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Preface

The art of wireless communications is arguably one of the biggest technological revolutions
in history, and a crowning achievement of modern engineering. Its impact on the function-
ing of contemporary society cannot be overstated. It seems utterly impossible to conceive
today’s world without the myriad devices that are wirelessly connected at all times.

In the decades since their inception, cellular systems have undergone five generational
transitions. The first generation unfolded during the 1980s and offered only analog tele-
phony. The second generation (2G), rolled out in the 1990s and whose dominant standard
was the global system for mobile communications (GSM), saw the changeover to digital
and the birth of text messaging. The third generation (3G), circa the 2000s, incorporated
data and multimedia applications. Subsequently, the fourth generation (4G) brought about,
besides faster bit rates and lower latencies, a complete adoption of packet switching as
a platform for the mobile internet and the convergence of all standards worldwide into
the long-term evolution (LTE) system. Honoring its name, LTE then evolved into the fifth
generation (5G), augmented by another radio access interface termed new radio (NR) that
allows operating on a much wider range of frequencies.

In the transitional period between 2G and 3G, as the soaring costs of spectrum collided
with the pressures to increase bit rates so as to accommodate data and multimedia applica-
tions, the interest in radically improving the spectral and power efficiencies became acute.
This propelled research initiatives that blossomed into major advances, chief among which
stands multiple-input multiple-output (MIMO) communication, the subject of this book. In
short, MIMO amounts to the transmission of concurrent signals from multiple antennas at
one end of the link, with multiple antennas also at the receiving end.

Although MIMO is sometimes defined as the incorporation of the space domain to the
communication process, this is not quite precise. The space domain has been at the crux
of wireless systems since their onset, and in fact it is inherent to the concept of a cellular
network: a region is tesselated into cells and the time/frequency signaling resources are
reused repeatedly over such cells, i.e., they are spatially reused.

A more satisfying definition of MIMO might be the reusing of signaling resources, not
over faraway cells, but rather across antennas—typically collocated—belonging to a com-
mon transmitter/receiver, such that new signaling dimensions are unlocked as antennas are
added. The many advantages that this brings about are spelled out in detail throughout the
text. By arranging these spatial dimensions, each seen as a scalar quantity, into a vector,
it can be said that MIMO amounts to a vectorization of the transmission. This subsumes
specific instances, such as phased arrays and antenna diversity, which predate the general
formulation of MIMO.

Being in space rather than in time/frequency, the signaling dimensions harnessed with
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xvi Preface

MIMO behave differently, and this book is about how to communicate over them. These
new signaling dimensions multiply the signaling opportunities in time/frequency, hence it
can be said that MIMO provides additional “bandwidth” without an increase in the actual
electromagnetic bandwidth [1].
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A brief historical account

We usually imagine that invention occurs in a flash, with a eureka moment that leads a
lone inventor towards a startling epiphany. In truth, large leaps forward in technology
rarely have a precise point of origin. At the start, forces that precede an invention merely
begin to align, often imperceptibly, as a group of people and ideas converge, until over
the course of months or years they gain clarity and momentum and the help of additional
ideas and actors. Luck seems to matter, and so does timing, for it tends to be the case
that the right answers, the right people, the right place—perhaps all three—require a
serendipitous encounter with the right problem. And then, sometimes, a leap. Only in
retrospect do such leaps look obvious.

Jon Gertner
The idea factory: Bell Labs and the great age of American innovation
Penguin Press, 2012.

MIMO builds on a long pedigree of the application of antenna arrays to communication,
starting with Marconi’s transatlantic experiment in 1901 [2]. While a comprehensive for-
mulation and a broad understanding did arguably not materialize until the 1990s and 2000s,
many of the constituent pieces were present in seemingly unconnected developments well
before that. Let us briefly recount these various strands and how they came together.

A first thread relates to phased arrays, a subject of interest since the 1950s [3]. By ad-
justing the signal’s phase at each antenna, either before transmission or upon reception, the
overall radiation pattern of an array can be shaped into a beam and pointed in a desired
direction, say toward a dominant propagation path. If, besides the phase, the amplitude can
also be adjusted, then we have an adaptive array. In the 1980s, adaptive arrays evolved into
smart antennas, whose array patterns can further null-out interference [4]. All of these are
effectively spatial filters that rely on signal coherence across the arrays, an aspect discussed
at length throughout the book and that has implications for the physical structure of those
arrays and for the radio propagation. Precisely, this coherence is associated with specular
propagation and with cleanly defined directions of arrival and departure.

In a second thread, arrays had long been a source of diversity. As detailed later, when
multiple propagation paths exist, a signal conveyed over a wireless channel exhibits severe
fluctuations, a deleterious phenomenon that can be mitigated by procuring independently
fluctuating copies of that signal. An array can serve this purpose, as in such propagation
conditions the antennas become uncorrelated—an opposite situation to that of adaptive
arrays. Receive diversity was studied as early as 1954 [5] and implemented in early cel-
lular generations already. Being more involved, transmit diversity is more recent [6–10].

xix



xx A brief historical account

Interestingly, diversity was shown to be compatible with the nulling-out of interference,
provided the channel response was known [11].

A third thread is constituted by a variety of works that considered channels coupling
multiple inputs into multiple outputs. These ranged from abstract formulations [12–14]
to analyses motivated by the specific problem of communicating over coupled telephone
lines [15–18]. These important precursors were the seed of MIMO, and also of multiuser
detection for code-division multiple access (CDMA) [19, 20], two developments with sub-
stantial common ground. In drastic contrast with adaptive arrays and diversity, which in
essence involve a single signal, these developments entail the concurrent transmission of
multiple signals.

Particularly prescient was the contribution of Noach Amitay and Jack Salz, who, as
early as 1984, considered a link with two orthogonally polarized antennas at each end [21].
This was extended by Jack Winters in a piece that featured multiantenna transmitters and
receivers with many of the ingredients of contemporary MIMO communication: concurrent
signals were transmitted from antennas collocated on a device—in time this would be
known as spatial multiplexing—and a receiver equipped with multiple antennas recovered
each of those signals by nulling-out the interference from the rest [22]. In hindsight, both
of these milestone papers deserved more credit than they were given, but at the time there
was no demand for enhanced wireless performance; in fact, funding for such research was
being curtailed.

It was not until the 1990s that the atmosphere was primed for these ideas to coalesce.
Arguably, the main catalyst was the work of Gerhard Foschini and Michael Gans, who set
out to design the perfect antenna from an information-theoretic standpoint. Starting with
an array and no preset conditions on how to use it, they found that, if the antennas were un-
correlated, the optimum strategy was to have each one radiate an independent signal, i.e.,
spatial multiplexing. This strategy was radically novel in that it sought to exploit, rather
than counter or avoid, the fluctuations caused by multipath propagation. Foschini went
further and proposed an architecture to effect spatial multiplexing, the so-called layered
architecture, which was remarkable in that it could be built with off-the-shelf encoders
and decoders and did not require the transmitter to know the channel’s response [23]. Un-
der the leadership of Reinaldo Valenzuela, a prototype with 12 transmit and 16 receive
antennas confirmed the practicality of this proposition [24] and dispelled concerns about
the feasibility of nulling-out interference from collocated antennas, i.e., concerns that in
practice these signals would drown each other and be unrecoverable. Additional results by
Emre Telatar consolidated the initial theoretical underpinnings of MIMO [25]. It behoves
us to mention that Amitay, Salz, Winters, Foschini, Gans, Valenzuela, and Telatar were
all associated with Bell Laboratories, placing this organization in a distinguished place in
the history of MIMO. Angel Lozano’s views on MIMO were strongly influenced by his
interaction with these pioneers.

Another noteworthy advance in the 1990s was from Paulraj and Kailath, at Stanford
University, who applied spatial multiplexing to TV distribution from multiple towers [26].
That idea became a core part of Iospan Wireless, an early developer of MIMO technology
for fixed wireless access. Robert Heath’s perspectives on MIMO were shaped by his role
as an early employee of Iospan Wireless.
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Also at Stanford, in yet another development in the 1990s, Raleigh and Cioffi provided
a generalization to multiantenna channels of a technique (expounded in Section 4.4) that
does require the transmitter to know the channel response [27, 28].

Altogether, after a slow ripening of ideas over an extensive period, a critical mass was
reached. Perhaps because of the impetus provided by the soaring costs of spectrum or per-
haps because, simply, the time was right, a chain reaction was sparked and spread rapidly
through academia and industry. From an academic thought experiment, MIMO grew into a
foundation of wireless communication standards. In the span of a few years, it was adopted
by the IEEE 802.16 fixed wireless access system and by cellular standardization bodies.
In particular, the 3G Partnership Project (3GPP) embraced it in a limited fashion for 3G
and then as an integral part of the designs beginning with 4G LTE. In subsequent revisions
of LTE, the numbers of supported antennas progressively increased and, for 5G, so-called
massive MIMO deployments are intrinsic. However, the first commercial application of
MIMO was not in the cellular arena.

In 1997, the IEEE 802.11 working group completed its original wireless local-area net-
work (WLAN) standard. Successive revisions incorporated new features, with the earliest
version to include MIMO being IEEE 802.11n, certified in 2007 and supporting four an-
tennas (although two or three were more common at that time). IEEE 802.11n was suc-
ceeded by IEEE 802.11ac, supporting up to eight antennas, and further by IEEE 802.11ad,
802.11ax, and 802.11ay.

Cohorts of researchers have played a part in the advancement of MIMO, and it is nontriv-
ial to apportion credit among individuals and institutions. A reasonable criterion to assign
credit for any invention is the influence that each contribution ends up having [29], and this
is the criterion applied in our exposition.
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A wealth of texts on MIMO are available, including books with varying flavors and per-
spectives [30–40], edited books [41–43], monographs [44–46], and tutorial papers [47–49].
In addition, treatments of MIMO are included in general wireless communication books
[50, 51]. The present volume, which builds on this diverse literature, is the result of 20
years of research and teaching. It is intended as a full-dress textbook for instructors and
students at the graduate level, and a reference tool for researchers and practicing engineers.
With this audience in mind, its aim is to be both accessible and comprehensive, and the con-
junction of these objectives is the reason for the considerable length. We hope that readers
will appreciate the organization of the contents, as well as the complementary features:

160 illustrations.

19 topical discussions.

339 examples. Some of these are titled examples, which encapsulate results of particular
interest, making it easier for them to be identified and located. The rest of the examples
are in the format of a problem accompanied by the corresponding solution.

463 homework problems proposed at the ends of the chapters.

A companion website with the solutions to all the problems, and additional material.

There are various theoretical lenses under which MIMO, and in fact digital communica-
tion at large, can be seen. Here, the problem of MIMO communication is viewed through
the lens of information theory, appropriately complemented with signal processing, estima-
tion theory, channel modeling, optimization, linear algebra, and random matrix theory, and
with a touch of stochastic geometry. The choice of information theory is not capricious,
but rather the appreciation that, besides being digital, modern communications—certainly
the forms that MIMO is relevant to—are built from the ground up with coding, operating
very close to the fundamental limits that information theory delineates. Moreover, infor-
mation theory yields surprisingly many design insights and the opportunity for extensive
and informative analysis, greatly facilitating the exposition. As eloquently argued by James
Massey [52], “information theory is the proper scientific basis for communication.”

In opening his treatise on quantum theory, the Nobel laureate Steven Weinberg declared
that “there are parts of this book that will bring tears to the eyes of the mathematically
inclined reader.” While not expecting to bring tears to the eyes of our readers, we also do
not intend to sacrifice clarity or understanding at the altar of rigor. Rather, we abide by
the principle that rigor should be at the service of the problem at hand, rather than the
resolution of the problem being slaved to the formalisms of rigor.

xxii
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Organization
The book is organized into three parts, plus a set of appendices.

Part I, labeled wireless communication theory, exposes the pillars on which the edifice
rests, with Chapters 1–3 successively introducing the perspectives of information theory
and estimation, signal processing, and channel modeling. Along the way, the radio chan-
nel is in turn interpreted as a random transformation, as a linear impulse response, and as
a stochastic process; three interpretations, each one fitting the perspective of its chapter.
These perspectives converge in Chapter 4, which deals with non-MIMO communication,
crisply presenting all the concepts that are then to be generalized.
Part II is devoted to single-user MIMO communication, meaning a single transmitter
and a single receiver. In this clean setting, we elaborate on how to transmit and receive
with multiple antennas, first without receiver restrictions in Chapter 5, and then with a
linearity restriction in Chapter 6.
Although, with orthogonal multiplexing, single-user conditions can be created within a
network, the signaling dimensions created by MIMO are best exploited when the mul-
tiuser aspects are brought into the picture. Part III deals with these aspects, first by
introducing them broadly in Chapter 7, and then by delving into how to transmit to and
receive from a plurality of multiantenna users. Again, this is first covered without restric-
tions, in Chapter 8, and then with a linearity restriction in Chapter 9. Finally, Chapter 10
broadens the scope in two respects: an entire cellular network is considered, and MIMO
becomes massive MIMO.
The appendices provide a compact tour of various mathematical results that are invoked
throughout the book, conveniently couched in our notation, with the objective of render-
ing the text as self-contained as possible.

Based on the foregoing structure, a variety of itineraries can be defined in support of
graduate courses. Some potential ones are as follows.

A course on the information-theoretic principles of wireless communication, leading up
to MIMO, can rest on Chapter 1, Chapter 2 (Sections 2.1, 2.2, and 2.6), and Chapter 4,
with the necessary channel modeling taken from Sections 3.1–3.4.
A basic course on MIMO communication can rely on Chapters 1–6 (with the possible
exclusion of Sections 2.4, 2.5, and 2.7).
An advanced course on multiuser MIMO, which could be concatenated with the one
above, can rest on Chapters 7–9, with extension to massive MIMO via Chapter 10.
A course specifically geared toward massive MIMO can be designed with Chapters 6, 9,
and 10, plus whatever material is needed from Chapters 1–4 and 7.

Requisites
The background assumed on the part of the readers corresponds to senior-level or first-year
graduate-level courses on signals and systems, digital communication, linear algebra, and
probability. A firm grasp of random variables is particularly desirable.
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No expertise on cellular networks is presumed, beyond the basic notion that such net-
works are organized in cells, each featuring a base station that wirelessly communicates
with the population of users within. The forward link or downlink embodies the commu-
nication from the base to its users, while the reverse link or uplink embodies the return
communication from the users to the base. This naturally leads to the notion of duplexing,
which refers to how these two directions of communication are arranged. If they are simul-
taneous over disjoint frequency bands, we speak of frequency-division duplexing (FDD),
while, if they take place on alternating time intervals over a common frequency band, we
speak of time-division duplexing (TDD). Full-duplexing, deemed unfeasible in the past, is
now becoming possible thanks to advanced self-interference cancelation techniques [53–
55], and thus it is also considered.

Among the numerous acronyms that—MIMO aside—sprinkle the text, two stand out
and deserve introductory remarks.

CSI, which stands for channel-state information, alludes to complete knowledge of the
channel’s response. Since a signature attribute of wireless channels is their variablity,
acquiring and employing CSI is instrumental when communicating over such channels.
In fact, the availability of CSI is one of the main axes of the exposition in the book.
OFDM, which stands for orthogonal frequency-division multiplexing, is the signaling
technique that has come to dominate communication, wireline and wireless [56, 57].
LTE, NR, and the mentioned WLAN standards all feature OFDM. Although the main-
stream alternatives are entertained too, we acknowledge the dominance of OFDM and
rely on it extensively for our formulations.

Notation
In a long text such as this one, notation can be a minefield. While striving for consistency
and intuition, a modicum of flexibility becomes necessary at points. As part of the effort to
convey meaning consistently, some points are worth noting.

Whenever possible, variables are named to directly reminisce of the quantities they rep-
resent, e.g., SNR for the signal-to-noise ratio, MMSE for the minimum mean-square
error, or Nt and Nr for the numbers of transmit and receive antennas.
Bold symbols denote vectors and matrices, while nonbold symbols correspond to scalars.
Capitalization distinguishes matrices from vectors, and large-scale from small-scale
quantities. (The meaning of these scales is to become clear throughout the text.) Vari-
ables that are in general matrices retain their capitalization even in the special cases in
which they may adopt a vector form.
Frequency-domain quantities are represented with sans serif fonts, in contrast with time-
domain quantities, which are denoted with serif fonts.
Dummy variables and counters match, whenever possible, their respective quantities,
e.g., we use A to denote a realization of the random matrix A, and we use n to run a
counter over N positions.

The common notational schemes and all the relevant symbols, excluding only variables
appearing in intermediate derivations, are listed in the pages that follow. The notational
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schemes are, as much as possible, inspired by MATLAB®. For instance, [A]:,j denotes
the jth column of matrix A whereas [A]:,j:j′ denotes the submatrix containing columns j
through j′.

A number of the variables are further indexed by a user indicator u whenever they are
applied in multiuser contexts. For instance, in single-user settings, H is the time-domain
normalized channel matrix; then, in multiuser settings, Hu indicates the normalized chan-
nel matrix for user u. If, besides multiple users, multiple cells are present, then the indexing
is further augmented to identify the cells involved: Hl;�,u denotes the normalized channel
matrix linking the base station at cell l with the uth user at cell �th.

