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Introduction

“... the difficulty of concepts increases as they approach
the primary truths in nature ...”

N. I. Lobachevsky

Lobachevsky geometry: sources, philosophical
significance, and its role in contemporary science

The aim of this book is to reveal the potential of Lobachevsky’s geometry in the
context of its emergence in various branches of current interest in contemporary
science, first and foremost in nonlinear problems of mathematical physics. Looking
“geometrically” at a wide circle of problems from the standpoint of Lobachevsky
geometry allows one to apply in their study unified approaches that rest upon the
methods of non-Euclidean hyperbolic geometry and its highly developed tools.

The discovery of non-Euclidean hyperbolic geometry by the great Russian
mathematician Nikolai Ivanovich Lobachevsky, announced by him of the 12th
of February, 1826, inaugurated an important historical stage in the development
of mathematical thought as an axiomatically impeccably built new field of ana-
lytical knowledge. At the foundations of Lobachevsky’s geometry lies a complete
rethinking of the system of axioms of an intuitive geometry and the principles of
its construction. Lobachevsky’s geometry represented the crowning of attempts,
undertaken over many centuries by thinkers of different historical periods, at es-
tablishing the correctness of Euclid’s geometry that arose already at the dawn of
our era.

The system of axioms of the “new” geometry proposed by Lobachevsky differs
from the axioms of Euclidean geometry only through the formulation of Postulate
V (the Axiom of Parallels). Let us give descriptive formulations of the correspond-
ing variants of the Axiom of Parallels .

Euclid’s Postulate V: in a plane, given a line and a point not on it, at most one
line parallel to the given line can be drawn through the point .

Lobachevsky’s Axiom of Parallels: through every point that does not lie on a given
straight line there pass at least two distinct straight lines which lie in the same
plane as the given straight line, and which do not intersect that straight line.

1 A. Popov, Lobachevsky Geometry and Modern Nonlinear Problems,  
DOI 10.1007/978-3-319-05669-2_1, © Springer International Publishing Switzerland 2014 



2 Introduction

The axioms of Euclid’s geometry that were not modified (19 axioms) form
the content of the so-called Absolute Geometry, a uniqued fundamental component
of the classical geometries.

Initially, the realization of what Lobachevsky’s ideas mean did run into cer-
tain difficulties, the roots of which are in all probability hidden in the primary
associative psychological perception of the notions and terminology it uses. For
this reason we should mention at the outset that in Lobachevsky’s geometry a
“straight line” must be understood as a shortest (geodesic) line, i.e., a line along
which the distance between any two points on it is minimal. At the same time,
the notion of “parallelism” of two “straight lines” presumes only that they do not
intersect and discards the familiar Euclidean property that two parallel straight
lines are equidistant (lie at the same distance from one another). Thus, in the
new non-Euclidean geometry there arises, it seems, a separation, of holding out
classical notions and properties, interpretable “together” in Euclid’s geometry.

The conceptual result of Lobachevsky’s investigations is that Postulate V (or
the Axiom of Parallels) is an independent (self-standing) assertion, which is not
logically connected with the other adopted axioms. The possibility of “varying”
the formulation of the “Axiom of Parallels” results in the emergence of “inde-
pendent” geometries (the three known classical geometries: Euclidean, hyperbolic,
and spherical). Of these, the hyperbolic geometry constructed by Lobachevsky has
the special promising potential demanded by the modern scientific knowledge.

The new geometry, which rests on the introduced system of axioms, was
referred to as an “imaginary” geometry already by Lobachevsky himself, who
regarded it as a possible “theory of spatial relations”.

The subsequent historical development of this theory confirmed objectively
its depth and the fundamental prospects of its potential, as well as its definite
influence on the development of such domains of knowledge as geometry in general,
logic, differential equations, function theory, nonlinear problems of fundamental
science, and so on. The path to recognition of the new mathematical theory did
run, in particular, through achievements in the geometry of surfaces of negative
curvature, the theory of functions of one complex variable, and the theory of partial
differential equations.

In modern mathematical physics, the nonlinear modeling of Lobachevsky ge-
ometry shows up in such attributes of the aforementioned fields of knowledge as
solitons, Bäcklund transformations, pseudospherical surfaces, singularities, attrac-
tors, transcendents, and so on. As it turns out, in the investigation of many actual
nonlinear problems one can find a “unifying non-Euclidean common denominator”.

Lobachevsky’s works on the “theory of parallels” and
their influence on the development of geometry

Noting the particular significance of N. I. Lobachevsky’s geometric ideas and his
contribution to the development of the foundations of the axiomatic structure
of mathematical systems, we list below his works that founded the axioms of
non-Euclidean hyperbolic geometry. The chronology of their public appearance
establishes beyond doubt the priority of N. I. Lobachevsky, and subsequently of
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the Russian scientific school of geometry, in the development of the concepts of
non-Euclidean hyperbolic geometry, in particular, of its relationships with other
promising branches of mathematics and fundamental science.

I. “Exposition succincte des principes de la géométrie avec une demon-
stration rigoureuse du theorem des paralléles”.
February 12, 1826 .

(“A concise exposition of the principles of geometry with a rigorous
proof of the theorem on parallels”.)

This is the first public scientific announcement on the discovery of the new
non-Euclidean geometry, made by N. I. Lobachevsky on the 12th of February 1826,
as a report at the session of the Physical and Mathematical Section of Kazan
university. The manuscript of the report was handed to three professors for safe
keeping (however, the manuscript did not survive).

II. “On the foundations of geometry” (Russian). Kazanskii Vestnik,
1829–1830.

This is a systematic exposition of Lobachevsky’s theory of parallel lines, the
foundations of a new “imaginary” geometry. The work was published in separate
parts over the period from February 1829 to August 1830 in the Kazanskii Vestnik
(The Kazan Messenger).

In this study Lobachevsky discusses first how, in his understanding, one has
to first establish and then logically develop the primary notions in geometry, and
subsequently obtain propositions and theorems. Further, developing these ideas,
Lobachevsky provides a systematic treatment (although in compressed form) of
the foundations of the theory of parallel straight lines , “reaching” in this way
the frontiers of analytic geometry: he finds the equations of straight lines and of
the most important curves. The final part of the memoir is devoted to effective
applications of the imaginary geometry to the calculation of simple and multiple
definite integrals. It is precisely in the possible applications of his new theory that
Lobachevsky always saw an additional confirmation of its truth and objectivity.

III. “Imaginary geometry” (Russian). Uchenye Zapiski Kazanskogo Uni-
versiteta, 1835.

IV. “Application of imaginary geometry to certain integrals” (Russian).
Uchenye Zapiski Kazanskogo Universiteta, 1836.

In these works Lobachevsky provides a more detailed, and accordingly more
accessible exposition of the ideas and results contained in the memoir [II]. In
his treatment of the subject, Lobachevsky chooses here the opposite approach:
starting from the relations that connect the sides and angles in a triangle in the
imaginary geometry, he shows that these relations cannot lead to contradictory
conclusions. Based on the relations used he obtains geometric properties of trian-
gles and parallel straight lines. He also considers applications of the new geometry
to calculus.

Soon after their publications, the works [III] and [IV] were also printed, with
minor changes and additions, in French, in the well-known European mathematical
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Journal Crelle—“Journal für die reine und angewandte Mathematik”; this made
them more accessible to mathematical circles in Europe:

IIIa. “Géométrie imaginaire”. Journal für die reine und angewandte Ma-
thematik, 1836.

IVa. “Application de la géométrie imaginaire à quelques integrals”. Jour-
nal für die reine und angewandte Mathematik, 1837

These articles were studied in detail by C. F. Gauss, the most prominent
mathematician of the XIXth century, who also came very close to realizing that
a non-Euclidean geometry exists, calling it in his works anti-Euclidean. However,
Gauss expressed his high praise of Lobachevsky’s results only in his private corre-
spondence with mathematician colleagues.

V. “New foundations of geometry with a complete theory of parallels”
(Russian). Uchenye Zapiski Kazanskogo Universiteta, 1835–1838.

This is the largest work of N. I. Lobachevsky, which sums up in detail, and in
the necessary cases develops, the results of his earlier works. It is from this memoir
that one can draw the most completely information on the global scientific, world-
outlook and philosophical views of this great mathematician.

In this work the fundamental notions of geometry are discussed in detail:
adjacency, cuts and the definition of the notion of point connected with them,
lines, surfaces, and also the basic theorems on perpendicular straight lines and
planes, relations in triangles, linear and angular measures, measuring of areas,
and others. Starting from more general fundamental premises (compared with
earlier works), a theory of parallel straight lines is constructed in detail. The
fundamental equations of the imaginary geometry are introduced. As a whole, in
this work Lobachevsky establishes the precise axiomatic foundations of geometry
and defines the principles of its logical development, accompanying them with the
corresponding foundational results in each of the fields he considered.

VI. “Geometrische Untersuchungen zur Theorie der Parallellinien”.
Berlin, 1840
(“Geometric investigations on the theory of parallels”).

The aim of this small, but, as it turned out, rather needed brochure, pub-
lished in Berlin in 1840, was to present in an intuitive and visual manner all the
fundamental ideas and results that constituted Lobachevsky’s new non-Euclidean
geometry. This aim was achieved; indeed, it is through this publication that the
wide mathematical community (and first of all, the European one) was able to
become acquainted and accept the ideas of the new geometry.

VII. “Pangeometry” (Russian). Uchenye Zapiski Kazanskogo Imper-
atorskogo Universiteta (Scientific Memoirs of Kazan Imperial
University), 1855.
(see: “Pangeometry”, Edited and translated by Athanase Papadopou-
los, Heritage of European Mathematics, European Mathematical So-
ciety Publishing House, Zürich, 2010.)
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This is essentially a summarizing work on geometry, in which Lobachevsky,
then already with the experience of a venerable mathematician, did collectively
generalize and complete, all the result and ideas stated in his earlier works.

The name “Pangeometry” itself implies and understanding of geometry in
its widest sense—as an all-geometry, which draws in all known (at that time)
geometric representations on space structures.

In 1856 a French translation of this work appeared in a collection of scientific
papers prepared for the 50th anniversary of Kazan University:

“Pangéométrie ou précis de géométrie fondée sur une théorie
générale et rigoureuse des parallèles”. Uchenye Zapiski Kazanskogo
Universiteta, 1856.

The works [I]–[VII] constitute the geometric herritage of the prominent Rus-
sian mathematician N. I. Lobachevsky, which allowed to broaden the understand-
ing of the very meaning of geometry as the science of the structure of space and,
accordingly, of the principles of its construction and establishment. Lobachevsky’s
contribution to geometry became a fundament and a kind of standard that make
possible the advancement of the mathematical world view as a whole.

In this connection let us mention the special role of the geometric investi-
gations of B. Riemann. In his 1854 lectures “Über die Hypothesen welche der
Geometrie zu Grunde liegen” (“On the hypotheses which lie at bases of geome-
try”) Riemann formulated an original idea of mathematical space, the manifold ,
in his terminology. According to Riemann, geometry should be considered as a
mathematical theory of continuous manifolds (different collections of homogeneous
objects of, generally speaking, different nature). In his investigations Riemann de-
velops a series of results on the intrinsic geometry of surfaces, a branch of geometry
founded by C. F. Gauss in his treatise “Disquisitiones generales circa superficies
curvas” (1827) (“General investigations of curved surfaces”). Intrisic geometry
studies those properties of a surface that are connected with direct measurements
on the surface. Riemann did effectively apply the notion of linear element, a metric
introduced on a manifold .

The geometric theory treated by Riemann rests on three conceptual compo-
nents, namely, the existence of the non-Euclidean Lobachevsky geometry, Gauss’
achievements in the theory of intrinsic geometry of surfaces, and the notion of
multi-dimensional space that took shape in mathematics at that time. An indis-
putable historical contribution of this research is the introduction of objects that
are today known as Riemannian spaces—spaces that are characterized by their
own curvature and which generalize our representations about Euclidean spaces,
Lobachevsky’s non-Euclidean hyperbolic spaces, and the spaces of elliptic geome-
try studied by Riemann himself. The problem, formulated in Riemann’s work, of
understanding the origins of metric properties of spaces became the harbinger of
definite achievements in the general theory of relativity and, as will be shown in
this book, remained of actual interest in problems of geometric interpretation of
nonlinear differential equations of contemporary mathematical physics.

The fact that Lobachevsky singled out the axiom of parallels as an indepen-
dent, “self-standing” axiomatic assertion showed that a certain revision, a renewed
understanding and systematization of the axioms of geometry (axioms that lie at
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the foundation of absolute geometry), was needed. The solution of this fundamen-
tal mathematical problem and, thinking globally, deep philosophical question, was
presented by the prominent mathematician David Hilbert at the crossroads of the
XIX–XX centuries.

In his 1899 work “The foundations of geometry”, Hilbert proposed a com-
plete, separated into groups, system of axioms, which allows one, in the framework
of modern geometry, to develop all ensuing “geometric constructions” and obtain
the relations that connect them. At the basis of Hilbert’s approach is the adoption
of three primary systems of “things”: “points”, “straight lines”, and “planes”, the
elements of which can be in certain relationships, ruled by terms such as “be-
longs”, “are situated”, “between”, “parallel”, “congruent”, “continuous”, and so
on. The meaning of these very “things” (primary geometric “objects”), as well as
of the “relations” that connect them, is completely defined by the the logic context
of a complete set of stated axioms, divided into five groups: axioms of belonging
(or connection, or incidence), axioms of order, axioms of congruence, the axiom of
continuity, and the axiom of parallels. A detailed discussion of Hilbert’s axiomatics
is given in § 1.1.

It is important to note that already Hilbert himself did emphasize that as
initial “things” one can take, in principle, elements of any nature, not necessarily
rigidly associated with the usual stereotypes of our perception of space. For exam-
ple, a “straight line” (thing) does not have to be a (Euclidean) straight line, and
so on. What matters is that in the system of “things” used the full compatibility of
the adopted system of axiomatic statements is preserved. This “geometric vision”
of Hilbert harnesses the serious potential of the global understanding of geome-
try, as well as generalized principles of axiomatic construction of a mathematical
theory.

Identifying the primary structural component— bricks—of the space being
modeled and prescribing the types of rules that connect them is an initial problem
of utmost importance in the process of creating a geometric theory. This is a
primary complex of problems, each model solution of which further deepens our
knowledge of the structure of real space and builds a “bridge” between Reality
and the descriptive formalism that approximates it.

All these foundational problems occupied the thoughts of thinkers in all pe-
riods of history. The principles on their rigorous scientific resolution with the aim
of building a geometric theory were extremely clearly formulated by the promi-
nent Russian geometer N. V. Efimov: “Geometry operates with notions that arise
from experience as a result of a certain abstraction of the objects of real world, in
which one pays attention to only certain properties of real objects ; in rigorously
logic arguments when one proves theorems one deals only with these properties of
the objects—hence these properties must be mentioned in axioms and definitions ;
all the other properties, which we got used to imagine when we hear the words
“point”, “straight line”, “plane”, play no role whatsoever in logical constructions
and should not be mentioned in the fundamental statements of geometry”.

Thus, Lobachehvsky’s new non-Euclidean geometry became a kind of impulse
to rethinking the bases and principles of the construction of modern geometry in
general.
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Recognition of non-Euclidean hyperbolic geometry and
its philosophical significance

The unquestionable priority of N. I. Lobachevsky in the discovery of non-Euclidean
hyperbolic geometry is established by his first public report “Exposition succincte
des principes de la géométrie avec une demonstration rigoureuse du theoreme des
parallèles”, made on the 12th of February, 1826 , at Kazan University. Further-
more, the fundamental contribution of this mathematical genius to the develop-
ment of analytical foundations of the new geometry, the Lobachevsky geometry, is
firmly established by a cycle of his scientific treatises, published over the subse-
quent 30 year period.1 The first printed work of Lobachevsky was “On the foun-
dations of geometry” (1829–30, [II]), which Lobachevsky himself called an extract
from “Exposition”.

This work has priority also over the scientific work of the prominent Hungar-
ian mathematician János Bolyai, published in 1831 as an appendix “Appendix, Sci-
entam spatii absolute veram exhibens (“Appendix Explaining the Absolutely True
Science of Space independent of the truth or falsity of Euclid’s axiom XI (which can
never be decided a priori)”), which contains his results on the fundamental propo-
sitions of non-Euclidean geometry. However, the brilliant independent geometric
ideas of János Bolyai were not destined to have significant continuation because
of the following life conflict. At the beginning of 1832 Bolyai’s work reached C.
F. Gauss, who in a letter to his long-standing friend Farkas Bolyai (János’ father)
communicated that the results he did draw from “it Appendix” where a subject
of his thoughts already for a long time and, essentially, were identical with the
conclusions that he reached2, concerning which now he cannot further undertake
fast attempts to publication (“To praise it would amount to praising myself. For
the entire content of the work ... coincides almost exactly with my own medita-
tions which have occupied my mind for the past thirty or thirty-five years”). Later,
in a letter to Gerling,3 Gauss wrote about Bolyai’s work: “I consider this young
geometer, v. Bolyai, to be a genius of the first class ...” J. Bolyai, however took
Gauss’ judgement with prejudice, deciding that Gauss intended to take away the
priority of his ideas. It is probably precisely J. Bolyai’s prejudice to C. F. Gauss
that became a kind of barrier to the further in-depth development of the geometric
theory that he announced. No longer than a decade after, Bolyai was recognized
as one of the prominent geometers of the first half of the XIXth century, and in
1902, with the occasion of the anniversary of 100 years from his birth, a prize
bearing his name was established, laureates of which were later geometers like H.
Poincaré (1905) and D. Hilbert (1910).

The advancement of the new non-Euclidean hyperbolic geometry is inti-
mately related to the personality of Carl Friedrich Gauss, the greatest German
mathematician, whose very deep mind and extraordinary mathematical insight
allowed him to immediately understand and accept the objective existence and
prospects of the geometry that was taking shape. This is confirmed by the afore-
mentioned opinion-letter to Bolyai and the subsequent comments of this great

1Including translations into foreign languages by well-known European publishers.
2But not published by Gauss.
3V. S. Malakhovsky, “Selected Chapters on the History of Mathematics”.
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mathematician on the extensive work of N. I. Lobachevsky that he made in his
private correspondence with colleagues in mathematics. Unfortunately, for reasons
known only to Gauss himself, he did not feel that he could publicly discuss at extent
this system of representations on the new non-Euclidean geometry which, beyond
any doubt, emerged independently in his thinking, and, probably, was reflected in
personal scientific notes, a fact witnessed not only by Gauss’ own comments, but
also by the the conclusions reached by the historians of mathematics of his time.

The translations of Lobachevsky’s works of 1836 “Géométrie imaginaire”
([IIIa]) into French (1840) and “Geometric investigations on the theory of paral-
lels” ([VI]) into German became accessible to Gauss. Becoming acquainted with
Lobachevsky’s investigations, Gauss expressed careful opinions about them, but
only in private correspondence. An example is the following fragment from a let-
ter of Gauss to his astronomer friend H. Schumacher (1846): “You know that
for 54 years now (even since 1792) I have held the same conviction (with some
later enrichment, about which I don’t want to comment here). I have found in
Lobachevsky’s work nothing that is new to me. In developing the subject, the au-
thor followed a road different from the one I took myself; Lobachevsky carried out
the task in a masterly fashion and in a truly geometric spirit. I consider it a duty
to call your attention to this work, since I have no doubt that it will give you a
tremendous pleasure ...”

Gauss played a special role in the geometric contributions of Lobachevsky
achieving recognition, expressing (in the form of “personal communications”) his
authoritative opinion on the results about the new non-Euclidean geometry to
a sufficiently wide circle of respected scientist of his time. It is due to Gauss’
recommendation that in 1842 Lobachevsky was elected corresponding member of
the Royal Society of Göttingen.

Thus, we see that at the source of the propositions of the new non-Euclidean
geometry in the first half of the XIX-th century stood three giants of mathemat-
ics: N. I. Lobachevsky, J. Bolyai, and C. F. Gauss. However, the historical role
Lobachevky played in this direction was special, since besides the titanical work
at elaborating the new theory, he took upon himself the heavy burden of “adapt-
ing” it to the scientific and social communities, which in essence is always a main
condition for the strengthening and advancement of any “revolutionary” body of
knowledge.

The work of the Italian mathematician E. Beltrami “Saggio di interpretazione
della geometria non-euclidea” (1868) represented the next stage in strengthening
the position of the new non-Euclidean geometry; the results obtained therein al-
lowed to bring Lobachevsky’s geometry out of the category of “imaginary geome-
tries” as a geometry that admits its own interpretation (though only partially)
in the framework of the habitual Euclidean representations. Beltrami, studying
the behavior of geodesics on the surface of the pseudosphere, established that the
metric of the pseudosphere is identical in form with the metric of the Lobachevsky
plane in a certain domain of it (more precisely, in a horodisc). That is, the conclu-
sion was reached that on the pseudosphere, which is a surface in Euclidean space,
there are realized all intrinsic-geometric laws of Lobachevsky’s two-dimensional
geometry (as applied to the indicated domain).
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The final acceptance of non-Euclidean hyperbolic geometry by the scien-
tific community came with the introduction of “virtual Euclidean representations
(models)” for the complete Lobachevsky plane and is connected with the model in-
terpretations of the two-dimensional Lobachevsky geometry proposed by F. Klein
(in 1871) and H. Poincaré (in 1882). The Cayley-Klein model (the Klein model
in the disc of the Euclidean plane which uses Cayley’s projective metric) and
the Poincaré model in the disc and in the half-plane (in the complex plane) are
discussed in detail in § 1.2.

Speaking about the coming into life of Lobachevsky’s geometry, it is neces-
sary also to mention the works of the Russian mathematician F. Minding during
the years 1838–1839 (see § 1.3) in which, in particular, he described all surfaces
of revolution of constant negative curvature, namely, the pseudosphere and the
surfaces know today as the Minding bobbin and Minding top, and obtained the
form of the linear element for surfaces of this type. Interestingly, Minding himself
noted the validity of the formulas of trigonometry on surfaces of constant negative
curvature, derivable from the corresponding trigonometric formulas in spherical
geometry by replacing the trigonometric functions involved by the “analogous”
hyperbolic functions. Beltrami (in 1868) referred to these results of Minding when
he analyzed the pseudosphere and emphasized that the aforementioned trigono-
metric relations are trigonometric formulas in Lobachevsky’s geometry. Unfortu-
nately, Minding himself did not pose the problem of connecting his results with the
Lobachevsky geometry that was taking shape at that time. And Lobachevsky, by
irony of fate, missed those issues of the scientific journal he regularly browsed that
contained Minding’s works, in which the first intuitive geometrical images of the
new non-Euclidean geometry arose. What an extraordinary historical occurrence!

Historians of mathematics should also devote consideration to the personal-
ity of J. C. M. Bartels4 and his “special mission of accompanying and supporting”
the creators of contemporary non-Euclidean geometry. Already at the beging of
his career of mathematician and pedagogue, Bartels became the teacher of the
future king of mathematics C. F. Gauss at the Katherinenschule in Braunschweig.
It is due to Bartels’ efforts that the young Gauss received from the Duke of Braun-
schweig a scholarship to continue his education. In the 12-year period of his activity
that followed (starting with 1808), Bartels served as a professor at the newly es-
tablished Kazan University, and according to recollections of his contemporaries,
in known situations he watched over and defended his capricious student Niko-
lai Ivanovich Lobachevsky. Finally, from 1820 on, Bartels taught and engaged
in scientific research at the Dorpat (now Tartu) University, where he founded the
Centre for Differential Geometry. Afterwards, at the end of the 30th (in the XIXth
century), F. Minding, a professor also at Dorpat University, obtained important
results on surfaces of revolution of constant negative curvature, on which a partial
realization of non-Euclidean hyperbolic geometry takes place. It is amazing that
no accounts or results are available that could shed light on Bartels’ own about
judgements about the new non-Euclidean geometry and on discussion with his
colleagues on this theme. However, there is no doubt that under the influence ex-
erted by this prominent mathematician his students acquired a high mathematical

4Johann Christian Martin Bartels was a German and Russian mathematician, a corresponding
member of the St. Petersburg Academy of Science.
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culture. The scale of Bartels’ personality is also witnessed by the fact that for his
exceptional contribution to science and education he was awarded the (practically
inaccessible to scientists) high Russian government title of secret adviser .

An outstanding achievement of human thought can become part of the over-
all intellectual-spiritual heritage only when it reflects, to a certain extent, the
demands of the scientific and cultural society of its time. This is equally true for
Lobachevsky’s geometry, as a theory that expands the boundaries of the mathe-
matical ideas and philosophy of space. Undoubtedly, a historical factor concomi-
tant with Lobachevsky’s doctrine was the intellectual society in XIXth century
Russia, divided at times by contradictions in world outlook, yet constantly pre-
serving the need for a deep understanding of the meaning of existence, this being
a characteristic trait of Russian national mentality.

Overall, in Russia the situation around Lobachevsky’s doctrine turned out to
be rather positive. This is demonstrated by fact Lobachevsky had the opportu-
nity to regularly present parts of the theory he was developing in publications of
Kazan University, who he led as rector starting in 1827, and to organize and par-
ticipate in public debates. Nevertheless, there were also some negative instances,
such as academician M. V. Ostrogradsky’s rejection of the work “On the founda-
tions of geometry”, submitted to the Council of Kazan University in the Academy
of Sciences. Also, in 1834, F. Bulgarin’s well-known literature and general poli-
tics journal “Syn oteqestva” (“Son of the fatherland”) published an extensive
(anonymous) paper that “ridiculed” in a narrow-minded manner the doctrine of
the new non-Euclidean geometry, as well as Lobachevsky himself. At the same
time, though, one must speak also about the begining of the penetration of the
ideas of the new geometric theory in European scientific circles and, generally,
about the rise of the scientific interest in problems related to the direction of re-
search under discussion, a confirmation of which is represented, for instance, by
the construction of the “Minding surfaces”, and so on.

In Russia, as time went on, something bigger than just recognition as a geo-
metric discovery was awaiting Lobachevsky’s theory: the fruits of the scientific in-
vestigations of Lobachevsky found reflection in the thinking of the most prominent
Russian minds of the XIXth century and became integral part of the discussions of
Russian intellectuals in their endless quest for understanding the universe. Opin-
ions on non-Euclidean geometry can be found, for example, in the philosophical
polemic of the main heroes of the novel “The Brothers Karamazov” by the great
Russian writer and thinker F. M. Dostoyevsky:5 “Yet there have been and still
are geometricians and philosophers, and even some of the most distinguished, who
doubt whether the whole universe, or to speak more widely, the whole of being,
was only created in Euclid’s geometry; they even dare to dream that two parallel
lines, which according to Euclid can never meet on earth, may meet somewhere
in infinity.”6

Dostoyevsky, who had a serious basic mathematical education, sensed the
subtleties of the circle of problems reached by the mathematical thought at the
middle of the XIXth century, composed of questions on the foundation of mathe-
matics, abstract problems of the geometry of space, and so on.

5See, e.g., “The Brothers Karamazov”, Farrar, Straus and Giroux, 2002.
6See the translation at http://fyodordostoevsky.com/etexts/the_brothers_karamazov.txt



Recognition of non-Euclidean hyperbolic geometry 11

One can also speak of the particularly pronounced predisposition of the Rus-
sian national culture as a whole to comprehend, in particular, the new ideas of
non-Euclidean geometry, which, it seems, were laid at the roots of its civilization.
Important “facets”, it would appear, of the unusual non-Euclidean geometry were,
at the contemplative level of perception, imprinted in consciousness over a period
of almost a thousand year of history of the new civilization in ancient Russia
(Rus�), which adopted the spiritual Christian principles of Byzantium and intro-
duced in this inheritance the truly Slavic traditions and knowledge, expressed in
special forms (shapes, images) that are not found in any other culture. Among such
forms , for example, are the onion-shaped cupolas (domes) that crown the tops of
innumerable Russian orthodox churches. The upper part of such an onion cupola,
which extends in a harmonious way its central part (a sphere), rising towards the
Sky, realizes a shape that from a contemporary analytic point of view belongs to
hyperbolic geometry (it is the classical shape of a surface of revolution of negative
curvature). It is natural to regard this part of the cupola as a model of a part
of the upper sheet of the pseudosphere7, a canonical surface that tends towards
the point at infinity on the Absolute. Such an embodiment of the cupola shape
in space can be traced through the Russian orthodox tradition starting from at
least the first half of the XIIth century, and signifies the trinity of intuitive geome-
tries accessible to human perception. To wit, starting with the indicated historical
period, one can speak with confidence about the appearance of artificial forms
that from the contemporary point of view belong to hyperbolic geometry or, in
other words, about the results of the precise practical development of elements of
non-Euclidean geometry. It is particularly remarkable that all that was mentioned
above took place more than five hundred years before the discovery by I. Newton,
G. Leibniz, and others of the differential and integral calculus, which lies at the
foundations of the contemporary scientific and technological paradigm.

Side by side with the aforementioned contribution of N. I. Lobachevsky to
the development of a global mathematical conception, we should address also the
philosophical value of Lobachevsky’s geometry as a theory that influences the
development of various fields of knowledge. The general philosophical value of
Lobachevsky’s geometry can be described as follows. First, this geometric the-
ory had a decisive role in the formation of the analytic conception of possible
intuitive geometries (side by side with the Euclidean and spherical geometries) in
the Euclidean space habitual to a human being (a passive observer). Figuratively
speaking, Lobachevsky’s geometry became the third, crowning crystal in the triad
of intuitive geometries . Second, the geometric theory itself became a tool 8(rather
than an aim, and, the more so, not a “scientific end in itself”), promoting the de-
velopment of other fields of knowledge that lie at the foundation of contemporary
philosophy and practice.

The stable growth in strength of a scientific theory over a long period of
history is not possible without devoted followers, prominent scholars capable of
developing its fundamental ideas. The author finds his duty to mention here a
pleiad of eminent Russian scientists-mathematicians, “guardians of the space of

7Concerning the pseudosphere see § 1.3 and § 2.4.
8Already Lobachevsky himself actively applied the theory he developed to the calculation of

complicated definite integrals, regarding this as an additional argument in favor of its truth.
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Lobachevsky’s ideas”, the names of which are connected with the advancement and
popularization of Lobachevsky’s geometric doctrine in Russia and abroad over the
last, more than 150 years. Here we should mention, among others, A. V. Vasil′ev,9
A. P. Kotel′nikov, P. A. Shirokov, B. L. Laptev, A. P. Norden, V. F. Kagan,
Yu. Yu. Nut, A. S. Smogorzhevskii, N. V. Efimov, and È. G. Poznyak. Special
contributions to the development of Lobachevsky’s geometry and its applications
are due to the scientific geometrical schools of Kazan and Moscow universities.

Structure and contents of the book

The exposition in the book begins with the consideration of the key elements lying
at the foundation of Lobachevsky’s geometry, including its interpretations (mod-
els), and is carried out in a form adapted to the methods of modern geometry,
function theory, and the theory of nonlinear differential equations. The central
part of the book is devoted to problems connected with various aspects of the
realization of hyperbolic geometry in Euclidean space, the study of pseudospheri-
cal surfaces, and the elaboration of effective geometric approaches to the study of
certain nonlinear partial differential equations of mathematical physics, in partic-
ular, in the context of physical applications. The main text is organized into five
chapters, preceded by the Introduction.

The first chapter is devoted to the foundations of Lobachevsky’s geometry,
consisting of three basic “ingredients”: axiomatics, model interpretations, and the
analysis of surfaces of revolution of constant negative curvature. These sections
are structured with a view to the subsequent applications of the results presented
in actual problems of mathematical physics. We also consider examples of C1-
regular surfaces of revolution with different signs of the curvature, which realize a
harmonious combination of the classical intuitive geometries.

The second chapter deals with general problems connected with the real-
ization of the two-dimensional Lobachevsky geometry in the three-dimensional
Euclidean space E3. Here it is natural to interpret the Lobachevsky geometry as
geometry of a two-dimensional Riemannian manifold of constant negative curva-
ture. In this connection we introduce the fundamental systems of equations of
the theory of surfaces in E3 and discuss specific features of the application of the
tools presented to the analysis of surfaces of constant negative Gaussian curva-
ture. In this chapter we consider such canonical geometric objects as the Beltrami
pseudosphere and Chebyshev nets. We also examine D. Hilbert’s results on the
impossibility of realizing the complete Lobachevsky plane in the space E3. We
mention the fundamental connection between surfaces of pseudospherical type and
the sine-Gordon equation, a geometrically universal nonlinear partial differential
equation. We give a brief survey of a number of fundamental results on isometric
immersions of Riemannian metrics of negative curvature in Euclidean spaces.

The third chapter is devoted to geometric aspects of the sine-Gordon equa-
tion. We study the geometric notion of Bäcklund transformation for pseudospher-

9Special mention is due to the scientific-biographical works of A. V. Vasil′ev [13], which
provide a detailed exposition of the life path of N. I. Lobachevsky and an analysis of his scientific
achievements.
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ical surfaces. At the same time we remark that the application of the method
of Bäcklund transformations for the construction of exact solutions of nonlin-
ear differential equations is one of the most effective approaches in mathematical
physics. Special attention is given to the class of soliton solutions of the sine-
Gordon equation and their geometric interpretation on the example of classical
surfaces—the pseudosphere and the Dini surface—as well as to the study of the
classes of two-soliton and breather pseudospherical surfaces. We investigate the
Painlevé transcendental functions of the third kind, which form a special class
of self-similar solutions of the sine-Gordon equation, the geometric interpreta-
tion of which in E3 is provided by Amsler’s pseudospherical surface. Further, we
study fundamental solvability questions for certain classical problems of mathe-
matical physics, namely, the Darboux problem and the Cauchy problem for the
sine-Gordon equation; we then use the results obtained to derive important geo-
metric generalizations and consequences. In particular, we show how to construct
solutions of the sine-Gordon equation on multi-sheeted surfaces. Moreover, based
on the unique solvability of the Cauchy problem for the sine-Gordon equation pre-
sented in this chapter we prove a theorem on the unique determinacy of pseudo-
spherical surfaces (the fact that a pseudospherical surface is uniquely determined
by the corresponding initial data on its irregular singularities). We discuss classical
questions connected with the Joachimsthal-Enneper surfaces, indicating the con-
nection between these surfaces and classes of solutions of the sine-Gordon equation
obtained by the method of separation of variables. The final section of the chap-
ter is devoted to the fundamental connection that exists between the method of
the inverse scattering transform and the theory of pseudospherical surfaces. This
connection is expressed by the fact that the basic relations that arise in these two
different branches of mathematics are structurally identical. On the whole, all the
essential questions considered in Chapter 3 point to the presence of a significant
geometric component connected with Lobachevsky’s geometry in a wide spectrum
of problems of topical problems of mathematical physics.

In Chapter 4 we present a geometric approach to the interpretation of cer-
tain nonlinear partial differential equations which connects them with special
coordinate nets on the Lobachevsky plane Λ2. We introduce the notion of the
Lobachevsky class of partial differential equations (Λ2-class), equations that admit
the aforementioned interpretation. The resulting geometric concepts for nonlinear
equations allow one to apply in their study the well developed tools and methods of
non-Euclidean hyperbolic geometry. Many well-known nonlinear equations, among
them the sine-Gordon, Korteweg-de Vries, Burgers, and Liouville equations, etc.,
which compose the Λ2 class, are generated by their own coordinate nets on the
Lobachevsky plane Λ2. This makes it possible to investigate these equations by
net (intrinsic-geometrical) methods that rest on Lobachevsky’s geometry. Over-
all, the chapter is devoted to laying the foundations of the geometric concept of
Λ2-equations; in it we also discuss the prospects of applying geometric methods
of hyperbolic geometry to the constructive analysis of differential equations.

In Chapter 5 we consider applications of the geometric formalism proposed
in Chapter 4 for nonlinear differential equations to problems of theoretical physics
and the theory of difference methods for the numerical integration of differential
equations.
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In the first part of the chapter we introduce the notion of non-Euclidean
phase spaces , which are nonlinear analogs (with non-zero curvature) of the phase
spaces of classical mechanics and statistical physics, and of the Minkowski space
of the special theory of relativity.

The concept of non-Euclidean phase spaces rests on the principle of identity
between the metric of the phase space and the metric generated by the model
equation that describes the physical process under investigation. Due to the non-
triviality of the curvature of non-Euclidean phase spaces, they exhibit singularities,
which acquire the physical meaning of attractors and determine the behavior of
regular phase trajectories. Non-Euclidean phase spaces represent a kind of “curvi-
linear (non-Euclidean) projection screens” on which the evolution of the physical
process under consideration is displayed in regular manner. This in turns leads to
the establishment of general principles governing the evolution of the correspond-
ing physical systems. By the nature of the approaches employed, the material
discussed belongs first and foremost to the methodology of mathematical physics.

In the second part of the chapter, based on the elaborated methodology
of discrete coordinate nets on the Lobachevsky plane, we propose a geometric
algorithm for the numerical integration of Λ2-equations. The realization of such an
approach is connected exclusively with the planimetric analysis (in the framework
of hyperbolic geometry) of piecewise-geodesic discrete nets in the plane Λ2 which
in the limit go over into the smooth coordinate net that generated the Λ2-equation
under study. The implementation of the method is demonstrated on the example
of the sine-Gordon equation; to construct the geometric algorithm for its numerical
integration, one needs to study discrete rhombic Chebyshev nest on the plane Λ2.

In the framework of the general geometric approach, the present monograph
covers a rather wide spectrum of problems, starting with problems on the founda-
tion of geometry and ending with methods for the integration of nonlinear partial
differential equations of mathematical physics and the formulation of a number
of general principles governing the evolution of physical systems. In the author’s
view, making such a diverse material accessible to the reader was possible only by
varying the level of rigorousity of the exposition so that it reflects in each individual
problem considered the established traditions and methodology of study.

The book is addressed to a wide circle of specialists in various fields of math-
ematics, physics, and science in general.



Chapter 1

Foundations of Lobachevsky
geometry: axiomatics, models,
images in Euclidean space

This first chapter is devoted to an exposition of the foundations of Lobachevsky
geometry, formed by three classical components: axiomatics, model interpreta-
tions, and investigation of surfaces of constant negative curvature. The discussion
of these parts is carried out keeping in mind what is required for their application
to problems of contemporary mathematical physics.

1.1 Introduction to axiomatics

Constructing the foundations of geometry amounts to establishing a complete and,
at the same time, sufficiently simple and consistent system of axioms (statements,
the truth of which is accepted without proof), and the derivation from them, as
logical consequences, of the key theorems of geometry. The principal requirements
for the system of axioms are completeness, minimality of the collection of assertions
involved, and their consistency. In this section we present, following the universally
recognized work of D. Hilbert [17], the axiomatics adopted in modern geometry.

Hilbert’s axiomatics starts by introducing three different systems of “things”,
primary geometric objects. The things of the first system are called points , those
of the second (straight) lines , and those of the third, planes . The points are the el-
ements of linear geometry; the points and lines are the elements of plane geometry;
and the points, lines, and planes are the elements of space geometry. It is assumed
that the points, lines, and planes are in certain relations , which are referred to by
the words “lies”, “between”, “congruent” (equal), “parallel”, continuous”, and so
on. The precise meaning of the terms that express relationships is specified by the
content of the corresponding (groups of) axioms of geometry.

Let us list the axioms of geometry, dividing them into five groups.

15 A. Popov, Lobachevsky Geometry and Modern Nonlinear Problems,  
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I. Axioms of belonging (or of incidence) (8 axioms).

II. Axioms of order (4 axioms).

III. Axioms of congruence (equality) (5 axioms).

IV. Axioms of continuity (2 axioms).

V. Axiom of parallels.

The axioms of groups I–IV (19 axioms) are shared by Euclidean geometry as well
as by Lobachevsky geometry, and constitute the axiomatics of Absolute Geometry.
Adding to them the Axiom of Parallels results in the complete system of axioms
of either Euclidean geometry, or of Lobachevsky geometry. Let us now formulate
the axioms, remarking that usage in axioms of the plural for geometric objects
presumes that these objects are distinct (e.g., “two points” means “two distinct
points”).

Axioms

I. Axioms of belonging (incidence)

1. For any two points A and B there exists a straight line a that passes through
each of the points A and B (Figure 1.1.1).

Figure 1.1.1

2. For any two points A and B there exists no more than one straight line that
passes through both A and B (Figure 1.1.1).

3. On each straight line there exist at least two points. There exist at least three
points that do not lie on the same straight line.

4. For any three points A, B, C that do not lie on the same straight line there
exists a plane α that contains each of the points A, B, C. For every plane
there always exists a point which it contains.

5. For any three points A, B, C that do not lie on one and the same straight
line there exists no more than one plane that passes through each of these
three points.

6. If two points A, B of a straight line a lie in a plane α, then every point of a
lies in the plane α.

(In this case one says: “the straight line a lies in the plane α”, or “the plane
α passes through the straight line a”.)

7. If two planes α and β have a point A in common, then they have at least one
more point B in common.
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8. There exist at least four points that do not lie in one plane.

Following Hilbert [17] and the later classical works of V. F. Kagan [38] and
N. V. Efimov [25] on the foundations of geometry, in the formulation of axioms
we, while taking care to preserve the correct statement of the axioms, used for the
terms expressing the relations between “things” the corresponding notions that
are more customary in modern mathematics. Incidentally, these mathematical
“synonyms” were given already by Hilbert himself. Thus, for example in Axioms
I.1, I.2 we used: “the line a passes through the points A and B” instead of the
equivalent “in meaning” as well as admissible formulation “the straight line a is
incident to each of the points A and B”. Furthermore, for example, instead of the
possible statement “the point A lies on the straight line a” one used “the point
A is incident to the straight line a”. Also, expressions “the straight lines a and b
intersect in the point A” and “the straight lines a and b have a common point”
are equivalent, and so on.

Commenting upon the eight axioms of group I, which Hilbert referred to as
axioms of incidence, let us point out that their “diversity of meaning” is deep and
is aimed at optimizing the approach by which one derives their consequences. As
an example, consider the first two axioms I.1 and I2, which in the standard modern
courses on mathematics are replaced by a single (more “content-loaded”) axiom:
“through any two distinct points there always passes a unique straight line”. This
last formulation is undoubtedly correct, but to derive further geometric conse-
quences, one in fact does not employ its full “meaning capacity”; rather, it is only
applied partially, in accordance with the content of axioms I.1 and I.2.

Based on just the axioms I.1–I.8 of the first group, one can now, for example,
prove the following theorems [17,25]:

Theorem 1. Two straight lines that lie in one and the same plane have no more
than one common point. Two planes either have no point in common, or they have
a common straight line, on which all the common points of the two planes lie. A
plane and a straight line that does not lie on it either have no common point, or
have only one common point.

Theorem 2. Through a straight line and a point that does not lie on that straight
line, as well as through two distinct straight lines with a common point, there
always passes one and only one plane.

II. Axioms of order

1. If the point B lies between the point A and the point C, then A, B and C
are distinct points of one straight line, and the point B also lies between the
point C and the point A (Figure 1.1.2).

2. For any two points A and C, on the straight line AC there exists at least
one point B such that the point C lies between the point A and the point B
(Figure 1.1.3).

3. Of any three points on a straight line there exists no more than one that lies
between the other two.
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Figure 1.1.2 Figure 1.1.3

Definition. On a straight line a consider two points A and B; the system of two
points A and B is called a segment and is denoted by AB or BA. The points
lying between A and B are called points of the segment AB (or interior points
of the segment); the points A and B themselves are called the endpoints of the
segment AB. All the remaining points of the line a are called the external points
of the segment AB.

4. Pasch’s Axiom. Let A, B, and C be three points that do not lie on a straight
line, and let a be a straight line in the plane ABC that does not pass through
any of the points A,B,C. If the straight line a passes through one of the
points of the segment AB, then it necessarily passes also either through a
point of the segment AC, or through a point of the segment BC. (Figure
1.1.4)..

Figure 1.1.4

By their essence, the Axiom of group II define the notion of bewteen.
Based on this one can introduce an order for points on a straight line, in

plane, or in space. The axioms of order were study in detail by the German math-
ematician M. Pasch [181].

The addition of the axioms of Group II to the axioms that we already con-
sidered allows one to obtain many important consequences [17, 25], among which
we mention here the following examples:

Theorem 1. Among any three points A,B,C lying on the same straight line there
is one that lies between the two other.

Theorem 2. Between any two point of a straight line there exists infinitely many
other points of the straight line.

Theorem 3. If the points C and D lie between the points A and B, then all the
points of the segment CD belong to the segment AB.

III. Axioms of congruence (equality)

The axioms of Group III will be formulated and commented upon simultaneously.
This approach will allow the reader from the very beginning to follow the logic
of the development of the content of the axiomatic statements of this group. The
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axioms in Group III define the notion of congruence (equality), and accordingly
allow one to introduce the notion of motion.

To designate certain mutual relations that can hold between segments we
use the term “congruent” (or “equal”). This kind of relation between segments is
described by the axioms of Group III.

1. If A and B are two points on the straight line a and A1 is a point on another
straight line a′, then it is always possible to find a point B1 on a given side
of the straight line a′ such that the segments AB and A1B1 are congruent
(equal) (Figure 1.1.5).

In particular, for the straight line a′ one can also take the straight line a itself.

Figure 1.1.5

The congruence (equality) of the segments AB and A1B1 will be denoted by

AB = A1B1.

Axiom III.1 allows one to superpose equal segments.
We note that, according to the definition given above, a segment is given

as a system of two points A and B, with nothing being said about the order in
which they are positioned. Consequently, the following relations are equivalent in
meaning:

AB = A1B1, AB = B1A1, BA = A1B1, BA = B1A1.

2. If both the segment A1B1 and the segment A2B2 are congruent to the segment
AB, then the segments A1B1 and A2B2 are also congruent to each other.

In other words, if two segments are congruent to a third segment, then they are
congruent to one another.

3. Let AB and BC be two segments on a straight line a that have no common
interior points, and let A1B1 and B1C1 be two segments on a straight line a′
that also have no common interior points. If

AB = A1B1, BC = B1C1,

then
AC = A1C1.
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Axiom III.3 allows one to add segments .
To formulate the next two axioms of Group II we need to introduce the notion

of an angle.

Definition A pair of half-lines (a system of two rays) � and k that originate at one
and the same point O and do not belong to one straight line is called an angle,
and is denoted by ∠(�, k) (Figure 1.1.6).

Figure 1.1.6

By half-line (or ray) with the origin at the point O one means the set of all
points on a straight line that lie on the same side with respect to the point O. The
rays � and k are called the sides of the angle ∠(�, k).

Angles can find themselves in a certain relation, termed “congruence” or
equality, which is “governed” by Axioms III.4 and III.5.

4. Suppose that on the plane α there is given an angle ∠(�, k) and there is given
a straight line a′ in the same plane or some other plane α′, and also that a
side of the plane α′ with respect to the straight line a′ is chosen. Let �′ be a
ray of the straight line a′ starting from a point O′. Then in the plane α′ there
exists one and only one ray k′ such that the angle ∠(�′, k′) is congruent to the
angle ∠(�, k), and at the same time all interior points of the angle ∠(�′, k′)
lie on the chosen side with respect to the straight line a′.

The congruence (equality) of angles is denoted by

∠(�, k) = ∠(�′, k′).
Each angle is congruent to itself:

∠(�, k) = ∠(k, �).
Axiom III.4 alows one to lay out angles: each angle can be placed, in a unique

way, in a given plane, on a given side with respect to a given ray.
Before we formulate Axiom III.5 (the final axiom of Group III), let us clarify

the notion of a triangle. By a triangle �ABC we mean a system of three segments,
AB, BC, CA, which are called the sides of the triangle; the points A, B, C are
called the vertices of the triangle.

5. If for two triangles, �ABC and �A1B1C1, it holds that

AB = A1B1, AC = A1C1, ∠BAC = ∠B1A1C1,

then there also holds the equality (congruence)

∠ABC = ∠A1B1C1.
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Remark. ∠ABC denotes the angle with vertex B, on one side of which lies the
point A, and on the other, the point C.

The first three axioms III.1–III.3 are linear axioms, because they concern
only congruence of segments. Axiom III.4 defines the congruence of angles. Axiom
III.5 connects congruence of segments as well as of angles. The last two axioms
of Group III may be referred to as plane axioms, since they are assertions on
geometric “objects” in the plane.

Using the axioms of Group III one introduces in geometry the notion of
motion, as follows.

Consider two sets, Σ and Σ′, between the points of which there is a one-to-one
correspondence. (By set we mean a finite or infinite collection of points.) Any two
points A,B ∈ Σ define a segment AB, and the points A′, B′ ∈ Σ′ corresponding to
them give a segment A′B′; we will say that the segments AB and A′B′ correspond
to one another. If under the given one-to-one correspondence between Σ and Σ′
any two corresponding segments are equal (congruent), then the sets Σ and Σ′ and
also said to be equal (congruent) In this case one say that the set Σ′ is obtained
by a motion of the set Σ, and conversely, Σ is obtained by a motion of Σ′.

The completion of the axiomatic system discussed by the axioms of con-
gruence (Group III) makes it possible to obtain new wide classes of geometric
consequences, which are considered in detail in, e.g., [25, 38].

IV. Axioms of continuity

1. Archimedes’ Axiom. Let AB and CD be two arbitrary segments; then on the
straight line AB there exist a finite number of successively arranged points
A1, A2, A3, . . . , An such that the segments AA1, A1A2, A2A3, . . . , An−1An are
congruent to the segment CD and the point B lies between the points A and
An (Figure 1.1.7).

Figure 1.1.7

Axiom IV.1 is also called the axiom of measure. According to its meaning, the
segment CD is a standard-of-length segment, a measurement unit , and the axiom
asserts that it is possible “reach” any given point on a straight line and calculate
the length of any segment.

2. Cantor’s Axiom. Suppose that on some straight line a there is an infinite
system of segments A1B1, A2B2, . . . , AnBn, . . ., in which each successive seg-
ment is contained inside the preceding segment (Figure 1.1.8). Suppose that
there is no segment that is contained inside all the segments of the given in-
finite system of segments. Then on the line a there exists a unique point M
that lies inside all the segments A1B1, A2B2, . . . , AnBn, . . . of the considered
system.
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Figure 1.1.8

Axiom IV.2 given above expresses the well known Cantor principle of nested seg-
ments; it is precisely this formulation of the second axiom of Group IV that is
used in the Efimov’s system of axioms of geometry [25]. In Hilbert’s work [17], the
second axiom of Group IV is formulated as the axiom of linear completeness (this
axiom is denoted below by IV.2*). Let us remark that the possible alternative us-
age of axioms IV.2 and IV.2* does not destroy the general consistent integrity of
the adopted axiomatics; rather, it simply corresponds to an equivalent exposition
of part IV.

2*. Axiom of linear completeness (according to Hilbert). The points of a straight
line form a system that does not admit any extension in which the linear
order, the first axiom of congruence, and the Archimedes’ axiom remain valid.
That is, to such a system of points one cannot add points such that in the
new system formed by the initial and the added points all axioms listed above
will be valid.

The axioms of the groups I through IV constitute the foundation of the so-
called Absolute Geometry, a common component of Euclid’s classical geometry
and of the non-Euclidean hyperbolic geometry discovered by N. I. Lobachevsky.
What makes these two geometries fundamentally different is the different content
of the Axiom of Parallels. The Axiom of Parallels, the only axiom of Group V,
has a meaning that is independent of the axioms of the first four groups.

V. Axiom of Parallels

To formulate of the axiom of group V, we first define the parallelism of straight
lines.

Definition. Two straight lines that lie in the same same plane and have no
point in common are said to be parallel .

The Axiom of Parallels that corresponds to the classical Euclidean geometry
and expressed the famous Postulate V of Euclid reads as follows:

V. Axiom of Parallels (Vth Postulate of Euclid). Let a be a straight line and A be
a point that does not lie on the straight line a. Then in the plane determined
by the straight line a and the point A there is a unique straight line that
passes through A and does not intersect a (Figure 1.1.9).

The Axiom of Parallels just formulated, together with the already introduced
axioms of groups I–IV, form the well-known analytic geometry of Euclid in the
Cartesian plane.

The revolutionary result of N. I. Lobachevsky’s study of the foundations of
geometry is that the Axiom of Parallels (the Group V axiom) is independent of
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Figure 1.1.9

the axioms of the preceding four groups (I–IV). In other words, if to the axioms
of the groups I–IV (the axioms of Absolute Geometry) one “adjoins”, instead
of Euclid’s Postulate V, Lobachevsky’s Axiom of Parallels (an assertion that is
not compatible with the “Euclidean formulation”), then the resulting system of
axioms leads to a new, logically correct notion of geometry, that of non-Euclidean
hyperbolic geometry, or Lobachevsky geometry.

V*. Axiom of Parallels (according to Lobachevsky). Let a be an arbitrary straight
line and A be a point that does not lie on a. Then in the plane determined by
the straight line a and the point A, there are at least two straight lines that
pass through A and do not intersect the straight line a (Figure 1.1.10).

Figure 1.1.10

The content of Axiom V∗ suffices (if one considers the axioms of absolute geometry)
for establishing that through the point A there pass infinitely many straight lines
that do not intersect the straight line a.

We should emphasize that Figure 1.1.0 has an exclusively symbolic (conven-
tional) character, illustrating, to the extent that one can possibly grasp by means
of customary Euclidean images, the content of the axiom that lies at the founda-
tion of non-Euclidean geometry. Axiom V∗ should be first and foremost regarded
as a logical statement that establishes a special “relationship” between geometric
objects (“things”, in Hilbert’s formulation). This is precisely the conclusion to
which Lobachevsky arrived, proving that the performed modification of the Ax-
iom of Parallels resulted in the inauguration of a new geometric system. Initially
the acceptance of Lobachevsky’s ideas did run into known difficulties, the roots
of which lie most probably in the customary practical representations about the
notions and terms used. It is therefore appropriate to state clearly here that in
Lobachevsky’s geometry a “straight line” is understood as a shortest line, i.e., a
line such that the distance along it between two of its points is the smallest. The
notion of “parallelism” of two “straight lines” refers only to the fact that they do
not intersect, and does not incorporate the customary Euclidean property of two
parallel straight lines being equidistant.
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The first wide recognition of Lobachevsky’s geometry is associated with the
construction of its models which use images in Euclidean geometry, and which will
be considered in § 1.2.

To complete the exposition of axiomatics, let us emphasize one more time
that the axioms of Absolute Geometry (the groups I–IV), supplemented by Eu-
clid’s Postulate V, constitute the foundation classical Euclidean geometry, while
in the case when they are alternatively supplemented by Lobachevsky’s Axiom of
Parallels they constitute the foundations of the non-Euclidean hyperbolic geome-
try.

1.2 Model interpretations of Lobachevsky’s planimetry

The firm establishment of Lobachevsky’s geometry as a geometric theory was made
possible by the construction of intuitive interpretations of it in the framework of
ordinary Euclidean geometry. To obtain a conventional “Euclidean picture” of
Lobachevsky geometry we will consider in the Euclidean plane certain domains,
in which Euclidean geometric objects (elements) and the operations performed
on them are endowed with the virtual meaning of the elements and operations
corresponding to them in the Lobachevsky planimetry. That is, to the “things” and
the “relations” that connect them, which obey the axioms of Absolute Geometry
(groups I–IV) and Lobachevsky’s Axiom of Parallels (V) we associate intuitive
Euclidean images, but endowed with a special meaning. Such an approach allows
one to obtain a conventional Euclidean model representation of the Lobachevsky
plane, and at the same time establish in a clear manner the correctness of the
adopted system of axioms.

We will consider three classical interpretations (models) of the Lobachevsky
plane: the Cayley-Klein interpretation, the Poincaré interpretation in the disc,
and the Poincaré interpretation in the half-plane.1 In the ensuing exposition the
Lobachevsky plane will be also referred to briefly as the plane Λ2.

1.2.1 The Cayley-Klein model

In 1871 F. Klein proposed a model of the Lobachevsky planimetry that uses the
projective metric discovered previously by A. Cayley. This model, on the exposition
of which we embark now, is called the Cayley-Klein model of the Lobachevsky
geometry.

In the Euclidean plane E2(x, y) consider the unit disc Ω, the interior of which
we will, following Klein [44, 45] interpret as the Lobachevsky plane Λ2:

Λ2 = {Ω(x, y) : x2 + y2 < 1}.
According to this interpretation, each interior point of the disc Ω is an interior
point of the plane Λ2. The boundary ω of the disc Ω (the unit circle ω : x2+y2 = 1)
represents the set of points at infinity of the plane Λ2, and is called the absolute.

1Together with our exposition, for a first acquaintance with the foundations of Lobachevsky’s
planimetry we refer the reader also to the graphic and content-rich introduction to this theme
found in the books [54] and [129].
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The role of the straight lines in the interpretation under consideration is played
by the chords of the circle ω. The Euclidean images that in such an interpretation
correspond to the “things” in the plane Λ2 (points, straight lines, etc.), as depicted
in Figure 1.2.1, obey the axioms of Absolute Geometry (the axioms of the groups
I–IV), as well as Lobachevsky’s Axioms of Parallels. Indeed, as Figure 1.2.1 makes
clear, through a point M that does not lie on a given straight line (‘chord”) m
there pass at least two straight lines b and c that are parallel to (do not intersect)
m. This expresses the realization of Lobachevsky’s Axiom of Parallels (Group V)
in the model at hand.

Figure 1.2.1

Note that the common points on the absolute of the chords b andm and of the
chords c and m, respectively, are points at infinity, and must be interpreted not as
points of intersection of the straight lines connected with them (the straight lines b
and m, or the straight lines c and m) in the plane Λ2, but as points indicating the
common direction along which these straight lines tend to infinity. Hypothetically,
the common points of chords on the absolute can also be considered as points at
infinity, in (to) which parallel straight lines “intersect” (converge). Historically,
a similar conception took shape in Leonardo da Vinci’s genial work aimed at
developing the doctrine of perspective in art. Subsequently, a similar approach was
applied to lay down the bases of projective geometry by its founder G. Desargues.

In fact, on the plane Λ2, through the point M there pass infinitely many
straight lines parallel to m; all these straight lines lie in the “shaded” region in
Figure 1.2.1 enclosed between the straight lines b and c. Overall, three different
variants of mutual relationship are possible between straight lines in the plane Λ2:
1) intersecting (for example, b and c); 2) parallel ( b and c are parallel to m); 3)
divergent.

In the Cayley-Klein model, to introduce a rule for measuring the distance
between points in the plane Λ2 one resorts to one of the key invariant relations
of projective geometry, the cross ratio of four points2 (henceforth referred to for
brevity as cross ratio).

2This relation is also called double ratio or anharmonic ratio.
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Figure 1.2.2

The cross ratio of four points that lie on the same straight line is defined as
the fraction built from the ratios of the distances from each of the points of one
pair to the points of the other pair. In general, one can form six similar ratios;
they are all related to one another and each of them has the property that its
value is invariant under projective transformations.

Let us explain the meaning of this last property. Consider two arbitrary
straight lines, �1 and �2, and a point S (Figure 1.2.2), from which we draw rays
that project segments of �1 onto the corresponding segments on �2.

Given four points P , A, B, Q lying on the straight line �1, we define their
cross ratio by

[P,A,B,Q] ≡ BP

BA
:
QP

QA
. (1.2.1)

Under the central projection from the vertex S (Figure 1.2.2), the points P ,
A, B, Q of the straight line �1 are mapped into the points P ′, A′, B′, Q′ of the
straight line �2. The value of the cross ratio of the four points P , A, B, Q is also
preserved for their projections, the points P ′, A′, B′, Q′ (regardless on the choice
of the second straight line �2):

[P,A,B,Q] = [P ′, A′, B′, Q′]. (1.2.2)

The proof of the invariance property (1.2.2) of the cross ration is readily
carried out by computing the areas of the corresponding triangles with common
vertex S (Figure 1.2.2). To this end, we need to express the lengths of the segments
on �1 and �2 through the sines of the angles adjacent to the vertex S, i.e., through
invariable quantities that are not connected with the choice of new straight lines
that play the role of �2.

The invariance of the cross product plays a key role when one introduced the
rule for measuring the length in the plane Λ2.

Expression (1.2.1) involves the ratios of the distances from each of the points
of the second pair {B,Q} to the points of the first pair {P,A}. We note that, in
general, in order to give the cross ratio via (1.2.1) the order in which the four
points are arranged on the projective line (the straight line �1) is not important;
what is essential is the order of the placement in the symbolic bracket [P,A,B,Q].
In other words, what matters is the placement of the four points in pairs inside
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the bracket itself, into the first and the second pair. The invariance property of
the value of the cross ratio defined by formula (1.2.1) is preserved for each chosen
variant of placement of the points in the symbolic bracket of the type [P,A,B,Q].
Moreover, the following useful rules for inner permutation in the bracket hold:

[P,A,B,Q] = [A,P,B,Q]−1 = [P,A,Q,B]−1,

[P,A,B,Q] = 1 + [P,B,A,Q], (1.2.3)

[P,A,B,Q] = [B,Q, P,A].

To verify the rules (1.2.3), we must introduce on the straight line �1 (the
projective line) some system of coordinates (a system of projective coordinates)
and denote the coordinates of the points P,A,B,Q in question by t1, t2, t3, t4,
respectively. Then the cross ratio can be written as

[
1

P ,
2

A,
3

B,
4

Q] =
t3 − t1
t3 − t2

:
t4 − t1
t4 − t2

. (1.2.4)

Applying formula (1.2.4) in the left- and right-hand sides of relations (1.2.3)
establishes their validity.

The quantity [P,A,B,Q], defined via (1.2.4), is preserved by linear-fractional
transformations of the straight line (the transformations that preserve the value
of the cross ratio of four points are called projective transformations).

Indeed, the linear-fractional transformation

t′ =
αt+ β

γt+ δ
, αδ − βγ �= 0, α, β, γ, δ = const (1.2.5)

maps any point on a projective line with original coordinate t into the point with
coordinate t′:

t1 −→ t′1, t2 −→ t′2, t3 −→ t′3, t4 −→ t′4.

Therefore, the considered 4-tuple of points P,A,B,Q is mapped by trans-
formation (1.2.5) into the new 4-tuple of points P ′, A′, B′, Q′, with corresponding
coordinates

t′1 =
αt1 + β

γt1 + δ
; t′2 =

αt2 + β

γt2 + δ
; t′3 =

αt3 + β

γt3 + δ
; t′4 =

αt4 + β

γt4 + δ
. (1.2.6)

If we now write the cross ratio (1.2.4) for the points P ′, A′, B′, Q′, then using
(1.2.6) it is not hard to verify that

[P ′, A′, B′, Q′] = [P,A,B,Q].

Thus, a linear-fractional transformation of the straight line preserves the value of
the cross ratio of four points, and hence is projective.

In the Cayley-Klein model under discussion, the non-Euclidean distance
ρ(A,B) between two arbitrary points A,B ∈ Λ2 of the Lobachevsky plane (Figure
1.2.1) is given in terms of the cross ratio of four points, by means of the formula

ρ(A,B) =
1

2

∣∣ ln[A,B, P,Q]
∣∣, (1.2.7)
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where

[A,B, P,Q] =
PA

PB
:
QA

QB
. (1.2.8)

In (1.2.7), the inner points A and B of the plane Λ2 (Figure 1.2.1) form the first
pair in the symbolic bracket, while the points at infinity P and Q of the straight
line AB ⊂ Λ2, which belong to the absolute ω, are placed, by definition, in the
second pair. That is, in the calculation of the distance ρ(A,B), in (1.2.8) one uses
a somewhat different (not successive, like on the line) order of the points in the
symbolic bracket compared to (1.2.1). It is clear that such a “correction” does not
change the general properties of the cross ratio presented above.

The lengths of the segments PA,PB,QA,QB used in (1.2.8) are calculated
in the ordinary, Euclidean way (these segments are parts of chords of the unit
circle ω in the Euclidean plane E2(x, y) centered at the origin of coordinates).
The expression (1.2.8) in the argument of the logarithm appearing in (1.2.7) is
obviously positive, but can take values smaller than 1; this explains the presence
of the modulus in (1.2.7).

From (1.2.7) and (1.2.8) one derives directly the properties of the distance:

ρ(A,A) = 0,

ρ(A,B) = ρ(B,A), (1.2.9)

ρ(A,B)→∞ for B → Q, Q ∈ ω,

as well as the triangle inequality

ρ(A,B) + ρ(B,C) ≥ ρ(A,C), A,B,C ∈ Λ2. (1.2.10)

In (1.2.10) equality holds if the points A,B,C lie on the same straight line in the
plane Λ2 (the point B lies between A and C). The strict inequality in (1.2.10)
holds for three points that do not lie on the same straight line.

The rule for measuring distance (1.2.7) introduced above yields a clear algo-
rithm for calculating the distance between any two points A(x1, y1) and B(x2, y2)
in the Cayley-Klein model (Figure 1.2.1). Indeed, this algorithm has the standard
“Euclidean” character of a typical problem in analytic geometry and consists of the
following steps: (1) derive the equation of the straight line a that passes through
the two given points A(x1, y1) and B(x2, y2); (2) find the coordinates of the points
P and Q where the straight line a and the absolute (the unit circle ω) intersect;
(3) calculate the lengths of the segments figuring in the ratio (1.2.8); (4) apply the
formula (1.2.7) to calculate the sought-for non-Euclidean distance ρ(A,B) in the
Lobachevsky plane.

If one implements the indicated algorithm in order to calculate the distance
between two close points A(x, y) and B(x + Δx, y + Δy), then in the limit as
Δx → 0, Δy → 0, the expression for the square of the distance ρ(A(x, y), B(x +
Δx, y +Δy)) yields the form of the projective metric of the Lobachevsky plane:

ds2 =
(1 − y2)dx2 + 2xy dx dy + (1− x2)dy2

(1− (x2 + y2))2
(1.2.11)

(in the Cayley-Klein model).
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Essentially, the representation of the metric (1.2.11) is the realization in
Cartesian coordinates of the general metric rule (1.2.7).

In Subsection 1.2.2 below, when we consider the Poincaré disc model, we
will allow ourselves to pass, with all the details, from the original formula (1.2.7),
which arises from projective geometry, to the metric of the Lobachevsky plane
corresponding to the model chosen, related to the metric (1.2.11) given above.
Here we merely remark that the metric form (1.2.11) is obtained by implementing
the algorithm described above, by expanding the right-hand side of (1.2.7) in a
Taylor series in the small values Δx and Δy, and finally passing to the limit to
get dx and dy.

It is worth mentioning that the explicit form (1.2.11) of the Lobachevsky’s
plane metric allows one to calculate its curvature, which yields K ≡ −1. That is to
say, the Lobachevsky plane is characterized by having a constant negative curva-
ture at all its points. This general property of the curvature for the Lobachevsky
plane Λ2 plays a key role in the study of the Lobachevsky geometry as the geom-
etry of a two-dimensional smooth Riemannian manifold of negative curvature, in
particular, in the search for realizations of certain parts of the plane Λ2 as surfaces
of Gaussian curvature K ≡ −1 in the three-dimensional Euclidean space E3. The
new geometric concepts introduced here will be considered in detail in Chapter 2.

We devote the final part of this subsection to the consideration (outside
of the framework of the Cayley-Klein model) of such fundamental concepts of
Lobachevsky geometry as the angle of parallelism and the Lobachevsky function.
To this aim, as before, we consider in the Lobachevsky plane some straight line m
and a point M not on it, as well as two straight lines b and c that pass through M
parallel to m. We depict these straight lines conventionally in the plane Λ2 (with
no reference to any specific model) (Figure 1.2.3).

Figure 1.2.3

Draw through the pointM a straight line that is perpendicular to the straight
line m and intersect it at the point H (Figure 1.2.3). In other words, drop from
the point M the perpendicular MH to m and denote it by h ≡ MH . Consider
the angles that arise in this way. Recall that in our exposition the notion of angle
appeared first when we introduced the axioms of Group III (Subsection 1.1.1).
Note also that in the models of the Lobachevsky plane used (in particular, in the
Cayley-Klein model), the “model Euclidean” angles do not necessarily coincide
with the corresponding angles of the Lobachevsky planimetry. In Figure 1.2.3
equal angles and right angles are marked in the sense of the geometry of the plane
Λ2.
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Suppose the straight lines b and c, with b ‖m, c ‖m, make at the point M
equal angles with the perpendicular MH to m. The angle of parallelism α for
the point M and the straight line m (Figure 1.2.3) is defined to be the smallest
acute angle that the straight line b, as well as the straight line c (which are
parallel to m), can make with the perpendicular MH . The angle of parallelism α
is determined by the distance from the point M to the straight line m.

Let us prove that the distance MH from M to m determines the value of the
angle of parallelism α, which decreases as the point M moves farther away from
the straight line m.

To show this, together with m and M (Figure 1.2.4a) we consider some other
straight line m1 and another point M1, which lies at the same distance from m
as the point M , i.e., M1H1 = MH (Figure 1.2.4 b). We note, though, that Figure
1.2.4 b, like figures 1.1.10 and 1.2.3, is just a conventional symbolic way of depicting
the properties of parallel straight lines.

a b

Figure 1.2.4

Let c be a line that passes through the point M and is parallel to the straight
line m (Figure 1.2.4 a); also, let c1 be a line that passes through the point M1 and
is parallel to the straight line m1 (Figure 1.2.4 b). Denote by α and α1 the angle
of parallelism corresponding to the points M and M1, respectively.

Suppose that the assertion we want to prove is not true, i.e., the angle of
parallelism does not depend on the distance from the given point to the straight
line. In other words, assume that to equal distances MH and M1H1 from M
and M1 to m and m1, respectively, correspond different values of the angle of
parallelism α and α1. For definiteness, suppose that α < α1.

Draw through the point M1 a straight line c̃, which makes an angle equal to
α with the perpendicular M1H1 (Figure 1.2.4 b). Since, by assumption, the angle α
is smaller than the angle α1, c̃ intersects m1 at some point N1. Then on m one
can indicate a point N such that NH = N1H1. This yields two equal triangles:

�MHN = �M1H1N1(
MH = M1H1, NH = N1H1, ∠MHN = ∠M1H1N1 =

π

2

)
.

Consequently, ∠NMH = α, and so the straight line c (parallel to the straight line
m) and the straight line MN (which intersects the straight line m) must coincide,
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and we arrived at a contradiction. Thus, we proved that the angle of parallelism at
an arbitrary pointM with respect to a given straight linem is uniquely determined
by the distance from M to m.

With the notation x ≡ MH (i.e., by introducing a coordinate on MH), we
can now write

α = Π(x). (1.2.12)

The function Π(x) is called the Lobachevsky function. It describes the depen-
dence of the angle of parallelism at a given point in the Lobachevsky plane Λ2

on the distance x from this point to some given straight line. The Lobachevsky
function (1.2.12) plays a fundamental role in non-Euclidean hyperbolic geometry.

Intuitive arguments similar to those used above (see, e.g., [25]) allow one to
establish that the function Π(x) is monotonically decreasing. In fact, the behavior
of the Lobachevsky function can be further specified as follows:

Π(x) is defined for x > 0, is continuous, monotonically decreasing, and such
that

Π(x)→ π

2
as x→ 0,

Π(x)→ 0 as x→∞.
(1.2.13)

From (1.2.13) it follows that in “small domains” of the plane Lobachevsky’s
geometry is close to the Euclidean geometry, since indeed in such domains the an-
gle of parallelism will be close to π

2 (the natural Euclidean value). On the whole,
relation (1.2.12) itself expresses the dependence between angles and linear quan-
tities in the Lobachevsky geometry.

Let us discuss a number of important consequences that result from consid-
ering the Lobachevsky function:

1) In Lobachevsky geometry the angular and linear quantities are mutually
related (see formula (1.2.12)). In particular, in a triangle on the plane Λ2 the angles
and the sides determine one another: the angles give the lengths of the sides of
the triangle, and vice versa. Consequently, in the Lobachevsky geometry triangles
with equal corresponding angles are equal.

2) In Euclidean geometry there are absolute constant angle variables—quanti-
ties that can be recovered by geometric constructions that rely solely on the ax-
ioms. For example, “ruler-and-compass” constructions allow one, in an invariant
manner, to reconstruct right angles at any point of the Euclidean plane. As for
linear dimensions, in Euclidean geometry they can be copied by employing only a
chosen scale (a standard segment).

In Lobachevsky geometry, side by side with absolute angular constants, there
exist also absolute linear constants; this characteristic property of non-Euclidean
hyperbolic geometry is expressed by relation (1.2.12). As an example of absolute
linear dimension one can give the length of a segment d:

Π(d) =
π

4
,

which is connected with the angle magnitude π/4 by means of the Lobachevsky
function according to (1.2.12). In other words, in the Lobachevsky plane the ab-
solute linear quantity d is connected in a one-to-one manner with the absolute
angular quantity π/4.
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The Lobachevsky function can be expressed in terms of elementary functions
as (see [25])

Π(x) = 2 arctan
(
e−x/R

)
, (1.2.14)

where R = const is the radius of curvature of the space. Henceforth, with no loss
of generality, we will put R = 1, which corresponds to the curvature value K ≡ −1
of the plane Λ2.

The representation (1.2.14) for the Lobachevsky function Π(x) opens the
possibility of studying the Lobachevsky geometry analytically.

1.2.2 The Poincaré disc model of the Lobachevsky plane

In 1882 H. Poincaré, while developing a branch of the theory of functions of a
complex variable dealing with automorphic functions , proposed an interpretation
of the Lobachevsky plane in the disc. Automorphic functions are functions that are
invariant under some group of linear-fractional transformations of the argument
[19]. The interpretation proposed by Poincaré rests upon the fact that transfor-
mations of automorphic functions coincide with the transformations in the non-
Euclidean hyperbolic geometry.

Following Poincaré, consider in the complex plane C the unit disc Ω = {z =
x + iy ∈ C, |z| ≤ 1}, the interior of which will be interpreted as the hyperbolic
plane, and the boundary of which ω : x2+ y2 = 1, i.e., the absolute, will represent
the points at infinity on Λ2. In Poincaré’s interpretation the role of non-Euclidean
straight lines is played by arcs of Euclidean circles that lean orthogonally on the
absolute ω, as well as by the diameters of the disc (Figure 1.2.5). The angles
between the indicated non-Euclidean straight lines are the usual Euclidean angle
formed by the circles when they intersect. In what follows, the Poincaré disc model
of the Lobachevsky plane will be denoted by Λ2(Ω).

abso
lu

te

Figure 1.2.5

From the interpretation described (Figure 1.2.5) it is clear that through any
two points A,B ∈ Λ2 there always passes a unique straight line a, which has
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corresponding points at infinity P,Q ∈ ω on the absolute. In the present model
Lobachevsky’s Axiom of Parallels has a clear meaning (see Figure 1.2.5): through
each point M ∈ Λ2 that does not lie on a given straight line m ⊂ Λ2 one can
always draw at least two straight lines, b and c, that are parallel to m. Moreover,
the other axioms, those of the groups I–IV (i.e., the axioms of Absolute Geometry)
can also be illustrated in a sufficiently intuitively manner. As one can see in Figures
1.2.1 and 1.2.5, between the Cayley-Klein model and the Poincaré model there are
certain analogies. However, it is important to mention here one essential difference:
in contrast to the Cayley-Klein model considered earlier, the Poincaré model is
conformal : in it the angles between non-Euclidean straight lines on the hyperbolic
plane Λ2 are identical to the angles formed by their Euclidean counterparts (arcs
of circles orthogonal to the absolute) in the model itself; hence, these angles are
preserved by conformal transformations in the disc.

The same way as in the preceding subsection, we introduce the non-Euclidean
distance between two points in Λ2 by means of the cross ratio of four points, via
the formula

ρ(A,B) =
1

2

∣∣ ln[z1, z2, z3, z4]∣∣ = 1

2

∣∣∣∣ln z3 − z1
z3 − z2

:
z4 − z1
z4 − z2

∣∣∣∣ , (1.2.15)

where z1, z2, z3, z4 are the complex numbers corresponding to the pointsA,B, P,Q,
respectively (Figure 1.2.5)

It is readily verified that the distance ρ defined in (1.2.15) enjoys the prop-
erties (1.2.9) and (1.2.10).

According to Poincaré’s interpretation, each point in the Lobachevsky plane
Λ2 is identified with the corresponding complex number, hence in the notation of
the distance we will also use complex numbers:

ρ(A,B) ≡ ρ(z1, z2).

Let us calculate the distance ρ(z1, z2). To this end we apply the standard
linear-fractional transformation [105]

W (z) = eiα · z − z1
z1z − 1

, (1.2.16)

(where i in the imaginary unit), which maps the disc Ω into itself, the point z1 into
the center O of the disc: W (z1) = O, and the point z2 into some point W2 = W (z2)
with |W2| < 1. Moreover, W (z3) = −1, W (z4) = 1 (Figure 1.2.5).

