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We dedicate this book to the “networked system”
whose members are both far from and near to us.
Without their stimulus, help, understanding, and
encouragements, it is impossible for us to observe,

concentrate, and finish this book.



Preface

The ideal situation occurs when the things that we regard as beautiful are also re-
garded by other people as useful.

Donald Knuth

Recent developments in sensing, communication, and computation provide great potentials
of constructing a complicated system through digital communication techniques using strong
local sensing and information processing capabilities, with the ambition of achieving more
challenging tasks. Application areas include industrial automation, electrical power systems,
transportation systems, defense systems, and so on. These systems are extensively called net-
worked systems and usually have several different decision units, which may be spatially far
from each other and connected through a real-time communication network. Information
exchanges among these units may be neither instantaneous nor simultaneous. These charac-
teristics ask an integrated thinking about control and communication in system analysis and
synthesis, in which all the limitations of a digital communication channel must be explicitly
taken into account. In addition, computation costs and numerical sensitivity must also be con-
sidered as metrics in evaluating a method developed for validating or designing these systems.

This book presents some recent results on identification, estimation, and control of a large-
scale networked system, in which several fundamental issues have been attacked. These issues
include controllability, observability, stability, robust stability, state estimation, robust state es-
timation, structure estimation, attack prevention, and so on. A general purpose here is to reach
a global objective using local information and neighbor interactions/information exchanges.
By introducing a novel model for a networked system, we are able to establish explicit rela-
tions between a system property and the system structure, which further enables utilization
of structure information in system analysis and design. A Homographic transformation is
adopted in expressing the recursive formulas of state estimations. This transformation leads
to a very concise relation between the current and initial values of the recursions and greatly
simplifies analysis of their convergence properties. A Riemannian metric is utilized in mea-
suring the distance between two positive definite matrices. Under this metric, a Homographic
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Preface

transformation defined through a Hamiltonian matrix is always contractive. This property is
quite attractive in analyzing estimation algorithms with random data droppings, which leads
to some good approximations on its limit distributions. Statistical properties like the power
law and so on have been explicitly taken into account in structure identification for a large-
scale networked system.

This book is written for students and researchers with interests in studies and investigations
on distributed estimation/control, estimation/control under communication restrictions, and
estimation/control over a network. The material presented in this book includes some recent
results of the authors reported as isolated conclusions in journals and conference proceedings.
This book presents them in an integrated and coherent way and includes some related impor-
tant results from other research groups. In each chapter, we present the material in a manner
that strikes an appropriate balance between concepts on the one hand and technical depth and
rigor on the other hand, with the expectation that an interested reader may refer to the associ-
ated primary literature for mathematical details that we have not included.

Chapters 8 and 9, as well as most of Chapter 5, are written by K.Y. You. Chapter 12 is written
by T. Li. The remaining chapters and Section 5.6 of Chapter 5 are written by T. Zhou.

Tong Zhou
Beijing, China

Keyou You
Beijing, China

Tao Li
Shanghai, China
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Notation and Symbols

The Fourier transform of a time domain signal u(t) is usually denoted by u(jω), whereas its Laplace transform
by u(s).

The frequency response of a linear and time-invariant operator G(·) is usually denoted by G(jω), whereas its
transfer function matrix by G(s).

exp(·) exponential of a variable/number
log(·) logarithm of a variable/number
�(·) real part of a variable/number/matrix/function
·̄ conjugate of a variable/number/matrix/function

x a lower case letter usually denotes a scalar variable or a vector
X a capital letter usually denotes a matrix
X a calligraphy capital letter usually denotes a set
A

⋂
B the intersection of a set A and a set B

A
⋃

B the union of a set A and a set B
A\B the relative complement of a set B in a set A, which is also widely called the set-theoretic difference of set

A from a set B.

(·)T transpose of a real/complex vector
(·)H conjugate transpose of a complex vector
(�)T WX or XW(�)T abbreviation for XT WX or XWXT

col{Xi |Li=1} the vector/matrix stacked by Xi |Li=1
diag{Xi |Li=1} a block diagonal matrix with its ith diagonal block being Xi . Sometimes, it is also written as⊕L

i=1 Xi or X1 ⊕ X2 ⊕ · · · ⊕ XL.[
Xij |i=M,j=N

i=1,j=1

]
a matrix with M × N blocks and its ith row j th column block being Xij

0m the m-dimensional zero column vector; the subscript is often omitted when it is clear or not important
0m×n the m × n-dimensional matrix with all zero-elements; the subscript is often omitted when it is clear or not

important
In the n × n-dimensional identity matrix; the subscript is often omitted when it is clear or not important
|| · ||2 Euclidean norm of a real/complex vector or the matrix norm induced from this Euclidean vector norm,

which is the maximum singular value of that matrix
|| · ||Q Euclidean norm of a real/complex vector weighted by a positive semidefinite matrix Q

rank(·) the rank of a matrix
det(·) determinant of a square matrix
tr(·) the trace of a square matrix
ρ(·) the spectral radius of a matrix, that is, the largest magnitude of its eigenvalues
σ̄ (·) the maximum singular value of a matrix, sometimes also written as σmax(·)
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Notation and Symbols

A ⊗ B the Kronecker product of matrices A and B

X1/2 the square root of a positive definite matrix

Fl (∗,#) lower linear fractional transformation of the variable/vector/matrix/function # with a prescribed ma-
trix/matrix-valued function ∗

Fu(∗,#) upper linear fractional transformation of the variable/vector/matrix/function # with a prescribed ma-
trix/matrix-valued function ∗

Hm(�,X) Homographic transformation of a matrix X defined as (�11X + �12)(�21X + �22)−1 with � =[
�ij |2

i,j=1

]
, in which � is a prescribed matrix/matrix valued function

μ�(M) the structural singular value of a matrix M with respect to the uncertainty structure �

BX the subset of a set X , with each element having a norm not greater than 1
RHm×n∞ the set of m × n-dimensional rational and stable transfer function matrices
Rm the set of m-dimensional column real vectors
Rm×n the set of m × n-dimensional real matrices
Cm the set of m-dimensional column complex vectors
Cm×n the set of m × n-dimensional complex matrices
Ld

2 the set of d-dimensional real-valued vectors with the square of their Euclidean norms integrable over the time
interval [0, ∞), that is,

Ld
2 =

{
v(t)

∣∣∣∣ v(t) ∈Rd ,

∫ ∞
0

||v(t)||22dt < ∞
}

Pr(·) probability of a random event
E(·) mathematical expectation of a random variable/vector/matrix
E(∗|#) conditional mathematical expectation of a random variable/vector/matrix
Var(·) variance of a random variable
Cov(·) covariance matrix of a random vector
N (∗,#) normal distribution of a random variable/vector with mathematical expectation ∗ and covariance matrix #
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CHAPTER 1

Introduction
1.1 A General View on Control System Design

Control loops exist extensively in biological systems, engineering systems, financial systems,
social systems, and so on [1]. Whereas feedback is an essential characteristic in control sys-
tems, factors like developments of technologies, performance requirement strengthening,
and so on make analysis and synthesis of a control system very different in distinct stages.
In a classic control system, both its input and output are scalars. A system with this property
is usually called single-input single-output system, which is often abbreviated as SISO. For
these systems, transfer functions and differential equations are widely utilized in describing
their input–output properties. Methods like Bode diagram, root locus, and so on, play central
roles in the analysis and synthesis of a linear and time-invariant SISO system. The most ex-
tensively adopted controller in classic control systems is the so called PID controller, with its
abbreviations P , I , and D standing respectively for proportion, integration, and differenti-
ation. This controller is a special kind of the so-called lead-lag controller, its realization has
been well supported by standard industrial products, and various methods have been devel-
oped for the adjustments of this controller to satisfy design specifications of a control system.
Methods like description functions, phase plane, and so on have also been developed to ana-
lyze systems with some special types of nonlinearities.

Around the 1960s, with the requirements from astronautics and aeronautics, plants began to
emerge in which there are multiple variables that are to be controlled simultaneously. These
plants are usually called multi-input multi-output systems, which are often abbreviated as
MIMO, and state space models are invented to describe their dynamics. For these systems,
the Luenberger observer and the Kalman filter have been developed to estimate their states,
among many other methods. Moreover, a method called the linear quadratic Gaussian control,
usually abbreviated as LQG, has been developed to construct a controller. In addition to this,
many other methods, such as decoupling control, model predictive control, and so on, have
been developed to control an industrial MIMO process.

When modeling errors are explicitly and directly taken into account in system analysis and
synthesis, robust control theory has been developed to handle this problem. One of the well-
known robust controller design methods is the H∞ control, in which the H∞-norm of a
transfer function matrix is minimized guaranteeing internal stability of the feedback con-
trol system. This norm is originally introduced by Zames [2] and found to be appropriate in
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2 Chapter 1

specifying both the size of modeling errors and the induced gain from a disturbance input
vector to an error output vector in control systems. It is extensively believed that one of the
motivations for introducing this induced norm into system analysis and synthesis is to bring
modeling errors in a plant dynamics description, which is described in the frequency domain,
back to the central stage in system analysis and synthesis. Note that in classic control theo-
ries, robustness of a feedback control system is reflected by its gain margin and phase margin,
which is measured by the frequency response of its open-loop transfer function, whereas in
the control theories developed around 1960s, whose representative results include LQG con-
trol, pole placements, and so on, an explicit and accurate model is required, which is usually
given in a state space form. Two of the most important results associated with this model er-
ror description seem to be the so-called small gain theorem and two Riccati-equation-based
formulas for the H∞ control problem. Although the H∞-norm is widely regarded to be suit-
able in describing unmodeled dynamics, it usually introduces conservativeness in dealing with
parametric modeling errors. To overcome this drawback, a block diagonal structure is sug-
gested for modeling error descriptions, and structured singular values (SSV) are defined to
measure the robustness of a feedback system with both parametric modeling errors and un-
modeled dynamics [3,4]. SSV computations, however, are proven to be generally NP-hard [5].
This computational difficulty greatly hampers applications of the SSV to system analysis and
synthesis.

In all these theories, communications have not been explicitly taken into account, and it is im-
plicitly assumed that all data transmissions in a feedback control system, which include those
among plant subsystems, those between a plant and its controller, and so on, are performed
with an infinite precision in value, an infinite communication bandwidth, and an infinite
speed. This implicit assumption makes state estimation algorithms, control algorithms, and
so on completely independent of communications and greatly simplifies system analysis and
synthesis. The associated results work well for traditional engineering systems. Due to tech-
nology developments in sensors, communications, and so on, as well as more complicated
and demanding tasks expected for a system, the number of subsystems increases significantly,
and they are expected to cooperate to achieve a much higher performance level. In addition,
digital communication networks are expected to be used in transmitting information among
different components of a control system in order to reduce hardware costs of the system and
to improve maintenance capabilities. Systems with these characteristics are becoming ubiqui-
tous, with applications ranging from electricity power systems to rescue robot teams, remote
surgery, and so on.

However, with the increment of the number of subsystems and the introduction of public com-
munication channels into a control system, some essentially new and challenging issues arise
in system analysis and synthesis. For example, the structure of a plant becomes an impor-
tant factor, as well as communication qualities. More precisely, in a networked system, data
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transmission and information processing cannot be performed instantaneously in general.
Data may be delayed, be out of order, and even be dropped out, noting that data transmissions
through communication networks are usually corrupted due to noises in the communication
medium, congestion of a communication network, and protocol malfunctions and that com-
munication channels may change from time to time, and so on. To make things worse, there
may even exist some attackers who inject malicious disturbances into the system with an ob-
jective of destroying its functions. All these bring new challenging issues in system analysis
and synthesis.

On the other hand, for most of large-scale networked systems, rather than utilizing a single
processing unit, it is preferable to distribute the control tasks and/or estimation tasks among
several processing units. In this task division, sparseness of the system is an important factor,
which needs to be taken into account, as well as the topology of subsystem connections. In
addition, these processing units may not be triggered by a common clock pulse, which makes
the sampling, holding, and computation activities of these processing units not synchronized.
In other words, different processing units may have different sampling periods. When com-
munication channels are shared by several networked systems, the sampling period of each
processing unit may have some irregularities, as time sharing of a communication channel
often hampers a precise scheduling for data transmissions in a particular plant.

Generally speaking, analysis and synthesis of a networked system is a relatively new and
challenging field in system theories, which requires knowledge on feedback control systems,
communication theory, information theory, and so on, which previously belong to different
engineering disciplines. The purposes of this book are to investigate some important issues
and summarize some important recent works in this area.

1.2 Communication and Control

In a control system, both information and energy are transmitted. Information transmission is
necessary as a deviation of the plant output from a desirable trajectory and must be recorded
and processed by a signal processing unit, which is usually called a controller or a regula-
tor, and the processed deviations or plant outputs must be sent back to the plant as its input
to make the plant work properly. In other words, information transmission is essential in the
improvement of plant performances. Different from signal processing, energy transmission
is also necessary in a control system, noting that power is required in accomplishing any task
in a mechanical system, a biology system, an electrical system, and so on. Particularly, en-
ergy transmissions usually cannot be performed exactly in a control system due to technology
difficulties in accurately generating the required amount of energies for accomplishing the
tasks, which will introduce model errors into the system. A general situation is that the bigger
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the transmitted energy, the larger the model error. As feedback is usually adopted in a control
system, the influence of modeling errors may be amplified if the associated controller has not
been well designed. This makes robustness a much more essential issue in control system de-
signs comparing to those of other fields like signal processing, mechanical system design, and
so on.

Traditionally, information transmissions in a control system are assumed to be instantaneous
and to have an infinite precision. As mentioned in the previous section, with the introduction
of public communication channels into a control system, these conditions are no longer satis-
fied. In addition to this, communication costs must also be taken into account in the design of
a networked system. Naturally, it will be appreciated if less data is sent with a lower precision
in a networked system, provided that the required tasks can be accomplished satisfactorily by
the associated plant. In other words, in the analysis and synthesis of a networked system, one
of the major concerns is on the description of the minimum amount of information transfer
required for satisfactory system performances, in which stability is usually the most important
factor. Information transfer may happen among various parts of the system, for example, be-
tween different subsystems, between a local controller and a subsystem, and so on. Another
important issue is about the influences on system performances from the data transmission
rate and the data expression precision. It is also interesting to investigate effective coordina-
tions among different subsystems with minimum requirements on information exchanges.

When a system consists of a great amount of subsystems and these subsystems are spatially
far from each other, and when a system has a great amount of states, it is usually not ap-
preciative, and even prohibitive/impossible, in actual applications either to estimate all the
plant states by a single centralized estimator or to control all the subsystems with a single
centralized controller. In addition to computational costs, the reasons also include consid-
erations from maintenances, robustness against failures of a subsystem, and so on. On the
other hand, if each subsystem is independently estimated or controlled, then performances
of estimations or control may be significantly deteriorated. In the worst case, even stabil-
ity of the closed-loop system may not be reached although the whole system is controllable.
This means that some coordinations, which is sometimes also called cooperations, are nec-
essary among the estimators/controllers designed for each individual subsystem. To realize
these coordinations/cooperations, communications among these estimators/controllers are also
necessary. In other words, the estimator/controller itself also consists of several subestima-
tors/subcontrollers, and these subestimators/subcontrollers may be connected through public
communication channels, which may cause data missing, data disordering, and so on.

In communication networks, source signals are usually sampled and encoded into a sequence
of channel input symbols, which is then transmitted through some communication media, for
example, antenna, satellites, optical fibers, and so on and received by an equipment that gives
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a sequence of channel output symbols. A perfectly designed communication network intends
to completely recover the original source signals from the channel output symbols. Since ex-
ternal disturbances are unavoidable during transmissions and quantification is widely adopted
in communications, a completely perfect source signal recovery is usually impossible, not-
ing that under these situations, two different resource signals may lead to a completely equal
channel output sequence. To describe the capability of a communication channel in reliably
transmitting signals, a concept called channel capacity is suggested by Shannon during World
War II, which provides a mathematical model that can be accurately computed. Intuitively, the
capacity of a communication channel is the tightest upper bound about the rate at which a sig-
nal can be reliably transmitted over it. Alternatively, a channel capacity can also be explained
using the noisy-channel coding theorem as the highest information rate (in units of informa-
tion per unit time) that can be achieved by a communication channel with an arbitrarily small
error probability. Mathematically, the capacity of a communication channel is given by the
maximal value of the mutual information between the input signal and output signal of the
channel, in which the maximization is taken over all possible probability density functions of
the input signal.

To deal with analysis and synthesis of a networked system, it appears necessary to introduce
an appropriate model of communication channels into the descriptions of its dynamics. With
the concept of channel capacity, various models are expected to be developed to meet this
requirement, which characterize the communication constraints in a networked system de-
pending on the underlying channel characteristics and information pattern.

More precisely, when data missing is concerned, a Bernoulli process model and a Markov
chain model are extensively adopted. When the data missing is described by a Bernoulli pro-
cess, the communication channel is usually called an erasure channel in communications,
whereas in the case of a Markov chain, it is called a Gilbert–Elliott channel. In an erasure
channel, data loss is assumed to be independent of each other, and its influences on state es-
timation and system control are relatively easy to be analyzed. However, the Gilbert–Elliott
channel appears to be a more realistic model in the description of data losses due to imperfect
communications, since it takes influences of the previous states of a communication network
on its current states, which is closer to actual situations. A cost is that this model may make
system analysis more complicated. With these data missing models, the capacity of a com-
munication channel can be simply characterized. For example, when the Bernoulli process
is used, if information is contained in the input signal to indicate that it is a signal, then the
channel capacity can be proved to be equal to the probability that a data packet is not lost.

When external disturbances are taken into account, they are usually treated as an additive
noise, which is simple and yet representative in various communication channels. Under such
a situation, the channel capacity constraint arises as a bound that is usually put on the power
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of channel input signals with the purpose to reduce interferences among different communica-
tion users and to meet hardware requirements. When the external disturbance has a Gaussian
distribution, the channel capacity can be simply computed using the signal-to-noise ratio of
the channel.

However, when a channel capacity is derived using the mutual information, this capacity is
achievable under several assumptions that in general cannot be easily satisfied in practical ap-
plications. These assumptions include that the capacity-achieving code can be arbitrarily long,
there does not exist any restriction on the coding complexity, and so on. In addition, causality
has not been explicitly taken into account in this derivation. Note that a control system usually
requires feedbacks, and a long code often leads to significant time delays that are usually not
very appreciative in control system designs. This means that in an actual engineering problem,
the channel capacity usually cannot be achieved. On the other hand, when a wireless commu-
nication channel is used, due to the effects of multipaths and shadowing in a wireless channel,
a signal may experience fluctuations in its transmissions. This phenomenon is still difficult to
be modeled satisfactorily in a general setting, and only some simple statistical models have
been proposed, such as the Rayleigh model, the Rician model, and so on, which depend heav-
ily on the particular signal propagation environments and transmission scenarios. Moreover,
for a large-scale networked system, a multiple-input multiple-output communication network
appears to be necessary. However, there is still no mature theory that successfully deals with
information transmissions in such a communication network facing channel inferences and
external noises.

In summary, when public communication channels are adopted in a networked control sys-
tem, various efforts are still required for establishing an appropriate model for a communica-
tion channel that satisfies requirements raised by controller analysis and synthesis.

1.3 Book Contents

Being aware of the importance of communications in a networked system, as well as that cen-
tralized estimation and/or centralized control is not very appropriate for a large-scale system
and systems that are constituted from subsystems that are geometrically far away from each
other, this book investigates five important issues in the analysis and synthesis of a large-scale
networked system, which are listed as follows.

• Controllability, observability, stability, and robust stability. These are fundamental proper-
ties in system analysis and synthesis. Relations are revealed between these properties and
subsystem connections, which are also called the structure or topology of a system. Con-
ditions are clarified for each subsystem such that a controllable/observable system can be
constructed.
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• State estimation. Both centralized and distributed designs are investigated, as well as
situations in which plant output measurements may be lost due to communications. In-
fluences of data missing on estimation accuracies are investigated, as well as conditions
under which a distributed estimator has the same steady estimation accuracy as a central-
ized one.

• Distributed control. Taking into account factors like robustness against subsystem failures,
scalability of estimation/control procedures, and so on, a control using only local infor-
mation is much more appreciative in actual engineering applications. Controller designs
with relative state feedback and relative output feedback are attacked respectively for a
networked system with time-invariant subsystem interactions, which is also called a static
topology, and with time-varying interactions, which is sometimes called a dynamic topol-
ogy.

• Attack estimation and identification. This is a relatively new issue in control system
analysis and synthesis although some simple situations have been dealt with for power
systems for a long time, in which system dynamics has not been taken into account. Re-
lations among system observability, observer design, and estimation and identification of
attacks are discussed.

• Structure identification. In many actual systems, such as an economy system, gene regu-
lation networks, and so on, interactions among different subsystems are not clear from the
underlying principles, and it is important to understand these interactions from observed
data and available knowledge on system structure. Some methods are developed, which
reveal subsystem interactions using respectively steady-state system output measurements
and dynamic system output measurements.

These topics are dealt with respectively in the following Chapter 3 to Chapter 12.

1.3.1 Controllability and Observability of a Control System

In Chapter 3, controllability and observability of a networked system are discussed. A new
description is introduced to model the dynamics of a system consisting of several subsystems,
in which each subsystem is represented by a state space model. In this subsystem model, its
input vector is divided into two ingredients, which are respectively called the internal input
vector and external input vector. Completely the same division is also performed on the output
vector of each subsystem model. Interactions among subsystems are described by a subsystem
connection matrix, which reflects that an internal input of one subsystem is in fact an internal
output of another subsystem, possibly transmitted by a public communication channel. This
model is adopted throughout this book in the description of the dynamics of a networked sys-
tem.
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Necessary and sufficient conditions are given respectively for the controllability and ob-
servability of a networked system, which depend only on the subsystem connection matrix,
transmission zeros of each subsystem, and their related vectors. With this condition, it has
been proven that for a networked system to be controllable/observable, each subsystem must
be controllable/observable. On the contrary, if each subsystem is controllable/observable, then
a controllable/observable networked system can always be constructed. In addition, an ex-
plicit formula is given for the minimum number of inputs/outputs for each subsystem in a
networked system, such that a controllable/observable networked system can be constructed.
When the number of inputs/outputs is fixed, a parameterization is given for all the input/out-
put matrices such that the associated subsystem is controllable/observable.

1.3.2 Centralized and Distributed State Estimations

Chapter 4 discusses observer designs for a lumped system. Both Kalman filtering and robust
estimation are investigated. The Kalman filter is rederived using a maximum likelihood ap-
proach, which plays an essential role in obtaining the robust state estimator described in the
same chapter. Through penalizing sensitivities of the cost function associated with the Kalman
filter to parametric modeling errors, a robust state estimator is obtained, which can also be
recursively realized and has a computational complexity similar to that of the Kalman filter.
When the plant nominal model is time invariant, conditions are given for the convergence of
the robust state estimator to a time-invariant system.

In Chapter 6, distributed state estimations are discussed for a system consisting of several sub-
systems. The estimator is assumed to have the same structure as that of the plant, and each of
its subsystems is required to only use local plant output measurement; that is, the subsystem
connection matrix of the estimator is the same as that of the plant, and state estimates of each
subsystem in the estimator are updated using only the output measurements of one associated
subsystem in the plant. Under the requirements that the state estimate for each subsystem is
unbaised and the covariance matrix of estimation errors is minimal for each subsystem, a re-
cursive formula is derived respectively for the update gain matrix of each subsystem in the
state estimator and for the covariance matrix of estimation errors of the whole system. Con-
ditions are also given for the distributed state estimator having the same steady estimation
accuracy as the lumped Kalman filter.

1.3.3 State Estimations and Control With Imperfect Communications

When a public channel is adopted in a networked system, some measurements may be lost
due to imperfect transmissions. In Chapter 5, state estimations are investigated under such a
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situation. It is shown that when an indicator is included in a transmitted package, which indi-
cates that the package contains plant output measurements, the optimal state estimator is equal
to a predictor when a measurement is lost, whereas it is simply the Kalman filter when a mea-
surement is satisfactorily transmitted. These results have been extended to situations in which
parametric errors exist in a plant state space model. Conditions are also derived for the bound-
edness of the covariance matrix of estimation errors, as well as its stationary distribution. In
these investigations, rather than a Euclidean induced norm, a Riemannian metric is adopted in
measuring the difference between two positive definite matrices.

The purpose of Chapter 8 is to understand interactions between the control components
and the communication components of a networked system with communication channels.
A problem of stabilizing a linear time-invariant plant is discussed, in which a sensor for the
plant outputs is connected to the controller through a communication channel. Influences of
quantization on controller designs have been investigated, and some limitations of the tra-
ditional approach to system stabilization have been established. The minimum data rate for
stabilizing a linear time-invariant system has also been derived, which is further extended to a
stochastically time-varying communication channel.

1.3.4 Verification of Stability and Robust Stability

Chapter 7 deals with how to verify stability and robust stability of a large-scale networked
system when there exist both parametric modeling errors and unmodeled dynamics in a state
space model of each of its subsystems. Some necessary and sufficient conditions have been
derived, which explicitly depend on the subsystem connection matrix of the networked system
under investigation. When the system under investigation has a great number of subsystems,
these conditions are helpful in reducing computational complexity of the associated system
analysis and synthesis, noting that a large-scale system usually has a sparse structure. Another
characteristic of these conditions is that most of the involved matrices are block diagonal,
which is also appreciative in improving numerical stability of the associated matrix compu-
tations and in reducing their computational complexities.

1.3.5 Distributed Controller Design for an LSS

Chapter 9 discusses distributed control design for the consensus and formation of a discrete-
time multiagent system, in which all agents are required to reach an agreement using some
shared data through local communications. A problem formulation is given for the consen-
sus of a multiagent system with general linear agent dynamics. Distributed controller designs
have been investigated under the situation that relative state feedbacks are available and under
the situation that relative output feedbacks are available. The associated techniques and results
are further extended to address a distributed formation problem.



10 Chapter 1

1.3.6 Structure Identification for an LSS

Chapter 10 deals with causal relation inference for a networked system from experiment data.
This problem is frequently encountered in many fields, including biologies, economy, finance,
and so on. In these fields, measurements of direct influences between two different subsys-
tems are generally time consuming or economically expansive,and sometimes may even be
prohibitive. This chapter investigates possibilities of estimating these relations from experi-
ment data and statistical properties of the structure of a large-scale networked system. Most
of the discussions are concentrated on gene regulation networks, but the results may be help-
ful in solving similar problems in other fields. Both steady state data and dynamic data have
been investigated. The so-called power law is incorporated into the structure inference us-
ing steady-state experiment data, in which the total least squares method and the maximum
likelihood estimation method are respectively used to estimate interactions among different
subsystems of a plant. A concept called relative variation is developed for these interaction
inferences. When dynamic experiment data are available, a robust state estimation-based
method is developed, which is proven to be more efficient than the methods based on the ex-
tended Kalman filter (EKF) or the unscented Kalman filter (UKF). However, application of
this method is still restricted to systems with only a few subsystems, and statistical structure
properties of a large-scale system has not been utilized.

1.3.7 Attack Estimation/Identification and Other Issues

In Chapter 11, estimation and identification are investigated for attacks in a networked system,
which becomes more and more important in networked system analysis and design, as mali-
cious and organized inputs to a networked system may even destroy its stability. Both static
data-based methods and dynamic data-based methods are introduced. It is observed that these
problems are closely related to system observability and system transmission zeros, and accu-
rate system model is quite important in both attack preventions and attack constructions.

Time synchronization and state consensus problems are discussed in Chapter 12, which are
also important topics in the control of a networked system. The former deals with how to cali-
brate clocks in each subsystem, which is essential to realize a distributed estimation algorithm
or a distributed control algorithm. The latter investigates protocol designs such that with the
increment of the temporal variable, the state vector of each subsystem reaches an equal value.
Clearly, time synchronization can be regarded as a particular state consensus problem. These
problems are discussed respectively under the situation that the subsystem connections are
fixed and under the situation that the subsystem connections are time varying. Conditions
have been established for the associated problems.
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1.4 Bibliographic Notes

It appears that systematic investigations on a large-scale dynamic system emerged around the
beginning of the 1960s. Various research literature and research monographs have been pub-
lished after that time, in which a state space model is extensively adopted with an emphasis
on subsystem interconnections through their states. Other models include hierarchical model,
graph-based model, and so on. Relations among system stability, regulation performances,
and system structure have been extensively studied from various different aspects. Major re-
sults can be found in [6] and the references therein.

Revealing causal relations between different time series record sets is also a long and attrac-
tive topic. A historic review on major achievements and recent advances in this field can be
found in [7], [8], and the references included in these monographs. The former is more fo-
cused on relations between the recorded data of two time series, whereas the latter has put
many efforts on data generated from a dynamic system that consists of a large amount of sub-
systems.

Recent interests in networked systems were mainly triggered by the introduction of a pub-
lic communication channel into the system used to transfer signals between a plant and a
controller or from a plant to a state estimator and to coordinate a group of subsystems with
neighbor information to construct a desired formation. Imperfect signal transfers make it nec-
essary to introduce a model of communication channels in system analysis and synthesis,
whereas variations of neighbors ask to take system structure switchings into account in the
design of a control law. The monograph [9] appears to be the first research that summarizes
major research results in a unified way on estimation and control with communication chan-
nels, whereas [10] places special emphasis on the influences of model errors in the analysis
and synthesis of a networked system. In [11], a game theory-based approach is adopted in
the investigation of the interactions between information and control in a networked system,
which consists of several subsystems, has heterogeneous communication media, uses decen-
tralized and distributed measurements, and acquires information with possible delays. Unified
studies are also given in [12] on the effects of imperfect communications on the stability and
performances of a networked system.
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CHAPTER 2

Background Mathematical Results

2.1 Linear Space and Linear Algebra

In signal processing and control system analysis/synthesis, a usually encountered situation is
that several variables must be handled simultaneously. To deal with the associated problems,
knowledge on linear algebra is necessary. This section reviews some of these topics and re-
sults that are helpful to understand the following chapters of this book.

A linear space is a collection of vectors, which can be added together and multiplied by
scalars. Usually, the scalars are taken to be real numbers. The operations of vector addition
and scalar multiplication must satisfy the following eight requirements, which are respec-
tively called associativity of addition, commutativity of addition, identity element of addition,
inverse elements of addition, compatibility of scalar multiplication with multiplication be-
tween scalars, existence of an identity element of scalar multiplication, distributivity of scalar
multiplication with respect to vector addition, and distributivity of scalar multiplication with
respect to scalar addition. More precisely, we have the following definition.

Definition 2.1 (Linear Space). A set V is a linear space if the following properties are simul-
taneously satisfied for all elements u, v, and w in this set and for all real numbers a and b.

• associativity of addition: u + (v + w) = (u + v) + w.
• commutativity of addition: u + v = v + u.
• identity element of addition: there exists an element 0 ∈ V , which is called the zero vector,

that satisfies v + 0 = v for each v ∈ V .
• inverse elements of addition: for each v ∈ V , there exists an element z ∈ V satisfying

v + z = 0. This element is usually called the additive inverse of the vector v and denoted
by −v.

• compatibility of scalar multiplication with multiplications among scalars: a(bv) = (ab)v.
• identity element of scalar multiplication: 1v = v.
• distributivity of scalar multiplication with respect to vector addition: a(u + v) = au + av.
• distributivity of scalar multiplication with respect to scalar addition: (a + b)v = av + bv.

Well-known examples of linear spaces include a finite-dimensional real Euclidean space, a
space consisting of random variables with zero mathematical expectation and finite variance,
a space of time series with finite energies, and so on.

Estimation and Control of Large-Scale Networked Control Systems
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Associated with linear spaces, an essential concept is an inner product, which is a mapping
from a linear space to real numbers that satisfies simultaneously three particular properties,
which are respectively called symmetry, linearity, and positive-definiteness. This mapping is
usually denoted by < ·, · >.

Definition 2.2 (Inner Product). A mapping < ·, · > from V × V to R is an inner product
over the linear space V if the following requirements are simultaneously met by it.

• symmetry: for each vector u ∈ V and each vector v ∈ V , < x, y >=< y, x >.
• linearity: for arbitrary vectors u, v, z ∈ V and arbitrary real numbers a and b,

< ax + by, z > = a < x, z > +b < y, z >.
• positive-definiteness: for each vector u ∈ V , < u, u >≥ 0. Moreover, < u, u >= 0 if and

only if u = 0.

A space endowed with an inner product is called an inner product space.

A concept closely related to inner product is the norm of a linear space.

Definition 2.3 (Norm). A real-valued function defined on a linear space V , which is usually
denoted by || · ||, is called a norm of this space if it simultaneously satisfies the following three
conditions.

• homogeneity: for each vector u ∈ V and each real number α, ||αu|| = |α| × ||u||.
• triangle inequality: for arbitrary vectors u, v ∈ V , ||x + y|| ≤ ||x|| + ||y||.
• positive-definiteness: for each vector u ∈ V , ||u|| ≥ 0. Moreover, ||u|| = 0 if and only if

u = 0.

A space endowed with a norm is called a normed space. An inner product space is obviously
also a normed space, noting that if a space is endowed with an inner product < ·, · >, then a
norm can be simply defined as ||u|| = √

< u, u >. However, the converse is in general not
true. In fact, some conditions should be satisfied for the existence of an inner product that
leads to a prescribed norm, which is usually called the parallelogram condition, that is, for
arbitrary x, y ∈ V ,

||x + y||2 + ||x − y||2 = 2(||x||2 + ||y||2).

For a finite-dimensional real Euclidean space Rn, its element can be denoted as x =
col{xi |ni=1}, in which each of the xis is a real number. With this representation, an inner prod-
uct can be defined as

< x, y >=
n∑

i=1

xiyi .
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When a linear space is constituted from n-dimensional random vectors with zero mathe-
matical expectation and finite covariance matrix, the following inner product is extensively
adopted:

< x, y >= E(xT y).

This inner product has been proven to be very helpful in developing signal processing algo-
rithms, including the well-known Wiener and Kalman filters. When a linear space consists of
time series with finite energies,

< x, y >=
∫ ∞

−∞
x(t)y(t)dt

is one of the well-known inner products. This inner product plays an essential role in robust-
ness analysis of a control system and design of a robust control system.

For a finite-dimensional real Euclidean space Rn, an extensively adopted norm is

||x||p =
(

n∑
i=1

|xi |p
)1/p

,

in which p is a real number not smaller than 1. Especially, this norm is called the Euclidean
norm if the parameter p = 2. Usually, this vector norm is called the p-norm. When a linear
space consists of time series with finite energies, a widely utilized norm is

||x(t)||p =
(∫ ∞

−∞
|x(t)|pdt

)1/p

.

Once again, the parameter p is required to be real and not smaller than 1.

To discuss relations between two finite-dimensional real Euclidean spaces, a mapping is re-
quired. When this mapping is linear, it is usually represented by a matrix. Specifically, a linear
mapping from Rm to Rn, which is usually denoted T : Rm → Rn, can be represented by an
n × m-dimensional matrix T such that, for each x ∈Rm,

y = T x. (2.1)

For an n × n-dimensional square matrix A, its eigenvalue is a number that satisfies
|λIn − A| = 0. Associated with each eigenvalue, there is a nonzero n-dimensional vector x

satisfying Ax = λx, which is called a right eigenvector of this matrix. Correspondingly, there
is also an n-dimensional nonzero vector y satisfying yHA = λyH , which is called a left eigen-
vector of this matrix. It is worth noting that even if each element of a square matrix is real
valued, its eigenvalues and left and right eigenvectors may be complex valued. On the other
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hand, when the matrix A is real valued and λ ∈ C is one of its eigenvalues, then the conjugate
of λ, that is, λ̄, is also an eigenvalue of this matrix.

In linear algebra, it is a basic result that any square matrix admits a Jordan canonical represen-
tation, which is given by the following theorem.

Theorem 2.1. Let A be an n × n-dimensional complex-valued matrix. Then there always
exists a nonsingular matrix T such that

A = T JT −1

in which

J = diag{Ji |pi=1}, Ji = diag{Ji,j |qi

j=1},

Ji,j =

⎡
⎢⎢⎢⎢⎢⎣

λi 1
λi 1

. . .
. . .

λi 1
λi

⎤
⎥⎥⎥⎥⎥⎦

∈ Cni,j×ni,j ,

where λi , i = 1,2, · · · ,p, are the distinct eigenvalues of the matrix A. Moreover, ni,j satisfy∑p

i=1

∑qi

j=1 ni,j = n.

In this representation, qi is called the geometric multiplicity of the matrix A associated with
its eigenvalue λi , whereas

∑qi

j=1 ni,j is its algebraic multiplicity associated with that eigen-
value. Moreover, the matrix T can be constructed from the right eigenvectors of the matrix A.
Obviously, when the geometric and algebraic multiplicities are equal to each other for each
eigenvalue of a matrix, its associated Jordan canonical form reduces to a diagonal matrix. In
this case, the matrix is said to have a diagonal representation.

A matrix is said to be symmetric if its transpose equals to the matrix itself. If a matrix is com-
plex valued and its conjugate transpose equals to the matrix itself, then the matrix is said to be
Hermitian. It is well known that both symmetric and Hermitian matrices only have real eigen-
values and diagonal representations.

A symmetric or Hermitian matrix A is said to be positive definite if all its eigenvalues are pos-
itive, which is usually denoted as A > 0. It is said to be positive semidefinite and denoted as
A ≥ 0 if all its eigenvalues are not negative. Negative definiteness and negative semidefinite-
ness of a matrix can be defined similarly.

The following lemma gives some interesting properties of the eigenvalues of the sum and
product of two symmetric matrices and some relations between two positive definite matrices
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[1,2]. These properties and relations play important roles in the remaining parts of this book.
One example is the analysis of the convergence characteristics of an identification algorithm
given in Chapter 10.

Lemma 2.1. Let A,B ∈ Rn×n be two symmetric matrices. Denote their minimum eigenvalues
respectively by λmin (A) and λmin (B). Then

λmin (A + B) ≥ λmin (A) + λmin (B) .

If both A and B are positive semidefinite matrices, then

λmin (AB) ≥ λmin (A)λmin (B) .

Moreover, if A ≥ B , then

tr(A) ≥ tr(B) and λmin (A) ≥ λmin (B) .

Furthermore, if A ≥ B > 0, then

A−1 ≤ B−1

and

T AT T ≥ T BT T ≥ 0

for every m × n-dimensional real matrix T .

Another extensively utilized matrix representation is called singular value decomposition
(SVD), which is valid even when the matrix is not square. It is now well known that the
maximum singular value of a matrix is an appropriate measure of modeling errors in system
analysis and synthesis. Moreover, if we consider the vector x in Eq. (2.1) as an input, and the
vector y in this equation as an output, then a singular vector of the matrix T is an appropriate
indicator for the direction of inputs or outputs. In particular, a singular vector associated with
a small singular value provides the directions of inputs that have weak influence on outputs,
whereas a large singular value provides the directions of inputs that have strong influence on
outputs. In addition, the ratio between the maximum and the minimum singular values of a
matrix is also a good indicator for the robustness of an algorithm for matrix computations, for
example, computing the inverse of a matrix.

A p × p-dimensional matrix T is called unitary if T HT = T T H = Ip .
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Theorem 2.2. Let A be an m × n-dimensional complex-valued matrix. Then there exist an
m × m-dimensional unitary matrix U and an n × n-dimensional unitary matrix V such that

A = U�V H, � =
[

�∗ 0
0 0

]
,

in which �∗ = diag{σi |min{m, n}
i=1 } with σ1 ≥ σ2 ≥ · · · ≥ σmin{m, n} ≥ 0.

Differently from the eigenvalue decomposition of a matrix, the matrix �∗ is always guaran-
teed to be diagonal in its singular value decomposition.

The concept of a structured singular value, usually abbreviated SSV, is widely used in sys-
tem analysis and synthesis. This concept is originally developed by Doyle [3] and has been
extensively investigated by many researchers in robust control system designs. Summaries of
its properties, computations, applications, and connections with other concepts developed in
robust control theories are given in [4,5]. A similar concept has also been suggested almost at
the same time by Safonov [6].

Definition 2.4 (SSV). Given an m × n-dimensional complex matrix A and an uncertainty
description U with each of its elements having a dimension of n × m, the structured singular
value (SSV) of the matrix A with respect to the uncertainty description U , denoted μU(A), is
defined as

μU(A) =

⎧⎪⎨
⎪⎩

1
min{ σ̄ (U) | |I−AU |=0, U∈U } if there is at least one U ∈ U ,

such that |I − AU | = 0;
0 otherwise.

Usually, the uncertainty description U has a block diagonal form, which can include all para-
metric errors of unmodeled dynamics of a state space model. This makes it possible to in-
vestigate influences of a modeling error on system performances, not only using its size, but
also using its directions into the plant model. When there are no constraints on the structure of
the uncertainties, that is, every element of the matrix U belonging to the uncertainty descrip-
tion U is allowed to vary independently, it can be proven that the structured singular value
μU(A) is simply equal to the maximum singular value of the matrix A.

The following theorem is well known as the main loop theorem in robust system analysis and
synthesis, which relates the structured singular value of a matrix with that of its submatrix and
has been proven very helpful in robustness analysis for a system with several model uncertain-
ties [4,5].
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Theorem 2.3. For two prescribed uncertainty structures �1 and �2, define another un-
certainty structure � as � = {� |� = diag{�1, �2}, �1 ∈ �1, �2 ∈ �2 }. Assume that
a matrix A has a dimension compatible with the uncertainty structure � and partition it as

A =
[
Aij |2i,j=1

]
with each of its submatrices Aij , i, j = 1,2, having compatible dimensions.

Then, a necessary and sufficient condition for μ�(A) < 1 is that

μ�2(A22) < 1 and max
�2∈B�2

μ�1(Fl(A, �2)) < 1.

Although the structured singular value of a matrix is in general very hard to compute, it has
been proven to be a powerful tool in robust system analysis and synthesis, combined with
properties of the linear fractional transformation given in Section 2.3. In addition, various
upper and lower bounds have been derived for it [4,5].

The next results are also well known in linear algebra [7].

Lemma 2.2. For arbitrary matrices A, B, C, D with compatible dimensions, assume that all
the involved matrix inverses exist. Then

[
A B

C D

]
=
[

I 0

CA−1 I

][
A 0

0 D − CA−1B

][
I A−1B

0 I

]

=
[

I BD−1

0 I

][
A − BD−1C 0

0 D

][
I 0

D−1C I

]
, (2.2)

[A + CBD]−1 = A−1 − A−1C[B−1 + DA−1C]−1DA−1, (2.3)

A(I + BA)−1 = (I + AB)−1A. (2.4)

The following results are related to matrix optimizations, which are well known in matrix
analysis and linear estimations and can be straightforwardly proved through square comple-
tions [7,8]. These results are extensively utilized in the derivations of an optimal estimator, an
optimal controller, and so on [9,10].

Lemma 2.3. For real-valued matrices Sij |2i,j=1 with compatible dimensions, assume that
the matrix S11 is symmetric and positive definite and the matrix S22 is symmetric. Define the
matrix-valued function J (K) as

J (K) = [−K I ]
[

S11 S12

ST
12 S22

][
−KT

I

]
.

Then

K = ST
12S

−1
11
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is the unique optimizer that makes the matrix-valued function J (K) achieve its minimal value

S22 − ST
12S

−1
11 S12.

The following result, which is well known as the Schur complement formula and widely uti-
lized in system analysis and synthesis, reveals relations about negative definiteness between a
Hermitian matrix and its submatrices.

Lemma 2.4. For a Hermitian matrix S with partition S =
[
Sij

∣∣2
i,j=1

]
, in which both S11 and

S22 are square, the following three statements are equivalent.

• the matrix S is negative definite;
• both S11 and S22 − SH

12S
−1
11 S12 are negative definite matrices;

• both S22 and S11 − SH
21S

−1
22 S21 are negative definite matrices.

Related to a matrix, two linear spaces are extensively utilized in systems, control theory, and
signal processing. One is its null space, whereas the other is the space spanned by this matrix.

Definition 2.5 (Null Space). Given a matrix A, its null space is constituted of all vectors α

satisfying Aα = 0.

The null space of a matrix is often denoted by Null(·). This subspace is sometimes also
called the kernel of a matrix.

Definition 2.6 (Span). For an arbitrary m × n matrix A, denote its column vectors by αi ,
i = 1,2, . . . , n. The linear space spanned by the matrix A, usually denoted by Span(A), is
defined as

Span(A) =
{

x

∣∣∣∣∣ x =
n∑

i=1

ciαi

}
.

This space is also widely called the image space or simply the image of the matrix A. In the
definition, the scalars ci , i = 1,2, . . . , n, belong to R or C, according to the associated prob-
lem under investigation. It can be easily proven that both the null space and the span of a
matrix are subspaces.

2.1.1 Vector and Matrix Norms

In system analysis and synthesis, the extensively adopted vector norm is the p-norm with
p = 1,2,∞. Obviously, when x is an n-dimensional real vector with its elements xi ,
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i = 1,2, . . . , n, we have that

||x||1 =
n∑

i=1

|xi |, ||x||2 =
√√√√ n∑

i=1

x2
i .

Moreover, it can be easily shown that

||x||∞ = max
1≤i≤n

|xi |.

On the other hand, it can be straightforwardly proven that the set consisting of n × m-dimen-
sional real matrices is also a linear space. Hence, the norm of a matrix can be defined in two
different ways. One is to consider it as an element of a linear space. The other one is to con-
sider it as a mapping. When the latter is adopted, the associated norm is usually called an
induced norm. Particularly, when a vector is measured by its p-norm or q-norm, the induced
matrix norm associated with Eq. (2.1) is

||T ||q,p = sup
x 	=0

||T x||q
||x||p .

When p = q , ||T ||q,p is usually abbreviated as ||T ||p . Let tij denote the ith row j th column
element of the matrix T . Then, when p = 1,2,∞, the associated induced matrix norm can be
proven to be respectively

||T ||1 = max
1≤i≤m

n∑
j=1

|tj i | (column summation),

||T ||2 =
√

λmax(T T T ) = σmax(T ),

||T ||∞ = max
1≤j≤n

m∑
i=1

|tj i | (row summation),

in which λmax(·) is the maximum eigenvalue of a matrix, whereas σmax(·) is its greatest sin-
gular value. When the associated vector and matrix are complex valued, the corresponding
vector norm and induced matrix norm can be defined.

When a matrix is considered to be an element of a linear space, an extensively used norm is
the so-called Frobenius norm, which is denoted by ||T ||F and defined as

||T ||F =
√√√√ n∑

j=1

m∑
i=1

|tj i |2.
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However, this norm is not an induced one, which means that it may not be very convenient to
use it in property analysis for signal transfers.

When a set under investigation is constituted of positive definite matrices (PDM), there is a
quite specific distance function, which has been proven useful in property analysis for recur-
sive estimations.

Definition 2.7 (Riemannian Distance). Let P and Q be two n × n-dimensional positive def-
inite matrices. Let λi(PQ−1) denote the ith eigenvalue of the matrix PQ−1. The Riemannian
distance between these two matrices, denoted δ(P,Q), is defined as

δ(P,Q)=
√√√√ n∑

i=1

log2λi(PQ−1).

Note that although the product of two positive definite matrices is usually even not symmetric,
each of its eigenvalues has been proven to be positive [1,7]. Since the inverse of a positive
definite matrix is still positive definite, it can be declared that this distance is well defined.

An attractive property of this distance is its invariance under conjugacy transformations
and inversions. It is now also known that when equipped with this distance, the space of
n × n-dimensional PDMs is complete. This metric, although not widely known, has been
recognized very useful for many years in studying asymptotic properties of the Kalman fil-
tering with random system matrices [11]. Its effectiveness in studying asymptotic properties
of the Kalman filter with intermittent observations (KFIO) has been discovered in [12]. This
distance has also played an important role in analyzing properties of a robust recursive state
estimator [13,14].

2.1.2 Hamiltonian Matrices and Distance Among Positive Definite Matrices

Hamiltonian matrices play important roles in systems and control theory. In this subsection, a
definition is given for this matrix, and some of their important properties are discussed, which
are relevant to topics in this book. These properties are helpful in investigating convergence
characteristics of recursive operations defined by a homographic transformation. The latter is
given in Section 2.3 and denoted by Hm(∗, #).

Definition 2.8 (Hamiltonian Matrix). A matrix �=[�ij |2i,j=1] with �ij ∈ Rn×n, i, j =1,2,
is said to be Hamiltonian if it satisfies

�T J� = J with J =
[

0n×n In

−In 0n×n

]
.
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Hamiltonian matrices have found various applications in settling important issues in systems
and control. One example is solving a Riccati equation, which is extensively used in controller
design and state estimations.

According to properties of the submatrices �ij , i, j = 1, 2, of the Hamiltonian matrix �,
Hamiltonian matrices can be further divided into several subclasses. In particular, the follow-
ing four subsets of Hamiltonian matrices H, Hl , Hr , and Hlr are widely adopted:

H =
{
�

∣∣∣�=[
�ij

]2
i,j=1, �ij ∈Rn×n, �T J�=J, �11 invertible,�12�

T
11 ≥ 0,

�T
11�21 ≥ 0

}
,

Hlr =
{
�

∣∣∣� ∈ H, �12�
T
11 > 0, �T

11�21 > 0
}

,

Hl =
{

�

∣∣∣� ∈ H, �T
11�21 > 0

}
,

Hr =
{

�

∣∣∣� ∈ H, �12�
T
11 > 0

}
.

From their definitions the following relations are obvious:

Hl ⊂ H, Hr ⊂ H, Hlr ⊂ H, Hlr = Hr ∩Hl .

The following properties of Hamiltonian matrices are given in [11,14], which reveal further
relations among these four subsets of Hamiltonian matrices and some relations between the
matrix and its homographic transformation defined by a Hamiltonian matrix. In the estab-
lishment of these relations, the Riemannian metric is used, which is defined in the previous
subsection for positive definite matrices.

Lemma 2.5. Assume that all the involved matrices have compatible dimensions. Then, among
elements of the sets H, Hl , Hr , and Hlr and (semi)positive definite matrices (PDM), we have
the following relations:

• if �(1) ∈ H and �(2) ∈ H (or Hl , or Hr , or Hlr ), then both �(2)�(1) and �(1)�(2)

belong to H (or Hl , or Hr , or Hlr );

• Assume that �(i) =
[
�pq(i)

∣∣2
p,q=1

]
∈ H, i = 1,2, · · · ,m. Then

–
∏1

i=m �(i) ∈Hl if and only if

det

⎧⎨
⎩�T

11(1)�21(1) +
m∑

i=2

⎡
⎣
(

i∏
k=1

�T
11(k)

)
�21(i)

⎛
⎝ 1∏

k=i−1

�11(k)

⎞
⎠
⎤
⎦
⎫⎬
⎭ 	= 0; (2.5)
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–
∏1

i=m �(i) ∈Hr if and only if

det

{
m−1∑
i=1

[(
i+1∏
k=m

�11(k)

)
�12(i)

(
m∏

k=i

�T
11(k)

)]
+ �12(m)�T

11(m)

}
	= 0; (2.6)

• Assume that � ∈ H. Then, for arbitrary X ≥ 0, Hm(�, X) is well defined and is at least
semipositive definite. If, in addition, det(X) 	= 0, then det {Hm(�, P )} is also positive;

• Assume that � ∈ Hlr . Then, for every X ≥ 0, Hm(�, X) is a PDM;
• Assume that � ∈ H. Then, δ {Hm(�, X), Hm(�, Y )} ≤ δ(X, Y ) whenever X, Y > 0;
• Assume that � ∈ Hl or � ∈ Hr . Then, for any X, Y > 0, δ {Hm(�, X), Hm(�, Y )} <

δ(X, Y );
• Assume that � ∈ Hlr . Then, there exists ρ(�) belonging to (0,1) such that, for all

X, Y > 0, δ {Hm(�, X), Hm(�, Y )} ≤ ρ(�)δ(X, Y ).

The lemma reveals that when a homographic transformation is defined by a Hamiltonian ma-
trix, under the Riemannian metric of Definition 2.7, the distance between two positive definite
matrices does not increase after the transformation. This is quite attractive in solving many
theoretical problems, such as the H∞ optimal controller design [15], the asymptotic proper-
ties of the Kalman filter with random coefficients [11,13,14], and so on.

2.2 Generalized Inverse of a Matrix

The inverse of a matrix is extensively utilized in solving various engineering problems. When
a square matrix is of full rank, its inverse exists and is unique. Under several important situa-
tions, a square matrix is not of full rank, but its inverse is still required. In this case, a general-
ized inverse is widely adopted, which is usually denoted by A†.

Definition 2.9 (Generalized Inverse). A matrix A† is said to be the generalized inverse of the
matrix A if it satisfies the following four equalities:

AA†A = A, A†AA† = A†,(
AA†

)H = AA†,
(
A†A

)H = A†A.

If a matrix is invertible, then obviously its inverse satisfies these four equalities, which means
that this definition is consistent with that of the matrix inverse. Differently from the inverse
of a matrix, which not always exists, the generalized inverse of a matrix always exists. In
addition, in the computations of the generalized inverse of a matrix, the matrix is even not
required to be square. As a matter of fact, the generalized inverse of a matrix can be uniquely
determined by its singular value decomposition, which is possible for every matrix [7,16].
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Theorem 2.4. For a prescribed m × n-dimensional complex-valued matrix A, denote its sin-
gular value decomposition by

A = U�V H, � =
[

�∗ 0
0 0

]
,

in which U is an m × m-dimensional unitary matrix, V is an n × n-dimensional unitary ma-
trix, and �∗ = diag{σi |ri=1} with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Here, r ≤ min{m, n} is the rank of
the matrix A. Then, its generalized inverse is uniquely determined by

A = V

[
�−1∗ 0

0 0

]
UH .

Using the generalized inverse of a matrix, conditions for the existence of a solution to a set
of linear algebraic equations can be concisely expressed, as well as all the solutions if there
exists one.

Theorem 2.5. Let A, B , and Y be some prescribed matrices of dimensions n1 × n2, n3 × n4,
and n1 × n4, respectively. Then, there exists an n2 × n3-dimensional matrix X such that

AXB = Y

if and only if the matrices A, B , and Y satisfy

(In1 − AA†)Y = 0 and Y(In3 − B†B) = 0.

When these conditions are satisfied, all the solutions to the above equation can be parameter-
ized as

X = A†YB† + Z − A†AZBB†, (2.7)

where Z is an arbitrary n2 × n3-dimensional matrix.

When both A and B are invertible matrices, it can be directly verified that the conditions in
the theorem are always satisfied. In this case, all the solutions to the equation AXY = B given
by Eq. (2.7) reduce to X = A−1YB−1, which is consistent with the results obtained through
directly solving this equation.

The results of Theorem 2.5 include those on the equation AX = Y and the equation XB = Y

as a particular case. Particularly, the equation AX = Y is a special situation of the equation in
Theorem 2.5 with B = In4 . In this case, the condition Y(In3 − B†B) = 0 is always satisfied,
whereas the condition (In1 − AA†)Y = 0 implies that each column of the matrix Y belongs to
the space spanned by the columns of the matrix A.
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2.3 Some Useful Transformations

In system analysis and synthesis, as well as in signal processing, there are two extensively
adopted transformations. One is called linear fractional transformation, which is usually ab-
breviated as LFT. The other is called a homographic transformation and is often abbreviated
as HM. Under some mild conditions, these two transformations can be converted to each
other. However, both of them have their own properties, which makes them convenient to be
applied to dealing with different problems.

Definition 2.10 (Homographic Transformation). Given a matrix � =
[
�ij

∣∣2
i,j=1

]
with its

submatrices having compatible dimensions, the homographic transformation Hm(�, X) of a
matrix X with the matrix � is defined as

Hm(�, X) = [�11X + �12][�21X + �22]−1,

where the matrix �21X + �22 is assumed to be square and of full rank.

Attractive properties of this transformation include its invariance and simplicity under cascade
connections, which is given in the following lemma. Another property of this transformation
is that contractiveness of the matrix X can be kept, provided that some conditions are satisfied
by the matrix �. These properties have been proven useful in analyzing asymptotic behav-
iors of recursive estimators and iterative computations, and in H∞ controller design using the
so-called chain scattering approach.

Lemma 2.6. Assume that the dimensions of the matrices �(1), �(2), and X are compatible
with each other. Moreover, assume that all the involved matrix inverses exist. Then

Hm(�(2), Hm(�(1), X)) = Hm(�(2)�(1), X).

This property follows immediately from the concatenation property of a so-called chain
scattering representation of the homographic transformation and can be established through
straightforward algebraic manipulations. The details can be found, for example, in [9,15].

From the definition of the homographic transformation it is clear that X = Hm(I, X). On the
basis of this property and Lemma 2.6, it can be further proven that if the matrix � is invert-
ible, then from Y = Hm(�, X) we can get X = Hm(�−1, Y ).

However, some difficulties may arise if the homographic transformation is adopted in inves-
tigating system connections like addition, cascade interconnection, feedback interconnec-
tion, and so on. To illustrate possible difficulties, we discuss the cascade interconnection of
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Hm(�, X) and Hm(
, Y ). Assume that all the involved matrix inverses exist. Then direct
algebraic manipulations show that

Hm(�, X)Hm(
, Y )

= [�11X + �12][�21X + �22]−1 × [
11Y + 
12][
21Y + 
22]−1

= �12�
−1
22 
12


−1
22 +

[
�11 − �12�

−1
22 �21 �12�

−1
22 (
11 − 
12


−1
22 
21)

][
X

Y

]

×
{

I −
[

−�−1
22 �21 �−1

22 (
11 − 
12

−1
22 
21)

0 −
−1
22 
21

][
X

Y

]}−1[
�−1

22 
12

−1
22


−1
22

]
.

The rightmost expression in this equation is in fact a linear fractional transformation, which
will be defined immediately, of the matrix diag{X, Y }. From this expression it may not be
difficult to understand that a cascade connection of two homographic transformations is gen-
erally hard to be expressed by a compact homographic transformation.

In some literature, a homographic transformation is defined as

Hm(�, X) = [�11X + �12]−1[�21X + �22]

using matrices X and � =
[
�ij

∣∣2
i,j=1

]
with compatible dimensions. To clarify their differ-

ences, the former is called a right homographic transformation, whereas the latter is called a
left homographic transformation. It can be proven that these two homographic transforma-
tions can be converted to each other under some mild conditions. In this book, only the former
is adopted. Therefore, there will be no confusion if it is simply called as a homographic trans-
formation.

Another well-adopted transformation in system analysis and synthesis is called a linear frac-
tional transformation (LFT). In particular, there are two LFTs. One is called a lower LFT, and
the other is called an upper LFT.

Definition 2.11 (Linear Fractional Transformation). Given a matrix � =
[
�ij

∣∣2
i,j=1

]
with its submatrices having compatible dimensions, the upper LFT of a matrix X, denoted
Fu(�,X), is defined as

Fu(�, X) = �22 + �21X[I − �11X]−1�12.

Moreover, the lower LFT of this matrix, denoted Fl(�,X), is defined as

Fl(�, X) = �11 + �12X[I − �22X]−1�21.

Here, all the involved matrix inverses are assumed to exist.
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Obviously, an upper LFT can also be expressed as a lower LFT, and vice versa. More pre-

cisely, for a prescribed matrix � =
[

�11 �12

�21 �22

]
, define the matrix �̄ =

[
�22 �21

�12 �11

]
.

Then, it is obvious from the definitions of the lower and upper LFTs that

Fu(�, X) = Fl(�̄, X).

A linear fractional transformation is a natural way to describe relations among a plant, a con-
troller, and a closed-loop transfer function matrix in a feedback control system. It is also well
known that addition, multiplication, and feedback connection of LFTs can still be expressed
by an LFT. It has also been proven that under some weak conditions, the inverse of an LFT
is still an LFT. These properties make LFT very convenient in control system analysis and
synthesis.

For example, assume that the matrices � =
[

�11 �12

�21 �22

]
and 
 =

[

11 
12


21 
22

]
have

compatible dimensions, as well as their submatrices. Then, when the matrices X and Y

are also compatible in their dimensions and all the involved matrix inverses exist, it can be
straightforwardly proven that

Fu(�, X)Fu(
, Y ) = Fu(�, Z),

in which

� =
⎡
⎣ �11 �12
21 �12
22

0 
11 
12

�21 �22
21 �22
22

⎤
⎦ , Z =

[
X

Y

]
.

However, although the composite of two LFTs can still be expressed by an LFT, it generally
has no concise form as that of the homographic transformation, which is given in Lemma 2.6.
More precisely, assume that dimensions are compatible for each other in all the involved ma-
trix operations and that the existence is also guaranteed for all the involved matrix inverses.
Then, some tedious but direct algebraic manipulations show that

Fl {�, Fl(
, X)} = Fl(�, X),

where

� =
[

�11 + �12
11(I − �22
11)
−1�21 �12
12 + �12
11(I − �22
11)

−1�22
12


21(I − �22
11)
−1�21 
22 + 
21(I − �22
11)

−1�22
12

]

=
[

Fl (�, 
11) �12(I − 
11�22)
−1
12


21(I − �22
11)
−1�21 Fu (
, �22)

]
,
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which is quite complicated, compared with the product of the matrices � and 
 . In addition,
even when both matrices � and 
 are Hamiltonian, there is no guarantee that the matrix � is
also Hamiltonian.

As a matter of fact, the expression for the matrix � is called the Redheffer star product be-
tween the matrices � and 
 , which is able to include most of system interconnections, such
as cascade connection, feedback connection, additive connection, and so on as particular cases
[5,15,17].

In addition, under some conditions, a Homographic transformation can also be expressed as a
lower/upper LFT, and vice versa. In particular, assume that �22 is invertible. Define the


 =
[

�12�
−1
22 �11 − �12�

−1
22 �21

�−1
22 −�−1

22 �21

]
.

Then direct algebraic manipulations show that

Hm(�, X) = Fl(
, X).

On the contrary, assume that �21 is invertible. Define the matrix


 =
[

�11�
−1
21 �12 − �11�

−1
21 �22

�−1
21 −�−1

21 �22

]
.

Then it can also be shown through direct algebraic manipulations that

Fl(�, X) = Hm(
, X).

However, in these three different transformations, it is now extensively understood that one
transformation is more convenient than the other two transformations in dealing with a par-
ticular problem. As an example, the homographic transformation is used in this book for
studying convergence properties of some recursive state estimation algorithms, whereas the
linear fractional transformation is adopted in the investigations on controllability/observability
of a large-scale networked system.

In the above three transformations, all the matrices can be replaced by transfer function matri-
ces, which leads to the corresponding transformations of a transfer function matrix.

2.4 Set Function and Submodularity
For a given set V that only has M finite elements, denoted vi |Mi=1, a set function f (S) is a
mapping that assigns a real number to each subset of the set V , that is,

f : 2V −→ R. (2.8)

For a set S , let |S| denote the number of its elements. Many design problems encountered
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in engineering, including the sensor placements that will be discussed in the following Chap-
ter 11 of this book, can be mathematically described as

max
S⊆V, |S|≤k

f (S), (2.9)

where the function f (·) stands for a composite description of some performances that must
be maximized in the designs, whereas the set V consists of possible selections, and k is the
permissible number of the maximal selections.

Submodularity of a set function is extensively utilized in combinatorial optimizations. More
precisely, this property plays an essential role in combinatorial optimizations similar to that
of convexity in the optimization of a function with continuous variables and shares some at-
tractive characteristics with a concave function [18]. Interesting properties of submodularity
include its preservation under various operations, supported by mathematical theories that
are application oriented and mathematically rigorous, numerically feasible optimization algo-
rithms, and so on.

Definition 2.12. A set function f : 2V −→ R is said to be submodular if for each subset
pair (A, B) satisfying A ⊆ B ⊆ V and each element α that does not belong to the set B, we
have the inequality

f
(
A
⋃

{α}
)

− f (A) ≥ f
(
B
⋃

{α}
)

− f (B) (2.10)

If this inequality is valid when the relation “≥” is replaced by the relation “≤”, then the
associated set function is called supermodular. If a set function is both submodular and su-
permodular, then it is called modular.

It has been proven that inequality (2.10) is equivalent to that the inequality

f
(
A
⋂

B
)

+ f
(
A
⋃

B
)

≤ f (A) + f (B)

for all subsets A and B satisfying the restriction A ⊆ B ⊆ V . Submodular functions, super-
modular functions, and modular functions are analogous to convex functions, concave func-
tions, and linear functions with variables taking continuous values. Particularly, it has been
proven that in a modular function, each element of a subset in the set V contributes indepen-
dently to the value of the function, which is very attractive in optimizations. More precisely,
we have the following results [18,19].

Lemma 2.7. A set function f : 2V −→ R is modular if and only if there exists a function
w(·), usually called a weight function, such that for each subset S of the set V , we have the
equality

f (S) = w (∅) +
∑
s∈S

w(s), (2.11)

where ∅ is the empty set.



Background Mathematical Results 31

When a set function is modular, an algorithm can always be developed that optimizes its value
and whose computational complexity increases only linearly with the increment of the num-
ber of the elements in the set V . In fact, the associated optimization can be simply settled
through computing values of the set function at each element of the set V , sorting the com-
puted values, and selecting the elements that lead to the first k largest or smallest function
values.

A concept closely related to submodularity is monotone increasing, which is mathematically
clearer to be understood.

Definition 2.13. If for each subset pair (A, B) satisfying A ⊆ B ⊆ V , the set function f :
2V −→ R satisfies

f (A) ≤ f (B) , (2.12)

then this set function is called monotone increasing. If inequality (2.12) is valid with “≤” re-
placed by “≥” for all subsets A and B of the set V , then this set function is called monotone
decreasing.

The following lemma establishes a relation between submodular set functions and monotone
decreasing set functions.

Lemma 2.8. For an element v of the set V and a given set function f : 2V −→ R, define
the derived set function fv : 2V\{v} −→ R as

fv (S) = f
(
S
⋃

{v}
)

− f (S), (2.13)

where S is any subset of the set V\{v}. Then, the set function f (·) is submodular if and only if
for each v ∈ V , the derived set function fv(·) is monotone decreasing.

It can be simply shown from the definition that a nonnegative weighted sum of several super-
modular functions is still a supermodular function. Moreover, assume that a supermodular set
function f : 2V −→ R takes only nonnegative values and satisfies f (S) ≥ f (T ) when-
ever S ⊆ T . If g(∗) is a nondecreasing convex function that is differentiable and defined on
the set R, then the composite function g(f (�)) is also a supermodular function that maps 2V

to R.

In general, maximization of a set function that is both monotone increasing and submodular
is NP-hard [20]. On the other hand, it has also been proven that the so-called greedy heuristic
method, which selects the element from all the candidates that maximize the increment of the
set function in each step, leads to a solution that is close to the optimizer. In particular, the
greedy heuristic method selects elements from the set V as follows.
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Algorithm 2.4.1. The greedy heuristic method for maximizing a set function

1. Set S0 = ∅.
2. Compute the conditional increment of the set function f (S) as

δ (v|Si ) = f
(
{v}

⋃
Si

)
− f (Si )

for each v ∈ S\Si . Take vi as

vi = arg max
v∈S\Si

δ (v|Si ) .

3. Let Si+1 = Si

⋃{vi} and i =⇒ i + 1.
4. If i ≥ k, then end the computation and output the set Si . If i < k, then go to Step 2 and

start another round.

Moreover, the following approximation results have been proven, which give a universal up-
per bound on the relative error of the algorithm [20,21].

Theorem 2.6. Assume that the set function f (S) in the maximization problem of Eq. (2.9)
is submodular and monotone increasing. Let f � and f [greedy] denote respectively its optimal
value and the value obtained through the greedy heuristic method given by Algorithm 2.4.1.
Then

f � − f [greedy]

f � − f (∅)
≤
(

1 − 1

k

)k

≤ 1

e
. (2.14)

These results are quite attractive, as they reveal that the greedy heuristic method, which is
computationally simple and only seeks a local optimum in each element selection in the sense
of maximizing only the increment of the cost function, usually works approximately well for a
complicated combinatorial problem.

2.5 Probability and Random Process

In the description of uncertainties, an extensively adopted and efficient approach is probabil-
ity, in which a random variable is used to represent uncertainties. When a series of random
variables is to be investigated, a concept of a random process is usually introduced to deal
with their properties. This section gives some basic concepts and results on probability and
random process.

If the result of an experiment cannot be determined before performing the experiment, this
experiment is called a random experiment. The set consisting of all possible results of a ran-
dom experiment is called a sample space, which is usually denoted by . A set constituted



Background Mathematical Results 33

from some subsets of the sample space  is called a class, which is usually denoted by F .
A nonempty class F is called a σ -algebra if it satisfies the following three conditions:

•  belongs to F ;
• if A belongs to F , then, X\A also belongs to F ;
• if A1, A2, . . . belong to F , then

⋃∞
i=1 Ai also belongs to F .

Moreover, (, F) is called a measurable space.

A measure μ defined on a measurable space (, F) is called a probability measure if the
following three conditions are satisfied:

• for each A belonging to F , μ(A) ≥ 0;
• μ() = 1;
• for all A1, A2 belonging to F and satisfying A1

⋂
A2 = ∅, μ

(
A1

⋃
A2

) = μ(A1) +
μ(A2).

When (, F) is a measurable space and a measure μ is a probability measure over this mea-
surable space, the triple (, F, μ) is called a probability space.

Assume that X(ω) is a real-valued function defined on the set . If for an arbitrary real num-
ber α, the set { ω | X(ω) ≤ α } belongs to the class F , then the function X(ω) is called a
random variable. Accordingly, the function F(x) defined as

F(x) = μ(X(ω) ≤ x)

is called the distribution function of this random variable, whereas a function f (x) taking real
nonnegative values and satisfying

F(x) =
∫ x

−∞
f (u)du

for every real number x is called the probability density function of this random variable, usu-
ally abbreviated as PDF.

In the studies of random events, in addition to the probability of the occurrence of a random
event, some numerical characteristics have also been extensively adopted. Among them, the
most widely adopted ones appear to be the mathematical expectation E(X) and the variance
Var(X) of a random variable X(ω), which are defined respectively as

E(X) =
∫ ∞

−∞
xf (x)dx, Var(X) =

∫ ∞

−∞
[x − E(X)]2f (x)dx,

where f (x) is the probability density function of the random variable X(ω).



34 Chapter 2

When two or more random variables are under investigation, similar concepts have also been
developed, such as the joint probability density function, conditional mathematical expecta-
tion, covariance, independence of two random variables, and so on. The details can be found
in various standard textbooks, such as [22].

These concepts can be straightforwardly extended to situations where a random variable takes
vectorial values.

A random process is a mathematical object that is usually defined as a collection of random
variables/vectors indexed by a mathematical set, meaning that each random variable/vec-
tor of this random process is uniquely associated with an element in that set. In particular, a
random process X = { x(t), t ∈ T } can be interpreted as a parameterized family of random
variables defined on the same probability space (, F, μ), in which the parameter t may
be either a scalar or a vector. In fact, this parameter may be a temporal variable, or a spatial
variable, or both of them. Moreover, the index set T may consist of only finitely or countably
many elements and may even be uncountable. The set from which each random variable in the
aforementioned collection takes values is called the state space of the random process.

Distribution functions, PDFs, joint PDFs, and so on can be defined for random variables
belonging to the same random process or different random processes. Characteristics of a
random process are completely determined by the class of its finite-dimensional probability
distributions F

(
ti |ni=1, xi |ni=1

)
defined as

F
(
ti |ni=1, xi |ni=1

)= μ(X(t1) ≤ x1, X(t2) ≤ x2, · · · , X(tn) ≤ xn) ,

where, for each i = 1,2, . . . , n, ti ∈ T , and xi is a real scalar or a real vector with a com-
patible dimension. Moreover, n is an arbitrary positive integer. In case that xi is a vector, the
inequality in this definition must be understood elementwise.

In addition to the distribution function and PDF, numerical characteristics like mathematical
expectation, correlation, and so on are also extensively adopted in the description of prop-
erties of a random process and relations between different random processes. We list some
widely adopted ones:

• mathematical expectation function: mX(t) = E(X(t));
• variance function: VarX(t) = E([X(t) − m(t)]2);
• autocorrelation function: rX(s, t) = E(X(s)X(t));
• cross-correlation function: rXY (s, t) = E(X(s)Y (t)).

Differently from a random variable, all these numerical characteristics depend on the index t

in general, which means that they are deterministic functions with the index t as their vari-
able. These characteristics can be extended to situations in which a random process takes
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vector values. For instance, when the random process X = { x(t), t ∈ T } takes values from
an n-dimensional Euclidean real space, the definition of its variance function must be modi-
fied as VarX(t) = E([X(t) − m(t)][X(t) − m(t)]T ), which is in fact an n × n-dimensional
positive semidefinite matrix.

There are various special kinds of random processes that are widely adopted in engineering,
economics, biology, and so on in the behavior description of actual signal and/or disturbances.
The following are some of them that are used in the rest of this book.

• Second-Order Process. A random process is said to be a second-order process if the
mathematical expectation of the squares of its absolute value exists at each t ∈ T . This
requirement is quite natural, since most of random processes are of finite energy, which
leads to a finite value of the aforementioned quantity.

• Stationary Process. When a random process has the property that each its finite-
dimensional probability distribution F

(
ti |ni=1, xi |ni=1

)
does not depend on the particular

values of ti |ni=1, it is called stationary and sometimes strictly stationary. This property is
usually adopted in the description of a random process in its steady state.
When both the mathematical expectation function of a random process and its variance
function do not depend on a particular value of the index, this random process is also
called stationary. To differentiate it from the previous one, the terminology “weak sta-
tionary” is much more widely adopted. Compared with the distribution function-based
requirements, these two numerical characteristic-based requirements are much easier to be
verified using sampled data of a random process.

• Ergodic Process. A random process X = { x(t), t ∈ T } is said to be ergodic with respect
to a function f (·) if its ensemble average E(f (X(t))) equals to its index average, that is,

E(f (X(t))) = 1

μ(T )

∑
t∈T

f (X(t)),

where μ(T ) is the measure of the index set T .
According to different forms of the function f (·), a random process is called respectively
as mean-ergodic, mean-square ergodic in the first moment, autocovariance ergodic, mean-
square ergodic in the second moment, and so on. Intuitively, a random process is said to
be ergodic if its associated statistical properties can be estimated from one of its single but
sufficiently long realization.
Ergodicity is a quite attractive property in applications, such as those in biology, econo-
metrics, signal processing, and so on since it means that any sufficiently large collection
of random samples from a process can represent the ensemble average statistical proper-
ties of the process. The former can be obtained through one experiment, whereas the latter
generally asks for a great amount of experiments, which is usually time consuming and
sometimes economically expensive, and even prohibitive.
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• Martingale process. If a discrete-time or continuous-time random process has the prop-
erty that the expectation of its value at the next index is equal to its value at the current in-
dex conditional on all its previous values, then, this random process is called a martingale
process. This process is often encountered in iterative estimations, adaptive estimations,
adaptive controls, and so on.

• Bernoulli process. A simple, yet a widely adopted random process, is the so-called
Bernoulli process. It is a sequence of independent and identically distributed (extensively
abbreviated as iid) random variables, in which each random variable takes a value from
the set {0, 1}. A Bernoulli process may be considered as a process of repeated coin flip-
ping in which the coin is permitted to be unfair with its unfairness being restricted to be
time invariant. This process is extensively adopted in the description of data transmissions
in a communication network and so on.

• Markov process. This is another random process that is well encountered in applications.
The most prominent characteristic of this random process is that its future is uniquely
determined by its current state. Some important details are discussed in the next section.

Definition 2.14. Let
{
x(k)

∣∣∞
k=1

}
be a sequence of random vectors. This sequence is said to

converge to a random vector x in the mean-square if the second absolute moments of both{
x(k)

∣∣∞
k=1

}
and x exist and

lim
k→∞E

{
(x(k) − x)T (x(k) − x)

}
= 0. (2.15)

When there is a random vector x satisfying Eq. (2.15), this random vector is called the mean-
square limit of the sequence

{
x(k)

∣∣∞
k=1

}
. In addition, the corresponding convergence is usu-

ally indicated as x(k)
m.s.−→ x.

2.6 Markov Process and Semi-Markov Process

In signal processing, system analysis/synthesis, economy, biology, and so on, a well-
encountered random process is called a Markov process. Differently from a general random
process, a Markov process has the so-called memorylessness property, which is also exten-
sively called the Markov property. Briefly, if we call each possible value of a random process
X = { x(t), t ∈ T } at a fixed t , that is, the random variable x(t), a state of this random pro-
cess at that index, then the memorylessness property means that the conditional probability
of any state of this random process, given its past observed values, depends only on the most
recent past observed value. In other words, conditional on the present state of the random pro-
cess, its future and past states are independent. This property is quite useful, as it implies that
information contained in its current state is as rich as that contained in the process full history.
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Hence, predictions of the future of a Markov process can be performed using only its current
state without sacrificing any prediction performance.

When both t and x(t) take discrete values, a Markov process is called a Markov chain. In
other words, a Markov chain is a sequence of random variables X0, X1, · · · such that, for each
t ≥ 1,

Pr ( Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, · · · , X0 = x0 ) = Pr ( Xt = xt | Xt−1 = xt−1 ) .

An attractive property of Markov chains is that its joint probability has a significantly simple
form. More precisely, according to the Markov property and properties of conditional proba-
bility, it is straightforward to derive the following relations:

Pr ( Xt = xt , Xt−1 = xt−1, Xt−2 = xt−2, · · · , X0 = x0)

= Pr ( Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, · · · , X0 = x0 )

× Pr ( Xt−1 = xt−1, Xt−2 = xt−2, Xt−3 = xt−3, · · · , X0 = x0)

= Pr ( Xt = xt | Xt−1 = xt−1 )

× Pr ( Xt−1 = xt−1, Xt−2 = xt−2, Xt−3 = xt−3, · · · , X0 = x0)

= · · ·
=

1∏
i=t

Pr ( Xi = xi | Xi−1 = xi−1 ) × Pr ( X0 = x0) . (2.16)

If the possible values of x(t) are countable, denote them by αi |∞i=1, then from properties of
conditional probability we have that
⎡
⎢⎣

Pr(Xt = α1)

Pr(Xt = α2)

...

⎤
⎥⎦ =

⎡
⎢⎣

Pr(Xt = α1|Xt−1 = α1) Pr(Xt = α1|Xt−1 = α2) · · ·
Pr(Xt = α2|Xt−1 = α1) Pr(Xt = α2|Xt−1 = α2) · · ·

...
...

...

⎤
⎥⎦×

⎡
⎢⎣

Pr(Xt−1 = α1)

Pr(Xt−1 = α2)

...

⎤
⎥⎦ , (2.17)

in which the matrix
[

Pr(Xt = αi |Xt−1 = αj )
∣∣∞
i,j=1

]
is called the probability transition ma-

trix. The relations revealed in Eqs. (2.16) and (2.17), together with results on matrix analysis,
are useful in establishing properties of a Markov chain, such as reducibility, periodicity, tran-
sience and recurrence, mean recurrence time, and so on, especially when x(t) only takes
finitely many values.
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When the conditional probability Pr(Xt = αi |Xt−1 = αj ) is independent of the index t for all

i, j = 1,2, · · · , the probability transition matrix is usually written as
[
pij

∣∣∞
i,j=1

]
.

The next theorem gives a simple, yet very useful, method to generate a Markov chain, which
can also be applied to the verification on whether or not a random process is a Markov chain.

Theorem 2.7. Let S denote the set consisting of all the values of a random process X =
{ x(t), t ∈ T } with countable index set. Represent its index set as T = {1, 2, · · · }. Assume
that f (·, ·) is a function mapping S ×S into S . Suppose that this random process satisfies the
following two conditions:

• for each integer t ≥ 1, X(t) = f (X(t − 1), ξ(t)), where ξ(t) also belongs to the set S;
• the random process {ξ(t), t ≥ 1} is a sequence of independent and identically distributed

random variables or vectors. Moreover, X(0) is also independent of this random se-
quence.

Then, the random process {X(t), t ≥ 0} is a Markov chain. Moreover, for each i, j = 1,2, · · · ,
its one-step transition probability is

pij = μ{f (x(i), ξ) = x(j)}.

Note that the equation X(t) = f (X(t −1), ξ(t)) takes completely the same form as that of the
state transition equation in a state space model of a dynamic system. Applicability of Markov
chains can be highly expected and in fact has been extensively investigated in dealing with
signal processing problems and problems in dynamic system analysis and synthesis.

More generally, there is also a Markov chain of order m, in which m is a finite positive inte-
ger. In this random process, we have

Pr ( Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, · · · , X0 = x0 )

= Pr ( Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, · · · , Xt−m = xt−m )

for each t ≥ m, that is, the probability of a random event at the t th index associated with a
Markov chain depends only on the past m random event. Clearly, when m = 1, this process
reduces to the normal Markov chain.

Definition 2.15 (Semi-Markov Process). For a random process with a finite or countable
number of states, assume that it has a stepwise trajectory with jumps at indices. If the values
of this random process at its jump indices form a Markov chain, then it is called a semi-
Markov process.

Semi-Markov processes provide a model for many processes widely used in fields like queue-
ing theory, reliability theory, and so on.
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2.7 Bibliographic Notes

Mathematics have been extensively adopted in system analysis and synthesis, in which almost
all branches of mathematics have found their impacts. Examples include differential geom-
etry in nonlinear system analysis and synthesis, functional analysis in robust control system
designs, and so on. This chapter provides some mathematical concepts and results that are
closely related to analysis and synthesis of a networked system, which are mostly from linear
algebra, probability theory, and random processes. Detailed investigations on these concepts
and results can be easily found in many standard textbooks and monographes in mathematics,
for example, [1,2,7,22,23].

Basic concepts and results for combinatorial optimizations can be found, for example, in [18,
19]. Concerning with convex optimization, [24,25] provides an excellent introduction on its
essential motivations and basic results.
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CHAPTER 3

Controllability and Observability of an LSS

3.1 Introduction

A prominent characteristic of modern control theory is the adoption of a state space model,
which uses a set of first-order differential equations in the description of system input–output
dynamics. The states of a plant might be either its actual physical variables or some of their
linear combinations. Usually, not all of these states can be directly manipulated and/or mea-
sured. An essential issue is therefore whether it is possible to maneuver a plant state to a
desirable value using feasible inputs and to estimate a plant state through measurements of
accessible variables. The former is usually called controllability of the plant, whereas the lat-
ter its observability [1,2].

It is now extensively known that controllability and observability are closely related to other
important characteristics of a plant. For example, controllability is required to locate eigen-
values of a linear system into an arbitrary desirable area through state feedbacks, whereas to
guarantee the existence of a linear control law that makes the H2 or H∞ norm smaller than
a prescribed value, the plant must be both controllable and observable. In addition to these,
convergence of a state estimator is also closely related to the observability of a plant.

Controllability and observability are primarily formulated and investigated by Kalman [3]
in his pursuit of system analysis and synthesis using a state space model. Through exten-
sive pursuits of many researchers, various results have been obtained for the verification of
the controllability and observability of a system. Originally, this problem is investigated for
a linear dynamic system without any restrictions on plant inputs, states, and outputs. After-
ward, these results are extended to more practical situations in which plant inputs and/or states
and/or outputs are restricted to some prescribed sets and to nonlinear dynamic systems with
the help of Lie brackets and Lie algebras. There are also studies on relations between con-
trollability/observability of a system and its structure, which are usually called structural
controllability and structural observability, respectively. Rather than system parameters, the
corresponding results depend only on the positions of plant inputs and outputs, directed con-
nections among plant states, way that the plant states are connected to its inputs, and the way
that the plant outputs are connected to its states.

Although issues related to system controllability/observability have been investigated for
more than half a century, it is still an active research topic. Especially, stimulated by the de-
velopment of sensor technologies, communication technologies, computer technologies, and
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so on, network technologies are widely recognized to be very helpful in the sense of providing
more structural flexibilities, reducing greatly hardware investments, and so on in the construc-
tion of a control system. With the dream of making these advantages realistic, recently, there
emerged extensive interests in the verification of controllability and observability of a net-
worked system.

In this chapter, we aim at developing a numerically stable and computationally feasible
method for checking these properties of a system constituted from a great number of subsys-
tems. Verification of controllability and observability of a linear time-invariant (LTI) system is
investigated without any constraints on its inputs, outputs, and states. At first, we summarize
major associated results for a lumped LTI system. A model for spatially connected systems is
introduced afterward, which is more convenient than the available descriptions and can rep-
resent the dynamics of a larger plant class. Necessary and sufficient conditions are given in
Section 4.3 for the controllability and observability of a spatially connected system, which in-
dependently depends on parameters of each of its subsystems and its subsystem connection
matrix. As a model is no longer required for the associated lumped system, this property is
quite attractive in large-scale system analysis and synthesis.

3.2 Controllability and Observability of an LTI System

To investigate controllability and observability of a large-scale system, we first discuss these
properties for a general finite-dimensional discrete LTI system. For these systems, its input–
output relation can be described by the state space model of the following equations:

x(k + 1) = Ax(k) + Bu(k), (3.1a)

y(k) = Cx(k) + Du(k), (3.1b)

where x(k), u(k), and y(k) are respectively the plant state vector, input vector, and output
vector. As in the remaining chapters of this book, their dimensions are assumed to be respec-
tively n, q , and p.

Generally speaking, controllability is concerned with capabilities of a system in maneuver-
ing its states through external inputs, whereas observability is concerned with capabilities of
estimating its states using measurements of external outputs. Formally, they are defined as
follows.

Definition 3.1. The matrix pair (A, B) or, equivalently, the discrete dynamical sys-
tem described by Eqs. (3.1a) and (3.1b) is said to be controllable if for an arbitrary
state vector pairs (x0, x1), there exist a positive integer k and an input vector sequence
u(0), u(1), . . . , u(k − 1) such that under the drive of this sequence, the state vector of the
system satisfies x(k) = x1 when starting from x(0) = x0. Otherwise, the system or the matrix
pair is said to be uncontrollable.
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In some literature, controllability of a discrete system is also called reachability. To be con-
sistent with continuous systems and avoid possible confusions, in this book, we use the term
controllability.

Concerning a discrete LTI system, several criteria are available for the verification of its con-
trollability using its system parameters. The following theorem summarizes some of the most
widely used ones.

Theorem 3.1. The discrete dynamical system of equations (3.1a) and (3.1b) is controllable if
and only if one of the following conditions is satisfied:

• The controllability matrix C = [ B AB A2B · · · An−1B ] is of full row rank.
• The matrix [λI − A B] is of full row rank for every complex number λ.

The first condition of the theorem is relatively obvious noting that

x(k) = Ax(k − 1) + Bu(k − 1)

= A [Ax(k − 2) + Bu(k − 2)] + Bu(k − 1)

= · · ·

= Akx(0) + [ B AB A2B · · · Ak−1B ]

⎡
⎢⎢⎢⎣

u(k − 1)

u(k − 2)

...

u(0)

⎤
⎥⎥⎥⎦ . (3.2)

On the other hand, note that according to matrix theories [4], for an arbitrary square matrix A

of dimension n × n, Ak can always be expressed as a linear combination of the matrices In,
A, . . . , and An−1 whenever k is a nonnegative integer. From these results it is not difficult to
imagine that to guarantee the existence of a control consequence u(0), u(1), . . . , u(k − 1) for
an arbitrary positive integer k ≥ n and arbitrary n-dimensional column vectors x0 and x1, such
that Eq. (3.2) is satisfied with x(0) = x0 and x(k) = x1, it is necessary that the controllability
matrix C is of full row rank.

To understand the second criterion, we assume that the system is controllable, but the matrix
[λI − A B] is not of full row rank at every complex number λ. Then, there exist at least one
complex number λ∗ and one nonzero n-dimensional row vector x∗ such that

x∗[λ∗I − A B] = 0, (3.3)

which can be equivalently rewritten as

λ∗x∗ = x∗A, x∗B = 0, (3.4)
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Hence

x∗C = x∗[ B AB A2B · · · Ak−1B ]
= λ∗[ 0 x∗B x∗AB · · · x∗Ak−2B ]
= · · ·
= 0, (3.5)

which is in contradiction with the first criterion.

A mathematically rigorous proof of the theorem can be found in many textbooks on linear
systems and/or linear estimations, such as [1,2].

Note that except at an eigenvalue of the matrix A, the matrix λI −A is always of full row rank
and of full column rank. This implies that verification of the second criterion is only required
at the eigenvalues of the matrix A.

Another fundamental concept in system analysis and synthesis is observability of a system.
While controllability and observability of a system are completely different from an engineer-
ing point of view, it is now well known that they are mathematically dual.

Definition 3.2. The discrete dynamical system described by Eqs. (3.1a) and (3.1b) or, equiv-
alently, the matrix pair (A, C), is said to be observable if there exits a positive integer k such
that each initial system state vector x(0) can be revealed from the input–output vector pairs
(u(s), y(s))ks=0. Otherwise, this system or matrix pair is said to be unobservable.

Note that when the input sequence u(k)|∞k=0 is assumed to be known, it is clear from
Eq. (3.1a) that all the uncertainties in the plant state vectors are caused by its initial values.
This means that when the initial state vector of a plant is revealed from its output measure-
ments, all of its state vectors can be revealed also from these measurements.

Similar to Theorem 3.1, we also have some algebraic criteria for the verification of observ-
ability of a system.

Theorem 3.2. The discrete dynamical system of equations (3.1a) and (3.1b) is observable if
and only if one of the following conditions is satisfied:

• The observability matrix O = [
CT AT CT (A2)T CT · · · (An−1)T CT

]T
is of full column

rank.

• The matrix

[
λI − A

C

]
is of full column rank for every complex number λ.
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Note that through substituting Eq. (3.2) into Eq. (3.1b) we have that, for an arbitrary positive
integer s,

y(s) = C

⎡
⎢⎢⎢⎣Asx(0) + [ B AB A2B · · · As−1B ]

⎡
⎢⎢⎢⎣

u(s − 1)

u(s − 2)

...

u(0)

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦+ Du(s)

= CAsx(0) + [ D CB CAB · · · CAs−1B ]

⎡
⎢⎢⎢⎢⎢⎣

u(s)

u(s − 1)

u(s − 2)

...

u(0)

⎤
⎥⎥⎥⎥⎥⎦

. (3.6)

Hence, the following equality is valid whenever k is a nonnegative integer:

⎡
⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAk

⎤
⎥⎥⎥⎥⎥⎥⎦

x(0) =

⎡
⎢⎢⎢⎢⎢⎣

y(0)

y(1)

y(2)

...

y(k)

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAk−1B CAk−2B CAk−3B · · · D

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u(0)

u(1)

u(2)

...

u(k)

⎤
⎥⎥⎥⎥⎥⎦

.

(3.7)

Once again, recall that when k is a nonnegative integer, Ak can be expressed as a linear com-
bination of the matrices In, A, . . . , and An−1. It is clear that to recover the system initial state
vector x(0) from its input–output vector pairs (u(s), y(s))ks=0 with k ≥ n, it is necessary that
the observability matrix O is of full column rank. The sufficiency of this condition is also
clear, noting that when the matrix O is of full column rank, there exists one and only one
vector x(0) that satisfies Eq. (3.4) whenever k ≥ n; that is, the system initial state vector is
uniquely determined by its input–output pairs under this condition.

To understand the necessity and sufficiency of the second condition, assume that the system

is observable, but the matrix

[
λI − A

C

]
is not of full column rank at each complex num-

ber λ. Then, there exists a complex number λ∗ and a nonzero n dimensional complex column
vector x∗, such that [

λ∗I − A

C

]
x∗ = 0, (3.8)
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which is equivalent to

Ax∗ = λ∗x∗, Cx∗ = 0 (3.9)

Hence

Ox∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

x∗ = λ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

0
Cx∗

CAx∗
...

CAn−2x∗

⎤
⎥⎥⎥⎥⎥⎥⎦

= · · · = 0. (3.10)

That is, the observability matrix O is not of full column rank. This is a contradiction with the
first criterion.

Similarly to system controllability verifications, the verification of the second condition about
system observability is only required to be performed at the eigenvalues of the matrix A.

Our discussions only provide some engineering insights about the criteria for system observ-
ability. For a more mathematically rigorous proof, a reader is recommended to refer to [1,2]
among many excellent textbooks on optimal control and estimations.

From Theorems 3.1 and 3.2 it is clear that the verification of the controllability of the matrix
pair (A, B) is equivalent to the verification of the observability of the matrix pair (AT , BT )

and that the verification of the observability of the matrix pair (A, C) is equivalent to the ver-
ification of the controllability of the matrix pair (AT , CT ). This relation is extensively known
as the duality between controllability and observability of a system, which is sometimes very
helpful in the analysis and synthesis of a complex system.

The second conditions in the aforementioned two theorems are usually called the PBH test,
abbreviated from the names of three researchers V.M. Popov, V. Belevitch, and M. Hautus.

From these results the minimal number of inputs can be obtained for a plant with a prescribed
state transition matrix such that an input matrix can be constructed that makes the plant con-
trollable, as well as a parameterization for all input matrices that has a fixed number of inputs
and can construct a controllable plant with this prescribed state transition matrix. Using duali-
ties between controllability and observability of a linear time-invariant system, similar results
can be obtained for the minimal number of outputs that leads to an observable plant and a pa-
rameterization for all plant output matrices [5]. These results can be extended to situations
in which there are some constraints on the plant input/output matrices, which are frequently
encountered in actual engineering systems, biological systems, and so on [6].
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3.2.1 Minimal Number of Inputs/Outputs Guaranteeing Controllability/Observability

In the design of a large-scale system, a fundamental issue is to appropriately, if not optimally,
locate actuators and sensors [7]. Toward a solution to this problem, we discuss in this subsec-
tion that how many actuators/sensors are required such that a controllable/observable system
can be constructed.

In the following investigations, subscripts r and c are adopted to indicate whether a quantity,
variable, and so on is associated with a real or complex eigenvalue of the STM A. This in-
dication is important to clarify differences of real and complex eigenvalues in constructing
either a real input matrix B or a real output matrix C such that the LTI system � is control-
lable or observable. Moreover, it is assumed that among the n eigenvalues of the STM A,
there are kr distinct real values and kc distinct complex values, which are respectively denoted
by λr,i |kr

i=1 and λc,i |kc

i=1. This assumption is introduced only for a concise presentation, and
does not sacrifice any generality of the obtained results. Furthermore, for each i = 1,2, . . . , k

and all ∗ = r, c, let
{
x∗,i (j)

∣∣p∗(i)
j=1

}
denote a set of linearly independent vectors that span the

null space of the matrix λ̄∗,iIn − AT . In addition, define pmax as

pmax = max

{
max

1≤i≤kr

pr(i), max
1≤i≤kc

pc(i)

}
. (3.11)

Obviously, the quantity pmax is actually the maximum geometric multiplicity of the plant state
transition matrix. In this subsection, it is proven that both the minimal number of inputs for
controllability assurance and the minimal number of outputs for observability assurance are
equal to pmax .

Note that the state transition matrix A is in general real. It can be proven that any of its left
eigenvectors associated with an eigenvalue λ∗,i is also a right eigenvector of the matrix AT

associated with its eigenvalue λ̄∗,i . This means that the vectors x∗,i(j)
∣∣p∗(i)
j=1 are well defined,

and p∗(i) ≥ 1 equals the dimension of the λ∗,i related eigenspace of the STM A, that is, for
all ∗ = r, c and i = 1, · · · , k∗, p∗(i) equals the geometric multiplicity of its eigenvalue λ∗,i

[8]. Hence, pmax is the maximum of the geometric multiplicities of this matrix. (The geomet-
ric multiplicity of an eigenvalue is different from its algebraic multiplicity. The latter refers to
its multiplicity as a root of the characteristic polynomial of the matrix.)

From Theorem 3.1 the following conclusion is established, giving a necessary and sufficient
condition on an input matrix B for the corresponding system � to be controllable.

Lemma 3.1. For all ∗ = r, c and i = 1,2, · · · , k∗, define the matrix

X∗,i = [
x∗,i(1) x∗,i (2) · · · x∗,i (p∗(i))

]
. (3.12)
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Then, a system with its state transitions described by Eq. (3.1a) is controllable if and only if
the matrix BT X∗,i is always of full column rank (FCR).

Proof. Let the set X represent C when ∗ = c and R when ∗ = r . From the definition of the
matrix X∗,i and properties of the eigenvectors of a matrix it is clear that, for all ∗ = r, c and
i = 1,2, · · · , k∗, x is a left eigenvector of the matrix A associated with its eigenvalue λ∗,i if
and only if there exists a nonzero vector α ∈ X p∗(i) such that x = X∗,iα. The proof can now
be completed through a direct application of the PBH test in Theorem 3.1. This completes the
proof.

It is worth mentioning that a left eigenvector of a real-valued square matrix may still be com-
plex valued [4]. On the other hand, for a practically realizable system, its input matrix is
usually required to be real valued. This real–complex mixture asks careful investigations
about the minimal inputs required to guarantee system controllability. Note also that, for a
real valued matrix A, if a vector x ∈ Cn is one of its left eigenvectors associated with a com-
plex eigenvalue λ, then the complex number λ̄ is also its eigenvalue. Moreover, the vector x̄

is a left eigenvector associated with this eigenvalue λ̄ [4]. It can therefore be declared that
if kc �= 0, then it is certainly an even number. Hence, it can be assumed, without any loss of
generality, that λi+kc/2 = λ̄i and Xi+kc/2 = X̄i , i = 1,2, · · · , kc

2 , provided that kc ≥ 1. This
assumption is adopted throughout the rest of section.

To give a clear description on the minimal inputs required for controllability assurance, the
state transition matrix A is first expressed through its Jordan canonical form. From the as-
sumption that the eigenvalues λ∗,i are different and each of them has p∗(i) independent left
eigenvectors, i = 1,2, . . . , k∗, ∗ = r or c, it can be declared from results on matrix anal-
ysis [4] that, associated with each λ∗,i , there are p∗(i) Jordan blocks. Denote these Jordan
blocks by J∗,i,j , and assume their dimensions being m∗,i,j respectively, j = 1,2, · · · ,p∗(i).
Moreover, for each Jordan block, there exists an (n × m∗,i,j )-dimensional FCR matrix T∗,i,j

satisfying

T∗,i,j J∗,i,j = AT∗,i,j , (3.13)

and the vectors of the first columns of the matrices T∗,i,j |pr(i)

j=1 are linearly independent. Fur-
thermore, the matrix T∗,i,j is real when the associated eigenvalue is real and is generally
complex when the associated eigenvalue is complex.

For a given scalar α∗,i,j , define the matrix

B̂∗,i =
[

diag

{[
0m∗,i,j−1

α∗,i,j

]p∗(i)

j=1

}
, 0∑p∗(i)

j=1 m∗,i,j×(pmax−p∗(i))

]
,
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in which α∗,i,j belongs to the set R when ∗ = r and to the set C when ∗ = c. On the basis of
these matrices, construct the input matrix

B =
kr∑

i=1

[
Tr,i,j Tr,i,2 · · · Tr,i,pr (i)

]
B̂r,i + 2

kc/2∑
i=1

�
{[

Tc,i,j Tc,i,2 · · · Tc,i,pr (i)

]
B̂c,i

}
. (3.14)

Using this particularly constructed input matrix, the following results are obtained, which
reveal the minimal input number for System � being controllable.

Theorem 3.3. There exists a matrix B ∈ Rn×q such that a system with its state transitions
described by Eq. (3.1a) is controllable if and only if q is not smaller than pmax .

Proof. Assume that there exists a matrix B ∈ Rn×q with q < pmax such that the matrix pair
(A,B) is controllable. Let I denote the set consisting of the indices of the eigenvalues of the
matrix A such that the maximum number of the associated linearly independent left eigenvec-
tors achieves pmax, that is,

I = Ir

⋃
Ic, (3.15)

where I∗ = { i | p∗(i) = pmax, 1 ≤ i ≤ k∗ } with ∗ = r, c.

From the definitions it is clear that the sets Ir and Ic may be empty, but it is certain that they
cannot be simultaneously empty.

Assume that the set Ic is not empty. For an arbitrary positive integer i ∈ Ic, from the defini-
tion of the matrix Xc,i given by Eq. (3.12) we have that the dimension of the matrix BT Xc,i

is q × pmax, which cannot be FCR when q < pmax. This contradicts with Lemma 3.1. Similar
arguments apply when the set Ir is not empty. Hence, to guarantee the controllability of the
matrix pair (A, B), the matrix B must have at least pmax columns.

On the other hand, from Eq. (3.13) and the fact that the state transition matrix A is real, by
the arrangements of its eigenvalues it is obvious that T̄∗,i,j J̄∗,i,j = AT̄∗,i,j , which further im-
plies that T̄c,i,j Jc,i+kc/2,j = AT̄c,i,j for all i = 1,2, . . . , kc

2 and j = 1,2, . . . , pc(i). Define the
matrix

T = [Tr Tc] (3.16)

with Tc =
[[

Tc,i,j

]j=pc(i),i=kc/2
j=1,i=1

[
T̄c,i,j

]j=pc(i),i=kc/2
j=1,i=1

]
and Tr = [

Tr,i,j

]j=pr(i),i=kr

j=1,i=1 . Since

eigenvectors of a matrix associated with different eigenvalues are linearly independent [4]
and the first columns of the matrices T∗,i,j |pr(i)

j=1 are linearly independent, it can be straightfor-
wardly proven that the matrix T is invertible. Moreover,

T −1AT = diag
{
J∗,i,j

∣∣j=p∗(i),i=k∗,∗=c

j=1,i=1,∗=r

}
, (3.17)
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T −1B = col
{

B̂r,i

∣∣∣kr

i=1
, B̂c,i

∣∣∣kc/2

i=1
,

¯̂
Bc,i

∣∣∣kc/2

i=1

}
. (3.18)

Note that, for an arbitrary complex number λ ∈ C,

[λIn − A, B] = T
[
λIn − T −1AT, T −1B

]
diag{T −1, Ipmax }. (3.19)

It is clear that the matrix [λIn − A, B] is of FRR for each λ ∈ C if and only if every α∗,i,j in
the definition of the matrix B is not equal to zero. Hence, through selecting an appropriate
value for α∗,i,j , we can construct a real-valued input matrix B with exactly pmax columns
such that the associated matrix pair (A, B) is controllable.

This completes the proof.

Theorem 3.3 makes it clear that to construct a controllable system, the minimal number of
inputs is exactly equal to the maximum geometric multiplicity of the state transition matrix.
From its proof, especially from Eqs. (3.17)–(3.19), it can be understood that if the input num-
ber is smaller than pmax, then, no matter how the input matrix B is selected, there certainly
exist some states whose transition processes cannot be independently maneuvered by exter-
nal inputs. This means that in the plant state space Rn, there are some places that cannot be
reached by the plant states. Hence, controllability of the system cannot be guaranteed.

Now, consider the problem of finding the minimal number of outputs such that the system is
observable.

Note that all the system matrices A, B , C, and D are real valued. From Theorem 3.2 it is clear
that the observability of the matrix pair (A, C) is equivalent to the controllability of the ma-
trix pair (AT , BT ), which is well known in systems and control theory as the duality between
system observability and system controllability [1,2,9]. These mean that the results of Theo-
rem 3.3 can be directly applied to finding the minimal number of outputs such that an output
matrix C can be constructed that makes the matrix pair (A, C) observable. The results are
given in the following corollary. Their proof is omitted due to the straightforwardness.

Corollary 3.1. There exists a matrix C such that the system � is observable if and only if the
dimension of the output vector y(k) is not smaller than the maximum geometric multiplicity of
the STM A, that is, pmax.

3.2.2 A Parameterization of Desirable Input/Output Matrices

In the previous subsection, a necessary and sufficient condition is given for the existence of an
input/output matrix B/C such that the associated system is controllable/observable. In many
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engineering problems, there usually exist some other requirements on a system input/output
matrix. For example, some system states can hardly be straightforwardly affected by an ex-
ternal input or can hardly be directly measured by a sensor, constraints exist on input energy,
restrictions are put on the number of the states that can be directly affected/measured, and so
on [9–11]. To satisfy these requirements, it appears desirable to have a parameterization for all
system input/output matrices.

In this subsection, we give a complete parameterization for all the input matrices B that have
the minimal column number and construct a controllable system with the STM A. Using the
duality between controllability and observability, these results can be directly applied to the
parameterization of the system output matrix C that has a minimal row number and construct
an observable system with the same state transition matrix A.

To get this parameterization, for all ∗ = r, c and i = 1,2, . . . , k∗, define the integer

m∗,i =
p∗(i)∑
j=1

m∗,i,j . (3.20)

Moreover, for an arbitrary function of an integer variable j , define
∑b

j=a f (j) = 0 when-
ever b < a. Then, we have the following results; their proof is deferred to the appendix of this
chapter.

Theorem 3.4. The matrix pair (A, B) is controllable with a matrix B having the minimal
number of columns if and only if there exist B̂r,i ∈ Rmr,i×pmax , i = 1,2, . . . , kr , and B̂c,i ∈
Cmc,i×pmax , i = 1,2, . . . , kc

2 , such that B̂c,i+kc/2 = ¯̂
Bc,i , i = 1,2, . . . , kc

2 , and

B = T col
{

col
{
B̂r,i |kr

i=1

}
, col

{
B̂c,i |kc

i=1

}}
, (3.21)

and the matrix

B̃∗,i =
⎡
⎣b̂∗,i

⎛
⎝k−1∑

j=1

m∗,i,j + 1, s

⎞
⎠
⎤
⎦

s=pmax,k=p∗(i)

s=1,k=1

(3.22)

is of FCR for each i = 1,2, . . . , kr with ∗ = r and for each i = 1,2, . . . , kc

2 with ∗ = c. Here,

b̂∗,i (k, l) is the kth row lth column element of the matrix B̂∗,i .

From the definition of the matrix B in Eq. (3.21) it is clear that it has just pmax columns.
Hence, the results of Theorem 3.4 in fact give a complete parameterization for all input ma-
trices B that have the minimal number of inputs and construct a controllable system with the
STM A. On the other hand, from the proof of Theorem 3.4 it is obvious that its conclusions
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are in fact also valid when the number of system inputs is greater than pmax. It can there-
fore be declared that when pmax is replaced by an arbitrary integer q satisfying q ≥ pmax,
Eq. (3.21) also gives a complete parameterization for all input matrices B that have q columns
and the associated matrix pair (A, B) is controllable.

When the STM A is prescribed, similar results can be obtained for parameterizing all output
matrices of an observable system with its output number not smaller than pmax. These results
can simply be obtained through the duality between system controllability and observability.

On the other hand, based on Theorem 3.4, the minimal numbers of inputs and outputs and a
parameterization of the plant input/output matrix can be derived for a controllable/observable
system, in which some rows/columns of its input/output matrix are prescribed to be zero. This
is a well-encountered situation in actual applications, in which some plant states cannot be
directly affected by an external signal or cannot be directly measured by a sensor. A detailed
discussion is given in [6].

3.2.3 Some Nitpicking

Closely related to controllability/observability of a system, there is a concept called structural
controllability/observability [10,12,13], which appears to be originally introduced in [14].
Loosely speaking, assume that in the state space model of a system, its state transition matrix,
input matrix, output matrix, and a direct feed matrix depend on a parameter vector. Then, the
system is said to be strongly structurally controllable if for all feasible values of this parame-
ter vector, the system is controllable. On the other hand, if there exists at least one particular
value for this parameter vector in its feasible sets such that the system is controllable when
this parameter vector is fixed at that fixed value, then the system is said to be weakly struc-
turally controllable, which is usually abbreviated as structurally controllable. Similar concepts
have also been developed for system observability.

On the other hand, it has been proven that in various types of extensively adopted system
models, either controllability or observability is a generic property of the system [15], which
means that if the system is controllable/observable for one particular value of its parameter
vector, then it is controllable/observable for almost all other values of its parameter vector in
its definition set. The essential reason for this result is that if system matrices of a plant de-
pend on a parameter vector, denote it by p, then the controllability matrix C of this system,
defined in Theorem 3.1, is also a matrix-valued function of this parameter vector. To clarify
this dependence, denote it by C(p). Then, according to Theorem 3.1, the values of this param-
eter vector that lead to a uncontrollable system must satisfy

det
(
C(p)CT (p)

)
= 0. (3.23)
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Assume that there is a particular value of the parameter vector p, say p(0), that makes the
associated system controllable. Then it is necessary that

C(p(0))CT (p(0)) > 0. (3.24)

This inequality implies that the determinant of the matrix C(p)CT (p) is not constantly
equal to zero. Under such a situation, it can be proven that the parameter vectors that satisfy
Eq. (3.23) usually construct a proper algebraic variety in the parameter space. The most ob-
vious one is the case in which det(C(p)CT (p)) is a rational function of each element of the
parameter vector, which is well encountered in actual problems. Note that a proper algebraic
variety has a zero Lebesgue measure. It is not very hard to understand that if the system is
controllable at a particular value of the parameter vector p, then at almost each value of this
parameter vector, the system is also controllable.

This generic property makes it possible to connect system controllability/observability with
its structure and to significantly reduce gaps between strong and weak structural control-
labilities/observabilities. In addition, it also makes graph theory applicable to verifications
of system controllability/observability. As a matter of fact, rather than numerical compu-
tations, almost all results about structural controllability/observability are expressed with
terminologies of graph theory, such as path, cactus, and so on. Attractive characteristics of the
associated results include their clear graphical illustrations, which is helpful in understanding
information flows in a system and quite important in system analysis and synthesis.

Another issue in system analysis and synthesis is that even if it is controllable, the system
may still not be very easy to be actually controlled. This requires investigations on appropriate
measures on system controllability, which is usually related to energy needed to maneuver
plant states [16,17].

3.3 A General Model for an LSS

Large-scale systems (LSS) are encountered frequently in engineering practice, biology sys-
tems, cyber-physical systems, and so on. Researches on LSS are extensively regarded to be
started around 1970s. Various research articles and monographs have been published on the
analysis and synthesis of an LSS [18,19]. In these studies, influences among subsystems are
usually described through their state vectors. This description is general enough to represent
the dynamics of a large class of interconnected systems. Sometimes, however, it may lose im-
portant structure information of these systems, which is helpful in reducing computational
complexity in LSS analysis and design.
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Figure 3.1: A schematic diagram for a networked system.

In this book, we adopt an LSS model in which subsystems affect each other through their
outputs. More precisely, we consider the following networked system � constituted from N

linear dynamic subsystems with the dynamics of its ith subsystem �i described by⎡
⎣ x(k + 1, i)

z(k, i)

y(k, i)

⎤
⎦ =

⎡
⎣ Axx(k, i) Axv(k, i) Bx(k, i)

Azx(k, i) Azv(k, i) Bz(k, i)

Cx(k, i) Cv(k, i) Du(k, i)

⎤
⎦
⎡
⎣ x(k, i)

v(k, i)

u(k, i)

⎤
⎦ (3.25)

and interactions among its subsystems described by

v(k) = �(k)z(k), (3.26)

where z(k) = col
{
z(k, i)|Ni=1

}
and v(k) = col

{
v(k, i)|Ni=1

}
. Moreover, k and i stand respec-

tively for the temporal variable and the index number of a subsystem, x(k, i) represents the
state vector of the ith subsystem �i at the time instant k, z(k, i) and v(k, i) are its output vec-
tor to other subsystems and input vector from other subsystems, and y(k, i) and u(k, i) are its
output and input vectors. To distinguish the output vector z(k, i) and the input vector v(k, i)

from the output vector y(k, i) and the input vector u(k, i), the vectors z(k, i) and v(k, i) are
called internal output/input vectors, whereas y(k, i) and u(k, i) are called external output/in-
put vectors.

Note that in this model, except the linearity requirement, there are no other restrictions on
the subsystems and their connection matrix. In fact, the dynamics of each subsystem may be
completely different, and connections among different subsystems are arbitrary.

An illustrative diagram is given in Fig. 3.1 for the model, in which z�(k, �) is the �-th subvec-
tor of the internal output vector z(k, �) of the plant’s �-th subsystem ��, whereas v�(k, �) is
the �-th subvector of its internal input vector v(k, �).
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To obtain a model for the whole system, we define the matrices A∗#(k)=diag
{
A∗#(k, i)|Ni=1

}
,

B∗(k) = diag
{
B∗(k, i)|Ni=1

}
, C∗(k) = diag

{
C∗(k, i)|Ni=1

}
, and Du(k) = diag

{
Du(k, i)|Ni=1

}
,

in which ∗,# = x, v, or z. Moreover, we denote col
{
u(k, i)|Ni=1

}
, col

{
x(k, i)|Ni=1

}
, and

col
{
y(k, i)|Ni=1

}
by u(k), x(k), and y(k), respectively. Then, straightforward algebraic ma-

nipulations show that when the dynamic system � is well-posed, which is equivalent to the
regularity of the matrix I − Azv(k)�(k), its dynamics can be equivalently described by the
following state space model:[

x(k + 1)

y(k)

]
=

{[
Axx(k) Bx(k)

Cx(k) Du(k)

]

+
[

Axv(k)

Cv(k)

]
�(k) [I − Azv(k)�(k)]−1 [Azx(k) Bz(k)]

}[
x(k)

u(k)

]
.

(3.27)

Note that well-posedness is essential in system designs. In fact, a non-well-posed plant is
usually hard to be controlled and/or unable to estimate [1,2]. Therefore, in this book, we
assume that all involved systems are well-posed. This means that the inverse of the matrix
I − Azv(k)�(k) always exists.

Define the matrices A(k), B(k), C(k), and D(k) as

A(k) = Axx(k) + Axv(k)�(k) [I − Azv(k)�(k)]−1 Azx(k),

B(k) = Bx(k) + Axv(k)�(k) [I − Azv(k)�(k)]−1 Bz(k),

C(k) = Cx(k) + Cv(k)�(k) [I − Azv(k)�(k)]−1 Azx(k),

D(k) = Du(k) + Cv(k)�(k) [I − Azv(k)�(k)]−1 Bz(k).

Clearly, all these matrices are in general time varying. Moreover, on the basis of these matri-
ces, the input–output relation of system � can be further concisely expressed as

x(k + 1) = A(k)x(k) + B(k)u(k), (3.28a)

y(k) = C(k)x(k) + D(k)u(k). (3.28b)

This is the lumped state space model of the large-scale system described by Eqs. (3.25)
and (3.26) and is very similar to that of Eq. (3.1), except that the associated system matrices
are time dependent. These similarities make Theorems 3.1 and 3.2 applicable to the analysis
of the controllability and observability for system �.

In this book, the matrix �(k) is usually called a subsystem connection matrix. Note that in
addition to this subsystem connection matrix, the system matrices Azx(k, i), Azv(k, i), and
Axv(k, i) of Eq. (3.25) are also capable of describing influence strengths among plant subsys-
tems. It can be assumed, without any loss of generality, that each row of this matrix has only
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one nonzero element equal to 1. When this condition is not satisfied by an original system
model, the model can be modified to meet this requirement through augmenting the vector
z(k) and/or v(k) by repeating some of its elements and adjusting associated matrices. On the
other hand, most results in this book remain valid for a general subsystem connection matrix.
However, we adopt this assumption for computational considerations and presentation sim-
plicities.

From Eq. (3.28) it is clear that influences among the subsystems of the system described by
Eqs. (3.25) and (3.26) can also be represented by their subsystem state vectors. However, it is
worth mentioning that a large-scale system usually has a sparse structure [18,20–22], which
means that most of the elements of the subsystem connection matrix �(k) are often equal
to zero. On the other hand, although the matrices Azv(k), Axx(k), and so on are block diag-
onal from their definitions, the inverse of the matrix I − Azv(k)�(k) is usually dense even
when the matrix �(k) is sparse. In addition, for an LSS, it is sometimes even not very easy to
compute the inverse of this matrix. This means that from a computational point of view, the
description of Eqs. (3.25) and (3.26) is more attractive than that of Eqs. (3.28a) and (3.28b).

3.4 Controllability and Observability for an LSS

In the following discussions, we assume that both the subsystem dynamics of Eq. (3.25)
and the subsystem connection matrix of Eq. (3.26) are time invariant. To simplify mathe-
matical expressions, in this section, the time index symbol k is omitted from all the system
matrices. Moreover, m�j is used to denote the dimension of the vector �(k, j) in which
j = 1, 2, . . . , N and � = x, v, z, u, or y. For example, the dimension of the state vector
x(k, j) of the j th subsystem �j is represented by mxj .

From the definitions of the matrices A(k), B(k), C(k), and D(k) it is clear that under the
aforementioned assumptions, all these four matrices are also time invariant. This means that
the results of Theorems 3.1 and 3.2 can in principle be straightforwardly applied to the verifi-
cation of both the controllability and the observability of the system described by Eqs. (3.25)
and (3.26). However, when the number of the subsystems is large, this direct application may
be computationally prohibitive.

In this section, we investigate possibilities of checking controllability and observability of this
system directly utilizing parameters of its subsystem and the subsystem connection matrix. It
summarizes major results of [9]. For this purpose, define the integers M�i and M� as M� =∑N

j=1 m�j and M�j = 0 when j = 1 and M�i = ∑i−1
j=1 m�j when 2 ≤ i ≤ N . Here, once again,

� = x, v, z, u, or y.

Theorem 3.5. Assume that the dynamic system � is well-posed. Define the matrix-valued
polynomial
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M(λ) =
⎡
⎣ λIMx − Axx −Axv

−Cx −Cv

−�Azx IMv − �Azv

⎤
⎦ . (3.29)

Then, this dynamic system is observable if and only if the matrix-valued polynomial M(λ) is
of full column rank (FCR) for each complex scalar λ.

Proof. Assume that the dynamic system � is observable when both its subsystem dynamics
and subsystem connection matrix are time invariant. Then, it can be declared from Theo-
rem 3.2 that, for every scalar complex number λ and every nonzero Mx-dimensional complex
vector y satisfying (λIMx − A)y = 0, we certainly have that Cy �= 0. On the basis of the
definitions of the matrices A and C, this is clearly equivalent to that there does not exist any
(λ, y) pair with a complex scalar λ and a nonzero complex vector y such that[

λIMx − [
Axx + Axv(IMv − �Azv)

−1�Azx
]

Cx + Cv(IMv − �Azv)
−1�Azx

]
y = 0. (3.30)

Now, assume that there exists a complex scalar λ, denote it by λ0, such that the matrix-valued
polynomial M(λ) is not of FCR. Then, there must exist a nonzero (Mx + Mv)-dimensional
complex vector z such that M(λ0)z = 0. Partition this vector as z = col{z1, z2} with z1 and
z2 respectively having dimensions of Mx and Mv. Then, according to the definition of the
matrix-valued polynomial M(λ), we have

(λ0IMx − Axx)z1 − Axvz2 = 0, (3.31a)

Cxz1 + Cvz2 = 0, (3.31b)

−�Azxz1 + (IMv − �Azv)z2 = 0. (3.31c)

From the subsystem connections of system � and its well-posedness we have that IMv −
�Azv is invertible [2,23]. It can therefore be claimed from Eq. (3.31c) that z2 = (IMv −
�Azv)

−1�Azxz1. Note that by the adopted assumptions we have that col{z1, z2} �= 0. The
aforementioned relation between the vectors z1 and z2 further makes it clear that z1 �= 0.
Substituting this expression for the vector z2 into Eqs. (3.31a) and (3.31b), direct algebraic
manipulations show that{

λ0IMx −
[
Axx + Axv(IMv − �Azv)

−1�AST

]}
z1 = 0, (3.32a)[

Cx + Cv(IMv − �Azv)
−1�Azx

]
z1 = 0. (3.32b)

These two equations and Eq. (3.30) clearly contradict each other, which means that the exis-
tence of the aforementioned λ0 and z is not possible, and therefore the matrix-valued polyno-
mial M(λ) is always of FCR.
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On the contrary, assume that the matrix-valued polynomial M(λ) is always of FCR but
System � is not observable. Then, according to Theorem 3.2 and the definitions of the
matrices A and C, there exist at least one scalar complex number λ and one nonzero
Mx-dimensional complex vector y such that Eq. (3.30) is satisfied. Define the vector ψ =
(IMv − �Azv)

−1�Azxy. Then, it can be straightforwardly proved from Eq. (3.29) and the def-
inition of the vector ψ that for this complex scalar λ, M(λ)col{y, ψ} = 0. As the vector y is
not equal to zero, it is clear that col{y, ψ} is also not a zero vector, which means that this is a
contradiction to the assumption on M(λ). Hence, the dynamic system � must be observable.
This completes the proof.

From Lemma 11.3 given in the following Chapter 11, it is clear that the networked system
described by Eqs. (3.25) and (3.26) is observable, only if the following dynamic system

x(k + 1) = Axxx(k) + Axvu(k)

y(k) =
[

Cx

�Azx

]
x(k) +

[
Cv

�Azv − IMv

]
u(k)

is strongly observable.

An attractive characteristic of the results of Theorem 3.5 is that it does not require the com-
putation of the inverse of the matrix IMx − Axx, which may lead to a more numerically stable
verification procedure. It is also worth noting that except the subsystem connection matrix �,
all the other matrices are block diagonal. This property has been proven very helpful in de-
veloping a computationally efficient algorithm for verifying the observability of the dynamic
system � [9].

Remark 3.1. When each subsystem is completely isolated from other subsystems in the net-
worked system described by Eqs. (3.25) and (3.26), the subsystem interconnection matrix �

becomes a zero matrix. In this case, the matrix-valued polynomial M(λ) defined in Eq. (3.29)
reduces to

M(λ) =
⎡
⎣ λIMx − Axx −Axv

−Cx −Cv

0 IMv

⎤
⎦ .

Obviously, at an arbitrary value of the complex variable λ, this matrix is of full column rank

if and only if the matrix

[
λIMx − Axx

−Cx

]
is of full column rank at this value. Note that from

their definitions it is clear that both matrices Axx and Axv are block diagonal, and the number
of the columns in their ith diagonal blocks are equal to each other for every i = 1,2, · · · ,N .

It can be straightforwardly proven that the matrix

[
λIMx − Axx

−Cx

]
is of full column rank if
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and only if for each i ∈ {1,2, · · · ,N}, the matrix

[
λImxi − Axx(i)

Cx(i)

]
is of full column rank.

From Theorem 3.2 it follows that the latter is also a necessary and sufficient condition for the
observability of each subsystem in the networked system with its own external outputs.

These observations imply that Theorem 3.5 also makes it clear that when all the subsystems
are isolated from each other, then to guarantee the observability of the whole system, it is nec-
essary and sufficient that each subsystem is observable with its own external outputs. This is
clear from an engineering aspect, since under such a situation, information on the state vector
of a subsystem cannot be transferred to the external outputs of any other subsystem, so that
estimations on its state vector can only be performed on its own external subsystem.

On the other hand, when subsystem interactions exist in the networked system, the subsys-
tem interconnection matrix � will no longer be a zero matrix. In this case, even if there
exist a complex number λ and i ∈ {1,2, · · · ,N} such that the matrix-valued polynomial[

λImxi − Axx(i)

Cx(i)

]
is not of full column rank, which further leads to that at this complex

number λ, the matrix-valued polynomial

[
λImx − Axx

Cx

]
is not of full column rank, it is still

possible that the matrix-valued polynomial
⎡
⎣ λIMx − Axx

−Cx

−�Azx

⎤
⎦

and therefore the matrix-valued polynomial M(λ) is of full column rank at this complex num-
ber λ. In other words, even if there is a subsystem in the networked system that is not observ-
able with its own external outputs, appropriate subsystem connections are still able to lead to
an observable networked system. This is due to that when a subsystem is connected to some
other subsystems, not only its own external output vector, but also the external output vector
of other subsystems, contain information about its state vector. Intuitively, observability of a
networked system depends on appropriate information transfers among its subsystems. This
is made mathematically clear in the next subsection, which claims that observability of a net-
worked system is closely related to transmission zeros of its subsystems.

3.4.1 Subsystem Transmission Zeros and Observability of an LSS

Although Theorem 3.5 provides a necessary and sufficient condition on the observability of
a networked system, it cannot be directly applied to actual verifications of system observabil-
ity, noting that it requires to check every complex number λ that is computationally intensive
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and usually impossible. On the other hand, discussions in the previous subsection make it
intuitively clear that to construct an observable networked system, appropriate information
transfer among its subsystems is required. To develop a computationally feasible criterion for
the observability of the dynamic system � and to mathematically clarify this engineering in-
tuitions, the following results are required for the transmission zeros of a dynamic system [2].

Lemma 3.2. Assume that the transfer function matrix (TFM) G(λ) is proper and of full col-
umn normal rank (FCNR). Then, a complex number λ0 is a transmission zero of this TFM if
and only if there exists a nonzero complex vector z0 such that G(λ0)z0 = 0.

A transmission zero is an important concept in system analysis and synthesis, which reflects
the existence of a signal whose influence on a system cannot be measured by its outputs [2].
Clearly, if a signal is completely blocked out in the outputs of a system, then variations of its
states due to the stimulus of that signal will not cause any change in the outputs of the system,
which possibly make the system unobservable. This means that there may exist some close
relations between the observability of a system and its transmission zeros. For a networked
system, this relation is first revealed in [9].

Using this result, we can derive a condition for the observability of the dynamic system �,
which is equivalent to that of Theorem 3.5.

Theorem 3.6. Define a TFM G(λ) as

G(λ) =
[

Cv

�Azv − IMz

]
+

[
Cx

�Azx

](
λIMx − Axx

)−1
Axv. (3.33)

Then, the matrix-valued polynomial M(λ) is of FCR at every complex number λ only if G(λ)

is of FCNR. Moreover, when G(λ) is of FCNR, there exists a complex number λ at which
M(λ) does not have an FCR if and only if G(λ) has a transmission zero.

