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Preface

Efficient interference management is the key to meeting the ever increasing demand
for wireless data services in wireless networks. In this book, an information-theoretic
framework for interference management is presented, along with a discussion of
practically implementable schemes for interference management that approach provable
bounds on performance and are applicable in large cellular networks.

A particular focus of the book is on exploiting recent technological advancements
in the wireless infrastructure that enable cooperative transmission and reception. Our
theoretical framework highlights the potential of this technology to deliver the rate gains
promised by interference alignment, while using simple zero-forcing schemes that are
easier to implement in practice. The schemes that we present rely on local cooperation,
and they are shown to be optimal in locally connected interference networks, where the
path loss effect allows us to neglect connections between transmitters and receivers that
are far away from each other. It is also shown that cooperative communication can be
used to deliver significant rate gains using simple zero-forcing with no or minimal extra
load on the backhaul, by selecting cell associations and allocation of backhaul resources
based on centralized processing and knowledge of the network topology. The insights
obtained are also extended to dynamic interference networks that capture the effect of
deep fading conditions.

This book is organized as follows:

• In Chapter 1, we provide a high-level introduction to interference management in
wireless networks, including a historical perspective on wireless cellular networks,
and we motivate the need for a fundamental information-theoretic understanding of
this problem.

• In Chapter 2, we provide a detailed overview of the state of the art in determining
the information-theoretic sum capacity of the interference channel. Determining the
capacity even in the simplest setting with two users with one antenna at each of their
transmitters and receivers is still an open problem, but exact results can be obtained
in certain low-interference regimes that may arise in practice.

• In Chapter 3, we take an alternative approach to characterizing the rate of
communication on an interference channel, based on a degrees of freedom (DoF)
analysis, which is more analytically tractable. The DoF approach corresponds to
analyzing the limiting normalized capacity as the signal-to-noise ratio goes to infinity,
and the DoF measure emphasizes the loss in rate that results from the users interfering
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x Preface

with each other over the effect of channel noise. We also describe in Chapter 3
the important technique of interference alignment, which is justified through a DoF
analysis. We follow this up with a study of iterative algorithms for approaching the
interference alignment solutions for interference management in Chapter 4.

• In Chapter 5, we initiate the discussion of cooperative communication in large
interference networks, and analyze the DoF of fully connected interference networks
where each message can be available at more than one transmitter, as in coordinated
multi-point (CoMP) transmission; this is particularly useful in locally connected
networks where each of the transmitters is only connected to a set of neighboring
receivers, as we show through the DoF analysis in Chapter 6. Further advantages
from CoMP transmission can be gained by relaxing the cooperation constraint to one
where the average number of transmitters per message cannot exceed a set value, as
we show in Chapter 7. We study the dual problem of cooperative reception schemes
for cellular uplink in Chapter 8, and show that similar gains in DoF with cooperation
can be obtained in the uplink as in the downlink.

• In Chapter 9, we study dynamic interference networks, where we alter our
interference network model to take into account deep fading conditions that can result
in random link erasures. In Chapter 10, we discuss recent advances and open problems
in the context of modern applications that are anticipated for upcoming generations
of wireless networks.

• The book has two appendices: In Appendix A, we summarize some useful results
from information theory, and in Appendix B we summarize some results in algebraic
geometry.

The main audience for this book is researchers in wireless communication and
information theory, with a focus on future generation cellular networks. The material in
this book should be accessible to engineers working in the industry as special attention
is given to bridging the gap between information-theoretic analyses and practical coding
schemes.
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1 Introduction to Interference
Management

In this chapter, we provide a high-level introduction to interference management in
wireless networks, including a historical perspective on wireless cellular networks, and
an overview of the remaining chapters in the book. We also summarize the notation
used in the book.

1.1 Interference Management in Cellular Networks:
A Historical Perspective

Managing interference from other users sharing the same frequency bands has been
the key driver for mobile wireless communications. The first wireless phone systems
served as extensions to the wired public switched telephone network [1]. These systems
were “single cell” systems in the sense that mobile terminals could be connected to
only one basestation during a call, with the call being lost when out of range of
the basestation, akin to losing an FM radio signal while driving out of range of the
station. Interference in these networks could be managed by simply orthogonalizing the
users in the time–frequency plane, i.e., through the use of time-division multiple-access
(TDMA) or frequency-division multiple-access (FDMA), or some combination of the
two. Interference between basestations operating in the same frequency band was
managed by ensuring that they are geographically far apart, again akin to the way in
which radio stations operating in the same frequency band are placed.

1.1.1 Cellular Concept

A major breakthrough toward improving both the capacity and the mobility in wireless
phone systems came with the introduction of the cellular concept [2]. In the cellular
system design, a given geographical region is split into contiguous regions called
“cells,” without any gaps in coverage. The system is designed so that cells that use the
same frequency band are far enough from each other to cause little interference to each
other. The number of different frequency bands is called the reuse factor of the system.
The reuse factor is a measure of spectral efficiency in the system, with a larger reuse
factor corresponding to a smaller efficiency. A key innovation in the cellular concept is
the introduction of handoff between neighboring cells operating in different frequency
bands, which allows a mobile user to maintain a continuous connection while moving
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2 Introduction to Interference Management

through the geographical region. Interference management within each of the cells is
achieved by orthogonalizing the users in the time–frequency plane.

Early cellular communication systems, both analog (e.g., AMPS [2]) and digital
(e.g., GSM [3]), adopted narrowband communication links within each cell. For
example, in GSM the available bandwidth is divided into 200 kHz channels, with each
channel serving eight users through TDMA. Since the users within a cell occupy
orthogonal time–frequency resources, there is no in-cell interference. However, users
in neighboring cells communicating in the same time/frequency slot cause co-channel
interference, which is controlled through the reuse factor.

1.1.2 Code-Division Multiple-Access

An alternative way to separate the users within a cell is through code-division
multiple-access (CDMA) [4], where each user’s signal occupies the entire
time–frequency plane, and the users are separated through the use of different code
sequences. Interference from in-cell users can be controlled by using orthogonal codes,
which can be implemented in the downlink since the downlink transmissions from
a basestation can easily be synchronized. On the uplink, the tight time synchrony
required for orthogonalization is difficult to implement, and user separation can be
accomplished through simple matched filtering or through the use of more sophisticated
successive interference cancellation [5]. A major advantage of CDMA cellular systems
over TDMA/FDMA systems comes from the fact that it is possible through the use
of pseudorandom overlay codes to randomize the interference across cells in the
network so that this interference simply adds to the noise floor for a given user’s
communication channel. This allows for universal reuse of spectrum (i.e., a reuse factor
of one), although there is a loss in spectral efficiency due to the out-of-cell interference
effectively raising the noise floor within each cell. This loss in spectral efficiency is
generally limited to a factor of two due to the power-law decay of transmitted power
with distance [4]. Some other advantages of CDMA systems from an interference
management viewpoint include: (i) no frequency planning is needed since the reuse
factor is one; (ii) there is a graceful degradation of performance with the number of users
in a cell; and (iii) any technique that reduces the power of interferers (e.g., soft handoff,
voice activity detection, power control, etc.) increases the capacity. There are some
disadvantages that offset these advantages to some extent, including the fact that in-cell
interference cannot be eliminated completely and hence reduces capacity, and that tight
power control is needed to manage both in-cell and out-of-cell interference, and may
be difficult to implement, especially for data applications, which have a low duty cycle.

1.1.3 Orthogonal Frequency-Division Multiplexing

A question that cellular communication system designers asked in the late 1990’s when
wireless data applications started to grow rapidly was: Can we simultaneously have
universal reuse and keep the in-cell users orthogonal? The answer came in the form
of multiple access based on orthogonal frequency-division multiplexing (OFDM) [6].
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1.2 Additional Resources 3

The idea is to split up the bandwidth into narrowband subchannels, with every user
having access to all the subchannels. The basic unit of resource is a virtual channel
(i.e., a hopping sequence in time across the subchannels). A given user may be assigned
one or more virtual channels for communication. The virtual channels for all users
within a given cell are designed to be orthogonal in the time–frequency plane, akin to
orthogonal CDMA. Due to the narrowband nature of the subchannels, the orthogonality
across users can be maintained almost as easily in the uplink as it is in the downlink.
Furthermore, the hopping patterns in adjacent cells are chosen so that there is minimal
overlap between any pair of virtual channels across cells, thus averaging the out-of-cell
interference to appear as white noise, as in CDMA, as opposed to being localized, as in
FDMA/TDMA.

1.2 Additional Resources for Interference Management

In addition to time–frequency separation and geographical separation, there are a
number of other resources that can be exploited to manage interference in wireless
networks.

1.2.1 Multiple Antennas

The use of multiple antennas at either end of a wireless link provides resilience to
fading due to the diversity in the fading seen by the different antennas. Having multiple
antennas at both ends of the wireless link forms a multiple-input multiple-output
(MIMO) channel, which can be exploited to create multiple parallel streams for
communication [7]. This leads to multiplexing or degrees of freedom (DoF) gains.
From the viewpoint of interference management, multiple antennas can be used for
beamforming toward desired receivers, while minimizing the interference to other
receivers. This allows for a more flexible design of interference management schemes,
as we will see in Chapters 2, 4, 5, and 6.

1.2.2 Cooperation and Relaying

Cooperation among basestations equipped with multiple antennas can be used for
coordinated beamforming across cells so as to maximize the signal-to-interference-
plus-noise ratio (SINR) at the receivers [8]. Moreover, such cooperation can also be used
for coordinated multi-point (CoMP) transmission and reception by the basestations,
which can greatly enhance the DoF achievable in cellular wireless networks, a topic of
particular emphasis in this book from Chapter 5 onwards.

Cooperation among mobiles in the networks can also be exploited for interference
management, with one mobile relaying the information to or from another mobile [9].
This way potential interferers can become helpers in terms of relaying information to
the receiver. Such relaying is particularly useful in distributed interference management
in ad hoc and mesh networks [10].
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4 Introduction to Interference Management

1.2.3 Cognitive Radio and Dynamic Spectrum Access

Another way to manage interference in wireless networks is through active interference
avoidance, as in cognitive radio [11]. The key idea is to use sensing to determine the
times when a specific licensed band is not used at a particular place and use this band for
unlicensed transmissions, without causing interference to the licensed user (referred to
as the “primary user”). An important part of designing such systems is the development
of a dynamic spectrum access scheme for channel selection. The cognitive radio (also
called the “secondary user”) needs to adopt the best strategy for selecting channels
for sensing and access. The sensing and access policies should jointly ensure that the
probability of interfering with the primary user’s transmission meets a pre-specified
constraint.

1.3 Motivation for This Book

The last few years have seen an exponential growth in data traffic over wireless
networks. Wireless service providers are having to accommodate this exponential
growth without any significant new useful spectrum. Spectral efficiency gains from
improvements in the physical layer are quite limited, with error control coding
and decoding being performed near Shannon limits. One way to accommodate the
increasing demand for wireless data services is through the addition of basestations
in the networks in a hierarchical manner, going from macro to micro to pico to
femto basestations, but this comes with a significant cost and makes the interference
management problem more difficult through the traditional means described above.
Infrastructure enhancements such as cooperative transmission and reception have the
potential for increasing the spectral efficiency at low cost, through efficient interference
management, but new techniques for interference management are needed. The main
motivation for this book is to develop a deep understanding of the fundamental limits
of interference management in wireless networks with cooperative transmission and
reception, and to use this understanding to develop practical schemes for interference
management that approach these limits.

1.4 Overview of This Book

In Chapter 2, we introduce a mathematical model for a K-user interference channel,
and use this model to develop some basic information-theoretic bounds on the rates
for communication on the channel; particular cases where the sum capacity of the
channel can be analyzed exactly are also discussed in this chapter. In Chapter 3,
we take an alternative approach to characterizing the rate of communication on an
interference channel, based on a degrees of freedom analysis, which will be followed
in the remainder of the book. In particular, we describe the important technique of
interference alignment (IA) in Chapter 3, which is justified through a DoF analysis.
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1.5 Notation 5

In Chapter 4, we study iterative algorithms for approaching the interference alignment
solutions for interference management.

In Chapter 5, we start discussing the value of cooperative communication in large
interference networks by studying the DoF of fully connected interference networks
when each message can be available at more than one transmitter. In Chapter 6,
we extend this setting by studying locally connected networks where each of the
transmitters is only connected to a set of neighboring receivers. In Chapter 7, we
consider an average backhaul load constraint, where the average number of transmitters
per message cannot exceed a set value. We then study cooperative reception schemes
for cellular uplink in Chapter 8. In Chapter 9, we study dynamic interference networks,
where we alter our interference network model to take into account the deep fading
conditions that can result in random link erasures. In Chapter 10, we discuss some
recent advances and open problems.

1.5 Notation

We use lower-case and upper-case letters for scalars, lower-case letters in bold font
for vectors, and upper-case letters in bold font for matrices. For example, we use h,
x, and K to denote scalars, h and x to denote vectors, and H, A to denote matrices.
Superscripts denote sequences of variables in time. For example, we use xn and xn to
denote sequences of length n of scalars and vectors, respectively.

We use the notation A(d) for the dth column of the matrix A. When we use this
notation in general we will refer to a collection of matrices Ai, and therefore in our
notation Ai(d) is the dth column of the ith matrix Ai. Also, x(�) is sometimes used to
denote the �th element of the vector x. The matrix I denotes the identity matrix, A†

is the conjugate transpose of A, and diag(x1, . . . ,xN) is an N × N diagonal matrix with
x1, . . . ,xN on the diagonal.

We use �x and Cov (x) to denote the covariance matrix of a random vector x.
We use �y|x and Cov (y|x) to denote the covariance matrix of the minimum mean
square estimation error in estimating the random vector y from the random vector x,
with similar notation for random scalars. We use CN (0,�) to denote the circularly
symmetric complex Gaussian vector distribution with zero mean and covariance matrix
�, with similar notation for random scalars. We use H(.) to denote the entropy of a
discrete random variable, h(.) to denote the differential entropy of a continuous random
variable or vector, and I(.; .) to denote the mutual information. Finally, we use [K] to
denote the set {1,2, . . . ,K}, where the number K will be obvious from the context.
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2 System Model and Sum
Capacity Characterization

In this chapter, we introduce a mathematical model for the K-user interference channel,
and use this model to develop some basic information-theoretic bounds on the rates
for communication on the channel. The focus will be on characterizing bounds on the
sum-rate (throughput) of the channel. Particular cases where the sum capacity of the
channel can be analyzed exactly will be discussed.

2.1 System and Channel Model

The K-user (fully connected) Gaussian interference channel, illustrated in Figure 2.1,
consists of K transmitter–receiver pairs, where every transmitter is heard by every
receiver. The signal yk ∈ CNr received by receiver k is given by

yk =
K∑

j=1

Hkjxj + zk, ∀k ∈ [K], (2.1)

where xj ∈CNt×1 denotes the signal of transmitter j, zk ∈CN
(
0,INr

)
denotes the additive

white Gaussian noise at receiver k, and Hkj ∈ CNr×Nt denotes the channel transfer
matrix from transmitter j to receiver k. Each transmitter is assumed to have Nt transmit
antennas, and each receiver is assumed to have Nr receive antennas.1 An interference
channel with Nt and Nr taking arbitrary values is referred to as a multiple-input
multiple-output (MIMO) interference channel. The special cases with Nt = 1 or Nr = 1
or Nt = Nr = 1 are referred to as the single-input multiple-output (SIMO), multiple-input
single-output (MISO), and single-input single-output (SISO) interference channels,
respectively. The transmitters are assumed to operate under average power constraints
{Pk}; i.e., for each k ∈ [K], the power consumed by transmitter k is not allowed to exceed
Pk on average.

2.1.1 Achievable Schemes

Consider the problem of communicating K messages over the interference channel
(2.1). For each k ∈ [K], the message Wk is available at transmitter k, and is desired

1 More generally, the number of antennas could be different at each transmitter and each receiver, as we
consider in Section 2.2.
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Fig. 2.1 The K-user MIMO Gaussian interference channel.

by receiver k. A communication scheme consists of an encoder–decoder pair for each
message. The encoder at transmitter k maps the message Wk onto the physical signal xk

that is transmitted on the channel. The decoder at receiver k reconstructs the message Wk

from the received signal yk. The communication scheme is said to be reliable if all the
messages can be reconstructed at their respective receivers with high probability. For the
single-user channel, Shannon [12] established that the key to reliable communication
over noisy channels is coding over multiple symbols. We consider the same block coding
framework, where the communication scheme operates over n symbols at a time. For a
fixed rate tuple (R1,R2, . . . ,RK) ∈ RK+ and a block length n ≥ 1, the message Wk takes
values from the set Wk = {1,2, . . . ,

⌈
2nRk

⌉}
. The block code consists of the encoders

xn
k : Wk → CNt×n, ∀k ∈ [K],

and the decoders

Ŵk : CNr×n → Wk, ∀k ∈ [K].
Assuming that the message Wk is a uniform random variable taking values in the set
Wk, the probability of a decoding error is defined as

en = max
k∈[K]P

(
Ŵk
(
yn

k

) �= Wk

)
.

We say that the rate tuple (R1,R2, . . . ,RK) is achievable if and only if there exists a
sequence of block codes satisfying the average power constraints

E

[
1

n

n∑
t=1

||xk(t)||2
]

≤ Pk, ∀k ∈ [K]

such that the probability of error en → 0 as n → ∞. The capacity region C is defined as
the closure of the set of achievable rate tuples. Except in some special cases, determining
the exact capacity region of the Gaussian interference channel remains an open problem.

The sum capacity is defined as:

Csum = max
(R1,R2,...,Rk)∈C

R1 + R2 + ·· · + RK . (2.2)
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Fig. 2.2 Two-user interference channel. c©[2017] IEEE. Reprinted, with permission, from [13].

2.1.2 Channel Knowledge

We assume that the various channel coefficients are known at all the transmitters and at
all the receivers at which they are required for a given achievable scheme. In practice,
the channel knowledge is obtained by transmitting known signals, called pilots, at
regular intervals and estimating the channel coefficients at the receivers. The estimated
(local) channel coefficients are then distributed to other transmitters and receivers.
Although the processes of channel estimation and distribution can incur significant
overhead, it is difficult to accommodate this overhead in information-theoretic capacity
analyses. The common practice, which is also followed in this book, is to perform
the capacity analysis assuming channel knowledge where needed, and account for the
overhead when designing practical achievable schemes.

2.2 Two-User Interference Channel

In this section, we consider the Gaussian interference channel (2.1) in the two-user case,
assuming that multiple antennas are available at the transmitter and receiver:

y1 = H11x1 + H12x2 + z1,

y2 = H21x1 + H22x2 + z2,
(2.3)

where zi ∈ CN (0,I), and the average power constraints at transmitters 1 and 2 are
denoted by P1 and P2, respectively. This is depicted in Figure 2.2. Let N1t,N2t denote
the number of transmit antennas at transmitters 1 and 2, respectively, and N1r,N2r denote
the number of receive antennas at receivers 1 and 2, respectively. The dimensions of the
channel matrices, the signal vectors, and the noise vectors are defined appropriately. We
are interested in determining the best sum-rate achievable by using Gaussian inputs and
treating interference as noise, and also the sum capacity (maximum throughput) of the
two-user MIMO Gaussian interference channel.
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We start by studying the problem of determining the best achievable sum-rate. The
use of multiple antennas at the transmitters and the receivers provides spatial dimensions
to suppress the interference and improve the achievable sum-rate. While it is easy to
express the achievable sum-rate as a function of the spatial beams at the transmitter and
receiver, the design of beams that maximize the achievable sum-rate is known to be a
difficult problem. The main difficulty stems from the fact that the sum-rate optimization
problem cannot be posed as a convex (concave) optimization problem, which makes the
optimization problem difficult to solve analytically or even numerically. We introduce a
technique based on convex approximation and optimization to solve this nonconvex
optimization problem. Specifically, we upper-bound the achievable sum-rate with a
concave function, and use this to obtain an upper bound to the original sum-rate
optimization problem. We show that if the channel parameters satisfy certain conditions,
then the bounds coincide, leading to an exact characterization of the best achievable
sum-rate by using Gaussian inputs and treating interference as noise.

The problem of determining the best achievable sum-rate by treating interference as
noise is important from a practical perspective, because coding schemes that approach
the rates promised by the information-theoretic analysis can be designed in the same
way as schemes for point-to-point Gaussian channels, a topic that is well understood
[14]. Therefore, it is also important to understand the gap between the sum capacity
and the sum-rate achievable by treating interference as noise. If the lower and upper
bounds on the achievable sum-rate coincide, then the best achievable sum-rate is indeed
equal to the sum capacity. Using the Karush–Kuhn–Tucker (KKT) conditions [15], we
obtain necessary and sufficient conditions for the bounds to coincide, leading to an exact
characterization of the sum capacity. We observe that the conditions are satisfied in a
low interference regime where the interfering signal levels are small compared to the
desired signal levels. We end the section by providing some nontrivial examples of the
two-user Gaussian interference channel in the low interference regime. In particular, we
consider the special cases of symmetric MISO and SIMO interference channels, and
derive a simple closed-form condition on the channel parameters for the channels to
be in the low interference regime. We also specialize the results to SISO interference
channels.

2.2.1 Standard Form

The following assumptions can be made about the two-user MIMO Gaussian
interference channel (2.3) without any loss of generality, as we establish below:

• The direct channel matrices H11 and H22 have unit (Frobenius) norm.
• The cross channel matrices H12 and H21 are diagonal with real and nonnegative

entries.
• The numbers of transmit and receive antennas (N1t,N2t,N1r,N2r) satisfy

N1t ≤ rank

{[
H11

H21

]}
, N2t ≤ rank

{[
H12

H22

]}
,
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and

N1r ≤ rank {[H11 H12]} , N2r ≤ rank {[H21 H22]} .

The second assumption implies that the cross channel matrices can be expressed as

H12 =
[

H̃12

0

]
, H21 =

[
H̃21

0

]
,

where H̃12 and H̃21 are diagonal matrices with full row rank. This is the only assumption
we use in the development of the outer bound techniques presented in this chapter. The
other two assumptions are used in Section 2.2.13 to simplify the presentation.

The first assumption can easily be justified by scaling the transmit power constraints
P1 and P2 appropriately. We now justify the other two assumptions. First, consider the
singular value decomposition (SVD) of H12 and H21:

H12 = U1�12V†
2,

H21 = U2�21V†
1,

where �12,�21 are diagonal matrices with real and nonnegative entries, and
V1,V2,U1,U2 are unitary matrices. We obtain an equivalent Gaussian interference
channel, satisfying the second assumption, by projecting the received signals along
U1,U2, and the transmitted signals along V1,V2, i.e., by making the following
substitutions:

xj ← V†
j xj,

yi ← U†
i yi,

zi ← U†
i zi,

Hij ← U†
i HijVj.

Observe that the average transmit power constraint and the distribution of the receive
noise terms remain unchanged because U1,U2,V1,V2 are unitary matrices.

The third assumption can be justified by appropriately choosing the unitary matrices.
For example, suppose N1r > rank{[H11 H12]}. Consider the SVD of H12 = U1�12V†

2.
Observe that the span of the first rank{H12} columns of U1 is equal to the column space
of H12, and we have flexibility in choosing the remaining N1r − rank{H12} columns. We
may choose those columns such that the span of the first rank{[H11 H12]} columns of
U1 is equal to the column space of [H11 H12], so that the last N1r − rank{[H11 H12]}
columns of U1 are orthogonal to the columns of [H11 H12]. Therefore, the last N1r −
rank{[H11 H12]} rows of the channel matrices H11 and H12 in the new channel are equal
to zero, i.e., receiver 1 sees only Gaussian noise from the last N1r − rank{[H11 H12]}
antennas. Hence, we can ignore these antennas and assume that N1r = rank{[H11 H12]}.
We can repeat the same argument at receiver 2, and also at transmitters 1 and 2, to justify
the other inequalities in the third assumption.
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2.2.2 Achievable Sum-Rate

For the two-user MIMO Gaussian interference channel (2.3), the sum-rate achievable
by using (circularly symmetric) Gaussian inputs and treating interference as noise is
given by

I
(
x1G;y1G

)+ I
(
x2G;y2G

)
, (2.4)

where the subscript G indicates that Gaussian inputs are used. Let Q1 = �x1G and
Q2 = �x2G denote the covariance matrices of the Gaussian random vectors x1G and
x2G, respectively. To meet the average power constraints, the covariance matrices must
belong to the feasible region

Q = {(Q1,Q2) : Qi � 0, Tr
(
Qi

)≤ P, i = 1,2}.
We have the option to design the covariance matrices Q1 and Q2 to maximize the
achievable sum-rate, leading to the optimization problem

max
(Q1,Q2)∈Q

f (Q1,Q2), (2.5)

where f (Q1,Q2) denotes the sum-rate (2.4) as a function of Q1 and Q2, i.e.,

f (Q1,Q2) = I
(
x1G;y1G

)+ I
(
x2G;y2G

)
= h

(
y1G
)− h

(
y1G|x1G

)+ h
(
y2G
)− h

(
y2G|x2G

)
= log

det�y1G

det�y1G|x1G

+ log
det�y2G

det�y2G|x2G

.

(2.6)

The explicit dependence on Q1 and Q2 can be seen by carrying out the substitutions:

�y1G
= I + H11Q1H†

11 + H12Q2H†
12,

�y2G
= I + H22Q1H†

21 + H22Q2H†
22,

�y1G|x1G = I + H12Q2H†
12,

�y2G|x2G = I + H21Q1H†
21.

The nonconcave nature of the objective function f (Q1,Q2) makes the optimization
problem (2.5) difficult to solve. To see that f (Q1,Q2) is not concave in general, consider
the special case of a symmetric SISO interference channel with H11 = H22 = 1 and
H21 = H12 = h. Thus, we have

f (q1,q2) = log

(
1 + q1

1 + h2q2

)
+ log

(
1 + q2

1 + h2q1

)
.

Observe that

f (2q,0) + f (0,2q)

2
− f (q,q) = log(1 + 2q) − 2log

(
1 + q

1 + h2q

)
≥ 0

whenever q and h satisfy

(1 + 2q) ≥
(

1 + q

1 + h2q

)2

,
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i.e., whenever

2q ≥ 2q

1 + h2q
+
(

q

1 + h2q

)2

,

which is equivalent to saying that

2h2(1 + h2q) ≥ 1.

This shows that the function f (Q1,Q2) is not concave in general.

2.2.3 Locally Optimal Solution

Since a global optimal solution has to be locally optimal, we can obtain insights into
the structural properties of the optimal transmit covariance matrices by analyzing the
necessary KKT conditions [15]. Let λ1,λ2 ≥ 0 and M1,M2 � 0 denote the dual variables
associated with the constraints Tr

(
Q1
)≤ P1,Tr

(
Q2
)≤ P2, and Q1,Q2 � 0, respectively.

The Lagrangian associated with (2.5) is given by

L(Q1,Q2,M1,M2,λ1,λ2)

= f (Q1,Q2,�) +
2∑

i=1

Tr
(
MiQi

)− λi
(
Tr
(
Qi

)− Pi
)

.

The KKT conditions are given by

∇Q1
f (Q1,Q2) = λ1I − M1,

∇Q2
f (Q1,Q2) = λ2I − M2,

λ1(Tr
(
Q1
)− P1) = 0,

λ2(Tr
(
Q2
)− P2) = 0,

Tr
(
M1Q1

)= 0,

Tr
(
M2Q2

)= 0.

(2.7)

The following fact from matrix differential calculus is useful in deriving the expressions
for gradients [16, 17]: given matrices � = �† and H, it holds that

∇Q logdet
(
� + HQH†

)
= H†

(
� + HQH†

)−1
H.

Using the expression (2.6) for sum-rate, we obtain that

∇Q1
f (Q1,Q2) = H†

11�
−1
y1G

H11 + H†
21

(
�−1

y2G
− �−1

y2G|x2G

)
H21,

∇Q2
f (Q1,Q2) = H†

22�
−1
y2G

H22 + H†
12

(
�−1

y1G
− �−1

y1G|x1G

)
H12.

(2.8)
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2.2.4 Convex Approximation and Optimization

We begin by introducing a convex optimization problem, the solution to which provides
lower and upper bounds on the best achievable sum-rate (2.5). Suppose we upper-bound
f (Q1,Q2) with f̄ (Q1,Q2), i.e., f (Q1,Q2) ≤ f̄ (Q1,Q2), such that f̄ (Q1,Q2) is concave in
Q1 and Q2. Then, we can solve the optimization problem

f̄ (Q∗
1,Q∗

2) = max
(Q1,Q2)∈Q

f̄ (Q1,Q2)

to obtain lower and upper bounds to the sum-rate optimization problem (2.5):

f (Q∗
1,Q∗

2) ≤ Best achievable sum-rate ≤ f̄ (Q∗
1,Q∗

2).

The tightness of the lower and upper bounds depends on the choice of the upper bound
function f̄ (Q1,Q2). The upper bound function we use here is based on a genie giving
side information to the receivers. By treating the side information as a part of the
received signal, we obtain a genie-aided MIMO Gaussian interference channel. Let �

denote the genie parameters, which will be defined in Section 2.2.5. The achievable
sum-rate f̄ (Q1,Q2,�) in the genie-aided channel is an obvious upper bound to the
achievable sum-rate f (Q1,Q2) in the original channel, i.e.,

f (Q1,Q2) ≤ f̄ (Q1,Q2,�).

We say that the genie � is useful if the upper bound function f̄ (Q1,Q2,�) is concave.
Let �u denote the usefulness set; i.e., f̄ (Q1,Q2,�) is concave in (Q1,Q2) for all � ∈ �u.
We obtain the best upper bound to f (Q1,Q2) by optimizing over � ∈ �u; i.e.,

f (Q1,Q2) ≤ f̄ (Q1,Q2) = min
�∈�u

f̄ (Q1,Q2,�).

Therefore, the upper and lower bounds to the best sum-rate can be obtained by solving
the maxmin optimization problem

max
(Q1,Q2)∈Q

min
�∈�u

f̄ (Q1,Q2,�).

We will also show that the upper bound function f̄ (Q1,Q2,�) is convex in � for every
(Q1,Q2). Therefore, we have a convex maxmin optimization problem, which can be
solved efficiently using standard convex optimization algorithms.

2.2.5 Genie-Aided Channel

Suppose the genie provides receivers 1 and 2 with side information s1 and s2,
respectively. The signals s1 and s2 are defined as

s1 = H̃21x1 + w1,

s2 = H̃12x2 + w2,
(2.9)

where H̃12,H̃21, defined in Section 2.2.1, represent the matrices containing the nonzero
rows of H12,H21, respectively, and w1,w2 are random vectors denoting Gaussian
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noise. The genie chooses how the noise terms w1 and w2 are correlated to z1 and
z2, respectively. We use � as a shorthand notation to denote the genie parameters
� = {�w1 ,�w1z1 ,�w2 ,�w2z2} satisfying the positive semidefinite constraints

Cov

([
zi

wi

])
=
[

I �ziwi

�wizi �wi

]
� 0, i = 1,2.

We use the achievable sum-rate of the genie-aided interference channel as the upper
bound function,

f̄ (Q1,Q2,�) = I
(
x1G;y1G,s1G

)+ I
(
x2G;y2G,s2G

)
. (2.10)

Since the mutual information is nonnegative, we obtain that

I
(
x1G;y1G

)≤ I
(
x1G;y1G

)+ I
(
x1G;s1G|y1G

)= I
(
x1G;y1G,s1G

)
,

I
(
x2G;y2G

)≤ I
(
x2G;y2G

)+ I
(
x2G;s2G|y2G

)= I
(
x2G;y2G,s2G

)
,

and hence that

f (Q1,Q2) ≤ f̄ (Q1,Q2,�) for any �.

To utilize the idea in Section 2.2.4, we now define the usefulness set �u, and show the
following properties:

• The set �u is convex.
• The function f̄ (Q1,Q2,�) is concave in (Q1,Q2) for any � ∈ �u.
• The function f̄ (Q1,Q2,�) is convex in � for any Q1 and Q2.

2.2.6 Useful Genie: Concavity Property

Let �u be the set of genie parameters � = (
�w1 ,�w1z1 ,�w2 ,�w2z2

)
satisfying the

usefulness conditions [
I �z1w1

�w1z1 �w1

]
�
[

�w2 0
0 0

]
,

[
I �z2w2

�w2z2 �w2

]
�
[

�w1 0
0 0

]
. (2.11)

It immediately follows that �u is a convex set because the convex combination of any
two positive semidefinite matrices is also positive semidefinite.

L E M M A 2.1 The function f̄ (Q1,Q2,�) is concave and nondecreasing in (Q1,Q2) for
any � ∈ �u.
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Proof We provide a sketch of the proof here; the details can be found in [13]. First,
we expand the terms in f̄ (Q1,Q2,�):

f̄ (Q1,Q2,�) = I
(
x1G;y1G,s1G

)+ I
(
x2G;y2G,s2G

)
= h

(
y1G,s1G

)− h
(
y1G,s1G|x1G

)
+ h

(
y2G,s2G

)− h
(
y2G,s2G|x2G

)
= h(s1G) + h

(
y1G|s1G

)− h(s1G|x1G) − h
(
y1G|s1G,x1G

)
+ h(s2G) + h

(
y2G|s2G

)− h(s2G|x2G) − h
(
y2G|s2G,x2G

)
.

The terms h(s1G|x1G) and h(s2G|x2G) do not depend on Q1 and Q2. From Lemma A.4
in Appendix A, it immediately follows that the terms h

(
y1G|s1G

)
and h

(
y2G|s2G

)
are

concave and nondecreasing in (Q1,Q2). The remaining terms contribute

h(s1G) − h
(
y1G|s1G,x1G

)+ h(s2G) − h
(
y2G|s2G,x2G

)
.

Using Lemma A.1 and Lemma A.6 in Appendix A, we can show that h(s1G) −
h
(
y2G|s2G,x2G

)
is a concave and nondecreasing function in (Q1,Q2). Similarly, we can

show that h(s2G) − h
(
y1G|s1G,x1G

)
is also concave and nondecreasing in (Q1,Q2).

2.2.7 Convexity Property

L E M M A 2.2 For any fixed (Q1,Q2), the function f̄ (Q1,Q2,�) is convex in � =(
�w1 ,�w1z1 ,�w2 ,�w2z2

)
.

Proof We provide a sketch of the proof here; the details can be found in [13]. First,
observe that

f̄ (Q1,Q2,�) = I
(
x1G;y1G,s1G

)+ I
(
x2G;y2G,s2G

)
.

We prove that I
(
x1G;y1G,s1G

)
is convex in �. The convexity of I

(
x2G;y2G,s2G

)
follows

in a similar manner. Observe that

I
(
x1G;y1G,s1G

)= h(x1G) − h
(
x1G|y1G,s1G

)
.

The first term h(x1G) is independent of �. From Lemma A.5 in Appendix A, it follows
that the second term h

(
x1G|y1G,s1G

)
is concave in

Cov

⎛
⎝
⎡
⎣ x1G

y1G
s1G

⎤
⎦
⎞
⎠=

⎡
⎣ × × ×

× × �z1w1

× × + �w1z1 × + �w1

⎤
⎦ ,

where × denotes the terms that are independent of the genie parameters. From this, we
conclude that I

(
x1G;y1G,s1G

)
is convex in

(
�w1 ,�w1z1 ,�w2 ,�w2z2

)
.

Sum-Rate Upper Bound
Following the argument in Section 2.2.4, and using Lemmas 2.1 and 2.2, we obtain the
following theorem.
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T H E O R E M 2.3 The best sum-rate achievable by treating interference as noise is
bounded above and below by

f (Q∗
1,Q∗

2) ≤ max
(Q1,Q2)∈Q

f (Q1,Q2) ≤ f̄ (Q∗
1,Q∗

2,�∗),

where (Q∗
1,Q∗

2,�∗) is a solution to the following convex maxmin optimization problem:

max
(Q1,Q2)∈Q

min
�∈�u

f̄ (Q1,Q2,�).

The utility of the above theorem is that we can use the standard convex optimization
algorithms to efficiently solve for (Q∗

1,Q∗
2,�∗), and thus obtain computable lower and

upper bounds to the best achievable sum-rate.

2.2.8 Sum Capacity Upper Bound

Thus far we have determined computable lower and upper bounds on the best achievable
sum-rate when treating interference as noise. Suppose the bounds meet and we
have exactly determined the best achievable sum-rate and the corresponding optimal
covariance matrices. Even then, we only have an achievable sum-rate and we cannot
eliminate the possibility that there may exist other simple achievable schemes that could
potentially outperform the best achievable sum-rate when treating interference as noise.
Interestingly, this question can be resolved, because the upper bound in Theorem 2.3
can be shown to be an upper bound on the sum capacity as well.

T H E O R E M 2.4 The sum capacity (Csum) of the two-user MIMO Gaussian interference
channel satisfies

f (Q∗
1,Q∗

2) ≤ Csum ≤ f̄ (Q∗
1,Q∗

2,�∗),

where (Q∗
1,Q∗

2,�∗) is the solution to the convex maxmin optimization problem

max
(Q1,Q2)∈Q

min
�∈�u

f̄ (Q1,Q2,�).

Proof We provide a sketch of the proof here; the details can be found in [13]. The
lower bound is obvious since f (Q∗

1,Q∗
2) is defined as the achievable sum-rate when

the transmitters use Gaussian inputs with covariance matrices Q∗
1 and Q∗

2 and the
receivers treat interference as noise. Note that the covariance matrices (Q∗

1,Q∗
2) satisfy

the transmit power constraints. We now prove an upper bound. Using the standard
converse arguments involving Fano’s inequality, we obtain that any achievable rate tuple
(R1,R2) must satisfy

R1 ≤ 1

n
I
(
xn

1;yn
1

)+ εn,

R2 ≤ 1

n
I
(
xn

2;yn
2

)+ εn,
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for some εn → 0 as n → ∞. For any genie � ∈ �u, we can upper-bound the mutual
information terms with the corresponding terms in the genie-aided channel to obtain

R1 ≤ 1

n
I
(
xn

1;yn
1,sn

1

)+ εn,

R2 ≤ 1

n
I
(
xn

2;yn
2,sn

2

)+ εn.

Let Q1 and Q2 denote the average covariance matrices at transmitters 1 and 2,
respectively:

Q1 = E

[
1

n

n∑
i=1

x1ix
†
1i

]
,

Q2 = E

[
1

n

n∑
i=1

x2ix
†
2i

]
.

(2.12)

Consider the problem of maximizing I
(
xn

1;yn
1,sn

1

)+ I
(
xn

2;yn
2,sn

1

)
over all product input

distributions p(xn
1)p(xn

2) satisfying the covariance constraints (2.12). Using the proof
techniques of the concavity of f̄ (Q1,Q2,�) in Lemma 2.1, we can show that if the genie
is useful, i.e., � ∈ �u, then independent and identically distributed (i.i.d.) Gaussian
inputs are optimal; i.e.,

I
(
xn

1;yn
1,sn

1

)+ I
(
xn

2;yn
2,sn

1

)≤ nf̄ (Q1,Q2,�).

Therefore, we obtain that

1

n
I
(
xn

1;yn
1

)+ 1

n
I
(
xn

2;yn
2

)≤ min
�∈�u

f̄ (Q1,Q2,�)

≤ min
�∈�u

max
(Q1,Q2∈Q

f̄ (Q1,Q2,�)

= nf̄ (Q∗
1,Q∗

2,�∗).

Thus, we proved that any achievable rate tuple (R1,R2) must satisfy

R1 + R2 ≤ f̄ (Q∗
1,Q∗

2,�∗) + εn.

The proof is completed by letting n → ∞.

2.2.9 Smart Genie: Zero Gap

Thus far, we have derived computable lower and upper bounds on the sum capacity.
A natural follow-up step is to check if the bounds ever meet. We start by obtaining a
necessary and sufficient condition on (Q∗

1,Q∗
2,�∗) for the gap to be zero. We say that a

genie � is (Q1,Q2)-smart if

f̄ (Q1,Q2,�) = f (Q1,Q2).

The genie just gives side information to the receivers, but it is smart enough not to
leak any additional information about the respective transmitted signals that the original
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received signals could not provide. The total amount of additional information that a
genie leaks is equal to

f̄ (Q1,Q2,�) − f (Q1,Q2)

= I
(
x1G;y1G,s1G

)+ I
(
x2G;y2G,s2G

)− I
(
x1G;y1G

)− I
(
x2G;y2G

)
= I
(
x1G;s1G|y1G

)+ I
(
x2G;s2G|y2G

)
.

Since the conditional mutual information is always nonnegative, the genie is smart if
and only if I

(
x1G;s1G|y1G

)= I
(
x2G;s2G|y2G

)= 0. The conditional mutual information
I
(
x1G;s1G|y1G

)
is equal to zero if and only if x1G–y1G–s1G forms a Markov chain. Since

all the random variables are jointly Gaussian, x1G–y1G–s1G forms a Markov chain if and
only if the minimum mean squared error (MMSE) estimate of s1G given (x1G,y1G) is
the same as the MMSE estimate of s1G given y1G, i.e.,

E
[
s1G|y1G,x1G

]= E
[
s1G|y1G

]
. (2.13)

Let T1y1G be the MMSE estimate of s1G given y1G. Using the orthogonality principle,
summarized in Section A.1, we know that the MMSE estimation error e1 = s1G −T1y1G
is independent of the observation y1G. Since (2.13) implies that T1y1G is also the
MMSE estimate of s1G given y1G and x1G, we obtain that e1 is also independent of
x1G. Therefore, we have that (2.13) is true if and only if there exists a matrix T1 such
that

s1G = T1y1G + e1,

i.e., that

H̃21x1G + w1 = T1 (H11x1G + H12x2G + z1) + e1,

i.e., that (
H̃21 − T1H11

)
x1G + w1 = T1 (H12x2G + z1) + e1,

with e1 being independent of y1G and x1G. Since x1G is independent of all the other

random vectors involved, the random vector
(

H̃21 − T1H11

)
x1G must be equal to zero

almost surely, which is equivalent to(
H̃21 − T1H11

)
Q1 = 0.

The remaining expression is equivalent to saying that T1 (H12x2G + z1) is the MMSE
estimate of w1 given H12x2G +z1, since e1 is independent of y1G −H11x1G = H12x2G +
z1. Therefore, we obtain the following expression for T1:

T1 = �w1z1

(
I + H12Q2H†

21

)−1
.

Thus, we can conclude that x1G–y1G–s1G forms a Markov chain if and only if the
following condition is satisfied:(

H̃21 − �w1z1

(
H12Q2H†

12 + I
)−1

H11

)
Q1 = 0.
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We can derive a similar necessary and sufficient condition for I
(
x2G;s2G|y2G

)
to be

equal to zero, and hence we obtain the following lemma.

L E M M A 2.5 The genie � is (Q1,Q2)-smart, i.e., f̄ (Q1,Q2,�) = f (Q1,Q2), if and only
if the following conditions are satisfied:(

H̃21 − �w1z1

(
H12Q2H†

12 + I
)−1

H11

)
Q1 = 0,(

H̃12 − �w2z2

(
H21Q1H†

21 + I
)−1

H22

)
Q2 = 0.

(2.14)

2.2.10 Low Interference Regime

We say that a two-user MIMO Gaussian interference channel is in the low interference
regime if the sum capacity is achieved by using Gaussian inputs and treating interference
as noise. Suppose the upper and lower bounds defined in Theorem 2.4 meet. Then the
channel (2.3) is in the low interference regime. In this section, we derive necessary and
sufficient conditions for the bounds in Theorem 2.4 to meet. Recall that the bounds meet
if and only if

f (Q∗
1,Q∗

2) = f̄ (Q∗
1,Q∗

2,�∗), (2.15)

where (Q∗
1,Q∗

2,�∗) is an optimal solution to the following convex maxmin optimization
problem:

max
(Q1,Q2)∈Q

min
�∈�u

f̄ (Q1,Q2,�). (2.16)

We start with the following claim, proved in [13], in which we exploit the
concave–convex property of f̄ (Q1,Q2,�) to simplify the above two conditions.

C L A I M 2.1 The following two statements are equivalent:

• A maxmin solution (Q∗
1,Q∗

2,�∗) to (2.16) satisfies (2.15).
• There exist (Q∗

1,Q∗
2) and �∗ ∈ �u satisfying

f (Q∗
1,Q∗

2) = f̄ (Q∗
1,Q∗

2,�∗) = max
(Q1,Q2)∈Q

f̄ (Q1,Q2,�∗).

The claim says that it is sufficient to consider only one instance of the genie (�∗)
to obtain the best upper bound instead of minimizing the upper bound function over all
useful genies. It is easy to check that the second statement implies the first statement
without invoking any special structural properties of f̄ (Q1 Q2,�). Proving that the
second statement is necessary requires the concave–convex property of f̄ (Q1 Q2,�).

We have already derived the necessary and sufficient conditions for (2.15) to be true in
Lemma 2.5. We now derive the KKT conditions which are both necessary and sufficient
conditions for (Q∗

1,Q∗
2) to be a global optimal solution to

max
(Q1,Q2)∈Q

f̄ (Q1,Q2,�∗). (2.17)



20 System Model and Sum Capacity Characterization

Let λ1 ≥ 0 and λ2 ≥ 0 be the dual variables associated with the constraints Tr
(
Q1
) ≤

P1 and Tr
(
Q2
) ≤ P2. Let M1 � 0 and M2 � 0 be the dual variables associated with

the constraints Q1 � 0 and Q2 � 0. The Lagrangian associated with the optimization
problem (2.17) is given by

f̄ (Q1,Q2,�∗) +
2∑

i=1

Tr
(
MiQi

)− λi
(
Tr
(
Qi

)− Pi
)

.

The corresponding KKT conditions are as given in (2.20). Thus, we obtain the following
theorem.

T H E O R E M 2.6 Suppose there exist transmit covariance matrices Q∗
1 � 0,Q∗

2 � 0,
genie parameters �∗ = (

�w1 ,�w1z1 ,�w2 ,�w2z2

)
, and dual variables λ1 ≥ 0,λ ≥

0,M1 � 0,M2 � 0 satisfying the following conditions:

• Transmit power constraints: Tr
(
Q1
)≤ P1 and Tr

(
Q2
)≤ P2.

• Useful genie conditions:[
I �z1w1

�w1z1 �w1

]
�
[

�w2 0
0 0

]
,

[
I �z2w2

�w2z2 �w2

]
�
[

�w1 0
0 0

]
. (2.18)

• Smart genie conditions:(
H̃21 − �w1z1

(
H12Q∗

2H†
12 + I

)−1
H11

)
Q∗

1 = 0,(
H̃12 − �w2z2

(
H21Q∗

1H†
21 + I

)−1
H22

)
Q∗

2 = 0. (2.19)

• KKT conditions:

∇Q1
f̄ (Q∗

1,Q∗
2,�∗) = λ1I − M1,

∇Q2
f̄ (Q∗

1,Q∗
2,�∗) = λ2I − M2,

λ1(Tr
(
Q∗

1

)− P1) = 0,

λ2(Tr
(
Q∗

2

)− P2) = 0,

Tr
(
M1Q∗

1

)= 0,

Tr
(
M2Q∗

2

)= 0.

(2.20)

Then, the sum capacity of the two-user MIMO Gaussian interference channel (2.3) is
achieved by using Gaussian inputs and treating interference as noise, and is given by

Csum = f (Q∗
1,Q∗

2).

Conversely, if there exist no such parameters satisfying the stated constraints, then the
lower and upper bounds in Theorem 2.4 do not coincide.
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The above theorem provides sufficient conditions for the two-user Gaussian
interference channel (2.3). The problem now is to determine if there exists an algorithm
to verify the feasibility of these conditions. Observe that the conditions in Theorem 2.6
are nothing but the necessary and sufficient conditions for the bounds in Theorem 2.4
to coincide. Therefore, we can use the standard convex optimization algorithms to
solve the maxmin optimization problem in Theorem 2.4 efficiently, and thus verify the
feasibility of the conditions in Theorem 2.6. In the sections to follow, we explore the
possibility of verifying the feasibility of the conditions of Theorem 2.6 analytically.
We provide two corollaries with simpler conditions that are sufficient but may not be
necessary. In some special cases, such as symmetric MISO and SIMO interference
channels, we actually simplify the conditions of Theorem 2.6 into a closed-form
equation that depends only on the channel matrices and the power constraints. To
achieve all these objectives, we first need to simplify the KKT conditions (2.20).

2.2.11 Simplified KKT Conditions

When the smart genie conditions (2.19) are satisfied, the gradient expressions in (2.20)
can be greatly simplified. We first explain the intuition before proceeding to present the
simplified expressions. Recall that f̄ (Q1,Q2,�) is an upper bound on f (Q1,Q2). Let
g(Q1,Q2,�) denote the gap

g(Q1,Q2,�) = f̄ (Q1,Q2,�) − f (Q1,Q2) ≥ 0.

Suppose the genie �∗ is (Q∗
1,Q∗

2)-smart, i.e., g(Q∗
1,Q∗

2,�∗) = 0. Then, we see that
(Q∗

1,Q∗
2) is an optimal solution to

min
Qi:Qi�0,i∈{1,2}g(Q1,Q2,�∗).

Therefore, (Q∗
1,Q∗

2) must satisfy the corresponding necessary KKT conditions. Let
N1 � 0 and N2 � 0 denote the dual variables corresponding to the constraints Q1 � 0 and
Q2 � 0, respectively. The Lagrangian associated with the above minimization problem
is given by

g(Q1,Q2,�∗) −
2∑

i=1

Tr
(
NiQi

)
.

Therefore, there must exist some dual variables N1 � 0 and N2 � 0 satisfying the KKT
conditions

∇Q1
g(Q∗

1,Q∗
2,�∗) = N1,

∇Q2
g(Q∗

1,Q∗
2,�∗) = N2,

Tr
(
N1Q∗

1

)= 0,

Tr
(
N2Q∗

2

)= 0.
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Thus, we see that the gradients in (2.20) can be simplified as

∇Q1
f̄ (Q∗

1,Q∗
2,�∗) = ∇Q1

f (Q∗
1,Q∗

2) + N1,

∇Q2
f̄ (Q∗

1,Q∗
2,�∗) = ∇Q2

f (Q∗
1,Q∗

2) + N2

for some N1 � 0 and N2 � 0 satisfying Tr
(
N1Q∗

1

) = Tr
(
N2Q∗

2

) = 0. In the following
lemma, which is proved in [13], we give the expressions for N1 and N2 in terms of the
channel matrices, genie parameters, and the transmit covariance matrices.

L E M M A 2.7 Suppose the smart genie conditions (2.19) are satisfied; i.e.,(
H̃21 − T1H11

)
Q∗

1 = 0,(
H̃12 − T2H22

)
Q∗

2 = 0,

where the matrices T1 and T2 are defined as

T1 = �w1z1

(
H12Q∗

2H†
12 + I

)−1
,

T2 = �w2z2

(
H21Q∗

1H†
21 + I

)−1
.

Then, we have

∇Q1
f̄ (Q∗

1,Q∗
2,�∗) = ∇Q1

f (Q∗
1,Q∗

2) + N1,

∇Q2
f̄ (Q∗

1,Q∗
2,�∗) = ∇Q2

f (Q∗
1,Q∗

2) + N2,

where the matrices N1 and N2 are given by

N1 =
(

H̃21 − T1H11

)†
�−1

w1|y1G,x1G

(
H̃21 − T1H11

)
,

N2 =
(

H̃21 − T2H22

)†
�−1

w2|y2G,x2G

(
H̃21 − T2H22

)
.

Furthermore, N1 and N2 satisfy Tr
(
N1Q∗

1

)= Tr
(
N2Q∗

2

)= 0.

R E M A R K 2.1 Suppose the conditions of Theorem 2.6 are satisfied; then the sum
capacity is given by f (Q∗

1,Q∗
2). As an obvious corollary, we also get that (Q∗

1,Q∗
2) are the

optimal covariance matrices maximizing the achievable sum-rate (2.5). This means that
(Q∗

1,Q∗
2) must satisfy the corresponding necessary KKT conditions (2.7). Therefore,

it must be that the conditions in Theorem 2.6 imply the conditions (2.7). Lemma 2.7
makes it easier to see this connection. Observe that the KKT conditions (2.20), along
with the smart genie conditions (2.19), imply that

∇Q1
f (Q∗

1,Q∗
2) = λ1I − M1 − N1,

∇Q2
f (Q∗

1,Q∗
2) = λ2I − M2 − N2,

where N1 � 0, N2 � 0, and Tr
(
N1Q∗

1

)= Tr
(
N2Q∗

2

)= 0. Therefore, by replacing M1 by
M1 + N1 and M2 by M2 + N2, we see that the KKT conditions (2.7) are satisfied.
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Full Rank Optimal Covariance Matrices
We use the insights from the previous section to simplify the conditions in Theorem 2.6
when the optimal covariance matrices (Q∗

1,Q∗
2) have full rank. Suppose the conditions

of Theorem 2.6 are satisfied and (Q∗
1,Q∗

2) have full rank. Then, it must be that the
matrices N1 and N2 defined in Lemma 2.7 are equal to zero. This is because N1 and N2

are positive semidefinite matrices satisfying Tr
(
N1Q∗

1

)= Tr
(
N2Q∗

2

)= 0. Therefore, we
have that

∇Q1
f̄ (Q∗

1,Q∗
2,�∗) = ∇Q1

f (Q∗
1,Q∗

2),

∇Q2
f̄ (Q∗

1,Q∗
2,�∗) = ∇Q2

f (Q∗
1,Q∗

2).

Hence, the KKT conditions (2.20) are identical to (2.7), which are satisfied if (Q∗
1,Q∗

2) is
a local optimal solution to the optimization problem (2.5). Thus, we obtain the following
corollary to Theorem 2.6.

C O RO L L A RY 2.1 Suppose there exists a local optimal solution Q∗
1 � 0,Q∗

2 � 0 to

max
(Q1,Q2)∈Q

f (Q1,Q2),

and a genie �∗ that is both useful and (Q∗
1,Q∗

2)-smart; i.e., the conditions (2.18) and
(2.14) are satisfied. Then the sum capacity of the two-user MIMO Gaussian interference
channel (2.3) is achieved by using Gaussian inputs and treating interference as noise,
and is given by

Csum = f (Q∗
1,Q∗

2).

Concave Sum-Rate Function
As summarized in Section 2.2.4, the basic idea leading to the techniques developed
in this chapter is that the achievable sum-rate function f (Q1,Q2) is not necessarily
concave in (Q1,Q2) and so we used the genie-aided channel to develop a concave upper
bound f̄ (Q1,Q2,�) to handle the optimization problem. The best concave upper bound
to f (Q1,Q2) is given by

f̄ (Q1,Q2) = min
�∈�u

f̄ (Q1,Q2,�).

Suppose f̄ (Q1,Q2) = f (Q1,Q2) for every feasible (Q1,Q2). Then, we see that f (Q1,Q2)

is a concave function within the region of interest, and hence we can just use the standard
convex optimization algorithms to determine the global optimal solution to

max
(Q1,Q2)∈Q

f (Q1,Q2).

Clearly, this also implies that the sum capacity is equal to f (Q∗
1,Q∗

2). Observe that

Csum ≤ max
(Q1,Q2)∈Q

min
�∈�u

f̄ (Q1,Q2,�)

= max
(Q1,Q2)∈Q

f̄ (Q1,Q2)

(a)= max
(Q1,Q2)∈Q

f (Q1,Q2)

= f (Q∗
1,Q∗

2),
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Fig. 2.3 Two-user SISO interference channel. c©[2017] IEEE. Reprinted, with permission, from [18].

where step (a) follows because we assumed that f̄ (Q1,Q2) = f (Q1,Q2) for every feasible
(Q1,Q2). Since the condition f̄ (Q1,Q2) = f (Q1,Q2) is equivalent to the existence of a
genie � that is both useful and (Q1,Q2)-smart, we obtain the following corollary to
Theorem 2.4.