The linear-fractional transformation, which in our treatment realizes a non-
Euclidean translation on Λ2, preserves the non-Euclidean straight lines, distances,
and angles, and consequently one has

ρ(z1, z2) = ρ(O,W2).

By suitably choosing the rotation angle α in (1.2.16) one can always ensure that
the straight line OW2 (the image of the straight line AB under the mapping
(1.2.16)) coincides with the real axis x of the complex plane (see Figure 1.2.5).
Denoting the length of the segment by |OW2| = r, we use formula (1.2.15) to
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calculate the non-Euclidean distance ρ(O,W2) by means of the cross ratio of the
points {−1, 0, r, 1}, which lie on the diameter of the disc Ω:

ρ(O,W2) =
1

2

∣∣ ln[0, r,−1, 1]∣∣ = 1

2
ln

1 + r

1− r
. (1.2.17)

The value r in (1.2.17) is defined by

r = |W2| =
∣∣∣∣ z2 − z1
z1z2 − 1

∣∣∣∣ . (1.2.18)

Therefore, the non-Euclidean distance between two points A and B of the
Lobachevsky plane Λ2, which in the Poincaré model correspond to the complex
numbers z1 and z2, is calculated by the formula

ρ(A,B) =
1

2
ln

1 +

∣∣∣∣ z2 − z1
z1z2 − 1

∣∣∣∣
1−
∣∣∣∣ z2 − z1
z1z2 − 1

∣∣∣∣ . (1.2.19)

The formulas (1.2.17)–(1.2.19) obtained above allow one to address now the
problem of calculating the length of a non-Euclidean curve on Λ2 and the deriva-
tion of the explicit form of the metric of the Lobachevsky plane in the case of the
Poincaré disc model.

As in Euclidean geometry, in Lobachevsky geometry the length of a curve
is defined by approximating the curve by the length of a broken line inscribed
in it, and subsequently passing to the limit by letting the length of the typical
elementary segment in the broken line tend to zero.

Consider a curve � ⊂ Λ2 and partition it in some way into elementary seg-
ments. Choose on � two successive points z and z +Δz of this partition. Now use
(2.17)–(1.2.19) to compute the non-Euclidean distance Δs ≡ ρ(z, z+Δz) between
these points:

Δs =
1

2
ln

1 + r∗

1− r∗
, where r∗ =

|Δz|
|1− (z +Δz) · z| . (1.2.20)

Assuming that Δz is sufficiently small, we neglect it in the denominator of
the expression (1.2.20) for r∗. Then since z · z = |z|2, we get

r∗ =
|Δz|

1− |z|2 . (1.2.21)

Now using the Taylor series let us write the asymptotic representation, for
r∗ → 0, of the function in the right-hand side of (1.2.20):

1

2
ln

1 + r∗

1− r∗
=

1

2
ln(1 + 2r∗ + o(r∗)) = r∗ + o(r∗) = r∗

(
1 +

o(r∗)
r∗

)
. (1.2.22)
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We thus get

Δs =
|Δz|

1− |z|2 ·
(
1 +

o(r∗)
r∗

)
, r∗ → 0. (1.2.23)

Passing in (1.2.23), in the limit r∗ → 0, from Δz and Δs to dz = dx + idy
and ds, respectively, we arrive at the explicit form of the metric of Lobachevsky’s
plane (in the Poincaré disc model):

ds2 =
|dz|2

(1− |z|2)2 =
dx2 + dy2

(1− (x2 + y2))2
. (1.2.24)

Accordingly, the non-Euclidean length L of the curve � ⊂ Λ2 is computed as

L =

∫
�

dz

1− |z|2 . (1.2.25)

Relations (1.2.24) and (1.2.25) are key metric relations in the Poincaré disc
model of the Lobachevksy plane.

Next let us discuss the main geometric images—typical types of lines—in the
Lobachevsky planimetry, using its Poincaré disc model.

Figure 1.2.6

The non-Euclidean circle Θz0 with center at the point z0 = x0 + iy0 and
radius R is defined as the geometric locus of the points in the plane Λ2 for which
the non-Euclidean distance to the point z0 is constant and equal to R:

ρ(z0, z) = R, z ∈ Θz0 . (1.2.26)

Using (1.2.17), we rewrite (1.2.26) as

1

2
ln

1 + r

1− r
= R,

or
r = tanhR. (1.2.27)
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Writing (1.2.27) in detail in the setting of the given definition yields (upon
applying (1.2.18)) the relation that gives a non-Euclidean circle in Λ2:∣∣∣∣ z − z0

z0z − 1

∣∣∣∣ = tanhR, z = x+ iy. (1.2.28)

The subsequent transition to the variables x, y in (1.2.28) convinces us that in the
Poincaré disc model the non-Euclidean circle Θz0 is represented by a Euclidean
circle that lies inside the disc and does not touch the absolute (Figure 1.2.6).

Note that the non-Euclidean circles on Λ2 with common center at an interior
point z0 are orthogonal to the system of non-Euclidean straight lines passing
through z0 (Figure 1.2.6).

Horocycle. To explain the notion of horocycle we perform the following ge-
ometric construction. In the Lobachevsky plane Λ2 , considered in the Poincaré
disc interpretation, consider a family of straight lines KK1,KK2, . . . ,KK7, . . . ,
which emanate from the common point at infinity K on the absolute ω, and hence
are parallel to one another (Figure 1.2.7).

Figure 1.2.7

As another family of lines in Figure 1.2.7 we take the Euclidean circles Θ1,Θ2,
which are contiguous to the absolute ω at the point K (i.e., K is a common point
of the internally tangent Euclidean circles ω, Θ1, Θ2). It is clear that the circles
Θ1 and Θ2 intersect orthogonally the non-Euclidean straight lines emanating from
the point K. In other words, the “circles” of the type Θ1 or Θ2 are trajectories
that intersect orthogonally the pencil of parallel straight lines emanating from the
common point at infinity K on the absolute ω and also contain K.

The lines of type Θ1,Θ2 (Euclidean circles tangent to the absolute) in the
Lobachevsky plane are called horocycles . A horocycle is also interpreted as a limit
circle in the plane Λ2, by which one means that in the Poincaré disc model the
Euclidean image of a horocycle is the circle of largest radius among all concentric
non-Euclidean circles with given center (Figure 1.2.6).

Horocycles have the following characteristic property: the lengths of the seg-
ments of lines emanating for one and the same point at infinity K ∈ ω and enclosed
between two arbitrary horocyles Θ1 and Θ2 (with the same point at infinity K on
the absolute) are equal (Figure 1.2.7).
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To make things more transparent, this property will be proved in the fol-
lowing subsection, when we consider the Poincaré interpretation of Lobachevsky
planimetry in the half-plane.

Another important property of horocycles is connected with the notion of
rotation about a point at infinity in the plane Λ2 [25]. By rotation around the
point at infinity K ∈ ω we will understand a motion in the plane Λ2 under which
any straight line KKi of the considered pencil of parallel straight lines is taken
into another straight line KKj of the same pencil; moreover, any point A ∈ KKi

is taken into a point A′ ∈ KKj in such a way that the segment AA′ is a secant
of equal inclination of the straight lines KKi and KKj (i.e., it makes with these
straight lines equal inner same-side angles). In this sense, horocycles are lines in
the Lobachevsky plane that are invariant under rotations of the corresponding
point at infinity. Alternatively, a horocycle is the geometric locus in Λ2 of the tips
of secants of equal inclination, drawn from some point A ∈ KKi to all the other
straight lines parallel to the KKi in a given direction (lines that emanate from a
common point at infinity K ∈ ω).

Equidistants. Using the Poincaré disc interpretation Λ2(Ω), let us describe
one more type of lines in the plane Λ2, the equidistants . Consider a non-Euclidean
straight line a ⊂ Λ2 with points at infinity P,Q ∈ ω on the absolute (Figure 1.2.8)
(recall that a straight line a in the disc Ω is given by an arc PQ of Euclidean circle
that is orthogonal to the absolute ω). Draw through the points P,Q ∈ ω another
(not orthogonal to ω) Euclidean circle, and denote the arc of this circle in the disc
Ω by c. It turns out that c is the geometric locus of the points in Λ2 for which the
distance to the given straight line a is constant. In other words, c ⊂ Λ2 is a line
that lies at constant distance (in the non-Euclidean sense) from a. Such lines in
the Lobachevsky plane are called equidistants .

Figure 1.2.8

The distance from an arbitrary point M of the equidistant c to the given
straight line a is the length of the perpendicular MH descending from M to a
(base line). The segment MH is a piece of the straight line T ′T ′′ that intersects
orthogonally the straight line a at the point H (Figure1.2.8). One can reason
in exactly the same way for the other, “symmetric” equidistant c′ and a point
N ∈ c′. In the Λ2(Ω) interpretation, equidistants are represented by arcs of circles
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that lean on the absolute at the same points as the base straight line a, and at
those points make equal angles with a (Figure 1.2.8).

The proof of properties of equidistant lines will be carried out in the next
subsection by resorting to the Poincaré half-plane model of the plane Λ2. Here we
recall one more time that, given a straight line a, there always exist two distinct
equidistants c and c′ equally distanced from a, in opposite directions as one moves
away from a. In the Poincaré disc interpretation, two equidistants c and c′ that lie
at equal distances from the straight line a have the property that the Euclidean
arcs representing them make equal angles with the arc a.

Completing here the discussion of the Poincaré disc interpretation Λ2(Ω), we
formulate an important generalization:

Part of the Euclidean circles contained in the disc Ω that realizes, according
to Poincaré, the Lobachevsky planimetry, give in the plane Λ2 four characteristic
types of lines:

1) straight lines (arcs of circle that are orthogonal to the absolute),3

2) non-Euclidean circles (interior circles with respect to the absolute),

3) horocycles (interior circles tangent to the absolute),

4) equidistants (arcs of circles that are not orthogonal to the absolute).

With the geometric images listed above in mind, let us examine their rela-
tionships with various types of straight lines in the Lobachevsky plane Λ2. In Λ2

there are three possible types of (pairs of) straight lines: 1) intersecting; 2) paral-
lel; 3) divergent (two straight lines are said to be divergent if they have a common
perpendicular, which realizes the smallest distance between the two straight lines,
on both sides of which the straight lines diverge unboundedly).

To the three types of straight lines in the plane Λ2 listed above there corre-
spond pencils of three different types:

1) Pencil of the 1st kind (or simply “pencil”): the set of all straight lines that
pass through a given point (the center of the pencil). A trajectory orthogonal
to a pencil of the 1st kind is a circle.

2) Pencil of the 2nd kind (or hyperpencil): the set of all straight lines orthogonal
to a given straight line (called the base, or center of the pencil). A trajectory
orthogonal to a pencil of the 2nd kind is an equidistant .

3) Pencil of the 3rd kind: the set of all straight lines parallel in a given direction
with a given line. A trajectory orthogonal to a pencil of the 3rd kind is, as
we will see later, a horocyle, which can also be regarded as a circle with the
center at infinity.

Another result that is important for the subsequent development of the sub-
ject is that all geometric images (types of straight lines) considered above in the
plane Λ2 are given by explicit equations in the Cartesian coordinates x, y (either by
the equation of a circle, or by that of a straight line). This fact, in conjunction with
the availability (also in explicit form) of the metric (1.2.24) of the Lobachevsky

3Straight lines can also be represented by diameters.
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plane (in the same variables), allows one to apply in their study the tools and
methods of Riemannian geometry, of the theory of curves and surfaces, and so on.
Based on these, in Chapter 2 we will obtain important geometric characteristics
of various geometric elements of Lobachevsky planimetry.

1.2.3 The Poincaré half-plane model of the Lobachevsky plane

The interpretation of the Lobachevsky plane “in the half-plane” proposed by
Poincaré, and denoted here by Λ2(Π), is obtained from the “disc interpretation”
considered in Subsection 1.2.2 by mapping the unit disc Ω = {z = x + iy ∈
C, |z| < 1} (Figure 1.2.5) conformally onto the upper half-plane Π = {w =
u + iv ∈ W, Imw > 0}. Such a mapping w : Ω → Π, z �→ w(z), is realized
by means of a linear-fractional transformation, for the construction of which it is
convenient to associate beforehand three distinct points z′, z′′, z′′′ of the complex
plane C with three distinct points w1, w2, w3 in the “new” complex plane W.

In particular, the association

z′ = 1 �→ w1 = 0, z′′ = i �→ w2 = 1, z′′′ = −1 �→ w3 =∞ (1.2.29)

defines the linear-fractional transformation

w(z) = i · 1− z

1 + z
; Imw > 0 for |z| < 1, (1.2.30)

which maps the unit disc Ω into the upper half-plane Π. The mapping (1.2.30)
lies at the foundation of the Poincaré half-plane interpretation of the plane Λ2:
in this case the complex half-plane Π plays the role of the Lobachevsky plane Λ2,
and the role of the absolute is played by a straight line, namely, the real u-axis
(Figure 1.2.9).

absolute

Figure 1.2.9

Under the transformation (1.2.30), which maps the “disc model” into the
“half-plane model”, the new images of the typical lines of the plane Λ2 are the
images of the lines with corresponding meaning in the disc model.

The linear-fractional transformation w(z) maps circles and straight lines into
circles and straight lines [95,105]. Therefore, in the upper half-plane Π the role of
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the straight lines in the plane Λ2 is played by two families of lines: arcs of semi-
circles that are orthogonal to the absolute (v = 0), and Euclidean rays with the
origin on the absolute and orthogonal to the absolute. As shown in Figure 1.2.9, in
the present case Lobachevsky’s axiom of parallels has a transparent interpretation,
in which the straight lines m and b, c in Figure 1.2.9 have the same meaning as
in Figure 1.2.5.

Let us give the general form of a linear-fractional transformation, defined by
the a priori associated two triples of points (z′, z′′, z′′′) ∈ C and (w1, w2, w3) ∈W

[105]:
w − w1

w − w2
:
w3 − w1

w3 − w2
=

z − z′

z − z′′
:
z′′′ − z′

z′′′ − z′′
. (1.2.31)

Relation (1.2.31) allows enough freedom in the choice of a mapping between
the planes C and W, in particular, in the choice of a point on the absolute ω ⊂ C

that goes into the “infinity” in the half-plane Π (in the complex planeW). The lines
in the plane Λ2(Ω) that originate at such a point have a special character specific
to the mapping w : Ω→ Π and play a distinguished role in our considerations (see
below).

In the case we are interested in, that of the mapping w : Ω → Π of the disc
onto the half-plane, the chosen points z′, z′′, z′′′ must lie on the absolute ω (the
boundary of the disc Ω), while the corresponding points w1, w2, w3 must also lie
at infinity in the half-plane Π, in the sense of the Lobachevsky planimetry. That
is to say, the points w1, w2, w3 must lie on the absolute (the line v = 0) in Π; or,
as already mentioned, it is possible that one of the points can be interpreted as
the point at infinity.

We recall that when one effects the linear-fractional transformation it is im-
portant which of the points on the absolute ω of the complex plane C (Figure
1.2.5) is “designated” as the point at infinity (∞ or i∞) in the new complex plane
W, because the lines on the plane Λ2 (in the disc model) which originate at this
particular point have properties that are specific to the mapping at hand.

Let us clarify the behavior of the singularities of the mapping w : Ω → Π,
z �→ w(z) for various types of lines on the plane Λ2.

I. Straight lines (Figure 1.2.10a and b).

Mapping:

w(z) : Ω→ Π,

w(A) =∞ (the point A is mapped into the point at infinity).

In the Λ2(Ω) model :

straight lines are arcs of circles that lean orthogonally on the absolute
(Figure 1.2.10a).

In the Λ2(Π) model :

straight lines are:
1) arcs of circles (semicircles) that lean orthogonally on the absolute

(the real axis v = 0) (Figure 1.2.10 b).
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2) Euclidean rays with the origin on the absolute that are perpendic-
ular on the absolute) (if such lines are images of straight lines in
Λ2(Ω) that originate at the point A ∈ ω) (Figure 1.2.10 b).

a b
Figure 1.2.10

II. Circles (Figure 1.2.11a and b).

Mapping :

w(z) : Ω→ Π.

In the Λ2(Ω) model :

circles are Euclidean circles interior with respect to the absolute ω (Fig-
ure 1.2.11a).

In the Λ2(Π)model :

circles are Euclidean circles in the upper half-plane Π (which are not
tangent to the absolute, i.e., to the real axis) (Figure 1.2.11 b).

a b
Figure 1.2.11

III. Horocycles (Figure 1.2.12a and b).

Mapping:

w(z) : Ω→ Π,
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w(K) =∞, the point N ′ = ω(N) lies on the u-line.

In the Λ2(Ω) model :

horocycles are circles, interior with respect to the absolute ω, that are
tangent to the absolute (Figure 1.2.12a).

In the Λ2(Π) model :

horocycles are:
1) circles tangent to the real axis, i.e., to the absolute (Figure 1.2.12 b).

2) straight lines that are parallel to the absolute (if they are images
of horocycles tangent to the absolute ω at the point K that is
mapped by w(z) into the point at infinity) (Figure 1.2.12 b).

a b
Figure 1.2.12

IV. Equidistants (Figure 1.2.13a and b).

Mapping:

w(z) : Ω→ Π,

w(A) =∞.

In the Λ2(Ω) model :

equidistants are arcs of circles leaning on the absolute ω at two common
points A and B (they make equal angles with the base line (geodesic)
that leans on the absolute at the same points A and B) (Figure 1.2.13a).

In the Λ2(Π) model :

equidistants are:
1) arcs of circles that lean (not orthogonally) on the absolute (i.e., on

the u-axis) at two common points C and D (Figure 1.2.13 b).

2) Euclidean rays that originate a common point B on the absolute
and make equal angles with a straight line that has the same point
B on the absolute (a Euclidean ray that originates the point B
(Figure 1.2.13 b).
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a b
Figure 1.2.13

The mapping w : Λ2(Ω) → Λ2(Π), z �→ w(z), given by means of formula
(1.2.30) (or in the general form (1.2.31)) is linear-fractional, and as such preserves
the cross ratio of four points (see Subsection 1.2.1). Consequently, the distance
between points in the Poincaré half-plane model can be defined in precisely the
same way as we did in the previous models, via the formulas (1.2.7)–(1.2.8), or
via (1.2.15), in terms of the cross ratio of four points.

a b
Figure 1.2.14

In the plane Λ2(Π) there are two possible representations of a straight line
passing through two points A and B:

1) as a semi-circle that leans orthogonally on the absolute (Figure 1.2.14a);

2) a ray perpendicular to the absolute (Figure 1.2.14 b).

In the first case (Figure 1.2.14a), the distance ρ(A,B) is calculated by precisely
formula (1.2.15).

In the second case (Figure 1.2.14 b), when all four points z1 = u1 + iv1,
z2 = u1 + iv2, z3 = u1 + i∞, z4 = u1 (v1, v2 > 0) lie on a ray that has the same
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direction as the positive imaginary axis, formula (1.2.15) simplifies considerably:

ρ(A,B) =
1

2

∣∣∣∣ln v2
v1

∣∣∣∣ . (1.2.32)

Next, using the Poincaré half-plane model, specifically, the depiction of typ-
ical lines on Λ2 and formula (1.3.32) for the computation of distances, we prove
the properties of horocycles and equidistants formulated in Subsection 1.2.2.

Let us show that the lengths of segments of pencils of straight lines that
emanate form a common point at infinity K ∈ ω and lie between two arbitrary
horocycles Θ1 and Θ2 (with the same point at infinity K on the absolute) are
equal (Figure 1.2.7).
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Figure 1.2.15

Indeed, consider a linear-fractional transformation w : Ω → Π which maps
the point K ∈ ω (Figure 1.2.7) into the point at infinity in the half-plane Π:
w(K) =∞. Then the straight lines KK1,KK2, . . . ,KK7, . . . of the pencil under
consideration are mapped into rays in the half-plane Π that are perpendicular to
the absolute (Figure 1.2.15). Correspondingly, the horocycles Θ1 Θ2 are mapped
into two straight lines that are parallel to the u-axis.

Figure 1.2.15 is the image of Figure 1.2.7 under the selected linear-fractional
transformation. From the constructions shown in Figure 1.2.15 and the distance
formula (1.2.32) it is clear that the straight-line segments we are interested in
(segments in the shaded region) are equal .

Next, in the framework of Poincaré’s half-plane model, we discuss the prop-
erties of equidistants. An equidistant is the geometric locus, in the plane Λ2, of
all points for which the non-Euclidean distance to a given straight line is constant
(Figure 1.2.8).

Let us apply a linear-fractional transformation w : Ω → Π that sends the
point P (Figure 1.2.8) to infinity: w(P ) = i∞. Then in the half-plane Π the
straight line PQ will be depicted by a ray QP that is perpendicular to the
absolute (Figure 1.2.16).
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The straight line T ′T ′′ (Figure 1.2.8), perpendicular to PQ, along which one
measures the distance from the points of the equidistant QM to the base straight
line PQ, is represented in the half-plane Λ2(Π) by a semi-circle ν centered at the
point Q. Then for all points of the type M,M∗, . . . (or N,N∗, . . .) (Figure 1.2.16),
at which the equidistant in question intersects the straight lines of the type T ′T ′′
(semi-circles ν, ν∗, . . . in the half-plane Λ2(Π)), the value of the cross ratio of four
points must be the same:

[H,M, T ′, T ′′] = [H∗,M∗, T ′∗, T ′′∗].

Moreover, as we already mentioned, the value of the cross ratio is uniquely de-
termined by the angles formed by the projection rays (in our case, the rays QT ′,
QH , QM (or QN), and QT ′′); consequently, it will have the same value for all
the points obtained by intersecting the indicated rays with semi-circles centered at
the vertex of the projection, i.e., the point Q (Figure 1.2.16). It follows that in the
half-plane Λ2(Π) the equidistants must be represented by rays of equal inclination
to the straight line from which they lie at equal distance: the rays QM and QN
are equidistants lying at the same distance from the straight line QP . If we now
return to the Λ2(Ω) interpretation, then to their images on Λ2(Π) will correspond
arcs of circles with two common points on the absolute, which make equal angles
with the given straight line (arcs of circles that lean orthogonally on the absolute
in exactly the same points).

Let us give the form of the Lobachevsky plane metric that corresponds to
the Poincaré half-plane model [25]:

ds2 =
1

v2
(
du2 + dv2

)
. (1.2.33)

The metric form (1.2.33) can be obtained by using the same method as the one
in Subsection 1.2.2. to obtain expression (1.2.24).

An important result of the introduction of models of the Lobachevsky plane
Λ2 is the derivation of the explicit expressions (1.2.11), (1.2.24), and (1.2.33) for
the metric of Λ2. The existence of the metric form allows one to apply the tools and
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methods of the theory of surfaces to the investigation of the spatial (Euclidean)
realization of the Lobachevsky geometry. A key factor in such an approach is that
the Lobachevsky plane’s metric has curvature equal to K ≡ −1. (For a detailed
treatment of the notion of Gaussian curvature of a metric, see Chapter 2.)

In addition, let us mention one of the important possible applications of the
Poincaré half-plane model Λ2(Π). In the Λ2(Π) interpretation, the typical lines
in Λ2 (straight lines, equidistants, horocycles) are given, in particular, by very
simple linear equations (”straight-line equations” in the variables u and v), and
consequently can be quite conveniently studied by methods of the differential ge-
ometry of surfaces (surfaces carrying a metric of the form (1.2.33)), corresponding
to the Λ2(Π) interpretation). As it turns out, a common “indicator” of the lines
in the plane Λ2 studied in the present section is that they have constant geodesic
curvature. The notion of the geodesic curvature of a curve on a surface will be
discussed in detail in § 2.7.

To end this section we wish to mention also the classical work of F. Klein
[163] on the foundations of non-Euclidean geometry.

In the next section we will study the classical surfaces in the three-dimen-
sional Euclidean space E3 on which the geometry of individual parts of the plane
Λ2 can be realized. These surfaces were obtained first by F. Minding (1839), practi-
cally simultaneously with Lobachevsky’s studies. However, Minding’s work had an
independent aim of its own—the study of surfaces of revolution of constant Gaus-
sian curvature. Only afterwards it was established that on Minding’s surfaces of
revolution with K ≡ const < 0 one can realize the geometry of “fragments” of the
Lobachevsky plane.

1.3 Classical surfaces of revolution of constant negative
curvature

1.3.1 F. Minding’s investigation of surfaces of revolution

During the same time period that Lobachevsky’s work originated from, F. Mind-
ing studied the surfaces of revolution of constant curvature. His works [175–177]
became recognized as important applications of the theory of surfaces, which be-
fore his time was systematically treated by G. Monge in his classical handbook
on differential geometry “Feuilles d’Analyse Appliquée à la Géométrie” (“Applica-
tions of Analysis to Geometry”) (1807). Following Monge’s approach, in which the
Cartesian coordinates (x, y, z) of an arbitrary point on a surface in the Euclidean
space E3 are connected by the implicit relation

F(x, y, z) = 0, (1.3.1)

or, more frequently, in the solved form

z = z(x, y), (1.3.2)

Minding studied surfaces of revolution of constant curvature K, positive as well
as negative.
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For surfaces given in the space E3 in the Monge form (1.3.2), the curvature
is given by the formula [40]

K =
rt− s2

(1 + p2 + q2)2
, (1.3.3)

in which the following notations for partial derivatives are used:

p =
∂z

∂x
, q =

∂z

∂y
, r =

∂2z

∂x2
, s =

∂2z

∂x∂y
, t =

∂2z

∂y2
.

To solve the differential equation (1.3.3) with respect to the function z =
z(x, y) means to describe, in the Euclidean space E3, all surfaces with a priori
given curvature K according to their shape and position in space. In the general
case, for an arbitrary curvature K(x, y), equation (1.3.3) cannot be integrated
exactly. Nevertheless, when the curvature of the surface is constant, important
particular typical cases can be studied exhaustively.

F. Minding carefully studied surfaces of constant positive curvature, as well
as surfaces of constant negative curvature. In what follows we will focus on the
second case, viewing it as a direction that leads to examples of surfaces that realize
in the Euclidean space E3 certain “fragments” of the two-dimensional Lobachevsky
geometry.

Minding’s method amount to searching for a form x = ϕ(z), x ≥ 0, of
the meridian (the curve that is being rotated around the axis Oz) such that the
curvature of the sought-for surface will be constant. Then, instead of equation
(1.3.3), one can use the equation [39]

K = − ϕ′′

ϕ(1 + ϕ′2)2
. (1.3.4)

In the case we are interested in the curvature is K ≡ −1, and equation (1.3.4)
is recast as

ϕ =
ϕ′′

(1 + ϕ′2)2
. (1.3.5)

Equation (1.3.5) can be reduced (upon multiplying it by ϕ′ and integrating
the result) to the first-order equation

ϕ′ = ±
√

λ+ ϕ2

(1− λ)− ϕ2
, λ = const.

Since x = ϕ(z) and
dx

dz
= ϕ′(z), we can rewrite this last equation as

dz

dx
= ±

√
(1− λ)− x2

λ+ x2
, (1.3.6)
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and accordingly obtain an elliptic integral, denoted here by M(x), of the form

z ≡M(x) = ±
x∫

x0

√
(1− λ)− x2

λ+ x2
dx, z(x0) = 0. (1.3.7)

The analysis of the eliptic integral (1.3.7) yields the possible forms of the meridian
and shows that there exist three different types of surfaces of revolution of negative
curvature (K ≡ −1), corresponding to the three typical ranges of variation of the
parameter λ.

1) λ > 0. As it follows from (1.3.7), in this case the admissible positive values
of the parameter λ obey the condition

0 < λ < 1. (1.3.8)

The domain of definition of the function z(x) will be the interval

x ∈ [0,
√
1− λ]. (1.3.9)

Figure 1.3.1

The qualitative shape of the meridian of revolution given by formula (1.3.7)
and subject to conditions (1.3.8), (1.3.9) is shown in Figure 1.3.1: this curve is
convex relative to the axis of revolution Oz and reaches the largest distance from
Oz for x0 =

√
1− λ: z(x0) = 0 (in this point A the meridian of revolution is tan-

gent to the axis Ox). At the points B1(0,M(0)) and B2(0,−M(0)), the meridian
“merges” with the axis of revolution Oz.

In the case under consideration (0 < λ < 1, x ∈ [0,
√
1− λ]), the calculation

of the integral (1.3.7) reduces to that of two elliptic integrals F1(x, k) and F2(x, k):

M(x) =

∫ x

x0

√
x2
0 − t2

t2 + x2
1

dt = F1

(√
x2
0 − x2

x0
, x0

)
−F2

(√
x2
0 − x2

x0
, x0

)
, (1.3.10)
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where

x0 =
√
1− λ, x1 =

√
λ,

F1(x, k) =

∫ x

0

√
1− k2t2

1− t2
dt, F2(x, k) =

∫ x

0

dt√
1− t2

√
1− k2t2

.

When one rotates the meridian M(x) around the axis Oz, the point A lying at
the maximal distance from the axis Oz traces on the surface obtained a cuspidal
edge (a circle), while the points B1 and B2 become “cusp (peak) points” of the
surface. The points B1 and B2 also play the role of “suture” points of infinitely
many copies of the surface (“tops”).

Figure 1.3.2 shows, in a unified scale, three successive versions of the surface
obtained for increasing (from left to right, with condition (1.3.8) enforced) values
of the parameter λ. Such a surface was termed the Minding top (sometimes called
also the Minding “lampion”).

The generalized shape of a surface of Minding’s “top” type is shown in Figure
1.3.3.

Figure 1.3.2 Figure 1.3.3

2) λ < 0. In this case we have

dz

dx
= ±

√
(1 + |λ|)− x2

x2 − |λ| , λ < 0. (1.3.11)

The right-hand side in (1.3.11) is defined for

x ∈ [
√
|λ|,
√
1 + |λ|], (1.3.12)
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and one has
z′(
√
|λ|) =∞, z′(

√
1 + |λ|) = 0.

From (1.3.12) it follows that the points A1 and A2 of the rotating meridian
lying at the maximal distance from the axis Oz (Figure 1.3.4) trace on the sur-
face (Figure 1.3.5) cuspidal edges (circles). The point C that lies at the minimal

distance (equal to
√|λ|) from the axis Oz is a point of smooth suture of two

continuous parts of the meridian.

Figure 1.3.4 Figure 1.3.5

More precisely, in the present case the meridian is given by

z ≡M(x) = ±
x∫

√
|λ|

√
(1 + |λ|)− x2

x2 − |λ| dx, λ < 0,

and it can be expressed in terms of the standard elliptic integrals as4

M(x) =

∫ x

x1

√
x2
0 − t2

t2 − x2
1

dt = x0 ·
(
F2

(
x0

√
x2 − x2

1

x
,
1

x0

)
−F3

(
1

x0

))

+
x2
1

x0
·
(
F5

(
1

x2
0

,
1

x0

)
−F4

(√
x2 − x2

1

x
,
1

x2
0

,
1

x0

))
, (1.3.13)

where

x0 =
√
1 + |λ|, x1 =

√
|λ|,

F3(k) = F2(1, k),

F4(x, ν, k) =

∫ x

0

dt√
1− t2

√
1− k2t2

√
1− νt2

,

F5(ν, k) = F4(1, ν, k).

4Here we drop the expression with sign “+” for M(x).
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Strictly speaking, in Figure 1.3.4 we see not the meridian, given by relation (1.3.11)
(or (1.3.13)), but the revolution curve obtained by smoothly joining two equal parts
of this meridian at the point C. The corresponding classical surface of revolution
obtained in this manner (Figure 1.3.5) is called the Minding “bobbin” (or “spool”).
This surface cannot be continued regularly beyond its cuspidal edges (circles), but
the latter can be considered as suture borders for distinct copies of “bobbins”.

Figure 1.3.6

The generalized surface consisting of Minding “bobbins”, which corresponds
exactly to the formulas (1.3.13), is shown in Figure 1.3.6.

3) λ = 0. In this case the relation (1.3.6) becomes considerably simpler:

dz

dx
= ±

√
1− x2

x
. (1.3.14)

The right-hand side of (1.3.14) is defined for

0 < x ≤ 1.

The point (x = 1, z = 0) is the point on the meridian lying farthest from
the axis of revolution Oz. Since z′(1) = 0, the point x = 1 traces the cuspidal
edge (circle). When x→ 0, the meridian curve tends asymptotically to the axis of
revolution at infinity (for z →∞).

Relation (1.3.14) can be integrated exactly in terms of elementary functions.
Indeed, the substitution

x = sin t,

reduces (1.3.14) to the form

dz = ±cos2 t

sin t
dt. (1.3.15)

Observing that

x = 1 for t =
π

2
,

z = 0 for x = 1,
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Figure 1.3.7

we obtain

z = ±
(
ln tan

t

2
+ cos t

)
, x = sin t,

or

z = ±
(
ln

1−√1− x2

x
+
√
1− x2

)
, x ∈ (0, 1]. (1.3.16)

The plane curve z = z(x) defined by the formula (1.3.16) is called the trac-
trix 5 (Figure 1.3.7). The tractrix enjoys the following remarkable property: the
length of the segment of tangent to any point of the tractrix, measured from that
point to the point where the tangent intersects the axis Oz, is a constant quantity
(see the segment MN in Figure 1.3.7). In the case we are dealing with here, in
which the curvature K ≡ −1, the segment MN is of length 1. We remark that for
the tractrix z →∞ as x→ 0, and z(1) = 0.

The surface obtained by rotating the tractrix around the axis Oz is called the
pseudosphere (Figure 1.3.8). The pseudosphere plays in non-Euclidean geometry
the same canonical role the sphere does in Euclidean geometry.

The arguments above make it clear that, in a certain sense, the pseudosphere
(λ = 0) can be interpreted as the result of the limit transformation, as λ → 0,
of the surface of Minding’s “bobbin”; in this case the “cusp (peak) points” of the
“bobbin” become the points at infinity on the pseudosphere.

1.3.2 Surfaces of revolution of curvature K ≡ −1 and the
corresponding domains in the plane Λ2

Here we will establish an intuitive relationship between Lobachevsky’s planimetry
and the surfaces of constant negative curvature K ≡ −1, considered in Subsection
1.3.1. We consider the mapping of the aforementioned surfaces to the Lobachevsky
plane Λ2, with preservation of the metric. We will study each of the three types
of surfaces separately.

5The tractrix was described for the first time by Huygens.
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Figure 1.3.8

1) The Minding “top”. Consider the “upper part” (Figure 1.3.9.a) of the
piece of the Minding “top” (Figure 1.3.2) enclosed between two conical points.
This part of the surface is bounded on one side by the cuspidal edge (circle),
and on the other by the conical point C (the peak). The points on each of the
circular parallels on the surface have the property that they lie at the same distance
from the conical (peak) point C (Figure 1.3.9 ). Let us cut our surface along
some meridian and hypothetically imagine that we superpose the available piece
of surface (of curvature K ≡ −1) on the Lobachevsky plane Λ2, i.e., we “unroll”
the surface on the hyperbolic plane. We consider here the Poincaré interpretation
of the Lobachevsky plane in the disc.

Then the “circular parallels” on the piece of surface with the “cut” are rep-
resented on the plane Λ2 by arcs of concentric circles, the center of which on Λ2

is the image of the conical point C of the surface (Figure 1.3.9 b). The merid-
ians of the surface are represented on Λ2 by rays (more precisely, by segments
of rays) with origin at the point C that are orthogonal to the arcs of concentric
circles. Thus, based on the system of parallels and meridians, transported from
the surface (Figure 1.3.9 a) to the plane Λ2 (Figure 1.3.9 b), we obtain on the
Lobachevsky plane a domain—the preimage of the Minding “top” (with the same
intrinsic geometric properties). In a certain sense, the domain shown in Figure
1.3.9 b, is the hyperbolic analogue of what we obtain when we unroll the ordi-
nary cone on the Euclidean plane. By means of the correspondence between the
parallels and meridians on the surface in E3 and on the Lobachevsky plane Λ2 it
is possible to map any domain on the surface under consideration onto a domain
in the Lobachevsky plane Λ2. Further, employing an infinite number of copies of
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C

ba

Figure 1.3.9

the domain obtained in Λ2, and gluing them to one another successively along
the corresponding borders of the cuts, one can obtain an infinite “winding” of
their unrolled counterparts, which covers (“winds on”) the surface of the Minding
“top” infinitely many times. After some finite number of “windings”, we obtain a
double covering, and so on. The covering obtained in the way described above is
the universal covering of the surface.

We remark also that the investigated surface itself can also be interpreted
as the result of the realization in the Euclidean space E3 of the corresponding
domain in the Lobachevsky plane endowed with its geometry. The problem of the
realization of domains of the plane Λ2 as surfaces in E3 that carry Lobachevsky’s
geometry (on the corresponding parts), reduces to the problem of obtaining iso-
metric immersions of domains of the Lobachevsky plane in E3 (see Chapter 2).

2) The Minding “bobbin’ and the equidistant strip. The unrolling of the sur-
face of revolution of the Minding “bobbin” type on the plane Λ2 with preservation
of the metric is carried out in the same way as for the “top”. Specifically, we cut the
typical piece of surface (Figure 1.3.10a) along some arbitrary meridian. Since the
meridians are geodesics (shortest curves) on this surface, they are mapped in the
plane Λ2 into straight lines (more precisely, segments of divergent straight lines).
Then the circular parallels on the surface are mapped on Λ2(Ω) into a system of
arcs of Euclidean circles that pass through two common points on the absolute,
realizing in this way the property of equidistant lines (Subsection 1.2.2) that lie
at equal distance from a “central” straight line.

In the resulting isometric “development” on Λ2(Ω) (Figure 1.3.10 b), to the
smallest circular parallel (the one of smallest diameter) on the surface (in the
“most narrow part of the surface” (Figure 1.3.10a)) will correspond the base
line (geodesic line), which to make things intuitive is represented by a diameter.
It is obvious that the cuspidal edges are mapped into equidistants that lie the
farthest from the base line. Overall, the piece of Minding’s “bobbin” shown in
Figure 1.3.10a is mapped into the shaded area in Figure 1.3.10 b, bounded by two
equidistants and two straight lines (the “borders” of the meridian cut).

In much the same way one can construct other copies of the developed piece
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Figure 1.3.10

of surface and then glue them along their borders, i.e., along the images of the
meridian cut. As a result, the equidistant strip is filled by successively glued
domains (Figure 1.3.10 b), copies of the “shaded” domain (in the “hyperbolic
sense”). However, in contrast to the preceding example of the Minding “top”,
the domain obtained in the Lobachevsky plane—the equidistant strip—cannot be
covered (“exhausted”) even by an infinite number of successively glued copies of
the developed surface. In the opposite direction, the Minding “bobbin” can be
wrapped up infinitely many times by the equidistant strip, its universal covering.

3) Pseudosphere and horodisc. The procedure for constructing the domain
in Λ2(Ω) corresponding to the pseudosphere differs from that in the case of the
Minding “top” only by the fact that the center of the system of concentric circles
in the plane Λ2 that correspond to the circular parallels on the pseudosphere is the
point at infinity in Λ2, which lies on the absolute. Hence, to the circular parallels
of the pseudosphere (Figure 1.3.11a) there corresponds a system of horocycles
with a common point on the absolute (Figure 1.3.11 b) (this point is the image of
the point at infinity on the axis of revolution, to which the pseudosphere tends
asymptotically).

ba
Figure 1.3.11
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The cuspidal edge of the pseudosphere correspond to the “maximal” horocy-
cle, i.e., the boundary of the domain obtained in Λ2 (Figure 1.3.11 b).

The hyperbolic development of one copy of the upper sheet of the pseudo-
sphere onto the plane Λ2(Ω) is the domain “cut” from the system of horocyles
by two straight lines which emanate from a common point they have with the
horodiscs on the absolute and which correspond to the two boundaries of the
meridian cut on the pseudosphere (the shaded area in Figure 1.3.11 b). To such a
domain obtained in Λ2 one can “glue” new identical copies, corresponding to the
upper part of the pseudosphere under consideration (Figure 1.3.11a); the bound-
aries of the “glued” domains are indicated by dots (Figure 1.3.11 b)). But like
in the case of the Minding “bobbin”, the domains indicated fail to exhaust the
whole horodisc, which is the characteristic domain in the Lobachevsky plane for
the pseudosphere. Nevertheless, the pseudosphere itself can be interpreted as a
surface that is covered infinitely many times by the horodisc. In other words, the
horodisc is the universal covering of the pseudosphere. We remark that for the
complete pseudosphere (Figure 1.3.8), i.e., the surface consisting of the “lower”
and the “upper” symmetric sheets, one needs to consider, for all the discussed
domains on Λ2, two identical copies.

1.3.3 C1-regular surfaces of revolution, consisting of pieces of
constant curvature of different signs

In this subsection we extend the classical series of surfaces of revolution of constant
curvature by adding to the already provided list of pseudospherical (K ≡ −1) sur-
faces of revolution certain model surfaces of revolutions , “composed” of regularly
contiguous “pieces”, the curvature of which is constant and can be negative as well
as null or positive: K = −1, 0,+1. Such surfaces realize a harmonious combination
of the hyperbolic, Euclidean, and spherical geometry in the usual Euclidean space
E3. From the analytical point of view, the task is to find in space E3 geometrical
images and shapes in the form of C1-regular surfaces6 constructed from pieces
with different signs of the Gaussian curvature.

The images of the examples of surfaces given below, which combine har-
moniously all three geometries intuitively accessible to the human imagination,
are inalienable attributes and symbols of cultural-historical and spiritual heritage
accumulated over a millennium.

1) The “cupola” surface. The surfaces that play a canonical role in the spher-
ical and the hyperbolic non-Euclidean geometries are respectively the sphere and
the pseudosphere. To construct in E3 a smooth C1-regular surface of “cupola”
type, composed from parts of a sphere and of a pseudosphere, we need to find the
points where the meridians of these standard surfaces can be joined smoothly.

The revolution meridian (profile) of the pseudosphere is the tractrix zpsph(x),
given by formula (1.3.16); the meridian of the unit sphere (the “right” semi-circle)

is given by the corresponding expression: zsph(x) = ±√1− x2, x ∈ [0, 1]. The
revolution profiles zpsph(z) and zsph(z), considered in the upper half-plane (z ≥ 0),

6The functions that describe such surfaces must have a continuous first-order derivative.
Intuitively, this property ensures the visual smoothness of the surface.
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can be smoothly joined when their derivatives are equal, which is achieved at the

point x0 =
√
2
2 : (

dzpshp
dx

)
x=x0

=

(
dzsph
dx

)
x=x0

= −1, x0 =

√
2

2
.

Note that to the profile zpsph(x), which lies in the upper half-plane (z ≥ 0), there
corresponds in the right-hand side of formula (1.3.16) the “minus” sign. Moreover,
zpsph(x0) �= zsph(x0), and so in order to compose a C1-regular revolution meridian
of the “cupola” surface, the tractrix profile must be shifted upward by the constant
C =

√
2 + ln(

√
2− 1). All this leads to the following explicit representation for the

revolution meridian of a cupola-type surface:

zcupola(x) =

⎧⎪⎨⎪⎩
−
(
ln 1−√1−x2

x +
√
1− x2

)
+
√
2+ ln(

√
2− 1), if x ∈

(
0,
√
2
2

]
,

±√1− x2, if x ∈
[√

2
2 , 1

]
.

(1.3.17)
The revolution profile (1.3.17) is shown in Figure 1.3.12. Its rotation yields

a “cupola”-type surface, composed of regularly joined pieces of a pseudosphere
(curvature K ≡ −1) and of a sphere (curvature K ≡ +1). The “jump” of the cur-
vature on this surface takes place on the circle where the sphere and pseudosphere
are joined; the cupola surface itself is however C1-regular (visually continuous and
smooth).

psph

sph

Figure 1.3.12.
Shape of revolution
of a “cupola”-type

surface

Cupola 
surface

 pseudosphere
(hyperbolic geometry)

sphere
(spherical geometry)

  cylinder
 (Euclidean geometry)

``imaginary’’ cone

Figure 1.3.13. Model of a “cupola”-type surface:
combination of canonical images of all three intu-
itive geometries. The drawing is done in the golden
ratio scale

Figure 1.3.1 shows, in the “golden ratio” scale, the “cupola” surface under
discussion, completed in its lower part by a part of a cylinder—a model of Eu-
clidean geometry (of curvature K ≡ 0). On the whole, the geometric image of
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the surface, shown in Figure 1.3.13, includes images of the three intuitive classi-
cal geometries: the pseudosphere (Lobachevsky’s hyperbolic geometry), the sphere
(spherical geometry), and the cylinder with the imaginary “inner” cone (Euclidean
geometry).

In the global philosophical view of the world, to the canonical forms that
compose the cupola surface there correspond three successive development cate-
gories such as formation (cylinder, cone—Euclidean, “flat” geometry), completion
(sphere—spherical geometry), and convergence (pseudosphere: convergence to the
point at infinity on the absolute—hyperbolic geometry).

2) The “bell” surface. A second example of C1-regular surface that combines
harmoniously the images and shapes of the three basic geometries of constant
curvature in E3 is the “bell”-type surface. The history of using bells as special
sources of pure sound is thousands of years long. Here we remark that bells of
various shapes realize constructively the “synthesis” in various versions of pieces
of images of the three intuitive geometries: spherical, Euclidean, and hyperbolic.

The simplest model of a “bell”-shaped surface can be obtained, for example,
by rotating the smooth profile consisting of a “quarter” of a circle (1), a recti-
linear segment (2), and “half” of the revolution meridian (3) of the “bobbin” of
constant negative curvature. The revolution meridian of the bell surface, given
by the indicated expressions, is shown in Figure 1.3.14. The function M(x) (the
revolution meridian of the “bobbin” of constant negative curvature) is given by
formula (1.3.13).

Figure 1.3.14. The revolution meridian of a
“bell”-type surface, |λ| ∈ (0, 1), a = const

cylinder

Bell surface
semi-sphere

half-``bobbin’’

Figure 1.3.15. The simplest model of
a “bell”-type surface

The rotation of the profile shown in Figure 1.3.14 produces in E3 the C1-
regular surface of a bell (Figure 1.3.15), consisting respectively (from top to bot-
tom) of an “upper semi-sphere” (K ≡ +1), a part of a cylinder (K ≡ 0), and a
“half-bobbin” (K ≡ −1).

It is rather natural to assume that if in the practical construction of bells
one could approach forms of constant curvature, then one could generate “supple-
mentary” sound nuances.

* * *

The examples considered above make it clear that on surfaces of revolu-
tion of constant negative curvature one cannot realize globally the geometry of
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the Lobachevsky plane: on such surfaces there always arise singularities—cuspidal
edges, cusp (peak, spike) points—which can be interpreted as obstructions to the
further regular extension of the surfaces beyond them. And conversely, the do-
mains in Λ2 corresponding to such surfaces are also far from exhausting the whole
Lobachevsky plane. It turns out that this individual observation for surfaces of rev-
olution is the manifestation of a global rule etablished by D. Hilbert in his work
“Über Flächen von konstanter Krümmung” (“On surfaces of constant curvature”),
published in 1901 [17]. Hilbert proved that every surface of constant negative cur-
vature in E3 must have a singularity—an irregular edge (cuspidal edge), a cusp
point, and so on, and the complete Lobachevsky plane cannot be realized in E3.
Hilbert’s results in this direction will be studied in detail in Chapter 2.

Following F. Klein’s figurative example [45], we emphasize here an important
property shared by Lobachevsky’s hyperbolic geometry as well as by the Euclidean
and the spherical geometries (generally, by the geometry of surfaces (spaces) of con-
stant curvature). According to Klein’s formulation, “tin-plate pieces” that cover
exactly and without gaps a given surface of constant curvature admit∞3 motions
along this surface such that at any time they cover the entire surface without gaps.
Moreover, the tin-plate pieces themselves do not, in general, remain rigid, but de-
form in a certain way, without changing their intrinsic metric properties. This
property plays a fundamental role in solving problems of covering space forms, re-
alized by means of surfaces of constant curvature, by various geometric structural
drawings, ornaments, and mosaics.

The study of the intrinsic-geometrical properties of surfaces of constant nega-
tive curvature and the associated problems of contemporary mathematical physics
will be one of the central direction of investigation in the following chapters of the
book.



Chapter 2

The problem of realizing the
Lobachevsky geometry in
Euclidean space

In this chapter we deal with general problems connected with the realization of the
two-dimensional Lobachevsky geometry in the three-dimensional Euclidean space.
In particular, we give an exposition of Lobachevsky planimetry as the geometry of a
two-dimensional Riemannian manifold of constant negative curvature. We describe
the apparatus of fundamental systems of equations of the theory of surfaces in
E3 and discuss specifics of its application to the analysis of surfaces of constant
negative Gaussian curvature. We also consider canonical geometric objects such
as the Beltrami pseudosphere and Chebyshev nets, and we present D. Hilbert’s
result on the impossibility of a regular realization of the complete Lobachevsky
plane in E3. We indicate fundamental connections that exist between the structure
of pseudospherical surfaces and the sine-Gordon equation, one of the universal
nonlinear partial differential equations. In the final section of the chapter we survey
briefly a series of basic results on isometric immersions of Riemannian metrics of
negative curvature in Euclidean space.

2.1 Lobachevsky planimetry as the geometry of a two-
dimensional Riemannian manifold

2.1.1 The notion of Riemannian manifold

The establishment of a direct connection between Lobachevsky’s geometry and
surfaces of constant negative curvature goes back to 1868, when E. Beltrami [140,
141] carried out a detailed analysis of the pseudosphere surface1 (§ 2.4 will be

1Although the pseudosphere was obtained for the first time in Minding’s works as a surface of
revolution of curvature K ≡ −1, Minding himself did not connect the surface he obtained with

61A. Popov, Lobachevsky Geometry and Modern Nonlinear Problems,  
DOI 10.1007/978-3-319-05669-2_ , © Springer International Publishing Switzerland 2014 3



62 Chapter 2. Realizing the Lobachevsky geometry in Euclidean space

devoted to this investigation). Practically at the same time, B. Riemann, in his

1854 work “On the hypotheses which lie at the bases of geometry” (“Über die Hy-
pothesen, welche der Geometrie zu Grunde liegen”) advanced ideas that allowed
a deeper comprehension of non-Euclidean geometry. In that work Riemann intro-
duced the notion of manifold (Mannigfaltigkeit), thereby inaugurating the study
of the intrinsic geometry of spaces as a separate discipline.

In his investigations Riemann considered a system (set) of n independent
variables x = (x1, . . . , xn), each of which can assume arbitrary real values. Rie-
mann calls the collection of all possible values of such a system an n-dimensional
manifold . A point of the manifold is any set of fixed values x∗ = (x∗1, . . . , x∗n). In
this sense, the three-dimensional Euclidean space E3, for example, is a particular
case of three-dimensional manifold.

On a manifold one can introduce a linear element (a metric) by means of a
positive definite quadratic form

ds2 =

n∑
i,j=1

aij(x)dxidxj , aij = aji. (2.1.1)

The linear element ds2 thus introduced enables one to establish metric re-
lations on the underlying manifold. If on the manifold one has a curve, given
parametrically as

xi = fi(t), i = 1, 2, . . . , n,

then the length of its arc, corresponding to the parameter range t ∈ [t1, t2], is
calculated as

� =

t2∫
t1

√√√√ n∑
i,j=1

aij(x)dxidxj =

t2∫
t1

√√√√ n∑
i,j=1

aij(t)f ′i(t)f
′
j(t) dt.

The geodesics (shortest) curves on the manifolds are defined by requiring
the length of an arc passing through two given points to be minimal, which is
expressed by the variational condition

δ

t2∫
t1

√√√√ n∑
i,j=1

aijdxidxj = 0.

Before we turn to treating Lobachevsky’s geometry in the framework of Rie-
mannian geometry, let us formulate the general definition of a manifold that is
suitable for the modern geometric representations [12, 24, 59, 66, 118].

We call n-dimensional differentiable manifold (or smooth manifold) M any
set M of points that can be describes as follows.

M can be represented as the union of a finite or countable number of domains
σk, in each of which one can introduce local coordinates xα

k , α = 1, . . . , n.

Lobachevsky’s hyperbolic geometry.
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The domains σk “composing” the manifold are called coordinate neighbor-
hoods (or charts). A nonempty intersection σk ∩ σ� of a pair of such domains in
M is also a domain in Euclidean space, in which two local system of coordinates,
(xα

k ) and (xα
� ), exist simultaneously.

The differentiability condition for the manifold is that each of the two such
local coordinate systems (xα

� ) and (xα
k ) can be expressed in the entire domain

σk∩σ� through the other coordinate system in differentiable manner, via transition
maps

xα
� = xα

� (x
1
k, . . . , x

n
k ),

xα
k = xα

k (x
1
� , . . . , x

n
� ),

α = 1, . . . , n, (2.1.2)

with nonzero transition Jacobian:

det

∥∥∥∥∥∂xα
�

∂xβ
k

∥∥∥∥∥ �= 0.

The highest possible smoothness class of the transition maps (2.1.2) for all
possible overlapping pairs of coordinate neighborhoods σk and σ� is called the
smoothness class of the manifold M defined by the “atlas” {σk}.

Again, an obvious example of smooth (differentiable) manifold is the Eu-
clidean space itself.

The treatment of two-dimensional Lobachevsky geometry in §§ 1.1 and 1.2
allows us, in accordance with the notion of manifold introduced above, to define
the Lobachevsky plane Λ2 as a two-dimensional smooth Riemannian manifold of
constant negative curvature. The ensuing question of whether it is possible to
realize the Lobachevsky plane Λ2, or individual parts thereof, in the space E3

reduces to the problem of finding isometric immersions of them in E3. We will
next formulate the isometric immersion problem.

2.1.2 The notion of isometric immersion

Let us pose the problem of finding in three-dimensional Euclidean space E3 a
domain S that realizes the geometry of a given two-dimensional smooth mani-
fold M2. In other words: Is it possible, and in which cases, to find in E3 some
two-dimensional subset, the intrinsic geometry of which coincides with the ge-
ometry of the given two-dimensional smooth manifold? Moreover, the rule for
calculating the distance between any two points of the sought-for domain S ⊂
E3, done by using the metric of the Euclidean space E3 (the ambient space),
must correspond on S to precisely the metric (2.1.1) of the given manifold M2.

Generally, the problem of finding in some space E of a subset that has the
same intrinsic-geometric properties as an a priori given smooth manifold M is
referred to as the problem of isometric immersion of the manifoldM in the space

E: M isom−→ E.
Clearly, in the formulation of the isometric immersion problem there is a

high degree of arbitrariness in the choice of the original manifold, as well as in the
choice of the ambient space.
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In the framework of our basic question of whether it is possible to realize
the Lobachevsky plane in Euclidean space we need to study the problem of the
existence of a Cn-smooth map

f : D → E3

from some domain2 D(u, v) ⊂ R2, endowed with a metric of type (2.1.1), to the
space E3.

The pair {D, f} gives in E3(x, y, z) (here x, y, z are the Cartesian coordinates
in the space E3) a surface S:

S = f(D) ⊂ E3.

To each point of the surface S will correspond in E3 its Cartesian coordinates

x = x(u, v), y = y(u, v), z = z(u, v), (2.1.3)

where u, v are intrinsic coordinates on S ⊂ E3 that correspond to the coordinate
parametrization of the original manifold D(u, v).

Curves on the surface S are images of lines in the domain D under the map
f .

The radius vector −→r of the surface S ⊂ E3 is defined as

−→r = {x(u, v), y(u, v), z(u, v)}.
The ambient Euclidean space E3 induces on the surface S thus obtained a rule for
measuring length:

ds2 = dx2 + dy2 + dz2,

which by using (2.1.3) leads to a Riemannian metric on S

ds2 = E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2, (2.1.4)

which coincides with the metric (2.1.1) of the manifold we started with.
Suppose that for the metric (2.1.1) given on the manifold D (for n = 2) the

map f gives in E3 a surface S[−→r (u, v)]:
E = −→ru2, F = (−→ru,−→rv), G = −→rv2,

on which the metric (2.1.4), induced by the metric on the space E3, coincides with

the metric one already has on D. Then one says that the map f : D
f→ E3 defines

an isometric immersion of the manifold D with the given metric in the space E3.
Such an isometric immersion of D in E3 will be denoted here by

D
isom−→ E3.

A classical question connected with Lobachevsky’s hyperbolic geometry is:
Which parts of the plane Λ2 can be isometrically immersed in the three-dimen-
sional Euclidean space E3? As we shall see in § 2.6, the complete Lobachevsky

2Here we put u ≡ x1, v ≡ x2



2.2. Surfaces in E3 and their fundamental characteristics 65

plane cannot be immersed in E3. More generally, one can ask what is the minimal
dimension m such that the complete Lobachevsky plane can be isometrically im-
mersed in Em? It has been shown that the plane Λ2 can be immersed in the spaces
E6 and E5 (see [74, 100, 146]); the question of the immersibility of Λ2 in E4 re-
mains open at this time and represents one of the unsolved fundamental problems
of geometry.

The study of the problem of possible realization of two-dimensional metrics of
constant negative curvature in the space E3 is directly connected with the analysis
and integration of the fundamental equations of the theory of surfaces, to which
we turn next.

2.2 Surfaces in E3 and their fundamental characteristics

2.2.1 The notion of surface in the space E3

In the classical theory of surfaces a primary notion is that of a simple surface.

Definition. A set S of points M(x, y, z) in the Euclidean space E3(x, y, z) whose
Cartesian coordinates are given by relations of the form

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v), u, v ∈ D, (2.2.1)

where D is some simply-connected domain in the parameter (u, v)-plane, is called
a simple surface, if to distinct pairs of values (u, v) correspond distinct points of S.

Definition. A simple surface S is said to be smooth at the point P ∈ S, if the
tangent plane to S at P exists and some neigborhood of the point P projects on
the tangent plane in a one-to-one manner.

A simple surface S is said to be smooth if the above one-to-oneness property
holds at all its points and the tangent spaces to S vary continuously.

To describe a surface in space one uses, side by side with the functions (2.2.1),
its radius vector

−→r (u, v) = ϕ(u, v)
−→
i + ψ(u, v)

−→
j + χ(u, v)

−→
k , (2.2.2)

where
−→
i ,
−→
j ,
−→
k are the unit direction vectors of the Cartesian coordinate axes in

E3.
It is then clear that the surface S represents the geometric locus of points

described by the tip of the radius vector −→r (u, v), (u, v) ∈ D (Figure 2.2.1). More-
over, the smoothness property of the surface S formulated above is expressed by
the condition of nontriviality of the vector product:

[−→ru ×−→rv] �= 0, (2.2.3)

where −→ru and −→rv are the partial derivatives of the radius vector −→r with respect
to u and v.

The vectors −→ru and −→rv—the tangent vectors to the u and v coordinate lines,
respectively, on the surface S—uniquely determine the tangent plane at the point
P .
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Figure 2.2.1

We say that the surface S ⊂ E3 is smooth of class Cn, n ≥ 1 (or is Cn-
smooth), if its radius vector satisfies the condition

−→r (u, v) ∈ Cn(D).

The points at which the smoothness condition (2.2.3) is violated are called
singular . On a surface such an individual point can be, for example, a cusp point;
it is also possible that a continuous collection of singular points form an irregular
edge of the surface (as a rule, a cuspidal edge). Such surfaces, given parametrically
(see (2.2.1)), may self-intersect.

For this reason, in what follows we will, without restricting the generality
of the surfaces studied, allow them to have self-intersections and irregular singu-
larities, and then use for such “objects” of our investigations the general term of
“surface”.

Next we will discuss a number important general characteristics of surfaces
in E3, referring the reader to the works [39, 40, 70, 81, 101] on the classical theory
of surfaces, and remarking at the same time that the branch of geometry consid-
ered here can be quite appropriately understood as one of the beautiful practical
applications of mathematical analysis [36].

2.2.2 First fundamental form of a surface

Consider in E3 a smooth surface S, given by its radius vector −→r (u, v).
The first fundamental form of the surface S is defined to be the square of

the differential of the radius vector of S:

I(u, v) = d−→r 2 = (−→rudu+−→rvdv)2, (2.2.4)

or
I(u, v) = −→ru2du2 + 2(−→ru,−→rv)dudv + −→rv2dv2, (2.2.5)

where (−→ru, −→rv) denotes the scalar (inner) product of the vectors −→ru and −→rv.
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The first fundamental form (2.5.5) is a quadratic form in the differentials
du and dv and is always positive definite, thanks to the positivity of its leading
principal minors (by Sylvester’s criterion [35]):

1) −→ru2 > 0,

2) −→ru2 · −→rv2 − (−→ru,−→rv)2 = ([−→ru ×−→rv])2 > 0.

The coefficients of the first fundamental form (2.2.5) are usually denoted by

E(u, v) = −→ru2, F (u, v) = (−→ru,−→rv), G(u, v) = −→rv2, (2.2.6)

and then (2.2.5) is rewritten as

I(u, v) = E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2. (2.2.7)

The first fundamental form of the surface can be used for various calcula-
tions [36, 101]: length of curves, angles between curves, areas of domains on the
surface, and so on. For example, the length of a curve l on the surface S, given
parametrically by

l : u = u(t), v = v(t), t ∈ [t1, t2]

or, respectively, by the radius vector

−→r (t) = −→r (u(t), v(t)), t ∈ [t1, t2],

is calculated by the formula

l =

t2∫
t1

|−→r ′|dt =
t2∫

t1

√
E(u(t), v(t)) · u′2 + 2F (u(t), v(t)) · u′ · v′ +G(u(t), v(t))v′2dt.

Let us provide also the formula for calculating the area AΣ of a domain Σ
on the surface S for which the parameters (u, v) range in a domain D:

AΣ =

∫∫
D

√
EG− F 2dudv.

If we choose some curve on the surface, then the restriction of the first fun-
damental form to that curve coincides with the square of the differential of its arc:−→
dr2 = ds2. The square of the linear element ds2 is called the metric of the surface:

ds2 = Edu2 + 2Fdudv +Gdv2.

The geometric properties of a surface that can be obtained based on only the
first fundamental form (i.e., on the coefficients E,F,G), constitute what is called
the intrinsic geometry of the surface.

If one pictures the surface as a flexible, inextensible pellicle, then when one
bends it all intrinsic geometric properties are preserved, whereas its shape in space
changes.

Surfaces that have identical intrinsic geometries are said to be isometric.
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2.2.3 Second fundamental form of a surface

At each point of a C2-smooth surface S one can consider the unit normal vector−→n (see Figure 2.2.1):

−→n (u, v) =
[−→ru ×−→rv]∣∣[−→ru ×−→rv]∣∣ , |−→n | = 1, (2.2.8)

where |[−→ru ×−→rv]| =
√
EG− F 2.

Let us consider the second differential of the radius vector −→r (u, v) of the
surface,

d2−→r = −→ruudu2 + 2−→ruvdudv +−→rvvdv2 +−→rud2u+−→rvd2v,
and introduce the notion of the second fundamental form of the surface S as the
scalar product of the vectors d2−→r and −→n :

II(u, v) = (d2−→r ,−→n ). (2.2.9)

Using the expression of d2−→r given above and the fact that the vector −→n is or-
thogonal to the vectors −→ru and −→rv (which span the tangent plane to the surface),
i.e.,

(−→ru,−→n ) = 0, (−→rv,−→n ) = 0, (2.2.10)

we obtain the following representation of the second fundamental of the surface
S, defined in (2.2.9):

II = (−→ruu,−→n )du2 + 2(−→ruv,−→n )dudv + (−→rvv,−→n )dv2. (2.2.11)

Denoting the coefficients of the second fundamental form by

L = (−→ruu,−→n ), M = (−→ruv,−→n ), N = (−→rvv,−→n ), (2.2.12)

we recast (2.2.11) as

II(u, v) = L(u, v)du2 + 2M(u, v)dudv +N(u, v)dv2. (2.2.13)

The coefficients (2.2.12) can be also written in a different form (involving only the
radius vector of the surface), to which one arrives by substituting the expression
(2.2.8) of −→n in (2.2.12):

L =
(−→ruu,−→ru,−→rv)
|[−→ru ×−→rv]| , M =

(−→ruv,−→ru,−→rv)
|[−→ru ×−→rv]| , N =

(−→rvv,−→ru,−→rv)
|[−→ru ×−→rv]| . (2.2.14)

In (2.2.14) the parentheses denote the mixed products of the indicated vectors.
The form (2.2.14) of the coefficients L, M , N of the second fundamental form

is convenient, for example, if we want to describe a surface in the space E3(x, y, z),
given in the Monge form: z = z(x, y) (see Subsection 1.3.1 ). In this case (putting
u ≡ x, v ≡ y) the radius vector of the surface is

−→r = −→r (x, y) = {x, y, z(x, y)}.
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Correspondingly, the mixed products of the vectors in (2.2.14) are calculated
as

(−→rxx,−→rx,−→ry) =
∣∣∣∣∣ 0 0 zxx
1 0 zx
0 1 zy

∣∣∣∣∣ = zxx, (−→rxy,−→rx,−→ry) =
∣∣∣∣∣ 0 0 zxy
1 0 zx
0 1 zy

∣∣∣∣∣ = zxy,

(−→ryy,−→rx,−→ry) =
∣∣∣∣∣ 0 0 zyy
1 0 zx
0 1 zy

∣∣∣∣∣ = zyy.

Now observing that

|[−→rx ×−→ry]| =
√
1 + z2x + z2y ,

and substituting the expressions obtained in (2.2.14), we obtain the expressions
of the coefficients L, M , N for a surface S given in Monge form:

L =
zxx√

1 + z2x + z2y

, M =
zxy√

1 + z2x + z2y

, N =
zyy√

1 + z2x + z2y

. (2.2.15)

To conclude this subsection we indicate another way of computing the coef-
ficients of the second fundamental form. To this end we consider the conditions
(2.2.10) and differentiate each of these equalities with respect to u and v, taking
into account the form (2.2.12) of the coefficients we are interested in.

In this way we obtain a new representation for the coefficients of the second
fundamental form of a surface:

L = −(−→ru,−→nu), M = −(−→ru,−→nv) = −(−→rv,−→nu), N = −(−→rv,−→nv). (2.2.16)

The expressions (2.2.16) obtained for the coefficients L, M , N correspond to the
following equivalent definition of the second fundamental form:

II(u, v) = −(d−→r , d−→n ). (2.2.17)

Figure 2.2.2 Figure 2.2.3



70 Chapter 2. Realizing the Lobachevsky geometry in Euclidean space

The second fundamental form carries information on the shape of the surface
in space. Let us briefly explain the classification of points of a surface according
to the sign of the determinant of the second fundamental form [80, 81].

A point P on a C2-smooth surface S is called elliptic if the determinant of
the second fundamental form of S at P is positive, i.e., (LN − M2) |P0∈S> 0.
Intuitively this means that all the points of S that are sufficiently close to the
point P lie on the same side with respect to the tangent plane γ to S at P (Figure
2.2.2).

The point P0 ∈ S is called hyperbolic, if (LN −M2) |P0∈S< 0. In this case in
any neighborhood of P there are parts of the surface S that lie on different sides
with respect to the tangent plane γ (Figure 2.2.3).

Finally, if (LN −M2) |P0∈S= 0, but at least one of the coefficients L(P0),
N(P0) is not zero, then P0 ∈ S is called a parabolic point of the surface S. In
this case there exists directions on S along which the second fundamental form
vanishes, while in the other directions it has one and the same sign (Figure 2.2.4).

Figure 2.2.4

If L(P0) = N(P0) = M(P0) = 0, then P is called a flat point (or a geodesic
point) of the surface.

As these name indicate, the first and second forms are fundamental charac-
teristics of a surface.

In the next section of the present chapter (§ 2.3), while studying the basic
equations of the theory of surfaces, we will answer the following question: Under
what conditions two given quadratic forms can play the role of the first and,
respectively, the second fundamental form of some surface? The answer will be
provided by Bonnet’s theorem.

2.2.4 Gaussian curvature of a surface

In general, in geometry the term “curvature” is used to express characteristics
of geometric shapes (objects) that measure how much they deviate from the the
corresponding classical Euclidean shapes (objects). In this sense the Gaussian
curvature of a surface in the space E3 can be interpreted as a measure of how
much the surface deviates (is “deformed”) from an Euclidean plane. Furthermore,
it turns out that surfaces in E3 can be intuitively classified according to the sign
of the Gaussian curvature.
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Let us consider a normal section of the surface S at the point P , i.e., a section
of the surface by a plane π that passes through the normal −→n (P ) to S at P . This
section is a plane curve l ⊂ S that passes through the point P in the direction

of the vector
−→
l tangent to it (Figure 2.2.5). Obviously, there are infinitely many

such sections for every chosen point P .

Figure 2.2.5

The normal curvature kn of the surface S at the point P in the direction−→
l is defined to be the curvature of the corresponding normal section, i.e., the
curvature of the plane curve l. Recall that the curvature of a plane curve is the
limit k = limΔs→0

Δϑ
Δs , where Δϑ is the change in the angle of the position of the

tangent to the curve and Δs is the distance along the curve between the points of
tangency.

Let us define the principal directions on a surface at a given point. A direction
on a regular surface is called principal if the normal curvature of the surface attains
an extremum in that direction. At each point of a C2-smooth surface there are
no less than two distinct principal directions. The corresponding extremum values
k1 and k2 of the normal curvature kn in the principal directions are called the
principal curvatures of the surface at the given point.

The Gaussian curvature K of a surface at a point is defined to be the product
of its principal curvatures at that point:

K = k1 · k2. (2.2.18)

The Gaussian curvature can be expressed through the coefficients of the first
and second fundamental forms of the surface (see § 2.3) as follows:

K =
LN −M2

EG− F 2
. (2.2.19)

Moreover, the Gaussian curvature K can be obtained using only the first funda-
mental form, a fact expressed by what is known as Gauss’ Theorema Egregium.
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In other words, the Gaussian curvature is an intrinsic geometric characteristic of
a surface.

As one can see from (2.2.19), since the first fundamental form is positive
definite, the sign of the Gaussian curvature K coincides with the sign of the de-
terminant of the second fundamental form. Accordingly, at elliptic points (or in
elliptic domains) of the surface, the curvature K is positive: K > 0. An example
of elliptic surface is shown in Figure 2.2.2 (any section of such a “convex” surface
by a plane cuts from the surface a “cap” with boundary).

IfK < 0 on the entire surface, then the surface is hyperbolic (see, for example,
Figure 2.2.3). Nontrivial examples of hyperbolic surfaces are the Minding surfaces
of revolution considered in § 1.3: the “top” (Figure 1.3.2), the “bobbin” (Figure
1.3.5), and the pseudosphere (Figure 1.3.8).

2.3 Fundamental systems of equations in the theory of
surfaces in E3

This section is devoted to the derivation and subsequent analysis of the funda-
mental relations that completely determine a surface in the space E3.

2.3.1 Derivational formulas

Consider in the space E3 a C3-smooth surface S, given by its radius vector−→r (u, v),
(u, v) ∈ D ⊂ R2. As we already indicated, the variables u and v play the role of
intrinsic coordinates on the surface S: the families of lines u = const and v = const
form a coordinate net on S.

Pick a point P in a regular part of the surface S, i.e., a point at which

W (P ) = E(P )G(P ) − F 2(P ) �= 0.

At each such point the vectors −→ru, −→rv, −→n (Figure 2.2.1) are linearly independent,
and hence form a basis in E3.

Let us decompose the vectors −→ruu, −→ruv, −→rvv, −→nu, and
−→nv, which appear in the

definition of the first and second fundamental forms of the surface, with respect
to the basis −→ru, −→rv, −→n :

−→ruu = Γ1
11
−→ru + Γ2

11
−→rv + λ11

−→n , (2.3.1)

−→ruv = Γ1
12
−→ru + Γ2

12
−→rv + λ12

−→n , (2.3.2)

−→rvv = Γ1
22
−→ru + Γ2

22
−→rv + λ22

−→n , (2.3.3)

−→nu = α11
−→ru + α12

−→rv + α10
−→n , (2.3.4)

−→nv = α21
−→ru + α22

−→rv + α20
−→n , (2.3.5)

where Γk
ij , λij , αij are the decomposition coefficients, which need to be deter-

mined.
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Let us verify that all the decomposition coefficients in the relations (2.3.1)–
(2.3.5) can be calculated in terms of only the coefficients of the first and second
fundamental forms of the surface.

Multiplying each of the equalities (2.3.1)–(2.3.3) scalarly by the unit normal
vector −→n (−→n 2 = 1) and using (2.2.10) we obtain

λ11 = (−→ruu,−→n ) = L, λ12 = (−→ruv,−→n ) = M, λ22 = (−→rvv,−→n ) = N. (2.3.6)

Next let us calculate the coefficients Γk
ij , i, j, k = 1, 2, known as the Christoffel

symbols . To this end we consider the relation (2.3.1) and take its scalar product
with the vectors−→ru and −→rv, which yields the following two relations:

(−→ruu,−→ru) = Γ1
11 ·E + Γ2

11 · F,
(−→ruu,−→rv) = Γ1

11 · F + Γ2
11 ·G.

(2.3.7)

The expressions in the left-hand side of (2.3.7) can be written as

(−→ruu,−→ru) = 1

2

(−→ru2)′u =
1

2
Eu,

(−→ruu,−→rv) = (−→ru,−→rv)′u − (−→ru,−→ruv) = Fu − 1

2
Ev.

Accordingly, the system (2.3.7) can be recast as a very simple linear inhomogeneous
system in the unknowns Γ1

11 and Γ2
11:

Γ1
11 · E + Γ2

11 · F =
1

2
Eu,

Γ1
11 · F + Γ2

11 ·G = Fu − 1

2
Ev.

(2.3.8)

The solution of (2.3.8) (under our assumption that W = EG− F 2 �= 0) is

Γ1
11 =

1

2W
(EuG− 2FuF + EvF ) ,

Γ2
11 =

1

2W
(−EuF + 2FuE − EvE) , W = EG− F 2.

(2.3.9)

Proceeding in an analogous manner with the equalities (2.3.2) and (2.3.3),
we obtain formulas for the remaining Christoffel symbols Γk

ij :

Γ1
12 =

1

2W
(EvG−GuF ) ,

Γ2
12 =

1

2W
(GuE − EvF ) ,

(2.3.10)

and

Γ1
22 =

1

2W
(−GuG+ 2FvG−GvF ) ,

Γ2
22 =

1

2W
(GvE − 2FvF +GuF ) .

(2.3.11)
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Therefore, expressions (2.3.9)–(2.3.11) and (2.3.6) provide the exact form of
the coefficients appearing in the system (2.3.1)–(2.3.3).

Now let us find the coefficients αij that appear in the system (2.3.4),(2.3.5).
To this end, we differentiate the equality −→n 2 = 1, which yields

(−→n ,−→nu) = 0, (−→n ,−→nv) = 0. (2.3.12)

From (2.3.12) it follows that the vectors −→nu and −→nv, with their common origin at
the point P , lie in the tangent plane to the surface at P , and hence can be written
as linear combinations of the vectors −→ru and −→rv. Indeed, taking the scalar product
of the equalities (2.3.4) and (2.3.5) with the unit vector −→n and using (2.2.10), we
obtain

α10 =
1

2

(−→n 2
)′
u
= 0, α20 =

1

2

(−→n 2
)′
v
= 0. (2.3.13)

The system (2.3.4),(2.3.5) can be now rewritten in the “simplified” form

−→nu = α11
−→ru + α12

−→rv,
−→nv = α21

−→ru + α22
−→rv.

(2.3.14)

Essentially, relations (2.3.14) effect the transition from the basis −→ru,−→rv in the
tangent space to the basis −→nu,

−→nv. Take the first equality in (2.3.14) and multiply
it scalarly by the vector −→ru, and then by the vector −→rv. Using (2.2.6) and (2.2.16),
we obtain

−L = α11E + α12F, −M = α11F + α12G. (2.3.15)

The linear system (2.3.15) for α11 and α12 has the solution

α11 =
1

W
(MF − LG) , α12 =

1

W
(LF −ME) . (2.3.16)

Similar arguments yield the other two coefficients:

α21 =
1

W
(NF −MG) , α22 =

1

W
(MF −NE) . (2.3.17)

Thus, the system of equations (2.3.1)–(2.3.5) for the radius vector −→r (u, v) of
the surface S and the unit normal vector −→n (u, v) is completely determined by the
coefficients of the first and second fundamental forms of the surface. Moreover,
the corresponding coefficients are given by the formulas (2.3.6), (2.3.9)–(2.3.11),
(2.3.16) and (2.3.17).

The system of equations (2.3.1)–(2.3.5) is known as the system of derivational
formulas .

