
sinψ + μ2

4
sin2 ψ (16.504)

Mβ̇ = −
(

1
8

+ μ

6
sinψ

)
(16.505)
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Mμ = θ
(

1
3

+ μ

2
sinψ

)
+ θtw

(
1
4

+ μ

3
sinψ

)
−
(

1
4
λHP + 1

6
β̇ + 1

4
βuR

)
(16.506)

Hθ = λHP

(
1
4

+ μ

2
sinψ

)
+ β̇

(
1
6

+ μ

4
sinψ

)
+ βuR

(
1
4

+ μ

2
sinψ

)
(16.507)

Hβ̇ = θ
(

1
6

+ μ

4
sinψ

)
+ θtw

(
1
8

+ μ

6
sinψ

)
−
(

1
2
λHP + 1

3
β̇ + 1

2
βuR

)
(16.508)

Hμ = θ
(

1
2
λHP + 1

4
β̇ + 1

2
βuR

)
+ θtw

(
1
4
λHP + 1

6
β̇ + 1

4
βuR

)
+ cd

2a

(
1 + 2μ sinψ

)
(16.509)

In forward flight all the aerodynamic coefficients are periodic functions of the rotor
azimuth.

A uniform perturbation of the wake-induced velocity has been included in
the aerodynamic analysis for use in a model of the rotor unsteady aerodynamics.
Dynamic inflow (see section 11.3) relates the uniform and linear inflow perturbations
to the transient changes in the aerodynamic thrust and hub moments on the rotor:

LM

⎛⎝ λ̇0

λ̇c

λ̇s

⎞⎠+
⎛⎝ λ0

λc

λs

⎞⎠ = L

⎛⎝ CT

−CMy

CMx

⎞⎠
aero

(16.510)

Rotor velocity changes also produce a perturbation of the inflow:

δλ = − λi(μδμ+ λδμz)

μ2 + λ(λ+ λi)
(16.511)

(equation 11.156), where here δμ = −ẋh + uG and δμz = żh − wG. For hover this
relation reduces to δλ = − 1

2δμz = − 1
2 (żh − wG). Hence the coning moment, thrust,

and torque due to the rotor vertical velocity perturbations (żh − wG) in hover are
reduced by a factor of one-half by the effect of this inflow perturbation: λ+ żh −
wG = 1

2 (żh − wG). Without the time lag, these inflow equations reduce to linear
algebraic equations for the induced velocity perturbations in terms of the system
degrees of freedom. Eliminating λ0, λc, λs from the model leads to a lift deficiency
function representation of the wake effects, as shown in section 11.3. With large
order systems it is more practical to accomplish this substitution numerically, and if
the time lag is included the inflow perturbations are degrees of freedom. The effects
of the wake, as represented by the dynamic inflow model, are often important to the
dynamic behavior of the rotor.
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16.8.9 Large Angles and High Inflow

General results for the aerodynamic loads are obtained using the exact expressions
for the force perturbations (equations 16.290, 16.291, and 16.292), which are valid
for large angles. Still assuming that the blade flap motion is pure out-of-plane and
the blade lag motion is pure in-plane, and approximating the mode shapes by ηβ =
ηζ = r, the perturbation velocities of the blade section are given by equations 16.440,
16.441, and 16.442. The aerodynamic flap and lag moments are

MF = Mθ

(
θ − KPβ

)+ Mλ

(
λ+ żh − wG − μαy

)
+ Mβ̇

(
β̇ + α̇x sinψ − α̇y cosψ

)+ Mββ + Mζ̇

(
ζ̇ − α̇z

)+ Mζ

(
ζ − αz

)
+ Mμ

(
(−ẋh + uG + λHPαy) sinψ + (ẏh + vG + λHPαx) cosψ

)
(16.512)

ML = Qθ

(
θ − KPβ

)+ Qλ

(
λ+ żh − wG − μαy

)
+ Qβ̇

(
β̇ + α̇x sinψ − α̇y cosψ

)+ Qββ + Qζ̇

(
ζ̇ − α̇z

)+ Qζ

(
ζ − αz

)
+ Qμ

(
(−ẋh + uG + λHPαy) sinψ + (ẏh + vG + λHPαx) cosψ

)
(16.513)

and the hub forces are∫ 1

0

Fz

ac
dr = Tθ

(
θ − KPβ

)+ Tλ(λ+ żh − wG − μαy
)

+ Tβ̇
(
β̇ + α̇x sinψ − α̇y cosψ

)+ Tββ + Tζ̇
(
ζ̇ − α̇z

)+ Tζ
(
ζ − αz

)
+ Tμ

(
(−ẋh + uG + λHPαy) sinψ + (ẏh + vG + λHPαx) cosψ

)
(16.514)∫ 1

0

Fx

ac
dr = Hθ

(
θ − KPβ

)+ Hλ(λ+ żh − wG − μαy
)

+ Hβ̇

(
β̇ + α̇x sinψ − α̇y cosψ

)+ Hββ + Hζ̇

(
ζ̇ − α̇z

)+ Hζ

(
ζ − αz

)
+ Hμ

(
(−ẋh + uG + λHPαy) sinψ + (ẏh + vG + λHPαx) cosψ

)
(16.515)∫ 1

0

Fr

ac
dr = Rθ

(
θ − KPβ

)+ Rλ(λ+ żh − wG − μαy
)

+ Rβ̇
(
β̇ + α̇x sinψ − α̇y cosψ

)+ Rββ + Rζ̇
(
ζ̇ − α̇z

)+ Rζ
(
ζ − αz

)
+ Rμ

(
(−ẋh + uG + λHPαy) cosψ − (ẏh + vG + λHPαx) sinψ

)
+ Rr

(
(−ẋh + uG + λHPαy) sinψ + (ẏh + vG + λHPαx) cosψ

)
(16.516)

Without the small angle assumption, the coefficients are

Mθ =
∫ 1

0
rFzθdr (16.517)

Mλ =
∫ 1

0
rFzPdr Mβ̇ =

∫ 1

0
r2FzPdr Mβ =

∫ 1

0
ruRFzPdr (16.518)

Mμ =
∫ 1

0
rFzT dr Mζ̇ = −

∫ 1

0
r2FzT dr Mζ = −

∫ 1

0
ruRFzT dr (16.519)



16.8 Aerodynamic Loads 665

Qθ =
∫ 1

0
rFxθdr (16.520)

Qλ =
∫ 1

0
rFxPdr Qβ̇ =

∫ 1

0
r2FxPdr Qβ =

∫ 1

0
ruRFxPdr (16.521)

Qμ =
∫ 1

0
rFxT dr Qζ̇ = −

∫ 1

0
r2FxT dr Qζ = −

∫ 1

0
ruRFxT dr (16.522)

Rθ =
∫ 1

0
Frθdr (16.523)

Rλ =
∫ 1

0
FrPdr Rβ̇ =

∫ 1

0
rFrPdr Rβ =

∫ 1

0
uRFrPdr (16.524)

Rr =
∫ 1

0
FrT dr Rζ̇ = −

∫ 1

0
rFrT dr (16.525)

Rζ = −
∫ 1

0
uRFrT dr +

∫ 1

0
(μ sinψ)FrRdr Rμ =

∫ 1

0
FrRdr (16.526)

The T and H coefficients follow the pattern of the M and Q coefficients, but with
one less factor of r in the integrand. The coefficients are evaluated numerically.
Sometimes evaluating the integrands at an effective radius re or effective inflow
angle φe = tan−1 uP/uT is sufficient.

Analytical integration is possible for axial flow at large inflow: uT = r, uR = 0,
and uP = λ ∼= μz. These conditions are appropriate for whirl flutter of propellers
or tiltrotors, for which the lift-curve slope terms (c�α = a) dominate. Then with
U = √

r2 + λ2 here,

Mθ = 1
2

∫ 1

0
Ur2dr = g2 (16.527)

Mλ = −1
2

∫ 1

0

r3

U
dr = − f3 Mβ̇ = −1

2

∫ 1

0

r4

U
dr = − f4 (16.528)

Mμ = 1
2

∫ 1

0

λr2

U
dr = λ f2 Mζ̇ = −1

2

∫ 1

0

λr3

U
dr = −λ f3 (16.529)

Tθ = 1
2

∫ 1

0
Ur dr = g1 (16.530)

Tλ = −1
2

∫ 1

0

r2

U
dr = − f2 Tβ̇ = −1

2

∫ 1

0

r3

U
dr = − f3 (16.531)

Tμ = 1
2

∫ 1

0

λr
U

dr = λ f1 Tζ̇ = −1
2

∫ 1

0

λr2

U
dr = −λ f2 (16.532)

Qθ = 1
2

∫ 1

0
Uλrdr = λg1 (16.533)

Qλ = −1
2

∫ 1

0

λr2

U
dr = −λ f2 Qβ̇ = −1

2

∫ 1

0

λr3

U
dr = −λ f3 (16.534)
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Qμ = 1
2

∫ 1

0

λ2r
U

dr = λ2 f1 Qζ̇ = −1
2

∫ 1

0

λ2r2

U
dr = −λ2 f2 (16.535)

Hθ = 1
2

∫ 1

0
Uλdr = λg0 (16.536)

Hλ = −1
2

∫ 1

0

λr
U

dr = −λ f1 Hβ̇ = −1
2

∫ 1

0

λr2

U
dr = −λ f2 (16.537)

Hμ = 1
2

∫ 1

0

λ2

U
dr = λ2 f0 Hζ̇ = −1

2

∫ 1

0

λ2r
U

dr = −λ2 f1 (16.538)

where gn = ∫ 1
0 (Urn/2)dr and fn = ∫ 1

0 (r
n/2U )dr,

f0 = 1
2

ln
1 + √

1 + λ2

λ
(16.539)

f1 = 1
2

(√
1 + λ2 − V

)
(16.540)

f2 = 1
4

√
1 + λ2 − 1

2
λ2 f0 (16.541)

f3 = 1
6

(√
1 + λ2(1 − 2λ2)+ 2λ3

)
(16.542)

f4 = 1
16

√
1 + λ2

(
2 − 3λ2)+ 3

8
λ4 f0 (16.543)

g0 = 1
4

√
1 + λ2 + 1

2
λ2 f0 (16.544)

g1 = 1
6

((√
1 + λ2

)3 − λ3
)

(16.545)

g2 = 1
16

√
1 + λ2

(
2 + λ2)− 1

8
λ4 f0 (16.546)

The R coefficients and the β and ζ derivatives are zero. With high inflow (λ = μz

order 1), theμ and ζ̇ derivatives are not small; rather they are the same order as the λ
and β̇ derivatives, because now in-plane velocity perturbations directly change angle-
of-attack and lift. The in-plane rate derivative Hβ̇ = CT/σa + Ĥβ̇ = CT/σa − λHP/4
for hover and approaches Hβ̇ = − 1

6 for large λ.

16.8.10 Pitch and Flap Motion

Consider the rigid flap and rigid pitch motion of a rotor blade, as in section 16.5.1.
For the feathering moments on the blade, the effects of unsteady aerodynamics must
be included. The aerodynamic forces required for the equations of motion are the
flap moment MF and the pitch moment about the feathering axis M f :

MF =
∫ 1

0
r

Fz

ac
dr ∼=

∫ 1

0
r

L
ac

dr (16.547)
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M f =
∫ 1

0

Ma

ac
dr (16.548)

The section lift and pitch moment are obtained from the unsteady aerodynamic
theory developed for rotary wings in section 10.6:

L
ac

= 1
2

uT
(
wPA + xAw

′ − λ)C′(k)

+ c
8

(
2uTw

′C′(k)+ ẇPA + xAẇ
′ + c

4
ẇ′
)

(16.549)

M
ac

= −xA
L
ac

− c2

32

(
uTw

′ + ẇPA + xAẇ
′ + 3c

8
ẇ′
)

(16.550)

The lift deficiency function C′(k) has been included to account for shed wake effects.
The inflow perturbation λ is an alternative to the lift deficiency function. The effects
of reverse flow have been neglected. Here c is the blade chord and xA is the distance
the aerodynamic center is behind the elastic axis. The upwash velocity at the pitch
axis and the upwash gradient are

wPA = uT θ − (rβ̇ + uRβ
)

(16.551)

w′ = θ̇ + β (16.552)

for rigid flap and rigid pitch degrees of freedom. The degree of freedom θ is the
actual blade pitch angle, whereas in the preceding sections of this chapter θ has
been the pitch control variable. Here the commanded pitch and kinematic pitch-flap
coupling enter the solution through the pitch equation of motion (see section 16.5.1).
The derivative required for the non-circulatory terms is

ẇPA = uT θ̇ − (rβ̈ + uRβ̇
)+ uRθ + (μ sinψ)β (16.553)

which in hover is just r(θ̇ − β̈ ) and hence a source of pitch damping. The virtual
mass terms (θ̈ and β̈) are neglected now. Substituting for the perturbation forces and
velocities gives

MF = Mθ θ + Mθ̇ θ̇ + Mλλ+ Mβ̇ β̇ + Mββ (16.554)

M f = mθ θ + mθ̇ θ̇ + mλλ+ mβ̇ β̇ + mββ (16.555)

where the aerodynamic coefficients are

Mθ =
∫ 1

0
r
[
C′(k)

1
2

u2
T + c

8
uR

]
dr (16.556)

Mθ̇ =
∫ 1

0
r
[

uT c
1
8

(
1 + 2C′(k) (1 + 2ξA)

)]
dr (16.557)

Mλ = −
∫ 1

0
r
[
C′(k)

1
2

uT

]
dr (16.558)

Mβ̇ = −
∫ 1

0
r
[
C′(k)

1
2

ruT + c
8

uR − c2

32
(1 + 4ξA)

]
dr (16.559)

Mβ = −
∫ 1

0
r
[
C′(k)

1
2

uRuT − c
4

C′(k)uT − c
8
μ sinψ

]
dr (16.560)
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mθ = −
∫ 1

0

[
xAC′(k)

1
2

u2
T + c2

32
uR (1 + 4ξA)

]
dr (16.561)

mθ̇ = −
∫ 1

0

[
c2

16
uT
(
1 + 4ξA

(
1 + 2C′(k) (1 + 2ξA)

))]
dr (16.562)

mλ =
∫ 1

0

[
xAC′(k)

1
2

uT

]
dr (16.563)

mβ̇ =
∫ 1

0

[
xAC′(k)

1
2

ruT + c2

32
uR (1 + 4ξA)

− c3

32

(
3
8

+ 2ξA (1 + 2ξA)

)]
dr (16.564)

mβ =
∫ 1

0

[
xAC′(k)

1
2

uRuT − c2

32
uT
(
1 + 8ξAC′(k)

)
− c2

32
μ sinψ (1 + 4ξA)

]
dr (16.565)

with ξA = xA/c. The aerodynamic coefficients can be integrated analytically assum-
ing constant chord and aerodynamic center offset and by evaluating the lift deficiency
function at an effective radius (such as re = 0.75), so that the reduced frequency is
ke = ωb/(re + μ sinψ). The results are

Mθ = C′(ke)

(
1
8

+ μ

3
sinψ + μ2

4
sin2 ψ

)
+ c

16
μ cosψ (16.566)

Mθ̇ = c
4

(
1 + 2C′(ke) (1 + 2ξA)

) (1
6

+ μ

4
sinψ

)
(16.567)

Mλ = −C′(ke)

(
1
6

+ μ

4
sinψ

)
(16.568)

Mβ̇ = −C′(ke)

(
1
8

+ μ

6
sinψ

)
− c

8
μ cosψ + c2

64
(1 + 4ξA) (16.569)

Mβ = −μ cosψC′(ke)

(
1
6

+ μ

4
sinψ

)
+ c

2
C′(ke)

(
1
6

+ μ

4
sinψ

)
+ c

16
μ sinψ (16.570)

mθ = −xAC′(ke)

(
1
6

+ μ

2
sinψ + μ2

2
sin2 ψ

)
− c2

32
μ cosψ (1 + 4ξA) (16.571)

mθ̇ = − c2

16

(
1 + 4ξA

(
1 + 2C′(ke) (1 + 2ξA)

)) (1
2

+ μ sinψ
)

(16.572)

mλ = xAC′(ke)

(
1
4

+ μ

2
sinψ

)
(16.573)
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mβ̇ = xAC′(ke)

(
1
6

+ μ

4
sinψ

)
+ c2

32
μ cosψ (1 + 4ξA)

− c3

32

(
3
8

+ 2ξA (1 + 2ξA)

)
(16.574)

mβ = xAC′(ke)μ cosψ
(

1
4

+ μ

2
sinψ

)
− c2

32

(
1 + 8ξAC′(ke)

) (1
2

+ μ sinψ
)

− c2

32
μ sinψ (1 + 4ξA) (16.575)

The non-circulatory lift terms are an order c/R smaller than the flap moments due to
the circulatory lift. The rotor wake can significantly reduce the circulatory lift forces
through the lift deficiency function, however. The circulatory lift also produces
feathering moments through the pitch axis-aerodynamic center offset xA. The non-
circulatory forces are the source of the aerodynamic pitch damping moment of the
blade (mθ̇). In hover, the aerodynamic coefficients reduce to

Mθ = 1
8

C′(ke) (16.576)

Mθ̇ = c
24

(
1 + 2C′(ke) (1 + 2ξA)

)
(16.577)

Mλ = −1
6

C′(ke) (16.578)

Mβ̇ = −1
8

C′(ke)+ c2

64
(1 + 4ξA) (16.579)

Mβ = c
12

C′(ke) (16.580)

mθ = −xA

6
C′(ke) (16.581)

mθ̇ = − c2

32

(
1 + 4ξA

(
1 + 2C′(ke) (1 + 2ξA)

))
(16.582)

mλ = xA

4
C′(ke) (16.583)

mβ̇ = xA

6
C′(ke)− c3

32

(
3
8

+ 2ξA (1 + 2ξA)

)
(16.584)

mβ = − c2

64

(
1 + 8ξAC′(ke)

)
(16.585)

The circulatory lift produces flap moments due to θ , β̇, and λ and the correspond-
ing pitch moments through xA. The non-circulatory forces produce flap and pitch
moments due to θ̇ and β.
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17 Beam Theory

17.1 Beams and Rotor Blades

An adequate blade structural model is essential for the prediction of rotor loads and
stability. Rotor blades almost universally have a high structural fineness ratio and
thus are well idealized as beams. The complexities of rotation, and now multiple load
paths and composite construction, have required extensive and continuing efforts to
develop appropriate beam models for the solution of rotor problems. For exposition
of beam theory, particularly relevant to rotor blade analyses, see Hodges (2006) and
Bauchau (1985).

A beam is a structure that has small cross-section dimensions relative to an axial
line. Based on the slender geometry, beam theory develops a one-dimensional model
of the three-dimensional structure. The deflection of the structure is described as
functions of the axial coordinate, obtained from ordinary differential equations (in
the axial coordinate). The equations depend on cross-section properties, including
two-dimensional elastic stiffnesses. The three-dimensional stress field is determined
from the deflection variables. Beam theory combines kinematic equations relat-
ing strain measures to deflection variables, constitutive equations relating stress
resultants to strain measures, and equilibrium equations relating stress resultants to
applied loads. When inertial loads are included, the motion is described by partial
differential equations, in time and the axial coordinate.

Although a beam model offers major simplifications of the structural analy-
sis, the design and operation of rotor blades introduce complications. For a rotor
blade, the undeformed state is a twisted line, perhaps curved or kinked, and rotation
generates large axial forces. Current blades have built-up construction using compos-
ite materials. Consequently, significant structural coupling of bending, torsion, and
extension is possible. The deflections are not necessarily small, so a geometrically
nonlinear description is required. Most beam models for rotor blades do assume
small strain and linearly elastic materials.

Fundamental to applicability of beam models is the Saint-Venant Principle:
distributions of stress on the cross-section with the same resultant loads exhibit only
local differences, producing the same effect far enough away. The difference between
the exact stress and an engineering approximation decays exponentially over a short
distance along the beam. So the effects of loading can be determined without details
of the stress distribution, and that end effects are only important near the beam end.

671
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With the Saint-Venant Principle, elementary solutions for extension, bending, and
torsion of beams (notably deformation of homogeneous, isotropic, prismatic beams)
provide the basis for engineering beam theory.

Engineering beam theory has its origins in the work of Euler and Bernoulli. For
bending and extension deformations, it is assumed that plane cross-sections remain
plane and normal to the neutral axis, and axial stress dominates the section loading.
Euler-Bernoulli beam theory is applicable for large wavelength deflection of slender
beams (low-frequency modes), but not thin-walled open sections. There are four
strain measures: two bending curvatures, torsion, and extension strain. Timoshenko
beam theory incorporates shear deformation and rotational inertia, relaxing the
assumption that plane sections remain normal to the deformed beam axis. There are
six strain measures, adding the two shear strains. The added mechanisms of defor-
mation lower the global stiffness of the beam, resulting in a larger deflection under
a static load and lower predicted eigen-frequencies for a given set of boundary con-
ditions. Vlasov theory is applicable to thin-walled beams with open cross-sections,
adding strain measures to account for the constraint of warping at the end of the
beam, which produces a significant increase in local torsion stiffness.

For a beam constructed of isotropic materials, there are six fundamental stiff-
nesses: extension, two bending, torsion, and two shear. The extension and bending
stiffnesses are obtained from simple integrals over the cross-section, whereas the tor-
sion and shear stiffnesses depend on warping of the section. For anisotropic materials
of composite beams, there can be elastic coupling of the global deformations, imply-
ing 21 stiffnesses (symmetric 6 × 6 matrix), and simple integrals are not sufficient.
Linear, two-dimensional, finite-element analyses for the cross-section stiffnesses
have been developed; see Giavotto, Borri, Mantegazza, Ghiringhelli, Carmaschi,
Maffioli, and Mussi (1983) and Cesnik and Hodges (1997).

17.2 Engineering Beam Theory for a Twisted Rotor Blade

Engineering beam theory was used in Chapter 16 to derive the equations of motion
for an elastic rotor blade, with the simplifying assumption of no structural coupling
of bending and torsion and purely in-plane and out-of-plane bending motion. Blade
pitch and twist introduce structural coupling of the out-of-plane and in-plane bending
deflection. The free vibration modes in the centrifugal force field of the rotating blade
hence involve coupled flap and lag motion, which has a major impact on the rotor
dynamics. Following Houbolt and Brooks (1958), this section derives engineering
beam theory for bending and torsion of a rotating blade. The focus is still on the
linear terms.

The undeformed elastic axis is assumed to be a straight line, and the blade
is assumed to have a high structural aspect ratio so that engineering beam theory
is applicable. Figure 17.1 shows the geometry considered. The spanwise variable r is
measured from the center of rotation along the elastic axis. The coordinates x and z
are the principal axes of the section, with origin at the elastic axis. Then by definition∫

xzE dA = 0. This integral is weighted with the modulus of elasticity. The modulus-
weighted centroid, or tension center, is assumed to be located on the x-axis at a
distance xC aft of the elastic axis; hence

∫
zE dA = 0 and

∫
xE dA = xC. The angle

of the major principal axis (the x-axis) with respect to the hub plane is the blade
pitch θ . The existence of the elastic axis means that torsion about the elastic axis
occurs without bending of the blade. Thus the pitch angle consists of the root pitch
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Figure 17.1. Geometry of the twisted rotor blade (before the bending distortion).

θ0, the built-in twist θtw, and an elastic torsion deflection θe: θ = θ0 + θtw + θe. The
twist θtw is a function of r and is defined to be zero at the root. Shear stress in the
blade is due to θe only. The elastic twist θe is assumed to be small, but the trim pitch
angles θ0 and θtw can be large.

The unit vectors of the rotating hub plane axis system are iB, jB, and kB (respec-
tively, the xB, rB, and zB axes; see Figure 17.1). The unit vectors of the principal axes
of the section are i, j, and k (respectively, the x, r, and z axes), which are rotated by
the angle θ from the hub plane:⎛⎝ i

j
k

⎞⎠ =
⎡⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤⎦⎛⎝ iB
jB

kB

⎞⎠ (17.1)

Elastic torsion is included in the definition of i and k, but not the blade bending. So
∂i/∂r = −θ ′k and ∂k/∂r = θ ′i.

The distortion of the blade is described by a deflection of the elastic axis with
components x0, r0, and z0 (Figure 17.2). The bending of the elastic axis produces a
rotation of the section by the angles φx and φz. The elastic torsion θe has already been
included in θ . Engineering beam theory assumes that plane sections perpendicular
to the elastic axis remain so after bending. This description of the blade motion is
sufficient to define the distortion of all elements of the section. The quantities x0, r0,
z0, and θe are assumed to be small. The unit vectors of the deformed cross section iS,
jS, and kS are rotated by φx and φz from the undeformed cross-section:⎛⎝ iS

jS

kS

⎞⎠ =
⎡⎣ 1 φz 0

−φz 1 φx

0 −φx 1

⎤⎦⎛⎝ i
j
k

⎞⎠ (17.2)
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Figure 17.2. Definition of the blade deformation.

The vector jS is the tangent to the deformed elastic axis. Hence by definition jS =
dr/ds, where r = x0i + (r + r0)j + z0k is the deflected position and s is the arc length
along the deformed elastic axis. Then to first order,

jS = j + (x0i + z0k)′ = j + (x′
0 + z0θ

′) i + (z′
0 − x0θ

′)k (17.3)

Comparing the two definitions of jS shows that the rotation of the section is −φz =
x′

0 + z0θ
′ and φx = z′

0 − x0θ
′. The undeflected position of a blade element is r =

xi + rj + zk, and the deflected position is

R = (r + r0) j + x0i + z0k + xiS + zkS

= (x + x0) i + (r + r0 + xφz − zφx) j + (z + z0) k (17.4)

For now the elastic extension r0 is neglected, which simplifies the strain analysis since
then to first order s = r. The extension r0 produces a uniform strain over the section,
which can be introduced later.

The metric tensor gmn of the undistorted blade is defined by

(ds)2 = dr · dr =
(
∂r
∂xm

dxm

)
·
(
∂r
∂xn

dxn

)
= gmndxmdxn (17.5)

where ds is the differential length in the material and xm are general curvilinear
coordinates. Similarly, the metric tensor Gmn of the deformed blade is

(dS)2 = dR · dR =
(
∂R
∂xm

dxm

)
·
(
∂R
∂xn

dxn

)
= Gmndxmdxn (17.6)

Then the strain tensor γmn is defined by the differential length increment,
2γmndxmdxn = (dS)2 − (ds)2, or γmn = 1

2 (Gmn − gmn). For engineering beam the-
ory, only the axial component of the strain is required. For the specific case of the
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twisted rotor blade, the metric gmn is obtained from the undistorted position vector,
r = xi + rj + zk. The axial component is

grr = ∂r
∂r

· ∂r
∂r

= 1 + θ ′ 2
tw(x

2 + z2) (17.7)

The metric Gmn is obtained from equation 17.4 for the position vector of the
deformed blade:

Grr = ∂R
∂r

· ∂R
∂r

= (
1 + xφ′

z − zφ′
x

)2 + (x′
0 + θ ′(z + z0)

)2 + (z′
0 − θ ′(x + x0)

)2

(17.8)
Hence the axial component of the strain tensor is

γrr = 1
2
(Grr − grr) = 1

2

[(
1 + xφ′

z − zφ′
x

)2 − 1 + (x′
0 + θ ′(z + z0)

)2 − θ ′ 2
twz2

+ (z′
0 − θ ′(x + x0)

)2 − θ ′ 2
twx2

]
(17.9)

The linear strain is then

γrr
∼= εrr = xφ′

z − zφ′
x + θ ′ 2

tw (xx0 + zz0)+ θ ′
tw

(
zx′

0 − xz′
0 + θ ′

e(x
2 + z2)

)
(17.10)

since x0, z0, φx, φz, and θe are small.
The strain due to the blade tension, eT , is a constant given by T = ∫

EεrrdA =
εT
∫

E dA, where T is the tension force on the section. Substituting for εrr and
including the strain due to the blade extension r0 again, we obtain

εT = φ′
zxC + θ ′ 2

twx0xC − θ ′
twz′

0xC + θ ′
twθ

′
ek2

P + r′
0 (17.11)

where
∫

zE dA = 0,
∫

xE dA = xC, and
∫
(x2 + z2)E dA = k2

P

∫
E dA; kP is the

modulus-weighted radius of gyration about the elastic axis. So the strain can be
written as

εrr = εT + (x − xC)
(
φ′

x − θ ′
twφx

)− z
(
φ′

z + θ ′
twφz

)+ θ ′
twθ

′
e

(
x2 + z2 − k2

P

)
(17.12)

where eT is obtained from the tension force.
Engineering beam theory assumes that all the stresses due to bending are neg-

ligible except for the axial component, σrr = Eεrr. Assuming that the lines of stress
follow the twisted filaments of the beam, the direction of σrr is given by the unit
vector

e = ∂R/∂r
|∂R/∂r| (17.13)

where R is the deformed position of the section; see Figure 17.3. The moment about
the elastic axis due to the elemental force σrrdA on the cross-section is

dM = (xiS + zkS)× (σrre dA) = (−ziS + xkS + θ ′
tw(x

2 + z2)jS
)
σrrdA (17.14)

Then the total moment, with components Mx, Mr, and Mz (Figure 17.3), is obtained
by integrating over the section:∫

section
dM = MxiS + MrjS + MzkS (17.15)

hence

MxEA = −
∫

zσrrdA (17.16)
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Figure 17.3. Bending and torsion moments on the blade section.

MzEA =
∫

xσrrdA (17.17)

Mr = GJθ ′
e +

∫
(x2 + z2)θ ′σrrdA (17.18)

The torsion moment GJθ ′
e due to the shear forces of elastic torsion has been added

to Mr. For bending, working with moments about the tension center at xC is more
appropriate:

Mx = −
∫

zσrrdA (17.19)

Mz =
∫
(x − xC)σrrdA (17.20)

After substituting for σrr and integrating, the bending and torsion moments are as
follows:

Mx = EIzz
(
φ′

x + θ ′φz
)− θ ′

twEIzpθ
′
e (17.21)

Mz = EIxx
(
φ′

z − θ ′φx
)+ θ ′

twEIxpθ
′
e (17.22)

Mr = (
GJ + k2

PT + θ ′ 2
twEIpp

)
θ ′

e + θ ′
twk2

PT

+ θ ′
tw

(
EIxp

(
φ′

z − θ ′φx
)− EIzp

(
φ′

x + θ ′φz
))

(17.23)

where

EIzz =
∫

z2E dA (17.24)

EIxx =
∫
(x − xC)

2E dA (17.25)

k2
P

∫
E dA =

∫
(x2 + z2)E dA (17.26)

EIxp =
∫
(x − xC)(x2 + z2)E dA (17.27)

EIzp =
∫

z(x2 + z2)E dA (17.28)
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EIpp =
∫
(x2 + z2 − k2

P)
2E dA (17.29)

Since the tension T acts at the tension center xC, the bending moments about the
elastic axis can be obtained from those about the tension center by MzEA = Mz + xCT
and MxEA = Mx.

The structural moments (equations 17.21 and 17.22) couple the flap and lag
bending motion. Higher-order stiffnesses (EIxp and EIzp) couple bending and torsion
moments. Equation 17.23 has a torsion moment due to the tension T acting on a
twisted blade:�Mr = k2

PT (θ ′
tw + θ ′

e). Called the trapeze effect, the k2
PTθ ′

tw term acts
to untwist the blade, whereas k2

PTθ ′
e increases the effective torsion stiffness. These

torsion moments arise because of the assumption that the axial stress follows the
twisted filaments of the beam, equation 17.13. This assumption is reasonable for a
rotor blade, which has a chordwise dimension of the structure much larger than the
normal dimension. The assumption is not correct for an axisymmetric beam, where
with isotropic materials twist has no meaning. A more careful derivation replaces
the coefficient k2

P with k2
T , defined so kT = kP for a flat beam and kT = 0 for an

axisymmetric beam.
This result can be written using a vector representation of the blade bending.

Define the two-dimensional section bending moment vector M = (Mx Mz)
T and the

flap-lag deflection vector u = (z0 − x0)
T in principal axes. A superscript B is used

for quantities relative to the hub axes. The derivatives of u are

u′ =
(

z′
0 − x0θ

′

−x′
0 − z0θ

′

)
=
(
φx

φz

)
(17.30)

u′′ =
(
φ′

x + θ ′φz

φ′
z − θ ′φz

)
(17.31)

Then the bending and torsion moments can be written as

M = EIu′′ + θ ′
twEIPθe (17.32)

Mr = (
GJ + k2

PT + θ ′ 2
twEIpp

)
θ ′

e + θ ′
twk2

PT + θ ′
tw(EIP)

T u′′ (17.33)

with the stiffness matrices

EI =
[

EIzz 0
0 Exx

]
(17.34)

EIP =
[−EIzp

EIxp

]
(17.35)

in principal axes. This is the engineering beam theory result relating the structural
moments to the deflections of the rotor blade section. For a blade with zero pitch,
it reduces to the usual results for uncoupled in-plane and out-of-plane bending of a
beam:

Mx = EIzzz′′
0 (17.36)

Mz = EIxxx′′
0 (17.37)

Mr = (
GJ + k2

PT
)
θ ′

e (17.38)

The vector form allows a simultaneous treatment of the coupled in-plane and out-
of-plane bending of the blade.
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Figure 17.4. Forces and moments acting on the blade element from r to r + dr.

Houbolt and Brooks (1958) considered the bending displacement defined in
terms of the hub plane axes. Their result can be obtained from the present relations
by writing uB = ( w −v )T . Then the curvature in hub plane axes and principal axes
is

(uB)′′ =
(
w′′

−v′′

)
(17.39)

u′′ =
(
w′′ cos θ + v′′ sin θ
w′′ sin θ − v′′ cos θ

)
(17.40)

and the bending stiffness matrix is

EIB =
[

EIzz cos2 θ + EIxx sin2 θ (EIxx − EIzz) cos θ sin θ

(EIxx − EIzz) cos θ sin θ EIzz sin2 θ + EIxx cos2 θ

]
(17.41)

in hub plane axes.
The differential equations for blade bending and torsion can be derived from the

equilibrium of forces and moments on a differential element of the beam extending
from r to r + dr. Consider the shear forces, bending moments, tension, and torsion
moment on the blade section (as shown in Figure 17.4), defined relative to the hub
plane axes so the axes are the same at r and at r + dr. The blade also has distributed
forces (components px, pr, and pz, force/length) and moments (components qx, qr,
and qz, moment/length) acting on the section element. The equilibrium of forces and
moments on this blade element give

S′
x + px = 0 (17.42)

S′
z + pz = 0 (17.43)

T ′ + pr = 0 (17.44)

M′
x − Tw′ + Sz + qx = 0 (17.45)

M′
z + Tv′ − Sx + qa = 0 (17.46)

M′
r + Sxw

′ − Szv
′ + qr = 0 (17.47)
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wherew and v are the bending deflections in hub plane axes. Eliminating the shears,
these equations become

M′′
x − (Tw′)′ + q′

x − pz = 0 (17.48)

M′′
z + (Tv′)′ + q′

z + px = 0 (17.49)

M′
r − w′

∫ r

pxdr + v′
∫ r

pzdr + qr = 0 (17.50)

where the tension is T = − ∫ r prdr. The structural analysis gives the section moments
Mx, Mz, and Mr. The distributed forces and moments are due to the inertial and
aerodynamic forces acting on the blade. To combine the in-plane and out-of-plane
equations again, define the following two-dimensional vectors: M = (Mx Mz)

T ,
u = (w − v)T , q = (qx qz)

T , and p = (pz − px)
T (in hub plane axes). Then the

equilibrium equation for bending is

M′′ − (Tu′)′ + q′ − p = 0 (17.51)

With no torsion, engineering beam theory gives M = Elu′′ (equation 17.32), so(
EIu′′)′′ − (Tu′)′ + q′ − p = 0 (17.52)

is the differential equation for the blade bending.
To complete the equations of motion, the distributed loadings must be derived.

For the bending modal equations, only the centrifugal and inertial loadings due
to bending deflection are required. The tension is due to the centrifugal force:
T = �2

∫ R
r ρm dρ. The out-of-plane and in-plane accelerations give an inertial force

on the blade section: p = −mü. The section centrifugal force m�2ρ has an in-plane
component (m�2ρ)(v/ρ) in the lag direction due to the in-plane deflection v, giving
a lag moment on the section at r of qz = − ∫ R

r m�2v dρ. Hence

q′ = −m
[

0 0
0 �2

]
u = −m��

T
u (17.53)

where � = (0 �)T is the rotational speed vector in hub plane axes.
The partial differential equation of the rotating blade in a vacuum is then

(
EIu′′)′′ −�2 d

dr

(∫ R

r
ρm dρ u′

)
− m��

T
u + mü = 0 (17.54)

Using the method of separation of variables, write the bending deflection as u =
η(r)eiνt . Then the equation for the vector mode shape η is

(
EIη′′)′′ −�2 d

dr

(∫ R

r
ρm dρ η′

)
− m��

T
η − mν2η = 0 (17.55)

This is the modal equation for coupled flap-lag bending of the rotating blade. For
a blade with no pitch or twist, this vector equation separates into two equations for
out-of-plane deflection and in-plane deflections: equations 16.61 and 16.111. The
boundary conditions are

i) The blade tip is a free end, with zero moment and shear force, so EIη′′ =
(EIη′′)′ = 0 at r = R.
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ii) The root of an articulated blade has a hinge, with zero displacement η = 0 and
spring moment EIη′′ = Ksη

′ at r = e (allowing for a hinge offset), where Ks is
the hinge spring matrix.

iii) The root of a hingeless rotor has cantilever restraint, with zero displacement
and slope, so η = η′ = 0 at r = e (allowing for a very stiff hub).

The modal equation and its boundary conditions form a proper Sturm-Liouville
eigenvalue problem (see section 16.1) for which there is a series of eigensolutions
ηk(r) and corresponding eigenvalues νk. The modes are orthogonal with weighting
function m, so ∫ R

0
ηT

i ηkm dr = 0 (17.56)

if i �= k. The natural frequencies νk can be obtained from the mode shapes using the
energy relation

ν2 =
η′(e)T Ksη

′(e)+ ∫ R
0

[
η′′T EIη′′ +�2

∫ R
r ρm dρ η′ 2 − m

(
�

T
η
)2]

dr∫ R
0 η

2m dr
(17.57)

which can also be used to estimate the frequencies from approximate mode shapes.

17.3 Nonlinear Beam Theory

Nonlinear beam theory for rotor blades is developed in this section. The theory is
derived first for exact kinematics of the elastic motion for small strain and linear
elastic materials but without any limitation on the magnitude of the deformation.
This development draws on the work of Hodges (1990), Bauchau and Hong (1988),
Smith and Chopra (1993), and Yuan, Friedmann, and Venkatesan (1992). With
the assumption of small strain, beam theory produces a linear relation between the
section structural loads and the strain measures (such as curvature). Some interesting
(if not important) nonlinear terms are retained as well, coupling extension and
torsion. Following Hodges and Dowell (1974), the equations can retain only second-
order effects of elastic motion in the strain energy and kinetic energy, restricting the
elastic motion to moderate deflection.

Two structural models are considered. The first model is the Euler-Bernoulli
beam theory for isotropic materials with a straight elastic axis. The second model
is beam theory for anisotropic or composite materials, including transverse shear
deformation, with a straight beam axis. Beam theories have been developed for a
curved axis, but here the undistorted axis is assumed to be straight. When modeled
by finite elements, the blade can be reasonably represented by a series of small
elements with straight axes, with jumps and kinks of the axis occurring at nodes.

Classical beam theory works best if the reference axis is the elastic axis. The
elastic axis is defined as a line along which transverse loads produce bending only,
with no torsion at any section. Such a line often is not independent of the loading
distribution and may not exist at all. So often the elastic axis is taken as the locus
of shear centers. The shear center or flexural center is a point on a section where a
tranverse load must be applied to produce bending only, with no twist of the section;
it is a property of the section. The torsional center or center of twist is the point
about which the section rotates under torsion load. The neutral axis is the point on
the section with zero stress produced by bending. In addition to treating anisotropic
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or composite materials, the present general model eliminates the assumption that
an elastic axis exists. Identification of the beam axis is not entirely arbitrary, since
the structure must be slender relative to the beam axis, allowing application of the
beam theory assumptions; structural and inertial properties are defined in planes
perpendicular to the beam axis, and the elastic motion is described by extension,
bending, and torsion of the beam axis.

The effects of cross-section warping and transverse shear are included in the
section structural properties. Their effects on the inertial forces and surface geom-
etry are neglected. Any variables describing the warp amplitude are eliminated by
expressing them in terms of the strain measures. This treatment of warp is not suffi-
cient for open sections or for restrained warping at end conditions. Transverse shear
is introduced by variables that describe the rotation of the cross-section relative to
the plane perpendicular to the bent beam axis. Good results have been obtained
using reduced section properties, so a quasistatic reduction is used to eliminate the
transverse shear variables from the section structural relations; see Hodges, Atilgan,
Cesnik, and Fulton (1992), Cesnik and Hodges (1997), and Smith and Chopra (1991).
Alternate approaches are a global (rather than section) quasistatic elimination of the
transverse shear and warping variables or use of an integration or solution method
that suppresses the high-frequency, short wavelength modes associated with such
variables.

The description of the beam motion includes large rigid-body motion, which for
the helicopter encompasses rotation of the rotor as well as rigid and elastic motion
of the airframe. Depending on the shape functions for the elastic deflection, this
rigid-body motion can be either frame motion for the beam or the motion of one
end of the beam. In the context of multibody dynamics, joints can be included at any
point on the beam.

17.3.1 Beam Cross-Section Motion

The elastic motion is represented by the deflection, extension, and torsion of the
beam axis. The rigid motion describes the position and orientation of a frame at
one end of the beam. The elastic motion is measured relative to the rigid motion.
The undeflected structure has a straight beam axis of length �. The beam axis is
the positive x-axis, with the beam extending from x = 0 to x = �. Pitch angles are
measured from the x–y plane, positive for rotation about the x-axis. Figure 17.5
illustrates the geometry. The structural and inertial properties of the undeflected
beam are defined as follows.

a) θC: pitch of the structural principal axes
b) yC and zC: offset of the tension center (modulus-weighted centroid) from the

beam axis, relative to the principal axes (at θC)
c) kP: modulus-weighted radius of gyration about the beam axis
d) θI : pitch of the inertial principal axes
e) yI and zI : offset of the center of gravity (mass-weighted centroid) from the beam

axis relative to the principal axes

The pitch angles can be large. In the following, the notation Cβ = cosβ, Sβ = sinβ
is used. For a rotation matrix, the notation C = XαYβZγ means a rotation by the
angles γ , then β, and then α about the z, y, and x-axes, respectively (see Chapter 2).
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Figure 17.5. Definition of the blade deformation for the nonlinear beam model.

The theory requires the motion of a point on the beam cross-section. For the
structural contributions to the equations of motion, the effects of warp and transverse
shear are included. The position of a cross-section point relative to the body axes is
constructed as follows:

a) Constant axial position x
b) Then elastic axial deflection u along the x-axis
c) Then rotation of the cross-section by ν then ω, produced by transverse shear

deformation
d) Then elastic bending deflections v then w, along the y and z-axes, respectively,

which also produce rotation of the cross-section axes by the angles ζ and β
e) Then elastic torsion and a constant rotation θX about the x-axis
f) Then the position relative to the bent and rotated cross-section axes, including

warp W of the cross-section

The pitch angle θX = θC for the structural analysis, and θX = θI for the inertial anal-
ysis (section principal axes). The warp displacement W can have three components.
Thus the position on the cross-section is

rB =
⎛⎝ x + u

v

w

⎞⎠+ C

⎛⎝ 0
η

ζ

⎞⎠+ C

⎛⎝W1

W2

W3

⎞⎠ (17.58)

where the variables η and ζ identify the cross-section point, relative to the section
principal axes at θX (Figure 17.5). The variables x, η, and ζ are curvilinear coor-
dinates of the beam. The section is rotated by the matrix C: C = (Z−νYω)CBE =
(Z−νYω)(Z−ζYβX−θ ). The position and orientation of the deformed beam axis (E)
relative to the undeformed beam frame (B) are given by xEB/B = (x + u v w)T and
CBE = Z−ζYβX−θ .
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The section warping displacement can in general be described by a set of warping
functions Si and scalar amplitudes Ai: W = (W1,W2,W3)

T = ∑
i Si(η, ζ )Ai(x) (for

example, Hodges, Atilgan, Cesnik, and Fulton (1992)). From the virtual displace-
ment δW , differential equations (in x) are obtained for the amplitudes Ai (static
equations if the inertial effects of warping are neglected). Here it is assumed that
these equations are solved to eliminate the warping variables, so the effects of warp
are accounted for in the section elastic constants. For an isotropic beam with an
elastic axis, Saint Venant’s torsional warping function can be used: W1 = λφ′ (where
φ is the elastic torsion). For simplicity, this expression is also used in the equations
presented here for an anisotropic beam, although the analysis that obtains the section
elastic constants must fully consider the effects of warp.

The order of the bending (v then w) follows from the order of the Euler angles
to describe the rotation of the section, so the order is not unique. If Rodrigues
parameters were used instead, the bending deflections would be treated identically.
Here the cross-section is still perpendicular to the bent beam axis, and β and ζ
are the rotations of the cross-section produced by bending deflection. The rotation
angles are obtained from the kinematics of the elastic deflection. Let r be the arc
length along the deflected beam axis. The notation (. . .)+ is used for the derivative
with respect to r, whereas (. . .)′ is the derivative with respect to x. The tangent to
the beam axis is

tB = dxEB/B

dr
= 1

r′
dxEB/B

dx
=
⎛⎝ x+ + u+

v+

w+

⎞⎠ = 1
r′

⎛⎝ 1 + u′

v′

w′

⎞⎠ (17.59)

where r′ = dr/dx = ∣∣dxEB/B/dx
∣∣ =

√
(1 + u′)2 + v′ 2 + w′ 2. Since the first row of

Y−βZζ equals tB:

tB =
⎛⎝ cosβ cos ζ

cosβ sin ζ
sinβ

⎞⎠ =
⎛⎝ x+ + u+

v+

w+

⎞⎠ (17.60)

the rotation angles can be obtained from the bending:

sinβ = w+ (17.61)

sin ζ = v+/
√

1 − w+2 (17.62)

cosβ =
√

1 − sin2 β (17.63)

cos ζ =
√

1 − sin2 ζ (17.64)

So β is a rotation about the negative y-axis, produced by bending w+, and ζ is a
rotation about the z-axis, produced by bending v+. For moderate deflections, the
relations can be simplified, consistent with second-order accuracy of the equations
of motion. The second-order approximation for the geometry uses the following

expressions: Sβ = w′, Sζ = v′, Cβ =
√

1 − S2
β , and Cζ =

√
1 − S2

ζ . With such approx-
imations, the rotation matrix is still proper.

The magnitudes of sinβ and sin ζ are less than one for values of u, v, and w
describing a realizable deflection of the beam. The expressions used for cos β and
cos ζ assume that the magnitudes of β and ζ are less than 90◦. Hence |w′| < |r′| and
w′ 2 + v′ 2 < r′ 2 are required. The elastic extension is small for realistic motion, so
the requirement is |w′| < 1 and w′ 2 + v′ 2 < 1. The shape functions that describe the
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bending deflection can violate these requirements, giving an inconsistent geometric
model. So very large elastic motion of a beam must be modeled using several ele-
ments. A simple, extreme test case is a uniform beam bent in a circle. With exact
kinematics for both rigid-body and elastic motion, accurate representation of the
circle is obtained with as few as six elements. With a second-order model for the
elastic motion and relative rigid motion with exact kinematics, 24 or more elements
are needed. For practical rotor blade problems, the beam curvature is much smaller
than the beam length, and second-order elastic motion gives accurate results.

The angular motion of the beam axis, in terms of the bending and pitch variables,
is thus

CEB = XθY−βZζ = Xθ

⎡⎣ CβCζ CβSζ Sβ
−Sζ Cζ 0

−SβCζ −SβSζ Cβ

⎤⎦
= Xθ

⎡⎣ b v+ w+

−v+/a b/a 0
−w+b/a −w+v+/a a

⎤⎦ (17.65)

ωEB/E = R

⎛⎝ θ̇β̇
ζ̇

⎞⎠ (17.66)

with

Xθ =
⎡⎣ 1 0 0

0 Cθ Sθ
0 −Sθ Cθ

⎤⎦ (17.67)

R = Xθ

⎡⎣ 1 0 Sβ
0 −1 0
0 0 Cβ

⎤⎦ =
⎡⎣ 1 0 Sβ

0 −Cθ SθCβ
0 Sθ CθCβ

⎤⎦ (17.68)

and a = √
1 − w+2, b = √

1 − v+2 − w+2. Similarly, the virtual rotation and the
torsion/curvature are

δψ = R

⎛⎝ δθδβ
δζ

⎞⎠ (17.69)

κ = R

⎛⎝ θ+

β+

ζ+

⎞⎠ (17.70)

Note that ω̃EB/E = CEBĊBE , and κ̃ = CEB(CBE )+. For moderate deflections, these
relations can be simplified, consistent with second-order accuracy of the equations
of motion:

CEB ∼= Xθ

⎡⎣ 1 − 1
2 (v

′ 2 + w′ 2) v′ w′

−v′ 1 − 1
2v

′ 2 0
−w′ −w′v′ 1 − 1

2w
′ 2

⎤⎦ (17.71)

ωEB/E ∼= Xθ

⎡⎣ 1 0 w′

0 −1 0
0 0 1

⎤⎦⎛⎝ θ̇

ẇ′

v̇′

⎞⎠ (17.72)

and θ̇ ∼= φ̇ − ∫ x
0 (ẇ

′v′′ + w′v̇′′)dx.
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17.3.2 Extension and Torsion Produced by Bending

Bending of the beam (v andw deflection) produces axial and torsional displacements.
The extension u and pitch angle θ of a bent beam are nonzero even for large axial
and torsional stiffnesses. These variables are therefore defined as the sum of elastic
motion and motion produced by bending: u = ue + U and θ = θC + φ + . Here
ue and φ are quasi-coordinates for the elastic extension motion and elastic torsion
motion, respectively. For large axial and torsional stiffnesses, ue and φ approach
zero. Bending deflection produces the extension U and rotation  . The first term in
θ is the pretwist of the structural principal axes (which can be replaced by θI or zero,
depending on the geometry required). The elastic torsion φ is defined considering
the curvature of the beam about the x-axis: κx = θ+ + Sβζ+ = (θC + φ)+. Hence the
torsional displacement produced by bending is

 = −
∫ r

0
Sβζ+ dr = −

∫ x

0
Sβζ+r′ dx = −

∫ x

0
Sβζ ′ dx = −

∫ x

0
w′ζ+ dx (17.73)

If there is no elastic extension of the beam, then r′ = dr/dx = 1, which gives the
axial displacement produced by bending: u′

bend =
√

1 − (v′ 2 + w′ 2)− 1. Typically
therefore the total axial displacement is written as

u = ue +
∫ x

0

[√
1 − (v′ 2 + w′ 2)− 1

]
dx = ue + U (17.74)

It is simpler (and equivalent to second order) to instead define the elastic extension
as r′ = 1 + u′

e, so u′ = √
(1 + u′

e)
2 − (v′ 2 + w′ 2)− 1 and

u = ue +
∫ x

0

[√
(1 + u′

e)
2 − (v′ 2 + w′ 2)− (1 + u′

e)

]
dx = ue + U (17.75)

To second order in the displacement (or third order if ue = 0), the extension and
torsion produced by bending are

U2 = −1
2

∫ x

0
(v′ 2 + w′ 2)dx (17.76)

 2 = −
∫ x

0
w′v′′ dx (17.77)

These approximations are accurate for moderate deflection, specifically as long as
v′ 2,w′ 2, and u′

e are small compared to 1. For the exact geometric model, the extension
and torsion produced by bending are written U = U2 +�U and =  2 +� , and
the increments �U and � are evaluated by numerical integration.

17.3.3 Elastic Variables and Shape Functions

The elastic motion of the beam is described by the variables ue, v, w, and φ, as
a function of beam axial station x. This motion is discretized using generalized
coordinates q(t) and shape functions h(x):

ue = hT
u qu (17.78)

v = hT
v qv (17.79)

w = hT
wqw (17.80)

φ = hT
φ qφ (17.81)
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The rigid motion of the entire beam is contained in the motion of the body axes or
frame. The coordinates q represent motion measured relative to that frame motion.
The axial and torsion variables exclude the motion produced by bending kinematics,
so suppressing ue or φ is equivalent to the limit of infinite axial or torsional stiffness.
With the second-order approximation, U and can be expressed as quadratic func-
tions of the bending degrees of freedom qv and qw: U2 = qT

v Hvvqv + qT
wHwwqw and

 2 = qT
wHwvqv .

A finite element analysis typically uses Hermite polynomials for the bending
shape functions, so the degrees of freedom are displacement and rotation at the
nodes. Then the boundary condition of the continuity of bending displacement
and slope, extension, and torsion between elements requires simply equating nodal
coordinates. The generalized coordinates q represent both rigid and elastic motion
of the structure. The frame motion is either prescribed, or constraint equations are
introduced to tie the frame to the structure. The frame motion must capture the large
part of the rigid motion of the beam. Chopra and Sivaneri (1982) developed a 15
degree-of-freedom beam discretization for a finite element analysis of rotor blades:
four coordinates each for u, v, and w, and three coordinates for φ. The degrees of
freedom correspond to bending displacement and slope, extension, and torsion at
each end node, plus three interior nodes: two for extension and one for torsion. The
vector of generalized coordinates is

qT = ( u1 u2 u3 u4 v1 v′
1 v2 v′

2 w1 w′
1 w2 w′

2 φ1 φ2 φ3 )

(17.82)
where subscripts 1 and 2 refer to the end nodes. The shape functions are Hermite
polynomials for bending and Lagrange polynomials for extension and torsion:

HT
v = HT

w =

⎛⎜⎝
2ξ 3 − 3ξ 2 + 1
�(ξ 3 − 2ξ 2 + ξ )

−2ξ 3 + 3ξ 2

�(ξ 3 − ξ 2)

⎞⎟⎠ (17.83)

HT
u = 1

2

⎛⎜⎝
−9ξ 3 + 18ξ 2 − 11ξ + 1

27ξ 3 − 45ξ 2 + 18ξ
−27ξ 3 + 36ξ 2 − 9ξ

9ξ 3 − 9ξ 2 + 2ξ

⎞⎟⎠ (17.84)

HT
φ =

⎛⎝ 2ξ 2 − 3ξ + 1
−4ξ 2 + 4ξ

2ξ 2 − ξ

⎞⎠ (17.85)

with ξ = x/�; � is the length of the beam element. This representation of the motion
corresponds to linear variation of the bending moment and torsion moment and to
quadratic variation of axial force.

An alternative is to have the frame attached to the end of the beam (x = 0). The
shape functions can be orthogonal polynomials:

HT
v = HT

w =
⎛⎝ ξ 2

6ξ 3 − 5ξ 2

28ξ 4 − 42ξ 3 + 15ξ 2

⎞⎠ (17.86)
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for bending, h(0) = h′(0) = 0 to exclude the rigid motion; and

HT
u = HT

φ =

⎛⎜⎝
ξ

4ξ 2 − 3ξ
15ξ 3 − 20ξ 2 + 6ξ

56ξ 4 − 105ξ 3 + 60ξ 2 − 10ξ

⎞⎟⎠ (17.87)

for extension and torsion, h(0) = 0 to exclude the rigid motion. The elastic motion is
not orthogonal to the rigid motion, and the elastic degrees of freedom are not the total
motion (nodal coordinates) for the other end of the beam. A 15 degree-of-freedom
model uses three shape functions for extension and two shape functions each for
bending and torsion, plus the six rigid-body degrees of freedom. This representation
gives cubic displacements and quadratic rotation; hence, quadratic tension and linear
moments along the beam.

The effects of transverse shear are introduced by variables ω and ν that rotate
the cross-section (in addition to the rotation produced by bending). These variables
can be nonzero at both ends. By a static reduction, the structural analysis accounts
for the transverse shear effects in the section elastic constants, so ω and ν do not
remain as degrees of freedom for the element.

17.3.4 Hamilton’s Principle

The equations of motion are obtained using Hamilton’s principle:

δ

∫ t2

t1
L dt = δ

∫ t2

t1
(T − U + W )dt = 0 (17.88)

where the terms in the Lagrangian L are the kinetic energy, the strain energy, and
the work of external loads. In a finite element analysis, the Lagrangian is discretized.
Let u be the displacement, represented by generalized coordinates a using u = Na
(N are the shape functions). The strain energy can be written as an integral over
the structure volume: δU = ∫

δεTσ d�. The material properties define the stress σ
as a function of the strain ε; and the geometry gives σ from u: ε = Lu = LNa = Ba,
σ = Dε + σ0. Hence the strain energy becomes

δU = δaT
[∫

BT DB d� a +
∫

BTσ0 d�
]

(17.89)

The generalization to nonlinear material properties and geometry is straightforward
(σ (ε) and ε(u)). The work of the external loads can be written as integrals of the
body forces b, surface forces t, and discrete force F :

δW =
∫
δuT b d�+

∫
δuTt d�+ δuT F = δaT

[∫
NT b d�+

∫
NTt d�+ NT F

]
(17.90)

The surface forces are assumed to be discretized, and the only body force is gravity,
which is handled with the inertial loads. So the only work terms needed are those
from the discrete forces acting on the structure (and similar terms for the discrete
moments).

The equations of motion can be obtained from Hamilton’s principle as the
coefficient of δaT inside an integral over time. The kinetic energy can be written as
an integral over the structure volume:

δT = δ
∫

1
2
ρv2 d� (17.91)
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where ρ and v are the material density and velocity. Hence δȧ terms arise from
the kinetic energy. These can be eliminated by integrating by parts (in time), with
the assumption δa = 0 at t1 and t2. The integration and δ operation are complicated
for the nonlinear and time-varying case. The appearance of δȧ can be avoided, and
so the integration over time ignored, by using the d’Alembert approach: inertial
acceleration is treated as a body force. So the kinetic energy can be written as

δT =
∫
δuT (−r̈ + g)ρ d� = δaT

[∫
NT (−Nä + g)ρ d�

]
(17.92)

where for the linear case the acceleration relative to inertial space is r̈ = ü = Nä.
The gravity force acting on the body has been included. Thus(∫

NT Nρ d�
)

ä +
(∫

BT DB d�
)

a =
(∫

NTρ d�
)

g +
∫

NTt d�

+ NT F −
∫

BTσ0 d� (17.93)

are the equations of motion for the linear problem. The derivation of the equations
of motion follows this general approach.

17.3.5 Strain Energy

Evaluation of the strain energy begins with the analysis of strain; see Bisplinghoff,
Mar, and Pian (1965) and Washizu (1964, 1975). The Green-Lagrange strain tensor
is obtained from the metric tensors of the undistorted and distorted beams (gmn

and Gmn). In terms of curvilinear coordinates ym = (x, η, ζ ), the undistorted and
distorted position vectors are

r =
⎛⎝ x

0
0

⎞⎠+ X−θC

⎛⎝ 0
η

ζ

⎞⎠ (17.94)

R =
⎛⎝ x + u

v

w

⎞⎠+ C

⎛⎝ 0
η

ζ

⎞⎠+ C

⎛⎝W1

W2

W3

⎞⎠ (17.95)

Here x is the distance along the straight beam axis, whereas η and ζ specify a position
on the cross-section plane (parallel to the structural principal axes, but the origin is
not necessarily at the tension center). Assuming small strain, the section loads can
be expressed as linear combinations of the moment strain measure κ and force strain
measure γ :

κ = K − k (17.96)

γ = CT

⎛⎝ 1 + u′

v′

w′

⎞⎠−
⎛⎝ 1

0
0

⎞⎠ =
⎛⎝ ε11

2 ε12

2 ε13

⎞⎠ (17.97)

where K̃ = CTC′, k̃ = XθC X ′
−θC , and k = (

θ ′
C 0 0

)T (Hodges (1985)). Now Kx =
θ ′

C + φ′, so κx = φ′; γx = ε11 = u′
e. Writing C = CsCBE , the curvature K is the sum of

shear and bending/torsion terms:

K̃ = CTC′ = CEB(CT
s C′

s)C
BE + CEB(CBE )′ = CEBK̃sCBE + K̃EB/E (17.98)
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Hence to second order,

κ = Xθ

⎛⎝ 0
−ω′

ν ′

⎞⎠+ Xθ

⎛⎝ φ′

−β ′

Cβζ ′

⎞⎠ = Xθ

⎛⎝ φ′

−w′′ − ω′

v′′ + ν ′

⎞⎠ (17.99)

γ = Xθ

⎡⎣ 1 v′ + ν w′ + ω
−(v′ + ν) 1 0
−(w′ + ω) 0 1

⎤⎦⎛⎝ 1 + u′

v′

w′

⎞⎠−
⎛⎝ 1

0
0

⎞⎠ = Xθ

⎛⎝ u′
e

−ν
−ω

⎞⎠ (17.100)

with θ ∼= θC + φ here. Without the shear deformation, the second-order moment
strain measure is

κ =
⎛⎝ φ′

−Cθw′′ + Sθ v′′

Sθw′′ + Cθ v′′

⎞⎠ (17.101)

For the geometrically exact model, rotation of the deformed section gives

K = R

⎛⎝ θ ′

β ′

ζ ′

⎞⎠ = Xθ

⎛⎝ θ ′ + Sβζ ′

−β ′

Cβζ ′

⎞⎠ = Xθ

⎛⎝ θ ′
C + φ ′

−β ′

Cβζ ′

⎞⎠ (17.102)

From  ′ = −Sβζ ′, there follows Kx = θ ′ + Sβζ ′ = θ ′
C + φ′, and so κx = φ′ exactly.

Then the moment strain measure is

κ = Xθ

⎛⎝ φ′

−β ′

Cβζ ′

⎞⎠ (17.103)

to second order.
The basis vectors of the undistorted and distorted beam are gm = ∂r/∂ym and

Gm = ∂R/∂ym, respectively. Then the metric tensors are gmn = gm · gn and Gmn =
Gm · Gn, and the Green-Lagrange strain tensor is obtained from fmn = 1

2 (Gmn −
gmn). The basis vector g1 is tangent to the line described by constant η and ζ , which
is a helix for a beam with pretwist (θ ′

C �= 0). So g1 is not perpendicular to g2 and g3.
Using the strain γmn = fmn is equivalent to assuming that the axial stress follows the
basis vectors in the twisted beam. Assuming that the constitutive relation is defined
in local rectangular Cartesian coordinates zk is generally more appropriate. The
unit vectors of zk are ek = (i, g2, g3). Thus the strain tensor γmn is related to fmn by
fmn = (∂zk/∂ym)(∂zl/∂yn)γkl , where ∂zk/∂ym = ek · gm. The transformation[

∂zk

∂ym

]
=
⎡⎣ 1 0 0

−θ ′
Cζ 1 0
θ ′

Cη 0 1

⎤⎦ (17.104)

gives γ11 = f11 + 2θ ′
C(ζ f12 − η f13). With the assumption of small strain, γmn

∼= εmn,
where εmn is linear in the strain measures. Thus

ε11 = 1
2
(G11 − g11)+ 2θ ′

C(ζ ε12 − ηε13)

∼= u′
e − κzη + κyζ + (θ ′

Cφ
′ + 1

2
φ′ 2)(η2 + ζ 2)+ W ′

1

+ 2θ ′
C(ζ ε12 − η ε13)− θ ′

Cφ
′(ζ 2 + η2)

+ θ ′
C

(
ζ (W1η + W ′

2)− η(W1ζ + W ′
3)
)
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∼= u′
e − κzη + κyζ + 1

2
φ ′ 2(η2 + ζ 2)

+ 2θ ′
C(ζ ε12 − η ε13)+ θ ′

Cφ
′(ζλη − ηλζ ) (17.105)

2ε12 = G12 − g12
∼= 2 ε12 − (Kx − θ ′

C)ζ + W1η + W ′
2

∼= 2 ε12 + (λη − ζ )φ′ (17.106)

2ε13 = G13 − g13
∼= 2 ε13 + (Kx − θ ′

C)η + W1ζ + W ′
3

∼= 2 ε13 + (λζ + η)φ′ (17.107)

are the required strains. The nonlinear term producing coupling between exten-
sion and torsion is conventionally retained in ε11. In the final expression for each
strain, the representative warping function W1 = λφ′ has been used. The complete
effects of warp must be considered when the section elastic constants are evaluated.
Thus

⎛⎝ ε11

2ε12

2ε13

⎞⎠ =
⎡⎣ 1 θ ′

Cζ −θ ′
Cη θ ′

C(ζλη − ηλζ )+ 1
2φ

′(η2 + ζ 2) ζ −η
0 1 0 λη − ζ 0 0
0 0 1 λζ + η 0 0

⎤⎦
⎛⎜⎜⎜⎜⎜⎜⎝

u′
e

2 ε12

2 ε13

φ′

κy

κz

⎞⎟⎟⎟⎟⎟⎟⎠
(17.108)

are the relations between the strain and the strain measures of the beam.
From Hamilton’s principle, the strain energy is the integral over the structure of

the product of the stress and strain:

δU =
∫
δεTσ d� =

∫
(σ11δε11 + σ22δε22 + σ33δε33

+ 2σ12δε12 + 2σ13δε13 + 2σ23δε23)d� (17.109)

The stress is obtained from the strain by the constitutive law σi j = Ei jklεkl . Beam
theory assumes that only the stresses acting on the plane perpendicular to the beam
axis are important. So σ22, σ33, and σ23 are neglected, and the constitutive law reduces
to

⎛⎝ σ11

σ12

σ13

⎞⎠ =
⎡⎣Q11 Q15 Q16

Q51 Q55 Q56

Q65 Q65 Q66

⎤⎦⎛⎝ ε11

2ε12

2ε13

⎞⎠ (17.110)

The strain energy can now be written in terms of the section loads:

δU =
∫ ∫

δεTσ dA dx

=
∫ �

0

[
Fxδu′

e + Fy2δε12 + Fz2δε13 + Mxδφ
′ + Myδκy + Mzδκz

]
dx (17.111)
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The section loads are obtained from the stress, and hence from the section strain
measures:⎛⎜⎜⎜⎜⎜⎜⎝

Fx

Fy

Fz

Mx

My

Mz

⎞⎟⎟⎟⎟⎟⎟⎠ =
∫
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
θ ′

Cζ 1 0
−θ ′

Cη 0 1
θ ′

C(ζλη − ηλζ )+ φ′(η2 + ζ 2) λη − ζ λζ + η
ζ 0 0
−η 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎛⎝ σ11

σ12

σ13

⎞⎠dA

= T

⎛⎜⎜⎜⎜⎜⎜⎝

u′
e

2 ε12

2 ε13

φ′

κy

κz

⎞⎟⎟⎟⎟⎟⎟⎠ (17.112)

At this point the effects of transverse shear are statically eliminated, reducing the
6 × 6 matrix T to the 4 × 4 matrix S. Neglecting the shear force (not the shear strain)
is appropriate, so T is inverted, the Fy and Fz rows and columns of T−1 are eliminated
to produce S−1, and the inverse of the resulting matrix gives S. At a constrained end,
assuming zero shear strain might be more appropriate; then S is simply obtained by
eliminating the Fy and Fz rows and columns of T .

Including the nonlinear terms that couple extension and torsion, the section
loads are⎛⎜⎝

Fx

Mx

My

Mz

⎞⎟⎠ =

⎡⎢⎣
Suu Suφ + 1

2φ
′Suuk2

P Suw Suv

Sφu + φ′Suuk2
P Sφφ Sφw Sφv

Swu Swφ Sww Swv
Svu Svφ Svw Svv

⎤⎥⎦
⎛⎜⎝

u′
e
φ′

κy

κz

⎞⎟⎠ = S

⎛⎜⎝
u′

e
φ′

κy

κz

⎞⎟⎠
(17.113)

Using the beam theory for anisotropic or composite materials including transverse
shear deformation, the section elastic constants S are the stiffnesses required. With

⎛⎜⎝
δu′

e
δφ′

δκy

δκz

⎞⎟⎠ = C

⎛⎜⎝
δqu

δqv
δqw
δqφ

⎞⎟⎠ =

⎡⎢⎢⎢⎣
CT

f

CT
x

CT
y

CT
z

⎤⎥⎥⎥⎦
⎛⎜⎝
δqu

δqv
δqw
δqφ

⎞⎟⎠ (17.114)

the strain energy is

δU =
∫ �

0

[
Fxδu′

e + Mxδφ
′ + Myδκy + Mzδκz

]
dx

= δqT
u Ku + δqT

v Kv + δqT
wKw + δqT

φKφ = δqT K (17.115)

Thus the structural terms for the equations of motion of the elastic degrees of
freedom are:

K =
∫ �

0

[
Cf Fx + CxMx + CyMy + CzMz

]
dx =

⎡⎢⎣
Ku

Kv
Kw
Kφ

⎤⎥⎦ (17.116)



692 Beam Theory

The result is

Ku =
∫ �

0
h′

uFx dx (17.117)

Kv =
∫ �

0
h′′
v (SθMy + CθMz)dx (17.118)

Kw =
∫ �

0
h′′
w(−CθMy + SθMz)dx (17.119)

Kφ =
∫ �

0

(
h′
φMx + hφ (κzMy − κyMz)

)
dx (17.120)

for the second-order model.
Finally, the strain energy is obtained using Euler-Bernoulli theory for a beam of

isotropic materials with an elastic axis. Transverse shear effects are neglected, and
the elastic axis is the beam axis. The constitutive law is now⎛⎝ σ11

σ12

σ13

⎞⎠ =
⎡⎣E 0 0

0 G 0
0 0 G

⎤⎦⎛⎝ ε11

2ε12

2ε13

⎞⎠ (17.121)

Then the section loads are obtained from the stress, and hence from the section
strain measures:⎛⎜⎝

Fx

Mx

My

Mz

⎞⎟⎠ =
∫

dA

⎡⎢⎣
1 0 0
θ ′

C(ζλη − ηλζ )+ φ′(η2 + ζ 2) λη − ζ λζ + η
ζ 0 0
−η 0 0

⎤⎥⎦
⎡⎣E Eθ ′

C(ζλη − ηλζ )+ 1
2 Eφ′(η2 + ζ 2) Eζ −Eη

0 G(λη − ζ ) 0 0
0 G(λζ + η) 0 0

⎤⎦
⎛⎜⎝

u′
e
φ′

κy

κz

⎞⎟⎠

= S

⎛⎜⎝
u′

e
φ′

κy

κz

⎞⎟⎠ (17.122)

with

S =

⎡⎢⎢⎢⎣
EA θ ′

CEA k2
T + 1

2φ
′EA k2

P EAzC −EAyC

θ ′
CEA k2

T + φ′EA k2
P GJ + θ ′ 2

C EIpp θ ′
CEIzp −θ ′

CEIyp

EAzC θ ′
CEIzp ÊIzz −ÊIyz

−EAyC −θ ′
CEIyp −ÊIyz ÊIyy

⎤⎥⎥⎥⎦
(17.123)

The section integrals are here evaluated relative to the elastic axis:

EIyp =
∫

Ey(zλy − yλz)dA (17.124)

EIzp =
∫

Ez(zλy − yλz)dA (17.125)

EIpp =
∫

E(zλy − yλz)
2 dA (17.126)
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ÊIyy =
∫

Ey2 dA =
∫

E(y − yC)
2 dA + EAy2

C = EIyy + EAy2
C (17.127)

ÊIzz =
∫

Ez2 dA =
∫

E(z − zC)
2 dA + EAz2

C = EIzz + EAz2
C (17.128)

ÊIyz =
∫

Eyz dA =
∫

E(y − yC)(z − zC)dA + EAyCzC = EAyCzC (17.129)

but are conventionally defined relative to the tension center instead. The higher-
order section integrals EIxp, EIzp, and EIpp are seldom available. Thus the stiffness
matrix S is⎡⎢⎣

EA θ ′
CEA k2

T + 1
2φ

′EA k2
P EAzC −EAyC

θ ′
CEA k2

T + φ′EA k2
P GJ 0 0

EAzC 0 EIzz + EAz2
C −EAyCzC

−EAyC 0 −EAyCzC EIyy + EAy2
C

⎤⎥⎦
(17.130)

Beam theory for isotropic materials with an elastic axis requires the following section
structural properties (modulus weighted):

EAyC =
∫

Ey dA (17.131)

EAzC =
∫

Ez dA (17.132)

EAk2
P =

∫
E(y2 + z2)dA (17.133)

EA =
∫

E dA (17.134)

EAk2
T =

∫
E(zλy − yλz)dA (17.135)

GJ =
∫

G
(
(λy − z)2 + (λz + y)2

)
dA (17.136)

EIyy =
∫

E(y − yC)
2 dA (17.137)

EIzz =
∫

E(z − zC)
2 dA (17.138)

The integral is over the beam cross-section in structural principal axes with origin at
the beam axis. Note that the section loads are approximately

Fx
∼= EA(u′

e + θ ′
Cφ

′k2
T − yCκz + zCκy)

Mx = (GJ + Fxk2
P)φ

′ + Fxk2
Tθ

′
C

My
∼= EIzzκy + FxzC

Mz
∼= EIyyκz − FxyC

which illustrates the value of using the tension center for the beam axis, since then
the bending moments My and Mz do not depend on the tension force Fx.
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17.3.6 Extension-Torsion Coupling

In the previous structural analysis, the constitutive relation was assumed to be
defined in local rectangular Cartesian coordinates. The consequence of this assump-
tion is a distinction between the torsion moments produced by elastic torsion φ′ and
those by pretwist θ ′

C, in the presence of a tension force:

Mx = (GJ + Fxk2
P)φ

′ + Fxk2
Tθ

′
C (17.139)

See Hodges (1980). For a circular cross-section, kT must be zero, since pretwist is
not then meaningful with isotropic materials.

