
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Web Design
Fourth Edition

A Beginner’s Guide to HTML, CSS, JavaScript, and Web Graphics

Jennifer Niederst Robbins

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Web Design, Fourth Edition

by Jennifer Niederst Robbins

Copyright © 2012 Littlechair, Inc. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent

Production Editor: Melanie Yarbrough

Copy Editor: Genevieve d'Entremont

Technical Reviewer: Aaron Gustafson, Matt Menzer, Joel Marsh

Interior Designer: Ron Bilodeau

Cover Designer: Mark Paglietti

Indexer: Ellen Troutman Zaig

Print History:

February 2001: First edition.

March 2004: Second edition.

June 2007: Third edition.

August 2012: Fourth edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. This book's trade dress is a trademark of O’Reilly
Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibil-
ity for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-31927-4
[TI]

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Preface . xi

Part I Getting Started

Chapter 1
Where Do I Start? . 3

Where Do I Start? . 4
What Does a Web Designer Do? . 4
What Languages Do I Need to Learn? . 11
What Do I Need to Buy? . 14
What You’ve Learned . 19
Test Yourself . 20

Chapter 2
How the Web Works . 21

The Internet Versus the Web . 21
Serving Up Your Information . 21
A Word About Browsers . 23
Web Page Addresses (URLs) . 24
The Anatomy of a Web Page . 26
Putting It All Together. 30
Test Yourself . 32

Chapter 3
Some Big Concepts You Need to Know 33

A Dizzying Multitude of Devices . 34
Sticking with the Standards . 36
Progressive Enhancement . 36
Responsive Web Design . 38

Contents

www.it-ebooks.info

http://www.it-ebooks.info/

 iv

One Web for All (Accessibility) . 41
The Need for Speed (Site Performance) . 43
Test Yourself . 45

Part II HTML Markup for Structure

Chapter 4
Creating a Simple Page . 49

A Web Page, Step by Step . 49
Before We Begin, Launch a Text Editor . 50
Step 1: Start with Content . 53
Step 2: Give the Document Structure . 55
Step 3: Identify Text Elements . 58
Step 4: Add an Image . 61
Step 5: Change the Look
with a Style Sheet . 64
When Good Pages Go Bad . 65
Validating Your Documents . 66
Test Yourself . 67
Element Review: Document Structure . 68

Chapter 5
Marking Up Text . 69

Paragraphs . 70
Headings . 70
Lists . 73
More Content Elements . 76
Organizing Page Content . 79
The Inline Element Roundup . 84
Generic Elements (div and span) . 95
Some Special Characters . 99
Putting It All Together. 100
Test Yourself . 102
Element Review: Text . 104

Chapter 6
Adding Links. 105

The href Attribute . 106
Linking to Pages on the Web . 107
Linking Within Your Own Site . 108
Targeting a New Browser Window . 118

www.it-ebooks.info

http://www.it-ebooks.info/

 v

Mail Links . 119
Telephone Links. 120
Test Yourself . 121
Element Review: Links . 122

Chapter 7
Adding Images . 123

First, a Word on Image Formats . 123
The img Element. 124
A Window in a Window . 130
Test Yourself . 131
Element Review: Images . 132

Chapter 8
Table Markup . 133

How Tables Are Used . 133
Minimal Table Structure . 135
Spanning Cells . 139
Table Accessibility . 142
Wrapping Up Tables . 144
Test Yourself . 146
Element Review: Tables . 146

Chapter 9
Forms . 147

How Forms Work . 147
The form Element . 149
Variables and Content . 151
The Great Form Control Roundup . 152
Form Accessibility Features . 171
Form Layout and Design . 173
Test Yourself . 175
Element Review: Forms . 176

Chapter 10
What’s Up, HTML5? . 181

A Funny Thing Happened on the
Way to XHTML 2 . 182
In the Markup Department . 185
Meet the APIs . 189
Video and Audio . 192

www.it-ebooks.info

http://www.it-ebooks.info/

 vi

Canvas . 198
Final Word . 202
Test Yourself . 203

Part III CSS for Presentation

Chapter 11
Cascading Style Sheets Orientation 207

The Benefits of CSS . 207
How Style Sheets Work . 209
The Big Concepts . 214
Moving Forward with CSS . 221
Test Yourself . 223

Chapter 12
Formatting Text . 225

The Font Properties . 225
Changing Text Color . 243
A Few More Selector Types . 244
Text Line Adjustments . 249
Underlines and Other “Decorations” . 252
Changing Capitalization . 252
Spaced Out . 253
Text Shadow . 254
Changing List Bullets and Numbers . 259
Test Yourself . 261
CSS Review: Font and Text Properties . 263

Chapter 13
Colors and Backgrounds . 265

Specifying Color Values . 265
Foreground Color . 272
Background Color . 273
Playing with Opacity . 275
Introducing…Pseudo-class Selectors . 276
Pseudo-element Selectors . 279
Attribute Selectors . 281
Background Images . 284
The Shorthand background Property . 293
Like a Rainbow (Gradients) . 296
Finally, External Style Sheets . 300

www.it-ebooks.info

http://www.it-ebooks.info/

 vii

Test Yourself . 303
CSS Review: Color and Background Properties . 304

Chapter 14
Thinking Inside the Box . 305

The Element Box . 305
Specifying Box Dimensions . 306
Padding . 312
Borders . 316
Margins . 328
Assigning Display Roles . 333
Adding Drop Shadows to Boxes . 335
Test Yourself . 336
CSS Review: Basic Box Properties . 338

Chapter 15
Floating and Positioning. 341

Normal Flow . 341
Floating . 342
Positioning Basics . 356
Relative Positioning . 358
Absolute Positioning . 359
Fixed Positioning . 368
Test Yourself . 370
CSS Review: Floating and
Positioning Properties . 371

Chapter 16
Page Layout with CSS . 373

Page Layout Strategies . 373
Page Layout Techniques . 380
Multicolumn Layouts Using Floats . 381
Positioned Layout . 392
Top-to-Bottom Column Backgrounds . 395
Test Yourself . 398

Chapter 17
Transitions, Transforms, and Animation 399

Ease-y Does It (CSS Transitions) . 399
CSS Transforms . 410
Keyframe Animation . 420

www.it-ebooks.info

http://www.it-ebooks.info/

 viii

Test Yourself . 423
CSS Review: Transitions,
Transforms, and Animation . 426

Chapter 18
CSS Techniques . 427

A Clean Slate (CSS Reset) . 427
Image Replacement Techniques . 429
CSS Sprites . 430
Styling Forms . 434
Styling Tables . 441
Basic Responsive Web Design . 444
Wrapping Up Style Sheets . 454
Test Yourself . 454
CSS Review: Table Properties . 456

Part IV JavaScript for Behaviors

Chapter 19
Introduction to JavaScript . 459

What Is JavaScript? . 459
Adding JavaScript to a Page . 463
The Anatomy of a Script . 463
The Browser Object . 478
Events . 478
Putting It All Together. 481
Test Yourself . 483

Chapter 20
Using JavaScript . 485

Meet the DOM . 485
Polyfills . 493
JavaScript Libraries . 497
Big Finish . 501
Test Yourself . 502

www.it-ebooks.info

http://www.it-ebooks.info/

 ix

Part V Creating Web Graphics

Chapter 21
Web Graphics Basics . 507

Image Sources . 507
Meet the Formats . 510
Image Size and Resolution . 522
Working with Transparency . 526
Introduction to SVG . 533
Summing Up Images . 538
Test Yourself . 539

Chapter 22
Lean and Mean Web Graphics . 541

General Image Optimization Strategies. 542
Optimizing GIFs . 543
Optimizing JPEGs . 547
Optimizing PNGs . 552
Optimize to File Size . 553
Optimization in Review . 554
Test Yourself . 555

Appendix A
Answers . 557

Appendix B
CSS3 Selectors. 583

Index . 587

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

xi

Hello and welcome to the fourth edition of Learning Web Design.

So much has happened since the previous edition! Just when it looked like
things were beginning to settle down with the adoption of web standards
by the browser creators and the development community, along comes the
“Mobile Web” to shake things up again. With the introduction of smart-
phones and tablets, the Web is finding its way onto small screens and on-
the-go contexts where it never appeared before. This has introduced some
rigorous challenges for web designers and programmers as we scramble to
find ways to make the experience of using our sites pleasing, regardless of
how they might be accessed.

As I write, many of these challenges, such as how to deliver the right image
to the right device, are still being debated. It’s an incredibly lively time for
web design, full of experimentation and collaboration. In ways, it reminds
me of the Wild West days of the Web back in 1993 when I started my
web design career. So much to figure out! So many possibilities! And to be
honest, it’s also a tricky time to nail these moving-target technologies and
techniques down in a book. To that end, I’ve done my best to point out the
topics that are in flux and provide pointers to online resources to bring you
up to date.

There are also two new standards—HTML5 (the fifth major revision of
Hypertext Markup Language) and CSS3 (Cascading Style Sheets, Level 3)—
available to us now that were only rumors the last time I wrote this book.
The HTML section of the book now reflects the current HTML5 standard.
I cover the parts of the developing CSS3 standard that are ready for prime
time, including a new chapter on adding motion and interactivity with
Transitions and Transforms. Our tools allow us to do so much more and in
a more efficient way than even a few years ago.

Finally, because JavaScript has become such a significant part of web devel-
opment, this new edition includes two chapters introducing JavaScript syn-
tax and a few of its uses. I’m no JavaScript expert, but I was very lucky to
find someone who is. The JavaScript chapters were written by Mat “Wilto”

PrefaCe

T h e Co m pa n i o n w e b s i T e

Be sure to visit the companion website
for this book at learningwebdesign.com.
It features materials for the exercises,
downloadable articles, lists of links from
the book, book references, and other
good stuff.

www.it-ebooks.info

http://www.it-ebooks.info/

Prefacexii

How This Book Is Organized

Marquis, who is a designer and developer at Filament Group, a member of
the jQuery Mobile team, and the Technical Editor at A List Apart.

As in the first three editions, this book addresses the specific needs and con-
cerns of beginners of all backgrounds, including seasoned graphic designers,
programmers looking for a more creative outlet, office assistants, recent
college graduates, work-at-home moms, and anyone else wanting to learn
how to design websites. I’ve done my best to put the experience of sitting in
my beginner web design class into a book, with exercises and tests along the
way, so you get hands-on experience and can check your progress.

Whether you are reading this book on your own or using it as a companion
to a web design course, I hope it gives you a good head start and that you
have fun in the process.

How This Book Is Organized
Learning Web Design, Fourth Edition is divided into five parts, each dealing
with an important aspect of web development.

Part I: Getting Started

Part I lays a foundation for everything that follows in the book. I start off
with some important general information about the web design environ-
ment, including the various roles you might play, the technologies you
might learn, and tools that are available to you. You’ll get your feet wet
right away with HTML and CSS and learn how the Web and web pages
generally work. I’ll also introduce you to some Big Concepts that get you
thinking the way modern web designers think about their craft.

Part II: HTML for Structure

The chapters in Part II cover the nitty-gritty of every element and attribute
available to give content semantic structure, including the new elements
introduced in HTML5. We’ll cover the markup for text, links, images,
tables, and forms. Part II closes out with an in-depth discussion of HTML5
and how it differs from previous standards.

Part III: CSS for Presentation

In the course of Part III, you’ll go from learning the basics of using
Cascading Style Sheets for changing the presentation of text to creating
multicolumn layouts and even adding time-based animation and inter-
activity to the page. It also addresses common CSS techniques, including
how to create a page using Responsive Web Design.

Part IV: JavaScript for Behaviors

Mat Marquis starts Part IV out with a rundown of JavaScript syntax so
you can tell a variable from a function. You’ll also get to know some
ways that JavaScript is used, including DOM Scripting, and existing

Typographical
Conventions Used
In This Book
The following typographical
conventions are used in this book:

Italic
Used to indicate URLs, email
addresses, filenames, and directory
names, as well as for emphasis.

Colored roman text
Used for special terms that are being
defined and for cross-references.

Constant width
Used to indicate code examples and
keyboard commands.

Colored constant width
Used for emphasis in code examples.

Constant width italic
Used to indicate placeholders for
attribute and style sheet property
values.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

Preface xiii

JavaScript tools such as polyfills and libraries that let you put JavaScript
to use quickly, even if you aren’t quite ready to write your own code
from scratch.

Part V: Creating Web Graphics

Part V introduces the various file formats that are appropriate for the
Web and describes how to optimize them to make their file size as small
as possible.

Acknowledgments
I want to thank my editor, Simon St. Laurent, with whom I’ve had a good
run of collaborative projects and I look forward to more. Thanks also go
to my contributor, Mat Marquis (matmarquis.com), for making JavaScript
entertaining and for maintaining good spirits while collaborating with a
control freak.

Many smart and lovely people had my back on this edition. I want to thank
my primary technical reviewers, Aaron Gustafson (easy-designs.net), Joel
Marsh (thehipperelement.com), and Matt Menzer, for taking so much time
out of their schedules to make sure the details in the chapters were spot
on. Thanks also go to the following folks for their “surgical strike” reviews:
Anthony Calzadilla, Danny Chapman, Matt Haughey, Gerald Lewis, Jason
Pamental, and Stephanie Rieger.

I feel fortunate to know so many of the leaders in this field whose books,
articles, presentations, slide decks, and personal contact were the fuel that
kept me going. I couldn’t have done it without the help of these geniuses
(in alphabetical order): Dan Cederholm, Josh Clark, Andy Clarke, Chris
Coyier, Brad Frost, Lyza Gardner, Jason Grigsby, Stephen Hay, Scott Jehl,
Scott Jenson, Tim Kadlec, Jeremy Keith, Sanders Kleinfeld, Peter-Paul
Koch, Bruce Lawson, Ethan Marcotte, Eric Meyer, Karen McGrane, Shelley
Powers, Bryan Rieger, Stephanie Rieger, Remy Sharp, Luke Wroblewski,
and Jeffrey Zeldman.

It takes a village to make a book, and I’d like to extend my appreciation
to the contributions of Melanie Yarbrough (production editor and proof-
reader), Genevieve d’Entremont (copy editor), Rebecca Demarest (figure
production), Newgen (page layout), Ellen Troutmen Zeig (index), Randy
Comer (book cover design), and Ron Bilodeau (book interior design).

Finally, I’d like to thank Edie Freedman (best boss ever) for her patience
while this book sucked me into a vortex. And to my dearest darlings, Jeff
and Arlo, I’m happy to finally say, “I’m back.”

www.it-ebooks.info

http://www.it-ebooks.info/

Prefacexiv

About the Author

About the Author
Jennifer Robbins began designing for the Web in 1993 as the graphic
designer for Global Network Navigator, the first commercial website. In
addition to this book, she is the author of Web Design in a Nutshell and
HTML5 Pocket Reference (which is also available as an iOS app), both pub-
lished by O’Reilly. In the past, Jennifer has spoken at many conferences,
including Seybold and South By Southwest, and has taught beginning web
design at Johnson and Wales University in Providence, RI. She is currently
a digital product designer for O’Reilly Media, where she is interested in
information architecture, interaction design, and making websites, apps,
and ebooks pleasant to use. When not on the clock, Jennifer enjoys making
things, indie rock, cooking, and being a Mom.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: Learning Web
Design, Fourth Edition by Jennifer Robbins. Copyright 2012 Littlechair , Inc.,
978-1-449-31927-4.

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

www.it-ebooks.info

http://www.it-ebooks.info/

Colophon

Preface xv

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://oreil.ly/learn_web_design_4e

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our web site at:

http://www.oreilly.com

Colophon
Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects. The text font is Linotype Birka; the heading font is
Adobe Myriad Pro.

www.it-ebooks.info

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

IN THIs PART

Chapter 1
Where Do I Start?

Chapter 2
How the Web Works

Chapter 3
Some Big Concepts You

Need to Know

GettinG Started PART I

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

3

IN THIs CHAPTER

Where do I start?

What does a
web designer do?

What languages do I
need to learn?

What software and
equipment do I

need to buy?

The Web has been around for more than 20 years now, experiencing
euphoric early expansion, an economic-driven bust, an innovation-driven
rebirth, and constant evolution along the way. One thing is certain: the Web
as a communication and commercial medium is here to stay. Not only that,
it has found its way onto devices such as smartphones, tablets, TVs, and
more. There have never been more opportunities to put web design know-
how to use.

Through my experience teaching web design courses and workshops, I’ve
had the opportunity to meet people of all backgrounds who are interested in
learning how to build web pages. Allow me to introduce you to just a few:

“I’ve been a print designer for 17 years, and now I am feeling pressure to
provide web design services.”

“I work as a secretary in a small office. My boss has asked me to put together
a small internal website to share company information among employees.”

“I’ve been a programmer for years, but I want to try my hand at design. I feel
like the Web is a good opportunity to explore new skills.”

“I am an artist and I want to know how to get samples of my paintings and
sculpture online.”

“I tinkered with web pages in high school and I think it might be something
I’d like to do for a living.”

Whatever the motivation, the first question is always the same: “Where do I
start?” It may seem like there is a mountain of stuff to learn, and it’s not easy
to know where to jump in. But you have to start somewhere.

This chapter attempts to put the learning curve in perspective by answering
the most common questions I get asked by people ready to make the leap.
It provides an introduction to the disciplines, technologies, and tools associ-
ated with web design.

Where Do I
start?

CHAPTER 1

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started4

Where Do I start?

Where Do I start?
Your particular starting point will no doubt depend on your background and
goals. However, a good first step for everyone is to get a basic understanding
of how the Web and web pages work. This book will give you that foundation.
Once you learn the fundamentals, there are plenty of resources on the Web
and in bookstores for you to further your learning in specific areas.

There are many levels of involvement in web design, from building a small
site for yourself to making it a full-blown career. You may enjoy being a full-
service website developer or just specializing in one skill. There are a lot of
ways you can go.

If your involvement in web design is purely at the hobbyist level, or if you
have just one or two web projects you’d like to publish, you may find that a
combination of personal research (like reading this book), taking advantage
of available templates, and perhaps even investing in a visual web design tool
such as Adobe Dreamweaver may be all you need to accomplish the task at
hand. Many Continuing Education programs offer introductory courses to
web design and production.

If you are interested in pursuing web design or production as a career, you’ll
need to bring your skills up to a professional level. Employers may not
require a web design degree, but they will expect to see working sample sites
that demonstrate your skills and experience. These sites can be the result of
class assignments, personal projects, or a simple site for a small business or
organization. What’s important is that they look professional and have well-
written, clean HTML, style sheets, and possibly scripts behind the scenes.
Getting an entry-level job and working as part of a team is a great way to
learn how larger sites are constructed and can help you decide which aspects
of web design you would like to pursue.

What Does a Web Designer Do?
Over the years, the term “web design” has become a catchall for a process
that encompasses a number of different disciplines, from user experience
design, to document markup, to serious programming. This section
describes some of the most common roles.

If you are designing a small website on your own, you will need to wear
many hats. The good news is that you probably won’t notice. Consider that
the day-to-day upkeep of your household requires you to be part-time chef,
housecleaner, accountant, diplomat, gardener, and construction worker—
but to you it’s just the stuff you do around the house. In the same way, as a
solo web designer, you may be a part-time graphic designer, writer, HTML
author, and information architect, but to you, it’ll just feel like “making web
pages.” Nothing to worry about.

I Just Want a Blog!
You don’t necessarily need to
become a web designer to start
publishing your words and pictures
on the Web. You can start your own
“blog” or personal journal site using
one of the free or inexpensive blog
hosting services. These services
provide templates that generally
spare you the need to learn HTML
(although it still doesn’t hurt). These
are some of the most popular as of
this writing:

 y WordPress (www.wordpress.com)

 y Blogger (www.blogger.com)

 y Tumblr (www.tumblr.com)

Another drag-n-drop site design and
hosting service that goes beyond
the blog is Squarespace (www.
squarespace.com).

 The term “web design” has come to
encompass a number of disciplines,
including:

 y Visual (graphic) design

 y User interface and experience
design

 y Web document and style sheet
production

 y Scripting and programming

 y Content strategy

 y Multimedia

A T A G L A N C E

www.it-ebooks.info

http://www.squarespace.com
http://www.squarespace.com
http://www.it-ebooks.info/

What Does a Web Designer Do?

Chapter 1, Where Do I start? 5

There are also specialists out there whom you can hire to fill in the skills
you don’t have. For example, I have been creating websites since 1993 and
I still hire programmers and multimedia developers when my clients require
interactive features. That allows me to focus on the parts I do well (in my
case, it’s the content organization, interface, and visual design).

Large-scale websites are almost always created by a team of people, number-
ing from a handful to hundreds. In this scenario, each member of the team
focuses on one facet of the site-building process. If that is the case, you may be
able to simply adapt your current set of skills (writing, Photoshop, program-
ming, etc.) and interests to the new medium.

I’ve divided the myriad roles and responsibilities typically covered under the
umbrella term “web design” into four very broad categories: design, develop-
ment, content strategy, and multimedia.

Design
Ah, design! It sounds fairly straightforward, but even this simple require-
ment has been divided into a number of specializations when it comes to
creating sites. Here are a few of the new job descriptions related to designing
a site, but bear in mind that the disciplines often overlap and that the person
calling herself the “Designer” often is responsible for more than one (if not
all) of these responsibilities.

User Experience, Interaction, and User Interface design
Often, when we think of design, we think about how something looks. On
the Web, the first matter of business is designing how the site works. Before
picking colors and fonts, it is important to identify the site’s goals, how it
will be used, and how visitors move through it. These tasks fall under the
disciplines of Interaction Design (IxD), User Interface (UI) design, and User
Experience (UX) design. There is a lot of overlap between these responsibili-
ties, and it is not uncommon for one person or team to handle all three.

The goal of the Interaction Designer is to make the site as easy, efficient,
and delightful to use as possible. Closely related to interaction design is User
Interface design, which tends to be more narrowly focused on the functional
organization of the page as well as the specific tools (buttons, links, menus,
and so on) that users use to navigate content or accomplish tasks.

A more recent job title in the web design realm is the User Experience
Designer. The UX designer takes a more holistic view—ensuring the entire
experience with the site is favorable. UX design is based on a solid under-
standing of users and their needs based on observations and interviews.
According to Donald Norman (who coined the term), user experience design
includes “all aspects of the user’s interaction with the product: how it is
perceived, learned, and used.” For a website or application, that includes

If you are not interested
in becoming a jack-of-all-
trades solo web designer,
you may choose to
specialize and work as part
of a team or as a freelance
contractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started6

What Does a Web Designer Do?

the visual design, the user interface, the quality and message of the content,
and even overall site performance. The experience must be in line with the
organization’s brand and business goals in order to be successful.

Some of the documents an IxD, UI, or UX designer might produce include:

User research and testing reports

Understanding the needs, desires, and limitations of users is central to
the success of the design of the site or web application. This approach of
designing around the user’s needs is referred to as User Centered Design
(UCD), and it is central to contemporary design. Site designs often start
with user research, including interviews and observations, in order to
gain a better understanding of how the site can solve problems or how
it will be used. It is typical for designers to do a round of user testing at
each phase of the design process to ensure the usability of their designs.
If users are having a hard time figuring out where to find content or how
to move to the next step in a process, then it’s back to the drawing board.

Wireframe diagrams

A wireframe diagram shows the structure of a web page using only
outlines for each content type and widget (Figure 1-1). The purpose of
a wireframe diagram is to indicate how the screen real estate is divided
and indicate where functionality and content such as navigation, search
boxes, form elements, and so on, are placed, without any decoration or
graphic design. They are usually annotated with instructions for how
things should work so the development team knows what to build.

Site diagram

A site diagram indicates the structure of the site as a whole and how
individual pages relate to one another. Figure 1-2 shows a very simple
site diagram. Some site diagrams fill entire walls!

SEARCH

LOGO

[PROMOTIONAL IMAGES ROTATE HERE]

Today’s Specials

Log in or Create Account

ABOUT US
Company
News
Jobs
Policies
Contact

SOCIAL
Facebook
Twitter
Try our app

SERVICE
FAQ
Live support
Site map

Product 1 Product 2 Product 4Product 3 Product 6Product 5

Category

All categories

Category1

Category2

Category3

Category4

Category5

Category6

contact | store locator | support | CART

1 2 3 4

copyright statement

Figure 1-1. Wireframe diagram.

text

Home page

Email
form

FAQ Book Web design
services

Resume

Info
pages

Samples

External links

Figure 1-2. A simple site diagram.

www.it-ebooks.info

http://www.it-ebooks.info/

What Does a Web Designer Do?

Chapter 1, Where Do I start? 7

Storyboards and user flow charts

A storyboard traces the path through a site or application from the point
of view of a typical user (a persona in UX lingo). It usually includes a
script and “scenes” consisting of screen views or the user interacting
with the screen. The storyboard aims to demonstrate the steps it takes to
accomplish tasks, possible options, and also introduces some standard
page types. Figure 1-3 shows a simple storyboard. A user flow chart is
another method for showing how the parts of a site or application are
connected that tends to focus on technical details rather than telling a
story. For example, when the user does this, it triggers that function on
the server. It is common for designers to create a user flow chart for the
steps in a process such as member registration or online payments.

Figure 1-3. A typical storyboard [courtesy of Adaptive Path; drawn by Brandon Schauer].

Visual (graphic) design
Because the Web is a visual medium, web pages require attention to pre-
sentation and design. A graphic designer creates the “look and feel” of
the site—logos, graphics, type, colors, layout, etc.—to ensure that the site
makes a good first impression and is consistent with the brand and message
of the organization it represents. Visual designers typically generate sketches
of the way the site might look, as shown in Figure 1-4. They may also be
responsible for producing the graphic files in a way that is optimized for
delivery over the Web (see Chapter 21, Lean and Mean Web Graphics for
image optimization techniques).

If you are interested in doing the visual design of commercial sites profes-
sionally, I strongly recommend graphic design training as well as a strong
proficiency in Adobe Photoshop (the industry standard) or Adobe Fireworks. Figure 1-4. Look and feel sketches for a

simple site.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started8

What Does a Web Designer Do?

If you are already a graphic designer, you will be able to adapt your skills
to the Web easily, although this will not excuse you from acquiring a solid
understanding of HTML, CSS, and other web technologies. Because most
sites have at least a few images, even hobbyist web designers will need to
know how to create and edit images, at minimum.

Again, I want to note that all of these responsibilities may fall into the hands
of one designer who creates both the look and the functionality of a site. But
for larger sites with bigger budgets, there is an opportunity to find your own
special niche in the design process.

Development
A fair amount of the web design process involves the creation and trouble-
shooting of the documents, style sheets, scripts, and images that make up a
site. At web design firms, the team that handles the creation of the files that
make up the website (or templates for pages that get assembled dynamically)
is usually called the development or production department.

Web developers may not design the look or structure of the site themselves,
but they do need to communicate well with designers and understand the
intended site goals so they may suggest solutions that meet those goals.

The broad disciplines that fall under development are authoring, styling, and
scripting/programming.

Authoring/markup
Authoring is the term used for the process of preparing content for delivery
on the Web, or more specifically, marking up the content with HTML tags
that describe its content and function. If you want a job as a web developer,
you need to have an intricate knowledge of HTML and how it functions on
various browsers and devices. The HTML specification is constantly evolv-
ing, which means you’ll need to keep up with the latest best practices and
opportunities as well as bugs and limitations. The good news is, it’s not dif-
ficult to get started, and from there, you can gradually increase your skills.
We’ll be dabbling with HTML in Chapter 2, How the Web Works and then
discussing it in great detail in Part II of this book.

styling
In web design, the appearance of the page in the browser is controlled by
style rules written in CSS (Cascading Style Sheets). We’ll get deep into CSS
in Part III of this book (including what “cascading” means!), but for now
just know that in contemporary web design, the appearance of the page is
handled separately from the HTML markup of the page. Again, if you are
interested in working in web development, knowing your way around CSS
and how it is supported (or not supported) by browsers is guaranteed to be
part of your job description.

style Tiles
Another approach to capturing the
look and feel of a site is to create style
tiles, which give examples of color
schemes, branding elements, content
and UI treatments, and mood boards
without applying them to a specific
page layout. The idea is to agree
upon a consistent visual language for
the site. For more on this technique,
read the article “Style Tiles and How
They Work,” by Samantha Warren
(www.alistapart.com/articles/style-
tiles-and-how-they-work/), and visit
her excellent site where you can
download a template at styletil.es.

n oT e

Many visual designers translate their
designs into HTML and CSS documents
themselves. In fact, there is a popular
argument that in order to call yourself
a “web designer,” you must be able to
build your designs yourself, and nearly
everyone agrees that your job prospects
will be better if you are able to code as
well as design.

www.it-ebooks.info

http://www.alistapart.com/articles/style-tiles-and-how-they-work/
http://www.alistapart.com/articles/style-tiles-and-how-they-work/
http://www.it-ebooks.info/

What Does a Web Designer Do?

Chapter 1, Where Do I start? 9

scripting and programming
As the Web has evolved into a platform of applications for getting stuff done,
programming has never been more important. JavaScript is the language that
makes elements on web pages do things. It adds behaviors and functionality
to elements in the page and even to the browser window itself.

There are other web-related programming languages as well, including PHP,
Ruby, Python, and ASP.NET, that run on the server and process data and
information before it is sent to the user’s browser. See the sidebar “Frontend
Versus Backend” for more information on what happens where.

Web scripting and programming definitely requires some traditional com-
puter programming prowess. While many web programmers have degrees
in computer science, it is also common for developers to be self-taught. A
few developers I know started by copying and adapting existing scripts, then
gradually added to their programming skills with each new project. Still, if
you have no experience with programming languages, the initial learning
curve may be a bit steep.

Teaching web programming is beyond the scope of this book. JavaScript is
introduced in Chapter 19, Introduction to JavaScript (teaching JavaScript
could fill a whole book itself). It is possible to turn out content-rich, well-
designed sites without the need for programming, so hobbyist web designers
should not be discouraged. However, once you get into collecting informa-
tion via forms or serving information on demand, it is usually necessary to
have a programmer on the team. You may also ask your hosting company
if they offer the functionality you are looking for in an easy-to-use, canned
service.

Frontend Versus Backend
You may hear web designers and developers say that they specialize in either the frontend or backend of website creation.

Frontend design
“Frontend” refers to any aspect of the design process that
appears in or relates directly to the browser. This book focuses
primarily on frontend web design.

The following tasks are commonly considered to be frontend
tasks:

 y Graphic design and image production

 y Interface design

 y Information design as it pertains to the user’s experience of
the site

 y HTML document and style sheet development

 y JavaScript

Backend development
“Backend” refers to the programs and scripts that work on the
server behind the scenes to make web pages dynamic and
interactive. In general, backend web development falls in the
hands of experienced programmers, but it is good for all web
designers to be familiar with backend functionality.

The following tasks take place on the backend:

 y Information design as it pertains to how the information is
organized on the server

 y Forms processing

 y Database programming

 y Content management systems

 y Other server-side web applications using PHP, JSP, Ruby,
ASP.NET, Java, and other programming languages

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started10

What Does a Web Designer Do?

Content strategy and creation
Third on our list, though ideally first in the actual website creation process, is
the critical matter of the site’s content itself. Anyone who uses the title “web
designer” needs to be aware that everything we do supports the process of
getting the content, message, or functionality to our users. Furthermore,
good writing can help the user interfaces we create be more effective.

Of course, someone needs to create the content and maintain it—don’t
underestimate the resources required to do this successfully. In addition, I
want to call your attention to two content-related specialists on the modern
web development team: the Content Strategist and Information Architect
(IA).

When the content isn’t written right, the site can’t be fully effective. A
Content Strategist makes sure that every bit of text on a site, from long
explanatory text down to the labels on buttons, supports the brand identity
and marketing goals of the company. Content strategy may also extend to
data modeling and content management on a large and ongoing scale, such
as planning for content reuse and update schedules.

An Information Architect (also called an Information Designer) organizes
the content logically and for ease of findability. She may be responsible for
search functionality, site diagrams, and how the content and data is orga-
nized on the server. Information architecture is inevitably entwined with
UX and UI design, and it is not uncommon for a single person or team to
perform all roles.

Multimedia
One of the cool things about the Web is that you can add multimedia ele-
ments to a site, including sound, video, animation, and even interactive
games. You may decide to add multimedia skills, such as audio and video
editing or Flash development (see the “A Little More About Flash” sidebar),
to your web design tool belt, or you may decide to go all in and become a
multimedia specialist. If you are not interested in becoming a multimedia
developer, you can always hire one. Web development companies usually
look for people who have mastered the standard multimedia tools, and have
a good visual sensibility and an instinct for intuitive and creative multimedia
design.

www.it-ebooks.info

http://www.it-ebooks.info/

What Languages Do I Need to Learn?

Chapter 1, Where Do I start? 11

A Little More About Flash
Adobe Flash (previously Macromedia Flash, previously
FutureSplash) is a multimedia format created especially for the
Web. Flash is used for create full-screen animation, interactive
graphics, integrated audio and video clips, and even scriptable
games and applications, all at remarkably small file sizes.
However, recently Flash use has been on the decline due to a
number of developments, including:

 y Apple’s decision not to support Flash on its iPhones and iPads
in favor of non-proprietary HTML5 methods.

 y Adobe’s decision to stop supporting Flash (its own product)
for mobile browsers.

 y The new programmable canvas element in HTML5 that offers
some of the same functionality as Flash.

 y Criticism that Flash sometimes gets in the way of user
goals. For example, who wants to sit through a movie and
soundtrack on a restaurant site when all you really want to
know is whether they are open on Sunday?

 y The fact that a plug-in is required to play Flash media makes
some developers squeamish.

In fact, it is not uncommon to hear web professionals cite that
“Flash is dead,” but despite suddenly becoming the underdog,
Flash still has some advantages if used the right way:

 y Because it uses vector graphics, Flash files are small and can
be resized without loss of detail.

 y It is a streaming format, so movies start playing quickly and
continue to play as they download.

 y You can use ActionScript to add behaviors and advanced
interactivity, allowing Flash to be used as the frontend for
dynamically generated content or ecommerce functions.

 y The Flash plug-in is well-distributed on PCs, so support on
desktop browsers is reliable.

 y Although HTML5 is promising and rapidly evolving, as of this
writing, it cannot match the features and performance of
Flash.

Flash is not likely to disappear overnight, but even Adobe is
putting its muscle behind HTML5 alternatives.

What Languages Do I Need to Learn?
If you are a visual designer who spends time in Photoshop and Illustrator, you
may be put off by needing to learn how to create your designs with text, but I
assure you, it’s pretty simple to get started. There are also authoring tools that
speed up the production process, as we’ll discuss later in this chapter.

The following is a list of technologies associated with web development.
Which languages and technologies you learn will depend on the role you
see yourself in within the web design process. However, I advise every-
one involved in building websites to know their way around HTML and
Cascading Style Sheets, and if you want to do frontend web development
for a living, JavaScript know-how is pretty much a job requirement. More
technically inclined web professionals may take on server configurations,
databases, and site performance, but these are generally not frontend devel-
oper tasks (although a basic familiarity with the backend issues never hurts).

Web-related technologies:

 y Hypertext Markup Language (HTML)

 y Cascading Style Sheets (CSS)

 y JavaScript and DOM scripting

 y Server-side programming and database management

A T A G L A N C E

The World Wide
Web Consortium
The World Wide Web Consortium
(called the W3C for short) is the
organization that oversees the
development of web technologies.
The group was founded in 1994 by
Tim Berners-Lee, the inventor of the
Web, at the Massachusetts Institute
of Technology (MIT).

In the beginning, the W3C concerned
itself mainly with the HTTP protocol
and the development of the HTML.
Now, the W3C is laying a foundation
for the future of the Web by
developing dozens of technologies
and protocols that must work
together in a solid infrastructure.

For the definitive answer on any web
technology question, the W3C site is
the place to go:

www.w3.org
For more information on the W3C
and what they do, see this useful
page:

www.w3.org/Consortium/

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started12

What Languages Do I Need to Learn?

Hypertext Markup Language (HTML)
HTML (HyperText Markup Language) is the language used to create web
page documents. There are a few versions of HTML in use today: HTML
4.01 is the most firmly established and the newer, more robust HTML5
is gaining steam and browser support. Both versions have a stricter imple-
mentation called XHTML (eXtensible HTML), which is essentially the same
language with much stricter syntax rules. We’ll get to the particulars of what
makes the various versions different in Chapter 10, What’s Up, HTML5?.

HTML is not a programming language; it is a markup language, which
means it is a system for identifying and describing the various components
of a document such as headings, paragraphs, and lists. The markup indi-
cates the document’s underlying structure (you can think of it as a detailed,
machine-readable outline). You don’t need programming skills—only
patience and common sense—to write HTML.

The best way to learn HTML is to write out some pages by hand, as we will
be doing in the exercises in this book. If you end up working in web produc-
tion, you’ll live and breathe HTML. But even hobbyists will benefit from
knowing what is going on under the hood. The good news is that it’s simple
to learn the basics.

Cascading style sheets (Css)
While HTML is used to describe the content in a web page, it is Cascading
Style Sheets (CSS) that describe how that content should look. In the web
design biz, the way the page looks is known as its presentation. That means
fonts, colors, background images, line spacing, page layout, and so on…
all controlled with CSS. With the newest version (CSS3), you can even add
special effects and basic animation to your page.

CSS also provides methods for controlling how documents will be presented
in contexts other than the traditional desktop browser, such as in print and or
on devices with small screen widths. It also has rules for specifying the non-
visual presentation of documents, such as how they will sound when read by
a screen reader (although those are not well supported).

Style sheets are also a great tool for automating production because you can
change the way an element looks across all the pages in your site by editing
a single style sheet document. Style sheets are supported to some degree by
all modern browsers.

Although it is possible to publish web pages using HTML alone, you’ll
probably want to take on style sheets so you’re not stuck with the browser’s
default styles. If you’re looking into designing websites professionally, profi-
ciency at style sheets is mandatory.

Style sheets are discussed further in Part III.

You may see HTML
and XHTML referred to
collectively as (X)HTML.

n oT e

When this book says “style sheets” it
is always referring to Cascading Style
Sheets, the standard style sheet language
for the World Wide Web.

www.it-ebooks.info

http://www.it-ebooks.info/

What Languages Do I Need to Learn?

Chapter 1, Where Do I start? 13

Javascript/DOM scripting
JavaScript is a scripting language that is used to add interactivity and behav-
iors to web pages, including these (just to name a few):

•	 Checking form entries for valid entries

•	 Swapping out styles for an element or an entire site

•	 Making the browser remember information about the user for the next
time she visits

•	 Building interface widgets, such as expanding menus

JavaScript is used to manipulate the elements on the web page, the styles
applied to them, or even the browser itself. There are other web scripting
languages, but JavaScript (also called ECMAScript) is the standard and most
ubiquitous.

You may also hear the term DOM scripting used in relation to JavaScript.
DOM stands for Document Object Model, and it refers to the standard-
ized list of web page elements that can be accessed and manipulated using
JavaScript (or another scripting language). DOM scripting is an updated
term for what used to be referred to as DHTML (Dynamic HTML), now
considered an obsolete approach.

Writing JavaScript is a type of programming, so it may be time-consuming
to learn if you have no prior programming experience. Many people teach
themselves JavaScript by reading books and following and modifying exist-
ing examples. Most web-authoring tools come with standard scripts that you
can use right out of the box for common functions.

Professional web developers are required to know JavaScript, however, plen-
ty of visual designers rely on developers to add behaviors to their designs. So
while JavaScript is useful, learning to write it may not be mandatory for all
web designers. Teaching JavaScript is outside the scope of this book; I rec-
ommend Learning JavaScript by Shelley Powers (O’Reilly, 2006) as a good
starting place if you want to learn more.

server-side programming
Some simple websites are collections of static HTML documents and image
files, but most commercial sites have more advanced functionality such as
forms handling, dynamically generated pages, shopping carts, content man-
agement systems, databases, and so on. These functions are handled by web
applications running on the server. There are a number of programming
languages and frameworks (listed in parentheses) that are used to create web
applications, including:

•	 PHP (CakePHP, CodeIngniter, Drupal)

•	 Python (Django, TurboGears)

The Web Design
Layer Cake
Contemporary web design is
commonly visualized as being made
up of three separate “layers.”

The content of the document with
its (X)HTML markup makes up
the Structure Layer. It forms the
foundation upon which the other
layers may be applied.

Once the structure of the document
is in place, you can add style
sheets to control how the content
should appear. This is called the
Presentation Layer.

Finally, the Behavior Layer includes
the scripts that make the page an
interactive experience.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started14

What Do I Need to Buy?

•	 Ruby (Ruby on Rails, Sinatra)

•	 JavaScript (Node.js, Rhino, SpiderMonkey)

•	 Java (Grails, Google Web Toolkit, JavaServer Faces)

•	 ASP.Net (DotNetNuke, ASP.Net MVC)

Developing web applications is programmer territory and is not expected of
all web designers. However, that doesn’t mean you can’t offer such function-
ality to your clients. It is possible to get shopping carts, content management
systems, mailing lists, and blogs as prepackaged solutions, without the need
to program them from scratch.

What Do I Need to Buy?
It should come as no surprise that professional web designers require a fair
amount of gear, both hardware and software. One of the most common
questions I’m asked by my students is, “What should I get?” I can’t tell you
specifically what to buy, but I will provide an overview of the typical tools
of the trade.

Bear in mind that while I’ve listed the most popular commercial software
tools available, many of them have freeware or shareware equivalents that
you can download if you’re on a budget (try CNET’s Download.com). With
a little extra effort, you can get a full website up and running without big
cash.

A Quick Introduction to XML
If you hang around the web design world at all, you’re sure to
hear the acronym XML (which stands for eXtensible Markup
Language). XML is not a specific language in itself, but rather a
robust set of rules for creating other markup languages.

To use a simplified example, if you were publishing recipes,
you might use XML to create a custom markup language that
includes the elements <ingredient>, <instructions>, and
<servings> that accurately describe the types of information in
your recipe documents. Once labeled correctly, that information
can be treated as data. In fact, XML has proven to be a powerful
tool for sharing data between applications. Despite the fact that
XML was developed with the Web in mind, it has actually had a
larger impact outside the web environment because of its data-
handling capabilities. There are XML files working behind the
scenes in an increasing number of software applications, such as
Microsoft Office, Adobe Flash, and Apple iTunes.

Still, there are a number of XML languages that are used on the
Web. The most prevalent is XHTML, which is HTML rewritten
according to the stricter rules of XML (we’ll talk more about
XHTML in Chapter 10, What’s Up, HTML5?). There is also RSS
(Really Simple Syndication or RDF Site Summary), which
allows your content to be shared as data and read with RSS
feed readers; SVG (Scalable Vector Graphics), which uses tags
to describe geometric shapes; and MathML, which is used to
describe mathematical notation.

As a web designer, your direct experience with XML is likely to
be limited to authoring documents in XHTML or perhaps adding
an RSS feed or SVG images to a website. Developing new XML
languages would be the responsibility of programmers or XML
specialists.

www.it-ebooks.info

http://www.it-ebooks.info/

What Do I Need to Buy?

Chapter 1, Where Do I start? 15

Equipment
For a comfortable web development environment, I recommend the follow-
ing equipment:

A solid, up-to-date computer. Macintosh, Windows, or Linux, is fine.
Creative departments in professional web development companies tend
to be Mac-based. Although it is nice to have a super-fast machine, the
files that make up web pages are very small and tend not to be too taxing
on computers. Unless you’re getting into sound and video editing, don’t
worry if your current setup is not the very latest and greatest.

Extra memory. Because you’ll tend to bounce between a number of applica-
tions, it’s a good idea to have enough RAM installed on your computer
that allows you to leave several memory-intensive programs running at
the same time.

A large monitor. Although not a requirement, a large monitor makes life
easier, particularly for a visual designer. (I’ve seen code-based developers
get by just fine on an 11” MacBook Air.) The more monitor real estate
you have, the more windows and control panels you can have open at the
same time. You can also see more of your page to make design decisions.

If you’re using large monitor, just make sure you design for users with
smaller monitors and devices in mind.

A scanner and/or digital camera. If you anticipate making your own images
and textures, you’ll need some tools for creating them. I know a designer
who has two scanners: one is the “good” scanner, and the other he uses
to scan things like dead fish and rusty pans.

A second computer. Many web designers find it useful to have a test com-
puter running a different platform than the computer they use for devel-
opment (i.e., if you design on a Mac, test on a PC). Because browsers
work differently on Macs than on Windows machines, it’s critical to test
your pages in as many environments as possible, and particularly on the
current Windows operating system. If you are a hobbyist web designer
working at home, check your pages on a friend’s machine. Mac users
should check out the “Run Windows on Your Mac” sidebar.

Mobile devices. The Web has gone mobile! That means it is absolutely
critical that you test the appearance and performance of your site on a
mobile browser on a smartphone or tablet device. You may already have
a smartphone yourself. If you don’t have a budget for devices with mul-
tiple platforms, ask your friends if you can spend a few minutes looking
at your site on theirs. I have one web developer friend who checks out
his designs on the phones at his local mobile carrier store (although you
might quickly wear out your welcome).

Run Windows on
Your Mac
If you have a Macintosh computer
with an Intel chip running OS X
(Leopard or later), you don’t need
a separate computer to test in a
Windows environment. It is now
possible to run Windows right on
your Mac using the free Boot Camp
application, which allows you to
switch to Windows on reboot.

There are several other VM (Virtual
Machine) products for Mac OS that
allow you to toggle between Mac
and Windows, including:

 y VMFusion (www.vmware.
com/fusion) is a commercial
product with a free trial you can
download.

 y Parallels Desktop for Mac
(www.parallels.com) is also a
commercial product with a free
trial.

 y Oracle VirtualBox (virtualbox.
org) is a free program that allows
you to run a number of guest
operating systems, including
Windows and several flavors of
Unix.

All VM products require that you
purchase a copy of Microsoft
Windows, but it sure beats buying a
whole machine.

www.it-ebooks.info

http://www.vmware.com/fusion
http://www.vmware.com/fusion
http://www.parallels.com
http://www.it-ebooks.info/

Part I, Getting started16

What Do I Need to Buy?

software
There’s no shortage of software available for creating web pages. In the
early days, we just made do with tools originally designed for print. Today,
there are wonderful tools created specifically with web design in mind that
make the process more efficient. Although I can’t list every available soft-
ware release, I’d like to introduce you to the most common and proven web
design tools. Note that you can download trial versions of many of these
programs from the company websites, as listed in the “Popular Web Design
Software Links” sidebar later in this chapter.

Web page authoring
Web-authoring tools are similar to desktop publishing tools, but the end
product is a web page (an HTML file and its supporting files). These tools
provide a visual “WYSIWYG” (What You See Is What You Get, pronounced
“whizzy-wig”) interface and shortcuts that save you from typing repetitive
HTML and CSS. These tools won’t excuse you from learning HTML. Even
the most sophisticated tools won’t generate HTML as clean or well-consid-
ered as a professional writing by hand, but they can speed up the process
once you know what you’re doing.

The following are some popular web-authoring programs:

Adobe Dreamweaver. This is the hands-down industry standard due to its
relatively clean code and advanced features.

Microsoft Expression Web (Windows only). Part of Microsoft’s suite of
professional design tools, MS Expression Web boasts standards-compli-
ant code and CSS-based layouts.

Nvu (Linux, Windows, and Mac OS X). Don’t want to pay for a WYSIWYG
editor? Nvu (pronounced N-view, for “new view”) is an open source tool
that matches many of the features in Dreamweaver, and you can down-
load it for free at nvu.com.

HTML editors
HTML editors (as opposed to WYSIWYG authoring tools) are designed to
speed up the process of writing HTML by hand. They do not allow you edit
the page visually, so you need to check your work in a browser. Many profes-
sional web designers actually prefer to author HTML documents by hand,
and they tend to recommend the following:

TextPad (Windows only). TextPad is a simple and inexpensive plain-text
code editor for Windows.

Sublime Text (Window, Mac, Linux). This inexpensive and up-and-coming
text editor looks stripped down but has a lot of functionality (like color
coding and full code overviews) that developers love.

n oT e

To do the exercises in this book, all
you’ll need is the text editor that came
with your operating system. No special
programs are required.

www.it-ebooks.info

http://www.it-ebooks.info/

What Do I Need to Buy?

Chapter 1, Where Do I start? 17

Coda by Panic (Macintosh only). Coda users like its visual workflow, file
management tools, and built-in terminal access.

TextMate by MacroMates (Macintosh only). This advanced text editor
features project management tools and an interface that is integrated
with the Mac operating system. It is growing in popularity because it is
customizable, feature-rich, and inexpensive.

BBEdit by Bare Bones Software (Macintosh only). Lots of great shortcut
features have made this the leading editor for Mac-based web developers.

Image editing and drawing software
You’ll probably want to add images to your pages, so you will need an
image-editing program. We’ll look at some of the more popular programs
in greater detail in Part IV. In the meantime, you may want to look into the
following popular web-graphics-creation tools:

Adobe Photoshop. Photoshop is undeniably the industry standard for
image creation in both the print and web worlds.

Adobe Photoshop Elements. This lighter version of Photoshop is designed
for photo editing and management, but some hobbyists may find that it
has all the tools necessary for putting images on web pages.

Adobe Illustrator. Because designers need to create logos, icons, and illus-
trations at a variety of sizes and resolutions, many start with a vector
image in Illustrator for maximum flexibility. You can output web graph-
ics directly from Illustrator, or bring them into Photoshop for additional
fine-tuning.

Adobe Fireworks. This web graphics program combines an image edi-
tor with tools for creating vector-based illustrations. It also features
advanced tools for outputting web graphics.

Corel Paint Shop Pro Photo (Windows only). This full-featured image edi-
tor is popular with the Windows crowd, primarily due to its low price.

GIMP, “GNU Image Manipulation Program” (Unix, Windows, Mac). This
free image-editing program is similar to Photoshop.

Internet tools
Because you will be dealing with the Internet, you need to have some tools
specifically for viewing and moving files over the network:

A variety of browsers. Because browsers render pages differently, you’ll
want to test your pages on as many browsers as possible, both on the
desktop and on mobile devices. The following lists the desktop browsers
most commonly used on Windows and Macintosh operating systems:

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started18

What Do I Need to Buy?

Windows: Macintosh Os X:

Internet Explorer
(the current version and at least two prior versions)

Chrome

Firefox

Safari

Opera

Safari

Chrome

Firefox

Opera

And don’t ignore the mobile browsers! The following list is an overview
of the most commonly used mobile web browsers as of this writing
(although who knows what mobile browsers will be important by the
time you read this):

•	 Mobile Safari (iOS)

•	 Android Browser (Android)

•	 BlackBerry Browser (RIM)

•	 Nokia Series 40 and Nokia Browser for Symbian

•	 Opera Mobile and Mini (installed on any device)

•	 Internet Explorer Mobile (Windows Phone)

•	 Silk (Kindle Fire)

A file-transfer program (FTP). An FTP program enables you to upload and
download files between your computer and the computer that will serve
your pages to the web. The web authoring tools listed earlier all have FTP
programs built right in. There are also dedicated FTP programs, as listed here:

Windows Macintosh Os X:

WS_FTP

CuteFTP

AceFTP

Filezilla

Transmit

Cyberduck

Fetch

Terminal application. If you know your way around the Unix operat-
ing system, you may find it useful to have a terminal (command-line)
application that allows you to type Unix commands on the server. This
may be useful for setting file permissions, moving or copying files and
directories, or managing the server software.

Windows users can install a Linux emulator called Cygwin for command-
line access. There is also PuTTY, a free Telnet/SSH client. Mac OS X
includes an application called Terminal that is a full-fledged terminal
application, giving you access to the underlying Unix system and the abil-
ity to use SSH to access other command-line systems over the Internet.

www.it-ebooks.info

http://www.it-ebooks.info/

What You’ve Learned

Chapter 1, Where Do I start? 19

Popular Web Design software Links

Web page authoring
Adobe Dreamweaver www.adobe.com
Microsoft Expression Web www.microsoft.com/products/

expression
Nvu (open source web page editor) www.nvu.com

HTML editing
TextMate by MacroMates for Mac OS www.macromates.com
Sublime Text www.sublimetext.com
TextPad for Windows www.textpad.com
Coda by Panic Software www.panic.com/coda/
BBEdit by Bare Bones Software www.barebones.com

Image editing and drawing
Adobe Photoshop www.adobe.com
Adobe Photoshop Elements www.adobe.com
Adobe Illustrator www.adobe.com
Adobe Fireworks www.adobe.com
Corel Paint Shop Pro Photo www.corel.com/paintshoppro
GIMP gimp.org

Browsers
Microsoft Internet Explorer (Windows only) www.microsoft.com/

windows/internet-explorer/
Firefox www.firefox.com
Google Chrome www.google.com/chrome
Opera www.opera.com
Safari www.apple.com/safari

Networking
WS_FTP, CuteFTP, AceFTP, and others for Windows available at:

www.download.com
Transmit (for Macintosh OSX) www.panic.com/transmit
Cyberduck (for Macintosh OSX) cyberduck.ch
Fetch (for Macintosh OSX) fetchsoftworks.com
Cygwin (Linux emulator for Windows) www.cygwin.com
PuTTY (telnet/SSH terminal emulator) www.chiark.greenend.org.

uk/~sgtatham/putty/

A T A G L A N C E

What You’ve Learned
The lesson to take away from this chapter is: “You don’t have to learn every-
thing.” And even if you want to learn everything eventually, you don’t need
to learn it all at once. So relax, and don’t worry. The other good news is that,
while many professional tools exist, it is possible to create a basic website and
get it up and running without spending much money by using freely avail-
able or inexpensive tools and your existing computer setup.

As you’ll soon see, it’s easy to get started making web pages—you will be able
to create simple pages by the time you’re done reading this book. From there,
you can continue adding to your bag of tricks and find your particular niche
in web design.

www.it-ebooks.info

http://www.cygwin.com
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.it-ebooks.info/

Part I, Getting started20

Test Yourself

Test Yourself
Each chapter in this book ends with a few questions that you can answer to
see if you picked up the important bits of information. Answers appear in
Appendix A.

1. Match these web professionals with the final product they might be
responsible for producing.

A. Graphic designer

B. Production department

C. User experience designer

D. Web programmer

_____ HTML and CSS documents

_____ PHP scripts

_____ Photoshop page sketch

_____ Storyboards

2. What does the W3C do?

3. Match the web technology with its appropriate task:

A. HTML

B. CSS

C. JavaScript

D. PHP

E. XML

_____ Checks a form field for a valid entry

_____ Creates a custom server-side web applica-
tion

_____ Identifies text as a second-level heading

_____ Defines a new markup language for shar-
ing financial information

_____ Makes all second-level headings blue

4. What is the difference between frontend and backend web development?

5. What is the difference between a web-authoring program and an HTML-
editing tool?

exercise 1-1 |
Taking stock
Now that you’re taking that first step
in learning web design, it might be
a good time to take stock of your
assets and goals. Using the lists in this
chapter as a general guide, try jotting
down answers to the following
questions:

 y What are your web design goals?
To become a professional web
designer? To make personal
websites only?

 y Which aspects of web design
interest you the most?

 y What current skills do you have
that will be useful in creating web
pages?

 y Which skills will you need to brush
up on?

 y Which hardware and software
tools do you already have for web
design?

 y Which tools do you need to buy?
Which tools would you like to buy
eventually?

www.it-ebooks.info

http://www.it-ebooks.info/

21

IN THIs CHAPTER

An explanation of
the Web, as it relates

to the Internet

The role of the server

The role of the browser

Introduction to URLs and
their components

The anatomy of a web page

I got started in web design in early 1993—pretty close to the start of the Web
itself. In web time, that makes me an old-timer, but it’s not so long ago that
I can’t remember the first time I looked at a web page. It was difficult to tell
where the information was coming from and how it all worked.

This chapter sorts out the pieces and introduces some basic terminology.
We’ll start with the big picture and work down to specifics.

The Internet Versus the Web
No, it’s not a battle to the death, just an opportunity to point out the distinction
between these two words that are increasingly being used interchangeably.

The Internet is a network of connected computers. No company owns the
Internet; it is a cooperative effort governed by a system of standards and
rules. The purpose of connecting computers together, of course, is to share
information. There are many ways information can be passed between
computers, including email, file transfer (FTP), and many more specialized
modes upon which the Internet is built. These standardized methods for
transferring data or documents over a network are known as protocols.

The Web (originally called the World Wide Web, thus the “www” in
site addresses) is just one of the ways information can be shared over the
Internet. It is unique in that it allows documents to be linked to one another
using hypertext links—thus forming a huge “web” of connected informa-
tion. The Web uses a protocol called HTTP (HyperText Transfer Protocol).
That acronym should look familiar because it is the first four letters of nearly
all website addresses, as we’ll discuss in an upcoming section.

serving Up Your Information
Let’s talk more about the computers that make up the Internet. Because they
“serve up” documents upon request, these computers are known as servers.
More accurately, the server is the software (not the computer itself) that

The Web is a subset of
the Internet. It is just one
of many ways information
can be transferred over
networked computers.

hoW the Web
Works

CHAPTER 2

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started22

serving Up Your Information

allows the computer to communicate with other computers; however, it is
common to use the word “server” to refer to the computer as well. The role
of server software is to wait for a request for information, then retrieve and
send that information back as quickly as possible.

There’s nothing special about the computers themselves…picture anything
from a high-powered Unix machine to a humble personal computer. It’s the
server software that makes it all happen. In order for a computer to be part
of the Web, it must be running special web server software that allows it to
handle Hypertext Transfer Protocol transactions. Web servers are also called
“HTTP servers.”

There are many server software options out there, but the two most popular
are Apache (open source software) and Microsoft Internet Information
Services (IIS). Apache is freely available for Unix-based computers and
comes installed on Macs running Mac OS X. There is a Windows version as
well. Microsoft IIS is part of Microsoft’s family of server solutions.

Every computer and device (modem, router, smartphone, cars, etc.) con-
nected to the Internet is assigned a unique numeric IP address (IP stands
for Internet Protocol). For example, the computer that hosts oreilly.com
has the IP address 208.201.239.100. All those numbers can be dizzying, so
fortunately, the Domain Name System (DNS) was developed to allow us to
refer to that server by its domain name, “oreilly.com”, as well. The numeric
IP address is useful for computer software, while the domain name is more
accessible to humans. Matching the text domain names to their respective
numeric IP addresses is the job of a separate DNS server.

It is possible to configure your web server so that more than one domain
name is mapped to a single IP address, allowing several sites to share a single
server.

No More IP Addresses
The IANA, the organization that assigns IP numbers, handed out its last bundle of IP
addresses on February 3, 2011. That’s right, no more ###.###.###.###-style IPs. That
format of IP address (called IPv4) is able to produce 4.3 billion unique addresses,
which seemed like plenty when the Internet “experiment” was first conceived in 1977.
There was no way the creators could anticipate that one day every phone, television,
and object on store shelves would be clamoring for one.

The solution is a new IP format (IPv6, already in the works) that allows for trillions
and trillions of unique IP numbers, with the slight snag that it is incompatible with
our current IPv4-based network, so IPv6 will operate as a sort of parallel Internet to
the one we have today. Eventually, IPv4 will be phased out, but some say it will take
decades.

A Brief History
of the Web
The Web was born in a particle
physics laboratory (CERN) in
Geneva, Switzerland in 1989. There
a computer specialist named Tim
Berners-Lee first proposed a system
of information management that
used a “hypertext” process to link
related documents over a network.
He and his partner, Robert Cailliau,
created a prototype and released it
for review. For the first several years,
web pages were text-only. It’s difficult
to believe that in 1992, the world had
only about 50 web servers, total.

The real boost to the Web’s
popularity came in 1992 when the
first graphical browser (NCSA Mosaic)
was introduced, and the Web broke
out of the realm of scientific research
into mass media. The ongoing
development of web technologies
is overseen by the World Wide Web
Consortium (W3C).

If you want to dig deeper into the
Web’s history, check out this site:

W3C’s History Archives
www.w3.org/History.html

Open source
Open source software is developed as
a collaborative effort with the intent
to make its source code available
to other programmers for use and
modification. Open source programs
are usually available for free.

T E r m i N o L o G y

www.it-ebooks.info

http://www.it-ebooks.info/

A Word About Browsers

Chapter 2, How the Web Works 23

A Word About Browsers
We now know that the server does the servin’, but what about the other half
of the equation? The software that does the requesting is called the client.
People use desktop browsers, mobile browsers, and other assistive technolo-
gies (such as screen readers) as clients to access documents on the Web. The
server returns the documents for the browser (also referred to as the user
agent in technical circles) to display.

The requests and responses are handled via the HTTP protocol, mentioned
earlier. Although we’ve been talking about “documents,” HTTP can be used
to transfer images, movies, audio files, data, scripts, and all the other web
resources that commonly make up web sites and applications.

It is common to think of a browser as a window on a computer monitor with
a web page displayed in it. These are known as graphical browsers or desk-
top browsers and for a long time, they were the only web-viewing game in
town. The most popular desktop browsers as of this writing include Internet
Explorer for Windows, Chrome, Firefox, and Safari, with Opera bringing up
the rear. These days, however, more and more people are accessing the Web
on the go using browsing clients built into mobile phones or tablets.

It is also important to keep alternative web experiences in mind. Users with
sight disabilities may be listening to a web page read by a screen reader (or
simply make their text extremely large). Users with limited mobility may
use assistive devices to access links and to type. The sites we build must be
accessible and usable for all users, regardless of their browsing experiences.

Even on the desktop browsers that first introduced us to the wide world of
the Web, pages may look and perform differently from browser to browser.
This is due to varying support for web technologies and the users’ ability to
set their own browsing preferences.

Intranets and Extranets
When you think of a website, you generally assume that it is accessible to anyone
surfing the Web. However, many companies take advantage of the awesome
information sharing and gathering power of websites to exchange information just
within their own business. These special web-based networks are called intranets.
They are created and function like ordinary websites, but they use special security
devices (called firewalls) that prevent the outside world from seeing them. Intranets
have lots of uses, such as sharing human resource information or providing access to
inventory databases.

An extranet is like an intranet, only it allows access to select users outside of the
company. For instance, a manufacturing company may provide its customers with
passwords that allow them to check the status of their orders in the company’s
orders database. Of course, the passwords determine which slice of the company’s
information is accessible.

server-side and
Client-side
Often in web design, you’ll hear
reference to “client-side” or “server-
side” applications. These terms are
used to indicate which machine
is doing the processing. Client-
side applications run on the
user’s machine, while server-side
applications and functions use the
processing power of the server
computer.

T E r m i N o L o G y

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started24

Web Page Addresses (URLs)

Web Page Addresses (URLs)
Every page and resource on the Web has its own special address called a
URL, which stands for Uniform Resource Locator. It’s nearly impossible to
get through a day without seeing a URL (pronounced “U-R-L,” not “erl”)
plastered on the side of a bus, printed on a business card, or broadcast on
a television commercial. Web addresses are fully integrated into modern
vernacular.

Some URLs are short and sweet. Others may look like crazy strings of char-
acters separated by dots (periods) and slashes, but each part has a specific
purpose. Let’s pick one apart.

The parts of a URL
A complete URL is generally made up of three components: the protocol,
the site name, and the absolute path to the document or resource, as shown
in Figure 2-1.

http:// www.example .com /2011/samples/first.html

Host name Domain name

Protocol1 Name of site2 Absolute path3

Directory path Document

Figure 2-1. The parts of a URL.

	➊	 http://

The first thing the URL does is define the protocol that will be used for
that particular transaction. The letters HTTP let the server know to use
Hypertext Transfer Protocol, or get into “web mode.”

	➋	 www.example.com

The next portion of the URL identifies the website by its domain name.
In this example, the domain name is example.com. The “www.” part at
the beginning is the particular host name at that domain. The host name
“www” has become a convention, but is not a rule. In fact, sometimes
the host name may be omitted. There can be more than one website at a
domain (sometimes called subdomains). For example, there might also
be development.example.com, clients.example.com, and so on.

➌	 /2012/samples/first.html

This is the absolute path through directories on the server to the request-
ed HTML document, first.html. The words separated by slashes are the
directory names, starting with the root directory of the host (as indicated
by the initial /). Because the Internet originally comprised computers
running the Unix operating system, our current way of doing things still

Hey, There’s No
http:// on That URL!
Because nearly all web pages use
the Hypertext Transfer Protocol, the
http:// part is often just implied.
This is the case when site names are
advertised in print or on TV, as a way
to keep the URL easy to remember.

Additionally, browsers are
programmed to add http://
automatically as a convenience to
save you some keystrokes. It may
seem like you’re leaving it out, but it
is being sent to the server behind the
scenes.

When we begin using URLs to create
hyperlinks in HTML documents in
Chapter 6, Adding Links, you’ll learn
that it is necessary to include the
protocol when making a link to a
web page on another server.

n oT e

Sometimes you’ll see a URL that begins
with https://. This is an indication that
it is a secure server transaction. Secure
servers have special encryption devices
that hide delicate content, such as credit
card numbers, while they are trans-
ferred to and from the browser. Look for
it the next time you’re shopping online.

www.it-ebooks.info

http://www.it-ebooks.info/

Web Page Addresses (URLs)

Chapter 2, How the Web Works 25

follows many Unix rules and conventions, hence the / separating direc-
tory names.

To sum it up, the URL in Figure 2-1 says it would like to use the HTTP
protocol to connect to a web server on the Internet called www.example.com
and request the document first.html (located in the samples directory, which
is in the 2012 directory).

Default files
Obviously, not every URL you see is so lengthy. Many addresses do not
include a filename, but simply point to a directory, like these:

http://www.oreilly.com
http://www.jendesign.com/resume/

When a server receives a request for a directory name rather than a specific file,
it looks in that directory for a default document, typically named index.html.
So when someone types the above URLs into their browser, what they’ll actu-
ally see is this:

http://www.oreilly.com/index.html
http://www.jendesign.com/resume/index.html

The name of the default file (also referred to as the index file) may vary, and
depends on how the server is configured. In these examples, it is named
index.html, but some servers use the filename default.htm. If your site uses
server-side programming to generate pages, the index file might be named
index.php or index.asp. Just check with your server
administrator or the tech support department at your
hosting service to make sure you give your default file
the proper name.

Another thing to notice is that in the first example, the
original URL did not have a trailing slash to indicate it
was a directory. When the slash is omitted, the server
simply adds one if it finds a directory with that name.

The index file is also useful for security. Some servers
(depending on their configuration) display the contents
of the directory if the default file is not found. Figure
2-2 shows how the documents in the housepics direc-
tory are exposed as the result of a missing default file.
One way to prevent people from snooping around in
your files is to be sure there is an index file in every
directory. Your server administrator may also add
other protections to prevent your directories from dis-
playing in the browser.

Providing the URL for a directory (rather
than a specific filename) prompts the server
to look for a default file, typically called
index.html.

index.html

Some servers are configured to return a listing of the
contents of that directory if the default file is not found.

Figure 2-2. Some servers display the
contents of the directory if an index file is
not found.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started26

The Anatomy of a Web Page

The Anatomy of a Web Page
We’re all familiar with what web pages look like in the browser window, but
what’s happening “under the hood?”

At the top of Figure 2-3, you see a minimal web page as it appears in a
graphical browser. Although you see it as one coherent page, it is actually
assembled from four separate files: an HTML document (index.html), a style
sheet (kitchen.css), and two graphics (foods.gif and spoon.gif). The HTML
document is running the show.

HTML documents
You may be as surprised as I was to learn that the graphically rich and inter-
active pages we see on the Web are generated by simple, text-only docu-
ments. This text file is referred to as the source document.

Take a look at index.html, the source document for the Jen’s Kitchen web
page. You can see it contains the text content of the page plus special tags
(indicated with angle brackets, < and >) that describe each element on the
page.

Adding descriptive tags to a text document is known as “marking up” the
document. Web pages use a markup language called HyperText Markup
Language, or HTML for short, which was created especially for documents
with hypertext links. HTML defines dozens of text elements that make up
documents such as headings, paragraphs, emphasized text, and of course,
links. There are also elements that add information about the document
(such as its title), media such as images and videos, and widgets for form
inputs, just to name a few.

It is worth noting briefly that there are actually several versions of HTML
in use today. The most firmly established are HTML version 4.01 and its
stricter cousin, XHTML 1.0. And you may have heard how all the Web is
a-buzz with the emerging HTML5 specification that is designed to better
handle web applications and is gradually gaining browser support. I will give
you the lowdown on all the various versions and what makes them unique in
Chapter 10, What’s Up, HTML5?. In the meantime, we have to cover some
basics that apply regardless of the HTML flavor you choose.

A quick introduction to HTML markup
You’ll be learning the nitty-gritty of markup in Part II, so I don’t want to bog
you down with too much detail right now, but there are a few things I’d like
to point out about how HTML works and how browsers interpret it.

Read through the HTML document in Figure 2-3 and compare it to the
browser results. It’s easy to see how the elements marked up with HTML
tags in the source document correspond to what displays in the browser
window.

exercise 2-1 |
View source
You can see the HTML file for any
web page by choosing View ➝
Page Source or (View ➝ Source) in
your browser’s menu. Your browser
typically opens the source document
in a separate window. Let’s take a
look under the hood of a web page.

1. Enter this URL into your browser:

www.learningwebdesign.com/4e/
materials/chapter02/kitchen.html
You should see the Jen’s Kitchen
web page from Figure 2-3.

2. Select View → Page Source (or
View → Source) from the browser
menu. On Chrome and Opera,
View Source is located in the
Developer menu. A window
opens showing the source
document shown in the figure.

3. The source for most sites is
considerably more complicated.
View the source of oreilly.com
or the site of your choice. Don’t
worry if you don’t understand
what’s going on. Much of it will
look more familiar by the time you
are done with this book.

wa R n i n G

Keep in mind that while learning
from others’ work is fine, the all-
out stealing of other people’s code
is poor form (or even illegal). If
you want to use code as you see it,
ask for permission and always give
credit to those who did the work.

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a Web Page

Chapter 2, How the Web Works 27

<!DOCTYPE html>
<html>
<head>
<title>Jen's Kitchen</title>
<link rel="stylesheet" href="kitchen.css" type="text/css" >
</head>

<body>
<h1> Jen’s Kitchen</h1>

<p>If you love to read about cooking and eating, would like to find out about
of some of the best restaurants in the world, or just want a few choice recipes to add to your
collection, this is the site for you!</p>

<p> Your pal, Jen at Jen's Kitchen</p>
<hr>
<p><small>Copyright 2011, Jennifer Robbins</small></p>
</body>
</html>

index.html

The web page shown in this
browser window consists of
four separate �les: an HTML
text document, a style sheet
and two images. Tags in the
HTML source document give
the browser instructions for
how the text is structured and
where the images should be
placed.

body { font: normal 1em Verdana; margin: 1em 10%;}
h1 { font: italic 3em Georgia; color: rgb(23, 109, 109); margin: 1em 0 1em;}
img { margin: 0 20px 0 0; }
h1 img { margin-bottom: -20px; }
small { color: #666666; }

kitchen.css

foods.gif spoon.gif

Figure 2-3. The source file and images that make up a simple web page.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started28

The Anatomy of a Web Page

First, you’ll notice that the text within brackets (for example, <body>) does
not display in the final page. The browser displays only what’s between the
tags—the content of the element. The markup is hidden. The tag provides
the name of the HTML element—usually an abbreviation such as “h1” for
“heading level 1,” or “em” for “emphasized text.”

Second, you’ll see that most of the HTML tags appear in pairs surrounding
the content of the element. In our HTML document, <h1> indicates that the
following text should be a level-1 heading; </h1> indicates the end of the
heading. Some elements, called empty elements, do not have content. In our
sample, the <hr> tag indicates an empty element that tells the browser to
“insert a thematic divider here” (most browsers indicate the thematic divider
with a horizontal rule [line], which is how the hr element got its initials).

Because I was unfamiliar with computer programming when I first began
writing HTML, it helped me to think of the tags and text as “beads on a
string” that the browser interprets one by one, in sequence. For example,
when the browser encounters an open bracket (<), it assumes all of the fol-
lowing characters are part of the markup until it finds the closing bracket
(>). Similarly, it assumes all of the content following an opening <h1> tag is a
heading until it encounters the closing </h1> tag. This is the manner in which
the browser parses the HTML document. Understanding the browser’s
method can be helpful when troubleshooting a misbehaving HTML docu-
ment.

But where are the pictures?
Obviously, there are no pictures in the HTML file itself, so how do they get
there when you view the final page?

You can see in Figure 2-3 that each image is a separate file. The images are
placed in the flow of the text with the HTML image element (img) that tells
the browser where to find the graphic (its URL). When the browser sees the
img element, it makes another request to the server for the image file, and
then places it in the content flow. The browser software brings the separate
pieces together into the final page. Videos and other embedded media files
are added in much the same way.

The assembly of the page generally happens in an instant, so it appears as
though the whole page loads all at once. Over slow connections or if the
page includes huge graphics or media files, the assembly process may be
more apparent as images lag behind the text. The page may even need to be
redrawn as new images arrive (although you can construct your pages in a
way to prevent that from happening).

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a Web Page

Chapter 2, How the Web Works 29

Adding a little style
I want to direct your attention to one last key ingredient of our minimal
page. Near the top of the HTML document there is a link element that
points to the style sheet document kitchen.css. That style sheet includes a
few lines of instructions for how the page should look in the browser. These
are style instructions written according to the rules of Cascading Style Sheets
(CSS). CSS allows designers to add visual style instructions (known as the
document’s presentation) to the marked-up text (the document’s structure,
in web design terminology). In Part III, you’ll really get to know the power
of Cascading Style Sheets.

Figure 2-4 shows the Jen’s Kitchen page with and without the style instruc-
tions. Browsers come equipped with default styles for every HTML element
they support, so if an HTML document lacks its own custom style instruc-
tions, the browser will use its own (that’s what you see in the screen shot
on the right). Even just a few style rules can make big improvements to the
appearance of a page.

Figure 2-4. The Jen’s Kitchen page before (left) and after (right) style rules.

Adding Behaviors with Javascript
In addition to a document’s structure and presentation, there is also a behavior
component that defines how things work. On the Web, behaviors are defined
by a scripting language called JavaScript. We’ll touch on it lightly in this book in
Part IV, but learning JavaScript from scratch is more than we can take on here.
Many designers (myself included) rely on people with scripting experience to add
functionality to sites. However, knowing how to write JavaScript is becoming more
essential to the “web designer” job description.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started30

Putting It All Together

Putting It All Together
To wrap up our introduction to how the web works, let’s trace a typical
stream of events that occurs with every web page that appears on your screen
(Figure 2-5).

➊	 You request a web page by either typing its URL (for example, http://
jenskitchensite.com) directly in the browser or by clicking on a link on a
page. The URL contains all the information needed to target a specific
document on a specific web server on the Internet.

➋	 Your browser sends an HTTP Request to the server named in the URL
and asks for the specific file. If the URL specifies a directory (not a file),
it is the same as requesting the default file in that directory.

➌	 The server looks for the requested file and issues an HTTP response.

a. If the page cannot be found, the server returns an error message. The
message typically says “404 Not Found,” although more hospitable
error messages may be provided.

b. If the document is found, the server retrieves the requested file and
returns it to the browser.

➍	 The browser parses the HTML document. If the page contains images
(indicated by the HTML img element) or other external resources like
scripts, the browser contacts the server again to request each resource
specified in the markup.

➎	 The browser inserts each image in the document flow where indicated
by the img element. And voila! The assembled web page is displayed for
your viewing pleasure.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

Chapter 2, How the Web Works 31

4 The browser parses the
document. If it has images, style
sheets, and scripts, the browser
contacts the server again for each
resource.

5 The page is assembled in
the browser window.

HTTP request

HTTP response

2 The browser sends
an HTTP request.

Server

Oops, no file

If the file is not on the server,
it returns an error message.

Server Contents

index.html

Browser

1 Type in a URL or click on a link in the browser.

3 The server looks for the file and
responds with an HTTP response.

“I see that you requested a directory,
so I’m sending you the default file,
index.html. Here you go.”

kitchen.gif

spoon.gif

index.html

kitchen.css

kitchen.css

kitchen.gif

spoon.gif

Figure 2-5. How browsers display web pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started32

Test Yourself

Test Yourself
Let’s play a round of “Identify that Acronym!” The following are a few basic
web terms mentioned in this chapter. Answers are in Appendix A.

1) HTML ______ a) Home of Mosaic, the first graphical browser

2) W3C ______ b) The location of a web document or resource

3) CERN ______ c) The markup language used to describe web content

4) CSS ______ d) Matches domain names with numeric IP addresses

5) HTTP ______ e) A protocol for file transfer

6) IP ______ f) Protocol for transferring web documents on the
Internet

7) URL ______ g) The language used to instruct how web content
looks

8) NCSA ______ h) Particle physics lab where the Web was born

9) DNS ______ i) Internet Protocol

10) FTP ______ j) The organization that monitors web technologies

www.it-ebooks.info

http://www.it-ebooks.info/

33

IN THIs CHAPTER

The Web on mobile devices

The benefits of web
standards

Progressive enhancement

Responsive web design

Accessibility

Site performance

As the Web matures and the number of devices we access it from increases
exponentially, our jobs as web designers and developers get significantly
more complicated. Frankly, there’s a lot more going on out there than I can
fit in this book. In the chapters that follow, I will focus on the basic building
blocks of web design—HTML elements, CSS styles, a taste of JavaScript,
and web graphics production—that will give you a solid foundation for the
further development of your skills.

But before we get to the nuts and bolts, I want introduce some Big Concepts
that I think every web designer needs to know. We’ll look at ideas and con-
cerns that inform our decisions and contribute to the contemporary web
design environment. I’ll be referring back to the terminology introduced
here frequently.

The heart of the matter is that as web designers, we never know exactly how
the pages we create will be viewed. We don’t know which of the hundreds
of browsers might be used, whether it is on a desktop computer or some-
thing more portable, how large the browser window will be, what fonts are
installed, whether functionality such as JavaScript is enabled, the speed of
the Internet connection, whether they are being read by a screen reader,
and so on. I think you get the picture. The Big Concepts in this chapter are
primarily reactions to and methods for coping with the inescapable element
of the Unknown in our medium. They include:

•	 The multitude of devices

•	 Web standards

•	 Progressive enhancement

•	 Responsive web design

•	 Accessibility

•	 Site performance

Because we’re just getting started, I will keep the descriptions brief and
fairly non-technical. My goal is that you have a basic understanding of what
I mean by terms like “progressive enhancement” when you encounter them

some bIg ConCePts
You neeD to knoW

CHAPTER 3

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started34

A Dizzying Multitude of Devices

in a later exercise. Many excellent articles and books have been written on
each of these topics and their related production techniques, and I’ll provide
pointers to resources for further reading.

A Dizzying Multitude of Devices
Until 2007, we could be relatively certain that our users were visiting our
sites while sitting at their desk, looking at a large monitor, using a speedy
Internet connection. We had all more or less settled on 960 pixels as a good
width for a web page. Back then, our biggest concern was dealing with the
dozen or so desktop browsers and jumping through a few extra hoops to
support quirky old versions of Internet Explorer. And we thought we had
it rough!

Although you could access web pages and web content on mobile phones
prior to 2007, the introduction of the iPhone and Android smartphones
as well as a more widespread 3G network heralded a huge shift in how,
when, and where we do our web surfing (particularly in the United States,
which lagged behind Asia and the EU in mobile technology). Since then,
we’ve seen the introduction of tablets of all different dimensions, as well as
web browsers on TVs and other devices. And the diversity is only going to
increase. I think mobile guru Brad Frost sums it up nicely in his illustrations
in Figure 3-1.

Figure 3-1. Brad Frost sums up the reality of device diversity nicely (bradfrostweb.com).

The challenges of designing for all of these devices goes beyond addressing
differing screen sizes. There is a world of difference between using a site
over a broadband connection and over a 3G or EDGE network. There are
also varying contexts to consider. Users may be sitting at a desk, enjoying
some recreational browsing at home, or getting information quickly on the
go. Designers need to resist making assumptions about network speed and
context based on the screen size. It’s not uncommon to leisurely browse the
Web on a smartphone while sitting on the couch at home with a solid WiFi
connection. And new iPads with high-resolution displays may be accessing
the Internet on a pokey 3G connection. In other words, it’s complicated!

www.it-ebooks.info

http://www.it-ebooks.info/

A Dizzying Multitude of Devices

Chapter 3, some Big Concepts You Need to Know 35

Soon, more people will be accessing the Web on their mobile and alterna-
tive devices than on a desktop computer. Already a significant portion of
Americans use their mobile phones as their only access to the Internet. That
means it is critical to get it right. But to be honest, as of this writing, we
haven’t entirely figured out how to make all the content we are accustomed
to seeing at our desk fit on our handheld devices with an equally pleasing
experience. Great strides are being made, and there is a wonderful spirit of
collaboration while we figure it out, but the fact is that our tools and tech-
nologies are not quite suited for the task and will take some time to catch up.

What I want you to learn here is that the way you see your design as you’re
working on it on your nice desktop machine is not how it will be experienced
by everyone. This fact should be on the mind of all web design professionals.

Mobile Web?
You may hear designers use the term Mobile Web, but the truth is (as Stephen Hay
put it in a tweet in 2011; see Figure 3-2) there is no Mobile Web any more than there
is a Desktop Web, or a Tablet Web, or so on. There is just the Web, and it can be
accessed from all manner of devices. As of this writing, the term “mobile web” is used
as sort of a catchall for describing our efforts to adapt our desktop design skills to
accommodate a much wider variety of use cases. And as we are finding out, there is
more than one way to crack that nut.

For further reading
•	 In his article “The Coming Zombie Apocalypse,” Scott Jensen takes a

thoughtful look at the onslaught of inexpensive networked devices
(designmind.frogdesign.com/blog/the-coming-zombie-apocalypse-small-
cheap-devices-will-disrupt-our-old-school-ux-assumptions.htm). It is defi-
nitely worth a read.

•	 Mobile First, by Luke Wroblewski (A Book Apart). Luke was way ahead
of the curve on insisting sites work well on mobile devices, and he shares
his perspective in this little book that is jam-packed with ideas.

Figure 3-2. Stephen Hay’s tweet from January 2011. Read his follow-up article at
www.the-haystack.com/2011/01/07/there-is-no-mobile-web/.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started36

sticking with the standards

•	 The Future Friendly site (futurefriend.ly) includes a call to arms com-
posed by many of the brightest mobile designers of the day. They con-
cluded that with the landscape changing so rapidly, we can’t make our
designs future-proof, but we can make them “future friendly.” They
assemble a number of tips and resources for doing so.

sticking with the standards
So how do we deal with this diversity? One good start is to follow the
HTML, CSS, and JavaScript standards as documented by the World Wide
Web Consortium (W3C). Sticking with web standards is your primary tool
for ensuring your site is as consistent as possible on all standards-compliant
browsers (that’s approximately 99% of browsers in current use). It also helps
make your content forward-compatible as web technologies and browser
capabilities evolve. Another benefit is you can tell your clients that you cre-
ate “standards-compliant” sites, and they will like you more.

The notion of standards compliance may seem like a no-brainer, but it used
to be that everyone, including the browser makers, played fast and loose
with HTML and scripting. The price we paid was incompatible browser
implementations and the need to create sites twice to make them work for
everyone. I talk more about web standards throughout this book, so I won’t
go into too much detail here. Suffice it to say that the web standards are
your friends. Everything you learn in this book will get you headed in the
right direction.

For further reading
The bible for standards compliance and how it makes good business sense
is Designing with Web Standards by Jeffrey Zeldman (New Riders). Go read
it (when you’re done with this book, of course).

Progressive Enhancement
With a multitude of browsers comes a multitude of levels of support for
the web standards. In fact, no browser has implemented all the standards
100%, and there are always new technologies that are slowly gaining steam.
Furthermore, users can set their own browser preferences, so they may have
a browser that supports JavaScript but have chosen to turn it off. The point
here is that we are faced with a wide range of browser capabilities—from
basic HTML support only to all the bells and whistles.

Sticking with web
standards is your primary
tool for ensuring your site
is as consistent as possible.

Progressive enhancement
is a strategy for coping
with unknown browser
capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Progressive Enhancement

Chapter 3, some Big Concepts You Need to Know 37

Progressive enhancement is one strategy for dealing with unknown browser
capabilities. When designing with progressive enhancement, you start with a
baseline experience that makes the content or functionality available to even
the most rudimentary browsers or assistive devices. From there, you layer on
more advanced features for the browsers that can handle them. You might
finish with some “nice to have” effects like animation or rounded corners on
boxes that enhance the experience for users with the most advanced brows-
ers, but that aren’t really critical to the brand or message.

Progressive enhancement is an approach that informs all aspects of page
design and production, including HTML, CSS, and JavaScript.

Authoring strategy

When an HTML document is written in logical order and its elements
are marked up in a meaningful way, it will be usable on the widest range
of browsing environments, including the oldest browsers, future brows-
ers, and mobile and assistive devices. It may not look exactly the same,
but the important thing is that your content is available. It also ensures
that search engines like Google will catalog the content correctly. A clean
HTML document with its elements accurately and thoroughly described
are the foundation for accessibility.

Styling strategy

You can create layers of experiences simply by taking advantage of the
way browsers parse style sheet rules. Without going into too much tech-
nical detail, you can write a style rule that makes an element background
red, but also include a style that gives it a cool gradient (a blend from
one color to another) for browsers that know how to render gradients.
Or you can use a cutting-edge CSS selector to deliver certain styles only
to cutting-edge browsers. The knowledge that browsers simply ignore
properties and rules they don’t understand gives you license to innovate
without bringing older browsers to their knees. You just have to be mind-
ful to take care of styling the baseline experience first, then add improve-
ments once the minimum requirements are met.

Scripting strategy

JavaScript is the scripting language that makes web pages inter-
active and dynamic (updating content on the fly or in response
to user input). The Web would be a lot of static brochureware
without it. Like other web technologies, there are discrepancies in
how browsers handle JavaScript (particularly on non-desktop
devices), and some users opt to turn it off entirely. The first rule
in progressive enhancement is to make sure basic functionality—
such as linking from page to page or accomplishing essential tasks like
data submission via forms—is intact even when JavaScript is off. In this
way, you ensure the baseline experience, and enhance it when JavaScript
is available.

n oT e

Progressive enhancement is the flip
side of an older approach to browser
diversity called graceful degradation,
in which you design the fully enhanced
experience first, then create a series of
fallbacks for non-supporting browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started38

Responsive Web Design

For further reading
There is no better introduction to the progressive enhancement approach
than the book Adaptive Web Design: Crafting Rich Experiences with
Progressive Enhancement, by Aaron Gustafson (Easy Readers). Aaron is a
technical reviewer for this book, but I’d be recommending his excellent
primer even if he weren’t. See easy-readers.net/books/adaptive-web-design/
for more information.

Once you have more web development chops, the book Designing with
Progressive Enhancement, by Todd Parker, Patty Toland, Scott Jehl, and
Maggie Costello Wachs (New Riders), is an excellent deep-dive into tech-
niques and best practices. Read more about it at filamentgroup.com/dwpe/.

Responsive Web Design
By default, most browsers on small devices such as smartphones and tablets
shrink a web page down to fit the screen and provide mechanisms for zoom-
ing and moving around the page. Although it technically works, it is not a
great experience. The text is too small to read, the links too small to tap, and
all that zooming and panning around is distracting.

Responsive web design is a strategy for providing custom layouts to devices
based on the size of the viewport (browser window). The trick to responsive
web design is serving a single HTML document to all devices, but applying
different style sheets based on the screen size in order to provide the most
optimized layout for that device. For example, when the page is viewed on
a smartphone, it appears in one column with large links for easy tapping.
But when that same page is viewed on a large desktop browser, the content
rearranges into multiple columns with traditional navigation elements. It’s
like magic! (Except that it’s actually just CSS.)

The web design community has been a-buzz about responsive design since
Ethan Marcotte first wrote about it and coined the phrase in his article
“Responsive Web Design” on A List Apart in 2010 (www.alistapart.com/
articles/responsive-web-design/). It’s become one of the primary tools we use
to cope with unknown viewport size.

Figure 3-3 shows some examples of responsive sites at the typical dimen-
sions for a desktop monitor, tablet, and smartphone. You can see many more
inspirational examples at the Media Queries gallery site (mediaqueri.es) Try
opening a design in your browser and then resizing the window very narrow
and very wide, and watch as the layout changes based on the window size.
Très cool.

Responsive web design is
a strategy for dealing with
unknown screen size.

www.it-ebooks.info

http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/
http://www.it-ebooks.info/

Responsive Web Design

Chapter 3, some Big Concepts You Need to Know 39

Open Medical Device Research Library
www.omdrl.org

Smashing Magazine
smashingmagazine.org

Figure 3-3. Responsive sites’ layout changes based on the size of the browser window.

Responsive web design helps with matters of layout, but it is not a solution
to all mobile web design challenges. The fact is that providing the best expe-
riences for your users and their chosen device may require optimizations that
go beyond adjusting the look and feel. Some problems are better addressed
by using the server to detect the device and its capabilities and then make
decisions on what to send back. Using progressive enhancement, you can
deliver a baseline experience for the most basic browsers and devices, but
send enhanced options for devices that can use them.

For some sites and services, it may be preferable to build a separate mobile
site (see the “Dedicated Mobile Sites” sidebar) with a customized interface
and feature set that takes advantage of phone capabilities like geolocation.
That said, although responsive design won’t fix everything, it is an important
part of the solution for delivering satisfactory experiences on a wide variety
of browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started40

Responsive Web Design

Dedicated Mobile sites
The alternative to a single responsive site is to build an entirely
separate site, with a unique URL, that gets served up when
requested by a mobile device. Mobile site URLs are commonly
prefixed with m. or mobile. For some types of sites, a dedicated
mobile site is the best solution if you know that your mobile
users have very different usage patterns than folks seated at a
desk. On dedicated mobile sites, the most frequently requested
features are highlighted on the first screen, and a lot of the
“extra” stuff (like promotions) from the desktop site is simply
stripped away. (It makes you wonder what value it adds to the
desktop site after all.)

Figure 3-4 compares Walgreens’ primary and mobile sites as they
appeared mid-2012. You can see that phone users are offered a
much more streamlined set of options.

A dedicated mobile site may be the best way to make complex
tasks easier for users on smartphones. Luke Wroblewski provides
many thoughtful reasons why his service Bagcheck chose a
separate site in his article “Why Separate Mobile and Desktop
Pages?” (www.lukew.com/ff/entry.asp?1390). I recommend you
give it a read.

The point here is that responsive web design is not a universal
solution. For sites that feature mainly text content, a little layout
adjustment may be all that is needed to bring a good reading
experience on all devices. For other sites and web applications,
a very different experience may be preferred.

The downside of a dedicated mobile site is that it is more than
twice the work. It requires additional content planning, design
templates, production time, and ongoing maintenance. But if it

means giving your visitors the functionality they really need, it is
well worth the investment.

Figure 3-4. A comparison of primary and dedicated mobile
sites.

For further reading
I’ll cover responsive web design in more detail in Chapter 18, CSS
Techniques, once you have more code experience under your belt. To con-
tinue your responsive design education, I recommend the following books.

•	 Ethan Marcott’s book Responsive Web Design (A Book Apart) is required
reading for budding web designers. It’s a short book that is the perfect
starting point for learning how responsive web design works and how to
try it yourself.

•	 Head First Mobile Web, by Lyza Danger Gardner and Jason Grigsby
(O’Reilly Media). This book includes responsive web design, but
expands on it, including techniques that take advantage of scripting and
server-side detection. It’s also extremely entertaining to read, although
you’ll need some familiarity with CSS and JavaScript to get the most out
of it.

n oT e

Even dedicated mobile sites can and
should take advantage of responsive
techniques to customize their experience
from device to device. It isn’t necessar-
ily an only one or the other decision.
Stephanie Rieger summarizes this point
well in her article “Responsiveness is a
characteristic,” which you can read at
stephanierieger.com/responsiveness-is-
a-characteristic/.

www.it-ebooks.info

http://www.lukew.com/ff/entry.asp?1390
http://www.it-ebooks.info/

One Web for All (Accessibility)

Chapter 3, some Big Concepts You Need to Know 41

One Web for All (Accessibility)
We’ve been talking about the daunting number of browsers in use today, but
so far, we’ve only addressed visual browsers controlled with mouse pointers
or fingertips. It is critical, however, to keep in mind that people access the
Web in many different ways—with screen readers, braille output, magni-
fiers, joysticks, foot pedals, and so on. Web designers must build pages in
a manner that creates as few barriers as possible to getting to information,
regardless of the user’s ability and the device used to access the Web. In
other words, you must design for accessibility.

Although intended for users with disabilities such as poor vision or lim-
ited mobility, the techniques and strategies developed for accessibility also
benefit other users with less-than-optimum browsing experiences, such as
handheld devices, or traditional browsers over slow modem connections
or with the images and JavaScript turned off. Accessible sites are also more
effectively indexed by search engines such as Google. The extra effort in
making your site accessible is well worth the effort.

There are four broad categories of disabilities that affect how people interact
with their computers and the information on them:

Vision impairment. People with low or no vision may use an assistive device
such as a screen reader, braille display, or a screen magnifier to get con-
tent from the screen. They may also simply use the browser’s text zoom
function to make the text large enough to read.

Mobility impairment. Users with limited or no use of their hands may use
special devices such as modified mice and keyboards, foot pedals, or
joysticks to navigate the Web and enter information.

Auditory impairment. Users with limited or no hearing will miss out on
audio aspects of multimedia, so it is necessary to provide alternatives,
such as transcripts for audio tracks or captions for video.

Cognitive impairment. Users with memory, reading comprehension, prob-
lem solving, and attention limitations benefit when sites are designed
simply and clearly. These qualities are helpful to anyone using your site.

The W3C started the Web Accessibility Initiative (WAI) to address the need
to make the Web usable for everyone. The WAI site (www.w3.org/WAI) is
an excellent starting point for learning more about web accessibility. One
of the documents produced by the WAI to help developers create acces-
sible sites is the Web Content Accessibility Guidelines (WCAG and WCAG
2.0). You can read them all at www.w3.org/WAI/intro/wcag.php. The United
States government used the Priority 1 points of the WCAG as the basis
for its Section 508 accessibility guidelines (see the sidebar “Government
Accessibility Requirements: Section 508”). All sites benefit from these guide-
lines, but if you are designing a government site, adherence is a requirement.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I, Getting started42

One Web for All (Accessibility)

Government Accessibility Requirements: section 508
If you create a site receiving federal funding, you are required by
law to comply with the Section 508 Guidelines that ensure that
electronic information and technology is available to people
with disabilities. State and other publicly funded sites may also
be required to comply.

The following guidelines, excerpted from the Section 508
Standards at www.section508.gov, provide a good checklist for
basic accessibility for all websites.

1. A text equivalent for non-text elements shall be provided
(e.g., via the “alt” attribute or in element content).

2. Equivalent alternatives for any multimedia presentation shall
be synchronized with the presentation.

3. Web pages shall be designed so that all information
conveyed with color is also available without color, for
example from context or markup.

4. Documents shall be organized so they are readable without
requiring an associated style sheet.

5. Row and column headers shall be identified for data tables.

6. Markup shall be used to associate data cells and header cells
for data tables that have two or more logical levels of row or
column headers.

7. Pages shall be designed to avoid causing the screen to flicker
with a frequency greater than 2 Hz and lower than 55 Hz.

8. When pages utilize scripting languages to display content, or
to create interface elements, the information provided by the
script shall be identified with functional text that can be read
by assistive technology.

9. When a web page requires that an applet, plug-in, or other
application be present on the client system to interpret page
content, the page must provide a link to a plug-in or applet
that complies with §1194.21(a) through (l).

10. When electronic forms are designed to be completed online,
the form shall allow people using assistive technology to
access the information, field elements, and functionality
required for completion and submission of the form,
including all directions and cues.

11. A method shall be provided that permits users to skip
repetitive navigation links.

12. When a timed response is required, the user shall be alerted
and given sufficient time to indicate more time is required.

Another W3C effort is the WAI-ARIA (Accessible Rich Internet Applications)
spec, which addresses the accessibility of web applications that include
dynamically generated content, scripting, and advanced interface ele-
ments that are particularly confounding to assistive devices. The ARIA
Recommendation defines a number of roles for content and widgets that
authors can explicitly apply using the role attribute. Roles include things
like menubar, progressbar, slider, timer, tooltip, and so on, and add an
enhanced layer of semantics for those who need it. For the complete list of
roles, go to www.w3.org/TR/wai-aria/roles#role_definitions.

For further reading
The following resources are good starting points for further exploration on
web accessibility:

•	 The Web Accessibility Initiative (WAI), www.w3.org/WAI

•	 WebAIM: Web Accessibility in Mind, www.webaim.org

•	 Pro HTML5 Accessibility, by Joshue O Connor (Professional Apress,
2012)

•	 Universal Design for Web Applications: Web Applications that Reach
Everyone, by Wendy Chisholm and Matt May (O’Reilly, 2008)

www.it-ebooks.info

http://www.webaim.org
http://www.it-ebooks.info/

The Need for speed (site Performance)

Chapter 3, some Big Concepts You Need to Know 43

The Need for speed (site Performance)
Although the number of users accessing the Internet on slow dial-up con-
nections is shrinking (5–10% in the US as of this writing), the percentage of
folks using mobile phones to access the Web is increasing dramatically and
is eventually slated to exceed desktop usage. If you have a smartphone, then
you know how frustrating it is to wait for a web page to fully display over a
cellular data connection.

But site performance is critical regardless of how your users are accessing
your site. A study by Google in 2009* showed that the addition of just 100
to 400 milliseconds to their search results page resulted in reduced searches
(–0.2 to –0.6%). Amazon.com showed that reducing page load times by just
100ms resulted in a 1% increase in revenue.† Other studies show that users
expect a site to load in under two seconds, and nearly a third of your audi-
ence will leave your site for another if it doesn’t. Furthermore, those people
aren’t likely to come back. Google has added site speed to its search algo-
rithm, so if your site is a slow poke, it’s not likely to show up in that coveted
first screen of results. The takeaway here is site performance (down to the
millisecond!) matters a lot.

There are many things you can do to improve the performance of your site,
and they fall under the two broad categories of limiting file sizes and reduc-
ing the number of requests to the server. The following list only scratches
the surface for site optimization, but it gives you a general idea of what can
be done.

•	 Optimizing images so they are the smallest file size possible without sac-
rificing quality. You’ll learn image optimization techniques in Chapter
22, Lean and Mean Graphics.

•	 Minimize HTML and CSS documents by removing extra character
spaces and line returns.

•	 Keep JavaScript to a minimum.

•	 Add scripts in a way that they load in parallel with other page assets and
don’t block rendering.

•	 Don’t load unnecessary assets (such as images, scripts, or JavaScript
libraries).

•	 Reduce the number of times the browser makes requests of the server
(known as HTTP requests).

Every trip to the server in the form of an HTTP request takes a few mil-
liseconds, and those milliseconds can really add up. All those little Twitter

* “Speed Matters,” googleresearch.blogspot.com/2009/06/speed-matters.html
† Statistic from “Make Data Matter,” PowerPoint presentation by Greg Linden of Stanford

University (2006)

n oT e

See the article “Effect of Website Speed
on Users, Statistics Reveal Slow Loading
Times Cost Sites Serious Money”
(munchweb.com/effect-of-website-
speed) for more fascinating site perfor-
mance studies.

www.it-ebooks.info

http://munchweb.com/effect-of-website-speed
http://munchweb.com/effect-of-website-speed
http://www.it-ebooks.info/

Part I, Getting started44

The Need for speed (site Performance)

widgets, Facebook Like buttons, and advertisements can make dozens of
server requests each. You may be surprised to see how many server requests
even a simple site makes.

If you’d like to see for yourself, you can use the developer tool in the Chrome
browser to see each request to the server and how many milliseconds it
takes. Here’s how you do it:

1. Launch the Chrome browser and go to any web page.

2. Go to the View menu and select Developer ➝ Developer Tools. A panel
will open at the bottom of the browser.

3. Select the Network tab in the tools view and reload the page. The chart
(commonly referred to as a waterfall chart) shows you all the requests
made and assets downloaded. The columns on the right show the
amount of time each request took in milliseconds. At the bottom of the
chart, you can see a summary of the number of requests made and the
total amount of data transferred.

Figure 3-5 shows a portion of the performance waterfall chart for my site,
Jenville.com, which is a simple site (but not as simple as I thought!). You can
poke around any site on the Web this way. It can be very educational.

Figure 3-5. Waterfall charts such as this one created by the Chrome Network developer
tool show you the individual server requests made by a web page and the amount of time
each request takes.

I won’t address site performance much in this book, but I do want you to
keep the importance of keeping file sizes as small as possible and eliminat-
ing unnecessary server requests in the back of your mind in your web design
work.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 3, some Big Concepts You Need to Know 45

For further reading
There are other techniques that are too technical for this book (and frankly,
for me), and I figure if you are reading this book, you are probably not quite
ready to become a site performance wizard. But when you are ready to take
it on, here are some resources that should help:

•	 Google’s site Make the Web Faster (code.google.com/speed/) is an excel-
lent first stop for learning about site optimization. It compiles a number
of excellent tutorials and articles as well as tools for measuring site speed.

•	 The books High Performance Web Sites and Even Faster Web Sites (both
by Steve Souders and published by O’Reilly Media) provide many best
practices for speeding up sites. A good understanding of JavaScript and
server functionality is required.

Test Yourself
1. The “mobile web” complicates our jobs as web designers. List at least

three unknown factors you need to consider when designing and devel-
oping a site.

2. Match the technology or practice on the left with the problem it best
addresses.

1. _______ Progressive enhancement a. Assistive reading and input devices

2. _______ Server-side detection b. Slow connection speeds

3. _______ Responsive design c. All levels of browser capabilities

4. _______ WAI-ARIA d. Determining which device is being
used

5. _______ Site performance optimi-
zation

e. A variety of screen sizes

3. Web accessibility strategies take into account four broad categories of
disabilities. Name at least three, and provide a measure you might take
to ensure content is accessible for each.

More site
Performance Tools
Try some of these tools for testing
site performance:

 y WebPagetest (webpagetest.
org) is a tool that was originally
developed for AOL, but is
now available for all to use
for free under an open source
license. Just type in a URL and
WebPagetest returns a waterfall
diagram, screenshot, and other
statistics.

 y Yahoo!’s freely available YSlow
tool (yslow.org) analyzes a site
according to 23 rules of web
performance, then gives the
site a grade and suggestions for
improvement.

 y For mobile sites, try Mobitest by
Blaze (www.blaze.io/mobile/),
a free tool for testing website
performance on various mobile
devices.

 y There are also a number of slow
connection speed simulators so
you can get a feel for your users’
experiences over less than ideal
network speeds. Sloppy (www
.dallaway.com/sloppy) is a web
tool where you enter a web
address and select a modem
speed (and wait and wait). Mac
OS users can try Slowy (slowyapp.
com).

www.it-ebooks.info

http://www.blaze.io/mobile/
http://www.dallaway.com/sloppy
http://www.dallaway.com/sloppy
http://www.it-ebooks.info/

Part I, Getting started46

Test Yourself

4. When would you use a waterfall chart?

5. Responsive web design doesn’t solve everything. Describe what it is good
for and where it falls short.

www.it-ebooks.info

http://www.it-ebooks.info/

IN THIs PART

Chapter 4
Creating a Simple Page

(HTML Overview)

Chapter 5
Marking Up Text

Chapter 6
Adding Links

Chapter 7
Adding Images

Chapter 8
Table Markup

Chapter 9
Forms

Chapter 10
What's up, HTML5?

HtML Markup
for Structure PART II

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

49

IN THIs CHAPTER

An introduction to
elements and attributes

A step-by-step demo
of marking up

a simple web page

The elements that provide
document structure

A simple stylesheet

Troubleshooting
broken web pages

Part I provided a general overview of the web design environment. Now that
we’ve covered the big concepts, it’s time to roll up our sleeves and start cre-
ating a real web page. It will be an extremely simple page, but even the most
complicated pages are based on the principles described here.

In this chapter, we’ll create a web page step by step so you can get a feel for
what it’s like to mark up a document with HTML tags. The exercises allow
you to work along.

This is what I want you to get out of this chapter:

•	 Get a feel for how markup works, including an understanding of ele-
ments and attributes.

•	 See how browsers interpret HTML documents.

•	 Learn the basic structure of an HTML document.

•	 Get a first glimpse of a style sheet in action.

Don’t worry about learning the specific text elements or style sheet rules
at this point; we’ll get to those in the following chapters. For now, just pay
attention to the process, the overall structure of the document, and the new
terminology.

A Web Page, step by step
You got a look at an HTML document in Chapter 2, How the Web Works,
but now you’ll get to create one yourself and play around with it in the
browser. The demonstration in this chapter has five steps that cover the
basics of page production.

Step 1: Start with content. As a starting point, we’ll write up raw text con-
tent and see what browsers do with it.

Step 2: Give the document structure. You’ll learn about HTML element
syntax and the elements that give a document its structure.

CreatIng a
sImPle Page

CHAPTER 4

(HTML Overview)

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure50

Before We Begin, Launch a Text Editor

Step 3: Identify text elements. You’ll describe the content using the appro-
priate text elements and learn about the proper way to use HTML.

Step 4: Add an image. By adding an image to the page, you’ll learn about
attributes and empty elements.

Step 5: Change the page appearance with a style sheet. This exercise gives
you a taste of formatting content with Cascading Style Sheets.

By the time we’re finished, you will have written the source document for
the page shown in Figure 4-1. It’s not very fancy, but you have to start
somewhere.

We’ll be checking our work in a browser frequently throughout this demon-
stration—probably more than you would in real life. But because this is an
introduction to HTML, it is helpful to see the cause and effect of each small
change to the source file along the way.

Before We Begin, Launch a Text Editor
In this chapter and throughout the book, we’ll be writing out HTML docu-
ments by hand, so the first thing we need to do is launch a text editor. The
text editor that is provided with your operating system, such as Notepad
(Windows) or TextEdit (Macintosh), will do for these purposes. Other text
editors are fine as long as you can save plain text files with the .html exten-
sion. If you have a WYSIWYG web-authoring tool such as Dreamweaver, set
it aside for now. I want you to get a feel for marking up a document manu-

ally (see the sidebar “HTML the
Hard Way”).

This section shows how to open
new documents in Notepad and
TextEdit. Even if you’ve used these
programs before, skim through for
some special settings that will make
the exercises go more smoothly.
We’ll start with Notepad; Mac users
can jump ahead.

HTML the Hard Way
I stand by my method of teaching
HTML the old-fashioned way—by
hand. There’s no better way to truly
understand how markup works than
typing it out, one tag at a time, then
opening your page in a browser. It
doesn’t take long to develop a feel
for marking up documents properly.

Although you may choose to use a
web-authoring tool down the line,
understanding HTML will make using
your tools easier and more efficient.
In addition, you will be glad that
you can look at a source file and
understand what you’re seeing. It
is also crucial for troubleshooting
broken pages or fine-tuning the
default formatting that web tools
produce.

And for what it’s worth, professional
web developers tend to mark up
content manually because it gives
them better control over the code
and allows them to make deliberate
decisions about what elements are
used.

Figure 4-1. In this chapter, we’ll write the
source document for this page step by
step.

www.it-ebooks.info

http://www.it-ebooks.info/

Before We Begin, Launch a Text Editor

Chapter 4, Creating a simple Page 51

Creating a new document in Notepad (Windows)
These are the steps to creating a new document in Notepad on Windows 7
(Figure 4-2):

1. Open the Start menu and navigate to Notepad (in Accessories). 1

2. Click on Notepad to open a new document window, and you’re ready
to start typing. 2

3. Next, we’ll make the extensions visible. This step is not required to make
HTML documents, but it will help make the file types clearer at a glance.
Select “Folder Options…” from the Tools menu 3 and select the View
tab 4. Find “Hide extensions for known file types” and uncheck that
option. 5 Click OK to save the preference, and the file extensions will
now be visible.

1 Open the Start menu and navigate to Notepad (All Programs > Accessories > Notepad)

2Clicking on Notepad will
open a new document.

3To make the extensions visible go to My Computer > Tools > Folder Options

4
Select the View tab.

5
Find “Hide extensions
for known file types”

and uncheck. Then click
OK to save preference.

Figure 4-2. Creating a new document in Notepad.

n oT e

In Windows 7, hit the ALT key to reveal
the menu to access Tools and Folder
Options. In Windows Vista, it is labeled
"Folder and Search Options."

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure52

Before We Begin, Launch a Text Editor

Creating a new document in TextEdit (Mac Os X)
By default, TextEdit creates “rich text” documents, that is, documents that
have hidden style formatting instructions for making text bold, setting font
size, and so on. You can tell that TextEdit is in rich text mode when it has
a formatting toolbar at the top of the window (plain text mode does not).
HTML documents need to be plain text documents, so we’ll need to change
the Format, as shown in this example (Figure 4-3).

1. Use the Finder to look in the Applications folder for TextEdit. When
you’ve found it, double-click the name or icon to launch the application.

2. TextEdit opens a new document. The text-formatting menu at the top
shows that you are in Rich Text mode. Here’s how you change it.

3. Open the Preferences dialog box from the TextEdit menu.

4. There are three settings you need to adjust:

On the “New Document” tab, select “Plain text”.

On the “Open and Save” tab, select “Ignore rich text commands in
HTML files” and turn off “Append ‘.txt’ extensions to plain text files”.

5. When you are done, click the red button in the top-left corner.

6. When you create a new document, the formatting menu will no lon-
ger be there and you can save your text as an HTML document. You
can always convert a document back to rich text by selecting Format
➝	 Make Rich Text when you are not using TextEdit for HTML.

Formatting menu indicates rich text Plain text documents have no menu

Figure 4-3. Launching TextEdit and
choosing Plain Text settings in the
Preferences.

www.it-ebooks.info

http://www.it-ebooks.info/

step 1: start with Content

Chapter 4, Creating a simple Page 53

step 1: start with Content
Now that we have our new document, it’s time to get typing. A web page
always starts with content, so that’s where we begin our demonstration.
Exercise 4-1 walks you through entering the raw text content and saving the
document in a new folder.

exercise 4-1 | Entering content
1. Type the content below for the home page into the new document in your text

editor. Copy it exactly as you see it here, keeping the line breaks the same for the
sake of playing along. The raw text for this exercise is available online at www.
learningwebdesign.com/4e/materials/.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in hip
atmosphere. The menu changes regularly to highlight the freshest
ingredients.

Catering
You have fun... we’ll handle the cooking. Black Goose Catering
can handle events from snacks for bridge club to elegant corporate
fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight

2. Select “Save” or “Save as” from the File menu to get the Save As dialog box
(Figure 4-4). The first thing you need to do is create a new folder that will contain
all of the files for the site (in other words, it’s the local root folder).

Windows: Click the folder icon at the top to create the new folder.

Mac: Click the “New Folder” button.

Windows 7 Mac OSX

Naming
Conventions
It is important that you follow these
rules and conventions when naming
your files:

Use proper suffixes for your files.
HTML and XHTML files must end
with .html. Web graphics must
be labeled according to their file
format: .gif, .png, or .jpg (.jpeg is
also acceptable).

Never use character spaces within
filenames. It is common to
use an underline character or
hyphen to visually separate
words within filenames, such as
robbins_bio.html or robbins-bio
.html.

Avoid special characters such as ?,
%, #, /, :, ;, •, etc. Limit filenames
to letters, numbers, underscores,
hyphens, and periods.

Filenames may be case-sensitive,
depending on your server
configuration. Consistently using
all lowercase letters in filenames,
although not necessary, is one
way to make your filenames
easier to manage.

Keep filenames short. Short names
keep the character count and file
size of your HTML file in check.
If you really must give the file a
long, multiword name, you can
separate words with hyphens,
such as a-long-document-title.
html, to improve readability.

Self-imposed conventions. It is
helpful to develop a consistent
naming scheme for huge
sites. For instance, always
using lowercase with hyphens
between words. This takes
some of the guesswork out of
remembering what you named
a file when you go to link to it
later.

Figure 4-4. Saving index.html in a new folder called “bistro”.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure54

step 1: start with Content

Name the new folder bistro, and save the text file as index.html in it. Windows
users, you will also need to choose “All Files” after “Save as type” to prevent
Notepad from adding a “.txt” extension to your filename. The filename needs
to end in .html to be recognized by the browser as a web document. See the
sidebar “Naming Conventions” for more tips on naming files.

3. Just for kicks, let’s take a look at index.html in a browser. Launch your favorite
browser (I’m using Google Chrome) and choose “Open” or “Open File” from the File
menu. Navigate to index.html, and then select the document to open it in the
browser. You should see something like the page shown in Figure 4-5. We’ll talk

Figure 4-5. A first look at the content in a browser.

Learning from step 1
Our content isn’t looking so good (Figure 4-5). The text is all run together—
that’s not how it looked in the original document. There are a couple of
things to be learned here. The first thing that is apparent is that the browser
ignores line breaks in the source document. The sidebar “What Browsers
Ignore” lists other information in the source that is not displayed in the
browser window.

Second, we see that simply typing in some content and naming the docu-
ment .html is not enough. While the browser can display the text from the
file, we haven’t indicated the structure of the content. That’s where HTML
comes in. We’ll use markup to add structure: first to the HTML document
itself (coming up in Step 2), then to the page’s content (Step 3). Once the
browser knows the structure of the content, it can display the page in a more
meaningful way.

What Browsers
Ignore
Some information in the source
document will be ignored when it is
viewed in a browser, including:

Multiple (white) spaces. When a
browser encounters more than
one consecutive blank character
space, it displays a single space.
So if the document contains:

long, long ago

the browser displays:

long, long ago

Line breaks (carriage returns).
Browsers convert carriage returns
to white spaces, so following
the earlier “ignore multiple white
spaces rule,” line breaks have
no effect on formatting the
page. Text and elements wrap
continuously until a new block
element, such as a heading (h1)
or paragraph (p), or the line break
(br) element is encountered in
the flow of the document text.

Tabs. Tabs are also converted to
character spaces, so guess what?
Useless.

Unrecognized markup. Browsers
are instructed to ignore any tag
they don’t understand or that was
specified incorrectly. Depending
on the element and the browser,
this can have varied results. The
browser may display nothing at
all, or it may display the contents
of the tag as though it were
normal text.

Text in comments. Browsers
will not display text between
the special <!-- and --> tags
used to denote a comment. See
the Adding Hidden Comments
sidebar later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

step 2: Give the Document structure

Chapter 4, Creating a simple Page 55

step 2: Give the Document structure
We have our content saved in an .html document—now we’re ready to start
marking it up.

Introducing…HTML elements
Back in Chapter 2, How the Web Works, you saw examples of HTML ele-
ments with an opening tag (<p> for a paragraph, for example) and closing
tag (</p>). Before we start adding tags to our document, let’s look at the
anatomy of an HTML element (its syntax) and firm up some important ter-
minology. A generic container element is labeled in Figure 4-6.

Opening tag

Element

<element name> Content here </element name>

Closing tag
(starts with a /)

Content
(may be text and/or other HTML elements)

<h1> Black Goose Bistro </h1>

Figure 4-6. The parts of an HTML container element.

Elements are identified by tags in the text source. A tag consists of the ele-
ment name (usually an abbreviation of a longer descriptive name) within
angle brackets (< >). The browser knows that any text within brackets is
hidden and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and
again in the closing (or end) tag preceded by a slash (/). The closing tag
works something like an “off” switch for the element. Be careful not to use
the similar backslash character in end tags (see the tip Slash vs. Backslash).

The tags added around content are referred to as the markup. It is important
to note that an element consists of both the content and its markup (the start
and end tags). Not all elements have content, however. Some are empty by
definition, such as the img element used to add an image to the page. We’ll
talk about empty elements a little later in this chapter.

One last thing…capitalization. In HTML, the capitalization of element
names is not important. So , , and are all the same as far as
the browser is concerned. However, in XHTML (the stricter version of
HTML) all element names must be all lowercase in order to be valid. Many
web developers have come to like the orderliness of the stricter XHTML
markup rules and stick with all lowercase, as I will do in this book.

An element consists of
both the content and its
markup.

slash vs. Backslash
HTML tags and URLs use the slash
character (/). The slash character is
found under the question mark (?) on
the standard QWERTY keyboard.

It is easy to confuse the slash with
the backslash character (\), which is
found under the bar character (|). The
backslash key will not work in tags or
URLs, so be careful not to use it.

T i p

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure56

step 2: Give the Document structure

Basic document structure
Figure 4-7 shows the recommended minimal skeleton of an HTML5 docu-
ment. I say “recommended” because the only element that is required in
HTML is the title. But I feel it is better, particularly for beginners, to
explicitly organize documents with the proper structural markup. And if
you are writing in the stricter XHTML, all of the following elements except
meta must be included in order to be valid. Let’s take a look at what’s going
on in Figure 4-7.

1 I don’t want to confuse things, but the first line in the example isn’t an
element at all; it is a document type declaration (also called DOCTYPE
declaration) that identifies this document as an HTML5 document. I
have a lot more to say about DOCTYPE declarations in Chapter 10,
What’s Up, HTML5?, but for this discussion, suffice it to say that includ-
ing it lets modern browsers know they should interpret the document as
written according to the HTML5 specification.

2 The entire document is contained within an html element. The html ele-
ment is called the root element because it contains all the elements in the
document, and it may not be contained within any other element. It is
used for both HTML and XHTML documents.

3 Within the html element, the document is divided into a head and a body.
The head element contains descriptive information about the document
itself, such as its title, the style sheet(s) it uses, scripts, and other types
of “meta” information.

4 The meta elements within the head element provide information about the
document itself. A meta element can be used to provide all sorts of infor-
mation, but in this case, it specifies the character encoding (the standard-
ized collection of letters, numbers, and symbols) used in the document.
I don’t want to go into too much detail on this right now, but know that
there are many good reasons for specifying the charset in every docu-
ment, so I have included it as part of the minimal document structure.

5 Also in the head is the mandatory title element.
According to the HTML specification, every document
must contain a descriptive title.

6 Finally, the body element contains everything that
we want to show up in the browser window.

Are you ready to add some structure to the Black
Goose Bistro home page? Open the index.html docu-
ment and move on to Exercise 4-2.

n oT e

Prior to HTML5, the syntax for specify-
ing the character set with the meta ele-
ment was a bit more elaborate. If you
are writing your documents in HTML
4.01 or XHTML 1.0, your meta element
should look like this:

<meta http-equiv="content-
type" content="text/html;
charset=UTF-8">

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>Title here</title>
</head>

<body>
Page content goes here.
</body>

</html>

1

2

3
4

5

6

Figure 4-7. The minimal structure of an
HTML document.

www.it-ebooks.info

http://www.it-ebooks.info/

step 2: Give the Document structure

Chapter 4, Creating a simple Page 57

exercise 4-2 | Adding basic structure
1. Open the newly created document, index.html, if it isn't open already.

2. Start by adding the HTML5 DOCTYPE declaration:

<!DOCTYPE html>

3. Put the entire document in an HTML root element by adding an <html> start tag
at the very beginning and an end <html> tag at the end of the text.

4. Next, created the document head that contains the title for the page. Insert
<head> and </head> tags before the content. Within the head element, add
informatino about the character encoding <meta charset="utf-8">, and the title,
"Black Goose Bistro", surrounded by opening and closing <title> tags.

The correct terminology is to say that the title element is nested within the
head element. We’ll talk about nesting more in later chapters.

5. Finally, define the body of the document by wrapping the content in <body> and
</body> tags. When you are done, the source document should look like this (the
markup is shown in color to make it stand out):

<!DOCTYPE html>
<html>

<head>
<meta charset ="utf-8">
<title>Black Goose Bistro</title>
</head>

<body>
Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in
a hip atmosphere. The menu changes regularly to highlight the
freshest ingredients.

Catering Services
You have fun... we'll do the cooking. Black Goose catering can
handle events from snacks for bridge club to elegant corporate
fundraisers.
Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight
</body>

</html>

6. Save the document in the bistro
directory, so that it overwrites the
old version. Open the file in the
browser or hit "refresh" or "reload"
if it is open already. Figure 4-8
shows how it should look now.

.

Figure 4-8. The page in a browser after
the document structure elements have
been defined.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure58

step 3: Identify Text Elements

Not much has changed after structuring the document, except that the
browser now displays the title of the document in the top bar or tab. If some-
one were to bookmark this page, that title would be added to his Bookmarks
or Favorites list as well (see the sidebar Don’t Forget a Good Title). But the
content still runs together because we haven’t given the browser any indica-
tion of how it should be structured. We’ll take care of that next.

step 3: Identify Text Elements
With a little markup experience under your belt, it should be a no-brainer
to add the markup that identifies headings and subheads (h1 and h2), para-
graphs (p), and emphasized text (em) to our content, as we’ll do in Exercise
4-3. However, before we begin, I want to take a moment to talk about what
we’re doing and not doing when marking up content with HTML.

Introducing…semantic markup
The purpose of HTML is to add meaning and structure to the content. It
is not intended to provide instructions for how the content should look (its
presentation).

Your job when marking up content is to choose the HTML element that
provides the most meaningful description of the content at hand. In the biz,
we call this semantic markup. For example, the most important heading
at the beginning of the document should be marked up as an h1 because it
is the most important heading on the page. Don’t worry about what that
looks like in the browser…you can easily change that with a style sheet. The
important thing is that you choose elements based on what makes the most
sense for the content.

In addition to adding meaning to content, the markup gives the document
structure. The way elements follow each other or nest within one another
creates relationships between the elements. You can think of it as an outline
(its technical name is the DOM, for Document Object Model). The underly-
ing document hierarchy is important because it gives browsers cues on how
to handle the content. It is also the foundation upon which we add presenta-
tion instructions with style sheets and behaviors with JavaScript. We’ll talk
about document structure more in Part III, when we discuss Cascading Style
Sheets, and in Part IV in the JavaScript overview.

Although HTML was intended to be used strictly for meaning and structure
since its creation, that mission was somewhat thwarted in the early years of
the web. With no style sheet system in place, HTML was extended to give
authors ways to change the appearance of fonts, colors, and alignment using
markup alone. Those presentational extras are still out there, so you may run
across them if you view the source of older sites or a site made with old tools.

Don’t Forget a
Good Title
Not only is a title element required
for every document, it is quite useful
as well. The title is what is displayed
in a user’s Bookmarks or Favorites
list and on tabs in desktop browsers.
Descriptive titles are also a key tool
for improving accessibility, as they are
the first thing a person hears when
using a screen reader. Search engines
rely heavily on document titles as
well. For these reasons, it’s important
to provide thoughtful and descriptive
titles for all your documents and
avoid vague titles, such as “Welcome”
or “My Page.” You may also want
to keep the length of your titles in
check so they are able to display in
the browser’s title area. Another best
practice is to put the part of the title
with more specific information first
(for example, the page description
ahead of the company name) so that
the page title is visible when multiple
tabs are lined up in the browser
window.

www.it-ebooks.info

http://www.it-ebooks.info/

step 3: Identify Text Elements

Chapter 4, Creating a simple Page 59

In this book, however, we’ll focus on using HTML the right way, in keeping
with the contemporary standards-based, semantic approach to web design.

OK, enough lecturing. It’s time to get to work on that content in Exercise 4-3.

exercise 4-3 | Defining text elements
1. Open the document index.html in your text editor, if it isn’t

open already.

2. The first line of text, “Black Goose Bistro,” is the main heading
for the page, so we’ll mark it up as a Heading Level 1 (h1)
element. Put the opening tag, <h1>, at the beginning of the
line and the closing tag, </h1>, after it, like this:

<h1>Black Goose Bistro</h1>

3. Our page also has three subheads. Mark them up as Heading
Level 2 (h2) elements in a similar manner. I’ll do the first one
here; you do the same for “Catering” and “Location and Hours”.

<h2>The Restaurant</h2>

4. Each h2 element is followed by a brief paragraph of text, so
let’s mark those up as paragraph (p) elements in a similar
manner. Here’s the first one; you do the rest.

<p>The Black Goose Bistro offers casual lunch and
dinner fare in a hip atmosphere. The menu changes
regularly to highlight the freshest ingredients.
</p>

5. Finally, in the Catering section, I want to emphasize that
visitors should just leave the cooking to us. To make text
emphasized, mark it up in an emphasis element (em) element,
as shown here.

<p>You have fun... we'll handle the cooking

. Black Goose Catering can handle events
from snacks for bridge club to elegant corporate
fundraisers.</p>

6. Now that we’ve marked up the document, let’s save it as we
did before, and open (or refresh) the page in the browser.
You should see a page that looks much like the one in Figure
4-9. If it doesn’t, check your markup to be sure that you aren’t
missing any angle brackets or a slash in a closing tag.

Figure 4-9. The home page after the content has been marked
up with HTML elements.

Now we’re getting somewhere. With the elements properly identified, the
browser can now display the text in a more meaningful manner. There are a
few significant things to note about what’s happening in Figure 4-9.

Block and inline elements
Although it may seem like stating the obvious, it is worth pointing out
that the heading and paragraph elements start on new lines and do not run
together as they did before. That is because by default, headings and para-
graphs display as block elements. Browsers treat block elements as though
they are in little rectangular boxes, stacked up in the page. Each block ele-
ment begins on a new line, and some space is also usually added above and
below the entire element by default. In Figure 4-10, the edges of the block
elements are outlined in red.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure60

step 3: Identify Text Elements

Figure 4-10. The outlines show the structure of the elements in the home page.

By contrast, look at the text we marked up as emphasized (em). It does not
start a new line, but rather stays in the flow of the paragraph. That is because
the em element is an inline element. Inline elements do not start new lines;
they just go with the flow. In Figure 4-10, the inline em element is outlined
in light blue.

Default styles
The other thing that you will notice about the marked-up page in Figures 4-9
and 4-10 is that the browser makes an attempt to give the page some visual
hierarchy by making the first-level heading the biggest and boldest thing on
the page, with the second-level headings slightly smaller, and so on.

How does the browser determine what an h1 should look like? It uses a style
sheet! All browsers have their own built-in style sheets (called user agent
style sheets in the spec) that describe the default rendering of elements. The
default rendering is similar from browser to browser (for example, h1s are
always big and bold), but there are some variations (long quotes may or may
not be indented).

If you think the h1 is too big and clunky as the browser renders it, just
change it with a style sheet rule. Resist the urge to mark up the heading with
another element just to get it to look better, for example, using an h3 instead
of an h1 so it isn’t as large. In the days before ubiquitous style sheet support,
elements were abused in just that way. Now that there are style sheets for
controlling the design, you should always choose elements based on how

Adding Hidden
Comments
You can leave notes in the source
document for yourself and others
by marking them up as comments.
Anything you put between comment
tags (<!-- -->) will not display in the
browser and will not have any effect
on the rest of the source.

<!-- This is a comment -->
<!-- This is a
 multiple-line comment
 that ends here. -->

Comments are useful for labeling
and organizing long documents,
particularly when they are shared by
a team of developers. In this example,
comments are used to point out the
section of the source that contains
the navigation.

<!-- start global nav -->

 ...

<!-- end global nav -->

Bear in mind that although the
browser will not display comments
in the web page, readers can see
them if they “view source,” so be
sure that the comments you leave
are appropriate for everyone. It’s
probably a good idea just to strip
out notes to your fellow developers
before the site is published. It cuts
some bytes off the file size as well.

www.it-ebooks.info

http://www.it-ebooks.info/

step 4: Add an Image

Chapter 4, Creating a simple Page 61

accurately they describe the content, and don’t worry about the browser’s
default rendering.

We’ll fix the presentation of the page with style sheets in a moment, but first,
let’s add an image to the page.

step 4: Add an Image
What fun is a web page with no image? In Exercise 4-4, we’ll add an image
to the page using the img element. Images will be discussed in more detail
in Chapter 7, Adding Images, but for now, it gives us an opportunity to
introduce two more basic markup concepts: empty elements and attributes.

Empty elements
So far, nearly all of the elements we’ve used in the Black Goose Bistro home
page have followed the syntax shown in Figure 4-1: a bit of text content sur-
rounded by start and end tags.

A handful of elements, however, do not have text content because they are
used to provide a simple directive. These elements are said to be empty. The
image element (img) is an example of such an element; it tells the browser
to get an image file from the server and insert it at that spot in the flow of
the text. Other empty elements include the line break (br), thematic breaks
(hr), and elements that provide information about a document but don’t
affect its displayed content, such as the meta element that we used earlier.

Figure 4-11 shows the very simple syntax of an empty element (compare to
Figure 4-4). If you are writing an XHTML document, the syntax is slightly
different (see the sidebar Empty Elements in XHTML).

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

Example: The br element inserts a line break.

<element-name>

Figure 4-11. Empty element structure.

Attributes
Let’s get back to adding an image with the empty img element. Obviously, an
 tag is not very useful by itself—there’s no way to know which image to
use. That’s where attributes come in. Attributes are instructions that clarify
or modify an element. For the img element, the src (short for “source”) attri-
bute is required, and specifies the location (URL) of the image file.

Empty Elements in
XHTML
In XHTML, all elements, including
empty elements, must be closed (or
terminated, to use the proper term).
Empty elements are terminated by
adding a trailing slash preceded by
a space before the closing bracket,
like so: ,
, <meta />,
and <hr />. Here is the line break
example using XHTML syntax.

<p>1005 Gravenstein Highway
North
Sebastopol, CA
95472</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure62

step 4: Add an Image

Attribute Attribute

Attribute name ValueValue Attribute name

Attribute names and values are separated by an equals sign (=)

Multiple attributes are separated by a space

Figure 4-12. An img element with attributes.

The syntax for an attribute is as follows:

attributename="value"

Attributes go after the element name, separated by a space. In non-empty
elements, attributes go in the opening tag only:

<element attributename="value">

<element attributename="value">Content</element>

You can also put more than one attribute in an element in any order. Just
keep them separated with spaces.

<element attribute1="value" attribute2="value">

For another way to look at it, Figure 4-12 shows an img element with its
required attributes labeled.

Here’s what you need to know about attributes:

•	 Attributes go after the element name in the opening tag only, never in
the end tag.

•	 There may be several attributes applied to an element, separated by
spaces in the opening tag. Their order is not important.

•	 Most attributes take values, which follow an equals sign (=). In HTML,
some attribute values can be reduced to single descriptive words, for
example, the checked attribute, which makes a checkbox checked when a
form loads. In XHTML, however, all attributes must have explicit values
(checked="checked"). You may hear this type of attribute called a Boolean
attribute because it describes a feature that is either on or off.

•	 A value might be a number, a word, a string of text, a URL, or a measure-
ment, depending on the purpose of the attribute. You’ll see examples of
all of these throughout this book.

•	 Some values don’t have to be in quotation marks in HTML, but XHTML
requires them. Many developers like the consistency and tidiness of quo-
tation marks even when authoring HTML. Either single or double quota-
tion marks are acceptable as long as they are used consistently; however,

www.it-ebooks.info

http://www.it-ebooks.info/

step 4: Add an Image

Chapter 4, Creating a simple Page 63

double quotation marks are the convention. Note that quotation marks
in HTML files need to be straight (") not curly (”).

•	 Some attributes are required, such as the src and alt attributes in the
img element.

•	 The attribute names available for each element are defined in the HTML
specifications; in other words, you can’t make up an attribute for an ele-
ment.

Now you should be more than ready to try your hand at adding the img ele-
ment with its attributes to the Black Goose Bistro page in the next exercise.
We’ll throw a few line breaks in there as well.

exercise 4-4 | Adding an image
1. If you’re working along, the first thing you’ll need to do is get a copy of the

image file on your hard drive so you can see it in place when you open the file
locally. The image file is provided in the materials for this chapter. You can also
get the image file by saving it right from the sample web page online at www.
learningwebdesign.com/4e/chapter04/bistro. Right-click (or Ctrl-click on a Mac)
on the goose image and select “Save to disk” (or similar) from the pop-up menu as
shown in Figure 4-13. Name the file blackgoose.png. Be sure to save it in the bistro
folder with index.html.

2. Once you have the image, insert it at the beginning of the first-level heading by
typing in the img element and its attributes as shown here:

<h1>Black Goose
Bistro</h1>

The src attribute provides the name of the image file that should be inserted,
and the alt attribute provides text that should be displayed if the image is not
available. Both of these attributes are required in every img element.

Windows:
Right-click on the image to
access the pop-up menu

Mac:
Control-click on the image to
access the popup menu. The
options my vary by browser.

Figure 4-13. Saving an image file from a page on the Web.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure64

step 5: Change the Look with a style sheet

3. I’d like the image to appear above the title, so lets add a line break (br) after the
img element to start the headline text on a new line.

<h1>
Black
Goose Bistro</h1>

4. Let’s break up the last paragraph into three lines for better clarity. Drop a

tag at the spots you’d like the line breaks to occur. Try to match the screenshot in
Figure 4-14.

5. Now save index.html and open or refresh it in the browser window. The page
should look like the one shown in Figure 4-14. If it doesn’t, check to make sure that
the image file, blackgoose.png, is in the same directory as index.html. If it is, then
check to make sure that you aren’t missing any characters, such as a closing quote
or bracket, in the img element markup.

Figure 4-14. The Black Goose Bistro page with the logo image.

step 5: Change the Look
with a style sheet
Depending on the content and purpose of your website, you may decide
that the browser’s default rendering of your document is perfectly adequate.
However, I think I’d like to pretty up the Black Goose Bistro home page a bit
to make a good first impression on potential patrons. “Prettying up” is just
my way of saying that I’d like to change its presentation, which is the job of
Cascading Style Sheets (CSS).

In Exercise 4-5, we’ll change the appearance of the text elements and the
page background using some simple style sheet rules. Don’t worry about
understanding them all right now; we’ll get into CSS in more detail in Part
III. But I want to at least give you a taste of what it means to add a “layer” of
presentation onto the structure we’ve created with our markup.

www.it-ebooks.info

http://www.it-ebooks.info/

When Good Pages Go Bad

Chapter 4, Creating a simple Page 65

exercise 4-5 | Adding a style sheet
1. Open index.html if it isn’t open already.

2. We’re going to use the style element to apply a very simple
embedded style sheet to the page. (This is just one of the
ways to add a style sheet; the others are covered in Chapter
11, Style Sheet Orientation.)

The style element is placed inside the head of the
document. Start by adding the style element to the
document as shown here:

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
 <style>

 </style>
</head>

3. Now, type the following style rules within the style element
just as you see them here. Don’t worry if you don’t know
exactly what is going on (although it is fairly intuitive). You’ll
learn all about style rules in Part III.

<style>

body {
 background-color: #faf2e4;
 margin: 0 15%;
 font-family: sans-serif;
 }

h1 {
 text-align: center;
 font-family: serif;
 font-weight: normal;
 text-transform: uppercase;

 border-bottom: 1px solid #57b1dc;
 margin-top: 30px;
}

h2 {
 color: #d1633c;
 font-size: 1em;
}

</style>

4. Now it’s time to save the file and take a look at it in the
browser. It should look like the page in Figure 4-15. If it
doesn’t, go over the style sheet code to make sure you didn’t
miss a semicolon or a curly bracket.

Figure 4-15. The Black Goose Bistro page after CSS style rules
have been applied.

We’re finished with the Black Goose Bistro page. Not only have you written
your first web page, complete with a style sheet, but you’ve learned about
elements, attributes, empty elements, block and inline elements, the basic
structure of an HTML document, and the correct use of markup along the
way. Not bad for one chapter!

When Good Pages Go Bad
The previous demonstration went smoothly, but it’s easy for small things
to go wrong when typing out HTML markup by hand. Unfortunately, one
missed character can break a whole page. I’m going to break my page on
purpose so we can see what happens.

n oT e

Omitting the slash in the closing tag
(or even omitting the closing tag itself)
for block elements, such as headings or
paragraphs, may not be so dramatic.
Browsers interpret the start of a new
block element to mean that the previous
block element is finished.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure66

Validating Your Documents

What if I had forgotten to type the slash (/) in the closing emphasis tag
()? With just one character out of place (Figure 4-16), the remainder
of the document displays in emphasized (italic) text. That’s because without
that slash, there’s nothing telling the browser to turn “off” the emphasized
formatting, so it just keeps going.

I’ve fixed the slash, but this time, let’s see what would have happened
if I had accidentally omitted a bracket from the end of the first <h2> tag
(Figure 4-17).

See how the headline is missing? That’s because without the closing tag
bracket, the browser assumes that all the following text—all the way up
to the next closing bracket (>) it finds—is part of the <h2> opening tag.

Browsers don’t display any text within a tag,
so my heading disappeared. The browser just
ignored the foreign-looking element name
and moved on to the next element.

Making mistakes in your first HTML docu-
ments and fixing them is a great way to learn.
If you write your first pages perfectly, I’d
recommend fiddling with the code as I have
here to see how the browser reacts to vari-
ous changes. This can be extremely useful in
troubleshooting pages later. I’ve listed some
common problems in the sidebar Having
Problems? Note that these problems are not
specific to beginners. Little stuff like this goes
wrong all the time, even for the pros.