The system of derivational formulas (2.3.1)–(2.3.55) can be written in matrix
form, grouping the available equations into two triples, (2.3.1), (2.3.2), (2.3.4) and
(2.3.2), (2.3.3), (2.3.5):⎛⎜⎝

−→ru
−→rv
−→n

⎞⎟⎠
u

=

⎛⎜⎝ Γ1
11 Γ2

11 L

Γ1
12 Γ2

12 M

α11 α12 0

⎞⎟⎠
⎛⎜⎝
−→ru
−→rv
−→n

⎞⎟⎠, (2.3.18)
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⎛⎜⎝
−→ru
−→rv
−→n

⎞⎟⎠
v

=

⎛⎜⎝ Γ1
12 Γ2

12 M

Γ1
22 Γ2

22 N

α21 α22 0

⎞⎟⎠
⎛⎜⎝
−→ru
−→rv
−→n

⎞⎟⎠. (2.3.19)

If we now denote the matrices involved by

R =

⎛⎜⎝
−→ru
−→rv
−→n

⎞⎟⎠, A =

⎛⎜⎝ Γ1
11 Γ2

11 L

Γ1
12 Γ2

12 M

α11 α12 0

⎞⎟⎠, B =

⎛⎜⎝ Γ1
12 Γ2

12 M

Γ1
22 Γ2

22 N

α21 α22 0

⎞⎟⎠,

we can rewrite the system in “compact form” as

Ru = AR, (2.3.20)

Rv = BR. (2.3.21)

In order for the system (2.3.20), (2.3.21) to be consistent (i.e., for the deriva-
tion formulas (2.3.1)–(2.3.5) to be consistent), the condition (Ru)v = (Rv)u must
be satisfied, which in the case of the system (2.3.20), (2.3.21) obtained above takes
on the form

Av −Bu + [A,B] = 0, (2.3.22)

where [A,B] = AB −BA.

We must emphasize here that a relation of the form (2.3.22), which encodes
fundamental connections in the theory of surfaces—a theory more than two cen-
turies old—turned out to be intimately related to a series of important equations
of modern mathematical physics. Thus, for example, structural relations of the
form (2.3.22) arise in the implementation of the algorithms of the method of the
inverse scattering transform, applied to the integration of nonlinear differential
equations, and is connected, in particular, with the formulation of the Zakharov-
Shabat modified scattering problem [1, 51]. The “geometric sources” of various
modern nonlinear problems will be discussed in detail in Chapter 4. Here we men-
tion only that the presence of nontrivial curvature in non-Eulidean geometry and
the emergence of nonlinearities in various novel models in science are “facts” of
identical nature.

2.3.2 The Peterson-Codazzi and Gauss equations.
Bonnet’s theorem

The consistency (compatibility) condition (2.3.22) of the system of differentiation
formulas (2.3.1)–(2.3.5) can be written in terms of components; in this case we
first of all have nine equations that connect the corresponding coefficients of the
3× 3-matrices appearing in (3.2.22):

1) (Γ1
11)v − (Γ1

12)u + Γ2
11Γ

1
22 − Γ1

12Γ
2
12 + α21L− α11M = 0,

2) (Γ2
11)v − (Γ2

12)u + Γ1
11Γ

2
12 + Γ2

11Γ
2
22 − Γ1

12Γ
2
11 − (Γ2

12)
2 + α22L− α12M = 0,

3) Lv −Mu + Γ2
11 ·N − Γ1

12 · L+ (Γ1
11 − Γ2

12)M = 0,
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4) (Γ1
12)v − (Γ1

22)u + (Γ1
12)

2 + Γ2
12Γ

1
22 − Γ1

22Γ
1
11 − Γ2

22Γ
1
12 + α21M − α11N = 0,

5) (Γ2
12)v − (Γ2

22)u + Γ1
12Γ

2
12 − Γ1

22Γ
2
11 + α22M − α12N = 0,

6) Mv −Nu + Γ2
12N − Γ1

22L+ (Γ1
12 − Γ2

22)M = 0,

7) (α11)v − (α21)u + α11Γ
1
12 + α12Γ

1
22 − α21Γ

1
11 − α22Γ

1
12 = 0,

8) (α12)v − (α22)u + α11Γ
2
12 + α12Γ

2
22 − α21Γ

2
11 − α22Γ

2
12 = 0,

9) α11M + α12N − α21L− α22M = 0.

A more detailed analysis of the nine equations listed above when we substi-
tute in them the already obtained expressions for the coefficients Γk

ij , αij (formu-
las (2.3.9)–(2.3.11), (2.3.16), (2.3.17)) shows that in fact only three of these nine
equations are independent. In particular, the last equation becomes an identity.

Leaving the direct verification of this fact to the diligent reader, we provide
below the three fundamental equations (equations 3, 6, and 1) of the system,
which express the relationships between the coefficients of the first and second
fundamental forms of a surface in E3:

Lv + Γ1
11M + Γ2

11N = Mu + Γ1
12L+ Γ2

12M, (2.3.23)

Mv + Γ1
12M + Γ2

12N = Nu + Γ1
22L+ Γ2

22M, (2.3.24)

1

F

(
(Γ1

12)u − (Γ1
11)v + Γ1

12Γ
2
12 − Γ2

11Γ
1
22

)
=

1

F
(α21L− α11M) =

LN −M2

EG− F 2
= K.

(2.3.25)
The system (2.3.23)–(2.3.25) can be written in expanded form as

2W (Lv −Mu)− (EN − 2FM +GL)(Ev − Fu) +

∣∣∣∣∣ E Eu L
F Fu M
G Gu N

∣∣∣∣∣ = 0,

(2.3.26)

2W (Mv −Nu)− (EN − 2FM +GL)(Fv −Gu) +

∣∣∣∣∣ E Ev L
F Fv M
G Gv N

∣∣∣∣∣ = 0, (2.3.27)

(Peterson-Codazzi equations),

K =
LN −M2

EG− F 2

= − 1

4W 2

∣∣∣∣∣ E Eu Ev

F Fu Fv

G Gu Gv

∣∣∣∣∣− 1

2
√
W

[(
Ev − Fu√

W

)
v

−
(
Fv −Gu√

W

)
u

]
. (2.3.28)

(Gauss formula).

The system (2.3.26)–(2.3.28) is called the system of Peterson-Codazzi and
Gauss equations .



2.3. Fundamental systems of equations in the theory of surfaces in E3 77

Formula (2.3.28) expresses Gauss’s theorem (Theorema Egregium): The Gaus-
sian curvature of a C3-smooth surface can be expressed in term of only the coeffi-
cients of the first fundamental form of the surface and their partial derivatives .

The essential role played by the first and second fundamental forms of a
surface in E3 is expressed by Bonnet’s theorem.

Bonnet’s Theorem Let

E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2 (I)

and
L(u, v)du2 + 2M(u, v)dudv +N(u, v)dv2 (II)

be two arbitrary quadratic forms, the first of which is positive definite (i.e., W =
EG−F 2 > 0). Assume that the coefficients E,F,G, L,M,N are connected by the
system of Peterson-Codazzi and Gauss equations.

Then in the Euclidean space E3 there exists a unique (up to position in space)
surface for which the quadratic forms (I) and (II) are the first, and respectively
the second fundamental form.

Let us mention also that the Peterson-Codazzi and Gauss equations together
with the derivational equations allow one to structure analytically an algorithm
for solving the problem of isometric immersion of two-dimensional metrics in the
three-dimensional Euclidean space (Subsection 2.1.2). The first step in construct-
ing an immersion of a given two-dimensional metric is to determine the coefficients
L,M,N of the second fundamental form from the given metric (the coefficients
E,F,G) and is connected with the integration of the Peterson-Codazzi and Gauss
equations. The second step consists in finding, starting from the sets {E,F,G} and
{L,M,N} (obtained in the “preliminary” extrinsic geometric realization) and us-
ing the derivational equations, the radius vector−→r of the sought-for surface S ⊂ E3

and its unit normal vector −→n .3

2.3.3 The Rozhdestvenskii-Poznyak system of equations in
Riemann invariants

We next consider an important modification of the Peterson-Codazzi and Gauss
equations in the case of negative Gaussian curvature K = −k2 < 0. To do this
we introduce new, “reduced” coefficients l,m, n of the second fundamental form,

which are obtained by multiplying the ordinary coefficients L,M,N by
1√
W

,

W = EG− F 2 > 0:

l =
1√
W
· L, m =

1√
W
·M, n =

1√
W
·N. (2.3.29)

3The scheme described does in no way “invalidate” a successfull search for an isometric
immersion based on the primary relations

−→ru2 = E(u, v), −→ru · −→rv = F (u, v), −→rv2 = G(u, v),

which retain their universal form also in the more general case of a higher-dimensional ambient
space En with n ≥ 3.
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In terms of the functions l,m, n, the system of Peterson-Codazzi and Gauss
equations (2.3.23)–(2.3.25) (or (2.3.26)–(2.3.28)) is recast as

lv −mu = −Γ2
22 l + 2Γ2

12m− Γ2
11 n, (2.3.30)

nu −mv = −Γ1
22 l + 2Γ1

12m− Γ1
11 n, (2.3.31)

ln−m2 = −k2. (2.3.32)

Now let us introduce the functions r = r(u, v) and s = s(u, v) by

r = −m+ k

n
, s = −m− k

n
. (2.3.33)

The choice (2.3.33) is “geometrically” dictated by the fact that in the case of
the realization of a metric (2.2.7) of negative Gaussian curvature in the form of a
regular surface in E3, the functions r(u, v) and s(u, v) will have the intuitive mean-
ing of the angular coefficients of the images of the asymptotic lines on the surface
in the (u, v)-parametric plane. Applying Gauss’s formula (2.3.32) to (2.3.33), it is
easy to find that

l =
2krs

s− r
, m = −k(r + s)

s− r
, n =

2k

s− r
. (2.3.34)

If we now substitute the expressions (2.3.34) for the unknowns l, m, n in the
Peterson-Codazzi equations (2.3.30), (2.3.31), we arrive at a system of equations
of the form (see [76]):

ru + srv = A0 +A1 · r +A2 · s+A3 · r2 +A4 · rs+A5 · r2s, (2.3.35)

su + rsv = A0 +A1 · s+A2 · r +A3 · s2 +A4 · rs +A5 · rs2, (2.3.36)

for which the coefficients in the right-hand sides are given by the formulas

A0 = −Γ2
11,

A1 = Γ1
11 − Γ2

12 +Qu,

A2 = −Γ2
12 −Qu,

A3 = Γ1
12 +Qv,

A4 = −Γ2
22 + Γ1

12 −Qv,

A5 = Γ1
22,

Q =
1

2
ln k.

(2.3.37)

The system (2.3.35), (2.3.36) is a system of quasilinear equations of hyper-
bolic type.4 The expressions in the left-hand sides of the equations are the total

4Equations of this type, for example, are effectively studied in gas dynamics problems [97].
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derivatives of the functions r(u, v) and s(u, v) along the characteristics of the
system that are given by the equations

dv

du
= r(u, v),

dv

du
= s(u, v).

The functions r(u, v) and s(u, v) are called Riemann invariants .
The system in “Riemann invariants” was first proposed by B. L. Rozhdestven-

skii [96] in the case when the metric is written in a semi-geodesic coordinate system.
In the generic case (for arbitrary metrics of negative curvature) the system in its
definitive form (2.3.35), (2.3.36) was obtained by E. G. Poznyak [76].

The system (2.3.35), (2.3.36) is called the Rozhdestvenskii-Poznyak system of
fundamental equations of the theory of surfaces of negative curvature in Riemann
invariants .

In general, the system in “Riemann invariants” is not equivalent to the
system of Peterson-Codazzi and Gauss equations; however, when the condition
r(u, v) �= s(u, v) is satisfied, the functions l,m, n can be uniquely recovered from
the solutions of the system (2.3.35), (2.3.36) by means of the relations (2.3.34).

Notice also that the form of the system in “Riemann invariants” (2.3.35),
(2.3.36) offers (thanks to the quasilinearity of the equations) additional possibilities
in the study of the problem of isometric immersion of individual special domains
of the Lobachevsky plane Λ2 in the space E3 (see, e.g., [74, 125]).

2.3.4 Structure equations of a surface in E3

In the theory of surfaces, side by side with the approaches already described above,
a method was developed that uses the moving frame technique and provides a
description of surfaces in term of Cartan exterior forms [43, 55, 116, 117, 128]. Let
us present briefly this method. We should emphasize that the approach described
below reveals that its basic relations share certain features with the structure of
a series of nonlinear differential equations integrable by the method of the inverse
scattering transform (see § 3.9).

2.3.4.1. Linear differential forms: exterior product and exterior differential. Here
we define two important operations for linear differential forms, necessary for de-
riving the structure equations of surfaces in E3.

Consider linear differential forms of first degree (or 1-forms)

ω1 = a1du+ b1dv ω2 = a2du + b2dv.

The exterior product of the differential du by the differential dv is defined
to be the symbol du ∧ dv, interpreted geometrically as the area of the oriented
rectangle with sides du and dv. The following rules are assumed to hold:

du ∧ dv = −dv ∧ du,

du ∧ du = dv ∧ dv = 0.
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The exterior product of two 1-forms ω1 and ω2 is defined as

ω1 ∧ ω2 = (a1du+ b1dv) ∧ (a2du+ b2dv) =

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ du ∧ dv. (2.3.38)

The expression λ(u, v)du ∧ dv appearing in (2.3.38) is called a 2-form (or
exterior differential form of degree 2).

From (2.3.38) one directly derives the following properties of the exterior
product:

1) ω1 ∧ ω2 = −ω2 ∧ ω1,

2) ω1 ∧ (ω2 ± ω3) = ω1 ∧ ω2 ± ω1 ∧ ω3,

3) (λω1) ∧ ω2 = ω1 ∧ (λω2) = λ(ω1 ∧ ω2), λ = λ(u, v).

The exterior derivative dω of the 1-form

ω = p(u, v)du + q(u, v)dv

is the 2-form defined as
dω = dp ∧ du + dq ∧ dv. (2.3.39)

Since dp = pudu+ pvdv and dq = qudu+ qvdv, applying the properties listed
above we can verify that (2.3.39) can be rewritten as

dω = (qu − pv)du ∧ dv.

2.3.4.2. Structure equations of Euclidean space. Consider in the Euclidean space

E3 a point A, given by the radius vector
−→
R , and associate with it an orthonormal

frame (a triple of orthonormal vectors) {A,−→e1,−→e2,−→e3} (Figure 2.3.1):

Figure 2.3.1
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−→ej−→ek = δjk, δjk =

{
1, if j = k
0, if j �= k,

j, k = 1, 2, 3. (2.3.40)

At a point A∗ close to A, “separated” from A by d
−→
R , consider another

orthonormal frame,

{A∗,−→e1 + d−→e1,−→e2 + d−→e2,−→e3 + d−→e3}.
Choosing the initial frame {A,−→e1,−→e2,−→e3} as a basis in E3, let us decompose

the above vectors with respect to this frame:

d
−→
R = ωj−→ej , j = 1, 2, 3. (2.3.41)

d−→ej = ωk
j
−→ek, j, k = 1, 2, 3. (2.3.42)

We now pose the problem of finding the “decomposition coefficients” ωj and
ωk
j in (2.3.41) and (2.3.42), with the understanding that they represent linear

differential forms of the type a(u, v)du+ b(u, v)dv, i.e., “1-forms”.
We compute the exterior derivative of the left- and right-hand sides of equal-

ity (2.3.40), and then use the decomposition (2.3.42). This yields

ωk
j = −ωj

k, (2.3.43)

and, correspondingly,
ω1
1 = ω2

2 = ω3
3 = 0. (2.3.44)

Further, taking the exterior derivative of (2.3.41) we get

d2
−→
R = dωj ∧ −→ej − ωj ∧ d−→ej = 0,

whence
dωj = ωk ∧ ωj

k. (2.3.45)

Similarly, from (2.3.42) we obtain

dωk
j = ωl

j ∧ ωk
l . (2.3.46)

The equations (2.3.45), (2.3.46) are called the structure equations of the Eu-
clidean space E3.

Using the properties (2.3.43) and (2.3.44) of linear differential forms, we write
the structure equations (2.3.45), (2.3.46) in expanded form:

dω1 = −ω2 ∧ ω2
1 − ω3 ∧ ω3

1 ,

dω2 = ω1 ∧ ω2
1 − ω3 ∧ ω3

2 ,

dω3 = ω1 ∧ ω3
1 + ω2 ∧ ω3

2 .

(2.3.47)

dω2
1 = −ω3

1 ∧ ω3
2 ,

dω3
2 = −ω2

1 ∧ ω3
1 ,

dω3
1 = ω2

1 ∧ ω3
2 .

(2.3.48)



82 Chapter 2. Realizing the Lobachevsky geometry in Euclidean space

2.3.4.3. Structure equations of a surface in E3. To find the structure equations
of some surface S in E3 we shall assume that the point A chosen earlier lies on S:

A ∈ S(−→r ) ⊂ E3, −→r =
−→
R |A∈S . (2.3.49)

Essentially, (2.3.49) is a “constraint condition” on points of Euclidean space.
Let us place the “first two” vectors −→e1 and −→e2 of the frame {A,−→e1,−→e2,−→e3}

in the tangent space ΠA to the surface S at the point A: −→e1,−→e2 ∈ ΠA. Usually, as−→e1 one takes the tangent vector to the coordinate line u on the surface:

−→e1 =
1
−→ru |

−→ru|.

Obviously, the vector d−→r ≡ d
−→
R satisfies the condition d−→r ∈ ΠA. Therefore,

equations (2.3.41) must not involve the last term with the coefficient ω3, which

“drives” the vector d
−→
R beyond the limits of the tangent plane ΠA, i.e.,

ω3 = 0 for A ∈ S.

Consequently, the last equation in (2.3.47) can be written as

ω1 ∧ ω3
1 + ω2 ∧ ω3

2 = 0. (2.3.50)

A relation of the type (2.3.50), which connects four 1-forms, can (according
to Cartan’s theorem [116]) hold only in the case when these 1-forms are linearly
dependent, and then

ω3
1 = aω1 + b ω2,

ω3
2 = b ω1 + c ω2.

(2.3.51)

Substitution of (2.3.51) in the first equation of (2.3.48) yields

dω2
1 = −K · ω1 ∧ ω2,

where K = ac− b2 is the Gaussian curvature of the surface.
Eventually we obtain three equations that connect the 1-forms ω1, ω2, ω2

1 :

dω1 = −ω2 ∧ ω2
1 ,

dω2 = ω1 ∧ ω2
1 ,

dω2
1 = −K · ω1 ∧ ω2.

(2.3.52)

The system (2.3.52) is called the system of structure equations of a surface
in the Euclidean space E3.

The metric of the surface is determined by the 1-forms ω1 and ω2 as (see [55,
116]):

ds2 = (ω1)2 + (ω2)2. (2.3.53)

In § 3.9 we will study the connection between the system of equations (2.3.52)
and a special system of equations that arises in the implementation of the method
of the inverse scattering transform for the integration of nonlinear differential
equations.
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2.4 The Beltrami pseudosphere

In the context of our general treatment of questions connected with the possibil-
ity of realizing the Lobachevsky geometry in Euclidean space, central objects of
interest are the surfaces of Gaussian curvature K ≡ −1. The “primordial” such
surface, from which a whole class of surfaces that are now called pseudospherical
originated, is the pseudosphere (see § 1.3). The pseudosphere was the first estab-
lished geometric object in E3 that serves as the Euclidean image of non-Euclidean
hyperbolic geometry, restricted to a subset. A contribution to this result belongs
to E. Beltrami5 [63, 140, 141] who, while investigating the behavior of special types
of curves (first and foremost, geodesics) on the pseudosphere, proved that its met-
ric is identical in form with the metric of the Lobachevsky plane, considered in a
certain subset of it. This means that the hyperbolic planimetry is realized (though
only partially) on the pseudosphere.

Figure 2.4.1

Let us present the ideas of Beltrami’s classical study [140] published already
in 1868, with the understanding that the clear awareness of a key geometric
object—the pseudosphere—in conjunction with the apparatus of the theory of
surfaces we introduced before (see § 2.3), enables us to enrich considerably our
representations about the class of surfaces of constant negative curvature.6

5Beltrami’s works became the primary fundamental basis for a series of research directions in
contemporary geometry, such as, for example, the theory of geodesic mappings [174].

6See, for example, the Bäcklund transformations for pseudospherical surfaces (§ 3.1).
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So, let us consider the pseudosphere S, i.e., the surface of revolution obtained
by rotating the tractrix (see (1.3.16), § 1.3).

Concretely, suppose that in the space E3 there is given a Cartesian coordinate

system {X,Y, Z}; let −→i ,−→j ,−→k denote the unit vectors of the coordinate axes. We
will consider that the axis of revolution of the pseudosphere coincides with the
axis OZ, and that the origin of coordinates, i.e., the point O, lies in the plane of
the “big circle” of the pseudosphere (Figure 2.4.1), i.e., in the plane of its edge.
Pick on our surface some meridian M, and then pick a point P ∈ M. Then the

vector −→r =
−−→
OP is the radius vector of the pseudosphere.

Let us find the explicit form of the radius vector of the pseudosphere. Denote
by P ′ and P ′′ the projections of the point P ∈M ⊂ S on the (x, y)-plane and on
the axis OZ, respectively (Figure 2.4.1). Then

−→r =
−−→
OP =

−−→
OP ′ +

−−→
OP ′′; (2.4.1)

moreover,

−−→
OP ′ = x · (cosϑ−→i + sinϑ

−→
j ),

ϑ = (
−̂−→
OP ′,

−→
i ),

−−→
OP ′′ = z

−→
k .

The length |−−→OP ′| ≡ x of the vector
−−→
OP ′ is equal to the distance x(z) from

some point P of the meridian M to the axis of revolution OZ. Recall that the
shape of the meridian z(x) is given by the formula (1.3.16) we already obtained.
Substituting the expression (1.3.16) in (2.4.1) we obtain

−→r = sin t · (cosϑ−→i + sinϑ
−→
j ) +

(
ln cot

t

2
− cos t

)−→
k , (2.4.2)

where x = sin t.
To simplify the ensuing calculations, we introduce the vector −→ν ,

−→ν = cosϑ
−→
i + sinϑ

−→
j ,

which lies in the (x, y)-plane and obviously satisfies the conditions −→ν ‖ −−→OP ′,
−→ν ⊥ −→k . Then we have −→r = x · −→ν + z · −→k , (2.4.3)

d−→r = −→ν dx+ xd−→ν +
−→
k dz. (2.4.4)

Since the vectors −→ν , d−→ν , and
−→
k are orthogonal, i.e.,

(−→ν , d−→ν ) = 0, (−→ν ,
−→
k ) = 0, (d−→ν ,

−→
k ) = 0,

relation (2.4.4) yields

d−→r 2 = −→ν 2dx2 + x2d−→ν 2 +
−→
k 2dz2. (2.4.5)
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Next, using the equalities

−→ν 2 = 1, d−→ν 2 = dϑ2,
−→
k 2 = 1,

we simplify (2.4.5) to

d−→r 2 = dx2 + x2dϑ2 + dz2. (2.4.6)

If we now insert in (2.4.6) the expression (1.3.16), which gives the explicit
form of the tractrix (the meridian of revolution of the pseudosphere), we arrive at
the first fundamental form of the pseudosphere:

ds2 ≡ d−→r 2 =
dx2

x2
+ x2dϑ2, x ∈ (0, a], ϑ ∈ [0, 2π). (2.4.7)

The substitution x = e−σ, dσ = −dx/x allows us to recast (2.4.7) as

ds2 = dσ2 + e−2σdϑ2. (2.4.8)

The metric (2.4.8) is one of the possible representations of the metric of the
Lobachevsky plane [25, 39]. Applying the Gauss formula to the metric (2.4.8), the
reader will be able to independently verify that its Gaussian curvature is indeed
equal to −1.

Let us mention that, side by side with (2.4.8), there is a more general result
[25], which yields the metric form

ds2 = du2 + cosh2(
√−K · u)dv2 (2.4.9)

of a surface of constant negative Gaussian curvature K, written in semi-geodesic
coordinates on the surface with a geodesic base line.

The formulas obtained in this section allow us to carry out various calcula-
tions related to the pseudosphere. In particular, there are interesting results that
reveal certain similarities between the pseudosphere and the ordinary sphere.

For example, the total area of the pseudosphere is equal to 4πa2 (where a
denotes the radius of the “big parallel”, i.e., of the edge of the pseudosphere),7

which corresponds precisely to the value of the area of the ordinary Euclidean
sphere of radius a. The volume of the whole pseudosphere is equal to 2

3 πa
3, which

is half the volume of the ordinary ball of radius a [40].
Overall, let us emphasize that in his works Beltrami did, in essence, build

an analytic geometry on the pseudosphere which locally “turned out” to be the
two-dimensional hyperbolic Lobachevsky geometry. An important achievement of
Beltrami is the derivation of the equations of a geodesic line (“straight line” on
the hyperbolic plane) by using special coordinates (known today as Beltrami co-
ordinates [137]), in which a “straight line” is given by a linear equation.

Therefore, the analytic description of the pseudosphere consists of its rep-
resentation as a surface of revolution of constant negative curvature (Subsection
1.3.1), Beltrami’s results presented in this section, and the interpretation of the

7In this case the Gaussian curvature of the pseudosphere is calculated as K = −1/a2.



86 Chapter 2. Realizing the Lobachevsky geometry in Euclidean space

pseudosphere as the surface whose universal covering space is a horodisc domain
in the Lobachevsky plane Λ2 (Subsection 1.3.2).

Historically, E. Beltrami’s actual contribution to the study of the pseudo-
sphere’s surface found recognition in the fact that this surface is now known as
the Beltrami pseudosphere.

2.5 Chebyshev nets

In his 1878 work “Sur la coupe des vetements” (“On cutting cloth”) [119, 120,
194], the prominent Russian mathematician P. L. Chebyshev introduced a special
class of nets of lines, which reflect the characteristic structure of cloth (women
fabrics). Such nets, which are now known as Chebyshev nets , have the following
characteristic property: in any coordinate quadrilateral of such a net, the oppo-
site sides are of equal lengths. Later on, a generalization of this notion of net was
widely developed in geometry [127]. Making note of the priority and significance
of Chebyshev’s contribution to the foundation of classical theory of nets, we de-
vote the first part of this section to a detailed analysis of his work. As a whole,
Chebyshev nets represent a canonical geometric structure which can be associated
to a series of important nonlinear equations of mathematical physics (see Chapter
4).

2.5.1 On P. L. Chebyshev’s work “Sur la coupe des vetements”
(“On cutting cloth”). The Chebyshev equation

“Sur la coupe des vetements” was first presented by P. L. Chebyshev on August 28,
1878, as a report at the VII-th meeting of the French Association for the Advance-
ment of Science. This work studies the general problem of covering the surface of a
solid body by “pieces of a flat material”, or, in other words, unrolling this surface
on a plane (or constructing a template of it). Let us present now the main tenents
of Chebyshev’s investigations in the setting of the methods of modern geometry
and mathematical physics [92], while preserving, whenever possible, Chebyshev’s
original terminology.

In “Sur la coupe . . . ” Chebyshev poses the problem of the relation between
the shape of the body and the shape of the pieces of cloth covering it . For this
purpose, the covering material (cloth) is represented as a net composed of two
families of threads: warp (base) threads and weft (woof) threads.8.

Chebyshev asks: “What is the nature of changes that the elements of cloth
undergo when the cloth envelopes the body?” Here it is assumed that “in the
first approximation, when the cloth is being bent to cover some body, nothing
changes except for the inclination angles of the warp and weft threads, the length
of the threads remaining the same” (see Figure 2.5.1a: cloth (medium-sized cell),
b covering cloth).

In order for the cloth threads, which on the covered surface are subject to
extension, to remain in equilibrium, they must be of minimal length.

8In the weaving bussiness, weft threads are transverse threads which interlace the longitudinal
warp threads that form the base
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   covering
 of a body

Figure 2.5.1

Let us write the square of the length element for the uncut cloth (i.e., the
cloth lying on the plane) (Figure 2.5.1a):

ds2 = dx2 + dy2,

and for the cloth that covers the body:

ds2 = dx2 + 2 cosϕ dxdy + dy2. (2.5.1)

We use the Gauss formula (2.3.28) to compute the curvature K(x, y) of the
body’s surface (shell):

K(x, y) sin2 ϕ =
∂2 cosϕ

∂x∂y
+ cosϕ

∂ϕ

∂x

∂ϕ

∂y
. (2.5.2)

Relation (2.5.2) is a condition on the variation of the net angle ϕ(x, y) of the
covering net. As it follows from (2.5.1), in each cell of the net under consideration
the opposite sides are equal (Figure 2.5.1 b).

Further in Chebyshev’s work, it is proposed to pass to the most “appropriate”
coordinates for the investigation at hand, the coordinates connected to the shortest
lines on the surface. To this end, one writes the equation for the shortest lines
(geodesics) for the metric (2.5.1):

sin2 ϕ
d2y

dx2
+
∂ cosϕ

∂x

(
1 + cosϕ

dy

dx

)
− ∂ cosϕ

∂y

(
cosϕ+

dy

dx

)(
dy

dx

)2

= 0. (2.5.3)

The solution of (2.5.3) is, by assumption, the line y = 0, which implies that the
following condition is satisfied:(

∂ cosϕ

∂x

)∣∣∣∣
y=0

= 0.

That is to say, along the entire x-line on the covering shell the angle ϕ is constant
and equal to π/2. In a similar way one establishes that ϕ = π/2 for x = 0.

Following Chebyshev, we expand cosϕ in a series of powers of x and y:

cosϕ = xy(A0 +A1x+A2y + · · · ) (2.5.4)
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(rigorously speaking, such an expansion is valid only in a neighborhood of zero).
Inserting (2.5.4) in equation (2.5.2), we obtain an expression for the shortest,

with respect to the y-axis, lines on the surface (shell) of the covered body:

y = U −
(
K0

2
U +

K2

4
U2

)
x2 − K1

6
Ux3 + · · · , (2.5.5)

y = U,
dy

dx
= 0 for x = 0,

where
K0 = A0, K1 = 2A1, K2 = 2A2, . . . .

Thus, using the metric (2.5.1), we can now calculate the distance from an
arbitrary point of the surface to the y-axis (the line x = 0):

s =

∫ x

0

(y′2 + 1 + 2y′ cosϕ)1/2dx.

Inverting this last relation with respect to x, we finally obtain

x = x(s, U,K) = s+
1

6

(
K2

0U
2 +K0K2U

3 +
1

4
K2

2U
4

)
s3

+
1

8

(
K0K1U

2 +
1

2
K1K2U

3

)
s4 + · · · ,

y = y(s, U,K) = U −
(
1

2
K0U +

1

4
K2U

2

)
s2 − 1

6
K1Us3 + · · · . (2.5.6)

Relation (2.5.6) establishes a connection between the new, “suitable” for
cloth cutting coordinates (s, U) (semi-geodesic coordinates with base y), and the
original Chebyshev coordinates (x, y), associated with the covering cloth.

Chebyshev mentions in his work that, based on the derived formulas (2.5.6),
one can find the curves along which the different pieces of fabric must be cut
in order to assemble from them the shell of some given body. In doing so, two
preliminary conditions must be satisfied: 1) the parts of the surface that are covered
by the different pieces of fabric must be known, and 2) the positions of the base
threads on the surface (the lines x = 0 and y = 0) must be known (determined).
These cutting curves can be obtained by using the relations (2.5.6), which define
the rectangular coordinates x, y of the points of the cloth pieces in their original
plane for various values U and s given on the boundary of the corresponding parts
of the body’s surface.

It is known that in order to illustrate his ideas, Chebyshev, in his report,
proposed a sufficiently precise minimal (consisting of only two parts) cloth-cutting
template for the surface of the ball. Although in a subsequent published version
of the report [149] no drawing of such a template is provided, it is traditionally
considered that Chebyshev is indeed the author of the plane cut pattern of the
surface of the ball that is used to produce tennis balls (see Figure 2.5.2: covering
of the ball).
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Figure 2.5.2

Attempting to evaluate the work “On cutting cloth”, we note that the results
obtained therein have a significance that goes beyond the framework of the problem
posed originally. First of all, in this work Chebyshev obtained for the first time a
nonlinear equation of the type (2.5.2) (known today as the Chebyshev equation),9

which reduces to the form

∂2ϕ

∂x∂y
= −K(x, y) · sinϕ (2.5.7)

(Chebyshev equation).

In the case when K ≡ −1, the Chebyshev equation (2.5.7) becomes the
nowadays well-known in applications sine-Gordon equation:

∂2ϕ

∂x∂y
= sinϕ (2.5.8)

(sine-Gordon equation).

The sine-Gordon equation (2.5.8) has a universal character. On the one hand,
it describes regular isometric immersions of parts of the Lobachevsky plane Λ2 in
the Euclidean space E3 [74, 78, 80], and on the other, it is a model equation widely
used in physics [8, 50, 51, 80].

Let us emphasize also that it is in the work of Chebyshev we are discussing
that a connection between a differential equation (specifically, equation (2.5.7))
and a certain corresponding coordinate net (the Chebyshev net) was noted for the
first time. This “observation” was further developed in contemporary studies of
nonlinear equations of mathematical physics, which were also successfully associ-
ated with certain coordinate nets that generate them [77, 79, 185], a fact that laid
the foundations of geometric approaches to the integration of such equations.

2.5.2 Geometry of Chebyshev nets. The Servant-Bianchi equations

Suppose that on a regular surface S there is given a system of coordinate lines u
and v. Take an arbitrary point P (u, v) ∈ S and draw through it the corresponding

9At roughly the same time an equation of the form (2.5.7) appeared also in the work of
Hazzidakis [160], who obtained a formula for the computation of the area of a net quadrilateral
of the net of asymptotic lines on a surface of constant negative curvature.
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coordinate lines from each of the two families, until they intersect the initial lines
v = 0 (u-line) and u = 0 (v-line) at the points P1 and P2, respectively (Figure
2.5.3).

Figure 2.5.3

The segments PP1 and PP2 are parts of coordinate lines, on which the value
of one of the coordinate parameters u or v are constant. The coordinates of the
point P (u, v) are determined by the coordinates of the points P1(u, 0) and P2(0, v).

Denote the lengths of the coordinate line segments PP1 and PP2 by

l1 = PP1, l2 = PP2.

It is clear that in the general case the lengths l1 and l2 are functions of the position
of the point P (u, v) on the surface, i.e., l1 = l1(u, v) and l2 = l2(u, v).

We will be interested in the special (nontrivial) situation when

l1 = l1(v), l2 = l2(u). (2.5.9)

If some current point moves along the coordinate line PP1 (u = const) (i.e.,
goes through the intermediate positions P ′1, P

′′
1 , . . .), then the corresponding co-

ordinate projection on the v-line (u = 0) goes through the intermediate points
P ′2, P ′′2 , . . .). The lengths of the corresponding curvilinear segments will be equal:

P2P = P ′2P
′
1 = P ′′2 P

′′
1 = · · · = OP1, (2.5.10)

because
l2(P ) = l2(P

′
1) = l2(P

′′
1 ) = · · · = l2(P2)

in view of (2.5.9) and the fact that the points P, P ′1, P
′′
1 , . . . , P1 lie on the same

coordinate line u = const.
Equalities analogous to (2.5.10) can be derived by considering the motion of

the current point along the coordinate lines of the other family:

P2P
′
2 = PP ′1, P ′2P

′′
2 = P ′1P

′′
1 , P ′′2 O = P ′′1 P1. (2.5.11)
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The relations (2.5.10), (2.5.11) obtained above express a key geometric prop-
erty of the net of coordinate lines at hand: in each net coordinate quadrilateral of
such a net 10 the opposite sides are of equal lengths . Such nets are called Chebyshev
nets .11

On the whole, Chebyshev nets express the property of size uniformity of a
curvilinear coordinate net.

Before we derive the form of the metric in the Chebyshev parametrization,
let us rewrite a metric (2.2.7) of general form

ds2 = E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2

in a slightly modified form. To this end, recalling that the coefficients E and G
are positive (see (2.2.6)), we introduce the new notations

E = A2, G = C2.

Then the metric is written as

ds2 = A2du2 + 2AC cosϕ dudv + C2dv2, (2.5.12)

where cosϕ = F/(AC).
From (2.5.12) it is clear that along the coordinate lines u (v = const) and v

(u = const) the length changes as

ds1 = Adu on the line u : v = const, dv = 0,

ds2 = Cdv on the line v : u = const, du = 0.
(2.5.13)

Returning to our exposition, let us remark that in a Chebyshev net the result
of measuring the length s1 in (2.5.13) along the line u does not depend on v, and
hence in this case the coefficient A in (2.5.12) will depend only on u: A = A(u).
Similarly, C = C(v). Therefore, for a Chebyshev net the square of the linear
element (2.5.12) takes on the more precise form

ds2 = A2(u)du2 + 2A(u)C(v) cosϕ(u, v)dudv + C2(v)dv2. (2.5.14)

The substitution

ũ =

∫ u

u0

A(u)du, ṽ =

∫ v

v0

C(v)dv,

where (u0, v0) is some fixed point, reduces the metric (2.5.14) to the form

ds2 = dũ2 + 2 cosϕ(ũ, ṽ)dũdṽ + dṽ2. (2.5.15)

Every metric can be reduced to the form (2.5.15) (in this case Ẽ = 1, F̃ =

cosϕ, G̃ = 1) by an admissible transition to the Chebyshev parametrization. And

10A net that satisfies condition (2.5.9).
11Alternative versions of the name found in the literature are Chebysheff, Chebyshov, Tcheby-

chev, and Tchebycheff.
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conversely, if a metric has the form (2.5.15), then the coordinates on the surface
are Chebyshev coordinates . Henceforth the Chebyshev net of lines (u, v) will be
denoted by Cheb(u, v). As a general notation for a net of lines (u, v) we will use
the symbol T (u, v).

Calculating the Christoffel symbols Γ1
12, Γ

2
12 of a Chebyshev metric (2.5.15)

by means of formulas (2.3.10), it is not difficult to verify that

Γ1
12 = 0, Γ2

12 = 0. (2.5.16)

Equalities (2.5.16) express a characteristic Chebyshev net criterion, i.e., they
are necessary and sufficient for a net to be a Chebyshev net. The necessity was
established above, when we derived (2.5.16) from (2.5.15). Let us prove the suffi-
ciency. So, suppose that the conditions (2.5.16) are satisfied. Then by (2.3.10) we
have

Γ1
12 =

1

2W
(EvG−GuF ) = 0,

Γ2
12 =

1

2W
(GuE − EvF ) = 0.

(2.5.17)

In essence, relations (2.5.17) represent a homogeneous system of linear equa-
tions for Ev and Eu that can have only the trivial solution:

Ev = 0, Gu = 0. (2.5.18)

This clearly means that
E = E(u), G = G(v),

that is, the metric under consideration is of the form (2.5.14), which is reducible to
the Chebyshev form (2.5.15). This establishes the sufficiency of equalities (2.5.16).

Let us study conditions under which on a surface it is possible to pass
to a Chebyshev net. Consider a smooth surface S and on it some regular net
T1(v1, v2) ⊂ S.12 Let T2(u1, u2) ⊂ S be another coordinate net on the same sur-
face, so that

u1 = u1(v1, v2),

u2 = u2(v1, v2),
(2.5.19)

with ∣∣∣∣∣∣∣∣
∂u1

∂v1

∂u1

∂v2
∂u2

∂v1

∂u2

∂v2

∣∣∣∣∣∣∣∣ �= 0.

(The last condition guarantees that the Jacobian of the transformation (v1, v2) �→
(u1, u2)) is not trivial.)

12In this setting of the problem it is convenient to denote the coordinate lines of different
families of the net by the same letter, but with different indices.
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Let us find under what conditions the change of coordinates (2.5.19) maps
the initial coordinate net T1(v1, v2) into a new coordinate net T2(u1, u2) that is a
Chebyshev net: T2(u1, u2) ≡ Cheb(u1, u2). To this end we use the well-known rule
of transformation of the Christoffel symbols when we pass from one coordinate
system to another (see [40, 81]):

Γ̃γ
αβ =

(
Γk
ij

∂ui

∂vα
· ∂uj

∂vβ
+

∂2uk

∂vα∂vβ

)
· ∂vγ
∂uk

(2.5.20)

(here one sums over the repeated indices i, j, k = 1, 2).
If we assume that the new net is Chebyshev, then conditions (2.5.16) must

be satisfied:

Cheb(u1, u2) :
Γ̃1
12 = 0,

Γ̃2
12 = 0.

(2.5.21)

Relations (2.5.21) represent, in view of (2.5.20), a homogeneous system of
linear equations with respect to the quantities enclosed in parentheses in formula
(2.5.20). Such a system has (provided that the condition on the Jacobian written
below (2.5.19) is satisfied) only the trivial solution. Thus, we arrive at the system
of equations

∂2u1

∂v1∂v2
+ Γ1

αβ ·
∂uα

∂v1
· ∂uβ

∂v2
= 0,

∂2u2

∂v1∂v2
+ Γ2

αβ ·
∂uα

∂v1
· ∂uβ

∂v2
= 0,

α, β = 1, 2, (2.5.22)

which gives the relations effecting the transition from some given net T1(v1, v2) to
a Chebyshev coordinate net Cheb(u1, u2):

T1(v1, v2) �−→ Cheb(u1, u2).

The system (2.5.22) is called the system of Servant-Bianchi equations [142,
192].

Let us make more precise the problem posed for equations (5.2.22) under the
transition to a Chebyshev net.

Choose a point M on the surface S, and represent it in the two considered
nets, T1(v1, v2) and Cheb(u1, u2):

M(v01 , v
0
2) ≡M(u0

1, u
0
2).

Recalling (2.5.19), we have

u0
1 = u1(v

0
1 , v

0
2), u0

2 = u2(v
0
1 , v

0
2).

Let the initial data on the coordinate lines be defined as

u1(v1, v2) |v2=v0
2

= f1(v1),

u2(v1, v2) |v2=v0
2

= f2(v1).
(2.5.23)
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Obviously,
f1(v

0
1) = u0

1, f2(v
0
1) = u0

2.

Similarly, let us write the initial conditions in terms of the functions g1(v2)
and g2(v2):

u1(v1, v2) |v1=v0
1
= g1(v2),

u2(v1, v2) |v1=v0
1
= g2(v2), (2.5.24)

g1(v
0
2) = u0

1, g2(v
0
2) = u0

2.

The freedom in the choice of the functions f1, f2, g1, and g2 is restricted only
by the natural condition (analogous to (2.5.19))

∂f1
∂v1

· ∂g2
∂v2

− ∂f2
∂v1

· ∂g1
∂v2

�= 0. (2.5.25)

The system (5.2.22) under consideration can be reduced, by a linear change
of variables, to a system of equations solved with respect to the highest-order
derivatives, i.e., to a system in normal form [48, 113]. Consequently, to the system
(2.5.22), supplemented by the conditions (2.5.23), (2.5.24), one can apply the
classical theorems on existence and uniqueness of solutions from the theory of
partial differential equations [46, 48].

From a geometric point of view, this means that locally, in the vicinity of the
given regular point M ∈ S, one can always pass from an arbitrarily given regular
coordinate net T1(v1, v2) ⊂ S to a Chebyshev net Cheb(u1, u2) ⊂ S, and in fact
in such a way that the initial coordinate lines u1 and u2 of the net Cheb(u1, u2)
can be chosen with a considerable degree of freedom (the only constraint being
condition (2.5.25)).

We can thus formulate the following theorem.

Theorem. Suppose that through some point M on the regular part of the surface
S ⊂ E3 one draws two different arbitrary (but such that (2.5.25) holds) curves on
S. Then in a sufficiently small neighborhood of the point M there always exists a
unique Chebyshev net, constructed on these curves.

It is important to note that, overall, all the results present in this section
concern surfaces with arbitrary Gaussian curvature.

Let us also mention several popular-science publications on the theme studied
here [80, 89, 109] that the reader may find useful.

2.6 D. Hilbert’s result on the impossibility of realizing
the complete Lobachevsky plane Λ2 in the space E3

By possible realization of the Lobachevsky plane Λ2 in the Euclidean space E3 we
mean the existence in E3 of a surface S(Λ2) ⊂ E3 of constant negative Gaussian
curvature on which the complete two-dimensional Lobachevsky geometry would
be globally realized. According to the ideas of E. Beltrami, presented in his work
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“Saggio di interpretazione della geometria non Euclidea” (“Essay on the inter-
pretation of non-Euclidean geometry”) [140], the role of the straight lines in the
Lobachevsky plane must be played on the surface S(Λ2) by the shortest (geodesic)
lines, and the “lengths” and “angles” on S(Λ2) must coincide with the correspond-
ing “lengths” and “angles” in the Lobachevsky planimetry. Let us note that none
of the classical pseudospherical surfaces (of curvature K ≡ −1) that we considered
in § 1.3 can serve as an example of realization in E3 of the complete plane Λ2. On
such surfaces one can achieve only a “fragmentary” realization of the Lobachevsky
plane Λ2, reflecting the geometry of certain of its individual sub-domains (horodisc,
equidistant strip, etc.), which cannot be extended beyond the singularities aris-
ing on the surface: irregular edges, peak (spike) points, and so on. Geometrically,
the aforementioned “non-extendability” intuitively meant that it is impossible to
continuously extend a surface of constant negative curvature beyond a singularity
in such a way that the tangent plane to the surface will also vary in a continuous
manner.

In the context of the problem we are discussing here, D. Hilbert posed in 1901
the following question: Does there exists, in the Euclidean space E3, an analytic
surface of constant negative curvature, free of singularities and regular everywhere?
In other words, does the complete Lobachevsky plane Λ2 admit a regular realiza-
tion in E3? The answer to this question, obtained by Hilbert himself, turned out
to be negative, in the sense that such a realization is in principle not possible.

Let us present next Hilbert’s ideas [17]. On a surface of constant negative
curvature there always exist two distinct families of asymptotic lines, which form
an asymptotic net on the surface. Furthermore, an asymptotic net of lines on a
surface of curvature K ≡ const < 0 is always a Chebyshev net .13 For this reason
we will start under the assumption that on the surface S(Λ2) ⊂ E3, with K ≡ −1,
which supposedly realizes in regular manner in E3 the complete Lobachevsky plane
Λ2, there is a global Chebyshev net of asymptotic lines, Cheb[S(Λ2)]. In this case
the metric of the surface S(Λ2) takes on the form

ds2 = du2 + 2 cosϕ(u, v) dudv + dv2, u, v ∈ R2, (2.6.1)

and the net angle ϕ(u, v) will satisfy the sine-Gordon equation

∂2ϕ

∂u∂v
= sinϕ. (2.6.2)

The regularity of the surface S(Λ2) ⊂ E3 presumes the global existence on
S(Λ2) of a regular net of asymptotic lines, i.e., a net in which the net angle ϕ(u, v)
must satisfy everywhere the condition

0 < ϕ(u, v) < π, u, v ∈ R2. (2.6.3)

Condition (2.6.3) must guarantee that the existing coordinate net Cheb[S(Λ2)] is
not “degenerate”, meaning that lines belonging to its different families are not
tangent to one another.

13For more details, see Subsection 2.7.3.
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In this connection, a fundamental result asserts that the sine-Gordon equa-
tion (2.6.2) does not admit regular solutions ϕ(u, v) that are defined on the whole
plane R2(u, v) and satisfy the condition (2.6.3). Geometrically, this fact corre-
sponds to the non-realizability of the complete plane Λ2 in E3. Let us now turn
now to the p r o o f of the assertion formulated above.

Suppose that, on the contrary, equation (2.6.2) has a solution that is defined
on the whole parameter plane R2(u, v) and satisfies (2.6.3). We will assume that
the net angle function ϕ(u, v) is defined and continuous for all (u, v) ∈ R2 and has
continuous partial derivatives “in accordance to equation (2.6.2)”.

Let us choose on the surface S(Λ2) an initial point u0 = 0, v0 = 0 such that
in it

0 < ϕ(0, 0) < π, (2.6.4)

ϕu(0, 0) > 0. (2.6.5)

Such a choice of initial point is absolutely correct, because condition (2.6.4) is
a particular case of (2.6.3), and the vanishing of the derivative ϕu in (2.6.5) would,
in conjunction with (2.6.2), contradict condition (6.2.4) itself. (The alternative case
ϕu(0, 0) < 0 in (2.6.5) can be treated in analogous manner.)

By the assumed condition (2.6.3),

sinϕ(u, v) > 0, ∀u, v ∈ R2,

whence,
∂2ϕ

∂u∂v
=

∂

∂v
(ϕu) > 0. (2.6.6)

Inequality (2.6.6) means that the function ϕu is increasing in the parameter
v (for any fixed value of u). Consequently,

0 < ϕu(0, v1) < ϕu(0, v),

0 < ϕu(u
∗, v1) < ϕu(u

∗, v)
(2.6.7)

for v > v1 > 0 and fixed u∗.
Consider now in the plane R2(u, v) the point (0, v1). Thanks to the condition

ϕu(0, v1) > 0, one can assert that on the line v = v1 = const (line of the Chebyshev
net Cheb(u, v)) one can exhibit a segment u ∈ [0, 3a] 14 on which the following
inequality holds:

ϕu(u, v1) > 0, u ∈ [0, 3a]. (2.6.8)

Let
m = min

u∈[0,3a]
ϕu(u, v1), m > 0.

Let us divide the segment [0, 3a] into three equal parts. For the first and the
third of them we write the classical Lagrange formula for the function ϕ(u, v), for
v > v1 (Figure 2.6.1):

14The existence of such a segment, on which (2.6.8) holds is, in essence, a particular case of
the more general condition that there exists a neighborhood of the point (0, v1) in which the
derivative ϕu is strictly positive.
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Figure 2.6.1

ϕ(a, v)− ϕ(0, v) = ϕu(Θ1a, v) · a,
ϕ(3a, v)− ϕ(2a, v) = ϕu(2a+Θ2a, v) · a, (2.6.9)

where Θ1,Θ2 ∈ (0, 1). In what follows we will use for Θ1 and Θ2 the common
general notation Θ.

By the second inequality in (2.6.7),

ϕu(Θa, v) > ϕu(Θa, v1) ≥ m. (2.6.10)

From (2.6.9) and (2.6.10) it follows that

ϕ(a, v) − ϕ(0, v) > ma,

ϕ(3a, v)− ϕ(2a, v) > ma for v > v1.

Hence,

ϕ(a, v) > ϕ(0, v) +ma > ma,

ϕ(2a, v) < ϕ(3a, v)−ma < π −ma for v > v1,
(2.6.11)

where we have used condition (2.6.3)
As the second inequality in (2.6.7) shows, on the half-strip {u ∈ [0, 3a],

v > v1} the solution ϕ(u, v) is monotonically increasing in u; in particular, it
necessarily holds that

ϕ(a, v) ≤ ϕ(u, v) ≤ ϕ(2a, v), u ∈ [a, 2a], v > v1,

which upon using (2.6.11) is strengthened to

ma < ϕ(u, v) < π −ma, m, a > 0. (2.6.12)
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From (2.6.12) it follows that

sinϕ(u, v) > sin(ma) ≡M,

M = const, 0 < M < 1.
(2.6.13)

Thus, we derived the important estimate (2.6.13), which holds in the quadri-
lateral σ of the Chebyshev net with the vertices at the points (a, v1), (a, v), (2a, v),
and (2a, v1) (Figure 2.6.1). Let us calculate the double integral over this domain
of the left-hand and right-hand sides of the equation (2.6.2). This yields

∫∫
σ

∂2ϕ

∂u∂v
dudv =

2a∫
a

v∫
v1

∂2ϕ

∂u∂v
dudv

= (ϕ(2a, v)− ϕ(a, v)) − (ϕ(2a, v1)− ϕ(a, v1)) < π. (2.6.14)

To obtain the final estimate (2.6.14) we used the original condition (2.6.4)
and the fact that ϕ(u, v) is an increasing function of u.∫∫

σ

sinϕ(u, v)dudv > M

∫∫
σ

dudv = Ma(v − v1). (2.6.15)

The value of v in (2.6.15) can be always chosen so that the value of the integral
will become larger than π.

Thus, the obtained estimates (2.6.14) and (2.6.15) lead to a contradiction.
Therefore, there does not exist a solution ϕ(u, v) of the sine-Gordon equation
(2.6.2) that satisfies the condition (2.6.3) in the whole (u, v)-parameter plane.
Geometrically this means that in the space E3 there is no analytic surface of
constant negative curvature that has no singularities and is regular everywhere.
In other words, according to Hilbert’s result, the geometry of the Lobachevsky
plane Λ2 cannot be globally realized on some regular analytic surface in the three-
dimensional Euclidean space E3.

Hilbert’s classical result was subsequently developed in works of N. V. Efimov
and E. G. Poznyak, in which it was generalized to the case of complete regular
surfaces with a negative upper bound of the Gaussian curvature [26, 28]. N. V.
Efimov also proved the nonimmersibility in E3 of the Lobachevsky half-plane [27].

2.7 Investigation of pseudospherical surfaces and the
sine-Gordon equation

Hilbert’s result given in § 2.6 means that in the Euclidean space E3 there is pos-
sible only a partial, “fragmentary” realization of the Lobachevsky planimetry on
surfaces, which unavoidably have singularities: irregular edges (cuspidal edges),
cusp points, etc. These singularities are “constituted” by precisely those points in
which the solution of the sine-Gordon equation (the net angle) “crosses” values
that are multiples of π. It is at these points that the Chebyshev net of asymptotic
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lines is “crushed”: lines of different families of the net become tangent to one an-
other, thereby forming envelopes of both families [70, 78], a prototype of irregular
edge of a surface in E3. In this section we address various problems concerned with
the structure of surfaces of constant negative curvature.

2.7.1 Curves in space. Frenet formulas

Consider a C3-smooth curve L in the space E3, defined by its radius vector
−→
R :

−→
R (t) = {x(t), y(t), z(t)}. (2.7.1)

The vector
−→
R ′(t) is the direction vector of the tangent to the curve L. Recall

that a straight line is said to be tangent to a curve at a given point is it realizes the
limit position of a straight-line secant that passes through the given point (“point
of tangency”) and another, infinitesimally close to it point of the curve, when the
later approaches the former.

Let introduce the (natural) parameter s for the given curve L by

s =

t∫
t0

|−→R ′|dt; (2.7.2)

s has the meaning of length, measured along the curve L itself.
Differentiating (2.7.2) we obtain

ds = |−→R ′|dt,
whence

(ds)2 = (d
−→
R )2, (2.7.3)

or (
d
−→
R

ds

)2
= 1.

That is to say, the vector

−→τ (s) ≡ d
−→
R

ds
, −→τ 2(s) = 1 (2.7.4)

is the unit tangent vector to the curve L at each of its points.
We introduce also the vector

d−→τ
ds

=
d2
−→
R

ds2
,

which clearly characterizes the speed with which the tangent vector −→τ (s) rotates

as one “advances” along the curve L; its length k(s) =
∣∣∣d2−→R/ds2

∣∣∣ is the curvature
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of the curve L. At the same time, it is convenient to use the unit vector −→ν (s)
given by

−→ν (s) ≡ 1

k(s)
· d
−→τ
ds

=
1

k(s)
· d

2−→R
ds2

, (2.7.5)

called the principal normal vector to the curve.
Differentiating the equality −→τ 2 = (−→τ ,−→τ ) = 1 (see (2.7.4)), we obtain(

−→τ (s),
d−→τ
ds

)
= 0,

and in view of (2.7.5) we have

(−→τ (s),−→ν (s)) = 0. (2.7.6)

The vanishing of the scalar product (2.7.6) means that the unit vectors−→τ and−→ν are orthogonal. We take the vector (cross) product these vectors to construct

a new unit vector
−→
β (s) as −→

β = [−→τ ,−→ν ]; (2.7.7)

−→
β is called the binormal vector to the curve.

The right-handed triple of orthonormal vectors −→τ , −→ν ,
−→
β (see Figure 2.7.1)

given by formulas (2.7.4), (2.7.5), and (2.7.6) is called the fundamental trihedron
(frame), or Frenet trihedron (frame) of the space curve L.15

Figure 2.7.1

Consider the vectors −→τ , −→ν , and
−→
β in some point A on the curve L. The plane

γ1 that passes through A and contains the vectors−→τ and −→ν is called the osculating
plane of L at the point A. In view of the way our vectors were constructed, it is

clear that
−→
β is orthogonal to the plane γ1. The plane γ2 that passes through the

point A and contains the principal normal −→ν and the binormal
−→
β is called the

15Sometimes called the “trihedron attached to the curve”.
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normal plane to the curve L (Figure 2.7.1); γ2 is orthogonal to the tangent vector−→τ to the curve L. The mutual positions of the geometric objects under discussion

is shown in Figure 2.7.1: −→τ ,−→ν ∈ γ1;
−→
β ⊥ γ1;

−→ν ,
−→
β ∈ γ2;

−→τ ⊥ γ2; γ1 ⊥ γ2. On
this figure, the doted curve L′ in the osculating plane γ1 is the projection of the
curve L.

Differentiating (2.7.7) we obtain

d
−→
β

ds
=

[
d−→τ
ds

,−→ν
]
+

[
−→τ , d

−→ν
ds

]
= [k−→ν ,−→ν ] +

[
−→τ , d

−→ν
ds

]
=

[
−→τ , d

−→ν
ds

]
. (2.7.8)

From (2.7.8) it follows that the vector d
−→
β /ds is orthogonal to the vector

−→τ ; moreover, d
−→
β /ds is orthogonal to

−→
β “by construction”. Hence, d

−→
β /ds is

orthogonal to the plane that contains −→τ and
−→
β , and accordingly is collinear with

the vector
d
−→
β

ds
= −æ(s) · −→ν (s). (2.7.9)

The proportionality coefficient æ(s) in (2.7.9) is called the torsion of the
curve L. It measures the speed at which the osculating plane rotates around the
tangent straight line to the curve. If the curve is plane, its torsion is equal to zero.

A cyclic permutation of the orthonormal vectors in (2.7.7) yields

−→ν = [
−→
β ,−→τ ]. (2.7.10)

Differentiating in (2.7.10) and recalling (2.7.9) and (2.7.5), we obtain

d−→ν
ds

=

[
d
−→
β

ds
,−→τ
]
+

[−→
β ,

d−→τ
ds

]
,

or
d−→ν
ds

= æ(s)
−→
β (s)− k(s)−→τ (s). (2.7.11)

Let us add to the list of relations given above the equality

d−→τ
ds

= k(s)−→ν (s), (2.7.12)

which is a consequence of (2.7.5).

Equations (2.7.9), (2.7.11), and (2.7.12) form a system called the Frenet for-
mulas : they describe how the vectors of the fundamental frame ( trihedron) change
as one moves along the curve L in E3.

It is convenient to write the Frenet formulas in matrix form:

d

ds

⎛⎝ −→τ−→ν−→
β

⎞⎠ =

(
0 k(s) 0

−k(s) 0 æ(s)
0 −æ(s) 0

)⎛⎝ −→τ−→ν−→
β

⎞⎠ . (2.7.13)
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To finish this subsection, let us “summarize” the formulas for the important

characteristics of the space curve L in E3, given in terms of its radius vector
−→
R (s)

(where s is the natural parameter on the curve):

−→τ =
−→
R ′(s), −→ν =

−→
R ′′(s)

|−→R ′′(s)|
,
−→
β =

[
−→
R ′(s),

−→
R ′′(s)]

|−→R ′′(s)|
,

k = |−→R ′′(s)|, (2.7.14)

æ =
(
−→
R ′(s),

−→
R ′′(s),

−→
R ′′′(s))

k2
.

Let us list a number of references that are useful in the study of the questions
considered here: [7, 64, 70, 81, 94].

In what follows, our main interest in the realm of space curves will be paid
to the asymptotic lines and the cuspidal edges on pseudospherical surfaces.

2.7.2 Surface strip. Curvature of a curve on a surface

Consider in E3 a curve L, given by its radius vector
−→
R =

−→
R (s), where s is the

natural parameter of the curve. Let −→μ (s) be some unit vector given on L, such
that −→μ (s) is orthogonal to the tangent vector −→τ (s) to L. Such a pair, consisting
of a curve L and a vector −→μ with the indicated property, will be called a sur-
face strip and will be denoted by Π(L,−→μ ). Further, let us introduce the vector−→ng(s) = [−→μ (s),−→τ (s)], called the geodesic normal vector of the surface strip Π. The
vectors −→τ , −→ng, −→μ form an orthonormal triple. Let us calculate their derivatives
and decompose them with respect to the triple itself:

d−→τ
ds

= α11
−→τ + α12

−→ng + α13
−→μ ,

d−→ng
ds

= α21
−→τ + α22

−→ng + α23
−→μ , (2.7.15)

d−→μ
ds

= α31
−→τ + α32

−→ng + α33
−→μ .

The coefficients of the decomposition (2.7.15) can be determined by differen-
tiating the equalities

−→τ 2 = 1, −→n 2
g = 1, −→μ 2 = 1,

(−→τ ,−→ng) = 0, (−→μ ,−→ng) = 0, (−→τ ,−→μ ) = 0.

This yields

α11 = α22 = α33 = 0,

α21 = −α12, α31 = −α13, α32 = −α23.
(2.7.16)

For the nonzero coefficients in (2.7.16), which characterize the surface strip,
we will use the following notation and terminology:



2.7. Pseudospherical surfaces and sine-Gordon equation 103

kg ≡ α12 is the geodesic curvature of the surface strip,

kn ≡ α13 is the normal curvature of the surface strip,

æg ≡ α23 is the geodesic torsion of the surface strip.

Using the notations introduced, the system (2.7.15) is rewritten as

d−→τ
ds

= kg
−→ng + kn

−→μ ,

d−→ng
ds

= −kg−→τ +æg
−→μ ,

d−→μ
ds

= −kn−→τ − æg
−→ng.

(2.7.17)

The system (2.7.17) is called the system of Frenet differentiation formulas
for the surface strip. The vectors −→τ , −→ng, −→μ form the fundamental frame of the
surface strip. The system (2.7.17) admits the convenient matrix representation

d

ds

⎛⎝ −→τ
−→ng−→μ

⎞⎠ =

⎛⎝ 0 kg kn
−kg 0 æg

−kn −æg 0

⎞⎠⎛⎝ −→τ
−→ng−→μ

⎞⎠ . (2.7.18)

Notice that if the vector −→μ coincides with the principal normal vector −→ν
to the curve L (see Subsection 2.7.1), then a comparison of the systems (2.7.17)
and (2.7.12) shows that in this case kg = 0. A surface strip along which kg = 0
identically is called a geodesic surface strip.

If now the vector −→μ coincides with the binormal vector
−→
β , then from (2.7.9)

and the third equation in (2.7.17) it readily follows that kn = 0. A surface strip
along which kn = 0 identically is called an asymptotic surface strip.

Now let us give formulas for the calculation of the geometric quantities in-
troduced above [7]:

kn(s) =

(
d2
−→
R

ds2
,−→μ
)
,

kg(s) =

(
d
−→
R

ds
,
d2
−→
R

ds2
,−→μ
)
,

æg(s) =

(
d
−→
R

ds
,−→μ ,

d−→μ
ds

)
.

(2.7.19)

(The parentheses in (2.7.19) denote the mixed product of vectors.)
Note that the normal curvature kn(s) of a curve that arose in our consid-

erations has exactly the same meaning as the analogous notion introduced in
Subsection 2.2.4 by means of intuitive geometric arguments.
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Let us complete the exposition by giving an important classical formula. The
normal curvature kn of a curve that passes through a given point on the surface
in the direction (du : dv) 16 can be calculated by the formula [7, 81]

kn =

(
II(u, v)

I(u, v)

)∣∣∣∣
(du:dv)

=

(
Ldu2 + 2Mdudv +Ndv2

Edu2 + 2Fdudv +Gdv2

)∣∣∣∣
(du:dv)

. (2.7.20)

The notion of surface strip will be used in Subsection 2.7.4 when we will
consider E. G. Poznyak’s theorem on pseudospherical surfaces. In this case, as
curves (base lines) that specify the surface strip we will use the asymptotic lines
on the surface.

2.7.3 The Chebyshev net of asymptotic lines on a pseudospherical
surface

A direction (du : dv) at a given point P (u, v) on the surface S(−→r (u, v)) ⊂ E3

is called asymptotic if in this direction the normal curvature kn is equal to zero.
From (2.7.20) it follows that the asymptotic directions (du : dv) on a surface are
given by the differential relation

L(u, v)du2 + 2M(u, v)dudv +N(u, v)dv2 = 0. (2.7.21)

Further, (2.7.21) yields an important consequence for the ensuing analysis: at
any hyperbolic point P of the surface (where (LN −M2)|P∈S < 0, see Subsection
2.2.3) there always exists two distinct asymptotic directions.

Recall that a line on a surface is called an asymptotic line, if at each of its
points its direction is asymptotic. We list two important properties of asymptotic
lines:

1) If a surface in E3 contains a straight line, then this straight line is an asymp-
totic line on the surface.

2) The tangent plane to the surface at any point of an asymptotic lines is the
osculating plane of the surface at that point.

On a pseudospherical surface one can always introduce asymptotic coordi-
nates (u, v). The coordinate directions are then given as (du : 0) and (0 : dv).
Using these conditions in (2.7.21), we immediately obtain

L = 0, and N = 0. (2.7.22)

Thus, if on a surface in E3 the intrinsic coordinates u, v become asymptotic
coordinates, then its second fundamental form takes on the form

II(u, v) = 2M(u, v)dudv, (2.7.23)

where M2 = EG− F 2.

16The parameters u, v retain their meaning from § 2.3.
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Under the conditions (2.7.22) and (2.7.23), the Peterson-Codazzi equations
reduce to the equalities

EvG−GuF = 0,

GuE − EvF = 0,

which represent exactly the criterion (2.5.17) for a net to be a Chebyshev net
(vanishing of the Christoffel symbols: Γ1

12 = 0, Γ2
12 = 0).

We thus reached the following conclusion: an asymptotic coordinate net on a
pseudospherical surface is a Chebyshev net . Accordingly, in asymptotic coordinates
(u, v), the metric of a pseudospherical surface reads

ds2 = du2 + 2 cos z(u, v)dudv + dv2, (2.7.24)

where z(u, v) is a solution of the sine-Gordon equation

zuv = sin z. (2.7.25)

Now let us turn to the fundamental equations that define a pseudospherical
surface in the space E3. To this end we write the Peterson-Codazzi and Gauss
equations (2.3.23)–(2.3.25) for the Chebyshev metric (2.7.24) of Gaussian curva-
ture K ≡ −1:

Lv −Mu − zu
sin z

· (N − cos z ·M) = 0, (2.7.26)

Mv −Nu +
zv
sin z

· (L − cos z ·M) = 0, (2.7.27)

LN −M2 = − sin2 z. (2.7.28)

To the case when on the surface obtained in E3, equipped with the metric
(2.7.24), the intrinsic coordinates u, v become asymptotic coordinates correspond
the following solutions of the system (2.7.26)–(2.7.28):

L = 0, M = sin z, N = 0. (2.7.29)

In order to obtain the radius vector −→r (u, v) of the original pseudospher-
ical surface in asymptotic Chebyshev coordinates with given net angle z(u, v),
it is necessary to integrate the system of differentiation formulas (2.3.2)–(2.3.5)
(or (2.3.18), (2.3.19)), applied to the coefficients of the second fundamental form
(2.7.29). In this case the system of differentiation formulas takes on the form

−→ruu = zu · −→nu, (2.7.30)
−→ruv = sin z · −→n , (2.7.31)
−→rvv = zv · −→nv, (2.7.32)

−→nu = cot z · −→ru − 1

sin z
· −→rv, (2.7.33)

−→nv = − 1

sin z
· −→ru + cot z · −→rv. (2.7.34)
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The system (2.7.30)–(2.7.34) for the radius vector −→r (u, v) and the unit nor-
mal vector −→n (u, v) of the pseudospherical surface S, which realizes an isometric
immersion in E3 of the Chebyshev metric (2.7.24) in asymptotic coordinates, will
be referred to as the fundamental system of equations for pseudospherical surfaces .

Taking into account the mutual orientation in space of the vectors −→ru, −→rv,
and −→n , and also equalities (2.7.33) and (2.7.34), we write the following useful
relations:

[−→ru,−→rv] = sin z · −→n , (2.7.35)

[−→ru,−→n ] = cot z · −→ru − 1

sin z
· −→rv, (2.7.36)

[−→rv,−→n ] =
1

sin z
· −→ru − cot z · −→rv. (2.7.37)

Let us calculate the geodesic curvature kg and geodesic torsion æg of the
asymptotic lines u and v on a pseudospherical surface (by definition, their normal
curvature kn = 0).

To this end we pick some asymptotic line u, given by the condition v = v∗

(where v∗ is a fixed value). It is clear that the radius vector
−→
R (u) of the asymptotic

line u can be “extracted” from the radius vector −→r (u, v) of the surface S itself.
Therefore,

−→
R (u) = −→r (u, v∗), −→

Ru(u) =
−→ru(u, v∗), −→

Ruu(u) =
−→ruu(u, v∗). (2.7.38)

Moreover, from the system (2.7.30)–(2.7.34) and relations (2.7.35)–(2.7.37)
one obtains (assuming that v = v∗, with v∗ fixed)

[
−→
Ru,

−→
Ruu] = [−→ru,−→ruu] = −zu−→n , (

−→
Ru,

−→
Ruu,

−→n ) = −zu. (2.7.39)

In the preceding considerations the parameter u plays the role of the natural
parameter s on the asymptotic line of the family selected. Hence, applying the
second formula in (2.7.19) (in the present case −→μ ≡ −→n ), we obtain the geodesic
curvature k1g(u) of the asymptotic line u:

k(1)g = (
−→
Ru,

−→
Ruu,

−→n ) = −zu. (2.7.40)

Similarly, we can apply the third formula in (2.7.19) allows us to calculate
the geodesic torsion of the asymptotic line u:

æ(1)
g = 1. (2.7.41)

(Note that in (2.7.40) and (2.7.41) the upper index “(1)” in the notations k
(1)
g and

æ
(1)
g refer to the “first” family of asymptotic lines, the u-family.)

Totally analogous computations for the asymptotic lines v (of the second
family) yield

k
(2)
g = zv, æ

(2)
g = −1. (2.7.42)
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Side by side with the arguments used above to derive the Servant-Bianchi
system of equations (2.5.22), let us now present another geometric approach [74],
which shows how two arbitrary nonintersecting lines on a pseudospherical surface
can be included in a local Chebyshev net Cheb(u, v) with some initial net angle
z(u, v).

Let (u0, v0) be a point of intersection of the two given lines. Choose a neigh-
borhood of (u0, v0) in which the lines have no other intersection. Denote the nat-
ural parameters on the lines, measured from the intersection point (u0, v0), by u

and v. Denote the geodesic curvatures of the lines by k
(1)
g (u) and k

(2)
g (v), and the

angle the lines make by z(u0, v0). Suppose that on the surface there are introduced
Chebyshev coordinates (u, v), with the angle z(u, v) subject to determination from
the condition that the first (second) line is given by the relation v = v0 (respec-
tively, u = u0). The geodesic curvature of a line on the surface is a characteristic
of the intrinsic geometry of the surface, and is given for the first and, respectively,
the second line, by (2.7.40) and (2.7.42):

k(1)g (u) = −zu, k(2)g (v) = zv.

Let us formulate the Darboux problem17 for the determination of the net
angle z(u, v) of the locally reconstructible Chebyshev net:

zuv = sin z,

z(u0, v) = z(u0, v0) +

v∫
v0

k(2)g (ξ)dξ,

z(u, v0) = z(u0, v0)−
u∫

u0

k(1)g (η)dη.

(2.7.43)

The Darboux problem (2.7.43) for the sine-Gordon equation has a unique
solution in the domain considered (see Chapter 3), which enables us to construct
a Chebyshev net with the corresponding net angle, namely, the solution of prob-
lem (2.7.43). It is important to note that the geometric uniqueness of the net is
guaranteed by the fact that through any given point of the surface, in any given
direction, there passes a unique line with that direction and with a prescribed
geodesic curvature.

2.7.4 Pseudospherical surfaces and the sine-Gordon equation

D. Hilbert’s result on the nonimmersibility of the complete Lobachevsky plane Λ2

in the Euclidean space E3 (§ 2.6) and its stengthening by N. V. Efimov [27] to
the nonimmersibility of the Lobachevsky half-plane in E3 placed natural “size re-
strictions” on the realizability of Lobachevsky planimetry in the three-dimensional
Euclidean plane. In this connection there arises the general problem of finding the

17A detailed analysis of the Darboux problem for the sine-Gordon equation will be carried out
in Chapter 3.



108 Chapter 2. Realizing the Lobachevsky geometry in Euclidean space

potential boundary of “realizability–non-realizability in E3” of geometrically typ-
ical domains of the Lobachevsky plane Λ2. In the development of this topic an
important role is played by a theorem of E. G. Poznyak [71] which establishes a
constructive connection between pseudospherical surfaces (objects in E3, on which
the geometry on corresponding parts of the Lobachevsky plane Λ2 is realized) and
regular solutions of the sine-Gordon equation. As we shall show in Chapter 3, the
sine-Gordon equation has a rather wide spectrum of classes of regular solutions,
which in turn makes it possible to obtain the corresponding geometric images in
E3, i.e., the pseudospherical surfaces, which reflect various geometric properties of
parts of the Lobachevsky plane that can be isometrically immersed in E3.

As we already mentioned, if in some domainD(u, v) ⊂ R2 the solution z(u, v)
of the sine-Gordon equation

zuv = sin z (2.7.44)

satisfies the condition
0 < z < π, (2.7.45)

then the domain ΛD ⊂ Λ2 corresponding to D in the Lobachevsky plane can be
regularly and isometrically immersed in E3, and in fact in such a way that the u
and v lines on the resulting surface in E3 form a net of asymptotic lines with net
angle z(u, v).

The fact noted above can to a certain extent be generalized to the case when
the solution z(u, v) of the sine-Gordon equation is not subject to the constraint
(2.7.45). This is expressed by the theorem of E. G. Poznyak given below. Gen-
erally, when the constraint (2.7.45) is discarded, one can make the following a
priori assumption: to each regular solution z(u, v), u, v ∈ R2, there is associated
a pseudospherical surface that has singularities which correspond to the values
z(u, v) = kπ, with k an integer.

Theorem 2.7.1 (E.G. Poznyak, [71]). . Suppose the function z = z(u, v) ∈ C4,
defined on the whole plane R2(u, v), is a solution of the sine-Gordon equation
(2.7.44). Then there exists a vector function −→r = −→r (u, v) ∈ C2, defined on
R2(u, v), such that its graph in the domain {z : z �= kπ} (k integer), represents
a pseudospherical surface S[z]. Moreover, the coordinate lines u, v on this surface
form a net of asymptotic lines with net angle z(u, v).

Note. To the level lines z(u, v) = kπ (where k is an integer) there correspond singu-
larities of the pseudospherical surface S[z], i.e., its irregular edges (cuspidal edges),
cusp points, and so on. At these singularities the adjacent regular components of
the pseudosperical surface “merge”, and this occurs in such a way that the u and
v lines of the unified Chebysehv net of asymptotic lines on S[z(u, v)], (u, v) ∈ R2

preserve their smoothness everywhere (in particular, when one “crosses” a singu-
larity). Intuitive examples that illustrate this are provided by the pseudosphere
and the Minding “bobbin” and “top” (see Chapter 1).

Let us indicate the main ideas of the proof of Theorem 2.7.1.
Suppose that z(u, v) is a solution of the sine-Gordon equation (2.7.44), de-

fined on the whole plane R2(u, v). Introduce the following two functions:

k̃(2)g (v) = zv(0, v), æ̃(2)
g (v) = −1. (2.7.46)
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By (2.7.42), one can find an asymptotic strip (defined by an asymptotic line
and its binormal vector, or, equivalently, by the “area element” tangent to it), the
curvature and torsion of which coincide with the introduced functions (2.7.46).

Denote this strip by Π̃(2). Let −→τ (2)(v), −→n(2)g (v), −→μ (2)(v) be the fundamental frame

of the strip Π̃(2), defined in each point of its base line (asymptotic line of the v-
family). In each chosen point of the base line v, construct another frame of vectors,
connected with the asymptotic line u of the other family, passing through the
considered point (u, v). With the chosen line u we associate a second asymptotic

strip Π̃(1), and define the corresponding fundamental frame −→τ (1), −→n (1)
g , −→μ (1) as

follows: the vector −→μ (1) in the given point coincides with −→μ (2)(v), the vector −→τ (1)

lies in the “area element” tangent to the strip Π̃(2) at the point (u, v) and makes

an angle of z(0, v) with the vector −→τ (2)(v), and finally −→n (1)
g is the vector product

of the unit vectors −→μ (1) and −→τ (1) (i.e., −→τ (1), −→n (1)
g , −→μ (1) form a right-handed

triple of vectors).
Now let us introduce the functions kg and æg, depending on the two param-

eters u and v, by

kg(u, v) = −zu(u, v), æg(u, v) = 1. (2.7.47)

By the Frenet formulas (2.7.9), (2.7.11) and (2.7.12), the functions kg(u, v)
and æg(u, v) figuring in (2.7.47) define, for each fixed value v, a unique asymptotic
strip, on which they serve as the curvature and torsion of the base (asymptotic)
line. Moreover, the fundamental frame of this base line is given by the vectors
−→τ (1), −→n (1)

g , −→μ (1) (for fixed v and u = 0).
The following assertion holds true [71]: the collection of base curves, con-

structed for all values of v, constitutes for the special parametrization u, v intro-
duced above the graph of the sought-for function −→r (u, v), i.e., a pseudospherical
surface. In other words, a pseudospherical surface can be “sewn” from asymptotic
strips.