C O RO L L A RY 2.2 Suppose that for every feasible transmit covariance matrices
(Q1,Q2) there exists a genie � that is both useful and (Q1,Q2)-smart; i.e., the
conditions (2.18) and (2.14) are satisfied. Then the achievable sum-rate function
f (Q1,Q2) is concave in (Q1,Q2) in the feasible region Q, and the sum capacity is
achievable by using Gaussian inputs and treating interference as noise, and is given
by f (Q∗

1,Q∗
2), the optimal solution to the convex optimization problem

max
(Q1,Q2)∈Q

f (Q1,Q2).

2.2.12 SISO Interference Channel

We now specialize the results for the MIMO interference channel to the case of the
SISO interference channel illustrated in Figure 2.3:

y1 = x1 + h12x2 + z1,

y2 = h21x1 + x2 + z2,
(2.21)

with the transmit power constraints P1 and P2. We can simplify the low interference
regime conditions of Theorem 2.6 to obtain a simple closed-form condition. In the SISO
case, the KKT conditions of Theorem 2.6 are automatically satisfied. Recall that the role
of the KKT conditions is to make sure that (q∗

1,q∗
2) is the global optimal solution to

max
(q1,q2)∈Q

f̄ (q1,q2,�∗).

However, we have already proved in Lemma 2.1 that f̄ (q1,q2,�∗) is a nondecreasing
function in (q1,q2). Therefore, (q∗

1,q∗
2) = (P1,P2) must be a global optimal solution to

the above optimization problem, and hence there must exist dual variables satisfying
the KKT conditions (2.20). Therefore, it only remains to verify the existence of a
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genie �∗ = (�w1 ,�w1z1 ,�w2 ,�w2z2

)
that is useful and (P1,P2)-smart, i.e., satisfying

the conditions (2.18) and (2.19). The following result was first derived directly (without
going through Theorem 2.6) in [18–20].

T H E O R E M 2.8 The sum capacity of the two-user SISO Gaussian interference channel
(2.21) is achieved by using Gaussian inputs and treating interference as noise, and is
given by

Csum = log

(
1 + P1

1 + |h12|2P2

)
+ log

(
1 + P2

1 + |h21|2P1

)
if the channel parameters satisfy the low interference regime condition

|h21|
(

1 + |h12|2P2

)
+ |h12|

(
1 + |h21|2P1

)
≤ 1. (2.22)

Proof The smart genie conditions (2.19) are given by(
h21 − �w1z1

(
h12P2h†

12 + 1
)−1
)

P1 = 0,(
h12 − �w2z2

(
h21P1h†

21 + 1
)−1
)

P2 = 0,

which are equivalent to

�w1z1 = h21

(
1 + |h12|2P2

)
,

�w2z2 = h12

(
1 + |h21|2P1

)
.

The useful genie conditions (2.18) are given by[
1 �z1w1

�w1z1 �w1

]
�
[

�w2 0
0 0

]
,

[
1 �z2w2

�w2z2 �w2

]
�
[

�w1 0
0 0

]
,

which are equivalent to

0 ≤ �w1 ,�w2 ≤ 1,

�w1(1 − �w2) ≤ |�w1z1 |2,

�w2(1 − �w1) ≤ |�w2z2 |2.

Substituting �w1 = cos2 φ1 and �w2 = sin2 φ2, where φ1,φ2 ∈ [0,π/2], the above
equations can be simplified to

cosφ1 cosφ2 ≤ |�w1z1 |,
sinφ1 sinφ2 ≤ |�w2z2 |.

It is easy to check that a solution φ1,φ2 ∈ [0,π/2] exists if and only if

|�w1z1 | + |�w2z2 | ≤ 1,
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Fig. 2.4 Symmetric MISO and SIMO interference channels.

i.e., if and only if

|h21|
(

1 + |h12|2P2

)
+ |h12|

(
1 + |h21|2P1

)
≤ 1.

2.2.13 Symmetric MISO and SIMO Interference Channels

We now specialize the results for the MIMO interference channel to the symmetric
MISO and SIMO interference channels shown in Figure 2.4, and simplify the conditions
in Theorem 2.6 to derive a simple closed-form equation for the low interference regime.
Symmetric MISO interference channel:

y1 = d†x1 + hc†x2 + z1,

y2 = d†x2 + hc†x1 + z2.

Symmetric SIMO interference channel:

y1 = dx1 + hcx2 + z1,

y2 = dx2 + hcx1 + z2.

In both the above cases, we assume that the transmitters satisfy an average transmit
power constraint of P. We assume that h ≥ 0 is a real number, and the vectors d and c
have unit norm, and are defined as

d =
[

cosθ

sinθ

]
, c =

[
1
0

]
(2.23)

for some θ ∈ [0,π/2]. See Section 2.2.1 for a justification for these assumptions. In
particular, observe that the third assumption in Section 2.2.1 states that we can restrict
the study of the MISO (respectively, SIMO) Gaussian interference channels to the case
with only two transmit (respectively, receive) antennas.

Observe that both the MISO and SIMO channels with θ = 0 are equivalent to the
classical two-user SISO Gaussian interference channel. In Section 2.2.12, we showed
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that the channel is in the low interference regime, and hence treating interference as
noise achieves a sum capacity equal to

2 log

(
1 + P

1 + h2P

)
,

if the parameters h and P satisfy h(1 + h2P) ≤ 0.5. On the other extreme, with θ = π/2,
we obtain the scenario where the users do not interfere with each other, and hence the
sum capacity is given by 2log(1 + P) for any h. We vary θ from 0 to π/2, and analyze
the behavior of the sum capacity and the low interference regime as a function of θ .

Achievable Sum-Rate
First, consider the SIMO interference channel. The achievable sum-rate (2.6) obtained
by using Gaussian inputs and treating interference as noise is given by

f (q1,q2) = log
|I + q1dd† + h2q2cc†|

|I + h2q2cc†| + log
|I + q2dd† + h2q1cc†|

|I + h2q1cc†| ,

where q1 and q2 denote the transmit powers. Recall that q1 and q2 must satisfy the
average power constraints of q1,q2 ≤ P. The achievable sum-rate by using the maximum
power, i.e., by setting q1 = q2 = P, is given by

f (P,P) = 2log
|I + Pdd† + h2Pcc†|

|I + h2Pcc†|
= 2log

∣∣∣I + J−1Pdd†
∣∣∣

= 2log
(

1 + Pd†J−1d
)

(2.24a)

= 2log

(
1 + Pcos2 θ

1 + h2P
+ Psin2 θ

)
, (2.24b)

where the matrix J denotes

J = I + h2Pcc† =
[

1 + h2P 0
0 1

]
.

The above sum-rate can be shown to be achievable with the receivers projecting the
received vector along a beamforming direction, denoted by a unit norm vector b, i.e.,

ỹ1 = b†y1 = b†dx1 + hb†cx2 + b†z1,

ỹ2 = b†y2 = b†dx2 + hb†cx1 + b†z2.

We choose the beamforming direction b as

b = J−1d

||J−1d|| (2.25)

in order to achieve the best SINR:

SINR = P|b†d|2
1 + h2P|b†c|2 = P|b†d|2

b†Jb
= Pd†J−1d.



28 System Model and Sum Capacity Characterization

This interpretation of receive beamforming helps in understanding the best achievable
sum-rate of the dual MISO interference channel. Observe that the achievable sum-rate
of the MISO interference channel is given by

f (Q1,Q2) = log

(
1 + Pd†Q1d

1 + h2Pc†Q2c

)
+ log

(
1 + Pd†Q2d

1 + h2Pc†Q1c

)
.

Using the insight from the SIMO interference channel, we let the transmitters transmit
along the beamforming direction b; i.e., we set

Q∗
1 = Q∗

2 = Q∗ = Pbb†.

The corresponding achievable sum-rate is given by

f (Q∗,Q∗) = 2log

(
1 + Pd†Q∗d

1 + h2Pc†Q∗c

)

= 2log

(
1 + Pcos2 θ

1 + h2P
+ Psin2 θ

)
.

Low Interference Regime
T H E O R E M 2.9 The sum capacity of the symmetric MISO and SIMO Gaussian
interference channels described in Section 2.2.13 is achieved by using Gaussian inputs
and treating interference as noise at the receivers, and is given by

Csum = 2log

(
1 + Pcos2 θ

1 + h2P
+ Psin2 θ

)
if the channel parameters satisfy the threshold condition h ≤ h0(θ ,P), where h0(θ ,P) is
defined as the unique positive solution to the implicit equation

h2 − sin2 θ =
(

cosθ

1 + h2P
− h

)2

+
, (2.26)

where we use the notation x2+ to denote (max(0,x))2.

The above theorem is obtained by specializing the conditions in Theorem 2.6 for
the special case of symmetric MISO and SIMO channels. Before we go into the proof
details, we first prove some properties of the threshold function h0(θ ,P). The threshold
h0(θ ,P) is plotted as a function of θ for different values of P in Figure 2.5. It can be
observed that the threshold curve is always above the sinθ curve and approaches the
sinθ curve as P becomes larger.

We summarize the observations from Figure 2.5 in the following claim.

C L A I M 2.2 The threshold h0(θ ,P) satisfies

• h0(θ ,P) > sinθ for all P < P0(θ),
• h0(θ ,P) = sinθ for all P ≥ P0(θ),
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Fig. 2.5 Threshold on h characterizing the low interference regime of the symmetric MISO and SIMO
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where P0(θ) is defined as

P0(θ) =

⎧⎪⎨
⎪⎩

cosθ − sinθ

sin3 θ
when 0 ≤ θ < π/4,

0 when π/4 ≤ θ < π/2.

Proof Observe that the left-hand side of (2.26) is strictly increasing in h, whereas the
right-hand side is decreasing in h. This verifies that (2.26) has a unique positive solution.
Note that the left-hand side is strictly negative when h < sinθ , whereas the right-hand
side is always nonnegative. This immediately implies that h0(θ ,P) ≥ sinθ . It can be
easily checked that the right-hand side is equal to zero at h = sinθ when P ≥ P0(θ).
Hence, we obtain the second statement. Similarly, it can be easily checked that the
right-hand side is greater than zero at h = sinθ when P < P0(θ). Hence, we obtain the
first statement.

SIMO Interference Channel
Recall from Section 2.2.1 that H̃12 and H̃21 denote the nonzero rows of the respective
matrices H12 and H21. Therefore, for the special case of the SIMO interference channel,
we have H̃12 = H̃21 = h, and the genie signals (2.9) are given by

s1 = hx1 + w1,

s2 = hx2 + w2.

We now simplify the conditions in Theorem 2.6 and show that they are equivalent
to the threshold condition in Theorem 2.9. As explained in Section 2.2.12 for the
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SISO interference channel, we do not have to explicitly check for the KKT conditions
(2.20) because they are automatically satisfied at (q∗

1,q∗
2) = (P,P). This is true because

f̄ (q1,q2,�∗) is nondecreasing in (q1,q2). Therefore, it only remains to verify the
existence of a genie �∗ = (�w1 ,�w1z1 ,�w2 ,�w2z2

)
that is useful and (P,P)-smart, i.e.,

satisfying the conditions (2.18) and (2.19). Since we are working with a symmetric
interference channel, we restrict ourselves to a symmetric genie; i.e., we assume
�w1z1 = �w2z2 = �wz = [a1 a2] and �w1 = �w2 = �w.

The usefulness condition (2.18) when specialized to the SIMO channel is given by⎡
⎢⎣ 1 0 a†

1
0 1 a†

2
a1 a2 �w

⎤
⎥⎦�

⎡
⎣ �w 0 0

0 0 0
0 0 0

⎤
⎦ ,

which is equivalent to ⎡
⎢⎣ 1 − �w 0 a†

1
0 1 a†

2
a1 a2�w

⎤
⎥⎦� 0.

Using the fact that a Hermitian matrix is positive semidefinite if and only if all the
principal minors are nonnegative, the above condition is equivalent to the conditions

0 ≤ �w ≤ 1,

�w − |a2|2 ≥ 0,

(1 − �w)(�w − |a2|2) − |a1|2 ≥ 0.

(2.27)

The smartness condition (2.19) when specialized to the SIMO channel is given by(
h − �wz

(
h2Pcc† + I

)−1
d
)

P = 0,

which is equivalent to

h − �wz

[
1 + h2P 0

0 1

]−1

d = 0,

which is further equivalent to

h − a1 cosθ

1 + h2P
− a2 sinθ = 0. (2.28)

Therefore, we obtain that the SIMO interference channel is in the low interference
regime if there exist parameters a1,a2,�w satisfying the conditions (2.27) and (2.28).
The following claim, which is proved in [13], completes the proof of the SIMO part of
Theorem 2.9.

C L A I M 2.3 There exist parameters a1,a2,�w satisfying the conditions (2.27) and
(2.28) if and and only if the following low interference regime condition is true:

h2 − sin2 θ ≤
(

cosθ

1 + h2P
− h

)2

+
. (2.29)
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MISO Interference Channel
Observe that Theorem 2.9 is obtained by specializing Theorem 2.6 for the special case
of the symmetric MISO interference channel. The genie signals (2.9) are given by

s1 = hc†x1 + w1,

s2 = hc†x2 + w2.

Theorem 2.9 follows if we show that there exist genie parameters and dual variables
satisfying the conditions of Theorem 2.6 at

Q∗
1 = Q∗

2 = Q∗ = Pbb†.

Since the channel is symmetric across the users, we restrict the genie parameters �∗ =(
�w1 ,�w1z1 ,�w2 ,�w2z2

)
and the dual variables λ1,λ2,M1,M2 to be symmetric, i.e.,

�w1z1 = �w2z2 = �wz,

�w1 = �w2 = �w,

λ1 = λ2 = λ,

M1 = M2 = M.

Therefore, we need to prove the existence of the parameters �w,�wz,λ ≥ 0,M � 0
satisfying the following conditions:

• Useful genie condition: [
1 �zw

�wz �w

]
�
[

�w 0
0 0

]
.

• Smart genie condition: (
hc† − �wz

1 + h2P|b†c|2 d†
)

b = 0.

• KKT conditions:

∇Q1
f̄ (Q∗,Q∗,�∗) = λI − M,

Tr
(
MQ∗)= 0.

Note that the useful genie condition is equivalent to

�w(1 − �w) ≥ |�wz|2,

and that the smart genie condition is equivalent to

hc†b = �wz

b†Jb
d†b,

which is equivalent to

�wz = h
c†b

d†b
b†Jb.
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Recall that the matrix J is defined as

J = I + h2Pcc† =
[

1 + h2P 0
0 1

]
,

and the beamforming vector b is defined as the unit norm vector in the direction of

b = J−1d

||J−1d|| = 1

||J−1d||

[
cos2 θ

1+h2P
sinθ

]
.

Thus, we see that the smart genie condition is equivalent to

�wz = h
c†b

d†b
b†Jb

= h
c†J−1d

d†J−1d

d†J−1d

||J−1d||2

= h
c†J−1d

||J−1d||2 ,

i.e.,

�wz =
h

cosθ

1 + h2P
cos2 θ

(1 + h2P)2
+ sin2 θ

. (2.30)

We now simplify the KKT conditions. Observe that Tr
(
MQ∗) = 0 is equivalent to

saying that Mb = 0. Therefore, we see that b is an eigenvector of the gradient matrix
∇Q1

f̄ (Q∗,Q∗,�∗), with λ ≥ 0 as the eigenvalue value. The condition M � 0 implies
that the other eigenvalue is smaller than λ. Thus, we see that the KKT conditions
are equivalent to saying that b is the dominant eigenvector of ∇Q1

f̄ (Q∗,Q∗,�∗) with
eigenvalue λ ≥ 0.

We can use Lemma 2.7 to simplify the derivation of the gradient matrix. Observe that

∇Q1
f̄ (Q∗,Q∗,�∗) = ∇Q1

f (Q∗,Q∗) + N,

where the matrix N is given by

N = (hc − td)† (hc − td)

�w1|y1G,x1G

,

and the parameter t is given by

t = �wz

h2P|b†c|2 + 1
= �wz

b†Jb
= h

c†b

d†b
. (2.31)
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Observe that the matrix N satisfies Nb = 0. Therefore, we need to show that b is an
eigenvector of ∇Q1

f (Q∗,Q∗). Note that

∇Q1
f (Q∗,Q∗) = dd†

�y1G

+ h2cc†

�y2G

− h2cc†

�y2G|x2G

= 1

�y1G

(
dd† − h2

(
�y2G

�y2G|x2G

− 1

)
cc†
)

= 1

�y1G

(
dd† − h2 SINRcc†

)
.

(2.32)

Recall that the expression for SINR is given by

SINR = Pcos2 θ

1 + h2P
+ Psin2 θ .

Using the expansion

dd† − h2 SINRcc† =
[

cos2 θ − h2SINR cosθ sinθ

cosθ sinθ sin2 θ

]

=
[

cos2 θ

1+h2P
− h2Psin2 θ cosθ sinθ

cosθ sinθ sin2 θ

]
,

we can easily check that b is an eigenvector of the matrix ∇Q1
f (Q∗,Q∗), with the

corresponding eigenvalue given by

λ = 1

�y1G

(
cos2 θ

1 + h2P
+ sin2 θ

)
. (2.33)

Since Nb = 0, we also obtain that b is an eigenvector of the matrix ∇Q1
f̄ (Q∗,Q∗,�∗)

with the same eigenvalue λ. Since the sum of eigenvalues is equal to the trace of the
matrix, the other eigenvalue is equal to

Tr
(∇Q1

f̄ (Q∗,Q∗,�∗)
)− λ.

Therefore, we have that b is the dominant eigenvector if and only if

2λ ≥ Tr
(∇Q1

f̄ (Q∗,Q∗,�∗)
)

= Tr
(∇Q1

f (Q∗,Q∗)
)+ Tr(N) .

Note that

Tr(N) = ||hc − td||2
�w1|y1G,x1G

= ||hc − td||2

�w − �2
wz

1 + h2|b†c|2
.
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Therefore, b is the dominant eigenvector if and only if

�w ≥ �2
wz

1 + h2|b†c|2 + ||hc − td||2
2λ − Tr

(∇Q1
f (Q∗,Q∗)

) . (2.34)

Observe that all the variables other than �w are known and can be expressed as a
function of h, θ , and P. By substituting the corresponding expressions, we can simplify
the right-hand side of (2.34), as in the following claim, which is proved in [13].

C L A I M 2.4 The condition (2.34) is equivalent to

�w ≥
h2(1 + Psin2 θ)

1 + h2P
cos2 θ

(1 + h2P)2
+ sin2 θ

. (2.35)

It now remains to verify the existence of the parameter �w satisfying the usefulness
condition,

�w(1 − �w) ≥ �2
wz,

�2
w − �w + �2

wz ≤ 0,

and (2.35), where �wz is given by the smartness condition (2.30). Observe that the above
quadratic inequality has a solution if and only if �wz ≤ 0.5, and that the largest possible

value for �w satisfying the quadratic inequality is given by 0.5(1 +
√

1 − 4�2
wz). Since

the condition (2.35) requires �w to be larger than a threshold, without any loss of

generality we can set �w = 0.5(1+
√

1 − 4�2
wz). Therefore, it remains to verify whether

h, θ , and P satisfy the following two conditions:

�wz =
h

cosθ

1 + h2P
cos2 θ

(1 + h2P)2
+ sin2 θ

≤ 0.5,

�w =
−1 +

√
1 − 4�2

wz

2
≥

h2(1 + Psin2 θ)

1 + h2P
cos2 θ

(1 + h2P)2
+ sin2 θ

.

We now show that the above two conditions are satisfied when h ≤ h0(θ ,P) by dividing
the proof into two cases.
Case 1: The channel parameters satisfy h ≤ sinθ . Recall that �wz is given by

�wz =
h

cosθ

1 + h2P
cos2 θ

(1 + h2P)2
+ sin2 θ
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≤
sinθ

cosθ

1 + h2P
cos2 θ

(1 + h2P)2
+ sin2 θ

= ab

a2 + b2
,

where we used a and b to denote cosθ/(1 + h2P) and sinθ , respectively. Using the fact
that 2ab ≤ a2 + b2, we obtain that �wz ≤ 0.5. Using the fact that (a2 + b2)2 − 4a2b2 =
(a2 − b2)2, we see that the corresponding �w satisfies

�w =
1 +

√
1 − 4�2

wz

2

≥ max(a2,b2)

a2 + b2

≥ b2

a2 + b2
.

Now, observe that

b2 = sin2 θ

≥ sin2 θ − sin2 θ − h2

1 + h2P

= h2(1 + Psin2 θ)

1 + h2P
.

Thus, we see that the KKT condition (2.35) is satisfied.
Case 2: The channel parameters satisfy

sinθ < h ≤ cosθ

1 + h2P
. (2.36)

Observe that the condition

�w =
2h

cosθ

1 + h2P
cos2 θ

(1 + h2P)2
+ sin2 θ

≤ 1

is equivalent to

h2 − sin2 θ ≤
(

cosθ

1 + h2P
− h

)2

,

and is hence satisfied because h ≤ h0(θ ,P). Observe that the condition (2.35) is satisfied
because

�w = 0.5(1 +
√

1 − 4�2
wz) ≥ 0.5 ≥ �wz
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Fig. 2.6 K-user interference channel.

and

hcosθ ≥ h2(1 + h2P) ≥ h2(1 + Psin2 θ).

2.2.14 Two-User Gaussian Interference Channel – Summary

We studied the nonconvex optimization problem of determining the best achievable
sum-rate, using Gaussian inputs and treating interference as noise, in the two-user
MIMO Gaussian interference channel. We used the idea of the genie-aided channel
to relax the nonconvex optimization problem, and proposed a related convex maxmin
optimization problem. The corresponding saddle point solution provides lower and
upper bounds for the best achievable sum-rate. We then showed that the resulting upper
bound is indeed an upper bound to the sum capacity as well. We also derived necessary
and sufficient conditions for the bounds to coincide, leading to an exact characterization
of the the best achievable sum-rate when treating interference as noise, and the sum
capacity. We then simplified the conditions in the special cases of symmetric MISO and
SIMO Gaussian interference channels, and showed that the conditions are equivalent to
a threshold condition on the cross-channel gain. Interestingly, the threshold is identical
for the symmetric MISO and the dual SIMO interference channels.

2.3 K-User Interference Channels

In the previous section, we established the sum capacity of the two-user MIMO
Gaussian interference channel in a low interference regime. The intuition is that if the
interference is low enough, the receiver will not be able to exploit the structure in the
interference, and hence treating interference as noise achieves the sum capacity. In this
section, we extend the low interference regime results from the two-user case to the
K-user case. We focus on the SISO case, where each transmitter and receiver is equipped
with a single antenna. The K-user SISO Gaussian interference channel illustrated in
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Figure 2.6 is given by

yi =
K∑

j=1

hijxj + zi, i ∈ [K], (2.37)

with Pj denoting the average transmit power constraint on the transmitters j. Without
any loss of generality, by appropriately scaling the power constraints, we assume that
the direct channel gains are equal to unity; i.e.,

hii = 1, ∀i ∈ [K].
Since we assumed a single transmit antenna, it is easy to determine the lower bound
on the sum capacity obtained by using Gaussian inputs (with maximum power) and
treating interference as noise:

Csum ≥
K∑

i=1

I(xiG;yiG) =
K∑

i=1

log

(
1 + Pi

1 +∑j�=k |hij|2Pj

)
,

where the subscript G indicates that the inputs are Gaussian distributed (with maximum
power). We say that the K-user Gaussian interference channel (2.37) is in the low
interference regime if the above lower bound is equal to the sum capacity. The objective
of this section is to derive conditions such that the K-user interference channel belongs
to the low interference regime.

We first consider two special cases of the K-user interference channel, introduced
in [21, 22]: the many-to-one interference channel, where only one user experiences
interference, and the one-to-many interference channel, where the interference is
generated by only one user. For these two special cases, we derive conditions under
which the channels belong to the low interference regime. The genie-aided channel
concept, used in the previous section, is not required in the upper bound proofs of
these two special cases. For the general K-user interference channel, however, the upper
bounds are based on the genie-aided channel concept. The basic idea behind the proof
is the same as in the previous section, and can be summarized as follows:

Csum ≤ sum capacity of the genie-aided channel

(a)=
K∑

i=1

I(xiG;yiG,siG)

(b)=
K∑

i=1

I(xiG;yiG) ,

(2.38)

where si denotes the side information given to the receiver i. The subscript G indicates
that Gaussian inputs (with maximum power) are used. We use the same terminology
as in the previous section. We say that a genie is useful if step (a) is satisfied; i.e.,
treating interference as noise with Gaussian inputs achieves the sum capacity of the
genie-aided channel. We say that a genie is smart if step (b) is satisfied; i.e., the genie
does not improve the achievable sum-rate when Gaussian inputs are used. Therefore,
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Fig. 2.7 Many-to-one interference channel.

the objective is to determine conditions under which there exists a genie that is both
useful and smart.

2.3.1 Many-to-One Interference Channel

Consider the many-to-one Gaussian interference channel shown in Figure 2.7, where
only one user experiences the interference:

y1 = x1 +
K∑

j=2

h1jxj + z1,

yi = xi + zi, i = 2,3, . . . ,K.

T H E O R E M 2.10 The sum capacity of the many-to-one interference channel is
achieved by using Gaussian inputs and treating interference as noise, and is given by

Csum = log

(
1 + P1∑K

i=2 |h1i|2Pi

)
+

K∑
i=2

log(1 + Pi)

if the channel parameters satisfy the low interference regime condition

K∑
i=2

|h1i|2 ≤ 1.

Proof The achievability is based on the transmitters using Gaussian inputs and the
receivers treating interference as noise. We now prove the converse. Using Fano’s
inequality, we have

n(Csum − Kεn) ≤
K∑

i=1

I
(
xn

i ;yn
i

)
.
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Fig. 2.8 One-to-many interference channel.

Therefore, it is sufficient to prove that the right-hand side of the above equation is
maximized by i.i.d. Gaussian inputs (with maximum power). Observe that

K∑
i=1

I
(
xn

i ;yn
i

)= I
(
xn

1;yn
1

)+
K∑

i=2

I
(
xn

i ;yn
i

)

= h
(
yn

1

)− h
(
yn

1|xn
1

)+
K∑

i=2

h
(
yn

i

)−
K∑

i=2

h
(
zn

i

)
.

The terms h
(
zn

i

)
are independent of the input distributions. From Lemma A.8 in

Appendix A, it follows that the term h
(
yn

1

)
is maximized by i.i.d. Gaussian inputs with

maximum power. The remaining terms contribute

K∑
i=2

h
(
yn

i

)− h
(
yn

1|xn
1

)=
K∑

i=2

h
(
xn

i + zn
i

)− h

(
K∑

i=2

h1ix
n
i + zn

1

)
.

From Lemma A.11, it follows that the above expression is maximized by i.i.d. Gaussian
inputs with maximum power when the condition

∑K
i=2 |h1i|2 ≤ 1 is satisfied.

2.3.2 One-to-Many Interference Channel

Consider the one-to-many Gaussian interference channel shown in Figure 2.8, where
only one user causes the interference:

y1 = x1 + z1,

yi = xi + hi1x1 + zi, i = 2,3, . . . ,K.
(2.39)

T H E O R E M 2.11 The sum capacity of the one-to-many interference channel (2.39) is
achieved by using Gaussian inputs and treating interference as noise, and is given by

Csum = log(1 + P1) +
K∑

i=2

log

(
1 + Pi

1 + |hi1|2P1

)
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if the channel parameters satisfy the low interference regime condition

K∑
i=2

h2
i1P1 + h2

i1

h2
i1P1 + 1

≤ 1. (2.40)

Proof The achievability proof is based on the transmitters using Gaussian inputs and
the receivers treating interference as noise. We now prove the converse. Using Fano’s
inequality, we have

n(Csum − Kεn) ≤
K∑

i=1

I
(
xn

i ;yn
i

)
.

Therefore, it is sufficient to prove that the right-hand side of the above equation is
maximized by i.i.d. Gaussian inputs (with maximum power). Observe that

K∑
i=1

I
(
xn

i ;yn
i

)= I
(
xn

1;yn
1

)+
M∑

i=2

I
(
xn

i ;yn
i

)

= h
(
yn

1

)− h
(
zn

1

)+
K∑

i=2

h
(
yn

i

)−
K∑

i=2

h
(
yn

i |xn
i

)
.

The term h
(
zn

1

)
is independent of the input distributions. From Lemma A.8, it follows

that the terms h
(
yn

i

)
are maximized by i.i.d. Gaussian inputs with maximum power. The

remaining terms contribute

h
(
yn

1

)−
K∑

i=2

h
(
yn

i |xn
i

)= h
(
xn

1 + zn
1

)−
K∑

i=2

h
(
hi1xn

1 + zn
i

)

=
K∑

i=2

(
λih
(
xn

1 + zn
1

)− h
(
hi1xn

1 + zn
i

))
,

where the λis are nonnegative real numbers satisfying
∑K

i=2 λi = 1. If the condition
(2.40) is satisfied, then we can choose λis satisfying

λi ≥ h2
i1P1 + h2

i1

h2
i1P1 + 1

.

Observe that the condition (2.40) immediately implies that |hi1| ≤ 1 for each i ∈ [K].
Therefore, from Lemma A.11, it follows that the expression

λih
(
xn

1 + zn
1

)− h
(
hi1xn

1 + zn
i

)
is maximized by Gaussian inputs with maximum power. This completes the proof.

2.3.3 Scalar Genie

As mentioned in the introduction, the two-user genie provides each receiver with a noisy
and interference-free observation of the desired signal. Generalizing this observation to
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the K-user case, we obtain the genie

sk = xk + wk, ∀k ∈ [K],
where the genie controls how the Gaussian noise random variable wi is correlated to zi.
We call this genie a scalar genie because it provides each receiver with a scalar signal.
Shang et al. [23] derived the conditions under which there exists a scalar genie that is
both useful and smart.

T H E O R E M 2.12 The sum capacity of the K-user SISO Gaussian interference channel
(2.37) is achieved by using Gaussian inputs and treating interference as noise, and is
given by

Csum =
K∑

i=1

log

(
1 + Pi

1 + INRi

)

if the channel parameters satisfy the conditions

∑
j�=i

|hij|2 (1 + INRj)
2

ρ2
j

+ ρ2
i ≤ 1, ∀i ∈ [K],

⎛
⎝∑

i�=j

|hij|2
INRi + 1 − ρ2

i

⎞
⎠(Pj + (1 + INRj)

2

ρ2
j

)
≤ 1, ∀j ∈ [K]

(2.41)

for some {ρi ∈ [0 1]}K
i=1. Here we use INRi to denote the total interference-to-noise ratio

at receiver i:

INRi =
∑
j�=i

|hij|2Pj.

We can verify that Theorem 2.12, when specialized to the many-to-one and the
one-to-many interference channels, simplifies to Theorem 2.10 and Theorem 2.11,
respectively. For the K-user symmetric interference channel obtained by setting hij =
h, ∀i �= j, and Pj = P,∀j, Theorem 2.12 simplifies to the following corollary.

C O RO L L A RY 2.3 The sum capacity of the K-user symmetric Gaussian interference
channel is achieved by using Gaussian inputs and treating interference as noise, and is
given by

Csum =K log

(
1 + P

1 + |ĥ|2P

)

if the channel parameters satisfy the low interference regime condition

|ĥ|(1 + |ĥ|2P) ≤ 0.5,

where ĥ = h
√

K − 1.
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2.3.4 Vector Genie

We now explore an alternative way of generalizing the two-user genie to the K-user
Gaussian interference channel. For simplicity, we restrict the presentation to the SISO
case, but the genie construction can be extended to the MIMO case in a straightforward
fashion. First, we provide the intuition behind the choice of our genie. Mathematically
speaking, the reason for employing a genie is to combat interference. As explained
in Appendix A, the positive differential entropy and conditional differential entropy
terms are always maximized by i.i.d. Gaussian inputs (with maximum power), and
are concave in the covariance matrices. On the other hand, the negative terms, which
arise whenever there is interference, are minimized by i.i.d. Gaussian inputs, and are
convex in the covariance matrices. Therefore, it is not clear in general if the sum of
the positive and negative terms is maximized by i.i.d. Gaussian inputs or not. However,
using the worst-case noise lemma (Lemma A.9), the negative terms can be shown to be
maximized by i.i.d. Gaussian inputs, and concave in the covariance matrices, if they are
coupled with appropriate positive terms. However, the worst-case noise lemma requires
the positive terms to have the same signal structure in both the positive and negative
terms. For this reason, the two-user genie in Section 2.2 was chosen as

s1 = H21x1 + w1,

s2 = H12x2 + w2,

so that the genie signal s1 provides the positive term to combat the interference seen at
receiver 2, and the genie signal s2 provides the positive term to combat the interference
seen at receiver 1. Generalizing this idea, we can provide a signal similar to the
interference seen at receiver i − 1 as side information to receiver i:

si =
∑

j�=(i−1)

hi−1,jxj + wi−1 (∼ yi−1|xi−1).

For the three-user case, the corresponding genie signals are given by

s1 = h31x1 + h32x2 + w1 (∼ y3|x3),

s2 = h12x2 + h13x3 + w2 (∼ y1|x1),

s3 = h23x3 + h21x1 + w3 (∼ y2|x2).

Unlike in the two-user case, the above construction does not suffice in the K-user
case because the genie signals are not interference free. The genie signal si+1 helps
in combating the interference seen at receiver i, but in the process it also creates a new
(negative) interference term at receiver i + 1. We can fix this problem by repeating the
above process K −1 times, which results in the following vector genie. For each receiver
i, the genie signal si is a vector of length K − 1:

si� =
∑

j�∈{i−1,i−2,...,i−�}
hi−�,jxj + wi�, 1 ≤ � ≤ K − 1.
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Observe that si� has the same structure as yi−�|xi−�,xi−�+1, . . . ,xi−1. For the three-user
Gaussian interference channel, the vector genie is given by

s11 = h31x1 + h32x2 + w11 (∼ y3|x3),

s12 = h21x1 + w12 (∼ s31|x3 ∼ y2|x2x3),

s21 = h12x2 + h13x3 + w21 (∼ y1|x1),

s22 = h32x2 + w22 (∼ s11|x1 ∼ y3|x3x1),

s31 = h23x3 + h21x1 + w31 (∼ y2|x2),

s32 = h13x3 + w32 (∼ s21|x2 ∼ y1|x1x2).

The genie controls how the Gaussian noise random vector wi is correlated to zi. As in
Section 2.2, we use � to denote the genie parameters collectively:

� = (�w1 ,�w1z1 ,�w2 ,�w2z2 , . . . ,�wK ,�wKzK

)
.

2.3.5 Useful Genie

As in Section 2.2, we say that a genie is useful if the sum capacity of the genie-aided
channel is achieved by using Gaussian inputs and treating interference as noise. The
following lemma provides conditions on the genie parameters such that the genie is
useful.

L E M M A 2.13 If the genie parameters � satisfy the usefulness conditions[
1 �ziwi

�wizi �wi

]
�
[

�wi−1 0K−1×1

01×K−1 0

]
, ∀i ∈ [K], (2.42)

then the genie is useful; i.e., the sum capacity of the genie-aided interference channel
is achieved by using Gaussian inputs with maximum power and treating interference as
noise; i.e.,

Csum ≤ Cga-ic
sum =

K∑
i=1

I(xiG;yiG,siG) ,

where xiG ∼ CN (0,Pi), and yiG and siG are the corresponding received signal and genie
signal, respectively.

Proof The proof is similar to the proof of Theorem 2.4 in Section 2.2. See [18] for
details.

2.3.6 Smart Genie

As in Section 2.2, we say that a genie is smart if the achievable sum-rate in the
genie-aided channel is equal to the achievable sum-rate in the original interference
channel. In this section, we derive conditions on the genie parameters such that the genie
is smart. Before we present the smartness conditions, we summarize the discussion in
Section 2.2.9 in the following lemma.
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L E M M A 2.14 Suppose xG ∼ CN (0,�xG) and yG and sG are noisy observations
of xG:

yG = H1xG + n1,

sG = H2xG + n2,

where n1 and n2 are jointly circularly symmetric, and jointly Gaussian complex random
vectors. Then,

I
(
xG;yG,sG

)= I
(
xG;yG

)
if and only if the following condition is satisfied:(

H2 − �n2n1�
−1
n1

H1

)
�xG = 0.

Proof The lemma follows immediately by replacing x1G,y1G,s1G,H12x2G + z1,w1 in
the discussion of Section 2.2.9 by xG,yG,sG,n1,n2 respectively.

We now use the above lemma to derive the smartness conditions.

L E M M A 2.15 The genie is smart, i.e.,

K∑
i=1

I(xiG;yiG,siG) =
K∑

i=1

I(xiG;yiG) ,

if the genie parameters � satisfy the smartness conditions

�wi�zi = hi−�,i (1 + INRi) −
∑

j�∈{i,i−1,...,i−�}
hi−�,jh

†
ijPj (2.43)

for all 1 ≤ i ≤ K and 1 ≤ � ≤ K − 1. Recall that we use INRi to denote the total
interference-to-noise ratio at receiver i:

INRi =
∑
j�=i

|hij|2Pj.

Proof First, observe that the genie is smart if and only if

I(xiG;yiG,siG) = I(xiG;yiG) , ∀i ∈ [K].
Recall that

yiG = xiG +
∑
j�=i

hijxjG + zi

︸ ︷︷ ︸
,

and that

si�G = hi−�,ixiG +
∑

j�∈{i,i−1,...,i−�}
hi−�,jxjG + wi�

︸ ︷︷ ︸
.
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Using Lemma 2.14, we see that I(xiG;yiG,siG) = I(xiG;yiG) if and only if

hi−�,i =
�wi�zi +

∑
j�∈{i,i−1,...,i−�}

hi−�,jh
†
ijPj

1 + INRi

is satisfied for each 1 ≤ � ≤ K − 1.

2.3.7 Low Interference Regime

Combining Lemmas 2.13 and 2.15, we obtain the following theorem.

T H E O R E M 2.16 The sum capacity of the K-user SISO Gaussian interference channel
is achieved by using Gaussian inputs and treating interference as noise, and is given by

Csum =
K∑

i=1

log

(
1 + Pi

1 +∑j�=i |hij|2Pj

)

if there exist genie parameters

� = (�w1 ,�w1z1 ,�w2 ,�w2z2 , . . . ,�wK ,�wKzK

)
satisfying the usefulness conditions (2.42) and the smartness conditions (2.43).

2.3.8 Symmetric Interference Channel

In this section, we consider the K-user symmetric interference channel

yi = xi + h
∑
j�=i

xj + zi,

with symmetric power constraint, i.e., Pj = P, ∀j ∈ [K], and simplify the conditions in
Theorem 2.16. We restrict our attention to only symmetric genie parameters; i.e., we
assume

�wi = �w,

�wizi = �wz.

We now proceed to simplify the conditions in Theorem 2.16. The smartness conditions
(2.43) determine the parameter �wz = a, where

a� = h(1 + (K − 1)|h|2P) − (K − � − 1)|h|2P, 1 ≤ � ≤ K − 1. (2.44)

Therefore, it remains to verify the existence of �w � 0 satisfying the usefulness
conditions [

1 a†

a �w

]
�
[

�w 0
0 0

]
.

Thus, we obtain the following theorem.
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Fig. 2.9 The boundary of the feasible set A, defined as the set of parameters (a1,a2) for which there
exists � � 0 satisfying condition (2.45) in Theorem 2.17.

T H E O R E M 2.17 The sum capacity of the three-user symmetric Gaussian interference
channel is achieved by using Gaussian inputs and treating interference as noise, and is
given by

Csum = K log

(
1 + P

1 + (K − 1)|h|2P

)
if there exists a (K −1)× (K −1) positive semidefinite matrix � satisfying the condition[

1 a†

a �

]
�
[

� 0
0 0

]
, (2.45)

where the vector a is as defined in (2.44).

We now assume that K = 3 and h is a real number, and determine the range of h such
that the three-user symmetric Gaussian interference channel is in the low interference
regime. Let A denote the set of (a1,a2) such that there exists � � 0 satisfying (2.45).
Clearly, the set A must be convex. We would like to determine the implicit equations
in a1 and a2 characterizing the boundary of the the set A so that the conditions in
Theorem 2.17 can be simplified further. It is not clear if it is possible to do so. Since
we assumed that h is a real number, we have that a1 and a2 are also real numbers. In
Figure 2.9, we plot the boundary of the feasible set A.

Using this region, we numerically determine the range of real h such that the
three-user symmetric Gaussian interference channel is in the low interference regime.
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Fig. 2.10 The INR threshold as a function of the SNR, below which treating interference as noise achieves
the sum capacity of the three-user symmetric Gaussian interference channel.

We observe that for every fixed P ≥ 0, the channel is in the low interference regime if h
satisfies the threshold criterion

−h−
0 (P) ≤ h ≤ h+

0 (P).

Interestingly, the positive and negative thresholds h+
0 (P) and h−

0 (P) are not equal.
The positive threshold h+

0 (P) is in general greater than the negative threshold h−
0 (P).

This is in contrast to the threshold criterion obtained by the scalar genie. Recall from
Section 2.3.3 that the scalar genie provides a threshold criterion of the form

|h| ≤ h0(P),

where h0(P) is the (unique) positive solution to the equation

2
√

2h(1 + 2h2P) = 1.

The results are summarized in Figure 2.10, where we plot the three curves correspond-

ing to INR+ = 2
(
h+

0

)2
P, INR− = 2

(
h−

0

)2
P, and INR = 2h2

0P as a function of SNR = P.
It can be observed that neither the vector genie nor the scalar genie is strictly better
compared to the other.

2.3.9 K -User Interference Channel – Summary

We extended the sufficient conditions for the low interference regime, presented in the
previous section for the two-user case, for the K-user case. We proposed the vector genie
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construction in order to obtain tight upper bounds on the sum capacity of the K-user
SISO Gaussian interference channel. The advantage of the vector genie construction
is that it is intuitive, and can be easily generalized to the MIMO case. Following the
steps in the previous section, such a generalization can be used to obtain a convex
maxmin optimization problem that facilitates the numerical computation of the optimal
covariance matrices in the low interference regime. The disadvantage of the vector
genie construction is that, in the symmetric case, the low interference regime condition
depends on the phase of the cross-channel coefficient, which is counterintuitive. Also,
the low interference regime condition obtained by the vector genie is not uniformly
better than that obtained by the scalar genie. A hybrid genie construction combining
the good features of the scalar and vector genies may lead to further insights on the
optimality of treating interference as noise in the K-user interference channel. An
interesting question that remains to be answered is: How does the optimal interference
threshold scale as a function of the number of users in the symmetric K-user Gaussian
interference channel?

2.4 Notes and Further Reading

The study of the two-user interference channel was initiated by Shannon in 1961 [24].
Carleial made an interesting and counterintuitive observation that interference does
not reduce the capacity of the two-user SISO Gaussian interference channel in the
very strong interference regime [25]. If the interference level is very strong compared
to the signal level, the receivers can first decode the interfering message to subtract
its contribution from the received signal, thus achieving the same rate as if there
was no interference. Subsequently, the capacity region was determined in the strong
interference regime [26, 27], where interference reduces the capacity, but, like in the
very strong interference regime, the optimal strategy requires the receivers to again
decode the interfering message. Characterizing the capacity region of the two-user SISO
Gaussian interference channel in the general setting still remains an open problem. The
best known achievable region is based on the Han–Kobayashi (HK) scheme [26, 28].
The HK region was shown to be the capacity region for a class of discrete-memoryless
deterministic interference channels in 1982 [29]. Little was known about the optimality
of the HK region in the Gaussian case until more recently. The concept of a genie
giving side information to the receivers was used in [30, 31] to derive outer bounds
on the capacity region of the two-user SISO Gaussian interference channel. The outer
bound region in [31] is within one bit of the HK region, thus leading to an approximate
characterization of the capacity region of the two-user SISO Gaussian interference
channel. The genie-based outer bound technique was further extended in [18–20] to
prove that treating interference as noise achieves the sum capacity in a low interference
regime (referred to as the noisy interference regime in [19]).

The two-user MIMO Gaussian interference channel was studied in [17, 32–37]
from the point of view of determining the best achievable rate region obtained by
using Gaussian inputs and treating interference as noise. Several iterative algorithms
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including the water-filling algorithm [32, 33], the gradient projection algorithm [17],
the interference pricing algorithm [34], and the Max-SINR algorithm [38, 39] were
proposed to find good lower bounds for the best achievable sum-rate. For the MISO
Gaussian interference channel, it was proved in [35–37] that rank-one covariance
matrices are optimal. However, the problem of determining the best achievable sum-rate
remains open and is known to be a difficult problem even in the SISO case [40, 41] due
to the nonconvex nature of the sum-rate.

The two-user MIMO Gaussian interference channel was studied in [42–44] from the
point of view of determining the capacity region. In [43], the authors showed that the
sum DoF of the MIMO Gaussian interference channel is equal to

min(N1t + N2t,N1r + N2r,max(N1t,N2r),max(N2t,N1r)) ,

and that the optimal sum DoF is achieved by treating interference as noise. In [44],
the authors extended the approximate capacity characterization of the two-user SISO
Gaussian interference channel in [31] to the MIMO case.

Unlike the two-user interference channel where one user causes interference at
each receiver, the K-user interference channel has multiple interfering signals at
each receiver. This turns out to be a key bottleneck in extending the approximate
capacity characterization result in [31, 44] for the general K-user case. In [21, 22], the
special cases of many-to-one and one-to-many interference channels are studied. In the
many-to-one channel, only one user experiences interference, and in the one-to-many
channel, only one user causes interference. The approximate capacity region of these
two special cases is characterized in [21, 22]. For the fully connected interference
channel, only the DoF is known. The approximate capacity characterization for the
two-user case is not yet extended for the general K-user case. The sum-rate algorithms
such as the water-filling algorithm [32, 33] and the gradient projection algorithm [17]
are designed for the K-user interference channel.



3 Degrees of Freedom and
Interference Alignment

In Chapter 2, we studied bounds on the sum-rate (throughput) of K-user interference
channels in both single- and multiple-antenna settings, and characterized the sum
capacity in some special cases. In particular, we observed that it was difficult to obtain
the exact sum capacity, except in a low interference regime, where the interference level
is below a certain threshold at each receiver. In this chapter, we take an alternative
approach to characterizing the rate of communication on an interference channel, based
on a degrees of freedom analysis.

3.1 Degrees of Freedom

Recall from Section 2.1.1 that the capacity region C of a K-user interference channel
is defined as the closure of the set of achievable rate tuples (R1,R2, . . . ,RK). Roughly
speaking, the degrees of freedom (DoF) region is equal to the capacity region
scaled by logSNR at high SNR (signal-to-noise ratio). More specifically, we say that
the DoF tuple (d1,d2, . . . ,dK) is achievable if there exists an achievable rate tuple
(R1(P1),R2(P2), . . . ,RK(PK)) such that

dk = limsup
Pk→∞

Rk(Pk)

logPk
, ∀k ∈ [K], (3.1)

where Pk is the power constraint for user k. The DoF region D is defined as the closure
of the set of achievable DoF tuples.

The sum DoF is defined as

η = max
(d1,d2,...,dk)∈D

d1 + d2 + ·· · + dK . (3.2)

Unless otherwise noted, when we refer to the DoF of an interference channel in this
book, we will be referring to the sum DoF. Note that the DoF captures the number
of interference-free sessions that can be supported simultaneously in an interference
channel.

The DoF criterion provides an approach to studying the fundamental limits of
communication on an interference channel, with some immediate advantages. First, by
considering the limit as the SNR goes to infinity, the DoF measure emphasizes the loss
in rate that results from the users interfering with each other over the effect of channel
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noise. Secondly, the DoF analysis does not require an explicit calculation of the channel
capacity, and is therefore analytically tractable.

As an example, consider a basic strategy for communicating on the interference
channel using time-division multiple-access (TDMA). In this approach, each unit of
time is divided into K equal slots and each user is allowed to communicate during
one slot. As a result, each user achieves 1

K degrees of freedom; this can be seen more
formally using the definition of DoF given in (3.1) as follows:

dTDMA
k = lim

P→∞
Rk(P)

logP
= lim

P→∞

1
K log(1 + KP)

log(P)
= 1

K
,

where we have assumed an average power constraint over each unit of time of P for each
user. Therefore, a sum DoF equal to one can be achieved by TDMA, which implies the
lower bound

η ≥ 1. (3.3)

Now the natural question to ask is whether η can be larger than one for a K-user
interference channel.

The first part of the answer to this question comes from an upper bound on η given
in [45]. This work demonstrated that for a two-user interference channel, the maximum
possible sum DoF is one. This result, combined with the lower bound in (3.3), yields
that for the two-user interference channel η = 1. With this result, by considering each
pair of users in a K-user interference channel with K > 2, it can be seen that η can be
no greater than K

2 . This follows since, for any pair of users k �= �,

dk + d� ≤ 1

by [45]. Then, summing over all such equations gives

K∑
k=1

K∑
�=1
��=k

(dk + d�) ≤ K(K − 1). (3.4)

Each transmitter/receiver appears in exactly 2(K − 1) pairs, and therefore (3.4) is
equivalent to

2(K − 1)η ≤ K(K − 1).

Thus, it follows that

η ≤ K

2
. (3.5)

It was conjectured in [45] that the upper bound is not tight and that in fact η equals one.
It seems likely that the K

2 bound would be loose, since it only considers pairs of users
at a time, and including more than two users at a time could lead to tighter bounds.
Surprisingly, though, it was proved in [46] that the upper bound is in fact tight, and that

η = K

2
.
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The result is based on an innovative technique called interference alignment, which we
describe in detail in the following section.

3.2 Vector Space Interference Alignment for a Fully Connected
Interference Channel

To understand the concept of interference alignment [46], consider first the special case
of a three-user SISO interference channel. Interference alignment is facilitated through
the use of symbol extensions, i.e., through communicating over n different channel uses
and letting n → ∞ as in Shannon’s random block coding argument. A key assumption
that is needed here is the following:

A S S U M P T I O N 3.1 The channel coefficients change from one channel use to the next,
and the collection of all the channel coefficients over time comes from a continuous
well-defined (non-degenerate) joint distribution.

Interference alignment is a linear coding strategy in signal space, i.e., it is achieved
using linear precoding at the transmitters and linear processing at the receivers. Denote
the linear precoding matrices at the transmitters by Vk and the linear processing matrices
at the receivers by Uk, k ∈ [K]. With n symbol extensions the end-to-end system model
can be written as:⎡

⎣U1 0 0
0 U2 0
0 0 U3

⎤
⎦

†⎡
⎣H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤
⎦
⎡
⎣V1 0 0

0 V2 0
0 0 V3

⎤
⎦ , (3.6)

where Uk is a dk × n matrix, Vk is an n × dk matrix, and Hkj is an n × n diagonal matrix
of the form

Hkj =
⎡
⎢⎣

hk j(1) 0
. . .

0 hkj(n)

⎤
⎥⎦ .

Then the idea behind interference alignment is to find Vk and Uk, k ∈ [K], such that
the end-to-end model is diagonal. If the end-to-end matrix is diagonal, then at each
receiver the desired signals lie in a subspace separate from the interfering signals.
That is to say, the interfering signals are simultaneously aligned at each receiver in
an interference subspace. So if it is possible to diagonalize (3.6), then it is possible to
achieve a sum DoF of

1

n

3∑
k=1

dk.

The following simple example shows that is possible to achieve a sum DoF of 4
3 ,

which is larger than the DoF achieved by TDMA, for the three-user IC with three
symbol extensions (n = 3).
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1. Transmitter 2 selects any transmit vector v2, and is received as Hk2v2 at receiver k,
k ∈ {1,2,3}. This is represented in Figure 3.1(a).

2. Transmitter 3 selects a transmit vector v3 such that H12v2 is in the subspace spanned
by H13v3 at receiver 1, e.g., we can set

v3 = H−1
13 H12v2.

When this condition is satisfied, v2 is said to be aligned with v3 at receiver 1. This
is always possible due to Assumption 3.1. Again by Assumption 3.1, it follows that
H22v2 is not in the subspace spanned by H23v3 at receiver 2. Similarly, H33v3 is not
in the subspace spanned by H32v2 at receiver 3. Up to this point we have used up one
dimension at receiver 1, and two dimensions at receivers 2 and 3. This is represented
in Figure 3.1(b).

3. Now, transmitter 1 selects a vector v11 that is aligned with v3 at receiver 2, e.g., by
setting

v11 = H−1
21 H23v3.

Note that v11 appears in an arbitrary direction at receivers 1 and 3, as shown in
Figure 3.1(c). Up to this point we have used two dimensions at receivers 1 and 2, and
three dimensions at receiver 3.

4. To complete the procedure, transmitter 1 chooses a second transmit vector v12, such
that v12 is aligned with v2 at receiver 3, e.g., by setting

v12 = H−1
31 H32v2.

Note that v11 appears in an arbitrary direction at receivers 1 and 2, as shown in
Figure 3.1(c). At this point all three dimensions are used at all receivers.

5. The interference occupies two dimensions at receivers 2 and 3, with the signal
occupying one dimension. Therefore, zero-forcing vectors u2 and u3 can be chosen
at receivers 2 and 3, respectively, to obtain one interference-free dimension at each
of these receivers. Similarly, zero-forcing vectors u11 and u12 can be chosen at
receiver 1 to obtain two interference-free dimensions at receiver 1.

A total of four interference-free dimensions are obtained across the three users in
three channel uses, which results in a sum DoF of 4

3 . It is shown in [46] that the above
procedure can be extended to the case of an arbitrary number of symbol extensions n,
with the sum DoF approaching 3

2 as n → ∞. For a K-user interference channel, a more
systematic way to establish that a sum DoF equal to K

2 can be achieved is given in the
following section.

3.3 Asymptotic Interference Alignment

In order to establish that a sum DoF equal to K
2 can be achieved for a K-user interference

channel with a symbol extension length of n, we need to show that at each receiver (on
average) the interference is aligned to occupy only n

2 dimensions, with the remaining
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Fig. 3.1 Achieving a sum DoF of 4
3 in a three-user interference channel.

n
2 dimensions being available for the intended signal. This may not be possible for any
fixed n, for an arbitrary choice of the channel coefficients. We now show that a sum DoF
approaching K

2 can be achieved as n → ∞ using the technique introduced in [46].
First note that all the channel matrices {Hkj} are diagonal matrices and therefore

products of subsets of these matrices satisfy the commutativity property. For conve-
nience, we index all the cross channel matrices {Hkj : k �= j} by a single index. Denote
the re-indexed matrices by {G�}, and let L = K(K − 1) be the number of cross channel
matrices. Then, the set of cross channel matrices is given by:

G = {G� : � = 1,2, . . . ,L} = {Hkj : k, j ∈ {1,2, . . . ,K}, j �= k}. (3.7)
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We use the same signal set at all the transmitters, i.e., the columns of the linear
precoding matrices Vk are the same for all k. In order to define the signal space
corresponding to a certain symbol extension length, we use an intermediate integer
index variable m, and define the symbol extension length in terms of m as:

n(m) =
(

m + L

m

)
+
(

m + 1 + L

m + 1

)
. (3.8)

This choice of n(m) will become clear later in the analysis of the DoF. The signal set
used at the transmitters at stage m is defined recursively as:

V(0) = {v0},
V(j) =

{
v,G1v, . . . ,GLv : v ∈ V(j−1)

}
, j = 1, . . . ,m,

where v0 is an arbitrarily chosen nonzero n(m)-dimensional vector, and the matrices
{G�} are n(m)×n(m) diagonal matrices as constructed in (3.7). Now we exploit the fact
that the matrices {G�} are diagonal and that their products commute, to rewrite V(m) as:

V(m) =
{

Gj1
1 Gj2

2 · · ·GjL
L v0 : j1 + j2 + ·· · + jL ≤ m

}
. (3.9)

By Assumption 3.1, the vectors in V(m) are linearly independent (with probability one),
and therefore the dimension of the signal space at each transmitter is equal to the number
of vectors in V(m), which can be obtained by determining the number of combinations of
nonnegative integers that sum to a value no greater than m. A simple counting argument
yields that ∣∣∣V(m)

∣∣∣= (m + L

m

)
.

Now let us consider the spaces occupied by the desired signal and interference at
receiver k. Since the vectors corresponding to the desired signal are obtained by
pre-multiplying each vector in V(m) by Hkk, the dimension of the desired signal space
at the receiver is given by ∣∣∣HkkV(m)

∣∣∣= ∣∣∣V(m)
∣∣∣= (m + L

m

)
.