Validating Your
Documents
One way that professional web developers
catch errors in their markup is to validate
their documents. What does that mean? To
validate a document is to check your markup
to make sure that you have abided by all the
rules of whatever version of HTML you are
using (there are more than one, as we’ll dis-
cuss in Chapter 10, What’s Up, HTML5?).
Documents that are error-free are said to be
valid. It is strongly recommended that you
validate your documents, especially for pro-
fessional sites. Valid documents are more con-
sistent on a variety of browsers, they display
more quickly, and they are more accessible.

<h2>Catering</h2>
<p>You have fun... we'll handle the cooking. Black Goose
Catering can handle events from snacks for bridge club to elegant
corporate fundraisers.</p>

g.

Without the bracket, all the
following characters are
interpreted as part of a long,
unrecognizable element name,
and “The Restaurant” disappears
from the page.

<h2The Restaurant</h2>
<p>The Black Goose Bistro offers casual lunch and dinner fare
in a hip atmosphere. The menu changes regularly to highlight
the freshest ingredients.</p>

<h2The

Missing headline

Figure 4-16. When a slash is omitted, the
browser doesn’t know when the element
ends, as is the case in this example.

Figure 4-17. A missing end bracket makes
all the following content part of the tag,
and therefore it doesn’t display.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 4, Creating a simple Page 67

Right now, browsers don’t require documents to be valid (in other words,
they’ll do their best to display them, errors and all), but any time you stray
from the standard you introduce unpredictability in the way the page is dis-
played or handled by alternative devices.

So how do you make sure your document is valid? You could check it
yourself or ask a friend, but humans make mistakes, and you aren’t really
expected to memorize every minute rule in the specifications. Instead, you
use a validator, software that checks your source against the HTML version
you specify. These are some of the things validators check for:

•	 The inclusion of a DOCTYPE declaration. Without it the validator
doesn’t know which version of HTML or XHTML to validate against.

•	 An indication of the character encoding for the document.

•	 The inclusion of required rules and attributes.

•	 Non-standard elements.

•	 Mismatched tags.

•	 Nesting errors.

•	 Typos and other minor errors.

Developers use a number of helpful tools for checking and correcting errors
in HTML documents. The W3C offers a free online validator at validator.
w3.org. For HTML5 documents, use the online validator located at html5.
validator.nu. Browser developer tools like the Firebug plug-in for Firefox or
the built-in developer tools in Safari and Chrome also have validators so you
can check your work on the fly. If you use Dreamweaver to create your sites,
there is a validator built into that as well.

Test Yourself
Now is a good time to make sure you understand the basics of markup.
Use what you’ve learned in this chapter to answer the following questions.
Answers are in Appendix A.

1. What is the difference between a tag and an element?

2. Write out the recommended minimal structure of an HTML5 document.

Having Problems?
The following are some typical
problems that crop up when creating
web pages and viewing them in a
browser:

I’ve changed my document, but when
I reload the page in my browser, it
looks exactly the same.

It could be you didn’t save your
document before reloading,
or you may have saved it in a
different directory.

Half my page disappeared.
This could happen if you are
missing a closing bracket (>) or a
quotation mark within a tag. This
is a common error when writing
HTML by hand.

I put in a graphic using the img
element, but all that shows up is a
broken image icon.

The broken graphic could mean
a couple of things. First, it might
mean that the browser is not
finding the graphic. Make sure
that the URL to the image file is
correct. (We’ll discuss URLs further
in Chapter 6, Adding Links.) Make
sure that the image file is actually
in the directory you’ve specified.
If the file is there, make sure it is
in one of the formats that web
browsers can display (GIF, JPEG,
or PNG) and that it is named with
the proper suffix (.gif, .jpeg or .jpg,
or .png, respectively).

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure68

Element Review: Document structure

3. Indicate whether each of these filenames is an acceptable name for a web
document by circling “Yes” or “No.” If it is not acceptable, provide the
reason why.

 a. Sunflower.html Yes No

 b. index.doc Yes No

 c. cooking home page.html Yes No

 d. Song_Lyrics.html Yes No

 e. games/rubix.html Yes No

 f. %whatever.html Yes No

4. All of the following markup examples are incorrect. Describe what is
wrong with each one, and then write it correctly.

a.

b. <i>Congratulations!<i>

c. linked text</a href="file.html">

d. <p>This is a new paragraph<\p>

5. How would you mark up this comment in an HTML document so that
it doesn’t display in the browser window?

 product list begins here

Element Review: Document structure
This chapter introduced the elements that establish the structure of the doc-
ument. The remaining elements introduced in the exercises will be treated in
more depth in the following chapters.

Element Description

body Identifies the body of the document that holds the content

head Identifies the head of the document that contains information
about the document

html The root element that contains all the other elements

meta Provides information about the document

title Gives the page a title

www.it-ebooks.info

http://www.it-ebooks.info/

69

IN THIs CHAPTER

Choosing the best element
for your content

Paragraphs and headings

Three types of lists

Organizing content into
sections

Text-level (inline) elements

Generic elements,
div and span

Special characters

Once your content is ready to go (you proofread it, right?) and you’ve added
the markup to structure the document (html, head, title, and body), you are
ready to identify the elements in the content. This chapter introduces the ele-
ments you have to choose from for marking up text content. There probably
aren’t as many of them as you might think, and really just a handful that
you’ll use with regularity. That said, this chapter is a big one and covers a lot
of ground.

As we begin our tour of elements, I want to reiterate how important it is to
choose elements semantically, that is, in a way that most accurately describes
the content’s meaning. If you don’t like how it looks, change it with a style
sheet. A semantically marked up document ensures your content is available
and accessible in the widest range of browsing environments, from desktop
computers and mobile devices to assistive screen readers. It also allows non-
human readers, such as search engine indexing programs, to correctly parse
your content and make decisions about the relative importance of elements
on the page.

With these principles in mind, it is time to meet the HTML text elements,
starting with the most basic element of them all, the humble paragraph.

i m p o R Ta n T n oT e

I will be teaching markup according to the HTML5 standard maintained by the W3C
(www.w3.org/TR/html5/) as it appeared as of this writing in mid-2012. There is
another “living” (therefore unnumbered) version of HTML maintained by the
WHATWG (whatwg.org) that is nearly the same, but usually has some differences.
I will be sure to point out elements and attributes that belong to only one spec. Both
specs are changing frequently, so I urge you to check online to see whether elements
have been added or dropped.

You may have heard that not all browsers support HTML5. That is true. But the vast
majority of the elements in HTML5 have been around for decades in earlier HTML
versions, so they are supported universally. Elements that are new in HTML5 and
may not be well supported will be indicated with this marker: . So, unless
I explicitly point out a support issue, you can assume that the markup descriptions
and examples presented here will work in all browsers.

markIng uP text

CHAPTER 5

www.it-ebooks.info

http://www.w3.org/TR/html5/
http://www.it-ebooks.info/

Part II, HTML Markup for structure70

Paragraphs

Paragraphs
Paragraphs are the most rudimentary elements of a text document. You
indicate a paragraph with the p element by inserting an opening <p> tag at
the beginning of the paragraph and a closing </p> tag after it, as shown in
this example.

<p>Serif typefaces have small slabs at the ends of letter strokes. In
general, serif fonts can make large amounts of text easier to read.</p>

<p>Sans-serif fonts do not have serif slabs; their strokes are square
on the end. Helvetica and Arial are examples of sans-serif fonts.
In general, sans-serif fonts appear sleeker and more modern.</p>

Visual browsers nearly always display paragraphs on new lines with a bit of
space between them by default (to use a term from CSS, they are displayed
as a block). Paragraphs may contain text, images, and other inline elements
(called phrasing content in the spec), but they may not contain headings,
lists, sectioning elements, or any element that typically displays as a block
by default.

In HTML, it is OK to omit the closing </p> tag. A browser just assumes it is
closed when it encounters the next block element. However, in the stricter
XHTML syntax, the closing tag is required (no surprise there). Many web
developers, including myself, prefer to close paragraphs and all elements,
even in HTML, for the sake of consistency and clarity. I recommend folks
who are just learning markup, like yourself, do the same.

Headings
In the last chapter, we used the h1 and h2 elements to indicate headings for
the Black Goose Bistro page. There are actually six levels of headings, from
h1 to h6. When you add headings to content, the browser uses them to cre-
ate a document outline for the page. Assistive reading devices such as screen
readers use the document outline to help users quickly scan and navigate
through a page. In addition, search engines look at heading levels as part of
their algorithms (information in higher heading levels may be given more
weight). For these reasons, it is a best practice to start with the Level 1
heading (h1) and work down in numerical order (see note), creating a logical
document structure and outline.

This example shows the markup for four heading levels. Additional heading
levels would be marked up in a similar manner.

<h1>Type Design</h1>

<h2>Serif Typefaces</h2>
<p>Serif typefaces have small slabs at the ends of letter strokes.
In general, serif fonts can make large amounts of text easier to
read.</p>

<p>...</p>
A paragraph element

n oT e

You must assign an element to all the
text in a document. In other words,
all text must be enclosed in some sort
of element. Text that is not contained
within tags is called “naked” or “anony-
mous” text, and it will cause a document
to be invalid. For more information
about checking documents for validity,
see Chapter 4, Creating a Simple Page
(HTML Overview).

<h1>...</h1>
<h2>...</h2>
<h3>...</h3>
<h4>...</h4>
<h5>...</h5>
<h6>...</h6>

Heading elements

n oT e

HTML5 has a new outlining system
that looks beyond headings to generate
the outline. See the sidebar Sectioning
Content later in this chapter for details.

www.it-ebooks.info

http://www.it-ebooks.info/

Headings

Chapter 5, Marking Up Text 71

<h3>Baskerville</h3>

<h4>Description</h4>
<p>Description of the Baskerville typeface.</p>

<h4>History</h4>
<p>The history of the Baskerville typeface.</p>

<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

<h2>Sans-serif Typefaces</h2>
<p>Sans-serif typefaces do not have slabs at the ends of strokes.</p>

The markup in this example would create the following document outline:

1. Type Design

 1. Serif Typefaces
 + text paragraph

 1. Baskerville

 1. Description
 + text paragraph

 2. History
 + text paragraph

 2. Georgia
 + text paragraph

 2. Sans-Serif Typefaces
 + text paragraph

By default, the headings in our example will be displayed
in bold text, starting in very large type for h1s, with each
consecutive level in smaller text, as shown in Figure 5-1. You
can use a style sheet to change their appearance.

n oT e

All screenshots in this book were taken
using the Chrome browser on a Mac
unless otherwise noted.

Figure 5-1. The default rendering of four
heading levels.

h1

h2

h3

h4

h4

h3

h2

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure72

Headings

Indicating a shift in Themes
<hr>

A horizontal rule

If you want to indicate that one topic or thought has completed and another one
is beginning, you can insert what is called in HTML5 a “paragraph-level thematic
break” using the hr element. It is used as a logical divider between sections of a page
or paragraphs of text. The hr element adds a logical divider between sections or
paragraphs of text without introducing a new heading level.

In HTML versions prior to HTML5, hr was defined as a “horizontal rule” because it
inserted a horizontal line on the page. Browsers still render hr as a 3D shaded rule
and put it on a line by itself with some space above and below by default, but it now
has a new semantic purpose. If a decorative line is all you’re after, it is better to create
a rule by specifying a colored border before or after an element with CSS.

hr is an empty element—you just drop it into place where you want the thematic
break to occur, as shown in this example and Figure 5-2. Note that in XHTML, the hr
element must be closed with a slash: <hr />.

<h3>Times</h3>
<p>Description and history of the Times typeface.</p>
<hr>
<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

Heading groups
It is common for headlines to have clarifying subheads or taglines. Take, for
example, the title of Chapter 4 in this book:

creating a Simple page
(HTML Overview)

In the past, marking stacks of headings and subheadings was somewhat
problematic. The first line, “Creating a Simple Page,” is clearly an h1, but if
you make the second line an h2, you may introduce an unintended new level
to the document outline. The best you could do was mark it as a paragraph,
but that didn’t exactly make semantic sense.

<hgroup>...</hgroup>
A group of stacked headings

Figure 5-2. The default rendering of a horizontal rule.

www.it-ebooks.info

http://www.it-ebooks.info/

Lists

Chapter 5, Marking Up Text 73

For this reason, HTML5 includes the hgroup element for identifying a stack
of headings as a group.* Browsers that support hgroup know to count only
the highest-ranked heading in the outline and ignore the rest. Here is how
the hgroup element could be used to mark up the title of Chapter 4. With
this markup, only the h1, “Creating a Simple Page,” would be represented in
the document outline.

<hgroup>
 <h1>Creating a Simple Page</h1>
 <h2>(HTML Overview)</h2>
</hgroup>

Lists
Humans are natural list makers, and HTML provides elements for marking
up three types of lists:

•	 Unordered lists. Collections of items that appear in no particular order.

•	 Ordered lists. Lists in which the sequence of the items is important.

•	 Description lists. Lists that consist of name and value pairs, including
but not limited to terms and definitions.

All list elements—the lists themselves and the items that go in them—are
displayed as block elements by default, which means that they start on a
new line and have some space above and below, but that may be altered with
CSS. In this section, we’ll look at each list type in detail.

Unordered lists
Just about any list of examples, names, components, thoughts, or options
qualify as unordered lists. In fact, most lists fall into this category. By default,
unordered lists display with a bullet before each list item, but you can
change that with a style sheet, as you’ll see in a moment.

To identify an unordered list, mark it up as a ul element. The opening
tag goes before the first list item, and the closing tag goes after the last
item. Then, each item in the list gets marked up as a list item (li) by enclos-
ing it in opening and closing li tags, as shown in this example. Notice that
there are no bullets in the source document. They are added automatically
by the browser (Figure 5-3).

 Serif
 Sans-serif
 Script
 Display
 Dingbats

* Although potentially useful, the future of the hgroup element is uncertain. If you are interested
in using it for a published site, you should check the HTML5 specification first.

s U p p o R T a L e R T

The hgroup element is not supported in
Internet Explorer versions 8 and ear-
lier (see the sidebar HTML5 Support in
Internet Explorer later in this chapter
for a workaround). Older versions of
Firefox and Safari (prior to 3.6 and 4,
respectively) do not support it accord-
ing to the spec, but they don’t ignore it
completely, so you can apply styles to it.

...
Unordered list

...
List item within an unordered list

n oT e

The only thing that is permitted within
an unordered list (that is, between the
start and end ul tags) is one or more
list items. You can’t put other elements
in there, and there may not be any
untagged text. However, you can put
any type of flow element within a list
item (li).

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure74

Lists

Figure 5-3. The default rendering of the sample unordered list. The bullets are added
automatically by the browser.

But here’s the cool part. We can take that same unordered list markup and
radically change its appearance by applying different style sheets, as shown
in Figure 5-4. In the figure, I’ve turned off the bullets, added bullets of my
own, made the items line up horizontally, even made them look like graphi-
cal buttons. The markup stays exactly the same.

Figure 5-4. With style sheets, you can give the same unordered list many different looks.

Ordered lists
Ordered lists are for items that occur in a particular order, such as step-by-
step instructions or driving directions. They work just like the unordered
lists described earlier, except they are defined with the ol element (for
ordered list, of course). Instead of bullets, the browser automatically inserts
numbers before ordered list items, so you don’t need to number them in the
source document. This makes it easy to rearrange list items without renum-
bering them.

Ordered list elements must contain one or more list item elements, as shown
in this example and in Figure 5-5:

...
Ordered list

...
 List item within an ordered list

Nesting Lists
Any list can be nested within another
list; it just has to be placed within
a list item. This example shows the
structure of an unordered list nested
in the second ordered list item.

When you nest an unordered list
within another unordered list, the
browser automatically changes the
bullet style for the second-level list.
Unfortunately, the numbering style
is not changed by default when you
nest ordered lists. You need to set the
numbering styles yourself using style
sheets.

www.it-ebooks.info

http://www.it-ebooks.info/

Lists

Chapter 5, Marking Up Text 75

 Gutenburg develops moveable type (1450s)
 Linotype is introduced (1890s)
 Photocomposition catches on (1950s)
 Type goes digital (1980s)

Figure 5-5. The default rendering of an ordered list. The numbers are added
automatically by the browser.

If you want a numbered list to start at a number other than “1,” you can use
the start attribute in the ol element to specify another starting number, as
shown here:

<ol start="17">
 Highlight the text with the text tool.
 Select the Character tab.
 Choose a typeface from the pop-up menu.

The resulting list items would be numbered 17, 18, and 19, consecutively.

Description lists
Description lists are used for any type of name/value pairs, such as terms and
their definitions, questions and answers, or other types of terms and their
associated information. Their structure is a bit different from the other two
lists that we just discussed. The whole description list is marked up as a dl
element. The content of a dl is some number of dt elements indicating the
names and dd elements for their respective values. I find it helpful to think of
them as “terms” (to remember the “t” in dt) and “definitions” (for the “d” in
dd), even though that is only one use of description lists in HTML5.

Here is an example of a list that associates forms of typesetting with their
descriptions (Figure 5-6).

<dl>
 <dt>Linotype</dt>
 <dd>Line-casting allowed type to be selected, used, then recirculated
into the machine automatically. This advance increased the speed of
typesetting and printing dramatically.</dd>

 <dt>Photocomposition</dt>
 <dd>Typefaces are stored on film then projected onto photo-sensitive
paper. Lenses adjust the size of the type.</dd>

 <dt>Digital type</dt>
 <dd><p>Digital typefaces store the outline of the font shape in a
format such as Postscript. The outline may be scaled to any size for
output.</p>
 <p>Postscript emerged as a standard due to its support of

Changing Bullets
and Numbering
You can use the list-style-type
style sheet property to change the
bullets and numbers for lists. For
example, for unordered lists, you
can change the shape from the
default dot to a square or an open
circle, substitute your own image,
or remove the bullet altogether. For
ordered lists, you can change the
numbers to roman numerals (I., II.,
III. or i., ii., iii.), letters (A., B., C., or a.,
b., c.), and several other numbering
schemes. In fact, as long as the list
is marked up semantically, it doesn’t
need to display with bullets or
numbering at all. Changing the style
of lists with CSS is covered in Chapter
18, CSS Techniques.

<dl>...</dl>
A description list

<dt>...</dt>
A name, such as a term or label

<dd>...</dd>
A value, such as a description or definition

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure76

More Content Elements

graphics and its early support on the Macintosh computer and Apple
laser printer.</p>
 </dd>
</dl>

Figure 5-6. The default rendering of a definition list. Definitions are set off from the terms
by an indent.

The dl element is only allowed to contain dt and dd elements. It is OK to
have multiple definitions with one term and vice versa. You cannot put
headings or content-grouping elements (like paragraphs) in names (dt), but
the value (dd) can contain any type of flow content.

More Content Elements
We’ve covered paragraphs, headings, and lists, but there are a few more
special text elements to add to your HTML toolbox that don’t fit into a neat
category: long quotations (blockquote), preformatted text (pre), and figures
(figure and figcaption). One thing these elements do have in common is
that they are considered “grouping content” in the HTML5 spec (along with
p, hr, the list elements, and the generic div, covered later in this chapter).
The other thing they share is that browsers typically display them as block
elements by default.

Long quotations
If you have a long quotation, a testimonial, or a section of copy from another
source, you should mark it up as a blockquote element. It is recommended
that content within blockquote elements be contained in other elements,
such as paragraphs, headings, or lists, as shown in this example (see the
sidebar Sectioning Roots).

sectioning Roots
The blockquote is in a category of
elements called sectioning roots.
Headings in a sectioning root
element will not be included in the
main document outline. That means
you can have a complex heading
hierarchy within a blockquote
without worrying how it will
affect the overall structure of the
document. Other sectioning root
elements include figure, details,
fieldset (for organizing form fields),
td (a table cell), and body (because
it has its own outline, which also
happens be the outline of the
document).

<blockquote>...</blockquote>
A lengthy, block-level quotation

www.it-ebooks.info

http://www.it-ebooks.info/

More Content Elements

Chapter 5, Marking Up Text 77

<p>Renowned type designer, Matthew Carter, has this to say about his
profession:</p>

<blockquote>
 <p>Our alphabet hasn't changed in eons; there isn't much latitude in
what a designer can do with the individual letters.</p>

 <p>Much like a piece of classical music, the score is written
down – it's not something that is tampered with – and yet, each
conductor interprets that score differently. There is tension in
the interpretation.</p>
</blockquote>

Figure 5-7 shows the default rendering of the blockquote example. This can
be altered with CSS.

Figure 5-7. The default rendering of a blockquote element.

Preformatted text
In the previous chapter, you learned that browsers ignore whitespace such as
line returns and character spaces in the source document. But in some types
of information, such as code examples or poetry, the whitespace is impor-
tant for conveying meaning. For these purposes, there is the preformatted
text (pre) element. It is a unique element in that it is displayed exactly as it is
typed—including all the carriage returns and multiple character spaces. By
default, preformatted text is also displayed in a constant-width font (one in
which all the characters are the same width, also called monospace), such
as Courier.

The pre element in this example displays as shown in Figure 5-8. The second
part of the figure shows the same content marked up as a paragraph (p) ele-
ment for comparison.

<pre>
This is an example of
 text with a lot of
 curious
 whitespace.
</pre>

n oT e

There is also the inline element, q, for
short quotations in the flow of text.
We’ll talk about it later in this chapter.

<pre>...</pre>
Preformatted text

n oT e

The white-space:pre CSS property can
also be used to preserve spaces and
returns in the source. Unlike the pre
element, text formatted with the white-
space property is not displayed in a
constant-width font.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure78

More Content Elements

<p>
This is an example of
 text with a lot of
 curious
 whitespace.
</p>

Figure 5-8. Preformatted text is unique in that the browser displays the whitespace
exactly as it is typed into the source document. Compare it to the paragraph element, in
which line returns and character spaces are reduced to a single space.

Figures
The figure element is used for content that illustrates or supports some
point in the text. A figure may contain an image, a video, a code snippet,
text, or even a table—pretty much anything that can go in the flow of web
content—and should be treated and referenced as a self-contained unit. That
means if a figure is removed from its original placement in the main flow
(to a sidebar or appendix, for example), both the figure and the main flow
should continue to make sense.

Although it is possible to simply drop an image into text, wrapping it in fig-
ure tags makes its purpose explicitly clear. It also allows you to apply special
styles to figures but not to other images on the page.

<figure>

</figure>

A caption can be attached to the figure using the optional figcaption ele-
ment above or below the figure content.

<figure>
 <pre><code>
 body {
 background-color: #000;
 color: red;
 }
 </code></pre>
 <figcaption>
 Sample CSS rule.
 </figcaption>
</figure>

In Exercise 5-1, you’ll get a chance to mark up a document yourself and try
out the basic text elements we’ve covered so far.

<figure>...</figure>
Contact information

<figcaption>...</figcaption>
Contact information

s U p p o R T a L e R T

The figure and figcaption elements are
not supported in Internet Explorer ver-
sions 8 and earlier (see the sidebar
HTML5 Support in Internet Explorer
later in this chapter for a workaround).
Older versions of Firefox and Safari
(prior to 3.6 and 4, respectively) do not
support it according to the spec, but
allow you to apply styles.

www.it-ebooks.info

http://www.it-ebooks.info/

Organizing Page Content

Chapter 5, Marking Up Text 79

exercise 5-1 | Marking up a recipe
The owners of the Black Goose Bistro have decided to start a
blog to share recipes and announcements. In the exercises in this
chapter, we’ll assist them with content markup.

Below you will find the raw text of a recipe. It’s up to you to
decide which element is the best semantic match for each chunk

of content. You’ll use paragraphs, headings, lists, and at least one
special content element.

You can write the tags right on this page. Or, if you want to
use a text editor and see the results in a browser, this text file is
available online at www.learningwebdesign.com/4e/materials.
The resulting code appears in Appendix A.

Tapenade (Olive Spread)

This is a really simple dish to prepare and it’s always a big hit at parties. My father recommends:

“Make this the night before so that the flavors have time to blend. Just bring it up to room temperature
before you serve it. In the winter, try serving it warm.”

Ingredients

1 8oz. jar sundried tomatoes
2 large garlic cloves
2/3 c. kalamata olives
1 t. capers

Instructions

Combine tomatoes and garlic in a food processor. Blend until as smooth as possible.

Add capers and olives. Pulse the motor a few times until they are incorporated, but still retain some
texture.

Serve on thin toast rounds with goat cheese and fresh basil garnish (optional).

Organizing Page Content
So far, the elements we’ve covered handle very specific tidbits of content:
a paragraph, a heading, a figure, and so on. Prior to HTML5, there was
no way to group these bits into larger parts other than wrapping them in a
generic division (div) element (I’ll cover div in more detail later). HTML5
introduced new elements that give semantic meaning to sections of a typi-
cal web page or application, including sections (section), articles (article),
navigation (nav), tangentially related content (aside), headers (header), and
footers (footer). The new element names are based on a Google study that
looked at the top 20 names given to generic division elements (code.google.
com/webstats/2005-12/classes.html). Curiously, the spec lists the old address
element as a section as well, so we’ll look at that one here too.

The elements discussed in this section are well supported by current desktop
and mobile browsers, but there is a snag with Internet Explorer versions 8
and earlier. See the sidebar HTML5 Support in Internet Explorer for details
on a workaround.

www.it-ebooks.info

http://code.google.com/webstats/2005-12/classes.html
http://code.google.com/webstats/2005-12/classes.html
http://www.it-ebooks.info/

Part II, HTML Markup for structure80

Organizing Page Content

HTML5 support in Internet Explorer
Most browsers today support the new HTML5 semantic
elements, and for those that don’t, creating a style sheet rule
that tells browsers to format each one as a block-level element
is all that is needed to make them behave correctly.

section, article, nav, aside, header, footer,
hgroup { display: block; }

Unfortunately, that fix won’t work with Internet Explorer versions
8 and earlier (versions 9 and later are fine). Not only do early
IE browsers not recognize the elements, they also ignore any
styles applied to them. The solution is to use JavaScript to create
each element so IE knows it exists and will allow nesting and
styling. Here’s what a JavaScript command creating the section
element looks like:

document.createElement("section");

Fortunately, Remy Sharp created a script that creates all of the

HTML5 elements for IE in one fell swoop. It is called “HTML5
Shiv” (or Shim) and it lives on a Google-run server, so you can
just point to it in your documents. To make sure the new HTML5
elements work in IE8 and earlier, copy this code in the head of
your document and use a style sheet to style the new elements
as blocks:

<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/
trunk/html5-els.js"></script>
<![endif]-->

Find out more about the HTML5 Shiv here: html5doctor.com/
how-to-get-html5-working-in-ie-and-firefox-2/.

The HTML5 Shiv is also part of the Modernizr polyfill script that
adds HTML5 and CSS3 functionality to older non-supporting
browsers. Read more about it online at modernizr.com. It is also
discussed in Chapter 20, Using JavaScript.

sections and articles
Long documents are easier to use when they are divided into smaller parts.
For example, books are divided into chapters, and newspapers have sections
for local news, sports, comics, and so on. To divide long web documents
into thematic sections, use the aptly named section element. Sections typi-
cally have a heading (inside the section element) and any other content that
has a meaningful reason to be grouped together.

The section element has a broad range of uses, from dividing a whole page
into major sections or identifying thematic sections within a single article.
In the following example, a document with information about typography
resources has been divided into two sections based on resource type.

<section>
 <h2>Typography Books</h2>

 …

</section>

<section>
 <h2>Online Tutorials</h2>
 <p>These are the best tutorials on the web.</p>

 …

</section>

<section>…</section>
Thematic group of content

<article>…</article>
Self-contained, reusable composition

n oT e

The HTML5 spec recommends that if
the purpose for grouping the elements is
simply to provide a hook for styling, use
the generic div element instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Organizing Page Content

Chapter 5, Marking Up Text 81

Use the article element for self-contained works that could stand alone or
be reused in a different context (such as syndication). It is useful for maga-
zine or newspaper articles, blog posts, comments, or other items that could
be extracted for external use. You can think of it as a specialized section
element that answers the question “Could this appear on another site and
make sense?” with “yes.”

To make things interesting, a long article could be broken into a number
of sections, as shown here:

<article>
 <h1>Get to Know Helvetica</h1>
 <section>
 <h2>History of Helvetica</h2>
 <p>…</p>
 </section>

 <section>
 <h2>Helvetica Today</h2>
 <p>…</p>
 </section>
</article>

Conversely, a section in a web document might be comprised of a number
of articles.

<section id="essays">
 <article>
 <h1>A Fresh Look at Futura</h1>
 <p>…</p>
 </article>

 <article>
 <h1>Getting Personal with Humanist</h1>
 <p>…</p>
 </article>
</section>

The section and article elements are easily confused, particularly because
it is possible to nest one in the other and vice versa. Keep in mind that if the
content is self-contained and could appear outside the current context, it is
best marked up as an article.

sectioning
Elements
Another thing that section and
article have in common “under the
hood” is that both are what HTML5
calls sectioning elements. When a
browser runs across a sectioning
element in the document, it creates a
new item in the document’s outline
automatically. In prior HTML versions,
only headings (h1, h2, etc.) triggered
new outline items. The new nav
(primary navigation) and aside (for
sidebar-like information) are also
sectioning elements.

In the new HTML5 outlining system, a
sectioning element may have its own
internal heading hierarchy, starting
with h1, regardless of its position in
the document that contains it. That
makes it possible to take an article
element with its internal outline,
place it in another document flow,
and know that it won’t break the
host document’s outline. The goal
of the new outlining algorithm is to
make the markup meet the needs
of content use and reuse on the
modern Web.

As of this writing, no browsers
support the HTML5 outlining
system, so to make your documents
accessible and logically structured for
all users, it is safest to use headings
in descending numerical order, even
within sectioning elements.

For more information, I recommend
the HTML5 Doctor article “Document
Outlines,” by Mike Robinson, that
tackles HTML5 outlines in more detail
than I am able to squeeze in here
(html5doctor.com/outlines/).

In addition, Roger Johansson’s
article “HTML5 Sectioning Elements,
Headings, and Document Outlines”
describes some potential gotchas
when working with sectioning
elements (www.456bereastreet.com/
archive/201103/html5_sectioning_
elements_headings_and_document_
outlines/).

www.it-ebooks.info

http://html5doctor.com/outlines/
http://www.it-ebooks.info/

Part II, HTML Markup for structure82

Organizing Page Content

Aside (sidebars)
The aside element identifies content that is related but tangential to the
surrounding content. In print, its equivalent is a sidebar, but they couldn’t
call the element sidebar, because putting something on the “side” is a
presentational description, not semantic. Nonetheless, a sidebar is a good
mental model for using the aside element. aside can be used for pull quotes,
background information, lists of links, callouts, or anything else that might
be associated with (but not critical to) a document.

In this example, an aside element is used for a list of links related to the
main article.

<h1>Web Typography</h1>
<p>Back in 1997, there were competing font formats and tools for making
them…</p>
<p>We now have a number of methods for using beautiful fonts on web
pages…</p>
<aside>
 <h2>Web Font Resources</h2>

 Typekit
 Google Fonts

</aside>

The aside element has no default rendering, so you will need to make it a
block element and adjust its appearance and layout with style sheet rules.

Navigation
The new nav element gives developers a semantic way to identify navigation
for a site. Earlier in this chapter, we saw an unordered list that might be used
as the top-level navigation for a font catalog site. Wrapping that list in a nav
element makes its purpose explicitly clear.

<nav>

 Serif/li>
 Sans-serif
 Script
 Display
 Dingbats/li>

</nav>

Not all lists of links should be wrapped in nav tags, however. The spec makes
it clear that it should be used for links that provide primary navigation
around a site or a lengthy section or article.

The nav element may be especially helpful from an accessibility perspective.
Once screen readers and other devices become HTML5-compatible, users
can easily get to or skip navigation sections without a lot of hunting around.

<aside>…<aside>
Tangentially related material

<nav>…</nav>
Primary navigation links

www.it-ebooks.info

http://www.it-ebooks.info/

Organizing Page Content

Chapter 5, Marking Up Text 83

Headers and footers
Because web authors have been labeling header and footer sections in their
documents for years, it was kind of a no-brainer that full-fledged header and
footer elements would come in handy. Let’s start with headers.

Headers
The header element is used for introductory material that typically appears
at the beginning of a web page or at the top of a section or article. There
is no specified list of what a header must or should contain; anything that
makes sense as the introduction to a page or section is acceptable. In the fol-
lowing example, the document header includes a logo image, the site title,
and navigation.

<header>

 <hgroup>
 <h1>Nuts about Web Fonts</h1>
 <h2>News from the Web Typography Front</h2>
 </hgroup>
 <nav>

 Home
 Blog
 Shop

 </nav>
</header>

… page content …

When used in an individual article, the header might include the article title,
author, and the publication date, as shown here:

<article>
 <header>
 <h1>More about WOFF</h1>
 <p>by Jennifer Robbins, <time datetime="11-11-2011"
 pubdate>November 11, 2011</time></p>
 </header>
 <p>...article content starts here…</p>
</article>

Footers
The footer element is used to indicate the type of information that typically
comes at the end of a page or an article, such as its author, copyright infor-
mation, related documents, or navigation. The footer element may apply
to the entire document, or it could be associated with a particular section
or article. If the footer is contained directly within the body element, either
before or after all the other body content, then it applies to the entire page or
application. If it is contained in a sectioning element (section, article, nav,
or aside), it is parsed as the footer for just that section. Note that although
it is called “footer,” there is no requirement that it come last in the docu-

<header>…</header>
Introductory material for page, section, or article

<footer>…</footer>
Footer for page, section, or article

wa R n i n G

Neither header nor footer elements are
permitted to contain nested header or
footer elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure84

The Inline Element Roundup

ment or sectioning element. It could also appear at or near the beginning if
it makes semantic sense.

In this simple example we see the typical information listed at the bottom of
an article or blog post marked up as a footer.

<article>
 <header>
 <h1>More about WOFF</h1>
 <p>by Jennifer Robbins, <time datetime="11-11-2011"
 pubdate>November 11, 2011</time></p>
 </header>
 <p>...article content starts here…</p>
 <footer>
 <p><small>Copyright ©2012 Jennifer Robbins.</small></p>
 <nav>

 Previous
 Next

 </nav>
 </footer>
</article>

Addresses
Last, and well, least, is the address element that is used to create an area
for contact information for the author or maintainer of the document. It is
generally placed at the end of the document or in a section or article within
a document. An address would be right at home in a footer element.

It is important to note that the address element should not be used for any
old address on a page, such as mailing addresses. It is intended specifically
for author contact information (although that could potentially be a mailing
address). Following is an example of its intended use. The “a href” parts are
the markup for links…we’ll get to those in Chapter 6, Adding Links.

<address>
Contributed by Jennifer Robbins,
O'Reilly Media
</address>

The Inline Element Roundup
Now that we’ve identified the larger chunks of content, we can provide
semantic meaning to phrases within the chunks using what HTML5 calls
text-level semantic elements. On the street, you are likely to hear them called
inline elements because they display in the flow of text by default and do
not cause any line breaks. That’s also how they were referred to in HTML
versions prior to HTML5.

n oT e

You can also add headers and footers
to sectioning root elements: body, block-
quote, details, figure, td, and fieldset.

<address>...</address>
Contact information

n oT e

You’ll get a chance to try out the section
elements in Exercise 5-3 at the end of
this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

The Inline Element Roundup

Chapter 5, Marking Up Text 85

Text-level (inline) elements
Despite all the types of information you could add to a document, there are
only a couple dozen text-level semantic elements in HTML5. Table 5-1 lists
all of them.

Table 5-1. Text-level semantic elements

Element Description

a An anchor or hypertext link (see Chapter 6 for details)

abbr Abbreviation

b Added visual attention, such as keywords (bold)

bdi Indicates text that may have directional require-
ments

bdo Bidirectional override; explicitly indicates text direction (left to
right, ltr, or right to left, rtl)

br Line break

cite Citation; a reference to the title of a work, such as a book title

code Computer code sample

data Machine-readable equivalent dates, time, weights,
and other measurable values

del Deleted text; indicates an edit made to a document

dfn The defining instance or first occurrence of a term

em Emphasized text

i Alternative voice (italic)

ins Inserted text; indicates an insertion in a document

kbd Keyboard; text entered by a user (for technical documents)

mark Contextually relevant text

q Short, inline quotation

ruby, rt, rp Provides annotations or pronunciation guides
under East Asian typography and ideographs

s Incorrect text (strike-through)

samp Sample output from programs

small Small print, such as a copyright or legal notice (displayed in a
smaller type size)

span Generic phrase content

strong Content of strong importance

sub Subscript

sup Superscript

time Machine-readable time data

u Underlined

var A variable or program argument (for technical documents)

wbr Word break

The Inline Elements
Backstory
Many of the inline elements that
have been around since the dawn
of the Web were introduced to
change the visual formatting of text
selections due to the lack of a style
sheet system. If you wanted bolded
text, you marked it as b. Italics? Use
the i element. In fact, there was once
a font element used solely to change
the font, color, and size of text (the
horror!). Not surprisingly, HTML5
kicked the purely presentational font
element to the curb. However, many
of the old-school presentational
inline elements (for example, u for
underline and s for strike-through)
have been kept in HTML5 and given
new semantic definitions (b is now
for “keywords,” s for “inaccurate text”).

Some inline elements are purely
semantic (such as abbr or time) and
don’t have default renderings. For
these, you’ll need to use a CSS rules
if you want to change the way they
display.

In the element descriptions in
this section, I’ll provide both the
definition of the inline elements
and the expected browser default
rendering if there is one.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure86

The Inline Element Roundup

Obsolete HTML 4.01 Text Elements
HTML5 finally retired many elements that were marked as deprecated (phased out
and discouraged from use) in HTML 4.01. For the sake of thoroughness, I include
them here in case you run across them in legacy markup. But there’s no reason to use
them—most have analogous style sheet properties or are simply poorly supported.

Element Description

acronym Indicates an acronym (e.g., NASA); authors should use abbr instead

applet Inserts a Java applet

basefont Establishes default font settings for a document

big Makes text slightly larger than default text size

center Centers content horizontally

dir Directory list (replaced by unordered lists)

font Font face, color, and size

isindex Inserts a search box

menu Menu list (replaced by unordered lists; however, menu is now used to
provide contextual menu commands)

strike Strike-through text

tt Teletype; displays in constant-width font

Emphasized text
Use the em element to indicate which part of a sentence should be stressed or
emphasized. The placement of em elements affects how a sentence’s meaning
is interpreted. Consider the following sentences that are identical, except for
which words are stressed.

<p>Matt is very smart.</p>

<p>Matt is very smart.</p>

The first sentence indicates who is very smart. The second example is about
how smart he is.

Emphasized text (em) elements nearly always display in italics by default
(Figure 5-9), but of course you can make them display any way you like
with a style sheet. Screen readers may use a different tone of voice to convey
stressed content, which is why you should use an em element only when it
makes sense semantically, not just to achieve italic text.

Important text
The strong element indicates that a word or phrase as important. In the
following example, the strong element identifies the portion of instructions
that requires extra attention.

...
Stressed emphasis

...
Strong importance

www.it-ebooks.info

http://www.it-ebooks.info/

The Inline Element Roundup

Chapter 5, Marking Up Text 87

<p>When checking out of the hotel, drop the keys in the red box
by the front desk.</p>

Visual browsers typically display strong text elements in bold text by
default. Screen readers may use a distinct tone of voice for important con-
tent, so mark text as strong only when it makes sense semantically, not just
to make text bold.

The following is a brief example of our em and strong text examples.
Figure 5-9 should hold no surprises.

Figure 5-9. The default rendering of emphasized and strong text.

The previously presentational elements that are sticking
around in HTML5 with fancy new semantic definitions
As long as we’re talking about bold and italic text, let’s see what the old b
and i elements are up to now. The elements b, i, u, s, and small were intro-
duced in the old days of the Web as a way to provide typesetting instruc-
tions (bold, italic, underline, strikethrough, and smaller text, respectively).
Despite their original presentational purposes, these elements have been
included in HTML5 and given updated, semantic definitions based on pat-
terns of how they’ve been used. Browsers still render them by default as
you’d expect (Figure 5-10). However, if a type style change is all you’re after,
using a style sheet rule is the appropriate solution. Save these for when they
are semantically appropriate.

Let’s look at these elements and their correct usage, as well as the style sheet
alternatives.

b

HTML 4.01 definition: Bold

HTML5 definition: Keywords, product names, and other phrases that need
to stand out from the surrounding text without conveying added importance
or emphasis.

CSS alternative: For bold text, use font-weight. Example: font-weight: bold

Example: <p>The slabs at the ends of letter strokes are called
serifs.</p>

...
Keywords or visually emphasized text (bold)

<i>...</i>
Alternative voice (italic)

<s>...</s>
Incorrect text (strike-through)

<u>...</u>
Annotated text (underline)

<small>...</small>
Legal text; small print (smaller type size)

n oT e

It helps me to think about how a screen
reader would read the text. If I don’t
want the word read in a loud, emphatic
tone of voice, but it really should be
bold, then b may be more appropriate
than strong.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure88

The Inline Element Roundup

i

HTML 4.01 definition: Italic

HTML5 definition: Indicates text that is in a different voice or mood than
the surrounding text, such as a phrase from another language, a technical
term, or thought.

CSS alternative: For italic text, use font-style. Example: font-style: italic

Example: <p>Simply change the font and <i>Voila!</i>, a new personal-
ity.</p>

s

HTML 4.01 definition: Strike-through text

HTML5 definition: Indicates text that is incorrect.

CSS Property: To put a line through a text selection, use text-decoration.
Example: text-decoration: line-through;

Example: <p>Scala Sans was designed by <s>Eric Gill</s> Martin
Majoor.</p>

u

HTML 4.01 definition: Underline

HTML5 definition: There are a few instances when underlining has semantic
significance, such as underlining a formal name in Chinese or indicating a
misspelled word after a spell check. Note that underlined text is easily con-
fused as a link and should generally be avoided except for a few niche cases.

CSS Property: For underlined text, use text-decoration. Example: text-
decoration: underline

Example: <p>New York subway signage is set in <u>Halvetica</u>.<p>

small

HTML 4.01 definition: Renders in font smaller than the surrounding text

HTML5 definition: Indicates an addendum or side note to the main text,
such as the legal “small print” at the bottom of a document.

CSS Property: To make text smaller, use font-size. Example: font-size:
80%

Example: <p>Download Jenville Handwriting Font
</p>

<p><small>This font is free for commercial use.</small>
</p>

www.it-ebooks.info

http://www.it-ebooks.info/

The Inline Element Roundup

Chapter 5, Marking Up Text 89

Figure 5-10. The default rendering of b, i, u, s, and small elements.

short quotations
Use the quotation (q) element to mark up short quotations, such as “To be
or not to be,” in the flow of text, as shown in this example (Figure 5-11).

Matthew Carter says, <q>Our alphabet hasn't changed in eons.</q>

According to the HTML spec, browsers should add quotation marks around
q elements automatically, so you don’t need to include them in the source
document. And for the most part they do, with the exception of Internet
Explorer versions 7 and earlier. Fortunately, as of this writing, those brows-
ers make up only 5–8% of browser usage, and it’s sure to be significantly
less by the time you read this. If you are concerned about a small percentage
of users seeing quotations without their marks, stick with using quotation
marks in your source, a fine alternative.

Figure 5-11. Nearly all browsers add quotation marks automatically around q elements.

Abbreviations and acronyms
Marking up acronyms and abbreviations with the abbr element provides
useful information for search engines, screen readers, and other devices.
Abbreviations are shortened versions of a word ending in a period (Conn. for
Connecticut, for example). Acronyms are abbreviations formed by the first
letters of the words in a phrase (such as WWW or USA). The title attribute
provides the long version of the shortened term, as shown in this example:

<abbr title="Points">pts.</abbr>
<abbr title="American Type Founders">ATF</abbr>

<q>...</q>
Short inline quotation

Nesting Elements
You can apply two elements to a
string of text (for example, a phrase
that is both a quote and in another
language), but be sure they are
nested properly. That means the inner
element, including its closing tag,
must be completely contained within
the outer element, and not overlap.

<q><i>Je ne sais pas.</i></q>

r E m i N d E r

<abbr>...</abbr>
Abbreviation or acronym

n oT e

In HTML 4.01, there was an acronym
element especially for acronyms, but it
has been made obsolete in HTML5 in
favor of using the abbr for both.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure90

The Inline Element Roundup

Citations
The cite element is used to identify a reference to another document, such
as a book, magazine, article title, and so on. Citations are typically rendered
in italic text by default. Here’s an example:

<p>Passages of this article were inspired by <cite>The Complete Manual
of Typography</cite> by James Felici.</p>

Defining terms
It is common to point out the first and defining instance of a word in a docu-
ment in some fashion. In this book, defining terms are set in blue text. In
HTML, you can identify them with the dfn element and format them visually
using style sheets.

<p><dfn>Script typefaces</dfn> are based on handwriting.</p>

Program code elements
A number of inline elements are used for describing the parts of technical
documents, such as code (code), variables (var), program samples (samp),
and user-entered keyboard strokes (kbd). For me, it’s a quaint reminder of
HTML’s origins in the scientific world (Tim Berners-Lee developed HTML
to share documents at the CERN particle physics lab in 1989).

Code, sample, and keyboard elements typically render in a constant-width
(also called monospace) font such as Courier by default. Variables usually
render in italics.

subscript and superscript
The subscript (sub) and superscript (sup) elements cause the selected text to
display in a smaller size, positioned slightly below (sub) or above (sup) the
baseline. These elements may be helpful for indicating chemical formulas or
mathematical equations.

Figure 5-12 shows how these examples of subscript and superscript typi-
cally render in a browser.

 <p>H₂0</p>

 <p>E=MC²</p>

Figure 5-12. Subscript and superscript

<cite>...</cite>
Citation

<dfn>...</dfn>
Defining term

<code>...</code>
Code

<var>...</var>
Variable

<samp>...</samp>
Program sample

<kbd>...</kbd>
User-entered keyboard strokes

_{...}
Subscript

^{...}
Superscript

www.it-ebooks.info

http://www.it-ebooks.info/

The Inline Element Roundup

Chapter 5, Marking Up Text 91

Highlighted text
The new mark element indicates a word that may be considered especially
relevant to the reader. One might use it to call out a search term in a page
of results, to manually call attention to a passage of text, indicate the cur-
rent page in a series. Some designers (and browsers) give marked text a light
colored background as though it was marked with a highlighter marker, as
shown in Figure 5-13.

<p> ... PART I. ADMINISTRATION OF THE GOVERNMENT. TITLE IX.
TAXATION. CHAPTER 65C. MASS. <mark>ESTATE TAX</mark>. Chapter 65C:
Sect. 2. Computation of <mark>estate tax</mark>.</p>

Figure 5-13. Search terms are marked as mark elements and given a yellow background
with a style sheet so they are easier for the reader to find.

Times and machine-readable information
When we look at the phrase “noon on November 4,” we know that it is a
date and a time. But the context might not be so obvious to a computer pro-
gram. The time element allows us to mark up dates and times in a way that
is comfortable for a human to read, but also encoded in a standardized way
that computers can use. The content of the element presents the informa-
tion to people, and the datetime attribute presents the same information in
a machine-readable way.

The time element indicates dates, times, or date-time combos. It might be
used to pass the date and time information to an application, such as saving
an event to a personal calendar. It might be used by search engines to find
the most recently published articles. Or it could be used to restyle time infor-
mation into an alternate format (e.g., changing 18:00 to 6 p.m.).

The datetime attribute specifies the date and/or time information in a stan-
dardized time format illustrated
in Figure 5-14. It begins with the
date (year, month, day), followed
by the letter T to indicate time,
listed in hours, minutes, seconds
(optional), and milliseconds (also
optional). Finally, the time zone
is indicated by the number of
hours behind (–) or ahead (+) of
Greenwich Mean Time (GMT).
For example, “–05:00” indicates
the Eastern Standard time zone,
which is five hours behind GMT.

<mark>...</mark>
Contextually relevant text

s U p p o R T a L e R T

The mark element is not supported in
Internet Explorer versions 8 and ear-
lier (see the sidebar HTML5 Support in
Internet Explorer earlier in this chapter
for a workaround). Older versions of
Firefox and Safari (prior to 3.6 and 4,
respectively) do not support it according
to the spec, but do allow you to apply
styles to it.

<time>...</time>
Time data

YYYY-MM-DDThh:mm:ss±HH:MM

year month day

hour
minute

second
(optional)

hour minutes

A “T” always
precedes time

information

+ or - for hours ahead
or behind Greenwich

Mean Time

TIME

DATE TIME ZONE

Example:

3pm PST on December 25, 2012

2012-12-25T15:00-8:00

n oT e

The time element is not intended for
marking up times for which a precise
time or date cannot be established, such
as “the end of last year” or “the turn of
the century.”

Figure 5-14. Standardized date and time
syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure92

The Inline Element Roundup

The WHATWG HTML specification includes a pubdate attribute for indi-
cating that the time is the publication date of a document, as shown in this
example. The pubdate attribute is not included in the W3C HTML5 spec as
of this writing, but it may be included at a later date if it becomes widely
used.

Written by Jennifer Robbins (<time datetime="2012-09-01T 20:00-05:00"
pubdate>September 1, 2012, 8pm EST</time>)

The WHATWG also includes the data element for helping computers make
sense of content, which can be used for all sorts of data, including dates,
times, measurements, weights, and so on. It uses the value attribute for the
machine-readable information. Here are a couple of examples:

<data value="12">Twelve</data>
<data value="2011-11-12">Last Saturday</data>

I’m not going to go into more detail on the data element, because as of this
writing, the powers that be are still discussing exactly how it should work,
and the W3C has not adopted it for the HTML5 spec. Also, as a beginner,
you are unlikely to be dealing with machine-readable data yet anyway. But
still, it is interesting to see how markup can be used to provide usable infor-
mation to computer programs and scripts as well as to your fellow humans.

Inserted and deleted text
The ins and del elements are used to mark up edits indicating parts of a
document that have been inserted or deleted (respectively). These elements
rely on style rules for presentation (i.e., there is no dependable browser
default). Both the ins and del elements can contain either inline or block
elements, depending on what type of content they contain.

Chief Executive Officer: <del title="retired">Peter Pan<ins>Pippi
Longstockings</ins>

Adding Breaks

Line breaks
Occasionally, you may need to add a line break within the flow of text.
We’ve seen how browsers ignore line breaks in the source document, so we
need a specific directive to tell the browser to “add a line break here.”

The inline line break element (br) does exactly that. The br element could be
used to break up lines of addresses or poetry. It is an empty element, which
means it does not have content. Just add the br element (
 in XHTML)
in the flow of text where you want a break to occur, as shown in here and
in Figure 5-15.

<p>So much depends
upon

a red wheel
barrow</p>

<data>...</data>
Machine-readable data

s U p p o R T a L e R T

Both time and data are new elements
and are not universally supported as of
this writing. However, you can apply
styles to them and they will be recog-
nized by browsers other than IE8 and
earlier.

<ins>...</ins>
Inserted text

...
Deleted text

Line break

Figure 5-15. Line breaks are inserted at
each br element.

www.it-ebooks.info

http://www.it-ebooks.info/

The Inline Element Roundup

Chapter 5, Marking Up Text 93

Accommodating Non-Western Languages
Because the Web is “world-wide,” there are a few elements
designed to address the needs of non-western languages.

Changing direction
The bdo (bidirectional override) element allows a phrase in a
right-to-left (rtl) reading language (such as Hebrew or Arabic)
to be included in a left-to-right (ltr) reading flow, or vice versa.

This is how you write Shalom: <bdo dir="rtl">�
5E9;לום</bdo>

The bdi (bidirectional isolation) element is similar, but it is used
to isolate a selection that might read in a different direction,
such as a name or comment added by a user.

Hints for East Asian languages
HTML5 also includes the ruby, rt, and rp elements used to add
ruby annotation to East Asian languages. Ruby annotations are
little notes that typically appear above ideographs and provide

pronunciation clues or translations. Within the ruby element,
the rt element indicates the helpful ruby text. Browsers that
support ruby text typically display it in a smaller font above the
main text. As a backup for browsers that don’t support ruby, you
can put the ruby text in parentheses, each marked with the rp
element. Non-supporting browsers display all the text on the
same line, with the ruby in parentheses. Supporting browsers
ignore the content of the rp elements and display only the rt
text above the glyphs. The Ruby system has spotty browser
support as of this writing.

<ruby>
 <rp>(</rp><rt>han</rt><rp>)<rp>
 <rp>(</rp><rt>zi</rt><rp>)<rp>
</ruby>

This example was taken from the HTML5 Working Draft at
whatwg.com, used with permission under an MIT License.

Unfortunately, the br element is easily abused (see the following warning).
Consider whether using the CSS white-space property (introduced in Chapter
12, Formatting Text) might be a better alternative for maintaining line breaks
from your source without extra markup.

Word breaks

<wbr>
Word break

The word break (wbr) element lets you mark the place where a word should
break if it needs to (a “line break opportunity” according to the spec). It
takes some of the guesswork away from the browser and allows authors to
specify the best spot for the word to be split over two lines. Keep in mind
that the word breaks at the wbr element only if it needs to (Figure 5-16). If
there is enough room, the word stays in one piece. Browsers have supported
this element for a long time, but it has recently been incorporated into the
HTML standard.

<p>The biggest word you’ve ever heard and this is how it goes:
supercali<wbr>fragilistic<wbr>expialidocious!</p>

Figure 5-16. When there is not enough room for a word to fit on a line, it will break at the
location of the wbr element.

wa R n i n G

Be careful that you aren’t using br ele-
ments to force breaks into text that
really ought to be a list. For example,
don’t do this:

<p>Times

Georgia

Garamond
</p>

If it’s a list, use the semantically correct
unordered list element instead, and turn
off the bullets with style sheets.

 Times
 Georgia
 Garamond

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure94

The Inline Element Roundup

exercise 5-2 | Identifying inline elements
This little post for the Black Goose Bistro blog will give you an opportunity to identify
and mark up a variety of inline elements. See if you can find phrases to mark up
accurately with the following elements:

b br cite dfn em i q small time
Because markup is always somewhat subjective, your resulting markup may not look
exactly like the example in Appendix A, but there is an opportunity to use all of the
elements listed above in the article. For extra credit, there is a phrase that should have
two elements applied to it (remember to nest them properly by closing the inner
element before you close the outer one).

You can write the tags right on this page. Or, if you want to use a text editor and see
the results in a browser, this text file is available online at www.learningwebdesign.
com/4e/materials. The resulting code appears in Appendix A.

<article>

 <header>

 <p>posted by BGB, November 15, 2012</p>

 </header>

<h1>Low and Slow</h1>

<p>This week I am extremely excited about a new cooking technique

called sous vide. In sous vide cooking, you submerge the food

(usually vacuum-sealed in plastic) into a water bath that is

precisely set to the target temperature you want the food to be

cooked to. In his book, Cooking for Geeks, Jeff Potter describes

it as ultra-low-temperature poaching.</p>

<p>Next month, we will be serving Sous Vide Salmon with Dill

Hollandaise. To reserve a seat at the chef table, contact us

before November 30.</p>

<p>blackgoose@example.com

555-336-1800</p>

<p> Warning: Sous vide cooked salmon is not pasteurized. Avoid it

if you are pregnant or have immunity issues.</p>

</article>

www.it-ebooks.info

mailto:blackgoose@example.com
http://www.it-ebooks.info/

Generic Elements (div and span)

Chapter 5, Marking Up Text 95

Generic Elements (div and span)
What if none of the elements we’ve talked about so far accurately describes
your content? After all, there are endless types of information in the world,
but as you’ve seen, not all that many semantic elements. Fortunately, HTML
provides two generic elements that can be customized to describe your
content perfectly. The div element indicates a division of content, and span
indicates a word or phrase for which no text-level element currently exists.
The generic elements are given meaning and context with the id and class
attributes, which we’ll discuss in a moment.

The div and span elements have no inherent presentation qualities of their
own, but you can use style sheets to format them however you like. In fact,
generic elements are a primary tool in standards-based web design because
they enable authors to accurately describe content and offer plenty of
“hooks” for adding style rules. They also allow elements on the page to be
accessed and manipulated by JavaScript.

We’re going to spend a little time on div and span (as well as the id and
class attributes) and learn how authors use them to structure content.

Divide it up with a div
The div element is used to create a logical grouping of content or elements
on the page. It indicates that they belong together in some sort of conceptual
unit or should be treated as a unit by CSS or JavaScript. By marking related
content as a div and giving it a unique id identifier or indicating that it is
part of a class, you give context to the elements in the grouping. Let’s look
at a few examples of div elements.

In this example, a div element is used as a container to group an image and
two paragraphs into a product “listing.”

<div class="listing">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type
design.</p>
</div>

By putting those elements in a div, I’ve made it clear that they are conceptu-
ally related. It will also allow me to style two p elements within listings dif-
ferently than other paragraphs on the page.

Here is another common use of a div used to break a page into sections
for layout purposes. In this example, a heading and several paragraphs are
enclosed in a div and identified as the “news” division.

<div id="news">
 <h1>New This Week</h1>
 <p>We've been working on...</p>
 <p>And last but not least,... </p>
</div>

<div>...</div>
Generic block-level element

...
Generic inline element

It is possible to nest div elements
within other div elements, but don’t
go overboard. You should always
strive to keep your markup as simple
as possible, so add a div element only
if it is necessary for logical structure,
styling, or scripting.

m A r k u p T i p

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure96

Generic Elements (div and span)

Now that I have an element known as “news,” I could use a style sheet to
position it as a column to the right or left of the page. You might be think-
ing, “Hey Jen, couldn’t you use a section element for that?” You could! In
fact, authors may turn to generic divs less now that we have better semantic
grouping elements in HTML5.

Get inline with span
A span offers the same benefits as the div element, except it is used for phrase
elements and does not introduce line breaks. Because spans are inline ele-
ments, they can only contain text and other inline elements (in other words,
you cannot put headings, lists, content-grouping elements, and so on, in a
span). Let’s get right to some examples.

There is no telephone element, but we can use a span to give meaning to
telephone numbers. In this example, each telephone number is marked up
as a span and classified as “tel”:

 John: 999.8282
 Paul: 888.4889
 George: 888.1628
 Ringo: 999.3220

You can see how the classified spans add meaning to what otherwise might
be a random string of digits. As a bonus, the span element enables us to
apply the same style to phone numbers throughout the site (for example,
ensuring line breaks never happen within them, using a CSS white-space:
nowrap declaration). It makes the information recognizable not only to
humans but to computer programs that know that “tel” is telephone number
information. In fact, some values—including “tel”—have been standardized
in a markup system known as Microformats that makes web content more
useful to software (see the Microformats and Metadata sidebar).

id and class attributes
In the previous examples, we saw the id and class attributes used to provide
context to generic div and span elements. id and class have different pur-
poses, however, and it’s important to know the difference.

Identification with id
The id attribute is used to assign a unique identifier to an element in the
document. In other words, the value of id must be used only once in the
document. This makes it useful for assigning a name to a particular element,
as though it were a piece of data. See the sidebar id and class Values for
information on providing values for the id attribute.

This example uses the books’ ISBN numbers to uniquely identify each list-
ing. No two book listings may share the same id.

id and class Values
The values for id and class
attributes should start with a letter
(A–Z or a–z) or underscore (although
Internet Explorer 6 and earlier have
trouble with underscores, so they
are generally avoided). They should
not contain any character spaces or
special characters. Letters, numbers,
hyphens, underscores, colons, and
periods are OK. Also, the values are
case-sensitive, so “sectionB” is not
interchangeable with “Sectionb.”

www.it-ebooks.info

http://www.it-ebooks.info/

Generic Elements (div and span)

Chapter 5, Marking Up Text 97

<div id="ISBN0321127307">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type.
 </p>
</div>

<div id="ISBN0881792063">

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 <p>This lovely, well-written book is concerned foremost
 with creating beautiful typography.</p>
</div>

Web authors also use id when identifying the various sections of a page. In
the following example, there may not be more than one element with the id
of “main,” “links,” or “news” in the document.

<section id="main">
 <!-- main content elements here -->
</section>

<section id="news">
 <!-- news items here -->
</section>

<aside id="links">
 <!-- list of links here -->
</aside>

Microformats and Metadata
As you’ve seen, the elements in HTML fall short in describing
every type of information. A group of developers decided that if
class names could be standardized (for example, always using
“tel” for telephone numbers), they could establish systems for
describing data to make it more useful. This system is called
Microformats. Microformats extend the semantics of HTML
markup by establishing standard values for id, class, and rel
attributes rather than creating whole new elements.

There are several Microformat “vocabularies” used to identify
things such as contact information (hCard) or calendar items
(hCalendar). The Microformats.org site is a good place to learn
about them. To give you the general idea, the following example
describes the parts of an event using the hCalendar Microformat
vocabulary so the browser can automatically add it to your
calendar program.

<section class="vevent">
 O'Reilly Emerging
 Technology Conference,
 <time class="dtstart" datetime="20110306">Mar 6
 </time> -
 <time class="dtend" datetime="20110310">10,
 2011</time>

 <div class="location">Manchester Grand Hyatt,
 San Diego, CA</div>
 <a class="url" href="http://events.example.com
 pub/e/403">Permalink
</section>

The hCard vocabulary identifies components of typical contact
information (stored in vCard format), including: address (adr),
postal code (postal-code), states (region), and telephone
numbers (tel), to name a few. The browser can then use
a service to grab the information from the web page and
automatically add it to an address book.

There is a lot more to say about Microformats than I can fit
in this book. And not only that, but there are two additional,
more complex systems for adding metadata to web pages
in development at the W3C: RDFa and Microdata. It’s not
clear how they are all going to shake out in the long run,
and I’m thinking that this metadata stuff is more than you
want to take on right now anyway. But when you are ready
to learn more, WebSitesMadeRight.com has assembled a
great big list of introductory articles and tutorials on all three
options: websitesmaderight.com/2011/05/html5-microdata-
microformats-and-rdfa-tutorials-and-resources/.

Not Just for divs
The id and class attributes may be
used with all elements in HTML5,
not just div and span. For example,
you could identify an ordered list as
“directions” instead of wrapping it in
a div.

<ol id="directions">
 ...
 ...
 ...

Note that in HTML 4.01, id and
class may be used with all elements
except base, basefont, head, html,
meta, param, script, style, and title.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure98

Generic Elements (div and span)

Classification with class
The class attribute classifies elements into conceptual groups; therefore,
unlike the id attribute, multiple elements may share a class name. By mak-
ing elements part of the same class, you can apply styles to all of the labeled
elements at once with a single style rule or manipulate them all with a script.
Let’s start by classifying some elements in the earlier book example. In this
first example, I’ve added class attributes to classify each div as a “listing”
and to classified paragraphs as “descriptions.”

<div id="ISBN0321127307" class="listing">
 <header>

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 </header>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing">
 <header>

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 </header>
 <p class="description">This lovely, well-written book is concerned
foremost with creating beautiful typography.</p>
</div>

Notice how the same element may have both a class and an id. It is also
possible for elements to belong to multiple classes. When there is a list of
class values, simply separate them with character spaces. In this example,
I’ve classified each div as a “book” to set them apart from possible “cd” or
“dvd” listings elsewhere in the document.

<div id="ISBN0321127307" class="listing book">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing book">

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 <p class="description">This lovely, well-written book is concerned
 foremost with creating beautiful typography.</p>
</div>

This should have given you a good introduction to how div and span ele-
ments with class and id attributes are used to add meaning and organi-
zation to documents. We’ll work with them even more in the style sheet
chapters in Part III.

The id attribute is used to identify.
The class attribute is used to classify.

T i p

www.it-ebooks.info

http://www.it-ebooks.info/

some special Characters

Chapter 5, Marking Up Text 99

some special Characters
There’s just one more text-related topic before we close this chapter out.

Some common characters, such as the copyright symbol ©, are not part of
the standard set of ASCII characters, which contains only letters, numbers,
and a few basic symbols. Other characters, such as the less-than symbol (<),
are available, but if you put one in an HTML document, the browser will
interpret it as the beginning of a tag.

Characters such as these must be escaped in the source document. Escaping
means that instead of typing in the character itself, you represent it by its
numeric or named character reference. When the browser sees the character
reference, it substitutes the proper character in that spot when the page is
displayed.

There are two ways of referring to a specific character: by an assigned
numeric value (numeric entity) or using a predefined abbreviated name for
the character (called a named entity). All character references begin with an
“&” and end with a “;”.

Some examples will make this clear. I’d like to add a copyright symbol to my
page. The typical Mac keyboard command, Option-G, which works in my
word processing program, may not be understood properly by a browser or
other software. Instead, I must use the named entity © (or its numeric
equivalent, ©) where I want the symbol to appear (Figure 5-17).

<p>All content copyright © 2012, Jennifer Robbins</p>

or:

<p>All content copyright © 2012, Jennifer Robbins</p>

HTML defines hundreds of named entities as part of the markup language,
which is to say you can’t make up your own entity. Table 5-2 lists some com-
monly used character references. If you’d like to see them all, the complete
list of character references has been assembled online by the nice folks at
the Web Standards Project at www.webstandards.org/learn/reference/charts/
entities/.

Figure 5-17. The special character is substituted for the character reference when the
document is displayed in the browser.

n oT e

In XHTML, every instance of an amper-
sand must be escaped so that it is not
interpreted as the beginning of a char-
acter entity, even when it appears in the
value of an attribute. For example:

<img src="sno.jpg" alt="Sifl
& Olly Show" />

www.it-ebooks.info

http://www.webstandards.org/learn/reference/charts/entities/
http://www.webstandards.org/learn/reference/charts/entities/
http://www.it-ebooks.info/

Part II, HTML Markup for structure100

Putting It All Together

Table 5-2. Common special characters and their character references

Character Description Name Number

 Character space (nonbreak-
ing space)

& Ampersand & &

‘ Apostrophe ' '

< Less-than symbol (useful for
displaying markup on a web
page)

< <

> Greater-than symbol (useful
for displaying markup on a
web page)

> >

© Copyright © ©

® Registered trademark ® ®

™ Trademark ™ ™

£ Pound £ £

¥ Yen ¥ ¥

€ Euro € €

– En-dash – –

— Em-dash — —

‘ Left curly single quote ‘ ‘

’ Right curly single quote ’ ’

“ Left curly double quote “ “

” Right curly double quote ” ”

• Bullet • •

... Horizontal ellipsis … …

Putting It All Together
So far, you’ve learned how to mark up elements, and you’ve met all of the
HTML elements for adding structure and meaning to text content. Now
it’s just a matter of practice. Exercise 5-3 gives you an opportunity to try
out everything we’ve covered so far: document structure elements, block
elements, inline elements, sectioning elements, and character entities. Have
fun!

Non-breaking
spaces
One interesting character to know
about is the non-breaking space
(). Its purpose is to ensure that
a line doesn’t break between two
words. So, for instance, if I mark up
my name like this:

Jennifer Robbins

I can be sure that my first and last
names will always stay together on
a line.

Remember that indenting each
hierarchical level in your HTML source
consistently makes the document
easier to scan and update later.

T i p

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

Chapter 5, Marking Up Text 101

exercise 5-3 | The Black Goose Blog page
Now that you’ve been introduced to all of the text elements,
you can put them to work by marking up the Blog page for the
Black Goose Bistro site. The content is shown below (the second
post is already marked up with the inline elements from Exercise
5-2). Get the starter text file online at www.learningwebdesign.
com/4e/materials. The resulting markup is in Appendix A and
included in the materials folder.

Once you have the text file, follow the instructions listed after
the copy. The resulting page is shown in Figure 5-18.

The Black Goose Blog

Home
Menu
Blog
Contact

Summer Menu Items
posted by BGB, June 15, 2013
Our chef has been busy putting together the
perfect menu for the summer months. Stop by to
try these appetizers and main courses while the
days are still long.

Appetizers
Black bean purses
Spicy black bean and a blend of mexican cheeses
wrapped in sheets of phyllo and baked until
golden. $3.95

Southwestern napoleons with lump crab -- new
item!
Layers of light lump crab meat, bean and corn
salsa, and our handmade flour tortillas. $7.95

Main courses

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic,
and fish sauce then grilled to perfection. Served
with spicy peanut sauce and jasmine rice. $12.95

Jerk rotisserie chicken with fried plantains --
new item!
Tender chicken slow-roasted on the rotisserie,
flavored with spicy and fragrant jerk sauce and
served with fried plantains and fresh mango.
$12.95

Low and Slow
posted by BGB, November 15, 2012
<p>This week I am extremely excited

about a new cooking technique called <dfn><i>sous
vide</i></dfn>. In <i>sous vide</i> cooking,
you submerge the food (usually vacuum-sealed in
plastic) into a water bath that is precisely
set to the target temperature of the food. In
his book, <cite>Cooking for Geeks</cite>, Jeff
Potter describes it as <q>ultra-low-temperature
poaching</q>.</p>

<p>Next month, we will be serving Sous Vide
Salmon with Dill Hollandaise. To reserve
a seat at the chef table, contact us before
November 30.</p>

Location: Baker’s Corner, Seekonk, MA
Hours: Tuesday to Saturday, 11am to midnight

All content copyright © 2012, Black Goose
Bistro and Jennifer Robbins

Figure 5-18. The finished menu page.

1. Add all the document structure elements first (html, head,
meta, title, and body). Give the document the title “Black
Goose Bistro: Blog.”

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure102

Test Yourself

2. The first thing we’ll do is identify the top-level heading and
the list of links as the header for the document by wrapping
them in a header element (don’t forget the closing tag).
Within the header, the headline should be an h1 and the list
of links should be an unordered list (ul). Don’t worry about
making the list items links; we’ll get to linking in the next
chapter. Give the list more meaning by identifying it as the
primary navigation for the site (nav).

3. This blog page has two posts titled “Summer Menu Items”
and “Low and Slow.” Mark each one up as an article.

4. Now we’ll get the first article into shape! Let’s create a
header for this article that contains the heading (h2 this time
because we’ve moved down in the document hierarchy)
and the publication information (p). Identify the publication
date for the article with the time element, just as you did in
Exercise 5-2.

5. The content after the header is clearly a simple paragraph.
However, the menu has some interesting things going on. It
is divided into two conceptual sections (Appetizers and Main
Courses), so mark those up as section elements. Be careful
that the closing section tag (</section>) appears before the
closing article tag (</article>) so the elements are nested
correctly and don’t overlap. Finally, let’s identify the sections
with id attributes. Name the first one “appetizers” and the
second “maincourses.”

6. With our sections in place, now we can mark up the content.
We’re down to h3 for the headings in each section. Choose
the most appropriate list elements to describe the menu
item names and their descriptions. Mark up the lists and each
item within the lists.

7. Now we can add a few fine details. Classify each price as
“price” using span elements.

8. Two of the dishes are new items. Change the double
hyphens to an em-dash character and mark up “new items!”

as “strongly important.” Classify the title of each new dish as
“newitem” (hint, use the existing dt element; there is no need
to add a span this time). This allows us to target menu titles
with the “newitem” class and style them differently than other
menu items.

9. That takes care of the first article. The second article is already
mostly marked up from the previous exercise, but you should
mark up the header with the appropriate heading and
publication information.

10. So far so good, right? Now make the remaining content
that applies to the whole page a footer. Mark each line of
content within the footer as a paragraph.

11. Let’s give the location and hours information some context
by putting them in a div named “about.” Make the labels
“Location” and “Hours” appear on a line by themselves by
adding line breaks after them. If you’d like, you could also
mark up the hours with the time element.

12. Finally, copyright information is typically “small print” on a
document, so mark it up accordingly. As the final touch, add
a copyright symbol after the word “copyright.”

Save the file, name it bistro_blog.html, and check your page in
a modern browser (remember that IE 8 and earlier won’t know
what to do with those new HTML5 sectioning elements). How
did you do?

Markup tips:

 y Choose the element that best fits the meaning of the
selected text.

 y Don’t forget to close elements with closing tags.

 y Put all attribute values in quotation marks for clarity

 y “Copy and paste” is your friend when adding the same
markup to multiple elements. Just be sure what you copied
is correct before you paste it throughout the document.

Test Yourself
Were you paying attention? Here is a rapid-fire set of questions to find out.

1. Add the markup to add a thematic break between these paragraphs.

 <p>People who know me know that I love to cook.</p>

 <p>I've created this site to share some of my favorite
 recipes.</p>

2. What’s the difference between a blockquote and a q element?

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 5, Marking Up Text 103

3. Which element displays whitespace exactly as it is typed into the source
document?

4. What is the difference between a ul and an ol?

5. How do you remove the bullets from an unordered list? (Be general, not
specific.)

6. What element would you use to provide the full name of the W3C
(World Wide Web Consortium) in the document? Can you write out the
complete markup?

7. What is the difference between a dl and a dt?

8. What is the difference between id and class?

9. What is the difference between an article and a section?

10. Name and write the characters generated by these character entities:

 —___________ & ___________

 ___________ © ___________

 • ___________ ™ ___________

Want More Practice?
Try marking up your own résumé.
Start with the raw text, and then
add document structure elements,
content grouping elements, then
inline elements as we’ve done
in Exercise 5-3. If you don’t see
an element that matches your
information just right, try creating
one using a div or a span.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure104

Test Yourself

Page sections

address author contact information

article (5) self-contained content

aside (5) tangential content (sidebar)

footer (5) related content
header (5) introductory content
nav (5) primary navigation

section (5) conceptually related group of content

Heading content

h1...h6 headings, levels 1 through 6
hgroup heading group

Grouping content

blockquote blockquote
div generic division

figure (5) related image or resource

figcaption (5) text description of a figure

hr paragraph-level thematic break
(horizontal rule)

p paragraph
pre preformatted text

List elements

dd definition

dl definition list
dt term
li list item (for ul and ol)
ol ordered list
ul unordered list
Breaks

br line break

wbr (5) word break

Element Review: Text
The following is a summary of the elements we covered in this chapter. New
HTML5 elements are indicated by “(5).” The data element is included only
in the WHATWG HTML version as of this writing.

Phrasing elements

abbr abbreviation

b added visual attention (bold)

bdi (5) possible direction change

bdo bidirectional override

cite citation

code code sample

data (WHATWG) machine-readable equivalent

del deleted text

dfn defining term

em stress emphasis

i alternate voice (italic)

ins inserted text

kbd keyboard text

mark (5) highlighted text

q short inline quotation

ruby (5) section containing ruby text

rp (5) parentheses in ruby text

rt (5) ruby annotations

s strike-through; incorrect text

samp sample output

small annotation; “small print”

span generic phrase of text

strong strong importance

sub subscript

sub superscript

time (5) machine-readable time data

u added attention (underline)

var variable

www.it-ebooks.info

http://www.it-ebooks.info/

105

If you’re creating a page for the Web, chances are you’ll want it to point to
other web pages and resources, whether on your own site or someone else’s.
Linking, after all, is what the Web is all about. In this chapter, we’ll look at
the markup that makes links work: to other sites, to your own site, and within
a page. There is one element that makes linking possible: the anchor (a).

To make a selection of text a link, simply wrap it in opening and closing
<a>... tags and use the href attribute to provide the URL of the target
page. The content of the anchor element becomes the hypertext link. Here is
an example that creates a link to the O’Reilly Media website:

Go to the O'Reilly Media site

To make an image a link, simply put the img element in the anchor element:

<img src="orm.gif" alt="O'Reilly
tarsier logo">

Nearly all graphical browsers display linked text as blue and underlined by
default. Some older browsers put a blue border around linked images, but
most current ones do not. Visited links generally display in purple. Users
can change these colors in their browser preferences, and, of course, you can
change the appearance of links for your sites using style sheets. I’ll show you
how in Chapter 13, Colors and Backgrounds.

wa R n i n G

One word of caution: if you choose to change your link colors, keep them consistent
throughout your site so as not to confuse your users.

When a user clicks or taps on the linked text or image, the page you specify
in the anchor element loads in the browser window. The linked image mark-
up sample shown previously might look like Figure 6-1.

<a>...
Anchor element (hypertext link)

Anchor syntax
The simplified structure of the anchor
element is:

linked text
or element

A T A G L A N C E

aDDIng lInks

CHAPTER 6

IN THIs CHAPTER

Making links to
external pages

Making relative links
to documents on your

own server

Linking to a specific
point in a page

Adding "mailto"
and "tel" links

Targeting new windows

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure106

The href Attribute

Figure 6-1. When a user clicks or taps on the linked text or image, the page you specified
in the anchor element loads in the browser window.

Starting in HTML5, you can put any element in an a element—even block
elements! In the HTML 4.01 spec and earlier, the anchor element could be
used for inline content only.

The href Attribute
You’ll need to tell the browser which document to link to, right? The href
(hypertext reference) attribute provides the address of the page or resource
(its URL) to the browser. The URL must always appear in quotation marks.
Most of the time you’ll point to other HTML documents; however, you can
also point to other web resources, such as images, audio, and video files.

Because there’s not much to slapping anchor tags around some content, the
real trick to linking comes in getting the URL correct.

There are two ways to specify the URL:

•	 Absolute URLs provide the full URL for the document, including the
protocol (http://), the domain name, and the pathname as necessary.
You need to use an absolute URL when pointing to a document out on
the Web (i.e., not on your own server).

Example: href="http://www.oreilly.com/"

Sometimes, when the page you’re linking to has a long URL pathname,
the link can end up looking pretty confusing (Figure 6-2). Just keep in
mind that the structure is still a simple container element with one attri-
bute. Don’t let the pathname intimidate you.

•	 Relative URLs describe the pathname to a file relative to the current
document. Relative URLs can be used when you are linking to another
document on your own site (i.e., on the same server). It doesn’t require
the protocol or domain name—just the pathname.

Example: href="recipes/index.html"

In this chapter, we’ll add links using absolute and relative URLs to my cook-
ing website, Jen’s Kitchen (see Figure 6-3). Absolute URLs are easy, so let’s
get them out of the way first.

In HTML5, you can put any
element in an a element—
even block elements!

URL Versus URI
The W3C and the development
community are moving away from
the term URL (Uniform Resource
Locator) and toward the more
generic and technically accurate URI
(Uniform Resource Identifier). On the
street and even on the job, however,
you’re still likely to hear URL.

Here’s the skinny on URL versus
URI: A URL is one type of a URI that
identifies the resource by its location
(the L in URL) on the network. The
other type of URI is a URN that
identifies the resource by name or
namespace (the N in URN).

Because it is more familiar, I will
be sticking with URL throughout
the discussions in this chapter. Just
know that URLs are a subset of
URIs, and the terms are often used
interchangeably.

If you like to geek out on this kind of
thing, I refer you to the URI Wikipedia
entry:
en.wikipedia.org/wiki/Uniform_
resource_identifier.

www.it-ebooks.info

http://www.it-ebooks.info/

Linking to Pages on the Web

Chapter 6, Adding Links 107

<a href="http://www.amazon.com/s/?ie=UTF8&keywords=

bequet+caramel&tag=googhydr20&index=aps&hvadid=79790

39989&ref=pd_sl_1ah68hbamy_b">Bequet Caramels

Linked textURL

Opening anchor tag

Closing anchor tag

Figure 6-2. An example of a long URL. Although it may make the anchor tag look
confusing, the structure is the same.

Linking to Pages on the Web
Many times, you’ll want to create a link to a page that you’ve found on
the Web. This is known as an “external” link because it is going to a page
outside of your own server or site. To make an external link, you need to
provide the absolute URL, beginning with http:// (the protocol). This tells
the browser, “Go out on the Web and get the following document.”

I want to add some external links to the Jen’s Kitchen home page (Figure 6-3).
First, I’ll link the list item “The Food Network” to the site www.foodtv.com. I
marked up the link text in an anchor element by adding opening and closing
anchor tags. Notice that I’ve added the anchor tags inside the list item (li)
element. That’s because only li elements are permitted to be children of a ul
element; placing an a element directly inside the ul would be invalid HTML.

 <a>The Food Network

Next, I add the href attribute with the complete URL for the site.

 The Food Network

And voila! That’s all there is to it. Now “The Food Network” will appear as
a link and will take my visitors to that site when they click or tap it.

exercise 6-1 | Make an external link
Open the file index.html from the jenskitchen folder. Make the list item “Epicurious”
link to its web page at www.epicurious.com, following my example.

 The Food Network

 Epicurious

When you are done, you can save index.html and open it in a browser. If you have an
Internet connection, you can click on your new link and go to the Epicurious site. If
the link doesn’t take you there, go back and make sure that you didn’t miss anything
in the markup.

URL Wrangling
If you are linking to a page with a
long URL, it is helpful to copy the
URL from the location toolbar in
your browser and paste it into your
document. That way, you avoid
mistyping a single character and
breaking the whole link.

m A r k u p T i p

Work Along with
Jen’s Kitchen

Figure 6-3. Finished Jen’s Kitchen page

All the files for the Jen’s Kitchen
website are available online at www.
learningwebdesign.com/4e/materials.
Download the entire directory,
making sure not to change the way
its contents are organized.

The resulting markup for all of the
exercises is provided in Appendix A.

The pages aren’t much to look at,
but they will give you a chance to
develop your linking skills.

T r y i T

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure108

Linking Within Your Own site

Linking Within Your Own site
A large portion of the linking you’ll do will be between pages of your own
site: from the home page to section pages, from section pages to content
pages, and so on. In these cases, you can use a relative URL—one that calls
for a page on your own server.

Without “http://”, the browser looks on the current server for the linked
document. A pathname, the notation used to point to a particular file or
directory, tells the browser where to find the file. Web pathnames follow the
Unix convention of separating directory and filenames with forward slashes
(/). A relative pathname describes how to get to the linked document starting
from the location of the current document.

Relative pathnames can get a bit tricky. In my teaching experience, nothing
stumps beginners like writing relative pathnames, so we’ll take it one step
at a time. There are exercises along the way that I recommend you do as we
go along.

All of the pathname examples in this section are based on the structure of
the Jen’s Kitchen site shown in Figure 6-4. When you diagram the structure
of the directories for a site, it generally ends up looking like an inverted tree
with the root directory at the top of the hierarchy. For the Jen’s Kitchen site,
the root directory is named jenskitchen. For another way to look at it, there
is also a view of the directory and subdirectories as they appear in the Finder
on my Mac (Windows users see one directory at a time).

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous html linguine html

The diagram and the view of the
Mac OS Finder reveal the structure
of the jenskitchen directory.

Figure 6-4. A diagram of the jenskitchen site structure.

n oT e

On PCs and Macs, files are organized
into “folders,” but in the web develop-
ment world, it is more common to refer
to the equivalent and more technical
term, “directory.” A folder is just a
directory with a cute icon.

Important
Pathname Don’ts
When you are writing relative
pathnames, it is critical that you
follow these rules to avoid common
errors:

 y Don’t use backslashes (\). Web
URL pathnames use forward
slashes (/) only.

 y Don’t start with the drive name
(D:, C:, etc.). Although your
pages will link to each other
successfully while they are on
your own computer, once they
are uploaded to the web server,
the drive name is irrelevant and
will break your links.

 y Don’t start with file://. This also
indicates that the file is local and
causes the link to break when it is
on the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Linking Within Your Own site

Chapter 6, Adding Links 109

Linking within a directory
The most straightforward relative URL points to another file within the same
directory. When link to a file in the same directory, you only need to provide
the name of the file (its filename). When the URL is a single filename, the
server looks in the current directory (that is, the directory that contains the
document with the link) for the file.

In this example, I want to make a link from my home page (index.html) to
a general information page (about.html). Both files are in the same directory
(jenskitchen). So from my home page, I can make a link to the information
page by simply providing its filename in the URL (Figure 6-5):

About the site...

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous html linguine html

The diagram shows that index.html and
about.html are in the same directory.

From index html:
About this page...

The server looks in the same directory as the current document for this file.

Figure 6-5. Writing a relative URL to another document in the same directory.

exercise 6-2 | Link in the same directory
Open the file about.html from the jenskitchen folder. Make the paragraph “Back to the
home page” at the bottom of the page link back to index.html. The anchor element
should be contained in the p element.

<p>Back to the home page</p>

When you are done, you can save about.html and open it in a browser. You don’t
need an Internet connection to test links locally (that is, on your own computer).
Clicking on the link should take you back to the home page.

A link to just the filename
indicates the linked file is
in the same directory as
the current document.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure110

Linking Within Your Own site

Linking to a lower directory
But what if the files aren’t in the same directory? You have to give the
browser directions by including the pathname in the URL. Let’s see how
this works.

Getting back to our example, my recipe files are stored in a subdirectory
called recipes. I want to make a link from index.html to a file in the recipes
directory called salmon.html. The pathname in the URL tells the browser to
look in the current directory for a directory called recipes, and then look for
the file salmon.html (Figure 6-6):

Garlic Salmon

From index html:
Garlic Salmon

The server looks in the same directory as the current document for the
recipes directory

The diagram shows that salmon.html is
one directory lower than index.html.

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous html linguine html

Figure 6-6. Writing a relative URL to a document that is one directory level lower than
the current document.

exercise 6-3 | Link one directory down
Open the file index.html from the jenskitchen folder. Make the list item “Tapenade
(Olive Spread)” link to the file tapenade.html in the recipes directory. Remember to
nest the elements correctly.

Tapenade (Olive Spread)

When you are done, you can save index.html and open it in a browser. You should
be able to click your new link and see the recipe page for tapenade. If not, make sure
that your markup is correct and that the directory structure for jenskitchen matches
the examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Linking Within Your Own site

Chapter 6, Adding Links 111

Now let’s link down to the file called couscous.html, which is located in the
pasta subdirectory. All we need to do is provide the directions through two
subdirectories (recipes, then pasta) to couscous.html (Figure 6-7):

Couscous with Peas and Mint

Directories are separated by forward slashes. The resulting anchor tag tells
the browser, “Look in the current directory for a directory called recipes.
There you’ll find another directory called pasta, and in there is the file I’d
like to link to, couscous.html.”

Now that we’ve done two directory levels, you should get the idea of how
pathnames are assembled. This same method applies for relative pathnames
that drill down through any number of directories. Just start with the name
of the directory that is in same location as the current file, and follow each
directory name with a slash until you get to the linked filename.

From index html:
Couscous

The server looks in the same directory as the current document for the
recipes directory, and then looks for the pasta directory.

The diagram shows that couscous.html is
two directories lower than index html.

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine html

Figure 6-7. Writing a relative URL to a document that is two directory levels lower than
the current document.

exercise 6-4 | Link two directories down
Open the file index.html from the jenskitchen folder. Make the list item “Linguine with
Clam Sauce” link to the file linguine.html in the pasta directory.

Linguine with Clam Sauce

When you are done, you can save index.html and open it in a browser. Click on the
new link to get the delicious recipe.

When linking to a file
in a lower directory,
the pathname must
contain the names of the
subdirectories you go
through to get to the file.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure112

Linking Within Your Own site

Linking to a higher directory
So far, so good, right? Here comes the tricky part. This time we’re going to
go in the other direction and make a link from the salmon recipe page back
to the home page, which is one directory level up.

In Unix, there is a pathname convention just for this purpose, the “dot-dot-
slash” (../). When you begin a pathname with ../, it’s the same as telling
the browser “back up one directory level” and then follow the path to the
specified file. If you are familiar with browsing files on your desktop, it is
helpful to know that a “../” has the same effect as clicking the “Up” button
in Windows Explorer or the left-arrow button in the Finder on Mac OS X.

Let’s start by making a link from salmon.html back to the home page (index.
html). Because salmon.html is in the recipes subdirectory, we need to back
up a level to jenskitchen to find index.html. This pathname tells the browser
to “go up one level,” then look in that directory for index.html (Figure 6-8):

<p>[Back to home page]</p>

Note that we don’t need to write out the name of the higher directory (jen-
skitchen) in the pathname. The ../ stands in for it.

From salmon html:
[Back to the home page]

The . / moves you up one level: from within the recipes directory up and
into the jenskitchen directory. There you find index html.

The diagram shows that index html is
one directory level higher than salmon.html.

jenskitchen directory

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous html linguine html

recipes

pasta

../

Figure 6-8. Writing a relative URL to a document that is one directory level higher than
the current document.

Each ../ at the beginning
of the pathname tells the
browser to go up one
directory level to look for
the file.

exercise 6-5 | Link to
a higher directory
Open the file tapenade.html from the
recipes directory. At the bottom of
the page, you’ll find this paragraph:

<p>[Back to the home page]</p>

Using the notation described in this
section, make this text link back to
the home page (index.html), located
one directory level up.

www.it-ebooks.info

http://www.it-ebooks.info/

Linking Within Your Own site

Chapter 6, Adding Links 113

But how about linking back to the home page from couscous.html? Can you
guess how you’d back your way out of two directory levels? Simple: just use
the dot-dot-slash twice (Figure 6-9).

A link on the couscous.html page back to the home page (index.html) would
look like this:

<p>[Back to home page]</p>

The first ../ backs up to the recipes directory; the second ../ backs up to the
top-level directory where index.html can be found. Again, there is no need to
write out the directory names; the ../ does it all.

From couscous.html:
[Back to the home page]

The first ../ moves you up one level: from within pasta to recipes.
The second ../ moves you from recipes up to jenskitchen.
There you find index html.

The diagram shows that index html is two
directory levels higher than couscous.html.

jenskitchen directory

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous html linguine html

recipes

pasta

../

../

Figure 6-9. Writing a relative URL to a document that is two directory levels higher than
the current document.

exercise 6-6 | Link up two directory levels
OK, now it’s your turn to give it a try. Open the file linguine.html and make the last
paragraph link to back to the home page using ../../ as I have done.

<p>[Back to the home page]</p>

When you are done, save the file and open it in a browser. You should be able to link
to the home page.

n oT e

I confess to still sometimes silently
chanting “go-up-a-level, go-up-a-level”
for each ../ when trying to decipher a
complicated relative URL. It helps me
sort things out.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure114

Linking Within Your Own site

site root relative pathnames
All websites have a root directory, which is the directory that contains all the
directories and files for the site. So far, all of the pathnames we’ve looked at
are relative to the document with the link. Another way to write a relative
pathname is to start at the root directory and list the subdirectory names
until you get to the file you want to link to. This kind of pathname is known
as site root relative.

In the Unix pathname convention, a forward slash (/) at the start of the
pathname indicates the path begins at the root directory. The site root rela-
tive pathname in the following link reads, “Go to the very top-level direc-
tory for this site, open the recipes directory, then find the salmon.html file”
(Figure 6-10):

Garlic Salmon

Note that you don’t need to (and you shouldn’t) write the name of the root
directory (jenskitchen) in the path—just start it with a forward slash (/), and
the browser will look in the top-level directory relative to the current file.
From there, just specify the directories the browser should look in.

From any document on the site:
Garlic Salmon

The (/) at the beginning of the path name tells the browser to start at
the root directory (jenskitchen).

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous html linguine html

In pathnames, the root directory is
always identified by a slash (/), not
its directory name.

Figure 6-10. Writing a relative URL starting at the root directory.

Because this this type of link starts at the root to describe the pathname, it
will work from any document on the server, regardless of which subdirectory
it may be located in. Site root relative links are useful for content that might
not always be in the same directory, or for dynamically generated material.
They also make it easy to copy and paste links between documents.

On the downside, however, the links won’t work on your local machine,
because they will be relative to your hard drive. You’ll have to wait until the
site is on the final server to check that links are working.

Site root relative links are
generally preferred due to
their flexibility.

www.it-ebooks.info

http://www.it-ebooks.info/

Linking Within Your Own site

Chapter 6, Adding Links 115

It’s the same for images
The src attribute in the img element works the same as the href attribute in
anchors when it comes to specifying URLs. Since you’ll most likely be using
images from your own server, the src attributes within your image elements
will be set to relative URLs.

Let’s look at a few examples from the Jen’s Kitchen site. First, to add an
image to the index.html page, the markup would be:

The URL says, “Look in the current directory (jenskitchen) for the images
directory; in there you will find jenskitchen.gif.”

Now for the piece de résistance. Let’s add an image to the file couscous.html:

This is a little more complicated than what we’ve seen so far. This pathname
tells the browser to go up two directory levels to the top-level directory and,
once there, look in the images directory for an image called spoon.gif. Whew!

Of course, you could simplify that path by going the site root relative route,
in which case the pathname to spoon.gif (and any other file in the images
directory) could be accessed like this:

The trade-off is that you won’t see the image in place until the site is upload-
ed to the server, but it does make maintenance easier once it’s there.

exercise 6-7 | Try a few more
Before we move on, you may want to try your hand at writing a few more relative
URLs to make sure you’ve really gotten it. You can just write your answers on the
page, or if you want to test your markup to see whether it works, make changes in
the actual files. You’ll need to add the text to the files to use as the link (for example,
“Go to the Tapenade recipe” for the first question). Answers are in Appendix A.

1. Create a link on salmon.html to tapenade.html.
Go to the Tapenade recipe

2. Create a link on couscous.html to salmon.html.
Try this with Garlic Salmon.

3. Create a link on tapenade.html to linguine.html.
Try the Linguine with Clam Sauce

4. Create a link on linguine.html to about.html.
About Jen’s Kitchen

5. Create a link on tapenade.html to www.allrecipes.com.

Go to Allrecipes.com

A Little Help from
Your Tools
If you use a WYSIWYG authoring tool
to create your site, the tool generates
relative URLs for you. Programs
such as Adobe Dreamweaver and
Microsoft Expression Web have built-
in site management functions that
adjust your relative URLs even if you
reorganize the directory structure.

n oT e

Any of the pathnames in Exercise 6-7
could be site root relative, but write
them relative to the listed document for
the practice.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure116

Linking Within Your Own site

Linking to a specific point in a page
Did you know you can link to a specific point in a web page? This is useful
for providing shortcuts to information at the bottom of a long, scrolling page
or for getting back to the top of a page with just one click or tap. Linking
to a specific point in the page is also referred to as linking to a document
fragment.

Linking to a particular spot within a page is a two-part process. First, you
identify the destination, and then you make a link to it. In the following
example, I create an alphabetical index at the top of the page that links down
to each alphabetical section of a glossary page (Figure 6-11). When users
click on the letter “H,” they’ll jump down on the page to the “H” heading
lower on the page.

step 1: Identifying the destination
I like to think of this step as planting a flag in the document so I can get back
to it easily. To create a destination, use the id attribute to give the target ele-
ment in the document a unique name (that’s “unique” as in the name may
appear only once in the document, not “unique” as in funky and interest-
ing). In web lingo, this is the fragment identifier.

You may remember the id attribute from Chapter 5, Marking Up Text,
where we used it to name generic div and span elements. Here, we’re going
to use it to name an element so that it can serve as a fragment identifier—
that is, the destination of a link.

Here is a sample of the source for the glossary page. Because I want users to
be able to link directly to the “H” heading, I’ll add the id attribute to it and
give it the value “startH” (Figure 6-11 1).

<h1 id="startH">H</h1>

step 2: Linking to the destination
With the identifier in place, now I can make a link to it.

At the top of the page, I’ll create a link down to the “startH” fragment 2.
As for any link, I use the a element with the href attribute to provide the
location of the link. To indicate that I’m linking to a fragment, I use the
octothorpe symbol (#), also called a hash or number symbol, before the
fragment name.

<p>... F | G | H | I | J ...</p>

And that’s it. Now when someone clicks on the “H” from the listing at the
top of the page, the browser will jump down and display the section starting
with the “H” heading 3.

n oT e

Linking to another spot on the same
page works well for long, scrolling
pages, but the effect may be lost on a
short web page.

To the Top!
It is common practice to add a link
back up to the top of the page when
linking into a long page of text. This
alleviates the need to scroll back after
every link.

A u T H o r i N G T i p

n oT e

Remember that id values must start
with a letter or an underscore (although
underscores may be problematic in some
versions of IE).

Fragment names are
preceded by an octothorpe
symbol (#).

www.it-ebooks.info

http://www.it-ebooks.info/

Linking Within Your Own site

Chapter 6, Adding Links 117

<h2 id="startH">H</h2>
<dl>
<dt>hexadecimal</dt>
<dd>A base-16 numbering system that uses the characters 0-9 and
A-F. It is used in CSS and HTML for specifying color values</dd>

<p>... | F | G | H | I | J ...</p>

Create a link to the destination. The # before the name is necessary to identify
this as a fragment and not a filename.

Identify the destination using the id attribute.1

2

3

Figure 6-11. Linking to a specific destination within a single web page.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure118

Targeting a New Browser Window

Linking to a fragment in another document
You can link to a fragment in another document by adding the fragment
name to the end of the URL (absolute or relative). For example, to make a
link to the “H” heading of the glossary page from another document in that
directory, the URL would look like this:

See the Glossary, letter H

You can even link to specific destinations in pages on other sites by putting
the fragment identifier at the end of an absolute URL, like so:

See the Glossary,
letter H

Of course, you don’t have any control over the named fragments in other
people’s web pages (see the note). The destination points must be inserted
by the author of those documents in order for them to be available to you.
The only way to know whether they are there and where they are is to “View
Source” for the page and look for them in the markup. If the fragments in
external documents move or go away, the page will still load; the browser
will just go to the top of the page as it does for regular links.

Targeting a New Browser Window
One problem with putting links on your page is that when people click on
them, they may never come back. The traditional solution to this dilemma
has been to make the linked page open in a new browser window. That way,
your visitors can check out the link and still have your content available
where they left it.

Before I provide the instructions for how to do it, I am going to strongly
advise against it. First of all, tabbed browsers make it somewhat less likely
that users will never find their way back to the original page. Furthermore,
opening new windows is problematic for accessibility. New windows may be
confusing to some users, particularly those who are accessing your site via
a screen reader or even on a small-screen device. At the very least, new win-
dows may be perceived as an annoyance rather than a convenience. Because
it is common to configure your browser to block pop-up windows, you risk
having the users miss out on the content in the new window altogether.

So consider carefully whether you need a separate window at all, and I’ll tell
you how in case you have a very good reason to do it. The method you use
to open a link in a new browser window depends on whether you want to
control its size. If the size of the window doesn’t matter, you can use HTML
markup alone. However, if you want to open the new window with particu-
lar pixel dimensions, then you need to use JavaScript.

n oT e

Some developers help their brothers
and sisters out by proactively adding
ids as anchors at the beginning of any
thematic section of content (within a
reasonable level, and depending on the
site). That way other people can link
back to any section in your content.

exercise 6-8 |
Linking to a
fragment
Want some practice linking to
specific destinations? Open the file
glossary.html in the materials folder
for this chapter. It looks just like the
document in Figure 6-11.

1. Identify the h2 “A” as a destination
for a link by naming it “startA” with
an id attribute.

<h2 id="startA">A</h2>

2. Make the letter “A” at the top of
the page a link to the identified
fragment. Don’t forget the #.

A

Repeat steps 1 and 2 for every letter
across the top of the page until you
really know what you are doing (or
until you can’t stand it anymore). You
can help users get back to the top of
the page, too.

3. Make the heading “Glossary” a
destination named “top.”

<h1 id="top">Glossary</h1>

4. Add a paragraph element
containing “TOP” at the end of
each lettered section. Make “TOP”
a link to the identifier that you just
made at the top of the page.

<p>TOP</
p>

Copy and paste this code to the
end of every letter section. Now
your readers can get back to the top
of the page easily throughout the
document.

www.it-ebooks.info

http://www.it-ebooks.info/

Mail Links

Chapter 6, Adding Links 119

A new window with markup
To open a new window using markup, use the target attribute in the anchor
(a) element to tell the browser the name of the window in which you want
the linked document to open. Set the value of target to _blank or to any name
of your choosing. Remember that with this method, you have no control
over the size of the window, but it will generally open as a new tab or in a
new window the same size as the most recently opened window in the user’s
browser.

Setting target="_blank" always causes the browser to open a fresh window.
For example:

O'Reilly

If you target “_blank” for every link, every link will launch a new window,
potentially leaving your user with a mess of open windows.

A better method is to give the target window a specific name, which can then
be used by subsequent links. You can give the window any name you like
(“new,” “sample,” whatever), as long as it doesn’t start with an underscore.
The following link will open a new window called “display”:

O'Reilly

If you target the “display” window from every link on the page, each linked
document will open in the same second window. Unfortunately, if that sec-
ond window stays hidden behind the user’s current window, it may look as
though the link simply didn’t work.

Pop-up windows
It is possible to open a window with specific dimensions and various parts
of the browser chrome (toolbars, scrollbars, etc.) turned on or off; however,
it takes JavaScript to do it. These are known as pop-up windows, and they
are commonly used for advertising. In fact, they’ve become such a nuisance
that many browsers have preferences for turning them off completely.
Furthermore, in a world where sites are accessed on small, mobile devices,
popping up windows at specific pixel dimensions has no place.

That said, if you have a valid reason to open a new browser window at
a specific size, I recommend this tutorial article by Peter-Paul Koch at
Quirksmode: www.quirksmode.org/js/popup.html.

Mail Links
Here’s a nifty little linking trick: the mailto link. By using the mailto pro-
tocol in a link, you can link to an email address. When the user clicks on
a mailto link, the browser opens a new mail message preaddressed to that
address in a designated mail program.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure120

Telephone Links

A sample mailto link is shown here:

Contact Al Klecker

As you can see, it’s a standard anchor element with the href attribute. But
the value is set to mailto:name@address.com.

The browser has to be configured to launch a mail program, so the effect
won’t work for 100% of your audience. If you use the email itself as the
linked text, nobody will be left out if the mailto function does not work (a
nice little example of progressive enhancement).

Telephone Links
Keep in mind that the smartphones people are using to access your website
can also be used to make phone calls! Why not save your visitors a step by
letting them dial a phone number on your site simply by tapping on it on the
page? The syntax uses the tel: scheme and is very simple.

Call us free at (800) 555-1212

When mobile users tap the link, they get an alert box asking them to confirm
that they’d like to call the number. This feature is supported on most mobile
devices, including iOS, Android, Blackberry, Symbian, Internet Explorer,
and Opera Mini. The iPad and iPod Touch can’t make a call, but they will
offer to create a new contact from the number. Nothing happens when
desktop users click the link. If that bothers you, you could use a CSS rule
that hides the link for non-mobile devices (unfortunately, that is beyond the
scope of this discussion).

There are a few best practices for using telephone links:

•	 It is recommended that you include the full international dialing number,
including the country code, for the tel: value because there is no way of
knowing where the user will be accessing your site.

•	 Also include the telephone number in the content of the link so that if the
link doesn’t work, the telephone number is still available.

•	 Android and iPhone have a feature that detects phone numbers and
automatically turns them into links. Unfortunately, some 10-digit num-
bers that are not telephone numbers might get turned into links, too. If
your document has strings of numbers that might get confused as phone
numbers, you can turn auto-detection off by including the following meta
element in the head of your document.

<meta name="format-detection" content="telephone=no">

For Blackberry devices, use the following:

<meta http-equiv="x-rim-auto-match" content="none">

spam-Bots
Be aware that by putting an email
address in your document source,
you will make it susceptible to
receiving unsolicited junk email
(known as spam). People who
generate spam lists sometimes use
automated search programs (called
bots) to scour the Web for email
addresses.

If you want your email to display on
the page in a way that humans can
figure it out but robots can’t, you can
deconstruct the address in a way that
is still understandable to people, for
example, “jen [-at-] oreilly [dot] com.”

That trick won’t work in a mailto link,
because the accurate email address
must be provided as an attribute
value. One solution is to encrypt the
email address using JavaScript. The
Enkoder Form at Hivelogic (hivelogic.
com/enkoder/) does this for you.
Simply enter the link text and the
email address, and Enkoder generates
code that you can copy and paste
into your document.

Otherwise, if you don’t want to risk
getting spammed, keep your email
address out of your HTML document.

www.it-ebooks.info

http://hivelogic.com/enkoder/
http://hivelogic.com/enkoder/
http://www.it-ebooks.info/

Test Yourself

Chapter 6, Adding Links 121

Test Yourself
The most important lesson in this chapter is how to write URLs for links and
images. Here’s another chance to brush up on your pathname skills.

Using the directory hierarchy shown in Figure 6-12, write out the markup
for the following links and graphics. I filled in the first one for you as an
example. The answers are located in Appendix A.

This diagram should provide you with enough information to answer the
questions. If you need hands-on work to figure them out, the directory struc-
ture is available in the test directory in the materials for this chapter. The
documents are just dummy files and contain no content.

1. In index.html (the site’s home page), write the markup for a link to
tutorial.html.

 ...

2. In index.html, write the anchor element for a link to instructions.html.

3. Create a link to family.html from the page tutorial.html.

4. Create a link to numbers.html from the family.html page, but this time,
start with the root directory.

/
(somesite)

images/

index.html tutorial html

examples/

instructions html int

root directory (/)

examples

images germanspanishfrench

ro.html

french/

friends.html family.html

spanish/

food html greetings.html

german/

money.html numbers.htmlcolors.html

arrow.gif bullet.gif

The ../ (or multiples of them) always
appears at the beginning of the
pathname and never in the middle. If
the pathnames you write have ../ in
the middle, you’ve done something
wrong.

T i p

Figure 6-12. The directory structure for
the Test Yourself questions.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure122

Element Review: Links

5. Create a link back to the home page (index.html) from the page
instructions.html.

6. In the file intro.html, create a link to the website for this book
(www.learningwebdesign.com/4e/materials).

7. Create a link to instructions.html from the page greetings.html.

8. Create a link back to the home page (index.html) from money.html.

We haven’t covered the image (img) element in detail yet, but you should
be able to fill in the relative URLs after the src attribute to specify the loca-
tion of the image files for these examples.

9. To place the graphic arrow.gif on the page index.html, the URL is:

10. To place the graphic arrow.gif on the page intro.html, the URL is:

11. To place the graphic bullet.gif on the friends.html page, the URL is:

Element Review: Links
There’s really only one element relevant to creating hypertext links:

Element and attributes Description

a Anchor (hypertext link) element

href="url" Location of the target file

www.it-ebooks.info

http://www.it-ebooks.info/

123

A web page with all text and no pictures isn’t much fun. The Web’s explo-
sion into mass popularity was due in part to the fact that there were images
on the page. Before images, the Internet was a text-only tundra.

Images appear on web pages in two ways: embedded in the inline content
or as background images. Background images are added using Cascading
Style Sheets and are talked about at length in Chapter 13, Colors and
Backgrounds. With the emergence of standards-driven design and its mis-
sion to keep all matters of presentation out of the document structure,
there has been a shift away from using inline images for purely decorative
purposes. See the sidebar Images Move to the Background on the following
page for more information on this trend.

In this chapter, we’ll focus on embedding image content into the document
using the img element. Use the img element when the image is the content,
such as product shots, gallery images, ads, illustrations, and so on…I think
you get the idea.

First, a Word on Image Formats
We’ll get to the img element and markup examples in a moment, but first
it’s important to know that you can’t put just any image on a web page. In
order to be displayed inline, images must be in the GIF, JPEG, or PNG file
format. Chapter 21, Web Graphics Basics explains these formats and the
image types they handle best. In addition to being in an appropriate format,
image files need to be named with the proper suffixes—.gif, .jpg (or .jpeg),
and .png, respectively—in order to be recognized by the browser.

If you have a source image that is in another popular format, such as TIFF,
BMP, or EPS, you’ll need to convert it to a web format before you can add
it to the page. If, for some reason, you must keep your graphic file in its
original format (for example, a file for a CAD program or an image in a vec-
tor format), you can make it available as an external image by making a link
directly to the image file, like this:

Get the drawing

aDDIng Images

CHAPTER 7

IN THIs CHAPTER

Adding images to a web page

Using the src, alt, width, and
height attributes

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure124

The img Element

Browsers use helper applications to display media they can’t handle alone.
The browser matches the suffix of the file in the link to the appropriate
helper application. The external image may open in a separate application
window or within the browser window if the helper application is a plug-in,
such as the QuickTime plug-in. The browser may also ask the user to save
the file or open an application manually. It is also possible that it won’t be
able to be opened at all.

Without further ado, let’s take a look at the img element and its required and
recommended attributes.

The img Element

Adds an inline image

The img element tells the browser, “Place an image here.” You’ve already
gotten a glimpse of it used to place banner graphics in the examples in
Chapters 4 and 5. You can also place an image element right in the flow of
the text at the point where you want the image to appear, as in the following
example. Images stay in the flow of text and do not cause any line breaks
(HTML5 calls this a phrasing element), as shown in Figure 7-1.

<p>I had been wanting to go to Tuscany
 for a long time, and I was not disappointed.</p>

Figure 7-1. By default, images are aligned with the baseline of the surrounding text, and
they do not cause a line break.

When the browser sees the img element, it makes a request to the server and
retrieves the image file before displaying it on the page. On a fast network
with a fast computer, even though a separate request is made for each image
file, the page usually appears to arrive instantaneously. On mobile devices
with slow network connections, we may be well aware of the wait for images
to be fetched one at a time. The same is true for users still using dial-up
Internet connections or other slow networks, like the expensive WiFi at
luxury hotels.

When designing mobile web experiences, it is wise to limit the number of
server requests in general, which means carefully considering the number of
images on the page.

Images Move to the
Background
Images that are used purely for
decoration have more to do with
presentation than document
structure and content. For that
reason, they should be controlled
with a style sheet rather than the
markup.

Using CSS, it is possible to place an
image in the background of the page
or in any text element (a div, h1, li…
you name it). These techniques are
introduced in Chapter 13, Colors and
Backgrounds.

There are several benefits to
specifying decorative images only in
an external style sheet and keeping
them out of the document structure.
Not only does it make the document
cleaner and more accessible, but it
also makes it easier to make changes
to the look and feel of a site than
when presentational elements are
interspersed in the content.

For inspiration on how visually rich
a web page can be with no img
elements at all, look at the examples
in the “Select a Design” section of the
CSS Zen Garden site at www
.csszengarden.com.

www.it-ebooks.info

http://www.it-ebooks.info/

The img Element

Chapter 7, Adding Images 125

The src and alt attributes shown in the sample are required. The src
attribute tells the browser the location of the image file. The alt attribute
provides alternative text that displays if the image is not available. We’ll talk
about src and alt a little more in upcoming sections.

There are a few other things of note about the img element:

•	 It is an empty element, which means it doesn’t have any content. You
just place it in the flow of text where the image should go.

•	 If you choose to write in the stricter XHTML syntax, you need to termi-
nate (close) the empty img element with a slash like so: .

•	 It is an inline element, so it behaves like any other inline element in the
text flow. Figure 7-2 demonstrates the inline nature of image elements.
When the browser window is resized, the line of images reflows to fill
the new width.

•	 The img element is what’s known as a replaced element because it is
replaced by an external file when the page is displayed. This makes it dif-
ferent from text elements that have their content right there in the source
(and thus are non-replaced).

•	 By default, the bottom edge of an image aligns with the baseline of text,
as shown in Figures 7-1 and 7-2. Using CSS, you can float the image to
the right or left margin and allow text to flow around it, control the space
and borders around the image, and change its vertical alignment. We’ll
talk about those styles in Part III.

Figure 7-2. Inline images are part of the normal document flow. They reflow when the browser window is resized.

Providing the location with src
src="URL"
Source (location) of the image

The value of the src attribute is the URL of the image file. In most cases,
the images you use on your pages will reside on your server, so you will use

The src and alt attributes
are required in the img
element.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure126

The img Element

relative URLs to point to them. If you just read Chapter 6, Adding Links, you
should be pretty handy with writing relative URLs by now. In short, if the
image is in the same directory as the HTML document, you can just refer to
the image by name in the src attribute:

Developers usually organize the images for a site into a directory called
images, assets, or graphics. There may even be separate image directories for
each section of the site. If an image is not in the same directory as the docu-
ment, you need to provide the pathname to the image file.

Of course, you can place images from other websites as well (just be sure
that you have permission to do so). Just use an absolute URL, like this:

Providing alternate text with alt
alt="text"
Alternative text

Every img element must also contain an alt attribute that is used to provide
a brief description of the image for those who are not able to see it, such as
users with screen readers, braille, or even small mobile devices. Alternate
text (also referred to as alt text) should serve as a substitute for the image
content—serving the same purpose and presenting the same information.

<p>If you're and you know it clap
your hands.</p>

A screen reader might indicate the image by reading its alt value this way:

“If you’re image happy and you know it clap your hands.”

If an image does not add anything meaningful to the text content of the
page, it is recommended that you leave the value of the alt attribute empty,
as shown in the following example and other examples in this chapter (you
may also consider whether it is more appropriately handled as a background
image with CSS, but I digress). Note that there is no character space between
the quotation marks.

Do not omit the alt attribute altogether, however, because it will cause the
document to be invalid (validating documents is covered in Chapter 3, Some
Big Concepts You Need to Know). For each inline image on your page, con-
sider what the alternative text would sound like when read aloud and wheth-
er that enhances or is just obtrusive to a screen-reader user’s experience.

Alternative text may benefit users with graphical browsers as well. If a user
has opted to turn images off in the browser preferences or if the image sim-
ply fails to load, the browser may display the alternative text to give the user

Take Advantage of
Caching
Here’s a tip for making images display
more quickly and reducing the traffic
to your server. If you use the same
image in multiple places on your site,
be sure each img element is pointing
to the same image file on the server.

When a browser downloads an image
file, it stores it in the disk cache (a
space for temporarily storing files on
the hard disk). That way, if it needs to
redisplay the page, it can just pull up
a local copy of the source document
and image files without making a new
trip out to the remote server.

When you use the same image
repetitively in a page or a site, the
browser only needs to download
the image once. Every subsequent
instance of the image is grabbed from
the local cache, which means less
traffic for the server and faster display
for the end user.

The browser recognizes an image
by its entire pathname, not just
the filename, so if you want to take
advantage of file caching, be sure
that each instance of your image
is pointing to the same image file
on the server, not multiple copies
of the same image file in different
directories.

T i p

www.it-ebooks.info

http://www.it-ebooks.info/

The img Element

Chapter 7, Adding Images 127

an idea of what is missing. The handling of alternative text is inconsistent
among modern browsers, however, as shown in Figure 7-3.

With image displayed

Firefox (Windows and Mac) Internet Explorer (Windows)

Chrome (Mac & Windows) Safari (Mac)

Figure 7-3. Most browsers display alternative text in place of the image (either with an
icon or as inline text) if the image is not available. Safari for Macintosh OS X is a notable
exception.

Image Accessibility
Images and other non-text content are a challenge for users accessing the Web with
screen readers. Alternative text allows you to provide a short description of what is in
an image for those who can’t see it. However, there are some types of images, such
as data charts and diagrams, that require longer descriptions than are practical as an
alt value.

For extremely long descriptions, consider writing the description elsewhere on the
page or in a separate document and making a reference or link to it near the image.

HTML 4.01 included the longdesc (long description) attribute, but it was dropped
in HTML5 due to lack of support. The longdesc attribute points to a separate HTML
document containing a lengthy description of the image, as in this example:

<img src="executivesalaries.png" alt="Executive salaries 1999-2009"
longdesc="salaries-ld.html">

In HTML5, the figcaption element allows a long description of an image when it is
placed in a figure.

There is more to say about image accessibility than I can fit in this chapter. I
encourage you to start your research with these resources:

 y “Creating Accessible Images” at WebAIM (webaim.org/techniques/images/
longdesc) provides alternatives to the longdesc attribute.

 y “Chapter 6, The Image Problem” from the book Building Accessible Websites by Joe
Clark (joeclark.org/book/sashay/serialization/Chapter06.html)

 y The Web Content Accessibility Guidelines (WCAG 2.0) at the W3C include
techniques for improving accessibility across all web content (www.w3.org/TR/
WCAG20-TECHS/). Warning: it’s pretty dense.

n oT e

Serving different image files for an img
element based on device size is handled
by JavaScript or a program running on
the server. It is beyond the scope of this
chapter, but see the Responsive Images
sidebar in Chapter 18, CSS Techniques.

www.it-ebooks.info

http://www.w3.org/TR/WCAG20-TECHS/
http://www.w3.org/TR/WCAG20-TECHS/
http://www.it-ebooks.info/

Part II, HTML Markup for structure128

The img Element

Providing width and height dimensions
width="number"
Image width in pixels

height="number"
Image height in pixels

The width and height attributes indicate the dimensions of the image in
number of pixels. Sounds mundane, but these attributes can speed up the
time it takes to display the final page by seconds. Browsers use the specified
dimensions to hold the right amount of space in the layout while the images
are loading rather than reconstructing the page each time a new image
arrives.

And that’s great if you are designing one version of your page with one fixed
image size. However, in these days of responsive web design, it is common
to create several versions of the same image and send a small one to small
mobile devices and a larger image for large-screen devices (and rescale the
images to fit for sizes in between). If you are scaling images in a responsive
design or delivering multiple image sizes, do not use width and height attri-
butes in the markup.

With this caveat in mind, let’s look at how width and height work for those
cases when it is appropriate to use them.

Match values with actual pixel size
Be sure that the pixel dimensions you specify are the actual dimensions of
the image. If the pixel values differ from the actual dimensions of your image,
the browser resizes the image to match the specified values (Figure 7-4).

Although it may be tempting to resize images in
this manner, you should avoid doing so. Even
though the image may appear small on the page,
the large image with its corresponding large
file size still needs to download. It is better to
resize the image in an image-editing program
and then place it at actual size on the page. Not
only that, but resizing with attributes usually
results in a blurry and deformed image. In fact,
if your images ever look fuzzy when viewed in a
browser, the first thing to check is that the width
and height values match the dimensions of the
image exactly.

Using a Browser
to Find Pixel
Dimensions
You can find the pixel dimensions of
an image by opening it in an image
editing program, of course, but did
you know you can also use a web
browser?

Using Chrome, Firefox, or Safari (but,
sorry, not Internet Explorer), simply
open the image file, and its pixel
dimensions display in the browser’s
title bar along with the filename. It’s
a handy shortcut I use all the time
because I always seem to have a
browser running.

T i p

width="144" height="72"

width="72" height="72"
(actual size of image)

width="144" height="144"

.

Figure 7-4. Browsers resize images to
match the provided width and height
values. It is strongly recommended not to
resize images in this way

www.it-ebooks.info

http://www.it-ebooks.info/

The img Element

Chapter 7, Adding Images 129

exercise 7-1 | Adding and linking images
You’re back from Italy and it’s time to post about some of your
travels. In this exercise, you’ll add thumbnail images to a travelog
and make them link to pages with full-sized versions.

All the thumbnails and photos you need have been created for
you, and I’ve given you a head start on the HTML files as well.
Everything is available at www.learningwebdesign.com/4e/
materials. Put a copy of the tuscany folder on your hard drive,
making sure to keep it organized as you find it. As always, the
resulting markup is listed in Appendix A.

This little site is made up of a main page (index.html) and three
separate HTML documents containing each of the larger image
views (Figure 7-5). First, we’ll add the thumbnails, and then we’ll
add the full-size versions to their respective pages. Finally, we’ll
make the thumbnails link to those pages. Let’s get started. Open
the file index.html, and add the small thumbnail images to this
page to accompany the text. I’ve done the first one for you:

<h2>Pozzarello</h2>

<p><img src="thumbnails/window_thumb.jpg"
alt="view from bedroom window" width="75"
height="100"> The house we stayed in was called
Pozzarello…

I’ve put the image at the beginning of the paragraph, just
after the opening <p> tag. Because all of the thumbnail
images are located in the thumbnails directory, I provided
the pathname in the URL. I also added a description of the
image and the width and height dimensions in pixels (px).

Now it’s your turn. Add the image countryside_thumb
.jpg (100px wide x 75px tall) and sienna_thumb.jpg (75 x
100) at the beginning of the paragraphs in their respective
sections. Be sure to include the pathname, an alternative
text description, and pixel dimensions.

When you are done, save the file and then open it in the
browser to be sure that the images are visible and appear
at the right size.

Figure 7-5. Travel photo site.

www.it-ebooks.info

http://www.learningwebdesign.com/
http://www.it-ebooks.info/

Part II, HTML Markup for structure130

A Window in a Window

1. Next, add the images to the individual HTML documents. I’ve
done window.html for you:

<h1>The View Through My Window</h1>
<p><img src="photos/window.jpg" alt="view out the
window of the rolling Tuscan hills" width="375"
height="500"></p>

Notice that the full-size images are in a directory called
photos, so that needs to be reflected in the pathnames.

Add images to countryside.html and sienna.html, following
my example. Hint: all of the images are 500 pixels on their
widest side and 375 pixels on their shortest side, although
the orientation varies.

Save each file, and check your work by opening them in
the browser window.

2. Back in index.html, link the thumbnails to their respective
files. I’ve done the first one here.

<h2>Pozzarello</h2>
<p><img src="thumbnails/
window_thumb.jpg" alt="view from the bedroom
window" width="75" height="100"></p>

Notice that the URL is relative to the current document
(index.html), not to the location of the image (the
thumbnails directory).

Make the remaining thumbnail images links to each of the
documents. If all the images are visible and you are able to
link to each page and back to the home page again, then
congratulations, you’re done!

Like a little more practice?
If you’d like more practice, you’ll find three additional images
(sweets.jpg, cathedral.jpg, and lavender.jpg) with their thumbnail
versions (sweets_thumb.jpg, cathedral_thumb.jpg, and
lavender_thumb.jpg) in their appropriate directories. This time,
you’ll need to add your own descriptions to the home page
and create the HTML documents for the full-size images from
scratch.

For an added challenge, create a new directory called
photopages in the tuscany directory. Move countryside.html and
sienna.html into that directory, and then update the URLs on
those pages so that the images are visible again.

A Window in a Window
As long as we’re talking about embedding things on a page, I thought I’d tell
you about the iframe element that lets you to embed a separate HTML docu-

ment or other resource in a docu-
ment. What you see on the page is
a floating or inline “frame” that dis-
plays the document with its own set
of scrollbars if the embedded docu-
ment is too long to fit (Figure 7-6).

You place an inline frame on a page
similarly to an image, specifying the
source (src) of its content as well as
its width and height. The content
in the iframe element itself displays
on browsers that don’t support the
element. This example displays
a document called list.html in an
inline frame.

Figure 7-6. Inline frames (added with the
iframe element) are like a browser window
within the browser that displays external
HTML documents and resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 7, Adding Images 131

<h1>Inline (floating) Frames</h1>

<iframe src="list.html" width="400" height="250">

Your browser does not support inline frames.Read the <a href="list.
html">list.

</iframe>

You don’t see inline frames much in the wild, but developers sometimes use
them to keep third party content such as interactive ads or other widgets
quarantined so they don’t interfere with the scripting and contents of the
rest of the page.

Test Yourself
Images are a big part of the web experience. Answer these questions to see
how well you’ve absorbed the key concepts of this chapter. The correct
answers can be found in Appendix A.

1. Which attributes must be included in every img element?

2. Write the markup for adding an image called furry.jpg that is in the
same directory as the current document.

3. Why is it necessary to include alternative text? Name two reasons.

4. What is the advantage of including width and height attributes for
every graphic on the page? When should you leave them out?

5. What might be going wrong if your images don’t appear when you
view the page in a browser? There are three possible explanations.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure132

Element Review: Images

Element Review: Images
We covered just one element in this chapter:

Element and attributes Description

img Inserts an inline image.

src="url" The location of the image file.

alt="text" Alternative text.

width="number" Width of the graphic.

height="number" Height of the graphic.

usemap="usemap" Indicates a client-side image map.

title="text" Provides a "tool tip" when the user mouses over the
image. Can be used for supplemental information
about the image.

iframe Inserts an inline browsing context (window)

height="number" Height of the frame in pixels

src="url" Resource of the display in the frame

width="number" Width of the frame in pixels

www.it-ebooks.info

http://www.it-ebooks.info/

133

Before we launch into the markup for tables, let’s check in with our progress
so far. We’ve covered a lot of territory: how to establish the basic structure of
an HTML document, how to mark up text to give it meaning and structure,
how to make links, and how to embed images on the page.

This chapter and the next, Chapter 9, Forms, describe the markup for spe-
cialized content that you might not have a need for right away. If you’re
getting antsy to make your pages look good, skip right to Part III and start
playing with Cascading Style Sheets. The tables and forms chapters will be
here when you’re ready for them.

Are you still with me? Great. Let’s talk tables. We’ll start out by reviewing
how tables should be used, then learn the elements used to create them with
markup. Remember, this is an HTML chapter, so we’re going to focus on the
markup that structures the content into tables, and we won’t be concerned
with how the tables look. Like any web content, the appearance (or presen-
tation, as we say in the web dev biz) of tables should be handled with style
sheets, which you’ll learn about in Chapter 18, CSS Techniques.

How Tables Are Used
HTML tables were created for instances when you need to add tabular
material (data arranged into rows and columns) to a web page. Tables may
be used to organize calendars, schedules, statistics, or other types of infor-
mation, as shown in Figure 8-1. Note that “data” doesn’t necessarily mean
numbers. A table cell may contain any sort of information, including num-
bers, text elements, and even images and multimedia objects.

table markuP

CHAPTER 8

IN THIs CHAPTER

How tables are used

Basic table structure

The importance of headers

Spanning rows and columns

Cell padding and spacing

Making tables accessible

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation134

How Tables Are Used

w3c.org

wikipedia.org

mbta.org

Figure 8-1. Examples of tables used for tabular information, such as charts, calendars,
and schedules.

In visual browsers, the arrangement of data in rows and columns gives read-
ers an instant understanding of the relationships between data cells and their
respective header labels. Bear in mind when you are creating tables, how-
ever, that some readers will be hearing your data read aloud with a screen
reader or reading braille output. Later in this chapter, we’ll discuss measures
you can take to make table content accessible to users who don’t have the
benefit of visual presentation.

In the days before style sheets, tables were the only option for creating mul-
ticolumn layouts or controlling alignment and whitespace. Layout tables,
particularly the complex nested table arrangements that were once standard
web design fare, have gone the way of the dodo. This chapter focuses on
HTML tables as they are intended to be used.

The Trouble with
Tables
Large tables, such as those shown in
Figure 8-1, can be difficult to use on
small-screen devices. By default, they
are shrunk to fit the screen width,
rendering the text in the cells too
small to be read. Users can zoom in
to read the cells, but then only a few
cells may be visible at a time and it is
difficult to parse the organization of
headings and columns.

To be honest, as of this writing, we
are just starting to figure out how
best to handle tabular material on
small screens. One approach is to
replace the table with a graphic
representation, such as a pie chart,
on mobile devices. Of course, this
will work only for certain types of
tables. For simple two- or three-
column tables, consider using a dl
list to represent the information
instead for more flexibility. Another
approach is to put an indication of
the table (such as an image of the
top of it) that links to a separate
screen with the full table for those
who are interested. Chris Coyier
proposes a clever solution in his
article “Responsive Data Tables”
(css-tricks.com/9096-responsive-
data-tables/) that describes how to
use CSS to reformat the table as a
long, narrow list that fits better in
a smartphone screen. See also the
clever solution proposed by Filament
Group (think of them as the Super
Friends of responsive design) at
filamentgroup.com/lab/responsive_
design_approach_for_complex_
multicolumn_data_tables/.

There may be new solutions by the
time you read this, but it is important
to always keep the mobile, small-
screen experience in mind as you
design any web content.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimal Table structure

Chapter 8, Table Markup 135

Minimal Table structure
Let’s take a look at a simple table to see what it’s made of. Here is a small
table with three rows and three columns that lists nutritional information.

Menu item Calories Fat (g)

Chicken noodle soup 120 2

Caesar salad 400 26

Figure 8-2 reveals the structure of this table according to the HTML table
model. All of the table’s content goes into cells that are arranged into rows.
Cells contain either header information (titles for the columns, such as
“Calories”) or data, which may be any sort of content.

header cell
Menu item

data cell
Chicken Noodle Soup

data cell
Caesar Salad

header cell
Calories

data cell
120

data cell
400

header cell
Fat (g)

data cell
2

data cell
26

row

row

row

table

Figure 8-2. Tables are made up of rows that contain cells. Cells are the containers for
content.

Simple enough, right? Now let’s look at how those parts translate into ele-
ments (Figure 8-3).

<th>Menu item</th>

<td>Chicken Noodle
Soup</td>

<td>Caesar Salad</td>

<th>Calories</th>

<td>120</td>

<td>400</td>

<th>Fat (g)</th>

<td>2</td>

<td>26</td>

<tr>

<tr>

<tr>

<table>

</table>

</tr>

</tr>

</tr>

Figure 8-3. The elements that make up the basic structure of a table.

Figure 8-3 shows the elements that identify the table (table), rows (tr, for
“table row”), and cells (th, for “table headers,” and td, for “table data”).
Cells are the heart of the table, because that’s where the actual content goes.
The other elements just hold things together.

<table>...</table>
Tabular content (rows and columns)

<tr>...</tr>
Table row

<th>...</th>
Table header

<td>...</td>
Table cell data

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation136

Minimal Table structure

What we don’t see are column elements (see note). The number of columns
in a table is determined by the number of cells in each row. This is one of
the things that make HTML tables potentially tricky. Rows are easy—if you
want the table to have three rows, just use three tr elements. Columns are
different. For a table with four columns, you need to make sure that every
row has four td or th elements; the columns are implied.

Written out in a source document, the markup for the table in Figure 8-3
would look like the following sample. It is common to stack the th and td
elements in order to make them easier to find in the source. This does not
affect how they are rendered by the browser.

<table>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>
 <tr>
 <td>Chicken noodle soup</td>
 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>
</table>

Remember, all the content must go in cells, that is, within td or th elements.
You can put any content in a cell: text, a graphic, even another table.

Start and end table tags are used to identify the beginning and end of the
tabular material. The table element may directly contain only some number
of tr (row) elements. The only thing that can go in the tr element is some
number of td or th elements. In other words, there may be no text content
within the table and tr elements that isn’t contained within a td or th.

Finally, Figure 8-4 shows how the table would look in a simple web page, as
displayed by default in a browser. I know it’s not exciting. Excitement hap-
pens in the CSS chapters. What is worth noting is that tables always start on
new lines by default in browsers.

n oT e

There are two column-related elements
in HTML5: col for identifying a column
and colgroup for establishing related
groups of columns. They were created
to add a layer of information about
the table that can potentially speed
up its display, but they are not part of
HTML’s row-centric table model. See
the sidebar Advanced Table Elements
for more information.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimal Table structure

Chapter 8, Table Markup 137

Advanced Table Elements
The sample table in this section has been stripped down to its
bare essentials to make its structure clear while you learn how
tables work. It is worth noting, however, that there are other
table elements and attributes that offer more complex semantic
descriptions and improve the accessibility of tabular content. A
thoroughly marked-up version of the sample table might look
like this:

<table>
<caption>Nutritional Information (Calorie and Fat

Content)</caption>

<col span="1" class="itemname">
<colgroup id="data">
 <col span="1" class="calories">
 <col span="1" class="fat">
</colgroup>

<thead>
 <tr>
 <th scope="col">Menu item</th>
 <th scope="col">Calories</th>
 <th scope="column">Fat (g)</th>
 </tr>
</thead>

<tbody>
 <tr>
 <td>Chicken noodle soup</td>
 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>
</tbody>

</table>

Row group elements
You can describe rows or groups of rows as belonging to a
header, footer, or the body of a table using the thead, tfoot, and
tbody elements, respectively. Some user agents (another word
for a browsing device) may repeat the header and footer rows
on tables that span multiple pages. Authors may also use these
elements to apply styles to various regions of a table.

Column group elements
Columns may be identified with the col element or put into
groups using the colgroup element. This is useful for adding
semantic context to information in columns and may be used
to calculate the width of tables more quickly. Notice that there
is no content in the column elements; it just describes the
columns before the actual table data begins.

Accessibility features
Accessibility features such as captions for providing descriptions
of table content and the scope and headers attributes for
explicitly connecting headers with their respective content are
discussed later in this chapter.

An in-depth exploration of the advanced table elements
are beyond the scope of this book, but you may want
to do more research at the W3C site (www.w3.org/TR/
html5) if you anticipate working with data-heavy tables.

n oT e

According to the HTML5 spec, a table may contain “in
this order: optionally a caption element, followed by zero
or more colgroup elements, followed optionally by a thead
element, followed optionally by a tfoot element, followed
by either zero or more tbody elements or one or more tr
elements, followed optionally by a tfoot element (but
there can only be one tfoot element child in total).” Got
all that?

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation138

Minimal Table structure

Figure 8-4. The default rendering of our sample table in a browser.

Here is the source for another table. Can you tell how many rows and col-
umns it will have when it is displayed in a browser?

<table>
 <tr>
 <td>Sufjan Stevens</td>
 <td>Illinoise</td>
 <td>Asthmatic Kitty Records</td>
 </tr>
 <tr>
 <td>The Shins</td>
 <td>Oh Inverted World</td>
 <td>Sub-pop Records</td>
 </tr>
</table>

If you guessed that it’s a table with two rows and three columns, you’re cor-
rect! Two tr elements create two rows; three td elements in each row create
three columns.

Table Headers
As you can see in Figure 8-4, the text marked up as headers (th elements)
is displayed differently from the other cells in the table (td elements). The
difference, however, is not purely cosmetic. Table headers are important
because they provide information or context about the cells in the row or
column they precede. The th element may be handled differently than tds
by alternative browsing devices. For example, screen readers may read the
header aloud before each data cell (“Menu item, Caesar salad, Calories, 400,
Fat-g, 26”).

stylin’ Tables
Once you build the structure of the
table in the markup, it’s no problem
adding a layer of style to customize its
appearance.

Style sheets can and should be used
to control these aspects of a table’s
visual presentation. We’ll get to all the
formatting tools you’ll need in the
following chapters:

In Chapter 12, Formatting Text:

 y Font settings for cell contents

 y Text color in cells

In Chapter 14, Thinking Inside the
Box:

 y Table dimensions (width and
height)

 y Borders

 y Cell padding (space around cell
contents)

 y Margins around the table

In Chapter 13, Colors and
Backgrounds:

 y background colors

 y Tiling background images

In Chapter 18, CSS Techniques:

 y Special properties for controlling
borders and spacing between
cells

www.it-ebooks.info

http://www.it-ebooks.info/

spanning Cells

Chapter 8, Table Markup 139

In this way, they are a key tool for making table content accessible. Don’t try
to fake headers by formatting a row of td elements differently than the rest of
the table. Conversely, don’t avoid using th elements because of their default
rendering (bold and centered). Mark up the headers semantically and change
the presentation later with a style rule.

That covers the basics. Before we get fancier, try your hand at Exercise 8-1.

exercise 8-1 | Making a simple table
Try writing the markup for the table shown in Figure 8-5. You can open a text editor
or just write it down on paper. The finished markup is provided in Appendix A.

(Note that I’ve added a 1-pixel border around cells with a style rule just to make the
structure clear. You won’t include this in your version.)

Be sure to close all table elements. Technically, you are not required to close tr, th,
and td elements, but I want you to get in the habit of writing tidy source code
for maximum predictability across all browsing devices. If you choose to write
documents using XHTML syntax, closing table elements is required in order for the
document to be valid.

Figure 8-5. Write the markup for this table.

spanning Cells
One fundamental feature of table structure is cell spanning, which is the
stretching of a cell to cover several rows or columns. Spanning cells allows
you to create complex table structures, but it has the side effect of making
the markup a little more difficult to keep track of. You make a header or data
cell span by adding the colspan or rowspan attributes, as we’ll discuss next.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation140

spanning Cells

Column spans
Column spans, created with the colspan attribute in the td or th element,
stretch a cell to the right to span over the subsequent columns (Figure 8-6).
Here a column span is used to make a header apply to two columns. (I’ve
added a border around cells to reveal the table structure in the screenshot.)

<table>
 <tr>
 <th colspan="2">Fat</th>
 </tr>
 <tr>
 <td>Saturated Fat (g)</td>
 <td>Unsaturated Fat (g)</td>
 </tr>
</table>

Figure 8-6. The colspan attribute stretches a cell to the right to span the specified
number of columns.

Notice in the first row (tr) that there is only one th element, while the sec-
ond row has two td elements. The th for the column that was spanned over
is no longer in the source; the cell with the colspan stands in for it. Every
row should have the same number of cells or equivalent colspan values. For
example, there are two td elements and the colspan value is 2, so the implied
number of columns in each row is equal.

wa R n i n G

Be careful with colspan values. If you
specify a number that exceeds the num-
ber of columns in the table, most brows-
ers will add columns to the existing
table, which typically screws things up.

exercise 8-2 | Column spans
Try writing the markup for the table shown in Figure 8-7. You can open a text editor or just
write it down on paper. I added borders to reveal the cell structure in the figure, but your
table won’t have them. Check Appendix A for the final markup.

Figure 8-7. Practice column spans by writing the mvwarkup for this table.

Some hints:

 y For simplicity's sake, this table uses all
td elements.

 y The second row shows you that the
table has a total of three columns.

 y When a cell is spanned over, its td
element does not appear in the table.

www.it-ebooks.info

http://www.it-ebooks.info/

spanning Cells

Chapter 8, Table Markup 141

Row spans
Row spans, created with the rowspan attribute, work just like column spans,
but they cause the cell to span downward over several rows. In this example,
the first cell in the table spans down three rows (Figure 8-8).

<table>
 <tr>
 <th rowspan="3">Serving Size</th>
 <td>Small (8oz.)</td>
 </tr>
 <tr>
 <td>Medium (16oz.)</td>
 </tr>
 <tr>
 <td>Large (24oz.)</td>
 </tr>
</table>

Again, notice that the td elements for the cells that were spanned over (the
first cells in the remaining rows) do not appear in the source. The rowspan="3"
implies cells for the subsequent two rows, so no td elements are needed.