Proof. Assume that the TFM G(λ) is not of FCNR. This is equivalent to that at every
value of the variable λ, the matrix G(λ) is column rank deficient. Hence, for any partic-
ular λ0, there must exist a nonzero vector z0 such that G(λ0)z0 = 0. Denote the vector
y0 = (

λ0IMx − Axx
)−1

Axvz0 by y0. Then, it can be directly proved using the definition of the
TFM G(λ) that M(λ0)col{z0, y0} = 0. As z0 is not equal to zero, it is clear that col{z0, y0}
also is not a zero vector. It can therefore be declared that under the assumption that the TFM
G(λ) is not of FCNR, we certainly have that there exists at least one complex λ0 such that the
matrix M(λ0) is not of FCR. Hence, to guarantee that M(λ) is always of FCR, it is necessary
that G(λ) is of FCNR.

Now, assume that the TFM G(λ) is of FCNR but has some transmission zeros. Let λ0 de-
note one of them. According to Lemma 3.2, there exists a nonzero vector z0 such that
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G(λ0)z0 = 0. Using completely the same arguments as those for the transfer function matrix
G(λ) being not of FCNR, it can be shown that the matrix M(λ0) is not of FCR.

On the contrary, assume that the matrix-valued polynomial M(λ) is column rank deficient at
some particular values of the variable λ, and let λ0 be one of them. Then, there exists at least
one nonzero vector z such that M(λ0)z = 0. Partition this vector as z = col{z1, z2} with the
vector z1 having a dimension of Mx. Then we have that

(
λ0IMx − Axx

)
z1 − Axvz2 = 0. As

Axx is square according to its definition, it can be straightforwardly claimed that the matrix-
valued polynomial λIMx − Axx is of full normal rank. Hence, z1 can always be formally
expressed as1

z1 = (
λ0IMx − Axx

)−1
Axvz2. (3.34)

Substituting this expression for z1 back into M(λ0)z = 0, it can be shown through direct alge-
braic manipulations that[

Cv + Cx
(
λ0IMx − Axx

)−1
Axv

]
z2 = 0, (3.35a)[

�Azv − IMz + �Azx
(
λ0IMx − Axx

)−1
Axv

]
z2 = 0. (3.35b)

By the definition of the TFM G(λ) simultaneous satisfaction of these two equalities is clearly
equivalent to G(λ0)z2 = 0. As the vector z is not equal to zero, Eq. (3.34) and z = col{z1, z2}
imply that z2 also is not a zero vector. It can therefore be declared from Lemma 3.2 that the
TFM G(λ) is of FCNR, and λ0 is one of its transmission zeros. This completes the proof.

From the definition of the TFM G(λ) it is clear that, except the subsystem connection ma-
trix �, all the other involved matrices have a consistent block diagonal structure. This is an
attractive property. Especially, the block diagonal structure of the matrix Axx makes the in-
verse of the matrix λIMx − Axx also block diagonal, which is significantly different from that
of the matrix IMz − �Azv. In the latter case, although the matrix Azv is block diagonal, the in-
verse of the matrix IMz −�Azv is usually dense and does not keep that structure property. The
block diagonal structure is violated by the subsystem connection matrix, which is in general
not block diagonal.

This particular structure property of the TFM G(λ) enables developments of computationally
efficient procedures for verifying observability of the dynamic system �. For this purpose,
define TFMs G[1](λ), G[2](λ), G

[1]
i (λ) and G

[2]
i (λ), i = 1, · · · ,N , respectively as

G[1](λ) = diag{G[1]
i (λ)|Ni=1}, G[2](λ) = diag{G[2]

i (λ)|Ni=1},
1 If this matrix is not invertible at some particular λ0, which is in fact equal to an eigenvalue of the matrix Axx,

then Axvz2 must belong to the space spanned by its vectors. This guarantees the validness of the expression
for z1 with the matrix inverse interpreted as a generalized inverse [4].
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G
[1]
i (λ) = Cv(i) + Cx(i)[λImxi

− Axx(i)]−1Axv(i),

G
[2]
i (λ) = Azv(i) + Azx(i)[λImxi − Axx(i)]−1Axv(i).

From Lemma 3.2 and the block diagonal structure of the TFM G[1](λ) it can be directly
proved that every transmission zero of the TFM G

[1]
i (λ) with i ∈ {1, 2, · · · , N} is also a

transmission zero of G[1](λ). Note that the existence of differences among different TFMs
does not mean that all their transmission zeros are distinctive. Assume that the TFMs G[1](λ)

and G
[1]
i (λ) have respectively m and mi distinctive transmission zeros. These arguments im-

ply that max1≤i≤N mi ≤ m ≤ ∑N
i=1 mi . In addition, the block diagonal structure of the TFM

G[1](λ) also implies that, for each its transmission zero, there exists at least one TFM G
[1]
i (λ)

with i belonging to {1, 2, · · · , N} such that it is also a transmission zero of G
[1]
i (λ).

3.4.2 Observability Verification

On the basis of the results obtained in the previous subsections, we can develop a procedure
for the observability verification of the networked system defined by Eqs. (3.25) and (3.25).

For this purpose, denote the transmission zeros of the TFM G[1](λ) by λ
[k]
0

∣∣∣m
k=1

. Moreover,

assume that its kth transmission zero λ
[k]
0 is shared by the TFMs G

[1]
k(s)(λ), s = 1, · · · , s[k].

Without any loss of generality, we can assume that 1 ≤ k(1) < k(2) < · · · < k(s[k]) ≤ N . Let
Y[k]

s denote the null space of the matrix G
[1]
k(s)(λ

[k]
0 ). Construct the vector set

Y[k] =

⎧⎪⎨
⎪⎩y

∣∣∣∣∣∣∣
y = col

{(
0mS(k(i)+1)

, · · · , 0mS(k(i+1)−1)
, y

[k]
i+1,0

)∣∣∣s[k]−1

i=0
,0mS(k(s[k])+1)

, · · · , 0mSN

}

y
[k]
i,0 ∈ Y[k]

i , i = 1,2, · · · , s[k]; y �= 0

⎫⎪⎬
⎪⎭ ,

(3.36)

in which k(0) = 0. From this construction it can be directly proved that this set belongs to the
null space of the matrix G[1](λ[k]

0 ), that is, for every y[k] ∈ Y[k], we have

G[1](λ[k]
0 )y[k] = diag

{
G

[1]
i (λ

[k]
0 )

∣∣∣N
i=1

}
y[k] = 0. (3.37)

From these results a necessary and sufficient condition is derived for the observability of sys-
tem � with time-invariant subsystem dynamics and subsystem connection matrix, which can
lead to a computationally efficient verification procedure.

Theorem 3.7. Assume that all TFMs G
[1]
i (λ)|Ni=1 are of FCNR. Then, the dynamic system �

is observable if and only if for every 1 ≤ k ≤ m and every y[k] ∈ Y[k], �G[2](λ[k]
0 )y[k] �= y[k].



Controllability and Observability of an LSS 63

Proof. Note that according to the definitions of the matrices A�# and C� with �, # = x, z, v,
all they are block diagonal with consistent dimensions. Moreover, their block diagonal ma-
trices are constituted from system matrices of the plant subsystems. On the basis of these
observations and the definitions of the TFMs G(λ), G[1](λ), and G[2](λ), straightforward al-
gebraic manipulations show that

G(λ) =
[

G[1](λ)

�G[2](λ) − IMz

]
. (3.38)

On the other hand, from the block diagonal structure of the TFM G[1](λ) it is obvious that
the requirement that G[1](λ) is of FCNR is equivalent to the requirement that each TFM
G

[1]
i (λ)|Ni=1 is of FCNR. This means that when the adopted assumption is satisfied, the TFM

G(λ) is certainly of FCNR.

Assume that the dynamic system � is observable. If there exist an integer k and a complex
vector y[k], with k belonging to the set {1,2, · · · ,m} and y[k] belonging to the set Y[k], such
that �G[2](λ[k]

0 )y[k] = y[k], then from the definition of the set Y[k] it can be straightforwardly

declared that y[k] �= 0 and G[1](λ[k]
0 )y[k] = 0. We therefore have from Eq. (3.36) that

G(λ
[k]
0 )y[k] =

[
G[1](λ[k]

0 )y[k]

�G[2](λ[k]
0 )y[k] − y[k]

]
= 0. (3.39)

As y[k] �= 0, it can be claimed from Lemma 3.2 that λ
[k]
0 is one of the transmission zeros of the

TFM G(λ). Hence, on the basis of Theorems 3.5 and 3.6, we can declare that system � is not
observable, which is a contradiction to the observability assumption. Therefore, the assump-
tion about the existence of k and y[k] cannot be satisfied simultaneously.

On the contrary, assume that the system � is unobservable. Then, according to Theorems 3.1
and 3.5 and Lemma 3.2, there exist at least one complex number λ0 and one nonzero complex
vector y0 such that

G(λ0)y0 = 0. (3.40)

From Eq. (3.36) and the definition of the TFM G[1](λ) this equality means that

diag{G[1]
i (λ0)|Ni=1}y0 = 0.

Partition the vector y0 as y0 = col{y0i |Ni=1} with the column vector y0i having a dimen-
sion of mvi . Then there exists at least one integer i simultaneously satisfying 1 ≤ i ≤ N

and y0i �= 0, denote it by i0, such that G
[1]
i0

(λ0)y0i0 = 0. Therefore, λ0 is also a transmis-

sion zero of the TFM G
[1]
i0

(λ) and y0i0 ∈ Y[∗]
i0

, in which ∗ is an integer belonging to the set
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{1, 2, · · · , m}. Hence, y0 ∈ Y[∗]. On the other hand, from Eqs. (3.36) and (3.37) we have that[
�G[2](λ0) − IMz

]
y0 = 0. Therefore, �G[2](λ[∗]

0 )y0 = y0, that is, if the dynamic system � is
not observable, then there certainly exist an integer k and a nonzero complex vector y simul-
taneously satisfying 1 ≤ k ≤ m, y ∈ Y[k] and �G[2](λ[k]

0 )y = y. This completes the proof.

Note that the TFM G[2](λ) is block diagonal and all the elements of the subsystem connection
matrix � belong to the set {0, 1}. Note also that in each row of the matrix �, there is only
one nonzero element. This means that for a prescribed vector y and a prescribed number λ,
the computation of �G[2](λ)y is in fact reduced to the exchange of the elements of a column
vector and to multiplications between a matrix and a vector with small sizes that depend only
on the dimensions of the subsystems �i |Ni=1. This is a quite attractive property in the analysis
and synthesis of a large-scale networked system, as it means that the computation complexity
for verifying its observability increases only linearly with the increment of the number of its
subsystems.

A numerical simulation comparison is provided in [9] between the computation time of the
PBH test and that of a prototype algorithm based on Theorem 3.7. That comparison shows
that when computational complexity is concerned, this theorem is significantly superior to the
PBH test when the system � has a large number of subsystems.

3.4.3 A Condition for Controllability and Its Verification

Owing to the duality between the controllability of a LTI system and its observability, similar
results can be obtained for controllability verification of a networked system.

More precisely, define TFMs Ḡ[1](λ) and Ḡ[2](λ) respectively as Ḡ[1](λ) = diag{Ḡ[1]
i (λ)|Ni=1}

and Ḡ[2](λ) = diag{Ḡ[2]
i (λ)|Ni=1}, where Ḡ

[1]
i (λ) = BT

z (i) + BT
x (i)

[
λImxi − AT

xx(i)
]−1

AT
zx(i)

and Ḡ
[2]
i (λ) = (G

[2]
i (λ))T . Let λ̄

[1]
0 , λ̄

[2]
0 , · · · , λ̄

[m̄]
0 denote all the distinctive transmission zeros

of the TFM Ḡ[1](λ), and let Ḡ
[1]
k̄(s)

(λ)|s̄[k]
s=1 be the TFMs that have λ̄

[k]
0 as its transmission zero,

k = 1,2, · · · , m̄.

As in the observability verification, we can also assume without any loss of generality that
k̄(1) < k̄(2) < · · · < k̄(s̄[k]). Define the set

Ȳ[k]
s =

{
y

∣∣∣ Ḡ[1]
k̄(s)

(λ̄
[k]
0 )y = 0

}

and the integer k̄(0) = 0. Using these vector sets, construct the other vector set

Ȳ[k] =

⎧⎪⎨
⎪⎩y

∣∣∣∣∣∣∣
y = col

{(
0mz(k̄(i)+1)

, · · · , 0mz(k̄(i+1)−1)
, ȳ

[k]
i+1,0

)∣∣∣s̄[k]−1

i=0
, 0mz(k̄(s̄[k])+1)

, · · · , 0mzN

}

ȳ
[k]
i,0 ∈ Ȳ[k]

i , i = 1,2, · · · , s̄[k]; y �= 0

⎫⎪⎬
⎪⎭ .

(3.41)
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Then we have the following results on the controllability of the dynamic system �, which are
very similar to those of Theorem 3.7.

Corollary 3.2. Assume that all the TFMs Ḡ
[1]
i (λ)|Ni=1 are of FCNR. The dynamic sys-

tem � is controllable if and only if for every k ∈ {1,2, · · · , m̄} and every ȳ[k] ∈ Ȳ[k],
�T Ḡ[2](λ̄[k]

0 )ȳ[k] �= ȳ[k].

Proof. The matrices A and B are clearly real by their definitions. Therefore, the existence of a
nonzero complex vector x simultaneously satisfying xHB �= 0 and xHA = λxH is equivalent
to the existence of a nonzero real vector x simultaneously satisfying AT x = λx and BT x = 0.

From these observations and from Theorems 3.1 and 3.2 it can be claimed that the controlla-
bility of the matrix pair (A, B) is equivalent to the observability of the matrix pair (AT , BT ).
On the other hand, from the definitions of the matrices A and B it can be proved that

AT = AT
xx + AT

zx�
T
[
I − AT

zv�
T
]−1

AT
xv, (3.42)

BT = BT
x + BT

v �T
[
I − AT

xx�
T
]−1

AT
xv, (3.43)

which have completely the same forms respectively as those of the matrices A and C. The
proof can now be completed through directly utilizing Theorem 3.7.

In the above derivations, for each i = 1, 2, · · · , N , both the TFMs G
[1]
i (λ) and the TFMs

Ḡ
[1]
i (λ) are required to be of FCNR. These requirements cannot be satisfied in general by an

actual networked system. To be more specific, to satisfy the FCNR condition on the TFM of
the ith subsystem �i , which is denoted by G

[1]
i (λ), it is necessary that mvi ≥ myi , that is, the

dimension of its internal input vector v(k, i) is not smaller than that of its external output vec-
tor y(k, i). Obviously, this is not a condition that can be easily satisfied by every engineering
plant.

A possible approach to remove these conditions is to adopt some appropriate decompositions
of the TFMs G

[1]
i (λ) and Ḡ

[1]
i (λ), i = 1, 2, · · · , N , which has been pointed out in [9] and

investigated in detail in [24].

When there are constraints on the subsystem external input vectors, state vectors, and so on,
some results have been obtained in [25,26]. These results inherit the properties of those with-
out constraints and are computationally attractive for analysis and synthesis of a large-scale
networked system.



66 Chapter 3

3.4.4 In/Out-degree and Controllability/Observability of a Networked System

Some necessary and sufficient conditions have been derived in the previous subsections re-
spectively for the controllability and observability of a networked system, which are compu-
tationally attractive and have clarified to some extent relations among system controllability
and observability, dynamics of each subsystem in the plant, and subsystem interconnections.
In this section, relations among system structure and its controllability/observability are fur-
ther investigated, which is helpful in the settlement of the problem of determining the minimal
number of inputs/outputs for each subsystem under the requirements that a controllable/ob-
servable networked system can be constructed from these subsystems. For this purpose, the
following property of the subsystem connection matrix � is at first introduced. This property
is firstly observed in [22] and plays an important role in the analysis of its stability and robust
stability, which will be discussed in Chapter 7.

Define M� and M�,i respectively as M� = ∑N
k=1 m�k and M�,i = ∑i

k=1 m�k with M�,0 = 0,
where � = v, z. Let ek denote the kth canonical basis vector of the complex space CMz , that
is, the Mz-dimensional column vector with its kth row element 1 and all other elements
zero. Moreover, let j (i), i = 1,2, · · · ,Mv, denote the position of the nonzero element of
the ith row of the SCM �. Then, from the assumptions on this matrix we have that � =
col

{
eT
j (i)

∣∣∣Mv

i=1

}
. Let m(i) stand for the number of subsystems that are directly affected by the

ith element of the vector z(k). Denote diag
{√

m(i)
∣∣Mz,j
i=Mz,j−1+1

}
by 	(j), j = 1,2, · · · ,N .

Moreover, denote diag
{
	(j)|Nj=1

}
by 	. Note that eke

T
k = diag

{
0T
k−1, 1, 0T

Mz−k

}
. It can

be shown through straightforward algebraic manipulations that

�T � = colT
{

eT
j (i)

∣∣∣Mv

i=1

}
col

{
eT
j (i)

∣∣∣Mv

i=1

}

= diag
{
m(i)|Mz

i=1

}

= 	2. (3.44)

Obviously, from the definition of m(i) we have that
∑Mz,j

i=Mz,j−1+1 m(i) equals the out-degree
of the j th subsystem of the networked system �.

On the basis of this relation and Theorem 3.5, we obtain a necessary condition for the observ-
ability of system �.

Lemma 3.3. The networked system � is observable only if for each i = 1,2, · · · ,N , the ma-
trix pair (Axx(i), col{Cx(i), Azx(i)}) is observable.
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Proof. Define the matrix-valued polynomials M1(λ) and M̂1(λ) respectively as

M1(λ) =
⎡
⎣ λIMx − Axx

−Cx

−�Azx

⎤
⎦ , M̂1(λ) =

⎡
⎣ λIMx − Axx

Cx

	Azx

⎤
⎦ . (3.45)

Assume that the system � is observable. Then, according to Theorem 3.5, it is necessary that
for every complex scalar λ, the matrix-valued polynomial M(λ) defined in Eq. (3.29) is of
FCR. From the definitions of the matrix-valued polynomials M(λ) and M1(λ) it is obvious
that the matrix-valued polynomial M1(λ) must be of FCR at every complex scale λ, which is
equivalent to

MH
1 (λ)M1(λ) > 0. (3.46)

On the basis of Eqs. (3.44) and (3.45), the following equality can be straightforwardly estab-
lished for each λ ∈ C:

MH
1 (λ)M1(λ) = (

λIMx − Axx
)H (

λIMx − Axx
)+ CT

x Cx + AT
zx�

T �Azx

= (
λIMx − Axx

)H (
λIMx − Axx

)+ CT
x Cx + AT

zx	
2Azx

= M̂H
1 (λ)M̂1(λ). (3.47)

It can therefore be declared that to guarantee the observability of the system �, it is necessary
that the matrix-valued polynomial M̂1(λ) is of FCR at each complex scale λ.

From the block diagonal structure of the matrices Axx, Azx, and Cx and from Eq. (3.44) it is
obvious that

M̂1(λ) =
⎡
⎢⎣

diag
{
λImxi

− Axx(i)|Ni=1

}
diag

{
Cx(i)|Ni=1

}
diag

{
	(i)Azx(i)|Ni=1

}

⎤
⎥⎦ . (3.48)

Define the matrix-valued polynomials M̂1i (λ) and M̃1i (λ) with i = 1,2, · · · ,N as

M̂1i (λ) =
⎡
⎣ λImxi

− Axx(i)

Cx(i)

	(i)Azx(i)

⎤
⎦ , M̃1i (λ) =

⎡
⎣ λImxi

− Axx(i)

Cx(i)

Azx(i)

⎤
⎦ .

Straightforward matrix manipulations show that for each fixed complex λ, the complex-
valued matrix M̂1(λ) is of FCR if and only if for each i = 1,2, · · · ,N , the complex-valued
matrix M̂1i (λ) is of FCR. Moreover, clearly from the definitions of the matrix-valued polyno-
mials M̂1i (λ) and M̃1i (λ) we have that

M̂1i (λ) = diag
{
Imxi

, Imyi
, 	(i)

}
M̃1i (λ). (3.49)
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Note that the matrix 	(i) is positive definite by its definition. It is clear that the matrix-valued
polynomial M̂1i (λ) is of FCR at every complex scale λ if and only if the matrix-valued poly-
nomial M̃1i (λ) is.

The proof can now be completed through a direct application of Theorem 3.2.

From the state space model of the subsystem �i it is clear that both vectors y(k, i) and
z(k, i) are its output vectors. In other words, when this subsystem is isolated from the in-
fluences of other subsystems and its influences to other subsystems are also completely
removed, then the observability of the subsystem �i is equivalent to that of the matrix pair
(Axx(i), col{Cx(i), Azx(i)}). Hence, the results of Lemma 3.3 imply that to construct an ob-
servable networked system, each its subsystem should be observable.

Note that observability of the matrix pair (Axx(i), col{Cx(i), Azx(i)}) is not equivalent to
that of the matrix pair (Axx(i), Cx(i)). In fact, from Theorem 3.2 it is clear that if the matrix
pair (Axx(i), Cx(i)) is observable, then the matrix pair (Axx(i), col{Cx(i), Azx(i)}) is also
observable; but the converse is in general not true. The results of Lemma 3.3 therefore also
imply that even when there exist subsystems that are not observable through only their own
external outputs, the whole networked system may still be observable by means of subsystem
connections.

Similar results have been observed in [6] for system controllability. However, the conclu-
sions there depend on the subsystem connection matrix �. This makes them difficult to be
applied in constructing a networked system that is controllable, as an appropriate subsys-
tem connection is usually not known before system designs. On the other hand, note that
col{λIMx − Axx, −Cx, −�Azx} = diag{IMx , −IMy, −�}col{λIMx − Axx, Cx, Azx}. This
means that to guarantee that the matrix col{λIMx − Axx, −Cx, −�Azx} is of FCR, it is
necessary that the matrix col{λIMx − Axx, Cx, Azx} is. Based on these observation, similar
arguments as those in the proof of Lemma 3.3 show that the associated conclusions in [6] are
in fact valid for an arbitrary subsystem connection matrix �.

To establish a relation between system observability and its subsystem out-degrees, define
TFMs G[1](λ) and G[2](λ) respectively as G[1](λ) = diag{G[1]

i (λ)|Ni=1} and G[2](λ) =
diag{G[2]

i (λ)|Ni=1}, where G
[1]
i (λ) = Cv(i) + Cx(i)[λImxi

− Axx(i)]−1Axv(i) and G
[2]
i (λ) =

Azv(i) + Azx(i)[λImxi
− Axx(i)]−1Axv(i) for each i = 1,2, · · · ,N . From the block diagonal

structure of the TFM G[1](λ) it is clear that this TFM is of FCNR if and only if each of the
TFMs G

[1]
i (λ), i ∈ {1,2, · · · ,N}, is.

Assume that the TFMs G[1](λ) and G
[1]
i (λ) have respectively m and mi distinctive transmis-

sion zeros. Then, under the condition that the TFM G[1](λ) is of FCNR, it is obvious from



Controllability and Observability of an LSS 69

Lemma 3.1 and from G[1](λ) = diag{G[1]
i (λ)|Ni=1} that, for each i = 1, · · · ,N , every trans-

mission zero of G
[1]
i (λ) is also a transmission zero of G[1](λ). As argued in [9], we generally

only have that max1≤i≤N mi ≤ m ≤ ∑N
i=1 mi . Moreover, for each of the transmission zeros of

the TFM G[1](λ), there exists at least one integer i belonging to the set { 1, 2, · · · , N } such
that it is also a transmission zero of the TFM G

[1]
i (λ).

Let λ
[k]
0 denote the kth transmission zero of the TFM G[1](λ), k = 1,2, · · · ,m. Assume that in

the TFM set {G[1]
1 (λ), G

[1]
2 (λ), · · · , G

[1]
N (λ)}, there are s[k] TFMs that have this transmission

zero. Denote them by G
[1]
k(s)(λ), s = 1, · · · , s[k]. Clearly, both s[k] and k(s) belong to the set

{1, 2, · · · , N}. As in [9] and in the previous section, we once again assume, without any loss
of generality, that k(1) < k(2) < · · · < k(s[k]). Let Y

[k]
s denote the matrix constructed from a

set of linear independent vectors that span the null space of G
[1]
k(s)(λ

[k]
0 ), and let p(k, s) denote

the dimension of this null space. Obviously, the matrix Y
[k]
s is of FCR, which further leads to

that the matrix Y
[k]H
s Y

[k]
s is positive definite. Hence, the matrix


[k]
s = G

[2]
k(s)(λ

[k]
0 )Y [k]

s

(
Y [k]H

s Y [k]
s

)−1/2
(3.50)

is well defined for each s = 1,2, · · · , s[k] and each k = 1,2, · · · ,m.

Using these matrices, we derive the following conclusion, which gives a sufficient condition
for the observability of the networked system �. Their proof is deferred to the appendix.

Theorem 3.8. Assume that all the TFMs G
[1]
i (λ)|Ni=1 are of FCNR. Let {λ[k]

0 |mk=1} denote the
set of distinctive transmission zero of the TFM G[1](λ). If the matrix 	 satisfies simultane-
ously the inequality

Ip(k,s) − 
[k]H
s 	2(k(s))
[k]

s > 0 (3.51)

or

Ip(k,s) − 
[k]H
s 	2(k(s))
[k]

s < 0 (3.52)

for each s = 1,2, · · · , s[k] and k = 1,2, · · · ,m, then the dynamic system � is observable.

Compared with the results given in Theorem 3.4, which is originally derived in [9], the con-
ditions of Theorem 3.8 are only sufficient. On the other hand, these conditions can be verified
individually for each subsystem and therefore have a much lower computational complex-
ity, and the computation results are generally more numerically reliable. In particular, in the
above conditions, the dimension of the involved matrix is p(k, s) × p(k, s), whereas that in

Theorem 3.4 is
∑N

i=1 mvi × ∑s[k]
i=1 p(k, i). Obviously, the latter is usually significantly greater

than the former for a large-scale system, which is less attractive from the viewpoint of compu-
tations.
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Note that the matrix 	 is closely related to the out-degrees of the networked system �. The-
orem 3.8 in fact establishes some relations between the observability of a networked system
and its subsystem out-degrees. This theorem, together with the following Theorem 3.9, which
is the counterpart of this theorem in controllability verifications, is essential in obtaining the
minimal input/output number for each subsystem such that a controllable/observable system
can be constructed.

Remark 3.2. Note that, by definition, 	(j) ≥ Imzj for each j = 1,2, · · · ,N . It can be easily
understood that if there is an integer pair (k, s) with k ∈ {1,2, · · · ,m} and s ∈ {1,2, · · · , s[k]}
such that the associated matrix 


[k]
s is not of FCR, then for any subsystem connection ma-

trix �, the associated inequality Ip(k,s) − 

[k]H
s 	2(k(s))


[k]
s < 0 cannot be satisfied. Hence,

to satisfy the conditions of Theorem 3.8, one possible approach is to meet the inequality
Ip(k,s) − 


[k]H
s 	2(k(s))


[k]
s > 0. This might be achieved by reducing the number of subsys-

tems that an internal output straightforwardly affects. These observations mean that under
such a situation, sparse subsystem connections might be helpful to make a networked system
observable.

On the contrary, if for each s = 1,2, · · · , s[k] and each k = 1,2, · · · ,m, the associated matrix



[k]
s is always of FCR, then the minimal eigenvalue of the matrix 


[k]H
s 	2(k(s))


[k]
s can be

made large by increasing the number of subsystems that an internal output directly influences,
which implies that the inequality Ip(k,s) − 


[k]H
s 	2(k(s))


[k]
s < 0 might be satisfied through

simply increasing the number of subsystem connections; that is, dense subsystem connections
are appreciated from the viewpoint of system observability.

Remark 3.3. Although the matrix Y
[k]
s is not unique for each integer pair (k, s), its selec-

tion does not have any influence on the satisfaction of the conditions of Eqs. (3.51) and (3.52),
which can be straightforwardly proven from relations among different basis vectors of a sub-
space.

When controllability is to be investigated by means of the duality between controllability and
observability of an LTI system, which has already been adopted in [9] and in the previous sec-
tion, similar results can be derived through completely the same arguments. More precisely,
based on this duality and the state space model of the whole system given in [9], it can be di-
rectly declared that when the networked system � is well-posed, it is controllable if and only
if for each complex scale λ, the following matrix-valued polynomial M̄(λ) is of FRR [6,9]:

M̄(λ) =
[

λIMx − Axx −Bx −Axv�

−Azx −Bv IMv − Azv�

]
.

Note that the transpose of the matrix-valued polynomial M̄(λ) has completely the same form
as that of the matrix-valued polynomial M(λ). It is not out of imaginations that necessary/suf-
ficient conditions similar to those of Lemma 3.3 and Theorem 3.8 can be derived for control-
lability verifications of a networked system.
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However, to achieve these conclusions, it appears necessary to assume that every column
of the subsystem connection matrix � only has one nonzero element. Although this condi-
tion can be satisfied in general through augmenting the subsystem internal output vectors
z(k, i)|Ni=1 with repeated elements, the augmentation usually violates an associated FCNR
condition and therefore greatly restricts applicability of the associated results.

In this paper, we derive another necessary/sufficient condition for system controllability with-
out that assumption.

For this purpose, define TFMs Ḡ[1](λ) and Ḡ[2](λ) respectively as Ḡ[1](λ)=diag{Ḡ[1]
i (λ)|Ni=1}

and Ḡ[2](λ) = diag{Ḡ[2]
i (λ)|Ni=1}, where Ḡ

[1]
i (λ) = BT

S (i) + BT
T (i)[λImTi − AT

TT(i)]−1AT
ST(i)

and Ḡ
[2]
i (λ) = (G

[2]
i (λ))T . Assume that the TFM Ḡ[1](λ) has m̄ distinctive transmission ze-

ros, which are denoted by λ̄
[k]
0 |m̄k=1. Moreover, let Ḡ

[1]
k̄(s)

(λ)|s̄[k]
s=1 represent the TFMs that have

λ̄
[k]
0 as its transmission zero, and let k̄(1) < k̄(2) < · · · < k̄(s̄[k]). Furthermore, let p̄(k, s)

denote the dimension of the null space of the matrix Ḡ
[1]
k̄(s)

(λ̄
[k]
0 ), and let Ȳ

[k]
s be the matrix

constructed from a set of linear independent vectors that span this null space. Define the ma-
trix


̄[k]
s = Ḡ

[2]
k̄(s)

(λ̄
[k]
0 )Ȳ [k]

s

(
Ȳ [k]H

s 	−2(k̄(s))Ȳ [k]
s

)−1/2
. (3.53)

Then, we have the following results, whose proof is included in the appendix.

Theorem 3.9. Assume that the TFM Ḡ[1](λ) is of FCNR. Then, System � is controllable only
when the matrix pair (Axx(i), [Bx(i) Axv(i)]) is controllable for every i = 1,2, · · · ,N .
Moreover, if for each integer pair (k, s) with k ∈ {1,2, · · · , m̄} and s ∈ {1,2, · · · , s̄[k]}, the
matrix inequality

Ip̄(k,s) − 
̄[k]H
s 
̄[k]

s > 0 (3.54)

is satisfied, then this system is controllable.

It is interesting to notice that although the necessary condition of Theorem 3.9 is dual to that
of Lemma 3.3, its sufficient condition differs significantly from that of Theorem 3.8. More-
over, their proofs are also not completely dual to each other. These are due to that in order to
apply the duality between controllability and observability, the subsystem connection ma-
trix � must satisfy the condition that ��T is a diagonal matrix, which cannot be met in
general.

By the definition of the matrix 
̄
[k]
s , careful comparisons between Eqs. (3.54) and (3.51) show

that some qualitative relations exist between in-degrees and controllability of a networked
system, which are similar to those between its out-degrees and observability.
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3.5 Construction of Controllable/Observable Networked Systems

In the design of a networked system, it is often necessary to know that to meet the required
performances for the whole system, what specifications each subsystem must satisfy [10,11,
16–18,27]. Note that controllability and observability are essential for a system to work prop-
erly, recalling that to reconstruct the states of a system from measured input–output data, it is
necessary that the system is observable. Moreover, controllability is necessary for a system
to perform satisfactorily [2,9]. On the other hand, in actual engineering, it is generally appre-
ciative to have inputs/outputs directly and separately affecting/measuring the states of each
individual subsystem and/or their functions [9–11,18,27]. It is therefore natural to ask how
many sensors are required to monitor the states for each of its subsystem to guarantee that a
controllable/observable networked system can be constructed, as well as how many actuators
are required to maneuver the states for each of its subsystem.

In this section, we investigate the minimal number of outputs/inputs required for each subsys-
tem that guarantee construction of an observable/controllable networked system. To avoid
possible confusions, an actuator that directly affects some states of only one subsystem is
called a local actuator, whereas an output that directly depends on some states of only one
subsystem is called a local external output.

The following theorem gives an answer to this minimal input/output problem. Its proof is pro-
vided in the appendix.

Theorem 3.10. Let pmax(i) denote the maximum geometric multiplicity of the matrix Axx(i),
i = 1,2, · · · ,N . Then an observable networked system � can be constructed with local exter-
nal outputs if and only if

myi + mzi ≥ pmax(i), ∀i ∈ { 1, 2, · · · , N }.
Moreover, a controllable networked system � can be constructed with local actuators if and
only if

mui + mvi ≥ pmax(i), ∀i ∈ { 1, 2, · · · , N }.
Here m∗i stands for the dimension of the column vector ∗(k, i) with ∗ = u, v, y, z.

Remark 3.4. This theorem reveals that to reduce the required number of external inputs/out-
puts, it is better to design a subsystem with its STM having distinctive eigenvalues. This is in a
good agreement with the results on a lumped system reported in [5].

Corollary 3.3. To be able to build a controllable/observable networked system from several
subsystems, it is necessary and sufficient that each subsystem is controllable/observable.
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Proof. This is an immediate result of Theorem 3.5 and Corollary 3.1 together with Theo-
rem 3.9.

Note that the matrices Azx(i), Azv(i), and Axv(i) represent connection strengths among sub-
systems of the system �. The bigger the magnitude of the elements of these matrices, the
tighter the subsystems are connected [9]. On the other hand, it is clear from the proof of The-
orem 3.10 that when each subsystem is observable/controllable, through reducing subsystem
connection strengths, it is always possible to construct an observable/controllable networked
system. In the extreme situation, when all the subsystems are disconnected, the networked
system becomes a collection of isolated individual observable/controllable subsystems, which
is obviously observable/controllable.

On the other hand, when these matrices are appropriately selected such that the corresponding
matrices 


[k]
s are of FCR for each integer pair (k, s), it can be easily seen from Eq. (3.52) that

through increasing magnitudes of the elements of these matrices, that is, through increasing
subsystem connection strengths, it is also possible to build an observable networked system
using observable subsystems. Similar conclusions can be obtained for building a controllable
networked system by means of the duality between observability and controllability.

However, when there are some restrictions on the subsystem connection matrix � and/or on
subsystem connection strengths, which is often required in practical engineering [9,18,19],
further efforts are still necessary to find the minimal number of inputs/outputs for each sub-
system in the construction of a controllable/observable system.

3.6 Bibliographic Notes

Controllability and observability are respectively related to system properties about capa-
bilities of maneuvering and estimating plant states. Originally, these issues are investigated
without any constraints on the plant input vector and state vector, which leads to the now ex-
tensively known PBH test, rank conditions on the controllability matrix, rank conditions on
the observability matrix, and so on. A preliminary assumption for these investigations are that
the plant parameters are known. Studies along this line have produced many important results
of system theories, such as the controllable canonical form, observable canonical form of a
state space model, division of a plant state space into four subspaces, which are respectively
controllable and observable, controllable but unobservable, observable but uncontrollable, and
uncontrollable and unobservable [2,3].

When the plant parameters are not provided, a concept called structural controllability/observ-
ability is developed, which depends only on the positions of the plant inputs and the directed



74 Chapter 3

connections among the states of a plant. In these studies, graph theory has played an impor-
tant role. According to the requirement that whether there exists a group of parameters that
make the system have this property or all the parameters can make the system possess this
property, structural controllability/observability is further divided into weak and strong con-
trollability/observability [18,28]. Especially, these concepts are adopted in the analysis and
synthesis of a large-scale system in which influences among subsystems are through their
states [12,13].

In practical engineering, there are usually some constraints on plant inputs and/or states.
Under these constraints, controllability and observability verification becomes much more
mathematically involved, and there are still no general results [29–31]. However, for some
specific situations, solid results have been established. For example, when plant inputs are
constrained in magnitude, it has been proved that controllability of an LTI system is equiva-
lent to its controllability without constraints and all its eigenvalues are antistable [28]. These
results have partially been extended to networked systems that are computationally attractive
for a system with a large number of subsystems [25,26].

The problem of finding the smallest number of inputs such that a lumped controllable sys-
tem can be constructed appears to be firstly investigated in [32]. This problem has also been
discussed in [28,33] afterward. In [28], however, only a necessary condition is given, and its
proof is left as an exercise. On the other hand, the Jordan form of the system state transition
matrix is used in [32] to decompose the system state space into controllable and uncontrol-
lable subspaces. This decomposition is not very appropriate, as system states usually take only
real values that cannot be guaranteed by this decomposition in general. Moreover, although
the necessity of a condition is established in [33] through a direct application of the PBH test,
its sufficiency is illustrated only through a numerical example, and in this illustration, the Jor-
dan form was straightforwardly used once again, and the constructed input matrix cannot be
guaranteed to be real. A complete settlement of this problem appears to be first given in [5].
The problem of searching the minimum number of inputs and outputs for each subsystem in a
networked system seems to be originally investigated in [34].

Appendix 3.A

3.A.1 Proof of Theorem 3.4

For each ∗ = r, c and i = 1,2, · · · , k∗, define the matrix

Z∗,i = diag

{[
1

0m∗,i,j−1

]∣∣∣∣
p∗(i)

j=1

}
. (3.A.1)
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From Eq. (3.17) it can be straightforwardly proven that the matrix X∗,i of Eq. (3.12) can be
represented as

X∗,i = T −H

⎡
⎣ 0(M∗,i−1)×p∗(i)

Z∗,i

0(n−M∗,i )×p∗(i)

⎤
⎦ , (3.A.2)

in which Mr,i = ∑i−1
j=1 mr,j and Mc,i = Mr,kr +∑i−1

j=1 mc,j . Hence

BT X∗,i = (T −1B)H

⎡
⎣ 0(M∗,i−1)×p∗(i)

Z∗,i

0(n−M∗,i )×p∗(i)

⎤
⎦ . (3.A.3)

Assume now that the input matrix B is given by Eq. (3.21). From the definition of the ma-
trix T it is obvious that this matrix is real. Moreover, for each i = 1,2, · · · , kr with ∗ = r and
each i = 1,2, · · · , kc

2 with ∗ = c, direct algebraic manipulations show that

BT X∗,i =
⎡
⎣ col

{
B̂r,i |kr

i=1

}

col
{
B̂c,i |kc

i=1

}
⎤
⎦

H ⎡
⎣ 0(M∗,i−1)×p∗(i)

Z∗,i

0(n−M∗,i )×p∗(i)

⎤
⎦

= B̂H∗,iZ∗,i

= ¯̃
B∗,i . (3.A.4)

Furthermore, for each i = kc

2 + 1, · · · , kc, similar arguments show that

BT X∗,i = B̂H
c,i−kc/2Zc,i = B̃c,i−kc/2. (3.A.5)

Note that when a matrix is of FCR, its conjugate is also of FCR. It can therefore be de-
clared that when the matrix B̃∗,i is of FCR for each i = 1,2, · · · , kr with ∗ = r and each
i = 1,2, · · · , kc

2 with ∗ = c, Lemma 3.1 implies that the system is controllable.

On the contrary, assume that the system is controllable. Then, according to Lemma 3.1, the
matrix BT X∗,i is necessarily of FCR for each feasible ∗ and i. Construct the matrices B̂∗,i ∈
Cm∗,i×pmax , ∗ = r, c, i = 1,2, · · · , k∗, satisfying the equation

col
{

col
{
B̂r,i |kr

i=1

}
, col

{
B̂c,i |kc

i=1

}}
= T −1B. (3.A.6)

As the matrix T is invertible, this construction is obviously always possible. Moreover, by
Eq. (3.A.18) the corresponding B̃∗,i is always of FCR.
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Denote the real and imaginary parts of the matrices B̂∗,i and
[
Tc,i,j

]j=pc(i),i=kc/2
j=1,i=1 respec-

tively by B̂∗,i,r and B̂∗,i,j and by T̂c,r , and T̂c,j . Using the matrix Tr of Eq. (3.16), define the
matrix T̂ as T̂ = [Tr T̂c,r T̂c,j ]. Recall that the matrix T is nonsingular, and it can be straight-
forwardly proven that the matrix T̂ is also invertible. On the basis of these matrices, direct
algebraic manipulations show that

�
⎧⎨
⎩T

⎡
⎣ col

{
B̂r,i |kr

i=1

}

col
{
B̂c,i |kc

i=1

}
⎤
⎦
⎫⎬
⎭ = T̂

⎡
⎢⎢⎢⎢⎣

col
{
B̂r,i,j |kr

i=1

}

col
{
B̂c,i,j + B̂c,i+kc/2,j |kc/2

i=1

}

col
{
B̂c,i,r − B̂c,i+kc/2,r |kc/2

i=1

}

⎤
⎥⎥⎥⎥⎦ (3.A.7)

Note that the matrix B is real. From this relation and Eq. (3.A.6) it can be declared that it is
necessary that

B̂r,i,j = 0 (3.A.8)

for each i = 1,2, · · · , kr and

B̂c,i,j = −B̂c,i+kc/2,j , B̂c,i,r = B̂c,i+kc/2,r (3.A.9)

for each i = 1,2, · · · , kc

2 . Hence, B̂r,i ∈ Rmr,i×pmax for each i = 1,2, · · · , kr , and B̂c,i+kc/2 =
¯̂
Bc,i for each i = 1,2, · · · , kc

2 . This completes the proof.

3.A.2 Proof of Theorem 3.8

From Theorem 3.7 it can be easily seen that system � is observable if and only if for each
nonzero vector x ∈ CMx+Mv , there exists λ ∈ C such that

[
λIMx − Axx −Axv

−Cx −Cv

]
x = 0, (3.A.10)

then with the same complex number λ, the following inequality is valid:
[−�Azx IMv − �Azv

]
x �= 0. (3.A.11)

Partition the vector x as x = [
xT

1 xT
2

]
where x1 ∈ CMx and x2 ∈ CMv . Then, according to

Eq. (3.A.10), we have that
[
λIMx − Axx

]
x1 − Axvx2 = 0, (3.A.12)

Cxx1 + Cvx2 = 0. (3.A.13)



Controllability and Observability of an LSS 77

When λ is not an eigenvalue of the matrix Axx, the matrix λIMx − Axx is invertible. In this

case, Eq. (3.A.12) implies that x1 = [
λIMx − Axx

]−1
Axvx2. After substituting this relation

into Eqs. (3.A.11) and (3.A.13), direct algebraic manipulations show that

G[1](λ)x2 = 0, (3.A.14)[
IMv − �G[2](λ)

]
x2 �= 0. (3.A.15)

In these derivations, the definitions of the TFMs G[1](λ) and G[2](λ) have been utilized.

When λ is an eigenvalue of the matrix Axx, a pseudo-inverse must be taken, and the treat-
ments are completely the same as those in [9,24]. In particular, note that the dimension
of the matrix Axx is finite, which means that all its eigenvalues can only take an isolated
value. Hence, there exists ε > 0 that in general depends on the value of λ such that for each
δ ∈ (−ε, ε)/{0}, the matrix (λ − δ)IMx − Axx is invertible. These imply that the vector x1

satisfying Eq. (3.A.12) can be formally expressed as

x1 = lim
δ→0

[
(λ − δ)IMx − Axx

]−1
Axvx2. (3.A.16)

Using this expression, conclusions can be obtained which are completely the same as those
for the case where λ is not an eigenvalue of the matrix Axx.

Note that every TFM G
[1]
i (λ), i = 1,2, · · · ,N , is assumed to be of FCNR, and the TFM

G[1](λ) is block diagonal with its ith diagonal block being G
[1]
i (λ). It is obvious that the

TFM G[1](λ) is also of FCNR. It can therefore be declared from Lemma 3.1 and Eq. (3.A.14)
that λ is a transmission zero of the TFM G[1](λ). These results imply that when the TFMs
G

[1]
i (λ)|Ni=1 are of FCNR, verifications of the conditions in Theorem 3.7 are necessary only

for all transmission zeros of the TFM G[1](λ).

Assume that λ = λ
[k]
0 . Then, according to the definition of the number λ

[k]
0 , it is also a trans-

mission zero of the TFM G
[1]
k(s)(λ), s = 1,2, · · · , s[k]. Moreover, from the definition of the

matrix Y
[k]
s we have that, for every nonzero complex valued vector αs ∈ Cp(k,s),

G
[1]
k(s)(λ

[k]
0 )Y [k]

s αs = 0. (3.A.17)

Define the matrix

Y [k] =

⎡
⎢⎢⎣

0Mv,k(1)−1×p(k,1) · · · 0Mv,k(s[k])−1×p(k,s[k])

Y
[k]
1 · · · Y

[k]
s[k]

0(Mv−Mv,k(1))×p(k,1) · · · 0(Mv−Mv,k(s[k]))×p(k,s[k])

⎤
⎥⎥⎦ .
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Then from the block diagonal structure of the TFM G[1](λ) and Eq. (3.A.17) it can be directly
proven that, for each nonzero vector x2 ∈ CMv satisfying G[1](λ[k]

0 )x = 0, there exists a unique

nonzero α ∈ C
∑s[k]

j=1 p(k,j) such that

x2 = Y [k]α. (3.A.18)

On the other hand, based on the block diagonal structures of the TFM G[2](λ) and the ma-
trix 	, direct algebraic manipulations show that for each complex valued vector x2 satisfying
Eq. (3.A.18), we have that

	G[2](λ[k]
0 )x2 = diag{	(i)|Ni=1}diag{G[2]

i (λ)|Ni=1}Y [k]α

=

⎡
⎢⎢⎣

0Mv,k(1)−1×p(k,1) · · · 0Mv,k(s[k])−1×p(k,s[k])

	(k(1))G
[2]
k(1)(λ)Y

[k]
1 · · · 	(k(s[k]))G[2]

k(s[k])(λ)Y
[k]
s[k]

0(Mv−Mv,k(1))×p(k,1) · · · 0(Mv−Mv,k(s[k]))×p(k,s[k])

⎤
⎥⎥⎦α. (3.A.19)

Hence,

xH
2 x2 = αH diag

{
Y

[k]H
j Y

[k]
j |s[k]

j=1

}
α. (3.A.20)

Moreover, from Eq. (3.44) we have that
(
�G[2](λ[k]

0 )x2

)H (
�G[2](λ[k]

0 )x2

)
= xH

2 G[2]H(λ
[k]
0 )	2G[2](λ[k]

0 )x2

=
(
	G[2](λ[k]

0 )x2

)H (
	G[2](λ[k]

0 )x2

)
. (3.A.21)

Substituting the right-hand side of Eq. (3.A.19) into that of Eq. (3.A.21), it can be directly
proven that

(
�G[2](λ[k]

0 )x2

)H (
�G[2](λ[k]

0 )x2

)

= αH diag
{(

	(k(j))G
[2]
k(j)(λ

[k]
0 )Y

[k]
j

)H (
	(k(j))G

[2]
k(j)(λ

[k]
0 )Y

[k]
j

)∣∣∣s[k]

j=1

}
α. (3.A.22)

Denote the vector diag{(Y [k]H
j Y

[k]
j )1/2|s[k]

j=1}α by α̂. It can be declared from the FCR property

of the matrices Y
[k]
j |s[k]

j=1 that the vector α̂ is not equal to zero if and only if the vector α is.
On the other hand, from Eqs. (3.A.20) and (3.A.22) and from the definitions of the matrices



[k]
j |s[k]

j=1 straightforward algebraic manipulations show that

xH
2 x2 −

(
�G[2](λ[k]

0 )x2

)H (
�G[2](λ[k]

0 )x2

)
= α̂H diag

{
Ip(k,s) − 
[k]H

s 	2(k(s))
[k]
s

∣∣∣s[k]

s=1

}
α̂.

(3.A.23)
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Therefore, if the inequality of Eq. (3.51) is satisfied for each s = 1,2, · · · , s[k], then the matrix
diag{Ip(k,s) − 


[k]H
s 	2(k(s))


[k]
s |s[k]

s=1} is positive definite. This means that for an arbitrary
nonzero complex vector x2 satisfying Eq. (3.A.14), we have that

xH
2 x2 −

(
�G[2](λ[k]

0 )x2

)H (
�G[2](λ[k]

0 )x2

)
> 0. (3.A.24)

On the other hand, if for every s ∈ {
1,2, · · · , s[k]}, the inequality (3.52) is satisfied, then

similar arguments show that for each nonzero complex vector x2 satisfying Eq. (3.A.14), the
following inequality is satisfied:

xH
2 x2 −

(
�G[2](λ[k]

0 )x2

)H (
�G[2](λ[k]

0 )x2

)
< 0. (3.A.25)

Therefore, under both of these situations,

x2 �= �G[2](λ[k]
0 )x2. (3.A.26)

Hence, the matrix-valued polynomial M(λ) is of FCR at each λ = λ
[k]
0 . This completes the

proof.

3.A.3 Proof of Theorem 3.9

To prove the condition for the necessity, assume that there exists a subsystem, denoted �i ,
such that the associated matrix pair (Axx(i), [Bx(i) Axv(i)]) is not controllable. Then, ac-
cording to Theorem 3.1, there exist at least one λ0 ∈ C and one nonzero vector xi ∈ Cmxi such
that

xH
i

[
λ0Imxi

− Axx(i) Bx(i) Axv(i)
] = 0. (3.A.27)

Define the Mx-dimensional vector x = col{0Mx,i−1, xi, 0Mx−Mx,i
}. Then, x �= 0. Moreover,

from Eq. (3.A.27) and the block diagonal structure of the matrices Axx, Bx, and Axv direct
matrix algebraic manipulations show that

xH
[
λ0IMx − Axx − Bx − Axv

] = 0. (3.A.28)

Note that[
λ0IMx − Axx − Bx − Axv�

] = [
λ0IMx − Axx − Bx − Axv

]
diag

{
Imx, Imu, �

}
.

We therefore have that the matrix [λ0IMx −Axx −Bx −Axv�] can never be of FRR, no matter
how the subsystem connection matrix � is designed. Hence it can be claimed further from
the definition of the matrix-valued polynomial M̄(λ) that it is also never of FRR at λ = λ0.
According to Theorem 3.5, system � is not controllable.
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To prove the condition for the sufficiency, note that the matrix-valued polynomials M̄T (λ)

and M(λ) have completely the same form. Similar arguments as those for the derivations of
Eqs. (3.A.14) and (3.A.15) in the proof of Theorem 3.8 show that, the matrix-valued polyno-
mial M̄(λ) is of FRR at each complex number λ if and only if for each pair (λ, x2) satisfying

Ḡ[1](λ)x2 = 0 (3.A.29)

where λ ∈ C and x2 ∈ CMz , x2 �= 0, the following inequality is satisfied:[
IMz − �T Ḡ[2](λ)

]
x2 �= 0. (3.A.30)

From the assumption that the TFM Ḡ[1](λ) is of FCNR, its block diagonal structure, and from
the definitions of the matrices Ȳ

[k]
s |s̄[k]

s=1 it can be straightforwardly shown that every λ satisfy-
ing Eq. (3.A.29) must be a transmission zero of the TFM Ḡ[1](λ). Moreover, all the nonzero
x2 satisfying Eq. (3.A.29) with λ = λ̄

[k]
0 can be expressed as

x2 = Ȳ [k]α, (3.A.31)

where α is a nonzero
∑s̄[k]

s=1 p̄(k, s)-dimensional complex vector, and

Ȳ [k] =

⎡
⎢⎢⎣

0Mz,k̄(1)−1×p̄(k,1) · · · 0Mz,k̄(s̄[k])−1×p̄(k,s̄[k])

Ȳ
[k]
1 · · · Ȳ

[k]
s̄[k]

0(Mz−Mz,k̄(1))×p̄(k,1) · · · 0(Mz−Mz,k̄(s̄[k]))×p̄(k,s̄[k])

⎤
⎥⎥⎦ .

On the other hand, from Eq. (3.44) and singular value decompositions for a matrix [8] it can
be declared that there exist U1 ∈RMv×Mz and U2 ∈ RMv×(Mv−Mz) such that

� = U1	, [U1 U2]T [U1 U2] = [U1 U2][U1 U2]T = IMv . (3.A.32)

Hence, for each x2 satisfying Eq. (3.A.31), we have that[
IMz − �T Ḡ[2](λ[k]

0 )
]
x2 = 	

[
	−1Ȳ [k] − UT

1 Ḡ[2](λ[k]
0 )Ȳ [k]]α, (3.A.33)

which means that
[
IMz − �T Ḡ[2](λ[k]

0 )
]
x2 �= 0 if and only if

[
	−1Ȳ [k] − UT

1 Ḡ[2](λ[k]
0 )Ȳ [k]]α �= 0. (3.A.34)

Note that ∣∣∣
∣∣∣	−1Ȳ [k]α

∣∣∣∣∣∣2
2
= αH diag

{
Ȳ [k]H

s 	−2(k̄(s))Ȳ [k]
s

∣∣∣s̄[k]

s=1

}
α. (3.A.35)
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Moreover, from Eq. (3.A.32) we have that U1U
T
1 = IMv − U2U

T
2 ≤ IMv . Hence,

∣∣∣
∣∣∣UT

1 Ḡ[2](λ[k]
0 )Ȳ [k]α

∣∣∣∣∣∣2
2

= αH Ȳ [k]HḠ[2](λ[k]H
0 )U1U

T
1 Ḡ[2](λ[k]

0 )Ȳ [k]α

≤ αH Ȳ [k]HḠ[2]H (λ
[k]
0 )Ḡ[2](λ[k]

0 )Ȳ [k]α

= αH diag
{

Ȳ [k]H
s Ḡ

[2]H
k̄(s)

(λ
[k]
0 )Ḡ

[2]
k̄(s)

(λ
[k]
0 )Ȳ [k]

s

∣∣∣s̄[k]

s=1

}
α, (3.A.36)

which further leads to
∣∣∣
∣∣∣	−1Ȳ [k]α

∣∣∣∣∣∣2
2
−

∣∣∣∣∣∣UT
1 Ḡ[2](λ[k]

0 )Ȳ [k]α
∣∣∣∣∣∣2

2

≥ αH diag
{(

Ȳ [k]H
s 	−2(k̄(s))Ȳ [k]

s − Ȳ [k]H
s Ḡ

[2]H
k̄(s)

(λ
[k]
0 )Ḡ

[2]
k̄(s)

(λ
[k]
0 )Ȳ [k]

s

)∣∣∣s̄[k]

s=1

}
α

= α̂H diag
{(

Ip̄(k,s) − 
̄[k]H
s 
̄[k]

s

)∣∣∣s̄[k]

s=1

}
α̂, (3.A.37)

where α̂ = diag{(Ȳ [k]H
s 	−2(k̄(s))Ȳ

[k]
s )1/2|s̄[k]

s=1}α.

Note that the matrix Ȳ
[k]H
s 	−2(k̄(s))Ȳ

[k]
s is invertible for each feasible integer pair (k, s).

It is obvious that the vector α is nonzero if and only if the vector α̂ is. Therefore, if the con-

dition of Eq. (3.54) is satisfied, then for any nonzero
∑s̄[k]

s=1 p̄(k, s)-dimensional complex
vector α, we have that

∣∣∣∣∣∣	−1Ȳ [k]α
∣∣∣∣∣∣2

2
−

∣∣∣∣∣∣UT
1 Ḡ[2](λ[k]

0 )Ȳ [k]α
∣∣∣∣∣∣2

2
> 0. (3.A.38)

Hence, the condition of Eq. (3.A.34) is satisfied, which means that the system � is control-
lable. This completes the proof.

3.A.4 Proof of Theorem 3.10

From Lemma 3.3, we have that to guarantee the observability of the networked system �,
it is necessary that for each i = 1,2, · · · ,N , the matrix pair (Axx(i), [CT

T (i) AT
ST(i)]T ) is

observable. It can therefore be declared from Corollary 3.2 that to construct an observable �,
it is necessary that myi + mzi ≥ pmax(i).

Now, assume that myi + mzi = pmax(i) for every 1 ≤ i ≤ N . Then, according to Theorem 3.6
and the duality between system controllability and system observability, there always ex-
ist a matrix CT(i) and a matrix AST(i) for each i ∈ {1,2, · · · ,N} such that the matrix pair
(Axx(i), [CT

T (i) AT
ST(i)]T ) is observable.
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Note that, for an arbitrary real number κi , we have that
⎡
⎣ λImxi

− Axx(i)

CT(i)

κiAST(i)

⎤
⎦ = diag

{
Imxi

, Imyi
, κiImzi

}
⎡
⎣ λImxi

− Axx(i)

CT(i)

AST(i)

⎤
⎦ .

It is clear from Theorem 3.2 that observability of the matrix pair (Axx(i), col{Cx(i), κiAzx(i)})
is equivalent to that of the matrix pair (Axx(i), col{Cx(i), Azx(i)}), provided that κi �= 0.

For each j ∈ { 1, 2, · · · , N }, define the set

J (j) =
{

(k, s)

∣∣∣∣∣ k(s) = j,
s ∈ { 1, 2, · · · , s[k] }
k ∈ { 1, 2, · · · , m }

}
.

This set is associated with all the transmission zeros of the TFM G[1](λ), that is, also a trans-
mission zero of the TFM G

[1]
j (λ) with j ∈ { 1, 2, · · · , N }. Then, obviously, the satisfaction

of Eq. (3.51) can be equivalently expressed as the satisfaction, for each j = 1,2, · · · ,N , of
the inequality

Ip(k,s) − 
[k]H
s 	2(j)
[k]

s > 0 (3.A.39)

for every pair (k, s) of the set J (j).

For a fixed subsystem connection matrix �, define

γi = max

{
σmax (	(i)ASS(i)) , max

(k,s)∈J (i)
σmax

(
	(i)
[k]

s

)}
, (3.A.40)

where σmax(·) stands for the maximal singular value of a matrix. Moreover, for each subsys-
tem of system �, define the matrices

ÂST(i) = κiAST(i) and ÂSS(i) = κiASS(i), (3.A.41)

where κi is an arbitrary number belonging to (0, 1/γi).

Using these two matrices, construct a new networked system �̂ through simply replacing the
system matrices Azx(i) and Azv(i) respectively by ÂST(i) and ÂSS(i) keeping the other sys-
tem matrices unchanged. Moreover, define the matrices ÂSS, ÂST, and so on and the TFMs
Ĝ[1](λ), Ĝ[2](λ), and so on, respectively as their counterparts associated with system �.

Based on the block diagonal structure of the matrix ÂSS and Eq. (3.44), it can be straight-
forwardly proven that (�ÂSS)T (�ÂSS) = diag{κ2

i AT
SS(i)	2(i)Azv(i)|Ni=1}. Hence it can be

claimed from Eqs. (3.A.40) and (3.A.41) that

σmax

(
�ÂSS

)
= max

1≤i≤N

{
σmax

(
	(i)ÂSS(i)

)}
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= max
1≤i≤N

{κi × σmax (	(i)ASS(i))}
< 1. (3.A.42)

Note that the absolute value of each eigenvalue of a square matrix is not greater than its maxi-
mal singular value [8]. It can therefore be declared that the matrix I − �ÂSS is invertible, and
hence the reconstructed networked system �̂ is well-posed.

On the other hand, note that in system �̂, only the matrices ÂST(i) and ÂSS(i) are different
from those of system �. This implies that the TFMs G[1](λ) and Ĝ[1](λ), their transmission
zeros, and the associated matrices Y

[k]
s are completely the same. It can therefore be declared

from the definition of the matrix 

[k]
s that for each integer pair (k, s) with k ∈ { 1, 2, · · · , m }

and s ∈ { 1, 2, · · · , s[k] }, there certainly exists a unique j ∈ { 1, 2, · · · , N } such that their
pair (k, s) belongs to the set J (j). This further leads to


̂[k]
s = κj


[k]
s . (3.A.43)

Hence, we have from Eqs. (3.A.40) and (3.A.41) that

σmax

(

̂[k]

s 	(j)
)

= κjσmax

(

[k]

s 	(j)
)

< 1, (3.A.44)

which further implies the satisfaction of the condition of Eq. (3.A.39) for each element of the
set J (j) and each j ∈ { 1, 2, · · · , N }, and hence the system �̂ is observable.

The results on minimal input selection for system controllability can be established directly
using duality between controllability and observability of a dynamic system, as well as the
sufficient condition of Theorem 3.9.

This completes the proof.

References
[1] T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation, Prentice Hall, Upper Saddle River, New Jersey, 2000.
[2] K.M. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, Prentice Hall, Upper Saddle River, New

Jersey, 1996.
[3] R.E. Kalman, Canonical structure of linear dynamical systems, Proceedings of the National Academy of

Science, USA 46 (1962) 596–600.
[4] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991.
[5] T. Zhou, Minimal inputs/outputs for a networked system, IEEE Control Systems Letters 1 (2017) 298–303.
[6] Y. Zhang, T. Zhou, Controllability analysis for a networked dynamic system with autonomous subsystems,

IEEE Transactions on Automatic Control 62 (2017) 3408–3415.
[7] M. de Wal, B. Jager, A review of methods for input/output selection, Automatica 37 (2001) 487–510.
[8] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991.
[9] T. Zhou, On the controllability and observability of networked dynamic systems, Automatica 52 (2015)

63–75.



84 Chapter 3

[10] S. Pequito, S. Kar, A.P. Aguiar, A framework for structural input/output and control configuration selection in
large-scale systems, IEEE Transactions on Automatic Control 61 (2016) 303–318.

[11] T.H. Summers, F.L. Cortesi, J. Lygeros, On submodularity and controllability in complex dynamical
networks, IEEE Transactions on Control of Network Systems 3 (2016) 91–101.

[12] M. Egerstedt, S. Martini, M. Cao, K. Camlibel, A. Bicchi, Interacting with networks, how does structure
relate to controllability in single-leader, consensus networks?, IEEE Control Systems Magazine 32 (2012)
66–73.

[13] Y.Y. Liu, J.J. Slotine, A.L. Barabasi, Controllability of complex networks, Nature 473 (2011) 167–173.
[14] C.T. Lin, Structural controllability, IEEE Transactions on Automatic Control 19 (1974) 201–208.
[15] J.M. Dion, C. Commault, J. der Woude, Generic properties and control of linear structured systems: a survey,

Automatica 39 (2003) 1125–1144.
[16] F. Pasqualetti, S. Zampieri, F. Bullo, Controllability metrics, limitations and algorithms for complex networks,

IEEE Transactions on Control of Network Systems 1 (2014) 40–52.
[17] V. Tzoumas, M.A. Rahimian, G.J. Pappas, A. Jadbabaie, Minimal actuator placement with bounds on control

effort, arXiv:1409.3289v5 [math.OC], 2016.
[18] D.D. Siljak, Large-Scale Dynamic Systems: Stability and Structure, North-Holland Books, New York, USA,

1978.
[19] J. Schuppen, O. Boutin, P.L. Kempker, J. Komenda, T. Masopust, N. Pambakian, A.C.M. Ran, Control of

distributed systems: tutorial and overview, European Journal of Control 17 (2011) 579–602.
[20] M.S. Andersen, S.K. Pakazad, A. Hansson, A. Rantzer, Robust stability of sparsely interconnected uncertain

systems, IEEE Transactions on Automatic Control 59 (2014) 2151–2156.
[21] A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical data, SIAM Review 51 (2009)

661–703.
[22] T. Zhou, Y. Zhang, On the stability and robust stability of networked dynamic systems, IEEE Transactions on

Automatic Control 61 (2016) 1595–1600.
[23] T. Zhou, Coordinated one-step optimal distributed state prediction for a networked dynamical system, IEEE

Transactions on Automatic Control 58 (2013) 2756–2771.
[24] Y. Zhang, T. Zhou, A reinvestigation on the controllability and observability of networked dynamic systems,

in: Proceedings of the 34th Chinese Control Conference, Hanzhou, Zhejiang Province, China, pp. 6740–6746.
[25] T. Zhou, On the controllability of networked dynamic systems with bounded inputs, in: Proceedings of the

2015 American Control Conference, Chicago, Illinois, USA, pp. 3404–3409.
[26] T. Zhou, Controllability of a networked system with input and state constraints, Science China: Mathematics

46 (2016) 1603–1616 (in Chinese).
[27] M. de Wal, B. Jager, A review of methods for input/output selection, Automatica 37 (2001) 487–510.
[28] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, second edition,

Springer-Verlag, New York, Inc., New York, USA, 1998.
[29] E.D. Sontag, An algebraic approach to bounded controllability of linear systems, International Journal of

Control 39 (1984) 181–188.
[30] W.P.M.H. Heemels, M.K. Camlibel, Controllability of linear systems with input and state constraints, in:

Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, Louisiana, USA,
pp. 536–541.

[31] M. Helwa, P. Caines, In-block controllability of affine systems on polytopes, in: Proceedings of the 53th IEEE
Conference on Decision and Control, Los Angles, California, USA, pp. 3936–3942.

[32] J.D. Simon, S.K. Mitter, A theory of modal control, Information and Control 13 (1968) 316–353.
[33] Z.Z. Yuan, C. Zhao, Z.R. Du, W.X. Weng, Y.C. Lai, Exact controllability of complex networks, Nature

Communications (2013), https://doi.org/10.1038/ncomms3447.
[34] T. Zhou, Relations among out-degree, controllability and observability of a networked system,

arXiv:1610.02192v1 [math.OC], 2016.

https://doi.org/10.1038/ncomms3447


CHAPTER 4

Kalman Filtering and Robust Estimation

4.1 Introduction

In many engineering systems, biological systems, social systems, and so on, there exist vari-
ables that cannot be directly measured. A key issue here is therefore the possibilities of esti-
mating these variables from measurements of accessible variables and how to estimate these
variables when these possibilities arise. The study of these problems can be traced back to
Gauss’s invention of the now most widely known least squares method. The theory of proba-
bility and statistics, linear algebra, a so on have now provided solid mathematical foundations
for many estimation methods [1]. What distinguishes a particular estimation method for a dy-
namical system from the general results on estimations in probability and statistics is that it is
developed for a special kind of problems that have some particular structure. More precisely,
the output of a linear dynamical system depends on its input in a particular way, called convo-
lution.

It is extensively accepted that a systematic investigation on state estimation for a dynamical
system was initialized by R. Kalman, D.G. Luenberger et al. and started in the 1960s when the
so-called modern control theory began to emerge [2–4]. In this theory, rather than a differen-
tial equation or a transfer function, the input–output relation of a linear dynamical system is
described by a set of coupled first-order differential equations, which is now usually called a
state space model.

In this chapter, we first introduce the Luenberger observer and discuss its design procedure.
Afterward, we consider how to deal with measurement errors in state estimations, which nat-
urally leads to the Kalman filter. A derivation using likelihood maximization is provided.
Finally, we study the problem of state estimations with parametric modeling errors and de-
velop a procedure that recursively estimates the states of a plant and is robust against these
model errors.

4.2 State Estimation and Observer Design

In a finite-dimensional discrete-time system, assume that its outputs depend linearly on its in-
puts and its parameters are time invariant. For such a system, its input–output relation can be
described by a set of first-order difference equations. In particular, let y(k) and u(k) represent
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respectively the plant p- and q-dimensional output and input vectors. Then, the following two
equations are extensively used to describe its dynamic properties:

x(k + 1) = Ax(k) + Bu(k), (4.1a)

y(k) = Cx(k) + Du(k), (4.1b)

where x(k) is called the plant state vector, which is assumed to be an n-dimensional column
vector throughout this chapter. The first equation is often called the plant state transition equa-
tion, whereas the second one is called the plant output equation. The matrices A, B , C, and D

are usually real and have compatible dimensions.

As its name indicates, the problem of state estimation is to estimate the plant state vector x(k)

at each time instant k using its currently available input vectors u(s) and output vectors y(s),
s = 0,1,2, . . . , k.

When the system matrices A, B , C, and D are known, one of the well-known state estimators
is the Luenberger observer [3]. In this state estimator, a matrix L is sought such that the state
vector x̂(t) of the dynamic system

x̂(k + 1) = Ax̂(k) + Bu(k) − L[ŷ(k) − y(k)], (4.2a)

ŷ(k) = Cx̂(k) + Du(k) (4.2b)

satisfies

lim
k→∞||x̂(k) − x(k)||2 = 0 (4.3)

for arbitrary initial values x(0) and x̂(0) of the plant and observer state vectors.

The structure of the Luenberger observer is given in Fig. 4.1. Clearly, except the term related
to their input vectors, the state space models of the observer and the plant have the same struc-
ture. Conceptually, the “extra” term in the observer can be regarded as a feedback based on
the prediction error about the plant output vector that forces the state vector of the observer to
be equal to that of the plant.

Denote x̂(k) − x(k) by e(k), which is in fact the estimation error of the estimator at the time
instant k. From Eqs. (4.1a) and (4.2a) it is straightforward to prove that

e(k + 1) = (A − LC)e(k). (4.4)

Clearly, to satisfy the requirement (4.3), it is necessary and sufficient that the dynamic sys-
tem of equations (4.4) is stable. This implies that in the design of the Luenberger observer,
we should find an appropriate matrix L such that all the eigenvalues of the matrix A − LC

have the magnitude smaller than 1. In other words, to move all the eigenvalues of the matrix
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Figure 4.1: The Luenberger observer.

A into the interior of the unit disk on the complex plane through the feedback matrix L and
the measurement matrix C.

A standard result on linear systems is that for a prescribed matrix pair A and C, the existence
of a matrix L such that the magnitude of each eigenvalue of the matrix A − LC is bounded
by 1 is equivalent to the detectability of the plant. The latter can be simply verified through
many available criteria, such as the PBH test, the rank condition, and so on [1].

This state estimator is in fact a one-step ahead predictor; noting that rather than the measure-
ment data y(k + 1), it is y(k) that is utilized in estimating the state vector x(k + 1). In other
words, in the estimation of this vector, only y(0), y(1), . . . , y(k) have been used. To use the
information contained in the measurement y(k + 1) in this estimation, it is necessary to mod-
ify the state space model of the observer given by Eq. (4.3) into the following form:

x̂(k + 1) = Ax̂(k) + Bu(k) − L[ŷ(k + 1) − y(k + 1)], (4.5a)

ŷ(k) = Cx̂(k) + Du(k), (4.5b)

where ŷ(k + 1) is an estimate of y(k + 1) on the basis of the measurements y(0), y(1), · · · ,
y(k) and the input sequence u(0), u(1), · · · , u(k), u(k + 1). Generally, it can be calculated
from x̂(k) using ŷ(k + 1) = C(k + 1)[A(k)x̂(k) + B(k)u(k)] + D(k + 1)u(k + 1). Here
A(k)x̂(k) + B(k)u(k) is adopted to perform a one-step ahead prediction on x(k + 1).

Once again, let e(k) denote the state estimation error. Then, when the above estimate of
y(k + 1) is utilized, we have that

e(k + 1) = x̂(k + 1) − x(k + 1)

= {
Ax̂(k) + Bu(k) − L[ŷ(k + 1) − y(k + 1)]}− [A(k)x(k) + B(k)u(k)]

= A[x̂(k) − x(k)] − L
({

C
[
Ax̂(k) + Bu(k)

]+ Du(k + 1)
}
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− {C [Ax(k) + Bu(k)] + Du(k + 1)})
= (A − LCA)[x̂(k) − x(k)]
= (I − LC)Ae(k). (4.6)

Clearly, to make the state estimate asymptotically converge to its actual value, it is necessary
and sufficient that the matrix (I − LC)A is stable. The existence of a matrix L such that the
matrix (I − LC)A is stable is guaranteed by the detectability of the matrix pair (A, CA). In
fact, detectability of this matrix pair is a necessary and sufficient condition for the existence of
the desirable L matrix.

In addition to the above full-order observer, there are also reduced-order observer in which the
dimension of the state vector of the observer is strictly smaller than that of the plant. Such an
observer can be designed through some modifications of the above procedure. An interested
reader may refer to [1] for details.

4.3 Kalman Filter as a Maximum Likelihood Estimator

When the matrix pair (A, CA) is detectable, there are infinitely many matrices L that make
the matrix (I − LC)A become a Horwitz or stable matrix, that is, all its eigenvalues have a
magnitude smaller than 1. A natural question is that, among these matrices, which one is op-
timal. When external disturbances are Gaussian and optimality is measured by the covariance
matrix of estimation errors, the answer is the Kalman filter, which is valid even when the plant
is time varying.

In particular, for a linear time-varying finite-dimensional plant, assume that its dynamics is
described by the following state space model:

x(k + 1) = A(k)x(k) + B(k)u(k) + G(k)w(k), (4.7a)

y(k) = C(k)x(k) + D(k)u(k) + v(k). (4.7b)

Once again, x(k) represents the plant n-dimensional state vector, y(k) and u(k) respectively
represent the plant p- and q-dimensional output and input vectors, and w(k) and v(k) are
respectively the process noise and measurement error vectors. To simplify expressions, we
assume that the process noise vector w(k) and the measurement error vector v(k) are inde-
pendent of each other and are also independent of all the plant state vectors before or at that
time instant, that is, x(s) with 0 ≤ s ≤ k. We also assume that these vectors are white, that is,
the values of these two vectors at different time instants are independent of themselves. More-
over, assume that the mathematical expectations of these two random processes are constantly
equal to 0 and that their covariance matrices are respectively Q(k) and R(k). It is further
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assumed for brevity that the covariance matrices Q(k) and R(k) are invertible at each time
instant k.

In the following discussions, when the plant is time invariant, which means that both the pa-
rameter matrices of the plant, as well as the statistic properties of the process noise and mea-
surement error vectors, do not depend on the temporal variable k, the matrices A(k), B(k),
and so on are usually simplified to A, B , and so on, respectively.

When the system matrices A(k), B(k), C(k), D(k), and G(k) are known functions of the
sampling time variable k, assume that the plant initial state vector x(0) is normally distributed
with mathematical expectation x̄(0) and covariance matrix P(0). Then, the optimal state
estimator, which is now extensively known as the Kalman filter, has completely the same
structure as that of the Luenberger observer given in Eqs. (4.5a) and (4.5b). More precisely,
denote the state vector of the estimator by x̂(k). Then, from an arbitrary estimate about the
plant initial state vector, denote it by x̂(0), the optimal estimate of the plant state vector at the
time instant k + 1, on the basis of the measured plant output vector y(s) with 0 ≤ s ≤ k + 1,
which is now represented by x̂(k + 1), can be recursively computed as follows:

x̂(k + 1) = A(k)x̂(k) + B(k)u(k) − L(k + 1)[ŷ(k + 1) − y(k + 1)], (4.8a)

ŷ(k) = C(k)x̂(k) + D(k)u(k), (4.8b)

where ŷ(k + 1) = C(k + 1)
[
A(k)x̂(k) + B(k)u(k)

] + D(k + 1)u(k + 1). Moreover, the
matrix-valued function L(k) is called the gain matrix of the Kalman filter, which has the fol-
lowing explicit and recursive computation formula:

P−(k + 1) = A(k)P (k)AT (k) + G(k)Q(k)GT (k), (4.9a)

P(k + 1) =
[
P −1− (k + 1) + CT (k + 1)R−1(k + 1)C(k + 1)

]−1
, (4.9b)

L(k + 1) = P(k + 1)CT (k + 1)R−1(k + 1). (4.9c)

Recall that when a linear system is subject to an input signal that can be expressed as a linear
combination of several other input signals, its output signal is simply the same linear combi-
nation of the output signals due to each individual input signal. The above state estimator can
be directly modified to situations in which the system is simultaneously affected by determin-
istic and stochastic signals [1].

This estimator can be extended to situations in which the process noises and measurement
errors are not white, the process noises and measurement errors are correlated, and so on. It
has also been proved that as long as the plant is linear and the process noise, measurement
error, and the plant initial state vector are normally distributed, the above estimator is optimal
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among all estimation procedures in the sense that the covariance matrix of the estimation error
vector is minimal at each time instant.

The above procedure can be derived through various methods. For example, the geomet-
ric formulation and projection method adopted in Kalman’s original work, the method with
Markovian representations, dynamic programming-based method, invariant embedding-based
method, method using deterministic least squares estimations, and method based on likeli-
hood maximization [5]. In this book, we adopt the likelihood maximization-based method,
which is more convenient in extending the Kalman filter to situations in which there exist
parametric errors in the plant state space model.

4.3.1 Derivation of the Kalman Filter

Note that a linear combination of normally distributed random variables is still normally dis-
tributed. It is clear from the plant state space model of Eqs. (4.7a) and (4.7b) that when its
initial state vector x(0), the process noise vector w(s), and the measurement error vector v(s)

are normally distributed, all the plant state vectors and its measured output vectors until a
time instant, say, k, that is, x(0), x(1), · · · , x(k) and y(0), y(1), · · · , y(k) are jointly normally
distributed. Hence, with the availability of the measurement vectors y(s)|ks=0, the optimal es-
timate on x(k) is the conditional expectation E

[
x(k) |y(s), s = 0, 1, · · · , k

]
. Recall that the

conditional expectation of jointly normally distributed random variables still has a normal
distribution [6]. Let x̂(k|k) represent the optimal estimate of the state vector x(k) based on
the measurements y(0), y(1), · · · , and y(k), and let x̂(k|k + 1) be the one based on the mea-
surements y(0), y(1), · · · , and y(k + 1). Moreover, let P(k) denote the covariance matrix
of estimation errors of x̂(k|k). Assume that the estimate x̂(k|k) is unbiased and the covari-
ance matrix P(k) is positive definite. Then, from the normal distribution assumptions on the
process noises w(k) and the measurement errors v(k) we have that the probability density
functions (PDFs) of v(k + 1) and w(k) are respectively

fv(k+1)(v(k + 1)) = 1

(2π det(R(k + 1)))p/2
e−vT (k+1)R−1(k+1)v(k+1), (4.10a)

fw(k)(w(k)) = 1

(2π det(Q(k)))q/2
e−wT (k)Q−1(k)w(k). (4.10b)

Moreover, denote the estimation error of the estimate x̂(k|k) by e(k|k). Then, the state vector
of the plant at the time instant k, that is, x(k), can also be expressed as x(k) = x̂(k|k)−e(k|k).
On the basis of the assumptions on the unbiasedness of the estimator and the normal distribu-
tion of its estimation errors, we have that the PDF of x(k) can be expressed as

fx(k)(x(k)) = 1

(2π det(P (k)))n/2
e−(x(k)−x̂(k|k))T P −1(k)(x(k)−x̂(k|k)). (4.10c)
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On the other hand, from Eq. (4.7) we have that

v(k + 1) = y(k + 1) − C(k + 1) [A(k)x(k) + B(k)u(k) + G(k)w(k)] − D(k + 1)u(k + 1)

= ȳ(k + 1) − C(k + 1)A(k)x(k) − C(k + 1)G(k)w(k), (4.11)

where ȳ(k + 1) is defined as

ȳ(k + 1) = y(k + 1) − C(k + 1)B(k)u(k) − D(k + 1)u(k + 1).

Recall that w(k) and v(k) are white and independent of each other and independent of the
plant initial states. It is obvious from Eqs. (4.7a) and (4.7b) that x(k), w(k), and v(k + 1) are
independent of each other. Hence, when the measurement data y(k + 1) become available,
through substituting Eq. (4.11) into Eq. (4.10a) we have that the joint PDF of x(k), w(k), and
v(k + 1) is equivalent to

fx(k)(x(k)) × fw(k)(w(k)) × fv(k+1)(v(k + 1))

= Const × exp
{
−
[
||w(k)||2

Q−1(k)
+ ||x(k) − x̂(k|k)||2

P −1(k)

+ ||ȳ(k + 1) − C(k + 1)A(k)x(k) − C(k + 1)G(k)w(k)||2
R−1(k+1)

]}
, (4.12)

where Const is a constant that can be explicitly expressed as

Const =
(√

2π
)p+q+n × detn/2(P (k)) × detq/2(Q(k)) × detp/2(R(k + 1)).

Hence, the logarithm of the likelihood function of the random vectors x(k) and w(k) after the
arrival of the measurement y(k + 1), denote it by l(x(k),w(k)), can be expressed as

l(x(k),w(k)) = log(Const) − ||w(k)||2
Q−1(k)

− ||x(k) − x̂(k|k)||2
P −1(k)

− ||ȳ(k + 1) − C(k + 1)A(k)x(k) − C(k + 1)G(k)w(k)||2
R−1(k+1)

.

(4.13)

To simplify mathematical expressions, denote col{x(k), w(k)} and col{x̂(k|k), 0} re-
spectively by α(k) and α0(k). Moreover, denote C(k + 1)

[
A(k)x̂(k|k) + B(k)u(k)

] +
D(k + 1)u(k + 1) by ŷ(k + 1|k). Then, we have that

y(k + 1) − ŷ(k + 1|k) = y(k + 1) − {C(k + 1)
[
A(k)x̂(k|k) + B(k)u(k)

]
+ D(k + 1)u(k + 1)

}
= ȳ(k + 1) − C(k + 1)A(k)x̂(k|k). (4.14)
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Hence

ȳ(k + 1) − C(k + 1)A(k)x(k) − C(k + 1)G(k)w(k)

= [ȳ(k + 1) − C(k + 1)A(k)x̂(k|k)] − [C(k + 1)A(k)x(k) + C(k + 1)G(k)w(k)

− C(k + 1)A(k)x̂(k|k)]
= y(k + 1) − ŷ(k + 1|k) − C(k + 1)[A(k) G(k)][α(k) − α0(k)]. (4.15)

Substituting these relations into Eq. (4.13), we can straightforwardly prove that

l(x(k),w(k)) = log(Const) − ||α(k) − α0(k)||2
diag−1(P (k), Q(k))

−||y(k + 1) − ŷ(k + 1|k) − C(k + 1)[A(k) G(k)][α(k) − α0(k)]||2
R−1(k+1)

.

(4.16)

Therefore

dl(x(k),w(k))

dα(k)

= −2
{

diag−1(P (k), Q(k))[α(k) − α0(k)] + (C(k + 1)[A(k) G(k)])T R−1(k + 1)

× {
C(k + 1)[A(k) G(k)][α(k) − α0(k)] − [y(k + 1) − ŷ(k + 1|k)

]}}
. (4.17)

At the maximum likelihood estimate of x(k) and w(k), the likelihood function and there-
fore its logarithm achieve maximal values. Note that the likelihood function l(x(k),w(k))

is a strictly concave function of both vectors x(k) and w(k). This is equivalent to that, at this
estimate,

dl(x(k),w(k))

dα(k)
= 0. (4.18)

Denote col{x̂(k|k + 1), ŵ(k|k + 1)} by α̂(k|k + 1). Then Eqs. (4.17) and (4.18) imply that

α̂(k|k + 1) − α0(k) =
{

diag−1(P (k), Q(k)) + (C(k + 1)[A(k) G(k)])T R−1(k + 1)

× (C(k + 1)[A(k) G(k)])
}−1

× (C(k + 1)[A(k) G(k)])T R−1(k + 1)
[
y(k + 1) − ŷ(k + 1|k)

]
.

(4.19)

From the well-known matrix formula G(I + HG)−1 = (I + GH)−1G we further have that

α̂(k|k + 1) − α0(k)

= diag(P (k), Q(k))
{
I + [A(k) G(k)]T CT (k + 1)R−1(k + 1)C(k + 1)[A(k) G(k)]
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× diag(P (k), Q(k))}−1 [A(k) G(k)]T CT (k + 1)R−1(k + 1)
[
y(k + 1) − ŷ(k + 1|k)

]
= diag(P (k), Q(k))[A(k) G(k)]T

{
I + CT (k + 1)R−1(k + 1)C(k + 1)[A(k) G(k)]

× diag(P (k), Q(k))[A(k) G(k)]T
}−1

CT (k + 1)R−1(k + 1)
[
y(k + 1) − ŷ(k + 1|k)

]

=
[

P(k)AT (k)

Q(k)

]{
I + CT (k + 1)R−1(k + 1)C(k + 1)

×
[
A(k)P (k)AT (k) + G(k)Q(k)GT (k)

]}−1

× CT (k + 1)R−1(k + 1)
[
y(k + 1) − ŷ(k + 1|k)

]

=
[

P(k)AT (k)

Q(k)GT (k)

]
P −1− (k + 1)P (k + 1)CT (k + 1)R−1(k + 1)

[
y(k + 1) − ŷ(k + 1|k)

]
.

(4.20)

In these derivations, the definitions of the matrices P−(k + 1) and P(k + 1) have been used,
which are respectively given by Eqs. (4.9a) and (4.9b). Hence

x̂(k + 1|k + 1) = A(k)x̂(k|k + 1) + B(k)u(k) + G(k)ŵ(k|k + 1)

= [A(k) G(k)]α̂(k|k + 1) + B(k)u(k)

= [A(k) G(k)]
{[

P(k)AT (k)

Q(k)GT (k)

]
P −1− (k + 1)P (k + 1)CT (k + 1)

× R−1(k + 1)
[
y(k + 1) − ŷ(k + 1|k)

]+ α0(k)

}
+ B(k)u(k)

= A(k)x̂(k|k) + B(k)u(k) − P(k + 1)CT (k + 1)R−1(k + 1)

× [ŷ(k + 1|k) − y(k + 1)
]
. (4.21)

The last equality has completely the same form as that of Eq. (4.8a) if we replace x̂(k|k),
x̂(k + 1|k + 1), and ŷ(k|k + 1) respectively by x̂(k), x̂(k + 1), and ŷ(k + 1) and recall the
definition of the Kalman gain matrix L(k + 1) given in Eq. (4.9c). These replacements are
natural, since they are completely the same quantities from their definitions. We use differ-
ent symbols in the derivations only to emphasize the available information based on which an
estimate is performed.

In the derivations, it is assumed that the estimate x̂(k|k) is unbiased. Now, we discuss reason-
ability of this assumption. After this discussion, we will investigate engineering significance
for the matrix P(k + 1).
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Let e(k) denote the state estimation error of the Kalman filter at the time instant k, that is,
e(k) = x̂(k) − x(k). Then, from Eqs. (4.7a), (4.7b), and (4.8a) we have that

x̂(k + 1) = A(k)x̂(k) + B(k)u(k) − L(k + 1)
{(

C(k + 1)[A(k)x̂(k) + B(k)u(k)]
+ D(k + 1)u(k + 1)) − (C(k + 1)[A(k)x(k) + B(k)u(k) + G(k)w(k)]
+ D(k + 1)u(k + 1)) + D(k + 1)u(k + 1) + v(k + 1))

}
= A(k)x̂(k) + B(k)u(k) − L(k + 1) {C(k + 1)A(k)e(k)

− C(k + 1)G(k)w(k) − v(k + 1)} . (4.22)

Combing this equation with Eq. (4.7a), we establish the following recursive formula for the
estimation error e(k):

e(k + 1) = x̂(k + 1) − x(k + 1)

= {
A(k)x̂(k) + B(k)u(k) − L(k + 1)C(k + 1)A(k)e(k)

+ L(k + 1)C(k + 1)G(k)w(k) + L(k + 1)v(k + 1)
}

− [A(k)x(k) + B(k)u(k) + G(k)w(k)]
= [I − L(k + 1)C(k + 1)]A(k)e(k) + [L(k + 1)C(k + 1) − I ]G(k)w(k)

+ L(k + 1)v(k + 1). (4.23)

Hence, from the assumptions on the process noise w(k) and the measurement error v(k) we
can be declare that

E[e(k + 1)] = [I − L(k + 1)C(k + 1)]A(k)E[e(k)] + [L(k + 1)C(k + 1) − I ]G(k)E[w(k)]
+ L(k + 1)E[v(k + 1)]

= [I − L(k + 1)C(k + 1)]A(k)E[e(k)]. (4.24)

Therefore, if x̂(k) is an unbiased estimate, then the estimate x̂(k + 1) obtained from the
Kalman filter of Eqs. (4.8a) and (4.8b) is also unbiased. As the Kalman filter is a recursive es-
timator and Eq. (4.24) is valid for every time instant, it is obvious that the state estimate given
by the Kalman filter is always unbiased, provided that the initial estimate, that is, the estimate
on the plant state vector at k = 0, is unbiased, which is usually not a very restrictive condition.

In addition, if the associated dynamic system, which can be described by x(k + 1) = [I −
L(k + 1)C(k + 1)]A(k)x(k), is stable, then, even if an initial estimate on the plant state vector
is biased, it is clear from Eq. (4.24) that this estimate is asymptotically unbiased, noting that

lim
k→∞ E[e(k)] = 0.
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On the other hand, from the assumptions on x(0), w(k), and v(k), it is clear that e(k), w(k)

and v(k + 1) are independent of each other at every time instant k ≥ 0. We can therefore de-
clare from Eq. (4.23) that

Cov[e(k + 1)] = [I − L(k + 1)C(k + 1)]A(k)Cov[e(k)]AT (k)[I − L(k + 1)C(k + 1)]T
+ [I − L(k + 1)C(k + 1)]G(k)Cov[w(k)]GT (k)[I − L(k + 1)C(k + 1)]T
+ L(k + 1)Cov[v(k + 1)]LT (k + 1)

= [I − L(k + 1)C(k + 1)]A(k)P (k)AT (k)[I − L(k + 1)C(k + 1)]T
+ [I − L(k + 1)C(k + 1)]G(k)Q(k)GT (k)[I − L(k + 1)C(k + 1)]T
+ L(k + 1)R(k + 1)LT (k + 1)

= [I − L(k + 1)C(k + 1)]P−(k + 1)[I − L(k + 1)C(k + 1)]T
+ L(k + 1)R(k + 1)LT (k + 1). (4.25)

Note that

I − L(k + 1)C(k + 1) = I −
[
P −1− (k + 1) + CT (k + 1)R−1(k + 1)C(k + 1)

]−1

× CT (k + 1)R−1(k + 1)C(k + 1)

= I −
[
I + P−(k + 1)CT (k + 1)R−1(k + 1)C(k + 1)

]−1

× P−(k + 1)CT (k + 1)R−1(k + 1)C(k + 1)

=
[
I + P−(k + 1)CT (k + 1)R−1(k + 1)C(k + 1)

]−1

= P(k + 1)P −1− (k + 1). (4.26)

Moreover, note that all the matrices P−(k + 1), P(k + 1), R(k + 1) are symmetric from their
definitions. We therefore have that

Cov[e(k + 1)] =
[
P(k + 1)P −1− (k + 1)

]
P−(k + 1)

[
P(k + 1)P −1− (k + 1)

]T

+
[
P(k + 1)CT (k + 1)R−1(k + 1)

]
R(k + 1)

×
[
P(k + 1)CT (k + 1)R−1(k + 1)

]T

= P(k + 1)
[
P −1− (k + 1) + CT (k + 1)R−1(k + 1)C(k + 1)

]
P(k + 1)

= P(k + 1). (4.27)

Thus the matrix P(k + 1) defined in Eq. (4.9c) of the Kalman filter is in fact the covariance
matrix of its estimation errors at the time constant k + 1, which is one of the most impor-
tant indices in assessing the quality of an estimator. Hence, the estimation procedure of
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Eqs. (4.8a)–(4.9c) provides not only a recursive estimate of the plant state vector, but also a
recursive method for assessing its estimation quality.

Although we do not provide detailed discussions on state predictions here, it is worth men-
tioning that A(k)x̂(k) + B(k)u(k) is in fact the optimal one-step ahead prediction on the plant
state vector at the time instant k +1, that is, x(k +1), on the basis of (u(s), y(s))|ks=0, and the
covariance matrix of its prediction error is equal to P−(k + 1) [1,5]. From the definition of the
matrix P(k + 1) given in Eq. (4.9b) it is obvious that

P −1(k + 1) = P −1− (k + 1) + CT (k + 1)R−1(k + 1)C(k + 1)

≥ P −1− (k + 1). (4.28)

Then, we can declare from standard results in matrix theories [7–9] (some of them are in-
cluded in Lemma 2.1) that

P(k + 1) ≤ P−(k + 1). (4.29)

Hence, the quality of filtering in the Kalman filter is always not worse than its prediction. This
is a clear engineering requirement, as filtering uses more plant input–output data, and there-
fore more information about the plant, than a predictor.

4.3.2 Convergence Property of the Kalman Filter

Due to its optimality, recursive implementability, and many other attractive properties, the
Kalman filter derived in the previous subsection has been extensively applied in engineering
systems, social systems, biological systems, and so on. In this subsection, we discuss one of
its important properties, the asymptotic convergence to a constant gain observer. To avoid
awkward discussions, we only investigate situations under which the system matrix A(k) is
always invertible. More general results can be found, for example, in [1]. For this purpose,
define the matrix

�(k) =[
A(k) G(k)Q(k)GT (k)A−T (k)

CT (k + 1)R−1(k + 1)C(k + 1)A(k) [I + CT (k + 1)R−1(k + 1)C(k + 1)G(k)Q(k)GT (k)]A−T (k)

]
.

(4.30)

Then, straightforward algebraic manipulations show that the relation between the matrices
P(k + 1) and P(k), which is given by Eqs. (4.9a) and (4.9b), can be rewritten as

P(k + 1) = Hm(�(k), P (k)). (4.31)
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Moreover,

�T (k)J�(k) = J with J =
[

0n×n In

−In 0n×n

]
, (4.32)

that is, the matrix �(k) is Hamiltonian.

From the cascade property of the homographic transformation given by Lemma 2.6 we obtain
the following equality:

P(k) = Hm (�(k), Hm (�(k − 1), · · · , Hm (�(1), P (0)) · · · ))
= Hm(�(k)�(k − 1), Hm (�(k − 2), · · ·, Hm (�(1), P (0)) · · · ))
= · · ·

= Hm

⎛
⎝ 1∏

j=k

�(j), P (0)

⎞
⎠ , (4.33)

which provides a very simple relation between the covariance matrix of the estimation er-
rors of the Kalman filter at any time instant k and that at the initial time instant k = 0. In fact,
similar relations can be established for this covariance matrix between any two time instants.
These relations are very helpful in investigating convergence properties of the Kalman filter.

On the basis of this relation and Definition 2.7, which gives a Riemannian distance between
two positive definite matrices, the following asymptotic properties are established through
some straightforward algebraic operations.

Theorem 4.1. Assume that the plant described by Eq. (4.7) is time invariant and its state
transition matrix is invertible. Then, when the matrix pair (A, G) is controllable and the ma-
trix pair (A, C) is observable with the increment of the time instant k, the covariance matrix
P(k) of the Kalman filter given by Eqs. (4.8a) and (4.8b) converges to a constant matrix.

A proof of these results is given in the appendix of this chapter.

When the matrix A is not invertible, and/or the plant is not controllable, and/or the plant is
not observable, some results have also been established for the convergence of the covari-
ance matrix P(k) of the estimation errors of the Kalman filter. The derivations, however, are
quite lengthy, although the essential ideas are still borrowed from linear algebra. An interested
reader is recommended to refer to [1,5].

Note that a normal distribution is completely determined by its mathematical expectation and
covariance matrix. It is clear from Theorem 4.1 that when the plant is time invariant, con-
trollable, and observable, the estimation error of the Kalman filter converges to a stationary
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process. On the other hand, from Eq. (4.9c) it can also be declared that, under these condi-
tions, the update gain matrix L(k) of the Kalman filter also converges to a constant matrix.
This result is quite attractive in engineering applications, as it implies that without sacrificing
steady-state estimation accuracy, the Kalman filter can be replaced by a state observer with a
constant update gain matrix, which can significantly reduce online computation burdens of the
Kalman filter.

4.4 Recursive Robust State Estimation Through Sensitivity Penalization

Due to its simplicity and optimality, the Kalman filter is quite attractive in actual applications.
A potential pitfall of applying the Kalman filter to real-world problems lies in its explicit de-
pendence on the parameters of the plant state space model. In many real-world problems,
plant parameters are estimated from experimental data, which unavoidably introduce errors
into the estimated parameters. Moreover, a model usually can only capture major features of
the plant dynamics, which means that there often exists unmodeled dynamics in the errors of
a plant state space model. In addition, a plant may need to work in various distinctive envi-
ronments that differ from each other significantly. Hence, an essential issue about the Kalman
filter, which is in fact valid for any state estimation procedure, is about the degeneration of its
estimation accuracy caused by modeling errors.

Several cases have been reported in which the Kalman filter failed to work very well [1,5].
To reduce the sensitivity of estimation accuracy of an estimator to modeling errors, vari-
ous approaches have been suggested, such as the H∞-norm-based method, the guaranteed
cost-based method, the set-membership-based approach, and so on [10]. In this section, we
introduce a sensitivity penalization-based approach. The basic idea here is to reduce the sen-
sitivity of the cost function to modeling errors, which is adopted in the derivations of a state
estimator and therefore increases the robustness in estimation accuracy of the resulting state
estimator to modeling errors. A prominent characteristic of this robust state estimator is that
it has a similar form as that of the Kalman filter and can be recursively implemented. Its com-
putational complexity is comparable to that of the Kalman filter, and no extra conditions are
required to be verified in its realizations. The last property significantly distinguishes it from
other robust state estimators, which usually require a verification of some matrix-based condi-
tions that cannot be performed online very easily in general.

4.4.1 Estimation Algorithm

When there exist parametric errors in a plant state space model, the input–output relation of
the plant can generally be expressed as the following a modification of the state space model
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of Eqs. (4.7a) and (4.7b), which is extensively adopted to describe the dynamics of a linear
time-varying finite-dimensional plant:

x(k + 1) = A(k, ε(k))x(k) + B(k, ε(k))u(k) + G(k, ε(k))w(k), (4.34a)

y(k) = C(k, ε(k))x(k) + D(k, ε(k))u(k) + v(k), (4.34b)

where ε(k) represent the deviations of the nominal values of the plant parameters from their
actual values. The value of this vector may be time varying, but it is assumed that at ev-
ery sampled time instant, all the system parameter matrices, that is, A(k, ε(k)), B(k, ε(k)),
C(k, ε(k)), D(k, ε(k)), and G(k, ε(k)), are differentiable with respect to each of its elements.
Moreover, its dimension, denoted by ne, is assumed to be time invariant for avoiding compli-
cated mathematical expressions.

Generally, there is a vector, say p0, in the model that consists of the nominal values of all the
physical parameters, chemical parameters, biological parameters, and so on in the system. For
a concise presentation, this vector has been dropped out, but all the results must be understood
as valid with system parameters varying in a neighborhood of the vector p0, that is, each sys-
tem parameter is implicitly assumed to be in an interval centered at its nominal value.

Similarly to the derivations of the Kalman filter, assume that from the plant output mea-
surements y(s)|ks=0, an estimate about the plant state vector x(k) has already been obtained.
Denote it by x̂(k|k). Moreover, assume that there is a positive definite matrix P(k) that is used
to weight the difference between any other estimate on x(k) and the available estimate.

Once again, let x̂(k|k + 1) and ŵ(k|k + 1) represent respectively an estimate for the state vec-
tor x(k) and the process noise w(k) from the plant output measurements y(s)|k+1

s=0. Moreover,
let e(k, ε(k), ε(k + 1)) denote the prediction error on the plant output y(k + 1) using these
estimates, that is,

e(k, ε(k), ε(k + 1)) = y(k + 1) − C(k + 1, ε(k + 1))
[
A(k, ε(k))x̂(k|k + 1) + B(k, ε(k))u(k)

+ G(k, ε(k))ŵ(k|k + 1)
]− D(k + 1, ε(k + 1))u(k + 1).

To avoid lengthy mathematical expressions, denote

y(k + 1) − C(k + 1, ε(k + 1))B(k, ε(k))u(k) − D(k + 1, ε(k + 1))u(k + 1)

by ȳ(k + 1, ε(k), ε(k + 1)). Then e(ε(k), ε(k + 1)) can be reexpressed as

e(k, ε(k), ε(k + 1)) = ȳ(k + 1, ε(k), ε(k + 1)) − C(k + 1, ε(k + 1))A(k, ε(k))x̂(k|k + 1) −
C(k + 1, ε(k + 1))G(k, ε(k))ŵ(k|k + 1).
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When there do not exist modeling errors in the plant state space model, e(k, ε(k), ε(k + 1)) is
usually called the innovation process in state estimations and plays an essential role in devel-
oping an estimation algorithm and in analyzing properties of an estimator. Loosely speaking,
it represents new information about the plant state vector x(k) carried in the plant output mea-
surement y(k + 1) [1].

Denote the j th row element of the parametric error vector ε(k) by εj (k), j = 1,2, . . . , ne.
With a given nonnegative number λ(k), define the cost function

J (x̂(k|k + 1), ŵ(k|k + 1))

= 1

2

{
||ŵ(k|k + 1)||2

Q−1(k)
+ ||x̂(k|k + 1) − x̂(k|k)||2

P −1(k)
+ ||e(0,0)||2

R−1(k+1)

+ λ(k)

ne∑
j=1

∣∣∣∣
∣∣∣∣∂e(k,0,0

∂εj (k)

∣∣∣∣
∣∣∣∣
2

2
+
∣∣∣∣
∣∣∣∣ ∂e(k,0,0)

∂εj (k + 1)

∣∣∣∣
∣∣∣∣
2

2

⎫⎬
⎭ (4.35)

Comparing Eq. (4.35) with Eq. (4.13), it is clear that maximizing the cost function of
Eq. (4.13) is equivalent to minimizing that of Eq. (4.35) with ε(k) = ε(k + 1) = 0 and
λ(k) = 0. Note also that e(ε(k), ε(k + 1)) is the only factor in the cost function of Eq. (4.13)
that may be affected by modeling errors. We can declare that through introducing the factors
∂e(0,0)
∂εj (k)

and ∂e(0,0)
∂εj (k+1)

into the cost function of Eq. (4.35), we can reduce influences of para-
metric modeling errors on the cost functions and therefore increase robustness of the resulted
state estimator.

Note that for an arbitrary finite number λ(k) ≥ 0, there always exists a scalar μ(k) belong-
ing to (0, 1] such that λ(k) = 1−μ(k)

μ(k)
. From this expression of the penalization factor λ(k)

it is obvious that the cost function of Eq. (4.35) is proportional to a convex combination of
the cost function of Eq. (4.13) and the sum of the squares of the Euclidean norm of the par-
tial derivatives of e(k, ε(k), ε(k + 1)) with respect to each parametric error. This means that
an appropriate selection of the factor λ(k) can reflect a good trade-off between the nominal
value of the cost function adopted in state estimations and its sensitivity to parametric mod-
eling errors. From these respects, the factor λ(k) can also be explained as a penalization on
the sensitivity of the cost function in Eq. (4.13) to modeling errors. This explanation leads to
the name of sensitivity penalization-based robust state estimator for the resulted estimation
procedure [11].

Through minimizing the cost function of Eq. (4.35), a robust state estimator can be derived,
which has a similar form as that of the Kalman filter and can be recursively realized. This ro-
bust state estimator consists of three steps given in the following procedure.
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Algorithm 4.4.1. The Robust State Estimator

• Initialize the state estimator with x̂(0) and P(0).
• Assume that both matrices P(k) and Q(k) are invertible. Then, at the time instant k + 1,

modify the system parameters as

P̄ (k) =
[
P −1(k) + λ(k)ST (k)S(k)

]−1
,

Q̄(k) =
{
Q−1(k) + λ(k)T T (k)

[
I + λ(k)S(k)P (k)ST (k)

]−1
T (k)

}−1

,

Ḡ(k,0) = G(k,0) − λ(k)A(k,0)P̄ (k)ST (k)T (k),

Ā(k,0) = [A(k,0) − λ(k)Ḡ(k,0)Q̄(k)T T (k)S(k)][I − λ(k)P̄ (k)ST (k)S(k)],

S(k) = col

⎡
⎣ C(k + 1,0)

∂A(k,0)
∂εj (k)

∂C(k+1,0)
∂εj (k+1)

A(k,0)

⎤
⎦

ne

j=1

, T (k) = col

⎡
⎣ C(k + 1,0)

∂G(k,0)
∂εj (k)

∂Ck+1,0
∂εj (k+1)

G(k,0)

⎤
⎦

ne

j=1

,

z(k) =
⎡
⎣ C(k + 1,0)

∂B(k,0)
∂εj (k)

u(k)

∂C(k+1,0)
∂εj (k+1)

B(k,0)u(k) + ∂D(k+1,0)
∂εj (k+1)

u(k + 1)

⎤
⎦

ne

j=1

.

• Update the matrices P(k + 1), L(k + 1), and K(k + 1) respectively as follows:

P−(k + 1) = A(k,0)P̄ (k)AT (k,0) + Ḡ(k,0)Q̄(k)ḠT (k,0), (4.36a)

P(k + 1) =
{
P −1− (k + 1) + CT (k + 1,0)R−1(k + 1)C(k + 1,0)

}−1
, (4.36b)

L(k + 1) = P(k + 1)CT (k + 1,0)R−1(k + 1), (4.36c)

K(k + 1) = λ(k)P (k + 1)P −1− (k + 1)
[
A(k,0)P (k)ST (k) + G(k,0)Q(k)T T (k)

]

×
{
I + λ(k)

[
S(k)P (k)ST (k) + T (k)Q(k)T T (k)

]}−1
. (4.36d)

Moreover, update the state estimate as follows:

x̂(k + 1) = Ā(k,0)x̂(k) + [I − L(k + 1)C(k + 1,0)]B(k,0)u(k) + K(k + 1)z(k)

− L(k + 1)
{
C(k + 1,0)Ā(k,0)x̂(k) + D(k + 1,0)u(k + 1) − y(k + 1)

}
.

(4.37)

Replace the time index k with k + 1 and return to the second step.

Comparison of this estimation procedure with the Kalman filter shows that, except the 2nd
step in which system parameters are modified and the additional term z(k) is included in
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Eq. (4.37), these two-state estimators have almost the same form. This implies that the com-
putational complexity of this robust state estimator is comparable to that of the Kalman filter,
and through simply modifying parameters of the Kalman filter, its robustness against paramet-
ric modeling errors can be improved.

It is worth mentioning that although the matrix P(k + 1) in the robust state estimator is up-
dated at every time instant in a recursive way similarly to that of the Kalman filter, it is not
the covariance matrix of estimation errors. As a matter of fact, from an engineering point of
view, the matrix P(k) in this robust state estimator differs significantly from its counterpart in
the Kalman filter. It will be made clear in Subsection 3.4.3 that in the robust state estimator,
although this matrix is not equal to the covariance matrix of estimation errors, these two ma-
trices are closely related to each other. To avoid possible confusions, this matrix is called the
pseudo-covariance matrix in robust estimations.

4.4.2 Derivation of the Robust Estimator

In this subsection, we provide a derivation for the robust estimation procedure given in the
previous subsection. For brevity, abbreviate A(k,0), Ā(k,0), B(k,0), C(k,0), G(k,0), and
Ḡ(k,0) respectively as A(k), Ā(k), B(k), C(k), G(k), and Ḡ(k). From the definition of
e(k, ε(k), ε(k + 1)) we have that, for every j ∈ {1,2, . . . , ne},

∂e(k, ε(k), ε(k + 1))

∂εj (k)
= −C(k + 1, ε(k + 1))

∂B(k, ε(k))

∂εj (k)
u(k)

− C(k + 1, ε(k + 1))
∂A(k, ε(k))

∂εj (k)
x̂(k|k + 1)

− C(k + 1, ε(k + 1))
∂G(k, ε(k))

∂εj (k)
ŵ(k|k + 1)

= −C(k + 1, ε(k + 1))
∂B(k, ε(k))

∂εj (k)
u(k)

−
[
C(k + 1, ε(k + 1))

∂A(k, ε(k))

∂εj (k)
C(k + 1, ε(k + 1))

∂G(k, ε(k))

∂εj (k)

]
α(k),

(4.38)
∂e(k, ε(k), ε(k + 1))

∂εj (k + 1)
= −∂C(k + 1, ε(k + 1))

∂εk+1,k

B(k, ε(k))u(k)

− ∂C(k + 1, ε(k + 1))

∂εk+1,k

A(k, ε(k))x̂(k|k + 1)

− ∂D(k + 1, ε(k + 1))

∂εj (k + 1)
u(k + 1)
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− ∂C(k + 1, ε(k + 1))

∂εj (k + 1)
G(k, ε(k))ŵ(k|k + 1)

= −∂C(k + 1, ε(k + 1))

∂εj (k + 1)
B(k, ε(k))u(k) − ∂D(k + 1, ε(k + 1))

∂εj (k + 1)
u(k + 1)

−
[
∂C(k + 1, ε(k + 1))

∂εk+1,k

A(k, ε(k))
∂C(k + 1, ε(k + 1))

∂εj (k + 1)
G(k, ε(k))

]
α(k),

(4.39)

where α(k) = col{x̂(k|k + 1), ŵ(k|k + 1)}, which is consistent with the symbol adopted in the
derivation of the Kalman filter. Then, from the definition of the vector z(k) and those of the
matrices S(k) and T (k) we can straightforwardly prove that

ne∑
j=1

∣∣∣∣
∣∣∣∣∂e(k,0,0)

∂εj (k)

∣∣∣∣
∣∣∣∣
2

2
+
∣∣∣∣
∣∣∣∣ ∂e(k,0,0)

∂εj (k + 1)

∣∣∣∣
∣∣∣∣
2

2
= ||z(k) − [S(k) T (k)]α(k)||22 . (4.40)

As in Subsection 4.3.1, denote y(k + 1)−D(k + 1)u(k + 1)−C(k + 1)B(k)u(k) by ȳ(k + 1).
Then, from the definition of the cost function J (x̂(k|k + 1), ŵ(k|k + 1)) and Eq. (4.40) direct
algebraic manipulations show that

J (α(k)) = 1

2

{
(α(k) − α0(k))T diag

{
P −1(k), Q−1(k)

}
(α(k) − α0(k))

+ {ȳ(k + 1) − C(k + 1)[A(k) G(k)]α(k)}T R−1(k + 1)

× {ȳ(k + 1) − C(k + 1)[A(k) G(k)]α(k)}
+ λ(k) {z(k) − [S(k) T (k)]α(k)}T {z(k) − [S(k) T (k)]α(k)}

}
, (4.41)

where α0(k) = col{x̂(k|k), 0}. Here, with a little abuse of notation, the cost function
J (x̂(k|k + 1), ŵ(k|k + 1)) is written as J (α(k)). We adopt this expression in the remaining
of this subsection. Therefore,

∂J (α(k))

∂α(k)
= diag

{
P −1(k), Q−1(k)

}
[α(k) − α0(k)] + {C(k + 1)[A(k) G(k)]}T R−1(k + 1)

×{C(k + 1)[A(k) G(k)]α(k) − ȳ(k + 1)} + λ(k)[S(k) T (k)]T
× [[S(k) T (k)]α(k) − z(k)]

=
{

diag
{
P −1(k), Q−1(k)

}
+ λ(k)[S(k) T (k)]T [S(k) T (k)]

+ [A(k) G(k)]T CT (k + 1)R−1(k + 1)C(k + 1)[A(k) G(k)]
}

α(k)

− diag
{
P −1(k), Q−1(k)

}
α0(k)

−[A(k) G(k)]T CT (k + 1)R−1(k + 1)ȳ(k + 1)

−λ(k)[S(k) T (k)]T z(k). (4.42)
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Note that when all the three matrices P(k), Q(k), and R(k + 1) are positive definite, their
inverses are also positive definite. It can be straightforwardly proven from Eq. (4.41) that the
cost function J (α(k)) is a strictly convex function of the vector α(k). It can therefore be de-
clared that the cost function J (α(k)) achieves its minimum value at the optimal α(k), denote
it by α̂(k), if and only if at this α̂(k), its first-order derivative with respect to α(k) is equiva-
lent to zero. On the basis of this observation and Eq. (4.42), we have that

α̂(k) =
(

diag
{
P −1(k), Q−1(k)

}
+ λ(k)[S(k) T (k)]T [S(k) T (k)]

+ [A(k) G(k)]T CT (k + 1)R−1(k + 1)C(k + 1)[A(k) G(k)]
)−1

×
(

diag
{
P −1(k), Q−1(k)

}
α0(k) + [A(k) G(k)]T CT (k + 1)R−1(k + 1)ȳ(k + 1)

+ λ(k)[S(k) T (k)]T z(k)
)

. (4.43)

On the other hand, we can prove by direct algebraic manipulations that

T T (k)T (k) − λ(k)T T (k)S(k)[P −1(k) + λ(k)ST (k)S(k)]−1ST (k)T (k)

= T T (k)[I + λ(k)S(k)P (k)ST (k)]−1T (k). (4.44)

Then from Lemma 2.2 and the definitions of the matrices P̄ (k) and Q̄(k) we can immediately
obtain the following equality:

diag
{
P −1(k), Q−1(k)

}
+ λ(k)[S(k) T (k)]T [S(k) T (k)]

=
[

P −1(k) + λ(k)ST (k)S(k) λ(k)ST (k)T (k)

λ(k)T T (k)S(k) Q−1(k) + λ(k)T T (k)T (k)

]

=
[

I 0

λ(k)T T (k)S(k)P̄ (k) I

][
P̄ −1(k) 0

0 Q̄−1(k)

][
I λ(k)P̄ (k)ST (k)T (k)

0 I

]

(4.45)

Substituting this relation into Eq. (4.43), we can further prove that

α̂(k) =
[

I −λ(k)P̄ (k)ST (k)T (k)

0 I

]

×
{[

P̄ −1(k) 0

0 Q̄−1(k)

]
+ [A(k) Ḡ(k)]T CT (k + 1)R−1(k + 1)

× C(k + 1)[A(k) Ḡ(k)]
}−1
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×
[
col
{
I, −λ(k)T T (k)S(k)P̄ (k)

}
P −1(k)x̂(k|k) + [A(k) Ḡ(k)]T

× CT (k + 1)R−1(k + 1)ȳk+1 +λ(k)[S(k) T̄ (k)]T z(k)
]
, (4.46)

where T̄ (k) = T (k) − λ(k)S(k)P̄ (k)ST (k)T (k).

Hence, from the state transition equation of the plant state space model given by Eq. (4.34a)
we can construct an estimate about the state vector x(k + 1) from y(s)|k+1

s=0:

x̂(k + 1) = A(k)x̂(k|k + 1) + B(k)u(k) + G(k)ŵ(k|k + 1). (4.47)

Clearly, this estimate satisfies the following equation:

x̂(k + 1) − B(k)u(k)

= [A(k) G(k)]α̂(k)

= [A(k) Ḡ(k)]
{

diag
{
P̄ −1(k), Q̄−1(k)

}

+ [A(k) Ḡ(k)]T CT (k + 1)R−1(k + 1)C(k + 1)[A(k) Ḡ(k)]
}−1

×
{[

I

−λ(k)T T (k)S(k)P̄ (k)

]
P −1(k)x̂(k|k)

+
[

AT (k)

ḠT (k)

]
CT (k + 1)R−1(k + 1)ȳ(k + 1) + λ(k)

[
ST (k)

T̄ T (k)

]
z(k)

}

= [A(k) Ḡ(k)]
{
I + diag

{
P̄ (k), Q̄(k)

} [A(k) Ḡ(k)]T CT (k + 1)R−1(k + 1)

× C(k + 1)[A(k) Ḡ(k)]
}−1

diag
{
P̄ (k), Q̄(k)

}

×
{[

I

−λ(k)T T (k)S(k)P̄ (k)

]
P −1(k)x̂(k|k) +

[
AT (k)

ḠT (k)

]
CT (k + 1)

× R−1(k + 1)ȳ(k + 1) + λ(k)

[
ST (k)

T̄ T (k)

]
z(k)

}

=
{
I + [A(k) Ḡ(k)]diag

{
P̄ (k), Q̄(k)

} [A(k) Ḡ(k)]T CT (k + 1)R−1(k + 1)C(k + 1)
}−1

× [A(k) Ḡ(k)]diag
{
P̄ (k), Q̄(k)

}

×
{[

I

−λ(k)T T (k)S(k)P̄ (k)

]
P −1(k)x̂(k|k) +

[
AT (k)

ḠT (k)

]
CT (k + 1)

× R−1(k + 1)ȳ(k + 1) + λ(k)

[
ST (k)

T̄ T (k)

]
z(k)

}
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=
[
I + P−(k + 1)CT (k + 1)R−1(k + 1)C(k + 1)

]−1 {
Ā(k)x̂(k|k) + P−(k + 1)CT (k + 1)

× R−1(k + 1)ȳ(k + 1) + λ(k)
[
A(k)P̄ (k)ST (k) + Ḡ(k)Q̄(k)T̄ T (k)

]
z(k)

}
, (4.48)

where P−(k + 1) = A(k)P̄ (k)AT (k) + Ḡ(k)Q̄(k)ḠT (k). In the derivation of the last equality,
we used the relation P̄ (k)P −1(k) = I − λ(k)P̄ (k)ST (k)S(k), which is a direct result of the
definition of the matrix P̄ (k).

On the other hand, from the definitions of the matrices T̄ (k) and P̄ (k) we have that

T̄ (k) = T (k) − λ(k)S(k)P̄ (k)ST (k)T (k)

=
{
I − λ(k)S(k)

[
P −1− (k) + λ(k)ST (k)S(k)

]−1
ST (k)

}
T (k)

=
[
I + λ(k)S(k)P (k)ST (k)

]−1
T (k).

Based on this equality and the definitions of the matrices Ḡ(k), P̄ (k), and Q̄(k), direct but
tedious algebraic manipulations show that

A(k)P̄ (k)ST (k) + Ḡ(k)Q̄(k)T̄ T (k)

=
[
A(k)P (k)ST (k) + G(k)Q(k)T T (k)

]

×
{
I + λ(k)

[
S(k)P (k)ST (k) + T (k)Q(k)T T (k)

]}−1
. (4.49)

Substituting Eq. (4.49) and the definition of ȳ(k + 1) into Eq. (4.48), we have that

x̂(k + 1) = Ā(k)x̂(k|k) + B(k)u(k) +
{[

I + P−(k + 1)CT (k + 1)R−1(k + 1)C(k + 1)
]−1

− I

}
Ā(k)x̂(k|k) +

[
I + P−(k + 1)CT (k + 1)R−1(k + 1)C(k + 1)

]−1

×
{
P−(k + 1)CT (k + 1)R−1(k + 1)ȳ(k + 1)

+ λ(k)
[
A(k)P̄ (k)ST (k) + Ḡ(k)Q̄(k)T̄ T (k)

]
z(k)

}
= Ā(k)x̂(k|k) + B(k)u(k) − L(k + 1)C(k + 1)Ā(k)x̂(k|k)

+ L(k + 1)
[
y(k + 1) − D(k + 1)u(k + 1) − C(k + 1)B(k)u(k)

]
+ λ(k)P (k + 1)P −1− (k + 1)

[
A(k)P (k)ST (k) + G(k)Q(k)T T (k)

]

×
{
I + λ(k)

[
S(k)P (k)ST (k) + T (k)Q(k)T T (k)

]}−1
z(k)

= Ā(k)x̂(k|k) + [I − L(k + 1)C(k + 1)]B(k)u(k) + K(k + 1)z(k)
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− L(k + 1)
{
C(k + 1)Ā(k)x̂(k|k) + D(k + 1)u(k + 1) − y(k + 1)

}
. (4.50)

This is completely the same as that of Eq. (4.37) if we replace x̂(k|k) with x̂(k) and recall the
definitions of the involved matrices, such as Ā(k), B(k), and so on.

A detailed comparison of the above derivation process with that of the Kalman filter shows
that, due to the introduction of the penalizing factor on the sensitivity of e(k, ε(k), ε(k + 1))

to parametric modeling errors, the optimal estimates about the plant state vector x(k) and the
process noise vector w(k) from the plant measurements y(0), y(1), · · · , y(k + 1) have been
changed. The magnitude of these changes depends on both the value of the penalizing factor
and how sensitive the prediction error is to parametric errors. Owing to the quadratic form of
the penalization, the changes of the optimal estimates can be realized through only modifying
system parameters, that is, there is no need to change the structure of the estimates itself. This
is of great significance from both theoretical analysis and implementation. This also means
that most of the major attractive characteristics of the Kalman filter, especially those in real-
izations and computations, have been inherited by the above robust state estimator.

4.4.3 Asymptotic Properties of the Robust State Estimator

Similarly to the Kalman filter, the robust state estimator obtained in the previous subsec-
tion also has many attractive convergence properties. In this subsection, we investigate some
asymptotic behaviors of its update gain matrices L(k + 1) and K(k + 1). It is shown that, un-
der some conditions that can usually be satisfied, these two matrices converge respectively to
a constant matrix.

To perform this analysis, we at first establish another recursive expression for the pseudo-
covariance matrix P(k). Compared to that of the estimation procedure, this expression gives
a more explicit relation between the pseudo-covariance matrices of two successive sampled
time constants.

Theorem 4.2. Define the matrices Q̌(k) = (Q−1(k) + λ(k)T T (k)T (k))−1 and Ǎ(k) =
A(k,0) − λ(k)G(k,0)Q̌(k)T T (k)S(k) and assume that the matrix Ǎ(k) is invertible. More-
over, define the matrices

Ã(k) = Ǎ(k) + G(k,0)Q̌(k)G̃T (k)S̃T (k)S̃(k), G̃(k) = Ǎ−1(k)G(k,0),

Q̃(k) = Q̌(k) + Q̌(k)G̃T (k)S̃T (k)S̃(k)G̃(k)Q̌(k),

S̃(k) =√λ(k)
[
I + λ(k)T (k)Q(k)T T (k)

]−1/2
S(k),

C̃(k + 1) =
[

S̃(k)Ǎ−1(k)

C(k + 1,0)

]
,
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R̃(k + 1) =
[

I + S̃(k)B̃(k)Q̌(k)G̃T (k)S̃T (k) 0
0 R(k + 1)

]
.

Then, for each positive integer k, we have

P −1(k + 1) =
[
Ã(k)P (k)ÃT (k) + G(k,0)Q̃(k)GT (k,0)

]−1

+ C̃T (k + 1)R̃−1(k + 1)C̃(k + 1). (4.51)

Proof. To simplify mathematical expressions, in this proof, A(k,0), G(k,0), and C(k + 1,0)

are once again respectively abbreviated as A(k), G(k), and C(k + 1). From the derivation
of the robust state estimator given in Subsection 3.4.1 it is clear that the state estimate at the
(k + 1)th sampled time instant is

x̂(k + 1) = B(k)u(k) + [A(k) G(k)]
{

diag
{
P −1(k), Q−1(k)

}

+ λ(k)[S(k) T (k)]T [S(k) T (k)]
+ [A(k) G(k)]T CT (k + 1)R−1(k + 1)C(k + 1)[A(k) G(k)]

}−1

×
{

diag
{
P −1(k), Q−1(k)

}
col
{
x̂(k), 0

} [A(k) G(k)]T CT (k + 1)

× R−1(k + 1)ȳ(k + 1) + λ(k)[S(k) T (k)]T z(k)
}

. (4.52)

On the other hand, according to Eq. (4.50), this state estimate can also be expressed as

x̂(k + 1) = Ā(k)x̂(k) + P(k + 1)CT (k + 1)R−1(k + 1)[ȳ(k + 1) − C(k + 1)Ā(k)x̂(k)]
+ B(k)u(k) + K(k)z(k). (4.53)

Note that Eqs. (4.52) and (4.53) are just two different expressions for the same state estimate
x̂(k + 1). It is necessary that the coefficient matrices in these two expressions, which are re-
spectively for x̂(k), ȳ(k + 1), and z(k), are equal to each other. Equalizing the coefficient
matrices of ȳ(k + 1) leads to the equality

P(k + 1) = [A(k) G(k)]
{

diag
{
P −1(k), Q−1(k)

}
+ λ(k)[S(k) T (k)]T [S(k) T (k)]

+ [A(k) G(k)]T CT (k + 1)R−1(k + 1)C(k + 1)[A(k) G(k)]
}−1 [A(k) G(k)]T .