If instead the constitutive law is applied in the curvilinear coordinates, the axial
strain is

ε11 = 1
2
(G11 − g11) ∼= u′

e − κzη + κyζ + (θ ′
Cφ

′ + 1
2
φ′ 2)(η2 + ζ 2)+ W ′

1 (17.140)

so the relations between the strain and the strain measures of the beam become

⎛⎝ ε11

2ε12

2ε13

⎞⎠ =
⎡⎣ 1 0 0 (θ ′

C + 1/2φ
′)(η2 + ζ 2) ζ −η

0 1 0 λη − ζ 0 0
0 0 1 λζ + η 0 0

⎤⎦
⎛⎜⎜⎜⎜⎜⎜⎝

u′
e

2 ε12

2 ε13

φ′

κy

κz

⎞⎟⎟⎟⎟⎟⎟⎠ (17.141)

The structural properties for an isotropic beam, including the extension-torsion
coupling term, are then

EIyp =
∫

Ey(y2 + z2)dA (17.142)

EIzp =
∫

Ez(y2 + z2)dA (17.143)

EIpp =
∫

E(y2 + z2)2 dA (17.144)

EAk2
T =

∫
E(y2 + z2)dA = EAk2

P (17.145)

So kT = kP, and the torsion moment is

Mx = (GJ + Fxk2
P)φ

′ + Fxk2
Pθ

′
C (17.146)

This result often has been obtained (as in Houbolt and Brooks (1958)) by explicitly
making the assumption that the axial stress is tangent to the line described by
constant η and ζ , which is a helix for a pretwisted beam. Such an assumption might
be appropriate for an anisotropic beam. In general, the extension-torsion coupling
is defined by the section constant kT for an isotropic beam or Suφ for an anisotropic
beam.

17.3.7 Kinetic Energy

Using the d’Alembert approach, in which inertial acceleration is treated as a body
force, the virtual work of the inertial and gravitational forces is

δT =
∫ ∫

(δrI )T (r̈I − gI )dm dx (17.147)
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The integration is over the section mass and then the beam length. The position
relative to the inertial frame is the sum of the beam frame rigid motion relative to
the inertial frame (xBI/I and CBI) and the position of a point on the beam section
relative to the beam frame (rB): rI = xBI/I + CIBrB. So the inertial acceleration is

r̈I = CIB(v̇BI/B + ˜̇ωBI/BrB + 2ω̃BI/BṙB + r̈B + ω̃BI/BvBI/B + ω̃BI/Bω̃BI/BrB) (17.148)

The virtual displacement can be expressed in terms of the generalized coordinates:

δrI = δ(xBI/I + CIBrB) = δxBI/I + δCIB rB + CIB δrB

= δxBI/I − CIBr̃B δψBI/B + CIB δrB

= CIB
[

I −̃rB RT
u RT

v RT
w RT

φ

]
δq = CIBRT δq (17.149)

where δxBI/I and δψBI/B are the virtual coordinates of the rigid-body motion of the
beam frame. Then the virtual work is

δT = δqT
∫ ∫

RCBI(r̈I − gI )dm dx

= (δxBI/B)T Mx + (δψBI/B)T Mψ + δqT
u Mu + δqT

v Mv + δqT
wMw + δqT

φMφ

= δqT M (17.150)

with M the inertial terms in the beam equations of motion.
The displacement of a point on the beam, relative to the beam frame, is rB =

r0 + ryηb + rzζb. The position on the beam axis is r0. The variables η and ζ identify
the cross-section point, relative to the section principal axes at θI . The variables ηb

and ζb are relative to section axes that are bent but not twisted:(
ηb

ζb

)
=
[

Cθ −Sθ
Sθ Cθ

](
η

ζ

)
(17.151)

with θ = θI + φ + . The position at the center of gravity is rI = r0 + ryηIb + rzζIb =
r0 +�rI . The matrix giving the virtual displacements can be written R = R0 + Ryηb +
Rzζb. Thus the inertial terms in the beam equations of motion are evaluated from

M =
∫ ∫

RCBI(r̈I − gI )dm dx

=
∫ ∫

R
(
v̇BI/B + ω̃BI/BvBI/B − CBIgI

+ r̈B + ˜̇ωBI/BrB + 2ω̃BI/BṙB + ω̃BI/Bω̃BI/BrB
)

dm dx

=
∫ �

0

[
RI (v̇ + ω̃v − Cg)m

+ RI (r̈0 + ˜̇ωr0 + 2ω̃ṙ0 + ω̃ω̃r0)m

+ R0(�r̈I + ˜̇ω�rI + 2ω̃�ṙI + ω̃ω̃�rI )m

+ Ry(r̈y + ˜̇ωry + 2ω̃ṙy + ω̃ω̃ry)Iηη

+ Rz(r̈z + ˜̇ωrz + 2ω̃ṙz + ω̃ω̃rz)Iζ ζ

+ Ry(r̈z + ˜̇ωrz + 2ω̃ṙz + ω̃ω̃rz)Iηζ

+ Rz(r̈y + ˜̇ωry + 2ω̃ṙy + ω̃ω̃ry)Iηζ
]

dx (17.152)
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where

Iηη =
∫
η2

b dm = 1
2
(Iθ + IPC2θ )− yIzImS2θ (17.153)

Iζ ζ =
∫
ζ 2

b dm = 1
2
(Iθ − IPC2θ )+ yIzImS2θ (17.154)

Iηζ =
∫
ηbζb dm = 1

2
IPS2θ + yIzImC2θ (17.155)

with C2θ = cos 2θ = C2
θ − S2

θ and S2θ = sin 2θ = 2SθCθ . The required section inertial
properties (mass weighted) are

m =
∫

dm (17.156)

myI =
∫

y dm (17.157)

mzI =
∫

z dm (17.158)

Iθ =
∫
(y2 + z2)dm (17.159)

IP =
∫
(y2 − z2)dm (17.160)

The integral is over the beam cross-section, in inertial principal axes with origin at
the beam axis. For a circular cross-section, IP = 0; for a cross-section with small z
dimension, IP

∼= Iθ .
The kinematics of the rigid-body motion are exact. For the geometrically exact

model, the motion of a point on the beam cross-section, relative to the beam frame,
is

rB = xEB/B + CBE

⎛⎝ 0
η

ζ

⎞⎠ = xEB/B + (CBEXθ )

⎛⎝ 0
ηb

ζb

⎞⎠
=
⎛⎝ x + u

v

w

⎞⎠+
⎛⎝−Sζ

Cζ
0

⎞⎠ ηb +
⎛⎝−SβCζ

−SβSζ
Cβ

⎞⎠ ζb (17.161)

The variables ηb and ζb identify the cross-section point, relative to section axes that
are bent but not twisted. With the second-order model,

rB =
⎛⎝ x + u

v

w

⎞⎠+
⎛⎝−v′

1
0

⎞⎠ ηb +
⎛⎝−w′

0
1

⎞⎠ ζb (17.162)

is the position on the cross-section. Since ηb and ζb depend on the pitch angle
θ = θI + φ + , they contribute to time derivatives (η̇b = −ζbθ̇ and ζ̇b = ηbθ̇), virtual
displacements, and linearization relative to θI .

17.3.8 Equations of Motion

The equations for the rigid-body motion are obtained from the virtual work of
the inertial and applied forces. The linear and angular equations are Mx = F B and
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Mψ = MB, where F B and MB are the total force and moment acting on the beam, in
the beam frame axes.

The equations for the elastic motion are obtained from the virtual work of the
structural, inertial, and applied forces. The equations for the elastic generalized
coordinates are

⎛⎜⎝
Mu + Ku

Mv + Kv
Mw + Kw
Mφ + Kφ

⎞⎟⎠ =
∑(

vT
q F E + ωT

q ME
)

(17.163)

where F E and ME are the sum of all loads acting on the beam and the partial
velocities vq and ωq are obtained from the expressions for the linear and angular
velocities in terms of the generalized coordinates.

The equations of motion require integration of the beam properties (such as mass
and stiffness) along its length. This integration is performed numerically, typically
using Gaussian quadrature for a finite element analysis. Thus

∫ �

0
f (x)dx = �

2

N∑
i=1

wi f (xi)+ O( f (2N)) (17.164)

where xi = �
2 (ξi + 1), for Gaussian points ξi and weights wi. Gaussian integration

implies a polynomial approximation to the variation of the properties, which is
accurate only if the variation is sufficiently smooth. Also, the shape functions for
the elastic motion are continuous and cannot accurately represent large changes in
the curvature or slope. Thus a beam having properties that vary rapidly along its
length must be modeled by defining nodes to break the beam into segments, with the
major jumps in properties at the nodes. If very short beam segments are required to
accommodate the properties, then beam theory is probably not applicable.

17.3.9 Structural Loads

The section load at axial station xL consists of the torsion and bending moments,
the axial tension, and the section shear forces. The load acts on the beam segment
extending inboard of xL, at the tension center, in structural principal axes. The
section load can be calculated from the deflection or by force balance.

The deflection method obtains the section load from the elastic motion and
structural coefficients. Essentially the load is evaluated from the stiffness and elastic
displacement at xL: for uncoupled bending, moment = EI × curvature. The accuracy
of this calculation depends on the accuracy of the representation of the curvature
or slope (the product of the degrees of freedom and shape functions). At a step
in stiffness there should be a corresponding step in curvature or slope, such that
the load remains continuous. With a small number of shape functions, such a step
cannot be simulated well, so the results for the reaction are not accurate near a step
in stiffness. Also, the theory does not imply continuity of curvature on the two sides
of a node.

The structural analysis provides expressions for the reactions at the beam axis,
from which bending moments at the tension center can be obtained. Thus the section
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load from the deflection method is⎛⎜⎝
Fx

Mx

MyTC

MzTC

⎞⎟⎠ = S

⎛⎜⎝
u′

e
φ′

κy

κz

⎞⎟⎠ (17.165)

with

S =

⎡⎢⎢⎣
Suu Suφ + 1

2φ
′Suuk2

P Suw Suv

Sφu + φ′Suuk2
P Sφφ Sφw Sφv

Swu − SuuzC Swφ − (Suφ + 1
2φ

′Suuk2
P)zC Sww − SuwzC Swv − SuvzC

Svu + SuuyC Svφ + (Suφ + 1
2φ

′Suuk2
P)yC Svw + SuwyC Svv + SuvyC

⎤⎥⎥⎦
(17.166)

for the anisotropic structure, or

S =

⎡⎢⎢⎣
EA θ ′

CEA k2
T + 1

2φ
′EA k2

P EAzC −EAyC

θ ′
CEA k2

T + φ′EA k2
P GJ 0 0

0 −(θ ′
CEA k2

T + 1
2φ

′EA k2
P)zC EIzz 0

0 (θ ′
CEA k2

T + 1
2φ

′EA k2
P)yC 0 EIyy

⎤⎥⎥⎦
(17.167)

for the isotropic structure. The torsion moment is Mx, the bending moments are My

and Mz, and the axial tension force is Fx; the shear forces are not available with the
deflection method.

The force-balance method obtains the section load from the difference between
the applied forces and inertial forces acting on the beam segment. For symmetry,
the section loads calculated using the forces on either side of xL are combined.
The force-balance method can capture the steps in the section load produced by
discrete loads on the beam. The position of the tension center at span station xL,
from the origin of the beam frame, is rL. The difference between the applied forces
and the inertial forces, acting on the segment of beam outboard of xL, is

FL+ =
[∑

x>xL

F −
∫ �

xL

∫
(a − g)dm dx

]
(17.168)

ML+ =
[∑

x>xL

(M + (x̃ − r̃L)F )−
∫ �

xL

∫
(̃r − r̃L)(a − g)dm dx

]
(17.169)

The difference between the applied forces and the inertial forces, acting on the
segment of beam inboard of xL, is

FL− = −
[∑

x<xL

F −
∫ xL

0

∫
(a − g)dm dx

]
(17.170)

ML− = −
[∑

x<xL

(M + (x̃ − r̃L)F )−
∫ xL

0

∫
(̃r − r̃L)(a − g)dm dx

]
(17.171)

All terms are transformed to the bent cross-section axes. The first term is the sum-
mation of all applied loads (forces F and moments M, acting at position x relative to
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the origin of the beam frame) outboard or inboard of xL; the summation becomes
an integral for distributed loads. The second term is the integral of the inertial accel-
eration a and gravitational acceleration g acting on the element of mass (dm dx) at
position r (relative to the origin of the beam frame). The section loads calculated
using the forces on either side of xL are combined, such that the loads at the beam
ends are the same as a nodal reaction. Thus

FL = (xL/�)FL+ + (1 − xL/�)FL− (17.172)

ML = (xL/�)ML+ + (1 − xL/�)FM− (17.173)

or

FL =
[∑

WF −
∫ ∫

W (a − g)dm dx
]

(17.174)

ML =
[∑

W (M + x̃F )−
∫ ∫

Wr̃(a − g)dm dx
]

− r̃LFL (17.175)

with the weighting function

W =
{

xL/� x > xL

xL/�− 1 x ≤ xL
(17.176)

The required sums and integrals can be evaluated as for the rigid-body equations
of motion, with the addition of the weighting function W . However, Gaussian inte-
gration of the inertial forces does not treat the step in W accurately. The integrated
inertial load is continuous with xL if the integrand at xL is handled analytically. So
the quadrature becomes

F =
∫ �

0
W f (x)dx =

∫ �

0
W
(

f (x)− f (xL)
)

dx +
∫ �

0
W f (xL)dx

= �

2

N∑
i=1

wiW (xi)
(

f (xi)− f (xL)
)

(17.177)

where xi = (ξi + 1)(�/2) for Gaussian points ξi and weights wi. The force-balance
method can capture the steps in the section load produced by discrete loads on the
beam. Distributed loads (as from aerodynamics) must be treated as such for good
results.

17.4 Equations of Motion for Elastic Rotor Blade

The equations of motion in implicit form with finite element discretization, as devel-
oped in the preceding section, are best for computational applications. Differential
equations of motion are also useful, particularly for an analysis of the entire blade.
Consider bending and torsion of an elastic blade, without shear. Equation 17.111 for
the strain energy becomes

δU =
∫ ∫

δεTσ dA dx =
∫ �

0

[
Fxδu′

e + Mxδφ
′ + Myδκy + Mzδκz

]
dx (17.178)
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The virtual extension is δu′
e = δu′ + v′δv′ + w′δw′ (equation 17.77), and the curvature

is (
δκy

δκx

)
=
[

Cθ Sθ
−Sθ Cθ

](−δw′′ + v′′δφ
δv′′ + w′′δφ

)
(17.179)

(equation 17.101). So

δU =
∫ �

0

[
Fx(δu′ + v′δv′ + w′δw′)+ Mxδφ

′

+ (MzCθ + MySθ )(δv′′ + w′′δφ)

+ (MzSθ − MyCθ )(δw′′ − v′′δφ)
]

dx (17.180)

Integrating by parts gives

δU =
∫ �

0

[
−F ′

xδu − (M′
x − (MzCθ + MySθ )w′′ + (MzSθ − MyCθ )v′′) δφ

+ ((MzCθ + MySθ )′′ − (Fxv
′)′
)
δv

+ ((MzSθ − MyCθ )′′ − (Fxw
′)′
)
δw
]

dx (17.181)

See Hodges and Dowell (1974). Using the curvature in pitched axes,(
κy

κx

)
=
[

Cθ Sθ
−Sθ Cθ

](−w′′

v′′

)
(17.182)

equation 17.130 gives the section resultant loads:

Fx = EA
[
u′

e + θ ′
Ck2

Tφ
′ − yC(v

′′Cθ + w′′Sθ )+ zC(v
′′Sθ − w′′Cθ )

]
(17.183)

Mx = GJφ′ + EAu′
e(k

2
T θ

′
C + k2

Pφ
′)

∼= GJφ′ + Fx(k2
T θ

′
C + k2

Pφ
′) (17.184)

My = EIzz(v
′′Sθ − w′′Cθ )+ zCEA

[
u′

e − yC(v
′′Cθ + w′′Sθ )+ zC(v

′′Sθ − w′′Cθ )
]

∼= EIzz(v
′′Sθ − w′′Cθ )+ zCFx (17.185)

Mz = EIyy(v
′′Cθ + w′′Sθ )− yCEA

[
u′

e − yC(v
′′Cθ + w′′Sθ )+ zC(v

′′Sθ − w′′Cθ )
]

∼= EIyy(v
′′Cθ + w′′Sθ )− yCFx (17.186)

Equation 17.181 has an elastic torsion moment due to bending:

�T = −My(v
′′Cθ + w′′Sθ )+ Mz(v

′′Sθ − w′′Cθ )

= (
EIyy − EIzz

)
(v′′Cθ + w′′Sθ )(v′′Sθ − w′′Cθ ) (17.187)
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which is a generalization of equation 16.149. Torsion is complicated, even at second
order, and often higher-order terms must be included. Equation 17.181 also shows
the coupling of bending by pitch angle:(

MzCθ + MySθ
MzSθ − MyCθ

)
=
[

Cθ −Sθ
Sθ Cθ

](
Mz

−My

)
=
[

Cθ −Sθ
Sθ Cθ

] [
EIyy 0

0 EIzz

] [
Cθ Sθ
−Sθ Cθ

](
v′′

w′′

)
= X T

θ

(
EI
)
Xθ

(
v′′

w′′

)
(17.188)

The position of a point on the blade section is

rB =
⎛⎝ x + u − v′ηb − w′ζb

v + ηb

w + ζb

⎞⎠ (17.189)

(equation 17.162). The kinetic energy δT = ∫∫
(δrI )T r̈Idm dx requires the virtual

displacement (equation 17.149),

δrI = CIB δrB =
⎛⎝ δuδv
δw

⎞⎠+ ηb

⎛⎝−δv′ − w′δφ
0
δφ

⎞⎠+ ζb

⎛⎝−δw′ + v′δφ
−δφ

0

⎞⎠ (17.190)

(using δηb = −ζbδφ and δζb = ηbδφ), as well as and the inertial acceleration (equation
17.148):

a = r̈I = CIB(r̈B + 2ω̃ṙB + ω̃ω̃rB)
=
⎛⎝ ü − 2�v̇ −�2(x + u)
v̈ + 2�u̇ −�2v

ẅ

⎞⎠
+ ηb

⎛⎝−v̈′ − 2ẇ′φ̇ − w′φ̈ +�2v′

−2�(v̇′ + w′φ̇)−�2

φ̈

⎞⎠
+ ζb

⎛⎝−ẅ′ + 2v̇′φ̇ + v′φ̈ + 2�φ̇ +�2w′

−φ̈ − 2�(ẇ′ − v′φ̇)
0

⎞⎠ =
⎛⎝Ax

Ay

Az

⎞⎠ (17.191)

with rotation at constant rate about the z-axis, so ω = (0 0 �)T . Then to lowest
order, the kinetic energy is

δT =
∫ ∫ [

Azδu + Ayδv − Axηbδv
′ + Azδw − Axζbδw

′

+ (ηbAz − ζbAy −�2x(−ηbw
′ + ζbv

′)
)
δφ
]
dm dx (17.192)

where

Ax = −�2x − 2�v̇ (17.193)

Ay = v̈ + 2�u̇ −�2v + ηb(−2�v̇′ −�2)+ ζb(−φ̈ − 2�ẇ′) (17.194)

Az = ẅ + ηbφ̈ (17.195)
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See Hodges and Dowell (1974). Integrating by parts, and introducing the section
integrals of the mass, gives

δT =
∫ �

0

[
Axm δu + (AyI −�2ζbIφ − (AxηbI +�2xζbIφ)

′)m δv

+ (AzI − (AxζbI −�2xηbIφ)
′)m δw

+
(
ηbIm(ẅ +�2xw′)− ζbIm(v̈ + 2�u̇ −�2v +�2xv′)

+ Iηηφ̈ + Iζ ζ (φ̈ + 2�ẇ′)+ Iζη(2�v̇′ +�2)

+�2(IPC2θ + 2yIzImS2θ )φ
)
δφ
]
dx (17.196)

The centrifugal terms have been linearized about θI , using �ηb = −ζbφ, �ζb = ηbφ,
and �Iζη = (IPC2θ + 2yIzImS2θ )φ (see equation 17.155). The polar inertia is IP =
Iηη + Iζ ζ (equations 17.153 and 17.154), and the center-of-gravity position is ηbI =
yICθ − zISθ and ζbI = yISθ + zICθ .

The equations of motion of the elastic rotor blade are obtained from δU + δT =
δW . Hodges and Dowell (1974) also give a Newtonian derivation. To lowest order,
the quasistatic axial force equation is

F ′
x = mAx = −m(�2x + 2�v̇) (17.197)

For a single load path, this equation can be integrated from the tip to obtain the
tension force at a section, including the centrifugal force T :

Fx =
∫ R

x
(�2x + 2�v̇)m dx = T +

∫ R

x
2�v̇m dx (17.198)

Equation 17.77 gives the axial velocity: u̇ = − ∫ x
0 (v

′v̇′ + w′ẇ′)dx (neglecting u̇e). The
torsion equation is

−
(
(GJ + Fxk2

P)φ
′ + Fxk2

T θ
′
C

)′
− (EIyy − EIzz

)
(v′′Cθ + w′′Sθ )(v′′Sθ − w′′Cθ )

+ Iθ φ̈ +�2(IPC2θ + 2yIzImS2θ )φ + Iζ ζ2�ẇ′ + Iζη(2�v̇′ +�2)

+ ηbIm(ẅ +�2xw′)− ζbIm(v̈ + 2�u̇ −�2v +�2xv′) = Mφ (17.199)

where Mφ is the section applied moment. Notable terms are the effective torsion
stiffness (GJ + Fxk2

P), trapeze effect (Fxk2
T θ

′
C), pitch inertia (Iθ φ̈), propeller moment

(IP�
2φ), and coupling with bending (yIm(ẅ +�2xw′)); see section 16.5.3. The bend-

ing equations are(
EIyy(v

′′Cθ + w′′Sθ )Cθ + EIzz(v
′′Sθ − w′′Cθ )Sθ

)′′
− (Fxv

′)′
+ m(v̈ + 2�u̇ −�2v)+ mηbI(−2�v̇′ −�2)− mζbI�

2φ + mζbI (−φ̈ − 2�ẇ′)

+ m
(
ηbI (−�2x − 2�v̇)+ ζbI�

2xφ
)′

= Fv (17.200)(
EIyy(v

′′Cθ + w′′Sθ )Sθ − EIzz(v
′′Sθ − w′′Cθ )Cθ

)′′
− (Fxw

′)′
+ mẅ + mηbI φ̈

+ m
(
ζbI (−�2x − 2�v̇)− ηbI�

2xφ
)′

= Fw (17.201)
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With no center-of-gravity offsets and no torsion, the bending equations simplify to(
EIyy(v

′′Cθ + w′′Sθ )Cθ + EIzz(v
′′Sθ − w′′Cθ )Sθ

)′′ − (Tv′)′
+ m(v̈ −�2v)

− m2�
∫ x

o
(v′v̇′ + w′ẇ′)dx −

(
v′
∫ R

x
2�v̇m dx

)′
= Fv (17.202)(

EIyy(v
′′Cθ + w′′Sθ )Sθ − EIzz(v

′′Sθ − w′′Cθ )Cθ
)′′

− (Tw′)′
+ mẅ −

(
w′
∫ R

x
2�v̇m dx

)′
= Fw (17.203)

which is an extension of equations 16.116 and 16.123 to include structural coupling
due to the blade pitch. The equations for free vibration in bending omit the Coriolis
terms: ([

Cθ Sθ
−Sθ Cθ

] [
EIzz 0

0 EIyy

] [
Cθ −Sθ
Sθ Cθ

](
w′′

v′′

))′′

−
(

T
(
w′

v′

))′
+ m

(
ẅ

v̈ −�2v

)
= 0 (17.204)

Writing the bending as a two-dimension vector z = (w v)T (in hub plane axes), the
equation is (

Xθ
(
EI
)
X T
θ z′′)′′ − (Tz′)′ − m��

T
z + mz̈ = 0 (17.205)

with � = (0 �)T ; see equation 17.54. The centrifugal force is in the hub plane axes
and the stiffness is in the section axes, so pitch couples in-plane and out-of-plane
bending.

17.5 History

There was notable early work on beam theory for rotor blades by Morduchow
(1950), Leone (1954, 1957), Yntema (1954), Targoff (1955), Miller and Ellis (1956),
Daughaday, DuWaldt, and Gates (1957), and Brooks (1958).

Houbolt and Brooks (1958) brought together beam theory for bending and
torsion deflection of rotor blades. The principal assumptions were a single load-
path, permitting determination of the tension directly from the centrifugal force;
isotropic material; and structural and inertial terms retained only to first order in
bending and torsion deflection. The differential equations were developed using
both Newtonian and Lagrangian methods.

By the end of the 1960s, the hingeless rotor was maturing rapidly, notably
the Lockheed XH-51A, the AH-56A Cheyenne compound helicopter, the MBB
Bö-105, and the Westland Lynx. The Cheyenne, Bö-105, and Lynx were developed
using relatively simple rotor dynamics models (Johnston and Cook (1971), Huber
(1973), Hansford and Simons (1973)).

There was notable work on beam theory by Mil’ et al. (1966), Chang (1967),
Arcidiacono (1969), Piziali (1970), and Hansford and Simons (1973). The devel-
opment of the Bö-105 and the Lynx was accompanied by an understanding of the
torsion-bending coupling arising from nonlinear structural dynamics of hingeless
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rotors (Huber (1973), Hansford and Simons (1973)). Bending deflections can result
in a torsion moment component of trim bending moments, leading to effective pitch-
lag and pitch-flap couplings that significantly influence blade stability and aircraft
flight dynamics; see section 16.5.2.

Developing even a theory of the stability of the flap and lag motion of a hingeless
rotor proved difficult. Hohenemser and Heaton (1967) presented a careful deriva-
tion and an analysis of the linearized, second-order equations of flap-lag motion.
However, this work had an error in the treatment of the effect of lag motion on
the in-plane velocity for the aerodynamic model. Ormiston and Hodges (1972) pre-
sented a very careful derivation of the flap-lag equations of motion, as well as a
thorough exploration of the influence on blade stability of parameters such as thrust,
flap and lag frequency, pitch-lag coupling, and structural flap-lag coupling. Ormiston
developed a useful simulation of variable elastic coupling by introducing springs both
inboard and outboard of the pitch rotation. Regarding the original issue of hinge-
less rotor stability, the importance of nonlinear inertial, structural, and aerodynamic
terms was clear. The conclusion was that instabilities were possible, largely due to
pitch-lag or pitch-flap coupling, and that flap-lag structural coupling was potentially
stabilizing.

Motivated by the government and industry activities in hingeless rotor develop-
ment, particularly the AH-56A Cheyenne development, the U.S. Army laboratory
at Ames Research Center initiated research in rotor dynamics, including systematic
development of a theoretical basis for hingeless rotor blade stability and dynamics
and a series of careful experiments to provide data to guide and substantiate the
analysis. Hodges and Ormiston (1973a) worked on elastic flap-lag-torsion equations
of a rotor blade, including effects of nonlinearity. Friedmann and Tong (1972) and
Friedman (1973a, 1973b) developed a model for bending-torsion motion of elastic
blades.

Hodges and Dowell (1974) developed a rigorous derivation of the nonlinear
bending-torsion equations of motion for a rotor blade. The theory was intended for
application to long, straight, slender, homogeneous, isotropic beams with moderate
displacements. The theory was accurate to second order, based on the restriction
that squares of bending slopes, twist, thickness-to-radius, and chord-to-radius are
small. The equations of motion were derived by the variational method (based on
Hamilton’s principle) and the Newtonian method (based on the summation of forces
and moments acting on a differential blade element). They summarized the evidence
regarding the importance of nonlinearities in rotor blade dynamics: inertial nonlin-
earities in flap-lag dynamics, based on rigid blade models (Ormiston and Hodges
(1972)) or elastic models (Hodges and Ormiston (1973b)); structural bending-torsion
nonlinearities (Huber (1973)); and elastic bending-torsion coupling in the torsion
equation (Mil’ et al. (1966)). A single load-path was assumed, permitting elimi-
nation of the axial extension variable. A systematic, self-consistent approach was
developed for determining which terms in the equations to retain and which to
ignore. In particular, it was assumed that with bending and torsion deflections and
cross-section dimensions all of order ε, the extension and section warping were order
ε2. This approach and the assumptions made regarding order of various quantities
formed the basis for future extensions as well. Hodges and Dowell concluded,

In the resulting system of equations, several important nonlinear terms are identified.
First, the centrifugal term proportional to lead-lag velocity in the tension equation
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combines with the centrifugal coupling terms in the bending equations to produce non-
linear flap-lag inertial terms. The longitudinal velocity in the lead-lag equation, a Coriolis
terms, is expressed in terms of bending quantities as another nonlinear flap-lag iner-
tial term. These terms, when linearized with respect to equilibrium, are antisymmetic
gyroscopic terms and significantly influence hingeless rotor stability and forced response
phenomena. Second, the nonlinear bending-torsion coupling term in the torsion equation
is written in a form similar to the one identified by Mil’. The twisting moment arises from
bending in two directions and is proportional to the difference in bending stiffness and the
product of curvatures. The counterpart nonlinear bending-torsion coupling terms in the
bending equations appear in the form of a change in elastic coupling due to elastic twist.
These bending-torsion coupling terms are also important in determining the aeroelastic
stability of hingeless rotors.

There followed work by Hodges (1976) and Hodges and Ormiston (1976, 1977)
exploring the dynamic stability and response of elastic rotor blades.

Subsequent work included numerous investigations devoted to extending the
equations of motion, either to higher order or with different ordering assumptions.
In the 1980s, beam models were developed using exact kinematics and introducing
implicit formulations, notably by Hodges, Ormiston, and Peters (1980) and Hodges
(1985). A key step was the development of beam models for anisotropic or composite
materials by Bauchau and Hong (1988), Hodges (1990), Yuan, Friedmann, and
Venkatesan (1992), and Smith and Chopra (1993).

Finite elements are needed to model the complexity of rotor structures. Finite
element models were developed for rotor blade analysis in the early 1980s. Multi-
body dynamics technology is needed to model the mechanisms found in rotors.
Finite element and multi-body dynamics modeling capability, including input-driven
definition of the geometry, was fully integrated into comprehensive analysis with
the introduction of CAMRAD II (Johnson (1994)) and DYMORE (Bauchau,
Bottasso, and Nikishkov (2001)). With the development of rotor models combining
finite elements and multi-body dynamics, large rigid-body motion of small individual
elements can be handled with exact kinematics. Then for most problems of rotor
dynamics, the second-order model of Hodges and Dowell is satisfactory for the
motion within the element.

The use of finite elements in rotor blade analysis is crucial to modeling the true
complexity of the mechanical and structural systems being presented by designers.
The use of finite element techniques to obtain free vibration modes of rotor blades is
common (such as by Bratanow and Ecer (1974), and Yasue (1977)). Friedmann and
Straub (1980) and Straub and Friedman (1981, 1982) discretized the partial differ-
ential equations of a rotor blade using a local Galerkin method of weight residuals.
Although recognizing that “the finite element method is ideally suited for modeling
the complicated and redundant structural system encountered in bearingless rotors,”
(Friedmann and Straub (1980)) they considered the equations of a single load-path
rotating beam.

Borri, Lanz, and Mantegazza (1981) and Borri, Lanz, Mantegazza, Orlandi, and
Russo (1982) developed an analysis with the “blade motion represented by finite
elements in space-time domain,” based on Hamilton’s variational principle. These
papers specifically focused on the time-finite-element development and observed
the advantage of leaving the integration problems and tedious algebraic manip-
ulations to the computer. Hodges and Rutkowski (1981) applied variable order
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finite elements to blade analysis. Sivaneri and Chopra (1982) analyzed the bending-
torsion stability of a rotor blade using “a finite element formulation based on the
principle of virtual work.” The subject was still a single load-path configuration,
with the extension displacement eliminated by substitution using the centrifugal
force.

Application of the finite element method to a bearingless rotor was finally made
by Sivaneri and Chopra (1984). “The finite element formulation allows the multi-
beams of the flexure to be considered individually. The multibeams of the flexure
and the single beam of the outboard are discretized into beam elements, each with
fifteen nodal degrees of freedom.” With multiple load-paths, “the distribution of the
centrifugal force in the multibeams of the inboard blade is not known a priori and
hence the axial deflection can not be eliminated.”

Flexible and accurate modeling of the mechanisms that comprise the hub, blade
root, and control system of rotors requires the technology of multibody dynamics.
Hodges, Hopkins, Kunz, and Hinnant (1987) brought to rotorcraft the combination
of finite elements and multibody dynamics in a project during the early 1980s to
develop the GRASP software. The code “was developed to perform aeroelastic sta-
bility analysis of rotorcraft in steady, axial flight and ground contact conditions” and
thus was implemented with a limited aerodynamic model applicable only to hover
and axial flow. Elliott and McConville (1989) applied the general purpose multibody
system analysis tool ADAMS to rotary-wing aeroelastic problems. Bauchau and
Kang (1993) implemented and validated “a multibody formulation for helicopter
nonlinear structural dynamic analysis,” focusing on the appropriate coordinates to
represent the element motion and development of the corresponding constraint
equations. Although no aerodynamic model was included, the method was applied
to the problem of ground resonance.
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18 Dynamics

18.1 Blade Modal Frequencies

The modal equations for blade bending and torsion are derived in sections 16.3.2,
16.4.3, 16.5.3, and 17.2. The results for the blade natural frequencies can be written
in terms of the rotor rotational speed �:

ν2 = K1 + K2�
2 (18.1)

where the coefficients K1 and K2 are the structural and centrifugal stiffening, respec-
tively. For example, equation 17.57 for flap and lag bending gives

K1 = η′(e)T Ksη
′(e)+ ∫ R

0 η
′′T EIη′′dr∫ R

0 η
2m dr

(18.2)

K2 =
∫ R

0

(
η′ 2
∫ R

r ρm dρ − m(kTη)2
)

dr∫ R
0 η

2m dr
(18.3)

Southwell and Gough (1921) obtained this expression from Rayleigh energy con-
siderations. It applies to fully coupled flap bending, lag bending, and torsion modes
of a rotating beam. The coefficients K1 and K2 are constants involving the integrals
of the blade mode shape, which do depend on�. However, the Southwell form gives
the basic dependence of the blade frequencies on the rotor speed and emphasizes
the relative strengths of structural and centrifugal stiffening.

Figure 18.1 shows the variation of the bending frequency with rotor speed that
the Southwell form implies. The natural frequencies of the blade must be kept
away from resonance with harmonics of the rotor speed, so the n/rev lines are also
usually shown on the frequency diagram. In the limit � = 0, the blade frequency
is ν2 = K1. So

√
K1 is the non-rotating natural frequency, due to the structural

stiffness. In the limit of large �, the blade frequency approaches (ν/�)2 = K2. So√
K2 is the dimensionless (per-revolution) natural frequency at high speed, due to

the centrifugal forces.
Figure 18.2 shows a typical plot of blade frequencies as a function of rotor

speed, for articulated and soft in-plane hingeless rotors. This presentation is called
a Southwell plot, or a fan-plot, from the constant per-revolution lines. For specific
rotors, the fan-plot is commonly dimensional, showing blade frequencies in Hz as

710
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Figure 18.1. Rotating blade frequency behavior.

a function of rotor speed in rpm. The centrifugal stiffness dominates the first flap
modes, so the frequency approaches a constant per-rev line. For an articulated rotor,
with or without hinge offset but no hinge spring, the first flap mode frequency is
always a constant per-rev value. The centrifugal stiffness also dominates the first lag
modes, but the lag bending stiffness is much larger than the flap bending stiffness,
so the frequency curves for lag modes are flatter with rotor speed and a larger
rotor speed is required to approach a constant per-rev line. For a torsion mode,
the uncoupled frequency is ω2 = ω2

NR +�2, where ωNR is the non-rotating natural
frequency; see sections 16.5.1 and 16.5.3. Usually the structural stiffness is an order
of magnitude greater than the centrifugal stiffness, so the frequency curve is very
flat with rpm. Such different behavior with rotor speed can be used to identify the
primary motion of a mode. As a consequence of the different variation with rotor
speed, uncoupled frequencies cross. The frequencies of the coupled modes do not
cross at such resonances, indicating strong coupling of the motions and a switch of the
modal identities. Except for the first flap and lag of an articulated rotor (rigid motion,
with just centrifugal stiffening), all modes have flap, lag, and torsion deflection. Flap
and lag bending are coupled by blade pitch and twist, torsion and bending are
coupled by chordwise center-of-gravity offset, and there can be structural coupling
of all motions.

The frequencies of the fundamental flap and lag modes depend on the rotor hub
configuration; see section 8.1. Teetering rotors have a flap frequency of 1/rev, whereas
articulated rotors have hinge offsets of 3% to 6%; hence flap frequencies of 1.02 to
1.04/rev typically. For hingeless rotors, the structural stiffness is still small compared
to the centrifugal stiffening of the blade, so the flap frequency is not far above 1/rev,
typically 1.10 to 1.15/rev. Modern bearingless rotors have flap frequencies between
1.05 and 1.07/rev. The coning frequency of teetering and gimballed rotors is above
1/rev. A lift-offset rotor requires a stiff blade to carry the roll moment and hence has
a flap frequency above 1.4/rev. With a hinge offset of 3% to 6%, the lag frequency of
an articulated rotor is around 0.20 to 0.30/rev. Depending on the structural design of
the root, hingeless and bearingless blades can be either soft in-plane (lag frequency
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below 1/rev, typically 0.65 to 0.75/rev) or stiff in-plane (lag frequency above 1/rev).
The second flapwise bending mode has a rotating natural frequency typically around
2.6 to 2.8/rev. The frequencies of the higher blade modes depend substantially on
the lag, flap, torsion, and pitch link stiffnesses.

For a hingeless rotor blade, bending at the root is important even for the fun-
damental modes. The principal axes for the centrifugal stiffening are always the hub
plane axes, whereas the principal axes for the structural stiffening are determined by
the blade pitch. Only if these axes coincide are the free vibration modes of the blade
purely in-plane and purely out-of-plane. Pitch of the blade, particularly at the root,
introduces significant coupling of the flap and lag motion in the fundamental modes.
For the fundamental bending modes of stiff in-plane hingeless rotors, the centrifugal
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stiffening dominates the out-of-plane motion, whereas structural stiffening domi-
nates the in-plane motion. Even a small root pitch then greatly influences the mode
shapes and frequencies. Soft in-plane blades tend to have matched stiffnesses at the
root, which reduces the coupling caused by collective pitch. For the higher bending
modes, the structural stiffening becomes increasingly important, and consequently
twist influences the mode shape.

A basic requirement for minimum vibration and loads is that the natural fre-
quencies of the blade modes avoid resonances with harmonics of the rotor speed.
The design criterion is that any intersections of the blade frequencies and the n/rev
lines should not occur within the normal rotor speed operating range. Typically res-
onances at least up to 5 or 6/rev must be considered. Except for the rigid modes
of an articulated rotor, the structural stiffness dominates at low rotor speed, and
therefore the natural frequencies cross the n/rev lines. Such resonances can produce
load amplification during the rotor run-up, but are not a major problem as long as
they occur at low rotor speed.

For articulated rotors, the fundamental flap and lag modes are almost entirely
rigid rotation about the hinges, and the mode shape is nearly the rigid blade solution,
η = (r − e)/(1 − e). If no better estimate is available, η = 4r2 − 3r can be used as an
approximation to the second out-of-plane mode shape of an articulated rotor blade.
This expression is orthogonal to the first mode, η = r, but the boundary conditions
of zero moment at the root and tip are not satisfied.

The zero-stiffness limit gives the minimum possible bending frequency due to
centrifugal stiffening alone. When EI = 0, equation 17.55 for the bending modes
separates into purely out-of-plane and purely in-plane equations:(∫ 1

r
mρ dρ η′

z

)′
+ mν2

zηz = 0 (18.4)

(∫ 1

r
mρ dρ η′

x

)′
+ m(ν2

x + 1)ηx = 0 (18.5)

See equations 16.61 and 16.111. Without the structural terms, there is no coupling
of the flap and lag modes. Moreover, the in-plane and out-of-plane motion have
identical mode shapes, with corresponding frequencies given by ν2

flap = 1 + ν2
lag. This

is a singular limit, since dropping the structural terms reduces the order of the
equations. For small EI, the boundary conditions are satisfied in small regions near
the ends of the blade. For EI = 0, the two boundary conditions at the tip must be
dropped. For a uniform mass distribution, the equation for η reduces to Legendre’s
equation, (

(1 − r2)η′)′ + 2ν2η = (1 − r2)η′′ − 2rη′ + 2ν2η = 0 (18.6)

The solutions that satisfy the boundary conditions and are finite at the tip are the
odd Legendre polynomials, ηk(r) = P2k−1(r), with eigenvalues ν2

k = k(2k − 1). These
polynomials can be obtained from

Pn = 1
2nn!

dn

drn
(r2 − 1)n (18.7)

which gives η1 = P1 = r, η2 = P3 = 1
2 (5r2 − 3r), and so on. The corresponding

frequencies are ν1 = 1, ν2 = √
6 ∼= 2.45, ν3 = √

15 ∼= 3.87 for flap, and ν1 = 0,
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ν2 = √
5 ∼= 2.24, ν3 = √

14 ∼= 3.74 for lag. For the third modes and above, the curva-
ture is large enough that the structural stiffening begins to dominate the solution,
so beginning with ν3 (or even ν2 for lag), this lower bound on the frequency is very
conservative.

With uniform mass and stiffness, the modal equation for flap bending (equation
16.61) becomes

EIη
′′′′ − m�2

2

(
(R2 − r2)η′)′ − ν2mη = 0 (18.8)

Solutions in terms of elementary functions are found only for the non-rotating case,
EIη

′′′′ − ν2mη = 0. For an articulated blade the boundary conditions are η(0) =
η′′(0) = η′′(R) = η′′′(R) = 0, and the modes are

η = sin ar
2 sin a

+ sinh ar
2 sinh a

(18.9)

where a is a solution of tan a = tanh a: a = 0, 1.2499π , . . . , (3n + 5
4 )π . The cor-

responding frequencies are ν = a2
√

EI/mR4. For a hingeless rotor, the boundary
conditions η(0) = η′(0) = η′′(R) = η′′′(R) = 0 give

η = (sin a + sinh a)(cosh ar − cos ar)− (cos a + cosh a)(sinh ar − sin ar)
2(sin a cosh a − cos a sinh a)

(18.10)

where a is a solution of cos a cosh a = −1: a = 0.5969π , 1.4942π , 2.5002π , . . . , (n +
1
2 )π . These solutions give the non-rotating frequencies, and the mode shapes are
useful as a series in the solution for the modes of a rotating blade, since they are
orthogonal and satisfy the boundary conditions.

With uniform inertia and stiffness, the modal equation for torsion (section 16.5.3)
becomes

GJξ ′′ + (ω2 −�2)Iθ ξ = 0 (18.11)

with boundary conditions ξ (0) = ξ ′(R) = 0. The modes are

ξ = sin ar
sin a

= sinπ
(

n − 1
2

)
r (18.12)

where a is the solution of cos a = 0: a = (n − 1
2 )π . The corresponding frequencies

are ω2 = �2 + a2(GJ/IθR2).
Duncan polynomials (Duncan (1937)) are useful for trial functions in the modal

solution. For bending,

yn = 1
6
(n + 2)(n + 3)rn+1 − 1

3
n(n + 3)rn+2 + 1

6
n(n + 1)rn+3 (18.13)

which gives y0 = r, y1 = 2r2 − 4
3 r3 + 1

3 r4. For n = 1, 2, 3, . . . these polynomials sat-
isfy the fixed-free boundary conditions of a hingeless rotor: y(0) = y′(0) = y′′(1) =
y′′′(1) = 0. For n = 0, 2, 3, . . . they satisfy the pinned-free boundary conditions of an
articulated rotor: y(0) = y′′(0) = y′′(1) = y′′′(1) = 0. They are not orthogonal, but
the set of polynomials is complete, and they can be orthogonalized by the Gram-
Schmidt process. Duncan polynomials are useful as approximations for the first
bending modes.

The Duncan polynomials for torsion are yn = (n + 1)rn − nrn+1. The function
y0 = 1 satisfies pinned-free boundary conditions. The function y1 = 2r − r2 satisfies
fixed-free boundary conditions.
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18.2 Rotor Structural Loads

The blade, hub, and control loads produced by the aerodynamic and inertial forces
acting on the rotor are needed to design the helicopter structural components to the
specified strength and fatigue criteria. Designing the structure requires the stresses
in the blade, which in the context of beam theory are obtained from the bending
and torsional moments acting on the blade section. With articulated blades the
critical bending moment is usually the oscillatory load somewhere around the blade
midspan. For hingeless rotors the highest bending moments are at the blade root.
The net reactions at the blade root are needed to determine the loads in the rotor hub.
The feathering moments on the blades lead to loads in the rotor control system, which
are often a limiting factor in extreme operating conditions. The designer is usually
concerned with the periodic or nearly periodic loads occurring in steady-state or
maneuvering flight. Since the periodic aerodynamic environment of the helicopter
rotor produces high oscillatory loads in the blades, hub, and control system, the
fatigue analysis is a major part of rotor structural design. Because it depends critically
on the details of the stress distribution, the fatigue life must normally be verified
by tests. This is particularly true for helicopter rotors since many components are
designed for finite fatigue life because of the high load levels.

Figure 18.3 illustrates the rotor loads measured in flight and in a wind tunnel
on full-scale articulated rotors. It shows the flap bending moment at midspan, as
the oscillatory 105CM/σ = 105M/(ρNc�2R4) (mean removed), for low-speed and
high-speed conditions. Figure 9.0 showed the corresponding airloads. These flap
bending loads are all dominated by the 3/rev component and hence exhibit a similar
behavior. The flap bending motion consists primarily of the response of the first
elastic flap bending mode, which for most rotor blades has a frequency just below
3/rev. The first elastic lag bending mode and the torsion mode have frequencies that
vary greatly between blades, so the lag and torsion structural loads do not exhibit
universal behavior.

Bousman (1990) compared structural blade loads measured on seven full-scale
articulated rotors in high-speed flight conditions (μ = 0.37 to 0.39) without effects
of stall or maneuvers. The oscillatory flap bending moment and pitch link force
increased by a factor of two or three beginning at μ = 0.25–0.30, due to the asym-
metric aerodynamic environment and compressibility effects (the thrust CT/σ was
well below the stall boundary). For all the rotors, the dominant flap bending load
component was 3/rev. The flap oscillatory load magnitude showed an initial peak in
the transition regime, then decreased, and then increased with speed. The blade tor-
sion moments and pitch link loads showed a large positive moment in the first quad-
rant and then a negative moment in the second quadrant, followed in some cases by
oscillation at the first torsion frequency. For several rotors, the blade root oscillatory
chord bending moment exhibited a basically 1/rev variation, apparently associated
with the lag damper. Otherwise, the vibratory chord bending moment behavior of
the seven rotors differed significantly. Torsion and pitch link load behavior of a
teetering rotor were different from that of the articulated rotors.

Equations for the structural loads acting on the rotor blade cross-section were
derived in sections 16.3.4 and 17.3.9 for modal and finite element analyses, respec-
tively. The force-balance method obtains the section load from the difference
between the applied forces and inertial forces acting on the blade. The deflec-
tion method obtains the section load from the elastic displacement and structural
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stiffness. Generally a force-balance approach (equations 16.79 or 17.174–17.175)
gives the best results. The structural dynamics of the blade filter the blade response,
so a small number of modes or shape functions are usually adequate to describe the
inertial and centrifugal loading.

Calculating the loads by a deflection method (equations 16.81 or 17.165) depends
on an accurate representation of the curvature or slope, derived from the product
of the degrees of freedom and the modes or shape functions. However, a deflection
method is often not acceptable because the beam representation of rotor blades
usually involves step changes in the stiffness. The loads must be a continuous function
of radial station (except where there are discrete shear forces acting on the section),
so at a step in stiffness there should be a corresponding step in curvature or slope
such that the load remains continuous. A step in curvature cannot be well modeled
with a small number of modes. Moreover, if the equations of motion are obtained
by the Galerkin or Rayleigh-Ritz approach, the deflection method may not even
be applicable, since the boundary conditions of the modes need not be consistent
with the loads applied at the blade root (such as those due to a lag damper or
control system inputs). A finite element model has a similar problem within the
element, since a small number of polynomial shape functions cannot model well a
step in curvature. In the finite element analysis, nodes can be put at step changes in
properties, but the theory does not imply continuity of curvature on the two sides of
a node.

Accurate calculation of rotor blade structural loads requires good models for the
aerodynamic forces and moments acting on the blade surface and for the resulting
inertial loads and structural response. Calculating accurately the mean and oscilla-
tory (one-half peak-to-peak) loads is often sufficient for fatigue and strength deter-
mination. The critical operating conditions include maneuvers, as well as level flight
at high thrust or high speed. The design loads for the rotor blades and hub are
typically encountered in pull-out, push-over, and roll-reversal maneuvers at mod-
erate flight speeds. Inaccurate calculation of the time history of the loads implies
limitations in the fidelity of the models, decreasing confidence in prediction of loads
beyond the correlation base.

Calculation of flap bending moments is most accurate and is generally good for
time history as well as mean and oscillatory load components. The flap loads depend
on the blade lift forces and flap bending deflection. Calculating lag bending moments
is more difficult, since the in-plane loads are much smaller than the out-of-plane loads
on the blade. The in-plane aerodynamic loads are the induced drag, depending on
the rotor wake, and the viscous drag, sensitive to stall and compressibility effects.
Because the in-plane loads are small, inertial and structural nonlinear terms are
important. Lag damper loads are also reflected in lag bending moments. Blade
torsion loads and hence the control system loads are difficult to calculate, particularly
since they become complicated in high-thrust and high-speed flight conditions (see
Chapter 12).

18.3 Vibration

Vibration is the oscillatory response of the helicopter airframe (and other compo-
nents in the non-rotating frame) to the rotor hub forces and moments. The aerody-
namic loads on the fuselage and tail produced by the rotor wake can also contribute
to airframe vibration. There are other important sources of helicopter vibration,
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notably the engine and transmission, but the rotor influence is usually most signifi-
cant. In steady-state forward flight, the periodic forces at the root of the blade are
transmitted to the helicopter, producing a periodic vibratory response. Thus heli-
copter vibration is characterized by harmonic excitation in the non-rotating frame,
primarily at 1/rev and N/rev (where N is the number of blades).

As illustrated in Figure 18.4, the vibration is generally low (but not zero) in
hover and increases with forward flight to high levels at the maximum speed of the
aircraft. There is also a high level of vibration in transition (μ ∼= 0.1) because of
the rotor wake influence on the blade airloads. The vibration increases with descent
at low speed and increases with thrust at high speed. With the appropriate scale,
Figure 18.4 could be as well a plot of blade oscillatory structural loads or the rotor
noise, since the same aerodynamic sources are involved: blade-vortex interaction
in the transition regime, compressibility at high speed, and stall at high thrust. The
levels of vibration shown in Figure 18.4 are characteristic of a helicopter without
absorbers or control to reduce vibration.

Let us examine how the periodic rotor forces are transmitted through the hub
to the aircraft. The root reaction of the m-th blade (m = 1 to N) is assumed to be a
periodic function of ψm = ψ + m�ψ (�ψ = 2π/N). Therefore, all the blades have
identical loading and motion. Section 16.6 and Figure 16.8 define the rotating frame
blade root loads and the non-rotating frame hub loads. Consider first the vertical
shear force S(m)z at the root of the m-th blade, written as a complex Fourier series in
ψm:

S(m)z =
∞∑

n=−∞
Szn einψm (18.14)

The total thrust force of the rotor is obtained by summing the root vertical shears
over all N blades:

T =
N∑

m=1

S(m)z (18.15)
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Using the results of section 15.2 for the summation of harmonics,

T =
N∑

m=1

∞∑
n=−∞

Szn einψm =
∞∑

n=−∞
Szn

N∑
m=1

einψm =
∞∑

p=−∞
NSzpN eipNψ (18.16)

The forces from all the blades exactly cancel at the hub, except for those harmonics
at multiples of N/rev, which are transmitted to the aircraft. The in-plane shear forces
on the rotating blade are S(m)x in the blade drag direction and S(m)r radially. The
in-plane hub forces in the non-rotating frame, the rotor drag force H and side force
Y , are given by

H =
N∑

m=1

(
S(m)r cosψm + S(m)x sinψm

)
(18.17)

Y =
N∑

m=1

(
S(m)r sinψm − S(m)x cosψm

)
(18.18)

Writing the rotating shear forces as Fourier series in ψm, we obtain

H =
∞∑

n=−∞

[
Srn

N∑
m=1

einψm cosψm + Sxn

N∑
m=1

einψm sinψm

]

=
∞∑

n=−∞

[
Srn

1
2

N∑
m=1

(
ei(n+1)ψm + ei(n−1)ψm

)

+Sxn

1
2i

N∑
m=1

(
ei(n+1)ψm − ei(n−1)ψm

)]

=
∞∑

p=−∞

N
2

(
SrpN−1 + SrpN+1 − iSxpN−1 + iSxpN+1

)
eipNψ (18.19)

and similarly

Y =
∞∑

p=−∞

N
2

(−iSrpN−1 + iSrpN+1 − SxpN−1 − SxpN+1

)
eipNψ (18.20)

Thus for the in-plane hub forces as well, only the harmonics of N/rev appear in
the non-rotating frame, produced by the (pN ± 1)/rev harmonics of the rotating
shear forces. The rotor torque transmitted through the hub is obtained from the root
lagwise moment N(m)

L in a fashion similar to the rotor thrust, giving

Q =
N∑

m=1

N(m)
L =

∞∑
p=−∞

N NLpN eipNψ (18.21)

Finally, the hub pitch and roll moments are obtained from the flapwise moment N(m)
F

at the root of the rotating blade:

My = −
N∑

m=1

N(m)
F cosψm =

∞∑
p=−∞

N
2

(−NFpN−1 − NFpN+1

)
eipNψ (18.22)

Mx =
N∑

m=1

N(m)
F sinψm =

∞∑
p=−∞

N
2

(−iNFpN−1 + iNFpN+1

)
eipNψ (18.23)
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Table 18.1. Transmission of rotor hub forces and moments

Non-rotating frame, at pN/rev Rotating frame

thrust from vertical shear at pN/rev
torque from lagwise moment at pN/rev
rotor drag and side forces from in-plane shears at (pN ± 1)/rev
pitch and roll moments from flapwise moment at (pN ± 1)/rev
collective control system loads from feathering moments at pN/rev
cyclic control system loads from feathering moments at (pN ± 1)/rev

So the rotor transmits forces and moments to the non-rotating frame only at harmon-
ics of N/rev, as summarized in Table 18.1. The transmission of the blade feathering
moments to the collective and cyclic control systems has also been included in
Table 18.1. If the control system is entirely mechanical, these control loads produce
vibration in the pilot’s collective and cyclic sticks.

Thus the rotor hub acts as a filter, transmitting to the helicopter only harmonics
of the rotor forces at multiples of N/rev. This result is based on the assumption
that all the blades are identical and have the same periodic motion. Although this
is not perfectly true, still the N/rev harmonics dominate the vibration produced by
real rotors. Figure 18.5 shows the 1/rev and N/rev frequencies of existing helicopter
rotors.

The helicopter N/rev vibration is due to the higher harmonic loading of the rotor.
The sources of this loading are the rotor wake and the effects of stall and compress-
ibility at high speed. The helicopter vibration is low in hover where the aerodynamic
environment is nearly axisymmetric. The only sources of higher harmonic loading
are the small asymmetries such as those due to aerodynamic interference with the
fuselage and other rotors. In transition, at advance ratios around μ = 0.1, there is
a peak in the vibration level due to the wake-induced loads on the rotor. Since the
helicopter drag is small at low speeds, the tip-path-plane incidence remains small,
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Figure 18.5. Blade passage frequency (N/rev) and 1/rev frequency of existing helicopters.
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and the tip vortices in the wake remain close to the disk plane. The advance ratio
is high enough so that the blades sweep past the tip vortices from preceding blades.
Such close blade-vortex encounters produce significant higher harmonic airloading
at the harmonics transmitted through the hub as vibration. This vibration is increased
by operations that keep the wake near the plane of the disk, such as decelerating
or descending flight. As the speed increases, the helicopter rotor tip-path plane tilts
forward to provide the propulsive force, which means that the wake is convected
away from the disk plane and the wake-induced vibration decreases. At still higher
speeds the vibration increases again, primarily as a result of the higher harmonic
loading produced by stall and compressibility effects. Such vibration can limit the
maximum speed of the aircraft.

Tiltrotors have inherently low vibration in cruise, with the rotors nominally
operating in axial flow. However, the aircraft usually trims with the rotor shaft not
exactly aligned with the free stream velocity; hence with some asymmetry in the
rotor aerodynamic environment. The rotor blades encounter a flow disturbance as
they pass in front of the wing and near the fuselage, which can produce significant
vibratory hub loads.

Helicopter rotors can produce a significant 1/rev vibration as well, because of the
large 1/rev variation of the loading in forward flight and the fact that any aerodynamic
or inertial dissimilarity between the blades primarily generates 1/rev vibration. A
major effort is made with every rotor to eliminate the differences between the blades
in the tracking and balancing operations. The inertial properties of the blades can
be adjusted using balance weights, particularly at the tips; and the aerodynamic
properties can be matched using aerodynamic trim tabs and by adjusting the pitch
links. However, enough 1/rev vibration often remains that it must be considered in
the helicopter design.

Track and balance are accomplished through a whirl test to compare each blade
with a reference blade set and through field adjustments in service. Balance refers to
the inertial similarity of the blades. Tip weights can be added to match the moment
of inertia, hence root centrifugal force. Weights can be added at the root or on the
hub to cancel residual 1/rev inertial loads. Track refers to the height at the blade tip.
Pitch link length can be changed to lower or raise the blade tip for all collectives.
Control loads are adjusted by changing the aerodynamic pitch moment. A trailing-
edge tab can be deflected to lower or raise the moment for all collectives. Moving a
balance weight off the pitch axis increases the propeller moment (from centrifugal
forces) at high collective, affecting both track and control load.

Calculating rotorcraft vibration is difficult. Added to the modeling requirements
for rotor performance and blade structural load calculation is the need for an accu-
rate model of the airframe structure. Moreover, the higher harmonics of the blade
root loads (N − 1, N, and N + 1/rev), not just mean and peak-to-peak loads, must
be accurately calculated, and the high frequency airframe modes (near N/rev) are
important.

Airframe structural dynamic analysis requires a large-order finite element
model. Rotorcraft airframes are difficult to model because of the presence of large
concentrated masses (transmission and engine), large openings for doors, and com-
plex load-paths from the rotor to the primary structure. The airframe frequencies
are required to design the structure to avoid resonances. Typically initial models
of the helicopter airframe produce frequency calculations accurate to about ±20%
(for the modes at N/rev and above, ±5–10% for fundamental modes), which can be
reduced to ±5% through refinement of the model; see Dompka (1990) and Cronkhite
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Figure 18.6. Rotorcraft vibration specifications.

(1992). Calculating the transmissibility between the rotor hub and the cockpit and
cabin requires as well the modal mass and modal damping of the airframe. There
are no good methods to predict modal damping. Thus accurate airframe frequencies
and modal response information must be obtained by a shake test. From shake test
measurements, the modal damping of metal helicopter airframes is 1–3% critical
(Dompka (1990), Cronkhite (1992)); for composite airframes it is 0.5–5% critical
damping (Dompka and Calapodas (1991)) or 1.5–4% critical damping (Cronkhite
(1992)). So typical airframe modal damping is 2% critical, but the actual value of
damping (and hence the modal response at resonance) can differ by a factor of 2 or
more.

18.4 Vibration Requirements and Vibration Reduction

Without vibration treatment, helicopter rotor-induced vibration can be 0.5g or more
at N/rev, as illustrated in Figure 18.4. Reducing the vibration below 0.1g or so is
essential. The long-term goal is rotorcraft with vibration levels below 0.02g.

Figure 18.6 shows early and recent specifications for rotorcraft vibration. The
specification is in terms of acceleration, velocity, or displacement, which can be
converted to acceleration in g’s as a function of frequency, as shown here. The MIL-
H-8501 and MIL-H-8501A limits shown are for all locations (pilot, crew, passengers,
and litters) and for steady flight up to cruise speed. The MIL-H-8501A specification
(1961) refined the limit at high frequency, but also increased the limit by 50%
relative to MIL-H-8501 (1952), reflecting an assessment of what the technology
could provide. The design standard ADS-27A-SP (2006) defines an intrusion index,
based on the normalized vibration spectra for the longitudinal, lateral, and vertical
directions at a location. The intrusion index is the square root of the sum of the
squares of the four largest peaks (excluding 1/rev), for each of the three normalized
spectra:

I =
√∑

(g/gnorm)
2 (18.24)
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The normalization is defined in terms of velocity (appropriate for defining the effects
of vibration on humans) as a linear function of frequency, shown in Figure 18.6 in
terms of g’s (gnorm). The intrusion index limit Ilimit is defined for various operating
conditions and positions in the aircraft. Thus the vibration requirement is∑(

g
gnormIlimit

)2

< 1 (18.25)

If Ilimit = 1 and there is only one component of vibration, then gnorm is the require-
ment. Considering just N/rev for longitudinal, lateral, and vertical components, the
limit would be gnorm/

√
3. For steady flight conditions up to cruise speed, the limit in

ADS-27A-SP is I = 1.2 at the pilot and I = 2.0 in the cabin. Specifications for partic-
ular aircraft have used the intrusion index, but with increased limits. ADS-27A-SP
also has a specification for 1/rev vibration: 0.15 inch/sec for steady flight conditions
up to cruise speed (Figure 18.6), which is 0.010–0.015g at 4–6 Hz. The development
of ADS-27 was discussed by Crews (1987).

Specifications must reflect what is possible with the technology available. Fig-
ure 18.7 shows the vibration specification for the UTTAS procurement, which led to
the UH-60A helicopter development. The UTTAS/AAH specification (1973–1975)
was for less than 0.05g up to N/rev frequencies, at all stations (pilot, copilot, passen-
ger, and litter), for steady flight up to cruise speed. In 1976 this limit was increased
to 0.12g for N/rev vibration in the cabin. By 1979 the specification had become more
elaborate, increasing the vibration level permitted, as well as distinguishing between
cockpit and cabin and increasing the vibration limit at low speed.

Vibration reduction can be accomplished by minimizing the source from the
rotor, particularly the oscillatory hub forces and moments but also including the
aerodynamic loads acting on the fuselage and tail, and by reducing the response of
the structure. Vibration reduction methods can be passive or active. Passive meth-
ods use pendulum or bifilar absorbers on the rotor or structural mode tuning, iso-
lators, or absorbers on the airframe. Active methods include open and closed loop,
fixed and adaptive techniques. Active control of the rotor reduces vibration by
reducing the oscillatory hub forces and moments. Rotor active control methods
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can be implemented with higher harmonic control, individual blade control, trailing-
edge flaps, and other approaches. Active control of the airframe reduces vibration
by controlling the airframe structural response, using actuators on the fuselage or
tuned absorbers.

The first principle in designing a rotorcraft to minimize vibration is to avoid
structural resonances with the frequencies of the exciting forces. The helicopter
airframe must be designed to avoid resonances with the harmonics of the rotor
speed, particularly near 1/rev and N/rev. Resonances must be avoided as well with
the speeds of other rotating components, including the engine, transmission, and tail
rotor. The analysis of the vibration modes of a helicopter is a difficult task because of
the complexity of the structure, but reasonable accuracy is possible with sufficiently
complex finite element models. A shake test of the actual structure is necessary
to determine the true natural frequencies. Adjusting the airframe frequencies to
avoid resonances is also complicated by the large number of exciting frequencies
that must be considered. Resonances in the rotor amplify the root loads, and hence
the transmitted vibration. Therefore, the blades must also be designed to avoid
resonances with N/rev and (N ± 1)/rev. If the distinction is relevant, namely for
teetering and gimballed rotors, the collective modes of the rotor should avoid N/rev
resonances and the cyclic modes should avoid (N ± 1)/rev. Considering the blade
loads and the fact that the rotor hub is not a perfect filter of the root forces, it is
generally necessary to avoid resonances of the rotating natural frequencies of the
blade with all harmonics of the rotor speed. As more is learned about helicopter
dynamic response and how to predict it, designing for low vibration with more
sophisticated approaches than frequency placement will become possible.

The filtering of the blade vibratory forces by the rotor hub helps the task of
vibration reduction or avoidance, because only a few frequencies need be considered,
and because the low harmonics with the largest magnitude are not transmitted to the
helicopter. The exception is the case of a two-bladed rotor, for which all harmonics
in the rotating frame are transmitted to the airframe, including the highest loads at
1/rev and 2/rev. Two-bladed rotors are usually stiff in-plane as well and hence have
larger blade root loads. The rotor pylon flexibility is a significant factor in frequency
placement and vibration reduction on a two-bladed helicopter.

Design of the airframe and rotor can be tailored for vibration minimization. A
good practice is to take advantage of nodes (points of zero motion) in the structural
vibration modes of the helicopter airframe to minimize the vibration at critical
points. Soft mounting of the rotor and transmission to the airframe is common
for two-bladed rotors. For articulated and soft in-plane hingeless rotors, ground
resonance considerations can, however, require a stiff mounting. Blade structural
and inertial coupling of bending and torsion modes can reduce the root vibratory
loads. For example, with a torsionally soft blade, the torsion motion can be coupled
with the first flapwise bending mode to reduce the vibratory loads at the root. Often it
is simpler to design an entirely separate device to act as a dynamic vibration isolation
system.

Passive or active vibration reduction techniques are needed to achieve a low
level of helicopter vibration. The design approach for vibration alleviation must be
insensitive to a lack of knowledge about the vibration source and strength. That
the vibration occurs at known, discrete frequencies helps. Passive methods rely on
dynamic isolation tuned so a particular frequency is highly attenuated. Passive meth-
ods are responsible for achieving reasonable levels of vibration in current designs,
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Figure 18.8. Vibration absorbers on rotor blades and hubs; photos courtesy Burkhard Domke.

but have the disadvantages of significant weight penalty and lack of flexibility. Welsh
(2004) summarized the state of vibration reduction: vibration levels of 0.10g to 0.15g
were achieved, in 1970 using absorbers and bifilars for about 1.5% of the gross weight
and in 2000 using bifilars and active devices on the airframe for about 1.2% of the
gross weight. The goal of active methods is to achieve levels of 0.05g for the same
weights as passive methods.

A dynamic vibration isolation system, consisting of a mass and spring system
attached between the rotor blades and the airframe, can be used in either the rotating
or non-rotating frame. Such an isolator is tuned so that a particular frequency of
vibration, usually N/rev, is highly attenuated. Then energy of the blade root loads
at this frequency goes into the isolator rather than into airframe motion. Figure 18.8
shows some of the vibration absorbers found on rotor blades and hubs.

Consider a system with mass MR acted on by an exciting force F , and an absorber
mass MA attached to the system with spring KA. Let zR be the position of MR relative
to inertial space and zA the position of MA relative to MR. The equation of motion
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for the absorber mass is MA(z̈R + z̈A) = −KAzA, or (MAs2 + KA)zA = −MAs2zR in
Laplace form. The equation of motion for the system mass, MRz̈R = F + KAzA, then
gives for the acceleration due to F :

MRaR = F − KAMA

MAs2 + KA
aR = (MAs2 + KA)MR

(MAs2 + KA)MR + KAMA
F

= MAs2 + KA

MAs2 + KA(1 + MA/MR)
F (18.26)

So there is a zero in the response at frequency ω = √
KA/MA. The resonance is at a

slightly larger frequency; hence not at the frequency of the exciting force. Absorbers
mounted on the blade can use the centrifugal force for the spring, which has the
advantage that the tuning is maintained as rotor speed � varies.

Figure 18.9 illustrates blade pendulum absorbers. An in-plane pendulum rotates
about a vertical axis, tuned to a frequency ω = (N ± 1)�, usually (N − 1)/rev. The
pendulum has a mass M, and the pivot is a distance L from the center of rotation.
The center-of-gravity of the pendulum is a distance � from the pivot, and I = k2M
is the moment of inertia about the center-of-gravity. Let X and Y be the posi-
tion relative to the center of rotation, x and y the position of a pendulum mass
element dm in pendulum axes, and φ the rotation of the pendulum from the span-
wise axis. The centrifugal forces dFx = �2X dm and dFy = �2Y dm act on the mass
dm, located at X = x cosφ + y sinφ and Y = L − x sinφ + y cosφ. The centrifugal
restoring moment is dMz = X dFy − (Y − L)dFx = �2LX dm, which integrates to

Mz =
∫

dMz = �2L
∫
(x cosφ + y sinψ)dm = �2ML� sinφ (18.27)

So the in-plane pendulum natural frequency is

ω2 = �2 ML�
M�2 + I

= �2 L/�
1 + (k/�)2 (18.28)

For a given size and shape of the absorber mass (fixed radius of gyration k), a
maximum frequency of ω2 = �2(L/2k) is obtained, at � = k.

A vertical pendulum rotates about a horizontal axis, tuned to a frequency
ω = N� to attenuate vertical shear force or to ω = (N ± 1)� to attenuate hub
moments. The centrifugal force dFy = �2Y dm acts on the mass dm, located at
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Y = L + y cosφ − z sinφ and Z = y sinφ + z cosφ. The centrifugal restoring
moment is dMx = Z dFy = �2ZY dm, which integrates to

Mx =
∫

dMx = �2
∫
(y sinφ + z cosφ)(L + y cosφ − z sinφ)dm

= �2ML� sinφ +�2 sinφ cosφ
∫
(�2 + ((y − �)2 − z2))dm

= �2 (ML�+ cosφ(M�2 + Iy − Iz)
)

sinφ (18.29)

where Iy = Mk2
y = ∫

y2dm and Iz = Mk2
z = ∫

z2dm. The moment of inertia about
the pivot is (M�2 + Iy + Iz). So the vertical pendulum natural frequency is

ω2 = �2 M�(L + �)+ Iy − Iz

M�2 + Iy + Iz
= �2

�(L + �)+ k2
y − k2

z

�2 + k2
y + k2

z

∼= �2
(

1 + L/�
1 + (k/�)2

)
(18.30)

The pendulum must be designed to null the oscillatory force at the hub node, not
at the absorber. A pendulum can significantly reduce vertical hub shears (see Gabel
and Reichert (1975)), by controlling the first and second elastic flap modes. These
modes typically have frequencies near 3/rev and 5/rev and thus dominate 4/rev hub
forces.

For high frequencies, as with a large number of blades, the required pendulum
length � can be impractically small. Paul (1969) described a bifilar absorber for rotor
hubs to reduce in-plane vibration. Figure 18.10 shows the bifilar geometry. Typically
there is an arm and dynamic mass for each blade, mounted on the hub; see Figure 18.8.
The arm and dynamic mass have tracking holes of diameter D. The motion of the
mass is guided by two pins, with diameter d. The dynamic mass can move, without
rotation, in a circle of radius � = D − d (the distance between the centers of the two
tracking holes). So � can be made small by increasing d. The center of that circle is
the effective pivot point of the center-of-gravity, at a distance L from the center of
rotation. With no motion, the center-of-gravity is a distance L + � from the center
of rotation. The centrifugal forces dFx = �2X dm and dFy = �2Y dm act on the
mass dm, located at X = x + � sinφ and Y = L + y − �(1 − cosφ). The centrifugal



728 Dynamics

a b

MR

MF

MA

z R

z F

F

K
isolator

mass

excitation
force

rotor and
transmission

mass

fuselage
mass

Figure 18.11. Anti-resonant isolator concept.

restoring moment is dMz = X dFy − (Y − L)dFx = �2LX dm, which integrates to

Mz =
∫

dMz = �2L
∫
(x + � sinφ)dm = �2ML� sinφ (18.31)

as for the in-plane pendulum. Since there is no rotation of the dynamic mass as it
moves, the inertial moment is M�2φ̈. So the in-plane pendulum natural frequency is

ω2 = �2(L/�) (18.32)

The moment of inertia of the dynamic mass does not affect the frequency of the
bifilar. A nonlinear analysis of the effect of the bifilar is required for motion beyond
φ = 20 to 30 degrees.

An anti-resonant isolator is effective in the non-rotating frame, typically located
between the transmission and airframe. Although there are many practical imple-
mentations, the concept of the anti-resonant isolator is shown in Figure 18.11. The
rotor and transmission mass MR are connected to the fuselage mass MF through a
spring K and damper C. Motion of the fuselage relative to the rotor (zF − zR) drives
vertical motion of the isolator mass MA, through a level with mechanical advantage
b/a. The position of the isolator mass is zA = zF + b

a (zF − zR). The force F acts on
the rotor. The equations of motion are

MRz̈R = F + K(zF − zR)+ C(żF − żR)− fa (18.33)

MF z̈F = −K(zF − zR)− C(żF − żR)+ fb (18.34)

MAz̈A = fa − fb (18.35)

and (a + b) fa = b fb from moment equilibrium at the isolator mass. Eliminating the
pivot forces fa and fb gives the isolator transmissibility zF/zR, and the isolator mass
response zA/zR:

zF

zR
= (1 + b/a)(b/a)MAs2 + Cs + K(
(1 + b/a)2MA + MF

)
s2 + Cs + K

(18.36)

zA

zR
= −(b/a)MF s2 + Cs + K(
(1 + b/a)2MA + MF

)
s2 + Cs + K

(18.37)
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Figure 18.12. Anti-resonant isolator transmissibility.