Figure 8-8. The rowspan attribute stretches a cell downward to span the specified number
of rows.

exercise 8-3 | Row spans
Try writing the markup for the table shown in Figure 8-9. Remember that cells that are
spanned over do not appear in the table code. Rows always span downward, so the
“oranges” cell is part of the first row even though its content is vertically centered.

If you’re working in text editor, don’t worry if your table doesn’t look exactly like the one
shown here. The resulting markup is provided in Appendix A.

Figure 8-9. Practice row spans by writing the markup for this table.

Some hints:

 y Rows always span downward, so the
"oranges" cell is part of the first row

 y Cells that are spanned over do not
appear in the code

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation142

Table Accessibility

space In and Between Cells
By default, cells are sized just large enough to fit their contents, but often you’ll want
to add a little breathing room around tabular content (Figure 8-10). Because spacing
is a matter of presentation, it is a job for style sheets.

Cell padding is the space inside the cell, between the content and the edge of the
cell. To add cell padding, apply the CSS padding property to the td or th element.

Cell spacing, the area between cells, is a little more complicated. First, set the border-
collapse property for the table to separate, then use the border-spacing property
to specify the amount of space between borders. Unfortunately, this technique won’t
work in Internet Explorer 6, but hopefully IE6 usage will be inconsequential by the
time you’re reading this.

In the past, cell padding and spacing were handled by the cellpadding and
cellspacing attributes in the table element, respectively, but they have been made
obsolete in HTML5 due to their presentational nature.

By default, table cells expand just
enough to �t the contents.

Cell padding is the space between the
edge of the cell and its contents. Cell spacing is the space between cells.

Figure 8-10. Cell padding and cell spacing.

Table Accessibility
As a web designer, it is important that you always keep in mind how your
site’s content is going to be used by non-sighted visitors. It is especially chal-
lenging to make sense of tabular material using a screen reader, but there are
measures you can take to improve the experience and make your content
more understandable.

www.it-ebooks.info

http://www.it-ebooks.info/

Table Accessibility

Chapter 8, Table Markup 143

Describing table content
The first step is to simply provide a description of your table’s contents and
perhaps the way it is structured if it is out of the ordinary.

Use the caption element to give a table a title or brief description that dis-
plays next to the table. You can use it to describe the table’s contents or
provide hints on how it is structured. When used, the caption element must
be the first thing within the table element, as shown in this example that
adds a caption to the nutritional chart from earlier in the chapter.

<table>
 <caption>Nutritional Information (Calorie and Fat Content)</caption>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>

 …table continues…
</table>

The caption is displayed above the table by default, as shown in Figure 8-11,
although you can use a style sheet property (caption-side) to move it below
the table.

Figure 8-11. The table caption is displayed above the table by default.

For longer descriptions, you could consider putting the table in a figure
element and using the figcaption element for the description. The HTML5
specification has a number of suggestions for providing table descriptions,
which you can find at www.w3.org/TR/html5/tabular-data.html#table-
descriptions-techniques.

Connecting cells and headers
We discussed headers briefly as a straightforward method for improving
the accessibility of table content, but sometimes it may be difficult to know
which header applies to which cells. For example, headers may be at the left
or right edge of a row rather than at the top of a column. And although it
may be easy for sighted users to understand a table structure at a glance, for
users hearing the data as text, the overall organization is not as clear. HTML
4.01 introduced a few attributes that allow authors to explicitly associate
headers and their respective content.

n oT e

HTML 4.01 included a summary attribute
for the table element that was used for
providing long descriptions to assistive
devices while hiding them from visu-
al browsers. However, it was omitted
from HTML5 and will trigger validation
errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation144

Wrapping Up Tables

scope

The scope attribute associates a table header with the row, column,
group of rows (such as tbody), or column group in which it appears
using the values row, column, rowgroup, or colgroup, respectively. This
example uses the scope attribute to declare that a header cell applies to
the current row.

<tr>
 <th scope="row">Mars</th>
 <td>.95</td>
 <td>.62</td>
 <td>0</td>
</tr>

headers

For really complicated tables in which scope is not sufficient to associ-
ate a table data cell with its respective header (such as when the table
contains multiple spanned cells), the headers attribute is used in the td
element to explicitly tie it to a header’s id value. In this example, the cell
content “.38” is tied to the header “Diameter measured in earths”:

<th id="diameter">Diameter measured in earths</th>

…many other cells…
<td headers="diameter">.38</td>
…many other cells…

This section is obviously only the tip of the iceberg of table accessibility.
In-depth instruction on authoring accessible tables is beyond the scope of
this beginner book. If you’d like to learn more, I recommend “Creating
Accessible Tables” at WebAIM (www.webaim.org/techniques/tables) as an
excellent starting point.

Wrapping Up Tables
This chapter gave you a good overview of the components of HTML tables.
Exercise 8-4 puts most of what we covered together to give you a little more
practice at authoring tables.

After just a few exercises, you’re probably getting the sense that writing table
markup manually, although not impossible, gets tedious and complicated
quickly. Fortunately, web-authoring tools such as Dreamweaver provide
interfaces that make the process much easier and time-efficient. Still, you’ll
be glad that you have a solid understanding of table structure and terminol-
ogy, as well as the preferred methods for changing a table’s appearance.

www.it-ebooks.info

http://www.it-ebooks.info/

Wrapping Up Tables

Chapter 8, Table Markup 145

exercise 8-4 | The table challenge
Now it’s time to put together the table writing skills you’ve
acquired in this chapter. Your challenge is to write out the source
document for the table shown in Figure 8-12.

I’ll walk you through it one step at a time.

1. First, open a new document in your text editor and set up its
overall structure (html, head, title, and body elements). Save
the document as table.html in the directory of your choice.

2. Next, in order to make the boundaries of the cells and table
clearer when you check your work, I’m going to have you
add some simple style sheet rules to the document. Don’t
worry about understanding exactly what’s happening here
(although it’s fairly intuitive); just insert this style element in
the head of the document exactly as you see it here.

<head>
 <title>Table Challenge</title>
 <style type="text/css">
 td, th { border: 1px solid #CCC; }
 table {border: 1px solid black; }
 </style>
</head>

3. Now it’s time to start building the table. I usually start
by setting up the table and adding as many empty row
elements as I’ll need for the final table as placeholders, as
shown here (it should be clear that there are five rows in this
table).

<body>
<table>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
</table>
</body>

4. Start with the top row, and fill in the th and td elements from
left to right, including any row or column spans as necessary.
I’ll help with the first row.

The first cell (the one in the top left corner) spans down the
height of two rows, so it gets a rowspan attribute. I’ll use a th
here to keep it consistent with the rest of the row. This cell has
no content.

<table>
 <tr>
 <th rowspan="2"></th>
 </tr>

The cell in the second column of the first row spans over the
width of two columns, so it gets a colspan attribute:

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two

subheads</th>
 </tr>

The cell in the third column has been spanned over by the
colspan we just added, so we don’t need to include it in the
markup. The cell in the fourth column also spans down two
rows.

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two

subheads</th>
 <th rowspan="2">Header 3</th>
 </tr>

5. Now it’s your turn. Continue filling in the th and td elements
for the remaining four rows of the table. Here’s a hint: the first
and last cells in the second row have been spanned over.
Also, if it’s bold in the example, make it a header.

6. To complete the content, add the title over the table using
the caption element.

7. Finally, use the scope attribute to make sure that the Thing
A, Thing B, and Thing C headers are associated with their
respective rows.

8. Save your work and open the file in a browser. The table
should look just like the one on this page. If not, go back and
adjust your markup. If you’re stumped, the final markup for
this exercise is listed in Appendix A.

Figure 8-12. The table challenge.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation146

Test Yourself

Element Review: Tables
The following is a summary of the elements we covered in this chapter:

Element and attributes Description

table Establishes a table element

td Establishes a cell within a table row

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates the data cell with a header

th Table header associated with a row or column

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates a header with another header

scope="row|col|
rowgroup|colgroup"

Associates the header with a row, row group,
column, or column group

tr Establishes a row within a table

caption Gives the table a title that displays in the browser

col Declares a column

colgroup Declares a group of columns

tbody Identifies the table body row group

tfoot Identifies the table footer grow group

thead Identifies the table header row group

Test Yourself
The answers to these questions are
in Appendix A.

1. What are the parts (elements) of
a basic HTML table?

2. Why don’t professional web
designers use tables for layout
anymore?

3. When would you use the col
(column) element?

4. Find five errors in this table
markup.

<caption>Primetime Television
1965</caption>

<table>
 Thursday Night
 <tr></tr>
 <th>7:30</th>
 <th>8:00</th>
 <th>8:30</th>
 <tr>
 <td>Shindig</td>
 <td>Donna Reed Show</td>
 <td>Bewitched</td>
 <tr>
 <colspan>Laredo</colspan>
 <td>Daniel Boone</td>
 </tr>
</table>

www.it-ebooks.info

http://www.it-ebooks.info/

147

It didn’t take long for the web to shift from a network of pages to read to a
place where you went to get things done—making purchases, booking plane
tickets, signing petitions, searching a site, posting a tweet…the list goes on!
All of these interactions are handled by forms.

In fact, in response to this shift from page to application, HTML5 intro-
duced a bonanza of new form controls and attributes that make it easier for
users to fill out forms and for developers to create them. Tasks that have
traditionally relied on JavaScript may be handled by markup and native
browser behavior alone. HTML5 introduces a number of new form-related
elements, 13 new input types, and many new attributes (they are listed in
Table 9-1 at the end of this chapter). Some of these features are waiting for
browser implementation to catch up, so I will be sure to note which controls
may not be universally supported.

This chapter introduces web forms, how they work, and the markup used
to create them. I’ll also briefly discuss the importance of web form design.

How Forms Work
There are two parts to a working form. The first part is the form that you see
on the page itself that is created using HTML markup. Forms are made up
of buttons, input fields, and drop-down menus (collectively known as form
controls) used to collect information from the user. Forms may also contain
text and other elements.

The other component of a web form is an application or script on the server
that processes the information collected by the form and returns an appro-
priate response. It’s what makes the form work. In other words, posting an
HTML document with form elements isn’t enough. Web applications and
scripts require programming know-how that is beyond the scope of this
book, but the Getting Your Forms to Work sidebar later in this chapter pro-
vides some options for getting the scripts you need.

forms

CHAPTER 9

IN THIs CHAPTER

How forms work

The form element

POST versus GET

Variables and values

Form controls

Form accessibility features

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure148

How Forms Work

From data entry to response
If you are going to be creating web forms, it is beneficial to understand what
is happening behind the scenes. This example traces the steps of a transac-
tion using a simple form that gathers names and email addresses for a mail-
ing list; however, it is typical of the process for many forms.

1. Your visitor, let’s call her Sally, opens the page with a web form in the
browser window. The browser sees the form control elements in the
markup and renders them with the appropriate form controls on the
page, including two text entry fields and a submit button (shown in
Figure 9-1).

2. Sally would like to sign up for this mailing list, so she enters her name
and email address into the fields and submits the form by hitting the
“Submit” button.

3. The browser collects the information she entered, encodes it (see the
sidebar A Word About Encoding), and sends it to the web application
on the server.

A Word About
Encoding
Form data is encoded using the
same method used for URLs in which
spaces and other characters that are
not permitted are translated into
their hexadecimal equivalents. For
example, each space character in the
collected form data is represented by
the character string %20, and a slash
(/) character is replaced with %2F. You
don’t need to worry about this; the
browser handles it automatically.

4. The web application accepts the informa-
tion and processes it (that is, does what-
ever it is programmed to do with it). In this
example, the name and email address are
added to a database.

5. The web application also returns a
response. The kind of response sent back
depends on the content and purpose of the
form. Here, the response is a simple web
page that contains a thank you for signing
up for the mailing list. Other applications
might respond by reloading the HTML
form page with updated information, by
moving the user on to another related
form page, or by issuing an error message
if the form is not filled out correctly, to
name only a few examples.

6. The server sends the web application’s
response back to the browser where it
is displayed. Sally can see that the form
worked and that she has been added to the
mailing list.

Figure 9-1. What happens behind the
scenes when a web form is submitted

Name = Sally Strongarm
Email = strongarm@example.com

Response
(HTML)

Data

Web application

www.it-ebooks.info

http://www.it-ebooks.info/

The form Element

Chapter 9, Forms 149

The form Element
<form>...</form>
Interactive form

Forms are added to web pages using (no surprise here) the form element. The
form element is a container for all the content of the form, including some
number of form controls, such as text entry fields and buttons. It may also
contain block elements (h1, p, and lists, for example). However, it may not
contain another form element.

This sample source document contains a form similar to the one shown in
Figure 9-1:

<!DOCTYPE html>
<html>
<head>
 <title>Mailing List Signup</title>
 <meta charset="utf-8">
</head>
<body>
 <h1>Mailing List Signup</h1>

 <form action="/mailinglist.php" method="post">
 <fieldset>
 <legend>Join our email list</legend>
 <p>Get news about the band such as tour dates and special MP3
releases sent to your own in-box.</p>

 <label for="firstlast">Name:</label>
 <input type="text" name="username" id="firstlast">
 <label for="email">Email:</label>
 <input type="text" name="email" id="email">

 <input type="submit" value="Submit">
 </fieldset>
 </form>

</body>
</html>

In addition to being a container for form control elements, the form element
has some attributes that are necessary for interacting with the form-process-
ing program on the server. Let’s take a look at each.

The action attribute
The action attribute provides the location (URL) of the application or script
(sometimes called the action page) that will be used to process the form. The
action attribute in this example sends the data to a script called mailinglist.
php.

<form action="/mailinglist.php" method="post">...</form>

Be careful not to nest form elements
or allow them to overlap. A form
element must be closed before the
next one begins.

T i p

n oT e

It is current best practice to wrap form
controls in semantic HTML elements
such as lists or divs. Ordered lists, as
shown in this example, are a popular
solution, but know that there are often
default styles that need to be cleared
out before styling them, particularly on
mobile browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure150

The form Element

The .php suffix indicates that this form is processed by a script written in the
PHP scripting language, but web forms may be processed using one of the
following technologies:

•	 PHP (.php) is an open source scripting language most commonly used
with the Apache web server.

•	 Microsoft’s ASP.NET (Active Server Pages) (.asp) is a programming envi-
ronment for the Microsoft Internet Information Server (IIS).

•	 Ruby on Rails. Ruby is the programming language that is used with the
Rails platform. Many popular web applications are built with it.

•	 JavaServer Pages (.jsp) is a Java-based technology similar to ASP.

•	 Python is a popular scripting language for web and server applications.

There are other forms processing options that may have their own suffixes or
none at all (as is the case for the Ruby on Rails platform). Check with your
programmer, server administrator, or script documentation for the proper
name and location of the program to be provided by the action attribute.

Sometimes there is form-processing code such as PHP embedded right in
the HTML file. In that case, leave the action empty and the form will post
to the page itself.

The method attribute
The method attribute specifies how the information should be sent to the
server. Let’s use this data gathered from the sample form in Figure 9-1 as
an example.

username = Sally Strongarm
email = strongarm@example.com

When the browser encodes that information for its trip to the server, it looks
like this (see the earlier sidebar if you need a refresher on encoding):

username=Sally%20Strongarm&email=strongarm%40example.com

There are only two methods for sending this encoded data to the server:
POST or GET, indicated using the method attribute in the form element. The
method is optional and will default to GET if omitted. We’ll look at the dif-
ference between the two methods in the following sections. Our example
uses the POST method, as shown here:

<form action="/cgi-bin/mailinglist.pl" method="POST">...</form>

The POsT method
When the form’s method is set to POST, the browser sends a separate server
request containing some special headers followed by the data. Only the
server sees the content of this request, thus it is the best method for sending
secure information such as credit card or other personal information.

Getting Your Forms
to Work
If you aren’t a programmer, don’t
fret. You have a few options for
getting your forms operational.

Use hosting plan goodies
Many site hosting plans include
access to scripts for simple
functions such as mailing lists. More
advanced plans may even provide
everything you need to add a full
shopping cart system to your site
as part of your monthly hosting
fee. Documentation or a technical
support person should be available
to help you use them.

Hire a programmer
If you need a custom solution, you
may need to hire a programmer
who has server-side programming
skills. Tell your programmer what
you are looking to accomplish with
your form and he or she will suggest
a solution. Again, you need to make
sure you have permission to install
scripts on your server under your
current hosting plan, and that the
server supports the language you
choose.

www.it-ebooks.info

http://www.it-ebooks.info/

Variables and Content

Chapter 9, Forms 151

The POST method is also preferable for sending a lot of data, such as a
lengthy text entry, because there is no character limit as there is for GET.

The GET method
With the GET method, the encoded form data gets tacked right onto the
URL sent to the server. A question mark character separates the URL from
the following data, as shown here:

get http://www.bandname.com/cgi-bin/mailinglist.pl?name=Sally%20Strongar
m&email=strongarm%40example.com

The GET method is appropriate if you want users to be able to bookmark
the results of a form submission (such as a list of search results). Because the
content of the form is in plain sight, GET is not appropriate for forms with
private personal or financial information. In addition, GET may not be used
when the form is used to upload a file.

In this chapter, we’ll stick with the more prevalent POST method. Now that
we’ve gotten through the technical aspects of the form element, we can take
on the real meat of forms: form controls.

Variables and Content
Web forms use a variety of controls that allow users to enter information
or choose options. Control types include various text entry fields, buttons,
menus, and a few controls with special functions. They are added to the
document using a collection of form control elements that we’ll be examin-
ing one by one in the upcoming Great Form Control Roundup section.

As a web designer, it is important to be familiar with control options to make
your forms easy and intuitive to use. It is also useful to have an idea of what
form controls are doing behind the scenes.

The name attribute
The job of a form control is to collect one bit of information from a user.
In the form example a few pages back, text entry fields collect the visitor’s
name and email address. To use the technical term, “username” and “email”
are two variables collected by the form. The data entered by the user (“Sally
Strongarm” and “strongarm@example.com”) is the value or content of the
variable.

The name attribute provides the variable name for the control. In this exam-
ple, the text gathered by a textarea element is defined as the “comment”
variable:

<textarea name="comment" rows="4" cols="45" placeholder="Leave us a
comment."></textarea>

n oT e

POST and GET are not case-sensitive
and are commonly listed in all upper-
case by convention. In XHTML docu-
ments, however, the value of the method
attribute (post or get) must be provided
in all lowercase letters.

www.it-ebooks.info

http://www.bandname.com/cgi-bin/mailinglist.pl?name=Sally%20Strongarm&email=strongarm%40example.com
http://www.bandname.com/cgi-bin/mailinglist.pl?name=Sally%20Strongarm&email=strongarm%40example.com
http://www.it-ebooks.info/

Part II, HTML Markup for structure152

The Great Form Control Roundup

When a user enters a comment in the field (“This is the best band ever!”), it
would be passed to the server as a name/value (variable/content) pair like this:

comment=This%20is%20the%20best%20band%20ever%21

All form control elements must include a name attribute so the form-process-
ing application can sort the information. You may include a name attribute
for submit and reset button elements, but they are not required, because
they have special functions (submitting or resetting the form) not related to
data collection.

Naming your variables
You can’t just name controls willy-nilly. The web application that processes
the data is programmed to look for specific variable names. If you are design-
ing a form to work with a preexisting application or script, you need to find
out the specific variable names to use in the form so they are speaking the
same language. You can get the variable names from the developer you are
working with, your system administrator, or from the instructions provided
with a ready-to-use script on your server.

If the script or application will be created later, be sure to name your vari-
ables simply and descriptively and to document them well. In addition, each
variable must be named uniquely, that is, the same name may not be used
for two variables. You should also avoid putting character spaces in variable
names; use an underscore or hyphen instead.

We’ve covered the basics of the form element and how variables are named.
Now we can get to the real meat of form markup: the controls.

The Great Form Control Roundup
This is the fun part—playing with the markup that adds form controls to the
page. This section introduces the elements used to create:

•	 Text entry controls

•	 Specialized text entry controls

•	 Submit and reset buttons

•	 Radio and checkbox buttons

•	 Pull-down and scrolling menus

•	 File selection and upload control

•	 Hidden controls

•	 Dates and times (HTML5)

•	 Numerical controls (HTML5)

•	 Color picker control (HTML5)

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 153

We’ll pause along the way to allow you to try them out by constructing the
questionnaire form shown in Figure 9-2.

As you will see, the majority of controls are added to a form using the input
element. The functionality and appearance of the input element changes
based on the value of the type attribute in the tag. In HTML5, there are
twenty-three different types of input controls. We’ll take a look at them all.

Figure 9-2. The contest entry form we’ll be building in the exercises in this chapter.

Text entry controls
One of the most common tasks in a web form is to enter text information.
Which element you use depends on whether users are asked to enter a single
line of text (input) or multiple lines (textarea).

n oT e

The markup examples throughout this section include the label element, which
is used to improve accessibility. We will discuss label in more detail in the Form
Accessibility Features section later in this chapter, but in the meantime, I want you
to get used to seeing proper form markup.

n oT e

The attributes associated with each
input type are listed in Table 9-1 at the
end of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure154

The Great Form Control Roundup

single-line text field
One of the most straightforward form input types is the text entry field used
for entering a single word or line of text. In fact, it is the default input type,
which means it is what you’ll get if you forget to include the type attribute
or include an unrecognized value. Add a text input field to a form with
the input element with its type attribute set to text, as shown here and in
Figure 9-3.

<label>City <input type="text" name="city" id="form-city"
value="Your Hometown" maxlength="50"></label>

There are a few attributes in there I’d like to point out.

name

The name attribute is required for indicating the variable name.

value

The value attribute specifies default text that appears in the field when
the form is loaded. When you reset a form, it returns to this value.

maxlength

By default, users can type an unlimited number of characters in a text
field regardless of its size (the display scrolls to the right if the text
exceeds the character width of the box). You can set a maximum char-
acter limit using the maxlength attribute if the forms processing program
you are using requires it.

Multiline text entry field
At times, you’ll want your users to be able enter more than just one line of text.
For these instances, use the textarea element that is replaced by a multiline,
scrollable text entry box when displayed by the browser (Figure 9-3).

Text entry �eld

Multi-line text entry
with text content.

Multi-line text entry
with placeholder text.

Figure 9-3. Examples of the text entry control options for web forms.

<input type="text">
Single-line text entry control

<textarea>...</textarea>
Multiline text entry control

n oT e

The specific rendering style of form
controls varies by operating system and
browser version.

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 155

Unlike the empty input element, you can put content between the opening
and closing tags in the textarea element. The content of the textarea ele-
ment will show up in the text box when the form is displayed in the browser.
It will also get sent to the server when the form is submitted, so carefully
consider what goes there. It is not uncommon for developers to put nothing
between the opening and closing tags, and provide a hint of what should
go there with a title or placeholder attribute instead. The new HTML5
placeholder attribute can be used with textarea and other text-based input
types and is used to provide a short hint of how to fill in the field. It is not
supported on Android, older versions of Firefox (versions earlier than 3.6),
or IE as of this writing.

<p><label>Official contest entry

Tell us why you love the band. Five winners will get backstage
passes!

<textarea name="contest_entry" rows="5" cols="50">The band is totally
awesome!</textarea></label></p>

<p>Official contest entry:

Tell us why you love the band. Five winners will get backstage
passes!

<textarea name="contest_entry" placeholder="50 words or less">
</textarea>
</p>

The rows and cols attributes are a way of specifying the size of the textarea
using markup, but it is more commonly sized with CSS. rows specifies the
number of lines the text area should display, and cols specifies the width in
number of characters. Scrollbars will be provided if the user types more text
than fits in the allotted space.

There are also a few attributes not shown in the example. The wrap attribute
specifies whether the text should keep its line breaks when submitted. A
value of soft (the default) does not preserve line breaks, and hard does. The
maxlength attribute (new in HTML5) sets a limit on the number of characters
that can by typed into the field.

specialized text entry fields
In addition to the generic single-line text entry, there are a number of input
types for entering specific types of information such as passwords, search
terms, email addresses, telephone numbers, and URLS.

Password entry field
<input type="password">
Password text control

A password field works just like a text entry field, except the characters are
obscured	 from	 view	 using	 asterisk	 (*)	 or	 bullet	 (•)	 characters,	 or	 another	
character determined by the browser.

disabled and
readonly
The disabled and readonly
attributes can be added to any form
control element to prevent users
from selecting them. When a form
element is disabled, it cannot be
selected. Visual browsers may render
the control as grayed-out by default
(which you can change with CSS, of
course). The disabled state can only
be changed with a script. This is a
useful attribute for restricting access
to some form fields based on data
entered earlier in the form.

The readonly attribute prevents the
user from changing the value of the
form control (although it can be
selected). This enables developers to
use scripts to set values for controls
contingent on other data entered
earlier in the form. Inputs that
are readonly should have strong
visual cues that they are somehow
different than other inputs, or they
could be confusing to users who are
trying to change their values.

wa R n i n G

iOS ignores disabled on option
elements as of this writing (iOS 5
and earlier).

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure156

The Great Form Control Roundup

It’s important to note that although the characters entered in the password
field are not visible to casual onlookers, the form does not encrypt the infor-
mation, so it should not be considered a real security measure.

Here is an example of the markup for a password field. Figure 9-4 shows
how it might look after the user enters a password in the field.

<label for="form-pswd">Log in:</label>

 <input type="password" name="pswd" maxlength="8" id="form-pswd">

Figure 9-4. Passwords are converted to bullets in the browser display.

HTML5 text inputs
Until HTML5, the only way to collect email addresses, telephone numbers,
URLs, or search terms was to insert a generic text input field. In HTML5,
the email, tel, url, and search input types give the browser a heads-up as
to what type of information to expect in the field. These new input types
use the same attributes as the generic text input type described earlier (name,
maxlength, size, and value), as well as a number of new HTML5 attributes.

All of these input types are typically displayed as single-line text inputs. But
browsers that support them can do some interesting things with the extra
semantic information. For example, Safari on iOS uses the input type to
provide a keyboard well-suited to the entry task, such as the keyboard fea-
turing a “Search” button for the search input type or a “.com” button when
the input type is set to url (Figure 9-5). Browsers usually add a one-click
“clear field” icon (usually a little X) in search fields. A supporting browser
could check the user’s input to see that it is valid, such as making sure text
entered in an email input follows standard email address structure (in the
past, you needed JavaScript for validation). For example, the Opera (Figure
9-6) and Chrome browsers display a warning if the input does not match the
expected format.

Not all browsers support the new HTML5 input types or support them
in the same way, but the good news is that if the type isn’t recognized,
the default generic text input is displayed instead, which works perfectly
fine. There is no reason not to start using them right away as a progressive
enhancement, even if you can’t reap the benefits of easy user input and
browser (client-side) validation.

<input type="search">
Search field

<input type="email">
Email address

<input type="tel">
Telephone number

<input type="url">
Location (URL)

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 157

<input type="email"> <input type="search"> <input type="tel"> <input type="url">

Figure 9-5. Safari on iOS provides custom keyboards based on the input type.

Figure 9-6. Opera displays a warning when input does not match the expected email
format as part of its client-side validation support.

The datalist Element
The datalist element (new in HTML5) allows the author to
provide a drop-down menu of suggested values for any type
of text input. It gives the user some shortcuts to select from,
but if none are selected, the user can still type in her own text.
Within the datalist element, suggested values are marked up
as option elements. Use the list attribute in the input element
to associate it with the id of its respective datalist.

In the following example (Figure 9-7), a datalist suggests
several education level options for a text input.

<p>Education completed: <input type="text"
list="edulevel" name="education">

<datalist id="edulevel">
 <option value="High School">
 <option value="Bachelors Degree">
 <option value="Masters Degree">
 <option value="PhD">
</datalist>

As of this writing, only the Opera browser has implemented the
datalist element. Other browsers will ignore it and present a
simple text input, which is a perfectly acceptable fallback. You
could also use JavaScript to create datalist functionality (i.e., a
polyfill).

Figure 9-7. A datalist creates a pop-up menu of suggested
values for a text entry field.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure158

The Great Form Control Roundup

submit and reset buttons
There are several different kinds of buttons that can be added to web forms.
The most fundamental is the submit button. When clicked or tapped, the
submit button immediately sends the collected form data to the server for
processing. A reset button returns the form controls to the state they were
in when the form initially loaded. In other words, resetting the form doesn’t
simply clear all the fields.

Both submit and reset buttons are added using the input element. As men-
tioned earlier, because these buttons have specific functions that do not
include the entry of data, they are the only form control elements that do
not require the name attribute, although it is OK to add one if you need it.

Submit and reset buttons are straightforward to use. Just place them in
the appropriate place in the form, which in most cases is at the very end.
By default, the submit button displays with the label “Submit” or “Submit
Query” and the reset button is labeled “Reset.” Change the text on the but-
ton using the value attribute, as shown in the reset button in this example
(Figure 9-8).

<p><input type="submit"> <input type="reset" value="Start over"></p>

Figure 9-8. Submit and reset buttons.

The reset button is not used in forms as commonly as it used to be. That iss
because in contemporary form development, we use JavaScript to check the
validity of form inputs along the way, so the users get feedback as they go
along. With thoughtful design and assistance, fewer users should get to the
end of the form and need to reset the whole thing. Still, it is a good function
to be aware of.

At this point, you know enough about form markup to start building the
questionnaire shown in Figure 9-2. Exercise 9-1 walks you through the first
steps.

<input type="submit">
Submits the form data to the server

<input type="reset">
Resets the form controls to their default settings

A Few More Buttons
There are a handful of custom button
elements that are a little off the
beaten path for beginners, but in the
interest of thoroughness, here they
are tucked off in a sidebar.

Image buttons
<input type="image">

This type of input control allows you
to replace the submit button with
an image of your choice. The image
will appear flat, not like a 3-D button.
Unfortunately, this type of button
has accessibility issues, so be sure to
include a carefully chosen alt value.

Custom input button
<input type="button">

Setting the type of the input element
to “button” creates a button that can
be customized with JavaScript. It has
no predefined function on its own,
unlike submit and reset buttons.

The button element
<button>...</button>

The button element is a flexible
element for creating custom buttons
similar to those created with the
input element. The content of the
button element (text and/or images)
is what gets displayed on the button.

For more information on what you
can do with the button element, read
“Push My Button” by Aaron Gustafson
at digital-web.com/articles/push_
my_button.

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 159

exercise 9-1 | starting the contest form
Here’s the scenario. You are the web designer in charge of creating the entry form for
the Forcefield Sneakers “Pimp My Shoes!” Contest. The copy editor has handed you a
sketch (Figure 9-9) of the form’s content, complete with notes of how some controls
should work. There are sticky notes from the programmer with information about the
script and variable names you need to use.

Your challenge is to turn the sketch into a functional online form. I’ve given you a
head start by creating a bare-bones document containing the text content and some
minimal markup and styles. This document, contest_entry.html, is available online at
www.learningwebdesign.com/4e/materials. The source for the entire finished form is
provided in Appendix A if you want to check your work.

“Pimp My Shoes” Contest Entry Form

Want to trade in your old sneakers for a custom pair of Forcefields?
Make a case for why your shoes have got to go and you may be
one of ten lucky winners.

Contest Entry Information

Name:

Email :

Phone:

My shoes are SO old…

 No more than 300 characters long

Design your custom Forcefields:
Custom shoe design

Color (choose one):
() Red
() Blue
() Black
() Silver

Features (choose as many as you want):
 [] Sparkley laces

[X] Metallic logo
 [] Light-up heels
 [] MP3-enabled
Size
(Sizes reflect standard men’s sizing):

Pimp My Shoes! Reset

5

This form should be sent to
http://www.learningwebdesign.com/

Add placeholder text

contest.phpvia the POST method.Name the text fields “name”,’ “email”,

“phone”, and “story”, respectively.

Change the Submit button text

me the controls in this section "color",

"features[]", and "size", respectively. Note

that the brackets ([]) after "features"

are required in order for the script t

process it correctly.

Make sure metallic logo
is selected by default

Pull-down menu with
sizes 5 through 13

Figure 9-9. A sketch of the contest entry form.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure160

The Great Form Control Roundup

1. Open contest_entry.html in a text editor.

2. The first thing we’ll do is put everything after the intro paragraph into a form
element. The programmer has left a note specifying the action and the method to
use for this form. The resulting form element should look like this:

<form action="http://www.learningwebdesign.com/contest.php"
method="post">
...
</form>

3. In this exercise, we’ll work on the “Contest Entry Information” section of the
form. Start with the first three short text entry form controls that are marked up
appropriately as an unordered list. Here’s the first one; you insert the other two.

Name: <input type="text" name="username">

Hints: Choose the most appropriate input type for each entry field. Be sure to
name the input elements as specified in the programmer’s note.

4. Now add a multiline text area for the shoe description on a new line. Because we
aren’t writing a style sheet for this form, use markup to make it four rows long and
60 characters wide (in the real world, CSS is preferable because it gives you more
fine-tuned control).

Once it looks right, take it for a spin by entering some information and submitting the
form. You should get a response like the one shown in Figure 9-10 (yes, contact.php
actually works, but sorry, the contest is make-believe.)

My shoes are SO old...

<textarea name="story" rows="4" cols="60"
maxlength="300" placeholder="No more than 300
characters long"></textarea>

5. We’ll skip the rest of the form for now until we get a few
more controls under our belt, but we can add the submit
and reset buttons at the end, just before the </form>
tag. Note that we need to change the text on the submit
button.

<p><input type="submit" value="Pimp my shoes!">
<input type="reset"></p>
</form>

6. Now, save the document and open it in a browser. The
parts that are finished should generally match Figure 9-3. If
it doesn’t, then you have some more work to do.

Figure 9-10. You should see a response
page like this if your form is working.

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 161

Radio and checkbox buttons
Both checkbox and radio buttons make it simple for your visitors to choose
from a number of provided options. They are similar in that they function
like little on/off switches that can be toggled by the user and are added using
the input element. They serve distinct functions, however.

A form control made up of a collection of radio buttons is appropriate when
only one option from the group is permitted—in other words, when the
selections are mutually exclusive (such as Yes or No, or Male or Female).
When one radio button is “on,” all of the others must be “off,” sort of the way
buttons used to work on old radios: press one button in and the rest pop out.

When checkboxes are grouped together, however, it is possible to select as
many or as few from the group as desired. This makes them the right choice
for lists in which more than one selection is okay.

Radio buttons
Radio buttons are added to a form using the input element with the type
attribute set to radio. Here is the syntax for a minimal radio button:

<input type="radio" name="variable" value="value">

The name attribute is required and plays an important role in binding mul-
tiple radio inputs into set. When you give a number of radio button inputs
the same name value (age in the following example), they create a group of
mutually exclusive options.

In this example, radio buttons are used as an interface for users to enter their
age group (a person can’t belong to more than one age group, so radio but-
tons are the right choice). Figure 9-11 shows how radio buttons are rendered
in the browser.

<p>How old are you?</p>

 <input type="radio" name="age" value="under24" checked> under
24
 <input type="radio" name="age" value="25-34"> 25 to 34
 <input type="radio" name="age" value="35-44"> 35 to 44
 <input type="radio" name="age" value="over45"> 45+

Notice that all of the input elements have the same variable name (“age”),
but their values are different. Because these are radio buttons, only one but-
ton can be checked at a time, and therefore, only one value will be sent to
the server for processing when the form is submitted.

n oT e

I have omitted the fieldset and label
elements from the code examples for
radio buttons, checkboxes, and menus
in order to keep the markup structure
as simple and clear as possible. In the
upcoming Form Accessibility Features
section, you will learn why it is impor-
tant to include them in your markup for
all form elements.

<input type="radio">
Radio button

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure162

The Great Form Control Roundup

Radio buttons Checkbox buttons

Figure 9-11. Radio buttons (left) are appropriate when only one selection is permitted.
Checkboxes (right) are best when users may choose any number of choices, from none to
all of them.

You can decide which button is checked when the form loads by adding the
checked attribute to the input element. In this example, the button next to
“under 24” will be checked by default (see the note).

Checkbox buttons
<input type="checkbox">
Checkbox button

Checkboxes are added using the input element with its type set to checkbox.
As with radio buttons, you create groups of checkboxes by assigning them
the same name value. The difference, as we’ve already noted, is that more
than one checkbox may be checked at a time. The value of every checked
button will be sent to the server when the form is submitted. Here is an
example of a group of checkbox buttons used to indicate musical interests.
Figure 9-11 shows how they look in the browser:

<p>What type of music do you listen to?</p>

 <input type="checkbox" name="genre" value="punk" checked> Punk
rock
 <input type="checkbox" name="genre" value="indie" checked> Indie
rock
 <input type="checkbox" name="genre" value="hiphop"> Hip Hop
 <input type="checkbox" name="genre" value="rockabilly">
Rockabilly

Checkboxes don’t necessarily need to be used in groups, of course. In this
example, a single checkbox is used to allow visitors to opt in for special
promotions. The value of the control will be passed along to the server only
if the user checks the box.

<p><input type="checkbox" name="OptIn" value="yes"> Yes, send me news
and special promotions by email.</p>

In Exercise 9-2, you’ll get a chance to add both radio and checkbox buttons
to the contest entry form.

n oT e

XHTML syntax, the value of the
checked attribute must be explicitly set
to checked, as shown in the example.

<input type="radio" name="foo"
checked="checked" />

But in HTML syntax, you don’t need
to write out the value for the checked
attribute. It can be minimized, as shown
here:

<input type="radio" name="foo"
checked >

exercise 9-2 | Adding
radio buttons and
checkboxes
The next two questions in the
sneaker contest entry form use radio
buttons and checkboxes for selecting
options. Open the contest_entry.html
document and follow these steps.

1. In the Custom Shoe Design
section, there are lists of color and
feature options. The Color options
should be radio buttons because
shoes can be only one color.
Insert a radio button before each
option. Follow this example for
the remaining color options.

<input type="radio"
name="color" value="red">
Red

2. Mark up the Features options as
you did the Color options, but
this time, the type should be
checkbox. Be sure the variable
name for each is features[],
and that the metallic logo option
is preselected, as noted on the
sketch.

3. Save the document and check
your work by opening it in a
browser to make sure it looks
right, then submit the form
to make sure it’s functioning
properly.

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 163

Menus
Another way to provide a list of choices is to put them in a drop-down or
scrolling menu. Menus tend to be more compact than groups of buttons and
checkboxes.

You add both drop-down and scrolling menus to a form with the select
element. Whether the menu pulls down or scrolls is the result of how you
specify its size and whether you allow more than one option to be selected.
Let’s take a look at both menu types.

Drop-down menus
The select element displays as a drop-down menu (also called a pull-down
menu) by default when no size is specified or if the size attribute is set to
1. In pull-down menus, only one item may be selected. Here’s an example
(shown in Figure 9-12):

<p>What is your favorite 80s band?
<select name="EightiesFave">
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option>Tears for Fears</option>
 <option>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>
</p>

Figure 9-12. Pull-down menus pop open when the user clicks on the arrow or bar.

You can see that the select element is just a container for a number of
option elements. The content of the chosen option element is what gets
passed to the web application when the form is submitted. If for some rea-
son you want to send a different value than what appears in the menu, use
the value attribute to provide an overriding value. For example, if someone
selects “Everything But the Girl” from the sample menu, the form submits
the value “EBTG” for the “EightiesFave” variable. For the others, the con-
tent between the option tags will be sent as the value.

You will make a menu like this one for selecting a shoe size in Exercise 9-3.

scrolling menus
To make the menu display as a scrolling list, simply specify the number of
lines you’d like to be visible using the size attribute. This example menu has

<select>...</select>
Menu control

<option>...</option>
An option within a menu

<optgroup>...</optgroup>
A logical grouping of options within a menu

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure164

The Great Form Control Roundup

the same options as the previous one, except it has been set to display as a
scrolling list that is six lines tall (Figure 9-13).

Figure 9-13. A scrolling menu with multiple options selected.

<p>What 80s bands did you listen to?
<select name="EightiesBands" size="6" multiple>
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option selected>Tears for Fears</option>
 <option selected>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>
</p>

You may notice a few new attributes tucked in there. The multiple attribute
allows users to make more than one selection from the scrolling list. Note
that pull-down menus do not allow multiple selections; when the browser
detects the multiple attribute, it displays a small scrolling menu automati-
cally by default.

Use the selected attribute in an option element to make it the default value
for the menu control. Selected options are highlighted when the form loads.
The selected attribute can be used with pull-down menus as well.

Grouping menu options
You can use the optgroup element to create conceptual groups of options.
The required label attribute in the optgroup element provides the heading
for the group. Figure 9-14 shows how option groups are rendered in modern
browsers.

<select name="icecream" size="7" multiple>
 <optgroup label="traditional">
 <option>vanilla</option>
 <option>chocolate</option>
 </optgroup>
 <optgroup label="fancy">
 <option>Super praline</option>
 <option>Nut surprise</option>
 <option>Candy corn</option>
 </optgroup>
</select>

n oT e

The label attribute in the option element
is not the same as the label element used
to improve accessibility (discussed later
in this chapter).

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 165

Figure 9-14. Option groups as rendered in a modern browser.

exercise 9-3 | Adding a menu
The only other control that needs to be added to the contest entry is a pull-down
menu for selecting a shoe size.

1. Insert a select menu element with the shoe sizes (5 to 13).

<p>Size (sizes reflect men's sizing):
 <select name="size" size="1">
 <option>5</option>
 ...insert more options here...
 </select>
</p>

2. Save the document and check it in a browser. You can submit the form, too, to be
sure that it’s working. You should get the Thank You response page listing all of the
information you entered in the form.

Congratulations! You’ve built your first working web form. In Exercise 9-4, we’ll add
markup that makes it more accessible to assistive devices. But first, we have a few
more control types to cover.

File selection control
Web forms can collect more than just data. They can also be used to trans-
mit external documents from a user’s hard drive. For example, a printing
company could use a web form to upload artwork for a business card order.
A magazine could use a form on their site to collect digital photos for a photo
contest.

The file selection control makes it possible for users to select a document
from the hard drive to be submitted with the form data. It is added to the
form using our old friend the input element with its type set to file.

The markup sample here and Figure 9-15 show a file selection control used
for photo submissions.

<form action="/client.php" method="POST" enctype="multipart/form-data">
 <label>Send a photo to be used as your online icon
 (optional)

 <input type="file" name="photo" size="28"><label>
</form>

<input type="file">
File selection field

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure166

The Great Form Control Roundup

The file upload widget varies by browser and operating system. It may be
a text field with a button to browse the hard drive, as Firefox does (Figure
9-15, top) or it might be just a button, which is how Chrome displays it
(bottom).

It is important to note that when a form contains a file selection input
element, you must specify the encoding type (enctype) of the form as mul-
tipart/form-data and use the POST method. The size attribute in this
example sets the character width of the text field (although it could also be
controlled with a CSS rule) if the browser displays one.

File input (Firefox)

File input (Chrome)

Figure 9-15. A file selection form field.

Hidden controls
There may be times when you need to send information to the form process-
ing application that does not come from the user. In these instances, you can
use a hidden form control that sends data when the form is submitted, but
is not visible when the form is displayed in a browser.

Hidden controls are added using the input element with the type set to hid-
den. Its sole purpose is to pass a name/value pair to the server when the form
is submitted. In this example, a hidden form element is used to provide the
location of the appropriate thank-you document to display when the trans-
action is complete.

<input type="hidden" name="success-link" value="http://www.example.com/
littlechair_thankyou.html">

I’ve worked with forms that have had dozens of hidden controls in the form
element before getting to the parts that the user actually fills out. This is
the kind of information you get from the application programmer, system
administrator, or whoever is helping you get your forms processed. If you
are using a canned script, be sure to check the accompanying instructions to
see if any hidden form variables are required.

<input type="hidden">
Hidden control field

wa R n i n G

It is possible for users to access and
manipulate hidden form controls. If
you should become a professional web
developer, you will learn to program
defensively for this sort of thing.

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 167

Date and time controls (HTML5)
If you’ve ever booked a hotel or a flight online, you’ve no doubt used a little
calendar widget for choosing the date. Chances are that little calendar was
created using JavaScript. HTML5 introduced six new input types that make
date and time selection widgets part of a browser’s standard built-in display
capabilities (just as they can display checkboxes, pop-up menus, and other
widgets today). The date and time pickers are implemented on only a few
browsers as of this writing, such as Opera, shown in Figure 9-16, but on
non-supporting browsers, the date and time input types display as a per-
fectly usable text entry field instead.

<input type="date"> <input type="time"> <input type="datetime">

<input type="week"><input type="month"><input type="datetime-local">

Figure 9-16. Date and time picker inputs in (Opera 11 on Mac OS X).

The new date- and time-related input types are as follows:

<input type="date" name="name" value="2004-01-14">

Creates a date input control, such as a pop-up calendar, for specifying a
date (year, month, day). The initial value must be provided in ISO date
format (YYYY-MM-DD).

<input type="time" name="name" value="03:13:00">

Creates a time input control for specifying a time (hour, minute, seconds,
fractional sections) with no time zone indicated. The value is provided
as hh:mm:ss.

<input type="date">
Date input control

<input type="time">
Time input control

<input type="datetime">
Date/time control with time zone

<input type="datetime-local">
Date/time control with no time zone

<input type="month">
Specifies a month in a year

<input type="week">
Specifies a particular week in a year

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure168

The Great Form Control Roundup

<input type="datetime" name="name" value="2004-01-14T03:13:00-5:00">

Creates a combined date/time input control that includes time zone
information. The value is an ISO-formatted date and time with time zone
relative to GMT, as we saw for the time element in Chapter 5 (YYYY-MM-
DDThh:mm:ssTZD).

<input type="datetime-local" name="name" value="2004-01-14T03:13:00">

Creates a combined date/time input control with no time zone informa-
tion (YYYY-MM-DDThh:mm:ss).

<input type="month" name="name" value="2004-01">

Creates a date input control specifying a particular month in a year
(YYYY-MM).

<input type="week" name="name" value="2004-W2">

Creates a date input control for specifying a particular week in a year
using an ISO week numbering format (YYYY-W#).

Numerical inputs (HTML5)
The number and range input types collect numerical data. For the number
input, the browser may supply a spinner widget for selecting a specific
numerical value (a text input may display in user agents that don’t sup-
port the input type). The range input is typically displayed as a slider
(Figure 9-17) that allows the user to select a value within a specified range.

<label>Number of guests <input type="number" name="guests" min="1"
max="6"></label>

<label>Satisfaction (0 to 10) <input type="range" name="satis" min="0"
max="10" step="1"></label>

<input type="number">

<input type="range">

Figure 9-17. The number and range HTML5 input types (in Opera 11 on Mac OS X).

<input type="number">
Number input

<input type="range">
Slider input

www.it-ebooks.info

http://www.it-ebooks.info/

The Great Form Control Roundup

Chapter 9, Forms 169

Both the number and range input types accept the min and max attributes for
specifying the minimum and maximum values allowed for the input (again,
the browser could check that the user input complies with the constraint).
Both min and max are optional, and you can also set one without the other.

The step attribute allows developers to specify the acceptable increments for
numerical input. The default is 1. A value of .5 would permit values 1, 1.5,
2, 2.5, etc.; a value of 100 would permit 100, 200, 300, and so on. You can
also set the step attribute to any to explicitly accept any value increment.

Again, browsers that don’t support these new input types display a standard
text input field instead, which is a fine fallback.

Color selector (HTML5)
The intent of the color control type is to create a pop-up color picker for
visually selecting a color value similar to those used in operating systems
or image-editing programs. Values are provided in hexadecimal RGB values
(#RRGGBB). Figure 9-18 shows the color picker widget in Opera 11. Non-
supporting browsers display the default text input instead.

<label>Your favorite color <input type="color" name="favorite"></label>

Figure 9-18. The color input type (in Opera 11 on Mac OS X).

That wraps up the form control roundup. Learning how to insert form
controls is one part of the forms production process, but any web developer
worth her salt will take the time to make sure the form is as accessible as
possible. Fortunately, there are a few things we can do in markup to describe
the form’s structure.

<input type="color">
Color picker

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure170

The Great Form Control Roundup

A Few More HTML5 Form Elements
For the sake of completeness, let’s look at the remaining form elements that are new
in HTML5. As of this writing, they are poorly supported, and are somewhat esoteric
anyway, so you may wait a while to add these to your HTML toolbox. We’ve already
covered the datalist element for providing suggested values for text inputs. HTML5
also introduced the following elements:

progress

<progress>…</progress>
Indicates the state of an ongoing process

The progress element gives users feedback on the state of an ongoing process, such
as a file download. It can have a specific end value (provided with the max attribute)
or just indicate that something is happening (such as waiting for a server to respond).

Percent downloaded: <progress max="100" name="fave">0</progress>

meter

<meter>…</meter>
Indicates the state of an ongoing process

meter is similar to progress, but it always represents a measurement within a known
range of values (also known as a gauge). It has a number of attributes: min and max
indicate the highest and lowest values for the range; low and high could be used to
trigger warnings at undesirable levels; and optimum specifies a preferred value. The
values would most likely be updated with JavaScript dynamically during the process.

<meter min="0" max="100" name="download">50%</meter>

output

<output>…</output>
Calculated output value

Simply put, the output element provides a way to indicate the results of a calculation
by a script or program and associate it with inputs that affected the calculation.

keygen

<keygen>
Key pair generator

The keygen element represents a control for making a key pair (used to ensure
privacy). When the form is submitted, the private key is stored locally, and the public
key is packaged and sent to the server. Don’t worry; I’m a little foggy on what this
all means, too. You can read about public-key cryptography (en.wikipedia.org/wiki/
Public-key_cryptography) and explain it to me when you figure it out.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Accessibility Features

Chapter 9, Forms 171

Form Accessibility Features
It is essential to consider how users without the benefit of visual browsers
will be able to understand and navigate through your web forms. The label,
fieldset, and legend form elements improve accessibility by making the
semantic connections between the components of a form clear. The resulting
markup is not only more semantically rich, but there are also more elements
available to act as “hooks” for style sheet rules. Everybody wins!

Labels
Although we may see the label “Address” right next to a text field for enter-
ing an address in a visual browser, in the source, the label and field input
may be separated. The label element associates descriptive text with its
respective form field. This provides important context for users with speech-
based browsers.

Each label element is associated with exactly one form control. There are
two ways to use it. One method, called implicit association, nests the control
and its description within a label element. In the following example, labels
are assigned to individual checkboxes and their related text descriptions. (By
the way, this is the way to label radio buttons and checkboxes. You can’t
assign a label to the entire group.)

 <label><input type="checkbox" name="genre" value="punk"> Punk
rock</label>
 <label><input type="checkbox" name="genre" value="indie"> Indie
rock</label>
 <label><input type="checkbox" name="genre" value="hiphop"> Hip
Hop</label>
 <label><input type="checkbox" name="genre" value="rockabilly">
Rockabilly</label>

The other method, called explicit association, matches the label with the
control’s id reference. The for attribute says which control the label is for.
This approach is useful when the control is not directly next to its descriptive
text in the source. It also offers the potential advantage of keeping the label
and the control as two distinct elements, which may come in handy when
aligning them with style sheets.

<label for="form-login-username">Login account</label>
<input type="text" name="login" id="form-login-username">

<label for="form-login-password">Password</label>
<input type="password" name="password" id="form-login-password">

Another advantage to using labels is that users can click or tap anywhere on
them to select the form element. Users with touch devices will appreciate the
larger tap target.

wa R n i n G

iOS devices as of this writing do not
make implicit labels clickable, so that
behavior needs to be created with
JavaScript. I know we haven’t done any
JavaScript yet, but if you are wondering,
the fix looks like this:

document.getElementsByTagName
('label').setAttribute
('onclick','');

To keep form-related ids distinct
from other ids on the page, consider
prefacing them with “form-” as shown
in the examples.

Another technique for keeping forms
organized is to give the form element
an ID name and include it as a prefix
in the IDs for the controls it contains
as follows:

<form id="form-login">

<input id="form-login-
username">

<input id="form-login-
password">

T i p

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure172

Form Accessibility Features

fieldset and legend
The fieldset element indicates a logical group of form controls. A fieldset
may also include a legend element that provides a caption for the enclosed
fields.

Figure 9-19 shows the default rendering of the following example, but you
could use style sheets to change the way the fieldset and legend appear.

<fieldset>
 <legend>Mailing List Sign-up</legend>

 <label>Add me to your mailing list <input type="radio"
 name="list" value="yes" checked="checked"></label>
 <label>No thanks <input type="radio" name="list" value="no">
 </label>

</fieldset>

<fieldset>
 <legend>Customer Information</legend>

 <label>Full name: <input type="text" name="username"></label></
li>
 <label>Email: <input type="text" name="email"></label>
 <label>State: <input type="text" name="state"></label>

</fieldset>

Figure 9-19. The default rendering of fieldsets and legends.

wa R n i n G

Fieldsets and legends tend to throw some
curveballs when it comes to styling. For
example, background colors in fieldsets
are handled differently from browser
to browser. Legends are unique in that
their text doesn’t wrap. The solution is
to put a span or b element in them and
control presentation of the contained
element without sacrificing accessibility.
Be sure to do lots of testing if you style
these form elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Layout and Design

Chapter 9, Forms 173

exercise 9-4 | labels and fieldsets
Our contest form is working, but we need to label it
appropriately and create some fieldsets to make it more usable
on assistive devices. Once again, open the contest_entry.html
document and follow these steps.

I like to start with the broad strokes and fill in details later, so
we’ll begin this exercise by organizing the form controls into
fieldsets, and then we’ll do all the labeling. You could do it the
other way around, and ideally, you’d just mark up the labels and
fieldsets as you go along instead of adding them all later.

1. The “Contest Entry Information” at the top of the form
is definitely conceptually related, so let’s wrap it all in a
fieldset element. Change the markup of the section title
from a paragraph (p) to a legend for the fieldset.

<fieldset>
 <legend>Contest Entry Information</legend>

 Name: <input type="text"
name="username">
 …

</fieldset>

2. Next, group the Color, Features, and Size questions in a big
fieldset with the legend “Custom Shoe Design” (the text is
there; you just need to change it from a p to a legend).

<h2>Design your custom Forcefields:</h2>
<fieldset>
<legend>Custom Shoe Design</legend>
 Color…
 Features…
 Size…
</fieldset>

3. Create another fieldset just for the Color options, again
changing the description in a paragraph to a legend. Do
the same for the Features and Size sections. In the end,
you will have three fieldsets contained within the larger
“Custom Shoe Design” fieldset. When you are done, save
your document and open it in a browser. It should now look
very close to the final form shown in Figure 9-2, given the
expected browser differences.

<fieldset>
<legend>Color (choose one):</legend>
 …
</fieldset>

4. OK, now let’s get some labels in there. In the Contest Entry
Information fieldset, explicitly tie the label to the text input
using the for/id label method. I’ve done the first one for you;
you do the other three.

<label for="form-name">Name:</label> <input
type="text" name="username" id="form-name">

5. For the radio and checkbox buttons, wrap the label element
around the input and its value label. In this way, the button
will be selected when the user clicks or taps anywhere inside
the label element. Here is the first one; you do the other
seven.

<label><input type="radio" name="color"
value="red"> Red</label>

Save your document, and you’re done! Labels don’t have
any effect on how the form looks by default, but you can
feel good about the added semantic value you’ve added
and maybe even use them to apply styles at another time.

Form Layout and Design
I can’t close this chapter without saying a few words about form design, even
though this chapter is about markup, not presentation.

Usable forms
A poorly designed form can ruin a user’s experience on your site and nega-
tively impact your business goals. Badly designed forms mean lost custom-
ers, so it is critical to get it right—both on the desktop and for small-screen
devices with their special requirements. You want the path to a purchase or
other action to be as frictionless as possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure174

Form Layout and Design

The topic of good web form design is a rich one that could fill a book in
itself. In fact, there is such a book: Web Form Design (Rosenfeld Media,
2008) by web form expert Luke Wroblewski, and I recommend it highly.
Luke’s subsequent book, Mobile First (A Book Apart, 2011), includes tips for
how to format forms in a mobile context. You can browse over a hundred
articles about forms on his site here: www.lukew.com/ff?tag=forms.

Here I’ll offer just a very small sampling of tips from Web Form Design to get
you started, but the whole book is worth a read.

Avoid unnecessary questions.

Help your users get through your form easily as possible by not includ-
ing questions that are not absolutely necessary to the task at hand. Extra
questions, in addition to slowing things down, may make a user wary
of your motivations for asking. If you have another way of getting the
information (for example, the type of credit card can be determined from
the first four numbers of the account), then use alternative means and
don’t put the burden on the user. If there is information that might be
nice to have but is not required, consider asking at a later time, after the
form has been submitted and you have built a relationship with the user.

Consider impact of label placement.

The position of the label relative to the input affects the time it takes to
fill out the form. The less the user’s eye needs to bounce around the page,
the quicker the form completion. Putting the labels above their respec-
tive fields creates a single alignment for faster scans and completion,
particularly when asking for familiar information (username, address,
etc.). Top-positioned labels can also accommodate labels of varying
lengths and work best on narrow, small-screen devices. They do result in
a longer form, however, so if vertical space is a concern, you can position
the labels to the left of the inputs. Left alignment of labels results in the
slowest form completion, but it may be appropriate if you want the user
to slow down or be able to scan and consider the types of information
required in the form.

Choose input types carefully.

As you’ve seen in this chapter, there are quite a few input types to
choose from, and sometimes it’s not easy to decide which one to use. For
example, a list of options could be presented as a pull-down menu or a
number of choices with checkboxes. Weigh the pros and cons of each
control type carefully, and follow up with user testing.

Group related inputs.

It is easier to parse the many fields, menus, and buttons in a form if they
are visually grouped by related topic. For example, a user’s contact infor-
mation could be presented in a compact group so that five or six inputs
are perceived as one unit. Usually, all you need is a very subtle indication,
such as a fine horizontal rule and some extra space. Don’t overdo it.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 9, Forms 175

Clarify primary and secondary actions.

The primary action at the end of the form is usually some form of Submit
button (“Buy,” “Register,” etc.) that signals the completion of the form
and the readiness to move forward. You want that button to be visually
dominant and easy to find (aligning it along the main axis of the form
alignment is helpful as well). Secondary actions tend to take you a step
back, such as clearing or resetting the form. If you must include a second-
ary action, make sure that it is styled to look different and less important
than the primary action. It is also a good idea to provide an opportunity
to undo the action.

styling Forms
As we’ve seen in this chapter, the default rendering of form markup is not
up to par with the quality we see on most professional web forms today. As
for other elements, you can use style sheets to create a clean form layout as
well as change the appearance of most form controls. Something as simple
as nice alignment and a look that is consistent with the rest of your site can
go a long way toward improving the impression you make on a user.

Keep in mind that form widgets are drawn by the browser and are informed
by operating system conventions. However, you can still apply dimensions,
margins, fonts, colors, borders, and background effects to form elements
such as text inputs, select menus, textareas, fieldsets, labels, and legends.
Just be sure to test in a variety of browsers to check for unpleasant surprises.
Chapter 18, CSS Techniques in Part III lists some specific techniques once
you have more experience with CSS. For more help, a web search for “CSS
for forms” will turn up a number of tutorials.

Test Yourself
Ready to put your web form know-how to the test? Here are a few questions
to make sure you’ve gotten the basics.

1. Decide whether each of these forms should be sent via the GET or POST
method:

a. A form for accessing your bank account online ________

b. A form for sending t-shirt artwork to the printer ________

c. A form for searching archived articles ________

d. A form for collecting long essay entries ________

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure176

Element Review: Forms

2. Which form control element is best suited for the following tasks? When
the answer is “input,” be sure to also include the type. Some tasks may
have more than one correct answer.

a. Choose your astrological sign from 12 signs.

b. Indicate whether you have a history of heart disease (yes or no).

c. Write up a book review.

d. Select your favorite ice cream flavors from a list of eight flavors.

e. Select your favorite ice cream flavors from a list of 25 flavors.

3. Each of these markup examples contains an error. Can you spot what
it is?

a. <input name="country" value="Your country here.">

b. <checkbox name="color" value="teal">

c. <select name="popsicle">
 <option value="orange">
 <option value="grape">
 <option value="cherry">
 </select>

d. <input type="password">

e. <textarea name="essay" height="6" width="100">Your story.</textarea>

Element Review: Forms
We covered this impressive list of elements and attributes related to forms
in this chapter. Elements marked with (HTML5) are new in the HTML5
specification.

Element and attributes Description

button Generic input button

name="text" Supplies a unique variable name for the control

type="submit|reset|button" The type of custom button

value="text" Specifies the value to be sent to the server

datalist [HTML5] Provides a list of options for text inputs

fieldset Groups related controls and labels

form

action="url"

method="get|post"

enctype="content type"

Form element

Location of forms processing program (required)

The method used to submit the form data

The encoding method, generally either application/x-www-form-urlencoded

(default) or multipart/form-data

www.it-ebooks.info

http://www.it-ebooks.info/

Element Review: Forms

Chapter 9, Forms 177

Element and attributes Description

input Creates a variety of controls, based on the type value

autofocus Indicates the control should be ready for input when the document loads

type="submit|reset|button|text
|password|checkbox|radio|image
|file|hidden|email|tel|search|
url|date|time|datetime|dateti
me-local|month|week|number|rang-
e|color "

The type of input

disabled Associates the control with a specified form

form="form id value"

See Table 9-1 for a full list of attributes
associated with each input type.

Disables the input so it cannot be selected

keygen [HTML5] Generates key pairs for secure transaction certificates

autofocus Indicates the control should be highlighted and ready for input when the document loads

challenge="challenge string" Provides a challenge string to be submitted with the key

disabled Disables the control so it cannot be selected

form="form id value" Associates the control with a specified form

keytype="keyword" Identifies the type of key to be generated (e.g., rsa or ec)

name="text" Gives control an identifying name

label Attaches information to controls

for="text" Identifies the associated control by its id reference

form="form id value" Associates the control with a specified form

legend Assigns a caption to a fieldset

meter [HTML5] Represents a fractional value within a known range

form="form id value" Associates the control with a specified form

high="number" Indicates the range that is considered “high” for the gauge

low="number" Indicates the range that is considered “low” for the gauge

max="number" Specifies the highest value for the range

min="number" Specifies the lowest value for the range

optimum="number" Indicates the number considered to be “optimum”

value="number" Specifies the actual or measured value

optgroup Defines a group of options

disabled Disables the optgroup so it cannot be selected

label="text" Supplies label for a group of options

option An option within a select menu control

disabled Disables the option so it cannot be selected

label="text" Supplies an alternate label for the option

selected Preselects the option

value="text" Supplies an alternate value for the option

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure178

Element Review: Forms

Element and attributes Description

output [HTML5] Represents the results of a calculation

for="text" Creates relationship between output and another element

form="form id value" Associates the control with a specified form

name="text" Supplies a unique variable name for the control

progress [HTML5] Represents the completion progress of a task (can be used even if the maximum value
of the task is not known)

form="form id value" Associates the control with a specified form

max="number" Specifies the total value or final size of the task

value="number" Specifies how much of the task has been completed

select Pull-down menu or scrolling list

autofocus Indicates the control should be highlighted and ready for input when the docu-
ment loads

disabled Indicates the control is nonfunctional. Can be activated with a script.

form="form id value" Associates the control with a specified form

multiple Allows multiple selections in a scrolling list

name="text" Supplies a unique variable name for the control

readonly Makes the control unalterable by the user

required Indicates the user input is required for this control

size="number" The height of the scrolling list in text lines

textarea Multiline text entry field

autofocus Indicates the control should be highlighted and ready for input when the docu-
ment loads

cols="number" The width of the text area in characters

dirname="text" Allows text directionality to be specified

disabled Disables the control so it cannot be selected

form="form id value" Associates the control with a specified form

maxlength="text" Specifies the maximum number of characters the user can enter

name="text" Supplies a unique variable name for the control

placeholder="text" Provides a short hint to help user enter the correct data

readonly Makes the control unalterable by the user

required Indicates user input is required for this control

rows="number" The height of the text area in text lines

wrap="hard|soft" Controls whether line breaks in the text input are returned in the data. hard pre-
serves line breaks; soft does not.

www.it-ebooks.info

http://www.it-ebooks.info/

Element Review: Forms

Chapter 9, Forms 179

Table 9-1. Available attributes for each input type

submit reset button text password checkbox radio image file hidden

accept •

alt •

checked • •

disabled • • • • • • • • • •

maxlength • • •

name • • • • • • • • • •

readonly • • • • •

size • • •

src •

value • • • • • • • • •

HTML5-only

autocomplete • •

autofocus • • • • • • • • •

form • • • • • • • • • •

formaction • •

formenctype • •

formmethod • •

formnovalidate • •

formtarget • •

height •

list •

max

min

multiple •

pattern • •

placeholder • •

required • • • • •

step

width •

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure180

Element Review: Forms

email telephone, search, url number range date, time, datetime,
datetime-local, month, week

color

accept

alt

checked

disabled • • • • • •

maxlength • •

name • • • • • •

readonly • • • •

size • •

src

value • • • • • •

HTML5-only

autocomplete • • • • • •

autofocus • • • • • •

form • • • • • •

formaction

formenctype

formmethod

formnovalidate

formtarget

height

list • • • • • •

max • • •

min • • •

multiple •

pattern • •

placeholder • •

required • • • •

step • • •

width

www.it-ebooks.info

http://www.it-ebooks.info/

181

We’ve been using HTML5 elements in the past several chapters, but there
is a lot more to the HTML5 specification than new markup possibilities
(although that is an important part). HTML5 is actually a bundle of new
methods for accomplishing tasks that previously required special program-
ming or proprietary plug-in technology such as Flash or Silverlight. It offers a
standardized, open source way to put audio, video, and interactive elements
on the page as well as the ability to store data locally, work offline, take
advantage of location information, and more. With HTML5 for common
tasks, developers can rely on built-in browser capabilities and not need to
reinvent the wheel for every application.

HTML5 offers so many promising possibilities, in fact, that it has become
something of a buzzword with connotations far beyond the spec itself.
When marketers and journalists use the term “HTML5,” they are sometimes
referring to CSS3 techniques or any new web technology that isn’t Flash. In
this chapter you’ll learn what is actually included in the spec, and you can
join the rest of us in being slightly irked when the HTML5 label is applied
incorrectly. The important thing, however, is that mainstream awareness of
web standards is certainly a win and makes our job easier when communi-
cating with clients.

Of course, with any spec in development, browser support is uneven at
best. There are some features that can be used right away and some that
aren’t quite ready for prime time. But this time around, instead of waiting
for the entire spec to be “done,” browsers are implementing one feature at a
time, and developers are encouraged to begin using them (see the Tracking
Browser Support sidebar). I should also mention that the HTML5 spec is
evolving rapidly and parts are likely to have changed by the time you are
reading this. I’ll do my best to give you a good overview, and you can decide
which features to research and follow on your own.

Much of what’s new in HTML5 requires advanced web development skills,
so it is unlikely you’ll use them right away (if ever), but as always, I think it
is beneficial to everyone to have a basic familiarity with what can be done.

What’s uP, html5?

CHAPTER 10

IN THIs CHAPTER

What HTML5 is and isn't

A brief history of HTML

New elements and attributes

HTML5 APIs

Adding video and audio

The canvas element

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure182

A Funny Thing Happened on the Way to XHTML 2

And “basic familiarity” is what I’m aiming at with this chapter. For more
in-depth discussions of HTML5 features, I recommend the following books:

•	 HTML5, Up and Running by Mark Pilgrim (O’Reilly Media and Google
Press)

•	 Introducing HTML5 by Bruce Lawson and Remy Sharp (New Riders)

I feel it’s only fair to warn you that this chapter is the cod liver oil of this
book. Not pleasant to get down, but good for you. An understanding of the
big picture and the context of why we do things the way we do is something
any budding web designer should have.

A Funny Thing Happened on the
Way to XHTML 2
Understanding where we’ve been provides useful context for where we are
going, so let’s kick this off with a quick history lesson. We’ll start at the very
beginning.

A “don’t blink or you’ll miss it” history of HTML
The story of HTML, from Tim Berners-Lee’s initial draft in 1991 to the
HTML5 standard in development today, is both fascinating and tumultu-
ous. Early versions of HTML (HTML+ in 1994 and HTML 2.0 in 1995)
built on Tim’s early work with the intent of making it a viable publishing
option. But when the World Wide Web (as it was adorably called back in
the day) took the world by storm, browser developers, most notably Mosaic
Netscape and later Microsoft Internet Explorer, didn’t wait for any stinkin’
standards. They gave the people what they wanted by creating a slew of
browser-specific elements for improving the look of pages on their respec-
tive browsers. This divisive one-upping is what has come to be known as
the Browser Wars. As a result, it became common in the late 1990s to create
two separate versions of a site that targeted each of the Big Two browsers.

In 1996, the newly formed W3C put a stake in the ground and released its
first Recommendation: HTML 3.2. It is a snapshot of all the HTML ele-
ments in common use at the time, and includes many presentational exten-
sions to HTML that were the result of the Netscape/IE feud and the lack of a
style sheet alternative. HTML 4.0 (1998) and HTML 4.01 (the slight revision
that superseded it in 1999) aimed to get HTML back on track by emphasiz-
ing the separation of structure and presentation and improving accessibility.
All matters of presentation were handed over to the newly minted Cascading
Style Sheets standard that was gaining support.

Tracking Browser
support
There are several nice resources out
there to help you know which HTML5
features are ready to use. Most show
support for CSS properties and
selectors as well.

 y When Can I Use… (caniuse.com)

 y HTML5 Please (html5please.com)

 y “Comparison of Layout Engines
(HTML5)” on Wikipedia (en.
wikipedia.org/wiki/Comparison_
of_layout_engines_(HTML_5))

n oT e

For a detailed history of the beginnings
of the World Wide Web and HTML,
read David Raggett’s account from his
book Raggett on HTML4 (Addison-
Wesley, 1998), available on the W3C
site (www.w3.org/People/Raggett/
book4/ch02.html).

www.it-ebooks.info

http://www.w3.org/People/Raggett/book4/ch02.html
http://www.w3.org/People/Raggett/book4/ch02.html
http://www.it-ebooks.info/

A Funny Thing Happened on the Way to XHTML 2

Chapter 10, What’s Up, HTML5? 183

Enter XHTML
Around the same time that HTML 4.01 was in
development, folks at the W3C became aware that
one limited markup language wasn’t going to cut it
for describing all the sorts of information (chemi-
cal notation, mathematical equations, multimedia
presentations, financial information, and so on) that
might be shared over the Web. Their solution: XML
(eXtensible Markup Language), a metalanguage for
creating markup languages. XML was a simplifica-
tion of SGML (Standardized Generalized Markup
Language), the big kahuna of metalanguages that
Tim Berners-Lee used to create his original HTML
application. But SGML itself proved to be more com-
plex than the Web required.

The W3C had a vision of an XML-based Web with
many specialized markup languages working together—
even within a single document. Of course, to pull
that off, everyone would have to mark up documents
very carefully, strictly abiding by XML syntax, to rule
out potential confusion.

Their first step was to rewrite HTML according to
the rules of XML so that it could play well with
others. The result is XHTML (eXtensible HTML).
The first version, XHTML 1.0, is nearly identical
to HTML 4.01, sharing the same elements and
attributes, but with stricter requirements for how
markup must be done (see the XHTML Markup
Requirements sidebar).

HTML 4.01, along with XHTML 1.0, its stricter
XML-based sibling, became the cornerstone of the
web standards movement (see the sidebar The Web
Standards Project). They are still the most thorough-
ly and consistently supported standards as of this
writing (although HTML5 is quickly gaining steam).

But the W3C didn’t stop there. With a vision of
an XML-based Web in mind, they began work on
XHTML 2.0, an even bolder attempt to make things
work “right” than HTML 4.01 had been. The prob-
lem was that it was not backward-compatible with
old standards and browser behavior. The writing
and approval process dragged on for years with no
browser implementation. Without browser imple-
mentation, XHTML 2.0 was stuck.

XHTML Markup Requirements
 y Element and attribute names must be lowercase. In HTML,

element and attribute names are not case-sensitive.

 y All elements must be closed (terminated). Empty elements
are closed by adding a slash before the closing bracket (for
example,
).

 y Attribute values must be in quotation marks. Single or
double quotation marks are acceptable as long as they are
used consistently. Furthermore, there should be no extra
whitespace (character spaces or line returns) before or after
the attribute value inside the quotation marks.

 y All attributes must have explicit attribute values. XML (and
therefore XHTML) does not support attribute minimization,
the SGML practice in which certain attributes can be reduced
to just the attribute value. So, while in HTML you can write
checked to indicate that a form button be checked when
the form loads, in XHTML you need to explicitly write out
checked="checked".

 y Proper nesting of elements is strictly enforced. Some elements
have new nesting restrictions.

 y Special characters must always be represented by character
entities (e.g., & for the & symbol).

 y Use id instead of name as an identifier.

 y Scripts must be contained in a CDATA section so they will
be treated as simple text characters and not parsed as XML
markup. Here is an example of the syntax:

<script type="type/javascript">
 // <![CDATA[
 ... JavaScript goes here...
 //]]>
</script>

The Web standards Project
In 1998, at the height of the browser wars, a grassroots coalition
called the Web Standards Project (WaSP for short) began to
put pressure on browser creators (primarily Netscape and
Microsoft at the time) to start sticking to the open standards as
documented by the W3C. Not stopping there, they educated the
web developer community on the many benefits of developing
with standards. Their efforts revolutionized the way sites are
created and supported. Now browsers (even Microsoft) brag of
standards support while continuing to innovate. You can read
their mission statement, history, and current efforts on the WaSP
site (webstandards.org).

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure184

A Funny Thing Happened on the Way to XHTML 2

Hello HTML5!
Meanwhile…

In 2004, members of Apple, Mozilla, and Opera formed the Web Hypertext
Application Technology Working Group (WHATWG, whatwg.org), sepa-
rate from the W3C. The goal of the WHATWG was to further the develop-
ment of HTML to meet new demands in a way that was consistent with
real-world authoring practices and browser behavior (in contrast to the
start-from-scratch ideal that XHTML 2.0 described). Their initial docu-
ments, Web Applications 1.0 and Web Forms 1.0, were rolled together into
HTML5, which is still in development under the guidance of an editor, Ian
Hickson (currently of Google).

The W3C eventually established its own HTML5 Working Group (also
led by Hickson) based on the work done by the WHATWG. As of this
writing, work on the HTML5 specification is happening in both organiza-
tions in tandem, sometimes with conflicting results. It is not yet a formal
Recommendation as of this writing, but that isn’t stopping browsers from
implementing it a little at a time.

n oT e

The WHATWG maintains what it calls the HTML “Living Standard” (meaning
they aren’t giving it a version number) at www.whatwg.org. It is nearly identical to
HTML5, but it includes a few extra elements and attributes that the W3C isn’t quite
ready to adopt, and it has a slightly different lineup of APIs.

And XHTML 2.0? At the end of 2009, the W3C officially put it out of its
misery, pulling the plug on the working group and putting its resources and
efforts into HTML5.

So that’s how we got here, and it’s a whole lot of prelude to the meat of
this chapter, which of course is the new features that HTML5 offers. I also
encourage you to read the sidebar HTML5 Fun Facts for more juicy informa-
tion on the specification itself. In this section, I’ll introduce what’s new in
HTML5, including:

•	 A new DOCTYPE

•	 New elements and attributes

•	 Obsolete 4.01 elements

•	 APIs

HTML5 aims to make HTML
more useful for creating
web applications.

www.it-ebooks.info

http://www.whatwg.org
http://www.it-ebooks.info/

In the Markup Department

Chapter 10, What’s Up, HTML5? 185

HTML5 Fun Facts
HTML5 both builds on previous versions of HTML and introduces
some significant departures. Here are some interesting tidbits
about the HTML5 specification itself.

 y HTML5 is based on HTML 4.01 Strict, the version of HTML
that did not include any presentation-based or other
deprecated elements and attributes. That means the vast
majority of HTML5 is made up of the same elements we’ve
been using for years, and browsers know what to do with
them.

 y HTML5 does not use a DTD (Document Type Definition),
which is a document that defines all of the elements and
attributes in a markup language. It is the way you document
a language in SGML, and if you’ll remember, HTML was
originally crafted according to the rules of SGML. HTML 4.01
was defined by three separate DTDs: Transitional (including
legacy elements that were marked as “deprecated,” or soon
to be obsolete), Strict (deprecated features stripped out,
as noted earlier), and Frameset (for documents broken
into individually scrolling frames, a technique that is now
considered obsolete).

 y HTML5 is the first HTML specification that includes detailed
instructions for how browsers should handle malformed
and legacy markup. It bases the instructions on legacy
browser behavior, but for once, there is a standard protocol
for browser makers to follow when browsers encounter
incorrect or non-standard markup.

 y HTML5 can also be written according to the stricter syntax
of XML (called the XML serialization of HTML5). Some
developers have come to prefer the tidiness of well-formed
XHTML (lowercase element names, quoted attribute values,
closing all elements, and so on), so that way of writing is still
an option, although not required. In edge cases, an HTML5
document may be required to be served as XML in order to
work with other XML applications, in which case it can use
the XML syntax and be ready to go.

 y In addition to markup, HTML5 defines a number of APIs
(Application Programming Interface). APIs make it easier to
communicate with web-based applications. They also move
some common processes (such as audio and video players)
into native browser functionality.

In the Markup Department
We’ll start with a look at the markup aspects of HTML5, and then we’ll
move on to the APIs.

A minimal DOCTYPE
As we saw in Chapter 4, HTML documents should begin with a Document
Type Declaration (DOCTYPE declaration) that identifies which version of
HTML the document follows. The HTML5 declaration is short and sweet:

<! DOCTYPE html>

Compare that to a declaration for a Strict HTML 4.01 document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/HTML4.01/strict.dtd">

Why so complicated? In HTML 4.01 and XHTML 1.0 and 1.1, the declara-
tion must point to the public DTD (Document Type Definition), a document
that defines all of the elements in a markup language as well as the rules for
using them. HTML 4.01 was defined by three separate DTDs: Transitional
(including legacy elements such as font and attributes such as align that
were marked as “deprecated,” or soon to be obsolete), Strict (deprecated fea-
tures stripped out), and Frameset (for documents broken into individually
scrolling frames, a technique that is now considered obsolete). HTML5 does
not have a DTD, which is why we have the simple DOCTYPE declaration.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure186

In the Markup Department

DTDs are a remnant of SGML and proved to be less helpful on the Web than
originally thought, so the authors of HTML5 simply didn’t use one.

Validators—software that checks that all the markup in a document is
correct (see note)—use the DOCTYPE declaration to make sure the docu-
ment abides by the rules of the specification it claims to follow. The sidebar
HTML DOCTYPES lists all declarations in common use, should you need
to write documents in HTML 4.01 or XHTML 1.0.

HTML DOCTYPEs
The following lists all of the DOCTYPE declarations in common use.

HTML5

<!DOCTYPE html>

HTML 4.01 Transitional
The Transitional DTD includes deprecated elements and attributes:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/HTML4.01/loose.dtd">

HTML 4.01 Strict
The Strict DTD omits all deprecated elements and attributes:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/HTML4.01/strict.dtd">

HTML 4.01 Frameset
If your document contains frames—that is, it uses frameset instead of body for its
content—then identify the Frameset DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/HTML4.01/frameset.dtd">

XHTML 1.0 Strict
The same as HTML 4.01 Strict, but reformulated according to the syntax rules of XML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Transitional
The same as HTML 4.01 Transitional, but reformulated according to the syntax rules of
XML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset
The same as HTML 4.01 Frameset, but reformulated according to the syntax rules of
XML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

n oT e

To check whether your HTML docu-
ment is valid, use the online valida-
tor at the W3C (validator.w3.org).
An HTML5-specific validator is also
available at html5.validator.nu. There
is also a validator built into Adobe
Dreamweaver that allows you to check
your document against various specs as
you work.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Markup Department

Chapter 10, What’s Up, HTML5? 187

Elements and attributes
HTML5 introduced a number of new elements. You’ll find them sprinkled
throughout this book, but Table 10-1 lists them all in one place.

Table 10-1. New elements in HTML5

article

aside

audio

bdi

canvas

command

datalist

details

embed

figcaption

figure

footer

header

hgroup

keygen

mark

meter

nav

output

progress

rp

rt

ruby

section

source

summary

time

track

video

wbr

New form input types
We covered the new form input control types in Chapter 9, but here they
are at a glance: color, date, datetime, datetime-local, email, month, number,
range, search, tel, time, url, and week.

New global attributes
Global attributes are attributes that can be applied to any element. The
number of global attributes was expanded in HTML5, and many of them are
brand new (as noted in Table 10-2). The W3C is still adding and removing
attributes as of this writing, so it’s worth checking in with the spec for the
latest (dev.w3.org/html5/spec/global-attributes.html#global-attributes).

Table 10-2. Global attributes in HTML5
Attribute Values Description

accesskey Single text character Assigns an access key (shortcut key command) to the link. Access
keys are also used for form fields. Users may access the element
by hitting Alt-<key> (PC) or Ctrl-<key> (Mac).

aria-* One of the standardized state or
property keywords in WAI-ARIA
(www.w3.org/TR/wai-aria/states_
and_properties)

WAI-ARIA (Accessibile Rich Internet Applications) defines a way
to make web content and applications more accessible to users
with assistive devices. HTML5 allows any of the ARIA properties
and roles to be added to elements. For example, a div used for a
pop-up menu could include the attribute aria-haspopup to make
that property clear to a user without a visual browser. See also
the related role global attribute.

class Text string Assigns one or more classification names to the element.

contenteditable true | false Indicates the user can edit the element. This attri-
bute is already well supported in current browser versions.

n oT e

For a detailed list of all the ways
HTML5 differs from HTML 4.01, see
the W3C official document at www.
w3.org/TR/html5-diff/.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure188

In the Markup Department

Table 10-2. Global attributes in HTML5

Attribute Values Description

contextmenu id of the menu element Specifies a context menu that applies to the element.
The context menu must be requested by the user, for example, by
a right-click.

data-* Text string or numerical data Enables authors to create custom data-related attri-
butes (the “*” is a symbol that means “anything”), for example,
data-length, data-duration, data-speed, etc. so that the data can
be used by a custom application or scripts.

dir ltr | rtl Specifies the direction of the element (“left to right” or “right to
left”).

draggable true | false A true value indicates the element is draggable,
meaning it can be moved my clicking and holding on it, then
moving it to a new position in the window.

dropzone copy | link | move |
s:text/plain | f:file-type
(for example, f:image/jpg)

 Indicates the element can accept dragged and
dropped text or file data. The values are a space-separated list
that includes what type of data it accepts (s:text/plain for text
strings; f:file-type for file types) and a keyword that indicates
what to do with the dropped content: copy results in a copy of the
dragged data; move moves it to the new location; and link results
in a link to the original data.

hidden No value for HTML documents

In XHTML, set a value
hidden="hidden"

 Prevents the element and its descendants from being
rendered in the user agent (browser). Any scripts or form controls
in hidden sections will still execute, but they will not be presented
to the user.

id Text string (may not begin with
an number)

Assigns a unique identifying name to the element.

lang Two-letter language code (see
www.loc.gov/standards/iso639-2/
php/code_list.php)

Specifies the language for the element by its language code.

role One of the standard role key-
words in WAI-ARIA (see www.
w3.org/TR/wai-aria/roles)

 Assigns one of the standardized WAI-ARIA roles to
an element to make its purpose clearer to users with disabilities.
For example, a div with contents that will display as a pop-up
menu on visual browsers could be marked with role="menu" for
clarity on screen readers.

spellcheck true | false Indicates the element is to have its spelling and
grammar checked.

style Semicolon-separated list of style
rules (property: value pairs)

Associates style information with an element. For example:

<h1 style="color: red; border: 1px solid">Heading</h1>

tabindex Number Specifies the position of the current element in the tabbing order
for the current document. The value must be between 0 and
32,767. It is used for tabbing through links on a page or fields in
a form and is useful for assistive browsing devices. A value of –1
is allowable to remove elements from the tabbing flow and make
them focusable only by JavaScript.

title Text string Provides a title or advisory information about the element, typi-
cally displayed as a tooltip.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the APIs

Chapter 10, What’s Up, HTML5? 189

Obsolete HTML 4.01 Markup
HTML5 also declared a number of elements in HTML 4.01 to be “obsolete”
because they are presentational, antiquated, or poorly supported (Table
10-3). If you use them, browsers will support them, but I strongly recom-
mend leaving them in the dust.

Table 10-3. HTML 4 elements that are now obsolete in HTML5

acronym

applet

basefont

big

center

dir

font

frame

frameset

isindex

noframes

strike

tt

Are you still with me? I know, this stuff gets pretty dry. That’s why I’ve
included Figure 10-1. It has nothing at all to do with HTML5, but I thought
we could all use a little breather before taking on APIs.

Figure 10-1. This adorable baby red panda has nothing to do with HTML5. (Photo by
Tara Menne)

Meet the APIs
HTML specifications prior to HTML5 included only documentation of the
elements, attributes, and values permitted in the language. That’s fine for
simple text documents, but the creators of HTML5 had their minds set on

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure190

Meet the APIs

making it easier to create web-based applications that require scripting and
programming. For that reason, HTML5 also defines a number of new APIs
for making it easier to communicate with an application.

An API (Application Programming Interface) is a documented set of com-
mands, data names, and so on, that lets one software application commu-
nicate with another. For example, the developers of Twitter documented
the names of each data type (users, tweets, timestamps, and so on) and the
methods for accessing them in an API document (dev.twitter.com/docs) that
lets other developers include Twitter feeds and elements in their programs.
That is why there are so many Twitter programs and widgets available.
Amazon.com also opens up its product data via an API. In fact, publishers
of all ilks are recognizing the power of having their content available via an
API. You could say that APIs are hot right now.

But let’s bring it back to HTML5, which includes APIs for tasks that tradi-
tionally required proprietary plug-ins (like Flash) or custom programming.
The idea is that if browsers offer those features natively—with standardized
sets of hooks for accessing them—developers can do all sorts of nifty things
and count on it working in all browsers, just as we count on the ability to
embed an image on a page today. Of course, we have a way to go before
there is ubiquitous support of these cutting-edge features, but we’re getting
there steadily. Some APIs have a markup component, such as embedding
multimedia with the new HTML5 video and audio elements. Others happen
entirely behind the scenes with JavaScript or server-side components, such
as creating web applications that work even when there is no Internet con-
nection (Offline Web Application API).

The W3C and WHATWG are working on lots and lots of APIs for use with
web applications, all in varying stages of completion and implementation.
Most have their own specifications, separate from the HTML5 spec itself,
but they are generally included under the wide HTML5 umbrella that cov-
ers web-based applications. HTML5 includes specifications for these APIs:

Media Player API
For controlling audio and video players embedded on a web page, used
with the new video and audio elements. We will take a closer look at
audio and video later in this chapter.

Session History API
Exposes the browser history for better control over the Back button.

Offline Web Application API
Makes it possible for a web application to work even when there is no
Internet connection. It does it by including a manifest document that
lists all of the files and resources that should be downloaded into the
browser’s cache in order for the application to work. When a connection
is available, it checks to see whether any of the documents have changed,
then updates those documents.

n oT e

For a list of all the APIs, see the arti-
cle “HTML Landscape Overview” by
Erik Wilde (dret.typepad.com/dretblog/
html5-api-overview.html). The W3C
lists all the documents they maintain,
many of which are APIs, at www.
w3.org/TR/tr-title-all.

www.it-ebooks.info

https://dev.twitter.com/docs
http://www.it-ebooks.info/

Meet the APIs

Chapter 10, What’s Up, HTML5? 191

Editing API
Provides a set of commands that could be used to create in-browser text
editors, allowing users to insert and delete text, format text as bold,
italic, or as a hypertext link, and more. In addition, there is a new con-
tenteditable attribute that allows any content element to be editable
right on the page.

Drag and Drop API
Adds the ability to drag a text selection or file to a target area on the page
or another web page. The draggable attribute indicates the element can
be selected and dragged. The dropzone attribute is used on the target area
and defines what type of content it can accept (text or file type) and what
to do with it when it gets there (copy, link, move).

The following are just a handful of the APIs in development at the W3C with
specifications of their own (outside HTML5):

Canvas API
The canvas element adds a dynamic, two-dimensional drawing space to
a page. We’ll take a look at it at the end of this chapter.

Web Storage API
Allows data to be stored in the browser’s cache so that an application
can use it later. Traditionally, that has been done with “cookies,” but the
Web Storage API allows more data to be stored. It also controls whether
the data is limited to one session (sessionStorage: when the window is
closed, the data is cleared) or based on domain (localStorage: all open
windows pointed to that domain have access to the data).

Geolocation API
Lets users share their geographical location (longitude and latitude) so
that it is accessible to scripts in a web application. This allows the app to
provide location-aware features such as suggesting a nearby restaurant or
finding other users in your area.

Web Workers API
Provides a way to run computationally complicated scripts in the back-
ground. This allows the browser to keep the web page interface quick
and responsive to user actions while working on processor-intensive
scripts at the same time. The Web Workers API is part of the HTML5
spec at the WHATWG, but at the W3C, it’s been moved into a separate
document.

Web Sockets API
Creates a “socket,” which is an open connection between the browser
client and the server. This allows information to flow between the cli-
ent and the server in real time, with no lags for the traditional HTTP
requests. It is useful for multiplayer games, chat, or data streams that
update constantly, such as sports or stock tickers or social media streams.

n oT e

You can think of a web socket as
an ongoing telephone call between the
browser and server compared to the
walkie-talkie, one-at-a-time style of
traditional browser/server communica-
tion. (A hat tip to Jen Simmons for this
analogy.)

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure192

Video and Audio

Some APIs have correlating HTML elements, such as the audio and video
elements for embedding media players on a page, and the canvas element for
adding a dynamic drawing area. In the following sections, we’ll take a brief
look at how those elements are put to use.

Video and Audio
In the earliest days of the World Wide Web (I know, I was there), it was
possible to add a MIDI file to a web page for a little beep-boopy soundtrack
(think early video games). It wasn’t long before better options came along,
including RealMedia and Windows Media, that allowed all sorts of audio
and video formats to be embedded in a web page. In the end, Flash became
the de facto embedded multimedia player thanks in part to its use by
YouTube and similar video services.

What all of these technologies have in common is that they require third-
party, proprietary plug-ins to be downloaded and installed in order to play
the media files. Until recently, browsers did not have built-in capabilities for
handling sound or video, so the plug-ins filled in the gap. With the develop-
ment of the Web as an open standards platform, it seemed like time to make
multimedia support part of browsers’ out-of-the-box capabilities. Enter the
new audio and video elements and their respective APIs.

The good news and the bad news
The good news is that the audio and video elements are well supported in
modern browsers, including IE 9+, Safari 3+, Chrome, Opera, and Firefox
3.5+ for the desktop and iOS Safari 4+, Android 2.3+, and Opera Mobile
(however, not Opera Mini).

But lest you envision a perfect world where all browsers are supporting
audio and video in perfect harmony, I am afraid that it is not that simple.
Although they have all lined up on the markup and JavaScript for embed-
ding and controlling media players, unfortunately they have not agreed on
which formats to support. Let’s take a brief journey through the land of
media file formats. If you want to add audio or video to your page, this stuff
is important to understand.

How media formats work
When you prepare audio or video content for web delivery, there are two for-
mat decisions to make. The first is how the media is encoded (the algorithms
used to convert the source to 1s and 0s and how they are compressed). The
method used for encoding is called the codec, which is short for “code/
decode” or “compress/decompress.” There are a bazillion codecs out there
(that’s an estimate). Some probably sound familiar, like MP3; others might

Farewell Flash?
Apple’s announcement that it would
not support Flash on its iOS devices,
ever, gave HTML5 an enormous
push forward and eventually led to
Adobe stopping development on its
mobile Flash products. Not long after,
Microsoft announced that it was
discontinuing its Silverlight media
player in lieu of HTML5 alternatives.
As of this writing, HTML5 is a long
way from being able to reproduce
the vast features and functionality of
Flash, but it’s getting there gradually.
That means we are likely to see Flash
and Silverlight players on the desktop
for years to come, but the trajectory
away from plug-ins and toward web
standards technologies seems clear.

www.it-ebooks.info

http://www.it-ebooks.info/

Video and Audio

Chapter 10, What’s Up, HTML5? 193

sound new, such as H.264, Vorbis, Theora, VP8, and AAC. Fortunately,
only a few are appropriate for the Web, and we’ll review them in a moment.

Second, you need to choose the container format for the media…you can
think of it as a ZIP file that holds the compressed media and its metadata
together in a package. Usually a container format can hold more than one
codec type, and the full story is complicated. Because space is limited in
this chapter, I’m going to cut to the chase and introduce the most common
container/codec combinations for the Web. If you are going to add video
or audio to your site, I encourage you to get more familiar with all of these
formats. The books in the For Further Reading: HTML5 Media sidebar are
a great first step.

Meet the video formats
For video, the most common options are:

•	 Ogg container + Theora video codec + Vorbis audio codec. This is typi-
cally called “Ogg Theora,” and the file should have a .ogv suffix. All of
the codecs and the container in this option are open source and unen-
cumbered by patents or royalty restrictions, which makes them ideal for
web distribution, but some say the quality is inferior to other options.

•	 MPEG-4 container + H.264 video codec + AAC audio codec. This com-
bination is generally referred to as “MPEG-4,” and it takes the .mp4 or
.m4v file suffix. H.264 is a high-quality and flexible video codec, but it
is patented and must be licensed for a fee. The royalty requirement has
been a deal-breaker for browsers that refuse to support it.

•	 WebM container + VP8 video codec + Vorbis audio codec. “WebM”
is the newest container format and uses the .webm file extension. It is
designed to work with VP8 and Vorbis exclusively, and has the advan-
tage of being open source and royalty-free.

Of course, the problem that I referred to earlier is that browser makers have
not agreed on a single format to support. Some go with open source, royalty-
free options like Ogg Theora or WebM. Others are sticking with the better
quality of H.264 despite the royalty requirements. What that means is that
we web developers need to make multiple versions of videos to ensure sup-
port across all browsers. Table 10-4 lists which browsers support the various
video options.

Table 10-4. Video support in current browsers (as of mid-2012)

Format Type IE Chrome Firefox safari Opera Mobile Mobile safari Android

Ogg Theora video/ogg – 5.0+ 3.5+ – 10.5+ – –

MP4/H.264 video/mp4 9.0+ – – 3.1+ – 3.0+ 2.0+

WebM video/webm 9.0+ 6.0+ 4.0+ – 11+ – 2.3.3+

For Further
Reading: HTML5
Media
I recommend these books when you
are ready to learn more about HTML5
media:

 y HTML5 Media, by Shelley
Powers (O’Reilly Media)

 y HTML5, Up and Running, by
Mark Pilgrim (O’Reilly Media)
includes a helpful section on
HTML5 video.

 y The Definitive Guide to HTML5
Video, by Sylvia Pfeiffer (Apress)

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure194

Video and Audio

Meet the audio formats
The landscape looks similar for audio formats: several to choose from, but
no format that is supported by all browsers (Table 10-5).

•	 MP3. The MP3 format is a codec and container in one, with the file
extension.mp3. It has become ubiquitous as a music download format.
The MP3 (short for MPEG-1 Audio Layer 3) is patented and requires
license fees paid by hardware and software companies (not media cre-
ators).

•	 WAV. The WAV format (.wav) is also a codec and container in one.

•	 Ogg container + Vorbis audio codec. This is usually referred to as “Ogg
Vorbis” and is served with the .ogg or .oga file extension.

•	 MPEG 4 container + AAC audio codec. “MPEG4 audio” (.m4a) is less
common than MP3.

•	 WebM container + Vorbis audio codec. The WebM (.webm) format can
also contain audio only.

Table 10-5. Audio support in current browsers (as of 2012)

Format Type IE Chrome Firefox safari Opera Mobile Mobile safari Android

MP3 audio/mpeg 9.0+ 5.0+ – 4+ – 3.0+ 2.0+

WAV audio/wav or
audio/wave

– 5.0+ 3.5+ 4+ 10.5+ 3.0+ 2.0+

Ogg Vorbis audio/ogg – 5.0+ 3.5+ – 10.5+ – 2.0+

MPEG-4/AAC audio/mp4 9.0+ 5.0+ – 4+ – 3.0+ 2.0+

WebM audio/webm 9.0+ 6.0+ 4.0+ – 11+ – 2.3.3+

Video and Audio Encoding Tools
There are scores of options for editing and encoding video and
audio files, so I can’t cover them all here, but the following tools
are free and get the job done.

Video conversion
 y Miro Video Converter (www.mirovideoconverter.com) is a

free tool that converts any video to H.264, Ogg Theora, or
WebM format optimized for mobile devices or the desktop
with a simple drag-and-drop interface. It is available for OS X
and Windows.

 y Handbrake (handbrake.fr) is a popular open source tool for
getting better control over H.264 settings. It is available for
Windows, OS X, and Linux.

 y Firefogg (firefogg.org) is an extension to Firefox for

converting video to the Ogg Theora format. Simply install the
Firefogg extension to Firefox 3.5+, then visit the Firefogg site
and convert video using their online interface.

Audio conversion
 y MP3/WMA/Ogg Converter (www.freemp3wmaconverter.

com) is a free tool that converts the following audio formats:
MP3, WAV, WMA, OGG, AAC, and more. Sorry, Mac users; it is
Windows only.

 y On the Mac, try Max, an open source audio converter
available at sbooth.org/Max/. Audacity (audacity.sourceforge.
net/) also has some basic conversion tools in addition to
being a recording tool.

www.it-ebooks.info

http://www.mirovideoconverter.com
http://www.freemp3wmaconverter.com
http://www.freemp3wmaconverter.com
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
http://www.it-ebooks.info/

Video and Audio

Chapter 10, What’s Up, HTML5? 195

Adding a video to a page
I guess it’s about time we got to the markup for adding a video to a web page
(this is the HTML part of the book, after all). Let’s start with an example that
assumes you are designing for an environment where you know exactly what
browser your user will be using. When this is the case, you can provide only
one video format using the src attribute in the video tag (just as you do for
an img). Figure 10-2 shows a movie with the default player in the Chrome
browser. We’ll look at the other attributes after the example.

<video src="highlight_reel.mp4" width="640" height="480"
poster="highlight_still.jpg" controls autoplay>
</video>

Figure 10-2. An embedded movie using the video element (shown in Chrome on Mac).

There are some juicy attributes in that example worth looking at in detail.

width="pixel measurement"
height="pixel measurement"

Specifies the size of the box the embedded media player takes up on
the screen. Generally, it is best to set the dimensions to exactly match
the pixel dimensions of the movie. The movie will resize to match the
dimensions set here.

poster="url of image"
Provides the location of a still image to use in place of the video before
it plays.

controls
Adding the controls attribute prompts the browser to display its built-in
media controls, generally a play/pause button, a “seeker” that lets you
move to a position within the video, and volume controls. It is possible to

wa R n i n G

iOS3 devices will not play a video that
includes the poster attribute, so avoid
using it if you need to support old
iPhones and iPads.

<video>...</video>
Adds a video player to the page

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure196

Video and Audio

create your own custom player interface using CSS and JavaScript if you
want more consistency across browsers. How to do that is beyond the
scope of this chapter, but is explained in the resources listed in the For
Further Reading: HTML5 Media sidebar. In many instances, the default
controls are just fine.

autoplay
Makes the video start playing automatically once it has downloaded
enough of the media file to play through without stopping. In general,
use of autoplay should be avoided in favor of letting the user decide
when the video should start.

In addition, the video (and audio) element can use the loop attribute to make
the video play again once it has finished (ad infinitum), muted for playing
the video track without the audio, mediagroup for making a video element
part of a group of related media elements (such as a video and a synced sign
language translation), and preload for suggesting to the browser whether
the video data should be fetched as soon as the page loads (preload="auto")
or wait until the user presses the play button (preload="none"). Setting
preload="metadata" loads information about the media file, but not the
media itself. A device can decide how to best handle the auto setting; for
example, a browser in a smartphone may protect a user’s data usage by not
preloading media, even when it is set to auto.

Video for all!
But wait a minute! We already know that one video format isn’t going to
cut it in the real world. At the very least, you need to make two versions of
your video: Ogg Theora and MPEG-4 (H.264 video). Some developers prefer
WebM instead of Ogg because browser support is nearly as good and the
files are smaller. As a fallback for users with browsers that don’t support
HTML5 video, you can embed a Flash player on the page or use a service
like YouTube or Vimeo, in which case you let them handle the conversion,
and you just copy the embed code.

In the markup, a series of source elements inside the video element point
to each video file. Browsers look down the list until they find one they sup-
port and download only that version. The Flash fallback gets added with
the traditional object and embed elements, so if a browser can’t make head
or tails of video and source, chances are high it can play it in Flash. Finally,
to ensure accessibility for all, it is highly recommended that you add some
simple links to download the videos so they can be played in whatever media
player is available, should all of the above fail.

Without further ado, here is one (very thorough) code example for embed-
ding video that should serve all users, including those on mobile devices.
You may choose not to provide all these formats, so adapt it accordingly.

object and embed
The object element is the generic
way to embed media such as a
movie, Flash movie, applet, even
images in a web page. It contains
a number of param (for parameters)
elements that provide instructions
or resources that the object needs
to display. You can also put fallback
content inside the object element
that is used if the media is not
supported. The attributes and
parameters vary by object type and
are sometimes specific to the third-
party plugin displaying the media.

The object's poor cousin, embed, also
embeds media on web pages. It has
been a non-standard, but widely
supported, element until it was finally
made official in HTML5. Some media
require the use of embed, which is
often used as a fallback in an object
element to appease all browsers.

You can see an example of the
object and param elements in the
“Video for Everybody” code example
on the following page.

www.it-ebooks.info

http://www.it-ebooks.info/

Video and Audio

Chapter 10, What’s Up, HTML5? 197

The following example is based on the code in Kroc Camen’s article “Video
for Everybody” (camendesign.com/code/video_for_everybody). I highly rec-
ommend checking that page for updates, instructions for modifying the
code, and many more technical details. We’ll look at each part following
the example.

<video id="yourmovieid" width="640" height="360" poster="yourmovie_
still.jpg" controls preload="auto">
 <source src="yourmovie-baseline.mp4" type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="yourmovie.webm" type='video/webm; codecs="VP8,
vorbis"'>
 <source src="yourmovie.ogv" type='video/ogg; codecs="theora,
vorbis"'>
<!--Flash fallback -->
 <object width="640" height="360" type="application/x-shockwave-
flash" data="your_flash_player.swf">
 <param name="movie" value="your_flash_player.swf">
 <param name="flashvars" value="controlbar=over&image=poster.
jpg&file=yourmovie-main.mp4">
 <img src="poster.jpg" width="640" height="360" alt=""
 title="No video playback capabilities, please download the video
below">
 </object>
</video>
<p>Download the Highlights Reel:</p>

 MPEG-4 format
 Ogg Theora format

Each source element contains the location of the media file (src) and infor-
mation about its file type (type). In addition to listing the MIME type of the
file container (e.g., video/ogg), it is helpful to also list the codecs that were
used (see the note). This is especially important for MPEG-4 video because
the H.264 codec has a number of different profiles, such as baseline (used by
mobile devices), main (used by desktop Safari and IE9+), extended, and high
(these two are generally not used for web video). Each profile has its own
profile ID, as you see in the first source element in the example.

Technically, the order of the source elements doesn’t matter, but to com-
pensate for a bug on early iPads, it is best to put the baseline MPEG-4 first
in the list. iPads running iOS 3 won’t find it if it’s further down, and it won’t
hurt any other browsers.

After the source elements, an object element is used to embed a Flash player
that will play the MPEG-4 video for browsers that have the Flash plug-in.
There are many Flash players available, but Kroc Camen (of “Video for
Everybody” fame) recommends JW Player, which is easy to install (just put
a JavaScript .js file and the Flash .swf file on your server). Download the JW
Player and instructions for installing and configuring it at www.longtailvideo.
com/players/jw-flv-player/. If you use the JW Player, replace your_flash_play-
er.swf in the example with player.swf.

n oT e

If you look carefully, you’ll see that
single quotation marks (') were used
to enclose the long string of values for
the type attribute in the source element.
That is because the codecs must be
enclosed in double quotation marks, so
the whole attribute requires a different
quotation mark type.

n oT e

In this example, the MPEG-4 video is
provided at “baseline” quality in order
to play on iOS 3 devices. If iOS3 is
obsolete when you are reading this or
does not appear in your traffic data, you
can provide the higher-quality “main”
profile version instead:

<source src="yourmovie-
main.mp4" type='video/mp4;
codecs="avc1.4D401E, mp4a.40.2"'>

www.it-ebooks.info

file:///Volumes/Data_monograph/R6000%20Learning%20Web%20Design/Received/2012-06-14/B2-final-MS_part1/view-source:http://camendesign.com/code/video_for_everybody/poster.jpg
http://www.longtailvideo.com/players/jw-flv-player/
http://www.longtailvideo.com/players/jw-flv-player/
http://www.it-ebooks.info/

Part II, HTML Markup for structure198

Canvas

It is important to note that the Flash fallback is for browsers that do not
recognize the video element. If a browser does support video but simply
does not support one of the media file formats, it will not display the Flash
version. It shows nothing. That’s why it is a good idea to have direct links (a)
to the video options outside the video element for maximum accessibility.

Finally, if you want the video to start playing automatically, add the auto-
play attribute to the video element and autostart=true to the Flash param
element like this:

<video src="movie.mp4" width="640" height="480" autoplay>

<param name="flashvars" value="autostart=true&controlbar=over&
image=poster.jpg& file=yourmovie-main.mp4">

Keep in mind that videos will not play automatically on iOS devices, even
if you set it in the code. Apple disables autoplay on its mobile devices to
prevent unintended data transfer.

Adding audio to a page
If you’ve wrapped your head around the video markup example, you already
know how to add audio to a page. The audio element uses the same attri-
butes as the video element, with the exception of width, height, and poster
(because there is nothing to display). Just like the video element, you can
provide a stack of audio format options using the source element, as shown
in the example here.

<audio id="soundtrack" controls preload="auto">
 <source src="soundtrack.mp3" type="audio/mp3">
 <source src="soundtrack.ogg" type="audio/ogg">
 <source src="soundtrack.webm" type="audio/webm">
</audio>
<p>Download the Soundtrack song:</p>

 MP3
 Ogg Vorbis

If you want to be evil, you could embed audio in a page, set it to play auto-
matically and then loop, and not provide any controls to stop it like this:

<audio src="soundtrack.mp3" autoplay loop></audio>

But you would never, ever do something like that, right? Right?! Of course
you wouldn’t.

Canvas
Another cool, “Look Ma, no plug-ins!” addition in HTML5 is the canvas
element and the associated Canvas API. The canvas element creates an area
on a web page that you can draw on using a set of JavaScript functions for
creating lines, shapes, fills, text, animations, and so on. You could use it to

wa R n i n G

If your server is not configured to prop-
erly report the video type (its MIME
type) of your video and audio files,
some browsers will not play them. The
MIME types for each format are listed
in the “Type” column in Tables 10-4
and 10-5. So be sure to notify your serv-
er administrator or hosting company’s
technical help if you intend to serve
media files and get the MIME types set
up correctly.

wa R n i n G

Firefox versions 7 and earlier do not
support the loop attribute.

<audio>...</audio>
Adds an audio file to the page

www.it-ebooks.info

http://www.it-ebooks.info/

Canvas

Chapter 10, What’s Up, HTML5? 199

display an illustration, but what gives the canvas element so much potential
(and has all the web development world so delighted) is that it’s all gener-
ated with scripting. That means it is dynamic and can draw things on the fly
and respond to user input. This makes it a nifty platform for creating ani-
mations, games, and even whole applications…all using the native browser
behavior and without proprietary plug-ins like Flash.

The good news is that Canvas is supported by every current browser
as of this writing, with the exception of Internet Explorer 8 and earlier.
Fortunately, the FlashCanvas JavaScript library (flashcanvas.net) can add
Canvas support to those browsers using the Flash drawing API. So Canvas
is definitely ready for prime time.

Figure 10-3 shows a few examples of the canvas element used to create
games, drawing programs, an interactive molecule structure tool, and an
asteroid animation. You can find more examples at Canvasdemos.com.

ie.microsoft.com/testdrive/Performance/AsteroidBelt/# www.rel�nd.com/game/magician.html

alteredqualia.com/canvasmol/muro.deviantart.com

Figure 10-3. A few examples of the canvas element used for games, animations, and applications.

Mastering the canvas element is more than we can take on here, particularly
without any JavaScript experience under our belts, but I will give you a taste
of what it is like to draw with JavaScript. That should give you a good idea
of how it works, and also a new appreciation for the complexity of some of
those examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure200

Canvas

The canvas element
You add a canvas space to the page with the canvas element and specify the
dimensions with the width and height attributes. And that’s really all there
is to the markup. For browsers that don’t support the canvas element, you
can provide some fallback content (a message, image, or whatever seems
appropriate) inside the tags.

<canvas width="600" height="400" id="my_first_canvas">
 Your browser does not support HTML5 canvas. Try using Chrome,
Firefox, Safari or Internet Explorer 9.
</canvas>

The markup just clears a space on which the drawing will happen.

Drawing with Javascript
The Canvas API includes functions for creating basic shapes (such as
strokeRect() for drawing a rectangular outline and beginPath() for starting
a line drawing) and moving things around (such as rotate() and scale()),
plus attributes for applying styles (for example, lineWidth, strokeStyle,
fillStyle, and font).

The following example was created by my O’Reilly Media colleague Sanders
Kleinfeld for his book HTML5 for Publishers (O’Reilly). He was kind enough
to allow me to use it in this book.

Figure 10-4 shows the simple smiley face we’ll be creating with the Canvas
API.

And here is the script that created it. Don’t worry that you don’t know any
JavaScript yet. Just skim through the script and pay attention to the little
notes. I’ll also describe some of the functions in use at the end. I bet you’ll
get the gist of it just fine.

<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasApp(){
var theCanvas = document.getElementById('my_first_canvas');
var my_canvas = theCanvas.getContext('2d');
my_canvas.strokeRect(0,0,200,225)
 // to start, draw a border around the canvas

 //draw face
my_canvas.beginPath();
my_canvas.arc(100, 100, 75, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.strokeStyle = "black"; // circle outline is black
my_canvas.lineWidth = 3; // outline is three pixels wide
my_canvas.fillStyle = "yellow"; // fill circle with yellow
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle

Figure 10-4. The finished product of
our “Hello Canvas” canvas example.
See the original at examples.oreilly.
com/0636920022473/my_first_canvas/
my_first_canvas.html.

<canvas>...</canvas>
Adds a 2-D dynamic drawing area

www.it-ebooks.info

http://www.it-ebooks.info/

Canvas

Chapter 10, What’s Up, HTML5? 201

my_canvas.closePath();

 // now, draw left eye
my_canvas.fillStyle = "black"; // switch to black for the fill
my_canvas.beginPath();
my_canvas.arc(65, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // now, draw right eye
my_canvas.beginPath();
my_canvas.arc(135, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // draw smile
my_canvas.lineWidth = 6; // switch to six pixels wide for outline
my_canvas.beginPath();
my_canvas.arc(99, 120, 35, (Math.PI/180)*0, (Math.PI/180)*-180, false);
 // semicircle dimensions
my_canvas.stroke();
my_canvas.closePath();

 // Smiley Speaks!
my_canvas.fillStyle = "black"; // switch to black for text fill
my_canvas.font = '20px _sans'; // use 20 pixel sans serif font
my_canvas.fillText ("Hello Canvas!", 45, 200); // write text
}
</script>

Finally, here is a little more information on the Canvas API functions used
in the example:

strokeRect(x1, y1, x2, y2)
Draws a rectangular outline from the point (x1, y1) to (x2, y2). By
default, the origin of the Canvas (0,0) is the top-left corner, and x and y
coordinates are measured to the right and down.

beginPath()
Starts a line drawing.

closePath()
Ends a line drawing that was started with beginPath().

arc(x, y, arc_radius, angle_radians_beg, angle_radians_end)
Draws an arc where (x,y) is the center of the circle, arc_radius is the
length of the radius of the circle, and angle_radians_beg and _end indi-
cate the beginning and end of the arc angle.

stroke()
Draws the line defined by the path. If you don’t include this, the path
won’t appear on the canvas.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure202

Final Word

fill()
Fills in the path specified with beginPath() and endPath().

fillText(your_text, x1, y1)
Adds text to the canvas starting at the (x,y) coordinate specified.

In addition, the following attributes were used to specify colors and styles:

lineWidth
Width of the border of the path.

strokeStyle
Color of the border.

fillStyle
Color of the fill (interior) of the shape created with the path.

font
The font and size of the text.

Of course, the Canvas API includes many more functions and attributes than
we’ve used here. For a complete list, see the W3C’s HTML5 Canvas 2D
Context specification at dev.w3.org/html5/2dcontext/. A web search will turn
up lots of canvas tutorials should you be ready to learn more. In addition, I
can recommend these resources:

•	 The book HTML5 Canvas by Steve Fulton and Jeff Fulton (O’Reilly
Media)

•	 Or if watching a video is more your speed, try this tutorial: Client-side
Graphics with HTML5 Canvases: An O’Reilly Breakdown (shop.oreilly.
com/product/0636920016502.do)

Final Word
By now you should have a good idea of what’s up with HTML5. We’ve
looked at new elements for adding improved semantics to documents. You
got a whirlwind tour of the various APIs in development that will move some
useful functionality into the native browser behavior. You learned how to
use the video and audio elements to embed media on the page (plus a primer
on media formats). And finally, you got a peek at the canvas element.

In the next part of this book, CSS for Presentation, you’ll learn how to write
style sheets that customize the look of the page, including text styles, colors,
backgrounds, and even page layout. Goodbye, default browser styles!

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 10, What’s Up, HTML5? 203

Test Yourself
Let’s see if you were paying attention. These questions should test whether
you got the important highlights of this chapter. Good luck! And as always,
the answers are in Appendix A.

1. What is the difference between HTML and XHTML?

2. Using the XHTML Markup Requirements sidebar as a guide, rewrite
these HTML elements in XHTML syntax.

a. <H1> … </H1>

b.

c. <input type="radio" checked>

d. <hr>

e. <title>Sifl & Olly</title>

f.
 popcorn
 butter
 salt

3. What is a DTD?

4. Name at least three ways that HTML5 is unique as a specification.

5. What is a “global attribute”?

www.it-ebooks.info

http://www.it-ebooks.info/

Part II, HTML Markup for structure204

Test Yourself

6. Match the API with its function:

Web Workers _____

Editing API _____

Geolocation API _____

Web Socket _____

Offline Applications _____

 a. Makes longitude and latitude information
available

 b. Holds a line of communication open
between the server and browser

 c. Makes web apps work even when there is
no Internet connection

 d. Runs processor-intensive scripts in the
background

 e. Provides a set of commands for copying,
pasting, and text formatting

7. Identify each of the following as a container format, video codec, or
audio codec.

Ogg ____________________

H.264 ____________________

VP8 ____________________

Vorbis ____________________

WebM ____________________

Theora ____________________

AAC ____________________

MPEG-4 ____________________

8. List the two Canvas API functions for drawing a rectangle and filling it
with red. You don’t need to write the whole script.

www.it-ebooks.info

http://www.it-ebooks.info/

IN THIs PART

Chapter 11
Cascading Style Sheets

Orientation

Chapter 12
Formatting Text

(Plus More Selectors)

Chapter 13
Colors and Backgrounds

(Plus Even More Selectors
and External Style Sheets)

Chapter 14
Thinking Inside the Box
(Padding, Borders, and

Margins)

Chapter 15
Floating and Positioning

Chapter 16
Page Layout with CSS

Chapter 17
Transitions, Transforms,

and Animation

Chapter 18
CSS Techniques

cSS for
preSentation PART III

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

207

IN THIs CHAPTER

The benefits and power of
Cascading Style Sheets

(CSS)

How HTML markup creates
a document structure

Writing CSS style rules

Attaching styles to the
HTML document

The big CSS concepts of
inheritance, the cascade,

specificity, rule order, and
the box model

You’ve heard style sheets mentioned quite a bit already, and now we’ll
finally put them to work and start giving our pages some much needed style.
Cascading Style Sheets (CSS) is the W3C standard for defining the presen-
tation of documents written in HTML, and in fact, any XML language.
Presentation, again, refers to the way the document is displayed or delivered
to the user, whether on a computer screen, a cell phone display, printed on
paper, or read aloud by a screen reader. With style sheets handling the pre-
sentation, HTML can handle the business of defining document structure
and meaning, as intended.

CSS is a separate language with its own syntax. This chapter covers CSS
terminology and fundamental concepts that will help you get your bearings
for the upcoming chapters, where you’ll learn how to change text and font
styles, add colors and backgrounds, and even do basic page layout. By the
end of Part III I aim to give you a solid foundation for further reading on your
own and lots of practice.

The Benefits of Css
Not that you need further convincing that style sheets are the way to go, but
here is a quick rundown of the benefits of using style sheets.

•	 Precise type and layout controls. You can achieve print-like precision
using CSS. There is even a set of properties aimed specifically at the
printed page (but we won’t be covering them in this book).

•	 Less work. You can change the appearance of an entire site by editing
one style sheet.

•	 More accessible sites. When all matters of presentation are handled by
CSS, you can mark up your content meaningfully, making it more acces-
sible for non-visual or mobile devices.

•	 Reliable browser support. Every browser in current use supports CSS
Level 2 and many cool parts of CSS Level 3. (See the sidebar A Quick History
of CSS at the end of this chapter for what is meant by CSS “levels.”)

CasCaDIng stYle sheets
orIentatIon

CHAPTER 11

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation208

The Benefits of Css

Come to think of it, there really aren’t any disadvantages to using style sheets.
There are some lingering hassles from browser inconsistencies, but they can
either be avoided or worked around if you know where to look for them.

The power of Css
We’re not talking about minor visual tweaks here, like changing the color
of headlines or adding text indents. When used to its full potential, CSS is a
robust and powerful design tool. My eyes were first opened to the possibili-
ties of using CSS for design by the variety and richness of the designs at CSS
Zen Garden (www.csszengarden.com).

In the misty days of yore, when developers were still hesitant to give up their
table-based layouts for CSS, David Shea’s CSS Zen Garden site demonstrat-
ed exactly what could be accomplished using CSS alone. David posted an
HTML document and invited designers to contribute their own style sheets
that gave the document a visual design. Figure 11-1 shows just a few of my
favorites. All of these designs use the exact same HTML source document.

CSS Zen Dragen
by Matthew Buchanan

Shaolin Yokobue
by Javier Cabrera

By the Pier
by Peter OngKelmscott

Organica Creativa
by Eduardo Cesario

Figure 11-1. These pages from the CSS Zen Garden use the same XHTML source
document, but the design is changed using exclusively CSS (used with permission of CSS
Zen Garden and the individual designers).

www.it-ebooks.info

http://www.it-ebooks.info/

How style sheets Work

Chapter 11, Cascading style sheets Orientation 209

Not only that, it doesn’t include a single img element (all of the images are
used as backgrounds). But look at how different each page looks—and how
sophisticated. That’s all done with style sheets. It was proof of the power in
keeping CSS separate from HTML, and presentation separate from structure.

The CSS Zen Garden is no longer being updated and now is considered a
historical document of a turning point in the adoption of web standards.
Despite its age, I still find it to be a nice one-stop lesson for demonstrating
exactly what CSS can do.

Granted, it takes a lot of practice to be able to create CSS layouts like those
shown in Figure 11-1. Killer graphic design skills help too (unfortunately,
you won’t get those in this book). I’m showing this to you up front because
I want you to be aware of the potential of CSS-based design, particularly
because the examples in this beginners’ book tend to be simple and straight-
forward. Take your time learning, but keep your eye on the prize.

How style sheets Work
It’s as easy as 1-2-3!

1. Start with a document that has been marked up in HTML.

2. Write style rules for how you’d like certain elements to look.

3. Attach the style rules to the document. When the browser displays the
document, it follows your rules for rendering elements (unless the user
has applied some mandatory styles, but we’ll get to that later).

OK, so there’s a bit more to it than that, of course. Let’s give each of these
steps a little more consideration.

1. Marking up the document
You know a lot about marking up content from the previous chapters. For
example, you know that it is important to choose elements that accurately
describe the meaning of the content. You’ve also heard me say that the
markup creates the structure of the document, sometimes called the struc-
tural layer, upon which the presentation layer can be applied.

In this and the upcoming chapters, you’ll see that having an understanding
of your document’s structure and the relationships between elements is cen-
tral to your work as a style sheet author.

To get a feel for how simple it is to change the look of a document with style
sheets, try your hand at Exercise 11-1. The good news is that I’ve whipped
up a little HTML document for you to play with.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation210

How style sheets Work

2. Writing the rules
A style sheet is made up of one or more style instructions (called rules or rule
sets) that describe how an element or group of elements should be displayed.
The first step in learning CSS is to get familiar with the parts of a rule. As
you’ll see, they’re fairly intuitive to follow. Each rule selects an element and
declares how it should look.

The following example contains two rules. The first makes all the h1 ele-
ments in the document green; the second specifies that the paragraphs
should be in a small, sans-serif font.

h1 { color: green; }
p { font-size: small; font-family: sans-serif; }

In CSS terminology, the two main sections of a rule are the selector that
identifies the element or elements to be affected, and the declaration that
provides the rendering instructions. The declaration, in turn, is made up of
a property (such as color) and its value (green), separated by a colon and a
space. One or more declarations are placed inside curly brackets, as shown
in Figure 11-3.

n oT e

Sans-serif fonts do not have a little slab
(a serif) at the ends of strokes and tend
to look more sleek and modern. We’ll
talk a lot more about font families in
Chapter 12, Formatting Text.

Figure 11-2. This what the article looks like without any style sheet instructions.
Although we won’t be making it beautiful, you will get a feel for how styles work.

exercise 11-1 | Your
first style sheet
In this exercise, we’ll add a few simple
styles to a short article. The document,
twenties.html, and its associated image,
twenty_20s.jpg, are available at www.
learningwebdesign.com/4e/materials/.
First, open the document in a browser
to see how it looks by default (it should
look something like Figure 11-2). You
can also open the document in a text
editor and get ready to follow along
when this exercise continues in the next
section.

www.it-ebooks.info

http://www.it-ebooks.info/

How style sheets Work

Chapter 11, Cascading style sheets Orientation 211

selector { property: value; } selector {
 property1: value1;
 property2: value2;
 property3: value3;
 }

declaration declaration block

Figure 11-3. The parts of a style sheet rule.

selectors
In the previous small style sheet example, the h1 and p elements are used as
selectors. This is called an element type selector, and it is the most basic type
of selector. The properties defined for each rule will apply to every h1 and p
element in the document, respectively. In upcoming chapters, I’ll introduce
you to more sophisticated selectors that you can use to target elements,
including ways to select groups of elements and elements that appear in a
particular context.

Mastering selectors—that is, choosing the best type of selector and using it
strategically—is an important step in becoming a CSS Jedi Master.

Declarations
The declaration is made up of a property/value pair. There can be more
than one declaration in a single rule; for example, the rule for the p element
shown earlier in the code example has both the font-size and font-family
properties. Each declaration must end with a semicolon to keep it separate
from the following declaration (see note). If you omit the semicolon, the
declaration and the one following it will be ignored. The curly brackets and
the declarations they contain are often referred to as the declaration block
(Figure 11-3).

Because CSS ignores whitespace and line returns within the declaration
block, authors typically write each declaration in the block on its own line,
as shown in the following example. This makes it easier to find the proper-
ties applied to the selector and to tell when the style rule ends.

p {
 font-size: small;
 font-family: sans-serif;
}

Note that nothing has really changed here—there is still one set of curly
brackets, semicolons after each declaration, etc. The only difference is the
insertion of line returns and some character spaces for alignment.

The heart of style sheets lies in the collection of standard properties that
can be applied to selected elements. The complete CSS specification defines
dozens of properties for everything from text indents to how table headers

n oT e

Technically, the semicolon is not
required after the last declaration in the
block, but it is recommended that you
get into the habit of always ending dec-
larations with a semicolon. It will make
adding declarations to the rule later that
much easier.

Providing
Measurement
Values
When providing measurement
values, the unit must immediately
follow the number, like this:

margin: 2em;

Adding a space before the unit will
cause the property not to work.

INCORRECT: margin: 2 em;

It is acceptable to omit the unit of
measurement for zero values:

margin: 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation212

How style sheets Work

should be read aloud. This book covers the most common and best-support-
ed properties that you can begin using right away.

Values are dependent on the property. Some properties take length mea-
surements, some take color values, and others have a predefined list of
keywords. When using a property, it is important to know which values it
accepts; however, in many cases, simple common sense will serve you well.

Before we move on, why not get a little practice writing style rules yourself
in the continuation of Exercise 11-1?

exercise 11-1 | Your first style sheet (continued)
Open twenties.html in a text editor. In the head of the document
you will find that I have set up a style element for you to type
the rules into. The style element is used to embed a style sheet
in an HTML document.

To begin, we’ll simply add the small style sheet that we just
looked at in this section. Type the following rules into the
document, just as you see them here:

<style type="text/css">
h1 {
 color: green;
}
p {
 font-size: small;
 font-family: sans-serif;
}
</style>

Save the file, and take a look at it in the browser. You should
notice some changes (if your browser already uses a sans-serif
font, you may only see a size change). If not, go back and check
that you included both the opening and closing curly bracket
and semicolons. It’s easy to accidentally omit these characters,
causing the style sheet not to work.

Now we’ll change and add to the style sheet to see how easy
it is to write rules and see the effects of the changes. Here
are a few things to try (remember that you need to save the
document after each change in order for the changes to be
visible when you reload it in the browser).

 y Make the h1 element “gray” and take a look at it in the
browser. Then make it “blue”. Finally, make it “red”. (We’ll run
through the complete list of available color names in Chapter
13, Colors and Backgrounds.)

 y Add a new rule that makes the h2 elements red as well.

 y Add a 100-pixel left margin to paragraph (p) elements using
this declaration:

 margin-left: 100px;

Remember that you can add this new declaration to the existing
rule for p elements.

 y Add a 100-pixel left margin to the h2 headings as well.

 y Add a red, 1-pixel border to the bottom of the h1 element
using this declaration:

border-bottom: 1px solid red;

 y Move the image to the right margin, and allow text to flow
around it with the float property. The shorthand margin
property shown in this rule adds zero pixels of space on
the top and bottom of the image and 12 pixels of space on
the left and right of the image (the values are mirrored in a
manner explained in Chapter 14, Thinking Inside the Box).

img {
 float: right;
 margin: 0 12px;
}

When you are done, the document should look something like
the one shown in Figure 11-4.

Figure 11-4. The article after adding the small style sheet
from the example. As I said, not beautiful; just different.

www.it-ebooks.info

http://www.it-ebooks.info/

How style sheets Work

Chapter 11, Cascading style sheets Orientation 213

3. Attaching the styles to the document
In the previous exercise, we embedded the style sheet right in the document
using the style element. That is just one of three ways that style information
can be applied to an HTML document. You’ll get to try out each of these
soon, but it is helpful to have an overview of the methods and terminology
up front.

External style sheets. An external style sheet is a separate, text-only docu-
ment that contains a number of style rules. It must be named with the
.css suffix. The .css document is then linked to or imported into one or
more HTML documents (we’ll discuss how in Chapter 13). In this way,
all the files in a website may share the same style sheet. This is the most
powerful and preferred method for attaching style sheets to content.

Embedded style sheets. This is the type of style sheet we worked with in the
exercise. It is placed in a document using the style element, and its rules
apply only to that document. The style element must be placed in the
head of the document. This example also includes a comment (see the
Comments in Style Sheets sidebar).

<head>
 <title>Required document title here</title>
 <style>
 /* style rules go here */
 </style>
</head>

Comments in style sheets
Sometimes it is helpful to leave yourself or your collaborators comments in a style
sheet. CSS has its own comment syntax, shown here:

/* comment goes here */

Content between the /* and */ will be ignored when the style sheet is parsed, which
means you can leave comments anywhere in a style sheet, even within a rule.

body {
 font-size: small;
 /* font-size:large; */

}

One use for comments is to label sections of the style sheet to make things easier to
find later, for example:

/* Layout styles */

or:

/* FOOTER STYLES */

CSS comments are also useful for temporarily hiding style declarations in the design
process. When I am trying out a number of styles, I can quickly switch styles off
by enclosing them in /* and */, check it in a browser, then remove the comment
characters to make the style appear again. It’s much faster than retyping the entire
thing.

n oT e

In HTML 4.01 and XHTML 1.0/1.1,
the style element must contain a type
attribute that identifies the content of
the style element:

<style type="text/css">

In HTML5, the type attribute is no lon-
ger required.

The style element may also include the
media attribute used to target specific
media such as screen, print, or handheld
devices. These are discussed in Chapter
13 as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation214

The Big Concepts

Inline styles. You can apply properties and values to a single element using
the style attribute in the element itself, as shown here:

<h1 style="color: red">Introduction</h1>

To add multiple properties, just separate them with semicolons, like this:

<h1 style="color: red; margin-top: 2em">Introduction</h1>

Inline styles apply only to the particular element in which they appear.
Inline styles should be avoided, unless it is absolutely necessary to over-
ride styles from an embedded or external style sheet. Inline styles are
problematic in that they intersperse presentation information into the
structural markup. They also make it more difficult to make changes
because every style attribute must be hunted down in the source.

Exercise 11-2 gives you an opportunity to write an inline style and see how
it works. We won’t be working with inline styles after this point for the rea-
sons listed earlier, so here’s your chance.

The Big Concepts
There are a few big ideas that you need to get your head around to be com-
fortable with how Cascading Style Sheets behave. I’m going to introduce
you to these concepts now so we don’t have to slow down for a lecture once
we’re rolling through the style properties. Each of these ideas will certainly
be revisited and illustrated in more detail in the upcoming chapters.

Inheritance
Are your eyes the same color as your parents’? Did you inherit their hair
color? Your unique smile? Well, just as parents pass down traits to their
children, styled HTML elements pass down certain style properties to the
elements they contain. Notice in Exercise 11-1, when we styled the p ele-
ments in a small, sans-serif font, the em element in the second paragraph
became small and sans-serif as well, even though we didn’t write a rule for
it specifically (Figure 11-5). That is because it inherited the styles from the
paragraph it is in.

p {font-size: small; font-family: sans-serif;}

Unstyled paragraph

Paragraph with style
rule applied

The emphasized text (em) element is small and sans-serif even
though it has no style rule of its own. It inherits the styles from
the paragraph that contains it.

Figure 11-5. The em element inherits styles that were applied to the paragraph.

exercise 11-2 |
Applying an inline
style
Open the article twenties.html in
whatever state you last left it in
Exercise 11-1. If you worked to the
end of the exercise, you will have a
rule that makes the h2 elements red.

Write an inline style that makes the
second h2 gray. We’ll do that right in
the opening h2 tag using the style
attribute, as shown here:

<h2 style="color: gray">
Connect-the-Dots</h2>

Save the file and open it in a browser.
Now the second heading is gray,
overriding the red color set in the
embedded style sheet. The other h2
heading is unaffected.

www.it-ebooks.info

http://www.it-ebooks.info/

The Big Concepts

Chapter 11, Cascading style sheets Orientation 215

Document structure
This is where an understanding of your document’s structure becomes
important. As I’ve noted before, HTML documents have an implicit struc-
ture or hierarchy. For example, the sample article we’ve been playing with
has an html root element that contains a head and a body, and the body
contains heading and paragraph elements. A few of the paragraphs, in turn,
contain inline elements such as images (img) and emphasized text (em). You
can visualize the structure as an upside-down tree, branching out from the
root, as shown in Figure 11-6.

html

head body

title style h1 p p h2 p p p h2 p p

em img em em

meta

Figure 11-6. The document tree structure of the sample document, twenties.html.

Parents and children
The document tree becomes a family tree when it comes to referring to the
relationship between elements. All the elements contained within a given
element are said to be its descendants. For example, the h1, h2, p, em, and
img elements in the document in Figure 11-6 are all descendants of the body
element.

An element that is directly contained within another element (with no inter-
vening hierarchical levels) is said to be the child of that element. Conversely,
the containing element is the parent. For example, the em element is the child
of the p element, and the p element is its parent.

All of the elements higher than a particular element in the hierarchy are its
ancestors. Two elements with the same parent are siblings. We don’t refer
to “aunts” or “cousins,” so the analogy stops there. This may all seem aca-
demic, but it will come in handy when writing CSS selectors.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation216

The Big Concepts

Pass it on
When you write a font-related style rule using the p element as a selector, the
rule applies to all of the paragraphs in the document as well as the inline text
elements they contain. We’ve seen the evidence of the em element inheriting
the style properties applied to its parent (p) back in Figure 11-5. Figure 11-7
demonstrates what’s happening in terms of the document structure diagram.
Note that the img element is excluded because font-related properties do not
apply to images.

p {font-size: small; font-family: sans-serif;}

html

head body

h1 p p h2 p p p h2 p p

em img em em

title style meta

Figure 11-7. Certain properties applied to the p element are inherited by their children.

Notice that I’ve been saying “certain” properties are inherited. It’s important
to note that some style sheet properties inherit and others do not. In general,
properties related to the styling of text—font size, color, style, etc.—are
passed down. Properties such as borders, margins, backgrounds, and so on,
that affect the boxed area around the element tend not to be passed down.
This makes sense when you think about it. For example, if you put a border
around a paragraph, you wouldn’t want a border around every inline ele-
ment (such as em, strong, or a) it contains as well.

You can use inheritance to your advantage when writing style sheets. For
example, if you want all text elements to be rendered in the Verdana font
face, you could write separate style rules for every element in the document
and set the font-face to Verdana. A better way would be to write a single
style rule that applies the font-face property to the body element, and let all
the text elements contained in the body inherit that style (Figure 11-8).

Any property applied to a specific element will override the inherited values
for that property. Going back to the article example, we could specify that
the em element should appear in a serif font, and that would override the
inherited sans-serif setting.

When you learn a new property, it
is a good idea to note whether it
inherits. Inheritance is noted for every
property listing in this book. For the
most part, inheritance follows your
expectations.

C S S T i p

wa R n i n G

The browser’s style sheet may override
styles set on the body, so be on the look-
out for unexpected styling.

www.it-ebooks.info

http://www.it-ebooks.info/

The Big Concepts

Chapter 11, Cascading style sheets Orientation 217

body {font-size: small; font-family: sans-serif;}

html

head body

h1 p p h2 p p p h2 p p

em img em em

If you apply a font-related property to the body
element, it will be passed down to all the text elements
in the document (note that font properties do not apply
to the img element, so it is excluded).

title style meta

Figure 11-8. All the elements in the document inherit certain properties applied to the
body element.

Conflicting styles: the cascade
Ever wonder why they are called “cascading” style sheets? CSS allows you
to apply several style sheets to the same document, which means there
are bound to be conflicts. For example, what should the browser do if a
document’s imported style sheet says that h1 elements should be red, but its
embedded style sheet has a rule that makes h1s purple?

The folks who wrote the style sheet specification anticipated this problem
and devised a hierarchical system that assigns different weights to the vari-
ous sources of style information. The cascade refers to what happens when
several sources of style information vie for control of the elements on a page:
style information is passed down (“cascades” down) until it is overridden by
a style command with more weight.

For example, if you don’t apply any style information to a web page, it will
be rendered according to the browser’s internal style sheet (we’ve been call-
ing this the default rendering; the W3C calls it the user agent style sheet).
Individual users can apply their own styles as well (the user style sheet),
which overrides the default styles in their browser. However, if the author
of the web page has attached a style sheet (the author style sheet), that over-
rides both the user and the user agent styles. The only exception is if the user
has identified a style as “important,” in which case that style will trump all
(see the Assigning Importance sidebar).

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation218

The Big Concepts

The style sheet source is one hierarchy that determines which style wins. As
we’ve learned, there are three ways to attach style information to the source
document, and they have a cascading order as well. Generally speaking, the
closer the style sheet is to the content, the more weight it is given. Embedded
style sheets that appear right in the document in the style element have
more weight than external style sheets. In the example that started this sec-
tion, the h1 elements would end up purple as specified in the embedded
style sheet, not red as specified in the external .css file that has less weight.
Inline styles have more weight than embedded style sheets because you can’t
get any closer to the content than a style right in the element’s opening tag.
That’s the effect we witnessed in Exercise 11-2.

To prevent a specific rule from being overridden, you can assign it
“importance” with the !important indicator, as explained in the Assigning
Importance sidebar. The sidebar Style Sheet Hierarchy provides an overview
of the cascading order from general to specific.

specificity
Once the applicable style sheet has been chosen, there may still be conflicts;
therefore, the cascade continues at the rule level. When two rules in a single
style sheet conflict, the type of selector is used to determine the winner. The
more specific the selector, the more weight it is given to override conflicting
declarations.

It’s a little soon to be discussing specificity because we’ve only looked at
one type of selector (and the least specific type, at that). For now, put the
term specificity and the concept of some selectors overriding others on your
radar. We will revisit it in Chapter 12 when you have more selector types
under your belt.