(4.54)

On the other hand, direct algebraic operations show that

λ(k)ST (k)S(k) − λ2(k)ST (k)T (k)[Q−1(k) + λ(k)T T (k)T (k)]−1T T (k)S(k)



Kalman Filtering and Robust Estimation 109

= λ(k)ST (k)
{
I − λ(k)T (k)[I + λ(k)Q(k)T T (k)T (k)]−1Q(k)T T (k)

}
S(k)

= λ(k)ST (k)[I + λ(k)T (k)Q(k)T T (k)]−1S(k)

= S̃T (k)S̃(k). (4.55)

Then, from Lemma 2.2 and the definition of Q̌(k) we can immediately obtain the following
relation:

diag
{
P −1(k), Q−1(k)

}
+ λ(k)[S(k) T (k)]T [S(k) T (k)]

=
[

P −1(k) + λ(k)ST (k)S(k) λ(k)ST (k)T (k)

λ(k)T T (k)S(k) Q−1(k) + λ(k)T T (k)T (k)

]

=
[

I λ(k)ST (k)T (k)Q̌(k)

0 I

][
P −1(k) + S̃T (k)S̃(k) 0

0 Q̌−1(k)

]

×
[

I 0

λ(k)Q̌(k)T T (k)S(k) I

]
. (4.56)

Substituting Eq. (4.56) into Eq. (4.55), we have

P(k + 1) =
⎛
⎝[A(k) G(k)]

[
I 0

λ(k)Q̌(k)T T (k)S(k) I

]−1
⎞
⎠

×
{[

P −1(k) + S̃T (k)S̃(k) 0

0 Q̌−1(k)

]

+
⎛
⎝[A(k) G(k)]

[
I 0

λ(k)Q̌(k)T T (k)S(k) I

]−1
⎞
⎠

T

× CT (k + 1)R−1(k + 1)C(k + 1) ([A(k) G(k)]

×
[

I 0

λ(k)Q̌(k)T T (k)S(k) I

]−1
⎞
⎠
⎫⎬
⎭

−1

×
⎛
⎝[A(k) G(k)]

[
I 0

λ(k)Q̌(k)T T (k)S(k) I

]−1
⎞
⎠

T

= [Ǎ(k) G(k)]
{

diag
{
P −1(k) + S̃T (k)S̃(k), Q̌−1(k)

}
+ [Ǎ(k) G(k)]T CT (k + 1)

× R−1(k + 1)C(k + 1)[Ǎ(k) G(k)]
}−1 [Ǎ(k) G(k)]T
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=
{
I + [Ǎ(k) G(k)]diag

{
(P −1(k) + S̃T (k)S̃(k))−1, Q̌(k)

}

× [Ǎ(k) G(k)]T CT (k + 1) R−1(k + 1)C(k + 1)
}−1 [Ǎ(k) G(k)]

× diag
{
(P −1(k) + S̃T (k)S̃(k))−1, Q̌(k)

}
[Ǎ(k) G(k)]T

=
{[

Ǎ(k)(P −1(k) + S̃T (k)S̃(k))−1ǍT (k) + G(k)Q̌(k)GT (k)
]−1

+ CT (k + 1)R−1(k + 1)C(k + 1)

}−1

. (4.57)

When Ǎ(k) is invertible, from the definition of the matrix G̃(k) we have that

Ǎ(k)(P −1(k) + S̃T (k)S̃(k))−1ǍT (k) + G(k)Q̌(k)GT (k)

= Ǎ(k)
{
(P −1(k) + S̃T (k)S̃(k))−1 + G̃(k)Q̌(k)G̃T (k)

}
ǍT (k). (4.58)

In addition, direct algebraic manipulations show that

{[
P −1(k) + S̃T (k)S̃(k)

]−1 + G̃(k)Q̌(k)G̃T (k)

}−1

= S̃T (k)
[
I + S̃(k)G̃(k)Q̌(k)G̃T (k)S̃T (k)

]−1
S̃(k)

+
{
G̃(k)

[
Q̌(k) + Q̌(k)G̃T (k)S̃T (k)S̃(k)G̃(k)Q̌(k)

]
G̃T (k)

+
[
I + G̃(k)Q̌(k)G̃T (k)S̃T (k)S̃(k)

]
P(k)

[
I + G̃(k)Q̌(k)G̃T (k)S̃T (k)S̃(k)

]T }−1

.

(4.59)

Substituting Eqs. (4.58) and (4.59) into Eq. (4.57), we obtain the following recursive expres-
sion for P(k + 1) when Ǎ(k) is invertible:

P −1(k + 1) = Ǎ−T (k)
[
(P −1(k) + S̃T (k)S̃(k))−1 + G̃(k)Q̌(k)G̃T (k)

]−1
Ǎ−1(k)

+ CT (k + 1)R−1(k + 1)C(k + 1)

=
{
G(k)

[
Q̌(k) + Q̌(k)G̃T (k)S̃T (k)S̃(k)G̃(k)Q̌(k)

]
GT (k)

+
[
Ǎ(k) + G(k)Q̌(k)G̃T (k)S̃T (k)S̃(k)

]

× P(k)
[
Ǎ(k) + G(k)Q̌(k)G̃T (k)S̃T (k)S̃(k)

]T }−1

+
[
S̃(k)Ǎ−1(k)

]T
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×
[
I + S̃(k)G̃(k)Q̌(k)G̃T (k)S̃T (k)

]−1 [
S̃(k)Ǎ−1(k)

]

+ CT (k + 1)R−1(k + 1)C(k + 1)

= [Ã(k)P (k)ÃT (k) + G(k)Q̃(k)GT (k)]−1 + C̃T (k + 1)R̃−1(k + 1)C̃(k + 1).

(4.60)

This completes the proof.

The key step in the proof is the establishment of Eq. (4.56), which gives a decomposition of
the matrix diag

{
P −1(k), Q−1(k)

}+ λ(k)[S(k) T (k)]T [S(k) T (k)], which is different from
that of Eq. (4.45). It is this difference that leads to two different expressions for the matrix
P(k + 1).

It is worth emphasizing that although the matrices Ã(k) and Q̃(k) have complicated expres-
sions, they are completely determined by the nominal values of the plant parameters and the
penalizing factor λ(k) adopted in the cost function J (x̂(k|k + 1), ŵ(k|k + 1)). On the other
hand, note that the matrix P(k + 1) given by Eq. (4.51) has completely the same form as that
of the Kalman filter given by Eq. (4.9b). This means that although the results of Theorem 4.2
are too complicated to be implemented in actual state estimations, they are convenient to be
utilized in analyzing properties of the robust state estimator. In particular, from this expres-
sion the following asymptotic characteristics can be established for this estimator by the same
token as that of Theorem 4.1. Only the associated results are stated here. The details of their
mathematical derivations are omitted due to their close similarities with the Kalman filter. An-
other proof is given in [12] for the convergence of this matrix.

Corollary 4.1. Assume that the plant nominal parameters are time invariant and all
the derivatives of the plant parameters with respect to each parametric error at their
nominal values are also time invariant. Moreover, assume that the matrix Ã(k) defined
in Theorem 4.2 is invertible. Then, when the penalizing factor λ(k) in the cost function
J (x̂(k|k + 1), ŵ(k|k + 1)) is also time invariant, if the matrix pair (Ã(k), G(k,0)) is control-
lable and the matrix pair (Ã(k), C̃(k)) is observable, then, with the increment of the temporal
variable k, the pseudo-covariance matrix P(k) converges to a constant matrix.

From Corollary 4.1 and the definitions of the matrices L(k + 1) and K(k + 1), we can declare
that when all the conditions of this corollary are satisfied, these two matrices also converge
respectively to a constant matrix. Therefore, the robust state estimator can also be replaced
by an observer of constant gain matrices without sacrificing its steady-state estimation accu-
racy.

When the pseudo-covariance matrix P(k) converges, denote its limit by the matrix P . On the
basis of results on Riccati equations, we can prove through some algebraic manipulations that
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all the eigenvalues of the matrix (I −PCT R−1C)Ā have magnitudes smaller than 1. Here, the
matrices Ā, C, and R stand respectively for the time invariant values of the matrices Ā(k,0),
C(k), and R(k), that is, the robust state estimator converges to a stable time-invariant system.
We can also prove that the convergence rate is exponential. A detailed discussion and related
mathematical derivations can be found in [12]. We refer the interested reader to books like [1]
for asymptotic properties of a Riccati recursion.

Now, we investigate the reasonability of the assumptions on positive definiteness of the
pseudo-covariance matrix P(k). Similarly to Eq. (4.30), define the matrix

�(k) =[
Ã(k) G(k,0)Q̃(k)GT (k,0)Ã−T (k)

C̃T (k + 1)R̃−1(k + 1)C̃(k + 1)Ã(k) [I + C̃T (k + 1)R̃−1(k + 1)C̃(k + 1)G(k,0)Q̃(k)GT (k,0)]Ã−T (k)

]
.

(4.61)

Then, we can prove through straightforward algebraic manipulations that the matrix �(k) is
Hamiltonian for each positive integer k. Moreover, similarly to Eq. (4.32), the relation be-
tween the matrices P(k) and P(0) given by Eq. (4.51) can be rewritten as

P(k) = Hm

⎛
⎝ 0∏

s=k−1

�(s), P (0)

⎞
⎠ . (4.62)

Note that from the definitions of the matrices Q̃−1(k) and R̃−1(k + 1) it is obvious that when
the matrices Q(k) and R(k + 1) are positive definite, which is usually satisfied in actual appli-
cations, these two matrices are also positive definite. We therefore have that{

G(k,0)Q̃(k)GT (k,0)Ã−T (k)
}

ÃT (k) = G(k,0)Q̃(k)GT (k,0) ≥ 0,

ÃT (k)C̃T (k + 1)R̃−1(k + 1)C̃(k + 1)Ã(k)

=
[
C̃(k + 1)Ã(k)

]T
R̃−1(k + 1)

[
C̃(k + 1)Ã(k)

]
≥ 0.

Then, from the definition of the set H and Lemma 2.5 we have that �(k) ∈ H for each k, and
therefore

0∏
s=k−1

�(s) ∈H, k = 1,2,3, . . . . (4.63)

Eqs. (4.62) and (4.63) further imply that the matrix P(k) is positive definite, provided that the
matrix P(0) is. Note that the assumption about the positive definiteness of the matrix P(0)

is a reasonable hypothesis and is generally satisfied in actual applications. We can therefore
declare that the assumption on the matrix P(k) adopted in the derivation of the robust state
estimator is usually not very restrictive in actual applications.
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4.4.4 Boundedness of Estimation Errors

As pointed out before, the matrix P(k) in the robust state estimator is not the covariance ma-

trix of estimation errors. Therefore, differently from the Kalman filter, even if this matrix

converges, we still cannot immediately declare that the estimation errors of the robust state

estimator are stochastically bounded. Intuitively, if both the plant and the estimator are stable,

then the estimation error is bounded. On the other hand, for an unstable plant with modeling

errors, development of a time-invariant robust state estimator with stochastically bounded es-

timation errors is in general impossible [1]. Based on these considerations, in this subsection,

we investigate the boundedness for the estimation errors of the robust state estimator devel-

oped in the previous subsection under the condition that the plant itself is exponentially stable.

Based on this assumption and the results on the convergence of the pseudo-covariance matrix

P(k), the boundedness of the estimation bias of the robust state estimator can be established,

as well as that of the covariance matrix of its estimation errors.

To simplify mathematical expressions in this boundedness analysis, we define the following

matrices:

Af (k) = [I − L(k + 1)C(k + 1,0)]Ā(k),

F (k, ε(k), ε(k + 1)) = L(k + 1)C(k + 1, ε(k + 1))A(k, ε(k)),

K̄1(k + 1) = K(k + 1)col

⎡
⎣ C(k + 1,0)

∂B(k,0)
∂εj (k)

∂C(k+1,0)
∂εj (k+1)

B(k,0)u(k)

⎤
⎦

ne

j=1

,

K̄2(k + 1) = K(k + 1)col

[
0

∂D(k+1,0)
∂εj (k+1)

]ne

j=1

,

�(k, ε(k), ε(k + 1)) =
[

A(k, ε(k)) 0
F(k, ε(k), ε(k + 1)) Af (k)

]
,

�(k, ε(k), ε(k + 1)) =
[

G(k, ε(k)) 0
L(k + 1)C(k + 1, ε(k + 1))G(k, ε(k)) L(k + 1)

]
,

	(k, ε(k), ε(k + 1)) =[
B(k, ε(k))

B(k,0) + K̄1(k + 1) + L(k + 1)[C(k + 1, ε(k + 1))B(k, ε(k)) − C(k + 1,0)B(k,0)]
0

K̄2(k + 1) + L(k + 1)[D(k + 1, ε(k + 1)) − D(k + 1,0)]

]
.
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Using these symbols, we can straightforwardly prove from Eqs. (4.34a), (4.34b), and (4.37)
that[

x(k + 1)

x̂(k + 1)

]
= �(k, ε(k), ε(k + 1))

[
x(k)

x̂(k)

]
+ 	(k, ε(k), ε(k + 1))

[
u(k)

u(k + 1)

]

+ �(k, ε(k), ε(k + 1))

[
w(k)

v(k + 1)

]
. (4.64)

Without loss of generality, we can assume that the mathematical expectations of both the
process noise vector w(k) and the measurement error vector v(k) are equal to zero. We also
adopt in this subsection the hypothesis that these two random processes are independent of
the parametric error vector ε(k) of the plant. These hypotheses are usually satisfied in actual
applications. Under these assumptions, direct algebraic manipulations from Eq. (4.64) show
that

E
[

x(k + 1)

x̂(k + 1)

]
= �(k, ε(k), ε(k + 1))E

[
x(k)

x̂(k)

]
+ 	(k, ε(k), ε(k + 1))

[
u(k)

u(k + 1)

]
,

(4.65)

Cov
[

x(k + 1)

x̂(k + 1)

]
= �(k, ε(k), ε(k + 1))Cov

[
x(k)

x̂(k)

]
�T (k, ε(k), ε(k + 1))

+ �(k, ε(k), ε(k + 1))

[
Q(k) 0

0 R(k + 1)

]
�T (k, ε(k), ε(k + 1)).

(4.66)

On the basis of these relations and the stability of the matrix A(k, ε(k)), the boundedness can
be established for both the mathematical expectation and the covariance matrix of estimation
errors of the robust state estimator.

Theorem 4.3. Assume that both the plant input vector u(k) and the parametric modeling er-
ror vector ε(k) are elementwise bounded in magnitude. Moreover, assume that E(w(k)) = 0,
E(v(k)) = 0, that all the conditions of Corollary 4.1 are satisfied, and that w(k), v(k), and
ε(k) are independent of each other. Then, at every time instant i, the robust state estimator of
Eq. (4.39) has a bounded estimation bias, and its estimation errors have a bounded covari-
ance matrix.

A proof of this theorem is given in the appendix of this chapter. From that proof it appears
that if u(k) ≡ 0, then E(x(k) − x̂(k)) converges to zero at least exponentially. However, when
u(k) 	≡ 0, estimation bias is usually unavoidable. On the other hand, note that the quadratic
stability of a dynamic system implies its exponential stability, but the converse is generally
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not true. This means that conditions of the above theorem are in general weaker than those
adopted in other robust state estimations, in which it is usually assumed that the plant under
investigation is quadratically stable or asymptotically quadratically stable [1,5].

4.5 Bibliographic Notes

Removing noises from corrupted signals is essentially the basic task in signal processing.
Many fundamental ideas in state estimations are motivated from signal processing, and the
development of state estimation theory has also deepened understanding of signal process-
ing. A common characteristic here is that in both of these fields, the squared error criterion is
widely adopted, which traces back to the Gauss’s estimation on the orbit parameters of Ceres.
In his original work, Gauss intelligently recognized prominent and attractive characteristics of
a squared error in estimations that are not possessed by the absolute value of an error. The
latter was suggested by Laplace around the same time to deal with similar problems [13].
Adoption of this criterion in signal processing and state estimation has led to various mile-
stone results; two of the most important ones are the Wiener and the Kalman filters [1,2,5].

Extensive influences of state estimation theory are recognized by the presentation of the 2008
Charles Stark Draper Prize to R. Kalman from the National Academy of Engineering, the
United States of American, “for the development and dissemination of the optimal digital
technique (known as the Kalman Filter) that is pervasively used to control a vast array of con-
sumer, health, commercial and defense products.” It is extensively recognized and widely
accepted that “The Kalman Filter uses a mathematical technique that removes “noise” from
series of data. From incomplete information, it can optimally estimate and control the state
of a changing, complex system over time. The Kalman filter revolutionized the field of con-
trol theory and has become pervasive in engineering systems. It has been applied to systems
and devices in nearly all engineering fields and continues to find new uses today. Applications
include target tracking by radar, global positioning systems, hydrological modeling, atmo-
spheric observations, time-series analyses in econometrics, and automated drug delivery.”
[14].

Various papers and books have now been published on state estimations. Among them, a gen-
eral introduction of the major results in this field can be found in [5], in which estimations for
both linear systems and nonlinear systems have been discussed, as well as robust estimations.
An excellent book is [1], in which systematic and detailed discussions have been given for
state estimations with linear systems. Optimality of the Kalman filter for a networked sys-
tem has been revealed in [15], in which measurements are randomly lost due to imperfect
communications. A recursive robust state estimator is originally derived through sensitivity
penalization in [11] and extended in [16] to linear systems with intermittent data arrivals. The
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Riemannian distance between two positive definite matrices was first introduced in [17] for
studying the asymptotic properties of the Kalman filter. A regularized least-squares based
method is suggested in [18] for robust state estimations. Except a parameter that requires on-
line optimizations, the resulted estimator has a structure similar to that of the Kalman filter
when some specific structure requirements are satisfied by parametric modeling errors.

Appendix 4.A

4.A.1 Proof of Theorem 4.1

When the plant is time invariant, the matrix �(k) defined previously is also a constant matrix.
More precisely, we have that

�(k) =
[

A GQGT A−T

CT R−1CA [I + CT R−1CGQGT ]A−T

]
. (4.A.1)

Denote this matrix by � for brevity. Then, based on Eq. (4.32), we have that, for any time
instant k ≥ 0,

P(k) = Hm

(
�k, P (0)

)
, (4.A.2)

where, as usual, �0 is defined to be I2n.

On the other hand, from the definition of the matrix �(k) and the time invariance of the plant
parameter matrices we can straightforwardly prove that, for an arbitrary positive integer m,

�T
11(1)�21(1) +

m∑
i=2

⎡
⎣
(

i∏
k=1

�T
11(k)

)
�21(i)

⎛
⎝ 1∏

k=i−1

�11(k)

⎞
⎠
⎤
⎦

= AT CT R−1CA + (AT )2CT R−1CA2 + · · ·
+ (AT )mCT R−1CAm, (4.A.3)

m−1∑
i=1

[(
i+1∏
k=m

�11(k)

)
�12(i)

(
m∏

k=i

�T
11(k)

)]
+ �12(m)�T

11(m)

= GQGT + AGQGT AT + A2GQGT (AT )2 + · · ·
+ Am−1GQGT (AT )m−1, (4.A.4)

where �ij (k) stands for the ith row j th column block submatrix of the matrix �(k). Note that

AT CT R−1CA + (AT )2CT R−1CA2 + · · · + (AT )mCT R−1CAm
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= AT

⎡
⎢⎢⎢⎢⎣

C

CA

...

CAm−1

⎤
⎥⎥⎥⎥⎦

T

(
Im ⊗ R−1

)
⎡
⎢⎢⎢⎢⎣

C

CA

...

CAm−1

⎤
⎥⎥⎥⎥⎦A

= AT

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(
Im ⊗ R−1/2

)
⎡
⎢⎢⎢⎢⎣

C

CA

...

CAm−1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

T ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(
Im ⊗ R−1/2

)
⎡
⎢⎢⎢⎢⎣

C

CA

...

CAm−1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

A. (4.A.5)

Moreover,

GQGT + AGQGT AT + · · · + Am−1GQGT (AT )m−1

= [G AG · · · Am−1G] (In ⊗ Q) [G AG · · · Am−1G]T

=
{
[G AG · · · Am−1G]

(
In ⊗ Q1/2

)}{
[G AG · · · Am−1G]

(
In ⊗ Q1/2

)}T

. (4.A.6)

Recall that each eigenvalue of the Kronecker product of two square matrices can be expressed
as the product of the eigenvalues of these two matrices. We can declare that when the matri-
ces R and Q are positive definite, both In ⊗ Q1/2 and In ⊗ R−1/2 are invertible. As the matrix

A is also invertible by assumptions, this further implies that the matrix
m−1∑
i=0

AiGQGT (AT )i is

positive definite if and only if the matrix [G AG · · · Am−1G] is of full row rank. Moreover,

the matrix
m∑

i=1

(AT )iCT R−1CAi is positive definite if and only if the matrix col
{
CAi |m−1

i=0

}
is

of full column rank.

When the matrix pair (A, G) is controllable, we have that the matrix [G AG · · · An−1G]
is of full row rank. Moreover, when the matrix pair (A, C) is observable, we have that the

matrix col
{
CAi |n−1

i=0

}
is of full column rank. Therefore, when (A, G) and (A, C) are respec-

tively controllable and observable, we have that both matrices

�T
11(1)�21(1) +

n∑
i=2

[(
i∏

k=1

�T
11(k)

)
�21(i)

]

and
n−1∑
i=1

[(
i+1∏
k=n

�11(k)

)
�12(i)

(
n∏

k=i

�T
11(k)

)]
+ �12(n)�T

11(n)

are positive definite.
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Hence, we can declare by Lemma 2.2 that when both the controllability condition and the ob-
servability condition are satisfied, the mapping X → Hm (�n, X) is strictly contractive over
the set of positive definite matrices under the Riemannian metric defined in Section 2.1, that
is, there exists a scalar ρ ∈ [0, 1) such that, for arbitrary positive definite matrices X and Y ,

δ
{
Hm

(
�n, X

)
, Hm

(
�n, Y

)}
< ρδ(X, Y ).

For an arbitrary positive integer k, let I (k) denote the maximal integer not greater than k
n

.
Moreover, denote k − nI (k) by r(k). As n is a finite integer, it is clear that I (k) tends to in-
finity with the increment of k. On the other hand, from Eq. (4.A.2) and Lemma 2.6 we have
that

P(k) = Hm

(
�n, Hm

(
�n, · · · Hm

(
�n,︸ ︷︷ ︸

I (k) times

Hm

(
�r(k), P (0)

))
· · ·
))

. (4.A.7)

Recall that the mapping X → Hm (�n, X) is strictly contractive for an arbitrary positive
integer n. It can therefore be declared that, for arbitrary positive definite matrices X and Y ,

δ
{

Hm

(
�k, X

)
, Hm

(
�k, Y

)}
< ρI(k)δ(X, Y ). (4.A.8)

Hence

lim
k→∞ δ

{
Hm

(
�k, X

)
, Hm

(
�k, Y

)}
= 0. (4.A.9)

This completes the proof.

4.A.2 Proof of Theorem 4.3

To prove Theorem 4.3, we first discuss some related properties of the maximal singular value
of a lower block triangular matrix.

Lemma 4.A.1. Assume that A11, A21, and A22 are three matrices with compatible di-

mensions. Construct the lower block triangular matrix A =
[

A11 0
A21 A22

]
. Then σ̄ (A) ≤√

σ̄ 2(A11) + σ̄ 2(A21) + σ̄ 2(A22).

Proof of Lemma 4.A.1. Let γ be an arbitrary nonnegative number satisfying γ > σ̄ (A). Then,
from the definition of the maximal singular value of a matrix we can straightforwardly declare
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that γ 2I − AAT > 0. According to the lower block triangular structure of the matrix A, this
inequality is equivalent to

[
γ 2I − A11A

T
11 −A11A

T
21

−A21A
T
11 γ 2I − A21A

T
21 − A22A

T
22

]
> 0. (4.A.10)

Here, to simplify expressions, the dimensions of the associated identity matrices are not in-
cluded, as their actual dimensions are clear from the contents, and confusions can hardly be
caused. It is worth mentioning that these identity matrices usually have a different size. These
declarations remain valid for the remaining statements in this appendix.

On the basis of the well-known Schur complement theorem [8], the last inequality can be fur-
ther expressed as

γ 2I − A11A
T
11 > 0, γ 2I − A22A

T
22 > 0, (4.A.11)

γ 2I − A21A
T
21 − A22A

T
22 − A21A

T
11(γ

2I − A11A
T
11)

−1A11A
T
21 > 0. (4.A.12)

On the other hand, direct algebraic manipulations show that

γ 2I − A21A
T
21 − A22A

T
22 − A21A

T
11(γ

2I − A11A
T
11)

−1A11A
T
21

= γ 2I − A22A
T
22 − γ 2A21(γ

2I − A11A
T
11)

−1AT
21

≥ γ 2I − σ̄ 2(A22)I − γ 2A21(γ
2I − σ̄ 2(A11)I )−1AT

21

≥ 1

γ 2 − σ̄ 2(A11)

[
(γ 2 − σ̄ 2(A11))(γ

2 − σ̄ 2(A22))I − γ 2σ̄ 2(A21)I
]

≥
(
γ 2 − σ̄ 2(A11)+σ̄ 2(A21)+σ̄ 2(A22)

2

)2 − (σ̄ 2(A11)+σ̄ 2(A21)+σ̄ 2(A22))
2

4

γ 2 − σ̄ 2(A11)
I. (4.A.13)

This means that when the nonnegative number γ satisfies γ >
√

σ̄ 2(A11)+σ̄ 2(A21)+σ̄ 2(A22),
it must also satisfy γ 2I − A21A

T
21 − A22A

T
22 − A21A

T
11(γ

2I − A11A
T
11)

−1A11A
T
21 > 0. This

completes the proof.

Using this inequality, Theorem 4.3 is established.

From the definitions of the matrices Af (k) and Af and from the exponential convergence of
the matrix P(k) to the matrix P , we can directly declare that there exist a finite nonnegative
number M1 and ρ1 ∈ [0,1) such that

σ̄ (Af (k) − Af ) ≤ M1ρ
k
1 , ∀k ≥ 0. (4.A.14)



120 Chapter 4

Note that the matrix Af is stable. We can claim from the Lyapunov stability theory that, for
an arbitrary μ > 1, there exists a positive definite matrix V such that

V − Af V AT
f = μI. (4.A.15)

Denote the deviations of the matrix Af (k) from its steady value Af by �(k), that is, �(k) =
Af (k) − Af . Then, on the basis of Eqs. (4.A.14) and (4.A.15), we obtain the following in-
equality:

V − Af (k)V AT
f (k) = V − (Af + �(k))V (Af + �(k))T

= μI − �(k)(V AT
f ) − (V AT

f )T �(k)T − �(k)V �T (k)

≥ μI − [I + (�(k)V AT
f )(�(k)V AT

f )T ] − �(k)V �T (k)

= (μ − 1)I − �(k)[V + V AT
f Af V ]�T (k)

≥ (μ − 1)I − σ̄ 2(�(k))σ̄ (V + V AT
f Af V )I

≥ [μ − 1 − σ̄ (V + V AT
f Af V )M2

1ρ2k
1 ]I. (4.A.16)

This implies that there exists a finite integer N1 such that, for each k ≥ N1,

σ̄
(
V −1/2Af (k)V 1/2

)
< 1. (4.A.17)

Define the scalar

ρ2 = sup
k≥N1

σ̄ (V −1/2Af (k)V 1/2).

Inequality (4.A.17) implies that 0 < ρ2 < 1. On the other hand, note that, for arbitrary integers
k1 and k2 satisfying k2 ≥ k1 ≥ 0, we have

k1∏
i=k2

Af (k) = V 1/2

⎛
⎝ k1∏

i=k2

V −1/2Af (i)V 1/2

⎞
⎠V −1/2. (4.A.18)

Based on this relation and the definition of ρ2 and on the inequality σ̄ (AB) ≤ σ̄ (A)σ̄ (B),
which is well known in linear algebra [8], we can prove that there exists a positive finite num-
ber M2 such that

σ̄

⎛
⎝ k1∏

i=k2

Af (i)

⎞
⎠≤ M2ρ

k2−k1
2 . (4.A.19)

Let E and U denote respectively the set of parametric modeling errors and the plant input vec-
tors. Then by the adopted assumptions both these two sets are bounded. On the other hand,
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from the exponential stability of the plant we have that there exist a finite nonnegative number
M3 and ρ3 belonging to [0, 1) such that, for every integer pair (k1, k2) satisfying k2 ≥ k1 ≥ 0
and each parametric error vector ε(k) ∈ E , we have the following inequality:

σ̄

⎛
⎝ k1∏

i=k2

A(i, ε(i))

⎞
⎠≤ M3ρ

k2−k1
3 . (4.A.20)

To avoid awkward expressions, in the following discussions,
s1∏

i=s2

Xi is defined as the identity

matrix when s2 < s1. With straightforward matrix multiplications and mathematical induc-
tions, we can prove by the definition of the matrix �(k, ε(k), ε(k + 1)) that, for two arbitrary
integers k1 and k2 satisfying k2 ≥ k1 ≥ 0,

k1∏
i=k2

�(i, ε(i), ε(i + 1))

=
k1∏

i=k2

[
A(i, ε(i)) 0

F(i, ε(i), ε(i + 1)) Af (i)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

k1∏
i=k2

A(i, ε(i)) 0

k2∑
j=k1

⎧⎨
⎩
⎛
⎝j+1∏

i=k2

Af (i)

⎞
⎠F(i, ε(i), ε(i + 1))

⎛
⎝ k1∏

i=j−1

A(i, ε(i))

⎞
⎠
⎫⎬
⎭

k1∏
i=k2

Af (i)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(4.A.21)

Note that σ̄ (E + F) ≤ σ̄ (E) + σ̄ (F ) and σ̄ (AB) ≤ σ̄ (A)σ̄ (B) [8]. From Eqs. (4.A.19)
and (4.A.20) we have that for all the feasible modeling errors and each integer pair (k1, k2)

satisfying k2 ≥ k1 ≥ 0,

σ̄

⎛
⎝ k2∑

j=k1

⎧⎨
⎩
⎛
⎝j+1∏

i=k2

Af (i)

⎞
⎠F(i, ε(i), ε(i + 1))

⎛
⎝ k1∏

i=j−1

A(i, ε(i))

⎞
⎠
⎫⎬
⎭
⎞
⎠

≤
k2∑

j=k1

⎧⎨
⎩σ̄

⎛
⎝j+1∏

i=k2

Af (i)

⎞
⎠ σ̄ (F (i, ε(i), ε(i + 1)))σ̄

⎛
⎝ k1∏

i=j−1

A(i, ε(i))

⎞
⎠
⎫⎬
⎭

≤
k2∑

j=k1

{
(M2ρ

k2−j−1
2 ) sup

k≥0
sup

ε(i),ε(i+1)∈E
σ̄ (F (i, ε(i), ε(i + 1)))(M3ρ

j−k1−1
3 )

}
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≤
k2∑

j=k1

{(
M2M3 sup

k≥0
sup

ε(i),ε(i+1)∈E
σ̄ (F (i, ε(i), ε(i + 1)))

)
(ρ

k2−j−1
4 ρ

j−k1−1
4 )

}

= (k2 − k1 + 1)M4ρ
k2−k1
4 , (4.A.22)

where ρ4 and M4 are respectively defined as

ρ4 = max{ρ2, ρ3}, M4 = M2M3 sup
i≥0

sup
ε(i),ε(i+1)∈E

σ̄ (F (i, ε(i), ε(i + 1))).

From the definition of the matrix F(i, ε(i), ε(i + 1)), the assumption that every element of
the system matrices is differentiable with respect to each parametric modeling error, and from
the assumption that each parametric modeling error is magnitude bounded it is clear that at
every sampled time instant k, each element of the matrix F(i, ε(i), ε(i + 1)) is also magni-
tude bounded, provided that both vectors ε(i) and ε(i + 1) belong to the set E . Therefore, the
number M4 has a nonnegative finite value.

On the basis of Lemma 4.A.1 and Eqs. (4.A.20)–(4.A.22), we can declared that, for arbitrary
k2 ≥ k1 ≥ 0 and ε(i), ε(i + 1) ∈ E ,

k1∏
i=k2

�(i, ε(i), ε(i + 1))

≤
√√√√√σ̄ 2

⎛
⎝ k1∏

i=k2

A(i, ε(i))

⎞
⎠+ σ̄ 2

⎛
⎝ k2∑

j=k1

⎧⎨
⎩
⎛
⎝ j+1∏

i=k2

Af (i)

⎞
⎠F(i, ε(i), ε(i + 1))

⎛
⎝ k1∏

i=j−1

A(i, ε(i))

⎞
⎠
⎫⎬
⎭
⎞
⎠+ σ̄ 2

⎛
⎝ k1∏

i=k2

Af (i)

⎞
⎠

≤
√

(M3ρ
k2−k1
3 )2 + (M2ρ

k2−k1
2 )2 + [(i2 − k1 + 1)M3ρ

k2−k1
4 ]2

≤
√

[M2
3 + M2

2 + (i2 − k1 + 1)2M2
3 ]ρ2(k2−k1)

= ρk2−k1

√
M2

1 + M2
2 + (k2 − k1 + 1)2M2

3 , (4.A.23)

where ρ = max{ρ2, ρ3, ρ4}.
In addition, iterative utilizations of Eqs. (4.65) and (4.66) show that

E
[

x(k + 1)

x̂(k + 1)

]
=

(
0∏

i=k

�(i, ε(i), ε(i + 1))

)
E
[

x(0)

x̂(0)

]

+
k∑

i=0

⎛
⎝i+1∏

j=k

�(j, ε(j), ε(j + 1))

⎞
⎠	(i, ε(i), ε(i + 1))

[
u(i)

u(i + 1)

]
,

(4.A.24)
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Cov
[

x(k + 1)

x̂(k + 1)

]
=
(

0∏
i=k

�(i, ε(i), ε(i + 1))

)
Cov

[
x(0)

x̂(0)

]( 0∏
i=k

�T (i, ε(i), ε(i + 1))

)T

+
k∑

i=0

⎛
⎝i+1∏

j=k

�(j, ε(j), ε(j + 1))

⎞
⎠�(i, ε(i), ε(i + 1))

×
[

Q(i) 0
0 R(i + 1)

]
�T (i, ε(i), ε(i + 1))

×
⎛
⎝i+1∏

j=k

�(j, ε(j), ε(j + 1))

⎞
⎠

T

. (4.A.25)

As every element of the system matrices is assumed to be differentiable with respect to each
parametric modeling error and each parametric modeling error is assumed to be magnitude
bounded, we can directly declare by the definitions of the matrices 	(k, ε(k), ε(k + 1)) and
�(k, ε(k), ε(k + 1)) that their elements are also magnitude bounded at every sampled time
instant k. The proof can now be completed by combining together Eqs. (4.A.23)–(4.A.25) and
noting that the estimation error of the robust state estimator at the sampled time instant k is
equal to x̂(k) − x(k).
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CHAPTER 5

State Estimation With Random Data
Droppings

5.1 Introduction

The pioneering work [3] studies the optimal state estimation problem for a discrete-time
linear stochastic system under the assumption that the raw measurements of the system are
randomly dropped. The authors consider an estimation problem of a discrete-time linear
stochastic system with random data droppings, which can be used to model either random
communication link failures or sensor faults. A fundamental problem is how the random data
droppings affect the optimal estimation performance. To formalize it, a binary random pro-
cess is used to denote the data dropping process and derive an optimal recursive filter of the
discrete-time linear stochastic system to minimize the mean square state estimation errors by
using the Kalman filter technique. It turns out that the optimal filter resembles the standard
Kalman filter of the same recursive structure and complexity and is named the intermittent
Kalman filter (IKF) in the literature. Particularly, if the sensor measurement is available to the
estimator, then the one-step state predictor is simply updated as in the Kalman filter. When the
sensor measurement is dropped, that is, there is a measurement data dropping, the estimator
becomes open-loop, and the predictor is not updated. Thus, the prediction error covariance
matrix cannot be reduced, which is the key difference from the Kalman filter.

Clearly, the more data droppings, the more open loop involves, and the estimation error
covariance matrix grows faster. A natural question is whether the optimal filter with data
droppings will diverge or converge in an appropriate sense, which is also the focus of this
chapter. By modeling the packet loss process as an independent and identically distributed
(i.i.d.) Bernoulli process, there exists a critical packet loss rate above which the mean state
estimation error covariance matrices will diverge [3]. However, they are unable to exactly
quantify the critical loss rate for general systems except providing its lower and upper bounds,
which are attainable under some special cases, for example, the lower bound is tight if the
observation matrix is invertible. A less restrictive condition is provided in [17], where invert-
ibility on the observable subspace is required. In [4] the loss rate for a wider class of systems
is explicitly characterized, including second-order systems and the so-called nondegener-
ate higher-order systems. A remarkable discovery in [4] is that there are counterexamples of
second-order systems for which the lower bound given by [3] is not tight.
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In [4], plant models are assumed to be precisely known. In actual engineering applications,
however, model errors are usually unavoidable, which may appreciably deteriorate estimation
accuracies of an estimator [5–7,27]. In this chapter, we also discuss the intermittent Kalman
filter under switching sensors [2].

The rest of the chapter is organized as follows. In Section 5.2, we discuss the basics of the
Kalman filtering problem with intermittent observations, where the raw sensor measurements
are directly sent to the estimator via the lossy channels. The optimal estimate is then given by
the intermittent Kalman filter (IKF). The mean square stability of the IKF is also discussed.
In Section 5.3, we consider the case of using switching sensors over the unreliable networks
and show how the switchings affect the mean square stability of the IKF. In Section 5.4, we
provide a linear coding approach to reduce the effects of packet droppings on the mean square
stability of the IKF. Finally, we also study the parametric errors on the state estimation prob-
lems with packet droppings.

5.2 Intermittent Kalman Filtering (IKF)

Consider the discrete-time stochastic linear system

{
xk+1 = Axk + wk,

yk = Cxk + vk,
(5.1)

where xk ∈ Rn and yk ∈ R� are vector state and measurement, wk ∈ Rn and vk ∈ R� are white
Gaussian noises with zero means and covariance matrices Q > 0 and R > 0, respectively.
C is of full row rank, that is, rank(C) = l ≤ n. The initial state x0 is assumed to be a random
Gaussian vector with mean x̂0 and covariance matrix P0 > 0. Moreover, wk, vk , and x0 are
mutually independent.

We focus on an estimation framework where the sensor measurements of the system are trans-
mitted to an estimator via an unreliable communication channel. Due to random fading and/or
congestion of the communication channel, packets may be lost while in transit through the
channel. The data loss dropping is modeled by a binary stochastic process {γk}k≥0. Further-
more, assume that {γk}k≥0 contains no information of the system, and is independent of the
system evolution. Let γk = 1 indicate that the packet containing the measurement information
has been successfully delivered to the estimator, whereas γk = 0 corresponds to the measure-
ment data dropping. We further always assume that γk is a binary independent and identically
distributed process and Pr{γk = 1} = p when studying the stability of the corresponding esti-
mator.
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Figure 5.1: Network configuration.

5.2.1 The IKF Algorithm

We first discuss the case with raw measurement transmission; see Fig. 5.1. In this case, if
there is a measurement loss γk = 0, then yk is unavailable to the estimator. Otherwise, yk is
successfully transmitted to the estimator. The objective is to obtain an optimal estimator and
characterize the effect of packet droppings on the estimator. To this purpose, let

Fk � {yiγi, γi, i ≤ k}
be an increasing sequence of sets generated by the information received by the estimator up to
time k, that is, all events that are generated by the random variables {yiγi, γi, i ≤ k}.
We are concerned with the minimum mean square error (MMSE) predictor and estimator with
intermittent measurements given by the conditional expectations

x̂k|k−1 = E[xk|Fk−1 and x̂k|k = E[xk|Fk], (5.2)

respectively. The associated estimation error covariance matrices are then defined as

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)T |Fk] (5.3)

and

Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |Fk],
where AT is the transpose of A.

The measurement noise vk is defined in the following way:

p(vk|γk) =
{

N (0,R), γk = 1,

N (0, σ 2I ), γk = 0,
(5.4)

for some σ 2. Therefore, the variance of the measurement at time k is R if γk = 1 and σ 2I

otherwise. In the absence of measurement, it corresponds to the limiting case of σ → ∞ [3].

Let ŷk|k−1 = E[yk|Fk−1], ỹk = yk − ŷk|k−1, and x̃k = xk − x̂k|k−1, it is easy to see that

E[ỹkx̃
T
k |Fk−1] = CPk|k−1, (5.5)
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E[ỹkỹ
T
k |Fk−1, γk] = CPk|k−1C

T + γkR + (1 − γk)σ
2I. (5.6)

This implies that

cov(xk, yk|Fk−1, γk) =
[

Pk|k−1 Pk|k−1C
T

CPk|k−1 CPk|k−1C
T + γkR + (1 − γk)σ

2I

]
. (5.7)

Hence, the measurement update in the Kalman filter is modified as follows:

x̂k|k = x̂k|k−1 + Pk|k−1C
T
(
CPk|k−1C

T + γkR + (1 − γk)σ
2I

)−1
(yk − Cx̂k|k−1),

(5.8)

Pk|k = Pk|k−1 − Pk|k−1C
T
(
CPk|k−1C

T + γkR + (1 − γk)σ
2I

)−1
Pk|k−1C. (5.9)

Taking the limit as σ → ∞, these equations can be further reduced to

x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1), (5.10)

Pk|k = Pk|k−1 − γkKkCPk|k−1, (5.11)

where Kk = Pk|k−1C
T (CPk|k−1C

T + R)−1.

Clearly, the major difference from the Kalman filter only appears in the case of missing
measurement, that is, γk = 0, which corresponds exactly to propagation of the previous pre-
diction. This also results in that both the estimator x̂k|k and the conditional error covariance
matrix Pk|k are random. To examine the asymptotic behavior of Pk|k , the standard approach
to analyze the Riccati recursion in the Kalman filter is no longer feasible. The randomness
of Pk|k also brings significant challenge to study its asymptotic performance.

In addition, the time update equations in the KF continue to hold, that is,

x̂k+1|k = Ax̂k|k,
Pk+1|k = APk|kAT + Q, (5.12)

and x̂0|−1 = x̄0,P0|−1 = P0. Overall, the IKF is provided in detail in Algorithm 5.2.1.

Algorithm 5.2.1. Intermittent Kalman filter (IKF)

1. Initialization: x̂0|−1 = x̄0,P0|−1 = P0.
2. Measurement update: at time k, the IKF updates as follows:

x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1), (5.13)

Pk|k = Pk|k−1 − γkKkCPk|k−1, (5.14)

where Kk = Pk|k−1C
T (CPk|k−1C

T + R)−1.
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3. Time update: the IKF updates in the same way as the KF via

x̂k+1|k = Ax̂k|k,
Pk+1|k = APk|kAT + Q. (5.15)

5.2.2 Mean Square Stability of the IKF

Letting Pk := Pk|k−1, it is easy to obtain the following switching Riccati recursion:

Pk+1 = APkA
T + Q − γk+1APkC

T (CPkC
T + R)−1CT PkA

T . (5.16)

Definition 5.1. The estimator x̂k|k is said to be mean square stable if for any initial estimate,

sup
k

E[‖x̂k|k − xk‖2] < ∞. (5.17)

Clearly, the mean square stability of the IKF is equivalent to supk E[‖Pk‖] < ∞. Then, there
exists a sharp transition for the mean square stability of the IKF.

Theorem 5.1. ([3]) If (A,Q1/2) is controllable, (A,C) is detectable, and A is unstable, then
there exists pc ∈ [0,1) such that

∀p ∈ [0,pc],∃P0 > 0 such that lim
k→∞E[Pk] = ∞, and

∀p ∈ (pc,1],∀P0 > 0, lim
k→∞E[Pk] ≤ CP0, (5.18)

where CP0 depends on the initial condition P0 ≥ 0.

Proof. We adopt the proof in [3]. First, we note that the two cases expressed by the theorem
are indeed possible. If λ = 1, then the modified Riccati difference equation reduces to the
standard Riccati difference equation, which is known to converge to a fixed point under the
theorem hypotheses. Hence, the covariance matrix is always bounded in this case for any ini-
tial condition P0 ≥ 0. If λ = 0, then we reduce to open-loop prediction, and if the matrix is
unstable, then the covariance matrix diverges for some initial condition P0. Next, we show
the existence of a single point of transition between the two cases. Fix 0 < p1 ≤ 1 such that
Ep1[Pk] is bounded for any initial condition P0 ≥ 0. Then, for any p2 ≥ p1, we have that
Ep2[Pk] is also bounded for all P0 ≥ 0. In fact, we have

Ep1[Pk+1] = E[Ep1[APkA
T + Q − γk+1APkC

T (CPkC
T + R)−1CT PkA

T |Pk]]
= E[APkA

T + Q − p1APkC
T (CPkC

T + R)−1CT PkA
T |Pk]

≥ E[APkA
T + Q − p2APkC

T (CPkC
T + R)−1CT PkA

T |Pk]
= Ep2[Pk+1]. (5.19)
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We can now choose

pc = inf{λ∗|λ > λ∗ ⇒ Eλ[Pk] is bounded ∀P0 ≥ 0}, (5.20)

completing the proof.

Then, the problem of interest is how to evaluate the critical value pc.

Lemma 5.1. Consider the following recursion:

Mk+1 = (1 − p)AMkA
T + Q, (5.21)

where M0 = P0. Then

Mk ≤ E[Pk],∀k.

Proof. Clearly, M0 ≤ P0. Assume that Mt ≤ E[Pt ] for all t ≤ k. As Q > 0, we can easily
verify that Pk > 0 for all k. Then, by the matrix inversion lemma [8] it follows that

(P −1
k + CT R−1C)−1 = Pk − PkC

T (CPkC
T + R)−1CT Pk ≥ 0. (5.22)

This implies that Pk ≥ PkC
T (CPkC

T + R)−1CT Pk and

Pk+1 ≥ APkA
T + Q − γk+1APkA

T = (1 − γk+1)APkA
T + Q. (5.23)

Taking expectation on both sides and using the fact E[Pk] ≥ Mk , the rest of proof is trivial by
induction.

Lemma 5.2. Assume that γk is a binary independent and identically distributed process and
Pr{γk = 1} = p. Consider the following recursion:

Vk+1 = AVkA
T + Q − p · AVkC

T (CVkC
T + R)−1CT VkA

T , (5.24)

where V0 = P0. Then

E[Pk] ≤ Vk,∀k. (5.25)

Proof. Note that (5.16) can be rewritten as follows:

Pk+1 = (1 − γk+1)APkA
T + Q − γk+1A(P −1

k + CT R−1C)−1AT , (5.26)

which is clearly convex in Pk . Then, taking the expectation of both sides of (5.16) and using
the Jensen inequality [8], we obtain that

E[Pk+1] ≤ AE[Pk]AT + Q − p · AE[Pk]CT (CE[Pk]CT + R)−1CT E[Pk]AT .

Together with mathematical arguments, it is easy to complete the proof.
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In view of the last two lemmas, we obtain the following result.

Theorem 5.2. Let

p = arg min{p|the recursion in (5.21) is convergent ∀P0 ≥ 0} = 1 − 1/ρ2(A) (5.27)

p = arg min{p|the recursion in (5.24) is convergent ∀P0 ≥ 0}, (5.28)

where ρ(A) is the spectral radius of the matrix A. Then p ≤ pc ≤ p.

To numerically obtain p, it is required to use the bio-section method to solve LMIs. The
details are provided in [3]. There are also some other ways to exactly evaluate the critical
value pc by analyzing the observability of the stochastically time-varying linear systems; see
[9] and references therein.

5.2.3 Weak Convergence of the IKF

We also examine the weak convergence of the random covariance matrices Pt in (5.16).

Definition 5.2. The sequence of random matrices {Pt } is said to converge weakly or in distri-
bution to a random matrix P∞ if

lim
t→∞Ft(P ) = F(P ) (5.29)

for every positive definite matrix P at which F is continuous. Here Ft and F are the cumula-
tive distribution functions of the random matrices Pt and P∞, respectively.

Then, we have the following results.

Theorem 5.3. ([10]) Suppose that (A,Q1/2) is controllable, (A,C) is detectable, and A is
unstable.

(a) If p > 0, then {Pt } weakly converges to a random matrix P∞ for any initial P0.
(b) If p > pc, then the corresponding invariant distribution F has a finite mean, that is,∫

Sn+
PdF(P ) < ∞,

where Sn+ is the set of all positive definite matrices, and pc is given in Theorem 5.1.

Theorem 5.3 states that for stabilizable and detectable systems, the sequence of random ma-
trices {Pt } in (5.16) converges in distribution to a unique invariant distribution F , irrespective
of the initial condition. In particular, one may operate below pc and still converge to a unique
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invariant distribution. However, operating at p < pc may not guarantee that the corresponding
invariant distribution F has a finite mean.

Moreover, the invariant distribution F satisfies a moderate deviations principle with good rate
function. To elaborate it, let μp(·) be the probability measure induced by P∞, where p > 0 is
explicitly given to show its dependence on the packet receive rate. Then we have the follow-
ing result.

Theorem 5.4. ([10]) The family of invariant distributions μp(·) converges weakly to the
Dirac probability measure δP ∗ . In particular, for each ε > 0, we have the following conver-
gence rate asymptotics:

lim sup
p→1−

− ln(μp(BC
ε (P ∗)))

1 − p
≤ −1,

where BC
ε (P ∗) is the closed ball centered at P ∗ with radius ε.

More details on the characterization of the invariant distribution F can be found in [10,11].

5.3 IKF With Switching Sensors

The striking difference of this section lies in the use of periodically switching sensors in the
networked systems. Sensors of different nature, bandwidth, accuracies, and noise levels usu-
ally have different performances in specific operating and/or environmental conditions. Thus,
the use of different sensors may provide rich information to increase the estimation/control
performance. This is particularly important in the situation where a single sensor may not be
able to provide sufficient information to estimate the state of a dynamical system.

Specifically, we consider an estimation framework of a stochastic system over a lossy network
under two periodically switching sensors. See the networked system in Fig. 5.2 for an illus-
tration. Here the periodically switching sensors are used to observe the system and result in a
switching system. It is well known that the stability analysis of a switching system is usually
more involved than that of a time-invariant system [12]. From this perspective, the problem
of filter stability involving switching sensors for data transmission over a lossy network is ex-
pected to be more complicated than that of a single sensor.

Here there are two switching sensors to cooperatively monitor the system. At each time, one
of them takes a noisy measurement from the system by

yk = Cσk
xk + vσk

, (5.30)
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Figure 5.2: Networked systems over lossy channels under two periodically switching sensors.

where σk ∈ {1,2} represents the index of which sensor is activated to take measurement
at time k, and vσk

is white Gaussian noise with zero mean and positive definite covariance
matrix Rσk

. Both C1 and C2 are of full row rank. The measurement matrix Cσk
is now time-

varying, which is used to alleviate the working load of one sensor for the purpose of prolong-
ing the life time of the network or provide richer information for the estimator. As an initial
attempt, we consider a periodically switching rule in this work. To be precise,

σk =
{

1 if k is odd,

2 if k is even.
(5.31)

Then, the associated measurement update is given by

x̂k|k = x̂k|k−1 + γkKk(yk − Cσk
x̂k|k−1), (5.32)

Pk|k = Pk|k−1 − γkKkCσk
Pk|k−1, (5.33)

where the Kalman gain Kk = Pk|k−1C
T
σk

(Cσk
Pk|k−1C

T
σk

+Rσk
)−1, and we obtain the following

switching Riccati recursion:

Pk+1 = APkA
T + Q − γkAPkC

T
σk

(Cσk
PkC

T
σk

+ Rσk
)−1Cσk

PkA
T

:= gk(Pk,Rσk
).

In this section, we consider the stability of the Kalman filter using two periodically switching
sensors without packet losses. This allows us to focus on the sole effect of lossy channels on
the stability of the Kalman filter in the next section. We recall the following result [13].

Lemma 5.3. gk(·, ·) is monotonically increasing in both arguments in the sense that

gk(P1,R) � gk(P2,R), ∀P1 � P2; (5.34)

gk(P,R1) � gk(P,R2), ∀R1 � R2. (5.35)

For convenience, we show that the sensor noise levels do not affect the stability analysis of
the Kalman filter under two switching sensors. To this purpose, denote RM = R1 + R2 and
Rm = min{λmin(R1), λmin(R2)} · I , where λmin(Ri) > 0 is the minimum eigenvalue of Ri .
Then it follows from the monotonicity of gk(·, ·) and from Rm � Rσk

� RM that
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gk(Pk,Rm) � gk(Pk,Rσk
) � gk(Pk,RM),∀k ∈ N. (5.36)

This essentially implies that the time-varying property of Rσk
does not affect the stabil-

ity analysis of Pk . It is also known from [4] that the stability conditions of both Pk+1 =
gk(Pk,Rm) and Pk+1 = gk(Pk,RM) are the same. Thus, there is no loss of generality to as-
sume that R1 = R2 = R. This implies that the new challenge solely lies in time-varying nature
of the observation matrix Cσk

.

It should be noted that the stability analysis of a time-varying system is usually much more
involved than that of a time-invariant system. Since the focus of this work is on quantifying
the effect of the lossy network on the stability of the Kalman filter, we first derive the stabil-
ity condition of the Kalman filter without packet losses, which corresponds to γk = 1 for all
k ∈N.

By [14] a necessary and sufficient condition for the stability of the Kalman filter without
packet losses is that (A,Cσk

) is uniformly detectable. This requires the unstable modes of
the system to be uniformly observable since all the state variables associated with the stable
modes of the system will be exponentially stable in the mean square sense. For this purpose,
we only need to focus on the state subspace corresponding to unstable modes. Hence, it is
sensible to make the following assumption.

Assumption 5.1. All the eigenvalues of A lie outside or on the unit circle.

Then (A,Cσk
) is required to be uniformly observable under Assumption 5.1 for the stability

of the Kalman filter without packet losses, that is, there exist a positive integer h and positive
numbers β0 > α0 > 0 such that

β0I 
k+h∑
i=k

(Ai−k)T CT
σi

Cσi
Ai−k  α0I � 0,∀k ∈ N.

This uniform observability condition can be further simplified as stated in the following re-
sult.

Lemma 5.4. The system (A,Cσk
) with σk given in (5.31) is uniformly observable if and only

if both (
A2,

[
C1

C2A

])
and

(
A2,

[
C1A

C2

])
(5.37)

are observable.

Moreover, if A is nonsingular, then the observability properties of the systems(
A2,

[
C1

C2A

])
and

(
A2,

[
C1A

C2

])
(5.38)

are equivalent.
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Proof. The first part directly follows from the definition of observability [15]. We only

need to elaborate the second part. For notational simplicity, denote

[
C1

C2

]
as [C1;C2]. Let

the observability test matrices be C1 = [C1;C2A; . . . ;C1A
2(n−1);C2A

2n−1] and C2 =
[C1A;C2; . . . ;C1A

2n−1;C2A
2(n−1)]. Considering C1 and C2A, it is clear that the rows of both

matrices associated with C2 are the same. By the Cayley–Hamilton theorem there exist ai ∈ R

such that A2n = a0I + a1A
2 + · · · + an−1A

2(n−1). Premultiplying both sides of the equal-
ity by C1, it follows that the last row of C2A associated with C1 can be linearly represented
by the rows of C1. This further implies that each row of C2A can be represented by the rows
of C1. Hence, rank(C2A) ≤ rank(C1). Similarly, we can argue that rank(C1A) ≤ rank(C2).
Since A is nonsingular, we obviously have that rank(C1) = rank(C1A) and rank(C2) =
rank(C2A). Combing the preceding, we obtain that rank(C1) = rank(C2), which completes
the proof.

Thus, the uniform observability property of a periodically switching system is converted into
that of two time-invariant systems, each of which is observed by two sensors at each time.

In general, the nonsingularity assumption on A is mild, for example, it holds for all systems
satisfying Assumption 5.1. By Lemma 5.4 we focus on the system with the following observ-
ability property in this paper since it is the basic requirement for the stability of the Kalman
filter without packet losses under Assumption 5.1.

Assumption 5.2. If C = [C1A;C2], then the system (A2,C) is observable.

Remark 5.1. By the PBH test [15] the observability of
(
A2,C

)
implies that (A,C) is observ-

able, whereas the observability of (A,C) usually does not imply that
(
A2,C

)
is observable;

take, for instance, A = diag(1,−1) and C = [1,1]. This, together with Lemma 5.4, es-
sentially indicates that using two sensors to observe the same system at each time requires
a weaker condition for the stability of the Kalman filter than that of a periodically switch-
ing sensor at each time, which certainly is consistent with our intuition as the former case
supplies more information than the later one. We also mention that the observability of
(A2, [C1;C2]) does not imply that of (A2,C); for example, take A = diag(1,−1), C1 = [1 1]
and C2 = [1 − 1]. It should be noted that both (A,C1) and (A,C2) are observable.

5.3.1 Mean Square Stability

Now, we establish the network condition on the packet loss process γk for the mean square
stability of the intermittent Kalman filter under two periodically sensors.
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Theorem 5.5. Consider the networked system in Fig. 5.2. A necessary condition for
supk∈NE[Pk] ≺ ∞ is that (ρ(A))2 (1 − p) < 1, where λmax is the maximum eigenvalue in
magnitude of A.

In fact, this necessary condition has been derived by many authors [3,9,16,17] under a single
sensor case and shown to be sufficient as well for some special cases. It is interesting to inves-
tigate whether this condition is sufficient under the present framework. For a time-invariant
observation matrix, that is, C1 = C2, it is shown that the condition in Theorem 5.5 is also
sufficient if C1 is invertible on the observable subspace [17] or (A,C1) is a nondegenerate
system [9]. Note that a periodic switching between two stable subsystems may lead to an un-
stable system due to the destabilizing effect of the switching. For example, we can verify that
the system xk+1 = Akxk is internally unstable if

Ak = 1

8
·
[

0 9 + 7 · (−1)k

9 − 7 · (−1)k 0

]

although Ak has all eigenvalues inside the unit circle for each k. This intuitively implies that
the derivation of a sufficient condition for the filter stability is more involved under the time-
varying observation matrices.

In the previous section, the stability condition of the Kalman filter using two periodically
switching sensors can be lifted into that of a time-invariant system with two measurement sen-
sors if there is no packet loss (cf. Lemma 5.4). This motivates us to check whether under i.i.d.
packet losses, the problem under consideration can be converted into the stability analysis of
the Kalman filter for a time-invariant system using two measurement sensors simultaneously
over two independent lossy channels, each of which is subject to an i.i.d. packet loss process.
It turns out to be positive. To elaborate it, we recall a result in [9].

Lemma 5.5. [9] Let O = ∑∞
i=1 γi(A

−i )T CT
σi

Cσi
A−i . Under Assumption 5.1, there exist two

positive numbers α and β such that

β ·E[O−1]  sup
k∈N

E[Pk|k]  α ·E[O−1]. (5.39)

Then we obtain an interesting result on the equivalent stability property of the networked sys-
tems.

Theorem 5.6. Consider the networked systems in Fig. 5.2 and Fig. 5.3. If A is nonsingular,
then necessary and sufficient conditions for the stability of the corresponding estimators are
the same.
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Figure 5.3: Networked systems over lossy channels. The open-loop system and the sensor mea-
surement matrices are accordingly denoted above the blocks of systems and sensors. All the lossy
channels are subject to the i.i.d. packet loss with the same statistical properties and mutually in-
dependent.

Proof. Noting that Pk|k−1Pk|k and Pk+1|k =APk|kAT + Q, it is obvious that supk∈N E[Pk]≺
∞ is equivalent to supk∈NE[Pk|k] ≺ ∞. By Lemma 5.5 the filter stability of the networked
system in Fig. 5.2 is equivalent to

E[O−1] ≺ ∞. (5.40)

Since γk is an i.i.d. process, O can be rewritten as follows:

O =
∞∑
i=1

(A−2i )T
[
γ2i−1A

T CT
1 γ2iC

T
2

][
C1A

C2

]
A−2i

d=
∞∑
i=1

(A−2i )T
[
αiA

T CT
1 βiC

T
2

][
C1A

C2

]
A−2i , (5.41)

where
d= means the equivalence in distribution of both sides, and αi, βi are two i.i.d. Bernoulli

processes with the same statistics with γi , that is, E[αi] = E[βi] = p. Thus, the filter stabil-
ity of the networked systems in Fig. 5.2 is equivalent to that of the first networked system in
Fig. 5.3. The rest of the proof is similarly established.

This result can be immediately used to derive a sufficient condition for filter stability.

Theorem 5.7. Consider the networked system in Fig. 5.2 satisfying Assumption 5.1. A suffi-
cient condition for supk∈N E[Pk] ≺ ∞ is that

E

( ∞∑
i=0

ζi(A
−2i )T

[
AT CT

1 CT
2

][
C1A

C2

]
A−2i

)−1

≺ ∞, (5.42)

where ζi is an i.i.d. process with P{ζi = 1} = p2.
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Proof. By (5.41) define ζi = min{αi, βi}, which is again an i.i.d. process with P{ζi = 1} =
P{αi = 1}P{βi = 1} = p2. Then it follows that

[
αiA

T CT
1 βiC

T
2

][
C1A

C2

]
≥ ζi ·

[
AT CT

1 CT
2

][
C1A

C2

]
. (5.43)

Combing Lemma 5.5 and (5.41), we complete the proof.

By Theorem 5.5 and 5.7 we obtain the simple sufficient condition for supk∈NE[Pk] ≺ ∞ for a
certain class of systems.

Theorem 5.8. Consider the networked system in Fig. 5.2 satisfying Assumption 5.1 and 5.2. If
C = [C1;C2] is of full row rank, then a sufficient condition for supk∈NE[Pk] ≺ ∞ is

(ρ(A))4 (1 − p2) < 1. (5.44)

Proof. Since (ρ(A))4 (1 − p) < 1, there exists a sufficiently small ε > 0 such that (ρ(A) +
ε‖A‖)4(1 − p2) < 1. Letting � = (ρ(A)) + ε‖A‖, it follows from Lemma 15 [9] that ‖A‖k ≤
Mρk for any k ∈ N, where M = √

n(1 + 2/ε)n−1.

If C is of full rank, then CT C � λmin(C
T C) · I , where λmin(C

T C) > 0 is the minimum eigen-
value of CT C. This implies that

E

( ∞∑
i=0

ζi(A
−2i )T CT CA−2i

)−1

≺ 1

λmin(CT C)
E

( ∞∑
i=0

ζi(A
−2i )T A−2i

)−1

. (5.45)

Note that P{ζ1=0, . . . , ζk = 0, . . .}=limk→∞(1−p2)k=0. Then, the sum
∑∞

i=0 ζi(A
−2i )TA−2i

is positive definite with probability one.

Define the stopping time

τ := inf{k ∈ N|ζk = 1}, (5.46)

whose probability mass distribution is given by P{τ = k + 1} = p2(1 − p2)k . Hence,

E

( ∞∑
i=0

ζi(A
−2i )T A−2i

)−1

≤ E[ζτA
2τ (A2τ )T ]

≤ (E[‖A‖4τ ])I ≤ (M ·E[�4τ ])I
= M�4(1 − p2)

∞∑
k=0

�4k(1 − p2)k · I,

which is finite since �4(1 − p2) < 1. The rest of the proof follows from Theorem 5.7.
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Remark 5.2. The main conservativeness of the sufficient condition lies in the use of Theo-
rem 5.7. We use a simple example to illustrate the conservativeness when A = diag(λ1,−λ1)

and C1 = C2 = [1,1]. By [9] a necessary and sufficient condition is that |λ1|2(1 − p) < 1,
which is still weaker than |λ1|4(1 − p2) < 1. Note that this approach does not fully exploit the
system structure.

Similarly, the following result is straightforward.

Theorem 5.9. Consider the networked system in Fig. 5.2 satisfying Assumption 5.1 and 5.2. If
either C1 or C2 is of full row rank, the a sufficient condition for supk∈N E[Pk] ≺ ∞ is

(ρ(A))4 (1 − p) < 1. (5.47)

Remark 5.3. It should be noted that if C1 is of full row rank and C2 is a zero matrix, it fol-
lows from [9] that the condition in Theorem 5.9 is also sufficient.

By Theorem 5.6 we obtain that E[O−1] ≺ ∞ is equivalent to the stability of the Kalman filter
of the networked system

xk+1 = A2xk + wk, (5.48)

which is observed by two sensors at each time with measurement equations

yk,1 = C1Axk + vk,1,

yk,2 = C2xk + vk,2, (5.49)

where (A2, [C1A;C2]) is observable, and vk,1 and vk,1 are two independent white Gaussian
noises. The sensor measurements yk,1 and yk,2 are sent via two independent lossy channels to
the estimator. See Fig. 5.3, where packet loss processes are modeled by two independent pro-
cess αk and βk . Then, the corresponding Kalman filters of the networked systems in Fig. 5.3
require the same network condition for filter stability if A is nonsingular. Thus, it is sufficient
to establish the network condition for the stability of the Kalman filter of the first networked
system in Fig. 5.3.

In general, it is challenging to establish the necessary and sufficient condition for a general
vector system. Nonetheless, the following procedures can help to reduce the complexity of the
problem. Motivated by [9], we exploit the system structure under Assumption 5.2, which is
classified as follows.

1. Both (A2,C1A) and (A2,C2) are observable.
2. Only one of (A2,C1A) and (A2,C2) is observable.
3. Neither (A2,C1A) nor (A2,C2) is observable, but (A2, [C1A;C2]) is observable.
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In fact, we only need to consider Case 1 since the other two cases can be converted into the
combination of Case 1 and that in [3,4]. We elaborate it in detail.

For Case 2, there is no loss in generality to assume that (A2,C1A) is observable but (A2,C2)

is not observable. By the Kalman canonical decomposition [15] there exists a coordinate
transformation such that (A2,C) is transformed into the following structure:

A2 =
[
A1,1 A1,2

0 A2,2

]
,C1A = [C1,1 C1,2],C2 = [0 C2,2], (5.50)

where (Ai,i ,Ci,i) and (A2,2,C1,2) are observable. This means that the state variables cor-
responding to A1,1 can only be observed by the sensor associated with the measurement
matrix C1A. Then the filter stability analysis can be further reduced to the case of using only
one sensor as in [3,4,9] and Case 1.

Theorem 5.10. Under Case 2, E[O−1] ≺ ∞ if and only if E[O−1
1 ] ≺ ∞ and E[O−1

2 ] ≺ ∞,
where

O1 =
∞∑
i=1

αi(A
−i
1,1)

T CT
1,1C1,1A

−i
1,1

and

O2 =
∞∑
i=1

(A−i
2,2)

T (αiC
T
1,2C1,2 + βiC

T
2,2C2,2)A

−i
2,2.

Proof. Since E[O−1] ≺ ∞, we can easily verify that E[O−1
1 ] ≺ ∞. Partition the state vector

as xk = [xk,1;xk,2] in conformity with A2. It follows that

xk+1,2 = A2,2xk,2 + wk,2,

yk,1 = C1,2xk,2 + C1,1xk,1 + vk,1,

yk,2 = C2,2xk,2 + vk,2.

Since E[O−1
1 ] ≺ ∞, the estimation error covariance matrix corresponding to the state vari-

ables xk,1 is stable. In particular, let x̃k,i = xk,i − x̂k,i ; then supk E[x̃k,1x̃
T
k,1] ≺ ∞. Hence, we

can use the following measurement to replace yk,1:

y′
k,1 = yk,1 − C1,1x̂k,1 = C1,2xk,2 + v′

k,1,

where v′
k,1 = C1,1x̃k,1 + vk,1. Since E[O−1

1 ] ≺ ∞, it follows that supk E[x̃k,2x̃
T
k,2] ≺ ∞. Thus,

the state vector of the following subsystems can be stably estimated:

xk+1,2 = A2,2xk,2 + wk,2,
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y′
k,1 = C1,2xk,2 + v′

k,1,

yk,2 = C2,2xk,2 + vk,2.

By Lemma 5.5 we finally obtain that E[O−1
2 ] ≺ ∞.

The necessity can be similarly proved and is omitted.

For Case 3, it follows from Proposition III.1 in [18] that there exists a coordinate transforma-
tion such that (A2,C) has the structure either

A2 =
[
A1,1 A1,2

0 A2,2

]
,C1A = [0 C1,2],C2 = [C2,1 0] (5.51)

or

A2 =
⎡
⎣A1,1 A1,2 A1,3

0 A2,2 A2,3

0 0 A3,3

⎤
⎦ ,

C1A = [0 C1,2 C1,3],C2 = [C2,1 0 C2,3]. (5.52)

The first structure indicates that the measurement matrix C1 can only be used to observe
the state subspace corresponding to A2,2 and C2 observes the complement state subspace,
whereas in the second structure, both sensors can observe a common subspace corresponding
to A3,3. The decomposition in the first structure is very appealing as it helps us to convert the
problems under consideration into the case with only an observation matrix, which has been
considered in [3,4,9]. In the second structure, the common observable subspace associated
with A3,3 is observed by both sensors, which is the same as Case 1.

Hence, we only need to derive the network condition for stability of the Kalman filter over
two independent lossy channels for the system satisfying that both (A2,C1A) and (A2,C2)

are observable, which, jointly with Assumption 5.1, implies that (A2,C1) and (A2,C2A) are
observable. To sum up, it is sufficient to focus on the systems satisfying the following:

Assumption 5.3. Both (A2,Ci) and (A2,CiA) are observable for any i ∈ {1,2}.

5.3.2 Second-Order Systems

Together with [9], we are able to fully characterize the necessary and sufficient condition for
the stability of the Kalman filter using two periodically switching sensors over a lossy net-
work for the second-order system, that is, A ∈ R2×2.

Here we only focus on the second-order system satisfying the following condition.
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Assumption 5.4. A = diag(λ1, λ2), where λ1 = λ2 exp(2πrI/d), I 2 = −1, and d > r > 0
are irreducible integers.

Then a necessary and sufficient condition on the filter stability can be exactly given by single
inequalities.

Theorem 5.11. Consider the second-order networked system in Fig. 5.2 satisfying Assump-
tions 5.3–5.4. Then, a necessary and sufficient condition for supk∈N E[Pk] ≺ ∞ is

|λ1|2d/(d−c)(1 − p) < 1, (5.53)

where c is determined by the number of invertible Ci and is given by

c =
⎧⎨
⎩

1 if max{rank(C1), rank(C2)} = 1,

0 if min{rank(C1), rank(C2)} = 2,

0.5 otherwise.
(5.54)

Sketch of Proof. (1) Case c = 1. If C1 = a · C2, then consider the networked systems in
Fig. 5.2, then it is equivalent to the system observed by one sensor. This is because the mea-
surements from both sensors are the same except for a scaling by a, which is equivalent to the
case without switching. Then, the rest of the proof follows from [9].

If rank(C1) = rank(C2) = 1, then consider the networked systems in Fig. 5.3. Let ζi =
max{αi, βi} and define the stopping time

τ1 = min{k|ζk = 1, k ≥ 1}.
Due to the independence of αi and βi , the probability mass distribution of τ is given by

P{τ1 = k} =
{

1 − (1 − p)2 if k = 1,

(1 − p)2(k−1)(1 − (1 − p)2) if k > 1.
(5.55)

By Assumption 5.3 it follows that λ2
1 �= λ2

2. Together with Assumption 5.4, this implies
that 2r/d is not an integer. Then, there exists a positive integer r1 < d such that λ2

1 =
λ2

2 exp(2πr1I/d) and r1, d are irreducible.

In view of the proof of Theorem 7 in [9], the necessary and sufficient condition becomes

E[|λ1|4τ11{τ1∈Sd }] < 1,

where Sd = {kd|∀k ∈ N}, and 1A is a standard indicator function for any set A. By (5.55) we
can easily compute that

E[|λ1|4τ11{τ1∈Sd }] = 1 − (1 − p)2

(1 − p)2

(|p1|2(1 − p))2d

1 − (|p1|2(1 − p))2d
< 1,

which is equivalent to |λ1|2d/(d−1)(1 − p) < 1.
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(2) Case c = 0. It is trivial, and the proof is omitted.

(3) Case c = 0.5. Without loss of generality, we assume that rank(C1) = 1 and rank(C2) = 2.
Define the stopping time

τ2 = min{k|αk = 1, βk = 0, ζi = 0,∀i ≤ k − 1}. (5.56)

By the independence of αi and βi the probability mass distribution of τ2 is given by

P{τ2 = k} = p(1 − p)2k−1. (5.57)

Similarly, the necessary and sufficient condition becomes

E[|λ1|4τ21{τ2∈Sd }] < 1.

Then it follows that

E[λ1|4τ21{τ2∈Sd }] = p

1 − p

(|λ1|2(1 − p))2d

1 − (|λ1|2(1 − p))2d
< 1,

which is equivalent to |λ1|2d/(d−0.5)(1 − p) < 1.

Remark 5.4. As remarked in [9], it is very difficult to establish a necessary and sufficient
condition for the filter stability of the second-order system satisfying Assumption 5.4, whereas
for the other cases, the condition becomes simple and is given by (ρ(A))2 (1 − p) < 1, where
λmax is the largest open-loop pole in magnitude, the proof of which can be established by the
same approach as in [9].

5.3.3 Extension to Higher-Order Systems

The study of general vector systems is very challenging and left to our future work. However,
if A is of a certain form, necessary and sufficient condition for the stability of the Kalman
filter can be easily established.

Assumption 5.5. A−1 = diag(J1, . . . , Jm) and rank(C1) = rank(C2) = 1, where Ji =
λ−1

i Ii + Ni ∈ Rni×ni and |λi | > |λi+1|; Ii is the identity matrix with compatible dimension,
and the (j, k)th element of Ni is 1 if k = j + 1 and 0 otherwise.

Theorem 5.12. Consider the networked system in Fig. 5.2 satisfying Assumptions 5.1–5.4.
Then a necessary and sufficient condition for supk∈NE[Pk] ≺ ∞ is

(ρ(A))2 (1 − p) < 1. (5.58)

Proof. It can be proved similarly as in Theorem 13 of [9].
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Figure 5.4: Network configuration with coded measurement transmission.

5.4 IKF With Coded Measurement Transmission

As opposite to the IKF, we study the scenario depicted in Fig. 5.4, where the signal zk trans-
mitted to the estimator is a coded version of yk . We focus on a class of coders with finite
storage memory, whose output can be computed recursively. More precisely, zk = Ek(sk, yk),
where the map Ek(·, ·) denotes the coder at time k, and sk denotes its internal state. Since zk

is to be transmitted to the estimator through an unreliable channel, the maximum information
available to the estimator at time k is given by

Fk = {γi, ziγi, i ≤ k}.

In general, the higher the dimension of the coder output zk , the larger the communication cost
that will be incurred. Thus, the dimension of zk should not be larger than that of yk . Our goal
is to design “good” coding methods to counteract the effect of random packet losses and to
derive recursive formulas to compute the MMSE estimator.

5.4.1 Linear Temporal Coding

If the system output is directly transmitted, that is, zk = yk , then the MMSE estimator is com-
puted by the IKF in Algorithm 5.2.1. Usually, the network requirement for stability of the IKF
is strong. This motivates the idea of transmitting the output of the Kalman filter to the estima-
tor [19], that is, zk = E[xk|y1, . . . , yk].
The MMSE estimator is then given by

x̂k|k =
{

zk if γk = 1,

Ax̂k−1|k−1 if γk = 0.
(5.59)

If (A,C) is observable, then a necessary and sufficient condition for the stability of the above
filter is simply given by (ρ(A))2 (1 − p) < 1. However, the dimension of the state estimate is
generally much higher than that of yk .

By the preceding there may exist a tradeoff between the effect of packet losses on the filter
stability and communication resources. To this end, we study a linear temporal coding algo-
rithm. Our proposed linear coding method is as follows. Take αT

k = [αk1, . . . , αk(m−1),1] ∈
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R1×m (recall that m = n − rank(C) + 1). The coded output is given by

zk = yk + αk(m−1)yk−1 + · · · + αk1yk−m+1 (5.60)

= (αT
k ⊗ Iq)col{yk−m+1, . . . , yk} ∈Rq

with the convention that yk = 0 for k < 0, where Iq ∈ Rq×q is the identity matrix, and ⊗ is the
Kronecker product [8]. The design of {αk : k ∈ N} will be detailed later.

It is clear from (5.60) that the sequence {z0, z1, . . . , zk} can be uniquely recovered from the
sequence {y0, y1, . . . , yk} for any k ≥ 0. For this reason, the coded output is information pre-
serving when there is no packet loss.

5.4.2 The MMSE Filter

It follows from (5.60) that the noise of zk is correlated with zk−1, zk−2, . . . , zk−m+1. Hence,
we cannot obtain an MMSE estimator by simply running a Kalman filter using zk as the sys-
tem output. To go around this, we define μk = col{yk−m+1, yk−m+2, . . . , yk−1} and

μk+1 = Fμk + Gyk, (5.61)

where G = col{0,0, . . . ,0, Iq} and

F =
[

0 I(m−1)q

0 0

]

with identity matrices Iq ∈ Rq×q and I(m−1)q ∈ R(m−1)q×(m−1)q . Then, we can rewrite (5.1)
and (5.60) as the augmented system

uk+1 =
[

A 0
GC F

]
uk +

[
wk

Gvk

]
,

zk = Hkuk + vk.

(5.62)

Clearly, the noise components in (5.62) are temporally independent. Hence, we can estimate
an augmented state uk+1 = [xT

k+1,μ
T
k+1]T via a Kalman filter [20]. This leads to

ûk+1|k = �ûk|k−1 + γk(��k|k−1H
T
k + Sk)(Hk�k|k−1H

T
k + R)−1(zk − Hkûk|k−1),

�k+1|k = ��k|k−1�
T + Q̄

− γk(��k|k−1H
T
k + Sk)(Hk�k|k−1H

T
k + R)−1(��k|k−1H

T
k + Sk)

T , (5.63)

where Q̄ =
[

Q 0

0 GRGT

]
, � =

[
A 0

GC F

]
, and Sk =

[
0

GR

]
.
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If there is no packet loss, then our next result shows that the MMSE estimator (5.63) using
{zk} and the IKF using {yk} are equivalent.

Theorem 5.13. Suppose packet loss is not present. Then, for any coding vectors {αk : k ∈ N},
we have x̂k+1|k = [In 0]ûk+1|k , where ûk+1|k is given by (5.63).

Proof. Note from (5.63) and [20] that ûk+1|k = E[uk+1|z0, z1, . . . , zk]. Similarly, we get that
x̂k+1|k = E[xk+1|y0, y1, . . . , yk]. Since the sequences {y0, y1, . . . , yk} and {z0, z1, . . . , zk} are
equivalent (information preserving), we have

E[uk+1|z0, z1, . . . , zk] = E[uk+1|y0, y1, . . . , yk].
Multiplying its both sides by [In 0], the right-hand side becomes

[In 0]E[uk+1|y0, y1, . . . , yk] = E[xk+1|y0, y1, . . . , yk].
It follows that [In 0]ûk+1|k = x̂k+1|k .

Although both estimators (5.63) and the IKF present the same estimate without packet loss,
we will later show that, in the presence of packet loss, the coded output is information en-
hancing in the sense that (5.63) allows a larger critical packet loss rate for stability.

When there is no packet loss, our next result shows that the MMSE filter (5.63) using zk and
the IKF using yk are equivalent. Let ζk := col{z1, z2, . . . , zk} and θk := col{y1, y2, . . . , yk}.
Theorem 5.14. Without packet losses and with zk given by (5.60), we have E[xk|ζk] =
E[xk|θk].

Proof. By (5.60) the relationship between ζk and θk is ζk = V θk with

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 · · · · · · · · · · · · 0

α2,1I I
. . .

. . .
. . .

. . .
. . .

...

α3,1I α3,2I I
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
0 0 0 · · · αk,1I · · · αk,m−1I I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since V is nonsingular, the result follows from [20, p. 95].

However, a drawback of (5.63) lies in its increased complexity over its uncoded counterpart
since the dimension of the estimated state uk is n + q(m − 1), whereas that of xk is n. To
avoid this extra numerical effort, a suboptimal scheme to directly estimate xk is given in [1].
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5.4.3 Mean Square Stability

We study the stability of the MMSE estimator (5.63) when the coded output is transmitted to
the estimator over a lossy channel under the following trivial assumption.

Assumption 5.6. A is unstable and invertible, and (A,C) is observable.

To this end, we introduce the notion of strong observability and then show that the coded out-
put possesses a strong observability, which allows us to work out the stability condition.

Consider the discrete-time system

xk+1 = Axk + wk,

yk = Ckxk + vk,
(5.64)

which is the same as (5.1) except that Ck is allowed to be time varying, but m = n −
rank(Ck) + 1 is constant.

Definition 5.3. Given any τ ≥ m, system (5.64), or the pair (A, {Ck : k ∈ N}), is said to be
strongly observable with period τ if for any 1 ≤ i1 < i2 < . . . < im−1 < τ and k ≥ τ − 1, the
regression matrix

O(k, k − i1, . . . , k − im−1) = col{Ck,Ck−i1A
−i1, . . . ,Ck−im−1A

−im−1} (5.65)

has full column rank.

Remark 5.5. If a pair (A,C) is observable, then C is of full column rank. This implies that
the pair (A,C) is strongly observable with period τ = m. However, a pair (A,C) being ob-
servable does not imply that (A,C) is strongly observable with period τ > m. An example
is

A =
[

2 0
2 −2

]
, C = [1 1], (5.66)

for which the observability index m = 2, and (A,C) is observable, but (A,C) is not strongly
observable with period τ > 2 because col{C,CA−2} = col{C,0.25C} is not of full column
rank.

Denote C = col{CAm−1,CAm−2, . . . ,C} and Ck = (αT
k ⊗ Iq)C. We show that the periodic

coded output makes an observable system strongly observable.

Lemma 5.6. Consider system (5.1) under Assumption 5.6 and the coding scheme (5.60).
If the coding vectors {αk : k ∈ N} are periodic with period τ ≥ m (i.e., αk = αk+τ ) and
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α0, α1, . . . , ατ−1 are randomly drawn from an absolutely continuous probability distribution,1

then, with probability one,2 (A, {Ck : k ∈ N}) is strongly observable with period τ .

Proof. For each k ∈ N, define αkm = 1, so that we can write αT
k = [αk1, · · · , αkm]. Let 1 ≤

i1 < · · · < im−1 < τ and O �O(k, k − i1, · · · , k − im−1). Let also A = MJM−1 be the Jordan
decomposition of A with J = J1 ⊕ · · · ⊕ JB , Jb, b = 1, · · · ,B being the Jordan blocks in J ,
and jb being the eigenvalue associated with Jb. Then,

Ck =
m∑

l=1

αklCAm−l = CM

(
m∑

l=1

αklJ
m−l

)
M−1

= CM

(
B⊕

b=1

Uk−i1,b

)
M−1 (5.67)

with Uk,b = ∑m
l=1 αk−i1,lJ

m−l
b . Now, for each b ∈ {1, · · · ,B}, all the entries on the main di-

agonal of Uk,b have the same value, which we denote by uk,b. Hence, Uk,b is invertible if and
only if uk,b �= 0. We have

uk,b =
m∑

l=1

αklj
m−l
b . (5.68)

Since αkl , k ∈ {1, · · · , τ }, l ∈ {1, · · · ,m}, are randomly drawn from absolutely continuous
probability distribution, it follows that the measure of event that (5.68) happens is zero. This
means that, with probability one, uk,b �= 0 for all k ∈ N and b ∈ {1, · · · ,B}, and therefore Uk,b

is invertible. Hence, so is
⊕B

b=1 Uk−i1,b, and in view of (5.67), rank (Ck) = rank(C).

The rest of the argument then follows by induction. For 0 ≤ j < m − 1 with i0 = 0, let
Oj = col

{
Ck,Ck−i1A

−i1, · · · ,Ck−ij A
−ij

}
. Since (A,C) is observable and A is invertible,

it follows that rank(CA−ij ) = n for all j = 0, · · · ,m − 1. Hence, if rank(Oj ) < n, then there
exists at least one row of CA−ij+1 that is not included in the linear span rowspan

{
Oj

}
of the

rows of Oj . Again, since αk−ij+1 is randomly chosen, with probability one,

rowspan
{
Ck−ij+1A

−ij+1
}

= rowspan
{(

αT
k−ij+1

⊗ Iq

)
CA−ij+1

}
� rowspan

{
Oj

}
.

Hence it follows that rank(Oj+1) > rank(Oj ) with probability one. This in turn implies n ≥
rank(O) ≥ rank(C) + m − 1 = n and completes the proof.

1 Loosely speaking, this means that the probability density function contains no impulses.
2 The measure of nonstrongly observable cases set is zero resulting from this distribution function.
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We are ready to present one main result of this subsection.

Theorem 5.15. Consider system (5.1) under Assumption 5.6 and the coding scheme (5.60).
For any τ ≥ m, suppose that the coding vectors {αk : k ∈ N} are taken to be periodic with
period τ and that α0, α1, . . . , ατ−1 are randomly drawn from an absolutely continuous proba-
bility distribution. Then, the MMSE estimator (5.63) is stable with probability one if

|ρ(A)|2(1 − p)(P (τ,m))1/τ < 1, (5.69)

where P(τ,m) = ∑m−1
i=0

(
τ
i

)
(

p
1−p

)i ≥ 1, and
(
τ
i

)
denotes the number of combinations for

choosing i from τ .

To prove the Theorem 5.15, we introduce the following lemma.

Lemma 5.7. Suppose that {αT
k : k ∈ N} is periodic and (A, {αT

k C : k ∈ N}) is strongly ob-
servable with period τ . Under Assumption 5.6, if there are m packets received in time period
[(j − 1)τ, jτ ), j ≥ 1, then there exists a positive value β > 0 (independent of P0) such that
Pjτ |jτ < βI .

Proof. Suppose that ztk , ztk−1, . . . , ztk−m+1 are received in time period [(j − 1)τ, jτ ), j ≥ 1,
that is, jτ > tk > tk−1 > . . . > tk−m+1 ≥ (j − 1)τ . For ease of writing, here we write
O(tk, tk−1, . . . , tk−m+1) as O(k). Since (A, {αT

k C : k ∈ N}) is strongly observable with
period τ , O(k) is of full column rank. We can obtain a direct estimator of xtk by using
ztk , ztk−1, . . . , ztk−m+1 :

x̆tk |tk = O†(k)col{ztk , ztk−1, . . . , ztk−m+1}, (5.70)

where the superscript † denotes the Moore–Penrose pseudo-inverse [8]. Letting zk =
Ckxk + nk , since xt−i = A−ixt − ∑i

j=1 A−jwt+j−i−1, Ck = (αT
k ⊗ Iq)C and nk =∑m

i=1 αki(vk−i+1 −∑m−1
j=i CA−m+jwk−j+i−1), we rewrite the estimator in (5.70) as

x̆tk |tk = O†(k)col
{
Ctkxtk + ntk ,Ctk−1A

−tk+tk−1 xtk − Ctk−1

tk−tk−1∑
j=1

A−tk+tk−1+j−1wtk−j

+ ntk−1, . . . ,Ctk−m+1A
−tk+tk−m+1xtk

+ Ctk−m+1

tk−tk−m+1∑
j=1

A−tk+tk−m+1+j−1wtk−j + ntk−m+1

}

= O†(k)O(k)xtk + O†(k)ñtk , (5.71)

where ñtk is a linear combination of the noises from time tk to tk−m+1.
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Denote the estimation error covariance of x̆tk |tk by P̆tk |tk . It follows that

P̆tk |tk = O†(k)E[ñtk ñ
T
tk
](O†(k))T . (5.72)

Since tk − tk−m+1 is finite, there exists a positive value c > 0 such that E[ñtk ñ
T
tk
] < cI , which

results in

P̆tk |tk < c(OT (k)O(k))†. (5.73)

Since O(k) is of full column rank, we have OT (k)O(k) > 0. Since {αT
k : k ∈ N} is periodic

and tk − tk−m+1 < τ , there exist a positive value κ > 0 such that

OT (k)O(k) > κI. (5.74)

By substituting (5.74) into (5.73), P̆tk |tk < cκ−1I . Since the estimation error covariance of
the MMSE estimator is lower than that of P̆tk |tk , we have Ptk |tk < cκ−1I . Based on the upper
bounded divergence speed of the estimation error covariance (i.e., |λmax|2), there exists ε > 1
such that Pjτ |jτ ≤ ε|λmax|2(jτ−tk)Ptk |tk . Since jτ − tk < τ , the proof is completed by letting
β = ε|λmax|2τ cκ−1.

Proof of Theorem 5.15. Firstly, we prove that supk∈N E[Pkτ |kτ ] < ∞. For any j ∈{0,1, . . . , k},
denote the event that there are less than m packets received in each of [(k − 1)τ, kτ ), [(k −
2)τ, (k − 1)τ ), . . . , [jτ, (j + 1)τ ) but no less than m packets received in [(j − 1)τ, jτ )

by �m
j,k . Let its probability be pm

j,k . In particular, �m
0,k means that there are less than m pack-

ets received in each of [(k − 1)τ, kτ ), [(k − 2)τ, (k − 1)τ ), . . . , [0, τ ). Based on Lemma 5.6,
with probability one, (A,αT

k C : k ∈ N) is strongly observable with period τ , which satisfies
the conditions in Lemma 5.7, and leads to E[Pjτ |jτ |�m

j,k] < βI .

Then there exists ε > 1 such that

E[Pkτ |kτ ] =
k∑

j=0

E[Pkτ |kτ |�m
j,k]pm

j,k

< ε

k∑
j=0

|λmax|2(k−j−1)τE[Pjτ |jτ |�m
j,k]pm

j,k

< εβ|λmax|−2τ
k∑

j=0

|λmax|2(k−j)τpm
j,kI. (5.75)

Note that the probability of �m
j,k is

pm
j,k = (

m−1∑
i=0

(
τ

i

)
pi(1 − p)τ−i )k−j (1 −

m−1∑
i=0

(
τ

i

)
pi(1 − p)τ−i )
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= [(1 − p)τP (τ,m)]k−j (1 − (1 − p)τP (τ,m)). (5.76)

Substituting this into (5.75) yields that

E[Pkτ |kτ ] < εβ|λmax|−2τ (1−(1−p)τP (τ,m))

k∑
j=0

(|λmax|2(1−p)P (τ,m)1/τ )(k−j)τ . (5.77)

From (5.77) it is clear that |λmax|2(1 − p)P (τ,m)1/τ < 1 is a sufficient condition for
supk∈NE[Pkτ |kτ ] < ∞. Since τ is finite, the proof is completed.

Remark 5.6. Notice that (P (τ,m))1/τ → 1 as τ → ∞. This implies that the sufficient condi-
tion (5.69) becomes necessary as τ → ∞.

We use example (5.66) to illustrate the advantage of coding on stability.

Example 5.1. In view of [9], a necessary and sufficient condition for the stability of IKF (i.e.,
without coding) of the second-order system (5.66) is given by

|ρ(A)|4(1 − p) < 1. (5.78)

Clearly, it follows from Theorem 5.15 that we can always choose a period τ such that the sta-
bility condition resulting from coding is strictly weaker than (5.78).

5.5 Robust State Estimation With Random Data Droppings

5.5.1 System With Parametric Errors

In this section, we consider the following linear stochastic systems with parametric errors:
{

xk+1 = A(εk)xk + B(εk)wk,

yk = C(εk)xk + vk,
(5.79)

where εk characterizes the parametric errors of the plant state-space model. Here A(εk) and
C(εk) stand respectively for the plant state transition and output matrices. Usually, they are
given as A(p0, εk) and C(p0, εk) with p0 representing the nominal value of a plant param-
eter vector. As this value is usually known in robust state estimation, its existence in system
matrices is not explicitly revealed in the adopted model. This is only for avoiding long and
complicated mathematical expressions.

Hence, when εk = 0, these matrices are in fact the plant nominal system matrices. For ease
of notation, let A := A(0), B := B(0), and C := C(0). According to the adopted hypotheses,
all these matrices are known. On the other hand, the vector εk is permitted to be time varying
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and generally unknown, which enables system (5.79) to describe a large class of plants and
include many widely adopted models, such as those based on linear fractional transformations
and so on. In model-based robust system design or state estimation, some upper magnitude
bounds or stochastic properties are usually assumed available for this parametric error vector.
This kind of information is further important in determining the design parameter.

5.5.2 Robust State Estimator

The main objectives of this section are to derive an estimate for the plant state vector xk using
the received plant output {yi}ki=0 and information about the corresponding {γi}ki=0. When the
linear system has a precise state space model, a widely adopted state estimation procedure is
the Kalman filter. This estimation procedure, however, may sometimes not work very satis-
factorily due to modeling errors. To overcome this disadvantage, various modifications have
been suggested, such as in [21,22,28,31] and references therein. Among these modifications,
one method is based on sensitivity penalization, in which a cost function is constructed on the
basis of least squares/likelihood maximization interpretations for the Kalman filter and a pe-
nalization on the sensitivity of its innovation process to modeling errors. We further discuss it
in detail. To this end, let x̂k|l denote the optimal estimate of xk based on observations {yi}li=0
and Pk|l represent the pseudo-covariance matrix (PCM) of the corresponding state estimation
errors. In view of [22,31], the robust estimate is given by

x̂k+1|k+1 = Ax̂k|k+1 + Bŵk|k+1, (5.80)[
x̂k|k+1

ŵk|k+1

]
= arg min

xk,wk

1

2

{
μk

[
‖xk − x̂k|k‖2

P −1
k|k

+ ‖wk‖2
Q−1

]

+γk+1

[
μk‖ek(0,0)‖2

R−1 + (1 − μk)

(∥∥∥∥∂ek(εk, εk+1)

∂εk

∥∥∥∥

+
∥∥∥∥∂ek(εk, εk+1)

∂εk+1

∥∥∥∥
)

εk=εk+1=0

]}
, (5.81)

where the weighted norm ‖x‖Q is defined as ‖x‖Q = √
x′Qx for any positive definition ma-

trix Q, and the prediction error of the measurement is defined as

ek(εk, εk+1) = yk+1 − C(εk+1)[A(εk)xk + B(εk)wk].
The scalar term μk is a design parameter reflecting a trade-off between nominal estimation
accuracy and penalization on the first-order approximation of deviations of the innovation
process, and it renders its optimizer become less sensitive to the system modeling errors.
However, it is still not clear whether or not these minimizers share the global optimality prop-
erty of the Kalman filter.
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When there do not exist parametric uncertainties in the plant model, the matrix Pk|k is in fact
the covariance matrix of the estimation errors of the Kalman filter. This makes it possible to
explain x̂k|k+1 and ŵk|k+1 respectively as the yi |k+1

i=0 -based MLEs of xk and wk . However,
when there exist modeling errors in system matrices, physical interpretations of the ma-
trix Pk|k need further clarifications. To avoid possible misunderstandings, it is called PCM
in this chapter.

Here the same approach as in [22] is adopted to deal with state estimation for system (5.1)
in which both parametric uncertainties and random measurement droppings exist. It is worth
pointing out that although this extension has been attempted, the success is rather limited.
One of the major restrictions is its implicit ergodic requirement on the received plant output
measurements. Another is that information about the realization of the random process {γk}
has not been efficiently utilized. These disadvantages have been successfully overcome in this
chapter through introducing another cost function.

By [29] the robust estimate and the corresponding PCM under packet droppings are given
further.

Theorem 5.16. Let λk = (1 − μk)/μk with μk given in (5.81). Assume that both Pk|k and Q

are nonsingular. Then, the robust estimate of the state system (5.79) based on yi |k+1
i=0 is recur-

sively updated as

x̂k+1|k+1 =
{

Ax̂k|k if γk+1 = 0,

Â + Pk+1|k+1C
T R−1(yk+1 − CÂx̂k|k) if γk+1 = 1.

(5.82)

Moreover, the associated PCM Pk|k is updated as

Pk+1|k+1 =

⎧⎪⎨
⎪⎩

APk|kAT + BQBT if γk+1 = 0,{[
AP̂k|kAT + B̂Q̂kB̂

T
]−1 + CT R−1C

}−1

if γk+1 = 1,
(5.83)

where

P̂k|k =
(
P −1

k|k + λkS
T
k Sk

)−1
,

Q̂k = [Q−1 + λkT
T
k (I + λkSkPk|kST

k )−1Tk]−1,

B̂k = B − λkAP̂k|kST
k Tk,

Â = [A − λkB̂kQ̂kT
T
k Sk](I − λkP̂k|kST

k Sk),

Sk = C(εk+1)
∂A(εk)

∂εk

+ ∂C(εk+1)

∂εk+1
A(εk)

∣∣
εk=εk+1=0 ,

Tk = C(εk+1)
∂B(εk)

∂εk

+ ∂C(εk+1)

∂εk+1
B(εk)

∣∣
εk=εk+1=0 .
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Note that when γk+1 = 0, the above estimator is just a one-step state predictor using nominal
system matrices. On the other hand, when γk+1 = 1, the above estimator still has the same
structure as that of the Kalman filter, except that the nominal system matrices should be ad-
justed. The adjustment method of these matrices is completely the same as that of the robust
state estimator (RSE) developed in [31] and is no longer required if the design parameter μk

is selected to be 1. This means that the above recursive estimation procedure is consistent with
both RSE of [31] and IKF.

5.5.3 Convergence of the Robust State Estimator

In this subsection, the Riemannian distance for positive definite matrices defined in Chapter 2,
which has already been utilized in analyzing asymptotic properties of IKF and Kalman filter
with random coefficients [23,24], is adopted in the analysis of the robust state estimator given
in the previous subsection.

Recall that, for two arbitrary positive definite matrices P ∈ Rn×n and Q ∈ Rn×n, the Rieman-
nian distance of Chapter 2 between them is defined as

δ(P,Q) =
(∑

i

log2(λi)

)1/2

,

where λi(PQ−1) stands for the ith eigenvalue of the matrix PQ−1. Obviously, this distance
is invariant under a conjugacy transformation and the operation of matrix inversions, which is
quite attractive in many situations of great engineering significance. It has also been proven
that when equipped with this distance, the space of positive definite matrices is complete. This
metric has been recognized to be very useful for many years in studying asymptotic prop-
erties of Kalman filtering with random system matrices [23]. Its effectiveness in studying
asymptotic properties of recursive state estimations with random data dropping has also been
discovered in [24] and [11].

The power of this Riemannian distance in theoretical studies for recursive computation has
been enlarged by the so-called homographic transformation, whose definition is also given
in Chapter 2. More precisely, for matrices P and � with appropriate dimensions, the homo-
graphic transformation Hm(�,P ) is defined as

Hm(�,P ) = [�11P + �12][�21P + �22]−1.

Here, the matrix � is divided as � =
[
�ij |2i,j=1

]
with its submatrices having compatible di-

mensions, whereas the matrix �21P + �22 is assumed to be square and of full rank. One of
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the most attractive properties of this transformation is its simplicity in representing cascade
connections, which ensures that, for any two compatible matrices �1 and �2, it follows that

Hm(�2,Hm(�1,P )) = Hm(�2�1,P ).

Obviously, this relation is quite appreciative in analyzing properties of composite functions,
which is often encountered in recursive estimations. As a matter of fact, this property has
played important roles in analyzing the asymptotic properties of the covariance matrix of the
Kalman filter and of the pseudo-covariance matrix Pk|k and estimation errors of the aforemen-
tioned robust state estimator [11,23]. On the other hand, this property can be obtained through
straightforward algebraic manipulations [11,25].

Particularly, define

�k+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
A BQB ′A−T

0 A−T

]
if γk+1 = 0,

[
Ãk Q̃kB

′Ã−T
k

C̃′
k+1R̃

−1
k C̃k+1Ãk [I + C̃′

k+1R̃
−1
k C̃k+1BQ̃kB

′]Ã−T
k

]
if γk+1 = 1,

where

Q̌k = (Q + λkT
′
kTk)

−1,

Ǎk = A − λkBQ̌T ′
kSk, B̃k = Ǎ−1

k B,

Ãk = Ǎk + BQ̌kB̃
′
kS̃

′
kS̃k,

Q̃k = Q̌k + Q̌kB̃
′
kS̃

′
kS̃kB̃kQ̌k, S̃k = √

λk[I + λkTkQT ′
k]−1/2Sk,

C̃k+1 =
[
S̃kǍ

−1
k

C

]
, R̃k+1 =

[
I + S̃kB̃kQ̌kB̃

′
kS̃

′
k 0

0 R

]
.

It has been proven in [29] that the pseudo-covariance matrix Pk+1|k+1 of the robust state esti-
mator given by Eq. (5.83) can be rewritten in a more concise form as

Pk+1|k+1 = Hm

(
�k+1,Pk|k

)
.

On the basis of this expression and the cascade property of the homographic transformation,
the next relation immediately follows [26,29]:

Pk|k = Hm

(
1∏

t=k

�t ,P0|0

)
. (5.84)
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This equality provides a quite compact expression of the relation between the pseudo-
covariance matrix of the robust state estimator at the time instant k, that is, Pk|k and its initial
value P0|0, which significantly reduces mathematical difficulties in analyzing its convergence
properties, compared with the expression of Eq. (5.83) [29].

Combining the preceding two results, the following results on the convergence of the Pk|k can
be obtained.

Theorem 5.17. ([29]) Let A[1] = Ãk , G[1] = BQ̃
1/2
k , H [1] = R̃

−1/2
k+1 C̃k+1, and A[2] = A,

G[2] = BQ1/2. Assume that A, Ǎk , and Ãk are invertible and that there exist two positive
integers m1 and m2 such that the matrix pair (A[1](A[2])m1,H [1]) is observable and one of
the following three conditions are satisfied:

• the matrix pair (A[1](A[2])m2,G[1]) is controllable;
• the matrix pair ((A[2])m2A[1],G[2]) is controllable;
• the matrix pair (A[2],G[2]) is controllable.

Then, the sequence of matrices Pk|k converges to a stationary distribution with probability
one, which is independent of its initial value P0|0.

The proof of the theorem heavily relies on exploring the decrease of Pk|k measured by the
Riemannian distance and can be found in [29].

5.6 Asymptotic Properties of State Estimations With Random Data
Dropping

In this section, we investigate the convergence rate and stationary distribution approximation
in a unified framework for both the covariance matrix of the Kalman filter and the pseudo-
covariance matrix of the robust recursive state estimator under the situation of random data
loss. It is proven that when the measurement dropping process is described by a Markov chain
and the associated plant is both controllable and observable if the dropping probability is less
than 1, these two matrices converge exponentially to a stationary distribution independent of
their initial values. In addition, if these covariance matrix and pseudo-covariance matrix are
initialized with the stabilizing solution of the associated algebraic Riccati equation, then both
are shown to converge to an ergodic process. Furthermore, two approximations are derived for
their stationary probability distributions and to a bound of approximation errors. Compared
with the delta function suggested in [10], a series of delta functions is shown to give a more
accurate approximation, and replacement of the update gain matrix by a constant one usually
deteriorates the steady estimation accuracy of these state estimators.
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5.6.1 Unified Problem Description and Preliminaries

Investigations in the previous sections reveal that even when there are random data droppings
in a networked system, the covariance matrix of the Kalman filter and the pseudo-covariance
matrix of the sensitivity penalization-based robust state estimator still have a similar recursion
formula. This suggests a unified study of their properties. Attention of this section is focused
on their convergence characteristics that are important from both theoretical and application
points of view [27–29]. To achieve this objective, let α and β be two constants belonging to
(0, 1), let A[0] and A[1] be two prescribed real square matrices with their dimensions equal
to each other, and let G[0], G[1], and H [1] be other three known real matrices with compatible
dimensions. Consider the following random matrix recursion:

Pk+1|k+1 =
⎧⎨
⎩

A[0]Pk|kA[0]T + G[0]G[0]T , γk+1 = 0,{(
A[1]Pk|kA[1]T + G[1]G[1]T )−1 + H [1]T H [1]

}−1
, γk+1 = 1.

(5.85)

Assume that this recursion starts from an initial positive definite matrix P0|0. Moreover, as-
sume that γk|∞k=0 is a Markov chain described by

[
Pr (γk = 1)

Pr (γk = 0)

]
=

[
α 1 − β

1 − α β

][
Pr (γk−1 = 1)

Pr (γk−1 = 0)

]
. (5.86)

Here γk = 1 means that the plant output measurement at the kth time instant has been success-
fully transmitted, whereas γk = 0 represents a data transmission failure of the communication
channel.

If A[0] = A[1] and G[0] = G[1], then when the matrices A[1], G[1], and H [1] are respectively
the plant state transition matrix, input matrix, and output matrix, recursion (5.85) becomes
that of the covariance matrix of estimation errors of the Kalman filter for a linear time-
invariant plant with intermittent observations; that is, the matrix Pk|k is in fact its CMEE. This
recursion is originally derived in [3], and its properties are discussed extensively, for example,
in [10,13,24,30].

When A[0] �= A[1] and/or G[0] �= G[1], the matrices A[0] and G[0] can be used to represent
nominal values of the plant state transition matrix and input matrix, whereas A[1], G[1], and
H [1] can be used to represent modifications of these matrices and the plant nominal output
matrix. In these modifications, derivatives of plant parameters to modeling errors can be ex-
plicitly taken into account, as done in [29,31]. When these values are adopted, the aforemen-
tioned recursion becomes that of the pseudo-covariance matrix of the robust state estimator
developed in [29] under the restrictions that both the plant nominal model and the derivatives
of the plant parameters to modeling errors are time invariant. In other words, the matrix Pk|k
is now in fact the pseudo-covariance matrix of this robust state estimator.
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In either of these two situations, as the matrices A[∗] and G[∗] with ∗ = 0,1 and H [1] are com-
pletely determined by plant nominal model parameters, all of them are known. Note that in
these two state estimators, the matrix Pk|k directly connects both their estimation accuracy
and their update gain matrix. Its asymptotic characteristics are very important in understand-
ing their properties [10,27–29].

In this section, the convergence rate of the random matrix recursion (5.85) is studied, as well
as approximations to its stationary distribution. In this investigation, the Riemannian distance
defined in Chapter 2 for positive definite matrices is once again utilized together with the ho-
mographic transformation defined in that chapter. In addition, some important properties of
Hamiltonian matrices are also utilized, which are listed in Chapter 2.

In this analysis of the asymptotic properties of the aforementioned random matrix recursion,
the following results on Markov processes are also utilized.

Lemma 5.8. [32,33] Let xi |∞i=0 be a positive recurrent irreducible Markov chain defined on
a probability space (�,F,P ) with a countable state space I , and let f (·) be a real-valued
function on I . Denote the time of the αth entrance of the Markov chain into its j th state

by τ
[j ]
α , and

∑τ
[j ]
α+1−1

k=τ
[j ]
α

f (xk) by f
[j ]
α . If both E

(
|f [j ]

α |3
)

and E
(
|τ [j ]

α+1 − τ
[j ]
α |3

)
are finite and

σj =
√

Var{f [j ]
α − s(f )(τ

[j ]
α+1 − τ

[j ]
α )} is greater than 0, then

sup
t∈R

∣∣∣∣∣Pr

{
1

σj
√

nπj

(
n∑

k=0

f (xk) − (n + 1)s(f )

)
< t

}
− φ(t)

∣∣∣∣∣ = O

((
ln(n)

n

)1/4
)

, (5.87)

where s(f ) = ∑
i∈I

f (i)
μi

with μi the mathematical expectation of the recurrence time of the

ith state, and πi = μ−1
i .

Lemma 5.9. [34] Assume that a Markov process xi |∞i=0 has an unique stationary distribu-
tion μ. Then this process is ergodic when x0 is any element of the support of the distribu-
tion μ.

5.6.2 Asymptotic Properties of the Random Matrix Recursion

To analyze asymptotic properties of the aforementioned random process Pk|k , in this section,
we adopt the following three conditions.

• Condition I: Both matrices A[0] and A[1] are invertible.
• Condition II: (A[1], G[1]) is controllable, and (A[1], H [1]) is observable.
• Condition III: 0 < α, β < 1.
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Note that the measure of singular matrices is equal to zero [35]. It can therefore be declared
that Condition I is usually satisfied. In addition, even if it is not satisfied, a small perturbation
on the elements of the matrices A[0] and/or A[1] can make it satisfied. As the results of this
section do not explicitly depend on either the inverse of A[0] or that of A[1], validity of the
corresponding conclusions can be proven through taking their limit with reducing the pertur-
bation magnitude to zero. On the other hand, recall that observability is necessary for plant
state reconstruction from its input/output data, and controllability is necessary for locating
plant poles into a desirable area that is important in stabilizing a state estimator [27]. It ap-
pears safe to claim that Condition II is not very restrictive for guaranteeing the convergence of
the random matrix recursion of Eq. (5.85). Moreover, when α = 1 and β = 0, this recursion
reduces to that of state estimation without data loss, whereas α = 0 and β = 1 mean that plant
output measurement is never sent to the state estimator. The former has been well studied in
traditional Kalman filtering and robust state estimations, whereas the latter has very limited
engineering significance. If α = β = 1, depending on the initial value of the Markov chain, the
recursion of Eq. (5.85) becomes one of the aforementioned two scenarios.

When Condition I is satisfied, define the matrices M [0] and M [1] as

M [0] =
[

A[0] G[0]G[0]T A[0]−T

0
(
A[0])−T

]
,

M [1] =
[

A[1] G[1]G[1]T (
A[1])−T

H [1]T H [1]A[1] [I + H [1]T H [1]G[1]G[1]T ] (A[1])−T

]
.

Then, direct algebraic manipulations show that Pk+1|k+1 of Eq. (5.85) can be reexpressed as

Pk+1|k+1 =
{

Hm(M [0], Pk|k), γk+1 = 0,

Hm(M [1], Pk|k), γk+1 = 1.
(5.88)

Recall that a matrix � is Hamiltonian if �T J� = J , where J = [0 I ;−I 0]. By the defi-
nitions of the matrices M [0] and M [1] direct algebraic manipulations show that both they are
Hamiltonian. It can therefore be declared from Lemma 2.5 that for any PDM X with a com-
patible dimension, both Hm(M [0],X) and Hm(M [1],X) are well defined and positive definite.
Moreover, a repetitive utilization of Lemma 2.6 directly shows that if P0|0 is positive definite,
then for any positive integer j smaller than k,

Pk|k = Hm

(
M [γk], Hm

(
M [γk−1], · · · ,Hm

(
M [γj+1],Pj |j

)
· · ·

))

= Hm

⎛
⎝j+1∏

i=k

M [γi ], Pj |j

⎞
⎠ . (5.89)
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When j = 0, this equation reveals a relation between Pk|k and its initial value P0|0. Further-
more, define α1h and α0h as

α0h = sup
X,Y>0, X �=Y

δ
(
Hm(M [0],X), Hm(M [0], Y )

)
δ(X,Y )

,

α1h = sup
X,Y>0, X �=Y

δ
(
Hm(M [1],X), Hm(M [1], Y )

)
δ(X,Y )

.

It has been proved in [23,29] that α0h ≤ 1 and α1h < 1 whenever Conditions I and II are satis-
fied.3

Based on these properties and Lemma 5.8, we obtain the following theorem. Its proof is given
in the appendix.

Theorem 5.18. For a prescribed binary sequence γi |ki=1 with γi ∈ {0, 1}, define the functions
�k(·) and ρk(·, ·) on the set of PDMs as �k(X) = Hm

(
M [γk], Hm

(
M [γk−1], · · · , Hm

(
M [γ1],

X) · · · )) and ρk(X,Y ) = δ(�k(X),�k(Y )). Assume that Conditions I–III are satisfied. Then,
for the random process γi |∞i=1 and arbitrary PDMs X and Y ,

lim
k→∞ρk(X,Y ) = 0 in probability. (5.90)

Moreover, the convergence rate is O
(
e−√

k
)

.

For a prescribed PDM X and a particular realization γk|∞k=1 of the random measurement loss
process, if limk→∞ �k(X) exists, denote it by P(γk|∞k=1). Using this notation, define the set

P =
{

P(γk|∞k=1)

∣∣∣∣∣P(γk|∞k=1) = lim
n→∞ Hm

(
1∏

i=n

M [γi ], X

)
, X > 0, γi ∈ {0, 1}

}
. (5.91)

Then, Theorem 5.18 makes it clear that when Conditions I–III are satisfied, this matrix set is
not empty and is independent of a particular PDM X. On the other hand, from its definition
and Eq. (5.89), it is obvious that this matrix set consists of all the possible final values of the
random process Pk|k . Moreover, as its element P(γk|∞k=1) can be associated with the number∑∞

i=1 γi2i−1, the set P is apparently countable.

On the other hand, when Conditions I–III are satisfied, by Proposition 6 of [24] and Theo-
rem 5 of [29] we can claim that the random process Pk|k converges to a stationary distribution.
Theorem 5.18 makes it clear that this stationary distribution is unique and the convergence

3 More specifically, simultaneous satisfaction of these two conditions implies the existence of a finite positive

integer m such that the mapping Hm(M[1]m,X) is strictly contractive.
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rate is exponential. Moreover, the set P defined in Eq. (5.91) includes the support of this sta-
tionary distribution as a subset.

Under Condition II, a well-established conclusion in system theory is that the algebraic

Riccati equation P = [
(A[1]PA[1]T + G[1]G[1]T )−1 + H [1]T H [1]]−1

has a unique stabi-
lizing solution. We denote it by P � in the rest of this section. Moreover, a widely known
result in Kalman filtering is that, under this condition, the Riccati recursion Pk+1|k+1 =[
(A[1]Pk|kA[1]T + G[1]G[1]T )−1 + H [1]T H [1]]−1

converges to P � with the increment of the
temporal variable k [27,28], which is in accordance with recursion (5.85) with α = 1 and
β = 0, that is, there is no data dropping.

On the basis of these results, from Lemma 5.9 we establish the ergodicity of the random pro-
cess Pk|k .

Corollary 5.1. In addition to Conditions I–III, if Pk|k starts from P �, then, this random pro-
cess is also ergodic.

Proof. When Conditions I–III are satisfied, the random process Pk|k exponentially converges
to a unique stationary distribution. Assume that γk ≡ 1. Then, for an arbitrary PDM X,

Pk|k = Hm

(
M [1]k, X

)
, k = 1,2, · · · . (5.92)

Under Condition II, from the convergence of the Kalman filter [27,28] we have that
limk→∞ Hm

(
M [1]k,X

)
exists and is equal to P �. Moreover, from the definition of the ma-

trix P � it is obvious that Hm

(
M [1],P �

) = P �. Therefore, P � belongs to the support of the
stationary distribution of the random process Pk|k .

We can therefore declare from Lemma 5.9 that the random process Pk|k initialized with
P0|0 = P � is ergodic. This completes the proof.

When both α and β belong to the open set (0, 1), it can be directly proven that the Markov
chain γk|∞k=1 has a stationary distribution. Denote a random variable with this stationary dis-
tribution by γ∞. Then, the probability that γ∞ takes the value of 1 or 0 does not depend on
the temporal variable k, which can be respectively expressed as Pr (γ∞ = 1) = 1−β

2−α−β
and

Pr (γ∞ = 0) = 1−α
2−α−β

.

From Corollary 5.1 it is clear that the stationary distribution of the random process Pk|k can
be well approximated by its time series samples. To clarify accuracy of this approximation,
some properties of a Markov process given in Lemma 5.8 are utilized.

For a binary series γi |−∞
i=0 with γi ∈ {0, 1}, denote

∑−∞
i=0 γi2i by n and define P [n] as

P [n] = lim
k→∞ Hm

(
M [γ0]M [γ−1] · · ·M [γ−k], P �

)
,



162 Chapter 5

provided that the associated limit exists. Moreover, for a prescribed positive number ε, define
the set P [n](ε) of PDMs as

P [n](ε) =
{

P

∣∣∣ δ(P [n], P ) ≤ ε, P ≥ 0
}

. (5.93)

Then, by Theorem 5.18, for any n1 and n2 that can be expressed as
∑−∞

i=0 γi2i and the
corresponding P [n1] and P [n2] exist, there is at least one finite length binary sequence
γ

[n1,n2]
i |N(n1,n2)

i=1 with γ
[n1,n2]
i ∈ {0, 1} such that

Hm

⎛
⎝ 1∏

i=N(n1,n2)

M [γ [n1,n2]
i ],P [n1]

⎞
⎠ ∈ P [n2](ε) in probability. (5.94)

Note that when γ̄i = γi−k , we have that M [γ̄i ] = M [γi−k], i = 0,1, · · · , k. This means that

Hm

(
M [γk]M [γk−1] · · ·M [γ1], P �

)
= Hm

(
M [γ̄0]M [γ̄−1] · · ·M [γ̄−k], P �

)
, (5.95)

and this relation is valid for all positive integers (including +∞). In addition, it can be de-
clared from Theorem 5.18 that, under Conditions I–III, limk→∞ Hm

(
M [γk]M [γk−1] · · ·M [γ1],

P �) exists in probability. Therefore, the matrix set P defined in Eq. (5.91) can also be ex-
pressed as

P =
{

P [n]
∣∣∣∣∣ P [n] = lim

k→−∞ Hm

(
k∏

i=0

M [γi ], P �

)
, n =

−∞∑
i=0

γi2
i , γi ∈ {0, 1}

}
. (5.96)

On the other hand, Theorem 5.18 declares that when Conditions I–III are satisfied,
limk→∞ ρk(X,Y ) = 0 in probability for arbitrary PDMs X and Y . It can therefore be declared
that, for arbitrary P [p] and P [q] belonging to the set P , there exists a binary series γ

[pq]
j |∞j=1

with γ
[pq]
j ∈ { 0, 1 } such that P [p] = limk→∞ Hm

(
M [γ [pq]

k ]M [γ [pq]
k−1 ] · · ·M [γ [pq]

1 ], P [q]
)

in

probability. In addition, it has been mentioned before that, for an arbitrary positive ε, only
finitely many steps are required in probability to transform an element of P [p](ε) to an ele-
ment of the set P [q](ε) by recursions (5.85). Note that P [p](ε) degenerates into {P [p]} as ε

decreases to 0. This means that the Markov chain Pk|k is approximately irreducible and posi-
tive recurrent.

Based on these observations, the following results are obtained, which give an approximation
of the stationary distribution of the random process Pk|k and its approximation accuracy. Their
proof is deferred to the appendix of this chapter.
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Theorem 5.19. Let F(x) denote the distribution function of δ(P∞|∞, P �), let Pk|k be the
random matrix recursion of Eq. (5.85) with its initial value P0|0 = P �, and let γk|∞k=0 be the
corresponding Markov chain at its stationary state. For an arbitrary positive number d , define
the set Bd = { P | δ(P, P �) ≤ d }. Then, when Conditions I–III are satisfied,

lim
n→∞

1

n + 1

n∑
k=0

IBd
(Pk|k) = F(d) in probability, (5.97)

and the convergence rate is O

((
ln(n)

n

)1/4
)

.

From Theorem 5.19 we can declare that when the stationary distribution of the random pro-
cess Pk|k is approximated by that of its samples, the approximation accuracy is of order(

ln(n)
n

)1/4
. Therefore, when a large number of samples of Pk|k are available, the distribution

function of the stationary process can be approximated with high accuracy.

5.6.3 Approximation of the Stationary Distribution

In the previous subsection, we have proved that when Pk|k starts from P � and the Markov
chain γk is in its stationary state, the corresponding random sequence Pk|k is ergodic. These
results make it possible to approximate the stationary distribution of Pk|k using its samples. In
this section, some explicit formulas are given for approximations of this stationary distribu-
tion in which actual sampling on all Pk|k is not required.

To investigate this approximation, the following results are first established, which makes it
clear that in finite recursions, the homographic transformation of Eq. (5.88) generally cannot
remove influences of its initial values.

Lemma 5.10. Assume that Condition I is satisfied. Then, for arbitrary PDMs X and Y with
compatible dimensions, Hm

(
M [∗],X

) = Hm

(
M [∗], Y

)
if and only if X = Y , no matter

whether ∗ = 1 or ∗ = 0.

Proof. By the definition of the homographic transformation direct algebraic manipulations
show that when X and Y are positive definite and their dimensions are compatible,

Hm

(
M [0],X

)
− Hm

(
M [0], Y

)
=

[
A[0]XA[0]T + G[0]G[0]T ]−

[
A[0]YA[0]T + G[0]G[0]T ]

= A[0](X − Y)A[0]T . (5.98)

Moreover,

Hm

(
M [1],X

)
− Hm

(
M [1], Y

)
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=
[
(A[1]XA[1]T + G[1]G[1]T )−1 + H [1]T H [1]]−1

−
[
(A[1]YA[1]T + G[1]G[1]T )−1 + H [1]T H [1]]−1

=
[
I + (A[1]XA[1]T + G[1]G[1]T )H [1]T H [1]]−1

A[1](X − Y)A[1]T

×
[
I + H [1]T H [1](A[1]YA[1]T + G[1]G[1]T )

]−1
. (5.99)

The conclusions are immediate from these relations and the regularity of both A[0] and A[1].
This completes the proof.

Assume that the Markov chain γk is in its stationary state and Pk|k starts from P �. Let
P0|0, P1|1, · · · , Pn|n be its first n + 1 samples, and consider all the possible values that
these samples may take and the probability of their occurrence. Obviously by Lemma 5.10,
when Condition I is satisfied, there are 2k possible values that Pk|k may take, which is in ac-
cordance with all the realizations of the Markov chain γi |ki=1 with γi ∈ {0, 1}. Recall that
Hm

(
M [1], P �

) = P �. It is clear that, for every positive integer k,

Hm

(
M [1]k, P �

)
= Hm

[
M [1](k−1),Hm

(
M [1], P �

)]

= Hm

(
M [1](k−1), P �

)
= · · ·

= P �. (5.100)

On the other hand, let P § denote the positive definite solution of the algebraic Lyapunov
equation P = A[0]PA[0]T + G[0]G[0]T , provided that it does exist. This happens when
the matrix A[0] is stable [27,28]. From Lemma 5.10 it is clear that if P �∈ {P �, P §}, then
Hm

(
M [∗], P

) �= P , no matter whether ∗ is equal to 1 or 0.

From these arguments the following results can be obtained; their proofs are included in the
appendix.

Lemma 5.11. Let P̄ [n] denote the set consisting of all possible values that Pk|k|nk=0 may take
when it has its initial value P � and recursively updates according to the stationary process of
the Markov chain γk . Then the number of the elements in P̄ [n] is equal to 2n, and the set P̄ [n]
can be expressed as

P̄ [n] =
{
P �, Hm

(
M [0], P �

)}⋃{
P

∣∣∣∣∣ P = Hm

[
M [γk]M [γk−1] · · ·M [γ2],Hm

(
M [0], P �

)]
γj ∈ {0,1}, j ∈ {2,3, · · · , k}, k ∈ {2,3, · · · , n}

}
.

(5.101)
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For any sequence γj |kj=1 with γj ∈ {0, 1} and k ∈ {1,2, · · · , n − 1}, define l(γj |kj=1)

and P̄
[l(γj |kj=1)] respectively as l(γj |kj=1) = 1 + 2k−1 + ∑k−1

j=1 γj 2j−1 and P̄
[l(γj |kj=1)] =

Hm

(
M [γk]M [γk−1] · · ·M [γ1]M [0], P �

)
. Moreover, define P̄ [1] = P �. Clearly, l(γj |kj=1) pro-

vides a natural order for each element of the set P̄ [n]. From the proof of Lemma 5.11 we see
that P [n] = {P̄ [1], P̄ [2], · · · , P̄ [2n]}.
The following theorem gives the convergence value of 1

n+1

∑n
k=0 IBd

(Pk|k), which is help-
ful in deriving approximations for the stationary distribution of Pk|k . Its proof is given in the
appendix.

Theorem 5.20. For each prescribed positive d , define the set Nd = {
j
∣∣ P̄ [j ] ∈ P̄ [n] ⋂Bd

}
.

Moreover, denote 1−β
2−α−β

by γst . Then

lim
n→∞

1

n + 1

n∑
k=0

IBd
(Pk|k)

= lim
n→∞

∑
j∈Nd

(
1 − γ

n−�log2(j)�
st

)
γ

∑�log2(j)�
i=1 γ

[j ]
i

st (1 − γst )
�log2(j)�−∑�log2(j)�

i=1 γ
[j ]
i , (5.102)

where γ
[j ]
i is the binary code for j − 1 − 2�log2(j)�−1.

In this theorem, an explicit formula is given for the stationary distribution of the random pro-
cess Pk|k . In principle, its value can be computed for each prescribed d , which means that
this distribution function can be obtained with arbitrary accuracy, provided that a computer is
available with sufficient computation speed and memory capacity. Note that the value of 2n

increases exponentially with the increment of the sample size n, and a large n is generally ap-
preciated as it leads to a more accurate approximation. It appears reasonable to claim that, in
general, conclusions of the theorem cannot be directly utilized in actual computations, and
some other computationally more efficient approximations are still required.

From Eq. (5.102), however, it is obvious that when γst is approximately equal to 1, any el-
ement P [j ] of the set P̄ [n] with large �log2(j)� − ∑�log2(j)�

i=1 γ
[j ]
i has a small probability to

occur. Note that this number is in fact equal to that of the zeros in the associated binary se-
quence. This result has some nice physical interpretations, as these samples are associated
with many data transmission failures that can hardly happen if γst ≈ 1. On the other hand,
from the proof of Theorem 5.18 it is clear that with the increment of the length of the bi-
nary sequence, which is equivalent to the increment of the number j , the probability that it
has a large number of zeros also increases. These mean that the contributions of an element
P [j ] ∈ P̄ [n] with large j to the stationary distribution of the random process Pk|k are usually
very small and therefore negligible.
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On the other hand, note that Hm

(
M [0],X

) = A[0]XA[0]T + G[0]G[0]T . It is straightforward to
prove from the definition of the Riemannian distance that, for an arbitrary PDM X, there exist
finite positive numbers a and b that do not depend on the matrix X such that

δ
[
Hm

(
M [0],X

)
, P �

]
≤ aδ(X,P �) + b. (5.103)

On the basis of this inequality, we establish the following property for the matrix set P̄ [n]. Its
proof is deferred to the appendix.

Theorem 5.21. For a prescribed positive integer n (including +∞), define the set P̃ [n] =
{ P | P = Hm

(
M [0]i , P �

)
, i = 0,1, · · · , n

}
. Then, when Conditions I–III are satisfied,

lim
α1h→0

sup
P∈P̄ [n]

inf
Q∈P̃ [n]

δ(P, Q) = 0. (5.104)

In addition, it is obvious from the definition of the set P̃ [n] that if P0|0 = P �, then Pk|k �∈ P̃ [n]
only if k ≥ 2 and there are more than two temporal instants at which the communication chan-
nel fails. Hence, we can directly prove from Eq. (5.A.40) that, for every integer n greater
than 2,

Pr

{
sup

P∈P̄ [n]
inf

Q∈P̃ [n]
δ(P, Q) > 0

}
≤ 1 − γ n−1

st (n + γst − nγst ). (5.105)

From this inequality and Theorems 5.20 and 5.21 we can declare that when α1h is small
and/or γst is close to 1, there certainly exits a finite integer n such that with a high probability,
all the samples of the random process Pk|k in its stationary state are concentrated around the
elements of the set P̃ [n], and a matrix far away from this set usually has a negligible probabil-
ity to occur. These concentrations become more dominating if both a and b are not very large
and α1h is significantly smaller than 1, which can be understood from Eqs. (5.A.45)–(5.A.49).