The isolator results in fuselage response zF/zR with a zero and a pole at frequen-
cies

ω2
z = K

(1 + b/a)(b/a)MA
(18.38)

ω2
p = K

(1 + b/a)2MA + MF
(18.39)

for zero damping; the resonant frequency ωp is always below the attenuation fre-
quency ωz. The isolator can be tuned to N/rev (for a specific rotor speed �), using a
large value of b/a to keep the isolator mass MA small. Figure 18.12 shows the fuse-
lage and isolator response for the parameters b/a = 20, MA/MF = 0.01, and ωz = 4.
The resulting resonant frequency is ωp = 3.52. Damping (ζ is the critical damping
ratio) reduces the effectiveness of the isolation at ω = 4, but is needed to control the
transmissibility near the resonance.

18.5 Higher Harmonic Control

Primary control of the rotor is conventionally accomplished using mean and 1/rev
(collective and cyclic) blade pitch motion. Thus higher harmonics of the pitch motion
(2/rev and above) are potentially available to control the rotor dynamic behavior.
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Active control of the rotor or aircraft has the objective of reducing vibration, rotor
or airframe structural loads, and noise or even enhancing the rotor performance or
flight envelope. Such control can be open loop or closed loop. Feedback control
can also be used to improve blade stability or augment aeromechanical stability,
as well as for rotor track and balance. There are many possible controls for these
purposes, including swashplate motion, blade root twist, blade active twist change,
blade servoflaps or trailing-edge flaps, and forces applied directly to the transmission
or airframe. Quantities to be controlled can include blade loads, airframe vibration,
noise (blade-vortex interaction or high-speed impulsive), stall flutter, maximum
blade loading, and lift and drag distribution over the rotor disk. With a closed-
loop system, there must be measurements that provide an estimate of the quantity
to be controlled, such as blade pressures for noise and stall, microphones for noise,
accelerometers for vibration, pitch link loads for stall flutter and blade loading, blade
strain and acceleration for root loads, and blade strain for stability.

The term “higher harmonic control” (HHC) generally refers to oscillatory non-
rotating-frame control through the swashplate. Individual blade control (IBC) gen-
erally refers to rotating-frame control, often blade root pitch control through a pitch
link actuator. Non-rotating-frame control is adequate for vibration reduction. Oscil-
lating the swashplate collective and cyclic at N/rev (or a multiple of N/rev, where N is
the number of blades) produces N/rev and N ± 1/rev blade pitch motion, which can
reduce N/rev hub forces and moments. With only two or three blades, the swashplate
mechanism provides complete control of the pitch motion of all the blades. With
four or more blades, swashplate motion cannot control all modes and all harmonics
of blade pitch. In particular, 2/rev is not accessible then, which limits the capability
to control noise and enhance performance.

There are many variations in the literature on the meanings of higher harmonic
control and individual blade control. Some early HHC investigations used rotating-
frame control. The term “multicyclic control” was an alternative to HHC.

The original use of the term “individual blade control” (Ham (1980)) had a
broader meaning of control, encompassing sensors, feedback, and actuation of the
blade in the rotating frame. Ham’s concept of IBC was based on using accelerome-
ters on the blade to sense the appropriate modal response, and using time-domain
feedback to control the blade. Control was implemented using blade root pitch or
a trailing-edge flap, or even the swashplate. The approach was to first control the
blade modes and then command modal motion to achieve the desired behavior of
the rotor and aircraft.

18.5.1 Control Algorithm

The typical HHC control problem is to determine the harmonics of an input control
to minimize the harmonics of the output quantity. Particular importance is attached
to control in equilibrium flight, when the input and output are periodic. Dealing with
periodic signals does not require a harmonic representation, rather just that the time
history be parameterized. The controller must also be able to accommodate changes
in the flight condition, both slow changes and maneuvers.

A class of algorithms for the multicyclic control of helicopter dynamic behavior
is characterized by a linear, quasistatic, frequency-domain model of the helicopter
response to control; identification of the helicopter model by least-squared error or
Kalman-filter methods; and a minimum variance or quadratic performance function
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Figure 18.13. Schematic of frequency-domain control system.

controller. Such a control system combining recursive parameter estimation with
linear feedback is called a self-tuning regulator.

Figure 18.13 outlines the control task. The regulator algorithm consists of param-
eter estimation, gain calculation, and the control feedback. Some of these steps can
be performed off-line. A digital control system operating on the harmonics of the
input and output is considered here. Hence, the regulator also includes transfor-
mations between the time and frequency domains and between analog and digital
representations of the signals.

18.5.2 Helicopter Model

It is assumed that the helicopter can be represented by a linear, quasistatic frequency-
domain model relating the output z to the input θ (see Figure 18.13) at time tn = n�t.
Here z is a vector of the harmonics (both sine and cosine components) of the
quantities to be controlled, such as loads and vibration, in either the rotating or the
non-rotating frame. The input θ is a vector of the harmonics of the higher harmonic
control, in either the rotating or non-rotating frame. The helicopter model depends
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on the operating condition, which is defined by the rotor lift, propulsive force, and
forward speed (at least).

A local model of the helicopter response is a linearization about the current
control value:

zn = zn−1 + T (θn − θn−1) (18.40)

or�zn = T �θn. The matrix T is the transfer function, relating changes of harmonics
of output z to changes of harmonics of input θ . Control algorithms have also been
developed for a global model, which is linear over the entire range of control:

zn = z0 + Tθn (18.41)

with z0 the uncontrolled vibration level. The local model leads to feedback of the
current measurement of the output, zn. The global model requires identification or
measurement of z0, perhaps from the previous value of z through z0 = zn−1 − Tθn−1.
For further information on the use of the global model in developing HHC algo-
rithms, see Johnson (1982). The quasistatic assumption requires that the sampling
or update time-step �t be long enough for transients produced by control changes
to die out and for the harmonics to be measured. Typically, this requires an interval
of at least one rotor revolution.

The assumption of linear response to control is expected to be reasonable,
since experimental data imply that only a small multicyclic control amplitude (of
the order of 0.5° to 1.5°) is required for vibration alleviation and noise reduction.
The uncontrolled vibration level (z0) is a highly nonlinear function of the helicopter
operating condition and involves nonlinear aerodynamic and dynamic phenomena.
With the local model only, the response to changes in control input is linearized.
The T -matrix is expected to vary with operating condition, especially the aircraft
speed.

McCloud and Kretz (1974) and Kretz, Aubrun, and Larche (1973) tested mul-
ticyclic control on a full-scale jet-flap rotor in a wing tunnel. They examined the
response of the blade loads and vibration to control in the rotating frame. They
introduced the concept of a linear, quasistatic representation of the rotor response,
including the notation “T” for the transfer function. This transfer function repre-
sentation was attributed to Aubrun (McCloud and Kretz (1974)). The T -matrix was
calculated from the wind-tunnel data by the least-squares method. Then the open-
loop control required to minimize a quadratic performance function was calculated.

18.5.3 Identification

Consider identification of the T -matrix. Including measurement noise vn, equation
18.40 becomes �zn = T �θn + vn. The identification algorithms are derived for the
j-th measurement,

�zjn = �θT
n t jn + v jn (18.42)

where tT
j is the j-th row of T . Here z j and v j are scalars. The task is to identify t

from the measurements of z. The measurement noise is assumed to have zero mean
and variance E(vnvm) = rnδnm for the j-th measurement (where E(. . .) means the
expected value).
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18.5.3.1 Least-Squares Method

Off-line or on-line identification can be done by the method of least squares. Off-line
identification implies constant parameters. A set of N measurements �z is made,
using a prescribed schedule of independent control perturbations �θ . The number
of measurements N (the dimension of zj below) must be greater than the number of
parameters to be identified L (the dimension of t j). Consider the sum of the squares
of errors:

S =
N∑

n=1

(
�z jn −�θT

n t j
)2 = (

z j − t j
)T (zj − t j

)
(18.43)

where the vector zj and matrix are assembled from the measurement and control
perturbations:

z j =

⎛⎜⎝
...

�z jn
...

⎞⎟⎠  =

⎛⎜⎝
...

�θT
n

...

⎞⎟⎠ (18.44)

The solution that minimizes S is the least-squares estimate: t̂ j = (
 T 

)−1
 T z j or

t̂T
j = zT

j  
(
 T 

)−1. Putting the rows together again gives

T̂ = Z 
(
 T 

)−1
(18.45)

where

Z =

⎡⎢⎢⎣
...

zT
j
...

⎤⎥⎥⎦ =
[
. . . �zn . . .

]
(18.46)

T̂ is a linear estimate; that is, a linear function of the data Z. The measurement noise
vn is assumed to be stationary, with zero mean, and uncorrelated at different times
(E(vnvm) = rnδnm). There is no noise in the measurement of θ . Then the least-squares
estimate is unbiased, expected value E(t̂ j) = t j , and the error variance is

P = E
(
(t̂ j − t j)(t̂ j − t j)

T ) = r
(
 T 

)−1
(18.47)

An unbiased estimate of r is

r̂ = 1
N − L

(
z j − t̂ j

)T (zj − t̂ j
)

(18.48)

With this type of measurement noise, the least-squares estimate is equivalent to the
unbiased minimum error variance estimate, so it has the minimum error variance of
all linear, unbiased estimators.

18.5.3.2 Generalized Least-Squares Method

The generalized least-squares estimate is obtained by minimizing the weighted sum
of squares:

Sw = (
zj − t j

)T
W
(
z j − t j

)
(18.49)

The solution is

t̂ j = (
 TW 

)−1
 TWzj (18.50)
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The matrix W can be used to introduce weights based on the level of �θ or �z; for
example, to emphasize the measurements at low vibration levels in order to improve
the identification in the vicinity of the optimum response.

If the measurement noise has zero mean and variance E(vnvm) = R, then the
generalized least-squares estimate with W = R−1 is equivalent to the unbiased mini-
mum variance estimate. Hence, when the noise is not stationary or is correlated, the
weighting matrix is chosen to emphasize the more precise data. Using W = R−1, the
error variance is P = (

 T R−1 
)−1. If, in addition, the noise has a normal probability

distribution, then the minimum variance estimate is equivalent to the maximum-
likelihood estimate.

18.5.3.3 Recursive Parameter Identification

Recursive algorithms can be used for on-line identification from a sequence of
measurements of the response to control. These algorithms can be used when the
parameters are constant or when they vary with time. The algorithms are still derived
for the j-th measurements, but the subscripts j are omitted to simplify the notation.
Since the parameters can be time varying now, the equation of the helicopter model
is �zn = �θT

n tn + vn.

18.5.3.4 Recursive Generalized Least Squares

A recursive form of the generalized least-squares estimate can be used for on-line
parameter identification. The weighted sum of squares

Sw =
N∑

n=1

(
�zn −�θT

n tn
)2
wn (18.51)

is to be minimized. The solution is equation 18.50. Here the weighting matrix is
diagonal, and the notation wn = 1/rn is used (where rn can be interpreted as the
noise variance). The error matrix is defined as

PN = (
 T

NWN N
)−1

(18.52)

The effect of adding one more measurement, �zN+1, is obtained by applying the
matrix inversion formula to

PN+1 = (
P−1

N +�θN+1wN+1�θ
T
N+1

)−1
(18.53)

The result is the recursive algorithm

t̂n+1 = t̂n + kn+1
(
�zn+1 −�θT

n+1t̂n
)

(18.54)

where the gain vector kn+1 is obtained from

Pn+1 = Pn − Pn�θn+1�θ
T
n+1Pn/

(
rn+1 +�θT

n+1Pn�θn+1
)

(18.55)

kn+1 = Pn+1�θn+1/rn+1 (18.56)

This is the estimate for the j-th measurement. In general there is a different weight r
for each measurement and hence a different solution for P and k. If the time behavior
of rn is the same for all measurements, the solution for kn+1 is the same, and the rows
can be combined to form

T̂n+1 = T̂n + (�zn+1 − T̂n�θn+1
)

kT
n+1 (18.57)
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(here �z is the vector of all measurements). So the entire matrix can be identified
in a single step, with kn+1 calculated only once.

If rn = 1 (or any other constant), the recursive least-squares algorithm is
obtained. The solution is the same as that from the batch least-squares algo-
rithm. The recursive implementation might be useful to track the estimates and
error as the data are acquired. Eventually the old data dominate (k approaches
zero), so the recursive least-squares algorithm is not appropriate with time-varying
parameters.

18.5.3.5 Exponential Window

A recursive estimate applicable to the case of time-varying parameters can be
obtained using an exponential window for the weighting function. By setting rn = αn,
where 0 < α < 1, the current data are emphasized. Since rn is continuously decreas-
ing, solving for the gain kn+1 in terms of P∗

n = Pn/α
n is best:

P∗
n+1 = α−1

[
P∗

n − P∗
n�θn+1�θ

T
n+1P∗

n/
(
α +�θT

n+1P∗
n�θn+1

)]
(18.58)

kk+1 = P∗
n+1�θn+1 (18.59)

This algorithm can be obtained directly by minimizing the sum

S∗
N+1 = αS∗

N + (�zN+1 −�θT
N+1t

)2
(18.60)

18.5.3.6 Kalman-Filter Identification

A Kalman filter can be used for on-line identification of time-varying parameters.
The equation for the j-th measurement is again �zn = �θT

n tn + vn. The measure-
ment noise has zero mean, variance E(vnvm) = rnδnm, and Gaussian probability
distribution. The variation of the parameters is modeled as a random process:

tn+1 = tn + un (18.61)

where un is a random variable with zero mean, variance E(unum) = Qnδnm, and
Gaussian probability distribution. This equation implies that t varies and that the
order of the change in one time-step can be estimated, but no information is available
about the specific dynamics governing the variation of t. The minimum error variance
estimate of tn is then obtained from a Kalman filter:

t̂n = t̂n−1 + kn
(
�zn −�θT

n t̂n−1
)

(18.62)

where

Mn = Pn−1 + Qn−1 (18.63)

Pn = (
M−1

n +�θn�θ
T
n /rn

)−1

= Mn − Mn�θn�θ
T
n Mn/

(
rn +�θT

n Mn�θn
)

= (
I − kn�θ

T )Mn
(
I − kn�θ

T )T + knkT
n rn (18.64)

kn = Pn�θn/rn

= Mn�θn/
(
rn +�θT

n Mn�θn
)

(18.65)
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Here Mn is the variance of the error in the estimate of tn before the measurement,
and Pn is the variance after the measurement. P depends on the control input θ ,
but not on the measurement z; no matrix inversion is required, because tn is related
to only one measured variable. The Kalman filter can be considered a time-variant
dynamic system with state t̂:

t̂n = (
I − kn�θ

T
n

)
t̂n−1 + kn�zn = (

I − kn�θ
T
n

)
t̂n−1 + kn�θ

T
n tn + knvn (18.66)

where

I − kn�θ
T
n = I − Pn�θn�θ

T
n /rn = PnM−1

n (18.67)

If there are no process dynamics (Qn = 0), the Kalman filter is equivalent to the
generalized least-squares algorithm with wn = 1/rn (for minimum error variance).
The variances Qn, rn, and P0 are different for the various measurements. If Q and r
have the same time variation for all measurements, and Q, r, and P0 are proportional
to the same function f j , then the solution for kn+1 is the same, and the rows can be
combined to form

T̂n = T̂n−1 + (�zn − T̂n−1�θn
)

kT
n (18.68)

(here�z is the vector of all measurements). So the entire matrix T̂ can be identified
in a single step, with Pn and kn calculated only once. The basis of this result is that
the ratio of the parameter and measurement noise variances, Q jn/r jn, is the same
for every measurement.

18.5.4 Control

The control algorithm is based on the minimization of a performance index J that is
a quadratic function of the input and output variables. This function depends on the
input and output at the n-th time-step and perhaps at past times, but not on the future
values. If all the parameters in the model are known, a deterministic controller is
obtained. With unknown, estimated parameters, the certainty-equivalence principle
is applied: the deterministic control solution is used with the estimated parameter val-
ues. Alternatively, a cautious controller can be obtained by minimizing the expected
value of the performance function. Such control systems are called passive-adaptive
or non-dual controllers. The performance index does not consider that future mea-
surements are made, so ignores the possibility of learning from the measurements.
A dual or active-adaptive controller actively probes the system to reduce the param-
eter errors. The control is used for learning, to improve the parameter estimates,
but the improvement is achieved at the expense of short-term deterioration of the
closed-loop performance.

The quadratic performance function used is

J = zT
n Wzzn + θT

n Wθ θn +�θT
n W�θ�θn (18.69)

where �θn = θn − θn−1. The vectors θ and z contain the harmonics of the input and
output. Typically the weighting matrices are diagonal and have the same value for all
harmonics of a particular quantity. Then J is a weighted sum of the mean-squares of
the vibration, loads, noise (etc.) and control. The matrix Wθ constrains the amplitude
of the control, whereas W�θ constrains the rate of change of the control.

The control required is found by substituting for z in the performance func-
tion, using the helicopter model and then solving for θn that minimizes J. Setting
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∂J/∂θ jn = 0 (for each component in the vector θn), gives a set of equations that can
be solved for θn. The result is

θn = −Czn−1 + (C�θ + CT ) θn−1 (18.70)

or

�θn = −Czn−1 − Cθ θn−1 (18.71)

where

C = DT TWz (18.72)

Cθ = DWθ (18.73)

C�θ = DW�θ (18.74)

D = (
T TWzT + Wθ + W�θ

)−1
(18.75)

Equation 18.71 defines closed-loop control obtained by feedback of the measured
response zn−1. The control weight Wθ constrains the amplitude of the control relative
to the best value; hence it also constrains the reduction of z. The control increment
weight W�θ reduces the control change in each step, but does not change the final
value of z. When Wθ = 0, the solution reduces to �θn = −Czn−1. If both Wθ and
W�θ are zero, then CT = I. If Wθ = W�θ = 0, and the number of controls equals the
number of measurements (so T is a square matrix), then C = T−1 (regardless of Wz).

Using the largest value of W�θ that does not make the response too sluggish is
appropriate to improve the transient response, the sensitivity to measurement noise,
and the sensitivity of the stability to parameter errors. The rate limit W�θ should
always be used during the start of the recursive identification, and a small value of
W�θ can be used to avoid the possibility of control divergence, should the estimated
T -matrix be too small. The control magnitude constraintWθ is not very useful, since it
limits the control relative to the ideal value rather than relative to an absolute value.
Absolute limits on the control magnitude are probably better applied by uniformly
reducing the elements of θ before the command signals are sent to the actuators.

18.5.5 Time-Domain Controllers

The T -matrix algorithm is based on the assumption of a steady or quasistatic operat-
ing condition; hence periodic input and response. The aircraft model relates sampled
harmonics of response to harmonics of input:

zn+1 = zn + T (θn+1 − θn) (18.76)

The discrete-time controller is

�θn+1 = −Czn (18.77)

(see Figure 18.14). For an equal number of controls and response quantities, and no
control weights, C = T−1. From this frequency-domain, discrete controller a time-
domain, continuous compensator can be derived.

The approach follows Hall and Wereley (1989, 1993). The variables θ and z
consist of the harmonics of the periodic input and response. For scalar y and u,

z =
(

yc

ys

)
θ =

(
uc

us

)
(18.78)
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Figure 18.14. Time-domain higher harmonic control system.

For a time-invariant system, the input and response are related by a transfer function:
y = Gu. Considering vibration at frequency N/rev, the transfer function is evaluated
at s = iN�: (yc − iys) = GN�(uc − ius). Hence(

yc

ys

)
=
[

ReGN� ImGN�

−ImGN� ReGN�

](
uc

us

)
= T

(
uc

us

)
(18.79)

so

C = 1
|GN�|2

[
ReGN� −ImGN�

ImGN� ReGN�

]
=
[
α −β
β α

]
(18.80)

Harmonic analysis gives the N/rev response by integrating over the period T =
2π/N�, and the control is obtained from the Fourier series:

zn = 2
T

∫ nT

(n−1)T

(
cos N�τ
sin N�τ

)
y(τ )dτ (18.81)

θn+1 = θn − Czn (18.82)

u(t) =
[

cos N�t sin N�t
]
θn+1 (18.83)
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Figure 18.15. Disturbance rejection controller.

Substituting and extending the integration back in time,

θn+1 = θn − C
2
T

∫ nT

(n−1)T

(
cos N�τ
sin N�τ

)
y(τ )dτ

= θn− j − C
2
T

∫ nT

(n−1− j)T

(
cos N�τ
sin N�τ

)
y(τ )dτ

= −C
2
T

∫ nT

−∞

(
cos N�τ
sin N�τ

)
y(τ )dτ (18.84)

Then eliminating the sample and hold,

u = −
[

cos N�t sin N�t
]
Ck
∫ t

−∞

(
cos N�τ
sin N�τ

)
y(τ )dτ (18.85)

with k = 2/T . Equation 18.85 is a time-domain, continuous controller (Figure 18.14)
consisting of modulation, integration, and demodulation; see Hall and Wereley
(1989, 1993). A transfer function form is obtained by writing equation 18.85 as

zc(s) = k
2s

(
y(s − iN�)+ y(s + iN�)

)
(18.86)

zs(s) = k
2is

(
y(s − iN�)− y(s + iN�)

)
(18.87)(

θc(s)
θs(s)

)
= −

[
α −β
β α

](
zs(s)
zc(s)

)
(18.88)

u(s) = 1
2

(
θc(s − iN�)+ θc(s + iN�)

)
+ 1

2i

(
θs(s − iN�)− θs(s + iN�)

)
(18.89)

Substituting gives u(s) = −H(s)y(s), where

H = k(αs + βN�)
s2 + (N�)2 (18.90)

This is a disturbance rejection compensator, illustrated in Figure 18.15, with d the
uncontrolled response level. This system provides asymptotic rejection of the N�
harmonics of y because of the poles at ±iN� in the regulator, which give zeros at
±iN� in the closed-loop transfer function: y = d/(1 + GH). The gain k determines
the stability and response to transients. A more complicated regulator can add poles
and zeros to improve the stability, transient response, and robustness.

The compensator gives y/d → 0 from H → ∞ at the frequency N� of the
disturbance. The poles at ±iN� constitute a notch filter, or an oscillator tuned to the
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disturbance frequency. If the helicopter response to control can be treated as time
invariant, then classical control design techniques can be applied after a shaping
filter has been added to the model. A frequency-shaped cost function can be used,
or the measurement can be shaped by a resonant filter:

z = (N�)2s
s2 + (N�)2 y (18.91)

(see Du Val, Gregory, and Gupta (1984)). Equivalently the helicopter model can be
augmented with

z̈ + (N�)2z = (N�)2ẏ (18.92)

and with a classical compensator design for good behavior.

18.5.6 Effectiveness of HHC and IBC

There have been numerous tests and demonstrations of HHC and IBC: wind tunnel
and flight, open and closed loop, 2/rev to 5/rev. Typically 1–2° of blade pitch ampli-
tude can influence the rotor behavior significantly, including a factor of 10 reduction
of vibration at high speed (from 0.3–0.6 g down to less than 0.05 g), up to 8–10 dB
reduction of noise, or 5–7% reduction of power at high speed. Simultaneous reduc-
tion of noise and vibration has been achieved, using multiple harmonics of control.
Rotor power often increases when the objective is just vibration or noise reduction.
The pitch link loads, swashplate control loads, and blade torsion loads are increased
for most cases. An HHC or IBC system adds weight to the aircraft and consumes
power when active, but the goal is to have weight and power requirements that are
less than for passive control (by vibration absorbers or blade design), with increased
flexibility and effectiveness.

Tables 18.2 to 18.4 summarize the test experience with higher harmonic control
and individual blade control of the rotor. The HHC algorithm has also been used
in active vibration control, based on actuators that apply forces to the airframe.
Flight tests have been reported for the UH-60L (Millott and Welsh (1999)), the
S-92 (Goodman and Millott (2000)), and the Bell 430 (Heverly, Singh, and Pappas
(2009)).

18.6 Lag Damper

The lag damper can be an important factor in rotor blade dynamic behavior. The
aerodynamic forces due to lag motion are small for low-inflow helicopter rotor
blades. So unlike the flap and pitch motion, the aerodynamic contribution to damp-
ing is small for lag motion. Soft in-plane rotors (lag frequency below 1/rev) are
susceptible to ground resonance and require mechanical damping of the lag motion
for stability. Current rotor designs often incorporate elastomeric bearings, dampers,
or snubbers.

Analyses of rotor dynamics, particularly for stability, typically assume that
springs and dampers are linear. Most dampers and snubbers are in fact nonlinear
mechanisms. Physics-based models of damper components have been developed,
some including separate degrees of freedom or states. A simpler approach is to use
a parametric description, in which the force generated by the device is a function
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Table 18.2a. Vibration reduction and blade loads

Test Aircraft Control Improvement Reference

WT model HHC CL up to 90% hub force; Shaw and Albion (1981)
increased pitch link loads,
especially at low speeds

WT model HHC CL 70–90% hub vertical force; Hammond (1983)
increased edgewise bending,
torsion moment, pitch link loads

WT model HHC CL 80–90% hub loads Molusis, Hammond, and
Cline (1983)

FLT OH-6A HHC CL 30–90% pilot vibration; Wood, Powers, Cline,
but longitudinal vibration and Hammond (1985)
increase at high speed;
90% in second test, below
0.05g except longitudinal;
increased pitch link loads

FLT S-76 HHC 40–80% cockpit vibration; Miao, Kottapalli, and
with increased pushrod Frye (1986)
vibratory load

FLT SA 349 HHC 90% cabin, 70-90% cockpit Polychroniadis and
vibration, below 0.1g; Achache (1986)
increased flap bending and
pitch rod load

WT XV-15 HHC CL 50% hub loads; Nguyen, Betzina, and
increased control loads Kitaplioglu (2001)

WT Bo-105 IBC 85% hub vibration; Jacklin, Blaas, Teves,
simultaneous noise and and Kube (1995)
vibration with multiple harmonics

FLT Bo-105 IBC 2/rev 50%, simultaneous Kube, van der Wall,
with noise reduction; Schultz, and
50% hub vertical force, Splettstoesser (1999)
90% hub moment;
cabin vibration to about 0.05g

WT UH-60A IBC 70% vibration Jacklin, Haber,
de Simone, Norman,
Kitaplioglu, and
Shinoda (2002)

Notes: WT = wind tunnel; FLT = flight; HHC = higher harmonic control (swashplate)
IBC = individual blade control (pitch link); CL = closed loop.

of the displacement and velocity: F (x, ẋ). The parameters in such a model must be
identified from test data. Because of the nonlinearity, the test conditions must be
representative of the actual operation. Typically that means a dual-frequency test,
combining motions at 1/rev and at the lag mode frequency.
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Table 18.2b. Vibration reduction and blade loads

Test Aircraft Control Improvement Reference

FLT CH-53G IBC 90% one axis, 60% all Arnold (2003)
directions in certain cases

FLT CH-53G IBC CL up to 90% one component, Arnold and Furst (2005)
60% 3 components;
with 2 harm (5/rev and 6/rev)
up to 85% for 3 components

WT UH-60A IBC CL eliminate single-component Norman, Theodore,
hub load Shinoda, Fuerst,

Arnold, Makinen,
Lorber, and
O’Neill (2009)

WT model ATW CL 40–60% vibratory hub Bernhard and Wong
forces (2005)

WT model TEF CL 70–90% vertical force Koratkar and Chopra
and hub moment (2002)

FLT BK 117 TEF CL 50–90% vertical force Roth, Enenkl, and
and hub moment; Dieterich (2006)
cabin vibration 0.05g

WT MD 900 TEF CL 95% vertical force, Straub, Anand,
70% hub moment Birchette, and Lau

(2009)

Notes: WT = wind tunnel; FLT = flight; IBC = individual blade control (pitch link)
TEF = trailing-edge flap; ATW = active twist; CL = closed loop.

The spring/damper can be characterized by the in-phase and out-of-phase
response to sinusoidal motion x = δ cosωt:

F = K′δ cosωt − K′′δ sinωt (18.93)

K′ is the spring term and K′′ is the damping term. The loss tangent is defined
as L = K′′/K′ = tan�φ, such that F = F cos(ωt +�φ). A linear spring damper is
described by F = Kx + Cẋ, so K = K′ and C = K′′/ω = LK′/ω. The parameters
are obtained by harmonic analysis of the force measured or calculated for motion
x = δ cosωt:

K′ = 1
πδ

∫ 2π

0
F cosωt dωt (18.94)

K′′ = − 1
πδ

∫ 2π

0
F sinωt dωt (18.95)

which can be written in terms of energy:

K′ = ω

δ2π

∫ 2π/ω

0
Fx dt = 4ω

δ2

(
average potential energy

)
(18.96)

K′′ = 1
δ2π

∫ 2π/ω

0
Fẋ dt = 2

δ2

(
average energy loss

)
(18.97)
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Table 18.3. Noise reduction

Test Aircraft Control Improvement Reference

WT model HHC 5–6 dB mid-frequency Brooks, Booth, Jolly,
(BVI) noise in low speed Yeager, and Wilbur
descent; low-frequency (1990)
noise and vibration increased

WT Bo-105 HHC up to 6 dB BVI noise Brooks, Booth, Boyd,
model Splettstoesser, Schultz,

Kube, Niesl, and Streby
(1994)

WT Bo-105 HHC 6 dB advancing side, 2 dB Splettstoesser, Kube,
model retreating side BVI noise; Wagner, Seelhorst,

minimum vibration control, Boutier, Micheli,
increased BVI noise 1–2 dB Mercker, and Pengel

(1997)

WT XV-15 HHC CL 12 dB BVI noise; Nguyen, Betzina, and
increase or decrease in Kitaplioglu (2001)
vibratory hub loads

WT Bo-105 IBC 7 dB BVI noise Niesl, Swanson, Jacklin,
Blaas, and Kube (1994)

WT Bo-105 IBC 85% BVI noise; Jacklin, Blaas, Teves,
simultaneous noise and and Kube (1995)
vibration with multiple harmonics

FLT Bo-105 IBC 2/rev BVI noise 4dB; Kube, van der Wall,
6 dB with increased vibration Schultz, and

Splettstoesser (1999)

WT UH-60A IBC BVI noise up to 12 dB Jacklin, Haber,
with 2/rev de Simone, Norman,

Kitaplioglu, and
and Shinoda (2002)

FLT CH-53G IBC BVI noise up to 3 dB Arnold (2003)
with 2/rev

WT MD 900 TEF CL up to 6 dB BVI and in-plane Straub, Anand,
noise Birchette, and Lau

(2009)

Notes: WT = wind tunnel; FLT = flight; HHC = higher harmonic control (swashplate)
IBC = individual blade control (pitch link); TEF = trailing-edge flap
CL = closed loop; BVI = blade-vortex interaction.

An equivalent linear spring/damper can be defined on the basis of equal work during
a cycle of motion. For a linear damper, F = Cẋ, the work is W = ∮

Fẋ dt = Cπωδ2.
Thus

Cequiv =
∮

Fẋ dt
πωδ2

(18.98)
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Table 18.4. Performance improvement utilizing 2/rev control

Test Aircraft Control Improvement Reference

WT model HHC 20–40% L/De at high speed McHugh and Shaw (1976)

WT model HHC CL 6% power at 135 knots, Shaw and Albion (1981)
4% at 160 knots

WT Bo-105 IBC 7% power at high-speed Jacklin, Blaas, Teves,
condition and Kube (1995)

FLT CH-53G IBC 6% power at 130 knots; Arnold (2003)
decreased pitch link loads

WT UH-60A IBC CL 5% power, 9% L/De Norman, Theodore,
at μ = 0.4 Shinoda, Fuerst,

Arnold, Makinen,
Lorber, and
O’Neill (2009)

WT model ATW CL 1–2% power Bernhard and Wong (2005)

Notes: WT = wind tunnel; FLT = flight; HHC = higher harmonic control (swashplate)
IBC = individual blade control (pitch link); ATW = active twist; CL = closed loop.

where here F is the force produced by motion at amplitude δ and frequency ω. For
a dual-frequency test, the equivalent damping acting on the lag mode is obtained by
using ẋ and ωδ2 of just that mode, while F is the total force. Similarly

Kequiv =
∮

Fx dt
πδ2/ω

(18.99)

is the equivalent linear spring constant. With a nonlinear spring damper, the equiv-
alent spring and damping constants depend on the amplitude and frequency of the
motion.

Consider a nonlinear spring of the form

F = k0signx + x
(
k1 + k2|x| + k3x2 + . . .) (18.100)

For x = δ cosωt = δ cos θ = δC, the in-phase constant is

K′ = 1
πδ

∫ 2π

0

(
k0signC + k1δC + k2δ

2C|C| + k3δ
3C3 + . . .)C dθ

= 4
πδ

∫ π/2

0

(
k0 + k1δC + k2δ

2C2 + k3δ
3C3 + . . .)C dθ

= 4
πδ

∑
n=0

knδ
n
∫ π/2

0
Cn+1dθ

= k0
4
πδ

+ k1 + k2δ
8

3π
+ k3δ

2 3
4

+ . . . (18.101)
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Each term also gives the equivalent linear spring constant. Consider a nonlinear
damper of the form

F = c0signẋ + ẋ
(
c1 + c2|ẋ| + c3ẋ2 + . . .) (18.102)

For ẋ = −ωδ sinωt = −ωδ sin θ = −δS, the out-of-phase constant is

K′′ = 1
πδ

∫ 2π

0

(
c0signS + c1δωS + c2δ

2ω2S|S| + c3δ
3ω3S3 + . . .) S dθ

= 4
πδ

∫ π/2

0

(
c0 + c1δωS + c2δ

2ω2S2 + c3δ
3ω3S3 + . . .)S dθ

= 4
πδ

∑
n=0

cnδ
nωn

∫ π/2

0
Sn+1dθ

= c0
4
πδ

+ c1ω + c2δω
2 8

3π
+ c3δ

2ω3 3
4

+ . . . (18.103)

Each term also gives the equivalent linear damping constant, Cequiv = K′′/ω. The
coefficient c1 gives linear, viscous damping, while c0 is friction damping, and c2 is
hydraulic damping. Functional forms that combine x and ẋ dependence are also
useful, such as

F = signx
(
k0 + k1|x| + k2|x|2 + . . .+ �1|ẋ| + �2|ẋ|2 + . . .)

+ signẋ
(
c0 + c1|ẋ| + c2|ẋ|2 + . . .+ d1|x| + d2|x|2 + . . .) (18.104)

The dn constants give nonlinear friction damping; d1 can be considered structural
damping.

An elastomeric damper can typically be modeled as a combination of nonlinear
friction damping and nonlinear spring. For a hydraulic damper, the force depends
only on the rate of motion, with quadratic variation for small amplitude. A relief
valve is required to limit the damper loads during large 1/rev motion in forward
flight. Thus the simplest model for the damper force is

F = min((ẋ/ẋlimit)
2, 1)Flimitsignẋ (18.105)

Considering single-frequency motion, the equivalent damping increases with ampli-
tude for small amplitude: Cequiv ∼ δω. For large amplitude, the force limit pro-
duces friction damping behavior, and the damping decreases with amplitude:
Cequiv ∼ 1/(δω). So for hover a hydraulic damper is very effective in stabilizing
ground resonance. In forward flight, the steady-state 1/rev lag motion is enough to
open the relief valve, so the damper does not produce excessive blade loads when
the aircraft is off the ground. For tests of an articulated rotor in a wind tunnel, the
lag damper must stabilize ground resonance in forward flight as well, so the damping
must be active for perturbation motion at the lag mode frequency, while undergoing
finite-amplitude motion at 1/rev. For such dual-frequency operation of a hydraulic
damper, the friction damping due to the force limit dominates the behavior. Typi-
cally then the equivalent linear damping of the lag mode is roughly independent of
the lag mode amplitude, decreasing as the 1/rev amplitude increases.
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19 Flap Motion

The blade flap hinge or, equivalently, flapping flexibility for hingeless and bearing-
less rotors is a crucial aspect of practical rotor design, allowing inertial forces due to
flapping to counter applied airloads, thereby reducing structural loads. Hence flap
motion of the blades plays a key role in the aeroelastic behavior of the rotor. Chap-
ter 6 dealt with the steady-state solution for the flap response in forward flight. This
chapter is concerned with the dynamic behavior of the flap motion. We consider the
eigenvalues in the rotating and non-rotating frame and the flap response to control,
gust, and shaft motion inputs. The hub reactions in response to shaft motion, includ-
ing the effects of the flapping dynamics, are also examined. The equations derived
here are used in Chapter 21 in the investigation of helicopter flight dynamics. For
the shaft-fixed problems, a single independent blade in the rotating frame, which is
a single-degree-of-freedom system, can be considered. With coupling of the blades,
through either shaft motion or the rotor wake, the motion of the entire rotor must
be considered; hence N degrees of freedom, one for each blade.

19.1 Rotating Frame

The equation of motion for the fundamental flapping mode of a rotor blade in the
rotating frame is

Îβ
(
β̈ + ν2

ββ
) = γ

∫ 1

0
ηβ

Fz

ac
dr = γMF (19.1)

from equation 16.55, without the precone term. The flapping degree of freedom is β.
An arbitrary rotor blade is considered, described by the rotating natural frequency
of the flap motion νβ and the out-of-plane mode shape ηβ (r). The normalized flap
inertia Îβ = Iβ/Ib has a value of approximately 1. The Lock number γ = ρacR4/Ib

characterizes the relative magnitudes of the aerodynamic and inertial forces acting
on the blade. Equation 16.309 gives the aerodynamic flap moment:

MF = Mθ

(
θ − KPβ

)+ Mβ̇ β̇ + Mββ + Mλ

(
λ− wG

)
(19.2)

In addition to the aerodynamic forces caused by the flap motion, those due to the
blade pitch control and a vertical gust velocity are included. Kinematic pitch-flap
coupling is introduced in terms of KP = tan δ3; see section 6.18. Assuming ηβ = r

749
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and neglecting reverse flow and tip losses, the aerodynamic coefficients are

Mθ = 1
8

+ μ

3
sinψ + μ2

4
sin2 ψ (19.3)

Mλ = −
(

1
6

+ μ

4
sinψ

)
(19.4)

Mβ̇ = −
(

1
8

+ μ

6
sinψ

)
(19.5)

Mβ = −μ cosψ
(

1
6

+ μ

4
sinψ

)
(19.6)

Thus the flap equation of motion is

Îβ β̈ − γMβ̇ β̇ + (Îβν2
β + KPγMθ − γMβ

)
β = γMθ θ + γMλ

(
λ− wG

)
(19.7)

which is a linear ordinary differential equation that has periodic coefficients in
forward flight. The aerodynamic forces provide the flap damping, flap springs in
forward flight (Mβ) and through the pitch-flap coupling, and the moments due to the
control and gust inputs.

19.1.1 Hover Roots

In hover (μ = 0) the aerodynamic environment is axisymmetric, and the aerody-
namic coefficients are constants. In addition, Mβ = 0 in hover. Thus the homoge-
neous equation is

Îββ̈ − γMβ̇ β̇ + (Îβν2
β + KPγMθ

)
β = 0 (19.8)

The characteristic equation is

Îβs2 − γMβ̇s + (Îβν2
β + KPγMθ

) = 0 (19.9)

which can be solved for the eigenvalues or roots of the flap dynamics in hover:

s = γMβ̇

2Îβ
± i

√√√√
ν2
β + KP

γMθ

Îβ
−
(
γMβ̇

2Îβ

)2

(19.10)

Substituting Îβ = 1 and −Mβ̇ = Mθ = 1
8 gives

s = γ

16
± i

√
ν2
β + KP

γ

8
−
( γ

16

)2
(19.11)

Unless the Lock number γ is very large, the transient flap motion in the rotating
frame is a damped oscillation, with frequency, natural frequency, and damping ratio
as follows:

ω = Im s =
√
ν2
β + KP

γ

8
−
( γ

16

)2
(19.12)

ωn = |s| =
√
ν2
β + KP

γ

8
= νβe (19.13)

ζ = − Re s
|s| = γ

16νβe
(19.14)
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νβ = 1νβ > 1

νβ

1

−1

−1
γ

16
−

typical
articulated
rotor root

typical
hingeless
rotor root

Im s

Re s
Figure 19.1. Flapping roots in hover (no
pitch-flap coupling).

The pitch-flap coupling KP introduces an aerodynamic spring on the flap motion
through Mθ , giving the effective flapping natural frequency νβe. The damping ratio
is typically around 50% critical damping, so the flap motion is highly damped. The
source of this damping is the aerodynamic lift forces on the blade due to the angle-
of-attack change produced by a flapping velocity. Figure 19.1 shows the hover eigen-
values, with typical roots for articulated and hingeless rotors. For the articulated
rotor the frequency is below 1/rev, whereas for the hingeless rotor (νβ > 1 and small
γ ) the frequency is likely to be above 1/rev. The location of the roots is determined
by the natural frequency νβ (which gives the distance from the origin) and by the
damping Re s = −γ /16 (which gives the distance from the imaginary axis).

For γ = 0, the roots are s = ±iνβ . Since there are no aerodynamic forces in this
case, the motion is an undamped oscillation at the frequency νβ determined by the
centrifugal and structural stiffness of the blade. For γ > 0, the locus of roots describes
a circle with radius

√
ν2
β + K2

P and center at −KP on the real axis. The location of
the two complex conjugate roots on this circle can be determined from the real
part Re s = −γ /16, which depends on the Lock number alone. For large enough γ ,
specifically γ /16 = KP +

√
ν2
β + K2

P, the loci intercept the real axis at s = −γ /16. In
the absence of pitch-flap coupling the intercept occurs at γ = 16νβ , which is rather
large. Unless the pitch-flap coupling (KP = tan δ3) is significantly negative, the flap
roots are a complex conjugate pair, implying oscillatory transient motion. As the
Lock number becomes still larger, one of the roots approaches s = −∞ on the real
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axis, and the other goes to s = −KP. If KP < 0 (negative δ3, flap-up/pitch-up), this
latter root on the real axis goes through the origin into the right half-plane as γ
increases. The criterion for stable motion (Re s < 0) is then

γ

16
<

ν2
β

2|KP| (19.15)

for KP < 0. The main rotors of the helicopter are generally well away from this
boundary, but the boundary can be a concern for rotors with large negative pitch-
flap coupling and small Lock number. Since this instability is a static divergence,
the boundary is simply determined by the spring terms in the flap equation. For
stable motion a net positive flap spring is required, or ν2

βe > 0, which gives the above
boundary. This flap divergence is primarily a limit on the allowable negative pitch-
flap coupling, so the stability requirement can be written instead as KP > −8ν2

β/γ .

19.1.2 Forward Flight Roots

The homogeneous equation of the flap motion in forward flight is

Îββ̈ − γMβ̇ β̇ + (Îβν2
β + KPγMθ − γMβ

)
β = 0 (19.16)

The flap inertia Iβ can be used in the Lock number here, so with no loss of generality
Îβ = 1 can be assumed. The aerodynamic coefficients are given in Section 19.1 for
ηβ = r and neglecting reverse flow and tip losses. Above about μ = 0.5, reverse
flow must be included in the aerodynamic coefficients, as in section 6.8. The hover
solution was found in the last section:

s = γ

16
± i

√
ν2
β + KP

γ

8
−
( γ

16

)2
(19.17)

Forward flight (μ > 0) introduces periodic coefficients due to the rotation of the
blade relative to the helicopter forward velocity. These coefficients radically influ-
ence the behavior of the root loci and also the analysis techniques required. The root
loci of a time-invariant system can exhibit behavior in which two roots start as com-
plex conjugates, meet at the real axis, and then proceed in opposite directions on the
real axis. With periodic coefficients this behavior is generalized so that it can occur
at any frequency that is a multiple of 1

2 /rev, not just on the real axis. The property
of the solution that allows this behavior is the fact that the eigenvectors are them-
selves periodic, instead of constant as for a time-invariant system. In section 15.6 the
behavior of roots of periodic-coefficient differential equations was discussed, and
procedures for calculating the roots were developed.

Consider the stability of the rotor flapping motion in forward flight (see Johnson
(1973, 1974)). For small μ, analytical solutions for the roots can be obtained, but
numerical methods are required at moderate and high advance ratios. At μ = 0 the
roots are complex conjugate pairs (or perhaps two real roots) determined by νβ , γ ,
and KP. The frequency of the hover roots has an important influence on the behavior
at low μ. For values of νβ and γ such that the hover root frequency is not too close to
a multiple of 1

2 /rev, the roots for low advance ratio only exhibit an orderμ2 change in
frequency, which is quite small even at μ = 0.5; there is no change in the real part of
the root. When the hover frequency is near a multiple of one-half the fundamental
frequency of the system, there can occur a degradation of the stability, perhaps even
an instability, which is characteristic of periodic coefficient equations. If the hover
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root frequency is near n/rev, then as μ increases, the roots approach n/rev while
remaining a complex conjugate pair. The roots reach Im s = n for some critical μ,
and then for still larger μ the frequency remains fixed while the real part of one
root is increased and that of the other root decreased. The root being destabilized
can cross into the right half-plane for large enough μ, indicating that the system has
become unstable because of the periodic coefficients. Similar behavior can occur
if the hover root frequency is near (n + 1

2 )/rev. For the hover root frequency near
1
2 /rev there are order μ influences of the periodic coefficients. Initially there is an
order μ change in the frequency, with the real part of the root remaining near the
hover value Re s = −γ /16. The roots reach Im s = 1

2 for a value of the advance ratio
that decreases as the hover root moves closer to 1

2 /rev. For larger μ there are order
μ changes in the real part of the roots while the frequency is fixed at 1

2 /rev. The
order μ reduction in damping is small compared to the large aerodynamic damping
in hover, so the flapping stability remains high for small advance ratio, even with
the influence of the periodic coefficients. The roots exhibit a similar behavior when
the hover frequency is near 1/rev, except that all the changes are of order μ2, and
hence are much smaller than those near 1

2 /rev. At μ = 2.25 or so (there is some
dependence on νβ , γ , and KP) a flapping instability is encountered because of the
periodic forces on the rotor blade in forward flight. This instability usually occurs in
a region where the frequency is fixed at 1/rev and the real part of one root has been
decreased enough for the root to go into the right half-plane. For advance ratios
high enough to encounter this instability, reverse flow effects must be included in
the aerodynamic coefficients. Other degrees of freedom (such as elastic bending, lag
motion, and torsion motion) significantly reduce the advance ratio at the stability
boundary. A representation of the rotor blade motion by just the fundamental flap
mode is not adequate at very high advance ratio.

Figure 19.2 shows typical root loci of the rotor blade flap motion from hover
(μ = 0) up to μ = 0.6. Three cases are shown: (a) a typical articulated rotor with
γ = 12 and νβ = 1.0, for which the hover frequency is near 1

2 /rev; (b) a typical
hingeless rotor with γ = 6 and νβ = 1.15, for which the hover frequency is near
1/rev; and (c) an intermediate case with γ = 6 and νβ = 1.0, for which the hover
frequency is not near a multiple of 1

2 /rev. There is a pair of roots for each case. The
articulated rotor (case a) illustrates the orderμbehavior near 1

2 /rev, and the hingeless
rotor (case b) illustrates the order μ2 behavior near 1/rev. Case (c) shows just the
small frequency change of order μ2 for roots away from a multiple of 1

2 /rev. The
eigenvalues depend primarily on the Lock number and advance ratio, so the results
can be presented as contours of constant real and imaginary parts of the roots on
the γ –μ plane. Figure 19.3 is such a plot for the case νβ = 1 and KP = 0. The regions
in which the frequency is fixed at 1

2 /rev or 1/rev are due to the periodic coefficients.
Since a horizontal line in Figure 19.3 corresponds to constant γ , the variation of Im s
and Re s as such a line is traversed gives the root locus for varying μ.

For example, consider the articulated rotor with γ = 12 (case a in Figure 19.2).
As μ increases the 1

2 /rev region comes closer, indicating that the frequency is
approaching 1

2 /rev. When the γ = 12 line goes into the 1
2 /rev region, the frequency

of the root remains fixed while for each point in the region there are two values of
the real part, one more stable and one less stable than the hover root. When μ is of
order 1 the real parts of the roots approach each other again, and at about μ = 1.7
the roots move quickly from 1

2 /rev to 1/rev as complex conjugates, hence with the
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Figure 19.2. Influence of forward flight on flapping roots, for (a) νβ = 1 and γ = 12, (b)
νβ = 1.15 and γ = 6, and (c) νβ = 1 and γ = 6.

same real parts. After the 1/rev region is entered, the damping of one root decreases
again while that of the other increases. The branch being destabilized finally crosses
into the right half-plane at about μ = 2.3. Figure 19.3 shows that the critical regions
where the frequency is fixed at a multiple of 1

2 /rev increase in importance as the
periodic forces increase with μ, eventually dominating the behavior of the root loci
at high advance ratio.

Because of the greater ease and scope of the analysis of constant-coefficient dif-
ferential equations, it is useful to have a time-invariant model of the rotor dynamics
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Figure 19.3. Flap roots in forward flight (νβ = 1 and KP = 0).

in forward flight. Such a model must be approximate, since periodic systems have
unique behavior, but the approximation is satisfactory for many conditions. If the
mean values of the coefficients in the rotating frame are used, the only influence
of forward flight on the flap moments that remains is an order μ2 change in Mθ . If
there is no pitch-flap coupling, forward flight has no influence at all on the eigen-
values. Unless μ is very small, this is not a satisfactory approximation. However, by
using the mean values of the coefficients in the non-rotating frame (after introducing
multiblade coordinates), much more of the influence of forward flight is retained;
see section 16.8.4.

Consider, for example, the case of the articulated rotor with γ = 12 and νβ = 1.0
(case a of Figure 19.2). In the rotating frame the roots encounter the 1

2 /rev critical
region as μ increases. Recall from section 15.5 that in the transformation to the
non-rotating frame, the coning roots are unchanged while the low-frequency and
high-frequency flap mode roots are shifted in frequency by 1/rev from the rotating
roots, as shown in Figure 19.4. There are additional roots for rotors with more
than three blades. Figure 19.4 also shows the results of the constant coefficient
approximation in the non-rotating frame, which gives the influence of forward flight
on the flap roots remarkably well. The approximation does not work in the rotating
frame because without periodic coefficients the two flap roots must always remain
complex conjugates. The transformation to the non-rotating frame places four roots
near 1

2 /rev, two from the coning mode and two from the low-frequency flap mode.
These four roots can behave in a fashion similar to the roots of a periodic system
in a critical region: the frequency is fixed at a multiple of 1

2 /rev while the real parts
decrease for one root and increase for the other, yet remain complex conjugates as
required of a constant coefficient system. For the hingeless rotor example (γ = 6 and
νβ = 1.15, which places the rotating frequency near 1/rev as shown in Figure 19.2),
the transformation to the non-rotating frame shifts the roots of the low-frequency
flap mode to the real axis, where the constant coefficient approximation can model
the correct behavior of the roots.
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Figure 19.4. Comparison of the flapping roots of a three-bladed rotor from the periodic
coefficient solution and the constant coefficient approximation.
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In general, the characteristic behavior of the roots of a periodic system can be
exhibited by the roots of a time-invariant system only when there are two roots on
the real axis or four complex roots (two at positive frequency and two at negative fre-
quency). The transformation to the non-rotating frame produces such loci because
it shifts the frequency of the rotating roots by ±n/rev for the βnc and βns mode). The
high-frequency modes in the non-rotating frame are always isolated pairs (one at
positive frequency and one at negative frequency), which must remain complex con-
jugates in the constant coefficient approximation. The constant coefficient approxi-
mation is expected therefore to be least satisfactory when the rotor high-frequency
dynamics must be modeled. Increasing the number of blades improves the approx-
imation by increasing the number of coupled degrees of freedom of the model in
the non-rotating frame. In summary, the constant coefficient approximation to the
rotor dynamics in forward flight produces differential equations that can be more
easily and more thoroughly analyzed, but no longer completely describe the rotor
behavior. The results from the time-invariant model must always be approximate.
Generally the constant coefficient approximation in the non-rotating frame gives
results that are close to the correct solution, particularly for the behavior involving
the lower frequency modes, as long as the advance ratio is not too large. However,
the validity of the constant coefficient approximation should always be checked by
comparing the exact and approximate solutions for the particular problem being
considered.

The flap equation in forward flight can be transformed to Mathieu’s equation.
Without pitch-flap coupling, the homogeneous equation of motion is

β̈ +
(γ

8
+ γ

6
μ sinψ

)
β̇ +

(
ν2
β + γ

6
μ cosψ + γ

8
μ2 sin 2ψ

)
β = 0 (19.18)

for low μ (no reverse flow). The transformation β = xe(−
γ

16ψ+ γ

12μ cosψ) eliminates the
velocity term:

ẍ +
(
ν2
β + γ

6
μ cosψ + γ

8
μ2 sin 2ψ −

( γ
16

+ γ

12
μ sinψ

)2
− γ

12
μ cosψ

)
x

= ẍ +
(
ν2
β − 1

4

(γ
8

)2
− 2

9

(γ
8

)2
μ2 + 2

3
γ

8
μ cosψ − 2

3

(γ
8

)2
μ sinψ

+γ
8
μ2 sin 2ψ + 2

9

(γ
8

)2
μ2 cos 2ψ

)
x = 0 (19.19)

which to order μ is

ẍ +
(
ν2
β − 1

4

(γ
8

)2
+ 2

3
γ

8
μ
(

cosψ − γ

8
sinψ

))
x = 0 (19.20)

Substituting ψ + δ = 2z with tan δ = γ

8 gives

d2x
dz2

+
(

4ν2
β −

(γ
8

)2
+ 8

3
μ
γ

8

√
1 +

(γ
8

)2
cos 2z

)
x = d2x

dz2
+ (a + 2q cos 2z) x = 0

(19.21)
which is a form of Mathieu’s equation. Here a = 4ω2

h, where ωh is the frequency
of the hover root, and q is proportional to the advance ratio μ. This equation has
critical regions with boundaries a(q). At q = 0 (hover), the critical values are a = n2

for positive integers n; hence the frequency is at n
2 /rev. To lowest order in q, the

critical regions are described by a = n2 + bq2 ± cqn.
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The prototypical problem of a periodic system in rotor dynamics is the solu-
tion of the equation of blade flap motion in edgewise flight. The stability of blade
flap motion has been examined by numerous investigators, beginning with Glauert
and Shone (1933). The methods used included infinite determinant, perturbation
expansions and successive approximations, numerical integration, and analog com-
putation. Horvay (1947) was the first to plot the frequency and stability regions
on the parameter plane of Lock number (as n = γ /8) and advance ratio. Peters
and Hohenemser (1971) brought the digital computer to the task of implementing
Floquet theory as an analysis tool. The technique proved to be fast, although this
investigation did not capture the order μ2 behavior of the 1/rev region boundary at
small advance ratio.

19.1.3 Hover Transfer Function

The response of the blade flapping motion to pitch and gust inputs can be defined by a
transfer function. Only the hovering case is considered, since the periodic coefficients
in forward flight introduce inter-harmonic coupling. In forward flight a sinusoidal
input at a single frequency ω does not produce an output at that frequency alone, but
rather at all frequencies ω ± n/rev. For a small advance ratio at least, the dominant
response is still at the input frequency ω.

For hover, the flapping equation of motion in the rotating frame is

Îββ̈ − γMβ̇ β̇ + (Îβν2
β + KPγMθ

)
β = γMθ θ − 1

2
γMλwG (19.22)

Recall from section 16.8.8 that in hover the inflow perturbation reduces the effect of
the vertical velocity by a factor of one-half, λ− wG = − 1

2wG, which has been used
in equation 19.22. The transfer function of the flap motion in hover is then

β = γMθ θ − 1
2γMλwG

Îβ
(

s2 − (γMβ̇ /Îβ )s + ν2
βe

) (19.23)

Here s is the Laplace variable, and ν2
βe = ν2

β + KPγMθ /Îβ . The poles (the roots of
the denominator polynomial) are the hover eigenvalues, and there are no zeros.
Substituting for the coefficients gives

β =
γ

8
θ − γ

12
wG

s2 − γ

8
s + ν2

βe

(19.24)

The frequency response is obtained from s = iω. Figure 19.5 shows the magnitude
and phase of the frequency response of the blade flap motion to pitch control inputs
for an articulated rotor, with νβ = 1, KP = 0, and γ = 8. The response is that of a
highly damped second-order system with natural frequency νβe. The static response
(ω = 0) is β/θ = γ /8ν2

βe, and at high frequency the magnitude decreases and the
phase shifts to −180° as the inertia dominates the system.

19.2 Non-Rotating Frame

The equations for the flap motion in the non-rotating frame are obtained by using
multiblade coordinates to transform the rotating equation. Here only the case of
hover and three or more blades is considered, so the equations have constant
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Figure 19.5. Frequency response of the flap motion to pitch control input (νβ = 1, KP = 0,
γ = 8).

coefficients. Excitation by blade pitch control, shaft motion, and aerodynamic gusts
is included. The equations of motion are

Îββ̈0 − γMβ̇ β̇0 + (Îβν2
β + KPγMθ

)
β0

= γMθ θ0 + γMλ

(
λ+ żh − wG

)− Ŝβ z̈h (19.25)

Îβ

(
β̈1c

β̈1s

)
+
[−γMβ̇ 2Îβ

−2Îβ −γMβ̇

](
β̇1c

β̇1s

)

+
[

Îβ (ν2
β − 1)+ KPγMθ −γMβ̇

γMβ̇ Îβ (ν2
β − 1)+ KPγMθ

](
β1c

β1s

)

= γMθ

(
θ1c

θ1s

)
+ γMμ

(
ẏh + vG

−ẋh + uG

)

+ Îβα

(
α̈y

−α̈x

)
+
[−γMβ̇ 2Îβα

−2Îβα −γMβ̇

](
α̇y

−α̇x

)
(19.26)

Îβ

(
β̈nc

β̈ns

)
+
[−γMβ̇ 2nÎβ

−2nÎβ −γMβ̇

](
β̇nc

β̇ns

)

+
[

Îβ (ν2
β − n2)+ KPγMθ −nγMβ̇

nγMβ̇ Îβ (ν2
β − n2)+ KPγMθ

](
βnc

βns

)

= γMθ

(
θnc

θns

)
(19.27)

Îββ̈N/2 − γMβ̇ β̇N/2 + (Îβν2
β + KPγMθ

)
βN/2

= γMθ θN/2 (19.28)
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as derived in section 16.7 (equations 16.244, 16.245, and 16.246) and section 16.8.7
(equations 16.449, 16.450, and 16.451). The flapping degrees of freedom in the non-
rotating frame are the coning mode β0, the tip-path-plane tilt modes β1c and β1s, and
the reactionless modes (βnc, βns, and βN/2) as required to give a total of N degrees
of freedom for an N-bladed rotor. The only coupling of the flap degrees of freedom
is between β1c and β1s and between βnc and βns. Moreover, only the coning and tip-
path-plane tilt degrees of freedom respond to the shaft motion and gusts, so these
three degrees of freedom are of the most interest. For the shaft-fixed case, these
equations also apply to the two-bladed rotor in hover, where the degrees of freedom
are the coning mode β0 and the teetering mode β1.

19.2.1 Hover Roots and Modes

The homogeneous equations give the following characteristic equations for the flap
motion in the non-rotating frame:(

Îβs2 − γMβ̇s + Îβν2
β + KPγMθ

)
β0 = 0 (19.29)[

Îβs2 − γMβ̇s + Îβ (ν2
β − n2)+ KPγMθ n

(
2Îβs − γMβ̇

)
−n

(
2Îβs − γMβ̇

)
Îβs2 − γMβ̇s + Îβ (ν2

β − n2)+ KPγMθ

](
βnc

βns

)
= 0 (19.30)

(
Îβs2 − γMβ̇s + Îβν2

β + KPγMθ

)
βN/2 = 0 (19.31)

Since the characteristic equations for β0 and βN/2 are the same as for the single
blade in the rotating frame, the non-rotating eigenvalues sNR for the coning and
reactionless modes are equal to the rotating eigenvalues:

sNR = sR = γMβ̇

2Îβ
± i

√√√√
ν2
β + KP

γMθ

Îβ
−
(
γMβ̇

2Îβ

)2

(19.32)

For the βnc and βns degrees of freedom, the determinant of the matrix gives(
Îβs2 − γMβ̇s + Îβ (ν2

β − n2)+ KPγMθ

)2 + n2 (2Îβs − γMβ̇

)2 = 0 (19.33)

which has the solution sNR = sR ± in. Thus the transformation to the non-rotating
frame simply shifts the frequency of the βnc and βns roots by ±n/rev, while the real
part remains unchanged. The corresponding eigenvectors (using the characteristic
equation to replace the numerator) are

βnc

βns
= Îβs2 − γMβ̇s + Îβ (ν2

β − n2)+ KPγMθ

n
(
2Îβs − γMβ̇

) = ±i (19.34)

The high-frequency mode sNR = sR + in has the eigenvector βnc/βns = i, and the
low-frequency mode sNR = sR − in has the eigenvector βnc/βns = −i. So for both
modes, βnc and βns have equal magnitude, but are 90° apart in phase. For the high-
frequency mode βnc leads βns by one-quarter of an oscillation cycle, whereas for the
low-frequency mode βns leads βnc. See section 15.5 for a further discussion of the
eigenvalues and eigenvectors in the non-rotating frame.

For the normal modes of the flap motion in hover, the only coupling is between
the βnc and βns degrees of freedom. The coning β0 and reactionless βN/2 modes are
highly damped oscillations, with the same eigenvalues as the rotating flap response.
The βnc and βns degrees of freedom have two modes, each a damped oscillation
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with a frequency equal to the rotating flap frequency plus or minus n/rev. The high-
frequency mode with eigenvalue sNR = sR + in (assuming that the frequency of sR is
positive) is a whirling or wobbling motion of βnc and βns at a frequency ImsR + n in
the same direction as the rotor rotation. The low-frequency mode with eigenvalue
sNR = sR − in is a motion of βnc and βns at a frequency |ImsR − n|, in the same
direction as the rotor rotation if the rotating frequency is below n/rev, and in the
opposite direction if ImsR > n. The high-frequency flap motion can thus be called a
progressive mode, and the low frequency motion a regressive mode.

Since the β1c and β1s degrees of freedom represent tilt of the tip-path plane, their
coupled motion is a wobble of the tip-path plane. The high-frequency flap mode is
a wobble in the same direction as the rotor rotation, but at frequency ImsR + 1,
approximately 2/rev. The low-frequency mode is a wobble at the small frequency
|ImsR − 1|, in a direction depending on whether the rotating flap frequency is above
or below 1/rev. For an articulated rotor the rotating frequency is below l/rev, so the
low-frequency mode is a wobble in the same direction as the rotor. For a hingeless
rotor ImsR is likely above l/rev, in which case the low-frequency motion is truly a
regressive mode, the tip-path plane wobbling opposite the direction of rotor rotation.

19.2.2 Hover Transfer Functions

The equation of motion for the coning modeβ0 of a hovering rotor gives the following
transfer function:

β0 = γMθ θ0 − 1
2γMλwG + (−Ŝβs + 1

2γMλ)żh

Îβ
(

s2 − (γMβ̇ /Îβ )s + ν2
βe

) (19.35)

using for the hover inflow perturbation λ+ żh − wG = 1
2 (żh − wG) (section 16.8.8).

The response to collective pitch θ0 and to vertical gusts is the same as the flap response
of the blade in the rotating frame. The coning response to vertical shaft motion
involves the rotor inertia as well as aerodynamic forces and introduces a zero at s =
1
2γMλ/Ŝβ on the negative real axis. For low-frequency shaft motion, the aerodynamic
forces dominate, and the response is like that to the vertical gusts. For high-frequency
shaft motion the inertia dominates, so the coning response approaches β0/zh =
−Ŝβ/Îβ .

The response of the tip-path-plane tilt to cyclic pitch and shaft motion is defined
by the transfer function[

Îβs2 − γMβ̇s + Îβ (ν2
β − 1)+ KPγMθ 2Îβs − γMβ̇

−(2Îβs − γMβ̇ ) Îβs2 − γMβ̇s + Îβ (ν2
β − 1)+ KPγMθ

](
β1c

β1s

)

= γMθ

(
θ1c

θ1s

)
+ γMμ

(
ẏh + vG

−ẋh + uG

)
+
[ Îβαs − γMβ̇ 2Îβα

−2Îβα Îβαs − γMβ̇

](
α̇y

−α̇x

)
(19.36)

Inverting the matrix gives for the response to cyclic

(
β1c

β1s

)
= 1
�

⎡⎢⎢⎢⎣
Îβ

(
s2 − γMβ̇

Îβ
s + ν2

βe − 1

)
−(2Îβs − γMβ̇ )

2Îβs − γMβ̇ Îβ

(
s2 − γMβ̇

Îβ
s + ν2

βe − 1

)
⎤⎥⎥⎥⎦ γMθ

(
θ1c

θ1s

)

(19.37)
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where

� = Î 2
β

(
s2 − γMβ̇

Îβ
s + ν2

βe − 1

)2

+ Î 2
β

(
2s − γMβ̇

Îβ

)2

is the characteristic equation. Now we introduce the parameter

N� = Îβ (ν2
βe − 1)

−γMβ̇

= Îβ (ν2
β − 1)

−γMβ̇

+ KP
Mθ

Mβ̇

∼=
ν2
β − 1

γ /8
+ KP (19.38)

which defines the phase shift of the flap response due to the structural stiffening of
the blade (νβ > 1) and the pitch-flap coupling; see sections 6.14, 6.15, and 6.18. Then
the transfer function can be written:

(
β1c

β1s

)
= 1
�

⎡⎢⎢⎣
2Îβ

−γMβ̇

s + 1
Îβ

−γMβ̇

s2 + s + N�

−
(

Îβ
−γMβ̇

s2 + s + N�

)
2Îβ

−γMβ̇

s + 1

⎤⎥⎥⎦ Mθ

−Mβ̇

(−θ1s

θ1c

)
(19.39)

with

� =
(

2Îβ
−γMβ̇

s + 1

)2

+
(

Îβ
−γMβ̇

s2 + s + N�

)2

(19.40)

The static response (s = 0) is(
β1c

β1s

)
= 1

1 + N2
�

[
1 N�

−N� 1

]
Mθ

−Mβ̇

(−θ1s

θ1c

)
(19.41)

For an articulated rotor (νβ = 1, KP = 0, and −Mθ /Mβ̇ = 1) this reduces to(
β1c

β1s

)
=
(−θ1s

θ1c

)
(19.42)

which states that the tip-path plane remains exactly parallel to the control plane. In
general, −Mθ /Mβ̇ is the static gain of the flap response to cyclic, and N� defines the
phase shift between the tip-path-plane and control-plane tilt (see also sections 6.14
and 6.18).

After substituting for the coefficients, the transfer functions of the direct and
cross response of the tip-path-plane tilt to cyclic pitch are

β1c

−θ1s
= β1s

θ1c
=

16
γ

s + 1(
16
γ

s + 1
)2

+
(

8
γ

s2 + s + N�
)2 (19.43)

β1c

θ1c
= β1s

θ1s
=

8
γ

s2 + s + N�(
16
γ

s + 1
)2

+
(

8
γ

s2 + s + N�
)2 (19.44)

The poles (roots of the denominator polynomial) are the eigenvalues of the β1c and
β1s motion in the non-rotating frame: sNR = sR ± i. The direct transfer function has
a single zero at

s = γMβ̇

2Îβ
∼= − γ

16
(19.45)
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This zero is on the negative real axis, with the same real part as the poles. The cross
transfer function has two zeros, which are the solution of the quadratic

Îβ
−γMβ̇

s2 + s + N� = 0 (19.46)

namely

s = γMβ̇

2Îβ
±

√√√√1 − ν2
βe +

(
γMβ̇

2Îβ

)2

= Re sR ±
√

1 − (Im sR)2 (19.47)

If the rotating flap root frequency is below 1/rev, there are two real zeros, at equal
distances on either side of the real part of the poles. If Im sR > 1, there are two
complex conjugate zeros, with the same real part as the poles. For an articulated
rotor (νβ = 1, KP = 0) the two real zeros are s = 0 and s = γMβ̇ /Îβ , which are at
the origin and twice the real part of the poles. The zero at the origin is responsible
for the static response of β1c/θ1c and of β1s/θ1s being zero in this case. With negative
pitch-flap coupling such that νβe < 1, the zeros are shifted farther away from the real
part of the poles, the zero at the origin moving into the right half-plane. For νβe > 1,
the two zeros move instead toward Re sR. At

ν2
βe = 1 +

(
γMβ̇

2Îβ

)2

(19.48)

where the rotating frequency Im sR = 1/rev, the two zeros coincide at s = Re sR.
Moreover, the two poles of the low-frequency flap mode are also at s = Re sR on
the real axis for this case. For still larger νβe, such that Im sR > 1 (as is likely with a
hingeless rotor), there are two complex conjugate zeros. The zeros have the same
real part as the poles and a larger frequency than the low-frequency flap mode poles.

Substituting s = iω gives the frequency response. Figure 19.6 presents the direct
(−β1c/θ1s = β1s/θ1c) and cross (β1c/θ1c = β1s/θ1s) response of the tip-path plane to
cyclic control inputs for typical articulated and hingeless rotors. For the hingeless
rotor, the swashplate phase tan−1 N� has been included. The frequency response
shows the resonance with the high-frequency flap mode around 2/rev. The low-
frequency mode has a very large damping ratio, so is more evident in the phase than
in the magnitude of the response.

The response of the tip-path-plane tilt to the in-plane shaft motion and gusts
is similar to the response to cyclic pitch, but with a static gain of −Mμ/Mβ̇

∼=
8(2CT/σa + λHP/4) instead of −Mθ /Mβ̇

∼= 1. The response to the shaft pitch and
roll rate is more complicated, involving inertial and Coriolis forces as well as the
aerodynamic forces. After substituting for the coefficients, the transfer functions of
the direct and cross response of the tip-path-plane tilt to shaft pitch and roll rate are

β1c

α̇y
= β1s

−α̇x
=

16
γ

(
16
γ

s + 1
)

+
(

8
γ

s + 1
) (

8
γ

s2 + s + N�
)

(
16
γ

s + 1
)2 +

(
8
γ

s2 + s + N�
)2 (19.49)

β1c

−α̇x
= β1s

−α̇y
=

− 8
γ

s + 16
γ

N� − 1(
16
γ

s + 1
)2

+
(

8
γ

s2 + s + N�
)2 (19.50)
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Figure 19.6. Frequency response of the tip-path-plane tilt to cyclic pitch in hover.

Figure 19.7 presents the direct and cross response to shaft motion for typical articu-
lated and hingeless rotors. The cross response has a zero at s = 2N� − γ

8 .
The reactionless modes βnc and βns respond only to the pitch control inputs

θnc and θns, which are not present for conventional control systems. In hover the
reactionless rotor modes are therefore not coupled with the non-rotating system,
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Figure 19.7. Frequency response of the tip-path-plane tilt to shaft rate in hover.

either through shaft motion, gusts, or control inputs. These degrees of freedom (βnc,
βns, and βN/2) then represent purely internal rotor motion. In forward flight all the
rotor degrees of freedom are coupled, but the coning and tip-path-plane tilt response
still dominate the flap dynamics.
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19.3 Low-Frequency Response

The transient flap motion is a damped oscillation that decays proportional to eRe sRψ ,
where

Re sR = γMβ̇

2Îβ
∼= − γ

16
(19.51)

(dimensionless, based on the rotor rotational speed �). The time constant of the
response is

τ = 1
−Re sR

= 2Îβ
−γMβ̇

∼= 16
γ

(19.52)

radians. The time to half amplitude, τ1/2 = 0.693τ , is then typically 90° of the rotor
azimuth. Because of the high flap damping, the flapping transients die out in less
than one revolution of the rotor. In dimensional terms, the time to half amplitude
is of the order of 0.05 sec. Hence the rotor flap motion responds on a much shorter
time scale than the inputs from the pilot, from shaft motion due to the helicopter
rigid-body degrees of freedom, or from aerodynamic gusts. For problems such as
helicopter flight dynamics, it is sufficient therefore to consider only the low-frequency
or even the steady-state response of the rotor, neglecting the transient flapping
dynamics.