Assigning Importance
If you want a rule not to be overridden by a subsequent
conflicting rule, include the !important indicator just after
the property value and before the semicolon for that rule. For
example, to make paragraph text blue always, use the following
rule:

p {color: blue !important;}

Even if the browser encounters an inline style later in the
document (which should override a document-wide style
sheet), like this one:

<p style="color: red">

that paragraph will still be blue because the rule with the
!important indicator cannot be overridden by other styles in the
author’s style sheet.

The only way an !important rule may be overridden is by

a conflicting rule in a reader (user) style sheet that has also
been marked !important. This is to ensure that special reader
requirements, such as large type for the visually impaired, are
never overridden.

Based on the previous examples, if the reader’s style sheet
includes this rule:

p {color: black;}

the text would still be blue because all author styles (even those
not marked !important) take precedence over the reader’s
styles. However, if the conflicting reader’s style is marked
!important, like this:

p {color: black !important;}

the paragraphs will be black and cannot be overridden by any
author-provided style.

When two rules in a single
style sheet conflict, the
type of selector is used to
determine the winner.

www.it-ebooks.info

http://www.it-ebooks.info/

The Big Concepts

Chapter 11, Cascading style sheets Orientation 219

style sheet Hierarchy
Style information can come from various sources, listed here from general to specific.
Items lower in the list will override items above them:

 y Browser default settings

 y User style settings (set in a browser as a “reader style sheet”)

 y Linked external style sheet (added with the link element)

 y Imported style sheets (added with the @import function)

 y Embedded style sheets (added with the style element)

 y Inline style information (added with the style attribute in an opening tag)

 y Any style rule marked !important by the author

 y Any style rule marked !important by the reader (user)

Rule order
Finally, if there are conflicts within style rules of identical weight, whichever
one comes last in the list “wins.” Take these three rules, for example:

<style>
 p { color: red; }
 p { color: blue; }
 p { color: green; }
</style>

In this scenario, paragraph text will be green because the last rule in the style
sheet—that is, the one closest to the content in the document—overrides the
earlier ones. The same thing happens when conflicting styles occur within a
single declaration stack:

<style>
 p { color: red;
 color: blue;
 color: green; }
</style>

The resulting color will be green because the last declaration overrides
the previous two. It is easy to accidentally override previous declarations
within a rule when you get into compound properties, so this is an important
behavior to keep in mind.

The box model
As long as we’re talking about “big CSS concepts,” it is only appropriate
to introduce the cornerstone of the CSS visual formatting system: the box
model. The easiest way to think of the box model is that browsers see every
element on the page (both block and inline) as being contained in a little
rectangular box. You can apply properties such as borders, margins, pad-
ding, and backgrounds to these boxes, and even reposition them on the
page.

n oT e

This “last one listed wins” rule applies in
other contexts in CSS as well. For exam-
ple, external style sheets listed later in
the source will be given precedence over
those listed above them.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation220

The Big Concepts

We’re going to go into a lot more detail about the box model in Chapter
14, but having a general feel for the box model will benefit you even as we
discuss text and backgrounds in the following two chapters.

To see the elements roughly the way the browser sees them, I’ve written style
rules that add borders around every content element in our sample article.

h1 { border: 1px solid blue; }
h2 { border: 1px solid blue; }
p { border: 1px solid blue; }
em { border: 1px solid blue; }
img { border: 1px solid blue; }

Figure 11-9 shows the results. The borders reveal the shape of each block
element box. There are boxes around the inline elements (em and img) as
well. Notice that the block element boxes expand to fill the available width
of the browser window, which is the nature of block elements in the normal
document flow. Inline boxes encompass just the characters or image they
contain.

Figure 11-9. Rules around all the elements reveal their element boxes.

Grouped selectors
Hey! This is a good opportunity to show you a handy style rule shortcut. If
you ever need to apply the same style property to a number of elements, you
can group the selectors into one rule by separating them with commas. This
one rule has the same effect as the five rules listed previously. Grouping them
makes future edits more efficient and results in a smaller file size.

h1, h2, p, em, img { border: 1px solid blue; }

Now you have two selector types in your toolbox: a simple element selector
and grouped selectors.

Pop Quiz
Can you guess why I didn’t just add
the border property to the body
element and let it inherit to all the
elements in the grouped selector?

Answer:

Because border is one of the
properties that is not inherited.

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Forward with Css

Chapter 11, Cascading style sheets Orientation 221

A Quick History of Css
The first official version of CSS (the CSS Level 1 Recommendation, a.k.a CSS1) was
officially released in 1996, and included properties for adding font, color, and spacing
instructions to page elements. Unfortunately, lack of dependable browser support
prevented the widespread adoption of CSS for several years.

CSS Level 2 (CSS2) was released in 1998. It most notably added properties for
positioning that allowed CSS to be used for page layout. It also introduced styles
for other media types (such as print, handheld, and aural) and more sophisticated
methods for selecting elements for styling. CSS Level 2, Revision 1 (CSS2.1) makes
some minor adjustments to CSS2 and became a full Recommendation in 2011.

CSS Level 3 (CSS3) is different from prior versions in that it has been divided into
many individual modules, each addressing a feature such as animation, multiple
column layouts, or borders. While some modules are being standardized, others
remain experimental. In that way, browser developers can begin implementing
(and we can begin using!) one feature at a time instead of waiting for an entire
specification to be “ready.” In fact, many developers use enhanced CSS3 features
even though they aren’t universally supported as long as the fallback is usable and
no content is lost. They can be used as “frosting” on an otherwise stable design (or in
other words, as an enhancement).

To keep up to date with the various CSS features in the works, see the W3C’s CSS
Current work page at www.w3.org/Style/CSS/current-work.

Moving Forward with Css
This chapter covered all the fundamentals of Cascading Style Sheets, includ-
ing rule syntax, ways to apply styles to a document, and the central concepts
of inheritance, the cascade, and the box model. Style sheets should no longer
be a mystery, and from this point on, we’ll merely be building on this foun-
dation by adding properties and selectors to your arsenal as well as expand-
ing on the concepts introduced here.

CSS is a vast topic, well beyond the scope of this book. Bookstores and the
Web are loaded with information about style sheets for all skill levels. I’ve
compiled a list of the resources I’ve found the most useful during my learn-
ing process. I’ve also provided a list of popular tools that assist in writing
style sheets.

Books
There is no shortage of good books on CSS out there, but these are the ones
that taught me, and I feel good recommending them.

Cascading Style Sheets: The Definitive Guide, by Eric Meyer (O’Reilly Media)

CSS: The Missing Manual, by David Sawyer McFarland (O’Reilly Media)

Handcrafted CSS: More Bulletproof Web Design, by Dan Cederholm (New
Riders)

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation222

Moving Forward with Css

CSS Cookbook: Quick Solutions to Common CSS Problems, by Christopher
Schmitt (O’Reilly Media)

Online resources
The sites listed here are good starting points for online exploration of style
sheets.

World Wide Web Consortium (www.w3.org/Style/CSS). The World Wide
Web Consortium oversees the development of web technologies, includ-
ing CSS.

A List Apart (www.alistapart.com/topics/code/css/). This online magazine
features some of the best thinking and writing on cutting-edge, stan-
dards-based web design. It was founded in 1998 by Jeffrey Zeldman and
Brian Platz.

CSS-tricks (css-tricks.com). The is the blog of CSS whiz kid Chris Coyier.
Chris loves CSS and enthusiastically shares his research and tinkering on
his site.

Css tools
Here are a couple of tools that I can personally recommend.

Web Developer extension

Web developers are raving about the Web Developer extension written
by Chris Pederick. The extension adds a toolbar to the browser with
tools that enable you to analyze and manipulate any page in the win-
dow. You can edit the style sheet for the page you are viewing as well
as get information about the HTML and graphics. It also validates the
CSS, HTML, and accessibility of the page. It is available for Chrome and
Firefox/Mozilla browsers. Get it at chrispederick.com/work/web-developer.
Note that Safari has a similar built-in inspector (go to Develop → Show
Web Inspector).

Web authoring programs

Current WYSIWYG authoring programs such as Adobe Dreamweaver
and Microsoft Expression Web can be configured to write a style sheet
for you automatically as you design the page. The downside is that they
are not always written in the most efficient manner (for example, they
tend to overuse the class attribute to create style rules). Still, they may give
you a good head start on the style sheet that you can then edit manually.

www.it-ebooks.info

http://www.w3.org/Style/CSS
http://www.alistapart.com/topics/code/css/
http://www.it-ebooks.info/

Test Yourself

Chapter 11, Cascading style sheets Orientation 223

Test Yourself
Here are a few questions to test your knowledge of the CSS basics. Answers
are provided in Appendix A.

1. Identify the various parts of this style rule:

 blockquote { line-height: 1.5; }

selector: _______________ value: __________________

property: ______________ declaration: _____________

2. What color will paragraphs be when this embedded style sheet is applied
to a document? Why?

 <style type="text/css">
 p { color: purple; }
 p { color: green; }
 p { color: gray; }
 </style>

3. Rewrite each of these CSS examples. Some of them are completely incor-
rect, and some could just be written more efficiently.

a. p {font-family: sans-serif;}
 p {font-size: 1em;}
 p {line-height: 1.2em;}

b. blockquote {
 font-size: 1em
 line-height: 150%
 color: gray }

c. body
 {background-color: black;}
 {color: #666;}
 {margin-left: 12em;}
 {margin-right: 12em;}

d. p {color: white;}
 blockquote {color: white;}
 li {color: white;}

e. <strong style="red">Act now!

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation224

Test Yourself

4. Circle all the elements in the diagram that you would expect to appear
in red when the following style rule is applied to a document with the
structure diagrammed in Figure 11-10. This rule uses a type of selector
you haven’t seen yet, but common sense should serve you well.

 div#intro { color: red;}

html

head body

title style h1 p

p p

img

h2 ph2

strong li li li

ul

div id="intro" div id="main"

Figure 11-10. The document structure of a sample document.

www.it-ebooks.info

http://www.it-ebooks.info/

225

IN THIs CHAPTER

The font-related properties

Web fonts and font stacks

Text line settings such as
line height, indents, and

alignment

Text treatments such as
underlines, capitalization,

and drop shadows

Letter and word spacing

Descendant, ID, and
class selectors

Specificity 101

Now that you’ve gotten your feet wet formatting text, are you ready to jump
into the deep end? By the end of this chapter, you’ll pick up 15 new CSS
properties used to manipulate the appearance of text. Along the way, you’ll
also learn how to use more powerful selectors for targeting elements in a
particular context and with a specific id or class name.

The nature of the Web makes specifying type tricky, if not downright
frustrating, particularly if you have experience designing for print (or even
formatting text in a word processing program). There is no way to know for
sure whether the font you specify will be available or how large or small the
type will appear when it hits your users’ browsers. We’ll address the best
practices for dealing with these challenges as we go along.

Throughout this chapter, we’ll be sprucing up a Black Goose Bistro online
menu similar to the one we marked up back in Chapter 5, Marking Up Text.
I encourage you to work along with the exercises to get a feel for how the
properties work. Figure 12-1 shows how the menu looks before and after
we’re done. It’s not a masterpiece, because we’re just scratching the surface
of CSS here, but at least the text is more refined.

The Font Properties
When I design a text document (for print or the Web), one of the first things
I do is specify a font. In CSS, fonts are specified using a little bundle of font-
related properties for typeface, size, weight, and font style. There is also a
shortcut property that lets you specify all of the font attributes in one fell
swoop.

The font-related properties:

font-family

font-size

font-weight

font-style

font-variant

font

A T A G L A N C E

formattIng text

CHAPTER 12

(Plus More selectors)

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation226

The Font Properties

Before

After

Figure 12-1. Before and after views of the Black Goose Bistro menu that we’ll be working
on in this chapter.

specifying the font name
Choosing a typeface, or font family as it is called in CSS, for your text is a
good place to start. Let’s begin with the font-family property and its values.

font-family
Values: one or more font or generic font family names, separated by commas | inherit
Default: depends on the browser

Applies to: all elements

Inherits: yes

Use the font-family property to specify a font or list of fonts (known as a
font stack) by name as shown in these examples.

body { font-family: Arial; }
tt { font-family: Courier, monospace; }
p { font-family: “Duru Sans”, Verdana, sans-serif; }

Here are some important syntax requirements:

•	 All font names, with the exception of generic font families, must be capi-
talized. For example, use “Arial” instead of “arial”.

•	 Use commas to separate multiple font names, as shown in the second
and third examples.

www.it-ebooks.info

http://www.it-ebooks.info/

The Font Properties

Chapter 12, Formatting Text 227

•	 Notice that font names that contain a character space (such as Duru Sans
in the third example) must appear within quotation marks.

A Word about Property Listings
Each new property listing in this book is accompanied by information on how it
behaves and how to use it. Here is a quick explanation of each part of property
listings.

Values

These are the accepted values for the property. Predefined keyword values appear
in code font (for example, small, italic, or small-caps) and must be typed in
exactly as shown.

Default

This is the value that will be used for the property by default, that is, if no other
value is specified. Note that the default browser style sheet values may vary from
the defaults defined in CSS.

Applies to
Some properties apply only to certain types of elements, such as block or table
elements.

Inherits
This indicates whether the property will be passed down to the selected element’s
descendants. See Chapter 11, Cascading Style Sheets Orientation for an explanation
of inheritance.

You might be asking, “Why specify more than one font?” That’s a good ques-
tion, and it brings us to one of the challenges of specifying fonts for web pages.

Font limitations
Browsers are limited to displaying fonts they have access to. Traditionally,
that meant the fonts that were already installed on the user’s hard drive. In
2010, however, there was a boom in browser support for embedded web
fonts using the CSS @font-face rule, so it became possible for designers to
provide their own fonts. See the Say Hello to Web Fonts sidebar for more
information.

But back to our font-family rule. Even when you specify that the font
should be Futura in a style rule, if the browser can’t find it (for example, if
font is not installed on the user’s computer or the provided web font fails to
load), the browser uses its default font instead.

Fortunately, CSS allows us to provide a list of back-up fonts (that font stack
we saw earlier) should our first choice not be available. If the first specified
font is not found, the browser tries the next one, and down through the
list until it finds one that works. In the third font-family rule shown in the
previous code example, if the browser does not find Duru Sans, it will use
Verdana, and if Verdana is not available, it will substitute some other sans-
serif font.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation228

The Font Properties

say Hello to Web Fonts
The ability to provide your own font for use on a web page
has been around since 1998, but it was never feasible due to
browser inconsistencies. Fortunately, that story has changed,
and now web fonts are a perfectly viable option. The Web has
never looked better!

There is a lot to say about web fonts, so this sidebar is merely an
introduction to the highlights, starting with the challenges.

What took you so long?
There have been two main hurdles to including fonts with web
pages. First, there is the problem that different browsers support
different font formats. Most fonts come in OpenType (OTF) or
TrueType (TTF) format, but Internet Explorer only accepts its
proprietary Embedded Open Type (EOT).

The good news is that there is a new standard for packaging
fonts for delivery to web pages that all browser vendors, even IE,
are implementing. The new format, WOFF (for Web Open Font
Format), is a container that packages font files for web delivery.
Now that IE9 is supporting WOFF, one day it may be all we need.
As of this writing, however, we still need to provide the same
font in a number of different formats (more on that in just a
moment).

The other issue with providing fonts on web pages is that the
font companies (also called foundries) are concerned (a nice way
to say “freaked out”) that their fonts will be sitting vulnerably on
servers and available for download. Fonts cost a lot to create
and are very valuable. Most come with licenses that cover very
specific uses by a limited number of machines, and “free to
download for whatever” is usually not included.

So, to link to a web font, you need to use the font legally and
provide it in a way that all browsers support. There are two
general approaches to providing fonts: host them yourself or use
a web font service. Let’s look at both options.

Host your own
In the “host your own” option, you find the font you want, put it
on your server in all the required formats, and link it to your web
page using the CSS3 @font-face rule.

Step 1: Find a font. This can be a bit of a challenge because
the End User License Agreement (EULA) for virtually all
commercial fonts does not cover web usage. Be sure
to purchase the additional web license if it is available.
However, thanks to demand, some foundries are opening
fonts up for web use, and there are a growing number of
open source fonts that you can use for free. The service
Fontspring (fontspring.com), by Ethan Dunham, is a great
place to purchase fonts that have a web license that you can
use on your site or your own computer. The site FontSquirrel
(fontsquirrel.com), also by Ethan Dunham, is a great source
for open source fonts that can be used for commercial
purposes for free.

Step 2: Save it in multiple formats. As of this writing, providing
multiple formats is a reality. There are tools that will convert
your source font into other formats, but there is a service
that will take your font and make everything you need for
you—the “@font-face Generator” from Font Squirrel (www.
fontsquirrel.com/fontface/generator). Go to that page,
upload your font, and it gives back the font in TTF, EOT,
WOFF, and SVG, as well as the CSS code you need to make it
work. Bear in mind that you should use the service only for a
font that specifically allows web usage (whether that font is
free, open source, or commercial). Note also that you will get
better-quality font versions directly from a font vendor than
you will using the Generator.

Step 3: Upload to the server. Developers typically keep their
font files in the same directory as the CSS files, but that’s
just a matter of preference. If you download a package from
FontSquirrel, be sure to keep the pieces together as you
found them.

Step 4: Write the code. Link the font to your site using the
@font-face rule in your .css document. The rule gives the
font a font-family name that you can then reference later
in your style sheet. It also lists the locations of the font files in
their various formats. This cross-browser code example was
developed by Ethan Dunham (yep, him again!) to address
a bug in IE. I recommend reading the full article at www.
fontspring.com/blog/the-new-bulletproof-font-face-syntax.
See also Paul Irish’s updated version at paulirish.com/2009/
bulletproof-font-face-implementation-syntax/.

@font-face {

font-family: 'Font_name';
 src: url('myfont-webfont.eot?#iefix')

format('embedded-opentype'),
 url('myfont-webfont.woff') format('woff'),
 url('myfont-webfont.ttf') format('truetype'),
 url('myfont-webfont.svg#svgFontName')

format('svg');
}

Then you just refer to the established font name in your font
rules, like so:

p {font-family: Font_name; }

Use a font embedding service
If that seems like a lot of work, you may want to sign up with
one of the font embedding services that do all the heavy lifting
for you. For a fee, you get access to high-quality fonts, and
the service handles font licensing and font protection for the
foundries. They also generally provide an interface and tools that
make embedding a font as easy as copy and paste.

www.it-ebooks.info

http://www.fontsquirrel.com/fontface/generator
http://www.fontsquirrel.com/fontface/generator
http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
http://www.it-ebooks.info/

The Font Properties

Chapter 12, Formatting Text 229

The services have a variety of fee structures. Some charge
monthly fees; some charge by the font. Some have a surcharge
for bandwidth as well. There are generally tiered plans that range
from free to hundreds of dollars per month.

Here are some font embedding services that are popular as of
this writing, but it’s worth doing a web search to see what’s
currently offered.

Google Web Fonts (www.google.com/webfonts)

Google Web Fonts is a free service that provides access to
hundreds of open source fonts that are free for commercial
use. All you have to do is choose a font, then copy and
paste the code they generate for you. If you don’t have a
font budget and you aren’t too fussy about fonts, this is a
wonderful way to go. We’ll use it in the first exercise in this
chapter.

Typekit, from Adobe (www.typekit.com)
Typekit was the first web font service and is now part of Adobe.
Their service uses JavaScript to link the fonts to your site in a
way that improves performance and quality in all browsers. I also
recommend their blog for excellent articles on how type works
(see blog.typekit.com/category/type-rendering/).

Fonts.com (fonts.com)

Fonts.com boasts the largest font collection from the biggest
font foundries. If you need a particular font, they are likely to
have it.

Other services include WebINK (www.extensis.com/en/WebINK),
Typotheque (www.typotheque.com/webfonts), Fonts Live (www.
fontslive.com), and Fontdeck (fontdeck.com). They differ in the
number of fonts they offer and their fee structures, so you may
want to shop around.

summing it up
Which method you use to add fonts to your site is up to your
discretion. If you like total control, hosting your own font
(legally, of course) may be a good way to go. If you need a very
particular, well-known font because your client’s brand depends
on it, you will probably find it on one of the web font services
for a price. If you want to experiment with web fonts and are
happy to choose from what’s freely available, then Google Web
Fonts is for you.

You now have a good foundation in providing web fonts. The
landscape is likely to change quickly over the next few years,
so be sure to do your own research when you are ready to get
started.

Generic font families
That last option, “some other sans-serif font,” bears more discussion. “Sans-
serif” is just one of five generic font families that you can specify with the
font-family property. When you specify a generic font family, the browser
chooses an available font from that stylistic category. Figure 12-2 shows
examples from each family. Generic font family names do not need to be
capitalized.

serif

Examples: Times, Times New Roman, Georgia

Serif typefaces have decorative slab-like appendages (serifs) on the ends
of certain letter strokes.

sans-serif

Examples: Arial, Arial Black, Verdana, Trebuchet MS, Helvetica, Geneva

Sans-serif typefaces have straight letter strokes that do not end in serifs.

monospace

Examples: Courier, Courier New, and Andale Mono

In monospace (also called constant width) typefaces, all characters take up the
same amount of space on a line. For example, a capital W will be no wider
than a lowercase i. Compare this to proportional typefaces (such as the one
you’re reading now) that allot different widths to different characters.

www.it-ebooks.info

http://www.google.com/webfonts
http://www.typekit.com
http://www.extensis.com/en/WebINK/
http://www.typotheque.com/webfonts
http://www.fontslive.com/
http://www.fontslive.com/
http://www.it-ebooks.info/

Part III, Css for Presentation230

The Font Properties

Serif Decorative
serif stroke

Straight
strokes

Sans-serif

Times Georgia

Times New Roman Lucida (Mac)

Veranda Trebuchet MS

Arial Arial Black

Courier

Courier New Andale Mono

Comic Sans Snell

Stencil Mojo

Apple Chancery

Imapct

Monospace

Cursive

Fantasy

Monospace font
(equal widths)

Proportional font
(different widths)

Figure 12-2. Examples of the five generic font families.

cursive

Examples: Apple Chancery, Zapf-Chancery, and Comic Sans

Cursive fonts emulate a script or handwritten appearance.

fantasy

Examples: Impact, Western, or other decorative font

Fantasy fonts are purely decorative and would be appropriate for head-
lines and other display type. Fantasy fonts are rarely used for web text
due to cross-platform availability and legibility.

www.it-ebooks.info

http://www.it-ebooks.info/

The Font Properties

Chapter 12, Formatting Text 231

Font stack strategies
The best practice for specifying fonts for web pages is to start with your first
choice, provide some similar alternatives, then end with a generic font family
that at least gets users in the right stylistic ballpark. For example, if you want
an upright, sans-serif font, you might start with your favorite font (Futura),
list a few that are more common (Univers, Tahoma, Geneva), and finish
with the generic sans-serif. There is no limit to the number of fonts you can
include, but many designers strive to keep it under 10.

font-family: Futura, Univers, Tahoma, Geneva, sans-serif;

A good font stack should include stylistically related fonts that are known
to be installed on most computers. Sticking with fonts that come with the
Windows, Mac OS, and Linux operating systems as well as fonts that get
installed with popular software packages such as Microsoft Office and
Adobe Creative Suite gives you a solid list of “web-safe” fonts to choose
from. The charts and statistics provided by the following sites are excellent
resources for finding what fonts are commonly available.

•	 Complete Guide to Pre-Installed Fonts in Linux, Mac, and Windows
(www.apaddedcell.com/sites/www.apaddedcell.com/files/fonts-article/
final/index.html)

•	 Font Matrix (media.24ways.org/2007/17/fontmatrix.html)

•	 Code Style’s Web Font Survey and Font Stack Builder (www.codestyle.
org/css/font-family/index.shtml)

If you are interested in learning more about mastering font stacks, I recom-
mend the following articles, but be sure to do your own web search to find
up-to-date recommendations as well.

•	 “Striking Web Sites with Font Stacks that Inspire” by Vivien (www.inspi-
rationbit.com/striking-web-sites-with-font-stacks-that-inspire/).

•	 “Better CSS Font Stacks” by Nathan Ford (unitinteractive.com/
blog/2008/06/26/better-css-font-stacks/)

So, as you see, specifying fonts for the Web is more like merely suggesting
them. You don’t have absolute control over which font your users will see.
You might get your first choice; you might get the generic fallback. It’s one
of those web design quirks you learn to live with.

Now seems like a good time to get started formatting the Black Goose Bistro
menu. We’ll add new style rules one at a time as we learn each new property.

Best Font stack Ever
There are loads of articles online
touting “best font stacks ever,” and
the font stack you use will largely be
a matter of preference. The following
recommendations are inspired by
Michael Tuck’s “8 Definitive Font
Stacks” (www.sitepoint.com/eight-
definitive-font-stacks) and include
fallback fonts for Windows, Mac, and
Linux.

Narrow serif (Times-based)

Cambria, "Hoefler Text",
"Nimbus Roman No9 L Regular",
Times, "Times New Roman",
serif;

Wide serif (Georgia-based)

Constantia, "Lucida Bright",
Lucidabright, "Lucida Serif",
Lucida, "DejaVu Serif",
"Liberation Serif", Georgia,
serif;

Narrow sans-serif (Arial-based)

Univers, Calibri, "Liberation
Sans", "Nimbus Sans L",
Tahoma, Geneva, "Helvetica
Neue", Helvetica, Arial, sans-
serif;

Wide sans-serif (Verdana-based)

"Lucida Grande", "Lucida Sans
Unicode", "Lucida Sans",
"Liberation Sans", Verdana,
sans-serif;

Monospace

"Andale Mono WT", "Andale
Mono", "Lucida Console",
"Liberation Mono", "Courier
New", Courier, monospace;

www.it-ebooks.info

http://www.apaddedcell.com/sites/www.apaddedcell.com/files/fonts-article/final/index.html
http://www.apaddedcell.com/sites/www.apaddedcell.com/files/fonts-article/final/index.html
http://www.inspirationbit.com/striking-web-sites-with-font-stacks-that-inspire/
http://www.inspirationbit.com/striking-web-sites-with-font-stacks-that-inspire/
http://www.sitepoint.com/eight-definitive-font-stacks
http://www.sitepoint.com/eight-definitive-font-stacks
http://www.it-ebooks.info/

Part III, Css for Presentation232

The Font Properties

exercise 12- 1 | Formatting a menu
In this exercise, we’ll add font properties to the Black Goose Bistro menu document,
menu.html, which is available at www.learningwebdesign.com/4e/materials.
Open the document in a text editor. You can also open it in a browser to see its
“before” state. It should look similar to the page shown in Figure 12-1. Hang onto
this document, because this exercise will continue as we pick up additional font
properties.

I’ve included an embedded font in this exercise to show you how easy it is to do
with a service like Google Web Fonts.

1. We’re going to use an embedded style sheet for this exercise. Start by adding a
style element in the head of the document, like this:

<head>
 <title>Black Goose Bistro</title>
 <style>

 </style>
 </head>

2. I would like the main text to appear in Verdana or some other sans-serif font.
Instead of writing a rule for every element in the document, we will write one rule
for the body element that will be inherited by all the elements it contains. Add this
rule to the embedded style sheet.

<style>
 body {font-family: Verdana, sans-serif;}
</style>

3. I want a fancy font for the “Black Goose Bistro, Summer Menu” headline, so I chose
a free display font called Marko One from Google Web Fonts (www.google.com/
webfonts). Google gave me the code for linking the font file on their server to my
HTML file (it’s actually a link to an external style sheet). It must be placed in the
head of the document, so copy it exactly as it appears.

<head>
<title>Black Goose Bistro</title>
<link href="http://fonts.googleapis.com/
css?family=Marko+One" rel="stylesheet">
</head>

4. And then write a rule that applies it to the h1 element.
Notice I’ve specified Georgia or another serif font as
fallbacks.

<style>
 body {font-family: Verdana, sans-serif;}
 h1 {font-family: "Marko One", Georgia,
serif;}
</style>

5. Save the document and reload the page in the
browser. It should look like Figure 12-3. Note that you’ll
need to have an Internet connection and a current
browser to view the Marko One headline font. We’ll
work on the text size in the next exercise.

Figure 12-3. The menu after changing
only the fonts.

www.it-ebooks.info

http://www.google.com/webfonts
http://www.google.com/webfonts
http://www.it-ebooks.info/

The Font Properties

Chapter 12, Formatting Text 233

specifying font size
Use the aptly named font-size property to specify the size of the text.

font-size
Values: length unit | percentage | xx-small | x-small | small | medium | large | x-large | xx-large |
 smaller | larger | inherit
Default: medium

Applies to: all elements

Inherits: yes

You can specify text size in several ways:

•	 At a specific size using one of the CSS length units (see the sidebar CSS
Units of Measurement for a complete list), as shown here:

h1 { font-size: 1.5em; }

When specifying a number of units, be sure the unit abbreviation imme-
diately follows the number, with no extra character space in between:

 INCORRECT h1 { font-size: 1.5 em; } /*space before the em*/

•	 As a percentage value, sized up or down from the element’s default or
inherited font size:

h1 { font-size: 150%; }

•	 Using one of the absolute keywords (xx-small, x-small, small, medium,
large, x-large, xx-large). On most current browsers, medium corre-
sponds to the default font size.

h1 { font-size: x-large; }

•	 Using a relative keyword (larger or smaller) to nudge the text larger or
smaller than the surrounding text:

strong { font-size: larger; }

I’m going to cut to the chase and tell you that, despite all these options, the
preferred values for font-size in contemporary web design are em measure-
ments and percentage values (or a combination of the two). I’ll explain the
other font-size values in a moment, but let’s start our discussion with the
most prevalent approach.

Both ems and percentages are relative measurements, which means they are
based on another font size, namely the inherited font-size of the parent
element.

Percentage values
In this example, the font-size of the h1’s parent element (body) has been speci-
fied as 100% of the default text size (generally 16 pixels). The h1 inherits the

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation234

The Font Properties

16px size from the body element, and applying the 150% font-size value
multiplies that inherited value, resulting in an h1 that is 24 pixels. If the user
has her font size set to 30 pixels, for example, to read it on a television browser
from across the room, the resulting h1 would be 45 pixels, but would main-
tain its proportion relative to the main body text, which is the idea of using
relative measurements.

body { font-size: 100%; }
h1 { font-size: 150%; } /* 150% of 16 = 24 */

Css Units of Measurement
CSS3 provides a variety of units of measurement. They fall into two broad categories:
absolute and relative.

Relative units
Relative units are based on the size of something else, such as the default text size or
the size of the parent element.

px pixel, considered relative in CSS2.1 because it varies with display resolution

em a unit of measurement equal to the current font size

ex x-height, approximately the height of a lowercase “x” in the font

The following units are new in CSS3. Browser support may take a while to ramp up.

rem root em, equal to the em size of the root element (html)

ch zero width, equal to the width of a zero (0) in the current font and size

vw viewport width unit, equal to 1/100 of the current viewport (browser window)
width

vh viewport height unit, equal to 1/100 of the current viewport height

vm viewport minimum unit, equal to the value of vw or vh, whichever is smaller

Absolute units
Absolute units have predefined meanings or real-world equivalents.

px pixel, defined as an absolute measurement equal to 1/96 of an inch in CSS3

pt points (1/72 inch in CSS2.1)

pc picas (1 pica = 12 points)

mm millimeters

cm centimeters

in inches

Absolute units should be avoided for web page style sheets because they are not
relevant on computer screens. However, if you are creating a style sheet to be used
when the document is printed, they may be just the ticket.

Did you happen to notice that pixel (px) is in both of these lists? That’s because the
W3C hasn’t quite made up their minds. Definitions aside, in practice pixels work as an
absolute measurement that is not as flexible as true relative units.

www.it-ebooks.info

http://www.it-ebooks.info/

The Font Properties

Chapter 12, Formatting Text 235

Em measurements
An em is a relative unit of measurement that, in traditional typography, is
based on the width of the capital letter M (thus the name “em”). In the CSS
specification, an em is calculated as the distance between baselines when the
font is set without any extra space between the lines (also known as leading).
For text with a font size of 16 pixels, an em measures 16 pixels; for 12-pixel
text, an em equals 12 pixels; and so on, as shown in Figure 12-4.

em box

24px type
1em=24px

12px type
1em=12px

16px type
1em=16px

Figure 12-4. An em is based on the size of the text.

Once the dimensions of an em for a text element is calculated by the
browser, it can be used for all sorts of other measurements, such as indents,
margins, the width of the element on the page, and so on.

When setting font-size in ems, the em value works like a scaling factor,
similar to a percentage. In the following example, the body is set at 100%
(we’ll assume the default of 16 pixels). Setting the h1 to 1.5 ems makes it one
and half times larger than its inherited size, or 24 pixels.

body { font-size: 100%; }
h1 { font-size: 1.5em; } /* 1.5 x 16 = 24 */

Em best practices
As of this writing, the most popular solution for making ems display consis-
tently is to set the size of the body element to 100% (keeping it at the default
or user’s preference), then use ems to size the text elements thereafter, as
we’ve done in the previous example. This preserves the user’s preferred text
viewing size yet ensures text elements are sized proportionally.

There are a few snags to working with ems. One is that due to rounding
errors, there is some inconsistency among browsers and platforms when text
size is set in ems.

The other tricky aspect to using ems is that they are based on the inherited
size of the element, which means that their size is based on the context in
which they are applied. If you have many nested elements, the size increase
or decrease will compound with each nested level. An example will make
this clearer.

n oT e

Don’t confuse the em unit of measure-
ment with the em HTML element used
to indicate emphasized text. They are
totally different things.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation236

The Font Properties

Say you start with the document’s body set to 100% (16 pixels), but you
want an article to be only 14 pixels. Dividing the target (14 pixels) by the
context it appears in (16 pixels) gives you .875em for the article font-size.
Now, let’s say you want the h2 elements in that article to be 18 pixels. This
time, the em size is not based on the 16-pixel body text size; it is based on
the article element’s 14-pixel size because that is the context of the h2. So
we divide the target (18px) by the context (14px) to get the final em mea-
surement, 1.28571429. That’s quite a value! You can round it down (leave
at least four places after the decimal), but there is no need to.

body {font-size: 100%;}
article {font-size: .875em;}
 /*based on inherited size of the body text */
article h2 {font-size: 1.28571429em; }
 /*based on the article font size, not body */

Ethan Marcotte (of Responsive Web Design fame) has been hammering the
“target ÷ context = result” formula into our heads for a few years now, and
it comes in handy for building fluid page layouts and other relative sizing
tasks. It will certainly come up again in this book.

So pay close attention and write styles rules in a way that compensates for
this compounding effect. See the Introducing the Root Em sidebar for an up
and coming approach that sidesteps this problem.

Pixels and absolute measurements
Although some developers prefer pixel font measurements for the precise
control they offer, the predominant attitude is that they are too rigid and that
relative measurements (em and %) are more appropriate to the medium. As
long as we are kicking px to the curb, all of the absolute units—such as pt,
pc, in, mm, and cm—are out because they are irrelevant on screens (although
they may be useful for print style sheets).

Another drawback to pixel font-size values is that Internet Explorer (all
versions) does not allow text-zoom on type sized in pixels. That means users
are stuck with your 10- or 11-pixel type, even if they are unable to read it.
That’s a big no-no in terms of accessibility. IE7 and higher do allow the
whole page to be zoomed, which is an improvement, but it is not an ideal
user experience.

To calculate % and em
values, use this formula:
target size ÷ size of content = result

www.it-ebooks.info

http://www.it-ebooks.info/

The Font Properties

Chapter 12, Formatting Text 237

Introducing the Root Em
There is a new relative measurement in CSS3 called a rem (for root em) that bases
font size on the size of the root (html) element. If you specify the size of the html
element (presumably to 100%), all elements that are specified in rem measurements
will be relative to that size, not their inherited size. This gets rid of the compounding
issue that makes ems potentially aggravating. The drawback is that IE8 and earlier and
other older browsers do not support rems, so you need to provide a fallback font size
in pixels. Browsers that support rems will use the last declaration in the stack.

html {
 font-size: 100%;
}
#main {
 font-size: 12px;
 font-size: .75rem;
}

The rem unit is gaining popularity in the web development community. For a more
thorough introduction, I recommend the article “Font Sizing with rem” by Jonathan
Snook (snook.ca/archives/html_and_css/font-size-with-rem).

Working with keywords
The remaining way to specify font-size is one of the predefined absolute
keywords: xx-small, x-small, small, medium, large, x-large, and xx-large.
The keywords do not correspond to particular measurements, but rather are
scaled consistently in relation to one another. The default size is medium in
current browsers. Figure 12-5 shows how each of the absolute keywords
renders in a browser when the default text is set at 16 pixels. I’ve included
samples in Verdana and Times to show that, even with the same base size,
there is a big difference in legibility at sizes small and below.

The benefit of keywords is that current browsers won’t let text sized in
keywords render smaller than 9 pixels, so they protect against illegible type.
On the downside, keywords are imprecise and unpredictable. For example,
while most browsers scale each level up by 120%, some browsers use a scal-
ing factor of 150%.

The relative keywords, larger and smaller, are used to shift the size of
text relative to the size of the parent element text. The exact amount of the
size change is determined by each
browser and is out of your control.
Despite that limitation, it is an
easy way to nudge type a bit larger
or smaller if the exact proportions
are not critical.

Figure 12-5. Text sized with absolute
keywords.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation238

The Font Properties

exercise 12-2 | setting font size
Let’s refine the size of some of the text elements to give the online menu a more
sophisticated appearance. Open menu.html in a text editor and follow the steps
below. You can save the document at any point and take a peek in the browser to see
the results of your work. You should also feel free to try out other size values along the
way.

1. There are many approaches to sizing text on web pages. In this example, I’ll stick
with the preferred method of the best web developers I know, which is to start by
putting a stake in the ground and setting the body element to 100%, thus clearing
the way for em measurements thereafter.

body {
 font-family: Verdana, sans-serif;
 font-size: 100%;
}

2. I’d like the main text elements to be 14 pixels instead of the default 16 pixels (if it’s
too small for my visitors, they can zoom it larger in the browser). I’ll add a new rule
with a grouped selector to set the size of p and dl elements to .875em, using the
formula target (14) ÷ context (16) = .875. I could have used 87.5% to achieve the
same thing.

p, dl {
 font-size: .875em;
}

3. Now let’s get the size of the headings under control. I’d like the main heading (h1)
to be one and a half times larger than the body text. The h2s can be the default
text size (1em).

h1 {
 font-family: "Marko One",
Georgia, serif;
 font-size: 1.5em
}
h2 {
 font-size: 1em;
}

Figure 12-6 shows the result of our font-
sizing efforts.

Figure 12-6. The online menu after a few minor font-size changes.

www.it-ebooks.info

http://www.it-ebooks.info/

The Font Properties

Chapter 12, Formatting Text 239

Font weight (boldness)
After font families and size, the remaining font properties are straightfor-
ward. For example, if you want a text element to appear in bold, use the
font-weight property to adjust the boldness of type.

font-weight
Values: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
 inherit

Default: normal

Applies to: all elements

Inherits: yes

As you can see, the font-weight property has many predefined values,
including descriptive terms (normal, bold, bolder, and lighter) and nine
numeric values (100 to 900) for targeting various weights of a font if they
are available. Because most fonts commonly used on the Web have only
two weights, normal (or roman) and bold, the only font weight value you
will use in most cases is bold. You may also use normal to make text that
would otherwise appear in bold (such as strong text or headlines) appear at
a normal weight.

The numeric chart is an interesting idea, but because there aren’t many fonts
with that range of weights, and because browser support is spotty, they are
not often used. In general, numeric settings of 600 and higher result in bold
text, although even that can vary by browser, as shown in Figure 12-7.

Figure 12-8. Applying the font-weight property to dt elements in the menu.

exercise 12-3 |
Making text bold
Back to the menu. I’ve decided that I’d
like all of the menu item names to be
in bold text. What I’m not going to do is
wrap each one in tags…that would
be so 1996! I’m also not going mark
them up as strong elements…that is not
semantically accurate. Instead, the right
thing to do is simply apply a style to the
semantically correct dt (definition term)
elements to make them all bold at once.
Add this rule to the end of the style
sheet, save the file, and try it out in the
browser (Figure 12-8).

dt { font-weight: bold; }

About inherit
You will see that CSS properties
include inherit in their list of
keyword values. The inherit value
allows you to explicitly force an
element to inherit a style property
value from its parent. This may come
in handy to override other styles
applied to that element and to
guarantee that the element always
matches its parent.

Rendered on Safari

Rendered on Firefox (Mac)

Figure 12-7. The effect of font-weight
values.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation240

The Font Properties

Font style (italics)
The font-style property affects the posture of the text, that is, whether the
letter shapes are vertical (normal) or slanted (italic and oblique).

font-style
Values: normal | italic | oblique | inherit
Default: normal

Applies to: all elements

Inherits: yes

Italic and oblique are both slanted versions of the font. The difference is
that the italic version is usually a separate typeface design with curved let-
ter forms, whereas oblique text takes the normal font design and just slants
it. The truth is that in most browsers, they may look exactly the same (see
Figure 12-9). You’ll probably only use the font-style property to make text
italic or to make text that is italicized in the browser’s default styles (such
as emphasized text) display as normal.

Figure 12-9. Italic and oblique text.

Figure 12-10. Applying the font-style property to the strong elements.

exercise 12-4 |
Making text italic
Now that all the menu item names are
bold, some of the text I’ve marked as
strong isn’t standing out very well, so
I think I’ll make them italic for further
emphasis. To do this, simply apply the
font-style property to the strong
element.

strong { font-style: italic;}

Once again, save and reload. It should
look like the detail shown in Figure 12-10.

www.it-ebooks.info

http://www.it-ebooks.info/

The Font Properties

Chapter 12, Formatting Text 241

Font variant (small caps)
Some typefaces come in a “small caps” variant. This is a separate font design
that uses small uppercase-style letters in place of lowercase letter designs.
The one-trick-pony font-variant property is intended to allow designers to
specify such a small-caps font for text elements.

font-variant
Values: normal | small-caps | inherit
Default: normal

Applies to: all elements

Inherits: yes

In most cases, a true small-caps font is not available, so browsers simulate
small caps by scaling down uppercase letters in the current font. To typogra-
phy sticklers, this is less than ideal and results in inconsistent stroke weights,
but you may find it an acceptable option for adding variety to small amounts
of text. We’ll use the font-variant property in Exercise 12-6.

The shortcut font property
Specifying multiple font properties for each text element can get repetitive
and lengthy, so the creators of CSS provided the shorthand font property
that compiles all the font-related properties into one rule.

font
Values: font-style font-weight font-variant font-size/line-height font-family
 | inherit
Default: depends on default value for each property listed

Applies to: all elements

Inherits: yes

The value of the font property is a list of values for all the font properties we
just looked at, separated by character spaces. In this property, the order of
the values is important:

{ font: style weight variant size/line-height font-family }

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation242

The Font Properties

At minimum, the font property must include a font-size value and a font-
family value, in that order. Omitting one or putting them in the wrong order
causes the entire rule to be invalid. This is an example of a minimal font
property value:

p { font: 1em sans-serif; }

Once you’ve met the size and family requirements, the other values are
optional and may appear in any order prior to the font-size. When style,
weight, or variant are omitted, they revert back to normal. There is one
value in there, line-height, that we have not seen before. As it sounds, it
adjusts the height of the text line and is used to add space between lines of
text. It appears just after font-size, separated by a slash, as shown in these
examples.

h3 { font: oblique bold small-caps 1.5em/1.8em Verdana, sans-serif; }
h2 { font: bold 1.75em/2 sans-serif; }

Let’s use the shorthand font property to make some changes to the h2 headings.

exercise 12-5 |
Using the shorthand font property
One last tweak to the menu, then we’ll take a brief break. To save space, we can
combine all the font properties we’ve specified for the h1 element in one declaration
with the shorthand font property.

h1 {
 font: bold 1.5em "Marko One", Georgia, serif;
}

You might find it redundant that I included the bold font weight value in this
rule. After all, the h1 element was already bold by default, right? The thing about
shorthand properties is that if you omit a value, it is reset to the default value within
that property, not the browser’s default value.

In this case, the default font-weight value within a font declaration is normal.
Because a style sheet rule we’ve written overrides the browser’s default bold heading
rendering, the h1 would appear in normal-weight text if we don’t explicitly make it
bold in the font property. Shorthand properties can be tricky that way…pay attention
that you don’t leave something out and override a default or inherited value you were
counting on.

You can save this and look at in the browser, but if you’ve done your job right, it
should look exactly the same as in the previous step.

www.it-ebooks.info

http://www.it-ebooks.info/

Changing Text Color

Chapter 12, Formatting Text 243

Changing Text Color
You got a glimpse of how to change text color in Chapter 11, and to be hon-
est, there’s not a lot more to say about it here. You change the color of text
with the color property.

color
Values: color value (name or numeric) | inherit
Default: depends on the browser and user’s preferences

Applies to: all elements

Inherits: yes

Using the color property is very straightforward. The value of the color
property can be a predefined color name (see the Color Names sidebar) or a
numeric value describing a specific RGB color. Here are a few examples, all
of which make the h1 elements in a document gray:

h1 { color: gray; }
h1 { color: #666666; }
h1 { color: #666; }
h1 { color: rgb(102,102,102); }

Don’t worry about the numeric values for now; I just wanted you to see
what they look like. RGB color is discussed in detail in Chapter 13, Colors
and Backgrounds, so in this chapter, we’ll just stick with color names for
demonstration purposes.

Color is inherited, so you can change the color of all the text in a document
by applying the color property to the body element, as shown here:

body { color: fuchsia; }

OK, so you probably wouldn’t want all your text to be fuchsia, but you get
the idea.

For the sake of accuracy, I want to point out that the color property is not
strictly a text-related property. In fact, according to the CSS specification, it
is used to change the foreground (as opposed to the background) color of an
element. The foreground of an element consists of both the text it contains
as well as its border.

When you apply a color to an element (including image elements), that color
will be used for the border as well, unless there is a specific border-color
property that overrides it. We’ll talk more about borders and border color
in Chapter 14, Thinking Inside the Box.

Before we add color to the online menu, I want to take a little side trip and
introduce you to a few more types of selectors that will give us more flex-
ibility in targeting elements in the document for styling.

Color Names
CSS2.1 defines 17 standard color
names:

black white purple
lime navy aqua
silver maroon fuchsia
olive blue orange
gray red green
yellow teal

The updated CSS3 color module
allows names from a larger set of
140 color names to be specified in
style sheets. You can see samples
of each at learningwebdesign.com/
colornames.html.

A T A G L A N C E

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation244

A Few More selector Types

A Few More selector Types
So far, we’ve been using element names as selectors. In the last chapter, you
saw how selectors can be grouped together in a comma-separated list so you
can apply properties to several elements at once. Here are examples of the
selectors you already know.

Element selector p { color: navy; }

Grouped selectors p, ul, p, td, th { color: navy; }

The disadvantage of selecting elements this way, of course, is that the prop-
erty (in this case, navy blue text) will apply to every paragraph and other
listed elements in the document. Sometimes you want to apply a rule to a
particular paragraph or paragraphs. In this section, we’ll look at three selec-
tor types that allow us to do just that: descendant selectors, ID selectors, and
class selectors.

Descendant selectors
A descendant selector targets elements that are contained within (and there-
fore are descendants of) another element. It is an example of a contextual
selector because it selects the element based on its context or relation to
another element. The sidebar Other Contextual Selectors lists some more.

Descendant selectors are indicated in a list separated by a character space.
This example targets emphasized text (em) elements, but only when they
appear in list items (li). Emphasized text in paragraphs and other elements
would be unaffected (Figure 12-11).

li em { color: olive; }

Here’s another example that shows how contextual selectors can be grouped
in a comma-separated list, just as we saw earlier. This rule targets em ele-
ments, but only when they appear in h1, h2, and h3 headings.

h1 em, h2 em, h3 em { color: red; }

It is also possible to nest descen-
dant selectors several layers deep.
This example targets em elements that
appear in anchors (a) in ordered lists
(ol).

ol a em { font-variant: small-caps; }

A character space between
element names means that
the second element must
be contained within the
first.

li em {property: value;}

html

head body

title style h2p

em

ul

em li li li em

em em

Figure 12-11. Only em elements within
li elements are selected. The other em
elements are unaffected.

www.it-ebooks.info

http://www.it-ebooks.info/

A Few More selector Types

Chapter 12, Formatting Text 245

Other Contextual selectors
Descendant selectors are one of four types of contextual selectors (called
combinators in the CSS3 specification). The other three are child selectors, adjacent
sibling selectors, and general sibling selectors.

Child selector
A child selector is similar to a descendant selector, but it targets only the direct
children of a given element. There may be no other hierarchical levels in between.
They are indicated with the greater-than symbol (>). The following rule affects
emphasized text, but only when it is directly contained in a p element. An em element
inside a link (a) within the paragraph would not be affected.

p > em {font-weight: bold;}

Adjacent sibling selector
An adjacent sibling selector targets an element that comes directly after another
element with the same parent. It is indicated with a plus (+) sign. This rule gives
special treatment to paragraphs that follow an h1. Other paragraphs are unaffected.

h1 + p {font-style: italic;}

General sibling selectors

A general sibling selector selects an element that shares a parent with the specified
element and occurs after it in the source order. They do not need to follow one
another directly. This type of selector is new in CSS3 and is not supported by
Internet Explorer 8 and earlier. The following rule selects any h2 that both shares a
parent element (such as a section or article) with an h1 and appears after it in the
document.

h1 ~ h2 {font-weight: normal;}

ID selectors
Way back in Chapter 5, Marking Up Text, we learned about the id attribute
that gives an element a unique identifying name (its id reference). The id
attribute can be used with any HTML element, and it is commonly used to
give meaning to the generic div and span elements.

ID selectors allow you to target elements by their id values. The symbol that
identifies ID selectors is the octothorpe (#), also known as a hash symbol.

Here is an example of a list item with an id reference.

<li id="catalog1234">Happy Face T-shirt

Now you can write a style rule just for that list item using an ID selector, like
so (notice the # preceding the id reference):

li#catalog1234 { color: red; }

The # symbol identifies an
ID selector.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation246

A Few More selector Types

Because id values must be unique in the document, it is acceptable to omit
the element name. The following rule is equivalent to the last one:

#catalog1234 { color: red; }

You can also use an ID selector as part of a contextual selector. In this
example, a style is applied only to li elements that appear within the ele-
ment identified as “links.” In this way, you can treat list items in the element
named “links” differently than all the other list items on the page without
any additional markup.

#links li { margin-left: 10px; }

You should be beginning to see the power of selectors and how they can be
used strategically along with well-planned semantic markup.

Class selectors
One last selector type, and then we can get back to text style properties.
The other element identifier you learned about in Chapter 5 is the class
identifier, used to classify elements into a conceptual group. Unlike the id
attribute, multiple elements may share a class name. Not only that, but an
element may belong to more than one class.

You can target elements belonging to the same class with—you guessed it—a
class selector. Class names are indicated with a period (.) at the beginning
of the selector. For example, to select all paragraphs with class="special",
use this selector (the period indicates the following word is a class selector):

p.special { color: orange; }

To apply a property to all elements of the same class, omit the element name
in the selector (be sure to leave the period; it’s the character that indicates a
class). This would target all paragraphs and any other element that has been
marked up with class="special".

.special { color: orange; }

The Universal selector
CSS2 introduced a universal element selector (*) that matches any element (like a
wildcard in programming languages). The style rule:

* {color: gray; }

makes the foreground of every element in the document gray. It is also useful as a
contextual selector, as shown in this example that selects all elements in an “intro”
section:

#intro * { color: gray; }

The universal selector causes problems with form controls in some browsers. If your
page contains form inputs, the safest bet is to avoid the universal selector.

Values for the id attribute must start
with a letter (A–Z or a–z). In addition
to letters, the name may contain
digits (0–9), hyphens (-), underscores
(_), colons (:), and periods (.). Note that
colons and periods are best avoided,
as they may be confused with CSS
syntax when used as a selector.

r E m i N d E r

The period (.) symbol
indicates a class selector.

www.it-ebooks.info

http://www.it-ebooks.info/

A Few More selector Types

Chapter 12, Formatting Text 247

specificity 101
In Chapter 11, I introduced you to the term specificity, which refers to the
fact that more specific selectors have more weight when it comes to handling
style rule conflicts. Now that you know a few more selectors, it is a good
time to revisit this very important concept.

The actual system CSS uses for calculating selector specificity is quite com-
plicated, but this list of selector types from most to least specific should serve
you well in most scenarios.

•	 ID selectors are more specific than (and will override)

•	 Class selectors, which are more specific than (and will override)

•	 Contextual selectors, which are more specific than (and will override)

•	 Individual element selectors

So, for example, if a style sheet has two conflicting rules for the strong ele-
ment:

strong { color: red;}
h1 strong { color: blue; }

the contextual selector (h1 strong) is more specific and therefore has more
weight than the element selector.

You can use specificity strategically to keep your style sheets simple and your
markup minimal. For example, it is possible to set a style for an element (p,
in this example), and then override when necessary by using more specific
selectors.

p { line-height: 1.2em; }
blockquote p { line-height: 1em; }
p.intro { line-height: 2em; }

In these examples, p elements that appear within a blockquote have a smaller
line height than ordinary paragraphs. However, all paragraphs with a class
of “intro” will have a 2em line height, even if it appears within a blockquote,
because class selectors are more specific than contextual selectors.

Understanding the concepts of inheritance and specificity are critical to mas-
tering CSS, and there is a lot more to be said about specificity. References are
provided in the More About Specificity sidebar.

Now, back to the menu. Fortunately, our Black Goose Bistro page has been
marked up thoroughly and semantically, so we have a lot of options for
selecting specific elements. Give these new selectors a try in Exercise 12-2.

More About
specificity
The specificity overview in this
chapter is enough to get you
started, but when you get more
experienced and your style sheets
become more complicated, you may
find that you need a more thorough
understanding of the inner workings.

For the very technical explanation of
exactly how specificity is calculated,
see the CSS Recommendation at
www.w3.org/TR/CSS21/cascade.
html#specificity.

Eric Meyer provides a thorough,
yet more digestible, description of
this system in his book Cascading
Style Sheets: The Definitive Guide
(O’Reilly Media).

If you are looking for help online,
I recommend the Smashing
Magazine article “CSS Specificity:
Things You Should Know” (coding.
smashingmagazine.com/2007/07/27/
css-specificity-things-you-should-
know/) by Vitaly Friedman.

Or if you learn better with Star
Wars analogies, try Andy Clarke’s
“CSS: Specificity Wars” (www.
stuffandnonsense.co.uk/archives/
css_specificity_wars.html).

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation248

A Few More selector Types

exercise 12-6 | Using selectors
This time, we’ll add a few more style rules using descendant, ID,
and class selectors combined with the font and color properties
we’ve learned about so far.

1. I’d like to add some color to the “new item!” elements next
to certain menu item names. They are marked up as strong,
so we can apply the color property to the strong element.
Add this rule to the embedded style sheet, save the file, and
reload it in the browser.

strong { font-style: italic; color: maroon; }

That worked, but now the strong element “Very spicy” in
the description is maroon, too, and that’s not what I want.
The solution is to use a contextual selector that targets only
the strong elements that appear in dt elements. Remove
the color declaration you just wrote from the strong rule,
and create a new rule that targets only the strong elements
within definition list terms.

dt strong { color: maroon; }

2. Look at the document source, and you will see that the
content has been divided into three unique divs: info,
appetizers, and entrees. We can use these to our advantage
when it comes to styling. For now, let’s do something simple
and make all the text in the header teal. Because color
inherits, we only need to apply the property to the div and it
will be passed down to the h1 and p.

#info { color: teal; }

3. Now let’s get a little fancier and make the paragraph inside
the header italic in a way that doesn’t affect the other

paragraphs on the page. Again, a contextual selector is the
answer. This rule selects only paragraphs contained within
the info section of the document.

#info p { font-style: italic; }

4. I want to give special treatment to all of the prices on the
menu. Fortunately, they have all been marked up with span
elements, like this:

$3.95

So now all we have to do is write a rule using a class
selector to change the font to Georgia or some serif font,
make them italic, and gray them back.

.price {
 font-family: Georgia, serif;
 font-style: italic;
 color: gray;
}

5. Similarly, I can change the appearance of the text in the
header that has been marked up as belonging to the “label”
class to make them stand out.

.label {
 font-weight: bold;
 font-variant: small-caps;
 font-style: normal;
}

6. Finally, there is a warning at the bottom of the page that
I want to make small and red. It has been given the class

“warning,” so I can use that as
a selector to target just that
paragraph for styling. While I’m
at it, I’m going to apply the same
style to the sup element (the
footnote asterisk) earlier on the
page so they match. Note that I’ve
used a grouped selector, so I don’t
need to write a separate rule.

p.warning, sup {
 font-size: x-small;
 color: red;
}

Figure 12-12 shows the results of
all these changes.

Figure 12-12. The current state of the Black Goose Bistro online menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Line Adjustments

Chapter 12, Formatting Text 249

Text Line Adjustments
The next batch of text properties has to do with the treatment of whole lines
of text rather than the shapes of characters. They allow web authors to for-
mat web text with indents, extra space between lines (leading), and different
horizontal alignments, similar to print.

Line height
The line-height property defines the minimum distance from baseline to
baseline in text. We saw it earlier as part of the shorthand font property.
A baseline is the imaginary line upon which the bottoms of characters sit.
Line height in CSS is similar to leading in traditional typesetting. Although
the line height is calculated from baseline to baseline, most browsers split
the extra space above and below the text, thus centering it in the overall line
height (Figure 12-14).

The line-height property is said to specify a “minimum” distance because if
you put a tall image or large characters on a line, the height of that line will
expand to accommodate it.

line-height
Values: number | length measurement | percentage | normal | inherit
Default: normal

Applies to: all elements

Inherits: yes

These examples show three different ways to make the line height twice the
height of the font size.

p { line-height: 2; }

p { line-height: 2em; }

p { line-height: 200%; }

When a number is specified alone, as shown in the first example, it acts
as a scaling factor that is multiplied by the current font size to calculate
the line-height value. Line heights can also be specified in one of the CSS
length units, but once again, the relative em unit is your best bet. Ems and
percentage values are based on the current font size of the element. In the
three examples, if the text size is 16 pixels, the calculated line height would
be 32 pixels (see Figure 12-13).

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation250

Text Line Adjustments

size of 1em for this text

baseline

line-height: 2em;

line height is set to 2em (twice the text
size); the extra space is divided equally
above and below the text line, centering
it vertically in the line height.

Figure 12-13. In CSS, line height is measured from baseline to baseline, but browsers
center the text vertically in the line height.

Indents
The text-indent property indents the first line of text by a specified amount
(see the note).

text-indent
Values: length measurement | percentage | inherit
Default: 0

Applies to: block-level elements, table cells, and inline blocks

Inherits: yes

You can specify a length measurement or a percentage value for text-indent.
Percentage values are calculated based on the width of the parent element.
Here are a few examples. The results are shown in Figure 12-14.

p#1 { text-indent: 2em; }

p#2 { text-indent: 25%; }

p#3 { text-indent: -35px; }

2em

25%

–35px

Figure 12-14. Examples of the text-indent property.

n oT e

The text-indent property indents just
the first line of a block. If you want
space along the whole side of the text
block, use one of the margin or padding
properties to add it.

Designers may be accustomed to speci-
fying indents and margins in tandem,
but to be consistent with how CSS
handles them, margins will be discussed
as part of the box model in Chapter 16.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Line Adjustments

Chapter 12, Formatting Text 251

In the third example, notice a negative value was specified, and that’s just
fine. It will cause the first line of text to hang out to the left of the left text
edge (also called a hanging indent).

The text-indent property inherits, but it is worth noting that the calculated
values are passed on to descendant elements. So if a div is set to 800 pixels
wide with a 10% indent, a text-indent of 80 pixels will be passed down (not
the 10% value) to elements the div contains.

Horizontal alignment
You can align text for web pages just as you would in a word processing or
desktop publishing program with the text-align property.

text-align
Values: left | right | center | justify | inherit
Default: left for languages that read left to right; right for languages that read right to left

Applies to: block-level elements, table cells, and inline blocks

Inherits: yes

This is a fairly straightforward property to use. The results of the various
text-align values are shown in Figure 12-15.

text-align: left aligns text on the left margin

text-align: right aligns text on the right margin

text-align: center centers the text in the text block

text-align: justify aligns text on both right and left margins

text-align: left

text-align: right

text-align: center

text-align: justify

Figure 12-15. Examples of text-align values.

Good news—only four more text properties to go! Then we’ll be ready to try
a few of them out in the Black Goose Bistro menu.

If you use a hanging indent, be sure
that there is also a left margin applied
to the element. Otherwise, the
hanging text may disappear off the
left edge of the browser window.

d E S i G N T i p

n oT e

The CSS3 Text Module defines two new
related properties—text-align-last (for
aligning the last line of text) and text-
justify (for more fine-tuned control
over how space is inserted in justified
text)—but they are not well supported
as of this writing.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation252

Underlines and Other “Decorations”

Underlines and Other “Decorations”
If you want to put a line under, over, or through text, or if you’d like to turn
the underline off under links, then text-decoration is the property for you.

text-decoration
Values: none | underline | overline | line-through | blink
Default: none

Applies to: all elements

Inherits: no, but since lines are drawn across child elements, they may look like they are “decorated” too

The values for text-decoration are intuitive and are shown in Figure 12-16.

text-decoration: underline underlines the element

text-decoration: overline draws a line over the text

text-decoration: line-through draws a line through the text

text-decoration: blink makes text flash on and off

The most popular use of the text-decoration property is turning off the
underlines that appear automatically under linked text, as shown here:

a { text-decoration: none; }

There are a few cautionary words to be said regarding text-decoration.

•	 First, if you get rid of the underlines under links, be sure there are other
cues to compensate, such as color and weight.

•	 On the flip side, because underlines are such a strong visual cue to “click
here,” underlining text that is not a link may be misleading and frustrat-
ing. Consider whether italics may be an acceptable alternative.

•	 Finally, there is no reason to make your text blink. Don’t do it. Internet
Explorer won’t support it anyway.

Changing Capitalization
I remember when desktop publishing programs introduced a nifty feature
that let me change the capitalization of text on the fly (OK, I’m dating myself
here). This made it easy to see how my headlines might look in all capital
letters without needing to retype them. CSS includes this feature as well with
the text-transform property.

text-transform
Values: none | capitalize | lowercase | uppercase | inherit
Default: none

Applies to: all elements

Inherits: yes

text-decoration: underline

text-decoration: overline

text-decoration: line-through

Figure 12-16. Examples of text-
decoration values.

n oT e

The CSS3 Text Module includes
enhancements to text-decoration,
including text-decoration-line, text-
decoration-color, text-decoration-
style, text-decoration-skip, and text-
underline-position, but they are still
fairly experimental as of this writing.

www.it-ebooks.info

http://www.it-ebooks.info/

spaced Out

Chapter 12, Formatting Text 253

When you apply the text-transform property to a text element, it changes
its capitalization when it renders without changing the way it is typed in the
source. The values are as follows (Figure 12-17):

text-transform: none as it is typed in the source

text-transform: capitalize capitalizes the first letter of each word

text-transform: lowercase makes all letters lowercase

text-transform: uppercase makes all letters uppercase

text-transform: none (as was typed in)

text-transform: capitalize

text-transform: lowercase

text-transform: uppercase

Figure 12-17. The text-transform property changes the capitalization of characters
when they are displayed, regardless of how they are typed in the source.

spaced Out
The final two text properties in this chapter are used to insert space between
letters (letter-spacing) or words (word-spacing) when the text is displayed.

letter-spacing
Values: length measurement | normal | inherit
Default: normal

Applies to: all elements

Inherits: yes

word-spacing
Values: length measurement | normal | inherit
Default: normal

Applies to: all elements

Inherits: yes

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation254

Text shadow

The letter-spacing and word-spacing properties do what they say: add
space between the letters of the text or words in a line, respectively. Figure
12-18 shows the results of these rule examples applied to the simple para-
graph shown here.

<p>Black Goose Bistro Summer Menu</p>

Example 1

p { letter-spacing: 8px; }

Example 2

p { word-spacing: 1.5em; }

It is worth noting that when you specify em measurements, the calculated
size is passed down to child elements, even if they have a smaller font size
than the parent.

In Exercise 12-7, we’ll make one last trip back to the Black Goose Bistro
menu to add some of these new properties and make a few tweaks.

word-spacing: 1.5em;

letter-spacing: 8px;

Figure 12-18. letter-spacing (top) and word-spacing (bottom).

Text shadow
Drop shadows that make text and graphic elements “pop” from the page
have become all the rage over the last decade. Now there is a way to add a
drop shadow to text using CSS alone with the text-shadow property. Text
shadows are drawn behind the text but in front of the background and bor-
der if there is one.

Text shadows are supported by all current browsers except Internet Explorer
(sad trombone), but support is rumored in IE10.

text-shadow

Values: ‘horizontal offset’ ‘vertical offset’ ‘blur radius’ ‘color’ | none
Default: none

Applies to: all elements

Inherits: yes

www.it-ebooks.info

http://www.it-ebooks.info/

Text shadow

Chapter 12, Formatting Text 255

The value for the text-shadow property is up to three measurements (a hori-
zontal offset, vertical offset, and an optional blur radius) and a color. Figure
12-19 shows an example of a minimal text shadow declaration.

h1 { h1 {
 color: darkgreen; color: darkgreen;
 text-shadow: .2em .2em silver; text-shadow: -.3em -.3em silver;
} }

text-shadow: .2em .2em silver

text-shadow: -.3em -.3em silver;

Figure 12-19. A minimal text drop shadow.

The first value is a horizontal offset that positions the shadow to the right of
the text (a negative value pulls the shadow to the left of the text). The second
measurement is a vertical offset that moves the shadow down by the speci-
fied amount (a negative value moves the shadow up). The declaration ends
with the color specification (silver). If the color is omitted, the same color as
the text will be used.

That should give you an idea for how the first two measurements work, but
that sharp shadow doesn’t look very…well…shadowy. What it needs is a blur
radius measurement. Zero (0) is no blur, and the blur gets softer with higher
values (Figure 12-20). Usually you just have to fiddle with values until you
get the effect you want.

text-shadow: .2em .2em .05 em silver

text-shadow: .2em .2em .15 em silver

text-shadow: .2em .2em .3 em silver

Figure 12-20. Adding a blur radius to a text drop shadow.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation256

Text shadow

You can even apply more than one shadow to a single text element. When
more than one shadow is listed, the first one in the list is rendered first and
subsequent shadows are layered behind it in the defined order. You can also
make text appear to glow by positioning a colored shadow directly behind
the text. Figure 12-21 demonstrates a few techniques using text-shadow.

text-shadow: -.7em -.5em .2em silver,
 .2em .2em .1em gray;

body {background-color: thistle;}
h1 {
 color: #ba9eba;
 text-shadow:
 -.05em -.05em .05em white,
 .03em .03em .05em purple;
}

body {background-color: thistle;}
h1 {
 color: #ba9eba;
 text-shadow:
 -.05em -.05em .05em purple,
 .03em .03em .05em white;
}

text-shadow: 0 0 .7em purple;

Multiple shadows

Raised look Embossed look

Outer glow

For a raised look, position a light shadow above and a
dark shadow below the text, using tiny o�sets.

For an embossed look, the light shadow goes
below and the dark shadow goes above.

Figure 12-21. Special effects with text shadows.

So go have some fun with text shadows, but be careful not to overdo it. Not
only can drop shadows make text difficult to read, but adding a shadow to
everything can slow down page performance (scrolling, mouse interactions,
etc.), which is particularly problematic for mobile browsers without much
processing power. In addition, be careful that your text doesn’t require a
shadow in order to be visible. Folks with non-supporting browsers won’t see
a thing. My advice is to use drop shadows as an enhancement in a way that
isn’t critical if they don’t appear.

And speaking of non-supporting browsers, what about Internet Explorer?
Versions 9 and earlier won’t know what to do with the text-shadow prop-
erty, but there are workarounds. The following articles, both by Zoltan “Du
Lac” Hawryluk, discuss workarounds that are beyond the scope of this book
but that you may want to explore. I recommend doing a web search for the
most current approach.

•	 “Full CSS Text Shadows—Even in IE” (www.useragentman.com/
blog/2011/06/29/full-css3-text-shadows-even-in-ie/)

•	 “CSS3 Text Shadow—Can It Be Done in IE Without JavaScript?” (www.
useragentman.com/blog/2011/04/14/css3-text-shadow-can-it-be-done-in-
ie-without-javascript/)

www.it-ebooks.info

http://www.useragentman.com/blog/2011/06/29/full-css3-text-shadows-even-in-ie/
http://www.useragentman.com/blog/2011/06/29/full-css3-text-shadows-even-in-ie/
http://www.it-ebooks.info/

Text shadow

Chapter 12, Formatting Text 257

The Other Text Properties
In the interest of saving space and keeping this an introductory-
level book, these properties were not given the full treatment.
But being the type of author who doesn’t hold anything back,
I’m including them here.

vertical-align
Values: baseline | sub | super | top | text-top | middle |
textbottom | bottom | percentage | length | inherit
Specifies the vertical alignment of an inline element’s baseline
relative to the baseline of the surrounding text. It is also used to
set the vertical alignment of content in a table cell (td).

white-space
Values: normal | pre | nowrap | pre-wrap | pre-line | inherit

Specifies how whitespace in the element source is handled
in layout. For example, the pre value preserves the character
spaces and returns found in the source, similar to the pre HTML
element.

visibility
Values: visible | hidden | collapse | inherit

Used to hide the element. When set to hidden, the element is
invisible, but the space it occupies is maintained, leaving a hole
in the content. The element is still there; you just can’t see it.

text-direction
Values: ltr | rtl |inherit

Specifies the direction in which the text reads: left to right (ltr)
or right to left (rtl).

unicode-bidi
Values: normal | embed | bidi-override | inherit

Related to bidirectional features of Unicode. The
Recommendation states that it allows the author to generate
levels of embedding within the Unicode embedding algorithm.
If you have no idea what this means, don’t worry. Neither do I.

font-size-adjust

Values: number | none

This is a fairly complicated new system for sizing text elements
based on x-heights (the height of a lowercase “x”) to ensure
consistency even when fallback fonts are used. I’ll let the W3C
explain the rest: www.w3.org/TR/css3-fonts/#font-size-adjust-
prop.

exercise 12-7 | Finishing touches
Let’s add a few finishing touches to the online menu, menu.html.
It might be useful to save the file and look at it in the browser after
each step to see the effect of your edits and to make sure you’re
on track. The finished style sheet is provided in Appendix A.

1. First, I have a few global changes to the body element in
mind. I’ve had a change of heart about the font-family.
I think that a serif font such as Georgia would be more
sophisticated and appropriate for a bistro menu. Let’s also
use the line-height property to open up the text lines and
make them easier to read. Make these updates to the body
style rule, as shown:

body {
 font-family: Georgia, serif;
 font-size: small;
 line-height: 1.75em;

}

2. I also want to redesign the header section of the document.
Remove the teal color setting by deleting that whole rule.
Once that is done, make the h1 purple and the paragraph in
the header gray. You can just add color declarations to the
existing rules.

#info { color: teal; } /* delete */

h1 {
 font: bold 1.5em “Marko One”, Georgia, serif;
 color: purple;}

#info p {
 font-style: italic;
 color: gray;}

3. Next, to imitate a fancy print menu, I’m going to center a few
key elements on the page using the text-align property.
Write a rule with a grouped selector to center the headings
and the info section.

h1, h2, #info {
 text-align: center;}

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation258

Text shadow

exercise 12-7 | Finishing touches (continued)
4. I want to make the “Appetizer” and “Main Courses” h2 headings kind of special.

Instead of large, bold type, I’m going to use all uppercase letters, extra letter
spacing, and color to call attention to the headings. Here’s the new rule for h2
elements that includes all of these changes.

h2 {
 font-size: 1em;
 text-transform: uppercase;
 letter-spacing: .5em;
 color: purple;}

5. We’re really close now; just a few more tweaks to those paragraphs right after the
h2 headings. Let’s center those too and make them italic.

h2 + p {
 text-align: center;
 font-style: italic;}

Note that I’ve used an adjacent sibling selector (h2 + p) to select “any paragraph
that follows an h2.” This method will not work in Internet Explorer 6, so if that
concerns you, you could also select each of them using the contextual selectors
#appetizers p and #entrees p.

6. Next, add a softer color to the menu item names (in dt elements). I’ve chosen
“sienna,” one of the names from the CSS3 color module. Note that the strong
elements in those dt elements stay maroon because the color applied to the
strong elements overrides the color inherited by their parents.

dt {
 font-weight: bold;
 color: sienna;}

Adding letter spacing to small type
is one of my favorite heading design
tricks. It is a good alternative to large
type for drawing attention to the
element.

d E S i G N T i p

7. Finally, for kicks, let’s add a drop
shadow under the h1 heading.

h1 {
 font: bold 1.5em "Marko
One", Georgia, serif;
 color: purple;
 text-shadow: .1em .1em .2em
lightslategray;}

And we’re done! Figure 12-22 shows how
the menu looks now…an improvement
over the unstyled version, and we used
only text properties to do it. Notice that
we didn’t touch a single character of the
document markup in the process. That’s
the beauty of keeping style separate
from structure.

Figure 12-22. The formatted Black Goose
Bistro menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Changing List Bullets and Numbers

Chapter 12, Formatting Text 259

Changing List Bullets and Numbers
Before we close out this chapter on text properties, I want to show you a few
tweaks you can make to bulleted and numbered lists. As you know, brows-
ers automatically insert bullets before unordered list items and numbers
before items in ordered lists. For the most part, the rendering of these mark-
ers is determined by the browser. However, CSS provides a few properties
that allow authors to choose the type and position of the marker, or turn
them off entirely.

Choosing a Marker
Use the list-style-type property to select the type of marker that appears
before each list item.

list-style-type
Values: none | disc | circle | square | decimal | decimal-leading-zero | lower-alpha |

upper-alpha | lower-latin | upper-latin | lower-roman | upper-roman | lower-greek |
inherit

Default: disc

Applies to: ul, ol, and li (or elements whose display value is list-item)

Inherits: yes

More often than not, developers use the list-style-type property with its
value set to none to remove bullets or numbers altogether. This is handy
when using list markup as the foundation for a horizontal navigation menu
or the entries in a web form. You can keep the semantics but get rid of the
pesky markers.

The disc, circle, and square values generate bullet shapes just as browsers
have been doing since the beginning (Figure 12-23). Unfortunately, there is
no way to change the appearance (size, color, etc.) of generated bullets, so
you’re basically stuck with the browser’s default rendering.

disc circle square

Figure 12-23. The list-style-type values disc, circle, and square.

n oT e

This section documents the CSS2.1
list-style types that are well supported
on current browsers. CSS3 extends on
the marker functionality shown here,
including a method for authors to
define their own list styles, allowing for
numbering in many languages (www.
w3.org/TR/css3-lists/).

n oT e

CSS3 introduces box, check, diamond,
and dash marker types using its new
@counter-style rule. See the spec for
details.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation260

Changing List Bullets and Numbers

The remaining keywords (Table 12-1) specify various numbering and letter-
ing styles for use with ordered lists.

Table 12-1. Lettering and numbering system (CSS2.1)

Keyword system

decimal 1, 2, 3, 4, 5…

decimal-leading-zero 01, 02, 03, 04, 05…

lower-alpha a, b, c, d, e…

upper-alpha A, B, C, D, E…

lower-latin a, b, c, d, e… (same as lower-alpha)

upper-latin A, B, C, D, E… (same as upper-alpha)

lower-roman i, ii, iii, iv, v…

upper-roman i, ii, iii, iv, v…

lower-greek α, β, γ, δ, ε…

Marker position
By default, the marker hangs outside the content area for the list item, dis-
playing as a hanging indent. The list-style-position property allows you
to pull the bullet inside the content area so it runs into the list content.

list-style-position
Values: inside | outside | inherit
Default: outside

Applies to: ul, ol, and li (or elements whose display value is list-item)

Inherits: yes

I’ve applied a background color to the list items in Figure 12-24 to reveal the
boundaries of their content area boxes. You can see that when the position
is set to outside (left), the markers fall outside the content area, and when it
is set to inside, the content area box extends to include the marker.

li {background-color: #F99;}
ul#outside {list-style-position: outside;}
ul#inside {list-style-position: inside;}

Make your own bullets
You can also use your own image as a bullet using the list-style-image
property.

list-style-image
Values: url | none | inherit
Default: none

Applies to: ul, ol, and li (or elements whose display value is list-item)
Inherits: yes

List Item Display
Role
You may have noticed that the list
style properties apply to “elements
whose display value is list-item.”
The CSS2.1 specification allows any
element to perform like a list item by
setting its display property to list-
item. This property can be applied
to any HTML element or elements in
another XML language. For example,
you could automatically bullet
or number a series of paragraphs
by setting the display property of
paragraph (p) elements to list-item,
as shown in this example:

p.bulleted {
 display: list-item;
 list-style-type: upper-
alpha;
}

n oT e

CSS3 adds the hanging value for this
property. It is similar to inside, but
the markers would appear outside and
abutting the left edge of the shaded area,
as shown in Figure 12-24.

Outside Inside

Figure 12-24. The list-style-position
property.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 12, Formatting Text 261

The value of the list-style-image property is the URL of the image you
want to use as a marker. The list-style-type is set to disc as a backup
in case the image does not display or the property isn’t supported by the
browser or other user agent. The result is shown in Figure 12-25.

ul {
 list-style-image: url(/images/happy.gif);
 list-style-type: circle;
 list-style-position: outside;
}

Test Yourself
Here are a few questions to see how well you picked up the fundamentals of
selectors and text formatting.

1. Here is a chance to get a little practice writing selectors. Using the dia-
gram shown in Figure 12-26, write style rules that make each of the ele-
ments described below red (color: red;). Write the selector as efficiently
as possible. I’ve done the first one for you.

html

head body

title style h1 div id="intro" div id="main" p

p class="special" ul h2 p h2 p class="special"

img strong li li li strong

Figure 12-26. Sample document structure.

a. All text elements in the document body {color: red;}

b. h2 elements

c. h1 elements and all paragraphs

d. Elements belonging to the class “special”

e. All elements in the “intro” section

f. strong elements in the “main” section

g. Extra credit: Just the paragraph that appears after an h2 (hint: this
selector will not work in Internet Explorer 6)

Figure 12-25. Using an image as a marker.

n oT e

There is a list-style shorthand prop-
erty that combines the values for type,
position, and image, in any order. For
example:

ul { list-style: url(/images/
happy.gif) circle outside; }

As for all shorthand properties, be care-
ful not to override list style properties set
earlier in the style sheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation262

Test Yourself

2. Match the style property with the text samples in Figure 12-27.

a. _______ {font-size: 1.5em;}

b. _______ {text-transform: capitalize;}

c. _______ {text-align: right;}

d. _______ {font-family: Verdana; font-size: 1.5em;}

e. _______ {letter-spacing: 3px;}

f. _______ {font: bold italic 1.2em Verdana;}

g. _______ {text-transform: uppercase;}

h. _______ {text-indent: 2em;}

i. _______ {font-variant: small-caps;}

default font and size

Figure 12-27. Text samples.

www.it-ebooks.info

http://www.it-ebooks.info/

Css Review: Font and Text Properties

Chapter 12, Formatting Text 263

Css Review: Font and Text Properties
In this chapter, we covered the properties used to format text elements. Here
is a summary in alphabetical order.

Property Description

font A shorthand property that combines font properties

font-family Specifies a typeface or generic font family

font-size The size of the font

font-style Specifies italic or oblique fonts

font-variant Specifies a small-caps font

font-weight Specifies the boldness of the font

letter-spacing Inserts space between letters

line-height The distance between baselines of neighboring text
lines

text-align The horizontal alignment of text

text-decoration Underlines, overlines, and lines through

text-direction Whether the text reads left-to-right or right-to-left

text-indent Amount of indentation of the first line in a block

text-shadow Adds a drop shadow under the text

text-transform Changes the capitalization of text when it displays

unicode-bidi Works with Unicode bidirectional algorithms

vertical-align Adjusts the vertical position of inline elements rela-
tive to the baseline

visibility Whether the element is rendered or is invisible

white-space How whitespace in the source is displayed

word-spacing Inserts space between words

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

265

IN THIs CHAPTER

Color names in CSS

RGB color values

Foreground and
background colors

Pseudo-class and pseudo-
element selectors

Tiling background images

Color gradients

External style sheets

If you had seen the Web back in 1993, you would have found it to be a fairly
dreary affair by today’s standards—every background was gray, and all the
text was black. Then came Netscape Navigator and, with it, a handful of
attributes that allowed rudimentary (but welcome) control over font colors
and backgrounds. For years, we made do. But thankfully, we now have
style sheet properties that have laid those unmentionable presentational
attributes to rest.

We’re going to cover a lot of ground in this chapter. Of course, I’ll intro-
duce you to all of the properties for specifying colors and backgrounds. This
chapter also rounds out your collection of selector types and shows you how
to create an external style sheet. Our first order of business, however, is to
explore the options for specifying color in CSS, including a primer on the
nature of color on computer monitors.

specifying Color Values
There are two main ways to specify colors in style sheets: with a predefined
color name, as we have been doing so far:

color: red; color: olive; color: blue;

or, more commonly, with a numeric value that describes a particular RGB
color (the color model on computer monitors). You may have seen color
values that look like these:

color: #FF0000; color: #808000; color: #00F;

We’ll get to all the ins and outs of RGB color in a moment, but first, a short
and sweet section on the standard color names.

Colors anD baCkgrounDs

CHAPTER 13

(Plus Even More selectors and External style sheets)

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation266

specifying Color Values

Color names
The most intuitive way to specify a color is to call it by name. Unfortunately,
you can’t make up just any color name and expect it to work. It has to be
one of the color keywords predefined in the CSS Recommendation. CSS1
and CSS2 adopted the 16 standard color names originally introduced in
HTML 4.01. CSS2.1 tossed in orange for a total of 17 (Figure 13-1). CSS3
adds support for the extended set of 140 (rather fanciful) color names. Now
we can specify names like “burlywood” and my long-time favorite, “papay-
awhip”! The extended colors are shown in (Figure 13-2), but if you want
a more accurate view, point your browser at www.learningwebdesign.com/
colornames.html.

Black
#000000

Gray
#808080

Silver
#C0C0C0

White
#FFFFFF

Maroon
#800000

Red
#FF0000

Purple
#800080

Fuchsia
#FF00FF

Green
#008000

Lime
#00FF00

Olive
#808000

Yellow
#FFFF00

Navy
#000080

Blue
#0000FF

Teal
#008080

Aqua
#0000FF

Orange (CSS 2.1)
#FFA500

Figure 13-1. The 17 standard color names in CSS2.1.

Color names are easy to use—just drop one into place as the value for any
color-related property:

color: silver;
background-color: gray;
border-bottom-color: teal;

n oT e

The extended color names, also known
as the X11 color names, were originally
provided with the X Window System
for Unix.

www.it-ebooks.info

http://www.it-ebooks.info/

specifying Color Values

Chapter 13, Colors and Backgrounds 267

Figure 13-2. The 140 extended color names in CSS3. Bear in mind that these will look quite different on a screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation268

specifying Color Values

RGB color values
Names are easy, but as you can see, they are limited. By far, the most com-
mon way to specify a color is by its RGB value. It also gives you millions of
colors to choose from.

For those who are not familiar with how computers deal with color, I’ll start
with the basics before jumping into the CSS syntax.

A word about RGB color
Computers create the colors you see on a monitor by combining three colors
of light: red, green, and blue. This is known as the RGB color model. You
can provide recipes (of sorts) for colors by telling the computer how much of
each color to mix in. The amount of light in each color “channel” is typically
described on a scale from 0 (none) to 255 (full-blast), although it can also
be provided as a percent. The closer the three values get to 255 (100%), the
closer the resulting color gets to white (Figure 13-3).

Any color you see on your monitor can be described by a series of three num-
bers: a red value, a green value, and a blue value. This is one of the ways that
image editors such as Adobe Photoshop keep track of the colors for every
pixel in an image. With the RGB color system, a pleasant lavender can be
described as 200, 178, 230.

Picking a color
The easiest way to pick a color and find its RGB color values is to use an
image-editing tool such as Adobe Photoshop, Adobe Fireworks, or Corel
Paint Shop Pro Photo. Most image tools provide a color picker similar to
Photoshop’s, shown in Figure 13-4. If you don’t have an image editor, you
can select a color from an online tool like ColorPicker.com (Figure 13-4).

The RGB color model

R: 255
(100%)

G: 255
(100%)

B: 255
(100%)

RGB: 255, 255, 255
White

RGB: 128, 128, 128
Gray

RGB: 0, 0, 0
Black

RGB: 200, 178, 230
Pleasant lavender

R: 128
(50%)

G: 128
(50%)

B: 128
(50%)

R: 0
(0%)

G: 0
(0%)

B: 0
(0%)

R: 200
(78%)

G: 178
(70%)

B: 230
(90%)

Why 255?
In true RGB color, 8 bits of information are devoted to each color channel.
8 bits can describe 256 shades (28=256), so colors are measured on a scale from 0 to 255.

Figure 13-3. Colors on computer
monitors are made by mixing different
amounts of red, green, and blue light
(thus, RGB). The color in the middle of each
diagram shows what happens when the
three color channels are combined. The
more light there is in each channel (i.e., the
higher the number value), the closer the
combination is to white.

www.it-ebooks.info

http://www.it-ebooks.info/

specifying Color Values

Chapter 13, Colors and Backgrounds 269

There are several ways to define colors on monitors. The two that are
relevant to CSS are RGB (Red, Green, Blue) and HSL (Hue, Saturation,
Lightness). RGB is the most commonly used and well supported, so we’ll
focus on that here, but see the sidebar HSL Color for more information on
the alternative.

When you select a color from the spectrum in the color picker, the red,
green, and blue values are listed, as pointed out in Figure 13-4. And look
next to the # symbol—those are the same values, converted to hexadecimal
equivalents so they are ready to go in a style sheet. I’ll explain the six-digit
hex values in a moment.

Photoshop’s color picker

Colorpicker.com

Figure 13-4. Color pickers such as the one in Photoshop (left) and Colorpicker.com (right)
provide the RGB values for a selected pixel color.

Writing RGB values in style sheets
CSS allows RGB color values to be specified in a number of formats. Going
back to that pleasant lavender, we could add it to a style sheet by listing each
value on a scale from 0 to 255.

color: rgb(200, 178, 230);

You can also list them as percentage values, although that is less common.

color: rgb(78%, 70%, 90%);

Or, you can provide the six-digit hexadecimal version that we saw in the
color pickers. These six digits represent the same three RGB values, except
they have been converted into hexadecimal (or hex for short) equivalents.
I’ll explain the hexadecimal system in the next section. Note that hex RGB
values are preceded by the # symbol and do not require the rgb() notation
shown in the previous examples. They may be upper- or lowercase, but it is
recommended that you be consistent.

color: #C8B2E6;

HsL Color
CSS3 introduces the ability to specify
colors by their HSL values: Hue
(color), Saturation, and Lightness.
The color pickers in Figure 13-4 also
provide HSL values for the selected
color, although they call the last
value Brightness (B).

In this system, the colors are spread
out around a circle in the order of
the rainbow, with red at the top
(12-o’clock) position. Hue values are
then measured in degrees around
the circle: red at 0°, green at 120°,
and blue at 240°, with other colors in
between. Saturation is a percentage
value from 0% (gray) to 100% (color
at full blast). Lightness (or brightness)
is also a percentage value from 0%
(darkest) to 100% (lightest).

Some people find this system
more intuitive to use because once
you lock into a hue, it is easy to
make it stronger, darker, or lighter.
RGB values are not intuitive at all,
although some practiced designers
develop a feel for them.

In CSS, HSL values are provided as the
hue value and two percentages. They
are never converted to hexadecimal
values, as may be done for RGB. Here
is that lavender from Figure 13-3 as
it would be specified in a style sheet
using HSL:

color: hsl(265, 23%, 90%);

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation270

specifying Color Values

There is one last shorthand way to specify hex color values. If your value
happens to be made up of three pairs of doubled digits or letters, such as:

color: #FFCC00; or color: #993366;

you can condense each pair down to one digit or letter. The benefit is slightly
reducing the file size of your CSS document. These examples are equivalent
to the ones listed above:

color: #FC0; or color: #936;

About hexadecimal values
It’s time to clarify what’s going on with that six-digit string of characters.
What you’re looking at is actually a series of three two-digit numbers, one
each for red, green, and blue. But instead of decimal (base-10, the system
we’re used to), these values are written in hexadecimal, or base-16. Figure
13-5 shows the structure of the hex RGB value.

Hexadecimal RGB values must
be preceded by the #

(octophorpe or hash) symbol. #RRGGBB
hex
RED

value

hex
GREEN
value

hex
BLUE
value

Figure 13-5. Hexadecimal RGB values are made up of three two-digit numbers, one for
red, one for green, and one for blue.

The hexadecimal numbering system uses 16 digits: 0–9 and A–F (for repre-
senting the quantities 10–15). Figure 13-6 shows how this works. The hex
system is used widely in computing because it reduces the space it takes to
store certain information. For example, the RGB values are reduced from
three to two digits once they’re converted to hexadecimal.

Decimal

Hex

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

A

11

B

12

C

13

D

14

E

15

F

20
The decimal number 32

is represented as

2 sixteens and 0 ones

00
sixteens

place
ones
place

2A
The decimal number 42

is represented as

2 sixteens and 10 ones

Figure 13-6. The hexadecimal numbering system is base-16.

specifying RGB
Values
There are four formats for providing
RGB values in CSS:

rgb (255, 255, 255)

rgb (100%, 100%, 100%)

#FFFFFF

#FFF

All of these examples specify white.

A T A G L A N C E

Handy Hex Values
White = #FFFFFF or #FFF (the
equivalent of 255,255,255)

Black = #000000 or #000 (the
equivalent of 0,0,0)

T i p

www.it-ebooks.info

http://www.it-ebooks.info/

specifying Color Values

Chapter 13, Colors and Backgrounds 271

Now that most graphics and web development software provides easy access
to hexadecimal color values (as we saw in Figure 13-4), there isn’t much
need to translate RGB values to hex yourself, as we needed to do back in the
old days. But should you find the need, the Hexadecimal Calculators sidebar
should help you out.

RGBa color
RGBa color allows you to specify a color and also make it as transparent or
as opaque as you like. The “a” in RGBa stands for alpha, which is an addi-
tional channel that controls the level of transparency on a scale from 0 (fully
transparent) to 1 (fully opaque). Here’s how it looks written in a style rule:

color: rgba(0, 0, 0, .5);

The first three values in the parentheses are regular old RGB values, in this
case creating the color black. The fourth value, .5, is the transparency level.
So this color is black with 50% transparency. That will allow other colors or
background patterns to show through slightly (Figure 13-7).

h1 {color: rgba(0, 0, 0, .1);}

h1 {color: rgba(0, 0, 0, .5);}

h1 {color: rgba(0, 0, 0, 1);}

Figure 13-7. Headings with various levels of transparency using RGBa values.

There is a complication, however, and its name is Internet Explorer. IE ver-
sions 8 and earlier do not support RGBa color, so you need to provide a fall-
back for users with those browsers. The easiest is to just pick a fully opaque
color that approximates the look you are going for and list it first in the style
rule. IE will ignore the RGBa value, and other browsers will override the
opaque color when they get to the second declaration.

h1 {
 color: rgb(120, 120, 120);
 color: rgba(0, 0, 0, 50%);
}

But if you simply must have true transparency in IE, then you can provide
alternatives (a transparent PNG or an IE-proprietary filter) specifically to IE
8, 7, and 6 by wrapping the rules or style element in conditional comments
that only IE understands (see the Targeting IE with Conditional Comments
sidebar). Fortunately, RGBa is supported by IE9 and higher, so as older ver-
sions fade into disuse, we won’t need to jump through extra hoops.

Hexadecimal
Calculators
In Windows, the standard calculator
has a hexadecimal converter in
the Scientific view. Mac users can
download the free “Mac Dec Bin Hex
Calculator” for OS X (search for it at
download.com).

Of course, you could calculate a
hex value yourself by dividing your
number by 16 to get the first digit,
and then using the remainder for
the second digit. For example, 200
converts to C8 because 200=(16 ×
12) + 8. That’s {12,8} in base-16, or C8
in hexadecimal. Whew! I think I’ll be
sticking with my Color Picker.

n oT e

HSL colors can be given a transpar-
ency level as well using the HSLa color
format, which has the same syntax as
RGBa:

color: hsla(0, 0%, 0%, .5);

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation272

Foreground Color

Targeting IE with Conditional Comments
Internet Explorer’s conditional comments syntax provides a way
to specify styles just for IE or even a particular version of IE. Other
browsers ignore whatever is in them, but IE will apply whatever
styles it finds there. Conditional comments can go within a
style sheet, or as in the examples below, be used to provide a
separate embedded style sheet with the style element. Be sure
to put conditional comments after your regular styles.

Using our RGBa fallback as an example, this conditional
comment targets a browser if it is “less than or equal to IE8”
(if lte IE 8) and applies a PNG that is 50% transparent to the
background of p elements. (Transparent PNGs are discussed in
Chapter 21, Web Graphics Basics.)

<!--[if lte IE 8]>
 <style>
 p {background: transparent url(black-50.
png);}

 </style>
<![endif]-->

Another way to create transparency in IE6 through 8 is to use an
Internet Explorer filter rule, which can get a bit tricky, so I’ll point
you to this helpful article by Eric Ferraiuolo: “RGBA—IE Fallback”
(925html.com/code/rgba-ie-fallback/). And for the deep dive
on conditional comments, go right to the Microsoft Developer
Network site for the nitty gritty (msdn.microsoft.com/en-us/
library/ms537512(v=vs.85).aspx).

You should know that the use of conditional comments is
somewhat controversial in the web development community.
Some developers avoid them at all costs, choosing JavaScript
solutions instead. Others consider them appropriate for the job
and don’t worry that they aren’t strictly valid markup. Hopefully
some day, as older versions of IE fade into disuse, this technique
will no longer be needed.

summing up color values
It took us a few pages to get here, but the process for picking and specifying
colors in style sheets is actually easy.

•	 Pick one of the predefined color names,

or

•	 Use a color picker to select a color and copy down the RGB values (pref-
erably the six-digit hex values). Put those values in the style rule using
one of the four RGB value formats, and you’re done. Or you could use
HSL, if that floats your boat.

There is actually one more colorful way to fill an element, and that’s gradi-
ents (colors that fade from one hue to another), but that opens up a whole
can of worms (namely, vendor prefixes) that I don’t want to get into right
now, so I’m going to save CSS gradients for the end of this chapter.

Foreground Color
Now that we know how to write color values, let’s get to the color-related
properties. You can specify the foreground and background colors for any
HTML element. There are also border-color properties that take color val-
ues, but we’ll get to those in Chapter 14, Thinking Inside the Box.

The foreground of an element consists of its text and border (if one is speci-
fied). You specify a foreground color with the color property, as we saw in
the last chapter when we rolled it out to give text a little pizzazz. Here are
the details for the color property one more time.

www.it-ebooks.info

http://eric.ferraiuolo.name
http://www.it-ebooks.info/

Background Color

Chapter 13, Colors and Backgrounds 273

color
Values: color value (name or numeric) | inherit
Default: depends on the browser and user’s preferences

Applies to: all elements

Inherits: yes

In the following example, the foreground of a blockquote element is set to
a nice green with the values R:80, G:140, and B:25 (we’ll use the hex code
#508C19). You can see that by applying the color property to the blockquote
element, the color is inherited by the p and em elements it contains (Figure
13-8). The thick dashed border around the whole blockquote is green as
well; however, if we were to apply a border-color property to this same ele-
ment, that color would override the green foreground setting.

The style rule

blockquote {
 border: 4px dashed;
 color: #508C19;
}

The markup

<blockquote>
 <p>I’d recommend Honey Gold cereal to anyone who likes cereal. It’s
 the only way to start the day!</p>
 <p>— Jennifer Robbins, happy consumer</p>
</blockquote>

Figure 13-8. Applying a color to the foreground of an element.

Background Color
Use the background-color property to apply a background color to any ele-
ment.

background-color
Values: color value (name or numeric) | transparent | inherit
Default: transparent

Applies to: all elements

Inherits: no

A background color fills the canvas behind the element that includes the
content area, and any padding (extra space) added around the content,
extending behind the border out to its outer edge. Let’s see what happens

The Web Palette
You will certainly come across the
Web Palette or Web Safe Colors
while reading about web design or
using such web production tools as
Dreamweaver or Photoshop. Web-
safe values are easy to spot. They
are made up exclusively of the hex
values 00, 33, 66, 99, CC, and FF.

The web palette is a set of 216 colors
that browsers use to render color on
low-end monitors that are capable
of displaying only 256 colors at a
time. The 216 colors consist of the
cross-section of colors used by both
Windows and Macintosh operating
systems.

Back when most users had low-
end monitors, web designers stuck
with web-safe colors because they
rendered smoothly and predictably.
However, because monitors with only
256 colors are virtually extinct as of
this writing, browsers rarely need to
remap colors in web pages to the
web palette. That means there is no
longer the need to restrict your color
choices—improved technology has
made the web palette obsolete.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation274

Background Color

when we use the background-color property to make the background of the
same sample blockquote light blue (Figure 13-9).

blockquote {
 border: 4px dashed;
 color: #508C19;
 background-color: #B4DBE6;
}

Figure 13-9. Adding a light-blue background color to the sample blockquote.

As expected, the background color fills the area behind the text, all the way
to the border. Look closely at the gaps in the border, and you’ll see that the
background color actually goes all the way to its outer edge. But that’s where
the background stops; if we apply a margin to this element, the background
will not extend into the margin. When we talk about the CSS box model,
we’ll revisit all these components of an element. For now, just know that if
your border has gaps, the background will show through.

It’s worth noting that background colors do not inherit, but because the
default background setting for all elements is transparent, the parent’s back-
ground color shows through its descendant elements. For example, you can
change the background color of a whole page by applying the background-
color property to the body element. The color will show through all the ele-
ments on the page.

In addition to setting the color of the whole page, you can change the back-
ground color of any element, both block-level (like the blockquote shown in
the previous example) as well as inline. In this example, I’ve used the color
and background-color properties to highlight a word marked up as a “glos-
sary” term. You can see in Figure 13-10 that the background color fills the
little box created by the inline dfn element.

The style rule

.glossary {
 color: #7C3306; /* dark brown */
 background-color: #F2F288; /* light yellow */
}

The markup

<p>A <dfn class="glossary">baseline</dfn> is the imaginary line upon
which characters sit.</p>

Figure 13-10. Applying the background-color property to an inline element.

Using Color
Here are a few quick tips related to
working with color:

 y Limit the number of colors you
use on a page. Nothing creates
visual chaos faster than too many
colors. I tend to choose one
dominant color and one highlight
color. I may also use a couple of
shades of each, but I resist adding
too many different hues.

 y When specifying a foreground and
background color, make sure that
there is adequate contrast. People
tend to prefer reading dark text on
very light backgrounds online. My
sample in Figure 13-9, although
making its point, actually fails the
contrast test.

 y It is a good idea to specify
the foreground color and the
background color (particularly for
whole pages) in tandem. This will
avoid possible color clashes and
contrast problems if the user has
one or the other set with a user
style sheet.

d E S i G N T i p

To color the background of
the whole page, apply the
background-color property
to the body element.

www.it-ebooks.info

http://www.it-ebooks.info/

Playing with Opacity

Chapter 13, Colors and Backgrounds 275

Playing with Opacity
Earlier, we talked about the RGBa color format that adds a level of transpar-
ency when it is applied to a color or background. There is another way to
make an element slightly see-through, and that’s the CSS3 opacity property.

opacity

Values: number (0 to 1)

Default: 1

Applies to: all elements

Inherits: no

The value for opacity is a number between 0 (completely transparent) and 1
(completely opaque). A value of .5 gives the element an opacity of 50%. The
opacity setting applies to the entire element—both the foreground and the
background (if one has been set). If you want to just affect one or the other,
use an RGBa color value instead.

In the following code example (and Figure 13-11), a heading has been given
a color of green and a background color of white. When the opacity prop-
erty is set, it allows the background of the page to show through both the
text and the element box.

h1 {color: green; background: white; opacity: .25;}

h1 {color: green; background: white; opacity: .5;}

h1 {color: green; background: white; opacity: 1;}

opacity: .25

opacity: .5

opacity: 1

Figure 13-11. Setting the opacity on an element affects both the foreground and
background colors.

Oh, but guess what—this very nifty trick won’t work if you’re using Internet
Explorer versions 8 or earlier (you probably saw that coming). To set trans-
parency for those browsers, use the IE-specific filters as shown in the fol-
lowing example. The first declaration works in IE8, and the second works
in IE 7 and 6. The zoom property ensures IE recognizes the element in the
layout. Ideally, this rule should be served in an IE-specific style sheet with
conditional comments.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation276

Introducing…Pseudo-class selectors

h1 {
 filter:alpha(opacity=50);
 -ms-filter:"progid:DXImageTransform.Microsoft.Alpha(opacity=50)";
 zoom: 1;
}

You may be itching to take these color and background properties out for a
spin, and we will in a moment, but first, I want to introduce you to some of
the fancier CSS selectors and round out your collection. The At a Glance
sidebar lists the selectors you should feel comfortable with so far.

Introducing…Pseudo-class selectors
Have you ever noticed that a link is often one color when you click on it and
another color when you go back to that page? That’s because, behind the
scenes, your browser is keeping track of which links have been clicked (or
“visited,” to use the lingo). The browser keeps track of other states too, such
as whether the user’s cursor is over an element (hover state), whether an ele-
ment is the first of its type, the first or last child of its parent, and whether a
form element has been checked or disabled, just to name a few.

In CSS, you can apply styles to elements in these states using a special kind
of selector called a pseudo-class selector. It’s an odd name, but you can think
of it as though elements in a certain state belong to the same class. However,
the class name isn’t in the markup—it’s something the browser keeps track
of. So it’s kinda like a class…it’s a pseudo-class.

Pseudo-class selectors are indicated by the colon (:) character. They typi-
cally go immediately after an element name, for example, li:first-child.

There are quite a few pseudo-classes in CSS3. In this section I’ll introduce
you to the most commonly used and the best supported. The full list of
CSS3 selectors, with descriptions and examples of each, can be found in
Appendix B.

Link pseudo-classes
The most basic pseudo-classes selectors target links (a elements) based on
whether they have been clicked. Link pseudo-classes are a type of dynamic
pseudo-class because they are applied as the result of the user interacting
with the page rather than something in the markup.

:link Applies a style to unclicked (unvisited) links

:visited Applies a style to links that have already been clicked

By default, browsers typically display linked text as blue and links that have
been clicked as purple, but you can change that with a few style rules.

Here is a quick summary of the
selector types we’ve covered already:

Element type selector
p {property: value;}

Grouped selectors
p, h1, h2 {property: value;}

Descendant (contextual) selector
ol li {property: value;}

ID selector
#sidebar {property: value;}
div#sidebar {property:
value;}

Class selector
p.warning {property: value;}
.warning {property: value;}

Universal selector
* {property: value;}

A T A G L A N C E

The complete list of CSS3
selectors is provided in
Appendix B.

wa R n i n G

When you alter the appearance of links
and visited links, be sure that they still
look like links.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing…Pseudo-class selectors

Chapter 13, Colors and Backgrounds 277

In these examples, I’ve changed the color of links to maroon and visited
links to gray. It is common for visited links to be a more muted color than
unclicked links.

a:link {
 color: maroon;
}
a:visited {
 color: gray;
}

User action pseudo-classes
Another type of dynamic pseudo-class targets element states that result from
direct user actions.

:focus Applies when the element is selected and ready for input

:hover Applies when the mouse pointer is over the element

:active Applies when the element (such a link or button) is in the pro-
cess of being clicked or tapped

Focus state
If you’ve ever used a web form, then you should be familiar with how a
browser visually emphasizes a form element when you select it. When an
element is highlighted and ready for input, it is said to have “focus.” The
:focus selector lets you apply custom styles to elements when they are in
the focused state.

In this example, when a user selects a text input, it gets a yellow background
color to make it stand out from the other form inputs.

input:focus { background-color: yellow; }

Hover state
The :hover selector is an interesting one. It targets elements while the user’s
mouse pointer is directly over them. Although you can use the hover state
with any element, it is most commonly used with links to change their
appearance and give the user visual feedback that an action is possible.

This rule gives links a light-pink background color while the mouse hovers
over them.

a:hover {
 color: maroon;
 background-color: #ffd9d9;
}

It is important to note that there is no hover state on touch screen devices
such as smartphones and tablets, so this piece of feedback will be lost (see
note). That makes it important for links to have clear visual indicators with-
out relying on mouse interactions for discovery.

wa R n i n G

The :focus pseudo-class is not supported
in IE6.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation278

Introducing…Pseudo-class selectors

Active state
Finally, the :active selector applies styles to an element while it is in the pro-
cess of being activated. In the case of a link, it is the style that is applied while
it is being clicked or while a fingertip is in contact with it on a touch screen.
This style may be displayed only for an instant, but it can give a subtle indi-
cation that something has happened. In this example, I’ve brightened up the
color for the active state (from maroon to red).

a:active {
 color: red;
 background-color: #ffd9d9;
}

Putting it all together
Web designers commonly provide styles for all of these link states because
it is an easy way to provide a nice bit of feedback at every stage of clicking
a link (and it usually improves on the browser defaults). In fact, users have
come to expect this feedback: that they can see at a glance which links have
been followed, that links do something when you point at them, and that
they receive confirmation when they are successfully clicked.

When you apply styles to a elements with all five pseudo-classes, the order in
which they appear is important for them to function properly. For example,
if you put :link or :visited last, they would override the other states, pre-
venting them from appearing. The required order for link pseudo-classes is
:link, :visited, :focus, :hover, :active (LVFHA, which you can remember
with LoVe For Hell’s Angels, or the mnemonic device of your choice).

It is recommended that you provide a :focus style for users who use the
keyboard to tab through links on a page rather than clicking with a mouse.
Applying the same style used for :hover is common, although not required.

To sum things up, the link styles I’ve shown should look like this in the style
sheet. Figure 13-12 shows the results.

a { text-decoration: none; } /* turns underlines off for all links */

a:link { color: maroon; }

a:visited { color: gray; }

a:focus { color: maroon; background-color: #ffd9d9; }

a:hover { color: maroon; background-color: #ffd9d9; }

a:active { color: red; background-color: #ffd9d9; }

n oT e

Although there is no way to hover a
finger over an element, iOS Safari and
some Android devices may display the
:hover state styles after a single tap. To
follow the link, a user must tap again.
This approach ensures that CSS-driven
drop-down menus that expand when
hovered over are still accessible on a
touch device. On the flip side, it might
be confusing or undesirable on other
hovered objects. For this reason, some
developers choose to create a separate
style sheet without :hover styles for
mobile devices that might have touch
interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Pseudo-element selectors

Chapter 13, Colors and Backgrounds 279

a:link
Links are maroon and not
underlined.

a:focus
a:hover
While the mouse is over the
link or when the link has
focus, the pink background
color appears.

a:active
As the mouse button is
being pressed, the link turns
bright red.

a:visited
After that page has been
visited, the link is gray.

Figure 13-12. Changing the colors and backgrounds of links with pseudo-class selectors.

Other pseudo-class selectors
OK…five CSS3 pseudo-classes down,
only 18 to go! Well, I don’t know
about you, but that sounds a bit
tedious. I want you to know what is
possible, so I’ve tucked them into the
More Pseudo-classes sidebar, and we
can move on to a few other selector
types. In addition, you can find them
in Appendix B with descriptions and
examples. When you are ready to get
more sophisticated with selectors in
your documents, you can use that
Appendix as a reference.

Pseudo-element
selectors
Pseudo-classes aren’t the only kind
of pseudo-selectors. There are also
four pseudo-elements that act as
though they are inserting fictional
elements into the document struc-
ture for styling. In CSS3, pseudo-
elements are indicated by a double
colon (::) symbol, but for better
backward compatibility, use a single
colon (:) as they were defined in
CSS2.

More Pseudo-classes
In addition to the dynamic pseudo-classes, the CSS3 selector module includes other
types of selectors that are based on states the browser keeps track of on the fly.

It should be noted that none of these selector types are supported in Internet
Explorer 8 or earlier. To create support using JavaScript, try using Selectivizr
(selectivizr.com), which is a script you add to the file that emulates support in early
IE versions. Selectivizr is an example of a polyfill, a script that adds support for
contemporary web functionality in older browsers (polyfills are discussed in Chapter
20, Using JavaScript).

structural pseudo-classes
These allow selection based on where the element is in the structure of the
document (the document tree). You should find that their names adequately describe
what they target.

:root

:empty

:first-child

:last-child

:only-child

:first-of-type

:last-of-type

:only-of-type

:nth-child()

:nth-last-child()

:nth-of-type()

:nth-last-of-type()

UI (user interface) selectors
These selectors apply to states that are typical for form widgets.

:enabled :disabled :checked

And more!
Additional pseudo-classes include:

:target (selects elements targeted by a fragment identifier in a URL)

:lang() (selects based on a two-character language code)

:not() (selects every element except what is listed in the parentheses)

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation280

Pseudo-element selectors

First letter and line
The following pseudo-elements are used to select the first line or the first
letter of text in an element as displayed in the browser.

:first-line

This selector applies a style rule to the first line of the specified element.
The only properties you can apply, however, are:
color font background

word-spacing letter-spacing text-decoration

vertical-align text-transform line-height

:first-letter

This applies a style rule to the first letter of the specified element. The
properties you can apply are limited to:
color font text-decoration

text-transform vertical-align padding

background margin line-height

border float

letter-spacing word-spacing

Figure 13-13 shows examples of the :first-line and :first-letter pseu-
do-element selectors.

p:first-letter {font-size: 300%; color: orange;}

p:first-line {letter-spacing: 8px;}

Figure 13-13. Examples of :first-line and :first-letter pseudo-element selectors.

Generated content with :before and :after
CSS2 introduced the :before and :after pseudo-elements that are used to
insert content before or after a specified element without actually adding the
characters to the source document (this is called generated content in CSS).
Generated content can be used to insert language-appropriate quotation
marks around a quote, insert automatic counters, or even display URLs next
to links when a document is printed.

n oT e

There are a few properties in this list
that you haven’t seen yet. We’ll cover
the box-related properties (margin, pad-
ding, border) in Chapter 14, Thinking
Inside the Box. The float property is
introduced in Chapter 15, Floating and
Positioning.

www.it-ebooks.info

http://www.it-ebooks.info/

Attribute selectors

Chapter 13, Colors and Backgrounds 281

Here’s a simple example that inserts the words “Once upon a time:” before a
paragraph and “The End.” at the end of the paragraph (Figure 13-14).

The style sheet:

p:before {
 content: "Once upon a time: ";
 font-weight: bold;
 color: purple;
}
p:after {
 content: " The End.";
 font-weight: bold;
 color: purple;
}

The markup:

<p>Snow White was banished for being the most beautiful, ... and they
lived happily ever after.</p>

Figure 13-14. Generated content added with the :before and :after pseudoselectors,
shown in the Firefox browser (Macintosh).

Generated content is not supported in Internet Explorer 6 and 7, but other
browsers handle it just fine. This isn’t something you’re likely to take on
in your first projects, but if you are interested in learning more, I recom-
mend this tutorial from Smashing Magazine: coding.smashingmagazine.
com/2011/07/13/learning-to-use-the-before-and-after-pseudo-elements-in-
css/. And if you want the full technical low-down, read the W3C Generated
and Replaced Content Module (www.w3.org/TR/css3-content/).

Attribute selectors
We are finally in the home stretch with selectors. The last type of selector
targets elements based on their attributes. You can target attribute names or
their values, which provides a lot of flexibility for selecting elements without
needing to add a lot of class or id markup.

The following attribute selectors were introduced in CSS2 and are well sup-
ported by browsers, with the exception of IE6.

element[attribute]

The simple attribute selector targets elements with a particular attribute
regardless of its value. The following example selects any image that has
a title attribute.

img[title] {border: 3px solid;}

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation282

Attribute selectors

element[attribute="exact value"]

The exact attribute value selector selects elements with a specific value
for the attribute. In IE7, values are case-sensitive and must be entered
correctly in order to be recognized. This selector matches images with
exactly the title value “first grade”.

img[title="first grade"] {border: 3px solid;}

element[attribute~="value"]

The partial attribute value selector allows you to specify one part of an
attribute value. The following example looks for the word “grade” in
the title, so images with the title value “first grade” and “second grade”
would be selected.

img[title~="grade"] {border: 3px solid;}

element[attribute|="value"]

The hyphen-separated attribute value selector targets hyphen-separated
values. This selector matches any link that points to a document written
in a variation on the English language (en), whether the attribute value is
en-us (American English), en-in (Indian English), en-au-tas (Australian
English), and so on. (Remember that the * is the universal selector that
selects “any element.”)

*[hreflang|="en"] {border: 3px solid;}

The following extended attribute selectors are new in CSS3, so they are just
gaining steam. They are not supported at all in IE6 or 7, and support in older
versions of Safari, Opera, and Firefox is partial or buggy.

element[attribute^="first part of the value"]

The beginning substring attribute value selector matches elements whose
specified attribute values start in the string of characters in the selector.
This selector applies the style only to all images that are found in the /
images/icons directory ().

img[src^="/images/icons"] {border: 3px solid;}

element[attribute$="last part of the value"]

The ending substring attribute value selector matches elements whose
specified attribute values end in the string of characters in the selector.
In this example, you can apply a style to just the a elements that link to
PDF files.

a[href$=".pdf"] {border: 3px solid;}

element[attribute*="any part of the value"]

The arbitrary substring attribute value selector looks for the provided
text string in any part of the attribute value specified. This rule selects
any image that contains the word “February” somewhere in its title.

img[title*="February"] {border: 3px solid;}

www.it-ebooks.info

http://www.it-ebooks.info/

Attribute selectors

Chapter 13, Colors and Backgrounds 283

OK, we’re done with selectors! All of them. You’ve been a real trooper. I
think it’s definitely time to try out foreground and background colors as well
as a few of these new selector types in Exercise 13-1.

exercise 13-1 | Adding color to a document
In this exercise, we’ll start with a simple black-and-white menu and give it some
personality with foreground and background colors (Figure 13-15). You should have
enough experience writing style rules by this point that I’m not going hold your hand
as much as I have in previous exercises. This time, you write the rules. You can check
your work against the finished style sheet provided in Appendix A.

Open the file bistro.html (available at www.learningwebdesign.com/4e/materials) in
a text editor. You will find that there is already an embedded style sheet that provides
basic text formatting, including a preview of the margin and padding properties that
we’ll be getting to in the next chapter. With the text all set, you’ll just need to work on
the colors. Feel free to save the document at any step along the way and view your
progress in a browser.

1. Make the h1 heading purple (R:153, G:51, B:153, or #993399) by adding a new
declaration to the existing h1 rule. Note that because this value has all double
digits, you can (and should) use the condensed version (#939) and save a few
bytes in the style sheet.

2. Make the h2 headings light orange-brown (R:204, G:102, B:0, or #cc6600).

3. Make the background of the entire page a light green (R:210, G:220, B:157,
or #d2dc9d). Now might be a nice time to save, have a look in a browser, and
troubleshoot if the background and headings do not appear in color.

4. Make the background of the “header” div white with 50% transparency (R:255,
G:255, B:255, .5) so a hint of the background color shows through.

5. I’ve already added a rule that turns underlines off under links (text-
decoration:none), so we’ll be relying on color to make the links pop. Write a rule
that makes links the same purple as the h1 (#993399).

6. Make visited links a muted purple (#937393).

7. When the mouse is placed over links, make the text
a brighter purple (#c700f2) and add a white
background color (#fff). This will look a little like
the links are lighting up when the mouse is
pointing at it. Use these same style rules for when
the links are in focus.

8. As the mouse is being clicked (or tapped on a
touch device), add a white background color and
make the text turn a vibrant purple (#ff00ff).
Make sure that all of your link pseudo-classes are in
the correct order.

When you are done, your page should look like the
one in Figure 13-15. We’ll be adding background
images to this page later, so if you’d like to continue
experimenting with different colors on different
elements, make a copy of this document and give it a
new name.

before after

purple muted purple bright purple vibrant purple
R:153, G:51, B:153 R:147, G:115, B:147 R:199, G:0, B:242 R:255, G:0, B:255
#993399 (or #939) #937393 #C700F2 #FF00FF

white light green orange/light brown
R:255, G:255, B:255 R:210, G:220, B:157 R:204, G:102, B:0
#FFFFFF (or #FFF) #D2DC9D #CC6600 or #C60

wa R n i n G

Don’t forget the # character before hex
values. The rule won’t work without it.

Figure 13-15. The Black Goose Bistro
menu page with colors applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation284

Background Images

Background Images
We’ve seen how to add images to the content of the document using the img
element, but these days, most decorative images are added to pages and ele-
ments as backgrounds using CSS. After all, decorations such as tiling back-
ground patterns are firmly part of presentation, not structure. It also allows
designers to change the look of a site by editing a .css file…we’ve come a long
way from the days when sites were giant graphics cut up and held together
with tables (shudder).

In this section, we’ll look at the collection of properties used to place and
push around background images, starting with the basic background-image
property.

Adding a background image
The background-image property adds a background image to any element. Its
primary job is to provide the location of the image file.

background-image
Values: url (location of image) | none | inherit
Default: none

Applies to: all elements

Inherits: no

The value of background-image is a sort of URL holder that contains the loca-
tion of the image (see the note).

The URL is relative to wherever the CSS rule is at the time. If the rule is in
an embedded style sheet (a style element in the HTML document), then
the pathname in the URL should be relative to the location of the HTML
file. If the CSS rule is in an external style sheet, then the pathname to the
image should be relative to the location of the .css file. See the related tip for
another approach.

These examples and Figure 13-16 show background images applied behind
a whole page (body) and a single blockquote element with padding and a
border applied.

body {
 background-image: url(star.gif);
}

blockquote {
 background-image: url(dot.gif);
 padding: 2em;
 border: 4px dashed;
}

The Standardista site has incredibly
detailed browser support charts for
every possible background-related
property. It’s definitely worth a look.

www.standardista.com/css3/css3-
background-properties/

r E S o u r C E

The properties related to background
images are:

background-image

background-repeat

background-position

background-attachment

background-clip (CSS3)

background-size (CSS3)

background

A T A G L A N C E

n oT e

The proper term for that “URL holder”
is a functional notation. It is the same
syntax used to list decimal and percent-
age RGB values.

www.it-ebooks.info

http://www.it-ebooks.info/

Background Images

Chapter 13, Colors and Backgrounds 285

dot.gif (24 x 24 pixels)

star.gif (100 x 96 pixels)

Figure 13-16. Examples of tiling background images added with the background-image
property.

Here you can see the default behavior of background-image. The image starts
in the top lefthand corner and tiles horizontally and vertically until the entire
element is filled (although you’ll learn how to change that in a moment).
Like background colors, by default tiling background images fill the area
behind the content area, the extra padding space around the content, and
extend to the outer edge of the border (if there is one).

If you provide both a background-color and a background-image to an ele-
ment, the image will be placed on top of the color. In fact, it is recommended
that you do provide a backup color that is similar in hue, in the event the
image fails to download.

Tiling Background Images
When working with background images, keep these guidelines and tips in mind:

 y Use a simple image that won’t interfere with the legibility of the text over it.

 y Always provide a background-color value that matches the primary color of the
background image. If the background image fails to display, at least the overall
design of the page will be similar. This is particularly important if the text color
would be illegible against the browser’s default white background.

 y As usual for the Web, keep the file size of background images as small as possible.

d E S i G N T i p

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation286

Background Images

exercise 13-2 | Adding a tiling background image
In this exercise, we’re going to add a simple tiling background
image to the menu. The images provided for this exercise should
be in the images directory.

Add a declaration to the body style rule that makes the image
bullseye.png tile in the background of the page. Be sure to
include the pathname relative to the style sheet (in this case, the
current HTML document).

background-image: url(images/bullseye.png);

Easy, isn’t it? When you save and view the page in the browser, it
should look like Figure 13-17.

I want to point out that bullseye.png is a slightly transparent
PNG graphic, so it will blend into any background color. You’ll
learn how to make a transparent PNG in Chapter 21, Image
Basics. Try temporarily changing the background-color for the
body element by adding a second background-color declaration
lower in the stack so it overrides the previous one. Play around
with different colors and notice how the circles blend in. When
you are done experimenting, delete the second declaration
so the background is green again and you’re ready to go for
upcoming exercises.

Figure 13-17. The article with a simple tiling background
image.

Controlling tiling direction
As we saw in the last figure, images tile left and right, up and down, when
left to their own devices. You can limit this behavior with the background-
repeat property.

background-repeat
Values: repeat | repeat-x | repeat-y | no-repeat | inherit
Default: repeat

Applies to: all elements

Inherits: no

If you want a background image to appear just once, use the no-repeat key-
word value, like this:

body {
 background-image: url(star.gif);
 background-repeat: no-repeat;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Background Images

Chapter 13, Colors and Backgrounds 287

You can also restrict the image to tiling
only horizontally (repeat-x) or vertically
(repeat-y), as shown in these examples.

body {
 background-image: url(star.gif);
 background-repeat: repeat-x;
}
body {
 background-image: url(star.gif);
 background-repeat: repeat-y;
}

Figure 13-18 shows examples of each
of the keyword values. Notice that in
all the examples, the tiling begins in the
top-left corner of the element (or browser
window when an image is applied to the
body element). In the next section, I’ll
show you how to change that.

exercise 13-3 | Controlling tile direction
Now let’s try some slightly more sophisticated tiling on the
sample article page. This time we’ll add a tiling background just
along the top edge of the “header” div.

1. In the #header rule, add the image purpledot.gif and set it to
repeat horizontally only.

#header {
 margin-top: 0;
 padding: 3em 1em 2em 1em;
 text-align: center;
 background-color: rgba(255,255,255,.5);
 background-image: url(images/purpledot.png);
 background-repeat: repeat-x;
}

2. Save the file and look at it in the browser. It should look
something like Figure 13-19. I recommend resizing your
browser window to wider and narrower sizes and paying
attention to the position of the background pattern. See how

it’s always anchored on the left? We’re going to learn how to
adjust position next.

3. Try changing the style rule to make the dot repeat vertically
only, then make it not repeat at all (set it back to repeat-x
when you’re done).

Figure 13-19. Adding a horizontal tiling image to the #header
div.

No-repeat

Repeat-y

Repeat-x

Figure 13-18. Turning off automatic tiling with no-repeat (top), vertical-axis tiling
with repeat-y (middle), and horizontal-axis tiling with repeat-x (bottom).

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation288

Background Images

Background position

The background-position property specifies the position of the origin image
in the background. You can think of the origin image as the first image that
is placed in the background from which tiling images extend. Here is the
property and its various values.

background-position
Values: length measurement | percentage | left | center | right | top | bottom | inherit
Default: 0% 0% (same as left top)
Applies to: all elements

Inherits: no

To position the origin image, you provide horizontal and vertical values that
describe where to place it. But there are a variety of ways to do it.

Keyword positioning

The keyword values (left, right, top, bottom, and center) position the
origin image relative to the edges of the element’s padding. For example,
left positions the image all the way to the left edge of the background
area. The default origin position corresponds to “left, top”

Keywords are typically used in pairs, as in these examples:

background-position: left bottom;
background-position: right center;

If you provide only one keyword, the missing keyword is assumed to
be center. Thus, background-position: right has the same effect as
background-position: right center.

Length measurements

You can also specify the position by its distance from the top-left corner
of the element using pixel measurements. When providing length values,
the horizontal measurement always goes first.

background-position: 200px 50px;

 Percentages

Percentage values are provided in horizontal/vertical pairs, with 0% 0%
corresponding to the top-left corner and 100% 100% corresponding to
the bottom-right corner. It is important to note that the percentage value
applies to both the canvas area and the image itself. For example, the
100% value places the bottom-right corner of the image in the bottom-
right corner of the canvas. As with keywords, if you only provide one
percentage, the other is assumed to be 50% (centered).

background-position: 15% 100%;

To ensure best performance in
modern browsers, always supply the
horizontal measurement first for all
value types.

C S S T i p

www.it-ebooks.info

http://www.it-ebooks.info/

Background Images

Chapter 13, Colors and Backgrounds 289

Figure 13-20 shows the results of each of the background-position examples
listed above with the background-repeat set to no-repeat for clarity. It is pos-
sible to position the origin image and let it tile from there, in both directions
or just horizontally or vertically. When the image tiles, the position of the
initial image might not be obvious, but you can use background-position
to make a tile pattern start at a point other than the left edge of the image.
This might be used to keep a background pattern centered and symmetrical.

background-position: left bottom;

background-position: right center;

background-position: 200px 50px;

background-position: 15% 100%;

Figure 13-20. Positioning a non-repeating background image.

n oT e

Notice in Figure 13-20 that when an
origin image is placed in the corner of an
element, it is placed inside the border.
Only repeated images extend under the
border to its outer edge.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation290

Background Images

exercise 13-4 | Positioning background images
Let’s have some fun with the position of the background image
in the menu. First we’re going to make some subtle adjustments
to the background images that are already there, and then we’ll
swap it out for a whole different background and play around
some more. We are still working with the bistro.html document,
which should have repeating tile patterns in the body and
#header elements.

1. I’m thinking that since the main elements of the menu are
centered, it would be nice if the background patterns stayed
centered, too. Add this declaration to both the body and
#header rules, then save and look at it in the browser. You
may not notice the difference until you resize the browser
wide and narrow again. Now the pattern is anchored in the
center and reveals more or less on both edges, not just the
right edge as before.

background-position: center top;

2. For kicks, alter the background-position values so that
the purple dots are along the bottom edge of the header
div (center bottom). (Doesn’t look so good; I’m putting
mine back.) Then try moving the bullseye.png down 200
pixels (center 200px). Notice that the pattern still fills the
entire screen—we moved the origin image down, but the
background is still set to tile in all directions. Figure 13-21
shows the result of these changes.

3. That looks good, but let’s get rid of the background on the
body for now. I want to show you a little trick. During the
design process, I prefer to hide styles in comments instead of
deleting them entirely. That way I don’t need to remember
them or type them in again; I only have to remove the
comment indicators and they’re back. When the design is
done and it’s time to publish, I strip unused styles out to
keep the file size down. Here is how to hide declarations in
comments:

body {
 font-family: Georgia, serif;
 font-size: 100%;
 line-height: 175%;
 margin: 0 15%;
 background-color: #d2dc9d;
 /* background-image: url(images/bullseye.png);
 background-position: center 200px; */
}

4. Now, add the blackgoose.png images (also a semi-
transparent PNG) to the background of the page. Set it to not
repeat, and center it in the page.

background-image: url(images/blackgoose.png);
background-repeat: no-repeat;
background-position: center top;

Take a look in the browser window and watch the background
scroll up with the content when you scroll the page.

5. I want you to get a feel for the various position keywords and
numeric values. Try each of these out and look at them in the
browser. Be sure to scroll the page and watch what happens.
Note that when you provide a percentage or keyword to
the vertical position, it is based on the height of the entire
document, not just the browser window. You can try your
own variations as well.

background-position: right top;

background-position: right bottom;

background-position: left 50%;

background-position: center 100px;

6. Leave the image positioned at center 100px so you are
ready to go for the next exercise. Your page should look like
the one shown on the right in Figure 13-21.

Figure 13-21. The results of positioning the origin image in the tiling background patterns (left) and positioning a
single background logo (right).

www.it-ebooks.info

http://www.it-ebooks.info/

Background Images

Chapter 13, Colors and Backgrounds 291

Background attachment
In the previous exercise, I asked you to scroll the page and watch what hap-
pens to the background image. As expected, it scrolls along with the docu-
ment and off the top of the browser window, which is its default behavior.
However, you can use the background-attachment property to free the back-
ground from the content and allow it to stay fixed in one position while the
rest of the content scrolls.

background-attachment
Values: scroll | fixed | local (new in CSS3) | inherit
Default: scroll

Applies to: all elements

Inherits: no

With the background-attachment property, you have the choice of whether
the background image scrolls with the content or stays in a fixed position.
When an image is fixed, it stays in the same position relative to the viewport
of the browser (as opposed to being relative to the element it fills). You’ll see
what I mean in a minute.

In the following example, a large, non-tiling image is placed in the back-
ground of the whole document (the body element). By default, when the doc-
ument scrolls, the image scrolls too, moving up and off the page, as shown
in Figure 13-22. However, if you set the value of background-attachment to
fixed, it stays where it is initially placed, and the text scrolls up over it.

body {
 background-image: url(images/bigstar.gif);
 background-repeat: no-repeat;
 background-position: center 300px;
 background-attachment: fixed;
}

The local value, which was added in CSS3, makes a background image scroll
along with the content inside a scrolling element, independent of the browser
viewport scroll. It is not supported in IE6 through 8 or Firefox as of this writing.

background-attachment: fixed;

When background-attachment is set to “fixed,” the image
stays in its position relative to the browser viewing area
and does not scroll with the content

A large non-repeating background image in the body
of the document.

background-attachment: scroll;

By default, the background image is attached to the
body element and scrolls off the page when the page
content scrolls.

n oT e

You can fix the position of a background
image for any element, but unfortunate-
ly, it won’t work for users with Internet
Explorer 6 or 7. This is another feature
to use as “icing.”

Figure 13-22. Preventing the background
image from scrolling with the background-
attachment property.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation292

Background Images

exercise 13-5 | Fixed position
When we last left the bistro menu, we had applied a large, non-repeating logo
image to the background of the page. We’ll leave it just like that, but we’ll use the
background-attachment property to keep it in the same place even when the page
scrolls.

body {
 …
 background-attachment:
 fixed;
}

Save the document, open it in the browser, and now try scrolling. The background
image stays put in the viewing area of the browser. Cool, huh?

For extra credit, see what happens when you fix the attachment of the dot pattern in
the div#header. (Hint, it stays in the same place, but only within the div itself. When
the div slides out of view, so does its background.)

Css3 Background Properties
The CSS3 Backgrounds and Borders Module introduced a few more properties for
controlling backgrounds. The module is still a working draft, so this information is
subject to change. These are not supported in IE6 through 8.

background-clip

Values: border-box | padding-box | content-box
This specifies exactly how far the background image should extend. We saw that
by default, it extends to the edge of the border (border-box), but you could also
make it end at the padding or the edge of the content box using padding-box or
content-box, respectively. We’ll discuss these box model components in the next
chapter.

background-size

Values: [length | percentage | auto] | cover | contain
This property allows designers to size the background image inside the property.
You can provide specific width and height measurements. If you provide only one
measurement, the other is presumed to be auto. You can also just set the image to
contain, which resizes the image so that it just fits inside the containing element,
even if there is some blank space left over, or cover, which resizes the image so that
the entire element is covered, even if some of the background image hangs over the
edges and out of view.

background-origin

Values: border-box | padding-box | content-box
This property determines how the background-position is calculated, or in other
words, where to start counting positioning measurements. You can start from the
edge of the border, padding area, or content area.

www.it-ebooks.info

http://www.it-ebooks.info/

The shorthand background Property

Chapter 13, Colors and Backgrounds 293

The shorthand background Property
You can use the handy background property to specify all of your background
styles in one declaration.

background
Values: background-color background-image background-repeat background-
 attachment background-position | inherit
Default: see indiviual properties

Applies to: all elements

Inherits: no

As for the shorthand font property, the value of the background property is a
list of values that would be provided for the individual background proper-
ties listed above. For example, this one background rule:

body { background: white url(arlo.png) no-repeat right top fixed; }

replaces this rule with five separate declarations:

body {
 background-color: white;
 background-image: url(arlo.png);
 background-repeat: no-repeat;
 background-position: right top;
 background-attachment: fixed;
}

All of the property values for background are optional and may appear in any
order. The only restriction is that when providing the coordinates for the
background-position property, the horizontal value must appear first, imme-
diately followed by the vertical value. Be aware that if a value is omitted, it
will be reset to its default (see Watch Out for Overrides).

Watch Out for Overrides
The background property is efficient, but use it carefully. We’ve addressed this before,
but it bears repeating. Because background is a shorthand property, when you
omit a value, that property will be reset with its default. Be careful that you do not
accidentally override style rules earlier in the style sheet with a later shorthand rule
that reverts your settings to the defaults.

In this example, the background image dots.gif will not be applied to h3 elements
because by omitting the value for background-image, it essentially set that value to
none.

h1, h2, h3 { background: red url(dots.gif) repeat-x;}
h3 {background: green;}

To override particular properties, use the specific background property you intend
to change. For example, if the intent in the above example were to change just the
background color of h3 elements, the background-color property would be the
correct choice.

exercise 13-6 |
Convert to
shorthand property
This one is easy. Replace all of the
background-related declarations
in the body of the bistro menu
with a single background property
declaration.

body {
 font-family: Georgia,
serif;
font-size: 100%;
line-height: 175%;
margin: 0 15%;
background: #d2dc9d
url(images/blackgoose.
png) no-repeat center 100px
fixed;
}

Do the same for the div element, and
you’re done.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation294

The shorthand background Property

Multiple backgrounds
Until recently, you could apply only one background image to an element.
To stack up background images in the past, the only solution was to add
extra divs in the markup and add an image to each one. Thankfully, CSS3
allows multiple background images to be applied to a single element, and
browsers are beginning to support them.

To apply multiple values for background-image, put them in a list separated
by commas. Additional background-related property values also go in com-
ma-separated lists; the first value listed applies to the first image, the second
value to the second, and so on. The image defined by the first value will go
in front, and others line up behind it, in the order in which they are listed.

body {
 background-image: url(image1.png), url(image2.png), url(image3.png);
 background-position: left top, center center, right bottom;
 background-repeat: no-repeat; no-repeat; no-repeat;
 …
}

Alternatively, you can take advantage of the background shorthand property
to make the rule simpler. Now the background property has three value
series, separated by commas:

body {
 background:
 url(image1.png) left top no-repeat,
 url(image2.png) center center no-repeat,
 url(image3.png) right bottom no-repeat;
 …
}

Figure 13-23 shows the result.

As with any new CSS3 technique, sup-
port is lacking in Internet Explorer ver-
sions 6 through 8, which will completely
ignore any background declaration with
more than one value. The solution is
to choose one background-image for the
element as a fallback for IE and other
non-supporting browsers, then specify
the multiple background rules. Because
it comes second, browsers that sup-
port them will override the single image
with the multiple image rule. As for all
background images, it is a good idea
to provide a background-color should
all else fail. Put it last so the shorthand
background properties don’t override it.

n oT e

Although CSS declarations usually work
on a “last one wins” rule, for multiple
background images, whichever is listed
last goes on the bottom and each image
higher in the list layers on top of it. You
can think of them like Photoshop layers
in that they get stacked in the order in
which they appear in the list.higher in
the list layers on top of it.

Figure 13-23. Three separate background
images added to the body element.

www.it-ebooks.info

http://www.it-ebooks.info/

The shorthand background Property

Chapter 13, Colors and Backgrounds 295

Until support is universal, you can use multiple backgrounds as “icing” for
browsers that can show them.

body {
 background: url(image_fallback.png) top left no-repeat;
 /* for non-supporting browsers */
 background:
 url(image1.png) left top no-repeat,
 url(image2.png) center center no-repeat,
 url(image3.png) right bottom no-repeat;
 background-color: papayawhip; /* background color */
}

exercise 13-7 | Multiple background images
In this exercise, we’ll give multiple background images a try. Note that if you are
using Internet Explorer 6, 7, or 8, you won’t be able to see the multiple images, so use
Chrome, Safari, or Firefox instead (they’re free!).

I’d like the dot pattern in the #header div to run along the left and right sides. I also
have a little goose silhouette (gooseshadow.png) that might look cute walking along
the bottom of the header. Following the current best practice, I’ve started the rule
with a background-image fallback (the horizontal row of dots we used before) and
ended with the background color.

#header {
 …
 background-image: url(images/purpledot.png) center top repeat-x;
 background:
 url(images/purpledot.png) left top repeat-y,
 url(images/purpledot.png) right top repeat-y,
 url(images/gooseshadow.png) 90% bottom no-repeat;
 background-color: rgba(255,255,255,.5);
}

Figure 13-24 shows the final result. Eh, I liked it better before, but you get the idea.

Figure 13-24. The bistro menu header with two rows of dots and a small goose
graphic in the div#header element.

Parallax scrolling
with Multiple
Backgrounds
The term parallax motion refers to
the visual effect of closer objects
seeming to move more quickly
than objects farther in the distance.
Replicating near, medium, and
distance speeds in an animation or
motion graphic can give a scene a
3-D effect.

Some designers use multiple
background images to create parallax
scrolling effects. When you resize
the browser window or move a
horizontal scrollbar, the staggered
way the backgrounds move creates
a parallax and 3-D effect. Because
you cannot resize or scroll mobile
browsers horizontally, this effect will
not work on phones and tablets.