The vectors corresponding to the interference at receiver k are obtained by
pre-multiplying each vector in V(m) by each vector in G. It is then easy to see from (3.9)
that the interference space at the receiver is the span of the vectors in V(m+1). Therefore,
the dimension of the interference space at receiver k is given by∣∣∣V(m+1)

∣∣∣= (m + 1 + L

m + 1

)
.

Also, by Assumption 3.1, there is no overlap between the desired signal and interference
subspaces at the receiver, and hence one can obtain the desired signal without
interference at the receiver through zero-forcing linear processing Uk at receiver k (at
high SNR).



56 Degrees of Freedom and Interference Alignment

We now calculate the DoF that results from choosing the signal set V(m) at each
transmitter. The DoF achieved for each user is given by the ratio∣∣V(m)

∣∣∣∣V(m)
∣∣+ ∣∣V(m+1)

∣∣ = m + 1

2(m + 1) + L
. (3.10)

As m → ∞, this ratio converges to 1
2 , and therefore the sum DoF converges to K

2 , thus
achieving the upper bound on sum DoF in (3.5) asymptotically.

3.3.1 Discussion

To conclude this section, we make some remarks about the asymptotic interference
alignment scheme that achieves the sum DoF of K

2 :

• The scheme requires the knowledge of all the cross channel gain matrices, i.e., the
set G defined in (3.7), at all the transmitters and receivers, in addition to requiring
knowledge of the desired signal channel gain matrix at each receiver. The training
required to obtain this global channel knowledge can become prohibitive even for
moderate values of K. Iterative schemes for alignment as discussed in Chapter 4 can
get around this requirement to some extent. Also, when we allow for cooperation
among the transmitters, interference avoidance schemes such as those discussed in
Chapter 6 can be used to achieve sum degrees of freedom that scale linearly with K
without the burden of global channel knowledge.

• The scheme requires the channel to change from symbol to symbol over the symbol
extension period so that Assumption 3.1 holds. Also, the fact that the channel matrices
are diagonal is crucial to the construction of the achievable scheme. We discuss this
issue further in Section 3.4 (see also [47]).

• The number of symbol extensions required by the scheme to approach a sum DoF
of K

2 grows exponentially in L = K(K − 1), and becomes impractical even for small
values of K. For example, with K = 4, in order to achieve a sum DoF of 1.8, which
is 90 percent of K

2 , we see from (3.10) that the required value of m equals 6, and the
corresponding value for the number of symbol extensions n as given in (3.8) exceeds
6 × 104 (see also [48]). Also, see Section 3.4.2 below for a more detailed analysis
of the DoF achieved as a function of the number of symbol extensions (channel
diversity).

3.4 Interference Alignment Bounds with Finite Diversity

In the previous section we studied an interference alignment scheme based on symbol
extensions that achieves the sum DoF of K

2 asymptotically, as the number of symbol
extensions, or equivalently the channel diversity, goes to infinity. In practice, we
would have to work with a finite amount of diversity through symbol extensions in
time/frequency, or through the use of multiple antennas at the transmitters and receivers.
In this section, we investigate the best achievable DoF for a given finite level of channel
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diversity. We look at the cases of spatial diversity (obtained through multiple antennas)
and time/frequency diversity separately, since in the latter case the channel matrices are
diagonal, as we saw in the previous section, whereas in the former case they may not be.

3.4.1 Constant MIMO Channel

Consider first the case of spatial diversity for which we have the MIMO interference
channel model depicted in Figure 2.1, where the output yk ∈ CNr at receiver k is given
by

yk =
K∑

j=1

Hkjxj + zk, ∀k ∈ [K], (3.11)

where xj ∈CNt×1 denotes the signal of transmitter j, zi ∈ CN
(
0,INr

)
denotes the additive

white Gaussian noise at receiver i, and Hkj ∈ CNr×Nt denotes the channel transfer
matrix from transmitter j to receiver k. Each transmitter is assumed to have Nt transmit
antennas, and each receiver is assumed to have Nr receive antennas. Note that this
model could be generalized to allow for different numbers of antennas at the various
transmitters and receivers, but we avoid this generalization to simplify the presentation.
We assume that the channels {Hkj} are drawn once from a continuous joint distribution,
without any symbol extensions, hence the name constant MIMO channel.

As in the previous section, we restrict to linear transmit and receive strategies where
we pre-multiply the channel input xj by an Nr ×dj pre-coding matrix Vj and pre-multiply
the channel output yk by U†

k , where Uk is an Nt × dk matrix, to obtain:

U†
kyk = U†

k

K∑
j=1

HkjVjxj + U†
kzk.

The goal of interference alignment is to construct matrices {Vk} and {Uk} such that
the receivers can zero-force the interference terms, yielding interference-free effective
channels between each transmit/receive pair, with dk interference-free streams for the
kth transmit–receive pair.

To zero-force the interference at receiver k, we require

U†
kHkjVj = 0, ∀k �= j. (3.12)

After zero-forcing, the effective channel seen by the kth transmit–receive pair is given
by

U†
kyk = U†

kHkkVkxk + U†
kzk.

This is a (single-user) MIMO channel with channel matrix U†
kHkkVk, and therefore in

order to create dk interference-free channels, we require

rank(U†
kHkkVk) = dk, ∀k. (3.13)

Note that the transmit and receive matrices {Vk} and {Uk} are to be chosen to satisfy
(3.12) using only the cross channel matrices {Hkj}k �=j. If indeed (3.12) can be satisfied,
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this fact combined with our assumption that the channel matrices {Hkj} are drawn from
a valid (non-degenerate) joint distribution, yields that (3.13) is automatically satisfied
(see [38, 39] for a formal argument).

Therefore, the problem of interference alignment design boils down to constructing
matrices {Vk} and {Uk} such that (3.12) is satisfied. Ideally one would also like to find
{Vk} and {Uk} such that the sum DoF, which is equivalent to

∑
k∈[K] dk, is maximized.

There have been a number of papers (see, e.g., [49–53]) on finding necessary and
sufficient conditions for the feasibility of solving the interference alignment equations
in (3.12). It is relatively easy to derive necessary conditions for solving the interference
alignment equations using variable and equation counting. For some specific system
configurations, it is possible to derive sufficient conditions using tools from algebraic
geometry [54–56].

To illustrate the necessary conditions, consider a symmetric constant MIMO
interference channel with Nt = Nr = N and dk = d. In order to solve the interference
alignment equations in (3.12), the number of variables should be no fewer than the
number of equations; this intuitive result can be proved rigorously using algebraic
geometry (see, e.g., [55]). The zero interference equation for transmitter j at receiver
k is given by

U†
kHkjVj = 0,

and consists of d2 equations. Therefore, the total number of equations to be satisfied to
ensure zero interference at all receivers is:

# equations = K(K − 1)d2. (3.14)

Counting the number of variables is a little bit trickier. A direct count yields Nd
variables in each of Uk and Vk, and therefore a total of 2KNd variables. However,
the conditions for satisfying the interference alignment equations only depend on the
subspaces spanned by the columns of {Uk} and {Vk}, and not the particular choices
of {Uk} and {Vk}. To illustrate this point, suppose that U†

kHkjVj = 0,∀k �= j. For each
k ∈ [K], if we represent the columns of Uk and Vk using other bases, then the resulting
matrices {Ṽk} and {Ũk} satisfy

Ṽk = VkQk, (3.15)

Ũk = UkPk, (3.16)

where {Qk} and {Pk} are d × d full rank matrices. Then we have

Ũ
†
kHkjṼj = P†

k U†
kHkjVj︸ ︷︷ ︸

=0

Qj = 0.

Since satisfying the interference alignment equations only depends on subspaces
spanned by {Vk} and {Uk}, the number of unknown variables that we need to specify
for alignment is less than the direct count of 2KNd. By the preceding argument, due to
freedom in choosing Pk and Qk, in fact we have

dim(span(Vk)) = dim(span(Uk)) = Nd − d2 = (N − d)d.
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This implies that

# variables = 2K(N − d)d. (3.17)

Setting the number of variables in (3.17) to be no fewer than the number of equations
in (3.14), we get that the necessary condition for interference alignment in a symmetric
constant MIMO interference channel becomes

2K(N − d)d ≥ K(K − 1)d2,

which can be simplified to

d ≤ 2N

K + 1
. (3.18)

This implies that the achievable sum DoF across the K users is bounded by

Sum DoF ≤ 2KN

K + 1
≤ 2N. (3.19)

This necessary condition (3.18) is not always sufficient; as shown in [49], with N = 3,
d = 2, and K = 2, the system satisfies (3.18) but the corresponding DoF is not
achievable. Interestingly, it was shown in [53] that for the symmetric constant MIMO
channel with K ≥ 3, the necessary condition (3.18) is also sufficient. Necessary and
sufficient conditions for feasibility of interference alignment for a number of other
configurations are given in [50–52]. However, it should be noted that the conditions for
the feasibility of solving the interference alignment equations for the constant MIMO
interference channel are not known in general.

3.4.2 Finite Time/Frequency Diversity

When channel diversity is obtained in time/frequency through n symbol extensions, as
we saw earlier, the channel matrix between transmitter j and receiver k is given by an
n × n diagonal matrix of the form

Hkj =
⎡
⎢⎣

Hk j(1) 0
. . .

0 Hkj(n)

⎤
⎥⎦ .

It can be shown that the asymptotic interference alignment scheme discussed in
Section 3.3 requires n to be of the order of KK2

(see the example in Section 3.3.1)
in order to approach the sum DoF of K

2 (this scaling can be improved slightly to 2K2

by a modification of the scheme [57]). In particular, the achievable DoF of the scheme
described in Section 3.3 can be shown to scale as [58]

Sum DoF ≥ K

2

⎛
⎝1 − c�(K)( n

2

) 1
�(K)

⎞
⎠ , (3.20)

where c > 0 is a constant and �(K) = (K − 1)(K − 2) − 1.
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It is of interest to find upper bounds on the achievable sum DoF as a function of
channel diversity n and the number of users K, in order to understand whether the
scaling obtained in (3.20) can be improved. Interestingly, for the special case where
K = 3, matching upper and lower bounds for the scaling were obtained in [59], where it
is shown that

Sum DoF = 3

2

(
1 − 1

4n − 2�n/2� − 1

)
= O

(
3

2

(
1 − 1

n

))
.

As n → ∞, we converge to the upper bound of 3
2 , with a gap that goes to zero as 1

n .
For K ≥ 4, it is shown in [58] that

Sum DoF ≤ K

2

(
1 − bmin

{
1

n
1
4

,
2g(K)

√
n

})
,

where b > 0 is a constant and g(K) = (K −2)(K −3)/4. If we compare this upper bound
with the lower bound in (3.20), we see that even for K = 4, for which �(K) = 5, there is
a gap between the rates at which the upper and lower bounds decrease with n (i.e., 1

n
1
5

versus 1

n
1
4

or 1√
n

), and this gap only increases for larger values of K.

3.4.3 Discussion

From the preceding discussion we see that for the case of time and frequency diversity,
when the amount of diversity (n) is large, the achievable sum DoF approaches K

2 . But
while the sum DoF scales linearly with K, for K ≥ 4, we may need unreasonably large
values of n in order to get close to a sum DoF of K

2 .
For spatial diversity, in a symmetric constant MIMO channel with N antennas at every

node, the maximum achievable sum DoF is 2N, and it does not scale with K. Finally,
we note that if we allow for symbol extensions in a symmetric MIMO channel, then
asymptotically, as the number of symbol extensions goes to infinity, one can achieve the
maximum sum DoF of KN

2 (see [47]).



4 Iterative Algorithms for
Interference Management

In Chapter 3, we examined conditions under which the interference alignment equations
can be solved. In particular, we showed that conditions (3.12) and (3.13) need to be
satisfied, and we further used these conditions to obtain bounds on the achievable
degrees of freedom – e.g., (3.18). However, this analysis did not provide a recipe
for solving the interference alignment equations. In this chapter, we study iterative
algorithms for approaching interference alignment solutions. The emphasis will be on
time-division duplex (TDD) wireless systems, where channel reciprocity holds, i.e., the
channel from a given transmitter to a receiver remains the same when the roles of the
transmitter and receiver are interchanged.

There are two key ideas from interference alignment that drive the development of
the iterative algorithms: (i) linear transmit strategies are optimal at high SNR from a
DoF viewpoint, and therefore it may be desirable to design linear transmit strategies
that mimic interference alignment at any finite SNR; (ii) the sum degrees of freedom
of the interference channel provides guidelines for choosing the number of transmit
streams at finite SNRs.

4.1 Channel Model and Preliminaries

We consider the channel model in (3.11), with each transmitter having Nt antennas,
and each receiver having Nr antennas, with the understanding that the model can easily
be generalized to allow for different numbers of antennas at each of the transmitters
and receivers. We change notation slightly, adding tildes to the channel inputs and
outputs before linear pre-coding and processing, to obtain the following model from
the perspective of receiver k:

ỹk =
K∑

j=1

Hkjx̃j + z̃k, (4.1)

where ỹk is the Nr × 1 receive vector, z̃k is the Nr × 1 additive white Gaussian noise
(AWGN) vector normalized so that z̃k ∼ CN (0,INr), Hkj is the Nr ×Nt matrix of channel
coefficients between transmitter j and receiver k, and x̃j is the Nt × 1 transmitted signal
vector from user j.
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User k transmits a total of dk (complex) symbols for each use of the MIMO channel,
with dk chosen based on the DoF bounds discussed in Chapter 3. The vector of dk

symbols of user k is denoted by xk. The quantity ρk� is the power allocated to symbol �

of user k, xk(�). Then, with complex Gaussian signaling, we have

xk ∼ CN
(
0,diag(ρk1, . . . ,ρkdk

),
)

,

with ρk� chosen to satisfy a power constraint Pk, i.e.,

dk∑
�=1

ρk� ≤ Pk. (4.2)

We concatenate all the stream powers across the users into a
∑K

j=1 dj × 1 vector:

ρ = [ρ11, . . . ,ρ1d1
, . . . ,ρK1, . . . ,ρKdK

]�. (4.3)

The channel input x̃k is formed as

x̃k = Vk xk, (4.4)

where the matrix Vk is a matrix of unit norm transmit (beamforming) vectors of size
Nt × dk. Similarly, at the receiver, the channel outputs ỹk are formed as

yk = U†
k ỹk, (4.5)

where Uk is the Nr × dk matrix of unit norm receive (beamforming) vectors used by
receiver k. This yields the effective system model

yk =
K∑

j=1

U†
kHkjVjxj + zk, (4.6)

with zk ∼ CN (0,U†
kUk).

The number of data streams per user dk is chosen based on the interference alignment
conditions given in Chapter 3. In particular, a slight generalization of (3.18), allowing
for the number of streams to vary across the users, yields the bound:

K∑
k=1

dk(Nt + Nr − 2dk) ≥
∑
j�=k

djdk, (4.7)

which we use as a guideline to choose dk, k = 1,2, . . . ,K.
The effective gain from stream s of user j to stream � of user k is defined as

Gjs
k� =

∣∣∣Uk(�)
†HkjVj(s)

∣∣∣2 . (4.8)

The noise-plus-interference covariance matrices are defined as:

Bk� = INr +
∑

(j,s)�=(k,�)

ρjsHkjVj(s)Vj(s)
†H†

kj. (4.9)
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This yields that the sum-rate for linear transmit and receive strategies is given by:

Rsum =
K∑

k=1

logdet
(

INr + HkkVkDkV†
kH†

kkB−1
k

)
, (4.10)

with Dk = diag(ρk1, . . . ,ρkdk
), and

Bk = INr +
∑
j�=k

HkjVjDjV
†
j H†

kj.

The SINR for stream (k,�) is defined as:

SINRk� = ρk�Gk�
k�

1 +∑(j,s)�=(k,�) ρjsG
js
k�

. (4.11)

4.1.1 Reciprocal Channel

The algorithms presented in this chapter all assume that channel reciprocity holds, i.e.,
the channel from a given transmitter to a receiver remains the same when the roles of
the transmitter and receiver are interchanged. In the reciprocal channel, the roles of Vk

and Uk are reversed, while dk is preserved to be the same as in the original channel. For
all variables used in describing the channel, an arrow above a quantity will denote the
direction of communication. Thus, for the reciprocal channel:

←−y k =
K∑

j=1

←−
U †

k
←−
H kj

←−
V j

←−x j + ←−z k, (4.12)

where
←−
H kj = −→

H †
jk. The original channel will also be referred to as the forward channel

and the reciprocal channel as the reverse channel when appropriate.

4.2 Iterative Algorithms Based On Interference Alignment

The Min Leakage algorithm [38, 39] was one of the first iterative algorithms proposed
for interference management. The goal is to minimize the leaked interference power
at each receiver after linear processing at the receiver, with the motivation that for
interference alignment the leaked interference power equals zero at each receiver –
see (3.12) and (3.13). This algorithm works by repeatedly reversing the direction of
communication, and designing receive vectors to minimize the leaked interference
power in each direction.

The receive vectors are designed by computing an interference covariance matrix Qk

at each receiver:

Qk =
K∑

j=1
j�=k

P

dj
HkjVjV

†
j H†

kj. (4.13)
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The leaked interference power at receiver k is given in terms of Qk as

Tr
(

U†
kQkUk

)
. (4.14)

To minimize the leaked interference power at receiver k, Gomadam, Cadambe, and
Jafar [38,39] suggested choosing Uk to contain the dk least dominant eigenvectors of Qk.
An attractive feature of the Min Leakage algorithm is that it makes a metric known as
weighted leakage interference decrease monotonically at each receiver, and therefore
the algorithm is guaranteed to converge [38, 39]. However, there is no guarantee
that the convergence will be to a global minimum of the leaked interference power;
only convergence to a local optimum is guaranteed. The Min Leakage algorithm is
summarized in Algorithm 4.1.

Algorithm 4.1 Min Leakage Algorithm

1. For each k ∈ [K], set the forward transmit precoding matrix
−→
V (1)

k such that its

columns {−→V (1)
k (�)}dk

�=1 are in arbitrary directions with the only constraint that they
have unit norm. Furthermore, set

ρk� = P

dk
, ∀k ∈ [K], � ∈ {1, . . . ,dk}.

2. Compute
−→
Q k – see (4.13) – at each receiver k, and choose the receive vectors

to minimize the interference leakage, i.e., set
−→
U (1)

k to be the dk least dominant
eigenvectors ∀k ∈ [K].

3. Reverse the direction of communication, and set
←−
V (1)

k (�) = −→
U (1)

k (�), ∀k ∈ [K], � ∈ {1, . . . ,dk}.
4. Compute

←−
Q k at each receiver k, and set

←−
U (1)

k to be the dk least dominant eigenvectors
∀k ∈ [K].

5. Reverse the direction of communication, and set
−→
V (2)

k (�) = ←−
U (1)

k (�), ∀k ∈ [K], � ∈ {1, . . . ,dk}.
6. Repeat steps 2 through 5 until the desired convergence accuracy is met.

4.2.1 Other Algorithms Based on Interference Alignment

A number of other algorithms have been proposed in the literature, with the same goal as
the Min Leakage algorithm of approaching an interference alignment solution, i.e., one
that satisfies (3.12) and (3.13). The Peters–Heath algorithm [60] can be considered as an
extension of the Min Leakage algorithm that gets around the requirement of reciprocity
and can be applied in frequency-division duplex (FDD) cellular communication
systems. A modification of the Peters–Heath algorithm to achieve a better sum-rate
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Algorithm 4.2 Max SINR Algorithm

1. For each k ∈ [K], set the forward transmit precoding matrix
−→
V (1)

k such that its

columns {−→V (1)
k (�)}dk

�=1 are in arbitrary directions with the only constraint that they
have unit norm. Furthermore, set

ρk� = P

dk
, ∀k ∈ [K], � ∈ {1, . . . ,dk}.

2. Compute the receive vectors
−→
U (1)

k ∀k ∈ [K] that maximize the SINR (equivalently,
minimize the mean squared error) for each data stream as defined in (4.11).

3. Reverse the direction of communication, and set

←−
V (1)

k (�) =
−→
U (1)

k (�)

‖−→
U (1)

k (�)‖
, ∀k ∈ [K], � ∈ {1, . . . ,dk}.

4. Compute the receive vectors
←−
U (1)

k ∀k ∈ [K] to maximize the SINR.
5. Reverse the direction of communication, and set

−→
V (2)

k (�) =
←−
U (1)

k (�)

‖←−
U (1)

k (�)‖
, ∀k ∈ [K], � ∈ {1, . . . ,dk}.

6. Repeat steps 2 through 5.

is presented in the work of Kumar and Xue [61]. Other algorithms that are designed to
mimic interference alignment include [62] and [63].

4.3 Max SINR Algorithm

The algorithms described in Section 4.2 are all inspired by interference alignment and
attempt to indirectly solve (3.12) and (3.13). However, there may be many (or even
infinite) solutions to (3.12) and (3.13) that all achieve different sum-rate performance.
For example, with Nt = Nr = N, K < 2N − 1, and dk = 1,∀k ∈ [K], Yetis et al. [64]
established that there are an infinite number of solutions to the alignment problem.
Therefore, rather than focusing on finding alignment solutions, it may be better to
develop communication strategies that maximize the sum-rate.

In the Max SINR algorithm proposed by Gomadam et al. [38, 39], the goal is to
maximize the SINR for each data stream as defined in (4.11), with the understanding
that maximizing the SINR is related to maximizing the sum-rate as defined in (4.10).
Since the processing at the transmitters and receivers is linear, maximizing the SINR is
equivalent to minimizing the mean squared error (MSE) [65]. The Max SINR algorithm
is summarized in Algorithm 4.2. Simulations show that the Max SINR algorithm results
in a better sum-rate at all values of SNR (P), as compared to the algorithms that
are based on interference alignment. For example, as seen in Figure 1 in [66], the
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performance of the Peters–Heath algorithm is nearly identical to that of the Min Leakage
algorithm, and the Max SINR algorithm outperforms both of these algorithms at all
SNRs. The performance gap between the algorithms gets smaller with larger SNR. One
reason for the gap getting smaller at high SNRs might be that interference alignment is
optimal from a sum-rate viewpoint as the SNR goes to infinity, and therefore algorithms
that attempt to achieve alignment inherit this optimality at high SNR.

4.3.1 Convergence Behavior of Max SINR Algorithm

In simulations of the Max SINR algorithm [38,39,66], the sum rate appears to converge
as the number of iterations goes to infinity. But unlike the other algorithms based on
interference alignment, for which an appropriate performance metric (e.g., interference
leakage for the Min Leakage algorithm) decreases (or increases) monotonically with
iterations, the Max SINR algorithm does not exhibit such monotonic behavior and is
hence not provably convergent.

To explore the convergence behavior of the Max SINR, we introduce the following
notation, with reference to the steps in Algorithm 4.2. Within round n of the iteration, we
denote the sum rate at the end of Step 2 of the algorithm by

−→
R (n)

sum, at the end of Step 3
by

←−
R (n)

sum-switch, at the end of Step 4 by
←−
R (n)

sum, and at the end of Step 5 by
−→
R (n)

sum-switch.
In simulations of the Max SINR algorithm, we observe the following behavior. First,

within round n of the iteration, it is sometimes the case that
−→
R (n)

sum >
←−
R (n)

sum-switch, but

after optimization
−→
R (n)

sum ≤ ←−
R (n)

sum. A similar process occurs in the forward channel,
with

−→
R (n)

sum ≤ −→
R (n+1)

sum . Despite this nonmonotonic behavior within each round of the
iteration, in most simulations, the Max SINR algorithm does appear to converge at each
SNR, even if the convergence is not monotonic across rounds of the iteration, as shown
in [66]. Due to this nonmonotonic behavior, it is not easy to establish the convergence
of the Max SINR algorithm. In the next section, we describe a variant of the Max SINR
algorithm, introduced in [66], which has sum-rate performance that is nearly identical
to that of Max SINR, while at the same time is guaranteed to converge.

4.4 Convergent Variant of Max SINR Algorithm

The metric that we use in establishing the convergence of a variant of the Max SINR
algorithm is the sum stream rate:

Rsum stream =
K∑

k=1

dk∑
�=1

log(1 + SINRk�).

Note that Rsum stream is the sum of the rates achieved by decoding each stream separately,
while treating all the other streams as noise. This is in contrast with the sum-rate given
in (4.10), for which we allow for joint decoding of all the dk streams at receiver k.
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An important component of the new algorithm is a power control step, in which we
impose a sum power constraint across all the users:

K∑
k=1

dk∑
�=1

ρk� ≤ KP, (4.15)

which can also be written as 1�ρ ≤ KP, with ρ defined in (4.3). Imposing a sum power
constraint, as opposed to the individual power constraint given in (4.2), allows for a
more flexible design of linear transmit and receive strategies, albeit with the requirement
that the individual powers are not constrained by P anymore.

4.4.1 Achieving Equal SINRs on Forward and Reverse Channels

We now show that by selecting the power appropriately we can achieve the same SINRs
on the forward and reciprocal channels. This result is based on extending the ideas from
the work of Song et al. [67] to allow for successive interference cancellation.

Let γ k� be the target SINR for stream � of user k, and define

D = diag

⎧⎨
⎩ γ 11−→

G 11
11

, . . . ,
γ KdK−→
G KdK

KdK

⎫⎬
⎭ (4.16)

and

G

⎛
⎝k−1∑

m=1

dm + �,
j−1∑
n=1

dn + s

⎞
⎠=

{
0 if (k,�) = (j,s),−→
G js

k� else,
(4.17)

with Gjs
k� given in (4.8). Set

A = D−1 − G,

and use the power allocations

−→
ρ ∗ = A−11, (4.18)

←−
ρ ∗ = A−�1 (4.19)

for the forward and reciprocal directions, respectively.
The following lemma establishes the duality of the SINRs on the forward and

reciprocal channels. The result implies that as long as we meet the power constraint
initially, −→

ρ ∗ and ←−
ρ ∗ will meet it too.

L E M M A 4.1 Suppose the initial power allocation ρ is such that 1�ρ ≤ KP. Let γ k�

be SINRs resulting from the choice of transmit and receive vectors {Vk} and {Uk},
respectively. Then

1�−→
ρ ∗ = 1�←−

ρ ∗ ≤ KP,

and
−−−→
SINRk�(

−→
ρ ∗) = ←−−−

SINRk�(
←−
ρ ∗) = γ k�.
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Proof The proof follows the arguments given in [67] and is developed in the appendix
of [66].

While equations (4.18) and (4.19) provide a way to achieve equal SINRs in both the
forward and reverse directions, this may be impractical due to the fact that it requires
a centralized controller. Fortunately, the framework introduced by Yates [68] can be
applied to our problem to compute the required powers in a distributed way. Define the
vector-valued function I(ρ) by

Ik�(ρ) = γ k�ρk�

SINRk�(ρ)
.

Then it is easy to show that I is a standard interference function as defined in [68], and
therefore the asynchronous power control algorithm developed in [68] can be used to
develop a distributed algorithm (see Algorithm 4.3) that converges to ρ∗.

Algorithm 4.3 Distributed Power Control Algorithm

1. Choose an initial power vector ρ(1) such that 1�ρ(1) ≤ KP.
2. Compute

ρ(2) = I(ρ(1)).

3. Repeat step 2 until convergence.

4.4.2 Convergent Max SINR

We are now ready to formally define the convergent variant of the Max SINR algorithm,
which we call the Convergent Max SINR algorithm; it is summarized in Algorithm 4.4.
As in the analysis of the Max SINR algorithm, we introduce the following notation,
with reference to the steps of Algorithm 4.4. Within round n of the iteration, we denote
the sum stream rate at the end of Step 2 by

−→
R (n)

sum stream, at the end of Step 3 by←−
R (n)

sum stream-switch, at the end of Step 4 by
←−
R (n)

sum stream, and at the end of Step 5 by−→
R (n)

sum stream-switch.
The convergence of the Convergent Max SINR algorithm is established in the

following result.

T H E O R E M 4.2 In the Convergent Max SINR algorithm,
−→
R (n)

sum stream converges. Also,
the sum power constraint is met at every step.

Proof The initial power allocation −→
ρ (1) meets the power constraint, and therefore the

constraint will continue to be met due to Lemma 4.1. Now,

−→
R (n)

sum stream
(a)= ←−

R (n)
sum stream-switch

(b)≤ ←−
R (n)

sum stream
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Algorithm 4.4 Convergent Max SINR Algorithm

1. Choose the initial transmit vectors {−→V (1)
k }K

k=1 and −→
ρ (1) to satisfy the power

constraint.
2. Compute the receive vectors

−→
U (1)

k ∀k ∈ [K] to minimize the MSE.
3. Reverse the direction of communication, and calculate the power allocation ←−

ρ (1) to
achieve the same SINR in the reverse direction as in the forward direction. Set

←−
V (1)

k (�) =
−→
U (1)

k (�)

‖−→
U (1)

k (�)‖
,

←−
U (1)

k (�) = −→
V (1)

k (�),

∀k ∈ [K], � ∈ {1, . . . ,dk}.
4. Compute the MMSE receive vectors

←−
U (1)

k ∀k ∈ [K].
5. Reverse the direction of communication. Calculate the power allocation −→

ρ (2) to
achieve the same SINR as in the previous direction. Set

−→
V (2)

k (�) =
←−
U (1)

k (�)

‖←−
U (1)

k (�)‖
,

−→
U (2)

k (�) = ←−
V (1)

k (�),

∀k ∈ [K], � ∈ {1, . . . ,dk}.
6. Repeat steps 2 through 5 until convergence.

(c)= −→
R (n)

sum stream-switch

(d)≤ −→
R (n+1)

sum stream,

where (a) and (c) follow by the fact that the SINR is the same in both directions, and (b)
and (d) follow since the receive vectors are chosen to maximize the SINR. Therefore,
the sum stream rate increases monotonically and the algorithm converges.

4.5 Performance of Convergent Max SINR Algorithm

As shown in simulation results reported in [66], the Max SINR and Convergent
Max SINR algorithms have nearly identical sum-rate performance, and both of
these algorithms outperform the other convergent algorithms, such as the Min
Leakage [38, 39] and Peters–Heath [60] algorithms. The conclusion that we can
draw from these results is that the Convergent Max SINR algorithm has performance
comparable to the Max SINR algorithm, with the added advantage of having guaranteed
convergence.
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4.6 Discussion

In this chapter, we have studied iterative algorithms for designing linear transmitter
and receiver processing to maximize the sum-rate for communication on interference
channels. We first discussed a number of convergent iterative algorithms that were
inspired by interference alignment, and then discussed the more ad hoc Max SINR
algorithm, in which the linear processing is chosen to maximize the SINR (equivalently,
minimize the MSE) at the receivers in each iteration. The Max SINR algorithm was
shown to outperform the IA-based solutions, especially at low SNR, in simulations.
However, a disadvantage of the Max SINR algorithm relative to the IA-based solutions
is that it cannot be shown to be convergent.

We then studied a modification to the Max SINR algorithm called the Convergent
Max SINR algorithm, for which a metric called the sum stream rate converges. A key
step to making the algorithm provably convergent is to choose the power allocation
appropriately every time we reverse the direction of communication in the iterations to
equate the SINR in both directions of communication.

In Chapter 5, we will extend the study of interference alignment and degrees of
freedom analysis to the case where subsets of the transmitters in the network are allowed
to cooperate in transmitting messages to the receivers. For constant MIMO channels,
we can use iterative schemes such as the ones described in the present chapter, while
incorporating transmitter cooperation. See Section 5.7 for details.



5 Degrees of Freedom with
Coordinated Multi-Point
Transmission

In this chapter, we study cooperative communication in large interference networks, a
theme that will be followed through the remainder of the book. The cooperative channel
models we consider are based on the coordinated multi-point (CoMP) [69] transmission
technology, where one message can be jointly transmitted using multiple transmitters.
We aim to analyze the sum degrees of freedom, which we introduced in Chapter 3,
under the cooperative communication framework. More specifically, in this chapter we
focus on fully connected interference networks, where all links between transmitters and
receivers are present. We model a limited capacity backhaul by allowing each message
to only be available at a pre-specified number M of transmitters, where M is typically
much smaller than the number of users K. One of our goals in this chapter is to study
if the asymptotic per-user degrees of freedom as K goes to infinity can be improved
through cooperation.

5.1 Interference Alignment with CoMP

In this section, we present an example where CoMP transmission aided by asymptotic
interference alignment leads to DoF gains in a K-user fully connected interference
channel. We use η(K,M) to denote the best achievable DoF for a K-user fully connected
interference channel, where each message can be available at M transmitters. We know
from Chapter 3 that the sum DoF of a fully connected interference channel without
cooperation is K

2 , i.e., η(K,1) = K
2 . We now show that η(K,M) > K

2 , for M > 1, by
using the following spiral message assignment for each K-user channel:

Tk = {k,k + 1, . . . ,k + M − 1} ∀k ∈ [K], (5.1)

with the indices taken modulo K. We use Tk to denote the transmit set for message Wk.
For example, T1 = {1,2} means W1 is available at both transmitter 1 and transmitter 2.

Using this message assignment and an asymptotic interference alignment scheme, we
prove the following result.

T H E O R E M 5.1

η(K,M) ≥ K + M − 1

2
, ∀M ≤ K < 10. (5.2)

We provide the formal proof in Section 5.2. Here, we discuss the key ideas that
enable the theorem statement. To achieve the stated lower bound, the M transmitters



72 Degrees of Freedom with CoMP

carrying each message are used to cancel the interference introduced by this message at
the first M − 1 receivers, thereby allowing each of these receivers to enjoy one degree
of freedom. By coding over multiple parallel channels corresponding to different time
slots, we use an interference alignment scheme to align the interfering signals at each
other receiver to occupy half the signal space as the number of parallel channels goes to
infinity.

The achievable scheme is based on transmit beam-forming. The beam design
process is broken into two steps, as illustrated in Figure 5.1. First, we transform
each parallel CoMP channel into a derived channel. Then, we design an asymptotic
interference alignment scheme over the derived channel, achieving the required DoF in
an asymptotic fashion as the number of parallel channels goes to infinity. Figure 5.2
provides a description of the derived channel for the special case of K = 4 and M = 2.
In order to use asymptotic interference alignment in the achievable scheme, we need to
show that at each receiver, polynomial transformations defining a set of derived channel
coefficients determined by the receiver index are algebraically independent as functions
of the original channel coefficients. We could verify in MATLAB that this is true for all
the values of K and M that we checked. Specifically, we checked until K ≤ 9, but we
conjecture that the result holds true for any K and M.

The maximum achievable DoF without cooperation is K
2 . We see from Theorem 5.1

that CoMP transmission allows for a gain in achievable DoF (relative to K
2 ), but this

gain does not scale with the number of users K. If we define the asymptotic per-user
DoF as a function of the cooperation constraint by

τ(M) = lim
K→∞

η(K,M)

K
, (5.3)

then for the achievable scheme in Theorem 5.1, τ(M) = 1
2 for all fixed M. The question

of whether there exist achievable schemes such that τ(M) > 1
2 for M > 1 remains open.

We also note that the spiral message assignment that is used here relies only on local
cooperation. In other words, the maximum difference between a message index and the
index of any transmitter it is assigned to does not scale with the number of users K.
In Section 5.4, we show that no gain in the asymptotic per-user DoF can be achieved
through any message assignment that satisfies a local cooperation constraint.

Original
Channel

Zero-Forcing
Encoder

Asymptotic
IA

Encoder

Asymptotic
IA

Decoder

Derived Channel

Fig. 5.1 Summary of the achievable scheme of Theorem 5.1. c©[2017] IEEE. Reprinted, with
permission, from [70].
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Fig. 5.2 The derived channel with K = 4 and M = 2. The thick lines indicate the links carrying signal.
The dashed lines indicate the links carrying interference. c©[2017] IEEE. Reprinted, with
permission, from [70].

5.2 Proving that Interference Alignment Achieves CoMP
Transmission Gains

In this section, we prove Theorem 5.1. We show that the DoF of a K-user fully connected
interference channel with a maximum transmit set size constraint of M is lower-bounded
by

η(K,M) ≥ K + M − 1

2
.

We prove this by assigning each message to the transmitter with the same index, as well
as the M − 1 succeeding transmitters, and arguing that the DoF vector with components

di =
{

1 1 ≤ i ≤ M − 1,
0.5 M ≤ i ≤ K

is achievable; i.e., the first M − 1 users benefit from cooperation and achieve 1 degree
of freedom, whereas the remaining K − M + 1 users achieve half a degree of freedom,
just like in the interference channel without cooperation. Conceptually, the achievable
scheme in this section is based on converting the CoMP channel into a derived channel,
and then employing the asymptotic interference alignment scheme on the derived
channel, as summarized in Figure 5.1. We now provide a detailed description of the
design steps summarized in Figure 5.1.

5.2.1 Derived Channel

Since our objective is to achieve a DoF vector that is asymmetric, the derived channel
is also chosen to be asymmetric. The derived channel we consider in this section has
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two antennas for each of the first M − 1 transmitters, and one antenna for each of the
remaining K − M + 1 transmitters. The received signal at receiver i is given by

yi =
K∑

j=1

g(1)
ij x(1)

j +
M−1∑
j=1

g(2)
ij x(2)

j + zi, (5.4)

where g(m)
ij is the derived channel coefficient between the mth antenna at transmitter

j and receiver i, and x(m)
j is the transmit signal of the mth antenna at transmitter j

in the derived channel. We assume that the channel inputs of the CoMP channel are
related to the channel inputs of the derived channel through a linear transformation.
The contribution of the derived channel input x(m)

j in the real transmit signals
xj,xj+1, . . . ,xj+Mt−1 is defined by an M × 1 beam-forming vector, i.e.,⎡

⎢⎢⎢⎣
xj

xj+1
...

xj+M−1

⎤
⎥⎥⎥⎦= (∗) + v(m)

j x(m)
j ,

where (∗) represents the contribution from other derived channel inputs. It is easy to see
that the derived channel coefficients are related to the original channel coefficients as

g(m)
ij = H{i},Tj v

(m)
j ,

for all i, j ∈ [K] and appropriate m, where we use the notation H{i},S to denote the matrix
of channel coefficients between receiver i and transmitters with indices in S. Since we
are designing the transmit beam-forming scheme to achieve one degree of freedom for
the first M − 1 users, it must be that the first M − 1 receivers in the derived channel do
not see any interference.

5.2.2 Zero-Forcing Step

We now explain our choice of the beam-forming vectors that ensures that the first M −1
receivers do not see any interference.

Zero-Forcing Beam Design
We first describe the general idea of constructing a zero-forcing beam. Consider the
problem of designing a zero-forcing beam v to be transmitted by n transmit antennas
indexed by the set T ⊆ [K] such that it does not cause interference at n − 1 receive
antennas indexed by the set I ⊆ [K], i.e.,

HI,T v = 0,

where we use the notation HS1,S2 to denote the matrix of channel coefficients between
receivers with indices in S1 and transmitters with indices in S2. Since HI,T is an
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(n − 1) × n matrix, the choice for v is unique up to a scaling factor. For any arbitrary
row vector a of length n, we can use the Laplace expansion to expand the determinant

det

[
HI,T

a

]
=

n∑
j=1

ajcj,

where cj is the cofactor of aj, which depends only on the channel coefficients in HI,T ,
and is independent of a. By setting the beam-forming vector v as v = [c1 c2 · · · cn],
we see that an arbitrary receiver i sees the signal transmitted along the beam v with a
strength equal to

H{i},T v = det

[
HI,T
H{i},T

]
= detHI∪{i},T .

Clearly, this satisfies the zero-forcing condition H{i},T v = 0 for all i ∈ I.

Design of Transmit Beam v(1)
j for j ≥ M

The signal x(1)
j is transmitted by the M transmitters from the transmit set Tj = {j, j +

1, . . . , j + M − 1}. The corresponding beam v(1)
j is designed to avoid the interference at

the first M − 1 receivers I = [M − 1]. Therefore, we see that the contribution of x(1)
j at

receiver i is given by

g(1)
ij = detHA,B, (5.5)

where

A = {1,2, . . . ,M − 1, i},
B = {j, j + 1, . . . , j + M − 1}.

Design of Transmit Beams v(1)
j and v(2)

j for j < M

The signals x(1)
j and x(2)

j are transmitted by the M transmitters from the transmit set
Tj = [M]. They must avoid interference at the M − 2 receivers

I = {1,2, . . . , j − 1, j + 1, . . . ,M − 1}.
Since we only need to avoid interference at M − 2 receivers, it is sufficient to transmit
each signal from M − 1 transmitters. We use the first M − 1 antennas of the transmit set
Tj to transmit x(1)

j , and the last M − 1 antennas of the transmit set Tj to transmit x(2)
j .

Thus, we obtain

g(1)
ij = detHA,B1 ,

g(2)
ij = detHA,B2 ,

(5.6)

where

A = {1,2, . . . , j − 1, j + 1,M − 1, i},
B1 = {j, j + 1, . . . , j + M − 2},
B2 = {j + 1, j + 1, . . . , j + M − 1}.
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Thus, the derived channel (5.4) can be simplified as

yi = g(1)
ii x(1)

j + g(2)
ii x(2)

j + zi, 1 ≤ i < M,

yi =
K∑

j=1

g(1)
ij x(1)

j +
M−1∑
j=1

g(2)
ij x(2)

j + zi, M ≤ i ≤ K,
(5.7)

where the derived channel coefficients are as described in (5.5) and (5.6).

5.2.3 Asymptotic Interference Alignment

In this section, we consider L parallel derived channels, and propose a scheme achieving
a DoF arbitrary close to (K + M − 1)/2 in the limit L → ∞. We can combine L parallel
derived channels (5.7) and express them together as

y
i
= G(1)

ii x(1)
j + G(2)

ii x(2)
j + zi, 1 ≤ i < M,

y
i
=

K∑
j=1

G(1)
ij x(1)

j +
Mt−1∑
j=1

G(2)
ij x(2)

j + zi, M ≤ i ≤ K,

where x(m)
j , y

i
, and zi are L × 1 column vectors and G(m)

ij is the L × L diagonal channel
transfer matrix given by

G(m)
ij =

⎡
⎢⎢⎢⎢⎣

g(m)
ij (1)

g(m)
ij (2)

. . .

g(m)
ij (L)

⎤
⎥⎥⎥⎥⎦ .

The achievable scheme that we propose is based on the asymptotic alignment scheme
introduced by Cadambe and Jafar in [46] (also see Section 3.3).

D E FI N I T I O N 5.1 (Cadambe–Jafar (CJ) subspace) The order-n CJ subspace
generated by the diagonal matrices G1,G2, · · · ,GN is defined as the linear subspace
spanned by the vectors

{Ga1
1 Ga2

2 · · ·GaN
N 1 : a ∈ ZN+ and

∑
i

ai ≤ n},

where 1 is the L×1 column vector of all ones. The matrix containing these
(N+n

n

)
vectors

as columns is said to be the order-n CJ matrix.

Let V denote the order-n CJ subspace (and the corresponding matrix) generated by
the nontrivial channel matrices carrying interference:

{G(1)
ij ,G(2)

ij : i ≥ M, j < M} ∪ {G(1)
ij : i �= j ≥ M}. (5.8)

We use V, defined as the transmit beam-forming matrix at every transmitter of the
derived channel. The first M − 1 receivers do not see any interference. Therefore, for
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each k < M, the receiver k can decode all the desired streams free of interference if the
matrix

Mk =
[
G(1)

kk V G(2)
kk V

]
has full column rank. Assuming that the number of rows in Mk, equal to the number of
parallel channels L, is greater than or equal to the number of columns, i.e., L ≥ 2|V|, the
matrix Mk has full column rank for generic channel coefficients {hij} (which are realized
with probability one) if the following claim is true. See Corollary B.1 in Appendix B
for an explanation.

C L A I M 5.1 For each k < M, the polynomials denoted by the variables

{g(1)
kk ,g(2)

kk } ∪ {g(1)
ij ,g(2)

ij : i ≥ M, j < M}
∪ {g(1)

ij : i �= j ≥ M} (5.9)

are algebraically independent.

For each k ≥ M, the interference seen at receiver k is limited to the order-(n + 1) CJ
subspace, denoted by INT. Therefore, receiver k can decode all the desired streams free
of interference if the matrix

Mk =
[
G(1)

kk V INT
]

has full column rank. Assuming that the number of rows is greater than or equal to
the number of columns, i.e., L ≥ |V| + |INT|, the matrix Mk has full column rank for
generic (original) channel coefficients {hij} if the following claim is true.

C L A I M 5.2 For each k ≥ M, the polynomials denoted by the variables

{g(1)
kk } ∪ {g(1)

ij ,g(2)
ij : i ≥ M, j < M}

∪ {g(1)
ij : i ≥ M, j ≥ M, i �= j} (5.10)

are algebraically independent.

To satisfy the requirements on L, we choose L as

L = max(2|V|, |V| + |INT|) = |V| + |INT|.
Observe that

|V| =
(

N + n

n

)
and |INT| =

(
N + n + 1

n + 1

)
,

where N is the number of matrices (5.8) used to generate the CJ subspace, and is given
by

N = 2(K − M + 1)(M − 1) + (K − M + 1)(K − M)

= (K − M + 1)(K + M − 2).
(5.11)
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Therefore, if we let η(K,M,L) be the maximum achievable DoF by coding over at most
L parallel channels, then we obtain

η(K,M,L) ≥ 2(M − 1)|V| + (K − M + 1)|V|
L

= (K + M − 1)|V|
|V| + |INT|

= K + M − 1

2 + N
n+1

.

Therefore, we obtain that

η(K,M) = limsup
L→∞

η(K,M,L)

≥ lim
n→∞

K + M − 1

2 + N
n+1

= K + M − 1

2
.

5.2.4 Proof of Algebraic Independence

We use the Jacobian criterion of Lemma B.1 in Appendix B to prove Claims 5.1 and 5.2.
Recall that each derived channel coefficient is a polynomial in the K2 variables {hij : 1 ≤
i, j,≤ K}. Let g denote the vector consisting of the polynomials specified by the derived
channel coefficients in the respective claims. The exact description of the polynomials
can be obtained from (5.5) and (5.6) in Section 5.2.2. The number of polynomials in
Claims 5.1 and 5.2 is equal to N + 2 and N + 1, respectively, where N is given by
(5.11). From Lemma B.1 in Appendix B, we see that a collection of polynomials is
algebraically independent if and only if the corresponding Jacobian matrix has full row
rank. It can be easily verified that N + 2 ≤ K2, and hence N + 1 ≤ K2, for any K and M,
which is a necessary condition for the corresponding Jacobian matrices to have full row
rank. It is easy to verify that the Jacobian matrices corresponding to the polynomials in
Claims 5.1 and 5.2 have full row rank using the symbolic toolbox of MATLAB for any
fixed K and M. In particular, we verified that the Jacobian matrices have full row rank
for all values of M < K ≤ 9.

5.3 Degrees of Freedom Upper Bound for CoMP

In this section, we present an information-theoretic upper bound for the DoF of fully
connected interference channels with CoMP transmission. We first need to discuss a
general lemma that is used to obtain DoF upper bounds in any interference network,
where each message could be available at an arbitrary set of transmitters. We need the
following definition: For any set of receiver indices A ⊆ [K], define UA as the set of
indices of transmitters that exclusively carry the messages for the receivers in A, where
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the complement set ŪA is the set of indices of transmitters that carry messages for
receivers outside A. More precisely, UA = [K]\ ∪i/∈A Ti. Then, we have the following
result.

L E M M A 5.2 If there exists a set A ⊆ [K], a function f1, and a function f2 whose
definition does not depend on the transmit power constraint P, and f1

(
yA,xUA

)= xŪA +
f2(zA), then η ≤ |A|.
Proof The formal proof is available in [71]. We provide an overview here. Recall
that yA = {yi, i ∈ A}, and WA = {Wi, i ∈ A}, and note that xUA is the set of transmit
signals that do not carry messages outside WA. Fix a reliable communication scheme
for the considered K-user channel, and assume that there is only one centralized decoder
that has access to the received signals yA. We show that using the centralized decoder,
the only uncertainty in recovering all the messages W[K] is due to the Gaussian noise
signals. In this case, the sum DoF is bounded by |A|, as it is the number of received
signals used for decoding.

Using yA, the messages WA can be recovered reliably, and hence the signals
xUA can be reconstructed. Using yA and xUA , the remaining transmit signals can be
approximately reconstructed using the function f1 of the hypothesis. Finally, using all
transmit signals, the received signals yĀ can be approximately reconstructed, and the
messages WĀ can then be recovered.

In order to characterize the asymptotic per-user DoF of the fully connected channel
τ(M), we need to consider all possible message assignments satisfying the maximum
transmit set size constraint. Through the following corollary of Lemma 5.2, we provide
a way to bound the sum DoF η of a K-user fully connected channel with a fixed
message assignment, thereby introducing a criterion for comparing different message
assignments using the special cases where this bound holds tightly.

For a set of transmitter indices S, we define the set CS as the set of messages carried
by transmitters in S.

C O RO L L A RY 5.1 For any pair of positive integers m, m̄ : m + m̄ ≥ K, if there exists a
set S of indices for transmitters carrying no more than m messages, and |S| = m̄, then
η ≤ m, or more precisely,

η ≤ min
S⊆[K]

max(|CS |,K − |S|). (5.12)

Proof For each subset of transmitter indices S ⊆ [K], we apply Lemma 5.2 with the
set A defined as follows.

Initially, set A as the set of indices for messages carried by transmitters with indices
in S. That is, A = CS . Now, if |A| < K − |S|, then augment the set A with arbitrary
message indices such that |A| = K − |S|.

We now note that the above construction guarantees that |A| + |S| ≥ K and that
UA ⊆ S̄ . Hence, using Lemma 5.2, it suffices to show the existence of functions f1 and
f2 such that f1(yA,xS) = xS̄ + f2(zA), where f2 is a linear function that does not depend
on the transmit power.
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Fig. 5.3 Example application of Corollary 5.1, with S = {1,2} and CS = {1,2,3}. Transmit signals with
indices in S, and messages as well as receive signals with indices in CS , are shown in italics and
dashed boxes. The DoF η ≤ |CS | = K − |S| = 3. c©[2017] IEEE. Reprinted, with permission,
from [72].

Consider the following argument. Given yA, zA, and xS , we can construct the set of
signals ỹA as follows:

ỹi = yi −
⎛
⎝∑

j∈S
hijxj + zi

⎞
⎠

=
∑
j∈S̄

hijxj,∀i ∈ A. (5.13)

Since the channel is fully connected, by removing the Gaussian noise signals zA
and transmit signals in xS from received signals in yA, we obtain the set of signals
{ỹi : i ∈ A}, which has at least K − |S| = |S̄| linear equations in the transmit signals
in xS̄ . Moreover, since the channel coefficients are generic, these equations will be
linearly independent with high probability. Now, if we do not remove the noise signals
zA from (5.13), then by using yA and xS , we can reconstruct xS̄ + f2(zA), where f2
depends on the inverse transformation of |S̄| linearly independent equations in xS̄ , and
the coefficients of the linear equations depend only on the channel coefficients.

See Figure 5.3 for an example illustration of Corollary 5.1. Using the corollary, we
can identify the optimal DoF using spiral message assignments.

C O RO L L A RY 5.2 Let ηsp(K,M) be the DoF of a fully connected K-user channel
with each message assigned to M ≤ K transmitters according to the spiral message
assignment

Tk = {k,k + 1, . . . ,k + M − 1},∀k ∈ [K], (5.14)

with the indices taken modulo K; then the following bound holds:

ηsp(K,M) ≤
⌈

K + M − 1

2

⌉
. (5.15)
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Proof We apply Corollary 5.1 with the set S =
{

1,2, . . . ,
⌈

K−(M−1)
2

⌉}
. Note that

transmitters with indices in S are carrying messages with indices in the set CS ={
1,2, . . . ,

⌈
K+M−1

2

⌉}
, and it is true that |S| + |CS | ≥ K. Hence, the bound in (5.15)

follows from (5.12).

Note that combining the above result with the lower bound in Theorem 5.1 means we
obtain an approximate characterization of the DoF with spiral message assignments.

5.4 Degrees of Freedom Cooperation Gain

In the previous section we considered a specific choice of message assignments to
transmitters, namely, the spiral message assignments where each message is available
at the transmitter having the same index as well as M − 1 following transmitters. In this
section, we consider a general cooperation order constraint that only imposes a limit on
the maximum transmit set size. More precisely,

|Ti| ≤ M,∀i ∈ [K]. (5.16)

We define τ(M) to denote the asymptotic per-user DoF with a cooperation order
constraint of M. We now use Corollary 5.1 to prove upper bounds on the asymptotic
per-user DoF τ(M).

In an attempt to reduce the complexity of the problem of finding an optimal message
assignment, we begin by considering message assignments that rely only on a local
cooperation constraint, i.e., each message can only be assigned within a neighborhood
of transmitters whose size does not scale with the size of the network. We will formally
define local cooperation below. We show that a scalable cooperation DoF gain cannot
be achieved using local cooperation.

5.4.1 Local Cooperation

In order to formally define what we mean by local cooperation in large networks, we
need to capture the constraint that the indices of neighboring transmitters that can carry
a message cannot differ from a message index by a value that scales with the number
of users. In order to do so, we need to describe message assignments for families
of network topologies with increasing numbers of users K. We call this a message
assignment strategy, defined formally as follows.

D E FI N I T I O N 5.2 A message assignment strategy {TK,i,K ∈ Z+, i ∈ [K]} defines a
message assignment for each network with K users. For the network having Kx users,
the message assignment for user i is the set TKx,i.

We define the local cooperation constraint for message assignment strategies.
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D E FI N I T I O N 5.3 We say that a message assignment strategy {TK,i,K ∈ Z+, i ∈ [K]}
satisfies the local cooperation constraint if there exists a local neighborhood radius r(K)

such that

lim
K→∞

r(K)

K
= 0, (5.17)

and the following holds:

TK,i ⊆ {i − r(K), i − r(K) + 1, . . . , i + r(K)}, ∀K, i. (5.18)

We define τ (loc)(M) as the asymptotic per-user DoF with a cooperation order
constraint of M, and the additional local cooperation constraint. Then we have following
result (see also [71]):

T H E O R E M 5.3 Any message assignment strategy satisfying the local cooperation
constraint of (5.18) cannot be used to achieve an asymptotic per-user DoF greater
than that achieved without cooperation. More precisely,

τ (loc)(M) = 1

2
, for all M. (5.19)

Proof Fix M ∈ Z+. For any value of K ∈ Z+, we use Corollary 5.1 with the set
S = {1,2, . . . ,

⌈K
2

⌉}. Note that CS ⊆ {1,2, . . . ,
⌈K

2

⌉ + r(K)}, where limK→∞ r(K)
K =

0, and hence it follows that η(loc)(K,M) ≤ ⌈K
2

⌉ + r(K). Finally, τ (loc)(M) =
limK→∞ η(loc)(K,M)

K ≤ 1
2 . The lower bound follows from [46] without cooperation.

5.4.2 General Upper Bounds

We now investigate if it is possible for the cooperation gain to scale linearly with K
for fixed M. It was shown in Theorem 5.3 that such a gain is not possible for message
assignment strategies that satisfy the local cooperation constraint. Here, we only impose
the maximum transmit set size constraint and show an upper bound on τ(M) that is tight
enough for finding τ(2).