Consider the response of the tip-path-plane tilt for a hovering rotor with three
or more blades. To lowest order in the Laplace variable s, equation 19.26 for the
response of β1c and β1s is[

Îβ (ν2
β − 1)+ KPγMθ −γMβ̇

γMβ̇ Îβ (ν2
β − 1)+ KPγMθ

](
β1c

β1s

)

= γMθ

(
θ1c

θ1s

)
+ γMμ

(
ẏh + vG

−ẋh + uG

)
+
[−γMβ̇ 2Îβα

−2Îβα −γMβ̇

](
α̇y

−α̇x

)
(19.53)

Assuming uniform trim induced velocity, ηβ = r, and neglecting tip losses, the coef-
ficients are

Mθ = −Mβ̇ = 1
8

(19.54)

Mμ = 2CT

σa
+ λHP

4
(19.55)

Îβ = Îβα = 1

(section 16.8.8). In terms of N� (equation 19.38), the low-frequency tip-path-plane
tilt response is(

β1c

β1s

)
= 1

1 + N2
�

[
1 N�

−N� 1

]{
Mθ

−Mβ̇

(−θ1s

θ1c

)
+ Mμ

−Mβ̇

(
ẋh − uG

ẏh + vG

)

+ 2Îβα
−γMβ̇

(
α̇y

−α̇x

)
+
(
α̇x

α̇y

)}
(19.56)
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The parameter N� determines the lateral-longitudinal coupling of the rotor flap
response. In this result most of the Lock number factors have cancelled, indicating
that the flap response is primarily a balance of aerodynamic forces. The exception
is the third term, which is a balance of Coriolis inertial forces due to the shaft
angular velocity and the aerodynamic forces due to the flap motion. Blade pitch
control produces an aerodynamic flap moment through Mθ . A 1/rev pitch input
from longitudinal cyclic θ1s produces a lateral aerodynamic moment on the disk.
The rotor responds with a 90° lag (less if N� > 0); hence with longitudinal tilt of
the tip-path plane. The flapping velocity in the rotating frame due to longitudinal
tip-path-plane tilt β1c produces a lateral aerodynamic moment on the disk through
Mβ̇ , which opposes the moment due to the cyclic pitch input. The tip-path plane
tilts until equilibrium of moments is achieved, which gives the steady-state response.
The effectiveness of cyclic pitch in producing flapping is thus governed by −Mθ /Mβ̇ ;
assuming small angle and ηβ = r, this quantity has the value 1, implying that the
tip-path plane remains parallel to the control plane. Longitudinal shaft velocity
ẋh and gust velocity uG produce a lateral moment on the rotor disk through Mμ.
This moment is due to the lateral asymmetry in the air velocity seen by the blades,
which is similar to the effect of advance ratio in forward flight. Thus the steady-state
response to longitudinal velocity is also longitudinal tip-path-plane tilt, but with
effectiveness

Mμ

−Mβ̇

∼= 8
(

2CT

σa
+ λHP

4

)
(19.57)

which typically has a value 0.35 in hover. A shaft roll rate α̇x also produces a lateral
aerodynamic moment on the disk, through Mβ̇ . The rotor responds with longitudinal
tip-path-plane tilt until the flapping velocity in the rotating frame just cancels the
velocity due to shaft roll. In this case the effectiveness is given by Mβ̇/Mβ̇ = 1, again
assuming ηβ = r, so that the mode shapes of flapping and shaft tilt are identical.
Similarly, lateral cyclic pitch θ1c, lateral shaft velocity ẏh and gust velocity vG, and
shaft pitch rate α̇y produce longitudinal aerodynamic moments on the rotor disk,
and hence lateral tip-path-plane tilt.

Angular velocity of the shaft also produces tip-path-plane tilt proportional to

2Îβα
−γMβ̇

∼= 16
γ

(19.58)

This is the lag of the tip-path plane required to precess the rotor to follow the
shaft motion. For the rotor to follow the shaft with a pitch rate α̇y, there must be an
angular roll acceleration 2�Îβαα̇y on the disk due to the Coriolis forces on the rotating
blades. There must then be a lateral moment on the disk to provide this acceleration
to precess the rotor. This moment is supplied by the aerodynamic forces on the blade.
The rotor tip-path plane tilts back, lagging the shaft tilt, until the lateral moment
due to the flap velocity in the rotating frame (γMβ̇β1c) is sufficient to provide the
required moment. Similarly, the rotor disk follows shaft roll angular velocity α̇x, but
with a lateral tip-path-plane tilt lag to provide the aerodynamic moment to precess
the disk.

The parameter N� is a measure of the structural and aerodynamic springs on the
flap motion. When N� = 0, the rotor disk responds to applied moments with exactly
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a 90° phase shift (which is 90° in azimuth because the flap natural frequency is at
1/rev in this case). When N� > 0 because νβ > 1 or because of pitch-flap coupling,
the flap response is quickened, and hence the lag in the response is less than 90°.
Consider the tip-path-plane tilt due to cyclic pitch alone,

(
β1c

β1s

)
= 1

1 + N2
�

[
1 N�

−N� 1

]
Mθ

−Mβ̇

(−θ1s

θ1c

)
(19.59)

The off-diagonal terms represent the lateral-longitudinal coupling, which is zero only
if N� = 0. The magnitude of this response is

|β|
|θ | = Mθ

−Mβ̇

1√
1 + N2

�

(19.60)

and the azimuthal phase shift is�ψ = tan−1 N�. When N� > 0, the magnitude of the
flap response is reduced slightly, and the phase lag has been reduced from 90° to
90° −�ψ . When N� < 0 (because of negative pitch-flap coupling), the magnitude of
the flap response is again reduced, but the phase lag is increased. This behavior can
also be viewed as due to removing the natural frequency of the flap motion from
resonance with the 1/rev exciting forces, as discussed in section 6.14.

There is a similar phase shift and magnitude reduction in the flap response
to shaft motion and gusts. When N� = 0, the response to lateral or longitudinal
shaft motion is purely lateral or purely longitudinal tip-path-plane tilt, respectively.
The phase shift when N� �= 0 couples the lateral and longitudinal motions of the
helicopter. The coupling of the response to cyclic control can be cancelled by a
corresponding phase shift in the swashplate rigging, but the lateral-longitudinal
coupling of the rotor response to shaft motion remains and can be troublesome if
large. As an example, consider an articulated main rotor with offset hinges and no
pitch-flap coupling. Using νβ = 1.03, γ = 10, and KP = 0 gives N� = 0.05 and thus a
negligible change in response magnitude and phase shift of only�ψ = tan−1 N� = 3°.
For a hingeless rotor with νβ = 1.15, γ = 6, and KP = 0 we obtain N� = 0.43. Then
the response magnitude is reduced by 8%, and the phase shift is an appreciable
�ψ = tan−1 N� = 23°. For a teetering tail rotor with νβ = 1 and KP = 1, the phase
shift of�ψ = 45° due to N� = 1 is large but not important, and the pitch-flap coupling
reduces the flap response magnitude by 29%.

The rotor dynamics in forward flight are described by periodic-coefficient dif-
ferential equations, but the constant coefficient approximation in the non-rotating
frame does provide a good representation of the flap dynamics as long as the advance
ratio is not too high. The constant coefficient approximation is particularly good for
the low-frequency modes of the rotor. Consider a rotor with three or more blades
in forward flight, with the flap motion described by the coning and tip-path-plane
tilt modes. The inertial terms in the equations of motion are the same as in hover,
and equations 16.384 and 16.470 give the constant coefficient approximation for
the aerodynamic forces. Body axes are used for the aerodynamics here, since this
result is intended for the helicopter flight dynamics. When only the lowest order
terms in the Laplace variable s are retained, the low-frequency response of the
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rotor flap motion in forward flight is⎡⎢⎢⎢⎣
Îβν2

β + KPγM0
θ − 1

2γ
(

M1c
β − M1s

β̇

)
KPγ

1
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− 1
2

(
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β

))
−Îβ (ν2

β − 1)− KPγ
(
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(
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⎞⎠ (19.61)

Forward speed of the helicopter has the effect of coupling the vertical and the
lateral-longitudinal motions by aerodynamic forces of order μ, resulting in more
complex behavior than for hover. Moreover, the task of calculating the dynamic
behavior is more difficult because of the higher order of the system that must be
considered and the additional aerodynamic coefficients that must be obtained. Of
particular significance is the lateral aerodynamic moment due to vertical velocity of
the helicopter:

−γM1s
λ (żh − wG) = γ μ

4
(żh − wG) (19.62)

from Mλ = −( 1
6 + μ

4 sinψ). This lateral moment on the disk primarily produces a
longitudinal tip-path-plane tilt of

�β1c = M1s
λ

Mβ̇

(żh − wG) = 2μ(żh − wG) (19.63)

The downward velocity through the disk of (żh − wG) decreases the angle-of-attack
of the blades. In forward flight the resulting lift decrease is largest on the advancing
side and smallest on the retreating side, so there is a lateral moment of the rotor
disk, in response to which the rotor flaps forward.

19.4 Hub Reactions

Next let us examine the forces and moments acting on the rotor hub, including the
effects of the flap response. For use in the flight dynamics analysis (Chapter 21), the
low-frequency response is of particular interest. Consider first the hovering rotor,
for which the analysis is simplified not only by the constant coefficients but also by
a complete decoupling of the vertical and longitudinal-lateral dynamics because of
the axisymmetry.
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From equations 16.255 and 16.463, the perturbation thrust due to the rotor is

γ
CT

σa
= γTθ θ0 + γTλ

(
λ+ żh − wG

)− M̂bz̈h − Ŝβ β̈0 + γTβ̇ β̇0 − KPγTθβ0 (19.64)

and the coning equation is

Îββ̈0 − γMβ̇ β̇0 + (Îβν2
β + KPγMθ

)
β0 = γMθ θ0 + γMλ

(
λ+ żh − wG

)− Ŝβ z̈h

(19.65)
Assuming ηβ = r and neglecting tip losses, the hover aerodynamic coefficients are
Mθ = −Mβ̇ = 1

8 , −Mλ = Tθ = −Tβ̇ = 1
6 , and −Tλ = 1

4 . The effect of the axial velocity
on the inflow gives again λ+ żh − wG = 1

2 (żh − wG). To the lowest order in s, the
low-frequency thrust and coning equations are

CT

σa
= Tθ θ0 + 1

2
Tλ
(
żh − wG

)− KPTθβ0 (19.66)

β0 = 1

Îβν2
βe

[
γMθ θ0 + 1

2
γMλ

(
żh − wG

)]
(19.67)

It is assumed that the rotor mass has been included in the helicopter gross weight,
so the M̂bz̈h term in CT can be dropped. The coning motion influences the rotor
low-frequency thrust only through the change in collective with pitch-cone coupling.
Eliminating β0 gives

CT

σa
=
(

Tθ − KPTθ
γMθ

Îβν2
βe

)
θ0 + 1

2

(
Tλ − KPTθ

γMλ

Îβν2
βe

) (
żh − wG

)
∼=
[

Tθ θ0 + 1
2

Tλ
(
żh − wG

)] ν2
β

ν2
βe

(19.68)

where

ν2
β

ν2
βe

= ν2
β

ν2
β + KPγMθ/Îβ

(19.69)

The thrust is given principally by the direct response to collective and vertical velocity
perturbations. Pitch-flap coupling reduces the thrust response by the factor ν2

β/ν
2
βe

due to the collective pitch reduction with coning. The inflow also depends on the
aerodynamic thrust. From section 11.3, the dynamic inflow model for the uniform
induced velocity perturbation in hover is

τ λ̇0 + λ0 = 1
4λi
δCT − 1

2
δμz = 1

4λi
(CT )aero − 1

2
(żh − wG) (19.70)

Without pitch-cone coupling (KP = 0), the low-frequency thrust response is then

CT

σa
= Tθ θ0 + Tλ

(
żh − wG

)+ Tλ

(
1

4λi
CT − 1

2
(żh − wG)

)
= C′Tθ θ0 + 1

2
C′Tλ

(
żh − wG

)
(19.71)

with the hover lift deficiency function

C′ = 1
1 − σaTλ/4λi

= 1
1 + σa/16λi

(19.72)
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accounting for the effects of the rotor wake in the unsteady aerodynamics.
The in-plane forces on the hub, CH and CY , and the hub moments CMx and CMy

are closely related to the rotor tip-path-plane tilt. From equations 16.258, 16.259,
16.434, and 16.465, the in-plane hub forces of the hovering rotor are⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = −2M̂b

γ

(
ẍh

ÿh
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)
+
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](
β̇1c + β1s − α̇y
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Rθ Hθ

−Hθ Rθ

](
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)

+
[−(Hμ + Rμ) Rr

−Rr −(Hμ + Rμ)

](
ẋh − uG

ẏh + vG

)
(19.73)

Assuming that the rotor mass M̂b is included in the helicopter gross weight, and
writing Hβ̇ = Ĥβ̇ + CT/σa, the low-frequency response of the hub forces is⎛⎜⎝
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σa
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σa
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)
(19.74)

The first term is the in-plane force due to tilt of the thrust vector with the tip-path
plane. The rotor hub moments can be obtained directly from the tip-path-plane tilt:⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠ = Îβ (ν2
β − 1)

γ

(
β1c

β1s

)
(19.75)

The total moment about the helicopter center-of-gravity a distance h below the rotor
hub is then ⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠
CG

=
[

Îβ (ν2
β − 1)

γ
+ h

2CT

σa

](
β1c

β1s

)
(19.76)

(equation 16.437), plus some in-plane forces due to tilt of the thrust vector relative
to the tip-path plane. For an articulated rotor without hinge offset there are no hub
moments, so all moments about the center-of-gravity come from the thrust vector
tilt. With no hub moment capability, a helicopter must avoid flight at low load levels,
where the control and damping from the rotor are lost because they are proportional
to the rotor thrust. The moment-producing capability of an articulated rotor can be
roughly doubled by using flap hinge offset, and the hub moment term does not
depend on the thrust magnitude. With a hingeless rotor the hub moment term
dominates, being typically three or four times the thrust tilt term. Thus a hingeless
rotor has much greater control power and damping than the articulated rotor, but
also higher gust response. See also the discussion in sections 6.14 and 6.15.
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The rotor forces and moments acting on the helicopter are thus basically propor-
tional to the tip-path-plane tilt. Longitudinal flapping produces a drag force CH and
pitch moment CMy on the helicopter; lateral flapping produces a side force CY and
roll moment CMx. Cyclic pitch tilts the tip-path plane and consequently produces
pitch and roll moments about the helicopter center-of-gravity. Thus the pilot can
use cyclic pitch inputs to control the helicopter. Hub in-plane velocity (ẋh or ẏh)
produces flapping and thus an in-plane component of the thrust vector that opposes
the motion. Hence there is a damping force on the helicopter speed perturbations.
The corresponding moments due to ẋh and ẏh couple the linear and angular motion
of the helicopter and are a major factor in the flight dynamics. Longitudinal and lat-
eral aerodynamic gusts produce forces and moments on the helicopter by the same
means. The rotor responds to shaft angular velocity with a tip-path-plane lag in order
to precess the rotor. The result of this flapping response is a moment opposing the
shaft motion; hence the rotor provides angular damping of the helicopter pitch and
roll motion. Substituting for the low-frequency flap response, the hub forces relative
to the tip-path plane are⎛⎜⎝
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(19.77)

for an articulated rotor (νβ = 1 and KP = 0). From the aerodynamic coefficients
given in section 16.8.8, −Ĥβ̇ − Hθ = 0 and Rβ̇ + Rθ = 0, and

−Ĥβ̇8Mμ − (Hμ + Rμ) = λHP

(
CT

σa
− λHP

4

)
− 3cd

4a
(19.78)

Rβ̇8Mμ + Rr = βtrim

(
−1

9
CT

σa
+ λHP

12

)
(19.79)

are small. Only for the hub forces due to shaft angular velocity is there an impor-
tant contribution relative to the tip-path plane. For an articulated rotor, the direct
response is

�

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠ = −
(

2CT

σa
+ Ĥβ̇

)
16
γ

(
α̇y

−α̇x

)
(19.80)

Thus the effectiveness of the shaft angular velocity is not given by the thrust vector
tilt alone, but instead by

Hβ̇ − Rβ = 2CT

σa
+ Ĥβ̇ = 2CT

σa
− λHP

4
(19.81)

The Ĥβ̇ contribution reduces the pitch and roll damping from the rotor.
The constant coefficient approximation for the hub forces in forward flight is

given in section 16.8, equations 16.439 and 16.471. As in hover, the low-frequency
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response requires only the aerodynamic terms. The hub in-plane forces and moments
are still dominated by the flap response. Forward flight introduces a longitudinal tip-
path-plane tilt due to vertical velocity of the helicopter:

�β1c
∼= 2μ(żh − wG) (19.82)

(equation 19.63). A downward velocity perturbation (żh < 0) is an increase in the
aircraft angle-of-attack in forward flight. The rotor flaps back in response, thereby
producing a pitch-up moment on the helicopter, which tends to increase the angle-of-
attack still further. Thus in forward flight the rotor is a source of an angle-of-attack
instability that is important for the helicopter flight dynamics.

19.5 Wake Influence

The rotor wake can have a strong influence on the blade flap response. Dynamic
inflow (section 11.3) provides a global, low-frequency model for the wake-induced
velocity. The simplest model has three inflow states, consisting of uniform (λ0) and
linear (λc, λs) perturbations of the wake-induced downwash at the rotor disk:

λ = λ0 + λcr cosψ + λsr sinψ (19.83)

First-order differential equations relate the inflow variables to the loading variables
(thrust CT , pitch moment CMy, and roll moment CMx, aerodynamic contributions
only). The influence of the wake on the flap dynamics (equations 16.245 and 16.246)
can be expressed in terms of a lift deficiency function C′:

Îβ

(
β̈1c + 2β̇1s + (ν2

β − 1)β1c

β̈1s − 2β̇1c + (ν2
β − 1)β1s

)
= γ

(
MF1c

MF1s

)
= γ

(
MF1c

MF1s

)
QS

− 1
8

(
λc

λs

)
= C′γ

(
MF1c

MF1s

)
(19.84)

as for equation 11.152. Combining the lift deficiency function and the Lock number
gives an effective Lock number, γe = γC′, which captures the major effects of the
wake (Curtiss and Shupe (1971)).

The equations for the tip-path-plane tilt response to cyclic pitch, shaft tilt, and
inflow in hover are[

Îβs2 − γMβ̇s + Îβ (ν2
β − 1)+ KPγMθ 2Îβs − γMβ̇

−(2Îβs − γMβ̇ ) Îβs2 − γMβ̇s + Îβ (ν2
β − 1)+ KPγMθ

](
β1c

β1s

)

= γMθ

(
θ1c

θ1s

)
+ γMβ̇

(
λc

λs

)
+
[ Îβαs − γMβ̇ 2Îβα

−2Îβα Îβαs − γMβ̇

](
α̇y

−α̇x

)
(19.85)

(see equation 19.36). Substituting for the aerodynamic coefficients and introducing
N� (equation 19.38) gives[ 16

γ
s + 1 −( 8

γ
s2 + s + N�)

8
γ

s2 + s + N� 16
γ

s + 1

](
β1c

β1s

)

=
(−θ1s

θ1c

)
+
(
λs

−λc

)
+
[ 16

γ
−( 8

γ
s + 1)

8
γ

s + 1 16
γ

](
α̇y

−α̇x

)
(19.86)
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Recognizing that the aerodynamic terms in these flap equations are the aerodynamic
hub pitch and roll moments, the dynamic inflow equations for the inflow gradients
(equation 11.155) in hover are(

2
Veff

ms + 1
)(

λc

λs

)
= 2

Veff

(−CMy

CMx

)
aero

+ KR

(
α̇y − sβ1c

−α̇x − sβ1s

)

= σa
8Veff

{
−
[

s + KP 1
−1 s + KP

](
β1c

β1s

)
+
(
θ1c

θ1s

)
−
(
λc

λs

)
+
(
α̇y

−α̇x

)}
+ KR

(
α̇y − sβ1c

−α̇x − sβ1s

)
(19.87)

where Veff = λi and m = 64
45π . Tip-path-plane pitch and roll rate produce an inflow

gradient through the wake curvature change, with KR = 1.5 to 2.2 for hover. Thus(
λs

−λc

)
= (1 − C)

{[
1 −(s + KP)

s + KP 1

](
β1c

β1s

)
−
(−θ1s

θ1c

)
−
[

0 −1
1 0

](
α̇y

−α̇x

)}

+
[

0 CKRD
−CKRD 0

](
α̇y − sβ1c

−α̇x − sβ1s

)
(19.88)

with the lift deficiency function

C = 1 − σa/8λi

1 + σa/8λi + (2m/λi)s
= 1

1 + (σa/8λi)/(1 + (2m/λi)s)
(19.89)

and D = 1/(1 + (2m/λi)s). Substituting for the inflow, the equation for the flap
response becomes[ 16

γ
s + C −( 8

γ
s2 + C(1 − KRD)s + N� − (1 − C)KP)

8
γ

s2 + C(1 − KRD)s + N� − (1 − C)KP
16
γ

s + C

](
β1c

β1s

)

= C
(−θ1s

θ1c

)
+
[ 16

γ
−( 8

γ
s + C(1 − KRD))

8
γ

s + C(1 − KRD) 16
γ

](
α̇y

−α̇x

)
(19.90)

or[ 16
γe

s + 1 −( 8
γe

s2 + (1 − Ke)s + Ne)

8
γe

s2 + (1 − Ke)s + Ne
16
γe

s + 1

](
β1c

β1s

)

=
(−θ1s

θ1c

)
+
[ 16

γe
−( 8

γe
s + 1 − Ke)

8
γe

s + 1 − Ke
16
γe

](
α̇y

−α̇x

)
(19.91)

in terms of the effective Lock number γe = Cγ , stiffness Ne = (ν2
β − 1)/ γe

8 + KP, and
coupling Ke = KRD. The static response is[

1 −Ne

Ne 1

](
β1c

β1s

)
=
(−θ1s

θ1c

)
+
[ 16

γe
−(1 − KR)

1 − KR
16
γe

](
α̇y

−α̇x

)
(19.92)
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Figure 19.8. Lift deficiency functions introduced by dynamic inflow, for rotor response in
hover; CT/σ = 0.08.

The response to cyclic is determined by the balance of aerodynamic forces, so is not
changed by the wake except for the increase in phase shift through Ne. For angular
motion, the effect of the wake is to increase the damping (16/γe) and to change the
sign of the off-axis response (since KR > 1). Figure 19.8 shows the lift deficiency
function C as a function of frequency.

Figure 19.9 presents the direct and cross response of the tip-path plane to cyclic
control inputs, including the effects of the wake. For the hingeless rotor, the swash-
plate phase tan−1 Ne has been included. Figure 19.10 presents the direct and cross
response of the tip-path plane to shaft angular motion. Figures 19.6 and 19.7 show the
corresponding results without the wake influence. The inflow gradient from wake
curvature (KR = 1.5) primarily affects the sign of the static off-axis response for
rotors with small hinge offset. For this hingeless rotor example, KR has little effect
on the response compared to the large coupling produced by νβ = 1.15. The time
lags of the dynamic inflow model wash out the wake effects at high frequency. A
quasistatic dynamic inflow model affects the response at all frequencies, as simply
an effective (smaller) Lock number γe = Cγ .

The equations for thrust, coning, and uniform inflow perturbation (without
pitch-cone coupling) are for hover,

CT

σa
= 1

6
θ0 − 1

4
λ0 − 1

6
sβ0 (19.93)(

s2 + γ

8
s + ν2

β

)
β0 = γ

8
θ0 − γ

6
λ0 (19.94)(

1
2Veff

ms + 1
)
λ0 = 1

2Veff
(CT )aero (19.95)
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Figure 19.9. Frequency response of the tip-path-plane tilt to cyclic pitch in hover, including
wake influence; CT/σ = 0.08.
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where here Veff = 2λi and m = 8
3π . Substituting for λ0 gives

CT

σa
= C

(
1
6
θ0 − 1

6
sβ0

)
(19.96)(

s2 + γ

8
C0s + ν2

β

)
β0 = γ

8
C0θ0 (19.97)

with the lift deficiency function

C = 1
1 + (σa/16λi)/(1 + (m/4λi)s)

(19.98)

andC0 = (8C + 1)/9. The effective Lock number for the coning response is γe = C0γ .
Figure 19.8 shows the lift deficiency function for thrust as a function of frequency.

The rotor hub moments are obtained from the tip-path-plane tilt:⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠ = ν2
β − 1

γ

(
β1c

β1s

)
(19.99)

Using Hθ = −Ĥβ̇ and Rβ̇ = −Rθ from section 16.8.8, the low-frequency hub forces
due to cyclic pitch and shaft motion in hover (equation 19.74) are⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = − 2CT

σa

(
β1c

β1s

)
+
[−Ĥβ̇ Rβ̇

−Rβ̇ −Ĥβ̇

](
β1c

β1s

)

+
[−Hθ Rθ

−Rθ −Hθ

](−θ1s + KPβ1s

θ1c − KPβ1c

)
+
[

Hβ̇ −Rβ̇
Rβ̇ Hβ̇

]{(
α̇x

α̇y

)
+
(
λs

−λc

)}

= − CT

σa

(
β1c

β1s

)
+
[−Hβ̇ Rβ̇

−Rβ̇ −Hβ̇

]{(
β1c

β1s

)
−
(
α̇x

α̇y

)
−
(
λs

−λc

)}
+
[−Hθ Rθ

−Rθ −Hθ

](−θ1s + KPβ1s

θ1c − KPβ1c

)

= − CT

σa

(
β1c

β1s

)
− CT

σa

(−θ1s + KPβ1s

θ1c − KPβ1c

)
+
[−Hβ̇ Rβ̇

−Rβ̇ −Hβ̇

]{(
β1c

β1s

)
−
(−θ1s + KPβ1s

θ1c − KPβ1c

)
−
(
α̇x

α̇y

)
−
(
λs

−λc

)}
(19.100)

For low frequency the dynamic inflow equations are(
λs

−λc

)
= (1 − C)

{(
β1c

β1s

)
−
(−θ1s + KPβ1s

θ1c − KPβ1c

)}
− (1 − C + CKR))

(
α̇x

α̇y

)
(19.101)
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(equation 19.88). Substituting for the inflow, and using Hβ̇ = CT
σa + Ĥβ̇ , gives

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠ = − CT

σa

(
β1c

β1s

)
− CT

σa

(−θ1s + KPβ1s

θ1c − KPβ1c

)

+ C
[−Hβ̇ Rβ̇

−Rβ̇ −Hβ̇

]{(
β1c

β1s

)
−
(−θ1s + KPβ1s

θ1c − KPβ1c

)
− (1 − KR)

(
α̇x

α̇y

)}

=
{
− 2CT

σa
+
[
(1 − C)CT

σa − CĤβ̇ CRβ̇

−CRβ̇ (1 − C)CT
σa − CĤβ̇

] [
1 −KP

KP 1

]}(
β1c

β1s

)

−
[
(1 − C)CT

σa − CĤβ̇ CRβ̇

−CRβ̇ (1 − C)CT
σa − CĤβ̇

](−θ1s

θ1c

)

− C
[−Hβ̇ Rβ̇

−Rβ̇ −Hβ̇

]
(1 − KR)

(
α̇x

α̇y

)
(19.102)

Finally, substituting for the low-frequency flap response,

(
β1c

β1s

)
= 1

1 + N2
e

[
1 Ne

−Ne 1

]{(−θ1s

θ1c

)
+
[ 16

γe
−(1 − KR)

1 − KR
16
γe

](
α̇y

−α̇x

)}
(19.103)

(equation 19.92), the hub forces are

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠ =
{
− 2CT

σa
+
[−CRβ̇ (1 − C)CT

σa − CĤβ̇

−((1 − C)CT
σa − CĤβ̇ ) −CRβ̇

]
(Ne − KP)

}

1
1 + N2

e

[
1 Ne

−Ne 1

](−θ1s

θ1c

)

+
{
− 2CT

σa
+
[
(1 − C)CT

σa − CĤβ̇ CRβ̇

−CRβ̇ (1 − C)CT
σa − CĤβ̇

] [
1 −KP

KP 1

]}
1

1 + N2
e

[
1 Ne

−Ne 1

]
16
γe

(
α̇y

−α̇x

)

+
{
− 2CT

σa
+ CT

σa

[
1 −KP

KP 1

]
+ C

[−Rβ̇ −Hβ̇

Hβ̇ −Rβ̇

]
(Ne − KP)

}
1

1 + N2
e

[
1 Ne

−Ne 1

]
(1 − KR)

(
α̇x

α̇y

)
(19.104)

where Ne − KP = ν2
β−1
γe/8

.
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For νβ = 1, cyclic control produces in-plane hub forces simply by tilting the thrust
vector with the tip-path plane. The flapping and hub moment amplitude produced
by cyclic pitch are

|β| = 1√
1 + N2

e

|θ | (19.105)

8
2|CM|
σa

= C
Ne√

1 + N2
e

|θ | (19.106)

with Ne = ν2
β−1

Cγ /8 + KP. Figure 19.11 shows the rotor response to cyclic pitch in hover
for a range of flap frequencies for KP = 0 and neglecting the Rβ̇ terms. Flap frequency
νβ > 1 reduces the flap amplitude and increases the hub moment. The lift deficiency
function C = 1/(1 + σa/8λi) introduces a dependency on the rotor thrust. For νβ →
∞, the tip-path-plane tilt is zero, the hub moment per unit cyclic approaches a
constant value, and the hub force is⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ → −
(
(1 − C)

CT

σa
+ C

λHP

4

)(−θ1s

θ1c

)
(19.107)

The difference between tip-path-plane tilt and thrust vector tilt (Figure 19.11) is
caused by tilt of the thrust vector relative to the tip-path plane. So even for very
large flap frequency, there is a finite in-plane hub force due to cyclic pitch, equivalent
to tilt of the thrust vector on the order of half the articulated rotor value. Thus the
tandem and side-by-side helicopter configurations can use differential cyclic pitch
for yaw control, regardless of the rotor flapping stiffness.

The hub in-plane forces produced by shaft pitch rate and roll rate, for KP = 0
and neglecting the Rβ̇ terms, are⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = −
(
(1 + C)

CT

σa
+ CĤβ̇

)(
16
γe

+ Ne(1 − KR)

)
1

1 + N2
e

(
α̇y

−α̇x

)

+
{(
(1 + C)

CT

σa
+ CĤβ̇

)(
Ne

16
γe

− (1 − KR)

)
1

1 + N2
e

+ CHβ̇ (1 − KR)

}(
α̇x

α̇y

)
(19.108)

Equation 19.80 gives this result for an articulated rotor (νβ = 1) without the wake
influence (C = 1). If the thrust vector tilted with the tip-path plane, the in-plane
forces would be⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = − 2CT

σa

(
β1c

β1s

)
= − 2CT

σa

(
16
γe

+ Ne(1 − KR)

)
1

1 + N2
e

(
α̇y

−α̇x

)

+ 2CT

σa

(
Ne

16
γe

− (1 − KR)

)
1

1 + N2
e

(
α̇x

α̇y

)
(19.109)
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Figure 19.11. In-plane hub force due to cyclic pitch as a fraction of thrust tilt; γ = 8 and
σ = 0.08.

So the tilt of the thrust vector due to shaft rate, relative to the tip-path-plane tilt, is
reduced by the factor

f = (1 + C)CT/σa + CĤβ̇

2CT/σa
= 1 + C

2
− C

λHP

8CT/σa
(19.110)
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Figure 19.12. In-plane hub force due to shaft rate as a fraction of thrust tilt with tip-path
plane; γ = 8 and σ = 0.08.

which is shown in Figure 19.12. The Ĥβ̇ contribution reduces the pitch and roll
damping from the rotor, particularly at low thrust.

Miller (1948) identified this damping reduction and included it in a stability and
control analysis. Amer (1950) also derived the damping reduction. He substituted for
the inflow in terms of collective and thrust coefficient to obtain f = 3

2 (1 − B3a
18

θ
CT /σ

),
although collective and thrust are not independent variables for hover. Amer and
Gustafson (1951) showed that assuming the resultant rotor force is perpendicular to
the tip-path plane leads to very incorrect stability derivatives. Sissingh (1951) added
the wake influence, in terms of an inflow gradient.

19.6 Pitch-Flap Coupling and Feedback

Pitch-flap coupling (KP = tan δ3) was introduced in section 6.18, and its effects have
been derived in this chapter. A more general representation of pitch-flap feedback
includes rate feedback (KD) and Oehmichen coupling (KO):

�θ(m) = −KPβ
(m) − KDβ̇

(m) ∓ KOβ
(m±1) (19.111)

where m is the blade number. Oehmichen patented in 1929 a mechanism to change
the blade pitch proportional to the flap motion of the preceding blade; see Leish-
man (2006). For 1/rev motion of a four-bladed rotor, β(m−1) ∼= β̇ (m), so Oehmichen
coupling corresponds to rate feedback. The multiblade coordinate transformation
of the feedback is

�θ0 = −KPβ0 − KDβ̇0 ∓ KOβ0 (19.112)

�θnc = −KPβnc − KD(β̇nc + nβns)− KO(sin n�ψβns ± cos n�ψβnc) (19.113)

�θns = −KPβns − KD(β̇ns − nβnc)− KO(− sin n�ψβnc ± cos n�ψβns) (19.114)
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where �ψ = 2π/N is the spacing between blades. Including now rate feedback and
Oehmichen coupling, equations 19.25 and 19.26 become

β̈0 + γ

8
(1 + KD)β̇0 +

(
ν2
β + γ

8
(KP ± KO)

)
β0 = γ

8
θ0 (19.115)

(
β̈1c

β̈1s

)
+
[ γ

8 (1 + KD) 2

−2 γ

8 (1 + KD)

](
β̇1c

β̇1s

)

+
[

ν2
β − 1 + γ

8 KP
γ

8 (1 + KD + KO)

− γ

8 (1 + KD + KO) ν2
β − 1 + γ

8 KP

](
β1c

β1s

)
= γ

8

(
θ1c

θ1s

)
(19.116)

for a four-bladed rotor (�ψ = 90°). Pitch-flap coupling KP introduces an aero-
dynamic spring, and rate feedback KD adds to the aerodynamic flap damping.
Oehmichen coupling adds or subtracts from pitch-cone coupling. For the low-
frequency response, KO acts the same as KD, so Oehmichen coupling corresponds
to rate feedback. Whereas Oehmichen coupling increases the stability of the low-
frequency flap modes, it decreases the stability of the high-frequency modes.

19.7 Complex Variable Representation of Motion

Because of the symmetry of the rotor equations and motion, complex variables can
be useful in the analysis of rotor dynamics. Coleman (1943) used complex combi-
nations of the lag degrees of freedom and the shaft motion degrees of freedom to
facilitate derivation and solution of the ground resonance equations, for an axisym-
metric system working with two complex equations instead of four real equations.
Miller (1948) conducted an evaluation of the stability and control characteristics of
several different types of helicopters. Citing Coleman, Miller also used complex com-
binations of variables for the airframe in-plane and angular motion and the rotor
flap motion, thereby reducing the number of equations from six to three. Curtiss
(1973) provided an exposition on the use of complex coordinates for hovering rotor
dynamics.

For the blade flap dynamics, define complex variables for the tip-path-plane
tilt, cyclic pitch control, shaft angular velocity, and inflow gradient: b = β1c + iβ1s,
t = θ1c + iθ1s, a = α̇y − iα̇x, l = λc + iλs. Combining the β1c equation and i times the
β1s equation gives

Îβ b̈ − (γMβ̇ + i2Îβ
)

ḃ + (Îβ (ν2
β − 1)+ KPγMθ + iγMβ̇

)
b

= γMθ t + γMβ̇ l + Îβαȧ − (γMβ̇ + i2Îβ
)

a (19.117)

(from equations 19.26 and 19.85), or

b̈ +
(γ

8
− 2i

)
ḃ + γ

8
(N� − i)b = γ

8

(
t − l + 8

γ
ȧ +

(
1 − 16

γ
i
)

a
)

(19.118)

The low-frequency response is

b =
t − l +

(
1 − 16

γ
i
)

a

N� − i
(19.119)
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The −i term in the denominator is the 90° phase shift of the articulated rotor. The
solution of the characteristic equation,

s2 +
(γ

8
− 2i

)
s + γ

8
(N� − i) = 0 (19.120)

is provided by the eigenvalues

s = − γ

16
− i ± i

√
ν2 + γ

8
KP −

( γ
16

)2 = sR − i (19.121)

and its conjugate. The eigen-vector is an oscillation of the complex variable b =
β1c + iβ1s, with i implying a 90° phase difference between β1c and β1s. The oscillation
is at frequency ωNR = ±ωR − 1, which is a progressive wobble (same direction as the
rotor) for positive ωNR and a regressive wobble (opposite to the rotor direction) for
negative ωNR.

The equation for the flap response to cyclic and shaft motion in hover is(
8
γ

s2 +
(

1 − 16
γ

i
)

s + N� − i
)

b = t +
(

8
γ

s + 1 − 16
γ

i
)

a − l (19.122)

Equation 19.88 for the dynamic inflow model becomes

l = (1 − C)
(
(−s − KP + i)b + t + a

)+ CKRD(a − sb) (19.123)

Substituting for the inflow gives(
8
γ

s2 +
(

C(1 − KR)D − 16
γ

i
)

s + N� − (1 − C)KP − Ci
)

b

= Ct +
(

8
γ

s + C(1 − KR)D − 16
γ

i
)

a (19.124)

or (
8
γe

s2 +
(

1 − Ke − 16
γe

i
)

s + Ne − i
)

b = t +
(

8
γe

s + 1 − Ke − 16
γe

i
)

a (19.125)

The static equation is just (Ne − i)b = t + (1 − Ke − 16
γe

i)a
So this is a compact form for the expression and solution of the rotor dynamics,

but the form introduces the issue of interpreting the motion and control implied by
the complex variables.

19.8 Two-Bladed Rotor

The case of a two-bladed rotor requires special consideration because, unlike rotors
with three or more blades, the rotor motion cannot be represented by tip-path-plane
tilt degrees of freedom β1c and β1s. Instead, the dynamic behavior of the two-bladed
rotor is described by the motion of the teetering degree of freedom β1, which leads
to periodic coefficient equations coupling the rotor and the non-rotating frame. For
helicopter flight dynamics, the primary concern is with the low-frequency response
of the flap motion and hub reactions to control inputs, shaft motion, and gusts. This
section shows that the low-frequency response of the two-bladed rotor is nearly
identical to that for the N ≥ 3 case.
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The frequency response of a linear, time-invariant dynamic system is described
by a transfer function H(ω) relating the magnitude and phase of the input and
output at frequency ω: F = H(ω)α. The implication of the periodic coefficients in
the equations of motion for the two-bladed rotor is that such a transfer does not
exist, since an input at frequency ω produces in general a response at all frequencies
ω ± n� (n an integer). Then the input-output relation for sinusoidal excitation takes
the form

F =
( ∞∑

n=−∞
Hn(ω)ein�t

)
αeiωt (19.126)

Specifically, consider the flapping equation of motion for the two-bladed rotor:

Îββ̈1 − γMβ̇ β̇1 + (Îβν2
β + KPγMθ

)
β1

= [
γMθ θ1c + Îβα(α̈y − 2α̇x)− γMβ̇ α̇y + γMμ(ẏh + vG)

]
cosψ

+ [γMθ θ1s − Îβα(α̈x + 2α̇y)+ γMβ̇ α̇x + γMμ(−ẋh + uG)
]

sinψ (19.127)

(equations 16.261 and 16.452). Assuming that the pitch control input is from the
swashplate, we have written θ1 = θ1c cosψ + θ1s sinψ . For this equation, only the
transfer functions H1(ω) and H−1(ω) are nonzero, meaning that the teetering
response to sinusoidal inputs occurs only at the frequenciesω ±�. Since the response
to low-frequency inputs occurs at the frequencies ±�, the low-frequency flap motion
can be written β1 = β1c cosψ + β1s sinψ . The low-frequency response of the two-
bladed rotor can thus be described by the steady-state motion of the tip-path plane.
On substituting for β1, the solution for β1c and β1s is identical to the low-frequency
flap response obtained for rotors with three or more blades.

From equations 16.238, 16.239, 16.263, 16.264, 16.438, and 16.466, the in-plane
hub forces for the rotor with two blades are⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = −2M̂b

γ

(
ẍh

ÿh

)
+ Rβ

(
2C
2S

)
β1 +

[
Rβ̇2C + Hβ̇2S

Rβ̇2S − Hβ̇2C

]
β̇1

+
[

Rθ2C + Hθ2S

Rθ2S − Hθ2C

]
(θ1 − KPβ1)

+
[ −Hμ2S2 − Rμ2C2 − Rr2CS Hμ2CS − Rμ2CS + Rr2C2

−Hμ2CS − Rμ2CS − Rr2S2 −Hμ2C2 − Rμ2S2 + Rr2CS

](
ẋh − uG

ẏh + vG

)

+
[−Rβ̇2C2 − Hβ̇2CS Rβ̇2CS + Hβ̇2S2

−Rβ̇2CS + Hβ̇2C2 Rβ̇2S2 − Hβ̇2CS

](
α̇y

α̇x

)
(19.128)

where C = cosψ and S = sinψ . From equations 16.236 and 16.237, the hub moment
is ⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠ = Îβ (ν2
β − 1)

γ

(
2C
2S

)
β1 (19.129)
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Substituting β1 = β1c cosψ + β1s sinψ , the low-frequency response of the hub reac-
tions is⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = − 2CT

σa

(
β1c

β1s

)

+

⎡⎢⎢⎢⎣
−Ĥβ̇2S2 − Rβ̇2CS Ĥβ̇2CS + Rβ̇2C2

−KPHθ2CS − KPRθ2C2 −KPHθ2S2 − KPRθ2CS

Ĥβ̇2CS − Rβ̇2S2 −Ĥβ̇2C2 + Rβ̇2CS
+KPHθ2C2 − KPRθ2CS +KPHθ2CS − KPRθ2S2

⎤⎥⎥⎥⎦
(
β1c

β1s

)

+
[−Hθ2S2 − Rθ2CS Hθ2CS + Rθ2C2

Hθ2CS − Rθ2S2 −Hθ2C2 + Rθ2CS

](−θ1s

θ1c

)

+
[ −Hμ2S2 − Rμ2C2 − Rr2CS Hμ2CS − Rμ2CS + Rr2C2

−Hμ2CS − Rμ2CS − Rr2S2 −Hμ2C2 − Rμ2S2 + Rr2CS

](
ẋh − uG

ẏh + vG

)

+
[−Hβ̇2CS − Rβ̇2C2 −Hβ̇2S2 − Rβ̇2CS

Hβ̇2C2 − Rβ̇2CS Hβ̇2CS − Rβ̇2S2

](
α̇y

−α̇x

)
(19.130)

and ⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠ = Îβ (ν2
β − 1)

γ

[
2C2 2CS

2CS 2S2

](
β1c

β1s

)
(19.131)

The average of these coefficients gives exactly the same expressions for the hub
reactions as those obtained in section 19.4 for the low-frequency response of rotors
with three or more blades. However, although this constant coefficient result is
exact for the rotor with three or more blades in hover, because of the inertial and
aerodynamic axisymmetry of the rotor, for the two-bladed rotor there are periodic
variations of the coefficients in the hub reactions. The asymmetry of the rotor with
two blades leads to large 2/rev variations of the coefficients even in hover. The thrust
tilt term is obtained without periodic coefficients even with N = 2. Recall that the
thrust dominates the hub in-plane forces except for the response to shaft angular
velocity, where the Ĥβ̇ term due to tip-path-plane tilt is also important. Thus the
primary influence of the periodic coefficients on the in-plane hub forces is found
in the rotor pitch and roll damping. There is also a large 2/rev variation in the hub
moment if νβ > 1, which is why two-bladed rotors are not often designed with a hub
spring.

In summary, the two-bladed rotor is indeed a special case. The description of
the flap dynamics is unique, involving the teetering degree of freedom β1, which is
fundamentally in the rotating frame, rather than the tip-path-plane tilt degrees of
freedom. The frequency response of the two-bladed rotor motion is not given by the
usual transfer function relation because the system is not time invariant. The low-
frequency flap response does reduce to a tip-path-plane representation identical to
the result for N ≥ 3, but only for the steady-state limit (ω = 0), which allows writing
β1 = β1c cosψ + β1s sinψ . The equations for the rotor low-frequency response that
are used in the analysis of the helicopter flight dynamics are the same as for N ≥ 3
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if the averaged coefficients are used, but in fact the hub reactions involve large-
amplitude periodic coefficients even in hover. The 2/rev variation of the coefficients
due to the lack of axisymmetry with a two-bladed rotor is expected to influence
primarily the rotor pitch and roll damping, and the hub moments if νβ > 1.

The special characteristics of the two-bladed rotor influence several aspects of
the analysis of the aeroelastic behavior. In general periodic coefficient equations
must be analyzed more often than for a rotor with three or more blades. A special
procedure is also required to derive the rotor low-frequency response and imple-
ment the quasistatic approximation. For a rotor with three or more blades the
low-frequency response can be obtained by dropping the flapping acceleration and
velocity terms from the equations in the non-rotating frame. Such a procedure does
not work with a two-bladed rotor because the equation of motion for β1 is still in
the rotating frame, so the β1 response to low-frequency inputs from the non-rotating
frame is not at low frequency also, but rather at 1/rev. Furthermore, a constant
coefficient approximation cannot be used directly for the helicopter flight dynamics,
since averaging the periodic coefficients of the two-bladed rotor equations of motion
eliminates the coupling between the rotor and the shaft motion.
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20 Stability

The aeroelastic equations of motion for the rotor were derived in Chapter 16. The
present chapter examines the solutions of these equations for a number of funda-
mental stability problems in rotor dynamics. To obtain analytical solutions, each
problem must be restricted to a small number of degrees of freedom and to only the
fundamental blade motion. Rotorcraft engineering currently has the capability to
routinely calculate the dynamic behavior for much more detailed and complex mod-
els of the rotor and airframe. Thus elementary analyses are less necessary for actual
numerical solutions, but are even more important as the basis for understanding the
rotor dynamics.

20.1 Pitch-Flap Flutter

Traditionally, the term “flutter” refers to an aeroelastic instability involving the
coupled bending and torsion motion of a wing. For the rotary wing, flutter refers
to the pitch-flap motion of the blade. Often the term is generalized to include any
aeroelastic instability of the rotor or aircraft, but the subject of this section is the blade
pitch-flap stability. The classical problem considers two degrees of freedom: the rigid
flap and rigid pitch motion of an articulated rotor blade. Since the control system is
usually the softest element in the torsion motion, the rigid pitch degree of freedom is
a good representation of the blade dynamics. A general fundamental flap mode with
natural frequency νβ is considered. A thorough analysis of the flutter of a hingeless
rotor blade usually requires that the in-plane motion be modeled as well. The rotation
of the wing introduces a number of effects that make rotor blade flutter much
different from the fixed-wing phenomenon. The centrifugal forces couple the flap
and pitch motion if the center-of-gravity is offset from the feathering axis. Moreover,
the returning shed wake has an important influence on the blade aerodynamic forces,
as does the periodic aerodynamic environment of the blade in forward flight.

20.1.1 Pitch-Flap Equations

The differential equations for the rigid flap and rigid pitch motion of a rotor blade
were derived in section 16.5.1:

Îβ
(
β̈ + ν2

ββ
)− Îx

(
θ̈ + θ) = γ

∫ 1

0
r

Fz

ac
dr = γMF (20.1)

788
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Î f
(
θ̈ + (ω2

θ + 1)θ
)− Îx

(
β̈ + β)+ KPÎfω

2
θβ = γ

∫ 1

0

Ma

ac
dr = γM f (20.2)

(equations 16.137 and 16.138). Here β is the degree of freedom of the perturba-
tion flap motion, with rotating natural frequency νβ , and θ is the pitch degree
of freedom, with non-rotating natural frequency ωθ . The inertial coefficients are
Îβ = ∫ 1

0 r2m dr/Ib, I f = ∫ 1
0 Iθdr/Ib, and Îx = ∫ 1

0 xIrm dr/Ib, with xI the distance that
the blade center-of-gravity is behind the feathering axis. The aerodynamic flap and
pitch moments,

MF = Mθ θ + Mθ̇ θ̇ + Mβ̇ β̇ + Mββ (20.3)

M f = mθ θ + mθ̇ θ̇ + mβ̇ β̇ + mββ (20.4)

are derived in section 16.8.10. For hover, the aerodynamic coefficients are

Mθ = 1
8

C′(ke) (20.5)

Mθ̇ = c
24

(
1 + 2C′(ke) (1 + 2ξA)

)
(20.6)

Mβ̇ = −1
8

C′(ke)+ c2

64
(1 + 4ξA) (20.7)

Mβ = c
12

C′(ke) (20.8)

mθ = −xA

6
C′(ke) (20.9)

mθ̇ = − c2

32

(
1 + 4ξA

(
1 + 2C′(ke) (1 + 2ξA)

))
(20.10)

mβ̇ = xA

6
C′(ke)− c3

32

(
3
8

+ 2ξA (1 + 2ξA)

)
(20.11)

mβ = − c2

64

(
1 + 8ξAC′(ke)

)
(20.12)

where c is the chord and xA is the distance the aerodynamic center is behind the
feathering axis (ξA = xA/c). The lift deficiency function C′ is evaluated at an effective
radius (typically 75%R), so that ke = ωc/2re. Section 16.8.10 gives the aerodynamic
coefficients in forward flight as well.

The coupled differential equations for the flap and pitch motion are thus[
Îβ −Îx

−Îx Î f

](
β̈

θ̈

)
+
[−γMβ̇ −γMθ̇

−γmβ̇ −γmθ̇

](
β̇

θ̇

)

+
[

Îβν2
β − γMβ −Îx − γMθ

−Îx + KPÎfω
2
θ − γmβ Î f (ω

2
θ + 1)− γmθ

](
β

θ

)
= 0 (20.13)

No forcing terms have been included since only the stability of the motion is of
interest here. For hover, for which aerodynamic coefficients are constant, and in
terms of the Laplace variable s, the equations of motion are[

Îβs2 − γMβ̇s + Îβν2
β − γMβ −Îxs2 − γMθ̇s − Îx − γMθ

−Îxs2 − γmβ̇s − Îx + KPÎfω
2
θ − γmβ Î f s2 − γmθ̇ s + Î f (ω

2
θ + 1)− γmθ

](
β

θ

)
= 0 (20.14)
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The eigenvalues are the roots of the characteristic equation:(
Îβs2 − γMβ̇s + Îβν2

β − γMβ

) (
Î f s2 − γmθ̇ s + Î f (ω

2
θ + 1)− γmθ

)
− (Îxs2 + γMθ̇s + Îx + γMθ

) (
Îxs2 + γmβ̇s + Îx − KPÎfω

2
θ + γmβ

) = 0 (20.15)

Although the four roots of this equation must in general be found numerically,
the stability boundary can be determined analytically. A plane of the system param-
eters has regions in which all the roots have negative real parts, so that the motion
is stable, and regions in which one or more roots have positive real parts, so that the
motion is unstable. On the stability boundary one root must be on the imaginary axis
of the s-plane, crossing from the left half-plane into the right half-plane. There are
two ways a root can cross the imaginary axis into the right half-plane, producing an
unstable system: as a real root along the real axis and as a complex conjugate pair at
finite frequency. The instability associated with a real root going through the origin
into the right half-plane is called divergence. It is a static instability, since with zero
frequency no velocity or acceleration forces are involved. The instability associated
with a complex conjugate pair of roots crossing the imaginary axis is called flutter.
This instability involves an oscillatory motion of the system.

The most significant parameters for the rotor blade flutter stability are the
pitch natural frequency ωθ , determined by the control system stiffness, and the
offsets of the center-of-gravity and aerodynamic center from the feathering axis.
The separation of the center-of-gravity and aerodynamic center (xI − xA) is more
important than their distance from the feathering axis, but xA must usually be kept
small to avoid large oscillatory control loads in forward flight. Thus the principal
parameters controlling the blade flutter stability are the control stiffness (ωθ ) and
the chordwise mass balance (xI).

20.1.2 Divergence Instability

A divergence instability occurs when a real root goes through the origin of the s-
plane into the right half-plane. The divergence stability boundary is defined by the
requirement that one root be s = 0, for which the characteristic equation becomes(

Îβν2
β − γMβ

) (
Î f (ω

2
θ + 1)− γmθ

)− (Îx + γMθ

) (
Îx − KPÎfω

2
θ + γmβ

) = 0 (20.16)

which is a balance of the spring terms alone. Since increasing the flap or pitch springs
should produce static stability, the criterion for a stable system is that this quantity be
positive. Neglecting Îx relative to γMθ , and γMβ relative to Iβν2

β in the flap equation,
the stability criterion can be written:(

Îβν2
β + KPγMθ

) (
Î f (ω

2
θ + 1)− γmθ

)
> γMθ

(
Îx + γmβ + KP

(
Î f − γmθ

))
(20.17)

The left-hand side is the product of the net flap and pitch springs, whereas the
right-hand side is the product of the moments coupling the flap and pitch motion,
primarily the aerodynamic flap moment due to pitch (Mθ ), and the centrifugal pitch
moment due to flapping (Ix). The flap and pitch springs are certainly positive.
Negative pitch-flap coupling (KP < 0) or a forward aerodynamic center (xA < 0)
contributes a negative spring, but these terms are unlikely to be larger than even
the centrifugal springs alone. Divergence stability thus requires that the quantity(
Îx + γmβ + KP

(
Î f − γmθ

))
be small or negative; hence a forward center-of-gravity

position is desired. Divergence stability can also be ensured by a large enough pitch
spring (ωθ ).
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Emphasizing the stability as a function of the parameters ωθ (control system
stiffness) and Ix (chordwise mass balance), the divergence stability criterion is

ω2
θ >

1

Îβν2
βe

[
γMθ

(
Îx

Î f
+ γmβ

Î f

)
− Îβν2

β

(
1 − γmθ

Î f

)]
(20.18)

which is a straight line on the plane of ω2
θ vs. Ix/I f . In terms of the mass balance

required, the criterion is

Ix

I f
<

Îβν2
β (ω

2
θ + 1)

γMθ

− γmβ

Î f
+ KPω

2
θ − Îβν2

β

mθ

Mθ Î f
(20.19)

Using Îx
∼= 3

2 xI and substituting for the aerodynamic coefficients (section 20.1.1), this
becomes

xI − 8ν2
β

9
xA <

16
3γ
ν2
β (ω

2
θ + 1)Î f + γ c2

96
(1 + 8ξAC′)+ 2

3
KPω

2
θ Î f (20.20)

which shows that divergence depends on the distance the center-of-gravity is aft
of the aerodynamic center (xI − xA), since 8ν2

β/9 ∼= 1. The boundary is relatively
insensitive to the pitch axis location for a fixed xI − xA. Since the right-hand side of
this criterion is almost always positive, divergence stability is assured regardless of
the pitch spring if the blade is mass balanced in such a way that the center-of-gravity
is ahead of the aerodynamic center (xI − xA < 0).

20.1.3 Flutter Instability

A flutter instability occurs when a pair of complex conjugate roots crosses the imag-
inary axis into the right half-plane. The flutter stability boundary is thus defined by
the requirement that one root be on the imaginary axis, s = iω, where ω is a real
and positive frequency. On substituting s = iω, the real and imaginary parts of the
characteristic equation are(−Îβω2 + Îβν2

β − γMβ

) (−Î fω
2 + Î f (ω

2
θ + 1)− γmθ

)− ω2γMβ̇γmθ̇

− (−Îxω
2 + Îx + γMθ

) (−Îxω
2 + Îx − KPÎfω

2
θ + γmβ

)+ ω2γMθ̇ γmβ̇

= (ω2 − 1)2
(
Îβ Î f − Î 2

x

)
+ (ω2 − 1)

[− (Îβ (ν2
β − 1)− γMβ

)
Î f − Îβ

(
Î fω

2
θ − γmθ

)
+ Îx

(−KPÎfω
2
θ + γmβ

)+ γMθ Îx − γMβ̇γmθ̇ + γMθ̇ γmβ̇

]
+ (Îβ (ν2

β − 1)− γMβ

) (
Î fω

2
θ − γmθ

)− γMθ

(−KPÎfω
2
θ + γmβ

)
− γMβ̇γmθ̇ + γMθ̇ γmβ̇ = 0 (20.21)

and

Mβ̇

(−Î fω
2 + Î f (ω

2
θ + 1)− γmθ

)+ mθ̇

(−Îβω2 + Îβν2
β − γMβ

)
+ Mθ̇

(−Îxω
2 + Îx − KPÎfω

2
θ + γmβ

)+ mβ̇

(−Îxω
2 + Îx + γMθ

)
= −(ω2 − 1)

(
Mβ̇ Î f + mθ̇ Îβ + Mθ̇ Îx + mβ̇ Îx

)+ Mβ̇

(
Î fω

2
θ − γmθ

)
+ mθ̇

(
Îβ (ν2

β − 1)− γMβ

)+ Mθ̇

(−KPÎfω
2
θ + γmβ

)+ mβ̇γMθ = 0 (20.22)
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Eliminating (ω2 − 1) from these two equations gives a single relation defining the
flutter boundary in terms of the blade parameters. In a numerical solution, for a
given value of ωθ these two equations can be solved for ω and Îx.

To proceed analytically, the order of magnitude of the terms must be considered:
c/R, xA/c, and xI/c are small, and Î f is order (c/R)2. Then to lowest order in c/R,
the characteristic equations are

(ω2 − 1)2Îβ Î f + (ω2 − 1)
(−Îβ (ν2

β − 1)Î f − Îβ
(
Î fω

2
θ − γmθ

)+ γMθ Îx − γMβ̇γmθ̇

)
+ Îβ (ν2

β − 1)
(
Î fω

2
θ − γmθ

)− γMθ

(−KPÎfω
2
θ + γmβ

)− γMβ̇γmθ̇ = 0 (20.23)

and

−(ω2 − 1)
(
Mβ̇ Î f + mθ̇ Îβ

)+ Mβ̇ Î fω
2
θ + mθ̇ Îβ (ν

2
β − 1)+ γ (Mθmβ̇ − Mβ̇mθ ) = 0

(20.24)
The imaginary part is solved for the flutter frequency:

ω2 − 1 = Mβ̇ Î fω
2
θ + mθ̇ Îβ (ν

2
β − 1)+ γ (Mθmβ̇ − Mβ̇mθ )

Mβ̇ Î f + mθ̇ Îβ

= 1
a

(
(a − 1)ω2

θ + (ν2
β − 1)

)
+ b (20.25)

or

ω2 =
(

1 − 1
a

)
(ω2
θ + 1)+ 1

a
ν2
β + b (20.26)

where a = 1 + (Mβ̇ Î f )/(mθ̇ Îβ ). Since a ∼= 1.4, the flutter frequency ω is usually sig-
nificantly lower than the pitch natural frequency ωθ . The term

b = γ (Mθmβ̇ − Mβ̇mθ )

Mβ̇ Î f + mθ̇ Îβ
(20.27)

is order c/R small, but is needed for small ωθ . Substituting for the flutter frequency
in the real part gives the criterion for flutter stability:

ω4
θ + Aω2

θ

Ix

I f
+ Bω2

θ + C
Ix

I f
+ D > 0 (20.28)

where the coefficients are

A = − γMθ

Îβ
a (20.29)

B =
(

−γmθ

Î f
+ γMβ̇γmθ̇

Îβ Î f

)
a − 2(ν2

β − 1)2 − KP
Mθ γmθ̇

Mβ̇ Î f
a2 − ba

a − 2
a − 1

(20.30)

C = − Mθγmθ̇

Mβ̇ Î f

(
(ν2
β − 1) a + ba2) (20.31)

D = γmθ̇

Î f

(
γmθ̇

Î f
+ Mθ γmβ

Mβ̇ Î f

)
a2 + (ν2

β − 1)2 +
⎛⎝γmθ

Î f
+
(
γmθ̇

Î f

)2
⎞⎠ (ν2

β − 1)a

+ a2

a − 1
b

(
b − γmθ

Î f
+ γMβ̇γmθ̇

Îβ Î f

)
+ (ν2

β − 1)b
a − 2
a − 1

(20.32)
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Figure 20.1. Sketch of flutter and divergence stability boundaries.

On the plane of ω2
θ vs. Ix/I f , the flutter stability boundary is a quadratic function,

as sketched in Figure 20.1. In terms of the required chordwise mass balance, the
criterion for flutter stability is

Ix

I f
< − ω

4
θ + Bω2

θ + D

Aω2
θ + C

(20.33)

The asymptotes of the flutter boundary have slopes of zero and

∂ω2
θ

∂Ix/I f
= −A (20.34)

The ratio of the slope of the upper asymptote of the flutter boundary to the slope
of the divergence boundary (equation 20.19) is ν2

βea, which is always greater than
1. Hence for large enough Ix/If , flutter is always the critical instability. The lower
asymptote of the flutter boundary is a line of zero slope at ωθ = −C/A, which is
usually negative. The solution at ωθ = 0 is Ix/I f = −D/C. The minimum Ix of the
flutter boundary occurs at

Ix

I f
= − 1

A

(
B − 2C/A + 2

√
D + (C/A)2 − BC/A

)
(20.35)

which is approximately

Îx + Îβmθ

Mθ

= 2Îβ
Mθ

√
m2
θ̇
+ Mθ

Mβ̇

mθ̇mβ + γMβ̇mθ̇

Mθ

− KP
Îβmθ̇

Mβ̇

a (20.36)

Using Îx
∼= 3

2 xI and substituting for the aerodynamic coefficients (section 20.1.1), this
becomes

xI − 8
9

xA = c2
(

1

3
√

2
+ γ

48
− 1

4
KP

)
(20.37)

Consequently, if the blade is mass balanced in such a way that the center-of-gravity
is no farther aft than this distance, flutter stability is assured regardless of the pitch
stiffness ωθ . As for divergence, the distance between the center-of-gravity and aero-
dynamic center is the primary parameter in the pitch-flap dynamics.
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Figure 20.2. Flutter and divergence boundaries (xA = 0).

Figure 20.2 is an example of the flutter and divergence boundaries for articulated
(νβ = 1, KP = 0) and hingeless (νβ = 1.15) rotors with uniform properties and γ =
8, c/R = 0.0628 (σ = 0.08 and N = 4) and Î f = 0.0004. The pitch axis is at the
aerodynamic center, xA = 0. The shed wake effects are neglected, so C′(ke) = 1.
Shown are the solutions of the full equations for the flutter boundary (equations
20.21 and 20.22), the approximate solution (equation 20.28), and the divergence
boundary (equation 20.19). There is more influence of the flap frequency when xA/c
is non-zero.
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Both flutter and divergence stability are increased by increasing the control
system stiffness ωθ or decreasing Ix by moving the blade center-of-gravity toward
the leading edge. A conservative approach is to place the center-of-gravity at the
aerodynamic center or just aft of it. Considering loads as well as stability, rotor blades
are generally mass balanced about the quarter chord. Most blade designs require a
leading edge weight to accomplish this balance. Although the control system stiffness
is an important flutter parameter, calculating it is difficult because of the complicated
geometry of the control system and the influence of actuator stiffness. Mechanical or
frictional damping in the control system and pitch bearing can also influence flutter
stability. Usually such damping is nonlinear, requiring numerical integration of the
equations of motion to determine the stability. Alternatively, a nonlinear damper can
be represented in a linear stability analysis by using an equivalent viscous damping,
with a value such that the same amount of energy is dissipated during a cycle of
motion. Brooks and Baker (1958) observed a stabilizing effect of compressibility
that was attributed to the rearward shift of the aerodynamic center above the critical
Mach number.

This analysis has used dimensionless parameters, so the system stiffness is rep-
resented by (ωθ/�)2. In terms of dimensional quantities, a given rotor has a fixed
value of ωθ . The minimum allowable ωθ/� at the flutter boundary then becomes a
restriction on the maximum rotor speed�. For design of the rotor, the dimensionless
parameter ωθ/� is useful, but when the rotor has been built flutter places a limit on
�. Flutter testing of rotors is conducted by increasing the rotor speed until the flutter
or divergence boundary is encountered as a result of decreasing ωθ/�. The best
indication of flutter when testing rotors is in the control loads, which are a measure
of the pitch motion.

20.1.4 Shed Wake Influence

For certain operating conditions the wake can have a significant impact on the rotor
blade flutter stability. The effect of the rotor returning shed wake on the unsteady
aerodynamic loads can be accounted for by using the lift deficiency function C′(k),
either within the spanwise integrals or at an effective radius (ke = ωc/2re). In chapter
10, Theodorsen’s, Loewy’s, and a number of approximate lift deficiency functions are
derived. A lift deficiency function follows from the assumption of purely harmonic
motion, which is appropriate on the stability boundary. Since C′ is a complex number
depending on the flutter frequency ω, the full equations for the flutter boundary
(equations 20.21 and 20.22) must be solved in complex form, typically for ω and Ix

given ω2
θ . An iterative solution is required, so C′ can be evaluated from ω of the

last iteration. Alternatively, ω and ω2
θ can be found given Ix; there are either two

solutions or none (Figure 20.1).
When the returning shed wake influence is included, there can be several unsta-

ble regions, instead of a single region as with quasistatic aerodynamics. Daughaday,
DuWaldt, and Gates (1957) investigated pitch-flap flutter for a two-bladed rotor,
varying rotor speed and blade chordwise center-of-gravity position. A stabilizing
effect of the returning wake was observed for pitch mode frequency near 2/rev and
was predicted using Loewy’s theory. Thus if Loewy’s function is used, there can be
more than two solutions for ω and ω2

θ at a given Ix. Flutter calculations based on qua-
sistatic aerodynamics (C′ = 1) are usually conservative; see Miller and Ellis (1956)
and Jones (1958). The quasistatic flutter boundary tends to form an envelope around
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the boundaries calculated, including the wake influence through the lift deficiency
function. The effect of the wake is to divide the flutter instability region into several
regions because of an increased stability in narrow ranges about certain critical val-
ues of ωθ corresponding to harmonic excitation. Such a modification of the flutter
boundary is of little practical significance, although the corresponding influence on
the flutter frequency can be significant.

In certain operating conditions the returning wake of the rotor can also produce
a single-degree-of-freedom instability, called wake-excited flutter. Wake-excited
flutter has been observed on rotors operating in hover at low collective (Brooks
and Baker (1958)). The returning shed wake reduces the circulatory loads that are
responsible for flap damping (see section 10.7), which can lead to a pitch-flap flutter
instability. The circulatory lift does not influence the pitch moment for oscillation
about the quarter chord, but the blade pitch damping moments are affected by the
returning shed wake if the pitch axis is off the aerodynamic center. For oscillation
near certain harmonics of the rotor speed, about the leading edge or about the
midchord, the damping in pitch can be negative. Thus a single-degree-of-freedom
instability is possible. Wake-excited flutter usually occurs under the operating con-
ditions for which the returning wake has the strongest influence: low collective pitch
as in run-up on the ground or autorotation, low forward speed or hover, and a pitch
natural frequency near a harmonic of the rotor speed.

20.1.5 Forward Flight

The aerodynamics of the rotor in forward flight introduce periodic coefficients in the
equations of motion for flap and pitch of the blade. The eigenvalues of these periodic-
coefficient linear differential equations can be obtained by the methods discussed in
section 15.6. At high advance ratio (μ > 0.5) such an analysis is essential to properly
evaluate the stability, including the influence of the periodic coefficients; reverse
flow must also be included in the aerodynamic model at such high speeds. At low
to moderate advance ratio, a constant coefficient approximation can be sufficiently
accurate. If the mean values of the coefficients in the rotating frame are used, the
only effect of forward flight retained is an order μ2 increase in Mθ and mθ . As for the
flapping dynamics, the averaging of the coefficients should therefore be performed
in the non-rotating frame. The constant coefficient approximation in forward flight
best models the lower frequency behavior of rotors with a large number of blades.
Since the pitch natural frequency tends to be relatively high, it can be expected
that the exact solution of the periodic coefficient equations is required for pitch-flap
flutter more often than when only the flapping motion is involved.

Alternatively, the dynamic stability can be assessed from the results of a direct
numerical integration of the equations of motion. Such an approach is also necessary
if nonlinear effects are to be included in the analysis, such as those due to blade stall or
compressibility. The evaluation of the stability of periodic systems from the transient
motions is not an elementary matter.

20.1.6 Coupled Blades

The flutter analysis developed here has so far considered a single independent blade.
Even in the shaft-fixed case, all the blades are coupled through the rotor control
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system. The load-path through the control system, which determines the stiffness
of the restraint at the pitch bearing, depends on the pitch motion of all the blades.
Thus the rigid pitch natural frequency ωθ , which is a primary parameter of the flutter
stability, cannot in general be defined for the motion of an individual blade alone.
The flutter analysis must consider the entire rotor.

In the non-rotating frame the coupling of the blades through the control system
appears as a different stiffness or natural frequency for each of the non-rotating
equations of motion for θ0, θnc, θns, and θN/2 (see section 16.5.4). With three or more
blades the rotating control system is axisymmetric, so the coupling is due to the non-
rotating control system. The primary load-paths are through the collective and cyclic
pitch control systems (θ0, θ1c, and θ1s equations). The higher modes involve flexibility
of the pitch horn and pitch link, and bending of the swashplate (θ2c, θ2s, . . . , θN/2

equations as required). In hover, the only coupling of the non-rotating equations is
between θnc and θns (and also the corresponding βnc and βns equations). The equation
for the collective mode is identical to that of a single blade; hence the flutter solution
can be obtained by considering an independent blade with the appropriate collective
natural frequency ωθ0 . Similarly, the equation of motion for θN/2 is not coupled with
the other pitch degrees of freedom and is the same as an independent blade with
pitch frequency ωθN/2 . If ωθnc = ωθns , then the coupled equations for θnc and θns are
also equivalent to a single independent blade. For the reactionless modes this is the
case because of the axisymmetry of the rotating control system. The effective natural
frequencies of the lateral and longitudinal cyclic control are not likely to be equal
(ωθ1c �= ωθ1s ). If the difference in cyclic control system stiffnesses is significant, the
flutter analysis must consider a four-degree-of-freedom problem for θ1c, θ1s, β1c, and
β1s. The coupled motion of the θ1c and θ1s degrees of freedom is a progressive mode
at a frequency near ωθ + 1/rev and a regressive mode at a frequency near ωθ − 1/rev.
The natural frequencies of the reactionless modes (θ2c, θ2s, . . . , θN/2) are generally
higher than those of the collective and cyclic modes. The stiffness of the cyclic
control system is usually less than that of the collective control system, in which
case the critical flutter problem involves the cyclic pitch degrees of freedom (θ1c

and θ1s).
It can also be necessary to consider aerodynamic effects that differ for each non-

rotating mode of the rotor. For example, the cyclic modes involve identical motion
of each blade at a given azimuth and thus are more susceptible to excitation by a
disturbance at a particular point in the fixed frame, such as aerodynamic interference
due to the fuselage or tail rotor. When Loewy’s lift deficiency function is used to
account for the returning shed wake effects, there is a separate function C′ for each
non-rotating mode (see section 10.7), although an equivalent single blade model is
again often possible.

20.2 Flap-Lag Dynamics

Let us examine next the stability of the coupled flap and lag motion of a rotor
blade. The flap or lag motion alone has positive aerodynamic damping, although it
is low for the lag mode. The blade in-plane and out-of-plane motions are coupled
by Coriolis and aerodynamic forces, which can produce an instability. The problem
considered here has only two degrees of freedom: the fundamental flap and lag
modes.
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20.2.1 Flap-Lag Equations

The equations of motion for the first out-of-plane and first in-plane modes of the
rotor blade were derived in section 16.4.1 (equations 16.94 and 16.97):

Îβ
(
β̈ + ν2

ββ
)− Îβζ2β0ζ̇ − χ(Îζ K̂ζ − ÎβK̂β )θsζ = γMF (20.38)

Îζ
(
ζ̈ + ν2

ζ ζ
)+ Ĉζ ζ̇ + Îβζ2β0β̇ − χ(Îζ K̂ζ − ÎβK̂β )θsβ = γML (20.39)

Here β is the flap degree of freedom with rotating natural frequency νβ , and ζ is
the lag degree of freedom with natural frequency νζ . The degrees of freedom β and
ζ are purely out-of-plane and purely in-plane, respectively. Structural coupling of
the flap and lag motion is accounted for by the off-diagonal stiffness terms, from
equation 16.108. The parameter χ is a measure of the distribution of the hinge
stiffness inboard and outboard of the pitch bearing. For χ = 0 all the flexibility is
inboard (uncoupled), with axes parallel and normal to the hub plane. For χ = 1
all the flexibility is outboard of the pitch bearing (fully coupled), with axes at the
pitch angle θs. With no hinge offset, the flap and lag spring constants are related to
the blade frequencies: K̂β = Kβ/Iβ�2 = ν2

β − 1 and K̂ζ = Kζ /Iζ�2 = ν2
ζ . The iner-

tial constants Îβ = Îζ = Îβζ = 1, assuming that the mode shapes are ηβ = ηζ = r.
Mechanical or structural damping of the lag motion has been included as a viscous
damping coefficient Ĉζ = Cζ /Ib� (dimensional Cζ ). The flap and lag motion of the
blade are coupled inertially by Coriolis forces, which have been linearized about the
trim coning angle β0. Lag velocity ζ̇ aft produces a downward flap acceleration of
the blade or, in the d’Alembert view, an upward flap moment. Upward flap velocity
β̇ produces a lead Coriolis moment on the blade.

The aerodynamic flap and lag moments were derived in section 16.8.3:∫ 1

e
ηβ

Fz

ac
dr = MF = Mθ

(−KPβ β − KPζ ζ
)+ Mβ̇ β̇ + Mββ + Mζ̇ ζ̇ + Mζ ζ (20.40)∫ 1

e
ηζ

Fx

ac
dr = ML = Qθ

(−KPβ β − KPζ ζ
)+ Qβ̇ β̇ + Qββ + Qζ̇ ζ̇ + Qζ ζ (20.41)

Since only the stability is of interest here, the pitch control input has not been
included. There is, however, a pitch change due to kinematic pitch-flap and pitch-
lag coupling: �θ = −KPβ β − KPζ ζ , which produces flap and lag moments. The sign
convention for positive coupling is that a nose-down pitch change is produced by flap-
up or lag-back deflection of the blade. For hover or vertical flight the aerodynamic
coefficients are constant, and Mβ = Mζ = Qβ = Qζ = 0. Assuming uniform inflow,
ηβ = ηζ = r, and neglecting tip losses, the aerodynamic coefficients are

Mθ = 1
8

(20.42)

Mβ̇ = −1
8

(20.43)

Mζ̇ = −
(

3
2

CT

σa
+ 5

24
λHP + 1

80
θtw

)
(20.44)

Qθ = λHP

6
(20.45)
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Qβ̇ = 3
4

CT

σa
− 7

48
λHP + 1

160
θtw (20.46)

Qζ̇ = −
[
λHP

(
CT

σa
+ λHP

4

)
+ cd

4a

]
(20.47)

The hover trim induced velocity is λHP = κ√CT/2. The aerodynamic forces are
determined by a single parameter of the rotor operating state: the thrust coefficient
CT . The collective pitch of the rotor can also be used as the parameter, since the
collective is related to the rotor thrust by

θ0.75 = 6CT

σa
+ 3

2
λHP (20.48)

The Coriolis forces also require the rotor coning angle, which for hover is

β0 = 1

Îβν2
β

(
γ

∫ 1

0

1
2

r3α dr + K̂ββp

)

= 1

Îβν2
β

(
γ

(
3
4

CT

σa
+ 1

48
λHP + 1

160
θtw

)
+ ÎβK̂ββp

)
(20.49)

where βp is the precone angle. Precone is used to reduce the mean flap bending
moments at the hinge spring, which are proportional to (β0 − βp). The ideal coning
angle βideal is the coning obtained with spring Kβ = 0; hence flap frequency νβ = 1.
With precone βp = βideal (which depends on CT/σ ), the mean hinge spring moment
is zero; see section 6.14.