From these observations it seems reasonable to approximate the support of P∞|∞ by the
set P̃ [∞]. When this approximation is valid, a very simple explicit formula can be derived
for the stationary distribution of the random process Pk|k , which is given in the next theorem.
Its proof is deferred to the appendix.

Theorem 5.22. Assume that α1h is sufficiently small and/or γst is sufficiently close to 1 such
that the set P̃ [∞] is a good approximation for the support of the stationary process of Pk|k .
Then

Pr

{
P∞|∞ = Hm

(
M [0]i , P �

)}
≈ γst (1 − γst )

i, i = 0,1,2, . . . . (5.106)
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Note that when γst ≈ 1, γst (1 − γst )
i decreases rapidly to 0 with the increment of the index i.

This means that when the data arrival probability is high, only a few elements of the set P [∞],
that is, Hm

(
M [0]i , P �

)
, are required in computing the approximation for the stationary dis-

tribution of the random process Pk|k . Another attractive characteristic of this approximation
is that its accuracy does not depend on the length of time series samples and therefore can
greatly reduce computation burdens.

Note also that the Kalman filter with data loss never outperforms that without data loss.
This means that always P∞|∞ − P � ≥ 0 [3,10,29,30]. As practical communication chan-
nels usually do not have a high data loss probability, we can declare from Theorem 5.22 that
δ
(
Hm

(
M [0], P �

)
, P �

)
is a good index for steady performance deterioration due to data loss.

Moreover, to reduce the influence of data loss on state estimation accuracy and in addition to
improve communication qualities, another possible method is to design a plant that makes this
index as small as possible, which may be achieved through measurement variable selection
and so on.

When the random data loss is described by a Bernoulli process and the data arrival probability
is approximately equal to 1, it is suggested in [10] to approximate the stationary distribution
of the CMEE of the Kalman filter with a delta function concentrated on P �. Although this
approximation is intuitively understandable, its approximation accuracy is still not clear, as
there are still no computationally efficient methods for determining parameters of the required
rate function. On the other hand, the results of Theorems 5.21 and 5.22 suggest that rather
than a delta function, it is more appropriate to approximate this stationary distribution with a
series of delta functions. This difference has some significant influences on steady update gain
matrix selection of the state estimator.

More precisely, a well-known fact about the Kalman filter is that to reduce computational
complexity, its update gain matrix can be replaced by the steady value without any influence
on its steady estimation accuracy. Note that in both the Kalman filter and the robust state esti-
mator given in the previous section, the update gain matrix is equal to Pk+1|k+1C

T
k+1(0)R−1

k+1
when a measurement arrives. Here Ck(0) and Rk are respectively the nominal value of the
plant output matrix and the covariance matrix of measurement errors at the time instant k.
This means that when the nominal plant is time invariant, distribution of the update gain
matrix of the estimator is completely determined by that of Pk+1|k+1. Therefore, the results
of [10] suggest that when the measurement arrival probability is close to 1, the update gain
matrix of the Kalman filter can be replaced by P �CT

k+1(0)R−1
k+1 without significant sacrifice

of steady estimation accuracy, which is consistent with the aforementioned conclusions about
conventional Kalman filtering. Theorem 5.22, however, suggests that this simple update gain
matrix replacement generally deteriorates steady estimation accuracy, no matter whether the
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Kalman filter or the robust state estimator of the previous section is utilized. This deterio-
ration usually becomes more significant with the increment of the distance between P � and
Hm

(
M [0], P �

)
.

Although Theorem 5.22 provides a very simple approximation and numerical simulations
reported in [11] show that this approximation is usually very accurate, it is still a challenging
problem to derive a tighter bound on its approximation errors and more explicit conditions on
system parameters under which this approximation is valid.

In this section, we investigate asymptotic properties for both the CMEE of the Kalman filter
and the PCM of a robust recursive state estimator under the situation that the data loss process
is described by a Markov chain. It appears that when the associated plant is both controllable
and observable, this random matrix process converges exponentially to a stationary process
that does not depend on its initial value. Moreover, when these state estimators start from the
stabilizing solution of the algebraic Riccati equation defined by the system parameters of the
associated plant, we show that this random matrix process becomes ergodic. An important
observation is that when the data arrival probability is approximately equal to 1, the distri-
bution of the corresponding stationary process can be well approximated by a set of delta
functions. Based on these results, we derive two approximations for their stationary distri-
butions together with an error bound for one of these two approximations. It has been made
clear that replacement of the update gain of these estimators by a constant matrix usually sac-
rifices steady estimation accuracy even if the measurement arrival probability is close to 1.
Numerical simulations show that these approximations usually have a high accuracy.

5.7 Bibliographic Notes

The network-theoretic approach has been widely used to model control/estimation over time-
varying channels. In this case, the channel uncertainty is modeled as random packet losses.
Packets are considered as single entities and can be lost stochastically with some probability.
There are two typical statistical processes to model the packet loss process of the observed
data that are used to estimate the state of a stochastic system. One is an independent and iden-
tically distributed (i.i.d.) binary process [3,17,24,36], and the other is a Markov process [9,13,
16,37]. This chapter focused on the problem how the packet losses as an i.i.d. process affect
the estimate of the system state due to the unreliability of the network channels.

Appendix 5.A

5.A.1 Proof of Theorem 5.18

Let ∗ be any element of the set { 0, 1 }. We can declare from the definitions of α0h and α1h

that, for every PDM pair X and Y , δ
(
Hm(M [∗],X), Hm(M [∗], Y )

) ≤ α∗
1hα

1−∗
0h δ(X,Y ).
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Hence, for arbitrary positive definite matrices X and Y ,

ρk(X,Y ) = δ

{
Hm

(
1∏

i=k

M [γi ],X
)

,Hm

(
1∏

i=k

M [γi ], Y
)}

= δ

⎧⎨
⎩Hm

⎡
⎣M [γk], Hm

⎛
⎝ 1∏

i=k−1

M [γi ], X

⎞
⎠
⎤
⎦ , Hm

⎡
⎣M [γk], Hm

⎛
⎝ 1∏

i=k−1

M [γi ], Y

⎞
⎠
⎤
⎦
⎫⎬
⎭

≤ α
γk

1hα
1−γk

0h δ

⎧⎨
⎩Hm

⎛
⎝ 1∏

i=k−1

M [γi ],X

⎞
⎠ ,Hm

⎛
⎝ 1∏

i=k−1

M [γi ], Y

⎞
⎠
⎫⎬
⎭

= α
γk

1hα
1−γk

0h δ

⎧⎨
⎩Hm

⎡
⎣M [γk−1], Hm

⎛
⎝ 1∏

i=k−2

M [γi ], X

⎞
⎠
⎤
⎦ ,

Hm

⎡
⎣M [γk−1], Hm

⎛
⎝ 1∏

i=k−2

M [γi ], Y

⎞
⎠
⎤
⎦
⎫⎬
⎭

≤ α
γk

1hα
1−γk

0h α
γk−1
1h α

1−γk−1
0h δ

⎧⎨
⎩Hm

⎛
⎝ 1∏

i=k−2

M [γi ], X

⎞
⎠ , Hm

⎛
⎝ 1∏

i=k−2

M [γi ], Y

⎞
⎠
⎫⎬
⎭

= · · ·
≤

(
1∏

i=k

α
γi

1hα
1−γi

0h

)
δ(X,Y )

= α

∑k
i=1 γi

1h α
k−∑k

i=1 γi

0h δ(X,Y )

≤ α

∑k
i=1 γi

1h δ(X,Y ). (5.A.1)

Define the function f (·) on the random process γk as f (γk) = γk . When both α and β belong
to (0, 1), it is obvious that the Markov chain γk is positive recurrent and only has two states,
that is, γk = 1 and γk = 0. Using the symbols of Lemma 5.8, we obviously see that, for arbi-
trary j ∈ { 0, 1 },

f [j ]
α =

τ
[j ]
α+1−1∑
k=τ

[j ]
α

f (γk) ≤ (τ
[j ]
α+1 − 1) − (τ [j ]

α − 1) = τ
[j ]
α+1 − τ [j ]

α . (5.A.2)

From this relation and properties of Markov chains it is straightforward to prove that

s(f ) = 1

μ1
> 0, E

(
|f [j ]

α |3
)

≤ E
(
|τ [j ]

α+1 − τ [j ]
α |3

)
< ∞, (5.A.3)
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Var{f [j ]
α − s(f )(τ

[j ]
α+1 − τ [j ]

α )} > 0. (5.A.4)

Moreover, both μ1 and π1 are positive constants. Hence, by Lemma 5.8 we have that

sup
t∈R

∣∣∣∣∣Pr

{ √
μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)
< t

}
− φ(t)

∣∣∣∣∣ = O

[(
ln(k)

k

)1/4
]

. (5.A.5)

From this equation we can declare that, for arbitrary positive ε1, there exists a positive integer
N1(ε1) such that

∣∣∣∣∣Pr

{ √
μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)
< t

}
− φ(t)

∣∣∣∣∣ ≤ ε1 (5.A.6)

for every real t , provided that k ≥ N1(ε1).

Therefore, when k ≥ N1(ε1), we have the following relations:

−ε1 ≤ Pr

{ √
μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)
< −t

}
− φ(−t) ≤ ε1, (5.A.7)

−ε1 ≤ Pr

{ √
μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)
< t

}
− φ(t) ≤ ε1, (5.A.8)

which further leads to the following inequality for all positive t :

Pr

{ ∣∣∣∣∣
√

μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)∣∣∣∣∣ < t

}

= Pr

{ √
μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)
< t

}
− Pr

{ √
μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)
< −t

}

≥ [φ(t) − ε1] − [φ(−t) + ε1]
= φ(t) − φ(−t) − 2ε1. (5.A.9)

On the other hand, the inequality
∣∣∣ √

μ1

σ1
√

k

(∑k
i=0 γi − k+1

μ1

)∣∣∣ < t is equivalent to

∣∣∣∣∣
k∑

i=0

γi − (k + 1)π1

∣∣∣∣∣ < σ1t
√

π1
√

k, (5.A.10)
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which implies that

k∑
i=0

γi > (k + 1)π1 − σ1t
√

π1
√

k

= √
k

(
k + 1√

k

√
π1 − σ1t

)√
π1. (5.A.11)

Note that π1 > 0 and it is independent of k. It is obvious that k+1√
k

√
π1 − σ1t is an increasing

function of k. This means that, for an arbitrary positive t , there exists a positive integer N2(t)

such that k+1√
k

√
π1 − σ1t > 0 for each k ≥ N2(t).

Define N2(t) and ξ(t) respectively as

N2(t) = min

{
k

∣∣∣∣k is an integer,
k + 1√

k

√
π1 − σ1t > 0

}
,

ξ(t) =
(

N2(t) + 2√
N2(t) + 1

√
π1 − σ1t

)√
π1.

Then it is obvious that, for arbitrary k ≥ N2(t) + 1,
(

k+1√
k

√
π1 − σ1t

)√
π1 ≥ ξ(t) > 0, which

further leads to
k∑

i=0

γi >
√

kξ(t). (5.A.12)

In addition, by the definition of the function φ(t) or the properties of a normal distribution we
can declare that, for arbitrary ε2 > 0, there exists t (ε2) > 0 such that

φ[t (ε2)] − φ[−t (ε2)] ≥ 1 − ε2. (5.A.13)

Now, for arbitrary ε > 0, let ε1 = ε
4 and ε2 = ε

2 . Define N(ε) = max{N1(ε1), N2(t (ε2)) +1}.
Then from Eqs. (5.A.9) and (5.A.13) we have that, for k > N(ε),

Pr

{∣∣∣∣∣
√

μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)∣∣∣∣∣ < t(ε2)

}
≥ 1 − ε

2
− 2 × ε

4
= 1 − ε. (5.A.14)

Based on this relation and Eq. (5.A.12), we can declare that

Pr

{
k∑

i=0

γi >
√

kξ
[
t
(ε

2

)]}
≥ Pr

{ ∣∣∣∣∣
√

μ1

σ1
√

k

(
k∑

i=0

γi − k + 1

μ1

)∣∣∣∣∣ < t(ε2)

}

≥ 1 − ε. (5.A.15)
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A combination of this inequality and Eq. (5.A.1) makes it clear that if k ≥ N(ε), then, with
a probability greater than 1 − ε,

ρk(X,Y ) ≤ α

√
kξ [t (ε/2)]

1h δ(X,Y ) = e
−√

kξ [t (ε/2)]ln 1
α1h δ(X,Y ). (5.A.16)

As 0 ≤ α1h < 1 and δ(X,Y ) is a finite positive number when both X and Y are finite

PDMs, we can declare that limk→∞ α

√
kξ [t (ε/2)]

1h = 0. Since δk(X,Y ) is nonnegative and
ε is an arbitrary positive number, these relations mean that for any finite PDMs X and Y ,
limk→∞ ρk(X,Y ) = 0 in probability. This completes the proof.

5.A.2 Proof of Theorem 5.19

Assume that P [j ] = limk→∞ Hm

(
M [γ [j ]

0 ]M [γ [j ]
−1 ] · · ·M [γ [j ]

−k ], P �
)

. Then, for ∗ = 0 and ∗ = 1,

we have that

Hm

(
M [∗],P [j ]) = Hm

(
M [∗], lim

k→∞ Hm

(
M [γ [j ]

0 ]M [γ [j ]
−1 ] · · ·M [γ [j ]

−k ], P �
))

= Hm

(
M [∗] lim

k→∞M [γ [j ]
0 ]M [γ [j ]

−1 ] · · ·M [γ [j ]
−k ], P �

)

= lim
k→∞ Hm

(
M [∗]M [γ [j ]

0 ]M [γ [j ]
−1 ] · · ·M [γ [j ]

−k ], P �
)

= lim
k→∞ Hm

(
M [∗]M [γ [j ]

0 ]M [γ [j ]
−1 ] · · ·M [γ [j ]

−k+1],Hm

(
M [γ [j ]

−k ],P �
))

= lim
k→∞ Hm

(
M [∗]M [γ [j ]

0 ]M [γ [j ]
−1 ] · · ·M [γ [j ]

−k+1],P �
)

(in prob.)

= P [j̄ ], (5.A.17)

where j = n(γ
[j ]
i |−∞

i=0 ) = ∑−∞
i=0 γ

[j ]
i 2i , j̄ = n(γ̄

[j ]
i |−∞

i=0 ) = ∑−∞
i=0 γ̄

[j ]
i 2i , and γ̄

[j ]
i = γ

[j ]
i+1

whenever i ≤ −1, whereas γ̄
[j ]
0 = ∗.

Define nin(∗, γ
[j ]
i |−∞

i=0 ) as nin(∗, γ
[j ]
i |−∞

i=0 ) = j̄ − j . Then

nin(∗, γ
[j ]
i |−∞

i=0 ) =
−∞∑
i=0

γ̄
[j ]
i 2i −

−∞∑
i=0

γ
[j ]
i 2i

= (∗ − γ
[j ]
0 ) +

−∞∑
i=−1

(γ
[j ]
i+1 − γ

[j ]
i )2i . (5.A.18)
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For a given sequence γ
[j ]
l |sl=1 with γ

[j ]
l ∈ {0, 1}, define γ

[j ]
i,l as γ

[j ]
i,0 = γ

[j ]
i , i = 0,−1, . . . ,

and

γ
[j ]
i,l =

{
γ

[j ]
i+1,l−1, i ≤ −1,

γ
[j ]
l , i = 0,

l = 1,2, . . . , s. (5.A.19)

Denote Hm

(
M [γ [j ]

l ]M [γ [j ]
l−1] · · ·M [γ [j ]

1 ],P [j ]
)

by P [jl ], l = 1,2, . . . , s. Then, a repetitive uti-

lization of Eq. (5.A.17) leads to

js = js−1 + nin(γ
[j ]
s , γ

[j ]
i,s−1|−∞

i=0 )

= js−2 + nin(γ
[j ]
s−1, γ

[j ]
i,s−2|−∞

i=0 ) + nin(γ
[j ]
s , γ

[j ]
i,s−1|−∞

i=0 )

= · · ·
= j0 +

s∑
l=1

nin(γ
[j ]
l , γ

[j ]
i,l−1|−∞

i=0 ), (5.A.20)

where j0 = j . Therefore js = j if and only if

s∑
l=1

nin(γ
[j ]
l , γ

[j ]
i,l−1|−∞

i=0 ) = 0. (5.A.21)

On the other hand, from the definition of nin(∗, γ
[j ]
i |−∞

i=0 ) straightforward algebraic manipula-
tions show that

s∑
l=1

nin(γ
[j ]
l , γ

[j ]
i,l−1|−∞

i=0 ) =
s∑

l=1

⎡
⎣(γ

[j ]
l − γ

[j ]
0,l−1) +

−∞∑
i=−1

(γ
[j ]
i+1,l−1 − γ

[j ]
i,l−1)2

i

⎤
⎦

=
s∑

l=1

(γ
[j ]
l − γ

[j ]
0,l−s)2

l−s +
−∞∑
i=0

(γ
[j ]
0,i − γ

[j ]
0,i−s)2

i−s . (5.A.22)

Therefore js = j if and only if

γ
[j ]
s = γ

[j ]
0,0 −

s−1∑
l=1

(γ
[j ]
l − γ

[j ]
0,l−s)2

l−s −
−∞∑
i=0

(γ
[j ]
0,i − γ

[j ]
0,i−s)2

i−s

= γ
[j ]
0,0 +

s−1∑
l=1

(γ
[j ]
0,l−s − γ

[j ]
l )2l−s +

−∞∑
i=0

(γ
[j ]
0,i−s − γ

[j ]
0,i )2i−s

= γ
[j ]
0,0 +

1−s∑
i=−1

γ
[j ]
0,i 2i + 2−s

−∞∑
i=0

(γ
[j ]
0,i−s − γ

[j ]
0,i )2i −

s−1∑
i=1

γ
[j ]
s−i2

−i . (5.A.23)
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Define the set

S[j ] =

⎧⎪⎪⎨
⎪⎪⎩

k

∣∣∣∣∣∣∣∣
k = min(s),

γ
[j ]
0,0 +∑1−s

i=−1 γ
[j ]
0,i 2i + 2−s

∑−∞
i=0 (γ

[j ]
0,i−s − γ

[j ]
0,i )2i

−∑s−1
i=1 γ

[j ]
s−i2

−i ∈ {0,1}
γ

[j ]
i ∈ {0, 1}, i = 1,2, · · · , s − 1

⎫⎪⎪⎬
⎪⎪⎭

.

Assume that this set is not empty for all possible j . Then, for any s ∈ S[j ], there exists a bi-
nary sequence γ

[j ]
i |si=1 with γ

[j ]
i ∈ {0, 1} such that

Hm

(
M [γ [j ]

s ]M [γ [j ]
s−1] · · ·M [γ [j ]

1 ],P [j ]) = P [j ]. (5.A.24)

Assume that the Markov chain γk is in its stationary state in which both Pr (γk = 1) and
Pr (γk = 0) take a constant value belonging to (0, 1). Denote max{Pr (γk = 1), Pr (γk = 0)}
and min{Pr (γk = 1), Pr (γk = 0)} respectively by phs and pls . Moreover, for a particular
s ∈ S[j ], denote the corresponding γ

[j ]
i |si=1 by γ

[j,s]
i |si=1. Then

Pr (s) =
s∏

i=1

[
γ

[j,s]
i Pr (γ

[j,s]
i = 1) + (1 − γ

[j,s]
i )Pr (γ

[j,s]
i = 0)

]
. (5.A.25)

Therefore

Pr (s) ≥
s∏

i=1

min{Pr (γk = 1), Pr (γk = 0)} = ps
ls, (5.A.26)

Pr (s) ≤
s∏

i=1

max{Pr (γk = 1), Pr (γk = 0)} = ps
hs. (5.A.27)

Hence, when an integer s belonging to the set S[j ] takes a finite value, its occurrence proba-
bility is certainly greater than 0.

As in Lemma 5.8, let τ
[j ]
v denote the vth time instant such that js = j0, and let f

[j ]
v (Pk|k)

denote the random variable
∑τ

[j ]
v+1−1

k=τ
[j ]
v

IBd
(Pk|k). Then

∣∣∣f [j ]
v (Pk|k)

∣∣∣ =

∣∣∣∣∣∣∣
τ

[j ]
v+1−1∑
k=τ

[j ]
v

IBd
(Pk|k)

∣∣∣∣∣∣∣
≤ (τ

[j ]
v+1 − 1) − (τ [j ]

v − 1)

= τ
[j ]
v+1 − τ [j ]

v ∈ S[j ]. (5.A.28)
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Hence

E
{∣∣∣f [j ]

v (Pk|k)
∣∣∣3
}

≤ E
{
(τ

[j ]
v+1 − τ [j ]

v )3
}

=
∑

k∈S[j ]
k3Pr (k)

≤
∞∑

k=1

k3pk
hs. (5.A.29)

Note that k3 = (k + 1)k(k − 1) + k. We can directly prove that

∞∑
k=1

k3pk
hs = (1 + phs)

2 + 2phs

(1 − phs)4
phs. (5.A.30)

Therefore, when phs belongs to (0, 1), both E
{∣∣∣f [j ]

v (Pk|k)
∣∣∣3
}

and E
{
(τ

[j ]
v+1 − τ

[j ]
v )3

}
are

finite.

Note also that Hm

(
M [1],P �

) = P � and limk→∞ Hm

[
M [1]k,Hm

(
M [0],P �

)] = P �. It is ob-
vious that when j = ∑−∞

i=0 2i , the set S[j ] has at least two finite integers with occurrence
probability greater than 0. Therefore, when the random process Pk|k is started from P �, the

corresponding f
[j ]
α − s(f )(τ

[j ]
α+1 − τ

[j ]
α ) has a variance greater than 0.

Denote
∑

k∈S[j ] kPr (k) by μ[j ]. Then we directly prove that

F(d) =
∑
j∈I

1

μ[j ] IBd
(P [j ]). (5.A.31)

On the other hand, by Lemma 5.8 we have that

lim
n→∞

1

n + 1

n∑
k=0

IBd
(Pk|k) =

∑
j∈I

1

μ[j ] IBd
(P [j ]) (5.A.32)

with the convergence rate of order
(

ln(n)
n

)1/4
. Combining the last two equations together, we

can now complete the proof for the case in which S[j ] �= ∅ for every possible j .

If there exists j such that the set S[j ] is empty, then the conclusions can still be established
by modifying P [j ] to P [j ](ε) in the arguments, where ε is a prescribed positive number. More
precisely, by Theorem 5.18, for arbitrary j1 and j2, there always exists a finite step transfor-
mation from an element of P [j1](ε) to the set P [j2](ε). Therefore, the corresponding set S[j ]
is certainly not empty. The results can then be established by decreasing ε to 0.
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5.A.3 Proof of Lemma 5.11

From P0|0 = P � and Hm

(
M [1], P �

) = P � it is clear that P1|1 has only one additional pos-
sible value, that is, Hm

(
M [0], P �

)
. Hence, the number of elements in P̄ [1] is 2, and P̄ [1] =

{ P �, Hm

(
M [0], P �

) }.
Assume that the conclusions are valid with n = l, that is, #

(
P̄ [l]) = 2l , and

P̄ [l] =
{
P �, Hm

(
M [0], P �

)}⋃{
P

∣∣∣∣∣ P = Hm

[
M [γk]M [γk−1] · · ·M [γ2],Hm

(
M [0],P �

)]
γj ∈ {0,1}, j ∈ {2,3, · · · , k}, k ∈ {2,3, · · · , l}

}
.

Then, for n = l + 1, we have that

P̄ [l+1] = P̄ [l] ⋃{
Pl+1

∣∣∣ Pl+1 = Hm

(
M [γl+1], P

)
, P ∈ P̄ [l]\P̄ [l−1], γl+1 ∈ {0, 1}

}

= P̄ [l] ⋃
{

Pl+1

∣∣∣∣∣ Pl+1 = Hm

{
M [γl+1], Hm

[
M [γl]M [γl−1] · · ·M [γ2],Hm

(
M [0],P �

)]}
γj ∈ {0, 1}, j ∈ {2,3, · · · , l + 1}

}

= P̄ [l] ⋃
{

Pl+1

∣∣∣∣∣ Pl+1 = Hm

[
M [γl+1]M [γl] · · ·M [γ2], Hm

(
M [0], P �

)]
γj ∈ {0, 1}, j ∈ {2,3, · · · , l + 1}

}
. (5.A.33)

From the regularity of the matrices A[0] and A[1], by Lemma 2.6, we can directly prove that

P̄ [l] ⋂
{

Pl+1

∣∣∣∣∣ Pl+1 = Hm

[
M [γl+1]M [γl ] · · ·M [γ2], Hm

(
M [0], P �

)]
γj ∈ {0, 1}, j ∈ {2,3, · · · , l + 1}

}
= ∅. (5.A.34)

Therefore, #(P̄ [l+1]) = #(P̄ [l]) + 2l−1 = 2l , and

P̄ [l+1] =
{
P �, Hm

(
M [0], P �

)}⋃{
P

∣∣∣∣∣ P =Hm

[
M [γk]M [γk−1] · · ·M [γ2],Hm

(
M [0],P �

)]
γj ∈{0,1}, j ∈{2,3, · · · , k}, k∈{2,3, · · · , l + 1}

}
.

(5.A.35)

This completes the proof.

5.A.4 Proof of Theorem 5.20

First, probabilities are investigated for the occurrence of Pk|k = P̄ [j ] with j = 1 + 2s−1 +∑s−1
l=1 γ

[j ]
l 2l−1. From the definition of P̄ [j ] it is obvious that Pk|k = P̄ [j ] if and only if
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k ≥ s + 1, γl = 1 when l ∈ {1,2, · · · , k − s − 1}, γk−s = 0, and γi+k−s = γ
[j ]
i when

i ∈ {1,2, · · · , s}. Hence

Pr

(
Pk|k = P̄ [j ]) = Pr

(
γ1 = 1, · · · , γk−s−1 = 1, γk−s = 0, γk−s+1 = γ

[j ]
1 , · · · , γk = γ

[j ]
s

)

=
k−s−1∏

l=1

Pr (γl = 1) × Pr (γk−s = 0)

s∏
i=1

Pr

(
γi+k−s = γ

[j ]
i

)

= γ k−s−1
st (1 − γst )pj , (5.A.36)

where pj = ∏s
i=1 Pr

(
γi+k−s = γ

[j ]
i

)
.

Therefore, the occurrence of P̄ [j ] in the samples P0|0, P1|1, · · · , Pn|n has the probability

p̄j =
n∑

k=s+1

Pr

(
Pk|k = P̄ [j ])

=
n∑

k=s+1

γ k−s−1
st (1 − γst )pj = (1 − γ n−s

st )pj . (5.A.37)

Note that when γ
[j ]
l ∈ {0, 1}, l = 1,2, · · · , s, it is certain that 0 ≤ ∑s−1

l=1 γ
[j ]
l 2l−1 ≤ 2s−1 − 1.

We therefore have that

1 + 2s−1 ≤ j ≤ 2s, (5.A.38)

which is equivalent to 1 + log2(j − 1) ≥ s ≥ log2(j). As s is a positive integer, it is obvious
that

s = �log2(j)�. (5.A.39)

Therefore, γ
[j ]
l with l ∈ {1,2, · · · , �log2(j)�} is the binary code of j − 1 − 2�log2(j)�−1. We

can therefore declare that, for any given j belonging to {1,2, · · · ,2n}, both s and γ
[j ]
l |sl=1 are

uniquely determined through the requirement that j = 1 + 2s−1 +∑s−1
l=1 γ

[j ]
l 2l−1.

On the other hand, let N0(j) denote the number of zeros in the sequence γ
[j ]
i |si=1. Then

pj =
s∏

i=1

Pr

(
γi+k−s = γ

[j ]
i

)

=
s∏

i=1

P
γ

[j ]
i

r (γ
[j ]
i = 1)P

(1−γ
[j ]
i )

r (γ
[j ]
i = 0)
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= γ

∑s
i=1 γ

[j ]
i

st (1 − γst )
s−∑s

i=1 γ
[j ]
i

= (1 − γst )
N0(j)γ

�log2(j)�−N0(j)
st . (5.A.40)

Summarizing Eqs. (5.A.37), (5.A.39), and (5.A.40), the following formula is obtained for p̄j :

p̄j = (1 − γ
n−�log2(j)�
st )γ

�log2(j)�−N0(j)
st (1 − γst )

N0(j). (5.A.41)

Note that N0(j) = s − ∑s
i=1 γ

[j ]
i . Hence, by Eq. (5.A.39), the ergodicity of the random pro-

cess Pk|k established in Corollary 5.1, and the Bernoulli law of large numbers [38] we can
claim that

lim
n→∞

1

n + 1

n∑
k=0

IBd
(Pk|k)

= lim
n→∞

∑
j∈Nd

p̄j

= lim
n→∞

∑
j∈Nd

(
1 − γ

n−�log2(j)�
st

)
γ

∑�log2(j)�
i=1 γ

[j ]
i

st (1 − γst )
�log2(j)�−∑�log2(j)�

i=1 γ
[j ]
i (5.A.42)

with exponential convergence rate. This completes the proof.

5.A.5 Proof of Theorem 5.21

Recall that for an arbitrary positive integer m, Hm

(
M [1]m, P �

) = P �. Therefore, investigating
properties of samples of the random process Pk|k starting from P0|0 = P �, we can assume,
without any loss of generality that, that the first n elements of any realization of the random
process γk|∞k=0 is a binary sequence satisfying

γtj = γtj+1 = · · · = γtj+mj
= 0, mj ≥ 0, j = 1,2, · · · ,p,

γtj+mj+1 = γtj+mj+2 = · · · = γtj+1−1 = 1, 1 = t1 < t2 < · · · < tp ≤ n.

Denote by P̂ [n] the set consisting of the first n Pk|ks generated from this particular realization
of the data loss process.

Concerning the Riccati recursion of Eq. (5.88), the following inequality is obtained from
Eq. (5.103) for every positive integer m and every positive definite X:

δ
[
Hm

(
M [0]m,X

)
, P �

]
= δ

{
Hm

[
M [0],Hm

(
M [0](m−1),X

)]
, P �

}

≤ aδ
[
Hm

(
M [0](m−1),X

)
, P �

]
+ b
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= · · ·
≤ amδ(X,P �) + am−1b + am−2b + · · · + b

= amδ(X,P �) + 1 − am

1 − a
b. (5.A.43)

Moreover,

δ
[
Hm

(
M [1]m,X

)
, P �

]
= δ

[
Hm

(
M [1]m,X

)
, Hm

(
M [1]m,P �

)]
≤ αm

1hδ(X,P �). (5.A.44)

On the basis of these two inequalities, we establish the following inequality for each j ≥ 1
and every k belonging to {tj + mj + 1, tj + mj + 2, · · · , tj+1 − 1}:

δ(Pk|k,P �) = δ

[
Hm

(
1∏

i=k

M [γi ],P �

)
, P �

]

= δ
[
Hm

(
M [1](k−tj−mj )M [0](mj+1)M [1](tj−tj−1−mj−1) · · ·M [0](m1+1), P �

)
, P �

]

≤ α
k−tj−mj

1h δ
[
Hm

(
M [0](mj+1)M [1](tj−tj−1−mj−1) · · ·M [0](m1+1), P �

)
, P �

]

≤ α
k−tj−mj

1h

{
amj+1δ

[
Hm

(
M [1](tj−tj−1−mj−1)M [0](mj−1+1) · · ·M [0](m1+1),P �

)
,

P �
]
+ 1 − amj+1

1 − a
b

}

≤ · · ·
≤ α

k−tj−mj

1h

1 − amj+1

1 − a
b + α

k−tj−1−(mj+mj−1)

1h

1 − amj−1+1

1 − a
b + · · ·

+ α
k−t1−∑j

i=1 mi

1h

1 − am1+1

1 − a
b. (5.A.45)

Recall that 0 ≤ α1h < 1. We therefore have that if 0 ≤ a < 1, then

δ(Pk|k,P �) ≤ α
k−tj−mj

1h

b

1 − a
+ α

k−tj−1−(mj+mj−1)

1h

b

1 − a
+ · · · + α

k−t1−∑j
i=1 mi

1h

b

1 − a

= α
k−tj−mj

1h

b

1 − a

[
1 + α

tj−tj−1−mj−1
1h + · · · + α

tj−t1−∑j
i=1 mi

1h

]

= α
k−tj−mj

1h

jb

1 − a
. (5.A.46)

Moreover, if a = 1, then
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δ(Pk|k,P �)

≤ α
k−tj−mj

1h (mj + 1)b + α
k−tj−1−(mj+mj−1)

1h (mj−1 + 1)b + · · · + α
k−t1−∑j

i=1 mi

1h (m1 + 1)b

≤ α
k−tj−mj

1h b

{
(mj + 1) + α

tj−tj−1−mj−1
1h (mj−1 + 1) + cdots + α

tj−t1−∑j−1
i=1 mi

1h (m1 + 1)

}

≤ α
k−tj−mj

1h jb max
1≤i≤j

(mi + 1). (5.A.47)

Furthermore, if a > 1, then

δ(Pk|k,P �) ≤ α
k−tj−mj

1h

amj+1

a − 1
b + α

k−tj−1−(mj+mj−1)

1h

amj−1+1

a − 1
b + · · · + α

k−t1−∑j
i=1 mi

1h

am1+1

a − 1
b

≤ α
k−tj−mj

1h

ab

a − 1

{
amj + α

tj−tj−1−mj−1
1h amj−1 + · · · + α

tj−t1−∑j−1
i=1 mi

1h am1

}

≤ α
k−tj−mj

1h

jab

a − 1
max

1≤i≤j
ami . (5.A.48)

On the other hand, for any k ∈ {tj , tj + 1, · · · , tj + mj } with j = 1,2, · · · ,p, from
Lemma 2.6 and Eq. (5.89), since 0 ≤ α0h ≤ 1, we have that

δ
[
Pk|k,Hm

(
M [0](k−tj+1), P �

)]

≤ δ

⎡
⎣Hm

⎛
⎝

tj∏
i=k

M [γi ],Ptj−1|tj−1

⎞
⎠ ,Hm

(
M [0](k−tj+1),P �

)⎤⎦

= δ
[
Hm

(
M [0](k−tj+1),Ptj−1|tj−1

)
,Hm

(
M [0](k−tj+1),P �

)]

≤ α
k−tj+1
0h δ(Ptj−1|tj−1, P �)

≤ δ(Ptj−1|tj−1, P �). (5.A.49)

Note that Hm (I, P �) = P �. We can therefore declare from Eqs. (5.A.45)–(5.A.49) that

lim
α1h→0

sup
P∈P̂ [n]

inf
Q∈P̃ [n]

δ(P, Q) = 0. (5.A.50)

The proof can now be completed by noting that this conclusion is valid for all possible
(tj ,mj )|pj=1 and p.
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5.A.6 Proof of Theorem 5.22

When the assumption is satisfied, assume that Pr

{
P∞|∞ = Hm

(
M [0]i , P �

)} = ai , i =
0,1, . . . . Then, from the definition of probabilities we have that

∞∑
i=0

ai = 1. (5.A.51)

On the other hand, note that Hm

[
M [0], Hm

(
M [0]i , P �

)] = Hm

(
M [0](i+1), P �

)
. Moreover,

when the Markov chain achieves its stationary state, Pr (γk = 1) = γst . We can therefore de-
clare that when the random process Pk|k reaches its stationary state,

Pr

{
Pn+1|n+1 = Hm

(
M [0](i+1), P �

)}
= (1 − γst )Pr

{
Pn|n = Hm

(
M [0]i , P �

)}
. (5.A.52)

Moreover, to guarantee the stationarity of the random process, it is necessary that

lim
n→∞ Pr

{
Pn+1|n+1 = Hm

(
M [0]i , P �

)}
= lim

n→∞ Pr

{
Pn|n = Hm

(
M [0]i , P �

)}
. (5.A.53)

Therefore

ai+1 = (1 − γst )ai−1, i = 1,2, . . . . (5.A.54)

Substituting this relation into Eq. (5.A.51), we obtain the following equation:

a0 + (1 − γst )a0 + (1 − γst )
2a0 + · · · = 1. (5.A.55)

Hence

a0 = 1∑∞
i=0(1 − γst )i

= γ, (5.A.56)

which further leads to

Pr

{
P∞|∞ = Hm

(
M [0]i , P �

)}
= a0(1 − γst )

i = γst (1 − γst )
i . (5.A.57)

This completes the proof.
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CHAPTER 6

Distributed State Estimation in an LSS
6.1 Introduction

In various engineering applications, it is usually appreciative from a practical point of view
to estimate the states of a subsystem using only information of the subsystems that are di-
rectly connected to it. Examples include systems that are constituted from a large number of
subsystems, a system that consists of several subsystems that are far away from each other
geometrically, and so on. Major reasons behind this approach are that lumped estimations are
usually computationally infeasible, and/or economically expensive, and/or not very suitable
from the viewpoint of maintenance, and so on.

Several methods have been developed to achieve this objective. For example, in [1], the well-
known Kalman filter is extended to a multidimensional Roesser model utilizing the concept
of wave advance process. In [2], the Jacobi over-relaxation method is combined with dy-
namic average consensus algorithms under the framework of Baysian estimations. In [3],
a method is suggested for iterative estimating states and internal outputs of subsystems of a
one-dimensional spatially distributed dynamic systems.

Motivated by the design procedure of the Luenberger observer and the Kalman filter, a
method is suggested in [4] to design a one-step ahead state predictor that has the same struc-
ture as that of the plant, using the model of Section 3.3 for a networked dynamic system. Af-
terward, these results have been extended to distributed state filter designs [5]. In this chapter,
we summarize major results of these investigations and discusses their extensions to robust
distributed state estimations. Asymptotic properties of the distributed predictor have also been
investigated, and conditions are established for the equivalence in steady estimation accuracy
between the distributed predictor and the lumped Kalman filter.

More precisely, consider a linear time varying dynamic system � consisting of N subsystems.
Assume that the dynamics of its ith subsystem, denote it by �i , is described by the following
discrete state-space model,

⎡
⎣ x(k + 1, i)

z(k, i)

y(k, i)

⎤
⎦=

⎡
⎣ Axx(k, i) Axv(k, i) Bx(k, i) 0

Azx(k, i) Azv(k, i) 0 0
Cx(k, i) Cv(k, i) 0 D(k, i)

⎤
⎦
⎡
⎢⎢⎣

x(k, i)

v(k, i)

d(k, i)

w(k, i)

⎤
⎥⎥⎦ (6.1)
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Similar to those in Eq. (3.25), k = 0,1, · · · , and i = 1,2, · · · ,N , stand here again respectively
for the temporal variable and the index number of a discrete linear time varying subsystem,
x(k, i) represents the state vector of the ith subsystem �i at time k, z(k, i) and v(k, i) re-
spectively its internal output vector and internal input vector, while y(k, i) its external output
vector. In addition, d(k, i) and w(k, i) are adopted in the above model to represent respec-
tively a process disturbance vector and a measurement error vector. Through this chapter, the
random processes associated respectively with these random disturbances are assumed to be
white, and their mathematical expectations and covariance matrices are assumed to be respec-
tively equal to zero and an identity matrix. Moreover, it is assumed that these two random
processes are independent of each other, and random processes associated with different sub-
systems are also independent.

Let z(k) and v(k) represent the vectors constituted respectively from all the subsys-
tem internal output vectors and all the subsystem internal input vectors. That is, z(k) =
col
{
z(k, i)|Ni=1

}
and v(k) = col

{
v(k, i)|Ni=1

}
. Interactions among plant subsystems are de-

scribed by

v(k) = �(k)z(k) (6.2)

which reflects the engineering fact that each internal input signal of a subsystem is actually
an internal output signal of some other subsystems. This is completely the same as that of
Eq. (3.26).

In the above system model, direct influences are not existent from the process disturbance
vector d(k, i) to the external subsystem output vector y(k, i). Moreover, both the process dis-
turbance vector d(k, i) and the measurement error vector w(k, i) do not directly affect the
internal subsystem output vector z(k, i). Furthermore, the measurement error vector w(k, i)

does not directly influence the subsystem state vector x(k, i). These assumptions make the as-
sociated system model different a little from that described by Eqs. (3.25) and (3.25), which
are adopted mainly for simplifying mathematical expressions in the derivations and presenta-
tions of the distributed state estimators.

6.2 Predictor Design With Local Measurements

Similarly to the Luenberger observer, to predict the state of the dynamical system � described
by Eqs. (6.1) and (6.2), an estimator is constructed that has the same structure as that of the
system � itself, and differences between the outputs of the estimator and those of the sys-
tem � are used to adjust the states of the estimator. More precisely, the estimator also consists



Distributed State Estimation in an LSS 187

of N subsystems, and the dynamics of its ith subsystem, denoted by �̂i , is described by the
following state space model:

⎡
⎣ x̂(k + 1, i)

ẑ(k, i)

ŷ(k, i)

⎤
⎦=

⎡
⎣ Axx(k, i) Axv(k, i) Kx(k, i)

Azx(k, i) Azv(k, i) 0
Cx(k, i) Cv(k, i) 0

⎤
⎦
⎡
⎣ x̂(k, i)

v̂(k, i)

y(k, i) − ŷ(k, i)

⎤
⎦ . (6.3)

In addition, signal transmissions among these subsystems, that is, �̂i |Ni=1, are completely the
same as those of the dynamical system �. More specifically,

col
{
v̂(k, i)|Ni=1

}
= �(k)col

{
ẑ(k, i)|Ni=1

}
. (6.4)

To simplify notations, we further abbreviate the vectors col
{
ẑ(k, i)|Ni=1

}
and col

{
v̂(k, i)|Ni=1

}
as ẑ(k) and v̂(k).

Differently from the Luenberger observer described in Chapter 3, each subsystem in the above
estimator only receives information about the external output vector of its associated subsys-
tem in the dynamical system �. This associated subsystem has a state space model similar to
that of itself. This makes the estimator realizable in a distributed way. On the other hand, as
the subsystems of the estimator are connected through Eq. (6.4), information exchange ex-
ists among the estimator subsystems. Existence of these connections distinguish the estimator
from those that independently predict the state vector of each subsystem using its local output
measurements. Fig. 6.1 gives a schematic diagram of this one-step state predictor (OSSP) for
a networked system and of the networked system itself.

In estimations, a basic requirement is that an estimate must be unbiased, that is, the mathemat-
ical expectation of estimation errors must be equal to zero. In addition, it is usually preferable
that the estimation error of an estimator has a minimal covariance matrix. In this section, we
discuss how to find the optimal gain matrix Kx(k, i), k = 0,1,2, · · · , i = 1,2, · · · ,N , such
that for each subsystem of the dynamical system �, the estimate of the state predictor is un-
biased and the covariance matrix of its prediction errors is minimized. In other words, we
need to search the gain matrix Kx(k, i) for each subsystem �̂i such that, at each time instant
i = 0,1,2, · · · , the following two requirements are satisfied for every i = 1,2, · · · ,N :

E(x(k, i) − x̂(k, i)) = 0,

E{(x(k, i) − x̂(k, i)(x(k, i) − x̂(k, i))T } is minimized.

6.2.1 Derivation of the Optimal Gain Matrix

As in Chapter 3, we define the following matrices to simplify mathematical expressions:
Kx(k) = diag

{
Kx(k, i)|Ni=1

}
, A∗#(k) = diag

{
A∗#(k, i)|Ni=1

}
, Bx(k) = diag

{
Bx(k, i)|Ni=1

}
,
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Figure 6.1: A distributed one-step ahead state predictor.

Cx(k) = diag
{
Cx(k, i)|Ni=1

}
, Cv(k) = diag

{
Cv(k, i)|Ni=1

}
, and D(k) = diag

{
D(k, i)|Ni=1

}
,

in which ∗,# = x or z or v. In addition, the vectors col
{
d(k, i)|Ni=1

}
, col

{
w(k, i)|Ni=1

}
,

col
{
y(k, i)|Ni=1

}
, and col

{
ŷ(k, i)|Ni=1

}
are respectively denoted by d(k), w(k), y(k), and ŷ(k).

Using these symbols, we can show through straightforward algebraic manipulations that the
input–output relations of the dynamic system � of Eq. (6.1) and its DOSSP of Eq. (6.3) can
be equivalently described by the following lumped state space models:

[
x(k + 1)

y(k)

]
=
{[

Axx(k) Bx(k) 0
Cx(k) 0 D(k)

]

+
[

Axv(k)

Cv(k)

]
�(k) [I − Azv(k)�(k)]−1 [Azx(k) 0 0]

}⎡⎣ x(k)

d(k)

w(k)

⎤
⎦ ,

(6.5)[
x̂(k + 1)

ŷ(k)

]
=
{[

Axx(k) Kx(k)

Cx(k) 0

]

+
[

Axv(t)

Cv(t)

]
�(k) [I − Azv(t)�(k) ]−1 [Azx(t) 0]

}[
x̂(k)

y(k) − ŷ(k)

]
.

(6.6)

On the basis of these relations, some further matrix operations show that

x̃(k + 1) = [A(k) − Kx(k)C(k)]x̃(k) + Kx(k)D(k)w(k) − Bx(k)d(k), (6.7)
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where x̃(k) = col
{
x̃(k, i)|Ni=1

}
with x̃(k, i) = x̂(k, i) − x(k, i), that is, x̃(k) is the

predictor estimation error vector at the time instant k; moreover, A(k) = Axx(k) +
Axv(k)�(k) [I − Azv(k)�(k)]−1 Azx(k) and C(k) = Cx(k) + Cv(k)�(k) [I −
Azv(k)�(k)]−1 Azx(k).

Using this recursive expression for estimation errors, straightforward algebraic manipulations
show that when the random processes d(k, i) and w(k, i) are white and independent of each
other, as assumed in the problem description, we have

E{x̃(k + 1)} = [A(k) − Kx(k)C(k)]E{x̃(k)}, (6.8)

E{x̃(k + 1)x̃T (k + 1)} = [A(k) − Kx(k)C(k)]E{x̃(k)x̃T (k)}[A(k) − Kx(k)C(k)]T
+ Kx(k)D(k)DT (k)KT

x (k) + Bx(k)BT
x (k). (6.9)

Eq. (6.8) makes it clear that if at the time instant k, each element of the matrix A(k) −
Kx(k)C(k) is of a finite magnitude and the DOSSP is unbiased, then it is also unbiased at the
next time instant k + 1. Note that when the matrix I − Azv(k)�(k) is invertible and each el-
ement of the gain matrix Kx(k) is finite in magnitude, it is certain that every element of the
matrix A(k) − Kx(k)C(k) has only a finite magnitude. In addition, the invertibility of the ma-
trix I − Azv(k)�(k) is guaranteed by the well-posedness of the dynamic system � [4,6–9],
whereas the latter is an essential requirement in constructing a system that can work prop-
erly. Moreover, the finiteness of the gain matrix Kx(k) is essential in actual realizations of a
designed predictor. These arguments mean that these two requirements must usually be sat-
isfied in actual engineering problems. Hence, for a well-designed predictor, if the estimate is
unbiased at its starting time instant, say k = 0, then its unbiasedness is kept afterward.

On the other hand, note that both matrices E{x̃(k)x̃T (k)} and D(k)DT (k) are at least posi-
tive semidefinite. From these properties and Eq. (6.9) we obtain an important characteristic
of the correlation matrix E{x̃(k + 1)x̃T (k + 1)}, which is helpful in establishing the opti-
mality of the derived update gain matrix. To clarify dependence of the correlation matrix of
prediction errors on the gain matrix of the predictor, in the following lemma, we denote by
P(k + 1,Kx(k)) the correlation matrix E{x̃(k + 1)x̃T (k + 1)} at the (k + 1)th time constant
corresponding to the gain matrix Kx(k).

Lemma 6.1. Assume that λ is an arbitrary number belonging to the interval [0,1]. Then,
the following inequality is valid for each pair of matrices Kx1(k) and Kx2(k) with consistent
dimensions:

P {k+1, λKx1(k)+(1−λ)Kx2(k)} ≤ λP (k+1,Kx1(k))+(1−λ)P (k+1,Kx2(k)). (6.10)

Moreover, if the matrix D(k)DT (k) is regular, then the “≤” symbol in this equation can be
replaced by the “=” symbol if and only if λ belongs to the set {0, 1} or Kx1(k) − Kx2(k) is
not of FRR.
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Proof. To shorten mathematical expressions and present essential ideas behind the proof
more clearly, symbols �(k), �(k), and �(k) are adopted to denote respectively the matri-
ces D(k)DT (k) + C(k)P (k)CT (k), A(k)P (k)CT (k), and A(k)P (k)AT (k) + Bx(k)BT

x (k).
From Eq. (6.9) we have that

P(k + 1,Kx(k))

= [A(k) − Kx(k)C(k)]P(k)[A(k) − Kx(k)C(k)]T + Kx(k)D(k)DT (k)KT
x (k) + Bx(k)BT

x (k)

= Kx(k)
{
D(k)DT (k) + C(k)P (k)CT (k)

}
KT

x (k) − A(k)P (k)CT (k)KT
x (k)

− Kx(k)C(k)P (k)AT (k) + A(k)P (k)AT (k) + Bx(k)BT
x (k)

= Kx(k)�(k)KT
x (k) − �(k)KT

x (k) − Kx(k)�T (k) + �(k). (6.11)

Note that the matrix P(k) is at least positive semidefinite, which is guaranteed by its defini-
tion. We can therefore declare that the matrix D(k)DT (k) + C(k)P (k)CT (k) also is at least
positive semidefinite. Hence, for arbitrary λ ∈ [0, 1],

P(k + 1, λKx1(k) + (1 − λ)Kx2(k))

= [λKx1(k) + (1 − λ)Kx2(k)]�(k) [λKx1(k) + (1 − λ)Kx2(k)]T

− �(k) [λKx1(k) + (1 − λ)Kx2(k)]T − [λKx1(k) + (1 − λ)Kx2(k)]�T (k) + �(k)

= λ2Kx1(k)�(k)KT
x1(k) + λ(1 − λ)Kx1(k)�(k)KT

x2(k) + λ(1 − λ)Kx2(k)�(k)KT
x1(k)

+ (1 − λ)2Kx2(k)�(k)KT
x2(k) + λ

{
−�(k)KT

x1(k) − Kx1(k)�T (k) + �(k)
}

+ (1 − λ)

×
{
−�(k)KT

x2(k) − Kx2(k)�T (k) + �(k)
}

= λ
{
Kx1(k)�(k)KT

x1(k) − �(k)KT
x1(k) − Kx1(k)�T (k) + �(k)

}

+ (1 − λ)
{
Kx2(k)�(k)KT

x2(k) − �(k)KT
x2(k) − Kx2(k)�T (k) + �(k)

}

− λ(1 − λ) {Kx1(k) − Kx2(k)}�(k) {Kx1(k) − Kx2(k)}T
≤ λP (k + 1,Kx1(k)) + (1 − λ)P (k + 1,Kx2(k)). (6.12)

When the matrix D(k)DT (k) is positive definite, the matrix �(k) is certainly positive def-
inite, as �(k) = D(k)DT (k) + C(k)P (k)CT (k) by its definition. Therefore, when λ �∈
{0}⋃{1} and Kx1(k) − Kx2(k) is of full row rank, it is certain that

λ(1 − λ) {Kx1(k) − Kx2(k)}�(k) {Kx1(k) − Kx2(k)}T > 0. (6.13)

The proof can now be completed by combining Eqs. (6.12) and (6.13).



Distributed State Estimation in an LSS 191

Denote the set consisting of all permissible gain matrices Kx(k) in the above predictor de-
sign by Kx. Clearly, if Kx1(k),Kx2(k) ∈ Kx, then λKx1(k) + (1 − λ)Kx2(k) also belongs
to Kx for an arbitrary real number λ. We can therefore declare that the set Kx is convex. From
Lemma 6.1 and properties of convex functions [10] we have that if for each k = 1,2, · · · ,N ,
the gain matrix Kx(k) minimizes the correlation matrix E{x̃(t + 1)x̃T (t + 1)}, then the gain
matrix diag{Kx(k)|Nk=1} is certainly a global minimizer.

Various efficient algorithms have been developed for convex optimizations, such as the cut-
ting plane method, the interior point method, and so on [11]. It is worth pointing out, however,
that these algorithms are not very suitable for obtaining the optimal gain matrix Kx(k). Es-
sentially, it is because that the available convex optimization methods cannot be very easily
implemented online. Moreover, for a large-scale networked system, which usually includes a
great amount of subsystems and whose state vector x(k) usually has a high dimension, even
off-line optimizations are often computationally prohibitive.

Denote E{x̃(k)x̃T (k)} and E{x̃(k, i)x̃T (k, j)} respectively by P(k) and Pij (k), i, j =
1,2, · · · ,N . Assume that the dimensions of x(k, i) and v(k, i) are respectively mxi and mvi .
Define the integers Mxi , Mvi , Mx, and Mv respectively as Mx =∑N

k=1 mxk , Mv =∑N
k=1 mSk ,

and Mxi = MSi = 0 when i = 1 and Mxi =∑i−1
k=1 mxk and Mvi =∑i−1

k=1 mvk when 2 ≤ i ≤ N .
Moreover, define the matrices

Jxi = col
{
0Mxi×mxi

, Imxi
,0(Mx−Mx,i+1)×mxi

}
and

Jvi = col
{
0Mvi×mvi

, Imvi
,0(Mv−Mv,i+1)×mSi

}
.

Then, from the definitions of the matrices P(k) and Pij (k) we can straightforwardly prove
that

Pij (k) = J T
xiP (k)Jxj , ∀ i, j = 1,2, · · · ,N. (6.14)

From these relations we obtain the optimal gain matrix Kx(k, i) that minimizes Pii(t + 1). Its
mathematical derivations are deferred to the appendix of this chapter.

Theorem 6.1. Denote the matrices [Axx(k, i) Axv(k, i)] and [Cx(k, i) Cv(k, i)] respectively
by Ax(k, i) and C(k, i). Define the matrix

W(k, i) =
[

JT
xi

J T
vi�(k) [ I − Azv(k)�(k) ]−1 Avx(k)

]
. (6.15)

Assume that the matrix D(k, i) is of full row rank. For every subsystem �i and every time
instant k, denote by K

opt
x (k, i) the optimal gain matrix Kx(k, i) that minimizes the covariance

matrix Pii(k + 1). Then this optimal gain matrix can be expressed as

K
opt
x (k, i) = Ax(k, i)

{
I + W(k, i)P (k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1
C(k, i)

}−1
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× W(k, i)P (k)WT (k, i)CT (k, i)
[
D(k, i)DT (k, i)

]−1
. (6.16)

The above analysis shows that if Kx(k) minimizes P(t + 1), then it is necessary that its
diagonal block matrix Kx(k, i) minimizes Pii(t + 1), i = 1,2, · · · ,N . On the other hand, The-
orem 6.1 declares that when the matrix D(k, i) is of full row rank, there is only one Kx(k, i)

that minimizes Pii(t + 1). In addition to these, the results of Lemma 6.1 make it clear that if
D(k)DT (k) is invertible, which is equivalent to that for every i ∈ {1, 2, · · · , N}, the matrix
D(k, i) is of full row rank, then there is only one Kx(k) that minimizes P(k + 1). These imply

that diag
{
K

opt
x (k, i)|Ni=1

}
is usually the optimal gain matrix for the DOSSP.

Using the optimal gain matrix K
opt
x (k, i), i = 1,2, · · · ,N , we derive an explicit expression for

the covariance matrix E{x̃(t + 1)x̃T (t + 1)}, which is given by the following theorem.

Theorem 6.2. Concerning the distributed one-step ahead state predictor, assume that the
gain matrix for its ith subsystem �̂i is given by Eq. (6.16), i = 1,2, · · · ,N . Partition the co-
variance matrix P(k + 1) of its prediction errors consistently with the dimensions of the state
vectors of its subsystems. Then, for every i, j = 1,2, · · · ,N , the ith row j th column block
matrix of the covariance matrix P(k + 1) can be recursively expressed as follows:

Pij (k + 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ax(k, i)
{
I + W(k, i)P (k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1
C(k, i)

}−1

× W(k, i)P (k)WT (k, i)AT
x (k, i) + Bx(k, i)BT

x (k, i), i = j,

Ax(k, i)
{
I + W(k, i)P (k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1
C(k, i)

}−1

× W(k, i)P (k)WT (k, j)
{
I + CT (k, j)

[
D(k, j)DT (k, j)

]−1

× C(k, j)W(t, j)P (k)WT (t, j)
}−1

AT
x (k, j), i �= j.

(6.17)

The proof of Theorem 6.2 is given in the appendix attached to the end of this chapter.

When there exists i ∈ {1,2, · · · ,N} such that the matrix D(k, i)DT (k, i) is only positive
semidefinite, that is, the matrix D(k, i) is row rank deficient, similar results can also be ob-
tained [4].

Theorems 6.1 and 6.2 make it clear that for the suggested DOSSP, both its optimal gain ma-
trix and its covariance matrix of prediction errors can be computed in a recursive way. This
is very similar to that of the widely known Kalman filter. However, from viewpoint of both
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realizations and computations, there are significant differences between the state predictor dis-
cussed here and the lumped Kalman filter. More specifically, in obtaining an estimate about
the state vector of the plant �, the DOSSP utilizes only local plant output measurements
obtained from an associated subsystem of the plant. This is helpful in reducing costs of com-
munications and so on and in improving realizability of the estimator when the plant has a
large number of subsystems. On the other hand, in actual computations of the estimates of the
DOSSP, inversions are required only for matrices with dimensions (mxi +mvi )× (mxi +mvi ),
i = 1,2, · · · ,N , which is independent of the subsystem number N . This implies that this
state prediction method is scalable to plants with great amount of subsystems, which is sig-
nificantly different from that of the lumped Kalman filter. As a matter of fact, in the lumped
Kalman filter, the inversion of a (

∑N
i=1 mxi ×∑N

i=1 mxi )-dimensional matrix should usually
be calculated. Note that mxi increases linearly with the increment of the subsystem num-
ber N . Moreover, matrix inversions are generally computationally expensive. Furthermore,
computations of the inverse of a large-dimensional matrix has a very high probability to meet
numerical stability problems [12,13]. It is clear that for a networked system with a large num-
ber of subsystems, the above state prediction procedure is more computationally attractive
from the viewpoint of both computational costs and numerical stability.

To clarify these points, we give a brief comparison of the computation complexities of these
two state prediction methods. When the lumped Kalman filter is used in predicting the state
vector of system �, the corresponding computational complexity in each iteration of state

prediction is of order
(∑N

i=1 mxi

)3
. On the other hand, when the DOSSP given by Theo-

rems 6.1 and 6.2 is utilized, it is of order (N + 1)
∑N

i=1(mxi + mvi )
3. Note that mvi is in

general appreciably smaller than mxi in an engineering system [6,14–17]. These imply that
for a plant with a large number of subsystems, that is, a plant with large N , the computational
complexity of the DOSSP is usually far less than that of the lumped Kalman filter. To make
this point clearer, we consider here a simple situation in which the dimension of the state
vector of each plant subsystem is equivalent. Denote this dimension by mx. Moreover, as-
sume that mvi ≤ mx. Then straightforward algebraic operations show that the ratio between

(N + 1)
∑N

i=1(mxi + mvi )
3 and

(∑N
i=1 mxi

)3
is not greater than 8

N
+ 8

N2 . This means that

when the number of plant subsystems is regarded to be a variable, the computational com-
plexity of the DOSSP increases one order slower than that of the lumped Kalman filter.

On the other hand, when the Kalman filter is independently applied to each individual subsys-
tem without considering subsystem interactions, the computational complexity in every state
prediction iteration is of order

∑N
i=1 m3

xi , which increases only linearly with the subsystem
number N . Computationally, this estimator is more attractive. However, its complete igno-
rance of subsystem interactions may often cause divergent estimates, which is illustrated by a
numerical example in [4].
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Figure 6.2: Implementation of the optimal distributed one-step ahead state predictor.

Note that the Kalman filter usually has a full gain matrix, which implies that the measured
outputs of all plant subsystems are used in estimating the states of one subsystem. In con-
trast to this, in the aforementioned estimation procedure, the gain matrix has a block diagonal
structure, which makes the associated optimal predictor more suitable to be implemented in a
distributed way than the Kalman filter. However, it is worth emphasizing that it is still not able
to realize the derived DOSSP in a completely distributed way. The reasons are that in com-
puting the gain matrix K

opt
x (k, i) for the subsystem �̂i , information about the parameters of

the whole system and the covariance matrix P(k) is required, that is, some coordinations are
still necessary among subsystems in this DOSSP. Fig. 6.2 provides a schematic illustration
for the implementation of the derived DOSSP for a networked system. This implementation
procedure can be briefly described as follows.

At every prediction iteration, each plant subsystem transmits its system parameters to a
unit, which is called the coordination center, that has stored the covariance matrix of predic-
tion errors at the previous time instant. In this collaboration unit, the optimal gain matrices
K

opt
x (k, i)|Ni=1 are computed, and the covariance matrix P(k) is updated according respec-

tively to Eqs. (6.16) and (6.17). After this update, the computed optimal gain matrices are sep-
arately delivered to each subsystem �̂i of the state predictor described by Eqs. (6.3) and (6.4),
and the latter renews its state vector x̂(k, i) according to Eq. (6.3) on the basis of the local
plant output measurement y(k, i) and v̂(k, i) received from all subsystems that have direct
influences on its state vector and output vector.
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The existence of the coordination center makes the aforementioned predictor not completely
distributed. To emphasize this character of the state predictor, it is called a coordinated dis-
tributed one step ahead state predictor (CDOSSP). The remaining theoretical challenging
issue is to investigate possibilities or conditions for releasing these coordinations and mak-
ing the estimator completely distributed. For plants having time invariant dynamics, if the
covariance matrix of state prediction errors converges with the increment of the temporal vari-
able k, then from Theorem 6.2 it is clear that the optimal gain matrix of each subsystem in
the CDOSSP, that is, K

opt
x (k, i), also converges. Under such a situation, it is possible to re-

place K
opt
x (k, i) with limt→∞ K

opt
x (k, i) for every subsystem �̂i in the state predictor. This

replacement makes the collaboration unit no longer necessary and the state predictor com-
pletely distributed, at the cost of sacrificing the optimality of the state predictor in its transient
period. This approach has also been widely adopted in lumped state estimations to reduce
their computational costs, which leads to a suboptimal estimator [18–20]. However, further
efforts are required to establish convergence conditions for the CDOSSP and explicit expres-
sions for the associated steady-state covariance matrix and the optimal gain matrix.

Now, we consider storage requirements in the realization of the aforementioned CDOSSP.
Note that to predict plant states using the lumped Kalman filter, in addition to the cur-
rent system parameters and the previous covariance matrix of prediction errors, the pre-
dicted state vector of the whole plant at the previous time instant is also required. These
mean that when storage requirement has to be taken into account, the numbers of data to
be stored in each iteration by the lumped Kalman filter and the CDOSSP are respectively(∑N

i=1 mxi + 1
)∑N

i=1 mxi and
∑N

i=1 mxi ×∑N
i=1 mxi . Obviously, although less storage units

are required by the CDOSSP, the difference between these two state predictors is not very sig-
nificant, especially when

∑N
i=1 mxi is large.

In addition to these, in the implementation of the lumped Kalman filter, besides the system pa-
rameters, all measured plant outputs should also be brought together. Let myi , mzi , mdi , and
mwi denote respectively the dimensions of the vectors y(k, i), z(k, i), d(k, i), and w(k, i).
Then, if each subsystem asks for an estimate of the plant state vector, the number of data
that should be transferred in each state prediction between the plant and the Kalman filter,
is clearly equal to

∑N
i=1(mxi + mzi + myi )(mxi + mvi + mdi + mwi) +∑N

i=1 mvi

∑N
i=1 mzi +∑N

i=1 myi + N
∑N

i=1 mxi . On the other hand, when the aforementioned CDOSSP is used, data
transmissions are required only for the system parameters of the plant, the gain matrix of each
subsystem in the state predictor, and the internal plant outputs. The number of the elements
belonging to these vectors or matrices amounts to

∑N
i=1(mxi +mzi +myi )(mxi +mvi +mdi +

mwi) +∑N
i=1 mvi

∑N
i=1 mzi +∑N

i=1 mximyi +∑N
i=1 mvi . Obviously, when the plant has a

large number of subsystems, communication is generally a demanding requirement for both
the lumped Kalman filter and the CDOSSP.
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On the other hand, note that in engineering problems, mvi is usually not greater than myi ,
and subsystems having direct interactions are rarely far away from each other geometri-
cally [6,9,16]. Therefore, if N is much greater than maxi{myi}, then some communication
cost reduction can be expected through adopting the CDOSSP. In addition, if plant param-
eters are known prior to estimations, then they can be stored in a state predictor, and their
on line transmissions are no longer required. Under this situation, the numbers of data re-
quired to be transmitted for the lumped Kalman filter and the CDOSSP are respectively∑N

i=1 myi + N
∑N

i=1 mxi and
∑N

i=1 mximyi +∑N
i=1 mvi , and a significant communication

cost reduction can be anticipated by the CDOSSP.

Compared with other existing distributed state estimation methods, such as those reported
in [1–3], the plant model adopted here is more general and more appropriate in describing
engineering systems. This means that the associated estimation procedure is applicable to a
much wider class of actual systems. Moreover, the aforementioned analysis also reveals that
this CDOSSP can be more easily scaled to a plant with a large amount of subsystems and ar-
bitrary subsystem interactions.

6.2.2 Relations With the Kalman Filter

In the previous subsection, an optimal CDOSSP has been derived for a time-varying linear
networked system, which can be recursively realized. Some of its important properties have
also been discussed there. In this subsection, it will be made clear that the gain matrix in each
subsystem of the optimal CDOSSP is equal to that of the well-known Kalman filter when only
the output measurements of one plant subsystem are used to estimate the plant state vector.
This relation may be helpful in reducing the implementation costs of the optimal CDOSSP
and analyzing its convergence properties. In the next subsection, we discuss its applications to
the robustification of the distributed state prediction procedure.

First, we introduce the following dynamic system �̄i , and its one-step state predictions are
performed with the Kalman filter:

x(k + 1) = A(k)x(k) + BT(k)d(k), y(k, i) = C̄i(k)x(k) + D(k, i)w(k, i) (6.18)

where C̄i(k) = JT
yiC(k). Denote by P

[kal]
i (k) the covariance matrix of the one-step prediction

error of the Kalman filter at the (k + 1)th sampling time. Moreover, assume that the value of
this matrix has been calculated and its determinant is not equal to zero. Then, by means of the
predictor update form of the Kalman filter [19,20], it can be straightforwardly shown that the
Kalman filter of this dynamic system �̄i can be expressed as

¯̂x(k + 1) = A(k) ¯̂x(k) + K
[kal]
i (k)[y(k, i) − C̄i(k) ¯̂x(k)], (6.19)
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where

K
[kal]
i (k) = A(k)

[
(P

[kal]
i (k))−1 + CT

i (k)Ci(k)
]−1

CT
i (k)[D(k, i)DT (k, i)]−1/2. (6.20)

Moreover, the covariance matrix of prediction errors at the time instant k + 1, that is,
P

[kal]
i (k + 1), has the recursive representation

P
[kal]
i (k + 1) = A(k)

[
(P

[kal]
i (k))−1 + CT

i (k)Ci(k)
]−1

AT (k) + BT(k)BT
T (k). (6.21)

To establish relations between the Kalman filter and the CDOSSP given in the aforementioned
subsection, we derive the following expression for the optimal gain matrix of the CDOSSP
and the associated covariance matrix of estimation errors.

Theorem 6.3. Assume that the matrix D(k) is of full row rank. Define the matrices Ci(k) =
JT

yi [D(k)DT (k)]−1/2C(k) and Ai(k) = JT
xiA(k), i = 1,2, · · · ,N . Then, for each subsys-

tem �i , the gain matrix K
opt
T (k, i) of the optimal CDOSSP can be rewritten as

K
opt
T (k, i) = Ai(k)

[
P −1(k) + CT

i (k)Ci(k)
]−1

CT
i (k)[D(k, i)DT (k, i)]−1/2. (6.22)

In addition, for each i, j = 1,2, · · · ,N , the covariance matrix Pij (k + 1) has the following
equivalent expression:

Pij (k + 1)

=
⎧⎨
⎩

Ai(k)
[
P −1(k) + CT

i (k)Ci(k)
]−1

AT
i (k) + BT(k, i)BT

T (k, i), i = j,

Ai(k)
[
P −1(k) + CT

i (k)Ci(k)
]−1

P −1(k)
[
P −1(k) + CT

j (k)Cj (k)
]−1

AT
j (k), i �= j.

(6.23)

A proof of the theorem is given in the appendix of this chapter.

Recall that Ai(k) = JT
xiA(k). Straightforward comparisons of Eqs. (6.22) and (6.20) and of

Eqs. (6.23) and (6.21) show that if P
[kal]
i (k) = P(k), then, for every i = 1,2, · · · ,N ,

K
opt
T (k, i) = JT

xiK
[kal]
i (k), Pii(k + 1) = JT

xiP
[kal]
i (k + 1)Jxi . (6.24)

It is interesting to note that when the plant has only one subsystem, that is, the plant itself is
lumped, the matrix Jxi vanishes to the identity matrix. The relations of Eq. (6.24) make it
clear that for a lumped plant, the CDOSSP derived in the previous subsection reduces to the
Kalman filter. This should not be an astonishment, noting that the objectives of the CDOSSP
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are to give an unbiased estimate for the state vector of each subsystem with minimal covari-
ance matrix of estimation errors, which are consistent with those of the Kalman filter. On
the other hand, when the number of plant subsystems is greater than one, the above rela-
tions reveal that, associated with the ith plant subsystem �i , the gain matrix K

opt
T (k, i) of

the CDOSSP is equivalent to the ith block of the gain matrix of the Kalman filter, in which
the state vector of the whole system is estimated using only the measured output vector of the
ith subsystem. Moreover, the covariance matrix for prediction errors with this subsystem by
the CDOSSP is equivalent to the ith diagonal block of the covariance matrix of the associ-
ated Kalman filter. This is a quite surprising property, noting that although in both the Kalman
filter and the CDOSSP, the unbiasedness and covariance matrices are adopted to measure pre-
diction performances, the Kalman filter of the dynamic system �̄i uses global performance
indices of the dynamic system � but its local measurement, whereas in deriving the CDOSSP,
both the adopted prediction performances and the adopted measurements are local.

Based on Theorem 6.3, prediction accuracies can also be compared between the predictor
given in the previous subsection and the lumped Kalman filter, which uses simultaneously all
the plant output measurements.

Corollary 6.1. Assume that the lumped Kalman filter uses simultaneously all the measured
outputs of each plant subsystem. Moreover, assume that the covariance matrix of its pre-
diction errors at the time instant k equals P̄ [kal](k). Denote its ith diagonal block matrix
by P̄

[kal]
ii (k). Furthermore, assume that P̄ [kal](k) − P(k) is negative semidefinite and P̄ [kal](k)

is invertible. Then, for every i = 1,2, . . . ,N , we certainly have that

Pii(k + 1) ≥ P̄
[kal]
ii (k + 1). (6.25)

Proof. When the lumped Kalman filter is used in the prediction of the plant state vector, di-
rect applications of its predictor update form [19,20] show that under the condition that the
covariance matrix P̄ [kal](k) is invertible, we have that

P̄ [kal](k + 1) = A(k)

[
(P̄ [kal](k))−1 + CT (k)

[
D(k)DT (k)

]−1
C(k)

]−1

AT (k) + Bx(k)BT
x (k).

(6.26)

On the other hand, from the definitions of the matrices Jyj and Cj we can straightforwardly
prove that, for each i ∈ {1,2, · · · ,N},

CT (k)
[
D(k)DT (k)

]−1
C(k)

=
N∑

j=1

{
JT

yj

[
D(k)DT (k)

]−1/2
C(k)

}T {
JT

yj

[
D(k)DT (k)

]−1/2
C(k)

}
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=
N∑

j=1

CT
j (k)Cj (k)

≥ CT
i (k)Ci(k). (6.27)

Moreover, note that whenever the matrix P̄ [kal](k) is invertible, the seminegative definiteness
of the matrix P̄ [kal](k) − P(k) is equivalent to (P̄ [kal](k))−1 ≥ P −1(k). We can therefore de-
clare that when P̄ [kal](k) − P(k) is negative semidefinite and P̄ [kal](k) is regular, it is certain
that

(P̄ [kal](k))−1 + CT (k)
[
D(k)DT (k)

]−1
C(k) ≥ P −1(k) + CT

i (k)Ci(k), i = 1,2, · · · ,N.

(6.28)

Note also that both matrices CT (k)
[
D(k)DT (k)

]−1
C(k) and CT

i (k)Ci(k) are at least positive
semidefinite. The above inequalities are equivalent to that, for each i ∈ {1, 2, · · · , N},
{
(P̄ [kal](k))−1 + CT (k)

[
D(k)DT (k)

]−1
C(k)

}−1

≤
{
P −1(k) + CT

i (k)Ci(k)
}−1

. (6.29)

Substitution of this inequality into Eq. (6.26) leads to

P̄ [kal](k + 1) ≤ A(k){P −1(k) + CT
i (k)Ci(k)}−1AT (k) + Bx(k)BT

x (k). (6.30)

We therefore have that

P̄
[kal]
ii (k + 1) = JT

yi P̄
[kal](k + 1)Jyi

≤ JT
yi

{
A(k)

[
P −1(k) + CT

i (k)Ci(k)
]−1

AT (k) + Bx(k)BT
x (k)

}
Jyi

= Ai(k){P −1(k) + CT
i (k)Ci(k)}−1AT

i (k) + Bx(k, i)BT
x (k, i)

= Pii(k + 1). (6.31)

This completes the proof.

Recall that the matrix P̄ [kal](k + 1) stands for the covariance matrix of the prediction errors
of the lumped Kalman filter at the time instant k + 1. Obviously, its ith diagonal block ma-
trix represents the covariance matrix associated with the plant ith subsystem �i . Assume that
at the time instant k = 0, the lumped Kalman filter and the CDOSSP start with completely
the same estimate of the plant state vector. The above arguments imply that at every succeed-
ing time instant and for each state of the plant, it is certain that the lumped Kalman filter has
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a higher prediction accuracy than the CDOSSP. As a matter of fact, by Eqs. (6.23), (6.26),
and (6.27) and by the definitions of the matrices Ai(k)|Ni=1 some straightforward algebraic
manipulations show that, for an arbitrary i ∈ {1,2, · · · ,N},

Pii(k + 1) − P̄
[kal]
ii (k + 1)

= Ai(k)

⎧⎪⎨
⎪⎩
[
P −1(k) + CT

i (k)Ci(k)
]−1 −

⎡
⎣[P̄ [kal](k)]−1 +

N∑
j=1

CT
j (k)Cj (k)

⎤
⎦

−1
⎫⎪⎬
⎪⎭AT

i (k).

Note that
∑N

j=1 CT
j (k)Cj (k) ≥ CT

i (k)Ci(k) for every i = 1,2, · · · ,N . It is clear that when

P(k) ≥ P̄ [kal](k), it is certain that

P −1(k) + CT
i (k)Ci(k) ≤ [P̄ [kal](k)]−1 +

N∑
j=1

CT
j (k)Cj (k).

Hence Pii(k + 1) ≥ P̄
[kal]
ii (k + 1). A repeated utilization of this relation leads to the afore-

mentioned conclusions that the lumped Kalman filter always outperforms the CDOSSP in
prediction accuracies, that is, compared to the lumped Kalman filter, the prediction accuracy
of the CDOSSP is generally worse. Moreover, its convergence rate is usually slower. These
conclusions can be considered reasonable noting that the predictor CDOSSP utilizes less in-
formation in estimating the states of every subsystem.

6.2.3 Robustification of the Distributed Predictor

A system model is usually an approximation of its dynamics, which means that there are often
discrepancies between the output behaviors of the model and the actual outputs of the plant,
even when they are stimulated by the same input signal. For plants working in various differ-
ent environments, when their working mechanisms are not very clear, these discrepancies may
be very large. Well-known examples include chemical processes, biochemical processes, and
so on. These imply that if a state estimator is very sensitive to modeling errors, then it may
not work in line with its original design purposes. Although the Kalman filter has been suc-
cessfully applied to many engineering problems, such as target tracking, global positioning,
hydrological modeling, atmospheric monitoring, economic data analysis, automated drug de-
livery, and so on, there also exist situations in which its performances are greatly sacrificed
by modeling errors. To overcome these drawbacks, various approaches have been suggested,
such as the H∞ estimator, set-valued predictions, guaranteed cost designs, and so on [20,21].
In [22,23], a sensitivity penalization-based method is derived, which can deal with nonlinear
parametric modeling errors, and has been extended to situations in which there are random
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data transmission failures in [24,25]. An explicit formula of this robust state estimator and its
derivations are already given in Chapter 4. More specifically, in the derivations of this robust
estimator, an interpretation of the Kalman filter is utilized, which is based on deterministic
least squares/maximum likelihood estimations. Moreover, to increase the robustness of the
obtained estimator, a penalty is introduced into the cost function on the sensitivity of the so-
called innovation process to modeling errors. An outstanding characteristic of this robust
estimator is that it can be recursively realized without verifying any conditions. Specifically,
this robust estimator has almost the same form as that of the Kalman filter.

In this subsection, we discuss a robustification of the CDOSSP utilizing its relations to the
Kalman filter given in the previous subsection.

To achieve this purpose, define the cost function

J (x(k), d(k)) = 1

2

{
[x(k) − ¯̂x(k)]T (P

[kal]
i (k))−1[x(k) − ¯̂x(k)] + dT (k)d(k)

+ [y(k, i) − C̄i(k)x(k)]T [D(k, i)DT (k, i)]−1[y(k, i) − C̄i(k)x(k)]
}

,

(6.32)

and let xopt(k) and dopt(k) denote respectively the state vector and external disturbance vec-
tor that make this cost function achieve its minimum. Obviously, the function J (x(k), d(k)) is
convex about the variables x(k) and d(k). On the other hand, from the assumptions that both
w(k, i) and d(k, i) are normally distributed and independent of each other and from Eq. (6.5)
we can easily understand that the prediction result of the Kalman filter at the previous time
instant can be interpreted as that x(k) has the normal distribution with expectation ¯̂x(k) and
covariance matrix P

[kal]
i (k) [18]. With the availability of a new measurement of the plant out-

put vector, that is, y(k, i), some new information about the plant state vector x(k) is obtained,
and its estimate should be enhanced by this new measurement, provided that the estimator is
optimal. In this enhancement, the aforementioned distribution becomes an a priori knowledge
about the plant state vector x(k), and the newly obtained information is used to reduce uncer-
tainty of its estimate. From these aspects, xopt(k) and dopt(k) can be respectively interpreted
as the newly obtained measurement y(k, i) based maximum likelihood estimates for x(k) and
d(k) [18,22]. Hence, the one-step prediction of the plant state vector x(k + 1) provided by the
Kalman filter using the plant output measurements y(j, i)|kj=0, that is, ¯̂x(k + 1) of Eq. (6.19),
is equal to A(k)xopt(k) + BT(k)dopt(k).

To reduce the influence of modeling errors on this one-step ahead state prediction, we adopt
the same approach as that utilized in the robustification of the Kalman filter through sensitiv-
ity reductions, which is discussed in Chapter 4, that is, to make the associated cost function
less selective to modeling errors or, in other words, to reduce the variation magnitude of



202 Chapter 6

the desirable values of the variables to be optimized when some or all parameters defining
this cost function deviate from their normal values. Obviously, this can be achieved through
adding a penalty into the cost function defined by Eq. (6.32) on the derivative vector of the in-
novation process y(k, i) − C̄i(k)x(k) with respect to parametric modeling errors, noting that it
is the unique factor in the cost function that depends on the parameters of the adopted system
model.

This approach is firstly adopted in [22] and [23] to robustify the lumped Kalman filter. In this
subsection, we apply these ideas in the robustification of the distributed state predictor derived
in Subsection 6.2.1.

Specifically, let εj (k, i), j = 1,2, · · · ,mi , represent parametric errors in the model of the ith
plant subsystem �i at the time instant k, and let γ (k, i) be a number belonging to the inter-
val (0, 1). Assume that connections among plant subsystems are still described by Eq. (6.2),
but there may exist some errors in the transmissions of the plant internal output signals, which
make the subsystem connection matrix �(k) no longer exact. In addition, parametric errors
are also permitted in the state space model of each plant subsystem, which are independent
of each other. More precisely, it is assumed that the dynamics of the plant ith subsystem is
described by
⎡
⎣ x(k + 1, i)

z(k, i)

y(k, i)

⎤
⎦

=
⎡
⎣ Axx(k, i, ε(k, i)) Axv(k, i, ε(k, i)) Bx(k, i, ε(k, i))

Azx(k, i, ε(k, i)) Azv(k, i, ε(k, i)) 0
Cx(k, i, ε(k, i)) Cv(k, i, ε(k, i)) 0

0
0

D(k, i, ε(k, i))

⎤
⎦
⎡
⎢⎢⎣

x(k, i)

v(k, i)

d(k, i)

w(k, i)

⎤
⎥⎥⎦ ,

(6.33)

where ε(k, i) stands for the vector consisting of deviations of the parameters of the ith plant
subsystem from their nominal values. This vector usually contains several independent el-
ements. In particular, we assume for a clear presentation that the ith plant subsystem has
mi uncertain and independent parameters and that ε(k, i) = col{εj (k, i)|mi

j=1}. In addition
to these, it is also assumed that every subsystem matrix has at least the first-order derivative
with respect to each associated parametric error. This assumption is adopted only for avoiding
awkward statements. Moreover, the number mi can also be permitted to vary with the time in-
stant k. This dependence is omitted to make expressions concise although the results remain
valid.

Let εj,φ(k), j = 1,2, · · · ,mφ , represent parametric errors in the subsystem connection matrix
�(k). Similar to the plant state vector x(k), define the parametric error vector
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ε(k) = col
{

col{εj (k, i)|mi

j=1}
∣∣∣N
i=1

, col{εj,φ(k)|mφ

j=1}
}

.

Moreover, define every involved matrix, for example, ATT(k, ε(k)), A(k, ε(k)), and so on,
completely as its counterpart without modeling errors. When εj (k, i) = 0 for each j =
1,2, · · · ,mi and/or for each i = 1,2, · · · ,N , and/or εj,φ(k) = 0 for every j = 1,2, · · · ,mφ ,
to avoid complicated expressions, the variables representing modeling errors in these matrices
are deleted, and these matrices are abbreviated to their counterparts without modeling errors.
Let P rob

i (k) represent the pseudo-covariance matrix of prediction errors of the robustified

OSSP of the dynamic system 
̄i at time k, and let ˜̂x(k) be the corresponding state prediction.
Then, the modified cost function related to this robustified OSSP can be written as

J̄ (x(k), d(k)) = γ (k, i)J (x(k), d(k))

+ 1 − γ (k, i)

2

[
(�)T × ∂(y(k, i) − C̄i(k, ε(k))x(k))

∂ε(k)

]∣∣∣∣
ε(k)=0

. (6.34)

Here, P
[kal]
i (k) and ¯̂x(k) of Eq. (6.32) are replaced respectively by P rob

i (k) and ˜̂x(k). Using
this modified cost function, we can derive a robust OSSP, which has a similar form as that of
the Kalman filter. Its derivation is given in the appendix.

Theorem 6.4. Denote the matrix col
{

col
{

∂C̄i (k,ε(k))
∂εl(k,j)

∣∣∣mj

l=1

}∣∣∣N
j=1

,
∂C̄i (k,ε(k))

∂εl,φ(k)

∣∣∣mφ

l=1

}∣∣∣∣
ε(k)=0

by H(k, i). Assume that the invertible matrix P rob
i (k) is given. Then, an OSSP of the dynamic

system of equation (6.33), which is robust against parametric errors represented by the vector
ε(k), is given as

˜̂x(k + 1) = Â(k) ˜̂x(k) + K rob
i (k)[y(k, i) − C̄i(k) ˜̂x(k)], (6.35)

where

K rob
i (k) = Â(k)

[
(P rob

i (k))−1 + CT
i (k)Ci(k)

]−1
CT

i (k)[D(k, i)DT (k, i)]−1/2, (6.36)

Â(k) = A(k)

[
(P rob

i (k))−1 + CT
i (k)Ci(k) + 1 − γ (k, i)

γ (k, i)
HT (k, i)H(k, i)

]−1

×
[
(P rob

i (k))−1 + CT
i (k)Ci(k)

]
. (6.37)

In addition, P rob
i (k + 1) can be recursively computed as

P rob
i (k + 1) = Â(k)

[
(P rob

i (k))−1 + CT
i (k)Ci(k)

]−1
ÂT (k) + Bx(k)BT

x (k). (6.38)
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Through a comparison of Eqs. (6.35)–(6.38) with Eqs. (6.16)–(6.18), we can observe that
except the matrix Â(k), these two one-step ahead state predictors have completely the same
form. On the other hand, the matrix Â(k) can be computed from system matrices and the
matrix P rob

i (k). Moreover, this matrix equals A(k) when the design parameter γ (k, i) is cho-
sen as γ (k, i) = 1; that is, when robustness against modeling errors is not taken into account,
this state predictor reduces to the Kalman filter. This conclusion is in a good agreement with
Eq. (6.34), in which the associated cost function equals to that when γ (k, i) = 1.

From these observations and the relations given in the previous subsection among the
CDOSSP and from the Kalman filter and least squares/maximum likelihood estimations we
can declare that when the plant model with parametric errors is described by Eq. (6.33), a rea-
sonable approach to robustify the CDOSSP of Eq. (6.3), is to assign its gain matrix KT(k, i)

as KT(k, i) = JT
xiK

rob
i (k), i = 1,2, · · · ,N . On the basis of these gain matrices, we can derive

a recursive formula similar to that of Eq. (6.17) for the associated pseudo-covariance matrix
of prediction errors. This means that the robustified OSSP can still be realized in a distributed
way and it is feasible to scale it to a linear time-varying plant with a large number of subsys-
tems.

6.3 Distributed State Filtering

In the previous section, we derived a distributed state predictor for a plant with several sub-
systems using the criteria of unbiasedness and minimal covariance matrix of local estimation
errors. In this section, we investigate distributed state filtering with similar ideas.

To this purpose, for each time instant k and every subsystem �i , define the matrices

Āxv(k, i) = [0mxi×mvi
Axv(k, i)

]
, Āzx(k, i) =

[
Azx(k + 1, i)Axx(k, i)

Azx(k, i)

]
,

Āzv(k, i) =
[

Azv(k + 1, i) Azx(k + 1, i)Axv(k, i)

0mzi×mvi
Azv(k, i)

]
,

C̄x(k, i) = Cx(k + 1, i)Axx(k, i), C̄v(k, i) = [Cv(k + 1, i) Cx(k + 1, i)Axv(k, i)] .

Clearly, these matrices are well defined and uniquely determined by the parameters of the
plant ith subsystem.

To get an estimate for the states x(k, i)|Ni=1 of the dynamical system � from the output mea-
surements y(k, i)|Ni=1, we construct the following observer �̄. This observer is also consti-
tuted from N subsystems, but the state space model of its ith subsystem �̄i is given by
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⎡
⎣ x̂(k + 1, i)

ẑ(k, i)

ŷ(k + 1, i)

⎤
⎦=

⎡
⎢⎣

Axx(k, i) Āxv(k, i) Kx(k, i)

Āzx(k, i) Āzv(k, i) 0

C̄x(k, i) C̄v(k, i) 0

⎤
⎥⎦
⎡
⎣ x̂(k, i)

v̂(k, i)

y(k + 1, i) − ŷ(k + 1, i)

⎤
⎦ .

(6.39)

Moreover, these subsystems �̄i |Ni=1 are connected through the following relation using the
subsystem connection matrix of the plant at the time instants k and k + 1:

v̂(k) = �̄(k)ẑ(k), �̄(k) = diag{�(k + 1), �(k)}, (6.40)

where ẑ(k) and v̂(k) are defined in a similar way as those z(k) and v(k) of the plant. More
specifically, ẑ(k) = col

{
ẑ1(k, i)|Ni=1, ẑ2(k, i)|Ni=1

}
and v̂(k) = col

{
v̂1(k, i)|Ni=1, v̂2(k, i)|Ni=1

}
with ẑ1(k, i) and ẑ2(k, i) standing respectively for the vectors consisting of the first and last
mzi elements of the internal output vector ẑ(k, i) and v̂1(k, i) and v̂2(k, i) those of the first
and last mvi elements of the internal input vector v̂(k, i).

Similar to those in the one-step ahead predictor designs, the objective of this section is to find
the optimal gain matrix Kx(k, i), k = 0,1,2, · · · , i = 1,2, · · · ,N , such that for every subsys-
tem, the state estimate x̂(k, i) is unbiased and the covariance matrix of its estimation errors is
minimized together with a recursive formula for its realization.

For this purpose and to simplify mathematical formulas, the same hypotheses are adopted
as those of the previous section on plant process disturbances and measurement errors; that
is, d(k1, i1) and w(k2, i2) are assumed to be independent of each other for all k1, k2, i1,
and i2, and the covariance matrix between arbitrary d(k1, i1) and d(k2, i2), or between arbi-
trary w(k1, i1) and w(k2, i2), is equal to zero whenever k1 �= k2 or i1 �= i2. In addition, the
covariance matrices of d(k, i) and w(k, i) are assumed to be equal to the identity matrix. Fur-
thermore, mathematical expectations of these process disturbances and measurement errors
are assumed to be zero.

Comparisons between Eqs. (6.4) and (6.40) make it clear that although the observer to be de-
signed has formally the same structure as that of the system to be estimated, their subsystem
connection matrices are different from each other. More precisely, the dimensions of the in-
ternal input/output vectors v̂(k, i) and ẑ(k, i) of the state estimator are respectively twice as
those of the plant corresponding vectors v(k, i) and z(k, i). Moreover, the system matrices
Āxv(k, i), Āzx(k, i), and so on are different from their counterparts of the plant. In addition,
the subsystem connection matrix �̄(k) depends not only on the current subsystem connection
matrix �(k + 1) of the plant, but also on its subsystem connection matrix at the previous time
instant, that is, �(k). This is different from the one-step state predictor derived in the previous
section and from traditional observer designs and the well-known Kalman filter [18,20,26].
These differences make distributed state filtering mathematically more involved.
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To have concise expressions, the following matrix representations are adopted in the rest
of this section: A∗#(k) = diag

{
A∗#(k, i)|Ni=1

}
, Ã∗#(k) = diag

{
Ā∗#(k, i)|Ni=1

}
, B∗(k) =

diag
{
B∗(k, i)|Ni=1

}
, C∗(k) = diag

{
C∗(k, i)|Ni=1

}
, C̃∗(k) = diag

{
C̄∗(k, i)|Ni=1

}
, D(k) =

diag
{
D(k, i)|Ni=1

}
, and Kx(k) = diag

{
Kx(k, i)|Ni=1

}
, where ∗,# = x, v. Moreover, denote

col
{
d(k, i)|Ni=1

}
, col

{
w(k, i)|Ni=1

}
, col

{
y(k, i)|Ni=1

}
, and col

{
ŷ(k, i)|Ni=1

}
respectively by

d(k), w(k), y(k), and ŷ(k). Then, the dynamics of the plant � and its state estimator given by
Eqs. (6.1), (6.2), (6.39), and (6.40) can be equivalently expressed as

⎡
⎣ x(k + 1)

z(k)

y(k)

⎤
⎦=

⎡
⎣ Axx(k) Axv(k) Bx(k) 0

Azx(k) Azv(k) 0 0
Cx(k) Cv(k) 0 D(k)

⎤
⎦
⎡
⎢⎢⎣

x(k)

v(k)

d(k)

w(k)

⎤
⎥⎥⎦ , (6.41)

⎡
⎣ x̂(k + 1)

ẑ(k)

ŷ(k + 1)

⎤
⎦=

⎡
⎢⎣

Axx(k) Ãxv(k) Kx(k)

Ãzx(k) Ãzv(k) 0

C̃x(k) C̃v(k) 0

⎤
⎥⎦
⎡
⎣ x̂(k)

v̂(k)

y(k + 1) − ŷ(k + 1)

⎤
⎦ . (6.42)

On the basis of these representations, through canceling the internal input/output vectors z(k)

and v(k) of the plant, straightforward matrix manipulations show that the input–output rela-
tions of the dynamic system � can be further expressed by Eq. (6.5), which is rewritten here
for references in deriving the distributed state estimator:
[

x(k + 1)

y(k)

]
=
{[

Axx(k) Bx(k) 0
Cx(k) 0 D(k)

]

+
[

Axv(k)

Cv(k)

]
�(k) [ I − Azv(k)�(k) ]−1 [Azx(k) 0 0]

}⎡⎣ x(k)

d(k)

w(k)

⎤
⎦ .

(6.43)

Define the matrices

A(k) = Axx(k) + Axv(k)�(k) [I − Azv(k)�(k)]−1 Azx(k)

and

C(k) = Cx(k) + Cv(k)�(k) [I − Azv(k)�(k)]−1 Azx(k).

Then, from Eq. (6.43) we have that

x(k + 1) = A(k)x(k) + Bx(k)d(k), (6.44)

y(k + 1) = C(k + 1)x(k + 1) + D(k + 1)w(k + 1)
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= C(k + 1)A(k)x(k) + C(k + 1)Bx(k)d(k) + D(k + 1)w(k + 1). (6.45)

These equalities make it clear that whereas the relations between the plant state vectors of
two successive time instants k and k + 1 only depend on the subsystem interconnection ma-
trix �(k), the relations between the plant output vector y(k + 1) and the plant state vector
x(k) depend not only on this matrix at the time constant k + 1, but also on its value at the
previous time instant k. This means that to predict the plant outputs at the time instant k + 1
using its current state estimates, information on both �(k) and �(k + 1) is necessary. This
may mean that the structure of the suggested state estimator given in Eqs. (6.39) and (6.40) is
reasonable.

On the other hand, from Eqs. (6.39) and (6.40) we can obtain the following input–output rela-
tions for the suggested plant state estimator (derivations are deferred to the appendix):

x̂(k + 1) = A(k)x̂(k) + Kx(k)[y(k + 1) − ŷ(k + 1)], (6.46)

ŷ(k + 1) = C(k + 1)A(k)x̂(k). (6.47)

Denote x̂(k, i) − x(k, i) and col
{
x̃(k, i)|Ni=1

}
respectively by x̃(k, i) and x̃(k). Then, straight-

forward matrix operations from these relations show that

x̃(k + 1) = [I − Kx(k)C(k + 1)]A(k)x̃(k) + Kx(k)D(k + 1)w(k + 1)

− [I − Kx(k)C(k + 1)]Bx(k)d(k). (6.48)

From this recursive expression for estimation errors and the adopted hypotheses on process
disturbances w(k, i) and measurement errors d(k, i) we can further prove that

E{x̃(k + 1)} = [I − Kx(k)C(k + 1)]A(k)E{x̃(k)}, (6.49)

E{x̃(k + 1)x̃T (k + 1)} = [I − Kx(k)C(k+1)]A(k)E{x̃(k)x̃T (k)}AT (k)[I − Kx(k)C(k+1)]T
+ Kx(k)D(k + 1)DT (k + 1)KT

x (k)

+ [I − Kx(k)C(k + 1)]Bx(k)BT
x (k)[I − Kx(k)C(k + 1)]T .

(6.50)

Clearly, if the estimate at the time instant k is unbiased, then the estimator of Eqs. (6.39)
and (6.40) certainly provides an unbiased estimate at the next time instant. On the other hand,
as E{x̃(k + 1)x̃T (k + 1)} depends quadratically on each update gain matrix Kx(k, i) of the
state estimator, a globally optimal gain matrix, denote it by K

opt
x (k, i), can be obtained under

the condition that E{x̃(k)x̃T (k)} is available. These results are established on the basis of a
relation between local and global optimality of the update gain matrix, which are similar to
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those on the one-step predictor design discussed in [4] and Section 6.2. The details are omit-
ted. An interested reader can establish this relation by mimicking Lemma 6.1.

From the relation given by Eq. (6.50) we can obtain explicit formulas for the optimal gain ma-
trix and the covariance matrix of the corresponding estimation error. These results are parallel
to those on state predictions given further in Theorems 6.5 and 6.6.

Denote E{x̃(k)x̃T (k)} and E{x̃(k, i)x̃T (k, j)} respectively by P(k) and Pij (k), i, j =
1,2, · · · ,N . Moreover, define integer M�i as M�i = 0 when i = 1 and M�i =∑i−1

k=1 m�k when
2 ≤ i ≤ N . Let J�i denote the matrix col

{
0M�i×m�i

, Im�i
,0(m�−M�,i+1)×m�i

}
, where � = x,y,v.

Then, from the definitions of the matrices P(k) and Pij (k) we can straightforwardly prove
that

Pij (k) = J T
xiP (k)Jxj , ∀ i, j = 1,2, · · · ,N. (6.51)

From this relation we obtain a recursive expression for the optimal update gain matrix
K

opt
x (k, i).

Theorem 6.5. Let Ci(k + 1) represent J T
yiC(k + 1). If the matrix D(k + 1, i) is of full row

rank, then, for every subsystem �i and every time instant k, the optimal observer gain matrix
K

opt
x (k, i) minimizing Pii(k + 1) can be expressed as

K
opt
x (k, i) = J T

xi�(k)CT
i (k + 1)

{
Ci(k + 1)�(k)CT

i (k + 1) + D(k + 1, i)DT (k + 1, i)
}−1

,

(6.52)

where �(k) = A(k)P (k)AT (k) + Bx(k)BT
x (k).

Proof. From Eq. (6.50) straightforward algebraic manipulations show that

P(k + 1) = Kx(k)[C(k + 1)�(k)CT (k + 1) + D(k + 1)DT (k + 1)]KT
x (k)

− �(k)CT (k + 1)KT
x (k) − Kx(k)C(k + 1)�(k) + �(k). (6.53)

Note that, for every i = 1,2, · · · ,N ,

J T
xiKx(k) = [0 · · · Kx(k, i) 0 · · · 0]

= Kx(k, i)J T
yi . (6.54)

Combining this relation with Eq. (6.51), we have that

Pii(k + 1) = JT
xi {Kx(k)[C(k + 1)�(k)CT (k + 1) + D(k + 1)DT (k + 1)]KT

x (k)

− �(k)CT (k + 1)KT
x (k) − Kx(k)C(k + 1)�(k) + �(k)}Jxi
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= Kx(k, i)J T
yi [C(k + 1)�(k)CT (k + 1) + D(k + 1)DT (k + 1)]JyiK

T
x (k, i)

− JT
xi�(k)CT (k + 1)JyiK

T
x (k, i) − Kx(k, i)J T

yiC(k + 1)�(k)Jxi

+ JT
xi�(k)Jxi

= Kx(k, i)[Ci(k + 1)�(k)CT
i (k + 1) + D(k + 1, i)DT (k + 1, i)]KT

x (k, i)

− JT
xi�(k)CT

i (k + 1)KT
x (k, i) − Kx(k, i)Ci(k + 1)�(k)Jxi + JT

xi�(k)Jxi

= [Kx(k, i) − K
opt
x (k, i)][Ci(k + 1)�(k)CT

i (k + 1)

+ D(k + 1, i)DT (k + 1, i)][Kx(k, i) − K
opt
x (k, i)]T

− JT
xi�(k)CT

i (k + 1)[Ci(k + 1)�(k)CT
i (k + 1)

+ D(k + 1, i)DT (k + 1, i)]Ci(k + 1)�(k)Jxi + JT
xi�(k)Jxi . (6.55)

From the definition of the matrix �(k) and the assumption that the matrix D(k + 1, i) is of
full row rank it is obvious that the matrix Ci(k + 1)�(k)CT

i (k + 1) + D(k + 1, i)DT (k + 1, i)

is positive definite. We can therefore declare that the matrix K
opt
x (k, i) is the unique optimal

update gain matrix for the ith subsystem of the plant.

This completes the proof.

When this optimal gain matrix is adopted in the state estimator, the covariance matrix of the
corresponding estimation errors can also be recursively computed. The results are given in the
next theorem.

Theorem 6.6. Assume that the optimal gain matrices K
opt
x (k, i)|Ni=1 are adopted in the dis-

tributed state observer. Then, for each i, j = 1,2, · · · ,N , the submatrix Pij (k + 1) of the
covariance matrix of the estimation errors can be expressed as follows,

Pij (k + 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

JT
xi

[
�−1(k) + C̄T

i (k + 1)C̄i(k + 1)
]−1

Jxi ,

i = j,

J T
xi

[
�−1(k) + C̄T

i (k + 1)C̄i(k + 1)
]−1

�−1(k)
[
�−1(k) + C̄T

j (k + 1)C̄j (k + 1)
]−1

Jxj ,

i �= j,

(6.56)

where C̄i(k) = [D(k, i)DT (k, i)]−1/2Ci(k) and D̄i(k) = [D(k, i)DT (k, i)]−1/2JT
yiD(k).

Proof. From Eqs. (6.51) and (6.53) we can establish the following equality for all i, j =
1,2, · · · ,N :

Pij (k + 1) = JT
xi {Kx(k)[C(k + 1)�(k)CT (k + 1) + D(k + 1)DT (k + 1)]KT

x (k)
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− �(k)CT (k + 1)KT
x (k) − Kx(k)C(k + 1)�(k) + �(k)}Jxj

= Kx(k, i)J T
yi [C(k + 1)�(k)CT (k + 1) + D(k + 1)DT (k + 1)]JyjK

T
x (k, j)

− JT
xi�(k)CT (k+1)JyjK

T
x (k, j) − Kx(k, i)J T

yiC(k+1)�(k)Jxj + JT
xi�(k)Jxj .

(6.57)

In this equation, replace the submatrices Kx(k, i) and Kx(k, j) of the state update gain ma-
trix Kx(k) respectively by their optimal values, that is, K

opt
x (k, i) and K

opt
x (k, j). Then direct

matrix operations show that

Pij (k + 1) = JT
xi

{
�(k)C̄T

i (t + 1)[C̄i(k + 1)�(k)C̄T
i (k + 1) + I ]−1[C̄i(k + 1)�(k)C̄T

j (k + 1)

+ D̄(k + 1, i)D̄T (k + 1, j)][C̄j (k + 1)�(k)C̄T
j (k + 1) + I ]−1C̄j (k + 1)�(k)

+ �(k) − �(k)C̄T
i (k + 1)[C̄i(k + 1)�(k)C̄T

i (k + 1) + I ]−1C̄i(k + 1)�(k)

−�(k)C̄T
j (k + 1)[C̄j (k + 1)�(k)C̄T

j (k + 1) + I ]−1C̄j (k + 1)�(k)
}

Jxj .

(6.58)

Note that, for every k = 1,2, · · · ,N ,

�(k)C̄T
k (k + 1)[C̄k(k + 1)�(k)C̄T

k (k + 1) + I ]−1C̄k(k + 1)

= [�(k)C̄T
k (t + 1)C̄k(k + 1) + I ]−1�(k)C̄T

k (t + 1)C̄k(k + 1)

= I − [�(k)C̄T
k (t + 1)C̄k(k + 1) + I ]−1

= I − [C̄T
k (t + 1)C̄k(k + 1) + �−1(k)]−1�−1(k) (6.59)

and

D̄i(k + 1)D̄T
j (k + 1) =

{
Imyi

, i = j,

0myi×myj
, i �= j.

(6.60)

The proof can now be completed through substituting Eqs. (6.59) and (6.60) into Eq. (6.58)
and some straightforward algebraic manipulations.

Although the theorem gives a recursive and relatively compact expression for the covariance
matrix of estimation errors for the optimal distributed state estimator, it is not convenient to
be utilized in state estimations of a large-scale networked system. Note that for these systems,
the dimension of the plant state vector and therefore the dimension of the associated matrix
are generally great. This large dimension of �(k) may cause numerical instability problems
and prohibitive computational complexities in computing the inverse of the matrices �k and
�−1(k) + C̄T

i (k + 1)C̄i(k + 1), i = 1,2, · · · ,N . To overcome these difficulties, we derive
another expression for this covariance matrix through some algebraic manipulations.
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Corollary 6.2. Assume that the optimal distributed state observer is adopted. Then, for each
i = 1,2, · · · ,N , the submatrix Pii(k + 1) of the covariance matrix P(k + 1) can be equiva-
lently represented as

Pii(k + 1) = JT
xi

{
�(k) − �(k)C̄T

i (k + 1)
[
C̄i(k + 1)�(k)C̄T

i (k + 1) + I
]−1

× C̄i(k + 1)�(k)

}
Jxi . (6.61)

Proof. Note that
[
�−1(k) + C̄T

i (k + 1)C̄i(k + 1) + I
]−1

= �(k)
[
I + C̄T

i (k + 1)C̄i(k + 1)�(k)
]−1

= �(k)

{
I −

[
I + C̄T

i (k + 1)C̄i(k + 1)�(k)
]−1

C̄T
i (k + 1)C̄i(k + 1)�(k)

}

= �(k)

{
I − C̄T

i (k + 1)
[
I + C̄i(k + 1)�(k)C̄T

i (k + 1)
]−1

C̄i(k + 1)�(k)

}

= �(k) − �(k)C̄T
i (k + 1)

[
I + C̄i(k + 1)�(k)C̄T

i (k + 1)
]−1

C̄i(k + 1)�(k). (6.62)

The proof can now be completed through substituting this relation into Eq. (6.56).

From Eqs. (6.56) and (6.61) it is clear that in calculating the covariance matrix P(k + 1), only
the inverse of the matrix C̄i(k + 1)�(k)C̄T

i (k + 1) + I , i = 1,2, · · · ,N , is required. Note
that rather than the dimension of the state vector of the whole system, the dimension of this
matrix is equal to that of the external output vector of the plant ith subsystem �i . Clearly,
this dimension does not increase with the number of plant subsystems. This means that the
expression of the submatrix Pii(k) in Eqs. (6.61) is more attractive in state estimations for a
large-scale system.

6.4 Asymptotic Property of the Distributed Observers

As declared in Chapter 5, the Kalman filter is the optimal state estimator when the plant is
linear and the external disturbances, including both the process noises and measurement er-
rors, are normally distributed. On the other hand, the state predictor and estimator developed
respectively in Sections 6.2 and 6.3 aim to optimally estimate plant subsystem states using
only local output measurements. An interesting theoretical issue, which is also of great en-
gineering significance, is that whether or not there exist situations, under which these state
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estimators have an estimation accuracy as high as that of the Kalman filter. Whereas this is in
general still a challenging theoretical problem, we clarify these situations in this section under
the condition that the one-step ahead state predictor given in Section 6.2 converges to a steady
state, for which its steady prediction accuracy is equal to that of the Kalman filter.

To achieve this purpose, the following results are first derived, which reveal differences in
estimation accuracy between the developed CDOSSP and the Kalman filter.

Lemma 6.2. Assume that the matrix Dw(t) is of full row rank. Moreover, assume that the
lumped Kalman filter is applied to the dynamic system �. Let P [kal](k) denote the covariance
matrix of its estimation errors at the time instant k, and let P

[kal]
ij (t) be its ith row j th column

block submatrix. Then

Pii(k + 1) − P
[kal]
ii (k + 1)

= Ai(k)

⎧⎨
⎩[P [kal](k)]−1 +

N∑
j=1

C̄T
j (k)C̄j (k)

⎫⎬
⎭

−1 {
[P [kal](k)]−1 − P −1(k)

+
N∑

j=1,j �=i

C̄T
j (k)C̄j (k)

⎫⎬
⎭ [P −1(t) + C̄T

i (k)C̄i(k)]−1AT
i (k). (6.63)

Based on Lemma 6.2, we can derive a necessary and sufficient condition on system matrices
for the equivalence between the estimation accuracy of the CDOSSP and that of the Kalman
filter, which is given in the following theorem. The associated proof is deferred to the ap-
pendix of this chapter.

Theorem 6.7. Assume that P(k) = P [kal](k) at some time instant k. Then, at the next time
instant k + 1, for the ith plant subsystem �i , the CDOSSP has a covariance matrix of estima-
tion errors equal to that of the Kalman filter if and only if for each j = 1,2, · · · ,N , j �= i,

Ai(k)P (k)C̄T (k)[I + C̄(k)P (k)C̄T (k)]−1Jyj = 0, (6.64)

where C̄(k) = col{C̄i(k)|Ni=1}. Moreover, let K [kal](k) denote the update gain matrix of the

Kalman filter, and let K
[kal]
ij (k) be its ith row j th column block. Then, when this condition is

satisfied, Pij (k + 1) = P
[kal]
ij (k + 1) and K

[kal]
ij (k) = 0 are simultaneously valid for arbitrary

j �= i.

In general, the condition P(k) = P [kal](k) of the theorem cannot be easily verified. However,
when only the steady estimation accuracy of the CDOSSP is required to be compared to that
of the Kalman filter, this condition becomes necessary. Note that in the steady state of an esti-
mator, the covariance matrix of its estimation errors does not vary with the temporal variable.
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Note also that when system � is time invariant, the convergence of its Kalman filter is guar-
anteed by its controllability and observability, which can be verified through its subsystem
dynamics and subsystem connection matrix using the results of Chapter 3. Based on these ob-
servations and Theorem 6.7, characteristics of systems are clarified whose steady estimation
accuracy with the CDOSSP is equal to that of the Kalman filter.

Theorem 6.8. Assume that both the subsystem parameter matrices of system � and its sub-
system connection matrix are time invariant. Moreover, assume that the covariance matrix of
estimation errors of its Kalman filter converges to a constant and positive definite matrix P .
Then, the CDOSSP can have the same steady estimation accuracy as the Kalman filter if and
only if for every i = 1,2, · · · ,N ,

AiP C̄T [I + C̄P C̄T ]−1Jyj = 0, ∀j �= i. (6.65)

A proof of these results is given in the appendix of this chapter.

Theorems 6.7 and 6.8 make it clear that if the Kalman filter of system � converges, then to
guarantee that the CDOSSP has the same steady estimation accuracy as the Kalman filter,
it is necessary and sufficient that the Kalman filter has a steady block diagonal update gain
matrix. The sufficiency of this condition can be easily imagined, as it simply means that the
Kalman filter can be realized in a distributed way, which is certainly optimal. Its necessity,
however, clarifies that this is the only situation that these two estimators have the same steady
estimation accuracy. Although this condition may be severe in practice, numerical simulations
in [27] show that element magnitude of the matrix AiP C̄T [I + C̄P C̄T ]−1Jyj appears to be
a good indicator on the accuracy difference between these two estimators. These phenomena
have been observed in various numerical examples, including one in the next section.

6.5 Distributed State Estimation Through Neighbor Information
Exchanges

State estimations with local measurements discussed in the previous sections reveal that a
coordination unit is generally necessary to make the estimates optimal. In [28], it has been
shown that if a controller is required to meet some constraints, then a so-called quadratic in-
variance condition on the system is both necessary and sufficient for the constraint set to be
preserved under feedback. Although this quadratic invariance condition is stringent in gen-
eral and can hardly be satisfied in actual applications, that paper also shows that in case that
a distributed controller communicates among its subsystems faster than the propagation of
the plant dynamics, an optimal stabilizing controller can be efficiently computed. Note that
control and estimation have been proven to be dual to each other, and feedback also exists in
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state estimations [8,19]. This is also clear from the structure of the Luenberger observer given
in Fig. 4.1. The results in [28] open great opportunities to achieve an approximate global op-
timization in state estimations through introducing interactions between communication and
state estimate updates. Numerical simulations in [29] have confirmed efficiency of this ap-
proach in distributed state estimations for an interconnected system described by Eqs. (6.1)
and (6.2), but no theoretical analysis has been provided.

In this section, a distributed estimation problem is discussed in which only plant measure-
ments are utilized without taking the plant dynamics into account. This problem is attacked
in [30] and reflects many important characteristics in the interplays between communications
and state estimations. One of the attractive properties of the results given in [30] is that under
some situations, iterations for computing the global optimum end in a finite number of steps.

In particular, consider a system � constituted from N subsystems with the outputs of its ith
subsystem �i described as

yi =
N∑

j=1

Cijxj + wi, i = 1,2, · · · ,N, (6.66)

where xi ∈ Rmxi , yi ∈ Rmyi , and wi ∈ Rmwi represent respectively the state vector, output
vector, and measurement error vector of the ith system. We assume that wi and wj are inde-
pendent of each other whenever i �= j and that

wi ∼ N (0, Ri)

with Ri being an (myi × myi )-dimensional positive definite matrix.

As dynamics of the plant is not considered in state estimations, the temporal variable k has
not been included in the above system model.

Define the vectors

x = col{xi |Ni=1}, y = col{yi |Ni=1}, w = col{wi |Ni=1}. (6.67)

Moreover, define the matrices

C =
[
Cij

∣∣N
i,j=1

]
and R = diag{Ri |Ni=1}. (6.68)

Then the relation between the system states and its output measurements can be rewritten as

y = Cx + w, w ∼ N (0, R). (6.69)
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Moreover, the maximum likelihood estimate of the plant states using its output measurements
can be written as

x̂ = arg min
x

(y − Cx)T R−1(y − cx)

= (CT R−1C)−1CT R−1y, (6.70)

provided that the matrix C is of full column rank.

This estimate is also called a weighted least squares estimate [19,20].

The rank condition on the matrix C is reasonable. If this condition is not satisfied, then there
are infinitely many vectors x satisfying Eq. (6.69), which makes state estimation meaningless
in actual engineering. To satisfy this condition, it is necessary that

∑N
i=1 mxi ≤∑N

i=1 myi , that
is, the number of sensors in the system must not be smaller than the dimension of the system
state vector.

Note that the vector x̂ in Eq. (6.70) can also be interpreted as the solution to the linear equa-
tion

γ(CT R−1C)x̂ = γCT R−1y, (6.71)

which can be further equivalently rewritten as

x̂ =
[
I − γ(CT R−1C)

]
x̂ + γCT R−1y, (6.72)

where γ is an arbitrary nonzero real scalar, and  is an arbitrary invertible real matrix.

Note that the matrix R is block diagonal according to its definition. On the other hand, for
a large-scale system, the number of subsystems that directly affect a subsystem is gener-
ally not very large, which implies that the matrix C may be sparse in the sense that most of
its submatrices Cij , i, j = 1,2, · · · ,N , are in fact equal to a zero matrix. Hence, if the ma-
trix  also takes a block diagonal form with the dimensions of its submatrices compatible
with those of the matrix R, then sparseness of the matrix C can be well preserved by both
matrices I − γ(CT R−1C) and CT R−1. This is significantly different from the matrix
(CT R−1C)−1 and therefore from the matrix (CT R−1C)−1CT R−1, which are usually dense
even if the matrix C is sparse and the matrix R is block diagonal.

On the basis of these observations, a distributed method is suggested in [30] using the so-
called Richardson method for the computation of the optimal state estimate x̂.

Construct the matrix  as

 = diag{i |Ni=1}, i ∈Rmxi×mxi ,  > 0, (6.73)
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and select γ satisfying

0 < γ <
2

σmax
(
1/2CT R−1C1/2

) . (6.74)

Then we can straightforwardly prove that, for each i > 0, i = 1,2, · · · ,N ,
∣∣∣∣∣∣I − γCT R−1C

∣∣∣∣∣∣
2
= σmax

(
I − γCT R−1C

)
< 1, (6.75)

that is, the mapping f (·) : Rmx → Rmx defined by the matrix I − γCT R−1C as f (z) =
I − γCT R−1Cz is strictly contractive. Here mx =

N∑
i=1

mxi .

Accordingly, from the Richardson’s method [31] and Eq. (6.72) we can declare that, starting
from an arbitrary real vector x̂[0] of a compatible dimension, the iterations

x̂[k+1] =
[
I − γ(CT R−1C)

]
x̂[k] + γCT R−1y (6.76)

converge to the optimal state estimate x̂ with the increment of the iteration index k, that is,

lim
k→∞

∣∣∣∣∣∣x̂[k+1] − x̂

∣∣∣∣∣∣
2
= 0 for all x̂[0] ∈ Rmx .

To clarify the distributed computation characteristics of the above iteration, for each i =
1,2, · · · ,N , let Ii and Oi denote respectively the set of subsystems whose states directly
affect the outputs of the subsystem �i and the set of subsystems whose outputs are directly
affected by the states of the subsystem �i ,1 that is,

Ii = {j ∣∣Cij �= 0
}
, Oi = {j ∣∣Cji �= 0

}
.

For simplicity of expressions, define the set Ni for each subsystem �i with i = 1,2, · · · ,N as

Ni = Ii

⋃
Oi .

Then the iterations of Eq. (6.76) can be described as follows. In these iterations, each sub-
system �i estimates only its own state vector utilizing only its own output measurements and
information from the subsystems with their indices belonging to the set Ii or the set Oi .

1 The symbols adopted here for these sets are similar to those of [30] but have completely contrary meanings.
The objectives for these content changes are to make them more consistent with the in/out degrees of the graph
associated with a networked system.
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Algorithm 6.5.1. Distributed Computations of the Estimate x̂ (Prototype)

Initialization. For each subsystem �j with j = 1,2, · · · ,N ,

• set x̂
[0]
j = 0;

• compute αjk = CT
kjR

−1
k yk for every k ∈ {1,2, · · · ,N} satisfying Ckj �= 0. Moreover, trans-

fer αjk to each subsystem �k with k ∈ {1,2, · · · ,N} and satisfying j ∈ Ik;
• compute the vector αj as

αj =
∑
k∈Oj

αjk.

Iterations. For each subsystem �j with j = 1,2, · · · ,N ,

• send its current computed value x̂
[k]
j , which is an approximation to the estimate x̂j on its

own state vector xj , to each subsystem �i with index i satisfying i ∈ Nj ;
• for each subsystem �i with index i satisfying i ∈ Ij , compute

x̂
[k]
ij =

∑
l∈Ij

CT
il R

−1
l Clj x̂

[k]
l ;

• compute its (k + 1)th approximation x̂
[k+1]
j to x̂j as

x̂
[k+1]
j = x̂

[k+1]
j − γj

⎛
⎝∑

i∈Oj

x̂
[k]
il − αi

⎞
⎠ ;

• set k + 1 → k and go to the next iteration.

From the definitions of the sets Ii and Oi it is clear that |Ii | and |Oi | are respectively the in-
degree and out-degree of the subsystem �i , i = 1,2, · · · ,N . Under some situations, both of
these degrees may obey the so-called power law for a large-scale system [15,32]. This means
that for most of the subsystems in a plant constituted from a great amount of subsystems, it is
possible that only a few summations are required in each iteration of the above algorithm.

In [30], optimizations have also been investigated on the selection of the scalar parameter γ

and the parameter matrices i , i = 1,2, · · · ,N , with the objective of increasing the conver-
gence speed of the above algorithm.

When the system under investigation has some special structure, an algorithm is developed
in [30] that is capable of reaching the exact x̂ in finite iterations. To illustrate this algorithm,
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define the set Bi and the set Kij for subsystems �i and �j with i, j = 1,2, · · · ,N respec-
tively as

Bi =
{

j

∣∣∣Ni

⋂
Nj �= ∅

}
and Kij = { k | i, j ∈ Ik } ,

that is, Bi is the set of the indices of subsystems that shares at least one neighbor with subsys-
tem �i , whereas Kij is the set of the indices of the subsystems whose state vector directly and
simultaneously affects the output measurements of both subsystems �i and �j .

For each i, j = 1,2, · · · ,N , define the matrix

�ij =
∑

k∈Kij

CT
kiR

−1
k Ckj .

Moreover, define the vectors αi with i = 1,2, · · · ,N as in Algorithm 6.5.1. The following
algorithm is also suggested in [30] for the calculation of the state estimate x̂.

Algorithm 6.5.2. Finite Step Distributed Computations of the Estimate x̂ (Prototype)

Initialization. For each subsystem �i with i = 1,2, · · · ,N , set

• 

[0]
i = �−1

ii , x̂
[0]
i = 


[0]
i αi ,

• 

[0]
ij = 


[0]
i , x̂

[0]
ij = x̂

[0]
i for each j ∈ Bi\{i}.

Iterations. For each subsystem �i with i = 1,2, · · · ,N and each k = 1,2, · · · ,

• for each j ∈ Bi\{i},
– compute γ

[k]
ij = �jix̂

[k−1]
i and �

[k]
ij = �ji


[k−1]
i �ij ;

– send both γ
[k]
ij and �

[k]
ij to the subsystem �j .

• at the subsystem �i ,
– compute sequentially



[k]
i =

⎡
⎣�ii −

∑
j∈Bi\{i}

�
[k−1]
ji

⎤
⎦

−1

, x̂
[k]
i = 


[k]
i

⎡
⎣αi −

∑
j∈Bi\{i}

γ
[k−1]
ji

⎤
⎦ ;

– for each j ∈ Bi\{i}, compute sequentially



[k]
ij =

⎡
⎣�ii −

∑
j∈Bi\{i, j}

�
[k−1]
ji

⎤
⎦

−1

, x̂
[k]
ij = 


[k]
ij

⎡
⎣αi −

∑
j∈Bi, j \{i}

γ
[k−1]
ji

⎤
⎦ ;

• set k + 1 → k and go to the next iteration.
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Compared with Algorithm 6.5.1, Algorithm 6.5.2 can reach the exact x̂ in finitely many it-
eration steps when the networked system has a special structure. On the other hand, in this
algorithm, neither the parameter γ nor the matrix  is adopted to increase the convergence
speed of the iterative computations. In particular, the following conclusions have been estab-
lished in [30].

Theorem 6.9. Assume that the graph associated with the networked system � described by
Eq. (6.66) is acyclic. Then

1. All the matrices 

[k]
i and 


[k]
ij with i, j = 1,2, · · · ,N and k = 0,1,2, · · · , adopted in

Algorithm 6.5.2, are well defined;
2. For each i = 1,2, · · · ,N , let ρi denote the maximum distance between the subsystem �i

and any other subsystem in the networked system �. Then, for each k ≥ ρi ,

x̂
[k]
i = x̂i .

It is worth pointing out that for a networked system described by Eqs. (6.1) and (6.2) in which
subsystem interactions are realized through their internal input and output vectors, the associ-
ated output matrix C in Eq. (6.68) is generally dense, even though the subsystem connection
matrix � is sparse. This asks further investigations on distributed state estimations for these
systems.

6.6 Bibliographic Notes
Distributed estimations are extensively studied in various literatures. Basically, two types of
applications exist in this problem. One is to estimate the plant states using a great amount
of sensors, which may be distributed in various places that are far from each other, and in
which each sensor has its own computation capability and exchange information with its
neighbors about its estimate on the plant states [33]. The other one is to use local plant out-
put measurements to estimate the states of a plant subsystem. In this chapter, only the latter
one is investigated. Results of this chapter are mainly based on works in [4,5,27]. There are
also other methods dealing with this problem, in which different model is adopted for a net-
worked system. For instance, a Jacobi over-relaxation-based method is combined in [2] with
dynamic average consensus algorithms under the framework of Bayesian estimations. In addi-
tion, augmented Lagrangian formulation and price-decomposition-coordination is used in [34]
to develop a distributed estimation algorithm for a large-scale networked system.

Appendix 6.A
6.A.1 Proof of Theorem 6.1

Let Jyi , Jdi , and Jwi , i = 1,2, · · · ,N , denote the matrices defined in the same way as Jxi and
Jvi using respectively the dimensions of the vectors y(k, j)|Nj=1, d(k, j)|Nj=1, and w(k, j)|Nj=1.
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Note that, for arbitrary i = 1,2, · · · ,N , we have

JT
xi [−Kx(k) I ] = [

0 · · · 0 Imxi
0 · · ·0

] [−diag
{
Kx(k, i)|Ni=1

}
diag

{
Imxi

|Ni=1

}]

=
[

[0 · · · 0 − Kx(k, i) 0 · · · 0]
[
0 · · · 0 Imxi

0 · · · 0
] ]

=
[
−Kx(k, i)J T

yi J T
xi

]

= [−Kx(k, i) Imxi

][ JT
yi 0

0 JT
xi

]
. (6.A.1)

Hence,

JT
xi [−Kx(k) I ]

[
C(k)

A(k)

]

= [−Kx(k, i) Imxi

][JT
yi 0

0 JT
xi

]{[
Cx(k)

Axx(k)

]
+
[

Cv(k)

Axv(k)

]
�(k) [ I − Azv(k)�(k) ]−1 Azx(k)

}

= [−Kx(k, i) Imxi

]{[ JT
yiCx(k)

J T
xiAxx(k)

]
+
[

JT
yiCv(k)

J T
xiAxv(k)

]
�(k) [ I − Azv(k)�(k) ]−1 Azx(k)

}

= [−Kx(k, i) Imxi

]{[ Cx(k, i)

Axx(k, i)

]
JT

xi +
[

Cv(k, i)

Axv(k, i)

]
JT

vi�(k) [ I − Azv(k)�(k) ]−1 Azx(k)

}

= [−Kx(k, i) Imxi

][ Cx(k, i) Cv(k, i)

Axx(k, i) Axv(k, i)

][
JT

xi

J T
vi�(k) [ I − Azv(k)�(k) ]−1 Azx(k)

]

= [−Kx(k, i) Imxi

][ C(k, i)

Ax(k, i)

]
W(k, i). (6.A.2)

Moreover,

JT
xi [−Kx(k) I ]

[
D(k) 0

0 Bx(k)

]
= [−Kx(k, i) Imxi

][ JT
yi 0

0 JT
xi

][
D(k) 0

0 Bx(k)

]

= [−Kx(k, i) Imxi

][ D(k, i)J T
wi 0

0 Bx(k, i)J T
di

]

= [−Kx(k, i) Imxi

][ D(k, i) 0
0 Bx(k, i)

][
JT

wi 0

0 JT
di

]
.