T H E O R E M 5.4 For any cooperation order constraint M ≥ 2, the following upper
bound holds for the asymptotic per-user DoF:

τ(M) ≤ M − 1

M
. (5.20)

Proof For any value of M and K, we show that η(K,M) ≤ K(M−1)
M + o(K). For every

value of K such that K−1
M is an integer, we show that η(K,M) ≤ K(M−1)+1

M . When K−1
M

is not an integer, we add x = o(K) extra users such that K+x−1
M is an integer, and bound

the DoF as follows:

η(K,M) ≤ η(K + x,M) (5.21)

≤ (K + x)(M − 1) + 1

M
(5.22)

= K(M − 1)

M
+ o(K). (5.23)
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It then suffices to consider the case where K−1
M is an integer. The idea is to show that for

any assignment of messages satisfying the cooperation order constraint, there exists a set
of indices S ⊆ [K] for K−1

M transmitters that do not carry more than K − K−1
M messages,

and then the DoF upper bound follows by applying Corollary 5.1. More precisely, it
suffices to show that the following holds: For all K such that K−1

M ∈ Z+, there exists
S ⊆ [K] such that

|S| = K − 1

M
, |CS | = K(M − 1) + 1

M
= K − |S|. (5.24)

We first illustrate simple examples that demonstrate the validity of (5.24). Consider the
case where K = 3, M = 2. We need to show in this case that there exists a transmitter that
does not carry more than two messages, which follows by the pigeonhole principle since
each message can only be available at a maximum of two transmitters. Now, consider
the slightly more complex example of K = 5, M = 2. We need to show in this case
that there exists a set of two transmitters that do not carry more than three messages.
We know that there is a transmitter carrying at most two messages, and we select this
transmitter as the first element of the desired set. Without loss of generality, let the two
messages available at the selected transmitter be W1 and W2. Now, we need to find
another transmitter that carries at most one message among the messages in the set
{W3,W4,W5}. Since each of these three messages can be available at a maximum of two
transmitters, and we have four transmitters to choose from, one of these transmitters
has to carry at most one of these messages. By adding the transmitter satisfying this
condition as the second element of the set, we obtain a set of two transmitters carrying
no more than three messages, and (5.24) holds.

We extend the argument used in the above examples through Lemmas 5.6 and 5.7,
provided in Section 5.5. We know by induction using these lemmas that (5.24) holds,
and the theorem statement follows.

Together with the asymptotic interference alignment achievability result in [46], the
statement in Theorem 5.4 implies the following corollary.

C O RO L L A RY 5.3 For any message assignment strategy such that each message is
available at a maximum of two transmitters, the asymptotic per-user DoF is the same
as that achieved without cooperation. More precisely,

τ(2) = 1

2
. (5.25)

The characterization of τ(M) for values of M > 2 remains an open question, as
Theorem 5.4 is only an upper bound. Moreover, the following result shows that the
upper bound in Theorem 5.4 is loose for M = 3.

T H E O R E M 5.5 For any message assignment strategy such that each message is
available at a maximum of three transmitters, the following bound holds for the
asymptotic per-user DoF:

τ(3) ≤ 5

8
. (5.26)
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Proof In a similar fashion to the proof of Theorem 5.4, we prove the statement
by induction. The idea is to prove the existence of a set S with approximately 3K

8
transmitter indices, with these transmitters carrying no more than approximately 5K

8 =
K − |S| + o(K) messages, and then use Corollary 5.1 to derive the DoF outer bound.
In the proof of Theorem 5.4, we used Lemmas 5.6 and 5.7 in Section 5.5 to provide
the basis and induction step of the proof, respectively. Here, we follow the same path
until we show that there exists a set S such that |S| = K+1

4 and |CS | ≤ (M − 1)|S| + 1,
and then we use Lemma 5.9 in Section 5.5 to provide a stronger induction step that
establishes a tighter bound on the size of the set CS .

We note that it suffices to show that η(K,3) ≤ 5K
8 + o(K) for all values of K such that

K+1
4 is an even positive integer, and hence we make that assumption for K. Define the

following:

n1 = K + 1

4
, (5.27)

n2 = K − 7

8
, (5.28)

n3 = 2n1 + 1 + n2. (5.29)

Now, we note that

n3 = K − (n1 + n2), (5.30)

and by induction, it follows from Lemmas 5.6 and 5.7 that there exists S1 ⊂ [K] such
that |S1| = n1 and |CS1 | ≤ 2n1 + 1. We now apply induction again with the set S1 as a
basis, and use Lemma 5.9 for the induction step to show that there exists S2 ⊂ [K] such
that |S2| = n1 +n2 and |CS2 | ≤ n3 = K −|S2|. Hence, we get the following upper bound
using Corollary 5.1:

η(K,3) ≤ n3

= 5(K + 1)

8
, (5.31)

from which (5.26) holds.

5.5 Auxiliary Lemmas for Large Network Upper Bounds

L E M M A 5.6 For a K-user channel where each message is available at a maximum of
M transmitters, there exists a transmitter carrying at most M messages, i.e., there exists
i ∈ [K] such that |C{i}| ≤ M.

Proof The statement follows by the pigeonhole principle, since the following holds:

K∑
i=1

|C{i}| =
K∑

i=1

|Ti| ≤ MK. (5.32)
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L E M M A 5.7 Consider a K-user channel, where each message is available at a
maximum of M transmitters, and M ≥ 2. If there exists a set A of n transmitters carrying
at most (M − 1)n + 1 messages, then there exists a set B of n + 1 transmitters carrying
at most (M − 1)(n + 1) + 1 messages. More precisely, if there exists A ⊂ [K] such that
|A| = n < K, and |CA| ≤ (M − 1)n + 1, then there exists B ⊆ [K] such that |B| = n + 1,
and |CB| ≤ (M − 1)(n + 1) + 1.

Proof We only consider the case where K > (M − 1)(n + 1) + 1, as otherwise the
statement holds trivially. In this case, we can show that

M(K − |CA|) < (K − n)((M − 1)(n + 1) + 2 − |CA|). (5.33)

The proof of (5.33) is available in Lemma 5.8 below. Note that the left-hand side
in (5.33) is the maximum number of message instances for messages outside the set
CA, i.e., ∑

i∈[K],i/∈A
|C{i}\CA| ≤ M(K − |CA|)

< (K − n)((M − 1)(n + 1) + 2 − |CA|). (5.34)

Since the number of transmitters outside the set A is K −n, it follows by the pigeonhole
principle that there exists a transmitter whose index is outside A and carries at most
(M − 1)(n + 1) + 1 − |CA| messages whose indices are outside CA. More precisely,

∃i ∈ [K]\A : |C{i}\CA| ≤ (M − 1)(n + 1) + 1 − |CA|. (5.35)

It follows that there exists a transmitter whose index is outside the set A and can be
added to the set A to form the set B that satisfies the statement.

L E M M A 5.8 For any positive integers K,M,n ∈ Z+ such that M ≥ 2 and K ≥ (M −
1)(n + 1) + 1, the following holds for any set S ⊆ [K] such that |S| ≤ (M − 1)n + 1:

M(K − |S|) < (K − n)((M − 1)(n + 1) + 2 − |S|) . (5.36)

Proof We first prove the statement for the case where |S| = (M −1)n+1. This directly
follows, as

M(K − |S|) = M(K − ((M − 1)n + 1))

≤ M(K − (n + 1))

< M(K − n)

= (K − n)((M − 1)(n + 1) + 2 − |S|) . (5.37)

In order to complete the proof, we note that each decrement of |S| leads to an increase
in the left-hand side by M, and in the right-hand side by K − n, and

K − n ≥ (M − 1)(n + 1) + 1 − n

= (M − 2)n + M

≥ M. (5.38)
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L E M M A 5.9 For a K-user channel, if each message is available at a maximum of M =
3 transmitters, and there exists a set A of n transmitters carrying at most n + K+1

4 + 1
messages, and K+1

4 ≤ n < K, then there exists a set B of n + 1 transmitters carrying at
most n+ K+1

4 +2 messages. More precisely, if ∃A⊂ [K] such that |A| = n, K+1
4 ≤ n < K,

and |CA| ≤ n + K+1
4 + 1, then ∃B ⊂ [K] such that |B| = n + 1, |CB| ≤ n + K+1

4 + 2.

Proof The proof follows in a similar fashion to that of Lemma 5.7. Let x = n+ K+1
4 +1.

We only consider the case where K > x + 1, as otherwise the proof is trivial. We first
assume the following:

3(K − |CA|) < (K − n)

(
n + K + 1

4
+ 3 − |CA|

)
. (5.39)

Now, it follows that

∑
i∈[K],i/∈A

|C{i}\CA| ≤ M(K − |CA|)

< (K − n)

(
n + K + 1

4
+ 3 − |CA|

)
, (5.40)

and hence

∃i ∈ [K]\A : |C{i}\CA| ≤ n + K + 1

4
+ 2 − |CA|, (5.41)

and then the set B = A∪ {i} satisfies the statement of the lemma. Finally, we need to
show that (5.39) is true. For the case where |CA| = x,

3x = 3K

4
+ 15

4
+ 3n

= (2n + K) +
(

n − K

4
+ 15

4

)
> 2n + K, (5.42)

and hence 3(K − x) < 2(K − n), which implies (5.39) for the case where |CA| = x.
Moreover, we note that each decrement of |CA| increases the left-hand side of (5.39) by
3 and the right-hand side by (K − n), and we know that

K > x + 1

= n + K + 1

4
+ 2

≥ n + 2, (5.43)

and hence K −n ≥ 3. Therefore, there is no loss of generality in assuming that |CA| = x
in the proof of (5.39), and the proof is complete.
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5.6 Connection between DoF Upper Bound and
Bipartite Vertex Expanders

We note that all the DoF upper-bounding proofs used so far employ Corollary 5.1. We
now show that under the hypothesis that the upper bound in Corollary 5.1 is tight for
any K-user fully connected interference channel with a cooperation order constraint M,
then scalable DoF cooperation gains are achievable for any value of M ≥ 3. Hence, a
solution to the general problem necessitates the discovery of either new upper-bounding
techniques or new coding schemes.

In this section, we restrict our attention to upper bounds on τ(M) that follow by a
direct application of Corollary 5.1. More precisely, for a K-user fully connected channel
with an assignment of the transmit sets {Ti}i∈[K], define B(K,{Ti}) as the upper bound
that follows by Corollary 5.1 for this channel, i.e.,

B(K,{Ti}) = min
S⊆[K]

max(|CS |,K − |S|). (5.44)

Now, let ηout(K,M) and τout(M) be the corresponding upper bounds that apply on
η(K,M) and τ(M), respectively:

ηout(K,M) = max
{Ti}i∈[K]:Ti⊆[K],|Ti|≤M,∀i∈[K]

B(K,{Ti}), (5.45)

τout(M) = lim
K→∞

ηout(K,M)

K
. (5.46)

All the facts that we stated above about τ(M) hold for τout(M), since all the discussed
upper-bounding proofs follow by a direct application of Corollary 5.1. We now identify
a property for message assignment strategies that leads us to prove that τout(M) >
1
2 ,∀M > 2. Note that this does not necessarily imply that τ(M) > 1

2 ,∀M > 2, but it
provides some insight into whether this statement might be true [72].

For each possible message assignment, define a bipartite graph with partite sets of
size K. Vertices in one of the partite sets represent transmitters, and vertices in the
other set represent messages. There exists an edge between two vertices if and only if
the corresponding message is available at the designated transmitter. We note that the
maximum transmit set size constraint implies that the maximum degree of nodes in one
of the partite sets is bounded by M. We now observe that for any set A of transmitters,
CA = {i : Ti ∩A �= ∅} is just the neighboring set NG(A) in the corresponding bipartite
graph G. See Figure 5.4 for an illustration of the bipartite graph representation of
message assignments.

Let UG,VG denote the partite sets corresponding to transmitters and messages in
graph G, with respect to order. For all values of i ∈ [K], define the following:

eG(i) = min
A⊆UG:|A|=i

|NG(A)|. (5.47)

Then we can readily see that

ηout(K,M) = max
G∈GM(K)

min
i∈[K]max(K − i,eG(i)), (5.48)
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Fig. 5.4 The bipartite graph on the right side represents the message assignment for the five-user channel
shown on the left side. c©[2017] IEEE. Reprinted, with permission, from [72].

where GM(K) is the set of all bipartite graphs whose equi-sized partite sets have size K,
and the maximum degree of the nodes in the partite set VG is M.

For values of M > 2, Pinsker proved the following result in 1973 [73].

T H E O R E M 5.10 For any M > 2, there exists a constant c > 1 and a sequence of
M-regular bipartite graphs (GM,K) whose partite sets have K vertices such that the
following is true:

lim
K→∞

eGM,K (αK)

αK
≥ c, ∀0 < α ≤ 1

2
. (5.49)

We next show that the above statement implies that τout(M) > 2,∀M > 2.

C O RO L L A RY 5.4

τout(M) >
1

2
, ∀M > 2. (5.50)

Proof For each bipartite graph G with partite sets of size K, define imin(G) as

imin(G) = argmini max(K − i,eG(i)). (5.51)

Now, assume that τout(M) ≤ 1
2 ; then, for the sequence (GM,K) chosen as in the statement

of Theorem 5.10,

lim
K→∞

max(K − imin(GM,K),eGM,K (imin(GM,K)))

K
≤ 1

2
. (5.52)

It follows that

lim
K→∞

K − imin(GM,K)

K
≤ 1

2
, (5.53)

or

lim
K→∞

imin(GM,K)

K
≥ 1

2
. (5.54)

But then, since eG(i) is non-decreasing in i, (5.49) implies that

lim
K→∞

eGM,K (imin(GM,K))

K
>

1

2
. (5.55)
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Therefore, the result in (5.49) implies that τout(M) > 1
2 , for all M > 2.

It is worth noting that a sequence of bipartite graphs satisfying (5.49) is said to define
a vertex expander as K → ∞. To summarize, we have shown that because of message
assignment strategies corresponding to vertex expanders, one cannot apply the bound
in (5.44) directly to show that τ(M) = τ(1) = 1

2 for any M > 2. Finally, we show that in
the case that the upper bound τout(M) is tight, then, using partial cooperation, the DoF
gain can approach that achieved through assigning each message to all transmitters (full
cooperation). More precisely, we show the following.

T H E O R E M 5.11

lim
M→∞τout(M) = 1. (5.56)

Proof We show that

∀ε > 0,∃M(ε) : ∀M ≥ M(ε),τout(M) > (1 − ε). (5.57)

For each positive integer K, we construct a bipartite graph GM(K) whose partite sets
are of order K by taking the union of M random perfect matchings between the two
partite sets. That is, the matchings are probabilistically independent, and each is drawn
uniformly from the set of all possible matchings. One can easily see that the maximum
degree of nodes in GM(K) is bounded by M, i.e., �(GM(K)) ≤ M, and hence GM(K) ∈
GM(K). We will prove that for any ε > 0, there exists an M(ε) sufficiently large such
that for any M ≥ M(ε), the probability that each set of εK nodes in the partite set UGM(K)

have more than (1−ε)K neighbors is bounded away from zero for large enough K. More
precisely, we show that

lim
K→∞Pr[∀A ⊂ UGM(K) : |A| = εK, |NGM(K)(A)| > (1 − ε)K] > 0, (5.58)

and hence, for large enough K, there exists a graph G in GM(K) where all subsets of UG

of order εK have more than (1 − ε)K neighbors in VG, i.e.,

eG(i) > (1 − ε)K,∀i ≥ εK, (5.59)

and it follows that ηout(K,M) > (1 − ε)K, and (5.57) holds.
We now show that (5.58) holds. Let A ⊂ UGM(K), B ⊂ VGM(K) such that |A| = εK,

|B| = (1 − ε)K. For any random perfect matching, the probability that all the neighbors

of A are in B is ((1−ε)K
εK )

( K
εK)

. By independence of the matchings, we get the following:

Pr[NGM(K)(A) ⊆ B] =
((

(1−ε)K
εK

)
( K
εK

)
)M

≤ ((1 − ε)εK)M . (5.60)
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A direct application of the union bound results in the following:

Pr[|NGM(K)(A)| ≤ (1 − ε)K]
≤

∑
B⊂VGM (K):|B|=(1−ε)K

Pr[NGM(K)(A) ⊆ B]

≤
(

K

(1 − ε)K

)
(1 − ε)εMK , (5.61)

and

Pr[∃A ⊂ UGM(K) : |A| = εK, |NGM(K)(A)| ≤ (1 − ε)K]
≤

∑
A⊂UGM (K):|A|=εK

Pr[|NGM(K)(A)| ≤ (1 − ε)K]

≤
(

K

εK

)(
K

(1 − ε)K

)
(1 − ε)εMK

=
(

K

εK

)2

(1 − ε)εMK

(a)≈ 22KH(ε)(1 − ε)εMK

= 2(2H(ε)+εM log(1−ε))K , (5.62)

where H(·) is the binary entropy function, and (a) follows as
( n
εn

) ≈ 2nH(ε) for large

enough n. Now, we choose M(ε) >
2H(ε)

−ε log(1−ε)
, to make the above exponent negative,

and the above probability will be strictly less than unity, i.e., we showed that for any
M ≥ M(ε),

lim
K→∞Pr[∃A ⊂ UGM(K) : |A| = εK, |NGM(K)(A)| ≤ (1 − ε)K] < 1, (5.63)

which implies that (5.58) is true.

5.7 Iterative Algorithms for Constant MIMO Channel with CoMP

In Chapter 4, we studied iterative algorithms for designing linear transmitter and
receiver processing to maximize the sum-rate for communication on interference
channels. In particular, we developed a convergent version of the Max SINR algorithm
proposed by Gomadam et al. [38, 39]. In this section, we extend the iterative approach
to the case where we allow transmit cooperation through CoMP. The model that we use
is the one given in (4.1), with the additional simplification that Nt = Nr = N. We focus
on the spiral set cooperation model introduced in (5.1).

The feasibility conditions for interference alignment given in Section 3.4 can be
extended to the case with transmit cooperation. This analysis is facilitated by the
two-stage scheme described in Section 5.2, consisting of first applying zero-forcing
and then IA, as shown in Figure 5.1. The derived channel depicted in Figure 5.2
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corresponding to the constant MIMO channel has 2N transmit antennas for each of
the first M −1 users, and N transmit antennas for each of the remaining users. Thus, the
achievable DoF may not be the same for all users. If every user is constrained to have
the same DoF, it is shown in [74] that the achievable sum DoF (assuming M ≤ K − 2) is
given by

η
sym
ach = K

⌊
2N

K − M + 2

⌋
. (5.64)

In the asymmetric case, where the per-user DoF is variable, the achievable sum DoF is
given by

η
asym
ach = max

{
(M − 1)N + (K − M + 1)

⌊
N

K − M + 1

⌋
,K

⌊
2N

K − M + 2

⌋}
. (5.65)

These achievable sum DoF values should be compared with that achievable without
cooperation, given in (3.19), i.e.,

η
no coop
ach = K

⌊
2N

K + 1

⌋
. (5.66)

For large N, if we ignore the floor function in the degrees of freedom expressions, we
have

η
no coop
ach ≈ 2KN

K + 1
,

η
sym
ach ≈ 2KN

K − M + 2
,

η
asym
ach ≈ max

{
MN,

2KN

K − M + 2

}
.

(5.67)

Therefore, if M ≥ 2, we have η
sym
ach > η

no coop
ach and η

asym
ach > η

no coop
ach . We use the degrees of

freedom guidelines of (5.67) to choose the number of beams in the iterative algorithms
for interference management with CoMP.

In particular, suppose user k wants to send dk symbols denoted by xk. We assume that

xk ∼ CN
(
0,diag(ρk1, . . . ,ρkdk

)
)

(5.68)

with ρk� chosen to satisfy a per-transmitter power constraint P, i.e.,

Mt−1∑
j=0

dk−j∑
�=1

ρk−j,� ≤ P. (5.69)

Let �k be a diagonal matrix with the powers used to send the dk streams of user k on
the diagonal, i.e.,

�k = diag(ρk1, . . . ,ρkdk
). (5.70)

To construct its xj, as in (4.4) user j uses a linear transmit strategy denoted Vj, so x̃j =
Vjxj, where Vj is an MN × dj matrix. At receiver k we zero-force the interfering signals
using an N × dk matrix of zero-forcing vectors Uk, as in (4.5). Note that we do not need
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to construct the derived channels first; we can simply design the transmit and receive
vectors directly for the original channel.

As in Section 4.1.1, the algorithms for iterative interference management involve
working with a reciprocal channel corresponding to reversing the direction of
communication. The iterative algorithms presented in Chapter 4 can readily incorporate
CoMP transmission, by replacing the channels in those algorithms with effective
channels defined by

Ĥkj = [Hk,j · · ·Hk,j+M−1
]

,

where the indices j, . . . , j + M − 1 are taken modulo K.
It is shown in numerical results given in [74] that iterative algorithms for interference

management (Max SINR and Min Leakage) show significant improvements in sum-rate
with the inclusion of CoMP transmission, even with M = 2. The gains are most
significant in regimes where interference alignment is not feasible without CoMP
transmission but is feasible with CoMP transmission. More importantly, with the
inclusion of CoMP transmission, the iterative algorithms converge much faster, with
as little as one iteration being enough to achieve good sum-rate performance for some
system configurations.

5.8 Discussion: Justifying Model Choices

In this chapter, we have drawn conclusions about the value of CoMP transmission in
dense fully connected networks. In the following chapters, we observe that some of
these conclusions are specific to the assumption of full connectivity. In Chapter 6, we
alter that assumption to investigate DoF gains in large locally connected networks,
where each receiver observes only the transmit signals that originate in a local
neighborhood. We will see that conclusions regarding the value of CoMP transmission
and the right choices of assigning messages to transmitters as well as the joint
transmission scheme will differ dramatically between the study of fully connected
networks in this chapter and the study of locally connected networks in Chapter 6.
In Chapter 9, we introduce dynamic interference networks where the topology can
change due to deep fading conditions, and it is desired to find the assignment of
backhaul resources that results in the maximum DoF averaged over all possible network
realizations. We now discuss the choices of the system model considered in both this
chapter and the rest of this book. Namely, the cooperation constraint that is used to
model a backhaul network with limited rate resources, the choice of the degrees of
freedom criterion for studying the information-theoretic capacity, and the choice of
studying how the DoF scales with the number of users in the network.

5.8.1 Cooperation Constraint

We only consider the sharing of whole messages over a backhaul network that connects
basestations with a central controller. We also started from Section 5.3 considering a
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maximum transmit set size constraint, where each message can only be available at
a maximum number of transmitters. The soundness of these assumptions originates
from two aspects. First, the knowledge of solutions using the considered cooperation
constraint under different settings can significantly reduce the difficulty of obtaining
solutions under more complex assumptions that are closer to practice. For example, we
will see in Chapter 7 that optimal solutions obtained using the per-message maximum
transmit set size constraint can be used to construct optimal solutions under an overall
backhaul load constraint that allows for distributing one message to more transmitters
at the cost of distributing other messages to fewer transmitters. The second aspect is
the fitness of this model in the emerging cloud-based communication paradigm with
a digital backhaul infrastructure. Understanding the structural impact of the network
topology on the choice of assigning messages to basestation transmitters – or more
generally, associating mobile terminals with basestations – could be very useful for
future wireless networks. The tractability of the considered cooperation constraint will
be demonstrated by characterizing the optimal message assignment and per-user DoF
for multiple network topologies. Having a constraint that is a function of the number
of message instances distributed through the backhaul, rather than imposing a direct
backhaul capacity constraint, simplifies the statistical nature of the problem. Further,
imposing a per-message constraint, rather than an overall backhaul constraint, simplifies
the combinatorial nature of the problem.

5.8.2 Large Networks

We discussed in Section 5.1 an example where CoMP transmission can be used to
achieve DoF gains through asymptotic interference alignment, by having each message
available at two transmitters. However, we saw in the rest of the chapter that these
DoF gains are not significant in large networks. In particular, assigning each message
to two transmitters cannot lead to DoF gains that scale with the size of the network,
regardless of the choices of message assignment and coding schemes. Our choice to
discuss analysis of large networks allows us to avoid difficult problems that arise when
analyzing exact DoF gains, which do not lead to insights that scale with the size of the
network. Understanding large wireless networks with centralized designs is expected to
be particularly relevant to future network designs and applications.

5.8.3 Degrees of Freedom

Degrees of freedom is the pre-log factor of the information-theoretic capacity
at high signal-to-noise ratio. When studied in a network with more than one
transmitter–receiver pair, it roughly captures the number of interference-free communi-
cation links in an equivalent network that has the same sum capacity. While the capacity
of the simple two-user interference network is still a hard open problem, much progress
has been made in characterizing the DoF of wireless networks in multiple settings over
the past decade. Most notably, as we discussed in Chapter 3, the DoF of a K-user
interference network with each message being assigned to the transmitter carrying
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the same index was identified as K
2 , and the achieving scheme relies on asymptotic

interference alignment. The main reason for considering DoF analysis is tractability,
due to the many simplifications offered by this analysis, which can be summarized as
follows:

• Ignoring all sublinear capacity terms: By definition, the DoF analysis captures
only the pre-log factor of the information-theoretic capacity. Any term that is an
offset, or scales sublinearly with the logarithm of the transmit power, is not accounted
for. This simplifies the analysis as we only look for factors that scale with the
point-to-point capacity. For example, the DoF of any two-user interference channel
with an interfering link is unity.

• Ignoring transmit power: All considered DoF analyses assume that all users have
the same transmit power, and the DoF is measured at the infinite limit of that power.
Hence, any difficulty associated with the impact of different transmit powers for
different users is neglected.

• Ignoring Gaussian noise: Since the power of Gaussian noise does not scale with
the transmit power, no consideration is given to combating the Gaussian noise in
DoF analysis. This shifts the focus to understanding the best schemes for mitigating
interference.

• Ignoring different channel strengths: The DoF analysis we consider here is
oblivious to differences in channel strengths. However, there exists a generalization in
the literature that is known as the generalized degrees of freedom (GDoF) that takes
this factor into account. Ignoring variations in channel strengths allows us to focus our
study on obtaining insights for resource allocation and coding schemes based solely
on the network topology.

The soundness of DoF analyses can also be derived from the above reasons. In
particular, through the insights we obtain from DoF analysis, we are able to ignore the
point-to-point code analysis and focus on network interference management. Therefore,
regardless of the mechanism used to alleviate the effects mentioned in the above
points, and most notably the Gaussian noise, we could incorporate these mechanisms as
building blocks in the obtained framework for network-level interference management.



6 Locally Connected Channels
with CoMP

In the previous chapter, we highlighted an important negative conclusion regarding
the potential of CoMP transmission in dense wireless networks. That is, if sharing of
messages is restricted to local neighborhoods whose size does not increase linearly with
the size of the network, then CoMP transmission cannot be used to increase the per-user
DoF in large fully connected networks. We now question the practical relevance of the
full connectivity assumption. Understanding the analysis of fully connected networks
can enable theoretical insights for extreme scenarios where all the interfering channel
links are strong enough, such that it is not appropriate to treat any interfering signal as
noise. However, in practice, path loss effects result in a weaker received interference
power as the distance between the interfering transmitter and receiver increases. For
this reason, it is the case that the number of dominant interfering links in most cellular
networks ranges from three to seven. By “dominant,” here, we mean links for which the
received interference power is considerably larger than the noise power. We therefore
study the DoF in locally connected interference channels with CoMP transmission in
this chapter.

6.1 Channel Model

We introduce the locally connected channel model by first defining a parameter L to
denote the number of dominant interfering signals per receiver. Each transmitter is
connected to

⌊L
2

⌋
preceding receivers and

⌈L
2

⌉
succeeding receivers. We use ηL(K,M)

as the best achievable DoF η over all choices of transmit sets satisfying a maximum
transmit set size constraint of M, and τL(M) to denote the asymptotic per-user DoF
under the same constraint.

We may use a more convenient alternative model for the locally connected channel
without affecting the conclusions regarding the asymptotic per-user DoF. Instead of
assuming that the set of receivers connected to a transmitter is approximately split
between receivers that have indices preceding the transmitter index and those with
succeeding indices, we assume that each transmitter with index i is connected to
receivers with indices {i, i + 1, . . . , i + L}. We can see that the two models are equivalent
for the purposes of analyzing the per-user DoF from the following argument. Let
x = ⌊L

2

⌋
. We silence the first x transmitters, deactivate the last x receivers, and relabel

the transmit signals to obtain a (K −x)-user channel, where transmitter j is connected to
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Fig. 6.1 Construction of the equivalent locally connected channel model with the number of users K = 5
and connectivity parameter L = 2. (a): the original model. (b): the new model. c©[2017] IEEE.
Reprinted, with permission, from [71].

receivers in the set {yi : i ∈ {j, j+1, . . . , j+L}}. We note that the new channel model gives
the same value of τL(M) as the original one, since x = o(K). Unless explicitly stated
otherwise, we will be using this equivalent model in the rest of this chapter. Finally, we
assume that the set of values for all existing communication links is drawn from a joint
continuous distribution. We show an example construction of the equivalent channel
model in Figure 6.1.

For the case when L = 1, each transmitter is connected to the receiver carrying the
same index, as well as one succeeding receiver. This network is known as Wyner’s
asymmetric interference network (L = 2 refers to the symmetric case) [75]. We will
also refer to this network as the linear interference network due to its connectivity
pattern. The rationale for analyzing this network is that it allows us to obtain rigorous
conclusions that yield insights into understanding more complex networks that may
have practical significance.

6.2 Interference-Aware Cell Association

We start our discussion of locally connected channels by studying the simpler scenario
where no cooperation between transmitters is allowed. Suppose that each message can
be available at one transmitter. For the case where L = 1, i.e., Wyner’s asymmetric linear
interference network, if message i is available at transmitter i, for all i ∈ [K], then the
asymptotic per-user DoF is exactly 1

2 . The information-theoretic converse can be proved
in this case by arguing that a centralized decoder that has access to all received signals
with even indices can decode all messages (up to the uncertainty in the noise) because
of the simple connectivity of the channel. Given y2, we can determine W2, and hence
we can determine x2, and hence we can determine x1, and then W1. What we argue for
next is that by allowing for a more flexible pattern of assigning messages (or receivers)
to single basestation transmitters, or what we call a cell association decision that is
interference aware, we could achieve gains in the asymptotic per-user DoF even for this
simple scenario.
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x1
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x3

y1
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y3

W3

W1 W1

W3

Fig. 6.2 Achieving 2
3 per-user DoF without cooperative transmission. Only signals corresponding to the

first subnetwork in a general K-user network are shown. The signals in the dashed boxes are
deactivated.

Consider the following cell association pattern. We designate the transmit signal x1

to serve the first receiver, and the transmit signal x2 to serve the third receiver; this is
the same as saying that we assign message W1 to the first transmitter and message W3

to the second transmitter. Further, we deactivate the third transmitter and the second
receiver. By deactivating the third transmitter, we disconnect the subnetwork consisting
of the first three transmitters and receivers from the rest of the network. Also, in that
subnetwork consisting of the first three users, two degrees of freedom can be achieved,
since messages W1 and W3 can be communicated without interference. The same cell
association pattern can be repeated for every subsequent subnetwork that consists of
three consecutive transmitter–receiver pairs. For example, assigning message W4 to the
fourth transmitter and message W6 to the fifth transmitter, and deactivating the sixth
transmitter and the fifth receiver. Since we achieve two degrees of freedom for every
set of three users, the asymptotic per-user DoF achieved through this cell association
pattern is 2

3 . We illustrate the scheme in Figure 6.2.
This example highlights the key idea that we wish to present in this chapter. By

taking into account knowledge of the locally connected network topology, we can
make smarter message assignments that lead to schemes that are simpler than those
based on interference alignment (see Chapter 3), and still achieve unprecedented gains.
For example, the coding scheme in the example presented relies only on interference
avoidance. In the coming sections, we extend this insight to the case where cooperative
transmission is possible by allowing each message to be available at more than one
transmitter, and illustrate how an extension of the scheme in this simple example is in
fact optimal.

6.3 One-Shot Linear Beamforming Schemes

A crucial advantage of interference avoidance coding schemes, besides their simple
analysis, is that they require no symbol extensions. This is in contrast to interference
alignment schemes that deliver their promised gains in DoF only asymptotically as
the length of the symbol extension used goes to infinity (see Chapter 3). However,
basic interference avoidance that relies on a time-division multiple-access (TDMA)
strategy does not exploit the availability of a message at more than one transmitter. In
order to exploit cooperative transmission, while maintaining the no-delay advantage of
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interference avoidance, we discuss here a generalization of basic interference avoidance
schemes to incorporate cooperation by designing zero-forcing transmit beams to
cancel undesired interference. Consider a simple linear pre-coding scheme, where a
zero-forcing transmit beamforming strategy is employed. The transmit signal at the jth
transmitter is given by

xj =
∑

i:j∈Ti

xj,i, (6.1)

where xj,i depends only on message Wi. Let us also only consider message assignments
where each message can only be assigned to a set of M successive transmitters.
Intuitively, restricting the transmit set of each message to a set of transmitters with
successive indices should not hurt performance. This follows from the connectivity
of the channel, since any two transmitters whose indices differ by more than one
cannot both be connected to a single receiver, and we would not assign a message
to a transmitter unless this transmitter will either help in delivering the message to
its intended destination or help to cancel the interference caused by this message at
an unintended receiver. Canceling or reducing interference through a transmit signal
can only happen if the corresponding transmitter is connected to a receiver that is also
connected to another transmitter carrying the same message. We formalize this concept
in the next section by characterizing a class of useful message assignments for any
network topology.

Like basic interference avoidance, the zero-forcing transmission strategy
involves deactivating some receivers in each communication session and achieving
interference-free delivery of each active message to its intended receiver. First, a unique
transmit signal is designated for the delivery of each active message to its destination.
Then, each remaining transmit signal in the transmit set is used to cancel the interference
caused by the message at an active receiver. Completely eliminating interference over
the air is valid when we assume that perfect information about the channel state is
available at all transmitters, and also assume perfect synchronization between the
transmitters. It is important to keep in mind that both of these assumptions only hold
approximately in practice. However, they remain very useful for theoretical analysis
as they allow us to make progress toward understanding the fundamental limitations
of interference management regardless of the state of the available technology for
combating the issues of synchronization and channel estimation.

6.3.1 Linear Network with Two Transmitters per Message

Consider a linear network scenario where we can make each message available at
two transmitters. We split the network into subnetworks, where each subnetwork has
five transmitter–receiver pairs, and the last transmitter in each subnetwork is inactive.
Because of the connectivity of the linear network, if the last transmitter in a subnetwork
is inactive, there is no interference caused by this subnetwork to the next subnetwork.
We then know that the per-user DoF that we can achieve in each subnetwork is simply
the overall asymptotic per-user DoF, assuming we repeat the same scheme for all
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subnetworks. We therefore describe a message assignment and coding scheme for the
first subnetwork. Message W1 is assigned to the first transmitter and delivered through
x1 to the first receiver without interference; the same message is also assigned to the
second transmitter and its interference at the second receiver is canceled through a
careful design of the transmit signal x2,1. In particular, we set x2,1 as

x2,1 = −h21x1

h22
, (6.2)

and hence the interference due to W1 at y2 is completely eliminated, because

h21x1,1 + h22x2,1 = 0.

Message W2 is assigned to the second transmitter and delivered through x2,2 to the
second receiver without interference. Message W3 is not transmitted. Here it is worth
mentioning that fairness across message rates can be achieved through a fractional reuse
mechanism where user indices are shuffled across communication sessions (or resource
units). Message W5 is assigned to the fourth transmitter and delivered through x3,4 to
the fourth receiver without interference. Finally, we assign both messages W4 and W5 to
the third transmitter. The transmit signal x3,5 is used to eliminate the interference of W5

at y4, and the transmit signal x3,4 is used to deliver message W4 to the fourth receiver
without interference.

As we discussed, in order to analyze the achieved asymptotic per-user DoF, when
using the scheme described above in a large network where we repeat the same pattern
of message assignment and coding scheme for each subnetwork of five users, it suffices
to analyze the achieved per-user DoF in each subnetwork. In this case, we have four
messages delivered to their intended destinations without interference, and hence,
by using capacity achieving point-to-point codes, the achieved DoF is 4 within the
subnetwork. Since the subnetwork has five users, the achieved per-user DoF is 4

5 . We
show in Section 6.5 that this in fact is the optimal per-user DoF value if each message
can be available at any two transmitters. This strategy is illustrated in Figure 6.3.
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Fig. 6.3 Achieving a per-user DoF of 4
5 by assigning each message to two transmitters. Dashed boxes

signify inactive signals.
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We now make the following observations that will pave the way for the rest of this
chapter:

• It is not the case that each message Wi is available at the transmitter with the same
index, i.e., the ith transmitter. For example, the two transmitters selected for assigning
message W5 are the third and fourth transmitters. This is different from traditional
approaches where having each message available at the transmitter with the same
index is assumed to be a constraint (see, e.g., [76]). It is worth highlighting the
potential advantages of this flexibility in a practical setting. For example, in the
cellular downlink, it can be beneficial to allow for a flexible association of receiving
mobile terminals to basestation transmitters in a fashion that is asymmetric across the
different mobile terminals, with the goal of maximizing the overall rate. We further
illustrate the benefits of asymmetry in message assignment in Chapter 7, where the
cooperation constraint is an overall one rather than a per-message constraint.

• As we will see in Section 6.5, if each message can be available at only one transmitter,
then the per-user DoF is 2

3 . Hence, using CoMP results in a significant DoF gain that
scales with the size of the network. Further, as we will show in Section 6.3.2, the
asymptotic per-user DoF achieved through CoMP approaches unity as the number of
transmitters allowed per message increases.

• As we split the network into small subnetworks of fixed size, we notice that the
scheme relies on assigning all the messages with indices in the subnetwork within
only transmitters inside the subnetwork. For example, messages W1 through W5 are
assigned only within the first five transmitters. Hence, cooperation can be carried over
within neighborhoods of a fixed small size that does not increase with the number of
users in the network. We formalize this point in Section 6.4, as we show that local
cooperation suffices for any locally connected network, not only from a degrees of
freedom perspective.

6.3.2 Linear Network with Multiple Transmitters per Message

Consider the case where each message can be available at M transmitters, where M
can be any positive integer. We illustrate an extension of the scheme presented in the
previous section that achieves 2M

2M+1 asymptotic per-user DoF. The network is again split
into subnetworks, and the last transmitter in each subnetwork is deactivated to avoid
inter-subnetwork interference. Each subnetwork consists of 2M +1 transmitter–receiver
pairs with consecutive indices. The case where M = 2 is the case discussed in the
previous section; in that scenario, the third receiver in each subnetwork was deactivated.
In general, the middle receiver, i.e., the one with index (M + 1), is inactive. We discuss
next the message assignment and coding scheme for the first subnetwork.

As in the scheme for the case where M = 2, message W1 is delivered through x1 to y1

without interference, messages W1 and W2 are assigned to the second transmitter, and x2

is used to both eliminate the interference due to W1 at y2 and to deliver W2 to y2 without
interference. Further, if M > 2, then messages W1, W2, and W3 are assigned to the third
transmitter, which will use its transmit signals x3,1 and x3,2 to eliminate the interference
due to W1 and W2 at y3, respectively. Also, x3,3 can now be used to deliver W3 to y3 with-
out interference. We keep assigning messages according to this pattern for each of the
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Fig. 6.4 Achieving a per-user DoF of 6
7 by assigning each message to three transmitters. Dashed boxes

signify inactive signals. c©[2017] IEEE. Reprinted, with permission, from [71].

first M messages. More precisely, the ith message is assigned to the first i transmitters,
for each i ∈ {1,2, . . . ,M}, and the ith transmit signal is used to cancel the interference
due to W1,W2, . . . ,Wi−1 at yi, as well as to deliver Wi to yi without interference.

Recall that message WM+1 is not transmitted. For the remaining M messages in
the subnetwork, from WM+2 up to W2M+1, the same pattern that was used for the
assignment of the first M messages is applied in reverse with the M transmitters
from M + 1 up to 2M. More specifically, message W2M+1 is delivered through x2M

to y2M+1 without interference (since x2M+1 is inactive). Messages W2M+1 and W2M are
available for encoding x2M−1 to cancel the interference of W2M+1 at y2M and deliver
W2M to y2M without interference. We continue with this pattern of assigning messages
W2M+1,W2M , . . . ,Wi+1 to the ith transmitter for every i ∈ {M + 1,M + 2, . . . ,2M}, and
the transmit signal xi is used to cancel the interference due to W2M+1,W2M , . . . ,Wi+2

at yi+1 and deliver the message Wi+1 to yi+1 without interference. Since we have 2M
interference-free message deliveries for every subnetwork of 2M +1 users, the achieved
per-user DoF is 2M

2M+1 .
Observe how fast we can approach the interference-free per-user DoF of unity

while assigning each message to few transmitters. For example, in a large linear
network where we are allowed to make each message available at three transmitters,
an asymptotic per-user DoF of 6

7 can be achieved. Figure 6.4 depicts the message
assignment for the case where M = 3.

6.3.3 Locally Connected Network with Multiple Transmitters per Message

Consider the extension of the scheme presented in Section 6.3.2 to general locally
connected networks, where each transmitter i is connected to receivers i, i + 1, . . . , i + L,
and L can be greater than one. We again split the network into subnetworks, but
instead of deactivating the last transmitter in each subnetwork, we need to activate
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Fig. 6.5 Achieving a per-user DoF of 2
3 by assigning each message to two transmitters in a locally

connected network, with three transmitters connected to each receiver. Dashed boxes signify
inactive signals. c©[2017] IEEE. Reprinted, with permission, from [71].

more than one transmitter. In order to avoid inter-subnetwork interference, we need
to deactivate the last L transmitters in each subnetwork. Each subnetwork has 2M + L
transmitter–receiver pairs, and the middle L receivers are inactive. The goal is to create
2M interference-free point-to-point communication links in each subnetwork, so that
the achieved per-user DoF is 2M

2M+L .
We outline the message assignment and interference cancellation scheme in the first

subnetwork below:

• Message W1 is assigned to the first transmitter and delivered through x1 to y1 without
interference.

• For each i ∈ {1,2, . . . ,M}, messages W1,W2, . . . ,Wi are assigned to the ith transmitter.
The transmit signal xi is used to eliminate the interference due to W1,W2, . . . ,Wi−1 at
yi, as well as to deliver Wi to yi without interference.

• Message W2M+L is assigned to the transmitter with index 2M, and delivered through
x2M to y2M+L without interference.

• For each i ∈ {2M,2M − 1, . . . ,M + 1}, messages Wi+L,Wi+L+1, . . . ,W2M+L are
assigned to the ith transmitter. The transmit signal xi is used to eliminate the
interference due to Wi+L+1, . . . ,W2M+L at yi+L, as well as to deliver Wi+L to yi+L

without interference.

Note that here, the L messages WM+1,WM+2, . . . ,WM+L are inactive. We show the
assignment for the first subnetwork for the case where M = 2 and L = 2 in Figure 6.5.

6.3.4 Optimal Zero-Forcing Schemes

The one-shot linear beamforming schemes that we have presented so far are in fact
the optimal zero-forcing schemes for locally connected channels. What we mean by
zero-forcing schemes is that interference is canceled over the air. In other words, each
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receiver is either inactive or receives only its desired signal, so each active receiver can
directly employ a point-to-point decoder that is oblivious to the potential presence of
interference. Formally, if the jth receiver is active, then the mutual information between
its received signal and any message other than Wj is zero:

I
(
Wi;yj

)= 0, ∀i �= j, for every active receiver with index j. (6.3)

In order to prove that the schemes presented are the optimal zero-forcing schemes,
we show that for any locally connected network with connectivity parameter L, the
maximum achievable asymptotic per-user DoF is 2M

2M+L . We prove this by showing that
for any consecutive set of 2M + L users, at most 2M of these users can be active in any
zero-forcing scheme. We first state the following two facts, which are formally defined
and proved in [71]:

How many times can we cancel a message’s interference? Suppose that we have
a scheme where message Wi causes interference at N undesired destinations; then it
must be the case that Wi is assigned to at least N + 1 transmitters, i.e., |Ti| ≥ N + 1.
The reason is that we need one transmitter to deliver the message Wi to its desired
destination, as well as N other transmitters to cancel the interference caused by Wi

at the N undesired destinations. In other words, what we are saying is that a single
transmitter can be used to cancel the interference due to any given message at no
more than one receiver. The reason is that for a generic channel, using one transmitter
to cancel a message’s interference at more than one receiver will necessitate that the
set of involved channel coefficients is drawn from a realization that can only take
place with zero probability. It follows that the number of active receivers connected
to transmitters carrying any given message cannot exceed the number of transmitters
carrying this message (i.e., at most M).
A message’s interference affects a block of consecutive receivers: If message Wi

causes interference at receiver j, then the same message must also cause interference
at all active receivers with an index between i and j. The reason for this fact
will become clearer as we discuss the concept of useful message assignments in
Section 6.4, but the intuition is that we do not assign a message to a transmitter
unless it is used either for delivering the message to its intended destination or for
canceling the interference caused by this message at an undesired receiver. We also
know that only the L transmitters that are connected to the ith receiver can be used to
deliver message Wi to its destination. If Wi causes interference at yj, that means that
Wi is assigned to one of the transmitters connected to the jth receiver, and then we
know that there has to be a list of transmitters starting at a transmitter connected to
the ith receiver and ending with the transmitter that is carrying Wi and connected to
the jth receiver, where each pair of succeeding transmitters in the list share at least
one receiver to which they are both connected. This chain of transmitters is the reason
why Wi causes interference at every active receiver with an index between i and j.

Consider any set S of 2M + L messages with consecutive indices. If there are at least
2M + 1 active messages in S, then there has to be a message with index i in the middle
with at least M active messages in S with lower indices than i, and at least M active
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messages in S with higher indices than i. Let smin and smax be the minimum and
maximum indices in S, respectively. Then we have the following cases:

1. Message Wi causes interference at ysmin . In this case, Wi has to cause interference at
every receiver with an index x such that smin ≤ x ≤ i, but we know that the number
of active receivers with indices in that range is M + 1, and Wi can only be available
at M transmitters. Therefore, one active receiver will have interference from Wi that
is not canceled.

2. Message Wi causes interference at ysmax . In this case, Wi causes interference at the
M +1 active receivers with indices between i and smax, resulting in at least one active
receiver with undesired interference from Wi that is not canceled.

3. For the remaining case, all the interference caused by Wi is at receivers with indices
in S. It follows that the number of active receivers connected to transmitters carrying
Wi is |Ti|+L. Further, since S has 2M +L receivers, among which at least 2M +1 are
active, any subset of S that has |Ti| + L receivers has to have at least |Ti| + 1 active
receivers. Hence, we have shown that the size of the set of active receivers connected
to transmitters carrying Wi is at least |Ti|+ 1. In summary, there is at least one active
receiver that suffers from interference of Wi, and it is not canceled.

Thus far we have characterized the optimal interference avoidance schemes using
cooperative transmission in any locally connected network. The message assignment
exploits only local cooperation by splitting the network into subnetworks and assigning
the messages of each subnetwork within only the transmitters in the subnetwork. In
Section 6.4, we formally prove the optimality of local cooperation in any locally
connected network, even without the restriction to zero-forcing schemes. Finally, we
note that the presented coding scheme is easy to implement in practice, not only because
it relies on only local cooperation but also because unlike interference alignment
schemes it can be implemented without symbol extensions that introduce decoding
delay.

6.4 Optimality of Local Cooperation

A key idea that allows us to make significant progress toward characterizing the DoF
of locally connected networks with cooperative transmission is that of understanding
which assignments of messages to transmitters are required and which are not. In other
words, we would like to understand when can we assert that assigning a message to a
certain transmitter cannot increase the rate of communication regardless of the coding
scheme employed. For that purpose, we introduce the following definition of useful
message assignments.

6.4.1 Useful Message Assignments

Intuitively, we say that an assignment of a message Wi to a transmitter Tj is useful if it
serves at least one of the following two purposes:
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Signal delivery: The assignment can be useful for delivering Wi to receiver Ri, if Tj

is connected to Ri.
Interference mitigation: The assignment can be useful for reducing the interference
caused by Wi at a receiver Rk, if Tj is connected to Rk, and there is already another
transmitter connected to Rk to which the message Wi is already assigned.

We now formalize the definition of useful message assignments. We first introduce
a graph-theoretic representation that simplifies the presentation of the necessary
conditions on useful message assignments. For message Wi, and a fixed transmit set
Ti, we construct the following graph GWi,Ti that has {1,2, . . . ,K} as its set of vertices,
and an edge exists between any given pair of vertices v,w ∈ [K] if and only if

v,w ∈ Ti,

|v − w| ≤ L.

Vertices corresponding to transmitters connected to yi are given a special mark, i.e.,
vertices with labels in the set {i, i − 1, . . . , i − L} are marked for the considered channel
model. See Figure 6.6 for an example illustration of GWi,Ti . A necessary property for
any useful message assignment is stated in the following lemma.

L E M M A 6.1 For any k ∈ Ti such that the vertex k in GWi,Ti is not connected to a
marked vertex, removing k from Ti does not decrease the sum-rate.

The formal information-theoretic proof of Lemma 6.1 is available in [71]. We explain
the insight behind it here. Let S denote the set of indices of vertices in a component of
GWi,Ti that has no marked vertices. No vertex in S is connected to a marked vertex. We
can then argue that replacing Wi at any transmitter in S with an independent random
variable that has the same distribution will give the same rate, regardless of the coding
scheme.

As a result of Lemma 6.1, we can conclude that if message Wi is available at
transmitter Tj in a useful message assignment, then there has to be a chain of transmitters
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starting at Tj and ending at a transmitter connected to the receiver Ri, where every two
consecutive transmitters in the chain are both carrying Wi and there is at least one
receiver that is connected to both. We can describe this corollary more succinctly in
terms of the graph GWi,Ti as follows.

C O RO L L A RY 6.1 Let Ti be a useful message assignment and |Ti| ≤ M. Then, for all
k ∈ [K], k ∈ Ti only if the vertex k in GWi,Ti lies at a distance that is less than or equal
to M − 1 from a marked vertex.

We now interpret what the above corollary implies for locally connected networks
where each transmitter i is connected to receivers {i, i + 1, . . . , i + L}. Suppose we wish
to compute the distance in GWi,Ti between transmitters k and k + 2L. We know that this
distance would depend on the message assignment Ti. Therefore, if we want to have an
answer that relies only on the network topology and not on the message assignment, we
change our question to ask rather about the least possible distance between transmitters
k and k + 2L in any graph GWi,Ti for any i ∈ [K]. If transmitters k, k + L, and k + 2L all
carry message Wi, i.e., {k,k + L,k + 2L} ⊆ Ti, then the distance in GWi,Ti between k and
k + 2L is two, because k and k + L would be connected, and so would k + L and k + 2L.
In fact, this is the scenario that would give the minimum distance between k and k +2L,
simply because in the considered network topology, transmitters k and k + 2L are not
both connected to a common receiver, and hence the aforementioned distance cannot be
one.

We can see that the corollary implies that

Ti ⊆ {i − ML, i − ML + 1, . . . , i + (M − 1)L}, ∀i ∈ [K]
is a necessary condition for any useful message assignment. This necessary condition
does not depend on the number of users in the network, K. So, no matter how large the
network is, we have a guarantee that we need only worry about assigning each message
within a neighborhood of transmitters whose size depends only on the cooperation
constraint M and the connectivity parameter L. We formalize this conclusion by defining
local cooperation schemes.

6.4.2 Local Cooperation

Recall the definitions of a message assignment strategy and local cooperation in
Section 5.4. From Lemma 6.1, we can conclude the following about local cooperation
schemes:

T H E O R E M 6.2 Local cooperation is optimal for locally connected channels.

Proof We know from the corollary to Lemma 6.1 that

Ti ⊆ {i − ML, i − ML + 1, . . . , i + (M − 1)L}, ∀i ∈ [K]
is a necessary condition for useful message assignments, regardless of the number of
users K. Hence, the constraint in (5.18) is satisfied with r(K) = ML, for all K ∈ Z+.
Further, (5.17) is also satisfied with the same radius function.
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We note how dramatically different the conclusions that we obtain are for different
network topologies. For a fully connected network, local cooperation does not result in
degrees of freedom gains that scale with the number of users. For any locally connected
network, not only does local cooperation allow for scalable degrees of freedom gains,
but restricting the message assignments to satisfy the local cooperation constraint does
not hurt performance.

6.5 Degrees of Freedom in Linear Networks

We use the knowledge we have developed about useful message assignments to reach
a tight characterization of the asymptotic degrees of freedom for linear networks.
We have identified through our discussion of one-shot schemes that one can achieve

2M
2M+1 per-user degrees of freedom in large linear networks by a clever message
assignment and zero-forcing-based cooperative transmission scheme that allows each
message to be available at M transmitters. We show in this section that under this
cooperation constraint, this is in fact the optimal per-user degrees of freedom from an
information-theoretic standpoint.

Consider the case where each message can be available at only one transmitter in
a linear interference network, i.e., M = 1. We know that a per-user DoF of 2

3 can be
achieved by interference avoidance. The following argument establishes that this is the
maximum achievable per-user DoF. Since this analysis is asymptotic in the number
of users, assume without loss of generality that the number of users K is a multiple
of 3. Now, we make an argument to show that any achievable per-user DoF is also
achievable if we remove every receiver with an index i such that i mod 3 = 2, and
connect all remaining receivers to a centralized decoder. Note that if we can do so,
then we have proved that any achievable per-user DoF is at most 2

3 , since this is the
fraction of remaining receivers.

We use Lemma 5.2 to capture the converse argument discussed above. We apply
Lemma 5.2 with the set A = {i ∈ [K] : i mod (2M + 1) �= M + 1}. From the discussion
of useful message assignments, we know that message WM+1 cannot be available at
transmitter 2M + 1, and message W3M+2 cannot be available at transmitters 2M + 1 and
4M+2. In general, for any positive integer x in a large network, message W(2M+1)x+M+1

cannot be available at transmitters (2M + 1)x and (2M + 1)(x + 1). It then follows that
all transmit signals with an index that is a multiple of 2M + 1 belong to xUA , i.e.,
UA ⊆ {i ∈ [K] : i mod (2M + 1) = 0}. Armed with this fact about the set UA, we can
briefly explain why Lemma 5.2 applies here. We will assume that we can ignore the
effect of the Gaussian noise, and the reason for that assumption is that the construction
of the function f2(zA) will be clear once we explain how to obtain the transmit signals
xŪA from yA and xUA . Since we know the received signal y2M+1 and the transmit signal
x2M+1, we can reconstruct the transmit signal x2M by a simple linear computation. Now,
we know x2M and y2M , and hence we can reconstruct x2M−1. Proceeding in this manner,
we can reconstruct all transmit signals x{1,2,...,2M}. Further, the same procedure can be
used to reconstruct x{2M+2,2M+3,...,4M+1} from y{2M+1,2M+2,...,4M+2} and x4M+2. We can
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thus reconstruct xŪA from yA and xUA , assuming that we can ignore the Gaussian noise.
We only followed this assumption to simplify the presentation of the proof. If we are
not ignoring the Gaussian noise, then the function f2(zA) should be constructed in each
step described above.

6.6 Discussion: SISO Interference Channels

There are two design parameters in the considered problem: the message assignment
strategy satisfying the maximum transmit set size constraint, and the design of
transmit beams. We characterized the asymptotic per-user DoF when one of the
design parameters is restricted to a special choice, i.e., restricting message assignment
strategies by a local cooperation constraint for fully connected networks or restricting
the design of transmit beams to zero-forcing transmit beams for locally connected
networks. The restriction of one of the design parameters can significantly simplify the
problem because of the interdependence of the two design parameters. On one hand, the
achievable scheme is enabled by the choice of the message assignment strategy, and on
the other hand, the assignment of messages to transmitters is governed by the technique
followed in the design of transmit beams, e.g., zero-forcing transmit beamforming or
interference alignment. In the following, we discuss each of these design parameters.

6.6.1 Message Assignment Strategy

The assignment of each message to more than one transmitter (CoMP transmission)
creates a virtual multiple-input single-output (MISO) network without cooperative
transmission. A real MISO network, where multiple dedicated antennas are assigned
to the transmission of each message (see, e.g., [77]), differs from the created virtual one
in two aspects. First, in a CoMP transmission setting, the same transmit antenna can
carry more than one message. Second, for locally connected channels, the number of
receivers at which a message causes undesired interference depends on the number of
transmit antennas carrying the message. We study MISO networks in Section 6.7.

For fully connected channels, the number of receivers at which a message causes
undesired interference is the same regardless of the size of the transmit set, as long as it
is non-empty. The only aspect that governs the assignment of messages to transmitters
is the pattern of overlap between transmit sets corresponding to different messages.
It is expected that the larger the sizes of the intersections between sets of messages
carried by different transmit antennas, the more dependent the coefficients of the virtual
MISO channel, and hence the lower the available DoF. For the spiral assignments of
messages considered in Section 3.2, |Ti ∩Ti+1| = M−1, and the same value holds for the
size of the intersection between sets of messages carried by successive transmitters. In
general, local cooperation implies large intersections between sets of messages carried
by different transmitters, resulting in the negative conclusion we reached for τ (loc)(M).