Further scripting, not explicitly distinguished in the listings that follow, is applied to
discriminate variations in the quantities. For instance, W is a generic linear receiver while
W MF, W ZF, W MMSE are specific types thereof, namely matched-filter, zero-forcing, and
minimum mean-square error linear receivers.
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Common notation

∝ proportionality
≈ approximation
� asymptotic equality
∼ distribution
⊆ subset
((·))K modulo-K
⊗ Kronecker product
� Hadamard (entry-wise) product
∗ convolution

a,A nonbold letters denote scalars
a bold lowercase letters denote column vectors
A bold uppercase letters denote matrices
(·) indexing for continuous signals
a(t), a(t), A(t) time-domain continuous signals at time t

a(f), a(f), A(f) frequency-domain continuous signals at frequency f

[·] indexing for discrete signals
a[n], a[n], A[n] time-domain discrete signals at time n

a[k], a[k], A[k] frequency-domain discrete signals at frequency k

{·} sequence

[a]+ = max(0, a)

a|dB = 10 log10 a

a|3 dB = log2 a

|a| magnitude of a
‖a‖ Euclidean norm of a
‖A‖F Frobenius norm of A
∇x gradient with respect to x

AT matrix transpose
A∗ matrix conjugate transpose
Ac matrix conjugate
A−1 matrix inverse
A† Moore–Penrose matrix pseudoinverse
A� value of A that solves an optimization problem
Â estimate of A
Ã error in the estimation of A

[a]j jth entry of a
[A]i,j (i, j)th entry of A
[A]:,j jth column of A
[A]:,j:j′ submatrix containing columns j through j′ of A
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[A]:,−j submatrix obtained by removing column j from A

ĀN,M N×M matrix containing A at various times, frequencies or
antennas

ḟ(·) first derivative of f(·)
f̈(·) second derivative of f(·)
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Symbols

0N all-zero matrix (the dimension N may be omitted)
1N all-one matrix (the dimension N may be omitted)
1{·} indicator function

A(·) array factor
α common (unprecoded) pilot symbol overhead
αd dedicated (precoded) pilot symbol overhead
αfb feedback overhead
ar(θ) receive array steering vector for an angle θ

at(θ) transmit array steering vector for an angle θ

argmax value that maximizes a function
argmin value that minimizes a function

b[n] nth bit of a message
b�[n] �th bit in the nth symbol of a codeword (n may be omitted)
b excess bandwidth due to pulse shaping
B bandwidth
Bc channel coherence bandwidth
β ratio of transmit-to-receive antenna numbers
β fudge factor in the CESM, MIESM, and EESM methods
Bm
1 subset of coded bits mapped to the mth constellation point

that equal 1

c speed of light
c(τ) continuous-time unnormalized pseudo-baseband impulse re-

sponse
cp(τ) continuous-time unnormalized passband impulse response
cb(τ) continuous-time unnormalized baseband impulse response
cb[�] discrete-time unnormalized baseband impulse response
c(f) frequency-domain unnormalized transfer function
C(SNR,H) capacity of a channel H as a function of SNR
C(SNR) ergodic capacity or sum-capacity as a function of SNR
Cε(SNR) outage capacity at outage level ε as a function of SNR
C(Eb

N0
) ergodic capacity as a function of Eb

N0

C set of cells reusing the same pilots as a cell of interest
C unnormalized channel matrix
χ shadow fading
χ2
2M chi-square distribution with 2M degrees of freedom

Ξ cross-polar discrimination
CM(·) cubic metric
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d diversity order
dmin minimum distance among constellation points
dr spacing between receive antennas in a ULA array
dr,i,i′ spacing between receive antennas i and i′

dt spacing between transmit antennas in a ULA array
dt,j,j′ spacing between transmit antennas j and j′

d(x,y) subspace distance between x and y

dmin(·) minimum subspace distance of a codebook
D distance between transmitter and receiver
Dc coherence distance
Dref pathloss reference distance
D distortion in the average SNR
D set of symbols bearing payload data
D(x‖y) relative entropy (information divergence) between x and y

δ(·) delta function
Δ equalizer delay
ΔD distance shift
Δt time shift
det(A) determinant of A
diag(·) diagonal matrix
DFTN{·} N -point DFT

E energy per symbol transmitted to a user
Es total energy per symbol
Er

s reverse-link total energy per symbol
Eb energy per bit
E[·] expectation
E MMSE matrix
En(·) exponential integral of order n

F frequency share in FDMA
F digital-feedback precoding codebook
F precoder
fA(·) PDF of A
FA(·) CDF of A
fc carrier frequency

g(τ) delay-domain pulse shape
grx(τ) delay-domain receive pulse shaping filter
gtx(τ) delay-domain transmit pulse shaping filter
g(f) frequency-domain pulse shape
grx(f) frequency-domain receive pulse shaping filter
gtx(f) frequency-domain transmit pulse shaping filter
G large-scale channel gain
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Gr receive antenna gain
Gt transmit antenna gain
G(N,M) Grassmannian manifold of M -dimensional subspaces on the

N th-dimensional space
Γ(·) gamma function
Γ(·, ·) upper incomplete gamma function
γ(·, ·) lower incomplete gamma function
γEM Euler–Mascheroni constant

h(t, τ) continuous-time normalized impulse response
�(t, f) time-frequency normalized transfer function
�(ν, τ) Doppler-delay normalized spreading function
hb base station height
hm mobile user height
h(x) differential entropy of x
H(x) entropy of x
H[n] discrete-time normalized channel (n may be dropped)
Hind normalized channel with IND entries
Hw normalized channel with IID complex Gaussian entries
HLOS normalized LOS channel component
Hvir virtual channel
H[k] discrete-frequency normalized channel
η reciprocal of the water level in waterfilling
η pathloss exponent

i(x;x) information density between x and y

I(x;y) mutual information between x and y

In(·) modified Bessel function of the first kind and order n
�{·} imaginary part
I(SNR) Gaussian-noise mutual information as a function of SNR
IN identity matrix (the dimension N may be omitted)
IDFTN{·} N -point inverse DFT

j imaginary unit
Jn(·) Bessel function of the first kind and order n

k Boltzmann’s constant
κ(·) kurtosis
K number of OFDM subcarriers
Kn(·) modified Bessel function of the second kind
Kref pathloss intercept
K Rice factor

L channel order
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Lc length of the cyclic prefix
Lcluster pilot reuse factor
Leq equalizer order
Lnetw number of cells in the network
Lp pathloss
LA(b) a-priority L-value for bit b
LD(b) a-posteriority L-value for bit b
LE(b) log-likelihood ratio for bit b
L∞ high-SNR power offset
λ Lagrange multiplier
λc carrier wavelength
λk(A) kth eigenvalue of A in decreasing order
λmax(A) maximum eigenvalue of A
λmin(A) minimum eigenvalue of A
ΛA square diagonal matrix containing the eigenvalues of A

m Nakagami fading parameter
M constellation cardinality
μA mean of A
max(·) maximum of various quantities
min(·) minimum of various quantities
MMSE MMSE
MMSE local-average MMSE

N number of symbols per codeword
N0 noise spectral density
Na number of antennas
Nbits number of bits per message
Nc fading coherence
Nf number of entries in a digital-feedback codebook
Nmax = max(Nt, Nr)

Nmin = min(Nt, Nr)

Np number of pilot symbols
Nr number of receive antennas
Ns number of signal streams
Nt number of transmit antennas
N (μ,R) real Gaussian with mean μ and covariance matrix R

NC(μ,R) complex Gaussian with mean μ and covariance matrix R

Ω matrix of variances

P(f) frequency-domain power allocation
P[·] probability
P [n] time-domain power allocation (n may be omitted)
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Pr receive power
Pt transmit power
Pr(θ) receive PAS as a function of θ
Pt(θ) transmit PAS as function of θ
pa(·) PMF of a
pe error probability
pout outage probability
PAPR(·) peak-to-average power ratio
φ phase
ψ(·) digamma function

q user weight
Q(·) Q-function

r multiplexing gain
r code rate
R bit rate
Ra(·) autocorrelation of a
{·} real part
Rm decision region for codeword m

Rr receive correlation matrix
Rt transmit correlation matrix
Rx covariance/correlation matrix of x
Rxy cross-covariance/cross-correlation matrix of x and y

RA correlation tensor for A
ρ forward–reverse power ratio
ρd payload data power boosting coefficient
ρp pilot power boosting coefficient

s[n] time-domain codeword symbol (n may be omitted)
s[k] frequency-domain codeword symbol
S0 low-SNR slope
S∞ number of spatial DOF
Sa(·) power spectrum of a
Sh(ν) Doppler spectrum
Sh(τ) power delay profile
S�(ν, τ) scattering function
S set of cells with pilots staggered relative to a cell of interest
S�
0 subset of constellation points whose �th bit is 0

S�
1 subset of constellation points whose �th bit is 1

SINR local-average receive SINR
SIR local-average receive SIR
SNR local-average receive SNR
SNRr reverse-link local-average receive SNR
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SNReff effective SNR
SNReq equivalent SNR
SNRxESM equivalent SNR in the xESM method
sir output SIR of a signal stream
sinr output SINR of a signal stream
snr output SNR of a signal stream
sir hardening-based output SIR of a signal stream
sinr hardening-based output SINR of a signal stream
sign(·) sign function
sinc(x) = sin(πx)

πx

σ2
a variance of a

σdB standard deviation of the shadow fading (in dB)
σθ angle spread
σk(A) kth singular value of A in decreasing order
ΣA rectangular diagonal matrix with the singular values of A

t time
τ delay
T symbol period in single-carrier transmission
Tc coherence time
Td delay spread
Teff effective temperature
TOFDM OFDM symbol period
T time share in TDMA
tr(A) trace of A
θ angle

U number of active users
Utot total number of users
U subset of users
U unitary matrix
UF matrix containing the left singular vectors of F

v velocity
V variance of the information density
V unitary matrix
VF matrix containing the right singular vectors of F
v[n] discrete-time baseband noise vector (n may be omitted)
vp(t) continuous-time passband noise vector
v[k] discrete-frequency baseband noise vector
νM maximum Doppler frequency
ϑ fractional power control exponent
var[·] variance
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vec(A) vector created by stacking the columns of A

W linear receiver
WN (M,R) N -dimensional central Wishart with M degrees of freedom

and covariance R

xi in-phase transmit signal component
xp passband transmit signal
xq quadrature transmit signal component
x[n] discrete-time transmit signal (n may be omitted)
x[k] discrete-frequency transmit signal

yi in-phase received signal component
yp passband received signal
yq quadrature received signal component
y[n] discrete-time received signal (n may be omitted)
y[k] discrete-frequency received signal (k may be omitted)



xxxv About this book

Acronyms

2G second generation
3G third generation
3GPP third-generation Partnership Project
4G fourth generation
5G fifth generation

APP a-posteriori probability
ARQ automatic repeat request
a.s. almost surely
AWGN additive white Gaussian noise

BC broadcast channel
BCJR Bahl–Cocke–Jelinek–Raviv
BICM bit-interleaved coded modulation
BPSK binary phase shift keying

CDF cumulative distribution function
CDMA code-division multiple access
CESM capacity-effective SNR mapping
CM cubic metric
COST European Cooperation in Science and Technology
CSI channel-state information
CSIR channel-state information at the receiver
CSIT channel-state information at the transmitter

DFT discrete Fourier transform
DMT diversity–multiplexing tradeoff
DOF degrees of freedom
DPC dirty-paper coding
DSL digital subscriber line

EESM exponential-effective SNR mapping
ESPAR electronically steerable parasitic array radiators

FDD frequency-division duplexing
FDMA frequency-division multiple access
FFT fast Fourier transform
FIR finite impulse response

GSM global system for mobile communications

H-ARQ hybrid-automatic repeat request
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IA interference alignment
IEEE Institute of Electrical and Electronics Engineers
IID independent identically distributed
IIR infinite impulse response
IND independent nonidentically distributed
INR interference-to-noise ratio
ISI intersymbol interference
ITU International Telecommunications Union

JSDM joint spatial division and multiplexing

LDPC low-density parity check
LGB Linde–Buzo–Gray
LMMSE linear minimum mean-square error
LOS line-of-sight
LTE long-term evolution

MAC multiple-access channel
MAP maximum a-posteriori
MCS modulation and coding scheme
MIESM mutual-information-effective SNR mapping
MIMO multiple-input multiple-output
MISO multiple-input single-output
ML maximum likelihood
MMSE minimum mean-square error
MU-MIMO multiuser MIMO
MU-MISO multiuser MISO
MU-SIMO multiuser SIMO
MU-SISO multiuser SISO

NLOS non-line-of-sight
NOMA non-orthogonal multiple access
NR new radio

OFDM orthogonal frequency-division multiplexing
OFDMA orthogonal frequency-division multiple access

PAM pulse-amplitude modulation
PAPR peak-to-average power ratio
PARC per-antenna rate control
PAS power angle spectrum
PDF probability density function
PDP power delay profile
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PHY PHYsical layer
PMF probability mass function
PPP Poisson point process
PSK phase shift keying

QAM quadrature amplitude modulation
QPSK quadrature phase shift keying

RMS root mean-square

SC-FDE single-carrier frequency-domain equalization
SCM spatial channel model
SDMA space-division multiple access
SIC successive interference cancelation
SIMO single-input multiple-output
SINR signal-to-interference-plus-noise ratio
SIR signal-to-interference ratio
SISO single-input single-output
SLNR signal-to-leakage-plus-noise ratio
SNR signal-to-noise ratio
SUI Stanford University Interim
SU-MIMO single-user MIMO
SU-SISO single-user SISO
SVD singular value decomposition

TCM trellis-coded modulation
TDD time-division duplexing
TDMA time-division multiple access

UCA uniform circular array
ULA uniform linear array

WLAN wireless local area network
WSSUS wide-sense stationary uncorrelated scattering

ZF zero-forcing
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1 A primer on information theory and
MMSE estimation

Theory is the first term in the Taylor series expansion of practice.

Thomas Cover

1.1 Introduction

Information theory deals broadly with the science of information, including compressibil-
ity and storage of data, as well as reliable communication. It is an exceptional discipline in
that it has a precise founder, Claude E. Shannon, and a precise birthdate, 1948. The pub-
lication of Shannon’s seminal treatise, “A mathematical theory of communication” [58],
represents one of the scientific highlights of the twentieth century and, in many respects,
marks the onset of the information age. Shannon was an engineer, yet information the-
ory is perhaps best described as an outpost of probability theory that has extensive ap-
plicability in electrical engineering as well as substantial overlap with computer science,
physics, economics, and even biology. Since its inception, information theory has been
distilling practical problems into mathematical formulations whose solutions cast light on
those problems. A staple of information theory is its appreciation of elegance and harmony,
and indeed many of its results possess a high degree of aesthetic beauty. And, despite their
highly abstract nature, they often do reveal much about the practical problems that moti-
vated them in the first place.

Although Shannon’s teachings are by now well assimilated, they represented a radical
departure from time-honored axioms [52]. In particular, it was believed before Shannon
that error-free communication was only possible in the absence of noise or at vanishingly
small transmission rates. Shannon’s channel coding theorem was nothing short of revolu-
tionary, as it proved that every channel had a characterizing quantity (the capacity) such
that, for transmission rates not exceeding it, the error probability could be made arbitrarily
small. Ridding the communication of errors did not require overwhelming the noise with
signal power or slowing down the transmission rate, but could be achieved in the face of
noise and at positive rates—as long as the capacity was not exceeded—by embracing the
concept of coding: information units should not be transmitted in isolation but rather in
coded blocks, with each unit thinly spread over as many symbols as possible; redundancy
and interdependency as an antidote to the confusion engendered by noise. The notion of
channel capacity is thus all-important in information theory, being something akin to the
speed of light in terms of reliable communication. This analogy with the speed of light,
which is common and enticing, must however be viewed with perspective. While, in the

3
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early years of information theory, the capacity might have been perceived as remote (wire-
line modems were transmitting on the order of 300 bits/s in telephone channels whose
Shannon capacity was computed as being 2–3 orders of magnitude higher), nowadays it
can be closely approached in important channels. Arguably, then, to the daily lives of peo-
ple the capacity is a far more relevant limitation than the speed of light.

The emergence of information theory also had an important unifying effect, proving
an umbrella under which all channels and forms of communication—each with its own
toolbox of methodologies theretofore—could be studied on a common footing. Before
Shannon, something as obvious today as the transmission of video over a telephone line
would have been inconceivable.

As anecdotal testimony of the timeless value and transcendence of Shannon’s work, we
note that, in 2016, almost seven decades after its publication, “A mathematical theory of
communication” ranked as a top-three download in IEEE Xplore, the digital repository that
archives over four million electrical engineering documents—countlessly many of which
elaborate on aspects of the theory spawned by that one paper.

This chapter begins by describing certain types of signals that are encountered through-
out the text. Then, the chapter goes on to review those concepts in information theory that
are needed throughout, with readers interested in more comprehensive treatments of the
matter referred to dedicated textbooks [14, 59, 60]. In addition to the relatively young dis-
cipline of information theory, the chapter also touches on the much older subject of MMSE
estimation. The packaging of both topics in a single chapter is not coincidental, but rather
a choice that is motivated by the relationship between the two—a relationship made of
bonds that have long been known, and of others that have more recently been unveiled
[61]. Again, we cover only those MMSE estimation concepts that are needed in the book,
with readers interested in broader treatments referred to estimation theory texts [62].

1.2 Signal distributions

The signals described next are in general complex-valued. The interpretation of complex
signals, as well as complex channels and complex noise, as baseband representations of
real-valued passband counterparts is provided in Chapter 2, and readers needing back-
ground on this interpretation are invited to peruse Section 2.2 before proceeding. We ad-
vance that the real and imaginary parts of a signal are respectively termed the in-phase and
the quadrature components.

Consider a complex scalar s, zero-mean and normalized to be of unit variance, which is
to serve as a signal. From a theoretical vantage, a distribution that is all-important because
of its optimality in many respects is the complex Gaussian, s ∼ NC(0, 1), details of which
are offered in Appendix C.1.9. In practice though, a scalar signal s is drawn from a discrete
distribution defined by M points, say s0, . . . , sM−1, taken with probabilities p0, . . . , pM−1.
These points are arranged into constellations such as the following.