(6.A.3)
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On the other hand, from Eqs. (6.9) and (6.14) we obtain the following relation:

Pii(k + 1) = J T
xi

{
[−Kx(k) I ]

([
C(k)

A(k)

]
P(k)

[
C(k)

A(k)

]T

+
[

D(k)DT (k) 0

0 Bx(k)BT
x (k)

])[
−KT

x (k)

I

]}
Jxi

=
(

J T
xi [−Kx(k) I ]

[
C(k)

A(k)

])
P(k) (�)T

+
(

JT
xi [−Kx(k) I ]

[
D(k) 0

0 Bx(k)

])
(�)T . (6.A.4)

Substitute Eqs. (6.A.2) and (6.A.3) into Eq. (6.A.4). From the definitions of the matrices
Ax(k, i), C(k, i), and W(k, i) we can further prove that

Pii(k + 1) = [−Kx(k, i) Imxi

]{([ C(k, i)

Ax(k, i)

]
W(k, i)

)
P(k) (�)T

+
[

D(k, i)DT (k, i) 0

0 Bx(k, i)BT
x (k, i)

]}[
−KT

x (k, i)

Imxi

]

= [−Kx(k, i) Imxi

][ C(k, i)W(k, i)P (k)WT (k, i)CT (k, i) + D(k, i)DT (k, i)

Ax(k, i)W(k, i)P (k)WT (k, i)CT (k, i)

C(k, i)W(k, i)P (k)WT (k, i)AT
x (k, i)

Ax(k, i)W(k, i)P (k)WT (k, i)AT
x (k, i) + Bx(k, i)BT

x (k, i)

]

×
[

−KT
x (k, i)

Imxi

]
. (6.A.5)

From the positive semidefiniteness of the matrix P(k) and the assumption about the regularity
of the matrix D(k, i)DT (k, i) we can directly declare that the matrix C(k, i)W(k, i)P (k)×
WT (k, i)CT (k, i) + D(k, i)DT (k, i) is positive definite.

On the basis of Lemma 2.3 and Eq. (6.A.5), we can claim that the optimal Kx(k, i), denoted
by K

opt
x (k, i), that minimizes Pii(k + 1) is unique and can be expressed as

K
opt
x (k, i) = Ax(k, i)W(k, i)P (k)WT (k, i)CT (k, i)

×
{
C(k, i)W(k, i)P (k)WT (k, i)CT (k, i) + D(k, i)DT (k, i)

}−1

= Ax(k, i)W(k, i)P (k)WT (k, i)CT (k, i)
[
D(k, i)DT (k, i)

]−1
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×
{
C(k, i)W(k, i)P (k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1 + I

}−1

= Ax(k, i)

{
I + W(k, i)P (k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1
C(k, i)

}−1

× W(k, i)P (k)WT (k, i)CT (k, i)
[
D(k, i)DT (k, i)

]−1
. (6.A.6)

This completes the proof.

6.A.2 Proof of Theorem 6.2

To simplify mathematical expressions, denote the matrix W(k, i)P (k)WT (k, i)CT (k, i)×[
D(k, i)DT (k, i)

]−1
C(k, i) by Z(k, i). From the definitions of the matrices A(k), C(k), and

Kx(k) it is clear that

A(k) − Kx(k)C(k) = diag{ATx(k, i) − Kx(k, i)Cx(k, i)} + diag{Axv(k, i) − Kx(k, i)Cv(k, i)}
× �(k) [ I − Azv(k)�(k) ]−1 Azx(k)

= col
{
[ATx(k, i) − Kx(k, i)Cx(k, i)]JT

xi |Ni=1

}

+ col
{
[Axv(k, i) − Kx(k, i)Cv(k, i)]JT

vi |Ni=1

}

× �(k) [ I − Azv(k)�(k) ]−1 Azx(k)

= col

⎧⎨
⎩[−Kx(k, i) I ]

[
Cx(k, i) Cv(k, i)

ATx(k, i) Axv(k, i)

]

×
[

JT
xi

J T
vi�(k) [I − Azv(k)�(k)]−1 Azx(k)

]∣∣∣∣∣
N

i=1

⎫⎬
⎭

= col

{
[−Kx(k, i) I ]

[
C(k, i)

Ax(k, i)

]
W(k, i)

∣∣∣∣
N

i=1

}
. (6.A.7)

On the other hand, straightforwardly from the expression of the optimal gain matrix
K

opt
x (k, i), we have

[−K
opt
x (k, i) I ]

[
C(k, i)

Ax(k, i)

]
= Ax(k, i) − K

opt
x (k, i)C(k, i)

= Ax(k, i) − Ax(k, i) [I + Z(k, i)]−1 Z(k, i)

= Ax(k, i) [I + Z(k, i)]−1 . (6.A.8)
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Denote the matrix diag{Kopt
x (k, i)|Ni=1} by K

opt
x (k). Then, from the last two equations we fur-

ther get

[A(k) − K
opt
x (k)C(k)]P(k)[A(k) − K

opt
x (k)C(k)]T

=
(

col

{
[−K

opt
x (k, i) I ]

[
C(k, i)

Ax(k, i)

]
W(k, i)

∣∣∣∣
N

i=1

})
P(k)

×
(

col

{
[−K

opt
x (k, i) I ]

[
C(k, i)

Ax(k, i)

]
W(k, i)

∣∣∣∣
N

i=1

})T

=
(

col
{

Ax(k, i) [I + Z(k, i)]−1 W(k, i)

∣∣∣N
i=1

})
P(k)

×
(

col
{

Ax(k, i) [I + Z(k, i)]−1 W(k, i)

∣∣∣N
i=1

})T

=
{

Ax(k, i) [I + Z(k, i)]−1 W(k, i)P (k)WT (k, j)
[
I + ZT (k, j)

]−1
AT

x (k, j)

∣∣∣∣
N

i,j=1

}
.

(6.A.9)

Note that

Kx(k)D(k)DT (k)KT
x (k) = diag

{
Kx(k, i)D(k, i)DT (k, i)KT

x (k, i)|Ni=1

}
, (6.A.10)

Bx(k)BT
x (k) = diag

{
Bx(k, i)BT

x (k, i)|Ni=1

}
. (6.A.11)

Moreover,

K
opt
x (k, i)D(k, i)DT (k, i)(K

opt
x (k, i))T

=
(

Ax(k, i) [I + Z(k, i)]−1 W(k, i)P (k)WT (k, i)CT (k, i)
[
D(k, i)DT (k, i)

]−1
)

× D(k, i)DT (k, i) (�)T

= Ax(k, i) [I + Z(k, i)]−1 W(k, i)P (k)WT (k, i)ZT (k, i)
[
I + ZT (k, i)

]−1
AT

x (k, i)

= Ax(k, i) [I + Z(k, i)]−1 W(k, i)P (k)WT (k, i)AT
x (k, i)

− Ax(k, i) [I + Z(k, i)]−1 W(k, i)P (k)WT (k, i)
[
I + ZT (k, i)

]−1
AT

x (k, i).

(6.A.12)

Recall that Pij (k + 1) = J T
xiP (k + 1)Jxj for i, j ∈ {1,2, · · · ,N}. The proof can now be com-

pleted by multiplying both sides of Eq. (6.9) from their left sides and right sides respectively
by the matrices J T

xi and Jxj , replacing the gain matrix Kx(k) by its optimal value K
opt
x (k), and

substituting Eqs. (6.A.9)–(6.A.12) into the right side of this equation.
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6.A.3 Proof of Theorem 6.3

To simplify mathematical expressions, denote the matrices WT (k, i)CT (k, i)[D(k, i)×
DT (k, i)]−1C(k, i)W(k, i) and Ax(k, i)W(k, i) respectively by Q(k, i) and S(k, i). Then,
it is obvious that the matrix Q(k, i) is always symmetric, that is, QT (k, i) = Q(k, i). On the
other hand, from Theorem 6.2 we have that, for arbitrary i ∈ {1,2, · · · ,N},

Pii(k + 1) = Ax(k, i)

{
I + W(k, i)P (k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1
C(k, i)

}−1

× W(k, i)P (k)WT (k, i)AT
x (k, i) + Bx(k, i)BT

x (k, i)

= [Ax(k, i)W(k, i)]
{
I + P(k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1

× C(k, i)W(k, i)

}−1

P(k)[Ax(k, i)W(k, i)]T + Bx(k, i)BT
x (k, i)

= S(k, i)[I + P(k)Q(k, i)]−1P(k)ST (k, i) + Bx(k, i)BT
x (k, i). (6.A.13)

In addition, for all i, j = 1,2, · · · ,N with i �= j ,

Pij (k + 1) = Ax(k, i)

{
I + W(k, i)P (k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1
C(k, i)

}−1

× W(k, i)P (k)WT (k, j)

{
I + CT (k, j)

[
D(k, j)DT (k, j)

]−1

× C(k, j)W(k, j)P (k)WT (k, j)

}−1

AT
x (k, j)

= [Ax(k, i)W(k, i)]
{
I + P(k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1

× C(k, i)W(k, i)

}−1

P(k)

{
I + WT (k, j)CT (k, j)

[
D(k, j)DT (k, j)

]−1

× C(k, j)W(k, j)P (k)

}−1

[Ax(k, j)W(k, j)]T

= S(k, i)[I + P(k)Q(k, i)]−1P(k)[I + Q(k, j)P (k)]−1ST (k, j). (6.A.14)

From the definitions of the matrices Ax(k, i), W(k, i), and C(k, i) we have that

S(k, i) = [Axx(k, i) Axv(k, i)]
[

J T
xi

J T
vi�(k) [ I − Azv(k)�(k) ]−1 Azx(k)

]

= J T
xiAxx(k) + JT

xiAxv(k)�(k) [ I − Azv(k)�(k) ]−1 Azx(k)
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= JT
xi {Axx(k) + Axv(k)�(k) [ I − Azv(k)�(k) ]−1 Azx(k)}

= Ai(k) (6.A.15)

and

C(k, i)W(k, i) = [Cx(k, i) Cv(k, i)]
[

J T
xi

J T
vi�(k) [ I − Azv(k)�(k) ]−1 Azx(k)

]

= J T
yiCx(k) + J T

yiCv(k)�(k) [ I − Azv(k)�(k) ]−1 Azx(k)

= JT
yi {Cx(k) + Cv(k)�(k) [ I − Azv(k)�(k) ]−1 Azx(k)}

= JT
yiC(k). (6.A.16)

Hence

[D(k, i)DT (k, i)]−1/2C(k, i)W(k, i) = [D(k, i)DT (k, i)]−1/2{JT
yiC(k)}

= J T
yi [D(k)DT (k)]−1/2C(k)

= Ci(k). (6.A.17)

Moreover,

Q(k, i) =
{
[D(k, i)DT (k, i)]−1/2C(k, i)W(k, i)

}T {[D(k, i)DT (k, i)]−1/2C(k, i)W(k, i)
}

= CT
i (k)Ci(k). (6.A.18)

Substituting Eqs. (6.A.15) and (6.A.18) into Eqs. (6.A.13) and (6.A.14), we obtain the desir-
able expression for Pij (k + 1), i, j = 1,2, · · · ,N .

On the other hand, from Theorem 6.1 we have that, for every i = 1,2, · · · ,N ,

K
opt
x (k, i) = Ax(k, i)

{
I + W(k, i)P (k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1
C(k, i)

}−1

× W(k, i)P (k)WT (k, i)CT (k, i)
[
D(k, i)DT (k, i)

]−1

= [Ax(k, i)W(k, i)]
{
I + P(k)WT (k, i)CT (k, i)

[
D(k, i)DT (k, i)

]−1

× C(k, i)W(k, i)

}−1

P(k)

{[
D(k, i)DT (k, i)

]−1/2
C(k, i)W(k, i)

}T

×
[
D(k, i)DT (k, i)

]−1/2
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= Ai(k)[P −1(k) + CT
i (k)Ci(k)]−1CT

i (k)
[
D(k, i)DT (k, i)

]−1/2
. (6.A.19)

This completes the proof.

6.A.4 Proof of Theorem 6.4

For brevity, let λ(k, i) and R(k, i) represent respectively the number (1 − γ (k, i))/γ (k, i) and
the matrix D(k, i)DT (k, i). Note that, for an arbitrary time instant k = 0,1, . . . ,

∂(y(k, i) − C̄i(k, ε(k))x(k))

∂εk(k, j)
= −∂C̄i(k, ε(k))

∂εk(k, j)
x(k), k = 1,2, · · · ,mj , j = 1,2, · · · ,N,

(6.A.20)

∂(y(k, i) − C̄i(k, ε(k))x(k))

∂εk,φ(k)
= −∂C̄i(k, ε(k))

∂εk,φ(k)
x(k), k = 1,2, · · · ,mφ. (6.A.21)

We can therefore declare that

J̄ (x(k), d(k)) = γ (k, i)J (x(k), d(k)) + 1 − γ (k, i)

2

N∑
j=1

mj∑
k=1

(
∂C̄i(k, ε(k))

∂εk(k, j)

∣∣∣∣
ε(k)=0

× x(k)

)T

×
(

∂C̄i(k, ε(k))

∂εk(k, j)

∣∣∣∣
ε(k)=0

× x(k)

)

+ 1 − γ (k, i)

2

mφ∑
k=1

(
∂C̄i(k, ε(k))

∂εk,φ(k)

∣∣∣∣
ε(k)=0

× x(k)

)T

×
(

∂C̄i(k, ε(k))

∂εk,φ(k)

∣∣∣∣
ε(k)=0

× x(k)

)

= γ (k, i)

{
J (x(k), d(k)) + λ(k, i)

2
xT (k)HT (k, i)H(k, i)x(k)

}
. (6.A.22)

Hence

∂J̄ (x(k), d(k))

∂x(k)

= γ (k, i)
{
(P rob

i (k))−1[x(k) − ˜̂x(k)] − C̄T
i (k)R−1(k, i)[y(k, i) − C̄i(k)x(k)]

+ λ(k, i)HT (k, i)H(k, i)x(k)
}

= γ (k, i)
{[

(P rob
i (k))−1 + C̄T

i (k)R−1(k, i)C̄i(k) + λ(k, i)HT (k, i)H(k, i)
]
x(k)

− (P rob
i (k))−1 ˜̂x(k) − C̄T

i (k)R−1(k, i)y(k, i)
}

, (6.A.23)
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∂J̄ (x(k), d(k))

∂d(k)
= γ (k, i)d(k). (6.A.24)

Let x̃opt(k) and d̃opt(k) denote respectively the optimal x(k) and d(k) that minimize the cost
function J̄ (x(k), d(k)) defined in Eq. (6.34). Then, from the first-order derivative condition on
optimums and the assumption γ (k, i) > 0 we have that

x̃opt(k) =
{
(P rob

i (k))−1 + C̄T
i (k)R−1(k, i)C̄i(k) + λ(k, i)HT (k, i)H(k, i)

}−1

×
{
(P rob

i (k))−1 ˜̂x(k) + C̄T
i (k)R−1(k, i)y(k, i)

}

=
{
(P rob

i (k))−1 + C̄T
i (k)R−1(k, i)C̄i(k) + λ(k, i)HT (k, i)H(k, i)

}−1

×
{
[(P rob

i (k))−1 + C̄T
i (k)R−1(k, i)C̄i(k)] ˜̂x(k) + C̄T

i (k)R−1(k, i)

× [y(k, i) − C̄i(k) ˜̂x(k)]
}

, (6.A.25)

d̃opt(k) = 0. (6.A.26)

Hence, according to the weighted least squares interpretation of the Kalman filter, the optimal
estimate ˜̂x(k + 1) can be expressed as

˜̂x(k + 1) = A(k)x̃opt(k) + Bx(k)d̃opt(k)

= A(k)
{
(P rob

i (k))−1 + C̄T
i (k)R−1(k, i)C̄i(k) + λ(k, i)HT (k, i)H(k, i)

}−1

×
{
[(P rob

i (k))−1 + C̄T
i (k)R−1(k, i)C̄i(k)] ˜̂x(k) + C̄T

i (k)R−1(k, i)

× [y(k, i) − C̄i(k) ˜̂x(k)]
}

= Â(k) ˜̂x(k) + K rob
i (k)[y(k, i) − C̄i(k) ˜̂x(k)]. (6.A.27)

To derive the desirable expression for the pseudo-covariance matrix P rob
i (k + 1), consider the

state prediction errors of the following dynamic system �̃i :

x(k + 1) = Â(k)x(k) + Bx(k)d(k), y(k, i) = C̄i(k)x(k) + D(k, i)w(k, i). (6.A.28)

Then, clearly,

˜̂x(k + 1) − x(k + 1)

= {Â(k) ˜̂x(k) + K rob
i (k)[C̄i(k)x(k) + D(k, i)w(k, i) − C̄i(k) ˜̂x(k)]}

− {Â(k)x(k) + Bx(k)d(k)}
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= [Â(k) − K rob
i (k)C̄i(k)][ ˜̂x(k) − x(k)] + K rob

i (k)D(k, i)w(k, i) − Bx(k)d(k). (6.A.29)

From this relation and the assumptions on external disturbances and measurement errors,
straightforward but tedious algebraic operations show that

P rob
i (k + 1) = E{[ ˜̂x(k + 1) − x(k + 1)][ ˜̂x(k + 1) − x(k + 1)]T }

= [Â(k) −K rob
i (k)C̄i(k)]E{[ ˜̂x(k) − x(k)][ ˜̂x(k) − x(k)]T }[Â(k) −K rob

i (k)C̄i(k)]T
+ [K rob

i (k)D(k, i)]E{w(k, i)wT (k, i)}[K rob
i (k)D(k, i)]T

+ Bx(k)E{d(k)dT (k)}BT
x (k)

= Â(k)[(P rob
i (k))−1 + CT

i (k)Ci(k)]−1ÂT (k) + Bx(k)BT
x (k). (6.A.30)

This completes the proof.

6.A.5 Derivation of Eqs. (6.46) and (6.47)

Define the vectors z̄(k) = col
{
ẑ(k, i)|Ni=1

}
and v̄(k) = col

{
v̂(k, i)|Ni=1

}
. Then

v̂(k) = Tvv̄(k), ẑ(k) = Tzz̄(k), (6.A.31)

where for each � = v or � = z,

T� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im�1 0 0 · · · 0 0
0 0 Im�2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Im�N
0

0 Im�1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 Im�N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Obviously, both Tv and Tz are invertible.

From Eqs. (6.40) and (6.A.31) it is clear that

v̄(k) = T −1
v �̄(k)Tzz̄(k). (6.A.32)

Based on these relations and Eq. (6.42), we can prove through direct matrix manipulations
that
[

x̂(k + 1)

ŷ(k + 1)

]
=
{[

Axx(k) Kx(k)

C̃x(k) 0

]
+
[

Ãxv(k)

C̃v(k)

]
�̃(k)

[
I − Ãzv(k)�̃(k)

]−1 [
Ãzx(k) 0

]}
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×
[

x̂(k)

y(k + 1) − ŷ(k + 1)

]
, (6.A.33)

where �̃(k) = T −1
v �̄(k)Tz.

Define the matrices

Āzx(k) =
[

Azx(k + 1)ATx(k)

Azx(k)

]
, Āzv(k) =

[
Azv(k + 1) Azx(k + 1)Axv(k)

0mz×mv Azv(k)

]
,

Āxv(k) = [0mx×mv Axv(k)
]
, C̄v(k) = [Cv(k + 1) Cx(k + 1)Axv(k)] .

Then direct algebraic manipulations show that

Ãxv(k) = Āxv(k)Tv, TzÃzv(k) = Āzv(k)Tv, TzÃzx(k) = Āzx(k), C̃v(k) = C̄v(k)Tv.

(6.A.34)

Therefore

Ãxv(k)�̃(k)
[
I − Ãzv(k)�̃(k)

]−1
Ãzx(k)

= Ãxv(k)T −1
v �̄(k)Tz

[
I − Ãzv(k)T −1

v �̄(k)Tz

]−1
Ãzx(k)

= Ãxv(k)T −1
v �̄(k)

[
I − TzÃzv(k)T −1

v �̄(k)
]−1

TzÃzx(k)

= Āxv(k)�̄(k)
[
I − Āzv(k)�̄(k)

]−1
Āzx(k), (6.A.35)

C̃v(k)�̃(k)
[
I − Ãzv(k)�̃(k)

]−1
Ãzx(k)

= C̃v(k)T −1
v �̄(k)Tz

[
I − Ãzv(k)T −1

v �̄(k)Tz

]−1
Ãzx(k)

= C̄v(k)�̄(k)
[
I − Āzv(k)�̄(k)

]−1
Āzx(k). (6.A.36)

On the other hand, from the definitions of the matrices �̄(k), Āzv(k), and Āzx(k) we have that

�̄(k)
[
I − Āzv(k)�̄(k)

]−1
Āzx(k)

=
[

�(k + 1) 0
0 �(k)

][
I − Azv(k + 1)�(k + 1) −Azx(k + 1)Axv(k)�(k)

0mz×mv I − Azv(k)�(k)

]−1

×
[

Azx(k + 1)ATx(k)

Azx(k)

]

=
[

�(k + 1)[I − Azv(k + 1)�(k + 1)]−1Azx(k + 1)A(k)

�(k)[I − Azv(k)�(k)]−1Azx(k)

]
. (6.A.37)
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Hence

Āxv(k)�̄(k)
[
I − Āzv(k)�̄(k)

]−1
Āzx(k) = Axv(k)�(k) [I − Azv(k)�(k)]−1 Azx(k),

(6.A.38)

C̄v(k)�̄(k)
[
I − Āzv(k)�̄(k)

]−1
Āzx(k)

= Cv(k + 1)�(k + 1) [I − Azv(k + 1)�(k + 1)]−1 Azx(k + 1)A(k)

+ Cx(k + 1)Axv(k)�(k) [I − Azv(k)�(k)]−1 Azx(k). (6.A.39)

Note also that

C̃x(k) = diag
{
Cx(k + 1, i)ATx(k, i)|Ni=1

}
= Cx(k + 1)ATx(k). (6.A.40)

Substituting the relations of Eqs. (6.A.38)–(6.A.40) into Eq. (6.A.33), we obtain the following
equalities, which give the desired equations to be proved, that is, Eqs. (6.46) and (6.47):

x̂(k + 1) =
{
ATx(k) + Ãxv(k)�̃(k)

[
I − Ãzv(k)�̃(k)

]−1
Ãzx(k)

}
x̂(k)

+ Kx(k)[y(k + 1) − ŷ(k + 1)]
= A(k)x̂(k) + Kx(k)[y(k + 1) − ŷ(k + 1)], (6.A.41)

ŷ(k + 1) =
{
C̃x(k) + C̃v(k)�̃(k)

[
I − Ãzv(k)�̃(k)

]−1
Ãzx(k)

}
x̂(k)

= C(k + 1)A(k)x̂(k). (6.A.42)

This completes the proof.

6.A.6 Proof of Theorem 6.7

For brevity, define the matrices

Ĉi(k) = col{C̄j (k)|Nj=1,j �=i},
Xi(k) =

[
P −1(k) + C̄T

i (k)C̄i(k)
]1/2

.

Take the value of the covariance matrix P(k) as P(k) = P [kal](k). Then we can establish the
following equality on the basis of Lemma 2.3:

Pii(k + 1) − P
[kal]
ii (k + 1) = Ai(k)

{
X−2

i (k) −
[
X2

i (k) + ĈT
i (k)Ĉi(k)

]−1
}

AT
i (k). (6.A.43)
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Note that

X−2
i (k) −

[
X2

i (k) + ĈT
i (k)Ĉi(k)

]−1

= X−2
i (k)ĈT

i (k)
[
I + Ĉi(k)X−2

i (k)ĈT
i (k)

]−1
Ĉi(k)X−2

i (k). (6.A.44)

We therefore have that

Pii(k + 1) − P
[kal]
ii (k + 1) =

{
Ai(k)X−2

i (k)ĈT
i (k)

[
I + Ĉi(k)X−2

i (k)ĈT
i (k)

]−1/2
}

×
{
Ai(k)X−2

i (k)ĈT
i (k)

[
I + Ĉi(k)X−2

i (k)ĈT
i (k)

]−1/2
}T

.

(6.A.45)

Hence, Pii(k + 1) − P
[kal]
ii (k + 1) = 0 if and only if

Ai(k)X−2
i (k)ĈT

i (k)
[
I + Ĉi(k)X−2

i (k)ĈT
i (k)

]−1/2 = 0,

which is further equivalent to

Ai(k)
[
P −1(k) + C̄T

i (k)C̄i(k)
]−1

ĈT
i (k) = 0. (6.A.46)

On the other hand, we can show through some direct algebraic manipulations that

[
P −1(k) + C̄T

i (k)C̄i(k)
]−1

ĈT
i (k)

=
[
P −1(k) + C̄T (k)C̄(k)

]−1
ĈT

i (k)

{
I − Ĉi(k)

[
P −1(k) + C̄T (k)C̄(k)

]−1
ĈT

i (k)

}−1

.

(6.A.47)

Combining Eqs. (6.A.46) and (6.A.47), we can claim that a necessary and sufficient condition
for the equality Pii(k + 1) = P

[kal]
ii (k + 1) is that

Ai(k)
[
P −1(k) + C̄T (k)C̄(k)

]−1
ĈT

i (k) = 0. (6.A.48)

From the definition of Ĉi(k) we straightforwardly see that this condition is equivalent to that,
for all j �= i,

Ai(k)
[
P −1(k) + C̄T (k)C̄(k)

]−1
C̄T

j (k) = 0. (6.A.49)
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By definition C̄j (k) = JT
yj C̄(k). Direct matrix manipulations show that Eq. (6.A.49) is equiva-

lent to Eq. (6.64).

On the other hand, from Eq. (6.23), through some tedious but straightforward algebraic opera-
tions, we can prove that when P(k) = P [kal](k) and i �= j ,

Pij (k + 1) − P
[kal]
ij (k + 1)

= Ai(k)
[
P −1(k) + C̄T (k)C̄(k)

]−1
ĈT

i (k)Ĉi(k)X−2
i (k)P −1(k)X−2

j (k)AT
j (k)

− Ai(k)
[
P −1(k) + C̄T (k)C̄(k)

]−1
C̄T

j (k)C̄j (k)X−2
j (k)AT

j (k). (6.A.50)

From Eqs. (6.A.48) and (6.A.49) we can declared that if Pii(k + 1) = P
[kal]
ii (k + 1), then for

any integer j belonging to the set {1, 2, · · · , N}/{i},
Pij (k + 1) = P

[kal]
ij (k + 1).

In addition, from the theory of Kalman filtering [19,22] we have that its update gain matrix
can also be expressed as

K [kal](k) = A(k)
[
(P [kal](k))−1 + C̄T (k)C̄(k)

]−1
C̄T (k).

Then from the definition of the matrices Jxi and Jyi we have that its ith row j th column block

K
[kal]
ij (k) can be further rewritten as

K
[kal]
ij (k) = Ai(k)

[
(P [kal](k))−1 + C̄T (k)C̄(k)

]−1
C̄T

j (k).

We can therefore declare from Eq. (6.A.49) that if Pii(k + 1) = P
[kal]
ii (k + 1), then

K
[kal]
ij (k) =

{
Ai(k)

[
(P [kal](k))−1 + C̄T (k)C̄(k)

]−1
C̄T

i (k), i = j,

0, i �= j.
(6.A.51)

This completes the proof.

6.A.7 Proof of Theorem 6.8

Assume that the CDOSSP and the Kalman filter have the same steady covariance matrix of
estimation errors. Denote it by P ; that is,

lim
t→∞P(k) = lim

t→∞P [kal](k) = P.
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Then, for arbitrary i = 1, · · · ,N , we have

lim
t→∞[Pii(k) − P

[kal]
ii (k)] = 0.

On the other hand, based on Lemma 2.3 and Eqs. (6.A.43)–(6.A.45), we can directly prove
that

lim
t→∞

[
Pii(k + 1) − P

[kal]
ii (k + 1)

]

=
{
Ai[P −1 + C̄T

i C̄i]−1ĈT
i

[
I + Ĉi(P

−1 + C̄T
i C̄i)

−1ĈT
i

]−1/2
}

{�}T . (6.A.52)

Therefore, these two state estimators have the same steady estimation accuracy only if

Ai[P −1 + C̄T
i C̄i]−1ĈT

i = 0, i = 1, · · · ,N. (6.A.53)

Using the same arguments as those in Eqs. (6.A.47)–(6.A.49), we can show that if i �= j and
the condition of Eq. (6.A.53) is satisfied, then

AiP C̄T [I + C̄P C̄T ]−1Jyj = 0, i, j = 1, · · · ,N. (6.A.54)

On the contrary, assume that system � is time invariant and its system matrices satisfy the
condition of Eq. (6.A.54). Then, using completely the same arguments as in Theorem 6.7, we
can prove that the Kalman filter has a steady block diagonal update gain matrix, that is, for an
arbitrary integer pair i and j with i, j ∈ {1,2, · · · ,N} and j �= i, we certainly have

lim
t→∞K

[kal]
ij (k) = 0. (6.A.55)

Initialize both the Kalman filter and the CDOSSP with the steady covariance matrix of the
Kalman filter. Then, by Theorem 6.7 and Eq. (6.A.55), satisfaction of Eq. (6.65), which is
completely the same as Eq. (6.A.54), means that the update gain matrix of the Kalman filter is
always block diagonal.

Note that the update gain matrix of the CDOSSP is proven to be optimal among all the block
diagonal ones. We can declare that the covariance matrix of its estimation errors must not ex-
ceed that of the Kalman filter. On the other hand, as Kalman filter is optimal for linear plants
with normal external disturbances [19,22], its estimation accuracy must be higher than that
of the CDOSSP. Therefore, these two estimators must always have the same covariance ma-
trix. As the Kalman filter is assumed to be convergent, the CDOSSP must also converge with
this initial condition. Hence they must have the same steady covariance matrix of prediction
errors.



234 Chapter 6

These arguments can be easily modified to situations in which the Kalman filter takes an-
other initial covariance matrix, which essentially only requires an appropriate transforma-
tion between the temporal variables of these two predictors. In fact, let kkal and kd denote
the temporal variables respectively for the Kalman filter and the CDOSSP, and assign kd as
kd = kkal + δk . Then, based on Theorem 6.7 and taking the limit as δk → ∞, completely the
same results can be established through similar arguments. This completes the proof.
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CHAPTER 7

Stability and Robust Stability
of a Large-Scale NCS

7.1 Introduction

To guarantee a satisfactory work of a system, it is necessary that its behavior can automat-
ically return to its original trajectory after being perturbed by some external disturbances
and/or when the system is not been originally set to the desirable states at the initial time in-
stant. A system with this property is usually called stable. In other words, stability must be
first guaranteed for a system to accomplish its expected tasks properly. In addition, as mod-
eling errors are generally unavoidable, stability of a system must be kept even if some of its
model parameters deviate from their nominal values and/or even if some other dynamics en-
ter into the system behavior that are not included in its model. Due to the importance of these
properties, verification of the stability and robust stability attracted extensive attentions for
a long time in various fields, especially in the fields of systems and control [1]. Well-known
results include Lyapunov stability theory, the Routh–Horwitz criterion for continuous-time
systems, the Jury criterion for discrete-time systems, and so on. Although numerous milestone
conclusions have been established, various important issues still require further investigations.

Especially, when a large-scale networked system is concerned, development of less conserva-
tive, more computationally efficient criteria is still theoretically challenging. Stimulated by the
development of network and communication technologies and so on, renewed interests in this
problem have extensively raised recently [2–4].

In [2], by means of introducing a spatial Z-transformation, some sufficient conditions have
been derived, which are computationally attractive for the verification of the stability of spa-
tially distributed systems. On the other hand, in [5], situations are clarified under which these
conditions become also necessary for a spatially distributed system to be stable. Through
adopting some parameter-dependent Lyapunov functions, in [6], a less conservative sufficient
condition for this stability verification was derived. In addition, [7] reveals some important
relations between the stability of a large-scale networked system and the structured singular
value of a matrix. To apply these results, however, it is required that every subsystem has the
same dynamics and that all subsystems are connected regularly and along some particular
spatial directions. On the other hand, when a large-scale system has a so-called sequentially
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semiseparable structure, an iterative method is successfully developed in [8] for its stability
verifications.

The concept of diagonal stability has also been utilized in the stability verification of a large-
scale system. Particularly, stability of a networked system is investigated in [3] for systems
consisting of only passive subsystems and having special structures. Influence of time de-
lays on the stability of a large-scale system has been studied in [9] using a description of the
so-called integral quadratic constraints. On the basis of the same descriptions for modeling
errors, a sufficient condition is derived in [10] for the verification of the robust stability of the
large-scale networked system described by Eqs. (6.1) and (6.2) with both its subsystem pa-
rameters and its subsystem connection matrix being time invariant. When modeling errors
affect system input–output behaviors in a linear fractional way, some results are established
in [11] on influence of subsystem interactions on the stability and robust stability of a net-
worked system. Necessary and sufficient conditions are expressed there explicitly using the
subsystem connection matrix of a networked system, and influence of the out-degree of a sub-
system on the stability and robust stability of a networked system have also been clarified.

In this chapter, we summarize the results developed in [10,11] for the stability and robust
stability of a large-scale NCS. Some necessary and sufficient conditions are given that ex-
plicitly take system structures into account, as well as some necessary or sufficient conditions
that depend separately only on parameters of each subsystem and the subsystem connection
matrix. Although the latter conditions are not necessary and sufficient, they can be verified in-
dependently for each individual subsystem and are therefore attractive for a large-scale NCS
from the viewpoint of both numerical stability and computational costs. In addition, when the
robust stability of an NCS is under investigation, both parametric modeling errors and unmod-
eled dynamics are permitted.

7.2 A Networked System With Discrete-Time Subsystems

In this section, we attack stability and robust stability of a networked system under the con-
dition that each of its subsystem is described by a discrete-time model. Parallel results can be
developed for a system with its subsystem dynamics described by a continuous-time model,
that is, a set of first-order differential equations.

7.2.1 System Description

The NCS � investigated in this section is the same as that of the previous chapters, which
has also been adopted in [10–12]. This system is constituted from N linear time-invariant
dynamic subsystems, whereas the dynamics of its ith subsystem �i is described by the fol-
lowing state space model like representation:
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⎡
⎣ x(k + 1, i)

z(k, i)

y(k, i)

⎤
⎦=

⎡
⎣ Axx(i) Axv(i) Bx(i)

Azx(i) Azv(i) Bz(i)

Cx(i) Cv(i) Du(i)

⎤
⎦
⎡
⎣ x(k, i)

v(k, i)

u(k, i)

⎤
⎦ , (7.1)

where i = 1,2, · · · ,N . Moreover, its subsystems are connected through

v(k) = �z(k). (7.2)

As in the previous chapters, here z(k) and v(k) are respectively defined as z(k) =
col

{
z(k, i)|Ni=1

}
and v(k) = col

{
v(k, i)|Ni=1

}
. Moreover, k and i stand respectively for the

temporal variable and the index number of a subsystem, x(k, i) represents the state vector
of the ith subsystem �i at the time instant k, z(k, i)/v(k, i) represent its output/input vector
to/from other subsystems, and y(k, i) and u(k, i) represent respectively its output and input
vectors. Once again, as in the previous chapters, to distinguish z(k, i) and v(k, i) respectively
from y(k, i) and u(k, i), z(k, i) and v(k, i) are called internal output/input vectors, whereas
y(k, i) and u(k, i) are called external output/input vectors.

Throughout this section, the dimensions of the vectors x(k, i), v(k, i), u(k, i), z(k, i), and
y(k, i), are assumed respectively to be mxi , mvi , mui , mzi , and myi . Moreover, we assume
that every row of the matrix � has only one nonzero element, which is equal to one. As ar-
gued in the previous chapters, this assumption does not sacrifice any generality of the adopted
system model. Note also that an approximate power-law degree distribution exists extensively
in science and engineering systems, such as gene regulation networks, protein interaction net-
works, internet, electrical power systems, and so on. For these systems, interactions among
subsystems are sparse, and the matrix � usually has a dimension significantly smaller than
that of its state vector [10,12–14]. Under such a situation, results given in this section work
well in general.

7.2.2 Stability of a Networked System

To develop a computationally attractive criterion for the stability of system � and for its ro-
bust stability against both parametric modeling errors and unmodeled dynamics, the following
results are at first introduced, which are well known in system theories [1,15–17].

Lemma 7.1. Concerning a discrete LTI system with its state space model being x(k + 1) =
Ax(k) + Bu(k), y(k) = Cx(k) + Du(k), it is stable if and only if ρ(A) < 1.

Note that well-posedness is essential for a system to work properly. In fact, a plant that does
not satisfy this requirement is usually hard to be controlled, and/or its states are in general
difficult to be estimated [1,4,12]. It is therefore assumed in the following discussions that the
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networked system � under investigation is well-posed, which can be explicitly expressed as a
requirement that the associated matrix is invertible.

When each its subsystem is linear and time-invariant and the subsystem connection matrix
is also time invariant, the networked system � itself is also linear and time invariant. From
Lemma 7.1 it is clear that the requirement that the networked system � is stable can be equiv-
alently expressed as that all the eigenvalues of its state transition matrix are smaller than 1
in magnitude. To make mathematical derivations more concise, we first define the follow-
ing matrices: A∗# = diag

{
A∗#(i)|Ni=1

}
, B∗ = diag

{
B∗(i)|Ni=1

}
, C∗ = diag

{
C∗(i)|Ni=1

}
,

and Du = diag
{
Du(i)|Ni=1

}
, where ∗,# = x, v or z. Moreover, denote col

{
u(k, i)|Ni=1

}
,

col
{
x(k, i)|Ni=1

}
, and col

{
y(k, i)|Ni=1

}
respectively by u(k), x(k), and y(k). Then straight-

forward algebraic manipulations show that the well-posedness of the networked system � is
equivalent to the regularity of the matrix I − Azv�, that is, this matrix is invertible. Moreover,
when the networked system � is well-posed, its dynamics can be equivalently described by
the following state space model:

[
x(k + 1)

y(k)

]
=
{[

Axx Bx

Cx Du

]
+
[

Axv

Cv

]
� [ I − Azv� ]−1 [Azx Bz]

}[
x(k)

u(k)

]
. (7.3)

This expression gives a lumped state space model of the networked system � and is com-
pletely the same as that adopted in Lemma 7.1. This property can be understood more easily if
we define the matrices A, B , C, and D respectively as

A = Axx + Axv�(I − Azv�)−1 Azx, B = Bx + Axv�(I − Azv�)−1 Bz,

C = Cx + Cv�( I − Azv� )−1 Azx, D = Du + Cv�(I − Azv�)−1 Bz.

Clearly, all these matrices are time invariant. Moreover, the input–output relation of the net-
worked system � has been rewritten completely in the same form as that in Lemma 7.1. As in
the verification of controllability and observability of the networked system, this relation en-
ables application of Lemma 7.1 to the stability and robust stability analysis of the networked
system �. However, it is worth noting that a networked system usually has a great amount of
subsystems, which means that the dimensions of the associated matrices in the lumped model
are in general high. Hence, when a large-scale networked system is under investigation, it is
usually not numerically feasible to straightforwardly apply the results of Lemma 7.1 to its
analysis and synthesis. In addition, note that the inverse of the matrix I − Azv� is required in
the aforementioned expressions, and this inversion is in general not numerically stable when
the dimension of this matrix is high and/or when this matrix is nearly singular. These imply
that calculations of the parameter matrices A, B , C, and D of the lumped model itself might
not be reliable. As discussed in Chapter 3, these difficulties happen also to verifications of the
controllability and/or the observability of the networked system �.



Stability and Robust Stability of a Large-Scale NCS 241

To develop a computationally feasible and numerically reliable criterion for the stability of the
networked system �, the following properties of the matrix A is first established.

Lemma 7.2. Assume that the networked system � is well-posed. Then, a complex number λ is
not an eigenvalue of the matrix A if and only if |I − �G(λ)| �= 0. Here, the transfer function
matrix G(λ) is defined as G(λ) = Azv + Azx(λI − Axx)

−1Axv.

Proof. When system � is well-posed, we have that |I − Azv�| �= 0, which is equivalent to
|I − �Azv| �= 0. From this inequality and the definition of the matrix A, direct algebraic ma-
nipulations show that for an arbitrary complex number λ,

∣∣∣∣
[

λI − Axx Axv

�Azx I − �Azv

]∣∣∣∣= |I − �Azv| × |λI − A|. (7.4)

Hence |λI − A| �= 0 can be equivalently expressed as
∣∣∣∣
[

λI − Axx Axv

�Azx I − �Azv

]∣∣∣∣ �= 0. (7.5)

Note that λI − Axx is of full normal rank. On the basis of the definition of the transfer func-
tion matrix G(λ), the following formal expression can be derived straightforwardly:

∣∣∣∣
[

λI − Axx Axv

�Azx I − �Azv

]∣∣∣∣= |λI − Axx| × |I − �G(λ)|. (7.6)

Assume that |λI − Axx| �= 0. Then, we can declare from Eqs. (7.5) and (7.6) that |λI − A| �= 0
if and only if |I − �G(λ)| �= 0.

Note that the dimension of the matrix Axx is finite. We can claimed that its eigenvalues only
take isolated values. Hence, if |λI − Axx| = 0, then there always exists ε > 0 such that, for
each δ ∈ (−ε, 0)

⋃
(0, ε), |(λ + δ)I − Axx| �= 0. Assume further that |λI − A| �= 0. Then, by

Eq. (7.4),

lim
δ→0

∣∣∣∣
[

(λ + δ)I − Axx Axv

�Azx I − �Azv

]∣∣∣∣ =
∣∣∣∣
[

λI − Axx Axv

�Azx I − �Azv

]∣∣∣∣
= |I − �Azv| × |λI − A|
�= 0. (7.7)

Therefore, we can declare from Eq. (7.6) that

|I − �G(λ)| = lim
δ→0

|I − �G(λ + δ)| �= 0. (7.8)
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On the contrary, assume that |I − �G(λ)| �= 0. If |λI − A| = 0, then we can declare from
Eq. (7.4) that there exist vectors α and β such that col{α, β} �= 0 and

(λI − Axx)α + Axvβ = 0, (7.9)

�Azxα + (I − �Azv)β = 0. (7.10)

From Eq. (7.9) it is clear that Axvβ belongs to the image of the matrix λI − Axx. We can
therefore declare from matrix theories [18] that even though |λI − Axx| = 0, the vector α

can still be expressed as α = −(λI − Axx)
†Axvβ , where (·)† denotes the pseudo-inverse of a

matrix. We can claim from this expression that β �= 0.

Substituting the expression for α into Eq. (7.10), we have that
{
I − �

[
Azv + Azx(λI − Axx)

†Axv

]}
β = 0.

This further leads to ∣∣∣I − �
[
Azv + Azx(λI − Axx)

†Axv

]∣∣∣= 0.

Hence from the definition of the transfer function matrix G(λ) and consistencies between the
inverse and the pseudo-inverse of a matrix we can declare that |I − �G(λ)| = 0. This is a
contradiction with the assumption. We can therefore claim that |λI − A| �= 0. This completes
the proof.

On the basis of Eq. (7.5), it can be shown that the networked system � is stable, only when
all the unstable modes of each of its subsystems are both controllable and observable. This
conclusion can be established through a similarity transformation that divide the state space of
each subsystem into a stable subspace and an unstable subspace, utilizing the relation of the
following Eq. (7.11).

From Lemmas 7.1 and 7.2 it is clear that a necessary and sufficient condition for the net-
worked system � to be stable is that, for every complex number λ satisfying |λ| ≥ 1, the
matrix I − �G(λ) is regular. However, it is worth noting that when the networked system
under investigation is constructed from a large amount of subsystems, although the subsys-
tem connection matrix � is usually sparse, its dimension is still usually high. Moreover, the
associated inequality must be checked for each complex number λ satisfying |λ| ≥ 1. This is
generally impossible through straightforward computations. By these observations it is safe to
declare that some further efforts are still required to make the results of Lemma 7.2 applicable
to a large-scale networked system.

To achieve these objectives, we recall the following property for the subsystem connection
matrix � stated and proven in Chapter 3.
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Let m(i) stand for the number of subsystems that is directly affected by the ith element of the
vector z(k), i = 1,2, . . . ,Mz. Define the matrices 	(j), j = 1,2, . . . ,N , and 	 respectively

as 	(j) = diag{√m(i)|Mz,j
i=Mz,j−1+1} and 	 = diag{√m(i)|Mz

i=1}. It has been proven in [11] and
Chapter 3 that

�T � = 	2 = diag
{

	2(j)

∣∣∣N
j=1

}
. (7.11)

On the basis of these results, we derive a necessary and sufficient condition for the stability
of the networked system �, which explicitly takes the structure of the networked system into
account and is computationally attractive.

Theorem 7.1. System � is stable if and only if there exists a positive definite matrix (PDM) P

such that [
P − AT

xxPAxx + AT
zx	

2Azx AT
zx	

2Azv − AT
xxPAxv

AT
zv	

2Azx − AT
xvPAxx AT

zv	
2Azv − AT

xvPAxv + I

]

−
[

0 AT
zx�

T

�Azx �Azv + AT
zv�

T

]
> 0. (7.12)

Proof. Note that |I − �G(λ)| �= 0 is equivalent to [I − �G(λ)]H [I − �G(λ)] > 0. Moreover,

I − �G(λ) = [−�Azx I − �Azv]

[
(λI − Axx)

−1Axv

I

]
,

and |λ| ≥ 1 is equivalent to

[
λ

1

]H [
1 0
0 −1

][
λ

1

]
≥ 0.

On the other hand, straightforward matrix operations show that

[I − λI ]

[
Axx Axv

I 0

][
(λI − Axx)

−1Axv

I

]
= 0,

which implies that, for each fixed λ, a vector, say α, that can be expressed as

α =
[

Axx Axv

I 0

][
(λI − Axx)

−1Axv

I

]
ξ,
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where ξ is a complex vector with a compatible dimension, belongs to the null space of the
matrix [I − λI ]. In other words, when the Laplacian variable λ is prescribed to a particular
value, we have the following relation:

Span

{[
Axx Axv

I 0

][
(λI − Axx)

−1Axv

I

]}
⊆ Null {[I − λI ]} .

In addition, note also that

Span

{[
λI

I

]}
= Null {[I − λI ]} ,

which can be directly proven from Definitions 2.5 and 2.6.

On the basis of these relations, similar arguments as those in the proof of Theorems 1 and 3
of [19] and those in [5,10] show that |I −�G(λ)| �= 0, ∀|λ| ≥ 1, can be equivalently expressed
as the existence of a positive definite matrix P such that

[
Axx Axv

I 0

]T [ −P 0
0 P

][
Axx Axv

I 0

]
+ [−�Azx I − �Azv]T [−�Azx I − �Azv] > 0.

(7.13)

On the other hand, direct algebraic manipulations show that

[−�Azx I − �Azv]T [−�Azx I − �Azv]

=
[

AT
zx	

2Azx AT
zx	

2Azv − AT
zx�

T

AT
zv	

2Azx − �Azx AT
zv	

2Azv + I − �Azv − AT
zv�

T

]
, (7.14)

[
Axx Axv

I 0

]T [ −P 0
0 P

][
Axx Axv

I 0

]
= −

[
AT

xxPAxx − P AT
xxPAxv

AT
xvPAxx AT

xvPAxv

]
.

(7.15)

The proof can now be completed by substituting Eqs. (7.14) and (7.15) into Eq. (7.13).

Compared with the available results, such as those of [2,3,6,7], an attractive characteristic of
Theorem 7.1 is that there exist no restrictions on the model of the networked system � and
the condition is both necessary and sufficient. On the other hand, note that the left-hand side
of Eq. (7.12) depends linearly on the matrix P and that the structure of the networked sys-
tem �, which is represented by the subsystem connection matrix �, is explicitly included
in this equation. For a small size problem, feasibility of this matrix inequality can in general
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be easily verified using available linear matrix inequality (LMI) solvers. On the other hand,
note that all the matrices A∗# with ∗, # = x, z are block diagonal and a networked system
usually has a sparse structure, which is reflected by the subsystem connection matrix �. In
addition, efficient methods have been developed for sparse semidefinite programming, such as
those in [10,20,21]. It is expected that the above condition works well also for a moderate size
problem. This expectation has been confirmed through some numerical simulations reported
in [11].

From its proof it is clear that although the matrices A∗# with ∗,# = x, v, or z are block
diagonal, the matrix P is usually dense. In addition, when the square of the matrix 	 in in-
equality (7.12) is replaced by �T �, the results of Theorem 7.1 become valid for an arbitrary
subsystem connection matrix �. On the other hand, a necessary condition for the feasibility of
this inequality obviously is

P − AT
xxPAxx + AT

zx	
2Azx > 0,

which can be proved to be equivalent to the existence of positive definite matrices P(i) for
i = 1,2, · · · ,N such that

P(i) − AT
xx(i)P (i)Axx(i) + AT

zx(i)	
2
i Azx(i) > 0.

The last inequality can be verified for each subsystem independently.

It is worth pointing out that from Lyapunov stability theory we can directly declare that
system � is stable if and only if there exists a positive definite matrix P such that P −
AT PA > 0, which is also a linear matrix inequality. However, as argued in [10,12] and the
previous chapters, although the subsystem connection matrix � is generally sparse, the state
transition matrix A is usually dense. This implies that computational complexity for feasibil-
ity verification of this equation is usually significantly greater than that of inequality (7.12),
especially when the plant consists of a large amount of subsystems. Similar observations have
also been reported in [10] for robust stability verification of system � with IQC described un-
certainties.

When a system is of a very large-scale, numerical difficulties may still arise in verifying the
condition of Theorem 7.1. To overcome these difficulties, one possibility is to find some
matrices 	

[∗]
ij = diag{	[∗]

ij (k)|Nk=1} with i, j = 1,2 and ∗ = l, h that have dimensions and
partitions compatible with the matrix Axx such that

[
	

[l]
11 	

[l]T
21

	
[l]
21 	

[l]
22

]
≤
[

0 AT
zx�

T

�Azx �Azv + AT
zv�

T

]
≤
[

	
[h]
11 	

[h]T
21

	
[h]
21 	

[h]
22

]
. (7.16)
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With availability of these matrices, direct algebraic operations show that a necessary condition
for the stability of system � is the existence of a PDM P(i) for each 1 ≤ i ≤ N such that
[

P(i) − AT
xx(i)P (i)Axx(i) + AT

zx(i)	
2(i)Azx(i) − 	

[l]
11(i) AT

zx(i)	
2(i)Azv(i) − AT

xx(i)P (i)Axv(i) − 	
[l]T
21 (i)

AT
zv(i)	

2(i)Azx(i) − AT
xv(i)P (i)Axx(i) − 	

[l]
21(i) AT

zv(i)	
2(i)Azv(i) − AT

xv(i)P (i)Axv(i) + I − 	
[l]
22(i)

]
> 0.

Moreover, when the superscript l is replaced by h, these inequalities become a sufficient
condition. Clearly, these inequalities depend linearly on P(i), and their dimensions are com-
pletely and independently determined by each individual system. These properties make them
much more computationally attractive than Eq. (7.12). However, further efforts are required to
find the matrices 	

[∗]
ij (k) in Eq. (7.16) with i, j = 1,2, ∗ = h, l, and k = 1,2, · · · ,N such that

the associated inequalities are both tight and computationally attractive.

Based on the properties of the SCM �, another computationally attractive sufficient condition
is derived for the stability of system �.

Theorem 7.2. Denote the TFM Azv(i) + Azx(i)[λI − Axx(i)]−1Axv(i) by Gi(λ) and assume
that ||	iGi(λ)||∞ < 1 for each subsystem. Then system � is stable.

Proof. From the definitions of the TFMs Gi(λ) and G(λ) it is obvious that G(λ) =
diag{Gi(λ)|Ni=1}. Based on this relation and Eq. (7.11), we can directly prove that

[�G(λ)]H�G(λ) = GH(λ)�T �G(λ)

= diag
{

[	iGi(λ)]H	iGi(λ)

∣∣∣N
i=1

}
. (7.17)

From the definition of the H∞ norm of a TFM we can declare that if ||	iGi(λ)||∞ < 1, then
σ̄ (	iGi(λ)) < 1 for |λ| ≥ 1. Note that ρ(�) ≤ σ̄ (�) for every square matrix [18]. We can
therefore further claim that when |λ| ≥ 1 and ||	iGi(λ)||∞ < 1, i = 1,2, · · · ,N , it is certain
that

ρ(�G(λ)) ≤ σ̄ (�G(λ)) = max
1≤i≤N

σ̄ (	iGi(λ)) < 1, (7.18)

and hence |I − �G(λ)| �= 0. This completes the proof.

Note that 	iGi(λ) is completely determined by the SCM � and the parameters of the ith
subsystem, and efficient methods exist for computing an upper bound of the H∞ norm of a
TFM. Therefore, the condition of Theorem 7.2 can be easily verified, and its computational
complexity increases only linearly with the increment of the subsystem number N . This
means that for a large-scale networked system, the computation cost of Theorem 7.2 is in gen-
eral significantly lower than that of Theorem 7.1. However, it is worth emphasizing that this
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condition is only sufficient and its conservativeness is still not clear. On the other hand, the
numerical simulation results reported in [11] show that with the increment of the subsystem
number and/or the magnitude of the subsystem matrix elements, conservativeness of Theo-
rem 7.2 usually increases.

Note also that the finiteness of ||	iGi(λ)||∞ implies the stability of the subsystem �i . More-
over, from the definition of the TFM H∞ norm we can see that ||	iGi(λ)||∞ decreases
monotonically with the decrement of any diagonal element of the matrix 	i . Theorem 7.2
therefore also makes it clear that for an NS consisting of stable subsystems, sparse connec-
tions are helpful in maintaining its stability, and subsystem interaction reduction can make an
unstable system stable.

On the basis of the results given in [19], here we provide a linear matrix inequality-based con-
dition for the verification of the H∞ norm-based condition.

Note that σ̄ (	iGi(λ)) < 1 is equivalent to

[
	iGi(λ)

I

]H [ −I 0
0 I

][
	iGi(λ)

I

]
> 0. (7.19)

It can be directly proved from the structure of col{	iGi(λ), I } that the condition of Theo-
rem 7.2 can be equivalently expressed as the following matrix inequality:

[�]H
[

−AT
zx(i)	

2
i Azx(i) −AT

zx(i)	
2
i Azv(i)

−AT
zv(i)	

2
i Azx(i) −AT

zv(i)	
2
i Azv(i) + I

][
(λI − Axx(i))

−1Axv(i)

I

]
> 0

(7.20)

for every complex number λ such that |λ| ≥ 1.

Recall that |λ| ≥ 1 is equivalent to

[
λ

1

]H [
1 0
0 −1

][
λ

1

]
≥ 0.

Based on the definition of the H∞ norm of a transfer function matrix and Theorems 1 and 3
of [19], we can directly claim that ||	iGi(λ)||∞ < 1 is equivalent to the existence of a posi-
tive definite matrix P(i) such that

[�]T
[

P(i) 0
0 −P(i)

][
Axx(i) Axv(i)

I 0

]

−
[

−AT
zx(i)	

2
i Azx(i) −AT

zx(i)	
2
i Azv(i)

−AT
zv(i)	

2
i Azx(i) −AT

zv(i)	
2
i Azv(i) + I

]
< 0, (7.21)
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which can be reexpressed as[
P(i) − AT

xx(i)P (i)Axx(i) − AT
zx(i)	

2
i Azx(i) −AT

xx(i)P (i)Axv(i) − AT
zx(i)	

2
i Azv(i)

−AT
xv(i)P (i)Axx(i) − AT

zv(i)	
2
i Azx(i) I − AT

xv(i)P (i)Axv(i) − AT
zv(i)	

2
i Azv(i)

]
> 0.

(7.22)

Clearly, the left-hand side of this matrix inequality depends linearly on the matrix P(i), and
its dimension is completely determined by that of the ith subsystem �i . Therefore, feasibility
of this inequality can be effectively verified in general.

Note that a necessary condition for the feasibility of inequality (7.22) is the existence of a
positive definite matrix P(i) such that

P(i) − AT
xx(i)P (i)Axx(i) − AT

zx(i)	
2
i Azx(i) > 0.

This inequality further leads to

P(i) − AT
xx(i)P (i)Axx(i) > 0.

According to the Lyapunov stability theory [1,2,4], this means that the matrix Axx(i) is stable.
In other words, a necessary condition for the feasibility of inequality (7.22) is that when every
subsystem of system � is completely isolated from interactions with all the other subsystems
of the plant, then all they are stable. Clearly, this is generally not required to guarantee the
stability of the whole system, noting that a controllable and observable open loop unstable
system can be stabilized by an appropriately designed feedback controller. From these aspects
it is also clear that the associated condition is generally conservative.

7.2.3 Robust Stability of a Networked System

Modeling errors are unavoidable in practical engineering. A general requirement about a sys-
tem property is that it is not sensitive to modeling errors, which is widely known as robustness
of this property. This section investigates the robust stability of a networked system when
there exist both parametric modeling errors and unmodeled dynamics in a state space model
of each of its subsystems. To deal with this problem, an extra input vector and an extra out-
put vector are introduced into the description of the dynamics of its ith subsystem �i with the
purpose of reflecting influences of modeling errors while the subsystem connections remain
unchanged. More precisely, the state space model of Eq. (7.1) is modified into the following
form: ⎡

⎢⎢⎣
x(k + 1, i)

w(k, i)

z(k, i)

y(k, i)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Axx(i) Axd(i) Axv(i) Bx(i)

Awx(i) Awd(i) Awv(i) Bw(i)

Azx(i) Azd(i) Azv(i) Bz(i)

Cx(i) Cd(i) Cv(i) Du(i)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x(k, i)

d(k, i)

v(k, i)

u(k, i)

⎤
⎥⎥⎦ . (7.23)
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In addition, the unmodeled dynamics in this subsystem and the parametric errors in the matri-
ces A∗#(i) with ∗, # = x,d,v,w, z are respectively described by

d(k, i) = u(q, i)w(k, i), ||u(q, i)||∞ ≤ 1, (7.24)

A(i) = A0(i) + Eip(i)Fi, σ̄ (p(i)) ≤ 1, (7.25)

A(i) =
⎡
⎣ Axx(i) Axd(i) Axv(i)

Awx(i) Awd(i) Awv(i)

Azx(i) Azd(i) Azv(i)

⎤
⎦ . (7.26)

Here q stands for the one-step forward shift operator, u(q, i) and p(i) have respectively a
prescribed structure represented by �u(i) and �p(i). Moreover, Ei and Fi are known matri-
ces with compatible dimensions. In this description, the matrices Ei and Fi are introduced to
reflect how parametric errors influence subsystem parameters, whereas u(q, i) and p(i)

denote respectively unmodeled dynamics and parametric errors existing in the state space
model. This description is general enough to describe a large class of system dynamics. More-
over, a widely adopted structure for modeling errors is that they are block diagonal [1,22].

With this uncertainty model, the following results are obtained for the robust stability of the
networked system �. Their proof is given in the appendix attached to this chapter.

Theorem 7.3. Let ζ denote the variable of Z-transformation. Define the matrix Gi and the
uncertainty structure �(i) respectively as

Gi =
[

0 Fi

diag{Imxi
, Imwi

, 	i}[Ei A0(i)]
]

,

�(i) =
⎧⎨
⎩

∣∣∣∣∣∣
 = diag{p(i), δImxi

, u(ζ, i), (ζ )}
p(i) ∈ �p(i), δ ∈ C
u(ζ, i) ∈ �u(i), (ζ ) ∈ H∞

⎫⎬
⎭ .

Assume that all subsystems �i |Ni=1 are well posed. If μ�(i)(Gi) < 1 for each i = 1,2, · · · ,N ,
then the networked system � is robustly stable against all the modeling errors described by
Eqs. (7.24)–(7.26).

Note that the condition of Theorem 7.3 can be verified independently for each subsystem.
This means that the well-developed SSV analysis methods can be directly applied to its verifi-
cation in general. Compared with the results of [10], Theorem 7.3 is valid for a wider class of
uncertainty models and have a lower computational complexity. As a matter of fact, its com-
putational complexity increases only linearly with the increment of the subsystem number N .

On the other hand, from Eq. (7.A.4) we can derive another SSV-based sufficient condition
for the robust stability of system � simultaneously using all subsystem parameter matrices
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and the subsystem connection matrix. However, the corresponding matrix and the uncertainty
structure generally have a high dimension, which is not appropriate to be applied to a large-
scale networked system.

7.3 A Networked System With Continuous-Time Subsystems

In this section, we investigate the robust stability of a networked system when its subsystem
is described by a set of first-order differential equations and its modeling errors are described
by several IQCs, which stand for integral quadratic constraint, and is to some extent a little
abstract description. As in the previous section, similar arguments can lead to parallel results
for am NCS with discrete-time subsystems.

7.3.1 Modeling Errors Described by IQCs

In the description of modeling errors, a well-known but relatively abstract expression is the
so-called integral quadratic constraints (IQCs) [23,24]. As its name indicates, in this de-
scription, both integration and a quadratic form are utilized. More precisely, let �(·, t) be a
bounded self-adjoint operator, and let (·, t) be a bounded and causal operator that maps a
p-dimensional signal to a q-dimensional signal. If for each p-dimensional signal v(t) with
finite energy, that is, v(t) ∈ Lp

2 ,

∫ ∞

0

[
v(t)

(v(t), t)

]T

�

([
v(t)

(v(t), t)

]
, t

)
dt ≥ 0, (7.27)

then we say that the operator (·, t) satisfies the IQC defined by the operator �(·, t), which is
usually denoted by  ∈ IQC(�(·, t)). This inequality is capable of describing many mod-
eling errors adopted in system analysis and synthesis. For example, a q × p-dimensional
parametric modeling error  with σ̄ () < γ can be easily seen to satisfy

∫ ∞

0

[
v

(v)

]T
[

Ip 0

0 −γ 2Iq

][
v

(v)

]
dt ≥ 0, ∀v(t) ∈ Lp

2 ,

whereas the q × p-dimensional unmodeled dynamics (·) with ||||∞ < γ can be straight-
forwardly proved to meet the IQC

∫ ∞

0

[
v

(v)

]T
[

Ip 0

0 −γ 2Iq

][
v

(v)

]
dt ≥ 0, ∀v(t) ∈ Lp

2 .

In addition to these, IQCs are also able to describe system properties like passivity, and com-
bine several IQCs into a single IQC [25,26].
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Utilization of IQCs in system analysis and synthesis can be traced back to the 1960s, in which
they are extensively applied to the absolute stability analysis of a nonlinear system, whereas
their applications to the analysis and synthesis of a system with modeling errors were started
around the beginning of the 1990s [23–26]. A particularly important property of IQCs is
that they have a clear frequency domain interpretation, which makes engineering intuition
in system analysis and synthesis much clearer and easier to be understood. In particular, if the
operator �(·, t) of Eq. (7.27) is linear and time invariant and has a transfer function matrix
representation, then the IQC of Eq. (7.27) can be equivalently rewritten as

∫ ∞

−∞

[
v(jω)

(v)(jω)

]H

�(jω)

[
v(jω)

(v)(jω)

]
dω ≥ 0. (7.28)

In addition to this, an IQC constraint is also capable of describing nonlinear dynamic uncer-
tainties, which makes the associated system analysis and synthesis methods able to cope with
nonlinear modeling errors.

The following results are fundamental in robust stability analysis of a system with IQC de-
scribed uncertainties [10,25]. They also play central roles in the derivations of a criterion for
the robust stability of a networked system, which is the main objective of this section.

Lemma 7.3. Consider a feedback system with y(s) = G(s)u(s) and u(t) = (y(t)), where
G(s) ∈ RHp×q∞ and (·) ∈ IQC(�(·)). Moreover, let �(·) be a bounded and self-adjoint
operator. Suppose that

• for each δ ∈ [0, 1], the feedback system with u(t) = (y(t)) replaced by u(t) = δ(y(t))

is well-posed;
• δ(·) ∈ IQC(�(·)) for arbitrary δ ∈ [0, 1];
• there exists a positive number ε such that for an arbitrary angular frequency ω ∈ [0, ∞],

the following inequality is satisfied:

[
G(jω)

I

]H

�(jω)

[
G(jω)

I

]
≤ −εI. (7.29)

Then, the feedback system is robustly stable with respect to the uncertain operator (·).
Remark 7.1. For a particular uncertain operator (·), there may exist various bounded and
self-adjoint operators �(·) such that (·) ∈ IQC(�(·))�. This is a well-encountered case
in actual system analysis and synthesis [23]. Under such a situation, Lemma 7.3 declares
that among these bounded and self-adjoint operators �(·), if one of them satisfies inequal-
ity (7.29), then the feedback system consisting of y(s) = G(s)u(s) and u(t) = (y(t)) is
robustly stable. Note that the conditions of Lemma 7.3 are only sufficient. An appropriate
selection of this bounded self-adjoint operator �(·) is important in the reduction of the con-
servativeness of these conditions.
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7.3.2 Robust Stability With IQC-Described Modeling Errors

In this section, we investigate once again the robust stability of a networked system with
dynamics described similarly as in Eqs. (7.23) and modeling errors for each subsystem de-
scribed by an IQC. Rather than a discrete-time system, a continuous-time system is dealt
with, that is, interactions among its subsystems are still described by an equation similar
to Eq. (7.2), and the input–output relation of its ith subsystem by an equation similar to
Eq. (7.23) with the signal transfer from w(t, i) to d(t, i) described by

d(t, i) = (w(t, i), i, t). (7.30)

Moreover, there exists a bounded self-adjoint operator �(·, i, t), such that (·, i, t) ∈
IQC (�(·, i, t)). To avoid awkward presentations, we assume that there are no longer any
other modeling uncertainties in the subsystem matrices A∗#(i) with ∗, # = x,d,v,w, z.

More precisely, the dynamics of the ith subsystem �i is described by⎡
⎢⎢⎢⎣

dx(t,i)
dt

w(t, i)

z(t, i)

y(t, i)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

Axx(i) Axd(i) Axv(i) Bx(i)

Awx(i) Awd(i) Awv(i) Bw(i)

Azx(i) Azd(i) Azv(i) Bz(i)

Cx(i) Cd(i) Cv(i) Du(i)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x(t, i)

d(t, i)

v(t, i)

u(t, i)

⎤
⎥⎥⎦ , (7.31)

whereas the subsystem interactions are described by

v(t) = �z(t), (7.32)

where the vectors v(t) and z(t) are defined similarly to the vectors v(k) and z(k) of Eq. (7.2),
which are stacked respectively by the internal input vectors v(t, i)|Ni=1 and the internal output
vectors z(t, i)|Ni=1 row by row.

When the modeling errors in each subsystem of the networked system are described by
Eq. (7.30), define the operators (·) and �(·) as

(w(t)) = col
{
(w(t, i), i, t)|Ni=1

}
and �(·) = diag

{
�(·, i, t)|Ni=1

}
, (7.33)

where w(t) = col
{
w(t, i)|Ni=1

}
. Moreover, denote the vector col

{
d(t, i)|Ni=1

}
by d(t). Then it

is clear from these definitions that

d(t) = (w(t)). (7.34)

Note that
∫ ∞

0

[
w(t)

d(t)

]T

�

([
w(t)

d(t)

]
, t

)
dt
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=
∫ ∞

0

[
w(t)

(w(t), t)

]T

�

([
w(t)

(w(t), t)

]
, t

)
dt

=
N∑

i=1

∫ ∞

0

[
w(t, i)

(w(t, i), i, t)

]T

�

([
w(t, i)

(w(t, i), i, t)

]
, t, i

)
dt. (7.35)

It is clear that if the modeling errors of each subsystem can be described by an IQC, then
the total modeling errors of the whole networked system can also be described by an IQC.
More precisely, we can straightforwardly prove from the definition of an integral quadratic
constraint that the operator (·) belongs to the set IQC (�(·, t)) if and only if for each
i ∈ {1,2, · · · ,N}, the uncertainty operator ((·), i) of the subsystem �i belongs to the set
IQC (�(·, i, t)). The proof is quite obvious and is therefore omitted.

The above relations can be expressed in a more explicit and concise way if the IQC associ-
ated inequality is described in the frequency domain for the modeling errors of each sub-
system. More precisely, assume that for the ith subsystem �i , its modeling error d(t, i) =
(w(t, i), i, t) is described by

∫ ∞

−∞

[
w(jω, i)

d(jω, i)

]H

�(jω, i)

[
w(jω, i)

d(jω, i)

]
dω ≥ 0, (7.36)

where �(jω, i) is a complex matrix-valued function that is Hermitian at each angular fre-
quency ω. Partition this matrix-valued function as

�(jω, i) =
[

�ww(jω, i) �wd(jω, i)

�dw(jω, i) �dd(jω, i)

]
, (7.37)

where �pq(jω, i) is an (mpi × mqi )-dimensional complex matrix-valued function. Here
p,q = w,d . Using these functions, define the complex matrix-valued functions �pq(jω) =
diag

{
�pq(jω, i)

∣∣L
i=1

}
for p,q = w,d . Moreover, on the basis of these complex matrix-

valued functions, define the other complex matrix-valued function

�(jω) =
[

�ww(jω) �wd(jω)

�dw(jω) �dd(jω)

]
. (7.38)

Then it is obvious that this complex matrix-valued function is Hermitian. In addition, for sig-
nals w(t) and d(t) defined by Eq. (7.34), straightforward algebraic manipulations show that

∫ ∞

∞

[
w(jω)

d(jω)

]H

�(jω)

[
w(jω)

d(jω)

]
dω ≥ 0. (7.39)
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In this section, we discuss only situations where each operator �(·, i, t)|Ni=1 is time invariant.
The temporal variable t is therefore omitted to have a concise expression in the following in-
vestigations.

As in the previous section, the Laplace transform of a time series is denoted by the same sym-
bol with temporal variable t replaced by s, the variable of the Laplace transform. Taking the
Laplace transformation on both sides of Eqs. (7.31) and (7.32), we have that

⎡
⎢⎢⎣

sx(s, i)

w(s, i)

z(s, i)

y(s, i)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Axx(i) Axd(i) Axv(i) Bx(i)

Awx(i) Awd(i) Awv(i) Bw(i)

Azx(i) Azd(i) Azv(i) Bz(i)

Cx(i) Cd(i) Cv(i) Du(i)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(s, i)

d(s, i)

v(s, i)

u(s, i)

⎤
⎥⎥⎦ , (7.40)

v(s) = �z(s). (7.41)

Substitute the expression for the vector v(s) given by Eq. (7.41) into Eq. (7.40). Straightfor-
ward algebraic manipulations show that

[
w(s)

y(s)

]
=
[

G
[l]
wd(s) G

[l]
wu(s)

G
[l]
yd(s) G

[l]
yu(s)

][
d(s)

u(s)

]
, (7.42)

where[
G

[l]
wd(s) G

[l]
wu(s)

G
[l]
yd(s) G

[l]
yu(s)

]
=

[
Awd Bw

Cd Du

]
+
[

Awx Awv

Cx Cv

][
I 0
0 �

]

×
([

sI 0
0 I

]
−
[

Axx Axv

Azx Azv

][
I 0
0 �

])−1 [
Axd Bx

Azd Bz

]
.

Clearly, when the dynamics of the networked system � are described by Eqs. (7.34)
and (7.42), connections between its nominal system and modeling errors are completely
the same as in Lemma 7.3. This implies that the results of this lemma may be straightfor-
wardly applicable to the aforementioned networked system. More precisely, by Lemma 7.3
we have that when the modeling errors are described by Eq. (7.30) for each subsystem of
the networked system described by Eqs. (7.23) and (7.32), there exists a Hermitian complex
matrix-valued function �(jω) satisfying

[
G

[l]
wd(jω)

I

]H

�(jω)

[
G

[l]
wd(jω)

I

]
≤ −εI (7.43)

at each angular frequency ω, and then this networked system is robustly stable against these
modeling errors.
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However, it is worth mentioning that, completely as the difficulties encountered in dealing
with other issues related to a networked system with a large number of subsystems, such
as controllability and/or observability verifications, and so on, the dimension of the transfer
function matrix G

[l]
wd(s) is generally high when the amount of subsystems is large. In addition

to this, note that the inverse of a sparse matrix is in general dense. This means that in spite
that the matrices A∗,# with ∗,# = w,d,v,x are block diagonal, both matrices Bw and Bx are
also block diagonal, and that the subsystem connection matrix � is usually sparse, the transfer
function matrix G

[l]
wd(s) is usually dense. Hence, for a large-scale networked system, direct

applications of Lemma 7.3 may suffer from both computational cost and numerical stability
problems.

To overcome these problems, the structure of the networked system is utilized in this section
in its robust stability analysis, which has also been performed in the previous section when the
modeling errors are described by Eqs. (7.24)–(7.26). For this purpose, the influences among
the subsystems of the networked system, which is given by Eq. (7.2), is first expressed equiva-
lently as an IQC.

Note that Eq. (7.2) is equivalent to that, for an arbitrary positive definite matrix X with an
appropriate dimension, the following inequality is satisfied:

[v(t) − �z(t)]T X[v(t) − �z(t)] ≤ 0. (7.44)

Hence, the subsystem interactions can be equivalently expressed as

∫ ∞

0

[
v(t)

z(t)

]T
[

−�T X� �T X

X� −X

][
v(t)

z(t)

]
dt ≥ 0, ∀z(t) ∈ LMz

2 . (7.45)

Define the operator ̄(·) as

̄

([
w(t)

z(t)

])
=
[

(w(t))

�z(t)

]
=
[



�

]([
w(t)

z(t)

])
.

Then, obviously from the definitions of the associated vectors we have the equality[
d(t)

v(t)

]
= ̄

([
w(t)

z(t)

])
. (7.46)

On the other hand, similarly to the derivation of Eq. (7.42), we can straightforwardly prove
from Eq. (7.40) that

⎡
⎣ w(s)

z(s)

y(s)

⎤
⎦=

⎡
⎣ Gwd(s) Gwv(s) Gwu(s)

Gzd(s) Gzv(s) Gzu(s)

Gyd(s) Gyv(s) Gyu(s)

⎤
⎦
⎡
⎣ d(s)

v(s)

u(s)

⎤
⎦ , (7.47)
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where ⎡
⎣ Gwd(s) Gwv(s) Gwu(s)

Gzd(s) Gzv(s) Gzu(s)

Gyd(s) Gyv(s) Gyu(s)

⎤
⎦

=
⎡
⎣ Awd Awv Bw

Azd Azv Bz

Cd Cv Du

⎤
⎦+

⎡
⎣ Awx

Azx

Cx

⎤
⎦ (sI − Axx)

−1 [ Axd Axv Bx
]
.

Differently from the transfer function matrices G
[l]
pq(jω) with p = w,d and q = u,y, which

are defined in Eq. (7.42) and are usually dense, all the transfer function matrices Gpq(jω)

with p = w,z, y and q = d, v,u are block diagonal.

Note that when δ = 0, δ� does not satisfy the IQC (7.44). This means that although
Eqs. (7.46) and (7.47) construct a feedback connection as that of Lemma 7.3, its results can-
not be directly applied to the verification of the robust stability of the networked system since
its second condition is not satisfied. However, due to the specific structure of the transfer func-
tion matrix G

[l]
wd(jω), we can prove that satisfaction of the associated condition is equivalent

to the feasibility of the matrix inequality of Eq. (7.43). As a matter of fact, we have the fol-
lowing results with their proof deferred to the appendix attached to this chapter.

Theorem 7.4. There exists a complex matrix-valued Hermitian function �(jω) satisfy-
ing Eq. (7.43) if and only if there exist a complex matrix-valued function �̄(jω), a positive
scalar x, and a positive scalar ε̄ such that

�̄(jω) =
[

�̄ww(jω) �̄wd(jω)

�̄dw(jω) �̄dd(jω)

]
, �̄H (jω) = �̄(jω), (7.48)

and for each s = jω with ω ∈ R, we have the matrix inequality
⎡
⎢⎢⎣

Gwd(s) Gwv(s)

Gzd(s) Gzv(s)

I 0
0 I

⎤
⎥⎥⎦

H
⎡
⎢⎢⎢⎣

�̄ww(s) 0 �̄wd(s) 0

0 −x�T � 0 x�T

�̄dw(s) 0 �̄dd(jω) 0
0 x� 0 −xI

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

Gwd(s) Gwv(s)

Gzd(s) Gzv(s)

I 0
0 I

⎤
⎥⎥⎦≤ −ε̄I.

(7.49)

Compared to Eq. (7.43), all the transfer function matrices in Eq. (7.49) are block diagonal. In
addition, the subsystem connection matrix � is generally sparse for a large-scale networked
system. This makes it possible to use results about sparse matrix computations in the feasibil-
ity verification of the associated matrix inequality, for which many efficient algorithms have
been developed [21,27]. Numerical studies in [10] show that it really can significantly reduce
computation costs for various types of large-scale networked systems.
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7.4 Concluding Remarks

In summary, this chapter investigates both stability and robust stability for a networked system
with nominal LTI subsystems and time-independent subsystem connections. The plant subsys-
tems can have different nominal TFMs, and there do not exist any restrictions on their inter-
actions. Some sufficient and necessary conditions have been derived. These conditions only
depend on the subsystem connection matrix and parameter matrices of each plant subsystem,
which make their verification easily implementable in general for a large-scale networked
system. However, under some situations, for example, when plant subsystems are densely
interconnected, both the subsystem connection matrix � and some of the transfer function
matrices Gi(λ)|Ni=1 may have a high dimension. In this case, results of this chapter usually do
not significantly reduce computation costs, and further efforts are required to develop compu-
tationally more efficient methods.

In addition to these, influence of many important factors on the stability and robust stability of
a networked system, such as signal transmission delays between subsystems, data droppings,
and so on, have not been explicitly discussed here. Some of these factors, however, can be
incorporated into a system model as modeling uncertainties [22,23], which may enable appli-
cation of the results in this chapter to these situations.

7.5 Bibliographic Notes

Results of this chapter are on the basis of [10] and [11]. There are also various other re-
searches on the stability and robust stability of a networked system, where its model has some
special constraints, and different concepts of stability are utilized. For example, diagonal sta-
bility is investigated for a networked system in [3] with a cactus graph structure, which is
basically based on system passivity analysis. In [2], the spatial Z-transformation is utilized
in the analysis and synthesis of a networked system that has identical subsystem dynamics,
regular subsystem interactions, and infinite number of subsystems. Some sufficient conditions
have been established there respectively for the stability and contractiveness of the networked
system, and situations are clarified in [5], where this sufficient condition also becomes neces-
sary. A less conservative stability condition is derived in [6] using the geometrical structure
of the null space of a matrix polynomial and a necessary and sufficient condition based on
the idea of parameter-dependent linear matrix inequalities. On the basis of dissipativity the-
ory, some sufficient conditions are derived in [29] for the stability and contractiveness of a
networked system in which each subsystem may have different dynamics and subsystem con-
nections are arbitrary, provided that the number of signals transferred from the ith subsystem
to the j th subsystem is equal to that from the j th subsystem to the ith subsystem. A sequen-
tially semiseparable approach is adopted in [28] for the analysis and synthesis of a networked
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system with a string subsystem interconnection, in which each subsystem is permitted to have
different dynamics, but the conditions for stability and contractiveness are only sufficient.

Appendix 7.A

7.A.1 Proof of Theorem 7.3

Denote the Z-transform of a time series using the same symbol but replacing the temporal
variable k by ζ . Taking the Z-transformation on both sides of Eq. (7.23), we have that

⎡
⎢⎢⎣

ζx(ζ, i)

w(ζ, i)

z(ζ, i)

y(ζ, i)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Axx(i) Axd(i) Axv(i) Bx(i)

Awx(i) Awd(i) Awv(i) Bw(i)

Azx(i) Azd(i) Azv(i) Bz(i)

Cx(i) Cd(i) Cv(i) Du(i)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x(ζ, i)

d(ζ, i)

v(ζ, i)

u(ζ, i)

⎤
⎥⎥⎦ . (7.A.1)

From this equation and Eq. (7.24) straightforward algebraic manipulations show that
[

z(ζ, i)

y(ζ, i)

]
=
[

Gzv(ζ, i) Gzu(ζ, i)

Gyv(ζ, i) Gyu(ζ, i)

][
v(ζ, i)

u(ζ, i)

]
, (7.A.2)

where [
Gzv(ζ, i) Gzu(ζ, i)

Gyv(ζ, i) Gyu(ζ, i)

]

=
[

Azv(i) Bz(i)

Cv(i) Du(i)

]
+
[

Azx(i) Azd(i)

Cx(i) Cd(i)

][
ζ−1I

u(ζ, i)

]

×
(

I −
[

Axx(i) Axd(i)

Awx(i) Awd(i)

][
ζ−1I

u(ζ, i)

])−1 [
Axv(i) Bx(i)

Awv(i) Bw(i)

]
.

Define G∗#(ζ ) = diag{G∗#(ζ, i)|Ni=1} with ∗,# = z,y,v,u. Then

[
z(ζ )

y(ζ )

]
=
[

Gzv(ζ ) Gzu(ζ )

Gyv(ζ ) Gyu(ζ )

][
v(ζ )

u(ζ )

]
. (7.A.3)

On the other hand, from Eq. (7.2) we have that v(ζ ) = �z(ζ ). Substituting this relation into
the last equation, we have that y(ζ ) = [

Gyu(ζ ) + Gyv(ζ ) (I − �Gzv(ζ ))−1 �Gzu(ζ )
]
u(ζ ).

Then, by Lemma 7.1 we can declare that system � is stable if and only if

|I − �Gzv(ζ )| �= 0, ∀|ζ | ≥ 1. (7.A.4)
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As in Theorem 7.2 we can prove that the above inequality is satisfied if ||	iGzv(ζ, i)||∞ < 1
for every i = 1, · · · ,N , which is equivalent to

|I − 	iGzv(ζ, i)a(ζ, i)| �= 0, ∀a(ζ, i) ∈ BH∞. (7.A.5)

In addition, from the well-posedness assumption on each subsystem �i we can declare that
the matrix

I −
[

Axx(i) Axd(i)

Awx(i) Awd(i)

][
ζ−1Imxi

u(ζ, i)

]

is of full normal rank. By Theorem 2.3 and the definition of the transfer function matrix
Gzv(ζ, i) straightforward algebraic manipulations show that Eq. (7.A.5) is equivalent to that
for all |δ| ≤ 1, u(ζ, i) ∈ B�u(i), and a(ζ, i) ∈ BH∞,∣∣∣∣∣∣I −

⎡
⎣ 	iAzv(i) 	iAzx(i) 	iAzd(i)

Axv(i) Axx(i) Axd(i)

Awv(i) Awx(i) Awd(i)

⎤
⎦
⎡
⎣ a(ζ, i)

δImxi

u(ζ, i)

⎤
⎦
∣∣∣∣∣∣ �= 0. (7.A.6)

By Eq. (7.26) this inequality can be rewritten as∣∣I − diag{Imxi
, Imwi

,	i}A(i)diag{δImxi
, u(ζ, i), a(ζ, i)}∣∣ �= 0. (7.A.7)

Substitute Eqs. (7.25) into this inequality. Note that to guarantee the satisfaction of Eq. (7.A.7)
for each p(i) ∈ B�p(i), it is necessary that this inequality is satisfied for p(i) = 0. This
means that ∣∣I − diag{Imxi

, Imwi
,	i}A0(i)diag{δImxi

, u(ζ, i), a(ζ, i)}| �= 0.

Combining these two equations, we can claim from Theorem 2.3 that Eq. (7.A.7) is equivalent
to ∣∣∣∣I −

[
diag{Imxi

, Imwi
,	i}[A0(i) Ei]

Fi 0

]
diag{δImxi

, u(ζ, i), a(ζ, i), p(i)}
∣∣∣∣ �= 0.

(7.A.8)

Note that

diag{δImxi
, u(ζ, i), a(ζ, i), p(i)}

=
[

0 I

I 0

]
diag{p(i), δImxi

, u(ζ, i), a(ζ, i)}
[

0 I

I 0

]
.

Direct matrix operations show that the above inequality is further equivalent to∣∣I − Gidiag{p(i), δImxi
, u(ζ, i), a(ζ, i)}∣∣ �= 0.

The proof can now be completed through a direct application of Definition 2.4 of the struc-
tured singular value.
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7.A.2 Proof of Theorem 7.4

To prove Theorem 7.4, we first construct the following matrix inequality:

⎡
⎢⎢⎣

Gwd(jω) Gwv(jω)

Gzd(jω) Gzv(jω)

I 0
0 I

⎤
⎥⎥⎦

H
⎡
⎢⎢⎢⎣

�̄ww(jω) 0 �̄wd(jω) 0

0 −�T X� 0 �T X

�̄dw(jω) 0 �̄dd(jω) 0
0 �X 0 −X

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎣

Gwd(jω) Gwv(jω)

Gzd(jω) Gzv(jω)

I 0
0 I

⎤
⎥⎥⎦≤ −ε̄I, (7.A.9)

where X is a positive definite matrix with a compatible dimension. Assume that it is feasible.

Note that
⎡
⎢⎢⎣

Gwd(jω) Gwv(jω)

Gzd(jω) Gzv(jω)

I 0
0 I

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Gwd(jω) Gwv(jω)

I 0
Gzd(jω) Gzv(jω)

0 I

⎤
⎥⎥⎦ .

Substitute this relation into Eq. (7.A.9). Straightforward matrix manipulations show that it is
equivalent to

⎡
⎢⎢⎣

Gwd(jω) Gwv(jω)

I 0
Gzd(jω) Gzv(jω)

0 I

⎤
⎥⎥⎦

H
⎡
⎢⎢⎢⎣

�̄ww(jω) �̄wd(jω) 0 0

�̄dw(jω) �̄dd(jω) 0 0

0 0 −�T X� �T X

0 0 �X −X

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎣

Gwd(jω) Gwv(jω)

I 0
Gzd(jω) Gzv(jω)

0 I

⎤
⎥⎥⎦≤ −ε̄I, (7.A.10)

that is,

[
Gwd(jω) Gwv(jω)

I 0

]H

�̄(jω)

[
Gwd(jω) Gwv(jω)

I 0

]
+
[

Gzd(jω) Gzv(jω)

0 I

]H

×
(

−
[

−�T

I

]
X [−� I ]

)[
Gzd(jω) Gzv(jω)

0 I

]
≤ −ε̄I, (7.A.11)
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which can be reexpressed as

[
Gwd(jω) Gwv(jω)

I 0

]H

�̄(jω)

[
Gwd(jω) Gwv(jω)

I 0

]

+ [−�Gzd(jω) I − �Gzv(jω)
]H

X
[−�Gzd(jω) I − �Gzv(jω)

]≤ −ε̄I. (7.A.12)

On the other hand, from Eqs. (7.42) and (7.47) direct but tedious matrix manipulations show
that

G
[l]
wd(s) = Gwd(s) + Gwv(s) [I − �Gzv(s)]

−1 �Gzd(s). (7.A.13)

Multiply both sides of Eq. (7.A.12) from left and right respectively by

[
I 0[

I − �Gzv(jω)
]−1

�Gzd(jω) I

]H

and

[
I 0[

I − �Gzv(jω)
]−1

�Gzd(jω) I

]
.

Based on Eq. (7.A.13), we obtain the inequality

[
G

[l]
wd(jω) Gwv(jω)

I 0

]H

�̄(jω)

[
G

[l]
wd(jω) Gwv(jω)

I 0

]

+ [
0 I − �Gzv(jω)

]H
X
[
0 I − �Gzv(jω)

]≤ −ε̃I, (7.A.14)

where

ε̃ = ε̄ inf
ω∈Rσ 2

min

([
I 0[

I − �Gzv(jω)
]−1

�Gzd(jω) I

])
.

Note that the matrix

[
I 0[

I − �Gzv(jω)
]−1

�Gzd(jω) I

]
is of full rank at each ω ∈ R. It

is obvious that ε̃ is also a positive number.

According to the Schur complement theorem (Lemma 2.4), the satisfaction of inequal-
ity (7.A.14) is equivalent to the satisfaction of the following two inequalities:

[
G

[l]
wd(jω)

I

]H

�̄(jω)

[
G

[l]
wd(jω)

I

]
≤ −ε̃I, (7.A.15)

[
Gwv(jω)

0

]H

�̄(jω)

[
Gwv(jω)

0

]
− [

I − �Gzv(jω)
]H

X
[
I − �Gzv(jω)

]
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+
([

Gwv(jω)

0

]H

�̄(jω)

[
G

[l]
wd(jω)

I

])H

×
⎛
⎝
[

G
[l]
wd(jω)

I

]H

�̄(jω)

[
G

[l]
wd(jω)

I

]
+ (ε̃ + δ)I

⎞
⎠

−1

×
([

Gwv(jω)

0

]H

�̄(jω)

[
G

[l]
wd(jω)

I

])
≤ −ε̃I, (7.A.16)

where δ is a very small positive number.

From the well-posedness assumption about the networked system we can declare that the ma-
trix I − �Gzv(s) is of full rank at every complex value of the Laplace transform variable s.
This implies that when inequality (7.A.15) is satisfied, there always exists a positive defi-
nite matrix X such that inequality (7.A.16) is also satisfied. As a matter of fact, we can even
declaim that under such that a situation, there always exists a positive scalar x such that the
positive definite matrix X = xI satisfies inequality (7.A.16). To clarify this point, define the
scalars

κl = inf
ω∈Rσmin (I − �Gzv(jω)) and

κh = sup
ω∈R

λmax

{[
Gwv(jω)

0

]H

�̄(jω)

[
Gwv(jω)

0

]

+
([

Gwv(jω)

0

]H

�̄(jω)

[
G

[l]
wd(jω)

I

])H

×
⎛
⎝
[

G
[l]
wd(jω)

I

]H

�̄(jω)

[
G

[l]
wd(jω)

I

]
+ (ε̃ + δ)I

⎞
⎠

−1

×
([

Gwv(jω)

0

]H

�̄(jω)

[
G

[l]
wd(jω)

I

])}
.

Then, from the well-posedness of the networked system and the satisfaction of inequality
(7.A.15) we can directly claim that

κl > 0 and κh < +∞.

Define the matrix

X = max

{
α,

κh + ε̃

κ2
l

}
I, (7.A.17)
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where α is an arbitrary positive number. Then, X is positive definite and satisfies inequal-
ity (7.A.16).

Therefore, feasibility of inequality (7.43) is equivalent to inequality (7.A.9) and to inequal-
ity (7.49). This completes the proof.
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CHAPTER 8

Control With Communication Constraints
8.1 Introduction

There has been a great interest in studying the impact of communication constraint on the net-
worked control systems. The communication constraint is modeled as a discrete-time noise-
less digital channel connecting the sensor to the controller. For each time step, this channel
is only capable of transmitting a finite number of bit information, which involves quantized
feedback control in networked control systems.

The idea of modeling the quantization error as an additive white Gaussian noise began to be
challenged in the new environment where only very coarse information is allowed to prop-
agate through the network. The change of view on quantization can be traced back to the
paper [2], where the author treated quantization as partial information of the quantized en-
tity rather than its approximation and demonstrated the significance of the historical values of
the quantizer output. Since then, various methods for studying quantization effects on control
and estimation have been developed.

Research on quantized feedback control can be categorized depending on whether the quan-
tizer is static or dynamic. A static quantizer is a memoryless nonlinear function, whereas a
dynamic quantizer uses memory and is more complicated and potentially more powerful. Fol-
lowing [2], the work [3] studied a dynamic finite-level uniform quantizer for stabilization and
pointed out that there exist a dynamic adjustment policy for the quantizer sensitivity and a
quantized state feedback controller to asymptotically stabilize an unstable linear system. This
raised a fundamental question: how much information needs to be communicated between the
quantizer and controller to stabilize an unstable linear system? Various authors have addressed
this problem under different scenarios, see e.g. [4–7], and the appealing data rate theorem
states that the minimum average data rate required for stabilization has to be strictly greater
than a universal low bound.

The striking feature of these results is that the minimum data rate rely solely on the unstable
eigenvalues of the open-loop system and is completely described by the so-called intrinsic
entropy rate of the system. On the other hand, the problem of packet dropouts has been exten-
sively studied in the literature as well. The packet dropout process is commonly modeled as
an i.i.d. process [8] or a Markov chain [9,10].
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The joint effects of limited data rate and packet dropout rate on the mean square stabilization
of an unstable discrete LTI system have been studied under the assumption that the quan-
tized input signal is to be transmitted through a lossy channel whose packet dropout process
is modeled as an i.i.d. process [25] or a Markov process [27]. The main result shows that if
the packet dropout rate is less than the threshold derived in [8], then the minimum data rate
for the mean square stabilization of an unstable discrete LTI system is explicitly given by
the intrinsic entropy rate [11] of the system, plus an additional nonnegative term, which is a
function of the dropout rate. This term exactly quantifies the amount of the additional bit rate
required to counter the effect of packet dropout on stabilization and monotonically converges
to zero as the packet dropout rate decreases to zero, suggesting that our results naturally re-
cover the well known-result mentioned before.

It should be noted that the almost sure stabilization of unstable systems over lossy channels
has been investigated in [12,13]. Nonetheless, the stabilization problems under the mean
square sense and almost sure sense are different, leading to different data rate requirements
to achieve respective stabilization. The nominal moment stabilization has been studied in [30]
using a parameterized notation of anytime capacity.

8.2 Entropies and Capacities of a Communication Channel

8.2.1 Entropy in Information Theory

For any probability distribution, entropy is a quantity to capture the uncertainty of information
of a random variable, which agrees with the intuitive notion of a measure of information.

Definition 8.1. ([14]) The entropy of a discrete random variable X with distribution func-
tion p(x) and sample space X is defined as

H(X) � −
∑
x∈X

p(x) logp(x). (8.1)

The log is to the base 2, and entropy is expressed in bits as it quantifies the number of bits
needed to fully represent the associated random variable. The entropy can also be interpreted
as the expectation of − logp(X), where X is drawn according to probability mass func-
tion p(x). Then H(X) = −E[logp(X)], where E[·] is the mathematical expectation operator.

For two discrete random variables X and Y with joint probability mass function p(x, y), the
joint entropy is defined as H(X,Y ) = −E[logp(X,Y )]. Similarly, the conditional entropy is
defined by H(X|Y) = −E[logp(X|Y)], where p(x|y) is the conditional distribution function
of X given Y .
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Mutual information is a measure of the dependence between two random variables. For two
discrete random variables X and Y with joint distribution p(x, y), the mutual information is
defined as

I (X;Y) = E

[
log

p(X,Y )

p(X)p(Y )

]
.

In particular, I (X;Y) = 0 if X and Y are independent, which essentially means that there is
no mutual information between random variables X and Y , and I (X;X) = H(X).

Remark 8.1. If X is a continuous random variable, the differential entropy is defined accord-
ingly; see [14, Chapter 9] for details.

Example 8.1. Let X = 1 with probability p and X = 0 with probability 1 − p. Then, H(X) =
−p logp − (1 − p) log(1 − p). We can easily verify that H(X) = 0 when p = 0 or 1. This
makes sense because if p = 0 or 1, then the variable X is essentially not random, and there is
no uncertainty. Similarly, H(x) is maximized at p = 1/2, which corresponds to the maximum
uncertainty.

If we have a sequence of n random variables, the entropy rate is defined as the growth rate of
the entropy of the sequence with n.

Definition 8.2. The entropy rate of a stochastic process {Xi} is defined by

H(X ) = lim
n→∞

1

n
H(X1, . . . ,Xn) (8.2)

when the limit exists.

If {Xi} is an independent identically distributed (i.i.d.) process, then H(X ) = H(X1). If {Xi}
is a stationary stochastic process, it is easy to verify that the limit in (8.2) always exists [14]. It
is well recognized that entropy plays an important role in the information and communication
theories. More thorough discussions on entropy can be found in [14].

In the modern control theory, the topological entropy of a dynamical system is central to feed-
back control. Topological entropy measures the rate of generating information of a dynamical
system by its initial state.

8.2.2 Topological Entropy in Feedback Theory

In information theory, the entropy rate is used to measure the rate at which a stochastic pro-
cess generates information, whereas in feedback control theory, the rate at which a dynam-
ical system with inputs generates information is quantified by topological entropy of Adler
et al. [15]. It is expected that the topological entropy will be important to the data rate prob-
lem for stabilization of dynamical systems.
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Definition 8.3. The topological entropy of an LTI system with open-loop matrix A is defined
as

HT (A) =
∑

i

max{log2 |λi |,0},

where λ1, . . . , λn denote all the eigenvalues of A.

This is equivalent to the Mahler measure [16] or the degree of instability [17] of the plant.
The mathematician Kurt Mahler first introduced his measure to polynomials [16]. The Mahler
measure of a monic polynomial a(z) = ∏n

i=1(z − ai) is defined as

M(a) �
n∏

i=1

max{|ai |,1}. (8.3)

The Mahler measure of a square matrix A ∈ Rn×n is given by that of its characteristic polyno-
mial:

M(A) � M(det(zI − A)) =
∏
i

max{|λi |,1} = 2HT (A). (8.4)

Then the Mahler measure of an LTI plant with any detectable and stabilizable realization
(A,B,C,D) can be defined as the Mahler measure of the system matrix A. The degree of
instability of a square matrix A is defined in the same way as in (8.4) [17].

It is clear that the definition of topological entropy or Mahler measure makes no reference
to any controller or feedback communication. This underlines its fundamental nature as an
intrinsic property of dynamical system. In this book, we reveal the importance of the topologi-
cal entropy or Mahler measure to NCSs.

8.2.3 Channel Capacities

In a communication system, source symbols from some finite samples are encoded into some
sequence of channel input symbols, which then produces the sequence of channel output sym-
bols. We attempt to recover the transmitted message from the output sequence. Since two
different input sequences may result in the same output sequence, the input may be nonper-
fectly recovered.

A noisy communication channel is a system in which the output depends probabilistically on
its input. It is characterized by a probability transition matrix that determines the conditional
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distribution of the output given the input. For a communication channel input X and output Y ,
the capacity C is defined as

C = max
p(x)

I (X;Y), (8.5)

where the maximum in (8.5) is taken over all possible input distributions p(x).

Example 8.2 (Noiseless Binary Channel). Suppose there is a channel whose binary input
is reproduced exactly by the output, that is, any transmitted symbol is received without error.
Then, the capacity of the channel is C = 1 bit.

Example 8.3 (Binary Erasure Channel). The capacity of a binary erasure channel is

C = 1 − α, (8.6)

where α denotes the fraction of the erased bits.

A transmitted signal is usually corrupted by a channel additive noise. The additive noise chan-
nel model is one of the simplest yet typical models for a communication link. For an additive
white Gaussian noise channel, the capacity can be computed simply from the noise character-
istics of the channel as [14]

C = 1

2
log2(1 + γ ), (8.7)

where γ represents the signal-to-noise ratio (SNR) of the channel.

At each unit time, a symbol sk from an elementary sample Sk of possibly time-varying size
μk ≥ 1 is transmitted through a channel. For noiseless channels, sk is received without error.
The capacity C of a discrete noiseless channel is given by

C = lim
n→∞

1

n

n∑
k=1

log2(μk) (8.8)

when the limit exists.

The channel capacity can be used to characterize diverse communication constraints depend-
ing on the underlying channel model and information pattern. However, quantization and de-
lay are unavoidable in every digital communication system. In information theory, quantizers
are considered as information encoders and thus as an integral part of the whole system [14].
To achieve Shannon’s capacity, the classic information theory allows for arbitrarily long se-
quences in coding, which results in significant time delays. Both quantization and delay are
deemed to be necessary in standard information theory rather than undesirable.
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8.3 Stabilization Over Communication Channel

Consider a linear time-invariant (LTI) system
{

xk+1 = Axk + Buk,

yk = Cxk,
(8.9)

where xk ∈ Rn and yk ∈ Rm are the system state and output measurement at time k, respec-
tively, and uk ∈Rp is the control input. The initial state x0 is unknown.

To make the problem well-posed, (A,B,C) are assumed to be stabilizable and detectable,
with unstable A. The output sensor equipped with an encoder communicates with the con-
troller over a digital channel that can only support information exchange with a finite bit rate.
At each time instant, the sensor sends one encoded symbol sk from a finite and possibly time-
varying set Sk to the controller. On the other side of the channel, the controller decodes the
received symbols and produces an input signal uk to stabilize the system. Define the transmis-
sion data rate in the asymptotic average sense as

R = lim inf
k→∞

1

k

k−1∑
t=0

log2 |St |, (8.10)

where |St | denotes the cardinality of the set St . Clearly, the smaller the transmission rate R,
the less information the controller obtains from the system and vice versa. A natural question
is whether there exists a minimum data rate above which the controller is able to stabilize the
LTI system.

8.3.1 Classical Approach for Quantized Control

Due to the data rate constraint, the information has to be quantized before being transmitted to
the controller. The quantizer Q is a function whose range is discrete and usually finite, that is,

Q :R → {q1, . . . , qM}.
The input to a quantizer is an analog value, and the output is from a finite set. The quantiza-
tion noise is given by

w := Q(x) − x.

In the early development, it prevailed to model the quantization error w as an additive white
Gaussian noise, that is,

Q(x) = x + w,
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where w is assumed to be an additive white Gaussian noise uncorrelated with the random
variable x. Then the well-developed tools from linear stochastic control theory can be used.
Although this approach may be reasonable when the quantizer is of high resolution, it has at
least one main shortcoming in control.

We use a simple example to elaborate it. Consider a scalar, fully observed, and unstable linear
system, that is, (8.9) with m = 1, A = a with |a| > 1, B = C = 1, and unknown x0. By mod-
eling the quantization error wk as an additive white Gaussian noise the data available to the
controller is expressed as the noisy measurement:

y′
k := Q(xk) = xk + wk,

where the variance of the random noise wk is constant, that is, E[w2
k ] = σ 2, and wk is un-

correlated with xk . The shortcoming of this approach becomes obvious: a controller cannot
asymptotically stabilize the system in the mean square sense as the noise cannot be eventually
eliminated by a linear controller. Particularly, let uk = fy′

k where f is a control gain. Then,
the closed-loop system is given as

xk+1 = axk + f (xk + wk) = (a + f )xk + f wk. (8.11)

Since xk and nk are uncorrelated, it follows that

E[x2
k+1] = (a + f )2E[x2

k ] + f 2σ 2. (8.12)

Since |a| > 1, we have f �= 0, which in turn implies that limk→∞E[x2
k ] �= 0 for any feedback

gain f . This implies that there does not exist any linear controller stabilizing the system.

To achieve the mean square stability of the closed-loop system, it actually requires the con-
troller to estimate the initial state x0 with mean square error diminishing strictly faster
than a−2k . This motivates us to study the quantized control with a more rigorous approach
and obtain the following result.

Theorem 8.1. Consider a networked control system (8.9), where the output sensor is con-
nected to the controller via a noiseless digital channel. Then a necessary and sufficient condi-
tion for the asymptotic stabilization of the system is that

R >

n∑
i=1

max{0, log2 |λi |} := Rinf, (8.13)

where λ1, . . . , λn are the eigenvalues of A.
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This result does not impose any assumption on the coder and control law except causality,
which is reminiscent of the errorless Shannon source coding theorem [14]. It thus draws a
fundamental line of demarcation between what is and is not achievable with linear systems
when communication rates are limited. In this sense, Rinf, which is called topological entropy,
plays a role similar to the source entropy in Shannon source coding theorem and can be quan-
tified as a measure of the rate at which information is generated by an unstable linear plant.
The communication between the sensor and controller is to reduce the plant uncertainty for
the controller. The data rate quantifies how fast the reduction rate can be achieved. From this
point of view, the channel must transport data as fast as it is produced, i.e., R > Rinf.

A more physical insight can be gained by rewriting inequality (8.13) as

2R >
∏

|λi |≥1

|λi |.

The right-hand side is simply the factor by which a volume in the unstable subspace increases
at each time step due to the plant dynamics, whereas the left-hand side is the asymptotic aver-
age number of disjoint regions into which the coder can partition the volume. In other words,
the system is stabilizable if and only if the dynamical increase in “uncertainty volume” due to
unstable dynamics is outweighed by the partitioning induced by the coder.

8.4 Universal Lower Bound

The lower bound in (8.13) is derived by using the argument of volume-partitioning. We first
apply a coordinate transform to decouple the unstable and stable parts of the open-loop ma-
trix A. Clearly, the state variables associated with the stable part automatically converge to
zero for any initial state without using any control inputs. Thus, there is no need to communi-
cate any information between the controller and the system for this subspace. This essentially
implies that there is no loss of generality to assume that all the eigenvalues of A are unstable.
We do this for the purpose of simplifying the presentation.

Let mk be the Lebesgue measure of the set of values that xk can take at time k. Considering
the system dynamics and geometric interpretation of determinant, it follows that after k time
steps, the plant dynamics expands the measure m0 of the initial uncertainty set by the factor

⎛
⎝ ∏

|λi |≥1

|λi |
⎞
⎠

k

.

Under the data rate R, the channel can support kR bits of information transmitting from the
coder to the decoder. Then, the coder can effectively divide this region into 2kR disjoint and
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exhaustive pieces, each of which is shifted by the controller. As the Lebesgue measure is
translation-invariant, it then follows that

mk ≥
(∏

|λi |≥1 |λi |
2R

)k

m0.

To achieve the stability of the closed-loop system, we must require that limk→∞ mk = 0.
Thus, it follows that ∏

|λi |≥1 |λi |
2R

< 1. (8.14)

Taking the logarithm of both sides of this inequality, we obtain the universal lower bound
in (8.13), which is independent on the coder–decoder or controller.

8.5 Coder–Decoder Design

Since the classical quantized control approach does not consider the system dynamics, this
results in several shortcomings. Here we need to design the coder–decoder with the consid-
eration of the system dynamics. In fact, if the controller can obtain the exact initial state x0,
it can compute the system state at every time. Intuitively, we can design the coding–decoding
scheme so that the controller is able to gradually learn the initial state x0 by using the coded
information sk and the system dynamics.

To elaborate it, it is clear that

xk = akx0 − akzk,

where zk = −a−k
∑k−1

t=0 ak−t−1ut is regarded as the estimate of x0 at time k. If the estimation
error nk = x0 − zk is reduced at a rate strictly greater than |a|, that is, there exist η > |a| and a
constant α such that

|nk| ≤ α/ηk,

then it follows that |xk| ≤ α
( |a|

η

)k

, which in turn implies that limk→∞ |xk| = 0.

In fact, the controller receives at most
∑k−1

t=0 log2 |St | bits of information at time k. In view of
the information theory, the minimum estimation error on the initial state x0 is given by

ηk = 2− ∑k−1
t=0 log2 |St |.
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By (8.10) the estimation error is asymptotically reduced at the rate

2− 1
k

∑k−1
t=0 log2 |St | ≈ 2−R,

so that the data rate R should satisfy that

2R > |a|,
which leads to the data rate theorem in (8.13).

Now, we formally provide the coder–decoder to stabilize the linear system when the data rate
satisfies the strict inequality in (8.13). Consider system (8.9) with ‖x0‖∞ � l0.1 Given any
R > Rinf, we only need to design a coder–decoder scheme that consumes a data rate less
than R bits and the corresponding controller so that the closed-loop system is asymptotically
stabilized.

Since system (8.9) is noiseless and the initial condition is bounded in a ball, we adopt a uni-
form quantizer. Specifically, if −1 � x < 1, then output of a uniform R-bit quantizer is given
by

Q(x) = �2R−1x� + 0.5

2R−1
,

and Q(x) = 1 − 1/2R for x = 1.

It is easy to verify that if |x|� l, then

|x − lQ(
x

l
)|� l

2R
. (8.15)

Clearly, there exists a transformation matrix P ∈Rn×n that satisfies the following expression:

PAP −1 = diag{As,Au},
where all the eigenvalues of As are strictly in the unit circle, and any eigenvalue of Au lies
outside the unit circle. Obviously, the state variables corresponding to As asymptotically con-
verge to 0 with zero inputs.

Thus we just need to consider the state variables corresponding to Au. Without loss of gen-
erality, assume that all eigenvalues of A lie outside the unit circle, and thus the system
(A,B,C) is controllable and observable. Then there exists a deadbeat observer such that the
sensor and quantizer can obtain the complete state information of the system after time n.

1 For the ease of presentation, we include this condition, which can be easily removed.
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Hence we can assume that all the eigenvalues of A are out of the unit circle and C = I .
Because the unstable poles of the system determine the uncertainty growth rate of their cor-
responding state variables, it makes sense to separate these state variables.

To this end, let all nonconjugate eigenvalues of A be λ1, . . . , λd . If λi is complex, then its
conjugate λ∗

i is not in this set. Denote the algebraic multiplicity of eigenvalue λi by mi . Then
we obtain that

μi =
{

mi if λi is a real number,
2mi if λi is a complex number.

(8.16)

Without loss of generality, let A be in the real Jordan form [18], that is,

A = diag{J1, · · · , Jd},
where Ji ∈ Rμi×μi is the Jordan matrix corresponding to λi . Obviously, the eigenvalues of Ji

are the same, and the corresponding state variables have the same growth rate as well. More-
over, we have the following lemma.

Lemma 8.1. ([19]) For any arbitrary natural number q ∈ N, there exists a constant ζ > 0
such that

||J q
i ||∞ ≤ ζ

√
μiq

μi−1|λi |q.
Remark 8.2. According to Lemma 8.1, the growth rate of the Jordan matrix Ji is controlled
by |λi |. In particular, when Ji is a diagonal matrix, then ||J q

i ||∞ = |λi |q . This conclusion is
critical to the subsequent design of the coder–decoder and the allocation of data rates.

For an arbitrary date rate R, which satisfies

R > Rinf =
d∑

i=1

μi log2 |λi |,

there are positive integers αi and β such that

log2 |λi | < αi

β
and

1

β

d∑
i=1

μiαi ≤ R. (8.17)

In conformity with the structure of the Jordan matrix A, partition the state variables as

xk = [(x(1)
k )T, · · · , (x

(d)
k )T]T.
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Then d uniform quantizers, each of which has an average data rate αi /β , are designed to quan-
tize each state variables in x

(i)
k .

Next, we design the strategy of the coder/quantization, decoder, and control and provide the
proof of the asymptotic stability of the closed-loop system.

Coder/quantizer. By Lemma 8.1 and (8.17), there is an integer q such that

η := max
i∈{1,...,d}

ζ
√

μiq
μi−1|λi |q

2qαi /β
< 1. (8.18)

Since the state estimate x̂k is based on s0, · · · , sk , the quantizer and decoder can obtain the
same x̂k . For i ∈ {1, · · · , d}, let l

(i)
0 = l0 and

l
(i)
k+1 = l

(i)
k

2qαi
(ζ

√
μiq

μi−1|λi |q)β. (8.19)

By (8.18) and (8.19) we further obtain that

lim
k→∞ l

(i)
k ≤ l0 lim

k→∞ηβk = 0.

Let τ = qβ and x̃kτ = xkτ − x̂kτ . Consider the time intervals

{kτ, . . . , (k + 1)τ − 1},
that is, the length of each interval is τ . At the beginning of every time interval, qαi-bit uni-
form quantizers are utilized to quantize each component of x̃kτ /l(i)k and get the quantized
signal sk ∈ Rn. Therefore, the communication data rate of this protocol can be expressed as

1

τ

d∑
i=1

(qαi)μi = 1

β

d∑
i=1

αiμi.

By (8.17) the date rate is less than R.

Decoder/estimator. Based on the quantized signal sk , the decoder utilizes the following algo-
rithm to estimate the state xk :

x̂0 = 0, L0 = diag{l(1)
0 Iμ1, · · · , l

(d)
0 Iμd

},
x̂kτ+j = Ax̂kτ+(j−1)+Bukτ+(j−1), 1≤j ≤τ − 1,

Lk = diag{l(1)
k Iμ1, · · · , l

(d)
k Iμd

},

x̂(k+1)τ = Aτ (x̂kτ + Lksk) +
(k+1)τ−1∑

j=kτ

A(k+1)τ−j−1Buj ,

where Iμi
∈ Rμi×μi is the identity matrix.
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Controller. Because the system (A,B) is controllable, there is a gain matrix K such that all
the eigenvalues of the closed-loop matrix A + BK are strictly in the unit circle. Let

uk = Kx̂k, k ∈ N.

Remark 8.3. The quantized control method based on information-theoretic approach can
stabilize the networked system (8.9) by linear feedback.

Asymptotic stability. We first prove by induction that

‖x̃(i)
kτ ‖∞ � l

(i)
k .

Obviously, when k = 0, the inequality holds. Assume that for t ≤ k, we have ||x̃(i)
tτ ||∞ ≤ l

(i)
t .

By the estimation algorithm we obtain

x̂(k+1)τ = Aτ (x̃kτ − Lksk).

By inequality (8.15) it follows that

||x̂(i)
(k+1)τ ||∞ ≤ ‖|‖∞|J τ

i ||∞||x(i)
kτ − l

(i)
k s

(i)
k ||∞ ≤ ||J τ

i ||∞
2qαi

l
(i)
k . (8.20)

Combining Lemma 8.1 and (8.19), we get that ||x̃(i)
(k+1)τ ||∞ ≤ l

(i)
k+1. Therefore,

lim
k→∞ x̃kτ ≤ lim

k →∞ max
i∈{1,··· ,d}

l
(i)
k = 0.

For j ∈ {1, · · · , τ − 1}, we obtain that x̃kτ+j = Aj x̃kτ . Furthermore, we know that
limk→∞ ||xk||∞ = 0. Then the closed-loop system is

xk+1 = (A + BK)xk − BKx̃k.

Because all the eigenvalues of the closed-loop matrix A + BK are in the unit circle, by the
Toeplitz lemma [20] we obtain

lim
k→∞xk = 0.
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8.6 Extension to Lossy Channels

The framework in the previous sections is generalized to noisy communication channels by
many researchers. Due to the existence of channel uncertainties, the quantizer output sk might
not be exactly received by the decoder. This further induces information loss to the controller.
To compensate this uncertainty, a greater data rate R is needed in comparison with the noise-
less channels. We are particularly interested in the problem of how many additional bits are
needed to achieve stabilization to counter the effects of channel uncertainties. Although the
problem was initiated by Tatikonda and Mitter [12] in 2005, it is not fully understood for gen-
eral vector linear systems to date. In [12], it is claimed that if the Shannon capacity of this
channel is greater than Rinf, then the system with process disturbances can be almost surely
stabilized with bounded error [12]. This is shown to be incorrect in [21], which shows that, on
the contrary, any unstable linear system affected by arbitrarily and uniformly small external
disturbances can never be almost surely stabilized via the erasure channel with nonzero era-
sure probability, irrespective of which algorithm of stabilization is employed. The almost sure
stabilization is further investigated by the same authors [13,22,23].

There are a lot of uncertainties under the wireless network environment. For instance, the in-
put signal sk may drop out randomly because of the blocking and/or attenuation of channels,
which means that it cannot be ensured that the channel sink can receive sk , thus losing more
information. We can imagine that we need a larger communication data rate to make up the
loss due to uncertainties over noisy channels.

8.6.1 Erasure Channels

There exists random packet loss of sk for erasure channels, which is supposed to be an inde-
pendent and identically distributed Bernoulli process. Then, we have following results.

Theorem 8.2. ([11]) In the erasure channel environment, the networked linear scalar sys-
tem (8.9), that is, A = a, is stabilizable via quantized feedback if and only if

E

[ |a|2
22Rγk

]
< 1. (8.21)

Similarly to noiseless channels, the system dynamics renders the uncertainty in the form of
mean square increases by |a|2 every step. If there is no packet loss, that is. γk = 1, then the
controller receives sk and decreases the uncertainty by 1/22R . If packet loss exists, that is,
γk = 0, then the controller cannot receive sk , and thereby it cannot decrease the uncertainty.
The decreasing rate of uncertainty must be strictly greater than the increasing rate in the aver-
age sense to guarantee the stabilization of the system, meaning that inequality (8.21) holds.
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Remark 8.4. For systems with bounded noise such that supk∈N max{‖x0‖,‖wk‖,‖vk}} < ∞,
the authors in [24] designed an averaging quantizer to demonstrate the sufficiency of Theo-
rem 8.2. In [25], the results are expanded to the single input vector systems. Further, in [11],
Theorem 8.2 is proved for the random unbounded noise satisfying certain conditions.

8.6.2 Gilbert–Elliott Channels

For Gilbert–Elliott channels γk , the packet loss process of sk follows an ergodic Markov pro-
cess [26]. Foregoing arguments cannot apply due to the correlation over time. To this end,
in [27], the method of random oversampling is adopted.

Without loss of generality, let γ0 = 1 and t0 = 0. Define the random oversampling time
point {tk} as the moment when the controller receive the channel input signal, that is, tk sat-
isfies

tk+1 = inf{j > tk|γj = 1}. (8.22)

Denote the dwell time as τk = tk − tk−1. Then it is clear that {τk} is an independent and identi-
cally distributed process according to the properties of a Markov process.

Theorem 8.3. ([27]) In the Gilbert–Elliott channel environment, networked linear scalar
system (8.9), that is, A = a, is stabilizable via the quantized feedback if and only if

E

[ |a|2τk

22R

]
< 1. (8.23)

Intuitively, the system dynamics makes the uncertainty in the form of mean square increase
by |a|2 during the period of τk . However, the controller receives the channel input signal only
once within such a time interval and decreases the uncertainty by 1/22R . The decreasing rate
of uncertainty must be larger than the increasing rate in the average sense to guarantee the
stabilization of the system, meaning that inequality (8.23) holds. Now we simply present the
main idea of demonstration, the details of which are referred to [27].

Necessity. Via conditional entropy power in the information theory [14], we have E[ξk] as
the lower bound of E[x2

k ], that is, E[x2
k ] � E[ξk]. Moreover, there exists a constant μ > 0

satisfying

ξk+1 = |a|2
22Rγk

ξk + μ.

Then, based on Markov jump linear system theory [28], it is easy to prove the necessity.
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Sufficiency. The main difficulties are as follows.

• The correlation over time of γk . By [29] we observe that sup
k∈N

E[‖xk‖2] < ∞ if and only if

sup
k∈N

E[‖xtk‖2] < ∞. From the dynamics of the system we have

xtk = aτkxtk−1 + pk, (8.24)

where pk is the linear combination of control input uk and disturbance wk . Therefore, we
only need to analyze the stabilization of the random oversampling system (8.24) driven by
the independent and identically distributed process {τk}.

• The unbounded random noise wk and vk of the system. Generally, the uniform quantizers
are no longer applicable, where the adaptive quantizers in [11] are unutilized.

• The random loss of channel input signals. Divide the time axis into several parts, and the
(k + 1)th period is

{tkq, . . . , t(k+1)q − 1},
where q is an integer to be determined. By the definition of tk , the controller receives q

data packets during every period.
Hence, a quantizer of qR bits is to be designed to quantify the state xtkq

. Motivated by
that idea, we obtain the following inequality:

E[x2
t(k+1)q

] � c0(E[ |a|2τ1

22R
])qE[x2

tkq
] + c1, (8.25)

where both c0 and c1 are positive constants. Select q large enough such that

c0

(
E[ |a|2τ1

22R
]
)q

< 1.

Then we have sup
k∈N

E[x2
tkq

] < ∞. Given that q < ∞, sup
k∈N

E[x2
tk
] < ∞. Finally, we obtain

sup
k∈N

E[x2
k ] < ∞.

8.7 Bibliographic Notes

The data rate theorem for stabilization of linear systems over perfect channels have been well
established. Limited capacity channels in the classic communication theory are modeled in
terms of not only quantization effects but also in terms of channel uncertainties and time de-
lays. Many of the major results in this theory are developed on the ground of noisy channel
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models. So incorporating noisy digital channels into NCS problems seems to be unavoid-
able in the analysis and synthesis of NCSs. As an initial step, the issue of the minimum data
rate for stabilizability of linear systems over noisy digital channels attracted good attention
of researchers. The research results on this topic are not as fruitful as in the case with noise-
less digital channels due to that the optimal data rate assignment among unstable system state
variables intertwines with the channel uncertainty process and also depends on the sense of
stabilization notion [11–13,21,24,25,27,30]. Nonetheless, some significant progress has been
recently achieved toward this topic.
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CHAPTER 9

Distributed Control for Large-Scale NCSs

9.1 Introduction

An important research interest in LSSs today is the emphasis on distributed coordination due
to the availability of ample processing power at low cost, which allows sensor data to be pro-
cessed locally. Generally, the aim of distributed control is to coordinate a group of subsystems
by implementing control policies locally. It is natural to suggest that distributed control can
never be as good as centralized control. This holds only if there is no real-time limitation on
the communication network, for example, delay-free and no packet losses. By accounting for
the real network effect, distributed control may be better than centralized control in terms of
robustness, scalability, security, and so on. A typical example of a distributed control system
the focus of which is to coordinate a group of unmanned air vehicles (UAVs) to be a desired
formation. Under this high-speed circumstance, the communication between UAVs becomes
critical. The design procedure will impose a stringent requirement on simplifying the compu-
tational complexity on finding a controller with a distributed architecture.

Distributed coordination of multiple agents has broad applications in many areas including
formation control [1,2], distributed sensor networks [3,4], flocking [5,6], distributed compu-
tation [7], and consensus of coupled chaotic oscillators [8,9]. Their common property is that
each individual agent lacks global knowledge of the whole system and can only interact with
its neighbors to achieve certain global behavior. Within this framework, communication graph
(topology), which determines what information is available for each agent at each time in-
stant, is an important aspect of information flow in distributed coordination. For example, to
achieve an average consensus that requires the states of all agents to asymptotically converge
to the average of their initial values, the communication graph must contain a spanning tree
for a fixed topology [10,11], whereas for a switching topology, the union of the communica-
tion graphs should contain a spanning tree frequently enough as the system evolves [11–13].
In addition, the convergence rate to consensus directly relies on the second smallest eigen-
value of the graph Laplacian matrix [10,14].

A set of common and important research problems for multiagent systems focuses on how
the agent dynamics and the interacting network topology affect their behavior. Recently, the
emergence of NCSs has stimulated the research interest on multiagent systems. One of the
interesting problems is the consensus of multiagent systems, which requires all networked
agents to reach an agreement on quantity of common interest using the shared data through
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local communications. Toward this objective, a key step is to design a network-based control
protocol such that as time goes on, all the agents asymptotically reach consensus. We discuss
this problem in this chapter.

9.2 Consensus of Multiagent Systems

9.2.1 Communication Graph

Let V = {v1, . . . , vN } be an index set of N agents with i representing the ith agent. A digraph
G = {V,E,A} will be utilized to model the interactions among agents, where E ⊆ V × V
is the edge set of paired agents, and A = [aij ] ∈ RN×N with nonnegative elements is the
weighted adjacency matrix of G. Self-edges (i, i) are not allowed, that is, (i, i) /∈ E for all
i ∈ N . An edge (j, i) ∈ E if and only if aij > 0, which means that agent j can send informa-
tion to agent i.

A sequence of edges (i1, i2), (i2, i3), . . ., (ik−1, ik) with (ij−1, ij ) ∈ E for all j ∈ {2, . . . , k} is
called a directed path from agent i1 to agent ik . The digraph G contains a spinning tree if there
is a root agent that can send information to all the other agents via directed paths. It is called
a strongly connected digraph if for any two agents i, j ∈ V , there exists a directed path from
agent i to agent j . If A is a symmetric matrix, G is called an undirected graph. A strongly
connected undirected graph is simply called a connected graph. For an undirected graph G,
it is clear that G contains a spanning tree if and only if G is connected. A digraph is called
complete if each pair of agents can directly connect to each other, that is, (i, j) ∈ E for all
i �= j . The neighborhood of the ith agent is denoted by Ni � {j |(j, i) ∈ E}. The in-degree
of agent i is represented by degi = ∑N

j=1 aij . Denote D � diag(deg1, . . . ,degN) and the
Laplacian matrix of G by LG = D −A. The eigenvalues of LG are denoted by λj ∈ C, j ∈ N ,
and written in an ascending order in magnitude as 0 = |λ1| ≤ |λ2| ≤ · · · ≤ |λN |. Note that
for an undirected graph G, LG is a symmetric positive semidefinite matrix, and λj ≥ 0 for all
j ∈N [15].

Lemma 9.1. [16] Let the adjacency matrix A ∈ RN×N of an undirected graph G be a sym-

metric (0,1)-matrix, that is, aij = 1 if (i, j) ∈ E and aij = 0 otherwise. Then G is complete if
and only if G is connected and λ2 = λN .

Lemma 9.2. [11,15] Let G be a digraph. Then all the nonzero eigenvalues of LG are in the
open right half-plane. Moreover, G has a spanning tree if and only if LG contains exactly one

zero eigenvalue.
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9.2.2 Consensus of Multiagent Systems

A multiagent system is a large-scale system consisting of multiple dynamical agents. Let the
dynamics of agent i in discrete time take the following form:

{
xi(k + 1) = Axi(k) + Bui(k),

yi(k) = Cxi(k),
∀i ∈ V, k ∈ N, (9.1)

where xi(k) ∈ Rn, ui(k) ∈ R, and yi(k) ∈ Rm represent the state, control input, and output
of agent i at the time step k, respectively, and A ∈ Rn×n and B ∈ Rn are the state and input
matrices.

By adapting the available information for each agent that is subject to the graph information
flow constraint, we say that a control protocol is distributed if each agent generates its control
input signal by relying on relative outputs. Generally, distributed control protocols can be
categorized depending on whether they are static or dynamic. We are interested in the design
of the distributed control protocol to reach an agreement among agents in the following sense.