A good starting point to learn more
is the tutorial “Starry Night: Incredible
3D Background Effect with Parallax,”
by Chris Coyier (css-tricks.com/3d-
parralax-background-effect/). See
also “How to Recreate Silverback’s
Parallax Effect,” by Paul Annett
(thinkvitamin.com/design/how-to-
recreate-silverbacks-parallax-effect/),
which refers to the Silverback app
page (silverbackapp.com) that got all
the cool kids talking.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation296

Like a Rainbow (Gradients)

Like a Rainbow (Gradients)
A gradient is a transition from one color to another, sometimes through
multiple colors. In the past, the only way to put a gradient on a web page
was to create one in an image-editing program and add the resulting image
with CSS.

CSS3 introduced the ability to specify color gradients using CSS notation
alone, leaving the task of rendering color blends to the browser. Gradients
can be applied anywhere an image may be applied: background-image,
border-image, and list-style-image. We’ll stick with background-image
examples in this chapter.

There are two types of gradients:

•	 Linear gradients change colors along a line, from one edge of the element
to the other.

•	 Radial gradients start at a point and spread outward in a circular or
elliptical shape

Linear gradients
The linear-gradient() notation provides the angle of the line and one or
more points along that line where the pure color is positioned (color stops).
You can use color names or any of the numerical color values discussed
earlier in the chapter. The angle of the line is specified in degrees (ndeg) or
using keywords. Using degrees, 0deg points upward, and positive angles go
around clockwise so that 90deg points to the right. Therefore you want to go
from yellow on the top edge to green on the bottom edge, set the rotation
to 180deg.

#banner
 background-image: linear-gradient(180deg, yellow, green);
}

The keywords describe direction in increments of 90° (to top, to right, to
bottom, to left). Our 180deg gradient could also be specified with the to
bottom keyword. The result is shown in Figure 13-25 (top).

#banner {
 background-image: linear-gradient(to bottom, yellow, green);
}

In this example, the gradient now goes from left to right and includes a third
color, orange, which appears 25% of the way across the gradient line (Figure
13-25, middle). You can see that the placement of the color stop is indicated
after the color value. The 0% and 100% positions may be omitted.

#banner {
 background-image: linear-gradient(90deg, yellow, orange 25%, blue);
}

Gradients are images that
browsers generate on the
fly. Use them as you would
use a background image.

www.it-ebooks.info

http://www.it-ebooks.info/

Like a Rainbow (Gradients)

Chapter 13, Colors and Backgrounds 297

These examples are pretty garish, but if you choose your colors and stops
right, gradients are a nice way to give elements subtle shading and a 3-D
appearance. The button on the bottom uses a background gradient to
achieve a 3D look without graphics (Figure 13-25, bottom).

a.button-like {
 background: linear-gradient(to bottom, #e2e2e2 0%, #dbdbdb 50%,
 #d1d1d1 51%, #fefefe 100%);
}

linear-gradient(to bottom, yellow, green);

linear-gradient(90deg, yellow, orange 25%, blue);

linear-gradient(to bottom, #e2e2e2 0%, #dbdbdb 50%, #d1d1d1 51%, #fefefe 100%);

Figure 13-25. Examples of linear gradients.

Radial gradients
Radial gradients, like the name says, radiate out from a point in a circle. In
the CSS3 spec, the radial-gradient() notation describes the shape (circle
or ellipse; circle is the default if no shape is specified), the position of the
center of the gradient (following the same syntax as background-position),
and a size, specified as a radius length or a keyword that describes the side
or corner where the last color should stop (closest-side, farthest-side,
closest-corner, farthest-corner, cover, contain).

n oT e

For more information on radial gra-
dients, see this very thorough article,
“CSS3 Radial Gradients” by John
Alsopp (www.webdirections.org/blog/
css3-radial-gradients/).

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation298

Like a Rainbow (Gradients)

This rule fills the box with a radial gradient that will be contained within the
element box (Figure 13-26).

#banner {
 background-image: radial-gradient(center contain yellow green);
}

radial-gradient(center, yellow, green);

Figure 13-26. Examples of radial gradients.

Introducing vendor prefixes
OK, here’s where things get fun, and by “fun,” of course, I mean not much
fun at all. The CSS gradient examples we’ve seen so far use the syntax
described in the CSS3 specification. But browsers began their own tinkering
with gradients before the specification was fully agreed upon. For cutting-
edge features like gradients, it is common for browsers to start experiment-
ing with their own solutions and implementing them in shipping browsers
before the spec has been fully approved and set in stone.

That’s a lot like what browser makers did in the 90s that caused so many
incompatibility disasters, but this time around, they’ve had the good sense
to label their proprietary properties with vendor prefixes that clearly indicate
proprietary solutions. Table 13-1 lists the browser prefixes in current use.

Prefix Organization Most popular browsers

-ms- Microsoft Internet Explorer

-moz- Mozilla Foundation Firefox, Camino, Seamonkey

-o- Opera Software Opera, Opera Mini, Opera Mobile

-webkit- Originally Apple; now open source Safari, Chrome, Android, Silk, Blackberry, WebOS, many others

-khtml- Konqueror Konqueror

Table 13-1. Browser vendor prefixes

www.it-ebooks.info

http://www.it-ebooks.info/

Like a Rainbow (Gradients)

Chapter 13, Colors and Backgrounds 299

What this means for designers and developers is that for some newer CSS3
features, we need to list out the properties for each browser using browser
prefixes to accommodate different implementations. Although it means
extra work and extra code, it is not a bad thing. It allows browser makers to
innovate in a way that does not interfere with the standards process.

Getting back to gradients, the following example shows the yellow-to-green
linear gradient as it should be written to address every modern browser (with
the Internet Explorer filter equivalent thrown in for good measure). Notice
that the syntax is slightly different. Where the CSS3 spec uses the "to bot-
tom" keyword," most of the others use "top" and Webkit uses "left top, left
bottom".

background: #ffff00; /* Old browsers */
background: -moz-linear-gradient(top, #ffff00 0%, #00ff00 100%);

/* FF3.6+ */
background: -webkit-gradient(linear, left top, left bottom, color-

stop(0%,#ffff00), color-stop(100%,#00ff00));
/* Chrome,Safari4+ */

background: -webkit-linear-gradient(top, #ffff00 0%,#00ff00 100%);
/* Chrome10+,Safari5.1+ */

background: -o-linear-gradient(top, #ffff00 0%,#00ff00 100%);
/* Opera 11.10+ */

background: -ms-linear-gradient(top, #ffff00 0%,#00ff00 100%);
/* IE10+ */

background: linear-gradient(to bottom, #ffff00 0%,#00ff00 100%);
/* W3C */

filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr=’#ffff00’, endColorstr=’#00ff00’,GradientType=0);
/* IE6-9 */

The good news is that as newer standards-compliant browsers emerge
and old versions go away, some properties such as text-shadow that once
required browser prefixes no longer do. It could be that by the time you are
reading this, browser prefixes will be a quaint stop-gap method from the
past (and I hope that is the case). But more likely, it will still be useful to be
familiar with vendor prefixes and which properties require them.

In upcoming chapters, whenever a property requires vendor prefixes, I will
be sure to note it. Otherwise, you can assume that the standard CSS is all
you need.

Designing gradients
That last code example was a doozy! Vendor prefixes aside, just the task of
describing gradients can be daunting. Although it is not impossible to write
the code by hand, I recommend you do what I do—use an online gradient
tool! My favorite is The Ultimate CSS Gradient Generator from Colorzilla
(www.colorzilla.com/gradient-editor/), shown in Figure 13-27. Simply enter
as many color stops as you’d like, slide the sliders around until you get the
look you want, then copy the code. That’s exactly what I did to get the
example we just looked at.

For an excellent explanation of
browser prefixes, I highly recommend
the article “Prefix or Posthack” by my
buddy Eric Meyer: www.alistapart.
com/articles/prefix-or-posthack/.

For an overview of all the browser-
prefixed properties, some of which
will never make it into the standard,
see this dizzying chart compiled by
Peter Beverloo: peter.sh/experiments/
vendor-prefixed-css-property-
overview.

F o r F u r T H E r r E A d i N G

n oT e

For more information on gradient syn-
tax for various browsers as well as
the advantages gradients have over
graphics, read “Speed Up with CSS3
Gradients” by Chris Coyier (css-tricks.
com/css3-gradients/).

www.it-ebooks.info

http://www.colorzilla.com/gradient-editor/
http://www.alistapart.com/articles/prefix-or-posthack/
http://www.alistapart.com/articles/prefix-or-posthack/
http://www.it-ebooks.info/

Part III, Css for Presentation300

Finally, External style sheets

Figure 13-27. The Ultimate CSS Gradient Generator (www.colorzilla.com/gradient-
editor) makes creating CSS gradients a breeze.

Finally, External style sheets
Back in Chapter 11, Cascading Style Sheets Orientation, I told you that there
are three ways to connect style sheets to a HTML document: inline with
the style attribute, embedded with the style element, and as an external
.css document linked to or imported into the document. In this section, we
finally get to that third option.

External style sheets are by far the most powerful way to use CSS because
you can make style changes across an entire site simply by editing a single
style sheet document. That is the advantage to having all the style informa-
tion in one place, and not mixed in with the document source.

First, a little bit about the style sheet document itself. An external style sheet
is a plain-text document with at least one style sheet rule. It may not include
any HTML tags (there’s no reason to, anyway). It may contain comments,
but they must use the CSS comment syntax that you’ve seen already:

/* This is the end of the section */

www.it-ebooks.info

http://www.colorzilla.com/gradient-editor
http://www.colorzilla.com/gradient-editor
http://www.it-ebooks.info/

Finally, External style sheets

Chapter 13, Colors and Backgrounds 301

The style sheet should be named with the .css suffix (there are some excep-
tions to this rule, but you’re unlikely to encounter them as a beginner).
Figure 13-28 shows how a short style sheet document looks in my text
editor.

Figure 13-28. External style sheets contain only CSS rules and comments in a plain text
document.

There are two ways to refer to an external style sheet: the link element and
an @import rule. Let’s look at both of these attachment methods.

Using the link element
The best-supported method is to create a link to the .css document using the
link element in the head of the document, as shown here:

<head>
 <title>Titles are required.</title>
 <link rel="stylesheet" href="/path/stylesheet.css">
</head>

You need to include two attributes in the link element (see note):

rel="stylesheet"

Defines the linked document’s relation to the current document. The
value of the rel attribute is always stylesheet when linking to a style
sheet.

href="url"

Provides the location of the .css file.

n oT e

The link element is empty, so you need
to terminate it with a trailing slash in
XHTML documents (<link />). Omit
the trailing slash in HTML documents.

n oT e

In HTML4.01 and XHTML1.0, the link
element must include the type attribute
set to text/css:

type="text/css"

The type attribute is no longer required
in HTML5.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation302

Finally, External style sheets

You can include multiple link elements to different style sheets and they’ll
all apply. If there are conflicts, whichever one is listed last will override previ-
ous settings, due to the rule order and the cascade.

Importing with @import
The other method for attaching an external style sheet to a document is to
import it with an @import rule. The @import rule is another type of rule you
can add to a style sheet, either in an external .css style sheet document, or
right in the style element, as shown in the following example.

<head>
 <style>
 @import url("/path/stylesheet.css");
 p { font-face: Verdana;}
 </style>
 <title>Titles are required.</title>
</head>

In this example, a relative URL is shown, but it could also be an absolute
URL (beginning with http://). The @import rule must go in the beginning
of the style sheet before any selectors. You can import more than one style
sheet and they all will apply, but rules from the last style sheet listed take
precedence over earlier ones.

You can try both the link and @import methods in Exercise 13-8.

n oT e

You can also supply the URL without the url() notation:
@import "/path/style.css";

Again, absolute pathnames, beginning at the root, will ensure that the .css document
will always be found.

Modular style sheets
Because you can compile information from multiple external style sheets,
modular style sheets have become a popular technique for style manage-
ment. Many developers keep styles they frequently reuse, such as typogra-
phy treatments, layout rules, or form-related styles, in separate style sheets,
then combine them in mix-and-match fashion using @import rules. Again,
the @import rules need to go before rules that use selectors.

Content of clientsite.css:

/* basic typography */
@import url("type.css");

/* form inputs */
@import url("forms.css");

/* navigation */
@import url("list-nav.css");

exercise 13-8 |
Making an external
style sheet
It is OK to use an embedded style
sheet while designing a page, but it is
probably best moved to an external
style sheet once the design is finished
so it can be reused by multiple
documents in the site. We’ll do just
that for the bistro menu style sheet.

1. Open the latest version of bistro.
html. Select and cut all of the
rules within the style element,
but leave the <style>...</style>
tags because we’ll be using them
in a moment.

2. Create a new plain ASCII text
document and paste all of the
style rules. Make sure that no
markup got in there by accident.

3. Save this document as
menustyles.css in the same
directory as the bistro.html
document.

4. Now, back in bistro.html, add an
@import rule to attach the external
style sheet:

<style>
@import url(menustyles.css);
</style>

Save the file and reload it in the
browser. It should look exactly
the same as it did when the
style sheet was embedded. If
not, go back and make sure that
everything matches the examples.

5. Delete the whole style element,
and this time we’ll add the style
sheet with a link element in the
head of the document.

<link rel="stylesheet"
href="menustyles.css" >
Again, test your work by saving
the document and viewing it in
the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 13, Colors and Backgrounds 303

/* site-specific styles */
body { background: orange; }

 …more style rules…

This is a good technique to keep in mind as you build experience in creat-
ing sites. You’ll find that there are some solutions that just work for you,
and it is nice not to have to reinvent the wheel for every new site. Modular
style sheets are a good time-saving and organizational device (see note for a
caveat).

Test Yourself
This time we’ll test your background prowess entirely with matching and
multiple-choice questions.

1. Which of these areas gets filled with a background color?

a. The area behind the content

b. Any padding added around the content

c. The area under the border

d. The margin space around the element

e. All of the above

f. a and b

g. a, b, and c

2. Which of these is not a way to specify the color white in CSS?

a. #FFFFFF b. #FFF c. rgb(255, 255, 255)

d. rgb(FF, FF, FF) e. white f. rgb(100%, 100%, 100%)

3. Match the pseudo-class with the elements it targets.

a. a:link 1. Links that have already been clicked

b. a:visited 2. An element that is highlighted and ready for input

c. a:hover 3. An element that is the first child element of its parent

d. a:active 4. A link with the mouse pointer over it

e. :focus 5. Links that have not yet been visited

f. :first-child 6. A link that is in the process of being clicked

n oT e

Although modular style sheets are use-
ful, they can be a problem for perfor-
mance and caching. If you use this
method, it is recommended that you
compile all of the styles into a single
document before delivering them to a
browser. Not to worry, you don’t need
to do it manually; there are tools out
there that will do it for you. The LESS
and SASS CSS frameworks (which will
be formally introduced in Chapter 18,
CSS Techniques) are two tools that offer
compiling functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation304

Css Review: Color and Background Properties

4. Match the following rules with their respective samples shown in Figure
13-29. All of the samples in the figure use the same source document,
consisting of one paragraph element to which some padding and a bor-
der have been applied.

a. body {background-image: url(graphic.gif);}

b. p {background-image: url(graphic.gif); background-repeat:

no-repeat; background-position: 50% 0%;}

c. body {background-image: url(graphic.gif); background-repeat:
repeat-x;}

d. p {background: url(graphic.gif) no-repeat right center;}

e. body {background-image: url(graphic.gif); background-repeat:
repeat-y;}

f. body { background: url(graphic.gif) no-repeat right center;}

Css Review: Color and Background
Properties
Here is a summary of the properties covered in this chapter, in alphabetical
order.

Property Description

background A shorthand property that combines background properties

background-attachment Specifies whether the background image scrolls or is fixed

background-clip Specifies how far the background image should extend

background-color Specifies the background color for an element

background-image Provides the location of an image to use as a background

background-origin Determines how the background-position is calculated
(from edge of border, padding, or content box)

background-position Specifies the location of the origin background image

background-repeat Whether and how a background image repeats (tiles)

background-size Specifies the size of the background image

color Specifies the foreground (text and border) color

opacity Specifies the transparency level of the foreground and
background

1

2

3

4

5

6

Figure 13-29. Samples for Question 4.

www.it-ebooks.info

http://www.it-ebooks.info/

305

IN THIs CHAPTER

The components of an
element box

Setting box dimensions

Adding padding
around content

Adding borders

Adding margins

Assigning display roles

Adding a drop shadow

In Chapter 11, Cascading Style Sheets Orientation, I introduced the box
model as one of the fundamental concepts of CSS. According to the box
model, every element in a document generates a box to which properties
such as width, height, padding, borders, and margins can be applied. You
probably already have a feel for how element boxes work, from adding
backgrounds to elements. This chapter covers all the box-related properties.
Once we’ve covered the basics, we will be ready to move boxes around in
Chapter 15, Floating and Positioning.

We’ll begin with an overview of the components of an element box, then
take on the box properties from the inside out: content dimensions, pad-
ding, borders, and margins.

The Element Box
As we’ve seen, every element in a document, both block-level and inline,
generates a rectangular element box. The components of an element box are
diagrammed in Figure 14-1. Pay attention to the new terminology—it will be
helpful in keeping things straight later in the chapter.

Content area

Padding area

Margin area

Outer edge Inner edgeBorder

Figure 14-1. The parts of an element box according to the CSS box model.

thInkIng InsIDe the box

CHAPTER 14

(Padding, Borders, and Margins)

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation306

specifying Box Dimensions

Content area

At the core of the element box is the content itself. In Figure 14-1, the
content area is indicated by text in a white box.

Inner edges

The edges of the content area are referred to as the inner edges of the
element box. Although the inner edges are made distinct by a color
change in Figure 14-1, in real pages, the edge of the content area would
be invisible.

Padding

The padding is the area held between the content area and an optional
border. In the diagram, the padding area is indicated by a yellow-orange
color. Padding is optional.

Border

The border is a line (or stylized line) that surrounds the element and its
padding. Borders are also optional.

Margin

The margin is an optional amount of space added on the outside of the
border. In the diagram, the margin is indicated with light-blue shading,
but in reality, margins are always transparent, allowing the background
of the parent element to show through.

Outer edge

The outside edges of the margin area make up the outer edges of the ele-
ment box. This is the total area the element takes up on the page, and it
includes the width of the content area plus the total amount of padding,
border, and margins applied to the element. The outer edge in the dia-
gram is indicated with a dotted line, but in real web pages, the edge of
the margin is invisible.

All elements have these box components; however, as you will see, some
properties behave differently based on whether the element is block or
inline. In fact, we’ll see some of those differences right away as we look at
box dimensions.

specifying Box Dimensions
By default, the width and height of a block element is calculated automati-
cally by the browser (thus the default auto value). It will be as wide as the
browser window or other containing block element, and as tall as necessary
to fit the content. However, you can use the width and height properties to
make the content area of an element a specific width or height.

n oT e

The total size of an element box includes
the content plus the total amount of
padding, borders, and margins applied
to the element.

www.it-ebooks.info

http://www.it-ebooks.info/

specifying Box Dimensions

Chapter 14, Thinking Inside the Box 307

Unfortunately, setting box dimensions is not as simple as just dropping
those properties in your style sheet. You have to know exactly which part of
the element box you are sizing.

CSS3 provides two ways to specify the size of an element. The default meth-
od—introduced way back in CSS1—applies the width and height values to
the content box. That means that the resulting size of the element will be the
dimensions you specify plus the amount of padding and borders that have
been added to the element. The other method—introduced as part of the
new box-sizing property in CSS3—applies the width and height values to
the border box, which includes the content, padding, and border. With this
method, the resulting visible element box, including padding and borders,
will be exactly the dimensions you specify. Some find this a more intuitive
method for sizing. We are going to get familiar with both methods in this
section.

Regardless of the method you choose, you can only specify the width and
height for block-level elements and non-text inline elements such as images.
The width and height properties do not apply to inline text (a.k.a. non-
replaced) elements and will be ignored by the browser. In other words, you
cannot specify the width and height of an anchor (a) or strong element (see
note).

box-sizing

Values: content-box | border-box
Default: content-box

Applies to: all elements

Inherits: no

width
Values: length measurement | percentage | auto | inherit
Default: auto

Applies to: block-level elements and replaced inline elements (such as images)

Inherits: no

height
Values: length measurement | percentage | auto | inherit
Default: auto

Applies to: block-level elements and replaced inline elements (such as images)

Inherits: no

sizing the content box (default)
By default (that is, if you do not include a box-sizing rule in your styles), the
width and height properties are applied to the content box. That is the way
all current browsers interpret width and height values, but you can explicitly
specify this behavior by setting box-sizing: content-box.

n oT e

Actually, there is a way to apply width
and height properties to inline elements
such as anchors (a) by forcing them to
behave as block elements with the dis-
play property, covered at the end of this
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation308

specifying Box Dimensions

In the following example and in Figure 14-2, a simple box is given a width of
500 pixels, a height of 150 pixels, with 20 pixels of padding, a 2-pixel border,
and a 20-pixel margin all around. Using the content box model, the width
and height values are applied to the content area only.

p {
 background: #c2f670;
 width: 500px;
 height: 150px;
 padding: 20px;
 border: 2px solid gray;
 margin: 20px;
}

The resulting width of the visible element box ends up being 544 pixels (the
content plus 40px padding and 4px of border). When you throw in 40 pixels
of margin, the width of the entire element box is 584 pixels. Knowing the
resulting size of your elements is critical to getting layouts to behave predict-
ably.

 20px + 2px + 20px + 500px width + 20px + 2px + 20px = 584 pixels

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Aliquam rhoncus, enim ut
suscipit euismod, risus odio laoreet nibh.

border

padding area

content area

width

he
ig

ht

margin area

width: 500px
h
e
i
g
h
t
:

1
5
0
p
x

total visible box width = 544 pixels

Figure 14-2. Specifying the width and height with the content-box model.

www.it-ebooks.info

http://www.it-ebooks.info/

specifying Box Dimensions

Chapter 14, Thinking Inside the Box 309

The border-box model
The other way to specify the size of an element is to apply width and height
dimensions to the entire visible box, including the padding and border.
Because this is not the default browser behavior, you’ll need to explicitly set
box-sizing: border-box in the style sheet.

Let’s look at the same paragraph example from the previous section and see
what happens when we make it 500 pixels using the border-box method
(Figure 14-3). Notice that (as of this writing) you need to provide –webkit-
and –moz- vendor prefixes to get this to work in Safari, Chrome, and Firefox.
Opera and Internet Explorer 8 and higher support it without a suffix (see
note).

p {
 …
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
 width: 500px;
 height: 150px;
}

Maximum and Minimum Dimensions
CSS2 introduced properties for setting minimum and maximum heights and widths
for block elements. They may be useful if you want to put limits on the size of an
element.

max-height, max-width,
min-height, min-width
Values: percentage | length | none | inherit

These properties work with block-level and replaced elements (like images) only.
When the content-box model is used, the value applies to the content area only, so
if you apply padding, borders, or margins, it will make the overall element box larger,
even if a max-width or max-height property have been specified. These properties are
not supported by Internet Explorer 6 and earlier.

wa R n i n G

Avoid using max- and min- widths and
heights with the border-box model. They
are known to cause browser problems.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation310

specifying Box Dimensions

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Aliquam rhoncus, enim ut
suscipit euismod, risus odio laoreet nibh.

border

padding area

content area

width

he
ig

ht

margin area

he
ig
ht
:
15
0p
x

width: 500px
total visible box width = 500 pixels

box-sizing: border-box;
width: 500;

box-sizing: content-box;
width: 500;

Figure 14-3. Sizing an element with the border-box method. The bottom diagram
compares the resulting boxes from each sizing method.

n oT e

Internet Explorer 6 and 7 do not support
the box-sizing property at all, but there
are workarounds. You could use con-
ditional comments to serve a separate
style sheet to IE versions less than 8 that
has alternative widths for the elements
in question. A cleaner method is to use
the box-sizing polyfill (a script that
makes non-supporting browsers mimic
feature support) by Christian Shaefer,
available here: github.com/Schepp/box-
sizing-polyfill. Put the script on your
server and follow the instructions on the
Github page

Many developers find the border-box model to be a more intuitive way to
size elements. It is particularly helpful for specifying widths in percentages,
which is a cornerstone of responsive design. For example, you can make two
columns 50% wide and know that they will fit next to one another without
having to mess around with adding calculated padding and border widths
to the mix. In fact, some designers simply set everything in the document to
use the border-box model using the universal selector:

 * {box-sizing: border-box;}

Read this article by Paul Irish for more information about the technique:
paulirish.com/2012/box-sizing-border-box-ftw/.

www.it-ebooks.info

http://www.it-ebooks.info/

specifying Box Dimensions

Chapter 14, Thinking Inside the Box 311

The Internet Explorer Box Model “Bug”
Web design old-timers remember when the border-box sizing method was known as
an Internet Explorer “bug.” In 1996, the CSS1 specification described the content-box
model as the standard way for browsers to calculate element dimensions. But that
didn’t stop Microsoft from implementing their own border-box model in IE5, causing
discrepancies that created headaches for developers for years.

IE eventually switched to the standard content box model in IE6, but only when in
Standards Mode. When documents don’t start with a valid DOCTYPE declaration, IE
6 and 7 still revert to Quirks Mode and use the old IE border-box model—a good
reason to always include the DOCTYPE. Thankfully, the days are numbered for these
browsers.

For a detailed history of the development of the box model, read “The Revenge of the
IE Box Model” by Jeff Kaufmann (www.jefftk.com/news/2012-02-18.html).

specifying height
In general practice, it is less common to specify the height of elements. It
is more in keeping with the nature of the medium to allow the height to be
calculated automatically, allowing the element box to change based on the
font size, user settings, or other factors. If you do specify a height for an
element containing text, be sure to also consider what happens should the
content not fit. Fortunately, CSS gives you some options, as we’ll see in the
next section.

Handling overflow
When an element is set to a size that is too small for its contents, it is pos-
sible to specify what to do with the content that doesn’t fit, using the over-
flow property.

overflow
Values: visible | hidden | scroll| auto | inherit
Default: visible

Applies to: block-level elements and replaced inline elements (such as images)

Inherits: no

Figure 14-4 demonstrates the predefined values for overflow. In the figure,
the various values are applied to an element that is 150 pixels square. The
background color makes the edges of the content area apparent.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation312

Padding

visible hidden scroll auto (short text) auto (long text)

visible

The default value is visible, which allows the content to hang out over
the element box so that it all can be seen.

hidden

When overflow is set to hidden, the content that does not fit gets clipped
off and does not appear beyond the edges of the element’s content area.

scroll

When scroll is specified, scrollbars are added to the element box to let
users scroll through the content. Be aware that when you set the value to
scroll, the scrollbars will always be there, even if the content fits in the
specified height just fine.

auto

The auto value allows the browser to decide how to handle overflow. In
most cases, scrollbars are added only when the content doesn’t fit and
they are needed.

Padding
Padding is the space between the content area and the border (or the place
the border would be if one isn’t specified). I find it helpful to add padding
to elements when using a background color or a border. It gives the content
a little breathing room, and prevents the border or edge of the background
from bumping right up against the text.

You can add padding to the individual sides of any element (block-level or
inline). There is also a shorthand padding property that lets you add padding
on all sides at once.

scrolling Regions on
Mobile Devices
As of this writing, the overflow
property is known to cause problems
on some (mostly older) mobile
devices, which is a shame because
having a small scrollable area within
a page is a nice space-saver for some
content. Some mobile browsers
simply hide the overflow text. Others
add a scrollbar, but require a difficult-
to-discover two-finger scroll motion
to control it.

One solution is to use Scott Jehl’s
“Overthrow” script to simulate support
in problematic browsers. Learn about
Overthrow at filamentgroup.com/lab/
overthrow.

W A r N i N G

Figure 14-4. Options for handling
content overflow.

www.it-ebooks.info

http://www.it-ebooks.info/

Padding

Chapter 14, Thinking Inside the Box 313

padding-top, padding-right, padding-bottom, padding-left
Values: length measurement | percentage | inherit
Default: 0

Applies to: all elements except table-row, table-row group, table-header-group, table-footer-group, table-column, and
 table-column-group

Inherits: no

padding
Values: length measurement | percentage | inherit
Default: 0

Applies to: all elements

Inherits: no

The padding-top, padding-right, padding-bottom, and padding-left proper-
ties specify an amount of padding for each side of an element, as shown in
this example and Figure 14-5 (note that I’ve also added a background color
to make the edges of the padding area apparent).

blockquote {
 padding-top: 1em;
 padding-right: 3em;
 padding-bottom: 1em;
 padding-left: 3em;
 background-color: #D098D4;
}

3em 3em
1em

1em

Figure 14-5. Adding padding around the content of an element.

Specify padding in any of the CSS length units (em and px are the most com-
mon) or as a percentage of the width of the parent element. Yes, the parent’s
width is used as the basis, even for top and bottom padding. If the width
of the parent element changes, so will the padding values on all sides of the
child element, which makes percentage values somewhat tricky to manage.

The shorthand padding property
As an alternative to setting padding one side at a time, you can use the short-
hand padding property to add padding all around the element. The syntax is
interesting; you can specify four, three, two, or one value for a single padding
property. Let’s see how that works, starting with four values.

When you supply four padding values, they are applied to each side in
clockwise order, starting at the top. Some people use the mnemonic device

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation314

Padding

“TRouBLe” for the order Top Right Bottom Left. This is a common syntax
for applying shorthand values in CSS, so take a careful look.

padding: top right bottom left;

Using the padding property, we could reproduce the padding specified with
the four individual properties in the previous example like this:

blockquote {
 padding: 1em 3em 1em 3em;
 background-color: #D098D4;
}

If the left and right padding are the same, you can shorten it by supplying
only three values. The value for “right” (the second value in the string) will
be mirrored and used for “left” as well. It is as though the browser assumes
the “left” value is missing, so it just uses the “right” value on both sides. The
syntax for three values is as follows:

padding: top right/left bottom;

This rule would be equivalent to the previous example because the padding
on the left and right edges of the element should be set to 3em.

blockquote {
 padding: 1em 3em 1em;
 background-color: #D098D4;
}

Continuing with this pattern, if you provide only two values, the first one is
used for the top and the bottom edges, and the second one is used for the
left and right edges:

padding: top/bottom right/left;

Again, the same effect achieved by the previous two examples could be
accomplished with this rule.

blockquote {
 padding: 1em 3em;
 background-color: #D098D4;
}

Note that all of the previous examples have the same visual effect as shown
in Figure 14-5.

Finally, if you provide just one value, it will be applied to all four sides of
the element. This declaration applies 15 pixels of padding on all sides of a
div element.

div#announcement {
 padding: 15px;
 border: 1px solid;
}

shorthand Values
1 value

padding: 10px;

Applied to all sides.

2 values

padding: 10px 6px;

First is top and bottom;

Second is left and right.

3 values

padding: 10px 6px 4px;

First is top;

Second is left and right;

Third is bottom.

4 values

padding: 10px 6px 4px 10px;

Applied clockwise to top, right,

bottom, and left edges consecutively

(TRBL).

A T A G L A N C E

www.it-ebooks.info

http://www.it-ebooks.info/

Padding

Chapter 14, Thinking Inside the Box 315

exercise 14-1 | Adding a little padding
In this exercise, we’ll use basic box properties to improve the appearance of a fictional
shopping site, Jenware.com. I’ve given you a big head start by marking up the source
document and creating a style sheet that handles text formatting, colors, and
backgrounds. The document, jenware.html, is available at www.learningwebdesign.
com/4e/materials.

Figure 14-6 shows before and after shots
of the Jenware home page. It’s going to
take a few exercises to get this page into
presentable shape, and padding is just
the beginning.

Whoa! That navigation section is
ugly! But don’t worry; we’ll turn it
into a nice horizontal navigation
menu in Chapter 15.

Start by opening jenware.html in a
browser and a text editor to see what
you’ve got to work with. The document
has been divided into two main div
elements (“intro” and “content”), and
the #content div is divided again
into “products” and “testimonials”. The
background colors have been added
to the body, #nav, #products, and
#testimonials divisions. I’ve also added
a gradient at the top of the page and an
exclamation point image to the background of the “testimonials” div. The remaining
rules are for formatting text.

1. The first thing we’ll do is add padding to the “products” div. One em of padding
all around ought to be fine. Find the #products selector and add the padding
declaration.

#products {
 background-color: #FFF;
 line-height: 1.5em;
 padding: 1em;
}

2. Next, we’ll get a little fancier with the “testimonials” section. I want to clear some
space in the left side of the div so that my nifty exclamation-point background
image is visible. There are several approaches to applying different padding
amounts to each side, but I’m going to do it in a way that gives you experience
deliberately overriding earlier declarations.

Figure 14-6. Before and after shots of the
Jenware home page.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation316

Borders

Use the padding shorthand property to add 1 em of padding on all sides of the
testimonials div. Then write a second declaration that adds 55 pixels of padding
to the left side only. Because the padding-left declaration comes second, it will
override the 1em setting applied with the padding shorthand property.

#testimonials {
 background: #FFBC53 url(images/ex-circle-corner.gif) no-repeat
left top;
 color: #633;
 font-size: .875em;
 line-height: 1.5em;
 padding: 1em;
 padding-left: 55px;
}

3. Save your work and look at it in the browser. The testimonials and product
descriptions should look a little more comfortable in their boxes. Figure 14-7
highlights the padding additions.

Borders
A border is simply a line drawn around the content area and its (optional)
padding. You can choose from eight border styles and make them any width
and color you like. You can apply the border all around the element or just a
particular side or sides. CSS3 introduces properties for rounding the corners
or applying images to borders. We’ll start our border exploration with the
various border styles.

Border style
The style is the most important of the border properties because, according
to the CSS specification, if there is no border style specified, the border does
not exist. In other words, you must always declare the style of the border, or
the other border properties will be ignored.

Border styles can be applied one side at a time or by using the shorthand
border-style property.

border-top-style, border-right-style,
border-bottom-style, border-left-style
Values: none | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit
Default: none

Applies to: all elements

Inherits: no

Bottom borders
instead of
underlines
Turning off link underlines and
replacing them with a custom bottom
border is a common design technique
in modern web design. It lightens the
look of links while still making them
stand out from ordinary text.

d E S i G N T i p

Figure 14-7. The pink area indicates
padding added to the testimonials section.
Blue indicates the products section
padding.

www.it-ebooks.info

http://www.it-ebooks.info/

Borders

Chapter 14, Thinking Inside the Box 317

border-style
Values: none | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit
Default: none

Applies to: all elements

Inherits: no

The value of the border-style properties is one of 10 keywords describing
the available border styles, as shown in Figure 14-8.

Figure 14-8. The available border styles (shown at the default medium width).

Use the side-specific border style properties (border-top-style, border-
right-style, border-bottom-style, and border-left-style) to apply a style
to one side of the element. If you do not specify a width, the default medium
width will be used. If there is no color specified, the border uses the fore-
ground color of the element (same as the text).

In the following example, I’ve applied a different style to each side of an ele-
ment to show the single-side border properties in action (Figure 14-9).

div#silly {
 border-top-style: solid;
 border-right-style: dashed;
 border-bottom-style: double;
 border-left-style: dotted;
 width: 300px;
 height: 100px;
}

The border-style shorthand property works on the clockwise (TRouBLe)
system described for padding earlier. You can supply four values for all four
sides or fewer values when the left/right and top/bottom borders are the
same. The silly border effect in the previous example could also be specified

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation318

Borders

using the border-style property as shown here, and the result would be the
same as shown in Figure 14-9.

 border-style: solid dashed double dotted;

Figure 14-9. Border styles applied to individual sides of an element.

Border width (thickness)
Use one of the border width properties to specify the thickness of the border.
Once again, you can target each side of the element with a single-side prop-
erty, or specify several sides at once in clockwise order with the shorthand
border-width property.

border-top-width, border-right-width,
border-bottom-width, border-left-width
Values: length units | thin | medium | thick | inherit
Default: medium

Applies to: all elements

Inherits: no

border-width
Values: length units | thin | medium | thick | inherit
Default: medium

Applies to: all elements

Inherits: no

The most common way to specify the width of borders is using a pixel or
em measurement; however, you can also specify one of the keywords (thin,
medium, or thick) and leave the rendering up to the browser.

I’ve included a mix of values in this example (Figure 14-10). Notice that
I’ve also included the border-style property because if I didn’t, the border
would not render at all.

div#help {
 border-top-width: thin;
 border-right-width: medium;
 border-bottom-width: thick;
 border-left-width: 12px;
 border-style: solid;
 width: 300px;
 height: 100px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Borders

Chapter 14, Thinking Inside the Box 319

or:

div#help {
 border-width: thin medium thick 12px;
 border-style: solid;
 width: 300px;
 height: 100px;
}

12px

thin

thick

medium

Figure 14-10. Specifying the width of borders.

Border color
Border colors are specified in the same way: using the side-specific properties
or the border-color shorthand property. When you specify a border color, it
overrides the foreground color as set by the color property for the element.

border-top-color, border-right-color,
border-bottom-color, border-left-color
Values: color name or RGB value | transparent | inherit
Default: the value of the color property for the element

Applies to: all elements

Inherits: no

border-color
Values: color name or RGB value | transparent | inherit
Default: the value of the color property for the element

Applies to: all elements

Inherits: no

You know all about specifying color values, and you should be getting used
to the shorthand properties as well, so I’ll keep this example short and sweet
(Figure 14-11). Here, I’ve provided two values for the shorthand border-
color property to make the top and bottom of a div maroon and the left and
right sides aqua.

div#special {
 border-color: maroon aqua;
 border-style: solid;
 border-width: 6px;
 width: 300px;
 height: 100px;
}

subtle outlines
Keeping the color of the rule close to
the background color and keeping
the width of the rule quite thin, we
can achieve a very subtle effect,
creating a texture more than a strong
outline.

d E S i G N T i p S

n oT e

CSS2 added the transparent keyword
value for border colors that allows
the background of the parent to show
through the border, yet holds the width
of the border as specified. This may be
useful when creating rollover (:hover)
effects with CSS because the space
where the border will appear is main-
tained when the mouse is not over the
element. Transparent borders are not
supported by Internet Explorer 6.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation320

Borders

Figure 14-11. Specifying the color of borders.

Combining style, width, and color
The authors of CSS didn’t skimp when it came to border shortcuts. They
also created properties for providing style, width, and color values in one
declaration, one side at a time. Again, you can specify the appearance of
specific sides, or use the border property to change all four sides at once.

border-top, border-right, border-bottom, border-left
Values: border-style border-width border-color | inherit
Default: defaults for each property

Applies to: all elements

Inherits: no

border
Values: border-style border-width border-color | inherit
Default: defaults for each property

Applies to: all elements

Inherits: no

The values for border and the side-specific border properties may include
style, width, and color values in any order. You do not need to declare all
three, but keep in mind that if the border style value is omitted, no border
will render.

The border shorthand property works a bit differently than the other short-
hand properties that we covered in that it takes one set of values and always
applies them to all four sides of the element. In other words, it does not use
the clockwise “TRBL” system that we’ve seen with other shorthand proper-
ties.

Here is a smattering of valid border shortcut examples to get an idea for how
they work.

h1 { border-left: red .5em solid; } /* left border only */
h2 { border-bottom: 1px solid; } /* bottom border only */
p.example { border: 2px dotted #663; } /* all four sides */

www.it-ebooks.info

http://www.it-ebooks.info/

Borders

Chapter 14, Thinking Inside the Box 321

Rounded corners with border-radius
Boxes with rounded corners have become a trendy style element over recent
years. Originally, rounded corners on web pages could only be made with
images and extra markup. Now, thankfully, all current browser versions
can put rounded corners on elements using the CSS border-radius prop-
erty alone. That means fewer calls to the server to grab graphics and less
Photoshop work for designers. In this section, we’ll start with the code as it
appears in the CSS3 spec, look at some examples, and then finish with a few
words about browser support.

As we’ve seen for other properties, there are individual corner properties as
well as a border-radius shorthand.

border-top-left-radius, border-top-right-radius,
border-bottom-right-radius, border-bottom-left-radius

Values: length measurement | percentage

Default: 0

Applies to: all elements

Inherits: no

border-radius

Values: 1, 2, 3, or 4 length or percentage values

Default: 0

Applies to: all elements

Inherits: no

To round off the corner of an element, simply apply one of the border-
radius properties, but keep in mind that you will see the result only if the
element has a border or a different background color than the background
of the page. Values are typically provided in ems or pixels. Percentages are
allowed and are nice for keeping the curve proportional to the box should it
resize, but you may run into some browser inconsistencies.

You can target the corners individually or use the shorthand border-radius
property. If you provide one value for border-radius, it is applied to all four
corners. Four values are applied clockwise starting in the top-left corner
(top-left, top-right, bottom-right, bottom-left). When you supply two val-
ues, the first one is used for top-left and bottom-right, and the second is for
the other two corners.

Compare the various border-radius values to the resulting boxes in Figure
14-12. You can achieve many different effects, from slightly softened corners
to a long lozenge shape, depending how you set the values.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation322

Borders

border-top-right-radius: 50 px; border-top-left-radius: 1 em;
border-top-right-radius: 2 em;
border-bottom-right-radius: 1 em;
border-bottom-left-radius: 2 em;
 ~or~
 border-radius: 1 em 2em;}

border-radius: 5px 20px; 40px 60px; border-radius: 1em; border-radius: 50 px;

p { width: 200px; height: 100px; background: darkorange; }

Figure 14-12. Make the corners of element boxes rounded with the border-radius properties.

Elliptical corners
So far, the corners we’ve made are sections of perfect circles, but you can
also make a corner elliptical by specifying two values: the first for the
horizontal radius and the second for the vertical radius (see Figure 14-13, A
and B).

A border-top-right-radius: 100px 50px;

B border-top-right-radius: 50px 20px;
 border-top-left-radius: 50px 20px;

If you want to use the shorthand property, the horizontal and vertical radii
get separated by a slash (otherwise, they’d be confused for different corner
values). The following example sets the horizontal radius on all corners to
60px and the vertical radius to 40px (Figure 14-13, C).

C border-radius: 60px / 40px;

If you want to see something really nutty, take a look at a border-radius
shorthand property that specifies a different ellipse for each of the four
corners. All of the horizontal values are lined up on the left of the slash in
clockwise order (top-left, top-right, bottom-right, bottom-left), and all of
the corresponding vertical values are lined up on the right (Figure 14-13, D).

D border-radius: 36px 40px 60px 20px / 12px 10px 30px 36px;

Browser support
As I mentioned earlier, the current versions of all major browsers now sup-
port border-radius using the CSS3 specification syntax. That’s good news!
The longer story is that earlier versions of Safari, Chrome, and Firefox have
been supporting rounded corners for a while now, but they had their own
syntax with browser prefixes (see the sidebar Ye Olde Radius Prefixes). And
then there’s Internet Explorer, which has no border-radius support at all
prior to version 9.

A

B

C

D

Figure 14-13. Applying elliptical corners
to boxes.

www.it-ebooks.info

http://www.it-ebooks.info/

Borders

Chapter 14, Thinking Inside the Box 323

So what to do about IE6 through 8? Chances are, the success and usability of
your site doesn’t depend on rounded corners, so this is a good opportunity
to practice progressive enhancement: IE gets perfectly OK square boxes, and
better browsers get a little something extra. If for some reason it is manda-
tory for your boxes to be rounded in older versions of IE as well, you need to
resort to a JavaScript patch such as Curvy Corners (www.curvycorners.net).

Ye Olde Radius Prefixes
Older versions of Firefox and Webkit browsers only support border radius with their
own vendor-prefixed properties. Unlike Internet Explorer versions that stick around for
a decade, other browsers get upgraded automatically or at least more regularly. For
that reason, many developers have already stopped using prefixes for border-radius.
The area where they still might come in handy is on some older mobile browsers, so
if rounded corners on early Android versions are important to your product, you may
want to include the -webkit- prefixes.

Webkit browsers
(Safari <5, Chrome <10.5, Android <2.2, iOS < 4)

-webkit-border-top-left-radius
-webkit-border-top-right-radius
-webkit-border-bottom-left-radius
-webkit-border-bottom-right-radius
-webkit-border-radius

Firefox (Mozilla)
(Firefox <4)

-moz-border-radius-topleft
-moz-border-radius-topright
-moz-border-radius-bottomleft
-moz-border-radius-bottomright
-moz-border-radius

Picture-perfect borders
Here we are eight pages into a discussion on CSS borders…who knew there
could be so much to say about lines around boxes? I’ve saved the fanciest
and trickiest border treatment for last. In this section, we’ll look at using the
border-image property to fill the sides and corners of a border box with an
image of your choice. This property eliminates the need to cut up separate
image files and add a bunch of useless markup to contain them. Now a single
image can be applied around an element using CSS.

It should be noted that as of this writing, no version of Internet Explorer
(not even 9 or 10) supports border images, so the best you can do is provide
a pleasant and functional fallback color and border style. The browsers that
do support browser images (Safari, Chrome, Firefox, and Opera) require
their respective vendor prefixes to get them to work.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation324

Borders

border-image

Values: border-image-source border-image-slice border-image-width border-image-outset border-image-repeat

Default: defaults for each property

Applies to: all elements except table elements where border-collapse is collapse

Inherits: no

Let’s kick off this discussion with a visual to give you an idea of what I’m
talking about here. Figure 14-14 shows two elements and the respective
images used to fill their borders. Notice that the corners of the image fill the
corners of the element exactly. The sides of the element can be set to stretch
(as shown on the top) or tile (bottom).

Figure 14-14. Examples of border images with stretched sides and repeated sides.

OK, now the code. The border-image shorthand property as it is supported
as of this writing includes three parts (Figure 14-15). See the sidebar The
Border Image Spec for further details.

www.it-ebooks.info

http://www.it-ebooks.info/

Borders

Chapter 14, Thinking Inside the Box 325

Figure 14-15. The parts of the border-image rule.

The URL notation A contains the location of the border image file.

The next value indicates the positions of slice lines that divide the image into
nine sections B. The measurements are offsets from each edge of the image,
listed clockwise (top, right, bottom, left) in the same TRouBLe pattern we
learned for the padding shorthand value. Value shortcuts can be used, such
as providing one value to move the slice lines the same distance from all four
edges. When specifying pixel measurements, you can omit the “px” unit.
Percentages also may be specified.

The final keyword describes how to fill in the sides of the border C. The
values are stretch (which stretches the image to fit, naturally), repeat
(which tiles the image), and round (which repeats the image but stretches or
squooshes it a little to make it fit exactly without any partial bits left over).
The round value is not currently supported by Safari or Chrome—repeat is
used instead—although that may change in future versions.

Here is the style rule that creates the fancy frame border image in Figure
14-14 (top). I’m leaving off the vendor-prefixed properties for now to keep
it simple.

.framed {
 …
 background-color: #fec227; /* bright yellow-orange */
 border-color: #fec227; /* bright yellow-orange */
 border-style: solid;
 border-width: 55px;
 border-image: url(fancyframe.png) 55 stretch;
}

The source of the border image is fancyframe.png. Because the slice points
are the same on all four sides (55 pixels), I only need to specify the value 55
once (note that no unit is required for pixels). Finally, the stretch keyword
indicates that the sides of the box are to be filled by stretching the sides of
the graphic. As a fallback, I’ve specified the background color and border
color to be the same bright yellow-orange from the center of the border
image. Internet Explorer images will get a box the same size and color, but
without the frame image (see note).

n oT e

Different types of border images may suggest other fallback solutions, but since this
one was so thick, I felt the best thing to do was fill it with solid color.

The Border Image
spec
According to the CSS3 spec, border-
image is a shorthand property that
includes the following five individual
properties:

border-image-source
Specifies the URL of the image that
will be used.

border-image-slice
Provides measurements to the four
slice lines, listed clockwise.

border-image-width
Specifies the width of the border
using the clockwise TRouBLe method
for specifying values.

border-image-outset
Indicates a distance for the image to
hang out over the border.

border-image-repeat
Specifies how the image should fill in
the sides (stretch, repeat, or round)

Currently, no browser supports
these as individual properties, so you
always use the shorthand border-
image property for adding border
images.

In addition, because border-
image-width causes browser bugs
and border-image-outset is not
supported by any browser, I’ve
omitted these properties from
the border-image discussion here,
leaving us with the three parts shown
in Figure 14-15.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation326

Borders

Here’s how the rule looks with all its browser prefixes. If you venture into
border images, your rules will look like this too. Be sure to put the standard,
non-prefixed property last.

.framed {
 …
 background-color: #fec227; /* bright yellow-orange */
 border-color: #fec227; /* bright yellow-orange */
 border-style: solid;
 border-width: 55px;
 -moz-border-image: url(fancyframe.png) 55 stretch;
 -webkit-border-image: url(fancyframe.png) 55 stretch;
 -o-border-image: url(fancyframe.png) 55 stretch;
 border-image: url(fancyframe.png) 55 stretch;
}

Here is the style rule for the dotted border image. It differs in that the top
and sides are different widths (thus, two border-image-slice and border-
width values), and I’ve set the repeat to round, to fill the space with repeating
tiles resized to fit exactly. Note that Webkit browsers currently display round
as a simple repeat.

 .dotted {
 background-color: white;
 border-color: #0063a4;
 border-style: dotted;
 border-width: 20px 10px;
 -moz-border-image: url(dotborder.png) 20 10 round;
 -webkit-border-image: url(dotborder.png) 20 10 round;
 -o-border-image: url(dotborder.png) 20 10 round;
 border-image: url(dotborder.png) 20 10 round;
}

Now it is time to try your hand at borders. Exercise 14-2 will not only give
you some practice, but it should also give you some ideas on the ways bor-
ders can be used to add visual interest to designs.

exercise 14-2 | Border tricks
In this exercise, we’ll have some fun with borders on the Jenware home page. In
addition to putting subtle borders around content sections on the page, we’ll use
borders to beef up the product headlines and as an alternative to underlines under
links.

1. Open jenware.html in a text editor if it isn’t already. We’ll start with the basics by
using the shorthand border property to add a light-orange (#FFBC53) double rule
around the “products” area. The shade should be light enough as to not call too
much attention to itself. Add the new declaration to the rule for the “products” div.

#products {
 …
 border: double #FFBC53;
}

n oT e

According to the CSS3 spec, brows-
ers should not render the center of the
image by default, but all browsers today
display the center of the image in the
center of the element. The center area
stretches or repeats as specified for the
borders. If you want to provide a dif-
ferent background color or image in the
background of the content box, create
the border-image graphic with a trans-
parent center so the background shows
through.

www.it-ebooks.info

http://www.it-ebooks.info/

Borders

Chapter 14, Thinking Inside the Box 327

2. Next, let’s give the “testimonials” section rounded corners. They won’t show up for
Internet Explorer 6–8 and some other old browser versions, but that doesn’t really
hurt anything.

#testimonials {
 …
 border-radius: 20px;
}

3. Just for fun (and practice), we’ll add a decorative border on two sides of the
product category headings (h3). I want the borders to be the same color as the
text, so we don’t need to specify the border-color. Find the existing rule for h3
elements in the “products” div, and add a declaration that adds a 1-pixel solid rule
on the top of the headline. Add another declaration that adds a thicker, 3-pixel
solid rule on the left side. Finally, to prevent the text from bumping into that left
border, we can add a little bit of padding (1em) to the left of the headline content.

#products h3 {
 font-size: 1em;
 text-transform: uppercase;
 color: #F26521;
 border-top: 1px solid;
 border-left: 3px solid;
 padding-left: 1em;
}

4. The last thing we’ll do is replace the standard text underline under links with a
decorative bottom border. Start by turning the underline off for all
links by setting the text-decoration to none for the a element. Add
this rule in the "link styles" section of the style sheet.

a {
 text-decoration: none;
}

5. Next, add a 1-pixel dotted border to the bottom edge of links by
adding this declaration to the a rule.

a {
 text-decoration: none;
 border-bottom: 1px dotted;
}

Notice that because we want the border to have the same color as the
links, we do not need to specify a color. However, if you try this on your
own pages, you can easily change the color and style of the bottom
border.

As is often the case when you add a border to an element, it is a good
idea to also add a little padding to keep things from bumping together.
Add some padding to the bottom edges only, like so:

a {
 text-decoration: none;
 border-bottom: 1px dotted;
 padding-bottom: .1em;
}

See Figure 14-16 for what the page looks like.

Figure 14-16. The results of our border
additions.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation328

Margins

Margins
The last remaining component of the element box is its margin, which is
an optional amount of space that you can add on the outside of the border.
Margins keep elements from bumping into one another or the edge of the
browser window. You can even use margins to make space for another col-
umn of content (we’ll see how that works in Chapter 16, Page Layout with
CSS). In this way, margins are an important tool in CSS-based page layout.

The side-specific and shorthand margin properties work much like the pad-
ding properties we’ve looked at already, however, margins have some special
behaviors to be aware of.

margin-top, margin-right, margin-bottom, margin-left
Values: length measurement | percentage | auto | inherit
Default: auto

Applies to: all elements

Inherits: no

margin
Values: length measurement | percentage | auto | inherit
Default: auto

Applies to: all elements except elements with table display types other than table-caption, table, and inline-table

Inherits: no

The margin properties are very straightforward to use. You can either specify
an amount of margin to appear on each side of the element or use the margin
property to specify all sides at once.

The shorthand margin property works the same as the padding shorthand.
When you supply four values, they are applied in clockwise order (top,
right, bottom, left) to the sides of the element. If you supply three values,
the middle value applies to both the left and right sides. When two values
are provided, the first is used for the top and bottom, and the second applies
to the left and right edges. Finally, one value will be applied to all four sides
of the element.

As for most web measurements, ems, pixels, and percentages are the most
common ways to specify margins. Be aware, however, that if you specify a
percentage value, the percentage value is calculated based on the width of
the parent element. If the parent’s width changes, so will the margins on all
four sides of the child element (padding has this behavior as well). The auto
keyword allows the browser to fill in the amount of margin necessary to fit
or fill the available space.

Figure 14-17 shows the results of the following margin examples. Note that
I’ve added a light dotted rule to indicate the outside edge of the margin for
clarity purposes only, but they would not appear on a real web page.

Browser Default
Margins
You may have noticed that space
is added automatically around
headings, paragraphs, and other block
elements. That’s the browser’s default
style sheet at work, applying margin
amounts above and below those
elements.

It is good to keep in mind that the
browser is applying its own values
for margins and padding behind the
scenes. These values will be used
unless you specifically override them
with your own style rules.

If you are working on a design and
coming across mysterious amounts
of space that you didn’t add, the
browser’s default styles may be the
culprit. One solution is to reset the
padding and margins for all elements
to zero, which is discussed in the
CSS Reset section in Chapter 18, CSS
Techniques.

C S S T i p

www.it-ebooks.info

http://www.it-ebooks.info/

Margins

Chapter 14, Thinking Inside the Box 329

A p#A {
 margin: 4em;
 border: 1px solid red;
 background: #FCF2BE;
 }
B p#B {
 margin-top: 2em;
 margin-right: 250px;
 margin-bottom: 1em;
 margin-left: 4em;
 border: 1px solid red;
 background: #FCF2BE;
 }
C body {
 margin: 0 15%;
 border: 1px solid red;
 background-color: #;
 }

body: {margin: 0 15%}

Adding margins to the body puts space between the
element and the edges of the viewing area of the browser
window. The red border shows the boundary of the
body element (there is no padding applied).

margin: 4em;

margin-top: 2em;
margin-right: 250px;
margin-bottom: 1em;
margin-left: 4em;

A

B

C

Figure 14-17. Applying margins to the body and to individual elements.

n oT e

Adding a margin to the body element
adds space between the page content
and the edges of the browser window.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation330

Margins

Margin behavior
Although it is easy to write rules that apply margin amounts around HTML
elements, it is important to be familiar with some of the quirks of margin
behavior.

Collapsing margins
The most significant margin behavior to be aware of is that the top and bot-
tom margins of neighboring elements collapse. This means that instead of
accumulating, adjacent margins overlap, and only the largest value will be
used.

Using the two paragraphs from the previous figure as an example, if the top
element has a bottom margin of 4 ems, and the following element has a top
margin of 2 ems, the resulting margin space between elements does not add
up to 6 ems. Rather, the margins collapse and the resulting margin between
the paragraphs will be 4 ems, the largest specified value. This is demon-
strated in Figure 14-18.

4 em

Adjacent vertical
margins collapse

Figure 14-18. Vertical margins of neighboring elements collapse so that only the larger
value is used.

The only time top and bottom margins don’t collapse is for floated or abso-
lutely positioned elements (we’ll get to that in Chapter 15). Margins on the
left and right sides never collapse, so they’re nice and predictable.

Margins on inline elements
You can apply top and bottom margins to inline text elements (or “non-
replaced inline elements,” to use the proper CSS terminology), but it won’t
add vertical space above and below the element, and the height of the line
will not change. However, when you apply left and right margins to inline
text elements, margin space will be held clear before and after the text in the
flow of the element, even if that element breaks over several lines.

Just to keep things interesting, margins on replaced elements, such as imag-
es, do render on all sides, and therefore do affect the height of the line. See
Figure 14-19 for examples of each.

Collapsing Margins
When spacing between and around
elements behaves unpredictably,
collapsing margins are often to blame.
Here are a few articles that dig deep
into collapsing margin behavior. They
were written nearly a decade ago,
but the information is still solid and
may help you understand what is
happening behind the scenes in your
layouts.

 y “No Margin for Error” by Andy
Budd (www.andybudd.com/
archives/2003/11/no_margin_for_
error/)

 y “Uncollapsing Margins” by Eric
Meyer (www.complexspiral.
com/publications/uncollapsing-
margins/)

F u r T H E r r E A d i N G

www.it-ebooks.info

http://www.it-ebooks.info/

Margins

Chapter 14, Thinking Inside the Box 331

img { margin: 2em;}
Margins are rendered on all sides of replaced elements, such as images.

em { margin: 2em;}
Only horizontal margins are rendered on non-replaced (text) elements.

Figure 14-19. Margins applied to inline text and image elements.

Negative margins
It is worth noting that it is possible to specify negative values for margins.
When you apply a negative margin, the content, padding, and border are
moved in the opposite direction that would have resulted from a positive
margin value.

This should be made clear with an example. Figure 14-20 shows two neigh-
boring paragraphs with different colored borders applied to show their
boundaries. In the left view, I’ve added a 4-em bottom margin to the top
paragraph, and it has the effect of pushing the following paragraph down
by that amount. If I specify a negative value (–4em), the following element
moves up by that amount and overlaps the element with the negative margin.

p.top { margin-bottom: -4em;}
The following element moves back by 4 ems.

p.top { margin-bottom: 4em;}
Pushes the following paragraph element away by 4 ems .

Figure 14-20. Using negative margins.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation332

Margins

This may seem like a strange thing to do, and in fact, you probably wouldn’t
make blocks of text overlap as shown. The point here is that you can use
margins with both positive and negative values to move elements around on
the page. This is the basis of many CSS layout techniques.

Now let’s use margins to add some space between parts of the Jenware home
page in Exercise 14-3.

exercise 14-3 |
Adding margin space around elements
Open jenware.html in your text editor if it isn’t open already, and we’ll adjust the
margins. We’ll start by adjusting the margins on the whole document, and then make
tweaks to each section from top to bottom.

1. It is common practice to set the margin for the body element to zero, thus clearing
out the browser’s default margin setting and creating a starting point for setting
our own margins on elements throughout the page.

body {
 …
 margin: 0;
}

Save the file and take a look in the browser. I like the way the purple navigation bar
stretches from edge to edge of the browser window, but I think we need to tweak
our other content areas.

2. Start with the #intro div, and add a 2-em margin on the top and 1em below.
I also want to close up the space between the logo and the tagline, so set the
bottom margin on the h1 to zero and the top margin on the h2 to –10px to move
the tagline up nice and close to the logo. Finally, put a 1-em margin all around the
introductory paragraph (p).

#intro {
 …
 margin: 2em 0 1em;
}
#intro h1 {
 margin-bottom: 0;
}
#intro h2 {
 …
 margin-top: -10px;
}
#intro p {
 …
 margin: 1em;
}

3. Give the #products section a 1-em margin all around.

#products {
 …
 margin: 1em;
}

n oT e

When the value is 0, you don’t need to
provide a specific unit.

www.it-ebooks.info

http://www.it-ebooks.info/

Assigning Display Roles

Chapter 14, Thinking Inside the Box 333

4. Now add a 2.5em space above the products
subsection headings (h3). By this point, I bet
you could write this one without my help, but
for the sake of thoroughness, here is the new
declaration added to h3s in the “products”
section. You can try different amounts of space
and see what you like best.

#products h3 {
 …
 margin-top: 2.5em;
}

5. Finally, we’ll set apart the Testimonials box by
adding 1em of space above and 10% on the
left and right edges. This time, see if you can
figure it out on your own.

6. Save the document again, and it should look
something like the one in Figure 14-21. This
isn’t the most beautiful design, particularly if
your browser window is set wide. However, if
you resize your browser window very narrow,
you’ll find that it wouldn’t be too bad as the
small-screen version in a responsive web
design. (Consider this foreshadowing for the
work we’ll do in Chapter 18.) The final style
sheet for this page is available in Appendix A.

Figure 14-21. The Jenware home page after adding padding, borders, and
margins.

A good understanding of padding, borders, and margins is the first step to
mastering CSS layouts. In the next chapter, we’ll learn about the properties
used to float and position elements on the page. We’ll even turn the Jenware
page into a two-column layout. But before we move on, there are a couple
more box-related properties to get out of the way.

Assigning Display Roles
As long as we’re talking about boxes and the CSS layout model, this is a
good time to introduce the display property. You should already be familiar
with the display behavior of block and inline elements. However, not all
XML languages assign default display behaviors (or display roles, to use the
proper term from the CSS specification) to the elements they contain. For
this reason, the display property was created to allow authors to specify how
elements should behave in layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation334

Assigning Display Roles

display
Values: inline|block|list-item|inline-block|table|inline-table|
 table-row-group|table-header-group|table-footer-group|table-row|
 table-column-group|table-column|table-cell|table-caption|none
 The following are new in CSS3: run-in|compact|ruby|ruby-base|ruby-text|
 ruby-base-container|ruby-text-container

Default: inline

Applies to: all elements

Inherits: yes

The display property defines the type of element box an element generates
in the layout. In addition to the familiar inline and block display roles, you
can also make elements display as list items or the various parts of a table.
As you can see from the list of values, there are a lot of roles an element can
play, but there are only a handful that are used in everyday practice.

In general, the W3C discourages the random reassigning of display roles
for HTML elements. However, in certain scenarios, it is benign and has
even become commonplace. For example, it is common practice to make li
elements (which usually display with the characteristics of block elements)
display as inline elements to turn a list into a horizontal navigation bar. You
may also make an otherwise inline a (anchor) element display as a block in
order to give it a specific width and height.

ul.navigation li { display: inline; }

ul.navigation li a { display: block; }

Another useful value for the display property is none, which removes the
content from the normal flow entirely. Unlike visibility: hidden, which
just makes the element invisible but holds the space it would have occupied
blank, display: none removes the content, and the space it would have
occupied is closed up.

One popular use of display: none is to prevent certain content in the source
document from displaying in specific media, such as when the page is
printed or displayed on devices with small screens. For example, you could
have a paragraph that appears when the document is printed, but is not part
of the page when it is displayed on a computer screen.

wa R n i n G

Bear in mind that changing the presen-
tation of an HTML element with the
CSS display property does not change
the definition of that element as block-
level or inline in HTML. Putting a
block-level element within an inline ele-
ment will always be invalid, regardless
of its display role.

wa R n i n G

Be aware that content that has its dis-
play set to none still downloads with
the document. Setting some content
to display:none for devices with small
screens may keep the page shorter, but
it is not doing anything to reduce data
usage or download times.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Drop shadows to Boxes

Chapter 14, Thinking Inside the Box 335

Adding Drop shadows to Boxes
We’ve arrived at the last stop on the element box tour. In Chapter 12,
Formatting Text, you learned about the text-shadow property, which adds a
drop shadow to text. The box-shadow property (new in CSS3) applies a drop
shadow around the entire visible element box (excluding the margin).

box-shadow

Values: 'horizontal offset' 'vertical offset' 'blur distance' 'spread distance' color inset | none
Default: none

Applies to: all elements

Inherits: no

The value of the box-shadow property should seem familiar after working
with text-shadow: specify the horizontal and vertical offset distances, the
amount the shadow should blur, and a color. For box shadows, you can also
specify a spread amount, which increases (or decreases with negative values)
the size of the shadow. By default, the shadow color is the same as the fore-
ground color of the element, but specifying a color overrides it.

Figure 14-22 shows the results of the following code examples. The first
A adds a simple box shadow six pixels to the right and six pixels down,
without blur or spread. The second B adds a blur value of 5 pixels, and the
third C shows the effect of a 10-pixel spread value. Box shadows are always
applied to the area outside the border of the element (or the place it would
be if a border isn’t specified). If the element has a transparent or translucent
background, you will not see the box shadow in the area behind the element.

A -webkit-box-shadow: 6px 6px #666;
-moz-box-shadow: 6px 6px #666;
box-shadow: 6px 6px #666;

B -webkit-box-shadow: 6px 6px 5px #666;
-moz-box-shadow: 6px 6px 5px #666;
box-shadow: 6px 6px 5px #666;/* 5 pixel blur */

C -webkit-box-shadow: 6px 6px 5px 10px #666;
-moz-box-shadow: 6px 6px 5px 10px #666;
box-shadow: 6px 6px 5px 10px #666;/* 5px blur, 10px spread */

A

B

C

Figure 14-22. Adding drop shadows
around an element with the box-shadow
property.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation336

Test Yourself

You can make the shadow render inside the edges of the visible element
box by adding the inset keyword to the rule. This makes it look like the
element is pressed into the screen (Figure 14-23).

-webkit-box-shadow: inset 6px 6px 5px #666;
-moz-box-shadow: inset 6px 6px 5px #666;
box-shadow: inset 6px 6px 5px #666;

As for text-shadow, you can specify multiple box shadows on an element by
providing the values in a comma-separated list. The values that come first
get placed on top, and subsequent shadows are placed behind it in the order
in which they appear in the list.

The box-shadow property is supported by all current version browsers, with
the exception of Opera Mini for mobile. To accommodate recent Webkit
browsers (Safari and Mobile Safari, Chrome, and Android) and older ver-
sions of Firefox, as of this writing, it is recommended that you include the
vendor-prefixed properties as shown in the previous examples.

Internet Explorer 9 and higher support the standard property, but IE6
through 8 don’t support it at all. My opinion is that it isn’t the end of the
world if users of those old browsers don’t see a nifty little drop shadow. If
you must have shadows in old IE versions, you will need to use the propri-
etary IE filter property, as explained in the article “How to Simulate CSS3
box-shadow in IE6-8 without JavaScript” by Zoltan “Du Lac” Hawryluk
(www.useragentman.com/blog/2011/08/24/how-to-simulate-css3-box-shad-
ow-in-ie7-8-without-javascript/).

Test Yourself
At this point you should have a good feel for element boxes and how to
manipulate the space within and around them. These are the raw tools you’ll
need to do real CSS-based layouts. In the next chapter, we’ll start moving
the boxes around on the page, but first, why not get some practice at writing
rules for padding, borders, and margins in the following test.

In this test, your task is to write the declarations that create the effects shown
in each example in Figure 14-24. All the paragraphs shown here share a rule
that sets the dimensions and the background color for each paragraph. You
need only provide the box-related property declarations. Answers, as always,
appear in Appendix A.

Some useful hints: Outer margin edges are indicated by dotted blue lines.
All necessary measurements are provided in red. Borders use one of the 17
standard color names.

Figure 14-23. An inset box shadow
renders on the inside of the element box.

wa R n i n G

Box shadows, text shadows, and gra-
dients take a lot of processor power
because you are shifting the burden of
interpreting and rendering them onto
the browser. The more you use, the
slower performance will be, and as we
all know, performance is everything on
the Web. So go easy on them.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 14, Thinking Inside the Box 337

p { background-color: #C2F670;
 width: 200px;
 height: 200px;}

All of the samples in
this exercise start out
styled as shown here
and share the
properties listed
below.

2 em

2 em

2 e
m

2 e
m

2 em

2 em

2 e
m

2 e
m

4 pixels 4 pixels

2 em

2 em

2 e
m

2 e
m

1 em
1 em

1 em
1 em

6 em 6 em 1 e
m 6 em

4 pixels

1 em

1 em

50
 pi

xe
ls

50
 pi

xe
ls

2 pixels

A

C

F

G

D E

B

Figure 14-24. Write the declarations for these examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation338

Css Review: Basic Box Properties

Css Review: Basic Box Properties
Property Description

border A shorthand property that combines border
properties

border-top,
border-right,
border-bottom,
border-left

Combine border properties for each side of the
element

border-color Shorthand property for specifying the color of
borders

border-top-color,
border-right-color,
border-bottom-color,
border-left-color

Specify the border color for each side of the
element

border-image (CSS3) Adds an image inside the border area

border-radius (CSS3) Shorthand property for rounding the corners of
the visible element box

border-top-left-radius,
border-top-right-radius,
border-bottom-right-radius,
border-bottom-left-radius

Specifies the radius curve for each individual
corner

border-style Shorthand property for specifying the style of
borders

border-top-style,
border-right-style,
border-bottom-style,
border-left-style

Specifies the border style for each side of the
element

border-width Shorthand property for specifying the width of
borders

border-top-width,
border-right-width,
border-bottom-width,
border-left-width

Specifies the border width for each side of the
element

box-sizing Specifies whether width and height dimensions
apply to the content box or the border box

box-shadow (CSS3) Adds a drop shadow around the visible element
box

display Defines the type of element box an element
generates

height Specifies the height of the element’s content area

margin Shorthand property for specifying margin space
around an element

margin-top,
margin-right,
margin-bottom,
margin-left

Specifies the margin amount for each side of the
element

www.it-ebooks.info

http://www.it-ebooks.info/

Css Review: Basic Box Properties

Chapter 14, Thinking Inside the Box 339

Property Description

max-height Specifies the maximum height of an element

max-width Specifies the maximum width of an element

min-height Specifies the minimum height of an element

min-width Specifies the minimum width of an element

overflow How to handle content that doesn’t fit in the
content area

padding Shorthand property for specifying space between
the content area and the border

padding-top,
padding-right,
padding-bottom,
padding-left

Specify the padding amount for each side of the
element

width Specifies the width of an element’s content area

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

341

IN THIs CHAPTER

Floating elements to the
left and right

Clearing floated elements

Containing floated elements

Relative positioning

Absolute positioning and
containing blocks

Fixed positioning

At this point, you’ve learned dozens of CSS properties that allow you to
change the appearance of text elements and the boxes they generate. But so
far, we’ve merely been decorating elements as they appear in the flow of the
document.

In this chapter, we’ll look at floating and positioning, the CSS methods
for breaking out of the normal flow and arranging elements on the page.
Floating an element moves it to the left or right, and allows the following
text to wrap around it. Positioning is a way to specify the location of an ele-
ment anywhere on the page with pixel precision.

We’ll start by examining the properties responsible for floating and position-
ing, so you’ll get a good feel for how the CSS layout tools work. In Chapter
16, Page Layout with CSS, we’ll broaden the scope and see how these prop-
erties are used to create common multicolumn page layouts.

Before we start moving elements around, let’s be sure we are well acquainted
with how they behave in the normal flow.

Normal Flow
We’ve covered the normal flow in previous chapters, but it’s worth a
refresher. In the CSS layout model, text elements are laid out from top to
bottom in the order in which they appear in the source, and from left to right
(in left-to-right reading languages*). Block elements stack up on top of one
another and fill the available width of the browser window or other contain-
ing element. Inline elements and text characters line up next to one another
to fill the block elements.

When the window or containing element is resized, the block elements
expand or contract to the new width, and the inline content reflows to fit
(Figure 15-1).

* For right-to-left reading languages such as Arabic and Hebrew, the normal flow is top to bottom
and right to left.

floatIng anD
PosItIonIng

CHAPTER 15

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation342

Floating

a b c d e f g h i j k l m n o p q r s t u v w x y z

Inline content reflows to fit the width of the block.

a b c d e f g h i j k l
m n o p q r s t u v
w x y z

Blocks fill the available width.

Blocks are layed out in the
order in which they appear in
the source.

Each block starts on a new line.

<p>

<h1>

<p>

<p>

<p>

<h1>

<p>

<p>

Figure 15-1. One more example of the normal flow behavior.

Objects in the normal flow affect the layout of the objects around them. This
is the behavior you’ve come to expect in web pages—elements don’t overlap
or bunch up. They make room for one another.

We’ve seen all of this before, but in this chapter we’ll be paying attention
to whether elements are in the flow or removed from the flow. Floating and
positioning change the relationship of elements to the normal flow in dif-
ferent ways. Let’s first look at the special behavior of floated elements (or
“floats” for short).

Floating
Simply stated, the float property moves an element as far as possible to
the left or right, allowing the following content to wrap around it. It is not
a positioning scheme per se, but a unique feature built into CSS with some
interesting behaviors. Floats are one of the primary tools of modern CSS-
based web design, used to create multicolumn layouts, navigation toolbars
from lists, and table-like alignment without tables. Let’s start with the float
property itself.

float
Values: left | right | none | inherit
Default: none

Applies to: all elements

Inherits: no

The best way to explain floating is to demonstrate it. In this example, the
float property is applied to an img element to float it to the right. Figure 15-2
shows how the paragraph and the contained image are rendered by default
(top) and how it looks when the float property is applied (bottom).

The markup

<p>They went down, down,...</p>

Dealing with
Browser Bugs
This is a good time to address the
unfortunate topic of browser bugs.
This book presents the way CSS
is supposed to work, but in reality,
desktop and mobile browsers have
bugs that make some aspects of CSS
layout a headache.

In the past, the main culprit was
Internet Explorer 6. It had bugs so
well known that we gave them cute
names like the “Guillotine Bug,” the
“Peekaboo Bug,” the “Double-Float
Margin Bug,” and the “3-Pixel Gap
Bug,” just to name a few.

These bugs have been fixed in later
versions of IE and are no longer an
issue. IE6 represents less than 1% of
browser use in the United States as
of this writing, so most developers
do not jump through hoops to cater
to its peculiarities. If you do need to
support old IE versions, the Position
Is Everything site is the place to go
for fixes: positioniseverything.net/
explorer.html.
Before you start doing a happy dance, in
some ways we may be in a worse spot
today. Not only are there multitudes of
browsers running on all sorts of devices,
but the bugs tend to be more esoteric
and less easily predicted.

I will certainly point out when a
property is known to cause fussy
browser behavior. By the time you are
reading this, the offending browsers
may already be off the radar. The best
advice I can give you is to test your
designs on as many browsers and
devices as you can get your hands on
and fix things that appear to be broken.

Web searches for particular
properties or browsers plus “bugs”
usually turn up posts by developers
having similar problems or offering
potential workarounds. You can also
check the CSS-discuss Wiki (css-
discuss.incutio.com), which archives
known bugs for all browsers in
addition to boatloads of other useful
CSS information.

www.it-ebooks.info

http://www.it-ebooks.info/

Floating

Chapter 15, Floating and Positioning 343

The style sheet

img {
 float: right;
}
p {
 padding: 15px;
 background-color: #FFF799;
 border: 2px solid #6C4788;
}

image moves over and text wraps around it

Inline image in the normal flow

Inline image floated to the right.

space next to the image is held clear

Figure 15-2. The layout of an image in the normal flow (top), and with the float
property applied (bottom).

That’s a nice effect…we’ve gotten rid of a lot of wasted space on the page,
but now the text is bumping right up against the image. How do you think
you would add some space between the image element and the surrounding
text? If you guessed “add a margin,” you’re absolutely right. I’ll add 10 pixels
of space on all sides of the image using the margin property (Figure 15-3).
You can begin to see how all the box properties work together in page lay-
out.

img {
 float: right;
 margin: 10px;
}

Indicates outer margin edge
(this rule would not appear in the actual web page)

Figure 15-3. Adding a 10-pixel margin
around the floated image.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation344

Floating

Some key behaviors of floated elements are apparent in the previous two
figures:

A floated element is like an island in a stream.

First and foremost, you can see that the image is removed from its
position in the normal flow yet continues to influence the surrounding
content. The subsequent paragraph text reflows to make room for the
floated img element. One popular analogy compares floats to islands in
a stream—they are not in the flow, but the stream has to flow around
them. This behavior is unique to floated elements.

Floats stay in the content area of the containing element.

It is also important to note that the floated image is placed within the
content area (the inner edges) of the paragraph that contains it. It does
not extend into the padding area of the paragraph.

Margins are maintained.

In addition, margins are held on all sides of the floated image, as indi-
cated in Figure 15-3 by the dotted line. In other words, the entire element
box, from outer edge to outer edge, is floated.

Floating inline and block elements
Those are the basics…let’s look at more examples and explore additional
floating behaviors. Before style sheets, the only thing you could float was an
image by using the obsolete align attribute. With CSS, it is possible to float
any HTML element, both inline and block-level, as we’ll see in the following
examples.

Floating an inline text element
In the previous example, we floated an inline image element. This time, let’s
look at what happens when you float an inline text (non-replaced) element
(Figure 15-4).

The markup

<p>Disclaimer: The existence of silver,
gold, and diamond trees is not confirmed. They went down,
down, down, till at last they came to a passage... </p>

The style sheet

span.disclaimer {
 float: right;
 margin: 10px;
 width: 200px;
 color: #FFF;
 background-color: #9D080D;
 padding: 4px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Floating

Chapter 15, Floating and Positioning 345

p {
 padding: 15px;
 background-color: #FFF799;
 border: 2px solid #6C4788;
}

Figure 15-4. Floating an inline text (non-replaced) element.

From the look of things, it is behaving the same as the floated image, which
is what we’d expect. But there are some subtle things at work here that bear
pointing out.

Always provide a width for floated text elements.

First, you’ll notice that the style rule that floats the span includes the
width property. In fact, it is necessary to specify a width for floated text
elements because without one, the content area of the box expands to
its widest possible width (or, on some browsers, it may collapse to its
narrowest possible width). Images have an inherent width, so we didn’t
need to specify a width in the previous example (although we certainly
could have).

Floated inline elements behave as block elements.

Notice that the margin is held on all four sides of the floated span text,
even though top and bottom margins are usually not rendered on inline
elements (see Figure 14-18 in the previous chapter). That is because all
floated elements behave like block elements. Once you float an inline
element, it follows the display rules for block-level elements, and margins
are rendered on all four sides.

Margins on floated elements do not collapse.

In the normal flow, abutting top and bottom margins collapse (overlap),
but for floated elements, the margins are maintained on all sides as speci-
fied.

Floating block elements
Let’s look at what happens when you float a block within the normal flow.
In this example, a whole paragraph element is floated to the left (Figure
15-5).

It is necessary to specify
the width for floated text
elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation346

Floating

The markup

<p>ONCE upon a time....</p>
<p id="float">As he had a white skin, blue eyes,...</p>
<p>The fact was he thought them very ugly...</p>

The style sheet

p#float {
 float: left;
 width: 200px;
 margin-top: 0px;
 background: #A5D3DE;
}
p {
 border: 1px solid red;
}

Figure 15-5. Floating a block-level element.

I’ve added a red rule around all p elements to show their boundaries. In addi-
tion, I set the top margin on the float to 0 (zero) to override the browser’s
default margin settings on paragraphs. This allows the floated paragraph to
align with the top of the following paragraph.

Just as we saw with the image, the paragraph moves off to the side (left this
time) and the following content wraps around it, even though blocks nor-
mally stack on top of one another. There are two things I want to point out
in this example:

You must provide a width for floated block elements.

If you do not provide a width value, the width of the floated block will
be set to auto, which fills the available width of the browser window or
other containing element. There’s not much sense in having a full-width
floated box, because the idea is to wrap text next to the float, not start
below it.

www.it-ebooks.info

http://www.it-ebooks.info/

Floating

Chapter 15, Floating and Positioning 347

Elements do not float higher than their reference in the source.

A floated block will float to the left or right relative to where it occurs in
the source, allowing the following elements in the flow to wrap around it.
It will stay below any block elements that precede it in the flow (in effect,
it is “blocked” by them). That means you can’t float an element up to the
top corner of a page, even if its nearest ancestor is the body element. If
you want a floated element to start at the top of the page, it must appear
first in the document source.

Clearing floated elements
If you’re going to be floating elements around, it’s important to know how
to turn the text wrapping off and get back to layout as usual. This is done
by clearing the element that you want to start below the float. Applying the
clear property to an element prevents it from appearing next to a floated
element and forces it to start against the next available “clear” space below
the float.

clear
Values: left | right | both | none | inherit
Default: none

Applies to: block-level elements only

Inherits: no

Keep in mind that you apply the clear property to the element you want to
start below the floated element, not the floated element itself. The left value
starts the element below any elements that have been floated to the left.
Similarly, the right value makes the element clear all floats on the right edge
of the containing block. If there are multiple floated elements, and you want
to be sure an element starts below all of them, use the both value to clear
floats on both sides.

In this example, the clear property
has been used to make h2 elements
start below left-floated elements.
Figure 15-6 shows how the h2 head-
ing starts at the next available clear
edge below the float.

img {
 float: left;
 margin-right: 10px;
}
h2 {
 clear: left;
 margin-top: 2em;
}

n oT e

Absolute positioning is the CSS method
for placing elements on a page regard-
less of how they appear in the source.
We’ll get to absolute positioning in a
few sections.

Figure 15-6. Clearing a left-floated
element

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation348

Floating

Notice in Figure 15-6 that although there is a 2-em top margin applied to the
h2 element, it is not rendered between the heading and the floated image.
That’s the result of collapsing vertical margins in the flow. If you want to
make sure space is held between a float and the following text, apply a bot-
tom margin to the floated element itself.

I think by now you have enough float know-how to give it a try in Exercise
15-1.

exercise 15-1 | Floating images
In the exercises in this chapter, we’ll make further improvements to the Jenware
home page that we worked on in Chapter 14. If you did not follow along with the
exercises in the previous chapter, or if you’d just like a fresh start, there is a copy of the
document in its most recent state, jenware_ch15.html, in the Chapter 15 materials
(www.learningwebdesign.com/4e/materials).

1. Open the Jenware home page document in a text editor and browser (it should
look like Figure 14-21 in the previous chapter).

We’ll start by removing wasted vertical space next to the product images by floating
the images to the left. We’ll use a contextual selector to make sure that we float only
those images in the “products” section of the page. While we’re at it, let’s add a little
margin on the right and bottom sides using the margin shorthand property.

#products img {
 float: left;
 margin: 0 6px 6px 0;
}

Save the document and take a look at it in the browser. You should see the product
descriptions wrapping to the right of the images.

2. Next, I’d like the “More about…” links to always appear below
the images so they are clearly visible and consistently on the
left side of the products section. This change is going to require
a little extra markup because we need a way to target just the
paragraphs that contain “more about” links. Add the class name
“more” to each of the paragraphs that contain links. Here is the
first one:

<p class="more">More about custom
barware...</p>

Now we can use a class selector to make those paragraphs
clear the floated images.

#products .more {
 clear: left;
}

Figure 15-7 shows the new and improved Products section.

Figure 15-7. The product section with
floated images and wrapped text has less
wasted space.

www.it-ebooks.info

http://www.learningwebdesign.com/4e/materials
http://www.it-ebooks.info/

Floating

Chapter 15, Floating and Positioning 349

Floating multiple elements
It’s perfectly fine to float multiple elements on a page or even within a single
element. In fact, it is one way to turn a list of links into a horizontal menu,
as we’ll see in a moment.

When you float multiple elements, there is a complex system of behind-the-
scenes rendering rules that ensures floated elements do not overlap. You
can consult the CSS specification for the details, but the upshot of it is that
floated elements will be placed as far left or right (as specified) and as high
up as space allows.

Figure 15-8 shows what happens when a series of sequential paragraphs are
floated to the same side. The first three floats start stacking up from the left
edge, but when there isn’t enough room for the fourth, it moves down and to
the left until it bumps into something—in this case, the edge of the browser
window. However, if one of the floats, such as “P2,” had been very long, it
would have bumped up against the edge of the long float instead.

Elements floated to the
same side line up. If
there is not enough
room, subsequent
elements move down.

Figure 15-8. Multiple floated elements line up and do not overlap.

The source

<p>P1</p>
<p class="float">P2</p>
<p class="float">P3</p>
<p class="float">P4</p>
<p class="float">P5</p>
<p>P6</p>
<p>P7</p>
<p>P8</p>
<p>P9</p>
<p>P10</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation350

Floating

The style sheet

p.float {
 float: left;
 width: 200px;
 margin: 0px;
 background: #CCC;
}
p
 {border: 1px solid red;
}

That’s the underlying behavior, but let’s apply it to something more practi-
cal, like a navigation menu. It makes sense semantically to mark up naviga-
tion as an unordered list, as shown here. I’ve omitted real URL values in the
a elements to simplify the markup.

 Serif
 Sans-serif
 Script
 Display
 Dingbats

There are various approaches to converting it to a horizontal bar (see note)
but the primary steps in our floating example are as follows.

1. Turn off the bullets, and set padding and margins to zero.

ul {
 list-style-type: none;
 margin: 0;
 padding: 0;
}

2. Float each list item to the left so they line up, taking advantage of the
multiple float behavior described earlier.

ul li {
 float: left;
}

3. Make the anchor elements in the list items (a) display as block elements
so you can set the dimensions, padding, margins, and other visual styles.
You could set the styles for the other link states as well (such as a:hover),
but I’ll keep this example short.

ul li a {
 display: block;
 /* more styles */
}

4. Clear the element that comes after the menu in the document so it starts
below the menu.

n oT e

The other way to make list items line
up is to make them display as inline ele-
ments instead of as block elements (li
{display: inline;}). From there, you
can make the anchor elements display
as blocks and apply styles. This meth-
od makes it more difficult to precisely
control the spacing between navigation
items, however, because the browser
sizes the white space between list items
in the source according to the font-size
of the container.

www.it-ebooks.info

http://www.it-ebooks.info/

Floating

Chapter 15, Floating and Positioning 351

At the very least, you will want to add some padding and/or margins to the
anchor elements to give the links a little breathing room, but you can add any
of the styles we’ve seen so far—colors, borders, rounded corners, background
images—to give the navigation the look you want. The following styles turn
the earlier list example into the tab-like menu shown in Figure 15-9.

Figure 15-9. The unordered list is transformed into a tab-like menu using CSS alone and
no images.

Containing floats
As long as we’re talking about multiple floats, this is a good time to address
another float quirk, and that’s float containment. By default, floats are
designed to hang out of the element they are contained in. That’s just fine for
allowing text to flow around a floated image, but sometimes this behavior
can cause some unwanted behaviors.

For instance, take the example in Figure 15-10. Clearly, it would be nicer if
the border stretched to contain all the content, but the floated image hangs
right out the bottom.

Figure 15-10. The containing element does not stretch to accommodate the floated
image.

And if you float all the elements in a container element—as you might do
to create a multicolumn layout—there will be no elements remaining in the
flow to hold the containing element open. This phenomenon is illustrated
in Figure 15-11. The #container div contains two paragraphs. The view of
the normal flow (left) shows that the #container has a background color
and border that wraps around the content. However, when both paragraphs
are floated, the element box for the #container closes up to have a height
of zero, leaving the floats hanging down below (you can still see the empty
border at the top). This clearly is not the effect we are after.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation352

Floating

In the normal �ow, the container div
encloses the paragraphs.

When both paragraphs are �oated, the container
does not stretch around them.

Fortunately, there are a few fixes to this problem, and they are pretty
straightforward. One option is to float the containing element as well and
give it a width of 100%.

#container {
 float: left;
 width: 100%;
 background-color: #GGG;
 padding: 1em;
 }

The other common solution is to take advantage of the behavior of the
overflow property. Setting the overflow of the containing element to auto
or hidden will also make it stretch to contain the floated elements. I’ve also
added an explicit width value to address bugs in old IE versions, but note
that if your container element has a border, the 100% width will make the
border hang outside of the browser window.

#container {
 overflow: auto;
 width: 100%;
 background-color: #GGG;
 padding: 1em;
 }

Figure 15-12 shows the result of applying a contain-
ment technique to the previous examples. Either one
will do the trick.

Now it is time to spiff up that navigation section on the
Jenware page in Exercise 15-2.

Figure 15-12. Our hanging floats are now
contained.

Figure 15-11. The container box
disappears entirely when all its contents
are floated.

www.it-ebooks.info

http://www.it-ebooks.info/

Floating

Chapter 15, Floating and Positioning 353

exercise 15-2 | Making a navigation bar
Open your copy of jenware.html (or jenware_ch15.html) if it isn’t
already.

1. Start by making the ul element as neutral as possible. The
bullets have already been turned off, but we should clear out
any padding and margin that might be happening in there.

#nav ul {
 list-style-type: none;
 padding: 0;
 margin: 0;
}

2. Next float the list items to the left, and clear the following
products div.

#nav ul li {
 …
 float: left;
}

#products {
 …
 clear: both;
 }

Save the document and take a look at it in a browser. You
should see that the links are now lined up pretty tightly, but
also that the purple navigation bar has shrunk to nothing—
float containment fail! Let’s fix it with the overflow technique.
And while we’re at it, let’s do the same for the #products div
so it is sure to contain the floated images.

#nav {
 …
 overflow: hidden;
 width: 100%;
}
#products {
 …
 overflow: hidden;
}

3. Now we can work on the appearance of the links. Start by
making the a elements display as block elements instead of
inline. Instead of setting specific dimensions for each link,
we’ll use padding (.5em) to give them a little breathing room
inside the border and use margins (.25em) to add space
between links. I’ve added a lavender border as the default,

but I brighten it up to white for the :focus and :hover states.

#nav ul li a {
 display: block;
 padding: .5em;
 border: 1px solid #ba89a8;
 border-radius: .5em;
 margin: .25em;
}

#nav ul a:focus {
 color:#fc6
 border-color: #fff;
}

#nav ul a:hover {
 color: #fc6;
 border-color: #fff;
}

4. Finally, let’s center the list in the width of the nav section.
We can do this by applying a width to the ul element and
setting its side margins to auto. I confess that I had to fiddle
around with a few width measurements to arrive at one that
fit the entire menu just right (19.5em). If it’s too wide, the
menu won’t be truly centered.

#nav ul {
 list-style: none;
 padding: 0;
 margin: 0 auto;
 width: 19.5em;
}

Figure 15-13 shows the way your navigation should look when
you view it in the browser.

Figure 15-13. The list of links is now styled as a horizontal
menu bar.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation354

Floating

Using floats to create columns
So far, we’ve floated small parts of a page, but as mentioned earlier, you can
also float whole sections of the page to create columns. In fact, that’s the way
the pros do it! There are a couple of solutions, and they mostly come down
to a matter of preference.

For a two-column float, you can do the following:

•	 Float one div and add a wide margin on the side of the text element that
wraps around it.

•	 Float both divs to the left or right.

•	 Float one div to the left and the second div to the right (or vice versa).

Three-column floats work basically the same way; there’s just more calculat-
ing to do.

Regardless of which method works best for your content or suits your fancy,
there are a few things you need to keep in mind. First, every float needs to
have a specified width. Thereafter, you need to be very careful that you have
calculated the widths of each column correctly, factoring in padding, bor-
ders, and margins. If the total width of all the columns exceeds the available
width of the browser or other containing element, you’ll get what is known
as “float drop.” That is, the final floated column will run out of room and
get bumped down below the column next to it. Bummer.

The limitation to using floats for columns is that it is dependent on the order
of the elements in the source document. The floated element must appear
before the content that wraps around it, and your source may not always be
ordered conveniently.

Now, get a feel for making a two-column layout with floats in Exercise 15-3
using the “one float plus a margin” technique listed above.

exercise 15-3 | Creating columns with floats
The layout we’ve been using for the Jenware site might be a good starting point for
a small-screen device, but it gets awkward in larger browser windows. In this exercise,
we’ll write styles to give the page a fluid two-column layout using floats. I recommend
making a copy of your current Jenware file and renaming it jenware-float.html. That will
keep a copy fresh for the next exercise, and you won’t need to undo what you’ve done
here.

What we’re going to do is give the #products div a width, float it to the left, and allow
the Testimonials box to flow around it on the right side, creating a second column. I
want this layout to resize proportionally to always fill the width of the screen, so I’m
going to use percentages for all the horizontal measurements (that means making a
few changes to our prior code).

n oT e

There are ways to break free of the
source order using negative margins, as
you’ll learn in Chapter 16.

www.it-ebooks.info

http://www.it-ebooks.info/

Floating

Chapter 15, Floating and Positioning 355

1. Start by setting the width of the #products div to 55% and
floating it to the left. Currently the padding and margins are
set at 1em all around, but change the left and right padding
and margins to 2% for this fluid layout. That means the
Products box is now taking up roughly 63% of the width of the
screen (2% + 2% + 55% + 2% + 2%), plus a few pixels more for
the borders. Figure 15-14 shows the results of these changes.
In addition, set the top margin of #products to zero.

#products {
 background-color: #FFF;
 line-height: 1.5em;
 padding: 1em 2%;
 border: double #FFBC53;
 margin: 0 2% 1em;
 clear: both;
 float: left;
 width: 55%;
}

There are some interesting behaviors to observe here. The
Testimonials text has moved up to the right of the Products
box, which is expected, but the Testimonials box (with the
exclamation point graphic) is hidden behind the Products
box. Only the content wraps; the element box just moves up
and does not resize.

2. Time to get that Testimonials box into shape. What we
need to do is adjust the margins, specifically to make the
left margin on the Testimonials box wide enough that it
clears the Products box. The Products box is taking up a hair
more than 63% of the width of the page, so let’s give the
Testimonials box a left margin of 64% to accommodate it and
add a little space between. I’ve also set a narrow right margin
of 2% (remember the order of the declaration values is Top,
Right, Bottom, Left). Reload the page, and the Testimonials
box should be centered in the right column.

#testimonials {
 …
 margin: 1em 10%;/* delete */
 margin: 1em 2% 1em 64%;
}

3. Just a few more tweaks here. Clear the copyright paragraph
so it appears at the bottom of the page. Finally, I think the
“New Products” h2 would look better left-aligned in this
layout, so let’s adjust that too.

p#copyright {
 …
 clear: left;
}
#products h2 {
 …
 text-align: center left;
}

The results are shown in Figure 15-15. Hey, look at that! Your first
two-column layout, created with a float and a wide margin. This
is the basic concept behind many CSS-based layout templates,
as you’ll see in Chapter 16.

Figure 15-14. The results of floating the products div.

Figure 15-15. A new two-column layout for the Jenware home
page, created with a float and a wide margin on the following
content. This layout would work well for tablet devices or
desktop browser windows.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation356

Positioning Basics

Mixing % and Ems
In Exercise 15-2, we specified margins in a combination of percentage values and
ems. This is actually common in contemporary web development, particularly for
creating fluid layouts that respond to the size of the viewport. Some developers use
percentages for all horizontal measurements so they are relative to the viewport size,
but use ems for all vertical measurements because it is in keeping with the scale and
the rhythm of lines of text. This technique is a preference, not a requirement, but it is
something to keep in mind.

That covers the fundamentals of floating. Let’s move on to the other
approach to moving elements around on the page—positioning.

Positioning Basics
CSS provides several methods for positioning elements on the page. They
can be positioned relative to where they would normally appear in the flow,
or removed from the flow altogether and placed at a particular spot on the
page. You can also position an element relative to the browser window
(technically known as the viewport in the CSS Recommendations) and it will
stay put while the rest of the page scrolls.

Types of positioning
position
Values: static | relative | absolute | fixed | inherit
Default: static

Applies to: all elements

Inherits: no

The position property indicates that an element is to be positioned and
specifies which positioning method to use. I’ll introduce each keyword value
briefly here, and then we’ll take a more detailed look at each method in the
remainder of this chapter.

static

This is the normal positioning scheme in which elements are positioned
as they occur in the normal document flow.

relative

Relative positioning moves the box relative to its original position in the
flow. The distinctive behavior of relative positioning is that the space
the element would have occupied in the normal flow is preserved as an
empty space.

wa R n i n G

Be careful mixing fluid columns with
borders. It is usually best if your per-
centages add up to less then 100%, to
accommodate the border widths (if they
are used) and to accommodate rounding
errors that browsers sometimes make. If
too many column widths are rounded
up, the columns may be calculated as
too wide for the browser and you’ll get
the dreaded float drop.

www.it-ebooks.info

http://www.it-ebooks.info/

Positioning Basics

Chapter 15, Floating and Positioning 357

absolute

Absolutely positioned elements are removed from the document flow
entirely and positioned with respect to the browser window or a contain-
ing element (we’ll talk more about this later). Unlike relatively positioned
elements, the space they would have occupied is closed up. In fact, they
have no influence at all on the layout of surrounding elements.

fixed

The distinguishing characteristic of fixed positioning is that the element
stays in one position in the window even when the document scrolls.
Fixed elements are removed from the document flow and positioned
relative to the browser window (or other viewport) rather than another
element in the document. It currently causes some hiccups on mobile
devices, as discussed later in this chapter.

Each positioning method has its purpose, but absolute positioning is the
most versatile. With absolute positioning, you can place an object anywhere
in the viewport or within another element. Absolute positioning can even be
used to create multicolumn layouts, but it is more commonly used for small
tasks, like positioning a search box in the top corner of a header. You can
also use absolute positioning to break an image or chunk out of its contain-
ing box, creating hanging indents or overlap effects. It’s a handy tool when
used carefully and sparingly.

specifying position
Once you’ve established the positioning method, the actual position is speci-
fied with four offset properties.

top, right, bottom, left
Values: length measurement | percentage | auto | inherit
Default: auto

Applies to: positioned elements (where position value is relative, absolute, or fixed)

Inherits: no

The values provided for each of the offset properties defines the distance the
element should be moved away from that respective edge. For example, the
value of top defines the distance the top outer edge of the positioned ele-
ment should be offset from the top edge of the browser or other containing
element. A positive value for top results in the element box moving down by
that amount. Similarly, a positive value for left would move the positioned
element to the right (toward the center of the containing block) by that
amount.

Further explanations and examples of the offset properties will be provided
in the discussions of each positioning method. We’ll start our exploration of
positioning with the fairly straightforward relative method.

n oT e

Negative values are acceptable and
move the element in the opposite direc-
tion of positive values. For example, a
negative value for top would have the
effect of moving the element up.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation358

Relative Positioning

Relative Positioning
As mentioned previously, relative positioning moves an element relative to
its original spot in the flow. The space it would have occupied is preserved
and continues to influence the layout of surrounding content. This is easier
to understand with a simple example.

Here I’ve positioned an inline em element (a background color makes its
boundaries apparent). First, I used the position property to set the method
to relative, and then I used the top offset property to move the element 30
pixels down from its initial position and the left property to move it 60 pixels
to the right. Remember, offset property values move the element away from
the specified edge, so if you want something to move to the right, as I did here,
you use the left offset property. The results are shown in Figure 15-16.

em {
 position: relative;
 top: 30px;
 left: 60px;
 background-color: fuchsia;
}

30px
60px

Figure 15-16. When an element is positioned with the relative method, the space it
would have occupied is preserved.

I want to point out a few things that are happening here.

The original space in the document flow is preserved.

You can see that there is a blank space where the emphasized text would
have been if the element had not been positioned. The surrounding con-
tent is laid out as though the element were still there, and therefore we
say that the element still “influences” the surrounding content.

Overlap happens.

Because this is a positioned element, it can potentially overlap other ele-
ments, as shown in Figure 15-16.

The empty space left behind by relatively positioned objects can be a little awk-
ward, so this method is not used as often as absolute positioning. However,
relative positioning is commonly used to create a “positioning context” for an
absolutely positioned element, as I’ll explain in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Absolute Positioning

Chapter 15, Floating and Positioning 359

Absolute Positioning
Absolute positioning works a bit differently and is actually a more flexible
method for accurately placing items on the page than relative positioning.
Now that you’ve seen how relative positioning works, let’s take the same
example as shown in Figure 15-l6, only this time we’ll change the value of
the position property to absolute.

em {
 position: absolute;
 top: 30px;
 left: 60px;
 background-color: fuchsia;
}

30px
60px

Figure 15-17. When an element is absolutely positioned, it is removed from the flow and
the space is closed up.

As you can see in Figure 15-17, the space once occupied by the em element
is now closed up, as is the case for all absolutely positioned elements. In its
new position, the element box overlaps the surrounding content. In the end,
absolutely positioned elements have no influence whatsoever on the layout
of surrounding elements.

The most significant difference here, however, is the location of the posi-
tioned element. This time, the offset values position the em element 30 pixels
down and 60 pixels to the right of the top-left corner of the browser window.

But wait. Before you start thinking that absolutely positioned elements are
always placed relative to the browser window, I’m afraid that there’s more
to it than that.

What actually happens in absolute positioning is that the element is posi-
tioned relative to its nearest containing block. It just so happens that the
nearest containing block in Figure 15-17 is the root (html) element, also
known as the initial containing block, so the offset values position the em
element relative to the whole document.

n oT e

Some browsers base the initial contain-
ing block on the body element. The net
result is the same in that it fills the
browser window.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation360

Absolute Positioning

Getting a handle on the containing block concept is the first step to tackling
absolute positioning.

Containing blocks
The CSS2.1 Recommendation states, “The position and size of an element’s
box(es) are sometimes calculated relative to a certain rectangle, called the
containing block of the element.” It is critical to have an awareness of the
containing block of the element you want to position. We sometimes refer
to this as the positioning context.

The recommendation lays out a number of intricate rules for determining
the containing block of an element, but it basically boils down to this:

•	 If the positioned element is not contained within another positioned ele-
ment, then it will be placed relative to the initial containing block (cre-
ated by the html element).

•	 But if the element has an ancestor (i.e., is contained within an element)
that has its position set to relative, absolute, or fixed, the element will
be positioned relative to the edges of that element instead.

Figure 15-17 is an example of the first case: the p element that contains the
absolutely positioned em element is not positioned itself, and there are no
other positioned elements higher in the hierarchy. Therefore the em element
is positioned relative to the initial containing block, which is equivalent to
the browser window area.

Let’s deliberately turn the p element into a containing block and see what
happens. All we have to do is apply the position property to it; we don’t
have to actually move it. The most common way to make an element into a
containing block is to set the position to relative, but don’t move it with
offset values. (By the way, this is what I was talking about earlier when I
said that relative positioning is most often used to create a context for an
absolutely positioned element.)

We’ll keep the style rule for the em
element the same, but we’ll add
a position property to the p ele-
ment, thus making it the containing
block for the positioned em element.
Figure 15-18 shows the results.

p {
 position: relative;
 padding: 15px;
 background-color: #DBFDBA;
 border: 2px solid #6C4788;
}

Or, to Put It
Another Way…
The containing block for an
absolutely positioned element is the
nearest positioned ancestor element
(that is, any element with a value for
position other than static).

If there is no containing block
present (in other words, if the
positioned element is not contained
within another positioned element),
then the initial containing block
(created by the html element) will be
used instead.

30px
60px

Figure 15-18. The relatively positioned p
element acts as a containing block for the
em element.

www.it-ebooks.info

http://www.it-ebooks.info/

Absolute Positioning

Chapter 15, Floating and Positioning 361

You can see that the em element is now positioned 30 pixels down and 60
pixels from the top-left corner of the paragraph box, not the browser win-
dow. Notice also that it is positioned relative to the padding edge of the para-
graph (just inside the border), not the content area edge. This is the normal
behavior when block elements are used as containing blocks (see note).

I’m going to poke around at this some more to reveal additional aspects of
absolutely positioned objects. This time, I’ve added width and margin prop-
erties to the positioned em element (Figure 15-19).

em {
 width: 200px;
 margin: 25px;
 position: absolute;
 top: 30px;
 left: 60px;
 background-color: fuchsia;
}

60px 25px

30px

Figure 15-19. Adding a width and margins to the positioned element.

Here we can see that:

•	 The offset values apply to the outer edges of the element box (from mar-
gin edge to margin edge), and

•	 Absolutely positioned elements always behave as block-level elements.
For example, the margins on all sides are maintained, even though this is
an inline element. It also permits a width to be set for the element.

It is important to keep in mind that once you’ve positioned an element, it
becomes the new containing block for all the elements it contains. Consider
this example in which a div named “content” is positioned in the top-left
corner of the page. When a positioned list item within that div is given offset
values that place it in the top-right corner, it appears in the top-right corner

n oT e

When inline elements are used as con-
taining blocks (and they can be), the
positioned element is placed relative to
the content area edge, not the padding
edge.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation362

Absolute Positioning

of the contents div, not the entire page (Figure 15-20). That is because once
the div is positioned, it acts as the containing block for the li element.

The markup

<div id="preface">
…
</div>

<div id="content">
<h2>Contents</h2>

 The Nix in Mischief
 <li id="special">The Ogre Courting
 Murdoch’s Wrath
 The Little Darner
 The Magic Jar

</div>

The style sheet

div#content {
 width: 200px;
 position: absolute;
 top: 0; /* positioned in the top-left corner */
 left: 0;
 background-color: #AFD479;
 padding: 10px;
}

li#special {
 position: absolute;
 top: 0; /* positioned in the top-right corner */
 right: 0;
 background-color: fuchsia;
}

The li element is positioned in the top-right corner of the
“contents” div.

The positioned “contents”
div becomes the
containing block for the
positioned li element and
creates a new positioning
context.

Figure 15-20. Positioned elements become the containing block for the elements they
contain. In this example, the list item is positioned relative to the containing div element,
not the whole page.

www.it-ebooks.info

http://www.it-ebooks.info/

Absolute Positioning

Chapter 15, Floating and Positioning 363

specifying position
Now that you have a better feel for the containing block concept, let’s take
some time to get better acquainted with the offset properties. So far, we’ve
only seen an element moved a few pixels down and to the right, but that’s
not all you can do, of course.

Pixel measurements
As mentioned previously, positive offset values push the positioned element
box away from the specified edge and toward the center of the containing
block. If there is no value provided for a side, it is set to auto, and the brows-
er adds enough space to make the layout work. In this example, I’ve used
pixel lengths for all four offset properties to place the positioned element at
a particular spot in its containing element (Figure 15-21).

div#a {
 position: relative; /* creates the containing block */
 height: 120px;
 width: 300px;
 border: 1px solid;
 background-color: #CCC;
}

div#b {
 position: absolute;
 top: 20px;
 right: 30px;
 bottom: 40px;
 left: 50px;
 border: 1px solid;
 background-color: teal;
}

div#a (width: 300px; height: 120px;)

left: 50px; right:
30px;

div#b
(calculated at 220 pixels wide x 60 pixels high)

bottom: 40px;

top: 20px;

Figure 15-21. Setting offset values for all four sides of a positioned element.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation364

Absolute Positioning

Notice that by setting offsets on all four sides, I have indirectly set the dimen-
sions of the positioned div#b (it fills the 220 × 60 pixel space that is left over
within the containing block after the offset values are applied). If I had also
specified a width and other box properties for div#b, there is the potential
for conflicts if the total of the values for the positioned box and its offsets do
not match the available space within the containing block.

The CSS specification provides a daunting set of rules for handling conflicts,
but the upshot is that you should just be careful not to over-specify box
properties and offsets. In general, a width (factoring in optional padding,
border, and margin) and one or two offset properties are all that are neces-
sary to achieve the layout you’re looking for. Let the browser take care of the
remaining calculations.

Percentage values
You can also specify positions with percentage values. In the first example
in Figure 15-22, the image is positioned halfway down the left edge of the
containing block. In the second example on the right, the img element is
positioned so that it always appears in the bottom-right corner of the con-
taining block.

img#A {
 position: absolute;
 top: 50%;
 left: 0%; /* the % symbol could be omitted for a 0 value */
}
img#B {
 position: absolute;
 bottom: 0%; /* the % symbol could be omitted for a 0 value */
 right: 0%; /* the % symbol could be omitted for a 0 value */
}

top: 50%;

left: 0%;

bottom: 0%; right: 0%;

Figure 15-22. Using percentage values to position an element in the bottom corner of
the containing block.

Although the examples here specify both a vertical and horizontal offset, it
is common to provide just one offset for a positioned element, for example,
to move it left or right into a margin using either left or right properties.

In Exercise 15-4, we’ll make further changes to the Jenware home page, this
time using absolute positioning.

wa R n i n G

Be careful when positioning elements
at the bottom of the initial containing
block (the html element). Although you
may expect it to be positioned at the bot-
tom of the whole page, browsers actu-
ally place the element in the bottom cor-
ner of the browser window. Results may
be unpredictable. If you want something
positioned in a bottom corner of your
page, put it in a containing block ele-
ment at the end of the document source,
and go from there.

www.it-ebooks.info

http://www.it-ebooks.info/

Absolute Positioning

Chapter 15, Floating and Positioning 365

exercise 15-4 | Absolute positioning
In this exercise, we’ll use absolute positioning to add an award
graphic to the site and to create a two-column layout. Open the
pre-Exercise 15-3 version of jenware.html (or jenware_ch15.html)
in a text editor. You should be starting with the single-column
layout with floated images and a horizontal menu.

1. Let’s pretend that Jenware.com won the “Awesome Site
of the Week” award, and now we have the privilege of
displaying a little award banner on the home page. Because
it is new content, we’ll need to add it to the markup. Because
it is non-essential information, we’ll add the image in a new
div at the very end of the document, after the copyright
paragraph.

<div id="award">
 <img src="images/awesomesite.gif" alt="awesome
site of the week">
</div>

Just because it is at the end of the document source doesn’t
mean it needs to display at the bottom of the page. We can
use absolute positioning to place the #award div in the top-
left corner of the browser window for all to see by adding a
new rule to the style sheet that positions the div, like so:

#award {
 position: absolute;
 top: 35px;
 left: 25px;
}

Save the document and take a look (Figure 15-23). Resize
the browser window very narrow, and you will see that the
positioned award image overlaps the header content. Notice
also that when you scroll the document, the image scrolls
with the rest of the page. Try playing around with other
offset properties and values to get a feel for positioning in
the browser window (or the “initial containing block” to use
the correct term).

Figure 15-23. An absolutely positioned award graphic.

2. In Exercise 15-3 we created two columns with a float. Now
let’s do the same thing with absolute positioning. This time
we’ll make the Testimonials box a fixed width and allow the
Products box to flex to fill the remaining space. This is just
another common layout approach that I want you to get a
feel for.

As the document stands now, if we position the Testimonials
div, it will be relative to the browser window, which is not
what we want. We want it to always appear under the #nav
div, so we’ll start by creating a new containing block after
#nav that holds the products and testimonial divs and will
serve as the new positioning context.

This is going to require some changes to the markup. Wrap
#products and #testimonials in a new div with an id of
“content.” The structure of the document should look like this:

<div id="content">
 <div id="products"> ... </div>
 <div id="testimonials">... </div>
</div>
<p class="copyright">...</p>

3. Now we can turn the “content” div into a containing block
simply by positioning it with the “unmoved-relative-position”
trick:

#content {
 position: relative;
}

4. With that in place, we can position the #testimonials box
in the top-right corner of the #content div. Add the position
as well as top and right properties to the #testimonials rule
as shown next. In addition, make the content 14 ems wide.
Adjust the top margin to 0, and change the left and right
margins from 10% to just 1em.

#testimonials {
 …
 margin: 1em 10%; 0 1em;
 position: absolute;
 top: 0;
 right: 0;
 width: 14em; }

5. If you save the file and take a look in the browser, you
should see the Testimonials box in the right corner, plopped
right on top of the Products box. The next step is to put a
right margin on the Products box to make a space for the
Testimonials. But how much space? Let’s calculate like web
geeks do.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation366

Absolute Positioning

6. The Testimonials box has approximately 3.5 ems of left padding (55px),
14-em-wide content, 1 em of right padding, and a 1-em right margin, for a total of
19.5em. If we make the right margin on #products 20.5em, that will make space
for the Testimonials box plus a little space in between the columns. We’ll do it
using the TRBL shorthand, as shown here.

#products {
 …
 margin: 1em 20.5em 1em 1em;
 …
}

Save the document and look at it in the browser (Figure 15-24). Resize the window and
compare how the boxes behave compared to the previous floated column example.

Figure 15-24. Two-column format created by absolutely positioning the
testimonials box.

Reality check
Before you get too excited about the ease of creating multicolumn layouts with
absolute positioning, let me point out that this exercise represents a best-case
scenario in which the positioned sidebar column is pretty much guaranteed to be
shorter than the main content. There is also no significant footer to worry about. If the
sidebar were to grow longer with more testimonials, it would overlap any full-width
footer that might be on the page, which is not ideal. Consider this a heads-up that
there’s more to the story, as we’ll see in Chapter 16.

www.it-ebooks.info

http://www.it-ebooks.info/

Absolute Positioning

Chapter 15, Floating and Positioning 367

stacking order
Before we close the book on absolute positioning, there is one last related
concept that I want to introduce. As we’ve seen, absolutely positioned
elements overlap other elements, so it follows that multiple positioned ele-
ments have the potential to stack up on one another.

By default, elements stack up in the order in which they appear in the
document, but you can change the stacking order with the z-index property.
Picture the z-axis as a line that runs perpendicular to the page, as though
from the tip of your nose, through this page, and out the other side.

z-index
Values: number | auto | inherit
Default: auto

Applies to: positioned elements

Inherits: no

The value of the z-index property is a number (positive or negative). The
higher the number, the higher the element will appear in the stack. Lower
numbers and negative values move the element lower in the stack. Let’s look
at an example to make this clear (Figure 15-25).

Here are three paragraph elements, each containing a letter image (A, B, and
C, respectively) that have been positioned in a way that they overlap on the
page. By default, paragraph “C” would appear on top because it appears last
in the source. However, by assigning higher z-index values to paragraphs
“A” and “B,” we can force them to stack in our preferred order.

Note that the values of z-index do not need to be sequential, and they do not
relate to anything in particular. All that matters is that higher number values
position the element higher in the stack.

The markup

<p id="A"></p>
<p id="B"></p>
<p id="C"></p>

The style sheet

#A {
 z-index: 10;
 position: absolute;
 top: 200px;
 left: 200px;
}

#B {
 z-index: 5;
 position: absolute;
 top: 225px;
 left: 175px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation368

Fixed Positioning

#C {
 z-index: 1;
 position: absolute;
 top: 250px;
 left: 225px;
}

You can change the stacking order with the
z-index property. Higher values stack on

top of lower values.

By default, elements later in the document
stack on top of preceding elements.

z-index: 10;

z-index: 5;

z-index: 1;

Figure 15-25. Changing the stacking order with the z-index property.

To be honest, the z-index property is not often required for most page
layouts, but you should know it’s there if you need it. If you want to guar-
antee that a positioned element always ends up on top, assign it a very high
z-index value, such as:

img#essential {
 z-index: 100;
 position: absolute;
 top: 0px;
 left: 0px;
}

Fixed Positioning
We’ve covered relative and absolute positioning, so now it’s time to take on
the remaining method: fixed positioning.

For the most part, fixed positioning works just like absolute positioning. The
significant difference is that the offset values for fixed elements are always
relative to the viewport, which means the positioned element stays put even
when the rest of the page scrolls. By contrast, you may remember that when
you scrolled the Jenware page in Exercise 15-4, the award graphic scrolled
along with the document—even though it was positioned relative to the ini-
tial containing block (equivalent to the browser window). Not so with fixed
positioning, where the position is, well, fixed.

wa R n i n G

Fixed positioning is not supported in
Internet Explorer 6.

www.it-ebooks.info

http://www.it-ebooks.info/

Fixed Positioning

Chapter 15, Floating and Positioning 369

Fixed elements are often used for menus that stay in the same place at the
top, bottom, or side of a screen so they are always available, even when the
content scrolls. Please take a moment to read the sidebar Watch Out for
position:fixed on Mobile for a heads-up on potential problems.

Let’s switch the award graphic on the Jenware page to fixed positioning in
Exercise 15-5 to see the difference.

exercise 15-5 | Fixed positioning
This should be simple. Open the Jenware page and edit the style rule for the #award
div to make it fixed rather than absolute.

#award {
 position: fixed;
 top: 35px;
 left: 25px;
 }

Save the document and open it in a browser. However, when you scroll the page, you
will see that the award now stays put where we positioned it in the browser window
(Figure 15-26).

Figure 15-26. The award graphic stays in the same place in the top-left corner of
the browser window when the document scrolls.

Now you’ve been introduced to all the tools of the trade for CSS-based lay-
out: floating and three types of positioning (relative, absolute, and fixed).
You should have a good feel for how they work when we start putting them
to use in the various design approaches and templates in Chapter 16.

Watch Out for
position:fixed on
Mobile
The position: fixed property
causes some quirky behaviors on
many mobile browsers as of this
writing. Some treat it as merely static,
letting it scroll with the rest of the
content. Some “supporting” browsers
scroll the fixed element off the screen
but snap it back into place when the
scrolling stops (at least one browser
then miscalculates where it should
land), resulting in an awkward user
experience. Others cause everything
to be jittery.

There are some fixes, but they
have drawbacks. One solution is to
disable the ability for the user to
zoom the page, but that removes
a useful usability feature. The other
is to use a JavaScript solution to
create the correct fixed positioning
behavior, but that introduces a new
level of complexity and potential
for incompatible support. The best
option is to consider whether you
need a fixed element at all for good
usability, then explore the JavaScript
options as needed.

For a good description of the
problem and links to JavaScript
solutions, I recommend Brad Frost’s
article “Fixed Positioning in Mobile
Browsers,” located at bradfrostweb.
com/blog/mobile/fixed-position/.
Because device support issues
change quickly, be sure to search for
the latest recommendations.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation370

Test Yourself

Test Yourself
Before we move on, take a moment to see how well you absorbed the prin-
ciples in this chapter.

1. Which of the following is not true of floated elements?

a. All floated elements behave as block elements.

b. Floats are positioned against the padding edge of the containing
element.

c. The contents of inline elements flow around a float, but the element
box is unchanged.

d. You must provide a width property for floated block elements.

2. Which of these style rules is incorrect? Why?

a. img { float: left; margin: 20px;}

b. img { float: right; width: 120px; height: 80px; }

c. img { float: right; right: 30px; }

d. img { float: left; margin-bottom: 2em; }

3. How do you make sure a “footer” div starts below a floated sidebar?

4. Write the name of the positioning method or methods (static, relative,
absolute, or fixed) that best matches each of the following descriptions.

a. Positions the element relative to a containing block.

b. Removes the element from the normal flow.

c. Always positions the element relative to the viewport.

d. The positioned element may overlap other content.

e. Positions the element in the normal flow.

f. The space the element would have occupied in the normal flow is
preserved.

www.it-ebooks.info

http://www.it-ebooks.info/

Css Review: Floating and Positioning Properties

Chapter 15, Floating and Positioning 371

g. The space the element would have occupied in the normal flow is
closed up.

h. You can change the stacking order with z-index.

i. Positions the element relative to its original position in the normal flow.

Css Review: Floating and
Positioning Properties
Here is a summary of the properties covered in this chapter, in alphabetical
order.

Property Description

float Moves the element to the right or left and allows the follow-
ing text to flow around it

clear Prevents an element from being laid out next to a float

position Specifies the positioning method to be applied to the ele-
ment

top, bottom,
right, left

Specifies the offset amount from each respective edge

z-index Specifies the order of appearance within a stack of overlap-
ping positioned elements

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

373

IN THIs CHAPTER

Fixed, liquid, and elastic
page layouts

Two- and three-column
layouts using floats

A source-independent
layout using floats

A three-column layout using
absolute positioning

Top-to-bottom
“faux” columns

Now that you understand the principles of moving elements around on the
page using CSS floats and positioning, we can put these tools to use in some
standard page layouts. This chapter looks at the various approaches to CSS-
driven web design and provides some simple templates that will get you on
your way to building basic two- and three-column web pages.

Before we get started, it must be said that there are seemingly endless varia-
tions on creating multicolumn layouts with CSS. This chapter is intended
to be a “starter kit.” The templates presented here are simplified and may
not work for every situation, although I’ve tried to point out the relevant
shortcomings of each.

Page Layout strategies
Before we start dissecting CSS layouts, let’s talk about the various options
for structuring a web page. As you know, web pages appear on browsers of
all sizes, from tiny phone screens to cinema displays. In addition, users can
resize their text, which has an impact on the layout of the page. Over time,
several standard page layout approaches have emerged that address these
issues in various ways:

•	 Fixed layouts stay put at a specific pixel width regardless of the size of
the browser window or text size.

•	 Fluid (or liquid) layouts resize proportionally when the browser window
resizes.

•	 Elastic layouts resize proportionally based on the size of the text.

•	 Hybrid layouts combine fixed and scalable areas.

Let’s examine how each strategy works, as well as the reasons for and against
using each of them.

Page laYout WIth Css

CHAPTER 16

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation374

Page Layout strategies

Fixed layouts
Fixed layouts, as the name implies, are created at a specific pixel width as
determined by the designer. Akin to print, they allow the designer to con-
trol the relationship of page elements, alignment, and line lengths (see the
sidebar Optimal Line Length). This layout approach became popular due to
the fact that folks have traditionally viewed the Web primarily on desktop
monitors with ample real estate, and web designers were keen on reproduc-
ing designs that looked exactly the same on every screen. But as you know,
times are a’changin’, and we no longer make those assumptions or strive for
pixel perfection.

When you design a page to be a specific width, you need to decide a couple
of things. First, you need to pick the width, usually based on common moni-
tor resolutions. As of this writing, most sites are designed to be 960 pixels
wide or thereabouts to fit nicely in the most common 1024 × 768 monitor
resolution. Some designers keep their layouts narrower; some venture even
larger as monitor resolution increases. Either way, it is a design decision.

You also need to decide where the fixed-width layout should be positioned
in the browser window. By default, it stays on the left edge of the browser,
with the extra space to the right of it. You can also center the page, splitting
the extra space over left and right margins, which may make the page look
as though it better fills the browser window. Figure 16-1 shows two fixed-
width layouts, positioned differently in the browser window.

One of the main concerns with using fixed layouts is that if the user’s brows-
er window is not as wide as the page, the content on the right edge of the
page will be hidden. Although it is possible to scroll horizontally, it may not
always be clear that there is more content there in the first place. In addition,
although the structure of the page doesn’t change, if a user has text set to a
very large size to make it easier to read, there may be very few words on a
line and the layout may look awkward or break altogether.

#wrapper {width: 750px;
 position: absolute;
 margin-left: auto;
 margin-right: auto;
 border: 1px solid black;
 padding: 0px;}

#extras {position: absolute;
 top: 0px;
 left: 0px;
 width: 200px;
 background: orange; }

#main {margin-left: 225px;
 background-color: yellow;}

750px

200px
25px

525px

750px

200px
25px

525px

Extra space on right Extra space split on left and right sides

Optimal Line
Length
Line length is a measure of the
number of words or characters in
a line of text. The rule of thumb is
that the optimal line length is 10
to 12 words or between 60 and 75
characters.

When line lengths grow too long,
the text becomes more difficult to
read. Not only is it hard to focus long
enough to get to the end of a long
line, it is also requires extra effort to
find the beginning of the next.

Line length is at the heart of the
debate over which layout technique
is superior. In fluid layouts, line
lengths might get too long when
the browser is sized very wide. In
fixed-width designs, line lengths may
become awkwardly short if the text
is sized large within narrow and rigid
column widths. The elastic layout
introduced later in this chapter,
however, offers predictable line
lengths even when the text is sized
larger. This makes it a popular option
for balancing design and accessibility
priorities.

Figure 16-1. Examples of fixed layouts
(left-aligned and centered).

www.it-ebooks.info

http://www.it-ebooks.info/

Page Layout strategies

Chapter 16, Page Layout with Css 375

Let’s review the pros and cons of
the fixed-width strategy.

Advantages

The layout is predictable and offers
better control over line length.

It is easier to design and produce.

It behaves the way the majority of
web pages behave as of this writing,
but that may change as users visit the
web primarily on devices other than
the desktop.

Disadvantages

Content on the right edge will be hid-
den if the browser window is smaller
than the page.

There may be an awkward amount of
left over space on large screens.

Line lengths may grow awkwardly
short at very large text sizes.

Takes control away from the user.

How to create fixed-width
layouts
Fixed-width layouts are created by
specifying width values in pixel
units. Typically, the content of the
entire page is put into a div (often
named “content,” “container,”
“wrapper,” or “page”) that can
then be set to a specific pixel width.
This div may also be centered in
the browser window. Widths of
column elements, and even margins
and padding, are also specified in
pixels. We will see examples of this
technique later in this chapter.

Css Grid Frameworks
Designers have been using grids for alignment and content organization since the
early days of graphic design, and grid systems have become a useful tool for web
designers as well. A grid is an invisible foundation that divides the page into equal
units that can be used to determine where columns, headlines, images, and so on,
should fall (Figure 16-2). Sticking to grid units not only ensures that your content will
be proportional, but it can make design decisions go more quickly.

Many CSS grid frameworks (think of them as “kits”) have emerged to help streamline
the design and development process. Perhaps the most well known is the 960 Grid
System (960.gs), which divides a 960-pixel-wide page into either 12- or 16-column
units. Blueprint (www.blueprintcss.org) and BlueTrip (bluetrip.org) are based on similar
fixed-width grids. For a fluid two- or three-column grid, there is YUI12 from Yahoo!
(developer.yahoo.com/yui/grids/).

With the emergence of mobile, we are beginning to see responsive grid systems hit
the scenes, including the 1140 CSS Grid (cssgrid.net), Skeleton (getskeleton.com), and
Bootstrap from Twitter (twitter.github.com/bootstrap).

Of course, this is just a snapshot of the CSS framework scene as of this writing, and
this list barely scratches the surface. By all means do a web search to find the latest
and greatest. Using a framework requires solid HTML and CSS chops, but once you
get up to speed, they may save you time. The downside is that the code tends to be
more bloated than if it were handcrafted, and you may be forcing unnecessary data
to download. For this reason, some designers use frameworks to speed up the design
process but create custom code for the final site production.

If you are interested in learning more about grid systems and their benefits, I
recommend the book Ordering Disorder, Grid Principles for Web Design, by Khoi
Vinh (grids.subtraction.com/).

Figure 16-2. An example of a web page design using a 16-column grid system.

www.it-ebooks.info

http://www.blueprintcss.org
http://www.it-ebooks.info/

Part III, Css for Presentation376

Page Layout strategies

Fluid page design
In fluid page layouts (also called liquid layouts), the page area and columns
within the page get wider or narrower to fill the available space in the brows-
er window. In other words, they follow the default behavior of the normal
flow. There is no attempt to control the width of the content or line breaks;
the text is permitted to reflow as required and as is natural to the medium.
Figure 16-3 shows the W3C site (W3.org), which is a good example of a
liquid layout.

www.w3.orgLiquid layouts �ll the browser window.
Content re�ows when the browser window and columns resize.

Figure 16-3. Example of a fluid (liquid) layout.

Fluid layouts are a cornerstone of the responsive web design technique. Now
that web designers are coming to terms with the vast variety of browser win-
dow and screen sizes, particularly those smaller than the traditional desktop
monitor, many are moving to designs that flex to fill the browser width,
whatever that might be. Because it is futile to try to build a fixed-width
design for every screen size, I think fluid layouts will see a resurgence.

Of course, fluid layouts have both advantages and disadvantages.

Advantages Disadvantages

Fluid layouts keep with the spirit and
nature of the medium.

They avoid potentially awkward empty
space because the text fills the window.

On desktop browsers, users can control
the width of the window and content.

No horizontal scrollbars.

On large monitors, line lengths can get
very long and uncomfortable to read.

They are less predictable. Elements may
be too spread out or too cramped at
extreme browser dimensions.

It may be more difficult to achieve
whitespace.

There is more math involved in calculat-
ing measurements.

n oT e

Ethan Marcotte (coiner of the term
“responsive web design”) talks about
designing the W3C site with a fluid grid
in his article “Fluid Grids” on A List
Apart (www.alistapart.com/articles/
fluidgrids/). It is evidence that using
fluid layouts doesn’t mean giving up all
control.

www.it-ebooks.info

http://www.alistapart.com/articles/fluidgrids/
http://www.alistapart.com/articles/fluidgrids/
http://www.it-ebooks.info/

Page Layout strategies

Chapter 16, Page Layout with Css 377

How to create fluid layouts
Create a fluid layout by specifying widths in percentage values. You may
also simply omit the width attribute, in which case the width will be set to
the default auto setting and the element will fill the available width of the
window or other containing element.

In this two-column layout (Figure 16-4), the width of each div has been
specified as a percentage of the available page width. The main column will
always be 70% of the width of the window, and the right column fills 25%
(the remaining 5% is used for the margin between the columns), regardless
of the window size. You’ve already gotten a taste for this approach when
you created a column with a float in Exercise 15-3 in the previous chapter.

One potential drawback to fluid layouts is overly long line lengths, but you
can prevent the layout from becoming ridiculously wide by specifying a
maximum width for the page (see the Say “Enough Is Enough” with max-
width sidebar later in this chapter). You can also use min-width to keep the
page from getting crazy skinny. That gives you some of the advantages of a
fixed layout while still providing flexibility at sizes in between.

div#main {
 width: 70%;
 margin-right: 5%;
 float: left;
 background: yellow;
 }

div#extras {
 width: 25%;
 float: left;
 background: orange;
 }

70% 25%
5% 5%

25%70%

Figure 16-4. Fluid layout using percentage values.

Elastic layouts
A third layout approach marries resizable text with predictable line lengths.
Elastic layouts expand or contract with the size of the text. If the user makes
the text larger, the box that contains it expands proportionally. Likewise, if
the user likes her text size very small, the containing box shrinks to fit. The
result is that line lengths (in terms of words or characters per line) stay the
same regardless of the text size. This is an advantage over liquid layouts,
where line lengths can get too long, and fixed layouts, where very large text
may result in awkwardly few characters per line.

Create a liquid layout
by specifying widths in
percentages.

n oT e

min-width and max-width are not sup-
ported by Internet Explorer 6, but there
is an IE-specific CSS patch you can use
if you really need to support that old
dinosaur. Read about it on Cameron
Moll’s site here: www.cameronmoll.
com/archives/000892.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation378

Page Layout strategies

Figure 16-5 shows the Elastic Lawn design by Patrick Griffiths at CSS Zen
Garden (www.csszengarden.com/?cssfile=/063/063.css), an oldie-but-goodie
for showing elastic layout at work. Notice that when the text size gets bigger
in each sample, so does the content area of the page. However, instead of
rewrapping in the larger layout space, the linebreaks are the same.

48 em 48 em

Line length and line breaks stay the same

Figure 16-5. The Elastic Lawn design by Patrick Griffiths at CSS Zen Garden is a classic
example of elastic page layout.

The full-page zoom feature offered by most current browsers has stolen
some of elastic design’s thunder. Now, all web pages appear to scale up
proportionally, but elastic layouts can still address issues caused by users
making changes to their default browser font size.

Proponents of elastic designs like that the proportions of the page are tied
to the typographic content. In these days of unknown screen dimensions,
it makes sense to design with our content elements as the core. However,
elastic layouts have the same issues as fixed-width layouts at large sizes
(although you can control that with a max-width property) and are generally
not as useful as fluid layout in the mobile context. Another drawback is that
although the page grid scales with the text, embedded media such as images
and movies do not (there are solutions to that as well, but those are beyond
the scope of this chapter).

It’s time to review the pros and cons of elastic layouts:

Advantages Disadvantages

Provides a consistent layout experience
while allowing flexibility in text size.

Tighter control over line lengths than
liquid and fixed layouts.

Images and videos don’t lend themselves
to automatic rescaling along with the
text and the rest of the layout (but there
are methods to achieve this).

The width of the layout might exceed
the width of the browser window at larg-
est text sizes.

Not as useful for addressing device and
browser size variety.

More complicated to create than fixed-
width layouts.

n oT e

Patrick Griffiths, the creator of Elastic
Lawn, wrote about elastic layouts in the
“Elastic Designs” article at A List Apart
(alistapart.com/articles/elastic). It’s get-
ting on in years, but still provides good
details on his method.

www.it-ebooks.info

http://www.it-ebooks.info/

Page Layout strategies

Chapter 16, Page Layout with Css 379

How to create elastic layouts
The key to elastic layouts is the em, the unit of measurement that is based
on the size of the text. For example, for an element with 16-pixel text, an em
is 16 pixels. It is common to specify font-size in ems. In elastic layouts, the
dimensions of containing elements are specified in ems as well. That is how
the widths can respond to the text size. For example, if the body text size
is set to 16 pixels (the default size on most browsers), and the page is set to
40em, the resulting page width would be 640 pixels (40em x 16px/em). If
the user resizes the text up to 20 pixels, the page grows to 800 pixels.

Hybrid layouts
Layouts that use a combination of pixel, percentage, and em measurements
are sometimes called hybrid layouts. In many scenarios, it makes sense to
mix fixed and scalable content areas. For example, you might have a side-
bar that contains a stack of ad banners that must stay a particular size. You
could specify that sidebar at a particular pixel width and allow the column
next to it to resize to fill the remaining space. You may remember that we
created a page like that in Exercise 15-4.

Figure 16-6 illustrates a hybrid layout. The secondary column on the left is
set to a specific pixel width, and the main content area is set to auto and fills
the remaining space in the window. A word of warning: when you mix length
units (px, %, and em), it becomes much more complicated to calculate page
and element widths. But it’s possible if there is a good reason to do so.

Which one should I use?
As you can see, each layout approach has its own advantages and draw-
backs. And as layout trends come and go, we’re seeing a shift from fixed,
desktop-appropriate sites to fluid designs that are better suited to work well
across all devices. You may find that a fluid layout works best for the smaller
screen sizes in a responsive site but a fixed layout gives you the control you

Elastic layouts are created
by specifying widths in em
units.

div#main {
 width: auto;
 position: absolute;
 top: 0;
 left: 225px;
 background: yellow; }

div#extras {
 width: 200px;
 position: absolute;
 top: 0;
 left: 0;
 background: orange; }

200px Resizes to �ll browser window
25px

200px Resizes

25px

Figure 16-6. Hybrid layout combining
fixed-width and auto sized columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation380

Page Layout Techniques

want when the page is viewed on very large monitors. Or perhaps your site
is a complex intranet application that requires a fixed design and is likely
to be used only on a desktop browser. So there is no “right” way, and it is
important that you be familiar with all the options to make the best decision
for your site or application based on its content, purpose, and primary use.

Page Layout Techniques
Here it is…the section you’ve been waiting for: how to create two- and three-
column layouts using CSS. The examples in this section should give you a
good head start toward understanding how layout works, but they are not
universal solutions. Your content may dictate more complicated approaches.

This section provides templates and techniques for the following:

•	 Two- and three-column layouts using floats

•	 A source-independent layout using floats and negative margins

•	 A multicolumn layout using positioning

Using the examples
The sample pages in this section aren’t pretty. In fact, I’ve stripped them down
to their bare minimum to help make the structure and strategy as clear as
possible. Here are a few notes regarding the templates and how to use them.

Simplified markup and styles

I’ve included only the bare minimum markup and styles in the exam-
ples—just enough to follow how each layout is created. All style rules not
related to layout have been omitted to save space and to focus on what
is needed to move elements around.

Color coding

I’ve added outlines (see the CSS Outlines sidebar) around each column
so you can see the edges of the floated or positioned elements in the
layout. The outlines are color coded with the markup and the styles that
create them in an effort to make the connections more clear.

Headers and footers

I’ve included a header and footer on many of these examples, but either
one or both could easily be omitted for a minimal two- or three-column
layout.

Make it yours

There is obviously a lot more that could be done with text, backgrounds,
margins, padding, and borders to make these pages more appealing.
Once you’ve laid a framework with these templates, you should feel free
to change the measurements and add your own styles.

n oT e

The HTML and CSS for all of the tem-
plates in this section are available in
the materials folder for this chapter on
learningwebdesign.com.

Css Outlines
In the examples in this section, I’ve
taken advantage of the outline
property to reveal the edges of the
floated and positioned columns.
Outlines look like borders and the
syntax is the same, but there is
an important difference. Outlines,
unlike borders, are not calculated in
the width of the element box. They
just lay on top, not interfering with
anything. This makes outlines a great
tool for checking your layout work
because you can turn them on and
off without affecting your width
measurements.

The outline shorthand property
combines values for width (outline-
width), style (outline-style), and
color (outline-color) properties, just
like border.

div#links { outline: 2px
dashed red; }

www.it-ebooks.info

http://www.it-ebooks.info/

Multicolumn Layouts Using Floats

Chapter 16, Page Layout with Css 381

Multicolumn Layouts Using Floats
Floats are the primary tool for creating columns on web pages. As a tool, it
is flawed, but it’s the best that we’ve got as of this writing. See the sidebar
The Future of CSS Layout for more sophisticated solutions that are just on
the horizon.

The advantages that floats have over absolute positioning for layout are
that they prevent content from overlapping other content, and they make
it easier to keep footer content at the bottom of the page. The drawback is
that they are dependent on the order in which the elements appear in the
source, although there is a workaround using negative margins, as we’ll see
later in this section.

The following examples reveal the general strategy for approaching two-
and three-column layouts using floats and should serve as a good head start
toward implementing your own layouts.

The Future of Css Layout
Cascading Style Sheets are constantly evolving to meet the
needs of designers and developers, and there are some new
layout technologies in the works that may free us from hacking
together columns with floats and positioned elements.