For the case where we are restricted to zero-forcing transmit beamforming as
in Section 6.3, the number of receivers at which each message causes undesired
interference governs the choice of transmit sets, and hence we saw that for locally
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connected channels, the message assignment strategy illustrated in Section 6.3.3 selects
transmit sets that consist of successive transmitters, to minimize the number of receivers
at which each message should be canceled. This strategy is optimal under the restriction
to zero-forcing transmit beamforming schemes.

6.6.2 Design of Transmit Beams

While it was shown in Section 3.2 that CoMP transmission accompanied by both
zero-forcing transmit beams and asymptotic interference alignment can achieve a DoF
cooperation gain beyond what can be achieved using only transmit zero-forcing, this is
not obvious for locally connected channels. Though not obvious, we believe the reason
is that, unlike in the fully connected channel, the addition of a transmitter to a transmit
set in a locally connected channel may result in an increase in the number of receivers
at which the message causes undesired interference.

We note that, unlike the asymptotic interference alignment scheme, the zero-forcing
transmit beamforming scheme illustrated in Section 6.3 does not need symbol
extensions, since it achieves its target DoF in one channel realization. However, it is
not clear whether asymptotic interference alignment can be used to show an asymptotic
per-user DoF cooperation gain beyond that achieved through simple zero-forcing
transmit beamforming in an arbitrary network topology. We believe that the answer
to this question is closely related to the two problems that remain open at this point,
namely fully characterizing τ(M) and τL(M).

6.7 Multiple-Antenna Transmitters: Shared versus
Dedicated Antennas

In order to compare the cases of having dedicated versus shared antennas for the
transmission of each message, we consider in this section the scenario where each
transmitter is equipped with N antennas. We use the standard model for the K-user
interference channel with N-antenna transmitters and single-antenna receivers:

yi =
K∑

j=1

N∑
n=1

h(n)
ij x(n)

j + zi, (6.4)

where x(n)
i (t) is the transmitted signal of the nth antenna at transmitter i, and h(n)

ij is the
channel coefficient from the nth antenna at transmitter j to receiver i. The condition for
the locally connected channel model is extended here to

h(n)
ij is not identically 0 if and only if i ∈ [j, j + 1, . . . , j + L

]
, n ∈ [N], (6.5)

and all channel coefficients that are not identically zero are generic.
In [78], the characterization of the asymptotic per-user DoF was extended under the

restriction to zero-forcing transmit beamforming coding schemes to the considered
locally connected channel with multiple-antenna transmitters. More precisely, let
τ

(zf)
L (M,N) be the asymptotic per-user DoF for locally connected channels with
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connectivity parameter L, N antennas at each transmitter, a maximum transmit set size
constraint M, and under the restriction to the class of zero-forcing transmit beamforming
coding schemes.

We show here that the optimality of the zero-forcing schemes defined in Section 6.3
extends to the considered setting where each transmitter has N antennas. We have the
following constraint on each transmit signal: The transmit signal at the nth antenna of
the jth transmitter is given by

x(n)
j =

∑
i:j∈Ti

x(n)
j,i , (6.6)

where x(n)
j,i depends only on message Wi. The DoF characterization of locally connected

networks with a maximum transmit set size constraint can be extended to obtain the
following characterization.

T H E O R E M 6.3 Under the restriction to zero-forcing transmit beamforming coding
schemes (interference avoidance), the asymptotic per-user DoF of a locally connected
channel with connectivity parameter L and N-antenna transmitters is given as follows:

If MN ≥ M + L, then

τ
(zf)
L (M,N) = 1.

Otherwise,

τ
(zf)
L (M,N) = 2MN

M(N + 1) + L
. (6.7)

Proof The proofs of the lower and upper bounds are given in Sections 6.7.1 and 6.7.2,
respectively.

6.7.1 Coding Scheme

We first consider the case where MN < L + M by treating the network as clusters, each
consisting of consecutive M(N + 1) + L transceivers. The last L transmitters in each
cluster are deactivated to eliminate inter-cluster interference, and hence it suffices to
show that 2MN DoF can be achieved in each cluster. Without loss of generality, consider
the cluster with users of indices in the set [M(N + 1)+ L]. Define the following subsets
of [M(N + 1) + L]:

S1 = [MN], (6.8)

S2 = {L + M + 1,L + M + 2, . . . ,L + M(N + 1)}, (6.9)

where, in the proposed scheme, messages with indices in the set [M(N + 1) + L]\(S1 ∪
S2) are not transmitted and the corresponding receivers are deactivated. The remaining
messages are assigned as follows:

Ti =
{

{1,2, . . . ,M} ∀i ∈ S1,

{MN + 1,MN + 2, . . . ,M(N + 1)} ∀i ∈ S2,
and all other transmitters in the cluster are deactivated. In other words, the first MN
messages in the cluster are assigned to transmitters in the set [M], and the last MN



6.7 Shared vs. Dedicated Multi-Antenna Transmitters 111

messages in the cluster are assigned to the M transmitters with indices in the set {MN +
1,MN + 2, . . . ,M(N + 1)}.

We note that messages with indices in S1 are not available outside transmitters with
indices in [M], and hence do not cause interference at receivers with indices in S2. Also,
messages with indices in S2 are not available at transmitters with indices in [MN], and
hence do not cause interference at receivers with indices in S1.

In order to complete the proof by showing that each user in S1 ∪ S2 achieves one
degree of freedom, we next show that transmissions corresponding to messages with
indices in S1 (S2) do not cause interference at receivers with indices in the same set. Let
S1,j denote the set {(j − 1)N + 1,(j − 1)N + 2, . . . , jN} where j ∈ [M], and consider the
design of transmit beams for messages Wi, i ∈S1,j. Our aim is to create interference-free
communication between the (i − (j − 1)N)th antenna at the jth transmitter and the
ith receiver. We prove this by showing the existence of a choice of transmit signals
{x(n)

k,i : n ∈ [N],k ∈ [M], (k,n) �= (j, i − (j − 1)N)} to cancel the interference caused by Wi

at the MN − 1 receivers in S1\{i}. Consider the design of the transmit beam at the nth
antenna of the kth transmitter x(n)

k,i , where n ∈ [N],k ∈ [M], (k,n) �= (j, i − (j − 1)N), and

note that, given all other transmit signals carrying Wi, x(n)
k,i can be designed such that the

interference caused by Wi at the ((k − 1)N + n)th receiver is canceled. Therefore, the
interference cancellation constraints imply a system of MN − 1 equations in MN − 1
variables, where each equation is assigned a distinct variable that can be set to satisfy
it, given any assignment of the other MN − 2 variables. We now describe a simple
algorithm that finds an assignment for the variables to satisfy the equations. Fix an
order on the abovementioned equations, label them from 1 to MN − 1, and recall that
each equation is assigned a distinct variable that can be set to satisfy it given all other
variables. For the xth equation, x ∈ [MN + 1], let that abovementioned distinct variable
have the label x. In the first step of the algorithm, the first variable is removed by
setting it as a function of all other variables to satisfy the first equation, and we have a
reduced problem of MN − 2 equations in MN − 2 variables. Similarly, in the xth step
of the algorithm, the xth variable is set as a function of all variables in the set {x +
1, . . . ,MN + 1} to satisfy the xth equation. Once we reach the (MN + 1)th and final step,
the (MN + 1)th variable will be set to satisfy the (MN + 1)th equation, and recursively,
all of the variables will be set to satisfy all of the equations. A solution is found using
this algorithm for almost all channel realizations, as the assumption of a generic set of
channel coefficients leads to linearly independent equations, almost surely.

Note that the validity of the above argument relies on the fact that ∀j ∈ [M], the jth
transmitter is connected to all receivers in the set {(j − 1)N + 1,(j − 1)N + 2, . . . , jN}.
This follows as we consider the case where MN < L + M, which implies that jN <

L + j ∀j ∈ [M], and the jth transmitter is connected to receivers with indices in the set
{j, j + 1, . . . ,L + j}.

We finally note that the channel between transmitters with indices in the sequence
(M(N + 1),M(N + 1) − 1, . . . ,MN + 1) and receivers with indices in the sequence (L +
M(N + 1),L + M(N + 1) − 1, . . . ,L + M + 1) has the same connectivity pattern as the
channel between transmitters with indices in the sequence (1,2, . . . ,M) and receivers
with indices in the sequence (1,2, . . . ,MN), and hence the argument in the previous
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Fig. 6.7 Assignment of messages as explained in the proof of Theorem 6.3 for the case where N = M = 2
and L = 3. Only signals corresponding to the first cluster are shown. Signals in dashed boxes are
deactivated. Note that the last L signals are deactivated to eliminate inter-cluster interference.
Also, W5 is not transmitted, while each other message with indices in {1, . . . ,9} has one degree
of freedom.

paragraph can be used to construct transmit beams for messages Wi, i ∈ S2 such that
each user in S2 gets access to an interference-free transmission (one degree of freedom).

The proof is simpler for the case where NM ≥ L + M. Let xmin = minx{x ∈ [M] :
Nx ≥ L + x}; then xmin ≤ M, and the messages are assigned as Ti = {i, i + 1, . . . , i +
xmin − 1}. Consider the design of transmit beams for message Wi. Our aim is to allow
for interference-free communication between the first antenna at the ith transmitter and
the ith receiver, and eliminate the interference caused by Wi at all receivers in the set
{i + 1, . . . , i + L + xmin − 1}. In a similar fashion to the proof described above, each
receiver in {i + 1, . . . , i + L + xmin − 1} is assigned a distinct transmit signal from the set
{x(n)

j,i ,n ∈ [N], j ∈ Ti,(j,n) �= (i,1)}, where, given all other transmit signals, that transmit
signal can be set to cancel the interference caused by Wi at that receiver, and hence
there exists a setting for all transmit signals carrying Wi that cancels its interference at
all receivers connected to transmitters in Ti other than its own receiver.

In Figure 6.7, we provide an illustration of this coding scheme.

6.7.2 Zero-Forcing Transmit Beamforming Upper Bound

In Section 6.3, we presented an intuitive argument to establish an upper bound on
the DoF achieved by any zero-forcing scheme in a locally connected network with
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single-antenna transmitters. Here, we will present a formal argument that implies
the upper bound for single-antenna transmitters as a special case when N = 1. In
the following lemma, we present an upper bound on the number of active receivers
connected to a transmit set in the considered multiple-antenna transmitters setting. For
any set S of transmitter indices, we define VS as the set of active receivers connected to
at least one transmitter in S.

L E M M A 6.4 For any message Wi, the number of active receivers connected to at least
one transmitter carrying the message is no greater than the number of transmit antennas
carrying the message,

|VTi | ≤ N|Ti|. (6.10)

Proof We only consider the non-trivial case where Ti �= ∅. For each receiver j ∈ VTi ,

there exists a transmit signal x(n)
k,i , k ∈ [K],n ∈ [N] such that, conditioned on all other

transmit signals, the received signal yj is correlated with the message Wi. More precisely,

I
(

Wi;yj|{x(m)
v,i ,(v,m) ∈ [K] × [N], (v,m) �= (k,n)}

)
> 0.

Since we impose the constraint I
(
Wi;yj

) = 0 ∀j ∈ VTi , the interference seen at all
receivers in VTi has to be canceled. Finally, since the probability of a set of channel
realizations with zero Lebesgue measure is zero, the N|Ti| transmit signals carrying Wi

cannot be designed to cancel Wi at more than N|Ti| − 1 receivers for almost all channel
realizations.

We show that the sum DoF in each set S ⊆ [K] of consecutive M(N + 1) + L users is
bounded by 2MN. We focus on proving this statement by fixing a set S of consecutive
M(N + 1)+ L users, and make the following definitions. For a user i ∈ [S], let Ui be the
set of active users in S with an index j > i, i.e.,

Ui = {j : j > i, j ∈ S, I
(
yj;Wj

)
> 0}.

Similarly, let Di be the set of active users in S with an index j < i, i.e.,

Di = {j : j < i, j ∈ S, I
(
yj;Wj

)
> 0}.

Assume that S has at least 2MN + 1 active users. Then there is an active user in S that
lies in the middle of a subset of 2MN + 1 active users in S. More precisely, ∃i ∈ S :
|Ti| > 0, |Ui| ≥ MN, |Di| ≥ MN; we let this middle user have the ith index for the rest of
the proof.

Let smin and smax be the users in S with the minimum and maximum indices,
respectively, i.e., smin = mins{s : s ∈ S} and smax = maxs{s : s ∈ S}. We then consider
the following cases to complete the proof:
Case 1: Wi is being transmitted from a transmitter that is connected to the receiver with
index smin, i.e., ∃s ∈ Ti : s ∈ {smin,smin −1, . . . ,smin −L}. It follows from Lemma 6.1 that
VTi ⊇ Di ∪ {i}, and hence |VTi | ≥ MN + 1, which contradicts (6.10), since |Ti| ≤ M.
Case 2: Wi is being transmitted from a transmitter that is connected to the receiver with
index smax, i.e., ∃s ∈ Ti : s ∈ {smax,smax − 1, . . . ,smax − L}. It follows from Lemma 6.1
that VTi ⊇ Ui ∪ {i}, and hence |VTi | ≥ MN + 1, which again contradicts (6.10).
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Case 3: For the remaining case, there is no transmitter in Ti that is connected to any of
the receivers with indices smin and smax. In this case, it follows from Lemma 6.1 that
Ti does not contain a transmitter that is connected to a receiver with an index less than
smin or greater than smax, and hence all the receivers connected to transmitters carrying
Wi belong to S. It follows that at least L + |Ti| receivers in S are connected to one or
more transmitters in Ti. Since S has at least 2MN + 1 active receivers, any subset of
L + |Ti| receivers in S has to have at least 2MN + 1 − ((M(N + 1) + L) − (L + |Ti|)) =
MN + |Ti| − (M − 1) elements, and hence

|VTi | ≥ MN + |Ti| − (M − 1)

= N|Ti| + (M − |Ti|)(N − 1) + 1

≥ N|Ti| + 1.

The statement is then proved by reaching a contradiction to (6.10) in the last case.

6.7.3 Successive Transmit Sets Upper Bound

We note that in the coding scheme used to prove Theorem 6.3, we used a message
assignment that satisfies the useful message assignments condition in Corollary 6.1.
Furthermore, each transmit set consists of a successive set of transmitter indices. More
precisely,

Ti = {s,s + 1, . . . ,s + x − 1},
s ∈ {i − L − (x − 1), i − L − (x − 1) + 1, . . . , i},
x ∈ {1,2, . . . ,M}, (6.11)

and hence assigning each message to a successive set of transmitters is a property of the
optimal message assignments with the restriction to zero-forcing transmit beamforming
coding schemes. While we observe that Lemma 6.1 does not imply that transmit sets
have to consist of successive transmitter indices without the restriction to zero-forcing
schemes, it might be intuitive to consider that such a condition is necessary in general
as it minimizes the number of receivers at which each message causes undesired
interference.

Let τ̃L(M,N) be the maximum achievable per-user DoF for the considered channel
model with parameters M, N, and L, where only message assignments satisfying (6.11)
are considered. We provide a DoF upper bound for general values of the system
parameters.

T H E O R E M 6.5 Under the restriction to successive transmit sets defined in (6.11), the
asymptotic per-user DoF of a locally connected channel with connectivity parameter L
and N-antenna transmitters is given as follows:

If MN ≥ M + L, then

τ̃L(M,N) = 1.
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Otherwise,

2MN

M(N + 1) + L
≤ τ̃L(M,N) ≤ M(N + 1) + L − 1

M(N + 1) + L
. (6.12)

Proof Since the coding scheme used to prove Theorem 6.3 is based on a message
assignment that satisfies (6.11), the lower bound follows from the same coding scheme.
We only need to show the upper bound for the case where NM < L + M. We apply
Lemma 5.2 with the set A defined as follows. We view the network as clusters, each
consisting of successive M(N + 1) + L users, and we exclude from A the (L + M)th
receiver from each cluster. It then suffices to show that the condition in Lemma 5.2
holds for this choice of the set A. More precisely, let the set A be defined as

A = {i, i ∈ [K], i �= (M(N + 1) + L)(j − 1) + L + M,∀j ∈ Z+}. (6.13)

We then need to show that there exist functions f1 and f2 such that f1
(
yA,xUA

)= xŪA +
f2(zA), where the definition of f2 does not depend on the transmit power. The function
f2 that we construct is a linear function whose coefficients depend only on the channel
coefficients.

We first show the existence of functions f1 and f2 for the case where each transmitter
has a single antenna, i.e., N = 1. Note that by using the condition in (6.11), we know
that for any message with an index that lies at the intersection between the set Ā and
a given cluster, all members of its transmit set have indices that belong to the same
cluster. We show how to reconstruct transmit signals in xŪA that lie in the first cluster.
That is, transmit signals in the set {xi : i ∈ TL+M}, and the rest of the proof for the
remaining clusters will follow similarly. Note that because of (6.11), we know that
TL+M ⊆ [L + 2M − 1], and also L + 2M /∈ Ti,∀i /∈ A. Given y1 and z1

h(1)
11

, one can obtain

x(1)
1 as x(1)

1 = y1−z1

h(1)
11

. Also, given x(1)
1 , y2, and a linear function of z2 whose coefficients

depend only on the channel coefficients, one can obtain x(1)
2 . Similarly, transmit signals

x(1)
3 , . . . ,x(1)

L+M−1 can be reconstructed from y[L+M−1] and a linear function of the
noise signals z[L+M−1]. It remains to show how to obtain transmit signals in the set
{x(1)

L+M ,x(1)
L+M+1, . . . ,x(1)

L+2M−1}. We note that the relation between those transmit signals
and the signals {yi : i ∈ {L + M + 1, . . . ,L + 2M}} and {zi : i ∈ {L + M + 1, . . . ,L + 2M}}
is given as follows:

⎡
⎢⎢⎢⎣

ỹL+M+1 − zL+M+1

ỹL+M+2 − zL+M+2
...

ỹL+2M − zL+2M

⎤
⎥⎥⎥⎦= M1

⎡
⎢⎢⎢⎢⎣

x(1)
L+M

x(1)
L+M+1

...

x(1)
L+2M−1

⎤
⎥⎥⎥⎥⎦ , (6.14)

where ∀i ∈ {L + M + 1, . . . ,L + 2M}, ỹi = yi −∑L+M−1
j=1 h(1)

ij x(1)
j − h(1)

i,L+2Mx(1)
L+2M , and

M1 is the M × M matrix defined as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h(1)
L+M+1,L+M h(1)

L+M+1,L+M+1 0 0 · · · 0 0

h(1)
L+M+2,L+M h(1)

L+M+2,L+M+1 h(1)
L+M+2,L+M+2 0 · · · 0 0

...
...

...
...

...
...

...

h(1)
L+2M,L+M h(1)

L+2M,L+M+1 · · · · · · · · · h(1)
L+2M,L+2M−2 h(1)

L+2M,L+2M−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.15)

If M1 is invertible, then all the transmit signals in x[L+2M−1] can be reconstructed, and
it follows that all the transmit signals encoding the message WL+M can be obtained. We
show in Section 6.8.1 that the matrix M1 is full rank for almost all channel realizations.
By constructing a similar proof for the remaining clusters, the upper bound proof for
the case where N = 1 is complete.

We next prove the statement for the case where N > 1. As in the previous proof, we
show how to obtain the transmit signals carrying WL+M in the first cluster, and then the
proof follows similarly for the remaining clusters. Let i be the smallest index in TL+M .
Then we know from (6.11) that i ∈ [L + M] and that TL+M ⊆ {i, i + 1, . . . , i + M − 1}.
Hence, it suffices to show how to obtain the transmit signals in the set xS where
S = {i, . . . , i + M − 1} from yA, xUA\xS , and a linear function of zA whose coefficients

depend only on the channel coefficients. Let ỹk = yk −∑j∈UA\S ,n∈[N] h(n)
kj x(n)

j ,∀k ∈
[K]; then each of the signals ỹk − zk,k ∈ [M(N + 1) + L] is a (possibly zero) linear
combination of the transmit signals in xS . As |S| = M, and each transmitter has N
antennas, then we need at least MN such linear combinations to be able to reconstruct
xS . In order to do so, we pick MN + 1 received signals, among which at most one is
in the set yĀ. We will also show that the linear equations corresponding to any MN
signals of those picked are linearly independent, and hence suffice to reconstruct xS .
By observing that we are considering the case where NM < L + M, or in particular
that L + 1 ≥ M(N − 1) + 2, we pick the MN + 1 received signals as the M − 1 signals
{yi, . . . ,yi+M−2} together with the last M(N −1)+2 signals connected to the transmitter
with index i + M − 1, i.e., the set {i + M − 1 + x, i + M + x, . . . , i + M − 1 + L},
where x = L + 1 − (M(N − 1) + 2). The relation between those signals and xS can be
described as ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ỹi − zi
...

ỹi+M−2 − zi+M−2

ỹi+M−1+x − zi+M−1+x
...

ỹi+M−1+L − zi+M−1+L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= MN

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)
i
...

x(N)
i

x(1)
i+1
...

x(N)
i+M−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.16)

where MN is the MN + 1 × MN matrix
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(1)
ii · · · h(N)

ii 0 · · · · · · · · · · · · 0

h(1)
i+1,i · · · · · · · · · h(N)

i+1,i+1 0 · · · · · · 0

.

.

.
.
.
.

h(1)
i+M−2,i · · · · · · · · · · · · h(N)

i+M−2,i+M−2 0 · · · 0

h(1)
i+M−1+x,i · · · · · · · · · · · · · · · · · · · · · h(N)

i+M−1+x,i+M−1
.
.
.

.

.

.

h(1)
i+L,i · · · · · · · · · · · · · · · · · · · · · h(N)

i+L,i+M−1

0 · · · 0 h(1)
i+L+1,i+1 · · · · · · · · · · · · h(N)

i+L+1,i+M−1
.
.
.

.

.

.

0 · · · · · · · · · · · · 0 h(1)
i+M−1+L,i+M−1 · · · h(N)

i+M−1+L,i+M−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.17)

We note here that the missing received signal yL+M can be one of the MN + 1 received
signals considered. However, we show in Section 6.8.2 that any MN × MN submatrix
of MN is full rank for all values of N > 1, hence proving that the transmit signals in xS
can be obtained from the remaining MN received signals and the corresponding linear
combinations of the Gaussian noise signals, where the linear coefficients depend only
on channel coefficients. This completes the proof for the case where N > 1.

By carefully inspecting the lower and upper bounds, we note that they coincide for
the case where NM = L + M − 1. However, we recall that even in this special case,
the tight characterization of the asymptotic per-user DoF is available only under the
restriction to successive transmit sets as defined in (6.11).

We also note that the lower bound in Theorem 6.5 is not optimal for general values of
the parameters. This is because for fixed values of N and M, 2MN

M(N+1)+L → 0 as L → ∞,
while we know that the asymptotic interference alignment scheme can be applied in
the considered channel model to achieve a per-user DoF number of 1

2 without using
multiple antennas or assigning any message to more than one transmitter. Furthermore,
we do not expect the L+M(N+1)−1

L+M(N+1)
upper bound to be tight in general, since for fixed L,

it has a lower value for the case where two antennas are dedicated to the transmission
of each message (N = 2,M = 1) than the case where each message is allowed to be
available at two antennas that may be carrying other messages as well (N = 1,M = 2).

6.7.4 Discussion: Dedicated versus Shared Antennas

Consider a comparison between two different scenarios. In the first, each message can
be transmitted from a single transmitter that has x antennas, i.e., N = x and M = 1,
while in the second scenario, each message can be transmitted from x single-antenna
transmitters, i.e., N = 1 and M = x. We note that the number of receivers at which a given
message causes undesired interference is L in the first scenario, and is at least L+x−1 in
the second. This leads to the result that τ (zf)

L (M = 1,N = x)> τ
(zf)
L (M = x,N = 1),∀x > 1.

It is worth noting that the number of receivers at which each message causes undesired
interference is not the only difference between the considered scenarios. In particular,
other differences between the two scenarios affect the available DoF when considering
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general coding schemes beyond the simple zero-forcing transmit beamforming scheme.
In the fully connected model, the number of receivers at which a given message causes
undesired interference is the same for both considered scenarios. However, the per-user
DoF number for the first scenario where x antennas are dedicated to each message is

x
x+1 , while for the case where each transmitter has a single antenna, and M = x = 2, the

per-user DoF number τ(M = 2) is 1
2 , as discussed in Chapter 3.

6.8 Proof of Multiple-Antenna Transmitters Upper Bound

6.8.1 Proof of Non-Singularity of Matrix M1

The matrix M1 has the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 0 0 0 0 · · · · · · 0

a21 a22 a23 0 0 0 · · · · · · 0
...

...

0 · · · 0 · · · aM−2,M−L−1 · · · · · · aM−2,M−1 0

0 · · · · · · 0 0 aM−1,M−L · · · · · · aM−1,M

0 · · · · · · 0 0 0 aM,M−L+1 · · · aMM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.18)

where aij = 0 if (i − j) ≥ L or (i − j) < −1, and the set of all other entries is generic.
We show that any matrix of this form is full rank with high probability for any positive
integer value of the connectivity parameter L. The statement holds trivially for the case
where M = 1, since a11 �= 0 with high probability. Hence, in the rest of the proof we
only consider the case where M > 1.

For a matrix of the form in (6.18), assume that there exists a linear combination of
the rows that equals zero and has coefficients α1,α2, . . . ,αM , where αi is the coefficient
of the ith row and not all the coefficients equal zero. It follows that αM−1aM−1,M +
αMaMM = 0. For the case where αM−1 = 0, since aMM �= 0 with high probability, it
almost surely follows that αM = 0. Also, if aM−2,M−1 �= 0 then αM−2 = 0. We conclude
that if αM−1 = 0, then for almost all realizations of the elements it must be the case
that αi = 0,∀i ∈ [M]. Hence, we only consider the case where αM−1 �= 0. Consider the
following new matrix obtained by replacing the last two rows by one row that is a linear
combination of them in the direction that nulls the last entry. More precisely, the new
matrix has the following form:⎡

⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 0 0 0 · · · · · · 0

a(1)
21 a(1)

22 a(1)
23 0 0 · · · · · · 0

...
...

0 · · · 0 a(1)
M−2,M−L−1 · · · · · · a(1)

M−2,M−1 0

0 · · · 0 0 a(1)
M−1,M−L · · · a(1)

M−1,M−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , (6.19)
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where ∀j ∈ [M], a(1)
ij = aij ∀i ∈ [M − 2], and a(1)

M−1,j = aM−1,j + αM
αM−1

aMj = aM−1,j −
aM−1,M

aMM
aMj. Note that α1,α2, . . . ,αM−1 are the coefficients for a linear combination of

the rows of the new matrix that equals zero. In particular, it follows that the following
(M − 1) × (M − 1) matrix is rank deficient:⎡

⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 0 0 0 · · · · · ·
a(1)

21 a(1)
22 a(1)

23 0 0 · · · · · ·
...

...

0 · · · 0 a(1)
M−2,M−L−1 · · · · · · a(1)

M−2,M−1

0 · · · 0 0 a(1)
M−1,M−L · · · a(1)

M−1,M−1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (6.20)

Note that a(1)
ij = 0 if (i − j) ≥ L or (i− j) < −1, and the set of all other entries is generic;

hence, the form in (6.20) is the same as the form in (6.18) with M replaced by M − 1.
By repeated application of the above argument, we find that a matrix of the following
form is rank deficient: [

a(M−2)
11 a(M−2)

12

a(M−2)
21 a(M−2)

22

]
, (6.21)

where ∀k ∈ {2,3, . . . ,M − 2}, ∀j ∈ [M], a(k)
ij = a(k−1)

ij ∀i ∈ [M − k − 1], and a(k)
M−k,j =

a(k−1)
M−k,j − a(k−1)

M−k,M−k+1

a(k−1)
M−k+1,M−k+1

a(k−1)
M−k+1,j. We note that in each step of the argument, the set of

non-zero entries remains generic, and hence the set of elements in the matrix of the
form in (6.21) is generic. It follows that a matrix of the form in (6.21) is full rank with
high probability, thereby reaching a contradiction to the assumption of rank deficiency
of the matrix of the form in (6.18) for almost all realizations of its elements.

6.8.2 Proof of Non-Singularity of Any MN ×MN Submatrix of MN

The matrix MN has the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1N 0 · · · · · · · · · · · · · · · 0

a21 · · · · · · · · · a2,2N 0 · · · · · · · · · 0
.
.
.

.

.

.

aM−1,1 · · · · · · · · · · · · · · · aM−1,(M−1)N 0 · · · 0

aM1 · · · · · · · · · · · · · · · · · · · · · · · · aM,MN
.
.
.

.

.

.

aM(N−1)+2,1 · · · · · · · · · · · · · · · · · · · · · · · · aM(N−1)+2,MN

0 · · · 0 aM(N−1)+3,N+1 · · · · · · · · · · · · · · · aM(N−1)+3,MN
.
.
.

.

.

.

0 · · · · · · · · · · · · · · · 0 aMN+1,(M−1)N+1 · · · aMN+1,MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.22)

where N > 1, and the set of all the elements that are not identically zeros in (6.22) is
generic. The proof follows similar steps to those followed in the proof above of the
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non-singularity of M1. For the case where M = 1, the set of all elements of any N × N
submatrix of any matrix of the form in (6.22) is generic, and hence the statement holds
for this case. We only consider the case where M > 1 in the rest of the proof.

For any matrix that has the form in (6.22), consider a submatrix that is obtained
by removing one of the rows, and assume that there exists a linear combination of
the remaining rows that equals zero. This implies that there is a linear combination
of the MN + 1 rows of the original matrix that equals zero and has coefficients
α1,α2, . . . ,αMN+1, where αi is the coefficient of the ith row, and that there exists
i∗ ∈ [MN + 1] such that αi∗ = 0.

Let βN be the number of rows where the last N entries are not identically zero, not
including the row indexed i∗ whose corresponding coefficient αi∗ = 0. If βN ≤ N then
all the corresponding coefficients are zeros almost surely, i.e., αi = 0,∀i ∈ {M,M +
1, . . . ,MN + 1}. It follows that

[
α1 α2 · · · αM−1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1N 0 · · · · · · · · · · · · · · · 0

a21 · · · · · · · · · a2,2N 0 · · · · · · · · · 0

.

.

.
.
.
.

aM−1,1 · · · · · · · · · · · · · · · aM−1,(M−1)N 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[
0 0 · · · 0

]
,

(6.23)

and it follows from (6.23) that αi = 0 ∀i ∈ [M − 1] almost surely, thereby contradicting
the assumption that not all the coefficients are zeros. Therefore, we only consider the
case where βN > N. Consider the following matrix obtained by replacing the rows
in (6.22) with a generic set of elements in the last N entries, by N fewer rows that
form a basis for a subspace whose vector elements have zeros in the last N entries:⎡

⎢⎢⎣
a(1)

11 · · · a(1)
1,MN

...
...

a(1)
x1 · · · a(1)

x,MN

⎤
⎥⎥⎦ , (6.24)

where

x =
{

(M − 1)N if i∗ ∈ {(M − 1)N + 1, . . . ,MN + 1},
(M − 1)N + 1 otherwise,

(6.25)

and a(1)
ij = aij, ∀i ∈ [M − 1], j ∈ [MN]. In order to describe the remaining elements

a(1)
ij , i ∈ {M,M + 1, . . . ,x}, j ∈ [MN], we first define the matrices A, B, C, and D, as

follows:

A =
⎡
⎢⎣

aM,(M−1)N+1 · · · aM,MN
...

...
ax,(M−1)N+1 · · · ax,MN

⎤
⎥⎦ . (6.26)
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The N × N matrix B is defined as follows for the case where i∗ ∈ {(M − 1)N +
1, . . . ,MN + 1}:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(M−1)N+1,(M−1)N+1 · · · a(M−1)N+1,MN
...

...
ai∗−1,(M−1)N+1 · · · ai∗−1,MN

ai∗+1,(M−1)N+1 · · · ai∗+1,MN
...

...
aMN+1,(M−1)N+1 · · · aMN+1,MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.27)

and for the case where i∗ ∈ [(M − 1)N]:

B =
⎡
⎢⎣

a(M−1)N+2,(M−1)N+1 · · · a(M−1)N+2,MN
...

...
aMN+1,(M−1)N+1 · · · aMN+1,MN

⎤
⎥⎦ . (6.28)

Since we consider the case where the number of rows with a generic set of elements in
the last N entries is greater than N, it follows that B is full rank almost surely. Therefore,
the following definition of the matrix C is valid:

C = −AB−1. (6.29)

For the case where i∗ ∈ {(M − 1)N + 1, . . . ,MN + 1}, the N × MN matrix D is defined as
follows:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(M−1)N+1,1 · · · a(M−1)N+1,MN
...

...
ai∗−1,1 · · · ai∗−1,MN

ai∗+1,1 · · · ai∗+1,MN
...

...
aMN+1,1 · · · aMN+1,MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.30)

and for the case where i∗ ∈ [(M − 1)N]:

D =
⎡
⎢⎣

a(M−1)N+2,1 · · · a(M−1)N+2,MN
...

...
aMN+1,1 · · · aMN+1,MN

⎤
⎥⎦ . (6.31)

The elements a(1)
ij , i ∈ {M,M + 1, . . . ,x}, j ∈ [MN] are obtained as follows:

⎡
⎢⎢⎣

a(1)
M1 · · · a(1)

M,MN
...

...

a(1)
x1 · · · a(1)

x,MN

⎤
⎥⎥⎦=

⎡
⎢⎣

aM1 · · · aM,MN
...

...
ax1 · · · ax,MN

⎤
⎥⎦+ CD. (6.32)
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We next show that the new matrix in (6.24) has the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 · · · a(1)

1N 0 · · · · · · · · · · · · · · · 0

a(1)
21 · · · · · · · · · a(1)

2,2N 0 · · · · · · · · · 0
...

...

a(1)
M−1,1 · · · · · · · · · · · · · · · a(1)

M−1,(M−1)N 0 · · · 0

a(1)
M1 · · · · · · · · · · · · · · · a(1)

M,(M−1)N 0 · · · 0
...

...

a(1)
x1 · · · · · · · · · · · · · · · a(1)

x,(M−1)N 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.33)

where the set of all the elements that are not marked with zeros is generic. Moreover,

[
α1 α2 · · · αx

]
⎡
⎢⎢⎣

a(1)
11 · · · a(1)

1,MN
...

...

a(1)
x1 · · · a(1)

x,MN

⎤
⎥⎥⎦= [0 0 · · · 0

]
. (6.34)

Since the first M − 1 rows in (6.22) have zero entries in the last N positions, it follows
that

[
αM αM+1 · · · αMN+1

]⎡⎢⎣
aM,(M−1)N+1 · · · aM,MN

...
...

aMN+1,(M−1)N+1 · · · aMN+1,MN

⎤
⎥⎦= [0 0 · · · 0

]
.

(6.35)

Let E be the 1 × N vector defined as

E =
⎧⎨
⎩
[
α(M−1)N+1 · · · αi∗−1 αi∗+1 αMN+1

]
if i∗ ∈ {(M − 1)N + 1, . . . ,MN + 1},[

α(M−1)N+2 · · · αMN+1

]
otherwise.

(6.36)

The equality in (6.35) implies that

[
αM · · · αx

]
A = −EB, (6.37)

and consequently

[
αM · · · αx

]
C = E. (6.38)
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It follows that

[
αM · · · αx

]
⎡
⎢⎢⎣

a(1)
M1 · · · a(1)

M,MN
...

...

a(1)
x1 · · · a(1)

x,MN

⎤
⎥⎥⎦

= [αM · · · αx
]⎡⎢⎣

aM1 · · · aM,MN
...

...
ax1 · · · ax,MN

⎤
⎥⎦+ [αM · · · αx

]
CD

= [αM · · · αx
]⎡⎢⎣

aM1 · · · aM,MN
...

...
ax1 · · · ax,MN

⎤
⎥⎦+ ED

= [αM · · · αMN+1
]⎡⎢⎣

aM1 · · · aM,MN
...

...
aMN+1,1 · · · aMN+1,MN

⎤
⎥⎦ . (6.39)

We can see that (6.34) follows from (6.39) and the fact that a(1)
ij = aij ∀i ∈ [M − 1], j ∈

[MN].
To prove (6.33), we first validate the positions of the zero entries, and then prove that

the set of all remaining elements is generic. The positions of the zero entries in the first
M − 1 rows follows from (6.22) and the fact that a(1)

ij = aij ∀i ∈ [M − 1], j ∈ [MN]. To
show that all the remaining rows in (6.33) have zeros in the last N positions, consider
the following equality that follows from (6.32):⎡

⎢⎢⎣
a(1)

M,(M−1)N+1 · · · a(1)
M,MN

...
...

a(1)
x,(M−1)N+1 · · · a(1)

x,MN

⎤
⎥⎥⎦ (a)=

⎡
⎢⎣

aM,(M−1)N+1 · · · aM,MN
...

...
ax,(M−1)N+1 · · · ax,MN

⎤
⎥⎦+ CB

= A + CB

= A − AB−1B

=
⎡
⎢⎣

0 · · · · · · 0
...

...
0 · · · · · · 0

⎤
⎥⎦ , (6.40)

where (a) follows as the matrix B is formed by taking the last N columns of the matrix
D. In order to prove that the set of all elements in (6.33) that are not identically zeros is
generic, we first note that

a(1)
ij = aij + f ({akq : x < k ≤ MN + 1 or M(N − 1) < q ≤ MN}),
∀i ∈ [x], j ∈ [M(N − 1)]. (6.41)

In particular, for all i ∈ [x], j ∈ [M(N −1)], the element aij contributes only to a(1)
ij among

the set S = {a(1)
ij : i ∈ [x], j ∈ [M(N −1)]}. Since the set of elements that are not identical
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to zeros in (6.33) is a subset of S, it follows from (6.41) that the former set is generic as
a result of the fact that the set {aij : i ∈ [MN + 1], j ∈ [MN]} is generic. The proof of the
statement in (6.33) and (6.34) is complete. Moreover, the same conclusions hold for the
submatrix obtained by removing the last N columns in (6.33), i.e., for the matrix⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 · · · a(1)

1N 0 · · · · · · · · · 0

a(1)
21 · · · · · · · · · a(1)

2,2N 0 · · · 0
...

...

a(1)
M−1,1 · · · · · · · · · · · · · · · · · · a(1)

M−1,(M−1)N

a(1)
M1 · · · · · · · · · · · · · · · · · · a(1)

M,(M−1)N
...

...

a(1)
x1 · · · · · · · · · · · · · · · · · · a(1)

x,(M−1)N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.42)

the set of all elements that are not identically zero is generic, and

[
α1 α2 · · · αx

]
⎡
⎢⎢⎣

a(1)
11 · · · a(1)

1,(M−1)N
...

...

a(1)
x1 · · · a(1)

x,(M−1)N

⎤
⎥⎥⎦= [0 0 · · · 0

]
. (6.43)

We next show that α1, . . . ,αx are not all zeros. If we assume otherwise, it follows that

[
αx+1 · · · αMN+1

]⎡⎢⎣
ax+1,1 · · · ax+1,MN

...
...

aMN+1,1 · · · aMN+1,MN

⎤
⎥⎦= [0 0 · · · 0

]
. (6.44)

Since αi∗ = 0, then it follows that

ED = [0 0 · · · 0
]

. (6.45)

In particular, since B is formed by taking the last N columns of D, EB is an all-zero
vector, which almost surely implies that E is an all-zero vector, since B is full rank. We
conclude from this argument that α1, . . . ,αx cannot be all zeros as otherwise αi = 0 ∀i ∈
[MN + 1], which contradicts the assumption. We have proved so far that in the case that
any MN ×MN submatrix of any matrix of the form in (6.22) is rank deficient, it follows
that a matrix of the form in (6.42) is rank deficient. Note also that {(i, j) : a(1)

ij = 0} ⊆
{(i, j) : aij = 0}. We can then repeat the above argument by replacing the rows in (6.42)
whose last N entries are not identically zero by N fewer rows whose last N entries are
identically zero and then removing the last N columns, to finally show that the matrix
in (6.46) is rank deficient, ⎡

⎢⎢⎣
a(M−1)

11 · · · a(M−1)
1N

...
...

a(M−1)
N1 · · · a(M−1)

NN

⎤
⎥⎥⎦ , (6.46)

where the set of all elements in (6.46) is generic, which implies that any matrix in the
form (6.46) is full rank with high probability. Therefore, the assumption that there exists
a rank-deficient MN × MN submatrix of MN is not true with high probability.
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6.9 Notes and Further Reading

In [79], a special case of the locally connected network with L = 1 (Wyner’s asymmetric
network) was considered, where the message assignment strategy was fixed to the spiral
strategy discussed in Section 5.4, i.e., each message is assigned to the transmitter with
the same index as well as M − 1 following transmitters. The asymptotic per-user DoF
was then characterized as M

M+1 . This shows for our problem that

τ1(M) ≥ M

M + 1
. (6.47)

In [80, Remark 2], a message assignment strategy was described to enable the
achievability of an asymptotic per-user DoF as high as 2M−1

2M . It can be easily verified
that this is indeed true, and hence we can conclude from this work that

τ1(M) ≥ 2M − 1

2M
. (6.48)

The main difference in the strategy described in [80, Remark 2] from the spiral message
assignment strategy considered in [79] is that, unlike the spiral strategy, messages
are assigned to transmitters in an asymmetric fashion, where we say that a message
assignment is symmetric if and only if for all j, i ∈ [K], j > i, the transmit set Tj is
obtained by shifting forward the indices of the elements of the transmit set Ti by (j − i).
We showed in Section 6.3.2 that both the message assignment strategy analyzed in [79]
and the one suggested in [80] are suboptimal for L = 1, and the value of τ1(M) is in fact
strictly larger than the bounds in (6.47) and (6.48). The key idea that enabled the result
presented in this chapter is that each message need not be available at the transmitter
carrying its own index.

In Section 6.7, we discussed the problem of CoMP transmission in networks
with multiple-antenna transmitters. Communication scenarios with cooperating
multiple-antenna transmitters have been considered in [81] and [82] under the umbrella
of the X-channel. However, in the X-channel, mutually exclusive parts of each message
are given to different transmitters. This was extended in [83] to allow each part of each
message to be available at more than one transmitter. In [84], the MIMO X-channel was
studied in the setting where transmitters share further side information.

Finally, it is worth noting that we implicitly assumed in our discussion in this
chapter that the transmit beams at all the transmitters are designed jointly. This kind
of coordination is also referred to in the literature as transmitter cooperation or CoMP,
even without the sharing of messages (see, e.g., [85]).



7 Backhaul Load Constraint

In the previous two chapters, we have considered cooperative transmission schemes
that are constrained by the number of transmitters to which each message can
be assigned. While meeting a backhaul capacity limit by a per-message constraint
can have its analytical advantages, such as reducing a difficult information-theoretic
problem to a simple combinatorial one, this approach suffers from a few important
drawbacks.

For one, the maximum transmit set size constraint may not reflect most practical
scenarios for two reasons. First, because fractional reuse across different resource (e.g.,
frequency or time) slots can be used to achieve an equal load on the backhaul per
message, it may not make sense to impose a maximum transmit set size constraint for
each channel use. Secondly, the maximum transmit set size constraint may not reflect
the nature of the backhaul link, as we will discuss further below.

Also, as we have discussed in the previous chapter, the optimal solutions for the
maximum transmit set size constraint may not fully utilize the constraint; i.e., for
the optimal solution, some messages need not be assigned to the allowed maximum
number of transmitters. We have seen in Chapter 6 that this is the case for the
optimal schemes for linear interference networks, as well as for general locally
connected networks where we impose the restriction of using only zero-forcing coding
schemes.

The appropriate constraint to consider for the assignment of messages to transmitters
should depend on the nature of the backhaul link used in practice (see, e.g., [69, 86]).
For example, in the context of heterogeneous networks, the backhaul can be a wireless
network, and an overall backhaul load constraint would be a more appropriate choice.
On the other hand, for the case of wireline or optical fiber backhaul links, the maximum
transmit set size constraint can be useful. However, even with wireline backhaul links,
an average transmit set size constraint can allow for flexible solutions that interleave
the use of the backhaul links over multiple communication sessions. In general, a
constraint that bounds the average transmit set size is more relevant to practice than
imposing a maximum constraint on each transmit set size. We show in this chapter
how the solutions for the CoMP transmission problem provided under the maximum
transmit set size constraint can be used to find solutions under an average transmit set
size or backhaul load constraint.
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Fig. 7.1 Achieving 3
4 per-user DoF with no extra backhaul load. Only signals corresponding to the first

subnetwork in a general K-user network are shown. The signals in the dashed boxes are
deactivated.

7.1 Example: CoMP with No Extra Backhaul Load

Consider the following assignment of messages to transmitters in a Wyner’s linear
network. The first message W1 is assigned to the first two transmitters, i.e., the transmit
set T1 = {1,2}. The second message is only assigned to the second transmitter, T2 = {2}.
The third message is inactive, and the fourth message is assigned to the third transmitter,
T3 = ∅ and T4 = {3}. The fourth transmitter is inactive, and hence we can repeat the
pattern of message assignments for every successive four users in the network, and
claim that the achieved per-user DoF for the first four users is a lower bound on the
asymptotic per-user DoF. Further, because the sum of the transmit set sizes equals the
number of users,

∑4
i=1 |Ti| = 4, we notice that the required backhaul load is the same

as that required to assign each message to exactly one transmitter.
The first message is transmitted from the first transmitter to the first receiver with no

interference. Also, because W1 is available at the second transmitter, and the channel
state information is assumed to be available at the transmitters, the interference caused
by W1 at the second receiver can be canceled. W2 can be then transmitted from the
second transmitter to the second receiver with no interference. Finally, message W4 can
be transmitted from the third transmitter to the fourth receiver with no interference. The
achieved DoF for the first four users is then three,

∑4
i=1 di ≥ 3. It then follows that the

asymptotic per-user DoF τ ≥ 3
4 . We illustrate the scheme in Figure 7.1.

We can see the contrast of this example to the case where each message can only be
available at one transmitter. In the latter case, there is also no extra load on the backhaul,
but the asymptotic per-user DoF is τ(M = 1) = 2

3 , as discussed in the previous chapter.
What this example suggests, then, is that by allowing for a more flexible backhaul
constraint that allows some messages to be available at more than one transmitter, at
the cost of not transmitting other messages in the considered channel use, we can use
CoMP transmission to achieve significant degrees of freedom gains that scale with the
size of the network without incurring additional overall load on the backhaul.

Consider the following alternative assignment to achieve the same asymptotic
per-user DoF of 3

4 , with no additional load on the backhaul. In the previous chapter, we
characterized all optimal message assignments for linear networks, under a maximum
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transmit set size constraint of M. For the case where M = 1, we could achieve an
asymptotic per-user DoF of 2

3 , while requiring a backhaul load of 2
3 , by splitting the

network into subnetworks of three users each, and using the transmit sets T1 = {1},
T2 = ∅, T3 = {2} for the first subnetwork, and a similar assignment for each successive
subnetwork. For the case where M = 2, we could achieve an asymptotic per-user DoF of
4
5 , with the following choice of transmit sets: T1 = {1,2},T2 = {2},T3 = ∅,T4 = {3},T5 =
{3,4}, and using a similar pattern of message assignment for each successive set of five
users (note that this is possible, because the fifth transmitter is inactive). The required

backhaul load for this assignment is then
∑5

i=1 |Ti|
5 = 6

5 . By using the assignment of
M = 1 for a fraction of 3

8 of the network and the assignment of M = 2 for the remaining
part of the network, we could achieve the asymptotic per-user DoF of 3

8 · 2
3 + 5

8 · 4
5 = 3

4
with a backhaul load of 3

8 · 2
3 + 5

8 · 6
5 = 1, i.e., no extra backhaul load. We notice

from this result that schemes that were identified under a maximum transmit set size
constraint can guide us to characterize optimal schemes under the average transmit set
size (backhaul load) constraint.

In Section 7.2, we extend the insights obtained in the above example to the case
where a general overall backhaul load constraint is imposed for linear networks. We then
show optimality of the presented scheme with respect to the backhaul load constraint. In
Section 7.4, we show that these insights can be useful for analyzing practical models of
hexagonal infrastructural cellular networks, essentially by viewing the cellular network
as a set of linear subnetworks, and eliminating interference between the subnetworks.

7.2 Flexible Backhaul Design and the Optimal DoF Scheme

We consider a backhaul load constraint that is defined through the average transmit set
size as ∑K

i=1 |Ti|
K

≤ B. (7.1)

We use the notation τ avg(B) to denote the asymptotic per-user DoF of Wyner’s linear
network under the backhaul load constraint. From the example in Section 7.1, we know
that τ avg(B = 1) ≥ 3

4 . We start this section by showing how this result can be generalized
for arbitrary positive values of B. In particular, we show that this lower bound follows:

τ avg(B) ≥ 4B − 1

4B
, ∀B ∈ Z+. (7.2)

Comparing this result to the 2M
2M+1 asymptotic per-user DoF under a maximum transmit

set size constraint of M, we see that a gain is achieved when using the more relaxed
backhaul load constraint.

Similar to the coding scheme explained in Chapter 6, we split the network into
subnetworks, each consisting of a set of successive transmitter–receiver pairs, and the
last transmitter in each subnetwork is deactivated to eliminate interference between
subnetworks. If the subnetworks have the same size, and the messages intended for
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Fig. 7.2 Achieving 7
8 per-user DoF with a backhaul load constraint B = 2. Only signals corresponding to

the first subnetwork in a general K-user network are shown. The signals in the dashed boxes are
deactivated. c©[2017] IEEE. Reprinted, with permission, from [87].

all receivers in a subnetwork are confined to be available only at transmitters within the
same subnetwork, then the per-user DoF achieved in the first subnetwork is a lower
bound on the asymptotic per-user DoF. The size of the subnetwork is the same as
the denominator of the target per-user DoF, and the number of active messages (the
ones whose transmit set is not the empty set) in each subnetwork is the same as the
numerator of the target per-user DoF. For the maximum transmit set size constraint of M
considered in Chapter 6, the target per-user DoF was 2M

2M+1 , and hence each subnetwork
had 2M + 1 transmitter–receiver pairs, and 2M messages were active in each. Here, the
target per-user DoF is 4B−1

4B , and hence we consider subnetworks whose size is 4B and
activate 4B − 1 messages in each subnetwork.

We explain the coding scheme for the first subnetwork, consisting of the first 4B users,
and the scheme used for the remainder of the network will be clear by analogy. For
each message Wj, j ∈ {1,2, . . . ,2B}, the transmit set Tj = {j, j+1, . . . ,2B}. In other words,
message Wj is assigned to the transmitter having the same index, as well as all following
transmitters up to the transmitter with index 2B. Using this assignment, the transmit
beams for Wj can be designed such that Wj is delivered from the jth transmitter to the
jth receiver, and the interference caused by Wj at all receivers with indices in the range
{j + 1, j + 2, . . . ,2B} is canceled. In Figure 7.2, we illustrate the message assignment
for the special case when the value of the backhaul load constraint B = 2. In this case,
2B = 4, and we notice how each of the first four messages is assigned according to the
above explanation, leading to interference-free signals observed at each of the first four
receivers.
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Note that each subnetwork has an even number of indices. The message whose index
follows the middle is inactive. For the first subnetwork, message W2B+1 is inactive. For
each message Wj, j ∈ {2B+2,2B+3, . . . ,4B}, the transmit set Tj = {j−1, j−2, . . . ,2B+
1}, i.e., message Wj is assigned to the transmitter having the previous index, as well as
all preceding transmitters down to the transmitter with index 2B + 1. We now observe
that the part of the subnetwork consisting of transmitters {4B − 1,4B − 2, . . . ,2B + 1}
and receivers {4B,4B−1, . . . ,2B+2} is identical to the part consisting of the first 2B−1
transmitter–receiver pairs. To clarify this point, consider the example of Figure 7.2: W8

is transmitted through x7 to y8 without interference, as W1 is transmitted through x1 to
y1 without interference. The interference caused by W8 at y7 and y6 is canceled through
x6 and x5, with respect to order, as the interference caused by W1 at y2 and y3 is canceled
through x2 and x3, respectively. We can then see that interference-free communication
is achieved for messages Wj, j ∈ {2B+2,2B+3, . . . ,4B}, in a similar fashion to how it is
achieved for messages Wj, j ∈ {1,2, . . . ,2B − 1}. It becomes clear that with this message
assignment, interference-free communication is achieved for 4B − 1 messages in each
subnetwork, and hence the achieved per-user DoF of 4B−1

4B .

7.2.1 Using Schemes Developed under Per-Message Backhaul Constraint

We have shown in Section 7.1 that the optimal per-user DoF under the backhaul load
constraint could be achieved by using a convex combination of the schemes that were
shown to be optimal in Chapter 6 under a per-message backhaul constraint that limits
the maximum transmit set size by a bound M. The schemes that are optimal for the cases
when M = 1 and M = 2 were used to achieve the per-user DoF under a backhaul load
of unity, B = 1. We show in this section that this argument can be generalized by using
a convex combination of the schemes that are optimal for the cases when M = 2B − 1
and M = 2B, to achieve the value of τ avg(B).

If we take a closer look at the schemes found to be optimal under the maximum
transmit set size constraint, we will find that these schemes do not fully exploit the
constraint; in other words, their backhaul load is strictly below the maximum value M.
In fact, the optimal scheme under a per-message constraint of M requires a backhaul
load of M(M+1)

2M+1 . We can derive this value by considering the following argument.
The network is split into subnetworks, each of size 2M + 1. Each of the first M
messages is assigned to the transmitter carrying the same index, and all following
transmitters up to the Mth transmitter in the subnetwork. This requires a total backhaul
load of

∑M
i=1 i = M(M+1)

2 . The middle message in each subnetwork is inactive, and the
remaining part of the subnetwork is a mirrored version of the first part. For example,
in the first subnetwork, messages Wj, j ∈ {2M + 1,2M, . . . ,M + 2} require the same
backhaul load as messages Wj, j ∈ {1,2, . . . ,M}, with respect to order. Hence, the total
backhaul load required for all 2M + 1 messages in a subnetwork is M(M + 1). The
average backhaul load is then M(M+1)

2M+1 .
We now know that the scheme that is optimal under a maximum transmit set size

constraint of M = 2B − 1 requires a backhaul load of 2B(2B−1)
4B−1 , and the scheme for

M = 2B requires a backhaul load of 2B(2B+1)
4B+1 . By using the scheme of M = 2B − 1 for a
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fraction of 4B−1
8B of the network, and the scheme of M = 2B + 1 for the remainder, the

total backhaul load becomes 4B−1
8B · 2B(2B−1)

4B−1 + 4B+1
8B · 2B(2B+1)

4B+1 = B. Since the per-user

DoF under the maximum transmit set size constraint τ(M) = 2M
2M+1 , the achieved

per-user DoF using the aforementioned convex combination is then 4B−1
8B · 4B−2

4B−1 + 4B+1
8B ·

4B
4B+1 = 4B−1

4B , which is the same as the one we showed earlier in Section 7.2.

7.2.2 Upper Bound Proof

We show in this section why the lower bound of (7.2) is also an upper bound, and hence
we have an exact characterization of the asymptotic per-user DoF for linear networks
under the backhaul load constraint:

τ avg(B) = 4B − 1

4B
, ∀B ∈ Z+. (7.3)

The proof of the upper bound consists of two steps. First, we generalize the argument
from Chapter 6 to show the upper bound under a maximum transmit set size constraint,
and show here that we can make a stronger statement. If there is only a subset of
messages, whose transmit set sizes are bounded by a maximum value of M, then we
can draw an information-theoretic upper bound on the per-user DoF in terms of M and
the size of that subset of messages. The second step is to show that an average transmit
set size constraint of B implies that there will always be a subset of messages S with
transmit set size bounded by a maximum value M, and the values of |S| and M give the
desired upper bound.