Definition 9.1. The discrete-time multiagent systems (9.1) are said to reach consensus if for
any finite xi(0), i ∈ N , there exists a distributed control protocol such that

lim
k→∞‖xi(k) − xj (k)‖ = 0, ∀i, j ∈N . (9.2)

For a stable A, it is clear that the zero input ui(k) = 0 can achieve consensus. To make the
problem interesting, we focus on an unstable A.

By an appropriate coordinate transformation there is no loss of generality to assume that
A = diag{As,Au}, where As ∈ Rn1×n1 and Au ∈ Rn2×n2 correspond to the stable and un-
stable (including marginally stable) parts of A, respectively. Since the stable part renders the
associated state subspace of each agent converge to zero, in this chapter, we make the follow-
ing assumption:

A1) All the eigenvalues of A lie on or outside the unit circle.

9.3 Consensus Control With Relative State Feedback

In this section, we consider the following distributed protocol with relative state feedback:

ui(k) = K

N∑
j=1

aij (xj (k) − xi(k)), k = 0,1, . . . , (9.3)

where K ∈R1×n is a fixed control gain independent of the agent index i.
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9.3.1 Design of Consensus Gain

We start with undirected graphs where the eigenvalues of the associated Laplacian matrix are
nonnegative, for example, λj ≥ 0 for all j ∈ N . Extensions to directed graphs (digraphs) are
delivered in the next subsection.

Theorem 9.1. Given a fixed undirected graph G, under A1), necessary and sufficient condi-
tions for the discrete-time multiagent systems (9.1) to reach consensus under protocol (9.3)
are the following:

(a) (A,B) is a controllable pair;
(b) Each agent cannot change too fast. Precisely, the product of the unstable eigenvalues

of A is upper bounded by the strict inequality

∏
j

|λu
j (A)| < 1 + λ2/λN

1 − λ2/λN

, (9.4)

where λu
j (A) represents an unstable eigenvalue of A, and λ2 and λN are respectively the

second smallest and largest eigenvalues of LG .

Moreover, if these conditions hold, let ζ be such that

∏
j

|λu
j (A)| < ζ−1 ≤ 1 + λ2/λN

1 − λ2/λN

.

Then, the control gain

K = 2

λ2 + λN

BT PA

BT PB

solves the consensus problem, where P > 0 is a positive solution to the modified algebraic
Riccati inequality

P − AT PA + (1 − ζ 2)
AT PBBT PA

BT PB
> 0. (9.5)

Remark 9.1. 1. The existence of a positive solution P to (9.5) is proved in [17,18]. Here
λ2/λN is called the eigenratio of an undirected graph. By Lemmas A.1–A.2 in [19] we
immediately obtain an upper bound of the eigenratio:

λ2

λN

≤ mini degi

maxi degi

.
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2. For the average consensus problem in [10], the state of each agent is scalar, and A =
B = K = 1. The condition in item (a) of Theorem 9.1 is automatically satisfied, whereas
inequality (9.4) implies that λ2 > 0. By Lemma 9.2 the communication graph has to be
connected, which is consistent with the result in [10]. Thus, our result contains the classi-
cal average consensus as a particular case.

3. Inequality (9.4) implies that λ2 > 0. Then the graph is connected. In contrast with the
result on continuous-time systems in [20], the case of discrete-time systems has an ad-
ditional constraint given in (9.4). The eigenratio λ2/λN of a Laplacian matrix is an
important factor [9]. A larger eigenratio corresponds to a better synchronizability of the
underlying communication graph. Intuitively, a better network synchronizability allows a
more unstable A to achieve consensus of the multiagent systems and vice versa, which are
confirmed by our result.
For a continuous-time system under a sufficiently small sampling period, the unstable
eigenvalues of the discretized system (9.1) can be made arbitrarily close to one, and thus
inequality (9.4) will be eventually satisfied for any connected undirected graph. Thus, for
the case of continuous-time agent dynamics, our result is consistent with that in [20]. In
fact, for a continuous-time system, information can be transmitted arbitrarily fast so that
the network synchronizability of the communication graph becomes less important for
achieving consensus.

4. If the adjacency matrix A of the graph G is selected as a symmetric (0,1)-matrix, then
the eigenratio λ2/λN → 1 means that the communication graph tends to be complete (cf.
Lemma 9.1). In this case, the controller can be designed in an almost centralized fashion.
Then consensus can be achieved for any stabilizable system.

5. The convergence rate of the average consensus over an undirected graph is determined
by λ2 [10,14]. By the Courant–Weyl interlacing inequalities [21], adding an undirected
edge to an undirected incomplete graph G will never decrease λ2, suggesting that the con-
sensus performance will not deteriorate. However, adding an undirected edge to a graph
may lead to a smaller eigenratio. For example, consider the following two graph Lapla-
cian matrices:

LG1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 −1 −1
−1 3 −1 −1 0 0
0 −1 3 −1 0 −1
0 −1 −1 3 −1 0

−1 0 0 −1 3 −1
−1 0 −1 0 −1 3

⎤
⎥⎥⎥⎥⎥⎥⎦

and LG2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

4 −1 −1 0 −1 −1
−1 3 −1 −1 0 0
−1 −1 4 −1 0 −1
0 −1 −1 3 −1 0

−1 0 0 −1 3 −1
−1 0 −1 0 −1 3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It is clear that G2 with an eigenratio 0.3970 is formed by adding an undirected edge
to G1, whose eigenratio is 0.4. Thus, it is possible to lose consensus of the multiagent sys-
tems (9.1) under protocol (9.3) by adding an edge. It appears to be counter-intuitive since
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the communication graph with a “better” connectivity may result in a worse consensus
capability. Note that whether the eigenratio will increase or decrease by adding an edge is
not conclusive; see [8] for more detail.

6. The importance of the intrinsic entropy rate of a linear dynamical system, quantified by∑
j log2 |λu

j (A)|, has been widely recognized in networked control systems (see, e.g., [17,
22–26]) as it determines the minimum data rate for stabilization. Here the intrinsic en-
tropy rate of the agent dynamics is first shown to pose a fundamental limitation on the
eigenratio of an undirected graph for consensus.

The proof of Theorem 9.1 depends on the following lemma, which gives a necessary and suf-
ficient condition for a class of simultaneous stabilization problems for discrete-time systems.

Lemma 9.3. Given 0 < λ2 ≤ . . . ≤ λN , and under A1), necessary and sufficient conditions
for the existence of a common control gain K ∈ R1×n such that ρ(A − λjBK) < 1 for all
j ∈ {2, . . . ,N} is the following:

(a) (A,B) is controllable;
(b) The product of unstable eigenvalues of A is strictly upper bounded as follows:

∏
j

|λu
j (A)| < 1 + λ2/λN

1 − λ2/λN

. (9.6)

Proof. By the convention 2
0 = ∞ it is obvious that only the case with λ2/λN �= 1 needs to be

elaborated.

Necessity: Under A1), it is straightforward that (A,B) is controllable. Without loss of gener-
ality (w.l.o.g.), assume that (A,B) is already in the controllable canonical form:

A =

⎡
⎢⎢⎢⎣

0 1 0 . . .

...
. . .

. . .

0 . . . 0 1
−α0 −α1 . . . −αn2−1

⎤
⎥⎥⎥⎦ ; B =

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦ , (9.7)

where α0 =∏
j λu

j (A). Let K = [−k0,−k1, . . . ,−kn−1] simultaneously stabilize (A,λjB). It
is obvious that

det(zIn − A + λjBK) = zn + (αn−1 − λjkn−1)z
n−1 + · · · + (α0 − λjk0). (9.8)

Since all the eigenvalues of A − λjBK are within the unit disk, it follows from (9.8) that, for
all j ∈ {2, . . . ,N},

|α0 − λjk0| < 1 ⇒ |α0| − 1

λj

< |k0| < |α0| + 1

λj

. (9.9)
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Thus, we obtain that

N⋂
j=2

( |α0| − 1

λj

,
|α0| + 1

λj

)
�= ∅,

which further implies that |α0|−1
λ2

<
|α0|+1

λN
. Noting that |α0| = ∏

j |λu
j (A)|, the necessity fol-

lows directly.

Sufficiency: Select ζ such that

∏
j

|λu
j (A)| < ζ−1 ≤ 1 + λ2/λN

1 − λ2/λN

and let ζj = 1 − 2λj

λ2+λN
≤ ζ for all j ∈ {2, . . . ,N}. Since (A,B) is controllable, there exists a

positive definite solution P to the modified algebraic Riccati inequality (9.5) [17].

Letting the control gain be

K = 2

λ2 + λN

BT PA

BT PB
,

it follows that

(A − λjBK)T P (A − λjBK) − P = AT PA − (1 − ζ 2
j )

AT PBBT PA

BT PB
− P

≤ AT PA − (1 − ζ 2)
AT PBBT PA

BT PB
− P

< 0,

which completes the proof.

Proof of Theorem 9.9. Denote the average state of all agents by

x̄(k) � 1

N

N∑
i=1

xi(k) = 1

N
(1T ⊗ In)x(k)

and the deviation of each agent from the average state by δi(k) � xi(k) − x̄(k), where 1 is a
vector of compatible dimension with all elements equal to one.

By the definition of consensus this yields that

lim
k→∞‖δi(k)‖ ≤ 1

N

N∑
j=1

lim
k→∞‖xi(k) − xj (k)‖ = 0.



290 Chapter 9

Conversely, limk→∞ ‖δi(k)‖ = 0 for all i ∈ N immediately implies consensus of the multia-
gent systems (9.1). Thus consensus is equivalent to limk→∞ ‖δi(k)‖ = 0 for all i ∈ N .

Stack xj to get a new state vector x(k) = [xT
1 (k), . . . , xT

N(k)]T . By (9.3) the dynamical equa-
tion of x(k) can be written as

x(k + 1) = (IN ⊗ A −LG ⊗ BK)x(k). (9.10)

Noting that 1T LG = 0T , the following equalities are in force:

x̄(k + 1) = 1

N
(1T ⊗ A)x(k) − 1

N
(1T LG ⊗ BK)x(k)

= Ax̄(k). (9.11)

Let δ(k) = [δT
1 (k), . . . , δT

N(k)]T . Subtracting (9.10) from (9.11) immediately leads to

δ(k + 1) = (IN ⊗ A −LG ⊗ BK)δ(k). (9.12)

Select φi ∈ RN such that φT
i LG = λiφ

T
i and form the unitary matrix

� = [ 1√
N

,φ2, . . . , φN ]

to transform LG into a diagonal form:

diag(0, λ2, . . . , λN) = �T LG�. (9.13)

Using the property of Kronecker product gives that

(� ⊗ In)
T (IN ⊗ A −LG ⊗ BK)(� ⊗ In) = diag(A,A − λ2BK, . . . ,A − λNBK). (9.14)

Denote δ̃(k) = (� ⊗ In)
T δ(k) and partition δ̃(k) ∈ RnN into two parts, that is, δ̃(k) =

[̃δT
1 (k), δ̃T

2 (k)]T , where δ̃1(k) ∈ Rn is the vector consisting of the first n elements of δ̃(k).

Then δ̃1(k) = 1√
N

∑N
i=1 δi(k) = 0. In view of (9.12) and (9.14), this yields that

δ̃2(k + 1) = diag(A − λ2BK, . . . ,A − λNBK)̃δ2(k). (9.15)

Since � ⊗ In is nonsingular, limk→∞ ‖δ(k)‖ = 0 is equivalent to limk→∞ ‖̃δ2(k)‖ = 0.

Necessity: By (9.15) it follows that ρ(A − λiBK) < 1 for i ∈ {2, . . . ,N}, which in turn im-
plies that λ2 > 0 since if λ2 = 0, then ρ(A − λ2BK) ≥ 1 for all K ∈ R1×n by A1); that is,
(A,λjB) can be simultaneously stabilized by a common control gain K ∈ R1×n. In light of
Lemma 9.3, the necessity is established.
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Sufficiency: Under A1), inequality (9.4) implies that λ2 > 0. By Lemma 9.3 the common gain

K = 2

λ2 + λN

BT PA

BT PB
,

where P is a positive definite solution to the modified algebraic Riccati inequality (9.5), can
simultaneously stabilize (A,λiB), i ∈ {2, . . . ,N}, thats is, ρ(A − λiBK) < 1. Together
with (9.15), the proof of sufficiency is completed.

In the proof of sufficiency, we have constructed a specific control gain K for the multiagent
systems to reach a consensus, which is obtained by solving a modified algebraic Riccati in-
equality. It is interesting to note that the discrete-time consensus problem over an undirected
graph is closely related to the robust stabilization problem with a bounded uncertainty in the
input gain. Here the variation of the eigenvalues of the Laplacian matrix is interpreted as pa-
rameter uncertainty in the input. Differently from the classical robust stabilization problem,
the uncertainty in this case takes only a finite number of positive values. What is particularly
surprising is that the necessary and sufficient condition for the classical robust stabilization
continues to hold.

9.3.2 Extensions to Digraphs

In the previous subsection, the consensus problem over undirected graphs is converted to a
simultaneous stabilization problem. Similarly, we can easily show that the consensus prob-
lem over directed graphs is still equivalent to a simultaneous stabilization problem, that is,
find a common gain such that ρ(A − λjBK) < 1 for all j ∈ {2, . . . ,N}. The main differ-
ence is that, under directed graphs, the nonzero eigenvalues of the induced Laplacian matrix,
λj , j ∈ {2, . . . ,N}, are not real numbers in general. However, a simple necessary and suf-
ficient condition for consensus of multiagent systems (9.1) under protocol (9.3) can be also
established.

Theorem 9.2. Given a fixed directed graph G, under A1), necessary and sufficient conditions
for the discrete-time multiagent systems (9.1) to reach consensus under protocol (9.3) are the
following:

(a) (A,B) is a controllable pair;
(b) Each agent cannot change too fast. Precisely, the product of the unstable eigenvalues

of A is upper bounded by the strict inequality

∏
j

|λu
j (A)| < 1

min
ω∈R max

j∈{2,...,N}
|1 − ωλj | , (9.16)

where λj is a complex eigenvalue of LG .



292 Chapter 9

Moreover, under these conditions, let ω∗ be a solution to (9.16). Select ζ such that

1∏
j |λu

j (A)| > ζ ≥ max
j∈{2,...,N}

|1 − ω∗λj |.

Then, the control gain

K = ω∗(BT PB)−1BT PA

solves the consensus problem, where P is a positive definite solution to the modified algebraic
Riccati inequality (9.5).

Proof. In view of the proof of Theorem 9.1, we only need to find a necessary and sufficient
condition for the existence of a common control gain K ∈ R1×n such that ρ(A − λjBK) < 1
where λj ∈ C for all j ∈ {2, . . . ,N}.
Necessity: It is trivial that (A,B) is controllable. Next, it follows from (9.9) that

|α0 − λjk0| < 1 ⇒ |1 − λjk
′
0| <

1

|α0| , j ∈ {2, . . . ,N},

where k′
0 = k0/|α0| ∈R. This implies that

inf
ω∈R max

j∈{2,...,N}
|1 − ωλj | < 1∏

j |λu
j (A)| .

Note that |x| is continuous w.r.t. x ∈ C, and thus the inf in the last inequality is achievable.

Sufficiency: Let ω∗ be a solution to (9.16) and denote ζj = 1 − ω∗λj . Then, |ζj | ≤ ζ for all
j ∈ {2, . . . ,N}. Using the proposed control gain K , we obtain that

(A − λjBK)HP (A − λjBK) − P = AT PA − (1 − |ζj |2)A
T PBBT PA

BT PB
− P

≤ AT PA − (1 − ζ 2)
AT PBBT PA

BT PB
− P

< 0

for all j ∈ {2, . . . ,N}.

Condition (9.16) can be readily checked via the following lemma.

Lemma 9.4. Let λj = rj exp(θj ι) with ι2 = −1 and �m = 1/(
∏ |λu

i (A)|). Then inequal-
ity (9.16) holds if and only if the intersection
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N⋂
j=2

⎛
⎜⎝cos θj −

√
�2

m − sin2 θj

rj
,

cos θj +
√

�2
m − sin2 θj

rj

⎞
⎟⎠ (9.17)

is not empty, which is equivalent to that

1 − �2
m

minj∈{2,...,N} rjf (θj )
< min

j∈{2,...,N}
f (θj )

rj
. (9.18)

Here f (θ) = cos θ +
√

�2
m − sin2 θ is a decreasing function w.r.t. θ ∈ (0, arcsin(�m)), where

arcsin(x) is the inverse sine of x.

Proof. We can easily verify that inequality (9.16) holds if and only if ∩N
j=2{ω ∈ R||1−ωλj | <

�m} �= ∅, which is equivalent to (9.17). The equivalence of (9.17) and (9.18) is trivial.

Remark 9.2. By Lemma 9.2 all the nonzero eigenvalues of LG lie in the open right half-plane,
which implies that −π/2 ≤ θj ≤ π/2. Then it follows from (9.16) that

|θj | < arcsin

(
1∏

i |λu
i (A)|

)
, ∀j ∈ {2, . . . ,N}. (9.19)

This means that the more unstable is the open-loop matrix, a stronger condition is required on
the directed graph to achieve consensus under protocol (9.3). Since |1 −ωλj | ≥ |1 −|ω| · |λj ||
for all ω ∈ R and j ∈ {2, . . . ,N}, it follows that

min
ω∈R max

j∈{2,...,N}
|1 − |ω| · |λj || ≤ min

ω∈R max
j∈{2,...,N}

|1 − ωλj |.

Thus, we can easily derive from (9.16) that

∏
j

|λu
j (A)| < |λN | + |λ2|

|λN | − |λ2| . (9.20)

By Theorem 9.1 we know that, under undirected graphs, the necessary condition of (9.20) on
graphs is also sufficient for reaching a consensus. Unfortunately, this condition is no longer
strong enough for achieving consensus of the multiagent systems under protocol (9.3) if the
communication graph is directed.

Remark 9.3. We further only consider undirected graphs. The results in the rest of this sec-
tion can be easily generalized to directed graphs.
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9.3.3 Performance Analysis

Under protocol (9.3), we can evaluate the corresponding asymptotic convergence factor [27]
defined by

rasym = sup
δ(0) �=0

lim
k→∞

(‖δ(k)‖
‖δ(0)‖

) 1
k

. (9.21)

Similarly, another measure of the speed of convergence is the per-step convergence factor
[27] defined as

rstep = sup
δ(k) �=0

‖δ(k + 1)‖
‖δ(k)‖ . (9.22)

Denote the set of stabilizing gains of (A,λjB) by

�j = {K ∈ R1×n| ρ(A − λjBK) < 1}. (9.23)

Given any control gain K ∈R1×n, define

J (K) = diag(A − λ2BK, . . . ,A − λNBK). (9.24)

The convergence speed is quantified below.

Corollary 9.1. Given an undirected graph G, under the conditions in Theorem 9.9, select
K ∈ ⋂N

j=2 �j , where �j is defined in (9.23). Then the asymptotic convergence factor and
per-step convergence factor for consensus are respectively evaluated by

rasym = ρ(J (K)) and rstep = ‖J (K)‖. (9.25)

Proof. Since � ⊗ In is an unitary matrix, it is obvious that ‖δ(k)‖ = ‖̃δ(k)‖ for k ∈ N. Ob-
serve that if δ̃1(k) = 0, then ‖̃δ(k)‖ = ‖̃δ2(k)‖ for all k ∈ N. In view of (9.15), it follows that

rasym = sup
δ̃2(0) �=0

lim
k→∞

(‖J k(K)̃δ2(0)‖
‖̃δ2(0)‖

) 1
k

≤ lim
k→∞‖J k(K)‖

1
k

= ρ(J (K)). (9.26)

On the other hand, select δ̃2(0) as an eigenvector of J (K) corresponding to the largest eigen-
value, that is, J (K)̃δ2(0) = λMδ̃2(0) and |λM | = ρ(J (K)). Then we have the following
results:

rasym ≥ lim
k→∞

(‖J k(K)̃δ2(0)‖
‖̃δ2(0)‖

) 1
k
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= lim
k→∞

(
‖λk

Mδ̃2(0)‖
‖̃δ2(0)‖

) 1
k

= ρ(J (K)). (9.27)

Hence this yields that rasym = ρ(J (K)). The second part can be shown similarly.

To make the convergence to consensus as fast as possible, a control gain K ∈⋂N
j=2 �j should

be selected to minimize the asymptotic convergence factor or per-step convergence factor.
Since the spectral radius of a square matrix is not a convex function, not even Lipschitz con-
tinuous, the problem of finding an optimal K to minimize the asymptotic convergence factor
is in general very difficult. However, we can derive a lower bound for the optimal asymptotic
convergence factor.

Theorem 9.3. Given an undirected graph G, under the conditions in Theorem 9.1, the optimal
asymptotic convergence factor is lower bounded as follows:

r∗
asym = inf

K∈⋂N
j=2 �j

ρ(J (K))

≥ (∏
j

|λu
j (A)|)1/n

(
1 − λ2/λN

1 + λ2/λN

)1/n

. (9.28)

Proof. It essentially follows from the necessity of Lemma 9.3 with some modifications. With-
out loss of generality, let (A,B) be given in the controllable canonical form. For any control
gain K ∈ ⋂N

j=2 �j , it follows from the definition of J (K) in (9.24) that ρ(A − λjBK) ≤
ρ(J (K)) < 1 for all j ∈ {2, . . . ,N}.
In consideration of (9.8) and letting K = [−k0, . . . ,−kn−1], we obtain that

|det(A) − λjk0| ≤ ρ(J (K))n

⇒ |det(A)| − ρ(J (K))n

λj

≤ |k0| ≤ |det(A)| + ρ(J (K))n

λj

.

Using the arguments in the necessity of Lemma 9.3, we can show that

|det(A)| − ρ(J (K))n

λ2
≤ |det(A)| + ρ(J (K))n

λN

.

By simple algebraic manipulations we obtain that

ρ(J (K)) ≥ |det(A)|1/n

(
1 − λ2/λN

1 + λ2/λN

)1/n

, ∀K ∈
N⋂

j=2

�j .

Taking the infinitum on both sides of this inequality completes the proof.
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Remark 9.4. The lower bound in (9.28) is attainable for some particular cases:

1. The interaction graph is complete and the adjacency matrix A is a symmetric (0,1)-matrix.
Lemma 9.2 implies that λ2 = λN > 0. Since (A,λ2B) is controllable, there exists a control
gain K∗ such that ρ(A − λ2BK∗) = 0. Thus rasym = ρ(J (K∗)) = 0, and the consensus
can be achieved in finite time.

2. The agent dynamic is an unstable scalar system, and the communication graph is undi-
rected, that is, xi(k + 1) = axi(k) + bui(k), where a ≥ 1 and b �= 0. Let k∗ = 2a

b(λ2+λN)
.

Then

a − λ2bk∗ = a(1 − λ2/λN)

1 + λ2/λN

and

|a − λjbk∗| ≤ a(1 − λ2/λN)

1 + λ2/λN

, ∀j ∈ {2, . . . ,N}.

Thus, r∗
asym = ρ(J (k∗)) = a(1−λ2/λN )

1+λ2/λN
.

3. It can also be approached for the discrete-time second-order consensus with an undi-
rected graph (see Section 9.3.4) for the design of an optimal control gain to reach this
bound.

9.3.4 Optimal Consensus Control for Second-Order Systems

In this subsection, an optimal control gain is designed to achieve the optimal asymptotic con-
vergence factor, which is expressed by the eigenratio of an undirected graph.

Consider the sampled double-integrator systems with a sampling period h > 0 for each
agent [28]:

xi(k + 1) = xi(k) + hvi(k) + 1

2
h2ui(k), (9.29)

vi(k + 1) = vi(k) + hui(k),∀i ∈ N , (9.30)

where xi(k) ∈ R and vi(k) ∈ R respectively correspond to the position and velocity of agent i

at time kh, and ui(k) ∈ R is the control input.

Denoting the configuration variable of agent i at time kh by ξi(k) = [xi(k), vi(k)]T , the agent
dynamic is written in a vector form as follows:

ξi(k + 1) =
[

1 h

0 1

]
ξi(k) +

[
1
2h2

h

]
ui(k), ∀i ∈ N . (9.31)
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The following control protocol is adopted:

ui(k) = K

N∑
j=1

aij (ξj (k) − ξi(k)), K ∈R1×2. (9.32)

By Lemma 9.2 and Theorem 9.9 we get a necessary and sufficient condition for reaching the
second-order consensus.

Corollary 9.2. Given an undirected graph G, a necessary and sufficient condition for the
second-order multiagent systems (9.31) to reach consensus under protocol (9.32) is that G is
connected.

In this occasion, a control gain K that solves the second-order consensus can be designed
without resorting to the solution to the modified algebraic Riccati inequality (9.5).

Theorem 9.4. Given an undirected graph G, let

� = {[α,β]|β <
2

λNh
,0 < α <

2β

h
}.

Under the conditions in Corollary 9.2, a control gain K in (9.32) solves the second-order
consensus problem if and only if K ∈ �.

Proof. By (9.15) and the definition of J (K) in (9.24), a control gain K � [α,β] solves the
second-order consensus problem under protocol (9.32) if and only if ρ(J (K)) < 1. It is easy
to compute that

det(zI2 − (A − λBK)) = z2 + (
1

2
αλh2 + βλh − 2)z + 1

2
αλh2 − βλh + 1 (9.33)

� (z − z1)(z − z2).

Applying to the latter a bilinear transformation, that is, z = s+1
s−1 , we obtain the new polyno-

mial

αλh2s2 + (2βλh − αλh2)s + 4 − 2βλh� (αλh2)(s − s1)(s − s2).

From the property of the bilinear transformation it follows that |z1| < 1 and |z2| < 1 if and
only if s1 < 0 and s2 < 0, which are equivalent to that β < 2

λh
and 0 < α <

2β
h

by the Routh
stability criterion. The rest of the proof is trivial.

The following result characterizes the optimal asymptotic convergence factor among all possi-
ble control gains that achieve a consensus under protocol (9.32).
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Theorem 9.5. Given an undirected graph G, under the conditions in Corollary 9.2, the op-
timal asymptotic convergence factor for reaching consensus of the second-order multiagent
systems (9.31) under protocol (9.32) is

r∗
asym =

(
1 − λ2/λN

1 + λ2/λN

)1/2

. (9.34)

Moreover, the control gain

K∗ =
[

1 − (r∗
asym)2

h2λN

,
3 + (r∗

asym)2

2hλN

]

leads to the optimal asymptotic convergence factor.

Proof. In light of Theorem 9.3, the optimal asymptotic convergence factor is lower bounded
by

r∗
asym ≥

(
1 − λ2/λN

1 + λ2/λN

)1/2

. (9.35)

Next, a control gain K = [α,β] is to be constructed to show that the lower bound is tight. For

notational simplicity, let α0 = 1
2αh2 + βh, β0 = 1

2αh2 − βh, and σ =
(

1−λ2/λN

1+λ2/λN

)1/2
. Then we

obtain that

det(zI2 − (A − λBK)) = z2 + (α0λ − 2)z + β0λ + 1

� (z − z+(λ))(z − z−(λ)).

It is clear that for all λ ≥ 4(α0+β0)

α2
0

, z+(λ) and z−(λ) are real numbers and can be expressed by

z+(λ) = 1 − α0 + β0

α0
2 +

√
α2

0
4 − α0+β0

λ

, (9.36)

z−(λ) = 1 − α0 + β0

α0
2 −

√
α2

0
4 − α0+β0

λ

. (9.37)

Setting z+(λN) = σ and z−(λN) = −σ , we get a solution of (α0, β0) as follows:
⎧⎨
⎩

α∗
0 = 2

λN
,

β∗
0 = −σ 2+1

λN
.
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Noting that

4(α∗
0 + β∗

0 )

(α∗
0)2

= (1 − σ 2)λN ∈ [λ2, λN),

there exists k ∈ {2, . . . ,N − 1} such that
4(α∗

0+β∗
0 )

(α∗
0 )2 ≤ λk+1 and

4(α∗
0+β∗

0 )

(α∗
0 )2 ≥ λk . Thus, z+(λj )

and z−(λj ), j ∈ {k + 1, . . . ,N} are real numbers. For any control gain K solving the second-

order consensus, Theorem 9.4 assures that α∗
0 + β∗

0 = 1−σ 2

λN
> 0. Then, z+(λ) and z−(λ) are

respectively increasing and decreasing functions w.r.t. λ >
4(α∗

0+β∗
0 )

(α∗
0 )2 . This implies that

z+(λN) ≥ · · · ≥ z+(λk+1) ≥ z−(λk+1) ≥ · · · ≥ z−(λN)

and

max
j∈{k+1,...,N}

{|z+(λj )|, |z−(λj )|} = σ. (9.38)

On the other hand, for any λ ≤ 4(α∗
0+β∗

0 )

(α∗
0 )2 , z+(λ) and z−(λ) are a pair of conjugate complex

numbers, and

|z+(λ)|2 = |z−(λ)|2 = 1 + 1

2
λ2(α∗

0)2 − λ(β∗
0 + 2α∗

0)

= 2

(
λ

λN

)2

+ (σ 2 − 3)

(
λ

λN

)
+ 1.

In particular, for all j ∈ {2, . . . , k}, z+(λj ) and z−(λj ) are complex numbers. Moreover,

|z+((1 − σ 2)λN)|2 − σ 2 = σ 2(σ 2 − 1) ≤ 0

and

|z+(λ2)|2 − σ 2 = 2

(
1 − σ 2

1 + σ 2

)2

+ (σ 2 − 3)

(
1 − σ 2

1 + σ 2

)
+ 1 − σ 2

= −2σ 2(σ 2 − 1)2

(1 + σ 2)2
≤ 0.

Together with

λ2 ≤ · · · ≤ λk ≤ 4(α∗
0 + β∗

0 )

(α∗
0)2

= (1 − σ 2)λN,

it follows that

max
j∈{2,...,k}

|z+(λj )|2 ≤ max{|z+(λ2)|2, |z+((1 − σ 2)λN)|2} ≤ σ 2.
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Combing this with (9.38), we conclude that

max
j∈{2,...,N}

{|z+(λj )|, z−(λj )|} = σ.

Thus, the lower bound of (9.35) is attainable. Solving the equations⎧⎨
⎩

2
λN

= 1
2αh2 + βh,

−σ 2+1
λN

= 1
2αh2 − βh,

we obtain that the control gain

K∗ =
[1 − σ 2

h2λN

,
3 + σ 2

2hλN

]

leads to the optimal asymptotic convergence factor r∗
asym = σ .

9.4 Consensus Control With Relative Output Feedback

In this subsection, we consider the situation where each agent does not know its exact output
but can measure the output relative to those of his neighboring agents. For instance, in vehi-
cle coordination, the vision-based sensor on a vehicle cannot directly locate the position of
the vehicle in a global coordinate system but can measure the relative position to its neigh-
bors. While in networked clock consensus, we are more concerned with the time difference
between each pair of clocks.

9.4.1 Distributed Observer-Based Protocol

We propose two admissible control protocols. Precisely, we first adopt a static control proto-
col:

ui(k) = F
∑
j∈Ni

aij (yj (k) − yi(k)) � Fζi(k),F ∈ R1×m. (9.39)

The second admissible control protocol is an observer-based dynamic protocol that depends
on an internal controller state. Let

∑
j∈Ni

aij (xj (k) − xi(k)) � ξi(k). Since ξi(k) is no longer
available, a very natural thing is to design an observer to estimate ξi(k) for the control design.
In view of the agent dynamics, we will study the following observer-based control protocol
for agent i:{

ξ̂i (k + 1) = Aξ̂i(k) + B
∑

j∈Ni
aij (uj (k) − ui(k)) + L(ζi(k) − Cξ̂i(k)),

ui(k) = Kξ̂i(k),L ∈ Rn×m,K ∈ R1×n.
(9.40)
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At time k, agent i computes the aggregate relative measurements ζi(k) to those of its neigh-
bors. Together with control inputs from its neighbors uj (k), j ∈ Ni , which will be received
before time k + 1, the agent updates its internal controller state to obtain ξ̂i (k + 1) and pro-
duces the control input ui(k + 1). It is clear that the dynamic control protocol in (9.40) is
admissible. Compared to the static protocol in (9.39), this dynamic protocol requires each
agent to broadcast its control input to his neighboring agents.

Observe the special case that the initial estimate is perfect, that is, ξi(0) = ξ̂i (0), it can be
easily shown that ξi(k) = ξ̂i (k) for all k ∈ N. When the consensus is reached, the internal
controller state ξ̂i (k) of this case becomes zero. Thus it is reasonable to impose an additional
condition on the definition of consensus that all controller internal states ξ̂i (k), i ∈ V , should
asymptotically converge to zero.

Definition 9.2. Given an undirected communication graph G, the discrete-time multiagent
systems (9.1) are said to reach consensus under the dynamic protocol (9.40) if for any finite
xi(0),∀i ∈ V , the control protocol can asymptotically drive the states of all agents close to
each other and all the controller internal states to zero, that is,

lim
k→∞‖xi(k) − xj (k)‖ = 0 & lim

k→∞‖̂ξi(k)‖ = 0,∀i, j ∈ V. (9.41)

To elucidate the role of the graph, we focus ourselves on undirected graphs.

9.4.2 Consensus Under Static Protocol

In this subsection, we first provide a necessary and sufficient condition under the static control
protocol (9.39). Noting that the verification of this condition is nontrivial, we proceed to seek
a necessary and sufficient condition for consensus under the dynamic control protocol (9.40).
The roles of the undirected graph and agent dynamics on consensus are exactly quantified.

Theorem 9.6. Given an undirected communication graph G, the discrete-time multiagent sys-
tems (9.1) reach consensus under the static control protocol (9.39) if and only if there exists a
common gain F ∈ R1×m such that ρ(A − λjBFC) < 1, ∀j ∈ {2, . . . ,N}.

Proof. Denote the average state of all agents by

x̄(k) � 1

N

N∑
i=1

xi(k) = 1

N
(1T ⊗ In)x(k),

where x(k) � [xT
1 (k), . . . , xT

N(k)]T , and the deviation of each state from the average state by
δi(k) � xi(k) − x̄(k), where 1 is a compatible dimension vector with each element of one and
similarly for 0. Then, this yields that
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lim
k→∞‖δi(k)‖ ≤ 1

N

N∑
j=1

lim
k→∞‖xi(k) − xj (k)‖ = 0.

Conversely, limk→∞ ‖δi(k)‖ = 0, ∀i ∈ V , immediately implies the consensus of the multia-
gent systems (9.1). Thus, it is equivalent to finding a necessary and sufficient condition such
that limk→∞ ‖δi(k)‖ = 0,∀i ∈ V . Inserting the control protocol (9.39) into each agent dynam-
ics, the dynamical equation of x(k) can be written as

x(k + 1) = (IN ⊗ A −LG ⊗ BFC)x(k). (9.42)

Since 1T LG = 0T , we obtain

x̄(k + 1) = 1

N
(1T ⊗ A)x(k) − 1

N
(1T LG ⊗ BFC)x(k)

= Ax̄(k). (9.43)

Letting δ(k) = [δT
1 (k), . . . , δT

N(k)]T and subtracting (9.42) from (9.43) lead to that

δ(k + 1) = (IN ⊗ A −LG ⊗ BFC)δ(k). (9.44)

Select φi ∈ RN such that φT
i LG = λiφ

T
i and form the unitary matrix � = [ 1√

N
,φ2, . . . , φN ]

to transform LG into a diagonal form: diag(0, λ2, . . . , λN) = �T LG�. Further, using the
property of Kronecker product gives that

(� ⊗ In)
T (IN ⊗ A −LG ⊗ BFC)(� ⊗ In) = IN ⊗ A − �T LG� ⊗ BFC (9.45)

= diag(A,A − λ2BFC, . . . ,A − λNBFC).

Denote δ̃(k) = (� ⊗ In)
T δ(k) and partition δ̃(k) ∈ RnN into two parts, that is, δ̃(k) =

[̃δT
1 (k), δ̃T

2 (k)]T , where δ̃1(k) ∈ Rn is a vector consisting of the first n elements of δ̃(k).

Then, δ̃1(k) = 1√
N

∑N
i=1 δi(k) = 0. In view of (9.44) and (9.45), this yields that

δ̃2(k + 1) = diag(A − λ2BFC, . . . ,A − λNBFC)̃δ2(k). (9.46)

The rest of the proof is straightforward.

This result reveals how the eigenvalues of the Laplacian matrix affect consensus. However,
the verification of the condition in Theorem 9.6 is nontrivial although some conservative suf-
ficient conditions can be given in terms of linear matrix inequalities [29]. A more explicit
characterization of the effect of these eigenvalues on the consensus is given in the following
subsection.
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9.4.3 Consensus Under Dynamic Protocol

Theorem 9.7. Given an undirected communication graph G, the discrete-time multiagent
systems (9.1) reach consensus under the dynamic control protocol (9.40) if and only if the
following conditions hold:

(a) (A,B,C) are stabilizable and detectable;
(b) Each agent cannot change too fast. Precisely, the product of the unstable eigenvalues

of A is upper bounded by the strict inequality

∏
j

|λu
j (A)| < 1 + λ2/λN

1 − λ2/λN

, (9.47)

where λu
j (A) represents an unstable eigenvalue of A, and λ2 and λN are respectively the

second smallest and largest eigenvalues of the Laplacian matrix associated with G.

Moreover, if the stated conditions hold, a control gain K that solves the consensus problem
can be selected as

K = 2

λ2 + λN

BT PA

BT PB
,

where P is a positive definite solution to the following discrete-time algebraic Riccati in-
equality:

P − AT PA + AT PBBT PA

BT PB
> 0. (9.48)

The observer gain L is chosen to make ρ(A − LC) < 1.

The proof depends on the following lemmas.

Lemma 9.5. ([22]) Suppose that the sequence {zk} ⊂ R is recursively computed by the for-
mula zk+1 = (1 − ak)zk + bk, ∀k ∈ N, and ak ∈ [0,1),

∑∞
k=0 ak = ∞, |z0| < ∞. Then if

limk→∞ bk

ak
exists, we have limk→∞ zk = limk→∞ bk

ak
.

Lemma 9.6. ([30]) For any A ∈ Rn×n and ε > 0, we have

‖Ak‖ ≤ Mηk,∀k ≥ 0, (9.49)

where M = √
n
(

1 + 2
ε

)n−1
and η = ρ(A) + ε‖A‖.
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Proof of Theorem 9.7. Define ξ̃i (k) as the estimation error of ξi(k), that is, ξ̃i (k) = ξ̂i (k) −
ξi(k). Inserting the control protocol (9.40) into each agent dynamics, the dynamical equation
of x(k) can be written as

x(k + 1) = (IN ⊗ A −LG ⊗ BK)x(k) + (IN ⊗ BK)̃ξ(k). (9.50)

Similarly to the proof of Theorem 9.6, it is easy to show that

δ(k + 1) = (IN ⊗ A −LG ⊗ BK)δ(k) + (IN ⊗ BK)̃ξ(k). (9.51)

Let E(k) = (P ⊗ In)
T (IN ⊗BK)̃ξ(k) and partition it into two parts E(k) = [ET

1 (k),ET
2 (k)]T ,

where E1(k) ∈ Rn is the vector consisting of the first n elements of E(k). Then, following
similar arguments of the proof of Theorem 9.6, we have that

{
δ̃1(k) = 0,∀k ∈ N.

δ̃2(k + 1) = diag(A − λ2BK, . . . ,A − λNBK)̃δ2(k) + E2(k).
(9.52)

Necessity: By (9.1) it follows that

ξi(k + 1) =
∑
j∈Ni

aij (xj (k + 1) − xi(k + 1))

= Aξi(k) + BK
∑
j∈Ni

aij (̂ξj (k) − ξ̂i (k)). (9.53)

Together with (9.40), the error dynamic of ξ̃i (k) is written by ξ̃i (k + 1) = (A − LC)̃ξi(k). As-
sume that the multiagent systems (9.1) reach a consensus under the dynamic protocol (9.40),
it follows that

lim
k→∞‖̃ξi(k)‖ = lim

k→∞‖̂ξi(k) − ξi(k)‖
≤ lim

k→∞‖̂ξi(k)‖ + lim
k→∞‖ξi(k)‖

≤ ‖K‖
∑
j∈Ni

aij lim
k→∞‖xj (k) − xi(k)‖ = 0,∀i ∈ V. (9.54)

Thus we get that ρ(A − LC) < 1. This implies that (C,A) is detectable.

Now, we consider a particular case where the initial estimate of ξi(0),∀i ∈ V , is perfect. By
the error dynamics of ξ̃i (k) it is easy to see that ξ̃i (k) = 0,∀i ∈ V , which further implies that
E2(k) = 0,∀k ∈ N. In light of (9.52), it immediately follows that ρ(A − λjBK) < 1,∀j ∈
{2, . . . ,N}. The rest of the proof of the necessity follows from Lemma 9.3.



Distributed Control for Large-Scale NCSs 305

Sufficiency: Since (A,B) is stabilizable, there exists a positive definite solution P to the al-
gebraic Riccati inequality (9.48). In view of Lemma 9.3, the proposed control gain K can
simultaneously stabilize the stabilizable pairs (A,λjB),∀j ∈ {2, . . . ,N}, that is,

� � max
j∈{2,...,N}

ρ(A − λjBK) < 1. (9.55)

In addition, the observer gain L makes the estimation error asymptotically converge to zero,
that is,

lim
k→∞ ξ̃i (k) = 0,

which further implies that limk→∞ ‖E2(k)‖ = 0. Denoting J (K) = diag(A − λ2BK, . . . ,

A − λNBK), it follows from (9.52) that

δ̃2(k + 1) = J (K)k+1δ̃2(0) +
k∑

i=0

J (K)k−iE2(i). (9.56)

Select a positive ε such that ε <
1−�

‖J (K)‖ and η = � + ε‖J (K)‖ < 1. By Lemma 9.6 it follows

that ‖J (K)k‖ ≤ Mηk . Thus we obtain that

‖̃δ2(k + 1)‖ ≤ M

(
ηk+1 +

k∑
i=0

ηk−i‖E2(i)‖
)

. (9.57)

Consider the following auxiliary system: zk+1 = ηzk + ‖E2(k)‖, z0 = 1. In view of
Lemma 9.5, we have that

lim
k→∞ zk = limk→∞ ‖E2(k)‖

1 − η
= 0. (9.58)

By iteration it is clear that zk+1 = ηk+1 +∑k
i=0 ηk−i‖E2(i)‖. Hence, we have proved that

lim
k→∞‖̃δ2(k)‖ = 0. (9.59)

Together with the fact that δ̃1(k) = 0,∀k ∈ N, it follows that limk→∞ ‖δ(k)‖ = 0. Thus, we
get that limk→∞ ‖xi(k) − xj (k)‖ = 0,∀i, j ∈ V , which further implies that limk→∞ ‖ξi(k)‖ =
0,∀i ∈ V . Moreover, the following statement is straightforward:

lim
k→∞‖̂ξi(k)‖ = lim

k→∞‖ξi(k)‖ + lim
k→∞‖̃ξi(k)‖ = 0. (9.60)

By Definition 9.2 the proof is completed.

9.4.4 Multiagent Systems With Double Integrators

Consider the following discrete-time double-integrator systems for each agent:
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{

xi(k + 1) = xi(k) + hvi(k),

vi(k + 1) = vi(k) + hui(k),
∀i ∈ V, k ∈ N, (9.61)

where h is the sampling interval, xi(k) ∈ R and vi(k) ∈ R respectively correspond to the posi-
tion and velocity of agent i at time kh, and ui(k) ∈ R is the control input. Under this setting,
A,B,C are respectively written as

A =
[

1 h

0 1

]
,B =

[
0
h

]
,C = [1 0].

Consider the situation that each agent does not know its position in a global coordinate system
but can measure the position relative to those of its neighboring agents. We may attempt to
reach a consensus by adopting a control protocol of the form

ui(k) = γ

N∑
j=1

aij (xj (k) − xi(k)), γ ∈ R. (9.62)

Intuitively, this control protocol only uses a relative position information, and it may be not
able to drive the multiagent system to reach a consensus. We note that the protocol is adopted
for first-order multiagent systems to reach an average consensus [14].

Theorem 9.8. The second-order multiagent systems (9.61) cannot reach a consensus under
the control protocol (9.62) for any undirected communication graph.

Proof. In view of (9.52), it can be similarly established that

δ̃j (k + 1) = (A − λjγBC)̃δj (k),∀j ∈ {2, . . . ,N}. (9.63)

It is straightforward that

det(zI2 − (A − λjγBC)) = z2 − 2z + 1 + λjh
2γ. (9.64)

Together with (9.63), we cannot guarantee that for any finite initial state ξ0(k),
limk→∞ ‖̃δ(k)‖ �= 0 since (9.64) contains at least one unstable root. This completes the
proof.

Due to the distinct feature of the double-integrator system, the relative velocity can be ac-
cessed by using the relative position information with one-step delay. For example, by (9.61)
it follows that

vj (k − 1) = xj (k) − xj (k − 1)

h
.
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Thus, we study the following control protocol. Let xj (k) = 0,∀k < 0, and

ui(k) =
N∑

j=1

aij

[
γ0(xj (k) − xi(k)) + γ1(vj (k − 1) − vi(k − 1))

]

�
N∑

j=1

aij

[
α(xj (k) − xi(k)) + β(xj (k − 1) − xi(k − 1))

]
. (9.65)

Without incurring any additional communication cost, this protocol requires each agent
to store the relative position feedback at the previous step. Under such a simple protocol
of (9.65), a connected graph is also necessary and sufficient for reaching a consensus.

Theorem 9.9. Given an undirected communication graph, the second-order multiagent
systems (9.61) reach consensus under the control protocol (9.65) if and only if the communi-
cation graph is connected. Moreover, if this condition holds, then (α,β) in the protocol (9.65)
can be selected from the set

�c �
{
(α,β)|max{− 1

h2
,− 1

λNh2
} < β < 0, α = −λNh2β2 + 3β

2

}
. (9.66)

Proof. Similarly to the proof of Theorem 9.6, we obtain that, for all j ∈ {2, . . . ,N},
δ̃j (k + 1) = (A − αλjBC)̃δj (k) − βλjBCδ̃j (k − 1). (9.67)

Let �j(k) = [̃δT
j (k − 1), δ̃T

j (k)]T , where δ̃j (k) = 0,∀k < 0. In view of (9.67), the dynamical
equation of �j(k) is expressed by

�j(k + 1) =
[

0 I2

−βλjBC A − αλjBC

]
�j(k)

� Mj(α,β)�j (k),∀j ∈ {2, . . . ,N}. (9.68)

Thus, a necessary and sufficient condition for the multiagent system (9.61) to reach a consen-
sus is that ρ

(
Mj(α,β)

)
< 1,∀j ∈ {2, . . . ,N}.

Necessity: If the communication graph is not connected, it immediately follows that λ2 = 0,
which implies that ρ(M2(α,β)) = 1,∀α,β ∈ R. In view of (9.68), we cannot guarantee that
limk→∞ ‖�j(k)‖ = 0,∀�j(0) ∈ R4. This contradicts Definition 9.4.

Sufficiency: We show that, for any connected graph and any (α,β) ∈ �c, we have
ρ
(
Mj(α,β)

)
< 1,∀j ∈ {2, . . . ,N}. It is easy to compute that

det(zI4 − Mj(α,β)) = z
(
z3 − 2z2 + (1 + λjh

2α)z + λjh
2β
)

. (9.69)

Let the polynomial be f (z) = z3 − 2z2 + (1 + x)z + y.
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By using the Jury stability test [31] we ca show that all roots of f (z) are inside the unit circle
if and only if (x, y) ∈ �, where

�� {(x, y)| − y < x < −y2 − 2y}. (9.70)

Finally, we can verify that, for any (α,β) ∈ �c, (λjαh2, λjβh2) ∈ �,∀j ∈ {2, . . . ,N}. To-
gether with (9.69), the proof is completed.

9.5 Formation Control for Multiagent Systems

As an important application, the result on consensus is extended to study formation of
the discrete-time multiagent systems (9.1). Specifically, given a formation vector H =
[hT

1 , hT
2 , . . . , hT

N ]T , the following control protocol is adopted to study the formation problem
of the discrete-time multiagent systems (9.1):

ui(k) = K

N∑
j=1

aij

[
(xj (k) − hj ) − (xi(k) − hi)

]
, (9.71)

where hi − hj is the desired distance vector between agents i and j . In the context of forma-
tion control, the protocol (9.71) has been widely adopted for continuous-time systems [1,32,
33]. As in those works, the common knowledge of the directions of reference axes is required
for all the agents.

Definition 9.3. The discrete-time multiagent systems (9.1) with a fixed graph G are said to
reach formation under protocol (9.71) if for any finite xi(0),∀i ∈ N , there exists a control
gain K ∈R1×n in (9.71) such that

lim
k→∞‖(xi(k) − hi) − (xj (k) − hj )‖ = 0,∀i, j ∈ N . (9.72)

Based on Theorem 9.9, a necessary and sufficient condition for reaching formation of the
discrete-time multiagent systems is stated as follows.

Theorem 9.10. Given a set of desired formation vectors hi, i ∈ N , and an undirected
graph G, assume that A1) holds. Then the discrete-time multiagent systems (9.1) reach for-
mation under protocol (9.71) if and only if the following conditions hold:

(a) (A,B) is a controllable pair, and A(hi − hj ) = hi − hj ,∀i, j ∈ N ;
(b) Each agent cannot change too fast. Precisely, the product of the unstable eigenvalues

of A is upper bounded by the strict inequality

∏
j

|λu
j (A)| < 1 + λ2/λN

1 − λ2/λN

. (9.73)
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Proof. Denote the average formation vector h̄ � 1
N

∑N
i=1 hi and δi(k) � xi(k) − hi −

(x̄(k) − h̄). Similarly, it is easy to verify that reaching formation is equivalent to that
limk→∞ ‖δi(k)‖ = 0,∀i ∈ N . The following dynamical equation can be easily derived:

δ(k + 1) = (IN ⊗ A −LG ⊗ BK)δ(k) + (IN ⊗ (A − In))

⎡
⎢⎢⎣

h1 − h̄

...

hN − h̄

⎤
⎥⎥⎦ . (9.74)

Thus, to reach the desired formation, we have that (A − In)(hi − h̄) = 0,∀i ∈ N , which
implies that A(hj − hi) = hj − hi,∀i, j ∈ N . The rest follows from the proof of the necessity
of Theorem 9.9.

Conversely, using the condition that A(hj − hi) = hj − hi,∀i, j ∈ N , (9.74) is reduced to the
following form:

δ(k + 1) = (IN ⊗ A −LG ⊗ BK)δ(k). (9.75)

Again, the remainder of the proof follows from the sufficiency proof of Theorem 9.9.

Remark 9.5. For the continuous-time case, the formation condition is modified as A(hi −
hj ) = 0,∀i, j ∈ N [20,33]. The physical meaning of the constraint A(hi − hj ) = hi −
hj ,∀i, j ∈ N , will become clear for the second-order consensus problem in Section 9.4.4.
For example, to maintain a fixed formation, the velocities of all the agents should be the same.

9.5.1 Vehicle Formation With Double Integrators

As an important application, we study the vehicle formation problem with the relative position
feedback. The vehicle dynamical equation is described by the discrete-time double-integrator
system (9.61).

Given an arbitrary formation vector f = [f1, · · · , fN ]T ∈ RN , where fi represents the desired
separation of agent i from the centroid of all agents, the objective is to design a simple con-
trol protocol such that the vehicles reach the desired formation. Motivated by (9.65), we will
investigate the formation of the following distributed controller:

ui(k) =
N∑

j=1

aij [α(xj (k) − xi(k) − fj + fi) + β(xj (k − 1) − xi(k − 1) − fj + fi)]. (9.76)

Definition 9.4. Given an undirected communication graph G, the second-order multiagent
systems (9.61) are said to reach formation under the protocol (9.76) if for any finite initial
position xi(0) and velocity vi(0), i ∈ V , there exists a pair of (α,β) ∈ R2 such that

lim
k→∞‖(xi(k) − fi) − (xj (k) − fj )‖ = 0,∀i, j ∈ V. (9.77)
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Theorem 9.11. Given an undirected communication graph G, the second-order multiagent
systems (9.61) reach formation under the control protocol (9.76) if and only if the commu-
nication graph is connected. Moreover, if this condition holds, then (α,β) in the protocol
of (9.76) can be chosen from the set �c of (9.66).

Proof. Let f̄ = 1
N

∑N
j=1 fj be the average of the formation vector. Denote the displacement

vector by δi(k) = [xi(k) − fi − x̄(k) + f̄ , vi(k) − v̄(k)]T and δ(k) = [δ1(k)T , . . . , δN(k)T ]T .
Inserting the controller (9.76) into (9.61) leads to that

δ(k + 1) = (IN ⊗ A − αLG ⊗ BC)δ(k) − (βLG ⊗ BC)δ(k − 1). (9.78)

The rest of the proof follows from that of Theorem 9.9.

9.5.2 Formation-Based Tracking Problem

The dynamics of the uncooperative leader is described by the following constant velocity
model: {

x0(k + 1) = x0(k) + hv0(k),

v0(k + 1) = v0(k) + hu0(k), k ∈ V,
(9.79)

where the control input u0(k) is an independent and identically distributed (i.i.d.) random pro-
cess with zero mean and E[|u0(k)|2] = σ 2.

The connection weights vector between followers and the leader is denoted by b =
[b1, . . . , bN ]T , where bi is positive if and only if the leader is a neighbor of agent i, and oth-
erwise bi = 0. The leader’s neighboring agent can measure its position relative to the leader.
The goal is to design a simple distributed controller such that the center of all vehicles (except
the leader), denoted by x̄(k) = 1

N

∑N
i=1 xi(k), asymptotically tracks the leader while keeping a

given formation vector f .

To this purpose, assume that the average of the formation vector f̄ is accessible to the vehi-
cles that are connected to the leader. We propose the following control protocol:

ui(k) =
N∑

j=1

aij [α(xj (k) − xi(k) − fj + fi) + β(xj (k − 1) − xi(k − 1) − fj + fi)]

− bi[α(xi(k) − x0(k) − fi + f̄ ) + β(xi(k − 1) − x0(k − 1) − f0 + f̄ )]. (9.80)

The summation of the first square bracket is to make the vehicles to maintain the given for-
mation vector f , whereas the rest is used to drive the center of the vehicles to asymptotically
track the leader.
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Denote by R≥0 the set of nonnegative real numbers. A function g : R≥0 �→ R≥0 is said to be
of class K∞ if it is continuous, strictly increasing, unbounded, and crosses the origin.

Definition 9.5. Given an undirected communication graph G and the formation-based track-
ing problem associated with the double-integrator multiagent systems (9.61), the leader (9.79)
is said to be solvable under the protocol in (9.80) if for any finite initial position xi(0) and
velocity vi(0), i ∈ V

⋃{0}, there exist a pair (α,β) ∈R2 and g ∈ K∞ such that

{
lim supk→∞E[‖(xi(k) − fi) − (xj (k) − fj )‖2] ≤ g(σ 2),

lim supk→∞E[‖x̄(k) − x0(k)‖2] ≤ g(σ 2),∀i, j ∈ V,
(9.81)

where the mathematical expectation is taken w.r.t. the process {u0(k)}k∈N.

Denote the index of the leader by 0 and V ′ = V
⋃{0}. Similarly, denote the new adjacency

matrix

A′ =
[

0 b

bT A

]

and the corresponding edge set E ′. Let L′ = LG + diag(b1, . . . , bN) and write the ascend-
ing order of the eigenvalues of L′ by λ′

1 ≤ λ′
2 ≤ · · · ≤ λ′

N . It is clear that the new graph
G′ = {V ′,E ′,A′} is generated by adding an undirected edge from the agent i to the leader if
bi �= 0. Note that in fact only the follower can take relative measurements to its neighbors.
The following result solves the formation-based leader–follower consensus problem.

Theorem 9.12. Given an undirected communication graph G, the control protocol (9.80)
solves the formation-based tracking problem associated with the second-order multiagent
systems (9.61) and the leader (9.79) if and only if

(a) The communication graph G′ = {V ′,E ′,A′} is connected;
(b) At least one agent connects to the leader, that is,

∑N
i=1 bi �= 0.

Moreover, if these conditions hold, (α,β) ∈ �′
c solves the formation-based tracking problem,

where �′
c is given by

�′
c �

{
(α,β)|max{− 1

h2
,− 1

λ′
Nh2

} < β < 0, α = −λ′
Nh2β2 + 3β

2

}
. (9.82)

The function g ∈ K∞ can be chosen to be linear, that is, g(σ 2) = cσ 2, where the positive
number c is a constant depending on h2, (α,β), and λ′

j , j ∈ V .
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Proof. Define the “tracking error” of agent i by δi(k) = [xi(k) − fi − x0(k) + f̄ , vi(k) −
v0(k)]T . Since if g1, g2 ∈ K∞, then g1 + g2 ∈ K∞, it is easy to verify that the solvability
of the formation-based leader–follower consensus problem is equivalent to that there exists
gδ

i ∈ K∞ such that limk→∞E[‖δi(k)‖2] ≤ gδ
i (σ

2),∀i ∈ V . Collect δi(k) to get the new vector
δ(k) = [δT

1 (k), . . . , δT
N(k)]T . Inserting the control protocol (9.80) into (9.61) leads to that

δ(k + 1) = (
IN ⊗ A − αL′ ⊗ BC

)
δ(k) − (βL′ ⊗ BC)δ(k − 1) − (1 ⊗

[
0
h

]
)u0(k). (9.83)

Select ψi ∈ RN such that ψT
i L′ = λ′

iψ
T
i ,∀i ∈ V . Form the unitary matrix � = [ψ1,ψ2, . . . ,

ψN ] to transform L′ into a diagonal form

diag(λ′
1, λ

′
2, . . . , λ

′
N) = �T L′�. (9.84)

Define δ̃(k) = (� ⊗ I2)
T δ(k) and partition it in conformity with δ(k). Apply the same parti-

tion pattern to �1 ⊗
[

0
h

]
� [qT

1 , . . . , qT
N ]T . It follows that

δ̃j (k + 1) = (A − αλ′
jBC)̃δj (k) − βλ′

jBCδ̃j (k − 1) − qju0(k). (9.85)

Letting M ′
j (α,β) �

[
0 I2

−βλ′
jBC A − αλ′

jBC

]
and �j(k) = [̃δT

j (k), δ̃T
j (k − 1)]T , we obtain

that

�j(k + 1) = M ′
j (α,β)�j(k) + [0T , qT

j ]T u0(k). (9.86)

Denote Pj (k) � E[�j(k)�j (k)T ] and the zero matrix 02 ∈ R2×2. It is easy to derive that

Pj (k + 1) = M ′
j (α,β)Pj (k)M ′

j (α,β)T + σ 2diag(02, qjq
T
j ). (9.87)

Necessity: By Definition 9.5 it is clearly seen that there exists g′ ∈ K∞ such that
lim supk→∞ E‖Pj (k)‖2 ≤ g′(σ 2). Jointly with (9.87), this implies that ρ(M ′

j (α,β)) < 1,
∀j ∈ V . Similarly to the proof of Theorem 9.9, it is obvious that a necessary condition should
be λ′

j > 0,∀j ∈ V . Thus, we obtain that
∑N

i=1 bi �= 0 since otherwise L′ = LG , which contains
at least one zero eigenvalue, say λ′

1 = 0. In addition, the Laplacian matrix corresponding to
the new graph G′ can be written as

LG′ =
[∑N

i=1 bi −b

−bT L′

]
.
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Since λ′
1 > 0, this means that L′ is nonsingular. Then we have

[
1 b(L′)−1

0 IN

][∑N
i=1 bi −b

−bT L′

][
1 0T

(L′)−1bT IN

]
=
[
b1 − b(L′)−1bT 0T

0 L′

]
.

Since L′1 = bT , it follows that b(1 − (L′)−1bT ) = 0. This implies that LG′ contains one
simple zero eigenvalue. In particular, the second smallest eigenvalue of LG′ is positive. This
implies that the graph G′ is connected [10].

Sufficiency: In view of the sufficiency part of Theorem 9.7, we obtain that � �
maxj∈V ρ(M ′

j (α,β)) < 1,∀(α,β) ∈ �′
c. It follows from (9.87) that

lim
k→∞Pj (k) = σ 2

∞∑
k=0

M ′
j (α,β)kdiag(02, qjq

T
j )(M ′

j (α,β)k)T

≤ 2h2σ 2
∞∑

k=0

(M ′
j (α,β)M ′

j (α,β)T )k,

where the first inequality is due to that ‖diag(02, qjq
T
j )‖ ≤ 2h2. By Lemma 9.6 and

� < 1 it easy to establish that there exists a finite positive number ς = ς(�) such that
maxj∈V ‖∑∞

k=0(M
′
j (α,β)M ′

j (α,β)T )k‖ ≤ ς < ∞. Because of the unitary matrix � , it is triv-

ial that lim supk→∞E[‖δj (k)‖2] = lim supk→∞E[‖̃δj (k)‖2] = 1
2 lim supk→∞E[‖�j(k)‖2] =

1
2 limk→∞ tr(Pj (k)) ≤ 4h2ςσ 2. Thus, the function g ∈ K∞ can be selected as g(σ 2) =
8h2ςσ 2. Noting that � depends on (α,β) and λ′

j , j ∈ V , the proof is completed.

9.6 Simulations and Experiments

9.6.1 Modeling

The cooperative control of a multirobot system is a typical consensus problem. Based on
Fig. 9.1, the kinematic equation for the ith robot, which is the differentially driven wheeled
mobile robot, as follows:

ṙxi(t) = vi(t) cos(θi(t)), ṙyi(t) = vi(t) sin(θi(t)), θ̇i(t) = ωi(t), (9.88)

where (rx, ry) is the center position, vi(t) is the linear velocity, ωi(t) is the rotation angle ve-
locity, and θi(t) is the rotation angle. Denoting by (hx, hy) the head position of a robot, we
can obtain the head position as

[
hxi(t)

hyi(t)

]
=
[
rxi(t)

ryi(t)

]
+ Li

[
cos(θi(t))

sin(θi(t))

]
. (9.89)
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Figure 9.1: Differentially driven wheeled mobile robot.

From (9.89) the kinematic model of the robot system can be expressed as[
ḣxi(t)

ḣyi(t)

]
=

[
cos(θi(t)) −li sin(θi(t))

sin(θi(t)) +li cos(θi(t))

]
+
[
vi(t)

ωi(t)

]
, (9.90)

[
ḧxi(t)

ḧyi(t)

]
=

[
cos(θi(t)) −li sin(θi(t))

sin(θi(t)) +li cos(θi(t))

]
+
[
v̇i(t)

ω̇i(t)

]
+
[
g1

g2

]
, (9.91)

where [
g1

g2

]
=
[
− sin(θi(t))vi(t)ωi(t) − li cos(θi(t))ω

2
i (t)

cos(θi(t))vi(t)ωi(t) − li sin(θi(t))ω
2
i (t)

]
.

From (9.90) and (9.91) we can observe that the kinematic model of a robot system is non-
linear. It could be more difficult to perform the consensus control when the agent model is
nonlinear. To transform (9.90) and (9.91) to a general double-integrator system, the kinematic
equation (9.90) and (9.91) can be rewritten as⎡
⎢⎢⎢⎣

ḣxi(t)

ḣyi(t)

ḧxi(t)

ḧyi(t)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

0
0
g1

g2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

cos(θi(t)) −li sin(θi(t)) 0 0
sin(θi(t)) li cos(θi(t)) 0 0

0 0 cos(θi(t)) −li sin(θi(t))

0 0 sin(θi(t)) li cos(θi(t))

⎤
⎥⎥⎦

⎡
⎢⎢⎣

vi(t)

ωi(t)

v̇i(t)

ω̇i(t)

⎤
⎥⎥⎦ .

(9.92)

Let ⎡
⎢⎢⎣

vi(t)

ωi(t)

v̇i(t)

ω̇i(t)

⎤
⎥⎥⎦= E−1

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

ḣxi(t)

ḣyi(t)

uxi(t)

uyi(t)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎣

0
0
g1

g2

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎠ , (9.93)
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Figure 9.2: The scheme of the formation control of a multirobot system.

where

E =

⎡
⎢⎢⎣

cos(θi(t)) −li sin(θi(t)) 0 0
sin(θi(t)) li cos(θi(t)) 0 0

0 0 cos(θi(t)) −li sin(θi(t))

0 0 sin(θi(t)) li cos(θi(t))

⎤
⎥⎥⎦ .

Substituting (9.93) into (9.92), we can obtain the equivalent double-integrator linear model as

Ẋi(t) = Vi(t), V̇i(t) = Ui(t),

where ˙xi(t) = [
hxi(t) hyi(t)

]T
, Vi(t) = Ẋi(t), and Ui(t) = [

uxi(t) uyi(t)
]T

. The scheme
of the formation control of a multirobot system is shown in Fig. 9.2. The control scheme con-
tains the consensus control loop and the acceleration control loop. Based on the wheeled
mobile robot, the consensus control action does not approach easily since the mobile robot
has some limits, such as actuator ability and robot moving direction. A proportional-integral
(PI) acceleration controller can increase the bandwidth in the inner loop. Note that the consen-
sus control action can be guaranteed on the wheeled mobile robot.

9.6.2 Simulation Results

To validate the feasibility of proposed consensus protocol, we consider a multirobot sys-
tem with one leader and four followers. The initial positions of the followers are set to
([0,5] [0,−5] [0,−15] [0,0]), the initial velocities are given as ([3,1] [1.5,0.5] [0.75,0.25]
[−0.25,0]), formation shapes are specified as ([0,0] [−5,−5] [−10,0] [−5,5]), and the ini-
tial position and velocity of the leader are [0,15], [0.5,0.2]. The communication graph with
(0,1)-weights for modeling the interactions among robots is illustrated in Fig. 9.3, where the
information of the leader can be only transmitted to the first follower. In this case, the associ-
ated graph Laplacian matrix LG′ can be obtained as
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Figure 9.3: Scheme diagram of the ball and beam system.

LG′ =

⎡
⎢⎢⎣

1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

⎤
⎥⎥⎦ .

From the proposed protocol the stability range of the control gains can be similarly derived as
in Lemma 9.8:

K =
[
k1

k2

]
,0 < k1 < 15.55,0 < k2 < 1.94,

and the optimal control gain vector can be obtained as K∗ =
[

0.25
1.91

]
by Theorem 9.5.

The simulation results are shown in Figs. 9.4–9.6. Considering the ideal double-integral
model, the responses of the following control corresponding to different control gains are

shown in Fig. 9.4. With the optimal control gains K = [
0.25 1.91

]T
, the responses of fol-

lowers are shown in Fig. 9.4A. By observation, Fig. 9.4A has better performance compared
to the responses with other designated control gains. Interestingly, choosing the control gains

K = [
0.25 2.01

]T
, the stability condition is not satisfied. From Fig. 9.4D we can see that the

required formation task cannot be fulfilled. In practice, the kinematic model of a wheel robot
is not the same as the ideal double-integral model. In fact, a certain input–output lineariza-
tion technique is required to obtain the equivalent double-integral formulation. In this chapter,
we propose an inner-loop control scheme. To verify the essential requirement of the proposed
inner-loop control, the corresponding simulation results are shown in Figs. 9.5 and 9.6. In
Fig. 9.5, the input–output linearization is performed without the inner-loop control. It can be
seen that the desired formation control is failed even if the control gains are inside the stability
region. The main reason about the instability in Fig. 9.5 is that the desired commands u∗

x and
u∗

y for the coordinate transformation are not tracked well without the inner-loop loop control.
On the other hand, with the inner-loop control scheme, the wheel robots can perform the de-
sired formation task quite well. Compared with the responses of ideal double-integral model,
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Figure 9.4: Responses of the following control with the ideal double-integrator linear system.
(A) k = [0.25, 1.91]T , (B) K = [1.25, 1.91]T , (C) K = [0.15, 0.91]T , (D) K = [0.25, 2.01]T .

the formation responses of the wheel robots with inner-loop control are quite similar in the
steady state.

9.7 Bibliographic Notes

There are certain limitations in existing studies of multiagent systems. First, the assumption
that the communication link is perfect and an agent has some global knowledge on network
topology is somehow restrictive. Note that changes in the operating environment, such as the
random presence of large metal objects between agents, will inevitably affect the propaga-
tion properties of the channels. Thus, it is more interesting to consider the scenario that the
communication channel is time varying and unreliable. The investigation of consensus over
time-varying graphs may have far reaching consequences on the understanding and engineer-
ing of networked multiagent systems. With fixed graphs, consensus of multiagent systems
under a common control protocol is converted into a simultaneous stabilization problem.
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Figure 9.5: Responses of following control of the wheeled mobile robot system without inner
loop controller, K = [0.25, 1.91]T .

Figure 9.6: Responses of the following control of the wheeled mobile robot system with inner-
loop control: (A) K = [0.25, 1.91]T , (B) K = [1.25, 1.91]T .

However, this key property does not hold in the case of time-varying graphs. Perhaps, a com-

pletely new method needs to be developed. On the other hand, in networked systems, there

may be the case that different kinds of agents join and leave the network from time to time,

and it is unrealistic to assume that an agent has perfect knowledge of other agents’ dynamics.
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How each agent will optimize its utility while minimizing its interferences to others requires
some new thinking.
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CHAPTER 10

Structure Identification for Networked
Systems

10.1 Introduction

In the previous chapter, we analyzed and synthesized networked systems under the condition
that their models are available. In many practical applications, however, these models are not
known. An unavoidable task for an efficient utilization of the results developed in this chapter
is therefore establishing a model on the basis of existing information, such as collected ex-
perimental data, related field knowledge given by physics, chemistry, biology, finance, and so
on. This problem is of particular importance in many fields, such as industrial systems, bio-
logical systems, financial systems, and so on, in which thousands of subsystems interact with
each other, but the way of their interactions is not clear. For example, a cellular network to
accomplish a biological task usually consists of numerous chemical species, such as DNA,
RNA, proteins, small molecules, and so on. Different biological tasks are generally performed
by complex interactions of these species. These interactions can rarely be directly measured,
and/or their measurements are too economically expensive [1–4]. It is now widely recognized
that causal relationship identification is essential in understanding biological behavior of a
cellular network. Challenging issues here include not only a large number of interactions to be
estimated, but also many restrictions on probing signals and limitations on the data length in
a biological experiment. Similar phenomena happen to industrial systems, financial systems,
and so on.

On the other hand, industries have accumulated a great amount of operation data in their
long production process. Same things happen to financial markets in which various stock
data have been recorded for more than a century. Recently, with significant developments of
high-throughout technologies and proteomics analysis methods, economic costs of performing
biological experiments in a cellular level have been greatly reduced, and various experimen-
tal data have began to accumulate. All these advancements in data acquisition technologies
greatly increase possibilities of estimating direct influences among their subsystems.

Causality inference has been attracting attention from various fields for a long time. Among
the numerous models suggested for causality description, the most popular three appear to be
the so-called potential outcome model proposed by Neyman and Rubin, the causality net-
work model proposed by Spirtes and Pearl, and the Granger causality model proposed by
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Granger [5,6]. Causality is closely related to structure identification of a networked system,
and estimation of the existence of a direct influence from one subsystem to another subsystem
is in fact determining whether or not the output of a subsystem can directly affect the behavior
of another subsystem. In other words, to determine weather or not the behavior variations in
one subsystem are directly caused by the output of another subsystem. In this chapter, how-
ever, rather than investigating relations among these models, our attention is focused on the
estimation of direct interactions among different subsystems in a networked system from ex-
periment data.

Currently, several approaches have already been proposed for unraveling direct interactions
in a networked system. These attempts include Boolean network methods [7–9], Bayesian
network methods [10,11], partial correlation analysis [12], differential-equation-based time
series analysis [13,14], and so on. However, when these methods are applied to a large-scale
networked system, several difficulties usually arise [4,15]. One difficulty is that with the in-
crement of the subsystem number in a networked system, computational costs of most of the
methods increase exponentially. To overcome this difficulty, the maximum direct regulation
number is limited in some methods, but this may significantly restrict application ranges of
the method itself and leads to another problem of selecting principal subsystems, which is
also mathematically difficult. On the other hand, statistical methods such as partial correlation
analysis rely on a variety of pairwise correlation metrics, but this treatment usually recognizes
an indirect effect wrongly as a direct one, which may lead to a high rate of the so-called false-
positive errors.

In addition to these attempts, a so-called “top-down” approach has been proposed in [3,16] for
causal regulation inference from steady-state concentration changes of chemical species in a
cellular network, which is based on the total differential formula and total least squares (TLS)
estimations. The results have been extended afterward to time series data, quasi-steady-state
data, and so on [14], and the so-called “nondirect effect” condition on experiment designs has
been significantly weakened [17]. It is reported in [18], however, that when the data length
of an experiment is in a moderate size from a biological view of point, it is very rare that an
identified regulation coefficient is near zero in a statistical sense. This means that the identi-
fied connections among the subsystems of a networked system are in general dense. Recalling
that a large-scale system usually has a sparse structure [19–21], this means that the aforemen-
tioned TLS-based estimates usually give incorrect information in case that a subsystem has no
direct effect on another subsystem. In other words, there may exist significant false-positive
errors in these TLS-based estimates.

On the other hand, it is widely recognized that in the identification of a networked system,
distinguishing direct and indirect regulations is of great engineering/financial/biological sig-
nificance [4,15,22]. In actual identifications, however, experimental data alone are rarely
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sufficient to obtain a statistically sound model. To make things worse, it may even be possi-
ble that the identification problem is underdetermined if direct regulations exist between every
two chemical elements. These imply that in this identification problem, compared to false-
negative errors, it may be much more difficult to reduce false-positive errors. To overcome
this difficulty, various interesting methods have been suggested, such as incorporating qualita-
tive knowledge, restriction of the maximum number of nonzero regulatory inputs, penalizing
the sum of direct regulation strengths, and so on [2,4,15,23]. But these methods are still far
from being satisfactory.

In this chapter, we investigate how to estimate direct effects among subsystems of a net-
worked system from experimental data, which summarizes the results obtained in [18] and
[24]. As general conclusions on structure identification for a networked system are still far
from mature, particular attention is given to gene regulatory networks. In this investigation,
sparsity of a large-scale system is also taken into account. More precisely, the so-called power
law is incorporated into the structure identification of a networked system to increase estima-
tion accuracy on causal regulations, especially to reduce false-positive errors. Two types of
experimental data are considered. One is steady-state experimental data, and the other is time
series data, which reflect dynamic responses of a gene regulation network to external distur-
bances. Hopefully, the reported results reveal important factors and characteristics in structure
identification of a large-scale networked system.

10.2 Steady-State Data-Based Identification

In this section, we study how to estimate the structure of a gene regulatory network using
corrupted steady-state experimental data. We develop an identification algorithm, which
explicitly incorporates the power law into estimations, which is widely adopted in the descrip-
tion of the sparsity of a large-scale network. Under the condition that parameters of the power
law are known and measurement errors are Gaussian, we adopt the likelihood maximization
approach. The developed estimation algorithms consist of three major steps. First, an angle
minimization between subspaces is utilized to identify chemical elements that have direct in-
fluences on a prescribed chemical element under the assumption that the number of direct
regulations is known. Second, interference coefficients from prescribed chemical elements
are estimated through likelihood maximization with respect to measurement errors. Finally,
direct regulation numbers are identified through maximizing a lower bound of an overall like-
lihood function. Application results of these methods are briefly summarized to an artificially
constructed linear system with 100 elements, a MAPK pathway model with 103 chemical ele-
ments, some DREAM initiative in silico data, and some in vivo data. These results show that,
compared with the widely adopted total least squares (TLS) method, parametric estimation
accuracy can be significantly increased, and false-positive errors can be greatly reduced.
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10.2.1 Description of the Inference Procedure

In this section, we infer causal relations from steady-state concentration changes of chemical
species in a cellular network. This strategy is essentially based on the total differential of a
nonlinear function, which has also been used in [3,16].

To derive a structure inference algorithm, we first establish relations between direct causal
influences and variations of the steady-state concentrations in a cellular network. Assume that
the dynamics of species concentrations in a cellular network with n chemical elements can be
described by the following nonlinear differential equations:

dxi

dt
= fi(xk|nk=1, pk|qk=1), i = 1,2, . . . , n, (10.1)

where xi stands for the concentration of the ith chemical element, whereas pk is a kinetic
parameter that can be changed or controlled through some external perturbations.

For notational simplicity, denote vectors [x1 x2 · · · xn]T and [p1 p2 · · · pq]T respectively
by x and p, and let x[s] represent an equilibrium of the cellular network at which dxi

dt
= 0,

i = 1,2, · · · , n. As argued in [3], at any steady-state x[s], a direct effect of the j th chemical
species on the ith chemical species (i �= j ) can be measured by rij , which is defined as fol-
lows:

rij = ∂ln(xi)

∂ln(xj )

∣∣∣∣
x=x[s]

. (10.2)

More specifically, a positive rik means that there is an activation effect from the kth chemical
species to the ith chemical species, whereas a negative rik means that there is a repression
effect from the kth chemical species to the ith chemical species. If rik = 0, then it is regarded
that there are no direct influences from the kth chemical species to the ith chemical species.
Based on this definition, direct algebraic operations show that

rij = −
(

∂fi(x, p)

∂ln(xj )

/
∂fi(x, p)

∂ln(xi)

)∣∣∣∣
x=x[s]

. (10.3)

Let δ
[s]
x represent variations of the steady-state x[s] of the cellular network when the kinetic

parameter changes from p to p + δp . Then, from the definition of a steady state it is clear that

fi(x
[s], p) = 0, fi(x

[s] + δ[s]
x , p + δp) = 0, i = 1,2, . . . , n. (10.4)

Assume that in an experiment, k of the kinetic parameters pj |qj=1, k ∈ {1,2, · · · , q}, have
been perturbed/changed by external perturbations. Denote the subscripts of the perturbed
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kinetic parameters by j1, j2, · · · , jk . Then, according to the dynamic equation of the cel-
lular network given by Eq. (10.1), it is clear that k ≤ q and jα ∈ {1,2, · · · , q} for each
α = 1,2, · · · , k. Moreover, assume that external perturbations are chosen so that the perturbed
kinetic parameter pjα does not directly affect variations of xi , α = 1,2, · · · , k. This means
that

∂fi(x,p)

∂pjα

≡ 0, α = 1,2, · · · , k.

Then, taking the Taylor expansions at x[s] and p of the difference between the left-hand sides
of the two equations in Eq. (10.3), we have that

n∑
j=1

∂fi(x,p)

∂xj

∣∣∣∣
x=x[s]

δ[s]
xj

+ O(||δ[s]
x ||22, ||δp||22) = 0, (10.5)

where δ
[s]
xj

is the j th element of δ
[s]
x . When both ||δ[s]

x ||2 and ||δp||2 are sufficiently small, this
relation can be approximately expressed as

n∑
j=1

∂fi(x,p)

∂xj

∣∣∣∣
x=x[s]

δ[s]
xj

≈ 0, (10.6)

which is equivalent to

n∑
j=1

∂(x
[s]
j fi(x,p))

∂xj

∣∣∣∣∣
x=x[s]

× δ
[s]
xj

x
[s]
j

≈ 0. (10.7)

Here, x
[s]
j represents the j th element of the vector x[s].

Dividing both sides of the last equation by − ∂(x
[s]
i fi (x,p))

∂xi

∣∣∣∣
x=x[s]

, we obtain the following rela-

tion:
n∑

j=1

∂fi(x,p)/∂ ln(xj )

∂fi(x,p)/∂ ln(xi)

∣∣∣∣
x=x[s]

× δ
[s]
xj

x
[s]
j

≈ 0. (10.8)

Assume that m experiments have been performed. Denote
δ
[s]
xj

x
[s]
j

of the lth experiment by Rjl ,

which is the relative variation of the steady concentrations of the j th chemical species in the
lth experiment. Then, from the definition of rij and the last equation we further establish the
following approximation:

n∑
k=1, k �=i

rikRkl ≈ Ril, l = 1,2, . . . ,m. (10.9)
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These derivations extend the results of [3,16] on a single perturbation to multiple perturba-
tions. Under the assumption that there are n chemical elements in a cellular network and in
the j th experiment, some external perturbations are added on a chemical specifies, which do
not directly change the concentration of this species, and the dynamics of its species concen-
trations can be described by a set of ordinary nonlinear differential equations, Eq. (10.9) gives
an approximate relation between steady-state concentration variations and direct causal ef-
fects for a cellular network. In this equation, rik , which is defined by Eq. (10.2), stands for
the direct influences of the kth chemical element on the ith chemical element around the per-
turbed equilibrium, and Rkj |nk=1 defined just before Eq. (10.9) can be obtained from measured
species concentrations.

Assume that m experiments are performed. Denote the vectors [ri1 ri2 · · · ri,i−1 ri,i+1 · · ·
rin]T and [R1j R2j · · · Ri−1,j Ri+1,j · · · Rnj ] respectively by x and Rj . Moreover, define the
matrix A and vector b respectively as

A = col(Rj |mj=1), b = col(Rij |mj=1).

Then relation (10.9) can be compactly expressed as

Ax ≈ b. (10.10)

The problem discussed in this section is identifying the vector x under the condition that both
the matrix A and the vector b are provided. A distinctive characteristic of this problem is that
measurement errors exist in both the matrix A and the vector b. On the other hand, when n is
large, it is now well known that the distribution of the number of nonzero elements of vector x

obeys approximately the so-called power law [6,19]. More precisely, let ni represent the num-
ber of chemical elements that have direct influences on a randomly chosen chemical element
in a cellular network, and let Pr{·} be the probability of the occurrence of a random event.
Then, there exist a positive number γ and a positive integer kmin such that1

Pr{ni = k} =
{

ck
−γ

min, 1 ≤ k ≤ kmin,

ck−γ , kmin < k ≤ n,
(10.11)

where c =
[
k

1−γ

min +∑n
k=kmin+1 k−γ

]−1
. This structural information is incorporated into the

algorithm for cellular network identification, which is proven to be helpful in estimation accu-
racy improvements.

1 It is worth pointing out that in structural analysis for a large-scale network, investigations are usually focused
on large ni s [6,19]. As there is generally no statistical information about the distribution of small ni s, it is rea-
sonable to assume that all they have an equal probability to occur. This treatment makes the methods given in
this section also applicable to identification of small or moderate-size networks and consistent with the method
proposed in [2], which restricts the maximum of the number of nonzero direct regulations.
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10.2.2 Identification Algorithm

As a first step toward incorporating the so-called power law into cellular network identifica-
tion, the following two assumptions are adopted.

• Represent measurement errors of the matrix A and vector b respectively by εA and εb

and assume that elements of [εA εb] are independent of each other and have an identical
normal distribution N(0, σ 2) with known σ .

• The parameters kmin and γ in the description of the power law are known.

When these pieces of information are available, a natural approach for causal regulation
identification from experiment data is likelihood maximization. More specifically, let #(·) rep-
resent the number of nonzero elements of a matrix or vector. Then, the likelihood function of
measurement errors and the direct regulation number, denoted L(εA, εb, k), can be written as
follows:

L(εA, εb, k) = (2πσ 2)−mn/2Pr{ni = k}e− tr{[εA εb]T [εA εb]}
2σ2 (10.12)

subject to : (A − εA)x = b − εb and #(x) = k, (10.13)

where tr(·) denotes the trace of a square matrix.

Note that the parameters m, n, kmin, γ , and σ are assumed to be known. Recalling that ln(·)
is an increasing function over (0, ∞), it is obvious that the above maximization problem is
equivalent to minimizing the cost function l(εA, εb, k) under the conditions of Eq. (10.13),
where

l(εA, εb, k) = tr{[εA εb]T [εA εb]}
2σ 2

+
{

γ ln(kmin), 1 ≤ k ≤ kmin,

γ ln(k), kmin < k ≤ n.
(10.14)

This cost function is significant from a biological view of point, and both discrete and con-
tinuous variables are included in its optimization. Its minimization, however, currently is
mathematically challenging. More precisely, it appears difficult to derive an analytic expres-
sion for the optimal k, εA, and εb and to develop a globally/locally convergent optimization
algorithm. To obtain an estimate about the interactions in a cellular network, the following
three major steps are adopted:

• For a fixed k, angle minimization between two subspaces is utilized to determine posi-
tions of the nonzero elements of the vector x.

• Under the condition that positions of nonzero elements are prescribed, the optimal
value of the vector x is obtained through minimizing the first term of the cost function
l(εA, εb, k) with respect to measurement errors εA and εb.
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• The number of nonzero elements in the vector x is obtained through a numerical search
that minimizes an upper bound of the cost function l(εA, εb, k).

These three steps are investigated respectively in the following subsections.

Position Determination for Direct Regulations

When the number of nonzero elements of the vector x is given, denoted by k, there are in
principle Ck

n−1 possibilities to locate these nonzero elements. Here, Ck
n−1 denotes the com-

binatorial number of selecting k elements from the set {1,2, · · · , n − 1}. Note that for fixed k,
Ck

n−1 increases exponentially as n increases. This implies that when a large-scale system is
under investigation, in other words, when n is large, it is usually computationally intractable
to consider all these combinations in order to find the optimal locations of the nonzero el-
ements. As a matter of fact, according to our experience, the computation time is currently
prohibitive if four direct regulations should be searched for a chemical element within a net-
work having more than 100 species. On the other hand, it is clear from Eq. (10.13) that when
there are only k nonzero elements in the vector x, then only k columns of the matrix A are
used to fit the experiment data of the vector b. Denote the ith column of the matrix A from
the left by ai and the ith element of the vector x from the ceiling by xi , i = 1,2, · · · , n − 1.
Moreover, assume that the jα th element of the vector x has been determined to be nonzero,
α = 1,2, · · · , k. Define the matrix Ã = [aj1 aj2 · · · ajk

] and the vector x̃ = [xj1 xj2 · · · xjk
]T .

Then, the first constraint of Eq. (10.13) can be rewritten as

[Ã − ε
Ã
]x̃ = b − εb, (10.15)

where ε
Ã

= [εaj1
εaj2

· · · εajk
], and εaj

represents the measurement errors contained in the
vector aj , j = 1,2, · · · , n − 1.

Note that under this situation, there are no longer any restrictions on the vector εaj
whenever

j �= jα , α = 1,2, · · · , k. According to the definition of the cost function l(εA, εb, k), the
corresponding optimal value of the vector εaj

is the zero vector. We can therefore declare that

min
s.t. (A−εA)x=b−εb and #(x)=k

tr{[εA εb]T [εA εb]} = min
s.t. (Ã−ε

Ã
)x̃=b−εb

tr{[ε
Ã

εb]T [ε
Ã

εb]}.
(10.16)

The minimization problem on the right-hand side of Eq. (10.15) has been settled very well
and is widely known as the total least squares (TLS). In particular, the following results have
been established for a long time [25,26]:

min
s.t. (Ã−ε

Ã
)x̃=b−εb

tr{[ε
Ã

εb]T [ε
Ã

εb]} = σ 2([Ã b]), (10.17)
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where σ(·) is the minimal singular value of a matrix. Note that every singular value of a ma-
trix is nonnegative. Therefore, the optimal nonzero element position determination problem
can be mathematically expressed as

min
jα∈{1,2,··· ,n−1}, α=1,2,··· ,k σ ([Ã b]). (10.18)

These results are elegant. However, they cannot be directly applied to the optimal position
determination of the nonzero elements of the vector x, noting that the corresponding mini-
mization problem is still a combinatorial optimization problem, for which it is generally hard
to find a globally or locally convergent algorithm with polynomial computational complexi-
ties. On the other hand, let Span(b) and Span(Ã) denote respectively the subspaces spanned
by the vector b and the column vectors of the matrix Ã. Then, an upper bound can be derived
for σ([Ã b]), which is proportional to the sine of the half of the angle between Span(Ã) and
Span(b). More precisely, we have the next theorem.

Theorem 10.1. Let θ̃k represent the angle between Span(Ã) and Span(b). Moreover, let
||b||2 denote the Euclidean norm of the vector b. Then

σ([Ã b]) ≤ 2||b||2 sin
θ̃k

2
. (10.19)

Proof. For brevity, denote the matrix Ã(ÃT Ã)−1/2 and the vector b(bT b)−1/2 respectively

by ˆ̃
A and b̂. Then, by the definition of the angle between two linear subspaces [26], we have

that

θ̃k = arc cos (|| ˆ̃
AT b̂||2). (10.20)

On the other hand, from the definitions of the matrix ˆ̃
A and the vector b̂ we can directly prove

that

[Ã b]T [Ã b] =
[

(ÃT Ã)1/2 0

0 (bT b)1/2

]⎡
⎣ Ik

ˆ̃
AT b̂

b̂T ˆ̃
A 1

⎤
⎦
[

(ÃT Ã)1/2 0

0 (bT b)1/2

]
.

(10.21)

Moreover,
∣∣∣∣∣∣λIk+1 −

⎡
⎣ Ik

ˆ̃
AT b̂

b̂T ˆ̃
A 1

⎤
⎦
∣∣∣∣∣∣= (λ − 1)k−1(λ − 1 − || ˆ̃

AT b̂||2)(λ − 1 + || ˆ̃
AT b̂||2). (10.22)
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Let Null(b̂T ˆ̃
A) denote the null space of b̂T ˆ̃

A. As b̂ is a nonzero column vector, it is obvious
that there exists a k × (k − 1)-dimensional real matrix T0 such that

T T
0 T0 = Ik−1, Null(b̂T ˆ̃

A) = Span(T0). (10.23)

Define the matrix

T1 =
⎡
⎢⎣ T0

√
2 ˆ̃
AT b̂

2|| ˆ̃
AT b̂||2

−
√

2 ˆ̃
AT b̂

2|| ˆ̃
AT b̂||2

0
√

2
2

√
2

2

⎤
⎥⎦ .

Then by Eq. (10.22) we can directly prove that T1T
T

1 = T T
1 T1 = Ik+1 and

T T
1

⎡
⎣ Ik

ˆ̃
AT b̂

b̂T ˆ̃
A 1

⎤
⎦T1 =

⎡
⎢⎢⎣

Ik−1 0 0

0 1 + || ˆ̃
AT b̂||2 0

0 0 1 − || ˆ̃
AT b̂||2

⎤
⎥⎥⎦ . (10.24)

For notational simplicity, define the scalar κ and vector ξ respectively as

κ = ||b||2√
b̂T ˆ̃

A[||b||22(ÃT Ã)−1 + Ik] ˆ̃
AT b̂

, ξ = κ

⎡
⎣ (ÃT Ã)−1/2 ˆ̃

AT b̂

−||b||−1
2 || ˆ̃

AT b̂||2

⎤
⎦ .

Then, straightforward matrix manipulations show that ξT ξ = 1 and

T T
1

[
(ÃT Ã)1/2 0

0 (bT b)1/2

]
ξ = −√

2κ|| ˆ̃
AT b̂||2

[
0
1

]
. (10.25)

From this relation and from Eqs. (10.21) and (10.24) we obtain the equality

ξT ([Ã b]T [Ã b])ξ = 2κ2|| ˆ̃
AT b̂||22(1 − || ˆ̃

AT b̂||2). (10.26)

Note that from the definition of κ it is clear that 0 ≤ κ|| ˆ̃
AT b̂||2 ≤ ||b||2. We can therefore

declare from Eqs. (10.20) and (10.26) that

σ([Ã b]) =
√

inf
ξT ξ=1

ξT ([Ã b]T [Ã b])ξ

≤
√

2κ2|| ˆ̃
AT b̂||22(1 − || ˆ̃

AT b̂||2)
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≤
√

2||b||22(1 − cos θ̃k)

≤ 2||b||2 sin
θ̃k

2
. (10.27)

This completes the proof.

In addition to these results, we have the following results on subspace angle minimization.

Define the matrix Â = A(AT A)−1/2 and the vector b̂ = b(bT b)−1/2 and denote the j th col-
umn vector of the matrix Â from the left by âj , j = 1,2, · · · , n − 1. Then, we can establish
the following theorem.

Theorem 10.2. Let θk represent the angle between the subspace spanned by vectors âjα |kα=1

and the subspace spanned by b̂. Moreover, let j
[opt]
α , α = 1,2, · · · , k, be the positions of the

elements of the vector ÂT b with the first k greatest magnitudes. Then

{j [opt]
α |kα=1} = arg minj1,j2,...,jk

θk. (10.28)

Proof. Assume that the vectors ai |n−1
i=1 are linearly independent and the vector b is not a zero

vector. In this case, both the matrix Â and the vector b̂ are well defined. Moreover, we can
straightforwardly prove that âi |ni=1 and b̂ constitute respectively an orthonormal basis for
Span(A) and Span(b).

Assume now that k vectors âjα |kα=1 have been chosen from the vectors âj |n−1
j=1, in which

jα �= jβ whenever α �= β . Denote [âj1 âj2 · · · âjk
] by Â[opt]. As âjα |kα=1 are orthogonal to

each other and have a unit Euclidean length, it is a direct result of matrix analysis [26] that the
angle between Span(Â[opt]) and Span(b) is

θ
[opt]
k = arccos(σ̄ (Â[opt]T b̂)), (10.29)

where σ̄ (·) denotes the maximum singular value of a matrix.

Note that b̂ is a vector. Then from the definition of maximum singular value we have that

sin2 θ
[opt]
k = 1 − σ̄ 2(Â[opt]T b̂)

= 1 − tr{(Â[opt]T b̂)T (Â[opt]T b̂)}
= 1 − tr{Â[opt]Â[opt]T b̂b̂T }. (10.30)

Define the vectors tα = [t1α t2α · · · tn−1,α]T , α = 1,2, · · · , k, where tβα = 1 when β = jα and
tβα = 0 when β �= jα . Denote [t1 t2 · · · tk] by T . Then from the definition of the matrix Â[opt]
we have that
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Â[opt] = ÂT . (10.31)

Substitute Eq. (10.31) into Eq. (10.30). Direct algebraic manipulations show that

sin2 θ
[opt]
k = 1 − tr{(T T T )(ÂT b̂)(ÂT b̂)T }. (10.32)

On the other hand, from the definition of matrix T we can directly prove that T T T = Ik and

T T T = [τij ]n−1
i,j=1, τij =

{
1, i = j = jα,

0 otherwise.
(10.33)

Assume that ÂT b̂ = [φ1 φ2 · · · φn−1]T . Then, (ÂT b̂)(ÂT b̂)T = [φiφj ]n−1
i,j=1. Based on this

relation and Eq. (10.33), we can straightforwardly show that

tr{(T T T )(ÂT b̂)(ÂT b̂)T } =
k∑

α=1

φ2
jα

. (10.34)

Hence

sin2 θ
[opt]
k = 1 −

k∑
α=1

φ2
jα

. (10.35)

Note that sin2 θ is an increasing function as θ varies over the interval
[
0, π

2

]
. It is clear from

the last relation that when k is fixed, to minimize θk , it is desirable to select φjα |kα=1 having
the first k greatest magnitudes. The proof can now be completed by noting that ÂT b is propor-
tional to ÂT b̂.

From these two theorems we can see that if the minimization of the minimal singular value of
[Ã b] is replaced by the minimization of θk , then the optimal jα|kα=1 has a closed-form solu-
tion, and therefore the problem of the exponential increment of computation complexities is
successfully avoided.

On the other hand, let ψi , 1 ≤ i ≤ n − 1, denote the ith row element of the vector AT b. Using
the matrix T defined just before Eq. (10.31), we have that Ã = AT . Therefore, by Eq. (10.20)
we can directly prove that

cos2 θ̃k = b̂T ˆ̃
A

ˆ̃
AT b̂

= 1

||b||22
bT AT (T T AT AT )−1T T AT b. (10.36)
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Recall that T T T = Ik . From the definition of the maximal singular value we can directly
prove that T T AT AT ≤ σ̄ 2(A)Ik . Hence,

cos2 θ̃k ≥ 1

σ̄ 2(A)||b||22
bT AT T T AT b

= 1

σ̄ 2(A)||b||22
tr{(T T T )(AT b)(AT b)T }. (10.37)

Note that the right-hand side of the above equation takes a form very similar to that of the
second term of the right-hand side of Eq. (10.32). As in the proof of Theorem 10.2, we can
straightforwardly show that

sin2 θ̃k ≤ 1 − 1

σ̄ 2(A)||b||22

k∑
α=1

ψ2
jα

(10.38)

Therefore, through selecting jα|kα=1 that maximizes
∑k

α=1 ψ2
jα

, an upper bound of θ̃k , and

therefore an upper bound of σ([Ã b]), has been minimized.

It is worth pointing out that although relations between θk and θ̃k are still not very clear, com-
putation experience reported in [18] shows that compared with maximization of

∑k
α=1 ψ2

jα
,

minimization of θk generally leads to better estimation performances in cellular network iden-
tifications. However, theoretical reasons for this phenomenon are still under investigation.

Estimation of Regulation Coefficients

When locations of nonzero elements of the vector x have been determined, their values can
be directly obtained through singular value decomposition [25,26]. More specifically, we have
the following results.

Theorem 10.3. Assume that σ(Ã) > σ([Ã b]). Let v = [v1 v2 · · · vk+1]T denote the right
singular vector of the matrix [Ã b] with respect to its minimal singular value, and let x̃[opt] be
the optimal vector x̃ corresponding to the left-hand side minimization problem of Eq. (10.17).
Then, x̃[opt] = − 1

vk+1
[v1 v2 · · · vk]T .

When the condition σ(Ã) > σ([Ã b]) is not satisfied, analytical forms are still available for
the optimal solution of the aforementioned minimization problem, but the expressions are
more complicated. We refer the interested reader to [25,26] for details.
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Determination of the Number of Direct Regulations

In the previous estimations, it was assumed that the number of direct regulations is known for
a species in the cellular network. In actual applications, this is generally not the case. To have
an estimate of this number, the cost function (10.14) should be minimized. This minimization
problem, however, currently is not mathematically tractable. To overcome this difficulty, from
Eq. (10.17) we obtain an estimate of the direct regulation number through minimizing the cost
function J (k) defined as follows:

J (k) =
σ 2
([

a
j

[opt]
1

a
j

[opt]
2

· · · a
j

[opt]
k

b
])

2σ 2
+
{

γ ln(kmin) k ∈ [1, kmin],
γ ln(k) k ∈ (kmin, n]. (10.39)

Obviously,

J (k) ≥ min
εA, εb

subject to Eq. (10.13)

.l(εA, εb, k) (10.40)

Therefore, minimization of J (k) has an explanation of minimizing an upper bound of the cost
function l(εA, εb, k), which is equivalent to maximizing a lower bound of the likelihood
function L(εA, εb, k).

Note that both the parameter σ describing characteristics of measurement errors and the pa-
rameters kmin and γ describing the characteristics of the power law are prescribed positive
numbers. This means that although it appears difficult to obtain an analytic form for the op-
timal k, this optimum can be obtained through linear searches for which many methods are
available. On the other hand, it is obvious that the first term of the above cost function is a
nonnegative and decreasing function of k, whereas the second term is a nonnegative and in-
creasing function of k. We can expect that J (k) usually only has one local minimum, which
has been confirmed by extensive computation experience in [18].

From the above analysis the following algorithms are suggested in [18] for identifying direct
effects in a large-scale cellular network.

Algorithm 10.2.1. Algorithm I for Cellular Network Inference

(1) Initialize the vector x and the cost function J (0) respectively as x = 0 and a large posi-
tive number, for example, J (0) = 10100.

(2) Compute the value of the matrix Â and the value of the vector ÂT b. Denote the ith row
element of the vector ÂT b by yi and assume that |yj1 | ≥ |yj2 | ≥ · · · ≥ |yjn−1 |.

(3) Construct the matrix Ãk = [aj1 aj2 · · · ajk
]. Compute the value of the cost function J (k)

defined as

J (k) = σ 2([Ãk b])
2σ 2

+
{

γ ln(kmin), 1 ≤ k ≤ kmin,

γ ln(k), kmin < k ≤ n.
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(4) If J (k) < J(k − 1), replace k by k + 1 and repeat Step 3. If J (k) ≥ J (k − 1), then go to
the next step.

(5) Perform singular value decomposition for the matrix [Ãk−1 b]. Denote its right singular
vector associated with its minimum singular value σ([Ãk−1 b]) by v.

(6) Let vi be the ith row element of the vector v. Replace the ji th row element of the vector
x by − vi

vk+1
, i = 1,2, · · · , k − 1.

Algorithm 10.2.2. Algorithm II for Cellular Network Inference

This algorithm is completely the same as that of Algorithm 10.2.1, except that in the Step 2,
the matrix Â is replaced by the matrix A.

These algorithms have been compared extensively in [18] with the total least squares method
using several typical examples to illustrate their effectiveness, which include an artificially
constructed large-scale linear system with 100 nodes, a mitogen activated protein kinase
(MAPK) pathway model with 103 nodes described by a set of ordinary nonlinear differen-
tial equations, some in silico data sets from the DREAM initiative given in [4], and some in
vivo data sets taken from [2,15].

In these comparisons, in addition to some widely adopted specifications in network infer-
ences, such as ROC (Receiver Operating Characteristics) curve, PR (Precision Recall) curve,
AUROC (Area under a ROC curve), AUPR (Area under a PR curve), PPV (Positive Predictive
Value), Se (Sensitivity), FP (False Positive) rate [4,15,27], and so on., some other specifica-
tions are also adopted, which respectively reflect the rate of false-sign errors and parameter
estimation accuracies. These specifications are used in performance evaluations with the
objectives to clarify that in predicting the behaviors of a network, not only structure of the
network, but also regulation directions and strengths among its elements, are also important.

These comparisons make it clear that the aforementioned methods have distinguished advan-
tages on both reduction of false-positive errors and improvement of parametric estimation
accuracy. Moreover, one of the algorithms has a much faster convergence speed when either
estimation error or estimation bias is considered.

10.3 Absolute and Relative Variations in GRN Structure Estimations

In structure estimation for a gene regulation networks, the so-called Z-score method has been
proven to be very simple and efficient [4]. Basically, this method estimates possibilities of the
existence of a direct regulation from one gene to another gene through measuring the varia-
tions of the gene expression level when a gene is perturbed by some external efforts, which
include gene knock-out, gene knock-down, and so on. In particular, when a direct regula-
tion from gene A to gene B is required to be investigated, an external perturbation is added
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at gene A, and the expression level of gene B is measured before and after that perturbation.
Let x

[wt]
B and x

[pb]
AB denote respectively these two measured values. Moreover, assume that the

variance of measurement errors is σB . Then, the Z-score on the direct regulation from gene A

to gene B , denoted ZA→B , is calculated as

ZA→B = x
[pb]
AB − x

[wt]
B

σB

. (10.41)

The probability of the existence of a direct regulation from gene A to gene B is considered to
be proportional to the absolute value of this Z-score ZA→B . Clearly, this calculation is based
on absolute variations of gene expression levels before and after external perturbations.

Although this method has a very low computational complexity and is computationally effi-
cient in structure estimations for a large-scale gene regulation network, it usually causes false
positive errors. In addition, to get necessary data for revealing the structure of a gene regula-
tion network using this score, each of its genes must be perturbed, which is usually economi-
cally expensive. Furthermore, it is sometimes not very easy to get actual knowledge about the
variance of measurement errors. To overcome these disadvantages, a relative-variation-based
approach is suggested in [28] for GRN structure estimations. In this approach, each gene is
assumed to have three types of expression level, that is, low expression level, high expression
level, and wild-type expression level. The low expression level means that the expression of
a gene is repressed, whereas a high expression level means that the expression of a gene is
activated. The wild-type expression level indicates that the expression of a gene has not been
influenced by external perturbations. This assumption is extensively regarded as appropriate,
noting that in a GRN, direct regulations among genes can usually be divided into two types,
repression effect and activation effect. This means that in a steady-state cellular system, a
gene is in one of these states, and its expression level usually does not change significantly
in each of these states [1,15,29].

Let x
[wt,0]
AB and x

[pb,0]
AB denote respectively the actual value of the expression level of gene B

before and after gene A is externally perturbed. The relative variation of the expression level
of gene B due to the external perturbation of gene A, denoted by δA→B , is calculated as

δA→B = x
[pb,0]
B − x

[wt,0]
B

x
[wt,0]
B

. (10.42)

Compared with Eq. (10.41), it is clear that rather than the measured gene expression level,
its actual value is used in the calculation of this relative variation. Naturally, this actual value
is not available, and it must be estimated from experimental data. On the other hand, simi-
lar to the Z-score in GRN structure estimations, the probability of the existence of a direct
regulation from gene A to gene B is considered to be proportional to the absolute value of
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this relative variation. In addition, its computational complexity is comparable to that of the
Z-score, provided that the associated gene expression levels are available.

In [28,30–32], a likelihood maximization method is suggested for the estimation of actual
gene expression levels from experiment data, incorporating the sparsity of a large-scale sys-
tem. In this method, measurement errors are assumed to be independent of each other in every
experiment and are distributed normally with zero mean. It is also assumed that for each gene
in the network, measurement errors have the same variance in all the experiments. Under
these assumptions, a computationally attractive method is developed for these estimations.
On the basis of these estimates, relative variations of gene expressions in a GRN are inferred,
which is further applied to the structure identification of the associated GRN.

10.3.1 Maximum Likelihood Estimation for Wild-Type Expression Level and
Measurement Error Variance

For a GRN consisting of n genes, assume that the steady-state expression level of a gene can
only take three discrete values, which are respectively called the value of low expression level,
the value of high expression level, and the value of wild-type expression level. Denote these
three values of gene i, i = 1,2, · · · , n, respectively by x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i . Moreover,

assume that measurement errors in the expression level of gene i have an identical normal
distribution N(0, σ 2

i ) in different experiments, which are independent of those of other genes
in the same experiment and those of each gene in a different experiment.

Let xji , i = 1,2, · · · , n, denote the measured expression level of gene i when gene j is exter-
nally perturbed, j = 1,2, · · · , n. Moreover, let x

[wt]
i denote the measured expression level of

gene i when there is no external perturbation to this GRN, i = 1,2, · · · , n. In this subsection,
we discuss how to use these experiment data to infer the three expression levels for each gene
in the GRN and the variance of their measure errors.

To derive estimates for x
[L,0]
i , x

[H,0]
i , x

[wt,0]
i and σi , i = 1,2, · · · , n, we first investigate their

estimation for a particular gene in a GRN under the condition that the in-degree of this gene is
known.

For a specific gene, say, gene i, assume that there are respectively ki1 and ki2 other genes that
have direct activation and repression effects on it. Then, under the adopted assumptions, a
maximum likelihood estimate (MLE) can be obtained for different three expression levels of
this gene and the variance of their measurement errors.
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Theorem 10.4. For some prescribed ki1 and ki2, the MLEs for x
[L,0]
i , x

[H,0]
i , x

[wt,0]
i and σi are

respectively as follows:

x̂
[L,0]
i = 1

ki1

ki1∑
l=1

xjl,i , x̂
[H,0]
i = 1

ki2

n−1∑
l=n−ki2

xjl,i

x̂
[wt,0]
i = 1

n − ki1 − ki2

⎛
⎝n−ki2−1∑

l=ki1+1

xjl,i + x
[wt]
i

⎞
⎠ (10.43)

σ̂i =
⎧⎨
⎩

1

n

⎡
⎣ ki1∑

l=1

(
xjl,i − x̂

[L,0]
i

)2 +
n−ki2−1∑
l=ki1+1

(
xjl,i − x̂

[wt,0]
i

)2 +
(
x

[wt]
i − x̂

[wt,0]
i

)2

+
n−1∑

l=n−ki2

(
xjl,i − x̂

[H,0]
i

)2

⎤
⎦
⎫⎬
⎭

1
2

(10.44)

The proof of Theorem 10.4 is deferred to the appendix of this chapter.

In GRN structure identification, ki1 and ki2 are generally not available. But from the sparsity
of a large-scale GRN some statistical information about the in-degree of a gene, which equals
to the sum of ki1 and ki2, can be obtained. More specifically, let kmax with kmax < n denote
the maximum in-degree of a GRN, and let nk denote the number of genes with its in-degree k.
Then, from the power law given by Eq. (10.11) we can declare that

nk =

⎧⎪⎪⎨
⎪⎪⎩

⌊
nck

−γ

min

⌋
, 0 ≤ k < kmin,⌊

nck−γ
⌋
, kmin ≤ k ≤ kmax,

0, kmax < k ≤ n,

(10.45)

where �∗ stands for the operation of taking the nearest integer that is not greater than ∗.

When only the sum of ki1 and ki2, denoted ki , is available, the optimal ki1 and ki2 are ob-
tained simply through searching the minimizer in the ki + 1 combinations of ki1 and ki2

satisfying ki1 + ki2 = ki and 0 ≤ ki1 ≤ ki . Denote

− lnFi

(
x̂

[L,0]
i , x̂

[H,0]
i , x̂

[wt,0]
i , σ̂i

∣∣∣ ki1, ki2

)

with the optimal ki1 and ki2 by fki,i . Obviously,

exp(−fki,i) = max
x

[L,0]
i ,x

[H,0]
i ,x

[wt,0]
i ,σi

ki1, ki2
ki1+ki2=ki
0≤ki1≤ki

Fi

(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)
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Let Nk denote the set of genes that have an in-degree k, that is,

Nk = { i | i ∈ {1,2, · · · , n}, ki = k } .

Recall that measurement errors for gene expression levels are assumed to be independent of
each other. Let #(·) denote the number of elements of a set. Obviously, the MLEs for gene

expression levels and measurement error variances are those
(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

)n

i=1
that make the following maximization problem achieve its optimum:

max
x

[L,0]
i , x

[H,0]
i x

[wt,0]
i , σi

n∏
i=1

Fi

(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1 + ki2 = k
)

(10.46)

subject to #(Nk) = nk, k = 0,1, · · · , kmax

From the definition of fki,i we can straightforwardly prove that this maximization problem is
equivalent to the following minimization problem:

min
ζki

kmax∑
k=0

n∑
i=1

fk,iζki (10.47)

subject to

⎧⎪⎨
⎪⎩
∑kmax

k=0 ζki = 1, i = 1, · · · , n,∑n
i=1 ζki = nk, k = 0, · · · , kmax,

ζki ∈ {0, 1} , k = 0, · · · , kmax, i = 1, · · · , n.

(10.48)

Note that fk,i can be obtained through separately maximizing

Fi

(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)

for every individual gene. This minimization problem is in fact a 0–1 integer programming
problem, for which various efficient algorithms have been developed, such as the so-called
linear programming-based branch-and-bound algorithm and so on [33,34]. More precisely, it
has been proven that in this minimization problem, the constraint ζki ∈ {0, 1} can be replaced
by ζki ∈ (0, 1), which can significantly reduce computational complexity of this optimiza-
tion.

Denote the optimizer of the minimization problem (10.48) by ζ̂ki , k = 0, · · · , kmax and
i = 1, · · · , n. For gene i, if ζ̂ki = 1 with 0 ≤ k ≤ kmax, then from the above problem descrip-
tion it is clear that the optimal estimate for the in-degree of this gene is k. When this infor-
mation is available, the optimal estimate can be obtained for both ki1 and ki2, which further
leads to the optimal estimate for the wild-type expression level x

[wt,0]
i and the measurement

error variance σi . In addition, a rough estimate can also be obtained about the topology of
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GRN. As a matter of fact, we can declare from these minimization results that genes num-
bered j1, j2, · · · , jki1 will most likely to have a direct repression effect on gene i, whereas
genes numbered jn−ki2, jn−ki2+1, · · · , jn−1 will have a direct activation effect.

It is worth noting that the power law is generally used to describe the statistics of direct reg-
ulations in a large-scale network [1,18,35,36], but the expression level of a gene may also be
changed by indirect regulations. However, if we can assume that direct regulations usually
cause large gene expression variations, then the aforementioned utilization of the power law
seems reasonable in estimations of wild-type gene expression levels and measurement error
variances. Although there are still no solid biological evidences on the appropriateness of this
assumption, actual computation results in [31,32], which include both simulated data and ac-
tual data, show that this adoption of the power law is really helpful in estimation accuracy
improvements.

10.3.2 Estimation of Relative Expression Level Variations

Define the relative expression level variation (RELV) of gene i resulted from an external per-
turbation on gene j , denoted by δji , as

δji = x
[0]
ji − x

[wt,0]
i

x
[wt,0]
i

. (10.49)

We hope that RELV is more efficient than the well-known Z-score in distinguishing direct
and indirect causal regulations. The rationale for this expectation is as follows. If in a pathway
of a GRN, every direct regulation has the property that a relative change of the concentrations
of the proteins or mRNAs, and so on, related to the regulated gene is at most as large as that
of the regulation gene, then it is obvious that the magnitude of this relative change due to an
indirect regulation, which is in fact a cascade connection of several direct regulations, is cer-
tainly not greater than that due to a direct regulation. Although it is still not very clear whether
or not this assumption is reasonable for every pathway from a biology viewpoint, our compu-
tation experiences show that this assumption may have some nice biological interpretations
and is satisfied by most regulations existent in a GRN. These arguments also imply that the
larger the magnitude of δji is, the more unlikely that the expression level variation of gene i

after knocking out/down gene j is due to indirect regulations, and thus the larger the probabil-
ity that gene i is directly regulated by gene j .

To reduce influences of measurement errors, define δ̄j i as the expectation of the absolute
value of δji . Then direct computations show that
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δ̄j i = 1

x
[wt,0]
i

{√
2

π
σi exp

(
−
(
xji − x

[wt,0]
i

)2
(2σ 2

i )

)

−
(
xji − x

[wt,0]
i

)[
1 − 2�

(
(xji − x

[wt,0]
i )/σi

)]}
, (10.50)

where �(·) is the error function. As x
[wt,0]
i and σi are generally not available, an estimate

for δ̄j i should be used in GRN topology inference. To obtain this estimate, x
[wt,0]
i is replaced

by x̂
[wt,0]
i of Eq. (10.43), and σi is replaced by σ̂i of Eq. (10.44). Therefore,

ˆ̄δji = 1

x̂
[wt,0]
i

{√
2

π
σ̂i exp

(
−
(
xji − x̂

[wt,0]
i

)2
/(2σ̂ 2

i )

)

−
(
xji − x̂

[wt,0]
i

)[
1 − 2�

(
(xji − x̂

[wt,0]
i )/σ̂i

)]}
(10.51)

Note that in GRN topology inferences, the larger the value of ˆ̄δji , the higher the prob-
ability for the existence of a direct regulation from gene j to gene i. Let � denote the

n × n-dimensional matrix with its j th row ith column element being ˆ̄δji when i �= j and
its diagonal element being zero. Then, it is clear that this matrix contains information about
regulation strengths between any two different genes in a GRN.

However, to infer the structure of a GRN from this matrix, an important fact must be taken
into account that in a GRN, efforts required to regulate different genes are not completely the
same [1,15]. This implies that although under the adopted assumption, it can be proved that a
direct regulation usually leads to a bigger magnitude of the RELV of the regulated gene than
an indirect one, direct regulations to different genes may lead to different magnitude orders of
this variation. Therefore, to obtain a good estimate from the matrix � about the topology of a

GRN, an appropriate normalization is still required for the estimate ˆ̄δi among different genes.

Although the problem of making a biologically significant normalization for RELVs is still
theoretically challenging, in this paper, it is suggested to normalize them using the Euclidean
norm of a vector, which is widely adopted in many fields like system analysis and synthesis,
signal processing, and so on [18,37,38]. To use the aforementioned rough estimation about the
topology of the GRN, RELVs of a gene estimated to have a direct regulation are normalized
differently from those of a gene estimated not to have a direct regulation. Specifically, the jl th

row ith column element of the matrix �, that is, ˆ̄δjl,i , is normalized as
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δ
[2]
jl,i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆ̄δjli

⎛
⎝n−k2−1∑

s=k1+1

ˆ̄δ2
js ,i

⎞
⎠

− 1
2

, l = k1 + 1, · · · , n − k2,

ˆ̄δjl,i

⎛
⎝ k1∑

s=1

ˆ̄δ2
js ,i

+
n−1∑

s=n−k2

ˆ̄δ2
js ,i

⎞
⎠

− 1
2

otherwise.

(10.52)

For presentation conciseness, denote the normalized matrix � using the Euclidean norm
by �[2].

Another important thing worth of consideration in GRN topology estimation is that genes
estimated to have a direct regulation should correspond to a RELV with a magnitude greater
than those estimated not to have a direct regulation. To achieve this purpose, the following
adjustment is suggested in this paper. Define

δ
[2]
0 = max

1≤i≤n
max

k1+1≤l≤n−k2−1
δ

[2]
jl,i

(10.53)

With this value, the normalized RELVs for an arbitrary gene i are adjusted as follows:

δ̃
[2]
jl ,i

=
{

δ
[2]
jl,i

, k1 + 1 ≤ l ≤ n − k2 − 1,

δ
[2]
jl,i

+ δ
[2]
0 otherwise.

(10.54)

Denote by �̃[2] the n × n-dimensional matrix with its j th row ith column element being δ̃
[2]
ji .

Elements of this matrix are directly used to infer the structure of a GRN. The greater the j th
row ith element, the higher the probability that gene i is directly regulated by gene j .

10.3.3 Estimation Algorithm

In summary, on the basis of likelihood maximization and the concept of the RELV of a gene,
the following algorithm is suggested in this paper for identifying direct regulations of a GRN,
which consists of three main steps:

• Using available a priori information about the GRN under investigation, choose ap-
propriate values of the parameters γ , kmin, and kmax of the power law used to describe
its sparsity. On the basis of Theorem 10.4, calculate fki,i for all i = 1,2, · · · , n and
ki = 0,1, · · · , kmax.

• Solve the constrained minimization problem of Eq. (10.48). Using the estimated σi and
x

[wt,0]
i and Eqs. (10.50) and (10.52), calculate the matrix �[2] consisting of the normal-

ized magnitudes of the estimates of the RELVs of every gene in a GRN.
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• Modify the matrix �[2] according to Eqs. (10.53) and (10.54). Using elements of these
modified matrices, queue possibilities of the existence of a direct regulation from the gene
with the same number of the row to the gene with the same number of the column. The
greater the element, the higher the confidence for the existence.

Actual computation results with the size 100 subchallenges of both DREAM3 and DREAM4,
reported in [28,30–32], show that this method can outperform not only the widely used
Z-score-based method, but also the best team of these subchallenges who used an integra-
tion of some well-known methods. Precision analysis shows that compared with the widely
adopted Z-score-based method, highly confident predictions obtained by this method usually
have a higher precision and therefore are more helpful in guiding designs of biology valida-
tion experiments. In addition to these, estimates obtained by this method are more accurate
also for both wild-type gene expression levels and measurement error variances.

Another important property of the suggested algorithm is that its computational complexity
increases only polynomially with the number of genes of a GRN, which is in sharp contrast to
many other available methods whose computational complexity increases exponentially.

10.4 Estimation With Time Series Data

In the previous two sections, we investigated structure identification for a large-scale net-
worked system using steady-state experimental data. In addition to this method, there are also
various other approaches proposed to deal with this problem. For example, the Boolean net-
work model-based method [7,39], the approach based on the correlation or partial correlation
coefficients suggested in [40], the mutual information-based method [41], and their refine-
ments suggested in [42–46]. Compared with these methods, an important characteristic of the
algorithms in Sections 10.2 and 10.3 is that they have explicitly taken the sparsity of a large-
scale system into account, which is helpful in improving estimation accuracies.

However, all these methods can model only static relations among subsystems. In various
practical applications, dynamic experimental data are also able to be collected. Compared
to steady-state experiment data, it is widely believed that dynamic experimental data con-
tain more information about the system under investigation. An interesting theoretical issue
is therefore to explore possibilities of estimating subsystem interactions in a networked sys-
tem using time series experimental data. In this section, will discuss this problem for a gene
regulation network in which dynamic interactions among genes are nonlinear. Although the
discussed plant is restricted to cellular networks, the method itself is believed to be extendable
to other types of plants.

To facilitate information extraction from time series expression profiles in structure identi-
fication of gene regulation networks, various dynamical models have been developed, such
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as dynamic Boolean networks [47], neural networks [48], Bayesian networks [29,49], and so
on. Among the statistical techniques currently adopted in modeling GRNs, Bayesian infer-
ences have received the most widespread attentions [11,50,51]. Under the dynamic Bayesian
regime, the model of GRNs is extensively considered as a state-space model, which consists
of gene expression measurement equations and gene regulation equations [11,13]. In this
state-space model, gene expression values are assumed to depend not only on the current cel-
lular states but also on external inputs or disturbances, which reflects the nature of a dynamic
network. In the early works, it was generally assumed that gene regulations can be described
by linear differential/difference equations, and the well-known Kalman filter is used to re-
cover the structure of a GRN [11]. However, due to the inherent nonlinear nature of GRNs,
there exist some restrictions when a linear model is applied to describe gene behaviors [52].
In short, linear approximation is valid only when a GRN has slow dynamics around its steady
state. To capture complex gene interactions more efficiently, it is crucial to alleviate this lin-
earity assumption. One way to make the GRN model more appropriate is to include nonlinear
terms, such as the so-called S-system [53], sigmoid function [1,54–56], and so on.

When a nonlinear state-space model is adopted, the extended Kalman filter (EKF) is one ef-
ficient method for GRN structure recovering [55,56]. The EKF-based approach works well
with both steady-state data and slow dynamical data. On the other hand, there may occur
considerable performance deteriorations in this approach if either the initial state estimate
is incorrect or there are appreciable deficiencies in the system model caused by first-order
approximations [56]. More specifically, as the EKF-based approach does not take either un-
modeled dynamics or parametric uncertainties into account, its estimation performances may
not be satisfactory due to its slow convergence speed, which usually leads to low estimation
accuracy. Mistakes are often caused by the low estimation accuracy of an estimation algo-
rithm. For example, in inferring the structure of a GRN, an estimated parameter, say ĝ[ij ], is
often used to decide whether gene j directly regulates gene i. A false positive error is made
when the actual value of g[ij ] equals zero, but its estimate ĝ[ij ] has a large magnitude. This
means that unmodeled dynamics and parametric uncertainties should not be ignored in identi-
fications.

To enhance estimation performances, GRN structure recovering is resorted in [24] to the
robust state estimator suggested in [57] after the first-order approximation of GRNs. The
suggested method is guaranteed to be robust against model errors due to GRN linearizations
and state estimate inaccuracies, in which both parametric modeling errors and unmodeled
dynamics are included. It has been proven that the estimated network topology by either the
EKF-based method or the method suggested in [24] converges in the mean square sense to
the actual network structure. An attractive property of this estimation algorithm, however, is
that, on the basis of the specific structure of the network topology inference problem itself, it
has been shown that under some weak requirements, the convergence speed of the suggested
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method can be guaranteed to be faster than that of the EKF-based method. This is quite im-
portant, noting that the data length in a biological experiment is usually not very long.

10.4.1 Robust Structure Identification Algorithm for GRNs

According to chemical principles, such as the Michaelis–Menten kinetics and so on, dynamic
reactions occurred in a practical biochemical network are inherently nonlinear, which means
that GRNs must be treated in general as a nonlinear dynamic system [1,7,39,53]. On the other
hand, an extensively adopted way in dealing with dynamic systems is the so-called state-space
approach. In particular, a nonlinear state evolution equation for GRNs consisting of n genes
can be described by2

x(k + 1) = f (x(k), θ) + w(k), (10.55)

where k stands for the temporal variable, x(k) = col{xk,i |ni=1} is the vector consisting of ex-
pression levels of all the genes, f (x(k), θ) is a vector of nonlinear functions, θ ∈ Rp is a
vector consisting of unknown parameters, and w(k) denotes a noise vector, which is usually
assumed to be uncorrelated and normally distributed with zero mean and covariance ma-
trix Q(k). Moreover, an m-dimensional vector of measurements y(k), for example, microar-
ray data, is related to the directly unobservable hidden state variables through the following
observation equation:

y(k) = h(x(k), θ) + v(k). (10.56)

Here h(x(k), θ) is once again a vector of nonlinear functions, and v(k) is a zero-mean uncor-
related Gaussian noise vector with covariance matrix R(k). An extensively adopted assump-
tion is that the random processes w(k)|∞k=0 and v(k)|∞k=0 are white and mutually independent.

The function f (·, ·) in Eq. (10.55) and the function h(·, ·) in Eq. (10.56) are quite general
in describing regulation relationships among various genes in a GRN and measurements of
their expression levels. These associated equations are able to approximately model most dy-
namic GRNs. However, one of their serious drawbacks is that they are mathematically very
difficult, if not infeasible, to be used in handling problems like parameter estimation, structure
identification, and so on. To make these problems mathematically tractable, some particular
nonlinear functions are adopted. Among these functions, the most widely utilized one appears
to be the sigmoid function, as it naturally reflect many characteristics of interactions occurred
in a cell, such as the speedy change between expression and unexpression states of a gene, the

2 It is worth emphasizing that in actual GRNs, rather than to directly act on another gene, a gene exerts its influ-
ence through its mRNAs, proteins, and so on. However, when relations among genes are discussed, models like
those in Eqs. (10.55) and (10.57) are usually adopted [4,39,54,58].
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ratio of chemical reactions depending on concentrations of the involved materials, and so on.
Another attractive property of this function is its analyticity and simplicity. More specifically,
the following model is widely adopted in describing state evolutions in a GRN [1,54–56]:

x(k + 1) = G S (x(k)) + w(k), (10.57)

where

S(x(k)) =
[

1

1 + exp
(−xk,1

) , . . . , 1

1 + exp
(−xk,n

)
]T

.

The matrix G ∈ Rn×n in this equation captures causal regulation relationships among genes,
that is, if g[ij ], the ith row j th column element of this matrix, has a magnitude significantly
greater than zero, then, the j th gene directly regulates the ith gene. This means that this
state-space model produces a directed graph among different genes in a GRN. Moreover, the
microarray data obtained at the kth time instant can usually be simply described as

y(k) = x(k) + v(k). (10.58)

The system model described by Eqs. (10.57) and (10.58) embraces a group of important fea-
tures of GRNs, such as direct and causal gene regulations, nonlinear chemical reactions,
dynamic gene expressions, external noise influences, microarray data, and so on. It also re-
flects the widely adopted approximation that each gene of a GRN is generally in one of two
states, that is, expressed and unexpressed, and changes between these two states are usually
very fast [1,39,53,54].