5 1.2 Signal distributions

Table 1.1 Constellation minimum distances

Constellation dmin

M -PSK 2 sin
(

π
M

)
Square M -QAM

√
6

M−1

M -ary phase shift keying (M -PSK), where

sm = ej2π
m
M +φ0 m = 0, . . . ,M − 1 (1.1)

with φ0 an arbitrary phase. Because of symmetry, the points are always equiprobable,
pm = 1/M for m = 0, . . . ,M − 1. Special mention must be made of binary phase-shift
keying (BPSK), corresponding to M = 2, and quadrature phase-shift keying (QPSK),
which corresponds to M = 4.
Square M -ary quadrature amplitude modulation (M -QAM), where the in-phase and
quadrature components of s independently take values in the set{√

3
2 (M−1)

(
2m− 1−√

M
)}

m = 0, . . . ,
√
M − 1 (1.2)

with
√
M integer. (Nonsquare M -QAM constellations also exist, and they are employed

regularly in wireline systems, but seldom in wireless.) Although making the points in a
M -QAM constellation equiprobable is not in general optimum, it is commonplace. Note
that, except for perhaps an innocuous rotation, 4-QAM coincides with QPSK.

For both M -PSK and square M -QAM, the minimum distance between constellation
points is provided in Table 1.1.

Example 1.1

Depict the 8-PSK and 16-QAM constellations and indicate the distance between nearest
neighbors within each.

Solution

See Fig. 1.1.

It is sometimes analytically convenient to approximate discrete constellations by means
of continuous distributions over a suitable region on the complex plane. These continuous
distributions can be interpreted as limits of dense M -ary constellations for M → ∞. For
equiprobable M -PSK and M -QAM, the appropriate unit-variance continuous distributions
are:

∞-PSK, where s = ejφ with φ uniform on [0, 2π).
∞-QAM, where s is uniform over the square

[ − √
3/2,

√
3/2

] × [ − √
3/2,

√
3/2

]
on the complex plane.
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�Fig. 1.1 Unit-variance 8-PSK and 16-QAM constellations.

Except for BPSK, all the foregoing distributions, both continuous and discrete, are
proper complex in the sense of Section C.1.4.

Lastly, a distribution that is relevant for ultrawideband communication is “on–off” key-
ing [63, 64]

s =

{
0 with probability 1− ε√
1/ε with probability ε

(1.3)

parameterized by ε. Practical embodiments of this distribution include pulse-position mod-
ulation [65] and impulse radio [66]. Generalizations of (1.3) to multiple “on” states are
also possible.

1.3 Information content

Information equals uncertainty. If a given quantity is certain, then knowledge of it provides
no information. It is therefore only natural, as Shannon recognized, to model information
and data communication using probability theory. All the elements that play a role in com-
munications (signals, channel, noise) are thereby abstracted using random variables and
random processes. For the reader’s convenience, reviews of the basic results on random
variables and random processes that are necessary for the derivations in this chapter are
respectively available in Appendices C.1 and C.3.

As the starting point of our exposition, let us see how to quantify the information content
of random variables and processes. We adopt the bit as our information currency and,
consequently, all applicable logarithms are to the base 2; other information units can be
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obtained by merely modifying that base, e.g., the byte (base 256), the nat (base e), and the
ban (base 10).

All the summations and integrals that follow should be taken over the support of the
corresponding random variables, i.e., the set of values on which their probabilities are
nonzero.

1.3.1 Entropy

Let x be a discrete random variable with PMF px(·). Its entropy, denoted by H(x), is
defined as

H(x) = −
∑
x

px(x) log2 px(x) (1.4)

= −E
[
log2 px(x)

]
. (1.5)

Although the entropy is a function of px(·) rather than of x, it is rather standard to slightly
abuse notation and write it as H(x). The entropy is nonnegative and it quantifies the amount
of uncertainty associated with x: the larger the entropy, the more unpredictable x. Not
surprisingly then, the uniform PMF is the entropy-maximizing one. If the cardinality of x
is M , then its entropy under a uniform PMF trivially equals H(x) = log2 M bits and
thus we can affirm that, for any x with cardinality M , H(x) ≤ log2 M bits. At the other
extreme, variables with only one possible outcome (i.e., deterministic quantities) have an
entropy of zero. The entropy H(x) gives the number of bits required to describe x on
average. Note that the actual values taken by x are immaterial in terms of H(x); only the
probabilities of those values matter.

Similar to Boltzmann’s entropy in statistical mechanics, the entropy was introduced as
a measure of information by Shannon with the rationale of being the only measure that is
continuous in the probabilities, increasing in the support if px(·) is uniform, and additive
when x is the result of multiple choices [67].

Example 1.2

Express the entropy of the Bernoulli random variable

x =

{
0 with probability p

1 with probability 1− p.
(1.6)

Solution

The entropy of x is the so-called binary entropy function,

H(x) = −p log2 p− (1− p) log2(1− p), (1.7)

which satisfies H(x) ≤ 1 with equality for p = 1/2.

Example 1.3

Express the entropy of an equiprobable M -ary constellation.
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Solution

For s conforming to a discrete constellation with M equiprobable points,

H(s) = −
M−1∑
m=0

1

M
log

1

M
(1.8)

= log2 M. (1.9)

These log2 M bits can be mapped onto the M constellation points in various ways. Par-
ticularly relevant is the so-called Gray mapping, characterized by nearest-neighbor con-
stellation points differing by a single bit. This ensures that, in the most likely error event,
when a constellation point is confused with its closest neighbor, a single bit is flipped. Gray
mapping is illustrated for a PSK constellation in Fig. 1.1.

Having seen how to quantify the amount of information in an individual variable, we
now extend the concept to multiple ones. Indeed, because of the multiple inputs and out-
puts, the most convenient MIMO representation uses vectors for the signals and matrices
for the channels.

Let x0 and x1 be discrete random variables with joint PMF px0x1(·, ·) and marginals
px0

(·) and px1
(·). The joint entropy of x0 and x1 is

H(x0, x1) = −
∑
x0

∑
x1

px0x1(x0, x1) log2 px0x1(x0, x1) (1.10)

= −E
[
log2 px0x1

(x0, x1)
]
. (1.11)

If x0 and x1 are independent, then H(x0, x1) = H(x0)+H(x1). Furthermore, by regarding
x0 and x1 as entries of a vector, we can claim (1.10) as the entropy of such a vector. More
generally, for any discrete random vector x,

H(x) = −E
[
log2 px(x)

]
. (1.12)

Often, it is necessary to appraise the uncertainty that remains in a random variable x

once a related random variable y has been observed. This is quantified by the conditional
entropy of x given y,

H(x|y) = −
∑
x

∑
y

pxy(x, y) log2 px|y(x|y). (1.13)

If x and y are independent, then naturally H(x|y) = H(x) whereas, if x is a deterministic
function of y, then H(x|y) = 0.

The joint and conditional entropies are related by the chain rule

H(x, y) = H(x) +H(y|x), (1.14)

which extends immediately to vectors. When more than two variables are involved, the
chain rule generalizes as

H(x0, . . . , xN−1) =

N−1∑
n=0

H(xn|x0, . . . , xn−1). (1.15)
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1.3.2 Differential entropy

A quantity seemingly analogous to the entropy, the differential entropy, can be defined for
continuous random variables. If fx(·) is the probability density function (PDF) of x, its
differential entropy is

h(x) = −
∫

fx(x) log2 fx(x) dx (1.16)

= −E
[
log2 fx(x)

]
(1.17)

where the integration in (1.16) is over the complex plane. Care must be exercised when
dealing with differential entropies, because they may be negative. Indeed, despite the sim-
ilarity in their forms, the entropy and differential entropy do not admit the same interpre-
tation: the former measures the information contained in a random variable whereas the
latter does not. Tempting as it may be, h(x) cannot be approached by discretizing fx(·)
into progressively smaller bins and computing the entropy of the ensuing discrete random
variable. The entropy of a b-bit quantization of x is approximately h(x)+b, which diverges
as b → ∞. This merely confirms what one may have intuitively guessed, namely that the
amount of information in a continuous variable, i.e., the number of bits required to describe
it, is generally infinite. The physical meaning of h(x) is thus not the amount of information
in x. In fact, the differential entropy is devoid—from an engineering viewpoint—of oper-
ational meaning and ends up serving mostly as a stepping stone to the mutual information,
which does have plenty of engineering significance.

Example 1.4

Calculate the differential entropy of a real random variable x uniformly distributed in [0, b].

Solution

h(x) = −
∫ b

0

1

b
log2

(
1

b

)
dx (1.18)

= log2 b. (1.19)

Note that h(x) < 0 for b < 1.

Example 1.5 (Differential entropy of a complex Gaussian scalar)

Let x ∼ NC(μ, σ
2). Invoking the PDF in (C.14),

h(x) = E

[ |x− μ|2
σ2

log2 e+ log2
(
πσ2

)]
(1.20)

= log2
(
πeσ2

)
. (1.21)

Observe how, in Example 1.5, the mean μ is immaterial to h(x). This reflects the prop-
erty of differential entropy being translation-invariant, meaning that h(x + a) = h(x) for



10 A primer on information theory and MMSE estimation

any constant a; it follows from this property that we can always translate a random variable
and set its mean to zero without affecting its differential entropy.

In the context of information content, the importance of the complex Gaussian distribu-
tion stems, not only from its prevalence, but further from the fact that it is the distribution
that maximizes the differential entropy for a given variance [14]. Thus, for any random
variable x with variance σ2, h(x) ≤ log2(πeσ

2).
As in the discrete case, the notion of differential entropy readily extends to the multi-

variate realm. If x is a continuous random vector with PDF fx(·), then

h(x) = −E
[
log2 fx(x)

]
. (1.22)

Example 1.6 (Differential entropy of a complex Gaussian vector)

Let x ∼ NC(μ,R). From (C.15) and (1.22),

h(x) = −E
[
log2 fx(x)

]
(1.23)

= log2 det(πR) + E
[
(x− μ)∗R−1(x− μ)

]
log2 e (1.24)

= log2 det(πR) + tr
(
E
[
(x− μ)∗R−1(x− μ)

])
log2 e (1.25)

= log2 det(πR) + tr
(
E
[
R−1(x− μ)(x− μ)∗

])
log2 e (1.26)

= log2 det(πR) + tr
(
R−1

E
[
(x− μ)(x− μ)∗

])
log2 e (1.27)

= log2 det(πR) + tr(I) log2 e (1.28)

= log2 det(πeR), (1.29)

where in (1.25) we used the fact that a scalar equals its trace, while in (1.26) we invoked
the commutative property in (B.26).

As in the scalar case, the complex Gaussian distribution maximizes the differential en-
tropy for a given covariance matrix. For any complex random vector x with covariance R,
therefore, h(x) ≤ log2 det(πeR).

The conditional differential entropy of x given y equals

h(x|y) = −E
[
log2 fx|y(x|y)

]
(1.30)

with expectation over the joint distribution of x and y. The chain rule that relates joint and
conditional entropies is

h(x0, . . . , xN−1) =

N−1∑
n=0

h(xn|x0, . . . , xn−1), (1.31)

which extends verbatim to vectors.

1.3.3 Entropy rate

To close the discussion on information content, let us turn our attention from random vari-
ables to random processes. A discrete random process x0, . . . , xN−1 is a sequence of dis-
crete random variables indexed by time. If x0, . . . , xN−1 are independent identically dis-
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tributed (IID), then the entropy of the process grows linearly with N at a rate H(x0). More
generally, the entropy grows linearly with N at the so-called entropy rate

H = lim
N→∞

1

N
H(x0, . . . , xN−1). (1.32)

If the process is stationary, then the entropy rate can be shown to equal

H = lim
N→∞

H(xN |x0, . . . , xN−1). (1.33)

When the distribution of the process is continuous rather than discrete, the same defini-
tions apply to the differential entropy and a classification that proves useful in the context
of fading channels can be introduced: a process is said to be nonregular if its present value
is perfectly predictable from noiseless observations of the entire past, while the process is
regular if its present value cannot be perfectly predicted from noiseless observations of the
entire past [68]. In terms of the differential entropy rate h, the process is regular if h > −∞
and nonregular otherwise.

1.4 Information dependence

Although it could be—and has been—argued that Shannon imported the concept of entropy
from statistical mechanics, where it was utilized to measure the uncertainty surrounding
the state of a physical system, this was but a step toward something radically original: the
idea of measuring with information (e.g., with bits) the interdependence among different
quantities. In the context of a communication channel, this idea opens the door to relating
transmit and receive signals, a relationship from which the capacity ultimately emerges.

1.4.1 Relative entropy

Consider two PMFs, p(·) and q(·). If the latter is nonzero over the support of the former,
then their relative entropy is defined as

D(p||q) =
∑
x

p(x) log2
p(x)

q(x)
(1.34)

= E

[
log2

p(x)

q(x)

]
(1.35)

where the expectation is over p(·). The relative entropy, also referred to as the Kullback–
Leibler divergence or the information divergence, can be interpreted as a measure of the
similarity of p(·) and q(·). Note, however, that it is not symmetric, i.e., D(p||q) �= D(q||p)
in general. It is a nonnegative quantity, and it is zero if and only if p(x) = q(x) for every x.

Similarly, for two PDFs f(·) and g(·),

D(f ||g) =
∫

f(x) log2
f(x)

g(x)
dx. (1.36)



12 A primer on information theory and MMSE estimation

1.4.2 Mutual information

A quantity that lies at the heart of information theory is the mutual information between
two or more random variables. Although present already in Shannon’s original formulation
[58], the mutual information did not acquire its current name until years later [67, 69].
Given two random variables s and y, the mutual information between them, denoted by
I(s; y), quantifies the reduction in uncertainty about the value of s that occurs when y is
observed, and vice versa. The mutual information is symmetric and thus I(s; y) = I(y; s).
Put in the simplest terms, the mutual information measures the information that one random
variable contains about another. As one would expect, I(s; y) is nonnegative, equaling zero
if and only if s and y are independent. At the other extreme, I(s; y) cannot exceed the
uncertainty contained in either s or y.

For discrete random variables, the mutual information can be computed on the basis of
entropies as

I(s; y) = H(s)−H(s|y) (1.37)

= H(y)−H(y|s), (1.38)

or also as the information divergence between the joint PMF of s and y, on the one hand,
and the product of their marginals on the other, i.e.,

I(s; y) = D(psy||pspy) (1.39)

=
∑
s

∑
y

psy(s, y) log2
psy(s, y)

ps(s) py(y)
(1.40)

=
∑
s

∑
y

psy(s, y) log2
py|s(y|s)
py(y)

. (1.41)

Recalling that the information divergence measures the similarity between distributions,
the intuition behind (1.39) is as follows: if the joint distribution is “similar” to the product
of the marginals, it must be that s and y are essentially independent and thus one can hardly
inform about the other. Conversely, if the joint and marginal distributions are “dissimilar,”
it must be that s and y are highly dependent and thus one can provide much information
about the other.

For continuous random variables, relationships analogous to (1.37) and (1.39) apply,
precisely

I(s; y) = h(s)− h(s|y) (1.42)

= h(y)− h(y|s) (1.43)

and

I(s; y) = D(fsy||fsfy) (1.44)

=

∫∫
fsy(s, y) log2

fsy(s, y)

fs(s)fy(y)
ds dy (1.45)

=

∫∫
fsy(s, y) log2

fy|s(y|s)
fy(y)

ds dy. (1.46)
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In contrast with the differential entropies, which cannot be obtained as the limit of the
entropy of the discretized variables, I(s; y) can be perfectly computed as the limit of the
mutual information between discretized versions of s and y. Albeit the entropies and condi-
tional entropies of the discretized variables diverge, their differences remain well behaved.

Since, because of their translation invariance, the entropies and differential entropies are
not influenced by the mean of the corresponding random variables, neither is the mutual
information. In the derivations that follow, therefore, we can restrict ourselves to zero-mean
distributions.

As shorthand notation, we introduce the informal term Gaussian mutual information to
refer to the function I(ρ) = I(s;

√
ρs + z) when z is complex Gaussian and ρ is a fixed

parameter. If we interpret s as a transmit symbol and z as noise, then ρ plays the role of the
signal-to-noise ratio (SNR) and the mutual information between s and the received symbol√
ρs + z is given by I(ρ). Because of this interpretation, attention is paid to how I(ρ)

behaves for small and large ρ, in anticipation of low-SNR and high-SNR analyses later on.
We examine these specific behaviors by expanding I(ρ) and making use of the Landau
symbols O(·) and o(·) described in Appendix F.

Example 1.7 (Gaussian mutual information for a complex Gaussian scalar)

Let us express, as a function of ρ, the mutual information between s and y =
√
ρs+z with

s and z independent standard complex Gaussians, i.e., s ∼ NC(0, 1) and z ∼ NC(0, 1).
Noting that y ∼ NC(0, 1 + ρ) and y|s ∼ NC(

√
ρs, 1), and invoking Example 1.5,

I(ρ) = I
(
s;
√
ρs+ z

)
(1.47)

= h
(√

ρs+ z
)− h

(√
ρs+ z |s) (1.48)

= h
(√

ρs+ z
)− h(z) (1.49)

= log2
(
πe(1 + ρ)

)− log2(πe) (1.50)

= log2(1 + ρ). (1.51)

For small ρ,

I(ρ) =
(
ρ− 1

2
ρ2

)
log2 e+ o(ρ2), (1.52)

which turns out to apply in rather wide generality: provided that s is proper complex as per
the definition in Appendix C.1, its second-order expansion of I(·) abides by (1.52) [64].

In turn, for complex Gaussian s and large ρ,

I(ρ) = log2 ρ+O
(
1

ρ

)
. (1.53)

Example 1.8 (Gaussian mutual information for ∞-PSK)

Let us reconsider Example 1.7, only with s drawn from the ∞-PSK distribution defined
in Section 1.2. The corresponding mutual information cannot be expressed in closed form,
but meaningful expansions can be given. For low ρ, (1.52) holds verbatim because of the
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properness of ∞-PSK. In turn, the high-ρ behavior is [70]

I∞-PSK(ρ) =
1

2
log2 ρ+

1

2
log2

(
4π

e

)
+O

(
1

ρ

)
. (1.54)

Example 1.9 (Gaussian mutual information for ∞-QAM)

Let us again reconsider Example 1.7, this time with s drawn from the ∞-QAM distribution.
As with ∞-PSK, the mutual information cannot be expressed in closed form, but mean-
ingful expansions can be found. For low ρ, and since s is proper complex, (1.52) holds
whereas for high ρ [71]

I∞-QAM(ρ) = log2 ρ− log2

(πe
6

)
+O

(
1

ρ

)
. (1.55)

With respect to the high-ρ mutual information in (1.53), ∞-QAM suffers a power penalty
of πe

6 |dB = 1.53 dB, where we have introduced the notation a|dB = 10 log10 a that is to
appear repeatedly in the sequel.