The differential equations for the rotor flap and lag motion in hover are thus

[
Îβ 0
0 Îζ

](
β̈

ζ̈

)
+
[−γMβ̇ −γMζ̇ − 2Îβζ β0

−γQβ̇ + 2Îβζ β0 −γQζ̇ + Ĉζ

](
β̇

ζ̇

)

+
[

Îβν2
β + KPβ γMθ −χ(Îζ K̂ζ − ÎβK̂β )θs + KPζ γMθ

−χ(Îζ K̂ζ − ÎβK̂β )θs + KPβ γQθ Îζ ν2
ζ + KPζ γQθ

](
β

ζ

)
= 0

(20.50)

and the characteristic equation is

(
Îβs2 − γMβ̇s + Îβν2

β + KPβ γMθ

) (
Îζ s2 + (−γQζ̇ + Ĉζ )s + Îζ ν2

ζ + KPζ γQθ

)
− ((−γMζ̇ − 2Îβζ β0)s − χ(Îζ K̂ζ − ÎβK̂β )θs + KPζ γMθ

)
× ((−γQβ̇ + 2Îβζ β0)s − χ(Îζ K̂ζ − ÎβK̂β )θs + KPβ γQθ

) = 0 (20.51)

which can be solved for the four roots of the system (a complex conjugate pair each
for the flap and lag modes). The uncoupled motion has positive damping for both
flap and lag, so an instability can only be encountered because of the coupling terms.
Divergence is seldom a factor in flap-lag dynamics, assuming that KPβ and KPζ are
not so negative that there is a net negative flap or lag spring.
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When there is no pitch-lag coupling (KPζ = 0) and no structural coupling (χ = 0),
the only lag influence on the flap equation is the velocity term. The flap moment due
to ζ̇ consists of aerodynamic and Coriolis terms:

γMζ̇ + 2Îβζ β0 = −γ
(
λHP

6
+ 2

∫ 1

0

1
2

r3α dr

)
+ 2

Îβζ
Îβν2

β

(
γ

∫ 1

0

1
2

r3α dr + ÎβK̂ββp

)

∼= −2γ
ν2
β − 1

ν2
β

∫ 1

0

1
2

r3α dr + 2
K̂ββp

ν2
β

(20.52)

Thus for an articulated rotor with no flap hinge spring or offset (νβ = 1 and Kβ = 0),
the aerodynamic and Coriolis flap moments due to lag velocity nearly cancel, and the
flap equation is decoupled from the lag motion. The flap and lag motion are stable
in this case. Lag motion produced by the Coriolis forces due to flapping is important
for the blade loads and vibration, but not for stability. When there is no flap hinge
offset, ν2

β = 1 + K̂β . In addition, the ideal precone is βideal = γ ∫ 1
0

1
2 r3α dr. So if νβ > 1

because of a hinge spring, but with ideal precone, the total flap moment due to lag
velocity is still zero. With ideal precone the hinge spring does not contribute to the
balance of flap moments determining the coning, and the solution for β0 is the same
as for the articulated rotor. Hence for an articulated rotor with a flap frequency near
1/rev and small pitch-flap and pitch-lag coupling, in hover or low forward speed, the
flap-lag motion of the blade is expected to remain stable.

Consider next the case of zero thrust, so that all the aerodynamic coefficients
except Mθ , Mβ̇ , and Qζ̇ are zero or nearly so. Assume also zero precone (so β0)
and no structural coupling (θs = 0). Then the only remaining coupling of the flap
and lag equations is a flap moment due to ζ , acting through Mθ when there is
kinematic pitch-lag coupling (KPζ �= 0). The lag equation is decoupled from the flap
motion, so the system is stable. Hence a flap-lag instability is a high thrust or high
collective phenomenon. The flap-lag stability boundary gives a critical thrust level
or equivalently a collective pitch or coning angle limit.

20.2.2 Articulated Rotors

For an articulated rotor the lag frequency is small, typically νζ = 0.25 to 0.30/rev.
Recall that νζ ∼= 3

2 e, where e is the lag hinge offset; see section 6.15. With no hinge
springs, the structural coupling terms are zero. For this case, an approximate solution
for the flap-lag stability can be obtained, which shows the influence of pitch-lag and
pitch-flap coupling. When KPζ �= 0, the flap moment produced by ζ through Mθ

dominates the small flap moments due to the lag velocity ζ̇ , and the latter can be
neglected. All the aerodynamic lag moments due to flapping are neglected compared
to the Coriolis term. The term KPζ γQθ is considered to be included in the lag spring
Îζ ν2

ζ , and we write Cζ = Ĉζ − γQζ̇ . With these approximations, the equations of
motion in Laplace form are[

Îβs2 − γMβ̇s + Îβν2
β + KPβ γMθ KPζ γMθ

2Îβζ β0s Îζ s2 + Cζ s + Îζ ν2
ζ

](
β

ζ

)
= 0 (20.53)

The equations are now coupled only because of the Coriolis lag moment and the
flap moment produced by pitch-lag coupling.
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Since the flap damping is high, the lag mode is most likely to go unstable.
The frequency of that mode is near νζ , which is small for an articulated rotor. The
eigenvalue at the flutter boundary is small, and hence the flap equation can be
approximated by a quasistatic balance of the flap moments due to β and ζ :

(Îβν2
β + KPβ γMθ )β + (KPζ γMθ )ζ = 0 (20.54)

or

β = − KPζ γMθ

Îβν2
β + KPβ γMθ

ζ (20.55)

This is the flap motion that accompanies the lag oscillation in the flutter mode
because of the pitch-lag coupling. On substituting for this flap motion in the Coriolis
lag moment, the lag equation becomes(

Îζ s2 +
(

Cζ − 2Îβζ β0
KPζ γMθ

Îβν2
βe

)
s + Îζ ν2

ζ

)
ζ = 0 (20.56)

For an articulated rotor, the flap response to the moments produced by the pitch-
lag coupling is in phase with the low-frequency lag motion. Hence the Coriolis lag
moment due to flap velocity results in a lag damping term, which determines the
stability of the lag motion.

The criterion for stability follows directly from the requirement of positive net
lag damping:

Cζ − 2Îβζ β0
KPζ γMθ

Îβν2
β + KPβ γMθ

> 0 (20.57)

Morduchow and Hinchey (1950) derived the equations of motion for rigid flap and lag
of an articulated rotor in hover and found that positive pitch-lag coupling (KPζ > 0)
destabilizes the lag mode. Chou (1958) investigated a lag instability of a fully artic-
ulated rotor blade due to pitch-lag coupling, which was encountered in a rotor test
at high collective and low rotor speed. A lag oscillation of about 30◦ amplitude and
0.32/rev frequency was observed, with the flap motion at the same frequency. Upon
examination, the control linkage was found to give positive pitch-lag coupling. Chou
obtained a criterion for stability (equation 20.57) by considering the Coriolis damp-
ing of the lag motion arising from the flapping produced by the pitch-lag coupling.
He also obtained the stability criterion directly by means of Routh’s discriminant
and demonstrated that for articulated rotors the result is equivalent to the approx-
imate criterion. Blake, Burkam, and Loewy (1961) extended Chou’s analysis of the
articulated rotor to include all the aerodynamic terms and concluded that equation
20.57 is generally conservative.

Including the aerodynamic moment Qβ̇ , and noting that 2Îβζ β0 − γQβ̇
∼= Îβζ β0,

the stability criterion is

Ĉζ − γQζ̇ − Îβζ β0
KPζ γMθ

Îβν2
β + KPβ γMθ

> 0 (20.58)

This expression gives the lag damping required for stability or alternatively the
maximum pitch-lag coupling allowed. For a given rotor, the stability decreases as
the coning angle β0 increases with thrust. Positive pitch-lag coupling (lag back, pitch
down) is destabilizing for articulated rotors.
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20.2.3 Stability Boundary

An oscillatory instability occurs when a pair of complex conjugate roots crosses
the imaginary axis into the right half-plane. The stability boundary is obtained by
substituting s = iω in the characteristic equation, where ω is a real and positive
frequency. The real and imaginary parts of the characteristic equation are then

Îβ Îζ (−ω2 + ν2
βe)(−ω2 + ν2

ζe)+ γMβ̇Cζω
2 + (−γMζ̇ − 2Îβζ β0)(−γQβ̇ + 2Îβζ β0)ω

2

− (KPζ γMθ − χ(Îζ K̂ζ − ÎβK̂β )θs
)(

KPβ γQθ − χ(Îζ K̂ζ − ÎβK̂β )θs
) = 0 (20.59)

and

− γMβ̇ Îζ (−ω2 + ν2
ζe)+ Cζ Îβ (−ω2 + ν2

βe)

− (−γMζ̇ − 2Îβζ β0)
(
KPβ γQθ − χ(Îζ K̂ζ − ÎβK̂β )θs

)
− (−γQβ̇ + 2Îβζ β0)

(
KPζ γMθ − χ(Îζ K̂ζ − ÎβK̂β )θs

) = 0 (20.60)

The pitch-flap and pitch-lag coupling contribute to the effective stiffnesses: Îβν2
βe =

Îβν2
β + KPβ γMθ and Îζ ν2

ζe = Îζ ν2
ζ + KPζ γQθ . The total lag damping isCζ = Ĉζ − γQζ̇ .

The imaginary part of the characteristic equation is solved for the flutter frequency:(−γMβ̇ Îζ + Cζ Îβ
)
ω2 = −γMβ̇ Îζ ν2

ζe + Cζ Îβν2
βe

+ (γMζ̇ + 2Îβζ β0)KPβ γQθ + (γQβ̇ − 2Îβζ β0)KPζ γMθ

− (γMζ̇ + γQβ̇ )χ (Îζ K̂ζ − ÎβK̂β )θs = 0 (20.61)

Substituting for ω2 in the real part gives the equation of the stability boundary.

20.2.4 Hingeless Rotors

Consider now the stability of the flap-lag motion of a hingeless rotor blade, as
modeled by purely out-of-plane and purely in-plane modes with arbitrary natural
frequencies νβ and νζ . Assuming no pitch-flap or pitch-lag coupling (KPβ = KPζ = 0)
and no structural coupling (χ = 0), the characteristic equation is(

Îβs2 − γMβ̇s + Îβν2
β

) (
Îζ s2 + Cζ s + Îζ ν2

ζ

)
− (γMζ̇ + 2Îβζ β0

) (
γQβ̇ − 2Îβζ β0

)
s2 = 0 (20.62)

again writing Cζ = Ĉζ − γQζ̇ for the total lag damping. The imaginary part of the
characteristic equation is solved for the flutter frequency:

ω2 = −γMβ̇ Îζ ν2
ζ + Cζ Îβν2

β

−γMβ̇ Îζ + Cζ Îβ
= ν2

ζ +
(

Cζ Îβ
−γMβ̇ Îζ + Cζ Îβ

)
(ν2
β − ν2

ζ ) (20.63)

If the flap damping is much higher than the lag damping, the flutter frequency is near
νζ , implying that the lag mode is unstable. Substituting for ω2 in the real part of the
characteristic equation gives the equation of the flutter boundary:(

γMζ̇ + 2Îβζ β0
) (
γQβ̇ − 2Îβζ β0

)
= −γMβ̇Cζ

[
1 + Î 2

β Î 2
ζ (ν

2
β − ν2

ζ )
2

(−γMβ̇ Îζ + Cζ Îβ )(−γMβ̇ Îζ ν2
ζ + Cζ Îβν2

β )

]
(20.64)
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The left-hand side is the product of the coupling terms, which for stability must be
less than the product of the damping terms on the right-hand side. This equation can
be considered as a criterion for the minimum lag damping required for stability, or
for the maximum allowable rotor thrust, which determines the aerodynamic forces
and coning angle in the coupling terms. Alternatively, equation 20.64 can be viewed
as defining a stability boundary on the νβ vs. νζ plane.

Now in the flap equation, the aerodynamic and Coriolis moments due to ζ̇ are
nearly equal in magnitude but opposite in sign, so

γMζ̇ + 2Îβζ β0
∼= −γ λHP

6
− 2γ

ν2
β − 1

ν2
β

3
4

CT

σa
+ 2

K̂ββp

ν2
β

(20.65)

When νβ > 1, the aerodynamic term is larger. In the lag equation, the aerodynamic
moment due to β̇ has about one-half the magnitude of the Coriolis terms and opposite
sign, so

γQβ̇ − 2Îβζ β0
∼= −γ 3λHP

16
+ γ ν

2
β − 2

ν2
β

3
4

CT

σa
− 2

K̂ββp

ν2
β

(20.66)

Hence (
γMζ̇ + 2Îβζ β0

) (
γQβ̇ − 2Îβζ β0

)
∼=

2(ν2
β − 1)(2 − ν2

β )

ν4
β

(
γ

3
4

CT

σa
− K̂ββp

ν2
β − 1

)(
γ

3
4

CT

σa
+ 2

K̂ββp

2 − ν2
β

)

+ γ 2 λHP

8

(
CT

σa
+ λHP

4

)
(20.67)

The last term can be combined with −γMβ̇Cζ on the right-hand side of the equation
to give

−γMβ̇Cζ − γ 2 λHP

8

(
CT

σa
+ λHP

4

)
= −γMβ̇

(γ cd

4a
+ Ĉζ

)
(20.68)

The aerodynamic damping Qζ̇ in Cζ cancels, except for the viscous drag term. The
criterion for flap-lag stability of the hovering rotor with no pitch-flap or pitch-lag
coupling is thus(

6CT

σa
− 8
γ

K̂ββp

ν2
β − 1

)(
6CT

σa
+ 16
γ

K̂ββp

2 − ν2
β

)(γ
8

)2 2(ν2
β − 1)(2 − ν2

β )

ν4
β

< −γMβ̇

[
γ cd

4a
+ Ĉζ +

(
8
γ

)2 (ν2
β − ν2

ζ )
2Cζ

(1 + (8Cζ /γ ))(ν2
ζ + (8Cζ /γ )ν2

β )

]
(20.69)

This approximation was derived by Ormiston and Hodges (1972). Since the flap
damping (−γMβ̇) and lag damping (Cζ ) are positive, the right-hand side of equation
20.69 is always positive. The flap-lag motion is stable if the left-hand side is zero
or negative. One such case is the articulated rotor, for which νβ = 1 and the left-
hand side is zero, due to the decoupling of the flap equation from the lag motion
when there is no pitch-lag coupling. In general, the flap-lag motion is stable unless
1 < ν2

β < 2, or 1 < νβ < 1.414, but that covers the usual range of flap frequencies
for articulated and hingeless rotors. The left-hand side is positive for high enough
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rotor thrust or collective pitch, and the flap-lag motion is unstable at some critical
CT depending on the lag damping. The term in brackets on the right-hand side is of
order Ĉζ , so the dimensionless lag damping Ĉζ required for stability is of the order
α2 = (6CT/σa)2, which is small. Hence an articulated rotor with νβ slightly above
1/rev and a mechanical damper giving a high level of lag damping is almost certainly
stable (assuming KPζ = 0). For a hingeless rotor, however, νβ is significantly above
1/rev and the structural lag damping is small, so a flap-lag instability is possible.

Let us consider the case for which the flap-lag motion is least stable. The second
term on the right-hand side of equation 20.69 has a minimum value (zero) when
νβ = νζ . Furthermore, the factor 2(ν2

β − 1)(2 − ν2
β )/ν

4
β on the left-hand side has a

maximum value of 1
4 at ν2

β = 4
3 , or νβ ∼= 1.15. Thus the stiff in-plane hingeless rotor

with νβ = νζ = 1.15 has the minimum flap-lag stability margin. For this case the
stability criterion becomes(γ

8

)2
(

6CT

σa

)2

− (3K̂ββp
)2
<
γ

2

(γ cd

4a
+ Ĉζ

)
(20.70)

Recall that the ideal precone is βp
∼= γ 3

4
CT
σa , and K̂β = ν2

β − 1 = 1
3 here. So the left-

hand side is zero with ideal precone, and the flap-lag motion is stable. Neglecting
the precone term, and writing the lag damping in terms of a structural damping
coefficient gs (Ĉζ = gsνζ ), the stability criterion is

6CT

σa
< 4

√
cd

2a
+ 4gs

γ
√

3
(20.71)

Since the blade viscous drag damping alone gives roughly CT/σ < 0.10, any reason-
able level of structural damping should be sufficient to stabilize the flap-lag motion.
Figure 20.3 shows flap-lag stability boundaries in terms of the natural frequencies
of the blade flap and lag motion, for a rotor with γ = 8, σ = 0.08, and cd = 0.0080.
Shown are the solution of the complete equation for the stability boundary (equa-
tion 20.64) and the approximate solution (equation 20.69). At a given rotor thrust
or collective, the motion is unstable inside a roughly elliptical region centered on
the worst case νβ = νζ = 1.15. These results are for a rotor with no precone, no
pitch-flap or pitch-lag coupling, and no structural flap-lag coupling. A small amount
of lag damping is sufficient to stabilize the motion.

To summarize the results for the case of no pitch-flap or pitch-lag coupling,
the articulated rotor with flap frequency near l/rev, small lag frequency, and large
lag damping is likely stable. The worst case for flap-lag stability is a stiff in-plane
hingeless rotor with equal rotating flap and lag frequencies: νβ = νζ = √

4/3. With
small precone, little structural damping, and high thrust, a flap-lag instability is
possible. The motion is stabilized by separating the flap and lag frequencies (moving
away from the line νβ = νζ ) and by keeping the flap frequency away from the critical
value νβ = 1.15/rev.

Structural coupling between the flap and lag motion is important, because even
a small amount of out-of-plane motion in the lag mode greatly increases its aerody-
namic damping and thus is very stabilizing. For rigid flap and lag motion, structural
coupling is introduced in terms of the distribution of the hinge stiffness inboard
and outboard of the pitch bearing. For χ = 0 all the flexibility is inboard (uncou-
pled), with axes parallel and normal to the hub plane. To lowest order, structural
coupling adds the term X 2/ω2 to the right-hand side of equation 20.64, where
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Figure 20.3. Flap-lag stability boundaries as a function of rotor thrust, no pitch-flap or pitch-
lag coupling, and no structural flap-lag coupling.

X = χ(Îζ K̂ζ − ÎβK̂β )θs = χ(Îζ ν2
ζ − Îβ (ν2

β − 1))θs, implying an increase in stability.
Figures 20.4 and 20.5 show the stabilizing effect of χ > 0. See Ormiston and Hodges
(1972) and Burkham and Miao (1972).

20.2.5 Pitch-Flap and Pitch-Lag Coupling

Introducing pitch-flap coupling KPβ , but still no pitch-lag or structural flap-lag cou-
pling, there is a small shift of the flutter frequency due to the lag moment:

ω2 = ν2
ζ +

(
Cζ Îβ

−γMβ̇ Îζ + Cζ Îβ

)
(ν2
β − ν2

ζ )+
(γMζ̇ + 2Îβζ β0)KPβ γQθ

−γMβ̇ Îζ + Cζ Îβ
(20.72)
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Figure 20.4. Flap-lag stability boundaries as a function of structural flap-lag coupling, no
pitch-flap or pitch lag coupling, and CT/σ = 0.14.

but the principal change is replacing the flap stiffness ν2
β with the effective stiffness

ν2
βe = ν2

β + γ

8 KPβ in the characteristic equation and hence in the stability boundary.
The flap-lag motion is then stable unless the effective frequency is in the range
1 < ν2

βe < 2. By using negative δ3 or positive pitch-flap coupling (KPβ = tan δ3 < 0,
so flap-up/pitch-up), the negative aerodynamic spring can lower the effective flap
frequency below 1/rev, thus assuring flap-lag stability regardless of the lag frequency
or thrust. Gaffey (1969) observed the favorable influence of negative δ3 on the
flap-lag stability of a proprotor operating in high inflow.
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Figure 20.5. Flap-lag stability boundaries as a function of structural flap-lag coupling, no
pitch-flap or pitch lag coupling, and νβ = 1.15.
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Figure 20.6. Flap-lag stability boundaries as a function of pitch-lag coupling and structural
flap-lag coupling, νβ = 1.15, and νζ = 1.4 and 0.7.

Consider a rotor with large pitch-lag coupling KPζ . The flutter frequency is
approximately

ω2 = ν2
ζe +

(
Cζ Îβ

−γMβ̇ Îζ + Cζ Îβ

)
(ν2
βe − ν2

ζe)+
KPζ γMθ (γQβ̇ − 2Îβζ β0)

−γMβ̇ Îζ + Cζ Îβ
(20.73)

Substituting for ω2 in the real part of the characteristic equation, a few terms can be
omitted for large KPζ , giving the stability boundary:

Îβ Îζ (ν2
βe − ν2

ζe)
(
Cζ Îβ (ν2

βe − ν2
ζe)+ KPζ γMθ (γQβ̇ − 2Îβζ β0)

)
+
(
γMβ̇Cζ + (γMζ̇ + 2Îβζ β0)(γQβ̇ − 2Îβζ β0)

)
γMβ̇ Îζ ν2

ζe

− (KPζ γMθ − X )(KPβ γQθ − X )γMβ̇ Îζ = 0 (20.74)

where X = χ(Îζ ν2
ζ − Îβ (ν2

β − 1))θs. Equation 20.74 can be solved for the damping Ĉζ
required for stability. For small lag frequency and no structural coupling, it reduces
to the result of section 20.2.2. Figure 20.6 shows the influence of pitch-lag coupling
on the stability boundary for stiff in-plane (νζ = 1.4) and soft in-plane (νζ = 0.7)
cases. For articulated and soft in-plane hingeless rotors, positive pitch-lag coupling
(lag back, pitch down) is destabilizing, with little influence of structural coupling.
For stiff in-plane hingeless rotors, negative pitch-lag coupling (lag back, pitch up) is
destabilizing with no structural coupling (χ = 0), whereas positive pitch-lag coupling
is destabilizing with full structural coupling (χ = 1).

The stabilizing influence of structural flap-lag coupling and negative pitch-lag
coupling for a soft in-plane hingeless rotor was verified experimentally by Bousman,
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Sharpe, and Ormiston (1976). The effects of the two couplings together was more
than the sum of the individual effects, although the experimental data exhibited
behavior that was more complicated than predicted by the simple theory.

20.2.6 Blade Stall

When the hovering rotor is operating at very large thrust, the blade stalls along much
of the radius. For the blade sections in stall, the lift-curve slope is zero or negative,
resulting in a reduction of the aerodynamic damping of the blade flap modes. Without
large flap mode damping, the flap-lag motion can be unstable. Figure 20.7 shows the
damping ratio of the flap and lag modes of hingeless rotors, calculated with and
without stall in the airfoil tables. For these calculations there is no lag damper or
blade structural damping; hence the very small lag mode damping at low thrust. At
large CT/σ (depending on the airfoil maximum lift coefficient), stall is evident in the
drop of the flap mode damping. This phenomenon was observed and identified by
Huber (1973) in flight tests and by Ormiston and Bousman (1975) in model rotor
tests. In hover the thrust required for instability due to stall is well above what
can be sustained with available power. For forward flight the phenomenon is not
encountered, because stall then occurs only over part of the azimuth.

20.2.7 Elastic Blade and Flap-Lag-Torsion Stability

Although hingeless rotors have been developed based on a rigid blade analysis
(Huber (1973)), an elastic blade model is required to fully capture the dynamic
behavior, particularly when the important phenomena have not been already estab-
lished for the design concept. The stability results from an elastic flap-lag blade
model are similar to the results from the rigid blade model; see Hodges and Ormis-
ton (1976) and Friedmann and Straub (1980). The elastic blade model includes a
representation of structural flap-lag coupling. Blade rigid pitch motion (due to con-
trol system flexibility) and elastic torsion motion are important for stability and loads
calculations, unless the fundamental torsion mode frequency is very high (20/rev or
more). Multi-mode resonances (such coalescence of the frequencies of third flap,
second lag, and first torsion modes) can lead to instabilities. If the torsion mode
frequency is not too low, the principal effect of the pitch and torsion flexibility is the
introduction of effective pitch-flap and pitch-lag coupling; see Hodges and Ormiston
(1973). For blade flap-lag-torsion models and stability calculations, see Burkam and
Miao (1972) and Hodges and Ormiston (1976, 1977).

Pitch-flap and pitch-lag coupling are key parameters controlling the blade
dynamics. For an articulated rotor these couplings are determined by the geom-
etry of the root hinges and control system, but for a hingeless rotor they depend
on the bending and torsion loads acting on the blade. Thus a fully coupled flap-
lag-torsion model of the blade motion is required for an accurate analysis of the
aeroelastic stability of a hingeless rotor. Section 16.5.2 discusses structural pitch-flap
and pitch-lag coupling. Based on a rigid blade model, an estimate of the pitch-lag
coupling is derived:

KPζ = 1

K̂θ

(
ν2
β − 1 − ν2

ζ

)
(β − βp) (20.75)

(equation 16.145, without the droop angle). Trim elastic flap deflection relative to
the precone angle produces a flap moment at the blade root. Lag motion rotates
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Figure 20.7. Influence of blade stall on flap-lag stability in hover.

this flap moment in the hub plane, so the flap moment has a component about the
pitch bearing. Due to pitch flexibility, this moment produces a blade pitch change
and hence pitch-lag coupling. Figure 20.8 illustrates the variation of the effective
pitch-lag coupling with thrust and design parameters (precone and pitch stiffness);
see Huber (1973). In particular, precone has a significant influence on the blade
stability through this coupling, in addition to its action through the Coriolis forces.
The rotor design approach can be to minimize the couplings (as with a matched
stiffness design, ν2

β − 1 = ν2
ζ ) or to introduce couplings favorable for stability and

loads.
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20.3 Ground Resonance

Ground resonance is a dynamic instability involving the blade lag motion coupled
with in-plane motion of the rotor hub. This instability is characterized by a resonance
of the frequency of the rotor lag motion (specifically the low-frequency lag mode in
the non-rotating frame) and a natural frequency of the structure supporting the rotor.
Since the lag frequency depends on the rotor rotational speed, such resonances define
certain critical speed ranges for the rotor. An instability is possible at a resonance
if the rotating lag frequency νζ is below 1/rev, as for articulated and soft in-plane
hingeless rotors. With articulated rotors, the critical mode is usually an oscillation
of the helicopter on the landing gear when in contact with the ground; hence the
name ground resonance. Sometimes the phenomenon can occur in flight as well,
particularly with a hingeless rotor, and then it is called air resonance.

The hub in-plane motions are coupled with the cyclic lag modes ζ1c and ζ1s, which
correspond to lateral and longitudinal shifts of the net rotor center-of-gravity from
the axis of rotation. Since the low-frequency lag mode involves whirling of the rotor
center-of-gravity about the shaft, ground resonance is potentially very destructive,
and avoiding this instability is an important consideration in helicopter design. The
basic requirement is that resonances of the support structure with the lag mode be
kept out of the operating range of the helicopter. Generally, resonances above 120%
normal operating speed or below 40% normal speed are acceptable. The rotor has
little energy at low speed, so sometimes it is possible to run up through very low-
frequency resonances without a large amplitude motion building up. For a fairly
large range about the normal rotor speed range, either resonances must be avoided
or sufficient system damping provided to prevent any instability.

The classical ground resonance analysis considers four degrees of freedom: lon-
gitudinal and lateral in-plane motion of the rotor hub, and the two cyclic lag degrees
of freedom. The actual vibration modes of the rotor support, such as the motion
of the helicopter on its landing gear, usually involve tilt of the shaft as well, but
the in-plane motion of the hub is the dominant factor in ground resonance. The
rotor aerodynamic forces have little influence on ground resonance, compared to
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the structural and inertial forces. Damping of the rotor and support comes almost
entirely from mechanical dampers or structural damping. Thus the aerodynamic
forces are neglected in elementary ground resonance analysis. Such a model pro-
vides a good description of the fundamental characteristics of ground resonance and
even gives good numerical results, particularly for articulated rotors. With hingeless
rotors a more complete model is required, including the rotor aerodynamics and flap
motion and a better description of the support motion. The basic analysis of ground
resonance is the work of Coleman and Feingold (1958).

20.3.1 Ground Resonance Equations

The degrees of freedom involved in ground resonance are the cyclic rotor lag modes
ζ1c and ζ1s, which produce a shift of the net rotor center-of-gravity; and the hub
longitudinal and lateral displacements, xh and yh. For now, only the case of a rotor
with three or more blades is considered. The equations of motion for the rotor
lag degrees of freedom, including the influence of the hub motion, were derived in
section 16.7 (equations 16.248 and 16.249). Dropping the aerodynamic forces, but
including a lag damping term, the equations of motion in the non-rotating frame are

Iζ
(
ζ̈1c + Ĉζ (ζ̇1c + ζ1s)+ 2ζ̇1s + (ν2

ζ − 1
)
ζ1c
)− Sζ ÿh = 0 (20.76)

Iζ
(
ζ̈1s + Ĉζ (ζ̇1s − ζ1c)− 2ζ̇1c + (ν2

ζ − 1
)
ζ1s
)+ Sζ ẍh = 0 (20.77)

Here νζ is the rotating natural frequency of the lag motion and Cζ = IζĈζ is the
lag damping (in the rotating frame, due to aerodynamic, structural, or mechanical
damping). The first and second moments of the blade lag inertia are Sζ = ∫ 1

0 ηζm dr

and Iζ = ∫ 1
0 η

2
ζm dr. Since the hub in-plane motion is coupled by the inertial forces

with ζ1c and ζ1s only, the other non-rotating lag degrees of freedom are not involved
in ground resonance. The in-plane forces acting on the rotor hub were also derived
in section 16.7 (equations 16.258 and 16.259). Retaining only the inertial terms, the
rotor drag and side force are

H = −N
2

Sζ ζ̈1s − NMbẍh (20.78)

Y = N
2

Sζ ζ̈1c − NMbÿh (20.79)

where N is the number of blades and the blade mass is Mb = ∫ 1
0 m dr. The rotor

support structure is represented by a mass-spring-damper system in the longitudinal
and lateral directions, excited by the rotor hub forces:

M̃xẍh + Cxẋh + Kxxh = H (20.80)

M̃yÿh + Cyẏh + Kyyh = Y (20.81)

These equations are often a good model of the actual helicopter or wind-tunnel
support dynamics if the generalized mass and damping of the appropriate vibration
modes are used, as determined from the hub impedance. Substituting for the rotor
hub forces gives

Mxẍh + Cxẋh + Kxxh + N
2

Sζ ζ̈1s = 0 (20.82)

Myÿh + Cyẏh + Kyyh − N
2

Sζ ζ̈1c = 0 (20.83)
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where Mx = M̃x + NMb and My = M̃y + NMb are the total mass, including the rotor.
Write Kz = Mxω

2
x and Cx = MxĈx, and similarly define the natural frequency ωy and

damping Ĉy of the lateral mode.
These equations are dimensionless. In particular, the lag frequency νζ is per

revolution. Normalized inertias (divided by the characteristic inertia Ib) are not
introduced, so dimensional results are obtained by simply including factors of� and
R. The coupled lag and support equations of motion describing the ground resonance
dynamics are then⎡⎢⎣

Iζ 0 −Sζ 0
0 Iζ 0 Sζ

−N
2 Sζ 0 My 0
0 N

2 Sζ 0 Mx

⎤⎥⎦
⎛⎜⎝
ζ̈1c

ζ̈1s

ÿh

ẍh

⎞⎟⎠+

⎡⎢⎣
IζĈζ 2Iζ 0 0
−2Iζ IζĈζ 0 0

0 0 MyĈy 0
0 0 0 MxĈx

⎤⎥⎦
⎛⎜⎝
ζ̇1c

ζ̇1s

ẏh

ẋh

⎞⎟⎠

+

⎡⎢⎢⎣
Iζ (ν2

ζ − 1) IζĈζ 0 0
−IζĈζ Iζ (ν2

ζ − 1) 0 0
0 0 Myω

2
y 0

0 0 0 Mxω
2
x

⎤⎥⎥⎦
⎛⎜⎝
ζ1c

ζ1s

yh

xh

⎞⎟⎠ = 0 (20.84)

Symmetry is recovered if the support equations are divided by N
2 . The only coupling

of the rotor and support motion is due to the inertial terms. In terms of the Laplace
variables, the characteristic equation of this system is

I2
ζ

(
(s2 + Ĉζ s + ν2

ζ − 1)2 + (2s + Ĉζ )2
)

My(s2 + Ĉys + ω2
y)Mx(s2 + Ĉxs + ω2

x)

− Iζ (s2 + Ĉζ s + ν2
ζ − 1)

(
My(s2 + Ĉys + ω2

y)+ Mx(s2 + Ĉxs + ω2
x)
)
(NS2

ζ /2)s
4

+ (NS2
ζ /2)

2s8 = 0 (20.85)

The solution of this eighth-order polynomial gives the four eigenvalues of the system
(and their complex conjugates) and hence the ground resonance stability.

A divergence type instability is not possible for this system. On setting s = 0, the
characteristic equation gives the divergence stability criterion:

I2
ζ

(
(ν2
ζ − 1)2 + Ĉ2

ζ

)
Myω

2
yMxω

2
x > 0 (20.86)

which is always satisfied, assuming that either νζ �= 1 or Cζ �= 0.
Consider the uncoupled dynamics, obtained by setting Sζ = 0. The uncoupled

hub motion consists of damped oscillations with natural frequencies ωx and ωy. The
uncoupled (shaft-fixed) lag motion is a damped oscillation with eigenvalue

sR = (Ĉζ /2)+ i
√
ν2
ζ − (Ĉζ /2)2 (20.87)

in the rotating frame. In the non-rotating frame there are two cyclic lag modes, with
eigenvalues sNR = sR ± i. The high-frequency lag mode (sNR = sR + i) corresponds
to a progressive whirling motion of the rotor center-of-gravity at frequency (ImsR +
1)/rev. The low-frequency lag mode (sNR = sR − i) is a whirling motion of the rotor
center-of-gravity at frequency |ImsR − 1|/rev, regressive if ImsR > 1/rev (such as for
a stiff in-plane hingeless rotor) or a progressive whirling mode if ImsR < 1/rev, as
for an articulated rotor. Thus for Sζ = 0, the characteristic equation factors into a
product of the rotor and the support characteristic equations, with the solutions

s = (Ĉζ /2)+ i
√
ν2
ζ − (Ĉζ /2)2 ± i (20.88)
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s = (Ĉx/2)+ i
√
ω2

x − (Ĉx/2)2 (20.89)

s = (Ĉy/2)+ i
√
ω2

y − (Ĉy/2)2 (20.90)

and their conjugates. The uncoupled rotor and support motion is stable, and a ground
resonance instability can only be due to the inertial coupling when Sζ > 0. When
there is no damping and Sζ = 0 as well, the solution is s = ±iω for frequencies
ω = νζ ± 1, ωx, and ωy.

The coupling of the rotor and support is governed by the parameter Sζ =∫ 1
0 ηζm dr. For an articulated rotor, Sζ is the product of the blade mass and the

radial distance of the blade center-of-gravity from the lag hinge. The measure of the
coupling between the rotor and support terms in the characteristic equation is

N
2

S2
ζ

IζMx

∼= 3
8

NMb

Mx
= 3

8
Mrotor

Msupport
(20.91)

The mass of the support mode is usually much larger than the rotor mass, so this
parameter is quite small. Although an exact analytical solution of the eighth-order
ground resonance characteristic equation is not available, useful results can be
obtained on the basis of the assumption that Sζ is small, specifically S2

ζ /IζMx � 1.
The solution for small Sζ gives accurate numerical results as well, for most practical
cases.

The natural frequency of the lag motion, νζ , determines the fundamental char-
acter of the ground resonance dynamics. The dimensionless blade lag frequency
varies with the rotor speed according to ν2

ζ = K1/�
2 + K2, where K1 and K2 are

the Southwell coefficients (see section 18.1). For an articulated rotor, K1 = 0 and
ν2
ζ = K2 = 3

2
e

1−e , where e is the lag hinge offset. For a hingeless rotor K1 is not zero:
the dimensional non-rotating lag frequency is νNR = √

K1. The lag frequency at high
rotor speed approaches νζ = √

K2 (per-rev). For a soft in-plane rotor (hingeless or
articulated), K2 < 1; for a stiff in-plane rotor, probably K2 > 1, although νζ > 1/rev
can always be found at low rotor speed even if K2 < 1 (assuming K1 �= 0).

For a given rotor and support, it is preferable to present the ground resonance
solution in terms of dimensional frequencies, using the rotor speed� as a parameter.
The dimensional support frequencies ωx and ωy are constants, and the dimensional
lag frequency depends on the rotor speed according to ν2

ζ = K1 + K2�
2. Hence at low

speed νζ ∼= νNR = √
K1, and at high speed νζ /� approaches

√
K2/rev. The variation

of νζ with � determines the resonances with the various natural frequencies of the
support. In the present ground resonance analysis, dimensionless parameters are
used.

20.3.2 No-Damping Case

Consider first the case of no damping of the lag or support motion. On setting
Cζ = Cx = Cy = 0, the characteristic equation becomes(

(s2 + ν2
ζ − 1)2 + 4s2) (s2 + ω2

y)(s
2 + ω2

x)

− (s2 + ν2
ζ − 1)

(
My(s2 + ω2

y)+ Mx(s2 + ω2
x)
) NS2

ζ /2Iζ
MyMx

s4

+ (NS2
ζ /2Iζ )2

MyMx
s8 = 0 (20.92)
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The eigenvalues of a polynomial with real coefficients must appear as complex con-
jugate pairs. If there is no damping, however, the characteristic equation is actually
a polynomial in s2. So the substitution s = iω, or s2 = −ω2 (with ω complex), gives a
polynomial in ω2 that also has real coefficients. Complex conjugate solutions for ω
correspond to solutions for s that are symmetric about the imaginary s-axis. Complex
solutions of the characteristic equation with zero damping occur in groups of four
roots, symmetric about both the real and imaginary axes. There is one root in each
quadrant of the s-plane. Since two of these roots are in the right half-plane (Res > 0),
such complex solutions correspond to an unstable system. Moreover, there is no way
that the system can be stable with all the roots in the left half-plane. The requirement
of symmetry about the imaginary axis is satisfied if all the roots are on the imaginary
axis, which corresponds to neutral stability. Neutral stability is the best that can be
achieved when there is no damping in the rotor or support to extract energy from
the system.

Therefore, for the case of no damping, there are boundaries not between stable
and unstable conditions, but rather between neutrally stable and unstable conditions.
Inside a neutral stability region, all the roots are on the imaginary axis. At the stability
boundary, two roots meet at positive frequency and two at negative frequency, and
they break off from the imaginary axis. Then inside an unstable region there are
four complex roots, corresponding to the support mode in resonance and the low-
frequency lag mode. Substituting s = iω (where ω is a real number) now defines the
entire neutral stability region, not just the flutter boundary. The simplest means of
defining the stability boundary in this case is to solve the characteristic equation
assuming s = iω. Where all eight solutions cannot be obtained with ω real, it must
be an unstable condition. The uncoupled solution (Sζ = 0) is exactly s = ±iω, with
ω = νζ ± 1,ωx, andωy. Since an instability involves four roots, it requires a resonance
of a support mode and a rotor mode. At such a resonance, the coupling due to Sζ
produces the instability under certain conditions.

On substituting s = iω, the characteristic equation for the case of no damping
becomes (

(ν2
ζ − 1 − ω2)2 − 4ω2) (ω2

y − ω2)(ω2
x − ω2)

− (ν2
ζ − 1 − ω2)

(
My(ω

2
y − ω2)+ Mx(ω

2
x − ω2)

) NS2
ζ /2Iζ

MyMx
ω4

+ (NS2
ζ /2Iζ )2

MyMx
ω8 = 0 (20.93)

This polynomial can be solved numerically for ω2. Alternatively, values of ω2 can
be assumed, so the characteristic equation becomes a quadratic for the dimensional
frequency (ν2

ζ −�2). Thus the solution for ω2 as a function of � or νζ can be con-
structed. Where less than four values of ω2 are obtained for a given �, the motion
is unstable. The most general approach is to calculate the eigenvalues of the ground
resonance equations of motion.

Although an exact solution of the characteristic equation can be obtained numer-
ically, it is useful to have an analytical solution based on the assumption that the
coupling parameter Sζ is small. The roots for small coupling should be near the
exact solution for Sζ = 0: ω = νζ ± 1, ωx, and ωy. Therefore, we find a correction
of order S2

ζ to the uncoupled roots. Considering the solution near ω = ωx, write
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the eigenvalues as ω2 = ω2
x + S2

ζ s1. Then to lowest order in S2
ζ , the characteristic

equation is

− ((ν2
ζ − 1 − ω2

x)
2 − 4ω2

x

)
(ω2

y − ω2
x)s1 − (ν2

ζ − 1 − ω2
x)My(ω

2
y − ω2

x)
N/2Iζ
MyMx

ω4
x = 0

(20.94)
which gives

ω2 = ω2
x

[
1 − (ν2

ζ − 1 − ω2
x)ω

2
x

(ν2
ζ − 1 − ω2

x)
2 − 4ω2

x

NS2
ζ /2Iζ

Mx

]
(20.95)

The order S2
ζ solution near ω = ωy is similar. For the solution near ω = νζ ± 1, write

ω2 = (νζ ± 1)2 + S2
ζ s1. Then to lowest order in S2

ζ , the characteristic equation is

s12νζ (ω2
y − (νζ ± 1)2)(ω2

x − (νζ ± 1)2)

+ (νζ ± 1)5
(

My(ω
2
y − (νζ ± 1)2)+ Mx(ω

2
x − (νζ ± 1)2)

) N/2Iζ
MyMx

= 0 (20.96)

or

ω2 = (νζ ± 1)2
[

1 − (νζ ± 1)3

2νζ

My(ω
2
y − (νζ ± 1)2)+ Mx(ω

2
x − (νζ ± 1)2)

(ω2
y − (νζ ± 1)2)(ω2

x − (νζ ± 1)2)

NS2
ζ /2Iζ

MyMx

]
(20.97)

Near a resonance of ωx or ωy with a rotor root (νζ ± 1), this expansion is not valid.
In the limit � = 0, the dimensional lag frequency approaches the non-rotating

lag frequency νNR. In terms of the dimensionless frequencies, ωx and ωy become
infinite proportional to 1/�, and νζ ∼= νNR. Then the solution near ω = ωx becomes

ω2 = ω2
x

[
1 + ω2

x

ω2
x − ν2

NR

NS2
ζ /2Iζ

Mx

]
(20.98)

Hence the solution ω2 is increased at low rotor speed if ωx > νNR and decreased if
ωx > νNR. The solution near ω = νζ ± 1 for � = 0 is

ω2 = ν2
NR

[
1 − ν2

NR

2

My(ω
2
y − ν2

NR)+ Mx(ω
2
x − ν2

NR)

(ω2
y − ν2

NR)(ω
2
x − ν2

NR)

NS2
ζ /2Iζ

MyMx

]
(20.99)

The direction of the shift in ω2 depends on the magnitude of the non-rotating lag
frequency νNR relative to the support frequencies ωx and ωy.

In the limit of large rotor speed, the dimensional lag frequency becomes infinite
proportionally to�2. In terms of the dimensionless frequencies, ωx and ωy approach
zero as 1/�, while the lag frequency νζ approaches a constant per-rev value. Then
the solution near ω = ωx becomes

ω2 = ω2
x

[
1 − ω2

x

ν2
ζ − 1

NS2
ζ /2Iζ

Mx

]
(20.100)

The solution ω2 is increased if νζ < 1/rev. The solution near ω = νζ ± 1 for �
approaching infinity is

ω2 = (νζ ± 1)2
[

1 + νζ ± 1
2νζ

(My + Mx)
NS2

ζ /2Iζ
MyMx

]
(20.101)
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Figure 20.9. Coleman diagram of the ground resonance solution for an articulated rotor.

so ω2 is increased for the ω = νζ + 1 solution and also for the ω = νζ − 1 solution if
νζ > 1/rev.

Finally consider the limit ω = 0, for which the characteristic equation reduces
to (ν2

ζ − 1)2 = 0, which gives νζ − 1 = 0. With the rotor speed as a parameter, the
ω = 0 solution defines where the roots intercept the �-axis, namely at the rotor
speed for which νζ = 1/rev. In the uncoupled case, the solution ω = νζ − 1 intercepts
the �-axis at this point. The low-frequency lag mode root intercepts the �-axis at
the same point for all values of Sζ .

The ground resonance solution for the case of no damping can be presented
graphically in a form known as a Coleman diagram, which is a plot of the dimensional
frequencies ω (the roots of the characteristic equation) as a function of the rotor
speed �. The dimensional solution for the uncoupled case (Sζ = 0) is ω = ωx, ωy,
�± νζ , plus the corresponding negative frequencies, for a total of eight roots. The
negative solutions for ω are mirror images of the positive solutions and so need not
be plotted. The solution for Sζ > 0 can easily be sketched using these results for the
influence of small Sζ in the limits � = 0 and � = ∞, plus the knowledge that for a
coupled system the loci of roots never cross. The character of the ground resonance
solution depends primarily on the lag frequency ν2

ζ = K1 + K2�
2 (dimensional).

Figures 20.9 to 20.11 present the Coleman diagrams for three types of rotors:
an articulated rotor (K1 = 0 and K2 < l), a soft in-plane hingeless rotor (K1 > 0
and K2 < 1), and a stiff in-plane hingeless rotor (K1 > 0 and K2 > 1). The solution
for these cases was obtained by finding the eigenvalues of the ground resonance
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Figure 20.10. Coleman diagram of the ground resonance solution for a soft in-plane hingeless
rotor.

equations, for small coupling (S2
ζ /IζMx � 1) and K1 and K2 values chosen for expo-

sition. The uncoupled roots for the support modes are horizontal lines at ω = ωx

and ω = ωy, and the uncoupled roots for the rotor are the low- and high-frequency
rotor modes at ω = νζ ±�, which approach νNR = √

K1 at low rotor speed and are
asymptotic to constant per-rev values (

√
K2 ± 1)/rev) at high rotor speed. Thus the

lag mode frequencies are in resonance with the support mode frequencies at some
rotor speed.

For Sζ > 0, the solution is displaced from the uncoupled frequencies, as indicated
by the results for small coupling. If there are four positive solutions for ω at a given
rotor speed, then the system is stable (neutrally stable for this case of zero damping).
For the articulated and soft in-plane hingeless rotors (Figures 20.9 and 20.10), there
are ranges of � where only two positive real solutions for ω exist, occurring around
the resonances of the low-frequency lag mode (�− νζ ) with a support mode (ωx

or ωy). The characteristic equation has four complex solutions in these ranges, so
the system is unstable. The eigenvalue solution gives a single frequency (with ± real
parts) bridging the gaps. For the stiff in-plane hingeless rotor (Figure 20.11), four
positive solutions for ω exist at all rotor speeds, and a ground resonance instability
does not occur.

In summary, a ground resonance instability can occur at a resonance of a rotor
mode and a support mode. The resonances of the high-frequency lag mode (ω =
1 + νζ ) are always stable, but resonances of the low-frequency lag mode (ω = 1 − νζ )
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Figure 20.11. Coleman diagram of the ground resonance solution for a stiff in-plane hingeless
rotor.

are unstable if the rotating natural frequency νζ is below 1/rev, as for articulated and
soft in-plane hingeless rotors. The placement of the rotor lag frequency determines
whether or not a ground resonance instability can occur.

20.3.3 Damping Required for Ground Resonance Stability

For the case with damping of the lag and support motion, the stability boundary is
obtained by setting s = iω in the characteristic equation:

I2
ζ

(
(−ω2 + Ĉζ iω + ν2

ζ − 1)2 + (2iω + Ĉζ )2
)

× My(−ω2 + Ĉyiω + ω2
y)Mx(−ω2 + Ĉxiω + ω2

x)

− Iζ (−ω2 + Ĉζ iω + ν2
ζ − 1)

×
(

My(−ω2 + Ĉyiω + ω2
y)+ Mx(−ω2 + Ĉxiω + ω2

x)
)
(NS2

ζ /2)ω
4

+ (NS2
ζ /2)

2ω8 = 0 (20.102)

It is not possible to obtain an analytical solution for the stability boundary by elim-
inating ω2 from the real and imaginary parts of this equation. An inverse solution
is possible in which both the real and imaginary equations are solved for ω given
the rotor speed, or for the rotor speed � at a range of flutter frequencies. The real
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solutions for ω are then plotted as a function of �, as in the Coleman diagram. A
point where the solutions of the real and imaginary equations cross identifies a flutter
frequency for which s = iω satisfies the characteristic equation and hence defines the
stability boundary. The Coleman diagrams shown in Figures 20.9 to 20.11 are the
solution of the real part for the case of no damping. A more direct procedure is to
solve the characteristic equation for all roots or to solve the differential equations
for the eigenvalues and plot the frequency and damping ratio of the modes as a
function of � or some other parameter.

An analytical solution for an approximate stability criterion can be obtained
by again assuming Sζ is small. An instability can occur at a resonance of the low-
frequency mode with a support mode. When there is no damping and Sζ > 0, such a
resonance is unstable if νζ < 1/rev. Consider the damping required to stabilize this
motion. Since the point of exact resonance of the uncoupled frequencies is roughly in
the center of the instability region, that point is expected to be the most critical case,
requiring the most damping to stabilize. Therefore we derive the stability boundary
exactly at resonance, ωx = 1 − νζ . The solution is expanded for small S2

ζ , so ω2 ∼= ω2
x.

Since the instability is due to the inertial coupling Sζ , the damping (Ĉζ , Ĉx, Ĉy) at the
stability boundary must also be of order Sζ . For now ωx �= ωy is assumed. Then to
lowest order in S2

ζ , the characteristic equation for s = iω gives the stability boundary:

I2
ζ

(
4νζĈζ iωx

)
My(ω

2
y − ω2

x)Mx(Ĉxiωx)+ Iζ2(1 − νζ )My(ω
2
y − ω2

x)(NS2
ζ /2)ω

4
x

(20.103)
Hence the criterion for stability is

CζCx

ω2
x
>

N
4

1 − νζ
νζ

S2
ζ (20.104)

which was first obtained by Deutsch (1946). For stiff in-plane rotors (νζ > 1/rev), the
right-hand side is negative and the motion is always stable. For a soft in-plane rotor
(νζ < 1/rev), the product of the lag and support damping must be greater than this
critical value for stability. The criterion for the lateral mode resonance atωy = 1 − νζ
is similar. The stability boundary for a resonance with the high-frequency lag mode,
ωx = 1 + νζ , gives the criterion

CζCx

ω2
x
> −N

4
1 + νζ
νζ

S2
ζ (20.105)

which is always satisfied, even for zero damping.
For the case of an isotropic support (ωx = ωy), the characteristic equation to

lowest order in Sζ gives instead the following stability criterion:

Cζ
ω2

x

CyCx

Cy + Cx
>

N
4

1 − νζ
νζ

S2
ζ (20.106)

For isotropic support damping as well (Cx = Cy) this becomes

CζCx

ω2
x
>

N
2

1 − νζ
νζ

S2
ζ (20.107)

The isotropic case requires twice the damping as the anisotropic support because
equal lateral and longitudinal support frequencies allow a whirling motion of the
hub that couples well with the whirling motion of the low-frequency lag mode. The
definition of an isotropic support requires that the frequencies ωx and ωy be of order
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S2
ζ /IζMx apart, which is a small frequency difference. So in practice the isotropic

case is relevant when the rotor support structure is truly axisymmetric.
The resonance of the low-frequency lag mode with a support mode is unstable

if the lag frequency is below 1/rev and the product of the lag and support damping
is below a critical level. The other resonances of the lag and support modes are
stable even with no damping. The damping required for ground resonance stability
is proportional to the inertial coupling parameter Sζ . The damping required is also
proportional to (1 − νζ )/νζ . For the small lag frequency typical of articulated rotors,
a large amount of lag damping is required, so mechanical lag dampers are needed
to ensure ground resonance stability. For typical soft in-plane hingeless rotors, the
factor (1 − νζ )/νζ is an order of magnitude smaller than for articulated rotors, so the
blade structural damping may provide a sufficient level of Cζ . For ground resonance
stability, a high lag frequency is desired, but if νζ is too close to 1/rev the blade loads
and vibration are excessive. Thus even a hingeless rotor can require mechanical lag
dampers for stability.

The Deutsch criterion (equation 20.104) defines a threshold for the product
of damping. Both lag damping and support damping are required for stability. The
parameters in equation 20.104 are dimensional, except the lag frequency νζ is per-rev.
The lag damping Cζ is effective angular damping about the lag hinge (ft-lb/rad/sec
or m-N/rad/sec). The support damping Cx is effective linear damping at the hub
(lb/ft/sec or N/m/sec). The right-hand size of equation 20.104 is defined by the rotor:
number of blades N, lag mode first moment of inertia Sζ = ∫ R

0 ηζm dr, and lag
frequency νζ . The support mode is defined by the natural frequency ωx (rad/sec)
and the damping Cx. These parameters can be obtained for each vibration mode of
the rotor support from the measured frequency response of the hub to excitation
by in-plane forces. For uncoupled support modes, the damping is given by the peak
response of displacement to force at the hub node: Cx = 1/(ωx|x/F |max).

The Deutsch criterion defines the lag damping required at the resonance of the
low-frequency lag mode with ωx, which occurs at the rotor speed � = ωx/(1 − νζ ).
Then for each lateral and longitudinal support mode a critical ground resonance
rotor speed is obtained, as well as the lag damping required at that � to stabilize
the motion. By comparing the lag damping required with the damping available as
a function of rotor speed, the ground resonance stability can be assessed for a given
rotor and helicopter.

Ground resonance stability with articulated and soft in-plane hingeless rotors
can be achieved by providing a sufficient level of damping of the rotor lag motion
and of the support motion. Instabilities can also be avoided by a proper placement
of the natural frequencies of the airframe to avoid resonances, but often there are
too many other constraints on the structural design for this to be a practical means
of handling the ground resonance problem. With a stiff in-plane rotor (for example,
two-bladed teetering rotors and some hingeless rotor designs) the resonances are
all stable. With articulated rotors, mechanical dampers on the landing gear and at
the lag hinges are standard features of the helicopter design. The linear analysis
developed here has assumed viscous damping, in which the force opposing the
motion is proportional to the velocity of the motion. The actual damping of the
rotor and support is almost certainly nonlinear, particularly if mechanical dampers
are used. As described in section 18.6, nonlinear lag dampers can be described by
an equivalent viscous damping coefficient, based on the energy dissipated during a
cycle of motion. By this means the linear analysis can be applied to the real rotor.
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The equivalent viscous damping depends on the frequency and amplitude of the
lag motion. For example, frictional damping (restoring force proportional to the
sign of ζ̇ ) gives an equivalent viscous damping coefficient proportional to 1/(ωζamp);
whereas hydraulic damping (restoring force proportional to ζ̇ |ζ̇ |) gives an equivalent
damping proportional to ωζamp. The frequency of the ground resonance mode can
be assumed to be near the lag frequency, ω ∼= νζ� in the rotating frame, so that
the rotor speed defines the frequency for the lag dampers. Then the lag damping
level required for stability can be interpreted as a limitation on the lag amplitude.
The damping of the support is also likely to be nonlinear, because of the complex
structure of the helicopter and the presence of nonlinear elements such as oleo struts
and tires. The analysis should use the lowest equivalent viscous damping that is likely
to be encountered. Since calculation of the support characteristics is difficult at best,
the ground resonance analysis must rely on the measured airframe frequencies and
damping. The ground resonance instability is a simple phenomenon physically, and
therefore with good measurements of the rotor and support damping the stability
can be accurately predicted.

20.3.4 Complex Variable Representation of Motion

For the case of an axisymmetric support, complex variables can be used for a more
compact analysis (see section 19.7). Coleman (1943) used complex combinations of
the lag degrees of freedom and the shaft motion degrees of freedom to facilitate
derivation and solution of the ground resonance equations. Let z = ζ1c + iζ1s and
h = yh − ixh. Then equations 20.84 become

Iζ
(
z̈ + Ĉζ (ż − iz)− 2iż + (ν2

ζ − 1)z
)− Sζ ḧ = 0 (20.108)

Mx
(
ḧ + Ĉxḣ + ω2

xh
)− N

2
Sζ z̈ = 0 (20.109)

The characteristic equation

Iζ
(
s2 + (Ĉζ − 2i)s + ν2

ζ − 1 − iĈζ
)

Mx(s2 + Ĉxs + ω2
x)−

N
2

S2
ζ s

4 = 0 (20.110)

becomes for zero damping

Iζ (s2 − 2is + ν2
ζ − 1)Mx(s2 + ω2

x)−
N
2

S2
ζ s

4 = 0 (20.111)

The stability boundary for zero damping is obtained by setting s = iω:

Iζ
(−ω2 + 2�ω +�2(ν2

ζ − 1)
)

Mx(−ω2 + ω2
x)−

N
2

S2
ζω

4 = 0 (20.112)

which is a quadratic equation for� given ω. On the stability boundary at resonance,
s = iωx = i(1 − νζ ), the characteristic equation

−Cζ iνζCxiωx − N
2

S2
ζω

2
x(1 − νζ ) = 0 (20.113)

gives

CζCx

ω2
x
>

N
2

1 − νζ
νζ

S2
ζ (20.114)

the stability criterion for a symmetric support (equation 20.107).
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20.3.5 Two-Bladed Rotor

Now let us consider the ground resonance stability of a two-bladed rotor. Because
the rotor inertial properties are not axisymmetric as they are when N ≥ 3, the cyclic
lag degrees of freedom are not applicable to the two-bladed rotor. Instead, the lag
motion is described by the differential lag degree-of-freedom ζ1. The equation of
motion for ζ1 was obtained in section 16.7,

Iζ
(
ζ̈1 + Ĉζ + ν2

ζ ζ1
)+ Sζ (ẍh sinψ − ÿh cosψ) = 0 (20.115)

(equation 16.262), and the hub forces in sections 16.6.2 and 16.7:

H = −NMbẍh − NSζ
(
(ζ̈1 − ζ1) sinψ + 2ζ̇1 cosψ

)
(20.116)

Y = −NMbÿh + NSζ
(
(ζ̈1 − ζ1) cosψ − 2ζ̇1 sinψ

)
(20.117)

(equations 16.238, 16.239, 16.264, and 16.263). The aerodynamic forces have been
dropped and a lag damper included in the equation for ζ1. Again the hub longitudinal
and lateral equations of motion are

M̃xẍh + Cxẋh + Kxxh = H (20.118)

M̃yÿh + Cyẏh + Kyyh = Y (20.119)

The mass, spring, and damping of the support modes are defined by Mx = M̃x + NMb,
Kz = Mxω

2
x, and Cx = MxĈx; and similarly for the lateral mode. Then the equations

of motion describing ground resonance of a two-bladed rotor are⎡⎢⎣ Iζ −Sζ cosψ Sζ sinψ

−NSζ cosψ My 0

NSζ sinψ 0 Mx

⎤⎥⎦( ζ̈1

ÿh

ẍh

)
+

⎡⎢⎣ IζĈζ 0 0

2NSζ sinψ MyĈy 0

2NSζ cosψ 0 MxĈx

⎤⎥⎦( ζ̇1

ẏh

ẋh

)

+

⎡⎢⎣ Iζ ν2
ζ 0 0

NSζ cosψ Myω
2
y 0

−NSζ sinψ 0 Mxω
2
x

⎤⎥⎦( ζ1

yh

xh

)
= 0 (20.120)

These equations have periodic coefficients because of the inertial asymmetry of the
rotor when N = 2, and the fact that the lag degree-of-freedom ζ1 is really still in
the rotating frame. The methods for analyzing the stability of such equations are
discussed in section 15.6.

For the case of an isotropic support, constant coefficient differential equations
can be obtained in the rotating frame. Assume ωx = ωy, Mx = My, and Cx = Cy; and
define the hub deflections in the rotating frame:

yr = yh cosψ − xh sinψ (20.121)

xr = yh sinψ + xh cosψ (20.122)

A similar transformation of the hub in-plane forces generates the differential equa-
tions for xr and yr in the rotating frame. Then the equations describing the ground
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resonance dynamics with an isotropic support are⎡⎢⎣ Iζ −Sζ 0

−NSζ My 0

0 0 My

⎤⎥⎦
⎛⎝ ζ̈1

ÿr

ẍr

⎞⎠+

⎡⎢⎣ IζĈζ 0 −2Sζ

0 MyĈy 2My

2NSζ −2My MyĈy

⎤⎥⎦
⎛⎝ ζ̇1

ẏr

ẋr

⎞⎠

+

⎡⎢⎣
Iζ ν2

ζ Sζ 0

NSζ My(ω
2
y − 1) MyĈy

0 −MyĈy My(ω
2
y − 1)

⎤⎥⎦
⎛⎝ ζ1

yr

xr

⎞⎠ = 0 (20.123)

which have constant coefficients. In the rotating frame there are Coriolis and cen-
trifugal forces coupling the equations for the support motion. The characteristic
equation is

M2
y

(
(s2 + Ĉys + ω2

y − 1)2 + (2s + Ĉy)
2
)

Iζ (s2 + Ĉζ s + ν2
ζ )

+ My

(
(s2 + Ĉys + ω2

y − 1)(4s2 − (s2 − 1)2)− 4s(s2 − 1)(2s + Ĉy)
)

NS2
ζ = 0

(20.124)

For the case of no damping, the characteristic equation reduces to

M2
y

(
(s2 + ω2

y − 1)2 + 4s2
)

Iζ (s2 + ν2
ζ )

+ My

(
(s2 + ω2

y − 1)(4s2 − (s2 − 1)2)− 8s2(s2 − 1)
)

NS2
ζ = 0 (20.125)

The uncoupled solution (Sζ = 0) is s = iω, where ω = νζ and ω = ωy ± 1/rev. Hence
the support mode frequencies in the rotating frame are shifted by ±� from the
frequencies in the non-rotating frame, and the rotor mode is at the rotating lag
natural frequency νζ .

As with N ≥ 3, the solution of the characteristic equation for the case of no
damping can be expanded in Sζ about the uncoupled solution. The solution near
ω = νζ is

ω2 = ν2
ζ + (ν2

ζ − ω2
y + 1)(4ν2

ζ + (ν2
ζ + 1)2)− 8ν2

ζ (ν
2
ζ + 1)

(ν2
ζ − ω2

y + 1)2 − 4ν2
ζ

NS2
ζ /Iζ

My
(20.126)

and near ω = ωy ± 1, it is

ω2 = (ωy ± 1)2 − ω3
y(ωy ± 1)

2(ν2
ζ − (ωy ± 1)2)

NS2
ζ /Iζ

My
(20.127)

With these expressions, the directions the solutions shift when Sζ > 0 can be estab-
lished for the limits � = 0 and � approaching infinity.

Figures 20.12 and 20.13 present Coleman diagrams for articulated (soft in-plane)
and stiff in-plane two-bladed rotors. As in the case of three or more blades, a ground
resonance instability appears with soft in-plane rotors (νζ < 1/rev) at the resonance
of the support and the low-frequency lag mode, which in the rotating frame means
νζ = �− ωy.

For N = 2 the center of the ground resonance instability range is shifted to
a rotor speed above the uncoupled resonance, in contrast to the N ≥ 3 case, for
which the instability range remains centered about the resonance. This suggests that
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Figure 20.12. Coleman diagram of the ground resonance solution for a two-bladed articulated
rotor (νζ < 1/rev) on an isotropic support.

for large enough coupling the instability region might be shifted above the rotor
operating range. To examine this possibility, consider the intersection of the locus
with the 1/rev line, as indicated in Figure 20.12. On substituting s2 = −1, for the case
of no damping, the characteristic equation reduces to

Myω
2
y

(
My(ω

2
y − 4)Iζ (ν2

ζ − 1)− 8NS2
ζ

)
= 0 (20.128)

Now since ω = 1/rev in the rotating frame corresponds to ω = 0 and to ω = 2/rev
in the non-rotating frame, the uncoupled solutions are ωy = 0 and ωy = 2/rev, and
νζ = 1/rev. The ωy = 2/rev solution (ω = ωy −�) is of interest here. For the coupled
case (Sζ > 0), this resonance occurs at the rotor speed

�2 = (ωy/2)2

1 − 2
1 − ν2

ζ

NS2
ζ /Iζ

My

(20.129)

which increases with Sζ for the soft in-plane rotor. The ground resonance instability
always occurs at a rotor speed above this value, and thus it provides a conservative
criterion for avoiding ground resonance. If

NS2
ζ /Iζ

My
>

1 − ν2
ζ

2
(20.130)
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Figure 20.13. Coleman diagram of the ground resonance solution for a two-bladed stiff in-
plane rotor (νζ > 1/rev) on an isotropic support.

then both the 1/rev resonance (2/rev in the non-rotating frame) and the instability
region are swept to � = ∞. The inertial coupling required is rather large, however,
even when νζ = 0.85 or so, which is about the upper limit for soft in-plane hingeless
rotors.

In Figure 20.12 there is also a region, just below � = ωy, where there are only
two real solutions for ω and hence the motion is unstable. This phenomenon occurs
also for the stiff in-plane rotor (a very narrow range in Figure 20.13), but is not
present for rotors with three or more blades. In this instability region two roots of
the characteristic equation are on the real axis, with zero frequency: one positive and
one negative. The frequency ω = 0 in the rotating frame corresponds to ω = 1/rev
in the non-rotating frame. Hence this instability is associated with the shaft critical
speeds, where the rotor speed passes through the support natural frequency ωy. On
setting s = 0, the characteristic equation becomes

(ω2
y − 1)

(
My(ω

2
y − 1)Iζ ν2

ζ − NS2
ζ

)
= 0 (20.131)

which has the two solutions, ω2
y = 1 and

ω2
y = 1 + 1

ν2
ζ

NS2
ζ /Iζ

My
(20.132)
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These equations are valid for large Sζ and give the two points where the coupled
roots intercept the s-axis. The shaft critical instability thus occurs in the range

ω2
y

1 + 1
ν2
ζ

NS2
ζ /Iζ

My

< �2 < ω2
y (20.133)

For an articulated rotor (with small νζ ) this rotor speed range can be large even
though the inertial coupling is small.

Next, consider the damping required to stabilize the ground resonance motion
of a two-bladed rotor. With lag and support damping, s = iω defines the stability
boundary. As in the N ≥ 3 case, the equation for the stability boundary is expanded
in S2

ζ about the resonance νζ = 1 − ωy. To lowest order in S2
ζ , the characteristic

equation gives the stability criterion

CζCy > − ω
3
y(ωy − 1)

2ν2
ζ

NS2
ζ (20.134)

or since ωy(ωy − 1)/νζ = νζ − 1,

CζCy

ω2
y
>

N
2

1 − νζ
νζ

S2
ζ (20.135)

This is the same criterion as for a rotor with three or more blades on an isotropic
support (equation 20.107). For a stiff in-plane rotor (νζ > 1/rev) the resonance is
always stable.

The damping required to stabilize the shaft critical mode (a divergence instability
in the rotating frame) is obtained by substituting s = 0 in the characteristic equation:

M2
y

(
(ω2

y − 1)2 + Ĉ2
y

)
Iζ ν2

ζ − My(ω
2
y − 1)NS2

ζ = 0 (20.136)

The motion is stable if the support damping satisfies the criterion

C2
y > My(ω

2
y − 1)

[
1
ν2
ζ

NS2
ζ /Iζ − My(ω

2
y − 1)

]
(20.137)

The damping required is zero at the end points of the shaft critical speed region and
has a maximum midway between them at

ω2
y = 1 + 1

2ν2
ζ

NS2
ζ /Iζ

My
(20.138)

or

�2 = ω2
y

1 + 1
2ν2
ζ

NS2
ζ /Iζ

My

(20.139)

The damping required to stabilize the entire range is

Cy > �
1

2ν2
ζ

NS2
ζ /Iζ ∼= ωy

1
2ν2
ζ

NS2
ζ /Iζ (20.140)

This result is exact for all values of the inertial coupling Sζ . In contrast to the ground
resonance instability, only support damping is required to stabilize this motion. The
level of support damping specified by this criterion is usually not very large.
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Coleman and Feingold (1947) investigated the general case of a two-bladed rotor
on an anisotropic support and obtained the stability by the infinite determinant
method for analyzing periodic-coefficient differential equations. They found that
the dynamic behavior, specifically the possible instabilities, are much the same as
for the case with isotropic support. However, the periodic coefficients introduce
additional resonances. A ground resonance instability can occur for soft in-plane
rotors at frequencies near ωy = 1 − νζ + 2n/rev, or at � = ωy/(1 − νζ + 2n) where
n is a positive integer. The shaft critical speed occurs at ωy = 1 + 2n/rev or at � =
ωy/(1 + 2n). Thus for given rotor lag and support frequencies, additional resonances
occur at rotor speeds lower than the fundamental. These resonances due to the
periodic coefficients tend to occur at low � and have a narrower instability range
than the fundamental resonance. Hence much less damping is required to stabilize
the motion in these regions.

The most common two-bladed rotor design is the stiff in-plane teetering config-
uration. Ground resonance is not a concern since the lag frequency is above 1/rev,
and only a low level of support damping is required to handle the shaft critical speed
instability.

20.3.6 Air Resonance

The mechanical instability involving the coupling of the blade lag motion with the
in-plane motion of a body mode can occur in flight, and then it is called air resonance.
When the aircraft is not in contact with the ground, the frequency of the resonant
body mode is determined by the flapping stiffness and by the damping provided by
the aerodynamic forces due to flap. Although the mechanism of the instability is the
same as for ground resonance, the analysis of air resonance is more complicated,
requiring models of flap motion and aerodynamics. See Ormiston (1991) for further
exposition.

Articulated rotors generally do not encounter air resonance. With a small lag
frequency and small flap stiffness, resonances of the regressive lag mode and body
modes occur at low rotor speed, well below the operating speeds required for flight.
Air resonance must be considered for soft in-plane hingeless and bearingless rotors.
The higher lag frequency (smaller regressive lag mode frequency) and higher flap
stiffness (higher support frequencies) raise the rotor speed of resonances, possibly
to near operating speeds. Moreover, hingeless rotors typically do not have much
mechanical or structural damping of the lag motion. The body pitch and roll degrees
of freedom produce in-plane hub motion and couple with the low-frequency flap
motion; hence these are the support modes usually involved with air resonance of
helicopters.

A tiltrotor with a soft in-plane rotor can encounter air resonance involving
the fundamental vibration modes of the wing. In-plane motion of the rotor hub is
produced by the wing chord bending motion in the helicopter configuration and by
the wing vertical bending motion in the airplane configuration.

20.3.7 Dynamic Inflow

The rotor wake has a strong influence on blade flap dynamics, as discussed in section
19.5. Dynamic inflow (section 11.3) provides a global, low-frequency model for the
wake-induced velocity. The simplest model has three inflow states, consisting of
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uniform (λ0) and linear (λc, λs) perturbations of the wake-induced downwash at the
rotor disk. Rotor aerodynamic hub moments produce perturbations of the linear
inflow gradient over the disk, so the wake influence is largest with hingeless rotors.
Hence the wake influence is an important factor for air resonance.

Bousman (1981) established experimentally the existence of a rotor aerodynamic
state in a test of the ground resonance stability of a model rotor. The principal
objective of the test was to explore the potential for pitch-flap coupling, flap-lag
structural coupling, and matched flap and lag stiffness to stabilize the rotor regressive
lag mode. The model was a three-bladed hingeless rotor, supported in a gimbal
frame that allowed pitch and roll motion. The configurations tested included a non-
matched stiffness rotor (configuration 1, νζ = 0.59 and νβ = 1.11 at maximum rotor
speed) and a matched stiffness rotor (configuration 4, νζ = 0.59 and νβ = 1.16 at
maximum rotor speed). Matched stiffness (equal non-rotating flap and lag stiffness)
was obtained by increasing the stiffness of the flap flexure. Hence configuration 4
could generate larger hub moments, resulting in larger participation of inflow states.
The model was tested in hover, at zero collective. The experimental method found
all modes that could be excited, not just the regressive-lag and body modes.

Figures 20.14 and 20.15 show the measured modal frequency and damping for
the non-matched and matched stiffness configurations. For the non-matched stiffness
configuration (lower flap stiffness), the frequencies are reasonably well predicted
without a dynamic inflow model, but the pitch and roll mode damping are over-
predicted. Without the dynamic inflow model, the frequency and damping of the
matched stiffness configuration are accurately calculated only for the regressive lag
mode; the calculations are poor for all other modes. The calculated damping of the
flap regressive mode is so high that the mode should not have been observable in
the test.