L E M M A 7.1 ( [88, Lemma 3]) For any K-user linear interference channel with DoF
η, if there exists a subset of messages S ⊆ [K] such that each message in S is available
at a maximum of M transmitters, i.e., |Ti| ≤ M,∀i ∈ S, then the DoF is bounded by

η ≤ K − |S|
2M + 1

+ CK , (7.4)

where limK→∞ CK
K = 0.

What Lemma 7.1 implies for linear networks is that if we consider a sequence of
K-user networks, with the value of K increasing to infinity, and for each network we
have a set SK of messages whose transmit set sizes are at most M, and the limiting value
of the fraction limK→∞ SK

K = s, then the asymptotic per-user DoF is upper-bounded by
1 − s

2M+1 . Note that for the special case when SK = {1,2, . . . ,K}, where we impose
the maximum transmit set size constraint of M on all messages, we have s = 1 and
τ(M) ≤ 1 − 1

2M+1 .
Following the same footsteps as the argument for the upper bound on τ(M) in

Section 6.5, we use Lemma 5.2, which we explain here for convenience. What
Lemma 5.2 implies is that if we are allowed to ignore the effect of the Gaussian noise,
and then be able to reconstruct all the transmit signals from only the received signals
yA, then the degrees of freedom is upper-bounded by the cardinality |A|.

To prove the upper bound on τ(M) in Section 6.5, we used Lemma 5.2 with the set
A = {i ∈ [K] : i mod (2M + 1) �= M + 1}. The idea was that if the network is split into
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subnetworks, and each subnetwork has 2M + 1 successive users, then the message with
the middle index in each subnetwork (the (M + 1)th message) can only be available
at transmitters within the subnetwork. Further, this message cannot be available at the
transmitter with the last index in the subnetwork. We know that this is true for any
useful message assignment from the result of Corollary 6.1. The proof then proceeded
by reconstructing the last transmit signal in each subnetwork, since these signals rely
only on the messages WA. Having the transmit signals {xi : i mod (2M + 1) = 0} and
the received signals {yi : i ∈A}, and ignoring the Gaussian noise, all the transmit signals
can be reconstructed by simple linear operations.

Lemma 7.1 can be proved by extending the argument used to prove the 2M
2M+1 upper

bound on τ(M). When using Lemma 5.2, we use a similar set to the set {i ∈ [K] :
i mod (2M + 1) �= M + 1}, but instead of considering all K indices of the network, we
restrict our attention to the set S, where messages have a maximum transmit set size
constraint. We make the following definition: Let gS : S → {1,2, . . . , |S|} be a function
that returns the ascending order of any element in the set S, e.g., gS (min {i : i ∈ S}) = 1
and gS (max {i : i ∈ S}) = |S|; then we define the set A such that the complement set
Ā = {i : i ∈ S,gS(i) = (2M + 1)(j − 1) + M + 1, j ∈ Z+}. So, instead of splitting the
network into subnetworks each consisting of successive 2M + 1 indices, we split the
network here into subnetworks each consisting of successive 2M + 1 indices in S and
all other indices in between them. As before, in each subnetwork there is only one
element in Ā. Instead of having that element as the middle or (M + 1)th index among
consecutive 2M + 1 indices, we have it here as the middle index among all 2M + 1
indices in the subnetwork that are members of S. The same argument then carries over
to show that the DoF is upper-bounded by the cardinality of the chosen set A,

η ≤ |A|
=
(

1 − |S|
2M + 1

)
K + o(K). (7.5)

Corollary 6.1 implies that there is no decrease in the sum-rate if we restrict the choice of
message assignments to those that satisfy the following conditions. Any message in Ā
cannot be available at the last transmitter of any subnetwork. Hence, we can reconstruct
these transmit signals. Then, simple linear operations suffice to reconstruct all remaining
transmit signals, using Gaussian noise signals and the received signals yA. The bound
in (7.5) then follows from the conclusion of Lemma 5.2.

The second step of the proof is of a combinatorial nature. The goal is to show that
if a message assignment satisfies a backhaul load constraint of B, then there has to be
a large subset of messages S whose transmit set sizes are below a small value M. The
values of |S| and M should enable us to use Lemma 7.1 to imply that τ(B) ≤ 4B−1

4B . The
following lemma captures this combinatorial fact needed to complete the proof.

L E M M A 7.2 [88, Lemma 4] For any message assignment for a K-user channel with
an average transmit set size constraint B, there exists an integer M ∈ {0,1, . . . ,K}, and
a subset S ⊆ [K] whose size |S| ≥ 2M+1

4B K, such that each message in S is available at
a maximum of M transmitters, i.e., |Ti| ≤ M,∀i ∈ S.
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Direct application of Lemmas 7.1 and 7.2 leads to the upper bound τ(B) ≤ 4B−1
4B . We

now discuss why the latter is true. Consider the simplest case when B = 1. We argue
that Lemma 7.2 holds in this case with a value M = 1. In other words, for any message
assignment that does not require extra backhaul load, at least 3

4 of the messages in the
network are not assigned to more than one transmitter. Assume that this is not true;
then there would be a fraction of more than 1

4 of the messages that are available at
two or more transmitters. In this case, the only way that the average transmit set size
constraint

∑K
i=1 |Ti| ≤ BK = K is satisfied is that there is at least an equal fraction of

more than 1
4 of the messages that are inactive whose transmit sets are empty. But if we

have a fraction of more than 1
4 of the messages that are inactive, then the statement of

Lemma 7.1 applies for M = 0 and we cannot achieve a per-user DoF that is greater than
3
4 . Now that we see how this simple combinatorial fact is true when B = 1, we explain
in the following why it is true for any positive integer value of B.

For every integer j ∈ {0,1, . . . ,K}, we define Rj as the fraction of messages that are
available at exactly j transmitters. More precisely,

Rj = |{i : i ∈ [K], |Ti| = j} |
K

. (7.6)

If
∑K

j=2B Rj ≤ 1
4B , then more than 4B−1

4B K users have a transmit set whose size is
at most 2B − 1, and Lemma 7.2 follows with M = 2B − 1. We can assume then that∑K

j=2B Rj > 1
4B . In what follows, we show that this assumption implies that

∑M
j=0 Rj >

2M+1
4B for some integer M ∈ {0, . . . ,2B − 2}, and hence Lemma 7.2 would follow with

that value of M.
If we look carefully at the message assignment defined earlier in Section 7.2 and

used to achieve the lower bound τ(B) ≥ 4B−1
4B , and if we define R∗

j as the fraction of
messages that are available at exactly j transmitters for that assignment, then we find
that R∗

0 = R∗
2B = 1

4B , R∗
j = 1

2B ∀j ∈ {1, . . . ,2B − 1}, and no message is assigned to more
than 2B transmitters. Further, this assignment meets the backhaul load constraint tightly.
In other words,

∑K
j=1 jR∗

j = B. Recall that we are considering message assignments that
satisfy the condition

K∑
j=2B

Rj >
1

4B

= R∗
2B =

K∑
j=2B

R∗
j . (7.7)

Since we know by definition that
∑K

j=1 R∗
j = ∑K

j=1 Rj, (7.7) implies that there exists
an integer M ∈ {0,1, . . . ,2B − 1} such that RM > R∗

M; let m be the smallest such
integer. If

∑m
j=0 Rj >

∑m
j=0 R∗

j = 2m+1
4B , then Lemma 7.2 holds with that value of m,

and hence we can assume for the rest of the proof that
∑m

j=0 Rj ≤ ∑m
j=0 R∗

j . Now,
since we have the aforementioned assumption, and also from the choice of m we
know that ∀j ∈ {0,1, . . . ,m − 1},Rj ≤ R∗

j , we can construct another message assignment
by removing elements from some transmit sets whose size is m, such that the new
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assignment has a smaller average transmit set size, and has transmit sets T ∗
i where

∀j ∈ {0,1, . . . ,m}, |{i : i ∈ [K], |T ∗
i | = j}| ≤ R∗

j . By successive application of the above
argument, we can construct a message assignment that satisfies the backhaul load
constraint of B, and has transmit sets T ∗

i where ∀j ∈ {0,1, . . . ,2B−1}, |{i : i ∈ [K], |T ∗
i | =

j}| ≤ R∗
j and |{i : i ∈ [K], |T ∗

i | ≥ 2B}| ≥ R∗
2B. But then the new assignment must have a

larger average transmit set size than that of the assignment achieving the 4B−1
4B lower

bound. More precisely, the following has to be true:∑K
i=1 |T ∗

i |
K

= 1

K

K∑
j=1

j|{i : i ∈ [K], |T ∗
i | = j}|

>

K∑
j=1

jR∗
j

= B. (7.8)

It then follows that the newly constructed message assignment violates the backhaul
load constraint, and hence we reach a contradiction that proves Lemma 7.2.

7.3 General Locally Connected Networks

We saw in Section 7.2.1 that the use of a convex combination of the schemes that are
optimal under the maximum transmit set size constraint can lead to optimal schemes
under the backhaul load constraint. We now show that this approach can also provide
good achievable schemes for the more general locally connected channel model, where
each transmitter is connected to the receiver having the same index as well as L
following receivers, where L > 1.

Consider the schemes illustrated in Chapter 6 to achieve the lower bound of τL(M) ≥
2M

2M+L . The message assignments used by these schemes do not meet the maximum
transmit set size constraint tightly. More precisely, |Ti| < M for most users. Only two
users in each subnetwork have a transmit set of size M, which constitutes a fraction
of 2

2M+L of the users in the network. For all remaining users, the transmit set size is
strictly less than M. A more careful look at these assignments would reveal that the
network is split into subnetworks, each of size 2M + L, and each subnetwork has L
inactive messages (with empty transmit sets). The 2M messages that are active in each
subnetwork are split into two equal-sized groups. The sum of the transmit set sizes in
each of the two groups is the same, so it suffices to calculate it for one of them. Consider
for example, the first group of M users in the first subnetwork. This group consists of
users {1,2, . . . ,M}, and the transmit set Ti = {i, i+1, . . . ,M} for each user i in this group.
The sum of transmit set sizes is hence given by

M∑
i=1

|Ti| = M(M + 1)

2
. (7.9)
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Table 7.1 Achievable per-user DoF values for locally connected channels
with a backhaul constraint

∑K
i =1 |T i | ≤ K . For each L, the schemes used

and the convex combination in which they are used are shown.

Scheme 1 Scheme 2 Ratio τL(B = 1) ≥
L = 2 τL(M = 2) ≥ 2

3
,

τ
avg
L (B = 1) ≥ 2

3

— —
2

3

L = 3 τL(M = 2) ≥ 4

7
,

τ
avg
L

(
B = 6

7

)
≥ 4

7

τL(M = 3) ≥ 2

3
,

τ
avg
L

(
B = 4

3

)
≥ 2

3

7 : 3
3

5

L = 4 τL(M = 2) ≥ 1

2
,

τ
avg
L

(
B = 3

4

)
≥ 1

2

τL(M = 3) ≥ 3

5
,

τ
avg
L

(
B = 6

5

)
≥ 3

5

4 : 9
5

9

L = 5 τL(M = 2) ≥ 4

9
,

τ
avg
L

(
B = 2

3

)
≥ 4

9

τL(M = 3) ≥ 6

11
,

τ
avg
L

(
B = 12

11

)
≥ 6

11

3 : 11
11

21

L = 6 τL(M = 3) ≥ 1

2
,

τ
avg
L (B = 1) ≥ 1

2

— —
1

2

This further implies that the backhaul load is given by

B =
∑

i=1 K|Ti|
K

=
∑

i=1 2M + L|Ti|
2M + L

= M(M + 1)

2M + L
. (7.10)

We can then use these schemes to draw conclusions about what we can achieve for
each value of the local connectivity parameter L, under any backhaul load constraint
B. More specifically, by using convex combinations of the schemes that are optimal
under a maximum transmit set size constraint M, we can identify achievable values for
the asymptotic per-user DoF, with no additional overall load on the wireless backhaul
(B = 1). In Table 7.1, we characterize the schemes employed to achieve an asymptotic
per-user DoF that is greater than or equal to half for each value of L ≤ 6, and state the
required ratio for the convex combination to achieve the target value. For example, for
the case when L = 2, we use the scheme that is optimal for a maximum transmit set
size constraint of M = 2 for 70% of the network, and the scheme that is optimal for a
maximum transmit set size constraint of M = 3 for 30% of the network. The achieved
value for the asymptotic per-user DoF will then be 2

3 with a backhaul load of unity.
We note that the lower bounds stated in Table 7.1 are achieved through the use of

only zero-forcing transmit beamforming. In other words, there is no need for the symbol
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extensions that are used in the asymptotic interference alignment scheme of [46]. In [71,
Theorem 8], it was shown that for L ≥ 2, by allowing each message to be available at
one transmitter, the asymptotic per-user DoF is 1

2 ; it was also shown in [71, Theorem 6]
that the 1

2 per-user DoF value cannot be achieved through zero-forcing transmit forming
for L ≥ 3. In contrast, it can be seen in Table 7.1 that for L ≤ 6, the 1

2 per-user DoF value
can be achieved through zero-forcing transmit beamforming and a flexible design of the
backhaul links, without incurring additional overall load on the backhaul (B = 1).

7.4 Cellular Network Models

For linear networks with L = 1,2,3,4,5,6, we have shown that compared to the case of
no cooperation (M = 1), a greater per-user DoF can be achieved with delay-free one-shot
schemes under an average backhaul load B = 1, i.e., without incurring additional
backhaul load. We now investigate whether these results hold for denser networks that
may be more relevant to practice.

7.4.1 Example: Two-Dimensional Wyner Network

Through this example, we illustrate that the insights for linear interference networks
may apply in denser networks by treating the denser network as a set of interfering
linear networks. We consider the two-dimensional network depicted in Figure 7.3(a),
where each transmitter is connected to four cell edge receivers. The precise channel
model for a K-user channel is as follows:

hij is not identically 0 if and only if

i ∈
{

j, j + 1, j +
⌊√

K
⌋

, j +
⌊√

K
⌋

+ 1
}

. (7.11)

Under the backhaul load constraint
∑K

i=1 |Ti|
K ≤ 1, a per-user DoF of 5

9 can be achieved
using only zero-forcing transmit beamforming. This can be done by deactivating every
third row of transmitters, and splitting the rest of the network into noninterfering linear
subnetworks – see Figure 7.3(b). In each subnetwork, a backhaul load constraint of 3

2
is imposed. For example, the following constraint is imposed on the first row of users:∑�√

K�
i=1 |Ti|⌊√

K
⌋ ≤ 3

2 . A convex combination of the schemes that are characterized as optimal

with maximum transmit set size constraints M = 2 and M = 3 is then used to achieve a
per-user DoF of 5

6 in each active subnetwork while satisfying a backhaul load constraint
of 3

2 . The scheme for M = 2 for a linear network has a backhaul load of B = 6
5 and a

per-user DoF of 4
5 , and the scheme for M = 3 has a backhaul load of B = 12

7 and a per-user
DoF of 6

7 . We can then use the scheme for M = 2 for a fraction of 5
12 of the network,

and the scheme for M = 3 for the remaining part of the network, and achieve the target
per-user DoF of 5

6 with a backhaul load of 3
2 . Since 2

3 of the subnetworks are active, a

per-user DoF of 5
9 is achieved while satisfying a backhaul load constraint of unity.

We observe that a per-user DoF greater than 1
2 is achieved by using simple

zero-forcing schemes with an average backhaul load of one without the need for
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Fig. 7.3 Two-dimensional interference network. (a) The channel model. (b) An example coding scheme
where dashed boxes and lines represent inactive nodes and edges; the network is split into
noninterfering linear subnetworks. c©[2017] IEEE. Reprinted, with permission, from [87].

interference alignment. We could reach this conclusion by leveraging the schemes that
were discovered for linear networks in more complex network topologies, by splitting
the network into linear subnetworks and deactivating a subset of edge transmitters to
eliminate inter-subnetwork interference. In the next section, we explore whether we can
extend this idea to the practically relevant hexagonal cellular network model.

7.4.2 Hexagonal Cellular Networks with No Cooperation

Information-Theoretic Upper Bound
In order to evaluate the gains of the added flexibility offered by combining CoMP
transmission and the backhaul load constraint, we first study the information-theoretic
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Fig. 7.4 (a) Cellular network. (b) Connectivity graph. The dotted lines in (b) represent the interference
between sectors belonging to the same cell. c©[2017] IEEE. Reprinted, with permission,
from [89].

limit when each message could be available only at one transmitter. This is the path
that we followed for linear and locally connected networks, and we follow it here for
hexagonal cellular network models. We first discuss the model of network connectivity.
This is a sectored K-user cellular network with three sectors per cell, as shown in
Figure 7.4(a). We assume a local interference model, where the interference at each
receiver is only due to the basestations in the neighboring sectors. It is assumed that
the sectors belonging to the same cell do not interfere with each other, the justification
being that the interference power due to sectors in the same cell is usually far lower than
the interference from out-of-cell users located in the sector’s line of sight.

The cellular model is represented by an undirected connectivity graph G(V ,E) as
shown in Figure 7.4(b), where each vertex u ∈ V corresponds to a transmitter–receiver
pair. For any node a, the transmitter, receiver, and intended message (word) correspond-
ing to the node are denoted by Ta, Ra, and Wa, respectively. An edge e ∈ E between
two vertices u,v ∈ V corresponds to a channel existing between Tu and Rv, as well as
a channel existing between Tv and Ru. The dotted lines denote interference between
sectors that belong to the same cell, and is ignored in our model. To simplify the
presentation, without much loss of generality, we consider only K−user networks where√

K is an integer, and nodes are numbered as in Figure 7.4(b). (In the figure,
√

K = 6.)
Since we are studying the performance in the asymptotic limit of the number of users,
the assumption is not restrictive.

Define τc(M) as the asymptotic per-user DoF for the considered cellular network,
with a maximum transmit set size constraint of M. In this section, we show that
τc(M = 1) ≤ 1

2 . In other words, one can only achieve 1
2 per-user DoF in a large cellular

network if each message can only be available at a single transmitter. We present the
following lemma from [71] for the case when each message can be available at only
one transmitter (M = 1). The lemma gives a relation between the DoF of the message
being delivered by a transmitter and the DoF corresponding to the messages intended
for the receivers connected to that transmitter. Here, Rj denotes the set of receivers that
are connected to transmitter Tj.
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L E M M A 7.3 ( [71, Lemma 5]) If Ti = {Xj}, then di + dk ≤ 1, ∀k ∈ Rj.

What Lemma 7.3 captures is the simple fact that if a message is being delivered
to its destination through a single transmitter, then this message has a conflict with
all the messages intended for receivers connected to that transmitter. Since any of the
aforementioned receivers can observe its own message and the message carried by the
designated transmitter, then their sum DoF is unity. We now make few definitions to
simplify presentation. Each transmitter–receiver pair in the network is referred to as a
node.

D E FI N I T I O N 7.1 For a set of nodes a1,a2, . . . ,an, we define a1 ◦ a2 ◦ · · · ◦ an to denote
that the per-user DoF of messages Wa1 ,Wa2 , . . . ,Wan is at most half, i.e.,

n∑
i=1

di ≤ n

2
. (7.12)

D E FI N I T I O N 7.2 If a and b are two nodes such that they are connected in the
connectivity graph, and the transmitter of node a has the message for node b, i.e., a ∈Tb,
we say that it is a useful message assignment from a to b and this is denoted by a → b.

Consider any chain a,b,c such that a → b → c. We have Tb = {a} and a,b ∈ Ra, and
hence, from Lemma 7.3, we have a ◦ b. Similarly, we have Tc = {b} and a,b,c ∈ Rb,
and, from Lemma 7.3, we have a◦c and b◦c. Thus, we have a◦b◦c for any a → b → c.

T H E O R E M 7.4 For the considered hexagonal cellular network model, the following
bound holds for the case of no cooperation:

τc(M = 1) ≤ 1

2
.

We explain the proof of Theorem 7.4 in the rest of this section. Consider the division
of the network into triangles as shown in Figure 7.5. We say that a triangle is in state Si if
exactly i of the messages of the triangle are assigned to transmitters within the triangle,

TT(1)(1)

T(2)(2)

T(3)(3) T1(3)(3)

T2(1)(1)T(1)

T(2)

T(3) T1(3)

T2(1)

Fig. 7.5 Converse argument: viewing the network as a set of connected triangles.
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0 ≤ i ≤ 3. Let Si denote the set of all triangles in state Si. We highlight the following
types of nodes:

Self-serving nodes: We refer to a node as a self-serving node if the message to the
receiver corresponding to the node is assigned to its own transmitter. We define SS1

as the set of all self-serving nodes belonging to triangles in state S1.
Outsider nodes: We refer to a node as an outsider node if no message within its
triangle is assigned to its transmitter, and also its message is not assigned within its
triangle. Let O denote the set of all outsider nodes. Note that every triangle in state
S0 consists of three outsider nodes, every triangle in state S1 has at least one outsider
node, and a triangle in state S2 may contain an outsider node.

In any triangle T , T(1),T(2),T(3) denote the top left node, the top right node, and the
bottom node, respectively. We define a middle triangle which is formed by the connected
nodes of three different neighboring triangles. For example, T(2),T1(3),T2(1) in
Figure 7.5 are members of a middle triangle. For any node b, let Mb denote the middle
triangle containing node b.

In Algorithm 7.1, we define a strategy for including nodes in a set S such that at
any stage, the per-user DoF of the nodes already included in S is upper-bounded by
1
2 . Note that at the end of the algorithm, all nodes are included in S. To facilitate the
understanding of Algorithm 7.1, we observe the following:

• If T(i) ∈SS1, then T(i) is a self-serving node and since the triangle T associated with
it is in state S1, the other nodes in the triangle T((i + 1) mod 3),T((i + 2) mod 3) are
outsider nodes. Without loss of generality, we have T(i)◦T((i+1) mod 3), and hence
we can include nodes T(i),T((i + 1) mod 3) in the set S, as in line 4.

• For any middle triangle with nodes T(i),T1((i + 1) mod 3),T2((i + 2) mod 3)

containing at least two outsider nodes, we have T(i) ◦ T1((i + 1) mod 3), T1((i +
1) mod 3) ◦ T2((i + 2) mod 3), T(i) ◦ T2((i + 2) mod 3). The aforementioned three
inequalities imply the inequality T(i) ◦ T1((i + 1) mod 3) ◦ T2((i + 2) mod 3). Note
that the three inequalities hold because the message of an outsider node can only be
available at a transmitter in the middle triangle containing the node; we discuss this
argument in detail below. Let the two outsider nodes be T(i) and T1((i + 1) mod 3).
Since T1((i + 1) mod 3) is an outsider node, we have the following possibilities:
Suppose the message to node T1((i + 1) mod 3) is not available at either T2((i +
2) mod 3) or T(i) and hence cannot be transmitted. Then we have dT1((i+1) mod 3) = 0
and so T(i) ◦ T1((i + 1) mod 3) and T2((i + 2) mod 3) ◦ T1((i + 1) mod 3) hold.
Suppose the message for T1((i + 1) mod 3) is transmitted by any of the other nodes
in the middle triangle. Then, from Lemma 7.3, we have T(i) ◦ T1((i + 1) mod 3) and
T2((i + 2) mod 3) ◦ T1((i + 1) mod 3). Similarly, for the other outsider node T(i),
we have T(i) ◦ T2((i + 2) mod 3). Hence we have T(i) ◦ T1((i + 1) mod 3) ◦ T2((i +
2) mod 3).

If the triangle contains three outsider nodes, we include nodes T(i),T1((i + 1) mod
3),T2((i + 2) mod 3) in the set S, as in line 10. If it contains only two outsider nodes
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Algorithm 7.1 Strategy for including all nodes in S such that the half per-user DoF
upper bound proof is simplified.

1: Initialize S ← ∅
2: while SS1\S �= ∅ do
3: for b ∈ SS1 where b = T(i) for some triangle T do
4: S ← S ∪ {T(i),T((i + 1) mod 3)}
5: end for
6: end while
7: while O\S �= ∅ do
8: for b ∈O\S where b = T(i) for some triangle T and Mb contains nodes T1((i +

1) mod 3) and T2((i + 2) mod 3) do
9: if MT(i)\S contains 3 outsider nodes then

10: S ← S ∪ {T(i),T1((i + 1) mod 3),T2((i + 2) mod 3)}
11: else if MT(i)\S contains 2 outsider nodes T(i) and j where j ∈ {T1((i +

1) mod 3),T2((i + 2) mod 3)} then
12: S ← S ∪ {T(i), j}
13: else if MT(i)\S contains T(i) as the only outsider node and message for

T(i) is assigned within MT(i)\S at j → T(i) where j ∈ {T1((i + 1) mod 3),T2((i +
2) mod 3)} then

14: S ← S ∪ {T(i), j}
15: else if MT(i)\S contains T(i) as the only outsider node and message for T(i)

is not assigned within MT(i)\S then
16: S ← S ∪ {T(i)}
17: end if
18: end for
19: end while
20: while S1 ∪S2 ∪S3\S �= ∅ do
21: for triangle T ∈ S1 ∪S2 ∪S3 do
22: S ← S ∪ T\S
23: end for
24: end while

T(i), j, where j ∈ {T1((i + 1) mod 3),T2((i + 2) mod 3)}, we include them in the set
S, as in line 12.

• Let T(i) be the only outsider node among T(i),T1((i + 1) mod 3),T2((i + 2) mod 3).
If its message is available at neighboring node j where j ∈ {T1((i + 1) mod 3),T2((i +
2) mod 3)}, i.e., j → T(i) as defined in Definition 7.2, then we have j◦T(i) and include
nodes T(i), j in the set S, as in line 14.

• If the message of outsider node T(i) is not assigned within nodes T1((i + 1) mod
3),T2((i+2) mod 3), we have dT(i) = 0 and we include T(i) in the set S, as in line 16.

We now consider the case where the message of T(i) is assigned to a node in the
set MT(i) ∩ S, and show that the per-user DoF of the set S is still upper-bounded
by 1

2 when we add only the node T(i) to the set S. Suppose j → T(i) where j ∈
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{T1((i + 1) mod 3),T2((i + 2) mod 3)} but j ∈ S. This is possible only when j was
included in S according to line 4 in the algorithm. Let j be the self-serving node and
j + 1 be the outsider node included in line 4. We have j ◦ T(i), T(i) ◦ j + 1, and we
have j ◦ j + 1 from before. We also have T(i)◦ j + 1 from Lemma 7.3 since TT(i) = {j}
and j + 1 ∈Rj. Hence, T(i) can be included without any increase in the per-user DoF.
The same argument holds even if j was the outsider node and j + 1 the self-serving
node included in line 4. Note that the only other possibility through which nodes
j, j + 1 were previously included in the set S is when both transmitters j and j + 1
are carrying messages for the only remaining outsider nodes T(i) and T ′(k) in their
respective middle triangles. In that case we see that T(i) ◦ j, T ′(k) ◦ (j + 1), and the
per-user DoF is still upper-bounded by 1

2 .

Consider all triangles in S1 ∪ S2 ∪ S3. If T denotes such a triangle with nodes
T(1),T(2),T(3), let t denote the set of nodes in T but not included in S by line 19. Note
that for triangles in S2 ∪ S3 with nodes T(1),T(2),T(3), we have T(1) ◦ T(2),T(2) ◦
T(3),T(1) ◦ T(3), and hence T(1) ◦ T(2) ◦ T(3) from Lemma 7.3; we will use this fact
below. Consider the following cases for any triangle T that has one or more nodes in the
set t = T\S:

• The set t contains only one node T(i). We first find two nodes T(k), j where T(k) → j
that were previously added to S according to line 14, and show that T(i) ◦ T(k) ◦ j
holds. We then show that nodes T(k) and j do not appear in any other such
combination, and hence adding T(i) to S does not change the per-user DoF upper
bound of 1

2 for the set S.
Note that, by definition, a triangle in state S2 or S3 has at least two messages

assigned within the triangle and thus has at least two non-outsider nodes. Hence,
if T ∈ S2 ∪S3, then there exists at least one node k ∈ {(i + 1) mod 3,(i + 2) mod 3}
such that T(k) is not an outsider node and we have T(i) ◦ T(k). If T ∈ S1, since all
the self-serving nodes and outsider nodes have already been included in S, we have
T(i) → T(k) or T(k) → T(i) for some k ∈ {(i + 1) mod 3,(i + 2) mod 3}.

Since T(k) was a non-outsider node that was previously considered, it must have
been added according to line 14. Hence, there is an assignment T(k) → j where j
is an outsider node in the middle triangle MT(k), j ∈ {T1((k + 1) mod 3),T2((k + 2)

mod 3)}, and T(k) ◦ j was considered. We have T(k) ◦ j and T(i) ◦ j from Lemma 7.3,
since Tj = {T(k)} and T(k),T(i) ∈ RT(k). Hence, we have j ◦ T(i) ◦ T(k).

Note that neither j nor T(k) is part of any other such combination. This is true for
T(k) because all the nodes in its triangle have already been considered. Since T(k) → j
and j has been added to the set S according to line 14, outsider node j cannot be part
of any such combination that does not involve T(k). Thus, we include t = {T(i)} in
the set S as in line 22, while the per-user DoF of the set S is upper-bounded by 1

2 .
• The set t contains two nodes T(i),T((i + 1) mod 3) for some i ∈ {1,2,3}. If T ∈ S1,

then one of the nodes is carrying a message for the other and we have T(i) ◦
T((i + 1) mod 3). If T ∈ S2 ∪ S3, we have T(i) ◦ T((i + 1) mod 3) and we include
t = {T(i),T((i + 1) mod 3)} in the set S, as in line 22.
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• The set t contains three nodes T(1),T(2),T(3). This can happen only when T ∈ S2 ∪
S3. In this case, we have T(1) ◦ T(2) ◦ T(3) and we include t = {T(1),T(2),T(3)} in
the set S, as in line 22.

This shows that, using a traditional approach for interference management, the
maximum asymptotic per-user DoF for the considered hexagonal cellular network
model is at most 1

2 . Further, the only known way this DoF value can be approached
is in the limit as the length of symbol extension goes to infinity, as in the asymptotic
interference alignment scheme of [46]. We show next that one-shot zero-forcing
schemes that do not require symbol extension can only be used to achieve an asymptotic
per-user DoF of at most 3

7 . However, if cooperative transmission is enabled with flexible
message assignments that do not overload the backhaul, an asymptotic per-user DoF of
1
2 can be achieved using these simple zero-forcing schemes.

Optimal Zero-Forcing Schemes
We restrict our attention here to the class of zero-forcing schemes, and characterize
lower and upper bounds for the maximum achievable per-user DoF.

T H E O R E M 7.5 The following bounds hold under restriction to zero-forcing schemes
for the asymptotic per-user DoF of hexagonal cellular networks with no cooperation:

1

3
≤ τ zf

c (M = 1) ≤ 3

7
. (7.13)

We spend the rest of this section proving Theorem 7.5.
Notice that the network can be divided into disjoint triangles as shown in Figure 7.6.

In each triangle, by deactivating two nodes (1 and 2 in Figure 7.6), the network
decomposes into K/3 isolated nodes that each achieves a DoF of one, thus achieving a
per-user DoF of 1

3 in the network.

(a)

(b)
1 2

3

bb1

a1

c1

c

a b

a2

b1

a1

c1

c

a b

a2

Fig. 7.6 (a) Division of network into triangular subnetworks. (b) By deactivating nodes 1 and 2, a
per-user DoF of 1

3 is achieved. c©[2017] IEEE. Reprinted, with permission, from [89].
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Zero-Forcing Upper Bound
Consider the decomposition of the network into disjoint triangles as in Figure 7.6. For
any zero-forcing coding scheme, we note that any triangle in the network is in one of
the following states:

State 0 (inactive triangle): All transmitters and receivers in the triangle are inactive.
State 1 (self-serving triangle): Exactly one transmitter in the triangle sends a message
to exactly one receiver within the triangle. None of the other transmitters or receivers
can be active in this triangle.
State 2 (serving triangle): At least one transmitter in the triangle is activated to serve
a receiver in another triangle, and there are no active receivers in the considered
triangle.
State 3 (served triangle): At least one receiver in the triangle is activated as it is being
served by a transmitter in another triangle, and there are no active transmitters within
the considered triangle.

For triangles in states 1 and 0, the number of active receivers is bounded by the number
of triangles, i.e., a fraction of 1

3 of the number of users.
For every transmitter c that is active in a triangle, say T1, that is in state 2, there exists

a neighboring receiver b in a different triangle, say T2, in state 3 that is being served
by it and a neighboring node a in a third triangle T3, whose transmitter and receiver are
both inactive. We now consider the following cases for the state of triangle T3:

Case 1: T3 is in state 2 or 3. The remaining neighbors of a,b,c are the nodes in their
own triangles. We now know that da +db +dc ≤ 1, because the receivers with indices
a and c are inactive and hence the per-user DoF is at most 1

3 . Further, because none
of the nodes a, b, and c have other neighbors except in their own triangles, there is no
overcounting when we repeat this procedure to obtain DoF bounds on other similar
sets of users.
Case 2: T3 is in state 1. Suppose that in T3 there is a node a2 that serves itself. Then
there is another inactive node in T3 that may form a group similar to a,b,c with
its neighbors from different triangles, say b1,c1. We note that these two groups are
disjoint. So, among the seven nodes (Sa ∪ {b,c,b1,c1}), there are at most three active
receivers. This is illustrated in Figure 7.7. Suppose T3 does not contain a self-serving
node. Then a is the only node with inactive transmitter and receiver in T3, and among
the five nodes (T3 ∪ {b,c}) we attain a sum DoF of at most two.
Case 3: T3 is in state 0. Then, in the set of the five nodes (T3 ∪ {b,c}), we attain a sum
DoF of at most one.

For any scheme, the network can be rearranged into a combination of disjoint groups of
three, five, and seven users, and the per-user DoF for each group is at most 3

7 . It follows
that τ ≤ 3

7 holds asymptotically for any choice of cell associations and interference
avoidance schemes.
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Fig. 7.7 Illustration of the 3
7 upper bound on the per-user DoF achievable by zero-forcing schemes with

no cooperation. The number 1 inside a triangle indicates that it is in state S1.

7.4.3 Flexible Message Assignment with Cooperation

We now show, through the result in Theorem 7.6, how a smart choice for assigning
messages to transmitters, aided by cooperative transmission, can achieve scalable DoF
gains through an interference avoidance coding scheme. We achieve this by treating
the hexagonal model as interfering locally connected linear networks with L = 2. In
particular, we show a lower bound on the achievable per-user DoF that is greater than
the 3

7 upper bound of the case without cooperation that was proved in Theorem 7.5.

T H E O R E M 7.6 Under the average backhaul constraint B = 1, the following lower
bound holds for the asymptotic per-user DoF, and is achievable using a zero-forcing
scheme:

τ
avg,zf
c (B = 1) ≥ 1

2
. (7.14)

Proof Consider a division of the network formed by deactivating a third of the nodes,
as shown in Figure 7.8(a). We note that the remaining network consists of noninterfering
locally connected subnetworks with connectivity parameter L = 2. In each subnetwork,
we use the scheme in [71] for M = 3 that considers a division of the subnetwork into
noninterfering blocks of eight nodes. The message assignment is shown in Figure 7.8(b).
This scheme achieves a per-user DoF of 3

4 with B = 3
2 in the locally connected linear

subnetwork. Since the linear subnetworks only account for 2
3 of the network, we obtain

a per-user DoF of 1
2 with B = 1 in the entire network.

7.5 Summary

In this chapter, we have studied the potential gains offered by cooperative transmission
in the downlink of cellular networks, under an average backhaul load constraint. We
first characterized the asymptotic per-user DoF in the linear interference network,
and showed that the optimal coding schemes rely only on zero-forcing transmit
beamforming. Furthermore, the optimal schemes utilize an asymmetric assignment
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Fig. 7.8 (a) Division of cellular network into subnetworks. (b) The message assignment in each
subnetwork. Nodes represented with open circles and signals represented with dashed boxes are
inactive.

of messages, such that the backhaul constraint is satisfied, where some messages are
assigned to more than B transmitters at the cost of assigning others to fewer than B
transmitters, and some messages are not assigned at all. Thus, the average backhaul
constraint allows for higher degree of freedom gains compared to the maximum transmit
set size constraint, and we have τ avg(B) > τ(M). We then extended these results to
more general and practically relevant networks, such as linear interference networks
with higher connectivity and hexagonal-sectored cellular networks. We showed that
in locally connected linear networks τ

avg,zf
L (B = 1) > τL(M = 1) for L ≤ 5, and

in hexagonal cellular networks τ
avg,zf
c (B = 1) > τc(M = 1). The proposed schemes

are simple zero-forcing schemes with flexible message assignments that achieve the
information-theoretic upper bound of the per-user DoF for the case of no cooperation
with an average backhaul load of one message per transmitter, i.e., with no extra
backhaul load, and without the need for interference alignment.

We end with the following insights that we gained from our study of CoMP
transmission with a backhaul load constraint:

• When we allow for flexible assignment of backhaul resources, by enabling asymmet-
ric allocation of the resources to different users in a single channel use, we obtain
significant gains with CoMP transmission, even with the condition that the backhaul
load remains the same as that required to assign each message to only one transmitter.

• The above point is particularly relevant in practice, by noting that these gains can be
achieved with simple zero-forcing schemes that do not suffer from the coding delay
incurred by symbol extensions. However, it is also important to note that we still
assume the availability of perfect channel state information at the transmitters, as well
as perfect synchronization between the transmitters, to enable complete interference
cancellation.

• The above two observations hold not only for simple Wyner-type locally connected
networks but also for more complex models of cellular networks that are more
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relevant to practice. The key idea enabling this extension is that the more complex
hexagonal network can be viewed as a set of interconnected locally connected
subnetworks, each with sparse connectivity. By designing a scheduling scheme that
eliminates interference between different subnetworks, we can exploit the analysis of
the locally connected networks to design schemes that use CoMP transmission with
flexible backhaul resource allocation to achieve significant rate gains with minimal
delay requirements.
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Our treatment of the CoMP concept of communication has been restricted so far to
transmission schemes and their applications in the cellular downlink. In this chapter,
we investigate whether the ideas studied for enabling rate gains and minimizing
delay requirements through CoMP can be applied to reception schemes and their
applications in the cellular uplink. Throughout our discussion of CoMP transmission,
we assumed that messages are distributed through a backhaul network to transmitters.
More specifically, we assumed that sharing of information between transmitters occurs
through sharing of digital messages, instead of assuming that quantized analog signals
are being shared. This is a natural assumption when considering the cellular downlink
for the following reasons. First, sharing of analog signals is prone to quantization
errors, which complicate the interference management problem, and make it harder
to obtain clear insights through information-theoretic analyses. Second, since our
purpose is to model fairly general scenarios for cellular networks, and in particular,
those anticipated in next generation wireless networks, it is natural to assume that a
message is being delivered from a central controller (or basestation controller) to each
basestation transmitter. This is the case even if we are not considering cooperative
transmission, and hence it is also natural to extend this assumption with a more powerful
backhaul to allow for delivering the digital message to more than one basestation
transmitter. For the considered setting of cellular uplink, the first reason mentioned
above will still hold. However, the second aspect is different. Here, we can think of two
different ways for cooperative reception. The first is when sharing of analog received
signals is permitted; we call such schemes CoMP reception schemes and we discuss
information-theoretic results for this case in Section 8.1. The second is when only
sharing of decoded messages is permitted; we call this the message passing model and
we discuss information-theoretic results for this case in Section 8.2.

There are noticeable similarities between the message passing model and the CoMP
transmission schemes that are based on zero-forcing. By passing one message from one
basestation to another through the backhaul, the interference caused by this message
at exactly one receiver could be eliminated. However, unlike the downlink case, when
the interference caused by a message is canceled at one receiver through cooperation, it
does not propagate to other receivers. For example, if message W1 in a linear network
is delivered to its own destination through the first transmitter, and also given to the
second transmitter to cancel its interference at the second receiver, the fact that it
is now transmitted by the second transmitter will make its interference propagate to
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the third receiver. In the uplink, that does not happen. If the decoded message W1

is passed from the first receiver to the second receiver, so that its interference at the
second receiver can be canceled, that does not make this message appear at the third
receiver as a consequence. This difference is why the answer to the following question
is non-trivial: Given limited backhaul resources, and the constraint that we have to fix a
limited number of associations between mobile terminals and basestations in a cellular
network, how do we choose the associations that maximize the average rate across both
downlink and uplink sessions?

Here, we assume in the downlink that a basestation transmitter can have a message for
a mobile terminal receiver only if the mobile terminal is associated with the basestation.
Also, for uplink, a basestation receiver cannot have the decoded message of a mobile
terminal transmitter unless the mobile terminal is associated with the basestation. This
constraint of a limited number of associations can make sense in practical settings due to
limited backhaul resources, as well as the overhead incurred by transmitting or decoding
a given message. We study this problem of joint uplink/downlink design in Section 8.3.

8.1 CoMP Reception

The problem of analyzing the degrees of freedom of CoMP reception schemes was
studied in [70] for fully connected interference networks. It was assumed that each
message could be decoded using Mr received signals. It was also assumed that each
message is being transmitted jointly by Mt transmitters. The following result of
[70] characterizes a necessary and sufficient condition on the number of cooperating
transmitters and receivers per message in order to achieve full degrees of freedom.

T H E O R E M 8.1 Full DoF can be achieved in a K-user fully connected interference
network using CoMP transmission and reception if Mt + Mr ≥ K + 1.

We spend the rest of this section proving Theorem 8.1, and then discussing the
insights it implies. Note that if either Mt = 1 or Mr = 1, then the statement of the theorem
just implies that full DoF is achievable with only transmitter or receiver cooperation
if and only if the cooperation is full. In other words, if only receivers are allowed to
cooperate then each message has to be decoded using all received signals. This case is
already well known; the nontrivial case would be when both transmitter and receiver
cooperation are employed (Mt,Mr > 1). The achieving scheme relies on linear transmit
and receive beamforming to cancel interference at undesired receivers.

We now formalize the beamforming problem. Let V and U be the K × K matrices
representing the transmit and receive beams, respectively. The kth column of V
represents the beam along which the message Wk is transmitted. Similarly, the kth
column of U represents the direction along which Wk is received. Note that the
cooperation constraints of Mt and Mr restrict each of the matrices V and U to have
only Mt and Mr nonzero entries in each row. We choose these matrices as follows:

vik �= 0 ⇒ i ∈ {k,k + 1, . . . ,k + Mt − 1}, (8.1)

uik �= 0 ⇒ i ∈ {k,k + 1, . . . ,k + Mr − 1}, (8.2)
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where the ⇒ sign denotes that the left-hand side implies the right-hand side. Let H
denote the K × K matrix of channel coefficients. Recall, that we are assuming that
elements of H are drawn from a joint continuous distribution. If Mt and Mr satisfy
Mt + Mr ≥ K + 1, then we prove the existence of transmit beamforming matrix V and
receive beamforming matrix U satisfying (8.1), and the following holds for almost all
realizations of H:

U�HV = I, (8.3)

where I is the K × K identity matrix with unity diagonal entries and zero off-diagonal
entries. Observe that the above choice for beamforming matrices V and U achieves
K DoF since they create K interference-free AWGN channels, one per message, with
each channel having a nonzero SNR. The condition in (8.3) is equivalent to finding the
following decomposition for the inverse of the channel matrix:

H−1 = VU�. (8.4)

The problem then reduces to that of knowing whether the inverse of the channel
matrix admits the decomposition in (8.4). Note that the matrix H−1 consists of random
elements, and hence we are interested in making probabilistic statements on the
existence of the decomposition in (8.4). We discuss this decomposition problem in a
more general context in the next section.

8.1.1 Structural Matrix Decomposition

We describe here a general problem of matrix decomposition, where we study when a
matrix admits a factorization into two matrices, based on the locations of the nonzero
entries in these matrices, or their structure. We begin by formally defining this concept
of matrix structure.

D E FI N I T I O N 8.1 (S-matrix) Given a matrix V and a (0,1)-matrix V̄ of the same size,
we say that V̄ is a structural matrix (or S-matrix) of V if v̄ij = 1 for all i, j such that
vij �= 0.

We now define what we mean by a structural matrix decomposition of a matrix.

D E FI N I T I O N 8.2 (SMD) Let A be a square matrix, and V̄, Ū be (0,1)-matrices of the
same size. We say that the matrix A admits a structural matrix decomposition (SMD)
with respect to V̄ and Ū if A can be factorized as

A = VU�, (8.5)

with V̄ and Ū being S-matrices of V and U, respectively.

Note that the well-known LU (lower upper) decomposition is a special case of SMD
where V̄ and Ū are the structures of lower triangular matrices. For example, when all
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considered matrices are 3 × 3 matrices, the S-matrices are as follows:

Ū = V̄ =
⎡
⎣ 1 0 0

1 1 0
1 1 1

⎤
⎦ . (8.6)

If the random matrix A is generic, then we know it admits an LU decomposition. We
refer the reader to Definition B.1 in Appendix B for what it means when we say that a
property holds for a generic value of A. We are going to show in the rest of this section
that it is also true that if A is generic, then it admits a decomposition with S-matrices V̄
and Ū that satisfy the conditions in (8.1).

T H E O R E M 8.2 Suppose the square structural matrices V̄ and Ū satisfy the conditions

• The diagonal entries of V̄ and Ū are nonzero.

• The matrix V̄ + Ū
�

is a full matrix, i.e., all of its entries are nonzero.

Then, a generic matrix A with the same dimension admits the SMD A = VU� with
respect to the S-matrices V̄ and Ū.

We are interested in proving Theorem 8.2 when all considered square matrices have
dimension K × K, so that we can apply it by setting A as the matrix of channel
coefficients H. The statement can be proved by viewing the equation A = VU� as a
set of polynomial equations,

aij = fij(t),∀i, j ∈ {1,2, . . . ,K}, (8.7)

where t consists of the following set of variables:

{vij : v̄ij = 1} ∪ {uij : i �= j and ūij = 1}. (8.8)

In other words, t consists of the entries of V and U that could take arbitrary values. Note
that we excluded the diagonal entries of U, {ukk,k ∈ {1,2, . . . ,K}}, from t because if
A = VU� then it is also true that A = (V�)(U�−1)� for any full diagonal matrix �, and
hence we fix the diagonal entries of U to be all unity so that the decomposition is unique
if it exists. We know from Lemma B.2 in Appendix B that the system of polynomial
equations in (8.7) admits a solution for a generic A if and only if the Jacobian matrix Jf

of the polynomial map

f : CNv → CK×K (8.9)

has full row rank of K2 at some point t∗, where Nv is the number of variables in t. We
note that Jf may have a row rank of K2 because it follows from Theorem 8.2 that Nv ≥
K2, since for each position for a matrix entry indexed by the pair (i, j) ∈ {1,2, . . . ,K} ×
{1,2, . . . ,K}, it is the case that either ūij = 1 or v̄ij = 1. We now set the point t∗ such that
U∗ = V∗ = I, the identity matrix.

We proceed with the proof by finding a full rank K2 ×K2 submatrix of Jf at the point
t∗. The submatrix we choose is the one corresponding to the K2 variables {tij : tij =
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vij or tij = uji, i, j ∈ {1,2, . . . ,K}}. The entries of Jf in that submatrix are given by the
partial derivatives,

∂apq

∂tij
= ∂fpq(t)

∂tij

= ∂
∑K

�=1 vp�uq�

∂tij

=
K∑

�=1

∂(vp�uq�)

∂tij
. (8.10)

If tij = vij, then the following holds:

∂apq

∂tij
=

K∑
�=1

∂(vp�uq�)

∂tij

= δpiu
∗
qj

= δpiδqj, (8.11)

where δij is the Kronecker delta function. Also, if tij = uji, then the following holds:

∂apq

∂tij
=

K∑
�=1

∂(vp�uq�)

∂tij

= v∗
piδqj

= δpiδqj. (8.12)

We hence have

∂apq

∂tij
=
{

1 if (p,q) = (i, j),
0 otherwise.

(8.13)

It then follows that the K2 × K2 considered submatrix of Jf is the identity matrix, at
the considered point t∗, and hence Jf has full row rank at this point, and the system of
polynomial equations in (8.7) admits a solution for a generic A.

We have thus proved Theorem 8.2, and it remains to establish that the choice of
transmit and receive sets in (8.1) lead to structural matrices that satisfy the conditions
in Theorem 8.2. Then, Theorem 8.1 is proved. It is worth noting that in the case where
we are restricted to the choice of transmit and receive sets in (8.1), then it was shown
in [70] that the sufficient condition of Theorem 8.1 is also necessary.

8.2 Message Passing Model

A theoretical framework for cooperative reception in cellular uplink was introduced
in [90] and [91], based on passing decoded messages from one basestation receiver to
another. The passed message could be used to eliminate interference caused by this
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message at an undesired receiver. This model has the obvious advantage of sharing
digital messages, unlike the model discussed in Section 8.1 where multiple analog
received signals are jointly used to decode one message. However, this message passing
model can suffer from propagation delays due to its successive decoding nature. For
example, in a linear network where each transmitter is connected to the receiver having
the same index as well as one following receiver, passing each message from its destined
receiver to the following receiver suffices for achieving full DoF interference-free
communication. However, the propagation delay in that example is proportional to the
number of users K, as each message can only be decoded after all messages with lower
indices have been decoded.

There are key differences between message passing cooperation for the uplink and
the cooperative transmission scheme we discussed for the downlink in Chapter 6.
First, as in the linear network example we discussed above, having each message
available at a number of basestations equal to the number of interfering signals at each
receiver suffices to achieve full DoF in the uplink model. We know that this is not
true for the downlink. For example, for a locally connected network with connectivity
parameter L, where each mobile terminal is connected to the basestation with the
same index as well as L following basestations, having each message available at L
extra basestation transmitters can only lead us to achieve a per-user DoF of 2

3 using
zero-forcing schemes in the downlink. The reason for the higher uplink rate is that
interference does not propagate through message passing decoding, unlike sharing of
messages in the downlink, where each new origin of a message results in an added
set of receivers, at which the message causes interference. On the other hand, the
uplink rate can also be lower than the downlink for other network topologies. For
example, if we have a fully connected interference channel, and each mobile terminal
can be associated with all K basestations, then in the downlink we can obtain full
degrees of freedom. But message passing decoding cannot resolve interference in a fully
connected setting, and no cooperation gain will be achieved in the uplink. In general, if
we form a directed graph with messages as vertices, and an arrow exists from node
a to node b if the transmitter carrying message Wa is connected to the destination
of node b, then message passing decoding cannot resolve all the interference in any
cycle.

Let Ri be the set of receivers where the decoded message Wi can be available. If each
message can be passed from its original basestation receiver to M − 1 extra receivers
(|Ri| ≤ M, ∀i ∈ [K]) for a locally connected network with connectivity parameter L,
then we know that the following lower bounds hold for the asymptotic per-user DoF
τU(L,M) (we add the subscript U for uplink) [92] when we are restricted to zero-forcing
schemes that use message passing decoding to eliminate interference, and deactivate any
receiver where interference is not eliminated:

τ zf
U (L,M) ≥

⎧⎪⎪⎨
⎪⎪⎩

1 L + 1 ≤ M,
M+1
L+2

L
2 ≤ M ≤ L,

2M
2M+L 1 ≤ M ≤ L

2 − 1.

(8.14)
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The cell association that is used to achieve the above is as follows. When M ≥ L + 1,
each mobile terminal is associated with the L + 1 basestations connected to it. The last
basestation in the network, with index K, decodes the last message and then passes it
on to the L other basestations connected to the Kth mobile terminal, eliminating all
interference caused by that mobile terminal. Each basestation then decodes its message
and passes it on to the other basestations, eliminating the interference caused by the
message. Thus, one degree of freedom is achieved for each user.

In the second range, L
2 ≤ M ≤ L, the cell association that is used to achieve

an asymptotic per-user DoF value of M+1
L+2 is as follows. The network is split

into subnetworks, each with consecutive L + 2 transmitter–receiver pairs. In each
subnetwork, we decode the last M + 1 words. For each i ∈ {L + 2,L + 1, . . . ,L + 2 −
M + 1}, message Wi is associated with {i, i − 1, . . . ,L + 2 − M + 1} ⊆ Ri. Thus, the last
M words are decoded. The basestations with indices in the set {2,3, . . . ,L + 2 − M} are
inactive as there is interference from the last transmitter in the subnetwork that cannot be
eliminated. The first basestation decodes WL+2−M . To eliminate the interference caused
by the transmitters in the set S = {L + 2 − M + 1,L + 2 − M + 2, . . . ,L + 1} at the first
basestation of the subnetwork, we add the first basestation to each Ri,∀i ∈ S. Now,
for messages with indices in the set S, we have used up αi = 2 + i − (L + 2 − M + 1)

associations; the factor of two comes from the basestation resolving Wi and the first
basestation of the subnetwork. But each transmitter with indices in the set S\{L+1} also
interferes with the subnetwork directly preceding this subnetwork. For all i ∈ S\{L + 1},
the message Wi interferes with the bottom L + 1 − i basestations of the preceding
subnetwork, which is precisely the number of associations left for the respective
message, i.e., M − αi = L + 1 − i, thus inter-subnetwork interference can be eliminated
at those basestations.

In the third range, 1 ≤ M ≤ L
2 − 1, the cell association that achieves the lower bound

of 2M
2M+L is similar to the one described in Section 6.3 for the downlink. The network

is split into disjoint subnetworks, each with consecutive 2M + L transmitter–receiver
pairs. For the uplink, we consider two sets of indices for transmitters AT = {1,2, . . . ,M}
and BT = {M + L + 1,M + L + 2 . . . ,2M + L}, and the corresponding sets of receivers
AR = {1,2, . . . ,M} and BR = {M + 1,M + L + 2 . . . ,2M}. For each i ∈ AT, the message
Wi is associated with the receivers receiving it in AR. Receiver i decodes Wi, and the
other associations in Ri exist for eliminating interference. Similarly, for each j ∈BT, the
message Wj is associated with the receivers receiving it in BR, but now receiver j − L
decodes Wj, and the other associations in Rj are for eliminating interference.

We note that (8.14) implies that the per-user DoF achieved through message passing
cooperation in the uplink is at least as good as the 2M

2M+L per-user DoF achieved through
zero-forcing in the downlink, for any values of M and L. Further, for any value of
M > L

2 , we are guaranteed to achieve a higher per-user DoF for the uplink. The reasons
for this are the key differences that we discussed earlier in this section. The achieved
rate in the uplink is higher because interference does not propagate through message
passing decoding. Further, the structure of locally connected networks, as well as
the optimal downlink message assignment, do not give rise to cycles in the directed
message conflict graph.
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By examining (8.14), we note that τU(L,M) is characterized for M ≥ L + 1. Also, for
M < L

2 , while we can only prove that τ zf
U ≥ 2M

2M+L , we know that τU(L,M) ≥ 1
2 using the

asymptotic interference alignment scheme of [46], without exploiting cooperation. We
provide a converse proof for a special case of the second range of (8.14). When M = L,
the optimal zero-forcing per-user DoF for the uplink can be characterized as

τ zf
U (L,L) = L + 1

L + 2
. (8.15)

We begin by dividing the network into subnetworks of L + 2 consecutive
transmitter–receiver pairs. We observe that in any subnetwork, if we have M +1 = L+1
consecutive active receivers (basestations), then the transmitter connected to all these
receivers must be inactive, because a message’s interference cannot be canceled at M
or more receivers. Let �BS be the set of subnetworks where all M + 2 receivers are
active, and �BS be the set of subnetworks with at most M active receivers. Similarly, let
�MT and �MT be the subnetworks with M + 2 active transmitters and at most M active
transmitters, with respect to order. To be able to achieve a higher per-user DoF than
(8.15), it must be true that both conditions hold: |�BS| > |�BS| and |�MT| > |�MT|.
Now note that for any subnetwork that belongs to �BS, at most M transmitters will be
active, because the interference caused by any message cannot be canceled at M or
more receivers. Hence, �BS ⊆ �MT. Further, the same logic applies to conclude that for
any subnetwork with M +1 active receivers, the number of active transmitters is at most
M + 1, and hence �MT ⊆ �BS. It follows that if |�BS| > |�BS|, then |�MT| < |�MT|,
and hence the statement is proved.