Example 1.10 (Gaussian mutual information for BPSK)

Let us reconsider Example 1.7 once more, now with s drawn from a BPSK distribution,
i.e., s = ±1. The PDF of y equals

fy(y) =
1

2π

(
e−|y+√

ρ|2 + e−|y−√
ρ|2

)
(1.56)

whereas y|s ∼ NC(
√
ρs, 1). Thus,

IBPSK(ρ) = h(y)− h(y|s) (1.57)

= −
∫

fy(y) log2 fy(y) dy − log2(πe) (1.58)

= 2ρ log2 e−
1√
π

∫ ∞

−∞
e−ξ2 log2 cosh (2ρ− 2

√
ρξ) dξ (1.59)

where, by virtue of the real nature of s, the integration over the complex plane in (1.58)
reduces, after some algebra, to the integral on the real line in (1.59). In turn, this integral
can be alternatively expressed as the series [72, example 4.39]

IBPSK(ρ) = 1 +

[
(4ρ− 1)Q

(√
2ρ

)
−

√
4ρ

π
e−ρ

+

∞∑
�=1

(−1)�

�(�+ 1)
e4�(�+1)ρ Q

(
(2�+ 1)

√
2ρ

)]
log2 e (1.60)

where Q(·) is the Gaussian Q-function (see Appendix E.5).
For small ρ, using the identity

loge cosh (2ρ− 2
√
ρξ) = 2ξ2ρ− 4ξρ3/2 +

(
2− 4ξ4

3

)
ρ2 + o(ρ2) (1.61)
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we can reduce (1.59) to

IBPSK(ρ) =
(
ρ− ρ2

)
log2 e+ o(ρ2) (1.62)

whereas, for large ρ [71]

IBPSK(ρ) = 1− e−ρ√
ρ/π

+ ε (1.63)

with log ε = o(ρ).

Example 1.11 (Gaussian mutual information for QPSK)

Since QPSK amounts to two BPSK constellations in quadrature with the power evenly
divided between them,

IQPSK(ρ) = 2 IBPSK

(ρ
2

)
. (1.64)

Another way to see this equivalence is by considering that, given a BPSK symbol, we can
add a second BPSK symbol of the same energy in quadrature without either BPSK symbol
perturbing the other. The mutual information doubles while twice the energy is spent, i.e.,
IQPSK(2ρ) = 2 IBPSK(ρ).

Discrete constellations beyond QPSK, possibly nonequiprobable, are covered by the
following example.

Example 1.12 (Gaussian mutual information for an arbitrary constellation)

Let s be a zero-mean unit-variance discrete random variable taking values in s0, . . . , sM−1

with probabilities p0, . . . , pM−1. This subsumes M -PSK, M -QAM, and any other discrete
constellation. The PDF of y =

√
ρs+ z equals

fy(y) =
1

π

M−1∑
m=0

pm e−|y−√
ρ sm|2 (1.65)

whereas y|s ∼ NC(
√
ρs, 1). Thus,

IM -ary(ρ) = I
(
s;
√
ρs+ z

)
(1.66)

= −
∫

fy(y) log2 fy(y) dy − log2(πe) (1.67)

with integration over the complex plane.
For low ρ, an arduous expansion of fy(·) and the subsequent integration leads, provided

that s is proper complex, again to (1.52). For high ρ, it can be shown [71] that

IM -ary(ρ) = log2 M − ε (1.68)

with

log ε = −d2min

4
ρ+ o(ρ) (1.69)

where, recall,

dmin = min
k �=�

|sk − s�| (1.70)
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is the minimum distance between constellation points. The mutual information is capped
at log2 M , as one would expect, and the speed at which this limit is approached for ρ → ∞
is regulated by dmin.

The definition of mutual information extends also to vectors. For continuous random
vectors s and y, specifically,

I(s;y) = h(y)− h(y|s) (1.71)

= h(s)− h(s|y) (1.72)

= D(fsy||fsfy). (1.73)

Example 1.13 (Gaussian mutual information for a complex Gaussian vector)

Let y =
√
ρAs+z where s ∼ NC(0,Rs) and z ∼ NC(0,Rz) while A is a deterministic

matrix. With s and z mutually independent, let us express I(s;y) as a function of ρ. Since
y ∼ NC(0, ρARsA

∗ +Rz) and y|s ∼ NC(
√
ρAs,Rz), leveraging Example 1.6,

I(ρ) = I
(
s;
√
ρAs+ z

)
(1.74)

= h
(√

ρAs+ z
)− h

(√
ρAs+ z |s) (1.75)

= h
(√

ρAs+ z
)− h(z) (1.76)

= log2 det
(
πe (ρARsA

∗ +Rz)
)− log2 det

(
πeRz

)
(1.77)

= log2 det
(
I + ρARsA

∗R−1
z

)
. (1.78)

For low ρ, using

∂

∂ρ
loge det(I + ρB)

∣∣∣∣
ρ=0

= tr(B) (1.79)

∂2

∂ρ2
loge det(I + ρB)

∣∣∣∣
ρ=0

= −tr
(
B2

)
(1.80)

it is found that

I(ρ) =
[
tr
(
ARsA

∗R−1
z

)
ρ− 1

2
tr
((

ARsA
∗R−1

z

)2)
ρ2

]
log2 e+ o

(
ρ2

)
(1.81)

whose applicability extends beyond complex Gaussian vectors to any proper complex vec-
tor s. For high ρ, in turn, provided ARsA

∗R−1
z is nonsingular,

I(ρ) = min(Ns, Ny) log2 ρ+ log2 det
(
ARsA

∗R−1
z

)
+O

(
1

ρ

)
, (1.82)

where Ns and Ny are the dimensions of s and y, respectively.

Example 1.14 (Gaussian mutual information for a discrete vector)

Reconsider Example 1.13, only with s an Ns-dimensional discrete complex random vector
and z ∼ NC(0, I). The vector y = [y0 · · · yNy−1]

T is Ny-dimensional and hence A is
Ny ×Ns. Each entry of s can take one of M possible values and therefore s can take one
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of MNs values, s0, . . . , sMNs−1, with probabilities p0, . . . , pMNs−1. With a smattering of
algebra, the PDF of y can be found to be

fy(y) =
1

πNy

MNs−1∑
m=0

pm e−‖y−√
ρAsm‖2

(1.83)

whereas y|s ∼ NC(
√
ρAs, I). Then,

IM -ary(ρ) = h(y)− log2 det(πeI) (1.84)

= −
∫

. . .

∫
fy(y) log2 fy(y) dy0 · · · dyNy−1 −Ny log2(πe). (1.85)

The number of terms in the summation in (1.83) grows exponentially with Ns, whereas the
integration in (1.85) becomes unwieldy as Ny grows large. Except in very special cases,
numerical integration techniques are called for [73]. Alternatively, it is possible to resort
to approximations of the integral of a Gaussian function multiplied with an arbitrary real
function [74].

For low ρ, and as long as s is proper complex, IM -ary(ρ) expands as in (1.81) [75]. For
ρ → ∞, in turn, I(ρ) → Ns log2 M .

Like the entropy and differential entropy, the mutual information satisfies a chain rule,
specifically

I(x0, . . . , xN−1; y) =

N−1∑
n=0

I(xn; y|x0, . . . , xn−1), (1.86)

which applies verbatim to vectors.

1.5 Reliable communication

1.5.1 Information-theoretic abstraction

One of the enablers of Shannon’s ground-breaking work was his ability to dissect a prob-
lem into simple pieces, which he could solve and subsequently put together to construct the
full solution to the original problem [76]. This ability was manifest in the extremely sim-
ple abstraction of a communication link from which he derived quantities of fundamental
interest, chiefly the capacity. This simple abstraction, echoed in Fig. 1.2, indeed contained
all the essential ingredients.

An encoder that parses the bits to be communicated into messages containing Nbits,
meaning that there are 2Nbits possible such messages, and then maps each message onto
a codeword consisting of N unit-power complex symbols, s[0], . . . , s[N−1]. The code-
word is subsequently amplified, subject to the applicable constraints, into the transmit
signal x[0], . . . , x[N − 1].
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Encoder Decoder

Transmitter Receiver Channel 

w
x[0], . . . , x[N−1] y[0], . . . , y[N−1]

fy[0],...,y[N−1]|x[0],...,x[N−1]

[Nbits bits]
w

�Fig. 1.2 Basic abstraction of a communication link.

The channel, viewed as the random transformation experienced by the transmit signal
and fully described, from such viewpoint, by the conditional probability of its output
given every possible input, the channel law fy[0],...,y[N−1]|x[0],...,x[N−1](·). Accounting
for the power amplification, and for any other transformation involved in converting the
codeword into the transmit signal, fy[0],...,y[N−1]|s[0],...,s[N−1](·) readily derives from
fy[0],...,y[N−1]|x[0],...,x[N−1](·).
A decoder that, cognizant of the channel law, maps its observation of the channel output
y[0] . . . , y[N − 1] onto a guess of which codeword, and thereby which of the 2Nbits

possible messages, has been transmitted.

The functions used by the encoder and decoder to map messages (Nbits bits) onto code-
words (N symbols) define the channel code. The set of all possible codewords is termed a
codebook and the rate of information being transmitted (in bits/symbol) is Nbits/N .

Two observations are in order with respect to the foregoing abstraction.

(1) The abstraction is discrete in time, yet actual channels are continuous in time. As long
as the channel is bandlimited, though, the sampling theorem ensures that a discrete-
time equivalent can be obtained [77]. This discretization is tackled in Chapter 2 and its
implications for time-varying channels are further examined in Section 3.4.5. To recon-
cile this discrete-time abstraction with the continuous-time nature of actual channels,
the “channel” in Fig. 1.2 can be interpreted as further encompassing the transmit and
receive filters, gtx(·) and grx(·), plus a sampling device; this is reflected in Fig. 1.3.

(2) The abstraction is digital, i.e., the information to be transmitted is already in the form
of bits. The digitization of information, regardless of its nature, underlies all modern
forms of data storage and transmission, and is yet again a legacy of Shannon’s work.
We do not concern ourselves with the origin and meaning of the information, or with
how it was digitized. Furthermore, we regard the bits to be transmitted as IID, side-
stepping the source encoding process that removes data redundancies and dependen-
cies before transmission as well as the converse process that reintroduces them after
reception.

For the sake of notational compactness, we introduce vector notation for time-domain
sequences (and in other chapters also for frequency-domain sequences). And, to distinguish
these vectors from their space-domain counterparts, we complement the bold font types
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Decoder

Transmitter ReceiverDiscrete-time channel

Radio 
Channel

gtx(·) grx(·)Encoder

�Fig. 1.3 Basic abstraction of a communication link, including the discrete-to-continuous and

continuous-to-discrete interfaces.

with an overbar. The sequence s[0], . . . , s[N−1], for instance, is assembled into the vector

s̄ =

⎡
⎢⎣

s[0]
...

s[N − 1]

⎤
⎥⎦ . (1.87)

The channel law fȳ|s̄(·) is a key element in the computation of the capacity, and the
mutual information between s[0], . . . , s[N − 1] and y[0], . . . , y[N − 1] can be expressed
as a function thereof. Recalling (1.46), we can write

I
(
s̄; ȳ

)
= E

[
log2

fȳ|s̄(ȳ|s̄)
fȳ(ȳ)

]
(1.88)

= E

[
log2

fȳ|s̄(ȳ|s̄)
1

2Nbits

∑2Nbits−1
m=0 fȳ|s̄(ȳ|s̄m)

]
, (1.89)

where the expectations are over s̄ and ȳ. In (1.89), the 2Nbits codewords have been assumed
equiprobable, with s̄m the mth such codeword.

Example 1.15 (Channel law with Gaussian noise)

Let

y[n] =
√
ρ [A]n,n s[n] + z[n] n, n = 0, . . . , N − 1 (1.90)

or, more compactly, ȳ =
√
ρAs̄ + z̄ where A is a fixed matrix whose (n, n)th entry

determines how the nth transmit symbol affects the nth received one, while z̄ ∼ NC(0, I).
For this linear channel impaired by Gaussian noise,

fȳ|s̄(ȳ|s̄) = 1

πN
e−‖ȳ−√

ρAs̄‖2

. (1.91)

If the channel law factors as fȳ|s̄(·) =
∏N−1

n=0 fy[n]|s[n](·), meaning that its output at
symbol n depends only on the input at symbol n, the channel is said to be memoryless.
Then, there is no loss of optimality in having codewords with statistically independent
entries [14] and thus fs̄(·), and subsequently fȳ(·), can also be factored as a product of
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per-symbol marginals to obtain

I
(
s̄; ȳ

)
=

N−1∑
n=0

I
(
s[n]; y[n]

)
(1.92)

with

I(s[n]; y[n]) = E

[
log2

fy[n]|s[n](y[n]|s[n])
fy[n](y[n])

]
. (1.93)

For channels both memoryless and stationary, we can drop the index n and write

I(s; y) = E

[
log2

fy|s(y|s)
fy(y)

]
(1.94)

= E

[
log2

fy|s(y|s)∑M−1
m=0 fy|s(y|sm) pm

]
, (1.95)

where (1.95) applies if the signal conforms to an M -point constellation; with those con-
stellation points further equiprobable, pm = 1/M for m = 0, . . . ,M − 1. This convenient
formulation involving a single symbol is said to be single-letter. Conversely, the codeword-
wise formulation that is needed for channels with memory such as the one in Example 1.15
is termed nonsingle-letter. Although the direct discretization of a wireless channel gener-
ally does not yield a memoryless law, with equalizing countermeasures at the receiver
the effects of the memory can be reduced to a minimum (see Chapter 2). Moreover, with
OFDM, the signals are structured such that their joint discretization in time and frequency
ends up being basically memoryless. Altogether, most—but not all—settings in this book
are memoryless.

Example 1.16 (Memoryless channel law with Gaussian noise)

Let

y[n] =
√
ρ s[n] + z[n] n = 0, . . . , N − 1 (1.96)

where z[0], . . . , z[N−1] are IID with z ∼ NC(0, 1). For this memoryless channel impaired
by Gaussian noise,

fy|s(y|s) = 1

π
e−|y−√

ρs|2 . (1.97)

1.5.2 Capacity

In an arbitrary channel, not necessarily memoryless, the average probability of making an
error when decoding a codeword equals

pe =

2Nbits−1∑
m=0

P[ŵ �= m |w=m]P[w = m] (1.98)
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where w is the index of the codeword actually transmitted while ŵ is the index guessed by
the decoder. With the codewords equiprobable, the above reduces to

pe =
1

2Nbits

2Nbits−1∑
m=0

P[ŵ �= m |w=m]. (1.99)

We term pe the error probability, noting that it can be alternatively referred to as word
error probability, block error probability, or frame error probability. A rate of information
Nbits/N (in bits/symbol) can be communicated reliably if there exists a code of such rate
for which pe → 0 as N → ∞. Note that we do not require the error probability to be zero
for arbitrary N , but only that it vanishes as N → ∞. In the channels of interest to this text,
error-free communication at positive rates is possible only asymptotically in the codeword
length.

The capacity C (in bits/symbol) is then the highest rate achievable reliably and, once ex-
ceeded, the error probability rises rapidly [60, section 10.4]. Most importantly, if the chan-
nel is information stable then the capacity is the maximum mutual information between
the transmit and receive sequences. The concept of information stability can be explained
by means of the so-called information density

i
(
s̄; ȳ

)
= log2

fs̄,ȳ
(
s̄, ȳ

)
fs̄

(
s̄
)
fȳ

(
ȳ
) , (1.100)

which is the quantity whose expectation, recalling (1.46), equals the mutual information.
The channel is information stable if [78]

lim
N→∞

1

N
i
(
s̄; ȳ

)
= lim

N→∞
1

N
E

[
i
(
s̄; ȳ

)]
(1.101)

= lim
N→∞

1

N
I
(
s̄; ȳ

)
, (1.102)

which means that the information density does not deviate (asymptotically) from the mu-
tual information. Intuitively, this indicates that the information that y[0], . . . , y[N − 1]

conveys about s[0], . . . , s[N − 1] is invariant provided that N is large enough. This seem-
ingly abstract concept is best understood by examining specific manifestations of stable
and unstable channels, such as the ones encountered later in the context of fading. For our
purposes, it is enough to point out that a sufficient condition for information stability is
that the channel be stationary and ergodic, conditions that, as reasoned in Chapter 3, are
satisfied within a certain time horizon by virtually all wireless channels of interest. For
a more general capacity formulation that encompasses channels that are not information
stable, the reader is referred to [79, 80].

If the channel is stationary and ergodic, then [81],

C = max
signal constraints

lim
N→∞

1

N
I
(
s̄; ȳ

)
, (1.103)

where the maximization is over the joint distribution of the unit-power codeword symbols
s[0], . . . , s[N − 1], with subsequent amplification subject to whichever constraints apply
to the signal’s power and/or magnitude (see Section 2.3.5).
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Shannon originally dealt with channels not only stationary and ergodic, but also memo-
ryless, in which case [58]

C = max
signal constraints

I(s; y), (1.104)

with the maximum taken over the distribution of the unit-power variable s, and with the
subsequent amplification subject to the applicable constraints. The capacity then entails
optimizing the marginal distribution of the symbols that make up the codewords. Because
of the memorylessness and stationarity of the channel, such symbols may be not only
independent but IID and thus the optimization is over any one of them. In this case, the
capacity admits a single-letter formulation.

As argued earlier, the mean of the symbols s[0], . . . , s[N − 1] does not contribute to the
mutual information. However, a nonzero-mean would increase the power of the transmit
signal. It follows that, irrespective of the specific type of power constraint, the maximiza-
tions of mutual information invariably yield signals that are zero-mean and hence only
zero-mean signals are contemplated throughout the book.