Bousman hypothesized that the differences between measured and calculated
results were attributable to the influence of inflow dynamics, which was confirmed in
calculations by Johnson (1982). The frequency and damping for both matched and
non-matched stiffness configurations are predicted well by including the three-state
dynamic inflow model in the analysis (Figures 20.14 and 20.15). The implication is
that because of the organization of the wake, the air responds as a whole to motion
of the rotor, a response well described by the loading derivatives and time lag of
simple dynamic inflow models. In addition to showing the large effect of the wake
on coupled airframe-rotor dynamics of hingeless rotors, Bousman’s test constitutes
unique experimental evidence that the air about the rotor (the wake) behaves as
characterized by dynamic inflow states.

20.3.8 History

Coleman and Feingold (1958) developed the analysis of ground resonance. This
report republished work by Coleman (1943) on the case of three or more blades,
by Feingold (1943) on the case of a two-bladed rotor with an isotropic support,
and by Coleman and Feingold (1947) on the undamped two-bladed rotor with an
anisotropic support. According to the foreword of Coleman and Feingold (1958),

During the early part of World War II, some of the helicopters designed for military use
were observed during ground tests to exhibit a violent oscillatory rotor instability which
endangered the safety of the aircraft. This instability was at first attributed to rotor-blade
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Figure 20.14. Modal frequencies and damping as a function of rotor speed for non-matched
stiffness configuration, comparing model rotor measurements and calculations with and with-
out dynamic inflow.

flutter, but a careful analysis indicated it to be caused by a hitherto unknown phenomenon
in which the rotational energy of the rotor was converted into oscillatory energy of the
blades. This phenomenon was usually critical when the helicopter was operating on or
near the ground and, hence, was called ground resonance. An oscillatory instability of
such magnitude as resulted from this phenomenon would generate forces that could
quickly destroy a helicopter. The research efforts of the National Advisory Committee
for Aeronautics were therefore enlisted to investigate the difficulties introduced by this
phenomenon. During the interval between 1942 and 1947, a theory of the self-excited
instability of hinged rotor blades was worked out by Robert P. Coleman and Arnold
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Figure 20.15. Modal frequencies and damping as a function of rotor speed for matched stiff-
ness configuration, comparing model rotor measurements and calculations with and without
dynamic inflow.

M. Feingold at the Langley Aeronautic Laboratory. This theory defined the important
parameters and provided design information which made it possible to eliminate this
type of instability.

Coleman’s 1943 report was a corrected version of a July 1942 Advance Restricted
Report of the same title. The original reports were combined into a single volume
by George W. Brooks, who also contributed an appendix.
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Ground resonance was a problem encountered by a number of autogyros. When
the YG-1 rotor destroyed itself in the NACA Langley full-scale wind tunnel, the
problem was recognized as an inherent instability of the aircraft. Gustafson (1970)
mentioned the 1937 accident in the NACA wind tunnel, but noted that “the studies
of [Coleman] were originally inspired by industry test experience for an advanced
autogiro.” Brooks (1988) described the 1941 Kellett XR-2 development:

The accident to XR-2 proved to be important to the whole development of rotary wings.
During one of the first tests of a jump take-off, ground resonance set in at high rotor
speed. This built up so rapidly that the aircraft broke up before anything could be done to
stop it. In less than five seconds, the rotor pylon support structure collapsed and the fuse-
lage broke in two places, between the engine and pylon and pylon and tail. This dramatic
further demonstration of a problem that had recurred repeatedly throughout the devel-
opment of rotary-wing aircraft had an important effect in influencing the United States
Army Air Force, the NACA and Kellett into tackling the basic problem of ground res-
onance. Bob Wagner of Kellett and Prewitt Coleman of NACA came up independently
with mathematical solutions for the proper configuration and for damping to prevent
ground resonance. This was a major step in the development of rotary-wing aircraft.
Paul Stanley of the Autogiro Company of America had also arrived at mathematical and
engineering solutions to the problem with the result that Pitcairn Autogiros are claimed
to have largely avoided ground resonance.

There was contemporary development of ground resonance analysis by Wagner,
Deutsch, and Focke (see Coleman (1943), Focke (1943), Deutsch (1946), and Wagner
(1954)). Coleman’s work provided the foundation for future engineering treatment
of ground resonance in helicopters.

Coleman (1943) developed the theory of ground resonance stability for rotors
with three or more blades, on symmetric or asymmetric support, including the effects
of damping. “Of the large number of degrees of freedom of a hinged rotor, the
important ones for the present problem have been found to be hinge deflection of
the blades in the plane of rotation and horizontal deflections of the pylon. Other
degrees of freedom, such as the flapping hinge motion of the blades, the bending or
torsion of the blades, and the torsion of the drive shaft, are considered unimportant
in the problem of self-excited oscillations.” By using “special linear combinations
of the hinge deflections” in the fixed reference frame (equivalent to multiblade
coordinates), equations with constant coefficients were obtained, and only the first-
harmonic coordinates of the lag motion were coupled with the pylon motion. “The
physical meaning of this partial separation of variables is that . . . involves a motion
of the common center of mass of the blades and, thus, a coupling effect with the
pylon.” Introducing these new coordinates was a crucial step, enabling a practical
mathematical solution for ground resonance stability. Complex combinations of the
pylon degrees of freedom and the lag hinge degrees of freedom reduced the number
of equations from four to two. The case of no damping reduces to a single equation
that is a quadratic function of the rotor speed, for an assumed value of the whirl
frequency (eigenvalue). The resulting plot of lag and body mode frequencies as a
function of rotor speed is the Coleman diagram, in which the absence of a solution
at a rotor speed indicates instability.
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20.4 Whirl Flutter

Whirl flutter is the coupled motion of the airframe and a propeller or proprotor that
becomes unstable at high forward speed, with the rotor operating in axial flow. The
phenomenon was encountered on propeller-driven aircraft, with a rigid propeller
mounted on a pylon with pitch and yaw flexibility. For a tiltrotor, the wing elastic
motions (vertical bending, chordwise bending, and torsion) couple with a flexible
proprotor. The rigid body and elastic motion of the blades have a significant effect
on the whirl flutter character. Demonstrating whirl flutter stability and analysis capa-
bility was a major issue in the development of the tiltrotor concept. The derivation
of the whirl flutter equations and the propeller whirl flutter solution of this section
follows Johnson (1974b).

20.4.1 Whirl Flutter Equations

Consider a proprotor or propeller on an aircraft in forward flight, hence operating
in axial flow with the rotor z-axis forward, x-axis upward, and y-axis to the right.
The aerodynamic environment is axisymmetric, with high inflow ratio: μz = V/�R,
λ = λi + μz. The rotor is mounted on a pylon, with a pivot a distance h on the shaft
axes aft of the hub. The pivot has a pitch degree-of-freedom αy and a yaw degree-
of-freedom αx. So the in-plane hub displacements are xh = hαy and yh = −hαx. The
equations of motion of the pylon are

Ĩyα̈y + C̃yα̇y + K̃yαy = My + hH (20.141)

Ĩxα̈x + C̃xα̇x + K̃xαx = Mx − hY (20.142)

where the right-hand side is the rotor hub forces and moments. The hub forces
include the inertial reactions to the blade mass, which are added pylon inertia to
obtain the total moments of inertia: Ix = Ĩx + NMbh2. The pylon equations are nor-
malized by dividing by N

2 Ib:

Îyα̈y + Ĉyα̇y + K̂yαy = γ 2CMy

σa
+ hγ

2CH

σa
(20.143)

Îxα̈x + Ĉxα̇y + K̂xαx = γ 2CMx

σa
− hγ

2CY

σa
(20.144)

where Îx = Ix/(
N
2 Ib), Ĉx = C̃x/(

N
2 Ib�), and K̂x = K̃x/(

N
2 Ib�

2) = Îxω
2
x. The pylon

motion couples with the tip-path-plane tilt degrees of freedom of the rotor. Sub-
stituting for xh and yh, equation 19.26 for the flap motion becomes

(
β̈1c

β̈1s

)
+
[−γMβ̇ 2

−2 −γMβ̇

](
β̇1c

β̇1s

)
+
[
ν2
β − 1 −γMβ̇

γMβ̇ ν2
β − 1

](
β1c

β1s

)

=
(
α̈y

−α̈x

)
+
[−γMβ̇ 2

−2 −γMβ̇

](
α̇y

−α̇x

)
+ γMμ

(−hα̇x + λαx

−hα̇y + λαy

)
(20.145)

for a rotor with three or more blades, no pitch-flap coupling, and using Iβ = Iβα = 1.
The in-plane velocity perturbations due to shaft tilt relative to the velocity vector
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(λα terms) have been included now; see section 16.8.7. From equation 19.73, the hub
force is ⎛⎜⎝

2CH

σa
2CY

σa

⎞⎟⎠ = Rβ

(
β1c

β1s

)
+
[

Rβ̇ Hβ̇

−Hβ̇ Rβ̇

](
β̇1c + β1s − α̇y

β̇1s − β1c + α̇x

)

+
[−(Hμ + Rμ) Rr

−Rr −(Hμ + Rμ)

](
hα̇y − λαy

−hα̇x + λαx

)
(20.146)

The flapping equations can be used to express the hub moment (equation 19.75) in
terms of the degrees of freedom:

γ

⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠ = (ν2
β − 1)

(
β1c

β1s

)

= −
(
β̈1c

β̈1s

)
−
[−γMβ̇ 2

−2 −γMβ̇

](
β̇1c

β̇1s

)
−
[

0 −γMβ̇

γMβ̇ 0

](
β1c

β1s

)
+
(
α̈y

−α̈x

)
+
[−γMβ̇ 2

−2 −γMβ̇

](
α̇y

−α̇x

)
+ γMμ

(−hα̇x + λαx

−hα̇y + λαy

)
(20.147)

The equations of motion for the tip-path-plane tilt and pylon angular motion are
thus (

β̈1c

β̈1s

)
+
[−1 0

0 1

](
α̈y

α̈x

)

+
[−γMβ̇ 2

−2 −γMβ̇

](
β̇1c

β̇1s

)
+
[

γMβ̇ 2 + hγMμ

2 + hγMμ −γMβ̇

](
α̇y

α̇x

)

+
[
ν2
β − 1 −γMβ̇

γMβ̇ ν2
β − 1

](
β1c

β1s

)
+
[

0 −γ λMμ

−γ λMμ 0

](
αy

αx

)
= 0 (20.148)

and[−1 0
0 1

](
β̈1c

β̈1s

)
+
[

Îy + 1 0
0 Îx + 1

](
α̈y

α̈x

)

+
[
γMβ̇ − hγRβ̇ −2 − hγHβ̇

−2 − hγHβ̇ −(γMβ̇ − hγRβ̇ )

](
β̇1c

β̇1s

)

+
[

Ĉy − γMβ̇ + hγRβ̇ + h2γ (Hμ + Rμ) −(2 + hγMμ + hγHβ̇ − h2γRr)

2 + hγMμ + hγHβ̇ − h2γRr Ĉx − γMβ̇ + hγRβ̇ + h2γ (Hμ + Rμ)

](
α̇y

α̇x

)

+
[

hγ (Hβ̇ − Rβ ) γMβ̇ − hγRβ̇
γMβ̇ − hγRβ̇ −hγ (Hβ̇ − Rβ )

](
β1c

β1s

)

+
[

K̂y − hγ λ(Hμ + Rμ) γ λMμ − hγ λRr

−(γ λMμ − hγ λRr) K̂x − hγ λ(Hμ + Rμ)

](
αy

αx

)
= 0 (20.149)

The aerodynamic coefficients for high inflow are given in section 16.8.9.
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20.4.2 Propeller Whirl Flutter

Consider a propeller with three or more blades on a soft-mounted pylon. The pylon
flexibility might be low because of structural damage. Assuming the blade frequen-
cies are well above the pylon natural frequencies, the blade equations can be dropped
and the equations for propeller whirl flutter are[

Iy 0
0 Ix

](
α̈y

α̈x

)
+
[

Cy −D
D Cx

](
α̇y

α̇x

)
+
[

Ky L
−L Kx

](
αy

αx

)
= 0 (20.150)

where Ix = Îx + 1 (the sum of pylon and rotor moments of inertia), Cx = Ĉx + Ca,
Kx = K̂x − Ka, and

Ca = −γMβ̇ + hγRβ̇ + h2γ (Hμ + Rμ)

∼= γ
∫ 1

0

r4

2U
dr + h2γ

∫ 1

0

λ2

2U
dr ∼= γ

8
cosφe + h2 γ

2
λ sinφe (20.151)

D = 2 + hγMμ + hγHβ̇ − h2γRr

∼= 2 + hγ
∫ 1

0

λr2

2U
dr − hγ

∫ 1

0

λr2

2U
dr ∼= 2 (20.152)

Ka = hγ λ(Hμ + Rμ) ∼= hγ
∫ 1

0

λ3

2U
dr ∼= h

γ

2
λ2 sinφe (20.153)

L = γ λMμ − hγ λRr
∼= γ

∫ 1

0

λ2r2

2U
dr ∼= γ

4
λ2 cosφe (20.154)

using the high-inflow results of section 16.8.9. For the last approximations, the inflow
angle is evaluated at an effective radius re, so φe = tan−1 λ/re. The sum

Mμ + Hβ̇ =
∫ 1

0
r(FzT + FxP)dr =

∫ 1

0
rU
(

3
c�
2a

+ M
c�M
2a

− cdα

2a

)
dr (20.155)

is always smaller than the Coriolis coupling in D. The aerodynamic damping Ca is
positive, and the term from Hμ increases with speed. The aerodynamic spring −Ka

is negative. Both Ka and the aerodynamic coupling L increase with speed.
The characteristic equation for propeller whirl flutter is

(Iys2 + Cys + Ky)(Ixs2 + Cxs + Kx)+ (−Ds + L)2 = 0 (20.156)

Without aerodynamics this reduces to

(Iys2 + Ĉys + K̂y)(Ixs2 + Ĉxs + K̂x)+ 4s2 = 0 (20.157)

which always has stable roots, even with the Coriolis coupling of the pitch and yaw
motion. Hence whirl flutter is caused by the aerodynamic forces on the rotor. If
the spring about one axis is very large (and the other large enough to preclude
divergence), the remaining degree of freedom is stable. Whirl flutter instability
requires both pitch and yaw motion of the pylon. The sum of α̇y times the αy equation
and α̇x times the αx equation gives an energy balance for the whirl flutter motion:

d
dψ

(1
2

Iyα̇
2
y + 1

2
Ixα̇

2
x + 1

2
Kyα

2
y + 1

2
Kxα

2
x

)
= −

(
Cyα̇

2
y + Cxα̇

2
x + L(αxα̇y − αyα̇x)

)
(20.158)
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which was derived by Young and Lytwyn (1967). The left-hand side is the time
rate of change of the sum of the kinetic and potential energies of the system. If
the right-hand side is negative, the energy is decreasing with time, and the system is
stable. The damping terms (Cy and Cx) are always extracting energy from the system.
The Coriolis coupling (D) does not enter the energy balance. An instability is only
possible if L(αxα̇y − αyα̇x) is sufficiently large and negative. The coefficient L is
positive, so an instability has αxα̇y − αyα̇x < 0. Writing αx = a cos θ and αy = a sin θ ,
this gives a2θ̇ < 0. So an instability occurs with the shaft whirling in a direction
opposite the rotor rotation, which is called a backward whirl mode. Whirl flutter is
caused by the aerodynamic coupling spring L ∼= γ λMμ

∼= γ

4 λ
2 cosφe. Pitch αy tilts

the rotor relative to the axial flow λ, producing an in-plane velocity λαy, which gives
a roll moment on the hub through the aerodynamic coefficient Mμ. L increases with
forward speed. Thus whirl flutter for a rigid propeller on a pylon is a high inflow
instability caused by the aerodynamic spring coupling Mμ, occurring in a backward
whirl mode.

The divergence stability criterion is obtained by setting s = 0 in the characteristic
equation, which gives KyKx + L2 > 0 or

(K̂y − hγ λ(Hμ + Rμ))(K̂x − hγ λ(Hμ + Rμ))+ (γ λMμ − hγ λRr)
2

∼= (K̂y − hγ λHμ))(K̂x − hγ λHμ))+ (γ λMμ)
2 > 0 (20.159)

Divergence can occur if one of the structural springs (but not both) is sufficiently
smaller than the negative aerodynamic spring Ka = hγ λ(Hμ + Rμ). The stability
boundary is a hyperbola on the K̂y vs. K̂x plane. The isotropic case (K̂y = K̂x) is
stable.

The flutter stability boundary is obtained by setting s = iω (where ω is real) in
the characteristic equation. The real part is

(Ky − Iyω
2)(Kx − Ixω

2)− (D2 + CyCx)ω
2 + L2 = 0 (20.160)

The imaginary part can be solved for the flutter frequency:

ω2 = KyCx + KxCy − 2DL
IyCx + IxCy

(20.161)

Substituting for ω2 in the real part gives the equation of the stability boundary.
The resulting equation is a parabola in terms of the pylon stiffnesses. Figure 20.16
illustrates the flutter and divergence stability boundaries for propeller whirl flutter.
The boundaries are shown in terms of the pylon pitch and yaw frequencies (ωx/� =
(K̂x/Ix)

1/2 and ωy/� = (K̂y/Iy)
1/2), for several values of the inflow ratio λ = V/�R.

The properties for this example are h = 0.3, γ = 4, Ix = Iy = 3, and Ĉx = Ĉy = 0.
The stiffness required for stability is greatest for the isotropic case (Figure 20.16).

With equal inertia, stiffness, and damping of the pylon pitch and roll motions, the
characteristic equation becomes

Is2 + Cs + K ± i(−Ds + L) = 0 (20.162)

Substituting s = iω, the imaginary part gives ω = ∓L/C, and the stability boundary
is

K − I
(

L
C

)2

− D
L
C
> 0 (20.163)
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Figure 20.16. Flutter and divergence stability boundaries for propeller whirl flutter.

The required stiffness is

K̂ > Ka + L

Ĉ + Ca

(
D + (Î + 1)

L

Ĉ + Ca

)
(20.164)

with Ka
∼= hγ λHμ, D ∼= 2, Ca

∼= −γMβ̇ + h2γHμ, and L ∼= γ λMμ. The flutter fre-
quency can be writtenω2 = (L/C)2 = (K − DL/C)/I, as from the general equations.

20.4.3 Tiltrotor Whirl Flutter

Whirl flutter of a tiltrotor aircraft involves the wing elastic motion coupled with
flexible proprotors. The tiltrotor configuration is described in section 8.2. With large
proprotors, neglecting the blade motion is not possible. Indeed, most tiltrotor designs
have dynamic characteristics similar to those of hingeless rotors, notably the impor-
tance of pitch-lag and flap-lag coupling. The blade dynamic design must accommo-
date large ranges of rotor speed and collective pitch. The attachment of the tiltrotor
nacelle is relatively stiff, so the wing provides the flexibility of the rotor support. The
flutter modes are thus the fundamental wing motions (vertical bending, chordwise
bending, and torsion), both symmetric and anti-symmetric for the complete aircraft.
The rotor rotational speed perturbations influence the stability, so the drive train
dynamics must also be included in the model. Tiltrotor whirl flutter fundamentally
involves a large number of degrees of freedom: aircraft rigid-body motion, wing
bending, torsion modes; rotor flap motion; lowest frequency blade lag and torsion
degrees of freedom; rotor rotational speed; and inter-connect shaft elastic deflection.
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Usually symmetric flight conditions are considered, so symmetric and anti-symmetric
subsystems can be analyzed separately for stability.

The aerodynamic analysis is simpler for the proprotor (high inflow, axial flight)
than for the helicopter rotor (low inflow, edgewise flight). Axial flight implies a
symmetric aerodynamic environment and hence constant coefficient equations of
motion. In high inflow, both the in-plane and the out-of-plane blade motion produce
a first-order change in the blade angle-of-attack; hence, through the lift-curve slope
a first-order change in lift, which has both in-plane and out-of-plane components. So
the lift-curve slope terms dominate the aerodynamic forces (see section 16.8.9 and
Johnson (1974a)), and the coefficients depend mainly on the inflow ratio λ ∼= V/�R.
In contrast, for the rotor with low inflow, in-plane motion produces lift and drag
perturbations due to the dynamic pressure change and tilts the mean lift and drag
forces; therefore the in-plane forces or forces due to the in-plane motion are small and
depend on the blade trim loading. Lift changes due to angle-of-attack perturbations,
normally responsible for the high aerodynamic damping of the rotor flap motion,
in the proprotor also produce a high aerodynamic damping of the blade in-plane
motion.

The blade flap motion leads to a 90◦ phase shift in the aerodynamic loads
produced by rotor shaft motion. Consequently the mechanisms of tiltrotor whirl
flutter are fundamentally different from those of propeller whirl flutter. Hall (1966)
identified the principal mechanism of tiltrotor whirl flutter as the in-plane hub force
due to shaft angular velocity. From equation 19.80, the moment on a point a distance
h aft of the hub is

�

⎛⎜⎝
2CMy

σa
2CMx

σa

⎞⎟⎠ = −h
(
Hβ̇ − Rβ

) 16
γ

(
α̇y

α̇x

)
(20.165)

The factor 16/γ arises from the flapping required to produce a moment on the
rotor disk, such that the rotor disk follows the shaft rate. The factor Hβ̇ − Rβ is the
hub force due to tip-path-plane tilt. For low inflow, Hβ̇ − Rβ = (2CT/σa)+ Ĥβ̇ =
(2CT/σa)− (λHP/4). As discussed in section 16.8.6, the hub force due to tip-path-
plane tilt has several sources. The slope of the blade due to flap deflection tilts the
blade lift radially, producing an in-plane component of the thrust (Rβ = −CT/σa).
The rotating-frame flap velocity due to tip-path-plane tilt changes the blade angle-
of-attack, which tilts the blade lift chordwise and thereby produces an in-plane
component of the thrust (CT/σa term in Hβ̇). The flap velocity changes the blade
lift magnitude as well, and since the lift has an in-plane component due to the trim
induced velocity, in-plane hub forces are produced by these lift magnitude changes
(Ĥβ̇ = −λHP/4). For low inflow, Ĥβ̇ reduces the thrust vector tilt with the tip-path
plane, but the net contribution of the rotor to helicopter pitch and roll damping is
still positive. For high inflow (section 16.8.9), the inflow term dominates:

Hβ̇
∼= −

∫ 1

0

λr2

2U
dr ∼= −λ

4
cosφe (20.166)

Thus the moments in equation 20.165 are destabilizing at high inflow. Large λmeans
that the trim section lift direction is tilted far from the z-axis. Hence lift changes due
to the rotor motion have a large in-plane component. The stability of a multi-degree-
of-freedom system is complex and cannot be explained by a single destabilizing term.
There are stabilizing aerodynamic loads, which also increase with inflow ratio, and
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Figure 20.17. Wing mode damping of tiltrotor on a cantilever wing; influence of rotor
rotational-speed degree of freedom.

equation 20.165 is a quasistatic result. Gaffey, Yen, and Kvaternik (1969) discussed
the variation of the rotor loads with frequency.

At high enough forward speed, the coupled wing and proprotor motion becomes
unstable. Figure 20.17 illustrates the behavior of the damping of the fundamental
wing bending and torsion modes. These calculations are based on a model of the
XV-15 proprotor on a cantilever wing. The rotor has a gimballed, stiff in-plane hub
configuration. The rotor is trimmed to provide thrust corresponding to a constant
D/q of the aircraft. The free rotor speed case is the reference for the following
figures.

The rotor rotational-speed degree of freedom has a major influence on the whirl
flutter stability. Vertical bending of the wing is accompanied by a roll motion of
the rotor shaft. If the rotor rotational speed is fixed relative to the pylon, this roll
motion is transmitted to the rotor, and the high aerodynamic damping of the rotor
greatly stabilizes the wing mode (Figure 20.17). If the rotor rotational-speed degree
of freedom is free relative to the pylon (in the analysis the rotor mean thrust and
torque can be maintained), this source of damping is absent, and the instability occurs
at significantly lower speed. Typically, the engine inertia, engine damping, and rotor-
speed governor offer little restraint of the rotational-speed degree of freedom in the
symmetric motions of a tilting proprotor aircraft. In the anti-symmetric motions, the
interconnect shaft constrains the rotor speed, introducing a differential speed mode
with a natural frequency of the same order as the wing modes. Thus the two cases of
Figure 20.17 characterize the behavior of the tiltrotor symmetric and anti-symmetric
motions.

Early analyses of tiltrotor whirl flutter considered only the rotor flap motion, but
the results are generally very optimistic (Figure 20.18). For a stiff in-plane rotor, the
frequency of the regressive lag mode varies significantly with collective pitch (hence
with forward speed), crossing the wing mode frequencies. Thus the lag motion can
couple strongly with the whirl flutter modes. With a soft in-plane rotor, air resonance
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Figure 20.18. Wing mode damping of tiltrotor on a cantilever wing; influence of rotor degrees
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is possible at low flight speeds, particularly involving the wing vertical-bending mode.
At operating flight speeds, the air resonance is stabilized by the rotor aerodynamic
lag damping in high inflow and the wing aerodynamic damping.

For hingeless proprotors (including the gimballed, stiff in-plane design), blade
pitch motion has a significant influence on whirl flutter through the introduction of
effective pitch-lag coupling. The blade precone is normally selected for hover, so
in propeller configuration the precone is too large, and there is a downward elastic
coning deflection of the blade. With no droop and small thrust, the effective pitch-
lag coupling is negative and proportional to the precone (equation 20.75). Negative
pitch-lag coupling has a destabilizing influence on the whirl flutter. Figures 20.19 and
20.20 show the stabilizing influence of reduced precone or increased control system
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Figure 20.19. Wing mode damping of tiltrotor on a cantilever wing; influence of precone on
pitch-lag coupling.
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stiffness through the reduction in magnitude of pitch-lag coupling. Blade droop has
a similar effect, while not increasing hover coning loads as does reduced precone
(since droop becomes aft blade sweep at the low collective pitch angles of hover).

The gimballed, stiff-plane proprotor typically uses negative pitch-flap coupling
to stabilized the blade flap-lag motion at high inflow (Gaffey (1969)). Figure 20.21
shows that negative δ3 is destabilizing for the whirl flutter modes, but without it the
rotor exhibits a flap-lag instability at even lower speed.

Figure 20.22 shows the influence of operating altitude on the whirl flutter stabil-
ity. With the decreased air density at higher altitude, the stability boundary occurs
at higher speed, which is consistent with the maximum speed characteristics of the
aircraft. This example has a helical tip Mach number of 0.75 at λ = 1 and sea level

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.03

0.06

0.09

0.12

λ = V / ΩR

da
m

pi
ng

 r
at

io

δ 3  =  0

δ 3  =  −15°

vertical 
bending

chord 
bending

torsion

regressive lag mode

Figure 20.21. Wing mode and rotor lag mode damping of tiltrotor on a cantilever wing;
influence of pitch-flap coupling.



20.5 References 841

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.03

0.06

0.09

0.12

λ = V / ΩR

da
m

pi
ng

 r
at

io
12000 ft

sea level

vertical 
bending

chord 
bending

torsion

Figure 20.22. Wing mode damping of tiltrotor on a cantilever wing; influence of operating
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conditions, which increases at the higher altitude. With increasing Mach number,
the blade lift-curve slope first increases, which increases the aerodynamic forces
involved in whirl flutter and so has an unfavorable influence on the stability. After
lift divergence (at a Mach number of around 0.7 to 0.8, well below drag divergence),
the lift-curve slope decreases. If the blade section Mach number is above the lift
divergence Mach number over a large fraction of the blade tip, the reduction in
aerodynamic forces significantly increases the stability. This phenomenon becomes
particularly important as the speed of sound decreases at higher altitude, allowing
the effects of reduced density to dominate the stability change.
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21 Flight Dynamics

Handling qualities are defined as “those qualities or characteristics of an aircraft
that govern the ease and precision with which a pilot is able to perform the tasks
required in support of an aircraft role” (Cooper and Harper (1969)). Generally
the terms “flying qualities” and “handling qualities” are interchangeable, although
the titles of specifications more often refer to flying qualities. Handling qualities
involve the aircraft, the pilot, the tasks, and the environment (Padfield (1998)).
Most of this chapter deals only with the aircraft flight dynamics or stability and
control characteristics: the equations and fundamental behavior of the rotorcraft
rigid-body motion. Simplifications and approximations are made to focus on the
fundamental behavior of the aircraft. A more rigorous approach is needed to obtain
models sufficient for rotorcraft flight control system design. Padfield (2007) covers
rotorcraft flight dynamics and handling qualities in depth.

21.1 Control

Rotorcraft control requires the ability to produce moments and forces on the vehicle
to establish equilibrium and thereby hold the aircraft in a desired trim state, and
to produce accelerations and thereby change the aircraft velocity, position, and
orientation. Like airplane control, rotorcraft control is accomplished primarily by
producing moments about all three aircraft axes: pitch, roll, and yaw. The helicopter
has in addition direct control over the vertical force on the aircraft, corresponding to
its VTOL capability. This additional control variable is part of the versatility of the
helicopter, but also makes the piloting task more difficult. The control task is eased
by the use of a rotor speed governor to automatically manage the power.

Direct control over moments on the aircraft is satisfactory for trajectory control
in forward flight. In hover and at low speed, direct control over the forces would
be more desirable, to obtain direct command of the helicopter velocity and dis-
placement. Such control is available only for the vertical force. The lateral and lon-
gitudinal velocities of the helicopter in hover must be controlled using pitch and
roll moments about the aircraft center-of-gravity, which is a more difficult task. The
pilot directly commands a change in pitch or roll attitude that then produces a lon-
gitudinal or lateral force and finally the desired velocity of the helicopter. There is
considerable coupling of the forces and moments produced by the helicopter con-
trols, so that any control application to produce a particular moment requires some

844
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compensating control inputs on the other axes as well. Moreover, without an auto-
matic stability augmentation system, the helicopter is not dynamically or statically
stable, particularly in hover. Consequently, the pilot is required to provide the feed-
back control to stabilize the vehicle, an operation that demands constant attention.
The use of an automatic control system to augment the helicopter stability and
control characteristics is desirable, and for some applications it is essential.

The rotor is almost universally used to control the helicopter. In forward flight,
fixed aerodynamic surfaces such as a horizontal stabilizer and elevator can be used
as well. The rotor controls consist of cyclic and collective pitch. A collective pitch
change gives a change in the mean blade angle-of-attack, which changes the thrust
magnitude. Cyclic pitch control gives a 1/rev pitch motion in the rotating frame, which
tilts the tip-path plane. The thrust vector tilts with the tip-path plane, producing a
moment about the helicopter center-of-gravity below the rotor hub. With an offset-
hinge articulated rotor or a hingeless rotor, the tip-path-plane tilt also produces a
moment at the rotor hub. Thus command of the rotor collective and cyclic pitch
gives efficient control over the magnitude and direction of the rotor thrust vector.
The 1/rev pitch change of the blades required for cyclic control is obtained using a
swashplate mechanism of some kind (section 6.1.2).

The pilot’s controls for the helicopter consist of a cyclic stick for control of
longitudinal and lateral moments, a collective stick for control of the vertical force,
foot pedals for control of the yaw moment, and a throttle for control of the rotor
speed and torque (power management). These controls are similar in function to
those of the airplane, with the addition of the collective stick, which is used for
direct height control in hover and low-speed flight. Maintaining the rotor speed
at the proper value is important. Since the rotor power required varies with both
thrust and forward speed, the throttle must be coordinated with the collective and
cyclic stick motions, which is a pilot task on small helicopters. All turbine-powered
rotorcraft have a speed governor on the engine to automatically handle the power
management. The cyclic stick controls the longitudinal and lateral motions in hover,
but the helicopter is characterized by considerable coupling between the controls.
The manner in which the pilot’s cyclic and collective control sticks are connected to
the cyclic and collective pitch of each rotor depends on the aircraft configuration;
see section 8.2 and Table 8.1.

The connection of the pilot’s controls to the rotor can be by a direct mechanical
linkage (at least for small helicopters), or actuators can be used to produce or aug-
ment the rotor control inputs commanded by displacements of the pilot’s sticks. In
systems with a direct mechanical linkage between the pilot’s controls and the rotor,
blade feathering moments are transmitted through the control system to the pilot’s
sticks. The collective stick force comes from the mean blade pitch moment, and the
cyclic stick forces come from the 1/rev pitch moments. The proper behavior of these
control forces is important for good handling qualities. The general requirements
for good control forces are low friction, low vibration, and logical control force
transients. A moderate but increasing force gradient opposing any stick motion is
desirable. In a helicopter with a mechanical control system, the feathering moments
and hence the stick forces are sensitive to the blade dynamics and geometry. More-
over, the vibratory blade pitch moments as well as the steady loads are transmitted
through the control system (section 18.3). For low steady and vibratory control
forces, the proper airfoil section must be chosen, and the appropriate chordwise
offsets of the aerodynamic center and center-of-gravity must be used. Because stick
forces increase with the helicopter size, larger helicopters use actuators between
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the pilot’s sticks and the rotor controls. With irreversible actuators, the blade pitch
moments are not transmitted back to the pilot. The control forces must be provided
by the actuators or by an automatic force-feel system in this case.

The analysis developed in Chapter 6 gives the principal characteristics of the con-
trol required to trim the helicopter. The conditions for force and moment equilibrium
of the helicopter determine the orientation of the rotor hub plane and tip-path plane
for a given flight state. The flapping relative to the shaft is therefore determined
as a function of the helicopter center-of-gravity position and aircraft speed. The
cyclic and collective control required to obtain this rotor thrust and tip-path-plane
orientation was derived in section 6.5 for an articulated rotor and in section 6.14 for
general flap frequency. The basic behavior of the rotor control is contained in these
equations. The rotor collective pitch varies directly with the helicopter gross weight.
The collective pitch varies significantly with flight speed also, mainly as a result of
the variation of the inflow ratio with speed. The tip-path plane tilts rearward and
to the advancing side relative to the control plane, roughly in proportion to the
advance ratio. Thus a forward tilt of the control plane is required to maintain the
tip-path-plane orientation as speed increases, and therefore a forward displacement
of the cyclic stick is needed, which is the desired control motion for increased speed.
However, a lateral cyclic stick displacement is also required as speed increases to
counter the lateral flapping. The lateral flapping is sensitive to nonuniform inflow,
which generally increases this undesirable coupling, particularly at low speeds.

21.2 Aircraft Motion

Now let us examine helicopter flying qualities in terms of the dynamic stability and
response to control of the aircraft rigid-body motions. The equations of motion
for the six rigid-body degrees of freedom are obtained from equilibrium about the
center-of-gravity of forces and moments on the entire aircraft:

M
(
v̇BI/B + ω̃BI/BvBI/B) = F B + F B

grav (21.1)

IBω̇BI/B + ω̃BI/BIBωBI/B = MB (21.2)

where v and ω are the linear and angular velocities, B designates the aircraft body
axes, and I the inertial frame. See section 2.4 for the notation; ω̃ is the cross-product
matrix from the angular velocity ω. The origin of the body axes is at the aircraft
center-of-gravity. F B and MB are the total force and moment acting on the aircraft,
about the origin of B, in B axes. The gravitational force F B

grav = MCBIgI is calculated
from the acceleration produced by gravity (constant in inertial axes). The aircraft
mass is M, and the symmetric moment of inertia matrix is

IB =
⎡⎣ Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

⎤⎦ (21.3)

where Ix = ∫
(y2 + z2)dm, Ixz = ∫

(xz)dm, and so on (in body axes, hence constant).
The mass and moments of inertia include the rotor mass.

Aircraft convention for flight dynamics has the z-axis downward, x-axis forward,
and y-axis to the right. For airplane stability and control analysis, aligning the x-axis
with the trim velocity vector (stability axes) is common, but that approach is not
appropriate for rotorcraft, since the analysis must cover hover and low-speed flight
as well as high-speed cruise. Extension of the equations to an elastic airframe is
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simplest if center-of-mass mean axes are used for the rigid-body motion. Then the
elastic free vibration modes of the aircraft are not coupled inertially or structurally
with the rigid-body motion, although the origin of the B axes (center-of-mass) is not
associated with a physical point on the airframe. The elastic and rigid-body degrees of
freedom are coupled only by the applied loads from aerodynamic surfaces and rotors.

Aircraft convention uses a body-axes velocity and Euler angle representation of
the rigid-body motion. The equations of motion are written in terms of the velocities
vBI/B and ωBI/B, which must be related to displacement degrees of freedom ξ̇ and
angular degrees of freedom η̇. The parameters ξ̇ are the velocity measured in B axes,
ξ̇ = vBI/B = CBIẋBI/I = (ẋF ẏF żF )

T . The inertial acceleration is v̇ + ω̃v = ξ̈ + ω̃ξ̇ .
The aircraft position

xBI/I =
∫ t

CIBξ̇ dt (21.4)

is not obtained directly from the degrees of freedom ξ , but rather from the integral
of ξ̇ , which is path dependent. Because the velocity variables are measured relative
to the body axes, the aircraft position depends on the angular motion (the rotation
matrix CIB) as well as on the velocities. For most aircraft flight behavior, the position
relative to the inertial frame origin is not important. For a rotorcraft operating near
the ground, the position is required for the wake model and ground effect. In such
cases, the displacement degrees of freedom can be measured relative to the inertial
axes, an unconventional description that gives the position in space directly.

The angular motion is described by the Tait-Bryan convention: first yaw ψF

about the z-axis, then pitch θF about the y-axis, then roll φF about the x-axis. The
rotation degrees of freedom are η = (φF θF ψF )

T ; the first angle in η is the last
rotation. The rotation matrix, angular velocity, and angular acceleration are

CBI = XφF YθF ZψF (21.5)

ωBI/B = Rη̇ (21.6)

ω̇BI/B = Rη̈ + Ṙη̇ (21.7)

R =
⎡⎣ 1 0 − sin θF

0 cosφF sinφF cos θF

0 − sinφF cosφF cos θF

⎤⎦ (21.8)

Ṙη̇ =
⎛⎝ φ̇F

θ̇F cosφF

−θ̇F sinφF

⎞⎠˜ ⎛⎝ φ̇F + ψ̇F sin θF

−ψ̇F sinφF cos θF

−ψ̇F cosφF cos θF

⎞⎠ (21.9)

The gravity vector is gB = CBIgI = g(− sin θF sinφF cos θF cosφF cos θF )
T in body

axes. Superscripts B and I can be omitted now, since only the aircraft motion is
considered here.

The rigid-body equations of motion are next linearized about the trim flight
state: steady flight at velocity V and climb angle θc (negative for descent), zero
angular velocity (no turns), and symmetric flight with zero trim yaw and roll angles.
The trim aircraft velocity is

v0 =
⎛⎝V cos(θF0 − θc)

0
V sin(θF0 − θc)

⎞⎠ =
⎛⎝ Vx

0
−Vz

⎞⎠ (21.10)
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Now v = (ẋF ẏF żF )
T and ω = R(φ̇F θ̇F ψ̇F )

T are the perturbation motion relative to
trim. The linearized equations of motion are

M (v̇ − ṽ0ω) = F + Fgrav (21.11)

Iω̇ = M (21.12)

or

M(ẍF − Vzθ̇F ) = Fx − Mgcos θF0θF (21.13)

M(ÿF + Vx cos θF0ψ̇F + Vz(φ̇F − sin θF0ψ̇F )) = Fy + Mgcos θF0φF (21.14)

M(z̈F − Vxθ̇F ) = Fz − Mg sin θF0θF (21.15)

I

⎛⎝ φ̈F − sin θF0ψ̈F

θ̈F

cos θF0ψ̈F

⎞⎠ =
⎛⎝Mx

My

Mz

⎞⎠ (21.16)

In terms of rotor parameters, Vx/�R = μ and Vz/�R = μz. The trim state can be
more generally defined. The aircraft can be trimmed to zero sideslip angle instead of
zero roll angle. Yaw angle has no influence on the flight dynamics, so turning flight
(non-zero yaw rate) is a steady-state trim condition.

In state variable form, the aircraft degrees of freedom are the body axis veloc-
ity vBI/B = (u v w)T , angular velocity ωBI/B = (p q r)T , and the pitch and roll angles
(θF φF )

T . The state equations are force and moment equilibrium (equations 21.11
and 21.12) plus the kinematic relation ωBI/B = R(φ̇F θ̇F ψ̇F ). For the simplified air-
craft geometry considered here, and when the emphasis is on the rotor response,
it is convenient to work instead with the linear (xF yF zF ) and angular (φF θF ψF )

displacement variables. See Padfield (2007) for the complete equations.
For an airplane with lateral symmetry (symmetric about the x–z plane), the

equations separate into longitudinal and lateral-directional sets. Symmetry implies
Ixy = Iyz = 0 and that the forces and moments depend only on the appropriate
aircraft motion. A symmetric trim flight state has already been assumed. The longi-
tudinal equations of motion are

M(ẍF − Vzθ̇F ) = Fx − Mgcos θF0θF (21.17)

M(z̈F − Vxθ̇F ) = Fz − Mg sin θF0θF (21.18)

Iyθ̈F = My (21.19)

and the lateral-directional equations of motion are

M(ÿF + Vx cos θF0ψ̇F + Vz(φ̇F − sin θF0ψ̇F )) = Fy + Mgcos θF0φF (21.20)

Ix(φ̈F − sin θF0ψ̈F )− Ixz(cos θF0ψ̈F ) = Mx (21.21)

Iz(cos θF0ψ̈F )− Ixz(φ̈F − sin θF0ψ̈F ) = Mz (21.22)

It is unlikely that the axes are aligned with the inertial principal axes; hence Ixz �= 0.
Often the inertial terms in the roll and yaw equations are diagonalized, the trans-
formation resulting in stability derivatives that are combinations of roll and yaw
moments. For rotorcraft, Ixz can be large enough that the influence on yaw and roll
rate derivatives is significant. The present analysis is not rigorous enough to merit
such a complication, so instead the coupling by Ixz is ignored.
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A helicopter has inherent asymmetry due to the direction of rotation of the
main rotor. So rotorcraft do not have lateral symmetry, except for configurations
such as the side-by-side helicopter or the tiltrotor. Nonetheless, the helicopter flight
dynamics are first examined assuming that the longitudinal and lateral-directional
motions are separable. The model is then simple enough for analytical work, since
only half the equations are considered for each set. Although the model does describe
the principal behavior of the helicopter, the coupling of longitudinal and lateral
motions is also considered. The main rotor in hover does have symmetry about
the shaft axis, which implies that the vertical-directional motions separate from the
remaining longitudinal-lateral motions.

The applied forces and moments are linearized relative to the perturbed aircraft
motion, as well as to the pilot’s controls and gust velocities. Dividing the load by the
corresponding inertia gives the stability derivative form:⎛⎝ Fx/M

My/Iy

Fz/M

⎞⎠ =
⎡⎣ Xu Xq Xw

Mu Mq Mw

Zu Zq Zw

⎤⎦⎛⎝ ẋF

θ̇F

żF

⎞⎠

+
⎡⎣ Xθ Xθ0 Xu Xw

Mθ Mθ0 Mu Mw

Zθ Zθ0 Zu Zw

⎤⎦
⎛⎜⎝
θs

θ0

uG

wG

⎞⎟⎠ (21.23)

⎛⎝ Fy/M
Mx/Ix

Mz/Iz

⎞⎠ =
⎡⎣Yv Yp Yr

Lv Lp Lr

Nv Np Nr

⎤⎦⎛⎝ ẏF

φ̇F

ψ̇F

⎞⎠+
⎡⎣Yθ Yθp Yv

Lθ Lθp Yv
Nθ Nθp Nv

⎤⎦⎛⎝ θc

θp

vG

⎞⎠ (21.24)

The notation uses X , Y , and Z for the longitudinal, lateral, and vertical force deriva-
tives and L, M, and N for the roll, pitch, and yaw moment derivatives. The derivatives
with respect to the linear velocity are designated by subscripts u, v, and w and, with
respect to angular velocity, by subscripts p, q, and r (angular velocity in body axes,
approximated here by Euler angle rates). The pilot’s controls are collective θ0, lateral
cyclic θc, longitudinal cyclic θs, and pedal θp. The connection of the pilot’s controls to
the rotor controls depends on the rotorcraft configuration (section 8.2). The control
derivatives are given here in terms of the amplitude of the rotor collective or cyclic
pitch, ignoring control system rigging and the actual units of pilot stick deflection.
For simplicity, the axes of the gust velocity components (uG, vG, wG) are the aircraft
body axes.

The equations in stability derivative form have units of acceleration (ft/sec2 or
m/sec2) and angular acceleration (rad/sec2). The dimensionless versions are scaled
with rotor radius R and rotor speed�. The notation used reflects the aeromechanics
focus of this work.

21.3 Motion and Loads

A complete analysis of rotorcraft flight dynamics requires adding to the aircraft rigid-
body motion the equations for the blade degrees of freedom, particularly the rotor
blade flap motion. Because of the high flap damping, the flapping transients die out
in less than one revolution of the rotor; see section 19.3. Hence the rotor flap motion
responds on a much shorter time scale than the inputs from the pilot, from shaft
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motion due to the helicopter rigid-body degrees of freedom, or from aerodynamic
gusts. So for flight dynamics considering only the low-frequency response of the rotor,
neglecting the transient flapping dynamics is sufficient. Then the rotors contribute
to the stability derivatives, without adding degrees of freedom to the model. It is
assumed that the rotor speed is constant.

In the frequency domain, there is usually sufficient separation between the flight
dynamics motion and the motion of rotor modes to justify the stability derivative
model. However, there are exceptions. In particular, a high-gain flight control system
can be active at frequencies of the rotor domain. An airframe structural mode might
couple with the flight control system and rotor motion. The low-damped lag mode
of a hingeless or bearingless rotor can influence the flight dynamics.

Hohenemser (1939) originated the use of the quasistatic rotor response in inves-
tigations of helicopter flying qualities, on the basis of the very low frequency of the
rigid-body motions compared to the rotor rotational speed. Miller (1948) compared
the roots obtained for the helicopter longitudinal dynamics, using the complete rotor
dynamics and the low-frequency response. The question was further examined by
Kaufman and Peress (1956), and by Hohenemser and Yin (1974a, 1974b) with an
emphasis on hingeless rotors. These investigations considered the poles, frequency
response, and step response in hover and forward flight, up to high advance ratio,
including feedback control. The general conclusion is that the quasistatic approxi-
mation for the rotor dynamics is quite a good model for the rotor in a flight dynamics
analysis.

The influence of the rotor wake on the flight dynamics is included in terms of
quasistatic lift deficiency functions derived using dynamic inflow. The time lags of
the dynamic inflow model (section 11.3) are neglected here to avoid increasing the
order of the dynamic systems examined. However, the eigenvalues of the dynamic
inflow states can be small enough to significantly influence the flight dynamics; see
Padfield (2007).

To use the rotor low-frequency response from Chapter 19 to obtain the stability
derivatives, the rotor variables must be related to the aircraft motion and loads.
Figure 16.8 shows the conventions for rotor hub loads, and Figure 16.13 shows the
hub motion. The rotor is assumed to rotate counter-clockwise. For the purpose of
exposition in this chapter, the geometry is simplified. Figure 21.1 shows the geometry
for the single main rotor and tail rotor configuration. The description of the aircraft
motion has the origin at the center-of-gravity, with the z-axis down and the x-axis
forward. The center-of-gravity is on the shaft axis, a distance h below the main rotor
hub. The aircraft axes are parallel to the rotor hub-plane axes, with directions of
the x-axis and z-axis reversed. The tail rotor is on the x-axis, a distance �tr aft of the
center-of-gravity. For this simple geometry, the linear and angular displacements of
the main rotor hub are

⎛⎝ xh

yh

zh

⎞⎠
rotor

=
⎛⎝−xF + hθF

yF + hφF

−zF

⎞⎠ (21.25)

⎛⎝αx

αy

αz

⎞⎠
rotor

=
⎛⎝−φF

θF

−ψF

⎞⎠ (21.26)
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Figure 21.1. Simplified geometry of the single main rotor and tail rotor configuration.

and the rotor loads acting on the airframe are

⎛⎝Fx

Fy

Fz

⎞⎠ =
⎛⎝−H

Y
−T

⎞⎠
rotor

(21.27)

⎛⎝Mx

My

Mz

⎞⎠ =
⎛⎝−Mx + hY

My + hH
Q − �trTtr

⎞⎠
rotor

(21.28)

In forward flight there are also aerodynamic loads acting on the fuselage and tail.
The tandem helicopter configuration has a front rotor that is a distance � f

forward of the aircraft center-of-gravity and a rear rotor that is a distance �r aft of
the aircraft center-of-gravity. The rotor hub heights are h f and hr. For this simple
geometry, the linear and angular displacements of the main rotor hubs are

⎛⎝ xh

yh

zh

⎞⎠
front

=
⎛⎝ −xF + h f θF

yF + h fφF + � fψF

−zF + � f θF

⎞⎠ (21.29)

⎛⎝ xh

yh

zh

⎞⎠
rear

=
⎛⎝ −xF + hrθF

yF + hrφF − �rψF

−zF − �rθF

⎞⎠ (21.30)

⎛⎝αx

αy

αz

⎞⎠
front

=
⎛⎝αx

αy

αz

⎞⎠
rear

=
⎛⎝−φF

θF

−ψF

⎞⎠ (21.31)
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and the rotor loads acting on the airframe are⎛⎝Fx

Fy

Fz

⎞⎠ =
⎛⎝−H

Y
−T

⎞⎠
front

+
⎛⎝−H

Y
−T

⎞⎠
rear

(21.32)

⎛⎝Mx

My

Mz

⎞⎠ =
⎛⎝ −Mx + h fY

My + h f H + � f T
Q + � fY

⎞⎠
front

+
⎛⎝ −Mx + hrY

My + hrH − �rT
Q − �rY

⎞⎠
rear

(21.33)

The two rotors are assumed to have the same shaft inclination, but differential tilt of
the shafts relative to the airframe has an important influence on tandem helicopter
flight dynamics.

The side-by-side helicopter configuration has right and left main rotors, a dis-
tance ±� from the aircraft center-line. The rotor hub height is h above the center-of-
gravity. The tiltrotor has similar geometry in hover and helicopter mode flight, the
wing-tip-mounted rotors tilting forward to act as propellers in cruise flight. These
aircraft configurations have true lateral symmetry (symmetric about the x–z plane).
For the side-by-side configuration, the linear and angular displacements of the main
rotor hubs are ⎛⎝ xh

yh

zh

⎞⎠
rotor

=
⎛⎝−xF + hθF ± �ψF

yF + hφF

−zF ∓ �φF

⎞⎠ (21.34)

⎛⎝αx

αy

αz

⎞⎠
rotor

=
⎛⎝−φF

θF

−ψF

⎞⎠ (21.35)

and the rotor loads acting on the airframe are⎛⎝Fx

Fy

Fz

⎞⎠ =
⎛⎝−H

Y
−T

⎞⎠
right

+
⎛⎝−H

Y
−T

⎞⎠
left

(21.36)

⎛⎝Mx

My

Mz

⎞⎠ =
⎛⎝−Mx + hY − �T

My + hH
Q + �H

⎞⎠
right

+
⎛⎝−Mx + hY + �T

My + hH
Q − �H

⎞⎠
left

(21.37)

For this simplified geometry, the two rotors are assumed to have the same shaft
inclination.

The results for the low-frequency rotor response are dimensionless (based on
ρ, �, and R) and in rotor coefficient form. The stability derivatives (load divided by
inertia) are then

Force
M

= 1

M̂
γ

2CF

σa
(21.38)

Moment
I

= 1

Î
γ

2CM

σa
(21.39)

where M̂ = M/( 1
2 NIb) and Î = I/( 1

2 NIb) = M̂k2 are the normalized inertias of the
airframe, N is the number of blades, and Ib is the characteristic inertia of the blade.
The airframe radius of gyration is k. The Lock number appears in this transformation
as the ratio of aerodynamic and inertial forces, but the blade inertia Ib is not a good
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choice to represent inertial forces in the flight dynamics equations. Thus we use here
the factor

G = γ

M̂
= ρaNcR2

2M
= aρAbR

2M
(21.40)

G is a dimensionless parameter representing the ratio of the rotor aerodynamic forces
to the aircraft inertial forces. Since vertical force trim gives Mg = T (dimensional),
the normalized mass is related to the rotor trim blade loading: M̂g = γ (2CT/σa)trim,
and G = a(g/�R2)/(2(CT/σ )trim). The dimensionless gravitational constant g is
divided by �2R, so increases proportionally to R for fixed tip speed. Then for fixed
design blade loading CT/σ and tip speed�R, the normalized mass M̂ decreases with
rotor size, proportionally to 1/R; G increases with size, proportionally to R.

Dimensionless quantities are used in the following analyses. Dimensional stabil-
ity derivatives and poles are recovered by introducing factors of� and R as required.

21.4 Hover Flight Dynamics

The flying qualities of the helicopter have different characteristics in hover and in
forward flight. The hovering analysis is simpler, because of the axisymmetry of the
rotor aerodynamics in vertical flight.

Consider the rigid-body motions of a single main rotor and tail rotor helicopter
in hover. The aircraft is assumed to have complete axisymmetry, so the vertical
and the longitudinal-lateral dynamics are completely separated. Such separation is a
basic feature of the rotor in hover and generally holds for the hover flying qualities,
even though the entire helicopter is not truly axisymmetric.

Because the effects of the tail rotor are neglected except on the helicopter yaw
motion, the yaw dynamics are decoupled from the other degrees of freedom. The
direction of rotor rotation discriminates between the left and right sides of the rotor,
so the helicopter does not have a lateral symmetry plane. However, to begin the
analysis, it is assumed that the longitudinal and lateral dynamics are also decoupled.
The hover equations of motion in Laplace form are thus

(s − Zw)żF = Zθ0θ0 + ZwwG (21.41)

(s − Xu)ẋF + (−Xqs + g)θF = Xθ θs + XuuG (21.42)

−MuẋF + (s2 − Mqs)θF = Mθ θs + MuuG (21.43)

(s − Yv )ẏF + (−Yps − g)φF = Yθ θc + YvvG (21.44)

−Lv ẏF + (s2 − Lps)φF = Lθ θc + LvvG (21.45)

(s − Nr)ψ̇F = Nθpθp + Nv(ẏF + vG) (21.46)

It has been assumed that the trim pitch angle θF0 is small.

21.4.1 Rotor Forces and Moments

The low-frequency rotor response including the effects of the flap motion are derived
in Chapter 19. The hub reactions due to shaft motion, pitch control, and aerody-
namic gusts are derived in sections 19.4 and 19.5. Without pitch-cone coupling, the



854 Flight Dynamics

low-frequency thrust response (equation 19.71) in terms of the aircraft motion and
control is

CT

σa
= C′Tθ θ0 − 1

2
C′Tλ

(
żF + wG

)
(21.47)

The aerodynamic coefficients are Tθ = 1/6 and Tλ = −1/4 (section 16.8.8). The effect
of the axial velocity on the inflow gives the factor of 1

2 for the Tλ term. The hover lift
deficiency function C′ accounts for the reduction of the aerodynamic forces by the
wake; see section 19.4. The inertial reactions of the rotor have been accounted for
by including the rotor mass in the helicopter mass. The thrust perturbations due to
collective pitch and vertical velocity of the helicopter are produced by direct changes
in the blade angle-of-attack. Since vertical velocity żF increases the angle-of-attack,
Tλ is negative. Then

Z = − 2γ

M̂

CT

σa
= −2G

CT

σa
(21.48)

gives the stability derivatives. The tail rotor thrust gives a yaw moment; hence the
stability derivatives,(

CT

σa

)
tr

= C′
trTθ θp − 1

2
C′

trTλ
(�R)mr

(�R)tr

(
ẏF + vG − �trψ̇F

)
(21.49)

N = −�tr2G
(Ab(�R)2)tr
(Ab(�R)2)mr

(
CT

σa

)
tr

(21.50)

accounting for the definition of CT/σ . The tail rotor collective pitch is the aircraft
pedal control, and the tail rotor axial velocity is produced by side velocity and gust
and by the yaw rate.

In terms of the aircraft motion and control, the low-frequency response of the
rotor tip-path-plane tilt (equation 19.103) is(

β1c

β1s

)
= 1

1 + N2
e

[
1 Ne

−Ne 1

]{(−θs

θc

)
+ 8Mμ

(−ẋF + hθ̇F − uG

ẏF + hφ̇F + vG

)

+
[ 16

γe
−(1 − KR)

1 − KR
16
γe

](
θ̇F

φ̇F

)}
(21.51)

including the hub in-plane velocity terms, but without pitch-flap coupling. The
influence of the wake enters through the effective Lock number γe = Cγ , stiffness
Ne = N�/C = (ν2

β − 1)/γe

8 (with C the lift deficiency function), and coupling due to
wake curvature, KR; see section 19.5. The aerodynamic coefficient is

Mμ = 2CT

σa
+ λHP

4
(21.52)

(section 16.8.8); Mθ = −Mβ̇ = 1/8 has already been used. The parameter N� defines
the lateral-longitudinal coupling of the rotor response due to a flap frequency νβ > 1
(and in general to pitch-flap coupling as well). This coupling produces a decrease in
the magnitude of the tip-path-plane response and a phase shift by �ψ = tan−1 N�,
as discussed in section 19.3. Longitudinal cyclic θs, longitudinal hub velocity (ẋF −
hθ̇F + uG), and shaft rolling velocity φ̇F produce lateral aerodynamic moments on the
rotor disk. The rotor flap motion responds with maximum amplitude (90 − tan−1 N�)
degrees after the maximum excitation, and hence with longitudinal tip-path-plane
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tilt β1c. The resulting flapping velocity in the rotating frame then produces a lateral
aerodynamic moment on the disk. The tip-path plane tilts until the aerodynamic flap
moments are in equilibrium. Since this new equilibrium position is reached quickly,
the static response can be used for the low-frequency rotor dynamics. The lateral tip-
path-plane tilt response has a similar origin. The remaining term in the flap response
is the lag of the tip-path-plane tilt required to precess the rotor disk to follow the
shaft angular velocity. A pitching rate θ̇F requires a roll moment on the rotor disk for
the tip-path plane to follow the shaft; this roll moment is provided by the longitudinal
flapping β1c. Similarly the tip-path plane follows a shaft rolling velocity φ̇F with a
steady lateral tilt relative to the shaft. The moment stability derivatives are then

(
M
L

)
= − ν

2
β − 1

Î

(
β1c

β1s

)
+ h

k2

(−X
Y

)
= − G

k2

ν2
β − 1

γ

(
β1c

β1s

)
+ h

k2

(−X
Y

)
(21.53)

where X and Y are the corresponding force derivatives.
The low-frequency response of the rotor hub in-plane forces (equation 19.102,

with the hub velocity terms but no pitch-flap coupling) is⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠ =
{
− 2CT

σa
+
[
(1 − C)CT

σa − CĤβ̇ CRβ̇

−CRβ̇ (1 − C)CT
σa − CĤβ̇

]}(
β1c

β1s

)

−
[
(1 − C)CT

σa − CĤβ̇ CRβ̇

−CRβ̇ (1 − C)CT
σa − CĤβ̇

](−θs

θc

)

+ (1 − C)8Mμ

[−Hβ̇ Rβ̇
−Rβ̇ −Hβ̇

](−ẋF + hθ̇F − uG

ẏF + hφ̇F + vG

)

+
[−(Hμ + Rμ) Rr

−Rr −(Hμ + Rμ)

](−ẋF + hθ̇F − uG

ẏF + hφ̇F + vG

)

− C
[−Hβ̇ Rβ̇

−Rβ̇ −Hβ̇

]
(1 − KR)

(−φ̇F

θ̇F

)
(21.54)

The derivation of this result has already used Mθ = −Mβ̇ = 1/8, Rβ = −CT/σa,
Hθ = −Ĥβ̇ , and Rθ = −Rβ̇ . The aerodynamic coefficients are given in section 16.8.8;
in particular,

Hβ̇ = CT

σa
+ Ĥβ̇ = CT

σa
− λHP

4
(21.55)

The force stability derivatives are then

(−X
Y

)
= γ

M̂

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠ = G

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠ (21.56)

The principal hub force is the in-plane component of the thrust vector when it is
tilted with the tip-path plane. Combining the hub force and the hub moment, the
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total moment about the helicopter center-of-gravity is⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠
CG

=
[
ν2
β − 1

γ
+ h

2CT

σa

](
β1c

β1s

)
− h

⎛⎜⎝
2CH

σa
2CY

σa

⎞⎟⎠
TPP

(21.57)

where the last term is due to the in-plane hub forces relative to the tip-path plane.
The pitch and roll moments have a greater role in the helicopter flight dynamics than
the in-plane hub forces. For an articulated rotor the moments and forces are always
directly proportional. The hub forces and moments are determined primarily by the
rotor flap response. Longitudinal and lateral control plane tilt produce, respectively,
pitch and roll moments about the center-of-gravity, which the pilot can use to control
the aircraft. Longitudinal hub velocity ẋF produces an in-plane force H opposing
the motion and a corresponding pitch moment responsible for the speed stability
of the helicopter. Similarly, there is a side force Y due to lateral velocity ẏF and
a corresponding roll moment similar to the dihedral effect of an airplane wing. By
the same mechanism, rotor hub reactions due to longitudinal and lateral gusts are
produced. Pitch rate θ̇F of the helicopter produces a pitch moment My due to the lag
of the tip-path plane required to precess the rotor; similarly, roll rate φ̇F produces
a roll moment Mx. Since these moments oppose the helicopter motion, the rotor
provides damping of the helicopter angular motion. When νβ > 1, as is the case with
an offset flap hinge or a hingeless rotor, the moments are increased as a result of the
hub moment capability, and the coupling of the helicopter lateral and longitudinal
motion is changed.

21.4.2 Hover Stability Derivatives

Substituting the rotor flap response in the rotor force and moment expressions gives
the stability derivatives. The rotor aero coefficients are from section 16.8.8. The
vertical force derivatives are

Zθ0 = −G2C′Tθ = −GC′ 1
3

(21.58)

Zw = GC′Tλ = −GC′ 1
4

(21.59)

where the lift deficiency function is

C′ = 1
1 + σa/16λi

(21.60)

and Zw includes a factor of 1
2 from the wake influence. The scaling factor is

G = (aρAbR)/2M = g/(2CT/σa). The tail rotor produces the directional moment
derivatives for the single main rotor and tail rotor configuration:

Nθp = − G
k2

z
�tr
(Ab(�R)2)tr
(Ab(�R)2)mr

2C′
trTθ = − �tr

k2
z

GC′
tr

1
3
(Ab(�R)2)tr
(Ab(�R)2)mr

(21.61)

Nv = − G
k2

z
�tr
(Ab(�R)2)tr
(Ab(�R)2)mr

C′
trTλ

(�R)mr

(�R)tr
= �tr

k2
z

GC′
tr

1
4
(Ab(�R))tr
(Ab(�R))mr

(21.62)

Nr = −�trNv = − �
2
tr

k2
z

GC′
tr

1
4
(Ab(�R))tr
(Ab(�R))mr

(21.63)
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Moment derivatives are produced by the hub moments (if νβ > 1) and the hub forces
acting a distance h above the center-of-gravity. The pitch moment derivatives are

Mθ = G
k2

y

(
ν2
β − 1

γ

)
1

1 + N2
e

− h
k2

y
Xθ (21.64)

Mθc = − G
k2

y

(
ν2
β − 1

γ

)
1

1 + N2
e

Ne − h
k2

y
Xθc (21.65)

Mu = G
k2

y

(
ν2
β − 1

γ

)
1

1 + N2
e

8Mμ − h
k2

y
Xu (21.66)

Mv = − G
k2

y

(
ν2
β − 1

γ

)
1

1 + N2
e

Ne8Mμ − h
k2

y
Xv (21.67)

Mq = − G
k2

y

(
ν2
β − 1

γ

)
1

1 + N2
e

(
16
γe

+ 8Mμh + Ne(1 − KR)

)
− h
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Xq (21.68)

Mp = G
k2

y

(
ν2
β − 1

γ

)
1

1 + N2
e

(
(1 − KR)− Ne

(
16
γe

+ 8Mμh
))

− h
k2

y
Xp (21.69)

including the pitch moment derivatives that couple with lateral motion and control
(Mθc , Mv , and Mp). The effective Lock number γe = Cγ and stiffness Ne = N�/C =
(ν2
β − 1)/γe

8 (there is no pitch-flap coupling) are obtained from the lift deficiency
function

C = 1
1 + σa/8λi

(21.70)

The (ν2
β − 1)/γ = NeC/8 terms are from the hub spring, whereas Ne comes from the

flap response. The corresponding roll moment derivatives are Lθ = −Mθ , Lθs = Mθc ,
Lv = −Mu, Lu = Mv , Lp = Mq, and Lq = −Mp, with ky replaced by kx. The drag
force derivatives are

Xθ = −G
(

2CT

σa
+ CRβ̇Ne +

(
(1 − C)

CT

σa
− CĤβ̇

)
N2

e

)
1
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e

(21.71)

Xθc = G
((
(1 + C)

CT

σa
+ CĤβ̇

)
Ne + CRβ̇N2

e

)
1

1 + N2
e

(21.72)

Xu = −G
([(

2 + (1 − C)N2
e

)CT

σa
+
(

1 + (1 − C)N2
e

)
Ĥβ̇ + CRβ̇Ne

]
8Mμ

1
1 + N2

e

+ (Hμ + Rμ)
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(21.73)

Xv = G
([(

(1 + C)
CT
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)
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]
8Mμ

1
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(21.74)

Xq = G
([(

(1 + C)
CT

σa
+ CĤβ̇

)
+ CRβ̇Ne

] (16
γe

+ Ne(1 − KR)
)) 1

1 + N2
e

− hXu

(21.75)
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Xp = G
([(

(1 + C)
CT

σa
+ CĤβ̇

)
Ne − CRβ̇

] (16
γe

+ Ne(1 − KR)
) 1

1 + N2
e

− CT

σa
(1 − KR)

)
+ hXv (21.76)

The corresponding side force derivatives are Yθ = Xθ , Yθs = −Xθc , Yv = Xu, Yu =
−Xv , Yp = −Xq, and Yq = Xp.

The longitudinal and lateral derivatives are much simplified for teetering rotors
and articulated rotors with no hinge offset (νβ = 1):

Xθ = −G
(

2CT

σa

)
= −g (21.77)

Xθc = 0 (21.78)

Xu = −G
((

2CT

σa
+ Ĥβ̇

)
8Mμ + (Hμ + Rμ)

)
= −g8Mμ − G

(
Ĥβ̇8Mμ + (Hμ + Rμ)

)
(21.79)

Xv = −G
(

Rβ̇8Mμ + Rr

)
(21.80)

Xq = G
(
(1 + C)

CT

σa
+ CĤβ̇

)(16
γe

)
− hXu

= g
16
γ

(
1 + C

2C
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2CT/σa
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− hXu (21.81)

Xp = −G
(

CT

σa
(1 − KR)+ CRβ̇

(16
γe

))
+ hXv

= −g
1 − KR

2
− G

16
γ

Rβ̇ + hXv (21.82)

with the substitution G = g/(2CT/σa). The moments are entirely due to the
hub forces acting a distance h above the center-of-gravity, so the pitch moment
derivatives are proportional to the drag force derivatives: M = −(h/k2

y)X . Since
Ĥβ̇Mμ/Mβ̇Hμ

∼= 1, the speed stability is given primarily by the first term, Xu
∼=

−g8Mμ. For the articulated rotor, the hub forces are primarily due to the tilt of the
thrust vector with the tip-path plane, and hence they are proportional to 2CT/σa.
The tip-path-plane tilt due to cyclic pitch is given by −Mθ/Mβ̇ = 1, the tilt due to
helicopter speed perturbations is given by −Mμ/Mβ̇ = 8Mμ, and the tilt due to the
helicopter angular velocity is given by 16/γ . For pitch motions of the rotor the thrust
vector does not remain perpendicular to the tip-path plane; rather, the thrust vector
lags the tip-path plane by a significant amount. The 2CT/σa term in Xq is the thrust
tilt with the tip-path plane, and the Ĥβ̇ term is the additional direct hub force. Since
Ĥβ̇ is negative, it reduces the rotor pitch damping by the factor

f = (1 + C)CT/σa + CĤβ̇

2CT/σa
= 1 + C

2
− C

λHP

8CT/σa
(21.83)

including the wake influence (equation 19.110). See section 19.5 and Figure 19.12.
The major factor introduced by νβ > 1 (offset hinges or hingeless rotor) is

the hub moment produced by tip-path-plane tilt, which increases the capability
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of the rotor to produce moments about the helicopter center-of-gravity. There is
also increased coupling of the lateral and longitudinal motions. The pitch and roll
moment derivatives are increased roughly by the factor

Mν>1

Mν=1

∼= 1 + (ν2
β − 1)/γ

h2CT/σa
(21.84)

The force derivatives vary little with the flap frequency, but the moments dominate
the longitudinal and lateral dynamics. The moment derivatives can be roughly dou-
bled by using flap hinge offset. For a typical hingeless rotor the control derivatives
(Mθ and Lθ) and speed stability (Mu and Lv) are increased by a factor of three or
four compared to the articulated (νβ = 1) case. The pitch and roll damping (Mq and
Lp) are increased even more, because the Ĥβ̇ term reduces the damping produced
by the thrust vector tilt but does not influence the hub moment contribution.

21.4.3 Vertical Dynamics

Vertical force equilibrium gives the equation of motion for the helicopter vertical
velocity response to collective and vertical gust:

(s − Zw)żF = Zθ0θ0 + ZwwG (21.85)

with the stability derivatives in section 21.4.2. The vertical dynamics are described
by a first-order differential equation for żF , with time constant

τz = − 1
Zw

= 4
GC′ = 8CT/σa

gC′ (21.86)

The dimensional time to half-amplitude is

t 1
2

= 0.693�R
8CT/σa

gC′ (21.87)

or typically t 1
2

∼= 28CT/σ , which is about 2 sec. Since the vertical time constant is
proportional to the rotor tip speed and blade loading, it is about the same for all
helicopters and specifically does not vary directly with aircraft size. For a given
helicopter, the time constant is proportional to the gross weight.

The equation for vertical dynamics has a single pole at s = Zw and no zeros.
The pole is proportional to size (through g), and typically the non-dimensional value
is s = −0.005 to −0.02. The small value justifies the use of the rotor low-frequency
response. The static (long time) response to control is żF/θ0 = −Zθ0/Zw = − 4

3 or,
dimensionally, żF/θ0 = − 4

3�R (collective pitch in radians). The static response is
determined by the balance of the rotor aerodynamic forces and hence does not
depend on G or the lift deficiency function C′. The inflow perturbation due to the
vertical velocity of the rotor reduces the vertical damping and hence increases żF/θ0

by a factor of 2, since the larger mass flow through the rotor in climb decreases the
induced velocity (see section 16.8.8). The collective pitch change required to produce
a small steady-state climb rate,�θ ∼= 3

4λc (equation 4.31), corresponds to the control
sensitivity żF/θ0 = − 4

3 . The short time response is

z̈F = Zθ0θ0 + ZwwG (21.88)
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or, dimensionally, with the vertical acceleration in g’s, is

z̈F

g
= − C′

6CT/σa

(
θ0 + 3

4
wG

�R

)
(21.89)

The response to collective pitch is about 0.15 g/degree.
The rotor rotational speed and ground effect are also important factors in the

vertical dynamics. If the throttle is fixed so that the rotor speed can vary during
the vertical motions, the vertical damping and control capability of the helicopter
are reduced. The additional degree of freedom (�) also introduces an overshoot
since the vertical dynamics are then second order. So the helicopter height control is
more difficult if the rotor speed is not fixed. An automatic governor to control the
rotor speed eases the piloting task. There is no spring on vertical displacements of
the helicopter, so for height control the pilot must provide the feedback of height to
collective. Near the ground, ground effect provides a vertical spring term, due to the
rotor induced velocity changes with height. This vertical spring force helps the tasks
of precision height control in hover and the helicopter flare in landing.

21.4.4 Directional Dynamics

Yaw moment equilibrium gives the equation of motion for the helicopter yaw rate
response to pedal and sideward velocity:

(s − Nr)ψ̇F = Nθpθp + Nv(ẏF + vG) (21.90)

The stability derivatives are given in section 21.4.2 for the single main rotor and
tail rotor configuration, considering only the contributions of the tail rotor thrust.
The control variable is the tail rotor collective pitch, θp = θ0 tr. The axial damping of
the tail rotor (Tλ) gives thrust perturbations due to yaw rate, sideward velocity, and
lateral gusts. Here it is assumed that the lateral dynamics do not depend on the yaw
motion, so ẏF affects the directional dynamics as an input. The yaw dynamics are
described by a first-order differential equation with time constant

τr = − 1
Zr

= k2
z

�2
tr

4
GC′

tr

(Ab(�R)2)mr

(Ab(�R)2)tr
(21.91)

Usually the tail length is slightly larger than the main rotor radius, the yaw moment
of inertia gives about k2

z = 0.1, and the ratio of blade areas Abtr/Abmr = 0.04 to 0.10.
The time to half-amplitude is typically about 3 sec. As for the vertical dynamics, the
yaw time constant is proportional to the rotor tip speed and blade loading and does
not vary directly with aircraft size.

The steady-state response to directional control is

ψ̇F

θp
= − Nθp

Nr
= − 4

3�tr

(�R)tr
(�R)mr

(21.92)

or dimensionally

ψ̇F

θp
= − 4

3�tr
(�R)tr (21.93)

The yaw rate commanded by the directional control tends to decrease with the
helicopter size, through �tr. After a small first-order lag, the tail rotor collective
produces a high steady-state yaw rate even for large helicopters. Tail rotor pitch-cone
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coupling decreases all of the directional stability derivatives by the factor ν2
β/ν

2
βe =

1/(1 + KPγ /8ν2
β ) (see section 19.4). So positive pitch-cone coupling increases the

yaw time constant, reduces the short time response, and reduces the response to
lateral gusts. The steady-state yaw response to control is not influenced by pitch-cone
coupling. As for the vertical motion, the tail rotor induced velocity perturbations
due to its axial velocity have reduced the yaw damping and increased the control
sensitivity.