8.3 Joint Downlink–Uplink Backhaul Design

The key difference in this section from previous discussions is that we identify the
optimal cell associations that enable the achievability of the best average rate over both
uplink and downlink. In other words, we do not allow the cell association to change
between the uplink and downlink sessions. This could reflect a practical scenario,
where cell associations are fixed over both uplink and downlink sessions either to
save the overhead or to set up or allocate backhaul links that are required to associate
a mobile terminal with multiple basestations. The locally connected channel model
here has K basestations and K mobile terminals. The ith basestation is connected
to mobile terminals with indices in the set {i, i + 1, . . . , i + L}. For each i ∈ [K], let
Ci ⊆ [K] be the set of basestations with which mobile terminal i is associated, i.e.,
those basestations that carry the terminal’s message in the downlink and will have
its decoded message for the uplink. The transmitters in Ci cooperatively transmit the
message Wi to mobile terminal i in the downlink. In the uplink, one of the basestation
receivers in Ci will decode Wi and pass it to the remaining receivers in the set.
The results we discuss in this section are based on the backhaul constraint |Ci| ≤
M,∀i ∈ [K]. We let τUD(M,L) denote the average per-user DoF over both uplink and
downlink.
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Fig. 8.1 Optimal cell associations for the case of M = 2: (a) downlink; (b) uplink. c©[2017] IEEE.
Reprinted, with permission, from [93].

8.3.1 Example: Wyner’s Network with Two Cell Associations

We explain the answer to the considered problem for L = 1 through the simple scenario
when each mobile terminal can be associated with two basestations. The optimal
downlink cell association for this case is illustrated in Figure 6.3. For the uplink, the
optimal cell association in this case is simply associating each mobile terminal with the
two basestations connected to it, and this guarantees achieving one degree of freedom
per user as follows: The last basestation decodes the last message and then passes it
to basestation K − 1. Starting with basestation K − 1 and moving in the direction of
decrementing the basestation index, each basestation will decode the message with the
same index and then pass it to the basestation with a previous index. The optimal cell
association for the uplink is illustrated in Figure 8.1(b).

Now consider the average per-user DoF achieved over both the uplink and downlink
sessions. The cell association of Figure 8.1(a) enables achieving a downlink per-user
DoF of 4

5 , but the maximum per-user DoF that can be achieved using this same cell
association is also 4

5 , yielding an average per-user DoF of 4
5 . The cell association

depicted in Figure 8.1(b) enables achieving an uplink per-user DoF of unity, while
the maximum achievable downlink per-user DoF is 2

3 , yielding a higher average of 5
6

per-user DoF.
We observe through the example of Figure 8.1(b) that using the cell association that

is optimal for the uplink, an average per-user DoF of 5
6 can be achieved for the case

when M = 2. In general, this value can be generalized to 4M−3
4M−2 , and we can prove that

this is the best achievable average per-user DoF for any choice of cell associations that
satisfies the backhaul constraint.

8.3.2 Average Per-User DoF for Wyner’s Network

We characterize in this section the average per-user DoF over both uplink and downlink
sessions for Wyner’s linear networks (L = 1).
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T H E O R E M 8.3 For the linear interference network with M cell associations allowed
for each mobile terminal, the average per-user DoF is given by

τUD(M,L = 1) =
{

2
3 M = 1,
4M−3
4M−2 M ≥ 2.

(8.16)

We observe from (8.16) that for every value of M ≥ 2, the average per-user DoF is
higher than the 2M

2M+1 per-user DoF value obtained when optimizing for the downlink
only, due to the higher gains that are possible through uplink cooperation for locally
connected networks. Through message passing between basestation receivers in the
uplink, interference can be eliminated if all the basestations connected to a mobile
terminal are associated with it, and this is possible when M ≥ 2; hence, one degree
of freedom per user can be achieved. Further, as we will explain in detail below, the
average per-user DoF when M ≥ 2 is an average of a unity uplink per-user DoF and the
downlink per-user DoF with reduced backhaul capacity. More precisely, the following
holds for all M ≥ 2:

τUD(M,L = 1) = 1 + τ(M − 1,L = 1)

2
(8.17)

= 1 + 2(M−1)
2(M−1)+1

2
(8.18)

= 4M − 3

4M − 2
. (8.19)

We now provide the proof that τUD ≥ 4M−3
4M−2 . For the case where M = 1, we

divide the network into subnetworks, each consisting of three successive indices. In
each subnetwork, the mobile terminal with the middle index is deactivated and each
other mobile terminal enjoys interference-free communication in both the uplink and
downlink sessions. The cell association enabling interference-free communication is

Ci =
{

{i} i mod 3 = 1,

{i − 1} i mod 3 = 0.
(8.20)

It follows that 2
3 per-user DoF is achieved in each of the downlink and uplink sessions.

For the case where M = 2, we associate each mobile terminal with the two basestations
connected to it. More precisely,

Ci =
{

{1} i = 1,

{i, i − 1} i ≥ 2.
(8.21)

For the uplink, one degree of freedom per user can be achieved since for 1 ≤ i ≤ K −1,
basestation i receives the decoded message Wi+1 from basestation i+1, and hence, with
the availability of the channel state information at the basestations, it can cancel the
interference due to message Wi+1 and decode message Wi without interference.

For the downlink, 2
3 per-user DoF is achieved by dividing the network into

subnetworks, each consisting of three indices, with the last basestation transmitter and
mobile terminal receiver in each subnetwork both deactivated. The first mobile terminal
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in each subnetwork gets interference-free communication because the last basestation
transmitter in the preceding subnetwork is inactive. The second basestation transmitter
in each subnetwork uses its knowledge of the first message to cancel its interference
at the second mobile terminal receiver. Hence, two mobile terminal receivers in each
subnetwork have interference-free communication. The average achieved per-user DoF

for M = 2 is hence
1+ 2

3
2 = 5

6 , which is the value stated in (8.16).
For M > 2, we first associate each mobile terminal with the two basestations

connected to it, and hence one per-user degree of freedom is achieved in the uplink, as
in the case of M = 2. For the downlink, we now explain how to achieve 2M−2

2M−1 per-user

DoF, yielding an average per-user DoF of 4M−3
4M−2 . Recall that each mobile terminal is

already associated with the two basestations connected to it; we assign the remaining
M − 2 associations by using the downlink scheme described in Section 6.3 for the case
when each message can be available at M −1 basestation transmitters, and note that this
is possible since in that downlink scheme, each active mobile terminal is associated with
at least one of the basestations connected to it. More specifically, the network is split
into subnetworks, each consisting of successive 2M − 1 indices. The middle mobile
terminal receiver and the last basestation transmitter in each subnetwork are inactive.
We explain the cell associations for the first subnetwork and the rest will follow in a
similar fashion. Define the following two subsets of indices in the first subnetwork:
S1 = {1,2, . . . ,M − 1},S2 = {M + 1,M + 2, . . . ,2M − 1}; then the cell associations are
determined as follows:

Ci = {i − 1, i} ∪
{

{i, i + 1, . . . ,M − 1} i ∈ S1,

{i − 1, i − 2, . . . ,M} i ∈ S2.
(8.22)

The proof that the cell associations described in the cases listed in (8.22) enable
the achievability of 2M − 2 degrees of freedom in each subnetwork follows from the
downlink case discussed in Section 6.3 with a cooperation constraint that allows each
message to be available at M − 1 basestation transmitters.

We now discuss the upper bound proof of Theorem 8.3. For the case where M = 1,
the upper bound follows from the fact that the maximum per-user DoF for each of the
downlink and uplink sessions is 2

3 , even if we are allowed to change the cell association
between the uplink and downlink. The proof of the downlink case is provided in
Section 6.5. The proof of the uplink case is similar to the downlink case, so we omit it
here for brevity and instead focus in the rest of the section on the remaining and more
difficult case of M ≥ 2.

Before making the main argument, we first need the following auxiliary lemmas for
finding a converse for the uplink scenario.

L E M M A 8.4 Given any cell association and any coding scheme for the uplink, the
per-user DoF cannot be increased by adding an extra association of mobile terminal i
to basestation j, where j /∈ {i, i − 1}.

The lemma states that associating any mobile terminal to a basestation that is not
connected to it cannot be useful for the uplink case. The key fact validating this lemma
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is that, unlike the downlink case, the knowledge of a message at a basestation cannot
allow for the possibility of propagating the interference caused by this message beyond
the two original receivers that are connected to the transmitter responsible for delivering
the message. In other words, no matter what cell association we use for mobile terminal
i, the message Wi will not cause interference at any basestation except basestations i
and i − 1, and hence having this message at any other basestation cannot help either in
decoding the message or in canceling interference.

Lemma 8.4 gives us two possibilities for choosing the cell association of mobile
terminal i; either we associate it with both basestations i and i − 1, or only with one of
these basestations. We use the following lemma to upper-bound the degrees of freedom
for the latter case.

L E M M A 8.5 If either mobile terminal i or mobile terminal i + 1 is not associated with
basestation i, then it is either the case that the received signal yi can be ignored in
the uplink without affecting the sum-rate, or it is the case that the uplink sum DoF for
messages Wi and Wi+1 is at most one.

We now explain why Lemma 8.5 holds. If neither Wi nor Wi+1 is associated with
basestation i, then it is clear that yi can be ignored in the uplink. Further, if only one
of the two messages is associated with basestation i but is not decodable from yi in the
uplink, then we also can ignore this received signal. We now focus on the remaining case
when exactly one of Wi and Wi+1 is associated with basestation i and can be successfully
decoded from yi in the uplink. The proof is similar to the proof of [71, Lemma 5].
First, assume without loss of generality that message Wi is the message associated with
basestation i. Assuming a reliable communication scheme, if we are given the received
signal yi then message Wi can be decoded reliably, and hence the transmit signal xi can
be reconstructed. Since the channel state information is available at basestation i, and
yi only depends on xi, xi+1, and zi, then the remaining uncertainty in reconstructing the
signal xi+1 is only due to the Gaussian noise. Since the uncertainty in the Gaussian noise
does not reduce the degrees of freedom, we ignore it in our argument. Now, Wi+1 can be
recovered since we know xi+1. Since we could recover both Wi and Wi+1 using only one
received signal, it follows that the sum DoF for messages Wi and Wi+1 is at most one.

We use the above lemmas and consider the case where each mobile terminal can
be associated with two basestations, i.e., M = 2. Fix a cell association and divide the
indices of the network into sets, each consisting of three consecutive indices. Note
that we only care about the ratio of the degrees of freedom to the number of users
in large networks, so there is no loss in generality in assuming that K is a multiple
of 3. For each subnetwork, if the middle basestation is only associated with at most
one of the mobile terminals that are connected to it, then it follows from Lemma 8.5
that the uplink per-user DoF for users in the subnetwork is at most 2

3 . If the middle
basestation is associated with more than two mobile terminals connected to it, then we
can show for the downlink that, given only the second and third received signals in
this subnetwork, one can reconstruct all three transmit signals; this can be proven in
this case, and then we can use Lemma 5.2 since, given the second and third received
signals, we can reconstruct the middle transmit signal, and then from the connectivity
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of the linear interference network we can reconstruct the third transmit signal from the
third received signal, and the first transmit signal from the second received signal.

We now make the main argument to prove the converse for M = 2. In order to achieve
an average per-user DoF that is greater than 5

6 , the uplink per-user DoF has to exceed
2
3 . Assume that the uplink per-user DoF for a given cell association is x, where x ≥ 2

3 ,
and divide the network into subnetworks, each consisting of three consecutive indices.
It follows from the argument in the previous paragraph that for at least a fraction of
(3x − 2) of the subnetworks, the middle basestation is associated with both the second
and third mobile terminals. It hence follows that for a fraction of (3x − 2) subnetworks
in the downlink, two mobile-terminal-received signals suffice to reconstruct all three
basestation transmit signals. We can then reconstruct all transmit signals in the downlink
from a number of transmit and received signals that equals a fraction of the number of
users given by 2

3 (3x − 2) + 1 − (3x − 2) = 5
3 − x for large networks. The per-user DoF

in the downlink is then at most 5
3 − x, and hence the average per-user DoF is at most

5
6 . The formal information-theoretic argument used to prove the downlink upper bound
exploits Lemma 5.2.

We now generalize the above argument to prove the converse for the case where M ≥
2. For the average per-user DoF to exceed 4M−3

4M−2 , the uplink per-user DoF has to exceed
2M−2
2M−1 . Fix a cell association for which the uplink per-user DoF equals x, where x ≥
2M−2
2M−1 , and divide the network into subnetworks, each consisting of 2M − 1 successive
indices. If the middle basestation in each subnetwork is associated with at most one
of the two mobile terminals connected to it, then Lemma 8.5 implies that the uplink
per-user DoF in this subnetwork is at most 2M−2

2M−1 . It follows that for at least a fraction
of (2M − 1)x − (2M − 2) of the subnetworks, the middle basestation is associated with
the two mobile terminals connected to it. For these subnetworks, we can show that
the knowledge of 2M − 2 received signals suffices to reconstruct all 2M − 1 transmit
signals, and hence the per-user DoF in the downlink is at most 4M−3

2M−1 − x. It follows that

the average per-user DoF is at most 4M−3
4M−2 .

8.3.3 Average Per-User DoF for General Locally Connected Networks

We present zero-forcing schemes, with the goal of optimizing the average rate across
both uplink and downlink for arbitrary values of L ≥ 2. The corresponding per-user DoF
inner bounds are given by

τ zf
UD(M,L) ≥

⎧⎨
⎩

1
2

(
1 +

(
" L

2 #+δ+M−(L+1)

M

))
L + 1 ≤ M,

2M
2M+L 1 ≤ M ≤ L,

(8.23)

where δ = (L + 1) mod 2.
The coding scheme that achieves the inner bound for the second range of (8.23)

is essentially the union of the scheme described in Section 6.3 and the scheme that
achieves the third range of (8.14). The network is split into disjoint subnetworks, each
with consecutive 2M+L transmitter–receiver pairs. We consider two sets of basestations
ABS = {1,2, . . . ,M} and BBS = {M + 1,M + L + 2, . . . ,2M}, and two sets of mobile
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terminals AMT = {1,2, . . . ,M} and BMT = {M +L +1,M +L +2, . . . ,2M +L}. Now, for
each i ∈ AMT, Ci = ABS. Similarly, for each j ∈ BMT, Cj = BBS. Thus, for the downlink
we can get the optimal per-user DoF described in Section 6.3, and for the uplink we can
get the inner bound stated in the third range of (8.14).

For the case where M ≥ L + 1, the coding scheme that achieves the expression
described in (8.23) is as follows: First, we associate each mobile terminal with the L+1
basestations connected to it. This achieves the per-user DoF value of unity during the
uplink in the same way as the scheme that achieves it in Section 8.2. Hence, we know so
far that Ci ⊇ {i, i − 1, i − 2, . . . , i − L} ∩ [K],∀i ∈ [K]. During the downlink, we divide the
network into disjoint subnetworks; each consists of M consecutive transmitter–receiver
pairs. This allows us to create in each subnetwork a MISO broadcast channel. Let χ be
the number of transmitter–receiver pairs with an inactive node between the last active
basestation of one subnetwork and the first active mobile terminal in the following
subnetwork. Then we observe that, in order to eliminate inter-subnetwork interference,
it has to be the case that χ ≥ L. Because the achieved DoF in any subnetwork is bound
by the minimum of the number of active transmitters and the number of active receivers
in the subnetwork, we set the number of inactive mobile terminals to be the same as
the number of inactive basestations. Let that number be ε; then 2ε = χ ≥ L. Since
minimizing ε will maximize the achieved DoF, we set ε = " L

2 #. As we are leaving
the first ε mobile terminals inactive in the subnetwork, the first basestation (call it
basestation p) will be transmitting message Wp+ε to the the mobile terminal p + ε. For
this broadcast channel to work, each active basestation must be associated with all active
mobile terminals in the subnetwork, so that all interfering signals can be eliminated at
each mobile terminal receiver.

When δ = 0, basestation p + ε will be delivering Wp+L+1, whose mobile terminal
was not associated with basestation p through the uplink assignment, so we will need to
add p to Cp+L+1. Thus we can only have M − (L + 1)− 1 active basestations among the
basestations in the subnetwork that have indices greater than p + ε. This is because if
basestation j, where j ≥ p+ε +M − (L+1), is active then to ensure that the interference
caused by it does not propagate, we have to have p ∈ Cj+ε , but then |Cj+ε | > M, i.e.,
mobile terminal j + ε has to be associated with more basestations than the backhaul
constraint allows for. So in each subnetwork, we will have a total of � = ε + M−
(L+1) words transmitted without interference, out of a total of �+ε = M words in the
subnetwork.

When δ = 1, basestation p + ε + 1 will be delivering Wp+L+1, but to ensure that the
mobile terminals connected to this basestation other than mobile terminal p + L + 1
do not suffer from interference, we need to add p to Cp+L+1 and p + ε + 1 to Cp+ε .
Thus we can only have M − (L + 1) active basestations among the basestations whose
indices are greater than p + ε in the subnetwork. Otherwise, if basestation j′, where
j′ ≥ p + ε + M − L, were active then we would need to have j′ ∈ Cp+ε , which results
in |Cp+ε | = M + 1 > M. So in each subnetwork we will have a total of � = ε + δ +
M − (L + 1) words transmitted without interference, out of a total of �+ ε = M words.
Figures 8.2 and 8.3 serve as examples for the above scheme. Figure 8.2 uses values of
M = 3 and L = 3; using this scheme, we get a per-user DoF of 2

3 , which is equivalent
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Fig. 8.2 Scheme for average uplink and downlink communication when M ≤ L. The shading groups
message assignments based on their utility for the uplink or downlink.

to 2M
2M+L . Figure 8.3 uses values of M = L + 2 for L = 5 and L = 4 for parts (a) and (b),

respectively. The achieved per-user DoF values are 4
7 or 4

6 , respectively.

8.4 Discussion

In our study of locally connected networks, we have focused on large network analyses,
and whether cooperation can lead to degrees of freedom gains that scale with the
number of users in the network. Whether cooperation is used for the downlink or
the uplink, we observe that using only zero-forcing schemes, cooperation can be used
to achieve a per-user DoF of 1

2 , as long as each mobile terminal can be associated
with a number of basestations that is at least half the number of interfering signals
per receiver, i.e., M ≥ L

2 . The significance of the per-user DoF value of 1
2 is that this

is the value achieved by asymptotic interference alignment without cooperation [46].
Hence, we can conclude that cooperative zero-forcing exceeds the performance of
non-cooperative interference alignment when M > L

2 . This is a clear advantage of
using cooperative communication, as the practical obstacles in the way of implementing
one-shot zero-forcing and harnessing some of its gains are fewer than those associated
with the symbol extension schemes required by asymptotic interference alignment. An
intuitive reason for why we cannot show gains for zero-forcing cooperative transmission
or message passing decoding when M < L

2 is that each mobile terminal is connected
to L basestations, and no matter what the pattern of cell association is, interference
can be eliminated using zero-forcing in the downlink or message passing in the uplink
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Fig. 8.3 Scheme for downlink, with all the associations needed for optimal uplink, that achieves the
lower bound defined in (8.23) when M ≥ L + 1.
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from at most M basestations with an index less than the designated basestation and
M basestations with an index greater than the designated one. Hence, regardless of
the choice of cell associations, if M < L

2 then cooperation can at best lead us to an
equivalent channel where at least two interference links exist per receiver. We know
from [71, Theorem 8] that the per-user DoF is 1

2 if each message can be available at one
basestation transmitter in the downlink for L ≥ 2, and the same conclusion would also
hold for the uplink.

We further observe that the 2M
2M+L inner bound we presented for the average

uplink–downlink per-user DoF in (8.23) for the case when M ≤ L matches what is
achieved in each of the downlink and uplink sessions. In fact, the cell association would
remain the same even if we are optimizing for the downlink only or the uplink only.
There is a more general pattern behind this observation. All the zero-forcing schemes
presented for the downlink in Chapters 6 and 7 have a dual uplink scheme that is based
on message passing decoding. Hence, we also have the conclusions about the backhaul
load constraint of Chapter 7 when designing cooperative schemes for the uplink.
Specifically, using a backhaul load of unity (no overall load on the backhaul), we could
achieve 1

2 per-user DoF using zero-forcing for values of the connectivity parameter
L ≤ 6, and this holds if we are designing cooperative schemes for the downlink only
or the uplink only or the average. The reason for this duality in the presented schemes
is that if we look carefully at the message assignment to basestation transmitters in the
downlink, and consider a bipartite graph where messages are represented in one partite
set and transmitters in the other partite set, and an edge exists between a message node
and a transmitter node if the corresponding message is assigned to the transmitter, then
there exist no cycles in all of the schemes we presented for the downlink. That implies
that there is a valid decoding order for the dual message passing uplink scheme that
uses the same cell associations.

We have discussed the duality between the cell association decisions needed to
optimize the uplink and downlink degrees of freedom in locally connected networks.
It is also worth mentioning that because we assume reciprocity of the channel, i.e.,
the channel coefficient remains the same whether the basestation is transmitting or the
mobile terminal is transmitting, it is also true that the channel coefficients that need to
be learned by each basestation are the same in the discussed cases, for both zero-forcing
cooperative transmission and message passing cooperative reception.



9 Dynamic Interference
Management

An important requirement of next-generation (5G) wireless systems is the ability to
autonomously adjust to varying environmental conditions. Our focus in this chapter is
to analyze information-theoretic models of interference networks that capture the effect
of deep fading conditions through introducing random link erasure events in blocks of
communication time slots. More specifically, in order to consider the effect of long-term
fluctuations (deep fading or shadowing), we assume that communication takes place
over blocks of time slots, and independent link erasures occur with probability p in each
block.

We can observe through the results presented in Chapters 5–8 that conclusions related
to the optimal associations of mobile terminals to basestations and the achievable DoF
differ dramatically based on the network topology. For example, under the maximum
transmit set size constraint for the downlink, local cooperation cannot lead to a gain
in the achieved asymptotic per-user DoF for the fully connected channel. However,
local cooperation is optimal for locally connected channels and can lead to achieving
scalable DoF gains, and the optimal assignment of messages to transmitters depends
on the connectivity parameter L. In practice, the topology may change due to deep
fading conditions (see, e.g., [6]) or even intentionally to exploit spectrum opportunities
(see, e.g., [94]). In this chapter, we extend our DoF results to dynamic interference
networks where a fixed assignment of messages is selected to achieve average DoF
optimal performance in networks with changing topology.

In [95], the authors analyzed the average capacity for a point-to-point channel model
where slow changes result in varying severity of noise. We apply a similar concept to
interference networks by assuming that slowly changing deep fading conditions result
in link erasures. We consider the linear interference network (L = 1) that was introduced
in Chapter 6, and look at two fading effects: long-term fluctuations that result in link
erasures over a complete block of time slots, and short-term fluctuations that allow
us to assume that any specific joint realization for the non-zero channel coefficients
will take place with zero probability. We study the problem of achieving the optimal
average degrees of freedom under a maximum transmit set size constraint (5.16). We
note that the problem studied in Chapter 6 reduces to the case of no erasures. Here,
we extend the schemes in Chapter 6 to consider the occurrence of link erasures, and
propose new schemes that lead to achieving better average DoF at high probabilities of
erasure.
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9.1 Dynamic Interference Channel

We study a dynamic interference channel model that was introduced in [96]. In
order to consider the effect of long-term fluctuations (shadowing), we assume that
communication takes place over blocks of time slots, and let p be the probability of
block erasure. In each block, we assume that for each pair (i, j) of receiver–transmitter
indices where the channel is not identically zero, the channel coefficient hij = 0
with probability p. For Wyner’s linear network, hij = 0 with probability p for each
(i, j) ∈ [K]×[K] such that i ∈ {j, j+1}. As for the case of no erasures, short-term channel
fluctuations allow us to assume that in each time slot, all non-zero channel coefficients
are drawn independently from a continuous distribution. We also assume that global
channel state information is available at all transmitters and receivers.

We use ηp(K,M) to denote the DoF of a K-user channel with block erasure probability
p and a maximum transmit set size constraint M, and τp(M) to denote the asymptotic
per-user DoF. We call a message assignment strategy optimal for a given erasure
probability p if there exists a sequence of coding schemes achieving τp(M) using
the transmit sets defined by the message assignment strategy. A message assignment
strategy is universally optimal if it is optimal for all values of p.

Studying dynamic interference networks can be rather difficult because of the
complex combinatorial nature of the problem. In particular, we need to consider all
possible network realizations and all possible message assignments satisfying the
considered cooperation constraint. The justification for our choices of both linear
networks and the maximum transmit set size constraint is their role in simplifying
the problem, as well as the proven soundness of these assumptions through the studies
presented in Chapters 6 and 7 for the case of no erasures. We have observed in Chapter 7
that optimal solutions obtained for linear networks with the maximum transmit set
size constraint could lead to optimal solutions for the more difficult and more relevant
problem with an average transmit set size constraint. We have also observed in Chapter 7
that coding schemes obtained for linear networks could be used in cellular networks, by
perceiving the cellular network as a set of interfering linear subnetworks and then using
an interference avoidance scheme with fractional reuse to eliminate inter-subnetwork
interference.

We characterize τp(M = 1) in Section 9.2, and show that there is no universally
optimal message assignment strategy for the case of M = 1. We then extend the insights
obtained to derive bounds on τp(M = 2), the simplest case with CoMP transmission.

9.2 Optimal Cell Association

We first consider the case where each receiver can be served by only one transmitter.
This corresponds to the problem of associating mobile users with cells in a cellular
downlink scenario. We start by discussing orthogonal schemes (TDMA-based) for this
problem, and then show that the proposed schemes are optimal. It will be useful in the
rest of this section to view each realization of the network where some links are erased
as a series of subnetworks that do not interfere with each other. We say that a set of k
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users with successive indices {i, i + 1, . . . , i + k − 1} form a subnetwork if the following
two conditions hold: The first condition is that i = 1 or it is the case that message Wi−1

does not cause interference at yi, either because the direct link between the transmitter
carrying Wi−1 and receiver (i − 1) is erased, or the transmitter carrying Wi−1 is not
connected to the ith receiver. Second, i+k −1 = K or it is the case that message Wi+k−1

does not cause interference at yi+k, because the carrying transmitter is not connected to
one of the receivers (i + k − 1) and (i + k).

We say that the subnetwork is atomic if the transmitters carrying messages for users
in the subnetwork have successive indices and, for any transmitter t carrying a message
for a user in the subnetwork and receiver r such that r ∈ {t, t + 1} and r ∈ {i, i + 1, . . . , i +
k − 1}, the channel coefficient hrt �= 0.

For i ∈ [K], let mi be the number of messages available at the ith transmitter, and
let mK = (m1,m2, . . . ,mK). It is clear that the sequence mK can be obtained from the
transmit sets Ti, i ∈ [K]; it is also true, as stated in Lemma 9.1, that the converse holds.
We use the notion of useful message assignments from Section 6.4.1. For M = 1, a useful
message assignment will have each message assigned to one of the two transmitters that
can be connected to its designated receiver.

L E M M A 9.1 For any useful message assignment where each message is assigned to
exactly one transmitter, i.e., |Ti| = 1,∀i ∈ [K], the transmit sets Ti, i ∈ [K], are uniquely
characterized by the sequence mK.

Proof Since each message can only be available at one transmitter, then this
transmitter has to be connected to the designated receiver. More precisely, Ti ⊂ {i −
1, i},∀i ∈ {2, . . . ,K}, and T1 = {1}. It follows that each transmitter carries at most two
messages, and the first transmitter carries at least the message W1, i.e., mi ∈ {0,1,2} ∀i ∈
{2, . . . ,K} and m1 ∈ {1,2}. Assume that mi = 1,∀i ∈ [K]; then Ti = {i},∀i ∈ [K]. For
the remaining case, we know that there exists i ∈ {2, . . . ,K} such that mi = 0, since∑K

i=1 mi = K; we handle this case in the rest of the proof.
Let x be the smallest index of a transmitter that carries no messages, i.e., x = min{i :

mi = 0}. We now show how to reconstruct the transmit sets Ti, i ∈ {1, . . . ,x} from the
sequence (m1,m2, . . . ,mx). We note that Ti ⊆ [x],∀i ∈ [x], and since mx = 0 it follows
that Ti � [x],∀i /∈ [x]. It follows that

∑x−1
i=1 mi = x. Since Ti ⊂ {i − 1, i},∀i ∈ {2, . . . ,x},

we know that at most one transmitter in the first x−1 transmitters carries two messages.
Since

∑x−1
i=1 mi = x, and mi ∈ {1,2},∀i ∈ [x − 1], it follows that there exists an index

y ∈ [x − 1] such that my = 2 and mi = 1,∀i ∈ [x − 1]\{y}. It is now clear that
the yth transmitter carries messages Wy and Wy+1, each transmitter with an index
j ∈ {y + 1, . . . ,x − 1} is carrying message Wj+1, and each transmitter with an index
j ∈ {1, . . . ,y} is carrying message Wj. The transmit sets are then determined as follows:
Ti = {i},∀i ∈ [y] and Ti = {i − 1},∀i ∈ {y + 1, . . . ,x}.

We view the network as a series of subnetworks, where the last transmitter in each
subnetwork is either inactive or it is the last transmitter in the network. If the last
transmitter in a subnetwork is inactive, then the transmit sets in the subnetwork are
determined in a similar fashion to the transmit sets Ti, i ∈ [x] in the above scenario. If
the last transmitter in the subnetwork is the Kth transmitter, and mK = 1, then each
message in this subnetwork is available at the transmitter with the same index.
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We use Lemma 9.1 to describe message assignment strategies for large networks
through repeating patterns of short ternary strings. Given a ternary string s = (s1, . . . ,sn)

of fixed length n such that
∑n

i=1 si = n, we define mK , K ≥ n, as follows:

• mi = si mod n if i ∈ {1, . . . ,n
⌊K

n

⌋}
,

• mi = 1 if i ∈ {n⌊K
n

⌋+ 1, . . . ,K
}
.

We now evaluate all possible message assignment strategies satisfying the cell
association constraint using ternary strings through the above representation. We restrict
our attention to useful message assignments, and note that if there are two transmitters
with indices i and j such that i < j and each is carrying two messages, then there is a
third transmitter with index k such that i < k < j that carries no messages. It follows
that any string defining message assignment strategies that satisfy the cell association
constraint has to have one of the following forms:

• s(1) = (1),
• s(2) = (2,1,1, . . . ,1,0),
• s(3) = (1,1, . . . ,1,2,0),
• s(4) = (1,1, . . . ,1,2,1,1, . . . ,1,0).

We now introduce the three candidate message assignment strategies illustrated in
Figure 9.1, and we characterize the TDMA per-user DoF achieved through each of
them; we will show later that the optimal message assignment strategy at any value
of p is given by one of the three strategies introduced. We first consider the message
assignment strategy defined by the string having the form s(1) = (1). Here, each message
is available at the transmitter having the same index.

L E M M A 9.2 Under the restriction to the message assignment strategy Ti,K = {i},∀K ∈
Z+, i ∈ [K], and orthogonal TDMA schemes, the average per-user DoF is given by

τ (1)
p = 1

2

(
1 − p + (1 − p)

(
1 − (1 − p)2

)2
)

+
∞∑

i=1

1

2

(
1 − (1 − p)2

)2
(1 − p)4i+1. (9.1)
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Fig. 9.1 The optimal message assignment strategies for the cell association problem. The dashed boxes
represent transmit signals that are inactive in all network realizations. The strategies in (a), (b),
and (c) are optimal at high, low, and middle values of the erasure probability p, respectively.
c©[2017] IEEE. Reprinted, with permission, from [96].
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Proof We will first show how 1
2

(
1 − p + (1 − p)

(
1 − (1 − p)2

)2)
DoF can be

achieved, and then modify the transmission scheme to show how to achieve τ
(1)
p . For

each user with an odd index i, message Wi is transmitted whenever the channel coeffi-
cient hii �= 0; the rate achieved by these users contributes to the average per-user DoF by
1
2 (1 − p). For each user with an even index i, message Wi is transmitted whenever the
following holds: hii �= 0, Wi−1 does not cause interference at yi, and the transmission
of Wi will not disrupt the communication of Wi+1 to its designated receiver; we note
that this happens if and only if hii �= 0 and

(
hi−1,i−1 = 0 or hi,i−1 = 0

)
and (hi+1,i =

0 or hi+1,i+1 = 0). It follows that the rate achieved by users with even indices contributes

to the average per-user DoF by 1
2 (1 − p)

(
1 − (1 − p)2

)2
.

We now discuss a modification of the above scheme to achieve τ
(1)
p . As above, users

with odd indices have priority, i.e., their messages are delivered whenever their direct
links exist, and users with even indices deliver their messages whenever their direct
links exist and the channel connectivity allows for avoiding conflict with priority users.
However, we make an exception to the priority setting in atomic subnetworks consisting
of an odd number of users where the first and last users have even indices; in these
subnetworks, one extra DoF is achieved by allowing users with even indices to have
priority and deliver their messages. The resulting extra term in the average per-user
DoF is calculated as follows: Fixing a user with an even index, the probability that this
user is the first user in a subnetwork consisting of an odd number of users in a large

network is
∑∞

i=1

(
1 − (1 − p)2

)2
(1 − p)4i+1; for each of these events, the sum DoF is

increased by 1, and hence the term added to the average per-user DoF is equal to half
this value, since every other user has an even index.

The optimality of the above scheme within the class of orthogonal TDMA-based
schemes follows directly from [97, Theorem 1] for each realization of the network.

We will show later that the above scheme is optimal at high erasure probabilities.
In Chapter 6, the optimal message assignment for the case of no erasures was
characterized. The per-user DoF was shown to be 2

3 , and is achieved by deactivating
every third transmitter and achieving 1 DoF for each transmitted message. We now
consider the extension of this message assignment illustrated in Figure 9.1(b), which
will be shown later to be optimal for low erasure probabilities.

L E M M A 9.3 Under the restriction to the message assignment strategy defined by the
string s = (2,1,0), and orthogonal TDMA schemes, the average per-user DoF is given
by

τ (2)
p = 2

3
(1 − p) + 1

3
p(1 − p)

(
1 − (1 − p)2

)
. (9.2)

Proof For each user with an index i such that (i mod 3 = 0) or (i mod 3 = 1), message
Wi is transmitted whenever the link between the transmitter carrying Wi and the ith
receiver is not erased; these users contribute to the average per-user DoF by a factor
of 2

3 (1 − p). For each user with an index i such that (i mod 3 = 2), message Wi is
transmitted through xi−1 whenever the following holds: hi,i−1 �= 0, message Wi−1 is



170 Dynamic Interference Management

not transmitted because hi−1,i−1 = 0, and the transmission of Wi will not be disrupted
by the communication of Wi+1 through xi because (hii = 0) or

(
hi+1,i = 0

)
; these users

contribute to the average per-user DoF by a factor of 1
3 p(1 − p)

(
1 − (1 − p)2). Using the

considered message assignment strategy, the TDMA optimality of this scheme follows
from [97, Theorem 1] for each network realization.

We now consider the message assignment strategy illustrated in Figure 9.1(c). We will
show later that this strategy is optimal for the middle regime of erasure probabilities.

L E M M A 9.4 Under the restriction to the message assignment strategy defined by the
string s = (1,2,1,0), and orthogonal TDMA schemes, the average per-user DoF is given
by

τ (3)
p = 1

2
(1 − p)

+ 1

4
(1 − p)

(
1 − (1 − p)2

)(
1 + p + (1 − p)3

)
. (9.3)

Proof As in the proof of Lemma 9.2, we first introduce a transmission scheme
achieving part of the desired rate, and then modify it to show how the extra term can be
achieved. Let each message with an odd index be delivered whenever the link between
the transmitter carrying the message and the designated receiver is not erased; these
users contribute to the average per-user DoF by a factor of 1

2 (1 − p). For each user with
an even index i, if i mod 4 = 2, then Wi is transmitted through xi whenever the following
holds: hii �= 0, message Wi+1 is not transmitted through xi because hi+1,i = 0, and the
transmission of Wi will not be disrupted by the communication of Wi−1 through xi−1

because either hi,i−1 = 0 or hi−1,i−1 = 0; these users contribute to the average per-user
DoF by a factor of 1

4 p(1 − p)
(
1 − (1 − p)2). For each user with an even index i such

that i is a multiple of 4, Wi is transmitted through xi−1 whenever hi,i−1 �= 0, and the
transmission of Wi will not disrupt the communication of Wi−1 through xi−2 because
either hi−1,i−1 = 0 or hi−1,i−2 = 0; these users contribute to the average per-user DoF
by a factor of 1

4 (1 − p)
(
1 − (1 − p)2).

We now modify the above scheme to show how τ
(3)
p can be achieved. Since the ith

transmitter is inactive for every i that is a multiple of 4, users {i − 3, i − 2, i − 1, i} are
separated from the rest of the network for every i that is a multiple of 4, i.e., these users
form a subnetwork. We explain the modification for the first four users, and it will be
clear how to apply a similar modification for every following set of four users. Consider
the event where message W1 does not cause interference at y2, because either h11 = 0
or h21 = 0, and it is the case that h22 �= 0, h32 �= 0, h33 �= 0, and h43 �= 0; this is the
event that users {2,3,4} form an atomic subnetwork, and it happens with probability(
1 − (1 − p)2)(1 − p)4. In this case, we let messages W2 and W4 have priority instead

of message W3, and hence the sum DoF for messages {W1,W2,W3,W4} is increased
by 1. It follows that an extra term of 1

4

(
1 − (1 − p)2)(1 − p)4 is added to the average

per-user DoF.
The TDMA optimality of the illustrated scheme follows from [97, Theorem 1] for

each network realization.
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We now show that under the restriction to TDMA schemes, one of the message
assignment strategies illustrated in Lemmas 9.2, 9.3, and 9.4 is optimal at any value
of p.

T H E O R E M 9.5 For a given erasure probability p, let τ
(TDMA)
p be the average per-user

DoF under the restriction to orthogonal TDMA schemes; then, at any value 0 ≤ p ≤ 1,
the following holds:

τ (TDMA)
p = max

{
τ (1)

p ,τ (2)
p ,τ (3)

p

}
, (9.4)

where τ
(1)
p , τ

(2)
p , and τ

(3)
p are given in (9.1), (9.2), and (9.3), respectively.

Proof The inner bound follows from Lemmas 9.2, 9.3, and 9.4. In order to prove
the converse, we need to consider all useful message assignment strategies where each
message is assigned to a single transmitter. We know from Lemma 9.2 that the TDMA
average per-user DoF achieved through the strategy defined by the string of all ones
having the form s(1) = (1) equals τ

(1)
p , and hence the upper bound holds in this case.

We now show that the TDMA average per-user DoF achieved through strategies
defined by strings of the form s(2) = (2,1, . . . ,1,0) is upper-bounded by a convex

combination of τ
(1)
p and τ

(2)
p , and hence is upper-bounded by max

{
τ

(1)
p ,τ (2)

p

}
.

The message assignment strategy considered splits each network into subnetworks
consisting of a transmitter carrying two messages followed by a number of transmitters
each carrying one message, and the last transmitter in the subnetwork carries no
messages. We first consider the case where the number of transmitters carrying single
messages is odd. We consider the simple scenario of the message assignment strategy
defined by the string (2,1,1,1,0), and then the proof will be clear for strategies defined
by strings of the form (2,1,1, . . . ,1,0) that have an arbitrary odd number of ones. In
this case, it suffices to show that the average per-user DoF in the first subnetwork is
upper-bounded by a convex combination of τ

(1)
p and τ

(2)
p . The first subnetwork consists

of the first five users: W1 and W2 can be transmitted through x1; W3, W4, and W5

can be transmitted through x2, x3, and x4, respectively; and the transmit signal x5 is
inactive.

We now explain the optimal TDMA scheme for the considered subnetwork. We
first explain a simple scheme and then modify it to get the optimal scheme. Each
of the messages W1, W3, and W5 is delivered whenever the direct link between its
carrying transmitter and its designated receiver is not erased. Message W2 is delivered
whenever message W1 is not transmitted and message W3 is not causing interference
at y2. Message W4 is transmitted whenever W5 is not causing interference at y4 and
the transmission of W4 through x3 will not disrupt the communication of W3. We
now explain the modification. If there is an atomic subnetwork consisting of users
{2,3,4}, then we switch the priority setting within this subnetwork, and messages
W2 and W4 will be delivered instead of message W3. The TDMA optimality of this
scheme for each realization of the network follows from [97, Theorem 1]. Now, we
note that the average sum DoF for messages {W1, . . . ,W5} is equal to their sum DoF
in the original scheme plus an extra term due to the modification. The average sum
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DoF for messages {W1,W2,W5} in the original scheme equals 3τ
(2)
p , and the sum of

the average sum DoF for messages {W3,W4} and the extra term is upper-bounded by
2τ

(1)
p . It follows that the average per-user DoF is upper-bounded by 2

5τ
(1)
p + 3

5τ
(2)
p . The

proof can be generalized to show that the average TDMA per-user DoF for message
assignment strategies defined by strings of the form s(2) with an odd number of ones n
is upper-bounded by n−1

n+2τ
(1)
p + 3

n+2τ
(2)
p .

For message assignment strategies defined by a string of the form s(2) with an even
number of ones n, it can be shown in a similar fashion that the TDMA average per-user
DoF is upper-bounded by n

n+2τ
(1)
p + 2

n+2τ
(2)
p . Also, for strategies defined by a string of

the form s(3) = (1,1, . . . ,1,2,0) with a number of ones n, the TDMA average per-user
DoF is the same as that of a strategy defined by a string of the form s(2) with the same
number of ones, and hence is upper-bounded by a convex combination of τ

(1)
p and τ

(2)
p .

Finally, for strategies defined by a string of the form s(4) = (1,1, . . . ,1,2,1,1, . . . ,1,0)

with a number of ones n, it can be shown in a similar fashion that the average per-user
DoF is upper-bounded by n−2

n+2τ
(1)
p + 4

n+2τ
(3)
p .

We now characterize the average per-user DoF for the cell association problem
by proving that TDMA schemes are optimal for any candidate message assignment
strategy. In order to prove an information-theoretic upper bound on the per-user DoF
for each network realization, we use Lemma 5.2 from Chapter 5. Recall that for any
set of receiver indices A ⊆ [K], we use UA as the set of indices of transmitters that
exclusively carry the messages for the receivers in A.

T H E O R E M 9.6 The average per-user DoF for the cell association problem is given by

τp (M = 1) = τ (TDMA)
p = max

{
τ (1)

p ,τ (2)
p ,τ (3)

p

}
, (9.5)

where τ
(1)
p , τ

(2)
p , and τ

(3)
p are given in (9.1), (9.2), and (9.3), respectively.

Proof In order to prove the statement, we need to show that τp(M = 1) ≤ τ
(TDMA)
p ;

we do so by using Lemma 5.2 to show that for any useful message assignment strategy
satisfying the cell association constraint, and any network realization, the asymptotic
per-user DoF is given by that achieved through the optimal TDMA scheme.

Consider message assignment strategies defined by strings having one of the forms
s(1) = (1), s(2) = (2,1,1, . . . ,1,0), or s(3) = (1,1, . . . ,1,2,0). We view each network
realization as a series of atomic subnetworks, and show that for each atomic subnetwork,
the sum DoF is achieved by the optimal TDMA scheme. For an atomic subnetwork

consisting of a number of users n, we note that
⌊

n+1
2

⌋
users are active in the optimal

TDMA scheme; we now show that in this case, using Lemma 5.2, the sum DoF for

users in the subnetwork is bounded by
⌊

n+1
2

⌋
. Let the users in the atomic subnetwork

have the indices {i, i + 1, . . . , i + n − 1}; then we use Lemma 5.2 with the set A ={
i + 2j : j ∈

{
0,1,2, . . . ,

⌊
n−1

2

⌋}}
, except for the cases of message assignment strategies

defined by strings having one of the forms s(1) = (1) or s(3) = (1,1, . . . ,1,2,0) with an

even number of ones, where we use the set A =
{

i + 1 + 2j : j ∈
{

0,1,2, . . . , n−2
2

}}
. We
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now note that each transmitter that carries a message for a user in the atomic subnetwork
and has an index in ŪA is connected to a receiver in A, and this receiver is connected to
one more transmitter with an index in UA; hence, the missing transmit signals xŪA can
be recovered from yA − zA and xUA . The condition in the statement of Lemma 5.2 is
then satisfied, allowing us to prove that the sum DoF for users in the atomic subnetwork

is upper-bounded by |A| =
⌊

n+1
2

⌋
.

The proof is similar for message assignment strategies defined by strings that have
the form s(4) = {1,1, . . . ,1,2,1,1, . . . ,1,0}. However, there is a difference in selecting
the set A for atomic subnetworks consisting of users with indices {i, i + 1, . . . , i + x, i +
x + 1, . . . , i + n − 1}, where 1 ≤ x ≤ n − 2, and messages Wi+x and Wi+x+1 are both
available at transmitter i+x. In this case, we apply Lemma 5.2 with the set A defined as
above, but including indices {i + x, i + x + 1} and excluding indices {i + x − 1, i + x + 2}.
It can be seen that the condition in Lemma 5.2 will be satisfied in this case, and the
proven upper bound on the sum DoF for each atomic subnetwork is achievable through
TDMA.

In Figure 9.2, we plot τp(M = 1) at each value of p. The result of Theorem 9.6
implies that the message assignment strategies considered in Lemmas 9.2, 9.3, and 9.4
are optimal at high, low, and middle values of the erasure probability p, respectively.
We note that in densely connected networks at a low probability of erasure, the
interference-aware message assignment strategy in Figure 9.1(b) is optimal; through
this assignment, the maximum number of interference-free communication links can
be created for the case of no erasures. On the other hand, the linear nature of the
channel connectivity does not affect the choice of optimal message assignment at high
probability of erasure. As the effect of interference diminishes at high probability
of erasure, assigning each message to a unique transmitter, as in the strategy in
Figure 9.1(a), becomes the only criterion of optimality. At middle values of p, the
message assignment strategy in Figure 9.1(c) is optimal; in this assignment, the network
is split into four-user subnetworks. In the first subnetwork, the assignment is optimal as
the maximum number of interference-free communication links can be created for the
two events where there is an atomic subnetwork consisting of users {1,2,3} or users
{2,3,4}.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

p

τ p
(M

=
1)

Fig. 9.2 The average per-user DoF for the cell association problem.
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9.3 CoMP Transmission

In this section, we are interested in understanding the role of transmitter cooperation
in dynamic linear interference networks. In particular, if each message can be assigned
to more than one transmitter, without any constraint on their identity, what would be
the optimal assignment of messages to transmitters and the corresponding transmission
scheme to maximize the average rate over all possible realizations of the network?

We have shown in the previous section that there is no message assignment strategy
for the cell association problem where each message is available at one transmitter
that is optimal for all values of p. We show in this section that this statement is true
even for the case where each message can be available at more than one transmitter
(M > 1). Recall that for a given value of M, we say that a message assignment strategy
is universally optimal if it can be used to achieve τp(M) for all values of p.

T H E O R E M 9.7 For any value of the cooperation constraint M ∈ Z+, there does not
exist a universally optimal message assignment strategy.

Proof The proof follows from Theorem 9.6 for the case where M = 1. We show that
for any value of M > 1, any message assignment strategy that enables the achievability
of τp(M) at high probabilities of erasure is not optimal for the case of no erasures,
i.e., cannot be used to achieve τp(M) as p → 0. For any message assignment strategy,

consider the value of limp→1
τp(M)

1−p and note that this value equals the average number
of transmitters in a transmit set that can be connected to the designated receiver. More
precisely,

lim
p→1

τp(M)

1 − p
=
∑K

i=1 |Ti ∩ {i − 1, i}|
K

, (9.6)

where Ti in (9.6) corresponds to an optimal message assignment strategy at high
probabilities of erasure. It follows that there exists a value 0 < p̄ < 1 such that for any
message assignment strategy that enables the achievability of τp(M) for p ≥ p̄, almost
all messages are assigned to the two transmitters that can be connected to the designated
receiver, i.e., if we let SK = {i : Ti,K = {i − 1, i}}, then limK→∞ |SK |

K = 1.
We recall from Chapter 6 that for the case of no erasures, the average per-user

DoF equals 2M
2M+1 . We also note that, following the same footsteps as in the converse

argument for the case of no erasures in Section 6.5, we can show that for any message
assignment strategy such that limK→∞ |SK |

K = 1, the per-user DoF for the case of no
erasures is upper-bounded by 2M−2

2M−1 ; we do so by using Lemma 5.2 in Chapter 5 for

each K-user channel with the set A defined such that the complement set Ā = {i : i ∈
[K], i = (2M − 1)(j − 1) + M, j ∈ Z+}.

The condition of optimality identified in the proof of Theorem 9.7 for message
assignment strategies at high probabilities of erasure suggests a new role for cooperation
in dynamic interference networks. The availability of a message at more than one
transmitter may not only be used to cancel its interference at other receivers, but
to increase the chances of connecting the message to its designated receiver. This
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new role leads to three effects at high erasure probabilities: First, the achieved DoF
in the considered linear interference network becomes larger than that of K parallel
channels; in particular, limp→1

τp(M>1)

1−p = 2. Secondly, as the effect of interference
diminishes at high probabilities of erasures, all messages can simply be assigned to
the two transmitters that may be connected to their designated receiver, and a simple
interference avoidance scheme can be used in each network realization. It follows that
channel state information is no longer needed at transmitters, and only information
about the slow changes in the network topology is needed to achieve the optimal average
DoF. Finally, unlike the optimal scheme in Chapter 6 for the case of no erasures, where
some transmitters are always inactive, achieving the optimal DoF at high probabilities
of erasure requires all transmitters to be used in at least one network realization.

We now restrict our attention to the case where M = 2, for simplicity. Here, each
message can be available at two transmitters, and transmitted jointly by both of them.
We start by studying two message assignment strategies that are optimal in the limits of
p → 0 and p → 1, and derive inner bounds on the average per-user DoF τp(M = 2) based
on the strategies considered. In Chapter 6, the message assignment of Figure 9.3(a)
was shown to be DoF optimal for the case of no erasures (p = 0). The network
is split into subnetworks, each with five consecutive users. The last transmitter of
each subnetwork is deactivated to eliminate inter-subnetwork interference. In the first
subnetwork, message W3 is not transmitted, and each other message is received without
interference at its designated receiver. Note that the transmit beams for messages W1 and
W5 contributing to the transmit signals x2 and x5, respectively, are designed to cancel the
interference at receivers y2 and y4, respectively. An analogous scheme is used in each
following subnetwork. The value of τp(M = 2) is thus 4

5 for the case where p = 0. In
order to prove the following result, we extend the message assignment of Figure 9.3(a)
to consider the possible presence of block erasures.

Through discussing the details of the achievability proofs for the message assignment
strategies that are optimal in the limits as p → 0 and p → 1, we will get a flavor of
DoF analysis for dynamic interference networks, and the complexity of the problem of
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Fig. 9.3 The message assignment in (a) is optimal for a linear network with no erasures (p = 0). We
extend this message assignment in (b) to consider non-zero erasure probabilities. In both figures,
the dashed boxes correspond to inactive signals.
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choosing the best message assignments (cell associations) that maximize the average
performance. We will then discuss an algorithmic approach to characterize τp(M = 2)

at all values of 0 < p < 1. We start by presenting the assignments that are optimal at
extreme values of p in the following two theorems.

T H E O R E M 9.8 For M = 2, the following average per-user DoF is achievable:

τp(M = 2) ≥ 2

5
(1 − p) (2 + Ap) , (9.7)

where

A = p + 1 −
(
(1 − p)2 (1 − p(1 − p))

)
− 1

2
p(1 − p), (9.8)

and is asymptotically optimal as p → 0.

Proof We know from Chapter 6 that limp→0 τp(2) = 4
5 , and hence it suffices to show

that the inner bound in (9.7) is valid. For each i ∈ [K], message Wi is assigned as follows:

Ti =

⎧⎪⎪⎨
⎪⎪⎩

{i, i + 1} if i ≡ 1 mod 5,

{i − 1, i − 2} if i ≡ 0 mod 5,

{i − 1, i} otherwise.

We illustrate this message assignment in Figure 9.3(b). We note that the transmit
signals {xi : i ≡ 0 mod 5} are inactive, and hence we split the network into five-user
subnetworks with no interference between successive subnetworks. We explain the
transmission scheme in the first subnetwork and note that a similar scheme applies to
each following subnetwork. In the proposed transmission scheme, any receiver is either
inactive or receives its desired message without interference, and any transmitter will
not transmit more than one message for any network realization. It follows that one DoF
is achieved for each message that is transmitted.

Messages W1, W2, W4, and W5 are transmitted through x1, x2, x3, and x4, respectively,
whenever the coefficients h11 �= 0, h22 �= 0, h43 �= 0, and h54 �= 0, respectively. Note
that the transmit beam for message W1 contributing to x2 can be designed to cancel
its interference at y2. Similarly, the interference caused by W5 at y4 can be canceled
through x3. It follows that (1 − p) DoF is achieved for each of {W1,W2,W4,W5}, and
hence τp(2) ≥ 4

5 (1 − p). Also, message W2 is transmitted through x1 if it cannot be
transmitted through x2 and message W1 is not transmitted through x1. More precisely,
message W2 is transmitted through x1 if h22 = 0 and h21 �= 0 and h11 = 0, thereby
achieving an extra p2(1 − p) DoF. Similarly, message W4 can be transmitted through x4

if h43 = 0 and h44 �= 0 and h54 = 0. It follows that

τp(2) ≥ 4

5
(1 − p) + 2

5
p2(1 − p). (9.9)

Finally, message W3 will be transmitted through x3 if message W4 is not transmitted
through x3 and message W2 is not causing interference at y3. Message W4 is not
transmitted through x3 whenever the coefficient h43 = 0, and message W2 does not
cause interference at y3 whenever the coefficient h22 = 0 or the coefficient h32 = 0 or
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W2 can be transmitted through x1. More precisely, message W3 is transmitted through
x3 if and only if all the following are true:

• h33 �= 0 and h43 = 0.
• h22 = 0, or h32 = 0, or it is the case that h11 = 0 and h21 �= 0.

It follows that f (p) DoF is achieved for message W3, where

f (p) = p(1 − p)
(

1 −
(
(1 − p)2 (1 − p(1 − p))

))
. (9.10)

Similary, W3 can be transmitted through x2 if and only if message W2 is not transmitted
through x2 and message W4 is either not transmitted or can be transmitted without
causing interference at y3, i.e., if and only if all the following are true:

• h32 �= 0 and h22 = 0.
• h43 = 0, or h33 = 0, or it is the case that h54 = 0 and h44 �= 0.

The above conditions are satisfied with probability f (p). Since we have counted twice
the event that h33 �= 0 and h43 = 0 and h32 �= 0 and h22 = 0, it follows that 2f (p)−p2(1−
p)2 DoF is achieved for W3. Summing the DoF achieved for other messages in (9.9), we
conclude that

τp(2) ≥ 4

5
(1 − p) + 2

5
p2(1 − p) + 1

5

(
2f (p) − p2(1 − p)2

)
, (9.11)

which is the same inequality as in (9.7).

Although the scheme of Theorem 9.8 is optimal for the case of no erasures (p = 0),
we know from Theorem 9.7 that better schemes exist at high erasure probabilities.
Since in each five-user subnetwork in the scheme of Theorem 9.8 only three users
have their messages assigned to the two transmitters that can be connected to their
receivers, and two users have only one of these transmitters carrying their messages,
we get the asymptotic limit of 8

5 for the achieved average per-user DoF normalized by
(1−p) as p → 1. This leads us to consider an alternative message assignment where the
two transmitters carrying each message i are the two transmitters {i − 1, i} that can be
connected to its designated receiver. Such assignment would lead to the ratio τp(2)

1−p → 2
as p → 1. In the following theorem, we analyze a transmission scheme based on this
assignment.