From C (in bits/symbol) and from the symbol period T , the bit rate R (in bits/s) that can
be communicated reliably satisfies R ≤ C/T. And, since the sampling theorem dictates
that 1/T ≤ B with B the (passband) bandwidth, we have that

R

B
≤ C, (1.105)

evidencing the alternative measure of C in bits/s/Hz, often preferred to bits/symbol.1 With
a capacity-achieving codebook and 1/T = B symbols/s, the inequality in (1.105) becomes
(asymptotically) an equality. If the pulse shape induced by the transmit and receive filters
gtx(·) and grx(·) incurs a bandwidth larger than 1/T , the resulting shortfall from capacity
must be separately accounted for. Indeed, as discussed in Chapter 2, pulse shapes with a
modicum of excess bandwidth are common to diminish the sensitivity to synchronization
inaccuracies.

Throughout this text, we resist utilizing the term “capacity” to describe the performance
for specific distributions of s[0], . . . , s[N − 1] that may be of interest but that are not
optimum in the sense of maximizing (1.103) or (1.104). Rather, we then apply the term
“spectral efficiency” and the description R/B, reserving “capacity” and C for the highest
value over all possible signal distributions.

1.5.3 Coding and decoding

Before proceeding, let us establish some further terminology concerning the probabilistic
relationship over the channel.

We have introduced fȳ|s̄(·) as the channel law, a function of both the transmit codeword
and the observation at the receiver. For a fixed codeword, this defines the distribution of

1 Our conversion of bits/symbol to bits/s/Hz, perfectly sufficient for complex baseband symbols representing
real passband signals, can be generalized to real baseband signals and to spread-spectrum signals through the
notion of Shannon bandwidth [82].
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y[0], . . . , y[N−1] given that such codeword is transmitted while, for a fixed observation,
it defines the likelihood function of s[0], . . . , s[N − 1].

With the conditioning reversed, fs̄|ȳ(·) is the posterior probability of a codeword given
the observation at the receiver.

Optimum decoding rules
To establish the decoding rule that minimizes pe, let us rewrite (1.98) into [83]

pe =

2Nbits−1∑
m=0

P[ȳ /∈ Rm |w=m]P[w = m] (1.106)

=

2Nbits−1∑
m=0

(
1− P[ȳ ∈ Rm |w=m]

)
P[w = m] (1.107)

= 1−
2Nbits−1∑
m=0

∫
Rm

fs̄,ȳ(s̄m, ȳ) dȳ (1.108)

= 1−
2Nbits−1∑
m=0

∫
Rm

fs̄|ȳ(s̄m|ȳ) fȳ(ȳ) dȳ (1.109)

where Rm denotes the decision region associated with codeword m, that is, the set of ob-
servations y[0], . . . , y[N − 1] being mapped by the receiver onto message m. The 2Nbits

decision regions are disjoint. To minimize pe, each term in (1.109) can be separately max-
imized. By inspection, the mth term is maximized by defining Rm as the region that con-
tains all observations ȳ for which the posterior probability fs̄|ȳ(s̄m|ȳ) is maximum. The
optimum decoding strategy is thus to select the most probable codeword given what has
been observed, a rule that is naturally termed maximum a-posteriori (MAP).

Applying Bayes’ theorem (see Appendix C.1.1),

fs̄|ȳ(s̄m|ȳ) =
fȳ|s̄(ȳ|s̄m) fs̄(s̄m)

fȳ(ȳ)
(1.110)

and, when the codewords are equiprobable,

fs̄|ȳ(s̄m|ȳ) =
fȳ|s̄(ȳ|s̄m)
2Nbits fȳ(ȳ)

, (1.111)

where the right-hand side denominator does not depend on m and is thus irrelevant to a
maximization over m. It follows that, with equiprobable codewords, maximizing the pos-
terior probability on the left-hand side is equivalent to maximizing the likelihood function
on the right-hand side numerator. MAP decoding is then equivalent to maximum-likelihood
(ML) decoding, which, faced with an observation ȳ, guesses the message m that maximizes
fȳ|s̄(ȳ|s̄m).
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Example 1.17 (ML decoding rule with Gaussian noise)

Consider the channel with memory and Gaussian noise in Example 1.15. The likelihood
function to maximize is

fȳ|s̄(ȳ|s̄m) = 1

πN
e−‖ȳ−√

ρAs̄m‖2

(1.112)

and, because the logarithm is a monotonic function, the ensuing maximization yields the
same result as the maximization of

loge fȳ|s̄(ȳ|s̄m) = −N loge π − ‖ȳ −√
ρAs̄m‖2 (1.113)

whose first term is constant and so inconsequential to the maximization. The decision made
by an ML decoder is thus the message m whose codeword s̄m minimizes ‖ȳ−√

ρAs̄m‖2,
i.e., the codeword s̄m that induces the channel output

√
ρAs̄m closest in Euclidean distance

to the observation ȳ. This rule is therefore termed minimum-distance (or nearest-neighbor)
decoding.

Example 1.18 (ML decoding rule for a memoryless channel with Gaussian
noise)

For

y[n] =
√
ρ s[n] + z[n] n = 0, . . . , N − 1 (1.114)

with z ∼ NC(0, 1), the ML guess when the receiver observes y[0], . . . , y[N − 1] is the
codeword s[0], . . . , s[N − 1] that minimizes

∑N−1
n=0

∣∣y[n]−√
ρ s[n]

∣∣2.

From hard to soft decoding
In classic receivers of yore, the decoding rules were applied upfront on a symbol-by-
symbol basis. From the observation of y[n], a hard decision was made on the value of
s[n]. This procedure, whereby the MAP or ML rules were applied to individual symbols,
was regarded as the demodulation of the underlying constellation. Subsequently, the N

hard decisions for s[0], . . . , s[N −1] were assembled and fed into a decoder, with two pos-
sible outcomes. If the block of hard decisions was a valid codeword, success was declared.
Alternatively, some of the hard decisions were taken to be erroneous and an attempt was
made, exploiting the algebraic structure of the code, to correct them by modifying the block
into a valid codeword. In these receivers, then, the decoder was essentially a corrector for
the mistakes made by the demodulator. Moreover, in making a hard decision on a given
symbol, the demodulator was throwing away information that could have been valuable to
the decoder when deciding on other symbols [83, 84].

The extreme instance of this approach is uncoded transmission, where the message bits
are directly mapped onto a constellation at the transmitter and recovered via ML-based
hard decision at the receiver. Each bit is then at the mercy of the channel experienced by
the particular symbol in which it is transmitted, without the protection that being part of a
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long codeword can afford. Only a strong SNR or a low spectral efficiency could guarantee
certain reliability in this pre-Shannon framework.

Except when simplicity is the utmost priority or no latency can be tolerated, transmis-
sions are nowadays heavily coded and decoders operate directly on y[0], . . . , y[N − 1],
avoiding any preliminary discarding of information.

Near-capacity coding
As far as the codebooks are concerned, the coding theorems that establish the capacity
as the maximum mutual information rely on random coding arguments—championed by
Shannon—whereby the codewords are constructed by drawing symbols at random from
a to-be-optimized distribution. However, because such codebooks have no structure, their
optimum decoding would require an exhaustive search through the 2Nbits codewords mak-
ing up the codebook in order to find the one codeword that maximizes the MAP or ML
criteria. This is an impossible task even for modest values of Nbits; with Nbits = 30, a
meager value by today’s standards, the number of codewords is already over 1000 million.
Thus, random coding arguments, while instrumental to establishing the capacity, do not
provide viable ways to design practical codes for large Nbits. For decades after 1948, cod-
ing theorists concentrated on the design of codebooks with algebraic structures that could
be decoded optimally with a complexity that was polynomial, rather than exponential, in
the codeword length [85]. Then, in the 1990s, with the serendipitous discovery of turbo
codes [86] and the rediscovery of low-density parity check (LDPC) codes—formulated by
Robert Gallager in the 1960s but computationally unfeasible at that time—the emphasis
shifted to codebook constructions that could be decoded suboptimally in an efficient fash-
ion. Staggering progress has been made since, and today we have powerful codes spanning
hundreds to thousands of symbols and operating very close to capacity. These codes of-
fer the random-like behavior leveraged by coding theorems with a relatively simple inner
structure; in particular, turbo codes are obtained by concatenating lower-complexity codes
through a large pseudo-random interleaver.

A comprehensive coverage of codebook designs and decoding techniques is beyond the
scope of this book, and the interested reader is referred to dedicated texts [83, 87]. Here, we
mostly regard encoders and decoders as closed boxes and discuss how these boxes ought to
be arranged and/or modified to fit the MIMO transceivers (our term to compactly subsume
both transmitters and receivers) under consideration.

Signal-space coding versus binary coding
Thus far we have implicitly considered codes constructed directly over the signal alphabet,
say the points of a discrete constellation. The art of constructing such codes is referred to as
signal-space coding (or coded modulation). Practical embodiments of signal-space coding
exist, chiefly the trellis-coded modulation (TCM) schemes invented by Ungerboeck in the
1970s [88]. Signal-space coding conforms literally to the diagram presented in Fig. 1.3.

As an alternative to signal-space coding, it is possible to first run the message bits
through a binary encoder, which converts messages onto binary codewords; subsequently,
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the coded bits are mapped onto symbols s[0], . . . , s[N − 1] having the desired distribu-
tion, in what can be interpreted as a modulation of the constellation. This alternative is
attractive because it keeps the signal distribution arbitrary while allowing the codebook to
be designed over the simple and convenient binary alphabet. If the rate of the binary code
is r message bits per coded bit and the spectral efficiency is R/B (in message b/s), the
constellation must accommodate 1

rR/B coded bits. When the M constellation points are
equiprobable, the number of bits it can accommodate equals log2 M and thus we can write

R

B
= r log2 M. (1.115)

This expression suggests how the transmit rate can be controlled by adjusting r and M , a
procedure that is explored in detail later in the book.

Fundamentally, there is no loss of optimality in implementing signal-space coding by
mapping the output of a binary encoder onto constellation points as long as the receiver
continues to decode as if those constellation points were the actual coding alphabet. Indeed,
if we take a string of random bits, parse them onto groups, and map each such group to a
constellation point, the resulting codeword is statistically equivalent to a codeword defined
randomly on the constellation alphabet itself. At the transmitter end, therefore, coding and
mapping can be separated with no penalty as long as the receiver performs joint demapping
and decoding. Ironically, then, what defines signal-space coding is actually the signal-space
decoding.

Rather than decoding on the signal alphabet, however, the preferred approach is to first
demap the binary code from the constellation and then separately decode it by means of a
binary decoder. However, to avoid the pitfalls of hard demodulation and prevent an early
loss of information, what is fed to the decoder is not a hard decision on each bit but rather
a soft value.

Soft-input binary decoding
Consider a bit b. We can characterize the probability that b is 0 or 1 directly via P[b= 0]

or P[b = 1] = 1 − P[b = 0] but also, equivalently, through the ratio P[b=1]
P[b=0] [89]. More

conveniently (because products and divisions become simpler additions and subtractions),
we may instead use a logarithmic version of this ratio, the so-called L-value

L(b) = log
P[b = 1]

P[b = 0]
, (1.116)

where, as done with entropies and differential entropies, notation has been slightly abused
by expressing L(·) as a function of b when it is actually a function of its distribution. A
positive L-value indicates that the bit in question is more likely to be a 1 than a 0, and vice
versa for a negative value, with the magnitude indicating the confidence of the decision.
An L-value close to zero indicates that the decision on the bit is unreliable.

Now denote by b�[n] the �th coded bit within s[n]. A soft demapper should feed to the
binary decoder a value quantifying how close b�[n] is to being a 0 or a 1 in light of what the
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receiver has observed, and that information can be conveyed through the posterior L-value

LD

(
b�[n] | ȳ

)
= log

P
[
b�[n] = 1 | ȳ]

P
[
b�[n] = 0 | ȳ] . (1.117)

Applying Bayes’ theorem, we have that

P
[
b�[n] = 0 |ȳ= ȳ

]
=

fȳ|b�[n](ȳ|0)
fȳ(ȳ)

P
[
b�[n] = 0

]
(1.118)

P
[
b�[n] = 1 |ȳ= ȳ

]
=

fȳ|b�[n](ȳ|1)
fȳ(ȳ)

P
[
b�[n] = 1

]
(1.119)

and thus

LD

(
b�[n] |ȳ= ȳ

)
= log

P[b�[n] = 1]

P[b�[n] = 0]︸ ︷︷ ︸
LA(b�[n])

+ log
fȳ|b�[n](ȳ|1)
fȳ|b�[n](ȳ|0)︸ ︷︷ ︸
LE(b�[n] | ȳ)

, (1.120)

whose first term is whatever a-priori information the receiver may already have about b�[n];
in the absence of any such information, LA

(
b�[n]

)
= 0. The second term, in turn, captures

whatever fresh information the demapper supplies about b�[n] in light of what the receiver
observes. More precisely, LE

(
b�[n] | ȳ

)
is the logarithm of the ratio of the likelihood func-

tion for b�[n] evaluated at its two possible values, hence it is a log-likelihood ratio. This
convenient separation into a sum of two terms conveying old (or intrinsic) and new (or
extrinsic) information is what makes L-values preferable to probabilities and sets the stage
for iterative decoding schemes.

When the channel is memoryless, s[n] does not influence received symbols other than
y[n] and thus LD

(
b�[n] | ȳ

)
= LD

(
b�[n] | y[n]

)
. Dropping the symbol index, the single-

letter L-value can then be written as LD

(
b� | y

)
and further insight can be gained. Assum-

ing that the coded bits mapped to each codeword symbol are independent—a condition
discussed in the next section—such that their probabilities can be multiplied, and that the
signal conforms to the discrete constellation defined by s0, . . . , sM−1,

LD

(
b�|y=y

)
= log

P
[
b� = 1 |y=y

]
P
[
b� = 0 |y=y

] (1.121)

= log

∑
sm∈S�

1
ps|y(sm|y)∑

sm∈S�
0
ps|y(sm|y) (1.122)

= log

∑
sm∈S�

1
fy|s(y|sm) pm∑

sm∈S�
0
fy|s(y|sm) pm

(1.123)

= log

∑
sm∈S�

1
fy|s(y|sm)P[b� = 1]

∏
�′ �=� P[b�′ = �′th bit of sm]∑

sm∈S�
0
fy|s(y|sm)P[b� = 0]

∏
�′ �=� P[b�′ = �′th bit of sm]

(1.124)

= log
P[b� = 1]

∑
sm∈S�

1
fy|s(y|sm)

∏
�′ �=� P[b�′ = �′th bit of sm]

P[b� = 0]
∑

sm∈S�
0
fy|s(y|sm)

∏
�′ �=� P[b�′ = �′th bit of sm]

(1.125)

= LA(b�) + log

∑
sm∈S�

1
fy|s(y|sm)

∏
�′ �=� P[b�′ = �′th bit of sm]∑

sm∈S�
0
fy|s(y|sm)

∏
�′ �=� P[b�′ = �′th bit of sm]

(1.126)
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�Fig. 1.4 Above, 16-QAM constellation with Gray mapping. Below, subsets S�
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1 for

� = 0, 1, 2, 3 with the bits ordered from right to left.

where S�
0 and S�

1 are the subsets of constellation points whose �th bit is 0 or 1, respectively
(see Fig. 1.4). Dividing the second term’s numerator and denominator by

∏
�′ �=� P[b�′ = 0],

we further obtain

LD

(
b�|y=y

)
= LA(b�) + log

∑
sm∈S�

1
fy|s(y|sm)

∏
�′=Bm

1

P[b�′=1]
P[b�′=0]∑

sm∈S�
0
fy|s(y|sm)

∏
�′=Bm

1

P[b�′=1]
P[b�′=0]

(1.127)
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= LA(b�) + log

∑
sm∈S�

1
fy|s(y|sm) exp

(∑
�′ �=�,�′∈Bm

1
log P[b�′=1]

P[b�′=0]

)
∑

sm∈S�
0
fy|s(y|sm) exp

(∑
�′ �=�,�′∈Bm

1
log P[b�′=1]

P[b�′=0]

)

= LA(b�) + log

∑
sm∈S�

1
fy|s(y|sm) exp

(∑
�′ �=�,�′∈Bm

1
LA(b�′)

)
∑

sm∈S�
0
fy|s(y|sm) exp

(∑
�′ �=�,�′∈Bm

1
LA(b�′)

)
︸ ︷︷ ︸

LE(b� | y)

(1.128)

where Bm
1 is the subset of coded bits mapped to constellation point sm that equal 1. The

crucial insight here is that the extrinsic term LE(b�|y) depends on LA(b�′) for �′ �= � but
not on LA(b�). Hence, LE(b�|y) contains the information that the demapper can gather
about the �th bit in light of what the receiver observes and of whatever a-priori information
may be available about the other bits within the same symbol. (Although assumed uncon-
ditionally independent, the coded bits may exhibit dependences when conditioned on y.)
This opens the door to implementing iterative receivers, as detailed in the next section. For
one-shot receivers, where the soft demapping takes place only once, there is no a-priori
information and thus

LD

(
b� |y=y

)
= log

∑
sm∈S�

1
fy|s(y|sm)∑

sm∈S�
0
fy|s(y|sm)

. (1.129)

This log-likelihood ratio is what is fed into the decoder of a one-shot receiver.