Sideward velocity of the helicopter produces a change in tail rotor thrust and
hence a yaw of the helicopter. The steady-state response is ψ̇F/ẏF = −Nv/Nr =
1/�tr. Thus the lateral and yaw motions of the helicopter in hover are coupled.
Sideward velocity is produced by lateral cyclic control, but to maintain the helicopter
heading a pedal control input is required as well. The tail rotor control required to
prevent yaw during the lateral motions of the helicopter is θp/ẏF = −Nv/Nθp =
3
4/(�R)tr (dimensional). Neglecting the influence of the tail rotor thrust on the
lateral dynamics, the poles of the yaw and lateral dynamics are still uncoupled, but
a coordination of the pedal control with lateral cyclic is required. In forward flight
this yaw moment due to sideslip is still present and provides the directional stability
of the helicopter.

Assuming that the rotor speed is constant, the main rotor rotational damping
torque increases the helicopter yaw damping. The thrust changes in response to
vertical motion and inputs also produce torque changes that couple the vertical and
yaw control, and coordination of the pedal control with collective stick inputs is
needed to maintain the helicopter heading during vertical motions.

Tail rotor design and operation are complicated; see section 5.6.5. When the yaw
rate or translational velocity is large, the tail rotor can be operating in the vortex ring
state The tail rotor regularly operates in an adverse aerodynamic environment due
to the wake of the main rotor, fuselage, and vertical tail. The directional control and
yaw damping are influenced by these factors. In general, however, the tail rotor is
a powerful and efficient design solution for the torque balance, directional stability,
and control of single main rotor helicopters.

21.4.5 Longitudinal Dynamics

The dynamics of a helicopter in hover separate into vertical and lateral-longitudinal
motions. It is assumed for now that the lateral and longitudinal dynamics can also
be analyzed separately. Neglecting the influence of vertical and lateral motions, the
longitudinal dynamics consist of just two degrees of freedom: pitch θF (positive nose
upward) and longitudinal velocity ẋF (positive forward). The inputs considered are
longitudinal cyclic θs and longitudinal aerodynamic gust velocity uG. Equilibrium
of longitudinal forces and pitch moments give the differential equations for the
longitudinal motions of the helicopter:

[
s − Xu −Xqs + g

−Mu s2 − Mqs

](
ẋF

θF

)
=
(

Xθ

Mθ

)
θs +

(
Xu

Mu

)
uG (21.94)

The velocity and pitch perturbations produce longitudinal forces and pitch moments
through the rotor response. With the body-axes velocity representation of the aircraft
motion, pitch angle produces a component of the aircraft weight in the x-direction.
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The characteristic equation is

� = s3 − (Xu + Mq)s2 + (XuMq − XqMu)s + gMu = 0 (21.95)

The three solutions of this polynomial are the poles of the helicopter longitudinal
dynamics. The equations of motion invert to(

ẋF

θF

)
= 1
�

(
Xθ s2 + (XqMθ − XθMq)s − Mθg

Mθ s + (XθMu − XuMθ )

)
θs

+ 1
�

(
Xus2 + (XqMu − XuMq)s − Mug

Mus

)
uG (21.96)

The longitudinal velocity response to cyclic and gusts has two zeros, whereas the
pitch response has one zero.

Consider first the case of an articulated rotor with no flap hinge offset, so the flap
frequency νβ = 1. The expressions for the stability derivatives are simplified (section
21.4.2). The moments are entirely due to the hub forces acting a distance h above
the center-of-gravity, so the pitch moment derivatives are proportional to the drag
force derivatives: M = −(h/k2

y)X . The response solution becomes(
ẋF

θF

)
= 1
�

(
Xθ s2 − Mθg

Mθ s

)
θs + 1

�

(
Xus2 − Mug

Mus

)
uG

= 1
�

(
Xθ θs + XuuG

)( s2 + gh/k2
y

−(h/k2
y)s

)
(21.97)

The pitch response has a single zero at the origin, s = 0. The longitudinal velocity
response has two zeros on the imaginary axis at s = ±i(gh/k2

y)
1/2. The magnitude of

these zeros is usually several times that of the poles, so they influence the response
only for large gain.

For νβ = 1, the characteristic equation reduces to

� = s3 − (Xu + Mq)s2 + gMu = s3 − Mqs2 + Mu
(
(k2

y/h)s
2 + g

) = 0 (21.98)

The rotor gives the helicopter positive damping for pitch (Mq < 0), positive damping
for longitudinal velocity (Xu < 0), and positive speed stability (Mu > 0). Since Xu is
small compared to Mq, the dynamics are dominated by the pitch derivatives Mq and
Mu. Figure 21.2 illustrates the variation of the hover longitudinal roots with Mu and
Mq. For Mu = 0, the solution is s = 0, 0, and Mq. As Mu increases, the pitch damping
root increases in magnitude, while the two roots at the origin become an unstable
oscillatory mode. For moderate Mu the oscillatory roots approach asymptotes at
±60° from the real axis. For large Mu, these roots approach s = ±i(−gMu/Xu)

1/2 =
±i(gh/k2

y)
1/2. For Mq = 0, the solution (neglecting Xu) is

s = −(gMu)
1/3, (gMu)

1/3 1
2

(
1 + i

√
3
)
, (gMu)

1/3 1
2

(
1 − i

√
3
)

(21.99)

As Mq increases, the real root increases in magnitude, and the frequency of the
oscillatory mode decreases while it becomes less unstable.

The uncoupled pitch and longitudinal motions of the hovering helicopter both
have positive damping. The instability of the longitudinal dynamics for hover must
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Figure 21.2. Influence of speed stability (Mu > 0) and pitch damping (Mq < 0) on the heli-
copter longitudinal roots.

therefore be a result of the coupling of the motion by the pitch moment due to
longitudinal velocity (the speed stability Mu) and the longitudinal component of the
gravitational force due to pitch. The approximate characteristic equation

s3 − Mqs2 + gMu = 0 (21.100)
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is equivalent to the following differential equations:[
s g

−Mu s2 − Mqs

](
ẋF

θF

)
= 0 (21.101)

These equations contain the essence of the longitudinal dynamics in hover, with the
following interpretation. Consider an oscillatory motion at frequency ω. Because
of the rotor speed stability Mu, longitudinal velocity ẋF produces a nose-up pitch
moment. This moment is balanced by the pitch inertia, so the pitch response is 180°
out-of-phase with the longitudinal velocity: θF = −(Mu/ω

2)ẋF , and forward velocity
produces a nose-down pitch motion. The pitch motion rotates the body axes relative
to the vertical, so there is a forward component of the gravitational force. Thus in the
longitudinal velocity equation there is a force gθF = −(g/ω2)MuẋF , which is negative
damping, and therefore the coupled motion is unstable. The pitch moments are also
reacted by the pitch damping Mq, which strongly influences the phase and frequency
of the coupled motion.

For a more general view of the role of the speed stability, consider the divergence
and flutter stability given by the characteristic equation 21.95. The requirement for
static or divergence stability is that the constant term in the characteristic equa-
tion be positive, which is satisfied since Mu > 0. The requirement for dynamic or
flutter stability can be obtained by applying Routh’s criterion. The coefficients of
the characteristic equation are positive, so all the roots are in the left-hand plane
(stable) if

gMu + (Xu + Mq)(XuMq − XqMu) < 0 (21.102)

The second term is zero for an articulated rotor, so the criterion reduces to Mu < 0,
and the motion is unstable. The speed stability thus has a dominant role in determin-
ing the stability of the helicopter dynamics in hover. Because the criteria for static
and dynamic stability are conflicting, the helicopter motion is unstable regardless of
the sign or magnitude of Mu (see Figure 21.2).

Table 21.1 presents a numerical example of the helicopter dynamics in hover
for a representative aircraft: single main rotor and tail rotor configuration, Lock
number γ = 8, solidity σ = 0.08, rotor height above center-of-gravity h = 0.3, tail
rotor area times tail length Abtr�tr/Abmr R = 0.08, moments of inertia k2

x = 0.02, and
k2

y = k2
z = 0.1 (where k2 = I/MR2 is the dimensionless radius of gyration), tip speed

�R = 650 ft/sec, and radius R = 20 ft. The operating condition is CT/σ = 0.08, so
g/�2R = 0.00152 and G = g/(2CT/σa) = 0.0543. Table 21.1 has results with the
wake effects, through the lift deficiency functions C = 0.53 and C′ = 0.70, and the
wake curvature KR = 1.5, and without the wake effects (C = C′ = 1 and KR = 0).
Table 21.1 considers the flap frequencies νβ = 1/rev and νβ = 1.1/rev. Figure 21.3
shows the influence of νβ on the poles.

The helicopter longitudinal dynamics are characterized by three modes: a neg-
ative real root (stable convergence) principally due to the pitch damping and a
complex conjugate pair in the right half-plane (a mildly unstable oscillation) due to
the coupling of the pitch and longitudinal velocity by the speed stability. Flap-hinge
offset of an articulated rotor does not radically alter the character of the helicopter
flight dynamics, although there is an important quantitative improvement in the
handling qualities due to the hub moment capability. For a hingeless rotor the flap
frequency is large enough to have a major impact on the dynamics. All three of these
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Table 21.1. Example of hovering helicopter dynamics

No wake No wake

Vertical Directional
s −0.0093 −0.0136 −0.0072 −0.0119
t 1

2
2.3 1.6 2.9 1.8

flap frequency: νβ = 1/rev νβ = 1.10/rev

longitudinal
pitch mode

s −0.018 −0.017 −0.057 −0.043
t 1

2
1.2 1.3 0.4 0.5

ẋF /θF 0.089 0.098 0.030 0.038
oscillatory mode

s 0.0046±i0.012 0.0057±i0.012 0.0014±i0.013 0.0027±i0.015
ω 0.40 0.41 0.42 0.50
ζ −0.35 −0.42 −0.10 −0.17
T 15.9 15.5 14.8 12.5
t2 4.6 3.7 15.8 7.9
ẋF /θF 0.114 (112°) 0.108 (116°) 0.115 (98°) 0.096 (101°)
z (ẋF /θs) ±i0.068 ±i0.068 −0.0115±i0.129 −0.0080±i0.131
z (θF /θs) 0 0 −0.0001 −0.0001
z (ẋF /uG) ±i0.068 ±i0.068 −0.0138±i0.118 −0.0095±i0.121

lateral
roll mode

s −0.049 −0.035 −0.268 −0.188
t 1

2
0.4 0.6 0.1 0.1

ẏF /φF −0.034 −0.045 −0.008 −0.010
oscillatory mode

s 0.0032±i0.017 0.0062±i0.020 0.0002±i0.014 0.0006±i0.017
ω 0.57 0.65 0.44 0.55
ζ −0.18 −0.30 −0.01 −0.03
T 11.1 9.7 14.3 11.5
t2 6.7 3.4 130.5 37.2
ẏF /φF 0.085 (−79°) 0.071 (−72°) 0.112 (−88°) 0.090 (−87°)
z (ẏF /θc) ±i0.151 ±i0.151 −0.058±i0.283 −0.040±i0.292
z (φF /θc) 0 0 −0.0001 −0.0001
z (ẏF /vG) ±i0.151 ±i0.151 −0.069±i0.258 −0.048±i0.268

Notes: root s (dimensionless), zero z (dimensionless), time to half-amplitude t 1
2

(sec), frequency ω
(rad/sec), damping ratio ζ , period T (sec), time to double-amplitude t2 (sec); eigenvector ẋF /θF or
ẏF /φF (dimensionless; magnitude and phase); no wake column: C = C′ = 1 and KR = 0.

roots are small compared to the rotor speed, justifying the use of the low-frequency
rotor response.

Figure 21.4 shows the time to half-amplitude of the pitch or short period mode,
as a function of flap frequency (νβ = 1.00, 1.05, 1.10, and 1.15) and aircraft size (rotor
radius R = 10, 20, 30, and 40 ft). Typically for νβ = 1, the pitch mode has a time to
half-amplitude of t 1

2
= 1 to 2 sec. This real root is roughly the same as the pole of

the vertical motion. With offset hinges, the pitch mode time to half-amplitude is
less than 0.5 sec. The high pitch damping of the hingeless rotor greatly increases the
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Figure 21.3. Influence of flap frequency on poles of longitudinal dynamics of hovering heli-
copter: νβ = 1 to 1.15/rev.

magnitude of the real root, so typically t 1
2

= 0.2 to 0.5 sec. The dimensional pole of
the pitch mode is relatively independent of the aircraft size.

Figure 21.5 shows the variation of the longitudinal oscillatory or long period
mode with flap frequency and aircraft size: frequency ω (rad/sec), damping ratio ζ
(positive for stable), period T (sec), and time to double-amplitude t2 (sec, negative
for stable). The period is typically T = 10 to 20 sec (a frequency of 0.05 to 0.10
Hz, or 0.3 to 0.6 rad/sec). The period is not much influenced by flap frequency
and scales with size roughly proportionally to

√
R. For νβ = 1, the time to double-

amplitude is typically t2 = 3 to 7 sec. The high pitch damping of the hingeless rotor
counters the increased speed stability, so the time to double-amplitude is increased
substantially, to t2 = 10 to 20 sec (hingeless rotors have not often been designed
for large helicopters). The dimensionless real part of the oscillatory pole is roughly
independent of size, so the time to double-amplitude is roughly proportional to R.
The instability is milder for a large helicopter, because both the period and the time
to double-amplitude increase with size.
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R = 40

20
30

νβ = 1.00

1.05

1.10

(sec)

Figure 21.4. Influence of flap frequency and rotor size on the time to half-amplitude of the
pitch mode: νβ = 1 to 1.15/rev and radius R = 10 to 40 ft.



21.4 Hover Flight Dynamics 867

νβ = 1.15

R = 10

R = 40

(sec)

ω ζ

t2T

0.

5.

10.

15.

20.

25.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.4

-0.3

-0.2

-0.1

0.0

0.

10.

20.

30.

40.

50.

(sec)

(rad/sec)

νβ = 1.15

R = 10

R = 40

νβ = 1.00

νβ = 1.15

R = 10

R = 40

νβ = 1.00

νβ = 1.15

R = 10

R = 40

νβ = 1.00

νβ = 1.00

constant νβ
constant R

Figure 21.5. Influence of flap frequency and rotor size on frequency, damping, period, and
time to double-amplitude of the longitudinal oscillatory mode: νβ = 1 to 1.15/rev and radius
R = 10 to 40 ft.

The variation of the longitudinal roots in Figures 21.4 and 21.5 are for constant tip
speed andCT/σ . For fixed radius and tip speed, the pitch mode time to half-amplitude
increases with CT/σ , except for νβ = 1. The oscillatory mode period decreases with
CT/σ and the damping ratio becomes more negative, so the instability is worse at
high blade loading. For fixed radius and blade loading, the pitch mode time to half-
amplitude increases with tip speed. The oscillatory mode period increases with tip
speed, and the damping ratio becomes more negative.

21.4.6 Response to Control and Loop Closures

The steady-state response to control (s = 0) is

(
ẋF

θF

)
=
( −Mθ /Mu

(XθMu − XuMθ )/gMu

)
θs

∼=
(−1/8Mμ

0

)
θs (21.103)
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The last approximation is quite good in general and is exact for an articulated rotor
with no hinge offset. Cyclic pitch control produces longitudinal velocity ẋF but no
attitude change in the steady-state perturbation from hover. Longitudinal cyclic
produces a pitch moment Mθ θs, and equilibrium is achieved when the moment due
to the speed stability is sufficient to cancel the control moment. At this equilibrium
state there is no net force or moment on the helicopter (since XθMu − XuMθ

∼= 0)
and hence no pitch attitude change. The zero steady-state pitch response to cyclic
implies neutral static stability of the hovering helicopter relative to pitch attitude
changes. The gradient of the cyclic control with the steady-state velocity perturbation
(θs/ẋF ) is a measure of the rotor speed stability.

Because the longitudinal motion in hover is unstable, a finite steady-state
response is achieved only if the pilot or an automatic control system intervenes
to ensure that the transients die out. This solution for the steady-state response is
thus best interpreted as the gradient of the control to trim the helicopter for small
velocity and pitch changes from hover.

The short time response to cyclic control and longitudinal gusts (s → ∞) is(
ẍF

θ̈F

)
=
(

Xθ

Mθ

)
θs +

(
Xu

Mu

)
uG (21.104)

For an articulated rotor the longitudinal acceleration response to control is
(ẍF/g)/θs = Xθ/g = −1 g/rad, which is quite small. This result is independent of
any parameters of the rotor; the response varies little with the flap frequency also.
The primary response to longitudinal cyclic is the pitch acceleration. For an articu-
lated rotor θ̈F/θs = Mθ = hk/k2

y, and for a hingeless rotor the pitch acceleration is
three or four times larger. Similarly, the longitudinal acceleration response to gusts
is small, whereas the pitch acceleration response is large, especially with a hingeless
rotor.

Consider a short period approximation for the hover longitudinal dynamics.
Since control inputs at first produce primarily pitch motion of the helicopter, the
longitudinal velocity can be neglected for a short time analysis. If ẋF is neglected,
the equation of motion for pitch becomes

(s − Mq)θ̇F = Mθ θs + MuuG (21.105)

So initially cyclic pitch commands the helicopter pitch rate, with a first-order lag
given by the pole s = Mq. This pole is an approximation to the pitch root of the
longitudinal dynamics, but the approximation is not very good for articulated rotors,
where the speed stability increases the magnitude of the root significantly. The initial
response is here

θ̈F = Mθ θs + MuuG (21.106)

which is the same as obtained with the complete equations. The steady-state limit
of this approximation is the pitch rate θ̇F/θs = −Mθ /Mq. For still larger times the
longitudinal velocity motion enters the dynamics, and the complete equations must
be considered.

To achieve stable flight, the longitudinal dynamics of the hovering helicopter
require feedback control, either from the pilot or from an automatic control system
(perhaps a mechanical system, often using a gyro). The longitudinal velocity and
pitch attitude must be sensed and, after appropriate compensation, fed back to the
longitudinal cyclic pitch.
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Figure 21.6. Longitudinal velocity feedback to cyclic for an articulated rotor helicopter in
hover.

Figure 21.6 shows the root loci for feedback of the helicopter longitudinal dis-
placement or longitudinal velocity. Since the open loop zeros of the response are
large compared to the poles, they do not influence the loci except for high gains.
None of these networks based on measuring xF or ẋF is satisfactory. Negative feed-
back (K > 0) of xF or ẋF destabilizes the oscillatory mode, whereas positive feedback
produces a static instability. Longitudinal velocity feedback θs = KẋF is equivalent
to changing the speed stability, so these results are consistent with Figure 21.2.

Figure 21.7 shows the root loci for feedback of the helicopter pitch attitude, pitch
rate, or a combination of attitude and rate. The pitch response has a single open
loop zero at the origin. Pitch attitude feedback can stabilize the oscillatory mode
with positive gain, although it is limited to rather low damping for an articulated
rotor. Attitude feedback, however, decreases the damping of the real root, which is
undesirable. Pitch rate feedback both increases the real root damping and stabilizes
the oscillatory mode. The period and time to double-amplitude of the oscillatory root
are both increased, but the mode remains unstable. Pitch rate feedback is equivalent
to increasing the rotor pitch damping derivatives Xq and Mq (Figure 21.2). These
results suggest the use of a combination of pitch attitude feedback to stabilize the
oscillation and pitch rate feedback to keep the pitch damping high. Introducing
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Figure 21.7. Pitch feedback to cyclic for an articulated rotor helicopter in hover.

some attitude feedback into the rate network pulls one of the zeros off the origin
into the left half-plane, bringing the oscillatory branches of the loci with it, while
maintaining the real root damping increase of the rate feedback. The lead τ must
be large enough for the zero to remain close to the origin. If the zero gets to the
left of the open loop pole, the network operates more like attitude feedback, and
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the real root damping decreases. Typically a lead of τ = 2 to 4 sec is required for
articulated rotor helicopters. Thus rate plus attitude feedback of pitch (or attitude
feedback with lead) produces the desired handling qualities of high pitch damping
and a stable oscillatory mode. Such feedback is not the most desirable for the pilot,
however. The lead required is a bit higher than can be easily handled, so the hovering
task is tiring for the pilot and the task requires training. Thus an automatic stability
augmentation system is frequently desirable.

Figure 21.8 shows the root loci for feedback of the helicopter pitch attitude
or rate with some lag in the network. Mechanical systems in particular are likely
to introduce such a lag, with typically � = 1 sec. So there is an additional pole
somewhat to the left of the real root of the hover dynamics. Generally the flying
qualities deteriorate with lag in the system. With a large enough lag the attitude
feedback no longer stabilizes the oscillatory mode, and for rate feedback the lag
introduces a limit on the increase in the real root damping. As long as the lag is
significantly smaller than the time constant of the aircraft pitch root, the root loci are
not greatly influenced. In particular, the lagged rate plus attitude feedback remains
satisfactory as long as the lead character of the network dominates (the lag pole
must be to the left of the lead zero and preferably also to the left of the pitch root).
Lagged rate feedback (�s + 1)θs = −Kθ̇F is of interest since there are mechanical
systems that produce such control (see section 21.9). This system is generally similar
to pure rate feedback. Although rate or lagged rate feedback does not produce a
stable system, it definitely improves the helicopter flight dynamics.

In summary, the longitudinal dynamics of a hovering helicopter are described
by a stable real root due to the pitch damping and a mildly unstable oscillatory root
due to the speed stability. The instability is not too objectionable, since the period
and time to double-amplitude are long enough for the motion to be controllable by
the pilot. However, the control characteristics of the helicopter require the pilot to
adopt a fairly complex compensation scheme in order to successfully stabilize this
mode. The pilot has good control over the angular acceleration of the helicopter, but
the direct control of translation is poor. The lack of significant direct command of
the helicopter velocity (equation 21.104) makes more difficult the tasks of precisely
controlling the longitudinal or lateral position in hover and providing the feedback
required to stabilize the oscillatory modes. The control sensitivity (the pitch and
roll rate commanded by cyclic) is high in hover. The combination of high sensitivity
and only indirect control of translational velocity is conducive to pilot-induced
oscillations and increases the difficulty of the control task. The pilot must work with
the direct control of the helicopter attitude and thus is required to anticipate the
velocity response that results, providing a significant lead in the pitch feedback to
achieve stability.

The handling qualities are improved with offset flap hinges or with a hingeless
rotor because of the increased pitch damping and control capability, which reduce
the instability of the oscillatory mode. Increased control capability makes the task of
controlling the helicopter easier. However, the gust sensitivity is also increased with
a hingeless rotor. For a helicopter with an offset-hinge articulated rotor or a hingeless
rotor, the root loci of feedback are similar to those in Figures 21.6 to 21.8, but the
quantitative differences in the poles have important influences on the gain, lead,
and lag requirements of the compensation. Thus rate plus attitude feedback is again
required for satisfactory dynamics, but the increased damping and control capability
mean that less lead and a lower gain are required, which eases the piloting task.
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Figure 21.8. Lagged pitch feedback to cyclic for an articulated rotor helicopter in hover.

21.4.7 Lateral Dynamics

Next consider the lateral dynamics of the hovering helicopter, still assuming a sepa-
ration of the longitudinal and lateral motions. The degrees of freedom involved are
the lateral velocity ẏF (positive right) and roll angle φF (positive right). The lateral
cyclic control θc and lateral gust velocity vG are also included. Equilibrium of lateral
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Figure 21.9. Influence of flap frequency on poles of lateral dynamics of hovering helicopter:
νβ = 1 to 1.15/rev.

forces and roll moments give the differential equations for the lateral motions of the
helicopter: [

s − Yv −Yps − g

−Lv s2 − Lps

](
ẏF

φF

)
=
(

Yθ

Lθ

)
θc +

(
Yv

Lv

)
vG (21.107)

The rotor in hover is axisymmetric. The only physical difference between the lon-
gitudinal and lateral dynamics of the hovering helicopter is that the roll moment of
inertia Ix is much smaller than the pitch moment of inertia Iy. Hence the lateral sta-
bility derivatives are equal to the corresponding longitudinal derivatives, except that
in the moment derivatives k2

y must be replaced by k2
x; see section 21.4.2. There are

sign changes due to the reversal of the orientation of the angular motion relative to
the linear motion when transforming from the longitudinal dynamics to the lateral.
The effect of the smaller roll inertia is to increase the magnitude of the roll stability
derivatives relative to the pitch derivatives.

The lateral dynamics are described by a real convergence mode due to the
roll damping Lp, and an unstable oscillatory mode due to the rotor dihedral effect
or speed stability Lv . Table 21.1 presents a numerical example of the helicopter
dynamics in hover, including the lateral dynamics. The ratio of moment of inertia is
Ix/Iy = 0.2. Figure 21.9 shows the influence of νβ on the poles.

Figure 21.10 shows the time to half-amplitude of the roll mode, as a function of
flap frequency (νβ = 1.00, 1.05, 1.10, and 1.15) and aircraft size (rotor radius R = 10,
20, 30, and 40 ft). Typically for an articulated rotor the roll mode has a time to
half-amplitude of t 1

2
= 0.4 to 0.5 sec; hinge offset gives t 1

2
= 0.1 to 0.2 sec. The roll

response is much quicker than the pitch response, due to the smaller roll inertia. The
high roll damping of the hingeless rotor greatly increases the magnitude of the real
root, so typically t 1

2
< 0.1 sec. The dimensional pole of the roll mode is relatively

independent of the aircraft size.
Figure 21.11 shows the variation of the lateral oscillatory mode with flap fre-

quency and aircraft size: frequency ω (rad/sec), damping ratio ζ (positive for stable),
period T (sec), and time to double-amplitude t2 (sec, negative for stable). The period
is typically T = 10 to 20 sec (a frequency of 0.05 to 0.10 Hz, or 0.3 to 0.6 rad/sec).
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Figure 21.10. Influence of flap frequency and rotor size on the time to half-amplitude of the
roll mode: νβ = 1 to 1.15/rev and radius R = 10 to 40 ft.

Because of the large roll damping with hinge offset or hingeless blades, the time to
double-amplitude is much larger than for the longitudinal mode.

To stabilize the lateral motion, rate plus attitude feedback of the helicopter
roll to lateral cyclic is required. Although the rotor dynamics are axisymmetric in
hover, the aircraft is not. Also, the pilot’s perception of motion and ability to apply
appropriate control are different for longitudinal and lateral dynamics. Controlling
roll motion can be more or less difficult than controlling pitch motion, depending on
the pilot’s task.

A short period approximation for the lateral dynamics consists of just the roll
motion:

(s − Lp)φ̇F = Lθ θc (21.108)

The single pole of this equation is a good approximation for the actual roll mode,
even for articulated rotors, because of the smaller inertia than for the longitudinal
motion. The steady-state response is φ̇F/θc = −Lθ /Lp, so lateral cyclic commands a
roll rate with a small first-order lag.

21.4.8 Coupled Longitudinal and Lateral Dynamics

Consider now the coupled longitudinal and lateral motions of the single main rotor
helicopter in hover. The longitudinal and lateral dynamics are in fact strongly coupled
by the rotor forces. Including this coupling, the equations of motion are⎡⎢⎢⎢⎣

s − Xu −Xqs + g −Xv −Xps

−Mu s2 − Mqs −Mv −Mps

−Yu −Yqs s − Yv −Yps − g

−Lu −Lqs −Lv s2 − Lps

⎤⎥⎥⎥⎦
⎛⎜⎝

ẋF

θF

ẏF

φF

⎞⎟⎠

=

⎡⎢⎢⎢⎣
Xθ Xu Xθc Xv

Mθ Mu Mθc Mv

Yθs Yu Yθ Yv

Lθs Lu Lθ Lv

⎤⎥⎥⎥⎦
⎛⎜⎝
θs

uG

θc

vG

⎞⎟⎠ (21.109)
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Figure 21.11. Influence of flap frequency and rotor size on frequency and damping, period,
and time to double-amplitude of the lateral oscillatory mode: νβ = 1 to 1.15/rev and radius
R = 10 to 40 ft.

For an articulated rotor (νβ = 1), the coupling derivatives are

Xθc = 0 (21.110)

Xv = −G
(

Rβ̇8Mμ + Rr

)
(21.111)

Xp = −G
(

CT

σa
(1 − KR)+ CRβ̇

(16
γe

))
+ hXv

= −g
1 − KR

2
− G

16
γ

Rβ̇ + hXv (21.112)

with the substitution G = g/(2CT/σa). The side force derivatives equal the corre-
sponding drag force derivatives, and the moment derivatives are h/k2 times the
force derivatives; see section 21.4.2. The coupling consists principally of the moment
derivatives due to angular velocity, Mp and Lq. A roll rate of the rotor produces a
lateral gradient of velocity over the rotor disk; hence a roll aerodynamic moment.
The rotor responds with longitudinal tip-path-plane tilt, until the roll moment due
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Table 21.2. Example of hovering helicopter coupled dynamics,
νβ = 1/rev

Uncoupled Coupled Coupled, KR = 0

longitudinal
pitch mode

s −0.018 −0.019 −0.020
t 1

2
1.2 1.1 1.0

ẋF /θF 0.089 0.087 0.081
ẏF /θF 0.020 0.043
φF/θF −0.24 −0.56

oscillatory mode
s 0.0046±i0.012 0.0049±i0.012 0.0053±i0.011
ω 0.40 0.39 0.37
ζ −0.35 −0.38 −0.42
T 15.9 16.2 17.1
t2 4.6 4.3 4.0
ẋF /θF 0.114 (112°) 0.115 (114°) 0.119 (116°)
ẏF /θF 0.042 (−132°) 0.068 (−137°)
φF/θF 0.36 (−65°) 0.56 (−72°)

lateral
roll mode

s −0.049 −0.048 −0.044
t 1

2
0.4 0.4 0.5

ẏF /φF −0.034 −0.035 −0.038
ẋF /φF −0.005 −0.010
θF/φF −0.095 −0.212

oscillatory mode
s 0.0032±i0.017 0.0024±i0.018 0.0008±i0.019
ω 0.57 0.58 0.61
ζ −0.18 −0.14 −0.04
T 11.1 10.9 10.4
t2 6.7 8.8 28.4
ẏF /φF 0.085 (−79°) 0.084 (−82°) 0.080 (−88°)
ẋF /φF 0.020 (19°) 0.031 (6°)
θF/φF 0.26 (−80°) 0.41 (−87°)

Notes: root s (dimensionless), time to half-amplitude t 1
2

(sec), frequency ω
(rad/sec), damping ratio ζ , period T (sec), time to double-amplitude t2 (sec);
eigenvector ẋF /θF , ẏF /θF , φF /θF ; or ẏF /φF , ẋF /φF , θF /φF (dimensionless;
magnitude and phase).

to flapping equals the roll moment due to roll rate (the angle-of-attack change due
to roll rate is cancelled by that due to the flap velocity): β1c = −φ̇F . Including the
effect of wake curvature on the induced velocity, the flapping is β1c = −(1 − KR)φ̇F

(equation 21.51). The flap deflection tilts the thrust of the blade, producing an in-
plane force 2CH/σa = Rββ1c = (CT/σa)(1 − KR)φ̇F (equation 21.54; the Hβ̇ terms
cancel). The result is Mp = (gh/k2

y)(1 − KR)/2. With KR = 1.5 for hover, the wake
curvature effect changes the sign of this coupling.

Tables 21.2 and 21.3 compare the coupled and uncoupled solutions for the hov-
ering helicopter longitudinal-lateral dynamics, for flap frequencies of νβ = 1/rev and
νβ = 1.1/rev, respectively. The aircraft considered is the same as for Table 21.1.
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Table 21.3. Example of hovering helicopter coupled dynamics,
νβ = 1.10/rev

Uncoupled Coupled Coupled, KR = 0

longitudinal
pitch mode

s −0.057 −0.072 −0.065
t 1

2
0.4 0.3 0.3

ẋF /θF 0.030 0.024 0.027
ẏF /θF −0.015 −0.003
φF /θF 0.64 0.081

oscillatory mode
s 0.0014±i0.013 0.0014±i0.013 0.0023±i0.012
ω 0.42 0.41 0.41
ζ −0.10 −0.11 −0.18
T 14.8 15.4 15.5
t2 15.8 15.1 9.5
ẋF /θF 0.115 (98°) 0.119 (98°) 0.120 (102°)
ẏF /θF 0.072 (−9°) 0.095 (−157°)
φF /θF 0.61 (73°) 0.79 (−79°)

lateral
roll mode

s −0.268 −0.252 −0.311
t 1

2
0.1 0.1 0.1

ẏF /φF −0.008 −0.009 −0.008
ẋF /φF 0.001 −0.001
θF /φF 0.129 0.014

oscillatory mode
s 0.0002±i0.014 −0.0004±i0.014 −0.0011±i0.013
ω 0.44 0.44 0.41
ζ −0.01 0.03 0.09
T 14.3 14.3 15.2
t2 130 t 1

2
= 57 t 1

2
= 19.2

ẏF /φF 0.112 (−88°) 0.113 (−90°) 0.118 (−93°)
ẋF /φF 0.061 (179°) 0.086 (−7°)
θF /φF 0.54 (90°) 0.74 (−93°)

Notes: root s (dimensionless), time to half-amplitude t 1
2

(sec), frequency ω
(rad/sec), damping ratio ζ , period T (sec), time to double-amplitude t2 (sec);
eigenvector ẋF /θF , ẏF /θF , φF /θF ; or ẏF /φF , ẋF /φF , θF /φF (dimensionless;
magnitude and phase).

The coupling tends to destabilize the longitudinal oscillation and stabilize the lat-
eral oscillation for these cases. The pitch and roll real roots are given fairly well
by the uncoupled equations, particularly for the hingeless rotor. The uncoupled
equations correctly give the basic characteristics and most of the quantitative results
of the coupled dynamics. The eigenvectors show that even when the roots are not
influenced much, the coupling still introduces considerable roll motion in the longi-
tudinal dynamics and pitch motion in the lateral dynamics. This example includes
the wake effects, and coupled results are also shown without the wake curvature
influence (KR = 0). For the hingeless rotor, KR = 1.5 changes the sign of φF/θF in
the eigenvector.
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21.5 Forward Flight

Next let us examine the dynamics of the helicopter in forward flight. Forward speed
introduces new forces acting on the helicopter: centrifugal forces due to the rotation
of the trim velocity vector by the angular velocity of the body axes, aerodynamic
forces on the fuselage and tail, and major rotor forces that are proportional to the
advance ratio. As a result, the handling qualities in forward flight are very different
from those in hover. In forward flight, the vertical and lateral-longitudinal dynamics
are coupled by both the rotor forces and the body accelerations. It is again assumed
that the longitudinal dynamics (longitudinal velocity, pitch attitude, and vertical
velocity) and the lateral dynamics (lateral velocity, roll attitude, and yaw rate) can
be analyzed separately. Such an analysis provides a reasonable description of the
helicopter flight dynamics, although in fact all six degrees of freedom are coupled.

The simplified geometry of Figure 21.1 is still used, as for the hover analysis. So
the coordinate axes are aligned with the rotor shaft and hub plane, and the helicopter
center-of-gravity is directly below the rotor hub. The forces and moments about the
helicopter center-of-gravity are then obtained from the hub reactions simply by
a translation along the z-axis, with no rotations. For numerical work an arbitrary
reference axis system in the body can be used, and in general the center-of-gravity
is offset from the shaft axis. The trim Euler angles are assumed to be small, and only
level flight is considered so there is no climb velocity. The inertial cross-coupling of
roll and yaw is neglected (Ixz = 0).

Forward flight influences the inertial forces by introducing the centrifugal accel-
eration required to turn the trim velocity vector when the body axes are rotated by
the angular velocity. Principally there is a vertical acceleration due to the pitch rate
and a lateral acceleration due to the yaw rate. These forces couple the vertical and
lateral-longitudinal dynamics. The forces and moments acting on the helicopter are
produced by the main rotor, tail rotor, fuselage and tail aerodynamics, and gravity.
The axis system has been chosen specifically to simplify the role of the main rotor
forces and moments. The only tail rotor contribution considered is the yaw moment
produced by its thrust. The aerodynamic forces on the fuselage and tail are not
considered in detail here.

The linear acceleration relative to inertial space is important to the pilot and
passengers. In terms of the body-axis degrees of freedom, the inertial acceleration is
a = v̇ − ṽω, or

ax = −ẍF + μzθ̇F (21.113)

ay = ÿF + μzφ̇F + (μ cos θF0 − μz sin θF0)ψ̇F (21.114)

az = −z̈F + μθ̇F (21.115)

with ax positive aft and az positive up. In forward flight, a pitch rate produces a
vertical acceleration az, which is the centripetal acceleration required to turn the
velocity vector. Similarly, yaw rate produces a lateral inertial acceleration. As in
hover, the short time response to longitudinal cyclic is primarily a pitch rate. Thus in
forward flight longitudinal cyclic controls the helicopter vertical acceleration, giving
the pilot control over the flight path trajectory. The collective stick controls vertical
flight path at low speed (and even beyond minimum power speed), but is used mainly
for lift trim in high-speed flight. The helicopter roll axis and velocity vector coincide,
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so there is little inertial acceleration due to rolling of the body axes, and lateral cyclic
still commands roll rate.

21.5.1 Forward Flight Stability Derivatives

As for hover, the rotor forces and moments acting on the helicopter in forward flight
are obtained from the low-frequency response, and therefore the rotor dynamics
do not add degrees of freedom to the system. The quasistatic rotor hub reactions,
including the effects of the flap motion, are given in section 19.3. Forward flight
introduces order μ2 changes to the rotor stability derivatives present in hover, so
there is no radical change in those derivatives for typical helicopter speeds (up to
about μ = 0.5). In forward flight there are also derivatives of order μ that couple the
vertical and lateral-longitudinal dynamics of the rotor. The most important of these
new stability derivatives is the pitching moment due to angle-of-attack perturbations
of the helicopter.

As described in section 19.3, lateral aerodynamic moment due to vertical velocity
of the helicopter produces a longitudinal tip-path-plane tilt of

�β1c = M1s
λ

Mβ̇

(żh − wG) = 2μ(żh − wG) (21.116)

(equation 19.63). In terms of the aircraft velocity, the flapping is �β1c = −2μ(żF +
wG). Downward velocity of the helicopter (żF > 0) increases the angle-of-attack of
the blades. In forward flight the resulting lift increase is largest on the advancing
side and smallest on the retreating side, so there is a lateral moment of the rotor
disk (toward the retreating side) that is proportional to μ. The rotor responds 90°
later with rearward tip-path-plane tilt until the lateral moment due to the flapping
velocity is sufficient to establish equilibrium again. This flap deflection tilts the thrust
vector and with offset hinges or hingeless blades produces a hub moment. Ignoring
the amplitude and phase shift due to νβ > 1 (ignoring Ne), the hub reactions produce
the rotor contributions to the angle-of-attack stability derivatives:

�Xw ∼= G
2CT

σa
∂β1c

∂ żF
= −G

2CT

σa
2μ (21.117)

�Mw
∼= − G

k2
y

(
ν2
β − 1

γ
+ h

2CT

σa

)
∂β1c

∂ żF
= G

k2
y

(
ν2
β − 1

γ
+ h

2CT

σa

)
2μ (21.118)

where G = aρAbR/2M = g/(2CT/σa). So downward vertical velocity results in a
nose-up pitch moment on the helicopter. For hingeless rotors there is also the direct
hub moment term, which greatly increases the pitch moment. In forward flight, the
helicopter angle-of-attack perturbation is żF/μ. An angle-of-attack increase then
produces a pitch-up moment on the helicopter, which would tend to increase the
angle-of-attack further. Hence the rotor is the source of an angle-of-attack instability
of the helicopter in forward flight.

The derivation of the aerodynamic forces acting on the helicopter fuselage
and tail can be obtained from an airplane stability and control text. All of the
airframe contributions to the stability derivatives are proportional to the forward
speed and therefore are zero in hover. The fuselage drag in forward flight produces
damping forces Xu and Zu. The fuselage trim aerodynamic pitch moment produces
a contribution (often unstable) to the speed stability Mu. The helicopter fuselage
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also produces unstable moments due to angle-of-attack changes: a pitch moment
Mw and a yaw moment Nv . The horizontal and vertical tails give the remaining
contributions to the stability derivatives, assuming that the helicopter does not have
a wing. The horizontal tail produces a pitch moment due to angle-of-attack Mw,
which contributes to the static angle-of-attack stability, countering the destabilizing
contribution of the main rotor. The horizontal tail also gives a pitch moment due
to the helicopter pitch rate Mq that adds to the rotor pitch damping, as well as
corresponding contributions to the vertical force derivatives Zw and Zq, since the
tail lift is involved. Finally, the horizontal tail contributes to the helicopter speed
stability Mu and produces forces Xw and Xu. Since these last three derivatives are
proportional to the tail lift coefficient, they depend on how the horizontal tail is used
to trim the helicopter. The vertical tail contributions to the lateral derivatives are
similar to the horizontal tail contributions to the longitudinal derivatives. The major
effects of the vertical tail are the yaw moments due to lateral velocity Nv and the yaw
rate Nr, which add to the directional stability and yaw damping of the helicopter.
There are also the corresponding side force derivatives and derivatives due to the
vertical tail lift coefficient. The vertical tail is often given a non-zero incidence angle
so it develops a yaw moment in forward flight to counter the main rotor torque.
The aerodynamic environment of the helicopter fuselage and tail is very complex,
which makes estimation of the stability derivatives difficult. The fuselage is usually
aerodynamically blunt and rough, and the tail surfaces must operate in the wake of
the main rotor, tail rotor, and fuselage. Using experimental data for the aerodynamic
characteristics of the helicopter airframe is therefore often essential.

The rotor angle-of-attack instability has an adverse effect on the forward flight
handling qualities, and a horizontal tail is used to reduce this instability. The pitch
moment produced by the horizontal tail lift due to the vertical velocity is Mytail =
− 1

2ρVSt�tat żF , where St is the horizontal tail area, �t the tail length, and at the tail
lift-curve slope (including the effects of the wing or rotor wake at the tail). Thus the
tail contribution to the angle-of-attack derivative is

�Mw = ∂My/∂ żF

I
= − ρμSt�tat

2Mk2
y

= − atρSt�t

2M
μ

k2
y

(21.119)

Since both the tail and rotor moments are proportional to μ, their relative contribu-
tions to the angle-of-attack stability are independent of speed. From this expression,
the tail size (St�t) needed to offset the instability can be estimated. The dependence
on speed is actually more complex, because of the wake interference effects on the
tail and the rotor terms of higher order in μ.

21.5.2 Longitudinal Dynamics

Consider the longitudinal dynamics of a helicopter in forward flight, consisting of
three degrees of freedom: longitudinal velocity ẋF , pitch attitude θF , and vertical
velocity żF . The controls are collective and longitudinal cyclic (θ0 and θs), and excita-
tion by vertical and longitudinal gust velocities is included. The equations of motion
are⎡⎢⎣ s − Xu −Xqs + g −Xw

−Mu s2 − Mqs −Mw

−Zu −Zqs − μs s − Zw

⎤⎥⎦
⎛⎝ ẋF

θF

żF

⎞⎠ =

⎡⎢⎣ Xθ Xθ0 Xu Xw

Mθ Mθ0 Mu Mw

Zθ Zθ0 Zu Zw

⎤⎥⎦
⎛⎜⎝
θs

θ0

uG

wG

⎞⎟⎠
(21.120)
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The stability derivatives now have contributions from the rotors and the aerodynamic
forces on the fuselage and tail. Forward flight introduces the vertical acceleration due
to pitch rate of the body axes, as well as rotor stability derivatives coupling the vertical
and pitch motions. The most important new term is the angle-of-attack derivative
Mw, which has unstable contributions (Mw > 0) from the rotor and fuselage and a
stable contribution from the horizontal tail. The derivatives Zq and Zu are small
(Zq = 0 for an articulated rotor), and the force Xw is much less important than the
pitch moment Mw . The characteristic equation is

(s − Zw)
(

s3 − (Xu + Mq)s2 + (XuMq − XqMu)s + gMu

)
− Mw

(
(μ+ Zq)s2 + (ZuXq − ZqXu − μXu)s − gZu

)
− Xw

(
Zus2 − (ZuMq − ZqMu − μMu)s

)
= 0 (21.121)

The first term is the characteristic equation for hover (for Mw = Xw = 0), which
decouples into the vertical and longitudinal motions.

The influence of forward flight is most easily examined for the case of an artic-
ulated rotor with no flap hinge offset, for which all the drag force and pitch moment
derivatives are related by M = −(h/k2

y)X . The characteristic equation then reduces
to

(s − Zw)
(

s3 − (Xu + Mq)s2 + gMu

)
− Mw

(
(μ+ Zq − (k2

y/h)Zu)s2 − gZu

)
= 0
(21.122)

For the articulated rotor, Zq = 0 and Zu is small, so the last term is nearly just
−Mwμs2. For an offset-hinge articulated rotor or a hingeless rotor, the term −Mwμs2

still dominates the influence of forward flight on the characteristic equation. So the
characteristic equation is approximately

(s − Zw)
(

s3 − (Xu + Mq)s2 + (XuMq − XqMu)s + gMu

)
− Mwμs2 = 0 (21.123)

The influence of forward flight on the longitudinal dynamics of the helicopter thus
consists primarily of the following forces: the pitch moment due to vertical velocity,
the vertical acceleration due to pitch rate, and the longitudinal inertia of the heli-
copter. Their product is −Mwμs2, which increases as the square of the speed (since
Mw is proportional to μ).

Figure 21.12 illustrates the influence of forward flight on the longitudinal dynam-
ics of a single main rotor helicopter. The parameters of Table 21.1 are used: Lock
number γ = 8, solidity σ = 0.08, rotor height above center-of-gravity h = 0.3, pitch
moment of inertia k2

y = 0.1, and blade loading CT/σ = 0.08. The rotor has a 5%
hinge offset, so νβ = 1.039. The horizontal tail size is atSt�t/aAbR = 0.08. For the
purposes of exposition, Mw was evaluated using equations 21.118 and 21.119, and
the hover values were used for the other derivatives.

The influence of forward flight is shown in Figure 21.12 for a net angle-of-attack
instability due to the rotor (Mw > 0) and with a large enough horizontal tail for angle-
of-attack stability (Mw < 0). The hover poles are the real roots of the vertical and
pitch modes, plus the long period, mildly unstable oscillatory mode. At high speed,
two of the poles approach the origin (because of the s2 factor in −Mwμs2). With the
main rotor alone (no tail), the angle-of-attack instability in forward flight reduces
the damping of the smaller real root (usually the vertical mode) and increases the
damping of the larger real root. The influence of forward speed on the oscillatory
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Figure 21.12. Influence of forward flight on the longitudinal roots for a helicopter without a
horizontal tail (Mw > 0) and with a horizontal tail (Mw < 0).

mode is to increase the period and decrease the time to double-amplitude (reduced
damping). Hence the forward flight dynamics of a helicopter without a horizontal
tail are characterized by two real roots and an unstable oscillatory mode, with a
degradation of the handling qualities due to the angle-of-attack instability. With a
hingeless rotor Mw can be large enough at very high speed to replace the oscillatory
mode with two positive real roots, one with an unacceptably small time to double-
amplitude.

The helicopter can have net static stability with respect to angle-of-attack by
using a large enough horizontal tail. In that case, forward speed transforms the
pitch and vertical roots of hover into an oscillatory mode with a short period and
high damping. The long period hover mode is stabilized and usually moved into the
left half-plane, with the period increased somewhat. The forward flight longitudinal
dynamics of a helicopter with a horizontal tail are thus characterized by a short
period mode due to the damping of vertical and pitch motion and a long period
mode stabilized by the static stability with respect to angle-of-attack. A horizontal
tail large enough to produce a high level of static stability is not always practical,
particularly with hingeless rotors. Moreover, the tail effectiveness is reduced at low
speeds by interference with the rotor and fuselage wakes. The improvement of the
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handling qualities is so significant, however, that most single main rotor helicopter
designs have a horizontal tail.

The behavior of the roots with increasing speed is often more complicated than
predicted using the present simple model (Figure 21.12). With a horizontal tail, the
oscillatory mode can be stable with a large time to half-amplitude and a period about
twice the hover value. The short period mode period is around 4 to 6 sec, and time
to half-amplitude is about 1 sec. If the tail is not large enough or effective enough,
the oscillatory mode is unstable, with a time to double-amplitude that can be small
and a period about equal the hover value. All the stability derivatives vary with
speed, the influence of flap frequency is strong, and the tail effectiveness depends
on the aerodynamic interference. So making generalizations about the rotorcraft
longitudinal flight dynamics in forward flight is difficult.

Nonuniform inflow can be an important factor in the forward flight dynamics,
producing significant changes in the stability derivatives. For example, the speed
stability derivative is particularly sensitive to longitudinal variations of the inflow.
In the present analysis the rotor speed is assumed to be constant. For helicopters
in autorotation, in partial-power descent, or without a tight governor there can be
significant rotor speed perturbations, which have a major influence on the flight
dynamics.

21.5.3 Short Period Approximation

Consider a short period approximation for the helicopter longitudinal dynamics. The
initial response to control and gusts is primarily vertical and pitch acceleration, with
little longitudinal acceleration. The control over the longitudinal motion is indirect,
so a significant ẋF response takes a while to develop. Therefore, as an approxima-
tion for short times, the longitudinal velocity degree of freedom is neglected. The
equations of motion reduce to

[
s − Mq −Mw

−μ s − Zw

](
θ̇F

żF

)
=
[

Mθ Mθ0 Mu Mw

Zθ Zθ0 Zu Zw

]⎛⎜⎝
θs

θ0

uG

wG

⎞⎟⎠ (21.124)

neglecting also the small vertical force due to θ̇F , produced by the Zq derivative.
These equations retain the principal coupling of forward flight: the angle-of-attack
derivative Mw and the vertical acceleration due to pitch rate. Since the gravitational
spring term on the pitch motion appears in the longitudinal force equation, the short
period approximation gives a second-order system for the two degrees of freedom
θ̇F and żF . The equations of motion invert to

(
θ̇F

żF

)
= 1
�

[
s − Zw Mw

μ s − Mq

] [
Mθ Mθ0 Mu Mw

Zθ Zθ0 Zu Zw

]⎛⎜⎝
θs

θ0

uG

wG

⎞⎟⎠ (21.125)

with the characteristic equation

� = (s − Mq)(s − Zw)− Mwμ = 0 (21.126)

In hover the pitch and vertical motions decouple, and the two solutions of the
characteristic equation are s = Zw and s = Mq. The first solution is exactly the hover
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vertical pole. The second solution is the pole of the short period approximation
for the hover longitudinal dynamics, which is an approximation for the pitch root
in hover. Figure 21.12 shows the short period approximation for the poles of the
longitudinal dynamics, for the Mw < 0 case. The approximation is good for μ > 0.2
or so. The short period natural frequency and damping are thus

ω2
n

∼= MqZw − Mwμ (21.127)

2ζωn
∼= −(Mq + Zw) (21.128)

giving the frequencyω = ωn

√
1 − ζ 2 and time constant τ = 1/ζωn. The characteristic

equation of the short period approximation can be written � = (s − sz)(s − sθ ),
where sz and sθ are the two roots, a complex conjugate pair in forward flight if Mw < 0.
In the limit of very small time (s approaching infinity), the short period approximation
gives the same vertical and pitch acceleration response as the complete model.

The principal concern in the short period longitudinal dynamics is the normal
acceleration response of the helicopter. In terms of the body-axis degrees of freedom,
the vertical acceleration in inertial space is az = −z̈F + μθ̇F . The pitch rate is the main
source of normal acceleration in forward flight. The response of az = −sżF + μθ̇F to
longitudinal cyclic, as given by the short period approximation, is

az

θs
= 1
�

(
−sZθ (s − Mq)+ μ(ZθMw − MθZw)

)
∼= −Zθ + −μMθZw

(s − sz)(s − sθ )
(21.129)

The initial response is az/θs = −Zθ . This is a small vertical acceleration produced
immediately after the control application by the thrust increment due to cyclic.
The response of the pitch rate is zero initially, but as it builds up, the pitch rate
contributes to the normal acceleration. The steady-state response (of the short period
approximation) is

az

θs
= −Zθ − μMθZw

szsθ
= −Zθ − μMθZw

MqZw − Mwμ
(21.130)

The second term is the acceleration due to the steady-state pitch rate response to
cyclic.

Figure 21.13 illustrates the helicopter normal acceleration in response to a step
increase of longitudinal cyclic in forward flight. By using the low-frequency rotor
response, the lag in the development of the rotor forces has been neglected. Thus
immediately after the application of the cyclic control there is a thrust increment that
produces a small vertical acceleration. The pitch angular velocity of the helicopter
is initially zero, but it builds up to the steady-state values given by the short period
approximation, with a second-order transient defined by the two short period poles.
This body-axis pitch rate produces the major portion of the normal acceleration
in forward flight. For times beyond the validity of the short period approximation,
the long period mode enters the response. A low-frequency, slowly decaying (or
growing) oscillation of the normal acceleration develops (Figure 21.13). The pilot
must then take the corrective action required to bring the helicopter back to the trim
state.

The longitudinal cyclic command of the normal acceleration of the helicopter,
and hence of its flight path trajectory, is an important aspect of the handling qualities.
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Figure 21.13. Normal acceleration response to a step increase of longitudinal cyclic.

The helicopter pitch control sensitivity is high, and a reasonable normal acceleration
is achieved eventually. However, there is a delay after the application of the cyclic
control (which initially produces only the small vertical acceleration Zθ) until the
pitch rate develops enough to give that normal acceleration. Thus the helicopter
is characterized by a lag before the maximum normal acceleration in response to
longitudinal cyclic is achieved, which can make control difficult if the lag is too long.
A simple requirement of the helicopter handling qualities in forward flight is that the
maximum acceleration be achieved within a certain time after the application of the
cyclic control. This requirement has been quantified by using the inflection point on
the trace of az, as a function of time (Figure 21.13). The smaller the inflection point
time tI , the sooner the maximum acceleration is achieved. Moreover, the existence
of an inflection point means that the normal acceleration response is not divergent.
Beyond tI the normal acceleration curve is concave downward. The specification
was that the time history of the normal acceleration due to a step input of longitu-
dinal cyclic should be concave downward within a time tI . The concave downward
requirement was intended to ensure acceptable maneuverability characteristics of
the helicopter. The problem this specification addressed is the delay in development
of the normal acceleration after control application, which must not be too long for
satisfactory handling qualities. Long superseded as a handling quality specification,
the concave downward requirement still serves to characterize the helicopter short
period response.

The stability derivatives involved in the short period response are Zw , Mq, and
Mw. The vertical damping is essentially fixed by the basic rotor design parame-
ters. So the initial response az/θs

∼= −μMθZw/s2 is fixed. The inflection time can be
reduced by decreasing the steady-state response az/θs = −μMθZw/(szsθ ); hence by
increasing szsθ = MqZw − Mwμ. Increasing the pitch damping improves the normal
acceleration response, as does increasing the static stability with respect to angle-
of-attack. The inverse of the normal acceleration response is the longitudinal cyclic
stick displacement per g of normal acceleration. The steady-state response of the
short period approximation gives

θs

az/g
= gszsθ

−μMθZw
= g(MqZw − Mwμ)

−μMθZw
(21.131)
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So a minimum criterion for szsθ corresponds to a minimum stick gradient. Consider-
ing either the concave downward requirement or the stick gradient with load factor,
the helicopter maneuver capability is an important factor in sizing the horizontal tail.
The angle-of-attack stability due to the tail is an effective means of achieving the
required normal acceleration response. Increasing the pitch damping by using rate
feedback or a hingeless rotor also improves the short period response by reducing
the control sensitivity. A gyro stabilizer bar (section 21.9) is a mechanical means
to introduce lagged feedback of pitch rate in order to increase the pitch and roll
damping.

21.5.4 Lateral-Directional Dynamics

Consider the lateral-directional dynamics of a helicopter in forward flight, consisting
of three degrees of freedom: lateral velocity ẏF , roll attitude φF , and yaw rate ψ̇F .
The controls are lateral cyclic and pedal (θc and θp), and excitation by lateral gust
velocity is included. The equations of motion are⎡⎢⎣ s − Yv −Yps − g μ

−Lv s2 − Lps 0

−Nv 0 s − Nr

⎤⎥⎦
⎛⎝ ẏF

φF

ψ̇F

⎞⎠ =

⎡⎢⎣Yθ 0 Yv

Lθ 0 Lv

0 Nθp Nv

⎤⎥⎦
⎛⎝ θc

θp

vG

⎞⎠ (21.132)

for the single main rotor and tail rotor configuration. In forward flight there is a
lateral acceleration due to the yawing velocity of the body axes. The main rotor side
force and roll moment due to yaw rate (Yr and Lr) are small and are neglected.
The main rotor torque perturbations are neglected compared to the tail rotor thrust
contributions to the yaw moments, so Nθ and Np are omitted. In this approximation,
the only stability derivatives retained are those present in hover as well as in forward
flight. The coupling of the yaw and lateral dynamics is due to the lateral acceleration
produced by the yaw rate and the directional stability Nv (yaw moment produced
by lateral velocity). The directional stability is due to the change in tail rotor thrust
during lateral velocity of the helicopter. Nv does not influence the hover roots,
but rather is responsible for a yaw response during lateral motions of the hovering
helicopter. In forward flight the rotor is not axisymmetric, so the side force and roll
moment derivatives do not equal the corresponding longitudinal stability derivatives.

The characteristic equation of the helicopter lateral dynamics in forward flight
is

(s − Nr)
(

s3 − (Yv + Lp)s2 + (YvLp − YpLv )s − gLv
)

+ μNv (s − Lp)s = 0
(21.133)

The first term is the product of the characteristic equations for uncoupled yaw and
lateral dynamics (sideward velocity and roll). The second term is due to the coupling
in forward flight by the lateral acceleration and directional stability. Figure 21.14
shows the variation of the lateral-directional roots with advance ratio. The param-
eters of Table 21.1 are used to construct this example. The hover roots are the
uncoupled yaw root, the roll root (much larger, requiring change of scale in the fig-
ure), and the unstable lateral oscillation. The directional stability is always positive
(Nv > 0). Since the tail rotor gives a high level of directional stability, forward speed
quickly stabilizes the oscillatory mode. For high speed, the two real roots approach
s = Lp (the roll mode) and s = 0 (the spiral mode). The other two roots approach the
vertical asymptote, and the inertial coupling in forward flight transforms the hover
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Figure 21.14. Influence of forward flight on the helicopter lateral roots (real scale doubled to
show the roll root).

oscillatory mode into a stable, short period oscillation. This vertical asymptote is
a good estimate of the damping of the short period oscillation. From the rules for
constructing root loci, the asymptote is at

Res = 1
2

(
(Yv + Lp + Nr)− Lp

)
= 1

2

(
Yv + Nr

) ∼= 1
2

Nr (21.134)

which is just half the hover yaw root, if the yaw damping Nr does not vary too much
with speed.

In forward flight, the roll root approaches s = Lp, the value given by the uncou-
pled damping. This roll root typically has a time to half-amplitude of about 0.5 sec
with articulated rotors and is much smaller with hinge offset or hingeless blades. The
derivative Lp does vary somewhat with speed, so although the forward flight root
has nearly the value of the uncoupled roll damping, that value varies with advance
ratio. The other real root (the yaw mode in hover) approaches the origin, indicating
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that the roll response becomes a rate change rather than an attitude change. Forward
speed transforms the unstable, long period oscillation of hover into a well-damped
short period mode (Dutch roll). The time to half-amplitude of this mode is about
the same as the hover yaw root (Nr does vary with speed), and the period is around
2 to 4 sec. Sideslip to the right produces a yaw to the right through the directional
stability. In forward flight this yaw motion implies a lateral centrifugal acceleration
on the helicopter or equivalently an inertial force acting to the left. In contrast with
hover, therefore, the lateral velocity of the helicopter produces a force opposing the
motion, and the oscillatory mode is stable in forward flight. The directional stability
Nv produced by the tail rotor is large, so the behavior of the lateral roots with speed
is described well by the present simple model (Figure 21.14).

As a short period approximation to the lateral dynamics in forward flight, neglect
the lateral velocity, since it builds up much more slowly than the roll or yaw motion.
Then, since roll and yaw are not coupled in the present simplified model, the equa-
tions of motion for the short period approximation reduce to simply the uncoupled
roll response: (s − Lp)φ̇F = Lθ θc. In forward flight this is a good approximation for
the roll dynamics, because the directional stability tends to decouple the lateral
velocity from the roll motion. Hence lateral cyclic commands the roll rate, with a
small first-order time lag due to the inertia. The steady-state response of the short
period approximation gives φ̇F/θc = −Lθ/Lp.

This elementary analysis of the helicopter lateral-directional dynamics is suffi-
cient to show the basic influence of forward speed and the tail rotor on the motion. A
better analysis must also include the details of the fuselage inertial and aerodynamic
forces, the vertical tail aerodynamics, and the tail rotor position and direction of
rotation. The mutual aerodynamic interference between the fuselage, the vertical
tail, the tail rotor, and the main rotor can greatly influence the flight dynamics and
hence is an important consideration in the aircraft design.

21.6 Static Stability

Static stability is defined as a tendency for a system to return toward the equilibrium
position when disturbed, which implies a force or moment opposing slow pertur-
bations from equilibrium. Static stability is related to divergence of a system. The
divergence stability boundary is defined by the criterion that one pole of the sys-
tem be at the origin, so divergence stability is assured if the constant term of the
characteristic equation is positive. In contrast, dynamic stability means that all dis-
turbances from equilibrium die out eventually, which requires that all poles of the
system be in the left half-plane. Static stability can also be related to the steady-state
response of the system to control. The presence of a force or moment opposing
perturbations from equilibrium implies that, to change the equilibrium trim state, a
force or moment must be applied to the aircraft by means of a control deflection.
The amount of the control required (the control gradient) is a measure of the force
or moment produced by the perturbation from trim and hence of the static stability.
The sign of the control gradient indicates whether the system is statically stable or
unstable. For simple systems all these definitions of static stability are equivalent and
have elementary interpretations. For complex systems, the definition and interpre-
tation of static stability are more difficult. For the helicopter, more than one stability
derivative is involved even in most static effects, so relating stick gradients, static
stability, and the dynamic stability characteristics is difficult.
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The helicopter in hover has neutral static stability with respect to pitch or roll
perturbations, since no moments to oppose the motion are generated directly by
such perturbations. The hovering helicopter does have positive static stability with
respect to longitudinal or lateral velocity perturbations, because of the speed stabil-
ity derivatives Mu and Lv . Analogous behavior is found in airplane lateral dynamics,
where static stability with respect to lateral velocity perturbations (sideslip) is pro-
duced by the wing dihedral effect, but there is neutral static stability with respect to
roll angle perturbations.

The rotor in forward flight is statically unstable with respect to angle-of-attack.
The fuselage and tail contribute significantly to the overall helicopter static stability
with respect to angle-of-attack and speed in forward flight.

The important control gradients for the helicopter are the longitudinal cyclic
displacements required to change speed and to change the normal load factor. For
static stability with respect to speed, a forward displacement of the longitudinal
cyclic stick is required to increase speed. This stick gradient is primarily related to
the speed stability derivative Mu. Generally, as the forward speed of the helicopter
increases the rotor tip-path plane flaps back, and a forward tilt of the control plane is
needed to maintain the aircraft trim. At low forward speeds, some helicopters exhibit
an unstable stick gradient with velocity. For acceptable maneuver characteristics, an
aft displacement of the longitudinal cyclic stick is required to increase the helicopter
vertical load factor in forward flight. This control gradient is related to the angle-
of-attack and pitch damping derivatives Mw and Mq. A minimum gradient or a
maximum control sensitivity is required for acceptable maneuver characteristics.

21.7 Twin Main Rotor Configurations

There are major differences between the flight dynamics of helicopters with two
main rotors and those with the single main rotor and tail rotor configuration. The
most common twin main rotor configuration is the tandem rotor helicopter, in which
the main rotors have a typical longitudinal separation of 1.65R between the shafts;
hence 35% overlap of the rotor disks. The tandem helicopter in hover has longi-
tudinal symmetry (about the y–z plane), if it is possible to ignore such differences
as the vertical rotor separation (the rear rotor is elevated above the front rotor
to avoid the wake of the latter), the inertial and aerodynamic effects of the rear
rotor pylon, and the offset of the helicopter center-of-gravity from midway between
the rotors. Consequently, the tandem helicopter dynamics separate into symmetric
(roll, side velocity, and vertical velocity) and anti-symmetric motions (pitch, longi-
tudinal velocity, and yaw), at least to a better approximation than the decoupling
of the lateral and longitudinal motions of a single main rotor helicopter. The ver-
tical dynamics of the tandem helicopter are identical to those of the single main
rotor helicopter. The lateral dynamics are equivalent to the truly uncoupled lateral
dynamics of a single main rotor helicopter, but with quantitative differences because
the fuselage of a tandem helicopter usually has a higher roll inertia. The longitu-
dinal and yaw dynamics of the tandem helicopter involve new phenomena. The
pitch control is by differential collective, and an additional source of pitch damping
is the differential thrust of the main rotors due to the rotor axial velocity during
pitch motions. Yaw control of the tandem rotor helicopter is obtained by differen-
tial lateral cyclic; the yaw damping is provided by the drag damping forces of the
rotors.
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With coaxial, contra-rotating main rotors the helicopter behaves as if it had a
single main rotor with truly decoupled longitudinal and lateral dynamics. The yaw
control and damping are obtained from the main rotor torque, instead of from a tail
rotor.

The side-by-side helicopter configuration has true lateral symmetry, so there is a
separation of the symmetric and anti-symmetric motions in both hover and forward
flight. In hover the dynamics are basically the same as for the tandem rotor helicopter
except for the interchange of the pitch and roll axes. Hence the longitudinal and
vertical dynamics (the symmetric motions) are similar to the dynamics of a single
main rotor helicopter. The lateral and yaw dynamics of the side-by-side configuration
are similar to the longitudinal and yaw dynamics of the tandem rotor configuration.
The interchange of the pitch and roll axes has a major impact on the flight dynamics,
since different requirements are placed on lateral and longitudinal behavior.

21.7.1 Tandem Helicopter

The tandem helicopter geometry is simplified, as described in section 21.3. The front
rotor is a distance � f forward of the aircraft center-of-gravity, and the rear rotor is a
distance �r aft of the aircraft center-of-gravity, so the separation is � = � f + �r. The
rotor hub heights are h f and hr. Write D f , Dr for the single rotor derivatives (section
21.4.2) evaluated for the front and rear rotors, respectively. The trim thrust and
inflow of the two rotors are likely different, because of center-of-gravity position and
interference; hence the rotor aerodynamic coefficients and lift deficiency function
are different. The front and rear control derivatives can include different gains. The
two rotors are assumed to have the same radius, blade area, and tip speed. The
parameter G is based on single rotor properties still and on total aircraft inertia.
Hence the tandem rotor derivatives are the sum of front and rear rotor derivatives
(not the average), and G is half that of single rotor: G = a(g/�R2)/(4(CT/σ )trim).
From the transformation of loads in section 21.3, the vertical stability derivatives are

Zθ0 = Z fθ0 + Zrθ0 (21.135)

Zθs = Z fθ0 − Zrθ0 (21.136)

Zw = Z fw + Zrw (21.137)

Zq = −� f Z fw + �rZrw (21.138)

If there are different collective gains for pitch control, then Zθs is non-zero. If the
rotor has pitch-cone coupling or the center-of-gravity is not midway between the
rotors, then Zq is non-zero. The longitudinal stability derivatives are

Xθ = 0 (21.139)

Xu = Xf u + Xru (21.140)

Xq = Xf q + Xrq (21.141)

Mθ = − 1
k2

y

(
� f Z fθ0 + �rZrθ0

)
(21.142)

Mθ0 = − 1
k2

y

(
� f Z fθ0 − �rZrθ0

)
(21.143)
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Mu = M f u + Mru (21.144)

Mq = M f q + Mrq + 1
k2

y

(
�2

f Z fw + �2
r Zrw

)
(21.145)

Mw = − 1
k2

y

(
� f Z fw − �rZrw

)
(21.146)

M�w = − 1
k2

y

(
� f Z fw + �rZrw

)
(21.147)

The total rotor collective is θ0 ±�θ0. The total vertical gust at each rotor is wG ±
�wG. Longitudinal cyclic is not used, so Xθ = 0 and Mθ comes from the thrust due
to differential collective. The derivatives Mw and Mθ0 couple the longitudinal and
vertical motion. The lateral stability derivatives (Yθ , Yv , Yp, Lθ , Lv , Lp) are just the
sum of the front and rear rotor contributions. The directional stability derivatives
are

Nθp = 1
k2

z

(
� fYfθ + �rYrθ

)
(21.148)

Nr = 1
k2

z

(
�2

fYfv + �2
rYrv

)
(21.149)

Nv = 1
k2

z

(
� fYfv − �rYrv

)
(21.150)

N�v = 1
k2

z

(
� fYfv + �rYrv

)
(21.151)

where the pedal control is differential lateral cyclic and the lateral gust velocity is
vG ±�vG at the two rotors. The moments of inertia of the tandem helicopter are
roughly twice those of a single main rotor helicopter, giving approximately k2

x = 0.04
and k2

y = k2
z = 0.20.

Consider the longitudinal dynamics of a tandem rotor helicopter in hover. Com-
plete longitudinal symmetry is assumed so that the symmetric and anti-symmetric
motions decouple, and it is assumed that the yaw and longitudinal motions can also
be analyzed separately. The longitudinal degrees of freedom are then the pitch angle
θF and longitudinal velocity ẋF ; excitation is by longitudinal gust uG. Pitch control
is by differential main rotor collective �θ0 (�θ0 at the front rotor and −�θ0 at the
rear rotor), and a differential vertical gust velocity �wG is also included.

Compared with the single main rotor case, the derivatives Xu, Mu, and Xq are
unchanged, although the speed stability Mu is numerically smaller because of the
large pitch inertia. The pitch control by differential collective produces a pure pitch
moment, so Xθ = 0. The control derivative Mθ for the tandem helicopter typically
has a value around three times that possible with the longitudinal cyclic control of a
single articulated main rotor with no flap hinge offset; it is comparable to the control
capability possible with a single hingeless rotor. The pitch damping Mq is dominated
by the differential thrust term because of the large rotor thrust change produced
by an axial velocity perturbation. The pitch damping derivative Mq of a tandem
helicopter is typically four times that of a single main rotor helicopter with no flap-
hinge offset or about twice that possible with a single offset-hinge articulated rotor,
and moreover Mq of a tandem helicopter varies little with the rotor loading. Thus
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the longitudinal dynamics of a tandem helicopter are characterized by high control
capability and pitch damping. The longitudinal handling qualities in hover should be
noticeably better than those of a single main rotor helicopter of comparable size.

The equations of motion for pitch and longitudinal velocity are[
s − Xu −Xqs + g

−Mu s2 − Mqs

](
ẋF

θF

)
=
[

0 Xu 0

Mθ Mu M�w

]⎛⎝ θs

uG

�wG

⎞⎠ (21.152)

With articulated rotors (νβ = 1; tandem rotors usually have low flap-hinge offset),
Mu = −(h/k2

y)Xu. The pitch damping is written Mq = −(h/k2
y)Xq +�Mq, where the

rotor differential thrust due to pitch rate produces

�Mq = 1
k2

y

(
�2

f Z fw + �2
r Zrw

) ∼= − �2

4k2
y

2GC′ 1
4

= − �2

16k2
y

C′

2CT/σa
(21.153)

Then the characteristic equation for the longitudinal dynamics of a tandem helicopter
is

� = s3 − (Xu + Mq)s2 + Xu�Mqs + gMu = 0 (21.154)

and the response to control and gust is(
ẋF

θF

)
= 1
�

(
Xqs − g

s − Xu

)
(Mθ θs + M�w�wG)+ 1

�

( s2 −�Mqs + gh/k2
y

−(h/k2
y)s

)
XuuG

(21.155)
Since Xu + Mq

∼= �Mq, the characteristic equation can be written as

� = s3 + gMu −�Mq(s − Xu)s = s3 −�Mqs2 + Mu
(−(k2

y/h)�Mqs + g
) = 0
(21.156)

With �Mq = 0, the three poles are the cubic roots of −gMu, as for the single main
rotor case. For Mq < 0, the oscillatory roots do not approach the origin (Figure 21.2),
but instead approach s = Xu and s = 0. Since Xu is negative, the roots are pulled
into the left half-plane, and the oscillatory mode is stabilized by the magnitude and
mechanism of the tandem rotor pitch damping. With Mu = 0, the three poles are
s = 0, 0, and �Mq. Because of the �Mq term, as Mu increases the oscillatory roots
approach a vertical asymptote (unlike Figure 21.2) at

Res = 1
2

(
�Mq − gh/k2

y

�Mq

)
(21.157)

The mode can be mildly stable if this asymptote is in the left half-plane. By Routh’s
criterion the oscillatory mode is stable if

− (Xu + Mq)Xu�Mq − gMu = −Xu

(
(Xu + Mq)�Mq − gh/k2

y

)
∼= −Xu

(
(�Mq)

2 − gh/k2
y

)
> 0 (21.158)

or |�Mq| > (gh/k2
y)

1/2. Using equation 21.153, this is a limit on blade loading:

2CT

σa
<
�2C′

16

√
g

hk2
y

(21.159)

The requirement is typically CT/σ < 0.03, increasing with size as R1/2.
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In summary, the longitudinal dynamics of a tandem helicopter in hover are
described by a stable real root due to the large pitch damping and by a mildly
unstable low-frequency oscillatory mode (for the case of identical tilt of the main
rotor shafts). The pole-zero configuration of the hover dynamics of the tandem
helicopter is basically the same as for the single rotor helicopter, so the root loci
for the various loop closures are similar. The higher pitch damping and control
capability of the tandem helicopter ease the control tasks somewhat. The speed
stability Mu depends on the relative tilt of the rotor shafts. By tilting the shafts
outward, the speed stability can be reduced, because of the in-plane component of
the rotor thrust damping.