T H E O R E M 9.9 For M = 2, the following average per-user DoF is achievable:

τp(M = 2) ≥ 1

3
(1 − p)

(
1 + (1 − p)3 + Bp

)
, (9.12)

where

B = 3 +
(

1 + (1 − p)3
)(

1 − (1 − p)2 + p(1 − p)3
)

+ p
(

1 + (1 − p)2
)

, (9.13)
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and

lim
p→1

τp(2)

1 − p
= 2. (9.14)

Proof For any message assignment, no message can be transmitted if the links
from both transmitters carrying the message to its designated receiver are absent, and
hence the average DoF achieved for each message is at most 1 − p2. It follows that
limp→1

τp(2)

1−p ≤ limp→1
(1−p)(1+p)

1−p = 2. We then need only prove that the inner bound
in (9.12) is valid. In the achieving scheme, each message is assigned to the two
transmitters that may be connected to its designated receiver, i.e., Ti = {i − 1, i},∀i ∈
[K]. Also, in each network realization, each transmitter will transmit at most one
message and any transmitted message will be received at its designated receiver without
interference. It follows that one DoF is achieved for any message that is transmitted, and
hence the probability of transmission is the same as the average DoF achieved for each
message.

Each message Wi such that i ≡ 0 mod 3 is transmitted through xi−1 whenever hi,i−1 �=
0, and is transmitted through xi whenever hi,i−1 = 0 and hii �= 0. It follows that n0 DoF
is achieved for each of these messages, where

n0 = (1 − p)(1 + p). (9.15)

We now consider messages Wi such that i ≡ 1 mod 3. Any such message is
transmitted through xi−1 whenever hi,i−1 �= 0 and hi−1,i−1 = 0. We note that whenever
the channel coefficient hi−1,i−1 �= 0, message Wi cannot be transmitted through xi−1

as the transmission of Wi through xi−1 in this case will prevent Wi−1 from being
transmitted due to either interference at yi−1 or sharing the transmitter xi−1. It follows
that n(1)

1 = p(1−p) DoF is achieved for transmission of Wi through xi−1. Also, message
Wi is transmitted through xi whenever it is not transmitted through xi−1 and hii �= 0
and either hi,i−1 = 0 or message Wi−1 is transmitted through xi−2. More precisely,
Wi is transmitted through xi whenever all the following is true: hii �= 0, and either
hi,i−1 = 0 or it is the case that hi,i−1 �= 0 and hi−1,i−1 �= 0 and hi−1,i−2 �= 0. It follows
that n(2)

1 = p(1 − p)+ (1 − p)4 is achieved for transmission of Wi through xi, and hence
n1 DoF is achieved for each message Wi such that i ≡ 1 mod 3, where

n1 = n(1)
1 + n(2)

1 = 2p(1 − p) + (1 − p)4 . (9.16)

We now consider messages Wi such that i ≡ 2 mod 3. Any such message is
transmitted through xi−1 whenever all the following are true:

• hi,i−1 �= 0.
• Either hi−1,i−1 = 0, or Wi−1 is not transmitted.
• Wi+1 is not causing interference at yi.

The first condition is satisfied with probability (1 − p). In order to compute the
probability of satisfying the second condition, we note that Wi−1 is not transmitted
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for the case when hi−1,i−1 �= 0 only if Wi−2 is transmitted through xi−2 and causing
interference at yi−1, i.e., only if hi−2,i−3 = 0 and hi−2,i−2 �= 0 and hi−1,i−2 �= 0. It follows
that the second condition is satisfied with probability p + p(1 − p)3. The third condition
is not satisfied only if hii �= 0 and hi+1,i �= 0, and hence will be satisfied with probability
at least 1 − (1 − p)2. Moreover, even if hii �= 0 and hi+1,i �= 0, the third condition can be
satisfied if message Wi+1 can be transmitted through xi+1 without causing interference
at yi+2, i.e., if hi+1,i+1 �= 0 and hi+2,i+1 = 0. It follows that the third condition will
be satisfied with probability 1 − (1 − p)2 + p(1 − p)3, and n(1)

2 DoF is achieved by
transmission of Wi through xi−1, where

n(1)
2 = p(1 − p)

(
1 + (1 − p)3

)(
1 − (1 − p)2 + p(1 − p)3

)
. (9.17)

Message Wi such that i ≡ 2 mod 3 is transmitted through xi whenever hii �= 0 and
hi+1,i = 0 and either hi,i−1 = 0 or Wi−1 is transmitted through xi−2. It follows that n(2)

2
DoF is achieved by transmission of Wi through xi, where

n(2)
2 = p(1 − p)

(
p + d(1)

1 (1 − p)
)

(9.18)

= p2 (1 − p)
(

1 + (1 − p)2
)

, (9.19)

and hence n2 = n(1)
2 + n(2)

2 DoF is achieved for each message Wi such that i ≡ 2 mod 3.
We finally get

τp(2) ≥ n0 + n1 + n2

3
, (9.20)

which is the same inequality as in (9.12).

We plot the inner bounds of (9.7) and (9.12) in Figure 9.4. We note that below a
threshold erasure probability p ≈ 0.34 the scheme of Theorem 9.8 is better, and hence
is proposed to be used in this case. For higher probabilities of erasure, the scheme of
Theorem 9.9 should be used.

We notice from above that, as p → 1, each message is assigned to the two transmitters
connected to its destination to maximize the probability of successful delivery, and, as
p → 0, the per-user DoF value goes to 4

5 , and is achieved by splitting the network
into subnetworks and avoiding inter-subnetwork interference by deactivating the last
transmitter in each subnetwork. And hence, each of the first and last messages in each
subnetwork is only assigned to one of the two transmitters connected to its destination,
and the other assignment is used at a transmitter not connected to its destination, but
connected to another receiver that is prone to interference caused by this message.
Further, the middle message in each subnetwork is not transmitted. It was found in [98]
that assigning that middle message to only one transmitter connected to its destination,
and another transmitter not connected to its destination, leads to better rates than
assigning it to the two transmitters connected to its destination at low values of p.
This implies that a fraction of 3

5 of the messages are assigned to only one of the two
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Fig. 9.4 Inner bounds achieved in Theorems 9.8 and 9.9. (a) The achieved per-user DoF. (b) The
achieved per-user DoF normalized by (1 − p).

transmitters connected to their destination, and the remaining 2
5 are assigned to the two

transmitters connected to their destination. In general, at any value of p from 0 to 1,
the assignment achieving the highest per-user DoF using our proposed scheme has a
fraction of f (p) of messages that are assigned to only one of the transmitters connected
to their destination, and another transmitter used for interference cancellation, and the
remaining fraction 1 − f (p) of messages are assigned to the two transmitters connected
to their destination. In [98], it was shown that the value of f (p) decreases monotonically
from 3

5 to 0 as p increases from 0 to 1 for the optimal message assignment strategy under
the cooperation constraint M = 2, which agrees with the intuition about the shifting role
of cooperative transmission from canceling interference to increasing the probability of
successful delivery as p increases from 0 to 1. We discuss the aforementioned result
of [98] in the rest of this section.

An algorithm was presented in [98] that takes as input a given subnetwork of users
and the transmit sets for their messages. The output of the algorithm is the transmit
signals for transmitters considered in the subnetwork. The chosen transmit signals are
based on zero-forcing transmit beamforming that maximizes the average asymptotic
per-user DoF value for users within the subnetwork, while guaranteeing that there is
no interference caused by the last user of the subnetwork at the first receiver of the
following subnetwork. It was shown that this algorithm is optimal, if we are restricted
to using zero-forcing schemes.
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Table 9.1 Optimal fraction of messages with
interference cancellation assignments at every
value of p for M =2.

Range of p Best-performing message assignment

[0,0.15] f (p) = 3

5

[0.16,0.29] f (p) = 1

2

(0.29,0.31) f (p) = 49

100

[0.31,0.32] f (p) = 12

25

[0.33,0.58] f (p) = 1

100
[0.59,1] f (p) = 0 (as in [96])

The analysis of the algorithm in [98] is similar to the analysis we discussed in the
proofs of Theorems 9.8 and 9.9, and hence we skip a discussion of the algorithm and its
analysis here. Instead, we discuss simulation results that are based on that algorithm.
To compute the average per-user DoF at a certain value of p for a given message
assignment, a sufficiently large number n of channel realizations was simulated, where
links are erased with probability p, and the algorithm was applied to each realization.
The per-user DoF value was then computed as the average number of decoded messages
divided by the subnetwork size N.

The simulation was done for a set of message assignments with different fractions
of messages that are assigned to one transmitter connected to their desired receiver and
another transmitter that can be used to cancel interference, while the remaining fractions
of messages are assigned to both transmitters that are connected to their destination.
Furthermore, we vary the subnetwork size N.

In Table 9.1, we show the optimal fraction of messages f (p) that should be assigned
to only one of the transmitters connected to their destination, and another transmitter
used for interference cancellation, according to the simulation results of [98]. Note
that in Theorem 9.8 it was shown that an assignment with only 2

5 of the messages
having interference cancellation assignments is optimal as p → 0. Interestingly, in the
simulation results of [98], we see that f (p) = 3

5 for low values of p, as we found another
assignment that achieves the same per-user DoF as p → 0, but performs slightly better
on the interval of low-p values (0,0.15]. From the results in Table 9.1, we observe that
the optimal fraction f (p) decreases monotonically from 3

5 to 0 as p goes from 0 to 1.

9.4 Summary

We have explored in this chapter the problem of dynamic interference management in
large wireless networks with deep fading conditions. We considered a linear interference
network with K transmitter–receiver pairs, where each transmitter can be connected
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to two neighboring receivers. Long-term fluctuations (shadow fading) in the wireless
channel can lead to any link being erased with probability p. The considered rate
criterion was the per-user DoF as K goes to infinity. We first studied the case where
each message can only be available at a single transmitter, and identified the optimal
assignment of messages to transmitters and the corresponding per-user DoF value at
each value of the erasure probability p. We then focused on the case where each message
can be available at two transmitters. The optimal assignment of messages to transmitters
was identified in the two limits p → 0 and p → 1. We also discussed results based on
an algorithm in [98] that achieves the optimal zero-forcing average per-user DoF value.
A key insight that we can derive from these results is that the role of cooperation shifts
from increasing the probability of delivering a message to its intended destination at
high values of p, to interference cancellation at low values of p.



10 Recent Advances and
Open Problems

Over the years since Claude Shannon [12] introduced the subject, information theory
has proven to be a powerful mathematical tool that is also practically relevant in
terms of guiding the design of transmitters and receivers for communication systems
and networks. From the analysis of the capacity of point-to-point communication
links [12] to the more advanced analysis of network information theory [99], there
is evidence that information-theoretic tools not only provide performance benchmarks
but also inspire new designs for coding schemes and communication protocols. In this
book, our focus has been on information-theoretic tools that are geared toward laying
a framework for interference management in modern wireless networks. We started
with a discussion of the information-theoretic capacity of the two-user interference
channel in Chapter 2, which is a long-standing open problem. We do not yet understand
how interfering signals should be handled by the decoders at the receivers except in
special cases: (i) where the interference power is high and the interfering signal(s)
can be decoded, and (ii) and where the interference power is low and the interfering
signal(s) can be treated as noise. We then considered the degrees of freedom criterion
in the rest of the book, due to its attractive simplicity and utility in providing insights
for interference management. We considered general K-user interference channels in
Chapter 3, and introduced the concept of asymptotic interference alignment. We then
studied in Chapters 5–9 the potential gains of cooperative communication through
the lens of DoF analysis in large interference networks. In these studies we assumed
a centralized controller, one that has a global view of the network and can make
decisions on cell associations and transmission schedules for the whole network,
with the goal of maximizing the sum DoF. It is important to note that our study of
models with centralized controllers does not imply that we are advocating a centralized
approach in next-generation wireless networks over a distributed one that only requires
local network knowledge for making decisions. Analyzing fundamental bounds on
the performance for the centralized solution can also lead to good design choices for
distributed schemes, as well as providing benchmarks for their performance, as we have
seen in our study of distributed interference management algorithms in Chapter 4 and
Section 5.7.

In this chapter, we describe some recent advances and open problems in interference
management that may be of relevance to next-generation wireless networks. We also
discuss some of the applications of these networks that have been envisioned.
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MB

MT

SB

Fig. 10.1 Heterogenous network with a wireless backhaul. Macro-cell basestations (MBs) are assumed to
share time–frequency resources with small-cell basestations (SBs), which act as half-duplex
analog relays between the MBs and mobile terminals (MTs).

10.1 Heterogeneous Cellular Network with Shared
Wireless Backhaul

Heterogeneous networks are envisioned to be a key component of future-generation
cellular networks [100]. Heterogeneous networks enable flexible and low-cost deploy-
ments and provide a uniform broadband experience to users in the network [101].
Managing interference in such heterogeneous networks is crucial in order to achieve
high data rates for the users.1

Consider the downlink of a cellular network as a heterogenous network consisting
of macro-cell basestations (MBs), small-cell basestations (SBs), and the mobile
terminals (MTs), as shown in Figure 10.1. Heterogeneous networks that are built by
complementing a macro-cell layer with additional small cells impose new challenges
on the backhaul [103]. The best physical location for a small cell often limits the option
to use a wired backhaul. In such cases, deploying a wireless backhaul is both faster and
more cost effective. One option is to consider a point-to-multipoint wireless backhaul
between the MBs and the SBs, where one MB serves several SBs by sharing its antenna
resources [104,105]. Furthermore, in this architecture, we assume that the MBs and the
SBs operate on the same frequency band, and that the SBs act as half-duplex analog
relays between the MBs and MTs. Therefore, no additional time–frequency resources
are consumed by the wireless backhaul.

There are two layers in the network, the wireless backhaul layer between MBs and
SBs and the transmission layer between SBs and MTs. Each MB is associated with
a cluster of SBs and is responsible for conveying messages to the MTs connected to
the SBs within the cluster. The MBs are equipped with a sufficiently large number of
antennas to be able to: (i) beamform separate signals to each of the active SBs within
the cluster, and (ii) zero-force interference caused at SBs outside the cluster.

1 A study of interference management in multi-hop wireless networks is relevant to the wireless backhaul
problem. See [102] for an overview.
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Coordinated multi-point transmission (see Chapters 6 and 7) can be implemented
in the transmission layer from the SBs to the MTs. It is important to note that in this
heterogenous network architecture the message sharing required by CoMP does not
impose any extra load on the backhaul. This is because we can send linear combinations
of the messages as analog signals to each SB directly from the MBs, and these
analog signals are relayed by the SBs to zero-force the interference at the active MTs.
Implementing such CoMP transmission of course requires that at each MB, the channel
state information (CSI) between SBs in its cluster and the corresponding MTs is known.

It is reasonable to assume that the transmissions from the MBs do not cause
interference at the MTs, since the MBs can exploit multiple antennas to localize the
beams to the fixed locations of the SBs. It is also reasonable to assume that the SBs
that are actively transmitting do not cause interference at the receiving SBs because the
transmissions in the backhaul layer happen at a higher SNR than in the transmission
layer and are also more localized.

Since the SBs are half duplex, they cannot transmit and receive in the same frequency
band at the same time. There are two strategies for accommodating this constraint.
The first is a frequency-division duplexing (FDD) strategy in which the available
frequency band is divided into two equal parts, with the SBs receiving in one half and
transmitting in the other. In this case the backhaul layer and transmission layer can be
treated separately, and the per-user DoF in the total network is half of the DoF in the
transmission layer. From Chapters 6 and 7, we know that the per-user DoF in locally
connected networks is strictly less than one for any fixed value of the cooperation order
M, and hence the per-user DoF achievable for the two-layered network is strictly less
than half.

A better strategy for accommodating the half-duplex constraint at the SBs is a
time-division duplex (TDD) strategy, where the SBs receive and transmit in alternate
time slots. In this case also the per-user DoF in the total network is half of the DoF in
the transmission layer, and therefore the maximum achievable per-user DoF is half. The
key difference from the FDD strategy is that in the TDD strategy we can exploit the fact
that not all the SBs are active in a given cluster for the CoMP zero-forcing achievable
scheme (see, e.g., Section 7.4). The SBs that are inactive for zero-forcing in a given time
slot can receive signals in that time slot from the MB serving the cluster, thus utilizing
the shared time–frequency resources more efficiently. Using this approach it is shown
in [104, 105] that one can achieve the maximum possible per-user DoF of half as long
as there is a sufficient number of antennas at each of the MBs.

10.2 Cooperation with No CSIT

In the study of interference management schemes, including the schemes described in
this book, it is assumed that channel state information is available at all transmitters
(CSIT) and receivers (CSIR) where it is needed. In practice, the channel coefficients
are approximately estimated at the receivers by transmitting known pilot signals, and
then they are fed back to the transmitters (see, e.g., [106–108]). It is a common
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practice in information-theoretic analyses to ignore the overhead of the estimation
and communication of the channel coefficients, in order to derive insights relevant to
the remaining design parameters of the interference management scheme. However,
this approach may not be justified in certain settings. For example, dedicating some
communication sessions to the learning of CSI may not be the best approach in a
network whose state does not last for long. Therefore, there have been recent studies
in the information theory literature formulating the interference management problem
in the absence of CSIT (see, e.g., [109]) or with very limited CSIT (see, e.g., [110]).

10.2.1 Topological Interference Management

Topological interference management (TIM) concerns the study of the DoF of
interference networks without the use of CSIT, where only information about the
network topology is available at the transmitters. In recent work [109], an analogy is
drawn between the TIM problem for channels that remain constant and the linear index
coding problem. This analogy yields useful transmission strategies for TIM based on
already available results for the index coding problem. The key idea behind these new
blind interference alignment transmission strategies is the following: If the channel
remains constant over few communication sessions, then it is possible to use this fact
to align interference at unintended receivers by choosing the beamforming vectors
carefully, even if the actual channel coefficients are not known when designing these
vectors. All that is known is that the symbols in each of these vectors will be multiplied
by the same channel coefficients in different time slots.

When a time-varying channel model is assumed, the results of blind interference
alignment do not apply anymore because different symbols in a beamforming vector
will go through different (possibly independent) channel transformations at different
time slots. In this scenario, a class of retransmission-based schemes has been proposed
in [111] and [112]. These schemes exploit independent transformations of the channel
by designing a transmission scheduling algorithm where the same symbol is repeated
by each transmitter whenever that transmitter is activated. The generic assumption on
the channel coefficients can then guarantee almost sure alignment of the interference in
a subspace of the desired size at unintended receivers.

An attempt is made in [113] and [114] to settle the TIM problem in a time-varying
channel setting for arbitrary network topologies, under the restriction to the class of
linear schemes. The approach followed in these works was to identify a fundamental
random matrix problem at the core of the problem of aligning interference with no
CSIT through linear schemes. The random matrix problem is as follows: Given that we
can design K matrices Bi, i ∈ {1,2, . . . ,K}, where each matrix has dimensions mi × n,
mi ≤ n, and has full column rank, what are the conditions that these matrices have to
satisfy such that the destination matrix BD = [�1B1 �2B2 · · · �KBK] has rank
at most R − τ almost surely? Here, R is the maximum rank that BD can have, i.e.,

R = min
(∑K

i=1 mi,n
)

, �i is an n × n diagonal matrix with random diagonal entries,

and the set of all random coefficients is drawn from a continuous joint distribution. This
random matrix problem is equivalent to that of deriving the necessary and sufficient
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condition on a group of matrices such that the ensemble of randomly scaled row versions
of these matrices loses rank almost surely by a factor τ . This problem is related to the
TIM problem as follows: Consider Bi as the beamforming matrix for the ith transmitter,
and �i as the diagonal channel coefficient matrix between the ith transmitter and the
considered destination over n time slots. Now, if users 1,2, . . . ,K are interfering at the
destination, then the rank loss condition is an interference alignment condition that
guarantees reduction in the dimension of the interference subspace by a value of τ .
The freed signal space can then be used for communicating a desired signal to the
destination.

The desired condition on the rank of the ensemble matrix is given by:

rank([�1B1 �2B2 · · · �KBK]) a.s.≤ R − τ . (10.1)

An equivalent condition obtained in [113] is described in the following result.

T H E O R E M 10.1 Condition (10.1) is equivalent to:

∀Yi ⊆ [mi], i ∈ [K] s.t.
K∑

i=1

|Yi| = R,

∃J ⊆ [n] :
K∑

i=1

dim(SJ ∩Bi,∗,Yi) ≥ |J | + τ . (10.2)

In (10.2), we use calligraphic B to denote the subspace in Rn spanned by the columns
of B. Also, for any X ⊆ [n] and Y ⊆ [mi], B∗,Y denotes the submatrix of B created by
removing the columns with indices outside Y . Finally, for any J ⊆ [n], SJ denotes the
subspace of Rn spanned by the columns of the n × n identity matrix with indices in J .
In other words, SJ is the subspace of Rn that includes all the vectors that have zero
entries in the complement set J c. We call SJ the sparse subspace of the set J .

By examining the condition (10.2) for the simple example where2 K = 2 and m1 =
m2 = n

2 , we notice that B1 and B2 will each be of size n× n
2 , and the only possible choice

for Y1 and Y2 will be [ n
2 ]. Theorem 10.1 implies that rank([�1B1 �2B2]) a.s.≤ n − τ if

and only if there exists a set J ⊆ [n] such that

dim(SJ ∩B1) + dim(SJ ∩B2) ≥ |J | + τ . (10.3)

We interpret the condition (10.2) through the special case in (10.3) for the considered
interference management problem as follows. The condition states that each of users 1
and 2 can achieve n

2 DoF, while their interference occupies a subspace at the destination
that has dimension n − τ almost surely, if and only if there are |J | time slots such
that the following holds: The sum of beamforming vectors in the transmissions of
users 1 and 2 that are silent in any time slot outside the designated |J | time slots
exceeds the value |J | by τ . If n = 2 and each beamforming matrix is only a 2 × 1
vector, the only way to guarantee almost surely that the two vectors will occupy a

2 That is, we wish to achieve a 1
2 DoF for each of the two users, when normalized by the number of

channel uses n.
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single-dimensional interference subspace after undergoing random row scaling is that
both vectors have a zero entry in one of the two indices, i.e., that in one of the two time
slots, both transmitters are silent. We say that this is a condition of physical alignment
as it implies that a certain set of transmitters have to physically align their transmissions
in specified time slots and be silent in the remaining time slots. A fundamental question
at the core of settling the TIM problem is whether physical alignment between transmit
beamforming matrices corresponding to different interfering transmitters is always a
necessary condition for reducing the dimension of the interference subspace at the
destination.

Theorem 10.1 is used in [114] to settle the problem of characterizing the symmetric3

DoF for a wide class of network topologies. However, even for the symmetric DoF
problem, a complete characterization for all possible network topologies is still open.

10.2.2 Optimality of TDMA

The problem of characterizing network topologies for which TDMA is optimal, with
no CSIT and no cooperative transmission, is studied in [97, 115]. In particular, it is
shown in [115] that TDMA can be used to achieve the all-unicast DoF region if and
only if the bipartite network topology graph is chordal, i.e., every cycle that can contain
a chord has one. The all-unicast setup refers to the case when each transmitter has
an independent message for each receiver. This implies that if the network is chordal,
then TDMA can be used to achieve the DoF region (and hence, the sum DoF) for any
subset of unicast messages as well. Since all locally connected networks are chordal,
the following statement holds as a corollary to the result in [115]:

C O RO L L A RY 10.1 If each message can be available at a single transmitter (M = 1),
then TDMA is optimal for all considered locally connected networks:

τTIM(L,M = 1) = τTDMA(L,M = 1), ∀L ∈ Z+. (10.4)

In (10.4), we use the subscript TIM to denote the topological interference
management setting and the superscript TDMA to denote restriction to interference
avoidance TDMA schemes. Therefore, τTIM(L,M = 1) refers to the asymptotic per-user
DoF for a locally connected channel with connectivity parameter L, where each message
is allowed to be available at a single transmitter, and the transmitters only have network
topology information. Note that TDMA schemes do not rely on CSIT, and hence it
does not matter whether we have the subscript TIM or not, as long as the superscript
TDMA is present. We also note that the conclusion of Corollary 10.1 would still hold if
CoMP transmission is only allowed through splitting messages into independent parts,
and distributing different parts to different transmitters.

A key result for bounding the sum DoF in arbitrary network topologies when each
message can only be available at a single transmitter is given in [109, 116, 117]. It is
shown that the sum DoF of any subset of messages that form an acyclic demand graph

3 Symmetric rates refer to rate values that can be achieved simultaneously at all users.
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is unity. A demand graph is a directed bipartite graph, where one partite set has messages
and the other partite set has receivers. An edge exists from a message to a receiver if
the message is destined for the receiver. An edge exists from a receiver to a message
if the receiver is not connected to the transmitter carrying the message. In the models
we considered throughout this book, message Wi is always destined for the ith receiver.
Therefore, the result of [109, 116, 117] regarding acyclic demand graphs holds for the
reduced demand graph obtained by collapsing each pair of message–receiver nodes with
the same index in the bipartite demand graph. Further, for locally connected networks,
we know that the ith transmitter is connected to receivers with indices {i, i+1, . . . , i+L},
and hence if we take any L + 2 nodes with consecutive indices, there will be a cycle
between the first and last nodes, and hence the sum DoF cannot be bounded by unity.
This provides a simple way to explain why the following result holds:

τTIM(L,M = 1) = 2

L + 2
, ∀L ∈ Z+. (10.5)

10.2.3 The Questionable Role of Cooperation

We have seen in Chapter 5 that CoMP transmission could be used with asymptotic
interference alignment to achieve DoF gains in fully connected interference channels.
We have also seen in Chapters 6–9 how cooperative transmission and reception schemes
that are based on simple zero-forcing transmit beamforming and message passing
decoding could be used to achieve DoF gains that scale in large locally connected
networks. We notice that all the presented cooperative schemes, whether aided by
interference alignment or zero-forcing, depend on the availability of accurate CSIT.
Hence, it is not clear from our discussion so far if cooperation would lead to any gains
with no CSIT. In the following two subsections, we present recent results that attempt
to answer this question.

Transmitter Cooperation
We have seen in Chapter 6 that the right-hand side of (10.5) becomes 2M

2M+L when each
message can be available at M transmitters, only zero-forcing transmit beamforming
is allowed, and CSIT is available. It would be interesting to investigate whether it is
possible to obtain an analogous generalization when there is no CSIT, by identifying a
key lemma for bounding the sum DoF of a subset of messages akin to the one discussed
in Section 10.2.2, but with each message available at multiple transmitters.

The problem of interference management through cooperative transmission is studied
with weak and no CSIT in [118, 119]. Also, in [120], it is shown that assigning each
message to all the transmitters connected to the desired receiver is beneficial compared
to assigning each message only to the transmitter having the same index as the desired
receiver. However, the proposed coding scheme in [120] relies solely on interference
avoidance without the exploitation of CoMP transmission. In [121] and [122], it is
shown that linear cooperation schemes cannot lead to gains in the asymptotic per-user
DoF for Wyner’s asymmetric model (L = 1) and Wyner’s symmetric model (L = 2),
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respectively. Linear cooperation is used to refer to schemes where the transmit signal at
the jth user is given by

xj =
∑

i:j∈Ti

xj,i,∀j ∈ [K], (10.6)

where xj,i depends only on message Wi. Further, each message Wi is represented by a
vector wi ∈Cmi of mi complex symbols that need to be delivered to the ith receiver. This
message is encoded to one or many of the transmit vectors xn

j,i = Vn
j,iwi, where j ∈ Ti and

Vn
j,i denotes the n × mi linear beamforming precoding matrix used by transmitter j to

transmit Wi over n time slots.
The key concept used in the information-theoretic converse proofs in [121] and [122]

is that, without CSIT, if a given received signal could be used to successfully decode
a message for almost all channel realizations, then any other received signal that is
statistically equivalent could also be used to decode the same message almost surely.
This enables us to minimize the value of the corresponding upper bound when applying
Lemma 5.2. However, it is not clear whether the obtained results in these works are
particular to Wyner’s asymmetric and symmetric models of channel connectivity. The
question remains open as to whether it is true in general that TDMA is optimal, as long
as the transmitters are not aware of the channel state information, even if cooperative
transmission is allowed.

Receiver Cooperation
In [123], the topological interference management problem is studied in a setting where
receivers are allowed to pass decoded messages to other receivers, in a manner similar
to the schemes we discussed in Chapter 8. The results are based on a directed conflict
graph, where each vertex represents a message, and a directed edge exists from vertex
i to vertex j if and only if transmitter i (that is exclusively carrying message Wi) causes
interference at receiver j (that is decoding message Wj). With message passing, all
interference could be eliminated in any subgraph of the directed conflict graph that does
not have cycles, using orthogonal access schemes and message passing decoding. It is
proved in [123] that orthogonal access schemes are optimal (for all possible subgraphs)
for a wide range of network topologies.

As mentioned in Section 8.2, cycles in the conflict graph form an obstacle to
the message passing decoding mechanism, because there is no valid decoding order
that is possible when cycles exist. As a simple example, consider a two-user fully
connected interference channel. Each of the two messages causes interference at the
other message’s intended receiver. If orthogonal access is used, we have to have an
interference-free receiver that decodes its message first and then passes the decoded
message to the other receiver, but this requirement cannot be met for a two-user fully
connected interference channel. What the scheme in [123] relies on is activating just
one of the users in any such fully connected subgraph, which is possible even without
cooperation.
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10.3 Learning the Network Topology

A key step in the interference management schemes discussed in this book, whether or
not they are based on CSIT, is learning the topology of the wireless network. In this
section, we discuss network discovery protocols for learning the network topology. The
goal is to derive fundamental limits on the number of communication rounds required
to discover the network topology in a centralized fashion.

The problem of learning the interference graph of a wireless network is studied
in [124], where an acknowledgment-based channel access mechanism is used to identify
colliding transmitters, and in each time slot, a subset of transmitters is activated to
discover new interfering transmitters. An algorithm is proposed in this work to discover
the interference graph with minimum sample complexity, i.e., in the order of the
minimum required time. However, the algorithm in [124] does not consider coordination
between the transmitters. The problem we consider here is how to coordinate the node
transmission such that all receivers can learn the identity of the transmitters connected
to them in the minimum possible time. Fortunately, this problem had been dealt with in
a different context a couple of decades ago [125]; that is, the problem of determining the
minimum number of communication rounds to simulate a single round of the message
passing model.

The message passing model requires that each node delivers a possibly different
message to each of its neighbors. Since the message passing model is suitable for
describing wireline networks, algorithms and converse analysis for many network
functions such as consensus and shared memory systems already exist in the literature
based on the message passing model. It is therefore useful to understand the minimum
number of communication rounds needed for a wireless network to simulate a single
round of the message passing model. For brevity, we refer to this problem in the
following discussion as the single-round simulation (SRS) problem.

Let �i and �o denote the maximum in-degree and out-degree of any receiver and
transmitter in the network, respectively. In [125], a randomized algorithm achieves SRS
with probability 1 − ε in O

(
�i�o log n

ε

)
rounds, where n is the number of nodes in

the network, and each node is a transceiver (transmitter and receiver). The algorithm
executes in �o phases, and each phase consists of multiple rounds. In each phase,
each transmitter will target one receiver and keeps trying to transmit its message with
probability 1

�i
in each round until it succeeds. The proof of the probabilistic completion

of the algorithm in O
(
�i�o log n

ε

)
rounds uses elementary probabilistic tools.

We now discuss the design of deterministic distributed algorithms for the SRS
problem. It is easy to see that a trivial algorithm that dedicates each round to the
transmission of a single message completes the simulation in O(n�o) rounds. An
algorithm that achieves SRS in O(�o�

2
i log2 n) rounds4 is designed in [125] based on

the following key lemma.

4 In large networks, the O(log2 n) time achieved by the algorithm based on Lemma 10.2 can be much
smaller than the O(n) time achieved by the trivial algorithm.
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L E M M A 10.2 Let 1 ≤ z1, . . . ,zs ≤ n be s distinct integers. Then for every 1 ≤ i ≤ s,
there exists a prime p ≤ s logn such that zi �≡ zj mod p for every j �= i.

The algorithm executes in �o phases. Each transmitter targets a single receiver in
each phase. The idea is that it is guaranteed that there is a communication round
for each transmitter–receiver pair, in which neither the receiver node nor any of its
neighbors other than the specified transmitter is transmitting a message. Let {p1, . . . ,ps}
be the prime numbers in the range {2,3, . . . ,(�i + 1) logn}. Then each phase consists
of s subphases, and the ith subphase consists of pi rounds. In each subphase, the
kth transmitter transmits its message in the round number (k mod pi). It follows from
Lemma 10.2 that for each transmitter k, there is a prime number pi among {p1, . . . ,ps}
such that in the round numbered (k mod pi) of the ith subphase, transmitter k will be
able to successfully deliver its message to its target receiver. The complexity analysis
is straightforward since there are �o phases, where in each phase there are at most
O(�i logn) subphases, and in each subphase, there are at most O(�i logn) rounds. It
follows that O(�o�

2
i log2 n) rounds suffice for a deterministic distributed algorithm to

achieve SRS for every graph.
The problem of characterizing the minimum number of rounds for learning the

network topology in a centralized manner remains open, due to the lack of a converse
analysis. In general, as the network topology and channel state information change,
we would like to have an adaptive interference management scheme that can be easily
adjusted to accommodate the new changes.5 Such adaptation will be critical in modern
applications of wireless networks such as device-to-device (D2D) networks, the Internet
of Things (IoT), and vehicle-to-infrastructure (V2I) networks [126–129]. The problem
of designing such adaptive interference management schemes is still largely open.

5 This is different from the design criterion we used in Chapter 9, where the goal was to design fixed
schemes that maximize the average or worst case performance over all network realizations.



Appendix A: Information
Theory

In this appendix, we state some results in information theory that are useful in
Chapter 2. We refer the reader to the standard textbook [130] for basic definitions
of information-theoritic quantities such as entropy, differential entropy, conditional
entropy, and mutual information, and to Section 1.5 for an explanation about the
notation that we follow.

A.1 Minimum Mean Squared Error Estimation

Suppose xG and yG are jointly circularly symmetric and jointly Gaussian complex
random vectors with zero mean. See [131] for the definitions and properties of circularly
symmetric complex Gaussian random vectors. Since the random vectors are jointly
circularly symmetric and Gaussian, the minimum mean squared error (MMSE) estimate
of xG given yG,

x̂G = E
[
xG|yG

]
,

is linear in yG. The orthogonality principle says that x̂G = TyG is the MMSE estimate
if and only if the MMSE estimation error (xG − x̂G) is orthogonal (and independent in
this case, since the random variables are jointly Gaussian) to the observation yG; i.e.,

E
[
(xG − TyG)y†

G

]
= 0 ⇔ �xGyG

= T�yG
.

Suppose �yG
is nonsingular; then T is uniquely determined and hence is given by

T = �xGyG
�−1

yG
,

and the conditional covariance matrix of xG given yG, defined as the covariance matrix
of the MMSE estimation error, is given by

�xG|yG
= �xG − �xGyG

�−1
yG

�yGxG.

Note that �xG|yG
is the Schur complement of �xG in the matrix

Cov

([
xG

yG

])
=
[

�xG �xG,yG

�yG,xG �yG

]
.

The following lemma is useful.
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L E M M A A.1 Suppose xG and yG are jointly circularly symmetric, and jointly
Gaussian complex random vectors, and � is a positive semidefinite matrix. Then

�xG|yG � � ⇔ Cov

([
xG

yG

])
�
[

� 0
0 0

]
.

Proof Let a and b be column vectors of the same length as xG and yG, respectively, and
TyG be the MMSE estimate of xG given yG. Observe that the first condition is equivalent
to

a†�xG|yGa = E

[∣∣∣a† (xG − TyG
)∣∣∣2]≥ a†�a, ∀a, (A.1)

and the second condition is equivalent to

E

[∣∣∣a†xG + b†yG

∣∣∣2]≥ a†�a, ∀a,b. (A.2)

We complete the proof by showing that the equations (A.1) and (A.2) imply each other.
First, observe that

E

[∣∣∣a†xG + b†yG

∣∣∣2]= E

[∣∣∣a† (xG − TyG + TyG
)+ b†yG

∣∣∣2]

= E

[∣∣∣a† (xG − TyG
)+
(

a†T + b†
)

yG

∣∣∣2] .

Since the MMSE estimation error xG − TyG is independent of the observation yG, we
have that

E

[∣∣∣a†xG + b†yG

∣∣∣2]= E

[∣∣∣a† (xG − TyG
)∣∣∣2]+E

[∣∣∣(a†T + b†
)

yG

∣∣∣2] .

Substituting the above expression in (A.2) it is clear that (A.1) implies (A.2). It is also
clear that (A.2) implies (A.1) by setting b = −T†a.

A.2 Basic Extremal Inequalities

In this section, we review two basic extremal inequalities regarding the optimality
of circularly symmetric complex Gaussian distributions. The following lemma says
that among all continuous distributions with a fixed covariance matrix, the circularly
symmetric complex Gaussian distribution maximizes the differential entropy.

L E M M A A.2 (Theorem 2 of [131]) Let x be a complex and continuous random vector.
Then

h(x) ≤ h(xG) = logdet
(
πe�xG

)
,

where xG is a circularly symmetric complex Gaussian random vector with zero mean
and covariance matrix equal to the covariance matrix of x.

We now extend the lemma to conditional differential entropy.
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L E M M A A.3 Let x and y be complex and continuous random vectors. Then

h(x|y) ≤ h
(
xG|yG

)= logdet
(
πe�xG|yG

)
,

where xG and yG are jointly circularly symmetric and jointly Gaussian complex random
vectors with zero mean and joint covariance matrix equal to the joint covariance matrix
of x and y.

Proof Let TyG be the MMSE estimate of xG given yG. Since the estimation error
xG − TyG is independent of the observation yG, we have

h
(
xG|yG

)= h
(
xG − TyG|yG

)= h
(
xG − TyG

)= logdet
(
πe�xG|yG

)
.

Also, observe that

h(x|y) = h(x − Ty|y) ≤ h(x − Ty) ≤ h
(
xG − TyG

)
,

where the first inequality follows because conditioning can only reduce entropy, and the
second inequality follows from Lemma A.2 because the covariance matrix of y − Tx is
the same as the covariance matrix of yG − TxG.

A.3 Concave Functions

In this section, we show that the differential entropy and the conditional differential
entropy of circularly symmetric complex Gaussian random vectors are concave
functions in the corresponding covariance matrices.

L E M M A A.4 Suppose xG is a circularly symmetric complex Gaussian random vector.
The differential entropy h(xG) = log

(|πe�xG |) is concave and nondecreasing in �xG .

We now extend the lemma to conditional differential entropy.

L E M M A A.5 Suppose xG and yG are jointly circularly symmetric, and jointly
Gaussian complex random vectors. Then the conditional differential entropy h

(
xG|yG

)
is concave and nondecreasing in

Cov

([
xG

yG

])
.

Proof Let (xG,yG), (x1G,y1G), and (x2G,y2G) be jointly circularly symmetric, and
jointly Gaussian complex random vectors such that

Cov

([
xG

yG

])
= λCov

([
x1G

y1G

])
+ (1 − λ)Cov

([
x2G

y2G

])
.

From Lemma A.1, we know that the conditional covariance matrices �x1G|y1G
and

�x2G|y2G
satisfy

Cov

([
xiG

yiG

])
�
[

�xiG|yiG
0

0 0

]
, for i = 1,2.
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Therefore, we obtain that

Cov

([
xG

yG

])
�
[

λ�x1G|y1G
+ (1 − λ)�x2G|y2G

0
0 0

]
.

Applying Lemma A.1 again, we obtain that

�xG|yG
� λ�x1G|y1G

+ (1 − λ)�x2G|y2G
.

Now, applying Lemma A.4, we obtain that

h
(
xG|yG

)= log
(|πe�xG|yG

|)
≥ log

(∣∣πe
(
λ�x1G|y1G

+ (1 − λ)�x2G|y2G

)∣∣)
≥ λ log

(|πe�x1G|y1G
|)+ (1 − λ) log

(|πe�x2G|y2G
|)

= λh
(
x1G|y1G

)+ (1 − λ)h
(
x2G|y2G

)
.

This completes the proof of concavity of h
(
xG|yG

)
in the joint covariance matrix. The

proof that h
(
xG|yG

)
is nondecreasing in the joint covariance matrix follows directly

from Lemma A.1.

L E M M A A.6 Suppose xG,z,w are circularly symmetric, and independent complex
Gaussian random vectors such that �z & �w. Then

h(xG + z) − h(xG + w)

is concave in �xG .

Proof Let v ∼ CN (0,�w − �z) be independent of x and z. Then z + v has the same
distribution as w. Therefore, it is sufficient to prove that

h(xG + z) − h(xG + z + v) = −I(v;xG + z + v)

is concave in �xG. Observe that

−I(v;xG + z + v) = −h(v) + h(v|xG + v + w) .

The first term is independent of �xG, and from Lemma A.5, it follows that the second
term is concave in �xG.

A.4 More Extremal Inequalities

In this section, we show that among all the sequences of random vectors with a fixed
average covariance matrix, the circularly symmetric i.i.d. Gaussian random vectors
maximize certain objective functions involving multi-letter differential entropy and
conditional differential entropy terms.

L E M M A A.7 Suppose xn is a sequence of complex and continuous random vectors.
Then

h
(
xn)≤ nh(xG) = n logdet

(
πe�xG

)
,
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where xG is a circularly symmetric Gaussian random vector with covariance matrix
equal to the average covariance matrix of the random sequence xn; i.e.,

�xG = 1

n

n∑
i=1

�xi .

Proof Observe that

h
(
xn)=

n∑
i=1

h
(

xi|xi−1
)

(a)≤
n∑

i=1

h(xi)

(b)≤
n∑

i=1

h(xiG)

(c)≤ nh(xG) ,

where step (a) follows because conditioning can only reduce entropy, step (b) follows
from Lemma A.2, and step (c) follows from Lemma A.4, which says that h(xG) is
concave in �xG .

We now extend the above lemma to conditional differential entropy.

L E M M A A.8 Suppose xn and yn are sequences of complex and continuous random
vectors. Then

h
(
xn|yn)≤ nh

(
xG|yG

)= n logdet
(
πe�xG|yG

)
,

where (xG,yG) are jointly circularly symmetric and Gaussian complex random vectors
with the same joint covariance matrix equal to

Cov

([
xG

yG

])
= 1

n

n∑
i=1

Cov

([
xi

yi

])
.

Proof Let (xiG,yiG) be jointly circularly symmetric and jointly Gaussian random
vectors with joint covariance matrix equal to the joint covariance matrix of (xi,yi). Then
we have

h
(
xn|yn)=

n∑
i=1

h
(

xi|yi−1,yn
)

(a)≤
n∑

i=1

h
(
xi|yi

)
(b)≤

n∑
i=1

h
(
xiG|yiG

)
(c)≤ nh

(
xG|yG

)
,
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where step (a) follows because conditioning can only reduce entropy, step (b) follows
from Lemma A.3, and step (c) follows from Lemma A.5, which says that h

(
xG|yG

)
is

concave in the joint covariance matrix of xG and yG.

L E M M A A.9 Suppose xn is a sequence of complex and continuous random vectors,
and zn ∼ i.i.d. ∼ CN (0,�z) and wn ∼ i.i.d. ∼ CN (0,�w) such that �z & �w. Then

h
(
xn + zn)− h

(
xn + wn)≤ nh(xG + z) − nh(xG + w) ,

where z ∼ CN (0,�z), w ∼ CN (0,�w), and xG is a circularly symmetric Gaussian
random vector with covariance matrix equal to the average covariance matrix of the
random sequence xn; i.e.,

�xG = 1

n

n∑
i=1

�xi .

Proof Let vn ∼ i.i.d. ∼ CN (0,�w − �z) be independent of zn. Then the sequence
zn + vn has the same distribution as wn. Therefore, it is sufficient to prove that

h
(
xn + zn)− h

(
xn + zn + vn)≤ nh(xG + z) − nh(xG + z + v)

⇔ −I
(
vn;xn + zn + vn)≤ −nI(v;xG + z + v) .

Observe that

−I
(
vn;xn + zn + vn)= −h

(
vn)+ h

(
vn|xn + zn + vn)

(a)≤ −nh(v) + nh(v|xG + z + v)

= −nI(v;xG + z + v) ,

where step (a) follows from Lemma A.8.

The above lemma is referred to as the worst-case noise lemma. Indeed, observe
that I(vn;xn + zn + vn) can be interpreted as the multi-letter mutual information of an
additive noise channel with v as input and x + z as noise. The above result argues that
i.i.d. Gaussian noise is the worst-case noise minimizing I(vn;xn + zn + vn). In the scalar
case, as explained in the mutual information game problem (see Exercise 9.21 in [130]),
an alternative proof can be given using the entropy power inequality (EPI).

L E M M A A.10 (EPI) Suppose xn and zn are independent sequences of complex random
variables. Then,

e
1
n h(xn+zn) ≥ e

1
n h(xn) + e

1
n h(zn).

We use the EPI to prove a generalized version of the worst-case noise lemma in the
scalar case.

L E M M A A.11 Suppose {xn
i : 1 ≤ i ≤ M} are independent sequences of complex random

vectors satisfying an average power constraint Pi; i.e.,

1

n

n∑
j=1

�xij ≤ Pi, 1 ≤ i ≤ M,
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and zn ∼ i.i.d. ∼ CN (0,�z). Let μ1,μ2, . . . ,μM be real numbers satisfying the
conditions

μi ≥ Pi∑M
j=1 Pj + �z

, 1 ≤ i ≤ M.

Then we have

M∑
i=1

μih
(
xn

i

)− h

(
M∑

i=1

xn
i + zn

)
≤ n

M∑
i=1

μih(xiG) − nh

(
M∑

i=1

xiG + z

)
,

where xiG ∼ CN (0,Pi).

Proof We will prove the lemma for

μi = Pi∑M
j=1 Pj + �z

.

The result with

μi >
Pi∑M

j=1 Pj + �z

follows because the additional positive entropy quantities are easily seen to be
maximized by i.i.d. Gaussian random vectors. Let ti denote the average differential
entropy,

ti = h
(
xn

i

)
n

.

Applying the EPI (Lemma A.10) repeatedly, we obtain that

h

(
M∑

i=1

xn
i + zn

)
≥ n log

(
M∑

i=1

eti + πe�z

)
.

Therefore, we have

M∑
i=1

μih
(
xn

i

)− h

(
M∑

i=1

xn
i + zn

)
≤ n

M∑
i=1

μiti − n log

(
M∑

i=1

eti + πe�z

)
.

Let f (t) = ∑M
i=1 μiti − 1

2 log
(∑M

i=1 eti + �z

)
. The second term is called the

log–sum–exp function [15], which is convex in t. Therefore, it follows that f is concave
in t. Now, using

∂f

∂ti
= μi − eti∑M

j=1 etj + πe�z
,
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it can be easily checked that {tj = log
(
πePj

)}M
j=1 satisfy ∂f

∂ti
= 0 for all i. Since f (t) is

concave in t, we obtain that f (t) equals its maximum at {tj = log
(
πePj

)}M
j=1, and hence

f (t) ≤
M∑

i=1

μi log(πePi) − log

(
πe

M∑
i=1

Pi + πe�z

)

=
M∑

i=1

μih(xiG) − nh

(
M∑

i=1

xiG + z

)
.



Appendix B: Algebraic
Geometry

In this appendix, we present some results in algebraic geometry that are essential in
proving the main results in Chapter 5. We refer the reader to [132] for details. We start
by recalling some basic terminology in algebraic geometry.

B.1 Varieties and Ideals

Let C[t1, t2, . . . , tn] and C(t1, t2, . . . , tn) denote the set of multivariate polynomials and
rational functions, respectively, in the variables t1, t2, . . . , tn. For any polynomials
f1, f2, . . . , fm ∈ C[t1, t2, . . . , tn], the affine variety generated by f1, f2, . . . , fm is defined as
the set of points at which the polynomials vanish:

V(f) = {t ∈ Cn : f(t) = 0}. (B.1)

Any subset I ⊆ C[t1, t2, . . . , tn] is called an ideal if it satisfies the following three
properties:

• 0 ∈ I;
• if f1, f2 ∈ I, then f1 + f2 ∈ I;
• if f1 ∈ I and f2 ∈ C[t1, t2, . . . , tn], then f1f2 ∈ I.

For any set A ⊆ Cn, the ideal generated by A is defined as

I(A) = {f ∈ C[t1, t2, · · · , tn] : f (t) = 0 ∀t ∈ A}. (B.2)

For any ideal I, the affine variety generated by I is defined as

V(I) = {t ∈ Cn : f (t) = 0 ∀f ∈ I}. (B.3)

The Zariski topology on the affine space Cn is obtained by taking the affine varieties as
closed sets. For any set A ∈ Cn, the Zariski closure Ā is defined as

Ā = V(I(A)). (B.4)

A set A⊆Cn is said to be constructible if it is a finite union of locally closed sets of the
form U ∩ Z with U closed and Z open. If A ⊆ Cn is constructible and Ā = Cn, then A
must be dense in Cn, i.e., Ac ⊆ W for some nontrivial variety W �Cn.

https://www.cambridge.org/core/terms
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B.2 Algebraic Independence and Jacobian Criterion

The rational functions f1, f2 . . . , fm ∈ C(t1, t2, . . . , tn) are called algebraically depen-
dent (over C) if there exists a nonzero polynomial F ∈ C[s1,s2 . . . ,sm] such that
F(f1, f2, . . . , fm) = 0. If there exists no such annihilating polynomial F, then f1, f2, . . . , fm
are algebraically independent.

L E M M A B.1 (Theorem 3, p. 135 of [54]) The rational functions f1, f2 . . . , fm ∈
C(t1, t2, . . . , tn) are algebraically independent if and only if the Jacobian matrix

Jf =
(

∂fi
∂tj

)
1≤i≤m,1≤j≤n

(B.5)

has full row rank equal to m.

The Jacobian matrix is a function of the variables t1, t2, . . . , tn, and hence the Jacobian
matrix can have different ranks at different points t ∈Cn. The above lemma refers to the
structural rank of the Jacobian matrix, which is equal to m if and only if there exists at
least one realization t ∈ Cn where the Jacobian matrix has full row rank.

B.3 Dominant Maps and Generic Properties

A polynomial map f : Cn → Cm is said to be dominant if the Zariski closure of the
image f(Cn) is equal to Cm. The image of a polynomial map is constructible. Therefore,
the image of a dominant polynomial map is dense, i.e., the complement of f(Cn) is
contained in a nontrivial variety W � Cm. The implication of this is that the system of
polynomial equations

s1 = f1(t1, t2, . . . , tn)

s2 = f2(t1, t2, . . . , tn)

...

sm = fm(t1, t2, . . . , tn)

(B.6)

has a solution t ∈ Cn for generic s, where the notion of a generic property is defined
below.

D E FI N I T I O N B.1 A property is said to true for generic s ∈ Cm if the property holds
true for all s ∈ Cm except on a nontrivial affine variety W �Cm. Such a property is said
to be a generic property.

For example, a generic square matrix A has full rank because A is rank deficient
only when it lies on the affine variety generated by the polynomial f (A) = detA. If the
variables are generated randomly according to a continuous joint distribution, then any
generic property holds true with probability one.

https://www.cambridge.org/core/terms
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Observe that the Zariski closure of the image f(Cn) is equal to Cm if and only if
the ideal I generated by the image set is equal to {0}. Since I is equal to the set of
annihilating polynomials,

I = {F ∈ C[s1,s2, . . . ,sm] : F(s) = 0 ∀s ∈ f(Cn)}
= {F ∈ C[s1,s2, . . . ,sm] : F(f1, f2, . . . , fm) = 0}, (B.7)

the map f is dominant if and only if the polynomials f1, f2, . . . , fm are algebraically
independent. Thus we obtain the following lemma.

L E M M A B.2 The system of polynomial equations (B.6) admits a solution for a generic
s ∈ Cm if and only if the polynomials f1, f2, . . . , fm are algebraically independent, i.e., if
and only if the Jacobian matrix (B.5) has full row rank.

B.4 Full-Rankness of a Certain Random Matrix

Let t ∈ Cn be a set of original variables, and let s ∈ Cm be a set of derived variables
obtained through polynomial transformation s = f(t) for some rational map f. Suppose
we generate q instances of t,

t(1), t(2), . . . , t(q), (B.8)

and the corresponding q instances of s,

s(1),s(2), . . . ,s(q),

and generate the q × p matrix

M =

⎡
⎢⎢⎢⎣

s(1)a1 s(1)a2 · · · s(1)ap

s(2)a1 s(2)a2 · · · s(2)ap

...
...

. . .
...

s(q)a1 s(q)a2 · · · s(q)ap

⎤
⎥⎥⎥⎦ (B.9)

for some exponent vectors a1,a2, . . . ,ap ∈ Zm+ and q ≥ p. We are interested in
determining the set of variables (B.8) such that the matrix M has full column rank.
If there exists an annihilating polynomial F ∈ C[s1,s2, . . . ,sm] of the form

F(s) =
p∑

i=1

cisai (B.10)

such that F(f1, f2, . . . , fm) = 0, then the matrix M satisfies Mc = 0, and hence the
matrix M does not have full column rank for any realizations of the variables (B.8).
Interestingly, even the converse holds true.

L E M M A B.3 The matrix M has full column rank for generic realizations of the
variables (B.8) if and only if there does not exist an annihilating polynomial F of the
form (B.10) satisfying F(f1, f2, . . . , fm) = 0.
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https://doi.org/10.1017/9781316691410.013
https://www.cambridge.org/core


204 Algebraic Geometry

Proof We have already proved that M does not have full column rank if there exists
an annihilating polynomial F of the form (B.10). We now prove the converse; i.e., we
assume that there does not exist an annihilating polynomial of the form (B.10), and
prove that the matrix M has full column rank for generic realizations of the variables
(B.8). Without any loss of generality, we assume that p = q. Otherwise, we can work
with the q × q submatrix obtained after deleting the last q − p rows.

Consider expanding the determinant detM in terms of the variables (B.8). Since the
variables s(1),s(2), . . . ,s(q) are rational functions of t(1), t(2), . . . , t(q), respectively, the
determinant is also a rational function; i.e.,

detM = d1(t(1), t(2), . . . , t(q))

d2(t(1), t(2), . . . , t(q))
. (B.11)

The determinant can be identically equal to either zero or a nonzero function. If the
determinant is a nonzero function, then M has full column rank for generic realizations
of the variables (B.8) because M is rank deficient only when d1(t(1), t2), . . . , t(q)) = 0
or when (t(1), t(2), . . . , t(q)) belongs to the affine variety V(d1) �Cnq generated by the
polynomial d1.

Therefore, it remains to prove that detM is not identically zero under the assumption
that no annihilating polynomial F of the form (B.10) exists. We prove this claim by
induction on q. The claim is trivial to check for q = 1. We now prove the induction step.
We may assume that the determinant of the (q − 1) × (q − 1) submatrix M̃, obtained
after deleting the last row and column, is a nonzero function in (t(1), t(2), . . . , t(q − 1)).
Therefore, there must exist specific realizations

(t(1), t(2), . . . , t(q − 1)) = (a(1),a(2), . . . ,a(q − 1)) (B.12)

such that M̃ has full rank. Consider the matrix M∗(t) obtained from M̃ by setting t(q) = t
for each t ∈Cn. If detM is identically equal to zero, then the matrix M∗(t) must be rank
deficient for all t; i.e., there must exist c(t) �= 0 such that M∗(t)c(t) = 0 for each t ∈ Cn.
Since the first q − 1 rows are linearly independent and do not depend on t, the vector
c(t) = c∗ is unique (up to a scaling factor) and is determined by (B.12). Therefore, we
have that M∗(t)c∗ = 0 for each t ∈ Cn. By expanding the last row of M∗(t)c∗ = 0, we
obtain

q∑
i=1

c∗
i f(t)ai = 0. (B.13)

This is a contradiction since we assumed that no annihilating polynomial of the form
(B.10) exists. Therefore, detM is not identically zero and hence M has full rank for
generic realizations of the variables (B.8).

If the rational functions f1, f2, . . . , fm are algebraically independent, then there cannot
exist an annihilating polynomial F (of any form) satisfying
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F(f1, f2, . . . , fm) = 0.

Thus, we immediately have the following corollary.

C O RO L L A RY B.1 The matrix M has full column rank for generic realizations of the
variables (B.8) if the rational functions f1, f2, . . . , fm are algebraically independent, i.e.,
if the Jacobian matrix (B.5) has full row rank.
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