Example 1.19 (Log-likelihood ratio for a memoryless channel with Gaussian
noise)

For

y[n] =
√
ρ s[n] + z[n] n = 0, . . . , N − 1 (1.130)

with z ∼ NC(0, 1) and equiprobable constellation points, the log-likelihood ratios fed into
the decoder for each symbol are

LD

(
b� |y=y

)
= log

∑
sm∈S�

1
e−|y−√

ρ sm|2∑
sm∈S�

0
e−|y−√

ρ sm|2 � = 0, . . . , log2 M − 1. (1.131)

From the log-likelihood ratios based on the receiver observations and from its own
knowledge of the code structure, a decoder can then compute posterior L-values for each
of the message bits, namely

LD

(
b[n] |ȳ) = log

P
[
b[n] = 1 |ȳ]

P
[
b[n] = 0 |ȳ] , (1.132)

where b[n] for n = 0, . . . , Nbits−1 are the bits making up the message. A processor produc-
ing these posterior L-values, a decidedly challenging task when the codewords are long, is
referred to as an a-posteriori probability (APP) decoder, or also as a soft-input soft-output
decoder. The APP decoder is one of the key engines of modern receivers, with different
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flavors depending on the class of code, e.g., the Bahl–Cocke–Jelinek–Raviv (BCJR) algo-
rithm for convolutional codes [90]. In the case of turbo codes, where two constituent codes
are concatenated, a breakdown of LD

(
b[n] |ȳ) into a-priori and extrinsic information about

each message bit is the key to iterative decoding procedures whereby two APP decoders
operate on the constituent codes exchanging information. Specifically, the extrinsic infor-
mation generated by a first decoder is fed as a-priori information to the second decoder,
allowing it to produce a better guess on the message bits as well as new extrinsic infor-
mation for the first decoder, and so on. As the constituent codes are concatenated through
an interleaver, the extrinsic information exchanged by the decoders must be interleaved
and deinterleaved on each pass. This reduces the probability that the decoding process gets
stuck in loops, and thus every iteration reduces the error probability with a handful of it-
erations sufficing to reach satisfactory levels. LDPC codes, although made up of a single
block code, are also decoded iteratively.

Whichever the type of code, the sign of the L-values generated by an APP decoder for
the message bits directly gives the MAP decisions,

b̂[n] = sign
(
LD

(
b[n] |ȳ)) n = 0, . . . , Nbits − 1. (1.133)

Although it takes the entire codeword into account, an APP decoder maximizes the poste-
rior probability on a bit-by-bit basis, thereby minimizing the average bit error probability
rather than pe. If the probabilities P

[
b̂[n] = b[n] |ȳ] for n = 0, . . . , Nbits−1 are condition-

ally independent given the observations, then the minimization of the bit error probability
also minimizes pe. Otherwise it need not, yet in practice it hardly matters: although there
is no guarantee that capacity can then be achieved for N → ∞, APP decoders perform
superbly. In simple settings with turbo or LDPC codes, operation at the brink of capacity
with satisfactorily small error probabilities has been demonstrated [91, 92].

1.5.4 Bit-interleaved coded modulation

As mentioned, there is no fundamental loss of optimality in the conjunction of binary
encoding and constellation mapping: a signal-space decoder can recover from such signals
as much information as could have been transmitted with a nonbinary code defined directly
on the constellation alphabet. Is the same true when the receiver features a combination of
soft demapping and binary decoding?

To shed light on this issue at a fundamental level, let us posit a stationary and memory-
less channel as well as an M -point equiprobable constellation. In this setting, codewords
with IID entries are optimum and thus bits mapped to distinct symbols can be taken to be
independent. However, the channel does introduce dependencies among same-symbol bits.
Even with the coded bits produced by the binary encoder being statistically independent,
after demapping at the receiver dependencies do exist among the soft values for bits that
traveled on the same symbol. Unaware, a binary decoder designed for IID bits ignores these
dependencies and regards the channel as being memoryless, not only at a symbol level but
further at a bit level [93]. Let us see how much information can be recovered under this
premise.
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The binary-decoding counterpart to the memoryless mutual information in (1.94) and
(1.95) is

∑log2M−1
�=0 I(b�; y), and this binary-decoding counterpart can be put as a function

of the channel law fy|s(·) via [94]

log2M−1∑
�=0

I(b�; y) =

log2M−1∑
�=0

E

[
log2

fy|b�(y|b�)
fy(y)

]
(1.134)

=

log2M−1∑
�=0

1

2

(
E

[
log2

fy|b�(y|0)
fy(y)

]
+ E

[
log2

fy|b�(y|1)
fy(y)

])
(1.135)

=

log2M−1∑
�=0

1

2

(
E

[
log2

∑
sm∈S�

0
fy|s(y|sm) 1

M/2∑M−1
m=0 fy|s(y|sm) 1

M

]

+E

[
log2

∑
sm∈S�

1
fy|s(y|sm) 1

M/2∑M−1
m=0 fy|s(y|sm) 1

M

])
(1.136)

=

log2M−1∑
�=0

1

2

(
E

[
log2

∑
sm∈S�

0
fy|s(y|sm)

1
2

∑M−1
m=0 fy|s(y|sm)

]

+E

[
log2

∑
sm∈S�

1
fy|s(y|sm)

1
2

∑M−1
m=0 fy|s(y|sm)

])
, (1.137)

where S�
0 and S�

1 are as defined in the previous section. In (1.136), the factors 1/(M/2)

and 1/M correspond, respectively, to the probability of a constellation point sm within
the sets S�

0 and S�
1 (whose cardinality is M/2) and within the entire constellation (whose

cardinality is M ).
Whenever no dependencies among same-symbol coded bits are introduced by the chan-

nel, the binary decoder is not disregarding information and thus
∑

� I(b�; y) = I(s; y).
This is the case with BPSK and QPSK, where a single coded bit is mapped to the in-phase
and quadrature dimensions of the constellation. However, if each coded bit does acquire in-
formation about other ones within the same symbol, as is the case when multiple coded bits
are mapped to the same dimension, then, with binary decoding not taking this information
into account,

∑
� I(b�; y) < I(s; y).

Example 1.20

Consider a binary codeword mapped onto a QPSK constellation. The coded bits are parsed
into pairs and the first and second bit within each pair are mapped, respectively, to the in-
phase and quadrature components of the constellation, e.g., for a particular string 010010

within the binary codeword,

· · · 0︸︷︷︸
I

1︸︷︷︸
Q︸ ︷︷ ︸

s[n−1]

0︸︷︷︸
I

0︸︷︷︸
Q︸ ︷︷ ︸

s[n]

1︸︷︷︸
I

0︸︷︷︸
Q︸ ︷︷ ︸

s[n+1]

· · · (1.138)

The resulting QPSK codeword s[0], . . . , s[N − 1] is transmitted, contaminated by noise,
and demapped back into a binary codeword at the receiver. The noise affects the bits as
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follows:

· · · 0︸︷︷︸

{z[n−1]}

1︸︷︷︸
�{z[n−1]}

0︸︷︷︸

{z[n]}

0︸︷︷︸
�{z[n]}

1︸︷︷︸

{z[n+1]}

0︸︷︷︸
�{z[n+1]}

· · · (1.139)

Provided the noise samples are independent and the real and imaginary parts of each noise
sample are also mutually independent, no dependences are introduced among the bits. Even
with binary coding and decoding, it is as if the code were defined on the QPSK alphabet
itself and the performance limits are dictated by I(s; y).

Example 1.21

Consider a binary codeword mapped onto a 16-QAM constellation. The bits are parsed into
groups of four, from which the in-phase and quadrature components must be determined.
Among the various possible mappings, suppose we choose to map the first two bits of each
group to the in-phase component and the final two bits to the quadrature component, e.g.,
for a particular string 011010110100 within the binary codeword,

· · · 01︸︷︷︸
I

10︸︷︷︸
Q︸ ︷︷ ︸

s[n−1]

10︸︷︷︸
I

11︸︷︷︸
Q︸ ︷︷ ︸

s[n]

01︸︷︷︸
I

00︸︷︷︸
Q︸ ︷︷ ︸

s[n+1]

· · · (1.140)

The resulting 16-QAM codeword s[0], . . . , s[N−1] is transmitted, contaminated by noise,
and soft-demapped back into a binary codeword at the receiver. The noise affects the bits
as

· · · 1︸︷︷︸
�{z[n−1]}

0︸︷︷︸
�{z[n−1]}

1︸︷︷︸

{z[n]}

0︸︷︷︸

{z[n]}

1︸︷︷︸
�{z[n]}

1︸︷︷︸
�{z[n]}

0︸︷︷︸

{z[n+1]}

1︸︷︷︸

{z[n+1]}

· · · (1.141)

and thus pairs of coded bits are subject to the same noise. While a signal-space decoder
would take these additional dependences into account and be limited by I(s; y), a binary
decoder ignores them and is instead limited by I(b0; y) + I(b1; y) + I(b2; y) + I(b3; y)

where b� is the �th bit within each group of four.

Remarkably, the difference between
∑

� I(b�; y) and I(s; y) is tiny provided the map-
ping of coded bits to constellation points is chosen wisely. Gray mapping, where nearest-
neighbor constellation points differ by only one bit, has been identified as a robust and
attractive choice [94, 95].

Once all the ingredients that lead to (1.137) are in place, only one final functionality is
needed to have a complete information-theoretic abstraction of a modern wireless trans-
mission chain: interleaving. Although symbol-level interleaving would suffice to break off
bursts of poor channel conditions, bit-level interleaving has the added advantage of shuf-
fling also the bits contained in a given symbol; if the interleaving were deep enough to
push any bit dependencies beyond the confines of each codeword, then the gap between∑

� I(b�; y) and I(s; y) would be closed. Although ineffective for N → ∞, and thus not
captured by mutual information calculations, bit-level interleaving does improve the per-
formance of actual codes with finite N .

The coalition of binary coding and decoding, bit-level interleaving, and constellation
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�Fig. 1.5 BICM architecture with a one-shot receiver.

mappers and soft demappers constitutes the so-called bit-interleaved coded modulation
(BICM) architecture, depicted in Fig. 1.5 and standard in wireless transceivers nowadays
[96]. As mentioned, BICM is information-theoretically equivalent to signal-space coding
for the cases of BPSK (single bit per symbol) and Gray-mapped QPSK (two quadrature
bits per symbol). For higher-order constellations, even if the dependencies among same-
symbol bits are not fully eradicated by interleaving and the receiver ignores them, it is only
slightly inferior.

Example 1.22 (BICM mutual information in Gaussian noise)

Let y =
√
ρs + z with z ∼ NC(0, 1). Recalling from Example (1.16) the corresponding

channel law, (1.137) specializes to

log2M−1∑
�=0

I(b�; y) =

log2M−1∑
�=0

1

2

(
E

[
log2

∑
sm∈S�

0
e−|y−√

ρ sm|2

1
2

∑M−1
m=0 e−|y−√

ρ sm|2

]

+E

[
log2

∑
sm∈S�

1
e−|y−√

ρ sm|2

1
2

∑M−1
m=0 e−|y−√

ρ sm|2

])
. (1.142)

Example 1.23

For 16-QAM and 64-QAM constellations, compare the mutual information I(s; y) in (1.95)
against (1.142) with Gray mapping of bits to constellation points.
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and its BICM counterpart in (1.142), shown in dashed, for 16-QAM in Gaussian noise.

Right-hand side, same comparison for 64-QAM.

Solution

The comparisons are shown in Fig. 1.6.

By incorporating iterative procedures at the receiver, most of the tiny loss incurred by
a one-shot BICM receiver could be recovered at the price of decoding latency [97, 98].
In essence, an iterative BICM receiver can progressively learn the dependencies among
bits given the observation of y[0], . . . , y[N − 1], thereby closing the gap with signal-space
coding. Although arguably not worthwhile given the tininess of this gap, the idea of iter-
ative reception becomes more appealing in MIMO, where the gap broadens, and thus it is
worthwhile that we introduce its basic structure here.

Figure 1.7 depicts an iterative BICM receiver, where the soft demapping is aided by
a-priori information Lmap

A (·) about the coded bits. This improves the L-values Lmap
D (·) pro-

duced by the demapper, and the ensuing extrinsic information Lmap
E (·) = Lmap

D (·)−Lmap
A (·)

is deinterleaved and fed to the APP decoder as Lcod
A (·). The APP decoder then generates

extrinsic information on the coded bits, Lcod
E (·) = Lcod

D (·) − Lcod
A (·), which, properly in-

terleaved, becomes the new a-priori information for the soft demapper, thereby completing
an iteration. The APP decoder also generates L-values for the message bits and, once suf-
ficient iterations have been run, the sign of these directly gives the final MAP decisions.
Notice that only extrinsic L-values, representing newly distilled information, are passed
around in the iterations. That prevents the demapper from receiving as a-priori informa-
tion knowledge generated by itself in the previous iteration, and likewise for the decoder.
Interestingly, with iterative reception, departing from Gray mapping is preferable so as to
enhance the bit dependencies chased by the iterative process. Pushing things further in that
direction, once could even consider multidimensional mappers operating, rather than on
individual symbols, on groups of symbols [99, 100].

Altogether, the main take-away point from this section is the following: because of the
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coincidence of (1.137) and the actual mutual information for BPSK and QPSK, and their
minute—and recoverable—difference for other constellations of interest, no distinction is
customarily made between these quantities. This is also the principle followed in this text,
where the performance limits of systems featuring BICM are investigated by means of the
mutual information directly.

1.5.5 Finite-length codewords

For the most part we concern ourselves with the performance for N → ∞, a stratagem that
relies on this limit being representative of the performance of finite—but long—codewords.
To substantiate this representativity, it is useful to briefly touch on an information-theoretic
result that sheds light on the spectral efficiencies that can be fundamentally achieved when
the length of the codewords is finite [101, 102]. Since error-free communication is gener-
ally not possible nonasymptotically, an acceptable error probability must be specified. If
the acceptable codeword error probability is pe, then, in many channels admitting a single-
letter characterization it is possible to transmit at

R

B
= C −

√
V

N
Q−1(pe) +O

(
logN

N

)
, (1.143)

where Q(·) is the Gaussian Q-function while V is the variance of the information density,
i.e.,

V = var
[
i(s; y)

]
, (1.144)

with s conforming to the capacity-achieving distribution. This pleasing result says that the
backoff from capacity is approximately

√
V/N Q−1(pe), which for codeword lengths and

error probabilities of interest is generally small; quantitative examples for specific channels
are given in Chapter 4. Hence, the capacity indeed retains its significance for finite—but
long—codewords.
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Example 1.24

The turbo codes featured by 3G systems and by LTE, and the LDPC codes featured by
the NR standard, have codeword lengths corresponding to values of Nbits that typically
range from the few hundreds to the few thousands [103, chapter 12][104]. In certain simple
channels, such codes can operate within a fraction of dB—in terms of SNR—of capacity.

Example 1.25

Over a bandwidth of B = 20 MHz, every 1000 codeword symbols incur a latency of
1000
20·106 = 0.05 ms. If such bandwidth, typical of LTE, is shared by U users, then the latency
is multiplied correspondingly. Given that LTE end-to-end latencies stand at about 10 ms,
the contribution of coding to those latencies is minor.

For NR, the latency target is on the order of 1 ms [105, 106], but this reduction is to be
accompanied by major increases in bandwidth and thus codeword lengths need not suffer
major contractions.

The robustness of the capacity to finite codeword lengths, in conjunction with its com-
putability for many relevant channels, renders it a quantity of capital importance. At the
same time, for finite N and pe > 0, in addition to the transmit bit rate R and the ensuing
spectral efficiency R/B, a companion quantity of interest is the throughput that measures
the rate (in b/s) within the successfully decoded codewords; this throughput is given by
(1− pe)R.

For small N , the expansion in (1.143) ceases to be precise and, in the limit of N = 1,
the communication would become uncoded and every individual symbol would then be left
at the mercy of the particular noise realization it experienced, without the protection that
coding affords. The error probability would be comparatively very high and the throughput
would suffer. Uncoded communication, the rule in times past, seems unnatural in the post-
Shannon world and it is nowadays found only in systems priming simplicity.

1.5.6 Hybrid-ARQ

In relation to the codeword length, hybrid-ARQ has become established as an indispensable
ingredient from 3G onwards. Blending channel coding with the traditional automatic repeat
request (ARQ) procedure whereby erroneously received data are retransmitted, hybrid-
ARQ turns the length and rate of the codewords into flexible—rather than fixed—quantities
[107–109].

In a nutshell, hybrid-ARQ works as follows: when a received codeword is decoded in-
correctly, rather than discarding it and receiving its retransmission anew as is the case
in standard ARQ, the received codeword is stored and subsequently combined with the
retransmission once it arrives at the receiver. This combination has a higher chance of suc-
cessful decoding than either of the (re)transmissions individually. Moreover, the procedure
may be repeated multiple times, until either decoding is indeed successful or the number
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of retransmissions reaches a certain value and an error is declared. Two variants of hybrid-
ARQ stand out:

Chase combining, where every (re)transmission contains an identical copy of the code-
word. The receiver simply adds its observations thereof, increasing the SNR with each
new retransmission.
Incremental redundancy, where every retransmission contains additional coded sym-
bols that extend the codeword and lower its rate. Indeed, the result of appending each
retransmission to the previous one(s) is a longer codeword that represents the original
Nbits message bits with a larger number of symbols N .

Incremental redundancy is the most powerful incarnation of hybrid-ARQ and the one
we implicitly refer to unless otherwise stated.

Example 1.26

How could incremental redundancy be implemented if every (re)transmission had length
N and the maximum number of retransmissions were four?

Solution

The transmitter could generate a codeword of length 4N and then transmit N of those sym-
bols, say every fourth one. The receiver, privy to the codebook and hybrid-ARQ scheme,
would attempt decoding. If that failed, another set of N symbols could be sent and the re-
ceiver could again attempt decoding, this time the ensuing codeword of 2N symbols, and
so on. If the final decoding with all 4N symbols failed, an error would be declared.

1.5.7 Extension to MIMO

How does the formulation of the channel capacity change with MIMO? In essence, the
abstraction gets vectorized. Referring back to Fig. 1.2:

The encoder parses the source bits into messages of Nbits and maps those onto code-
words made up of N vector symbols, s[0], . . . , s[N − 1]. Each codeword is possibly
transformed (e.g., via OFDM or MIMO precoding) and amplified into x[0], . . . ,x[N−1]

as per the applicable constraints.
The channel, which connects every input (transmit antenna) with every output (receive
antenna), is described by the conditional distribution fy[0],...,y[N−1]|x[0],...,x[N−1](·).
With transformations and amplification accounted for, fy[0],...,y[N−1]|s[0],...,s[N−1](·)
follows from fy[0],...,y[N−1]|x[0],...,x[N−1](·).
The decoder maps every possible channel output, y[0], . . . ,y[N − 1], onto a guess of
the original block of Nbits bits.