Let us justify this assertion. Suppose the vectors −→τ (u, v), −→ng(u, v), and−→μ (u, v) form the fundamental frame of strips with base lines u (or v).
Using the Frenet formulas (2.7.11), (2.7.12), (2.7.9) in conjunction with re-

lations (2.7.47) and the fact that −→ν ≡ −→ng, −→β ≡ −→μ , we have

∂−→τ
∂u

= −zu · −→ν , (2.7.48)

∂−→ν
∂u

= zu · −→τ +
−→
β , (2.7.49)

∂
−→
β

∂u
= −−→ν . (2.7.50)

Let us differentiate the equalities (2.7.48)–(2.7.50) with respect to v. Since the
function z(u, v) satisfies the sine-Gordon equation (2.7.25), we obtain the following

system of equations for the unknown functions
∂−→τ
∂v

,
∂−→ν
∂v

, and
∂
−→
β

∂v
:
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(
∂−→τ
∂v

)
u

= −zu ∂
−→ν
∂v

− sin z · −→ν , (2.7.51)(
∂−→ν
∂v

)
u

= zu
∂−→τ
∂v

+
∂
−→
β

∂v
+ sin z · −→τ , (2.7.52)(

∂
−→
β

∂v

)
u

= −∂−→ν
∂v

. (2.7.53)

The system (2.7.51)–(2.7.53) can be integrated exactly, yielding the solution

∂−→τ
∂v

= sin z · −→β ,

∂−→ν
∂v

= − cos z · −→β ,

∂
−→
β

∂v
= − sin z · −→τ + cos z · −→ν .

(2.7.54)

Analyzing the obtained solution (2.7.54) and noting that −→τ = −→ru (see
(2.7.4)), we recast the first relation in (2.7.54) as

∂

∂u
(−→rv) = sin z · −→β . (2.7.55)

The solution of equation (2.7.55) is given by the function

−→rv = cos z · −→τ + sin z · −→ng. (2.7.56)

Moreover, as we already noted,

−→ru = −→τ . (2.7.57)

Since −→τ and −→n are orthogonal unit vectors, from (2.7.56) and (2.7.57) it
follows directly that

−→ru2 = 1, (−→ru,−→rv) = cos z, −→r 2
u = 1,

or
E(u, v) = 1, F (u, v) = cos z(u, v), G(u, v) = 1.

This shows that to the graph of the vector function −→r (u, v) there corresponds
in E3 the following expression for the metric of the surface:

ds2 = du2 + 2 cos z(u, v)dudv + dv2.

The metric of our surface in E3 with radius vector −→r (u, v) is identical to
the metric, considered earlier in parts of the Lobachevsky plane, written with
respect to the Chebyshev parametrization, under the condition that z(u, v) �= kπ,
where k in an integer. In the case when z = kπ the metric degenerates (the
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coordinate lines u and v become tangent). This condition translates into “passage”
through the irregular singularities of the surface (cuspidal edges, cusp points,
and so on) and the “transition” to the next (adjacent) regular component of the
surface. It is important to emphasize here that globally (as a system of curves),
the Chebyshev coordinate net of asymptotic lines preserves its regularity on the
whole pseudospherical surface (i.e., for all values of (u, v)).

The content of E. G. Poznyak’s theorem considered here can formulated in
a slightly different manner, as in Theorem 2.7.2 below [94].

In the plane R2(u, v) we will consider some domain D, in which there is
defined a solution z(u, v) ∈ C4(D) of the sine-Gordon equation. For D we will
take either a rectangle [u1, u2]× [v1, v2], or a (finite or infinite) strip, or even the
entire plane R2(u, v). Suppose there are also given a point (u0, v0) ∈ D and an
orthogonal right-handed triple of vectors −→e1, −→e2, −→e3.
Theorem 2.7.2. Under the conditions formulated above, in the domain D(u, v)
there exists a unique vector function −→r (u, v)∈C3(D) : D → E3, which defines in
E3 a pseudospherical surface (with radius vector −→r (u, v) and unit normal vector−→n (u, v)), on which the coordinates (u, v) are Chebyshev asymptotic coordinates
with the net angle z(u, v). Moreover,

−→ru(u0, v0) =
−→e1, (2.7.58)

−→rv(u0, v0) = cos z(u0, v0) · −→e1 + sin z(u0, v0) · −→e2, (2.7.59)
−→n (u0, v0) =

−→e3. (2.7.60)

To the level lines z(u, v) = kπ (with k an integer) there correspond irregular sin-
gularities of this surface.

Proof. The fundamental frame of the asymptotic line v = 0 is constructed as the
unique solution of the system of Frenet equations

∂

∂u

⎛⎝ −→τ (v0)

−→
β (v0)

−→ν (v0)

⎞⎠ =

(
0 −zu 0
zu 0 1
0 −1 0

)⎛⎝ −→τ (v0)

−→
β (v0)

−→ν (v0)

⎞⎠ . (2.7.61)

Moreover, it is appropriate to define the triple of vectors −→e1, −→e2, −→e3, indicated in
the statement of the theorem as⎛⎝ −→e1−→e2−→e3

⎞⎠ ≡
⎛⎜⎝
−→τ (v0)

−→
β (v0)

−→ν (v0)

⎞⎟⎠ , −→ν ≡ −→n .

The radius vector −→r (u, v0) of the asymptotic line v = v0 is found by inte-
grating the system (2.7.59):

−→r (u, v0) =
∫ u

u0

−→τ (v0)(ξ) dξ. (2.7.62)



112 Chapter 2. Realizing the Lobachevsky geometry in Euclidean space

Let us fix this line. Through each of its point there passes an asymptotic line u of
the other family, the fundamental frame of which is determined from the system

∂

∂v

⎛⎜⎝
−→τ (u)

−→
β (u)

−→ν (u)

⎞⎟⎠ =

(
0 zv 0
−zv 0 −1
0 1 0

)⎛⎜⎝
−→τ (u)

−→
β (u)

−→ν (u)

⎞⎟⎠ , (2.7.63)

with the initial conditions⎛⎝ −→τ (u)

−→
β (u)

−→ν (u)

⎞⎠
∣∣∣∣∣∣
v=v0

=

⎛⎜⎝ cos z(u, v0) sin z(u, v0) 0
− sin z(u, v0) cos z(u, v0) 0

0 0 1

⎞⎟⎠
⎛⎝ −→τ (v0)(u)−→

β (v0)(u)−→ν (v0)(u)

⎞⎠ .

(2.7.64)
The isolated “corner minor” (matrix) in the right-hand side of (2.7.62) gives

the rotation by angle z(u, v0) in the plane of the vectors −→τ (v0)(u) and
−→
β (v0)(u).

This rotation maps −→τ (v0)(u) into −→τ (u)(v0), and
−→
β (v0)(u) into

−→
β (u)(v0).

The radius vector

−→r (u, v) = −→r (u, v0) +
∫ v

v0

−→τ (u)(η) dη (2.7.65)

will define the sought-for pseudospherical surface. To show that this surface has
singularities for z(u, v) = kπ (where k is an integer), it suffices to calculate the
principal curvatures: K1 = (cot z)/2, K2 = −(tan z)/2. As z → kπ one of the
principal curvatures tends to zero, while the other tends to infinity (in this process
the Gaussian curvature remains K = K1 ·K2 = −1). Theorem 2.7.2 is proved. �

2.7.5 Geodesic curvature and torsion of an irregular edge

In this subsection we will obtain formulas for the calculation of the main geometric
characteristics of irregular edges (cuspidal edges), namely, their geodesic curvature
and torsion.

Suppose we have a solution z(u, v) ∈ C4 of the sine-Gordon equation (2.7.25).
Then by E. G. Poznyak’s theorem, to this solution there corresponds in E3 a
pseudospherical surface S[−→r (u, v), z(u, v)], −→r ∈ C3, −→n ∈ C2. The preimages of
the irregular edges on this surface S are the lines v = f(u) given in the (u, v)-
parametric plane by the condition

v = f(u), z(u, v) = kπ, k an integer. (2.7.66)

In other words, the singularities on the pseudospherical surface are determined
by the level lines kπ (with k an integer) of the function z = z(u, v), i.e., of the
solution of the sine-Gordon equation (2.7.25).

Let us derive a formula for the geodesic curvature kg of the irregular edge of
the pseudospherical surface, defined by condition (2.7.64). To this end we use a
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standard differential-geometric formula for the calculation of the geodesic curva-
ture of a curve that is given parametrically as u = u(t), v = v(t) (where t is the
parameter) and lies on a surface with a metric of general form (2.2.7):

kg =

√
EG− F 2

(Eu′2 + 2Fu′v′ +Gv′2)3/2
· ∣∣u′′v′ − v′′u′ +M1v

′ −M2u
′∣∣. (2.7.67)

In the case we are interested in, of a metric of the form (2.7.24), formula
(2.7.65) becomes

kg =
| sin z|

(u′2 + 2 cos z · u′v′ + v′2)3/2
· ∣∣u′′v′ − v′′u′ +M1v

′ −M2u
′∣∣ (2.7.68)

(the “prime” in (2.7.66) denotes differentiation with respect to the parameter t).
In formulas (2.7.65) and (2.7.66) we used the notations

M1 = Γ1
11u

′2 + 2Γ1
12u

′v′ + Γ1
22v

′2,

M2 = Γ2
11u

′2 + 2Γ2
12u

′v′ + Γ2
22v

′2.
(2.7.69)

The Christoffel symbols (2.3.9)–(2.3.11) for the Chebyshev metric (2.7.24)
are given by the expressions

Γ1
11 =

zu cos z

sin z
, Γ2

11 = − zu
sin z

,

Γ1
22 = − zv

sin z
, Γ2

22 =
zv cos z

sin z
,

Γ1
12 = 0, Γ2

12 = 0.

(2.7.70)

As the parameter t in (2.7.66) we take the already available variable u : t ≡ u.
Then in view of (2.7.67) and (2.7.68), the representation (2.7.66) for the line
(2.7.64) can be recast as

kg
∣∣
z=kπ

=

∣∣∣∣zu + (−1)kzuv′ − (−1)kzvv′2 − zvv
′3

(1 + (−1)kv′)3
∣∣∣∣ . (2.7.71)

In (2.7.69) the “prime” already denotes differentiation with respect to u.
Using the classical theorem on the differentiation of implicit functions, we

obtain for the derivative of the level line given by condition (2.7.64) the expression

v′(u) = −zu
zv

. (2.7.72)

Substituting (2.7.70) in (2.7.69) finally yields an expression for the geodesic
curvature of an irregular edge of a pseudospherical surface:

kg
∣∣
z=kπ

=

∣∣∣∣( zuzv
zu − (−1)kzv

) ∣∣∣∣
z=kπ

∣∣∣∣ . (2.7.73)
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Formula (2.7.71) can be rewritten by explicitly isolating in it the expression
v = f(u) for the level line (see (2.7.64)):

kg
∣∣
z=kπ

=

∣∣∣∣ zu(u, f(u))

(−1)k + f ′(u)

∣∣∣∣ . (2.7.74)

Let us indicate also another approach for deriving the formula (2.7.72), based
on the analysis of the fundamental equations (2.7.30)–(2.7.34) for pseudospherical
surfaces. Namely, from (2.7.33) and (2.7.34) it follows, in particular, that on an
irregular singularity of the surface (see condition (2.7.64))(−→ru − (−1)k−→rv

)∣∣
z(u,v)=kπ

= 0. (2.7.75)

The radius vector
−→
R (u) of an irregular edge of the pseudospherical surface

is obviously defined by the condition

−→
R (u) = −→r (u, f(u)), (2.7.76)

which “extracts” it from the radius vector of the surface.
From (2.7.74) we obtain, using (2.7.73), the formula

−→
Ru = (1 + (−1)k · f ′(u)) · −→ru(u, f(u)). (2.7.77)

To compute the geodesic curvature and torsion of an irregular edge using the
formulas (2.7.14) we need the corresponding “components”, the final expressions of
which is given below [94] (their derivation rests on the relations (2.7.73)–(2.7.75),
(2.7.70), and on the fundamental equations (2.7.30)–(2.7.34)):

−→
Ruu =

(
zu cot z − zv

sin z
· f ′2

)
· −→ru

+
(
− zu
sin z

+ zv cot z · f ′2 + f ′′
)
· −→rv + 2f ′ · sin z · −→n , (2.7.78)

[
−→
Ru,

−→
Ruu] = (−zu + (−1)kzv · f ′2)(1 + (−1)kf ′) · −→n

= −(1 + (−1)kf ′)2zu · −→n , (2.7.79)

−→
Ruuu = −zu(1 + (−1)k · f ′)(1− (−1)k · f ′) · −→n + · · · . (2.7.80)

The calculation of the requisite mixed products of vectors yields, respectively,

(
−→
Ru,

−→
Ruu,

−→n ) = −(1 + (−1)kf ′)2 · zu, (2.7.81)

(
−→
Ru,

−→
Ruu,

−→
Ruuu) = (1 + (−1)kf ′)3 · (1− (−1)kf ′)z2u. (2.7.82)

Substitution of the expressions given above in (2.7.14) and (2.7.19) confirms
the already obtained formula (2.7.72) and yields the following explicit expression
for the torsion of an irregular edge of a pseudospherical surface:

æ =
1− (−1)kf ′(u)
1 + (−1)kf ′(u) (2.7.83)

(the level line v = f(u) is found from the condition (2.7.64)).
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2.7.6 Lines of constant geodesic curvature on the plane Λ2

Let us study the geodesic curvature of the typical lines on the Lobachevsky plane
Λ2 that we considered in § 1.2: straight lines (geodesics), equidistants, horocycles,
and non-Euclidean circles.

We work in the interpretation Λ2(Π) of the Lobachevsky plane in the half-
plane (see Subsection 1.2.3) and the general formula (2.7.65) for the computation
of the geodesic curvature of a curve on a surface with a given metric.

As it was established in Subsection 1.2.3, in the Poincaré half-plane model
Λ2(Π) of the Lobachevsky plane Λ2 the aforementioned typical lines on Λ2 are
mapped either into straight lines , or into circles (or pieces thereof) (see Figures
1.2.9–1.2.14). Let us calculate the geodesic curvature of the straight lines and of
the circles, using the metric (1.2.33) on the Lobachevsky plane corresponding to
Λ2(Π).

2.7.6.1. In the model Λ2(Π), suppose that the image of some line is given by the
straight line equation

v = au+ b, v ≥ 0; a, b = const. (2.7.84)

Let us calculate the geodesic curvature of the line (2.7.82) using the formula
(2.7.65), applied for the metric (1.2.33):

ds2 =
1

v2
(
du2 + dv2

)
.

The calculation of the “intermediate components” in (2.7.65) yields:

E =
1

v2
, F = 0, G =

1

v2
; W = EG− F 2 =

1

v4

Eu = 0, Fu = 0, Gu = 0,

Ev = − 2

v3
, Fv = 0, G = − 2

v3
.

(2.7.85)

Γ1
11 = 0, Γ1

12 = −1

v
, Γ1

22 = 0,

Γ2
11 =

1

v
, Γ2

12 = 0, Γ2
22 = −1

v
.

(2.7.86)

Using in (2.7.82) the obvious parametrization v = at+b, u = t (v′ = a, v′′ =
0, u′ = 1, u′′ = 0), we obtain also the expressions of the type (2.7.67) for the
present case:

M1 = −2a

v
, M2 =

1− a2

v
. (2.7.87)

Substituting expressions (2.7.83)–(2.7.85) in the formula (2.7.65), we obtain
the value of the geodesic curvature of the line (2.7.82) on Λ2(Π):

kg =
1√

1 + a2
. (2.7.88)

Let us analyze this last result.
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a) If a = 0 (the straight line (2.7.82) is parallel to the u-axis), then kg = 1. This
indicates that horocycles (represented on Λ2(Π) by straight lines parallel to
the u-axis, see Figure 2.1.12) have geodesic curvature kg = 1.

b) If |a| → ∞ (the straight line (2.7.82) takes its limiting position, orthogonal to
the u-axis), then kg → 0. This confirms the fact that the geodesic curvature of
straight lines (rays on Λ2(Π)) that are perpendicular on the u-axis vanishes :
kg = 0.

c) If |a| ∈ (0,+∞) (the lines (2.7.82) are represented by slanted rays on Λ2(Π)),
then 0 < kg < 1. This range of variation of the geodesic curvature character-
izes the equidistants .

2.7.6.2. Let us carry out a similar investigation for the geodesic curvature of the
geometric images represented in the Poincaré model Λ2(Π) by circles or pieces
thereof (see Figures 1.2.9–1.2.14). We use the corresponding parametric presenta-
tion

u = R cos t+ a, v = R sin t+ b; v ≥ 0, (2.7.89)

where a, b, R = const, b ≥ 0, R > 0.
To calculate the geodesic curvatures kg of the lines given by equations (2.7.87)

we us use formula (2.7.65). The values of the expressions (2.7.83) and (2.7.84) are
preserved (they are the same as for the line (2.7.82) considered above); only M1

and M2 in (2.7.85) change, according to (2.7.87). We thus obtain for the geodesic
curvature kg of the line (2.7.87) the value

kg =
b

R
. (2.7.90)

Let us analyze the expression (2.7.88):

1) If b = 0 (in this case the lines (2.7.87) are semi-circles that lean orthogonally
on the absolute, i.e., straight lines , see Figure 1.2.10 b), then kg = 0.

2) If b = R, then on the half-plane Λ2(Π) we obtain circles that are tangent to
the absolute (the u-axis), i.e., horocycles ; their geodesic curvature is kg = 1
(Figure 1.2.12 b).

3) If 0 < b < R, then on Λ2(Π) to the lines (2.7.87) correspond pieces (arcs)
of circles that lean non-orthogonally to the absolute (the u-axis). These
lines represent equidistants , and their geodesic curvature kg ∈ (0, 1) (Fig-
ure 1.2.13 b).

4) Finally, for b > R we have kg > 1. In this case to the lines (2.7.87) correspond
circles that are entirely contained in the upper half-plane Λ2(Π), i.e., non-
Euclidean circles of the plane Λ2 (Figure 1.2.11 b).

We summarize the results obtained in Table 2.7.1, identifying the type of line
in the Lobachevsky plane by the value of its geodesic curvature.
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Table 2.7.1

Type of line of constant geodesic curvature on the
Lobachevsky plane

Value of geodesic curvature

Geodesic lines (“straight lines”) kg = 0

Equdistants 0 < kg < 1

Horocycles kg = 1

Non-Euclidean circles kg > 1

We supplement Table 2.7.1 by the intuitive Figure 2.7.2, which uses the disc
model of the Lobachevsky plane.
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Figure 2.7.2

Relaxing rigorousity, we mention here the interesting analogy between the
geodesic curvature kg (an “indicator” of the type of line on the Lobachevsky plane)
and the eccentricity e (“classification parameter” for 2nd order curves in the Eu-
clidean plane in classical analytic geometry [34, 53]). The parameters kg and e in
the indicated branches of geometry have a unified grading of their values in the
classification of characteristic types of lines: straight line on the plane Λ2 (kg = 0)
— Euclidean circle (e = 0); equidistant (0 < kg < 1) — ellipse (0 < e < 1); horo-
cycle (kg = 1) — parabola (e = 1); non-Euclidean circle (kg > 1) — hyperbola
(e > 1).

2.8 Isometric immersions of two-dimensional
Riemannian metrics of negative curvature in
Euclidean spaces

In this section we give a brief survey of studies connected with the realization
in Euclidean space of two-dimensional metrics of (generally, non-constant) nega-
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tive curvature. Hilbert’s fundamental result on the impossibility of realizing the
complete Lobachevsky plane Λ2 in E3 served as the starting point for a wider re-
thinking of the whole thematic of possible realization of two-dimensional metrics
of negative curvature in Euclidean space. In this way an objective basis emerged
for the enrichment of the “list” of modern directions of research, among which we
distinguish the following:

– description (classification) of domains of the Lobachevsky plane Λ2 (individ-
ual parts of it) that admit regular isometric immersion in the Euclidean space
E3;

– study of the general problems of immersibility of two-dimensional Rieman-
nian metrics of (non-constant) negative curvature in E3;

– study of problems concerned with obtaining regular isometric immersions of
metrics of negative curvature in Euclidean spaces En of higher dimensions
n > 3.

At this time the research directions listed above already became independent,
highly developed branches of modern geometry. The fundamental development of
various aspects of these branches is presented in many works, in particular, in [21,
22, 26, 27, 74, 75, 99, 122, 123, 168, 179]. In what follows we confine ourselves to a
selective presentation of various separate basic results that reflect the conceptual
evolution of the thematics.

2.8.1 Λ-type metrics

In 1961 N. V. Efimov and E. G. Poznyak [28] obtained a generalization of Hilbert’s
theorem on surfaces of negative curvature; specifically, they showed that a special
type of metrics, the Λ-type metrics 18, with slowly varying curvature, do not admit
regular isometric immersion in E3. By Λ-type metric one means a two-dimensional
metric whose curvature is bounded above by a negative constant: K ≤ const < 0.

The final answer to this question was given by N. V. Efimov (in 1963), who
proved a theorem of fundamental importance on the nonexistence in the space E3

of a complete regular surface with negative supremum of the Gaussian curvature.

Theorem 2.8.1 (N.V. Efimov [26]). On a regular surface with a complete metric
the supremum of the Gaussian curvature cannot be smaller than zero.

Clearly, this theorem includes the result asserting the nonexistence of a reg-
ular isometric immersion of a Λ-type metric in E3. On the other hand, based
on it is totally justified to raise the following question: which parts of a Λ-type
metric can be immersed in the space E3? We note that by “part” of a metric one
usually means the corresponding part of the two-dimensional manifold on which
this two-dimensional Riemannian metric is defined.

In the papers [75, 76] it is proved that if the curvature K of a Λ-type metric is
a bounded C2,1-function (in some system of semi-geodesic coordinates), then any
infinite strip in this metric (“domain”, or “part of the metric”, situated between

18In the original paper the authors used the symbol L.
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two equidistants) can be regularly and isometrically immersed E3. Let us examine
this result in more detail.

So, an infinite strip in a Λ-type metric is defined as the part of the metric
situated between two equidistants l1 and l2. Given such a strip, let us choose in it
as one of the families of coordinate lines (the u-lines) the geodesic lines that are
orthogonal to the equidistants l1 and l2; the other family of coordinate lines (the
v-lines) consists of the lines equidistant to the given curve l1.

In the semi-geodesic coordinate system obtained in this way the metric takes
the form

ds2 = du2 +B2(u, v)dv2. (2.8.1)

Moreover, the domain in which the u and v coordinates range (the infinite strip)
is defined as

Πa = {0 ≤ u ≤ a, −∞ < v < +∞}.
We shall assume that in the strip Πa the following conditions are satisfied:

1◦. The function B(u, v) is bounded and of class C4,1 in Πa.

2◦. infΠa B(u, v) > 0.

3◦. The curvature K of the metric (2.8.1) in Πa is bounded from above by a
negative constant: K(Πa) ≤ const < 0.

Under the conditions 1◦–3◦ the following theorem holds true.

Theorem 2.8.2 ([74]). If 1◦–3◦ hold, then the metric in the infinite strip Πa can
be immersed in the Euclidean space E3. The surface that realizes this metric is of
class C3,1.

A detailed proof of this theorem is contained in [74].

An important consequence of Theorem 2.8.2 is that the C4,1-metric of any
geodesic disc in an arbitrary regular metric of negative curvature can be immersed
in the Euclidean space E3. This is quite intuitive, since the metric of any geodesic
disc can (under conditions 1◦–3◦) be included in the metric of an infinite strip with
linear element (2.8.1) (figuratively speaking, a geodesic disc can always be “placed”
inside some equidistant strip). An immersion of a geodesic disc of arbitrarily large
radius and of an arbitrary variable negative curvature K(u, v) ≤ const < 0 was
constructed by for the first time by E. G. Poznyak [75].

The question of minimizing the regularity requirements on the metric for the
possible immersions in E3 under consideration was studied by E. V. Shikin [74,
123, 124]. He proposed an approach for obtaining immersions of metrics of negative
curvature that is based on the investigation of the Darboux equation. In this
connection we explain below the original general formulation of the corresponding
problem.

Suppose that in the Euclidean space E3(X,Y, Z) the surface that realizes the
isometric immersion of a metric of curvature K is described by the parametric
equations

X = X(u, v), Y = Y (u, v), Z = Z(u, v).



120 Chapter 2. Realizing the Lobachevsky geometry in Euclidean space

Then the function Z(u, v) for the third Cartesian coordinate must satisfy the
Darboux equation

rt− s2 = K ·B2 · (1− p2 − q2) +
B2

u

B2
q2 −

(
BBu · p− Bv

B
q
)
r − 2

Bu

B
qs, (2.8.2)

where
p = Zu, q = Zv, r = Zuu, s = Zuv, t = Zvv.

The Darboux equation (2.8.2) is written for the metric (2.8.1), considered in
a semi-geodesic system of coordinates, but it preserves its structure with respect
to the second derivatives of the function Z(u, v) also when the original metric is
of the most general form.

An analysis of the Darboux equation (2.8.2) that uses its reduction to a
system of five quasilinear equations of special form (under the condition that the
curvature is negative:K < 0), allowed one to obtain a series of results on immersion
of metrics under relaxed requirements on their regularity. In this connection we
state below the following important theorem proved by E. V. Shikin [74, 124].

Theorem 2.8.3. Suppose that in the infinite strip Πa there is given a metric of the
type (2.8.1) of negative curvature K.

Suppose further that:

1◦. The function B(u, v) is bounded and of class C2 in Πa, and infΠa B(u, v) > 0.

2◦. The curvature K(u, v) is a bounded C1 function in Πa, bounded from above by
a negative constant. Moreover, the function gradK is uniformly continuous
in Πa.

Then the considered metric (2.8.1) can be globally immersed in E3. Moreover, the
surface that realizes this metric is of class C2.

2.8.2 Two classes of domains in the plane Λ2 that are isometrically
immersible in E3

In this subsection we draw the reader’s attention to two types of results pertaining
to the general task of describing typical domains of the Lobachevsky plane Λ2 that
admit regular isometric immersions in E3.

2.8.2.1. Infinite polygons on Λ2. By infinite polygon on the Lobachevsky plane Λ2

we mean a convex set obtained by intersecting a finite or countably infinite number
of closed half-planes in Λ2 whose boundaries have no common points [3, 73]. The
boundary of any such infinite polygon is composed of a finite or countable number
of straight lines of the plane Λ2, called the sides of the polygon. To provide an
intuitive representation of polygons on the plane Λ2 it is convenient to use its
Poincaré disc model (see Subsection 2.2.2).

Figure 2.8.1 depicts an infinite polygon (pentagon) in the plane Λ2 with the
vertices A1, A2, A3, A4, A5, which are points at infinity lying on the absolute. Any
two neighboring edges (straight lines in Λ2, i.e., arcs of circles leaning orthogonally
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Figure 2.8.1

on the absolute ω) converge at infinity to (but do not intersect at) the correspond-
ing vertex . It is due to this specific feature of their structure that such polygons
started to be referred to as infinite polygons.

Figure 2.8.2

We shall also use the notion of proper polygon on the plane Λ2 , defined as
a polygon that can have as vertices both ordinary points and points at infinity
of Λ2. Such a proper polygon (like the infinite polygons) does not need to con-
tain any half-plane of Λ2. Figure 2.8.2 shows an example of a proper hexagon
C1C2C3C4C5C6 ⊂ Λ2, two vertices of which, C2 and C5, are ordinary points of
Λ2, while the remaining four vertices are points at infinity.

The problem of the immersibility of polygons of the plane Λ2 in E3 was
studied in detail by E. G. Poznyak in [73]. He found that all the polygons on Λ2

with a finite number of vertices, as well as some kinds of polygons with a countable
number of vertices, can be regularly and isometrically immersed in E3. Moreover,
he showed that the immersible polygons can be covered by a regular Chebyshev
net. The following theorem is established in [73].

Theorem 2.8.4. Every proper polygon on the Lobachevsky plane Λ2 admits a C∞-
smooth isometric immersion in the space E3.
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Let us point out here that the basic approach to establishing the isometric
immersibility of a some or another domain (in particular, a polygon) of the plane
Λ2 in E3 reduces to the investigation of the solvability problem for the corre-
sponding form of the system of fundamental equations that give the immersion of
a Λ2-metric19 in E3 for the domain in question. To this end, in the works of E.
G. Poznyak and E. V. Shikin [74, 76, 82, 123, 126] it was proposed to adopt as
the main object of investigation the fundamental system of equations in Riemann
invariants, i.e., a system of quasilinear equations of hyperbolic type. We presented
such a system (2.3.35), (2.3.36) in § 2.3.

We should emphasize that as a geometric object, the domain in Λ2 itself plays
here, in a certain sense, a secondary role: from the point of hyperbolic planime-
try its geometric structure is completely understood; such is, for instance, the
geometry of an infinite polygon. What really matters is that the domain in Λ2

considered is, essentially, the domain where a classical boundary value problem of
mathematical physics [112 ] for the corresponding system of quasilinear equations
of hyperbolic type (the Rozhdestveskii-Poznyak system of equations) is posed. The
general scheme of the “geometry—mathematical physics” approach discussed here
is described below.

   Geometric
 formula�on

Mathema�cal physics problem

metric

Domain on

System of quasilinear equa�ons
           of hyperbolic type

Domain of problem se�ng

Undoubtedly, the mathematical physics problem arising from the Lobachev-
sky geometry is a nontrivial object of investigation from the point of view of the
general theory of differential equations [48, 97]. Hence, in order to partially simplify
it, it is advisable to use a Λ2-metric of special type—first of all, a metric written
in a semi-geodesic system of coordinates. It is precisely such an approach that was
used in the works [41, 73, 122, 126], in combination with other “refined” methods,
to establish the immersibility in E3 of some typical domains of the Lobachevsky
plane.

Let us metion here the work [60], in which the existence of infinite polygons
in a two-dimensional metric of negative curvature is established, i.e., it is shown
that the notion of an infinite polygon on the Lobachevsky plane can be generalized
to the case of non-constant curvature (in this case a half-plane must be understood
as the part of a complete metric bounded by a geodesic).

19Metric of curvature −1, given in some domain of the plane Λ2.
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2.8.2.2. Domains containing horodiscs. Another class of domains of the plane Λ2

that can be immersed in E3 is studied in the works of E. V. Shikin, Zh. Kaidasov,
and D. V. Tunitskii [41, 115]. In [41] it is proved that for any two horodiscs
in Λ2 there exists a convex domain that contains them and admits a regular
isometric immersion in the space E3. The general form of such a domain is shown
in Figure 2.8.3. Let us remark that, generally speaking, the method applied by the
above authors to prove the existence of a solution to the fundamental system of
equations in the domain under question can be modified to work also for the case
of “analogous” domains in the Lobachevsky plane that cover several horodiscs.

Figure 2.8.3

A special kind of generalization of the result on the immersion of a “domain
with two horodiscs” is given in [115]. Therein the author introduces the notion
of a simple zone Πω as a domain in the (ξ, η)-parameter plane defined by the
conditions

|ξ| < ω(η), η ∈ (−∞,+∞),

where ω(η) is a positive continuous function given for all η.
The following result holds true [115].

Theorem 2.8.5. A simple zone Πω, in which there is given a metric of the form

ds2 = dξ2 +B2(ξ, η)dη2,

and the conditions

B(0, η) = 1, Bξ(0, η) = 0, K = −Bξξ

B
< 0,

are satisfied, admits an isometric immersion in E3 as a C2-smooth surface.

Obviously,20 Theorem 2.8.5 implies the existence in E3 of a C2-smooth sur-
face of constant negative curvature K = const < 0, on which two nonintersecting
horodiscs are “placed”.

20To make the presentation transparent, is it natural to use the Poincaré half-plane model of
the plane Λ2.
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2.8.3 On the isometric immersions of the plane Λ2 in the space En

with n > 3

In view of the nonimmersibility of the plane Λ2 in the Euclidean space E3 is is
natural to ask: What is the minimal dimension of an Euclidean space in which the
Lobachevsky plane can be immersed?

Here one thinks, first and foremost, about the Euclidean spaces E4, E5, and
E6. We draw the reader’s attention to a number of known results on this problem.

In 1955 D. Blanuša [146] constructed an explicit parametric representation
of a surface (with no self-intersections) of class C∞ in the space E6, the intrinsic
geometry of which coincides with the planimetry of the complete Lobachevsky
plane Λ2. The metric of this surface coincides with the metric of the Lobachevsky
plane:

ds2 = du2 + cosh2u dv2, K ≡ −1.
We recall that an isometric realization of a metric by means of a surface without
self-intersections is called an embedding. Thus, what Blanuša obtained is an em-
bedding of the Lobachevsky plane in the Euclidean space E6. This results is one of
the brilliant achievements in the theory of isometric immersions of two-dimensional
manifolds in Euclidean spaces. Below we give an overview of this result.

The proposed construction employs two pairs of functions of a special form.
The first pair is

ψ1(u) = e2[(|u|+1)/2]+5, ψ2(u) = e2[|u|/2]+6. (2.8.3)

(here the square brackets denote the “integer part”). The functions ψ1 > 0, ψ2 > 0
in (2.8.3) are piecewise-constant (“step”) functions which are allowed to grow
sufficiently fast as |u| → ∞. At the same time, on their intervals of constancy
(“steps”) the derivatives of these functions vanish.

The second pair is formed by the functions

ϕ1(u) =

⎛⎝ 1

A

u+1∫
0

sinπξ · e−1/sin2 πξdξ

⎞⎠1/2,
ϕ2(u) =

⎛⎝ 1

A

u∫
0

sinπξ · e−1/sin2 πξdξ

⎞⎠1/2.
(2.8.4)

The constant A in (2.8.4) is given by

A =

1∫
0

sinπξ · e−1/sin2 πξdξ.

Note that the functions ϕ1, ϕ2 in (2.8.4) can have zeros of infinite order
precisely at the discontinuity points of the corresponding function ψ1 or ψ2.
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Together with (2.8.3) and (2.8.4), we introduce the functions

f1(u) =
ϕ1(u)

ψ1(u)
· sinhu, f2(u) =

ϕ2(u)

ψ2(u)
· sinhu. (2.8.5)

In terms of the functions (2.8.3)–(2.8.5) introduced above, the exact formulas
for Blanuša’s embedding of the Lobachevsky plane Λ2(u, v) in the Euclidean space
E6(X1, X2, X3, X4, X5, X6) read

X1 =

u∫
0

√
1− f ′21(ξ)− f ′22(ξ)dξ,

X2 = v,

X3 = f1(u) cos(vψ1(u)),

X4 = f1(u) sin(vψ1(u)),

X5 = f2(u) cos(vψ2(u)),

X6 = f2(u) sin(vψ2(u)).

(2.8.6)

By (2.8.6), the linear element of the resulting surface S(Λ2) ⊂ E6 can be
written as:

ds2 = dX2
1 + dX2

2 + dX2
3 + dX2

4 + dX2
5 + dX2

6 = du2 + cosh2u dv2.

It is important to make clear that in the “functional constructions” used in
(2.8.6) the jumps of the step functions ψ1 and ψ2 are “compensated” by the corre-
sponding zeros of the functions ϕ1 and ϕ2, which ensures the requisite smoothness
of the embedding (2.8.6).

E. R. Rozendorn [99, 100] proposed a refinement of the above method, which
allowed him to establish the immersibility of the Lobachevsky plane Λ2 in E5.

The question whether it is possible to realize the complete Lobachevsky
plane Λ2 in the four-dimensional Euclidean space E4 remains open and represents
one of the puzzling unsolved problems of contemporary non-Euclidean geometry.21

To complete this section, we draw the reader’s attention to various problems
of current interest connected with the theme discussed here.

A special example of a Λ-type metric that is immersible in E4 was provided
in [98] by using the so-called construction of a weakly irregular saddle of nega-
tive curvature. The paper [103] investigated the possibility of a special type of
immersion of Λ2 in E4 by using a metric of revolution.

Let us touch upon a more general topic: the problem of isometric immersion of
the higher-dimensional Lobachevsky space Λp, p ≥ 3, in a Euclidean space En, n >
3. A local embedding of Λp in E2p−1 was constructed by F. Schur [191]. Moreover,
in [49, 148] it was established that Λp cannot be locally immersed already in E2p−2.
D. Blanuša was also the first to obtain an isometric embedding of Λp, p ≥ 3, in E∞,

21The intuitive take of many geometers on this question predicts that the answer will be
affirmative.
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as well as a series of embeddings of Λp in En, with n finite [145, 146]. Deserving of
special attention are the general “configurations” introduced by J. Nash and M.
Gromov, applicable for the construction of isometric embeddings of a non-compact
Riemannian manifold Mp in the spaces En [21, 159, 178]. Undoubtedly, interesting
are also the results of Yu. A. Aminov on isometric immersions of domains of
the n-dimensional Lobachevsky space in higher-dimensional Euclidean spaces [4,
5, 6]. In the context of our exposition we mention also the investigations of I.
Kh. Sabitov [102] on isometric immersions of locally Euclidean metrics and the
fundamental survey of A. A. Borisenko [11] on isometric immersions of space forms
in Riemannian and pseudo-Riemannian spaces.



Chapter 3

The sine-Gordon equation: its
geometry and applications of
current interest

This chapter is devoted to geometrical aspects in the study of the sine-Gordon
equation as a canonical (from the point of view of non-Euclidean hyperbolic geom-
etry) nonlinear equation that has wide applications in contemporary mathematical
physics. A far-reaching fact that enables the realization of diverse approaches to
the investigation of problems connected with the sine-Gordon equation is the in-
timate association of this equation with surfaces of constant negative curvature,
i.e., with pseudospherical surfaces.

The beginning of the chapter (§§ 3.1 and 3.2) is devoted to geometric (pri-
mary) concept of Bäcklund transformation for pseudospherical surfaces, developed
further in essential manner in the theory of nonlinear differential equations. The
application of the method of Bäcklund transformations to the construction of so-
lutions of nonlinear equations is one of the effective approaches in modern mathe-
matical physics. Special attention is devoted to the class of soliton solutions of the
sine-Gordon equation and to the investigation of their geometric interpretation on
the example of the classical pseudosphere and Dini surfaces, as well as to the class
of two-soliton and breather pseudospherical surfaces (§§ 3.3 and 3.4). In § 3.5 we
study the Painlevé transcendental functions of type III as functions that consti-
tute a special class of self-similar solutions of the sine-Gordon equations whose
geometric image in E3 is Amsler’s pseudospherical surface. In §§ 3.6 and 3.7 we
study fundamental problems concerning the solvability of certain classical prob-
lems of mathematical physics – the Darboux problem and the Cauchy problem –
for the sine-Gordon equation, based on which we derive important geometric gen-
eralizations and consequences. In particular, we present the idea of constructing
solutions of the sine-Gordon equation on multi-sheeted surfaces. Moreover, relying
on the established unique solvability of the Cauchy problem for the sine-Gordon
equation, we prove a theorem on the unique determinacy of pseudospherical sur-
faces (the fact that a pseudospherical surface is determined by the corresponding
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initial data on its irregular singularities). Classical problems connected with the
Joachimsthal–Enneper surfaces are discussed in § 3.8, where we exhibit a link be-
tween these surfaces and a class of solutions of the sine-Gordon equation that are
obtained by the method of separation of variables. The final § 3.9 deals with the
fundamental connection between the the method of the Inverse Scattering Problem
(or Transform) (MIST) and the theory of pseudospherical surfaces, which is ex-
pressed by the fact that the basic “input” relations in MIST and the fundamental
system of structure equations for pseudospherical surfaces in E3 are structurally
identical. All together, the consideration of all principial problems in Chapter 3
points to the presence of a significant geometric component (in the context of
Lobachevsky geometry) in a wide spectrum of problems of modern mathematical
physics.

3.1 The Bäcklund transformation for pseudospherical
surfaces

The modern concept of Bäcklund transformation has its origin in the classical the-
ory of pseudospherical surfaces and emerged from the mathematically daring idea
of L. Bianchi [143] concerning the possible existence of a specific link between pseu-
dospherical surfaces, formulated in his doctoral dissertation of 1879. The general
meaning of the proposed idea of transformation is as follows: is it possible, given
a pseudospherical surface, to construct a new, different pseudospherical surface in
such a way that the construction algorithm will rely exclusively on“information”
about the given surface? The answer to this – rather optimistic, it would seem
– question turned out to be affirmative. Even more, the proposed geometric idea
was considerably developed and generalized already in 1883 by A. Bäcklund [137],
and the transformation of surfaces itself became known as the Bäcklund transfor-
mation. From the point of view of modern methodological concepts, the idea of
the Bäcklund transformation can be more widely interpreted as the possibility of
distinguishing certain classes of mathematical (and not only) objects, which admit
their own nontrivial “ self-organization” – compositional generation (based on a
superposition principle) of new similar objects that preserve (inherit) some special
key criterion. Let us next discuss the original geometric content of the classical
Bäcklund transformations, relying on the original works of Bianchi [142–144] and
Bäcklund [137]; we also mention the modern monographs [154, 187, 195], in which
the circle of problems considered here is considered in connection with various
fields of contemporary mathematical physics.

3.1.1 Pseudospherical surfaces: basic relations

Suppose that in three-dimensional Euclidean space E3 there is given a pseudo-

spherical surface S, described by its radius vector
→
r (u, v). we will assume that

the coordinates u and v are asymptotic coordinates on the surface S. Then, by
the considerations in § 2.7.3, the square of the linear element on S will coincide
with the metric (2.7.24) of the surface, written in the Chebyshev coordinatization,
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and the coefficients of the second fundamental form will be given by expressions
(2.7.29).

Thus, for the given pseudospherical surface S[
→
r (u, v)] one has the following

basic relations:
I(u, v) = du2 + 2 cosω(u, v)dudv + dv2, (3.1.1)

E(u, v) = −→r 2
u = 1,

F (u, v) = (−→ru,−→rv) = cosω(u, v), (3.1.2)

G(u, v) = −→r 2
v = 1,

Π(u, v) = 2 sinω(u, v)dudv, (3.1.3)

L = 0, M = sinω(u, v), N = 0. (3.1.4)

The net angle function ω(u, v) of the Chebyshev net (of asymptotic lines on
S[−→r (u, v)]) satisfies the sine-Gordon equation

ωuu = sinω. (3.1.5)

The radius vector −→r (u, v) and the unit normal vector −→n (u, v) to the surface
S[−→r (u, v)] are given by the system of derivation formulas (2.7.30)–(2.7.34). Let
us rewrite the system (2.7.30)–(2.7.34) in a convenient matrix form, denoting the
net angle by ω:⎛⎜⎝

−→ru
−→rv
−→n

⎞⎟⎠
u

=

⎛⎜⎜⎝
ωu cotω − ωu

sinω
0

0 0 sinω

cotω − 1
sinω 0

⎞⎟⎟⎠
⎛⎜⎝
−→ru
−→rv
−→n

⎞⎟⎠ , (3.1.6)

⎛⎜⎝
−→ru
−→rv
−→n

⎞⎟⎠
v

=

⎛⎜⎜⎝
0 0 sinω

− ωv
sinω ωv cotω 0

− 1
sinω cotω 0

⎞⎟⎟⎠
⎛⎜⎝
−→ru
−→rv
−→n

⎞⎟⎠ (3.1.7)

(The subscripts u and v in the left-hand side column vectors denote partial deriva-
tives).

The system (3.1.6), (3.1.7) is the system (2.3.18), (2.3.19), written by using
the Christoffel symbols (2.7.68) for a Chebyshev metric of the form (3.1.1). Re-
call that in the chosen coordinate parametrization of the surface, −→ru and −→rv are
tangent vectors to the asymptotic (coordinate) lines u and v on the surface. Cor-
respondingly, the unit normal vector −→n (u, v) is orthogonal to the tangent plane
of the surface, which contains −→ru and −→rv (Figure 3.1.1). Along with the triple
−→ru, −→rv, −→n , let us introduce the new orthogonal triple of vectors

−→
A,
−→
B,
−→
C (the

trihedron, or frame) {−→A,
−→
B,
−→
C }) as follows: −→A is just a renaming of the vector −→ru

(see Figure 3.1.1): −→
A = −→ru. (3.1.8)
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Figure 3.1.1

For
−→
B we take a unit vector in the tangent space space to the surface S at

the given point (u, v) that is orthogonal to
−→
A = −→ru: −→B ⊥ −→A .

It is readily verified that the vector
−→
B chosen in this way is given by the

expression
−→
B = − cotω−→ru +

1

sinω
−→rv, |−→B | = 1. (3.1.9)

Now it is clear that for the third vector
−→
C of the trihedron we need to take

the already available unit normal −→n :

−→
C = −→n . (3.1.10)

Essentially, to pass to the triple {−→A,
−→
B,
−→
C } we changed only one vector in

the triple −→ru, −→rv, −→n .
Thus, in each point of the pseudospherical surface S[−→r (u, v)] we defined, via

relations (3.1.8)–(3.1.10), a trihedron (frame) {−→A,
−→
B,
−→
C }. With respect to this

trihedron the system (3.1.6), (3.1.7) can be written in the form⎛⎜⎜⎝
−→
A
−→
B
−→
C

⎞⎟⎟⎠
u

=

⎛⎝ 0 −ωu 0

ωu 0 1
0 −1 0

⎞⎠
⎛⎜⎜⎝
−→
A
−→
B
−→
C

⎞⎟⎟⎠ , (3.1.11)

⎛⎜⎜⎝
−→
A
−→
B
−→
C

⎞⎟⎟⎠
v

=

⎛⎝ 0 0 sinω

0 0 − cosω

− sinω cosω 0

⎞⎠
⎛⎜⎜⎝
−→
A
−→
B
−→
C

⎞⎟⎟⎠ (3.1.12)

Note that as a result of passing to the new system the matrices in the right-
hand sides of (3.1.11) and (3.1.12) acquired an asymmetric form.
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The compatibility condition for the system (3.1.11), (3.1.12) (i.e., the equal-
ity of the mixed derivatives of the left-hand sides) is expressed by the sine-Gordon
equation.

The preliminary arguments given above allow us to address now the main
subject of this section, an algorithm for constructing pseudospherical surfaces with
the aid of Bäcklund transformations.

3.1.2 Geometry of the Bäcklund transformation

Suppose that in the Euclidean space E3 there is given a pseudospherical surface
S[−→r ] (of Gaussian curvature K = −1), described by its radius vector −→r (u, v).
Then the families of u- and v-lines yield the coordinate net of asymptotic lines on
the surface S.

To obtain a new pseudospherical surface S∗[−→r ∗] that is associated to S by
means of a Bäcklund transformation, we will use the a priori connection between
the radius vectors of the two surfaces:

−→r ∗ = −→r + a(cosβ
−→
A + sinβ

−→
B ), (3.1.13)

where a = const > 0 is some constant of the transformation.
Since the vectors

−→
A and

−→
B are orthonormal, the expression in parentheses in

(3.1.13) is a unit vector lying in the tangent plane to the surface S at the current
point P (u, v). It is also clear from (3.1.13) that

|−→r ∗ −−→r | = a.

The function β = β(u, v) has the meaning of an angle, and the conditions that it
must satisfy will be specified below.

An important requirement on the Bäcklund transformation (3.1.13) is that
the coordinates u, v on the new surface S∗[−→r ∗(u, v)] be also asymptotic. In par-
ticular, this means that in the coordinates u, v the metric ds∗2 of the surface S∗
will be in the Chebyshev form, i.e., the following equalities must hold:

E∗ = (−→r ∗u (u, v))2 = 1,

F ∗ = (−→r ∗u (u, v),−→r ∗v (u, v)) = cosω∗(u, v), (3.1.14)

G∗ = (−→r ∗v (u, v))2 = 1,

Geometrically, the transition (3.1.13) from the surface S[−→r ] to the surface
S∗[−→r ∗] means that to each point P (u, v, ) ∈ S[−→r ] one associates a point

P ∗(u, v) ∈ S∗[−→r ∗]
in such a way that the vector

−→
PP ∗ = a(cosβ

−→
A + sinβ

−→
B )

lies in both the tangent plane α to the surface S at the point P and the tangent
plane α∗ to the surface S∗ at the point P ∗ (Figure 3.1.2). Note, however, that the
planes α and α∗ make some nonzero angle γ.
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Figure 3.1.2

Let us find the conditions that the function β(u, v) appearing in (3.1.13)
must satisfy. To this end we use (3.1.13) to calculate the derivatives −→r ∗u and −→r ∗v :

−→r ∗u = −→ru + a(cosβ
−→
Au + sinβ

−→
B u − βu sinβ

−→
A + βu cosβ

−→
B ),

−→r ∗v = −→rv + a(cosβ
−→
A v + sinβ

−→
B v − βv sinβ

−→
A + βv cosβ

−→
B ),

(3.1.15)

If we use here the expressions for
−→
Au,

−→
B u,

−→
A v,

−→
B v given by (3.1.11) and

(3.1.12), together with the representations

−→ru =
−→
A, −→rv = cosω

−→
A + sinω

−→
B,

which follow from (3.1.8) and (3.1.9), we obtain

−→r ∗u = (1 + a (ωu − βu) sinβ)
−→
A − a (ωu − βu) cosβ

−→
B + a sinβ

−→
C , (3.1.16)

−→r ∗v = (cosω − aβv sinβ)
−→
A + (sinω + aβv cosβ)

−→
B + a sin(ω − β)

−→
C , (3.1.17)

If we now subject expressions (3.1.15) to conditions (3.1.14) (and recall that

the vectors
−→
A,
−→
B,
−→
C , are orthogonal), we arrive at the system

βu = ωu + k sinβ,

βv =
1

k
sin(β − ω),

(3.1.18)

where the coefficient k is given by

k =
1

a

(
1±
√
1− a2

)
,

or

a =
2k

1 + k2
. (3.1.19)

Upon introducing the new function

W = β − ω,
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system (3.1.18) can be also recast in the “symmetric” form

Wu = k sinβ,

βv =
1

k
sinW.

(3.1.20)

The system (3.1.20) (or, equivalently, the system (3.1.18)) expresses the nec-
essary condition for the first and third equalities in (3.1.14) to hold. In this way,
system (3.1.20) gives the sought-for function β = β(u, v). Turning now to the
second relation in (3.1.14), let us calculate the scalar product (−→r ∗u ,−→r ∗v ) using
(3.1.16), (3.1.17), and (3.1.20). We get

(−→r ∗u ,−→r ∗v ) = cos(2β − ω),

or, equivalently,

(−→r ∗u ,−→r ∗v ) = cosω∗, where ω∗ = 2β − ω. (3.1.21)

We have thus verified that the metric ds∗2 of the new (sought-for) pseudo-
spherical surface S∗[−→r ∗(u, v)] takes on the Chebyshev form

ds∗2 = du2 + 2 cosω∗(u, v)dudv + dv2. (3.1.22)

Consequently, the function ω∗(u, v) satisfies the sine-Gordon equation

ω∗uv = sinω∗. (3.1.23)

To prove that the resulting coordinate net u, v on the surface S∗[−→r ∗(u, v)] is
not only Chebyshev, but also asymptotic, we calculate the coefficients L∗, M∗, N∗
of the second fundamental form of S∗, using the obtained expressions (3.1.16)–
(3.1.18). First note that

−→n ∗ = [−→r ∗u ×−→r ∗v]
|[−→r ∗u ×−→r ∗v]|

,

and so, in view of (3.1.16), (3.1.17) and (3.1.19),

−→n ∗ = − 2k

1 + k2
sinβ · −→A +

2k

1 + k2
cosβ · −→B +

1− k2

1 + k2
· −→C . (3.1.24)

From (3.1.24) we immediately get

−→n ∗u = − 2k

1 + k2
sinβ cosβ ·−→A+

(
2k

1 + k2
cos2 β − 1

)
·−→B+

1− k2

1 + k2
cosβ ·−→C , (3.1.25)

−→n ∗v =

(
− 2k

1 + k2
sinω∗ +

k2

1 + k2
sinω

)
· −→A

+

(
1

1 + k2
cosω∗ − k2

1 + k2
cosω

)
· −→B − 2k

1 + k2
cos(ω − β) · −→C .

(3.1.26)
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Now using the relations (3.1.16), (3.1.17), (3.1.25), and (3.1.26) obtained
above for −→r ∗u , −→r ∗v , −→n ∗u , and −→n ∗u to find the coefficients L∗, M∗ and N∗ for the
“new” pseudospherical surface S∗[−→r ∗], we finally find that, indeed, the following
equalities hold:

L∗ = −(−→r ∗u ,−→n ∗u ) = 0,

M∗ = −(−→r ∗u ,−→n ∗u ) = sinω∗,

N∗ = −(−→r ∗v ,−→n ∗v ) = 0.

(3.1.27)

The obtained values of the coefficients (3.1.27) show that the resulting Cheby-
shev net of lines Cheb(u, v) on S∗ is asymptotic, and its net angle ω∗ = 2β − ω
satisfies the sine-Gordon equation (3.1.23).

Making the substitution

β =
ω∗ + ω

2
, W =

ω∗ − ω

2

in the system (3.1.20), we obtain the important differential relations(
ω∗ − ω

2

)
u

= k · sin
(
ω∗ + ω

2

)
,(

ω∗ − ω

2

)
v

=
1

k
· sin

(
ω∗ − ω

2

)
,

k = const. (3.1.28)

The system (3.1.28) yields a Bäcklund transformation between the given
(known) solution ω(u, v) and the corresponding new solution ω∗(u, v) of the sine-
Gordon equation. The numerical parameter k is the transformation parameter.
The functions ω(u, v) and ω∗(u, v) have the intuitive geometric meaning of net
angles of the Chebyshev coordinate nets of asymptotic lines on the surfaces
S[−→r (u, v)] and S[−→r ∗(u, v)], respectively.

We remark that the numerical coefficient k used in (3.1.28) is a fixed pa-
rameter of the Bäcklund transformation. More precisely, if γ is the angle between
the tangent planes α and α∗ to the surface S and S∗ at the points P ∈ S and
P ∗ ∈ S∗, respectively, which correspond under the Bäcklund transformation (see
Figure 3.1.2), then

k = tan
γ

2
. (3.1.29)

In other terms, using the normals −→n and −→n ∗ to the surfaces S and S∗ at the
points P and P ∗, respectively, we can also write

k =
1

a
(1− (−→n ,−→n ∗)) , (3.1.30)

which is identical to (3.1.19). The considerations presented in this subsection allow
us to formulate an algorithm which uses Bäcklund transformations for constructing
pseudospherical surfaces.

Bäcklund transformation for pseudospherical surfaces. Suppose the original
pseudospherical surface S[−→r (u, v)] is given by the radius vector −→r (u, v) and cor-
responds to the solution ω(u, v) of the sine-Gordon equation (ω(u, v) is the net
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angle of the Chebyshev net of asymptotic lines u, v on S). Then the radius vector−→r ∗(u, v) of the new pseudospherical surface S∗[−→r ∗(u, v)], which corresponds to its
own solution ω∗(u, v) of the sine-Gordon equation (ω∗(u, v) is the net angle of the
Chebyshev net of asymptotic lines u, v on S∗), obtained by means of the system
(3.1.28), is given by the formula

−→r ∗ = −→r +
2k

1 + k2
· 1

sinω

[
sin

(
ω − ω∗

2

)
−→ru + sin

(
ω + ω∗

2

)
−→rv
]
. (3.1.31)

The constant numerical parameter k in formula (3.1.31), which defines the
Bäcklund transformation for pseudospherical surfaces, coincides with the parame-
ter which “figures” in the system (3.1.28) that gives the Bäcklund transformation
for solutions of the sine-Gordon equation (net angles of Chebyshev nets of asymp-
totic lines on the corresponding surfaces).

The Bäcklund transformation, which according to (3.1.28) and (3.1.31) sends
a solution ω (or the corresponding surface S) into the solution ω∗ (respectively,
the surface S∗), with transformation parameter k, is usually denoted by Bk:

1

ω∗ = Bk(ω), S∗ = Bk(S),

or
[S∗, ω∗] = Bk[S, ω].

The Bäcklund transformation for pseudospherical surfaces is shown schemat-
ically in Figure 3.1.3.

Figure 3.1.3

The actual construction of a new pseudospherical surface S∗ by means of the
Bäcklund transformation is carried out in two steps:

1) Given a solution ω(u, v) of the sine-Gordon equation, one uses the system
of nonlinear equations (3.1.28) to find a new solution ω∗(u, v) of the same
equation: ω∗ = Bk(ω).

2) One constructs the radius vector −→r ∗(u, v) of the new surface S∗ according to
formula (3.1.31): S∗ = Bk(S).

The described implementation of the method of Bäcklund transformations will
be exemplified in § 3.4 on various types of two-soliton pseudospherical surfaces.
Ideas concerned with “transferring” the Bäcklund transformation to the case of
the ambient space E4 are discussed in [134].

1This notation was introduced by Bianchi.
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3.2 Soliton solutions of the sine-Gordon equation.
The Lamb diagram

Let us analyze the system of equations (3.1.28), which “governs” the transforma-
tion of solutions of the sine-Gordon equation, and thus corresponds to the con-
struction of pseudospherical surfaces by means of the Bäcklund transformations.

3.2.1 The Bianchi diagram

Assuming that the solution ω∗(u, v) of the system (3.1.28) exists, let us apply
to the original given solution ω(u, v) of the sine-Gordon equation two Bäcklund
transformations with different parameters k1 and k2:

ω
(k1)
1 = Bk1(ω),

ω
(k2)
1 = Bk2(ω).

(3.2.1)

Now let us apply again, this time to the functions ω
(k1)
1 and ω

(k2)
1 from

(3.1.21), the Bäcklund transformations with coefficient k2 and k1, respectively:

ω
(k1,k2)
1 = Bk2(ω

(k1)) = Bk2Bk1(ω),

ω
(k2,k1)
1 = Bk1(ω

(k2)) = Bk1Bk2(ω).
(3.2.2)

Figure 3.2.1

It is natural to assume that the successive application of the Bäcklund trans-
formation enjoys the permutability (commutativity) property:

Bk2Bk1(ω) = Bk1Bk2(ω). (3.2.3)

Indeed, the fact that relation (3.2.3) holds is the content of Bianchi’s permutability
theorem [142], which is valid for all solutions of the sine-Gordon equation that are
connected to one another by a Bäcklund transformation (3.1.28). This theorem
will be discussed a bit later.
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Let us study the Bäcklund transformation (3.1.28) under the assumption that
property (3.2.3) established by Bianchi holds. This formulation of the problem is
illustrated by the classical Bianchi diagram shown in Figure 3.2.1.

To simplify the handling of the transformations, in the “superscript notation”
of the solutions we will indicate only the index of the parameter, namely, we denote

ω
(k1)
1 ≡ ω1

1 , ω
(k2)
1 ≡ ω2

1 , ω2 ≡ ω
(k1,k2)
2 = ω1,2

2 = ω
(2,1)
2 .

Choosing as “primer” (“starter”) solution of the transformation (3.1.28)
(and, correspondingly, of the Bianchi diagram (Figure 3.2.1)) some solution ω =
ω0(u, v) of the sine-Gordon equation, let us write the first iteration of the Bäcklund
transformation for the first equation in (3.1.28):

ω1
1,u = ω0,u + 2k1 · sin

(
ω1
1 + ω0

2

)
,

ω2
1,u = ω0,u + 2k2 · sin

(
ω2
1 + ω0

2

)
.

(3.2.4)

(Here the lower “letter” index after the comma indicated the variable with respect
to which one differentiates.)

Similarly, the second iteration of the Bäcklund transformation corresponding
to the Bianchi diagram (Figure 3.2.1) yields

ω2,u = ω1
1,u + 2k2 · sin

(
ω2 + ω1

1

2

)
,

ω2,u = ω2
1,u + 2k1 · sin

(
ω2 + ω2

1

2

)
.

(3.2.5)

If in (3.2.5) we subtract the second equation from the first, we obtain

ω1
1,u − ω2

1,u + 2k2 · sin
(
ω2 + ω1

1

2

)
− 2k1 · sin

(
ω2 + ω2

1

2

)
= 0. (3.2.6)

Now inserting expressions (3.2.4) in (3.2.6) we get

2k1

[
sin

(
ω1
1 + ω0

2

)
− sin

(
ω2 + ω2

1

2

)]
− 2k2

[
sin

(
ω2
1 + ω0

2

)
− sin

(
ω2 + ω1

1

2

)]
= 0.

(3.2.7)

Routine trigonometric transformations in (3.2.7) yield[
4k1 · sin

(
ω0 − ω2

4
+

ω1
1 − ω2

1

4

)
− 4k2 · sin

(
ω0 − ω2

4
− ω1

1 − ω2
1

4

)]
× cos

(
ω0 + ω2

4
+

ω1
1 + ω2

1

4

)
= 0.

(3.2.8)
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The expression in the square brackets in (3.2.8) vanishes provided that

ω2 = ω0 + 4 arctan

(
k1 + k2
k1 − k2

· tan
(
ω1
1 − ω1

2

4

))
. (3.2.9)

The algebraic recursion formula (3.2.9) is called the Bianchi formula; it gives
the Bäcklund transformation for constructing a new solution ω2 of the sine-Gordon
equation from the already known solutions ω0 and ω1

1 , ω
2
1 , which occupy the pre-

ceding “positions” in the Bianchi diagram (Figure 3.2.1).
Let us remark that the possible vanishing of the second factor in (3.2.8)

gives a linear dependence of the functions ω0, ω
1
1 , ω

2
1, ω2, which turns out to be

incompatible with the form of the sought-for nonlinear transformation.
Now that we derived the recursion formula (3.2.9), the permutability property

(3.2.3) of the Bäcklund transformation introduced above can be verified directly,
by showing that for any solution ω0(u, v) of the sine-Gordon equation, the obtained
function ω2(u, v) satisfies a system of equations of the type (3.1.28) in the index

k1, as well as in the index k2, i.e., that ω2 = Bk1

(
ω
(k2)
1

)
= Bk2

(
ω
(k1)
1

)
if ω

(k1)
1 =

Bk1(ω0) and ω
(k2)
1 = Bk2(ω0). Historically, the proof of the permutability property

was given in detail by Bianchi himself [142]. Let us mention here that the classical
Bianchi formula can be generalized, in the framework of the method of the inverse
scattering problem, by means of the n-fold Darboux transformation [136, 171].

The extended version of the diagram, which uses the necessary number of
compatible Bianchi diagrams, is called in the current literature the Lamb diagram.
The Lamb diagram (Figure 3.2.2) is used, in particular, to construct multi-soliton
solutions of the sine-Gordon equation.

The Lamb diagram (Figure 3.2.2) illustrates the construction of solutions of
the sine-Gordon equation in accordance with the recursion formula (3.2.9). Gen-
erally, in order to construct the solution ωn at the nth step of the transformation
(the nth layer of the Lamb diagram) it is necessary to know its “precursors” on

the two preceding layers of the diagram, namely, the solutions ω
(1,2)
n−1 , ω

(2,3)
n−1 on the

(n−1)th layer, and the solutions ω
(1)
n−2, ω

(2)
n−2 ω

(3)
n−2 on the (n−2)th layer. In partic-

ular, for the first three layers the “configuration” of such solutions is depicted by
the “shaded triangle” in Figure 3.2.2. The corresponding coefficients (parameters)
of the Bäcklund transformations used in the process are indicated in the diagram.

Let us consider the algorithm for constructing solutions of the sine-Gordon
equation by means of formula (3.2.9) and the Lamb diagram in the case when
for the “primer” solutions ω0 on the first layer one takes the “vacuum” (trivial)
solution ω0 ≡ 0.

To find the solution ω1 on the next (second) layer, we must solve in the
present case the system of equations (3.1.28) (where now ω ≡ ω0 = 0, ω∗ ≡ ω1):

ω1,u = 2k · sin ω1

2
,

ω1,v =
2

k
· sin ω1

2
,

k = const. (3.2.10)
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Figure 3.2.2

Standard integration of the system (3.2.10) yields the general form of the
solutions that occupy the 2nd layer of the Lamb diagram:

ω1(u, v) = 4 arctan
(
eku+v/k+b

)
, k, b = const. (3.2.11)

The solutions ω1(u, v) are called one-soliton solutions (from the term “soli-
tary wave”) or “kink-type” solutions; their physical meaning will be discussed at
the end of this section.

The solution ω0 ≡ 0 and the already obtained solution ω1(u, v) (see (3.2.1))
allow us to use formula (3.2.9) and, respectively, the Lamb diagram, for construct-
ing the solution ω2(u, v). As a result, the next (3rd) layer (Figure 3.2.2) is occupied
by the two-soliton solutions ω2(u, v):

ω1,2
2 (u, v) = 4 arctan

(
k1 + k2
k1 − k2

· tan ω1
1 − ω2

1

4

)
,

or

ω1,2
2 (u, v) = 4 arctan

(
k1 + k2
k1 − k2

· ek1u+v/k1+b1 − ek2u+v/k2+b2

1 + e(k1+k2)u+(1/k1+1/k2)v+(b1+b2)

)
, (3.2.12)

where k1, k2, b1, b2 are constants.
From the point of view of the physics of nonlinear waves, the two-soliton

solutions ω1,2
2 (u, v) realize the coupled state of two one-soliton solutions ω1

1 and
ω2
1, i.e., their nonlinear superposition, which asymptotically, for large values of

time, decays into two solitons.
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The already available solutions ω0, ω1, and ω3 occupy the first three layers
of the Lamb diagram. By successively applying the (algebraic) recursion formula
(3.2.9), which in reference to the Lamb diagram we write in the general form

ωn = ωn−2 + 4 arctan

(
ki + kj
ki − kj

· tan
(
ωi
n−1 − ωj

n−1

4

))
, (3.2.13)

where ki, kj are constants, one can obtain the solution ωn on any layer of the
diagram. The transition to a new (next) layer is reflected in the Lamb diagram
by shifting up by one step (layer) the shaded triangle in Figure 3.2.2. Altogether
a solution ωn(u, v) living on the (n + 1)st layer of the Lamb diagram depends
on n numerical parameters of type ki. The solutions ωn(u, v) of the sine-Gordon
equation generated by formula (3.2.13) are called multi-soliton (and sometimes
multi-solitonic or n-soliton) solutions [50,51,57,65].

3.2.2 Clairin’s method

From an analytical point of view we can consider that the coefficients ki in (3.2.13)
are complex , and that the Bäcklund transformation (3.2.13) itself can be also ob-
tained outside the framework of the geometric methodology, by seeking a hypo-
thetical connection between different solutions of the sine-Gordon equation and
their derivatives. Such an approach to the construction of transformations of so-
lutions to nonlinear differential equations is known as Clairin’s method [67, 187],
and we present it next.

Let us consider the Bäcklund transformation on the example of the general
Klein-Gordon equation

zuv = F(z). (3.2.14)

Suppose that we know some solution z(u, v) of equation (3.2.14). Let us try
to find a new solution ζ(u, v), related to z(u, v) by a system of equations of the
form

ζu = P (ζ, z, zu),

ζv = Q(ζ, z, zu).
(3.2.15)

Direct substitution of expressions (3.2.15) in (3.2.14) yields (taking into account
that ζuv = ζvu = F(ζ))

Q · Pζ + zv · Pz + F(z) · Pzu = F(ζ),
P ·Qζ + zu ·Qz + F(z) ·Qzv = F(ζ). (3.2.16)

Generally speaking, the system (3.2.16) may be incompatible, for instance,
due to an incomplete set of arguments in the functions P and Q. Hence, it is neces-
sary to study the compatibility of systems of the type (3.2.16). In [67] the compat-
ibility condition of the system (3.2.16) – and with it the existence of a Bäcklund
transformation of the form (3.2.15) for the Klein-Gordon equation (3.2.14) – were
established. This condition has the form

F ′′ + C · F = 0, C = const. (3.2.17)
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Condition (3.2.17) means that for the Klein-Gordon equation (3.2.14) a
Bäcklund transformation of the sought-form (3.2.15) exists for two forms of the
right-hand side of that equation:

F = A · sin
(√

|C| · z
)
+B · cos

(√
|C| · z

)
,

or
F = A · sinh

(√
|C| · z

)
+B · cosh

(√
|C| · z

)
,

where C = const, A,B = const.
Let us examine in more detail the first, closer to us case, in which the Klein-

Gordon equation becomes the sine-Gordon equation. Then we have

zuv = sin z,

ζuv = sin ζ.

In view of these relations, equations (3.2.16) become

Q · Pζ + zv · Pz + sin z · Pzu = sin ζ,

P ·Qζ + zu ·Qz + sin z ·Qzv = sin ζ.
(3.2.18)

Differentiating the first (second) equation in this system with respect to zv
(respectively, zu) we arrive, after routine transformations, at

Pzuzv = 0, Qzuzv = 0. (3.2.19)

This implies that

P (ζ, z, zu) = P1(ζ, z) + P2(ζ, z) · zu,
Q(ζ, z, zv) = Q1(ζ, z) +Q2(ζ, z) · zv. (3.2.20)

The functions P1, P2, Q1, Q2 can be specified further. Indeed, let us substi-
tute (3.2.20) in (3.2.18) and compare the coefficients of zu, zv and zuv in the left-
and right-hand sides of each of the equations. This yields

Q1P2,ζ = 0, P1Q2,ζ = 0,

P2,z + P2,ζQ2 = 0, Q2,z +Q2,ζP2 = 0,

P1,z + P1,ζQ2 = 0, Q1,z +Q1,ζP2 = 0.

(3.2.21)

From the first four equations in (3.2.21) it follows that

P2 = a = const, Q2 = b = const, (3.2.22)

thanks to which the last two equations in (3.2.21) become

b · ∂P1

∂ζ
+

∂P1

∂z
= 0,

a · ∂Q1

∂ζ
+

∂Q1

∂z
= 0.

(3.2.23)
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It is readily verified that the solutions of the obtained system (3.2.23) have
the general form

P1 = f(ζ − bz),

Q1 = g(ζ − az).
(3.2.24)

Next, substituting the functions P1, Q1, P2, Q2 thus found in (3.2.20), and
then in (3.2.18), we obtain the system of equations

Q1 · ∂P1

∂ζ
= sin ζ − a sin z,

P1 · ∂Q1

∂ζ
= sin ζ − b sin z.

(3.2.25)

Adding the two equations in (3.2.25) and integrating the result with respect to ζ
we obtain

f(ζ − bz) · g(ζ − az) = −2 cos ζ − (a+ b)ζ sin ζ + C(z), (3.2.26)

where C(z) is some function that needs to be further specified.
A careful analysis of relation (3.2.26) shows that it will be satisfied for the

following choice of the numerical parameters and functions involved:

a = 1, b = −1, C(z) = 2 cos z,

f(ζ + z) = 2k sin
ζ + z

2
, g(ζ − z) =

2

k
sin

ζ − z

2
,

(3.2.27)

where k is an arbitrary numerical parameter. Thus, we have determined the func-
tions P1 and Q1 in (3.2.24). Next, substituting the functions P1, Q1, P2, Q2 found
above (see (3.2.22), (3.2.24), (3.2.27)) in (3.2.20), and then in the system (3.2.15),
we obtain for solutions of the sine-Gordon equation the transformation

ζu = zu + 2k sin
ζ + z

2
,

ζv = −zv + 2

k
sin

ζ − z

2
,

(3.2.28)

which is precisely the Bäcklund transformation (3.1.28), introduced earlier when
we considered transformations of pseudospherical surfaces.

At the same time, the system (3.2.28), which was derived by Clairin’s method,
has certain “advantages”, since without loss of generality and without resorting to
geometric images, it can be considered over the field of complex numbers. In this
case, upon choosing in formula (3.212), which corresponds to a system of the type
(3.2.28) (given over the field of complex numbers), complex-conjugate coefficients
k1 = a + ib, k2 = a − ib (we put b1 = b2 in (3.2.12)), we obtain the following
solution of the sine-Gordon equation:

z(u, v) = 4 arctan

a · sin
(
b · u− b

a2 + b2
· v
)

b · cosh
(
a · u+

a

a2 + b2
· v
) , (3.2.29)
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called a breather solution. The solution (3.2.29) itself is not a complex-valued
function. In § 3.4 we will construct a pseudospherical surface that provides an in-
terpretation of a breather solution of type (3.2.29). Let us mention that in the
modern theory of nonlinear differential equations there are sufficiently well devel-
oped methods that generalize Clairin’s approach and are used to obtain hierarchies
of solutions connected with certain a priori types of constraints (by analogy with
(3.2.15)). In particular, modifications of such methods for wide classes of equations
associated with the method of the inverse scattering problem and pseudospherical
surfaces are quite strongly developed in work of K. Tenenblat and her colleagues
[138, 150, 195].

3.2.3 The concept of soliton solution of a nonlinear equation

In this subsection we address the physical interpretation of solutions of the form
(3.2.13) as “solitary waves”, the interactions of which have certain special prop-
erties. Such solutions arise quite often in nonlinear models that describe various
physical phenomena. In particular, the by-now familiar to us sine-Gordon equa-
tion is encountered in many physical models, but, as a rule, in the form of the
nonlinear wave equation (with “wave-type” left-hand side)

zxx − ztt = sin z. (3.2.30)

The x and t in (3.2.20) usually play the role of a space and a time variable,
respectively.

Let us note that the sine-Gordon equation (3.2.30) is obtained from the
“standard” sine-Gordon equation (3.1.5) as a result of the change of variables

x = u+ t, t = u− v, z = ω. (3.2.31)

From a geometrical point of view, the substitution (3.2.31) corresponds to the
transition from the Chebyshev coordinate net on a pseudospherical surface to the
orthogonal coordinate net associated to the lines of principal curvature of the
surface (for example, in the case of the pseudosphere such an orthogonal net is
formed by the meridians of revolution and the circular parallels).

Let us turn now to the concept of soliton. In the physics of nonlinear waves
the term soliton is used for solitary waves that propagate at a constant speed and
the profile of which is preserved in time. The most important is that this kind of
waves interact in a special characteristic way, the only result of which is a phase
shift of the interacting waves. Let us formalize these statements [50, 51, 107].

Consider the general form of a partial differential equation for a function
z(x, t) of two independent variables x and t:

L[z] = 0, z = z(x, t). (3.2.32)

A solution of equation (3.2.32) of the form

z = z(x, t) = zST(ξ), ξ = x− wt, w = const, (3.2.33)

will be called a stationary traveling wave.
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We call solitary wave zST(ξ) a localized traveling wave, that is, a wave (one-
dimensional profile) zST, the transition of which from one stable limit state (for
ξ → −∞) to another stable limit state (for ξ → +∞) (with, possibly, return after
a perturbation of the initial state) is practically localized.

A typical example of solitary state is the solution

z1KdV(x, t) = −
c

2

(
sech

[√
c

2
(x − ct)

])2

, c = const > 0, (3.2.34)

of the well-known Korteweg-de Vries equation

zt − 6zzx + zxxx = 0. (3.2.35)

Domain D
KdV

Figure 3.2.3

SG

Domain D
Figure 3.2.4

The solution (3.2.34) has a “bell-shaped” profile. In the context of the pre-
ceding discussion we should single out the one-soliton solutions z1SG(x, t) of the
sine-Gordon equation (Figure 3.2.4):

z1SG(x, t) = 4 arctan eα, α = x+ wt, w = const. (3.2.36)

Solutions of the form (3.2.36) (solutions with two distinct limit states 0 and 2π)
are also called “kink-type” solutions .

The requirement of being “practically localized” allows for the existence an
infinitesimal rapidly-decaying “tail” of an anomalous perturbation. In the frame-
work of the physical methodology, this requirement is absolutely correctly replaced
by the condition of “complete localization”, i.e., one assumes that outside some
bounded domain D the considered nonlinear perturbation vanishes.

The solutions of the Korteweg-de Vries (3.2.34) and sine-Gordon (3.2.36)
equations shown in figures 3.2.3 and 3.2.4, respectively, have exponentially decay-
ing “tails”, and their infinitely-decaying corrections to the localized perturbation
can be neglected.