Columns
The most straightforward layout improvement that is already
being implemented in browsers is the ability to divide an
element into honest-to-goodness columns. Thank heavens! You
can specify a number of columns (column-count) or a specific
column width that will repeat until it runs out of room (column-
width). There’s a lot more to it, of course, which you can read for
yourself in the W3C CSS3 Multi-column Layout Module (www.
w3.org/TR/css3-multicol). CSS columns are currently supported
in Safari and Chrome with the -webkit- prefix, Firefox with the
-moz- prefix, and in Opera and IE10 with no prefix.

Flexbox
The CSS Flexible Box Layout Model (known as Flexbox, for
short) provides a much simpler way to arrange element boxes
in relation to one another. For example, you can line children
elements up within a parent, select where extra space appears,
center things horizontally or vertically, and even change the
order of appearance—all without resorting to floats and
margin offsets and the tricky calculations that come with
them. With Flexbox, you can basically just say, “Make this a box
and center its child element horizontally and vertically within
it.” There’s too much to the spec to even dabble in here, but

I recommend Stephen Hay’s introductory article (www.the-
haystack.com/2012/01/04/learn-you-a-flexbox/), as well as the
Recommendation itself. Flexbox is currently supported on the
very latest browser versions with vendor prefixes.

Grid layout system
Microsoft has begun implementing a collection of CSS
properties that allow you to establish a grid of rows and
columns for an element and then position other elements
along that grid. This is in its very early stages as of this writing,
but it is worth keeping an eye on. Read more about it at the
W3C (dev.w3.org/csswg/css3-grid-layout) and the Microsoft
Developer Network (msdn.microsoft.com/library/ie/hh673536.
aspx#_CSSGrid).

Regions and Exclusions
Adobe, the company that brings you Photoshop and other
designerly products, is making contributions to the CSS
canon in the form of layout modules that duplicate some
of the functionality of its page layout products. CSS Regions
allow content to flow from one element into another, similar
to the way text flows from text box to text box in InDesign.
CSS Exclusions are a method for making text wrap around an
irregular shape, such as you’d see in a magazine layout. You
can read more about the development of these cutting-edge
features at the W3C (dev.w3.org/csswg/css3-regions and dev.
w3.org/csswg/css3-exclusions), as well as at the Adobe + HTML
site (html.adobe.com).

www.it-ebooks.info

http://www.w3.org/TR/css3-multicol
http://www.w3.org/TR/css3-multicol
http://www.the-haystack.com/2012/01/04/learn-you-a-flexbox/
http://www.the-haystack.com/2012/01/04/learn-you-a-flexbox/
http://www.it-ebooks.info/

Part III, Css for Presentation382

Multicolumn Layouts Using Floats

Two columns, fluid layout
In Exercise 15-3 in the previous chapter, we created a two-column layout by
floating one element and using a margin on the second to make room for
it. In the following examples, we’ll float all the elements to one side. You
can float columns to the left or right depending on the source order in your
document and where you want each column to appear on the page. We’ll
start with a very simple two-column layout.

The strategy

Set widths on both column elements and float them to the left. Clear the
footer to keep it at the bottom of the page. The underlying structure and
resulting layout is shown in Figure 16-7.

The markup

<div id="header">Masthead and headline</div>

<div id="main">Main article</div>

<div id="extras">List of links and news</div>

<div id="footer">Copyright information</div>

The styles

#main {
 float: left;
 width: 60%;
 margin: 0 5%;
}
#extras {
 float: left;
 width: 25%;
 margin: 0 5% 0 0;
}
#footer {
 clear: left;
}

Notes

This one is pretty straightforward, but because this is our first one, I’ll point
a few things out:

•	 Remember that I’ve omitted the header, footer, and text styles to keep
the examples as simple as possible. Keep in mind that there is a bit
more at work in here than what is listed under The styles (nothing you
couldn’t figure out, though: background colors, padding, stuff like that).

•	 The source document has been divided into four divs, one each for the
header, main content, extras, and footer. The markup shows the order in
which they appear in the source.

n oT e

All of the layout examples in this section
use margins to maintain space between
columns. If you want to add padding
and borders to the floated elements,
remember to adjust the width values to
accommodate them. Alternatively, you
could set the box-sizing property to box-
model (remembering vendor prefixes),
and you won’t need to figure paddings
and borders into your calculations.

Remember the TRouBLe
value order for margin:
Top, Right, Bottom, Left.

www.it-ebooks.info

http://www.it-ebooks.info/

Multicolumn Layouts Using Floats

Chapter 16, Page Layout with Css 383

#header

#main

#extras

#footer

Source order Layout

Figure 16-7. Floating two columns.

•	 Both #main and #extras have been floated to the left. Because they are
floats, widths were specified for each. You can make your columns as
wide as you like.

•	 The #main element has a 5% margin applied on the left and right sides.
The #extras element only needs a margin on the right. The margins on
the top have been set to zero so they vertically align.

•	 The #footer is cleared so it starts below the floated content.

say “Enough Is Enough” with max-width
Fluid layouts are great because they can adapt themselves to the screen or browser
window size on which they are displayed. We spend a lot of time considering how
our pages fare in small spaces, but don’t forget that at the other end of the spectrum
are high-resolution monitors approaching or exceeding 2,000 pixels in width. Users
may not maximize their browser windows to fill the whole screen, but there is the
potential for the browser window to be so wide that the text in your flexible columns
becomes difficult to read.

You can put a stop to the madness with the max-width property. Apply it to the
column element you are most concerned about becoming unreadable (like the
#main column in the “two columns, fluid layout” example), or put the whole page in a
wrapper element and put the brakes on the width of whole page.

Similarly, the min-width property is available if you want to prevent your page from
looking too scrunched. Remember that neither property is supported in IE6.

n oT e

You could also float one column to the
left and the other to the right for the
same effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation384

Multicolumn Layouts Using Floats

Two columns, fixed-width layout
This time, let’s make the layout fixed width instead of fluid.

The strategy

Wrap the content in a div to which we can set a specific pixel width. We’ll
specify pixel values for the floated elements as well, but the floating and
clearing method is the same. The resulting layout is shown in Figure 16-8.

Source order Layout

#header

#wrapper

#main

#extras

#footer

Figure 16-8. A fixed width, two-column layout using floats.

The markup

<div id="wrapper">

 <div id="header">Masthead and headline</div>

 <div id="main">Main article</div>

 <div id="extras">List of links and news</div>

 <div id="footer">Copyright information</div>

</div>

Notes

•	 All of the content is contained in a #wrapper div that has been set to the
very popular 960 pixel width.

•	 The widths and margins have been changed to pixel measurements as well,
taking care not to exceed a total of 960. If they added up to more than the
width of the #wrapper container, we’d get the dreaded float drop. Keep in
mind that if you add padding or borders, the total of their widths would need
to be subtracted from the width values to keep the total width the same.

The styles

#wrapper {
 width: 960px;
}
#main {
 float: left;
 width: 650px;
 margin: 0 20px;
}
#extras {
 float: left;
 width: 250px;
 margin: 0 20px 0 0;
}
#footer {
 clear: left;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Multicolumn Layouts Using Floats

Chapter 16, Page Layout with Css 385

Two columns, fixed width, centered
At this point, it’s really easy to center the fixed-width layout.

The strategy

Set the left and right margins on the #wrapper container to auto, which will
keep the whole page centered. The markup is exactly the same as in the pre-
vious example. We only need to add a margin declaration to the styles. Easy
as pie. The resulting layout is shown in Figure 16-9.

The styles

#wrapper {
 width: 960px;
 margin: 0 auto;
}

Notes

•	 The auto margin setting on the left and right sides keeps the #wrapper
centered in the browser window.

Source order Layout

#header

#wrapper

#main

#extras

#footer

Figure 16-9. Our fixed-width layout is now centered in the browser window.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation386

Multicolumn Layouts Using Floats

Full-Width Headers and Footers
If you wanted the #header and #footer to be the full browser
width, but also wanted to keep the content between them
fixed width and centered (Figure 16-10), change the markup so
that only #main and #extras are inside the #wrapper. Everything
else stays the same as the “two columns, fixed width, centered”
example.

<div id="header">Masthead and headline</div>
<div id="wrapper">
 <div id="main">Main article</div>
 <div id="extras">List of links and news</div>
</div>
<div id="footer">Copyright information</div>

Three columns, fluid layout
I suspect you’re getting the hang of it so far. Now we’ll tackle three-column
layouts, which use the same principles but take a little extra finagling. In this
example, we’ll float all of the elements to the left. Using simple floats, you
will see that we are quite tied to the order in which the three floated elements
appear in the source.

The strategy

Set widths on all three-column elements and float them to the left. Clear the
footer to keep it at the bottom of the page. The underlying structure and
resulting layout is shown in Figure 16-11.

Figure 16-10. The header and footer fill the width of the
browser, but the content between them remain a fixed width.

www.it-ebooks.info

http://www.it-ebooks.info/

Multicolumn Layouts Using Floats

Chapter 16, Page Layout with Css 387

Source order Layout

#header

#main

#news

#links

#footer

Figure 16-11. A fluid-width, three-column layout using three floats.

The markup

 <div id="header">Masthead and headline</div>

 <div id="links">List of links</div>

 <div id="main">Main article</div>

 <div id="news">News items</div>

 <div id="footer">Copyright information</div>

Notes

•	 The markup shows that we now have a total of five divs in the document:
#header, #links, #main, #news, and #footer.

•	 Using simple floats alone, if we want the main content column to appear
in the middle between the links and news columns, then the #main div
needs to appear between the #links and #news divs in the source. (We’ll
break free of source order in the upcoming Any order columns using
negative margins example.)

•	 All three columns are given widths and floated to the left. Care must be
taken to ensure that the total of the width and margin measurements is
not greater than 100%.

The styles

#links {
 float: left;
 width: 22.5%;
 margin: 0 0 0 2.5%;
}
#main {
 float: left;
 width: 45%;
 margin: 0 2.5%;
}
#news {
 float: left;
 width: 22.5%;
 margin: 0 2.5% 0 0;
}
#footer {
 clear: left;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation388

Multicolumn Layouts Using Floats

Any order columns using
negative margins
When float-based layouts were beginning to gain steam,
many designers wondered, “Is there a way to do three-
column floats that is independent from the source order?”
Turns out the answer was “Yes!” The trick is to use the
magic of negative margin values and a heaping tablespoon
of math (a little bit of math never hurt anyone, right?). The
technique was first brought to light by Alex Robinson in his
classic 2005 article “The Search for One True Layout” (posi-
tioniseverything.net/articles/onetruelayout/).

The strategy

Apply widths and floats to all three column elements, and use
a negative margin to “drag” the left column across the page
into the left position. The underlying structure and resulting
layout is shown in Figure 16-13. Notice that although #main
comes first in the source, it is in the second column position.
In addition, the #links div (last in the source) is in the first
column position on the left. This example is fixed, but you
can do the same thing with a fluid layout using percentage
values.

The markup

<div id="wrapper">

 <div id="header">Masthead and headline</div>

 <div id="main">Main article</div>

 <div id="news">News items</div>

 <div id="links">List of links</div>

 <div id="footer">Copyright information</div>

</div>

The styles

#wrapper {
 width: 960px;
 margin: 0 auto;
}
#main {
 float: left;
 width: 520px;
 margin-top: 0;
 margin-left: 220px;
 margin-right: 20px;
}
#news {
 float: left;
 width: 200px;
 margin: 0;
}

exercise 16-1 | You try it
We’ve seen a lot of examples so far of two- and three-
column layouts using floats, in both fluid and fixed-
width layouts. I think it is time you try some of these
techniques out using the three-column fluid layout we
just looked at as a starting point. The file for this exercise,
mountolympus-ex1.html, is in the materials folder for this
chapter on learningwebdesign.com. The resulting styles
are listed in Appendix A. The outline styles are included,
but you can “comment them out” (wrap them in /* and */
to hide them) if you want to turn the outlines off and see
the layout without them.

First, rearrange the side columns so that #links is on the
right and #news is on the left. You don’t need to change
the markup, only a few style values. (Hint: think float
direction.) Be sure to adjust the left and right margins on
the side columns and clear the #footer.

Next, convert this fluid design into a centered, fixed-width
design. This time you will need to add some markup (see
the two-column fixed example if you need help). The
resulting page is shown in Figure 16-12.

Figure 16-12. The resulting fixed-width layout with
swapped side columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Multicolumn Layouts Using Floats

Chapter 16, Page Layout with Css 389

Source order Layout

#header

#main

#news

#links

#footer

#wrapper

Figure 16-13. A fixed-width, three-column layout using three floats. It looks like the
previous example, but it is special in that the column order is not the same as the source
order.

#links {
 float: left;
 width: 200px;
 margin-top: 0;
 margin-left: -960px;
}
#footer {
 clear: left;
}

Notes

This one requires a bit more explanation, so we’ll look at how it’s done one
step at a time.

In the markup, we see that #main comes first, presumably because it is the
most important content, and #links comes last. The whole page is wrapped
in a #wrapper so that it can be set to a specific width (960px). In the layout,
however, the order of the columns from left to right is #links (200px wide),
#main (520px wide), then #news (200px wide). This layout has 20 pixels of
space between columns.

The first step to getting there is moving the #main content to the middle
position by applying a left margin that pushes it over enough to make room
for the left column (200px) plus the space between (20px). So, margin-left:
220px. While we’re at it, we’ll add a 20px right margin on #main as well to
make room on its right side. Figure 16-14 shows how it looks after applying
styles to #main.

n oT e

If you are required to support Internet
Explorer 6, add a display: inline; decla-
ration to #main as well to fix a problem
IE6 has with doubling left margins. It
won’t hurt anything on other browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation390

Multicolumn Layouts Using Floats

Next—and this is the cool part—pull the content that you want to go in the
left column (#links, in this case) to the left using a negative margin value.
The trick is figuring out how far to the left it needs to be moved. If you look
at Figure 16-14, you can see a ghostly version of #links that shows where it
wants to be if the #wrapper were wide enough. I find it useful to look at the
layout in that way because it makes it clear that we need to pull #links to the
left by the widths of all the element boxes ahead of it in the source.

Figure 16-14. The layout after margins are applied to the middle (#main) column
element. The shaded box on the right shows where #links would like to be if it weren’t
forced under #news.

In this example, the element box width for #main is 520px + 220px for the left
margin + 20px for the right margin, for a total of 760 pixels. The total width
of #news is 200px (no margins are applied). That means that the #links div
needs to be pulled a total of 960 pixels to the left to land in the left column
slot (margin-left: -960px;). When the negative margin is applied, #links
slides into place and we have the final layout shown in Figure 16-13.

The negative margins technique can be used to position any number of
columns in any order. In Exercise 16-2, you’ll get a chance to rearrange the
columns so that #news is on the left.

wa R n i n G

When you are doing this on your own,
remember to include padding and bor-
ders into the total element box width
calculations as well, unless you are
using the border-box box-sizing model.

www.it-ebooks.info

http://www.it-ebooks.info/

Multicolumn Layouts Using Floats

Chapter 16, Page Layout with Css 391

exercise 16-2 | Using negative margins
Now that you know the strategy, you should be able to write the styles that position
the #news content in the left column and the #links on the right. This exercise is
based on the same HTML source order as the previous example. Note, however, that
the column width values have changed (to make things interesting). As before, put 20
pixels of space between columns.

If you’d like to play around with the actual files in a text editor, the mountolympus-
ex2.html document is in the materials folder for this chapter. Otherwise, you can grab
a pencil and write in the style rules below. The final styles are provided in Appendix A.

Remember, the key is to move #news to the left, using a negative margin, by the total
width of the elements that precede it in the source.

#main {
 float: left;
 width: 400px;
 /* write your margin declarations below */

}
#news {
 float: left;
 width: 300px;
 /* write your margin declarations below */

}
#links {
 float: left;
 width: 220px;
 /* write your margin declarations below */

}

The resulting layout should look like the one shown in Figure 16-15.

Figure 16-15. The final three-column
layout in Exercise 16-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation392

Positioned Layout

Positioned Layout
I think we’ve got floated columns covered. The other way to create columns
in a layout is to use absolute positioning. Back in Exercise 15-4, we created
a hybrid two-column layout with a positioned, fixed-width column. In this
section, we’ll use positioning to arrange three columns in both fluid and
fixed-width pages.

Note that in both examples, I have omitted the #footer element. I’ve done
this for a couple of reasons. First, when you position all of the elements in
a layout, as we will in these examples, they no longer “participate in the
layout,” which means there is nothing to hold a footer at the bottom of the
page. It will rise right up to the top. There are solutions to this problem using
JavaScript, but they are beyond the scope of this chapter.

But say we position only the two side columns and let the main center col-
umn stay in the flow to hold the footer down. This is certainly a possibility,
but if either of the side columns grows longer than the center column, they
will overlap the footer content. Between leaping footers and potential over-
laps, it’s just kind of messy, which is why I’ve chosen to omit the footer here
(and why floats are the more popular layout technique).

Three columns, positioned, fluid layout
This layout uses percentage values to create three flexible columns. The
resulting layout is shown in Figure 16-16.

Source order Layout

#header

#main

#news

#links

Figure 16-16. Three positioned, fluid
columns

www.it-ebooks.info

http://www.it-ebooks.info/

Positioned Layout

Chapter 16, Page Layout with Css 393

The strategy

Wrap the three content divs (#main, #news, #links) in a div (#content) to
serve as a containing block for the three positioned columns. Then give the
column elements widths and position them in the containing #content ele-
ment.

The markup

<div id="header">Masthead and headline</div>

<div id="content">
 <div id="main">Main article</div>

 <div id="news">News items</div>

 <div id="links">List of links</div>
</div>

Notes

I think that you’ll find the styles for this layout to be fairly straightforward.

•	 I created the #content containing block to position the columns because
we want the columns to always start below the #header. If we positioned
them relative to the browser window (the initial containing block), they
may be in the wrong spot if the height of the header should change, such
as the result of the h1 text changing size. Make the #content div a con-
taining block by applying the declaration position: relative.

•	 The #main div is given a width of 50%, and absolute positioning is used
to place it at the top of the #content div and 25% from the left edge.
This will accommodate the 20% width of the left column plus the 2.5%
margin to the left and right of it.

•	 The #news div is positioned at the top of the #content div and 2.5% from
the left edge (top: 0; left: 2.5%;).

•	 The #links div is positioned at the top of the #content div (top: 0;
right: 2.5%;) and 2.5% from the right edge. No need to calculate the
position from the left edge…just put it on the right! Note that we could
have positioned the #news and #links columns flush against their respec-
tive edges and used padding to make a little space on the sides. There are
usually multiple ways to approach layout goals.

•	 The only trick to getting this right is making sure your width and margin
measurements do not exceed 100%. Remember to factor in padding and
borders as well.

The styles

#content {
 position: relative;
 margin: 0;
}
#main {
 width: 50%;
 position: absolute;
 top: 0;
 left: 25%;
 margin: 0;
}
#news {
 width: 20%;
 position: absolute;
 top: 0;
 left: 2.5%;
 margin: 0;
}
#links {
 width: 20%;
 position: absolute;
 top: 0;
 right: 2.5%;
 margin: 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation394

Positioned Layout

Three columns, positioned, fixed
If you prefer to have pixel-level control over your positioned layout, that’s
pretty easy to do, as we’ll see in this example (Figure 16-17). It differs from
the previous fluid example in that the whole page is contained in a #wrapper
so it can be fixed and centered, and pixel values are used for the measure-
ments. To save space, I’ll just show you the resulting styles here. The posi-
tioning strategy is the same.

Source order Layout

#header

#main

#news

#links

#wrapper

Figure 16-17. Three positioned columns in a centered, fixed-width page.

The styles

#wrapper {
 width: 960px;
 margin: 0 auto;
}
#content {
 margin: 0;
 position: relative;
}
#main {
 width: 520px;
 position: absolute;
 top: 0;
 left: 220px;
 margin: 0;
}

#news {
 width: 200px;
 position: absolute;
 top: 0;
 left: 0;
 margin: 0;
}
#links {
 width: 200px;
 position: absolute;
 top: 0;
 right: 0;
 margin: 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Top-to-Bottom Column Backgrounds

Chapter 16, Page Layout with Css 395

Top-to-Bottom Column Backgrounds
Adding color to columns is an effective way to further emphasize the division
of information and bring a little color to the page. But if you take a look at
the dashed borders in all the screenshot examples we’ve seen so far, you’ll
see that the column element often stops well before the bottom of the page.
This means we need to get fancy if we want to apply backgrounds from top
to bottom.

Unfortunately, there is no supported way of setting the height of an element
to 100% of the page height, and although there are JavaScript workarounds
and the emerging Flexbox spec that produce full-height column elements,
they are beyond the scope of this chapter.

But don’t fret. There is a reliable solution known affectionately as the “faux
columns” trick that will work with any of the fixed-width templates in this
chapter. In this technique, you create a graphic with the column colors in
their proper positions and apply it as a vertically tiling background image to
the page or containing element (such as #wrapper in the examples). The Faux
Columns method was first introduced by Dan Cederholm in his 2004 article
for A List Apart, and in his book Web Standards Solutions.

Here’s how it works. The column shading in Figure 16-18 is the result of a
horizontal image with bands of color that match the width of the columns.
When the image is set to tile vertically in the background, the result is verti-
cal stripes over which a multicolumn layout may be positioned. This method
works only when the width of the column or page is set in a specific pixel
measurement. We’ll get to fluid column backgrounds
in a moment.

You may recognize the layout in Figure 16-18 as the
two-column, fixed-centered layout we made earlier
in Figure 16-9. This time, it has the two_column.png
graphic tiling vertically in the #wrapper element.

#wrapper {
 width: 960px;
 margin: 0 auto;
 background-image: url(two_column.gif);
 background-repeat: repeat-y;
}

n oT e

If your layout lacks a footer element to hold the container
element open after the columns are floated, apply overflow:
hidden; to the #wrapper to make it stretch around the floats.

two_columns.png

Figure 16-18. A tiling background image
is used to create colored columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation396

Top-to-Bottom Column Backgrounds

Faux columns for fluid layouts
Now that you understand the basic technique, you may be wondering how
to make it work for columns of varying widths. The secret is a really, really
wide background graphic and the background-position property.

We may not know the exact width of the columns in a fluid layout, but we
do know the point at which the columns are divided. Let’s use the two-col-
umn fluid example from Figure 16-7 as an example. The column division
occurs 67.5% from the left edge (5% left margin + 60% #main column width
+ 2.5%, which is half of the 5% space between margins).

Over in Photoshop (or your image editor of choice), create a horizontal
image that is wider than any monitor is likely to go—3,000 pixels ought to
do it. Because the graphic needs to be only a few pixels high and is likely to
be made up of a few flat colors, the file size should stay pretty small. When
you create the column colors, make sure they match the proportion of your
columns. In our example, the left column background should fill 67.5% of
the width of the graphic (67.5% x 3,000 = 2,025 pixels).

Apply the wide image as a background pattern to the body element, and
use background-position to align the point where the color changes in the
graphic (67.5%) with the point where the columns divide on the page (also
67.5%). In that way, the column break in the image will always be centered
in the space between the columns. And there you have it—faux columns
that expand and contract with the column widths.

body {
 background-image: url(two_cols_3000px);
 background-repeat: repeat-y;
 background-position: 67.5%;
}

background-position: 67.5%
two_cols_3000px.png

Figure 16-19. The background image is anchored at the point between the two columns,
so when the browser window gets larger or smaller, it is always in the right place. The
graphic file is wide enough that there will be enough image to fill both columns, even on
the widest of browsers.

Aaron Gustafson, author of Adaptive
Web Design, has a neat trick if all you
need is a thin rule between columns
without filling the background. Simply
set the facing borders on neighboring
columns to an equal width and then
use a negative margin equal to the
border-width to make the borders
overlap. That way whichever column
ends up being taller, it just looks like
the same rule continues down the
page.

T i p

www.it-ebooks.info

http://www.it-ebooks.info/

Top-to-Bottom Column Backgrounds

Chapter 16, Page Layout with Css 397

Three faux columns
Well, that works for two columns, but what about three? It is possible,
thanks to the “Liquid Bleach” technique introduced by Doug Bowman. It’s
called Liquid Bleach because that’s the name Doug gave his “Bleach” blog
template after he converted it to a fluid layout.

Fundamentally, the process is the same as the one we just saw: position a
really wide background graphic proportionally in a container div. But for
three columns, you position two background images. One image provides
the color band for the left column, and the remaining right portion is trans-
parent. A second image provides the color for the right column, with its left
portion left transparent (Figure 16-20). The background color of the page
shows through the transparent areas and provides the color for the middle
column.

The markup requires two containers. I’ve named them #wrapper and #inner
in this example:

<div id="wrapper">
 <div id="inner">
 <div id="main"></div>
 <div id="news"></div>
 <div id="links"></div>
 </div> <!-- end inner div -->

</div> <!-- end wrapper div -->

The left column graphic goes in #wrapper, positioned at the point between
the left and center columns (26.25% for the example in Figure 16-20). The
right column graphic goes in #inner, positioned between the center and
right columns (73.75%). When the browser window resizes, the background
images stay put at their proper point between columns and the background
color fills in the space in between.

left_column.png background-position: 26.25%

right_column.png background-position: 73.25%

Figure 16-20. Faux columns for a fluid, three-column layout.

n oT e

Transparent GIFs and PNGs are dis-
cussed in Chapter 21, Web Graphics
Basics.

n oT e

The same effect could be achieved by
placing multiple background images in
the #wrapper, which does away with the
need for the extra markup. Simply posi-
tion one image to tile vertically on the
left side and another to tile down the
right side. The images should be wide
enough to extend from the percentage
point of the column division well beyond
the edges of the browser window. The
downside is that it won’t work on IE6
through 8 or on really old versions of
Firefox.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation398

Test Yourself

Test Yourself
If you successfully created multiple-column layouts in the exercises, then
you’ve gotten the main point of this chapter. Here are a few questions to
make sure you got the finer details of layout strategy.

1. Match each layout type with the factor that determines the final size of
the page area.

Fixed-width layouts a. The browser window

Fluid layouts b. Font size

Elastic layouts c. The designer

2. Match each layout type with the unit of measurement used to create it.

Fixed-width layouts a. Ems

Fluid layouts b. Pixels

Elastic layouts c. Percentages and/or auto

3. Match each layout type with its primary potential advantage.

Fixed-width layouts a. Predictable line lengths

Fluid layouts b. No awkward “leftover” space

Elastic layouts c. Pixel-perfect layout grid

4. Match each layout type with its potential disadvantage.

Fixed-width layouts a. Uncomfortably long line
lengths

Fluid layouts b. Images don’t scale with the
page

Elastic layouts c. Right side of the page gets cut
off on narrow browser win-
dows

www.it-ebooks.info

http://www.it-ebooks.info/

399

IN THIs CHAPTER

Creating smooth transitions

Moving, rotating, and
scaling elements

Combining transitions
and transforms

A few words about
3D transforms

A few words about
keyframe animations

We’ve seen CSS used for visual effects like rounded corners, color gradients,
and drop shadows that previously had to be created with graphics. In this
chapter, we’ll look at some CSS3 properties for producing animated interac-
tive effects that were previously only possible with Flash or JavaScript.

We’ll start with CSS Transitions, a nifty way to make style changes fade
smoothly from one to another. Then we’ll discuss CSS Transforms for repo-
sitioning, scaling, rotating, and skewing elements and look at how you can
animate them with transitions. I’m going to close out the chapter with brief
introductions to 3D Transforms and CSS Animation, which are important to
know about but are too vast a topic to cover here, so I’ll give you just a taste.

The problem with this chapter is that animation and time-based effects don’t
work on paper, so I can’t show them off right here. I did the next best thing,
though, and you can interact with most of the figures in this chapter online
at www.learningwebdesign.com/4e/chapter17/figures.html.

Ease-y Does It (Css Transitions)
Picture in your mind, if you will, a link in a navigation menu that changes
from blue to red when the mouse hovers over it. The background is blue…
mouse passes over it…BAM! Red! It goes from state to state instantly, with
no states in between. Now imagine putting your mouse over the link and
the background gradually changes from blue to red, passing through several
shades of purple on the way. It’s smoooooth. And when you remove the
mouse, it fades back down to blue again.

That’s what CSS Transitions do. They smooth out otherwise abrupt changes
from state to state over time by filling in the frames in between. Animators
call that tweening. When used subtly and with reserve, they can add sophis-
tication and polish to your interface and make them more pleasing to use.

CSS Transitions were originally developed by the Webkit team for the Safari
browser, but they are now a Working Draft at the W3C. As of this writing,
the set of transition properties are still pretty cutting edge and the specifi-

transItIons, transforms,
anD anImatIon

Chapter 17

www.it-ebooks.info

http://www.learningwebdesign.com/4e/chapter17/figures.html
http://www.it-ebooks.info/

Part III, Css for Presentation400

Ease-y Does It (Css Transitions)

cation is likely to change, so all browsers that support them require their
respective browser prefixes. They have good support (with prefixes) on iOS,
Android, and Opera mobile browsers as well.

The only browser versions that do not support transitions at all are Internet
Explorer 9 and earlier, Firefox 3.6 and earlier, and Opera 10.1 and earlier.
But if you use transitions for progressive enhancement, it shouldn’t matter
too much that users of those browsers won’t see the effects. For those folks,
snapping directly from blue to red is not a big deal.

Transition basics
Transitions are a lot of fun, so let’s give them a whirl. When applying a
transition, there are a few decisions to make, each of which is set with a CSS
property:

•	 Which CSS property to change (transition-property)

•	 How long it should take (transition-duration)

•	 The manner in which the transition accelerates (transition-timing-
function)

•	 Whether there should be a pause before it starts (transition-delay)

You also need something to trigger the transition. A state change such as
:hover, :focus, or :active makes a good trigger, and that’s what we’ll be
using for the examples in this chapter. You could use JavaScript to change
the element (such as adding a class attribute) and use that as a transition
trigger as well.

Let’s put that all together with a simple example. Here is that blue-to-red
link you imagined earlier (Figure 17-1). There’s nothing special about the
markup. I added a class name so I could be specific about which links
receive transitions.

The transition properties are applied to the a element in its normal state.
You’ll see them in the set of other declarations for a.smooth, like padding
and background-color. This allows them to be reused for other state changes
in the document. I’ve changed the background color of the link to red by
declaring the background-color for the :hover state (and :focus too, in case
someone is tabbing through links on a keyboard).

The markup

awesomesauce

The styles

a.smooth {
 display: block;
 text-decoration:none;
 text-align: center;
 padding: 1em 2em;

n oT e

You can read CSS Transitions Module
for yourself at ww.w3.org/TR/css3-
transitions/.

wa R n i n G

The CSS Transitions module is going
through some transitions itself. This is a
snapshot as it was as of this writing, but
you should be sure to check the W3C
site for the latest developments.

0 3s

Figure 17-1. The background color of this
link gradually fades from blue to red when
awesome sauce a transition is applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Ease-y Does It (Css Transitions)

Chapter 17, Transitions, Transforms, and Animation 401

 width: 10em;
 border-radius: 1.5em;
 color: #fff;
 background-color: mediumblue;
 transition-property: background-color;
 transition-duration: 0.3s;
}
a.smooth:hover, a.smooth:focus {
 background-color: red;
}

specifying the property

transition-property

Values: property-name | all | none
Default: all

Applies to: all elements, :before and :after pseudo-elements

Inherits: no

Transition-property identifies the CSS property that we want to transition
smoothly. In our example, it’s the background-color. You can also change
the foreground color, borders, dimensions, font- and text-related attributes,
and many more. The complete list (as of this writing) is listed in Table 17-1.
More properties are likely to be added to this list as browsers implement
them, so check the spec for updates.

How long should it take?

transition-duration

Values: time

Default: 0s

Applies to: all elements, :before and :after pseudo-elements

Inherits: no

Transition-duration sets the amount of time it will take for the animation to
complete in seconds (s) or milliseconds (ms). I’ve chosen .3 seconds, which
is just enough to notice something happened but not so long that the transi-
tion feels sluggish or slows the user down. There is no correct duration, of
course, but in my travels I’ve found that .2s seems to be a popular transition
time for UI elements. Experiment to find the duration that makes sense for
your application.

Table 17-1.
Animatable CSS properties

Backgrounds
background-color

background-position

Borders and outlines
border-bottom-color

border-bottom-width

border-left-color

border-left-width

border-right-color

border-right-width

border-top-color

border-top-width

border-spacing

outline-color

outline-offset

outline-width

Color and opacity
color

opacity

visibility

Font and text
font-size

font-weight

letter-spacing

line-height

text-indent

text-shadow

word-spacing

vertical-align

Element box measurements
height

width

max-height

max-width

min-height

min-width

margin-bottom

margin-left

Continued on following page.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation402

Ease-y Does It (Css Transitions)

Timing functions
transition-timing-function

Values: ease | linear | ease-in | ease-out | ease-in-out | step-start | step-end | steps |
 cubic-bezier(#,#,#,#)
Default: ease

Applies to: all elements, :before and :after pseudo-elements

Inherits: no

The property and the duration form the foundation of a transition, but you
can refine it further. There are a number of ways a transition can roll out
over time. For example, it could start out fast then slow down, start out slow
and speed up, or it could stay the same speed all the way through, just to
name a few. I think of it as the transition “style,” but in the spec, it is known
as the timing function.

I can set the transition-timing-function to ease-in-out to make the link
change from blue to red more gently. To be honest, at very short durations,
the differences are barely noticeable.

a.smooth {
 …
 transition-property: background-color;
 transition-duration: 0.3s;
 transition-timing-function: ease-in-out;
}

The transition-timing-function property takes one of the following key-
word values:

ease

Starts slowly, accelerates quickly, then slows down at the end. This is the
default value and works just fine for most short transitions.

linear

Speed stays consistent from the transition’s beginning to end.

ease-in

Starts slowly, then speeds up.

margin-right

margin-top

padding-bottom

padding-left

padding-right

padding-top

crop

Position
top

right

bottom

left

z-index

clip

Transforms
(not in the spec as of this writing,
but supported)

transform

transform-origin

www.it-ebooks.info

http://www.it-ebooks.info/

Ease-y Does It (Css Transitions)

Chapter 17, Transitions, Transforms, and Animation 403

ease-out

Starts out fast, then slows down.

ease-in-out

Starts slowly, speeds up, then slows down again at the very end. It is
similar to ease, but with less pronounced acceleration in the middle.

cubic-bezier(#,#,#,#)

This is a function for defining a Bezier curve that describes the transition
acceleration. It’s super math-y and I can’t explain it all here. You can read
how to do it in the spec (www.w3.org/TR/css3-transitions/#transition-
timing-function-property) if none of the keywords suit you.

steps(#, start|end)

Divides the transitions into a number of steps as defined by a stepping
function. The first value is the number of steps, and the start and end
keywords define whether the change in state happens at the beginning
(start) or end of each step. See the spec for details.

step-start

This changes states in one step, at the beginning of the duration time (the
same as steps(1,start)). The result is a sudden state change, the same
as if no transition had been applied at all.

step-end

This changes states in one step, at the
end of the duration time (the same as
steps(1,end))

I can’t demonstrate the various options on
the page, but I have put together a little
demo online (Figure 17-2). The width of
each labeled element (white with an orange
border) transitions over the course of four
seconds when you hover over the blue box.
They all arrive at their full width at exactly
the same time, but they get there in differ-
ent manners.

n oT e

As of this writing, only the Chrome
browser has implemented stepping func-
tions, so start with Chrome if you want
the full effect.

Figure 17-2. In this transition-timing-
function demo, the elements reach full
width at the same time but vary in the
manner in which they get there.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation404

Ease-y Does It (Css Transitions)

setting a delay
transition-delay

Values: time

Default: 0s

Applies to: all elements, :before and :after pseudo elements

Inherits: no

The transition-delay property, as you might guess, delays the start of the
animation by a specified amount of time. In the following example, the
background color transition will start .2 seconds after the pointer moves
over the link.

a.smooth {
…
 transition-property: background-color;
 transition-duration: 0.3s;
 transition-timing-function: ease-in-out;
 transition-delay: 0.2s;
}

If you were especially dastardly, you could make a button disappear (opac-
ity: 0;) after a person has held their finger or pointer down on it (:active) for
two seconds (transition-delay; 2s;) as shown in the following example and
Figure 17-3. That’ll teach them to be indecisive! Of course, transition-delay
has useful and less nefarious applications.

0.5s seconds duration

(opacity transitions to 0)

2 seconds delay(press and hold)

Figure 17-3. The transition-delay property starts the animation effect (in this case
making the button disappear using the opacity property) after two seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

Ease-y Does It (Css Transitions)

Chapter 17, Transitions, Transforms, and Animation 405

a.smooth {
 …
 transition-property: opacity; -
 transition-duration: .05s;
 transition-timing-function: ease-out;
 transition-delay: 2s;
}
a.smooth:hover, a.smooth:focus {
 background-color: red;
}
a.smooth:active {
 opacity: 0;
}

I want to note that I’ve been using the non-prefixed properties throughout
my examples to make them easier to follow, but remember that you must
include vendor prefixes for all browsers if you use transitions in your pages.
Always include the non-prefixed version last for forward-compatibility with
supporting browsers of the future. This is how that blue-to-red link transi-
tion we’ve been working on would be written out in the real world:

a.smooth {
 …
 -webkit-transition-property: background-color;
 -webkit-transition-duration: 0.3s;
 -webkit-transition-timing-function: ease-in-out;
 -webkit-transition-delay: 0.2s;

 -moz-transition-property: background-color;
 -moz-transition-duration: 0.3s;
 -moz-transition-timing-function: ease-in-out;
 -moz-transition-delay: 0.2s;

 -o-transition-property: background-color;
 -o-transition-duration: 0.3s;
 -o-transition-timing-function: ease-in-out;
 -o-transition-delay: 0.2s;

 -ms-transition-property: background-color;
 -ms-transition-duration: 0.3s;
 -ms-transition-timing-function: ease-in-out;
 -ms-transition-delay: 0.2s;

 transition-property: background-color;
 transition-duration: 0.3s;
 transition-timing-function: ease-in-out;
 transition-delay: 0.2s;
}

It’s extra work, but that’s the way it is for the foreseeable future until all the
old browsers fade away and the spec is stable and implemented consistently.
Fortunately, there is a shortcut that helps cut down on all that code.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation406

Ease-y Does It (Css Transitions)

The shorthand transition property
Thankfully, the authors of the CSS3 spec had the good sense to give us the
shorthand transition property to combine all of these properties into one
declaration. You’ve seen this sort of thing with the shorthand border prop-
erty. Here is the syntax:

transition: property duration timing-function delay;

The values for each of the transition-* properties are listed out, separated
by character spaces. If you provide only one time value, it will be assumed
to be the duration. If you provide two time values, make sure that the dura-
tion is listed first.

Using the blue-to-red link example, the four transition properties we’ve
applied so far could be combined into this one line:

a.smooth {
 …
 transition: background-color 0.3s ease-in-out 0.2s;
}

And the full prefixed version is reduced from 20 lines to 5.

a.smooth {
 …
 -webkit-transition: background-color 0.3s ease-in-out 0.2s;
 -moz-transition: background-color 0.3s ease-in-out 0.2s;
 -o-transition: background-color 0.3s ease-in-out 0.2s;
 -ms-transition: background-color 0.3s ease-in-out 0.2s;
 transition: background-color 0.3s ease-in-out 0.2s;
}

Definitely an improvement.

Applying multiple transitions
So far, we’ve changed only one property at a time, but it
is possible to transition several properties at once. Let’s
go back to the “awesomesauce” link example. This
time, in addition from changing from blue to red, I’d
like the letter-spacing to increase a bit. I also want the
text color to change to black, but more slowly than the
other animations. Figure 17-4 attempts to show these
transitions on a printed page.

One way to do this is to list all of the values for each
property separated by commas, as shown in this
example.

2s (color)

0.3s (background-color and letter-spacing)

Figure 17-4. The color, background-
color, and letter-spacing change at
different paces.

www.it-ebooks.info

http://www.it-ebooks.info/

Ease-y Does It (Css Transitions)

Chapter 17, Transitions, Transforms, and Animation 407

a.smooth {
 …
 transition-property: background-color, color, letter-spacing;
 transition-duration: 0.3s, 2s, 0.3s;
 transition-timing-function: ease-out, ease-in, ease-out;

}
a:hover, a:focus {
 background-color: red;
 letter-spacing: 3px;
 color: black;
}

The values are matched up according to their positions in the list. For exam-
ple, the transition on the color property (second in the list) has a duration of
two seconds (2s) and uses the ease-in timing function. If one list has fewer
values than the others, the browser repeats the values in the list, starting over
at the beginning. In the previous example, if I had omitted the third value
(.3s) for transition-duration, the browser would loop back to the beginning
of the list and use the first value (.3s) for letter-spacing. In this case, the
effect would be the same.

You can line up values for the shorthand transition property as well. The
same set of styles we just saw could also be written as:

 a.smooth {
 …
 transition: background-color 0.3s ease-out,

color 2s ease-in,
letter-spacing 0.3s ease-out;

}

That seems like a nice way to go, especially when you consider you have four
vendor-prefixed versions to add to each transition declaration.

A transition for all occasions
But what if you just want to add a little bit of smoothness to all your state chang-
es, regardless of which property might change? For cases when you want the
same duration, timing function, and delay to apply to all transitions that might
occur on an element, use the all value for transition-property. In the follow-
ing example, I’ve specified that any property that might change for the a.smooth
element should last .2 seconds and animate using the ease-in-out function.

a.smooth {
 …
 -webkit-transition: all 0.2s ease-in-out;
 -moz-transition: all 0.2s ease-in-out;
 -o-transition: all 0.2s ease-in-out;
 -ms-transition: all 0.2s ease-in-out;
 transition: all 0.2s ease-in-out;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation408

Ease-y Does It (Css Transitions)

For user interface changes, a short, subtle transition is often all you need for
all your transitions, so the all value will come in handy.

Well, that wraps up our lesson on CSS3 Transitions. Now you give it a try
in Exercise 17-1.

exercise 17-1 | Trying out transitions
In this exercise, we’re going to create the rollover and active states for a menu
link (Figure 17-5) with animated transitions. I’ve put together a starter document
(exercise1.html) for you in the materials folder for this chapter. The resulting code is in
Appendix A. I recommend that you use a current version of a Webkit-based browser
(Chrome or Safari) to view your work.

1. First, take a look at the styles that are already applied. The list has been converted
to a horizontal menu using floats. The a element has been set to display as a block
element, underlines are turned off, dimensions and padding are applied, and
the color, background color, and border are established. I used the box-shadow
property to make it look as though the links are floating off the page.

2. Now we’ll define the styles for the hover and focus states. When the user puts
the pointer over or tabs to the link, make the background color change to gold
(#fdca00) and the border color change to orange (#fda700).

a:hover, a:focus {
 background-color: #fdca00;
 border-color: #fda700;
}

3. While the user clicks or taps the link (:active), make it move down by three
pixels as though it is being pressed. Do this by setting the a element’s position to
relative, then change the value the top property for the active state. This moves
the link three pixels away from the top edge (in other words, down).

a {
 …
 position: relative;
}
a:active {
 top: 3px;
}

4. Logically, if the button were pressed down, there would be less room for the
shadow, so we’ll reduce the box-shadow distance as well.

a:active {
 top: 3px;
 box-shadow: 0 1px 2px rgba(0,0,0,.5);
}

5. Save the file and give it a try in the browser. The links should turn yellow and
move down when you click or tap them. I’d say it’s pretty good just like that. Even
without the box shadows, which is how users of IE8 and earlier will see them, they
look and work just fine. Now we can enhance the experience by adding some
smooth transitions.

6. Make the background and border color transition ease in over .2 seconds, and
see how that changes the experience of using the menu. I’m using the shorthand
transition property to keep the code simple. I’m also using the default ease
timing function at first so we can omit that from the style as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Ease-y Does It (Css Transitions)

Chapter 17, Transitions, Transforms, and Animation 409

I’m going to show all browser prefixes on this first example, but if you are using
Chrome or Safari, you can just use -webkit- to save time typing. In upcoming
examples, I’ll show only the standard, prefix-free property to save space (but the
prefixed versions will be there in spirit).

a {
 -webkit-transition: background-color 0.2s, border-color 0.2s;
 -moz-transition: background-color 0.2s, border-color 0.2s;
 -o-transition: background-color 0.2s, border-color 0.2s;
 -ms-transition: background-color 0.2s, border-color 0.2s;
 transition: background-color 0.2s, border-color 0.2s;
}

7. Save your document, open it in the browser, and try moving your mouse over the
links (see the note). Do you agree it feels nicer? Now I’d like you to try some other
duration values. See if you can still see the difference with a .1s duration. Now try
a full second (1s). I think you’ll find that one second is surprisingly slow. I’d worry
that people would miss it. Try setting it to several seconds and trying out various
timing-function values (just add them after the duration times). Can you tell the
difference? Do you have a preference? When you are done experimenting, set the
duration back to .2 seconds.

8. Now let’s see what happens when we add a transition to the downward motion of
the link when it is clicked or tapped. Transition both the top and box-shadow
properties because they should move in tandem. Let’s start with a 0.2s duration
like the others.

a {
 transition: background-color 0.2s, border-color 0.2s, top .2s,
box-shadow 0.2s;
}

Save the file, open it in the browser, and
try clicking the links. That transition really
changes the experience of using the menu,
doesn’t it? The buttons feel more difficult to
press. Try increasing the duration. Do they
feel even more difficult? I find it interesting
to see the effect that timing has on the
experience of a user interface. It is important
to get it right and not make things feel
sluggish. I’d say that a very short transition
such as .1 second—or even no transition
at all—would keep these buttons feeling
snappy and responsive.

9. If you thought increasing the duration made
the menu uncomfortable to use, try adding
a short .5-second delay to the top and box-
shadow properties.

a {
 transition: background-color 0.2s, border-color 0.2s, top 0.2s
0.5s, box-shadow 0.2s 0.5s;
}

I think you’ll find that little bit of extra time makes the whole thing feel broken.
Timing is everything!

n oT e

If you’re using a touch device for this
exercise, you’ll miss out on this effect
because there is no hover state on touch
screens.

The background and border colors change.

Normal state

:hover, :focus

The link appears to get pressed down.
:active

Figure 17-5. In this exercise, we’ll create
transitions between these link states.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation410

Css Transforms

Css Transforms
transform

Values: transform function(s) | none
Default: none

Applies to: transformable elements (see sidebar)

Inherits: no

The CSS3 Transforms module gives authors a way to rotate, relocate, resize,
and skew HTML elements in both two- and three-dimensional space. This
chapter, however, focuses on the more straightforward 2-D varieties because
they have more practical uses. Transforms are supported on all major brows-
er versions with vendor prefixes. They are not supported at all on IE8 and
earlier, Firefox 3 and earlier, and Opera 10.1 and earlier.

You can apply a transform to the normal state of an element and it will
appear in its transformed state when the page loads. Just be sure that the
page is still usable on browsers that don’t support transforms. It is common
to pull out the transforms only when users interact with the element via a
rollover or JavaScript event (on the “experience layer” as CSS master Dan
Cederholm phrases it in CSS for Web Designers). Either way, transforms are
a good candidate for progressive enhancement—if an IE8 user sees an ele-
ment straight instead of on a jaunty angle, it’s probably no biggie.

Figure 17-6 shows a representation of four types of two-dimensional trans-
forms: rotate, translate, scale, and skew. The dashed outline shows the ele-
ment’s original position.

rotate translate

skewscale

Figure 17-6. Four types of transforms: rotate, translate, scale, and skew

n oT e

The 2D Transforms, 3D Transforms,
and SVG Transforms modules were
rolled into one CSS Transforms draft
document in 2012. The spec is available
at www.w3.org/TR/css3-transforms/.

www.it-ebooks.info

http://www.it-ebooks.info/

Css Transforms

Chapter 17, Transitions, Transforms, and Animation 411

When an element transforms, its element box keeps its original position and
influences the layout around it, in the same way that space is left behind by
a relatively positioned element. It is as though the transformation magically
picks up the pixels of the rendered element, messes around with them, and
lays them back down on top of the page. So if you move an element with
transform, you’re only moving a picture of it. That picture has no effect on
the surrounding layout.

Let’s go through the transform functions one by one, starting with rotate.

Transforming the angle (rotate)
If you’d like an element to appear on a bit of an angle, use the rotate trans-
form function. The value of the rotate function is an angle specified in
positive or negative degrees. The image in Figure 17-7 has been rotated –10
degrees (350 degrees) using the following style rule. The tinted image shows
the element’s original position for reference.

img {
 width: 300px;
 height: 400px;
 transform: rotate(-10deg);
}

Figure 17-7. Rotating an img element using transform: rotate().

Notice that the image rotates around its center point, which is the default
point around which all transformations happen. But you can change that
easily with the transform-origin property.

transform-origin

Values: percentage | length | left | center | right | top | bottom
Default: 50% 50%

Applies to: transformable elements

Inherits: no

n oT e

There are actually five 2-D transform
functions in the CSS spec. The fifth,
matrix, allows you to craft your own
transformation using six values and
some badass trigonometry. Fascinating
in theory, but more than I’m will-
ing to take on personally. If you are
interested and remember your trig,
the transformation matrix is defined
at www.w3.org/TR/SVG/coords.
html#InterfaceSVGMatrix.

Transformable
Elements
You can apply the transform
property to the following element
types:

 y HTML elements with replaced
content, such as img, canvas, form
inputs, and embedded media

 y Elements with display: block

 y Elements with display: inline-
block

 y Elements with display: inline-
table (or any of the table-*
display types)

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation412

Css Transforms

The value for transform-origin is either two keywords, length measure-
ments, or percentage values. The first value is the horizontal offset, and the
second is the vertical offset. If only one value is provided, it will be used for
both. If we wanted to rotate the redwood forest image around a point at the
center of its top edge, we could write it in any of the following ways:

transform-origin: center top;

transform-origin: 50%, 0%;

transform-origin: 150px, 0;

The images in Figure 17-8 have all been rotated 25 degrees, but from differ-
ent origin points.

transform-origin: center top; transform-origin: 100% 100%; transform-origin: 400px 0;

Figure 17-8. Changing the point around which the image rotates using transform-
origin.

It is easy to demonstrate the origin point with the rotate function, but keep
in mind that you can set an origin point for any of the transform functions.

Transforming the position (translate)
Another thing you can do with the transform property is give the element’s
rendering a new location on the page using one of three translate functions,
as shown in the examples in Figure 17-9. The translateX function allows
you to move an element on a horizontal axis; translateY is for moving along
the vertical axis, and translate is a shorthand for combining both X and Y
values (translate(translateX, translateY)).

transform: translateX(50px);

transform: translateY(25px);

transform: translate(50px, 25px);

www.it-ebooks.info

http://www.it-ebooks.info/

Css Transforms

Chapter 17, Transitions, Transforms, and Animation 413

transform: translate(90px, 60px); transform: translate(-5%, -25%);

Figure 17-9. Moving an element around with the translate function.

You can provide a length value in any of the CSS units or as a percentage
value. Percentages are calculated on the width of the bounding box, that is,
from border-edge to border-edge (which, incidentally, is how percentages
are calculated in SVG, from which transforms were adapted). As shown in
Figure 17-9, you can provide positive or negative values.

If you provide only one value for the shorthand translate function, it will
be presumed to be the translateX value, and translateY will be set to zero.
So translate(20px) would be equivalent to applying both translateX(20px)
and translateY(0).

How do you like the transform property so far? We have two more functions
to go.

Transforming the size (scale)
Make an element appear larger or smaller using one of three scale functions:
scaleX (horizontal), scaleY (vertical), and the shorthand scale. The value is
a unitless number that specifies a size ratio. This example makes an image
150% its original width:

a img {
 transform: scaleX(1.5);
}

The scale shorthand lists a value for scaleX and a value for scaleY. This
example makes an element twice as wide but half as tall as the original.

a img {
 transform: scale(2, .5);
}

Unlike translate, however, if you provide only one value for scale, it will
be used as the scaling factor in both directions. So specifying scale(2) is
the same as applying scaleX(2) and scaleY(2), which is intuitively the way
you’d want it to be.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation414

Css Transforms

Figure 17-10 shows the results of all our scaling endeavors.

transform: scale(1.25); transform: scale(.75); transform: scale(1.5, .5);

Figure 17-10. Changing the size of an element with the scale function.

Making it slanty (skew)
The quirky collection of skew properties (skewX, skewY, and the shorthand
skew) changes the angle of either the horizontal or vertical axis (or both axes)
by a specified number of degrees. As for translate, if you provide only one
value, it is used for skewX, and skewY will be set to zero.

The best way to get an idea of how skewing works is to take a look at some
examples (Figure 17-11).

a img {
 transform: skewX(15deg);
}

a img {
 transform: skewY(30deg);
}

a img {
 transform: skew(15deg, 30deg);
}

transform: skewX(15deg); transform: skewY(30deg); transform: skew(15deg, 30deg);

Figure 17-11. Slanting an element using
the skew function.

www.it-ebooks.info

http://www.it-ebooks.info/

Css Transforms

Chapter 17, Transitions, Transforms, and Animation 415

Applying multiple transforms
Of course it is possible to apply more than one transform to a single element.
Just list out the functions and their values, separated by spaces, like this:

transform: function(value) function(value);

In the example in Figure 17-12, I’ve made the forest image get larger, tilt a
little, and move down and to the right when the mouse is over it or when it
is in focus.

img:hover, img:focus {
 transform: scale(1.5) rotate(-5deg) translate(50px,30px);
}

Normal state :hover,:focus
(rotate, translate, and scale applied)

Figure 17-12. Applying scale, rotate, and translate to a single element.

It is important to note that transforms are applied in the order in which they
are listed. For example, if you apply a translate and then rotate, you get a
different result than a rotate and then a translate.

Another thing to watch out for is that if you want to apply an additional
transform on a different state (such as hover, focus, or active), you need to
repeat all of the transforms already applied to the element. For example,
this a element is rotated 45 degrees in its normal state. If I apply a scale
transform on the hover state, I would lose the rotation unless I explicitly
declare it again.

a {
 transform: rotate(45deg);
}
a:hover {
 transform: scale(1.25); /* rotate on a element would be lost */
}

To achieve both the rotation and the scale, provide both transform values:

a:hover {
 transform: rotate(45deg) scale(1.25); /* rotates and scales */
}

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation416

Css Transforms

Don’t Forget Your Prefixes
For the sake of clarity, I’ve been presenting the transform examples using only the
standard syntax. The reality is, however, that the transform property requires vendor
prefixes in all browsers that support it. Here’s that multiple transform example again
as it should appear on a published site.

a:hover img, a:focus img{
 -webkit-transform: scale(1.5) rotate(-5deg) translate(50px,30px);
 -moz-transform: scale(1.5) rotate(-5deg) translate(50px,30px);
 -o-transform: scale(1.5) rotate(-5deg) translate(50px,30px);
 -ms-transform: scale(1.5) rotate(-5deg) translate(50px,30px);
 transform: scale(1.5) rotate(-5deg) translate(50px,30px);
}

smooooooth transforms
The multiple transforms applied to the redwood forest image look interest-
ing, but it might feel better if we got there with a smooth animation instead
of just BAM! Now that you know about transitions and transforms, let’s put
them together and make some magic happen. And by ”magic,” of course
I mean some basic animation effects between two states. We’ll do that
together, step by step, in Exercise 17-2.

exercise 17-2 | Transitioning transforms
In this exercise, we’ll make the travel photos in the gallery shown in Figure 17-13 grow
and spin out to an angle when the user mouses over them—and we’ll make it
smoooooth with a transition. A starter document (aquarium.html) and all of the
images are available in the materials folder for this chapter.

1. Open aquarium.html in a text editor, and you will see that there are already styles
that arrange the list items horizontally and apply a slight drop shadow to each image.
(Note that if you’re not seeing the drop shadow, you’re not using a current browser).
The first thing we are going to do is add the transform property for each image.

2. We want the transforms to take effect only when mouse is over the image or
when the image
has focus, so the
transform property
should be applied
to the :hover and
:focus states. Because
I want each image to
tilt a little differently,
we’ll need to write
a rule for each one,
using its unique id as
the selector. You can
save and check your
work when you’re
done.

Figure 17-13. Photos get larger and
tilt on :hover and :focus . A transition
is used to help make it flow. You can
see how it works when you are finished
with this exercise (or check it out at
learningwebdesign.com/4e/chapter17/
figures.html).

www.it-ebooks.info

http://www.it-ebooks.info/

Css Transforms

Chapter 17, Transitions, Transforms, and Animation 417

a:hover #img1, a:focus #img1 {
 transform: rotate(-3deg);
}
a:hover #img2, a:focus #img2 {
 transform: rotate(5deg);
}
a:hover #img3, a:focus #img2 {
 transform: rotate(-7deg);
}
a:hover #img4, a:focus #img2 {
 transform: rotate(2deg);
}

3. Now let’s make them a little larger as well, to give visitors a better view. Add
scale(1.5) to each of the transform values. Here is the first one; you do the rest.

a:hover #img1 {
 transform: rotate(-3deg) scale(1.5);
}

It is important to note that my image files are created at the larger size and then
scaled down for the thumbnail view. If we started with small images and scaled
them larger, they would look crummy.

4. As long as we are giving the appearance of lifting the photos of the screen, let’s
make the drop shadow appear to be a little farther way by increasing the offset
and blur and lightening the shade of gray. All images should have the same effect,
so add one rule using a:hover img as the selector.

a:hover img {
 box-shadow: 6px 6px 6px rgba(0,0,0,.3);
}

Save your file and check it out in a browser. The images should tilt and look
larger when you mouse over them. But the action is kind of jarring. Let’s fix that
with a transition.

5. Add the transition shorthand property to the normal img state (i.e., not on
:hover or :focus). The property we want to transition in this case is transform. Set
the duration to .3 seconds and use the linear timing function.

img {
 …
 transition: transform 0.3s linear;
}

Note that in the prefixed versions, the transform property needs to be prefixed
as well. For example, the Webkit version would be:

-webkit-transition: -webkit-transform .3s linear;

And that’s all there is to it! You can try playing around with different durations
and timing functions or try altering the transforms or their origin points to see
what other effects you can come up with.

n oT e

Note that I’m omitting the prefixed
versions, but you will need the -webkit-
prefix to view the changes in Chrome
or Safari.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation418

Css Transforms

3-D transforms
In addition to the two-dimensional transform functions, the CSS Transforms
spec also describes a system for creating a sense of space and perspective.
Combined with transitions, you can use 3-D transforms to create rich inter-
active interfaces, such as image carousels, flippable cards, or spinning cubes!
(There is no shortage of CSS cubes on the Web right now; it must be a good
project to learn on.) Figure 17-14 shows a few examples of interfaces created
with 3-D transforms. In the past, if you saw 3-D interfaces like these, you
would assume it was Flash. Now it is native browser capabilities and good
old CSS3.

Paul Hayes’ 3D cube
(www.paulhayes.com/experiments/
cube-3d/touch.html)

Safari Technology Demos: Web Gallery
(developer.apple.com/safaridemos/
showcase/gallery/)

Snow Stack by Charles Ying
(www.satine.org/research/webkit/
snowleopard/snowstack.html)

3-D transforms are not a need-to-know skill for folks just starting out in web
design, so I’m not going to go into full detail here, but I will give you a taste
of what it takes to add a third dimension to a design. If you’d like to learn
more, the following tutorials are good places to start:

•	 “Adventures In The Third Dimension: CSS 3D Transforms,” by Peter
Gasston (coding.smashingmagazine.com/2012/01/06/adventures-in-the-
third-dimension-css-3-d-transforms/)

•	 “Intro to 3D Transforms,” by David DeSandro (desandro.github.
com/3dtransforms/)

To give you a very basic example, I’m going to use the images from Exercise
17-2 and arrange them as though they are in a 3-D carousel-style gallery
(Figure 17-15).

Figure 17-15. Our aquarium images
arranged in space…space…space…

Figure 17-14. Some examples of 3-D
transforms.

www.it-ebooks.info

http://coding.smashingmagazine.com/2012/01/06/adventures-in-the-third-dimension-css-3-d-transforms/
http://coding.smashingmagazine.com/author/peter-gasston/
http://coding.smashingmagazine.com/author/peter-gasston/
http://www.it-ebooks.info/

Css Transforms

Chapter 17, Transitions, Transforms, and Animation 419

The markup is the same unordered list used in the previous exercise.

The first step is to add some amount of “perspective” to the containing ele-
ment using the perspective property. This tells the browser that the child
elements should behave as though they are in 3-D space. The value of the
perspective property is some integer larger than zero that specifies a dis-
tance from the element’s origin on the z-axis. The lower the value, the more
extreme the perspective. I have found that values between 300 and 1500 are
reasonable, but this is something you need to fuss around with until you get
the desired effect.

ul {
 width: 1000px;
 height: 100px;
 list-style-type: none;
 padding: 0;
 margin: 0;
 -webkit-perspective: 600;
 -moz-perspective: 600;
 perspective: 600;
}

The perspective-origin property (not shown) describes the position of your
eyes relative to the transformed items. The values are a horizontal position
(left, center, right, or a length or percentage) and a vertical position (top,
bottom, center, or a length or percentage value). The default (shown in
Figure 17-15) is centered vertically and horizontally (perspective-origin:
50% 50%). The final transform-related property is backface-visibility,
which controls whether the reverse side of the element is visible when it
spins around.

With the 3-D space established, apply one of the 3-D transform functions to
each li within the ul. The 3-D functions include: translate3d, translateZ,
scale3d, scaleZ, rotate3d, rotateX, rotateY, rotateZ, and matrix3d. You
should recognize some terms in there. The *Z functions define the object’s
orientation relative to the z-axis (picture it running from your nose to this
page, where the x- and y-axes lie flat on the page).

In our example in Figure 17-15, each li is rotated 45 degrees around its
y-axis (vertical axis) using the rotateY function.

Compare the result to Figure 17-16 in which each li is rotated on its x-axis
(horizontal axis) using rotateX.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation420

Keyframe Animation

li {
 float: left;
 margin-right: 10px;
 -webkit-transform: rotateX(45deg);
 -moz-transform: rotateX(45deg);
 transform: rotateX(45deg);
}

Figure 17-16. The same list of images rotated on their horizontal axes with rotateX.

Obviously, I’m barely scratching the surface of what can be done with 3-D trans-
forms, but it should give you a decent mental model for how it works. Next up,
I’ll introduce you to a more sophisticated way to set your web pages in motion.

Keyframe Animation
The CSS Animations module allows authors to create real, honest-to-
goodness keyframe animation. Unlike transitions that go from one state to
another, keyframe animation allows you to explicitly specify other states at
points along the way, allowing for more granular control of the action.

Those “points along the way” are established by keyframes that define the
beginning or end of a segment of animation. CSS transitions are animations
with two keyframes: a start state and an end state. More complex animations
require many keyframes to control property changes in the sequence.

Creating keyframe animations is complex, and more than I can cover here.
But I would like for you to have some idea of how it works, so I’ll sketch
out the minimal details. The following resources are good starting points for
learning more:

•	 “A Masterclass in CSS Animations,” by Estelle Weyl (www.netmagazine.
com/tutorials/masterclass-css-animations)

•	 “The Guide to CSS Animation: Principles and Examples” (coding.smash-
ingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-
examples/)

•	 Rich Bradshaw’s tutorial “Using CSS3 Transitions, Transforms and
Animation” (css3.bradshawenterprises.com)

•	 Anthonycalzadilla.com. My friend Anthony Calzadilla has done ground-
breaking work in CSS animation, including the walking At-At and CSS3-
Man animations (Figure 17-17), which were ahead of their time. His site
has links to animation examples and general news from the CSS world.
He runs an occasional CSS Animations tutorial as well.

n oT e

Keyframe animation is known as explic-
it animation because you program its
behavior. By contrast, transitions are an
example of implicit animation because
they are triggered only when a property
changes.

www.it-ebooks.info

http://www.netmagazine.com/tutorials/masterclass-css-animations
http://www.netmagazine.com/tutorials/masterclass-css-animations
http://www.it-ebooks.info/

Keyframe Animation

Chapter 17, Transitions, Transforms, and Animation 421

Pure CSS3 At-At Walker
by Anthony Catzadilla
(www.anthonycalzadilla.com/css3-ATAT/)

CSS3-Man
by Anthony Catzadilla
(www.optimum7.com/css3-man/)

Star Wars Intro recreation in CSS3
by Guillermo Esteves
(www.gesteves.com/experiments/starwars.html)

How I Learned to Walk
by Andrew Hoyer
(andrew-hoyer.com/blog/2010/10/21/walking/)

Figure 17-17. Examples of animations using only CSS.

Establishing the keyframes
The animation process has two parts: first, establish the keyframes with a
@keyframes rule, and then add animation properties to the elements that will
be animated.

Here is a very simplistic set of keyframes that changes the background color
of an element over time. It’s not a very action-packed animation, but it
should give you a basic understanding of what a @keyframes rule does.

@keyframes colors {
 0% { background-color: red; }
 20% { background-color: orange; }
 40% { background-color: yellow; }
 60% { background-color: green; }
 80% { background-color: blue; }
 100% { background-color: purple; }
}

What that @keyframes rule says is this: create an animation sequence called
“colors.” At the beginning of the animation, the background-color of the
element should be red, at 20 percent through the animation runtime the
background color should be orange, and so on, until it reaches the end of
the animation. The browser fills in all the shades of color in between each

Animation Tools
If you want to use CSS Animations
but lack the wherewithal to learn to
code it all yourself, there are tools
that give you a timeline interface
for creating your animations and
generate the HTML and CSS for you.
Here are a few as of this writing:

 y Tumult Hype, tumultco.com/
hype/ (Mac only)

 y Sencha Animator, www.sencha.
com/products/animator/

 y Adobe Edge, labs.adobe.com/
technologies/edge/

n oT e

The @keyframes rule needs vendor pre-
fixes as well, like this:

@-webkit-keyframes

www.it-ebooks.info

http://www.sencha.com/products/animator/
http://www.sencha.com/products/animator/
http://www.it-ebooks.info/

Part III, Css for Presentation422

Keyframe Animation

keyframe (or tweens it, to use the lingo). This is represented the best I could
in Figure 17-18.

Each percentage value and the property/value declaration defines a keyframe
in the animation sequence. In addition to percentages, you could also use
the keywords from at the start of an animation sequence and to denote the
end. Here’s what a @keyframes rule looks like abstracted down to its syntax.

@keyframes animation-name {
 keyframe { property: value; }
 keyframe { property: value; }
}

Adding animation properties
Now we can apply this animation sequence to an element or multiple ele-
ments in the document using a collection of animation properties that are
very similar to the set of transition properties that you already know.

I am going to apply the rainbow animation to the #magic div in my docu-
ment.

<div id="magic">Magic!</div>

In the CSS rule for #magic, I can make some decisions about the animation
I want to apply:

•	 Which animation to use (animation-name)

•	 How long it should take (animation-duration)

•	 The manner in which it should accelerate (animation-timing-function)

•	 Whether to pause before it starts (animation-delay)

Looking familiar? There are a few other animation-specific properties as well.

•	 How many times it should repeat (animation-iteration-count).

•	 Whether it plays forward, in reverse, or alternates back and forth (anima-
tion-direction)

•	 Whether it should be running or paused. The play-state can be toggled
on and off with JavaScript or on hover (animation-play-state).

•	 Whether to override defaults that prevent properties from applying out-
side runtime (animation-fill-mode).

The animation-name property tells the browser which keyframes sequence to
apply to the #magic div. I’ve also set the duration and timing function, and
used animation-iteration-count to make it repeat for infinity. I could have
provided a specific number value, like 2 to play it twice, but how fun is only
two rainbows? And for fun, I’ve set the animation-direction to alternate,
which makes the animation play in reverse after it has played forward. The

20s

0% red

20% orange

40% yellow

60% green

80% blue

100% purple

Figure 17-18. Animating through the
colors of the rainbow using keyframes.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 17, Transitions, Transforms, and Animation 423

other options are simply forward or reverse. Here is the resulting rule for
the animated div.

#magic {
 …
 animation-name: colors;
 animation-duration: 5s;
 animation-timing-function: linear;
 animation-iteration-count: infinite;
 animation-direction: alternate;
}

That gets a bit verbose, especially when you consider that each one would
need to be repeated with vendor prefixes for a published site. You can also
use the animation shorthand property to combine the values, just as we did
for transition.

#magic {
 animation: colors 5s linear infinite alternate;
}

Those are the bare bones of creating keyframes and applying animations to
an element on the page. To make elements move around (what we typically
think of as “animation”), use keyframes to change the position of an element
on the screen with the translate transform or top, right, bottom, left prop-
erties. When the keyframes are tweened, the object will move smoothly from
position to position. You can also animate the other transform methods.

I hope I’ve helped you to wrap your head around how CSS can be used to
add a little motion and smoothness to your pages. It’s cool stuff, but remem-
ber that it is important to use it with restraint and only as an enhancement
on normal sites. If you are showcasing your animation, it might be fine to
ask your visitors to upgrade to a supporting browser.

Now let’s see if you were paying attention with the upcoming little quiz!

Test Yourself
Think you know your way around transitions, transforms, and keyframe
animations? Here are a few questions to find out.

1. What is “tweening”?

2. If a transition had keyframes, how many would it have?

n oT e

In the spec, the value of animation-name
should appear in single quotation marks
in the @keyframe rule and the animation
property. The shorthand declaration
would be written as follows:

 animation: 'colors' 5s linear
infinite reverse;

However, developers currently omit the
quotation marks to get around a buggy
implementation in Firefox.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation424

Test Yourself

3. Write out the transition declaration (property and value) you would use
to accomplish the following:

a. Wait .5 seconds before the transition starts

b. Make the transition happen at a constant speed

c. Make the transition last .5 seconds

d. Make the lines of text slowly grow farther apart

4. Which of the following can you not animate?

a. width

b. padding

c. text-transform

d. word-spacing

5. Which timing function will be used if you omit the transition-timing-
function property? Describe its action.

6. In the following transition, what does .2s describe?

 transition: color .2s linear;

7. Which transition will finish first?

a. transition: width 300ms ease-in;

b. transition: width 300ms ease-out;

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 17, Transitions, Transforms, and Animation 425

8. Write the transform declaration you would use to accomplish the following:

a. Tilt the element seven degrees

b. Reposition the element 25 pixels up and 50 pixels to the left

c. Rotate the element from its bottom, right corner

d. Make a 400-pixel-wide image display at 500 pixels wide

9. In the following transform declaration, what does the 3 value describe?

 transform: scale (2, 3)

10. Which 3-D transform would look more angled and dramatic?

a. perspective: 250;

b. perspective: 1250;

11. What happens halfway through this animation?

 @keyframes border-bulge {
 from { border-width: 1px; }
 25% { border-width: 10px; }
 50% { border-width: 3px; }
 to { border-width: 5px; }
 }

12. Write the animation declaration you would use to accomplish the fol-
lowing:

a. Make the animation play in reverse

b. Make the entire animation last five seconds

c. Wait 2 seconds before running the animation

d. Repeat the animation three times then stop

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation426

Css Review: Transitions, Transforms, and Animation

Css Review: Transitions,
Transforms, and Animation
Here is a summary of the properties covered in this chapter, in alphabetical
order.

Property Description

animation A shorthand property that combines animation properties

animation-name Specifies a name for the animation sequence

animation-duration The amount of time the animation lasts

animation-timing-function Describes the acceleration of the animation

animation-iteration-count The number of times the animation repeats

animation-direction Whether the animation plays forward, in reverse, or alternates back and forth

animation-play-state Whether the animation is running or paused

animation-delay The amount of time before the animation starts running

animation-fill-mode Overrides limits to when animation properties can be applied

backface-visibility Determines whether the reverse side of an element may be visible in 3-D transforms

perspective Establishes an element as a 3-D space and specifies the perceived depth

perspective-origin Specifies the position of your viewpoint in a 3-D space

transform Specifies that the rendering of an element should be altered using one of the 2-D or 3-D
transform functions

transform-origin The point around which an element is transformed

transform-style Used to preserve a 3-D context when transformed elements are nested

transition A shorthand property that combines transition properties

transition-property Defines which CSS property will be transitioned

transition-duration The amount of time the transition animation lasts

transition-timing-function Describes the manner in which the transition happens (changes in acceleration rates)

transition-delay The amount of time before the transition starts

www.it-ebooks.info

http://www.it-ebooks.info/

427

IN THIs CHAPTER

Applying a CSS reset

Replacing text with images

Using CSS Sprites

Styling forms

Styling tables

Using media queries for
responsive design

By now you have a solid foundation in writing style sheets. You can style
text and element boxes, create page layouts using floats, and even add subtle
animation effects to your designs. But there are a few common CSS tech-
niques that I want you to know about before we move on to learning about
JavaScript in Part IV.

This chapter is a grab bag of sorts. It starts with some techniques that are
part of the web developer’s basic toolkit: clearing out browser styles with a
CSS reset, using images in place of text (only when necessary!), and reduc-
ing the number of server requests with CSS sprites. It moves on to general
approaches and special properties for styling forms and tables. Finally—
and I’ve saved the best for last—you’ll get to use media queries to create a
responsive site in step-by-step exercises.

A Clean slate (Css Reset)
As you know, browsers have their own built-in style sheets (called user agent
style sheets) for rendering HTML elements. If you don’t supply styles for an
h1, you can be certain that it will display as large, bold text with space above
and below. But just how much larger and how much space may vary from
browser to browser, giving inconsistent results. Furthermore, even if you do
provide your own style sheet, elements in your document may be inheriting
certain styles from the user agent style sheets, causing unexpected results.

For that reason, many designers use what is known as a CSS Reset, a collec-
tion of style rules that overrides all user agent styles and creates a starting
point that is as neutral as possible. From there, you must explicitly specify
font, text, margin, and padding styles for every element in your document,
but you can be certain that no styles from the browser will interfere with
them.

The most popular reset was written by Eric Meyer (the author of too many
CSS books to list). It is presented here, and I’ve also included a copy of it in
the materials folder for this chapter for your copy-and-paste pleasure.

Css teChnIques

CHAPTER 18

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation428

A Clean slate (Css Reset)

/* http://meyerweb.com/eric/tools/css/reset/
 v2.0 | 20110126 License: none (public domain)*/
html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center, dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed,
figure, figcaption, footer, header, hgroup,
menu, nav, output, ruby, section, summary,
time, mark, audio, video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
}
/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
 display: block;
}
body {
 line-height: 1;
}
ol, ul {
 list-style: none;
}
blockquote, q {
 quotes: none;
}
blockquote:before, blockquote:after,
 q:before, q:after {
 content: ‘’;
 content: none;
}
table {
 border-collapse: collapse;
 border-spacing: 0;
}

To use the reset, place these styles at the top of your own style sheet. You
can use them exactly as you see them here or customize them as your project
requires. I also recommend that you read Eric’s posts about the thinking that
went into his settings (meyerweb.com/eric/tools/css/reset/ and meyerweb.com/
eric/thoughts/2007/04/18/reset-reasoning/).

CSS resets aren’t for everyone. You may decide that you want to lean on the
browser for some basic styling and not be required to write styles for every
little thing. But if you want to be sure that all the styles showing up are
yours, a reset may be the way to go.

n oT e

There is another reset made available
by the developers at Yahoo!. To use it,
simply paste the following line into the
head of your HTML document:

<link rel="stylesheet"
type="text/css" href="http://
yui.yahooapis.com/3.5.1/
build/cssreset/cssreset-min.
css">

Before you do, however, be sure to read
about what it does here: yuilibrary.com/
yui/docs/cssreset/.

www.it-ebooks.info

http://meyerweb.com/eric/tools/css/reset/
http://www.it-ebooks.info/

Image Replacement Techniques

Chapter 18, Css Techniques 429

Image Replacement Techniques
Before web fonts were a viable option, we needed to use an image any time
we wanted text in a font fancier than Times or Helvetica. Fortunately, that
is no longer the case, and we can have very stylish headlines and text treat-
ments without the added burden of images. Every now and then, however,
even a web font won’t do, and it is necessary to use an image in place of a
few words of text. For example, you may want to use a stylized logo for your
company name or use familiar icons in place of text links.

Removing the text altogether and replacing it with an img element is a bad
idea because valuable content would be gone forever. The solution is to use
a CSS-based image replacement technique that uses the image as a back-
ground in the element, then shifts the text out of the way so that it is not
rendered on the page. Visual browsers see the background image, while the
text content stays in the file for the benefit of search engines, screen readers,
and other assistive devices. Everybody wins!

One elegant image replacement technique comes from Scott Kellum (Jeffrey
Zeldman christened it “The Kellum Technique”). It uses the text-indent
property to push the text content all the way to the right and out of the vis-
ible element box (Figure 18-1).

What users see:

What’s actually happening:

Edges of h1 visiible
elemnt box (outlines

added for clarity)

The h1 text content
is pushed outside the
visible element box

and can not be seen.

text-indent: 100%;
overflow: hidden;
white-space: no wrap;

Figure 18-1. The Kellum image replacement technique hides the HTML text by pushing it
out of the visible element box with a text indent.

In this example, I’ll use the fancy Jenware logo in place of the h1 “Jenware”
HTML text. The markup is simple:

<h1 id="logo">Jenware</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation430

Css sprites

The style rule is as follows:

h1#logo {
 width: 450px;
 height: 80px
 background: url(jenware.png) no-repeat;
 text-indent: 100%;
 white-space: no-wrap;
 overflow: hidden;
}

There are a few things of note here. First, the h1 element displays as a block
by default, so we can just specify its width and height to match the dimen-
sions of the image used as a background. The text-indent property pushes
the word “Jenville” over to the right by the full width (100%) of the element.
The white-space property is set to no-wrap, which ensures that long strings
of text won’t wrap around and show up again in the element box. Finally,
overflow: hidden instructs the browser that anything that falls outside of the
element box (like our h1 text) should not be displayed.

There are actually a dozen or so image replacement techniques that have
emerged over the years. One of the most popular is the Phark technique,
which uses an extremely large negative text-indent value (typically -9999px)
to pull the HTML text all way out to the left of the viewport area.

h1#logo {
 width: 450px;
 height: 100px
 background: url(jenware.png) no-repeat;
 text-indent: -9999px;
}

The downside to this approach is that browsers are forced to calculate and
draw the wide element box even though it won’t be rendered, which slows
down performance. But if you come across an example of text with a back-
ground image and a –9999px indent, you’ll know what’s going on.

The downside to any image replacement approach is that it means an extra
request to the server for every image used. In the next section, we’ll look at
a way to curb unnecessary requests.

Css sprites
When I talked about performance back in Chapter 3, I noted that you can
improve site performance by reducing the number of requests your page
makes to the server (a.k.a. HTTP requests). One strategy for reducing the
number of image requests is to combine all your little images into one big
image file so that only one image gets requested. The large image that con-
tains multiple images is known as a sprite, a term coined by the early com-
puter graphic and video game industry. That image gets positioned in the
element using the background-position property in such a way that only the
relevant portion of it is visible. An example should make this clear.

n oT e

You can replace images with image
replacement techniques as well, for
example, to replace a standard web
image with a high-resolution image
when the page is printed or displayed
on high-density (Retina) screens. Aaron
Gustafson documents the approach
on his blog at v2.easy-designs.net/
articles/iIR and blog.easy-designs.net/
archives/2012/04/16/iir-redux.

www.it-ebooks.info

http://v2.easy-designs.net/articles/iIR/
http://v2.easy-designs.net/articles/iIR/
http://www.it-ebooks.info/

Css sprites

Chapter 18, Css Techniques 431

O’Reilly Media’s Velocity Conference site featured nine commonly found
social media icons, as shown in Figure 18-2. In an effort to improve the
site’s performance, one of the strategies employed by Tony Quartorolo and
Zebulon Young was to turn those nine icon graphics into one sprite and
reduce the number of HTTP requests accordingly. They organized the icons
into one stack with two pixels of space between icons.

social.png
ba
ck
gr
ou
nd
-p
os
it
io
n:
 0
,
-2
0p
x;

ba
ck
gr
ou
nd
-p
os
it
io
n:
 0
,
-4
0p
x;

ba
ck
gr
ou
nd
-p
os
it
io
n:
 0
,0
;

The icons in this panel are
contained on one spite
(social.png) and positioned in
each link using
background-position.

Figure 18-2. Replacing separate graphic files with one sprite image cuts down on the
number of HTTP requests to the server and improves site performance.

The styles and markup shown here are a simplification of the code used on
the Velocity site, but the result is the same.

The markup

 Twitter
 Facebook
 Google+
 LinkedIn
 BlipTV
 Lanyrd
 Slideshare
 Schedule
 Attendee List

n oT e

For more CSS sprite goodness, please
read the Smashing Magazine arti-
cle “The Mystery of CSS Sprites:
Techniques, Tools, and Tutorials,” by
Sven Lennartz (coding.smashingmaga-
zine.com/2009/04/27/the-mystery-of-
css-sprites-techniques-tools-and-tutori-
als/). It includes excellent examples of
sprites in the wild, including sprites used
by Amazon, Facebook, and the like.

n oT e

Read the article about Tony and Zeb’s
optimization process online at radar.
oreilly.com/2012/05/velocity-perfor-
mance-makeover.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation432

Css sprites

The styles

.hide {
 text-indent: 100%;
 white-space: nowrap;
 overflow: hidden;
}
li a {
 display: block;
 width: 29px;
 height: 18px;
 background-image: url(social.png);
}
li a.twitter { background-position: 0 0;}
li a.fb { background-position: 0 -20px;}
li a.gplus { background-position: 0 -40px;}
li a.linkedin { background-position: 0 -60px; }
li a.blip { background-position: 0 -80px; }
li a.lanyrd { background-position: 0 -100px; }
li a.slides { background-position: 0 -120px; }
li a.sched { background-position: 0 -140px; }
li a.attendees { background-position: 0 -160px; }

In the markup, each item has two class values. The hide class is used as a
selector to apply the image replacement technique I covered in the previous
section. The other class name is particular to each social network link. The
unique class values allow us to position the sprite appropriately for each
link.

At the top of the style sheet you should recognize the image replacement
styles. Notice in the next rule that all link (a) elements use social.png as their
background image.

Finally, we get to the styles that do the heavy lifting. The background-
position is set differently for each link in the list, and the visible element
box works like a little window revealing a portion of the background image.
The first item has the value “0,0”; this positions the top-left corner of the
image in the top-left corner of the element box. To make the Facebook icon
visible, we need to move the image up by 20 pixels, so its vertical position is
set to –20px (its horizontal position of 0 is fine). The image is moved up by
20-pixel increments for each link, revealing image areas farther and farther
down the sprite stack.

In this example, all of the icons have the same dimensions and stack up
nicely, but that is not a requirement. You can combine images with a variety
of dimensions on one sprite. The process of setting a size for the element and
then lining the sprite up perfectly with the background-position property is
the same.

sprite Generators
There are several tools that create
sprite files and their respective styles
automatically. Here are just a few:

 y SpriteMe (spriteme.org). SpriteMe
is a tool for converting images
on an existing site into a sprite
and style rules. Just go to your
website, click the SpriteMe
bookmarklet button, and
SpriteMe analyzes the page,
making suggestions for what
images can be combined into a
sprite.

 y CSS Sprite Generator (spritegen.
website-performance.org). CSS
Sprite Generator is an online
service that allows you to upload
your individual images to be
turned into a sprite and the CSS
that controls it.

wa R n i n G

CSS Sprites cannot be used for images
that tile in a background (well, not with-
out some finagling anyway). Use them
for single background images.

www.it-ebooks.info

http://www.it-ebooks.info/

Css sprites

Chapter 18, Css Techniques 433

sass and LEss
I know you are just getting used to writing CSS rules the regular way, but there are
some super-charged alternatives I want you to know about. Finding the normal CSS
syntax repetitive, developers Hampton Catlin and Nathan Weizenbaum created a new
style sheet syntax that takes advantage of the time-saving power tools of scripting
languages. They called their new syntax Sass (“Syntactically awesome style sheets”). A
later release known as SCSS (for “Sassy CSS”) is based on original indented Sass syntax
but also allows normal CSS syntax to be mixed in.

In Sass style documents, you can do things that you would do in scripting, such as
setting a variable name for a value you plan to use frequently. For example, O’Reilly
uses the same shade of red repeatedly on their site, so they could create a variable
named “oreilly-red” and use the variable name for color values. That way, if they need
to tweak the shade later, they only need to change the variable value in one place.
Here’s what setting up and using a variable looks like in Sass:

$oreilly-red: #900;

a { border-color: $oreilly-red; }

You can even reuse whole sets of styles using a convention called mixins. The
following example saves a combination of background, color, and border styles
as a mixin named “special.” To apply that combination of styles, @include it in the
declaration and call it by name.

@mixin special {
 color: #fff;
 background-color: #befc6d;
 border: 1px dotted # 59950c;
}
a.nav {
 @include special;
}

In addition, Sass allows nested rules, handles math operations, and adjusts colors
mathematically, just to name a few functions borrowed from scripting languages.

Browsers do not know how to interpret the syntax of a .sass or .scss file, so you need
to use the Sass compiler (written in Ruby), which runs on the server. The compiler
converts the Sass file to standard CSS syntax before it is delivered to the browser.

LESS is another CSS syntax with scripting-like abilities. It is very similar to Sass, but
it lacks a few features and has minor differences in syntax (for instance, variables in
LESS are indicated by the @ symbol instead of $, for example, @oreilly-red. The other
major difference is that a LESS file is processed into regular CSS syntax by JavaScript
(less.js) instead of Ruby. Note that compiling a LESS file into CSS is processor-intensive
and would bog down a browser. For that reason, it is best to do the conversion to
CSS before sending it to the server. One recommended tool for doing so is CodeKit
(incident57.com/less/), but there are others out there.

Once you get some practice under your belt and feel that you are ready to take your style
sheets to the next level, explore some of these Sass and LESS articles and resources:

 y The Sass site (sass-lang.com)

 y The LESS site (lesscss.org)

 y Compass, a full-featured CSS authoring framework that uses Sass (compass-style.org)

 y “Getting Started with Sass,” by David Demaree (alistapart.com/articles/getting-
started-with-sass)

 y “An Introduction to LESS, and Comparison to Sass,” by David Hixon (coding.smashing
magazine.com/2011/09/09/an-introduction-to-less-and-comparison-to-sass)

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation434

styling Forms

styling Forms
Web forms can look a bit hodge-podge right out of the box with no styles
applied (Figure 18-3), so you’ll certainly want to give them a more profes-
sional appearance using CSS. Not only do they look better, but studies show
that forms are much easier and faster to use when the labels and inputs are
lined up nicely. In this section, we’ll look at how various form elements can
be styled and how to align form elements without using tables.

Now, I’m not going to lie: styling forms is somewhat of a dark art due to the
variety of ways in which browsers handle form elements. But the efforts are
well worth it to make your forms look as professional as the rest of your site.

Figure 18-3. Forms tend to be ugly and difficult to use with HTML alone (left). A little CSS
can make a big difference (right). This section walks you through the styling of this form
step by step.

There aren’t any special properties for styling forms; just use the standard
color, background, font, border, margin, and padding properties that you’ve
learned in the previous chapters. The following is a quick rundown of the
types of things you can do for each form control type.

Text inputs (text, password, email, search, tel, url)

Change the appearance of the box itself with width, height, background-
color, background-image, border, border-radius, margin, padding, and
box-shadow. You can also style the text inside the entry field with color
and the various font properties.

The textarea element

This can be styled in the same way as text-entry fields. textarea ele-
ments use a monospace font by default, so you will need to change that

www.it-ebooks.info

http://www.it-ebooks.info/

styling Forms

Chapter 18, Css Techniques 435

to match your other text-entry fields. Because there are multiple lines,
you may also specify a line-height. Note that some browsers display a
handle on the lower-right corner of the textarea box that makes it resiz-
able, but you can turn it off by adding the style resize: none;.

Button inputs (submit, reset, button)

Apply any of the box properties to submit and reset buttons (width,
height, border, background, margin, padding, and box-shadow). Note
however, that buttons are set to the border-box sizing model by default,
so width and height values apply border to border. Most browsers also
add a bit of padding by default, which can be overridden by your own
padding value. You can also style the text that appears on the buttons.

Radio and checkbox buttons

The best practice for radio and checkbox buttons is to leave them alone.
At best, Internet Explorer will show a little color around the box, which
looks awkward. If you are tenacious, you could use JavaScript to change
the buttons altogether.

Drop-down and select menus

You can specify the width and height for a select element, but note that
it uses the border-box box-sizing model by default. Some browsers allow
you to apply color, background-color, and font properties to options,
but it’s probably best to leave them alone to be rendered by the browser
and operating system.

Fieldsets and legends

You can treat a fieldset as any other element box, adjusting the bor-
der, background, margin, and padding. Turning the border off entirely is
one way to keep your form looking tidy while preserving semantics and
accessibility. By default, legend elements are positioned on an indent,
centered vertically with the top border of the fieldset, and unfortunate-
ly browsers make them difficult to change. Some developers use a span
or b element within the legend and apply styles to the contained element
for more predictable results.

Now we know what we can do to style individual controls, but the grander
goal is to make the form more organized and easier to use. In the past, we
used tables for the task, but it is preferable to stick with CSS for matters of
presentation, such as alignment. I’m going to walk you through writing the
styles for the form shown in Figure 18-3 and take you step by step from point
A to point B.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation436

styling Forms

The markup
Here is the markup for the contest entry form. Each question in the form is
contained in a list item, and labels are provided for all controls. There are
also two fieldsets, grouping the radio buttons and checkboxes.

<form action="" method="">

<h2>Contest Entry Information</h2>

 <label for="form-name">Name</label>
 <input type="text" name="username" id="form-name" class="textinput">

 <label for="form-email">Email</label>
 <input type="email" name="emailaddress" id="form-email"

class="textinput">

 <label for="form-tel">Telephone</label>
 <input type="tel" name="telephone" id="form-tel"class="textinput">

 <label for="form-story">Your story</label>
 <textarea name="story" maxlength="300" id="form-story" rows="3"

cols="30" placeholder="No more than 300 characters long"></textarea>

 <label for="sizes">Size</label>
 <select name="size">
 <option>5</option>
 <option>6</option>
 <option>7</option>
 <option>8</option>
 <option>9</option>
 <option>10</option>
 <option>11</option>
 <option>12</option>
 <option>13</option>
 </select>
 Sizes reflect standard men's sizes

 <fieldset id="colors">
 <legend>Color</legend>

 <label><input type="radio" name="color" value="red"> Red

 </label>
 <label><input type="radio" name="color" value="blue">

 Blue</label>
 <label>input type="radio" name="color" value="black">

 Black</label>
 <label><input type="radio" name="color" value="silver">

 Silver</label>

 </fieldset>

n oT e

You may notice that the form in this
example is similar to the contest entry
you built in Chapter 9, Forms. I simpli-
fied it quite a bit for the sake of keeping
the explanation in this section to a rea-
sonable length.

www.it-ebooks.info

http://www.it-ebooks.info/

styling Forms

Chapter 18, Css Techniques 437

 <fieldset id="features">
 <legend>Features</legend>

 <label><input type="checkbox" name="feature" value="laces">

 Sparkley laces</label>

 <label><input type="checkbox" name="feature" value="logo"

checked>
 Metallic logo</label>

 <label><input type="checkbox" name="feature" value="heels">

 Light-up heels</label>

 <label><input type="checkbox" name="feature" value="mp3">

 MP3-enabled</label>

 </fieldset>

 <li class="buttons">
 <input type="submit" value="Pimp My Shoes!">
 <input type="reset">

</form>

step 1: Adding basic styles
The first set of styles takes care of some basic docu-
ment styling, including the body, h2, and some stan-
dard ul styles to remove the bullets. I’ve also created
a rule for the form element, giving it a width, back-
ground color, rounded corners, a shadow, and some
padding. Because I know I’m going to be floating a
lot of its contents, I’ve added overflow:hidden; as a
float container. Similarly, the ul li rule includes a
clear:both; declaration in anticipation of floats. To
save a little space, only the form-related styles are
presented here. The result is shown in Figure 18-4.

ul li {
 clear: both;
 …
}
form {
 width: 40em;
 border: 1px solid #666;
 border-radius: 10px;
 box-shadow: .2em .2em .5em #999;
 background-color:#d0e9f6;
 padding: 1em;
 overflow: hidden;
}

Figure 18-4. After adding styles to the
form element.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation438

styling Forms

step 2: Aligning labels and inputs
Now we’re getting to the good stuff! Notice in the “after” shot in Figure 18-3
that all of the labels and inputs are aligned in neat columns. To make that
happen, give the label elements a specific width, float them to the left, and
then align the label text to the right so they are near their respective inputs. A
little margin on the right of the label elements creates a nice gutter between
the columns. You should be able to see all these styles at work in the label
style rule shown here.

label {
 display: block;
 float: left;
 width: 10em;
 text-align: right;
 margin-right: .5em;
 color: #04699d;
}

The text inputs and the textarea are given width and height values as well
as a simple 1-pixel border. In addition, similar font properties are applied to
both. I’ve removed the ability to resize the textarea element by setting
resize to none. The form in Figure 18-5 is starting to look a little better, but
now we have some problems with the radio button and checkbox labels that
we need to fix.

input.textinput {
 width: 30em;
 height: 2em;
 border: 1px solid #666;
}
textarea {
 display: block;
 width: 30em;
 height: 5em;
 border: 1px solid #666;
 margin-bottom: 1em;
 line-height: 1.25;
 overflow: auto;
 resize: none;
}
input.textinput, textarea {
 font-family: Georgia, "Times New Roman", Times, serif;
 font-size: .875em;
}

n oT e

I’ve added a class="textinput" attri-
bute to the various text input types
(text, tel, etc.) so I can select just the
text-entry inputs. I also could have
used attribute selectors (for example,
input[type="tel"]) for each one, but
they are not supported by some versions
of Internet Explorer. I chose the more
bulletproof class method because I want
everyone to see these styles.

Figure 18-5. After aligning the labels and
inputs.

www.it-ebooks.info

http://www.it-ebooks.info/

styling Forms

Chapter 18, Css Techniques 439

step 3: Fixing fieldsets and minor labels
The next thing I’m going to do is override the default styles on the fieldset
elements so they are not so prominent. I’m also going to treat the legend for
each fieldset with the same styles I’ve applied to the labels.

As a result of the styles added in Step 2, the label elements for the radio
buttons and checkboxes inside the fieldsets are styled the same as the
main labels, which is not what I want. I’ve written styles especially for label
elements inside the Colors and Features fieldsets that get rid of the color,
dimensions, and floats. Finally, I displayed the list items in the Colors sec-
tion as inline so they would appear on one line and save some space. The
Features checkbox list needed a few little tweaks such as adding a left margin
so the checkboxes line up with the other form controls (margin-left:11em)
and resetting the clear property so the first checkbox list item does not start
below the floated legend (clear:none). The result is shown in Figure 18-6.

fieldset {
 margin: 0;
 padding: 0;
 border: none;
}
legend {
 display: block;
 width: 10em;
 float: left;
 margin-right: .5em;
 text-align: right;
 color: #04699d;
}
#features label, #colors label {
 color: #000;
 display: inline;
 float: none;
 text-align: inherit;
 width: auto;
 font-weight: normal;
 background-color: inherit;
}
#colors ul li {
 display: inline;
 margin-bottom: 0;
}
#features ul {
 margin-left: 11em;
}
#features ul li {
 margin-bottom: 0;
 clear: none;
}

Figure 18-6. Fixing the labels next to
checkboxes and radio buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation440

styling Forms

step 4: Adjusting the buttons
All that is left to do now is fix the alignment and styling of the submit and
reset buttons (Figure 18-7). I’ve aligned the buttons with the other form
controls by applying a left margin to the submit button. I’ve also given the
buttons new dimensions, a background color, a rounded border, and a slight
drop shadow. The font-size:inherit; declaration ensures that the but-
tons use the same font size as the rest of the form (overriding the browser
defaults), making the em measurements predictable.

input[type="submit"], input[type="reset"] {
 display: block;
 width: 10em;
 height: 2em;
 float: left;
 background: white;
 font-size: inherit;
 border: 1px solid #04699d;
 border-radius: 4px;
 box-shadow: 2px 2px 3px rgba(0,0,0,.5);
}

input[type="submit"] {
 margin-left: 10.5em;
 margin-right: 1em;
 color: #C00; /* the submit button text is attention-getting red */
}

Figure 18-7. The finished form with styled and aligned buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

styling Tables

Chapter 18, Css Techniques 441

And there you have it! I’ve concentrated on the styles used for alignment,
colors, and text treatments in this example. For your forms, you’ll probably
want to add styles for interactivity, such as :hover styles on the buttons and
:focus styles for the text inputs when they are selected.

styling Tables
We’ve already covered the majority of style properties you’ll need to style
content in tables. You can change the appearance and alignment of the con-
tent within the cells with the various font, text, and background properties
as you would for any other text element. In addition, you can treat the table
and cells themselves with padding, margins, and borders.

There are a few CSS properties, however, that were created specifically for
tables. Some of them are fairly esoteric and are briefly introduced in the
sidebar Advanced Table Properties. This section focuses on properties that
directly affect table display—specifically, the treatment of borders.

separated and collapsed borders
CSS provides two methods for displaying borders between table cells: sepa-
rated or collapsed. When borders are separated, a border is drawn on all four
sides of each cell and you can specify the space between the borders. In the
collapsing border model, the borders of adjacent borders “collapse” so that
only one of the borders is visible and the space is removed (Figure 18-8).

5px

border-collapse: separate;

border-collapse: collapse;

15px 2px border

2px border

Figure 18-8. Separated borders (top) and collapsed borders (bottom).

The border-collapse property allows authors to choose which of these
border-rendering methods to use.

Advanced Table
Properties
There are a few more properties
related to the CSS table model.

Table layout
The table-layout property allows
authors to specify one of two
methods of calculating the width of a
table. The fixed value bases the table
width on width values provided for
the table, columns, or cells. The auto
value bases the width of the table on
the minimum width of the contents
of the table. Auto layout may display
nominally more slowly because the
browser must calculate the default
width of every cell before arriving at
the width of the table.

Table display values
Chapter 14 introduced the display
property used to specify what kind
of box an element generates in the
layout. CSS is designed to work with
all XML languages, not just HTML
and XHTML. It is likely that other
languages will have the need for
tabular layouts, but will not have
elements like table, tr, or td in their
vocabularies.

To this end, there are a variety of
table-related display values that
allow authors of XML languages to
assign table layout behavior to any
element. The table-related display
values are: table, inline-table,
table-row-group, table-header-
group, table-footer-group, table-
row, table-column-group, table-
column, table-cell, and table-
caption. You could assign these
display roles to other HTML elements,
but it is generally discouraged.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation442

styling Tables

border-collapse
Values: separate | collapse | inherit
Default: separate

Applies to: table and inline-table elements

Inherits: yes

separated border model
Tables render with separated borders by default, as shown in the top table
in Figure 18-8. You can specify the amount of space you’d like to appear
between cells using the border-spacing property.

border-spacing
Values: length length | inherit
Default: 0

Applies to: table and inline-table elements

Inherits: yes

The values for border-spacing are two length measurements. The horizontal
value comes first and applies between columns. The second measurement is
applied between rows. If you provide one value, it will be used both horizon-
tally and vertically. The default setting is 0, causing the borders to double up
on the inside grid of the table.

These are the style rules used to create the custom border spacing shown in
the top table in Figure 18-8.

table {
 border-collapse: separate;
 border-spacing: 15px 3px;
 border: none; /* no border around the table itself */
}
td {
 border: 2px solid purple; /* borders around the cells */
}

Collapsed border model
When the collapsed border model is chosen, only one border appears
between table cells. This is the style sheet that created the bottom table in
Figure 18-8.

table {
 border-collapse: collapse;
 border: none; /* no border around the table itself */
}
td {
 border: 2px solid purple; /* borders around the cells */
}

Notice that although each table cell has a 2-pixel border, the borders
between cells measure a total of two pixels, not four. Borders between cells
are centered on the grid between cells, so if cells are given a 4-pixel border,

wa R n i n G

Internet Explorer 6 does not support the
border-spacing property.

n oT e

Although the border-spacing default is
zero, browsers add two pixels of space
for the cellspacing attribute by default.
If you want to see the doubling-up
effect, you need to set the cellspacing
attribute to 0 in the table element.

www.it-ebooks.info

http://www.it-ebooks.info/

styling Tables

Chapter 18, Css Techniques 443

two pixels will fall in one cell and two pixels in another. For odd numbers of
pixels, the browser decides where the extra pixel falls.

In instances where neighboring cells have different border styles, a compli-
cated pecking order is called in to determine which border will display. If
the border-style is set to hidden for either of the cells, then no border will
display. Next, border width is considered: wider borders take precedence
over narrower ones. Finally, if all else is equal, it comes down to a matter of
style. The creators of CSS rated the border styles from most to least prece-
dence as follows: double, solid, dashed, dotted, ridge, outset, groove, and
(the lowest) inset.

Empty cells
For tables with separated borders, you can decide whether you want empty
cells to display their backgrounds and borders using the empty-cells prop-
erty.

empty-cells
Values: show | hide | inherit
Default: show

Applies to: table cell elements

Inherits: yes

For a cell to be “empty,” it may not contain any text, images, or non-break-
ing spaces. It may contain carriage returns and space characters.

Figure 18-9 shows the previous separated table border example with its
empty cells (what would be Cell 14 and Cell 15) set to hide.

table {
 border-collapse: separate;
 border-spacing: 15px 3px;
 empty-cells: hide;
 border: none;
}
td {
 border: 1px solid purple;
}

Figure 18-9. Hiding empty cells with the empty-cells property.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation444

Basic Responsive Web Design

Basic Responsive Web Design
Responsive web design is a technique that uses CSS to adapt a page’s layout
based on screen size. It is just one strategy we are employing to cope with
the mind-blowing variety of screen sizes.

Of course, responsive design is a big, fat, gnarly topic that could fill (and
has filled) whole books. What I’m going to do here is introduce you to the
basic ingredients of a responsive site so you get a feel for building one. The
approach presented here is based closely on the method of responsive design
described by Ethan Marcotte in his landmark book Responsive Web Design
(A Book Apart). By the time you read this, I’m sure there will be many more
marvelous books on the topic, not to mention a mountain of information
online (see also the For Further Reading sidebar at the end of this chapter).
Which is all to say that after you finish the exercises in this section, your
journey toward mastering responsive web design will have just begun.

A simple example
In this section, we’ll work together on making the Jenware page responsive.
Figure 18-10 shows how the same Jenware HTML page will look on a nar-
row screen, a tablet screen in portrait and landscape orientations, and a large
desktop monitor by the time we are finished.

320px (iphone) 768px (iPad portrait) 1024px (iPad landscape) > 1024px (Chrome/desktop)

Figure 18-10. The newly responsive Jenware site. You can look at it on your own mobile
devices at www.learningwebdesign.com/rwd/.

On the smartphone-sized screen, the page has a one-column layout and very
narrow side margins. On tablets in portrait mode, there is room for slightly
more generous margins and wrapped text. At 1,024 pixels wide, there is
room for a second column, and in very wide browser windows, the width
of the content is limited with the max-width property to make sure the line
lengths don’t get out of control. These are very modest adjustments com-
pared to professionally designed responsive sites, but they should be enough
to show you how it works.

n oT e

For more inspired responsive adapta-
tions, see the Media Queries gallery site
(mediaqueri.es).

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Responsive Web Design

Chapter 18, Css Techniques 445

How it works
Responsive design as first proposed by Mr. Marcotte has three core compo-
nents:

A fluid layout

You learned all about fluid layouts in Chapter 16, CSS Layouts, and
fortunately, the Jenware site has already been designed to be fluid. (Gee,
how did I know?!)

Flexible images

When the layout scales down, the images and other embedded media
need to scale with it; otherwise, they would hang out of view. We’ll make
sure the Jenware images scale down to fit.

CSS media queries

Media queries are a method for applying styles based on the medium
via which the document is displayed. Queries start with questions, such
as, “Is the document being printed? Then use these print-appropriate
styles.” Or, “Is the document on a screen, and is that screen at least 1,024
pixels wide and in landscape mode? Then use these styles.” I’ll show you
how that looks in CSS syntax in a moment.

To this list of ingredients, I would add the viewport meta element that makes
the width of the web page match the width of the screen, and that’s where
we’ll begin our responsive project.

setting the viewport
To fit standard websites onto small screens, mobile browsers render the page
on a canvas called the viewport and then shrink that viewport down to fit the
width of the screen (device width). For example, on iPhones, Mobile Safari
sets the viewport width to 980 pixels, so a web page is rendered as though
it were on a desktop browser window set to 980 pixels wide. But that ren-
dering gets shrunk down to 320 pixels wide when the iPhone is in portrait
orientation, cramming a lot of information into a tiny space.

Mobile Safari introduced the viewport meta tag that allows developers to
control the size of that initial viewport. Soon other mobile browsers followed
suit, and this is an essential first step to a responsive design. Simply add the
following meta element to the head of the HTML document:

<meta name="viewport" content="width=device-width, initial-scale=1">

This line tells the browser to set the width of the viewport equal to the width
of the device screen (width=device-width), whatever that happens to be. The
initial-scale sets the zoom level to 1 (100%).

Now seems like a good time to start giving the Jenware site the responsive
treatment. We’ll do it one step at a time, starting in Exercise 18-1.

n oT e

The viewport meta element also allows
the maximum-scale attribute. Setting it
to 1 (maximum-scale=1) prevents users
from zooming the page, but it is strongly
recommended that you avoid doing so
because resizing is important for acces-
sibility and usability.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation446

Basic Responsive Web Design

Exercise 18-1 | set the viewport size
In this exercise you’ll get familiar with the Jenware site materials and set the viewport
before we move on to editing the style sheet. The files jenware-rwd.html and jenware.
css are available in the materials folder for this chapter. You may recognize the page
from previous exercises, but I have made some small style changes to give you a
cleaner starting point.

1. Start by opening the file jenware-rwd.html in the browser. The style sheet,
jenware.css, takes care of the basic styling such as backgrounds, colors, borders,
and text styles, providing a good baseline styled experience. Resize the window
very narrow to approximate the width of a smartphone. You should see
something similar to the iPhone screenshot in Figure 18-10, except that the
Jenware logo graphic hangs out the right edge of the screen. Scroll down and see
that the #products and #testimonials boxes go right to the edges of the window.

2. Now resize the window as wide as you can. You should find that the page
stretches uncomfortably wide and that the text does not wrap around the product
images. This design clearly needs some love to look better at wide browser widths.

3. Let’s get that viewport meta element in there. Open jenware-rwd.html in a text
editor and add the standard meta element as shown here:

<meta name="viewport" content="width=device-width,
initial-scale=1">

Save the file, and you’re done. Because this is a mobile thing, you won’t notice
any changes when you look the page again in your desktop browser, but the
foundation has been laid for improvements.

n oT e

Use Chrome, Firefox, Safari, or Internet
Explorer 9 or higher for the exercises
in this chapter. IE8 and earlier do not
support the media queries we’ll be using
later.

Fluid layouts
Because fluid layouts are fundamental to responsive design, I think it bears a
quick recap. Fluid layouts are created using percentage width measurements
so that elements resize proportionally to fill the available width of the screen
or window.

It’s not feasible to create a design for all the possible device widths on which
your page might be viewed. Web designers generally create two or three
designs (sometimes a few more) targeted at major device classes, such as
smartphones, tablets, and desktop browsers. They rely on fluid layouts to
take care of all the possible sizes in between. Fluid layouts avoid awkward
amounts of leftover space and prevent the right side of the page from getting
cut off.

Because I’ve picked up the fluid layout styles from the previous exercises for
this project, there is nothing we need to do to the Jenware styles. For your
own projects, however, be sure to design flexibly. And speaking of flexible,
let’s do something about that logo image!

Adaptive Layout
As an alternative approach—
especially when there is no time or
budget for a true responsive site
redesign—some designers choose
to create an adaptive layout instead.
Adaptive layouts feature two or three
different fixed layout designs that
target the most common device
breakpoints. They may be quicker
and less disruptive to produce, but
the advantages of fluid layouts are
lost. Some consider adaptive layouts
to be more of a stopgap solution
than a long-term mobile design
strategy.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Responsive Web Design

Chapter 18, Css Techniques 447

Making images flexible
Every now and then a solution is simple. Take, for example, the style rule
required to make images scale down to fit the size of their container:

img {
 max-width: 100%;
}

That’s it! When the layout gets smaller, the images in it will scale down to
fit the width of the container they are in. If the container is larger than the
image—for example, in the tablet or desktop layouts—the image does not
scale larger; it stops at 100% of its original size. When you apply the max-width
property, be sure that there are no width and height attributes in the img ele-
ments in the HTML document, or the image won’t scale proportionally.

But wait, things are never that simple, right? I’m afraid that although the
style rule is simple, the larger issue of images on the mobile display is more
complicated. Even in our modest example, we are serving an image to the
smartphone that is larger than it needs, which means unnecessary data is
transferred. I’m going to revisit this conundrum again in the Responsive
Images section later in this chapter. For now, just bear it in mind.

Before we move on to the exercise, I should also note that you can scale
down other embedded media, such as an object, embed, or video (see note),
using max-width as well.

n oT e

To preserve the aspect ratio of a scaled-
down video, you need to jump through a
few more hoops. Thierry Koblentz docu-
ments the strategy nicely in his article
“Creating Intrinsic Ratios for Video” at
www.alistapart.com/articles/creating-
intrinsic-ratios-for-video. There is also
a JavaScript solution at fitvidsjs.com.

wa R n i n G

IE6 does not support the max-width
property.

exercise 18-2 |
Flex those images
This is another quick one. Open jenware.
css and add the image resizer to the
style sheet right after the body rule set.

img { max-width: 100%; }

Save the file and reload the page in
the browser. Now when you resize the
window very narrow, the logo resizes
down with it (Figure 18-11). The product
images do the same thing, but you may
not be able to get the viewport narrow
enough to see it.

Figure 18-11. The max-width property makes the image shrink proportionally
when its container gets smaller.

www.it-ebooks.info

http://www.alistapart.com/articles/creating-intrinsic-ratios-for-video
http://www.alistapart.com/articles/creating-intrinsic-ratios-for-video
http://www.it-ebooks.info/

Part III, Css for Presentation448

Basic Responsive Web Design

Media query magic
Now we get to the real meat of responsive design: media queries.

Media queries allow designers to deliver styles based on media type. The
defined media types are print, screen, handheld, braille, projection,
screen, tty, and tv. The keyword all indicates that the styles apply to all
media types. Media queries can also evaluate specific media features, such
as the device-width, orientation, and resolution. Most properties can be
tested for a minimum or maximum value using the min- and max- prefixes,
respectively. For example, min-width: 480px tests whether the display is at
least 480 pixels wide. 768-pixel-wide displays pass the test and get the styles;
a 320-pixel display would not.

The complete list of device features you can detect with media queries
appears in Table 18-1.

You can add media queries to a style sheet along with your other styles.
Here is an example of a style sheet media query that determines whether the
media type is a screen and whether it is at least 480 pixels wide:

@media screen and (min-width: 480px;) {

 /* put styles for devices & browsers that pass this test inside the
curly braces */

}

The query starts with @media followed by the target media type keyword
(screen in this case). The media feature and the value that is being tested are

Table 18-1. Media features you can evaluate with media queries

Feature Description

width The width of the display area (viewport).

height The height of the display area (viewport).

device-width The width of the devices rendering surface (the whole screen).

device-height The height of the devices rendering surface (the whole screen).

orientation Whether the device is in portrait or landscape orientation. (Does not accept min-/max- prefixes.)

aspect-ratio Ratio of the viewport’s width divided by height (width/height).

device-aspect-ratio Ratio of the whole screen’s (rendering surface) width to height.

color The bit depth of the display; for example, color: 8 tests for whether the device has at least 8-bit color.

color-index The number of colors in the color lookup table.

monochrome The number of bits per pixel in a monochrome device.

resolution The density of pixels in the device. This is increasingly relevant for detecting high-resolution displays.

scan Whether a tv media type uses progressive or interlace scanning. (Does not accept min-/max- prefixes.)

grid Whether the device uses a grid-based display, such as a fixed-width font. (Does not accept min-/max-
prefixes.)

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Responsive Web Design

Chapter 18, Css Techniques 449

contained within parentheses. The style rules for browsers meeting those
conditions get put between the curly braces.

Here is another example that tests for two feature values: whether the screen
is under 700 pixels wide and is in landscape orientation. Notice that each
feature and value pair is placed inside parentheses. The word “and” strings
the various requirements together. The device must pass all of the require-
ments in order to deliver the enclosed styles.

@media screen and (max-width: 700px;) and (orientation: landscape;) {

 /* put styles for devices & browsers that pass this test here */

}

Finally, in this example, the media query looks to see whether the device has
a high-density display like the Retina iPhone, iPad, and newer MacBook Pro.
This example includes vendor-prefixed queries as well as a standard query.
Here the separate queries are in a comma-separated list. The enclosed styles
are applied when either of the query conditions is met.

@media screen and (-webkit-min-device-pixel-ratio: 2),
 screen and (-moz-min-device-pixel-ratio: 2),
 screen and (-o-min-device-pixel-ratio: 2),
 screen and (-ms-min-device-pixel-ratio: 2),
 screen and (min-device-pixel-ratio: 2) {

 /* styles referencing high-resolution images here */

}

Media queries in the document head
The @media queries we’ve been looking at so far go in the style sheet itself.
Media queries can also be carried out with the media attribute in the link
element to conditionally load separate .css files when the conditions are met.

In this example, the basic styles for a site are requested first, followed by a
style sheet that will be used only if the device is more than 780 pixels wide
(and if the browser supports media queries).

<head>
 <link rel="stylesheet" href="styles.css">
 <link rel="stylesheet" href="2column-styles.css" media="screen and

(min-width:780px)">
</head>

Some developers find this method helpful for managing modular style
sheets, but it comes with the disadvantage of requiring extra HTTP requests
for each additional .css file. Be sure to provide only as many links as nec-
essary (perhaps one for each major breakpoint), and rely on @media rules
within style sheets to make minor adjustments for sizes in between.*

* This technique was suggested by Stephanie Rieger in her presentation “Pragmatic Responsive
Design.” You can see the slides for her very thorough case study here: www.slideshare.net/yiibu/
pragmatic-responsive-design.

wa R n i n G

Internet Explorer 8 and earlier do not
support media queries at all. I will show
you a workaround in Exercise 18-3.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation450

Basic Responsive Web Design

“Mobile first” media queries
That takes care of the mechanics, but let’s talk a little about strategy. A
best practice for responsive sites is to adopt a “mobile first” mentality. That
means that you take care of the styles for the smallest, simplest devices first,
and use media queries to bring in overriding styles that adapt the design as
more display real estate and features become available. (If this sounds like a
form of progressive enhancement to you, you are right.)

Mobile-first media queries tend to begin with the min- prefix, bringing in
new styles when the width is at least the specified width or larger. That
allows developers to layer up styles based on the more simple styles already
applied.

Remember that styles lower in a stack override the styles that precede them,
whether it’s rules in a single style sheet or a list of link elements. It should
follow that our baseline styles should come first, followed by the small
device styles, followed by the enhanced styles for larger browsers. That’s
exactly what we’ll be doing in Exercise 18-3.

n oT e

For a good summary of the mobile-first
design approach, see Brad Frost’s article
“Creating a Mobile-First Responsive
Web Design” (www.html5rocks.com/
en/mobile/responsivedesign/) and his
related post “Anatomy of a Mobile-First
Responsive Web Design” (bradfrostweb.
com/blog/mobile/anatomy-of-a-mobile-
first-responsive-web-design/), which
describes the thinking that went into
every component in the demo. It’s a great
peek into a mobile web designer’s mind.

wa R n i n G

Be sure that you nest and close your
curly braces properly. It is easy to forget
that last curly brace that ends the media
query.

exercise 18-3 | Adding media queries
Now we can get to work adding the styles that will change the layout based on the
width of the display area. I’ve done the design busywork for you. You can copy the
finished styles as you see them here or grab a copy of them from the jenware-final.css
document in the materials folder.

1. Open jenware.css in a text editor. The current style sheet creates that edge-to-edge,
one-column design that works great for narrow screens but looks miserable when
it gets wide. I’ve decided that it will do just fine for smartphones in portrait and
landscape mode (up to 480 pixels wide), but after that, I want to give everything a
little more breathing room.

2. I start by adding styles for devices that are at least 481 pixels wide. With a little
extra space, I can float the product images to the left and clear the following “More
about…” links. I’ve also put margins around the white #products box and applied the
rounded corners and margins to the #testimonials box, as we did in the exercises
in Chapters 14 and 15 (Figure 18-12). The resulting media query shown here goes at
the end of the style sheet so it can selectively override properties set before it.

@media screen and (min-width: 481px) {
 #products img {
 float: left;
 margin: 0 6px 6px 0;
 }
 #products .more {
 clear: left;
 }
 #products {
 margin: 1em;
 }
 #testimonials {
 margin: 1em 5%;
 border-radius: 16px;
 }
 }

Figure 18-12. The Jenware site after
the tablet styles have been applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Responsive Web Design

Chapter 18, Css Techniques 451

Note that we are testing for the width of the display area
(width), not the width of the whole screen (device-width),
because there is often app chrome around web pages when
they are viewed on mobile devices. Testing for the width will
give us more accurate results.

3. The next set of styles kick in when the display area is at least
780 pixels wide. The styles in this media query create a two-
column layout by floating the #products div to the left and
applying a wide left margin to the #testimonials box. The
copyright paragraph is cleared so it appears at the bottom of
the page. Finally, I’ve set a max-width on the #content div so
the content it will never appear wider than 1,024 pixels, even
if the browser is expanded much wider (Figure 18-13).

This media query should go below the one we just added in
the style sheet document.

@media screen and (min-width: 780px) {
 #products {
 float: left;
 margin: 0 2% 1em;
 clear: both;
 width: 55%;
 overflow: auto;
 }
 #testimonials {
 margin: 1em 2% 1em 64%;
 }
 p#copyright {
 clear: both;
 }
 #content {
 max-width: 1024px;
 margin: 0 auto;
 }
}

4. Now you can save the document and open it in a browser
(use Chrome, Safari, Firefox, or IE9). Try resizing the window
and watch as the layout adapts on the fly. What you’re
looking at is your first responsive web page!

But what about Internet Explorer 8 and
earlier?
As I mentioned in a note earlier, Internet Explorer versions
8 and earlier do not support media queries, so the styles
within them would be ignored. That means a user with IE8
on a big desktop monitor would get the single-column,
lowest-common-denominator version of the page. Not cool.

The solution is to take the styles appropriate for the desktop
and put them in a separate style sheet served only to non-
mobile versions of Internet Explorer less than version 9 ((lt
IE 9)&(!IEMobile))

If you want to play along, copy the styles from inside the
media queries (but not the media query notation) and paste
them into a new file called ie-layout.css. From the first media
query, take the styles for floating the images and rounding
the corners of the Testimonials box. All of the styles from the
second media query apply to the desktop, so paste in all of
those too.

An IE-specific conditional comment provides a link to the
special style sheet and must come after the other style sheet
links. You can add this to the head of jenware-rwd.html.

<link rel="stylesheet" href="jenware.css">
<!--[if (lt IE 9)&(!IEMobile)]>
 <link rel="stylesheet" href="ie-layout.css">
<![endif]-->

Figure 18-13. The Jenware site on wide screens.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation452

Basic Responsive Web Design

The tricky bits
The Jenware site qualifies as a responsive design, but it is clearly simplified
and represents some best-case scenarios. Getting responsive right takes some
planning and work. Because the mobile Web is relatively new, the develop-
ment community is still encountering and working through the challenges
of mobile design. I’d like to bring you up to speed on some of the trickier
aspects and limitations of RWD and mobile design in general.

Choosing breakpoints
One of the primary design decisions in creating a responsive design is decid-
ing at which widths to introduce a significant design change. The point at
which the media query delivers a new set of styles is known as a breakpoint.
Some sites have just two layouts triggered at a single breakpoint. More com-
monly, responsive sites use three designs targeted at typical phone, tablet,
and desktop widths, and I’ve seen as many as five. How many you choose
depends on the nature of your site’s design.

But how do you choose your breakpoints? One way is to use the pixel
dimensions of popular devices, as we did in the Jenware exercise. Figure
18-14 shows a breakpoint chart that lists the dimensions of the most popular
device classes in both portrait and landscape mode as of this writing.

The reality is that new device widths are bubbling up all the time, and
we can’t be expected to create a separate design for all of them. For
that reason, there has been a move away from pixel values in media
queries toward that web development darling, the em. Many develop-
ers let their content determine where the breakpoints should happen,
which is, in short, the point at which things start looking really bad!

The website ResizeMyBrowser.
com does exactly what its name
says. Click one of the dimensions
listed on the screen (320x480, for
example) and the site resizes your
browser window to your chosen
size. That puts you in the ballpark
for testing your designs at vari-
ous device widths. Be forewarned,
however, that there is no substitute
for testing on an actual device!
This is just a handy tool during the
design process.

T o o L T i p

Figure 18-14. This breakpoint chart
shows the pixel widths of some popular
devices.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Responsive Web Design

Chapter 18, Css Techniques 453

Thinking in terms of single column, wide single column, and multiple col-
umns, then defining the logical breakpoints points in ems is a more future-
friendly approach. To learn more, I refer you to the article “The Ems have
it: Proportional Media Queries FTW!” by Lyza Gardner (blog.cloudfour.com/
the-ems-have-it-proportional-media-queries-ftw/).

Responsive images
One of the most vexing problems facing mobile web developers as of this
writing is how to get images right. Ideally, a device should download only
the image size that is appropriate for its dimensions and network speed.
The goal is to avoid downloading unnecessary data, whether that comes in
the form of an image that is larger than it needs to be for a small screen or
downloading two versions of an image (low-res and high-res) when only one
is needed.

What makes images so complicated is that knowing the device size does not
necessarily tell you anything about the network speed. Small phones may
be using slow EDGE networks or speedy WiFi. Retina iPads are hungry for
large images, but may be downloading them over 3G. In addition, you might
not want to simply scale down an image for a small display. In some cases,
it may be preferable to use a different image entirely that has been cropped
to reveal important details at smaller dimensions.

As of this writing, there seems to be more debate than solutions. Some have
proposed new HTML markup that makes it easier to specify image files
based on dimensions and screen resolution. Some feel the server needs to
play a larger role, particularly to negotiate network speeds. Others think that
a new image format that can contain multiple versions of the same image is
the answer. The sudden explosion of mobile web use caught our web tech-
nologies off-guard.

A web search for “responsive images” should help you get up to speed with
where things stand currently. Jason Grigsby has written several high-profile
articles that effectively describe the dilemma as of 2012. They should serve
as a good starting place for understanding the challenge and possible solu-
tions.

•	 “Responsive IMGs—Part 1” (blog.cloudfour.com/responsive-imgs/)

•	 “Responsive IMGs Part 2—In-depth Look at Techniques” (blog.cloud-
four.com/responsive-imgs-part-2/)

•	 “Responsive IMGs Part 3—Future of the IMG” (blog.cloudfour.com/
responsive-imgs-part-3-future-of-the-img-tag/)

•	 “The Real Conflict Behind <picture> and @srcset” (blog.cloudfour.com/
the-real-conflict-behind-picture-and-srcset/)

Resizing Images on
the server
Sencha.io Src is a service that shrinks
your images down on the fly and
delivers them at the appropriate size
to the device doing the asking. All
you need to do is add a bit of extra
markup to your img tag that points
the image to the Sencha.io server.

The Sencha.io server uses the
user agent string (a bit of text that
browsers use to identify themselves)
to look up that device in a database.
Once its width is determined, Sencha.
io Src scales the image down to that
width and sends back the smaller file.

Learn more about it here: docs.
sencha.io/0.1.3/index.html#!/guide/
src.

www.it-ebooks.info

http://blog.cloudfour.com/responsive-imgs/
http://blog.cloudfour.com/responsive-imgs-part-2/
http://blog.cloudfour.com/responsive-imgs-part-2/
http://www.it-ebooks.info/

Part III, Css for Presentation454

Wrapping Up style sheets

One size doesn’t fit all
CSS works fine for swapping out styles and moving elements around on the
screen (or even hiding them). But in many cases, smaller devices are bet-
ter served with different content or the same content in a different order.
JavaScript can handle a certain amount of rearranging and offers a way to
conditionally load content. Customizing content with JavaScript is beyond
the scope of this section, but you should know that content tweaks are pos-
sible and ought to be considered when designing for the mobile context.

Responsive limitations
For some websites, particularly text-heavy sites like blogs, a responsive rede-
sign is all that is needed to make them pleasant to use on small screens. For
other sites, however, simply adjusting the styles is not enough. When the
mobile use case for a site or service is significantly different from desktop
use (based on user testing, of course), then it may be necessary to build a
separate mobile site.

But even separate mobile sites can benefit from the basic ingredients of
responsive design we covered here. Responsive techniques are proving them-
selves to be an essential skill for every web designer.

Wrapping Up style sheets
We’ve come to the end of our style sheet exploration. By now, you should
be comfortable formatting text and even doing basic page layout using CSS.
The trick to mastering style sheets, of course, is lots of practice and testing.
If you get stuck, you will find that there are many resources online to help
you find the answers you need.

In Part IV, I hand over the keyboard to JavaScript master Mat Marquis, who
will introduce you to JavaScript and its syntax (also somehow managing to
make it very entertaining). I’ll be back in Part V to talk about web graphics.

Test Yourself
See how well you picked up the CSS techniques in this chapter with these
questions. As always, the answers are available in Appendix A.

1. What is the purpose of a CSS reset?

a. To override browser defaults

b. To make presentation more predictable across browsers

c. To prevent elements from inheriting unexpected styles

d. All of the above

For further reading
The Web is the best place to keep
up with developments in responsive
design because this stuff is changing
at a furious pace. For one-stop
shopping, I recommend Brad
Frost’s Mobile Web Best Practices
site (mobilewebbestpractices.com).
On the Resources page, Brad has
assembled lists of the best articles,
books, galleries, presentations, scripts,
and more related to developing
websites for the mobile context.

There are many books on the topic,
but the ones I found most useful
were Head First Mobile Web
(O'Reilly) by Lyza Danger Gardner
and Jason Grigsby as well as
Implementing Responsive Design
(Peachpit/New Riders) by Tim Kadlec.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 18, Css Techniques 455

2. What is the purpose of a CSS sprite?

a. To improve site performance

b. To use small images in place of large ones, reducing file size

c. To reduce the number of HTTP requests

d. a. and c.

e. All of the above

3. Name two differences between LESS and Sass.

4. What is the purpose of an image replacement technique?

a. To achieve really big text indents

b. To use a decorative graphic in place of text

c. To remove the text from the document and replace it with a decora-
tive image

d. To maintain the semantic content of the document

e. b. and d.

f. All of the above

5. What is the secret to aligning form controls and their respective labels
without tables? A general description will do here.

6. Why is it important to set the viewport size?

7. Match the media query with its meaning.

a. @media screen and (max-width: 800px) { }

b. @media screen and (min-device-width: 800px) { }

c. @media print and (orientation: portrait) { }

d. <link rel="stylesheet" href="special.css"
media="screen and (min-width: 800px)">

e. @media all and (monochrome) { }

______ Apply these styles when printed in portrait mode

______ Apply these styles to all black and white media

______ Apply this external style sheet when the display
area is at least 800 pixels wide

______ Apply these styles when the display area is under
800 pixels wide

______ Apply these styles when the whole device screen
is at least 800 pixels wide.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III, Css for Presentation456

Css Review: Table Properties

8. Match the style rules with their respective tables in Figure 18-15.

1. table { border-collapse: collapse;}
td { border: 2px black solid; }

2. table { border-collapse: separate; }
td { border: 2px black solid; }

3. table {
 border-collapse: separate;
 border-spacing: 2px 12px; }
td { border: 2px black solid; }

4. table {
 border-collapse: separate;
 border-spacing: 5px;
 border: 2px black solid; }
td { background-color: #99f; }

5. table {
 border-collapse: separate;
 border-spacing: 5px; }
td {
 background-color: #99f;
 border: 2px black solid; }

A

D

B

E

C

Figure 18-15. Match these tables with the code examples in Question 8.

Css Review: Table Properties
The following is a summary of the properties covered in this chapter.

Property Description

border-collapse Whether borders between cells are separate or collapsed

border-spacing The space between cells set to render as separate

empty-cells Whether borders and backgrounds should render for
empty cells

www.it-ebooks.info

http://www.it-ebooks.info/

457

IN THIs PART

Chapter 19
Introduction to JavaScript

Chapter 20
Using JavaScript

JavaScript for
BeHaviorS PART IV

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

459

IN THIs CHAPTER

What JavaScript is and isn’t

Variables and arrays

if/else statements and loops

Native and custom
functions

Browser objects

Event handlers

by Mat Marquis

In this chapter, I’m going to introduce you to JavaScript. Now, it’s possible
you’ve just recoiled a little bit, and I understand. We’re into full-blown
“programming language” territory now, and that can be a little intimidating.
I promise, it’s not so bad!

We’ll start by going over what JavaScript is—and what it isn’t—and discuss
some of the ways it is used. The majority of the chapter is made up of an
introduction to JavaScript syntax—variables, functions, operators, loops,
stuff like that. Will you be coding by the end of the chapter? Probably not.
But you will have a good head start toward understanding what’s going on
in a script when you see one. I’ll finish up with a look at some of the ways
you can manipulate the browser window and tie scripts to user actions such
as clicking or submitting a form.

What Is Javascript?
If you’ve made it this far in the book, you no doubt already know that
JavaScript is the programming language that adds interactivity and custom
behaviors to our sites. It is a client-side scripting language, which means it
runs on the user’s machine and not on the server, as other web programming
languages such as PHP and Ruby do. That means JavaScript (and the way we
use it) is reliant on the browser’s capabilities and settings. It may not even be
available at all, either because the user has chosen to turn it off or because
the device doesn’t support it, which good developers keep in mind and
plan for. JavaScript is also what is known as a dynamic and loosely typed
programming language. Don’t sweat this description too much; I’ll explain
what all that means later.

First, I want to establish that JavaScript is kind of misunderstood.

IntroDuCtIon to
JavasCrIPt

CHAPTER 19

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors460

What Is Javascript?

What it isn’t
Right off the bat, the name is pretty confusing. Despite its name, JavaScript
has nothing to do with Java. It was created by Brendan Eich at Netscape in
1995 and originally named “LiveScript.” But Java was all the rage around
that time, so for the sake of marketing, “LiveScript” became “JavaScript.”
Or just “JS,” if you want to sound as cool as one possibly can while talking
about JavaScript.

JS also has something of a bad reputation. For a while it was synonymous
with all sorts of unscrupulous Internet shenanigans—unwanted redirects,
obnoxious pop-up windows, and a host of nebulous “security vulner-
abilities,” just to name a few. There was a time when JavaScript allowed less
reputable developers to do all these things (and worse), but modern brows-
ers have largely caught on to the darker side of JavaScript development and
locked it down. We shouldn’t fault JavaScript itself for that era, though. As
the not-so-old cliché goes: “with great power comes great responsibility.”
JavaScript has always allowed developers a tremendous amount of control
over how pages are rendered and how our browsers behave, and it’s up to
us to use that control in responsible ways.

What it is
Now we know what JavaScript isn’t: it isn’t related to Java, and it isn’t a
mustachioed villain lurking within your browser, wringing its hands and
waiting to alert you to “hot singles in your area.” Let’s talk more about what
JavaScript is.

JavaScript is a lightweight but incredibly powerful scripting language. We
most frequently encounter it through our browsers, but JavaScript has snuck
into everything from native applications to PDFs to ebooks. Even web serv-
ers themselves can be powered by JavaScript.

As a dynamic programming language, JavaScript doesn’t need to be run
through any form of compiler that interprets our human-readable code into
something the browser can understand. The browser effectively reads the
code the same way we do and interprets it on the fly.

JavaScript is also loosely typed. All this means is that we don’t necessarily
have to tell JavaScript what a variable is. If we’re setting a variable to a value
of 5, we don’t have to programmatically specify that variable as a number.
As you may have noted, 5 is already a number, and JavaScript recognizes it
as such.

Now, you don’t necessarily need to memorize these terms to get started writ-
ing JS, mind you—to be honest, I didn’t. Even now my eyes gloss over a little
as I read them. This is just to introduce you to a few of the terms you’ll hear

n oT e

JavaScript was standardized in 1996 by
the European Computer Manufacturer’s
Association (ECMA), which is why you
sometimes hear it called ECMAScript.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Javascript?

Chapter 19, Introduction to Javascript 461

often while you’re learning JavaScript, and they’ll start making more and more
sense as you go along. This is also to provide you with conversation material
for your next cocktail party! “Oh, me? Well, I’ve been really into loosely
typed dynamic scripting languages lately.” People will just nod silently at
you, which I think means you’re doing well conversationally. I don’t go to a
lot of cocktail parties.

What Javascript can do
Most commonly we’ll encounter JavaScript as a way to add interactivity to a
page. Where the “structural” layer of a page is our markup and the “presen-
tational” layer of a page is made up of CSS, the third “behavioral” layer is
made up of our JavaScript. All of the elements, attributes, and text on a web
page can be accessed by scripts using the DOM (Document Object Model),
which we’ll be looking at in Chapter 20, Using JavaScript. We can also write
scripts that react to user input, altering either the contents of the page, the
CSS styles, or the browser’s behavior on the fly.

You’ve likely seen this in action if you’ve ever attempted to register for a
website, entered a username, and immediately received feedback that the
username you’ve entered is already taken by someone else (Figure 19-1).
The red border around the text input and the appearance of the “sorry, this
username is already in use” message are examples of JavaScript altering the
contents of the page, and blocking the form submission is an example of
JavaScript altering the browser’s default behavior.

Figure 19-1. JavaScript detects that a username is not available and then inserts a
message and alters styles to make the problem apparent.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors462

What Is Javascript?

In short, JavaScript allows you to create highly responsive interfaces that
improve the user experience and provide dynamic functionality, without
waiting for the server to load up a new page. For example, we can use
JavaScript to do any of the following:

•	 Suggest the complete term a user might be entering in a search box as he
types. You can see this in action on Google.com (Figure 19-2).

Figure 19-2. Google.com uses JavaScript to automatically complete a search term as it is
typed in.

•	 Request content and information from the server and inject it into the
current document as needed, without reloading the entire page—this is
commonly referred to as “Ajax.”

•	 Show and hide content based on a user clicking on a link or heading, to
create a “collapsible” content area (Figure 19-3).

•	 Test for browsers’ individual features and capabilities. For example, one
can test for the presence of “touch events,” indicating that the user is
interacting with the page through a mobile device’s browser, and add
more touch-friendly styles and interaction methods.

•	 Fill in gaps where a browser’s built-in functionality falls short, or add
some of the features found in newer
browsers to older browsers. These
kinds of scripts are usually called
shims or polyfills.

•	 Load an image or content in a
custom styled “lightbox”—isolated
on the page using CSS—after a user
clicks on a thumbnail version of the
image (Figure 19-4).

This list is nowhere near exhaustive!

Figure 19-3. JavaScript can be used to
reveal and hide portions of content.

Figure 19-4. JavaScript can be used to
load images into a lightbox-style gallery.

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a script

Chapter 19, Introduction to Javascript 463

Adding Javascript to a Page
Like CSS, you can embed a script right in a document or keep it in an exter-
nal file and link it to the page. Both methods use the script element.

Embedded script
To embed a script on a page, just add the code as the content of a script
element:

<script>
 … JavaScript code goes here
</script>

External scripts
The other method uses the src attribute to point to a script file (with a .js
suffix) by its URL. In this case, the script element has no content.

<script src="my_script.js"></script>

The advantage to external scripts is that you can apply the same script to
multiple pages (the same benefit external style sheets offer). The downside,
of course, is that each external script requires an additional HTTP request of
the server, which slows down performance.

script placement
The script element go anywhere in the document, but the most common
places for scripts are in the head of the document and at the very end of the
body. It is recommended that you don’t sprinkle them throughout the docu-
ment, because they would be difficult to find and maintain.

For most scripts, the end of the document, just before the </body> tag, is
the preferred placement because the browser will be done parsing the docu-
ment and its DOM structure. Consequently, that information will be ready
and available by the time it gets to the scripts and they can execute faster.
In addition, the script download and execution blocks the rendering of the
page, so moving the script to the bottom improves the perceived perfor-
mance. However, in some cases, you might want your script to do something
before the body completely loads, so putting it in the head will result in bet-
ter performance.

The Anatomy of a script
There’s a reason why the book JavaScript: The Definitive Guide by David
Flanagan (O’Reilly) is 1,100 pages long. There’s a lot to say about JavaScript!
In this section, we have only a few pages to make you familiar with the basic
building blocks of JavaScript so you can begin to understand scripts when
you encounter them. Many developers have taught themselves to program

n oT e

In HTML 4.01 the script tag must
include the type attribute in order to
be valid:

<script type="text/
javascript">…</script>

For XHTML documents, you must iden-
tify the content of the script element
as CDATA the code in the following
wrapper:

<script type="text/javascript">
 // <![CDATA[
 …JavaScript code goes here
 //]]>
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors464

The Anatomy of a script

by finding existing scripts and adapting them for their own needs. After
some practice, they are ready to start writing their own from scratch. You
may want to learn to write JavaScript yourself as well to round out your web
designer skill set. Recognizing the parts of a script is the first step, so that’s
where we’ll start.