For an articulated rotor (νβ = 1), the directional stability derivatives are

Nθp
∼= �

2k2
z

2Yθ = − g�
2k2

z
(21.160)

Nr
∼= �2

4k2
z

2Yv = − g�2

4k2
z

8Mμ (21.161)

The yaw damping is due to the rotor side forces produced by the lateral velocity
through the rotor drag damping. Yaw control is by the rotor side forces due to
differential lateral cyclic. The directional stability Nv is small. Compared to the yaw
control provided by a tail rotor, the tandem helicopter tends to have a smaller control
derivative Nθp because of the large yaw inertia. Also, with articulated rotors the yaw
control capability of a tandem helicopter is proportional to the rotor loading. The
yaw damping moment of a tandem helicopter is typically half that possible with a
tail rotor, and it depends on the rotor loading. The damping derivative Nr is further
reduced by the larger yaw inertia. Thus the yaw time to half-amplitude is typically
much larger than with a tail rotor. There is some coupling between the yaw and
longitudinal dynamics of the tandem helicopter. For example, differential collective
produces a net torque increment on the helicopter, so the pedal control must be
coordinated with the longitudinal cyclic stick to maintain the heading during pitch
maneuvers. Generally, the yaw handling qualities of a tandem helicopter are not as
good as those with a tail rotor, because of the lower damping and slower response.

In hover the longitudinal handling qualities of the tandem helicopter are some-
what better than those of the single main rotor configuration because of the higher
pitch damping and control capability; the lateral handling qualities are somewhat
worse because of the lower yaw damping and higher yaw and roll inertias. In forward
flight the tandem helicopter has a large angle-of-attack instability due to the main
rotors (and the fuselage), but a large horizontal tail is not practical. Thus there is a
degradation of the longitudinal handling qualities in forward flight with the angle-
of-attack instability producing an unstable oscillation or even a real divergence. The
tandem helicopter does not have much directional stability even in hover, although
some can be obtained with the center-of-gravity forward of the midpoint between
the rotors. There is a large unstable contribution to Nv from the fuselage in forward
flight, and the rear rotor pylon is not very effective as a vertical tail. Hence a direc-
tional instability is likely, and the lateral dynamics retain the unstable long period
oscillation in forward flight.

In forward flight there are a number of unfavorable effects on the flight dynamics
of tandem helicopters that arise from the aerodynamic interference between the two
rotors, specifically the influence of the front rotor downwash on the rear rotor
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thrust. The helicopter instability with respect to angle-of-attack is increased by the
aerodynamic interference. An angle-of-attack increase (hence greater downward
vertical velocity of the helicopter) increases the thrust of the rotors and therefore
also their induced velocities. The increased downwash of the front rotor wake at
the rear rotor produces a decrease of the rear rotor thrust and hence a net nose-up
pitch moment on the helicopter. Since the rear rotor is closer to stall than the front
rotor, the rear rotor thrust increases are further limited, giving a larger angle-of-
attack instability at high loading. The use of pitch-flap coupling on the front rotor
improves the angle-of-attack stability by reducing the lift-curve slope of the front
rotor relative to the rear rotor. The angle-of-attack instability is also reduced with a
forward center-of-gravity position or a reduction in thrust coefficient.

The tandem helicopter can have an instability with respect to speed in forward
flight. Each rotor has speed stability as usual, but the change of the rear rotor thrust
with speed due to the wake of the front rotor produces an unstable moment. A
speed increase reduces the induced downwash of the front rotor and hence reduces
the downwash of the front rotor wake at the rear rotor. The resulting increase
of the rear rotor thrust produces a nose-down pitch moment, which is a speed
instability. Since this speed instability due to the rotor thrust perturbation is large,
the tandem helicopter can easily have a net speed instability. The rear rotor is
closer to stall because of the downwash of the front rotor, and therefore the speed
instability is reduced at high loadings. The speed stability can be improved by using
the longitudinal dihedral of the shafts or swashplate, so the tip-path planes are tilted
toward each other (the aft rotor shaft tilted more forward). The thrust perturbations
due to the axial components of the helicopter longitudinal velocity perturbation
produce a nose-up moment, increasing the speed stability. The effectiveness of such
dihedral is reduced by the higher collective required to trim the rear rotor in forward
flight when its shaft is tilted forward. Also, the amount of tip-path plane tilt is limited
by interference between the rotors and fuselage.

21.7.2 Side-by-Side Helicopter or Tiltrotor

The side-by-side helicopter configuration has right and left main rotors, a distance
±� from the aircraft center-line. The rotor hub height is h above the center-of-
gravity. The tiltrotor has similar geometry in hover and helicopter mode flight, the
wing-tip-mounted rotors tilting forward to act as propellers in cruise flight. These
aircraft configurations have true lateral symmetry (symmetric about the x–z plane).
From the transformation of loads in section 21.3, the vertical stability derivatives are

Zθ0 = Zrθ0 + Zlθ0 (21.162)

Zw = Zrw + Zlw (21.163)

The longitudinal stability derivatives are just the sum of the left and right rotor
contributions. The directional stability derivatives are

Nθp = �

k2
z

(
Xrθ + Xlθ

)
(21.164)

Nr = �2

k2
z

(
Xru + Xlu

)
(21.165)

Nv = 0 (21.166)
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where the pedal control is differential longitudinal cyclic. The lateral stability deriva-
tives are

Yθ = 0 (21.167)

Yv = Yrv + Ylv (21.168)

Yp = Yrp + Yl p (21.169)

Lθ = − �

k2
x

(
Zrθ0 + Zlθ0

)
(21.170)

Lv = Lrv + Llv (21.171)

Lp = Lrp + Ll p + �2

k2
x

(
Zrw + Zlw

)
(21.172)

Lateral cyclic is not used, so Yθ = 0 and Lθ comes from the thrust due to differential
collective.

The moments of inertia of the side-by-side configuration are much larger than
those of a single main rotor helicopter. For a tiltrotor, the large mass of the nacelles
on the wing tips gives typically k2

x = 0.6, k2
y = 0.25, and k2

z = 0.8.

21.8 Hingeless Rotor Helicopters

The capability of the hingeless rotor to transmit large hub moments to the helicopter
has a major impact on its handling qualities. The articulated rotor in contrast can
achieve only a limited hub moment with offset hinges, roughly comparable to the
moment about the center-of-gravity due to the rotor thrust tilt. The hingeless rotor
gives the helicopter a high control capability compared to the articulated rotor, and
the damping in pitch and roll are increased by an even larger factor. The high damping
also means an increased gust sensitivity, so a high-speed hingeless rotor helicopter
often requires some sort of automatic control system for gust alleviation. The lateral-
longitudinal coupling of the control response is also increased substantially, but can
be handled satisfactorily by proper phasing of the swashplate. The increased lateral-
longitudinal coupling of the transient motion and response to external disturbances
remains, however. The angle-of-attack instability of the hingeless rotor in forward
flight is much larger than that of an articulated rotor and requires a larger horizontal
tail volume or an automatic control system to prevent a degradation of the handling
qualities. The hingeless rotor is able to maintain its control capability and damping
at low load factor, in contrast to the articulated rotor, which produces moments on
the helicopter primarily by tilting the thrust vector.

It is often necessary to include in the analysis the blade lag and torsion degrees
of freedom, as well as the flap motion, to accurately predict the flight dynamics of
a hingeless rotor helicopter. The inertial and structural couplings involved in the
hingeless rotor blade dynamics can have a major impact on the flight dynamics. The
use of the low-frequency rotor response is generally an acceptable approximation
even with a hingeless rotor.

21.9 Control Gyros and Stability Augmentation

Helicopter handling qualities can be improved by using an automatic control system.
For certain operations, such as instrument flight rules (IFR) flight, a stability and
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control augmentation system is essential. The use of such systems naturally increases
the cost and complexity of the helicopter. A gyroscope is a basic element of a
helicopter automatic control system. Since the rotor can be considered a gyro, a
control gyro can be used to sense the same inertial forces acting on the rotor. Such
a control system can be entirely mechanical, or the gyro can just be the sensor with
the control inputs provided by electro-hydraulic servos.

Consider a gyro gimballed to the rotor shaft and rotating at speed �G, which
for mechanical systems is usually the same as the rotor rotational speed �. The
undisturbed gyro plane is parallel to the rotor hub plane. The gyro tilt relative to
the shaft is described in the non-rotating frame by the pitch angle βGc and the roll
angle βGs (positive for tilt forward and to the left, respectively). The gyro responds
to the rotor shaft pitch and roll motions (θF and φF ). The gyro is assumed to be
axisymmetric, consisting of three or more identical, equally spaced radial elements.
Let IG be the gyro pitch and roll inertia. Damping CR in the rotating frame and
damping CF in the non-rotating frame are included, but act only on the motion of
the gyro relative to the shaft (so the damping is mechanical, not aerodynamic). The
equations of motion for the gyro degrees of freedom follow from equilibrium of
pitch and roll moments. By analogy with the dynamics of the flapping rotor, the gyro
equations of motion are[

IGs2 + (CR + CF )s 2�GIGs + CR�G

−(2�GIGs + CR�G) IGs2 + (CR + CF )s

](
βGc

βGs

)

=
[

IGs 2�GIG

−2�GIG IGs

](
θ̇F

φ̇F

)
+
(−MGy

MGx

)
(21.173)

where MGy and MGx are pitch and roll moments acting on the gyro. Compare with
equation 19.26 for the rotor tip-path-plane response. There is no structural spring, so
the gyro natural frequency is νG = �G. CR is similar to rotating-frame flap damping
Mβ̇ , but acts only on gyro tilt relative to the shaft.

Typically the gyro is connected to the rotor cyclic pitch in such a way that the
control plane tilt is proportional to the gyro tilt:(−θs

θc

)
= KG

[
cos�ψG sin�ψG

− sin�ψG cos�ψG

](
βGc

βGs

)
(21.174)

where KG is the gain and �ψG is the azimuthal phasing. There can be a direct
mechanical link from the gyro to the blade pitch horns that produces this control
input. In that case the blade feathering moments are also transmitted to the gyro,
which at least increases its effective inertia and damping. Alternatively, actuators
can provide the swashplate inputs proportional to the gyro tilt, with the appropriate
gain and compensation network.

With CR non-zero, the gyro response to helicopter angular velocity to order s is

(
βGc

βGs

)
∼= 2IG/CR

4IGs + CR

⎡⎢⎣ 2IGs + CR
1
�G

( 1
2CR + CF

)
s

− 1
�G

( 1
2CR + CF

)
s 2IGs + CR

⎤⎥⎦( θ̇F

φ̇F

)

∼= 2IG/CR

4(IG/CR)s + 1

(
θ̇F

φ̇F

)
(21.175)
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where the helicopter angular acceleration terms are neglected in the last expression.
Hence with control plane tilt proportional to the gyro tilt, this control system pro-
vides lagged rate feedback of the helicopter pitch and roll, which greatly improves
the helicopter handling qualities. This response results from the damping in the
rotating frame, CR. A mechanical system in the rotating frame must provide the
same feedback for both the pitch and roll axes. If there is no damping in the rotating
frame (CR = 0), the low-frequency response of the gyro to shaft pitch and roll is(

βGc

βGs

)
∼= IG

2IGCF s+4I2
G�

2
G+C2

F

[
CF s+4�2

GIG −(2IG�Gs−2�GCF )

2IG�Gs−2�GCF CF s+4�2
GIG

](
θF

φF

)
(21.176)

If there is no damping in either the rotating or non-rotating frames, the response is
exactly (

βGc

βGs

)
=
(
θF

φF

)
(21.177)

In this case the gyro remains fixed in space and thus provides pure attitude sensing.
The rate feedback obtained with damping in the rotating frame is most beneficial;
see section 21.4.6.

The low-frequency response of the gyro to applied moments is

(
βGc

βGs

)
∼= −1/CR�G

4IGs + CR

⎡⎢⎣ 2IGs + CR
1
�G

(CR + CF ) s

− 1
�G

(CR + CF ) s 2IGs + CR

⎤⎥⎦(MGx

MGy

)

∼= − −1/CR�G

4(IG/CR)s + 1

(
MGx

MGy

)
(21.178)

So the gyro tilt senses the applied moments if there is damping in the rotating frame.
If there is no damping in the rotating frame (CR = 0), the response is(

β̇Gc

β̇Gs

)
∼= −1

2IGCF s + 4I2
G�

2
G + C2

F

[
2IG�G CF

−CF 2IG�G

](
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)
(21.179)

With no damping at all, the response is(
β̇Gc

β̇Gs

)
= −1

IG(s2 + 4�2
G)

[
2�G s

−s 2�G

](
MGx

MGy

)

∼= − 1
2IG�G

(
MGx

MGy

)
(21.180)

so the gyro senses the integral of the moments and responds with an angular velocity
proportional to the applied moment after a 90° azimuthal lag.

Consider now a hub moment feedback control system utilizing a gyro. Such
a system can be used with a hingeless rotor to alleviate the large hub moments
produced by gusts. The hub moment of a hingeless rotor is⎛⎜⎝−2CMy

σa
2CMx

σa

⎞⎟⎠ = ν2
β − 1

γ

(
β1c

β1s

)
(21.181)



898 Flight Dynamics

where νβ is the rotor blade flap frequency. Hub moment feedback then is equivalent
to tip-path-plane tilt feedback, which can be used with articulated rotors as well.
The hub moment or tip-path-plane tilt is sensed and transmitted to the gyro by some
means, producing moments on the gyro:(

MGx

MGy

)
= Kβ

[
cos�ψβ − sin�ψβ
sin�ψβ cos�ψβ

](
β1c

β1s

)
(21.182)

where Kβ is the feedback gain and�ψβ is the azimuthal phase. Then a control plane
tilt is produced proportional to the gyro tilt as a response to this moment. Thus
a control can be applied to the rotor to cancel the hub moment due to external
disturbances. This hub moment feedback acts as well to reduce the hub moments
that constitute the control capability and damping of the rotor. The gyro can sense
the helicopter angular velocity and hence replace the pitch and roll damping, and the
pilot can control the helicopter with such a system by applying moments directly to
the gyro. The performance of a tip-path-plane tilt feedback system can be analyzed
using the low-frequency response of the gyro and rotor. The analysis for the hingeless
rotor is complicated by the azimuthal phase shifts, but the fundamental behavior of
such a control system can be established by considering an articulated rotor. The
low-frequency response of a hovering articulated rotor (νβ = 1) is(

β1c

β1s

)
=
(−θs

θc

)
+ 8Mμ

(
ẋh − uG

ẏh + vG

)
+ 16
γ

(
θ̇F
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+
(−φ̇F

θ̇F

)
(21.183)

(equation 19.103). The low-frequency gyro response with damping in the rotating
frame is (

βGc

βGs

)
= − 1

CR�G

(
MGx

MGy

)
+ 2IG

CR

(
θ̇F

φ̇F

)
(21.184)

For an articulated rotor, the control plane tilt should be proportional to the gyro tilt
with no phase shift: (−θs

θc

)
=
(−θs

θc

)
con

+ KG

(
βGc

βGs

)
(21.185)

Direct cyclic input from the pilot has been included, although such control is washed
out by the feedback. Finally, the moments applied to the gyro are proportional to
the rotor tip-path-plane tilt, again with no phase shift required:(

MGx

MGy

)
=
(

MGx

MGy

)
con

+ Kβ

(
β1c

β1s

)
(21.186)

The applied moments from the pilot, by which the rotor can be controlled, have
also been included. The complete control law for this system (using the gyro low-
frequency response) is thus(−θs

θc

)
=
(−θs

θc

)
con

+ KG

{
2IG

CR

(
θ̇F

φ̇F

)
− 1

CR�G

[(
MGx

MGy

)
con
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(
β1c

β1s

)]}
(21.187)

The total gain on the tip-path-plane tilt is K = KGKβ/CR�G. The moments on the
gyro should be kept low, so a high gain should be obtained not from Kβ but from
KG/CR. Hence a low but finite damping in the rotating frame and a high ratio of the
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swashplate tilt to gyro tilt are desired. On substituting for this control law, the rotor
flap response becomes(
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For large gain the response reduces to(
β1c

β1s

)
= − 1

Kβ

(
MGx
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)
con

+ 2IG�G
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(
θ̇F

φ̇F

)
(21.189)

A hub moment feedback control system therefore reduces the direct rotor response
to control, shaft motion, and gusts. The gust alleviation and the reduction of the speed
stability are beneficial. In forward flight the rotor angle-of-attack instability is also
reduced, which substantially improves the longitudinal flying qualities. The response
to direct cyclic pitch inputs is also reduced, but the pilot can control the rotor by
applying moments to the gyro instead. The hub moment feedback reduces not only
the rotor angular damping but also the response to the shaft angular velocity that
couples the lateral and longitudinal motions. With damping in the rotating system,
the gyro supplies feedback of the pitch and roll rate to replace the rotor damping of
the helicopter. The performance of the hub moment feedback system is similar with
a hingeless rotor. The rotor response to external disturbances is reduced, as are the
direct rotor forces due to the helicopter motion (including the speed stability and
angle-of-attack instability), but angular damping is provided to replace the reduced
damping from the rotor. The principal additional consideration with hingeless rotors
is the selection of the azimuthal phase angles in the feedback loop, such that the
helicopter longitudinal and lateral dynamics and control response are not coupled.
With high gain, it may not be sufficient to consider only the quasistatic performance
of the system based on the rotor and gyro low-frequency response in assessing the
control system behavior. Moreover, this feedback control system is often unstable
at high gain, which is an important factor in its design.

The Bell stabilizer bar, developed for two-bladed teetering rotors, is a two-arm
gyro mounted on the rotor hub at right angles to the rotor blades. Both the rotor
and the gyro dynamics are actually described by periodic-coefficient differential
equations, but the low-frequency response is identical to that described earlier (see
section 19.8). The gyro arms are linked to the pitch horns, where their input is
mechanically mixed with the pilot’s control input from the swashplate. There is
mechanical damping in the rotating frame, between the gyro and the rotor shaft.
Hence this stabilizer bar provides lagged rate feedback of the helicopter pitch and
roll. Such a system is simple mechanically. The same feedback is provided for both
pitch and roll, which is not desirable since the inertia is smaller in roll than in pitch.
Miller (1950) showed that such a stabilizer bar is equivalent to lagged rate feedback
for low frequency. Sissingh (1967) discussed this system and compared it with others,
including hub moment feedback systems.

The Hiller control rotor, also developed for two-bladed rotors, is a two-arm gyro
with a small airfoil on each arm. The airfoils provide aerodynamic damping in the
rotating frame, so the gyro gives pitch and roll rate feedback. The gyro tilt produces
cyclic pitch of the main rotor, and the pilot controls the rotor by means of cyclic
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pitch of the airfoils on the gyro arms, thus producing a moment on the gyro. With
this configuration the cyclic stick control forces are less sensitive to the main rotor
conditions, and the mechanical gyro damper is eliminated. Stuart (1948) described
this control rotor and its influence on the handling qualities of the helicopter. Miller
(1950) showed that such a system provides lagged rate feedback of pitch and roll,
as well as feedback of longitudinal velocity and main rotor flapping due to the
aerodynamic forces on the gyro.

The Lockheed gyro stabilizer is a hub moment feedback system developed
for three-bladed and four-bladed hingeless rotors. The gyro arms are linked to
the blade pitch horns, so gyro tilt provides the cyclic pitch. The pilot controls the
helicopter by applying moments to the gyro. One version of this gyro stabilizer
used feathering moment feedback. The blades were swept forward of the pitch axis,
so that the flap moment had a component about the pitch axis. The feathering
moment was transmitted through the pitch links to the gyro, providing hub moment
feedback. The gyro damping was due to the flap damping of the main rotor. A
later design used direct hub moment feedback. Arms on the blades detected the
flap motion, which was then transmitted to springs that applied a moment to the
gyro. The gyro had mechanical damping. The gyro response was sensed and then fed
to the swashplate by hydraulic actuators, so the blade feathering moments did not
influence the gyro at all. Sissingh (1967) analyzed the quasistatic performance of the
Lockheed hub moment feedback system. Johnson and Hohenemser (1970) analyzed
thrust and tip-path-plane-tilt integral feedback systems, particularly their influence
on the rotor flap and lag dynamics, including the high-gain stability. In a review of
this paper, Sissingh (1970) analyzed the high-gain stability of hub moment feedback
systems.

The blade elastic pitch motion produced by inertial and aerodynamic feathering
moments when the center-of-gravity is offset from the aerodynamic center can be
used to provide stability augmentation for the helicopter flight dynamics. A forward
shift of the blade center-of-gravity increases the helicopter pitch damping. A pitch
angular velocity θ̇F of the helicopter and rotor combined with the blade velocity �r
gives a Coriolis force on the blade, downward on the advancing side and upward
on the retreating side. This Coriolis force acts at the blade center-of-gravity to
produce a blade pitch moment. The response of a torsionally flexible blade with
center-of-gravity forward of the pitch axis is thus a 1/rev variation equivalent to
longitudinal cyclic, θs < 0 for θ̇F > 0, which implies increased pitch damping. An
aft shift of the aerodynamic center of the blade also increases the helicopter pitch
damping. With a pitch rate θ̇F , the rotor flaps forward to provide a lateral moment
on the disk (toward the retreating side), which precesses the rotor to follow the
shaft. The lift forces producing this moment act at the aerodynamic center of the
blade, producing a blade feathering moment also. When the aerodynamic center
is aft of the pitch axis, longitudinal cyclic θs < 0 is produced, which increases the
pitch damping. Miller (1948) analyzed the rigid flap and rigid pitch dynamics of an
articulated rotor, obtaining the low-frequency response of the blade pitch to the
helicopter motions when the center-of-gravity and aerodynamic center are offset
from the pitch axis (by xI and xA, respectively). He found that the elastic torsion
response of the blade provides pitch and roll rate feedback proportional nearly to
(xA − xI ). For increased damping the center-of-gravity should be forward of the
aerodynamic center (xA > xI , which is favorable for flutter and divergence stability
also). If xA �= 0, the blade pitch also responds to the longitudinal and lateral velocity
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of the helicopter (ẋF and ẏF ), and hence the speed stability is influenced. When
xA = 0, the longitudinal feedback reduces to

θs = 3xI/R
Kθ /Ib�2

θ̇F (21.190)

where Kθ is the control system stiffness. Damping in the non-rotating cyclic control
system introduces a lag in the feedback; damping in the rotating system gives a lag
and also couples the longitudinal and lateral feedback. Hence chordwise offset of the
blade center-of-gravity from the aerodynamic center provides lagged rate feedback
of the helicopter pitch and roll motion. A high gain requires torsionally flexible blades
or a large center-of-gravity shift forward, which means a large leading edge balance
weight. The influence of the blade torsional moments on the control loads and stick
forces must also be considered. Simons and Modha (2007) described an influence
of pitch and roll rate on the blade torsion motion. The normal Coriolis acceleration
from the product of the rotor disk angular velocity (−α̇y cosψm + α̇x sinψm, about
the blade flap axis) and the radial velocity (�x) gives a pitch moment in equation
16.136

Î f
(
θ̈ + (ω2 + 1)θ

) = 2Î f (−α̇y cosψm + α̇x sinψm)+ . . . (21.191)

The 1/rev pitch response is

�θ = 2
ω2
(−α̇y cosψm + α̇x sinψm) (21.192)

where ω2 = Kθ /If�
2 is the non-rotating pitch frequency (structural spring). Substi-

tuting this cyclic pitch in the flap response (equation 19.56), the cross response to
pitch and roll rate is reduced by the factor (1 − 2/ω2). The use of the blade torsion
dynamics to provide stability augmentation for the flight dynamics was discussed
further by Miller (1950), McIntyre (1962), and Reichert and Huber (1971).

21.10 Flying Qualities Specifications

The helicopter user or purchaser, or the appropriate regulatory agency, must deter-
mine what characteristics are required for acceptable flying qualities of the aircraft
and establish quantitative measurements of the desired characteristics. The specifi-
cation and evaluation of flying qualities are concerned with many properties of the
helicopter, among them control displacement and force gradients; static stability;
dynamic stability, particularly the long period roots; transient response characteris-
tics, especially the short period behavior; control power, damping, and control sen-
sitivity; and control coupling. The requirements vary greatly with the use intended
for the vehicle. Stricter specifications are continually developed as more is learned
about measuring helicopter handling qualities and designing helicopters to achieve
the desired characteristics.

The requirements of specifications “are intended to assure that no limitations
on flight safety or on the capability to perform intended missions will result from
deficiencies in flying qualities” (ADS-33 (2000)). Notable flying qualities specifica-
tions for helicopters include MIL-H-8501 (1952), MIL-H-8501A (1961), AGARD
R-577 (1970), MIL-F-83300 (1970), FAR Airworthiness Standards Parts 27 and 29,
and ADS-33E-PRF (2000). MIL-H-8501A and ADS-33F-PRF are summarized here,
because they are widely used and highly detailed specifications.
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NACA research on helicopter flying qualities led to the first formal specification,
MIL-H-8501. Although remaining a U.S. Army requirement until 1995, MIL-H-
8501A was based on the flying characteristics of the first generation of production
helicopters and reflected both the aircraft and the operations of its era. Despite being
derived from NACA research, there was no data base or background information
to support the requirements (Padfield (2012)). The dynamic requirements in MIL-
H-8501A are based on fully attended operation and reasonably good visibility, for
which moderate instabilities are acceptable as long as the frequencies are sufficiently
low. With increased capabilities of the aircraft and flight control systems, a new
handling qualities specification for rotorcraft was needed. In 1974 the U.S. Army
and NASA started an effort to develop a handling qualities data base and design
criteria for a new specification, and in 1982 the specification development began.
The Aeronautical Design Standard for rotorcraft handling qualities (ADS-33A) was
released in 1987. The fifth revision, ADS-33E-PRF, was released in 2000. There has
been no modern development of civilian specifications for rotorcraft flying qualities
comparable to ADS-33.

21.10.1 MIL-H-8501A

The specification MIL-H-8501A (1961) defines the flying and ground handling qual-
ities required for military helicopters. The requirements cover simple time-domain
parameters (control stick force and position gradients with speed), frequency and
damping of oscillatory modes, normal acceleration response to step input (the
concave-downward requirement), and angular displacements in response to control
steps (as function of helicopter weight). There is some distinction between day visual
flight rules and night instrument flight rules requirements, but flight in low-visibility
conditions is not considered.

For static stability, MIL-H-8501A specifies the minimum and maximum initial
force gradient of the longitudinal and lateral sticks and requires that the gradient
always be positive. The longitudinal stick should have a stable force and position
gradient with respect to speed. At low speed (transition) a moderate degree of
instability is permitted for visual flight rules (VFR) operations, but is not desirable.
A stable gradient of the pedal and lateral cyclic stick with sideslip angle is required,
and positive directional stability and effective dihedral (lateral speed stability) are
required in forward flight. For IFR operations, the directional and lateral controls
must have stable force and displacement gradients. The transient control forces,
control force coupling, control margin, and other factors are also addressed.

The dynamic stability characteristics in forward flight are specified in terms of
the period and damping of the long period modes. Figure 21.15 summarizes the
requirements for VFR and IFR operations. So there is no excessive delay in the
development of the helicopter angular velocity in response to control, the specifi-
cation requires that the roll, pitch, and yaw acceleration be in the proper direction
within 0.2 sec after the control displacement.

To ensure acceptable maneuver stability characteristics (normal acceleration
in forward flight, pitch rate in hover and at low speeds) the concave downward
requirement is used: the time history of the normal acceleration and angular velocity
of the helicopter should be concave downward within 2 sec after a step displacement
of the longitudinal stick. Preferably, the normal acceleration should be concave
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Figure 21.15. MIL-H-8501A specification of helicopter dynamic stability (long period modes)
in forward flight.

downward throughout the maneuver (until the maximum acceleration), and the
angular velocity should be concave downward after 0.2 sec.

To ensure that the pilot has a reasonable time for corrective action following
perturbations from the trim attitude, the following requirement is used: within 10
sec after a longitudinal cyclic pulse lasting at least 0.5 sec (to simulate a disturbance),
the normal acceleration should not increase by more than 0.25 g, and during the
subsequent nose-down motion the normal acceleration should not decrease more
than 0.25 g below the trim value.

The minimum helicopter control power in hover is specified by requiring that the
attitude change be at least αmin one second after a 1-inch step control displacement
from trim (0.5 sec for roll), where the value of αmin depends on the axis (pitch,
roll, or yaw) and the helicopter gross weight. A similar requirement is given for
the response to maximum control displacement. The directional control sensitivity
for hover, as well as the roll control sensitivity at all speeds, should not be so high
that the pilot tends to over-control the helicopter. In any case, the roll sensitivity
must be less than 20 deg/sec/in, and the yaw sensitivity must be low enough that
the yaw angle change after one second is less than 50 deg/in. For satisfactory initial
control response characteristics, a minimum level of pitch, roll, and yaw damping
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Figure 21.16. MIL-H-8501A specification of hover control power, damping, and control sen-
sitivity.

that depends on the moment of inertia about the corresponding axis is required.
The minimum control power and damping required in pitch and roll are increased
for IFR operations. The specifications of hover control power, damping, and control
sensitivity can be expressed in terms of requirements for the ratio of damping to
inertia and the ratio of control power to inertia (with units of (ft-lb-sec)/(slug-ft2) =
1/sec and (ft-lb/in)/(slug-ft2) = rad/sec2/in, respectively). Figure 21.16 illustrates the
requirements for the derivatives. The ratio of damping to inertia is the inverse of the
time constant, the ratio of control power to inertia is the initial angular acceleration,
and the ratio of control power to damping is the control sensitivity. If the control
power is too low and damping too high, the control inputs are large and the response
is sluggish. If the damping is too low and the control sensitivity too high, the response
is not precise and there is a tendency to over-control. If both derivatives are low, the
response is inadequate, and large control inputs are needed. Harmony is desired,
requiring a good match of damping and control sensitivity.

MIL-H-8501A also provides some specifications for the ride quality (maximum
vibration) at the crew and passenger stations and for the control stick vibrations; see
section 18.4.

Gustafson, Amer, Haig, and Reeder (1949) introduced the concave downward
requirement, based on flight test investigations of helicopter longitudinal handling
qualities. They concluded that the most important consideration is prevention of
a prolonged stick-fixed divergence of the normal acceleration in response to cyclic
control. In addition, a continuous development of the normal acceleration is desir-
able, rather than a pause in the development during the first second of the maneuver.
So they developed a requirement to preclude the divergent tendencies of the normal
acceleration: the time history of normal acceleration should be concave downward
within 2 sec after a sudden displacement of the longitudinal control stick. To reduce
the difficulty of anticipating the results of a control deflection, the time history of
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the normal acceleration should preferably be concave downward from the begin-
ning of the maneuver to the maximum acceleration after a step displacement of the
longitudinal stick, or at least the slope of the normal acceleration should be posi-
tive throughout the maneuver. To ensure that an oscillation rather than a sudden
divergence occurs in response to disturbances, after a pulse displacement of the
longitudinal stick the normal acceleration should remain between 1.25 g and 0.75
g. Amer (1951) found that these maneuver requirements were also applicable to
tandem helicopters, although a stricter criterion might be needed because of the
possible instability with respect to speed. Reeder and Whitten (1952) investigated
the influence of the helicopter pitch damping on the longitudinal maneuver charac-
teristics by using a stabilizer bar to provide increased damping due to lagged rate
feedback. Correlating the pilot opinion of the handling qualities with the concave
downward requirement, they concluded that the requirement is applicable for varia-
tions of the pitch damping as well, although the original development was concerned
primarily with the influence of the helicopter angle-of-attack instability.

Crimi, Reeder, and Whitten (1953) conducted instrument flight trials of a heli-
copter. They concluded that the flying qualities requirements based on VFR opera-
tions were adequate for instrument flight at forward speeds above minimum power,
although close and constant attention to the instruments was necessary. At low
speeds and during precision maneuvers, lateral directional problems were encoun-
tered, making instrument flight possible only for very short periods. Amer and Tap-
scott (1954) developed flying qualities criteria for the lateral dynamics of both single
main rotor and tandem helicopters in forward flight. They found that pedal-fixed
directional stability is required. For a reasonably damped stick-fixed oscillation, if
the period is less than 10 sec, the time to half-amplitude should be less than 2 cycles
(giving a damping ratio greater than 5.5% critical) and there should be no residual
oscillation. Gustafson and Tapscott (1958) described the stability characteristics of
single main rotor and tandem helicopters, including criteria for derivatives and the
influence of design parameters.

Salmirs and Tapscott (1959) conducted a flight test investigation of the influ-
ence of damping and control power on the helicopter handling qualities. A definite
improvement of the handling qualities (based on pilot opinion) was found with
increased damping. They presented charts summarizing the results in terms of the
ratio of damping to inertia and of control power to inertia (analogous to Figure 21.16)
and defining the requirements for good IFR, acceptable IFR, acceptable VFR, and
unacceptable characteristics. They also gave the results in terms of the damping
required as a function of the helicopter attitude change 1 sec after a 1-inch control
displacement and in terms of the roll damping required as a function of the roll
control sensitivity.

Kelly and Garren (1968) investigated the influence of pitch damping, control
power, speed stability, and angle-of-attack stability on helicopter longitudinal han-
dling qualities. The optimum values of these parameters were found to be largely
independent of changes in the other parameters and of the operating conditions con-
sidered. A minimum level of pitch damping was established, although the improve-
ment in handling qualities continued as the damping was increased further. They
concluded that the helicopter should have neutral or slightly positive stability with
respect to angle-of-attack. A minimum control power and an optimum speed stability
were also established.
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Figure 21.17. Cooper-Harper handling qualities rating (HQR) scale and handling quality
levels.

21.10.2 Handling Qualities Rating

Cooper and Harper (1969) developed a handling qualities rating (HQR) scale that
allows a pilot to translate an assessment of the adequacy of an aircraft for a selected
task or required operation to a standard categorization of the aircraft characteris-
tics and the demands on the pilot (Figure 21.17). An HQR is associated not with
the aircraft alone, but depends on the task and required performance. The work-
load demands are described in terms of pilot compensation needed. The primary
questions in the decision tree further allow characterization of the level of handling
qualities:

Level 1: The aircraft is satisfactory without improvement (HQR = 1 to 3). The
aircraft characteristics can range from excellent (pilot compensation not a
factor in desired performance) to fair (some mildly unpleasant deficiencies,
minimal pilot compensation required).

Level 2: The aircraft has deficiencies that warrant improvement, resulting in
adequate performance with a tolerable pilot workload (HQR = 4 to 6). The
deficiencies can range from minor but annoying to very objectionable but
tolerable, so moderate to extensive pilot compensation is required.

Level 3: The aircraft is controllable, but has deficiencies that require improve-
ment (HQR = 7 to 8). These major deficiencies require maximum tolerable
to considerable pilot compensation.
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HQR = 9: The aircraft has major deficiencies, such that intense pilot compen-
sation is required to maintain control.

HQR = 10: The aircraft is not controllable, and improvement is mandatory.

Level 1 encompasses good flying qualities, enabling the pilot to achieve the desired
level of performance with acceptable workload, so minimal control compensation is
required (Padfield (1998)). Level 1 implies flight with margins in pilot workload and
mission capability. Level 2 means flying qualities with tolerable deficiencies, such that
the pilot can achieve adequate performance, but only with a high workload. Level
3 means the aircraft cannot perform the required missions, because of excessive
workload or insufficient effectiveness.

The specifications require level 1 handling qualities within the operational flight
envelope. Many rotorcraft have level 2 handling qualities for specific tasks.

21.10.3 Bandwidth Requirements

The bandwidth of the aircraft response to control is a primary factor (hence a
good basis for a criterion) in precise closed-loop tracking tasks, which involve
high-frequency, small attitude changes. McRuer and Krendel (1974) presented the
crossover model of human pilot behavior: for a large range of aircraft dynamic
behavior, the pilot adapts a control strategy such that the open-loop (pilot times
aircraft) transfer function takes the form

YpYa
∼= ωce−τes

s
(21.193)

where ωc is called the crossover frequency, since the amplitude is unity at ω = ωc.
Thus at frequencies around the input bandwidth, the pilot strategy is to create a
range of −20 dB/decade slope for the amplitude ratio and adjust the loop gain so
the unit-amplitude crossover frequency is near the higher edge of this region, while
maintaining an adequate stability margin (Heffley (1979)).

The crossover model is an approximate quantitative description of the human-
machine system for single-loop compensation. Increasing ωc implies increasing gain,
but the closed-loop stability boundary (−180° phase shift open loop) is atωc = π/2τe;
the phase margin is 90 − τe�c. The bandwidth criterion is an application of the
crossover model concept. The open-loop bandwidth is defined as the crossover
frequency for a simple, pure gain pilot with 45° phase margin or 6 dB gain margin
(Blanken, Bivens, and Whalley (1985)).

The bandwidth is obtained from the frequency response of the aircraft angu-
lar attitude to cockpit controls; see Figure 21.18 and Hoh (1988). This frequency
response is for the aircraft with all augmentation loops closed; hence, wiht all ele-
ments of the flight control system active, but without the pilot in the loop. From the
phase, the frequency for neutral stability is found, ω180. Then the phase bandwidth
is the frequency for 45° of phase margin, and the gain bandwidth is the frequency
for 6 dB of gain margin. These margins permit the pilot to increase the gain or phase
lag of the compensation without causing an instability. The bandwidth frequency is
then defined as the lesser of the two frequencies for rate response, ωBW = minimum
of ωBWgain and ωBWphase , or equal to the phase bandwidth for attitude-type response,
ωBW = ωBWphase .
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Figure 21.18. Definitions of bandwidth and phase delay (from ADS-33).

Bandwidth is a quantitative measure of the pilot’s capability to make rapid and
precise control input to minimize errors and thereby improve closed-loop track-
ing performance; these tasks can dominate the evaluation of handling qualities.
High bandwidth reflects faster and more predictable aircraft response to controls.
A low-phase bandwidth means the aircraft response is sluggish. A low-gain band-
width means the aircraft is prone to pilot-induced oscillation, since small changes
in pilot gain result in a rapid reduction in phase margin. Thus low values of band-
width indicate a need for pilot lead equalization to achieve the required mission
performance, and excessive requirements for lead equalization result in degraded
handling quality ratings. See Blanken, Bivens, and Whalley (1985), and Hoh
(1988).

Pilots and hence handling quality ratings are also sensitive to the shape of the
phase curve at frequencies beyond the bandwidth frequency. This shape is charac-
terized by the phase delay:

τp = ��2ω180

57.3(2ω180)
(21.194)

see Figure 21.18 and Hoh (1988). The phase delay is a measure of the steepness
of the phase after −180°. A large value of phase delay means a small frequency
margin between normal tracking at 45° of phase margin and the instability, implying
that the aircraft is prone to pilot-induced oscillation. Although quantified as a time
constant, τp is not a time domain parameter. Also, τp is not a system transport
delay, but rather a measure of the shape of the phase curve around the instability
frequency.
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21.10.4 ADS-33

The Aeronautical Design Standard for rotorcraft handling qualities (ADS-33E-
PRF) is based on a number of key concepts: specific flight test maneuvers, increased
stabilization in reduced cue environment, frequency domain criteria, and the use of
handling quality ratings. Frequency domain methods were new to rotorcraft speci-
fications, but the response criteria are much simpler in the frequency domain, pro-
ducing a much clearer separation of good and bad configurations. The discussion of
ADS-33 in this section is based on Key and Hoh (1987), Hoh (1988), Key (1988),
Padfield (1998, 2012), and Blanken, Hoh, and Mitchell (2007).

The structure of ADS-33 is outlined in Figure 21.19. ADS-33 is a mission-
oriented specification, defining the response characteristics needed to accomplish
specific tasks in a defined cue environment, with an acceptable workload. First the
user must define the missions to be performed and the operational environment.
Then the requirements are tailored to this rotorcraft, in terms of specific mission
task elements (MTEs), degraded visual environment (DVE), and the operational
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flight envelope (OFE). From the degraded visual environment and available vision
aids and displaces, the usable cue environment (UCE) is defined, and from the UCE
the required aircraft response type follows for each task. From the required agility
and response types, the specification provides quantitative criteria (equilibrium,
response to controls, response to disturbances, controller characteristics) for the
predicted levels of handling qualities. Predicted levels are obtained from measured
characteristics of the rotorcraft, initially by analysis from basic aerodynamic and
flight control characteristics.

For the mission task elements, assigned levels of handling qualities are obtained
by test pilots using the Cooper-Harper handling quality rating (HQR) scale to assess
workload and task performance, initially in piloted simulation tests. Both predicted
and assigned levels are ultimately obtained from flight tests.

The MTEs are a set of flight demonstration maneuvers that have been tailored
with specific requirements on desired and adequate performance for the particular
class of rotorcraft. The tasks are constructed specifically to permit accurate evalu-
ate of the handling qualities. Performance criteria are given for both good visual
environment (GVE) and degraded visual environment (DVE). ADS-33 has a suite
of MTEs intended to cover scout and attack, utility, and cargo aircraft. Expanding
the application of ADS-33 to other aircraft classes requires first the development of
appropriate MTEs.

The aircraft must be capable of performing its missions within the operational
flight envelope; hence level 1 flying qualities must be achieved within the OFE.
Within the service flight envelope (SFE), defined by flight boundaries due to air-
craft limits rather than mission requirement, the aircraft must achieve level 2 flying
qualities.

The UCE concept was developed to help specify the level of control augmenta-
tion required when the pilot can no longer make aggressive and precise maneuvers
due to inadequacies in visual cueing. The UCE encompasses all visual cues, inside
and outside the cockpit, including displays. The UCE is determined for a MTE/DVE
combination from a subjective evaluation of the pilot’s ability to accomplish aggres-
sive and precise maneuvers. The task-tailored requirements specify the appropriate
response type for each MTE and UCE. This response type can be achieved aero-
dynamically or by means of a stability and command augmentation system (SCAS).
Additional stabilization is an effective way to compensate for missing visual cues
and situations of divided attention.

Rate response type is preferred for MTEs involving fully attended operations
in a good visual environment (GVE). In particular, rate response type is needed
for high-agility MTEs. Most helicopters meet the requirement for rate response
type. Attitude-command-attitude-hold (ACAH) is required for MTEs needing a
high level of stabilization, such as operations in poor visibility or limited displays.
More aggressive maneuvers with worse UCE can require even more stabilization,
including translational rate command with position hold.

Dynamic response criteria define the flying qualities of the aircraft in terms of
response to control and disturbances, with specifications for level 1, level 2, and
level 3 (Figures 21.20 to 21.22). Two flight regimes are considered: low speed and
hover (to 45 knots) and forward flight. The dynamic response criteria distinguish the
amplitude and frequency of the maneuver: small, medium, and large amplitude for
high and midfrequency ranges. The criteria for moderate-large motions are described
in terms of agility metrics (such as response quickness and control power) and for
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Figure 21.20. Representative ADS-33 requirement for small-amplitude attitude changes.

small-amplitude motions in terms of stability margins; see Padfield (2012). The
response bandwidth is the primary factor for precise closed-loop tracking, which
involves small attitude changes. For pursuit tracking, larger attitude changes and
angular rates are used, and the pilot needs the ability to achieve rapid, but less precise,
changes in attitude. Very large-amplitude maneuvers are usually accomplished open-
loop, with large angular rates desired.

Small, high-frequency attitude changes primarily involve closed-loop tracking
and can be characterized by the bandwidth frequency. Bandwidth is a measure of
the maximum closed-loop frequency that the pilot can achieve without threatening
stability. The bandwidth is determined from the phase or gain margin of the open-
loop frequency response of the attitude to pilot control input. The criterion is a
minimum bandwidth as a function of phase delay (Figure 21.20). A larger bandwidth
is required for large phase delay, which is a measure of how quickly the frequency
response phase increases.

The lower frequency response, between steady state and the bandwidth, is most
affected by divided attention. Full attention is required if the midterm response
is unstable. The midterm response is specified in terms of the damping and fre-
quency of the flight modes (Figure 21.21). For level 1 handling qualities, divided
attention MTEs must have a damping ratio of at least 0.35, with no divergences or
lightly damped oscillations. This requirement eliminates many unaugmented heli-
copters. Full attention MTEs can have some midterm divergences and low-damped
oscillations. The use of attitude hold response type constitutes compliance with the
requirement, as long as oscillatory modes have a damping ratio of at least 0.35.

For moderate-amplitude maneuvers, the pilot is concerned with the ability to
achieve rapid but less precise changes in attitude. The response requirement is in
terms of quickness: the ratio of the peak attitude rate to the attitude change (qpeak/�θ

for pitch) achieved during a rapid attitude-change maneuver; see Figure 21.22. At low
amplitude this quantity can be related to the bandwidth, so the criterion effectively
allows decreased bandwidth with increasingly large maneuvers. For large amplitude
the boundaries are interpreted as measures of agility.
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For large-amplitude attitude changes, the requirement is a measure of control
power, specified as lower limits on the maximum steady angular rate that can be
achieved with full control deflection. Three levels of aggressiveness are defined, for
various MTEs.
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The digital computer programs that calculate the aeromechanical behavior of rotor-
craft are called comprehensive analyses. Comprehensive analyses bring together
the most advanced models of the geometry, structure, dynamics, and aerodynam-
ics available in rotary-wing technology, subject to the requirements for accuracy
and the constraints of economy. These computer programs calculate rotorcraft per-
formance and trim, blade motion and airloading, structural loads, vibration, noise,
aeroelastic stability, and flight dynamics. The multidisciplinary nature of rotorcraft
problems means that similar models are required for all of these jobs. A comprehen-
sive analysis performs these calculations with a consistent, balanced, yet high level
of technology. Because the tasks require a similar level of technology and similar
models, they are best performed with a single tool. The development of computer
programs for rotorcraft started with the alternative approach of developing multiple
codes separately for individual disciplines, such as performance, dynamics, and han-
dling qualities. Often the range of application of a particular analysis was restricted,
perhaps to improve efficiency, but more often for historical reasons. Such experience
with early codes provided solid evidence of the resulting inefficient use of develop-
ment and application resources and inevitable disparities in treatment of the various
problems.

There are several implications of the word “comprehensive” in rotorcraft
aeromechanics, all encompassed by the ideal analysis. Comprehensive refers to the
need for a single tool to perform all computations, for all operating conditions and
all rotorcraft configurations, at all stages of the design process. The technology is
comprehensive, covering all disciplines with a high technology level. The models are
comprehensive, covering a wide range of problems, rotorcraft configurations, and
rotor types and dealing with the entire aircraft. The analysis is readily adapted to
new configurations and new designs. The software is comprehensive, with the flexi-
bility to adapt or extend the codes to new problems and new models. The software is
reliable and accurate, yet efficient and economical, characteristics achieved through
correlation and verification. The software is built with good programming practices
and extensive documentation, ensuring ease of test and maintenance. Helicopter
problems are inherently complex and multidisciplinary, so helicopter analyses are
always driven toward consideration of these “comprehensive” issues.

Design and development of rotorcraft require the capability to calculate rotor
performance and maneuver loads. To provide such calculations, a comprehensive

915
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analysis has a rotor wake model, accounts for drag and stall and compressibility
of the rotor aerodynamics, includes nonlinear dynamics and elasticity of the rotor
blades and airframe, and models the entire aircraft. The entire aircraft in flight
is analyzed, although often the code treats just the rotor. Calculating vibration,
aeroelastic stability, and flight dynamics within the comprehensive analysis is best,
but can be accomplished with separate codes. The aeromechanics of a rotor alone in
a steady operating condition are certainly complicated, but the capability to analyze
multiple rotors and maneuvers is very important.

The tasks of a comprehensive analysis consist of trim, transient, and flutter.
The trim task considers steady-state, unaccelerated flight conditions, solving for the
equilibrium (periodic) motion of the rotors and airframe. Steady-state conditions
include level flight, climb, descent, and turns, as well as constrained operation, such
as a rotor in a wind tunnel. From the solution for the periodic motion, the aircraft
performance, mean and vibratory structural loads, vibration, and noise can be eval-
uated. The rotor motion can be calculated for a given control setting, but usually the
operating state is specified in terms of speed, gross weight, and other parameters, not
in terms of the control positions. So an inverse problem is solved: the control posi-
tions and aircraft orientation are found for a specified operating condition, typically
by a Newton-Raphson iteration as the outer loop of the analysis. The controls and
other variables are adjusted to achieve equilibrium of the net forces and moments
on the aircraft or to drive quantities such as thrust and tip-path-plane tilt to target
values. The periodic motion can be represented by Fourier series, the coefficients
obtained by a harmonic balance or time-finite-element method; or the equations can
be integrated in time, perhaps with periodic shooting to get the periodic motion.
Regardless of the procedure adopted to solve the equations, the system is nonlinear
as well as periodic for most rotor problems, and an iterative method is required,
perhaps with multiple nested loops. Aerodynamic loads and wakes are not funda-
mentally represented by differential equations, although state space models (such as
dynamic inflow) are useful. The integral equations of wake models introduce addi-
tional iteration and convergence issues. The fundamental assumption of the trim
solution, that the motion is periodic, is not true for the most common helicopter
configuration of a main rotor and tail rotor. Handling the main rotor and tail rotor
configuration, for which the rotors have different periods, requires either a very long
period or an approximate solution, neglecting interactions between the rotors at the
wrong period, both through the airframe and through the wakes.

The transient task numerically integrates the equations of motion in time,
starting from the trim solution. Prescribed control or gust inputs produce a non-
equilibrium flight path or rotor motion. With an inverse solution method or an
appropriate autopilot model, a specified maneuver can be analyzed.

The flutter task obtains linear differential equations for the system by numeri-
cally or analytically perturbing the equations of motion about the trim solution. Qua-
sistatic reduction of the equations can be used, eliminating high-frequency modes of
motion or even all rotor degrees of freedom, the latter resulting in a stability deriva-
tive model of the aircraft for flight dynamics investigations. Eigen-analysis of the
linearized equations gives the system stability (from the eigenvalues), as well as fre-
quency response and time-history response. For many rotor problems the linearized
equations have periodic coefficients and must be analyzed using Floquet theory.
Time-invariant equations obtained by averaging the coefficients (after introducing
multiblade coordinates) are often sufficiently accurate and permit more extensive
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and more informative analysis. The aeroelastic stability can also be evaluated from
the response obtained in a numerical integration of the equations of motion (the
transient task). The disadvantages of this approach are that more computation is
required and obtaining quantitative measures of the stability from the time history
of the motion can be difficult. Unless the stability problem is inherently nonlinear,
analysis of the linearized equations is more productive.

Many numerical analyses of rotor behavior using the computer have been devel-
oped, and their application in helicopter design, testing, and evaluation is now rou-
tine. These analyses have greatly expanded the knowledge of rotor behavior and
improved the ability to predict it. Yet even with the most advanced models there
remain deficiencies in the predictive capability for rotary wings, which can be traced
to the magnitude of the problem of calculating rotor behavior and to a fundamental
lack of understanding in a number of areas of rotor aerodynamics and dynamics.

Current comprehensive analyses are based on beam models of the blade struc-
ture, lifting-line models of the blade aerodynamics, and vortex wake models. The
structural dynamics are modeled using finite elements and multibody dynamics, giv-
ing exact geometry and kinematics with the capability to represent arbitrary designs.
The comprehensive analysis can be coupled with computational fluid dynamic (CFD)
codes for better airload calculations. The code input allows description of arbitrary
geometry and configurations.

A modern comprehensive analysis can analyze arbitrary configurations and
rotor types, including novel and advanced designs, with arbitrary geometry, cov-
ering whatever the designer can invent. The system configuration is defined and
changed by input to the analysis, so changing the code is not necessary as long as the
required physics are available. The mathematical model allows nonlinearities (struc-
tural, aerodynamic, and kinematics) and arbitrary large motion, including rigid-body
motions and large rotations of components relative to each other. Hence the code
can model the true geometry of a rotorcraft, including multiple load-paths (such as a
swashplate and control system, lag dampers, tension-torsion straps, and bearingless
rotors) and unique configurations of the blade and hub. Separating the specification
of the configuration, the aeromechanical model, and the solution procedure is essen-
tial for expandability of the analysis, for otherwise the smallest change involves the
entire analysis and growth becomes increasingly harder as each new feature is added.
This approach also leads naturally to more general and more rigorous models.

Comprehensive analyses have their origins in the programs developed as soon
as digital computers first became available to engineers in the 1960s, because rotor
design was severely limited by the simplifying assumptions required for practical
analyses up to that time. Figure 22.1 identifies some major comprehensive analyses,
with the developer and approximately the time the code was introduced. For a
history of rotorcraft comprehensive analyses, see Johnson (2012).

From the beginning, the focus of these comprehensive analyses was on flight
dynamics and structural loads, requiring models of the aerodynamics, dynamics,
and structure of the entire aircraft. The codes of the 1970s are considered the first
generation of helicopter comprehensive analyses. These powerful and useful tools
exhibited a number of common limitations. Codes were restricted in the range of
helicopter and rotor configurations and the range of analysis. New configurations
required developing new equations of motion. Software development processes
were poor, documentation was absent, and upgrades and maintenance were difficult.
Recently available technology was utilized neither uniformly nor well.
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Figure 22.1. Comprehensive analyses.

Major new codes were developed beginning in the 1980s, often in direct response
to the recognition of these limitations. The emphasis was on flexibility and versatility,
through theory using assembly of primitive substructures, modular and structured
software architecture, and modern software development methodology. In many
cases the approach was to start by restructuring a first-generation code, with a
subsequent reduction in cost and development time, simplified validation, and early
achievement of the required capabilities.

Finite elements are needed to model the complexity of rotor structures, and
finite element models were developed for rotor blade analysis in the early 1980s.
Multibody dynamics technology is needed to model the mechanisms found in rotors.
Finite element and multibody dynamics modeling capability, including input-driven
definition of the geometry, was fully integrated into comprehensive analyses in the
1990s.

Significant attention was given in the 1990s and 2000s to the rotor aerodynam-
ics, including wakes and wake geometry. Methods for coupling CFD codes with
rotorcraft comprehensive analyses, with the latter handling all structural dynamic
response and aircraft trim and trajectory calculations, matured in the 2000s. Versions
of comprehensive analyses that can be executed in real time have been demonstrated.
Current activities recognize there is still the need for reliable and efficient calculation
of structural loads and vibration in the extremes of the aircraft operating capability.

The next generation of rotorcraft comprehensive analyses will be driven and
enabled by the tremendous capabilities of high-performance computing, particu-
larly modular and scalable software executed on multiple cores (Johnson and Datta
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(2008)). To effectively use multiple cores, without bottlenecks at serial calculations,
all elements of the analysis must be parallel and scalable. The code should scale
down as well, allowing execution on smaller machines, at least with the appropriate
choice of model options.

All of the tasks of a comprehensive analysis benefit from high-fidelity aerome-
chanics models for more accurate results. A hierarchy of models is needed, since
lower fidelity models are usually faster and smaller and, within limits of their devel-
opment, can sometimes be more accurate and more widely applicable. Moreover,
efficient execution of the code and understanding the results demand use of the sim-
plest possible models for each problem. All approximate or empirical models should
have a path to first principles, as enabled in the future by hardware and algorithms.

Navier-Stokes solutions are required to calculate performance and handle drag,
stall, and wake formation. A limitation continues to be turbulence modeling. Still,
physical approximations can be useful. Euler solutions bring reduced computation,
but require drag estimation from lower fidelity models, such as lifting-line theory
and airfoil tables. Wake or potential flow models can be coupled with near-body
Navier-Stokes solutions for cases when wake capture does not work or is too costly.
The aerodynamic solution domain may have to encompass the acoustic far field as
an alternative to using quadrupoles in the acoustics analysis.

Modeling blades, hub, and controls requires solutions of the exact structural
dynamic equations with correct geometry, although still with small strain; multibody
dynamics, for exact kinematics and joints of mechanisms; and three-dimensional
structural models, including anisotropic and composite materials. Three-dimensional
structural models are needed for correct modeling of coupling and load-paths and
the non-beam-like parts of the system. They are needed for ends, short beams, open
sections, transitions, and joints, because making beam models fit all parts of a rotor
blade is always a problem.

As the interface with the design and analysis environment, a geometry engine
is essential for productivity. The geometry engine delivers the descriptions required
for the aerodynamic and structural analysis, including discretization, and must also
provide communication and standards needed for design and optimization.

The flutter task, encompassing stability calculation and control design, requires
state models and order reduction for both aerodynamics and structures. Nonlinear
models are linearized about the trim solution, so the flutter and trim tasks must be
accomplished in the same code.

High-performance computing offers the opportunity for tremendous expansion
of rotorcraft analysis and design capability. Experience with current codes makes
clear what the requirements are for the next generation of comprehensive anal-
yses. As usual, rotorcraft calculations demand the widest possible integration of
disciplines, a fact that makes comprehensive analyses challenging and keeps their
development interesting.
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actuator disk, 40, 414
axial flow, 430
ellipsoidal coordinates, 424
forward flight, 134, 430
potential theory, 424
vortex theory, 74, 414

advance ratio, 30, 154, 163
air resonance, 827
aircraft

drag, 11, 291
structural dynamics, 721

airfoil, 294
criteria, 294
drag, 298

airloads
blade-vortex interaction, 536
examples, 303, 336
stall, 450

anti-torque, 281
articulated rotor, 5, 6, 156, 271
autogyro, 7, 279

performance, 253
autorotation, 7, 98, 101, 285

forward flight, 128
index, 289
parachute, 7, 106
stall, 107
vertical flight, 105

beam, 671
finite elements, 686
history, 703
linear, 672
nonlinear, 680
structural loads, 697

beam equations, 676, 677, 697,
702

beam frequency, 680
bearingless rotor, 6, 274
bifilar, 727
blade element theory, 52, 308

forward flight, 165

history, 52
hover, 54

blade element-momentum theory, 59, 81, 87
induced velocity, 59
tandem, 116

blade loading, 11, 31, 152, 283
stall, 448

blade-vortex interaction, 345, 403, 535
airloads, 536
unsteady aerodynamics, 407

boundary layer, 485

climb
forward flight, 128
induced power, 43
induced velocity, 43, 94
momentum theory, 42
power, 261
vertical flight, 109

coaxial
configuration, 278
hover, 112
momentum theory, 112, 138

collective, 159
complex variable representation

flap, 783
ground resonance, 821

compound helicopter
configuration, 280
performance, 252, 253
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history, 917
next generation, 918

compressibility, 193, 283
computational aerodynamics, 474
unsteady aerodynamics, 390, 407

computational aerodynamics
boundary element, 471
CFD/CSD coupling, 483
compressibility, 474
history, 480
hover, 482
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computational aerodynamics (cont.)
Navier-Stokes, 481
potential theory, 462
small disturbance, 477
transonic, 477

configuration, 1, 6, 276
coaxial, 278
compound helicopter, 280
lift-offset rotor, 280
reaction drive, 278, 280
side-by-side, 277
single main rotor, 7, 276
synchropter, 278
tandem, 7, 277
tiltrotor, 280
twin main rotor, 7, 277

coning, 157, 181, 196
constant coefficient approximation, 557

flap equation, 647, 755
control, 278, 844
coupling

extension-torsion, 694
flap-lag, 602
Oehmichen, 782
pitch-flap, 215, 610, 782, 805
pitch-lag, 610, 807

cyclic, 159

delta-3, 215, 218
descent

forward flight, 128
induced velocity, 94
power, 261

design trends, 8, 14
differential

momentum theory, 77
dimensions, 27
disk loading, 1, 9, 31
download, 117
drag

aircraft, 11, 291
airfoil, 298

drag force, 168, 171, 250
ducted fan

momentum theory, 141
dynamic inflow, 432, 663

flap response, 773
ground resonance, 827
history, 436
hub loads, 775

dynamic stall, 443
Boeing, 458
empirical models, 457
Leishman-Beddoes, 458
ONERA, 459

equations of motion
derivation, 584

equivalence of flap and feather, 162
examples

airloads, 200, 303, 336

angle-of-attack, 199, 336
flight dynamics, 864, 873, 876
forward flight, 196, 336
hover, 68, 87
induced velocity, 336
lateral flapping, 338
nonuniform inflow, 336
twist, 200, 336

fan-in-fin, 282
figure of merit, 8, 44, 59, 245, 266
finite elements

beam, 686
history, 705

flap, 5, 29, 153, 156, 157, 178, 590, 749
complex variable representation, 783
free wake geometry, 338
frequency, 217
high speed, 200, 752
hinge offset, 208
hinge spring, 201
response phase, 206, 211, 217
reverse flow, 189
second harmonic, 186
stability, 752
structural loads, 597
two-bladed rotor, 784
weight moment, 192

flap bending, 592
flap eigenvalues

forward flight, 752
hover, 750
non-rotating frame, 760

flap equation, 180, 591, 749
aerodynamics, 639
bending, 594
constant coefficient approximation, 647, 755
gimballed rotor, 214
hinge offset, 210
hinge spring, 205
non-rotating frame, 596, 644, 759
teetering rotor, 215
with lag, 600
with pitch, 607
with torsion, 615

flap frequency, 179, 275, 591, 711
bending, 594
gimballed rotor, 214
hinge offset, 210
hinge spring, 205
hingeless rotor, 212
pitch-flap coupling, 217
teetering rotor, 215

flap response
dynamic inflow, 773
hover, 758, 761
lift deficiency function, 774
low frequency, 766

flap-lag, 599
stability, 797
stall, 808
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flap-lag bending, 604
equations, 606

flap-lag equations, 600, 601, 798
aerodynamics, 642, 660
high inflow aerodynamics, 664
non-rotating frame, 630
shaft motion, 629, 656

flap-lag-torsion equations, 702
flight dynamics, 844

control gyro, 895
directional, 860
examples, 864, 873, 876
forward flight, 878
hingeless rotor, 895
hover, 853
lateral, 873
lateral-directional, 886
longitudinal, 861, 880
longitudinal-lateral, 874
loop closure, 867
short period, 883
side-by-side, 894
stability derivatives, 856, 879
static stability, 888
tandem, 890
tiltrotor, 894
twin rotor, 889
vertical flight, 859

flight dynamics equations, 846, 849
side-by-side, 852
single main rotor, 850
tandem, 851

flight dynamics specifications, 901
Floquet theory, 568
flow states, 96
flying qualities, 844
flying qualities specifications, 901

ADS-33, 909
bandwidth, 907
MIL-H-8501A, 902

forward flight, 7, 152
actuator disk, 134
autorotation, 128
blade element theory, 165
climb, 128
descent, 128
examples, 196, 336
flight dynamics, 878
ground effect, 144
ground vortex, 145
induced power, 125, 127, 131, 176
induced velocity, 125, 136
momentum theory, 123, 137
noise, 512, 514
power, 173, 246, 259
profile power, 176, 230
span loading, 131
twin rotor, 137
vortex theory, 133, 423
wake, 123
wake geometry, 133, 327

Fourier series, 155, 545
frequency

beam, 680
blade passage, 493, 720
fan plot, 711
flap, 179, 205, 210, 212, 214, 215, 217, 591, 711
flap bending, 594
lag, 221, 601, 711
lag bending, 604
modal, 710
pitch, 609
Sturm-Liouville theory, 582
torsion, 616

gimballed rotor, 213, 274
flap equation, 214
flap frequency, 214

ground effect
forward flight, 144
hover, 119

ground resonance, 156, 810
complex variable representation, 821
damping requirement, 818
dynamic inflow, 827
equations, 811
history, 828
no damping, 813
two-bladed rotor, 822

ground vortex
forward flight, 145

handling qualities, 844
rating, 906

harmonic analysis, 548
height-velocity diagram, 286
helicopter

performance, 251
high inflow aerodynamics

flap-lag equations, 664
hub loads, 664

high speed
flap, 200
flap stability, 752
thrust, 200

higher harmonic control, 730
effectiveness, 740
frequency domain, 736
identification, 732
time domain, 737

hingeless rotor, 5, 6, 157, 212, 274
flap frequency, 212
flight dynamics, 895

history
aeromechanics, 237
autogyro, 19
beam, 703
blade element theory, 52
comprehensive analyses, 917
computational aerodynamics, 480
dynamic inflow, 436
finite elements, 705
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history (cont.)
free wake geometry, 361
ground resonance, 828
helicopter invention, 14
multiblade coordinates, 560
nonuniform inflow, 359
vortex theory, 72

hover, 7, 39
blade element theory, 54
coaxial, 112
computational aerodynamics, 482
examples, 68, 87
flap response, 758, 761
flight dynamics, 853
free wake geometry, 87
ground effect, 119
induced power, 42, 58
induced velocity, 41, 57, 69
momentum theory, 40
noise, 505
nonuniform inflow, 83
performance, 60, 68, 87
power, 43, 245, 254
profile power, 58
thrust, 57
twin rotor, 111
unsteady aerodynamics, 391
vortex theory, 71
wake, 73
wake geometry, 84, 327

hub, 3
hub loads, 619

aerodynamics, 649, 660
dynamic inflow, 775
high inflow aerodynamics, 664
lift deficiency function, 771, 778
low frequency, 769, 853
non-rotating frame, 624, 653
shaft motion, 630
two-bladed rotor, 627, 654, 659

hub moment, 169
hinge offset, 212
hinge spring, 207

ideal rotor, 66, 68, 87
individual blade control, 730

effectiveness, 740
induced power

climb, 43
factor, 51, 58, 63, 64, 68, 127, 132, 176, 269
forward flight, 125, 127, 131, 176
free wake geometry, 329
hover, 42, 58
nonuniform inflow, 63

induced velocity
blade element-momentum theory, 59
climb, 43, 94
descent, 94
forward flight, 125, 136
hover, 41, 57, 69
linear, 184

turbulent wake state, 101
vortex ring state, 101
vortex theory, 76

inflow ratio, 30, 163
interference, 146

hub-tail, 148
rotor-airframe, 146
rotor-tail, 147
tail rotor, 149
twin rotor, 111, 137

lag, 5, 29, 156, 158, 220
lag bending, 603
lag damper, 156, 740
lag equation, 221

bending, 603
with flap, 601

lag frequency, 221, 601, 711
bending, 604

lift deficiency function
flap response, 774
hub loads, 771, 778
Loewy, 394
Theodorsen, 372, 378
time-varying velocity, 385
vortex theory, 422

lift force, 250
lift-offset rotor

configuration, 280
lift-to-drag ratio, 11, 267
lifting-line theory, 307

rotary wing, 311
second order, 309, 312
unsteady aerodynamics, 376

lifting-surface theory, 466
linear equations, 564

constant, 566
eigenvalues, 570
Floquet theory, 568
periodic, 568, 753

Lock number, 28, 179, 275
low frequency

flap response, 766
hub loads, 769, 853

mean lift coefficient, 64
momentum theory, 39, 45, 92

climb, 42
coaxial, 112, 138
differential, 48, 59, 77
ducted fan, 141
forward flight, 123, 137
hover, 40
side-by-side, 140
swirl, 48
tandem, 115, 138, 140
vertical flight, 93

multiblade coordinates, 549
degrees of freedom, 549
equations of motion, 553
history, 560
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reactionless mode, 557
two-bladed rotor, 557

no-feathering plane, 160, 162
noise, 493

blade-vortex interaction, 535
blade-vortex interacton, 495
broadband, 493, 499, 532
certification, 540
Doppler shift, 516
far field, 527
Farassat, 526
Ffowcs Williams-Hawkings, 519
forward flight, 512, 514
high speed impulsive, 495, 536
hover, 505
impulsive, 495, 535
Kirchhoff, 522
Lighthill, 518
quadrupole, 526
rotational, 494, 502
sound pressure level, 498
spectrum, 496
thickness, 516

non-rotating frame
flap equation, 596, 644, 759
flap-lag equations, 630
hub loads, 624, 653
pitch equation, 618

nonuniform inflow, 186, 318
dual-peak loading, 322
examples, 336
history, 359
hover, 83
induced power, 63

normal working state, 96

optimum rotor, 67, 68, 87
optimum windmill, 111

performance, 243
autogyro, 253
ceiling, 263
charts, 253
climb and descent, 261
compound helicopter, 252, 253
drag/lift, 248
endurance, 264
energy balance, 244
force balance, 243
forward flight, 259
helicopter, 251
hover, 60, 68, 87, 254
metrics, 266
power/thrust, 250
range, 264
referred, 266
rotorcraft, 251
scale with solidity, 61
single main rotor, 252
speed, 262

tail rotor, 252
taper, 87
tiltrotor, 252
twist, 87

pitch, 6, 29, 159
pitch equation

non-rotating frame, 618
with bending, 617
with flap, 609

pitch frequency, 609
torsion, 616

pitch-flap, 606
aerodynamics, 666
elastic, 613
stability, 788
wake, 795

pitch-flap coupling
flap frequency, 217
tail rotor, 218

pitch-flap equations, 607, 609, 788
aerodynamics, 667
elastic, 615, 617

power
climb, 176, 261
descent, 261
forward flight, 173, 246, 259
hover, 43, 245, 254
induced, 1, 8, 42, 43, 58, 63, 92, 98, 125, 127, 131,

176, 186
parasite, 176
profile, 58, 176, 230
vertical flight, 245
wake geometry, 329

power loading, 9, 31
power-off landing, 7, 285, 288
precone, 205
profile power, 230

forward flight, 176, 230
hover, 58
mean drag coefficient, 58, 232, 269

radial drag, 226
reverse flow, 154, 188

flap, 189
unsteady aerodynamics, 380

Reynolds number, 194
root cutout, 64, 195
rotorcraft

performance, 251

section aerodynamics, 54, 165, 633
autorotation, 106

shaft motion, 628
aerodynamics, 655
two-bladed rotor, 632

side force, 168, 171
side-by-side

configuration, 277
flight dynamics, 894
flight dynamics equations, 852
momentum theory, 140
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single main rotor
configuration, 7, 276
flight dynamics equations, 850
performance, 252

solidity, 11, 28, 56
equivalent, 65

solution methods, 573
speed

limitations, 283
maximum, 262

stability
flap-lag, 797
pitch-flap, 788
whirl flutter, 832

stall, 283, 442
airloads, 450
autorotation, 107
blade loading, 448
control loads, 442, 450
criteria, 451
flap-lag stability, 808
limit, 448, 454
rotor, 448
static delay, 487

structural dynamics
aircraft, 721

structural loads, 715
beam, 697
flap, 597

sum of harmonics, 547
swashplate, 159

tail design, 147
tail rotor, 149, 219, 276, 281

fan-in-fin, 282
performance, 252
pitch-flap coupling, 218

takeoff, 290
tandem

blade element-momentum theory,
116

configuration, 277
flight dynamics, 890
flight dynamics equations, 851
momentum theory, 115, 138, 140

taper, 87
teetering rotor, 6, 214, 271

flap equation, 215
flap frequency, 215

thrust, 168, 171, 195, 196, 209
high speed, 200
hover, 57

tiltrotor
configuration, 280
flight dynamics, 894
performance, 252
whirl flutter, 832, 836

tip loading
vortex theory, 79

tip loss, 61, 81, 195
tip shape, 90

tip vortex, 306
core, 339

tip-path plane, 158, 162
tilt, 181, 196

track and balance, 721
trailing-edge flap, 740
trim, 176, 223
turbulent wake state, 98, 101

induced velocity, 101
twin rotor

flight dynamics, 889
forward flight, 137
hover, 111
interference, 111, 137

twist, 87
ideal, 66

two-bladed rotor
flap, 784
ground resonance, 822
hub loads, 627, 654, 659
shaft motion, 632

unsteady aerodynamics, 366
airfoil, 366
blade-vortex interaction, 407
compressibility, 390, 407
hover, 391
Leishman-Beddoes, 390
lifting-line theory, 376
ONERA, 390
reverse flow, 380
rotary wing, 387
Sears, 375
Theodorsen, 372
time-varying velocity, 382
trailing-edge flap, 381
vortex theory, 419

vertical drag, 117
vertical flight

autorotation, 105
climb, 109
flight dynamics, 859
induced power, 98
momentum theory, 93
power, 245

vibration, 717
bifilar absorber, 727
isolation, 725
pendulum absorber, 726
reduction, 723
requirements, 722

vortex elements
arc, 356
line, 351
sheet, 353

vortex ring state, 96, 101, 102
induced velocity, 101

vortex theory, 77
actuator disk, 74
axial flow, 414
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forward flight, 133, 423
history, 72
hover, 71
induced velocity, 76
lift deficiency function, 422
tip loading, 79
unsteady, 419

wake, 303
consolidation, 324
curved elements, 325
discretized, 319
dual-peak loading, 322, 324
forward flight, 123
hover, 73
hover visualization, 306
optimum, 78
shed vorticity, 303, 376
tip vortex, 306

trailed vorticity, 303
vortex core, 339
vortex elements, 351

wake geometry, 326
forward flight, 133, 327
free, 87, 328, 330, 331
history, 361
hover, 84, 327
power, 329
prescribed, 84, 330, 331
rigid, 330
stability, 335

whirl flutter, 832
equations, 832
propeller, 834
tiltrotor, 836

windmill brake state, 98

yawed flow, 226
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