A soliton is a solution of equation (3.2.32) in the form of a solitary stationary
wave zST(x − wt), which upon interacting with other waves of the same kind
preserves asymptotically its profile and speed.
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More precisely, let z(x, t) be a solution of an equation of type (3.2.32) that
for “large negative” values of time is a coupling of N solitary waves:

z(x, t) ≈
N∑
j=1

zST(ξj) as t→ −∞,

where ξj = x−wjt, with wj the speed of the jth solitary wave. Then these solitary
wave zST(ξj) are solitons , if the only result of their interaction (“participation” in
the coupled state) is a phase shift, i.e., for large values of time it holds that

z(x, t) ≈
N∑
j=1

zST(ξ̄j) as t→ +∞,

where ξ̄j = x− wjt+ δj , δj = const.
The quantity δj defines the phase shift for the corresponding soliton.
To draw conclusions about soliton properties of nonlinear waves (as solutions

of nonlinear differential equations) is possible only based on a analysis of their
interaction. This analysis is carried out by investigating the asymptotic (for large
values of the variable ξj) properties (states) of solutions, which are superpositions
of simpler (interacting) nonlinear waves. A solution that represents a composite
state, i.e., a superposition of several solitons is called a multi-soliton solution. For
example, such solutions can be obtained by means of a Bäcklund transformation.

An asymptotic investigation of two-soliton solutions of the sine-Gordon equa-
tion is carried out in [62], where one can find also a proof of the stability of a
one-soliton solution under small perturbations. This allows one to regard the one-
soliton solution as an elementary solitonic object, i.e., as a primary wave entity
that is not a composite state of other nonlinear waves that are solutions of the
sine-Gordon equation.

The soliton is an exceptionally important concept in the physics of nonlinear
phenomena. We give below a short list of physical problems in which the sine-
Gordon equation arises as a model equation, and in which the aforementioned
special features of wave objects, solitons and “kinks”, acquire in each case its
special meaning.

The sine-Gordon equation arises as a model equation in the description of
the following physical phenomena, among others:

1. Propagation of ultra-short pulses in two-level resonant media [83, 110, 169,
172].

2. Dynamics of Bloch walls in ferromagnetic crystals [47].

3. Certain problems of nonlinear electrodynamics [84].

4. The Josephson effect [8].

5. Certain problems of the unified theory of elementary particles [107].

6. Propagation of oscillations in mechanical transmission lines [23, 107].

7. Propagation of dislocations in crystals [23, 47].
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Among the references listed in the bibliography let us emphasize A. Scott’s
monograph [107], which presents of a sufficiently universal approach to the in-
vestigation of nonlinear waves, and among them, of the solutions of sine-Gordon
equation. It uses as models chains (lines, lattices) consisting of sets of identical
standard branches constructed from inductors and capacitors, which are widely
used in radiophysics. Such chains are convenient objects of study from the “wave-
theoretic” point of view, since they permit the realization of various dispersive
and nonlinear characteristics of the physical systems under investigation. Let us
mention also A. S. Davydov’s monograph [23], in which the connection between
the sine-Gordon equation and the specific features of various physical models is
traced in a rather “refined” manner. Of particular interest is also the fundamental
monograph of A. Barone and G. Paterno [8], in which a multi-plane analysis of
various aspects of the Josephson effect is carried out.

3.3 Exact integration of the fundamental system of
equations of pseudospherical surfaces in the case
of one-soliton solutions of the sine-Gordon equation

As established in § 3.1, to construct new pseudospherical surfaces by means of the
formula for the Bäcklund transformation (3.1.31) we need a “primer” pair (S, ω)
= ({ pseudospherical surface S},{solution ω(u, v) of the sine-Gordon equation}),
which corresponds to the initial, “support layer” of the transformation, the scheme
of which is shown in Figure 3.1.3. The Bäcklund transformation of solutions of
the sine-Gordon equation accompanying the transformation of pseudospherical
surfaces is given by formula (3.2.13), in which for the initial nontrivial solution
one takes the one-soliton solution (3.2.11) of the sine-Gordon equation. Let us de-
termine what pseudospherical surface can form a “pair” with the solution (3.2.11),
in the sense that a corresponding Chebyshev metric of the type (3.1.1) is realized
on it. In other words, we address the problem of integrating the fundamental
system of equations (2.7.30)–(2.7.34) for pseudospherical surfaces in the case of
one-soliton solutions ω1(u, v) of the sine-Gordon equation.

3.3.1 Exact integration method. The Dini surface and the
pseudosphere

In the setting of the problem formulated above, the fundamental system of equa-
tions for pseudospherical surfaces, (2.7.30)–(2.7.34), reads

−→ruu = ω1u · −→nu, (3.3.1)
−→ruv = ω1uv · −→n , (3.3.2)
−→rvv = ω1v · −→nv, (3.3.3)

−→nu = cotω1 · −→ru − 1

sinω1
· −→rv, (3.3.4)
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−→nv =
1

sinω1
· −→ru + cotω1 · −→rv. (3.3.5)

Let us use the property of linear dependence of the partial derivatives of the
one-soliton solutions ω1(u, v) given by (3.2.11):2

ω1u = k2 · ω1v,

ω1uu = k2 · ω1uv = k4ω1vv.
(3.3.6)

In view of properties (3.3.6), the system (3.3.1)–(3.3.3) can be reduced to

−→ru + k2−→rv = ω1u · −→n +
−→
C 0,

−→
C 0 = const. (3.3.7)

The left-hand side of equation (3.3.7) can also be expressed starting from
(3.3.4) and (3.3.5), by considering those equations as a simple system for −→ru and−→rv:

−→ru + k2 · −→rv = −k2 + cosω1

sinω1
· −→nu − 1 + k2 · cosω1

sinω1
· −→nv. (3.3.8)

From relations (3.3.7) and (3.3.8) we obtain for the unit normal vector −→n to
the sought-for surface the equation

−→n +
k2 + cosω1

ω1u · sinω1
· −→nu +

1 + k2 · cosω1

ω1u · sinω1
· −→nv = − 1

ω1u
· −→C 0. (3.3.9)

Without loss of generality, we will look for a solution of equation (3.3.9) in
the form −→n (u, v) = −→n 0(ω1) +

−→n 1(u, v). (3.3.10)

In representation (3.3.10) the isolated on purpose self-similar component −→n 0

of the argument ω1 allows one to eliminate the inhomogeneity in the equation,
given by the second component −→n1(u, v). As a result, substitution of expression
(3.3.10) in (3.3.9) leads to an ordinary differential equation for −→n0(ω1):

1 + 2k2 · cosω1 + k4

k2 · sinω1
· (−→n0)

′
ω1

+−→n0 +

−→
C 0

2k · sin(ω1/2)
= 0. (3.3.11)

and a homogeneous partial differential equation for −→n1(u, v):

−→n1 +
δ

ρ
· −→n1u +

μ

ρ
· −→n1v = 0. (3.3.12)

In the derivation of (3.3.11) and (3.3.12) we used the fact that

ω1u = 2k · sin(ω1/2).

2A similar property is enjoyed also by solutions of stationary traveling wave type, see § 3.3
below. The ideas of the exact integration approach presented here remain valid for such solutions.
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We also adopted the notations

ρ = ω1u · sinω1, δ = k2 + cosω1, μ = 1 + k2 · cosω1.

Equation (3.3.11) can be integrated in the standard manner and has the
general solution

−→n0(ω1) =
√
1 + 2k2 cosω1 + k4 · −→C 1 − 2k sin(ω1/2)

(1 + k2)2
· −→C 0,

−→
C 0,

−→
C 1 = const.

(3.3.13)
Now let us turn to equation (3.3.12). We assume that the components of the

sought-for vector function

−→n1(u, v) = {n11(u, v), n12(u, v), n13(u, v)}
are of the form

n1j(u, v) = ϕ1j(α) · sinβj + ϕ2(α) · cosβj , j = 1, 2, 3, (3.3.14)

where βj = a1ju − a2jv, with a1j , a2j = const, and the functions ϕ1j , ϕ2j are
subject to determination.

With no loss of generality, in the argument α = ku+(v/k)+b of the solution
of equation (3.3.11) we take b = 0. Also, we employ the useful relation

α = ln
(
tan

ω1

4

)
.

To find the functions ϕ1j(α) and ϕ2j(α), we substitute the expression of the
solution (3.3.14) in equation (3.3.12). We obtain

(ρϕ1j + f1ϕ
′
1j + f2jϕ2j) · sinβj + (ρϕ2j + f1ϕ

′
2j − f2jϕ1j) · cosβj = 0, (3.3.15)

where
f1 = kδ +

μ

k
,

f2 = −a1jδ + a2jμ
j = 1, 2, 3,

and the prime denotes differentiation with respect to α.
Equation (3.3.15) is equivalent to the system

f1ϕ
′
1j + ρϕ1j + f2jϕ2j = 0, j = 1, 2, 3, (3.3.16)

f1ϕ
′
2j + ρϕ2j − f2jϕ1j = 0, j = 1, 2, 3. (3.3.17)

Multiplying equations (3.3.16) and (3.3.17) by ϕ1j and ϕ2j , respectively, and
adding the results, we arrive at the following ordinary differential equation for the
function ϕ2

1j + ϕ2
2j :

f1
2
(ϕ2

1j + ϕ2
2j)
′ + ρ(ϕ2

1j + ϕ2
2j) = 0,
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the integration of which yields

ϕ2
1j + ϕ2

2j = G1(α), (3.3.18)

where G1(α) = A · exp (− ∫ (2ρ/f1)dα), A = const. If we use this last expression
in the system (3.3.16), (3.3.17) , we obtain

ϕ′ 21j + ϕ′ 22j = G2j(α), (3.3.19)

where the right-hand side is given by

G2j(α) =
f2
2j − ρ2

f2
1

G1(α) − ρ

f1
G′1(α).

The substitution
η1j = ϕ1j + iϕ2j ,

η2j = ϕ1j − iϕ2j ,
(3.3.20)

where i is the imaginary unit, reduces the system (3.3.18), (3.3.19) to the compact
form

η1jη2j = G1(α),

η′1jη
′
2j = G2(α),

j = 1, 2, 3. (3.3.21)

Taking the logarithm of the first equation in (3.3.21), differentiating the resulting
expression with respect to α, and then multiplying by η′2j/η2j , we obtain the

following quadratic equation for the function η′2j/η2j :(
η′2j
η2j

)2

− G′1
G1

η′2j
η2j

+
G2j

G1
= 0.

Solving this equation, and hence the system (3.3.21), and using the formulas
(3.3.20) to effect the reverse transition, we obtain for ϕ1j(α) and ϕ2j(α) the ex-
pressions

ϕ1j(α) = exp

(
−
∫

ρ

f1
dα

)[
Pj cos

(
−
∫

f2j
f1

dα

)
+Qj sin

(
−
∫

f2j
f1

dα

)]
,

(3.3.22)

ϕ2j(α) = exp

(
−
∫

ρ

f1
dα

)[
P2 sin

(
−
∫

f2j
f1

dα

)
−Qj cos

(
−
∫

f2j
f1

dα

)]
,

(3.3.23)

where Pj , Qj = const, j = 1, 2, 3.
Let us calculate the integrals appearing in (3.3.22) and (3.3.23). We have

exp

(
−
∫

ρ

f1
dα

)
=
√
1 + 2k2 cosω1 + k4.
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The second integral, which appears in the argument of sin and cos, can be cal-
culated in general form, but upon subsequent verification it turns out that the
equation in question is verified only when a1j = 1 and a2j = 1 for j = 1, 2, 3. In
this last case this integral becomes considerably simpler:∫

f2j
f1

dα = − arctan

(
2k

1 + k2
cos

ω1

2

)
.

Substituting the calculated integrals in (3.3.22) and (3.3.23), we write

−→ϕ 1(α) = (1 − k2) · −→P + 2k sin
ω1

2
· −→Q,

−→ϕ 2(α) = 2k cos
ω1

2
· −→P − (1− k2) · −→Q,

(3.3.24)

where −→
P = {P1, P2, P3}, −→

Q = {Q1, Q2, Q3},
−→ϕ 1(α) = {ϕ11(α), ϕ12(α), ϕ13(α)}, −→ϕ 2(α) = {ϕ21(α), ϕ22(α), ϕ23(α)}.
Therefore, the unit normal vector −→n (u, v) to the sought-for pseudospherical

surface is given by expressions (3.3.10), (3.3.13), (3.3.14) and (3.3.24), up to the

constant vectors
−→
P and

−→
Q , which are determined from the normalization condition

for the vector −→n (u, v).
Now let us determine the radius vector

−→r (u, v) = {r1(u, v), r2(u, v), r3(u, v)}
of the sought-for pseudospherical surface S1 that corresponds to the solution
ω1(u, v) of the sine-Gordon equation. To this end we employ equation (3.3.7).
Starting from the qualitative form of the vector function −→n (u, v) obtained above,
it is natural to assume the following representation for the components rj(u, v):

rj(u, v) = pj(α) · sin βj + qj(α) ·cos βj +gj(α)+e1ju+e2jv, j = 1, 2, 3. (3.3.25)

The expressions (3.2.25) “involve” the components of the following vectors:

−→p (α) = {p1(α), p2(α), p3(α)}, −→q (α) = {q1(α), q2(α), q3(α)},
−→g (α) = {g1(α), g2(α), g3(α)}, −→e 1,

−→e 2 = const.

Substitution of expression (3.3.25) in equation (3.3.7) splits it into a relation
for the self-similar part of the solution (which depends on α):

−→g ′(α) = sin
ω1

2
· −→n 0(ω1) +

1

2k
· −→C 0, (3.3.26)

and a system of differential equations for the vectors −→p (α) and −→q (α):

2k · −→p ′ − (1− k2) · −→q = ω1u · ϕ1(α), (3.3.27)
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2k · −→q ′ − (1− k2) · −→p = ω1u · ϕ2(α). (3.3.28)

Solving the nonhomogeneous system (3.3.27), (3.3.28) by the method of vari-
ation of constants, we obtain

−→p (α) = − 2k

coshα
· −→P ,

−→q (α) = − 2k

coshα
· −→Q.

(3.3.29)

Now substitution of (3.3.26) and (3.3.39) in (3.3.25) yields the radius vector−→r (u, v) of the sought-for pseudospherical surface S1 (up to constant vectors):

−→r (u, v) = sin(u− v)

coshα
·−→B 1+

cos(u− v)

coshα
·−→B 2+tanhα ·−→B 3+u ·−→e 1+v ·−→e 2. (3.3.30)

The precise values of the constant vectors
−→
B 1 = 2k

−→
P ,
−→
B 2 = −2k−→Q ,

−→
B 3,

−→e 1

and −→e 2 are found from the conditions

−→r 2
u = 1, (−→ru,−→rv) = cosω1,

−→r 2
v = 1,

which determine the pseudospherical metric under consideration. As it turns out,

the vectors
−→
B 1,

−→
B 2,

−→
B 3 have the same length 2k/(1 + k2) and form in E3 an

orthogonal frame, while −→e 1 and −→e 2 are equal unit vectors collinear with the

vector
−→
B 3:

−→e 1 = −→e 2, |−→e 1| = |−→e 2| = 1, −→e 1||−→B 3,
−→e 2||−→B 3.

The pseudospherical surface S1 constructed according to (3.3.30) and corre-
sponding to the one-soliton solution ω1 of the sine-Gordon equation is a helical

surface. This becomes clear if we orient the vectors
−→
B 1,

−→
B 2, and

−→
B 3 along the

Cartesian coordinate axes in E3(x, y, z):

−→
B 1

(
− 2k

1 + k2
, 0, 0

)
,
−→
B 2

(
0,

2k

1 + k2
, 0

)
,
−→
B 3

(
0, 0,− 2k

1 + k2

)
,

−→e 1(0, 0, 1),
−→e 2(0, 0, 1).

Then the Cartesian presentation of the surface S1 in E3(x, y, z) reads (here
u and v are asymptotic coordinates on the surface)

x = − 2k

1 + k2
· 1

cosh(ku+ k/v)
· sin(u− v),

y =
2k

1 + k2
· 1

cosh(ku+ k/v)
· cos(u− v),

z = − 2k

1 + k2
· tanh(ku+ k/v) + u+ v

(3.3.31)

(Dini surface).
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Figure 3.3.1 Figure 3.3.2

It is worth mentioning that the above equations (3.3.31) describe the well-
known classical helical Dini surface of constant negative curvature −1 (see [142]),
shown here in Figure 3.3.1.

In the case when the parameter k is equal to 1, equations (3.3.31) become
the equations of the pseudosphere (see § 1.3) in asymptotic coordinates (Figure
3.3.2):

x = − sin(u− v)

cosh(u + v)
,

y =
cos(u− v)

cosh(u+ v)
,

z = − tanh(u+ v) + u+ v

(3.3.32)

(pseudosphere).
Thus, equations (3.3.31) and (3.3.32) define two types of surfaces: the Dini

surface (k �= 1) and the pseudosphere (k = 1), which serve as “primer” pairs for
the Bäcklund transformation with the one-soliton solution ω1(u, v) of the sine-
Gordon equation for the corresponding value of the parameter k. Recall that the
solution ω1(u, v) (3.2.11) itself has the geometric meaning of the net angle of the
coordinate net of asymptotic lines on the aforementioned pseudospherical surfaces.

3.3.2 Interpretation of the one-soliton solution in the plane Λ2

In complete agreement with D. Hilbert’s results that the plane Λ2 cannot be
immersed in E3 (§ 2.6) and E. G. Poznyak’s theorem on pseudospherical surfaces
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(Subsection 2.7.4), the Dini surface (k �= 1) and the pseudosphere (k = 1) have
irregular singularities, namely, an irregular cuspidal edge and the axis Oz that
is asymptotically reachable at infinity (for the pseudosphere, Oz serves as the
axis of revolution). By Theorem 2.7.1, the preimages of these singularities in the
parametric (u, v)-plane are the level lines ω1(u, v) = mπ (with m an integer) of the
one-soliton solution (3.2.11) of the sine-Gordon equation. Moreover, the indicated
lines are also preimages of the boundaries of domains in the Lobachevsky plane
Λ2 that can be immersed in E3 precisely as the Dini surface or the pseudosphere;
the domains in Λ2 that can be immersed in E3 cannot be extended beyond these
boundaries.

Let us clarify which domains in the plane Λ2 correspond, in the sense just
discussed, to the one-soliton solution ω1(u, v). With the solution ω1(u, v) given
by (3.2.11): {(u, v) ∈ R2, ω1 ∈ (0, 2π)}, there are associated three levels mπ
(m = 0, 1, 2).

Let us study the level line

ω1(u, v) = π,

which according to (3.2.11) is given by the equation

v = −k2u. (3.3.33)

Using (3.3.33), we calculate the geodesic curvature of kg(ω1 = π) of this line
using formula (2.7.72), which yields

kg(ω1 = π) =
2k

1 + k2
= const. (3.3.34)

For definiteness, in (3.2.11) we take k > 0.
It readily follows from (3.3.34) that

kg(ω1 = π) = 1 if k = 1, (3.3.35)

and
0 < kg(ω1 = π) < 1 if k ∈ (0, 1) ∪ (1,+∞). (3.3.36)

Therefore, in the case (3.3.35) (resp., (3.3.36)), to the level line (3.3.33) there
corresponds in the Lobachevsky plane Λ2 a horocycle (resp., an equidistant , also
called a hypercircle).

An analogous analysis of the asymptotically “reachable” at infinity level lines
ω1(u, v) = 0 and ω1(u, v) = 2π shows that their geodesic curvature is equal to zero:

kg(ω1 = 0) = 0, kg(ω1 = 2π) = 0. (3.3.37)

Hence, on the plane Λ2 these lines are geodesics .
Thus, we conclude that on the Lobachevsky plane Λ2 to a one-soliton solution

ω1(u, v) there corresponds, in the sense described above, either a horosdisc ϑ(ω1)
for k = 1 (a domain, the boundary of which is a horocycle), or (for k �= 1)
a strip Π(ω1) bounded by two (asymptotically reachable) geodesic lines and an
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equidistant

geodesic

horocycle
ab
so

lute
absolute

absolute

a b c

Figure 3.3.3

equidistant with geodesic curvature (3.3.34). The width of such a strip is constant
and equals

δ = arctanh
2k

1 + k2
, k ∈ (0, 1) ∪ (1,+∞).

Strictly speaking, to the solution ω1(u, v), which is given on the whole plane
R2(u, v), there correspond on Λ2 two copies of each of the domains Π(ω1) or ϑ(ω1),
glued in a regular manner along their boundaries (i.e., along an equidistant or a
horocycle, respectively), because in order to obtain a representation on Λ2 we
need to consider the two half-planes into which R2(u, v) is divided by the level
line (3.3.33). Moreover, the images u and v of the asymptotic lines on the surface
pass in a regular manner from one copy of the corresponding domain in Λ2 to
the other copy. For example, in the space E3 to each copy of the horocycle there
corresponds its own (lower, or upper) plane of the pseudosphere.

The domains of the plane Λ2 discussed above are shown in Figure 3.3.3.
Although the domains Π(ω1) or ϑ(ω1) obtained in Λ2 correspond to one and the
same solution of the sine-Gordon equation (one-soliton solution) ,

ω1(u, v) = 4 arctan exp(ku+ v/k),

geometrically there are essential differences: the strip Π(ω1) (Figure 3.3.3 a,b) has
two points at infinity on the absolute (the points A and B), whereas the horocycle
has only one such point (the point C, Figure 3.3.3 c). The “hypothetical dynamics
of the transition” of the domain Π(ω1) into the domain ϑ(ω1) as k → 1 (“merger”
of the two points at infinity into one) is shown in Figure 3.3.3 b.

From the point of view of space geometry of the Dini surface and the pseudo-
sphere in E3, the aforementioned passage to the limit k→ 1 appears more natural:
it corresponds to “compressing” the cuspidal edge of the Dini surface along the
axis Oz with constant twisting (see (2.7.8) and (3.3.33)):

æ(ω1 = π) =
1− k2

1 + k2
,
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with subsequent limit “collapse” to a circle (zero torsion) – the edge of the pseu-
dosphere.

Note that the above arguments concerning the “passage to the limit” can be
useful in obtaining a geometric interpretation of nonlinear waves.

3.3.3 Solutions of stationary traveling wave type and their
geometric realization

A key initial condition necessary for the implementation of the exact integration
method proposed in Subsection 3.3.1 for the basic system of equations for pseu-
dospherical surfaces (3.3.1)–(3.3.5) in the case of a one-soliton solution ω1(u, v) of
the sine-Gordon equation is the property (3.3.6) of linear dependence of the par-
tial derivatives of the solution ω1(u, v). It turns out that the sine-Gordon equation
has also other solutions that enjoy this property, and so in order to provide their
geometric interpretation as pseudospherical surfaces one can, generally speaking,
apply the same method. We are thus dealing with solutions that depend on a
linear self-similar argument au+ bv:

ωST = ω(au+ bv), a, b = const. (3.3.38)

The solutions (3.3.38) belong to the class of stationary traveling waves (see
Subsection 3.2.3). In certain physical applications, such solutions are also called
single-phase solutions [23].

We now turn to the classification of solutions of stationary traveling wave
type (single-phase solutions). To this end we rewrite the sine-Gordon equation
(3.1.5) in a form with a “wave-type” left-hand side:3

Zxx − Ztt = sinZ, (3.3.39)

which is obtained by means of the change of variables

x = u+ v, t = u− v, ω = Z.

With no loss of generality, we represent the stationary traveling wave solu-
tions of equation (3.3.39) in the form

ZST(x, t) = Z(ϑ), ϑ = x− wt, w = const, (3.3.40)

(here w denotes the speed of the stationary traveling wave).
Upon passing to the variable ϑ, equation (3.3.39) reduces to the ordinary

differential equation
(1− w2) · Z ′′ϑϑ(ϑ) = sinZ(ϑ). (3.3.41)

Multiplying (3.3.41) by Z ′ϑ and integrating the result, we reduce further the
order of the equation:

(1 − w2) · Z ′2ϑ = 2(E0 − cosZ), E0 = const. (3.3.42)

3This is the form in which the sine-Gordon equation is most frequently encountered in appli-
cations.
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The solutions of equation (3.3.42) can be divided into two classes:

1) magnetic-type solutions (with w2 < 1);

2) electric-type solutions (with w2 > 1).

From the point of view of physics, the term magnetic-type (resp., electric-type)
wave is connected with the fact that for w2 < 1 (resp., w2 > 1) one can use a
Lorentz transformation to pass to a new reference frame, in which the single-phase
wave under consideration becomes a function of the space coordinate (resp., time)
only, and induces a magnetic (resp., electric) field.

Let us investigate the solutions of magnetic type. For w2 < 1, it follows
directly from (3.3.42) that

Z(ϑ)∫
Z(ϑ0)

dZ√
E0 − cosZ

=
√
2 ω̃γϑ, (3.3.43)

where γ = 1√
1−w2

and ω̃ = ±1.
We consider equation (3.3.42) in the following three typical cases:

a) E0 = 1 (w2 < 1). Setting E0 = 1 and Z(ϑ0) = π in (3.3.43), we can verify
that in this case equation (3.3.34) can be integrated exactly in elementary
functions, yielding

Z(ϑ) = 4 arctan [exp (ω̃γϑ)] . (3.3.44)

The obtained solution (3.3.44) is recognized as the already familiar one-
soliton solution of the sine-Gordon equation (provided we make the inverse
change of variables (x, t) �→ (u, v)).

b) E0 > 1 (w2 < 1). Taking Z(ϑ0) = π, we recast (3.3.43) as

Z(ϑ)∫
π

dZ√
A+ sin2(Z/2)

=
√
2 ω̃γϑ, (3.3.45)

where A = (E0 − 1)/2, 0 ≤ A ≤ 1.

If we introduce the new variable τ and parameters k and k1 by the
formulas

τ = cos
Z

2
, A =

k21
k2

, k21 = 1− k2, 0 ≤ k ≤ 1,

equation (3.3.45) reduces to

cos(Z/2)∫
0

dτ√
(1− τ2)(1 − k2τ2)

= − 1

k
ω̃γϑ. (3.3.46)
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To describe further the solutions, we use the Jacobi elliptic functions
sn(y, k), cn(y, k), and dn(y, k), which depend on the variable y and the mod-
ulus k, with 0 ≤ k ≤ 1. Each of the listed Jacobi elliptic function is defined
by inverting the corresponding elliptic integral:

y =

sn(y,k)∫
0

dτ√
(1− τ2)(1− k2τ2)

,

y =

cn(y,k)∫
0

dτ√
(1− τ2)(k21 + k2τ2)

,

y =

dn(y,k)∫
0

dτ√
(1− τ2)(τ2 − k21)

.

(3.3.47)

The parameter k1 =
√
1− k2 is called the complementary modulus of the

elliptic function.

In accordance with (3.3.47), equation (3.3.46) yields the solution corre-
sponding to the case under consideration:

Z(ϑ) = 2ω̃ arcsin[sn(y, k)] = π, y =
1

k
γϑ. (3.3.48)

c) |E0| < 1 (w2 < 1). Completely analogous arguments lead to the following
solution of equation (3.3.41):

Z(ϑ) = 2 arcsin[dn(y, k)] = π, y = γϑ. (3.3.49)

The study of the solutions of electric type is qualitatively the same as that of the
preceding case, so we only list the resulting solutions of this type:

a) E0 = −1 (w2 > 1):

Z(ϑ) = 4 arctan [exp (ω̃γ̃ϑ)]− π, (3.3.50)

where γ̃ = 1/
√
w2 − 1;

b) E0 < −1 (w2 > 1):

Z(ϑ) = 2ω̃ arcsin[sn(y, k)], y = γ̃ϑ; (3.3.51)

c) |E0| < 1 (w2 > 1):

Z(ϑ) = 2 arccos[dn(y, k)], y = γ̃ϑ. (3.3.52)
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Single-phase solutions are remarkable, in particular, because among them one
finds unbounded solutions of the sine-Gordon equation; this fact suggests that in
E3 can live pseudospherical surfaces with a countable number of irregular singu-
larities. An example of unbounded solution is (3.3.48) (with periodicity accounted
for); indeed, looking at the solution (3.3.48) (E0 > 1, w2 < 1) for w = 1 we
can verify that its derivative is positive: Z ′ϑ > 0. Therefore, this solution increases
monotonically and unboundedly, because the right-hand side in (3.3.42) is periodic
in Z.

In the case of the newly derived solutions (3.3.48)–(3.3.52), the method pro-
posed in Subsection 3.3.1 for constructing the corresponding pseudospherical sur-
face is in principle applicable. But due to the specificity of the solutions (3.3.48)–
(3.3.52), namely, the fact that they are transcendental elliptic functions, the imple-
mentation of the method may involve quadratures of those special functions. For
this reason, its complete implementation requires the study of additional prop-
erties of the Jacobi functions and is a problem interesting in its own right. In
our exposition we confine ourselves to discussing the geometric interpretation of
stationary traveling waves in the Lobachevsky plane Λ2.

From a qualitative point of view, the study of the geometric interpretation
of the solutions (3.3.48)–(3.3.52) repeats the analogous considerations for the one-
soliton solution ω1(u, v) in § 3.2. Moreover, we note that from the form of the
solutions (3.3.48)–(3.3.52) it follows, upon using the inverse change of variables
(x, t) �→ (u, v) (see (3.3.39)), that in the (u, v)-parameter plane the level lines
Z = mπ (m an integer) of the solutions under consideration are straight lines,
the geometric curvature of which with respect to the Chebyshev metric of the
form (3.1.1) can be calculated by formula (2.7.72) and turns out to be constant
(for solutions of all types). This gives a type of lines, namely, the boundaries of
domains in the plane Λ2 that can be isometrically immersed in E3. An analysis
of the domains in Λ2 that arise in the geometric interpretation of the solutions of
stationary traveling wave type (single-phase solutions) was carried out for the first
time in [68]. Among the domains obtained therein one can list the non-Euclidean
annulus , the domain lying between two horocycles with a common point at infinity,
and the equidistant strip.

The inverse problem of recovering the solutions of the sine-Gordon equa-
tion (as the net angle of the Chebyshev net of asymptotic lines) from a given
pseudospherical surface in E3 was studied in [20]. Therein it was established that
the aforementioned net angles on the classical pseudospherical surfaces of revolu-
tion are “connected” with functions that are reducible to the form (3.3.44) and
(3.3.48)–(3.3.52).

Therefore, one can definitely say that the pseudosphere, the Minding “bob-
bin” and “top”, and the Dini surface provide exact “geometric images” of the class
of single-phase solutions of the sine-Gordon equation.

In connection with the discussion above, let us also state also a theorem
proved in [68]:

Suppose that in E3 there is given a pseudospherical surface S[−→r (u, v)], which
according to E. G. Poznyak’s theorem (Theorem 2.7.1) corresponds to some regular
solution ω(u, v) of the sine-Gordon equation defined in the whole plane R2(u, v), in
which one takes as coordinate lines the asymptotic lines u, v. Suppose that about
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this surface one knows that on it two arbitrary asymptotic lines of the same family
can be superposed by a motion. Then the solution ω(u, v) (or, correspondingly,
Z(x, t)), is of stationary traveling wave type.

Conversely, to solutions of the type (3.3.40) correspond pseudospherical sur-
faces on which any two asymptotic lines from the same family are congruent.

Let us note that the property that any two asymptotic lines from the same
family on a pseudospherical surface can be superposed exactly is a characteristic
property of pseudospherical helical surfaces and surfaces of revolution.

3.4 Two-soliton pseudospherical surfaces

The implementation of the Bäcklund transformation algorithm (see Subsection
3.1.2) for the construction of new pseudospherical surfaces from already known
ones is intimately connected with the accompanying Bäcklund transformation
(3.1.28) for solutions of the sine-Gordon equation. Moreover, transition to any
new (next) layer (or level) of the Bäcklund transformation and generation of a
new pair “(pseudospherical surface, solution of the sine-Gordon equation)” starts
by the construction of a “new” solution of the sine-Gordon equation according to
the system (3.1.28), and only then is completed by producing the new pseudo-
spherical surface itself according to the recipe (3.1.31) (see the scheme in Figure
3.1.3). The solvability of the system (3.1.28) is the primary and necessary condition
for the subsequent “full deployment” of the geometric algorithm under consider-
ation. As we already mentioned, in general the construction of new solutions ω∗
of the system (3.1.28) from an arbitrarily given solution ω remains an unsolved
problem.4 However, the hierarchy of multi-soliton solutions (3.2.13) predicted in
§ 3.2 (a separate class of physically meaningful solutions of the sine-Gordon equa-
tion) can be fully studied geometrically in the framework of the Bäcklund trans-
formation scheme. Indeed, in § 3.3 we provided the explicit formulas (3.3.31) and
(3.3.32), giving the Dini surface and the pseudosphere, which correspond to the
one-soliton solution ω1 (3.2.11) of the sine-Gordon equation. That is, for the class
of multi-soliton solutions we already have a completely occupied first (“priming”)
layer of the Bäcklund transformation (an explicitly given “surface–solution” pair:
“(S[−→r (u, v), ω1], ω1(u, v))”. Further “advance” along the “chain” of multi-soliton
solutions enables us to obtain, by the rule (3.1.31), the corresponding multi-soliton
pseudospherical surfaces . The first iteration of the Bäcklund transformation in this
approach is connected with the construction of two-soliton pseudospherical sur-
faces , which interpret geometrically the two-soliton solutions ω2 of the sine-Gordon
equation, given by formula (3.2.12) [93].

3.4.1 Geometric study of two-soliton solutions

We will classify two-soliton pseudospherical surfaces according to the character
of the behavior of their irregular singularities (such singularities may manifest
as irregular edges (cuspidal edges), wedge points , and so on) which, as we recall,

4Undoubtedly, to obtain certain preliminary results in the investigation of the system (3.1.28)
one can use numerical methods for the integration of nonlinear differential equations.



160 Chapter 3. The sine-Gordon equation: geometry and applications

according to D. Hilbert’s result on the nonimmersibility of the Lobachevsky plane
Λ2 in E3 and its refinement for the case of pseudospherical surfaces provided by E.
G. Poznyak’s theorem (see §§ 2.6 and 2.7), correspond to level lines z(u, v) = nπ
(with n an integer) of solutions of the sine-Gordon equation.5 The two-soliton
solution in question z2(u, v) of the form (3.2.12) has singularities that correspond
to three possible values: z2(u, v) = 0, z2(u, v) = π, and z2(u, v) = −π. Let us
study the geometric characteristics of these singularities (their geodesic curvature
and their torsion). To this end we pose the problem of describing the irregular
singularities in parametric form.

Let us perform in (3.2.12) the change of variables6(
u, v, ω

(1,2)
2

)
�→
(
x, t, z

(1,2)
2

)
,(

u
v

)
=

( −1 1
k1k2 k1k2

)(
x
t

)
,

ω
(1,2)
2 ≡ z

(1,2)
2 .

(3.4.1)

(with no loss of generality we put b1 = 0, b2 = 0 in (3.2.12).)
As a result of transformation (3.4.1), the two-soliton solution (3.2.12) takes

on the form

z
(1,2)
2 (x, t) = −4 arctan

(
k1 + k2
k1 − k2

· sinh((k1 − k2)x)

cosh((k1 + k2)t)

)
. (3.4.2)

The formula (3.4.2) of two-soliton solutions allows us immediately to find ex-
plicitly, in the variables x and t, the expressions for the level lines we are interested
in. Passing back to the variables u, v via (3.4.1) and using expression (3.4.2) for
the multi-soliton solution z(1,2) we arrive at the following parametric expressions
for the level sets z(1,2) = nπ, n = 0,±1:
1) Level line z(1,2) = 0:

u(t) = t,

v(t) = k1k2t.
(3.4.3)

.

2) Level line z(1,2) = ±π:

u(t) = ± 1

k1 − k2
arcsinh

(
k1 − k2
k1 + k2

· cosh((k1 + k2)t

)
,

v(t) = ∓ k1k2
k1 − k2

arcsinh

(
k1 − k2
k1 + k2

· cosh((k1 + k2)t

)
+ k1k2t.

(3.4.4)

5In what follows for the solutions of the sine-Gordon equation we use the notation ω ≡ z.
6The variables x, t introduced here differ from the analogous variables in the “wave-type” sine-

Gordon equation (3.2.31) only through the scale factor k1k2, and geometrically will correspond
to curvature lines on the surface.
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In the sequel we will need expressions for the derivatives zu and zv that
appear in the formulas for geodesic curvature and torsion, in the variables x and t.
To this end let us first write down the relation between the differentiation operators⎛⎜⎝ ∂

∂u
∂

∂v

⎞⎟⎠ =
1

2

⎛⎝ −1 1

1

k1k2

1

k1k2

⎞⎠
⎛⎜⎝ ∂

∂x
∂

∂t

⎞⎟⎠ . (3.4.5)

Applying (3.4.5) to calculate of the derivatives of the solution z
(1,2)
2 with

respect to u and v, we obtain their expressions in the variables x and t:

(z
(1,2)
2 )u = 2

(k1 + k2)
cosh((k1−k2)x)
cosh((k1+k2)t)

+ (k1+k2)
2

k1−k2
· sinh((k1−k2)x) sinh((k1+k2)t)

cosh2((k1+k2)t)

1 +
(

k1+k2

k1−k2
· sinh((k1−k2)x)
cosh((k1+k2)t)

)2 ,

(3.4.6)

(z
(1,2)
2 )v = − 2

k1k2

(k1 + k2)
cosh((k1−k2)x)
cosh((k1+k2)t)

− (k1+k2)
2

k1−k2
· sinh((k1−k2)x) sinh((k1+k2)t)

cosh2((k1+k2)t)

1 +
(

k1+k2

k1−k2
· sinh((k1−k2)x)
cosh((k1+k2)t)

)2 .

(3.4.7)

Now let us return to the original task of calculating the geodesic curvature
kg(z2 = nπ) and the torsion æ(z2 = nπ) of irregular edges of the pseudospherical
surface S[z2] that provides the geometric interpretation of the two-soliton solution
z2 of the sine-Gordon equation.7 We use the already available formulas (2.7.72)
and (2.7.81), in the two possible cases:

1) Level line z(1,2) = 0 (n = 0):

kg(z2 = 0) =
(z2)u · (z2)v
(z2)u − (z2)v

∣∣∣∣
z2=0

, (3.4.8)

æ(z2 = 0) =
(z2)u + (z2)v
(z2)u − (z2)v

∣∣∣∣
z2=0

. (3.4.9)

As follows from (3.4.2), the level line z2 = 0 is given by the condition

sinh((k1 − k2)x) = 0. (3.4.10)

By (3.4.10), in the variables x, t the derivatives (z2)u and (z2)v, calculated
in (3.4.6) and (3.4.7) and figuring in expressions (3.4.8) and (3.4.9), take the
following form:

(z
(1,2)
2 )u

∣∣∣
z2=0

=
2(k1 + k2)

cosh((k + 1 + k2)t)
,

(z
(1,2)
2 )v

∣∣∣
z2=0

= − 1

k1k2

2(k1 + k2)

cosh((k + 1 + k2)t)
.

(3.4.11)

7Here and in what follows, for the sake of simplicity, we will denote the two-soliton solution

z
(1,2)
2 , which includes the two parameters k1 and k2, also by z: z

(1,2)
2 ≡ z2.
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The variable t will be regarded here as a parameter. Introducing instead
of t the new parameter τ by

τ =
cosh((k1 + k2)t)

k1 + k2
,

we recast (3.4.11) as

(z
(1,2)
2 )u

∣∣∣
z2=0

=
2

τ
,

(z
(1,2)
2 )v

∣∣∣
z2=0

= − 1

k1k2

2

τ
.

(3.4.12)

Using (3.4.12) we finally obtain, by (3.4.8) and (3.4.9), the formulas

kg(z2 = 0) = − 1

1 + k1k2
· 2
τ
, (3.4.13)

æ(z2 = 0) =
k1k2 − 1

k1k2 + 1
. (3.4.14)

2) Level lines z
(1,2)
2 = ±π (n = ±1).

The geodesic curvature and torsion of the corresponding irregular edges of
the pseudospherical surface are calculated by means of formulas (2.7.72) and
(2.7.81), and in the present case are given by the following expressions (in

which for convenience we denote z
(1,2)
2 ≡ z2)

kg(z2 = ±π) = (z2)u · (z2)v
(z2)u + (z2)v

∣∣∣∣
z2=±π

, (3.4.15)

æ(z2 = ±π) = (z2)u − (z2)v
(z2)u + (z2)v

∣∣∣∣
z2=±π

. (3.4.16)

Using (3.4.2), we write the relation that give the lines z2 = ±π:

k1 + k2
k1 − k2

· sinh((k1 − k2)x)

cosh((k1 + k2)t)
= ∓1. (3.4.17)

Next, using the relations (3.4.6), (3.4.7) and (3.4.17), we calculate the func-
tions (z2)u

∣∣
z2=±π

and (z2)v
∣∣
z2=±π

, which figure in formulas (3.4.15) and

(3.4.16), presenting the results in term of the parameter τ :

(z2)u

∣∣∣
z2=±π

=

√
(k1 − k2)2τ2 + 1∓√(k1 + k2)2τ2 − 1

τ
,

(z2)v

∣∣∣
z2=±π

= − 1

k1k2

√
(k1 − k2)2τ2 + 1±√(k1 + k2)2τ2 − 1

τ
.
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Finally, substituting these expression in (3.4.15) and (3.4.16) we arrive at the
formulas

kg(z2 = ±π) = 2

τ

2k1k2τ
2 − 1

(k1k2 − 1)
√
(k1 − k2)2τ2 + 1∓ (k1k2 + 1)

√
(k1 + k2)2τ2 − 1

,

(3.4.18)

æ(z2 = ±π) = (k1k2 + 1)
√
(k1 − k2)2τ2 + 1∓ (k1k2 − 1)

√
(k1 + k2)2τ2 − 1

(k1k2 − 1)
√
(k1 − k2)2τ2 + 1∓ (k1k2 + 1)

√
(k1 + k2)2τ2 − 1

.

(3.4.19)

The expressions (3.4.13), (3.4.14) and (3.4.18), (3.4.19) obtained above de-
scribe the basic characteristics (geodesic curvature and torsion) of the irregular
edges of two-soliton pseudospherical surfaces. The explicit form of expressions
(3.4.18) and (3.4.19) allows one to directly classify the surfaces S[z2] under study
according to the specific structure of their singularities. “Indicators” of how the
nature of the behavior of irregular edges changes qualitatively (transition from
one typical “segment” to another) are provided by the critical points8 τi of the
functions in the right-hand sides of (3.4.18) and (3.4.19). Specifically, these points
give intervals of sign constancy and, possibly, the singularities of the functions
kg(z2 = ±π) and æ(z2 = ±π) in dependence on the mutual placement9 on the
parametric τ -axis, which in turn is determined by the values of the parameters k1
and k2 which figure in the soliton solution z2.

The results of the detailed “technical analysis” of the behavior of singulari-
ties carried out above are presented in the following subsection in the summarizing
Table 3.4.1 and reveal eight different variants of the structure of two-soliton pseu-
dospherical surfaces. Here, in order to help the contemplative reader, we give the
values for the critical points.

For the function kg(z2 = ±π):
τ0 = 0,

τ1,2 = ±
√

1 + (k1k2)2

2k1k2(1 + k21)(1 + k22)
,

τ3,4 = ± 1

|k1 + k2| ,

τ5,6 = ±
√

1

2k1k2
.

For the function τ(z2 = ±π):

τ1,2 = ±
√

1 + (k1k2)2

2k1k2(1 + k21)(1 + k22)
,

8The zeros of the numerators and denominators in (3.4.18) and (3.4.19).
9Assuming that the critical point itself does exist for the parameter values k1 and k2.
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τ3,4 = ± 1

|k1 + k2| ,

τ5,6 = ±
√

1 + (k1k2)2

2k1k2(1− k21)(1 + k22)
.

3.4.2 “Gallery” of two-soliton pseudospherical surfaces

Let us analyze the space structure of the irregular edges of two-soliton pseudo-
spherical surfaces as curves in the Euclidean space E3(x, y, z), resorting to their
geometric characteristics derived above.

We list below the general conclusions on the character of the behavior of
irregular edges of a two-soliton pseudospherical surface:

– When s→ ±∞ (where s is a natural parameter, s ∼ τ), the edges of the sur-
face wind asymptotically around the Oz-coordinate axis (have the character
of a helical motion around Oz).

– When s→ ±∞ the edge z2 = 0 approaches asymptotically the Oz-axis

– The edges z2 = π and z2 = −π have the property of spatial central symmetry.

– When s→ ±∞, the edges z2 = π and z2 = −π “degenerate” into helical lines
that serve as the edges of the corresponding Dini surface with parameters k1
(when s→ +∞ and k2 (when s→ −∞), or vice versa.

We will classify the surfaces under consideration according to the possible
mutual placement on the τ parametric axis of the critical points τi, i.e., the points
where the sign of the geodesic curvature and torsion of the irregular edges on
the surface changes (the “zeros” of the numerators and denominators in (3.4.13),
(3.4.14), (3.4.18), and (3.4.19)).

Here it is important to indicate the following geometrically typical cases.

1) If on an edge there is a point where æ = 0 (i.e., a point where the torsion
changes sign), then at that point the edge changes the direction of its helical
motion: right helical motion turn into left, or vice versa.

2) An edge may contain an arc with a cusp (turning) point, in which kg = ∞
and æ = ∞ simultaneously. On the two opposite sides with respect to such
a point there are two point on the edge in which necessarily kg = 0.

In Table 3.4.1 we show four basic types of two-soliton pseudospherical surfaces
with the important particular subcases indicated above. All the aforementioned
specific features of the structure of edges of these surfaces are reflected by the
corresponding position in the table. In turn, the table is illustrated by the “gallery”
of two-soliton pseudospherical surfaces in figures 3.4.1–3.4.8, which includes all
visually typical forms of surfaces with the accompanying configurations of irregular
cuspidal edges.
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Figure 3.4.1 Figure 3.4.2

Figure 3.4.3 Figure 3.4.4



3.4. Two-soliton pseudospherical surfaces 167

Figure 3.4.5 Figure 3.4.6

Figure 3.4.7 Figure 3.4.8
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3.4.3 Breather pseudospherical surfaces

Special examples of pseudospherical surfaces are provided by the geometric in-
terpretation of the breather solutions (3.2.29), which form a subclass of periodic
solutions of the sine-Gordon equation, and which are obtained, together with the
two-soliton solutions, by applying the Bäcklund transformation in the case when
the transformation parameters k1 and k2 are complex-conjugate: k1,2 = a ± ib,
a, b = const. Without loss of generality, it is convenient to consider a solution of
the form (3.2.29) under the assumption that a2+b2 = 1;10 in this case the solution
has the form

zbreath(u, v) = 4 arctan

[
a

b
· sin b(u− v)

cosha(u + v)

]
. (3.4.20)

Passing in (3.2.40) from the variables (u, v) to the variables (x, t) via the
formulas (3.2.31) enables us to talk about the periodicity of the breather solution
zbreath with respect to t:

zbreath(x, t) = 4 arctan

[
a

b
· sin bt

coshax

]
. (3.4.21)

By Theorem 2.7.1, to each given solution zbreath of class C4 there correspond
in E3 (in the sense of the geometric interpretation adopted in § 2.7) a pseudospher-
ical surface of class C2 (−→r ∈ C2). To construct such breather pseudospherical sur-
faces S[zbreath], we resort to the geometric Bäcklund transformation (3.1.31), in
which we pass to the the curvature line coordinates (x, t). In this new parametriza-
tion the Bäcklund transformation takes the form

−→r ∗ = −→r + sin ξ ·
[
cosϑ∗

cosϑ
· −→rx − sinϑ∗

sinϑ
· −→rt
]
, (3.4.22)

where ϑ = ω/2, ϑ∗ = ω∗/2, sin ξ = 2k/(1 + k2).
Henceforth, in order to preserve the traditional notations for the solutions of

the sine-Gordon equation that appear in different sections we will keep in mind
that

z ≡ ω ≡ 2ϑ;

each of these notations “carries” its own meaning “load”.
Like the transformation (3.1.31), the Bäcklund transformation (3.4.22) ef-

fects the transition from a pseudospherical surface S[−→r , ϑ(x, t)] to a new pseudo-
spherical surface S∗[−→r ∗, ϑ∗(x, t)] in the variables (x, t), and with the numerical
parameter k:

S∗ = Bk(S).

Now let us construct the breather pseudospherical surface Sbreath correspond-
ing to the breather solution zbreath(x, t), depending on two complex-conjugate
parameters k1 and k2: k1,2 = a ± ib. The breather solution zbreath(x, t) can be
obtained in two ways, by formally applying the Bäcklund transformation with the

10Under this assumption k1 and k2 lie on the unit circle in the complex plane.
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complex parameter to the one-soliton solutions z
(k1)
1 and z

(k2)
1 , each of which de-

pends on the second complex parameter, the complex-conjugate of the parameter
of the transformation:

zbreath12 = Bk2(z
(k1)
1 ),

zbreath21 = Bk1(z
(k2)
1 ).

(3.4.23)

Thanks to the commutativity of the Bianchi diagram, the right-hand sides
in (3.4.23) coincide, and so

zbreath12 = zbreath21 ≡ zbreath.

Analogous commutativity relations hold also for the transformation of so-
lutions of the sine-Gordon equation accompanying the transformation of pseudo-
spherical surfaces . Therefore, we can write

−→r12 = Bk2 (
−→r1(k1)),

−→r21 = Bk1 (
−→r1(k2)).

(3.4.24)

In (3.4.24), −→r1(k1) and −→r1(k2) are the formal radius vectors of “hypothetic”
surfaces that are given by formulas (3.3.31) and correspond to the one-soliton
solutions z1(k1) and z1(k2), in which the numerical parameters k1 and k2 are
complex-conjugate. Due to the commutativity of the Biachi diagram in the case
of the Bäcklund transformation (3.4.22) for surfaces one has that

−→r12 = −→r21 ≡ −→r breath(x, t). (3.4.25)

In view of (3.4.25), the radius vector −→r breath of the pseudospherical surface
Sbreath[−→r breath, zbreath] can be constructed as

−→r breath =
−→r12 +−→r21

2
. (3.4.26)

Let us write the expression (3.4.26) for −→r breath in detail, using for this pur-
pose the Bäcklund transformation in the form (3.4.22):

−→r breath(x, t) =
1

2

[
−→r1 +−→r2 + cosϑ12 ·

(
sin ξ2 ·

−→r1,x
cosϑ1

+ sin ξ1 ·
−→r2,x
cosϑ2

)
− sinϑ12 ·

(
sin ξ2 ·

−→r1,t
sinϑ1

+ sin ξ1 ·
−→r2,t
sinϑ2

)]
. (3.4.27)

In (3.4.27) we used the following traditional notations (which have an important
geometrical meaning), applied for the description of pseudospherical surfaces in
curvature line coordinates:

ϑi =
ω
(ki)
1

2
=

z
(ki)
1

2
, ϑ12 =

ω
(k1,k2)
2

2
=

z
(k1,k2)
2

2
, sin ξi =

2ki
1 + k2i

, i = 1, 2.
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The vector functions −→ri, i = 1, 2 are the radius vectors of the “one-soliton” pseudo-
spherical surfaces, defined by means of formula (3.3.31) for the complex parameters
k1 and k2.

It is instructive that, despite the presence of complex parameters k1 and k2
in the right-hand side of (3.4.27) (which appear in sin ξi, ϑi and

−→ri, i = 1, 2), the
vector function −→r breath(x, t) itself is real valued. To convince ourselves that this
is true, it suffices to verify the following “intermediate” relations:11

1) −→r2 = (−→r1), i.e. (−→r1 +−→r2) is real,
2) sin ξ1 = sin ξ2 = 1

a is real,

3) ϑ2 = ϑ1,

4)

( −→r 1, x

cosϑ1
+
−→r 2, x

cosϑ2

)
is real,

5)

( −→r1, y

sinϑ1
+
−→r 2, y

sinϑ2

)
is real.

Consequently, if in accordance with (3.4.27) we choose for the initial ra-
dius vectors −→r1 and −→r2 the “hypothetical Dini surface” representations (3.3.31)
with respective parameters k1 and k2, we finally obtain the real-valued function−→r breath(x, t), i.e., the radius vector of the sought-for pseudospherical surface:

−→r breath(x, t) =

(
0
0
x

)
+

2b

a
· sin bt coshax

b2 cosh2 ax+ a2 sin2 bt
·
(

sin t
− cos t

0

)

+
2b2

a
· coshax

b2 cosh2 ax+ a2 sin2 bt

(
cos t · cos bt
sin t · cos bt
− sinh ax

)
, (3.4.28)

where a2 + b2 = 1.
From the explicit expression (3.4.28) of the obtained surface it is not diffi-

cult to deduce that the curvature lines t = const are plane curves in space. The
breather pseudospherical surface itself belong to the class of Joachimsthal–Enneper
surfaces, a general discussion of which will be made in § 3.8.

Essentially, the general form of expression (3.4.28) makes it clear that the
class of breather pseudospherical surfaces is parametrically “regulated” by a single
parameter b, with b ∈ (0, 1). Specifically, to each rational value of b in (0, 1) there
corresponds a breather pseudospherical surface S[−→r breath; b], which is periodic in
t. If one takes b = m/n, where m and n are coprime, m < n, then the period of
the breather solutions, and correspondingly, of the space structure of the surface,
will be equal to 2πn/m.

Figures 3.4.9–3.4.12 show examples of breather pseudospherical surfaces for
different rational values of the parameter b. Overall, the explicit formula (3.4.28),

11The overbar denotes complex conjugation.
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which describes the breather pseudospherical surfaces, provides a key to obtaining
“fantastic variations” of pseudospherical surfaces.

Let us mention here some works of contemporary authors devoted to the
investigation of various problems connected with pseudospherical surfaces and
their applications: [89, 151, 164, 173, 187].

 General view 
of the surface

        View of the surface in an 
approxima�on with face elements

``Top’’ view of the surface
(from the point at infinity)

    View of the surface from``inside’’
in the direc�on of the point at infinity

a b

c d

Figure 3.4.9. Breather surface; b =
3

7
.
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General view 
of the surface

General view of the surface,
    another foreshortening

``Top’’ view of the surface 
   Piece showing the internal 
structure of the``central’’ part
            of the surface

a b

dc

Figure 3.4.10. Breather surface; b =
1

7
.
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General view 
of the surface

Sec�oned surface

``Top’’ view with the``cone’’ 
    of the surface truncated

  Pseudospherical petal, 
canonical element of the
  surface -- ``1/12 part’’

a b

dc

Figure 3.4.11. Breather surface; b =
6

7
.
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General view 
of the surface

Structure of the ``central’’ part of
the surface in an approxima�on 
           with face elements

 

``Top’’ view of the surface
  from the point at infinity

Piece showing the internal structure
 of the ``central’’ part of the surface

a b

c d

Figure 3.4.12. Breather surface; b =
1

16
.
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3.5 The Amsler surface and Painlevé III transcendental
functions

In this section we address the geometric interpretation of a class of self-similar
solutions of the the sine-Gordon equation, which are special functions connected
with the Painlevé III transcendental functions. The interest in such solutions is
motivated, on one hand, by the fact that they are not solitons, and on the other, by
the fact that for the moment no connections for them were revealed in the setting
of the method of Bäcklund transformations. A typical geometric representation
of a solution of this class from the point of view of Lobachevsky geometry is the
classical Amsler surface.

3.5.1 The classical Amsler surface

Let us study solutions of the sine-Gordon equation

zuv = sin z, (3.5.1)

which depend on the self-similar argument

t = uv. (3.5.2)

Upon passing to the new variable (3.5.2), equation (3.5.1) becomes an ordi-
nary differential equation for the unknown function z(t), t = uv:

tz′′ + z′ = sin z. (3.5.3)

Note that if we now make the further complex changes of variables

w = eiz, (3.5.4)

where i is the imaginary unit, then equation (3.5.3) can be brought to the form

w′′ − w′2

w
+

2w′ − w2 + 1

2t
= 0. (3.5.5)

Equation (3.5.5) is one of the particular (but meaningful) cases of a more
general ordinary differential equation, which gives the class of Painlevé III tran-
scendental functions [2, 180]. A characteristic property of the indicated class of
solutions is they have only nonmovable critical points , i.e., their branch points
and essential singular points do not depend on the initial data that determine the
solutions.

In 1955, M.-H.Amsler [135] published the results of his investigations of so-
lutions of type z(t) of the sine-Gordon equation in the framework of geometric
analysis of pseudospherical surfaces that interpret a class of solutions of equa-
tion (3.5.1), namely, solutions that are related to the Painlevé III transcendental
functions.

Amsler studied in detail the solution z(t) of equation (3.5.3) that is regu-
lar at zero and satisfies the initial condition z(0) = π/2 and, correspondingly (see
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Figure 3.5.1 Figure 3.5.2

(3.5.3)), the condition z′(0) = 1. More precisely, in his work cited above, by apply-
ing numerical methods, Amsler investigated the part of the solution z(t) between
the first (closest to zero) value (attained for t = t−1 (see Figure 3.5.1)) and the first
(closest to zero) value z = π (attained for t = t1 (see Figure 3.5.1)). Numerically
it was found that t1 = 1.862.... Therefore, thanks to the symmetry of the prob-
lem under consideration, namely, z(t) + z(−t) = π, one also has t−1 = −1.862....
Thus, Amsler determined the part of the solution z(t) contained between the two
values closest to a multiple of π, which according to the theory of pseudospher-
ical surfaces must correspond to a regular piece of the pseudospherical surface
S[−→r (u, v), z(t), t = uv], bounded in space by two corresponding irregular cuspidal
edges. This piece of the surface S (t ∈ [−1.862..., 1.862...]) was constructed by
Amsler in [135] by the successive “plugging constructor” method from the asymp-
totic lines v = const. This regular piece of pseudospherical surface is depicted in
Figure 3.5.2, and we will refer to it as the classical Amsler surface.

The main relation used in [135] to construct the surface under discussion is
the equation for the normal vector −→n to the surface, considered on the asymptotic
line v = const: −→n ′′ − zu · [−→n ′, −→n ] +−→n = 0. (3.5.6)

(In equation (3.5.6), the derivatives are taken with respect to u.)
To obtain equation (3.5.6) we first need to recall the Frenet formulas for

the surface strip (2.7.17) associated with the asymptotic line (kg = −zu, kn =
0, τg = 1), and the relation −→τ = [−→n g,

−→μ ]. Next, to construct the surface we use
the formula −→τ = −[−→μ ′, −→μ ] to find the direction vector, from which by means of
integration with respect to u we determine the radius vector of the asymptotic
line (the parameter u is the natural coordinate on the asymptotic line v = const.
To implement the “algorithm” just described, Amsler, in his investigations, did
effectively use numerical methods for solving the differential equations involved.

The Amsler surface has an important special exceptional property which
distinguishes it among all pseudospherical surfaces. Namely, it completely includes
(contains) two intersecting rectilinear generatrices (straight lines), which coincide
with the Cartesian coordinate axes OX and OY (see Figure 3.5.2).

Let us explain this property. Indeed, in the case of the considered self-similar
solution z(t), t = uv, of the sine-Gordon equation we turn to the fundamental
system of equations for pseudospherical surfaces (2.7.30)–(2.7.34). Then taking
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into account the self-similarity type of the argument (3.5.2) for the radius vector−→r (u, v) ∈ C3 of the Amsler surface in the neighborhood of the set {(u, v) : uv = 0},
we can write

−→ruu(u, 0) = 0,
−→rvv(0, v) = 0.

(3.5.7)

Relations (3.5.7) express the equations (2.7.30), (2.7.32) of the fundamental
system for the solution z(t) with null initial data.

The integration of conditions (3.5.7) leads to the equations

−→r (0, v) = −→rv(0, 0) · v,
−→r (u, 0) = −→ru(0, 0) · u,

(3.5.8)

which give (since the vectors −→ru(0, 0) and −→rv(0, 0) are constant) two intersecting
straight lines contained in the Amsler surface S[−→r (u, v), z(t), t = uv].

Note also that if a pseudospherical surface contains a straight line, then
the latter is an asymptotic line on the surface. This clearly follows from the fact
that the second differential d2−→r vanishes in the direction (du : dv) that gives
the straight line. Consequently, the second fundamental form of the surface also
vanishes in the direction (du : dv): II(u, v) = (d2−→r ,−→n ) = 0. Therefore, the straight
line present on the surface is an asymptotic line. With no loss of generality, we
can consider that one of the intersecting straight lines on the Amsler surface is
the asymptotic line u = 0, while the other is the asymptotic line v = 0. Note
further that the geodesic curvature of an asymptotic line coincides with its total
curvature and in the present case of “asymptotic straight lines” is equal to zero:
kg(u = 0) = 0, kg(v = 0) = 0. As it was established in (2.7.40) and (2.7.42),

kg(u = 0) = zv(0, v), kg(v = 0) = −zu(u, 0),

and consequently
z(0, v) = z(u, 0) = z(0, 0) = const,

u ∈ (−∞,+∞), v ∈ (−∞,+∞).
(3.5.9)

Relations (3.5.9) specify, for the formulation of the Darboux problem for the
self-similar solution z(t) of argument (3.5.2), the conditions that guarantee the
existence and uniqueness of this type of solution on the entire (u, v)-plane (for
more details on the Darboux problem, see § 3.6).

Let us derive the equation for the radius vector of the Amsler surface. To
this end we resort to the fundamental system of equations (2.7.30)–(2.7.34) of
pseudospherical surfaces.

Preliminarily we compute

(zu
−→n )v = zuv

−→n + zu
−→nv = zuv

−→n +
v

u
zv
−→nv, (3.5.10)

where we used the property uzu = vzv of the solution z(t).
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If we now use in (3.5.10) the equations (2.7.31) and (2.7.32), we get

zuv
−→n +

v

u
zv
−→nv = −→ruv + v

u
−→rvv

= −→ruv +
(
v

u
−→rvv + 1

u
−→rv
)
− 1

u
−→rv =

(
−→ru +

v

u
−→rv − 1

u
−→r
)
v

. (3.5.11)

In conclusion, relations (3.5.10) and (3.5.11) yield

(zu
−→n )v =

(
−→ru +

v

u
−→rv − 1

u
−→r
)

v

. (3.5.12)

Integrating this last equality we get

zu
−→n = −→ru +

v

u
−→rv − 1

u
−→r +

−→
C (u). (3.5.13)

Similar arguments (repeating (3.5.10)–(3.5.13)) for the expression (zv
−→n )u

and comparison of their result with (3.5.13) show that the resulting vector
−→
C ≡ 0.

Consequently, equation (3.5.13) can be recast in the more precise form

u · zu−→n = u−→ru + v−→rv −−→r . (3.5.14)

Next, let us transform the left-hand side of (3.5.14) by using equation (2.7.31).
In this way we arrive at the equation for the radius vector −→r (u, v) of the Amsler
surface S[−→r (u, v), z(t), t = uv]:

(tz′)−→ruv − (u−→ru + v−→rv −−→r ) · sin z = 0, t = uv. (3.5.15)

Equation (3.5.15) represents the main relation to be used in a “direct” (chiefly
numerical) investigation of the Amsler surface.

Among the results of the study of the classical Amsler surface we mention the
work [161], which deals with a discrete analog, as well as the [147], in which the
Amsler surface is considered in the context of the method of the inverse scattering
problem. For a more detailed treatment of the problems considered here one can
consult the papers [78, 94].

3.5.2 Asymptotic properties of self-similar solutions z(t) and
modeling of the complete Amsler surface

The classical Amsler surface considered above corresponds to a part of the solution
z(t) given on the segment [t−1, t1] (see Figure 3.5.1), at the endpoints of which the
closest “to one another” values 0 and π of the solution z(t) are attained. Achieving
a global geometric representation of the “complete Amsler surface”, the surface
corresponding to the solution z(t), t = uv, on the whole line t ∈ (−∞,+∞) (and,
correspondingly, on the whole real (u, v)-plane) is connected with the study of
the behavior of solutions of the form z(t) as special functions, in particular, with
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the clarification of the properties of their asymptotic behavior at infinity. Let us
address these questions.

Let us emphasize that the correctness of the study of properties of the so-
lution z(t), t = uv, on the whole (u, v)-plane is ensured by the already obtained
corresponding formulation of the Darboux problem (3.5.9) for the solutions of the
sine-Gordon equation of the type under consideration. The existence and unique-
ness of solutions will be proved in a more general form in § 3.6.

Let us investigate the ordinary differential equation (3.5.3) by methods of
stability theory [56, 121]. To this end we rewrite (3.5.3) as the equivalent system
of first-order equations:

dy1
dt

= y2, (3.5.16)

dy2
dt

= −1

t
(y2 + sin y1) , (3.5.17)

where

y1 = z(t)− π ≡ z̃(t),

y2 =
dz̃

dt
.

Let us prove that the trivial solution (y1 = 0, y2 = 0) of the system (3.5.16),
(3.5.17) is stable. Our main investigation tool is Lyapunov’s second method [56,
121]. Thus, to establish the stability of the trivial solution of the system un-
der consideration it suffices to construct a positive definite Lyapunov function
V (t, y1, y2), the derivative of which with respect to the variable t by virtue of the
system (3.5.16), (3.5.17),

dV

dt
=

∂V

∂t
+ y2

∂V

∂y1
− 1

t
(y2 + sin y1)

∂V

∂y2
, (3.5.18)

has constant sign, opposite to the sign of V . (Concerning sign-definiteness and
sign-constancy of functions, see, for instance, [56]).

Let us show that

V (t, y1, y2) = 2(1− cos y1) + ty22 (3.5.19)

is a Lyapunov function for the system (3.5.16), (3.5.17) and determines the sta-
bility of its trivial solution.

Indeed, in the domain S0 = {t ≥ t0 = 1, |yj | ≤ h, j = 1, 2; h > 0, h small}
there holds the estimate

V (t, y1, y2) ≥W (y1, y2) = 2
∞∑
n=1

(−1)n+1 · y2n1
(2n)!

+ y22 ≥ 0, (3.5.20)

which proves that the function V (t, y1, y2) is positive definite. Substituting the
expression (3.5.19) in the right-hand side of (3.5.18) we obtain

dV

dt
= −y22 ≤ 0. (3.5.21)
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In view of the inequalities (3.5.20), (3.5.21), Lyapunov’s theorem (see [56]) yields
the stability of the trivial solution of the system (3.5.16), (3.5.17).

The stability property established above assumes the existence of solutions of
equation (3.5.3) that are contained in an a priori given ε-strip about the solution
z̃(t) ≡ 0 (or z ≡ π); we denote such solutions by z̃ε(t). (Completely analogously,
the solutions z = (2n + 1)π are stable for t > 0, while the solutions z = 2nπ are
stable for t < 0). The solutions z̃ε(t) satisfy for all ε > 0 the condition |z̃ε(t)−π| < ε
for t > 0.

Let us note that a more “precise” analysis of the system (3.5.16), (3.5.17)
(see [94]) allows one to state that the stability established above of the trivial
solution is asymptotic (i.e., the solutions z̃ε(t), which lie in the ε-strip, tend at
infinity to the solution z̃(t) ≡ 0). In connection with our discussion we introduce
the following family of Lyapunov functions that generalize (3.5.19):

Vm1,m2(t, y1, y2) = 2
(
ft+

m2

tm1+1

)
(1− cos y1) +

(
t+

m2

tm1

)
y22 , (3.5.22)

where m1,m2 = const ≥ 0.
From (3.5.22) and (3.5.19) it follows that

V (t, y1, y2) = Vm1,0(t, y1, y2).

The general qualitative shape of the solution z(t), obtained by numerical
integration of equation (3.5.3), is shown in Figure 3.5.3, which illustrates in an
intuitive manner the results obtained above.

Next, let us prove that the function z̃ε(t) oscillates about zero for t > 0. To
this end, we represent the equation (3.5.3), written for z̃ε(t), in the linearized form

tz̃′′ε + z̃′ε + gε(t)z̃ε = 0, (3.5.23)

where gε(t) = (sin z̃ε(t))/z̃ε(t).
Relation (3.5.23) is considered directly for some solution z̃ε(t). Note that for

each ε with ε ≥ ε0 > 0 one can always find a number σ1 = σ1(ε) > 0, such that
the estimate

0 < σ1 ≤ gε(t) ≤ 1 (3.5.24)

holds. Let us write two auxiliary equations:

(tY ′σ)
′ + σ · Yσ = 0, (3.5.25)

where σ takes the corresponding values σ = σ1 and σ = 1. Equations (3.5.25)
are Bessel equations of order zero with respect to the variable 2

√
σt, the general

solution of which Y1(t) (or Yσ1 (t)) is a linear combination of the corresponding
Bessel functions J0(2

√
σt) and Neumann functions N0(2

√
σt) [61, 112, 130].

Equation (3.5.23) and the two equations (3.5.25) differ only by the coefficients
of the unknown function z̃ε (or Yσ) in the last left-hand side term. Hence, based
on the Sturm comparison theorem for differential equations in selfadjoint form (see
[113]), we conclude that the solution z̃ε(t) behaves in the same way as the solutions
Y1(t) and Yσ1(t). Specifically, the solution z̃ε(t) of equation (3.5.23) oscillate for
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t > 0 together with the functions Y1(t) and Yσ1(t), and the zeroes of the functions
Y1(t), z̃ε(t), and Yσ1(t) alternate.

Therefore, we can speak about the oscillatory character of the behavior of
all solutions z(t) with z(0) ∈ (0, 2π) about the level π for t > 0. In other words,
the solution z(t) ≡ π is asymptotically stable for t > 0 as well, with basin of
“atraction” consisting of solutions with initial values z(0) ∈ (0, 2π) (Figure 3.5.3 b),
which have an oscillatory character.

Similarly, for t < 0 the solutions z(t), π < z(t) < π, t < 0, oscillate about
zero. Globally, the graph of the function z(t) has the shape shown in Figure 3.5.3.

a b

Figure 3.5.3

Let us summarize the results of the investigation of the part of the solution
z(t) to which must correspond the complete Amsler surface. The solution z(t),
z(0) ∈ (0, 2π), tends asymptotically to π as t → +∞ and oscillates (about the
level π). For t < 0 completely analogous properties hold concerning the level
z = 0. These oscillations have the property that the “zeroes” of the function z(t)
“alternate” with the “zeroes” of the Bessel equation of order zero for the argument
2
√
t (for t > 0) (the general solution of the Bessel equation is represented as a

linear combination C1J0(2
√
t) +C2N0(2

√
t) of Bessel and Neumann functions or,

as a variant, of Hankel functions [61, 112, 130].

Figure 3.5.3 a,b shows the graphs of the solution z(t), obtained by numerical
integration of the equation (3.5.3) for various initial values z(0) in the range (0, 2π).

Now let us turn to the analysis of the complete Amsler surface S[−→r (u, v),
z(t), t = uv], which corresponds to the solution z(t), t = uv, of the sine-Gordon
equation (3.5.3), defined on the entire (u, v)-plane (or, correspondingly, the entire
line t ∈ (−∞,+∞)).

We recall that the classical Amsler surface already considered by us interprets
geometrically the part of the self-similar solution z(t) ∈ [0, π] of the sine-Gordon
equation, defined on the segment [t−1, t1] between the first value z = 0 at t = t−1 <
0 and the first value z = π at t = t1 > 0, for the chosen initial condition z(0) = π/2
(Figure 3.5.1). To the marked values z = 0 and z = π (which are multiples of
π) there correspond on the pseudospherical surface (Figure 3.5.2) cuspidal edges
which represent “contracting helical curves” that ”twist asymptotically” along the
coordinate axes OX and OY .
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If we now consider the solution z(t), t ∈ (−∞,+∞), studied by us, then
this solution, oscillating, takes the value π for t > 0 countably many time, at the
points t = t1, t2, . . . , tk, . . ., as well as the value 0 for t < 0 countably many times,
at the points t = t−1, t−2, . . . , t−k, . . . (Figure 3.5.2). Therefore, by Poznyak’s the-
orem, the complete Amsler surface must have a countable number of irregular
singularities, corresponding to the instants at which the solution z(t), while os-
cillating, attains the values 0 and π. From (3.5.2) it is clear that the level lines
z(t, t = uv) = kπ, k = 0, 1, form a family of symmetric hyperbolas, as shown in
Figure 3.5.4.

Figure 3.5.4

To the classical Amsler surface there corresponds in the (u, v)-parametric
plane the central shaded domain (Figure 3.5.4). To each “successive” domain in
the (u, v)-plane bounded by two successive hyperbola branches (simultaneously
in the I, III or II, IV quadrants) will correspond a new regular part of the com-
plete Amsler surface, glued to the already available surface along an irregular
edge (the preimage of a hyperbola branch). Consequently, the complete Amsler
surface consists of a countable system of regular domains which globablly form the
whole pseudospherical surface under study, and which correspond to the respec-
tive countable system of segments [t1, t2], [t2, t3],. . . ,[tk−1, tk], . . . for t > 0, and
[t−1, t−2], [t−2, t−3],. . . ,[t−k, t−k−1], . . . for t < 0, each of which is the domain of
definition of the regular part of the complete Amsler surface corresponding to it.

Thus, we can propose the following general model representation of the com-
plete Amsler surface: this surface is constructed from the classical Amsler surface
by successively and regularly gluing to the latter, along irregular “helical” edges,
new “regular shrinking helical strips” that correspond to the aforementioned sys-
tem of segments (this “gluing” behaves like an “inner twisting”). A possible version
of “inner twisting” and the corresponding construction of the complete Amsler sur-
face in space are shown in Figure 3.5.5, which depicts a model cross-section of the
Amsler surface by a plane perpendicular on the axis OX axis (or axis OY ). The
arcs shown are the “traces” of the countably many regular “twisting helical sur-
face strips”, glued to one another along irregular cuspidal edges (the “traces” of
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the irregular edges in Figure 3.5.5 serve as the “cusp points” of the coupling of
arcs). As on “advances” along the coordinate axis OX , the “cross-section drawing”
(Figure 3.5.5) rotates.

Figure 3.5.5

In connection with the consideration of the Amsler surface let us mention
the work of E. V. Maevskii [52, 94], in which asymptotic methods are developed
for analyzing the solutions of equation (3.5.3) and of equations of types close to
them, as well as for obtaining asymptotic expansions of the radius vector of the
Amsler surface in the vicinity of cuspidal edges.

3.5.3 Nonlinear equations and the Painlevé test

The sine-Gordon equation (3.5.3) under investigation is a special “point of contact”
of the geometrical theme discussed here, namely, the theory of pseudospherical sur-
faces , with problems concerned with certain classes of special functions, namely
the Painlevé transcendents , defined by a set of six ordinary differential equations
(ODEs) which share the property that their solutions have no movable critical
points . Determining and classifying special types of such second-order ODE’s is
undoubtedly a meritorious contribution of P. Painlevé and his colleagues; their
results turned out to be of crucial value in many branches of contemporary math-
ematics and physics, and continue to do so. Later in the book we will discuss the
connection of Painlevé transcendents with other important and inherent concepts
of the modern theory of nonlinear differential equations, such as pseudospherical
metrics, Bäcklund transformations, solitons, integrability by the method of the
inverse scattering transform, and others. We begin by explaining the notion of
Painlevé transcendental functions [1, 2, 19, 180]

Painlevé’s investigations revolved around the second-order equation for the
unknown function ω = ω(z) of general form

ω′′ = F(z, ω, ω′), (3.5.26)

the right-hand side of which is a rational function in the arguments ω and ω′ and
a locally analytic function in the variable z. Painlevé and his students discovered
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that among the equations of this class there are 50 equations with the property that
their solutions have no movable critical points (in the case when they are present).
This property became known as the Painlevé property , and the corresponding
equations are called P -type equations , or Painlevé equations . All P -type equations
either admit their own explicit integration, or can be reduced, via transformations,
to one of 6 canonical types of Painlevé equations.

The corresponding types of equations are usually denoted by PI, PII, PIII,
PIV, PV, and PVI. The customary form in which the P -type equations are written
is a follows (see [1, 19, 180]):

PI :
d2ω

dz2
= 6ω2 + z,

PII :
d2ω

dz2
= zω + 2ω2 + α,

PIII :
d2ω

dz2
=

1

ω

(
dω

dz

)2

− 1

z

dω

dz
+

1

z

(
αω2 + β

)
+ γω3 +

δ

ω
,

PIV :
d2ω

dz2
=

1

2ω

(
dω

dz

)2

+
3ω3

2
+ 4zω2 + 2

(
z2 − α

)
+

β

ω
,

PV :
d2ω

dz2
=

{
1

2ω
+

1

ω − 1

}(
dω

dz

)2

− 1

z

dω

dz

+
(ω − 1)2

z2

(
αω +

β

ω

)
+

γm

z
+

δω(ω + 1)

ω − 1
,

PVI :
d2ω

dz2
=

1

2

{
1

ω
+

1

ω − 1
+

1

ω − z

}(
dω

dz

)2

−
{
1

z
+

1

z − 1
+

1

ω − z

}
dω

dz

+
ω(ω − 1)(ω − z)

z2(z − 1)2

{
α+

βz

ω2
+

γ(z − 1)

(ω − 1)2
+

δz(z − 1)

(ω − z)2

}
.