The encoder can be implemented as a true vector encoder, as a bank of parallel scalar
encoders, or as a combination thereof, and the tradeoffs involved as well as the structure
of the corresponding receivers are examined later in the text. At this point, we do not peek
inside the encoder, but only posit that it produces codewords s[0], . . . , s[N − 1].
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Under information stability, the capacity is then

C = max
power constraints

lim
N→∞

1

N
I
(
s[0], . . . , s[N − 1];y[0], . . . ,y[N − 1]

)
(1.145)

with maximization over the distribution of s[0], . . . , s[N − 1], with the subsequent trans-
formation and amplification having to respect the applicable constraints. If the channel is
stationary and memoryless, then the transmit vector symbols are IID and the optimization
in (1.145) becomes single-letter over a single vector symbol.

MIMO BICM
Recall that the norm in modern communication systems is to rely on powerful binary codes
mapped to discrete constellations at the transmitter and with soft demapping and binary
decoding at the receiver. With the complement of bit-level interleaving, this comprises the
BICM architecture. The dependencies that may exist among same-symbol bits are disre-
garded in one-shot BICM receivers and progressively learned in their iterative counterparts.

BICM extends to the MIMO realm. With parallel scalar encoders, one per transmit an-
tenna, the remarks made for single-input single-output (SISO) BICM apply verbatim. With
a vector encoder, a one-shot BICM receiver regards as mutually independent all the bits
transmitted from the various antennas at each symbol. The role of fy|b� is then played by
fy|b�,j (·), defined as the PDF of y conditioned on the �th bit from the jth transmit antenna
equaling 0 or 1. With M -ary equiprobable constellations,

fy|b�,j (y|0) =
1

1
2M

Ns

∑
sm∈S�,j

0

fy|s(y|sm) (1.146)

fy|b�,j (y|1) =
1

1
2M

Ns

∑
sm∈S�,j

1

fy|s(y|sm), (1.147)

where Ns is the dimensionality of s while S�,j
0 and S�,j

1 are the subsets of transmit vectors
whose �th coded bit at the jth transmit antenna is 0 and 1, respectively. From the uncon-
ditioned equiprobability of the coded bits, the cardinality of each subset is 1

2M
Ns , hence

the scaling factors in (1.146) and (1.147). Extending the SISO expression in (1.137), the
information-theoretic performance of a one-shot MIMO BICM receiver is characterized
by [110, 111]

Ns−1∑
j=0

log2M−1∑
�=0

I(b�,j ;y) =

Ns−1∑
j=0

log2M−1∑
�=0

1

2

(
E

[
log2

∑
sm∈S�,j

0
fy|s(y|sm)

1
2

∑MNs−1
m=0 fy|s(y|sm)

]

+E

[
log2

∑
sm∈S�,j

1
fy|s(y|sm)

1
2

∑MNs−1
m=0 fy|s(y|sm)

])
. (1.148)

In contrast with SISO, where BICM one-shot reception experiences no loss relative to
signal-space coding for BPSK and QPSK, in MIMO there may be a nonzero loss even
in those cases because of possible dependences introduced by the channel among the bits
emitted from different transmit antennas. The loss is more significant than in SISO, yet still
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relatively modest (about 1 dB at most) if the bit mappings are wisely chosen [96]. And, as
in SISO, this loss can be largely recovered through the use of iterative decoding [112, 113].

Altogether, the mutual information I(s;y) continues to be satisfyingly representative of
the fundamental performance achievable with binary encoding and decoding.

1.6 MMSE estimation

Estimation theory deals with the questions of how and with what accuracy one can infer the
value taken by a certain quantity on the basis of related observations. Normally built upon
an underlying statistical model that connects those observations with the unknown quantity,
estimation theory involves devising estimators according to different fidelity criteria and
analyzing their performances [62, 114, 115].

To begin with, let us again consider the basic transformation that lies at the heart of any
noisy linear channel, namely

y =
√
ρs+ z, (1.149)

where ρ is fixed and the noise z can be taken to be zero-mean and of unit variance, but oth-
erwise arbitrarily distributed for now. The problem at hand is to produce the “best possible”
estimate ŝ(y) for the variable s based on the following.

The observation of y.
A fidelity criterion specifying the sense in which “best possible” is to be understood.
Some knowledge of the probabilistic relationship between s and y, and in particular
knowledge of the posterior probability fs|y(·) and the likelihood function fy|s(·). The
marginal distribution fs(·), termed the prior probability, is further available to the esti-
mator whenever s is part of the system design (say, if s is a signal) but may or may not
be available otherwise (say, if s is a channel coefficient produced by nature).

Among the fidelity criteria that could be considered, a few are, for good reasons, preva-
lent in information theory and communications.

The MAP criterion gives ŝ(y) = argmaxs fs|y(s|y) with maximization over all values
taken by s. Just like a MAP decoder identifies the most probable codeword, a MAP
estimator returns the most probable value of s given what has been observed.
The maximum-likelihood (ML) criterion gives ŝ(y) = argmaxs fy|s(y|s), again with
maximization over all values taken by s. Just like an ML decoder selects the most likely
codeword, an ML estimator returns the value of s whose likelihood is highest. As argued
via Bayes’ theorem in the context of optimum decoding, if the prior is uniform, i.e., if s
takes equiprobable values, then the ML and the MAP criteria coincide.
The MMSE criterion, which is the one herein entertained.

The mean-square error measures the power of the estimation error, that is, the power
of |s− ŝ(y)|. A rather natural choice in Gaussian-noise contexts, given how the defining
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feature of such noise is its power, the mean-square error was introduced early in the nine-
teenth century (by Gauss himself, as well as by Legendre [116, 117]) and it is by now a
ubiquitous metric. The mean-square error for a given estimate ŝ(y) thus equals

E

[
|s− ŝ(y)|2

]
, (1.150)

with expectation over both s and y or, equivalently, over s and z. The minimization of this
quantity gives the MMSE and the corresponding ŝ(·) is the MMSE estimator.

1.6.1 The conditional-mean estimator

As it turns out, and regardless of the noise distribution (refer to Problem 1.34), the MMSE
estimator is

ŝ(y) = E
[
s|y], (1.151)

whose rather intuitive form indicates that, in the MMSE sense, the best guess for s is its
expected value given whatever observations are available; if no observations are available,
then the MMSE estimate is directly the mean. This conditional-mean estimator is unbiased
in the sense that

E
[
ŝ(y)

]
= E

[
E[s|y]] (1.152)

= E[s], (1.153)

but it is biased in the sense that, for a realization s, it may be that E
[
ŝ(
√
ρ s + z)

] �= s.
Put differently, the estimation error over all possible values of s is always zero-mean, but
achieving the MMSE may require that the estimation error for given values of s be nonzero-
mean. This dichotomy may cause confusion as the estimator can be declared to be both
biased and unbiased, and it is important to make the distinction precise.

Crucially, the conditional-mean estimator ŝ(y) = E[s|y] complies with the orthogonal-
ity principle whereby E

[
g(y∗)

(
s− ŝ(y)

)]
= 0 for every function g(·). In particular,

E
[
y∗(s− ŝ)

]
= 0 (1.154)

E
[
ŝ∗(s− ŝ)

]
= 0. (1.155)

Plugged into (1.150), the conditional-mean estimator yields

MMSE(ρ) = E

[
s− ∣∣E[s|y]∣∣2] (1.156)

with outer expectation over both s and y or, equivalently, over s and z. Alternatively, we
can write MMSE(ρ) = E

[
var[s|y]] with expectation over y and with

var[s|y] = E

[∣∣s− E[s|y]∣∣2 |y] (1.157)

the conditional variance of s given y. For given fs(·) and fz(·), i.e., for a certain signal
format and some noise distribution, MMSE(ρ) is a decreasing function of ρ. Also, the
mean of the signal being estimated does not influence the MMSE, and hence we can restrict
ourselves to zero-mean signal distributions.
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1.6.2 MMSE estimation in Gaussian noise

Homing in on Gaussian-noise settings, with z ∼ NC(0, 1), we have that y|s ∼ NC(
√
ρ s, 1)

and thus

fy|s(y|s) = 1

π
e−|y−√

ρs|2 . (1.158)

Then, the posterior probability equals, via Bayes’ theorem,

fs|y(s|y) =
fy|s(y|s) fs(s)

fy(y)
(1.159)

=
fy|s(y|s) fs(s)∫
fy|s(y|s) fs(s) ds

(1.160)

from which the conditional-mean estimator can be expressed as

ŝ(y) = E
[
s |y=y

]
(1.161)

=

∫
s fs|y(s|y) ds (1.162)

=

∫
s fy|s(y|s) fs(s)∫
fy|s(y|s) fs(s) ds

ds (1.163)

=

∫
s fy|s(y|s) fs(s) ds∫
fy|s(y|s) fs(s) ds

(1.164)

=

∫
s e−|y−√

ρs|2 fs(s) ds∫
e−|y−√

ρs|2 fs(s) ds
(1.165)

with integrations over the complex plane.

Example 1.27 (MMSE estimation of a complex Gaussian scalar)

Consider y =
√
ρs+ z with s ∼ NC(0, 1). Then,

fs(s) =
1

π
e−|s|2 (1.166)

and, applying (1.165),

ŝ(y) =

∫
s e−|y−√

ρs|2e−|s|2 ds∫
e−|y−√

ρs|2e−|s|2 ds
(1.167)

=

∫
s e−

|y|2
1+ρ e−|

√
1+ρ s−√ ρ

1+ρ y|2 ds∫
e−

|y|2
1+ρ e−|

√
1+ρ s−√ ρ

1+ρ y|2 ds
(1.168)

=

∫
s e

−
∣∣∣s−

√
ρ

1+ρ y
∣∣∣2/ 1

1+ρ ds∫
e
−
∣∣∣s−

√
ρ

1+ρ y
∣∣∣2/ 1

1+ρ ds

(1.169)
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=

∫
s

1

π
(

1
1+ρ

) e
−
∣∣∣s−

√
ρ

1+ρ y
∣∣∣2/ 1

1+ρ ds∫
1

π
(

1
1+ρ

) e
−
∣∣∣s−

√
ρ

1+ρ y
∣∣∣2/ 1

1+ρ ds

. (1.170)

Recognizing that

1

π
(

1
1+ρ

) exp

⎛
⎜⎝−

∣∣∣s− √
ρ

1+ρ y
∣∣∣2

1
1+ρ

⎞
⎟⎠ (1.171)

is the PDF of a complex Gaussian variable with mean
√
ρ

1+ρ y, the expectation in the numer-
ator of (1.170) equals that mean, whereas the denominator equals unity and thus

ŝ(y) =

√
ρ

1 + ρ
y, (1.172)

which is a linear function of the observed value of y, hence the result that the MMSE
estimator of a Gaussian quantity is linear. This estimator then yields

MMSE(ρ) = E

[∣∣∣∣s−
√
ρ

1 + ρ
y

∣∣∣∣2
]

(1.173)

= E
[|s|2]− 2

√
ρ

1 + ρ
(

E[ys∗]
)
+

ρ

(1 + ρ)2
E
[|y|2] (1.174)

and, using E
[|s|2] = 1 as well as E

[
ys∗

]
=

√
ρ and E

[|y|2] = 1 + ρ, finally

MMSE(ρ) =
1

1 + ρ
. (1.175)

Interestingly, the MMSE estimate of a Gaussian variable coincides with its MAP esti-
mate (but not with the ML one). And, unsurprisingly given that the Gaussian distribution
maximizes the differential entropy for a given variance, Gaussian variables are the hardest
to estimate, meaning that any non-Gaussian variable of the same variance is bound to incur
a lower estimation MMSE [118].

Example 1.28

Verify that the MMSE estimator in the previous example may be biased for a specific value
of s but is unbiased over the distribution thereof.

Solution

For a given s,

E
[
ŝ
(√

ρs+ z
) |s=s

]
= E

[ √
ρ

1 + ρ
(
√
ρs+ z) |s=s

]
(1.176)

= E

[
ρ

1 + ρ
s +

√
ρ

1 + ρ
z

]
(1.177)

=
ρ

1 + ρ
s (1.178)
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= s− 1

1 + ρ
s (1.179)

�= s (1.180)

with a bias − 1
1+ρ s. The expectation of this bias over the distribution of s is zero.

Example 1.29 (MMSE estimation of a BPSK scalar)

Consider y =
√
ρs + z with s drawn from a BPSK constellation. The conditional-mean

estimate (refer to Problem 1.36) is

ŝ(y) = tanh
(
2
√
ρ{y}), (1.181)

while the corresponding MMSE reduces to the real integral

MMSEBPSK(ρ) = 1− 1√
π

∫ ∞

−∞
tanh

(
2ρ− 2

√
ρ ξ

)
e−ξ2dξ. (1.182)

Example 1.30 (MMSE estimation of a QPSK scalar)

Since QPSK amounts to two BPSK constellations in quadrature, each with half the power,
the conditional-mean estimators for the in-phase and quadrature components are given by
(1.181) applied to the real and imaginary parts of the observation, respectively, with ρ/2 in
place of ρ. Then, the MMSE function equals

MMSEQPSK(ρ) = MMSEBPSK

(ρ
2

)
. (1.183)

The low-ρ expansion of (1.175) reveals that, for a complex Gaussian variable,

MMSE(ρ) = 1− ρ+ o(ρ), (1.184)

which extends to the estimation of any variable that is proper complex, i.e., that occupies
both noise dimensions in a balanced manner [119]. The prime example is QPSK.

In contrast,

MMSEBPSK(ρ) = 1− 2ρ+ o(ρ) (1.185)

and this expansion applies, beyond BPSK, whenever a one-dimensional variable is being
estimated in complex Gaussian noise.

In the high-ρ regime, in turn, the MMSE decays as 1/ρ when the variable being esti-
mated is Gaussian and possibly faster otherwise [120]. In particular, for discrete constella-
tions the decay is exponential and details on the exponents for certain types of constella-
tions are given in [121, 122].

Generalization to vectors

The generalization of the preceding derivations to vector transformations is straightfor-
ward. Given

y =
√
ρAs+ z, (1.186)
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where A is fixed while s and z are independent with z ∼ NC(0,Rz), the conditional-
mean estimator

ŝ(y) = E
[
s|y] (1.187)

attains the MMSE simultaneously for every entry of s and

E = E

[(
s− ŝ(y)

)(
s− ŝ(y)

)∗]
(1.188)

is the MMSE matrix, which equals the covariance of the estimation error vector and fully
describes the accuracy of the conditional-mean vector estimator. The jth diagonal entry of
E indicates the MMSE incurred in the estimation of the jth entry of s. From E, scalar
quantities with various significances may be derived as needed, say weighted arithmetic or
geometric averages of the diagonal entries, or directly the largest diagonal entry [123].

Example 1.31 (MMSE estimation of a complex Gaussian vector)

Consider y =
√
ρAs+z with s ∼ NC(0,Rs) and z ∼ NC(0, I). Extending to the vector

realm the derivations of Example 1.27, the MMSE estimator is found to be

ŝ(y) =
√
ρRsA

∗(I + ρARsA
∗)−1y, (1.189)

which, as in the case of a Gaussian scalar, is linear in the observation. Then, from the above
and (1.188),

E = E[ss∗]− E[sŝ∗]− E[ŝs∗] + E[ŝŝ∗] (1.190)

= Rs − 2ρRsA
∗(I + ρARsA

∗)−1ARs

+ ρRsA
∗(I + ρARsA

∗)−1(I + ρARsA
∗)(I + ρARsA

∗)−1ARs (1.191)

= Rs − ρRsA
∗(I + ρARsA

∗)−1ARs. (1.192)

Applying the matrix inversion lemma (see Appendix B.7) in a reverse fashion to (1.192),
we can also rewrite E into the alternative form

E =
(
R−1

s + ρA∗A
)−1

. (1.193)

Expanding (1.192), the generalization of the low-ρ expansion in (1.184) to proper com-
plex vectors comes out as

E = Rs − ρRsA
∗ARs +O(ρ2), (1.194)

which holds whenever s is a proper complex vector, irrespective of its distribution.

1.6.3 The I-MMSE relationship in Gaussian noise

The random transformation invoked extensively throughout this chapter, namely

y =
√
ρs+ z, (1.195)

where s and z are independent and z ∼ NC(0, 1), is the cornerstone of any linear scalar
channel impaired by Gaussian noise and, as we have seen in the formulation of the capacity,
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the mutual information functions I(ρ) = I
(
s;
√
ρs + z

)
for relevant distributions of s

are exceedingly significant. The derivative of I(ρ) turns out to have significance as well.
Regardless of the distribution of s, it holds that [124]

1

log2 e
· d

dρ
I(ρ) = MMSE(ρ), (1.196)

where the right-hand side equals the MMSE when estimating s from its noisy observation,
y. The identity in (1.196) is termed the I-MMSE relationship, and its integration yields an
alternative form for the mutual information function, precisely

1

log2 e
I(ρ) =

∫ ρ

0

MMSE(ξ) dξ. (1.197)

Example 1.32 (I-MMSE relationship for a complex Gaussian scalar)

Consider y =
√
ρs+ z with s ∼ NC(0, 1). As derived in Examples 1.7 and 1.27,

I(ρ) = log2(1 + ρ) (1.198)

and

MMSE(ρ) =
1

1 + ρ
, (1.199)

which satisfy the I-MMSE relationship in (1.196).