Originally, JavaScript’s functionality was mostly limited to crude methods
of interaction with the user. We could use a few of JavaScript’s built-in
functions (Figure 19-5) to provide user feedback, such as alert() to push a
notification to a user and confirm() to ask a user to approve or decline an
action. To request the user’s input, we were more or less limited to the built-
in prompt() function. Although these methods still have their time and place
today, they’re jarring, obtrusive, and—in common opinion, at least—fairly
obnoxious ways of interacting with users. As JavaScript has evolved over
time, we’ve been afforded much more graceful ways of adding behavior to
our pages, creating a more seamless experience for our users.

In order to take advantage of these interaction methods, we have to first
understand the underlying logic that goes into scripting. These are logic pat-
terns common to all manner of programming languages, although the syntax
may vary. To draw a parallel between programming languages and spoken
languages, although the vocabulary may vary from one language to another,
many grammar patterns are shared by the majority of them.

By the end of this section, you’re going to know about variables, arrays, com-
parison operators, if/else statements, loops, functions, and more. Ready?

The basics
There are a few common syntactical rules that wind their way though all of
JavaScript.

It is important to know that JavaScript is case-sensitive. A variable named
“myVariable”, a variable named “myvariable”, and a variable named
“MYVariable” will be treated as three different objects. Also, whitespace
such as tabs and spaces are ignored, unless they’re part of a string of text
and enclosed in quotes.

statements
A script is made up of a series of statements. A statement is a command
that tells the browser what to do. Here is a simple statement that makes the
browser display an alert with the phrase “Thank you.”

alert("Thank you.");

The semicolon at the end of the statement tells JavaScript that it’s the end of
the command, just as a period ends a sentence. According to the JavaScript
standard, a line break will also trigger the end of a command, but it is a best
practice to end each statement with a semicolon.

alert("Hi there");

confirm("I′m gonna do something, okay?");

prompt("What should I do?");

Figure 19-5. Built-in JavaScript functions:
alert() (top), confirm() (middle), and
prompt() (bottom).

JavaScript is case-sensitive.

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a script

Chapter 19, Introduction to Javascript 465

Comments
JavaScript allows you to leave comments that will be ignored at the time the
script is executed, so you can leave reminders and explanations throughout
your code. This is especially helpful if this code is likely to be edited by
another developer in the future.

There are two methods of using comments. For single-line comments, use
two slash characters (//) at the beginning of the line. You can put single-
line comments on the same line as a statement, as long as it comes after the
statement. It does not need to be closed, as a line break effectively closes it.

// This is a single-line comment.

Multiple-line comments use the same syntax that you’ve seen in CSS.
Everything within the /* */ characters is ignored by the browser. You can
use it to “comment out” notes and even chunks of the script when trouble-
shooting.

/* This is a multi-line comment.
Anything between these sets of characters will be
completely ignored when the script is executed.
This form of comment needs to be closed. */

I’ll be using the single-line comment notation to add short explanations to
example code, and we’ll make use of the alert() function we saw earlier
(Figure 19-5) so we can quickly view the results of our work.

Variables
If you’re anything like me, the very term “variables” triggers nightmarish
flashbacks to eighth grade math class. The premise is pretty much the same,
though your teacher doesn’t have a bad comb-over this time around.

A variable is like an information container. You give it a name and then
assign it a value, which can a number, text string, an element in the DOM,
or a function—anything, really. This gives us a convenient way to reference
that value later by name. The value itself can be modified and reassigned in
whatever way our scripts’ logic dictates.

The following declaration creates a variable with the name “foo” and assigns
it the value 5:

var foo = 5;

We start by declaring the variable using the var keyword. The single equals
sign (=) indicates that we are assigning it a value. Because that’s the end
of our statement, we end the line with a semicolon. Variables can also be
declared without the var keyword, which impacts what part of your script
will have access to the information they contain. We’ll discuss that further
in the Variable Scope and the var keyword section later on in this chapter.

You can use anything you like as a variable name, but make sure it’s a name
that will make sense to you later on. You wouldn’t want to name a variable

A variable is like an
information container.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors466

The Anatomy of a script

something like “data”; it should describe the information it contains. In our
very specific example above, “numberFive” might be a more useful name
than “foo.” There are a few rules around variable naming:

•	 It must start with a letter or an underscore.

•	 It may contain letters, digits, and underscores in any combination.

•	 It may not contain character spaces. As an alternative, use underscores
in place of spaces or close up the space and use camel case instead (for
example, my_variable or myVariable).

•	 It may not contain special characters (! . , / \ + * = etc.).

You can change the value of a variable at any time by re-declaring it any-
where in your script. Remember: JavaScript is case-sensitive, and so are
those variable names.

Data types
The values we assign to variables fall under a few distinct data types.

Undefined

The simplest of these data types is likely “undefined.” If we declare a
variable by giving it a name but no value, that variable contains a value
of “undefined.”

var foo;

alert(foo); // This will open a dialog containing "undefined".

Odds are you won’t find a lot of use for this right away, but it’s worth
knowing for the sake of troubleshooting some of the errors you’re likely
to encounter early on in your JavaScript career. If a variable has a value
of “undefined” when it shouldn’t, you may want to double-check that it
has been declared correctly or that there isn’t a typo in the variable name.
(We’ve all been there.)

Null

Similar to the above, assigning a variable of “null” (again, case-sensitive)
simply says, “Define this variable, but give it no inherent value.”

var foo = null;
alert(foo); // This will open a dialog containing "null".

Numbers

You can assign variables numeric values.

var foo = 5;
alert(foo); // This will open a dialog containing "5".

The word “foo” now means the exact same thing as the number five as
far as JavaScript is concerned. Because JavaScript is “loosely typed,” we
don’t have to tell our script to treat the variable foo as the number five.

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a script

Chapter 19, Introduction to Javascript 467

The variable behaves the same as the number itself, so you can do things
to it that you would do to any other number using classic mathematical
notation: +, -, *, and / for plus, minus, multiply, and divide, respectively.
In this example, we use the plus sign (+) to add foo to itself (foo + foo).

var foo = 5;
alert(foo + foo); // This will alert "10".

Strings

Another type of data that can be saved to a variable is a string, which is
basically a line of text. Enclosing characters in a set of single or double
quotes indicates that it’s a string, as shown here:

var foo = "five";
alert(foo); // This will alert "five"

The variable foo is now treated exactly the same as the word “five”. This
applies to any combination of characters: letters, numbers, spaces, and
so on. If the value is wrapped in quotation marks, it will be treated as a
string of text. If we were to wrap the number five (5) in quotes and assign
it to a variable, that variable wouldn’t behave as a number; instead, it
would behave as a string of text containing the character “5.”

Earlier we saw the plus (+) sign used to add numbers. When the plus sign
is used with strings, it sticks the strings together (called concatenation)
into one long string, as shown in this example.

var foo = "bye"
alert (foo + foo); // This will alert "byebye"

Notice what the alert returns in the following example when we define
the value 5 in quotation marks, treating it as a string instead of a number.

var foo = "5";
alert(foo + foo); // This will alert "55"

If we concatenate a string and a number, JavaScript will assume that the
number should be treated as a string as well, since the math would be
impossible.

var foo = "five";
var bar = 5;
alert(foo + bar); // This will alert "five5"

Booleans

We can also assign a variable a “true” or “false” value. This is called a
Boolean value, and it is the lynchpin for all manner of advanced logic.
Boolean values use the true and false keywords built into JavaScript, so
quotation marks are not necessary.

var foo = true; // The variable "foo" is now true

Just as with numbers, if we were to wrap the value above in quotation
marks, we’d be saving the word “true” to our variable instead of the
inherent value of “true” (i.e., “not false”).

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors468

The Anatomy of a script

In a sense, everything in JavaScript has either an inherently “true” or
“false” value. “null”, “undefined”, “0”, and empty strings (“”) are all
inherently false, while every other value is inherently true. These values,
although not identical to the Booleans “true” and “false”, are commonly
referred to as being “truthy” and “falsy.” I promise I didn’t make that up.

Arrays
An array is a group of multiple values (called members) that can be assigned
to a single variable. The values in an array are said to be indexed, meaning
you can refer to them by number according to the order in which they appear
in the list. The first member is given the index number 0, the second is 1,
and so on, which is why one almost invariably hears us nerds start counting
things at zero—because that’s how JavaScript counts things, and many other
programming languages do the same. We can avoid a lot of future coding
headaches by keeping this in mind.

So, let’s say our script needs all of the variables we defined earlier. We could
define them three times and name them something like foo1, foo2, and so
on, or we can store them in an array, indicated by square brackets ([]).

var foo = [5, "five", "5"];

Now anytime you need to access any of those values, you can grab them
from the single foo array by referencing their index number:

alert(foo[0]); // Alerts "5"

alert(foo[1]); // Alerts "five"

alert(foo[2]); // Also alerts "5"

Comparison operators
Now that we know how to save values to variables and arrays, the next logi-
cal step is knowing how to compare those values. There is a set of special
characters called comparison operators that evaluate and compare values in
different ways:

== Is equal to

!= Is not equal to

=== Is identical to (equal to and of the same data type)

!== Is not identical to

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a script

Chapter 19, Introduction to Javascript 469

There’s a reason all of these definitions read as parts of a statement. In com-
paring values, we’re making an assertion, and the goal is to obtain a result
that is either inherently true or inherently false. When we compare two
values, JavaScript evaluates the statement and gives us back a Boolean value
depending on whether the statement is true or false.

alert(5 == 5); // This will alert "true"

alert(5 != 6); // This will alert "true"

alert(5 < 1); // This will alert "false"

Equal versus identical
The tricky part is understanding the difference between “equal to” (==) and
“identical to” (===). We already learned that all of these values fall under a
certain data type. For example, a string of “5” and a number 5 are similar,
but they’re not quite the same thing.

Well, that’s exactly what === is meant to check.

alert("5" == 5); // This will alert "true". They're both "5".

alert("5" === 5); // This will alert "false". They're both "5", but
they're not the same data type.

alert("5" !== 5); // This will alert "true", since they're not the
same data type.

Even if you have to read it a couple of times, understanding the preceding
sentence means you’ve already begun to adopt the special kind of crazy one
needs to be a programmer. Welcome! You’re in good company.

Mathematical Operators
The other type of operator is a mathematical operator, which performs math-
ematical functions on numeric values. We touched briefly on the straightfor-
ward mathematical operators for add (+), subtract (-), multiply (*), and divide
(/). There are also some useful shortcuts you should be aware of:

+= Adds the value to itself

++ Increases the value of a number (or a variable containing a number
value) by 1

-- Decreases the value of a number (or a variable containing a number
value) by 1

wa R n i n G

Be careful not to accidentally use a
single equals sign, or you’ll be reassign-
ing the value of the first variable to the
value of the second variable!

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors470

The Anatomy of a script

If/else statements
If/else statements are how we get JavaScript to ask itself a true/false ques-
tion. They are more or less the foundation for all the advanced logic that can
be written in JavaScript, and they’re about as simple as programming gets. In
fact, they’re almost written in plain English. The structure of a conditional
statement is as follows.

if(true) {
 // Do something.
}

It tells the browser “if this condition is met, then execute the commands list-
ed between the curly braces ({ }).” JavaScript doesn’t care about whitespace
in our code, remember, so the spaces on either side of the (true) are purely
for the sake of more readable code.

Here is a simple example using the array we declared earlier:

var foo = [5, "five", "5"];

if(foo[1] === "five") {
 alert("This is the word five, written in plain English.");
}

Since we’re making a comparison, JavaScript is going to give us a value of
either “true” or “false”. The highlighted line of code breaks says “true or
false: the value of the foo variable with an index of 1 is identical to the word
‘five’?”

In this case, the alert would fire because the foo variable with an index of 1
(the second in the list, if you’ll remember) is identical to “five”. In this case,
it is indeed true, and the alert fires.

We can also explicitly check if something is false, by using the != compari-
son operator that reads as “not equal to.”

if(1 != 2) {
 alert("If you're not seeing this, we have bigger problems than

JavaScript.");
 // 1 is never equal to 2, so we should always see this alert.
}

I’m not much good at math, but near as I can tell, 1 will never be equal to
2. JavaScript says, “That ‘1 is not equal to 2’ line is a true statement, so I’ll
run this code.”

If the statement doesn’t evaluate to “true”, the code inside of the curly braces
will be skipped over completely:

if(1 == 2) {
 alert("If you're seeing this, we have bigger problems than

JavaScript.");
// 1 is not equal to 2, so this code will never run.
}

Idiomatic Javascript
There is an effort in the JavaScript
community to create a style guide
for writing JavaScript code. The
document “Principles of Writing
Consistent, Idiomatic JavaScript”
states the following: “All code in any
code-base should look like a single
person typed it, no matter how many
people contributed.” To achieve that
goal, a group of developers has
written an Idiomatic Style Manifesto
that describes how whitespace, line
breaks, quotation marks, functions,
variables, and more should be written
to achieve “beautiful code.” Learn
more about it at github.com/rwldrn/
idiomatic.js/.

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a script

Chapter 19, Introduction to Javascript 471

That covers “if,” but what about “else”?
Lastly—and I promise we’re almost done here—what if we want to do one
thing if something is true and something else if that thing is false? We could
write two if statements, but that’s a little clunky. Instead, we can just say
“else, do something…else.”

var test = "testing";
if(test == "testing") {
 alert("You haven't changed anything.");
} else {
 alert("You've changed something!");
}

Changing the value of the testing variable to something else—anything
other than the word “testing”—will trigger the alert “You’ve changed some-
thing!”

Loops
There are cases in which we’ll want to go through every item in an array
and do something with it, but we won’t want to write out the entire list of
items and repeat ourselves a dozen or more times. You are about to learn a
technique of devastating power, readers: loops.

I know. Maybe I made loops sound a little more exciting than they seem, but
they are incredibly useful. With what we’ve covered already, we’re getting
good at dealing with single variables, but that can get us only so far. Loops
allow us to easily deal with huge sets of data.

Say we have a form that requires none of the fields to be left blank. If we use
the DOM to fetch every text input on the page, the DOM provides an array
of every text input element. (I’ll tell you more about how the DOM does this
in the next chapter.) We could check every value stored in that array one
item at a time, sure, but that’s a lot of code and a maintenance nightmare.
If we use a loop to check each value, we won’t have to modify our script,
regardless of how many fields are added to or removed from the page. Loops
allow us to act on every item in an array, regardless of that array’s size.

There are several ways to write a loop, but the for method is one of the most
popular. The basic structure of a for loop is as follows:

for(initialize the variable; test the condition; alter the value;)
{
 // do something
}

Here is an example of a for loop in action.

for(var i = 0; i <= 2; i++) {
 alert(i); // This loop will trigger three alerts, reading "0", "1",

and "2" respectively.
}

exercise 19-1|
English to
Javascript
translation
In this quick exercise, you can get
a feel for variables, arrays, and if/
else statement by translating the
statements written in English into
lines of JavaScript code. You can find
the answers in Appendix A.

1. Create a variable “friends” and
assign it an array with four of your
friends’ names.

2. Show the user a dialog that
displays the third name in your list
of “friends”.

3. Create the variable “name” and
assign it a string value that is your
first name.

4. If the value of “name” is identical
to “Jennifer”, show the user a
dialog box that says “That’s my
name too!”

5. Create the variable “myVariable”
and assign it a number value
between 1 and 10. If “myVariable”
is greater than five, show the user
a dialog that says “upper.” If not,
show the user a dialog that says
“lower.”

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors472

The Anatomy of a script

That’s a little dense, so let’s break it down part-by-part:

for ()

First, we’re calling the for statement, which is built into JavaScript. It
says, “For every time this is true, do this.” Next we need to supply that
statement with some information.

var i = 0;

This creates a new variable, i, with its value set to zero. You can tell it’s
a variable by the single equals sign. More often than not you’ll see coders
using the letter “i” (short for “index”) as the variable name, but keep in
mind that you could use any variable name in its place. It’s a common
convention, not a rule.

We set that initial value to “0” because we want to stay in the habit of
counting from zero up. That’s where JavaScript starts counting, after all.

1 <=2;

With i <= 2;, we’re saying “for as long as i is less-than or equal to 2,
keep on looping.” Since we’re counting from zero, that means the loop
will run three times.

i++

Finally, i++ is shorthand for “every time this loop runs, add one to the
value of i (++ is one of the mathematical shortcut operators we saw ear-
lier). Without this step, i would always equal zero, and the loop would
run forever! Fortunately, modern browsers are smart enough not to let
this happen. If one of these three pieces is missing, the loop simply won’t
run at all.

{ script }

Anything inside of those curly braces is executed once for each time the
loop runs, which is three times in this case. That i variable is available for
use in the code the loop executes as well, as we’ll see next.

Let’s go back to the “check each item in an array” example. How would we
write a loop to do that for us?

var items = ["foo", "bar", "baz"]; // First we create an array.
for(var i = 0; i <= items.length; i++) {
 alert(items[i]); // This will alert each item in the array.
}

This example differs from our first loop in two key ways:

items.length

Instead of using a number to limit the number of times the loop runs,
we’re using a property built right into JavaScript to determine the
“length” of our array, which is the number of items it contains. .length

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a script

Chapter 19, Introduction to Javascript 473

is just one of the standard properties and methods of the Array object in
JavaScript.

items[i]

Remember how I mentioned that we can use that i variable inside of the
loop? Well, we can use it to reference each index of the array. Good thing
we started counting from zero; if we had set the initial value of i to 1, the
first item in the array would have been skipped.

Now no matter how large or small that array should become, the loop will
execute only as many times as there are items in the array, and will always
hold a convenient reference to each item in the array.

There are literally dozens of ways to write a loop, but this is one of the
more common patterns you’re going to encounter out there in the wild.
Developers use loops to perform a number of tasks, such as:

•	 Looping through a list of elements on the page and checking the value of
each, applying a style to each, or adding/removing/changing an attribute
on each. For example, we could loop through each element in a form and
ensure that users have entered a valid value for each before they proceed.

•	 Creating a new array of items in an original array that have a certain
value. We check the value of each item in the original array within the
loop, and if the value matches the one we’re looking for, we populate a
new array with only those items. This turns the loop into a filter, of sorts.

Functions
I’ve introduced you to a few functions already in a sneaky way. Here’s an
example of a function that you might recognize:

alert("I've been a function all along!");

A function is a bit of code that doesn’t run until it is referenced or called.
alert() is a function built into our browser. It’s a block of code that runs
only when we explicitly tell it to. In a way, we can think of a function as a
variable that contains logic, in that referencing that variable will run all the
code stored inside it.

All functions share a common pattern (Figure 19-6). The function name
is always immediately followed by a set of parentheses (no space), then
a pair of curly braces that contain their associated code. The parentheses
sometimes contain additional information used by the function called argu-
ments. Arguments are data that can influence how the function behaves. For
example, the alert function we know so well accepts a string of text as an
argument, and uses that information to populate the resulting dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors474

The Anatomy of a script

addNumbers(a,b) {
 return a + b;
}

Function name Arguments

Code to
execute

Multiple arguments are separated by commas

addNumbers() {
 return 2 + 2;
}

Not all functions take arguments

Figure 19-6. The structure of a function.

There are two types of functions: those that come “out-of-the-box” (native
JavaScript functions) and those that you make up yourself (custom func-
tions). Let’s look at each.

Native functions
There are hundreds of predefined functions built into JavaScript, including:

alert(), confirm(), and prompt()

These functions trigger browser-level dialog boxes.

Date()

Returns the current date and time.

parseInt("123")

This function will, among other things, take a string data type containing
numbers and turn it into a number data type. The string is passed to the
function as an argument.

setTimeout(functionName, 5000)

Will execute a function after a delay. The function is specified in the first
argument, and the delay is specified in milliseconds in the second (in the
example, 5000 milliseconds equals 5 seconds).

There are scores more beyond this, as well.

Custom functions
To create a custom function, we type the function keyword followed by a
name for the function, followed by opening and closing parentheses, fol-
lowed by opening and closing curly brackets.

function name() {
 // Our function code goes here.
}

Just as with variables and arrays, the function’s name can be anything you
want, but all the same naming syntax rules apply.

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a script

Chapter 19, Introduction to Javascript 475

If we were to create a function that just alerts some text (which is a little
redundant, I know), it would look like this:

function foo() {
 alert("Our function just ran!");

 // This code won't run until we call the function 'foo()'
}

We can then call that function and execute the code inside it anywhere in
our script by writing the following:

foo(); // Alerts "Our function just ran!"

We can call this function any number of times throughout our code. It saves
a lot of time and redundant coding.

Arguments
Having a function that executes the exact same code throughout your script
isn’t likely to be all that useful. We can “pass arguments” (provide data) to
native and custom functions in order to apply a function’s logic to different
sets of data at different times.

To hold a place for the arguments, add one or more comma-separated
variables in the parentheses at the time the function is defined. Then, when
we call that function, anything we include between the parentheses will be
passed into that variable as the function executes. This might sound a little
confusing, but it’s not so bad once you see it in action.

For example, let’s say we wanted to create a very simple function that alerts
the number of items contained in an array. We’ve already learned that we
can use .length to get the number of items in an array, so we just need a way
to pass the array to be measured into our function. We do that by supplying
the array to be measured as an argument. In order to do that, we specify a
variable name in the parentheses when we define our custom function. That
variable will then be available inside of the function and will contain what-
ever argument we pass when we call the function.

function alertArraySize(arr) {
 alert(arr.length);
}

Now any array we specify between the parentheses when we call the func-
tion will be passed to the function with the variable name arr. All we need
to do is get its length.

var test = [1,2,3,4,5];
alertArraySize(test); // Alerts "5"

Returning a value
This part is particularly wild, and incredibly useful.

It’s pretty common to use a function to calculate something and then give
you a value that you can use elsewhere in your script. We could accomplish

An argument is a value or
data that a function uses
when it runs.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors476

The Anatomy of a script

this using what we know now, through clever application of variables, but
there’s a much easier way.

The return keyword inside a function effectively turns that function into a
variable with a dynamic value! This one is a little easier to show than it is to
tell, so bear with me while we consider this example.

function addNumbers(a,b) {
 return a + b;
}

We now have a function that accepts two arguments and adds them togeth-
er. That wouldn’t be much use if the result always lived inside that function,
because we wouldn’t be able to use the result anywhere else in our script.
Here we use the return keyword to pass the result out of the function. Now
any reference you make to that function gives you the result of the func-
tion—just like a variable would.

alert(addNumbers(2,5)); // Alerts "7"

In a way, the addNumbers function is now a variable that contains a dynamic
value: the value of our calculation. If we didn’t return a value inside of our
function, the preceding script would alert “undefined”, just like a variable
that we haven’t given a value.

The return keyword has one catch. As soon as JavaScript sees that it’s time
to return a value, the function ends. Consider the following:

function bar() {
 return 3;
 alert("We'll never see this alert.");
}

When you call this function using bar(), the alert on the second line never
runs. The function ends as soon as it sees it’s time to return a value.

Variable scope and the var keyword
There are times when you’ll want a variable that you’ve defined within a
function to be available anywhere throughout your script. Other times, you
may want to restrict it and make it available only to the function it lives in.
This notion of the availability of the variable is known as its scope. A variable
that can be used by any of the scripts on your page is globally scoped, and
a variable that’s available only within its parent function is locally scoped.

JavaScript variables use functions to manage their scope. If a variable is
defined outside of a function, it will be globally scoped and available to all
scripts. When you define a variable within a function and you want it to be
used only by that function, you can flag it as locally scoped by preceding the
variable name with the var keyword.

var foo = "value";

www.it-ebooks.info

http://www.it-ebooks.info/

The Anatomy of a script

Chapter 19, Introduction to Javascript 477

To expose a variable within a function to the global scope, we omit the var
keyword and simply define the variable:

foo = "value";

You need to be careful about how you define variables within functions, or
you could end up with unexpected results. Take the following JavaScript
snippet, for example:

function double(num){
 total = num + num;
 return total;
}
var total = 10;
var number = double(20);
alert(total); // Alerts 40.

You may expect that because you specifically assigned a value of 10 to the
variable total, the alert(total) function at the end of the script would
return 10. But because we didn’t scope the total variable in the function
with the var keyword, it bleeds into the global scope. Therefore, although
the variable total is set to 10, the following statement runs the function
and grabs the value for total defined there. Without the var, the variable
“leaked out.”

As you can see, the trouble with global variables is that they’ll be shared
throughout all the scripting on a page. The more variables that bleed into
the global scope, the better the chances you’ll run into a “collision” in which
a variable named elsewhere (in another script altogether, even) matches one
of yours. This can lead to variables being inadvertently redefined with unex-
pected values, which can lead to errors in your script.

Remember that we can’t always control all the code in play on our page. It’s
very common for pages to include code written by third parties, for example:

•	 Scripts to render advertisements

•	 User-tracking and analytics scripts

•	 Social media “share” buttons

It’s best not to take any chances on variable collisions, so when you start
writing scripts on your own, locally scope your variables whenever you can
(see sidebar).

This concludes our little (OK, not so little) introductory tour of JavaScript
syntax. There’s a lot more to it, but this should give you a decent founda-
tion for learning more on your own and being able to interpret scripts when
you see them. We have just a few more JavaScript-related features to tackle
before we look at a few examples.

Keeping variables
out of the global
scope
If you want to be sure that all of your
variables stay out of the global scope,
you can put all of the your JavaScript
in the following wrapper:

<script>

(function() {

 //All your code here!

})();

<script>

This little quarantining solution is
called an IIFE (Independently Invoked
Functional Expression), and we owe
this method and the associated
catchy term to Ben Alman.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors478

The Browser Object

The Browser Object
In addition to being able to control elements on a web page, JavaScript also
gives you access to and the ability to manipulate the parts of the browser
window itself. For example, you might want to get or replace the URL that
is in the browser’s address bar, or open or close a browser window.

In JavaScript, the browser is known as the window object. The window object
has a number of properties and methods that we can use to interact with it.
In fact, our old friend alert() is actually one of the standard browser object
methods. Table 19-1 lists just a few of the properties and methods that can
be used with window to give you an idea of what’s possible.

Table 19-1. Browser properties and methods

Property/method Description

event Represents the state of an event

history Contains the URLs the user has visited within a browser window

location Gives read/write access to the URI in the address bar

status Sets or returns the text in the status bar of the window

alert() Displays an alert box with a specified message and an OK
button

close() Closes the current window

confirm() Displays a dialog box with a specified message and an OK
and a Cancel button

focus() Sets focus on the current window

Events
JavaScript can access objects in the page and the browser window, but did
you know it’s also “listening” for certain events to happen? An event is an
action that can be detected with JavaScript, such as when the document
loads or when the user clicks on an element or just moves her mouse over
it. HTML 4.0 made it possible for a script to be tied to events on the page
whether initiated by the user, the browser itself, or other scripts. This is
known as event binding.

In scripts, an event is identified by an event handler. For example, the onload
event handler triggers a script when the document loads, and the onclick
and onmouseover handlers trigger a script when the user clicks or mouses
over an element, respectively. Table 19-2 lists some of the most common
event handlers.

Event handlers "listen" for
certain document, browser,
or user actions and bind
scripts to those actions.

www.it-ebooks.info

http://www.it-ebooks.info/

Events

Chapter 19, Introduction to Javascript 479

Table 19-2. Common events

Event handler Event description

onblur An element loses focus

onchange The content of a form field changes

onclick The mouse clicks an object

onerror An error occurs when the document or an image loads

onfocus An element gets focus

onkeydown A key on the keyboard is pressed

onkeypress A key on the keyboard is pressed or held down

onkeyup A key on the keyboard is released

onload A page or an image is finished loading

onmousedown A mouse button is pressed

onmousemove The mouse is moved

onmouseout The mouse is moved off an element

onmouseover The mouse is moved over an element

onmouseup A mouse button is released

onsubmit The submit button is clicked in a form

There are three common methods for applying event handlers to items
within our pages:

•	 As an HTML attribute

•	 As a method attached to the element

•	 Using addEventListener

In the examples of the latter two approaches, we’ll use the window object.
Any events we attach to window apply to the entire document. We’ll be using
the onclick event in all of these as well.

As an HTML attribute
You can specify the function to be run in an attribute in the markup as
shown in the following example.

<body onclick="myFunction();"> /* myFunction will now run when the user
clicks anything within 'body' */

Although still functional, this is an antiquated way of attaching events to
elements within the page. It should be avoided for the same reason we avoid
using style attributes in our markup to apply styles to individual elements.
In this case, it blurs the line between the semantic layer and behavioral layers
of our pages, and can quickly lead to a maintenance nightmare.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors480

Events

As a method
This is another somewhat dated approach to attaching events, though it
does keep things strictly within our scripts. We can also attach functions
using helpers already built into JavaScript.

window.onclick = myFunction; /* myFunction will run when the user
clicks anything within the browser window */

We can also use an anonymous function rather than a predefined one:

window.onclick = function() {
 /* Any code placed here will run when the user clicks anything

within the browser window */
};

This approach has the benefit of both simplicity and ease of maintenance,
but does have a fairly major drawback: we can bind only one event at a time
with this method.

window.onclick = myFunction;

window.onclick = myOtherFunction;

In the example just shown, the second binding overwrites the first, so when
the user clicks inside the browser window, only myOtherFunction will run.
The reference to myFunction is thrown away.

addEventListener
Although a little more complex at first glance, this approach allows us to
keep our logic within our scripts and allows us to perform multiple bindings
on a single object. The syntax is a bit more verbose. We start by calling the
addEventListener method of the target object, and then specify the event in
question and the function to be executed as two arguments.

window.addEventListener("click", myFunction);

Notice that we omit the preceding “on” from the event handler with this
syntax.

Like the previous method, addEventListener can be used with an anony-
mous function as well:

window.addEventListener("click", function(e) {

});

n oT e

For more information on addEventLis-
tener, see the “element.addEventLis-
tener” page on the Mozilla Developer
Network (developer.mozilla.org/en/
DOM/element.addEventListener)

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

Chapter 19, Introduction to Javascript 481

Putting It All Together
Now you have been introduced to many of the important building blocks
of JavaScript. You’ve seen variables, data types, and arrays. You’ve met if/
else statements, loops, and functions. You know your browser objects from
your event handlers. That’s a lot of bits and pieces. Let’s walk through a few
simple script examples to see how they get put together.

Example 1: A tale of two arguments
Here’s a simple function that accepts two arguments and returns the greater
of the two values.

greatestOfTwo(first, second) {
 if(first > second) {
 return first;
 } else {
 return second;
 }
}

We start by naming our function: “greatestOfTwo”. We set it up to accept
two arguments, which we’ll just call “first” and “second” for want of more
descriptive words. The function contains an if/else statement that returns
“first” if the first argument is greater than the second, and returns “second”
if it isn't.

Example 2: The longest word
Here’s a function that accepts an array of strings as a single argument and
returns the longest string in the array.

longestWord(strings) {
 var longest = strings[0];

 for(i = 1; i < strings.length; i++) {
 if (strings[i].length > longest.length) {
 longest = strings[i];
 }
 }
 return longest;
}

First, we name the function and allow it to accept a single argument. Then,
we set the longest variable to an initial value of the first item in the array:
strings[0]. We start our loop at 1 instead of 0 since we already have the
first value in the array captured. Each time we iterate through the loop,
we compare the length of the current item in the array to the length of the
value saved in the longest variable. If the current item in the array contains
more characters than the current value of the longest variable, we change
the value of longest to that item. If not, we do nothing. After the loop is
complete we return the value of longest, which will now contain the longest
string in the array.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors482

Putting It All Together

exercise 19-2 | You try it
In this exercise you will write script that updates the page’s title
in the browser window with a “new messages” count. You may
have encountered this sort of script in the wild from time to
time. We’re going to assume for the sake of the exercise that
this is going to become part of a larger web app some day, and
we’re tasked only with updating the page title with the current
“unread messages” count.

I’ve created a document for you already (title.html), which
is available in the materials folder for this chapter on
learningwebdesign.com.

1. Start by opening title.html in a browser. You’ll see a blank
page, with the title tag already filled out. If you look up at the
top of your browser window, you’ll notice it reads “Million
Dollar WebApp”.

2. Now open the document in a text editor. You’ll find a script
element containing a comment just before the closing
</body> tag. Feel free to delete the comment.

3. If we’re going to be changing the page’s title, we should save
the original first. Create a variable named originalTitle. For
its value, we’ll have the browser get the title of the document
using the DOM method document.title. Now we have a
saved reference to the page title at the time the page is
loaded. This variable should be global, so we’ll declare it
outside any functions.

var originalTitle = document.title;

4. Next, we’ll define a function so we can reuse the script
whenever it’s needed. Let’s call the function something easy
to remember, so we know at a glance what it does when we
encounter it in our code later. “showUnreadCount” works for
me, but you can name it whatever you’d like.

var originalTitle = document.title;

function showUnreadCount() {
}

5. We need to think about what the function needs to make
it useful. This function does something with the unread
message count, so its argument is a single number referred
to as “unread” in this example.

var originalTitle = document.title;

function showUnreadCount(unread) {
}

6. Now let’s add the code that runs for this function. We want

the document title for the page to display the title of the
document plus the count of unread messages. Sounds like a
job for concatenation (+)! Here we set the document.title to
be (=) whatever string was saved for originalTitle plus the
number in showUnreadCount. As we learned earlier, JavaScript
combines a string and a number as though they were both
strings.

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + unread;
}

7. Let’s try out our script before we go too much further. Below
where you defined the function and the originalTitle
variable, enter showUnreadCount(3);. Now save the page
and reload it in your browser (Figure 19-7).

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + unread;
}
showUnreadCount(3);

8. Our script is working, but it’s not very easy to read.
Fortunately, there’s no limit on the number of strings we
can combine at once. Here we’re adding additional strings
that wrap the count value and the words “new messages” in
parentheses (Figure 19-8).

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + " (" + unread
+ " new messages!) ";
}
showUnreadCount(3);

Figure 19-7. Our title tag has changed! It’s not quite right yet,
though.

Figure 19-8. Much better!

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 19, Introduction to Javascript 483

Test Yourself
We covered a lot of new material in this chapter. Here’s a chance to test
what sunk in.

1. Name one good thing and one bad thing about linking to an external .js
file.

2. Given the following array:

var myArray = [1, "two", 3, "4"]

write what the alert message will say for each of these examples:

a. alert(myArray[0]);

b. alert(myArray[0] + myArray[1]);

c. alert(myArray[2] + myArray[3]);

d. alert(myArray[2] – myArray[0]);

3. What will each of these alert messages say?

a. var foo = 5;
foo += 5;
alert(foo);

b. var foo = 5;
alert(foo++);

c. var foo = 2;
alert(foo + " " + "remaining");

d. var foo = "Mat";
var bar = "Jennifer";
if(foo.length > bar.length) {
 alert(foo + " is longer.");
} else {
 alert(bar + " is longer.");
}

e. alert(10 === "10");

4. Describe what this does:
for(var i = 0; i <= items.length; i++) { }

For Further Reading
Does this whet your appetite for
more? Do you see yourself making
things happen with JavaScript?
Well, there is certainly no shortage
of JavaScript tutorials online to get
you started. I also recommend the
following books (all of them just
happen to be published by O’Reilly
Media):

 y Learning JavaScript, by Shelley
Powers

 y JavaScript & jQuery: The
Missing Manual, by David
Sawyer McFarland

 y JavaScript: The Good Parts, by
Douglas Crockford

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors484

Test Yourself

5. What is the problem with globally scoped variables?

6. Match what’s happening with its event handler.

a. onload 1. The user finishes a form and hits the submit
button

b. onchange 2. The page finishes loading

c. onfocus 3. The pointer hovers over a link

d. onmouseover 4. A text entry field is selected and ready for
typing

e. onsubmit 5. A user changes her name in a form field

www.it-ebooks.info

http://www.it-ebooks.info/

485

IN THIs CHAPTER

Using the DOM to access
and change elements,

attributes, and contents

Using polyfills to make
browser versions work

consistently

Using JavaScript libraries

A brief introduction to Ajax

by Mat Marquis

Now that you have a sense for the language of JavaScript, let’s look at some of
the ways we can put it to use in modern web design. First, we’ll explore DOM
scripting, which allows us to manipulate the elements, attributes, and text on
a page. I’ll introduce you to some ready-made JavaScript and DOM script-
ing resources, so you don’t have to go it alone. You’ll learn about “polyfills,”
which provide older browsers with modern features and normalize functional-
ity. I’ll also introduce you to JavaScript libraries that make developers’ lives
easier with collections of polyfills and shortcuts for common tasks.

Meet the DOM
You’ve seen references to the Document Object Model (DOM for short) sev-
eral times throughout this book, but now is the time to give it the attention
it deserves. The DOM gives us a way to access and manipulate the contents
of a document. We commonly use it for HTML, but the DOM can be used
with any XML language as well. And although we’re focusing on its relation-
ship with JavaScript, it is worth noting that the DOM can be accessed by
other languages too, such as PHP, Ruby, Python, C++, Java, Perl, and more.
Although DOM Level 1 was released by the W3C in 1998, it was nearly five
years later that DOM scripting began to gain steam.

The DOM is a programming interface (an API) for HTML and XML pages.
It provides a structured map of the document, as well as a set of methods to
interface with the elements contained therein. Effectively, it translates our
markup into a format that JavaScript (and other languages) can understand.
It sounds pretty dry, I know, but the basic gist is that the DOM serves as a
map to all the elements on a page. We can use it to find elements by their
names or attributes, then add, modify, or delete elements and their content.

Without the DOM, JavaScript wouldn’t have any sense of a document’s
contents—and by that, I mean the entirety of the document’s contents.
Everything from the page’s doctype to each individual letter in the text can
be accessed via the DOM and manipulated with JavaScript.

usIng JavasCrIPt

CHAPTER 20

The DOM gives us a way to
access and manipulate the
contents of a document.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors486

Meet the DOM

The node tree
A simple way to think of the DOM is in terms of the document tree (Figure
20-1). You saw documents diagrammed in this way when you were learning
about CSS selectors.

<html>
<head>
 <title>Document title</title>
 <meta charset="utf-8">
</head>
<body>
 <div>
 <h2>Subhead</h2>
 <p>Paragraph text with a link here.</p>
 </div>
 <div>
 <p>More text here.</p>
 </div>
</body>
</html>

html

bodyhead

title meta div div

h2 p

a

p

Figure 20-1. A simple document tree

Each element within the page is referred to as a node.
If you think of the DOM as a tree, each node is an
individual branch that can contain further branches.
But the DOM allows deeper access to the content
than CSS because it treats the actual content as a node
as well. Figure 20-2 shows the structure of the first p
element. The element, its attributes, and its contents
are all nodes in the DOM’s node tree.

It also provides a standardized set of methods and
functions through which JavaScript can interact with
the elements on our page. Most DOM scripting
involves reading from and writing to the document.

There are several ways to use the DOM to find what
you want in a document. Let’s go over some of the

p

aParagraph text with a here.

href="foo.html" link

<p>Paragraph text with a link here.</p>

The DOM is a collection of nodes:

 y Element nodes

 y Attribute nodes

 y Text nodes

A T A G L A N C E

Figure 20-2. The nodes within the first p
element in our sample document.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the DOM

Chapter 20, Using Javascript 487

specific methods we can use for accessing objects defined by the DOM (we
JS folks call this “crawling the DOM” or “traversing the DOM”), as well as
some of the methods for manipulating those elements.

Accessing DOM nodes
The document object in the DOM identifies the page itself, and more often
than not will serve as the starting point for our DOM crawling. The docu-
ment object comes with a number of standard properties and methods for
accessing collections of elements. This is reminiscent of the length property
we learned about in Chapter 19, Introduction to JavaScript. Just as length is
a standard property of all arrays, the document object comes with a number
of built-in properties containing information about the document. We then
wind our way to the element we’re after by chaining those properties and
methods together, separated by periods, to form a sort of route through the
document.

To give you a general idea of what I mean, the statement in this example
says to look on the page (document), find the element that has the id value
“beginner”, find the HTML content within that element (innerHTML), and
save those contents to a variable (foo).

var foo = document.getElementById("beginner").innerHTML;

Because the chains tend to get long, it is also common to see each property
or method broken onto its own line to make it easier to read at a glance.
Remember, whitespace in JavaScript is ignored, so this has no effect on how
the statement is parsed.

var foo = document
 .getElementById("beginner")
 .innerHTML;

There are several methods for accessing nodes in the document.

By element name

getElementsByTagName()

We can access individual elements by the tags themselves using document.
getElementsByTagName(). This method retrieves any element or elements you
specify as an argument.

For example, document.getElementsByTagName("p") returns every paragraph
on the page, wrapped in something called a collection or nodeList, in the
order they appear in the document from top to bottom. nodeLists behave
much like arrays. To access specific paragraphs in the nodeList, we reference
them by their index, just like an array.

var paragraphs = document.getElementsByTagName("p");

Based on this variable statement, paragraphs[0] is a reference to the first
paragraph in the document, paragraph[1] refers to the second, and so on.

n oT e

nodeLists are living collections. If you
manipulate the document in a nodeList
loop—for example, looping through all
paragraphs and appending new ones
along the way—you can end up in an
infinite loop. Good times!

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors488

Meet the DOM

If we had to access each element in the nodeList separately, one at a time…
well, it’s a good thing we learned about looping through arrays earlier.
Loops work the exact same way with a nodeList.

var paragraphs = document.getElementsByTagName("p");
for(var i = 0; i < paragraphs.length; i++) {
 // do something
}

Now we can access each paragraph on the page individually by referencing
paragraphs[i] inside the loop, just as with an array, but with elements on
the page instead of values.

By id attribute value

getElementById()

This method returns a single element based on that element’s ID (the value
of its id attribute), which we provide to the method as an argument. For
example, to access this particular image:

'

we include the id value as an argument for the getElementById() method:

var photo = document.getElementById("lead-photo");

By class attribute value

getElementsByClassName()

Just as it says on the tin, this allows you to access nodes in the document
based on the value of a class attribute. This statement assigns any element
with a class value of “column-a” to the variable firstColumn so it can be
accessed easily from within a script.

var firstColumn = document.getElementsByClassName("column-a");

Like getElementsByTagName, this returns a nodeList that we can reference by
index or loop through one at a time.

By selector

querySelectorAll()

querySelectorAll allows you to access nodes of the DOM based on a CSS-style
selector. The syntax of the arguments in the following examples should look famil-
iar to you. It can be as simple as accessing the child elements of a specific element:

var sidebarPara = document.querySelectorAll(".sidebar p");

or as complex as selecting an element based on an attribute:

var textInput = document.querySelectorAll("input[type='text']");

Like getElementsByTagName and getElementsByClassName, querySelectorAll
returns a nodeList (even if the selector matches only a single element).

wa R n i n G

This is a relatively new method for
accessing DOM nodes. Although getEle-
mentsByClassName() is available in the
current versions of modern browsers, it
will not work in IE8 or below.

wa R n i n G

Because it is a newer method, querySe-
lectorAll() is available in the current
versions of modern browsers, but isn’t
available in IE7 or below.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the DOM

Chapter 20, Using Javascript 489

Accessing an attribute value

getAttribute()

As I mentioned earlier, elements aren’t the only thing you can access with
the DOM. To get the value of an attribute attached to an element node, we
call getAttribute() with a single argument: the attribute name. Let’s assume
we have an image, source.jpg, marked up like this:

In the following example, we access that specific image (getElementbyId)
and save a reference to it in a variable (bigImage). At that point, we could
access any of the element’s attributes (alt, src, or id) by specifying it as an
argument in the getAttribute method. In the example, we get the value of
the src attribute and use it as the content in an alert message. (I’m not sure
why we would ever do that, but it does demonstrate the method.)

var bigImage = document.getElementById("lead-image");

alert(bigImage.getAttribute("src")); // Alerts "stratocaster.jpg".

Manipulating nodes
Once we’ve accessed a node using one of the methods discussed previously,
the DOM gives us several built-in methods for manipulating those elements,
their attributes, and their contents.

setAttribute()

To continue with the previous example, we saw how we get the attribute
value, but what if we wanted to set the value of that src attribute to a new
pathname altogether? Use setAttribute()! This method requires two argu-
ments: the attribute to be changed and the new value for that attribute.

In this example, we use a bit of JavaScript to swap out the image by changing
the value of the src attribute.

var bigImage = document.getElementById("lead-image");

bigImage.setAttribute("src", "lespaul.jpg");

Just think of all the things you could do with a document by changing the
values of attributes. Here we swapped out an image, but this same method
could be used to make a number of changes throughout our document:

•	 Update the checked attributes of checkboxes and radio buttons based on
user interaction elsewhere on the page

•	 Find the link element for our .css file and point the href value to a dif-
ferent style sheet, changing all the page’s styles

•	 Update a title attribute with information on an element’s state (“this
element is currently selected,” for example)

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors490

Meet the DOM

innerHTML

innerHTML gives us a simple method for accessing and changing the text and
markup inside an element. It behaves differently from the methods we’ve
covered so far. Let’s say we need a quick way of adding a paragraph of text
to the first element on our page with a class of intro:

var introDiv = document.getElementsByClassName("intro");

introDiv.innerHTML = "<p>This is our intro text</p>";

The second statement here adds the content of the string to introDiv (an ele-
ment with the class value “intro”) as a real live element because innerHTML
tells JavaScript to parse the strings “<p>” and “</p>” as markup.

style

The DOM also allows you to add, modify, or remove a CSS style from an ele-
ment using the style property. It works similarly to applying a style with the
inline style attribute. The individual CSS properties are available as proper-
ties of the style property. I bet you can figure out what these statements are
doing using your new CSS and DOM know-how:

document.getElementById("intro").style.color = "#fff";

document.getElementById("intro").style.backgroundColor = "#f58220";
 //orange

In JavaScript and the DOM, property names that are hyphenated in CSS
(such as background-color and border-top-width) become camel case
(backgroundColor and borderTopWidth, respectively) so the - character isn’t
mistaken for an operator.

In the examples you’ve just seen, the style property is used to set the styles
for the node. It can also be used to get a style value for use elsewhere in the
script. This statement gets the background color of the #intro element and
assigns it to the brandColor variable:

var brandColor = document.getElementById("intro").style.backgroundColor;

Adding and removing elements
So far, we’ve seen examples of getting and setting nodes in the existing docu-
ment. The DOM also allows developers to change the document structure
itself by adding and removing nodes on the fly. We’ll start out by creating
new nodes, which is fairly straightforward, and then we’ll see how we add
the nodes we’ve created to the page. The methods shown here are more
surgical and precise than adding content with innerHTML. While we’re at it,
we’ll remove nodes, too.

createElement()

To create a new element, use the aptly named createElement() method. This
function accepts a single argument: the element to be created. Using this

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the DOM

Chapter 20, Using Javascript 491

method is a little counterintuitive at first because the new element doesn’t
appear on the page right away. Once we create an element in this way, that
new element remains floating in the JavaScript ether until we add it to the
document. Think of it as creating a reference to a new element that lives
purely in memory—something that we can manipulate in JavaScript as we
see fit, then add to the page once we’re ready.

var newDiv = document.createElement("div");

createTextNode()

If we want to enter text into either an element we’ve created or an existing
element on the page, we can call the createTextNode() method. To use it,
provide a string of text as an argument, and the method creates a DOM-
friendly version of that text, ready for inclusion on the page. Much like
createElement, this creates a reference to the new text node that we can store
in a variable and add to the page when the time comes.

var ourText = document.createTextNode("This is our text.");

appendChild()

So we’ve created a new element and a new string of text, but how do we
make them part of the document? Enter the appendChild method. This
method takes a single argument: the node you want to add to the DOM.
You call it on the existing element that will be its parent in the document
structure. Time for an example.

Here we have a simple div on the page with the id “our-div”:

<div id="our-div"></div>

Let’s say we want to add a paragraph to #our-div that contains the text
“Hello, world”. We start by creating the p element (document.createEle-
ment()) as well as a text node for the content that will go inside it (create-
TextNode()).

var ourDiv = document.getElementById("our-div");
var newParagraph = document.createElement("p");
var copy = document.createTextNode("Hello, world!");

Now we have our element and some text, and we can use appendChild() to
put the pieces together.

newParagraph.appendChild(copy);
ourDiv.appendChild(newParagraph);

The first statement appends copy (that’s our “Hello, world” text node) to
the new paragraph we created (newParagraph), so now that element has
some content. The second line appends the newParagraph to the original div
(ourDiv). Now ourDiv isn’t sitting there all empty in the DOM, and it will
display on the page with the content “Hello, world.”

You should be getting the idea of how it works. How about a couple more?

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors492

Meet the DOM

insertBefore()

The insertBefore() method, as you might guess, inserts an element before
another element. It takes two arguments: the first is the node that gets
inserted, and the second is the element it gets inserted in front of. You also
need to know the parent to which the element will be added.

So, for example, to insert a new heading before the paragraph in this markup:

<div id="our-div">
 <p id="our-paragraph">Our paragraph text</p>
</div>

we start by assigning variable names to the div and the p it contains, then
create the h1 element and its text node and put them together, just as we saw
in the last example.

var ourDiv = document.getElementById("our-div");
var para = document.getElementById("our-paragraph");

var newHeading = document.createElement("h1");
var headingText = document.createTextNode("A new heading");
newHeading.appendChild(headingText);
// Add our new text node to the new heading

Finally, in the last statement shown here, the insertBefore() method places
the newHeading h1 element before the para element inside ourDiv.

ourDiv.insertBefore(newHeading, para);

replaceChild()

The replaceChild() method replaces one node with another and takes two
arguments. The first argument is the new child (i.e., the node you want to
end up with). The second is the node that gets replaced by the first. Like
insertBefore(), you also need to identify the parent element in which the
swap happens. For the sake of simplicity, let’s say we start with the follow-
ing markup:

<div id="our-div">
 <div id="swap-me"></div>
</div>

and we want to replace the div with the id “swap-me” with an image. We
start by creating a new img element and setting the src attribute to the path-
name to the image file. In the final statement, we use replaceChild() to put
newImg in place of swapMe.

var ourDiv = document.getElementById("our-div");
var swapMe = document.getElementById("swap-me");
var newImg = document.createElement("img");
// Create a new image element

newImg.setAttribute("src", "path/to/image.jpg");
// Give the new image a "src" attribute
ourDiv.replaceChild(newImg, swapMe);

www.it-ebooks.info

http://www.it-ebooks.info/

Polyfills

Chapter 20, Using Javascript 493

removeChild()

To paraphrase my mother, “We brought these elements into this world, and
we can take them out again.” You remove a node or an entire branch from
the document tree with the removeChild() method. The method takes one
argument, which is the node you want to remove. Remember that the DOM
thinks in terms of nodes, not just elements, so the child of an element may
be the text (node) it contains, not just other elements.

Like appendChild, the removeChild method is always called on the parent
element of the element to be removed (hence, “remove child”). That means
we’ll need a reference to both the parent node and the node we’re looking to
remove. Let’s assume the following markup pattern:

<div id="parent">
 <div id="remove-me">
 <p>Pssh, I never liked it here anyway.</p>
 </div>
</div>

Our script would look something like this:

var parentDiv = document.getElementById("parent");
var removeMe = document.getElementById("remove-me");

parentDiv.removeChild(removeMe);
// Removes the div with the id "remove-me" from the page.

For further reading
That should give you a good idea of what DOM Scripting is all about. Of
course, I’ve just barely scratched the surface of what can be done with the
DOM, but if you’d like to learn more, definitely check out the book DOM
Scripting: Web Design with JavaScript and the Document Object Model,
Second Edition by Jeremy Keith and Jeffrey Sambells (Friends of Ed).

Polyfills
You’ve gotten familiar with a lot of new technologies in this book so far: new
HTML5 elements, new ways of doing things with CSS3, using JavaScript to
manipulate the DOM, and more. In a perfect world, all browsers would be
in lockstep, keeping up with the cutting-edge technologies and getting the
established ones right along the way (see Browser Wars sidebar). In that per-
fect world, browsers that couldn’t keep up (I’m looking at you, IE6) would
just vanish completely. Sadly, that is not the world we live in, and browser
inadequacies remain the thorn in every developer’s side.

I’ll be the first to admit that I enjoy a good wheel-reinvention. It’s a great
way to learn, for one thing. For another, it’s the reason our cars aren’t rolling
around on roundish rocks and sections of tree trunk. But when it comes to
dealing with every strange browser quirk out there, we don’t have to start
from scratch. Tons of people smarter than I have run into these issues before

The Browser Wars
JavaScript came about during
a dark and lawless time, before
the web standards movement,
when all the major players in the
browser world were—for want of
a better term—winging it. It likely
won’t come as a major surprise to
anyone that Netscape and Microsoft
implemented radically different
versions of the DOM, with the
prevailing sentiment being “may the
best browser win.”

I’ll spare you the gory details of the
Battle for JavaScript Hill, but the two
competing implementations were so
different that they were both largely
useless, unless you wanted to either
maintain two separate code bases
or add a “best viewed in Internet
Explorer/Netscape” warning label to
your sites.

Enter the web standards movement!
During this cutthroat time, the W3C
was putting together the foundations
for the modern-day standardized
DOM that we’ve all come to know
and love. Fortunately for us, Netscape
and Microsoft got on board with
the standards movement. The
standardized DOM is supported all
the way back to Internet Explorer
5 and Netscape Navigator 6.
Unfortunately, Internet Explorer’s
advancements in this area stagnated
for quite some time following IE6. As
a result, older versions of IE have a
few significant differences from the
modern-day DOM. Fortunately with
Internet Explorer 9, and soon with 10,
they’re catching right back up.

Trouble is, your project likely still
needs to support those users with
older versions of IE. It’s a pain, but
we’re up for it. We have an amazing
set of tools at our disposal, such as
polyfills and JavaScript libraries full
of helper functions, that normalize
the strange little quirks we’re apt to
encounter from browser to browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors494

Polyfills

and have already found clever ways to work around them and fix the parts
of JavaScript and the DOM where some browsers may fall short. We can use
JavaScript to fix JavaScript.

Polyfill is a term coined by Remy Sharp to describe a JavaScript “shim” that
normalizes differing behavior from browser to browser.

“A shim that mimics a future API providing fallback functionality to older
browsers.” —Paul Irish

There’s a lot of time travel going on in that quote, but basically what he’s
saying is that we’re making something new work in browsers that don’t
natively support it—whether that’s brand-new technology like detecting a
user’s physical location or fixing something that one of the browsers just
plain got wrong.

There are tons of polyfills out there targeted to specific tasks, such as making
old browsers recognize new HTML5 elements or CSS3 Selectors, and new
ones are popping up all the time as new problems arise. I’m going to fill you
in on the most commonly used polyfills in the modern developer’s toolbox
as of the release of this book. You may find that new ones are necessary by
the time you hit the web design trenches.

HTML5 shiv (or shim)
You may remember seeing this one back in Chapter 5, Marking Up Text,
but let’s give it a little more attention now that you have some JavaScript
under your belt.

An HTML5 shiv/shim is used to enable Internet Explorer 8 and earlier to
recognize and style newer HTML5 elements such as article, section, and
nav.

How it works

There are several variations on the HTML5 shim/shiv, but they all work
in much the same way: crawl the DOM looking for elements that IE
doesn’t recognize, and then immediately replace them with the same
element so they are visible to IE in the DOM. Now any styles we write
against those elements work as expected.

Who made it

Sjoerd Visscher originally discovered this technique, and many, many
variations of these scripts exist now. Remy Sharp’s version is the one
likely in widest use today.

How to use it

Every variation on this script has the same requirement: it must be ref-
erenced in the head of the document, in order to “tell” Internet Explorer
about these new elements before it finishes rendering the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Polyfills

Chapter 20, Using Javascript 495

<!--[if lt IE 9]>
 <script src=”html5shim.js”></script>
<![endif]-->

Potential drawbacks

The major caveat here is that older versions of Internet Explorer that
have JavaScript disabled or unavailable will receive unstyled elements.

Where to get it and learn more

•	 The Wikipedia entry for HTML Shiv (en.wikipedia.org/wiki/HTML5_
Shiv)

•	 Remy Sharp’s original post (remysharp.com/2009/01/07/html5-
enabling-script)

Modernizr
Modernizr isn’t a polyfill in and of itself, but rather a test suite that can be
used to detect the presence of browser features and load polyfills as needed.
The Modernizr team also curates a massive repository of polyfills for a huge
number of features (see previous note).

How it works

Modernizr looks for the presence of methods and functions used by the
JavaScript APIs of newer HTML5 and CSS3 features, and uses their pres-
ence to determine whether the browser natively supports the feature or
should receive a polyfill. For example, if the browser contains built-in
methods for interacting with the HTML5 canvas element, we can assume
that that browser supports canvas. This is known as “feature detection,”
and it stands in stark contrast to the more outdated practice of UA (User
Agent, or browser) detection. Modernizr also includes, right out of the
box, an HTML5 shim similar to the one detailed previously.

Who made it

Modernizr was created by Faruk Ate�, and is actively developed by Paul
Irish, Alex Sexton, Ryan Seddon, and Alexander Farkas.

How to use it

Modernizr.com has a builder tool that will allow you to include only
the tests that are relevant to your project, as well as a “development”
build that contains the entire library of tests. Once you’ve downloaded
a custom build, simply include it as you would any other external script.

Where to get it and learn more

•	 The Modernizr site (modernizr.com)

n oT e

The polyfill archive maintained by
the Modernizr team is available at
github.com/Modernizr/Modernizr/wiki/
HTML5-Cross-Browser-Polyfills.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors496

Polyfills

selectivizr
Selectivizr allows older versions of Internet Explorer to understand complex
CSS3 selectors such as :nth-child and ::first-letter.

How it works

Selectivizr uses JavaScript to fetch and parse the contents of your style
sheet and patch holes where the browser’s native CSS parser falls short.

Who made it

Selectivizr was created and is maintained by Keith Clark.

How to use it

Selectivizr must be used with a JavaScript library (I talk about them in the
next section). The link to the script goes in an IE conditional comment
after the link to the library .js file, like so:

<script type="text/javascript" src="[JS library]"></script>
<!--[if (gte IE 6)&(lte IE 8)]>
 <script type="text/javascript" src="selectivizr.js"></script>
 <noscript><link rel="stylesheet" href="[fallback css]" /></noscript>
<![endif]-->

Potential drawbacks

Because we’re forgoing the native CSS parser here, we may see a slight
performance hit in applicable browsers.

Where to get it and learn more

•	 The Selectivizr site (selectivizr.com)

Respond.js
Respond.js is a fast and lightweight polyfill that allows older browsers
(again, most commonly Internet Explorer 8 and below) to understand min-
width and max-width media queries, which are commonly used in responsive
designs.

How it works

Like Selectivizr, Respond.js looks through style sheets independent of
the browser’s built-in parser, and upon finding a min-width or max-width
media query, manually applies those styles to elements on the page
through JavaScript, depending on the browser window’s width.

Who made it

Respond.js was created by my fellow Filament Group and jQuery
Mobile team member Scott Jehl. It was originally developed for use on
the responsive BostonGlobe.com site, and was later released as an open
source project.

www.it-ebooks.info

http://www.it-ebooks.info/

Javascript Libraries

Chapter 20, Using Javascript 497

How to use it

Unsurprisingly, one need only download Respond.js and reference it in a
script tag within the head of the document (after the style sheets).

Potential drawbacks:

Again, like Selectivizr, we may see a slight performance hit when using
this script, but only in browsers where it ends up being used.

Where to get it and learn more:

•	 Scott Jehl’s Respond page on github (github.com/scottjehl/Respond)

Javascript Libraries
Continuing on the “you don’t have to write everything from scratch your-
self” theme, it’s time to take on JavaScript libraries. A JavaScript library is
a collection of prewritten functions and methods that you can use in your
scripts to accomplish common tasks or simplify complex ones.

There are many, many JS Libraries out there. Some are large frameworks
that include all of the most common polyfills, shortcuts, and widgets you’d
ever need to build full-blown Ajax web applications (see the sidebar What
Is Ajax?). Some are targeted at specific tasks, such as handling forms, ani-
mation, charts, or math functions. For seasoned JavaScript-writing pros,
starting with a library is an awesome time-saver. And for folks like you who
are just getting started, a library can handle tasks that might be beyond the
reach of your own skills.

What Is Ajax?
Ajax (sometimes written AJAX) stands for Asynchronous
JavaScript And XML. The “XML” part isn’t that important—you
don’t have to use XML to use Ajax (more on that in a moment).
The “asynchronous” part is what matters.

Traditionally, when a user interacted with a web page in a way
that required data to be delivered from the server, everything
had to stop and wait for the data, and the whole page needed
to reload when it was available. This made for a not especially
smooth user experience.

But with Ajax, because the page can get data from the server
in the background, you can make updates to the page based
on user interaction smoothly and in real time. This makes web
applications feel more like “real” applications.

You see this on a number of modern websites, although
sometimes it’s subtle. On Twitter, for example, scrolling to the
bottom of a page loads in a set of new tweets. Those aren’t
hardcoded in the page’s markup; they’re loaded dynamically as

needed. Google’s image search uses a similar approach. When
you reach the bottom of the current page, you’re presented with
a button that allows you to load more‚ but you never navigate
away from the current page.

The term “Ajax” was first coined by Jesse James Garrett in an
article entitled “Ajax: A New Approach to Web Applications.” Ajax
is not a single technology, but rather a combination of HTML,
CSS, the DOM, and JavaScript, including the XMLHttpRequest
object that allows data to be transferred asynchronously. Ajax
may use XML for data, but it has become more common to
use JSON (JavaScript Object Notation), a JavaScript-based and
human-readable format, for data exchange.

Writing web applications with Ajax isn’t the type of thing you
would do right out of the gate, but many of the JavaScript
libraries discussed in this chapter have built-in Ajax helpers and
methods that let you get started with significantly less effort.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors498

Javascript Libraries

The disadvantage of libraries is that because they generally contain all of
their functionality in one big .js file, you may end up forcing your users
to download a lot of code that never gets used. But the library authors are
aware of this and have made many of their libraries modular, and they con-
tinue to make efforts to optimize their code. In some cases, it’s also possible
customize the script and use just the parts you need.

A few libraries you ought to know
Some of the most popular JS libraries as of this writing include:

•	 jQuery (jquery.com). jQuery, written in 2005 by John Resig, is by far
the most popular JavaScript library today, finding its way onto more
than half of the 10,000 most-visited websites. It is free, open source,
and employs a syntax that makes it easy to use if you are already handy
with CSS, JavaScript, and the DOM. You can supplement jQuery with
the jQuery UI library, which adds cool interface elements such as cal-
endar widgets, drag-and-drop functionality, expanding accordion lists,
and simple animation effects. I mentioned earlier that I work on jQuery
Mobile. That’s another jQuery-based library that provides UI elements
and polyfills designed to account for the variety of mobile browsers and
their notorious quirks.

•	 Dojo (dojotoolkit.org). Dojo is an open source, modular toolkit that is
particularly helpful for developing web applications with Ajax.

•	 Prototype (prototypejs.org). The Prototype JavaScript Framework, writ-
ten by Sam Stephenson, was developed to add Ajax support to Ruby on
Rails.

•	 MooTools (mootools.net). MooTools (which stands for My Object-
Oriented Tools) is another open source, modular library written by
Valerio Proietti.

•	 YUI (yuilibrary.com). The Yahoo! User Interface Library is another free,
open source JS library for building rich web applications. It is part of The
YUI Library project at Yahoo!, founded by Thomas Sha.

As for smaller JS libraries that handle specialized functions, because they
are being created and made obsolete all the time, I recommend doing a web
search for “JavaScript libraries for _____________” and see what is avail-
able. Some library categories include:

•	 Forms

•	 Animation

•	 Games

•	 Information graphics

•	 Image and 3-D effects in canvas

n oT e

For a comparison of over 20 JavaScript
libraries and their sizes and features,
see the “Comparison of JavaScript
frameworks” entry on Wikipedia:
en.wikipedia.org/wiki/Comparison_of_
JavaScript_frameworks.

The Google Developers site also main-
tains a list of the more popular open
source JavaScript libraries, available
here: developers.google.com/speed/
libraries/.

www.it-ebooks.info

http://dojotoolkit.org/
http://en.wikipedia.org/w/index.php?title=Thomas_Sha&action=edit&redlink=1
http://www.it-ebooks.info/

Javascript Libraries

Chapter 20, Using Javascript 499

•	 String and math functions

•	 Database handling

How to use a Js library (jQuery)
It’s easy to implement any of the libraries I just listed. All you do is download
the JavaScript (.js) file, put it on your server, point to it in your script tag,
and you’re good to go. It’s the .js file that does all the heavy lifting, providing
prewritten functions and syntax shortcuts. Once you’ve included it, you can
write your own scripts that leverage the features built into the framework.
Of course, what you actually do with it is the interesting part (and largely
beyond the scope of this chapter, unfortunately).

As a member of the jQuery Mobile team, I have a pretty obvious bias here,
so we’re going to stick with jQuery in the upcoming examples. Not only is it
the most popular library anyway, but they said they’d give me a dollar every
time I say “jQuery.”

Download the jQuery .js file
To get started with jQuery (cha-ching), go to jQuery.com and hit the big
Download button to get your own copy of jquery.js. You have a choice
between a “production” version that has all the extra whitespace removed
for a smaller file size, or a “development” version that is easier to read but
nearly eight times larger in file size. The production version should be just
fine if you are not going to edit it yourself.

Copy the code, paste it into a new plain-text document, and save it with the
same filename that you see in the address bar in the browser window. As
of this writing, the latest version of jQuery is 1.7.2, and the filename of the
production version is jquery-1.7.2.min.js (the min stands for “minimized”).
Put the file in the directory with the other files for your site. Some developers
keep their scripts in a js directory for the sake of organization, or they may
simply keep them in the root directory for the site. Wherever you decide
put it, be sure to note the pathname to the file because you’ll need it in the
markup.

Add it to your document
Include the jQuery script the same way you’d include any other script in the
document: with a script element.

<script src="pathtoyourjs/jquery-1.7.2.min.js"></script>

And that’s pretty much it. There is an alternative worth mentioning, how-
ever. If you don’t want to host the file yourself, you can point to one of the
publically hosted versions and use it that way. The jQuery Download page
lists a few options, including the following link to the code on Google’s
server. Simply copy this code exactly as you see it here, paste it into the head

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors500

Javascript Libraries

of the document or before the </body> tag, and you’ve got yourself some
jQuery!

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.
min.js"></script>

Get “ready”
You don’t want to go firing scripts before the document and the DOM are
ready for them, do you? Well, jQuery has a statement known as the ready
event that checks the document and waits until it’s ready to be manipulated.
Not all scripts require this (for example, if you were only firing a browser
alert), but if you are doing anything with the DOM, it is a good idea to start
by setting the stage for your scripts by including this function in your custom
script or .js file:

<script src="pathtoyourjs/jquery-1.7.2.min.js"></script>

<script>
$(document).ready(function(){

 // Your code here

});
</script>

scripting with jQuery
Once you’re set up, you can begin writing your own scripts using jQuery.
The shortcuts jQuery offers break down into two general categories:

•	 A giant set of built-in feature detection scripts and polyfills

•	 A shorter, more intuitive syntax for targeting elements (jQuery’s selector
engine)

You should have a decent sense of what the polyfills do after making your
way through that last section, so let’s take a look at what the selector engine
does for you.

One of the things that jQuery simplifies is moving around through the DOM
because you can use the selector syntax that you learned for CSS. Here is an
example of getting an element by its id value without a library:

var paragraph = document.getElementById("status");

The statement finds the element with the ID “status” and saves a reference to
the element in a variable (paragraph). That’s a lot of characters for a simple
task. You can probably imagine how things get a little verbose when you’re
accessing lots of elements on the page. Now that we have jQuery in play,
however, we can use this shorthand.

var paragraph = $("#status");

www.it-ebooks.info

https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js
http://www.it-ebooks.info/

Big Finish

Chapter 20, Using Javascript 501

That’s right—that’s the id selector you know and love from writing CSS.
And it doesn’t just stop there. Any selector you’d use in CSS will work within
that special helper function.

You want to find everything with a class of “header”? Use $(".header");.

By the element’s name? Sure: $("div");.

Every subhead in your sidebar? Easy-peasy: $("#sidebar .sub");.

You can even target elements based on the value of attributes:
$("[href='http://google.com"]");.

But it doesn’t stop with selectors. We can use a huge number of helper func-
tions built into jQuery and libraries like it to crawl the DOM like so many,
uh, Spider-men. Spider-persons. Web-slingers.

jQuery also allows us to chain objects together in a way that can target
things even CSS can’t (an element’s parent element, for example). Let’s say
we have a paragraph and we want to add a class to that paragraph’s parent
element. We don’t necessarily know what that parent element will be, so
we’re unable to target the parent element directly. In jQuery we can use the
parent() object to get to it.

$("p.error").parent().addClass("error-dialog");

Another major benefit is that this is highly readable at a glance: “find any
paragraph(s) with the class “error” and add the class “error-dialog” to their
parent(s).”

But what if I don’t know how to write scripts…?
It takes time to learn JavaScript, and it may be a while before you can write
scripts on your own. But not to worry. If you do a web search for what you
need (for example, “jQuery image carousel” or “jQuery accordion list”),
there is a very good chance you will find lots of scripts that people have
created and shared, complete with documentation on how to use them.
Because jQuery uses a selector syntax very similar to CSS, it makes it easier
to customize jQuery scripts for use with your own markup.

Big Finish
In all of two chapters, we’ve gone from learning the very basics of variables
to manipulating the DOM to leveraging a JavaScript library. Even with all
we’ve covered here, we’ve just barely begun to cover all the things JavaScript
can do.

The next time you’re looking at a website and it does something cool, view
the source in your browser and have a look around for the JavaScript. You
can learn a lot from reading and even taking apart someone else’s code.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV, Javascript for Behaviors502

Test Yourself

And remember, there’s nothing you can break with JavaScript that can’t be
undone with a few strokes of the Delete key.

Better still, JavaScript comes with an entire community of passionate devel-
opers who are eager to learn and just as eager to teach. Seek out like-minded
developers and share the things you’ve learned along the way. If you’re stuck
on a tricky problem, don’t hesitate to seek out help and ask questions. It’s
rare that you’ll encounter a problem that nobody else has, and the open
source developer community is always excited to share the things they’ve
learned. That’s why you’ve had to put up with me for two chapters, as a
matter of fact.

Test Yourself
Just a couple of questions for those of you playing along at home.

1. Ajax is a combination of what technologies?

2. What does this do?

document.getElementById("main")

3. What does this do?

document.getElementById("main").getElementsByTagName("section");

4. What does this do?

document.body.style.backgroundColor = "papayawhip"

5. What does this do? This one is a little tricky because it nests functions,
but you should be able to piece it together.

document
 .getElementById("main")
 .appendChild(
 document.createElement("p")
 .appendChild(
 documentCreateTextNode("Hey, I'm walking here!")
)
);

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 20, Using Javascript 503

6. Match the polyfill with the tasks on the right.

a. HTML5 Shim 1. Add support for ::first-letter

b. Respond.js 2. Add support for min-width and max-width media
queries

c. Modernizr 3. Add support for nav and aside

d. Selectivizr 4. Check browser for canvas support

7. What is the benefit of using a JavaScript library such as jQuery?

a. Access to a packaged collection of polyfills

b. Possibly shorter syntax

c. Simplified Ajax support

d. All of the above

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

IN THIs PART

Chapter 21
Web Graphics Basics

Chapter 22
Lean and Mean
Web Graphics

creatinG WeB
GrapHicS PART V

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

507

IN THIs CHAPTER

Where to get images

An overview of GIF, JPEG,
and PNG formats

Image size and resolution

Resizing images in
Photoshop

Binary and alpha
transparency

Introduction to SVG

Unless you plan to publish text-only sites, chances are you’ll need to know
how to create web graphics. For many of you, that might mean getting your
hands on an image-editing program for the first time and acquiring some
basic graphics production skills. If you are a seasoned designer accustomed
to print, you may need to adapt your style and process to make graphics that
are appropriate for web delivery.

This chapter covers the fundamentals of web graphics production, beginning
with some options for finding and creating images. From there, it introduces
the file formats available for web graphics and helps you decide which to use.
You’ll also learn the basics of image resolution, resizing, and transparency.

As always, there are step-by-step exercises along the way. I want to point
out, however, that I write with the assumption that you have some familiar-
ity with an image-editing program. I use Adobe Photoshop (the industry
standard) in the examples and exercises, but you can follow along with most
steps using other tools listed in this chapter. If you are starting at square one,
I recommend spending time with the manual or other books about your
graphics software.

Image sources
You have to have an image to save an image, so before we jump into the
nitty-gritty of file formats, let’s look at some ways to get images in the first
place. There are many options: from scanning, shooting, or illustrating them
yourself, to using available stock photos and clip art, to just hiring someone
to create images for you.

Creating your own images
In most cases, the most cost-effective way to generate images for your site is
to make your own from scratch. The added bonus is that you know you have
full rights to use the images (we’ll address copyright again in a moment).
Designers may generate imagery with scanners, digital cameras, or a draw-
ing program.

Web graPhICs
basICs

CHAPTER 21

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics508

Image sources

Digital cameras

You can capture the world around you and pipe it right into an image-
editing program with a digital camera. Depending on the type of imagery
you’re after, you may get sufficient quality with a standard consumer
digital camera or even the camera in your phone.

Electronic illustration

If you have illustration skills, you can make your own image in a drawing
or photo-editing application. The sidebar Tools of the Trade introduces
some of the most popular graphics programs available today. Every
designer has her own favorite tools and techniques. For logos and line
drawings, I recommend starting with a vector drawing program like
Adobe Illustrator or Fireworks, then saving to a web-appropriate copy
as needed. You will find it is useful to have a high-quality, resolution-
independent version around for print and other high-resolution applica-
tions. For photos, textures, and other bitmapped (raster) image types,
Adobe Photoshop is the professional’s tool of choice. Again, it’s always
a good idea to create a high-resolution version of your images and save
smaller copies as needed.

Scanning

Scanning is a great way to collect source material. You can scan almost
anything, from flat art to 3-D objects. Beware, however, the temptation
to scan and use found images. Keep in mind that most images you find
are probably copyright-protected and may not be used without permis-
sion, even if you modify them considerably. See the Scanning Tips side-
bar for some how-to information.

stock photography and illustrations
If you aren’t confident in your design skills, or you just want a head start
with some fresh imagery, there are plenty of collections of ready-made pho-
tos, illustrations, buttons, animations, and textures available for sale or for
free. Stock photos and illustrations generally fall into two broad categories:
rights-managed and royalty-free.

Rights-managed means that the copyright holder (or a company represent-
ing them) controls who may reproduce the image. In order to use a rights-
managed image, you must obtain a license to reproduce it for a particular
use and for a particular period of time. One of the advantages to licensing
images is that you can arrange to have exclusive rights to an image within a
particular medium (such as the Web) or a particular business sector (such
as the health care industry or banking). On the downside, rights-managed
images get quite pricey. Depending on the breadth and length of the license,
the price tag may be many thousands of dollars for a single image. If you
don’t want exclusive rights and you want to use the image only on the Web,
the cost is more likely to be a few hundred dollars, depending on the source.

Tools of the Trade
What follows is a brief introduction
to the most popular graphics
tools among professional graphic
designers. There are many other tools
out there that will crank out a graphic
file; if you’ve found one that works for
you, that’s fine.

Adobe Photoshop
Without a doubt, the industry
standard for creating graphics
is Photoshop. It includes many
features specifically for creating
web graphics. Download a
trial copy of this and all Adobe
software at adobe.com.

Adobe Fireworks
Running a close second, Fireworks
was one of the first graphics
programs designed from the
ground up to address the special
requirements of web graphics. It
is unique in that it has tools for
creating both vector (line-based)
and raster (pixel-based) images.

Adobe Illustrator
Illustrator is the standard vector
drawing program in both the
print and web design industries. It
integrates nicely with Photoshop.

Corel Paint Shop Pro
If you use Windows and are on
a budget, Paint Shop Pro Photo
offers similar functionality to
Photoshop at a lower price. You
can download a trial version at
corel.com.

GIMP
GIMP is a free, open source
image-editing tool with features
very similar to Photoshop. It
works on Linux, Windows XP and
Vista, and Mac OS X. Get more
information and free downloads
at www.gimp.org.

www.it-ebooks.info

http://www.it-ebooks.info/

Image sources

Chapter 21, Web Graphics Basics 509

If that still sounds too steep, consider using royalty-free artwork for which
you don’t need to pay a licensing fee. Royalty-free artwork is available for a
one-time fee that gives you unlimited use of the image, but you have no
control over who else is using the image. Royalty-free images are available
from the top-notch professional stock houses such as Getty Images for as
little as 30 bucks an image, and from other sites for less (or even for free).

Another way to get free images is to find photos and drawings released by
the artist under a Creative Commons license by the artists who created them.
There are a few types of Creative Commons licenses, so be sure to check the
terms. Some artists make their work free to use however you want; some
artists ask only that you give them credit (attribution-only); some limit the
image use to non-commercial purposes.

Following is a list of a few of my favorite resources for finding high-quality
stock photography and illustrations, but it is by no means exhaustive. A web
search will turn up plenty more sites with images for sale.

Flickr Creative Commons (www.flickr.com/creativecommons/)

The photo-sharing service Flickr is my first stop for finding photos
released on a Creative Commons license. The quality varies, but I can
usually find what I need (such as the red panda in Chapter 10) for the
cost of a photo credit. Try using the Flickr search tool Compfight (comp-
fight.com) to find images based on “interestingness.”

iStockPhoto (www.istockphoto.com)

If you’re on a tight budget (and even if you’re not), there’s no better place
to find images than iStockPhoto. Prices start at about three bucks a pop.
It’s my personal favorite image resource.

Getty Images (www.gettyimages.com)

Getty is the largest stock image house, having acquired most of its com-
petitors over recent years. It offers both rights-managed and royalty-free
photographs and illustrations at a variety of price ranges.

Veer (www.veer.com)

I like Veer because it tends to be a little more hip and edgy than its
competitors. It offers both rights-managed and royalty-free photographs,
illustrations, fonts, and stock video.

Clip art and icons
Clip art refers to collections of royalty-free illustrations, animations, but-
tons, and other doo-dads that you can copy and paste into a wide range
of uses. There are a number of resources online, and the good news is that
some of these sites give graphics away for free, although you may have to suf-
fer through a barrage of pop-up ads. Others charge a membership fee, any-
where from $10 to $200 a year. The drawback is that a lot of them are poor

When scanning images for use on the
Web, these tips will help you create
images with better quality.

 y Because it is easier to maintain
image quality when resizing
smaller than resizing larger,
scan the image larger than you
actually need. This gives you more
flexibility for creating other sizes
later. Issues of image size are
discussed in more detail in the
Image Size and Resolution section
later in this chapter.

 y Scan black and white images in
grayscale (8-bit) mode, not in
black-and-white (1-bit, or bitmap)
mode. This enables you to make
adjustments in the midtone areas
once you have sized the image to
its final dimensions and resolution.
If you really want only black and
white pixels, convert the image as
the last step.

 y If you are scanning an image that
has been printed, you need to
eliminate the dot pattern that
results from the printing process.
The best way to do this is to
apply a slight blur to the image
(in Photoshop, use the Gaussian
Blur filter), resize the image
slightly smaller, and then apply a
sharpening filter. This will eliminate
those pesky dots. Make sure you
have the rights to use the printed
image, too, of course.

S C A N N i N G T i p S

n oT e

For more information about Creative
Commons licenses, go to creativecom-
mons.org/licenses/.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics510

Meet the Formats

quality or kind of hokey (but then, “hokey” is in the eye of the beholder).
The following are just a few sites to get you started.

Clipart.com (www.clipart.com)

This service charges a membership fee, but is well-organized and tends
to provide higher quality artwork than the free sites.

#1 Free Clip Art (www.1clipart.com)

Another no-frills free clip art site.

It is also easy to find icons for web pages and applications for free or for a
low price (a simple search for “free icons” will do the trick). Here are two
resources to start you off.

The Noun Project (thenounproject.com)

The Noun Project collects and organizes classic, one-color icons from
around the world and makes them available for free. How cool is that?

Icon Finder (www.iconfinder.com)

This is a vast resource for free full-color icons of all styles. Be sure to check
the terms of the Creative Commons license, which varies by icon set.

Hire a designer
Finding and creating images takes time and particular talents. If you have
more money than either of those things, consider hiring a graphic designer,
photographer, or illustrator to generate the imagery for your site for you. If
you start with good original images, you can still use the skills you learn in
this book to produce web versions of the images as you need them.

Meet the Formats
Once you have your hands on some images, you need to get them into a for-
mat that will work on a web page. There are dozens of graphics file formats
out in the world. For example, if you use Windows, you may be familiar
with BMP graphics, or if you are a print designer, you may commonly use
images in TIFF and EPS format. On the Web, bitmapped (pixel-based)
images need to be saved in one of three formats: GIF (pronounced “jiff” or
“giff’), JPEG (“jay-peg”), and PNG (“ping” or “P-en-gee”).

There is a fourth format I want you to know about, SVG (Scalable Vector
Graphics), which is a bit of an oddball in that it is a vector drawing format
generated by an XML text file, so I’m going to save that for the end of this
chapter. In the meantime, we’ll focus on the universally supported bit-
mapped image formats GIF, JPEG, and PNG.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the Formats

Chapter 21, Web Graphics Basics 511

If this sounds like alphabet soup to you, don’t worry. By the end of this sec-
tion, you’ll know a GIF from a JPEG and when to use each one. Here is a
quick rundown:

GIF images are most appropriate for images with flat colors and hard edges
or when transparency or animation is required.

JPEGs work best for photographs or images with smooth color blends.

PNG files can contain any image type, but they are especially efficient for
storing images with flat colors. PNG is the only format that allows mul-
tiple levels of transparency.

This section tackles terminology and digs deep into the features and func-
tions of each format. Understanding the technical details will help you make
the highest-quality web graphics at the smallest sizes.

The ubiquitous GIF
The GIF (Graphic Interchange Format) file was the first image format sup-
ported by web browsers. Although not designed specifically for the Web,
it was adopted for its versatility, small file sizes, and cross-platform com-
patibility. GIF also offers transparency and the ability to contain simple
animations. Over 20 years later, it is arguably still the most widely used web
graphics format.

Because the GIF compression scheme excels at compressing flat colors, it is
the best file format to use for logos, line art, icons, etc. (Figure 21-1). You
can save photographs or textured images as GIFs, too, but they won’t be
saved as efficiently, resulting in larger file sizes. However, GIF does work
nicely for images with a combination of small amounts of photographic
imagery and large, flat areas of color.

To make really great GIFs, it’s important to be familiar with how they work
under the hood and what they can do.

8-bit indexed color
In technical terms, GIF files are
indexed color images that contain
8-bit color information (they can also
be saved at lower bit depths). Let’s
decipher that statement one term at a
time. 8-bit means GIFs can contain up
to 256 colors—the maximum number
that 8 bits of information can define
(28=256). Lower bit depths result in
fewer colors and also reduce file size.

Name Files Properly
Be sure to use the proper file
extensions for your image files. GIF
files must be named with the .gif
suffix. JPEG files must have .jpg (or
the less common .jpeg) as a suffix.
PNG files must end in .png. Browsers
look at the suffix to determine how
to handle various media types, so it
is best to stick with the standardized
suffixes for image file formats.

Figure 21-1. The GIF format is great for
graphical images comprised mainly of flat
colors and hard edges.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics512

Meet the Formats

Indexed color means that the set of
colors in the image, its palette, is
stored in a color table (also called a

color map). Each pixel in the image
contains a numeric reference (or
“index”) to a position in the color
table. This should be made clear
with a simple demonstration. Figure
21-2 shows how a 2-bit (4-color)
indexed color image references its
color table for display. For 8-bit
images, there are 256 slots in the
color table.

When you open an existing GIF in Photoshop, you can view (and even edit)
its color table by selecting Image ➝ Mode ➝ Color Table (Figure 21-3). You
also get a preview of the color table for an image when you use Photoshop’s
Save for Web function to export an image in GIF format, as we’ll do later in
this chapter. In Fireworks, the color table is displayed in the Optimize panel.

Most source images (scans, illustrations, photos, etc.) start out in RGB for-
mat, so they need to be converted to indexed color in order to be saved as
a GIF. When an image goes from RGB to indexed mode, the colors in the
image are reduced to a palette of 256 colors or fewer. In Photoshop and
Fireworks, the conversion takes place when you save or export the GIF.
Other image-editing programs may require you to convert the image to
indexed color manually first, then export the GIF as a second step.

In either case, you will be asked to select a palette for the indexed color
image. The sidebar Common Color Palettes outlines the various palette
options available in the most popular image tools. It is recommended that

you use Selective or Perceptual in
Photoshop, Adaptive in Fireworks,
and Optimized Median Cut in Paint
Shop Pro for the best results for
most image types.

1 1

1

1

1

1

1

1

1

1

1

1

2 2

222

2 2

1 1

1 11 1

1 1 1 1 1

3 3

3 3

3 3 3 3

3 3

3 3

33 3 3 3

3

3

43

3 3

3 3 3

3 3 3 3 3

1 1

1 1 1 1 1 1 1 1 1

1 2 3 4

The pixels in an indexed color image
contain numerical references to the
color table for the image.

The image displays with the
colors in place.

The color table matches
numbers to RGB color
values. This is the map for a
2-bit image with only
4 colors.

Color table

Photoshop Fireworks

Figure 21-2. A 2-bit image and its color
table.

Figure 21-3. The Color Table in Photoshop
and Fireworks displays the 64 pixel colors
used in the image.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the Formats

Chapter 21, Web Graphics Basics 513

Common Color Palettes
All 8-bit indexed color images, including GIF and PNG, use palettes to define the colors in the image, and there are several standard
palettes to choose from. Some are methods for producing a custom palette based on the colors in the image. Others apply a
preexisting palette to the image.

Exact. Creates a custom palette out of the actual colors in the
image if the image already contains fewer than 256 colors.

Adaptive. Creates a custom palette using the most frequently
used pixel colors in the image. It allows for color-depth
reduction while preserving the original character of the
image.

Perceptual (Photoshop only). Creates a custom color table
by giving priority to colors for which the human eye
has greater sensitivity. Unlike Adaptive, it is based on
algorithms, not just a pixel count. It generally results in
images with better color integrity than Adaptive palette
images.

Selective (Photoshop only). This is similar to Perceptual, but it
gives preference to areas of broad color.

Web Adaptive, Restrictive, or Web216. Creates a palette of
colors exclusively from a palette of 216 colors that do

not dither on 8-bit monitors. 8-bit monitors are a thing
of the past, so web-safe palette is no longer relevant or
recommended.

Custom. This allows you to load a palette that was previously
saved and apply it to the current image. Otherwise, it
preserves the current colors in the palette.

System (Windows or Macintosh). Uses the colors in the
specified system’s default palette.

Optimized Median Cut (Paint Shop Pro Photo only). This
reduces the image to a few colors using something similar
to an Adaptive palette.

Optimized Octree (Paint Shop Pro Photo only). Use this
palette if the original image has just a few colors and you
want to keep those exact colors.

GIF compression
GIF compression is “lossless,” which means that no image information is
sacrificed in order to compress the indexed image (although some image
information may be lost when the RGB image is converted to a limited
color palette). It uses a compression scheme (called “LZW” for Lempel-
Ziv-Welch) that takes advantage of repetition in data. When it encounters a
string of pixels of identical color, it can compress that into one data descrip-
tion. This is why images with large areas of flat color condense better than
images with textures.

To use an extremely simplified example, when the compression scheme
encounters a row of 14 identical blue pixels, it makes up a shorthand nota-
tion that means “14 blue pixels.” The next time it encounters 14 blue pixels,
it uses only the code shorthand (Figure 21-4). By contrast, when it encoun-
ters a row that has a gentle gradation from blue to aqua to green, it needs to
store a description for every pixel along the way, requiring more data. What
actually happens in technical terms is more complicated, of course, but this
example is a good mental model to keep in mind when designing GIF images
for maximum compression.

Transparency
You can make parts of GIF images transparent so that the background image
or color shows through. Although all bitmapped graphics are rectangular by
nature, with transparency, you can create the illusion that your image has

In an image with gradations of color, it has to store
information for every pixel in the row. The longer
description means a larger file size.

GIF compression stores repetitive pixel colors
as a single description.

“14 blue”

“1 blue, 1 aqua, 2 light aqua...” (and so on)

Figure 21-4. A simplified
demonstration of LZW compression
used by GIF images.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics514

Meet the Formats

a more interesting shape (Figure 21-5). Transparency is discussed in detail
later in this chapter.

Interlacing
Interlacing makes a GIF display in a series of passes. Each pass is clearer
than the pass before, until the image is fully rendered in the browser window
(Figure 21-6). Without interlacing, some browsers may wait until the entire
image is downloaded before displaying the image. Others may display the
image a few rows at a time, from top to bottom, until the entire picture is
complete.

Over a fast connection, these effects (interlacing or image delays) may not
even be perceptible. However, over slow connections (modem or mobile
carrier network), interlacing large images may be a way to provide a hint of
the image to come while the entire image downloads. Whether you interlace
or not is your design decision. I never do, but if you have a large image and
an audience with a significant percentage of slow connections, interlacing
may be worthwhile.

Animation
Another feature built into the GIF file format is the ability to display simple
animations (Figure 21-7). Many of the spinning, blinking, fading, or other-
wise moving ad banners you see are animated GIFs (although Flash movies
have also been popular for web advertising).

Figure 21-7. All the frames of this simple animation are contained within one GIF file.

Animated GIFs contain a number of animation frames, which are separate
images that, when viewed together quickly, give the illusion of motion
or change over time, kind of like a flip-book. All of the frames are stored
within a single GIF file, along with settings that describe how they should be
played. Settings include whether and how many times the sequence repeats,
how long each frame stays visible (frame delay), the manner in which one
frame replaces another (disposal method), whether the image is transparent,
and whether it is interlaced.

Adobe Fireworks and Photoshop have interfaces for creating animated GIFs.
In Photoshop CS5 and earlier, use the Animation window. In CS6, use the
Timeline window and select “Create Frame Animation.” A web search will
turn up many dedicated animated GIF tools, many of them free.

Figure 21-5. Transparency allows the
striped background to show through the
image on the bottom.

Figure 21-6. Interlaced GIFs display in a
series of passes, each clearer than the pass
before.

wa R n i n G

Animated GIFs are problematic on
Android phones and tablets as of this
writing. Although Android 2.2 added
support for animated GIFs, many phone
manufacturers turn it off by default,
requiring users to know to turn them on
in Settings (not terribly likely). Opera
Mobile 10+ has support, but Opera
Mini does not. Animated GIFs work fine
on iPhones.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the Formats

Chapter 21, Web Graphics Basics 515

Animated GIFs
If you would like to learn how to make an animated GIF, you can download a
PDF of the Animated GIFs chapter from a previous edition of this book at www.
learningwebdesign.com. The chapter includes detailed explanations of the animation
settings and step-by-step instructions for creating animations.

F u r T H E r r E A d i N G

The photogenic JPEG
Another popular graphic format on the Web is JPEG, which stands for Joint
Photographic Experts Group, the standards body that created it.

Unlike GIFs, JPEGs use a compression scheme that loves gradient and
blended colors, but doesn’t work especially well on flat colors or hard edges.
JPEG’s full-color capacity and compression scheme make it the ideal choice
for photographic images (Figure 21-8).

Figure 21-8. The JPEG format is ideal for photographs (color or grayscale) or any image
with subtle color gradations.

24-bit Truecolor images
Unlike GIFs, JPEGs don’t use color palettes. Instead, they are 24-bit images,
capable of displaying colors from the millions of colors in the RGB color
space (also referred to as the Truecolor space; see note). This is one aspect
that makes them ideal for photographs—they have all the colors you’ll ever
need. With JPEGs, you don’t have to worry about limiting yourself to 256
colors the way you do with GIFs. JPEGs are much more straightforward.

n oT e

RGB color is explained in Chapter 14,
Colors and Backgrounds.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics516

Meet the Formats

Lossy compression
The JPEG compression scheme is lossy, which means that some of the image
information is thrown out in the compression process. Fortunately, this loss
is not discernible for most images at most compression levels. When an
image is compressed with high levels of JPEG compression, you begin to see
color blotches and squares (usually referred to as artifacts) that result from
the way the compression scheme samples the image (Figure 21-9).

Original Maximum compression

Figure 21-9. JPEG compression discards image detail to achieve smaller file sizes. At high
compression rates, image quality suffers, as shown in the image on the right.

You can control how aggressively you want the image to be compressed.
This involves a trade-off between file size and image quality. The more you
compress the image (for a smaller file size), the more the image quality suf-
fers. Conversely, when you maximize quality, you also end up with larger
files. The best compression level is based on the particular image and your
objectives for the site. Compression strategies are discussed in more detail in
Chapter 22, Lean and Mean Web Graphics.

Progressive JPEGs
Progressive JPEGs display in a series of passes (like interlaced GIFs), start-
ing with a low-resolution version that gets clearer with each pass, as shown
in Figure 21-10. In some graphics programs, you can specify the number of
passes it takes to fill in the final image (3, 4, or 5).

The advantage to using progressive JPEGs is that viewers can get an idea of
the image before it downloads com-
pletely. Also, making a JPEG pro-
gressive usually reduces its file size
slightly. The disadvantage is that
they take more processing power
(which can make them problematic
for low-end mobile devices) and can
slow down final display.

Cumulative Image
Quality Loss
Be aware that once image quality
is lost in JPEG compression, you
can never get it back again. For this
reason, you should avoid resaving a
JPEG as a JPEG. You lose image quality
every time.

It is better to hang onto the original
image and make JPEG copies as
needed. That way, if you need to
make a change to the JPEG version,
you can go back to the original and
do a fresh save or export. Fortunately,
Photoshop’s Save for Web feature
does exactly that. Fireworks also
preserves the original and lets you
save or export copies.

W A r N i N G

Figure 21-10. Progressive JPEGs render in
a series of passes.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the Formats

Chapter 21, Web Graphics Basics 517

Decompression
JPEGs need to be decompressed before they can be displayed; therefore, it
takes a browser longer to decode and assemble a JPEG than a GIF of the
same file size. It’s usually not a perceptible difference, however, so this is not
a reason to avoid the JPEG format. It’s just something to know.

The powerful PNG
The last bitmapped format to join the web graphics roster is the versatile
PNG (Portable Network Graphic). Despite getting off to a slow start, PNGs
are now supported by all browsers in current use and are becoming many
developers’ first choice in web graphics formats.

PNGs offer an impressive lineup of features:

•	 The ability to contain 8-bit indexed, 24-bit RGB, 16-bit grayscale, and
even 48-bit color images

•	 A lossless compression scheme

•	 Simple on/off transparency (like GIF) or multiple levels of transparency

•	 Progressive display (similar to GIF interlacing)

•	 Gamma (brightness) adjustment information

•	 Embedded text for attaching information about the author, copyright,
and so on

This section takes a closer look at each of these features and helps you decide
when the PNG format is the best choice for your image.

Multiple image formats
The PNG format was designed to replace GIF for online purposes and TIFF
for image storage and printing. A PNG can be used to save many image
types: 8-bit indexed color, 24- and 48-bit RGB color, and 16-bit grayscale.

8-bit indexed color images

Like GIFs, PNGs can store 8-bit indexed images with a maximum of 256
colors. They may be saved at 1-, 2-, and 4-bit depths as well. Indexed
color PNGs are generally referred to as PNG-8.

RGB/Truecolor (24- and 48-bit)

In PNGs, each channel (red, green, and blue) can be defined by 8- or
16-bit information, resulting in 24- or 48-bit RGB images, respectively. In
graphics programs, 24-bit RGB PNGs are identified as PNG-24. It should
be noted that 48-bit images are useless for the Web, and even 24-bit
images should be used with care. Because it is lossless, 24-bit PNGs are
nearly always significantly larger than a lossy JPEG of the same image.

Use Progressive
JPEGs for Retina
Displays
In general, it is not necessary to save
a JPEG as progressive. The exception
to this rule (as of this writing) is when
you are creating double-sized JPEGs
targeted at iOS devices with Retina
displays. In this case, you should save
in progressive format to get around
a byte limit issue in Mobile Safari.
This workaround may no longer
be necessary in future versions of
Safari and as Retina screens become
more widespread. Other special
considerations are discussed in the
Dealing with High-Density Displays
sidebar later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics518

Meet the Formats

Grayscale

PNGs can also support 16-bit grayscale images—that’s as many as
65,536 shades of gray (216), enabling black-and-white photographs and
illustrations to be stored with enormous subtlety of detail, although they
are not appropriate for the Web.

Transparency
PNGs can contain transparent areas that let the background image or color
show through. The killer feature that PNG has over GIF, however, is the
ability to contain multiple levels of transparency, commonly referred to as
alpha-channel (or just alpha) transparency.

Figure 21-11 shows the same PNG against two different background images.
The orange circle is entirely opaque, but the drop shadow contains multiple
levels of transparency, ranging from nearly opaque to entirely transparent.
The multiple transparency levels stored in the PNG allow the drop shadow
to blend seamlessly with any background. The ins and outs of PNG transpar-
ency will be addressed in the upcoming Working with Transparency section.

Figure 21-11. Alpha-channel transparency allows multiple levels of transparency, as
shown in the drop shadow around the orange circle PNG.

Progressive display (interlacing)
PNGs can also be coded for interlaced display. When this option is selected,
the image displays in a series of seven passes. Unlike interlaced GIFs,
which fill in horizontal rows, PNGs fill in both horizontally and vertically.
Interlacing adds to the file size and is usually not necessary, so to keep files
as small as possible, turn interlacing display off.

Gamma correction
Gamma refers to the brightness setting of a monitor. Because gamma set-
tings vary by platform, the graphics you create may not look the way you
intend for the end user. PNGs can be tagged with information regarding
the gamma setting of the environment in which they were created. This can
then be interpreted by the software displaying the PNG to make appropriate

wa R n i n G

Multiple levels of transparency are
not supported by Internet Explorer 6
and earlier for Windows. For details,
see the Internet Explorer 6 and
Alpha Transparency sidebar in the
Transparency section coming up in this
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the Formats

Chapter 21, Web Graphics Basics 519

gamma compensations. When this is implemented on both the creator and
end user’s sides, the PNG retains its intended brightness and color intensity.

Unfortunately, as of this writing, this feature doesn’t work as intended in
the real world. Internet Explorer (all versions) displayed gamma incorrectly,
and PNGs ended up darker than intended. Photoshop stopped embedding
gamma information in PNGs starting with CS3. Be aware that it may be dif-
ficult to get a PNG to match a background color in some browsers, even if
the RGB values are the same. The solution is to make the edges of the PNG
transparent so the background shows through or to use a GIF.

Embedded text
PNGs also have the ability to store strings of text. This is useful for per-
manently attaching text to an image, such as copyright information or a
description of what is in the image. The only tools that accommodate text
annotations to PNG graphics are Corel Paint Shop Pro Photo and GIMP.
Ideally, the meta-information in the PNG would be accessible via right-
clicking on the graphic in a browser, but this feature is not yet implemented
in current browsers.

When to use PNGs
PNGs pack a lot of powerful options, but competition among web graphic
formats nearly always comes down to file size.

For images that would typically be saved as GIFs, 8-bit PNG is often a bet-
ter option. You may find that a PNG version of an image has a smaller file
size than a GIF of the same image, but that depends on how efficiently your
image program handles PNG compression.

Although PNG does support 24-bit color images, its lossless compression
scheme nearly always results in a dramatically larger file than JPEG com-
pression applied to the same image. For web purposes, JPEG is still the best
choice for photographic and continuous tone images.

The exception to the “smallest file wins” rule is if you want to take advan-
tage of multiple levels of transparency. In that case, PNG is your only option
and may be worth a slightly heftier file size.

The following section takes a broader look at finding the best graphic format
for the job.

Choosing the best format
Part of the trick to making quality web graphics that maintain quality and
download quickly is choosing the right format. Table 21-1 provides a good
starting point.

n oT e

If you are dedicated to PNG and hard-
core about quality, you could remove
the gamma (gAMA) information from
the PNG using a utility like PNGcrush,
as detailed in this article by Trevor
Morris (morris-photographics.com/pho-
toshop/articles/png-gamma.html).

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics520

Meet the Formats

Table 21-1. Choosing the best bitmapped (raster) file format
If your image... use... because...

Is graphical, with flat colors GIF, 8-bit
PNG

GIF and PNG excel at compressing
flat color.

Is a photograph or contains
graduated color

JPEG JPEG compression works best on
images with blended color. Because
it is lossy, it generally results in
smaller file sizes than 24-bit PNG.

Is a combination of flat and
photographic imagery

GIF or
8-bit PNG

Indexed color formats are best at
preserving and compressing flat
color areas. The dithering that
appears in the photographic areas
as a result of reducing to a palette is
usually not problematic.

Requires transparency GIF or PNG Both GIF and PNG allow on/off
transparency in images.

Requires multiple levels of
transparency

PNG PNG is the only format that supports
alpha-channel transparency.

Requires animation GIF GIF is the only format that can con-
tain animation frames.

saving an image in your chosen format
Virtually every up-to-date graphics program allows you to save images in
GIF, JPEG, and PNG format, but some give you more options than others.
If you use Photoshop, Fireworks, or Corel Paint Shop Pro, be sure to take
advantage of their special web graphics features.

Start with an RGB image at the highest quality available—you never know
in which other contexts you will need to use it. After you are done adjusting
the image (cropping, color correction, etc.), save the image at full size so you
are sure to have a good original. Then you can resize the image so that it is
appropriate to a web page. In fact, these days it is common to make a num-
ber of images targeted to different device sizes, which is all the more reason
to keep a clean, high-quality original. When you are finished resizing (I’ll
show one resizing technique later in this chapter), follow these instructions
for saving it as GIF, JPEG, or PNG.

Work in RGB Mode
Regardless of the final format of
your file, you should always do your
image-editing work in RGB mode
(grayscale is fine for non-color
images). To check the color mode of
the image in Photoshop, select Image
➝ Mode and make sure there is a
checkmark next to RGB Color.

JPEG and PNG-24 files compress the
RGB color image directly. If you are
saving the file as a GIF or PNG-8, the
RGB image must be converted to
indexed color mode, either manually
or as part of the Save for Web or
Export process.

If you need to edit an existing GIF
or PNG-8, convert the image to RGB
as the first step before editing. This
enables the editing tool to use colors
from the full RGB spectrum when
adjusting the image. If you resize the
original indexed color image, you’ll
get lousy results because the new
image is limited to the colors from the
existing color table.

If you have experience creating
graphics for print, you may be
accustomed to working in CMYK
mode (printed colors are made up
of Cyan, Magenta, Yellow, and blacK
ink). CMYK mode is irrelevant and
inappropriate for web graphics,
so convert to RGB mode at the
beginning of the image-editing
process

www.it-ebooks.info

http://www.it-ebooks.info/

Meet the Formats

Chapter 21, Web Graphics Basics 521

Adobe Photoshop

Open Photoshop’s Save for
Web dialog box (File ➝ Save
for Web; see Figure 21-12) and
select the file type from the
pop-up menu. When you
choose a format, the panel dis-
plays settings appropriate to
that format. The Save for Web
window also shows you a pre-
view of the resulting image and
its file size. You can even do
side-by-side comparisons of dif-
ferent settings, for example,
GIF and PNG-8 version of the
same image and their resulting
file sizes. Once you have select-
ed the file type and made your
settings, click Save and give the
file a name.

We’ll see the Save for Web dia-
log box again later in this chap-
ter when we resize images and
work with transparency. It also
pops up in Chapter 22, Lean
and Mean Web Graphics when
we discuss the various settings
related to optimization.

Fireworks

With the image open and the
Preview tab selected, the file
type can be selected from the
Optimize panel (Figure 21-13).
When you are finished with your
settings, select Export from the
File menu and give the image file
a name.

Photoshop
Select the file type in the Save for Web Devices
dialog box. You can change the setting sand
compare resulting images before you Save.

Figure 21-12. Selecting a file type in Photoshop’s handy Save for Web dialog box.

Fireworks
Select a file type in the Optimize
panel prior to Exporting the graphic.

Figure 21-13. Selecting file type in the Fireworks Optimize panel

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics522

Image size and Resolution

Paint Shop Pro

The GIF Optimizer, JPEG Optimizer, and PNG Optimizer are
accessed from the Export option in the File menu. Each opens a mul-
tipanel dialog box with all the settings for the respective file type and a
preview of a portion of the compressed image. The Colors panel of the
GIF optimizer is shown in Figure 21-14. When you have made all your
settings, click OK. Note that you need to choose your file type before
accessing the settings, and unlike Photoshop and Fireworks, there is
no way to compare image type previews in Paint Shop Pro.

Image size and Resolution
One thing that GIF, JPEG, and PNG images have in common is that
they are all bitmapped (also called raster) images. When you zoom in
on a bitmapped image, you can see that it is like a mosaic made up of
many pixels (tiny, single-colored squares). These are different from
vector graphics, which are made up of smooth lines and filled areas,
all based on mathematical formulas. Figure 21-15 illustrates the differ-
ence between bitmapped and vector graphics.

Vector images use mathematical
equations to define shapes.

Bitmap images are made up of a grid of
variously colored pixels, like a mosaic.

Figure 21-15. Bitmapped and vector graphics.

Goodbye inches, hello pixels!
If you’ve used bitmapped images for print or the Web, you may be familiar
with the term resolution, the number of pixels per inch. In the print world,
image resolutions of 300 and 600 pixels per inch (ppi) are common.

On the Web, however, the notion of “inches” is irrelevant. Although I may
have created an image at 72 pixels per inch, it’s unlikely that it will measure
precisely one inch when it is displayed (Figure 21-16). In fact, with the
emergence of high-density screens such as the Apple Retina display, even
the notion of a “pixel” has gotten a lot more complicated, as discussed in
the upcoming Pixel madness section and in the Dealing with High-Density
Displays sidebar.

Figure 21-14. Web optimization options
in Corel Paint Shop Pro

www.it-ebooks.info

http://www.it-ebooks.info/

Image size and Resolution

Chapter 21, Web Graphics Basics 523

on
e

in
ch

on
e

in
ch

Image appears one inch
by one inch on 72-ppi

monitor.

72 ppi

72
 p

ix
el

s
one inch

one inch

Image appears smaller
on 100-ppi monitor.

100 ppi

72 pixels

Figure 21-16. Inches, and therefore “pixels per inch,” are not relevant for digital media,
where the size of in image is dependent on monitor resolution.

If you’re tossing out inches, you have to toss out “pixels per inch” as well.
The only thing we know for sure is that the graphic in Figure 21-16 is 72
pixels across, and it will be twice as wide as a graphic that is 36 pixels across.
Web designers measure their images in total number of pixels, so the resolu-
tion of the image is technically not relevant.

That said, however, most designers I know create their images at 72ppi
just to get in the ballpark. I find that when I create all my images at 72ppi
and view them at 100% in Photoshop, it keeps them in proportion to one
another and displays them at roughly the size they’ll appear on a desktop
monitor. 72ppi is a good starting resolution when creating images targeted
at high-density displays (like the Apple Retina Display) as well; just double
the pixel dimensions.

Pixel madness
Not so long ago, we could count on the pixels in an image mapping one-
to-one with the hardware pixels in the desktop monitor. For the most part,
that is still true, but there have been developments in technology that break
that rule.

First, many browsers now automatically scale large images to fit inside the
browser window regardless of its size and allow users to zoom web pages,
thus the 1:1 mapping is lost. Images are obviously scaled down to fit small
handheld devices as well.

Manufacturers have been pushing the resolution of displays higher and
higher. As a result, an actual hardware pixel is so small that images and text
would be illegibly tiny if they were mapped one to one. To compensate,
devices use a measurement called a reference pixel to which pixels in images,

Dots Per Inch
Because web graphics exist solely on
the screen, it is correct to measure
their resolutions in pixels per inch
(ppi).

When it comes to print, however,
devices and printed pages are
measured in dots per inch (dpi),
which describes the number of
printed dots in each inch of the
image. The dpi may or may not be
the same as the ppi for an image.

In your travels, you may hear
the terms dpi and ppi used
interchangeably (albeit incorrectly
so). It is important to understand the
difference.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics524

Image size and Resolution

text, and CSS rules are mapped. On Apple Retina displays on newer iPhones,
iPads, and MacBook Pros, the width of a reference pixel is equivalent to two
hardware pixels. On some Android tablets, a reference pixel is 1.5 hardware
pixels. It adds a new layer of complexity to our jobs as web designers (see
the Dealing with High-Density Displays sidebar).

Dealing with High-Density Displays
Imagine a device that requires enormous images to take
advantage of its full potential, but that may be accessing those
images on the slowest 3G networks. That’s exactly what we have
with the iPad 3 released in the spring of 2012. The new iPad
sports a Retina display with a resolution of 2048 x 1536—that’s
a whopping 3.1 million or so pixels. The Retina MacBook Pro
with a resolution of 2800 x 1800 was released soon after, and I’m
sure this is only the beginning of a trend toward high-density
displays.

It’s exciting for consumers because images can appear with
the clarity and precision of print. But the new Retina display
temporarily knocked us web developers for a loop. On a Retina
displays, regular web images look fuzzy and slightly pixelated.
In order to get images to look crisp, you have to double the
dimensions of the graphic and let the browser size them
down to the intended dimensions in the layout. Figure 21-17
compares a standard web graphic to the same image created at
2x size especially for the Retina display.

Unfortunately, when you double the dimensions of a web
image, you end up with four times the number of pixels, and as
much as four times the file size. And as we know, on the Web,
performance is everything. Devices with high-density displays
may prefer to display high-resolution images, but that doesn’t
mean the networks have magically
grown faster to deal with them.

So, what to do? To be honest, we’re
still figuring out strategies for dealing
with the inevitable onslaught of high-
resolution devices. Addressing the
requirements of our sites in hi-res will
become another aspect of our jobs as
web designers.

Here are a few things we do know:

 y Doubling the dimensions of images
makes them look crisp at high
resolutions, as shown in Figure 21-17.

 y Apple’s Safari browser has a limit on
how many megabytes of JPEG can
display on a page. For images over
two megapixels (2.1 million pixels),
it automatically degrades the image

and the crisp quality is lost. To get around the Safari JPEG
limit, save your JPEGs in Progressive format.

 y You don’t need to super-size every image. Consider creating
2x images only for the most important image or images
on the page (known in the biz as hero images). This might
include a singular mood-setting image, your logo, or product
shots where detail is important, such as indicating the
texture of fabric.

 y You can use a CSS media query to test whether the device
has a 2x resolution and serve appropriately large images to
just those devices, preventing small devices from getting
unnecessarily large images. You could also use JavaScript to
replace a standard image with a 2x image.

 y Unfortunately, knowing that the user has a Retina or other
high-density display doesn’t tell you anything about the
user’s network speed, so you risk sending giant images over
slow connections that can’t display them quickly. Strategies
for discovering the user’s current connection speed are
under development and are beyond the scope of this
graphics chapter. Because these techniques are developing
rapidly, I recommend you do your own web search for the
latest thinking.

Standard web images look fuzzy on
retina displays. The PNG is 350 pixels
wide in an img element set to 350px
wide.

Images look sharp on retina displays
when they are created at twice the
final layout size. This PNG is 700 pixels
wide in an img element set to
350px wide.

Figure 21-17. Typical web graphics look slightly pixel-y on the Retina iPad display.

n oT e

For a more in-depth explanation, I rec-
ommend the article “A Pixel Identity
Crisis” by Scott Kellum (www.ali-
stapart.com/articles/a-pixel-identity-
crisis/).

www.it-ebooks.info

http://www.it-ebooks.info/

Image size and Resolution

Chapter 21, Web Graphics Basics 525

Resizing images
Because source images generally are not appropriate for the Web, sizing
images smaller makes up a large portion of the time I spend doing graphics
production, so image resizing is a good basic skill to have.

In Exercise 21-1, I’ll show you an easy way to resize an image using
Photoshop’s Save For Web feature. With this method, the exported web
graphic is resized, but the original remains unaltered. This makes it easy to
save the same image at a number of sizes appropriate for different devices in
just a few steps. For other programs, or if you want more control over the
final image quality, see the Using Image Size sidebar following the exercise.

exercise 21-1 | Resizing an image smaller in Photoshop
In this exercise, we’ll take a high-resolution photo and size it
to fit on a web page. The source image, ninja.tif, is available
with the materials for this chapter at www.learningwebdesign.
com/4e/materials/.

Open the file ninja.tif in Photoshop. Select all the pixels in the
image (Select → All), and then check the pixel dimensions in
the Info panel (Figure 21-18 A). If the Info panel is not open,
select Window → Info. If the measurements are listed in inches
or some other unit, change it to pixels in the Preferences
(Photoshop → Preferences → Units & Rulers). Our ninja image
is 1600 x 1600 pixels, which is too big for a web page. For this
example, let’s imagine the space in the page layout is 400 pixels
square.

Now we’ll resize the image and save it as a JPEG in one fell
swoop. Select Save for Web from the File menu. Select JPEG B
from the Formats pop-up menu.

Using the Image Size settings on the bottom half of the Settings
column C, enter the dimensions that you’d like the final JPEG to
be when it is saved, in this case 400 pixels. When the link icon is
checked, the height changes automatically when you enter the
new width.

Next, select the Quality D. Bicubic or Bicubic Sharper give the
best results when sizing smaller. You will see the resized image
in the Optimized Image view (select the tab at the top if it isn’t
already displayed).

Click Save E, give the file a name, and select a directory in
which to save it. When the Save for Web dialog box closes, you
will see that the original ninja.tif file is unchanged, so you can
make additional images at different sizes in this same manner.
Saving the file saves the most recent export settings.

A

B D

C

E
With the whole image selected, check the width
and height of the image in the Info panel.

n oT e

If you don’t have Photoshop, you can
download a free trial version at www.
adobe.com/downloads and follow along.

Figure 21-18. Using the Save for Web dialog box to resize an image.

www.it-ebooks.info

http://www.adobe.com/downloads
http://www.adobe.com/downloads
http://www.it-ebooks.info/

Part V, Creating Web Graphics526

Working with Transparency

Using Image size
The disadvantage to the method shown in Exercise 21-1 is that
you give up control over the quality of the image. If you are an
image quality control freak (like me), you may prefer resizing
the image using the Image Size dialog box (Figure 21-19). In
Fireworks, Modify → Canvas… → Image Size… gives you a
similar set of options.

Be sure that Resample Image and Constrain Proportions are
checked at the bottom, and select Bicubic (or Bicubic Sharper)
as the Quality setting. The resolution is not important for web
graphics, as we previously discussed.

Then enter the desired final pixel dimensions at the top of the
box and click OK. Double-clicking on the magnifying glass tool
(not shown) displays the resized image at 100%.

Now you can apply sharpening filters and other effects, and
once you are happy with the image, use Save For Web to create
the web version.

I find that resizing an extremely large image in a couple of
steps helps preserve quality. First, I resize it to an in-between
dimension and sharpen it with a sharpening filter. Then I resize it
to its final dimensions and sharpen again. You can’t do that with
the Save For Web method.

wa R n i n G

Remember that the Image Size settings resize the original
image. Be careful not to save it, or you’ll lose your high-
quality version!

Working with Transparency
Both GIF and PNG formats allow parts of an image to be transparent, allow-
ing the background color or image to show through. In this section, we’ll
take a closer look at transparent graphics, including tips on how to make
them.

Remember that there are two types of transparency. In binary transpar-
ency, pixels are either entirely transparent or entirely opaque, like an on/off
switch. Both GIF and PNG files support binary transparency.

In alpha (or alpha-channel) transparency, a pixel may be totally transparent,
totally opaque, or up to 254 levels of opaqueness in between (a total of 256
opacity levels). Only PNGs support alpha transparency. The advantage of
PNGs with alpha transparency is that they blend seamlessly with any back-
ground color or pattern, as shown back in Figure 21-11.

In this section, you’ll become familiar with how each type of transparency
works, and learn how to make transparent images using Photoshop.

Figure 21-19. The Image Size dialog box in Photoshop.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transparency

Chapter 21, Web Graphics Basics 527

How binary transparency works
Remember that the pixel colors for GIFs
and PNG-8s are stored in an indexed
color table. Transparency is simply treat-
ed as a separate color, occupying a posi-
tion in the color table. Figure 21-20
shows the color table in Photoshop for
a simple transparent GIF. The slot in
the color table that is set to transparent
is indicated by a checker pattern. Pixels
that correspond to that position will be
completely transparent when the image
displays in the browser. Note that only
one slot is transparent—all the other
pixel colors are opaque.

How alpha transparency works
RGB images, such as JPEGs and PNG-24s, store color in separate channels:
one for red, one for green, and one for blue. PNG-24 files add another channel,
called the alpha channel, to store transparency information. In that channel,
each pixel may display one of 256 values, which correspond to 256 levels of
transparency when the image is displayed. The black areas of the alpha chan-
nel mask are transparent, the white areas are opaque, and the grays are on a
scale in between. I think of it as a blanket laid over the image that tells each
pixel below it how transparent it is (Figure 21-21).

Black areas in the alpha channel
correspond to transparent image areas;
white areas are opaque; and grays are
variable levels of transparency in between.

Original transparent image

Alpha
Red

Green
Blue

Figure 21-21. Transparency information is stored as a separate (alpha) channel in
24-bit PNGs.

Transparent pixels get a slot in
the indexed color table.

Internet Explorer 6
and Alpha
Transparency
It is worth noting that Internet
Explorer 6 and earlier will show
PNGs with alpha transparency as
entirely opaque. If you have reason
to support IE6, there is a complicated
workaround using Microsoft’s
proprietary AlphaImageLoader filter,
which is documented by Michael
Lovitt here: www.alistapart.com/
articles/pngopacity.

Figure 21-20. Transparency is treated as a
color in the indexed color table.

www.it-ebooks.info

http://www.alistapart.com/articles/pngopacity
http://www.alistapart.com/articles/pngopacity
http://www.it-ebooks.info/

Part V, Creating Web Graphics528

Working with Transparency

Making transparent GIFs and PNGs
The easiest way to make parts of an image transparent is to design them that
way from the start and preserve the transparent areas when you create the
GIF or PNG version of the image. Once again, Photoshop’s Save for Web
feature or Firework’s Optimize panel are perfect tools for the job.

It is possible to add transparent areas to a flattened opaque image, but it
may be difficult to get a seamless blend with a background. We’ll look at
the process for making portions of an existing image transparent later in this
section.

But first, follow along with the steps in Exercise 21-2 that demonstrate how
to preserve transparent areas and guarantee a good match with the back-
ground using Photoshop’s Save for Web dialog box. There are some new
concepts tucked in there, so even if you don’t do the exercise, I recommend
giving it a read, particularly steps 5, 6, and 7.

exercise 21-2 | Creating transparent images
In this exercise, we’re going to start from scratch, so you’ll get
the experience of creating a layered image with transparent
areas. I’m going to keep it simple, but you can apply these
techniques to fancier designs, of course.

1. Launch Photoshop and create a new file (File → New...).
There are a few settings in the New dialog box (Figure
21-22) that will set you off in the right direction for creating
transparent web graphics.

 y First, make your new graphic 500 pixels wide and 100
pixels high to match the example in this exercise A.

 y Set the resolution to 72 pixels/inch B, which is what
I use when making web graphics (although, as you
learned, it doesn’t really matter).

 y Make sure the color mode is RGB Color, 8-bit C.

 y Finally, and most importantly for this exercise, select
Transparent from the Background Contents options
D. This option creates a layered Photoshop file with a
transparent background. It is much easier to preserve
transparent areas in an image than to add it later. The
transparent areas (in this case, the whole area, since we
haven’t added any image content yet) are indicated by a
gray checkerboard pattern E.

2. Now we’ll add some text and give it a drop shadow (Figure
21-23).

 y Use the type tool F and type your name. Open the
Character window G (Window → Character) to change
the look of the font. With the text selected, choose a
bold typeface (something chunky) and set the size large
enough to fill the space, as shown in the example. Click
the swatch next to Color, and use the Color Picker to
choose a color for the text that is not too light and not
too dark. I’m using a medium pink.

 y Next, add a soft drop shadow to the text. Open the Layers
window H (Window → Layers) if it isn’t open already. You
will see the layer containing your text in the list. Add a drop
shadow by clicking the Layer Style button (it looks like an
FX) at the bottom of the Layers window and select “Drop
Shadow…” I. In the Layer Style dialog box J, you can
play around with the settings, but I recommend setting the
Distance and Size to at least 5 to get the most out of the
rest of the exercise. When you are done, click OK.

A

B

C
D

E

Figure 21-22. Creating a new image with a transparent
background.

n oT e

The principles and settings outlined in
Exercise 21-2 are nearly identical in
Fireworks, so the same general instruc-
tions apply, although the interface is
slightly different.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transparency

Chapter 21, Web Graphics Basics 529

3. Save the image as a Photoshop file to preserve the layers for easier editing later, if
necessary. I’m naming mine jennifer.psd (use the .psd suffix). With a nice source
image saved, we are ready to start making the web versions.

F

H J

I

G

4. With the new file still
open, select Save for
Web from the File
menu. Click on the
4-Up tab at the top to
compare the original
image to several
other versions (Figure
21-24). Your previews
may display in a grid
instead of a stack.

Figure 21-23. Adding text with a soft drop
shadow.

Figure 21-24. The “4-up” tab
in the Save for Web dialog box
allows you to compare four
different versions of the same
image.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics530

Working with Transparency

5. Let’s see how the image looks as a GIF with and without
transparency. Click on the second preview to select it, then
set the file type to GIF and set the number of colors to 32.
Now, toggle the checkmark next to Transparency off and on
(Figure 21-25).

 y When Transparency is off (not checked, as shown on the
left), the Matte color is used to fill in the transparent areas
of the original image. Set the Matte color to white to
match my example.

 y When Transparency is on (checked, as shown on the
right), a checker pattern appears in the transparent areas
of the image, indicating
where the background color
or pattern of the web page
will show through. If you look
carefully at the drop shadow
area, you will see that the
shades of gray are blended
with the white Matte color.
Try changing the Matte color
and watch what happens in
the drop shadow area.

6. Leave the GIF preview alone for
a moment and select the next
preview. Set the file type to
PNG-8 and try toggling the
Transparency checkbox. As
expected, it behaves exactly the
same as the GIF because both

formats use binary transparency. The previews should look
like those shown in Figure 21-25.

7. Now select the fourth preview, make it a PNG-24, and
toggle the Transparency checkbox (Figure 21-26). When it
is unchecked (left), the Matte color fills in the transparent

areas of the original image. But when
Transparency is checked (right), the
checkerboard pattern shows through
the drop shadow blend. So, too,
will the background of a web page.
When Transparency is selected, the
Matte tool is no longer available,
because there is no need to specify
the background color of the page…
the PNG with alpha transparency will
blend with anything.

Take a moment to note the file
size of the transparent PNG-24.
Mine is nearly 10.6 KB, while my
transparent GIF version is 5 KB, and
the transparent PNG-8 came in at just
3.3 KB. The significantly larger file size
is the price you pay for the versatility
of the alpha transparency.

8. Save the PNG-24 with Transparency turned on, and name
the file with the .png suffix (mine is jennifer.png). Open the
Save for Web dialog box again and save a GIF version of the
image with Transparency turned on (make sure that Matte is
set to white). Name the file with the .gif suffix. We’ll be using
these graphics again in the next section.

The translucent grays in the drop shadow get blended
with the color speci�ed by the Matte setting.

The translucent grays in the drop shadow
will stay translucent in the PNG-24

Figure 21-25. Previews of transparency turned off (left) and on (right) in a GIF.

The trick to getting a transparent GIF to blend seamlessly with a background is to use the RGB values from the web page’s
background color (or the dominant color from a background image) for the Matte color. If your page background is a
multicolored pattern or is otherwise difficult to match, opt for a Matte color that is slightly darker than the predominant
background color.

d E S i G N T i p

Figure 21-26. Previews of Transparency turned off (left) and on (right) in a PNG-24.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transparency

Chapter 21, Web Graphics Basics 531

PNG-8 “Alpha” Transparency
Technically, variable levels of transparency are not limited to 24-bit PNGs. PNG-8 files
can do it too. Instead of using an alpha channel, they store different transparency
levels in multiple slots in the index color table. The resulting file size is potentially
smaller than the same image saved as a PNG-24 with an alpha channel.

As of this writing, only Fireworks allows you to create PNG-8s with multiple levels of
transparency, and browser support is poor. Most browsers display them as though
they have simple binary transparency. For now, this is another cool PNG feature that
remains untapped due to lagging software support.

Avoiding “halos”
Now that I have some transparent graphics, I’m going to try them out on
a minimal web page with a white background. If you want to work along,
open a text editor and create an HTML document like the one shown here:

<!DOCTYPE html>
<html>
<head>
 <title>Transparency test</title>
 <style>
 body {background-color: white;}
 </style>
</head>
<body>
 <p></p>
 <p></p>
</body>
</html>

When I open the file in a browser, the graphics look more or less the same
against the white background (Figure 21-27, left). But if I change the back-
ground color of the web page to teal (background-color: teal;), the differ-
ence between the alpha and binary transparency becomes very clear (right).

PNG-24
(Alpha)

GIF
(Binary)

Figure 21-27. The difference between binary and alpha transparency becomes very clear
when the background color of the page changes.

When the background color changes, the GIF no longer matches the back-
ground, resulting in an ugly fringe commonly called a halo. Halos are the
result of anti-aliased edges that have been blended with a color other than
the background color of a page. They are a potential hazard of binary trans-
parency, whether GIF or PNG-8.

Anti-aliasing
Anti-aliasing is a slight blur applied
to rounded edges of bitmapped
graphics to make smoother
transitions between colors. Aliased
edges, by contrast, have stair-stepped
edges. Anti-aliasing text and graphics
can give your graphics a more
professional appearance.

T E r m i N o L o G y

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics532

Working with Transparency

Prevention is the name of the game when it comes to dealing with binary
transparency and halos. As you’ve just seen, the Matte color feature in
Photoshop and Fireworks makes it easy to blend the edges of the graphic to
a target background color. If the background color changes, you can re-
export the GIF or PNG-8 with the new Matte color. See the Matte Alternative
sidebar for options if your tool doesn’t have a Matte setting.

Another option is to save your image as a PNG-24 with variable transpar-
ency. That way, you don’t have to worry about the background color or
pattern, and it will be no problem if it changes in the future. The trade-off,
of course, is the larger file size to download and the lack of support in IE6,
as noted earlier.

Adding transparency to flattened images
It is possible to add transparent areas to images that have already been
flattened and saved as a GIF or PNG. The GIF containing a yellow circle
on a purple background in Figure 21-28 blends in fine against a solid
purple background, but would be an obvious square if the background
were changed to a pattern. The solution is to make the purple areas trans-

parent to let the background show
through. Fortunately, most graphics
tools make it easy to do so by selecting
a pixel color in the image, usually an
eyedropper tool, that you’d like to be
transparent.

In Photoshop, the transparency eye-
dropper is found on the Color Table
dialog box (Image ➝ Mode ➝ Color
Table). Click on the eyedropper, then
on a pixel color in the image, and
it magically turns transparent (Figure
21-26). To save the new transparent
graphic, use the Save for Web feature
as demonstrated earlier.

If you look closely, you can see that
there is a fringe of pixels still anti-
aliased to purple, which means that
this graphic will work well only against
purple backgrounds. On other back-
ground colors, there will be a pesky
halo. Unfortunately, the only way to
fix a halo in an image that has already
been flattened is to get in there and
erase the anti-aliased edges, pixel by
pixel. Even if you get rid of the fringe,

Photoshop (versions 6 and higher)

Use the transparency eyedropper in
the Color Table dialog box to turn a
pixel color transparent.

Matte Alternative
If you are using a graphics tool that
doesn’t have the Matte feature, create
a new layer at the bottom of the layer
“stack” and fill it with the background
color of your page. When the image
is flattened as a result of changing
it to Indexed Color, the anti-aliased
edges blend with the proper
background color. Just select that
background color to be transparent
during export to GIF or PNG format
and your image should be halo-free.

Figure 21-28. Making a color transparent
in Photoshop.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to sVG

Chapter 21, Web Graphics Basics 533

you may be left with unattractive stair-stepped edges. You could also use a
layer mask to erase the areas that you want to be transparent, making sure
to erase the blended edges in the original image.

If you are concerned with the professional appearance of your site, I’d say
it’s better to re-create the graphic from scratch, taking care to prevent halos,
than to waste time trying to fix them. This is another reason to always save
your layered files.

Introduction to sVG
So far this chapter has focused on the tried-and-true bitmapped web graphic
formats, but there is another up-and-coming option that I’d like you to be
familiar with. It’s somewhat misleading to call Scalable Vector Graphics
(SVG) “up-and-coming” because the specification has been in development
since 1999 and it became a Recommendation in 2003, but thanks to improv-
ing browser support, we may finally be able to take advantage of the benefits
it has to offer.

As I mentioned at the beginning of this chapter, SVG is a bit of an oddball.
Unlike other web image formats, SVG is a vector image format, meaning that
it contains instructions for drawing shapes rather than grids of pixels. This
makes SVG a good choice for icons, logos, charts, and other line drawings
(Figure 21-29). It is not appropriate for photographic imagery, although
bitmapped images and even videos can be embedded in SVG.

1920

100%

75%

50%

25%

1930 1940 1950 1960

“ben” , Open Clip Art

The Noun Project

Ozer Kavak, Open Clip Art Ghostscript tiger

Figure 21-29. SVG format is appropriate for line-style illustrations.

n oT e

In Fireworks, the eyedropper is at the
bottom of the Optimize panel. The Add
to Transparency tool allows you to
select more than one pixel color to
make transparent. This can be useful for
removing unwanted colors around the
edge of the image.

n oT e

Two good sources for free SVG artwork
are The Noun Project (thenounproject.
com) and the Open Clip Art library
(openclipart.org).

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics534

Introduction to sVG

Vector images can scale very large or very small without any change in quality
(Figure 21-30). Lines and text stay sharp, regardless of whether it is viewed
at 100 pixels or 10,000 pixels—try doing that with a bitmapped image! Now
that our web designs and interfaces must work on all devices of all scales,
from smartphones to high-density monitors and large-screen televisions, the
ability to create a single image that looks great in all contexts is an epic win.
Ubiquitous SVG support would certainly solve some of the issues we are fac-
ing with maintaining image resolution on high-density displays.

tiger.svg

10x 10x

tiger.gif

Figure 21-30. Vector SVG images scale without loss of quality.

Drawing with XML
What really sets SVG apart is that it is an XML language for providing draw-
ing instructions. Bitmapped graphics are stored as largely unintelligible code
(should you care to peek inside), but SVG images are created by text files
that are generally human-readable.

Let’s look at a simple example and the XML text file behind the scenes.
Figure 21-31 shows an SVG image, svg4u.svg, that contains a blue square,
an ellipse with a gradient fill, and some text (not pretty, I know, but it gets

the point across).

Here is the file that generates that image. If you read
through it closely, I think you’ll find it’s fairly intuitive.

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"

n oT e

Fireworks gives you a choice of Index
or Alpha Transparency for PNG-8
graphics. See the PNG-8 “Alpha”
Transparency sidebar for details.

SVG 4 U!

Figure 21-31. A basic SVG image,
svg4u.svg.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to sVG

Chapter 21, Web Graphics Basics 535

 width="450px" height="200px">
<linearGradient id="yellowgrad">
 <stop offset="0" stop-color="#FFF200"/>
 <stop offset="1" stop-color="#F15A29"/>
</linearGradient>

<rect x="50" y="50" width="100" height="100" fill="#4F5AA8"
 stroke="#000000" stroke-width="4" />

<ellipse cx="100" cy="100" rx="50" ry="25" fill="url(#yellowgrad)" />

<text x="175" y="150" fill="rgb(200,0,0)" font-family="Verdana"
 font-weight="bold" font-size="50">SVG 4 U!</text>
</svg>

Let’s take a closer look at what is going on in svg4ru.svg. Because it is an
XML file, it starts with an XML declaration. It also needs to follow the XML
syntax, so you’ll notice that all elements are lowercase, all attributes are in
quotation marks, and all elements are closed (for example, <rect />). The
svg element establishes a drawing area that is 450 by 200 pixels. Pixels are
the default measurement unit in SVG, so you don’t need to include the “px”.
The xmlns attribute stands for “XML name space,” and it simply identifies
the XML languages used in the document.

OK, here is the drawing part. The square is created using the rect (for rect-
angle) element with its width and height set to 100 pixels. You can see that
attributes are used to provide the position, dimensions, fill color, stroke
style, and so on. In addition to rect, SVG includes the elements circle,
ellipse, line, polygon, and polyline for drawing lines and shapes.

In our example, the ellipse element is positioned to appear centered over
the square, and it is filled with the “yellowgrad” gradient that was created by
the linearGradient element earlier in the document. The text in the image is
contained in a text element and styled with attributes that take their syntax
from CSS. Although it is not shown in this example, it is also possible to
place bitmapped images in SVG graphics using the image tag.

Of course, there is a lot more to the SVG language than I can cover here, but
by now you should have a general understanding of how it works.

sVG tools
Technically, all you need to create SVG graphics is a text editor (and genius
visualization skills, as well as heroic patience!), but you’ll be much hap-
pier having a graphics program doing it for you. Fortunately, in Adobe
Illustrator, you can choose “SVG (svg)” from the Format menu when saving
a drawing and ta da—SVG file! If you don’t have Illustrator, try download-
ing the Inkscape (Figure 21-31) image editor, which is made specifically for
SVG (inkscape.org). It is available for Windows, Mac, and Linux. It takes a
little getting used to, but you can’t beat the price (free).

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics536

Introduction to sVG

Figure 21-32. Inkscape, an open source SVG editor.

Adding sVG to a page
An SVG image can be added to a web page using the object, embed, or iframe
elements. HTML5 allows an svg element to be added directly inline as
part of the HTML document with no containing element. This W3Schools
page has a nice little summary of the various SVG embedding options and
their respective advantages and disadvantages: www.w3schools.com/svg/
svg_inhtml.asp. This stuff is changing quickly, so I recommend you do a little
research to see the latest best practices.

As of this writing, the object element pointing to an external .svg file has the
best browser support, so I’m using that method in this example.

<!DOCTYPE html>
<html>
<head><title>SVG 4 U</title></head>
<body>
 <object width="450" height="200" type="image/svg+xml"

data="svg4u.svg"></object>
 <p>Give SVG a try and see what it can do.</p>
</body>
</html>

The width and height attributes are required for the object to hold the
proper amount of space for the image. If it is too small, the image will be
clipped. And to prevent confusion, it is recommended that you include the
file type (image/svg+xml) so browsers know what to do. Finally, the data
attribute points to the .svg file itself.

www.it-ebooks.info

http://www.w3schools.com/svg/svg_inhtml.asp
http://www.w3schools.com/svg/svg_inhtml.asp
http://www.it-ebooks.info/

Introduction to sVG

Chapter 21, Web Graphics Basics 537

But wait…there’s more!
Our “SVG 4 U” example demonstrated SVG used for a static illustration, but
SVG has more to offer.

Animation

SVG includes transform and transition features (the same used in CSS3),
so any part of an SVG image can be animated using SVG syntax alone.
This code causes a black rectangle to contract and expand by 50% in a
two-second loop.

<rect width="150" height="150" fill="black">
 <animate attributeName="width" values="0%;50%;0%" dur="2s"

repeatCount="indefinite" />
 <animate attributeName="height" values="0%;50%;0%" dur="2s"

repeatCount="indefinite" />
</rect>

Scriptable

Because all of the parts of an SVG file are in XML and are part of the
DOM (the structured collection of objects in the document), you can use
JavaScript to add behaviors like animation to SVG drawings. You could
also use JavaScript to dynamically draw images based on user input in
real time, such as generating a chart or graph that reflects values entered
into a form. Cool stuff, and certainly beyond the scope of this chapter.

Style-able (if that’s a word)

I didn’t cover it in this chapter, but you can also use CSS to affect the
appearance of elements in SVG images.

Accessible

The content of an SVG image is available in an XML file, so it is poten-
tially more accessible than the canvas element, which exists as an
abstract grid of pixels. You can also add a title and description in the
svg element.

Browser support
Man, just when we were having so much fun, I had to go and mention
“browser support”! Actually, the news isn’t all bad. As I write this, the cur-
rent version of every major browser, both desktop and mobile, has basic
support for SVG images. And the situation has probably already improved
by the time you are reading this. For updated statistics, take a look at the
Can I Use site’s SVG listing (caniuse.com/#cats=SVG).