(3.5.27)
Equations (3.5.27) cannot be integrated in elementary functions; their solu-

tions form individual classes of special functions , called Painlevé transcendental
functions (of the corresponding genus, from I to VI), or Painlevé transcendents .

Let us remark that, in particular, if in the third of equations (3.5.27) we
choose for the constant coefficients the values α = 1

2 , β = − 1
2 , γ = 0, and δ = 0,

then the PIII equation itself (for the Painlevé functions of genus III) reduces to
the already familiar equation (3.5.5) investigated in the present section.

Overall, the presence of nonmovable critical points in an equation plays an
important role in the study of the mathematical and applied problems associated
with it. As an example, we must refer here the well-know work of S. Kovalevskaya
on the theory of motion of a rigid body with a fixed point in a gravity field [1,
19]. The main idea of Kovalevskaya’s investigations was to bring (by means of
appropriate transformations) the defining parameters of the problems (models)
to those admissible values for which the model corresponding to the problem is
described by equations without movable critical points. In these cases, the equa-
tions under study admit their own exact integration. It is noteworthy that equa-
tions (3.5.27) can be regarded as a foundation (“standard series”) for establishing
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general properties of other, connected with them, partial differential equations. It
is precisely with this kind of specificity of equations of P -type that the conjecture,
formulated in [133], that the nonlinear equations integrable by the method of the
inverse scattering transform (MIST) posses the Painlevé property, is related.

The method of the inverse scattering transform [1, 42, 51, 62] (see also § 3.9)
is currently one of the most effective approaches for constructing exact solutions
of nonlinear partial differential equations. At the same time, the possibility of
applying it in each concrete case (for an equation of interest) is associated with the
nontrivial construction (“guessing”) of “primer” (“starter”) relations that specify
the direct scattering problem (the first step of the method), and so every piece
of a priori (even indirect) “information” on whether is it potentially possible to
implement MIST is very important.

The conjecture on the integrability of equations arising in this connection
became known as the Painlevé test.

Painlevé Test. A nonlinear partial differential equation is integrable by the method
of the inverse scattering transform if and only if it can be reduced (by means of a
suitable change of variables) to one of the ordinary differential equations of P -type
(3.5.27).

Let us clarify what the formulated test means on the following examples.

1) The sine-Gordon equation. The sine-Gordon equation is integrable by MIST
[31, 51, 131] a widely known class of solutions obtained by MIST is formed
by the multi-soliton solutions (see § 3.2).

The equation passes the Painlevé test: the substitution (3.5.2), (3.5.4)
reduces the sine-Gordon equation (3.5.1) to equation (3.5.5), the PIII-type
equation (3.5.27), for the third Painlevé transcendental function.

2) Modified Korteweg-de Vries equation (MKdV). The MKdV equation

zv − 6z2zu + zuuu = 0,

which is integrable by MIST [1, 42, 51], is reduced by the change of variables

(u, v, z)→ (t, ω), z(u, v) = (3v)−2/3ω(t), t = (3v)−1/3u,

to an ODE of the form

ω′′′ − 6ω2ω′ − (tω)′ = 0, ω = ω(t),

which in turn leads, via order reduction, to the PII-equation

ω′′ = 2ω2 + tω + α, α = const.

3) Boussinesq equation. Consider the Boussinesq equation,

zvv − zuu =
1

2

(
z2
)
uu

+
1

4
zuuuu,
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which is integrable by MIST [1, 29]. Seeking solutions in the form of travelling
waves

z(u, v) = ω(t), t = u− av, a = const

leads to an ODE for the unknown function ω(t):

(1 − a2)ω′′ +
1

2

(
ω2
)′′

+
1

4
ω′′′′ = 0,

Integrating twice the last equation yields (for a = ±1) two equations of the
form

ω′′ + 2ω2 + α = 0, α = const,

ω′′ + 2ω2 + t = 0.

The second of these equations is of the Painlevé PI type.

Currently a sufficiently rich list of nonlinear equations that confirm the valid-
ity of the Painlevé test is known [1, 69, 165]. Reference [1] contains number of key
ideas concerning the justification of the Painlevé conjecture. For many equations
of contemporary mathematical physics it is completely natural to consider the
“Painlevé conjecture” in the light of its intimate connection with other inalien-
able “attributes” of nonlinear theory, such as Bäcklund transformations, solitons,
pseudospherical metrics, and so on. The geometrical foundations (“roots”) of these
relationships will be discussed in Chapter 4, in the framework of the geometric
concept of differential equations of Lobachevsky class.

3.6 The Darboux problem for the sine-Gordon equation

This section will be devoted to the consideration of the Darboux problem for the
sine-Gordon equation (a problem with data on the characteristics of the differential
equation),12 and to the investigation of two important classes of solutions for this
equation, dictated by the special character of the formulation of the Darboux
problem for them.

3.6.1 The classical Darboux problem

The Darboux problem for the sine-Gordon equation is posed as follows:

zuv = sin z, (3.6.1)

z(u, 0) = ϕ(u),

z(0, v) = ψ(v),

ϕ(0) = ψ(0).

(3.6.2)

The functions ϕ(u) and ψ(v) in (3.6.2), which specify the values of the sought-
for solution on the coordinate axes (which here are the characteristics of equation

12In works on differential equations, this type of problems is also refered to as the “Goursat
problem”.
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(3.6.1)), are defined for u ≥ 0, v ≥ 0. The third condition in (3.6.2) expresses their
agreement at zero.

The classical Darboux problem for the sine-Gordon equation in the form
(3.6.1) was first studied by Bianchi in his fundamental lecture notes on differen-
tial geometry [142]. Let us formulate the result of Bianchi, which established the
existence and uniqueness of the solution to the Darboux problem (3.6.1), (3.6.2),
in the following theorem.

Theorem 3.6.1. Suppose there are given functions

ϕ(u) ∈ Cn[0, U ], ψ ∈ Cn[0, V ], n ≥ 2,

which satisfy the compatibility condition at zero: ϕ(0) = ψ(0). Then the Darboux
problem (3.6.1), (3.6.2) has a solution

z(u, v) ∈ Cn([0, U ]× [0, V ]),

and this solution is unique. The solution z(u, v)can be constructed as the limit of
a uniformly convergent sequence {zk(u, v)}, given by the recursion relations

z0(u, v) = 0,

z1(u, v) = ϕ(u) + ψ(v)− ϕ(0),
(3.6.3)

zk+1(u, v) = z1(u, v) +

u∫
0

v∫
0

sin zk(ζ, η)dζdη. (3.6.4)

Moreover, the solution z(u, v) obeys the estimate

|z(u, v)| ≤ Ceuv,

C = max
[0,U ]×[0,V ]

{|ϕ(u)|+ |ψ(v)|+ |ϕ(0)|}. (3.6.5)

Proof. To prove Theorem 3.6.1, we rewrite the Darboux problem (3.6.1), (3.6.2)
in the integral form

z(u, v) = ϕ(u) + ψ(v)− ϕ(0) +

u∫
0

v∫
0

sin z(ζ, η)dζdη. (3.6.6)

The integral equation (3.6.6) is equivalent to the Darboux problem (3.6.1),
(3.6.2) in the following sense: Let z(u, v) be a function that is defined and contin-
uous in the coordinate rectangle [0, U ]× [0, V ] under consideration (Figure 3.6.1),
and is a solution of equation (3.6.6). Then z(u, v) has a continuous mixed deriva-
tive zuv(u, v) and satisfies the Darboux problem (3.6.1), (3.6.2). In the opposite
direction, any solution of the classical Darboux problem (3.6.1), (3.6.2) that is
continuous in the rectangle [0, U ]× [0, V ] satisfies the integral equation (3.6.6).

We will construct a solution of the integral equation (3.6.6) (and, corres-
pondingly, of the Darboux problem (3.6.1), (3.6.2)) by the method of successive
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Figure 3.6.1

approximations. The successive iterations are introduced via the recursion rela-
tions (3.6.4). Then the solution z(u, v) itself admits the series representation

z(u, v) =

∞∑
k=0

(zk+1 − zk). (3.6.7)

Let us establish the convergence of series (3.6.7). To this end, based on (3.6.4),
we derive the following estimates:

|z2 − z1| =
∣∣∣∣∣∣

u∫
0

v∫
0

sin z1dζdη

∣∣∣∣∣∣ ≤
u∫

0

v∫
0

| sin z1|dζdη ≤ uv

(1!)2
,

|z3 − z2| =
∣∣∣∣∣∣

u∫
0

v∫
0

2 sin
z2 − z1

2
· cos z2 + z1

2
dζdη

∣∣∣∣∣∣
≤

u∫
0

v∫
0

2

∣∣∣∣sin z2 − z1
2

∣∣∣∣ dζdη ≤
u∫

0

v∫
0

|z2 − z1|dζdη ≤ (uv)2

(2!)2
,

...

|zk+1 − zk| ≤
u∫

0

v∫
0

2

∣∣∣∣sin zk − zk−1

2

∣∣∣∣ dζdη ≤
u∫

0

v∫
0

|zk − zk−1| ≤ (uv)k

(k!)2
. (3.6.8)

From estimate (3.6.8) 13 one concludes that the sequence of iterates {zk(u, v)}
converges uniformly and, by (3.6.7), its limit as k →∞ is a solution of the integral
equation (3.6.6).

From relations (3.6.4) we see that, if z1(u, v) ∈ Cn([0, U ] × [0, V ]) and
zk(u, v) ∈ Cn([0, U ] × [0, V ]), then zk+1(u, v) ∈ Cn([0, U ] × [0, V ]). Hence, in

13The rigorous justification of estimates of the general form (3.6.8) is done by induction.
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view of the uniform convergence of the series (3.6.7), the smoothness class of the
solution z(u, v) of the posed Darboux problem coincides with that of the function
z1(u, v), which in turn is determined by the initial values of the problem.

Note also that to the integral inequality

z(u, v) ≤ C +

u∫
0

v∫
0

I(ζ, η)z(ζ, η)dζdη, I(ζ, η) ≡ 1,

which is an obvious consequence of (3.6.6), one can apply directly the Wendroff
inequality (estimate) [10]

|z(u, v)| ≤ C exp

⎧⎨⎩
u∫

0

v∫
0

I(ζ, η)dζdη

⎫⎬⎭ ,

which yields precisely the estimate (3.6.5) for the solution z(u, v) of the integral
equation (3.6.6) and of the Darboux problem (3.6.1), (3.6.2) corresponding to it.

It now remains to show that the solution z(u, v) obtained by the recipe
(3.6.3), (3.6.4), (3.6.5) is unique. Let ν(u, v) be another solution, different from
z(u, v), of the integral equation (3.6.6). Write (3.6.6) for ν(u, v) and subtract from
it (3.6.4). We obtain

|ν − z0| ≤M, M = const > 0,

and correspondingly

|ν − zk+1| =
∣∣∣∣∣∣

u∫
0

v∫
0

2 sin
ν − zk

2
· cos ν + zk

2
dζdη

∣∣∣∣∣∣
≤

u∫
0

v∫
0

2

∣∣∣∣sin ν − zk
2

∣∣∣∣ dζdη ≤
u∫

0

v∫
0

|ν − zk|dζdη.

Hence, the following estimate holds for all k:

|ν − zk| ≤M
(uv)k

(k!)2
.

This shows that the difference |ν− z| is arbitrarily small, i.e., the functions z(u, v)
and ν(u, v) coincide. Theorem 3.6.1 is proved. �

It is clear that the nature of the arguments used to prove Theorem 3.6.1 is
such that the result on the existence and uniqueness of the solution to the Darboux
problem (3.6.1), (3.6.2) can be “transferred” to the first coordinate quadrant as
U, V → +∞, as well as to the whole (u, v)-plane: u ∈ (−∞,+∞), v ∈ (−∞,+∞).

The existence and uniqueness of the solution to the Darboux problem (3.6.1),
(3.6.2) on the whole plane gives, in essence, unlimited possibilities of “modeling”
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various classes of solutions of the sine-Gordon equations by varying the initial data
in the formulation of the Darboux problem.

For instance, the class of soliton solutions of the sine-Gordon equation (see
§ 3.2), defined by the general formula (3.2.13), can obviously be obtained now as
the family of solutions of the Darboux problem (3.6.1), (3.6.2), with the system of
initial data extracted for u = 0 and v = 0 from the multi-soliton solution (3.2.13)
(of course, in this case we are dealing already with a kind of inverse problem).

As it was already established (see § 3.5), the Painlevé-III transcendental func-
tions, which correspond to the Amsler surface, “arise” as solutions of the Darboux
problem (3.6.1), (3.6.2) with constant initial conditions (3.5.9).

The high degree of freedom in the choice of initial conditions of the Darboux
problem is nevertheless insufficient for avoiding to impose certain fundamental
requirements on the solutions of the sine-Gordon equation. Thus, the what would
seem an “appealing attempt” at constructing small solutions (i.e., solutions with
a small range of values, among them, solutions with a range smaller than π) of
the sine-Gordon equation by choosing arbitrarily small initial data in the Darboux
problem does not yield “spectacular” results. Specifically, the solutions produced
in this manner will not be “small”, but will change at a sufficiently high rate,
“passing” through values that are multiples of π, thereby confirming Hilbert’s re-
sult on the nonimmersibility of the Lobachevsky plane Λ2 in the three-dimensional
Euclidean space E3 (see § 2.6). Nonetheless, the construction of “small” solutions
of the sine-Gordon equation is a significant independent problem, and will be
considered in the next subsection.

To end this subsection we remark that an exposition of the basic ideas con-
cerning the realization of the method of successive approximation in the case of
hyperbolic equations of sufficiently general form can be found in [114].

3.6.2 The Darboux problem with small initial data

This subsection is devoted to the Darboux problem for the sine-Gordon equation
with small initial data. The solutions of this problem are usually referred to as
“small” solutions of the sine-Gordon equation. It is quite natural to expect that
the solutions of this class will define their own special type of pseudospherical
surfaces, the geometric characteristics of which include a small parameter. The
idea of distinguishing this class of solutions is due E. G. Poznyak [72]. In that
work an asymptotic representation of small solutions of the sine-Gordon equation
in powers of the small parameter was obtained. On the whole, the small parameter
method proves to be quite productive in the study of various types of differential
equations (see, e.g., [14]).

Consider the following formulation of the Darboux problem for the sine-
Gordon equation with small initial data, “controlled” by a small parameter ε:

zuv = sin z. (3.6.9)

z(u, 0) = εϕ(u),

z(0, v) = εψ(v),

ϕ(0) = ψ(0),

(3.6.10)
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where ε = const, 0 < ε� 1.
The functions in (3.6.10) are assumed to satisfy the minimal smoothness

requirements:

ϕ(u) ∈ C1(−∞,+∞), ψ(v) ∈ C1(−∞,+∞).

By small solutions z(u, v, ε) of the sine-Gordon equation (3.6.9) for the given
functions ϕ(u) and ψ(v) we mean the collection of all solutions of the Darboux
problem (3.6.9), (3.6.10) for all values of the small parameter ε.

In accordance with the results of the preceding subsection, the Darboux
problem (3.6.9), (3.6.10) has a solution z(u, v, ε) ∈ C1 that is defined in the entire
(u, v)-plane and has a continuous partial derivative zuv.

By (3.6.5), the solution z(u, v, ε) obeys the estimate

|z(u, v, ε)| < ε · C0e
|uv|, (3.6.11)

where C0 = max{|ϕ(u)|+ |ψ(v)|+ |ϕ(0)|}.
Let us obtain, following [72], an asymptotic representation of the solution

z(u, v, ε) of the Darboux problem (3.6.9), (3.6.10) in powers of the small parame-
ter ε.

To this end we introduce the new function
◦
z (u, v, ε) by

z(u, v, ε) = ε
◦
z (u, v, ε). (3.6.12)

After the substitution of (3.6.12), the Darboux problem (3.6.9), (3.6.10) can
be recast as

◦
zuv =

◦
z +ε2f(

◦
z, ε), (3.6.13)

◦
z (u, 0) = ϕ(u),
◦
z (0, v) = ψ(v),

(3.6.14)

where the function f(
◦
z, ε) is defined by

f(
◦
z, ε) =

⎧⎪⎨⎪⎩
1

ε3

(
sin(ε

◦
z)− ε

◦
z
)
, if ε �= 0,

−1

6

(◦
z (u, v, 0)

)3
, if ε = 0.

(3.6.15)

Let us write equation (3.6.13) separately as

◦
zuv − ◦

z = ε2f(
◦
z, ε) (3.6.16)

and compare it with an equation that is well known in the theory of differential
equations, namely, the telegraph equation [114]

◦
zuv + a

◦
z = f(u, v), a = const. (3.6.17)
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For a known right-hand side (on a known solution), equation (3.6.16) coin-
cides with the telegraph equation (3.6.17) (for a = −1). Consequently, the solu-
tion of the Darboux problem under investigation can be constructed by Riemann’s
method [114], applied to the telegraph linear equation. In this case (for a = −1),
the Riemann function for the Darboux problem (3.6.13), (3.6.14) can be written
in explicit form [72, 114]

U(u, v, ξ, η) =

∞∑
n=0

(ξ − u)n(η − v)n

(n!)2
, (3.6.18)

and the solution itself of the problem in question admits the representation

◦
z (u, v, ε) = ϕ(0)

∞∑
n=0

unvn

(n!)2
+

u∫
0

ϕ′(ξ)
∞∑

n=0

(ξ − u)n · (−v)n
(n!)2

dξ

+

v∫
0

ψ′(η)
∞∑

n=0

(−1)nun · (η − v)n

(n!)2
dη

+ ε2
u∫

0

v∫
0

f(
◦
z (ξ, η, ε), ε)

∞∑
n=0

(ξ − u)n · (η − v)n

(n!)2
dξdη. (3.6.19)

Let us estimate the last term in (3.6.19), applying to it the mean value
theorem and using the majorant estimate

|f(◦z, ε)| ≤ C3
0e

3|uv|

6
,

which follows from the structure of the function f(
◦
z, ε) (3.6.15), and the inequality

(3.6.11). This yields

∣∣∣∣∣∣ε2
u∫

0

v∫
0

f(
◦
z (ξ, η, ε), ε)

∞∑
n=0

(ξ − u)n · (η − v)n

(n!)2
dξdη

∣∣∣∣∣∣
= ε2

∣∣∣∣∣f(◦z (ξ∗, η∗, ε), ε)
∞∑
n=0

un+1 · vn+1

((n+ 1)!)2

∣∣∣∣∣ � ε2
C3

0e
4|uv|

6
, (3.6.20)

where ξ∗ ∈ (0, u), η∗ ∈ (0, v).

Hence, by (3.6.20), the term being estimated is of order O(ε2).

If we now return to the solution z(u, v, ε) of the original Darboux problem
(3.6.9), (3.6.10) using formula (3.6.12), then (3.6.19) and (3.6.20) finally yield
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z(u, v, ε) = ε ·
⎡⎣ϕ(0) ∞∑

n=0

unvn

(n!)2
+

u∫
0

ϕ′(ξ)
∞∑

n=0

(ξ − u)n · (−v)n
(n!)2

dξ

+

v∫
0

ψ′(η)
∞∑

n=0

(−u)n · (η − v)n

(n!)2
dη

⎤⎦+O(ε3). (3.6.21)

The functions ϕ(u) and ψ(v) in (3.6.21) satisfy the requirements

ϕ(u) ∈ C
1
[0,+∞), ψ(v) ∈ C

1
[0,+∞)

(they are bounded functions of class C1).

As one can see from (3.6.21), regardless of the fact that one can a priori
choose an arbitrarily small (fixed) value of the parameter ε in the initial data
(3.6.10), the solution z(u, v, ε) itself of the Darboux problem under consideration
varies (grows, decays) to a high degree, and thus z(u, v, ε) can “cross” value levels
that are multiples of π. A transparent illustrative example of this fact is provided
by the solutions with small initial data z(u, 0) = z(0, v) = ε, connected with the
Amsler surface (see § 3.5). Such solution do, for any ε � 1, exhibit oscillatory
behavior about the levels 0 and π. Overall, the fact that the range of variation
of “small” solutions z(u, v, ε) must exceed the value π is in complete agreement
with Hilbert’s result on the nonimmersibility of the complete plane Λ2 in E3 and,
correspondingly, with failure of condition (2.6.3) for the solutions of the sine-
Gordon equation (see § 2.6).

3.6.3 Solutions of the sine-Gordon equation on multi-sheeted
surfaces

In this subsection we use the results on the classical Darboux problem to present
a method of “modeling” an essentially new class of solutions of the sine-Gordon
equation, namely, solutions given on multi-sheeted surfaces .

In the integral formulation (3.6.6) of the Darboux problem (3.6.1), (3.6.2),
considered in the coordinate rectangle [0, U ]× [0, V ], we pass to polar coordinates:

u = ρ cosϕ, v = ρ sinϕ, (3.6.22)

where ρ ∈ [0, ρ∗], ρ∗ =
√
U2 + V 2, and ϕ ∈ [0, π/2].14

This recasts the integral equation (3.6.6) (in polar coordinates) as

14Henceforth, ϕ will denote the polar angle.
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z(ρ cosϕ, ρ sinϕ) = ψ̄(ρ) +

ρ sinϕ∫
0

ρ̃ dρ̃

π/2∫
0

sin z(ρ̃ cos ϕ̃, ρ̃ sin ϕ̃) dϕ̃

+

ρ cosϕ∫
ρ sinϕ

ρ̃ dρ̃

arcsin(ρ/ρ̃ sinϕ)∫
0

sin z(ρ̃ cos ϕ̃, ρ̃ sin ϕ̃) dϕ̃

+

ρ∫
ρ cosϕ

ρ̃ dρ̃

arcsin(ρ/ρ̃ sinϕ)∫
arccos(ρ/ρ̃ cosϕ)

sin z(ρ̃ cos ϕ̃, ρ̃ sin ϕ̃) dϕ̃, (3.6.23)

where

ψ̄ =

{
ψm(ρ), if ϕ = π

2 m, m = 0, 1.

0, if ϕ �= π
2 m, 0 < ϕ < π

2 ,
(3.6.24)

The functions ψ0 and ψ1 in (3.6.24) correspond to the functions ϕ and respectively
ψ in (3.6.2).

To simplify, we denote the right-hand side of (3.6.23) by J(z, ρ, ϕ); then the
integral equation (3.6.23) takes on the compact form

z(ρ, ϕ) = J(z, ρ, ϕ). (3.6.25)

As in Subsection 3.6.1, to prove the existence and uniqueness of the solu-
tion to problem (3.6.23), (3.6.24) (or (3.6.25), (3.6.24)), we apply the method
of successive approximations, defining the successive iterations via the recursion
relation

zn+1(ρ, ϕ) = J(zn(ρ, ϕ), ρ, ϕ), n = 0, 1, 2, . . . (3.6.26)

For the initial iteration in (3.6.26) we take z0 ≡ 0, and then we estimate the
modulus of the difference of two iterations in the standard manner:

|z1 − z0| ≤ π

2
,

|z2 − z1| ≤
ρ sinϕ∫
0

ρ̃ dρ̃

π/2∫
0

dϕ̃+

ρ cosϕ∫
ρ sinϕ

ρ̃ dρ̃

arcsin(ρ/ρ̃ sinϕ)∫
0

dϕ̃

+

ρ∫
ρ cosϕ

ρ̃ dρ̃

arcsin(ρ/ρ̃ sinϕ)∫
arccos(ρ/ρ̃ cosϕ)

dϕ̃ ≤ 3π

2
· ρ2

1 · 2 .

Further,

|z3 − z2| ≤
(
3π

2

)2
ρ3

3!
,

...

|zn+1 − zn| ≤
(
3π

2

)n
ρn

n!
. (3.6.27)
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The obtained estimate (3.6.27) establishes the uniform convergence, as n→
∞, of the sequence {zn(ρ, ϕ)} to the solution z(ρ, ϕ) of problem (3.6.23), (3.6.24),
and simultaneously justifies the transition to polar coordinates in the Darboux
problem under consideration.

When ρ→∞, the domain where the solution z(ρ, ϕ) of the Darboux problem
expands to the first quadrant Q1 of the plane:

Q1 =
{
ρ ∈ [0,+∞), ϕ ∈

[
0,

π

2

]}
.

A natural generalization of the result obtained is its “transfer” to an arbitrary
quadrant Qm+1, with

Qm+1 =
{
ρ ∈ [0,+∞), ϕ ∈

[π
2
m,

π

2
(m+ 1)

]
, m = 0, 1, 2, . . .

}
.

Thus, we can talk about the well-posedness (in the sense of the existence
and uniqueness of the solution) of the unified (basic) Darboux problem for the
sine-Gordon equation in an arbitrary quadrant Qs+1:

D(z(ρ, ϕ), ρ, ϕ) ≡ z(ρ, ϕ)− J(z(ρ, ϕ), ρ, ϕ) = 0, (3.6.28)

z
(
ρ,

π

2
m
)
= ψm(ρ),

ψs(0) = ψs+1(0), m = s, s+ 1.
(3.6.29)

The Darboux problem (3.6.28), (3.6.29), considered in some selected quad-
rant,15 represents a universal fundamental problem, which can serve as a basis
for “constructing” new types of solutions of the sine-Gordon equation on multi-
sheeted surfaces.

Let us now address the “modeling” of solutions of the sine-Gordon equation
defined on multi-sheeted domains. “Locally” such solutions will satisfy an equation
of the type (3.6.1).

1) Solving the sine-Gordon equation on multi-sheeted surfaces with one branch
point. Let us consider a multi-sheeted surface Ω1 with a single branch point
O, which coincides with the origin of the original (u, v)-plane. The surface Ω1

is constructed in the standard way by “gluing” a certain (possibly infinite)
number of copies (sheets) of Euclidean coordinate planes along the corre-
sponding boundaries of cuts made along the coordinate ray Ou, u ∈ [0,+∞).
The conventional depiction of a multi-sheeted surface Ω1 is shown in Figure
3.6.2.

Starting from the universal setting of the basic Darboux problem
(3.6.28), (3.6.29) in polar coordinates, we formulate its generalized setting

15Clearly, the arguments used above allow one to correctly solve a Darboux problem of the
type (3.6.28), (3.6.29) for domains of other type, for instance, for a “sector” with the vertex at
the origin of coordinates and angle smaller than π, and so on.
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Figure 3.6.2

for the multi-sheeted domain Ω1:

D(z(ρ, ϕ), ρ, ϕ) = 0, (3.6.30)

z
(
ρ,

π

2
m
)
= ψm(ρ), ψi(0) = ψj(0), m, i, j = 0, 1, 2, . . . , (3.6.31)

ψ(k)
m (0) = ψ

(k)
m+2(0), k = 0, 1, 2, . . . . (3.6.32)

Problem (3.6.30)–(3.6.32) is a composition of compatible Darboux prob-
lems of the form (3.6.28), (3.6.29), which together “exhaust” the entire multi-
sheeted domain Ω1. The corresponding initial data are specified by the set
of functions ψ0, ψ1, ψ2, . . . ψm, . . ., which agree at zero. The supplementary
conditions (3.6.32) on the directional derivatives ensure the required Ck-
smoothness of the solution. Thanks to the solvability of the basic problem of
type (3.6.28), (3.6.29) posed in Ω1, the problem (3.6.30)–(3.6.32) is uniquely
solvable in the class of functions z ∈ Ck(Ω1). The resulting generalized so-
lution z(Ω1) of the Darboux problem (3.6.30)–(3.6.32) coincides “locally”
(within each sheet of the surface Ω1, except at the branch point) with some
solution z of the classical sine-Gordon equation (3.6.1).

2) Example of setting of the Darboux problem on a multi-sheeted surface with
a finite number of branch points. Next let us consider the structure of a
multi-sheeted surface ΩN with a finite number N of branch points {Aj , j =
1, . . . , N}. Pick (and label by 0) some sheet L0 of the surface ΩN . On the
sheet L0 (a copy of the Euclidean plane) one can always indicate a straight

line l ⊂ L0 with direction vector
−→
l , on which all branch points A1, . . . , AN

project in a one-to-one manner (Figure 3.6.3). Suppose the gluing of the
successive sheets of the multi-sheeted surface ΩN is done along the boundaries
of the cuts made along rays with the origin at the branch points A1, . . . , AN ,
rays that are orthogonal to the straight line l and are directed to the same
side relative to l. The “sheet-to-sheet” transition is effected for all sheets in
one and the same oriented manner: “the left boundary” of the cut on one
sheet is glued to the “right boundary” of the corresponding (i.e., referring to
the same branch point) cut on the next sheet. The general principle guiding
the construction of the multi-sheeted surface ΩN is illustrated in Figure 3.6.3.
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Figure 3.6.3

Let us formulate the Darboux problem for the sine-Gordon equation on
the multi-sheeted surface ΩN . To this end we introduce, for each j = 1, . . . , N ,
“local” polar coordinates (ρj , ϕj) centered at the branch point Aj . For the
sake of definiteness, the angles ϕj will be measured in counterclockwise di-
rection. Also, we will consider that the “left” boundaries of cuts lie in the
considered sheet L0, while the “right” boundaries lie in the next glued sheet.
The positions of the branch points {Aj , j = 1, . . . , N} will be specified by
the successive set of vectors {−→r j,j+1} that connect them.

These “preparations” allow us to formulate a connected “chain” of Dar-
boux problems, which yield a regular generalized solution of the sine-Gordon
equation on ΩN .

The first link in the “chain” is the Darboux problem for the domain
attached to the first branch point A1, bounded “to the left” by the straight
line containing the cut emanating from the branch point A2 (the hatched
domain in Figure 3.6.3).

This problem for a part of the solution, zA1(ρ1, ϕ1) (in the domain
corresponding to the branch point A1), is posed as follows:

D(zA1(ρ1, ϕ1), ρ1, ϕ1) = 0, (3.6.33)

zA1

(
ρ1,

π

2
m
)
=

[
ψ1
m(ρ1), if ρ1 ∈ [0,+∞), m = 0, 1, 2,

ψ1
3(ρ1), if ρ1 ∈ [0, |−→r12| · ̂

(−→r12,−→l )], m = 3.
(3.6.34)

ψ1
p(0) = ψ1

q (0), p, q = 0, 1, 2, 3,

∂ψ1
α

∂−→ρ1

∣∣∣∣
ρ1=0

=
∂ψ1

α+2

∂−→ρ1

∣∣∣∣
ρ1=0

,

∂2ψ1
α

∂−→ρ 2
1

∣∣∣∣
ρ1=0

=
∂2ψ1

α+2

∂−→ρ 2
1

∣∣∣∣
ρ1=0

.

α = 0, 1. (3.6.35)
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The upper index in the functions ψj
k corresponds to the ordering index

j of the branch point Aj . Thus, for example, the functions ψ1
1 , ψ

1
3 in (3.6.35)

correspond to the setting of the problem associated with the first branch
point A1. Conditions (3.6.35) guarantee the C2-regularity of the solution
zA1 .

The formulation (3.6.33)–(3.6.35) includes the setting of four consis-
tent standard (basic) Darboux problems: two problems in quadrants and two
problems in a half-strip, for which the existence and uniqueness of the so-
lution is guaranteed by the well-posedness of the basic Darboux problem of
type (3.6.30)–(3.6.32).

The next step is to successively and regularly “glue” (“left–to–right”)
the solution zA1(ρ1, ϕ1) obtained above the solutions zA2 , . . . , zAN of the
Darboux problems corresponding to the respective branch points A2, . . . , AN ,
i.e., the regular conjugation transition, to the right, to domains along the
straight line l (Figure 3.6.3).

The transition alluded to above is given by the recurrently inter-related
chain of Darboux problems of the form

D(zAj (ρj , ϕj), ρj , ϕj) = 0, (3.6.36)

zAj

(
ρj ,

π

2
m
)
=

⎧⎨⎩
zAj−1(ρj−1, ϕj−1), m = 0, 1, 2,

ψj
3(ρj)

∣∣∣−→ρj≡−→r j,j+1

, m = 3,
(3.6.37)

ψj
m(ρj)

∣∣∣
ρj=0

= zAj−1(ρj−1, ϕj−1)
∣∣∣−→ρj−1=

−→rj−1,j

,(
∂zAj−1

∂
−→
l

− ∂zAj

∂
−→
l

)∣∣∣∣
ρj=0

= 0,(
∂2zAj−1

∂
−→
l 2

− ∂2zAj

∂
−→
l 2

)∣∣∣∣
ρj=0

= 0.

(3.6.38)

Problem (3.6.36)–(3.6.38) is posed in the domain corresponding to an
arbitrary “intermediate” branch point Aj .

Thus, we presented an algorithm for constructing a generalized solu-
tion z(ΩN) of the sine-Gordon equation on the multi-sheeted surface ΩN ,
expressed as a recursive chain of regular, consistent basic Darboux problems
for the available domains (half-strips, sectors, quadrants, etc.) on ΩN .

3) On the Darboux problem on a surface with an infinite (countable) number of
branch points. In the method for constructing solutions z(ΩN ) of the sine-
Gordon equation on a multi-sheeted surface ΩN considered above, the fact
that the finite set of branch points can be “ordered” plays an essential role.
Indeed, it is this ability of ordering the branch points that allows one to
extend the algorithm presented to the case of a multi-sheeted surface with
an infinite (countable) number of branch points {Aj}, j ∈ N. Such a multi-

sheeted surface will be denoted by Ω̃∞.
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An example of surface Ω̃∞ to which one can “extend” the algorithm
worked out above for the recursive setting of the Darboux problem for the
sine-Gordon equation is the multi-sheeted surface with the following distri-
bution of branch points on any of its sheets: the branch points {Aj} lie on
the unit semi-circle (Figure 3.6.4) and are given in polar coordinates by

Aj : ρj = 1, ϕj =
π

j
, j ∈ N.

Figure 3.6.4

It is obvious that on the multi-sheeted surface Ω̃∞ with the sheet struc-
ture shown in Figure 3.6.4 one can give a generalized solution z(Ω̃∞) of the
sine-Gordon equation as the limiting solution, as j → ∞, of the recursive
and consistent chain of corresponding Darboux problems.

To finish the present section, we state a general proposition on the structure of
pseudospherical surfaces S[Ω] ⊂ E3 that correspond to generalized solutions z(Ω)
of the sine-Gordon equation on multi-sheeted surfaces Ω. Such surfaces necessarily
contain solitary (localized) singular points, corresponding to the branch points of
the multi-sheeted surfaces Ω (the domains of definition of the solutions z(Ω)). In
neighborhoods of such singular points in space, the structure of the generalized
pseudosperical surfaces S[Ω] does probably have the character of a “multi-sheeted
twisting” that converges to the singular point.16

3.7 The Cauchy problem for the sine-Gordon equation.
Unique determinacy of pseudospherical surfaces

In this section we establish the solvability (existence and uniqueness of the solu-
tion) of the Cauchy problem for the sine-Gordon equation, which has a fundamen-
tal importance for the theory of pseudospherical surfaces: a geometric application
of this result is the theorem asserting that pseudospherical surfaces are uniquely
determined by their irregular cuspidal edges (singularities), which will be proved
in the second part of this section.

16Similar to a flower bud .
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3.7.1 The Cauchy problem for the sine-Gordon equation: existence
and uniqueness of the solution

Let us formulate the Cauchy problem for the sine-Gordon equation, with the initial
values of the unknown function z(u, v) and of its derivative zu(u, v) specified on a
curve l, given by the equation v = f(u):

zuv = sin z,

z(u, f(u)) = μ(u),

zu(u, f(u)) = ν(u).

(3.7.1)

We shall assume that f(u) ∈ Cn, n ≥ 2, and f ′(u) has constant sign on the segment
[u1, u2], which guarantees the existence of the inverse function f−1(v) ∈ Cn. For
definiteness, we will assume that the function f(u) is decreasing on [u1, u2], i.e.,
f ′(u) < 0 for u ∈ [u1, u2]. We denote v1 = f(u2), v2 = f(u1), and consider the
rectangle Π = [u1, u2]× [v1, v2].

The following existence and uniqueness theorem for the solution of the Cau-
chy problem (3.7.1) holds true.

Theorem 3.7.1. Let μ(u) ∈ Cn[u1, u2] and ν(u) ∈ Cn−1[u1, u2]. Then under the
above assumptions on the function f(u), in the rectangle Π = [u1, u2] × [v1, v2]
(see Figure (3.7.1)) there exists one, and only one, solution z(u, v) ∈ Cn(Π) of the
Cauchy problem (3.7.1) for the sine-Gordon equation.

Proof. As in the case of the Darboux problem (§ 3.6), the solution of the Cauchy
problem (3.7.1) will be constructed as the limit of a uniformly convergent sequence
{zk(u, v)}, given by recursion relations introduced via the integral equation equiv-
alent to the Cauchy problem (3.7.1).

Figure 3.7.1

In the case of the rectangle Π under consideration, which consists of two curvi-
linear triangles with the common boundary l (Figure 3.7.1), the Cauchy problem
(3.7.1) reduces to the integral equation

z(u, v) = μ(f−1(v))−
f−1(v)∫
u

ν(s)ds +

u∫
f−1(v)

ds

v∫
f(s)

sin z(s, t)dt. (3.7.2)
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Equation (3.7.2) is obtained by integrating twice the sine-Gordon equation,
with the initial conditions accounted for. Indeed, the “first integration” of the
sine-Gordon equation with respect to the variable t from f(s) to v, with the last
condition in (3.7.1) accounted for, yields

zs(s, v) = ν(s) +

v∫
f(s)

sin z(s, t)dt.

The subsequent integration of this equation with respect to s from f−1(v) to
u yields indeed the equation (3.7.2), equivalent to the original Cauchy problem
(3.7.1).

Turning now to the integral equation (3.7.2), let us introduce the iterative
sequence {zk(u, v)} by the recursion formula

zk+1(u, v) = μ(f−1(v))−
f−1(v)∫
u

ν(s)ds +

u∫
f−1(v)

ds

v∫
f(s)

sin zk(s, t)dt, (3.7.3)

and take z0 ≡ 0 as the initial iteration.
Then for the first iteration z1(u, v) we obtain

z1 = μ(f−1(v)) −
f−1(v)∫
u

ν(s)ds.

Let us show that the sequence {zk(u, v)} constructed via (3.7.3) converges
uniformly as k → ∞ to the solution z(u, v) of the Cauchy problem (3.7.1). To
this end we derive estimates for the modulus of the difference of two successive
iterations.

We have

|z2(u, v)− z1(u, v)| =

∣∣∣∣∣∣∣
u∫

f−1(v)

ds

v∫
f(s)

(sin z1(s, t)− sin z0(s, t))dt

∣∣∣∣∣∣∣
≤

u∫
f−1(v)

ds

v∫
f(s)

| sin z1(s, t)|dt ≤
u∫

f−1(v)

ds

v∫
f(s)

dt =

u∫
f−1(v)

(v − f(s))ds. (3.7.4)

Looking at Figure 3.7.1, consider in the rectangle Π “the top domain”17 lying
above the curve l. Since f(u) is monotonically decreasing, the integrand in the
right-hand side of (3.7.4) is bounded from above by (v− f(u)) for s ∈ [f−1(v), u],

17The considerations for the “bottom domain” are analogous.
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u ∈ [u1u2]. Consequently,

|z2(u, v)− z1(u, v)| ≤
u∫

f−1(v)

(v − f(s))ds ≤
u∫

f−1(v)

(v − f(u))ds

= (u− f−1(v))(v − f(u)) =
(u− f−1(v))(v − f(u))

(1!)2
. (3.7.5)

Now let us estimate the modulus of the difference of two successive iterates:

|zk+1(u, v)− zk(u, v)| =

∣∣∣∣∣∣∣
u∫

f−1(v)

ds

v∫
f(s)

(sin zk(s, t)− sin zk−1(s, t))dt

∣∣∣∣∣∣∣
≤

u∫
f−1(v)

ds

v∫
f(s)

| sin zk(s, t)− sin zk−1(s, t)|dt

=

u∫
f−1(v)

ds

v∫
f(s)

∣∣∣∣2 sin zk(s, t)− zk−1(s, t)

2
cos

zk(s, t) + zk−1(s, t)

2

∣∣∣∣ dt
≤

u∫
f−1(v)

ds

v∫
f(s)

|zk(s, t)− zk−1(s, t)|dt ≤
u∫

f−1(v)

ds

v∫
f(u)

|zk(s, t)− zk−1(s, t)|dt.

(3.7.6)

In (3.7.6) we used the fact that | sinx| ≤ |x|, | cosx| ≤ 1, as well as the
monotonicity of the function f(u).

The general estimate is obtained by induction. Thus, let us assume that for
zk and zk−1

|zk(u, v)− zk−1(u, v)| ≤ (u− f−1(v))k−1(v − f(u))k−1

((k − 1)!)2
. (3.7.7)

Then by (3.7.6) we obtain

|zk+1(u, v)− zk(u, v)| ≤
u∫

f−1(v)

ds

v∫
f(u)

(s− f−1(t))k−1(t− f(s))k−1

((k − 1)!)2
dt

≤
u∫

f−1(v)

ds

v∫
f(u)

(s− f−1(v))k−1(t− f(u))k−1

((k − 1)!)2
dt ≤ (u − f−1(v))k(v − f(u))k

(k!)2
.

(3.7.8)
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The upper estimate (3.7.8) thus obtained establishes the uniform convergence
of the series

z0 +
∞∑
k=1

(zk − zk−1)

on any compact domain lying above the curve l, and hence also the convergence
of the sequence {zk(u, v)} to the solution z(u, v) of the posed Cauchy problem
(3.7.1).

Let us investigate the smoothness of the obtained solution z = limk→∞ zk.
Under the assumptions of the theorem, it is clear that z1(u, v) ∈ Cn(Π). Next, let
us differentiate twice with respect to u and v in (3.7.3):

∂2zk+1

∂u2
=

∂2z1
∂u2

− f ′(u) · sin zk(u, v),
∂2zk+1

∂u∂v
= sin zk(u, v), (3.7.9)

∂2zk+1

∂v2
=

∂2z1
∂v2

− 1

f ′(u) · f−1(v)
· sin zk(u, v).

The equalities (3.7.9) show that the smoothness class is preserved for each
successive iteration in the recursion relation (3.7.3). Consequently, the solution
z(u, v) of the Cauchy problem lies in Cn(Π).

Next, let us establish the uniqueness of the solution z(u, v). Suppose that
ζ(u, v) ∈ Cn(Π) is another solution of the Cauchy problem and, correspondingly,
of the integral equation (3.7.2). Subtracting (3.7.3) from (3.7.2), written for ζ, we
have18

|ζ − z1| � M, M = const > 0,

and, generally,

|ζ − zk+1| ≤
u∫

f−1(v)

ds

v∫
f(s)

|ζ − zk|dt.

Hence, the following estimate holds for all k:

|ζ − zk| ≤M · (u− f−1(v))k · (v − f(u))k

(k!)2
. (3.7.10)

By (3.7.10), when we let k → ∞, the difference |ζ − z| becomes arbitrarily
small, i.e., the solutions z(u, v) and ζ(u, v) coincide. Therefore, the solution z(u, v)
of the Cauchy problem (3.7.1) is unique.

All the arguments used above in the proof for the case of the “top triangle”
in the rectangle Π can be similarly applied to the “bottom triangle” lying under
the curve l (Figure 3.7.1). Therefore, the assertion of the theorem holds true for
the entire rectangle Π. Theorem 3.7.1 is proved. �

18In view of the continuity of the functions ζ and z1.
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Based on Theorem 3.7.1, we can quite obviously talk about the existence
and uniqueness of the solution of the Cauchy problem in the whole (u, v)-plane
in the case when the curve l is given on the whole line u ∈ (−∞,+∞), i.e., l is
parametrized as v = f(u), with f ∈ Cn(−∞,+∞). In this case the proof amounts
to examining the “chain” of Cauchy problems, each “link” of which corresponds to
its own interval of monotonicity of the function v = f(u). Transparent examples
of this are the formulations of the Cauchy problems whose solutions are the one-
soliton solution z1(u, v) and the two-soliton solution z2(u, v) of the sine-Gordon
equation; in these cases, it is convenient to take for the lines of “type l” the level
lines of the solutions, z1(u, v) = π and z2(u, v) = 0, which are straight lines .

3.7.2 Theorem on unique determinacy of pseudospherical surfaces

The solvability of the Cauchy problem for the sine-Gordon equation established in
Subsection 3.7.1 has an important geometric application. Namely, Theorem 3.7.1
proved above, which establishes the existence and uniqueness of the solution to
the Cauchy problem (3.7.1), enables us to assert that pseudospherical surfaces are
uniquely determined by their “irregular” edges (cuspidal edges).

Indeed, every solution z(u, v) of the sine-Gordon equation does unavoidably
reach the values z = nπ, with n an integer, to which, according to Poznyak’s
theorem (Theorem 2.7.1), correspond singularities (irregular edges and so on) of
the pseudospherical surface S[z]. The curvature and torsion of an individual edge
of the surface, regarded as a curve in space, can be uniquely calculated from the
equation v = f(u) of its preimage in the (u, v)-parametric plane, defined by the
condition z(u, v) = nπ, with n an integer, and from the derivative zu(u, f(u)) (see
(2.7.72) and (2.7.81)). This correspondence is one-to-one, since conversely, from a
given edge we can, according to (2.7.72) and (2.7.81), find v = f(u) : z(u, f(u)) =
nπ and zu(u, f(u)), expressions that give the initial data for the uniquely solvable
Cauchy problem of the type (3.7.1). Therefore, from the resulting solution of the
sine-Gordon equation one recovers the corresponding piece of the pseudospherical
surface S[z].

Let us formulate the discussed property that a pseudospherical surface is
determined by its irregular edges as the following unique determinacy result.

Theorem 3.7.2 (Unique determinacy of pseudospherical surfaces). Suppose there is

given a space curve L ⊂ E3, specified by its radius vector
−→
R (s) (s being the natural

parameter), and characterized by its curvature k(s) and torsion æ(s), æ �= ±1.
Then to each piece of the curve L, given by s ∈ [s1, s2], on which k(s) > 0, one
can uniquely associate a rectangle Π = [u(s1), u(s2)] × [v(s1), v(s2)] in the (u, v)-
parametric plane, and correspondingly two pieces of a pseudospherical surface in
the space E3, given on Π, for which L is a cuspidal edge.

Remark. Figuratively speaking, for each regular curve L ⊂ E3 one can always
(under the assumptions of Theorem 3.7.2), indicate in a unique manner a pseudo-
spherical surface abutting to it, for which L is a cuspidal edge.

Proof of Theorem 3.7.2. Using the results of § 2.7, we resort to the formulas (2.7.72)
and (2.7.81) in order to “translate” the geometric characteristics k(s) and æ(s)
of the curve L ⊂ E3 into initial data for the solution z(u, v) of the sine-Gordon
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equation (the net angle of the Chebyshev net of asymptotic lines on a pseudospher-
ical surface) that this solution takes on an irregular edge of the pseudospherical
surface:

f ′(u) = (−1)n · 1− æ(s)

1 + æ(s)
: (u, f(u)) = nπ, n an integer,

zu(u, f(u)) = − 2kg(s)

1 + æ(s)
, (3.7.11)

ds

du
= ± 1

1 + æ(s)
.

In the right-hand sides of (3.7.11) we use the substitution s = s(u). Also in (3.7.11),
we consider that the preimage of the curve L in the (u, v)-parametric plane is given
by the equation v = f(u) : z(u, f(u)) = nπ, n an integer.

In essence, expressions (3.7.11) give the initial data for the solution of the
Cauchy problem (3.7.1), arising from the geometric interpretation of solutions of
the sine-Gordon equation. Let us clarify the resulting “specific geometric features”
of the problem under consideration. The curvature k of the curve L ⊂ E3 (irregular
edge) can differ from the geodesic curvature kg of the same curve regarded as
a curve on the corresponding pseudospherical surface only by sign: kg = ±k.
Consequently, kg and zu(u, f(u)) are uniquely determined, up to sign, by the
data k(s) and æ(s). A possible change of sign in the initial data zu(u, f(u)) and
z(u, f(u)) = nπ in the Cauchy problem leads to a change of sign of the solution
z(u, v) itself. Geometrically, this is connected with changing (into the opposite)
the direction of the normal vector and the direction in which one measures the
coordinates u and v on the asymptotic lines.

The sign in the equality kg = ±k will be taken so as to preserve the C3-
smoothness required for the function zu(u, f(u)), which together with this choice
is ensured by the assumed smoothness of the functions k(s(u)) and æ(s(u)). Since,
by the assumptions of the theorem, the torsion æ(s) does not take the values ±1,
f ′(u) (see 3.7.11) has constant sign. For definiteness (for fixed n), we shall assume
that f ′(u) < 0. Then the sign in the expression for the derivative ds/du is chosen,
for instance, so that the derivative will be positive. When all the listed conditions
are satisfied, one can always indicate on the curve L a piece on which the coordinate
u varies in some segment [u1, u2] (in general, such a segment can be infinite).

Put v1 = f(u1), v2 = f(u2) and consider the rectangle Π = [u1, u2]× [v1, v2].
By Theorem 3.7.1 , the Cauchy problem with the initial data (3.7.11) has in Π a
unique solution z(u, v) ∈ C4(Π). The requisite C4-smoothness of the solution is
guaranteed by the corresponding requirement that the initial data be C3-smooth.

Let us construct the pseudospherical surface S[z] corresponding to the ob-
tained solution z(u, v) ∈ C4(Π). To this end, we take some point s0 = s(u1) on
L such that k(s0) �= 0, æ(s0) �= 0, and k(s0), æ(s0) are finite. Denote this point
by A0. Let

−→e1 denote the tangent vector to the curve L at A0, oriented in the
direction of increase of the coordinate u. Further, let −→e3 denote the vector that

coincides at A0 with the binormal vector
−→
b (A0) to the curve L. We also introduce

the vector −→e2, finally forming the right-handed triple of vectors {−→e1,−→e2,−→e3}.
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With these “preparations” we are now ready to use the precise statement
of Theorem 2.7.2, according to which in the rectangle Π there exists a unique
vector-valued function −→r (u, v) ∈ C3(Π), which defines in E3 a pseudospherical
surface S[z(Π)] for which the curve L serves as cuspidal edge. Theorem 3.7.2 is
proved. �

The mapping of the rectangle Π in the (u, v)-parametric plane (Figure 3.7.1)
into a piece of the pseudospherical surface S[z] illustrating Theorem 3.7.2 is shown
in Figure 3.7.2.

Figure 3.7.2

By picking out the rectangle Π in the proof of Theorem 3.7.2 our considera-
tions acquire, in a certain sense, a “universal” character. Specifically, the rectangle
Π is a selected domain, in which for definiteness, without diminishing the generality
of our approach, we assume that the set of properties of the functions k(s), æ(s),
v = f(u) and their derivatives that ensure the solvability in Π of the Cauchy prob-
lem of the type (3.7.1) under conditions (3.7.11) are satisfied. A possible modified
set of the indicated properties (corresponding, for example, to an adjacent piece
of the curve L) is connected, first of all, with a change of the sign of the functions
involved and does not affect the result on the solvability of the Cauchy problem in
other, “adjacent” rectangles of Π type. Overall, such an approach enables one to
state more generally that for every space curve L with curvature k(s) and torsion
æ �= ±1 such that the C4-smoothness of the solution of the corresponding Cauchy
problem is guaranteed, there exists one, and only one pseudospherical surface S[L]
for which L is an irregular cuspidal edge.

In other words, every pseudospherical surface can be uniquely recovered from
its irregular19 cuspidal edge (regular space curve).

For a transparent explanation we draw the reader’s attention to the “skele-
ton” consisting of the sets of space curves (Figures 3.4.1.b–3.4.6b) that play the
role of cuspidal edges of two-soliton pseudospherical surfaces. For each skeleton
of this type, the corresponding two-soliton pseudospherical surface “stretches” to
cover it in a unique way.

19Irregular in the sense that the pseudospherical metric is degenerate on it
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3.8 Method of separation of variables. Joachimsthal-
Enneper surfaces

3.8.1 Standard separation of variables for the sine-Gordon equation

Let us describe a class of solutions of the sine-Gordon equation that are obtained
by the methods of separation of variables. We take the sine-Gordon equation in
the form with “wave-type” left-hand side,

zxx − ztt = sin z, (3.8.1)

which is most frequently encountered in physical applications. The equation zuv =
sin z is reduced to the form (3.8.1) by the change of variables

u =
1

a
·
(
x+ t

2

)
, v = a ·

(
x− t

2

)
, a = const. (3.8.2)

The geometrical meaning of the transformation (3.8.2) will be discussed in Sub-
section 3.8.2.

We shall seek the solutions of equation (3.8.1) in the form

z(x, t) = 4 arctan

[
X(x)

T (t)

]
. (3.8.3)

Substituting expression (3.8.3) in (3.8.1), we obtain the equation

(X2 + T 2)

(
X ′′

X
+

T ′′

T

)
− 2(X ′)2 − 2(T ′)2 = T 2 −X2. (3.8.4)

Here the primes denote differentiation of the involved functions X(x) and T (t) of
one variable with respect to their arguments.

Passing to differential consequences of relation (3.8.4) allows us to separate
variables as (see [51]):

1

XX ′

(
X ′′

X

)′
= − 1

TT ′

(
T ′′

T

)′
= −4k2, k = const. (3.8.5)

Each of the equations in (3.8.5) can be reduced to an equation of two orders
lower:

(X ′)2 = −k2X4 + μ1X
2 + ν1, μ1, ν1 = const,

(T ′)2 = k2T 4 + μ2T
2 + ν2, μ2, ν2 = const.

(3.8.6)

The integration constants in (3.8.6) are related by the conditions

μ1 − μ2 = 1,

ν1 + ν2 = 0.
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With no loss of generality we can put μ1 = m2 and ν1 = n2. Let us rewrite
equations (3.8.6), passing to elliptic integrals20

±
∫

dX√−k2X4 +m2X2 + n2
= x,

±
∫

dT√
k2T 4 + (m2 − 1)T 2 − n2

= t.
(3.8.7)

Therefore, the unknown functions X(x) and T (t) will be determined as the
inverses of the elliptic integrals figuring in the left-hand sides of (3.8.7). Generally,
the functions X(x) and T (t) that are defined by the relations (3.8.7) and give the
sought-for solution z(x, t) (3.8.3) of the sine-Gordon equation are transcendental .
Nevertheless,we will now give examples showing that, for special choices of the
constants {k,m, n} the corresponding solutions z(x, t) of the form (3.8.3) can be
expressed in terms of elementary functions. Moreover, among these solutions we
will recognize some that are identical with some of the solutions we considered
earlier.

Example 1. k = 0, m > 1, n = 0. For this choice of the constants, the integrals
in (3.8.7) can be calculated in terms of elementary functions. In particular, the
system (3.8.7) yields

X = b1e
±mx, T = b2e

±√m2−1·t, b1, b2 = const.

For these functions X(x) and T (t), the solution of the sine-Gordon equation (ac-
cording to (3.8.3)) takes on the form

z(x, t) = 4 arctan

[
b · exp

(
± x± w · t√

1− w2

)]
, (3.8.8)

where w =
√
m2 − 1/m = const and b = b1/b2.

From the point of view of wave physics, a solution of the form (3.8.3) describes
the motion of a one-dimensional “shelf ”-type profile with speed w. It is quite
obvious that for a suitable choice of the constant b = b(w), the inverse change of
variables (x, t) �→ (u, v) brings the solution (3.8.8) to the form of the one-soliton
solution of the type (3.2.11), studied in the first part of this chapter.

Example 2. k = 0, m > 1, n �= 0. For this choice of the constant parameters
involved, system (3.8.6) can again be integrated in elementary functions:

X = ± n

m
· sinh(mx+ c1),

T =
n√

m2 − 1
· cosh(

√
m2 − 1 · t+ c2), c1, c2 = const.

20The reader should be aware that a certain mutual relationship exists between the integrals
(3.8.7) and the Jacobi special functions (see § 3.3).
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In accordance with (3.8.3), this yields the following solution of the sine-
Gordon equation (3.8.1):

z(x, t) = ±4 arctan
[√

m2 − 1

m
· sinh(mx+ c1)

cosh(
√
m2 − 1 · t+ c2)

]
. (3.8.9)

Let us study the “wave nature” of the solution (3.8.9). For definiteness, choose
in the right-hand side of (3.8.9) the sign “+” and assume that c1 = c2 = 0. Let us
verify that the solution (3.8.9) represents a bound state (“interaction–collision”)
of two solitons.

Based on the form of the solution (3.8.9), we derive its asymptotics:

1) x→ −∞, t→ −∞ (distant past):

z(x, t) �→ −4 arctan
[
w · e−m(x−wt)

]
, w =

√
m2 − 1

m
.

The asymptotic representation thus obtained is a “shelf”-type profile that
grows monotonically in the range from −2π to 0 and moves in the positive
direction of x.

2) x→ +∞, t→ −∞:

z(x, t) �→ 4 arctan
[
w · e−m(x+wt)

]
.

This expression describes a “shelf” profile that grows monotonically from 0
to 2π and moves in the negative direction of x.

The two “shelf” profiles obtained (one-dimensional profiles of type
(3.211)) collide (interact) at t = 0 and for the subsequent “positive times”
acquire the following asymptotic representations:

3) x→ −∞, t→ +∞:

z(x, t) �→ −4 arctan
[
w · e−m(x+wt)

]
.

4) x→ +∞, t→ +∞ (distant future):

z(x, t) �→ 4 arctan
[
w · em(x−wt)

]
.

These asymptotics unequivocally indicate that (3.8.9) is a two-soliton solution of
the sine-Gordon equation.21 It realizes the state of nonlinear superposition of two
one-soliton solutions. Since the solution (3.8.9) varies from−2π to 2π, in physics
it also referred to as 4π-pulse.

21Concerning the soliton properties of solutions, see § 3.2.
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If one takes two arbitrary constants k1 = const > 0, k2 = const > 0 and one
defines the constant m involved by

m =
k1 + k2

2
√
k1k2

,

then upon performing the inverse change of coordinates (x, t) �→ (u, v) by formulas
(3.6.2) with constant a =

√
k1k2, it is readily verified that the solution (3.8.9) goes

into the two-soliton solution (3.2.12) considered in § 3.2, written in the coordinates
(u, v) of the Chebyshev net.

Example 3. k �= 0, −1 < m < 1, n = 0. In this case the system (3.8.7) admits
integration in elementary functions, which results in a solution of the sine-Gordon
equation (3.8.1) of the form

z(x, t) = −4 arctan
[

m√
1−m2

· sin(
√
1−m2x+ c1)

cosh(mt+ c2)

]
. (3.8.10)

This is a breather solution of the sine-Gordon equation, analogous to the
solution (3.2.29) obtained in § 3.2. Formally, the solution (3.8.10) can be derived

also from the solution (3.8.9) by means of the substitution
√
m2 − 1 = i

√
1−m2,

where i is the imaginary unit.

3.8.2 Joachimsthal-Enneper surfaces

Apparently, the method of separation of variables was first implemented for the
sine-Gordon equation by R. Steuerwald [193], in connection with his investigation
of a special class of surfaces that he referred to as Enneper surfaces .22 In earlier
geometric works, the surfaces in this category were referred to as Joachimsthal
surfaces . For this reason, in order to give the deserved priority to Joachimsthal’s
investigations and at the same time recognize the fundamental contribution of
Steuerwald’s results, these surfaces, on the study of properties of which we embark
now, will be referred to as Joachimsthal-Enneper surfaces .

Thus, by Joachimsthal-Enneper surface in the Euclidean space E3 we mean
here a surface for which one family of curvature lines consists of plane curves,
which lie in planes that pass through a general common fixed axis l. The other
family of curvature lines consists of “spherical lines”, namely, lines on spheres
whose centers lie on the axis l. The Joachimsthal-Enneper surface itself intersects
each such sphere along a curvature line at a 90◦ angle [58, 94, 127, 152].

Alternatively, one terms Joachimsthal-Enneper surface a surface for which
one family of curvature lines lies in the planes of one pencil (with common axis
l). Moreover (see [127]), such surfaces are characterized as surfaces formed by or-
thogonal trajectories that are curvature lines of a one-parameter family of spheres
with the centers on the same straight line (the straight line l).

22These Enneper surfaces should be distinguished from the well-known minimal Enneper sur-
face.
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In the Cartesian system of coordinates of the Euclidean space E3(X,Y, Z),
all possible Joachimsthal-Enneper surfaces can be described in general form by
quadratures, up to two arbitrary functions R(x) and V (t) [58, 94]:

X =
R(x) · sin t
cosh τ

,

Y =
R(x) · cos t

cosh τ
, (3.8.11)

Z = x−R(x) · tanh τ,

where τ(x, t) =

∫
dx

R(x)
+ V (t).

Now let us discuss the geometric content of the method of separation of
variables for the sine-Gordon equation associated with the Joachimsthal-Enneper
pseudospherical surfaces. The transition (3.8.2) from (u, v) to (x, t) for a = 1 on the
pseudospherical surface S[ϑ], ϑ = z/2, amounts to choosing as new coordinates the
curvature lines , which form on S[ϑ] two families of orthogonal lines, with respect
to which the fundamental quadratic forms of the surface S[ϑ] take on the form

I(x, t) = cos2 ϑdx2 + sin2 ϑdt2,

II(x, t) = sinϑ cosϑ · (dx2 − dt2).
(3.8.12)

The function ϑ = ϑ(x, t) in (3.8.12) satisfies a “wave”-type sine-Gordon equa-
tion (3.8.1):

∂2ϑ

∂x2
− ∂2ϑ

∂t2
= sinϑ · cosϑ. (3.8.13)

The solution ϑ = ϑ(x, t) has the geometric meaning of the angle formed at an
arbitrary point of the surface S by the positive direction of the coordinate line
(curvature line) t = const and the positive direction of the asymptotic line x− t =
const (or v = const).

Let us give a number of useful relations connected with curvature lines.

In the curvature line coordinates, the derivational formulas are conveniently
written with respect to the orthonormal triplet of vectors {−→e1,−→e2,−→n }:

−→e1 =
−→rx
|−→rx| ,

−→e2 =
−→rt
|−→rt| ,

−→n ,

the basic thrihedron of the surface.

In this case
−→rx = cosϑ · −→e1, −→rt = sinϑ · −→e2.

Then the corresponding derivational formulas (2.3.18) and (2.3.19) read
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⎛⎝ −→e1−→e2−→n

⎞⎠
x

=

⎛⎜⎝ 0 ϑt − sinϑ

−ϑt 0 0

sinϑ 0 0

⎞⎟⎠ ·
⎛⎝ −→e1−→e2−→n

⎞⎠ ,

⎛⎝ −→e1−→e2−→n

⎞⎠
t

=

⎛⎜⎝ 0 ϑx 0

−ϑx 0 cosϑ

0 − cosϑ 0

⎞⎟⎠ ·
⎛⎝ −→e1−→e2−→n

⎞⎠ .

(3.8.14)

The compatibility condition of the matrix equations (3.8.14) is expressed by
the sine-Gordon equation (3.8.13).

Now let us obtain expressions for the curvature and torsion of the curvature
lines. The direction vector of the line (x), given by the condition t = t0, is the
vector −→e1, and the geodesic normal vector is −→e2. Comparing formulas (3.8.14) with
the Frenet formulas (2.7.18) for a surface strip, we conclude that the geodesic
torsion of the curvature line is equal to zero (which is a general property of the
curvature lines of any surface), while the curvatures of the curvature line (x) under
consideration are given by the formulas

kg =
ϑt

cosϑ
, kn = − tanϑ (for the line (x)). (3.8.15)

Analogous formulas hold for the line (t):

kg = − ϑx

sinϑ
, kn = cotϑ (for the line (t)). (3.8.16)

R. Steuerwald [193] carried out a fundamental investigation of those pseu-
dospherical surfaces (which he called Enneper surfaces), a characteristic property
of which is the general form (3.8.17) of the corresponding solution ϑ(x, t) of the
sine-Gordon equation (3.8.13) (which has the aforementioned geometric meaning
of a special angle on S[ϑ]):

tan
ϑ

2
= eA(x)+B(t), (3.8.17)

which allows us to separate variables in equation (3.8.13).
From the expression (3.8.17) of the function ϑ = z/2 it follows (see (3.8.15)

and (3.8.16)) that the geodesic curvature for an arbitrarily chosen curvature line
(x) is equal to B′/sinh(A+B) and, accordingly, is proportional to its normal
curvature 1/sinh(A+B). Therefore, the angle between the normal to the line
(x) and the normal to the surface S[ϑ] is constant on each line (x) (see § 2.7).
Since the geodesic torsion of a curvature line vanishes, the torsion of the line (x),
regarded as a space curve, also vanishes, and hence every line (x) is a plane curve.
These conclusions are in complete agreement with the definition of a Joachimsthal
surface.23

23Strictly speaking, the fact that the planes containing the line (x) form a pencil (all pass
through one line) requires additional (somewhat tedious) justification.
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Let us briefly reproduce the main steps of the method of separation of vari-
ables for finding the solution in the form (3.8.17). Substitution of expression
(3.8.17) in equation (3.8.13) yields

(A′′ −B′′) · cosh(A+B) + (1 +A′2 −B′2) · sinh(A+B) = 0. (3.8.18)

Differentiating equation (3.8.18) separately with respect to x and to t and
subsequently eliminating the functions cosh(A+B) and sinh(A+B) from the two
resulting equalities, we arrive at

A′[(A′′2 −B′′2) + (1 +A′2 −B′2)2] + A′′′[1 +B′2 −A′2] = 0,

B′[(A′′2 −B′′2)− (1 +A′2 −B′2)2] +B′′′[1 +B′2 −A′2] = 0.
(3.8.19)

Further, passing to differential consequences of (3.8.19), i.e., differentiating
with respect to x and t, we get the following equations for A(x) and B(t):

A′A′′′′ −A′′A′′′ − 4A′3A′′ = 0,

B′B′′′′ −B′′B′′′ − 4B′3B′′ = 0.
(3.8.20)

The order of the system (3.8.20) can be reduced twice, yielding

A′′2 = (A′2 − a2) · (A′2 − b2),

B′′2 = (B′2 + 1− a2) · (B′2 + 1− b2), a, b = const.
(3.8.21)

It is clear that, in general, the system (3.8.21) can be solved in terms of
elliptic integrals. Specifically, the solution ϑ(x, t) in the form (3.8.17) is given (see
[94, 193]), in the general case (for A′ �= const, B′ �= const), in terms of elliptic
functions as

ϑ(x, t) = 4 arctan

⎛⎜⎝
(
cn
(
bx; a

b

)
+ b · dn (bx; a

b

))
cn
(√

1− b2t;
√

a2−b2

1−b2

)
√
1− a2 −√1− b2dn

(√
1− b2t;

√
a2−b2

1−b2

)
⎞⎟⎠,

(3.8.22)
where cn(x, k) and dn(x, k) are the Jacobi elliptic functions. In Steuerwald’s work
[193], this solution was constructed in terms of the Weierstrass σ-function.

Let us remark that in a number of cases the general solution (3.8.22) obtained
above admits a representation in elementary functions. In particular, for a2 = b2

(3.8.21) reduces to the system

A′′ = A′2 − a2;

B′′ = B′2 + 1− a2,

which after integration leads to the already considered case of the two-soliton (or
breather) solution.

For all solutions of the sine-Gordon equation (3.8.13), “selected” in the gen-
eral form (3.8.19), we formulate and prove below a theorem that relates them
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geometrically, in a one-to-one manner, with the pseudospherical Joachimsthal-
Enneper surfaces. An analogue of this theorem appeared first in the works of G.
Darboux [152].

Theorem 3.8.1. The pseudospherical surface S[ϑ] ⊂ E3(X,Y, Z) is a Joa-chimsthal-
Enneper surface if and only if the solution ϑ(x, t) of the sine-Gordon equation
(3.8.13) to which it is associated is of the form given by (3.8.17) (or, correspond-
ingly, is given by the general formula (3.8.22)). Moreover, the radius vector of such
a surface in the Cartesian coordinate system {X,Y, Z} is given by

−→r (x, t) = {ρ(x, t) cosϕ(t), ρ(x, t) sinϕ(t), h(x, t)}, (3.8.23)

where

ρ =
1

ab

√
B′2 + 1 · sin ϑ

2
,

ϕ = ab

∫
dt

B′2 + 1
,

h =
1

ab

(
A′ · cos ϑ

2
+

∫
A′2dx

)
, a, b = const.

(3.8.24)

The position of the centers of the spheres involved in the definition of a Joachims-
thal-Enneper surface is given by the vector −→ν = {0, 0, ν(x)}, where

ν(x) =
1

ab

(
−A′′

A′
+

∫
A′2dx

)
,

and the radii of the spheres are given by R(x) = 1/|A′(x)|.
If A′(x0) = 0, then the corresponding “sphere” degenerates into a plane,

given by the equation

Z =
1

ab

∫
A′2dx.

Proof. 1) Suppose the pseudospherical surface S[ϑ] is a Joachimsthal-Enneper
surface (in the sense of the definition given at the beginning of this subsection).
Let us show that the corresponding (according to Theorem 2.7.1) solution ϑ(x, t)
of the sine-Gordon equation (3.8.13) has the structure (3.8.17).

Indeed, each line (t) lies on a corresponding sphere of radius R = R(x0),
which intersects the surface S[ϑ] under consideration at a right angle, precisely
along this line. Let us show that in this case the geodesic curvature of the line
(t), equal to kg = −ϑx/sinϑ, is constant. Denote the angle between the principal
normal to the line (t) and the normal to the surface by α. Then the angle between
the normal to the sphere and the principal normal to the line (t) is α + (π/2).

Further, since the normal curvature k
(R)
n of any curve on the sphere of radius R

is equal to k
(R)
n = 1/R, and since any curve on the sphere is a curvature line, it

follows, by well-known formulas of classical differential geometry, that

1

R
= k(R)

n = k cos
(
α+

π

2

)
= −k sinα = −kg, (3.8.25)
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i.e.,

kg = − 1

R
= const.

Therefore, the geodesic curvature of the line (t) is constant. This allows us,
by using formulas (3.8.15) and (3.8.16) and simple integration, to verify that in
the case of a Joachimsthal-Enneper surface the solution ϑ(x, t) of the sine-Gordon
equation has the general form (3.8.17).

2) Conversely, assume now that the solution ϑ(x, t) is given by expression
(3.8.17), and let us show that the corresponding pseudospherical surface S[ϑ] with
radius vector −→r (x, t) is a Joachimsthal-Enneper surface. Indeed, under our as-
sumption the geodesic curvature of the line (t) is constant and equal to kg =
−A′(x0).

Let us introduce the vector −→ν by

−→ν ≡ −→r (x, t) − 1

A′(x)
· −→e1(x, t).

Then −→ν depends only on x (its derivative with respect to t vanishes!). Con-
sequently, the line (t) lies on the sphere of radius R = 1/|A′(x0)|.

Let ψ denote the angle between the normal to the sphere and the normal to
the surface. Then the torsion of the line (t) is æ = −α̇ (here we used the fact that

æg = 0). At the same time, æ = −α̇− ψ̇, because the angle between the normal to

the sphere and the principal normal of the line (t) is equal to α+ψ, and æ
(R)
g = 0.

Hence,
ψ̇ = 0,

so the angle ψ is constant.
Let us write the relations analogous to (3.8.25):

1

R
= k(R)

n = k cos(α+ ψ) = kn cosψ − kg sinψ. (3.8.26)

It is clear that for constant ψ the equalities in (3.8.26) can hold only if

ψ =
π

2
or ψ =

3π

2

(depending on the sign of A′(x0)). This means that the sphere under consideration
intersects our pseudospherical surface at a right angle.

To analyze the behavior of the vector −→ν , we calculate its derivative −→νx:

−→νx =
1

A′2
· [(A′′ +A′2 cosϑ) · −→e1 −A′B′ · sinϑ · −→e2 +A′ · sinϑ · −→n ].

Next, using the formula

cosϑ =
A′′ −B′′

1− (A′2 −B′2)
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and equation (3.8.21), we get

B′′ + (B′2 + 1) · cosϑ = A′′ +A′2 · cosϑ, (3.8.27)

(A′′ +A′2 · cosϑ)2 + (B′2 + 1)A′2 · sinϑ = a2b2. (3.8.28)

The relations thus obtained lead to the important conclusion that |−→νx| =
ab/A′2, which allows us to find the derivative with respect to x of the unit vector:

−→νx
|−→νx| =

1

ab
[(A′′ +A′2 cosϑ) · −→e1 − (A′B′ sinϑ) · −→e2 + (A′ sinϑ) · −→n ], (3.8.29)

which turns out to be equal to zero. Therefore, the unit vector (3.8.29) (the tangent
vector to the line of centers of the spheres that contain the line (t)) is constant .
This means that the line of centers of sphere itself is a straight line. Thus, we
have established that the pseudospherical surface S[ϑ] under consideration is a
Joachimsthal-Enneper surface.

3) Let us present an approach for deriving the expressions (3.8.23), (3.8.24)
for the radius vector −→r (x, t) of the Joachimsthal-Enneper pseudospherical surface
S[ϑ]. With no loss of generality, we take the constant unit vector (3.8.29) as the
unit basis vector {0, 0, 1} of the Cartesian coordinate system in the Euclidean
space E3(X,Y, Z). Consider some point M ∈ S[ϑ], specified by the radius vector−→r (x, t). Then M lies on the sphere of radius R(x) = 1/|A′(x)| centered at the
point C given by the vector −→ν (x). Denote by M ′ the projection of M on the
coordinate axis OZ. For the coordinate h(x, t) = OM ′ we find that

hx =
1

ab

(
A′′ +A′2 · cosϑ) · cosϑ,

ht = −A′B′

ab
· sin2 ϑ.

Since

(cosϑ)x = −A′ · sin2 ϑ,
(cosϑ)t = −B′ · sin2 ϑ,

we get

h =
1

ab

∫ (
A′′ cosϑ+A′2 cos2 ϑ

)
dx =

1

ab

(
A′ cosϑ+

∫
A′2dx

)
. (3.8.30)

Further,

CM ′ = (−→r −−→ν ) ·
−→νx
|−→νx| =

1

ab
· 1

A′
(
A′′ +A′2 cosϑ

)
.

Hence, using relation (3.2.28) we arrive at the expression

ρ2 = R2 − |CM ′|2 =
1

A′2

(
1− 1

ab

(
A′′ +A′2 · cosϑ)2) =

1 +B′2

a2b2
sin2 ϑ. (3.8.31)
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Simultaneously, we get the value of ν = OC = OM ′ − CM ′:

ν =
1

ab

(
−A′′

A′
+

∫
A′2dx

)
. (3.8.32)

The expression for the angle ϕ (or for dϕ) in (3.8.24) is obtained from the
metric relation

cos2 ϑ dx2 + sin2 ϑ dt2 = dh2 + dρ2 + ρ2dϕ2

upon substituting in it the differentials dh and dρ:

dh =
1

ab

[
(A′′ +A′2 cosϑ) cosϑdx−A′B′ sin2 ϑdt

]
,

dρ =
1

ab

[
B′√

1+B′2
(
B′′+(1+B′2) cosϑ

)
sinϑdt+A′

√
1+B′2 sinϑ cosϑdx

]
and subsequently using (3.8.27) and (3.8.28). Theorem 3.8.1 is proved. �

To conclude this section, let us mention again that a major contribution
to the study of the Joachimsthal-Enneper surfaces considered here was made by
R. Steuerwald [193]. He studied the Joachimsthal pseudospherical surfaces, which
he called Enneper surfaces because the idea of deriving a formula for the radius
vector of these surfaces is indeed due to A. Enneper [155] and H. Dobriner [153].
Also investigated were the surfaces obtained from them by the geometric Bäcklund
transformation. For instance, in the particular case when a = b,

A′ = −a · tanh(ax), B′ = −
√
1− a2 · tan

(√
1− a2 · t

)
one obtains the following (particular) breather solution of the sine-Gordon equa-
tion:

ϑ(x, t) = 4 arctan
a cos(

√
1− a2 · t)√

1− a2 · cosh(ax) .

In modern studies, the geometry of this solutions was considered in detail by
J. J. Klein [164].

3.9 The system of structure equations of
pseudospherical surfaces and the method of the
inverse scattering transform

In this section we want to draw the reader’s attention to the deep geometric roots
of the Method of the Inverse Scattering Transform (MIST), a powerful modern
approach to the integration of nonlinear partial differential equations [1, 30, 42,
51, 62, 111], roots that manifest themselves in the fact that the basic “prim-
ing” relations in MIST and the system of structure equations of pseudospherical
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surfaces (see § 2.3) are identical. The identity in structure of the important key
relations that arise in both the implementation of MIST and in considering the
problem of the realizability of the Lobachevsky geometry in the Euclidean space
E3, points at the fundamental primary value of these two mathematical branches,
which emerged more then a century apart in time.