Motivated by these biological observations, the GRN identification problem discussed in this
section is as follows. Given a set of noisy microarray data y(k)

∣∣t
k=1 , which are assumed to be

generated by the state-space model described by Eqs. (10.57) and (10.58), recover the struc-
ture of GRNs through estimating the unknown but time-invariant matrix G.

It is worth mentioning that an accurate estimate of the matrix G enables us not only to reveal
the actual GRN topology, but also to quantify interaction strengths among genes. In addition,
direct comparison of Eqs. (10.55) and (10.57) shows that θ = vec(G).

Major challenges in inferring the nonlinear GRN model include estimation of both the states
and parameters of the systems from noisy observations and that experimental data length is
generally short and states/parameters to be estimated are usually of great amount.

In simultaneous estimation of system states and system parameters of a nonlinear dynamic
system, a widely adopted method is using the EKF by taking the system parameters as ad-
ditional states and augmenting state equations [55,59]. More specifically, let z(k) denote the
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vector consisting of all gene expression levels of the GRN at the time instant k and all ele-
ments of the system parameter matrix G, that is,

z(k) � col{x(k), V ec(G)}.

Let g (z(k)) and C(k) represent respectively

[
GS (x(k))

θ(k)

]
and

[
In×n, 0n×n2

]
. Then,

the augmented state-space model of the GRN described by Eqs. (10.57) and (10.58) can be
reexpressed as

z(k + 1) =
[

x(k + 1)

θ(k + 1)

]
= g (z(k)) + η(k), (10.59a)

y(k) = C(k)z(k) + v(k), (10.59b)

where

η(k) =
[

w(k)T , ξ(k)T
]T

,

in which ξ(k) is a zero-mean uncorrelated Gaussian noise vector with covariance ma-
trix �(k).

In these expressions, the vector θ = vec(G) is replaced by θ(k), and an artificial distur-
bance ξ(k) has been added for guaranteeing the well-posedness of the recursive calculation
in the estimations. This is an approach extensively adopted in state estimation-based parame-
ter identifications [38,60].

To employ a linear state estimation algorithm, for example, the Kalman filter or a linear robust
state estimator, an unavoidable step is to have a linear state-space model. For this purpose, the
nonlinear Eq. (10.59) needs to be first approximated by a linear equation. A widely adopted
way is linearizing this nonlinear equation in a neighbor of the value of its current state esti-
mate. Let ẑk|k and x̂k,i respectively represent an estimate of z(k) and an estimate of xk,i at the
time instant k. To realize the aforementioned idea, define the vector

ĝ (z(k)) = g
(
ẑk|k

)+ A(k, ẑk|k)
(
z(k) − ẑk|k

)
, (10.60)

where

A(k, ẑk|k) = ∂g (z)

∂z

∣∣∣∣
z=ẑk|k

=
[

Ĝ(k)W(k)
[

1
1+e

−x̂k,1
In×n, · · · , 1

1+e
−x̂k,n

In×n

]
0n2×n In2×n2

]
(10.61)

and

W(k) = diag

(
e−x̂k,1(

1 + e−x̂k,1
)2 , · · · ,

e−x̂k,i(
1 + e−x̂k,i

)2 , · · · ,
e−x̂k,n(

1 + e−x̂k,n
)2
)

. (10.62)
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Then, a linear approximation of the nonlinear Eq. (10.59a) can be written as

z(k + 1) = A(k, ẑk|k)z(k) + (g (ẑk|k
)− A(k)ẑk|k

)
︸ ︷︷ ︸

known at time k

+η(k), (10.63)

which is a linear state-space model for the augmented state vector z(k).

Based on the linear model (10.63), the Kalman filter can be directly applied to estimate the
values of the parameter matrix G. These treatments are essentially the basic ideas developed
in the EKF-based approach to nonlinear system identifications, for which rich literature exists,
and examples include [55] and [59]. In general, this approach works well with steady-state
data and/or systems with slow dynamics. On the other hand, there may exist considerable
performance degradations if either the initial state estimate is incorrect, and/or there are
appreciable deficiencies in modeling a dynamic system caused by the above first-order ap-
proximation [56]. Moreover, due to its slow convergence speed, which usually leads to a low
estimation accuracy with finite experimental data, estimation performances of the EKF-based
approach may be not very satisfactory in GRN topology identifications.

Studies in [24] show that one important reason for performance degradation of the EKF-
based approach is the uncertainties of the linear model (10.63). Note that this linear model
is obtained through the first-order approximation of the nonlinear model (10.59). As a re-
sult, the linear model (10.63) can hardly include all the dynamic features of actual GRNs.
In other words, unmodeled dynamics usually exist in the errors of this linear model. On the
other hand, note that the system matrix A(k, ẑk|k) in this linear model depends on the state
estimate ẑk|k , which is generally different from the actual values of the system state at the
time instant k. This means that parametric uncertainties also exist in the errors of this linear
model (10.63).

In conclusion, due to the adopted linearization method, there inevitably exist both unmodeled
dynamics and parametric uncertainties in the errors of this linear model (10.63). To reduce
their influences on the accuracy of the GRN structure inference, these modeling errors should
be explicitly taken into account in developing an estimation algorithm. More precisely, a de-
sirable estimation algorithm is required to be robust against both the modeling errors due to
linearizations and the modeling errors due to the state estimation errors.

For this purpose, the dynamics of the linear model (10.63) is modified to the following state-
space model:

z(k + 1) = A
(
k, ẑk|k, ε(k)

)
z(k) + a(k) + η(k), (10.64)

where ε(k) represents the difference between the actual value of the augmented plant state
vector and its estimate at the time instant k, and a(k) stands for g

(
ẑk|k

)−A(k, ẑk|k)ẑk|k . From
their definitions we can straightforwardly prove that A

(
k, ẑk|k,0

)= A(k)(ẑk|k).
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Remark 10.1. From the definition of the matrix A(k, ẑk|k) it is clear that it varies with the
estimate ẑk|k . To take into account the effects of the state estimation errors, the vector ẑk|k in
A
(
k, ẑk|k, ε(k)

)
is replaced by ẑk|k +ε(k), in which ε(k) stands for the estimation error on the

augmented plant state vector. To make the corresponding estimation problem mathematically
tractable, elements of state estimation errors, that is, εk,i , i = 1,2, · · · , n+n2, are assumed to
be independent of each other. More precisely, the matrix A

(
k, ẑk|k, ε(k)

)
is defined completely

in the same way as A(k, ẑk|k) in Eq. (10.61):

A
(
k, ẑk|k, ε(k)

)= ∂g (z)

∂z

∣∣∣∣
z=ẑk|k +ε(k)

. (10.65)

This modification on the linear model (10.63) makes the assumption of [57] valid that the
matrix A

(
k, ẑk|k, ε(k)

)
is a known differentiable function of system parameter uncertainties.

Note that actual values of the augmented plant state vector are not available in general. To
employ the robust state estimator introduced in [57], it is necessary to perform a first-order
approximation on the matrix A

(
k, ẑk|k, ε(k)

)
. For this purpose, the following matrices �(k),

�k,i , �k,i , and �k,i are first defined:

�(k) =
⎡
⎣e−x̂k,1

(
−1 + e−x̂k,1

)
(
1 + e−x̂k,1

)3 , · · · ,
e−x̂k,n

(
−1 + e−x̂k,n

)
(
1 + e−x̂k,n

)3
⎤
⎦

T

,

�k,i =
[

Ĝ(k)�k,i �k,i

0n2×n 0n2×n2

]
,

�k,i = diag
(
0, · · · ,0,�k,i,0, . . .0

)
,

�k,i = [
0n×n, · · · ,0n×n,Wk,iiIn×n,0n×n, · · · ,0n×n

]T
,

where i = 1, . . . , n. On the basis of these matrices, we construct the other matrix

S̄k,i =
[

0n×(n2+n
)

C(k)�k,i

]
, i = 1, · · · , n. (10.66)

Moreover, define the vector λj and matrices �j and �k,j as follows:

λj = [0, · · · ,0,1,0, · · · ,0]T ,

�j = reshape
(
λj , n,n

)
,

�k,j =
[

�jW(k) 0n×n2

0n2×n 0n2×n2

]
,
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where j = 1, · · · , n2, and reshape(j, n,n) represents constructing an n × n matrix from the
vector λj whose elements are taken columnwise from that vector. Utilizing these vector and
matrices, define the matrix

SSk,j =
[

0n×(n2+n
)

C(k)�k,j

]
, j = 1, · · · , n2. (10.67)

Finally, on the basis of the matrices S̄k,j and SSk,j , define the matrix

S(k) = col

(
col
(
S̄k,i

∣∣n
i=1

)
, col

(
SSk,j

∣∣n2

j=1

))
. (10.68)

Then, from these definitions and constructions direct algebraic manipulations show that

A
(
k, ẑk|k, ε(k)

) = A
(
k, ẑk|k

)+
n∑

j=1

S̄k,j (xk,j − x̂k,j ) +
n2∑

j=1

SSk,j (θj − θ̂j )

+ O
(
||z(k) − ẑk|k||22

)

= A
(
k, ẑk|k

)+ (ε(k) ⊗ I2n×2n)
T S(k) + O

(
||z(k) − ẑk|k||22

)
.

(10.69)

Clearly, the matrices S̄k,j , SSk,j , and S(k) are constituted from the first-order derivatives of
the matrix A

(
k, ẑk|k, ε(k)

)
with respect to estimation errors on gene expression values, GRN

topologies, and the augmented plant states, respectively.

Based on all these discussions and definitions, a robust structure identification algorithm
for GRNs is obtained as follows, which simply replaces the Kalman filter in the EKF-based
method with the robust state estimator suggested in [57], where sensitivities are penalized of
the innovation process in state estimations to modeling errors with the purpose of increasing
the robustness of the estimate against parametric modeling errors.

• Initialization. Designate P0|0 and ẑ0|0 respectively as P0|0 =
(
π−1

0 + CT
0 R−1

0 C0

)−1
and

ẑ0|0 = P0|0 CT
0 R−1

0 y0, where π0 = E
[
z0z

T
0

]= diag{�0, πθ }.
• Parameter modification. Define the matrix S(k) as in Eq. (10.68). Moreover, define the

matrices Â (k,0), P̂k|k , and �(k) as

Â (k,0) = A
(
k, ẑk|k,0

)[
I − (1 − γ (k))

γ (k)
P̂k|k

]
, (10.70a)

P̂k|k =
(

P −1
k|k + (1 − γ (k))

γ (k)
ST (k)S(k)

)−1

, (10.70b)
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�(k) =
[

Q(k)

�(k)

]
. (10.70c)

• Plant state estimate updating. Calculate ẑk+1|k+1 and Pk+1|k+1 as

ẑk+1|k+1 =Â (k,0) ẑk|k + a(k) + Pk+1|k+1 CT (k + 1)R(k + 1)−1

×
[
y(k + 1) − C(k + 1)

(
Â (k,0) ẑk|k + a(k)

)]
, (10.71a)

Pk+1|k = A
(
k, ẑk|k,0

)
P̂k|k AT (k)

(
ẑk|k,0

)+ �(k), (10.71b)

Re,k+1 = R(k + 1) + C(k + 1)Pk+1|k CT (k + 1), (10.71c)

Pk+1|k+1 = Pk+1|k − Pk+1|k CT (k + 1)R−1
e,k+1C(k + 1)Pk+1|k . (10.71d)

Remark 10.2. In this estimation procedure, γ (k) is a design parameter belonging to [0, 1]
and taking a balance between the importance of nominal estimation performances and that
of reducing estimation performance degradations due to modeling errors. The greater this
parameter, the more important the nominal estimation performances. In the extreme case, that

is, where γ (k) = 1 and/or
∂A
(
k,ẑk|k,ε(k)

)
∂εk,i

≡ 0, it is proved in [57] that the state estimator in the
algorithm reduces to the well-known Kalman filter. This means that, under such situations, the
above GRN structure estimation algorithm is equal to the EKF-based method. Although it is
still theoretically not clear how to select this design parameter, a physically significant γ (k)

should generally satisfy γ (k) ≥ 0.5.

10.4.2 Convergence Analysis of the Robust Structure Identification Algorithm

In evaluating performances of an identification algorithm, one extensively utilized metric is
related to its convergence. Although there are many works in the literature addressing the
problem of estimating parameters of a nonlinear biochemical network using the EKF-based
method, for example, [55] and [59], none of them provides convergence conditions. In this
subsection, we derive some convergence conditions for the suggested robust structure identifi-
cation algorithm and for the EKF-based method.

For brevity, we abbreviate the algorithm derived in the previous subsection as the RSE (robust
state estimator) based method.

In probability theory, there exist several different notions about convergence of random vari-
ables. Examples include convergence in probability, mean-square convergence, convergence
with probability 1, and so on [61,62]. In this subsection, mean-square convergence is adopted
in the investigation of the properties of the suggested robust GRN structure identification
method. Therefore, the definition of convergence in the mean-square sense is given in Defi-
nition 2.14, which is adopted from [62].
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The recursive form of the RSE-based algorithm is very similar to that of the EKF-based
method. Therefore, we first investigate convergence conditions of the EKF-based method and
then turn to the suggested method.

An implicit assumption adopted in the EKF-based estimation method is that local lineariza-
tions are accurate enough in describing plant nonlinear dynamics in a neighborhood of the
linearization point. Under such a situation, when w(k) and v(k) are random samples from
some zero-mean Gaussian distributions and are statistically independent of each other, then
the distribution of the estimate ẑk|k can be effectively approximated by a normal distribution
[63,64]. Two formulations are extensively utilized for the EKF-based estimation processes.
One is the so-called two-step recursion formulation, which consists of a time-update step
and a measurement-update step with a relinearization between these two steps. The other is a
one-step formulation in terms of some a priori variables. Previous studies, for example, those
in [63] and [65], have made it clear that these two formulations may have different steady-
state performances and transient behaviors, but their convergence properties are the same. As
a result, the convergence analysis of the EKF-based method is investigated in this subsection
utilizing the one-step formulation, whose description is given explicitly as follows.

The EKF-Based Estimation Algorithm. The structure identification algorithm for nonlinear
GRNs described by Eqs. (10.57) and (10.58) using the one-step EKF is constituted from the
following four recursive steps:

• Linearization at an estimated state:

A(k, ẑ(k)) = ∂g (z)

∂z

∣∣∣∣
z=ẑ(k)

=
[

Ĝ(k)W(k)
[

1
1+e

−x̂k,1
In×n, · · · , 1

1+e
−x̂k,n

In×n

]
0n2×n In2×n2

]
. (10.72)

• Compute the gain matrix of the Kalman filter:

K(k) = A(k, ẑ(k))P (k)CT (k)
(
C(k)P (k)CT (k) + R(k)

)−1
. (10.73)

• Update state estimates according to the following difference equation:

ẑ(k + 1) = g
(
ẑ(k)

)+ K(k)
(
y(k) − C(k)ẑ(k)

)
. (10.74)

• Update the pseudo-covariance matrix of estimation errors through the following Riccati
difference recursions:

P(k + 1) = A(k, ẑ(k))P (k)AT (k, ẑ(k)) + �(k) − K(k)
(
C(k)P (k)CT (k) + R(k)

)
KT (k).

(10.75)
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In the above descriptions, to distinguish the EKF-based method from that based on the robust
state estimator, different symbols are adopted for state estimates and the pseudo-covariance
matrix of estimation errors.

Recall that the augmented state vector z(k) is defined as z(k) = [x(k)T , θ(k)T
]T

. Accord-
ingly, estimation errors on the network topology, denoted θ̃ (k), are given by

θ̃ (k) = θ(k) − θ̂ (k). (10.76)

Besides, in line with the dimensions of the vectors x(k) and θ(k), the pseudo-covariance ma-
trix P(k) can be partitioned into four submatrices:

P(k) =
[

Px,k Pxθ,k

P T
xθ,k Pθ,k

]
. (10.77)

Note that in the state-space model (10.59a), the evolution of θ(k) is linear. This means that
although the matrix P(k) itself is a pseudo-covariance matrix, its 2nd block row 2nd block
column submatrix Pθ,k is a covariance matrix. Substituting Eqs. (10.72) and (10.73) into
Eq. (10.75), we obtain the following relation through some direct matrix operations:

Pθ,k+1 = Pθ,k + �(k) − P T
xθ,k

(
Px,k + R(k)

)−1
Pxθ,k. (10.78)

Let �(k) = P T
xθ,k

(
Px,k + R(k)

)−1
Pxθ,k −�(k). Then, by this equality we are able to establish

the convergence of the EKF-based estimation algorithm.

Theorem 10.5. Assume that the following conditions are satisfied:

P T
xθ,k

(
Px,k + R(k)

)−1
Pxθ,k − Pθ,k < �(k) < P T

xθ,k

(
Px,k + R(k)

)−1
Pxθ,k, (10.79a)

∞∑
k=1

{
λ2

min

(
P −1

θ,k

)
λmin (�(k))

}
= ∞, (10.79b)

A(k, ẑ(k)) is nonsingular for every k ≥ 0. (10.79c)

Moreover, assume that there exist real positive constants p̄ and p, such that

p̄I ≤ P(k) ≤ pI. (10.79d)

Then θ̃ (k)
m.s.−→ 0.

The proof of this theorem is deferred to the appendix of this chapter.
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Remark 10.3. θ̃ (k)
m.s.−→ 0 means that the estimate θ̂ (k) converges to θ in the mean

square sense. Condition (10.79d) is closely related to the observability of a nonlinear dy-
namic system. More precisely, from Lemma 4.1 of [65] we know that if the matrix pair{
A(k, ẑ(k)), C(k)

}
satisfies a uniform observability condition, then condition (10.79d) is

also satisfied. On the other hand, in addition to given conditions for the convergence of the
EKF-based method, condition (10.79) also provides some insights on how to select the de-
sign parameter matrix �(k). In practice, �(k) is usually set as a constant matrix, such as
�(k) = rI , and the value of r is selected as a small positive number, for example, r = 10−5.
A more detailed discussion on how to choose appropriate parameters of a recursive estima-
tion algorithm can be found, for example, in [60] and [38].

Now we investigate the convergence properties of the suggested robust GRN structure iden-
tification algorithm. In fact, the suggested method is quite similar to the two-step recursions
of the EKF-based method. More precisely, Eq. (10.71) can be divided into a time-update and
measurement-update steps, which are respectively as follows.

• Time-update step: update of state predictions and pseudo-covariance matrix of prediction
errors:

ẑk+1|k � g
(
ẑk|k

)= Â (k,0) ẑk|k + a(k), (10.80)

Pk+1|k = A
(
k, ẑk|k,0

)
P̂k|k AT

(
k, ẑk|k,0

)+ �(k). (10.81)

• Measurement-update step: update of state estimation, pseudo-covariance matrix, and esti-
mator gain:

ẑk+1|k+1 = ẑk+1|k + Kk+1|k+1
(
y(k + 1) − C(k + 1)ẑk+1|k

)
, (10.82)

Kk+1|k+1 = Pk+1|k CT (k + 1)
(
C(k + 1)Pk+1|k CT (k + 1) + R(k + 1)

)−1
, (10.83)

Pk+1|k+1 = Pk+1|k − Pk+1|k CT (k + 1)
(
C(k + 1)Pk+1|k CT (k + 1) + R(k + 1)

)−1

× C(k + 1)Pk+1|k . (10.84)

These formulas are almost the same as their counterparts in the EKF-based estimation al-
gorithm. The major difference is that in the EKF-based method, the difference between the
values of the nonlinear function at the plant augmented state and its estimate is approximated
as

g (z(k)) − g
(
ẑk|k
)≈ A(k, ẑk|k)

(
z(k) − ẑk|k

)
,

whereas this difference in the RSE-based method is approximated as

g (z(k)) − g
(
ẑk|k
)≈ Â(k) (0)

(
z(k) − ẑk|k

)
.
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Moreover, if a one-step formulation is reconstructed for the RSE-based method, we can estab-
lish a relation between the pseudo-covariance matrices of estimation errors on GRN topology
at two successive time instants, which takes completely the same form as that of Eq. (10.78).
As a result, the convergence properties of the RSE-based method can be expected to be close
to those of the EKF-based method.

On the other hand, completely the same arguments as those in the derivation of Inequal-
ity (10.A.15) show that a similar inequality relationship can be established from Eq. (10.70)
for the pseudo-covariance matrix Pθ,k|k and the pseudo-covariance matrix Pθ,k+1|k+1 of the
RSE-based GRN structure identification method, which is given in the following equation:

λmin

(
P −1

θ,k+1|k+1

)
≥ λmin

(
P −1

θ,k|k
)

+ λ2
min

(
P −1

θ,k|k
)

λmin
(
�k|k

)

+ 1 − γ (k)

γ (k)
λmin

([
ST (k)S(k)

]
22

)
, (10.85)

where �k|k = P T
xθ,k|k

(
P T

x,k|k + R(k)
)−1

Pxθ,k|k − �(k). Moreover, similar to the partition of

the matrix P(k),
[
S(k)T S(k)

]
22 stands here for the 2nd block row 2nd block column subma-

trix of S(k)T S(k), which can be directly proved to be equal to col{SSk,j |n2

j=1}colT {SSk,j |n2

j=1}.
As the derivations of this inequality are completely the same as those of Inequality (10.85),
we omit the details.

Note that γ (k) ∈ [0,1] and the matrix
[
S(k)T S(k)

]
22 is at least positive semidefinite. Inequal-

ity (10.85) makes it clear that the convergence speed of the suggested robust GRN topology
estimation method should not be slower than that of the EKF-based method.

Summarizing our discussion, we conclude by some convergence properties of the RSE-based
method.

Corollary 10.1. If the conditions in Theorem 10.5 hold, then the estimate θ̂k|k obtained by
the suggested robust GRN structure identification algorithm converges to θ in mean square.
Moreover, its convergence speed is not smaller than that of the EKF-based method.

Remark 10.4. Through expressing the RSE-based GRN structure identification algorithm into
a recursive form similar to that of the EKF-based method, we obtain sufficient conditions for
its convergence, which are completely the same as those of the EKF-based method. Neverthe-
less, the proof of this convergence property has also made it clear that the suggested method
generally has a faster convergence speed. This property has a great significance in identify-
ing a real GRN. In general, time series data obtained in an actual biological experiment is
usually quite short. This means that an identification method with a rapid convergence speed
is greatly appreciated in GRN structure estimations. By Corollary 1 it is safe to declare that
the suggested method could be a competitive alternative for GRN topology identification in
practice.
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To evaluate estimation performances of the suggested robust state estimation-based method
for GRN structure identification algorithm, several comparisons are performed in [24], which
include both simulated and actual gene expression data. False positive errors, false negative
errors, and so on of the suggested RSE-based method are compared to those of the EKF-based
method and those of the unscented Kalman filter (UKF) based method. Significant perfor-
mance improvements have been achieved.

10.5 Bibliographic Notes

Studies on causality and/or structure estimation make it possible to describe not only data
but also experiment design in a mathematical language. In [66], and [5], a diagraph is used
to describe direct influences among different subsystems, whereas in [67], a framework is
developed to estimate direct relations among different phenomena in which comparative ex-
periments cannot be performed on the same individual. Techniques in time series analysis and
Wiener filtering theory is utilized in [68] to establish causal relations among economy factors.
A common feature in these studies is that stochastic analysis plays a central role. In [6], there
are summarized several most important application areas of structure identification, charac-
teristics of large-scale networked systems, and some major approaches developed for network
estimations. In [4], there are given comprehensive comparisons of the characteristics of dif-
ferent methods in revealing the structure of a gene regulation network from experiment data.
Many important topics about identification of the interactions in a gene regulation network
have also been investigated in a special issue of Automatica [69].

Appendix 10.A

10.A.1 Proof of Theorem 10.4

When experimental data are available for its expression levels in which genes of a GRN are
individually and systematically perturbed by external efforts, under the adopted assumptions,
the likelihood function for the expression levels of gene i and their measurement error vari-
ance, denoted by

Fi

(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)
,

can be expressed as follows:

Fi

(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)

= 1√
2πσi

exp

{
−
(
x

[wt]
i − x

[wt,0]
i

)2
/(2σ 2

i )

} n∏
j=1,j �=i

1√
2πσi
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× exp

{
−
(
xji − x

[0]
ji

)2
/(2σ 2

i )

}
, (10.A.1)

where x
[0]
ji ∈

{
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i

}
.

Note that measurement errors for different genes and in different experiments are assumed to
be independent of each other. Straightforward algebraic manipulations show that the likeli-
hood function for all the gene expression levels and measurement error variances of the GRN,
denoted by

F
( (

x
[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)∣∣∣n
i=1

)
,

can be expressed as

F
((

x
[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)∣∣∣n
i=1

)
=

n∏
i=1

Fi

(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)

(10.A.2)

This means that maximization of the likelihood function

F
((

x
[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)∣∣∣n
i=1

)

is equivalent to independent maximization of the function

Fi

(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)

Sort the observed expression levels of gene i in a nondecreasing order and denote the sorted
results by xj1,i ≤ xj2,i ≤ · · · ≤ x

[wt]
i ≤ · · · ≤ xjn−1,i . Here, jl �= jk whenever l �= k and jl ∈

{1,2, · · · , i − 1, i + 1, · · · , n}. From the assumptions we know that there are respectively ki1

and ki2 genes that have direct activation and repression effects on gene i. On the other hand,
direct algebraic manipulations show that

Fi

(
x

[L,0]
i , x

[H,0]
i , x

[wt,0]
i , σi

∣∣∣ ki1, ki2

)
≤
(

1√
2πσi

)n ki1∏
l=1

exp

{
−
(
xjl,i − x

[L,0]
i

)2
/(2σ 2

i )

}

× exp

{
−
(
x

[wt]
i − x

[wt,0]
i

)2
/(2σ 2

i )

} n−ki2∏
l=ki1+1

exp

{
−
(
xjl,i − x

[wt,0]
i

)2
/(2σ 2

i )

}

×
n−1∏

l=n−ki2

exp

{
−
(
xjl,i − x

[H,0]
i

)2
/(2σ 2

i )

}
. (10.A.3)

For brevity, denote the minus of the natural logarithm of the right-hand side of the equation
by fki . Direct algebraic operations show that fki can be equivalently expressed as
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fki = n ln
√

2π + n lnσi + 1

2σ 2
i

{
k1∑

l=1

(
xjl,i − x

[L,0]
i

)2 +
(
x

[wt]
i − x

[wt,0]
i

)2 +

n−k2∑
l=1+k1

(
xjl,i − x

[wt,0]
i

)2 +
n∑

l=n−k2+1

(
xjl,i − x

[H,0]
i

)2

⎫⎬
⎭ . (10.A.4)

Differentiating the function fki with respect to σi, x
[wt,0]
i , x

[L,0]
i , and x

[H,0]
i , we have

∂fki

∂x
[L,0]
i

= 1

σ 2
i

k1∑
l=1

(
xjl,i − x

[L,0]
i

)
, (10.A.5)

∂fki

∂x
[wt,0]
i

= 1

σ 2
i

⎧⎨
⎩

n−k2∑
l=k1+1

(
xjl,i − x

[wt,0]
i

)
+
(
x

[wt]
i − x

[wt,0]
i

)⎫⎬
⎭ , (10.A.6)

∂fki

∂x
[H,0]
i

= 1

σ 2
i

n∑
l=n−k2+1

(
xjl,i − x

[H,0]
i

)
, (10.A.7)

∂fki

∂σi

= n

σi

− 1

σ 3
i

k1∑
l=1

(
xjl,i − x

[L,0]
i

)2 − 1

σ 3
i

n−k2∑
l=k1+1

(
xjl,i − x

[wt,0]
i

)2

− 1

σ 3
i

(
x

[wt]
i − x

[wt,0]
i

)2 − 1

σ 3
i

n∑
l=n−k2+1

(
xjl,i − x

[H,0]
i

)2
. (10.A.8)

Then, from the first and second optimality conditions of the function fki , direct algebraic op-
erations show that this function achieves its minimum at the following x̂

[L,0]
i , x̂

[H,0]
i , x̂

[wt,0]
i ,

and σ̂i :

x̂
[L,0]
i =

k1∑
l=1

xjl,i

k1
, x̂

[wt,0]
i =

n−k2∑
l=1+k1

xjl,i + x
[wt]
i

n + 1 − k1 − k2
, x̂

[H,0]
i =

n∑
l=n−k2+1

xjl,i

k2
(10.A.9)

σ̂i = 1√
n

⎡
⎣ k1∑

l=1

(
xjl,i − x̂

[L,0]
i

)2 +
n−k2∑

l=1+k1

(
xjl,i − x̂

[wt,0]
i

)2 +
(
x

[wt]
i − x̂

[wt,0]
i

)2

+
n∑

l=n−k2+1

(
xjl,i − x̂

[H,0]
i

)2

⎤
⎦

1
2

. (10.A.10)
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Note that the natural logarithm of a positive variable is an increasing function. Moreover,
Inequality (10.A.3) becomes an equality with these x̂

[L,0]
i , x̂

[H,0]
i , x̂

[wt,0]
i , and σ̂i . We can

therefore declared that these values are MLEs for x
[L,0]
i , x

[H,0]
i , x

[wt,0]
i , and σi , respectively.

This completes the proof.

10.A.2 Proof of Theorem 10.5

The proof consists of the following two stages. First, we will show that the covariance matrix
of the estimation error θ̃ (k) converges to zero. Afterward, we will prove that the estimate θ̂ (k)

converges to its actual value.

Denote the mean of the estimation error θ̃ (k) by ¯̃
θ(k). With this symbol, we can declare

that to prove Theorem 10.5, the following property should be satisfied by the estimation er-
ror θ̃ (k):

lim
k→∞ E

{(
θ̃ (k) − ¯̃

θ(k)
)T (

θ̃ (k) − ¯̃
θ(k)

)}
= lim

k→∞ E
{
tr

[(
θ̃ (k) − ¯̃

θ(k)
)(

θ̃ (k) − ¯̃
θ(k)

)T
]}

= lim
k→∞ tr

(
Pθ,k

)
= 0, (10.A.11)

that is, it is necessary to show that tr
(
Pθ,k

)→ 0 as k → ∞.

From Eq. (10.78) and the definition of �(k) it is clear that Pθ,k+1 = Pθ,k − �(k). Based on
this relation and Lemma 2.2, we can straightforwardly prove that

P −1
θ,k+1 − P −1

θ,k = (Pθ,k − �(k)
)−1

�(k)P −1
θ,k , (10.A.12)

(
Pθ,k − �(k)

)−1 − P −1
θ,k =

(
Pθ,k�(k)−1Pθ,k − Pθ,k

)−1
, (10.A.13)

which further lead to

(
Pθ,k − �(k)

)−1
�(k)P −1

θ,k − P −1
θ,k �(k)P −1

θ,k

=
(
Pθ,k�(k)−1Pθ,k − Pθ,k

)−1(
Pθ,k�(k)−1

)−1

=
(
Pθ,k�(k)−1Pθ,k�(k)−1Pθ,k − Pθ,k�(k)−1Pθ,k

)−1

= P −1
θ,k

[
�(k)−1 (Pθ,k − �(k)

)
�(k)−1

]−1
P −1

θ,k . (10.A.14)

Note that the constraint
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P T
xθ,k

(
Px,k + R(k)

)−1
Pxθ,k − Pθ,k < �(k) < P T

xθ,k

(
Px,k + R(k)

)−1
Pxθ,k

is equivalent to 0 < �(k) < Pθ,k . Therefore, Eq. (10.A.14) implies that

(
Pθ,k − �(k)

)−1
�(k)P −1

θ,k > P −1
θ,k �(k)P −1

θ,k .

As a consequence, we can declare from Lemma 2.1 that Eq. (10.A.12) implies the following
inequalities:

λmin

(
P −1

θ,k+1

)
≥ λmin

(
P −1

θ,k

)
+ λmin

((
Pθ,k − �(k)

)−1
�(k)P −1

θ,k

)

≥ λmin

(
P −1

θ,k

)
+ λmin

(
P −1

θ,k �(k)P −1
θ,k

)

≥ λmin

(
P −1

θ,k

)
+ λ2

min

(
P −1

θ,k

)
λmin (�(k)) . (10.A.15)

From condition (10.79a) it is clear that Pθ,k+1 < Pθ,k , which implies that P −1
θ,k+1 > P −1

θ,k .

Therefore, when this assumption is satisfied, and if
∞∑

k=1

{
λ2

min

(
P −1

θ,k

)
λmin (�(k))

}
= ∞, then

lim
k→∞λmin

(
P −1

θ,k

)
= ∞. Therefore, tr

(
Pθ,k

)→ 0 as k → ∞.

Second, we will show that θ̂ (k) → θ as k → ∞. Combining Eqs. (10.74)–(10.75), we have
that

θ̂ (k + 1) = θ̂ (k) + P T
xθ,k

(
Px,k + R(k)

)−1
e(k), (10.A.16)

where e(k) = y(k) − x̂(k). Moreover, denoting θ − θ̂ (k) by β̃(k), we have that

β̃(k + 1) = β̃(k) − P T
xθ,k

(
Px,k + R(k)

)−1
e(k). (10.A.17)

Now, construct a Lyapunov function

V (k) = β̃T (k)
(
Pθ,k + I

)
β̃(k). (10.A.18)

Then, the first difference of this Lyapunov function is

�(k) = V (k + 1) − V (k)

= β̃T (k + 1)
(
Pθ,k+1 + I

)
β̃(k + 1) − β̃T (k)

(
Pθ,k + I

)
β̃(k)

= β̃T (k)
(
Pθ,k+1 − Pθ,k

)
β̃(k) + �(k)

= −β̃T (k)�(k)β̃(k) + �(k), (10.A.19)
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where

�(k) =
(
β̃T (k + 1)β̃(k + 1) − β̃T (k)β̃(k)

)

+
[(

β̃T (k + 1)Pθ,k+1β̃(k + 1) − β̃T (k)Pθ,kβ̃(k)
)

− β̃T (k)
(
Pθ,k+1 − Pθ,k

)
β̃(k)

]
.

(10.A.20)

Note that from the definition of P(k) it is clear that P(k) ≥ 0. On the other hand, note that

P(k) =
[

Px,k Pxθ,k

P T
xθ,k Pθ,k

]

and

lim
k→∞Pθ,k = 0.

We can directly prove that

lim
k→∞Pxθ,k = 0.

Therefore, for an arbitrary positive number ε, there exists a positive integer k0 such that for
k > k0, the norm of the pseudo-covariance matrix Pxθ,k satisfies

∥∥Pxθ,k

∥∥< ε. Moreover, from
the results of Theorem 3.1 in [65] it is clear that when the constraints (10.79c) and (10.79d)
are satisfied and the initial estimation error of the augmented state vector z(k) is bounded, that
is,
∥∥z0 − ẑ0

∥∥≤ δ, e(k) is also exponentially bounded in the mean square sense. We can there-
fore declare that, for an arbitrary positive number ε̄, there exists a positive integer k̄0 such
that ∥∥∥β̃(k + 1) − β̃(k)

∥∥∥< ε̄

for k > k̄0. This means that, for an arbitrary positive number ˜̄ε, there exists a positive in-

teger ˜̄k0 such that |�(k)| < ˜̄ε for k > ˜̄k0. Hence, when k is large enough, it is certain that
|�(k)| < 1

2 β̃(k)T �(k)β̃(k), that is, there exists a positive integer k̃0 such that, for k > k̃0,
�(k) defined in Eq. (10.A.19) has the following property:

�(k) = V (k + 1) − V (k)

≤ −β̃T (k)�(k)β̃(k) + 1

2
β̃T (k)�(k)β̃(k)

= −1

2
β̃T (k)�(k)β̃(k)

≤ 0. (10.A.21)
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On the other hand, assume that β̃T (k)�(k)β̃(k) = 0. Then, based on condition (10.79a),
which implies that �(k) is positive definite, we have that β̃(k) = 0. Therefore, by Lyapunov
stability theory it is clear from the last inequality that θ̂ (k) → θ as k → ∞.

We can therefore conclude that if condition (10.79) holds, then θ̃ (k)
m.s.−→ 0.

This completes the proof.
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CHAPTER 11

Attack Identification and Prevention
in Networked Systems

11.1 Introduction

A large-scale networked system usually consists of a great amount of subsystems, and these
subsystems are often spatially distributed and far from each other geometrically. This asks for
timely data exchanges among subsystems, which can be supported by advanced communi-
cation technologies, including both wired and wireless channels. Examples include electric
power systems, unmanned vehicle systems, water supply networks, and so on.

Although integrations of several subsystems are greatly expected to increase performances of
the whole system, they also provide more opportunities of being affected by malicious oper-
ators. There are many real world examples illustrating these possibilities, and in some cases,
significant damages have been caused to the physical processes targeted by the attackers [1].
One example is the advanced computer worm Stuxnet, which happened in 2010 and infected
some industrial control systems, reportedly leading to damages of approximately 1,000 cen-
trifuges at these plants, although the attack itself was rather naive from a control engineer’s
point of view [2]. Another example is the Maroochy water breach in 2000 [3]. In this incident,
an attacker managed to hack into some controllers that activate and deactivate some valves,
which caused flooding of the grounds of a hotel, a park, and a river, with about a million
liters of sewage. In 2003, the SQL Slammer worm attacked the Davis–Besse nuclear plant
[4]. The recent multiple power blackouts in Brazil are also believed to be caused by malicious
attacks [5].

Differently from faults and disturbances in a control system, which happen naturally and oc-
casionally, attacks may happen in a well-organized way, simultaneously or sequentially over
several spatial places of a large-scale networked system, with the objective to significantly
violate performances of the system, or even to destroy the system itself. In other words, al-
though faults also affect system behaviors, simultaneous events are usually not considered to
be colluding. On the contrary, simultaneous attacks are often cooperative. In addition, faults
are usually constrained by some physical dynamics and do not have an intent or objective,
but attacks are usually not straightforwardly restricted by the dynamics of the plant physical
process and/or chemical process, usually have a malicious objective, and often perform in a
secrete way.

Estimation and Control of Large-Scale Networked Control Systems
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System safety is in fact not a new topic [6,7]. Particularly, in a power system, a supervisory
control and data acquisition system, which is usually abbreviated as SCADA, is well devel-
oped and has been widely adopted. This system is originally designed to prevent electricity
theft and to monitor abrupt voltage changes. In this system, measurement data of plant static
outputs are used to estimate plant states, and the estimates are normally used in an internal
control area of a transmission system operator. A basic assumption adopted in SCADA is that
the system is in a steady-state behavior within its computation interval, which is usually of
tens of seconds. When the plant states have a fast change during some alert or emergency
situations, its estimation accuracy deteriorates drastically. Moreover, new power generation
sources, such as large-scale wind power penetration, smart transmission devices, and so on
have not been taken into account appropriately. In addition, inaccurate estimations about the
state of a directly connected subsystem may cause some misleading estimates about system
security and lead to a wrong decision of security control. These factors ask investigations on
attack preventions using dynamic input–output data.

On the other hand, with the development of communication technologies and computer tech-
nologies, it is extensively anticipated that a plant and even subsystems of a plant are con-
nected by some public communication networks, such as the world wide web and so on, to
reduce hardware costs and increase maintenance flexibilities. In such a situation, a communi-
cation network becomes also an essential part of a networked system, such as that played by
a physical plant and a digital feedback controller. When a system is connected by communi-
cation channels, many other possibilities arise for the system to be attacked. For example, it
becomes easier for a hacker to insert some destructive disturbances in a more secrete way into
a signal being transmitted in a communication channel [7–9]. In particular, a cyber-physical
system usually suffers from some specific vulnerabilities, which do not exist in classical con-
trol systems and for which appropriate detection and identification techniques are required.
For instance, the reliance on communication networks and standard communication proto-
cols to transmit measurements and control packets increases the possibility of intentional and
worst-case attacks against physical plants and/or the controller. On the other hand, informa-
tion security methods, such as authentication, access control, message integrity, and so on,
may not be adequate for a satisfactory protection of these attacks. Indeed, these security meth-
ods are only some passive ways to prevent a signal being disturbed during its transmissions.
They do not exploit compatibilities of the received signals with the underlying physical/chem-
ical process of the plant and/or the control mechanism. These characteristics may make them
ineffective against an insider attack targeting the physical dynamics and/or the controller.

Generally, the dynamics of a networked system with possible attacks can be described as

x(k + 1) = f (k, x(k), u(k), d(k)), (11.1)

y(k) = g(k, x(k), u(k), d(k)), (11.2)
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where x(k) ∈ Rn, y(k) ∈ Rm, u(k) ∈ Rp , and d(k) ∈ Rq respectively represent the plant state
vector, output vector, input vector, and the vector consisting of possible attacks. Moreover,
f (k, ·) and g(k, ·) are in general nonlinear functions that may be time varying. For a physi-
cal plant to work properly, there are usually some strict restrictions on its states. For example,
in a water supply network, the levels of its reservoirs are in general restricted in some suit-
able ranges. The set consisting of these permissible plant states is called the plant safe region,
whereas the complimentary set of the plant states is called the unsafe region. A plant is said
to be safe if its state vector belongs to its safe region; otherwise, the plant is said to be unsafe.
The objectives of the malicious attackers are often manipulating the plant state vector from
its safe region to its unsafe region through adding an attack disturbance vector process d(k)

into the system with the smallest efforts, as well as to avoid being detected. In other words, to
manipulate the plant from being safe to being unsafe in a theft and economic way. The input
signal u(k) is delivered from a controller through a communication network designed to make
the plant work satisfactory. Due to the imperfectness of communication channels, this delivery
may have some time delays and even failures and be corrupted by environment noises. With-
out detectors, the plant is usually impossible to distinguish the input vector u(k) from that
carrying the attack vector d(k). In other words, the attack vector d(k) is usually injected into
the input vector u(k) possibly in a transmission process, and this injection combines these two
vectors into a single vector that is input to the plant. Differently from external disturbances
widely studied in control system analysis and synthesis, the attack vector d(k) is usually not
random. More precisely, it might be designed with a clear objective using some measurements
of the plant output vector y(k).

When d(k) ≡ 0, the networked system described by Eqs. (11.1) and (11.2) is said to be in
its normal situation, and the associated trajectories of its state and output vectors are said to
be in their nominal behavior. Otherwise, the system is said to be in an abnormal situation,
and the corresponding trajectories of its state and output vectors are said to be in their abnor-
mal behavior. The objective of attack estimation is to clarify whether or not the system is in
its normal situation using measurements of its output vector, whereas the objective of attack
identification is to estimate the amount and positions of attackers when the system is in an
abnormal situation. Generally, these two problems are dealt with through investigating charac-
teristics of the residues of some detectors.

Taking into account that for nonlinear dynamic systems, there still does not exist a general
analysis and/or synthesis method, our attention is restricted to linear systems in this chapter,
in which both the function f (k, ·) of Eq. (11.1) and the function g(k, ·) of Eq. (11.2) are lin-
ear. This significantly reduces mathematical difficulties in handling the attack estimation and
prevention problems, keeping the associated results significant and relevant from an engineer-
ing viewpoint. With this simplification, the input vector u(k) can be removed from the model,
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as its existence does not affect conclusions on either attack identification or attack prevention
due to the linearities of the system.

In this chapter, we first discuss attack identification and prevention using static data, which
has been extensively adopted in large-scale electric power networks. Afterward, relations
between system observability and attack prevention are investigated. With these relations,
estimation and identification of attacks are respectively dealt with, as well as the relations be-
tween system security and optimal sensor placements. Further research topics will also be
briefly discussed.

To clarify basic concepts and ideas, rather than the general model of a networked system
given by Eqs. (3.25) and (3.26), which has been discussed in several chapters of this book,
in this chapter the state-space model of Eq. (3.1) is utilized.

11.2 The SCADA System

Very possibly, the most successful attack estimator until now is the SCADA system, which is
originally designed to protect an electricity network from working in an unsafe region. In this
system, the plant is assumed to be in steady state, and its state vector is estimated from its out-
put measurements using a least squares method. Clearly, to let this system work properly, it is
necessary that the number of sensors in the plant is not smaller than the dimension of its state
vector. Otherwise, the output of the associated attack detector cannot be uniquely determined,
which will invalidate its usefulness. Generally, the more the sensors the plant has, the better
the detection performance the system has.

When the plant is linear and works in its steady state, and only output measurements are uti-
lized in estimating its state vector, the relations between the plant outputs and states, described
by Eq. (11.2), can be expressed in a much simpler way given as follows:

y(k) = Ckx(k) + Dkd(k) + w(k). (11.3)

In this equation, a vector w(k) is introduced to represent measurement noises. For simplic-
ity, we assume that its mathematical expectation is constantly equal to zero, whereas its
covariance matrix is constantly equal to the identity matrix. As pointed out before, to get a
physically meaningful estimate about the plant states, it is necessary that the dimension of the
output vector y(k) is not smaller than that of the state vector x(k). This means that the output
matrix Ck has more rows than columns.

When no attacks are available, a reasonable estimate about the plant state vector, denoted
x̂(k), which is extensively adopted and widely called a least squares estimate, is

x̂(k) = (CT
k Ck)

−1CT
k y(k). (11.4)
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With this estimate, the predicted plant output ŷ(k) and its prediction errors ỹ(k) are respec-
tively

ŷ(k) = Ck(C
T
k Ck)

−1CT
k y(k), (11.5)

ỹ(k) = y(k) − ŷ(k) =
[
I − Ck(C

T
k Ck)

−1CT
k

]
y(k). (11.6)

Obviously, to make this estimate physically meaningful, it is necessary that the matrix Ck is
of full column rank, which guarantees the existence of the inverse of CT

k Ck . This condition
can be satisfied through an appropriate sensor placement in the plant.

When the measurement error vector w(k) has a normal distribution, we can easily prove that
ỹT (k)ỹ(k) has a X 2 distribution. Hence, an anomaly detector, which is based on a quantity of
the residue of plant output measurement, can be defined as

r(k) = Sy(k), S = I − Ck(C
T
k Ck)

−1CT
k , (11.7)

which is in fact the SCADA system [6]. Obviously, this detector shares the same form of
the output prediction error in the normal situation that is given by ỹ(k). In this system,√

rT (k)r(k) is utilized to decide whether or not there exists an attack in the networked sys-
tem. When its value is greater than a prescribed threshold, it is believed that an attack exists.
Otherwise, there are no attacks in the networked system [6,7].

This anomaly detector is usually efficient in detecting a single attack which caused a signifi-
cant change in one of the plant output measurements. However, when a coordinated malicious
attack exists in the plant and may cause simultaneous change of several plant output measure-
ments, very possibly, this detector does not work quite well. For example, assume that there is
a coordinated attack d̄(k) satisfying

Dkd̄(k) = Ckx̄(k). (11.8)

This is possible if the attackers appropriately select their attack places and strategies and co-
ordinate their actions. Under such a situation, we have that the output of the anomaly detector
satisfies the following equalities:

r(k) = Sy(k)

=
[
I − Ck(C

T
k Ck)

−1CT
k

]
× [

Ckx(k) + Dkd̄(k) + w(k)
]

=
[
I − Ck(C

T
k Ck)

−1CT
k

]
× [Ckx(k) + w(k)] +

[
I − Ck(C

T
k Ck)

−1CT
k

]
Ckx̄(k)

=
[
I − Ck(C

T
k Ck)

−1CT
k

]
× [Ckx(k) + w(k)] , (11.9)
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that is, no matter how large the magnitude of an element in the vector x̄(k) is, the output of
the anomaly detector, that is, r(k), does not change. This invalidates its capabilities of detect-
ing the attacks satisfying Eq. (11.8).

Note that when the plant is linear and the input signal u(t) is constantly set to zero, by
Eq. (11.1) its state evolutions can be expressed as

x(k + 1) = Akx(k) + Bkd(k). (11.10)

In the plant steady state, we have that x(k + 1) = x(k). Hence,

x(k) = [I − Ak]−1 Bkd(k), (11.11)

which may be very far from the steady state of the plant without an attack, which is equal to
zero by the adopted assumption that u(k) ≡ 0. In fact, when the attack of Eq. (11.8) is ap-
plied,

x(k) = [I − Ak]−1 BkD
†
kCkx̄(k), (11.12)

where D
†
k stands for the pseudo-inverse of the matrix D(k).1 As each element of the vec-

tor x̄(k) can be arbitrarily large in magnitude without being detected by the anomaly de-
tector, this equation implies that an appropriate selection of either the matrix Bk or the
matrix Dk , or both of them, may cause a significant change of the plant states, which are
capable of deriving the plant to its unsafe region. On the other hand, through choices of
attack positions in a networked system, a selection of either the matrix Bk or the matrix
Dk can be realized in a relatively easy way, provided that the attackers have accurate in-
formation on the system model, which is mostly about the system output matrix Ck in this
case.

These conclusions are valid even if the plant is not in its steady state. In addition, numerical
studies show that the attack in the form (11.8), which is extensively called stealthy attack, is
usually sparse [6,7].

To analyze the security of a networked system, some security indices have also been intro-
duced. When the plant is also time invariant, the following index αj is suggested in [7] to
measure the security degree of the plant j th output measurement:

αj
def= min

x∈Rn
||Cx||0 subject to C(j, :)x �= 0, (11.13)

1 When Ckx̄(k) belongs to the space spanned by the column vectors of the matrix Dk , there may exist infinitely
many vectors d̄(k) that satisfy Eq. (11.8). A complete parameterization for all the solutions to this equation is
available, which is given by Theorem 2.5. As this is not a very essential issue here, we omit the details and only
use D

†
k
Ckx̄(k) in the discussions.



Attack Identification and Prevention in Networked Systems 373

where to make the expressions more concise, the temporal variable k has been omitted from
the system matrices. Moreover, C(j, :) stands for the j th row vector of the output matrix C.

From its definition it is clear that when an attacker is intended to change the plant j th output
measurement without being detected by the SCADA system, αj is in fact the minimum num-
ber of plant output measurements that he/she needs compromise. The smaller this index, the
easier the j th plant output measurement to be attacked by a stealthy attack, that is, an attack
that cannot be detected in principle. This means that knowledge about this security index for
all the plant output measurements may provide some useful information about the security
vulnerabilities of the networked system, which may be helpful in protecting the networked
system with restricted resources.

Although the security index is significant from an engineering viewpoint, the associated opti-
mization problem itself cannot be easily solved. In fact, this minimization problem has been
proven to be NP-hard, and various modifications have been suggested as an alternative. One
example is to replace the vector 0-norm with the vector 1-norm.

11.3 Attack Prevention and System Transmission Zeros

The previous section illustrates briefly the SCADA system, which uses only plant output mea-
surements to detect whether or not there are attacks in the plant. The attack detection method
is quite simple, but it reveals almost all essential issues in attack preventions: an attacker
usually intends to significantly violate or even destroy a system in a secrete way, whereas a
detector should be efficient in revealing all the attacks as soon as possible. This implies that
there may exist close relations between attack preventions and system observability. In this
section, we clarify these relations under the situation in which both the detector and the at-
tacker have accurate knowledge about the plant dynamics.

As general conclusions are still not available for nonlinear time-varying systems, our atten-
tion is also restricted to linear and time-invariant systems in this section. We assume that an
attacker is intended to alter the states of a plant through injecting some exogenous inputs on
the basis of the system matrices of the plant at each time. In addition, the attacker is assumed
to have unrestricted computation capabilities. An attacker with these characteristics is called
an omniscient attacker. Under these assumptions, stealthy colluding attacks are closely related
to plant transmission zeros.

Assume that the dynamics of a networked system with possible attacks is described as

x(k + 1) = Ax(k) + Bd(k), (11.14)

y(k) = Cx(k) + Dd(k). (11.15)



374 Chapter 11

As in the previous section, here d(k) represents an attack disturbance. Once again, we assume
that x(k) ∈ Rn, y(k) ∈ Rm, and d(k) ∈ Rq . Noting that the plant is assumed to be linear, it is
not necessary to include control signals in the adopted model.

To simplify discussions, we assume throughout the rest of this chapter that the above state
space model is a minimal realization, that is, it is both controllable and observable. Note that
if the system is not controllable, then a decomposition can divide its state space into the direct
sum of controllable and uncontrollable subspaces, and the system state vector can be manip-
ulated by an attacker only when it is in the controllable subspace. On the other hand, if the
system is unobservable, then the system state space can be decomposed into the direct sum
of observable and unobservable subspaces. As the part of a state vector belonging to the un-
observable subspace does not have any influence on the plant output vector, variations of this
part cannot be detected by the plant output vectors. That is, under such a situation, there al-
ways exist attacks that cannot be detected and therefore cannot be identified by monitoring
only these plant outputs. This observation means that the aforementioned minimal realization
assumption is reasonable.

Another assumption adopted in the rest of this chapter is that the matrix

[
B

D

]
is of full col-

umn rank, which is constituted from the system input matrix B and its direct feedthrough
matrix D. This is necessary for the identifiability of attacks, noting that if this matrix is not of

full column rank, then different attacks may cause the same value of the vector

[
B

D

]
d(k).

More precisely, for an arbitrary d̄(k) ∈ Null

([
B

D

])
, it is obvious from the definition of

the null space of a matrix that
[

B

D

]
[d(k) + d̄(k)] =

[
B

D

]
d(k).

In addition, when the matrix

[
B

D

]
is not of full column rank, Null

([
B

D

])
has at

least one nonzero vector as its element. Under such a situation, it is clear from Eqs. (11.14)
and (11.15) that these different attacks lead to the same trajectory of the system state vector
and to the same trajectory of the system output vector. Obviously, this is not an appreciative
property in attack detection and/or attack identification.

Similarly to those in the SCADA system, an attack detector, which is sometimes also called
an attack monitor, exploits only plant dynamics and output measurements to reveal the exis-
tence of attacks and identify their positions. Hence, an attack cannot be detected in principle
if the associated plant output measurements are consistent with those without any attacks. On
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the contrary, if an attack causes a plant output measurement that has some characteristics dif-
ferent from those in regular/normal situations, some methods may be developed to detect this
attack. Note that the output of a plant depends on both its initial conditions and external in-
puts. To clarify this dependence, rather than y(k), y(k, x(0), d(j)|kj=0) is used more often in
the following discussions. Here, x(0) belongs to the set Rn and represents the value of the
plant state vector at the time instant k = 0.

Similarly, x(k, x(0), d(j)|kj=0) is sometimes adopted to indicate the dependence of the state
vector on its initial values and on the input vector sequence d(k)|∞k=0.

Definition 11.1. (Undetectable attack) Concerning the system described by Eqs. (11.14)
and (11.15), an attack d(k)|∞k=0 is undetectable if for each initial state vector x(0) ∈ Rn,
there exists at least one other initial state vector x̄(0) ∈ Rn such that y(k, x̄(0), d(j)|kj=0) =
y(k, x(0),0) at each k = 0,1,2, · · · .

From an engineering point of view, this definition means that a detector cannot be constructed
if the plant outputs associated with some attacks are completely the same as those due to mod-
ifications of plant initial conditions. One of the basic motivations behind this definition is that
plant initial conditions are usually not exactly known in many applications, which makes the
mapping from a plant input series to a plant output series not bijective and therefore leaves
opportunities for an attacker to inject destructive disturbances.

In addition, to detect whether or not there exists an attack in a networked system, it is usu-
ally necessary for a detector to determine where the attack is from if it exists. This leads to
an attack identification problem and requires to construct a detector that has capabilities of
identifying attack locations. As attacks in a networked system are usually sparse, only a few
elements of the attack vector d(k) are usually not constantly equal to zero. Hence, some up-
per bounds can be put on the number of colluding attackers. Here, we assume that at most K

attackers collude in one attack.

Definition 11.2. (Unidentifiable attack) Concerning the system described by Eqs. (11.14)
and (11.15), an attack vector sequence d(k)|∞k=0 with K elements not constantly zero is
unidentifiable if for each initial state vector x(0) ∈ Rn, there exist at least one other initial
state vector x̄(0) ∈ Rn and one other attack vector sequence d̄(k)|∞k=0 with K̄ elements not
constantly zero, where 0 ≤ K̄ ≤ K , such that at every time instant k = 0,1,2, · · · , the plant
output satisfies y(k, x̄(0), d̄(j)|kj=0) = y(k, x(0), d(j)|kj=0).

Similarly to an undetectable attack, an unidentifiable attack cannot be identified because an-
other attack can generate completely the same plant output, which makes plant outputs alone
not sufficiently informative in distinguishing these attacks.
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Let K denote a set consisting of K nonzero positive integers that belong to the set
{1, 2, · · · , q}, where q stands for the dimension of the attack vector d(k). Associating with
this set, define the attack set AK in which an entry of the attack vector d(k) is not constantly
set to zero only if it is in the row whose number is one of the elements of the set K. More pre-
cisely, assume that K = {α1, α2, · · · , αK} with αi ∈ {1, 2, · · · , q} for each i = 1,2, · · · , q .
Then,

AK = { d(k) | d(i, k) ≡ 0, ∀i ∈ {1, 2, · · · , q}\K; d(i, k) �≡ 0, ∀i ∈ K } ,

where d(i, k) stands for the ith row element of the attack vector d(k).

An attack set is undetectable if there exists at least one undetectable attack in that set. Sim-
ilarly, an attack set is unidentifiable if there exists at least one unidentifiable attack in that
set. As the attack set AK only provides information about the position, in which an attack is
injected into the networked system, which is completely the same as that of the set K, some-
times the set K is also called as an attack set. In other words, when an attack from the attack
set AK is injected into the networked system described by Eqs. (11.14) and (11.15), Bd(k)

and Dd(k) in these equations can be respectively rewritten as BKdK(k) and DKdK(k), where
BK is constituted from the columns of the matrix B whose numbers are consistent with the
elements of the set K, whereas DK is constituted from the columns of the matrix D whose
numbers are consistent with the elements of the set K. In addition, dK(k) is a K-dimensional
real-valued vector.

In [9], a different attack detection problem is formulated and investigated. It is assumed there
that only sensors or actuators of a networked system are attacked, and a characterization is
given for the maximum number of attacks that can be detected and corrected, which is ex-
pressed as a function of the plant state transition matrix and the plant output matrix. Although
this problem formulation appears to be different from that given in Definition 11.1, they are
actually closely related to each other [7].

From linearity assumption of the networked system and Definition 11.1 it is obvious that an
attack d(k)|∞k=0 is undetectable if and only if there exists a plant initial state vector x̃(0) ∈ Rn

such that

y(k, x̃(0), d(j)|kj=0) ≡ 0. (11.16)

The latter is closely related to some fundamental properties of a dynamic system. In fact,
Eq. (11.16) has completely the same form as that of the conditions adopted in the definition
of the zero dynamics of a system. More precisely, under some weak conditions, the equality
in this equation can be satisfied if and only if the attack d(k)|∞k=0 only stimulates the zero dy-
namics of the networked system [10,11]. Due to these relations, we can establish an algebraic
criterion to verify whether or not an attack set is undetectable.
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Similarly, we can straightforwardly prove that an attack d(k)|∞k=0 with K elements that are not
constantly zero is unidentifiable if and only if there exist a plant initial state vector x̃(0) ∈ Rn

and an attack d̄(k)|∞k=0 with K̄ elements in d(k)|∞k=0 that is not constantly zero and the integer
K̄ satisfying 0 ≤ K̄ ≤ K such that

y(k, x̃(0), d(j) − d̄(j)|kj=0) ≡ 0. (11.17)

Note that Eqs. (11.16) and (11.17) are quite similar in their forms. It is not hard to understand
that attack identification is once again closely related to transmission zeros of a networked
system, which leads to an easily verifiable algebraic condition for an unidentifiable attack set.

11.3.1 Zero Dynamics and Transmission Zeros

These discussions reveal that both attack detection and attack identification are in fact a verifi-
cation problem on the existence of an initial state vector and an input sequence that make the
plant output vector be constantly equal to zero, which is closely related to zero dynamics and
therefore to transmission zeros of a system. To illustrate these relations, the following con-
clusions are first established for a discrete-time system, which are similar to the results about
continuous-time systems given in [10,11].

Lemma 11.1. Let G(z) be the transfer function matrix with minimal realization given by
Eqs. (11.14) and (11.15). If the system input vector process d(k) is of the form d(k) = λkd(0)

for each k ≥ 0 and the system initial conditions satisfy x(0) = (λI − A)−1Bd(0), in which λ

is a constant scalar not equal to any eigenvalue of the matrix A, and d(0) is a constant vec-
tor with compatible dimension. Then for an arbitrary integer k ≥ 0, the system output vector
process y(k) can be expressed as

y(k) = λkG(λ)d(0). (11.18)

Proof. When λ is not an eigenvalue of the matrix A, the matrix λI − A is invertible, which
means that the condition x(0) = (λI − A)−1Bd(0) is well defined. Note that when a system
has a minimal realization of Eqs. (11.14) and (11.15), the Z-transformation of its output vec-
tor process y(k) can be expressed as

y(z) = C(zI − A)−1 [x(0) + Bd(z)] + Dd(z). (11.19)

Hence, when d(k) = λkd(0) for each k ≥ 0, we have that
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y(z) = C(zI − A)−1
{
x(0) + B

[
(z − λ)−1d(0)

]}
+ D

[
(z − λ)−1d(0)

]

=
[
C(λI − A)−1B + D

][
(z − λ)−1d(0)

]

+ C(zI − A)−1
{
x(0) + B

[
(z − λ)−1d(0)

]}

− C(λI − A)−1B
[
(z − λ)−1d(0)

]

= G(λ)
[
(z − λ)−1d(0)

]

+ C(zI − A)−1
{
x(0) +

[
I − (zI − A)(λI − A)−1

]
B
[
(z − λ)−1d(0)

]}

= G(λ)
[
(z − λ)−1d(0)

]
+ C(zI − A)−1

{
x(0) − (λI − A)−1Bd(0)

}
. (11.20)

Therefore, the condition x(0) = (λI − A)−1Bd(0) leads to the following equality:

y(z) = G(λ)
[
(z − λ)−1d(0)

]
(11.21)

Recall that λ is a constant scalar. The proof can now be completed through taking the inverse
Z-transform of the vector-valued function y(z).

From Lemma 11.1 it is clear that if d(0) belongs to the null space of G(λ), then when the sys-
tem initial state vector is set as x(0) = (λI − A)−1Bd(0), the plant output vector y(k) is con-
stantly equal to zero for each k = 0,1,2, · · · . However, it is worth mentioning that when λ is a
real scalar and d(0) is a real-valued vector, both λkd(0) with any k ≥ 0 and (λI − A)−1Bd(0)

are real-valued vectors, which can be realized in principle in actual engineering problems,
noting that both the state transition matrix A and the system input matrix B are real valued.
However, when either λ is a complex scalar or d(0) is a complex-valued vector, the associated
λkd(0) with k ≥ 0 and/or (λI − A)−1Bd(0) may also be complex valued. This may make
the associated values not be realizable by any actual system input vector process and/or any
system initial states.

When λ is equal to an eigenvalue of the state transition matrix A, the discussions become
more complicated. However, with the results of Theorem 2.5, similar results can still be ob-
tained. On the other hand, using a concept called system matrix, similar results can also be
established without distinguishing whether or not λ is an eigenvalue of the state transition ma-
trix A, which are given in the following Lemma 11.2.

To guarantee the existence of a nontrivial input vector process d(k) and a nontrivial initial
state vector x(0) such that all the conditions of Lemma 11.1 are satisfied and the plant output
vector process is constantly equal to zero, it is necessary that the matrix G(λ) is not of full
column rank. When the system is of single input and single output, it is obvious that λ must
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be one of the zeros of its transfer function, as the minimal realization assumption does not
permit the existence of a zero in the transfer function that is equal to one of its poles. The sit-
uation becomes much more complicated when the system is of multiple inputs and multiple
outputs. In this case, even if its state space model is a minimal realization, there still exists
possibility that some of its zeros and some of its poles share the same value. To clarify the
mathematical descriptions of a system zero and its relations to the zero dynamics of the sys-
tem, the following concepts are required.

Definition 11.3. A vector x(0) ∈ Rn is called weakly unobservable if there exists an input
vector sequence d(k)|∞k=0, such that the corresponding output vector sequence y(k) is con-

stantly equal to zero, that is, y
(
k, x(0), d(j)|k−1

j=0

)
= 0 for each k = 0,1,2, · · · .

Denote by V the set consisting of all weakly unobservable vectors of a system. From the lin-
earity of the system we can straightforwardly proven that this set is actually a subspace of Rn.
Due to this reason, the set V is sometimes called the weakly unobservable subspace of the
system [11,12]. In fact, if we define a subspace Vk with k = 0,1,2, · · · , as

Vk = {
x(0)

∣∣ x(0) ∈Rn, there is an input sequence d(k)|∞k=0,

such that y(i) = 0 for each i = 0,1, · · · , k − 1} ,

then it is obvious from the definition of this subspace sequence that

V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ · · · .

In addition, we can directly prove that there exists a nonnegative integer 0 ≤ k ≤ n such that

V = Vk = Vk+i for all i ≥ 0.

Let F ∈ Rq×n and L ∈ Rq×s satisfy

(A + BF)V ⊆ V, Null(C + DF) ⊇ V, Span(L) =Null(D)
⋂

(B†V).

The existence of these matrices is shown in [11]. Then we can prove that, for each x(0) ∈ V ,
an input vector sequence d(k)|∞k=0 that satisfies

y
(
k, x(0), d(j)|k−1

j=0

)
= 0 for each k = 0,1,2, . . . ,

can be parameterized so that, for an arbitrary k ∈ {0, 1, 2, · · · },
d(k) = Fx(k) + Lw(k),
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where w(k) is an arbitrary real vector sequence with compatible dimension. Moreover, we can
also prove that if x(0) ∈ V and d(i)|∞i=0 with d(i) ∈ Rq is an associated input vector sequence
such that y(k, x(0), d(i)|k−1

i=0 ) = 0 for each k = 1,2, · · · , then the associated state vector se-
quence x(k)|∞k=0, denoted x(k, x(0), d(i)|k−1

i=0 )|∞k=0, satisfies x(k, x(0), d(i)|k−1
i=0 ) ∈ V for each

k = 1,2, · · · .

Some other properties of this weakly unobservable subspace can be found, for example, in
[11,12].

The concept of zero dynamics of a system is established on the basis of its weakly unobserv-
able subspace.

Definition 11.4. When the initial state vector of the system described by Eqs. (11.14)
and (11.15) is restricted to belong to its weakly unobservable subspace V , its associated
input–output relation is called its zero dynamics.

The zero dynamics of a system is also connected to its weakly unobservable subspace through
its system matrix, a concept suggested originally by Rosenbrock [11,13].

Lemma 11.2. Concerning the system described by Eqs. (11.14) and (11.15), assume that the

matrix

[
B

D

]
is of full column rank. Define its system matrix

P(z) =
[

zI − A −B

C D

]
. (11.22)

Suppose that there exist a vector x(0) ∈ Rn and a vector d(0) ∈ Rq such that at least one
of these two vectors is not equal to zero, and at a real value of the complex variable z, de-
noted λ, the following equality is satisfied:

P(λ)

[
x(0)

d(0)

]
= 0. (11.23)

Then for each k = 1,2, · · · , the input vector sequence d(k) = λkd(0) satisfies both
y(k, x(0), d(i)|ki=0) = 0 and d(k) ∈ Rq .

Proof. Note that the system defined by Eqs. (11.14) and (11.15) is well defined. This means
that for a fixed initial state vector x(0) and each input vector sequence d(k)|∞k=0, there are
only one state vector sequence x(k)|∞k=0 and only one output vector sequence y(k)|∞k=0 that
satisfy these two equations simultaneously.
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When condition (11.23) is satisfied, define x(k) as x(k) = λkx(0) for every k = 0,1,2, · · · .
Then, we can straightforwardly prove that

x(1) = λx(0) = Ax(0) + Bd(0).

Assume now that, for an integer i with i ≥ 0, Eq. (11.14) is satisfied by x(i) = λix(0) and
d(i) = λid(0). Then, we can straightforwardly prove that

x(i + 2) = λi+2x(0) = λx(i + 1) = λ [Ax(i) + Bd(i)] = A [λx(i)] + B [λd(i)]

= Ax(i + 1) + Bd(i + 1),

that is, when k = i + 1, the aforementioned state vector process and input vector process also
satisfy Eq. (11.14). Therefore, x(k) = λkx(0) and d(k) = λkd(0) satisfy this equation for
every k ≥ 0. Hence, x(k) = λkx(0) is the solution to this difference equation with its initial
state vector x(0) and input vector process d(k) = λkd(0).

On the other hand, note that, for each k = 0,1,2, . . . ,

Cx(k) + Dd(k) = C
(
λkx(0)

)
+ D

(
λkd(0)

)
= λk [Cx(0) + Dd(0)] = 0,

provided that the vectors x(0) and d(0) satisfy conditions (11.23). Therefore, y(0) = 0, and
for each k = 1,2, · · · ,

y(k, x(0), d(i)|k−1
i=0 ) = 0.

Now, assume that λ takes a complex value. Denote its real and imaginary parts respectively
by λr and λj . Recall that the matrices A, B , C, and D and the vectors x(0) and d(0) are real
valued. Satisfaction of Eq. (11.23) implies that

[
λrI − A

C

]
x(0) +

[ −B

D

]
d(0) = 0, λjx(0) = 0.

In addition, note that [ −B

D

]
=

[ −I 0
0 I

][
B

D

]
,

which means that

rank

([ −B

D

])
= rank

([
B

D

])
.

If λj �= 0, then it is necessary that x(0) = 0. As the matrix

[
B

D

]
is assumed to be of full

column rank, x(0) = 0 and the first subequation in the above equation imply that the vector
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d(0) is also equal to zero. This is a contradiction with the requirement that at least one of the
vectors x(0) and d(0) is not equal to zero. Hence, λj = 0, that is, λ takes a real value.

These arguments show that if there is λ satisfying Eq. (11.23), then it is necessary that this
λ is real valued. Hence, λkd(0) is real valued for each k = 0,1,2, · · · . This completes the
proof.

Clearly, a real vector satisfying Eq. (11.23) belongs to the weakly unobservable subspace V of
the system.

From the proof of Lemma 11.2 it is obvious that if both the system initial state vector x(0)

and its input vector sequence d(k)|∞k=0 are allowed to take complex values, then the associ-
ated results are valid even when the complex variable z takes a complex value that satisfies
Eq. (11.23). In this case, both x(0) and d(0) may be complex vectors, which will lead to a
complex-valued sequence d(k)|∞k=0 that makes the associated system output vector sequence
constantly equal to zero.

On the other hand, Lemma 11.2 does not require that λ is different from every eigenvalue
of the state transition matrix A, which makes its results more general than those on system
zero dynamics derived from Lemma 11.1. In fact, if λ is not an eigenvalue of the state tran-
sition matrix A, then Eq. (11.23) straightforwardly leads to [C(λI − A)−1B + D]d(0) = 0,
which can be rewritten as G(λ)d(0) = 0. This is completely in the same form as the condi-
tion obtained from Lemma 11.1 for the system output vector sequence constantly equal to
zero. These observations imply that when λ is not an eigenvalue of the matrix A, the condi-
tions of Lemma 11.2 are equal to those derived from Lemma 11.1. Hence, we can regard that
Lemma 11.2 includes some conclusions of Lemma 11.1 as its particular case.

To guarantee the existence of a nonzero vector x(0) and/or a nonzero vector d(0) such that
Eq. (11.23) is satisfied, it is necessary that the matrix P(λ) is not of full column rank. A com-
plex value λ at which the system matrix P(z) defined by Eq. (11.22) is not of full column
rank is called a transmission zero of this system, which is an extension of a zero in a transfer
function of a single-input single-output system to a zero of the transfer function matrix of a
multiple-input multiple-output system [10,13].

Various methods have been developed for the computation of the transmission zeros of a
multiple-input multiple-output system, among which one of most widely adopted methods
appears to be the approach based on the so-called McMillan–Smith form [10,11]. In addition,
the proof of the lemma reveals that to construct an actually realizable system initial state vec-
tor and an actually realizable system input vector process such that the system output vector
process is constantly equal to zero, real-valued transmission zeros must be considered.
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Our discussions show that if a system has a real transmission zero, then there certainly exist
a real-valued initial state vector and a real-valued input vector sequence that lead to a con-
stantly zero output vector sequence. However, it is still not clear that if there is a real-valued
initial state vector x(0) and a real-valued input vector sequence d(k)|∞k=0 such that the associ-
ated output vector sequence y(k, x(0), d(j)|kj=0) is constantly zero, whether or not the system
must have at least one real transmission zero.

To attack this problem, we need the following concept.

Definition 11.5. If for all permissible input vector sequences u1(k)|∞k=0 and u2(k)|∞k=0, the
satisfaction by the system output vector sequence y(k)|∞k=0 of the condition

y
(
k,0, u1(j)|kj=0

)
= y

(
k,0, u2(j)|kj=0

)

for all k = 0,1,2, . . . implies that

u1(k) = u2(k)

for all k = 0,1,2, . . . , then this system is called left invertible.

When a system is linear, it is obvious from the definition that a necessary and sufficient condi-

tion for its left invertibility is that y
(
k,0, u(j)|kj=0

)
≡ 0 if and only if u(k) ≡ 0. For the linear

time-invariant system described by Eqs. (11.14) and (11.15) that has a minimal realization,
let G(z) denote its transfer function matrix C(zI − A)−1B + D. It has been proven that the
following statements are equivalent to each other [11]:

• This system is left invertible.
• There exists a rational matrix-valued function Gl(z) such that Gl(z)G(z) = I , that is, the

transfer function matrix G(z) has a left inverse.
• The system matrix P(z) defined in Eq. (11.22) has a rank of n+q for all but finitely many

z ∈ C.
• Let V denote the weakly unobservable subspace of the system. Then

V
⋂

{B ×Null(D)} = { 0 } and

[
B

D

]
is of full column rank.

Related to the concept of weak observability, there is also a concept called strong observabil-
ity.

Definition 11.6. If for every permissible initial state vector x(0) and every feasible input vec-
tor sequence u(k)|∞k=0, the system output vector sequence y(k)|∞k=0 satisfies the equality

y
(
k,0, u(j)|kj=0

)
= 0
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for all k = 0,1,2, · · · only when

x(0) = 0,

then this system is called strongly observable.

For a linear time invariant system, the following results have been established in [11].

Lemma 11.3. A system with its state space model described by Eqs. (11.14) and (11.15) is
strongly observable, if and only if at every complex value of the complex variable z,

rank

([
zI − A −B

C D

])
= n + rank

([
B

D

])
.

From Definitions 11.3 and 11.6 it is obvious that a system is strongly observable if and only
if its weakly unobservable subspace is constituted only from the zero vector. It has also been
proven that, for the linear time-invariant system of Eqs. (11.14) and (11.15), its strong observ-
ability is equivalent to that, for each real matrix F with compatible dimension, the matrix pair
(A + BF, C + DF) is always observable [11].

Based on these results, the following conclusions are derived, which reveal situations under
which the weakly unobservable subspace of a system is not restricted only to the zero vector.

Theorem 11.1. Assume that the system described by Eqs. (11.14) and (11.15) is left invert-
ible. Then there exists at least one nonzero initial state vector x(0) such that there is an input

vector sequence d(k)|∞k=0 that makes the system output vector y
(
k, x(0), d(j)|kj=0

)
con-

stantly equal zero if and only if it has a transmission zero.

Proof. Assume that the system has a real transmission zero. Then by Lemma 11.2 there cer-
tainly exists a nonzero initial state vector satisfying the requirements.

Now, assume that all the transmission zeros of the system are complex. Let λ be any one of
them. Then there exist vectors x∗(0) and d∗(0) such that at least one of them is not equal to
zero and the following equality is satisfied:

[
λI − A −B

C D

][
x∗(0)

d∗(0)

]
= 0. (11.24)

Recall that all the system parameter matrices A, B , C, and D are real. Taking the conjugates
of both sides of this equation, we obtain the following equality:

[
λI − A −B

C D

][
x∗(0)

d∗(0)

]
=

[
λ̄I − A −B

C D

][
x̄∗(0)

d̄∗(0)

]
= 0. (11.25)
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As col{x∗(0), d∗(0)} does not equal zero, it is obvious that the vector col{x̄∗(0), d̄∗(0)} is not
a zero vector either. These imply that λ̄0 is also a transmission zero of the system.

Define d∗(k) as d∗(k) = λkd(0), k = 0,1,2, · · · . Let d∗(z) and d�(z) denote respec-
tively the Z-transformations of the sequences d∗(k)|∞k=0) and d̄∗(k)|∞k=0). Moreover, let
y∗(z) and y�(z) denote respectively the Z-transformations of the output vector sequences
y(k, x∗(0), d∗(j)|kj=0) and y(k, x̄∗(0), d̄∗(j)|kj=0). According to the proof of Lemma 11.2, we
have that

y(k, x∗(0), d∗(j)|k−1
j=0) = 0, y(k, x̄∗(0), d̄∗(j)|k−1

j=0) = 0 for all k = 0,1,2, · · · . (11.26)

Define x(0) and d(k) further as

x(0) = x∗(0) + x̄∗(0), d(k) = d∗(k) + d̄∗(k) for all k = 0,1,2, · · · .

Then, both x(0) and d(k) with k ∈ {0,1,2, · · · } are real valued and therefore can be realized
in principle.

Let y(z) denote the Z-transformation of the output vector sequence associated with the sys-
tem initial state vector x(0) and the input vector sequence d(k)|∞k=0. Then by Eq. (11.19) we
have that

y(z) = C(zI − A)−1 [x(0) + Bd(z)] + Dd(z)

= C(zI − A)−1 {[x∗(0) + x̄∗(0)] + B[d∗(z) + d�(z)]} + D[d∗(z) + d�(z)]
=

{
C(zI − A)−1 [x∗(0) + Bd∗(z)] + Dd∗(z)

}

+
{
C(zI − A)−1 [x∗(0) + Bd�(z)] + Dd�(z)

}
= y∗(z) + y�(z). (11.27)

We can therefore declare from Eq. (11.26) that, for each k = 0,1,2, · · · ,

y(k, x(0), d(j)|kj=0) = 0. (11.28)

On the contrary, assume that the system described by Eqs. (11.14) and (11.15) does not have a
transmission zero but there is a nonzero initial state vector x(0) such that there exists an input
sequence d(k)|∞k=0 that makes y(k, x(0), d(j)|kj=0) = 0 for every k = 0,1,2, · · · . Then, for
arbitrary λ ∈ C, the matrix

[
λI − A −B

C D

]
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is of full column rank. Hence

rank

([
λI − A −B

C D

])
= n + q = n + rank

([
B

D

])

By Lemma 11.3 this system is strongly observable. Hence, if there is an input sequence
d(k)|∞k=0 that makes y(k, x(0), d(j)|kj=0) = 0 for every k = 0,1,2, · · · , then x(0) = 0. This
contradicts the assumption x(0) �= 0. Therefore, the system must have some transmission ze-
ros.

This completes the proof.

Different from Lemma 11.2, the transmission zero in the theorem is not required to be real.
On the other hand, both the initial state vector and the input vector sequence are required to be
real.

11.3.2 Attack Prevention

From the results in the previous subsection it is clear that a linear time-invariant system is
left invertible if and only if its transfer function matrix is of full normal column rank. This
observation leads further to the following conclusions.

Corollary 11.1. If an LTI system is not left invertible, then it is certainly not attack de-
tectable/identifiable.

Proof. Assume that a transfer function matrix G(z) is not of FNCR. Then there exists a
nonzero vector α such that, for each λ ∈ C, the following equality is satisfied:

G(z)α = 0. (11.29)

Let (A, B, C, D) be a real matrix quadruplex that satisfies C(zI − A)−1B + D = G(z) and
associates with a state space model having a minimal realization. Take an arbitrary real scalar
λ that is not an eigenvalue of the matrix A and denote the associated real and imaginary parts
of the vector α by αr and αj , respectively. Then, the Eq. (11.29) means that the following two
equalities are satisfied:

[C(λI − A)−1B + D]αr = 0, [C(λI − A)−1B + D]αj = 0. (11.30)

Note that α �= 0 is equivalent to

[
αr

αj

]
�= 0, that is, the assumption α �= 0 implies that at least

one of αr and αj is not equal to zero.
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Assume that αr �= 0. Then, the first equality of Eq. (11.30) can be equivalently rewritten
as [

λI − A −B

C D

][
(λI − A)−1Bαr

αr

]
= 0. (11.31)

Note that both vectors (λI − A)−1Bαr and αr are real. Moreover, the vector[
(λI − A)−1Bαr

αr

]
is not a zero vector. By Lemma 11.2 there always exist a nonzero

x(0) ∈ Rn and an input vector sequence d(k) ∈ Rq , not constantly equal to zero, such that
the output vector process of the LTI system, which can be expressed as y(k, x(0), d(i)|ki=0), is
constantly equal to zero for each k = 0,1, · · · . Hence the system is not attack detectable/iden-
tifiable.

When αj �= 0, the same arguments show that the system is not attack detectable/identifi-
able.

This completes proof.

These observations reveal that the problem of attack preventions is not trivial only when the
associated system is left invertible.

With these preparations on system zero dynamics, we discuss now conditions respectively for
the detectability and identifiability of attacks in a networked system.

Theorem 11.2. Concerning the system described by Eqs. (11.14) and (11.15), an attack set K
is undetectable if and only if there exists a number λ such that the system matrix

Pd(λ) =
[

λI − A −BK
C DK

]
(11.32)

is not of full column rank.

Proof. Assume that the matrix Pd(λ) is not of full column rank at a particular real value of
the complex variable λ, denoted λ0. Then, there exist vectors x(0) and d(0) such that at least
one of these two vectors is not a zero vector and

(λ0I − A)x(0) − BKd(0) = 0, (11.33)

Cx(0) + DKd(0) = 0. (11.34)

As all the involved matrices, that is, the state transition matrix A, the input matrix BK, the
output matrix C, and the direct feedthrough matrix DK, and the scalar λ0 are real valued, we
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can assume, without any loss of generality, that both vectors x(0) and d(0) are real valued.
In fact, if they are not real valued, then denote their real and imaginary parts respectively by
xr(0), dr(0), xj (0), and dj (0). Then Eqs. (11.33) and (11.34) imply that

(λ0I − A)xr(0) − BKdr(0) = 0, (λ0I − A)xj (0) − BKdj (0) = 0, (11.35)

Cxr(0) + DKdr(0) = 0, Cxj (0) + DKdj (0) = 0. (11.36)

Note that by their definitions all the vectors xr(0), dr(0), xj (0), and dj (0) are real valued.
Moreover, at least one of them is not equal to zero. Reasonability of the adopted assumption
immediately follows.

We now can declare the undetectability of the attack set K through a direct application of
Lemma 11.2.

Assume now that the system matrix Pd(λ) is not of full column rank at a particular complex
value λ0. If the system is not left invertible, then according to the aforementioned arguments,
we can declare that the system is not detectable of the attack set K.

Now, assume that the system is left invertible. Then from Theorem 11.1 we can declare that
the attack set K is not detectable.

Assume that the attack set K is detectable. Then, by Corollary 11.1 its transfer function ma-
trix must be of full normal column rank. From this observation and the definition of attack
detectability, this system cannot have any transmission zero.

This completes proof.

From Eqs. (11.33) and (11.34) we can also see that for the existence of an undetectable attack,
it is necessary that the cardinality of the attack set is sufficiently large [7]. On the other hand,
it is possible to improve attack detectability of a networked system through introducing state
feedback into the system. The motivations are that a state feedback can modify transmission
zeros of a system and the feedback gain can be designed with objectives that are unknown to
an attacker.

Similarly, we have the following criterion for attack identifiability of the networked system
described by Eqs. (11.14) and (11.15).

Theorem 11.3. Concerning the system described by Eqs. (11.14) and (11.15), an attack set K
is unidentifiable, if and only if there exist an attack set R with its cardinality not greater than
that of the attack set K and a number λ such that the matrix

Pi(λ) =
[

λI − A −BK −BR
C DK DR

]
(11.37)

is not of full column rank.
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Proof. Assume that at a particular real value of the complex variable λ, denoted λ0, the
matrix-valued function Pi(λ) is not of full column rank. Then there exist vectors x(0), dK(0),
and dR(0) such that at least one of these three vectors is not a zero vector, and

(λ0I − A)x(0) − BKdK(0) − BRdR(0) = 0, (11.38)

Cx(0) + DKdK(0) + DRdR(0) = 0. (11.39)

Using the same arguments as in the proof of Theorem 11.2, we can assume, without loss of
any generality, that the vectors x(0), dK(0), and dR(0) are real valued. Then by Lemma 11.2
there exist an initial state vector x(0) ∈ Rn and an input vector sequence u(k) ∈ RK+R , k =
0,1, · · · , such that the output vector sequence y(k) of the following system is constantly equal
to zero.

x(k + 1) = Ax(k) + [BK BR]u(k), (11.40)

y(k) = Cx(k) + [DK DR]u(k). (11.41)

Moreover, at least either the initial state vector x(0) is not a zero vector, or the input vec-

tor sequence u(k)|∞k=0 is not constantly equal to zero. Note that both matrices

[
BK
DK

]
and

[
BR
DR

]
are of full column rank. Direct algebraic manipulations show that, for this plant ini-

tial state vector x̃(0) ∈ Rn, there exist an attack d(k)|∞k=0 with K elements in d(k)|∞k=0 not
constantly zero, an attack d̄(k)|∞k=0 with K̄ elements in d(k)|∞k=0 not constantly zero, and the
integer K̄ satisfying 0 ≤ K̄ ≤ K such that

y(k, x̃(0), d(j) − d̄(j)|kj=0) ≡ 0,
∣∣∣∣d(k)|∞k=0 − d̄(k)|∞k=0

∣∣∣∣ �= 0,

that is, the attack set K is not identifiable.

By the same token as that adopted in the proof of Theorem 11.2, we can prove that even if
the aforementioned λ0 takes a particular complex value, the system is also unidentifiable with
respect to the attack set K.

This completes the proof.

On the basis of geometric linear system theories, some graph theoretic conditions have also
been established for the existence of an undetectable attack set in a networked system and for
the existence of an unidentifiable attack set in a networked system. These conditions depend
only on system structures and are valid for almost all system parameters when the networked
system has a compatible structure. A system property with these characteristics is extensively
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called generic and has the advantage of strong robustness against parametric modeling er-
rors [14]. When the initial state vector of a networked system is known, it is proven that if the
attack-state-output graph is sufficiently connected, then undetectable attacks do not exist in al-
most all structurally compatible networked systems. When the initial state vector is not known
for a networked system, the criterion becomes more complicated, and left invertibility of the
system may be required. Detailed discussions can be found, for example, in [7,8].

11.4 Detection of Attacks

In the above section, we developed some criteria to verify whether or not an attack can be de-
tected or identified. These criteria are closely related to the transmission zeros of a networked
system and can be verified in principle. When the scale of the system is large, however, com-
putations of its transmission zeros may be computationally prohibitive and/or numerically
unstable. This means that further efforts are required to develop a computationally attrac-
tive method for verifying attack detectability and identifiability. To achieve this objective,
the methods given in Chapter 3 may be helpful, in which structure information is explicitly
and efficiently utilized in the verification of controllability and observability of a large-scale
networked system, noting that both the system matrix Pd(λ) of Eq. (11.32) and the system
matrix Pi(λ) of Eq. (11.37) have a similar form of the matrix-valued polynomial M(λ) of
Eq. (3.29). In this section, we investigate how to detect an attack using a centralized observer.

The design of an attack detector consists of a discrete-time modified Luenberger observer,
which is sometimes also called a residual filter, with its input being the plant output measure-
ments y(k)|∞k=0 and its output being a residual signal r(k)|∞k=0:

z(k + 1) = Az(k) − L[y(k) − Cz(k)], (11.42)

r(k) = Cz(k) − y(k), (11.43)

where the matrix L is usually called the gain of the observer, which is selected to make the
matrix A + LC stable, that is, all its eigenvalues have a magnitude smaller than 1. When the
matrix pair (A, C) is observable, the existence of a desirable gain matrix L is always guaran-
teed. The residue signal r(k) is used to detect the existence of an attack. Ideally, this signal is
constantly equal to zero if and only if there do not exist any attacks in the networked system.
As the initial state vector of the observer also affects the residual signal, these expectations
cannot be satisfied in general, and some modifications are required to develop a practically
meaningful criterion to check the existence of an attack. However, we have the following the-
oretical results on the aforementioned residual filter.
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Theorem 11.4. Concerning the system described by Eqs. (11.14) and (11.15), assume
that an attack set K is detectable and the initial state vector of the system, that is, x(0), is
known. Assume also that the initial state vector of the residual filter described by Eqs. (11.42)
and (11.43), that is, z(0), is set to z(0) = x(0), and the gain matrix L is selected such that the
matrix A + LC is stable. Then, the residual signal of the filter is constantly equal to zero if
and only if the attack disturbance is constant equal to zero.

Proof. Define the vector-valued function e(k) = z(k) − x(k). Then from Eqs. (11.14), (11.15),
(11.42), and (11.43) we can straightforwardly prove that

e(k + 1) = z(k + 1) − x(k + 1)

= {Az(k) − L[Cx(k) + DKdK(k) − Cz(k)]} − {Ax(k) + BKdK(k)}
= (A + LC)e(k) − (LDK + BK)dK(k), (11.44)

r(k) = Cz(k) − [Cx(k) + DKdK(k)]
= Ce(k) − DKdK(k). (11.45)

When the initial state vector of the detector is set to be the same value of the initial state vec-
tor of the system, that is, z(0) = x(0), we have that e(0) = 0. Hence, when the matrix A + LC

has all its eigenvalues being smaller than 1 in magnitude and the attack disturbances do not
exist, that is, dK(k) ≡ 0, it is obvious from Eq. (11.44) that the error vector sequence e(k)

with k = 0,1,2, · · · is also constantly equal to zero. This further implies that the output vec-
tor of the detector, that is, the residual vector r(k) is also constantly equal to zero when the
temporal variable k takes any value from the set {0, 1, 2, · · · }.
Now assume that there exists a nonzero attack vector sequence dK(k)|∞k=0 such that the output
of the attack detector described by Eqs. (11.42) and (11.43) is constantly equal to zero. Then
by Theorem 11.4 there must exist at least one λ ∈ C, one vector ē(0), and one vector d̄K(0)

such that at least one of these two vectors is not equal to zero and

[
λI − (A + LC) LDK + BK

C −DK

][
ē(0)

d̄K(0)

]
= 0. (11.46)

Note that

[
λI − (A + LC) LDK + BK

C −DK

]
=

[
I −L

0 I

][
λI − A BK

C −DK

]
.
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Note also that the matrix

[
I −L

0 I

]
is invertible for every real-valued matrix L with com-

patible dimension. It is obvious that the satisfaction of Eq. (11.46) is equivalent to the satis-
faction of the equation

[
λI − A BK

C −DK

][
ē(0)

d̄K(0)

]
= 0, (11.47)

which contradicts the assumption that the attack set K is detectable. This completes the
proof.

Although the results of Theorem 11.4 are promising, the system initial state vector x(0) is
usually not known exactly. Under such a situation, the condition z(0) = x(0) can gener-
ally not be satisfied properly for the initial state vector of the residual filter, and z(0) may
be selected with some arbitrariness. This means that even if there do not exist attacks in the
networked system, the residual signal r(k) may not be constantly equal to zero. However, it
can be proven that when the networked system has not been attacked, the residual signal r(t)

asymptotically converges to zero with the increment of the temporal variable k. On the other
hand, measurement errors and external random disturbances are usually unavoidable in actual
networked systems, which means that even if the conditions of Theorem 11.4 are perfectly
satisfied, the residual signal r(k) may not be constantly equal to zero and some statistical hy-
pothesis verification methodologies appear necessary for the determination of whether or not
there are attacks in the networked system. In addition to these, parametric uncertainties and
unmodeled dynamics usually exist in the model of Eqs. (11.14) and (11.15). Hence, in ac-
tual implementations of attack detections, in addition to construct a stable residual filter, the
gain matrix L should be selected to reduce sensitivities of the residual signal r(k) to modeling
errors while keeping it satisfactorily sensitive to attacks. Furthermore, for a large-scale net-
worked system, it is usually more attractive to implement an attack detector in a distributed
way using only local subsystem output measurements. Detailed discussions on these issues
are given in various literature, for example, [9], [8], and [7].

11.5 Identification of Attacks

In actual applications, it is usually not only necessary to know whether or not there exists an
attack in a networked system, but also essential to know where the attack is from when it ex-
ists. Differently from attack detection, attack identification is computationally much more
difficult due to its combinatorial characteristics, although their essential treatments are the
same. In fact, it has been proven in [8] that attack identifications are generally NP hard with
respect to the number of colluding attackers. More precisely, the identification of an attack
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from the attack set K usually requires a combinatorial procedure, noting that even when the

number q of attackers is known, the actual attack is only one of the

(
q

K

)
possible attacks.

To identify this attack, each possibility must be considered, and for each possible attack, a
residual filter needs be designed. When the attack set is identifiable, there exists one and only
one residual filter whose outputs are constantly equal to zero. It is this residual filter that indi-
cates the actual attack.

Unlike the residual filter in attack detection, the model of Eqs. (11.14) and (11.15) is not
straightforwardly utilized in constructing the residual filters in attack identification. Usually,
the design of these residual filters consists of three steps. First, a transformation is applied
to the plant output vector to construct a vector without any attacks. Second, a state trans-
formation is performed to divide the plant state vector into two parts, one affected by attack
disturbances and the other is free from attack disturbances. The third step is to construct a
residual filter with the transformed plant output vector and the transformed plant state vector
that are not affected by attack disturbances, which is completely the same as that in the con-
struction procedure for attack detections.

Now, we discuss the first step, in which the attack identification problem for the networked
system described by Eqs. (11.14) and (11.15) is converted to that of a modified system in
which the associated system output vector is not attacked.

For this purpose, let D
†
K denote the pseudo-inverse of the matrix DK. Define an auxiliary net-

worked system as

x(k + 1) = [A − BKD
†
KC]x(k) + BK[I − D

†
KDK]d(k), (11.48)

y(k) = [I − DKD
†
K]Cx(k). (11.49)

Then, we have the following conclusions.

Lemma 11.4. Let the networked system be described by Eqs. (11.14) and (11.15). The at-
tack set K is identifiable if and only if this attack set is identifiable for the networked system
described by Eqs. (11.48) and (11.49).

Proof. According to Theorem 11.3, if the attack set K is identifiable for the networked sys-
tem described by Eqs. (11.14) and (11.15), then for each attack set R with its cardinality not
greater than that of the attack set K, the following system matrix Pi(λ) is of full column rank
at each complex number λ:

Pi(λ) =
[

λI − A −BK −BR
C DK DR

]
. (11.50)
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It is equivalent to that the matrix P̄i(λ) defined as

P̄i(λ) =
⎡
⎣ λI − A −BK −BR

C DK DR
C DK DR

⎤
⎦ (11.51)

is of full column rank at each complex number λ.

Multiplying both sides of the above equation from the left by diag
{
I, DKD

†
K, I − DKD

†
K

}
,

we have that
⎡
⎢⎣

I

DKD
†
K

I − DKD
†
K

⎤
⎥⎦ P̄i(λ) =

⎡
⎢⎣

λI − A −BK −BR

DKD
†
KC DK DKD

†
KDR

[I − DKD
†
K]C 0 [I − DKD

†
K]DR

⎤
⎥⎦ .

(11.52)

Note that
⎡
⎢⎣

I BKD
†
K 0

0 0 I

0 I 0

⎤
⎥⎦
⎡
⎢⎣

λI − A −BK −BR

DKD
†
KC DK DKD

†
KDR

[I − DKD
†
K]C 0 [I − DKD

†
K]DR

⎤
⎥⎦

=

⎡
⎢⎢⎣

λI − A + BKD
†
KC −BK(I − D

†
KDK) −BR + BKD

†
KDR

[I − DKD
†
K]C 0 [I − DKD

†
K]DR

DKD
†
KC DK DKD

†
KDR

⎤
⎥⎥⎦ . (11.53)

Moreover, the matrix ⎡
⎢⎣

I BKD
†
K 0

0 0 I

0 I 0

⎤
⎥⎦

is always invertible, and it is obvious that the above equations mean that the matrix-valued
function [

λI − A + BKD
†
KC −BK(I − D

†
KDK) −BR + BKD

†
KDR

[I − DKD
†
K]C 0 [I − DKD

†
K]DR

]

is also of full column rank at each complex λ. It can therefore be concluded from Theo-
rem 11.3 that the attack set K is also identifiable for the networked system described by
Eqs. (11.48) and (11.49).
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On the contrary, if the attack set K is identifiable for the networked system described by
Eqs. (11.48) and (11.49), then similar arguments show that this attack set is also identifiable
for the networked system described by Eqs. (11.14) and (11.15).

This completes the proof.

To construct a residual signal that is able to identify an attack, the state space model of
Eqs. (11.48) and (11.49) is further transformed. To develop this transformation, however,
some concepts and results are needed from geometric control theory, which can be found,
for example, in [11,12].

Definition 11.7. Assume that the dynamics of a discrete-time and linear time-invariant system
can be described by the following state space model:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k),

where x(k) ∈ Rn, y(k) ∈ Rp , and u(k) ∈ Rq denote respectively the state vector, input vector,
and output vector of the system. Moreover, assume that S is a subspace of Rn. If

A
(
S
⋂

Null(C)
)

⊆ S,

then this subspace is said to be (A, Null(C))-conditioned invariant.

A conditioned invariant subspace is closely related to estimator designs. A well-known result
is that the smallest (A, Null(C))-conditioned invariant subspace that contains the subspace
Span(B) as its subset is the largest subspace in the state space Rn of the system, which can
be estimated in the presence of an unknown input sequence u(k)|∞k=0. This conclusion is obvi-
ously of great significance in engineering, as it clarifies situations for the existence of a state
estimator with unknown inputs. Another well-known result is that the null space of the ob-
servability matrix, that is,

Null

([
CT AT CT (AT )2CT · · · (AT )n−1CT

]T
)

,

which gives all the initial state vectors that result in a zero system output when there do not
exist any external inputs are an (A, Null(C))-conditioned invariant subspace.

It has been proven that for each (A, Null(C))-conditioned invariant subspace S , there exists
at least one real matrix L such that
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(A + LC)S ⊆ S,

that is, an output injection matrix that renders this subspace invariant.

To apply these concepts and results to the system described by Eqs. (11.48) and (11.49), let

S̄K denote the smallest
(
A − BKD

†
KC, Null([I − DKD

†
K]C)

)
-conditioned invariant sub-

space that contains Span(BK[I − D
†
KDK]) as its subspace. Moreover, let L be a matrix that

satisfies

S̄K ⊇
(
A − BKD

†
KC + L[I − DKD

†
K]C

)
S̄K

Existence of a desirable matrix L is guaranteed by the properties of the subspace S̄K. Further-
more, let T be a nonsingular square matrix satisfying

T [A − BKD
†
KC + LC]T −1 =

[
Ā11 Ā12

0 Ā22

]
, T BK[I − D

†
KDK] =

[
B̄K
0

]
,

(11.54)

[I − DKD
†
K]CT −1 = [

C̄1 C̄2
]

(11.55)

where B̄K is a matrix of full row rank. We can prove using geometric control theories that a
desirable matrix T always exists [8,11,12]. As a matter of fact, the matrix T can be consti-
tuted from a basis of the subspace S̄K and a basis of the quotient subspace Rn\S̄K [11,12].

With the aforementioned matrix transformation, we can establish the following conclusions.

Lemma 11.5. Let the networked system be described by Eqs. (11.14) and (11.15). The attack
set K is identifiable if and only if this attack set is identifiable for the following networked
system:

[
x1(k + 1)

x2(k + 1)

]
=

[
Ā11 Ā12

0 Ā22

][
x1(k)

x2(k)

]
+

[
B̄K
0

]
d(k), (11.56)

y(k) = [
C̄1 C̄2

][ x1(k)

x2(k)

]
. (11.57)

Proof. Assume that the networked system described by Eqs. (11.56) and (11.57) is attack
identifiable for the attack set K. Then, for each complex number λ and each attack set R with
its attacker number not greater than k, if

⎡
⎢⎣

λI − Ā11 −Ā12 B̄K −BR1

0 λI − Ā22 0 −BR2

C̄1 C̄2 0 DR

⎤
⎥⎦
⎡
⎢⎢⎣

x1(0)

x2(0)

gK
gR

⎤
⎥⎥⎦ = 0, (11.58)
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then it is necessary that all the vectors x1(0), x2(0), gK, and gR are zero vectors, that is,

[
xT

1 (0) xT
2 (0) gT

K gT
R

]T = 0. (11.59)

Note that⎡
⎢⎣

Ā11 Ā12 B̄K
0 Ā22 0

C̄1 C̄2 0

⎤
⎥⎦ =

⎡
⎣ T [A − BKD

†
KC + LC]T −1 T BK[I − D

†
KDK][

I − DKD
†
K

]
CT −1 0

⎤
⎦

=
[

T 0
0 I

]⎡
⎣ A − BKD

†
KC + LC BK[I − D

†
KDK][

I − DKD
†
K

]
C 0

⎤
⎦
[

T −1 0
0 I

]
.

(11.60)

We therefore have that⎡
⎢⎣

λI − Ā11 −Ā12 B̄K −BR1

0 λI − Ā22 0 −BR2

C̄1 C̄2 0 DR

⎤
⎥⎦ =

[
T 0
0 I

]

×

⎡
⎢⎢⎣

λI − [A − BKD
†
KC + LC] −BK[I − D

†
KDK] −T −1

[
BR1

BR2

]

−
[
I − DKD

†
K

]
C 0 DR

⎤
⎥⎥⎦
⎡
⎣ T −1 0 0

0 I 0
0 0 I

⎤
⎦ .

(11.61)

As the matrix T is regular by its definition, it is obvious that both two matrices

[
T 0
0 I

]
,

⎡
⎣ T −1 0 0

0 I 0
0 0 I

⎤
⎦

are well defined and are of full rank. We can therefore claim from Eqs. (11.58) and (11.61)
that the matrix ⎡

⎣ λI − [A − BKD
†
KC + LC] −BK[I − D

†
KDK] BR

−
[
I − DKD

†
K

]
C 0 DR

⎤
⎦

is also of full column rank for each complex number λ and each attack set R with its attacker
number not greater than that of the attack set K. Hence, from Lemma 11.4 and Theorem 11.3
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we can declare attack identifiability for the attack set K in the networked system described by
Eqs. (11.14) and (11.15).

Similar arguments show that if the attack set K is identifiable for the networked system de-
scribed by Eqs. (11.14) and (11.15), then it is also identifiable for the networked system
described by Eqs. (11.56) and (11.57).

This completes the proof.

Note that in the state space model of Eqs. (11.56) and (11.57), the state vector x2(k) is com-
pletely isolated from any attack disturbances. Using this property, a residual filter can be
constructed as

w(k + 1) = [Ā22 − L̄(I − C̄1C̄
†
1)]w(k) − L̄ȳ(k), (11.62)

ȳ(k) = [I − C̄1C̄
†
1 ]y(k), (11.63)

rK(k) = [I − C̄1C̄
†
1 ]C̄2w(k) − ȳ(k). (11.64)

This residual filter is very similar to that for attack detections given in the previous section,
except that the output vector y(k) is replaced by a modified output vector ȳ(k). Obviously,
this modification is removing C̄1x1(k) from the output vector y(k) with the purpose of con-
structing an output vector that is not affected by any attack disturbances, noting that the sub-
state vector x2(k) is independent of the attack disturbance vector d(k) and

ȳ(k) = [I − C̄1C̄
†
1 ]y(k) = [I − C̄1C̄

†
1 ] [C̄1 C̄2

][ x1(k)

x2(k)

]

= [I − C̄1C̄
†
1 ]C̄2x2(k).

With this residual filter, we have the following results.

Theorem 11.5. Let the networked system be described by Eqs. (11.14) and (11.15). Assume
that the attack set K is identifiable. Moreover, assume that the initial state vector x(0) of the
networked system is known. Furthermore, assume that the initial state vector of the residual
filter described by Eqs. (11.62)–(11.64) is set as w(0) = x2(0) and that the gain matrix L̄ is
selected such that the matrix Ā22 − L̄(I − C̄1C̄

†
1)C̄2 is stable. Then the residual signal r(k)

of the above filter is constantly equal to zero if and only if both matrices BK and DK coincide
with those of the actual colluding attackers.

Proof. Using the state vector w(k) of the attack identifier described by Eqs. (11.62)–(11.64),
define the new state vector w̄(k) evolving as

w̄(k + 1) = Ā11w(k) + Ā12w̄(k). (11.65)
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Moreover, define the error vector e(k) = col{e1(k), e2(k)}, in which two suberror vectors
e1(k) and e2(k) are respectively defined as e1(k) = w̄(k) − x1(k) and e2(k) = w(k) − x2(k).
Then on the basis of Eqs. (11.14), (11.15), (11.62)–(11.64), and (11.65), straightforward alge-
braic manipulations show that

e(k + 1) =
[

Ā11 Ā12

0 Ā22 − L̄(I − C̄1C̄
†
1)C̄2

]
e(k) −

[
B̄K
0

]
d(k), (11.66)

rK(k) =
[
0 (I − C̄1C̄

†
1)C̄2

]
e(k). (11.67)

When w(0) is set to be equal to x2(0), the definition of the suberror vector e2(k) implies that
e(0) = 0. As the residual signal rK(k) is not directly affected by the attack disturbances d(k),
and the matrix L̄ is selected to assure that the magnitude of each eigenvalue of the matrix
Ā22 − L̄(I − C̄1C̄

†
1)C̄2 is smaller than 1, this residual signal rK(k) is constantly equal to zero,

provided that the attack set is K. This completes the proof.

In case that there exist modeling errors in the adopted state space model, and/or there are ran-
dom disturbances in the networked system, and/or the initial state vector x(0) is not exactly
known, observations in attack detections are also valid for the above attack identification
methods. On the other hand, from the above results it is clear that to identify an attack, it is
necessary to construct at least one residual filter for each possible attack. This might be not
feasible when the number K is large.

Similarly to the attack detector discussed in the previous section, it is also possible to realize
the above attack identifier in a distributed way. The details are not included in this book. Some
preliminary results can be found in [8,9].

11.6 System Security and Sensor/Actuator Placement

The previous sections make it clear that to detect and/or identify an attack in networked sys-
tems, system observability is an essential property. In Chapter 3, we have discussed how to
verify observability of a large-scale networked system and how many sensors are required
to construct an observable networked system. However, it is usually not sufficient in actual
engineering to only detect and/or identify an attack. A general requirement is to achieve this
objective in an allowed time period after the occurrence of an attack, if not in the shortest time
period. In fact, the longer the time is needed to detect/identify an attack, the larger the dam-
ages the attack may bring.

Note that both attack detection and attack identification depend on a residual generator. As
system initial states cannot be known exactly in general and both modeling errors and external
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disturbances are usually unavoidable in actual applications, the time period and/or data length
needed to detect/identify an attack depend heavily on the performances of that residual gener-
ator in its robustness against modeling errors and its capabilities of reducing influences from
external disturbances. From the results of Section 11.5 it is clear that this residual generator
can be easily rewritten into a form of the Luenberger observer discussed in Chapter 4, which
includes the Kalman filter as its particular form. On the other hand, recall that the Kalman fil-
ter is optimal when the plant is linear and the external disturbances are normally distributed
and when the sensitivity penalization-based robust state estimator given in Chapter 4 has
completely the same form as that of the Kalman filter. It is interesting from both theoretical
aspects and application aspects to investigate relations among estimation performances of
the Kalman filter, the number of sensors, and the length of system output measurements [15].
A dual problem is about relations about control efforts, the number of actuators and optimal
control performances, which is also an interesting topic in the analysis and synthesis of net-
worked systems [16,17]. In fact, an attacker often intends to destroy a system with minimal
efforts in a stealthy way, whereas a controller usually wants to improve system performances
with the smallest energy consumptions.

In this section, we investigate a sensor placement problem and an actuator placement prob-
lem, both of them related closely to system security.

From a mathematical viewpoint, both sensor placement problems and actuator placement
problems can be regarded as set function optimizations. When a sensor placement problem
is under investigation, a set V is usually adopted to denote the set consisting of all poten-
tial positions of a networked system in which a sensor can be placed, whereas the function
f (·) represents metric measuring factors like the best performances that a state estimator can
achieve with the measurements from several sensors belonging to a set S , the costs of these
sensors, and so on. Then, when there are restrictions on the number of sensors in a networked
system, say, it does not exceed k, a sensor placement problem may be mathematically de-
scribed as

max
S⊆V, |S|≤k

f (S). (11.68)

Here |S| stands for the number of elements in the set S . Basically, this is a finite combinato-
rial optimization problem, which can be solved in principle through exhausting all possible
sensor sets that have its element number not greater than k and comparing their associated
cost function values. When the number of subsystems in a networked system is large, as pos-
sibilities of sensor locations in general increase exponentially with the subsystem number,
such a brute-force-based method is usually computationally prohibitive.

Similar statements are valid for actuator placements.
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To deal with these sensor/actuator placement problems, assume that the dynamics of a dis-

crete time and linear time-variant system can be described by the following state space model:

x(k + 1) = A(k)x(k) + B(k)w(k), (11.69)

y(k) = C(k)x(k) + v(k). (11.70)

Once again, here, x(k) ∈ Rn, y(k) ∈ Rp , and w(k) ∈ Rq denote respectively the state vector,

input vector, and output vector of the system. Moreover, assume that S is a subspace of Rn.

11.6.1 Some Properties of the Kalman Filter

It is now widely known that when a plant is linear and its external disturbances are normally

distributed, the Kalman filter is the optimal state estimator under the criterion of mean squares

errors [18,19]. Recent studies, however, show that when mean squares errors are adopted in

the determination of optimal sensor locations, the associated optimization problem generally

does not have the submodularity property and is in general NP-hard. Moreover, the widely

adopted greedy heuristic algorithm may perform arbitrarily poorly, and there does not exist a

constant-factor (polynomial-time) approximation algorithm [20,21].

To deal with the problem of appropriately locating sensors for a networked system, in this

section, we investigate relations among estimation error, data length, and plant output number

in the Kalman filtering. As only stochastic properties of B(k)w(k) affect estimation accu-

racies of the Kalman filter [18,19,22], we can assume without any loss of generality that

B(k) ≡ In. To simplify mathematical expressions, this assumption is adopted throughout this

and next subsections. Moreover, we assume that the system initial conditions, process distur-

bances, and measurement errors are white and uncorrelated. More precisely:

• x(0), w(k), and v(k) are uncorrelated with each other for k ≥ 0;

• w(k) and v(k) are uncorrelated with w(k′) and v(k′) for every nonnegative integer k′ �= k;

• E(x(0)) = 0 and E(w(k)) = E(v(k)) = 0 for each k = 0,1, · · · ;

• Var(x(0)) > 0, Var(w(k)) > 0, and Var(v(k)) = σ 2I with σ > 0 for every nonnegative

integer k.

Using the same arguments as in the derivation of Eq. (3.6), we can show straightforwardly

from Eqs. (11.69) and (11.70) that, for arbitrary nonnegative integers k and k′ with 0 ≤ k′ ≤ k,

the following equality is valid:
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⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(0)

y(1)

y(2)

...

y(k)

x(k′)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

�(k)

L(k′)

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)

w(0)

w(1)

w(2)

...

w(k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(0)

v(1)

v(2)

...

v(k)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.71)

where

�(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C0 0 0 0 · · · 0
C(1)A(0) C(1) 0 0 · · · 0

C(2)A(1)A(0) C(2)A(1) C(2) 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

C(k)
∏0

j=k−1 A(j) C(k)
∏0

j=k−2 A(j) C(k)
∏0

j=k−3 A(j) C(k)
∏0

j=k−4 A(j) · · · C(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

L(k′) =
⎡
⎣ 0∏

j=k′−1

A(j)

0∏
j=k′−2

A(j) · · · I 0 · · · 0

⎤
⎦ .

If x(0), w(j)|k−1
j=0, and v(k)|kj=0 are normally distributed, then we can declare from Eq. (11.71)

that
[
yT (0) yT (1) yT (2) · · · yT (k) xT (k′)

]T

is also normally distributed, which is equivalent to that

x(k′) and
[
yT (0) yT (1) yT (2) · · · yT (k)

]T

are jointly normally distributed.

For simplicity, denote the vectors

[
yT (0) yT (1) · · · yT (k)

]T

,
[
xT (0) wT (0) wT (1) · · · wT (k − 1)

]T

, and
[
vT (0) vT (1) · · · vT (k)

]T

respectively by Y(k), Z(k − 1), and V (k). Then Eq. (11.71) can be rewritten as follows:

[
Y(k)

x(k′)

]
=

[
�(k) I

L(k′) 0

][
Z(k − 1)

V (k)

]
. (11.72)
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In addition, from the system output vector measurements y(j), j = 0,1, · · · , k, the best es-
timate of the system state vector x(k′) under the criterion of mean squares errors, denoted
x̂(k′), has been proven to have the following closed-form expression [18,19,22]:

x̂(k′) = E
(

x(k′)
∣∣ Y(k)

)
, (11.73)

that is,

x̂(k′) = arg min
α

E
( [

α − x(k′)
]T [

α − x(k′)
])

(11.74)

under the constraints of Eq. (11.71).

Based on this relation and the adopted assumptions on the external disturbance process
w(k)|∞k=0 and the measurement error process v(k)|∞k=0, direct algebraic manipulations show
that

[
Y(k)

x(k′)

]

∼N
([

0
0

]
,

[
�(k)Var(Z(k − 1))�T (k) + σ 2I �(k)Var(Z(k − 1))LT (k′)

L(k′)Var(Z(k − 1))�T (k) L(k)Var(Z(k − 1))LT (k′)

])
.

(11.75)

Concerning joint normal distributions, the following result is well known [23,24].

Lemma 11.6. Assume that random vectors x and y are jointly normally distributed. More-
over, assume that

E
([

x

y

])
=

[
μx

μy

]
, Var

([
x

y

])
=

[
Vx V T

yx

Vyx Vy

]
.

Then the conditional random vector y|x is also normally distributed. In addition,

E (y|x) = μy + VyxV
−1
x [x − μx], Var (y|x) = Vy − VyxV

−1
x V T

yx.

On the basis of Eqs. (11.73) and (11.72) and Lemma 11.6, the following equality can be
straightforwardly established:

x̂(k′) = E
(

x(k′)
∣∣ Y(k)

)
= L(k′)Var(Z(k − 1))�T (k)

[
�(k)Var(Z(k − 1))�T (k) + σ 2I

]−1
Y(k). (11.76)
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Recall that when a linear space is constituted from n-dimensional random vectors with zero
mean and finite covariance matrix, an inner product can be defined as

< x, y > = E(xT y).

Obviously, the norm induced from this inner product is consistent with the cost function
adopted in the optimization problem of Eq. (11.74), that is, the mean squares errors. Hence,
from the projection-based optimization condition [25,26] we have that

< x(k′) − x̂(k′), x̂(k′) > = E
([

x(k′) − x̂(k′)
]T

x̂(k′)
)

= 0. (11.77)

Denote the estimation error vector x(k′) − x̂(k′) by x̃(k′). From this equality and Eq. (11.75)
direct algebraic operations show that

Var
(
x̃(k′)

) = E
([

x(k′) − x̂(k′)
] [

x(k′) − x̂(k′)
]T )

= L(k′)Var(Z(k − 1))LT (k′)

− L(k′)Var(Z(k − 1))�T (k)
[
�(k)Var(Z(k − 1))�T (k) + σ 2I

]−1

× �(k)Var(Z(k − 1))LT (k′)

= L(k′)
[

Var−1(Z(k − 1)) + 1

σ 2
�T (k)�(k)

]−1

LT (k′). (11.78)

A recursive realization of Eqs. (11.76) and (11.78) is the well-known Kalman filter [18,19].
Rather than the recursive formula of the Kalman filter, which is given by Eqs. (4.8) and (4.9),
expression (11.78) for the covariance matrix of estimation errors appears to be much more
convenient in the analysis of the relations among sensor positions, sensor number, measure-
ment data length, and estimation accuracy.

Define the random variable

δ(k′) = x̃T (k′)Var−1 (x̃(k′)
)
x̃(k′) (11.79)

Recall that the random vector x(k′) is normally distributed. On the other hand, it is clear from
Eqs. (11.72) and (11.76) that the random vector x̂(k′) is also normally distributed. We can
therefore declare that the estimation error vector x̃(k′) is also normally distributed. In addi-
tion, note that E

[
E (y|x)

] = E(y) for arbitrary random vectors x and y [23,24]. We therefore
have

E(x̃(k′)) = E(x(k′) − x̂(k′)) = E(x(k′)) − E
(
E
(

x(k′)
∣∣ Y(k)

)) = 0. (11.80)
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Hence the random variable δ(k′) has the χ2
n distribution, that is, the χ2 distribution with n

degrees of freedom [23,24]. This property is quite helpful in developing algorithms for attack
detections and attack identifications [6,7].

It is also worth mentioning that

E
{[

x(k′) − x̂(k′)
]T [

x(k′) − x̂(k′)
]} = E

{
tr
([

x(k′) − x̂(k′)
] [

x(k′) − x̂(k′)
]T )}

= tr
{

E
([

x(k′) − x̂(k′)
] [

x(k′) − x̂(k′)
]T )}

= tr
{
Var

(
x̃(k′)

)}
. (11.81)

These observations mean that the covariance matrix Var
(
x̃(k′)

)
of the estimation error is

closely related to both some statistics adopted in attack detections/identifications and the esti-
mation accuracy measured by the mathematical expectation of squared estimation errors.

11.6.2 Sensor Placements

In both attack detections and attack identifications, it is essential to distinguish an abnormal
situation of a networked system from its normal situation as fast as possible. This means that
it is preferable to have sensors in positions that can make a detector achieve the minimal
value of a metric on its residual signal when there do not exist any attacks in the associ-
ated networked system and reach a value of that metric as large as possible if the associated
networked system has been attacked. Keeping in mind relations among state observers and de-
tectors, in this subsection, we investigate sensor placements with the objective of minimizing
state estimation errors.

For this purpose, we adopt the following assumption for the system described by Eqs. (11.69)
and (11.70) to reflect characteristics in optimizations of sensor locations.

Assumption 11.1. The matrix C(k) is time invariant. Moreover, each of its rows has a
nonzero element equal to 1. Furthermore, each of its columns has at most one nonzero ele-
ment.

This assumption reflects that all sensor positions have been fixed, each sensor only directly
measures one of the states of the networked system, and if a state in the networked system is
directly measured, then it can only be measured by one sensor. Under such an assumption, we
can directly prove that the number of the sensors in the networked system is equal to the num-
ber of nonzero elements in the matrix C, which is an abbreviation of the matrix C(k) when
Assumption 11.1 is satisfied.
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Define the set

S =
{

i

∣∣∣∣∣ C =
[
cjl|j=p,l=n

j=1,l=1

]
satisfies Assumption 11.1, and

there exists j ∈ {1,2, · · · ,p} such that cji = 1

}
.

It is clear that this set indicates all the states in the networked system described by Eqs. (11.69)
and (11.70) for which there is a sensor measuring its value. With a little abuse of terminology,
in this subsection, we call this set the sensor set for that networked system.

For an arbitrary t × s-dimensional matrix �, let (�)ij represent its ith row j th column ele-
ment, i = 1,2, · · · , t and j = 1,2, · · · , s. Define scalars μ(k), vw(k), v0, and v0in respectively
as

μ(k) = max
0≤i≤k

σmax(A(i)), vw(k) = max
0≤i≤k

max
1≤j≤n

(Var(w(i)))jj ,

v0 = max
1≤j≤n

(Var(x(0)))jj , v0in = max
1≤j≤n

(
Var−1(x(0))

)
jj

.

On the basis of the results given in the previous subsection on the Kalman filtering, the fol-
lowing results have been obtained in [15], which establish some relations among the number
of sensors, data length, and state estimation accuracy in a networked system.

Theorem 11.6. Let the networked system be described by Eqs. (11.69) and (11.70), and let
x̂(k) stand for the estimate of its state vector x(k) using the Kalman filter. Assume that σ > 0
and μ(k) �= 1. Then for every k = 1,2, · · · ,

nσ 2λmin
(
LT (k)L(k)

)
|S|1−μ2(k+1)

1−μ2 + σ 2v0in

≤ E
(∣∣∣∣x(k) − x̂(k)

∣∣∣∣2
2

)
≤ n(k + 1)λmax

(
LT (k)L(k)

)
max {v0, vw(k)} ,

(11.82)

where |S| is the number of elements in the sensor set S .

This theorem reveals that the lower bound of state estimation accuracy decreases only in-
versely proportionally to the number of the sensors in the system and increases linearly with
the increment of the number of the states in the system. This means that estimation errors can-
not be significantly reduced through only adding sensors to the system, and for a large-scale
system, measurements with a short data length cannot lead to an acceptable estimation accu-
racy in general.

From this theorem conditions can be derived on the number of sensors and data length re-
quired to meet some prescribed estimation accuracy. More precisely, assume that it is required

that E
(∣∣∣∣x(k) − x̂(k)

∣∣∣∣2
2

)
≤ α with some prescribed positive number α. Then the following

conclusions can be derived from Theorem 11.6.
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• Assume that the date length k is fixed. Then, to satisfy E
(∣∣∣∣x(k) − x̂(k)

∣∣∣∣2
2

)
≤ α, it is

necessary that

|S| ≥
[

nσ 2λmin
(
LT (k)L(k)

)
α

− σ 2v0in

]
1 − μ2

1 − μ2(k+1)

• Assume that the number of sensors |S|, is fixed. Then, to satisfy E
(∣∣∣∣x(k) − x̂(k)

∣∣∣∣2
2

)
≤ α,

it is necessary that

k ≥
log

{
1 −

[
nσ 2λmin

(
LT (k)L(k)

)
α

− σ 2v0in

]
1−μ2

|S|
}

2 log(μ)
− 1.

These relations imply that the required number of sensors increases linearly with the incre-
ment of the number of the system states, but the required data length increases only logarith-
mically.

Now, we investigate relations between sensor sets and the covariance matrix of estimation
errors, that is, Var (x̃(k)). For this purpose, define L(j) with j = 0 as L(0) = [In 0 · · · 0].
Then from the definitions of the matrices �(k) and L(k) it is obvious that

�(k) = col{CL(j)|kj=0}. (11.83)

Let ej denote the j th canonical basis of the n-dimensional Euclidean space Rn, j =
1,2, · · · , n, that is, ej is an n-dimensional column vector with its j th row element 1 and all
other elements 0. Moreover, for each i = 1,2, · · · , n, define the matrix

I (i) = eie
T
i .

Furthermore, let s(i) with i = 1,2, · · · , n, be the indicator function defined as

s(i) =
{

1 if the ith state of the system is directly measured by a sensor,
0 if the ith state of the system is not directly measured by any sensor.

By Assumption 11.1 the output matrix C of the networked system described by Eqs. (11.69)
and (11.70) can be expressed as

C = col{eT
j (i)|pi=1}, (11.84)

where j (i) is the position of the nonzero element in the ith row of the matrix C, i =
1,2, · · · ,p. Moreover, the following equalities are valid:

CT C =
p∑

m=1

ej (m)e
T
j (m) =

∑
m∈S

I (m) =
n∑

m=1

s(m)I (m). (11.85)
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To clarify dependence of the matrices �(k) and Var (x̃(k)) on the sensor set S , we further
reexpress them respectively as �(k,S) and Var (x̃(k),S), where the sensor set S is explicitly
included. By Eqs. (11.83), (11.84), and (11.85) we have that

�T (k,S)�(k,S) =
k∑

j=0

LT (j)CT CL(j)

=
k∑

j=0

(
LT (j)

n∑
m=1

s(m)I (m)L(j)

)

=
n∑

m=1

s(m)

⎛
⎝ k∑

j=0

LT (j)I (m)L(j)

⎞
⎠

=
∑
m∈S

O(k,m), (11.86)

where

O(k,m) =
k∑

j=0

LT (j)I (m)L(j) =
k∑

j=0

(eT
mL(j))T (eT (m)L(j)),

k = 0,1, · · · , m = 1,2, · · · , n.

From its definition it is clear that for all k = 0,1, · · · and m = 1,2, · · · , n, the matrix O(k,m)

is independent of either the number of sensors in the system or the positions of the sensors. In
addition, this matrix is at least semipositive definite.

Now, assume that there are two sensor sets S1 and S2 satisfying

S1 ⊆ S2 ⊆ {1,2, · · · , n}.
Then by Eq. (11.86) the following inequality is immediate:

�T (k,S2)�(k,S2) =
∑
m∈S2

O(k,m)

=
∑
m∈S1

O(k,m) +
∑

m∈S2\S1

O(k,m)

≥
∑
m∈S1

O(k,m)

= �T (k,S1)�(k,S1). (11.87)

We can therefore declare from Lemma 2.1 that
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[

1

σ 2
�T (k,S2)�(k,S2) + Var−1 (Z(k − 1))

]−1

≤
[

1

σ 2
�T (k,S1)�(k,S1) + Var−1 (Z(k − 1))

]−1

. (11.88)

By Eqs. (11.78) and (11.88) and by Lemma 2.1 we further have that

Var (x̃(k),S2) ≤ Var (x̃(k),S1 ) (11.89)

Eqs. (11.89) and (11.81) mean that, with the addition of some sensors, both the mean squares
estimation errors of the Kalman filter and the covariance matrix of its estimation errors mono-
tonically decrease. This is consistent with engineering intuition, as a sensor addition results
in more measurement data, which provide more information about the plant state vector and
therefore lead to a more accurate state estimate.