So the future is looking bright for SVG, but we still have past browser
versions to reckon with, most notably Internet Explorer 8 and earlier.
Fortunately there are workarounds, such as the SVGWeb JavaScript library
(code.google.com/p/svgweb/), that allows scriptable SVG on 95% of browsers.

sVG vs. Canvas
In Chapter 10, What’s Up, HTML5? we
looked at the HTML5 canvas element
and API that creates a space for two-
dimensional, dynamic drawing on a
web page. The difference is that an
SVG image is drawn with a structural
markup language and a canvas is
drawn with JavaScript commands.
Both can contain images, videos,
animation, and dynamic updates in
real time.

Canvas is better for quick redraws
on the fly (it’s only pixels, after all),
making it better suited for games,
image editing, and saving images
to bitmapped formats. SVG offers
advantages in the ease of scripting,
animation, and accessibility; however,
complicated documents require
more processing power than canvas
elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics538

summing Up Images

In the mobile space, SVG support is trickier to predict because device manu-
facturers can turn off otherwise supported features for specific devices, but
phones and tablets running Android 2.3 and earlier are certain to lack SVG
support.

If you do choose to explore SVG for certain types of graphics, be sure to test
on a wide variety of devices (not just your iPhone) and be sure to provide
useful fallbacks, even if it is just descriptive text, should they not display.

For further reading
Obviously, I could only scratch the surface of Scalable Vector Graphics in
this chapter. If you find the motivation and opportunity to use them on your
site, you’ll have a lot more brushing up to do. In addition to your own web
search for up-to-date SVG information, I recommend these resources to get
better acquainted.

•	 HTML5 Graphics with SVG & CSS, by Kurt Cagle (O’Reilly Media).

•	 Painting the Web, by Shelley Powers (O’Reilly Media). Although this
book is getting on in years (it was written in 2008), the chapter on SVG
provides a good overview of what the format can do. It also has great
in-depth information on other image formats, CSS, and all things visual
on the Web.

•	 “An SVG Primer for Today’s Browsers” (www.w3.org/Graphics/SVG/IG/
resources/svgprimer.html). This article gives you a thorough tutorial on
SVG graphics, but it is not exactly a quick read.

•	 “SVG Examples” (www.w3schools.com/svg/svg_examples.asp) shows the
code for a lot of shapes and special effects.

summing Up Images
We’ve covered a lot of ground in this chapter! If I’ve done my job, you
should now have a good foundation in web graphics, including where to
find an image, what file format to save it in, and how to resize it so it is
appropriate for the Web. You also know the difference between binary and
alpha transparency, and how to make graphics that blend well with the
background of a web page. You even have a smattering of SVG vocabulary
under your belt.

In the next chapter, we’ll take graphics production to the next level and
explore all the ways to make images as small as possible for faster down-
loads. But first, a little quiz.

exercise 21-3 |
Playing around
with sVG
SVG files are kind of fun to play
around with. I’ve included the file
svg4u.svg and its corresponding
HTML file in the exercise materials for
this chapter so you can get a feel for
how it works.

1. Open the svgtest.html file in a
browser that supports SVG (the
latest version of Chrome, Safari,
or Firefox will work). You should
see the (sadly ugly) SVG 4 U!
graphic from Figure 21-30.

2. Open the SVG file in a text editor.
Notepad or TextEdit are fine, as
long as the file stays in ASCII
format and is not styled.

3. Try moving the pieces around by
adjusting the x and y coordinates.
Try changing the dimensions.
Change the fill color. Reload the
svgtest.html in the browser each
time to view your changes. I got
a kick out of doing this my first
time.

4. If you are feeling more
adventurous, open the “SVG
Primer for Today’s Browsers”
(listed in the For further reading
section) and try making other
shapes and lines. Or you could
try creating a simple graphic in
Illustrator, save it as an .svg file,
open it in a text editor, and poke
around in the code. There will be
a lot of extra stuff to sift through,
but you should be able to
recognize and edit basic shapes.

www.it-ebooks.info

http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html
http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html
http://www.w3schools.com/svg/svg_examples.asp
http://www.it-ebooks.info/

Test Yourself

Chapter 21, Web Graphics Basics 539

Test Yourself
Answer the following questions to see if you got the big picture on web
graphics. The answers appear in Appendix A.

1. What is the primary advantage to using rights-managed images?

2. What does ppi stand for?

3. What is “indexed color?” What file formats use it?

4. How many colors are in the color table for an 8-bit graphic? If you are up for
a bit of math, figure out the maximum number of colors in a 5-bit graphic.

5. Name two things you can do with a GIF that you can’t do with a JPEG.

6. Name one thing you can do with a GIF that you can’t do with a PNG.

7. Name one thing you can do with a PNG that you can’t do with a GIF.

8. JPEG’s lossy compression is cumulative. What does that mean? Why is
it important to know?

9. What is the difference between binary and alpha transparency?

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics540

Test Yourself

10. Pick the best graphic file format for each of the images in Figure 21-33.
You should be able to make the decision just by looking at the images
as they’re printed here and explain your choice. Some images may have
more than one option.

A

B

C

D

E

Figure 21-33. Choose the best file format for each image.

www.it-ebooks.info

http://www.it-ebooks.info/

541

IN THIs CHAPTER

Why you should optimize
your graphics

General optimization
strategies

Optimizing GIFs

Optimizing JPEGs

Optimizing PNGs

Optimizing to a target file
size

Because a web page is published over a network, it needs to zip through the
lines as little packets of data in order to reach the end user. It is fairly intui-
tive, then, that larger amounts of data will require a longer time to arrive.
And guess which part of a standard web page packs a whole lotta bytes—
that’s right, the graphics.

Thus is born the conflicted relationship with graphics on the Web. On the
one hand, images make a web page more interesting than text alone, and
the ability to display graphics is one of the factors contributing to the Web’s
success. On the other hand, graphics also try the patience of users with slow
Internet connections and gobble the data plans of mobile devices (see the
note).

This chapter covers the strategies and tools available for making web
graphic file sizes as small as possible (a process known as optimizing) while
maintaining acceptable image quality. I hope that I impressed upon you the
importance of optimizing site performance back in Chapter 3, Some Big
Concepts You Need to Know. In addition to cutting down on the number of
requests your page makes to the server, reducing the total file size of images
is the next powerful tool for making pages display as quickly as possible. It
is well worth the extra effort to learn how to squeeze every unnecessary byte
out of the images you create.

n oT e

One strategy to lighten the load for mobile devices is to serve a separate, smaller
image targeted to small-screen devices. That process, known as responsive images, is
addressed briefly in Chapter 18, CSS Techniques.

lean anD mean
Web graPhICs

CHAPTER 22

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics542

General Image Optimization strategies

General Image Optimization strategies
Imagine you are designing banner ads for a big client and they tell you that
all banner graphics have a 15K limit (the file cannot exceed 15 kilobytes in
size). This scenario is fairly common in the biz, so you’re going to need a few
tricks up your sleeve for making the target. That’s what this chapter is about.

Regardless of the image or file type, there are a few basic strategies to keep
in mind for limiting file size. In the broadest of terms, they are:

Limit dimensions

Although fairly obvious, the easiest way to keep file size down is to limit
the dimensions of the image itself. There aren’t any magic numbers; just
don’t make images any larger than they need to be. By simply eliminat-
ing extra space in the graphic in Figure 22-1, I was able to reduce the file
size by 3K (23%).

Reuse and recycle

If you use the same image repeatedly in a site, it is best to create only one
image file and point to it repeatedly wherever it is needed. This allows
the browser to take advantage of the cached image and avoid additional
downloads. Caching is explained in the Take Advantage of Caching side-
bar in Chapter 7, Adding Images.

Design for compression

One of the best strategies for making files as small as possible is to design
for efficient compression. For example, because you know that GIF com-
pression likes flat colors, don’t design GIF images with gradient color
blends when a flat color will suffice. Similarly, because JPEG likes soft
transitions and no hard edges, you can try strategically blurring images

that will be saved in JPEG format. These
strategies are discussed in more detail
later in this chapter.

Use web graphics tools

If you know you will be doing a lot of
web production work, it is worth invest-
ing in image-editing software such as
Adobe Photoshop or Fireworks. In the
previous chapter, we saw how the Save
for Web dialog box in Photoshop and
the Optimize and Preview panels in
Fireworks provided useful shortcuts for
making web graphics. In this chapter,
we’ll take full advantage of the settings
that pertain to keeping file sizes as small
as possible.

600 x 200 pixels (13 KB)

500 x 136 pixels (10 KB)

Figure 22-1. You can reduce the size of
your files simply by cropping out extra
space.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing GIFs

Chapter 22, Lean and Mean Web Graphics 543

Both tools allow you to preview the final image and its respective file
size as you make your optimization settings, so you can tweak settings
and see the results instantly. The set of options varies by file type, so I’ll
explain them one format at a time, starting with that old favorite, GIF.

Online Image Optimizers
If you don’t have Fireworks or Photoshop, you can use one of the free online image-
optimizing tools listed here. They do not give you control over settings that you find
in web image tools, but they are effective and certainly better than no optimization
at all.

Smush.it (www.smushit.com). Smush.it uses optimization techniques specific to
image format to remove unnecessary bytes from image files. It is a lossless tool,
which means it optimizes images without changing their look or visual quality.
I’ve personally found that it finds a way to slightly reduce the file size of images
I’ve already optimized myself in Photoshop. This is a great resource.

Dynamic Drive Online Image Optimizer (tools.dynamicdrive.com/imageoptimizer).
This is another online tool that takes your files and returns optimized versions
based on more aggressive optimization settings. It is not a lossless tool, so you
need to choose from the optimized images to find the one that maintains
acceptable quality.

And if those aren’t enough for you, check out PunyPNG (punypng.com) and
ImageOptim (imageoptim.com) as well.

Optimizing GIFs
When optimizing GIF images, it is useful to keep in mind that GIF compres-
sion works by condensing bands of repetitive pixel colors. Many optimiza-
tion strategies work by creating more areas of solid color for the compression
scheme to sink its teeth into.

The general methods for keeping GIF file sizes in check are:

•	 Reducing the number of colors (the bit-depth) of the image

•	 Reducing dithering in the image

•	 Applying a “lossy” filter

•	 Designing with flat colors

This section looks at each of these options using Photoshop’s Save for Web
and Fireworks’ Optimize panels as springboards (Figure 22-2). When a fea-
ture is specific to these tools, I will note it; otherwise, the approaches shown
here should be achievable with most image-editing software.

B

A

C

A
BC

Fireworks

Photoshop

Figure 22-2. GIF optimization options in
Photoshop and Fireworks.

www.it-ebooks.info

http://www.smushit.com
http://www.it-ebooks.info/

Part V, Creating Web Graphics544

Optimizing GIFs

Reducing the number of colors
The most effective way to reduce the size of a GIF file, and therefore the first
stop in your optimization journey, is to reduce the number of colors in the
image.

Although GIFs can contain up to 256 colors, there’s no rule that says they
have to. In fact, by reducing the number of colors (the bit-depth), you can
significantly reduce the file size of an image. One reason for this is that files
with lower bit depths contain less data. Another byproduct of the color
reduction is that more areas of flat color are created by combining similar,
abutting pixel colors. More flat color areas mean more efficient compression.

Nearly all graphics programs that allow you to save or export to GIF for-
mat will also allow you to specify the number of colors or bit depth. In
Photoshop and Fireworks, the color count and the color table are revealed
in the settings panel. Click on the Colors pop-up menu (Figure 22-2, A)to
select from a standard list of numbers of colors. Some tools give you a list of
bit-depths instead. See the Bit Depth sidebar for how bit depths match up to
numbers of colors. When you select smaller numbers, the resulting file size
shrinks as well.

If you reduce the number of colors too far, of course, the image begins to
fall apart or may cease to communicate effectively. For example, in Figure
22-3, once I reduced the number of colors to eight, I lost the rainbow, which
was the whole point of the image. This “meltdown” point is different from
image to image.

256 colors: 21 KB 8 colors: 6 KB64 colors: 13 KB

Figure 22-3. Reducing the number of colors in an image reduces the file size.

You’ll be surprised to find how many images look perfectly fine with only
32-pixel colors (5-bit). That is usually my starting point for color reduction,
and I go higher only if necessary. Some image types fare better than others
with reduced color palettes, but as a general rule, the fewer the colors, the
smaller the file.

Bit Depth
Bit depth is a way to refer to the
maximum number of colors a
graphic can contain. This chart shows
the number of colors each bit depth
can represent:

1-bit 2 colors

2-bit 4 colors

3-bit 8 colors

4-bit 16 colors

5-bit 32 colors

6-bit 64 colors

7-bit 128 colors

8-bit 256 colors

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing GIFs

Chapter 22, Lean and Mean Web Graphics 545

n oT e

The real size savings kick in when there are large areas of flat color. Keep in mind
that even if your image has 8-pixel colors, if it has a lot of blends, gradients, and
detail, you won’t see the kind of file size savings you might expect with such a severe
color reduction.

Reducing dithering
When the colors in an image are reduced to a specific palette, the colors that
are not in that palette get approximated by dithering. Dithering is a speckle
pattern that results when palette colors are mixed to simulate an unavailable
color.

In photographic images, dithering is not a problem and can even be benefi-
cial; however, dithering in flat color areas is usually distracting and undesir-
able. In terms of optimization, dithering is undesirable because the speckles
disrupt otherwise smooth areas of color. Those stray speckles stand in the
way of GIF compression and result in larger files.

One way to shave extra bytes off a GIF is to limit the amount of dithering.
Again, nearly all GIF creation tools allow you to turn dithering on and off.
Photoshop and Fireworks go one step further by allowing you to set the
specific amount of dithering on a sliding scale (Figure 22-2 B). You can even
preview the results of the dither setting, so you can decide at which point the
degradation in image quality is not worth the file size savings (Figure 22-4).
In images with smooth color gradients, turning dithering off results in unac-
ceptable banding and blotches.

n oT e

If you’ve been paying attention, you
may be thinking that the photo of the
barn in this section should be saved as
a JPEG, not a GIF. You’re absolutely
right. Normally, I wouldn’t make this
photo a GIF, but I’m using it in the
examples for this section because it
reveals the effects of optimization more
dramatically than an image with flat
colors. Thank you for bearing with me.

Dithering: 9.6 KB No dithering: 7.8 KB

Finding the “sweet
spot”
You will see that finding the best
optimization for a given image
requires adjusting all of these
attributes (bit-depth, dithering,
lossiness) in turn until the best image
quality at the smallest file size is
achieved. It takes time and practice,
but eventually, you will find the “sweet
spot” for each image.

G r A p H i C S T i p

Figure 22-4. Turning off or reducing the
amount of dithering reduces the file size.
Both images have 32-pixel colors and use
an adaptive palette.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics546

Optimizing GIFs

Using the Lossy filter
The final optimization setting in the Save for Web dialog box is Lossy (Figure
22-2 C). In Fireworks, it is called Loss. This setting allows the program to
selectively throw away data in order to reduce the file size. The higher the
setting, the more data is discarded. Depending on the image, you can apply a
loss value of 5% to 20% without seriously degrading the image. Figure 22-5
shows the results of applying Photoshop’s Lossy setting to the barn image.
At higher settings, images tend to look windswept and blown apart.

This technique works best for continuous tone art (but then, images that are
all continuous tone should probably be saved as JPEGs anyway). You might
try playing with loss settings on an image with a combination of flat and
photographic content.

Designing for GIF compression
Now that you’ve seen how high bit depths and dithering bloat GIF file sizes,
you have a good context for my next tip. Before you even get to the point of
making optimization settings, you can be proactive about optimizing your
graphics by designing them to compress well in the first place.

Keep it flat
I’ve found that as a web designer, I’ve changed my illustration style to match
the medium. In graphics where I might have used a gradient blend, I now opt
for a flat color. In most cases, it works just as well, and it doesn’t introduce
unflattering banding and dithering or drive up the file size (Figure 22-6). You
may also choose to replace areas of photos with subtle blends, such as a blue
sky, with flat colors if you need to save them as GIFs (otherwise, the JPEG
format may be better).

When I create the same image with
flat colors,the size is only 3.2 KB.

This GIF has gradient blends and
256 colors.Its file size is 19 KB.

Even when I reduce the number of
colors to 8,the file size is 7.6 KB.

Figure 22-6. You can keep file sizes small by designing in a way that takes advantage of
the GIF compression scheme.

Horizontal stripes
Here’s an esoteric little tip. When designing web graphics, keep in mind
that GIF compression works best on horizontal bands of color. If you want
to make something striped, it’s better to make the stripes horizontal rather
than vertical (Figure 22-7). Silly, but true.

Lossy set to 0%: 13.2 KB

Lossy set to 25%: 7.5 KB

Figure 22-5. File size without and with the
Lossy setting applied in Photoshop.

280 bytes

585 bytes

Figure 22-7. GIFs designed with horizontal
bands of color will compress more
efficiently than those with vertical bands.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing JPEGs

Chapter 22, Lean and Mean Web Graphics 547

summing up GIF optimization
The GIF format offers many opportunities for optimization. Designing with
flat colors in the first place is a good strategy for creating small GIFs. The
next tactic is to save the GIF with the fewest number of colors possible to
keep the image intact. Adjusting the amount of dithering and applying a loss
filter are additional ways to squeeze out even more bytes.

Exercise 22-1 gives you a chance to try out some of these techniques.

Optimizing JPEGs
JPEG optimization is slightly more straightforward than GIF. The general
strategies for reducing the file size of JPEGs are:

•	 Be aggressive with compression

•	 Use Weighted (Selective) Optimization if available

•	 Choose Optimized if available

•	 Soften the image (Blur/Smoothing)

This section explains each approach, again using Photoshop’s and Fireworks’
optimization tools, shown in Figure 22-9. Notice that there is no color table
for JPEGs because they do not use palettes.

Photoshop Fireworks

C
A

B D
A

C

Figure 22-9. JPEG optimization options in Photoshop’s Save for Web dialog box (left) and
Fireworks’ Optimize panel (right).

Before we get to specific settings, let’s take a look at what JPEG compres-
sion is good at. This will provide some perspective for later techniques in
this section.

Getting to know JPEG compression
The JPEG compression scheme loves images with subtle gradations, few
details, and no hard edges. One way you can keep JPEGs small is to start
with the kind of image it likes.

exercise 22-1 |
Making lean and
mean GIFs
See if you can reduce the file sizes
of the images in Figure 22-8 to
within the target size range without
seriously sacrificing image quality.
The starting images are available with
the materials for this chapter at www.
learningwebdesign.com.

Take advantage of all the techniques
covered in this section if you have
Photoshop (version 6 or later) or
Fireworks (version 4 or later). You can
still play along with other tools, such
as Corel Paint Shop Pro Photo, but
you may not have such fine-tuned
control over dithering or a Lossy
setting.

There are many ways to achieve the
desired file size, and there are no
“right” answers. It is mostly a matter
of your personal judgment, but the
target file sizes give you a reasonable
number to shoot for.

asian.psd; target: 4 to 5 KB

info.psd; target: <300 bytes

bunny.psd; target: 5 to 6 KB

Figure 22-8. Create GIFs that are
optimized to the target file sizes.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics548

Optimizing JPEGs

Avoid detail
JPEGs compress areas of smooth, blended colors more efficiently than areas
with high contrast and sharp detail. In fact, the blurrier your image, the
smaller the resulting JPEG. Figure 22-10 shows two similar graphics with
blended colors. You can see that the image with contrast and detail is more
than four times larger at the same compression/quality setting.

gradient.jpg (12 KB) detail.jpg (49 KB)

Figure 22-10. JPEG compression works better on smooth, blended colors than hard edges
and detail.

Avoid flat colors
It’s useful to know that totally flat colors don’t fare well in JPEG format,
because the colors tend to shift and get mottled as a result of the compres-
sion, particularly at higher rates of compression (Figure 22-11). In general,
flat graphical images should be saved as GIFs because the image quality will
be better and the file size smaller.

In the GIF, the flat colors and
crisp detail are preserved.

In the JPEG, the flat color changes
and gets blotchy. Detail is lost as a

result of JPEG compression.

chair.jpg chair.gif

Figure 22-11. The same flat graphical image saved as both a JPEG and a GIF.

Unpredictable Color
in JPEGs
In GIF images, you have total control
over the colors that appear in the
image, making it easy to match RGB
colors in adjoining GIFs or in an inline
GIF and a background image or color.

Unfortunately, flat colors shift around
and get somewhat blotchy with JPEG
compression, so there is no way to
control the colors precisely. Even pure
white can get distorted in a JPEG.

This means there is no guaranteed
way to create a perfect, seamless
match between a JPEG and another
color, whether in a GIF, PNG, another
JPEG, or even an RGB background
color. If you need a seamless
match between the foreground
and background image, consider
switching formats to GIF or PNG to
take advantage of transparency and
let the background show through.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing JPEGs

Chapter 22, Lean and Mean Web Graphics 549

Be aggressive with compression
The primary tool for optimizing JPEGs is the Quality setting (Figure 22-9 A).
The Quality setting allows you to set the rate of compression; lower quality
means higher compression and smaller files. Figure 22-12 shows the results of
different quality (compression) rates as applied in Photoshop and Fireworks.

Notice that the image holds up reasonably well, even at very low quality set-
tings. Notice also that the same settings in each program produce different
results. This is because the quality rating scale is not objective—it varies
from program to program. For example, 1% in Photoshop is similar to 30%
in Fireworks and other programs. Furthermore, different images can with-
stand different amounts of compression. It is best to go by the way the image
looks rather than a specific number setting.

100% (42.2 KB)

Photoshop

80% (22.3 KB)

60% (13.6 KB)

20% (6.3 KB) 1% (3.7 KB)

Fireworks

100% (51.5 KB) 80% (12.3 KB)

60% (7.7 KB) 40% (5 KB)40% (8.5 KB)

1% (1.2 KB)20% (1.8 KB)

Figure 22-12. A comparison of various
compression levels in Photoshop and
Fireworks.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics550

Optimizing JPEGs

Choose optimized JPEGs
Optimized JPEGs have slightly smaller file sizes and better color fidelity
(although I’ve never been able to see the difference) than standard JPEGs.
For this reason, you should select the Optimized option if your image soft-
ware offers it (Figure 22-9 B). Look for the Optimized option in Photoshop
and third-party JPEG compression utilities. Fireworks does not offer the
option as of this writing.

Blurring or smoothing the image
Because soft images compress smaller than sharp ones, Photoshop and
Fireworks make it easy to blur the image slightly as part of the optimization
process. In Photoshop, the tool is called Blur; in Fireworks, it’s Smoothing
(Figure 22-9 C). Blurring makes the JPEG compression work better, result-
ing in a smaller file (Figure 22-13). If you don’t have these tools, you can
soften the whole image yourself by applying a slight blur to the image with
the Gaussian Blur filter (or similar) manually prior to export.

The downside of Blur and Smoothing filters is that they are applied evenly to
the entire image. If you want to preserve detail in certain areas of the image,
you can apply a blur filter just to the areas you don’t mind being blurry.
When you’re done, export the JPEG as usual. The blurred areas will take
full advantage of the JPEG compression, and your crisp areas will stay crisp.

selective quality (Fireworks)
Not all image areas are created equal. You may wish to preserve detail in
one area, such as a person’s face, but compress the heck out of the rest of
the image. To this end, Fireworks gives us Selective Quality—a method for
applying different amounts of JPEG compression within a single image: one
setting for a selected area and another setting for the rest of the image.

n oT e

Photoshop included a similar Weighted Optimization feature in versions CS3 and
earlier, but it was removed in version CS4.

wa R n i n G

Remember to save JPEGs that are
targeted for iPad Retina displays in
Progressive format to circumvent
a Safari function that automatically
downgrades JPEGs over 2 megapixels
(more than 2.1 million pixels in the
image).

Quality: 20; Blur: 0 (9.3 KB)

Quality: 20; Blur: .5 (7.2 KB)

With a Blur setting of only .5, the
resulting file size is 22% smaller.
In Fireworks, use Smoothing for

similar results.

This JPEG was saved at low quality (20%
in Photoshop) with no Blur applied.

Figure 22-13. Blurring the image slightly
before exporting as a JPEG results in
smaller file sizes.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing JPEGs

Chapter 22, Lean and Mean Web Graphics 551

To use the Selective Quality setting (Figure 22-9 D), select the areas of the
image you want to preserve (Figure 22-14 A), then select Modify → Selective
JPEG → Save Selection as JPEG Mask B. In the Optimize panel, you can set
the Selective Quality for your selection or click the adjacent icon C to access
the Selective JPEG dialog box D with a full set of options, such as preserv-
ing type and button quality and selecting a color for the masked area. The
regular Quality setting will be used for all other areas of the image.

A B

C

Select the area you want to preserve and
save it as a Selective JPEG Mask.

In the Optimize panel, the button next to
Selective Quality accesses the full set of
quality options for the selection.

Figure 22-14. Using Selective Quality in Fireworks.

summing up JPEG optimization
Your primary tool for optimizing JPEGs is the Quality (compression) setting.
If your tools offer them, making the JPEG Optimized or applying Blur or
Smoothing will make them smaller.

www.it-ebooks.info

http://www.it-ebooks.info/

Part V, Creating Web Graphics552

Optimizing PNGs

Now it’s your turn to play around with JPEGs in Exercise 22-2.

exercise 22-2 | Optimizing JPEGs
Once again, see if you can use the techniques in this section to save the JPEGs in
Figure 22-15 in the target file size range. There are no right answers, so use your best
judgment. What is important is that you get a feel for how file size and image quality
react to various settings.

penny.tif
target: 12–18 KB

This image is a good candidate for some
manual blurring of the background prior

to compression.

falcon.tif
target: 35–40 KB

Imagine that this image is going on a site that
sells poster where it would be important to

preserve the type and painting detail
throughout the image. The result is you can’t

compress it as far as other images.

boats.psd
target: 24–30 KB

Watch for JPEG artifacts around the lines and masts of the
boats. Try to keep those lines clean.

Optimizing PNGs
As discussed in the previous chapter, there are two types of PNG files: 24-bit
PNGs (PNG-24), which contain colors from the millions of colors in the
RGB color space, and 8-bit indexed PNGs (PNG-8) with a palette limited to
256 colors. This section looks at what you can (and can’t) do to affect the
file size of both kinds of PNG files.

PNG-24
PNG’s lossless compression makes PNG-24 a wonderful format for preserv-
ing quality in images, but unfortunately, it makes it a poor option for web
graphics. A PNG-24 will always be significantly larger than a JPEG of the
same image because no pixels are sacrificed in the compression process.
Therefore, your first “lean and mean” strategy is to avoid PNG-24 for pho-
tographic images and choose JPEG instead.

Figure 22-15. Match the file sizes.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimize to File size

Chapter 22, Lean and Mean Web Graphics 553

The exception to this rule, of course, is if you want to use multiple levels
of transparency (alpha transparency). In that case, given today’s tools and
browsers, PNG-24 is your only option.

There aren’t any tricks for reducing the file size of a PNG-24, as evidenced
by the lack of options on the PNG-24 export panels (Figure 22-16). You’ll
have to accept the file size that your image-editing tool cranks out, although
you may try running it through the online image optimization tool Smush.it
(www.smush.it) to see if it can make any improvements.

PNG-8
Indexed color PNGs work similarly to GIFs, and in fact, usually result in
smaller file sizes for the same images, making them a good byte-saving
option. The general strategies for optimizing GIFs also apply to PNG-8s:

•	 Reduce the number of colors

•	 Reduce dithering

•	 Design with flat colors

You can see that the list of export options for PNG-8s is more or less the
same as for GIF (Figure 22-16). The notable exception is that there is no
“lossy” filter for PNGs as there is for GIFs. Otherwise, all of the techniques
listed in the Optimizing GIFs section apply to PNGs as well.

It is worth noting that making a PNG interlaced significantly increases its file
size, by as much as 20 or 30 percent. It is best to avoid this option unless you
deem it absolutely necessary to have the image appear in a series of passes.

For an in-depth look at PNG compression and optimization, I recommend
the Smashing Magazine article “Clever PNG Optimization Techniques,” by
Sergey Chikuyonok (www.smashingmagazine.com/2009/07/15/clever-png-
optimization-techniques/).

Optimize to File size
There is one last optimizing technique that is good to know about if you use
Photoshop or Fireworks.

In some instances, you may need to optimize a graphic to hit a specific file
size, for example, when designing an ad banner with a strict K-limit. Both
Photoshop and Fireworks offer an Optimize to File Size function. You just
set the desired file size and let the program figure out the best settings to use
to get there, saving you lots of time finagling with settings.

Photoshop

Fireworks

Figure 22-16. PNG-24 and PNG-8 settings
in Photoshop and Fireworks.

www.it-ebooks.info

http://www.smush.it
http://www.smush.it
http://www.it-ebooks.info/

Part V, Creating Web Graphics554

Optimization in Review

This feature is pretty straightforward to use. In Photoshop, choose Optimize
to File Size from the Options pop-up menu in the Save for Web dialog box.
In Fireworks, choose Optimize to Size from the Options pop-up menu in
the Optimize panel (Figure 22-17). All you need to do is type in your desired
target size and click OK. The tool does the rest.

Photoshop also asks if you’d like to start with your own optimization set-
tings or let Photoshop select GIF or JPEG automatically. Curiously, PNG is
not an option for automatic selection, so start with your own settings if you
want to save as PNG.

Optimize to Size in Fireworks
Choose Optimize to Size from the Options pop-up menu
and type in your target size.

Optimize to File Size in Photoshop
Choose Optimize to File Size from the Options
pop-up menu and type in your target size.

Figure 22-17. Optimizing to a specific file size (in Photoshop and Fireworks).

Optimization in Review
If this collection of optimization techniques feels daunting, don’t worry.
After a while, they’ll become part of your standard production process.
You’ll find it’s easy to keep your eye on the file size and make a few setting
tweaks to bring that number down. Now that you have the added advantage
of understanding what the various settings are doing behind the scenes, you
can make informed and efficient optimization decisions.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Yourself

Chapter 22, Lean and Mean Web Graphics 555

Test Yourself
Now that you’re acquainted with the world of graphics optimization, it’s
time to take a little test. I know you’ll ace it.

1. Why do professional web designers optimize their graphics?

2. How does dithering affect the file size of a GIF?

3. How does the number of pixel colors affect the file size of a GIF?

4. What is the most effective setting for optimizing a JPEG?

5. How does the Blur or Smoothing setting affect JPEG size?

6. What is the best way to optimize a PNG-8? A PNG-24?

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

557

Chapter 1: Where Do I start?
1. B, D, A, C

2. The W3C guides the development of web-related technologies.

3. C, D, A, E, B

4. Frontend design is concerned with aspects of a site that appear in or are related to the browser. Backend devel-
opment involves the programming required on the server for site functionality.

5. A web authoring tool provides a visual interface for creating entire web pages, including the necessary HTML,
CSS, and scripts. HTML editors provide only shortcuts to writing HTML documents manually.

Chapter 2: How the Web Works
1. c; 2. j; 3. h; 4. g; 5. f; 6. i; 7. b; 8. a; 9. d; 10. e

Chapter 3: some Big Concepts You Need to Know
1. There are a number of unknown factors when developing a site:

•	 What the size of the screen or browser window is

•	 What the user’s Internet connection speed is

•	 Whether the user is at a desk or on the go (context and attention span)

2. 1. c; 2. d; 3. e; 4. a; 5. b

3. Sight impairment: make sure the content is semantic and in logical order for when it is read by a screen reader

•	 Hearing impairment: provide transcripts for audio and video content

•	 Mobility impairment: use measures that help users without a mouse or keyboard

•	 Cognitive impairment: content should be simple and clearly organized

4. You would use a waterfall chart to evaluate your site’s performance in the optimization process.

ansWers

APPENDIX A

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A558

5. Responsive design takes care of the layout, but does not in itself provide alternate content that may be appropri-
ate for the mobile context. Servers are able to detect more features than CSS media queries and can make better
decisions about what content to serve.

Chapter 4: Creating a simple Page (HTML Overview)
1. A tag is part of the markup (brackets and element name) used to delimit an element. An element consists of the

content and its tags.

2. The minimal markup of an HTML document is as follows:

<!DOCTYPE html>
<html>
<head>

<meta charset="utf8">
<title>Title</title>

</head>
<body>
</body>
</html>

3. a. Sunflower.html—Yes

b. index.doc—No, it must end in .html or .htm

c. cooking home page.html—No, there may be no character spaces

d. Song_Lyrics.html—Yes

e. games/rubix.html—No, there may be no slashes in the name

f. %whatever.html—No, there may be no percent symbols

4. All of the following markup examples are incorrect. Describe what is wrong with each one, and then write it
correctly.

a. It is missing the src attribute:

b. The slash in the end tag is missing: <i>Congratulations!</i>

c. There should be no attribute in the end tag: linked text

d. The slash should be a forward slash: <p>This is a new paragraph</p>

5. Make it a comment: <!-- product list begins here -->

Chapter 5: Marking Up Text
1. <p>People who know me know that I love to cook.</p>

 <hr>
 <p>I've created this site to share some of my favorite

 recipes.</p>

2. A blockquote is a block-level element used for long quotations or quoted material that may consist of other block
elements. The q (quote) element is for short quotations that go in the flow of text and do not cause line breaks.

3. pre

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 559

4. The ul element is an unordered list for lists that don’t need to appear in a particular order. They display with bul-
lets by default. The ol element is an ordered list in which sequence matters. The browser automatically inserts
numbers for ordered lists.

5. Use a style sheet to remove bullets from an unordered list.

6. <abbr title="World Wide Web Consortium">W3C</abbr>

7. A dl is the element used to identify an entire description list. The dt element is used to identify just one term
within that list.

8. The id attribute is used to identify a unique element in a document, and the name in its value may appear only
once in a document. class is used to classify multiple elements into conceptual groups.

9. An article element is intended for a self-contained body of content that would be appropriate for syndication
or might appear in a different context. A section divides content into thematically related chunks.

10. — em dash (—)

 & ampersand (&)

 non-breaking space

 © copyright (©)

 •	 	 bullet	(•)

 ™ trademark symbol (™)

Exercise 5-1
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Tapenade Recipe</title>
</head>
<body>

<h1>Tapenade (Olive Spread)</h1>

<p>This is a really simple dish to prepare and it's always a big hit
at parties. My father recommends:</p>

<blockquote><p>"Make this the night before so that the flavors have
time to blend. Just bring it up to room temperature before you serve it.
 In the winter, try serving it warm."</p></blockquote>

<h2>Ingredients</h2>

 1 8oz. jar sundried tomatoes
 2 large garlic cloves
 2/3 c. kalamata olives
 1 t. capers

<h2>Instructions</h2>

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A560

 Combine tomatoes and garlic in a food processor. Blend until
as smooth as possible.

 Add capers and olives. Pulse the motor a few times until they are incorporated, but still retain some
texture.

 Serve on thin toast rounds with goat cheese and fresh basil garnish (optional).

</body>
</html>

Exercise 5-2
<article>
 <header>
 <p>posted by BGB, <time datetime="2012-11-15" pubdate>November 15,
 2012</time></p>
 </header>
 <h1>Low and Slow</h1>
 <p>This week I am extremely excited about a new cooking technique
 called <dfn><i>sous vide</i></dfn>. In <i>sous vide</i> cooking, you submerge the food (usually vacuum-

sealed in plastic) into a water bath that is precisely set to the target temperature you want the food
to be cooked to. In his book, <cite>Cooking for Geeks</cite>, Jeff Potter describes it as <q>ultra-low-
temperature poaching</q>.</p>

 <p>Next month, we will be serving Sous Vide Salmon with Dill Hollandaise. To reserve a seat at the
chef table, contact us before November 30.</p>

 <p>blackgoose@example.com
 555-336-1800</p>
 <p><small>Warning: Sous vide cooked salmon is not pasteurized. Avoid it if you are pregnant or have

immunity issues.</small></p>
</article>

Exercise 5-3
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro: Blog</title>
</head>
<body>
<header>
 <h1>The Black Goose Blog</h1>
 <nav>

 Home
 Menu
 Blog
 Contact

 </nav>
</header>

<article>
 <header>
 <h2>Summer Menu Items</h2>
 <p>posted by BGB, <time datetime="2013-06-15" pubdate>June 15, 2013</time></p>
 </header>
 <p>Our chef has been busy putting together the perfect menu for the

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 561

summer months. Stop by to try these appetizers and main courses while
the days are still long.</p>

 <section id="appetizers">
 <h3>Appetizers</h3>
 <dl>
 <dt>Black bean purses</dt>
 <dd>Spicy black bean and a blend of mexican cheeses wrapped in sheets
of phyllo and baked until golden. $3.95</dd>
 <dt class="newitem">Southwestern napoleons with lump crab —
new item!<dt>
 <dd>Layers of light lump crab meat, bean and corn salsa, and our
handmade flour tortillas. $7.95</dd>
 </dl>
 </section>
 <section id="maincourses">
 <h3>Main courses</h3>
 <dl>
 <dt>Shrimp sate kebabs with peanut sauce</dt>
 <dd>Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then grilled to perfection.

Served with spicy peanut sauce and jasmine rice. $12.95</dd>

 <dt class="newitem">Jerk rotisserie chicken with fried plantains — new item!</dt>
 <dd>Tender chicken slow-roasted on the rotisserie, flavored with spicy and fragrant jerk sauce and

served with fried plantains and fresh mango. $12.95</dd>
 </dl>
 </section>
</article>

<article>
 <header>
 <h2>Low and Slow</h2>
 <p>posted by BGB, <time datetime="2012-11-15" pubdate>November 15, 2012</time></p>
 </header>
 <p>This week I am extremely excited about a new cooking technique called <dfn><i>sous vide</i></

dfn>. In <i>sous vide</i> cooking, you submerge the food (usually vacuum-sealed in plastic) into a water
bath that is precisely set to the target temperature of the food. In his book, <cite>Cooking for Geeks</
cite>, Jeff Potter describes it as <q>ultra-low-temperature poaching</q>.</p>

 <p>Next month, we will be serving Sous Vide Salmon with Dill Hollandaise. To reserve a seat at the
chef table, contact us before November 30.</p>

</article>

<footer>
 <div id="about">
 <p>Location:
Baker's Corner, Seekonk, MA</p>
 <p>Hours:
Tuesday to Saturday, <time datetime="11:00">11am</time> to <time datetime="00:00">midnight</

time></p>
 </div>
 <p><small>All content copyright © 2012, Black Goose Bistro and Jennifer Robbins</small><p>
</footer>

</body>
</html>

Chapter 6: Adding Links
1. ...

2. ...

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A562

3. ...

4. ...

5. ...

6. ...

7. ...

8. ...

9.

10.

11.

Exercise 6-1
Epicurious

Exercise 6-2
<p>Back to the home page</p>

Exercise 6-3
Tapenade (Olive Spread)

Exercise 6-4
Linguine with Clam Sauce

Exercise 6-5
<p>[Back to the home page]</p>

Exercise 6-6
<p>[Back to the home page]</p>

Exercise 6-7
1. <p>Go to the Tapenade recipe</p>

2. <p>Try this with Garlic Salmon</p>

3. <p>Try the Linguine with Clam Sauce</p>

4. <p>About Jen’s Kitchen</p>

5. <p>Go to AllRecipes.com</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 563

Chapter 7: Adding Images
1. The src and alt attributes are required for the document to be valid. If the src attribute is omitted, the browser

won’t know which image to use. You may leave the value of the alt attribute empty if alternative text would be
meaningless or clumsy when read in context.

2.

3. a) It improves accessibility by providing a description of the image if it is not available or not viewable, and b)
because HTML documents are not valid if the alt attribute is omitted.

4. It allows the browser to render the rest of the content while the image is being retrieved from the server, which
can speed up the display of the page. Leave width and height attributes out if you are doing a responsive site
design where image sizes need to stay flexible.

5. The three likely causes for a missing image are: a) the URL is incorrect, so the browser is looking in the wrong
place or for the wrong file name (names are case-sensitive); b) the image file is not in an acceptable format; and
c) the image file is not named with the proper suffix (.gif, .jpg, or .png, as appropriate).

Exercise 7-1
In index.html:

<h2>The Tuscan Countryside</h2>

<p><img src="thumbnails/countryside_thumb.jpg" alt="view of the rolling tuscan hills"
width="100" height="75"> This is …</p>

<h2>Sienna</h2>

<p><img src="thumbnails/sienna_thumb.jpg" alt="view from the bedroom window" width="75"
height="100"> The closest city …</p>

In countryside.html:

<p></p>

In sienna.html:

<p></p>

Chapter 8: Basic Table Markup
1. The table itself (table), rows (tr), header cells (th), data cells (td), and an optional caption (caption).

2. If you want to add additional information about the structure of a table, to specify widths to speed up display,
or to add certain style properties to a column of cells.

3. a) The caption should be the first element inside the table element; b) There can’t be text directly in the table
element; it must go in a th or td; c) The th elements must go inside the tr element; d) There is no colspan ele-
ment; this should be a td with a colspan attribute; e) The second tr element is missing a closing tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A564

Exercise 8-1
<table>
<tr>
 <th>Album</th>
 <th>Year</th>
</tr>
<tr>
 <td>Rubber Soul</td>
 <td>1968</td>
</tr>
<tr>
 <td>Revolver</td>
 <td>1966</td>
</tr>
<tr>
 <td>Sgt. Pepper's</td>
 <td>1967</td>
</tr>
<tr>
 <td>The White Album</td>
 <td>1968</td>
</tr>
<tr>
 <td>Abbey Road</td>
 <td>1969</td>
<tr>
</table>

Exercise 8-2
<table>

 <tr>

 <th>7:00pm</th><th>7:30pm</th><th>8:00pm</th>

 </tr>

 <tr>

 <td colspan="3">The Sunday Night Movie</td>

 </tr>

 <tr>

 <td>Perry Mason</td>

 <td>Candid Camera</td>

 <td>What’s My Line</td>

 </tr>

 <tr>

 <td>Bonanza</td>

 <td colspan="2">The Wackiest Ship in the Army</td>

 </tr>

</table>

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 565

Exercise 8-3
<table>
 <tr>
 <td>apples</td>
 <td rowspan="3">oranges</td>
 <td>pears</td>
 </tr>
 <tr>
 <td>bananas</td>
 <td rowspan="2">pineapple</td>
 </tr>
 <tr>
 <td>lychees</td>
 </tr>
</table>

Exercise 8-4
<table>
 <caption>Your Content Here</caption>
 <tr>
 <th rowspan="2"> </th>
 <th colspan="2">A common header for two subheads</th>
 <th rowspan="2">Header 3</th>
 </tr>
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 </tr>
 <tr>
 <th scope="row">Thing A</th>
 <td>data A1</td>
 <td>data A2</td>
 <td>data A3</td>
 </tr>
 <tr>
 <th scope="row">Thing B </th>
 <td>data B1</td>
 <td>data B2</td>
 <td>data B3</td>
 </tr>
 <tr>
 <th scope="row">Thing C</th>
 <td>data C1</td>
 <td>data C2</td>
 <td>data C3</td>
 </tr>
</table>

Chapter 9: Forms
1. a. POST (because of security issues)

b. POST (because it uses the file selection input type)

c. GET (because you may want to bookmark search results)

d. POST (because it is likely to have a length text entry)

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A566

2. a. Pull-down menu: <select>

b. Radio buttons: <input type=”radio”>

c. <textarea>

d. Eight checkboxes: <input type=”checkbox”>

e. Scrolling menu: <select multiple=”multiple”>

3. Each of these markup examples contains an error. Can you spot what it is?

a. The type attribute is missing.

b. Checkbox is not an element name; it is a value of the type attribute in the input element.

c. The option element is not empty. It should contain the value for each option (for example, option>Orange
</option>).

d. The required name attribute is missing.

e. The width and height of a text area are specified with the cols and rows attributes, respectively.

Exercises 9-1 through 9-3: Final source document
<!DOCTYPE html >
<html>
<head>
 <meta charset="utf-8" >
 <title>Contest Entry Form</title>
 <style type="text/css">
 ol, ul {
 list-style-type: none;
 }
 </style>
</head>

<body>

<h1>“Pimp My Shoes” Contest Entry Form</h1>

<p>Want to trade in your old sneakers for a custom pair of Forcefields? Make a case for why your shoes have
got to go and you may be one of ten lucky winners.</p>

<form action="http://www.learningwebdesign.com/contest.php" method="post">

<fieldset>
<legend>Contest Entry Information</legend>

<label for="form-name">Name:</label> <input type="text" name="username" id="form-name">
<label for="form-email">Email Address:</label> <input type="email" name="emailaddress" id="form-email">

<label for="form-tel">Telephone Number:</label> <input type="tel" name="telephone" id="form-tel">
<label for="form-story">My shoes are SO old...</label>

<textarea name="story" rows="4" cols="60" maxlength="300" id="form-story" placeholder="No more than 300

characters long"></textarea>

</fieldset>

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 567

<h2>Design your custom Forcefields:</h2>

<fieldset>
<legend>Custom Shoe Design</legend>

<fieldset>
<legend>Color (choose one):</legend>

 <label><input type="radio" name="color" value="red"> Red</label>
 <label><input type="radio" name="color" value="blue"> Blue</label>
 <label><input type="radio" name="color" value="black"> Black</label>
 <label><input type="radio" name="color" value="silver"> Silver</label>

</fieldset>

<fieldset>
<legend>Features (Choose as many as you want)</legend>

 <label><input type="checkbox" name="feature" value="laces"> Sparkley laces</label>
 <label><input type="checkbox" name="feature" value="logo" checked> Metallic logo</label>
 <label><input type="checkbox" name="feature" value="heels"> Light-up heels</label>
 <label><input type="checkbox" name="feature" value="mp3"> MP3-enabled</label>

</fieldset>

<fieldset>
<legend>Size</legend>
<label for="form-size"><p>Sizes reflect standard men's sizes:</label>
<select id="form-size" name="size" size="1">
 <option>5</option>
 <option>6</option>
 <option>7</option>
 <option>8</option>
 <option>9</option>
 <option>10</option>
 <option>11</option>
 <option>12</option>
 <option>13</option>
</select>
</p>
</fieldset>

</fieldset>

<p><input type="submit" value="Pimp My Shoes!">
<input type="reset"></p>
</form>
</body>
</html>

Chapter 10: What’s Up, HTML5?
1. XHTML is defined by and requires the stricter syntax rules of XML. HTML is more forgiving.

2. a. <h1> … </h1>

b.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A568

c. <input type="radio" checked="checked">

d. <hr />

e. <title>Sifl & Olly</title>

f.
 popcorn
 butter
 salt

3. A DTD stands for Document Type Definition and is a document that defines all the elements, attributes, and
values in a language and their rules for use.

4. HTML5 is unique among HTML specs in that:

•	 It includes APIs, not just element and attribute definitions.

•	 It includes instructions for how browsers should render elements and handle errors.

•	 It does not use a DTD.

•	 It can be written in either HTML or XHTML syntax.

5. A global attribute can be used with any HTML element.

6. Web Workers, d; Editing API, e; Geolocation API, a; Web Socket, b; Offline Applications, c

7. Ogg, container; H.264, video; VP8, video; Vorbis, audio; WebM, container; Theora, video; AAC, audio;
MPEG-4, container

8. strokeRect() and fill()

Chapter 11: Css Orientation
1. selector: blockquote; property: line-height; value: 1.5; declaration: line-height: 1.5

2. The paragraph text will be gray because when there are conflicting rules of identical weight, the last one listed
in the style sheet will be used.

3. a. Use one rule with multiple declarations applied to the p element.
p {font-family: sans-serif;
 font-size: 1em;
 line-height: 1.2em;}

b. The semicolons are missing.
blockquote {
 font-size: 1em;
 line-height: 150%;
 color: gray;
}

c. There should not be curly braces around every declaration, only around the entire declaration block.
body {background-color: black;
 color: #666;
 margin-left: 12em;
 margin-right: 12em;}

d. This could be handled with a single rule with a grouped element type selector.

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 569

p, blockquote, li {color: white;}

e. This inline style is missing the property name.
<strong style="color: red">Act now!

4. div#intro { color: red; }

html

head body

title style h1 div id="intro" p

h2

div id="main"

p ul p h2 p

lililistrongimg

Figure A-1. The highlighted elements would be red as a result of the style rule: div#intro
{color: red;}.

Exercise 11-1
h1 {
 color: red;
 border-bottom: 1px solid red;
}
p {
 font-size: small;
 font-family: sans-serif;
 margin-left: 100px;
}
h2 {
 color: red;
 margin-left: 100px;
}
img {
 float: right;
 margin: 0 12px;
}

Chapter 12: Formatting Text
1. a. All text elements in the document: body {color: red;}

b. h2 elements: h2 {color: red;}

c. h1 elements and all paragraphs: h1, p {color: red;}

d. Elements belonging to the class “special”:.special {color: red;}

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A570

e. All elements in the “intro” section: #intro {color: red;}

f. strong elements in the “main” section: #main strong {color: red;}

g. Extra credit: Just the paragraph that appears after the “main” section (hint: this selector will not work in
Internet Explorer 6): h2 + p {color: red;}

2. a. 4, b. 1, c. 7, d. 3, e. 2, f. 9, g. 8, h. 5, i. 6

Exercises 12-1 through 12-3
<head>
<meta charset="utf-8">
<title>Black Goose Bistro Summer Menu</title>
<link href='http://fonts.googleapis.com/css?family=Marko+One' rel='stylesheet'>
<style>

body {
 font-family: Georgia, serif;
 font-size: 100%;
 line-height: 1.75em;
}
p, dl {
 font-size: .875em;
}
h1 {
 font: bold 1.5em "Marko One", Georgia, serif;
 color: purple;
 text-shadow: .1em .1em .2em lightslategray;
}
h2 {
 font-size: 1em;
 text-transform: uppercase;
 letter-spacing: .5em;
 color: purple;
}
dt {
 font-weight: bold;
 color: sienna;
}
strong {
 font-style: italic;
}
dt strong {
 color: maroon;
}
#info p {
 font-style: italic;
 color: gray;
}
.price {
 font-family: Georgia, serif;
 font-style: italic;
 color: gray;
}
p.warning, sup {
 font-size: small;
 color: red;
}
.label {

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 571

 font-weight: bold;
 font-variant: small-caps;
 font-style: normal;
}
h1, h2, #info {
 text-align: center;
}
h2 + p {
 text-align: center;
 font-style: italic;
}

</style>
</head>

Chapter 13: Colors and Backgrounds
1. g. a, b, and c

2. d. rgb(FF, FF, FF)

3. a. –5; b. –1; c. –4; d. –6; e. –2; f. –3

4. a. –1; b. –3; c. –2; d. –6; e. –5; f. –4

Exercise 13-1
body {
 …
 background-color: #d2dc9d;
}
#header {
 …
 background-color: rgba(255,255,255,.5);
}
a:link {
 color: #939;
}
a:visited {
 color: #937393;
}
a:focus {
 background-color: #fff;
 color: #c700f2;
}
a:hover {
 background-color: #fff;
 color: #c700f2;
}
a:active {
 background-color: #fff;
 color: #f0f;
}
h1 {
 …
 color: #939;
}
h2 {

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A572

 …
 color: #c60;
}

Exercise 13-2
body {
 …
 background-color: #d2dc9d;
 background-image: url(images/bullseye.png);
}

Exercise 13-3
#header {
 …
 background-color: rgba(255,255,255,.5);
 background-image: url(images/purpledot.png);
 background-repeat: repeat-x;
}

Exercise 13-4
body {
 …
 background-color: #d2dc9d;
 /* background-image: url(images/bullseye.png);
 background-position: center 200px; */
 background-image: url(images/blackgoose.png);
 background-repeat: no-repeat;
 background-position: center 100px;
}
#header {
 …
 background-color: rgba(255,255,255,.5);
 background-image: url(images/purpledot.png);
 background-repeat: repeat-x;
 background-position: center top;
}

Exercise 13-5
body {
 …
 background-color: #d2dc9d;
 background-image: url(images/blackgoose.png);
 background-repeate: no-repeat;
 background-position: center 100px;
 background-attachment: fixed;
}

Exercise 13-6
body {
 …
 background: #d2dc9d url(images/blackgoose.png) no-repeat center 100px fixed;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 573

#header {
 …
 background: rgba(255,255,255,.5) url(images/purpledot.png) repeat-x center top;
}

Exercise 13-7
#header {
 …
 background-image: url(images/purpledot.png) center top repeat-x;}
 background:
 url(images/purpledot.png) left top repeat-y,
 url(images/purpledot.png) right top repeat-y,
 url(images/gooseshadow.png) 90% bottom no-repeat;
 background-color: rgba(255,255,255,.5);
}

Exercise 13-8
<head>
 …
 <link rel="stylesheet" href="menustyles.css">
</head>

Chapter 14: Thinking Inside the Box
a. border: double black medium;

b. overflow: scroll;

c. padding: 2em;

d. padding: 2em; border: 4px solid red;

e. margin: 2em; border: 4px solid red;

f. padding: 1em 1em 1em 6em; border: 4px dashed; margin: 1em 6em;

or

padding: 1em; padding-left: 6em; border: 4px dashed; margin: 1em 6em;

g. padding: 1em 50px; border: 2px solid teal; margin: 0 auto;

Exercise 14-1
#products {
 ..
 padding: 1em;
}
#testimonials {
 …
 padding: 1em;
 padding-left: 55px;
}

Exercise 14-2
#products {

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A574

 …
 padding: 1em;
 border: double #FFBC53;
}
#products h3 {
 …
 border-top: 1px solid;
 border-left: 3px solid;
 padding-left: 1em;
}
#testimonials {
 …
 padding: 1em;
 padding-left: 55px;
 border-radius: 20px;
}
a {
 text-decoration: none;
 border-bottom: 1px dotted;
 padding-bottom: .1em;
}

Exercise 14-3
body {
 margin: 0;
}
a {
 text-decoration: none;
 border-bottom: 1px dotted;
 padding-bottom: .1em;
}
/* link styles omitted to save space */

/* styles for the intro section */
#intro {
 text-align: center;
 margin: 2em 0 1em;
}
#intro h1 {
 margin-bottom: 0;
}
#intro h2 {
 …;
 margin-top: -10px;
}
#intro p {
 …
 margin: 1em;
}
/* styles for navigation omitted to save space */

/* styles for the products section */
#products {
 …
 padding: 1em;
 border: double #FFBC53;
 margin: 1em;
 }
…

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 575

#products h3 {
 …
 border-top: 1px solid;
 border-left: 3px solid;
 padding-left: 1em;
 margin-top: 2.5em;
}

/* styles for the testimonials box */
#testimonials {
 ….
 padding: 1em;
 padding-left: 55px;
 border-radius: 20px;
 margin: 1em 10%;
 }
/* remaining styles omitted to save space */

Chapter 15: Floating and Positioning
1. b is not true. Floats are positioned against the content edge, not the padding edge.

2. c is incorrect. Floats do not use offset properties, so there is no reason to include right.

3. Clear the footer div to make it start below a floated sidebar: div#footer { clear: both; }.

4. a) absolute; b) absolute, fixed; c) fixed; d) relative, absolute, fixed; e) static; f) relative; g) absolute, fixed; h)
relative, absolute, fixed; i) relative

Exercise 15-1
#products img {
 float: left;
 margin: 0 6px 6px 0;
}
#products .more {
 clear: left;
}

Exercise 15-2
#nav ul {
 …
 margin: 0 auto;
 width: 19.5em;
}
#nav ul li {
 …
 float: left;
}
#nav ul li a {
 display: block;
 padding: .5em;
 border: 1px solid #ba89a8;
 border-radius: .5em;
 margin: .25em;
}
…

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A576

#nav ul a:focus {
 color:#FC6
 border-color: #fff;
}
#nav ul a:hover {
 color: #fc6;
 border-color: #fff;
}
…
#products {
 …
 clear: both;
}

Exercise 15-3
#products {
 …
 width: 55%;
 float: left;
}
#products h2 {
 …
 text-align: left;
 }
#testimonials {
 …
 margin: 1em 2% 1em 64%;
}
p#copyright {
 …
 clear: left;
 }

Exercise 15-4
…
#content {
 position: relative;
}
#testimonials {
 …
 margin: 0 1em;
 position: absolute;
 top: 0;
 right: 0;
 width: 14em;
 }
#products {
 …
 margin: 1em 20.5em 1em 1em;
 clear: both;
}
#award {
 position: absolute;
 top: 35px;
 left: 25px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 577

Exercise 15-5
…
#award {
 position: fixed;
 top: 35px;
 left: 25px;
}

Chapter 16: Page Layout with Css
1. Fixed, c.; Fluid, a.; Elastic, b.

2. Fixed, b.; Fluid, c.; Elastic, a.

3. Fixed, c.; Fluid, b.; Elastic, a.

4. Fixed, c.; Fluid, a.; Elastic, b.

Exercise 16-1
<style>
#wrapper {
 width: 960px;
 margin: 0 auto;
}
#header {
 background-color: #CCC;
 padding: 15px;
}
#links {
 float: right;
 width: 22.5%;
 margin: 0 2.5% 0 0 ;
 outline: 2px dashed #dd0009;
}
#main {
 float: right;
 width: 45%;
 margin: 0 2.5%;
 outline: 2px dashed #0053ae;
}
#news {
 float: right;
 width: 22.5%;
 margin: 0 0 0 2.5% ;
 outline: 2px dashed #009554;
}
#footer {
 clear: right;
 padding: 15px;
 background: #CCC;
}
/* remaining unchanged styles omitted to save space */
</style>

<body>
<div id="wrapper">
 … contents of page here...
</div>
</body>

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A578

Exercise 16-2
#main {
 float: left;
 width: 400px;
 margin-top: 0;
 margin-left: 320px;
 margin-right: 20px;
}

#news {
 float: left;
 width: 300px;
 margin-top: 0;
 margin-left: -740px;
}

#links {
 float: left;
 width: 220px;
 margin: 0;
}

Chapter 17: Transitions, Transforms, and Animation
1. Tweening is the process in animation in which frames are generated between two end point states.

2. A transition would have two keyframes, one for the beginning state and one for the end.

3. a) transition-delay: 0.5s; b) transition-timing-function: linear; c) transition-duration: .5s; d) transi-
tion-property: line-height;

4. c) text-transform is not an animatable property.

5. Ease is the default timing function. It starts out slowly, speeds up quickly, and then slows down again at the
very end.

6. .2s is the transition-duration value.

7. Trick question! They will arrive at the same time, 300ms after the transition begins. The timing function has no
effect on the total amount of time it takes.

8. a) transform: rotate(7deg); b) translate(-25px, -50px); c) transform-origin: bottom right; d) transform:
scale(1.2);

9. The 3 value indicates that the element should be resized three times larger than its original height.

10. a) perspective: 250; because lower number values are more dramatic.

11. The border is 3 pixels wide at 50% through the animation;

12. a) animation-direction: reverse; b) animation-duration: 5s; c) animation-duration: 2s; d) animation-
iteration-count: 3;

Exercise 17-1
a {
 /* non-transition styles omitted to save space */
 position: relative;

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 579

 -webkit-transition: background-color 0.2s ease-in, border-color 0.2s, top 0.2s, box-shadow 0.2s;
 -moz-transition: background-color 0.2s, border-color 0.2s, top 0.2s, box-shadow 0.2s;
 -o-transition: background-color 0.2s, border-color 0.2, top 0.2s, box-shadow 0.2s;
 -ms-transition: background-color 0.2s, border-color 0.2s, top 0.2s, box-shadow 0.2s;
 transition: background-color 0.2s, border-color 0.2s, top 0.2s, box-shadow 0.2s;
}
a:hover, a:focus {
 background-color: #fdca00;
 border-color: #fda700;
 }
a:active {
 top: 3px;
 box-shadow: 0 1px 2px rgba(0,0,0,.5);
}

Exercise 17-2
Vendor-prefixed properties have been omitted to save space.

img {
 width: 200px;
 height: 150px;
 box-shadow: 2px 2px 2px rgba(0,0,0,.4);
 transition: transform .3s ease-in-out;
}
a:hover img {
 box-shadow: 6px 6px 6px rgba(0,0,0,.3);
}
a:hover #img1, a:focus #img1 {
 transform: scale(1.5) rotate(-3deg);
}
a:hover #img2, a:focus #img2 {
 transform: scale(1.5) rotate(5deg);
}
a:hover #img3, a:focus #img3 {
 transform: scale(1.5) rotate(-7deg);
}
a:hover #img4, a:focus #img4 {
 transform: scale(1.5) rotate(2deg);
}

Chapter 18: Css Techniques
1. d) All of the above

2. d) a and c

3. The differences between LESS and Sass include:

•	 LESS lacks some of the functionality of Sass.

•	 They use a slightly different syntax ($variable versus @variable).

•	 Sass is compiled into standard CSS by a Ruby program on the server; LESS uses JavaScript.

4. e) b and d

5. Give the label elements the same width and float them to the left, then align the text right so it appears next to
the control it describes.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A580

6. If you do not set the viewport size, the mobile browser will scale down the page, even if it is designed to be 320
pixels wide.

7. c, e, d, a, b

8. b, e, a, d, c

Exercises 18-1 through 18-3
img {
 max-width: 100%;
}

@media screen and (min-width: 481px) {
 #products img {
 float: left;
 margin: 0 6px 6px 0;
 }
 #products .more {
 clear: left;
 }
 #products {
 margin: 1em;
 }
 #testimonials {
 margin: 1em 5%;
 border-radius: 16px;
 }
}

@media screen and (min-width: 780px) {
 #products {
 float: left;
 margin: 0 2% 1em;
 clear: both;
 width: 55%;
 overflow: auto;
 }
 #testimonials {
 margin: 1em 2% 1em 64%;
 }
 p#copyright {
 clear: both;
 }
 #content {
 max-width: 1024px;
 margin: 0 auto;
 }
}

Chapter 19: Introduction to Javascript
1. When you link to an external .js file, you can reuse the same scripts for multiple documents. The downside is

that it requires an additional HTTP request.

2. a) 1; b) 1two; c) 34; d) 2

3. a) 10; b) 6; c) “2 remaining”; d) “Jennifer is longer.”; e) false

www.it-ebooks.info

http://www.it-ebooks.info/

Answers 581

4. It loops through a number of items by starting at the first one in the array and ending when there are no more
left.

5. Globally scoped variables may “collide” with variables with the same names in other scripts. It is best to use the
var keyword in functions to keep your variables scoped locally.

6. a. 2; b. 5; c. 4; d. 3; e. 1

Exercise 19-1
1. var friends = ["name", "othername", "thirdname", "lastname"];

2. alert(friends[2]);

3. var name = "yourName";

4. if(name === Jennifer) { alert("That’s my name too!"); }

5. var myVariable = #;
 if(myVariable > 5) {
 alert("upper");
 } else {
 alert ("lower");
 }

Exercise 19-2
<script>
var originalTitle = document.title;
function showUnreadCount(unread) {
 document.title = originalTitle + " (" + unread + "new message!");
}
showUnreadCount(3);
</script>

Chapter 20: Using Javascript
1. Ajax is a combination of HTML, CSS, and JavaScript (with the XMLHttpRequest JavaScript method used to get

data in the background).

2. It accesses the element that has the id value “main”.

3. It creates a nodeList of all the section elements in the element with the id of “main”.

4. It sets the background color of the page (body element) to “papayawhip”.

5. It creates a new text node that says, “Hey, I’m walking here!”, inserts it in a newly created p element, and puts
the new p element in the element with the id “main”.

6. a. 3; b. 2; c. 4; d. 1

7. All of the above.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A582

Chapter 21: Web Graphics Basics
1. You can get a license to have exclusive rights to an image so that your competitor doesn’t use the same photo

on their site.

2. ppi stands for “pixels per inch” and is a measure of resolution.

3. Indexed color is a mode for storing color information in an image that stores each pixel color in a color table.
GIF and 8-bit PNG formats are indexed color images.

4. There are 256 colors in an 8-bit graphic and 32 colors in a 5-bit graphic.

5. GIF can contain animation and transparency. JPEG cannot.

6. GIF can contain animation. PNGs cannot.

7. PNGs can have multiple levels of transparency. GIF has only binary (on/off) transparency.

8. Lossy compression is cumulative, which means you lose image data every time you save an image as a JPEG. If
you open a JPEG and save it as a JPEG again, even more image information is thrown out than the first time you
saved it. Be sure to keep your full-quality original and save JPEG copies as needed.

9. In binary transparency, a pixel is either entirely transparent or entirely opaque. Alpha transparency allows up
to 256 levels of transparency.

10. A GIF or PNG-8 because it is text, flat colors, and hard edges. B JPEG because it is a photograph. C GIF or
PNG-8 because although it has some photographic areas, most of the image is flat colors with hard edges. D
GIF or PNG-8 because it is a flat graphical image. E JPEG because it is a photograph.

Chapter 22: Lean and Mean Web Graphics
1. Smaller graphic files means shorter download and display times. Every second counts toward creating a favor-

able user experience of your site.

2. Dithering introduces a speckle pattern that interrupts strings of identical pixels, and therefore the GIF compres-
sion scheme can’t compress areas with dithering as efficiently as flat colors.

3. The fewer pixel colors in the image, the smaller the resulting GIF, both because the image can be stored at a
lower bit depth and because there are more areas of similar color for the GIF to compress.

4. The Quality (compression) setting is the most effective tool for controlling the size of a JPEG.

5. JPEG compression works effectively on smooth or blurred areas, so introducing a slight blur allows the JPEG
compression to work more efficiently, resulting in smaller files.

6. Just as you would do for an indexed GIF, optimize a PNG-8 by designing with flat colors, reducing the number
of colors, and avoiding dithering. There are no strategies for optimizing a PNG-24 because they are designed to
store images with lossless compression.

www.it-ebooks.info

http://www.it-ebooks.info/

583

selector Type of selector Description

simple selectors and combinators

* Universal selector Matches any element
* {font-family: serif;}

A Type selector Matches the name of an element.
div {font-style: italic;}

A, B Grouped selectors Matches elements A and B.
h1, h2, h3 {color: blue;}

A B Descendant selector Matches element B only if it is a descendant of element A.
blockquote em {color: red;}

A>B Child selector Matches any element B that is a child of element A.
div.main>p {line-height: 1.5;}

A+B Adjacent sibling selector Matches any element B that immediately follows any element A,
where A and B share the same parent.
p+ul {margin-top: 0;}

A~B General sibling selector Matches any element B that is preceded by A, where A and B share
the same parent.
blockquote~cite {margin-top: 0;}

Class and ID selectors

.classname
A.classname

Class selector Matches the value of the class attribute in all elements or in a
specified element.
p.credits {font-size: 80%;}

#idname
A#idname

ID selector Matches the value of the id attribute in an element.
#intro {font-weight: bold;}

Attribute selectors

A[att] Simple attribute selector Matches any element A that has the given attribute defined, what-
ever its value.
table[border] {background: white;}

A[att="val"] Exact attribute value selector Matches any element A that has the specified attribute set to the
specified value.
table[border="3"] {background: yellow;}

Css3 seleCtors

APPENDIX B

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B584

selector Type of selector Description

A[att~="val"] Partial attribute value selector Matches any element A that has the specified value as one of the
values in a list given to the specified attribute.
table[class~="example"] {background: yellow;}

A[att|="val"] Hyphenated prefix attribute
selector

Matches any element A that has the specified attribute with a
value that is equal to or begins with the provided value. It is
most often used to select languages, as shown here.
a[lang|="en"] {background-image: url(en_icon.png);}

A[att^="val"] Beginning substring attribute
selector

Matches any element A that has the specified attribute and its
value begins with the provided string.
img[src^="/images/icons"] {border: 3px solid;}

A[att$="val"] Ending substring attribute selec-
tor

Matches any element A that has the specified attribute and its
value ends with the provided string.
img[src^="/images/icons"] {border: 3px solid;}

A[att*="val"] Arbitrary substring attribute
selector

Matches any element A that has the specified attribute and its
value contains the provided string.
img[title#="July"] {border: 3px solid;}

Pseudo-class selectors

a:link Link pseudo-class selector Specifies a style for links that have not yet been visited.
a:link {color: maroon;}

a:visited Link pseudo-class selector Specifies a style for links that have already been visited.
a:visited {color: gray;}

:active User action pseudo-class selector Selects any element that has been activated by the user, such as a
link as it is being clicked.
a:active {color: red;}

:focus User action pseudo-class selector Selects any element that currently has the input focus, such as a
selected form input.
input[type="text"]:focus {background: yellow;}

:hover User-action pseudo-class selector Specifies a style for elements (typically links) that appear when the
mouse is placed over them.
a:hover {text-decoration: underline;}
h1:target {color: red;}

:target Target pseudo-class selector Selects an element that is used as a fragment identifier.

:lang(xx) Pseudo-class selector Selects an element that matches the two-character language code.
a:lang(de) {color: green;}

:root Structural pseudo-class selector Selects an element that is the root of the document. In HTML, it is
the html element.
:root { background: papayawhip;}

:nth-child() Structural pseudo-class selector Selects an element that is the nth child of its parent. The nota-
tion can include a number, a notation, or the keywords odd or
even.
tr:nth-child(odd) { background: #DDD;}

:nth-last-child() Structural pseudo-class selector Selects an element that is the nth child of its parent, counting from
the last one.
li:nth-last-child(2) { color: green;}

www.it-ebooks.info

http://www.it-ebooks.info/

Css3 selectors 585

selector Type of selector Description

:nth-of-type() Structural pseudo-class selector Selects the nth element of its type.
img:nth-of-type(even) {float: right;}

:nth-last-of-
type()

Structural pseudo-class selector Selects the nth element of its type, counting from the last one.
img:nth-last-of-type(odd) {float: right;}

:first-child Structural pseudo-class selector Selects an element that is the first child of its parent element.
p:first-child {border-top: 1px solid;}

:last-child Structural pseudo-class selector Selects an element that is the last child of its parent element.
p:last-child {border-bottom: 1px solid;}

:first-of-type Structural pseudo-class selector Selects an element that is the first sibling of its type.
dt:first-of-type {font-weight: bold;}

:last-of-type Structural pseudo-class selector Selects an element that is the last sibling of its type.
li:last-of-type {margin-bottom: 1em;}

:only-child Structural pseudo-class selector Selects an element that is the only child of its parent.
aside:only-child {line-height: 1.5;}

:only-of-type Structural pseudo-class selector Selects an element that is the only sibling of its type.
dt:first-of-type {font-weight: bold;}

:empty Structural pseudo-class selector Selects an element that has no text and no child elements.
tbody td:empty {background: #000; }

:enabled UI pseudo-class selector Selects a UI element if it is enabled
input[type="tel"]:enabled {border: 1px solid red;}

:disabled UI pseudo-class selector Selects a UI element if it is disabled.
input[type="tel"]:disabled {color: #ccc;}

:checked UI pseudo-class selector Selects a UI element (radio button or checkbox) that is checked.
:checked {background-color: yellow;}

:not(X) Negation pseudo-class selector Selects an element that does not match the simple selector X.
:not(pre) { line-height: 1.2 }

Pseudo-element selectors

:first-letter
(::first-letter
in CSS3)

Pseudo-element selector Selects the first letter of the specified element.
p:first-letter {font-size: 4em;}

:first-line
(::first-line in
CSS3)

Pseudo-element selector Selects the first letter of the specified element.
.note:first-line {letter-spacing: 4px;}

:before
(::before in
CSS3)

Pseudo-element selector Inserts generated text at the beginning of the specified element and
applies a style to it.
p.intro:before {content: "start here"; color: gray;}

:after
(::after in CSS3)

Pseudo-element selector Inserts generated content at the end of the specified element and
applies a style to it.
p.intro:after {content: "fini"; color: gray;}

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

InDex

symbols
3-D transforms, 418–421

functions for, 419
8-bit, 511
8-bit indexed color images, 517
24-bit Truecolor images, 515
& (ampersand)

beginning character references, 99
in XHTML, 99

<!-- and --> tags denoting
comments, 54, 60

< > (angle brackets)
> (greater than) operator, 468, 481
>= (greater than or equal to)

operator, 468
in HTML tags, 26, 28, 55, 66
< (less than) operator, 468
<= (less than or equal to)

operator, 468, 472
* (asterisk)

multiplication operator, 469
universal selector, , 246

\ (backslash) versus / (slash), 55
: (colon), double and single colon

indicating CSS pseudo-
elements, 279

@counter-style rule (CSS), 259
{ } (curly braces)

enclosing functions, 474
enclosing statement blocks, 470,

472
. (dot)

dot-dot-slash (../) pathname
convention, 112

indicating class selector, 246
= (equals sign)

assignment operator, 465

== (equal to) operator, 468
=== (identical to) operator, 468

! (exclamation mark)
!important indicator, CSS style

rules, 218
!= (not equal to) operator, 468, 470
!== (not identical to) operator, 468

@font-face rule (CSS), 227–228
(hash mark, pound sign, or

octothorpe symbol)
before fragment name, 116
before hex values, 283

@import rule (CSS), 302
@keyframes rule (CSS), 421
@media rule (CSS), 448
- (minus sign)

- - (decrement) operator, 469
subtraction operator, 469

() (parentheses) in functions, 474
. (period). See . (dot)
+ (plus sign)

+= (addition and assignment)
operator, 469

addition operator, 469
++ (increment) operator, 469, 472
string concatenation operator, 467

" " (quotation marks, double)
, 197
around q elements, 89
enclosing attribute values, 62

; (semicolon)
ending character references, 99
ending CSS declarations, 211
ending JavaScript statements, 464

/ (slash)
at start of pathname, 114
division operator, 469
in closing (or end) HTML tags, 55

omitting, problems caused by, 66
in directory names, 25
/* */ in multi-line JavaScript

comments, 465
// in single-line JavaScript

comments, 465
[] (square brackets), array

operator, 468

A
AAC audio codec, 193
a (anchor) element, 105

changes in HTML5, 106
href attribute, 106–107

mailto links, 119
telephone links, 120

abbr (abbreviation) element, 89
absolute (measurement) units, 234

pixels and, 236
absolute positioning, 357, 359–368

advantage of floats over for
layout, 381

containing blocks, 360–362
specifying position, 363–365
stacking order, 367–368

absolute URLs, 106
accessibility, 41–42

HTML documents, 37
of images, 127
SVG image content, 537
tables, 137, 142–144

acronyms, 89
action attribute, form element, 149
active state, 278
adaptive layouts, 446
Adaptive Web Design (Gustafson), 38
addEventListener method, 480

www.it-ebooks.info

http://www.it-ebooks.info/

Index588

address element – borders

address element, 84
adjacent sibling selectors, 245
Adobe. See also individual application

names
Creative Suite, 231
Dreamweaver, 4, 16
Fireworks, 17, 268, 508
Flash, 11
Illustrator, 17, 508
layout modules, CSS, 381
Photoshop, 17, 268, 508
Photoshop Elements, 17

:after pseudo-element, 280
Ajax, 497, 498

defined, 497
A List Apart, 222

“Elastic Designs” article, 378
“Fluid Grids” article, 376

alpha, 271
alpha or alpha channel

transparency, 518, 526
multiple levels of, using PNG-

24, 553
PNG-8 alpha transparency, 531
working with, 527

alt attribute, img (image) element, 125
alternate text, 126
alternative voice (italic), 87
“Anatomy of a Mobile-First

Responsive Web Design”
(Frost), 450

ancestors, 215
anchor element. See a element
Android Browser, 18
animation

animatable CSS properties, 401
canvas element used for, 199
CSS animation properties, 422
GIF images, 514
keyframe, 420–423
SVG images, 537
tools for, 421

anti-aliasing, 531
Apache servers, 22
APIs (Application Programming

Interface)
defined in HTML5, 185, 189–192
W3C and WHATWG, for use with

web applications, 190
appendChild() method, 491
arbitrary substring attribute value

selector, 282

arc() function, 201
arguments, 473, 475
ARIA (Accessible Rich Internet

Applications), 42
arrays, 468
article element, 79, 81
artifacts, 516
aside element, 79, 81, 82
aspect ratio, preserving, 447
ASP.NET (Active Server Pages), 9, 150
assistive technologies, 23
Asynchronous JavaScript and

XML. See Ajax
Ate�, Faruk, 495
attribute nodes (DOM), 486
attributes, 61

changing values of, using
JavaScript, 489

global, 187
specifying event handlers to

run, 479
syntax for, 62
XHMTL requirements for, 183

attribute selectors, 281–283
Audacity video and audio

converters, 194
audio and video (HTML5), 192–198

adding audio to a page, 198
audio formats, 194
media formats, how they work, 192

audio element, attributes, 198
authoring, 8

links to popular tools, 19
progressive enhancement

strategy, 37
author style sheets, 217
autoplay attribute, video element, 196

B
backend development, 9
background

color, 273
images, 124, 284–292
multiple backgrounds, 294–295
shorthand background

property, 293–295
watching for overrides, 293

baseline profile (H.264 codec), 197
BBEdit, 17
bdi (bidirectional isolation)

element, 93

bdo (bidirectional override)
element, 93

:before and :after pseudo-
elements, 280

beginning substring attribute value
selector, 282

beginPath() function, 201
behavior layer, 13
Berners-Lee, Tim, 90, 182
“Better CSS Font Stacks” (Nathan

Ford), 231
Beverloo, Peter, 299
Bezier curves, 403
binary transparency, 526

difference from alpha
transparency, 531

bit depth, 544
bitmapped images, 522
BlackBerry, 120
BlackBerry Browser (RIM), 18
block elements, 70

in forms, 149
blockquote element, 76
Blogger, 4
blogs, starting, 4
blurring or smoothing images, 550
BMP images, 123, 510
body element, 56, 68

adding margin to, 329
applying background-color property

to, 274
CSS style sheet properties applied to,

inheritance of, 216
bold text

font-weight property, 239
strong text elements, 87

Boolean attributes, 62
Boolean values, 467
Boot Camp, 15
border-box model, 309
border-collapse property for a

table, 142
borders, 306, 316–327

animatable CSS properties, 401
color, 319
combining style, width, and

color, 320
outlines versus, 380
rounded corners with border-

radius, 321
style properties, 316
table, separated and collapsed,

441–443

www.it-ebooks.info

http://www.it-ebooks.info/

border-spacing property for a table – Colorzilla, Ultimate Css Gradient Generator

Index 589

submit and reset, 152–153, 440
b (visually emphasized) element, 87

C
caching, using with images, 126
Cagle, Kurt, 538
calendar items (hCalendar), 97
calendars, 133
Calzadilla, Anthony, 420
Camen, Kroc, 197
Can I Use site’s SVG listing, 537
Canvas API, 191, 198

drawing with JavaScript, 200–204
SVG versus, 537

canvas, background color, 273
canvas element, 11, 198

adding to a page, 200
examples of use, 199

capitalization, changing, 252
caption element, 143
cascade (CSS), 217
Cascading Style Sheets. See CSS
Cascading Style Sheets: The Definitive

Guide (Meyer), 221, 247
case-sensitivity

HTML element names not case
sensitive, 55

in filenames, 53
JavaScript, 464

Catlin, Hampton, 433
Cederholm, Dan, 221, 410
cells

connecting table cells and
headers, 143

empty cells, 443
row spans, 141
space in and between, 142
spanning cells in tables, 139–142
table content in, 136
table elements for, 135
th (table header) elements, 138

CERN particle physics lab, 90
character encoding, 56
character references, 99
checkbox buttons, 161, 162
Chikuyonok, Sergey, 553
child elements, 215
child selectors, 245
Chisholm, Wendy, 42
Chrome, 23

developer tool, using to observe
HTTP requests, 44

using border-image property,
323–327

width (thickness), 318
border-spacing property for a

table, 142
bottom property, 357
Bowman, Doug, 397
box model (CSS), 219, 305

specifying box dimensions, 306–312
box-shadow property, 335
box-sizing polyfill script, 310
box-sizing property, 307
Bradshaw, Rich, 420
breakpoints, 452
br (line break) element, 64, 92
browsers

browser wars, 493
bugs in CSS layout, 342
as clients of servers, 23
CSS support, 207
dealing with unknown

capabilities, using progressive
enhancement, 36–38

default styles from built-in style
sheets, 29, 60

displaying fonts, 227
finding pixel dimensions of

images, 128
HTML5 support, 181

audio and video elements, 192
Canvas, 199

on mobile devices, 15
parsing of HTML by, 28
polyfills for, 493–497
source document information

ignored by, 54
style sheet overriding styles set on

body element, 216
variety of different browsers to test

pages, 17
vendor prefixes, 298
window object in JavaScript, 478

Budd, Andy, 330
Building Accessible Websites

(Clark), 127
bullet lists, 73, 259
bullets, changing for lists, 75
button elements, 158
buttons

button elements, 176
radio and checkbox, 152, 161
styling button inputs on forms, 435

validator in developer tools, 67
vendor prefix, 298

citations, cite element, 90
Clarke, Andy, 247
Clark, Joe, 127
Clark, Keith, 496
class attribute, 97, 98

accessing elements in DOM by, 488
values for, 96

class selectors, 246, 276
clearing floated elements, 347
“Clever PNG Optimization

Techniques”
(Chikuyonok), 553

clients, 23
client-side applications, 23
clip art, 509
closePath() function, 201
closing (or end) tag, 55

problems caused by omitting /
(slash), 66

CMYK mode, 520
CNET’s Download.com, 14
Coda by Panic, 17
codecs, 192
code element, 90
Code Style’s Web Font Survey and

Font Stack Builder, 231
col element, 136, 137, 146
colgroup element, 136, 137, 146
collapsed borders, for tables, 441
collapsing margins, 330
color, 265

adding color to a document, 283
animatable CSS properties, 401
borders, 319
changing for text, 243
color names, 266
gradients, 296–300
HSL color, 269
reducing number of colors in

GIFs, 544
RGBa color, 271
RGB color values, 268
specifying values in CSS, 265–272
tips for using color, 274
unpredictable color in JPEGs, 548

ColorPicker.com, 268
color pickers, 268
color selector (HTML5), 169
color table (or color map), 512
Colorzilla, Ultimate CSS Gradient

Generator, 299

www.it-ebooks.info

http://www.it-ebooks.info/

Index590

cols attribute, textarea element – definition lists

content area, 306
sizing content box, 307

content management systems, 13
content strategy and creation, 10
contextual selectors, 244
controls attribute, video element, 195
copyright symbol, 99
Corel Paint Shop Pro, 508
Corel Paint Shop Pro Photo, 17, 268
Coyier, Chris, 134, 222, 299
createElement() method, 490
createTextNode() method, 491
“Creating Accessible Images” at

WebAIM, 127
“Creating Accessible Tables” at

WebAIM, 144
“Creating a Mobile-First Responsive

Web Design” (Frost), 450
“Creating Intrinsic Ratios for Video”

(Koblentz), 447
Creative Commons licenses, 509
Crockford, Douglas, 483
cryptography, public-key, 170
.css file extension, 301
“CSS Specificity: Things You Should

Know”, 247
“CSS: Specificity Wars” (Clarke), 247
CSS (Cascading Style Sheets), 8, 12,

207–224
adding style sheets to simple web

page, 64
benefits of using, 207–209
changing unordered list

appearance, 74
color and background properties

review, 304
color property, using to change text

color, 243
color values, specifying, 265–272
comments in style sheets, 213
conflicting styles, the cascade, 217–

219
assigning importance to style

rules, 218
style sheet hierarchy, 219

external style sheets, 300–303
future of CSS layout, 381
inheritance, 214–217

document structure and, 215
of certain style sheet

properites, 216
parent and child elements, 215

cols attribute, textarea element, 155
colspan attribute, td or th

element, 140
columns

associating table header with, 144
column-related elements in

HTML5, 136
column spans, 140
group elements for tables, 137
multicolumn layouts using

floats, 381–391
positioned layout, 392–394

combinators, 245
“The Coming Zombie

Apocalypse”, 35
comments, 54

adding to HTML documents, 60
in CSS style sheets, 213
JavaScript, 465

comparision operators, 468
“Comparison of JavaScript

frameworks”, 498
Complete Guide to Pre-Installed

Fonts in Linux, Mac, and
Windows, 231

compression
GIF, 513
JPEG, 515
lossy compression of JPEG

images, 516
compression, JPEG, 547
concatenation of strings, 467
conditional comments, 271
conditional statements, 470
Connor, Joshue O, 42
constant-width fonts, 77, 229

code, sample, and keyboard
elements in, 90

contact information (hCard), 97
container elements, 55
container format for media, 193
containing blocks, 360–362
containing floats

container elements, 351–353
content

creating for HTML document,
53–54

entering content, 53
describing table content, 143
empty elements not having

content, 55
organizing page content, 79–84

resources for further
information, 221

responsive web design with, 38–40
selectors, 244–248, 496, 583–586
style sheets, how they work, 209–

214
attaching styles to document, 213
marking up the document, 209
writing tules, 210

styling web pages with, 29
techniques, 427–456

CSS Reset, 427–428
image replacement, 429–430
responsive web design, 444–454
sprites, 430–433
styling forms, 434–441
styling tables, 441–443

tools, 222
units of measurement, 234

CSS Cookbook (Schmitt), 222
CSS-discuss Wiki, 342
CSS for Web Designers

(Cederholm), 410
CSS Sprite Generator, 432
CSS: The Missing Manual

(McFarland), 221
CSS-tricks (blog), 222
CSS Zen Garden, 208, 378
cubic-bezier() timing function, 403
cursive fonts, 230
custom functions, 474
custom input buttons, 158
Cygwin, Linux emulator for

Windows, 18

D
databases, 13
data element, 92
datalist element, 157, 176
data types, 466–468
date and time controls (HTML5), 167
dates and times, 91
datetime attribute, time element, 91
dd (definition description)

element, 75
declaration block, 211
declarations

CSS, 210
decompression, JPEG images, 517
dedicated mobile sites, 40
definition lists, 75

www.it-ebooks.info

http://www.it-ebooks.info/

The Definitive Guide to HTML5 Video (Pfeiffer) – encoding of form data

Index 591

document outline, 70
document type

declarations. See DOCTYPE
declarations

Dojo, 498
domain names, 22

in URLs, 24
DOM (Document Object Model), 13,

58, 485–493
accessing nodes in, 487–489

by element name, 487
adding and removing

elements, 490–493
browser wars and, 493
node tree, 486

DOM scripting, 13
DOM Scripting (Keith and

Sambells), 493
dots per inch (dpi), 523
drag and drop API, 191
drawing tools, 17
Dreamweaver, 16

writing CSS style sheets, 222
drop-down menus, styling on

forms, 435
dt (definition term) element, 75
DTDs (Document Type Definitions)

HTML4.01 and XHTML 1.0 and
1.1, 185

HTML5 and, 185
Dunham, Ethan, 228
dynamically generated pages, 13
Dynamic Drive Online Image

Optimizer, 543
Dynamic HTML (DHTML), 13
dynamic programming

languages, 459, 460
dynamic pseudo-classes, 276

E
ease-in-out timing function, 403
ease-in timing function, 402
ease-out timing function, 403
ease timing function, 402
East Asian languages, Ruby

annotations for, 93
ECMAScript, 460. See JavaScript
editing API, 191
Eich, Brendan, 460
“8 Definitive Font Stacks”, 231
Elastic Lawn design, 378
elastic layouts, 373, 377–379

The Definitive Guide to HTML5 Video
(Pfeiffer), 193

deleted text (del element), 92
deprecated elements, 86
descendant selectors, 244
description lists, 75
Designing with Progressive

Enhancement (Parker et
al.), 38

Designing with Web Standards
(Zeldman), 36

desktop browsers, 23
devices accessing the Web, 3

mobile devices, 15
multitude of, 34–36

device width, 445
dfn (defining term) element, 90

background color, 274
DHTML (Dynamic HTML), 13
directory path and names, 24
disabled attribute, form control

elements, 155
display property, 333

none value for, 334
table display values, 441

display roles, 333
disposal method, 514
dithering, reducing, 545
div elements, 95

class attribute, 98
id attribute, 96

dl (description list) element, 75
DNS (Domain Name System), 22
DOCTYPE declarations, 56, 311

checking, 67
HTML5, 185
listing of DOCTYPEs in common

use, 186
“Document Outlines” (Robinson), 81
document fragments

linking to fragment in another
document, 118

linking to fragment within a web
page, 116–117

document object
getElementById() method, 488
getElementsByClassName()

method, 488
getElementsByTagName()

method, 487
querySelectorAll() method, 488

Document Object Model. See DOM;
DOM scripting

element box, 305–306
adding drop shadows to boxes, 335–

336
basic box properties review, 338
borders, 316–327
display property and display

roles, 333
margins, 328–333
maximum and minimum

dimensions, 309
measurement properties,

animatable, 401
padding, 312–316
specifying box dimensions, 306–312

border-box model, 309
handling overflow, 311
height, 311
sizing content box (default), 307

element nodes (DOM), 486
elements, HTML, 28

attributes of, 61
consisting of both content and

markup, 55
giving structure to documents, 68
nesting, 89
new elements in HTML5, 187
obsolete 4.01 elements, 189
syntax of, 55

element type selectors, 211, 276
else clause, if/else statements, 471
email

email input type, 156
linking to email address, 119

Embedded Open Type (EOT)
fonts, 228

embedded style sheets, 213
in style sheet hierarchy, 218

embedding video
code example for all users, 196

embed element, 196
em (emphasis) element, 59, 86

as inline element, 60
em measurements, 234

font sizes, 235
in media queries, 452
mixing with percentages, 356
rem (root em) measurement, 237
using in elastic layouts, 379

empty elements, 28, 55, 61
“The Ems have it: Proportional Media

Queries FTW!” (Gardner), 453
encoding of form data, 148

www.it-ebooks.info

http://www.it-ebooks.info/

Index592

encodings – forms

firewalls, 23
Fireworks, 17, 268, 508

converting RGB to indexed
color, 512

creating animated GIFs, 514
JPEG optimization options, 547
making a color transparent, 533
Matte color feature, 532
Optimize and Preview panels, 542
Optimize panel, 528
Optimize to File Size feature, 553–

554
preserving original quality of

JPEGs, 516
quality (compression) rates, 549
resizing image using Image Size

dialog, 526
saving images in chosen format, 521
Selective Quality, 550
smooting images, 550

first-letter pseudo-element
selectors, 280

first-line pseudo-element
selectors, 280

fixed layouts, 373, 374–375
three columns, 386–387
two columns, 382, 384

centered, 385
fixed positioning, 357, 368–369
“Fixed Positioning in Mobile

Browsers” (Frost), 369
Flanagan, David, 463
Flash, 192

advantages and limitations of, 11
fallback for browsers not supporting

HTML5 video, 196, 197
phasing out of, 192

FlashCanvas JavaScript library, 199
Flexbox (Flexible Box Layout

Model), 381
flexible images, 445, 447
Flickr, Creative Commons, 509
floating, 342–356
“Fluid Grids” (Marcotte), 376
fluid layouts, 373, 376, 445

faux columns for, 396
using max-width property, 383

focus state, 277
Fontdeck, 229
font embedding services, 228
font-face property, 216

specifying encoding type with file
selection control, 166

encodings, 192
video and audio encoding tools, 194

ending substring attribute value
selector, 282

end tag. See closing tag
EPS images, 123, 510
escaping special characters, 99
Even Faster Web Sites (Souders), 45
event handlers, 478
events, 478–480
exact attribute selector, 282
Exclusions (CSS), 381
explicit animation, 420
explicit association, form labels, 171
extended color names (X11 color

names), 266
eXtensible HTML. See XHTML
eXtensible Markup

Language. See XML
external links, 107
external scripts, 463
external style sheets, 213, 300–303

attaching, using link element, 301
importing, using @import rule, 302
in style sheet hierarchy, 218
modular, 302

extranets, 23

F
fantasy fonts, 230
Farkas, Alexander, 495
feature detection, 495
fieldset element, 172
fieldsets, styling on forms, 435, 439
figcaption element, 78

for longer table descriptions, 143
figcaption elements

long descriptions of images, 127
figure element, 78
filenames, 109
file selection controls, 165
files, naming conventions, 53
file-transfer program (FTP), 18
fill() function, 202
fillStyle attribute, Canvas API, 202
fillText() function, 202
Firebug plug-in for Firefox, 67
Firefogg, 194
Firefox, 23

Font Matrix website, 231
fonts

animatable CSS properties, 401
constant-width, 77
CSS properties for, 225–242

font-family property, 226–232
font property, 241
font-size property, 233–238
font-style property, 240
font-variant (small caps), 241
font-weight property, 239

font attribute, Canvas API, 202
web fonts, 228

Fonts.com, 229
Fontspring, 228
font stack, 226

strategies for, 231
font-style property, 88
font-weight property, 87
footer element, 79, 83
Ford, Nathan, 231
for loops, 471
form controls, 147, 149, 152–170

adding radio buttons and
checkboxes, 162

association with labels, 171
color selector (HTML5), 169
date and time controls

(HTML5), 167
disabled and readonly

attributes, 155
file selection, 165
hidden, 166
menus, 163

adding a menu, 165
grouping menu options, 164
pull-down menus, 163
scrolling menus, 163

name attribute, 151
numerical inputs (HTML5), 168
radio and checkbox buttons, 161
submit and reset buttons, 158–160
text entry controls, 153–158

forms, 147–180
accessibility features, 171–173
element review, 176–180
form controls, 152–170
form element, 149–151, 176

action attribute, 149
method attribute, 150

how they work, 147–148
layout and design, 173–175

www.it-ebooks.info

http://www.it-ebooks.info/

foundries – HTML5

Index 593

Hay, Stephen, 35, 381
head element, 68,
header element

, 79, 83
headers attribute, td element, 144
headers, tables

, 138–139
connecting table cells and

headers, 143
Head First Mobile Web (Gardner and

Grigsby), 40
headings, 70–73
hero images, 524
hexadecimal (hex), 269

RGB values, 270
hgroup (headings group) element, 73
Hickson, Ian, 184
hidden controls, 166
High Performance Web Sites

(Souders), 45
horizontal alignment of text, 251
hosting plans, 150
hosting services for blogs, 4
hover state, 277
Hawryluk, Zoltan “Du Lac”, 336
“How to Simulate CSS3 box-shadow

in IE6-8 without JavaScript”
(Hawryluk), 336

hr (horizontal ruled line) element, 28
href attribute, a (anchor)

element, 106–107
hr (horizontal ruled line) element, 72
HSL color, 269
HTML, 8, 12, 26

authoring strategy, using progressive
enhancement, 37

brief history of, 182
DOCTYPEs, 186
introduction to markup, 26
invalid markup, problems caused

by, 65–67
learning by typing it manually, 50
minimizing documents, 43
obsolete HTML 4.01 text

elements, 86
version 4.01, 183
versions of, 26

HTML5, 12, 69, 181–204
APIs, 189–192
browser support of, 181
markup, 185–189
new form elements, 170

designing for compression, 542
interlacing, 514
making transparent GIFs, 528–533
optimizing, 543–547
transparency, 513

GIMP (GNU Image Manipulation
Program), 17, 508

Github, 310
global attributes, 187
globally scoped, 476
global variables

problems with, 477
Google

Developers site, 498
Let's Make the Web Faster site, 45
Web Fonts service, 229

government accessibility requirements
(Section 508), 42

gradients, 272, 296–300
graphical browsers, 23
Graphic Interchange Format. See GIF

images
graphics. See also images; web

graphics
SVG (Scalable Vector

Graphics), 533–538
web-graphics-creation tools, 17

graphics tools, 508
grayscale, 509

PNG support of, 518
Greenwich Mean Time (GMT), 91
grids

CSS grid frameworks, 375
grid layout system, 381

Griffiths, Patrick, 378
Grigsby, Jason, 40
grouped selectors, 220, 276
grouping related inputs, 174
“The Guide to CSS Animation:

Principles and Examples”, 420
Gustafson, Aaron, 38, 158, 396, 430

H
h1 (Heading Level 1) element, 59, 70
h2 (Heading Level 2) element, 59, 71
H.264 video codec, 193

profiles, 197
halos, 531
Handbrake encoding tool, 194
Handcrafted CSS (Cederholm), 221
hanging indents, 251

new form elements in HTML5, 170
new input types in HTML5, 187
styling, 434–441
variables and content, 151–152

name attribute, 151
foundries, 228
fragment identifiers, 116
fragment, linking to

in another document, 118
within a web page, 116–117

frame delay, 514
frames, 514
Frameset DTD, 185
frontend versus backend of website

creation, 9
Frost, Brad, 34, 450, 369
FTP programs, 18

links to popular software, 19
Fulton, Steve and Jeff, 202
functional notation, 284
functions, 473–476

arguments, 473, 475
custom, 474
native JavaScript functions, 474
returning a value, 475
variable scope and, 476

Future Friendly website, 36

G
games, canvas element used for, 199
gamma, 518
Gardner, Lyza Danger, 40, 453
general sibling selectors, 245
generated content, 280
generic elements, 95–98

div, 95
span, 96

generic font families, 229–230
Geolocation API, 191
getElementById() method, 488
getElementsByClassName()

method, 488
getElementsByTagName()

method, 487
GET method, 151
Getty Images, 509
GIF images, 123, 511–515, 517

8-bit indexed color, 511
animation, 514
best uses of, 511
compression, 513

www.it-ebooks.info

http://www.it-ebooks.info/

Index594

“HTML5 sectioning Elements, Headings, and Document Outlines” (Johansson) – input element

src attribute, 61, 115, 125
width and height attributes,

128–132
implicit animation, 420
implicit association, form labels, 171
important text (strong element), 86
incorrect text (s element), 88
indentation

in HTML source, 100
text-indent property, 250

indexed array members, 468
indexed color, 512
indexed color images

palettes for, 512
PNG images, 517

index file, 25
creating and examining in a

browser, 54
information architect (IA), 10
inheritance

CSS style sheet properties, 214–217,
227

inherits keyword, 239
initial containing block, 359
inkscape.org, 535
inline elements, 60, 84–94

applying background-color property
to, 274

floating, 344
in normal page flow, 341
margins on, 330

inline style, applying, 214
innerHTML, 487, 490
input element, 153, 177

type attribute
available attributes for each input

type, 179
button, 158
checkbox, 162
color, 169
date-and time-related

(HTML5), 167
email, tel, url, and search

types, 156
file, 165
hidden, 166
image, 158
new form input types in

HTML5, 187
number and range, 168
password, 155
radio, 161

if/else statements, 470, 481
IIS (Internet Information Services), 22,

150
illustrations, 508

SVG format for line-style
illustrations, 533

Illustrator, 17, 508
image editing and drawing software,

links to, 19
image-editing tools, 268
images, 123–132

accessibility of, 127
adding and linking (exercise), 129
adding to a web page, 61–64
background, 284–292
editing in RGB mode, 520
file formats, 123
flexible, 445, 447
floating, 348
formats, 510–522

choosing best format, 519
file extensions, 511
GIF, 511–515
JPEG, 515–517
PNG, 517–519
saving image in chosen

format, 520–522
image buttons, 158
img elements, 124–130
optimizing, 43

general strategies for, 542–543
PNG-8 alpha transparency, 531
replacement techniques, CSS-

based, 429–430
resizing on the server, 453
responsive, for mobile devices, 453
reusing and recycling, 542
size and resolution, 522–526
sources of, 507–510
SVG (Scalable Vector

Graphics), 533–538
using border-image property,

323–327
using caching with, 126
working with transparency,

526–533
img (image) element, 61, 123,

124–130
adding to example web page, 63
alt attribute, 126
floating, 342
required attributes, 63, 125

online validator for documents, 67
support in Internet Explorer, 80
video and audio, 192–198

“HTML5 Sectioning Elements,
Headings, and Document
Outlines” (Johansson), 81

HTML5 Canvas (Fulton), 202
HTML5 for Publishers

(Kleinfeld), 200
HTML5 Graphics with SVG & CSS

(Cagle), 538
HTML5 Media (Powers), 193
HTML5 shiv (or shim), 494
HTML5, Up and Running

(Pilgrim), 193
HTML documents, 26

creating in Notepad, 51
creating in TextEdit, 52
elements giving structure to, 68
validating, 66–67

HTML editors, 16
html element, 68, , 359
HTTP (HyperText Transfer

Protocol), 21, 23
http:// portion of URLs, 24
HTTP requests, reducing number

of, 43, 430
https:// in URLs, 24
hue, saturation, and

lightness. See HSL color
hybrid layouts, 373, 379
hypertext links, 21. See also links
HyperText Markup

Language. See HTML
hyphen-separated attribute value

selector, 282

I
Icon Finder, 510
icons

sources of, 510
id attribute, 245, 97–99

accessing elements in DOM by, 488
using to name element as fragment

identifier, 116
i (different mood or voice)

element, 87, 88
Idiomatic Style Manifesto (for

JavaScript), 470
ID selectors, 245, 276, 501
IE. See Internet Explorer

www.it-ebooks.info

http://www.it-ebooks.info/

inputs, aligning on a form – lightness (HsL color)

Index 595

jQuery, 498
.js file extension, 463
JSON (JavaScript Object

Notation), 497
JW Player, 197

K
kbd (keyboard) element, 90
Keith, Jeremy, 493
Kellum, Scott, 429
keyboards suited to entry tasks, 156
keyframe animation, 420–423
keygen element, 170, 177
keywords

positioning background image, 288
using to size text, 237
visual emphasis of, 87

Kindle Fire, Silk browser, 18
Kleinfeld, Sanders, 200
Koblentz, Thierry, 447
Koch, Peter-Paul, 119
Konqueror, vendor prefix, 298

L
label attribute, optgroup element, 164
label element, 171, 177
labels

aligning on a form, 438
placement on forms, impact of, 174
styling on a form, 439

languages, non-Western,
accommodating, 93

layout, 373–398
custom, based on viewport size, 38–

40
multicolumn layouts using

floats, 381–391
page layout strategies, 373–380
positioned layout, 392–394

Learning JavaScript (Powers), 483
left property, 357
left-to-right (ltr) reading languages, 93
legal small print, 88
legend element, 172, 177
legends, styling on forms, 435
Lennartz, Sven, 431
LESS (CSS syntax), 433
letter-spacing property, 253
libraries, JavaScript, 497–501
lightness (HSL color), 269

J
JavaScript, 9, 13, 459–484

accessing DOM nodes, 487–489
adding behaviors to web pages, 29
adding to a page, 463
anatomy of a script, 463–477

basic syntactical rules, 464
built-in functions, 464
comments, 465
comparison operators, 468
functions, 473–476
if/else statements, 470
loops, 471–473
variables, 465–468
variables scope and var

keyword, 476
capabilities of, 461
defined, 460
drawing with, using Canvas

API, 200–204
events, 478–480
libraries, 497–501

how to use jQuery, 499–501
SVGWeb JavaScript library, 537

minimizing, 43
misconceptions about, 460
polyfills for browsers, 493–497
progressive enhancement strategy

for, 37
resources for further

information, 483
script examples, 481–482

JavaScript & jQuery: The Missing
Manual (McFarland), 483

JavaScript: The Definitive Guide
(Flanagan), 463

JavaScript: The Good Parts
(Crockford), 483

JavaServer Pages (.jsp), 150
Jehl, Scott, 312, 496
Jensen, Scott, 35
Johansson, Roger, 81
Joint Photographic Experts

Group. See JPEG images
JPEG images, 123, 511, 515–517

24-bit Truecolor images, 515
designing for compression, 542
lossy compression, 516
optimizing, 547–552
progressive, 516

reset, 158
submit, 158
text, 154

inputs, aligning on a form, 438
insertBefore() method, 492
inserted text (ins element), 92
interaction design (IxD), 5
interlacing, 514

PNG images, 518
Internet Explorer, 23, 182. See

also browsers
audio support, 194
border images, no support for, 323
border-radius property and, 322
box model bug, 311
box-shadow property and, 336
box-sizing property and, 310
browser wars, 493
bugs in CSS layout, 342
Canvas support, 199
conditional comments, 272
Embedded Open Type (EOT)

fonts, 228
hgroup element support, 73
JavsScript script creating HTML5

elements for, 80
media queries and, 449, 451
no text-zoom on type sized in

pixels, 236
RGBa color support, 271
text shadows not supported, 254
vendor prefix, 298
video support, 193

Internet Explorer Mobile, 18
intranets, 23
iPad, 34

Retina displays, saving JPEGs as
Progressive for, 550

IP addresses, 22
iPhone, 34

detecting phone numbers and
turning them into links, 120

IP (Internet Protocol), 22
Irish, Paul, 228, 495
iStockPhoto, 509
italic text, 87, 88

citations, 90
font-style property, 240
variables in, 90

www.it-ebooks.info

http://www.it-ebooks.info/

Index596

li (list item) element – mobile devices

media player API, 190
media queries, 445, 448–451

adding, 450
choosing beakpoints for, 452
device features you can detect

with, 448
examples in style sheet, 448
in the document head, 449
min-width and max-width, polyfill

for, 496
mobile first, 450

Media Queries gallery site, 38, 444
media types, 448
menus

on forms, 163
adding a menu, 165
grouping menu options, 164
pull-down menus, 163
scrolling menus, 163

metadata, 97
meta element, 56, 68
meter element, 170, 177
method attribute, form element, 150
methods, event handlers as, 480
Meyer, Eric, 221, 247, 299, 330
Microformats, 97
Microsoft

ASP.NET (Active Server Pages), 150
browser wars, 493
Internet Information Services

(IIS), 22, 150
Office, 231
vendor prefix, 298
Windows. See Windows

Microsoft Expression Web, 16
min-width and max-width

properties, 377, 383
Miro Video Converter, 194
mobile browsers, 18, 23
mobile devices

calling a number on your site, 120
hover state, 278
mapping of reference pixel to

hardware pixels, 524
mobile-first media queries, 450
problems with overflow

property, 312
problems with position: fixed

property, 369
requirement for testing web

designs, 15
SVG support, 538

loosely typed programming
languages, 459, 460

lossless compression, 513
lossy compression, 516

M
Macintosh computers. See also Mac

OS X
running Windows on, 15

Mac OS X
Apache server, 22
creating HTML document with

TextEdit, 52
FTP programs, 18
“Mac Dec Bin Hex Calculator” for

OS X, 271
Terminal application, 18
web authoring tools for, 16

Macromedia Flash. See Flash
mailto links, 119
Make the Web Faster site, 45
Marcotte, Ethan, 38, 236, 376, 444
margins, 306, 328–333

adding to elements, 332
animatable CSS properties, 401
applying to body and individual

elements, 329
behavior of, 330
CSS properties for, 328, 338

mark element, 91
markers for list items, 259–260
markup, 8

CSS style sheets and, 209
tags around content, 55
unrecognized markup ignored by

browsers, 54
markup languages, 12
“A Masterclass in CSS Animations”

(Weyl), 420
mathematical operators, 469
MathML, 14
Matte color feature, 532
Max audio converter, 194
maxlength attribute, text input

field, 154
May, Matt, 42
McFarland, David Sawyer, 221, 483
measurement units (CSS), 234
measurement values, 211
mediagroup attribute, video

element, 196

li (list item) element
in ordered lists, 74
in unordered lists, 73

linear timing function, 402
line breaks, 54, 92

br element, 64, 92
line-height property, 249
line length, 374
lineWidth attribute, Canvas API, 202
link element

media attribute, media queries
in, 449

referring to external CSS style
sheets, 301

links, 105–122
bottom borders instead of

underlines, 316
changing color for, 105
href attribute, 106–107
linking to pages on the Web, 107
mail links, 119
primary navigation, wrapped in nav

element, 82
pseudo-classes, 276

changing colors and backgrounds
of links with, 278

targeting new browser
window, 118–119

telephone links, 120
writing URLs for, 121

Linux
Cygwin, Linux emulator for

Windows, 18
web authoring tools for, 16

Liquid Bleach technique, 397
liquid layouts, 373. See also fluid

layouts
list-item display role, 260
lists, 73–76

changing bullets and numbers, 259–
261

description, 75
navigation menu as unordered

list, 350
nesting, 74
ordered, 74
unordered, 73

list-style-type style sheet property, 75
locally scoped, 476
loop attribute, video and audio

elements, 196
loops, JavaScript, 471–473

www.it-ebooks.info

http://www.it-ebooks.info/

mobile-first design approach – Pederick, Chris

Index 597

negative margins, 331
using to create any order

columns, 388–391
nested elements, 57
Netscape, 182

browser wars, 493
networking software, links to, 19
nodeList, 487
nodes, 486

accessing in the DOM, 487–489
Nokia Series 40 and Nokia Browser for

Symbian, 18
“No Margin for Error” (Budd), 330
non-breaking space (), 100
non-replaced elements, 125, 307
Notepad, creating HTML document

on, 51
The Noun Project, 510

SVG artwork, 533
null data type, 466
numbered lists, 74
#1 Free Clip Art, 510
numbers

changing for lists, 75
numbering styles for ordered

lists, 260
numeric values assigned to

JavaScript variables, 466
numerical inputs (HTML5), 168
numeric entities, 99
Nvu editor, 16

O
object element, 196

pointing to external .svg file, 536
using to embed Flash player, 197

octothorpe symbol (#) before
fragment name, 116

offline web application API, 190
offset properties, 357

setting pixel measurements for
positioned element, 363

Ogg Theora, 193
.ogv file suffix, 193
ol (ordered list) element, 74

start attribute, 75
online image optimizers, 543
opacity, 275–276

animatable CSS properties, 401
opening and closing HTML tags,

28, 55

use of mobile phones as only means
to access Internet, 35

mobile-first design approach, 450
Mobile First (Wroblewski), 35
Mobile Safari, 18

progressive images for, 517
viewport width for iPhones, 445

mobile sites built separately from
primary sites, 39

Mobile Web, 35
Mobile Web Best Practices site, 454
mobility impairment, designing

for, 41
Mobitest by Blaze, 45
Modernizr, 495
modular style sheets, 302
Moll, Cameron, 377
monospace fonts, 77, 229
monospace font stack, 231
MooTools, 498
Morris, Trevor, 519
Mosaic Netscape, 182
Mozilla Developer Network, 480
Mozilla Foundation, vendor

prefix, 298
MP3/WMA/Ogg Converter, 194
.mp4 or .m4v file suffix, 193
MPEG-4, 193, 197
multiline text entry fields, 154
multimedia, 10
multimedia players, 192
multipart/form-data encoding

type, 166
multiple attribute, select element, 164
“The Mystery of CSS Sprites:

Techniques, Tools, and
Tutorials” (Lennartz), 431

N
naked or anonymous text, 70
name attribute, 151

text input field, 154
named entities, 99
names, font, 226
naming conventions for files, 53
native functions, 474
nav element, 79, 81, 82
navigation

creating a navigation bar, 350, 353
primary navigation links, 82

open source software, 22
OpenType format (OTF) fonts, 228
Opera, 23
Opera Mobile and Mini, 18
operating systems. See also names of

individual operating systems
optgroup elements, 163, 164, 177
Optimize to File Size feature,

Photoshop and Fireworks, 553
optimizing, 541. See also images,

optimizing
option element, 163, 177

in scrolling menus, 164
selected attribute, 164

Oracle VirtualBox, 15
ordered lists, 74

changing numbers, 75
numbering and lettering styles

for, 260
Ordering Disorder, Grid Principles for

Web Design (Vinh), 375
origin image, 288–290
origin point for transformations, 411
outlines, 380

animatable CSS properties, 401
outlining system (HTML5), 70, 76
output element, 170, 178
overflow property, 311
Overthrow script, 312

P
padding, 306, 312–316

animatable CSS properites, 402
for cells in tables, 142

page layout with CSS. See layout
Painting the Web (Powers), 538
palettes, 512
paragraph-level thematic break, 72
paragraphs, 70

thematic break, hr element, 72
parallax motion, 295
Parallels Desktop for Mac, 15
parent elements, 215
Parker, Todd, et al., 38
partial attribute value selector, 282
password input type, 155
pathnames

dot-dot-slash (../) convention, 112
site root relative, 114

Pederick, Chris, 222

www.it-ebooks.info

http://www.it-ebooks.info/

Index598

percentage values – resizing images, avoiding using HTML for

Prototype JavaScript Framework, 498
pseudo-class selectors, 276–279

changing colors and backgrounds of
links with, 278

other, 279
pubdate attribute, time element, 92
public-key cryptography, 170
pull-down menus, 163
PunyPNG, 543
“Push My Button” (Gustafson), 158
PuTTY, Telnet/SSH client, 18
Python, 9

Q
q (quotation) element, 77, 89
Quartorolo, Tony, 431
querySelectorAll() method, 488
Quirksmode, 119
quotations in text

lengthy quotations, 76
short quotations, 77, 89

R
radial gradients, 297
radio buttons, 161

labels for, 171
Raggett on HTML4, 182
range input type, 168
raster images, 522
RDF Site Summary, 14
readonly attribute, form control

elements, 155
ready event (jQuery), 500
RealMedia, 192
reference pixel, 523
Regions and Exclusions (CSS), 381
relative keywords, using to size

text, 237
relative (measurement) units, 234
relative pathnames, 108
relative positioning, 356, 358
relative URLs, 106
rel attribute, 97
rem (root em) measurement, 237
replaceChild() method, 492
replaced elements, 125
reset (CSS), 427–428
Resig, John, 498
ResizeMyBrowser.com, 452
resizing images, avoiding using HTML

for, 128

progressive display (interlacing), 518
transparency, 518

polyfills, 493–497
pop-up windows, 119
Portable Network Graphic. See PNG

images
positioning, 341. See also floating and

positioning
absolute, 359–368
fixed, 368–369
relative, 358
specifying position, 357
types of, 356

positioning context, 360
Position Is Everything site, 342
poster attribute, video element, 195
POST method, 150

using with forms having a file
selection control, 166

Powers, Shelley, 193, 483, 538
p (paragraph) element, 59, 70
“Pragmatic Responsive Design”

(Rieger), 449
“Prefix or Posthack” (Meyer), 299
preload attribute, video element, 196
pre (preformatted text) element, 77
presentation, 12, 29

defining with CSS, 207
early use of HTML elements for, 58
inline elements used for, 85

presentation layer, 13, 209
“Principles of Writing Consistent,

Idiomatic JavaScript”, 470
production, 8–9
program code elements, 90
programming, 9

server-side, 13
progress element, 170, 178
progressive display

JPEG images, 516
PNG images, 518

progressive enhancement, 36–38, 39
Progressive format, JPEGs for iPad

Retina displays, 550
Pro HTML5 Accessibility

(Connor), 42
Proietti, Valerio, 498
properties

CSS
listings of, 227

protocols, 21
in URLs, 24

percentage values
background position

measurements, 288
in hybrid layouts, 379
mixing with ems, 356
specifying position of an

element, 364
using to create fluid layouts, 377

performance
box shadows, text shadows,

gradients and, 336
site, 43–45

persona, 7
perspective-origin property, 419
perspective property, 419
Pfeiffer, Sylvia, 193
Phark image replacement

technique, 430
photography, stock, 508
Photoshop, 17, 268, 508

color table for GIF images,
viewing, 512

creating animated GIFs, 514
JPEG optimization options, 547
making a color transparent, 532
Matte color feature, 532
Optimized option, 550
Optimize to File Size feature, 553–

554
resizing image smaller, 525
Save for Web feature, 516, 528

Photoshop Elements, 17
PHP, 9

scripts written in, 150
phrasing content, 70
Pilgrim, Mark, 193
“A Pixel Identity Crisis” (Kellum), 524
Kellum, Scott, 524
pixel dimensions

finding for image using
browsers, 128

specifying accurately, 128
pixels, 234, 522

and absolute measurements, 236
image, mapping to hardware

pixels, 523
pixels per inch (ppi), 522
placeholder attribute, 155
PNG images, 123, 511, 517–519

making transparent PNGs, 528–533
optimizing, 552–553
PNG-8 alpha transparency, 531

www.it-ebooks.info

http://www.it-ebooks.info/

Respond.js – sloppy web tool

Index 599

sectioning roots, 76
Seddon, Ryan, 495
selected attribute, option element, 164
select element, 163, 178

in scrolling menus, 164
Selective Quality (Fireworks), 550
Selectivizr, 496
select menus, styling on forms, 435
selectors, 209, 210, 244–248, 583–586

accessing nodes in DOM by, 488
attribute, 281–283
class, 246
conflicting style sheet rules and, 218
descendant, 244
element, 211
grouped, 220
ID, 245
pseudo-class, 276–279
pseudo-element, 279–281
Selectivizr polyfill for older IE

browsers, 496
specificity of, 247
universal selector (*), 246
use of syntax in jQuery, 500

semantic markup, 58, 69
Sencha Animator, 421
Sencha.io Src, 453
separated borders, 441
serif fonts, 229
servers, 21
server-side applications, 23
server-side programming, 13
session history API, 190
setAttribute() method, 489
Sexton, Alex, 495
SGML (Standardized Generalized

Markup Language), 183
shadows

adding drop shadows to boxes, 335–
336

text-shadow property, 254–256
Shaefer, Christian, 310
Sharp, Remy, 80, 495
Shea, David, 208
sibling elements, 215
sidebars, aside elements, 82
Silk (Kindle Fire), 18
Silverlight media player, 192
s (incorrect text) element, 87, 88
site root relative pathnames, 114
skew transforms, 410, 414
Sloppy web tool, 45

rule sets, 210
RWD. See responsibe web design

s
Safari

custom keyboards for input
types, 156

validator in developer tools, 67
vendor prefix, 298

Sambells, Jeffrey, 493
samp element, 90
sans-serif fonts, 229
Sass (“Syntactically awesome style

sheets”), 433
saturation (HSL color), 269
scale transforms, 410, 413
scanning, 508

tips on, 509
Schmitt, Christopher, 222
scope attribute, associating table

header with rows and
column, 144

scope (variables), 476
screen readers, 23
screen sizes

and challenges of designing for
multitude of devices, 34

screen width, 445
script elements, 463

src attribute, 463
scripting and programming, 9

scripting strategy, using progressive
enhancement, 37

scripts
embedded on a page, 463
external, 463
optimizing loading of, 43
placement in a document, 463
server-side, processing forms, 147

scrolling menus (select element), 163
SCSS (“Sassy CSS”), 433
“The Search for One True Layout”

(Robinson), 388
search engines

analysis of heading levels, 70
cataloging of HTML documents, 37

search input type, 156
Section 508 acccessibility guidelines

(U. S. government), 41
section element, 79, 80
sectioning element, 81

Respond.js, 496
“Responsive Web Design”

(Marcotte), 38, 236
“Responsive Data Tables”

(Coyier), 134
responsive images, 453, 541
responsive web design, 38–40,

444–454
flexible images, 447
fluid layouts, 376, 446
media queries, 448–451
setting the viewport, 445

Responsive Web Design
(Marcotte), 444

return keyword (JavaScript), 476
RGBa color, 271, 275
RGB color, 265, 268, 512

RGB/Truecolor (24- and 48-
bit), 517

specifying values in CSS, 268
writing RGB values in style

sheets, 269
RGB mode, image-editing work

in, 520
Rieger, Stephanie, 449
right property, 357
rights-managed, 508
right-to-left (rtl) reading languages, 93
Robinson, Alex, 388
Robinson, Mike, 81
root directory, 114
root element, 68, , 359
root em (rem) measurement, 237
rotate transforms, 410, 411–412
rows, 135

associating table header with, 144
group elements for tables, 137
row spans, 141

rows attribute, textarea element, 155
rowspan attribute, 141
royalty-free images, 509
RSS (Really Simple Syndication), 14
rt (ruby text) and rp (ruby phrasing)

elements, 93
Ruby, 9
ruby annotation for East Asian

languages, 93
Ruby on Rails, 150
rules, 210

conflict between style rules, 218
rule order and, 219

writing, using Sass and LESS, 433

www.it-ebooks.info

http://www.it-ebooks.info/

Index600

slow connection speed simulators – text elements

target ÷ context = result formula for
relative sizing tasks, 236

tbody (table body) element, 137, 146
td (table data) element, 135, 146
telephone links, 120
telephone numbers, 96
tel input type, 156
Telnet/SSH client, PuTTY, 18
Terminal application (Mac OS X), 18
terminal applications, 18
text. See also text fields

animatable CSS properties, 401
in comments, 54
embedded in PNGs, 519
floating inline text element, 344
formatting with CSS, 225–264

changing capitalization, 252
changing color, 243
CSS font properties, 225–242
horizontal alignment, 251
indents, 250
line height, 249
list bullets and numbers, 259–261
shadows, 254–256
spacing, 253
underlines and other

decorations, 252
highlighting, 274
marking up, 69–104

figures, 78
generic elements, div and

span, 95–98
headings, 70–73
indicating shift in themes, 72
lists, 73–76
long quotations, 76
organizing page content, 79–84
paragraphs, 70
preformatted text, 77
special characters, 99–100
text-level (inline) elements, 85

textarea element, 155, 178
styling in forms, 434

text-decoration property, 88
TextEdit, creating HTML

document, 52
text editors, 16, 50–52

in-browser text editors, 191
text elements, 58–61

block and inline elements, 59
default styles applied by

browsers, 60

storyboards, 7
Strict DTD, 185
strike-through text, 88
“Striking Web Sites with Font Stacks

that Inspire” by Vivien, 231
strings, 467
stroke() function, 201
strokeRect() function, 201
strokeStyle attribute, Canvas API, 202
strong element, 86
structural layer, 209
structure layer, 13
style element, 65, 213
style property, 490
style rules. See also rules

creating, 65
style sheets. See CSS
style tiles, 8
styling, 8
subdomains, 24
Sublime Text, 16
submit and reset buttons, 158
submitting forms, 148
sub (subscripts) element, 90
sup (superscripts) element, 90
“SVG Examples”, 538
“An SVG Primer for Today’s

Browsers”, 538
SVG (Scalable Vector Graphics), ,

510, 14
SVGWeb JavaScript library, 537
syntax of HTML elements, 55

T
table element, 135
table-layout property, 441
tables, 133–146

advanced table elements, 137
CSS properties for, 456
difficulty of using on small-screen

devices, 134
headers, 138
minimal structure, 135–139
spanning cells, 139–142
styling, 441–443
table accessibility, 142–144

tabs, 54
tags, HTML, 26

components of, 55
target attribute, a (anchor)

element, 119

slow connection speed simulators, 45
small caps font variant, 241
small element, 87

HTML5 definition, 88
smaller (relative keyword), 237
smartphones, 15, 34

dialing a number on your site, 120
Smashing Magazine, 431

before and after pseudo-elements,
tutorial on, 281

“Clever PNG Optimization
Techniques”, 553

“CSS Specificity: Things You Should
Know”, 247

Smush.it, 543
sockets, 191
software for web design, 16

links to popular programs, 19
Souders, Steve, 45
source document, 26

what browsers ignore in, 54
source element

inside the video element, 196
src and type attributes, 197

spaces. See also whitespace
between letters and words in

text, 253
spacing cells, 142
spam, 120
span element, 95, 96
spanning cells, 139–142
special characters, 99–100

avoiding in filenames, 53
specificity (CSS selectors), 218, 247
“Speed Up with CSS3 Gradients”

(Coyier), 299
speed (site performance), 43–45
SpriteMe, 432
sprites, 430–433
src attribute, img (image) element, 61,

63, 115, 125
SSH client, PuTTY, 18
stacking order for elements, 367–368
standards, sticking with, 36
start tag, 55
statements, 464
static positioning, 356
step-end timing function, 403
step-start timing function, 403
steps() timing function, 403
stock photography and

Illustrations, 508–509

www.it-ebooks.info

http://www.it-ebooks.info/

text entry controls – “Video for Everybody”

Index 601

user action pseudo-classes, 277
user agent, 23
user agent string, 453
user agent style sheets, 60, 217, 427
user centered design (UCD), 6
user experience (UX) design, 5
user flow charts, 7
user interface (UI) design, 5
user style sheets, 217
“Using CSS3 Transitions,

Transforms and Animation”
(Bradshaw), 420

u (underlined text) element, 87, 88

V
validation

HTML documents, 66
Opera client-side validation

support, 157
validators, 67, 186
value attribute

data element, 92
text input field, 154

values
for attributes, 62
CSS declarations, 210
CSS properties, 227
of variables collected by forms, 151

variables
collected by forms, 151
JavaScript, 465–468, 472

data types of assigned values,
466–468

variable scope and var
keyword, 476

naming form variables, 152
var (variables) element, 90
vector graphics, 522. See also SVG
Veer stock photography and

illustrations, 509
vendor prefixes (browsers), 298
Verdana-based font stack, 231
vertical alignment of text, 257
video and audio (HTML5), 192–198

adding audio to a page, 198
adding a video to a page, 195–198
encoding tools, 194
media formats, how they work, 192

video element
attributes, 195
source elements in, 196

“Video for Everybody”, 197

PNGs, 528–533
opacity property, 275–276
PNG-8 alpha transparency, 531
PNG images, 511, 518
transparent keyword value for border

colors, 319
TRouBLe system for padding, 314
tr (table row) element, 135, 146
Truecolor, 515

RGB/Truecolor (24- and 48-
bit), 517

TrueType format (TTF) fonts, 228
Tuck, Michael, 231
Tumblr, 4
Tumult Hype, 421
tweening, 399
Twitter API, 190
type attribute, input element, 153
Typekit, from Adobe, 229

U
UI (user interface) selectors, 279
Ultimate CSS Gradient Generator, 299
ul (unordered list) element, 73, 107
“Uncollapsing Margins” (Meyer), 330
undefined data type, 466
underlined text, 88, 252
unicode-bid property, 257
Uniform Resource

Identifiers. See URIs
Uniform Resource Locators. See URLs
United States government, Section 508

acccessibility guidelines, 41
units of measurement (CSS), 234
Universal Design for Web Applications

(Chisholm and May), 42
universal selector (*), , 246
Unix

Apache server, 22
terminal applications, 18

unordered lists, 73
changing appearance with style

sheets, 74
URIs

URLs versus, 106
url input type, 156
url() notation, 302
URLs, 24

parts of, 24
requesting web pages with, 30
URIs versus, 106

defining for example web page, 59
text entry controls, 152, 153–158

HTML5 text entry, 156
multiline, 154
single-line, 154
specialized text entry fields, 155

password entry field, 155
text fields. See also text
text input form controls, styling, 434
text-level semantic elements, 84
TextMate by MacroMates, 17
text nodes (DOM), 486

creating, 491
TextPad, 16
tfoot (table footer) element, 137, 146
thead (table header) element, 137, 146
thematic break, paragraph level, 72
Theora video codec, 193
th (table header) element, 135, 138,

146
TIFF images, 123, 510, 517
tiling background images, 285

CSS Sprites and, 432
time element, 91
time zones, 91
timing functions, 402–403
title element, 56, 68
titles for tables, 143
top property, 357
transform-origin property, 411
transforms, 410–420

3-D, 418–421
applying multiple, 415
rotate transforms, 411
scale transforms, 413
skew transforms, 414
transitioning, 416
translate transforms, 412

Transitional DTD, 185
transitions, 399–409

applying multiple, 406
setting a delay, 404–405
shorthand transition property, 406
timing functions, 402–403
transitioning transforms, 416

translate transforms, 410, 412
transparency, 526–533

alpha levels, 271
alpha or alpha channel

transparency, 527
binary transparency, 527
making transparent GIFs and

www.it-ebooks.info

http://www.it-ebooks.info/

Index602

video, preserving aspect ratio when scaling down – World Wide Web Consortium

Web Workers API, 191
Weizenbaum, Nathan, 433
Weyl, Estelle, 420
WHATWG HTML specification, 92
WHATWG (Web Hypertext

Application Technology
Working Group), 184

APIs for use with web
applications, 190

whitespace
browser handling of, 54
preserving in text with pre

element, 77
white-space property, 257

white-space property, 93
“Why Separate Mobile and Desktop

Pages?” (Wroblewski), 40
wide sans-serif (Verdana-based) font

stack, 231
wide serif (Georgia-based) font

stack, 231
width and height attributes

canvas element, 200
video element, 195

width and height properties, 307
Wikipedia

“Comparison of JavaScript
frameworks”, 498

HTML Shiv, 495
window object, 478

properties and methods, 478
Windows

Cygwin, Linux emulator, 18
FTP programs, 18
hexadecimal converter, 271
Notepad, creating new HTML

document, 51
running on Macintosh

computers, 15
TextPad HTML editor, 16
web authoring tools for, 16

Windows Media, 192
Windows Phone, Internet Explorer

Mobile, 18
wireframe diagrams, 6
WOFF (Web Open Font Format)

fonts, 228
word break (wbr) element, 93
WordPress, 4
word-spacing property, 253
World Wide Web

Consortium. See W3C

Web Accessibility Initiative (WAI), 41
WebAIM

“Creating Accessible Images”, 127
“Creating Accessible Tables”, 144

WebAIM: Web Accessibility in
Mind, 42

web applications
server-side, processing forms, 147,

148
Web authoring programs, 222
web-authoring tools, 16
Web Content Accessibility Guidelines

(WCAG and WCAG 2.0), 41
web design, disciplines and roles in, 4
Web Developer extension, 222
web fonts, 228
Web Form Design (Wroblewski), 174
web graphics, 507–540, 541–556

general image optimization
strategies, 542–543

image formats, 510–522
image sources, 507–510
online image optimizers, 543
Optimize to File Size feature,

using, 553
optimizing GIFs, 543–547
optimizing JPEGs, 547–552
optimizing PNGs, 552–553

web graphics tools, using for image
optimization, 542

Web Hypertext Application
Technology Working Group
(WHATWG), 184

WebINK font embedding service, 229
-webkit- vendor prefix, 298
Webkit browsers

border-radius support and vendor
prefixes, 323

box-shadow property, vendor
prefixes for, 336

WebM container, 193
Web Open Font Format (WOFF)

fonts, 228
web page authoring tools, 19
WebPagetest, 45
Web Palette, 273
web-related programming

languages, 9
“web-safe” fonts, 231
Web Safe Colors, 273
Web Sockets API, 191
Web Standards Project, 99, 183
Web Storage API, 191

video, preserving aspect ratio when
scaling down, 447

viewport, 356
viewport meta element, 445
Vimeo, 196
Vinh, Khoi, 375
visibility property, 257
visited links, color of, 277
Visscher, Sjoerd, 494
VMFusion, 15
VM (Virtual Machine) products for

Mac OS, 15
Vorbis audio codec, 193
VP8 video codec, 193

W
W3C (World Wide Web

Consortium), 22, 182
“An SVG Primer for Today’s

Browsers”, 538
APIs for use with web

applications, 190
CSS3 Multi-column Layout

Module, 381
CSS information, 222
CSS Recommendation, 247
CSS Regions and Exclusions, 381
CSS Transforms, 410
CSS Transitions Module, 400
differences in HTML5 and HTML

4.01, 187
fluid layout on website, 376
free online validator, 67
Generated and Replaced Content

Module, 281
grid layout system, 381
HTML5 standard, 69
HTML5 Working Group, 184
standards as documented by, 36
SVG embedding options, 536
“SVG Examples”, 538
WAI-ARIA (Accessible Rich Internet

Applications) specification, 42
Web Accessibility Initiative

(WAI), 41
Web Content Accessibility

Guidelines (WCAG 2.0), 127
WAI-ARIA (Accessible Rich Internet

Applications) specification, 42
WaSP. See Web Standards Project
waterfall charts, 44
wbr (word break) element, 93

www.it-ebooks.info

http://www.it-ebooks.info/

wrap attribute, textarea element – zooming, full-page zoom

Index 603

Y
Yahoo!’s YSlow tool, 45
Yahoo! User Interface Library

(YUI), 498
Young, Zebulon, 431
YouTube, 196

Z
z-axis, 367
Zeldman, Jeffrey, 36
z-index property, 367
zooming, full-page zoom, 378

wrap attribute, textarea element, 155
Wroblewski, Luke, 35, 40, 174
WYSIWYG editors, 16

X
X11 color names, 266
XHTML (eXtensible HTML), 12, 14

attributes, explicit values required
for, 62

empty elements in, 61
lowercase for all element names, 55
markup requirements, 183
meta element in version 1.0, 56
XHTML 2.0, 184

XML (eXtensible Markup
Language), 14

drawing with, 534

www.it-ebooks.info

http://www.it-ebooks.info/

	Preface
	Part I: Getting Started
	Chapter 1: Where Do I Start?
	Where Do I Start?
	What Does a Web Designer Do?
	What Languages Do I Need to Learn?
	What Do I Need to Buy?
	What You’ve Learned
	Test Yourself

	Chapter 2: How the Web Works
	The Internet Versus the Web
	Serving Up Your Information
	A Word About Browsers
	Web Page Addresses (URLs)
	The Anatomy of a Web Page
	Putting It All Together
	Test Yourself

	Chapter 3: Some Big Concepts You Need to Know
	A Dizzying Multitude of Devices
	Sticking with the Standards
	Progressive Enhancement
	Responsive Web Design
	One Web for All (Accessibility)
	The Need for Speed (Site Performance)
	Test Yourself

	Part II: HTML Markup for Structure
	HTML Markup for Structure
	Chapter 4: Creating a Simple Page
	A Web Page, Step by Step
	Before We Begin, Launch a Text Editor
	Step 1: Start with Content
	Step 2: Give the Document Structure
	Step 3: Identify Text Elements
	Step 4: Add an Image
	Step 5: Change the Look
with a Style Sheet
	When Good Pages Go Bad
	Validating Your Documents
	Test Yourself
	Element Review: Document Structure

	Chapter 5: Marking Up Text
	Paragraphs
	Headings
	Lists
	More Content Elements
	Organizing Page Content
	The Inline Element Roundup
	Generic Elements (div and span)
	Some Special Characters
	Putting It All Together
	Test Yourself
	Element Review: Text

	Chapter 6: Adding Links
	The href Attribute
	Linking to Pages on the Web
	Linking Within Your Own Site
	Targeting a New Browser Window
	Mail Links
	Telephone Links
	Test Yourself
	Element Review: Links

	Chapter 7: Adding Images
	First, a Word on Image Formats
	The img Element
	A Window in a Window
	Test Yourself
	Element Review: Images

	Chapter 8: Table Markup
	How Tables Are Used
	Minimal Table Structure
	Spanning Cells
	Table Accessibility
	Wrapping Up Tables
	Test Yourself
	Element Review: Tables

	Chapter 9: Forms
	How Forms Work
	The form Element
	Variables and Content
	The Great Form Control Roundup
	Form Accessibility Features
	Form Layout and Design
	Test Yourself
	Element Review: Forms

	Chapter 10: What’s Up, HTML5?
	A Funny Thing Happened on the
Way to XHTML 2
	In the Markup Department
	Meet the APIs
	Video and Audio
	Canvas
	Final Word
	Test Yourself

	Part III: CSS for Presentation
	Chapter 11: Cascading Style Sheets Orientation
	The Benefits of CSS
	How Style Sheets Work
	The Big Concepts
	Moving Forward with CSS
	Test Yourself

	Chapter 12: Formatting Text
	The Font Properties
	Changing Text Color
	A Few More Selector Types
	Text Line Adjustments
	Underlines and Other “Decorations”
	Changing Capitalization
	Spaced Out
	Text Shadow
	Changing List Bullets and Numbers
	Test Yourself
	CSS Review: Font and Text Properties

	Chapter 13: Colors and Backgrounds
	Specifying Color Values
	Foreground Color
	Background Color
	Playing with Opacity
	Introducing…Pseudo-class Selectors
	Pseudo-element Selectors
	Attribute Selectors
	Background Images
	The Shorthand background Property
	Like a Rainbow (Gradients)
	Finally, External Style Sheets
	Test Yourself
	CSS Review: Color and Background Properties

	Chapter 14: Thinking Inside the Box
	The Element Box
	Specifying Box Dimensions
	Padding
	Borders
	Margins
	Assigning Display Roles
	Adding Drop Shadows to Boxes
	Test Yourself
	CSS Review: Basic Box Properties

	Chapter 15: Floating and Positioning
	Normal Flow
	Floating
	Positioning Basics
	Relative Positioning
	Absolute Positioning
	Fixed Positioning
	Test Yourself
	CSS Review: Floating and
Positioning Properties

	Chapter 16: Page Layout with CSS
	Page Layout Strategies
	Page Layout Techniques
	Multicolumn Layouts Using Floats
	Positioned Layout
	Top-to-Bottom Column Backgrounds
	Test Yourself

	Chapter 17: Transitions, Transforms, and Animation
	Ease-y Does It (CSS Transitions)
	CSS Transforms
	Keyframe Animation
	Test Yourself
	CSS Review: Transitions,
Transforms, and Animation

	Chapter 18: CSS Techniques
	A Clean Slate (CSS Reset)
	Image Replacement Techniques
	CSS Sprites
	Styling Forms
	Styling Tables
	Basic Responsive Web Design
	Wrapping Up Style Sheets
	Test Yourself
	CSS Review: Table Properties

	Part IV: JavaScript for Behaviors
	Chapter 19: Introduction to JavaScript
	What Is JavaScript?
	Adding JavaScript to a Page
	The Anatomy of a Script
	The Browser Object
	Events
	Putting It All Together
	Test Yourself

	Chapter 20: Using JavaScript
	Meet the DOM
	Polyfills
	JavaScript Libraries
	Big Finish
	Test Yourself

	Part V: Creating Web Graphics
	Chapter 21: Web Graphics Basics
	Image Sources
	Meet the Formats
	Image Size and Resolution
	Working with Transparency
	Introduction to SVG
	Summing Up Images
	Test Yourself

	Chapter 22: Lean and Mean Web Graphics
	General Image Optimization Strategies
	Optimizing GIFs
	Optimizing JPEGs
	Optimizing PNGs
	Optimize to File Size
	Optimization in Review
	Test Yourself

	Appendix A: Answers
	Appendix B: CSS3 Selectors
	Index