3.9.1 The Method of the Inverse Scattering Transform: “priming”
relations and applications

Apparently, the first result that started the development of the MIST is the 1965
discovery by N. Zabusky and M. Kruskal [196] of solitary wave-form solutions –
solitons – for the well-known nonlinear evolutionary Korteweg-de Vries equation.
In 1967 a group of researchers (C. S. Gardner, J. M. Green, M. D. Kruskal, and R.
M. Miura) proposed a method for the integration of nonlinear partial differential
equations based on the application of ideas from the direct and inverse scattering
problem [158]. Then in 1968 this approach was essentially generalized and algo-
rithmically formalized by P. Lax [170] (who introduced the nowadays well-known
operator L-A pair, the Lax pair). In 1971 the method of integrating equations in
question was effectively developed by V. E. Zakharov and A. B. Shabat [32] in
order to obtain solutions of a rather wide collection of nonlinear partial differ-
ential equations, among them, the nonlinear Schrödinger equation. Based on the
aforementioned ideas and results, in the years 1973–74 Ablowitz, Kaup, Newell
and Segur [131–133] finally formalized a scheme (known as the AKNS scheme)
for the application of the inverse scattering transform (IST) to the integration of
nonlinear equations of mathematical physics.

In general terms, at the foundations of MIST lies the idea of associating to the
nonlinear partial differential equation under study a linear system of differential
equations that represents the correct formulation of the direct problem of scatter-
ing on some corresponding potential. This transition from a “nonlinear equation
to a linear system” allows one to apply for the integration of the former the well
developed arsenal of methods of scattering theory (methods of the direct and in-
verse problems) [30, 42, 62]. Of crucial importance in this approach is the fact
that the nonlinear partial differential equation that is being integrated expresses
exactly the compatibility (consistency) condition of the system that gives the di-
rect scattering problem. Effecting the “transition” from the nonlinear equation to
the associated linear system is some kind of an art and is connected with a cer-
tain intuitive search, which in case of success allows one to speak of the potential
solvability of the original nonlinear equation.

Let us present formally what in principle is the “starting” stage of MIST. In
the general case of the AKNS scheme in MIST, the direct scattering problem is
formulated for a linear system of the form

−→vx = X · −→v ,
−→vt = T · −→v .

(3.9.1)

for the n-dimensional vector function −→v . Here X and T are n× n matrices.
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The compatibility condition for the system (3.9.1), (−→vx)t = (−→vt)x, leads to
the important relation

Xt − Tx + [X,T ] = 0, (3.9.2)

where the commutator defined as [X,T ] = XT − TX .
For a given matrix X in (3.9.2) one can, in principle, propose (strictly speak-

ing, not always in an obvious way) a certain procedure for constructing a matrix T
such that the resulting relation (3.9.2) takes on the form of the (integrable) non-
linear partial differential equation we are interested in. Here the fact that equation
(3.9.2) is not trivial is guaranteed in MIST by the time-independence of a certain
(spectral) parameter ξ that must appear in the operator X : ξt = 0. Furthermore,
the complete solution of the nonlinear equation (3.9.2), with which the formulation
of the original problem (3.9.1) is associated, can be constructed only in the case
in which the the scattering problem corresponding to the equation under study is
completely solvable [1, 30, 62].

The fact that a given nonlinear differential equation can possibly be inte-
grated by means of MIST assumes that a special linear system (direct scattering
problem (3.9.1)) is associated with this equation, and this is done in such a way
that the integrable equation itself expresses the compatibility condition of that
system (condition of the type (3.9.2)).

As an example, let us consider a widely used version of the linear scattering
problem, namely, the modified Zakharov-Shabat problem, in the case of a two-

dimensional vector v =

(
v1
v2

)
:

v1x = −iξv1 + q(x, t) · v2,
v2x = r(x, t) · v1 + iξv2,

(3.9.3)

(here ξ is a spectral parameter and i is the imaginary unit), with general depen-
dence on time:

v1t = A(x, t)v1 +B(x, t)v2,

v2t = C(x, t)v1 +D(x, t)v2.
(3.9.4)

The functions A,B,C,D in (3.9.4) (which do not depend on v1 and v2) are
subject to determination.

The compatibility conditions for equations (3.9.3) and (3.9.4),(
∂

∂x
vj

)
t

=

(
∂

∂t
vj

)
x

, j = 1, 2,

lead to the following system of equations for A,B,C,D:

Ax = q · C − r ·B,

Bx + 2ix · B = qt − 2A · q,
Cx − 2ix · C = rt − 2A · r,

A = −D.

(3.9.5)
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Let us solve the system (3.9.5) with respect to A,B,C as functions of r and
q. To this end we can, for example, represent the sought-for coefficients in (3.9.4)
by polynomials in the spectral parameter ξ. If then for A,B,C we restrict to terms
of order at most two (i.e., up to ξ2):

A = A0 +A1ξ +A2ξ
2,

B = B0 +B1ξ +B2ξ
2,

C = C0 + C1ξ + C2ξ
2,

(3.9.6)

then it is routine to find from (3.9.4) the coefficients Al, Bl, Cl, l = 1, 2, 3, as
functions of q and r. Here a necessary condition for A,B,C of the form (3.9.6) to
be solutions of the system (3.9.5) is that the following two relations be satisfied:

qxx = qt + 2q2r,

−rxx = rt − 2qr2.
(3.9.7)

Thus, the system (3.9.7) expresses the compatibility condition of problem
(3.9.3), (3.9.4) under the assumption that the functions A, B, C and D figuring
in (3.9.4) have the structure (3.9.6).

One should mention here, in general, that it is possible to suitably choose
q and r in (3.9.7) as functions that depend in a special manner on some new
unknown function u(x, t) and its partial derivatives, so that the system (3.9.7)
will be reduced to an equivalent single partial differential equation for u,24

F [u(x, t)] = 0. (3.9.8)

In other words, the compatibility condition of the original problem (3.9.3) can be
expressed by a single (as a rule, nonlinear) equation. The extended meaning of this
statement will be made completely clear by the content of Chapter 4 (through the
consideration of the concept of Λ2-representation for differential equations). In the
examples given below one can assume that q ≡ u(x, t).

Consider the system (3.9.7). Upon choosing r = ∓q∗, (3.9.7) reduces to a
single (unique) equation, the nonlinear Schrödinger equation:

iqt = qxx ± 2q∗q2.

If in the representation (3.9.6) of A,B,C one takes polynomials in ξ of degree
up to and including order 3 (i.e., ξ3), then arguments similar to those given above
lead to the well-known Korteweg-de Vries equation (KdV) [1]

qt + 6qqx + qxxx = 0

(for the choice r = −1), and the modified Korteweg-de Vries equation (MKdV):

qt ± 6q2qx + qxxx = 0

24Symbolically, the left-hand side in (3.9.8) represents a generalized differential operator.
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(for the choice r = ∓q∗).
Let us provide another example. For the choice

A =
a(x, t)

ξ
, B =

b(x, t)

ξ
, C =

c(x, t)

ξ
(3.9.9)

fulfillment of the compatibility conditions (3.9.5) for the problem (3.9.3), (3.9.4)
at hand leads to the relations

ax =
1

2
(qr)t , qxt = −4iaq, rxt = −4iar. (3.9.10)

If, for example, we take

a =
i

4
cosu(x, t), b = c =

i

4
sinu(x, t), q = −r = −ux

2
, (3.9.11)

in (3.9.10), then we obtain the well-known sine-Gordon equation

uxt = sinu. (3.9.12)

The choice

a =
i

4
coshu(x, t), b = −c = i

4
sinhu(x, t), q = r =

ux

2
(3.9.13)

results in the sinh-Gordon equation

uxt = sinhu. (3.9.14)

Thus, we listed above examples of reductions of the system (3.9.3), (3.9.4)
that gives the direct scattering problem, to various nonlinear equations of the type
(3.9.8), which serve as the corresponding compatibility condition. Side by side we
can also consider the inverse algorithmic scheme: going from a differential equation
(3.9.8) to the setting of the scattering problem (3.9.3), (3.9.4). It is exactly this
(second) formulation of the problem that lies at the foundations of the implemen-
tation of of MIST. The first main problem that arises in this way in MIST is: given
a nonlinear equation (3.9.8), how to recover the linear problem (3.9.3), (3.9.4)?
Equivalently, how from a given nonlinear differential equation (3.9.8) to construct
the corresponding matrices X and T that are used in (3.9.3) and (3.9.1), respec-
tively? Achieving success in this problem is essentially an art. And the known
practical realizations of the algorithmic scheme “nonlinear equation �−→ direct
scattering problem” for equations such as sine-Gordon, Korteweg-de Vries, non-
linear Schrödinger, and other, given in numerous works [30, 32, 111, 131, 170],
established the methodological foundations of MIST.

It is amazing that the methodology discussed above, which lies at the founda-
tions of the apparatus ofmodern MIST, shares unified deep roots with the classical
theory of pseudospherical surfaces. Moreover, the “geometric view” of nonlinear
partial differential equations from the positions of non-Euclidean hyperbolic ge-
ometry allows one to use in their study well developed method of various branches
of geometry. Below, in the second part of this section, we deal with the explicit
connection “MIST – pseudospherical surfaces”.
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3.9.2 Pseudospherical surfaces and MIST

A paradoxical “observation”, due to R. Sasaki [188,189] which provides a geometric
foundation for the modern MIST, is that the system of type (3.8.9) (compatibil-
ity condition in the AKNS approach) is structurally indentical to the system of
structure equations (2.3.52) for pseudospherical surfaces in E3.

Briefly, Sasaki’s result looks absolutely simple and intuitive: if for the 1-forms
ω1, ω2, ω2

1 in the system of equations (2.3.52) we choose the expressions

ω1 = (r + q)dx + (C +B)dt,

ω2 = ηdx+ 2Adt, η = −2ix,
ω2
1 = (r − q)dx + (C −B)dt,

(3.9.15)

then the system (3.5.52) of structure equations of pseudospherical surfaces of Gaus-
sian curvature K ≡ −1 becomes identical with the system (3.5.9), which expresses
the compatibility condition of the direct scattering problem in the AKNS approach
in MIST. That is to say, for a correctly formulated “starter” problem in MIST it
is always possible to construct 1-forms ω1, ω2, ω2

1 of a pseudospherical surface.
Sasaki accompanied his general result by examples of such well-known non-

linear partial differential equations as sine-Gordon, Korteweg-de Vries, modified
Korteweg-de Vries, and others. Let us present these examples in a somewhat mod-
ified form, by using a constant spectral parameter η: η = const.

Example 1. The sine-Gordon equation. The choice of 1-forms

ω1 =
1

η
sinu dt,

ω2 = ηdx+
1

η
cosu dt,

ω2
1 = uxdx

(3.9.16)

reduces the system of structure equations (2.3.52), and correspondingly, the com-
patibility conditions (3.9.5) (with (3.9.15) kept in mind), to the sine-Gordon equa-
tion

uxt = sinu

and corresponds to the choice of basic functions (3.9.9) and (3.9.11) in MIST.

Example 2. The Korteweg-de Vries equation. If we consider the 1-forms

ω1 = (1− u)dx+ (−uxx + ηux − η2u− 2u2 + η2 + 2u)dt,

ω2 = η dx+ (η3 + 2ηu− 2ux)dt,

ω2
1 = −(1 + u)dx+ (−uxx + ηux − η2u− 2u2 − η2 − 2u)dt,

(3.9.17)

then similarly, the fulfillment of the system of structure equations for pseudospher-
ical surfaces (for K ≡ −1), leads to the Korteweg-de Vries equation

ut = uxxx + 6uux.
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Example 3. Modified Korteweg-de Vries equation. The set of 1-forms

ω1 = −ηuxdt,

ω2 = η dx+

(
1

2
ηu2 + η3

)
dt,

ω2
1 = u dx+

(
uxx +

1

2
u3 + η2u

)
dt

(3.9.18)

leads, in the framework of the geometrical interpretation under consideration, to
the modified Korteweg-de Vries equation (MK-dV equation):

ut = uxxx +
3

2
u2ux.

At the present time sufficiently wide classes of differential equations amenable
to the above interpretation, and hence, presumably integrable by means of MIST,
are known. In this connection we should mention, first of all, a series of works
by K. Tenenblat and her colleagues [139, 149, 150, 162, 195] in which criteria for
the validity of the geometric interpretation under consideration are established
for nonlinear partial differential equations of various types. The most completely
studied in the cited works is the geometric interpretation of evolutionary equations
(equations of parabolic type) in the context of their integrability in the framework
of the AKNS approach. In these cases the “geometric formulation” of the problem
at hand (the problem of finding the corresponding 1-forms of a pseudospherical
surface) is specified, as a rule, by a special choice of the 1-form ω2 with a constant
coefficient (parameter) η in front of dx:

ω2 = η dx + · · · , η = const.

In Chapter 4 we will present a generalized geometric “point of view” on these kind
of problems in the framework of the geometric concept of Λ2-equations, which are
generated by special coordinate nets on the Lobachevsky plane Λ2.

Thus, if a certain nonlinear equation of type (3.9.8) one is interested in admits
its own integration by MIST (with a chosen starter system (3.9.3), (3.9.4)), the
for any regular solution u(x, t) of this equation one can construct 1-forms ω1, ω2,
ω2
1 that are associated with a pseudospherical surface. In other words, for each

solution of such an equation one can write a pseudospherical metric

ds2 = (ω1[u])2 + (ω2[u])2, K ≡ −1.
Furthermore, it turns out that for wide classes of nonlinear equations one can

associate pseudospherical metrics also outside of the framework of MIST. More-
over, the very formulation of the direct scattering problem of the type (3.9.3),
(3.9.4) for the equation under study can be done based on only its possible in-
terpretation in the setting of the methodology of Lobachevsky geometry (theory
of pseudospherical surfaces). Such a geometric approach to the study of nonlinear
differential equations will be considered in Chapter 4.



Chapter 4

Lobachevsky geometry and
nonlinear equations of
mathematical physics

In this chapter we present a geometric approach to the interpretation of nonlinear
partial differential equations which connects them with special coordinate nets on
the Lobachevsky plane Λ2. We introduce the class of Lobachevsky differential equa-
tions (Λ2-class), which admit the aforementioned interpretation. The development
of this geometric approach to nonlinear equations of contemporary mathematical
physics enables us to apply in their study the rather well developed apparatus and
methods of non-Euclidean hyperbolic geometry. Many known nonlinear equations,
in particular, the sine-Gordon, Korteweg-de Vries, Burgers, Liouville, and other
equations, which form the Λ2-class, are generated by their own coordinate nets
on the Lobachevsky plane Λ2. This allows us to study the equations by means of
net (intrinsic-geometrical) methods on the basis of Lobachevsky geometry. Over-
all, Chapter 4 is devoted to the application of geometric methods of hyperbolic
geometry to the constructive investigation of equations of Λ2-class.

4.1 The Lobachevsky class of equations of mathematical
physics

In this section we introduce the notion of the Lobachevsky class of differential
equations, which enables us to give to many nonlinear equations of contemporary
mathematical physics a universal “net-type” geometric interpretation, based on
Lobachevsky’s non-Euclidean hyperbolic geometry [77, 79, 183–185]. Such an ap-
proach opens avenues for the application of tools and methods of non-Euclidean
geometry to the study of partial differential equations of various types.

225A. Popov, Lobachevsky Geometry and Modern Nonlinear Problems,  
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4.1.1 The Gauss formula as a generalized differential equation

Let us consider in the parameter (x, t)-plane the quadratic differential form

ds2 = E[u(x, t)]dx2 + 2F [u(x, t)]dxdt +G[u(x, t)]dt2, (4.1.1)

whose coefficients,

E = E[u(x, t)], F = F [u(x, t)], G = G[u(x, t)], (4.1.2)

depend on some unknown function u(x, t) and its partial derivatives with respect
to x and t.

Let us calculate the “curvature of the quadratic form” (4.1.1), using the
Gauss formula (2.3.28):

K = − 1

4W 2[u]
· det

⎡⎢⎣ E[u] (E[u])x (E[u])t

F [u] (F [u])x (F [u])t

G[u] (G[u])x (G[u])t

⎤⎥⎦
− 1

2
√
W [u]

{
∂

∂t

(
(E[u])t − (F [u])x√

W [u]

)
− ∂

∂x

(
(F [u])t − (G[u])x√

W [u]

)}
, (4.1.3)

where W [u] = E[u] ·G[u]− F 2[u].
The right-hand side of (4.1.3) is the familiar (for the given form of the co-

efficients (4.1.2)) expression of the curvature K in terms of the coefficients E[u],
F [u], G[u] and their partial derivatives with respect to x and t (of order up to and
including two).

If we assume that the curvature is an a priori given function K = K(x, t),
then the resulting relation (4.1.3) can be interpreted as a differential equation for
u(x, t):

F [u(x, t)] = 0. (4.1.4)

And conversely, if u(x, t) is a solution of the differential equation (4.1.4),
the quadratic form (4.1.1) defines in the parameter (x, t)-plane a metric with the
square of the linear element given by (4.1.1) and with the given curvature K(x, t).
Thus, one can say that the metric (4.1.1) (or the differential form (4.1.1)) with
its a priori prescribed curvature K(x, t)) generates (via (4.1.3)) the differential
equation (4.1.4) for the function u(x, t).

The equations generated in the aforementioned sense for the a priori choice of
the constant negative curvature K(x, t) ≡ −1 (the case of the Lobachevsky plane
Λ2) will be called Λ2-equations. The class of differential equations formed by the
Λ2-equation will be referred to as the Lobachevsky class (or the Λ2-class).

In the more general case, when the curvature function K = K(x, t) is arbi-
trary, we will say that the corresponding differential equation (an equation gener-
ated by a metric of variable curvature) belongs to the G-class (the Gauss class);
such equations will be referred to as G-equations .

Let us clarify the geometric interpretation of equations introduced above on
a number of examples of known nonlinear equations of mathematical physics.
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Example 1. Consider the quadratic form (Chebyshev net metric):

ds2 = dx2 + 2 cosu(x, t)dxdt + dt2. (4.1.5)

In this case the coefficients are

E[u] = 1, F [u] = cosu(x, t), G[u] = 1.

Calculating the curvature K(x, t) of the form (4.1.5) by the Gauss formula
(4.1.3) we get

K(x, t) = − 1

4 sin4 u
det

⎡⎣ 1 0 0
cosu −ux sinu −ut sinu

1 0 0

⎤⎦
− 1

2 sinu

{
∂

∂t

[
ux sinu

sinu

]
+

∂

∂x

[
ut sinu

sinu

]}
,

and so we arrive at the following G-equation:

uxt = −K(x, t) sinu(x, t) (4.1.6)

(the Chebyshev equation).
Equation (4.1.6) is the already familiar to us (see § 2.5) equation that “gov-

erns” the variation of the net angle of the Chebyshev net of lines for the given
curvature K(x, t).

When K ≡ −1, (4.1.6) becomes the sine-Gordon equation1

uxt = sinu. (4.1.7)

Example 2. Let us take a metric of the form

ds2 = η2dx2 + 2η

(
1

2
ηu2 + η3

)
dxdt+

[
η2u2

x +

(
1

2
ηu2 + η3

)2
]
dt2, (4.1.8)

where η = const. In this case

E[u] = η2, F [u] = η

(
1

2
ηu2 + η3

)
,

G[u] = η2u2
x +

(
1

2
ηu2 + η3

)2

.

Setting K ≡ −1 (i.e., working in the Lobachevsky plane Λ2), the Gauss
formula (4.1.3) yields the Λ2-equation

ut =
3

2
u2ux + uxxx (4.1.9)

1In this chapter, following the mathematical physics traditions, we write the sought-for solu-
tion of the differential equation in question as u = u(x, t), where x and t are the independent
variables.
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(the modified Korteweg-de Vries equation).
Hence, the modified Korteweg-de Vries equation (MKdV) (4.1.9) is also de-

fined by a coordinate net on the Lobachevsky plane (given by the form (4.1.8) of
the metric). It is is natural to call such a net an MKdV-net.

Example 3. For the metric

ds2 =
eu

2
(dx2 + dt2), (4.1.10)

with the coefficients

E[u] =
eu

2
, F [u] = 0, G[u] =

eu

2

we obtain for K ≡ −1 the equation

Δ2u = eu, Δ2 =
∂2

∂x2
+

∂2

∂t2
(4.1.11)

(the elliptic Liouville equation).
If u(x, t) is a solution of equation (4.1.11), then in accordance with (4.1.1),

on the Lobachevsky plane there arises a net {(x, t)} (the Liouville net) with the
linear element (4.1.10), namely, the isothermal coordinate net.

The examples given above show how differential equations can be generated
by metrics of a special form. As we will see later, many “concrete” nonlinear
equations of mathematical physics belong to the Λ2-class, i.e., are generated by
pseudospherical metrics (metrics of curvature K ≡ −1). In general, the condition
that the curvature of the generating metric is constant, K ≡ const, is important,
since in this case the curvature acquires the special meaning of an invariant , i.e.,
it is preserved by transformations generated by nets on two-dimensional smooth
manifolds M2, connected with the realization of geometric algorithms for the
integration of equations.

We should remark also that the geometric interpretation of equations in-
troduced above, together with its clear geometric content is universal , since it
“exhaust” all possible types in the standard classification of differential equations
(as this was demonstrated on examples of hyperbolic, parabolic and elliptic equa-
tions, respectively).

It is also important to note that the nonlinearity in the “geometrically”
derived equations of mathematical physics is primarily a result of the nontriviality
of the curvature of the generating metric, as well as of the nonlinearity of its
discriminant W .

The membership of equations in the Λ2-class assumes that they possess cer-
tain general properties of geometric origin, the discussion of which we begin in the
next subsection.

To finish the present subsection, we make an observation connected with the
theory of nets [127]: Giving on the two-dimensional manifold M2 a metric of the
type (4.1.1),

ds2 = gij [u]dx
idxj , gij [u] =

(
E[u] F [u]

F [u] G[u]

)
, (4.1.12)
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is equivalent to giving on M2 a smooth tensor field (gij) of type
(
0
2

)
that has the

symmetry property
gij = gji

and is positive definite.
Every nondegenerate symmetric tensor gij gives rise to a net of lines onM2,

the directing pseudovectors (tangent vectors to the one-parameter families of lines)
of which, vj and wj , are solutions of the equation2 (see [127])

gijx
ixj = 0.

The specification of two fields of independent vectors vj and wj defines onM2

a two-parametric net of coorodinate lines {(x, t)}, x ≡ x1, t ≡ x2.
Therefore, it is totally correct to assert that a differential equation of the type

(4.1.4) is generated not only by the metric (4.1.1) corresponding to it, but also
by its “geometric preimage”, the coordinate net on the two-dimensional smooth
manifold M2 (and, in particular, on the Lobachevsky plane Λ2).

4.1.2 Local equivalence of solutions of Λ2-equations

Membership of equations in the Λ2-class assumes that they have a general intrinsic-
geometrical nature. In this subsection we give a theorem on the transformation
of local solutions of Λ2-equations which establishes their local equivalence [77, 79,
185].

Theorem 4.1.1 (Local equivalence of Λ2-equations). Suppose two different analytic
differential equations belong to the Λ2-class. Then from a local analytic solution
of one of these equations one can always construct a local analytic solution of the
other, and conversely.

In the case where one of the Λ2-equations in Theorem 4.1.1 is the sine-Gordon
equation, the content of this the theorem is concretized in Theorem 4.1.2.

Theorem 4.1.2. Suppose an analytic equation of type (4.1.4) belongs to the Λ2-
class. Then for any local analytic solution u(x, t) of this equation one can always

construct a local analytic solution z(x̃, t̃ ) of the sine-Gordon equation

zx̃˜t = sin z(x̃, t̃ ), z = z(x̃, t̃ )

by means of the formula

cos z =

[
∂f1
∂x̃

∂f1

∂t̃
E[u(x, t)] +

(
∂f1
∂x̃

∂f2

∂t̃
+

∂f1

∂t̃

∂f2
∂x̃

)
F [u(x, t)]

+
∂f2
∂x̃

∂f2

∂t̃
G[u(x, t)]

]∣∣∣∣∣ x = f1(x̃,˜t)
t = f2(x̃,˜t)

, (4.1.13)

2This equation gives the pseudovectors of the net, i.e., specifies the ratios x1/x2.
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where E[u], F [u], G[u] are the coefficients of the pseudospherical metric that gen-
erates equation (4.1.4).

The functions f1 and f2 appearing in (4.1.13) satisfy the system

∂2f1

∂x̃∂t̃
+ Γ1

αβ

∂fα
∂x̃

∂fβ

∂t̃
= 0,

∂2f2

∂x̃∂t̃
+ Γ2

αβ

∂fα
∂x̃

∂fβ

∂t̃
= 0,

(α, β = 1, 2), (4.1.14)

where Γ1
αβ, Γ2

αβ are the Christoffel symbols of the pseudospherical metric that

generates the Λ2-equation (4.1.4), written in the variables x ≡ f1, t ≡ f2 (i.e.,
Γγ
αβ = Γγ

αβ(f1, f2), α, β, γ = 1, 2).

Remark. The transformations established in theorems 4.1.1 and 4.1.2 are con-
nected exclusively with a change of the independent variables and geometrically
correspond to passing from one coordinate net to another in the plane Λ2.

The proof of theorems 4.1.1 and 4.1.2 is prepared by § 2.5, which treats in
detail the properties of Chebyshev nets and the conditions for passing to these nets
in a regular domain on a surface, as well as by the methodology of Λ2-equations
introduced in Subsection 4.1.1. Hence, without repeating the arguments that we
already used in the construction of Chebyshev nets, in the proof of the theorems
given here the main attention is paid to the specifics of the corresponding algorithm
in the case we are interested in, when the original given two-dimensional net is
the net associated with a metric that generates a Λ2-equation.

Proof of Theorem 4.1.2. Consider an Λ2-equation of the type (4.1.4), as in the
formulation of Theorem 4.1.2. Then this equation is generated by its corresponding
metric

(ds2)1 = E[u]dx2 + 2F [u]dxdt+G[u]dt2, K ≡ −1. (4.1.15)

Let us determine whether it is possible to reduce the metric (ds2)1 to the
Chebyshev metric

(ds2)2 = dx̃2 + 2 cos z(x̃, t̃)dx̃dt̃+ dt̃2, K ≡ −1, (4.1.16)

i.e., whether it is possible to pass from the existing net T (x, t) that generates

equation (4.1.4) to the Chebyshev net Cheb(x̃, t̃).
Suppose that such a transition

T ((x, t); (ds2)1) �−→ Cheb((x̃, t̃); (ds2)2) (4.1.17)

is effected on the plane Λ2 by means of the transformation

x = x(x̃, t̃), t = t(x̃, t̃), (4.1.18)

and its correctness is guaranteed by the condition

D(x, t)

D(x̃, t̃)
=

∂x

∂x̃

∂t

∂t̃
− ∂x

∂t̃

∂t

∂x̃
�= 0. (4.1.19)
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Let us determine the conditions on the transformation (4.1.18), (4.1.19),

under which it maps the net T (x, t) into the Chebyshev net Cheb(x̃, t̃). In § 2.5 it
was established that a criterion for a net to be a Chebyshev net is the vanishing of
the corresponding two Christoffel symbol (see (2.5.16)), i.e., for the net Cheb(x̃, t̃)
it holds that

Γ̃1
12 = 0, Γ̃2

12 = 0. (4.1.20)

As we have shown, conditions of the type (4.1.20) lead to the Servant-Bianchi
system (2.5.22). Let us write this system for our case (for agreement with the

notation of § 2.5, we re-denote (x, t) by (x1, x2) and (x̃, t̃) by (y1, y2); also, (x, t) ≡
(v1, v2) and (x̃, t̃) ≡ (u1, u2), see (2.5.22)):

Γ1
αβ

∂xα

∂y2
∂xβ

∂y1
+

∂2x1

∂y2∂y1
= 0,

Γ2
αβ

∂xα

∂y2
∂xβ

∂y1
+

∂2x2

∂y2∂y1
= 0.

(4.1.21)

The existence of a solution

x1 = f1(y1, y2), x2 = f2(y1, y2) (4.1.22)

of the system (4.1.21) means that it is possible to reduce the metric (ds2)1 (4.1.15)
to the form (ds2)2 (4.1.16). In general, equations (4.1.21) establish the existence
of a (virtual, in a certain sense) Chebyshev net on an arbitrary two-dimensional
smooth manifold M2 and the degree of arbitrariness with which such a set is
determined.

Now let us address the question of the unique determinacy of the transition
(4.1.22) to a Chebyshev net.

Let x◦1, x◦2 be some fixed values of the variables x1, x2 (and, accordingly, of
some selected point A(x◦1, x

◦
2) ∈ M2 (or, in particular, A(x◦1, x

◦
2) ∈ Λ2). Let us pick

arbitrary values y◦1 , y
◦
2 that correspond in the new variables to x◦1, x

◦
2 (coordinates

of the Chebyshev net Cheb(y1, y2)). In other words, in agreement with (4.1.22),
we require that

x◦1 = f1(y
◦
1 , y

◦
2), x◦2 = f2(y

◦
1 , y

◦
2). (4.1.23)

Let g1(y1) and g2(y1) denote the functions that the sought-for functions
f1(y1, y2) and f2(y1, y2) become when we set y2 = y◦2 :

f1(y1, y
◦
2) = g1(y1), f2(y1, y

◦
2) = g2(y1).

3 (4.1.24)

By (4.1.23), the functions g1 and g2 satisfy the conditions

g1(y
◦
1) = x◦1, g2(y

◦
1) = x◦2. (4.1.25)

In much the same way, let us introduce the functions h1(y2) and h2(y2):

f1(y
◦
1 , y2) = h1(y2), f2(y

◦
1 , y2) = h2(y2), (4.1.26)

3Obviously, the functions g1 and g2 can be given in a sufficiently arbitrary manner.
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h1(y
◦
2) = x◦1, h2(y

◦
2) = x◦2. (4.1.27)

The freedom in the choice of the functions g1(y1), g2(y1), h1(y2), h2(y2) is
restricted only by the natural condition

dg1
dy1

dh2

dy2
− dg2

dy1

dh1

dy2
�= 0, (4.1.28)

the geometric meaning of which will be made clear below.
Further, the substitution

y1 = w1 + w2, y2 = w1 − w2 (4.1.29)

brings (4.1.21) to the form of a normal system of second-order partial differential
equations (a system solved with respect to the highest-order derivatives):

∂2x1

∂w2
1

= P [w1, w2],

∂2x2

∂w2
2

= Q[w1, w2].

(4.1.30)

Thanks to assumption, made in the theorems 4.1.1 and 4.1.2, that the func-
tions u(x, t) (the sought-for solutions of an equation of type (4.1.4)) are analytic,
the Christoffel symbols Γ1

αβ , Γ
2
αβ , as well as the resulting “right-hand sides” in

(4.1.30), that is, the functions P [w1, w2] and Q[w1, w2], will also be analytic func-
tions.

Thus, the system (4.1.30) with the initial data (4.1.23)–(4.1.27) (written in
the variables w1 and w2) satisfies the conditions of the Cauchy-Kovalevskaya theo-
rem for a normal system of differential equations [46]. By the Cauchy-Kovalevskaya
theorem, the posed problem (4.1.30), (4.1.23)–(4.1.27) is always uniquely locally
solvable, i.e., has a unique solution in a neighborhood of the chosen point (w◦1 , w◦2):

y◦1 = w◦1 + w◦2 , y◦2 = w◦1 − w◦2 .

Turning now to the variables y1 and y2, we conclude that in some neighbor-
hood ωA of the point A(x◦1, x

◦
2) ∈ Λ2 there exists a unique solution (4.1.22) of the

system (4.1.21) with the given initial conditions (4.1.23)–(4.1.27).
The arguments above can be interpreted geometrically as follows: the equa-

tions
x1 = g1(y1), x2 = g2(y1)

define on Λ2 a line that passes through the point A(x◦1, x
◦
2) and represents in the

new parametrization the line y2 = y◦2 . Correspondingly, the equations

x1 = h1(y2), x2 = h2(y2)

give the coordinate line y1 = y◦1 of the new net Cheb(y1, y2) that passes through
the point A. Two such lines can be chosen arbitrarily, with the natural constraint
that they must not be tangent to one another at the point A. (This requirement
is ensured by fulfillment of condition (4.1.28).)
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Thus, the solution (4.1.22) of the system (4.1.21) with the initial conditions
(4.1.23)–(4.1.27), exists in some neighborhood ωA and gives the transformation

T (x, t)→ Cheb(x̃, t̃), which leads to the Chebyshev net of coordinate lines on Λ2

(and, in general, on M2). This result has the following geometric explanation: if
through the point A ∈M2 (A ∈ Λ2) one draws two intersecting (but not tangent
to one another) lines l1 and l2, then in a sufficiently small neighborhood ωA of A
there exists a uniquely determined Chebyshev net in which l1 and l2 are included.

Substitution of the already obtained solution (4.1.22) in the metric (4.1.15)
(keeping in mind the transformations performed above) reduces it to the form
(4.1.16). Comparing the coefficients of the metric (4.1.15) that we reduced to the
form (4.1.16) with the coefficients of the (original) metric (4.1.16) itself, we obtain
the formula (4.1.13) for the construction of solutions of the sine-Gordon equation.
Theorem 4.1.2 is proven. �

Let us make a number of comments.

Comment 4.1.1. The arbitrariness in the choice of the initial data (4.1.22)–(4.1.27)
(with condition (4.1.28) in force) enables us to construct an infinite family {z} of
solutions of the sine-Gordon equation for each given solution u of the given Λ2-
equation of the type (4.1.14). Now choosing the same “base” generators for the
net Cheb in the formulation of the problems for two different Λ2-equations,

F1[u1] = 0, F2[u2] = 0

performing the transitions

T1 �−→ Cheb, T2 �−→ Cheb,

and then applying Theorem 4.1.2, we arrive to a solution z of the sine-Gordon
equation

z = Ω1[u1] = Ω2[u2],

that is shared by the two Λ2-equations.
In view of the analyticity of the solutions u1 and u2 (for the corresponding

Λ2-equations), the relations obtained above imply their local equivalence, which
is precisely what Theorem 4.1.1 establishes.

Comment 4.1.2. The method that we used in the proof of Theorem 4.1.1, of pass-
ing to the Chebyshev net (choosing the Chebyshev net as a universal connecting
object) has a general character and, generally speaking, is not related to the curva-
ture of the manifoldM2 under consideration. Hence, if in the case of an arbitrary
curvature K = K(x, t) we argue in much the same way as in the proof of The-
orem 4.1.2, we can obtain an analog of the transformations (4.1.13), (4.1.14) for
the variable-curvature case. However, in this last case the curvature K no longer
retains the meaning of an invariant of the transformation, and consequently in the
formulation of Theorem 4.1.3 we need to “replace” the sine-Gordon equation by
the Chebyshev equation.
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Theorem 4.1.3. For each local analytic solution u(x, t) of any analytic equation
generated by a metric of the type (4.1.1) of curvature K(x, t) (G-equation), one
can always construct a local analytic solution of the Chebyshev equation

zx̃˜t = −K · sin z(x̃, t̃)
by means of relations (4.1.13), (4.1.14), with the function z in them understood as

a solution of the Chebyshev equation with the coefficient K = K(f1(x̃, t̃), f2(x̃, t̃)).

Comment 4.1.3. The transformation established above for the solutions of the Λ2-
and G-equations has a local character. This is due, on the one hand, to the local
character of the Cauchy-Kovalevskaya theorem applied, and on the other, to the
problem of choosing a local Chebyshev net that is completely included in the
global Chebyshev set “on the entire” M2.

The search for a possible transformation of nonlocal solutions should be con-
nected to the search for a universal geometric object, defined ”globally”onM2, or

on the entire surface S that realizes the isometric immersion M2
isom�−→ E3. In the

case of pseudospherical surfaces as such an object it is appropriate to take the net
of asymptotic lines (which is a Chebyshev net), given on entire surface S.

To construct a net of asymptotic lines on S we need to consider the problem
of isometric immersion of of the generating metric of the form (4.1.1) in the space
E3. Namely, given the coefficients E[u], F [u], G[u], the task is to find the coeffi-
cients L[u], M [u], and N [u] of the second fundamental form of the surface. This
in turn is connected with the integration of the system of fundamental equations
of the theory of surfaces in E3 (the Peterson-Codazzi and Gauss equations):

(L[u])t + Γ1
11M [u] + Γ2

11N [u] = (M [u])x + Γ1
12L[u] + Γ2

12M [u],

(M [u])t + Γ1
12M [u] + Γ2

12N [u] = (N [u])x + Γ1
22L[u] + Γ2

22M [u],

L[u]N [u]−M2[u]

E[u]G[u]− F 2[u]
= K(x, t).

(4.1.31)

The vanishing condition for the second fundamental form II(u, v) of the surface,

II(u, v) = L[u]dx2 + 2M [u]dxdt+N [u]dt2 = 0

yields in a unique manner the transition from the variables (x, t) in the Λ2-equation
to the asymptotic Chebyshev coordinate set (xa, ta) on S determined by the sine-
Gordon equation. Therefore, in this case one can talk about obtaining a “global
analogue” of the transformation (4.1.18), which enables us to make the transition
to the “global” Chebyshev net Cheb(xa, ta) of asymptotic lines on the entire sur-
face S. Finding an exact solution of the system (4.1.31) is equivalent to obtaining a
“global” analogue of the substitution (4.1.18), thanks to which the transformation
(4.1.13), (4.1.14) acquires a “global” character.

Comment 4.1.4 (On correctness criteria for the application of approximate meth-
ods for constructing of solutions of the Λ2- and G-equations). In general, the con-
struction of an exact nonlocal solution of the problem (4.1.13), (4.1.14), (4.1.23)–
(4.1.27) has a transcendental character. For this reason we resort to possible cri-
teria for verifying the correctness of the results obtained by the application of
numerical methods.



4.1. The Lobachevsky class of equations of mathematical physics 235

Let z∗ = z∗(y1, y2) be an approximate solution of the Chebyshev equation
(or of the sine-Gordon equation, respectively, when K ≡ −1). Given the function
z∗, we extract its initial values

z∗(0, y2) = f∗1 (y2),
z∗(y1, 0) = f∗2 (y1),

f∗1 (0) � f∗2 (0).

Next, from the initial data f∗1 (y2) and f∗2 (y1) we recover the “exact” solution
z(y1, y2) corresponding to them by means of successive approximations for the
Chebyshev equation, written in the integral form (see § 3.6):

zm+1(y1, y2) = f∗1 (y2) + f∗2 (y1)− f∗1 (0)

+

y1∫
0

y2∫
0

[−K(y1, y2)] sin zm(y1, y2)dy1dy2. (4.1.32)

Under the assumption that the curvature is bounded, i.e.,

|K(y1, y2)| ≤ K0, K0 = const > 0,

and choosing as the initial iteration in (4.1.32) z0 ≡ 0, it is not hard to estimate
the modulus of the difference of two successive approximations as

|zm+1 − zm| ≤ (K0)
m (y1y2)

m

(m!)2
,

which established the convergence of the sequence {zm}:
{zm(y1, y2)} → z, m→∞.

The coincidence, within the limits of the admissible accuracy (“residual”) δ,
of the solutions z and z∗:

z � z∗ + δ,

represent the correctness criterion for the numerical algorithm that is being im-
plemented.

In addition to this, one can use for verification the relations obtained simul-
taneously with formula (4.1.13) and stipulated by the intrinsic geometry of the
Chebyshev net:

(E[z∗] · (f1y1 )2 + 2F [z∗] · f1y1f2y1 +G[z∗] · (f2y1 )2)
∣∣∣∣ x = f1(y1, y2),
t = f2(y1, y2)

= 1,

(E[z∗] · (f1y2 )2 + 2F [z∗] · f1y2 f2y2 +G[z∗] · (f2y2 )2)
∣∣∣∣ x = f1(y1, y2)
t = f2(y1, y2)

= 1.
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4.2 The generalized third-order Λ2-equation. A method
for recovering the structure of generating metrics

The recipe introduced in § 4.1 for generating a differential equation (Λ2-equation)
of the type (4.1.4) from a two-dimensional pseudospherical metric of the form
(4.1.1) by means of the Gauss formula (4.1.3) presumes that it yields a “final” Λ2-
equation whose order is two units higher that the order of the metric one starts
with. (By the order of the metric (4.1.1) we will mean the largest order of the
derivatives of the unknown function u(x, t) appearing in the coefficients E[u(x, t)],
F [u(x, t)], and G[u(x, t)] of the metric).

In this section we obtain a generalized third-order Λ2-equation (generated
by a corresponding pseudospherical metric (4.1.1) of first order). This equation
will include as partial realizations all possible Λ2-equations of order up to and
including three (among them, for example, the nonlinear evolution equations of
mathematical physics that we considered earlier, as well as other equations). More-
over, the obtained generalized equation will serve as a “support” in the elaboration
of algorithms for recovering generating pseudospherical metrics for the nonlinear
equations under investigation. Overall, the method proposed here offers a funda-
mentally new ”geometric” way of “priming” the method of the inverse scattering
transform (setting the “primer” problem of the form (3.9.3), (3.9.4)) based on the
obtained metric that generates the equation.

4.2.1 The generalized third-order Λ2-equation

Let us turn now to the direct derivation of the generalized third-order Λ2-equation.
We assume that the coefficients of the quadratic differential form (4.1.1) are of the
form

E = E(u, ux), F = F (u, ux), G = G(u, ux), (4.2.1)

and insert them in the Gauss formula (4.1.3).
For coefficients of the form (4.2.1) the determinant appearing in formula

(4.1.3) (in the first right-hand side term) takes on the form

det

⎛⎝ E[u] (E[u])x (E[u])t
F [u] (F [u])x (F [u])t
G[u] (G[u])x (G[u])t

⎞⎠
= det

⎛⎝ E (Euux + Euxuxx) (Euut + Euxuxt)

F (Fuux + Fuxuxx) (Fuut + Fuxuxt)

G (Guux +Guxuxx) (Guut +Guxuxt)

⎞⎠
= det

⎛⎝ E Eu Eux

F Fu Fux

G Gu Gux

⎞⎠ · det( ux ut

uxx uxt

)
. (4.2.2)

In our case, for the coefficients (4.2.1), the second term in the right-hand side
of (4.1.3) becomes



4.2. Generalized third-order Λ2-equation 237

1

2
√
W

{
∂

∂t

(
(E[u])t − (F [u])x√

W [u]

)
− ∂

∂x

(
(F [u])t − (G[u])x√

W [u]

)}

=
1

4W 2
{2W (Ett −Gxx) + (Ft −Gx)Wx − (Et − Fx)Wt} . (4.2.3)

The “components” figuring in relations (4.2.2) and (4.2.3) are given by

(a) Ex = Euux + Euxuxx, Et = Euut + Euxuxt,

(b) Gx = Guux +Guxuxx, Gt = Guut +Guxuxt,

(c) Fx = Fuux + Fuxuxx, Ft = Fuut + Fuxuxt,

(4.2.4)

(a) Ett = Euuu
2
t+2Euuxutuxt+Euutt+Euxuxu

2
xt+Euxuxtt,

(b) Gxx = Guuu
2
x + 2Guuxuxuxx +Guuxx +Guxuxu

2
xx +Guxuxxx,

(4.2.5)

(a) EtWx = EuWuuxut + EuWuxutuxx + EuxWuuxuxt

+ EuxWuxuxtuxx,

(b) GxWx = GuWuu
2
x +GuWuxuxuxx +GuxWuuxuxx

+ GuxWuxu
2
xx,

(c) EtWt = EuWuu
2
t + EuWuxutuxt + EuxWuutuxt

+ EuxWuxuxxuxt,

(d) FxWt = FuWuuxut + FuWuxuxuxt + FuxWuutuxx

+ FuxWuxuxtuxx.

(4.2.6)

Substitution of expressions (4.2.4)–(4.2.6) in relations (4.2.2) and (4.2.3) (i.e.,
essentially, in the Gauss formula (4.1.3)) allow us to interpret the Gauss formula
as a partial differential equation for the unknown function u(x, t), which appears
in the generating metric of the form (4.2.1). Hence, we arrive at a generalized
Gauss equation of the third order, generated by a first-order metric of arbitrary
Gaussian curvature K(x, t):

2∑
α,β,γ=1

aαβγuαβγ +
2∑

α,β,γ,δ=1

aαβ,γδuαβuγδ +
2∑

α,β,γ=1

bα,βγuαuβγ

+

2∑
α,β=1

cα,βuαuβ +

2∑
α,β=1

dαβuαβ = −4K(x, t) ·W 2 (4.2.7)

(generalized third-order G-equation).
Each of the indices α, β, γ, and δ in (4.2.7) can take only two values: 1 or 2.

An index attached to the function u(x, t) denotes the derivative with respect to
the corresponding variable “x”≡ “1”, “t” ≡ “2”; for example, u1 ≡ ux, u12 ≡ uxt,
and so on. All nontrivial (non-zero) coefficients of the generalized equation (4.2.7)
are given below in Table 4.2.1.
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In the expressions listed in the table we use the notation

D ≡
∣∣∣∣∣ E Eu Eux

F Fu Fux

G Gu Gux

∣∣∣∣∣ .
Table 4.2.1

uxxx a111 2WGux

uxxt a112 −4WFux

uxtt a122 2WEux

u2
xx a11,11 2WGuxux −WuxGux

uxxuxt a11,12 2(WuxFux − 2WFuxux)
u2
xt a12,12 2WEuxux −WuxEux

uxuxx b1,11 4WGuux −GuWux −WuGux

uxuxt b1,12 D + FuxWu +WuxFu − 4WFuux

utuxx b2,11 FuWux +WuFux −D − 4WFuux

utuxt b2,12 4WEuux − EuWux −WuEux

u2
x c1,1 2WGuu −WuGu

uxut c1,2 2(WuFu − 2WFuu)

u2
t c2,2 2WEuu −WuEu

uxx d11 2WGu

uxt d12 −4WFu

utt b22 2WEu

The obtained equation (4.2.7) with the functional coefficients given in Table
4.2.1 is the generalized third-order Gauss equation (G-equation). In the geomet-
rically characteristic case K(x, t) ≡ −1 (Lobachevsky plane), equation (4.2.7)
becomes the generalized third-order Λ2-equation; below we will focus on precisely
this last equation.

4.2.2 The method of structural reconstruction of the generating
metrics for Λ2-equations

Let us formulate a general algorithm of structural reconstruction of the generating
Λ2 metric for nonlinear (1 + 1)-equations4 and exemplify it in detail to construct
a pseudospherical metric for the modified Korteweg-de Vries equation.

The study of the problem of deriving, for a given differential equation, a
geometric interpretation (namely, given the equation, find the corresponding Λ2-
metric that generated it) is connected with subjecting equation (4.2.7) to addi-
tional constraints, which characterize the structure of the equation under study.
Derivatives of the type {u0,n}, defined in the sought-for metric for all solutions
of the equation under study, are taken with respect to the independent variables.

4In a (1 + 1)-equation the unknown function depends on one space variable x and one time
variable t.
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This enables us to associate to each such term containing u0,n the components
with the corresponding terms of the initial equation. This leads to a system of
relations for the coefficients of the sought-for metric. The derivatives of the form
um,0, m = 1, 2, are replaced by expressions determined by the form of the equation
under study (for instance, ut = F [u] or uxt = F [u]).

As promised, we will next implement in detail the method of reconstruction
of a generating pseudospherical metric in the case of the modified Korteweg-de
Vries equation.

Example. Construction of a generating Λ2-metric for the modified Korteweg-de
Vries equation (MKdV equation). We consider the MKdV equation, well known
in mathematical physics:

ut =
3

2
u2ux + uxxx. (4.2.8)

Under the assumption that the pseudospherical metric that generates equa-
tion (4.2.8) is a first-order metric with the coefficients (4.2.1),

ds2 = E(u, ux)dx
2 + 2F (u, ux)dxdt +G(u, ux)dt

2,

let us find under what (detailed) conditions on the coefficients (4.2.1) of this metric
the resulting generalized equation (4.2.7) is precisely the MKdV equation.

Here it is natural to interpret the equation (4.2.8) itself as a constraint on
the unknown function u = u(x, t) and its derivatives.

To begin with, let us write several differential consequences of equation (4.2.8)
that will be needed later in order to perform certain manipulations in the gener-
alized equation (4.2.7):

ut =
3

2
u2ux + uxxx,

uxt = 3uu2
x +

3

2
u2uxx + uxxxx,

uxxt = 3u3
x + 9uuxuxx +

3

2
u2uxxx + uxxxxx,

uxxxt = 18u2
xuxx + 9uu2

xx + 12uuxuxxx +
3

2
u2uxxxx + uxxxxxx,

utt = 9u3u2
x +

9

4
u4uxx + 18u2

xuxx + 9uu2
xx

+ 15uuxuxxx + 3u2uxxxx + uxxxxxx,

uxtt = 27u2u3
x + 27u3uxuxx + 45uxu

2
xx +

9

4
u4uxxx

+ 33u2
xuxxx + 33uuxxuxxx + 21uuxuxxxx + uxxxxxxx.

(4.2.9)

In the case of the MKdV equation and its consequences (4.2.9) considered
here, the generalized Λ2-equation (4.2.7) (for K ≡ −1) reduces to a differential
equations that contains only derivatives of the unknown function u(x, t) with re-
spect to x of order up to and including 7:

4W 2 = 2WEux

(
27u3uxuxx +

9

4
u4uxxx + 27u2u3

x + 21uuxuxxxx
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+ 33u2
xuxxx + 45u2

xxux + 33uuxxuxxx + uxxxxxxx

)
− 4WFux

(
3

2
u2uxxx + 9uuxuxx + 3u3

x + uxxxxx

)
+ 2WuxxxGux + uxuxx(4WGuux −GuWux −WuGux)

+ u2
x(2WGuu −WuGu) + 2WuxxGu + u2

xx(2WGuxux−WuxGux)

+ 2uxx

(3
2
u2uxx + 3uu2

x + uxxxx

)
(WuxFux − 2WFuxux)

+
(3
2
u2ux+uxxx

)(3
2
u2uxx+3uu2

x+uxxxx

)
(4WEuux− EuWux−WuEux)

+
(3
2
u2ux + uxxx

)2
(2WEuu −WuEu) (4.2.10)

+ uxx

(3
2
u2ux + uxxx

)
(FuWux +WuFux −D − 4WFuux) + 2WEu×

×
(9
4
u4uxx+9u3u2

x+3u2uxxxx+15uuxuxxx+18uxxu
2
x+9uu2

xx+uxxxxxx

)
+
(3
2
u2uxx + 3uu2

x + uxxxx

)2
(2WEuxux −WuxEux)

+ ux

(3
2
u2uxx + 3uu2

x + uxxxx

)
(D + FuxWu +WuxFu − 4WFuux)

+ 2ux

(3
2
u2ux+uxxx

)
(WuFu−2WFuu)−4WFu

(3
2
u2uxx+3uu2

x+uxxxx

)
.

The next step in the implementation of the reconstruction algorithm consists
in “ordering” expression (4.2.1) according to groups of terms in front of the deriva-
tives uxxxxxxx, uxxxxxx, . . ., uxxx, . . . (in order of decrease of the order of differen-
tiation). We note again that the indicated derivatives (defined on each solution u
of the MKdV equation) acquire here the meaning of independent “variables”.

The first ordered term, which includes the 7-th order derivative, has the form

2W · Eux · uxxxxxxx + · · · ; (4.2.11)

Since relation (4.2.10) means that equation (4.2.7) holds identically on all
solutions of the MKdV equation (with the constraint (4.2.9) accounted for in
(4.2.7)), all “functional coefficients” in front of the derivatives of the unknown
functions u in (4.2.10) must be equal to zero. An examination of the first three
ordered terms, in front of the derivatives of u with respect to x of order 7, 6, and
5 in (4.2.10) leads, in conjunction with (4.2.11), to the system

2WEux = 0,

2WEu = 0,

−4WFux = 0.

(4.2.12)

From (4.2.12) we obtain (under the natural assumption that W �= 0):

E = η2 = const, F = F (u). (4.2.13)
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Expression (4.2.13) is the first result on the path of finding the precise form of
the coefficients of the generating metric. At the same time, it allows us to simplify
considerably the form of equation (4.2.10), to

4W 2 = 2WuxxxGux + uxuxx(4WGuux −GuWux −WuGux)

+ uxx

(3
2
u2ux + uxxx

)
(FuWux −D)

+ u2
x(2WGuu −WuGu) + 2WuxxGu + u2

xx(2WGuxux −WuxGux)

+ ux

(3
2
u2uxx + 3uu2

x + uxxxx

)
(D +WuxFu)

+ 2ux

(3
2
u2ux + uxxx

)
(WuFu − 2WFuu)

− 4WFu

(3
2
u2uxx + 3uu2

x + uxxxx

)
; (4.2.14)

moreover,

D = η2GuxFu, Wu = η2Gu − 2FFu, Wux = η2Gux .

Continuing the implementation of the algorithm, let us write the conditions
expressing the “vanishing” of the coefficients in front of the derivatives uxxxx and
uxxx in (4.2.14):

for uxxxx:
2Fu · (η2Gux · ux − 2W ) = 0, (4.2.15)

for uxxx:

η2uxGuFu − 2ux(FF 2
u +WFuu) +WGux = 0. (4.2.16)

It is readily verified that the equality Fu = 0 cannot be a consequence of
relation (4.2.15), since otherwise (recalling (4.2.13) and (4.2.16)) all coefficients of
the generating metric of the type (4.2.1) would be constant.

Thus, (4.3.15) yields

W =
1

2
a2Guxux. (4.2.17)

Accordingly, equation (4.2.16) becomes

2η2uxGuFu − 4uxFF 2
u − 2η2uxGuxFuu + η2G2

ux
= 0. (4.2.18)

At this iteration step of the algorithm, if one takes (4.2.17) and (4.2.18) into
account, the generalized Λ2-equation (equation (4.2.7)→ (4.2.10)→ (4.2.14)) can
be simplified further to

2η2G2
ux
u2
x = uxx

(
ux(3uxGuxGuux −Gu(Gux +Guxuxux)

)
+

3

2
u2ux(Fu(Gux +Guxuxux)− 2GuxFu) + 2uxGuxGu)

− u2
xxGux(uxGuxux −Gux)

+ u3
x(2GuxGuu −GuxuGu + 3u2(GuxuFu − 2GuxFuu)). (4.2.19)
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Continuing the algorithmic scheme, now already for equation (4.2.19), we
write the “vanishing coefficients” in the remaining terms:

for uxx:
Gux(uxGuxux −Gux) = 0. (4.2.20)

SinceW �= 0, relation (4.2.17) shows that in (4.2.20) we cannot haveGux = 0.
Setting the expression inside the parentheses in (4.2.20) equal to zero, one can
readily get that

G = λ(u)u2
x + f(u). (4.2.21)

Moreover, for uxx:

3u2
xGuxGuux − uxGuGux − u2

xGuGuxux +
3

2
u2uxFuGux

+
3

2
u2u2

xFuGuxux − 3u2uxGuxFu + 2uxGuxGu = 0. (4.2.22)

Using (4.2.21), equation (4.2.21) can be simplified considerably to

λλuu
4
x = 0, λ = const,

and so
W = λη2u2

x, Gux = 2λux.

The results obtained to this point allow us to rewrite equation (4.2.16) in the
compact form

g1(u) · ux + g2(u) · u2
x = 0, (4.2.23)

where

g1(u) = 2η2GuFu − 4FF 2
u ,

g2(u) = −4λη2Fuu + 4λ2η2.

Since the coefficients (4.2.23) must vanish: g1(u) = 0 and g2(u) = 0, it holds
that

η2Gu = 2FFu

Fuu = λ.
(4.2.24)

The second equation in (4.2.24) immediately yields

F = F (u) =
λ

2
u2 + C1u+ C2, C1, C2 = const. (4.2.25)

Integration of the first equation in (4.2.24) gives

G =
1

η2
F 2 + C, C = C(ux). (4.2.26)

From the calculation of the already obtained determinant of the metric,

W = EG− F 2 = λη2u2
x



4.2. Generalized third-order Λ2-equation 243

we obtain, using the coefficients E,F,G given by the expressions (4.2.13), (4.2.25),
(4.2.26),

C(ux) = λu2
x, λ = η2 = const. (4.2.27)

Substituting the coefficients E,F,G (4.2.25), (4.2.26), with relation (4.2.27)
accounted for, in the generalized third-order Λ2-equation (4.2.19), transformed to
the form

2λη4 = 2

(
λ
(λ
2
u2 + C1u+ C2

)
+ (λu+ C1)

2

)
− 3λu2η2,

and subsequently comparing the coefficients of like powers of the function u, we
obtain the exact values of the constants involved:

C1 = 0, C2 = η4.

Putting all together, we finally obtain the exact explicit representation for
the coefficients of the sought-for generating metric:

E = η2, F = η2
(u2

2
+ η2

)
, G = η2u2

x + η2
(u2

2
+ η2

)2
, (4.2.28)

and consequently the pseudospherical metric itself that generates the modified
Korteweg-de Vries equation (4.2.8):

ds2 = η2dx2 + 2η2
(u2

2
+ η2

)
dxdt+

[
η2u2

x + η2
(u2

2
+ η2

)2]
dt2. (4.2.29)

Thus, we fully implemented the algorithm of the method of structural recon-
struction of the generating pseudospherical metric for the modified Korteweg-de
Vries equation. Overall, the question whether the proposed algorithm is appli-
cable to a given nonlinear equation is directly connected with the compatibility
(or consistency) problem , as well as with the explicit solvability of the system of
equations , obtained on the basis of the generalized third-order Λ2 equation, which
expresses the vanishing of all the “functional coefficients” in the equation of the
type (4.2.7) (in the equation (4.2.10) in each concrete case).

Let us now formulate the general scheme of the algorithm of the method
of structural reconstruction of the generating metric for a nonlinear third-order
differential equation:

1. Reduce the Λ2-equation (4.2.7), with the differential consequences of the
equation under study accounted for, to a relation whose terms are arranged
according to the order of the derivatives of the unknown function u(x, t). (In
the example considered above, that was equation (4.2.10).)

2. Derive the system of differential equations for the coefficients of the sought-
for generating metric, E(u, ux), F (u, ux), G(u, ux), from the condition that
all the “functional cofficients” in front of the terms with the derivatives of
the unknown function u of different orders vanish.

3. Investigate of the compatibility of the aforementioned system of differential
relations. Construct exact solutions of this system.
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4.3 Orthogonal nets and the nonlinear equations they
generate

As one can see from the discussion above (see § 4.2), given some nonlinear equation,
the recovery of its generating Λ2- or G-metric takes a rather large amount of work.
For that reason, one of the approaches that allows one, to a certain extent, to
“optimize” the problem of associating to Λ2- and G-equations the Λ2- and G-
metrics that generate them, consists in cleverly describing those equations that
are generated by two-dimensional metrics that have certain specific geometric
properties, namely, metrics associated with certain classes of coordinate nets on
two-dimensional smooth manifolds that have intuitive geometric features. As it
turns out, such nets define a considerable number of nonlinear equations of current
interest in mathematical physics.

A rich class of metrics that generate a sufficient number of well-known non-
linear equations is associated with the orthogonal nets . Such nets are given by the
condition that the second coefficient of the metric of type (4.1.1) vanishes:

F [u(x, t)] ≡ 0, (x, t) ∈ R2. (4.3.1)

Accordingly, the metric itself, written in the orthogonal coordinate system,
reads

ds2 = E[u]dx2 +G[u]dt2. (4.3.2)

Let us study the problem of finding the G-equations generated by metrics of
the form (4.3.2) (the curvature K(x, t) is assumed to be arbitrary).

Setting

E[u] = a2[u], G[u] = b2[u],

(and then W = a2[u]b2[u] > 0), we rewrite the metric (4.3.2) as

ds2 = a2[u]dx2 + b2[u]dt2. (4.3.3)

Let us substitute (4.3.3) in the Gauss formula (4.1.3). This yields the equation{(au
b

ut

)
t
+
(bu
a

ux

)
x

}
= −2K(x, t) ·W 1/2. (4.3.4)

It is convenient to recast (4.3.4) as[(bu
a

)
uxx +

(au
b

)
utt

]
+
[(bu

a

)
u
u2
x +
(au

b

)
u
u2
t

]
= −2K(x, t) ·W 1/2. (4.3.5)

Equation (4.3.5) is the general G-equation generated by metrics of the form
(4.3.3), written in an orthogonal net parametrization. Let us determine under what
conditions on a[u] and b[u] the left-hand side of (4.3.5) expresses the action of one
of the standard operators of mathematical physics: the Laplace operator, the wave
operator, etc.
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1) Equation (4.3.5) will be elliptic if, in particular, its left-hand side repre-
sents the Laplacian of the function u, which is the case whenever the following
system of conditions are satisfied:⎧⎪⎨⎪⎩

au
b

= η,

bu
a

= η,
η = const. (4.3.6)

Notice that fulfillment of conditions (4.3.6) automatically implies that the terms
inside the second pair of brackets in the left-hand side of (4.3.5) vanish.

Integrating the system (4.3.6), we find for a[u] and b[u] the expressions

a[u] = A1 · eηu +A2 · e−ηu,

b[u] = A1 · eηu −A2 · e−ηu, A1, A2 = const.

Therefore, if conditions (4.3.6) are satisfied, then the metric (4.3.3) takes on
the form

ds2 =
(
A1 · eηu +A2 · e−ηu

)2
dx2 +

(
A1 · eηu −A2 · e−ηu

)2
dt2. (4.3.7)

The metric (4.3.7) thus obtained, written in orthogonal coordinates, gener-
ates a general elliptic G-equation of the form

Δ2u = −1

η
·K(x, t) · (A2

1 · e2ηu −A2
2 · e−2ηu

)
, (4.3.8)

where Δ2 =
∂2

∂x2
+

∂2

∂t2
is the Laplace operator.

By suitably choosing the constants A1 and A2 appropriately we can obtain
as particular cases of the general equation well-known nonlinear equations en-
countered in mathematical physics. Let us give such examples of metrics and the
equations they generate.

a) A1 = 1√
2
, A2 = 0, η = 1

2 .

Generating metric:

ds2 =
eu

2
dx2 +

eu

2
dt2. (4.3.9)

G-equation generated – the elliptic Liouville equation:

Δ2u = −K(x, t) · eu. (4.3.10)

When K ≡ −1 (the case of the Lobachevsky plane Λ2) we obtain an impor-
tant subcase of equation (4.3.10):

Δ2u = eu. (4.3.11)
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b) A1 = A2 = 1
2 , η = 1

2 .
Generating metric:

ds2 = cosh2
u

2
dx2 + sinh2

u

2
dt2. (4.3.12)

The G-equation corresponding to the metric (4.3.12):

Δ2u = −K(x, t) · sinhu, (4.3.13)

and its “Λ2-analogue”, the elliptic sinh-Gordon equation:

Δ2u = sinhu. (4.3.14)

2) Now let us study the hyperbolic G-equations, which are “included” in
(4.3.5) and are generated by a metric of the general form (4.3.3). Indeed, if the
conditions ⎧⎪⎨⎪⎩

bu
a

= η,

au
b

= −η,
η = const. (4.3.15)

are satisfied, then in the left-hand side of (4.3.5) one obtains the Laplace operator.
The system (4.3.15) has the solutions

a[u] = C1 sin ηu− C2 cos ηu,

b[u] = −C2 sin ηu− C1 cos ηu,
η = const, C1, C2 = const. (4.3.16)

Using (4.3.16), let us write the generating metric of general form (4.3.3) for
the case at hand:

ds2 = (C1 sin ηu− C2 cos ηu)
2
dx2 + (C2 sin ηu+ C1 cos ηu)

2
dt2. (4.3.17)

The metric (4.3.17) generates the general hyperbolic G-equation

uxx − utt = −K · [C1C2 · cos(2ηu)− (C2
1 − C2

2 ) · sin ηu · cos ηu]. (4.3.18)

Upon choosing for the constant parameters in (4.3.18) the values

C1 = 0, C2 = 1, η =
1

2
,

we obtain the classical Chebyshev equation (see § 2.5):
Uxx − Utt = −K(x, t) sinU, U = 2u, (4.3.19)

in the variables x, t, relative to an orthogonal coordinate system.
Let us give additional examples that demonstrates how orthogonal coordinate

nets can be applied in the analysis of nonlinear equations.
Let us consider the metric (4.3.2) with coefficients of the form

E = E(ux), G = G(u), under the condition K ≡ −1.
Here are two examples.
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a) Taking the pseudospherical metric

ds2 = u2
xdx

2 + sinh2u dt2 (4.3.20)

as the generating metric yields as Λ2-equation the hyperbolic cosh-Gordon
equation

uxt = coshu. (4.3.21)

b) The pseudospherical metric

ds2 = u2
xdx

2 + cosh2u dt2 (4.3.22)

generates the hyperbolic Λ2-equation called the sinh-Gordon equation,

uxt = sinhu. (4.3.23)

The fact that is possible to associate nonlinear equations to orthogonal gen-
erating nets on the Lobachevsky plane Λ2 enables one to propose geometric algo-
rythms for their integration. Such methods are treated in the next section.

4.4 Net methods for constructing solutions of
Λ2-equations

The geometric interpretation of differential equations presented in this chapter
assigns to each Λ2-equation a pseudospherical metric that generates it (or a gen-
erating coordinate net on the Lobachevsky plane Λ2). This geometric “view” allows
one to pass from the investigation of the equations themselves to the analysis of
their geometric preimages – the generating coordinates nets, and thus to enlist in
the study of equations the tools of non-Euclidean differential geometry. In the re-
alization of this approach it is expedient to use sufficiently well studied integrable
Λ2-equations (for example, the sine-Gordon equation) and the corresponding coor-
dinate nets as canonical (supporting) information for constructing transformations
that connect them with geometric objects (nets) that characterize other equations
under study. A classical example of canonical (supporting) net is the “Chebyshev”
net. As we will show below, an important role is played also by the semigeodesic
net, used to construct transformations between solutions of elliptic equations.

It is important to emphasize that the transformations obtained connect so-
lutions of various Λ2-equations and arise “at the level” of the transformation of
the preimages of the equations studied – the generating nets on the Lobachevsky
plane Λ2, and they do not “touch upon” the equations themselves. That is to say,
the transformations obtained are the result of transformations between various
generating nets on Λ2 and the associated transformation of solutions, but not of
transformations of the equations. Here the constant negative curvature K ≡ −1
of the generating pseudospherical metrics has the meaning of an invariant of the
transformations performed. The diagram in Figure 4.4.1 explains the general al-
gorithm and the sequence of links in of the net approach to the construction of
solutions of Λ2-equations.
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Generating
  metric (1)

Generating
  metric (2)

equation equation

     Solution 
of equation (1)

     Solution 
of equation (2)

(1) (2)

Figure 4.4.1

4.4.1 On mutual transformations of solutions of the Laplace equa-
tion and the elliptic Liouville equation

In this subsection we obtain exact explicit formulas for the construction of exact
solutions of the elliptic Liouville equation [77, 90]

Δ2u = eu, u = u(x, t) (4.4.1)

from solutions of the Laplace equation

Δ2v = 0, v = v(x, t). (4.4.2)

To construct solutions of the Λ2-equation (4.1.1) we involve another (auxil-
iary) Λ2-equation, namely

yττ − y = 0, y = y(τ), (4.4.3)

i.e., the ordinary differential equation generated by the pseudospherical metric

ds2 = y2(τ)dχ2 + dτ2, K(x, t) ≡ −1, (4.4.4)

which plays the role of the supporting metric in our approach.
Recall that the Liouville equation (4.4.1) itself is generated by a Λ2-metric

of the form (see § 4.1)
ds2 =

eu

2
(dx2 + dt2). (4.4.5)

The metric (4.4.5) generating the Liouville equation (4.4.1) is associated with the
isothermal coordinate net on the Lobachevsky plane Λ2, while the metric (4.4.4)
that generates the Laplace equation (4.4.2) is associated with the semigeodesic
coordinate net on Λ2.
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In the plane Λ2, let us pass from the semigeodesic coordinate net T sg(χ, τ)
to the isothermal net T is(x, t) (the Liouville net) via

w(x, t) = χ,

v(x, t) =

∫
dτ

y(τ)
.

(4.4.6)

Substitution of (4.4.6) in the metric (4.4.4) reduces the latter to a metric
(4.4.5), provided the following conditions are satisfied:

v2x + w2
x = v2t + w2

t ,

vxvt + wxwt = 0.
(4.4.7)

Then the solution u(x, t) of the Liouville equation (4.4.1) is given by the
formula

u(x, t) = ln
[
2y2(τ(x, t)) · (v2x + w2

x)
]
. (4.4.8)

It is easy to see that the system (4.4.7) connects two arbitrary harmonically
conjugate functions v(x, t) and w(x, t), which satisfy the classical Cauchy-Riemann
conditions [105]

vx = wt,

vt = −wx,
(4.4.9)

and hence also the Laplace equation:

Δ2v = 0,

Δ2w = 0.
(4.4.10)

Let us turn now to the construction of a solution u(x, t) of equation (4.4.1)
by means of formula (4.4.8). To this end, using the general solution

y(τ) = C1e
τ + C2e

−τ , C1, C2 = const (4.4.11)

of equation (4.4.3), we write the metric (4.4.4):

ds2 = (C1e
τ + C2e

−τ )2dχ2 + dτ2 (4.4.12)

Now let us substitute the solution (4.4.11) in the second relation in (4.4.6).
This yields the representation

τ = τ(v(x, t)),

which is necessary for (4.4.8).
Depending on the signs of the constants C1 and C2 chosen in the solution

(4.4.11), the second relation in (4.4.6) yields three possible variants:

1) y2(τ(v)) =
1

v2
,

2) y2(τ(v)) =
1

sinh2 v
,

3) y2(τ(v)) =
1

sin2 v
.

(4.4.13)



250 Chapter 4. Lobachevsky geometry and nonlinear equations

Formula (4.4.8) in conjunction with (4.4.13) yields three formulas for constructing
solutions of the elliptic Liouville equation (4.4.1) from an arbitrary solution v(x, t),
v(x, t) �≡ const, of the Laplace equation (4.4.2) [77, 90]:

u(x, t) = ln

[
2(v2x + v2t )

v2

]
,

u(x, t) = ln

[
2(v2x + v2t )

sinh2 v

]
,

u(x, t) = ln

[
2(v2x + v2t )

sin2 v

]
.

(4.4.14)

It goes without saying that the validity of the geometrically derived trans-
formations (4.4.14) can be verified by their direct substitution in the Liouville
equation (4.4.1). To this end, the following assertion proves useful.

If
(k)
v (x, t) �≡ const is a solution of the Laplace equation (4.4.2), then the

function
(k+1)
v (x, t), defined as

(k+1)
v (x, t) = ln

(
(k)
vx

2 +
(k)
vt

2
)
, (4.4.15)

is also a solution of the Laplace equation (4.4.2).

Formula (4.4.15) expresses a transformation (or self-transformation) for the
Laplace equation that is analogous to the Bäcklund transformation. The trans-
formation (4.4.15) is the natural result of applying the obtained transformation
(4.4.14) to the Laplace and Liouville equations.

From the point of view of the theory of functions of a complex variables, the
result obtained above implies that, given any analytic function f(z) = v(x, t) +
iw(x, t), one can always construct (by means of formulas (4.4.14)) solutions of the
three types of the elliptic Liouville equation.

Let us give the “gradient” form of the solutions u(x, t) in (4.4.14):

u(x, t) = ln
[
2
(
grad

(
ln v
))2]

,

u(x, t) = ln

[
2
(
grad

(
ln
(
tanh

v

2

)))2]
,

u(x, t) = ln

[
2
(
grad

(
ln
(
tan

v

2

)))2]
.

(4.4.16)

For work connected with the study of the Liouville equation (4.4.1) we refer
the reader also to [15].
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4.4.2 On the equation Δ2u
∗ = e−u∗

Side by side with the Liouville equation (4.4.1), in applications [16, 33] one en-
counters also the equation of close form

Δ2u
∗ = e−u∗

, (4.4.17)

which is taken by the simple “reflection” u∗∗ = −u∗ into the equation

Δ2u
∗∗ = −eu∗

. (4.4.18)

Like equation (4.4.1), equation (4.4.18) can be interpreted as a relation that
generates a metric of the form (4.4.5), but in the case of an a priori given constant
positive curvature K ≡ +1.5

The construction of solutions of equation (4.4.18) will be carried out by the
general geometric algorithm discussed in Subsection 4.4.1. Namely, to construct
the solution u∗∗(x, t) of (4.4.18) we take as supporting metric the metric (4.4.4),
but with prescribed constant positive curvature K ≡ +1. Then such a metric will
generate, instead of (4.4.3), the related auxiliary equation

(y∗∗)ττ + y∗∗ = 0, y∗∗ = y∗∗(τ). (4.4.19)

Let us use the substitution (4.4.6) to pass from the metric (4.4.4) (the semi-
geodesic net T sg(χ, τ), curvature K ≡ +1) to the metric (4.4.5) (respectively, the
isothermal net T is(x, t), curvature K ≡ +1).

Starting from the general solution of the equation (4.4.19),

y∗∗(τ) = C1 sin τ + C2 cos τ, C1, C2 = const, (4.4.20)

we make the transition
T sg(χ, τ) �−→ T is(x, t).

Note that the relations (4.4.7) retain their form also in the case of curvature
K ≡ +1 (up to the transformation of y(τ) into y∗∗(τ)). Moreover, the function
[y∗∗(τ)]2 is defined in terms of the solution y∗∗ of equation (4.4.17), via the second
relation in (4.4.6), as

[y∗∗(τ(v))]2 =
1

cosh2 v
.

Substituting this expression in (4.4.8) we finally construct the solution u∗(x, t) (or
the solution u∗∗(x, t)) from the solution v(x, t) of the Laplace equation as

u∗(x, t) = ln

[
cosh2 v

2(v2x + v2t )

]
. (4.4.21)

We will next discuss some important related issues arising in the study of
the equation of Liouville type (4.4.1), (4.4.17), (4.4.18) at hand and the derived
transformations (4.4.14)–(4.4.16) and (4.4.21).

5The Gaussian curvature K ≡ +1 is an “indicator” of spherical geometry.
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4.4.3 Some applications connected with equations of Liouville type

1) Centrally-symmetric metrics . The well-known theoretical physics problem6 of
finding centrally-symmetric forms of two-dimensional metrics of constant cur-

vature is connected with the search for “radial” solutions u(r), r =
√
x2 + y2,

of the Liouville equation (4.4.1) (for K ≡ const < 0) and of equation (4.4.17)
(for K ≡ const > 0). The transformations (4.4.14) and (4.4.21) established
above indicate that the search for such metrics relies on finding fundamental
solutions v(r) of the Laplace equation (4.4.2). Therefore, one can assert that
for K ≡ const < 0 there exists three forms of centrally-symmetric metrics,
while for K ≡ const > 0 there is only one such metric. It is interesting to
note that the Bäcklund self-transformation (4.4.15) for the Laplace equation
is the identity transformation on the “radial” solutions v(r) of this equation.

2) On problems of combustion theory. The mathematical modeling of a number
of problems of combustion theory, such as thermal explosion, forced auto-
ignition, and others (which consider the thermal action of the surrounding
medium on the reaction domain Ω) is connected with the study of initial-
boundary value problems for the heat balance equation [16, 33]

∂ϑ

∂t
=

1

δ
Δ2ϑ+ eϑ,

where the quantity ϑ represents the temperature field in Ω. In particular, the
fundamental problem of stationary theory (for ϑt ≡ 0), which is “governed”
by the Liouville-type equation of

Δ2ϑST + δeϑST = 0,

is the investigation of the critical conditions, under which the problem under
study is no longer solvable in the natural class of regular functions, which
from the physical point of view corresponds to a forced explosion or auto-
ignition (i.e., to a discontinuity (jump) of the solution ϑST).

In this connection we remark that the relations (4.4.14)–(4.4.16) and
(4.4.21) discussed above leave unchanged the domain Ω in which the prob-
lem for the Liouville-type equation (4.4.1), (4.4.17) and the corresponding
problem for the Laplace equation (4.4.2) (with the corresponding nonlin-
ear boundary conditions) are posed. For this reason, the possible singulari-
ties of the solution ϑST come from the singularities of the right-hand sides
in (4.4.14)–(4.4.16), (4.4.21). For example, the solution ϑST, computed by
means of the third formula in (4.4.14), is regular in the domain

Ω0 : kπ < v(x, t) < (k + 1)π, k an integer.

That is to say, there are geometric constraints on the configuration of the
domain Ω : Ω = Ω0 that must be satisfied in order for the evolution of
the process to be regular. This agrees with the known results of physical

6Encountered, first of all, in the general theory of relativity.
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investigations [16]. Moreover, the blow-up regime |θST| > M , for all M > 0,
corresponds exactly to the degeneration of the metric (4.4.5) that generates
the Liouville-type equation when the discriminant W [θ] vanishes: W [θ] = 0,
and to the singularities that arise in the Liouville net on M2 (K ≡ ±1).