However, when the number of sensors is fixed, it is still not very easy to find the optimal sen-
sor positions that minimize either the mean squares estimation errors or the covariance matrix
of the state estimation errors [15,20,21].

On the other hand, discussions in the previous section show that observability of a networked
system is necessary for the existence of a residual filter that is able to detect/identify an attack.
It can be shown, however, that even the problem of finding the best sensor positions that lead
to an observable networked system is NP-hard.

In particular, similarly to the proof of Theorem 3.2, we can also show that to recover the state
vectors of the networked system described by Eqs. (11.69) and (11.70) from its output mea-
surements y(j)|kj=0, it is necessary and sufficient that the following matrix O(k,S) w is of
full column rank:

O(k,S) =
⎡
⎢⎣CT AT (0)CT (A(1)A(0))T CT · · ·

⎛
⎝ 0∏

j=k

A(j)

⎞
⎠

T

CT

⎤
⎥⎦

T

.

Note that the matrix O(k,S) is of full column rank if and only if the matrix OT (k,S)O(k,S)

is of full rank. In fact, the ranks of these two matrices equal each other [27,28]. When sensor
positions are selected to guarantee the observability of a networked system, it is reasonable
from these observations to investigate the problem of maximizing the rank of the matrix
OT (k,S)O(k,S) under the restrictions that S ⊆ {1,2, · · · , n} and |S| ≤ q .

Concerning the set function involved in this optimization problem, the following conclusions
are obtained.
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Theorem 11.7. Assume that the dynamics of a networked system is described by Eqs. (11.69)
and (11.70). Moreover, assume that Assumption 11.1 is satisfied by its output matrix C(k).
Define the set function f (S) : 2V −→ R as

f (k,S) = rank(OT (k,S)O(k,S)), (11.90)

where V = {1,2, · · · , n}. Then this set function is submodular and increasing for each k =
0,1,2, · · · .

The proof of this theorem is deferred to the appendix of this chapter.

From this theorem and the results on optimization of the set function given in Chapter 2 we
can declare that optimal sensor placements for maximizing the rank of the observability
matrix O(k,S) are in general NP-hard. On the other hand, the greedy heuristic method of
that chapter usually gives a good approximation result. But it is worth noting that when the
scale of a networked system is large, some computation issues may still arise for this greedy
heuristic method, noting that in this case, the matrix Ō(k, i) of Eq. (11.A.1) often has a high
dimension. These are different significantly by the results of Chapter 3, given by Corollary 3.1
and Theorem 3.10. The output matrix there is allowed to take an arbitrary real value for a net-
worked system, and an explicit parameterization is given for all output matrices that lead to an
observable system.

When the state transition matrix of the networked system described by Eqs. (11.69)
and (11.70) is also time invariant, arguments similar to those of Chapter 3 show that when
the observability matrix O(k,S) is involved in an optimization problem, it is sufficient to
only consider the case k = n − 1.

11.6.3 Actuator Placements

In the previous sections, it has been argued that an attacker usually intends to give destructive
damages to a system in a stealthy way with small efforts. In this subsection, we investigate
selection of input positions for the system described by Eqs. (11.69) and (11.70) such that
some metrics on the input efforts can be minimized. For this purpose, we further adopt the
following assumption, which is in a dual form of Assumption 11.1 adopted in the previous
subsection for studying sensor placements.

Assumption 11.2. The matrix B(k) is time invariant. Moreover, each of its columns has a
nonzero element 1. Furthermore, each of its rows has at most one nonzero element.
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When this assumption is satisfied, the input matrix B(k) is abbreviated as B for simplicity.

Concerning the system described by Eqs. (11.69) and (11.70), its controllability Gramian at
the time instant k, denoted Wc(k), is defined as

Wc(k) =
k∑

j=0

	(j,0)BBT 	T (j,0), (11.91)

where 	(j,0) = ∏0
i=j A(i). Note that inputs to a system are usually energy restricted. More-

over, some functions of the controllability Gramian Wc(k) have been argued to be nice quanti-
ties for measuring energies required to maneuver the system state vector from the zero-valued
initial conditions to a prescribed value in the time interval [0, k]. Depending on whether the
average energy required to maneuver the system state vector, a worst-case energy required
to maneuver the system state vector or the volume of the states that can be reached through
one unit or less of input energies, tr(W−1

c (k)), σmax(W
−1
c (k)) and log det(Wc(k)) are utilized

respectively [16,17].

For each i = 1,2, · · · , n, let a(i) with i = 1,2, · · · , n, be an indicator function defined as

a(i) =
{

1 if the ith state of the system is directly maneuvered by an actuator,
0 if the ith state of the system is not directly maneuvered by any actuator.

By Assumption 11.2 the input matrix B of the networked system can be expressed as

B = [
ej (1), ej (2), · · · , ej (q)

]
, (11.92)

where j (i) is the position of the nonzero element in the ith column of the input matrix B ,
i = 1,2, · · · , q . Moreover, similarly to Eq. (11.85), we can obtain the following relation:

BBT =
n∑

m=1

a(m)I (m), (11.93)

where the matrix I (m) is defined as that in the previous subsection.

Define the set

A =
{

i

∣∣∣∣∣ B =
[
bjl|j=n,l=q

j=1,l=1

]
satisfies Assumption 11.2, and

there exists j ∈ {1,2, · · · , q} such that bij = 1

}
.

Then it is clear that this set indicates all the states in the networked system described by
Eqs. (11.69) and (11.70) that are directly controlled by an actuator. Similarly to the sensor
set S , in this subsection, we call this set the actuator set for that networked system.
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To clarify dependence of the controllability Gramian Wc(k) on the actuator set A, we further
reexpress it as Wc(k,A), so that the sensor set S is explicitly included. Using completely the
same arguments as those in the derivation of Eq. (11.86), from Eqs. (11.91) and (11.93) we
obtain the following relation:

Wc(k,A) =
∑
m∈A

a(m)C(k,m), (11.94)

where

C(k,m) =
k∑

j=0

	(j,0)I (m)	T (j,0), k = 0,1, · · · , m = 1,2, · · · , n.

It is clear from its definition that, for all k = 0,1, · · · and m = 1,2, · · · , n, the matrix C(k,m)

is independent of either the number of actuators in the system or the positions of the actuators.
In addition, this matrix is at least semipositive definite.

Now, assume that there are two actuator sets A1 and A2 satisfying

A1 ⊆ A2 ⊆ {1,2, · · · , n}.
Then by Eq. (11.94) we can obtain the following inequality by the same arguments as those in
the derivation of Eq. (11.87):

Wc(k,A2) ≥ Wc(k,A1). (11.95)

We can therefore declare from Lemma 2.1 that when both matrices Wc(k,A1) and Wc(k,A2)

are invertible, the following inequalities are valid:

tr(W−1
c (k,A2)) ≤ tr(W−1

c (k,A1)), (11.96)

σmax(W
−1
c (k,A2)) ≤ σmax(W

−1
c (k,A1)), (11.97)

log det(Wc(k,A2)) ≥ log det(Wc(k,A1)), (11.98)

that is, through adding some other actuators, both the average energy required to maneuver
the system state vector and the worst-case energy required to maneuver the system state vec-
tor decrease monotonically, whereas the volume of the states that can be reached through one
unit or less of input energies increases monotonically. Once again, this is in a good agreement
with engineering intuition.

However, optimization of these metrics is generally mathematically difficult. In particular, we
have the following results.
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Theorem 11.8. Let the networked system be described by Eqs. (11.69) and (11.70). Define the
set function f (A) : 2V −→ R as

f (A) = log det(Wc(k,A)), (11.99)

where V = {1,2, · · · , n}. Then this set function is submodular and increasing.

Proof. From Eq. (11.98) we can directly declare that this function is increasing.

To prove its submodularity, assume that ξ is an arbitrary element of the set V . Moreover, as-
sume that A1 and A2 are two sets satisfying A1 ⊆ A2 ⊆ V\{ξ}. Define the matrix Wc(γ ) and
the function g(γ ) respectively as

Wc(γ ) = Wc(k,A1) + γ [Wc(k,A2) − Wc(k,A1)] ,

g(γ ) = log det
[
Wc(γ ) + Wc(k, {ξ})]− log det(Wc(γ )),

where γ ∈ [0, 1].
By Eq. (11.95) we have that

Wc(k,A2) − Wc(k,A1) ≥ 0. (11.100)

On the other hand, noting that by its definition the matrix Wc(k, {ξ}) is at least positive
semidefinite, it is obvious that

Wc(γ ) + Wc(k, {ξ}) ≥ Wc(γ ). (11.101)

We can therefore declare from Lemma 2.1 that

dg(γ )

dγ
= d

dγ
log det(Wc(γ ) + Wc(k, {ξ})) − d

dγ
log det(Wc(γ ))

= tr
{[

Wc(γ ) + Wc(k, {ξ})]−1
[Wc(k,A2) − Wc(k,A1)]

}

− tr
{
W−1

c (γ ) [Wc(k,A2) − Wc(k,A1)]
}

= tr
{[

(Wc(γ ) + Wc(k, {ξ}))−1 − W−1
c (γ )

]
[Wc(k,A2) − Wc(k,A1)]

}

= tr
{

[Wc(k,A2) − Wc(k,A1)]
1
2

[
(Wc(γ ) + Wc(k, {ξ}))−1 − W−1

c (γ )
]

× [Wc(k,A2) − Wc(k,A1)]
1
2

}
≤ 0, (11.102)
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which implies that g(0) ≥ g(1).2

On the other hand, from the definition of the function g(γ ) it is obvious that

g(0) = log det(Wc(k,A1) + Wc(k, {ξ})) − log det(Wc(k,A1)), (11.103)

g(1) = log det(Wc(k,A2) + Wc(k, {ξ})) − log det(Wc(k,A2)). (11.104)

Note that from Eq. (11.94) we immediately have that

Wc

(
k,A

⋃
{ξ}

)
= Wc(k,A) + Wc(k, {ξ})

for all A ⊆ V\{ξ} and ξ ∈ V . Hence we can claim that g(0) and g(1) are in fact equal to the
values of the following set function fξ (A) respectively at A = A1 and A = A2:

fξ (A) = log det
[
Wc

(
k,A

⋃
{ξ}

)]
− log det(Wc(k,A)), A ⊆ V\{ξ}.

The proof can now be completed by an application of Lemma 2.8.

In addition to the set function logdet(Wc(k,A)), it has also been proven in [16,17] that some
other set functions, such as rank(Wc(k,A)), −tr(W−1

c (k,A)), etc., are also monotone in-
creasing and submodular. This means that maximization of these set functions is in general
NP-hard, but the greedy heuristic algorithm described in Chapter 2 usually works well ap-
proximately. Once again, as in the sensor placement problem, computation issues may arise
for a large-scale system in the application of that greedy heuristic algorithm, noting that the
associated matrix in this case still has a great dimension, which is not very convenient for nu-
merical computations.

On the other hand, from the duality between controllability and observability of a system,
similiar results can be established for sensor placements using the associated observability
Gramian.

In the above investigations on sensor/actuator placements, the output/input matrix of the sys-
tem is restricted by Assumption 11.1/11.2. The associated results can be extended to a more
general situation in which each row of the output matrix can take values from a set of some
candidate rows, or each column of the input matrix can take values from a set of some can-
didate columns. The major required modification in these extensions is a redefinition of the
matrix I (i) adopted in the aforementioned investigations. Details can be found in the related
literature, such as [16,17] and the references therein.

2 In the above derivations, we applied the formula d
dγ

log det(X(γ )) = tr
{
X−1(γ )

dX(γ )
dγ

}
. To guarantee the

validness of this formula, it is necessary that the matrix X(γ ) is invertible [27,29]. When this condition is not
satisfied, replace the matrix Wc(k,A) with the matrix Wc(k,A) + εI in the definition of the set function f (A),
where ε is an arbitrary positive number. Then, the matrix Wc(k,A)+ εI is positive definite and therefore invert-
ible. The conclusions of Theorem 11.8 can be obtained by letting ε approach zero.
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11.7 Concluding Remarks

Importance of safety is now widely recognized for a networked system, especially with the
ambitious introduction of public communication channels into a control system. In this chap-
ter, we investigated some basic issues in system designs closely related to attack detection and
identification, which reveals some relations among attack detectability/identifiability, system
controllability/observability, and actuator/sensor placement. To develop an algorithm applica-
ble to actual engineering problems, some other factors, such as robustness against modeling
errors, stochastic properties of external disturbances, and measurement errors, must also be
taken into account.

11.8 Bibliographic Notes

Network safety has been extensively investigated in power systems. [6] summarizes various
important aspects of this problem and some interesting recent advancements. Recent interest
in this problem are mainly stimulated by the prospective introduction of public communi-
cation channels into control systems, which brings some new characteristics into this field.
Many essential issues are still in their primary stages toward a complete settlement. [2,7] are
some recent surveys about this problem.

Basic concepts and results for combinatorial optimizations can be found in [26,30]. Con-
cerning with convex optimization, [25,31] provides an excellent introduction on its essential
motivations and results.

The notion of a system matrix is due to Rosenbrock, who also introduced zeros of linear mul-
tivariable systems in terms of the Smith–McMillan form of the system transfer matrix in
[10,13]. The concept of weakly unobservable subspace appears to be firstly introduced for a
discrete-time system by Silverman [32]. A summary and some detailed discussions can be
found in [11]. Connections between the spectral properties of a weakly unobservable subspace
and the system zeros are also dealt with in [33], and [34] has studied connections between the
system zeros and the state space geometric structure of the system.

Appendix 11.A

11.A.1 Proof of Theorem 11.7

From the definition of the matrix O(k,S) and Eq. (11.85) it is obvious that
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OT (k,S)O(k,S) =
⎡
⎢⎣CT A(0)T CT (A(1)A(0))T CT · · ·

⎛
⎝ 0∏

j=k

A(j)

⎞
⎠

T

CT

⎤
⎥⎦

×
⎡
⎢⎣CT A(0)T CT (A(1)A(0))T CT · · ·

⎛
⎝ 0∏

j=k

A(j)

⎞
⎠

T

CT

⎤
⎥⎦

T

=
k∑

l=0

⎧⎪⎨
⎪⎩
⎛
⎝ 0∏

j=l

A(j)

⎞
⎠

T

CT C

⎛
⎝ 0∏

j=l

A(j)

⎞
⎠
⎫⎪⎬
⎪⎭

=
k∑

l=0

⎧⎪⎨
⎪⎩
⎛
⎝ 0∏

j=l

A(j)

⎞
⎠

T (∑
i∈S

I (i)

)⎛
⎝ 0∏

j=l

A(j)

⎞
⎠
⎫⎪⎬
⎪⎭

=
∑
i∈S

k∑
l=0

⎧⎪⎨
⎪⎩
⎛
⎝ 0∏

j=l

A(j)

⎞
⎠

T

I (i)

⎛
⎝ 0∏

j=l

A(j)

⎞
⎠
⎫⎪⎬
⎪⎭

=
∑
i∈S

Ō(k, i), (11.A.1)

where

Ō(k, i) =
k∑

l=0

⎧⎪⎨
⎪⎩
⎛
⎝ 0∏

j=l

A(j)

⎞
⎠

T

I (i)

⎛
⎝ 0∏

j=l

A(j)

⎞
⎠
⎫⎪⎬
⎪⎭ , i = 1,2, · · · , n.

It is clear that, for each i = 1,2, · · · , n, the matrix Ō(k, i) is at least positive semidefinite.
Hence, for arbitrary sensor sets S1 and S2 satisfying S1 ⊆ S2 ⊆ {1,2, · · · , n}, the following
relations are valid:

OT (k,S2)O(k,S2) =
∑
m∈S2

Ō(k,m)

=
∑
m∈S1

Ō(k,m) +
∑

m∈S2\S1

Ō(k,m)

≥
∑
m∈S1

Ō(k,m)

= OT (k,S1)O(k,S1). (11.A.2)
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Let λi(·) denote the ith eigenvalue of an n × n-dimensional symmetric matrix that satisfies
λ1(·) ≤ λ2(·) ≤ · · · ≤ λn(·). By Lemma 2.1 and the last equation we have that, for each i =
1,2, · · · , n,

λi

{
OT (k,S2)O(k,S2)

}
≥ λi

{
OT (k,S1)O(k,S1)

}
. (11.A.3)

Note that, for a positive semidefinite matrix, its rank is equal to the number of its nonzero
eigenvalues. Moreover, each of its eigenvalues is not smaller than 0. We can therefore declare
from Eq. (11.A.3) that

rank
{
OT (k,S2)O(k,S2)

}
≥ rank

{
OT (k,S1)O(k,S1)

}
, (11.A.4)

that is, the set function f (k,S) of Eq. (11.90) is increasing.

To prove its submodularity, define the derived set function fi(k,S) for each i ∈ {1,2, · · · , n}
as

fi(k,S) = rank
(
OT

(
k,S

⋃
{i}

)
O

(
k,S

⋃
{i}

))
− rank(OT (k,S)O(k,S)),

S ⊆ {1,2, · · · , n}\{i}. (11.A.5)

Note that, for arbitrary n × n-dimensional real matrices X and Y ,

rank(X + Y) = rank(X) + rank(Y ) − dim
(
Span(X)

⋂
Span(Y )

)
,

where dim(·) stands for the dimension of a subspace [27,28]. From this property, the defini-
tion of the set function fi(k,S), and from Eq. (11.A.1) we have that

fi(k,S) = rank

⎛
⎝ ∑

j∈S ⋃{i}
Ō(k, j)

⎞
⎠− rank

⎛
⎝∑

j∈S
Ō(k, j)

⎞
⎠

= rank

⎛
⎝Ō(k, i) +

∑
j∈S

Ō(k, j)

⎞
⎠− rank

⎛
⎝∑

j∈S
Ō(k, j)

⎞
⎠

= rank
(
Ō(k, i)

)− dim

⎛
⎝Span

(
Ō(k, i)

)⋂
Span

⎛
⎝∑

j∈S
Ō(k, j)

⎞
⎠
⎞
⎠ .

(11.A.6)

Assume now that S1 ⊆ S2 ⊆ {1,2, · · · , n}\{i}. Then from the relation∑
m∈S2

Ō(k,m) =
∑
m∈S1

Ō(k,m) +
∑

m∈S2\S1

Ō(k,m)
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and the definition of the matrix Ō(k,m), m = 1,2, · · · , n, the following relation can be estab-
lished by some algebraic manipulations:

Span

⎛
⎝∑

j∈S2

Ō(k, j)

⎞
⎠ ⊇ Span

⎛
⎝∑

j∈S1

Ō(k, j)

⎞
⎠ (11.A.7)

Therefore ⎧⎨
⎩Span

(
Ō(k, i)

)⋂
Span

⎛
⎝∑

j∈S2

Ō(k, j)

⎞
⎠
⎫⎬
⎭

⊇
⎧⎨
⎩Span

(
Ō(k, i)

)⋂
Span

⎛
⎝∑

j∈S1

Ō(k, j)

⎞
⎠
⎫⎬
⎭ , (11.A.8)

which further leads the following inequality:

dim

⎧⎨
⎩Span

(
Ō(k, i)

)⋂
Span

⎛
⎝∑

j∈S2

Ō(k, j)

⎞
⎠
⎫⎬
⎭

≥ dim

⎧⎨
⎩Span

(
Ō(k, i)

)⋂
Span

⎛
⎝∑

j∈S1

Ō(k, j)

⎞
⎠
⎫⎬
⎭ . (11.A.9)

Substituting this inequality into Eq. (11.A.6), we have that, under the condition that i ∈
{1,2, · · · , n} and S1 ⊆ S2 ⊆ {1,2, · · · , n}\{i}, the following inequality is true:

fi(k,S2) ≤ fi(k,S1), (11.A.10)

that is, this derived set function is decreasing.

We can therefore declare from Lemma 2.8 that the set function f (k,S) is submodular. This
completes the proof.
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CHAPTER 12

Some Related Issues
12.1 Introduction

Networked multiagent systems are a class of typical distributed systems that have attracted
much attention due to the multidisciplinary nature among the areas of detecting technolo-
gies, communication networks, and computer engineering. Nowadays, multiagent systems
and related technologies play an irreplaceable role in modern society, such as information
war, smart home, cosmic discoveries, nanometer network, intelligent manufacturing, precision
agriculture, and so on [1–3].

The concept of “agent” was first proposed by the computer science community. In the com-
puter science and engineering, along with the scales of the problems, need to be solved be-
come larger and larger, and the complexity becomes higher and higher, so the centralized
computing system cannot fulfill the requirement for solving practical problems. Since the
mid-1970s, distributed computing and distributed artificial intelligence have grown up rapidly.
In the early study of DAI, the researchers mainly focused on the distributed problem solving,
which divides a big problem into several subtasks, and each task is assigned with a subsys-
tem to fulfill the task. In 1986, Minsky proposed the concept of agent in his book Society of
Mind. An agent is an independent computing entity, which integrates the capacity of com-
puting, decision-making, and communication. The agent is usually a piece of program or
can be associated with a hardware entity, such as a robot. Agents cooperate with each other
by exchanging information through mutual communication to accomplish group task and to
optimize individual and group performances and costs. In the cooperation, the agents also
compete for limited computation and communication resources. The multiagent systems can
be viewed as a model for the human society.

In biological physics, the collective behaviors of biological group have drawn much atten-
tion from the scientists. In biological swarms, each individual also have integrated capacity
of sensing, decision making, and communication. They aggregate as a whole group in lots of
social behaviors such as foraging, mating, and escaping for maximizing interests of individual
and the whole group.

The concept of multiagent systems also appears in the control engineering, and the cooper-
ative control of multiagent systems has drawn much attention from the systems and control
community. In recent years, along with the rapid development of advanced sensing, comput-
ing, and communication technologies, the architecture and operation mode of control systems
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have been essentially changed. The units of control systems are not separate sensors, plants,
controllers, and actuators but become independent entities with integrated sensing, comput-
ing, control, and communication. The agents collaborate and communicate with each other
to achieve the goal of the whole network. In modern networked control systems, the control
and decision-making process are performed in a distributed and hierarchical way. Communi-
cation and cooperation become crucial factors of control systems. On one hand, the research
on multiagent systems has wide applications in cooperative information processing of sen-
sor networks, multirobot cooperation, and formation control of UAVs. On the other hand, the
research on multiagent systems provides a new angle of view for control systems. In the tra-
ditional control theory, a control system consists of plant, sensor, controller and actuator. The
plant is controlled by the control signal passively. The information channel from the controller
to the plant is called the control channel and from the controller to the plant is called the feed-
back channel. The controller and plant are in unequal status, whereas in the multiagent system
theory, the system consists of agents on different levels. The agents on the same levels are in
equal status. The information transmission from agent Bob to agent Alice is the control signal
to Alice from Bob’s angle of view, and there is also the information feedback from Alice’s an-
gle of view. Every agent is controlling others while is controlled by others. It depends on the
angle of view whether an agent is a decision-maker or controlled object. Here the control and
feedback are both parts of communication among agents. The communication network and
control system are fully integrated together.

12.2 Cooperation Over Communications

12.2.1 Time Synchronization

Time synchronization, also called clock synchronization, is the premise for networked mul-
tiagent systems to achieve effective applications and services. Professor Lamport, who won
the Turing Award in 1978, pointed out that clock synchronization is a critical foundation of
distributed systems [4]. In networked systems, equipment localization, transmission schedul-
ing, event sequencing, data fusion, and control actuation all require a synchronized clock
with high accuracy. In the field of information science and engineering, clock synchroniza-
tion means designing a synchronization algorithm to calibrate each local clock of electrical
and electronics physical units such that different physical units finally have a common clock
reference. Here local clock sources generally refer to oscillation circuit modules that produce
stable pulse, such as crystal, digital-controlled oscillator, atomic clock, and so on [5].

Networked clock synchronization is a typical kind of state estimation problems over com-
munication networks. Generally, the physical clock of each unit, that is, unit i, consists of an
oscillator and a counter. The oscillator generates the standard unit of frequency fi , which is a
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stochastic process. The counter keeps tracking of the number of oscillations occurred. After
being set initially, the clock i provides its reading ci(t) of the natural time t by adding up the
number of oscillations [6]:

ci(t) = fi(t − t0) + ci(t0), (12.1)

where t0 is the initial time, and ci(t0) is the hardware clock reading at t0. In fact, Eq. (12.1) is
a discrete-time version of the continuous integral model of physical clocks. Since fi is slowly
time varying, the estimated value τ̂i (t) of hardware clock reading can be given by

τ̂i (t) = (ci(t) − ci(t0))/f̂i + τi(t0), (12.2)

where f̂i is the estimation of nominal frequency, and τi(t0) is the local clock reading at initial
time. Notice that the oscillation frequency is almost fixed during a small period of time in
stable physical–chemical environment.

Roughly speaking, there are two kinds of clock synchronization algorithms, hierarchical con-
figuration and distributed configuration. In the former, there is a logic master–slave relation-
ship, that is, the clock values of low-level equipments are endowed by high-level equipments.
In the latter, the structure is totally distributed. For large-scale wireless sensor networks, dis-
tributed clock synchronization algorithms are of extremely important significance [7].

Recently, consensus-based distributed clock synchronization algorithms have been developed
and studied extensively [8–15]. The objective of state consensus algorithms is to achieve the
same global value of all nodes by local information exchange [16–20], which coincide with
that of clock synchronization. An excellent clock synchronization algorithm should fit for
the characteristics of wireless networks, such as fully distributed structure, limited power and
memory, asynchronous information exchange, self-adapting, and easy implementation, and
should be robust against random node/link failures and recreation and packet dropouts. For-
tunately, there are systematic studies of these issues in multiagent state consensus. Especially,
consensus-based clock synchronization algorithms have particular advantages. Firstly, the al-
gorithm is totally distributed, independent of infrastructures for special network topologies,
and much robust against link failures and time-varying topologies. Secondly, synchroniza-
tion among neighboring nodes can get much higher precision with less computation overhead.
Thirdly, the algorithm can uniformly compensate skew and offset asynchronously and relax
the master–slave relationship. From framework of state consensus theory, the clock synchro-
nization problem comes down to the high-order heterogeneous multiagent state consensus.
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12.2.2 State Consensus

State consensus is one of the most fundamental problems of distributed coordination of mul-
tiagent networks, which, roughly speaking, means designing a network protocol such that
as time goes on, all agents asymptotically reach an agreement. For some cases, the agree-
ment is a common value, which may be the average of the initial states of the system and
is often called average-consensus. Besides networked time synchronization, consensus and
average-consensus have wide application background in the area such as formation control
[21], distributed filtering [22], multisensor data fusion [23], and distributed computation [24].

Let G = {V,EG,AG} be a weighted digraph, where V = {1,2, · · · ,N} is the set of nodes
with node i representing the ith agent, EG is the set of edges, and AG = [aij ] ∈ RN×N is
the weighted adjacency matrix of G. An edge in G is denoted by an ordered pair (j, i), and
(j, i) ∈ EG if and only if the j th agent can directly send information to the ith agent. The
neighborhood of the ith agent is denoted by Ni = {j ∈ V | (j, i) ∈ EG}. An element of
Ni is called a neighbor of i. The ith node is called a source if it has no neighbors but is a
neighbor of another node in V . A node is called an isolated node if it has no neighbor and
is not a neighbor of any other node. For any i, j ∈ V , aij ≥ 0, and aij > 0 ⇔ j ∈ Ni .
The in-degree of i is defined as degin(i) = ∑N

j=1 aij , and the out-degree of i is defined as

degout (i) = ∑N
j=1 aji . The Laplacian matrix of G is defined as LG = DG − AG , where

DG = diag(degin(1), · · · , degin(N)). G is called a balanced digraph if degin(i) = degout (i),
i = 1,2, ...,N . G is called an undirected graph if AG is a symmetric matrix. It is easily
shown that an undirected graph must be a balanced digraph. For a given positive inte-
ger k, the union of k digraphs G1 = {V , EG1 , AG1}, ..., Gk = {V , EGk

, AGk
} is denoted by∑k

j=1 Gj = {V,∪k
j=1EGj

,
∑k

j=1 AGj
}. By the definition of a Laplacian matrix we know that

L∑k
j=1 Gj

= ∑k
j=1 LGj

. A sequence (i1, i2), (i2, i3), ..., (ik−1, ik) of edges is called a directed

path from node i1 to node ik . G is called a strongly connected digraph if for any i, j ∈ V , there
is a directed path from i to j . A strongly connected undirected graph is also called a con-
nected graph. A directed tree is a digraph where every node except the root has exactly one
neighbor and the root is a source. A spanning tree of G is a directed tree whose node set is V
and whose edge set is a subset of EG . For a balanced digraph, containing a spanning tree is
equivalent to being strongly connected. We call {G1, ...,Gk} jointly-containing-spanning-tree
if
∑k

j=1 Gj has a spanning tree. Especially, if Gj , j = 1,2, ..., k, are all undirected graphs

and {G1, ...,Gk} jointly contains a spanning tree, then
∑k

j=1 Gj is connected. In this case,
{G1, ...,Gk} is called jointly-connected.

Now we state a basic theorem on Laplacian matrices.
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Theorem 12.1. ([16], [25]) If G = {V,EG,AG} is an undirected graph, then LG is a symmet-
ric matrix and has N real eigenvalues in ascending order:

0 = λ1(LG) ≤ λ2(LG) ≤ ... ≤ λN(LG),

and

min
x �=0,1T x=0

xT LGx

‖x‖2
2

= λ2(LG),

where λ2(LG) is called the algebraic connectivity of G. Particularly, if G is connected, then
λ2(LG) > 0.

We consider the average-consensus control for a network of discrete-time first-order agents
with the dynamics

xi(t + 1) = xi(t) + ui(t), t = 0,1, ..., i = 1, ...,N, (12.3)

where xi(t) and ui(t) are the state and control of the ith agent. Here for simplicity, we sup-
pose that xi(t) and ui(t) are scalars and the initial state xi(0) is deterministic.

The ith agent can receive information from its neighbors:

yji(t) = xj (t) + wji(t), j ∈ Ni, (12.4)

where yji(t) denotes the measurement of the j th agent’s state xj (t) by the ith agent, and
{wji(t), i, j = 1,2, ...,N} are the communication noises. The graph G shows the structure of
the information flow in system (12.3), called the information flow graph or network topology
graph of system (12.3). Denote X(t) = [x1(t), ..., xN(t)]T ; (G,X) is usually called a dynamic
network [16].

We call the group of controls U = {ui, i = 1,2, ...,N} a measurement-based distributed
protocol if each ui(t) depends only on the state of the ith agent and the measurement of its
neighbors’ states, that is,

ui(t) ∈ σ(∪t
s=0σ(xi(s), yji(s), j ∈ Ni)), t = 0,1, ..., i = 1,2, ...,N.

The so-called consensus control means to design a measurement-based distributed protocol
for the dynamic network (G,X) such that all agents achieve an agreement on their states in
some sense as t → ∞. The so-called average-consensus control means to design a distributed
protocol for the dynamic network (G,X) such that, for any initial value X(0), the states of all
the agents converge to 1

N

∑N
j=1 xj (0) as t → ∞, that is, 1

N

∑N
j=1 xj (0) can be computed in a

distributed way. For this case, 1
N

∑N
j=1 xj (0) is called the group decision value [16].
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Applying the distributed protocol U to system (12.3)–(12.4), generally speaking, will lead
to a stochastic closed-loop system, and xi(t), i = 1,2, ...,N , are all stochastic processes.
A distributed protocol U is called an asymptotically unbiased mean square average-consensus
protocol if it renders system (12.3)–(12.4) has the following properties: for any given X(0) ∈
RN , there is a random variable x∗ such that E(x∗) = 1

N

∑N
j=1 xj (0), Var(x∗) < ∞, and

lim
t→∞ E[xi(t) − x∗]2 = 0, i = 1,2, ...,N.

For the dynamic network (G,X), we use the distributed protocol

ui(t) = a(t)
∑
j∈Ni

aij (yji(t) − xi(t)), t = 0,1, ..., (12.5)

where and whereafter a(t) > 0, called a consensus-gain function, and if |Ni | = 0, then the
sum

∑
j∈Ni

(·) is defined as zero.

We call (12.5) a distributed stochastic approximation type protocol. It intuitively means that
each agent updates its state in the direction of the nonnegative gradient of its local Laplacian

potential. If the digraph G is balanced, then VG
�= xT LGx = 1

2

∑N
i=1

∑
j∈Ni

aij (xj − xi)
2

is called the Laplacian potential function associated with G [16], which represents the de-
gree of deviation between different agents’ states, 1

2

∑
j∈Ni

aij (xj − xi)
2 is called the local

Laplacian potential of the ith agent, and the nonnegative gradient direction with respect to xi

is
∑

j∈Ni
aij (xj − xi). Due to the communication noises, in the protocol (12.5), the update di-

rection of the ith agent at time t is
∑

j∈Ni
aij (yji(t) − xi(t)), and a(t) is the step size. When

there is no communication noise (i.e., yji(t) = xj (t)) and a(t) ≡ 1, (12.5) degenerates to the
protocol (A.1) of [16].

Fixed Topology Case

In this section, we prove that, under mild conditions, the control law (12.5) is an asymptoti-
cally unbiased mean square average-consensus and almost sure strong consensus protocol.

For conciseness of expression, we further use the following notation:

S = {ξ | {ξ(t) ∈ RN×N,F ξ (t)} is a martingale difference, σξ
�= sup

t≥0
E‖ξ(t)‖2

2 < ∞},

S ′ = {ξ | ξ ∈ S, sup
t≥0

E(‖ξ(t)‖2
2|F ξ (t − 1)) < ∞ a.s.},

S̃ ′ = {ξ | ξ ∈ S, sup
t≥0,m≥0

E(‖ξ(t + m)‖2
2|F ξ (t)) < ∞ a.s.},

where and whereafter F ξ (t) = σ {ξ(0), ..., ξ(t)}.
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Obviously, S̃ ′ ⊂ S ′ ⊂ S . If {ξ(t) ∈ RN×N, t = 0,1, ...} is a sequence of independent r.v.s with
zero mean and uniformly bounded second-order moments, then {ξ(t), t = 0,1, ...} ∈ S̃ ′. So
bounded and Gaussian white noises both belong to S̃ ′.

Substituting the protocol (12.5) into (12.3) leads to

X(t + 1) = [IN − a(t)LG]X(t) + a(t)DGW(t), t = 0,1, ..., (12.6)

where and whereafter DG = diag(αT
1 , ..., αT

N) is an N × N2-dimensional block diago-
nal matrix with αi being the ith row of AG , and W(t) = [wT

1 (t), ...,wT
N(t)]T with wi(t) =

[w1i (t), ...,wNi(t)]T .

We need the following assumptions:

A1) G is a balanced digraph;

A2) G contains a spanning tree;

A3)
∑∞

t=0 a(t) = ∞,
∑∞

t=0 a2(t) < ∞;

A3)′
∑∞

t=0 a(t) = ∞, limt→∞ a(t) = 0.

We have the following theorems.

Theorem 12.2. Apply the protocol (12.5) to system (12.3)–(12.4) and suppose that A1), A2),
and A3)′ hold. Then, for any W ∈ S ,

lim
t→∞ E[V (t)] = 0, ∀ X(0) ∈RN, (12.7)

that is, (12.5) is a mean square weak consensus protocol. Here V (t) =
∥∥∥(I − 1

N
11T

)
X(t)

∥∥∥2

2
is the energy function of the consensus error.

Proof. Denote J = 1
N

11T , where 1 denotes the N -dimensional column vector with all ele-
ments 1, and

δ(t) = (IN − J )X(t). (12.8)

Then V (t) = δT (t)δ(t). Thus, from A1) and Theorem 6 of [16] we have 1T LG = 0 and
JLG = 0, which together with (12.6), leads to

δ(t + 1) = X(t) − a(t)LGX(t) + a(t)DGW(t) − JX(t) − a(t)JDGW(t)

= δ(t) − a(t)LGX(t) + a(t)(I − J )DGW(t)

= [IN − a(t)LG]δ(t) + a(t)(I − J )DGW(t) (12.9)
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and

V (t + 1) = V (t) − 2a(t)δT (t)L̂Gδ(t) + a2(t)δT (t)LT
GLGδ(t)

+ 2a(t)δT (t)(I − a(t)LT
G )(I − J )DGW(t)

+ a2(t)WT (t)DT
G (I − J )2DGW(t). (12.10)

From A1) and Theorem 7 of [16], L̂G = LG+LT
G

2 is the Laplacian matrix of the symmetrized
graph1 Ĝ of G. From A2), noticing that Ĝ is undirected, we know that Ĝ is strongly connected,
and hence, from Theorem 12.1, λ2(L̂G) > 0. Therefore, from δT (t)L̂Gδ(t) ≥ λ2(L̂G)V (t) and
(12.10) we have

V (t + 1) ≤ (1 − 2λ2(L̂G)a(t) + a2(t)‖LG‖2
2)V (t)

+ 2a(t)δT (t)(I − a(t)LT
G )(I − J )DGW(t)

+ a2(t)WT (t)DT
G (I − J )2DGW(t). (12.11)

Noticing that δ(t) ∈ FW(t − 1) and W ∈ S , taking mathematical expectation on both sides of
this inequality, we have

E[V (t + 1)] ≤ (1 − 2λ2(L̂G)a(t) + a2(t)‖LG‖2
2)E[V (t)] + a2(t)‖DG‖2

2‖I − J‖2
2σW .

(12.12)

Noticing that λ2(L̂G) > 0 and a(t) → 0, t → ∞, we get that there is t0 > 0 such that
a(t)‖LG‖2

2 < λ2(L̂G) and 2a(t)λ2(L̂G) ≤ 1, ∀ t ≥ t0. Thus

0 ≤ 1 − 2a(t)λ2(L̂G) + a2(t)‖LG‖2
2 < 1, ∀ t ≥ t0. (12.13)

Then by A3)′ we have

∞∑
t=t0

(2a(t)λ2(L̂G) − a2(t)‖LG‖2
2) ≥ λ2(L̂G)

∞∑
t=t0

a(t) = ∞ (12.14)

and

a2(t)

2a(t)λ2(L̂G) − a2(t)‖LG‖2
2

→ 0, t → ∞, (12.15)

which, together with (12.13), (12.14), and Lemma 12.A.1 in Appendix 12.A, leads
to (12.7).

1 The definition of the symmetrized graph of a digraph is referred to Definition 2 of [16].
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In the protocol (12.5), an agent-independent consensus gain a(t) is used. This requires some
coordination of the consensus gain across the agents. It is interesting to investigate the case
with agent-dependent consensus gains. For instance, in practical applications, there may be a
small error between the actual consensus gain ai(t) of the ith agent and the designed consen-
sus gain a(t). For this case, the protocol (12.5) becomes

ui(t) = ai(t)

N∑
j=1

aij (yji(t) − xi(t)), t = 0,1, . . . . (12.16)

We have the following theorem.

Theorem 12.3. Apply the protocol (12.16) to system (12.3)–(12.4). If Assumptions A1)–A2)
hold and

∞∑
t=0

aj (t) = ∞, j = 1,2, ...,N, (12.17)

lim
t→∞aj (t) = 0, j = 1,2, ...,N, (12.18)

max
1≤i,j≤N

|ai(t) − aj (t)| = o(

N∑
j=1

aj (t)), t → ∞, (12.19)

then, for any W ∈ S ,

lim
t→∞ E[V (t)] = 0, ∀ X(0) ∈RN. (12.20)

Proof. Denote

ā(t) = 1

N

N∑
j=1

aj (t),�(t) = diag(�1(t), ...,�N(t)),

where �i(t) = ā(t) − ai(t). Substituting the protocol (12.16) into system (12.3)–(12.4), simi-
larly to (12.10), we have

V (t + 1) = V (t) − 2ā(t)δT (t)L̂Gδ(t) + ā2(t)δT (t)LT
GLGδ(t)

+ 2δT (t)(I − ā(t)LT
G )�(t)LGδ(t) + δT (t)LT

G�2(t)LGδ(t)

+ 2ā(t)δT (t)LT
G�(t)(I − J )DGW(t)

+ 2ā(t)δT (t)(I − ā(t)LT
G )(I − J )DGW(t)

+ ā2(t)WT (t)DT
G (I − J )2DGW(t). (12.21)
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From the above, noting that maxj supt≥0 aj (t) < ∞, similarly to (12.12), we have

E[V (t + 1)] ≤ (1 − q(t))E[V (t)] + ā2(t)‖DG‖2
2‖I − J‖2

2σW , (12.22)

where

q(t) = 2λ2(L̂G)ā(t) − 2(1 + α0‖LG‖2)‖LG‖2‖�(t)‖2 − ‖�(t)‖2
2‖LG‖2

2

and α0 = maxj supt≥0 aj (t). By (12.18) we know that

lim
t→∞ ā(t) = 0. (12.23)

By (12.17) we have

∞∑
t=0

ā(t) = ∞. (12.24)

Noting that ‖�(t)‖2 ≤ max1≤i,j≤N |ai(t) − aj (t)|, by (12.19), we get that

‖�(t)‖2 = o(ā(t)), t → ∞.

Then by (12.23) and (12.24), similarly to (12.13)–(12.15), we get that there exists t1 > 0 such
that

0 < q(t) ≤ 1, ∀ t ≥ t1, (12.25)

∞∑
t=t1

q(t) = ∞, (12.26)

and

ā2(t)

q(t)
→ 0, t → ∞. (12.27)

Then by (12.25), (12.26), (12.27), and Lemma 12.A.1 in Appendix 12.A we have (12.20).

For the sufficient conditions ensuring (12.5) to be an asymptotically unbiased mean square
average-consensus protocol, we have the following theorem.
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Theorem 12.4. Apply the protocol (12.5) to system (12.3)–(12.4). If Assumptions A1)–A3)
hold, then, for any W ∈ S ,

lim
t→∞ E[xi(t) − x∗]2 = 0, i = 1,2, ...,N, ∀ X(0) ∈ RN, (12.28)

where x∗ is a r.v. depending on W and X(0) and satisfying

E(x∗) = 1

N

N∑
j=1

xj (0),

Var(x∗) ≤ σ ∗
W |EG |∑N

i=1
∑

j∈Ni
a2
ij

N2

∞∑
t=0

a2(t).

In particular, if {wji(t), t = 0,1, ...}, i = 1,2, ...,N , j ∈ Ni , are mutually independent, then
V∗ ≤ Var(x∗) ≤ V ∗, where

V ∗ = σ ∗
W |EG |max1≤i<j≤N a2

ij

N2

∞∑
t=0

a2(t), V∗ = σW∗ |EG |min1≤i<j≤N a2
ij

N2

∞∑
t=0

a2(t),

σ ∗
W = max

(j,i)∈EG
sup
t≥0

E[wji(t)]2, σW∗ = min
(j,i)∈EG

inf
t≥0

E[wji(t)]2,

that is, (12.5) is an asymptotically unbiased mean square average-consensus protocol.

Proof. For all W ∈ S , from (12.6) and 1T LG = 0 it follows that

1

N

N∑
j=1

xj (t + 1) = 1

N

N∑
j=1

xj (t) + a(t)
1

N
1T DGW(t).

Taking summation for both sides of the above equations from t = 0 to t = n − 1 leads to

1

N

N∑
j=1

xj (n) = 1

N

N∑
j=1

xj (0) + 1

N
1T DG

n−1∑
t=0

a(t)W(t). (12.29)

Since W ∈ S and
∑∞

t=0 a2(t) < ∞, we get that (
∑n

t=0 a(t)W(t),FW(n)) is a martingale with

sup
n≥0

E
∥∥∥

n∑
t=0

a(t)W(t)

∥∥∥2

2
< ∞.
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Then by Theorem 7.6.10 of [26] it follows that
∑n

t=0 a(t)W(t) converges in mean square as
n → ∞. Denote the limit by

∑∞
t=0 a(t)W(t). Then (12.28) follows from Theorem 12.2 with

x∗ = 1

N

N∑
j=1

xj (0) + 1

N
1T DG

∞∑
t=0

a(t)W(t).

By Corollary 4.2.5 of [27] we have

E(x∗) = 1

N

N∑
j=1

xj (0),

Var(x∗) = lim
n→∞ E

(
1

N
1T DG

n∑
t=0

a(t)W(t)

)2

= 1

N2

∞∑
t=0

{
a2(t)E(

∑
i,j

aijwji(t))
2
}
. (12.30)

This, together with the Cauchy inequality, gives

Var(x∗) ≤
∑N

i=1 |Ni |
N2

lim
n→∞

n∑
t=0

{
a2(t)

∑
i,j

a2
ij E(wji(t))

2
}

≤ σ ∗
W |EG |∑i,j a2

ij

N2

∞∑
t=0

a2(t).

When {wji(t), t = 0,1, ...}, i = 1,2, ...,N , j ∈ Ni , are independent, by (12.30) we have

Var(x∗) = 1

N2
lim

n→∞

n∑
t=0

{
a2(t)

∑
i,j

a2
ij E(wji(t))

2
}

≤ σ ∗
W |EG |max1≤i<j≤N a2

ij

N2

∞∑
t=0

a2(t),

Var(x∗) ≥ σW∗ |EG |min1≤i<j≤N a2
ij

N2

∞∑
t=0

a2(t).

This completes the proof of the theorem.

Theorems 12.2–12.4 indicate that, for fixed topologies, Assumptions A1)–3) are a sufficient
condition for the protocol (12.5) to ensure mean square weak consensus and asymptotically
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unbiased mean square average-consensus. Assumption A2) is to ensure the connectivity of
the network to some extent, that is, the algebraic connectivity λ2(L̂G) > 0, so that different
agents may asymptotically agree on their states; Assumption A1) is to ensure the state average
evolve around 1

N

∑N
j=1 xj (0) so that an average-consensus can be achieved.

Assumption A3) is the step rule of standard stochastic approximation. From the proof of
Theorem 12.2 we can see that the condition

∑∞
t=0 a(t) = ∞ is to ensure the consensus er-

ror converges to zero with a certain rate. From the proof of Theorem 12.4 we can see the
important role played by the condition

∑∞
t=0 a2(t) < ∞: when there are communication

noises, by (12.29) the state average of the closed-loop system is not a constant anymore, and∑∞
t=0 a2(t) < ∞ ensures the convergence of the state average of the closed-loop system.

From Theorem 12.4 we can see that, under the control of the protocol (12.5), there exists a
static error between the final state of the closed-loop system and the average of the initial
states. Var(x∗) describes the static error in the sense of mean square. In fact, we can show
that if the conditions of Theorem 12.4 hold, then

Var(x∗) = lim sup
t→∞

max
1≤i≤N

E
[
xi(t) − 1

N

N∑
j=1

xj (0)

]2

,

that is, Var(x∗) gives the static maximum mean square error between each individual state
and the average of the initial states of the whole system.

In some applications of the information fusion of wireless sensor networks, the number N of
network nodes is usually very large. Theorem 12.4 gives the analytic expression of the static
maximum mean square error between each individual state and the average of the initial states
of the whole system, from which we can see the impact of N on the accuracy of the informa-
tion fusion. When the noises of different communication channels are mutually independent,
Var(x∗) is proportional to |E|

N2 . In particular, if |E | = O(N) and max1≤i≤j≤N aij = O(1), then

Var(x∗) = O(N−1), N → ∞. This means that the more the network nodes, the better the ef-
fect of the information fusion. However, a large number of nodes will result in a high cost for
running and maintenance of the whole network, so the choice of N is a trade-off between the
fusion accuracy and the cost.

On necessity of Assumptions A1)–A3) for asymptotically unbiased mean square average-
consensus, we have the following result.

Theorem 12.5. Apply the protocol (12.5) to system (12.3)–(12.4). If (12.5) is an asymp-
totically unbiased mean square average-consensus protocol for any W ∈ S , then Assump-
tions A1)–A3) hold.
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Proof. The proof is provided in Appendix 12.A.

Remark 12.1. In [28], sufficient conditions are given to ensure mean square weak con-
sensus for undirected graphs with independent and identically distributed communication
noises. In [29], a necessary and sufficient condition is given to ensure continuous-time mean
square average-consensus for Gaussian noises. Here, from Theorems 12.4–12.5 we can see
that A1)–A3) are necessary and sufficient conditions ensuring that (12.5) is a mean square
average-consensus protocol for any communication noises that are martingale differences
with bounded second-order moments.

For the special case with no communication noise, a sufficient condition for the protocol
(12.5) ensuring average-consensus is given by the following theorem.

Theorem 12.6. Apply the protocol (12.5) to system (12.3)–(12.4) with W(t) = 0, t = 0,1, . . . .
If A1)–A2) hold,

∑∞
t=0 a(t) = ∞, and

lim sup
t→∞

a(t) < μ, (12.31)

where μ = min{2λ2(L̂G)

‖LG‖2
2

, 1
2λ2(L̂G)

}, then limt→∞ ‖X(t) − JX(0)‖2 = 0, ∀ X(0) ∈ RN .

Proof. Noticing that W(t) = 0, t = 0,1, ..., by A1) and A2), similarly to (12.12), we have

V (t + 1) ≤ (1 − 2λ2(L̂G)a(t) + a2(t)‖LG‖2
2)V (t) + a2(t)‖DG‖2

2‖I − J‖2
2σW .

Take a constant ε0 ∈ (0,μ − lim supt→∞ a(t)). Then by (12.31) we have that there is t0 > 0
such that

a(t) ≤ 2λ2(L̂G)

‖LG‖2
2

− ε0, ∀ t ≥ t0, (12.32)

and

a(t) ≤ 1

2λ2(L̂G)
− ε0, ∀ t ≥ t0. (12.33)

By (12.32) we have

1 − 2λ2(L̂G)a(t) + a2(t)‖LG‖2
2 ≤ 1 − ε0‖LG‖2

2a(t) < 1, ∀ t ≥ t0. (12.34)

By (12.33) we have

1 − 2λ2(L̂G)a(t) + a2(t)‖LG‖2
2 ≥ 1 − 2λ2(L̂G)a(t) ≥ 2ε0λ2(L̂G) ≥ 0, ∀ t ≥ t0, (12.35)
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From (12.32) and
∑∞

t=0 a(t) = ∞ we get

∞∑
t=t0

(2λ2(L̂G)a(t) − a2(t)‖LG‖2
2) ≥ ε0‖LG‖2

2

∞∑
t=t0

a(t) = ∞,

which, together with (12.34), (12.35), and Lemma 12.A.1, leads to

lim
t→∞V (t) = 0. (12.36)

Similarly to (12.29), noticing that W(t) = 0, t = 0,1, ..., we have

1

N

N∑
j=1

xj (t) = 1

N

N∑
j=1

xj (0), t = 1,2, . . . .

This, together with (12.36), leads to the conclusion of the theorem.

From the following theorem we can see that, under Assumptions A1)–A3), for a class of com-
munication noises, the protocol (12.5) can ensure the almost sure consensus as well.

Theorem 12.7. Apply the protocol (12.5) to system (12.3)–(12.4). If Assumptions A1)–A3)
hold, then, for any W ∈ S ′,

lim
t→∞xi(t) = x∗ a.s., i = 1,2, ...,N,∀ X(0) ∈ RN, (12.37)

that is, (12.5) is an almost sure strong consensus protocol [28]. Here x∗ is given by Theo-
rem 12.4. Furthermore, if a(t) ↓ 0, t → ∞, then

1

n

n∑
t=0

‖δ(t)‖2 = o

(
1√

a(n)n

)
, n → ∞, a.s., (12.38)

where δ(t) is given by (12.8).

Proof. For all W ∈ S ′, from δ(t) ∈FW(t − 1) and (12.11) it follows that

E(V (t + 1)|FW(t − 1)) ≤ (1 + a2(t)‖LG‖2
2)V (t) − 2λ2(L̂G)a(t)V (t)

+ a2(t)tr(DT
G (I − J )2DG)

× E(‖W(t)‖2
2|FW(t − 1)) a.s. (12.39)
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Noticing that supt≥0 E(‖W(t)‖2
2|FW(t − 1)) < ∞ a.s. and

∑∞
t=0 a2(t) < ∞, by the nonneg-

ative supermartingale convergence theorem [30], [31] we have that V (t) converges almost
surely as t → ∞ and

∞∑
t=0

a(t)V (t) < ∞ a.s. (12.40)

Furthermore, by Theorem 12.2 and S ′ ⊂ S ,

lim
t→∞V (t) = 0 a.s. (12.41)

Since W ∈ S ′ and
∑∞

t=0 a2(t) < ∞, it follows that {∑n
t=0 a(t)W(t),FW(n)} is a martingale

with

sup
n≥0

E
∥∥∥

n∑
t=0

a(t)W(t)

∥∥∥2

2
< ∞.

Then by Theorem 7.6.10 of [26] we get that
∑n

t=0 a(t)W(t) converges both in mean square
and almost surely as n → ∞. Thus by (12.29) and (12.41) we get that xi(t) converges almost
surely as t → ∞, i = 1,2, ...,N . This, together with Theorem 12.4, gives (12.37).

If a(t) ↓ 0, t → ∞, then by Kronecker lemma [27] and (12.40) we have

lim
n→∞a(n)

n∑
t=0

V (t) = 0 a.s.,

which, together with the Cauchy inequality, results in

1

n

n∑
t=0

‖δ(t)‖2 ≤
(

1

n

n∑
t=0

V (t)

)1/2

= o

(
1√

a(n)n

)
a.s.

Theorem 12.7 implies that, under the same conditions, the states of different agents converge
asymptotically to a common random variable with probability one. Note that this random
variable may not be precisely the average of the initial states, although its sample mean is. For
this case, (12.38) gives a rough estimate for the convergence rate of n-step mean consensus
error.
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Time-Varying Topology Case

In this case, the distributed protocol is running above a flow of topology graphs {G(t), t =
0,1, ...}, where G(t) = {V,EG(t),AG(t)}, t = 0,1, ..., is a sequence of digraphs with the same
vertex set. The edge sets and weighted adjacency matrices are time varying.

The networks with time-varying topologies can be found in many engineering, biological, so-
cial, and economic systems, such as the creation and failure of communication links, the loss
of data packages, the variation of the channel parameters, and the evolvement and reconfig-
uration of formations in swarms and flocking [32]. For many cases, fixed topologies are only
ideal models; even if the protocol is designed for a fixed topology, then it is necessary to con-
sider the robustness of the protocol with respect to the time-variation of the topology. For the
stability and consensus of time-varying networked systems without communication noises,
the readers are referred to [33], [34].

Here we will consider two kinds of typical topology graph flows:


1 = {{H(t), t = 0,1, ...}| H(t) is a balanced digraph ∀ t ≥ 0, sup
t≥0

‖AH(t)‖2 < ∞},

which is a family of all sequences of balanced graphs with bounded weighted adjacent ma-
trix (we can see that a sequence of undirected graphs with bounded weighted adjacent matrix
belongs to 
1);


2 = {{H(t), t = 0,1, ...}| H(t) is a balanced digraph ∀ t ≥ 0, |{H(t), t = 0,1, ...}| < ∞},
which is a family of sequences of switching balanced graphs. Obviously, 
2 ⊂ 
1. If
{H(t), t = 0,1, ...} ∈ 
2, then the set {H(t), t = 0,1, ...} has only finitely many elements. The
most common sequence of switching balanced graphs is the sequence of undirected graphs
{H(t) = {V,EH(t),AH(t)}, t = 0,1, ...} with weighted adjacent matrices AH(t) = [aij (t)]N×N ,
the elements of which take only two kinds of values: when i and j are mutually neighbors,
aij (t) = aji(t) = aij > 0; otherwise, aij (t) = aji(t) = 0, i, j ∈ V . This kind of sequences
of switching undirected graphs are widely involved in the synchronization of Vicsek models
[35], [36].

For {G(t), t = 0,1, ...}, the distributed network protocol is given by

ui(t) = a(t)
∑

j∈Ni(t)

aij (t)(yji(t) − xi(t)), ∀ t = 0,1, ..., (12.42)

where aij (t) is the element of ith row and j th column of AG(t), which is the weighted adja-
cency matrix at time t . Note that aij (t) > 0 ⇔ (j, i) ∈ EG(t). Let Ni(t) = {j ∈ V| aij (t) > 0}.
Here

yji(t) = xj (t) + wji(t), j ∈ Ni(t), t = 0,1, . . . . (12.43)
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Since ui(t) is adapted to σ(xi(t), yji(t), j ∈ Ni(t)), t = 0,1, ..., i = 1,2, ...,N , U =
{u1, ..., uN } is a distributed protocol. Substituting the protocol (12.42) into (12.3) gives

X(t + 1) = [IN − a(t)LG(t)]X(t) + a(t)DG(t)W(t), t = 0,1, . . . . (12.44)

In this section, we need the following assumption:

A4) a(t + 1) ≤ a(t), t = 0,1, ..., and lim supt→∞
a(t)

a(t+1)
< ∞.

If a(t) = 1
t+1 or a(t) = ln(t+2)

t+1 , then both A3) and A4) hold. In fact, if there are β1 ≤ 1, β2 >

−0.5, γ1 ≤ 1, γ2 > 0.5, c1 > 0, and c2 > 0 such that, for sufficiently large t , c1
tγ1 [ln(t)]β1

≤
a(t) ≤ c2[ln(t)]β2

tγ2 , then A3) holds. If a(t) decreases monotonically and there are γ ∈ (0.5,1],
β ≥ −1, c3 > 0, and c4 > 0 such that, for sufficiently large t , c3[ln(t)]β

tγ
≤ a(t) ≤ c4[ln(t)]β

tγ
, then

both A3) and A4) hold.

For convenience of citation, we further denote λh
k = λ2(LĜh

k
), where Gh

k = ∑k+h−1
i=k G(i). The

main results of this section are summarized in the following theorems.

Theorem 12.8. Apply the protocol (12.42) to system (12.3), (12.43). For any given {G(t), t =
0,1, ...} ∈ 
1, if there is an integer h > 0 such that infm≥0 λh

mh > 0 and Assumptions A3)′–A4)
hold, then, for any W ∈ S ,

lim
t→∞ E[V (t)] = 0, ∀ X(0) ∈RN, (12.45)

that is, (12.42) is a mean square weak consensus protocol.

Proof. Noticing that G(t) is a balanced graph, similarly to (12.9), by (12.44) we have

δ(t + 1) = [IN − a(t)LG(t)]δ(t) + a(t)(I − J )DG(t)W(t), (12.46)

and hence

δ[(m + 1)h] = ((m + 1)h,mh)δ(mh) + W
h

mh, (12.47)

where (n + 1, i) = (IN − a(n)LG(n))(n, i), (i, i) = IN , i = 0,1, ..., n, n = 1,2, ..., and

W
h

k =∑k+h−1
j=k (k + h − 1, j)a(j)(I − J )DG(j )W(j).

By Assumption A4) we know that there exist a constant Ch > 0 and a positive integer m0 such
that a(mh) ≤ Cha[(m + 1)h] and a(mh) ≤ 1, ∀ m ≥ m0. Then since supt≥0 ‖AG(t)‖2 < ∞,
noting that a(t) ↓ 0, we have
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T ((m + 1)h,mh)((m + 1)h,mh) − I −

(m+1)h−1∑
i=mh

a(i)
(
LG(i) + LGT (i)

)
∥∥∥∥∥∥

2

≤ a2(mh)

2h∑
l=2

⎛
⎝Ph

(
max

{
sup
t≥0

‖LG(t)‖2,1

})Ph

⎞
⎠

≤ a2[(m + 1)h]Mh, ∀ m ≥ m0,

where Ph = 22h − 2h − 1 and

Mh = C2
hPh(2h − 1)

(
max

{
sup
t≥0

‖LG(t)‖2,1

})Ph

. (12.48)

Thus, by the definition of V (t) and (12.47) we have

V [(m + 1)h]

≤ V (mh) − 2δT (mh)

⎡
⎣(m+1)h−1∑

i=mh

a(i)L̂(i)

⎤
⎦ δ(mh) + a2((m + 1)h)MhV (mh)

+
(
W

h

mh

)T

W
h

mh + 2δT (mh)(((m + 1)h,mh))T W
h

mh

≤ V (mh) − 2a((m + 1)h)δT (mh)

⎡
⎣(m+1)h−1∑

i=mh

L̂(i)

⎤
⎦ δ(mh) + a2((m + 1)h)MhV (mh)

+
(
W

h

mh

)T

W
h

mh + 2δT (mh)(((m + 1)h,mh))T W
h

mh,

∀ m ≥ m0, (12.49)

where L̂(i) = LG(i)+LT
G(i)

2 . From W ∈ S , δ(mh) ∈ FW(mh − 1), and the definition of W
h

mh it
follows that

E[δT (mh)(((m + 1)h,mh))T W
h

mh|FW(mh − 1)] = 0 a.s.,

which implies

E
[
δT (mh)(((m + 1)h,mh))T W

h

mh

]
= 0. (12.50)

Further, since supt≥0 ‖DG(t)‖ < ∞, there exists a constant Nh > 0 such that

E
[
W(mh)T W

h

mh

]
≤ Nh

(m+1)h−1∑
i=mh

a2(i). (12.51)
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Since G(i), i = 0,1, ..., are balanced digraphs, by Theorem 7 of [16], L̂i = LĜ(i), where
Ĝ = {V,EĜ,AĜ} denotes the symmetrized graph of G = {V,EG,AG}. By the definition of

the union graph of symmetrized graphs we have
∑(m+1)h−1

i=mh Ĝ(i) = Ĝh
mh, which in turn gives

(m+1)h−1∑
i=mh

L̂(i) =
(m+1)h−1∑

i=mh

LĜ(i) = L∑(m+1)h−1
i=mh Ĝ(i)

= LĜh
mh

.

Thus, by (12.49), (12.50), (12.51), and Theorem 12.1 we have

E(V [(m + 1)h]) ≤ (1 − 2λh
mha((m + 1)h) + a2((m + 1)h)Mh)E[V (mh)]

+ Nh

(m+1)h−1∑
i=mh

a2(i)

= (1 − 2( inf
m≥0

λh
mh)a((m + 1)h) + a2((m + 1)h)Mh)E[V (mh)]

+ Nh

(m+1)h−1∑
i=mh

a2(i), ∀ m ≥ m0. (12.52)

Noticing that infm≥0 λh
mh > 0,

∞∑
m=0

a(mh) ≥ 1

h

∞∑
m=0

(m+1)h−1∑
i=mh

a(i) =
∞∑
t=0

a(t) = ∞,

and

(m+1)h−1∑
i=mh

a2(i) → 0, m → ∞,

similarly to (12.13), (12.14), and (12.15), by (12.52) and Lemma 12.A.1 we get
E[V (mh)] → 0, m → ∞.

Therefore, for any given ε > 0, there is m1 > 0 such that

E[V (mh)] ≤ ε, ∀ m ≥ m1, (12.53)

and

a2(t) < ε, ∀ t ≥ m1h. (12.54)

Let mt = � t
h
�. Then, for any given t ≥ m1h, we have mt ≥ m1 and

0 ≤ t − mth ≤ h. (12.55)
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From (12.46) and the definition of V (t) we have

E[V (n + 1)] ≤ φ̃(n + 1, k)E[V (k)] + Kh

n∑
i=k

φ̃(n, i)a2(i), ∀ k ≥ 0, (12.56)

where Kh = supt≥0 ‖DG(t)‖2
2‖I − J‖2

2σW , φ̃(n, i) = ∏n−1
j=i (1 − 2λ2(L̂G(j))a(j) +

a2(j)‖LG(j)‖2
2), i = 0,1, ..., n − 1, n = 1,2, ...; φ̃(i, i) = 1, i = 0,1, .... Thus there exists

γ ≥ 1 such that |φ̃(n, i)| ≤ γ n−i , ∀n ≥ i ≥ 0. This, together with (12.55), (12.53), (12.54),
and (12.56), gives

E[V (t + 1)] ≤ φ̃(t + 1,mth)E[V (mth)] + Kh

t∑
i=mth

φ̃(t, i)a2(i)

≤ γ hε + γ hKh

t∑
i=mth

a2(i)

≤ γ h(1 + Kh(h + 1))ε, ∀ t ≥ m1h.

Hence (12.45) follows from the arbitrariness of ε.

Theorem 12.9. Apply the protocol (12.42) to system (12.3), (12.43). For any given {G(t), t =
0,1, ...} ∈ 
1, if there is an integer h > 0 such that infm≥0 λh

mh > 0 and Assumptions A3)–A4)
hold, then, for any W ∈ S ,

lim
t→∞ E[xi(t) − x̃∗]2 = 0, i = 1,2, ...,N, ∀ X(0) ∈ RN, (12.57)

where x̃∗ is a r.v. depending on W , X(0), and {G(t), t = 0,1, ...} and satisfying E(̃x∗) =
1
N

∑N
j=1 xj (0) and Var(̃x∗) < ∞, that is, (12.42) is an asymptotically unbiased mean square

average-consensus protocol.

Proof. By (12.44), similarly to (12.29), we have

1

N

N∑
j=1

xj (n) = 1

N

N∑
j=1

xj (0) + 1

N
1T

n−1∑
t=0

a(t)DG(t)W(t). (12.58)

Since W ∈ S , supt≥0 ‖DG(t)‖2
2 < ∞, and

∑∞
t=0 a2(t) < ∞,

∑n
t=0 a(t)DG(t)W(t) is conver-

gent in mean square. Hence, by Theorem 12.8, similarly to the proof of Theorem 12.4, we
have (12.57).
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Remark 12.2. Differently from the randomly time-varying communication link failures con-
sidered in [37], here the network topology may change continuously, and to ensure mean
square average-consensus, we do not need additional distribution conditions on the events
of the link failures and creations.

Theorem 12.10. Apply the protocol (12.42) to system (12.3), (12.43). For any given
{G(t), t = 0,1, ...} ∈ 
1, if there is an integer h > 0 such that infm≥0 λh

mh > 0 and Assump-
tions A3)–A4) hold, then, for any W ∈ S̃ ′,

lim
t→∞xi(t) = x̃∗ a.s. i = 1,2, ...,N, ∀ X(0) ∈ RN, (12.59)

where x̃∗ is given by Theorem 12.9, that is, (12.42) is an almost sure strong consensus proto-
col.

The proof of Theorem 12.10 needs the following two lemmas.

Lemma 12.1. For a sequence of digraphs {G(t), t = 0,1, ...}, the following three statement
are equivalent:

(i) There is an integer h > 0 such that infm≥0 λh
mh > 0.

(ii) There is an integer h > 0 such that infk≥0 λh
k > 0.

(iii) There are integers h > 0 and k0 > 0 such that infm≥0 λh
k0+mh > 0.

Proof. (ii) ⇒ (i) and (ii) ⇒ (iii) are straightforward. It suffices to show that (i) ⇒ (ii) and
(iii) ⇒ (i).

(i) ⇒ (ii). Suppose that infm≥0 λ
h0
mh0

> 0 for some integer h0 > 0. For any given k ≥ 0, set

nk = � k
h0

�. Then L∑k+2h0−1
j=k Ĝ(j)

− L∑(nk+1)h0−1
i=nkh0

Ĝ(i)
is the Laplacian matrix of the union of

graphs
∑nkh0−1

j=k Ĝ(j) and
∑k+2h0−1

i=(nk+1)h0
. Thus L∑k+2h0−1

j=k Ĝ(j)
− L∑(nk+1)h0−1

i=nkh0
Ĝ(i)

is positive

semidefinite, which, together with Theorem 12.1, gives

λ
2h0
k ≥ λ

h0
nkh0

≥ inf
m≥0

λh
mh > 0, k = 0,1, . . . .

Thus infk≥0 λ
2h0
k > 0.

(iii) ⇒ (i). Suppose that infm≥0 λ
h0
k0+mh0

> 0 for some integers k0 > 0 and h0 > 0. Let h =
k0 + 2h0, nm = �mh−k0

h0
�, m = 1,2, . . . . Then L∑(m+1)h−1

i=mh
Ĝ(i)

− L∑k0+(nm+1)h0−1
j=k0+nmh0

Ĝ(j)
is positive

semidefinite, which, together with Theorem 12.1, gives

λh

mh
≥ λ

h0
k0+nmh0

≥ inf
m≥0

λ
h0
k0+mh0

> 0, m = 1,2, . . . .
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Noticing that λh
0 ≥ λ

h0
k0

≥ infm≥0 λ
h0
k0+mh0

> 0, we have

inf
m≥0

λh

mh
≥ inf

m≥0
λ

h0
k0+mh0

> 0.

Lemma 12.2. Apply the protocol (12.42) to system (12.3), (12.43). For any given {G(t), t =
0,1, ...} ∈ 
1, if there are integers h > 0 and k0 ≥ 0 such that infm≥0 λh

k0+mh > 0 and Assump-

tions A3)–A4) hold, then, for any W ∈ S̃ ′,

lim
m→∞V (k0 + mh) = 0 a.s.

Proof. First, by Lemma 12.1 and Theorem 12.8 we have

lim
t→∞ E[V (t)] = 0. (12.60)

By W ∈ S̃ ′ there is a constant Nh > 0 such that

sup
m≥0

E[‖Wh

k0+mh‖2
2|FW(k0 + mh − 1)]

≤ Nh sup
t≥0,m≥0

E[‖W(t + m)‖2
2|FW(t)]

k0+(m+1)h−1∑
i=k0+mh

a2(i). (12.61)

By (12.45), similarly to (12.47) and (12.49), we have

δ[k0 + (m + 1)h] = (k0 + (m + 1)h, k0 + mh)δ(k0 + mh) + W
h

k0+mh

and

V [k0 + (m + 1)h] ≤ (1 − 2λh
k0+mha(k0 + (m + 1)h) + a2(k0 + (m + 1)h)Mh)V (k0 + mh)

+ (W
h

k0+mh)
T W

h

k0+mh

+ 2δT (k0 + mh)T (k0 + (m + 1)h, k0 + mh)W
h

k0+mh. (12.62)

Notice that {(V (k0 + mh),FW(k0 + mh − 1)),m = 0,1, ...}, is an adapted sequence. Then,
from (12.62) and (12.61) it follows that

E(V [k0 + (m + 1)h]|FW(k0 + mh − 1))

≤ (1 + a2(k0 + (m + 1)h)Mh)E[V (k0 + mh)]

+ Nh sup
t≥0,m≥0

E[‖W(t + m)‖2
2|FW(t)]

k0+(m+1)h−1∑
i=k0+mh

a2(i) a.s., (12.63)
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where Mh is given by (12.48). Since
∑∞

m=1 a2(k0 + mh) < ∞ and∑∞
m=0

∑k0+(m+1)h−1
i=k0+mh a2(i) < ∞, by (12.61), (12.63), and the nonnegative supermartingale

convergence theorem we get that V (k0 + mh) converges a.s. as m → ∞. Furthermore, by
(12.60) we have limm→∞ V (k0 + mh) = 0 a.s.

Proof of Theorem 12.10. By Lemma 12.1 there exists h̃ > 0 such that infm≥0 λh̃

l+mh̃
≥

infk≥0 λh̃
k > 0, l = 0,1, ..., h̃ − 1. Thus it follows from 12.2 that

lim
m→∞V (l + mh̃) = 0 a.s., l = 0,1, . . . , h̃ − 1.

This implies

lim
t→∞V (t) = 0 a.s. (12.64)

Since {∑n
t=0 a(t)DG(t)W(t),FW(n)} is a martingale with supn≥0 E‖∑n

t=0 a(t)DG(t) ×
W(t)‖2

2 < ∞, by Theorem 7.6.10 of [26] we see that
∑n

t=0 a(t)DG(t)W(t) converges almost
surely as n → ∞. This, together with (12.64) and (12.58), implies that xi(t), i = 1,2, ...,N ,
converges almost surely as t → ∞. Thus by Theorem 12.9 we get (12.59).

Corollary 12.1. Apply the protocol (12.42) to system (12.3), (12.43). For any given {G(t), t =
0,1, ...} ∈ 
2, if there is an integer h > 0 such that, for any m ≥ 0,

∑(m+1)h−1
i=mh G(i) contains a

spanning tree and Assumptions A3)–A4) hold, then, for any W ∈ S ,

lim
t→∞ E[xi(t) − x̃∗]2 = 0, i = 1,2, ...,N, ∀ X(0) ∈RN.

Proof. Since
∑(m+1)h−1

i=mh G(i), m = 0,1, ..., has a spanning tree, Ĝh
mh, m = 0,1, ..., is strongly

connected, which, together with Theorem 12.1, implies λh
mh > 0, m = 0,1, .... Further-

more, since {G(t), t = 0,1, ...} ∈ 
2, |{λh
mh,m = 0,1, ...}| < ∞, and hence infm≥0 λh

mh =
minm≥0 λh

mh > 0. This, together with Theorem 12.9 and 
2 ⊂ 
1, completes the proof.

Corollary 12.2. Apply the protocol (12.42) to system (12.3), (12.43). For any given {G(t), t =
0,1, ...} ∈ 
2, if there is an integer h > 0 such that, for any m ≥ 0,

∑(m+1)h−1
i=mh G(i) contains a

spanning tree and A3)–A4) hold, then, for any W ∈ S ′,

lim
t→∞xi(t) = x̃∗ a.s. i = 1,2, ...,N, ∀ X(0) ∈ RN,

where x̃∗ is given by Theorem 12.9, that is, (12.42) is an almost sure strong consensus proto-
col.

Proof. Similarly to Corollary 12.1, we can get infm≥0 λh
mh > 0. This, together with Theo-

rem 12.10 and 
2 ⊂ 
1, leads to the desired conclusion.
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Theorems 12.8–12.10 are for the case of time-varying graph flows, whereas Corollar-
ies 12.1–12.2 are for the special cases of switching graph flows, where the network switches
among a finite number of digraphs and the condition that there is h > 0 such that
infm≥0 λh

mh > 0 is equivalent to that there is h > 0 such that, for any m ≥ 0,
∑(m+1)h−1

i=mh G(i)

contains a spanning tree, that is, {G(i), i = mh,mh + 1, ..., (m + 1)h − 1}, m = 0,1, ..., are all
jointly-containing-spanning-tree.

12.3 Adaptive Mean-Field Games for Large Population Coupled ARX
Systems With Unknown Coupling Strength

Introduction

The research on multiagent dynamic games has a long history in the control community.
A good survey of noncooperative dynamic games can be found in Basar and Olsder [38]. In
recent years, the dynamic game theory gets new inspiration and renews its vitality in network
control and multiagent systems. In the framework of dynamic games, a lot of researchers
considered flow control, routing control, and multiagent cooperation problems [39,40]. For
distributed multiagent systems, generally speaking, there is no centralized control station, and
each agent has only limited sensing and communication ability, so control design is always
required to be decentralized. In a decentralized control framework, the control input of each
agent can only use the local state or, under certain circumstances, include those of others in its
sensing/communication neighborhood.

Recently, Huang, Caines, and Malhamé did a pioneering work on decentralized stochastic
games for a kind of individual-population interacting multiagent systems with mean-field
coupling [41,42], which have wide application background in biological, engineering, and
economic systems [43–46]. In this kind of systems, the number of agents is quite large. Each
agent is driven by stochastic noises and interacts with all other agents via the population state
average (PSA). The interactions between individual states and the PSA exist in both the dy-
namic equation and the cost function of every agent. For a given agent, the impact of any
other single agent is so small that can be neglected; however, that of the overall population
is significant enough for its evolution. Though the agents are coupled with the PSA, the PSA
cannot be used for the individual control design, since it is unknown for any given agent.
This is an essential difficulty of the decentralized control design for decentralized mean-field
games. To overcome this difficulty, Huang, Caines, and Malhamé proposed the methodology
called the Nash certainty equivalence (NCE) principle. In the NCE principle, the PSA is prop-
erly approximated by its mean-field approximation, a deterministic signal, which is then used
for the individual control design instead of the PSA. This principle is similar in spirit to the
well-known the certainty equivalence (CE) principle adopted in adaptive control, where the
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unknown parameters are estimated, and the estimates are used as the true parameters to con-
struct the control laws.

For decentralized mean-field games, most of the relevant literature assumes precise dynamic
models of agents. However, in real systems, there may be parametric uncertainties or unmod-
eled dynamics in agents’ models due to various kinds of unknown or uncertain factors in the
environment. Generally speaking, the parametric uncertainties can be divided into two cate-
gories: unknown local parameters, which contain the information of local environment, and
unknown global parameters, which are shared by all agents. In this paper, we assume that the
local dynamics of each agent is precisely known but the common coupling strength between
the individual state and the PSA, which is a global parameter, is unknown. To eliminate the
model uncertainties, each agent can exploit its learning ability to perfect its dynamic model
by measured data step by step. By using an individual online learner or identifier, each agent
uses its estimate for the coupling strength to construct its individual control law, which aims
at optimizing its cost function. Therefore, the overall system emerges as a large population de-
centralized adaptive game. In this kind of adaptive games, there are two estimation processes.
One is the estimation for the PSA, and the other is the identification for the unknown coupling
strength. A key difficulty lies in that there is a product term of the unknown PSA and the un-
known coupling strength in each agent’s dynamic equation. So, if traditional identification
algorithms were used, then the regression vector would contain the PSA as a component in
each agent’s identification algorithm. However, we know that the PSA is unavailable for each
individual. Intuitively, the estimation signal for the PSA can be used to construct the identifi-
cation algorithms instead of the PSA. Unfortunately, this may result in the coupling between
the estimation process for the PSA and that for the unknown coupling strength. Decentralized
adaptive games for individual–population interacting systems are considered firstly in Huang,
Malhamé, and Caines [42] and Kizilkale and Caines [47]. In Kizilkale and Caines [47], the
dynamic equations of agents are uncoupled, and the local dynamic parameters are unknown,
whereas in Huang, Malhamé, and Caines [42], the dynamics of agents are coupled, but the
precise value of the PSA is used in the identification algorithm. In brief, the coupling between
the two estimation processes, which is a key difficulty in decentralized mean-field adaptive
games, does not exist in Huang, Malhamé, and Caines [42] and Kizilkale and Caines [47]. To
our best knowledge, up to now there is no relevant literature which involves the case where
both the PSA and the coupling strength are unknown.

For decentralized adaptive mean-field games, there are some fundamental problems that have
to be studied.

(1) Is the closed-loop system stable, that is, are the states of all agents kept bounded as time
goes on? And if the answer is affirmative, can the stability be retained as the number N of
agents increases to infinity?
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(2) Is the estimate of the PSA strongly consistent or does the estimation error for the PSA
converge to zero with respect to some metric almost surely as N tends to infinity? If the an-
swer is affirmative, what is the convergence rate?

(3) Is the identification algorithm for the coupling strength strongly consistent or are the es-
timation errors bounded? If the estimation errors are bounded, can we ensure that the bound
converges to zero as N tends to infinity and get the convergence rate?

(4) Is the designed decentralized control law asymptotically optimal almost surely, or is there
an almost sure asymptotic Nash equilibrium? If the answer is affirmative, what is the conver-
gence rate of the suboptimal cost function of each agent to the optimal value as N tends to
infinity?

The large population decentralized adaptive mean-field game is essentially different from
traditional adaptive control for single-agent systems [48,49], and the solutions to the conver-
gence problems (1)–(4) cannot be found in the existing theoretical framework.

In this section, we consider the decentralized adaptive mean-field game for individual–
population interacting stochastic multiagent systems. The dynamic equation of each agent
is described by a discrete-time ARX model and coupled by terms of the PSA with unknown
coupling strength. Each agent has a group tracking type cost function, also coupled by the
PSA. Firstly, based on the NCE principle, the PSA is estimated by some deterministic signal.
Secondly, the estimation of the PSA is used to construct the decentralized least square (LS)
identification algorithm for the coupling strength. Finally, the estimates of the PSA and the
coupling strength are both used to construct the decentralized control law based on the NCE
and CE principles. By the stochastic Lyapunov method we analyze the decentralized LS al-
gorithm, and then by probability limit theory, under mild conditions, we get the following
convergence results of the closed-loop system: (i) The closed-loop system is stable almost
surely, and the states of agents retain bounded as N tends to infinity. (ii) As N tends to in-
finity, the estimation error for the PSA converges to zero with rate O(1/N) almost surely.
(iii) As N tends to infinity, the identification error for the unknown coupling strength con-
verges to zero with rate O(1/

√
N). (iv) The decentralized control law designed is an almost

sure asymptotic Nash equilibrium, and the cost function of each agent is almost surely asymp-
totically optimal with convergence rate O(1/N), given that all other agents also employ the
strategy specified by the asymptotic Nash equilibrium.

We will use the following notation. For a family {ξλ, λ ∈ �} of real-valued r.v.s, σ(ξλ, λ ∈ �)

denotes the σ -algebra σ({ξλ ∈ B},B ∈ B, λ ∈ �), where B denotes the one-dimensional Borel
sets. For a sequence {Ft , t ≥ 0} of nondecreasing σ -algebras and a sequence {ξ(t), t ≥ 0}
of r.v.s, we say that ξ(t) is adapted to Ft or that {ξ(t),Ft } is an adapted sequence if ξ(t) is
Ft -measurable for all t ≥ 0.
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Problem Formulation

We consider a system of N agents denoted by SN . The dynamic equation of agent i is given
by

xN
i (t + 1) = gi(x

N
i (t), t) + uN

i (t) + αxN(t) + ωi(t + 1), t = 0,1, ..., 1 ≤ i ≤ N, (12.65)

where xN
i ∈ R and uN

i ∈ R are the state and control input, respectively, xN(t)
�= 1

N
×∑N

j=1 xN
j (t) is the PSA, ωi(t) ∈ R is the random noise, gi(·, ·) : R × R → R is a known

Borel-measurable function, and α ∈ R is the unknown coupling parameter satisfying |α| < 1.
Note that model (12.65) is just the scalar version of the dynamic model considered in [50], but
here the coupling strength α is unknown.

For model (12.65), we have the following assumptions:

A1) {{ωi(t),F i
t },1 ≤ i ≤ N,N ≥ 1} is a family of independent martingale difference se-

quences defined on a probability space (�,F,P ) with the following properties: there exist
constants σ > 0 and β > 2 such that

sup
t≥0

E[|ωi(t)|β |F i
t−1] < ∞ a.s.,

lim
T →∞

1

T

T∑
t=0

[ωi(t)]2 = σ 2 a.s.,

where F i
t

�= σ(ωi(s),0 ≤ s ≤ t).

A2) {xN
i (0),1 ≤ i ≤ N,N ≥ 1} is independent of {{ωi(t),F i

t }, i ≥ 1} with common mathe-

matical expectation x0
�= E(xN

1 (0)) < ∞.

The cost function of agent i is given by

JN
i (uN

i , uN−i) = lim sup
T →∞

1

T

T∑
t=0

[xN
i (t + 1) − (t, xN(t))]2, (12.66)

where uN−i = (uN
1 , ..., uN

i−1, u
N
i+1, · · · , uN

N), and (t, x) : [0,∞) × R → R is a Borel-
measurable function.

With regards to the cost function, we involve the following assumptions in the closed-loop
analysis.

A3) The solution of the nonlinear iteration x(t + 1) = (t, x(t)) with x(0) = x0 satisfies

lim sup
T →∞

1

T

T∑
t=0

x2(t) < ∞.
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A4) The solution of the nonlinear iteration x(t + 1) = (t, x(t)) with x(0) = x0 satisfies

lim
T →∞

x2(T )

1 +∑T −1
t=0 x2(t)

= 0.

We can easily verify that if (t, x) = x, t ∈ [0,∞), x ∈ R, then both A3) and A4) hold.

For convenience of citation, for agent i, we denote the global-measurement-based admissible
control set by

UN
g,i

�= {uN
i | uN

i (t) is adapted to σ(∪N
j=1σ(xN

j (s),0 ≤ s ≤ t))},
the local-measurement-based admissible control set by

UN
l,i

�= {uN
i | uN

i (t) is adapted to σ(xN
i (s),0 ≤ s ≤ t)},

and the admissible control set by UN
i . The so-called decentralized game means that agent i

synthesizes uN
i only based on the local measurement (i.e. UN

i = UN
l,i) to minimize its cost

function JN
i (uN

i , uN−i). We denote a control group of the sequence SN of systems by UN =
{uN

i ,1 ≤ i ≤ N} and its associated cost function group by JN = {JN
i (uN

i , uN−i),1 ≤ i ≤ N}.
To characterize the asymptotic optimality of the decentralized control law with respect to the
stochastic cost functions, we introduce the concept of almost sure asymptotic Nash equilib-
rium given in Li and Zhang [50].

Definition 12.1. For system (12.65), a sequence of control groups {UN = {uN
i ,1 ≤ i ≤

N},N ≥ 1} is called an almost sure asymptotic Nash equilibrium with respect to the asso-
ciated sequence of cost function groups {JN = {JN

i ,1 ≤ i ≤ N},N ≥ 1} if there exists a
sequence of nonnegative r.v.s {εN(ω),N ≥ 1} on the probability space (�,F,P ) such that
εN → 0 a.s. as N → ∞, and for sufficiently large N ,

JN
i (uN

i , uN−i) ≤ inf
vi∈UN

g,i

JN
i (vi, u

N−i) + εN, a.s., i = 1,2, ...,N. (12.67)

By Theorem 2.1 of [50] we know that infvi∈UN
g,i

JN
i (vi, u

N−i) = σ 2. We will further design a

decentralized control law {UN,N ≥ 1} such that the closed-loop system satisfies

JN
i (uN

i , uN−i) ≤ σ 2 + o(1), N → ∞, a.s.,

that is, the sequence of control groups {UN,N ≥ 1} is an almost sure asymptotic Nash equi-
librium.
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Control Design

Firstly, we make a review of the results with known coupling strength.

For the centralized control law design, the control of agent i depends on the PSA xN , whereas
for the design of the decentralized control law, the PSA is unknown. If the coupling strength α

is known, then we may use the NCE principle to design the decentralized control law. Firstly,
we construct an estimate f (t) of the PSA with the following property: if every agent takes
f (t) as the estimate of the PSA and, according to f (t), makes the optimal decision, then the
expectation of the closed-loop PSA is just f (t) or convergent to it as N increases to infinity.
Secondly, if the f (t) with the above property indeed exists, then we can construct the decen-
tralized control law by using f (t) instead of xN(t).

Based on the NCE principle, we now design the decentralized control law.

The auxiliary equation of agent i is given by

x̂N
i (t + 1) = gi (̂x

N
i (t), t) + ûN

i (t) + αf (t) + ωi(t + 1), t ≥ 0, i = 1,2, ...,N, (12.68)

with a tracking-type cost function

JN
i (̂uN

i ) = lim sup
T →∞

1

T

T∑
t=0

[̂xN
i (t + 1) − (t, f (t))]2.

In this case, the optimal control obviously is

ûN
i (t) = (t, f (t)) − gi (̂x

N
i (t), t) − αf (t). (12.69)

Substituting control (12.69) into the model (12.68), we have

E(̂xN
i (t + 1)) = (t, f (t)), E(̂xN

i (0)) = x0. (12.70)

As mentioned before, the mathematical expectation of the closed-loop PSA ought to be f (t),
that is,

1

N

N∑
j=1

E(̂xN
j (t)) = f (t), t ≥ 0. (12.71)

Therefore, the unique solution of the auxiliary system (12.70) and (12.71) can be used as the
estimate of the PSA. We denote it by f ∗(t), which is iteratively given by

f ∗(t + 1) = (t, f ∗(t)), t ≥ 0, f ∗(0) = x0. (12.72)
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By (12.69) and the NCE principle the control law for agent i can be taken as

u0
i (t) = (t, f ∗(t)) − gi(x

N
i (t), t) − αf ∗(t). (12.73)

Here and hereafter, we omit the superscript N of u0N

i (t) for conciseness of expression. Com-
paring (12.73) with the centralized control law, we can see that xN in (12.73) is replaced by
f ∗ for control design.

As shown in [50], we can prove the asymptotic consistency of the estimate f ∗ for the PSA
and the stability and asymptotic optimality of the closed-loop system under the control law
(12.73). We have the following theorems [50].

Lemma 12.3. For system (12.65), if Assumptions A1)–A2) hold, then under the control law
(12.73), the closed-loop system has the following properties:

lim
T →∞

1

T

T∑
t=0

[ξN(t)]2 = σ 2

N(1 − α2)
a.s., (12.74)

where

ξN(t) = xN(t) − f ∗(t) (12.75)

is the estimation error for the PSA.

Lemma 12.4. For system (12.65), if Assumptions A1)–A3) hold, then under the control law
(12.73), the closed-loop system satisfies

sup
N≥1

max
1≤i≤N

lim sup
T →∞

1

T

T∑
t=0

[xN
i (t)]2 < ∞ a.s.

Lemma 12.5. For system (12.65) with cost function (12.66), if Assumptions A1)–A2) hold and
there exists a constant γ > 0 such that |(t, x) − (t, y)| ≤ γ |x − y|, ∀ x, y ∈ R, t ≥ 0, then
under the control law (12.73), the associated cost function group satisfies

JN
i (u0

i , u
0−i) ≤ σ 2 + εN a.s., i = 1,2, ...,N, (12.76)

where

εN = 2σ 2(α2 + γ 2)

N(1 − α2)
.
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If the coupling strength α is unknown, then the control law (12.73) is unavailable. Naturally,
we might think that based on the model (12.65), agent i could use the following recursive LS
algorithm to estimate α:

αi(t + 1) = αi(t) + (1 + P(t)x2
N(t))−1{P(t)xN(t)[xN

i (t + 1) − uN
i (t) − gi(x

N
i (t), t)

− αi(t)xN(t)]}, (12.77)

P(t + 1) = P(t) − P 2(t)x2
N(t)

1 + x2
N(t)P (t)

. (12.78)

Then by the CE principle, instead of α, the estimation αi(t) could be used to construct the
control law

uN
i (t) = (t, f ∗(t)) − gi(x

N
i (t), t) − αi(t)f

∗(t), i = 1,2, ...,N. (12.79)

However, the control law (12.77)–(12.79) is not decentralized due to the use of the PSA in the
identification algorithm. Since the PSA xN(t) is unknown for agent i, we use f ∗(t), which is
the estimation of xN(t) based on the NCE principle, to construct the identification algorithm
of agent i:

αi(t + 1) = αi(t) + (1 + P(t)f ∗2
(t))−1{P(t)f ∗(t)[xN

i (t + 1) − uN
i (t) − gi(x

N
i (t), t)

− αi(t)f
∗(t)]}, αi(0) = α0, (12.80)

P(t + 1) = P(t) − P 2(t)f ∗2
(t)

1 + f ∗2
(t)P (t)

, P (0) = P0, (12.81)

where α0 and P(0) = P0 are initial conditions to be designed, and f ∗(t) is computed off-line
by (12.72). The identification algorithm (12.80)–(12.81) is decentralized, since it only uses
the local state and input of each agent. Then by the CE principle we use the estimate αi(t) to
construct the control law:

uN
i (t) = (t, f ∗(t)) − gi(x

N
i (t), t) − αi(t)f

∗(t), i = 1,2, ...,N. (12.82)

We can see that the control law (12.80)–(12.82) is decentralized and designed based on both
the NCE and the CE principles.

Remark 12.3. Here, a decentralized two-level control scheme is used for adaptive mean-field
adaptive games. On the high level, the PSA is estimated based on the NCE principle. On the
low level, the coupling strength is identified based on the decentralized LS algorithms and the
estimate of the PSA. The decentralized control law is constructed by combining the NCE and
CE principles.
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Closed-Loop Analysis

In this section, we analyze the identification algorithm, stability and optimality of the closed-
loop system, and the consistency of the estimates for the PSA and the coupling strength.

From the model (12.65) and (12.80), we get

α̃i(t + 1) =
(

1 − P(t)f ∗2
(t)

1 + P(t)f ∗2
(t)

)
α̃i(t) − P(t)f ∗(t)(αξN(t) + ωi(t + 1))

1 + P(t)f ∗2
(t)

, (12.83)

where α̃i(t)
�= α − αi(t) is the estimation error for the coupling strength α, and ξN(t) is the

estimation error for the PSA given by (12.75).

Denote Vi(t + 1) = α̃2
i (t + 1)P −1(t + 1), r(T ) = e + ∑T

t=0 f ∗2
(t). From (12.81) we know

that

P −1(t + 1) = P −1(t) + f ∗2
(t). (12.84)

Then summing this equation from both sides, we have

P −1(t + 1) = P −1
0 +

t∑
k=0

f ∗2(k). (12.85)

From (12.83) and (12.84) we have

Vi(t + 1) = Vi(t) − α̃2
i (t)f

∗2
(t)

1 + P(t)f ∗2
(t)

− 2
α̃i(t)f

∗(t)(αξN(t) + ωi(t + 1))

1 + P(t)f ∗2
(t)

+ P(t)f ∗2
(t)(αξN(t) + ωi(t + 1))2

1 + P(t)f ∗2
(t)

. (12.86)

For the identification algorithm (12.80) and (12.81), we have the following results, which are
important for the closed-loop analysis of the decentralized control law.

Theorem 12.11. If Assumption A1) holds and

lim sup
T →∞

f ∗2
(T )

P −1
0 +∑T −1

t=0 f ∗2
(t)

< C for some C > 0, (12.87)

then the identification algorithm (12.80)–(12.81) has the following properties:
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(i)

Vi(T + 1) +
T∑

t=0

(̃αi(t)f
∗(t) + αξN(t))2

1 + P(t)f ∗2
(t)

≤ α2 2C + 1

C + 1

T∑
t=0

ξ2
N(t) + o

(
T∑

t=0

ξ2
N(t)

)

+ o

(
T∑

t=0

(̃αi(t)f
∗(t) + αξN(t))2

1 + P(t)f ∗2
(t)

)

+ O(ln r(T )) a.s., (12.88)

(ii)

α̃2
i (n + 1) ≤ α2 2C + 1

C + 1

∑T
t=0 ξ2

N(t)

r(T )
+ o

(∑T
t=0 ξ2

N(t)

r(T )

)
+ O

(
ln r(T )

r(T )

)
a.s.,

i = 1,2, ...,N, (12.89)

(iii)

T∑
t=0

(̃αi(t)f
∗(t) + αξN(t))2

1 + P(t)f ∗2
(t)

≤ α2(2C + 1)

(1 − δ)(C + 1)

T∑
t=0

ξ2
N(t)

+ o

(
T∑

t=0

ξ2
N(t)

)
+ O(ln r(T )) a.s., ∀ δ ∈ (0,1), i = 1,2, ...,N. (12.90)

Proof. From (12.87) we have

P(t)f ∗2
(t)

1 + P(t)f ∗2
(t)

≤ C

1 + C
, ∀ t ≥ t1, for some t1 > 0. (12.91)

Then summating the both sides of (12.86) from t = t1 to t = T , we get

Vi(T + 1) +
T∑

t=t1

α̃2
i (t)f

∗2
(t)

1 + P(t)f ∗2
(t)

+ 2
T∑

t=t1

α̃i(t)f
∗(t)αξN(t)

1 + P(t)f ∗2
(t)

+
T∑

t=t1

α2ξ2
N(t)

1 + P(t)f ∗2
(t)

= Vi(t1) +
T∑

t=t1

α2ξ2
N(t)

1 + P(t)f ∗2
(t)

− 2
T∑

t=t1

(̃αi(t)f
∗(t) + αξN(t))ωi(t + 1)

1 + P(t)f ∗2
(t)
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+ 2
T∑

t=t1

αξN(t)ωi(t + 1)

1 + P(t)f ∗2
(t)

+ 2
T∑

t=t1

P(t)f ∗2
(t)(αξN(t) + ωi(t + 1))2

1 + P(t)f ∗2
(t)

. (12.92)

From this equation, (12.87), and Lemma 12.A.4 we have

Vi(T + 1) +
T∑

t=t1

(̃αi(t)f
∗(t) + αξN(t))2

1 + P(t)f ∗2
(t)

≤ Vi(t1) + α2 2C + 1

C + 1

T∑
t=0

ξ2
N(t) + O

⎛
⎝
(

T∑
t=t1

(̃αi(t)f
∗(t) + αξN(t))2

1 + P(t)f ∗2
(t)

)1/2+ε
⎞
⎠

+ O

⎛
⎝
(

T∑
t=0

ξ2
N(t)

)1/2+ε
⎞
⎠+ 2

T∑
t=0

P(t)f ∗2
(t)ω2

i (t + 1)

1 + P(t)f ∗2
(t)

. (12.93)

From (12.85) we have

T∑
t=0

P(t)f ∗2(t)

1 + P(t)f ∗2
(t)

=
T∑

t=0

f ∗2(t)

P −1
0 +∑t

k=0 f ∗2
(k)

, (12.94)

and then

T∑
t=0

P(t)f ∗2
(t)

1 + P(t)f ∗2
(t)

=
T∑

t=0

P −1(t + 1) − P −1(t)

P −1(t + 1)

≤
T∑

t=0

∫ P −1(t+1)

P −1(t)

dx

x

= lnP −1(T + 1) + lnP0 = O(ln r(T )). (12.95)

Denote Ft = σ(∪N
j=1F

j
t ). For any given ν ∈ (2,min{β,4}], by the Cramér–Rao inequality we

have

sup
t≥0

E[|ω2
i (t + 1) − E(ω2

i (t + 1)|Ft )|ν/2|Ft ]

≤ sup
t≥0

E[|ωi(t + 1)|ν |Ft ] + sup
t≥0

E[|E(ω2
i (t + 1)|Ft )|ν/2|Ft ],

which, together with Assumption (A1) and Lyapunov inequality, leads to
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sup
t≥0

E[|ω2
i (t + 1) − E(ω2

i (t + 1)|Ft )|ν/2|Ft ]

≤ sup
t≥0

E[|ωi(t + 1)|ν |Ft ] + sup
t≥0

|E(ω2
i (t + 1)|Ft )|ν/2

≤ 2 sup
t≥0

E[|ωi(t + 1)|ν |Ft ]

≤ 2(sup
t≥0

E[|ωi(t + 1)|β |F i
t ])ν/β < ∞ a.s. (12.96)

Then by Lemma 12.A.4, (12.94), and (12.95), for any given ε > 0, noting that 0 ≤
f ∗2

(t)

P −1
0 +∑t

k=0 f ∗2
(k)

≤ 1, we have

T∑
t=0

P(t)f ∗2
(t)ω2

i (t + 1)

1 + P(t)f ∗2
(t)

=
T∑

t=0

P(t)f ∗2
(t)

1 + P(t)f ∗2
(t)

(ω2
i (t + 1) − E(ω2

i (t + 1)|Ft ))

+
T∑

t=0

P(t)f ∗2
(t)

1 + P(t)f ∗2
(t)

E(ω2
i (t + 1)|Ft )

≤ sup
t≥0

E(ω2
i (t + 1)|F i

t )

T∑
t=0

P(t)f ∗2
(t)

1 + P(t)f ∗2
(t)

+ O

⎛
⎜⎝
⎛
⎝ T∑

t=0

(
P(t)f ∗2

(t)

1 + P(t)f ∗2
(t)

)ν/2
⎞
⎠

2/ν+ε
⎞
⎟⎠

= O

(
T∑

t=0

f ∗2
(t)

P −1
0 +∑t

k=0 f ∗2
(k)

)
+ O(1)

= O(ln r(T )), (12.97)

which, together with (12.93), leads to (i) and (iii). Combining (i) and (iii), we get (ii).

Remark 12.4. By (12.75) the model (12.65) can be rewritten as

x̂N
i (t + 1) = gi (̂x

N
i (t), t) + ûN

i (t) + αf ∗(t) + αξN(t) + ωi(t + 1), t ≥ 0, i = 1,2, ...,N.

So (12.80), (12.81), and (12.82) can be viewed as the identification algorithm and adaptive
control law for the model

x̂N
i (t + 1) = gi (̂x

N
i (t), t) + ûN

i (t) + αf ∗(t) + ωi(t + 1), t ≥ 0, i = 1,2, ...,N,

with αξN(t) as the unmodeled dynamics. We can see that αξN(t) contains the states of all
other agents due to decentralized information pattern; the conditions on unmodeled dynamics
used in robust adaptive control [51,52] can not be used here.
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Substituting the control (12.82) into the model (12.65), we get the closed-loop equation of
agent i

xN
i (t + 1) = α̃i(t)f

∗(t) + αξN(t) + (t, f ∗(t)) + ωi(t + 1). (12.98)

Summing this equation for i = 1,2, ...,N , by (12.72) we know that ξN(t) satisfies the follow-
ing recursive equation:

ξN(t + 1) = αξN(t) + f ∗(t) 1

N

N∑
j=1

α̃j (t) + 1

N

N∑
j=1

ωj (t + 1). (12.99)

From (12.83) and (12.99) we can see that the dynamic equation (12.99) of the estimation error
and the dynamic equation (12.83) of the identification error are coupled together. The main
result of this paper is the following:

Theorem 12.12. If Assumptions (A1)–(A4) hold, then for system (12.65), under the control
(12.72), (12.80), (12.81), and (12.82), we have:

(i) The estimate for PSA is asymptotically consistent:

lim sup
T →∞

‖ξN‖2
T = O(1/N) a.s., (12.100)

where ‖ξN‖T =
√

1
T

∑T
t=0 ξ2

N(t).

(ii) The closed-loop system is almost surely uniformly stable:

sup
N≥1

max
1≤i≤N

lim sup
T →∞

1

T

T∑
t=0

[xN
i (t)]2 < ∞ a.s. (12.101)

(iii) Furthermore, if there exists γ > 0 such that, for any x, y ∈ R and t ≥ 0, we have
|(t, x) − (t, y)| ≤ γ |x − y|, then {UN = {ui(t), 1 ≤ i ≤ N},N ≥ 1} is an almost sure
asymptotic Nash equilibrium with respect to the associated sequence of cost function groups,
and the cost function of each agent is almost surely asymptotically optimal with the con-
vergence rate O(N−1) given that all other agents also employ the strategy specified by the
asymptotic Nash equilibrium:

max
1≤i≤N

JN
i (uN

i , uN−i) ≤ σ 2 + 2σ 2(γ 2 + α2)

N(1 − α2)
a.s. (12.102)
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Proof. Take positive real numbers ε ∈ (0, 1−α2

2α2 ) and δ ∈ (0,1 − α2(2ε + 1)). From Assump-
tion A4) we have that

lim sup
T →∞

f ∗2
(T )

P −1
0 +∑T −1

t=0 f ∗2
(t)

< ε, (12.103)

and similarly to (12.91), we have

P(t)f ∗2
(t)

1 + P(t)f ∗2
(t)

≤ ε

1 + ε
, ∀ t ≥ tε, tε > 0. (12.104)

From (12.72) and Assumption A3) we get that r(T ) = O(T ), n → ∞. Then by (12.103),
(12.104), and (iii) of Theorem 12.11 we have

T∑
t=0

(̃αi(t)f
∗(t) + αξN(t))2 ≤ α2(2ε + 1)

1 − δ

T∑
t=0

ξ2
N(t) + o

(
T∑

t=0

ξ2
N(t)

)
+ o(T ), i = 1,2, ...,N,

(12.105)

which, together with (12.99), leads to

T∑
t=0

ξ2
N(t + 1) ≤ α2(2ε + 1)

1 − δ

T∑
t=0

ξ2
N(t) + o(

T∑
t=0

ξ2
N(t)) + o(n) +

T∑
t=0

⎛
⎝ 1

N

N∑
j=1

ωj (t + 1)

⎞
⎠

2

.

(12.106)

From this and from Assumption A1) we get

lim sup
T →∞

1

T

T∑
t=0

ξ2
N(t) ≤ σ 2

N(1 − μ(α, ε, δ))
a.s., (12.107)

where μ(α, ε, δ)
�= α2(2ε+1)

1−δ
. This, together with (12.105), leads to

lim sup
T →∞

1

T

T∑
t=0

(̃αi(t)f
∗(t) + αξN(t))2 ≤ σ 2μ(α, δ)

N(1 − μ(α, ε, δ))
a.s. (12.108)

Furthermore, by (12.98), Assumption A3), and Lemma 12.A.4, we have (ii).

From (12.98), (12.66), and Assumption A1) it follows that

JN
i (uN

i , uN−i) = lim sup
T →∞

1

T

T∑
t=0

[̃αi(t)f
∗(t) + αξN(t) + (t, f ∗(t)) − (t, xN(t)) + ωi(t + 1)]2

= IN
1 + IN

2 + σ 2, (12.109)
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where

IN
1 = 2 lim sup

T →∞
1

T

T∑
t=0

[̃αi(t)f
∗(t) + αξN(t) + (t, f ∗(t)) − (t, xN(t))]ωi(t + 1)

and

IN
2 = lim sup

T →∞
1

T

T∑
t=0

[̃αi(t)f
∗(t) + αξN(t) + (t, f ∗(t)) − (t, xN(t))]2

≤ 2 lim sup
T →∞

1

T

T∑
t=0

[̃αi(t)f
∗(t) + αξN(t)]2 + 2γ 2 lim sup

T →∞
1

T

T∑
t=0

ξ2
N(t),

which, together with (12.109), (12.107), (12.108), and Lemma 12.A.4, leads to

max
1≤i≤N

JN
i (uN

i , uN−i) ≤ σ 2 + 2σ 2(γ 2 + μ(α, ε, δ))

N(1 − μ(α, ε, δ))
a.s. (12.110)

Letting ε and δ go to zero in (12.110) and (12.107), we get (iii) and

lim sup
T →∞

1

T

T∑
t=0

ξ2
N(t) ≤ σ 2

N(1 − α2)
a.s., (12.111)

which gives (i).

Remark 12.5. Comparing (12.100) and (12.102) with (12.74) and (12.76), it is shown that
for the case with unknown coupling strength, under the adaptive control law designed, the
convergence rates of the estimation error for PSA and the cost function of each agent to the
best response value are the same as those for the case with known coupling strength.

Remark 12.6. From Theorem 12.12 we can see that to ensure the control law to be an asymp-
totic Nash equilibrium, the consistency of the identification for the coupling strength α is not
necessary. This is similar to the case of LS-based adaptive tracker (Guo and Chen [53]).

In the following theorem, under certain excitation condition on the nonlinear iteration, we get
the asymptotic consistency of the identification algorithm, that is, the upper limit of the identi-
fication error vanishes as the number N of agents increases to infinity. We need the following
assumption.

A5) The solution of the nonlinear iteration x(t + 1) = (t, x(t)) with x(0) = x0 satisfies

lim inf
T →∞

1

T

T∑
t=0

x2(t) > 0.
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Theorem 12.13. If Assumptions (A1)–(A5) hold, then for system (12.65), under the control
(12.72), (12.80), (12.81), and (12.82), the closed-loop system satisfies

lim sup
t→∞

α̃2
i (t) ≤ α2σ 2

N(1 − α2)f
, i = 1,2, ...,N, a.s.,

where f = lim infT →∞ 1
T

∑T
t=0(f

∗(t))2 > 0.

Proof. By (ii) of Theorem 12.11 and Assumption A4) we have

α̃2
i (T + 1) ≤ α2 2ε + 1

ε + 1

∑T
t=0 ξ2

N(t)

r(T )
+ o

(∑T
t=0 ξ2

N(t)

r(T )

)
+ O

(
ln r(T )

r(T )

)
a.s.,

i = 1,2, ...,N, ∀ ε > 0. (12.112)

From Assumption A5) we have that there exists c0 > 0 such that r(T ) ≥ c0T for sufficiently
large T , which, together with (12.112), (i) of Theorem 12.12, and Assumption A5), leads to

lim sup
t→∞

α̃2
i (t) ≤ α2σ 2

N(1 − α2)f

2ε + 1

ε + 1
a.s., i = 1,2, ...,N.

Letting ε go to zero, we get the conclusion of the theorem.

12.4 Other Topics and Theoretical Challenges

Formation and flocking control is an important research direction of multiagent systems,
which means that multiple agents form a predefined geometric shape through team collabora-
tion subjected to environmental constraints (such as obstacle avoidance, etc.) simultaneously.
The research on formation control is initially inspired by the collective behavior of biological
groups. For the study of multiagent formation and flocking, on one hand, researchers hope to
reveal the inherent mechanism how a biological group forms an ordered mode on the macro-
scopic level through collaboration among individuals on the microscopic level, and, on the
other hand, the self-organized collective behavior of biological groups can also inspire design-
ing novel and practical formation control algorithms. In practice, compared to single-agent
systems, multiagent systems can complete complex tasks with more efficiency and flexibil-
ity. Multiagent formation control has a wide range of applications in the military, industrial,
aerospace, and other fields. Multiagent formation and flocking are often studied under the
distributed control framework. Compared with centralized control systems, distributed con-
trol systems have more challenges in the control law design due to the complex interactions
between multiple agents, intrinsic parallelism, high system dimensions, incomplete informa-
tion and uncertainty, and so on. Up to now, the research directions of multiagent formation
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and flocking control mainly include formation generation, formation maintenance, formation
reconfiguration, and so on. Formation control strategies mainly include the leader-following-
based approach, the behavior-based approach, the virtual-structure-based method, and the
artificial potential field approach.

For the leader-following based approach, there are one (or more agents) in the formation to
act as the leader (or leaders), and the rest agents play as the followers, which track the posi-
tion and direction of the leaders. Wang [54] discussed the formation generation problem and
some navigation strategies for individual movements in the formation, such as the nearest-
neighbor tracking, multineighbor tracking, etc. Also, sufficient conditions for the formation
stability based on nearest-neighbor tracking strategy were developed. Kumar et al. [55–57]
proposed two kinds of leader-following-based formation patterns and feedback control laws
for nonholonomic mobile robots and established the asymptotic stability of the closed-loop
systems. Das et al. [58] developed the bottom-up approach to various kinds of composite
controllers and estimators and realized multiagent formation maintenance and switching
based on the omnidirectional visual information of agents. Pereira et al. [59] proposed the
cooperative leader–follower approach, where the motions between leaders and followers
interact with each other. Consolini et al. [60] studied the formation control with control in-
put constrains that restrict the possible trajectories of the leader and admissible positions
of the followers relative to the leader. Dimarogonas et al. [61] designed distributed coordi-
nated control of rotating rigid bodies by leader-following-based approach and graph theory.
Defoort et al. [62] proposed a second-order sliding-mode controller to realize multiagent only
without the knowledge of the absolute velocity of the leader. The prominent advantage of
leader-following-based approach lies in the transformation of the formation problem into the
tracking problem, whose closed-loop stability can be solved by the control theory. The draw-
back of leader-following-based approach is that the chain information structure leads to poor
robustness against disturbances. Once leaders are damaged, catastrophic damage happens
for the entire group. In addition, for most cases, there is no feedback to the leader’s move-
ment from the followers. If the followers cannot keep up with the leader’s movement, then the
group cannot form an effective formation due to the lack of certain feedback mechanisms.

For the behavior-based approach, simple basic actions of individual agents are first designed,
and then more complex group movements are achieved by assembling these simple actions in
a certain way. In 1987, for generating realistic and efficient bird flocking images, Reynolds
[63] designed three basic rules of bird flocking: collision avoidance (attempting to avoid
collisions with nearby birds), velocity matching (attempting to match the average velocity
direction of nearby birds), and flock centering (attempting to fly to the average position of
nearby birds). Through the combination of these three basic rules, the simulation of group
aggregation of flocking birds is finally realized. Balch et al. made robots to achieve obstacle
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avoidance with formation maintenance by designing a series of simple actions, and simula-
tion and experiments have demonstrated the effectiveness of behavior-based approach [64].
The behavior-based approach can naturally integrate multiple goals in a multiagent system.
However, it is generally difficult to carry out quantitative mathematical analysis, such as the
convergence speed and stability of the formation.

For the virtual structure method, the multiagent system is regarded as a virtual rigid structure,
and the agents are treated as the points on the virtual structure with fixed relative position.
When the virtual structure moves, the agents track the points on the virtual structure. Lewis
et al. [65] introduced the concept of virtual structure in the formation control and adopted the
bidirectional control strategy, where the robots move continuously to be kept in the virtual
structure. At the same time, the virtual structure is continuously adapted to the positions of
robots. Beard et al. [66] solved the spacecraft formation control problem based on the virtual
structure method. Ogren et al. [67] used the Lyapunov function to define the formation error,
which is fed back in the virtual structure method. Ren et al. [68] introduced the distributed
control into the virtual structure method to overcome the shortcomings of the centralized vir-
tual structure method and designed the distributed control strategy of the aircraft formation.
Yoshioka et al. [69] designed the formation control algorithm for nonholonomic robots based
on the virtual structure feedback linearization. For the virtual structure method, it is easy to
define the cooperative behavior of the group and to maintain the group formation in the move-
ment. The control law can be designed according to the formation errors. However, we have
to keep the virtual structure consistent at all times, and it is hard to achieve frequent forma-
tion switching. In addition, the virtual structure method is not suitable for large-scale systems,
since with the increasing of the number of agents, the restrictions among individuals become
quite complex.

The artificial potential field approach models the agent movement space by a force field.
There are both attractive and repulsive forces in the field, which ensure the aggregation and
collision avoidance of agents. Leonard and Fiorelli [70] proposed a distributed control frame-
work based on the artificial potential field and the virtual leader for the collaboration of
multi-intelligent vehicles. Also, for the multi-intelligent vehicle collaboration, Ogren et al.
[71] combined the virtual structure and artificial potential field to propose a stable control
strategy, where each smart car is regarded as a mobile sensor, and the network as a mobile
and self-organized sensor array. For the deployment of mobile sensors in unknown environ-
ment, Howard et al. [72] proposed a distributed strategy based on the artificial potential field
method.

Although the research on multiagent formation has achieved fruitful results, the gap between
theoretical methods and engineering application is still large. It is quite difficult to apply the
theoretical results of formation control due to the challenges in practical applications, such as
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the changing in the external environment, the dynamical constraints of agents, and the lim-
ited capacity of communication and perception of agents. Most references assume that agents
have ideal perception and communication capacity, however, there may be latency and lim-
ited bandwidth in the communication network and limitation on the sensors’ perceived ranges.
Therefore, it is challenging to study the formation control under nonideal communication and
measurement environment.

12.5 Bibliographic Notes

Olfati-Saber and Murray [16] considered the average-consensus control for first-order inte-
grator networks with fixed and switching topologies. They proved that, if at each time instant,
the network is a strongly connected and balanced digraph, then the weighted average-type
protocol can ensure average-consensus. Kingston and Beard [73] extended the results of [16]
to the discrete-time models and weakened the condition of instantaneous strong connectiv-
ity. They proved that if at each time instant the topology graph is balanced and the union of
graphs over every bounded time interval is strongly connected, then average-consensus can
be achieved. Xiao and Boyd [74] considered first-order discrete-time average-consensus with
fixed and undirected topologies. They designed the weighted adjacency matrix to optimize the
convergence rate by semidefinite programming. In addition to these works, some researchers
also considered the high-order dynamics [75,76], the topologies of random graphs [77–80] or
control design based on individual performance optimization [81–84].

Real networks are often interfered by various kinds of noises during the sending, transmis-
sion, and receiving of information, such as thermal noise, channel fading, quantization effect
during encoding and decoding [85], and so on. Consensus of dynamic networks with stochas-
tic communication noises is a common problem in distributed systems [86] and has attracted
the attention of some researchers [28,87–91]. Ren, Beard, and Kingston [88] and Kingston,
Ren, and Beard [89] introduced time-varying consensus gains and designed consensus proto-
cols based on a Kalman filter structure. They proved that, when there is no communication
noise, the designed protocols can ensure consensus to be achieved asymptotically. Xiao,
Boyd, and Kim [90] considered the first-order discrete-time average-consensus control with
fixed topologies and additive input noises. They designed the optimal weighted adjacency ma-
trix to minimize the static mean square consensus error. However, since the consensus gain
and the adjacency matrix are time invariant, as time goes on, the state average of the system
diverges with probability one, even if the noises are bounded. Huang and Manton [28] consid-
ered the first-order discrete-time consensus control with fixed topologies and communication
noises. They introduced decreasing consensus gains a(k) (where k is the discrete time instant)
in the protocol to attenuate the noises. They proved that if a(k) is of order 1/kγ , k → ∞,
γ ∈ (0.5,1], and the network is a strongly connected circulant graph, then the static mean



464 Chapter 12

square error between the individual state and the average of the initial states of all agents is
in the same order as the variance of the noises; if a(k) satisfy the step rule of standard ap-
proximation and the network is a connected undirected graph, then the designed protocol
can ensure mean square weak consensus. Li and Zhang [29,91] considered the first-order
continuous-time average-consensus control with fixed topologies and communication noises.
They used time-varying consensus gains in the protocol and gave a necessary and sufficient
condition for asymptotically unbiased mean square average-consensus.

The LQG mean-field games with scalar agent models and deterministic discounted cost func-
tions are studied by Huang, Malhamé, and Caines [41–92]. Li and Zhang [50–93] introduced
the concepts of asymptotic Nash equilibria in the probability sense and extended to the cases
with state space or ARX dynamic models and stochastic ergodic cost functions. The mean-
field method is also developed independently by Lasry and Lions [94] and Weintraub and
Benkard [95,96] by using the concept of oblivious equilibrium. The mean-field control for
Markov decision problems is considered in Tembine, Boudec, El-Azouzi, and Altman [97].
Now, decentralized mean-field games have been extended to nonlinear dynamic models and
the case with heterogeneous agents [98–100].

Appendix 12.A

12.A.1 Proof of Theorem 12.5

Lemma 12.A.1. ([101]) Let {u(k), k = 0,1, · · · }, {α(k), k = 0,1, · · · }, and {q(k), k =
0,1, · · · } be real sequences satisfying 0 < q(k) ≤ 1, α(k) ≥ 0, k = 0,1, · · · ,

∑∞
k=0 q(k) = ∞,

α(k)
q(k)

→ 0, t → ∞, and

u(k + 1) ≤ (1 − q(k))u(k) + α(k).

Then lim supk→∞ u(k) ≤ 0. In particular, if u(k) ≥ 0, k = 0,1, · · · , then u(k) → 0, k → ∞.

Lemma 12.A.2. Apply the protocol (12.5) to system (12.3)–(12.4). If W(t) = 0, t = 0,1, ...,
then

lim
t→∞‖X(t) − JX(0)‖2 = 0, ∀ X(0) ∈ RN, (12.A.1)

only if A1)–A2) hold.

Proof. It suffices to show that if G is a nonbalanced graph or G contains no spanning tree,
then (12.A.1) does not hold.

Step 1: Consider the case where G is a nonbalanced graph. In this case, since LG is the
Laplacian matrix, LG has a zero eigenvalue. Hence, there exists an N -dimensional vector α,
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αT 1 = 1, such that αT LG = 0. Furthermore, by Theorem 6 of [16], α �= 1
N

1. This, together
with (12.6) and W(t) ≡ 0, implies that αT X(t + 1) = αT X(t), t = 0,1, .... Thus,

αT X(t) ≡ αT X(0), ∀X(0) ∈RN. (12.A.2)

When (12.A.1) holds, so does (12.7), and hence,

lim
t→∞αT X(t) = αT JX(0) = 1

N
1T X(0), ∀X(0) ∈ RN,

which, together with (12.A.2), leads to α = 1
N

1. This contradicts α �= 1
N

1. Thus, (12.A.1) does
not hold.

Step 2: Consider the case where G contains no spanning tree. In this case, there are only three
possibilities [102]:

(I) G has at least one isolated node i0. Applying protocol (12.5) results in
{

xio(t + 1) = xio(t),

X̃(t + 1) = (IN−1 − a(t)L̃)X̃(t), t = 0,1, ...,

where X̃(t) = [x1(t), · · · , xio−1(t), xio+1(t), · · · , xN(t)]T , L̃ is the Laplacian matrix of the
graph removing the isolated node i0. Take xio(0) = 0, xj (0) = 1, ∀ j �= i0. Then, xio(0) = 0
implies xio(t) ≡ 0. By L̃1 = 0 we have xj (t) ≡ 1, j �= i0. Thus, (12.A.1) does not hold.

(II) G has no isolated node but has at least two source nodes i1, i2. Take xi1(0) = 0,
xi2(0) = 1. Then, applying protocol (12.5), similarly to (I), we have xi1(t) ≡ 0 �= 1 ≡ xi2(t).
Thus, (12.A.1) does not hold.

(III) G has no isolated node, has at most one source node, and can be divided into two sub-
graphs G1 = {V1,E1,A1} and G2 = {V2,E2,A2} satisfying V = V1 ∪ V2, V1 ∩ V2 = ,
E = E1 ∪ E2, E1 ∩ E2 = . Without loss of generality, suppose that V1 = {1,2, ..., |V1|},
V2 = {|V1| + 1, ..., |V1| + |V2|}, AG = diag(A1,A2) is a diagonal block matrix. Then ap-
plying protocol (12.5) leads to

{
X1(t + 1) = (I|V1| − a(t)L̃1)X1(t),

X2(t + 1) = (I|V2| − a(t)L̃2)X2(t),

where X1(t), X2(t) are the states of the nodes in V1 and V2, respectively, L̃1 and L̃2 are the
Laplacian matrices of G1 and G2, respectively. Take xi(0) = 0, i ∈ V1, xj (0) = 1, j ∈ V2.
Then, similarly to (I), we have xi(t) ≡ 0 �= 1 ≡ xj (t), i ∈ V1, j ∈ V2. Thus, (12.A.1) does not
hold.
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Lemma 12.A.3. Apply the protocol (12.5) to system (12.3)–(12.4). If for any M > 0, there is
t0 ≥ M such that Pr{‖(I − J )DGW(t0)‖2 > 0} > 0, then for any given K ≥ 0, there is t1 ≥ K

such that E[V (t1)] > 0.

Proof. By contradiction suppose that there is K0 > 0 such that E[V (t)] = 0 for all
t ≥ K0. Then δ(t) = 0 a.s., ∀ t ≥ K0, which, together with (12.9), implies that Pr{‖(I −
J )DGW(t)‖2 = 0} = 1, ∀ t ≥ K0. This contradicts the condition of the lemma. Thus, the
lemma is true.

Proof of Theorem 12.5. We need only to show that none of the following four cases is true:

(I) Assumption A1) does not hold.

(II) Assumption A2) does not hold.

(III) Under Assumption A1),
∑∞

t=0 a2(t) = ∞.

(IV) Under Assumption A1),

∞∑
t=0

a2(t) < ∞,

∞∑
t=0

a(t) < ∞.

Since W = {W(t) = 0, t = 0,1, ...} ∈ S , by Lemma 12.A.2 it is clear that neither (I) nor (II) is
true. So, it suffices to show that neither (III) nor (IV) is true.

Step 1: Let us prove that (III) is not true.

Suppose that there is at least one node that is not a source node, that is, there is i0 > 0, i0 �=
j0 > 0, such that ai0j0 > 0. Without loss of generality, suppose i0 = 1 and j0 = 2. Let W =
{[0, w̃21(t), ...,0, ...,0]T , t = 0,1, ...}, where {w̃21(t), t = 0,1, ...} is a standard white noise
sequence. Then we can see that W ∈ S .

If
∑∞

t=0 a2(t) = ∞, then by (12.29) and the convergence of xi(t), i = 1,2, ...,N , in mean
square to a common random variable with finite second-order moment, we would have that
1
N

1T DG
∑n−1

t=0 a(t)W(t) converges in mean square to a random variable with finite second-
order moment xw as t → ∞. Furthermore, by Corollary 4.2.5 of [27] we get

lim
n→∞ E

(
1

N
1T DG

n−1∑
t=0

a(t)W(t)

)2

= E(xw)2 < ∞. (12.A.3)

On the other hand,

lim
n→∞ E

(
1

N
1T DG

n−1∑
t=0

a(t)W(t)

)2

= a2
12

N2

∞∑
t=0

a2(t) = ∞.
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This contradicts (12.A.3). Thus, (III) is not true.

Step 2: Let us prove that (IV) is not true.

Similarly to Step 1, suppose that a12 > 0 and that W is the same as in Step 1. Since∑∞
t=0 a2(t) < ∞, a(t) → 0 as t → ∞. Notice that E[‖(I − J )DGW(t)‖2

2] = N−1
N

a2
12 > 0,

∀ t ≥ 0. Then, by Lemma 12.A.3 there is t0 > 0 such that

E[V (t0)] > 0, (12.A.4)

0 ≤ 2a(t)λmax(L̂G) <
ln 2

2
, ∀ t ≥ t0. (12.A.5)

By (12.10), similarly to (12.12), we have

E[V (t + 1)] ≥ (1 − 2λmax(L̂G)a(t))E[V (t)], ∀ t ≥ t0.

This, together with (12.A.5) and the inequality 1 − x ≥ e−2x , x ∈ [0, ln 2
2 ), implies

E[V (n)] ≥ exp

{
−4λmax(L̂G)

n−1∑
t=t0

a(t)

}
E[V (t0)], ∀ n > t0.

Thus, from (12.A.4) and
∑∞

t=0 a(t) < ∞ we have

lim inf
t→∞ E[V (t)] ≥ exp

{
−4λmax(L̂G)

∞∑
t=t0

a(t)

}
E[V (t0)] > 0.

This contradicts the fact that xi(t), i = 1,2, ...,N , converges in mean square to a common
random variable. Thus, (IV) is not true.

Lemma 12.A.4. ([48]) Let {X(t),Ft } be a matrix martingale difference sequence, and let
{M(t),Ft } be an adapted sequence of random matrices such that ‖M(t)‖ < ∞, ∀ t ≥ 0. If

sup
t≥0

E[‖X(t)‖α|Ft−1] < ∞ a.s.

for some α ∈ (0,2], then, as T → ∞,

T∑
t=0

M(t)X(t + 1) = O
(
sT (α) ln1/α+η(sα

T (α) + e)
)

a.s., ∀ η > 0,

where

sT (α) =
(

T∑
t=0

‖M(t)‖α

)1/α

.
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