3) The multidimensional Liouville equation. A formal generalization of the
structure of the transformations (4.4.14), (4.4.21) allows us to guess a class of
self-similar solutions (of a linear argument) for the multidimensional Liouville-
type equation:

Δnu = eu, (4.4.22)

Δnũ = e−ũ, (4.4.23)

where Δn =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

, x̄ = (x1, . . . , xn).

The solutions of this class are given as follows:

for equation (4.4.22):

u(x̄) = ln

(
2

α2(x̄)

)
,

u(x̄) = ln

(
2

sinh2 α(x̄)

)
,

u(x̄) = ln

(
2

sin2 α(x̄)

)
;

(4.4.24)

for equation (4.4.23):

ũ(x̄) = ln

(
cosh2 α(x̄)

2

)
, (4.4.25)

where α(x̄) = a1x1 + · · ·+ anxn,
n∑

i=1

a2i = 1.

4.4.4 Example of “net-based” construction of “kink” type solutions
of the sine-Gordon equation

Let us construct, applying the net method, a solution u(x, t) of the sine-Gordon
equation (4.1.7). The symmetry transformation

(x, t) �→ (x,−t)
takes (4.1.7) into an equation of the form

ūxt = − sin ū, (4.4.26)
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with
ū(x, t) = u(x,−t),
u(x, t) = ū(x,−t).

Equations (4.1.7) and (4.4.26) represent particular realizations of the Cheby-
shev equation (4.1.6) that is generated by the metric of the Chebyshev net. Specif-
ically, equation (4.1.7) is generated by a pseudospherical metric of the form (4.1.5)
(curvature K ≡ −1), while equation (4.4.26) is generated by a metric of the same
form (4.1.5), but with an a priori prescribed constant positive curvature K ≡ +1.

To construct a solution ū(x, t) of the equation (4.4.26) we turn to the auxiliary
metric of curvature K ≡ +1, written in the semigeodesic coordinates (χ, τ):

ds2 = (y∗∗)2(τ)dχ2 + dτ2, K(x, t) ≡ +1. (4.4.27)

The metric (4.4.27) generates again equation (4.4.19), which has a general
solution of the form

y∗∗(τ) = A1 sin τ +A2 cos τ, A1, A2 = const. (4.4.28)

Setting A1 = 0 and A2 = 1 in (4.4.28), we select the particular solution

Y ∗∗(τ) = cos τ

and rewrite with it the metric (4.4.27):

ds2 = cos2 τdχ2 + dτ2. (4.4.29)

The quadratic form (4.4.29) with curvature K ≡ +1 is reduced to a metric
of the form (4.1.5), written in the coordinates of the Chebyshev net Cheb(x, t) of
the same curvature, by means of the substitution

x+ t = χ,

x− t =

∫
dτ

sin τ
.

(4.4.30)

In this way we arrive at the metric

ds2 = dx2 + 2 cos 2τ(x, t)dxdt + dt2. (4.4.31)

Comparing (4.4.31) with the classical Chebyshev metric (4.1.5), we find the
solution ū(x, t) of equation (4.4.26):

ū(x, t) = 2τ(x, t). (4.4.32)

The function τ(x, t) is calculated from the second relation in (4.4.30):

τ(x, t) = 2 arctan ex−t. (4.4.33)

Correspondingly, turning to the original solution u(x, t) of the sine-Gordon
equation and using (4.4.32), (4.4.31), and (4.4.26), we obtain from (4.4.33) the
expression

u(x, t) = 4 arctan ex+t. (4.4.34)
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The solution (4.4.34) is a “kink”-type solution or one-soliton solution of the
form (3.2.11) (of unit amplitude).

The examples given above show how the method of mutual transformation of
nets on manifolds of constant curvature can be used to construct exact solutions
of nonlinear differential equations.

4.5 Geometric generalizations of a series of model
equations of mathematical physics

In this section we provide a list of G-equations that generalize a series of important
– from the point of view of mathematical physics and applications – nonlinear equa-
tions , together with the metrics that generate them. Usually, partial differential
equations are generalized by increasing the dimension of the differential operators
they involve (Laplacians, d’Alembertians and so on), which essentially means that
one considers physical models of higher dimensions. In our treatment here, the
generalization of known (1+1)-equations will be done by means of introducing in
the “process of generating” the equation (see § 4.1) an arbitrary curvature K(x, t),
which will be a priori prescribed for the generating metric. Such an approach al-
lows us to preserve the form of the generating metric for the resulting G-equation
(the same metric as for the original Λ2-equation), and hence preserve the very type
of the generating coordinate net onM2 associated with this equation. Overall, the
approach relies on the application of unified methods of geometric investigation to
the Λ2-equation at hand (a nonlinear equation with constant coefficients), as well
as to its generalization, the G-equation (a generalized analog with functional coef-
ficients). On the other hand, the presence of an“additional” functional coefficient
in the G-equation enables us, in the construction of the corresponding models, to
exploit supplementary properties of the physical processes under study “governed”
by that equation.

We next list a number of physically important generalized equations of con-
temporary mathematical physics and the metrics (of arbitrary curvature K(x, t))
that generate them. For each metric we indicated the type of the generating coordi-
nate net – the unified geometric preimage of the Λ2-equation and of the generalized
G-equation corrresponding to it.

I. Chebyshev equation (generalized sine-Gordon equation):

uxt = −K(x, t) sinu(x, t),

generating metric:

ds2 = dx2 + 2 cosu(x, t)dxdt + dt2

(Chebyshev net).

II. Generalized Korteweg-de Vries equation (KdV G-equation):

ut = ux + (1 +K(x, t) + 6u)ux + uxxx,
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generalized metric:

ds2 = [(1 − u)2 + η2]dx2

+ 2[(1− u)(−uxx+ ηux− η2u− 2u2+ η2+ 2u) + η(η3+ 2ηu− 2ux)]dxdt

+[(−uxx+ηux−η2u− 2u2+ η2+ 2u)2 + (η3+ 2ηu− 2ux)
2]dt2, η = const.

III. Generalized modified Korteweg-de Vries equation (MKdV G-equation):

ut =
(
1 +K(x, t) +

3

2
u2
)
ux + uxxx,

generating metric:

ds2 = η2dx2 + 2η
(
η
u2

2
+ η3

)
dxdt+

[
η2u2

x +
(
η
u2

2
+ η3

)2]
dt2, η = const

(MKdV net).

IV. Generalized Burgers equation (Burgers G-equation):

ut = (1 +K(x, t) + u) · ux + uxx,

generating metric:

ds2 =
(u2

4
+ η2

)
dx2 + 2

[
η2

u

2
+

u

4

(u2

2
+ ux

)]
dxdt

+

[(u2

4
+

ux

2

)2
+ η2

u2

4

]
dt2, η = const

(Burgers net).

V. Generalized Liouville equation (G-Liouville equation):

a) elliptic:
Δ2u = −K(x, t) eu,

generating metric:

ds2 =
eu

2
(dx2 + dt2)

(elliptic Liouville net – isothermal coordinate net).

b) hyperbolic:
uxt = −K(x, t) eu,

generating metric:

ds2 = (u2
x + η2)dx2 + 2ηeudxdt+ e2udt2

(hyperbolic Liouville set).
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VI. Generalized sinh-Gordon equation (sinh-Gordon G-equation):

a) elliptic:
Δ2u = −K(x, t) sinhu,

generating metric:

ds2 = cosh2
u

2
dx2 + sinh2

u

2
dt2.

b) hyperbolic:
uxt = −K(x, t) sinhu,

generating metric:

ds2 = (u2
x + η2)dx2 + 2η coshu dxdt+ cosh2 u dt2.

VII. Generalized equation generated by a “semi-geodesic” metric:

yxx +K(x, t)y(x) = 0,

generating metric:
ds2 = dx2 + y2(x)dt2

(semi-geodesic coordinate net).

The geometric class of the equations listed above awaits addition of new
model equations of mathematical physics together with the generating metrics
recovered for them.



Chapter 5

Non-Euclidean phase spaces.
Discrete nets on the
Lobachevsky plane and
numerical integration
algorithms for Λ2-equations

In this chapter we apply the geometric Gaussian formalism for nonlinear equations
of theoretical physics presented in Chapter 4 to the theory of difference methods for
the numerical integration of differential equations. The first part of the chapter (§§
5.1. and 5.2) is devoted to introducing the concept of non-Euclidean phase spaces ,
which are nonlinear analogs (with nontrivial curvature) of the phase spaces of
classical mechanics, statistical physics, and of the Minkowski space of the special
theory of relativity.

At the foundation of the concept of non-Euclidean phase spaces lies the prin-
ciple of identical correspondence of the metric of the phase space and the metric
generated by a model G- or Λ2-equation. The fact that non-Euclidean phase spaces
have nontrivial curvature gives rise in them of singularities, which acquire the phys-
ical meaning of attractors and which determine the behavior of regular trajectories.
This in turn allows us to formulate general principles governing the evolution of
physical systems described by G- and Λ2-equations. Figuratively speaking, the
phase spaces we have in mind are a kind of “curvilinear (non-Euclidean) projector
screens”, on which the evolution of the physical process under study is displayed in
a regular manner. In view of the specific features of the approaches used therein,
the material of the first part of this chapter can be said to originate in the methods
of theoretical physics.

In the second part of the chapter we propose, based on the elaboration of
the technique of discrete coordinate nets on the Lobachevsky plane, a geometric
algorithm for the numerical integration of Λ2-equations. The implementation of
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this approach is connected exclusively with the planimetric analysis (in the setting
of hyperbolic geometry) of the aforementioned piecewise-geodesic discrete nets on
the Λ2-plane, which in the limit pass into a smooth coordinate net that generates
the Λ2-equation under study. The sough-for solution of the problem at hand is
computed as the corresponding characteristic of the limit net. The implementation
of the method is exemplified on the sine-Gordon equation, for which the algorithm
of numerical integration requires the study of a discrete rhombic Chebyshev net
on the Λ2-plane.

5.1 Non-Euclidean phase spaces. General principles of
the evolution of physical systems

5.1.1 Introductory remarks

In classical mechanics, statistical physics, special theory of relativity, and other
branches of physics, it turned out that in order to provide a transparent, intu-
itive representation of the evolution of the modeled systems and the dynamics of
physical processes it is effective to use geometric representations of the parametric
plane, phase space, space-time, and so on [18, 106].

These already traditional representations rest upon the idea of using as “pro-
jection screens” “flat objects” in the Euclidean space EN and the pseudo-Euclidean

space E
L,1
L+1 (or, more precisely, zero-curvature spaces, or individual “fragments”

thereof).
Let us sketch the main “steps” of the general methodology discussed here.

The “time evolution” of a physical process Π is specified in the phase space Φ by
a vector field −→a (Φ). Namely, to each state D(q1, . . . , qm) of the physical system
under investigation (i.e., to each finite set of generalized variables qi) one associates
a point Q in phase space:

D(q1, . . . , qm) �→ Q ∈ Φ, dimΦ = m.

Accordingly, to a change in the state of the system will correspond a motion of
the point Q along some curve l : Q ∈ l ⊂ Φ, called phase trajectory. The tangent
vector −→a to the curve l characterizes the speed at which the state of the system
changes.

The classical methodology of phase spaces used in theoretical physics is con-
nected with the consideration of ordinary (Euclidean) spaces, in which the phase
trajectories are “placed”. In this section we will introduce the notion of non-
Euclidean phase spaces (N-EPhS) as spaces that encode the metric nature of the
differential equations governing the physical systems under investigation. The non-
triviality of the curvature of N-EPhS presupposes that they exhibit singularities,
which in turn determine the character of the behavior and structure of a phase
trajectory: the phase space is divided by the singularities it contains into a collec-
tion of regular “pieces” (domains of the phase space), onto each of which there is
mapped one of the variants of autonomous evolution of the physical phenomenon.
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5.1.2 The notion of non-Euclidean phase space

The notion of non-Euclidean phase spaces is based on the principle asserting that
the metric of the phase space and the metric generating the G- or Λ2-equation that
describes the physical process under investigation coincide ([85, 86, 91]).

Indeed, suppose that the physical process Π is “governed” by some G-equa-
tion of the type (4.1.4):

Π: F [u] = 0, (5.1.1)

and moreover

(ds2∗)
G�−→ {F [u] = 0}, (5.1.2)

i.e., the metric ds2∗ generates the G-equation (5.1.1).
Then in order to describe the system (5.1.1), (5.1.2) we choose a phase space

Φ that carries the metric (ds2∗) (5.1.2):

Π: Φ = Φ[ds2∗]. (5.1.3)

It is clear that the geometric character of the behavior of the phase trajectory
l(Π) ⊂ Φ[ds2∗], which describes the evolution of the physical process, will be then
described in the framework of the intrinsic geometry of the phase space Φ[ds2∗].

Let us consider the notion of non-Euclidean phase spaces in application to
models of physical phenomena described by G- and Λ2-equations of mathematical
physics (see Chapter 4). By their physical meaning, the G- and Λ2-equations
are (1+1)-equations of the type (4.1.4) for a function u(x, t), i.e., equations in
which the independent variables are “separated” according to their meaning into
the “space coordinate” x and the “time” t. Because of this, the non-Euclidean
phase spaces discussed below (which have, as we mentioned before, a generalized
meaning) should i be more precisely and intuitively interpreted as “non-Euclidean
parametric projection screens” (with singularities), on which there is a globally
defined regular parametric coordinate net T (x, t) (where x is the space coordinate
and t is time). We will use such “projection screens” to regularly display the
dynamics of the physical phenomena under study.

If we consider a physical process Π described by a Λ2-equation, then the role
of the non-Euclidean phase spaces (parametric projection screens) will be played
by pseudospherical surfaces in E3. Let us study this in detail.

We address the analysis of the structure of N-EPhS of the type Φ[ds2∗], using
their transparent representation as isometrically immersed smooth manifolds M2

in the space E3, i.e., as a special type of two-dimensional surfaces S in Euclidean
space.

Recall that if some surface S, endowed with a metric (5.1.2), is given in E3 by
the radius vector −→r (x, t) ((x, t) are intrinsic coordinates on S), then for a global
regular coordinate net T (x, t) ⊂ S to be correctly defined on S it is necessary
that it be nondegenerate. The nondegeneracy property of a net manifests in the
“independence” of its coordinate lines x and t, and is geometrically given in E3

by the condition that they be not tangent to one another:

[−→rx ×−→rt] �= 0 (5.1.4)

(−→rx and −→rt are the tangent vectors to the families of coordinates lines on S).
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The points M of the surface S ⊂ E3, where the opposite of condition (5.1.4)
holds, i.e.,

[−→rx ×−→rt] = 0, (5.1.5)

are (if they exists) called the singular points (singularities) of the surface. We
denote the set of such points by

{M} = edge{Φ[ds2∗]}.
We also regard as singular the points M ∈ S at which the function −→r (x, t) fails to
have at least one of its derivatives −→rx, −→rt. “Irregularities” can also be “stretched”,
for instance, they can be irregular edges, to which there correspond on M2 en-
velopes of lines of tangency points of the coordinate lines.

As it was established in § 2.2, the singularities of the surface S[−→r (x, t)], iden-
tified by condition (5.1.5), are determined by the vanishing of the discriminant of
the metric:

W [u] = E[u] ·G[u]− F 2[u] = 0. (5.1.6)

The degeneracy condition (5.1.6) of the metric ds2∗ gives the set of singular
points of the surface (of the two-dimensional non-Euclidean phase space) Φ[ds2∗]:

edge{Φ[ds2∗]} ∼ {E[u]G[u]− F 2[u] = 0}. (5.1.7)

Now let us discuss the geometric interpretation of the physical phenomena
described by G-equations of the type (4.1.4).

Let the surface Φ[ds2∗] be the phase surface (non-Euclidean parametric
“plane”) in E3, corresponding to the formulation of problem (5.1.1)–(5.1.3). As-
suming that “globally”, on the entire surface Φ, there exists a regular net T (x, t)
of lines x, t, we take T (x, t) as coordinate net. If Φ[ds2∗] is a pseudospherical sur-
face, then it is natural to take as regular coordinate net on it the Chebyshev net
Cheb(x, t). It is important that the coordinate lines x and t of the net Cheb(x, t)
retain their regularity as space curves during the “transition” from one regular part
of the surface Φ[ds2∗] to another regular part through the singularities (irregular
edges), contiguous to them.

Further, to each possible state D(q1, q2) of the physical system under study
(in our case q1 = x, q2 = t) there corresponds on the phase surface Φ[ds2∗] one,
and only one point P (x, t) ∈ Φ[ds2∗]. Also, to the time evolution of the physical
process Π (i.e., to the change of the state of the physical system) there corresponds
a motion of point P on Φ[ds2∗] along some curve l, called phase trajectory. For
example, the analogue of the phase trajectory in the special theory of relativity is
the world line in the Minkowski space. In the representation we are considering,
the phase trajectory l is also a space curve in E3 with radius vector −→rl.

In view of their physical meaning (which endows them with content), phase
trajectories (regarded as curves on manifolds and surfaces, or as curves in space),
which arise in a big variety of branches of science, are regular lines (curves). This
fundamental property arises from the following natural fundamental requirements:

1) the time evolution of the physical process must be regular (all parameters
that reflect the state of the physical system must vary continuously);
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2) the primary requirement that the cause-effect relation must hold in the ob-
served (in particular, modeled) physical phenomenon.

Phase trajectories

 Irregular edge of 
the phase surface

    Non-Euclidean
phase surface

Figure 5.1.1. Two possible qualitatively different variants of the behavior (positioning)
of the phase trajectory l on the non-Euclidean phase surface Φ[ds2∗]

.

For this reason, the concept of non-Euclidean phase spaces must necessarily
rest upon the principle of regularity of phase trajectories .

The coordinate projection, on the t-line (“time axis”), of the “current point”
that traces the phase trajectory

P (x, t) ∈ l ⊂ Φ[ds2∗]

grows monotonically as the process Π evolves, and consequently the phase tra-
jectory l unavoidably approaches an irregular edge of the phase surface (Figure
5.1.1). However, the phase trajectory l is not allowed to intersect an irregular edge,
because that would destroy the regularity of the radius vector −→rl, which specifies
the phase trajectory in space. Note that “crossing” a singular edge in a regular
manner is analytically possible only “along the coordinate lines x or t”; however,
the phase trajectory cannot (even locally) coincide with a coordinate line, because
this would violate the determinacy (univoqueness property) of the cause-effect re-
lation of the observed process. Therefore, when the phase trajectory approaches
an irregular edge on the phase surface, it asymptotically becomes infinitesimally
close to that edge (variant 10 in Figure 5.1.1). If, however, the point P “falls” from
the very beginning on an edge of the phase surface (due to the initial conditions
taken for the given process), then the phase trajectory l traced by its motion will
at all subsequent moments of time coincide with precisely that edge (variant 20 in
Figure 5.1.1), maintaining its regularity.

Therefore, one can distinguish two possible qualitatively different variants of
“behavior” of the phase trajectory l on the non-Euclidean phase surface Φ[ds2∗]:

10. The entire phase trajectory l lies in the regular part of the phase surface
Φ[ds2∗], and as “time grows” approaches asymptotically an irregular edge.
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The coordinate projection of the “current point” P ∈ l on the coordinate
line t (“time axis”) grows monotonically (Figure 5.1.1, variant 10).

20. The phase trajectory l coincides with an irregular edge of the phase surface
Φ[ds2∗] (Figure 5.1.1, variant 20).

The properties of the geometric behavior of the phase trajectory on the phase
surfaces determine the general principle of the evolution of physical systems, which
will be formulated in the next subsection.

5.1.3 General evolution principle for physical systems described by
G-equations

In this subsection we formulate a general evolution principle for physical systems
governed by G-equations. We discuss the properties of “observable” quantities u∗
that in a real experiment correspond to analytical solutions u(x, t) of model G-
equations of mathematical physics. We exhibit invariant states of physical systems,
which are characterized by minimal loss of energy. We also list such states for a
number of well-known nonlinear equations arising in applications.

To the two variants of geometric “behavior” of the phase trajectory displayed
above there correspond in a one-to-one manner two essentially different types of
evolution of the physical phenomenon under study. These laws are expressed by
the following evolution principle.

Principle 5.1.1 (General evolution principle for physical systems described by G-
equations). Suppose that some physical process Π is described by the G-equation
(4.1.4), generated by the metric ds2∗ in (4.1.1):

Π: (ds2∗)
G�−→ {F [u] = 0}.

Then Π evolves according to one of the following possible “scenarios”:

1) If at the initial moment of time t = t0 the condition

(E[u] ·G[u]− F 2[u])
∣∣
t=t0

= 0 (5.1.8)

is satisfied, then it will be satisfied at all subsequent moments of time :

Π: (E[u] ·G[u]− F 2[u]) = 0 for t ∈ (t0,+∞). (5.1.9)

2) If at the initial moment of time t = t0

(E[u] ·G[u]− F 2[u])
∣∣
t=t0

�= 0, (5.1.10)

then as time varies the physical system will asymptotically and monotonically
stabilize to the state (5.1.8):

Π: (E[u] ·G[u]− F 2[u])→ 0 as t→ +∞. (5.1.11)
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The state of the system described in Assertion 1) of Principle 5.1.1 will be
called invariant state of the system.

Note that Assertion 1 of Principle 5.1.1 corresponds to variant 20 (Figure
5.1.1) of behavior of the phase trajectory on the NEPhS, while Assertion 2 corre-
sponds to variant 10 (Figure 5.1.1).

Before we turn to examples of physical phenomena, let us explain the meaning
of some of the notions used in the methodology of non-Euclidean phase spaces.

The specifics of the interpretation of a physical process are connected with
the preliminary choice of a system {u∗} of quantities that can be observed in an
experiment (or in a thought experiment). Note that, in general, differences may
exists between an analytical solution u(x, t) of a model G-equation and the cor-
responding real, experimentally observable quantity u∗. Such differences between
u∗ and u(x, t) may be connected with the presence of an additional constraint

xobs = g(t) (5.1.12)

on the solution of the G-equation, imposed by the observer, which arises due to
the need of a clear representation of the process Π, the specifics of the experiment
being performed, etc. Generally speaking, the appearance of a constraint of the
form (5.1.12) in some concrete physical phenomenon has its own specific roots in
the particular features of the mathematical model used, and will be traced back to
them it separately in each of the examples considered below. Here we only mention
that the presence of a constraint (5.1.12) is often explained by the need to select an
“affixment”, i.e., a characteristic reference point of the studied (observed) object.
After such a selection is made, the observation is carried out is some distinguished
sufficiently small domain (we assume that we are dealing with a point-like model).
For instance, to observe the propagation of a localized bell-shaped pulse (profile),
typical for solitary waves, it is advisable to choose as affixment the peak point
of the pulse (Figure 5.1.2). In this case the meaning of the constraint of type
(5.1.12) is that it represents the law of motion of the pulse’s peak. The indicated
choice is also convenient because the peak point of the pulse is connected with
its amplitude, which usually needs also to be analyzed. The introduction of an
“affixment” is a standard tool used in the construction of dynamical models of
physical processes.1

Observer
Affixment

obs

Figure 5.1.2. Choice of an affixment for carrying out the observations

1One can also consider a set (system) of “affixments”, to which on the NEPhS will correspond
a certain associated collection of phase trajectories.
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The presence in an experiment (trial) of a constraint (5.1.12) for the solution
u(x, t) of the model equation at hand is by its nature analogous to the formulation
and treatment of a conditional extremum problem in classical analysis, where we
are interested in the behavior of a function of several variables in a “slice” defined
by the constraint.

In a real experiment one “measures” an observable quantity u∗:

u∗ = u(x, t)
∣∣
(x,t)∈l; l : xobs = g(t). (5.1.13)

In general, problems of experimental observability in phenomena referred to in
Principle 5.1.1 are very closely related with the problem of isometric immersion
of two-dimensional smooth manifolds and, in particular, parts of the Lobachevsky
plane Λ2, in the Euclidean space E3. That is, such phenomena are in a certain
sense related, through their deep content, to the laws of non-Euclidean geometry.

Now let us go back to analyzing what Principle 5.1.1 says. A state of the
system defined by conditions (5.1.8) and (5.1.9) will be called, as indicated above,
an invariant state, and will be denoted by

inv{Π,F [u(x, t)] = 0}.
Obviously,

inv{Π,F [u] = 0} ∼ edge{Φ[ds2∗],F [u] = 0} ∼ {E[u]G[u]− F 2[u] = 0}. (5.1.14)

In Table 5.1.1. we list the invariant states of physical systems described by a
number of well-known nonlinear Λ2-equations.

By Principle 5.1.1, the corresponding physical systems either are in one of
their invariant states, or stabilize to it. Assertion 1 of Principle 5.1.1 can be inter-
preted as a conservation law of the observed physical quantity.

Let us illustrate Principle 5.1.1 on the example of propagation of waves on
shallow water [51]. Consider waves on the surface of a fluid, assuming that their
maximal disturbance amplitude α is small compared with the depth of the fluid
h: ε = α

h << 1, and their disturbance length (wave length) λ0 is large with respect

to h: δ = h
λ0

<< 1. The investigation of such a model by methods of perturbation

theory (with the role of small parameters played here by ε and δ) leads to the
Korteweg-de Vries equation [51], in which the unknown function u has the meaning
of the wave amplitude. In accordance with (5.1.14), the invariant states of this
system are defined as

inv{Π, ut + 6uux + uxxx = 0} ∼ {u∗x = 0}.
Consequently, by Assertion 2) of Principle 5.1.1, the process of propagation of
shallow water waves must stabilize to the state u∗x = 0 (i.e., u∗ = const), which
corresponds to the damping of such waves, observed in practice. Assertion 1) of
Principle 5.1.1 describes in this model the rest (unperturbed) state of the fluid’s
surface.

A wide spectrum of phenomena are governed by the sine-Gordon equation.
Below, in § 5.2, for this Λ2-equation we will formulate the nπ-invariance princi-
ple, which concretizes the content of Principle 5.1.1 and describes in a unified
“geometric” way a large class of phenomena of different physical nature.
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Table 5.1.1. Λ2-equations and invariant states of physical systems

Λ2-equation
invariant state of
physical system,

observable quantity u∗

1. sine-Gordon equation
uxt = sin u

u∗ = nπ, n an integer

2. Korteweg-de Vries equation
ut + 6uux + uxxx = 0

u∗
x = 0

3. Modified Korteweg-de Vries equation

ut +
3

2
u2ux + uxxx = 0

u∗
x = 0

4. Burgers equation
ut + uux + uxx = 0

u∗
x = 0

5. Hyperbolic Liouville equation
uxt = eu

u∗
x = 0

6. Elliptic Liouville equation
Δ2u = eu

u∗ → −∞
7. Hyperbolic sinh-Gordon equation

uxt = sinh u
u∗
x = 0

8. Elliptic sinh-Gordon equation
Δ2u = sinhu

u∗ = 0

5.2 The nπ-Invariance Principle. The sine-Gordon
equation as a model equation in physics

In this section we formulate the evolutionary nπ-Invariance Principle for physical
phenomena described by the sine-Gordon equation, and then examine on examples
of physical processes the rules that follow from the “action” of the fundamental
statements of this principle [80, 85, 86].

5.2.1 The nπ-Invariance Principle

The generalized content of Principle 5.1.1 is transparently and effectively real-
ized for phenomena described by the sine-Gordon equation; in this case Principle
5.1.1 is re-expressed as the Principle 5.2.1 below, the evolutionary nπ-Invariance
Principle [86].2

Principle 5.2.1 (nπ-Invariance Principle). Suppose some physical process Π is
modeled by the sine-Gordon equation. Then the observable physical quantity u∗,
corresponding to the solution u of the sine-Gordon equation, obeys the following
rules:

2Specifically, the nπ-Invariance Principle and the “geometric” consideration of the corre-
sponding physical processes preceded the formulation of the general evolutionary Principle 5.1.1.
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I. The values u∗ = nπ (with n an integer) are invariants of the physical process
Π.

In other words, if at the initial moment of time t = t0 the observable
quantity has the value u∗ = nπ, then it maintains that value at all subsequent
moments of time (t > t0).

II. If at some moment of time u∗ �= nπ (with n an integer), then as time passes
the observable quantity tends asymptotically and monotonically to a value
that is a multiple of π, and does it in such a way that its variation during
the course of the entire process is less than π.

According to Assertion I of Principle 5.2.1, u∗ can assume the value nπ only
in the case when the observed quantity u∗ is identically equal to nπ for the entire
duration of the process (state of nπ-invariance). The values u∗ = nπ (with n an
integer) are quantized energetically-stable states of the system.

From the positions of theoretical physics, Assertion II of Principle 5.2.1 means
the “monotone stabilization” of the physical system to an energetically stable
state.

The general qualitative character of the variation of the observable quantity
u∗ in accordance with Principle 5.2.1 is displayed in Figure 5.2.1.

Figure 5.2.1. General qualitative character of the variation of the observable quantity u∗

in phenomena described by the sine-Gordon equation

Before we embark on a detailed consideration of examples of physical phe-
nomena, emphasizing the universality of the Principle 5.2.1 formulated above, let
us list a number of physical laws that correspond to the nπ-Invariance Principle.

In well-known phenomena the state of nπ-invariance (Assertion I of Principle
5.2.1) is expressed by the following laws: 1) The self-induced transparency effect,
which arises in the propagation of ultrashort pulses in two-level resonant media
(propagation through a medium without loss of energy of pulses with profiles
whose area is a multiple of π) [83, 169]. 2) Equilibrium positions of atoms in crystal
lattices [23, 47]. 3) Meson vacuum states [182]. 4) Topologically invariant states
of elementary particles [156]. 5) Stable orientation states of the magnetization
vector in a ferromagnetic material with respect to an external magnetic field [157].
Overall, the state of nπ-invariance realizes a stable equilibrium state of the physical
system.
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Assertion II of Principle 5.2.1 “unifies” such physical laws as: 1) Law of
area change of an ultrashort pulse (“area theorem”) [110, 169]. 2) Instability of
intermediate positions of atoms in crystals, discrete character of dislocations [47].
3) Relaxation of excited states of elementary particles to a vacuum state [182].
4) The damping of current in a Josephson junction [8]. 5) The rotation of the
magnetization vector in a “180◦ Bloch wall” [157].

We now turn to the consideration of physical processes described by the
sine-Gordon equation and, accordingly, “governed” by the nπ-Invariance Princi-
ple (Principle 5.2.1). In a certain sense such phenomena admit their own inter-
pretation “through the prism” of hyperbolic non-Euclidean geometry. The main
result of such a geometric “view” is to exhibit the quantized nπ-states (states
of nπ-invariance) of physical systems, which reflect in fundamental manner the
impossibility of realizing the complete Lobachevsky plane Λ2 in the Euclidean
space E3.

5.2.2 Bloch wall dynamics in ferromagnetic materials

Let us consider a ferromagnetic crystal that has one axis of easy magnetization,
oriented along the x3-axis of the Cartesian coordinate system x1, x2, x3 (Figure

5.2.2). Under the action of an external magnetic fields
−→
H directed along the easy

magnetization axis, the ferromagnetic crystal acquires an ordered domain structure
(a domain is a region of the ferromagnetic material in all points of which the

magnetization vector
−→
J is aligned in the same direction [23, 157]).

A specific feature of the influence of a field
−→
H directed along the easy mag-

netization axis x3 is that at each point of the domain the vector
−→
J becomes

parallel to the x3-axis and thus acquires a unique orientation within the domain.
Globally, in the crystal the magnetization vector can take two possible (opposite)
orientations. Two neighboring domains (domains with opposite orientations of the
magnetization vectors) are separated by a so-called Bloch wall , a thin layer (of

∼ 200
◦
A width), inside of which the magnetization vector

−→
J rotates to pass from

one stationary state to the other (Figure 5.2.2). The change (rotation) of the vec-

tor
−→
J “in the width” of the domain wall when one passes between neighboring

domains takes place in a continuous fashion.

Under the action of the external magnetic field
−→
H , each domain tends to

change its own configuration (as a result of the re-orientation of the magnetiza-
tion vectors), and accordingly there is a tendency to motion (displacement) of
the Bloch wall as a transition region between domains. The domains in which
the magnetic moments are in an energetically more advantageous position in the

magnetic field
−→
H tend to increase their volume at the expense of the domains in

which the magnetic moments have a less advantageous direction (i.e., they devi-

ate significantly from the direction of the field
−→
H ). The displacement of magnetic

walls is accompanied by the rotation of the magnetic moments inside the walls
themselves (Figure 5.2.2).

A Bloch wall can be regarded as a local structure, inside which the transition

from one direction of the magnetization vector
−→
J to the other (opposite) direction
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Domain 1
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 wall
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Figure 5.2.2. Orientation of the magnetization vector in the “domain–Bloch wall–domain
system”

is governed by the principle of minimum energy. To describe the dynamics of a
Bloch wall, it is convenient to use as characteristic parameter of the process the

angle Θ(x1, t) that the projection of the vector
−→
J (x1) on the (x2, x3)-plane makes

with the x3-axis. Figure 5.2.3 shows the “instantaneous” position of the magneti-

zation vector
−→
J at an interior point (x0

1, x
0
2, x

0
3) of the ferromagnetic crystal. The

computation of the Bloch wall dynamics, carried out on the basis of a general
variational principle, leads to a sine-Gordon equation of the form (see [157])

∂2Θ

∂x2
1

− ∂2Θ

∂t2
= sinΘ. (5.2.1)

The variation of the angle Θ(x1, t) in (5.2.1) depends on the exchange energy
(the first term in the left-hand side) and the energy of anisotropy (the right-hand
side).

Let us address now the geometric interpretation of this phenomenon. The

instantaneous distribution of the vector field
−→
J in the ferromagnetic material

(Figure 5.2.3) will be characterized by the angle Θ, which varies monotonically
from 0 to π (within the width of the Bloch wall); this law corresponds exactly to
Assertion II of Principle 5.2.1. In the case where the angle satisfies

Θ(D̃)
∣∣
t=t0

= 0
(
or Θ(D̃)

∣∣
t=t0

= π
)
, (5.2.2)

the inner structure in the corresponding localized region of the ferromagnet (the

domain D̃) does not change. In the model considered here the condition (5.2.2)
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Figure 5.2.3

determines the state of nπ-invariance. The domain-separating wall with the afore-

mentioned character of the behavior of the magnetization vector
−→
J is a typical

object of the physics of domain walls, called a “180◦-Bloch wall”; when one passes

through such a wall the magnetization vector
−→
J rotates by 180◦ (by π).

Therefore, the character of the variation of the magnetization vector
−→
J in

the vicinity of a Bloch wall is completely regulated by the assertions of Principle
5.2.1 and amounts to the following:

1) Outside a Bloch wall the magnetization vector
−→
J is aligned with the external

magnetic field (two opposite directions are allowed).

2) Within a Bloch wall the vector
−→
J rotates in such a way that the monotone

variation of its orientation angle Θ does not exceed π.

5.2.3 Dislocations in crystals

Dislocations (linear defects in a crystal structure) represent the break in the regu-
larity of the crystal lattice in directions in which two domains of the crystal that
are displaced relative to one another are contiguous [23, 47].

For a rectilinear boundary dislocation, the action of the undisplaced (lower)
part of the crystal on the displaced atoms of the upper layer distributed along
the dislocation axis (Figure 5.2.4) can be described by means of a Hamiltonian
which includes the interaction in the form of a periodic potential. As a model of
dislocation we consider a chain of identical atoms {An} of mass m, shifted by a
respective distance ϕn relative to the equilibrium positions of the atoms in the
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Mechanical simulator of the model of dislocations in crystals

a

b

upper layer

        lower
nonperturbed
        layer

One-dimensional model of rec�linear disloca�ons in crystals

Figure 5.2.4

crystal, which are represented by a second (lower) chain of atoms with the period
a of the crystal lattice (Figure 5.2.4, a, b).

The Hamiltonian of the system considered is given by

H =
∑ (mϕ̇2

n + κ(ϕn − ϕn−1)
2 + U(ϕn))

2
, κ = const, (5.2.3)

where ϕn denotes the local deviation of the nth atom of the upper chain from the
equilibrium state, and U(ϕn) is the potential with which the nonperturbed (lower)
chain acts on the nth atom of the upper chain

U(ϕn) = U0

[
1− cos

(
2πϕn

a

)]
.

The Hamiltonian equations for (5.2.3) read

m
d2ϕn

dt2
+ κ(2ϕn − ϕn−1 − ϕn+1) +

U0π

a
sin

(
2πϕn

a

)
= 0. (5.2.4)

Now let us pass in (5.2.4) to the continual approximation:

ϕn(t) �→ ϕ(x, t),

and simultaneously introduce the function

u(x, t) =
2πϕn

a
. (5.2.5)
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This leads to the sine-Gordon equation [23, 47]

uxx − 1

c20
utt =

1

λ2
0

sinu, (5.2.6)

where c0 and λ0 are certain characteristic constants that arise in the model.
Let us analyze the dislocation phenomenon in crystals, described by equation

(5.2.6), in the context of the Principle 5.2.1 formulated above. If at the initial time
t = t0 the observable quantity u∗ satisfies

u∗(t = t0) = kπ, k an integer, (5.2.7)

then this value of u∗, a multiple of π, is preserved at all subsequent moments of
time. Condition (5.2.7) corresponds to the fact that in the present case the mag-
nitude of the deviation ϕn of the n-th atom from the equilibrium position (see
(5.2.5)) can only take multiples of a as values. To this corresponds the nonper-
turbed uniform discrete distribution of atoms in the crystal lattice. Such a stable
set realizes a state of nπ-invariance (Assertion I of Principle 5.2.1).

The tendency
u∗ → kπ as t→∞,

which follows Assertion II of Principle 5.2.1, corresponds to the (limit state of)
stabilization of the crystal lattice:

ϕn → k

2
· a as t→∞. (5.2.8)

By (5.2.8), the crystal structure stabilizes asymptotically (in time) to the
original equilibrium state. “Weak” local perturbations of the equilibrium state of
atoms stabilize to the original state, whereas “large” perturbations can lead to
a “chain-like” replacement of atoms in the upper chain of atoms (by a discrete
successive “shift”), which incidentally keeps the general structure of their arrange-
ment unchanged.

5.2.4 Propagation of ultrashort pulses in two-level resonant media

In a two-level resonant medium atoms can be in two energy states — the bottom
(ground) state, with energy E1, and the top one, with energy E2 (E2 > E1) (Figure
5.2.5). Such a two-level system is in the modern theory of resonant interaction of
radiation with matter one of the fundamental models describing real quantum
objects (atoms, molecules), and with its help one can elaborate rather complete
representations for many problem of quantum electronics, nonlinear optics, laser
spectroscopy [83, 169].

The propagation of ultrashort electromagnetic pulses of 10−9–10−12 sec du-
ration in a two-level resonance medium has a number of specific peculiarities:
models based on linear dispersion theory (for small intensities), or on radiative
transfer equations for velocities (non-coherent interaction) are not applicable to
it. A typical special feature of the pulse propagation process under investigation
is that relaxation phenomena (collisions, spontaneous radiation) do not manage
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Figure 5.2.5. Propagation of an ultrashort pulse in a two-level resonant medium

to destroy the phase memory of the two-level system, and consequently the polar-
ization of the medium becomes a nonlinear function of the amplitude and phase
of the propagating ultrashort pulse.

When an ultrashort pulse propagates in a two-level resonant medium, the
atoms of the medium that lie in a lower energy state E1 (Figure 5.2.5 a) pass,
under the action of the leading edge of the pulse, into a higher state with energy
E2, as a result of which the medium becomes completely inverted (Figure 5.2.5 b).
Under the action of the remaining part of the pulse, the atoms that passed in the
upper (unstable) energy state are induced to radiate, and the energy they acquired
before is returned to the propagating pulse (Figure 5.2.5 c). Consequently, the
energy injected in the two-level quantum system is returned, as a result of which
when the pulse exits the system its initial shape and intensity are restored. Such a
phenomenon can occur because the duration of the considered pulse is shorter than
the relaxation time, hence the inversion of the medium and the subsequent induced
radiation occur faster than the relaxation processes that could have destroyed the
coherence of the interaction.

To model the process of propagation of an ultrashort pulse in a two-level
resonant medium we must write the Maxwell equations to describe the electro-
magnetic pulse and consider a quantum (two-level) ensemble of atoms to describe
the medium.

Indeed, under the action of an electromagnetic wave

E(x, t) = E(x, t) cos(ωt− kx)

passing through a medium, the latter acquires the specific polarization

P (x, t) = P(x, t) sin(ωt− kx).

The state of such a physical system is determined by the system of equations [83,
169]
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∂E
∂x

+
1

c

∂E
∂t

= aP , a =
2πω

�c
n0d

2,

∂P
∂t

+
1

T1
P = EN ,

∂N
∂t

+
1

T2
N = −EP ,

where n0 is the density of atoms, N is the normalized density of excited atoms,
and T1 and T2 are the longitudinal and transversal relaxations times of the excited
states. If the duration τ0 of the pulse satisfies

τ0 << T1, τ0 << T2

(the so-called case of absence of phase modulation), then the system of equations
given above simplifies to

∂P
∂t

= EN ,

∂N
∂t

= −EN ,

∂E
∂x

+
1

c

∂E
∂t

= aP ,

and the substitution

ϕ(x, t) =

t∫
−∞

E(x, t)dt

reduces it to the sine-Gordon equation for the function ϕ(x, t) [83, 169]:

ϕxt = sinϕ.

At the same time, if we introduce the quantity

ϑ(x) =

∞∫
−∞

E(x, t)dt,

which is called the pulse area and approximates ϕ(x, t),

ϕ � ϑ, t ∈ (t∗,∞),

then the following relation, which is known as the “area theorem”, holds true [83,
110]:

dϑ

dx
= −K sinϑ, K = const. (5.2.9)

In accordance with the “area theorem”, when t→∞, the area ϑ of the ultrashort
pulse tends asymptotically to values that are multiples of π, whenever ϑ(t = t0) �=
nπ (n an integer). Also according to this theorem, if at the initial moment of time
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t0 it holds that ϑ(t = t0) = nπ (the initial value of the area is a multiple of π),
then the same remains true during the entire subsequent evolution of the process:

ϑ(t > t0) = nπ.

In experiments the pulse area ϑ is the observable variable: u∗ = ϑ. The
character of the variation of ϑ = u∗ by virtue of equation (5.2.9) is identical with
that stated by the general laws of variation of an observable quantity, shown in
Figure 5.2.1 for phenomena governed by the nπ-Invariance Principle (Principle
5.2.1).

The conservation of area of ultrashort pulses was discovered experimentally
[83, 172], and became known as the self-induced transparency effect — the phe-
nomenon of passage of an ultrashort pulse through a resonant medium without
loss of energy. Within the setting of the NEPhS concept, the area theorem (for
u∗ ≡ ϑ) is explained theoretically precisely by Principle 5.2.1.

To complete this section, we re-emphasize the “geometric component” of the
physical laws discussed above. The dependence depicted in Figure 5.2.1 completely
and exactly reflects the contents of Principle 5.2.1 for the laws governing the change
of an observable quantity u∗ in all the phenomena described by the sine-Gordon
equation. Geometrically, such a law is a natural expression of the fact that the
whole Lobachevsky plane Λ2 cannot be immersed in the Euclidean space E3 — the
space that “hosts” the model of the physical process itself, governed by the sine-
Gordon equation — a canonical relation in non-Euclidean hyperbolic geometry.
Unavoidable attributes of admissible isometric immersions of individual domains
of the plane Λ2 in E3 are the singularities on the resulting pseudospherical surfaces,
which correspond to the nπ level lines (with n an integer) of solutions of the sine-
Gordon equation and play the role of special stationary (quantized) states of the
modeled physical systems.

5.3 Discrete nets on the Lobachevsky plane and an
algorithm for the numerical integration of
Λ2-equations

In this section we present a geometric approach to the elaboration of numerical
algorithms for integrating nonlinear equations of mathematical physics, based on
the construction and subsequent analysis, by methods of non-Euclidean geometry,
of discrete (difference) net analogs of the problems under study on manifolds
of non-zero curvature (first and foremost, on the Lobachevsky plane) [88]. The
arsenal of methods of the approach developed here relies on the concept of Λ2-
representation for partial differential equations, which associates these equations
with metrics of constant negative curvature. Based on the study of a discrete
rhombic Chebyshev net on the Lobachevsky plane, we present a direct geometric
algorithm for integrating the Darboux problem for the sine-Gordon equation. We
also discuss various issues that arise in the context of the problems considered
here.

The notion of partial differential equations of Lobachevsky class (Λ2-class)
introduced in the works [77, 185, 186] brings together the equations that admit
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a unified geometric interpretation in the setting of two-dimensional Lobachevsky
geometry: every equation of Λ2-class (Λ2-equation) is generated by a corresponding
pseudospherical metric. In this section we present a geometric method for the
numerical integration of Λ2-equations that is based on the modeling of discrete
nets on the Lobachevsky plane Λ2 associated with the pseudospherical metrics that
generate the equations under study. The realization of the geometric algorithms
presented here is connected exclusively with the planimetric analysis of piecewise-
geodesic nets on the hyperbolic plane. On the example of the sine-Gordon equation
we examine in detail the implementation of the algorithm, which is connected with
the study of a discrete rhombic Chebyshev net on the plane Λ2.

It is important to point out that the difference (discrete) approximation ob-
tained below for the given problem is, generally speaking, derived directly from
the geometry of the corresponding generating coordinate nets on a non-Euclidean
smooth manifold and its construction does not require the application of the stan-
dard stencils [104] for the approximation of derivatives used in the theory of dif-
ference schemes on the standard Euclidean plane. The geometric approach to the
integration of nonlinear equations presented here indicates that it is possible to
develop a general theory of difference methods that is based on the construction
and study of discrete analogs of problems of mathematical physics on manifolds
of non-zero curvature.

5.3.1 Λ2-representation of equations and a general scheme for the
geometric construction of algorithms for their numerical in-
tegration

We begin this subsection by briefly recalling the basic positions of the theory of
Λ2-representations that are needed below (see also Chapter 4).

Suppose we are given a differential equation

f [u(x, t)] = 0, u(x, t) ∈ Cn(R2(x, t)), (5.3.1)

that belongs to the Lobachevsky class, i.e., is associated to a certain generating
pseudospherical Λ2-metric ds2[u(x, t)] (metric of Gaussian curvature K ≡ −1),
defined on each solution of this equation:

ds2 = E[u(x, t)]dx2 + 2F [u(x, t)]dxdt +G[u(x, t)]dt2. (5.3.2)

We write the Λ2-representation of equation (5.3.1) (the set of coefficients of
the Λ2-metric that generates it) as

Λ2[f [u(x, t)] = 0] ≡ {E[u(x, t)], F [u(x, t)], G[u(x, t)]}.
The fact that the equation possesses the above geometric interpretation (Λ2-

representation) allows us to pass from the investigation of equation (5.3.1) itself
to the analysis of its geometric image, the coordinate net T (x, t) ⊂ Λ associated
with the metric (5.3.2). We remark that if the net T (x, t) ⊂ Λ2, which through
the metric ds2[u(x, t)] carries the characteristics of equation (5.3.1), represents
on Λ2 an independent geometric object, which can be studied exclusively in the
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framework of Lobachevsky planimetry. Then the solution u(x, t) of the original
equation is constructed as a geometric characteristic of the generating net T (x, t).

Generally, the proposed geometric approach to the integration of Λ2-equa-
tions is implemented according to the following scheme:

i) Construct, for the given differential equation (5.3.1), a metric of the type
(5.3.2) that generates it (i.e., find a Λ2-representation).3

ii) Choose the key geometric characteristics of the generating coordinate net
T (x, t), which give the solution of the original equation (5.3.1) (choose the
k-characteristics).4

iii) For the net T (x, t)⊂Λ2 introduce a discrete analogue T d⊂Λ2, i.e., a discrete
net that “inherits” the k-characteristics of the original net.

iv) Derive algorithmic (recurrent) net relations in the net T d: compute a discrete
analog ud of the solution u(x, t) at the nodes of the net T d.

v) Investigate the convergence of the “discrete” algorithm obtained: prove the
convergence of the sequence of solutions {ud} of the discrete problem to the
solution u of the original Λ2-equation when the typical linear dimension a of
the cell of the discrete net becomes infinitesimally small:

ud → u, T d → T when a→ 0.

5.3.2 Discrete rhombic Chebyshev net. The “discrete Darboux
problem” for the sine-Gordon equation

Let us now implement the general geometric approach to the numerical integration
of Λ2-equations on the example of the sine-Gordon equation

uxt = sinu. (5.3.3)

With the sine-Gordon equation there is associated the Λ2-metric of the
Chebyshev net that generates it:

ds2 = dx2 + 2 cosu dxdt+ dt2. (5.3.4)

The metric (5.3.4) is connected on the plane Λ2 with the Chebyshev coordinate
net Cheb(x, t). A characteristic property of the Chebyshev net is that the lengths
of opposite sides in an arbitrary coordinate quadrilateral are equal (see § 2.5). We
choose this property as a k-characteristic of the net Cheb(x, t). Recall that the
solution u(x, t) of the equation (5.3.3) has the meaning of the net angle of the
Chebyshev net Cheb(x, t).

Let us also reproduce here the standard formulation of the Darboux problem
(3.6.1), (3.6.2) for the sine-Gordon equation, considered in detail in § 3.6:

uxt = sinu,

u(x, 0) = ϕ(x), u(0, t) = ψ(t), ϕ(0) = ψ(0).
(5.3.5)
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Figure 5.3.1. Formulation of the Darboux problem in the Euclidean plane E2

Figure 5.3.1 explains how the formulation of the Darboux problem (5.3.5)
is interpreted in the parameter plane E2(x, t) (the Euclidean plane); here T0(x, t)
denotes the uniform net on E2(x, t). The functions ϕ(x) and ψ(t) can be considered
as initial data for the sought-for solution u(x, t) on the characteristics of the sine-
Gordon equation. Or, geometrically, as initial values of the net angle of the net
Cheb(x, t) on its generators (x : 0) and (0 : t), which satisfy at zero the conjugation
condition ϕ(k)(0) = ψ(k)(0), condition that guarantees the requisite smoothness of
the solution of the posed Darboux problem.

When we transfer (via the Λ2-representation for the sine-Gordon equation)
the analysis from the Euclidean plane E2(x, t) to the Lobachevsky plane Λ2(x, t):{

T0(x, t),E
2(x, t)

} −→ {Cheb(x, t),Λ2(x, t), ds2[u(x, t)]
}
,

the uniform Cartesian coordinate net T0(x, t) ⊂ E2 is mapped into the Chebyshev
net Cheb(x, t) ⊂ Λ2 (Figure 5.3.2).

Let us study on Λ2 the net T d(a) ⊂ Λ2, the discrete analog of the net
Cheb(x, t) composed of rhombuses R(a) of side a (the edges of the rhombuses
are segments of geodesics on Λ2). The fact that for any a the net T d(a) (a set
composed of rhombuses) on Λ2 exists follows from the possibility of recovering the
net from the initial data: the geometric construction of such a net from the data
of the Darboux problem (5.3.5) at each step amounts ro the standard planimetric
construction on Λ2 of a point (the vertex of the rhombus), equidistant from the
two vertices of the already available adjacent edges of the rhombus R(a) (see, e.g.,
[108]). Therefore, the object on Λ2 we need to study in connection with problem

3For example, for the modified Korteweg-de Vries equation the algorithm for recovering the
generating metric is considered in detail in § 5.4.

4For example, in the case of the sine-Gordon equation as k-characteristic one choose the net
angle, which always coincides with a solution of the equation.
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Cheb

Figure 5.3.2. Formulation of the Darboux problem in the Lobachevsky plane Λ2

(5.3.5) is the discrete net T d(a) consisting of two families of piecewise-geodesic
broken lines with generatrices lx(a) and lt(a) (Figure 5.3.3).

Our algorithmic geometric method for constructing solutions of the Darboux
problem (5.3.5) will be connected with finding the net angle u(x, t) of the net
Cheb(x, t), obtained as the limit value as a → 0 of the discretely given function
zmn, defined at the nodes of type (m,n) of the discrete rhombic net T d; the net T d

is given initially by the broken-line (piecewise-geodesic) generatrices lx(a) and lt(a)
(in the discrete net the angles will be denoted by z). Therefore, the construction
of the solution of the Darboux problem (5.3.5) reduces to the consideration of
the corresponding exclusively planimetric problem on the hyperbolic plane. The
problem (5.3.5) itself (the problem of determining the net angles of a regular
Chebyshev net) is restated in terms of the discrete net T d(a) as follows:

T d(a) =

⎧⎪⎨⎪⎩
zm,0 = ϕ(ma),

z0,n = ψ(na), m, n = 0, 1, 2, . . . ,

z0,0 = ϕ(0) = ψ(0).

(5.3.6)

In what follows we will investigate geometrically the discrete net T d(a) that
corresponds to the Darboux problem (5.3.5)

5.3.3 Recursion relations for the net angle of the discrete rhombic
Chebyshev net

Let us consider the fragment of discrete (piecewise-geodesic) net T d(a) (Figure
5.3.4) consisting of four rhombusesRkl(a) (the indices in the notation of a rhombus
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Figure 5.3.3. Piecewise-geodesic rhombic net on the plane Λ2

correspond to the smallest values of the indices of its vertices) that meet at the
(m+1, n+1)th node Am+1,n+1. We pose the problem of computing recursively the
angles zk,l of the net T

d(a) from their initial values on the broken-line generatrices
lx(a) and lt(a).

On the Lobachevsky plane, the magnitude of each full angle is equal to 2π,
hence

zm+1,n+1 = 2π − (γ1 + γ2 + γ3), (5.3.7)

where γ1 = ∠Am+1,n+2Am+1,n+1Am,n+1, γ2 = ∠Am,n+1Am+1,n+1Am+1,n,
γ3 = ∠Am+1,nAm+1,n+1Am+2,n+1.

Let us calculate the angles γ1 and γ3 referring to the rhombuses Rm,n+1 and
Rm+1,n, respectively. To this end let us state the cosine and sine theorems (laws)
for an arbitrary geodesic triangle in the hyperbolic plane Λ2, with edges a, b, and
c, and opposite angles α, β, and γ [108]:

cosha = cosh b cosh c− sinh b sinh c cosα, (5.3.8)

and
sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c
. (5.3.9)

Opposite interior angles in an arbitrary rhombus Rkl(a) on Λ2 are equal, and
the diagonals of the rhombus are the bisectors of its interior angles. Consequently,
γ2 = zm,n.

Let us apply successively the law of cosines (5.3.8) and law of sines (5.3.9)
to the triangle �Am+1,nAm+1,n+1Am+2,n ⊂ Rm+1,n:

cosh |Am+1,n+1Am+2,n| = cosh2 a− sinh2 a cos zm+1,n, (5.3.10)
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Figure 5.3.4. Characteristic fragment of the discrete rhombic net on Λ2, consisting or
four “adjacent” rhombuses with a common vertex

sin(∠Am+1,nAm+1,n+1Am+2,n)

sinh a
=

sin zm+1,n

sinh |Am+1,n+1Am+2,n| . (5.3.11)

From (5.3.10) and (5.3.11) we find that

sin(∠Am+1,nAm+1,n+1Am+2,n) =
sin zm+1,n sinh a

[(cosh2 a− sinh2 a cos zm+1,n)2 − 1]1/2
.

Using in what follows the notation Ωij :

sinΩij(zij , a) =
sin zi,j sinha

[(cosh2 a− sinh2 a cos zij)2 − 1]1/2
,

we write the angles γ1 and γ3 as

γ1 = 2Ωm,n+1,

γ3 = 2Ωm+1,n.
(5.3.12)

Returning to formula (5.3.7), we derive for the net angles in the net T d(a) the the
recursion relation

zm+1,n+1 = 2π − (zm,n + 2Ωm+1,n + 2Ωm,n+1). (5.3.13)

Formula (5.3.13) is the basic recursion relation for computing the values of
the net angle in a discrete rhombic Chebyshev net on the Lobachevsky plane.

5.3.4 Convergence of the algorithm

The relation (5.3.13) obtained above defines recursively the dependence of the
angles of the discrete net T d(a). Let us prove the convergence of the proposed al-
gorithm for constructing solutions of problem (5.3.5), (5.3.6), i.e., the convergence,
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as a → 0, of the sequence {zm,n(a)} to the exact solution u of the sine-Gordon
equation (5.3.3). Note that the recursion relation (5.3.13), which gives the values
zm,n(a) in the nodes of the net T d(a), i.e., the nodes of a stencil that lies en-
tirely on the two-dimensional manifold Λ2 of Gaussian curvature K ≡ −1, can be
interpreted as a difference scheme. Therefore, according to the general theory of
difference schemes [104], the convergence of the geometric algorithm constructed
above can be proved by establishing the approximation and stability properties of
the difference analogues (5.3.13) of problem (5.3.5)

5.3.4.1. Order of approximation. Let us estimate the order of approximation of the
difference scheme (5.3.13), obtained via a geometric analysis of the discrete net
T d(a) on the Lobachevsky plane Λ2. To this end, in the difference scheme (5.3.13)
we are using, we replace the discrete function zm,n(a) by the value of the exact
solution5 u(x, t) of the sine-Gordon equation at the (m,n) node and compute the
error with which the original equation (5.3.3) is satisfied.

Let us insert in the left-hand side of (5.3.13) the value of the solution u(x, t)
of the sine-Gordon equation (5.3.3) in the node ((m + 1), (n+ 1)), in the form of
a Taylor series expansion in powers of a in the node (m,n), up to terms of order
O(a5) inclusively (we denote the values of the function u in the node (m,n) by
u∗ = um,n):

um+1,n+1 = u∗ + u∗xa+ u∗ta+
1

2
u∗xxa

2 +
1

2
u∗tta

2 + u∗xta
2 +

1

6
u∗xxxa

3

+
1

6
u∗ttta

3 +
1

2
u∗xxta

3 +
1

2
u∗xtta

3 +
1

24
u∗xxxxa

4 +
1

24
u∗tttta

4

+
1

6
u∗xxxta

4 +
1

4
u∗xxtta

4 +
1

6
u∗xttta

4 +O(a5). (5.3.14)

Let us state the properties of the functions Ωm+1,n and Ωm,n+1 (which here-
after will be denoted by the unique symbol Ω: Ω = Ωm+1,n or Ω = Ωm,n+1) that
we need in order to analyze the right-hand side of (5.3.14).

The function Ω(z, a) is even in the argument a, and so

∂2p+1Ω

∂a2p+1

∣∣∣∣
a=0

= 0, p = 1, 2, . . . .

At the same time,

∂Ω(z, 0)

∂z
= −1

2
,

∂lΩ(z, 0)

∂zl
≡ 0, l = 2, 3, . . . .

Using the properties indicated above of the derivatives of the function Ω,
we obtain the following representations for Ωm+1,n and Ωm,n+1, which appear in
the right-hand side of equation (5.3.13), by substituting in the latter the exact

5u(x, t) ≡ z(x, t).
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solution of the sine-Gordon equation:

1) Ω(um+1,n, a) = Ω(u∗, 0) + Ωz(u
∗, 0)h1 +

1

2
Ωaa(u

∗, 0)a2 +
1

2
Ωzaa(u

∗, 0)h1a
2

+
1

4
Ωzzaa(u

∗, 0)h2
1a

2 +
1

24
Ωaaaa(u

∗, 0)a4 +O(a5), (5.3.15)

where

h1 = u∗xa+
1

2
u∗xxa

2 +
1

6
u∗xxxa

3 +
1

24
u∗xxxxa

4 +O(a5);

2) Ω(um,n+1, a) = Ω(u∗, 0) + Ωz(u
∗, 0)h2 +

1

2
Ωaa(u

∗, 0)a2 +
1

2
Ωzaa(u

∗, 0)h2a
2

+
1

4
Ωzzaa(u

∗, 0)h2
2a

2+
1

24
Ωaaaa(u

∗, 0)a4+O(a5), (5.3.16)

where

h2 = u∗ta+
1

2
u∗tta

2 +
1

6
u∗ttta

3 +
1

24
u∗tttta

4 +O(a5).

Computation of the derivatives of the function Ω that appear in (5.3.15) and
(5.3.16) yields

Ωz

∣∣
a=0

= − 1
2 , Ωa

∣∣
a=0

= 0, Ωaa

∣∣
a=0

= − 1
2 sin z,

Ωzaa

∣∣
a=0

= 1
2 cos z, Ωzzaa

∣∣
a=0

= 1
2 sin z,

Ωaaa

∣∣
a=0

= 0, Ωaaaa

∣∣
a=0

= − 1
2 sin z

(
1− 6 sin2 z

2

)
.

(5.3.17)

Now substituting expressions (5.3.15)–(5.3.17) in the left- and right-hand
sides of relation (5.3.13) and using the differential consequences

uxxt = ux cosu, uttx = ut cosu,

uxxxt = uxx cosu− u2
x sinu, utttx = utt cosu− u2

t sinu,

of the sine-Gordon equation (5.3.3), we obtain

u∗xt − sinu∗

=

{
1

4
cosu∗(u∗xx + u∗tt)−

1

4
sinu∗

(
u∗2x + u∗2t

)
+

1

48
sin z

(
1− 6 sin2

u∗

2

)
− 1

6

[
cosu∗(u∗xx + u∗tt)− sinu∗(u∗2x + u∗2t )

]
− 1

4
(sinu∗ cosu∗ − u∗xu

∗
t sinu

∗)
}
a2 + O(a3). (5.3.18)

Note that the terms of order O(a0) that arise in the derivation of (5.3.18)
vanish identically:

2u∗ − 2π + 4Ω(u∗, 0) ≡ 0.



5.3. Discrete nets on the Lobachevsky plane and numerical integration 285

Therefore, the order of approximation of the difference scheme (5.3.13) in-
vestigated here yields the estimate

u∗xt − sinu∗ = O(a2), (5.3.19)

which establishes that the approximation of the sine-Gordon equation by its dif-
ference analogue (5.3.13) is of second order .

5.3.4.2. Stability of the difference analogues of the Darboux problem. Let us prove
the stability of the difference analogue of the Darboux problem (5.3.5):

zm+1,n+1 = 2π − (zm,n + 2Ωm+1,n + 2Ωm,n+1),

zm,0 = ϕ(ma), z0,n = ψ(na), ϕ(0) = ψ(0).
(5.3.20)

Side by side with problem (5.3.20) we formulate the corresponding perturbed
problem

zm+1,n+1 = 2π − (zm,n + 2Ωm+1,n + 2Ωm,n+1) + a2Ym,n(a),

zm,0 = ϕ(ma), z0,n = ψ(na), ϕ(0) = ψ(0),
(5.3.21)

where Ωi,j = Ωi,j(zij , a).

Problems (5.3.20), (5.3.21) are considered in the domain

D ⊂ Λ2 : D = lx[0, B1]× lt[0, B2],

specified by the broken-line generatrices lx[0, B1] and lt[0, B2] (Figure 5.3.3), with
the respective lengths B1 and B2. (The length of each of the aforementioned
generatrices is the sum of the lengths of its links , which are segments of geodesics
(shortest curves) on Λ2.)

To prove the stability of the original difference problem we establish the
existence of constants M1, M2, such that, for any sufficiently small linear size a of
the discrete net T d(a), every perturbation

Ym,n(a) : ‖Y (a)‖ ≤M1

will obey the estimate
‖z − z‖ ≤M2 · ‖Y (a)‖. (5.3.22)

Here the norm of the discrete function qm,n(a) in the net T d(a) is defined in the
standard manner, as the uniform Chebyshev norm:

‖q(a)‖ = max
Am,n∈Td(a)⊂D

|qm,n(a)|.

Upon introducing the typical function Qi,j(zi,j , a) by

Qi,j(zi,j , a) = π − 2Ωi,j(zi,j , a)− zi,j ,

it is not difficult to verify that the recursion relations (5.3.20) and (5.3.21) can be
recast as

zm+1,n+1 = Q(zm+1,n, a)−Q(zm,n+1, a)+ zm+1,n+ zm,n+1− zm,n, (5.3.23)
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and respectively

zm+1,n+1 = Q(zm+1,n, a)−Q(zm,n+1, a)

+ zm+1,n + zm,n+1 − zm,n + a2Ym,n(a). (5.3.24)

Further, let δzm,n denote the difference between the solution of problem
(5.3.21) and that of the original problem (5.3.20):

δzm,n = zm,n − zm,n.

Subtracting from the relations of problem (5.3.21) the corresponding relations of
problem (5.3.20), we obtain

δzm+1,n+1 = Q(zm+1,n, a)−Q(zm+1,n, a) +Q(zm,n+1, a)−Q(zm,n+1, a)

+ δzm+1,n + δzm,n+1 − δzm,n + a2Ym,n(a), (5.3.25)

δzm,0 = 0, δz0,n = 0. (5.3.26)

Let us transform the difference

ΔQ = Q(zi,j , a)−Q(zi,j , a)

appearing in (5.3.25) by means of the Lagrange formula:

ΔQ =
∂Q

∂z
(z0, a)(z − z) = −

[
1 +

1

2

∂Ω

∂z
(z0, a)

]
(z − z), (5.3.27)

where z0 ∈ [z, z].

Using in (5.3.27) the form of Ω, we write

ΔQ = R(z0, a)(z − z),

where

R(z0, a) = −1− cosha+ sinh2 a · sin2(z0/2)
1 + sinh2 a · sin2(z0/2) . (5.3.28)

In accordance with (5.3.28), the function R(z0, a) obeys the estimates

cosha− (1 + sinh2 a) ≤ R(z0, a) ≤ cosha− 1. (5.3.29)

If we now use in (5.3.29) the small-a asymptotic expansions

cosha = 1 +
1

2
a2 +O(a4), sinh a = a+O(a3), sinh2 a = a2 +O(a4),

we get

|R(z0, a)| ≤ 1

2
(a2 + νa4), ν = const ≥ 0. (5.3.30)
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Next, let us return to relation (5.3.25), recasting it as

(δzm+1,n+1 − δzm+1,n)− (δzm,n+1 − δzm,n)

= R(z0m+1,n, a)δzm+1,n +R(z0m,n+1, a)δzm,n+1 + a2Ym,n(a). (5.3.31)

At the same time, the initial conditions satisfy the relations

δz0,n+1 − δz0,n = 0.

Given an index n, we fix some value

n = n∗ ∈
{
0, 1, . . . ,

[B2

a

]}
(where [ · ] denotes the integer part),

and then sum in (5.3.31) with respect to the first index, so that m takes values

from 0 to m∗, where m∗ ∈
{
0, 1, . . . ,

[
B1

a

]}
. Then

δzm∗+1,n∗+1 − δzm∗+1,n∗

=

m∗∑
m=0

[
R(z0m+1,n∗ , a)δzm+1,n∗ +R(z0m,n∗+1, a)δzm,n∗+1 + a2Ym,n(a)

]
. (5.3.32)

Recalling (5.3.30), we estimate the absolute magnitude of the left-hand side
of (5.3.32):

|δzm∗+1,n∗+1 − δzm∗+1,n∗ |
≤ (m∗ + 1)(a2 + νa4)‖δz‖m∗+n∗+1 + a2(m∗ + 1)‖Y (a)‖. (5.3.33)

In (5.3.33) we use the auxiliary norm

‖q(a)‖N = max
Am,n∈Td(a)⊂D: m+n≤N

|qm,n(a)|.

If now in the left-hand side of (5.3.33) we use a property of the modulus as well
as the inequality | · | ≤ ‖ · ‖N , we obtain

|δzm∗+1,n∗+1| ≤ (m∗ + 1)(a2 + νa4)‖δz‖m∗+n∗+1

+ ‖δz‖m∗+n∗+1 + a2(m∗ + 1)‖Y (a)‖. (5.3.34)

Let us introduce the numerical parameter N = m∗ + n∗ + 1. Note that
inequalities of the type (5.3.34) hold also for all other values of the indices m, n
with m+ n+ 1 ≤ N , and that either the norm ‖δz‖N+1 is attained on one of the
moduli |δzm+1,n+1| for m + n + 2 = N + 1 (in which case the left-hand side of
(5.3.34) can be replaced by ‖δz‖N+1), or there exists values m = m and n = n,
with m+ n+ 1 ≤ N , for which

|δzm+1,n+1| = ‖δz‖N+1,
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and correspondingly

|δzm+1,n+1| ≤ (m+ 1)(a2 + νa4)‖δz‖m+n+1

+ ‖δz‖m+n+1 + a2(m+ 1)‖Y (a)‖. (5.3.35)

Since ‖·‖m+n+1 ≤ ‖·‖N and (m+1)a ≤ B1, the arguments given for (5.3.34)
and (5.3.35) lead to the final recursive estimate

‖δz‖N+1 ≤ B1(a+ νa3)‖δz‖N + ‖δz‖N + aB1‖Y (a)‖, (5.3.36)

where N = 1, 2, . . . ,m+ n+ 1 or N ∈
{
1, 2, . . . ,

[
B1

a

]
+

[
B2

a

]
− 1

}
.

To continue, let us recast (5.3.36) as

‖δz‖N ≤ ρN , (5.3.37)

where
ρN+1 = B1(a+ νa3)ρN + ρN + aB1‖Y (a)‖. (5.3.38)

Since
‖δz‖0 = ‖δz‖1 = 0,

the corresponding initial condition is

ρ0 = 0. (5.3.39)

Starting with (5.3.39), we compute ρN+1 by formula (5.3.38):

ρN+1 = B1a‖Y (a)‖ ·
N∑

ρ=0

[
1 +B1(a+ νa3)

]N−ρ
. (5.3.40)

The power terms in the sum (5.3.40) can be estimated from above by the
corresponding exponentials (tk ≤ ekt, k ≥ 0, t > 0), hence

ρN+1 ≤ B1a‖Y (a)‖
N∑

ρ=0

exp
[
(N − ρ)aB1(1 + νa2)

]
(5.3.41)

≤
{
aB1 exp

[
B1(B1 +B2)(1 + νa2)

] N∑
ρ=0

exp
[−ρa(1 + νa2)B1

]} · ‖Y (a)‖.

The sum in the right-hand side of (5.3.41) can be interpreted as the lower
Darboux sum (with the length of the elementary segment in the partition of the
segment [0, N ] equal to 1), and therefore can be estimated from above by the
corresponding definite integral:

N∑
ρ=0

exp
[−ρa(1 + νa2)B1

] ≤ 1 +

N∫
0

exp
[−aB1(1 + νa2)ρ

]
dρ,
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the computation of which sharpens the estimate (5.4.31) to

ρN+1 ≤M‖Y (a)‖, (5.3.42)

where M = (1 +B2
1) exp[B1(B1 +B2)(1 + νB2

1)] = const.

From (5.3.37) and (5.3.42) it follows that

‖δz‖N+1 ≤M · ‖Y (a)‖, M = const. (5.3.43)

Inequality (5.4.43) holds for all values of the parameter N in its range{
1, 2, . . . ,

[
B1

a

]
+
[
B2

a

]
− 1
}
, in particular, also for N = N =

[
B1

a

]
+
[
B2

a

]
− 1.

Moreover,
‖δz‖N+1 = ‖δz‖,

which in view of (5.3.43) yields the final estimate

‖δz‖ ≤M‖Y (a)‖, M = const. (5.3.44)

This establishes the stability of the difference (discrete) analog (5.3.20) of the
Darboux problem (5.3.5) for the sine-Gordon equation under investigation.

5.3.5 Convergence of the algorithm. General problems of the
approach

The a priori estimates (5.3.19) (5.3.44) found above for the approximation er-
ror and the stability of the difference scheme (5.3.20) under study establish its
convergence, i.e., the solution zm,n(a) of problem (5.3.20) converges as a → 0 to
the exact solution u of the Darboux problem (5.3.5) for the sine-Gordon equation.
This result, together with the well-posedness of our difference problem confirm also
that one is right to apply the proposed geometric approach, based on the concept
of Λ2-representation for nonlinear equations [77], for the elaboration of geometric
methods of their numerical integration. From the point of view of geometry, to the
convergence of the algorithm considered here corresponds the “smoothing process”
of the discrete net T d(a) under question as a → 0 and its passage, in the limit,
into a regular smooth Chebyshev net, namely the net that generates (according
to the theory of Λ2-representations) the sine-Gordon equation under study.

The investigation carried out above concerned the rhombic Chebyshev net
(the regular net Cheb(x, t) and the discrete net T d(a)). However, the arguments
used and the results obtained can be carried over to the case of the parallelogram
Chebyshev net T d(a, b) (a and b denote the characteristic linear dimensions of the
elementary coordinate cell).

Overall, the modeling of parallelogram-type discrete geometric constructions
(on the Lobachevsky plane Λ2, as well as in the space E3) is quite effective in the
study (in particular, for the approximation) of pseudospherical surfaces. In this
connection we mention the paper [190], in which to approximate a pseudospher-
ical surface and the Chebyshev net of asymptotic lines on it one uses a modeled
parallelogram lattice of special type (P -lattice), formed by two families of broken
lines. In this way a complete analogy between the introduced discrete analogs of



290 Chapter 5. Non-Euclidean phase spaces

the geometric characteristic of a pseudospherical surface and their classical proto-
types is achieved: the constant negative value of the “discrete Gaussian curvature”,
the constant (respectively, of opposite sign) “discrete torsions” of the broken lines
of each of the families in the P -lattice, the qualitative similarity between the
spherical map of the p-lattice and the spherical map of the Chebyshev net on the
pseudospherical surface, and so on.

Let us mention also R. Koch’s works [166, 167], in which geometric “con-
structions” close to the one considered here were studied.

We finish by listing a number of problems that arise in the context of the ge-
ometric approach treated here to the construction of algorithms for the numerical
integration of Λ2-equations:

1) Recover, from a given nonlinear equation, the net in the Lobachevsky plane
Λ2 that generates the equation; the correct determination of the characteristic
properties of such a net (k-characteristics) that are preserved for the discrete
net introduced.

2) Establish, based on the concept of Λ2-equations, geometric criteria that a
priori guarantee the approximation, stability, conservativeness, and other
potentially important properties of the emerging difference analogs of the
problems studied.

3) Generally, find a geometric classification of differential operators, and also
of their discrete analogs, associated with coordinate nets on two-dimensional
smooth manifolds of constant curvature.
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Samarskii. Birkhäuser Verlag, Basel, 1988.

[62] Zakharov, V. E., Manakov, S. V., Novikov, S. P., and Pitaevskii, L. P.,
Theory of Solitons. The Method of the Inverse Problem (Russian). “Nauka”,
Moscow, 1980.

[63] Norden, A. P., editor, Foundations of Geometry. Collection of Classical
Works on Lobachevky’s Geometry and the Development of its Ideas (Rus-
sian). Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow, 1956.

[64] Norden, A. P. Theory of Surfaces (Russian). Gosudarstv. Izdat. Tehn.-Teor.
Lit., Moscow, 1956.

[65] Newell, A. C., Solitons in Mathematics and Physics . CBMS-NSF Regional
Conference Series in Applied Mathematics, 48. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1985.

[66] Pan′zhenskii, V. I., Introduction to Differential Geometry (Russian). Izdat.
Penzenskogo Univ., Penza, 2008.

[67] Pelinovskii, E. N., Some exact methods in the theory of nonlinear waves
(Russian). Izv. Vys. Uchebn. Zaved. Radiofizika 19 (1976), no. 5–6, 883–901

[68] Pelipenko, V. V., A geometric interpretation of solutions of stationary wave
type of the sine-Gordon equation (Russian). Ukrain. Geom. Sb., 30 (1987),
81–87; English translation in J. Soviet Math., 51 (1990), no. 5, 2560–2564.
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[135] Amsler, M.-H., Des surfaces á courbure negative constante dans l’espace
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cal forms for higher-dimensional soliton equations with variable coefficients .
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications
2 (2006), Paper 063.

[166] Koch, R., Parallelogrammnetze. Monatshefte Math., 86 (1979), 265–284.

[167] Koch, R., Diagonale Tchebyscheff–Netze. Abh. Math. Sem. Univ. Hamburg
52 (1982), no. 1, 43–66.

[168] Kuiper, N. H., On C1-isometric imbedding. I, II, Nederl. Acad. Wetensch.
Proc., Ser. A. 58 (1955), no. 4, 545–556; no 5, 683–689.

[169] Lamb, G L. (jr.), Analytical description of ultrashort optical pulse propaga-
tion in a resonant medium. Rev. Mod. Phys., 43 (1971), no. 2, 457–485.

[170] Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves .
Comm. Pure Appl. Math., 21 (1968), 467–490.

[171] Matveev, V. B. and Salle, M. A., Darboux Transformation and Solitons .
Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.

[172] McCall, S. L. and Hahn, E. L., Self-induced transparency. Phys. Rev., 183
(1969), no.2, 457–485.

[173] Melko, M. and Sterling, I., Application of soliton theory to the construction
of pseudospherical surfaces in R3. Ann. Global Anal. Geom. 11 (1993), no.
1, 65–107.
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Surface
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Painlevé, 184
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