Example 1.33 (I-MMSE relationship for a BPSK scalar)

Let y =
√
ρs+ z with s drawn from a BPSK constellation. From Examples 1.10 and 1.29,

I(ρ) = 2ρ log2 e−
1√
π

∫ ∞

−∞
e−ξ2 log2 cosh

(
2ρ− 2

√
ρξ

)
dξ (1.200)

and

MMSE(ρ) = 1− 1√
π

∫ ∞

−∞
tanh

(
2ρ− 2

√
ρ ξ

)
e−ξ2dξ, (1.201)

which satisfy the I-MMSE relationship.

Example 1.34 (I-MMSE relationship for a QPSK scalar)

As shown in Examples 1.11 and 1.30,

IQPSK(ρ) = 2 IBPSK

(ρ
2

)
. (1.202)

and

MMSEQPSK(ρ) = MMSEBPSK

(ρ
2

)
, (1.203)

which are consistent with the I-MMSE relationship.

In the low-ρ regime, the I-MMSE relationship bridges the distinctness of proper complex
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signals in terms of mutual information and MMSE. Indeed, recalling (1.52) and (1.185),
for such signals

I(ρ) =
(
ρ− 1

2
ρ2

)
log2 e+ o(ρ2) (1.204)

and

MMSE(ρ) = 1− 2ρ+ o(ρ). (1.205)

Generalization to vectors

The I-MMSE relationship also extends to the vector realm. Consider again the random
transformation

y =
√
ρAs+ z, (1.206)

where A is fixed while s and z are independent with z ∼ NC(0, I). Then, regardless of
the distribution of s [125]

1

log2 e
∇A I(s;

√
ρAs+ z) = ρAE, (1.207)

where ∇A denotes the gradient with respect to A (see Appendix D) while E is the MMSE
matrix defined in (1.188) for the estimation of s, i.e., the generalization to multiple dimen-
sions of the scalar MMSE.

Example 1.35 (I-MMSE relationship for a complex Gaussian vector)

As established in Example 1.13, when the noise is z ∼ NC(0, I) while s ∼ NC(0,Rs),

?I(s;
√
ρAs+ z) = log2 det

(
I + ρARsA

∗) (1.208)

= log2 det
(
I + ρA∗ARs

)
(1.209)

and, applying the expression for the gradient of a log-determinant function given in Ap-
pendix D, we obtain

1

log2 e
∇A I(s;

√
ρAs+ z) = ρARs

(
I + ρA∗ARs

)−1
(1.210)

= ρA
(
R−1

s + ρA∗A
)−1

, (1.211)

which indeed equals ρAE with E =
(
R−1

s + ρA∗A
)−1

as determined in Example 1.31
for a complex Gaussian vector.

Example 1.36

Use the I-MMSE relationship to express ∂
∂ρI(s;

√
ρAs + z) as a function of A and the

MMSE matrix E, for an arbitrarily distributed s.

Solution

Let us first narrow the problem to s ∼ NC(0,Rs). Denoting by λj(·) the jth eigenvalue
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of a matrix, we can rewrite (1.209) as

I(s;
√
ρAs+ z) = log2 det(I + ρA∗ARs) (1.212)

= log2
∏
j

λj(I + ρA∗ARs) (1.213)

=
∑
j

log2 λj(I + ρA∗ARs) (1.214)

=
∑
j

log2
(
1 + ρ λj(A

∗ARs)
)
. (1.215)

Then, differentiating with respect to ρ, we obtain

∂

∂ρ
I(s;

√
ρAs+ z) =

∑
j

λj(A
∗ARs)

1 + ρ λj(A∗ARs)
log2 e (1.216)

=
∑
j

λj

(
A∗ARs(I + ρA∗ARs)

−1
)
log2 e (1.217)

= tr
(
A∗ARs(I + ρA∗ARs)

−1
)
log2 e (1.218)

= tr
(
A∗A(R−1

s + ρA∗A)−1
)
log2 e (1.219)

= tr
(
A (R−1

s + ρA∗A)−1A∗) log2 e (1.220)

and thus we can write
1

log2 e

∂

∂ρ
I(s;

√
ρAs+ z) = tr

(
AEA∗). (1.221)

Although derived for a complex Gaussian vector s, as a corollary of the I-MMSE relation-
ship this identity can be claimed regardless of the distribution of s. Indeed, the evaluation
of ∂

∂ρI(s;
√
ρAs+ z) for an arbitrary s can be effected through the gradient with respect

to
√
ρA, and the application of (1.207) then leads to (1.221) all the same.

Evaluated at ρ = 0, the identity in (1.221) gives the formula

1

log2 e

∂

∂ρ
I(s;

√
ρAs+ z)

∣∣∣∣
ρ=0

= tr (ARsA
∗) , (1.222)

which is a generalization of (1.79).

1.7 LMMSE estimation

While the precise distribution of certain quantities (say, the signals being transmitted) is
entirely within the control of the system designer, there are other quantities of interest (say,
the channel gain) that are outside that control. When quantities of the latter type are to be
estimated, it is often the case that we are either unable or unwilling to first obtain their dis-
tributions beyond the more accessible mean and variance. With the MMSE retained as the
estimation criterion, a sensible approach is to regard the distribution as that whose MMSE
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estimation is the hardest, namely the Gaussian distribution. This leads to the application
of the linear MMSE (LMMSE) estimators derived in Examples 1.27 and 1.31 to quantities
that need not be Gaussian.

Alternatively, LMMSE estimators may be featured as a design choice, even if the rele-
vant distribution is known, simply because of the appeal and simplicity of a linear filter.

And then, of course, LMMSE estimators may be in place simply because the quantities
to be estimated are known to be Gaussian (say, capacity-achieving signals).

For all the foregoing reasons, LMMSE estimators are prevalent in wireless communi-
cations and throughout this text. Except when estimating a truly Gaussian quantity, an
LMMSE estimator is bound to be inferior to a conditional-mean estimator, but also more
versatile and robust.

1.7.1 Random variables

Under the constraint of a linear structure, the LMMSE estimator for a vector s based on
the observation of a related vector y is to be

ŝ = W MMSE∗y + bMMSE. (1.223)

The mean μs can be regarded as known and the role of the constant term bMMSE is to ensure
that E[ŝ(y)] = μs (refer to Problem 1.45). With the unbiasedness in that sense taken care
of, the LMMSE estimator is embodied by the matrix W MMSE, which can be inferred from
(1.189) to equal

W MMSE = R−1
y Rys (1.224)

and that is indeed its form in broad generality. To see that, we can write the mean-square
error on the estimation of the jth entry of s via a generic linear filter W as

E

[
|[s− ŝ]j |2

]
= E

[
|[s−W ∗y]j |2

]
(1.225)

= E

[∣∣sj −w∗
jy

∣∣2] (1.226)

= E

[
|sj |2

]
− E

[
w∗

jy s∗j
]
− E

[
sj y

∗wj

]
+ E

[
w∗

jyy
∗wj

]
, (1.227)

where wj = [W ]:,j is shorthand for the part of W—its jth column—that is responsible
for estimating that particular entry, sj = [s]j . The gradient of (1.227) with respect to wj ,
obtained by applying (D.5)–(D.7), equals

∇wjE

[
|[s− ŝ]j |2

]
= −E

[
y s∗j

]
+ E

[
yy∗wj

]
(1.228)

= −E

[
y
(
sj −w∗

jy
)∗]

(1.229)

= −E

[
y [s− ŝ]∗j

]
, (1.230)

which, equated to zero, is nothing but a manifestation of the orthogonality principle ex-
posed earlier in this chapter. Assembling the expressions corresponding to (1.229) for ev-
ery column of W and equating the result to zero, we find that the LMMSE filter must
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satisfy

−E

[
y
(
s−W MMSE∗y

)∗]
= E

[
yy∗]W MMSE − E

[
ys∗

]
(1.231)

= 0 (1.232)

and, since the mean-square error is a quadratic—and thus convex—function of the linear
filter, this condition is not only necessary but sufficient (see Appendix G). Rewritten as

RyW
MMSE −Rys = 0, (1.233)

its solution does give W MMSE = R−1
y Rys as anticipated in (1.224).

Moving on, the covariance of the estimate ŝ emerges as

Rŝ = E[ŝŝ∗] (1.234)

= W MMSE∗
E[yy∗]W MMSE (1.235)

= R∗
ysR

−1
y RyR

−1
y Rys (1.236)

= R∗
ysR

−1
y Rys, (1.237)

while

Rŝs = E
[
W MMSE∗ys∗

]
(1.238)

= R∗
ysR

−1
y Rys (1.239)

= Rŝ. (1.240)

It follows that the MMSE matrix is given by

E = E

[(
s− ŝ(y)

)(
s− ŝ(y)

)∗]
(1.241)

= Rs −Rŝs −R∗
ŝs +Rŝ (1.242)

= Rs −R∗
ysR

−1
y Rys. (1.243)

Specialized to the linear random transformation y =
√
ρAs+ z, the foregoing expres-

sions for W MMSE and E become

W MMSE =
√
ρ (Rz + ρARsA

∗)−1ARs (1.244)

and

E = Rs − ρRsA
∗(Rz + ρARsA

∗)−1ARs, (1.245)

consistent with (1.189) and (1.192) if Rz = I . Derived in the context of conditional-
mean MMSE estimation for white Gaussian noise and Gaussian signals, within the broader
confines of the LMMSE these expressions apply regardless of the distributions thereof.
Only the second-order statistics of noise and signals enter the relationships, as a result of
which the formulation is characterized by the presence of quadratic forms.

Applying the matrix inversion lemma (see Appendix B.7) to (1.244), we can rewrite
W MMSE into the alternative form

W MMSE =
√
ρ
[
R−1

z − ρR−1
z A

(
R−1

s + ρA∗R−1
z A

)−1
A∗R−1

z

]
ARs (1.246)
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=
√
ρR−1

z

[
I − ρA

(
R−1

s + ρA∗R−1
z A

)−1
A∗R−1

z

]
ARs (1.247)

=
√
ρR−1

z

[
A− ρA

(
R−1

s + ρA∗R−1
z A

)−1
A∗R−1

z A
]
Rs (1.248)

=
√
ρR−1

z A
[
I − ρ

(
R−1

s + ρA∗R−1
z A

)−1
A∗R−1

z A
]
Rs (1.249)

=
√
ρR−1

z A
(
R−1

s + ρA∗R−1
z A

)−1
[(
R−1

s + ρA∗R−1
z A

)− ρA∗R−1
z A

]
Rs

=
√
ρR−1

z A
(
R−1

s + ρA∗R−1
z A

)−1
, (1.250)

while applying the matrix inversion lemma in a reverse fashion to (1.245), E can be rewrit-
ten as

E =
(
R−1

s + ρA∗R−1
z A

)−1
. (1.251)

If both noise and signal are scalars, rather than vectors, then the two expressions for
W MMSE coincide, yielding

W MMSE =

√
ρ

1 + ρ
, (1.252)

while the two expressions for E reduce to

MMSE =
1

1 + ρ
, (1.253)

as derived earlier, in the context of conditional-mean MMSE estimation, for Gaussian noise
and Gaussian signals. In LMMSE, these equations acquire broader generality.

1.7.2 Random processes

The LMMSE estimation problem becomes richer when formulated for random processes,
as it then splits into several variants:

Noncausal. The value of some signal at time n is estimated on the basis of the entire
observation of another signal, a procedure also termed smoothing. If the observed signal
is decimated relative to its estimated brethren, then the smoothing can also be regarded
as interpolation in the MMSE sense.
Causal. The value of some signal at time n is estimated on the basis of observations of
another signal at times n − 1, . . . , n − N . This variant, for which the term filtering is
sometimes formally reserved in the estimation literature, and which can also be regarded
as prediction in the MMSE sense, can be further subdivided depending on whether N is
finite or unbounded.

For stationary processes, the problem was first tackled by Norbert Wiener in the 1940s
[126], hence the common designation of the corresponding estimator as a Wiener filter.
(For nonstationary processes, the more general Kalman filter was developed years later.)

Without delving extensively into the matter, on which excellent textbooks exist already
[62, 114, 127], we introduce herein a couple of results that are invoked throughout the text.
These results pertain to the discrete-time scalar channel y[n] =

√
ρ s[n] + z[n] where s[n]
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is a zero-mean unit-variance stationary signal with power spectrum S(·) while z[n] is an
IID noise sequence. For such a setting, the noncausal LMMSE filter yields [68]

MMSE = 1−
∫ 1/2

−1/2

ρS2(ν)

1 + ρS(ν)
dν, (1.254)

while its causal counterpart gives

MMSE =
1

ρ

[
exp

(∫ 1/2

−1/2

loge
(
1 + ρS(ν)

)
dν

)
− 1

]
. (1.255)

Letting ρ → ∞ in (1.255) returns the causal MMSE when predicting s[n] based on past
noiseless observations of the same process,

MMSE = exp

(∫ 1/2

−1/2

loge
[
S(ν)

]
dν

)
, (1.256)

which is zero if s[n] is nonregular while strictly positive if it is regular. By inspecting
(1.256) it can be deduced that, in the context of stationary processes, nonregularity is tan-
tamount to a bandlimited power spectrum—whereby the integrand diverges over part of
the spectrum—while regularity amounts to a power spectrum that is not bandlimited and
strictly positive.

1.8 Summary

From the coverage in this chapter, we can distill the points listed in the accompanying
summary box.

Problems

1.1 Show that, for s to be proper complex, its in-phase and quadrature components must
be uncorrelated and have the same variance.

1.2 Let s conform to a 3-PSK constellation defined by s0 = 1√
2
(1−j), s1 = 1√

2
(−1−j),

and s2 = j. Is this signal proper complex? Is it circularly symmetric?

1.3 Let s conform to a ternary constellation defined by s0 = −1, s1 = 0, and s2 = 1. Is
this signal proper complex? Is it circularly symmetric?

1.4 Give an expression for the minimum distance between neighboring points in a one-
dimensional constellation featuring M points equidistant along the real axis.

1.5 Let x be a discrete random variable and let y = g(x) with g(·) an arbitrary function.
Is H(y) larger or smaller than H(x)?
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Take-away points

1. The mutual information between two random variables measures the information
that one of them can supply about the other.

2. The channel capacity is the highest spectral efficiency at which reliable communi-
cation is possible in the sense that the probability of erroneous codeword decoding
vanishes as the codeword length N grows.

3. If the channel is information stable, meaning that the information that the received
sequence y[0], . . . , y[N−1] conveys about the transmit sequence x[0], . . . , x[N−1]

is invariable for large N , then the capacity equals the maximum mutual information
between x[0], . . . , x[N − 1] and y[0], . . . , y[N − 1] for N → ∞. This maximiza-
tion entails finding the optimum distribution for x[0], . . . , x[N − 1] subject to the
applicable constraints on the transmit signal (e.g., the power).

4. The capacity is robust in that the spectral efficiencies with finite-length (but long)
codewords and reasonably small error probabilities hardly depart from it. More-
over, such long codewords can be featured without incurring excessive latencies.
And, through hybrid-ARQ, the codeword length can be made adaptive.

5. The use of binary codes with binary decoding incurs only a minute information-
theoretic penalty with respect to coding on the constellation’s alphabet. The penalty
is actually nil for BPSK and QPSK, and can be largely recovered for other constel-
lations through iterative reception. It is thus routine, in terms of performance limits,
to treat binary codes mapped to arbitrary constellations as if the coding took place
on that constellation’s alphabet.

6. BICM is the default architecture for coding and modulation. At the transmitter,
this entails binary coding, bit-level interleaving, and constellation mapping. At the
receiver, it entails soft demapping, deinterleaving, and APP binary decoding.

7. In the MMSE sense, the best estimate of a quantity is the one delivered by the
conditional-mean estimator. When both the quantity being estimated and the noise
contaminating the observations are Gaussian, such conditional-mean estimator is a
linear function of the observations, the LMMSE estimator.

8. The I-MMSE relationship establishes that the derivative of the Gaussian-noise mu-
tual information between two quantities equals the MMSE when observing one
from the other.

9. While inferior to the conditional-mean for non-Gaussian quantities, the LMMSE
estimator remains attractive because of the simplicity of linear filtering and the
robustness, as only second-order statistics are required.

1.6 Express the entropy of a discrete random variable x as a function of the information
divergence between x and a uniformly distributed counterpart.

1.7 Express the differential entropy of a real Gaussian variable x ∼ N (μ, σ2).
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1.8 Compute the differential entropy of a random variable that takes the value 0 with
probability 1/3 and is otherwise uniformly distributed in the interval [−1, 1].

1.9 Calculate the differential entropy of a random variable x that abides by the exponen-
tial distribution

fx(x) =
1

μ
e−x/μ. (1.257)

1.10 Consider a random variable s such that {s} ∼ N (0, 1/2) and �{s} = q(s)
where q = ±1 equiprobably. Compute the differential entropy of s, which is com-
plex and Gaussian but not proper, and compare it with that of a standard complex
Gaussian.

1.11 Prove that h(x+ a) = h(x) for any constant a.
1.12 Prove that h(ax) = h(x) + log2 |a| for any constant a.
1.13 Express the differential entropy of the real Gaussian vector x ∼ N (μ,R).
1.14 Consider the first-order Gauss–Markov process

h[n] =
√
1− ε h[n− 1] +

√
εw[n] (1.258)

where {w[n]} is a sequence of IID random variables with w ∼ NC(0, 1).
(a) Express the entropy rate as a function of ε.
(b) Quantify the entropy rate for ε = 10−3.
Note: The Gauss–Markov process underlies a fading model presented in Chapter 3.

1.15 Verify (1.79) and (1.80).
Hint: Express det(·) as the product of the eigenvalues of its argument.

1.16 Show that I(x0;x1; y) ≥ I(x0; y) for any random variables x0, x1, and y.
1.17 Let y =

√
ρ (s0 + s1) + z where s0, s1, and z are independent standard complex

Gaussian variables.
(a) Show that I(s0, s1; y) = I(s;

√
ρAs+ z) for s = [s0 s1]

T and a suitable A.
(b) Characterize I(s0, s1; y) − I(s0; y) and approximate its limiting behaviors for

ρ � 1 and ρ � 1.
(c) Repeat part (b) for the case that s0 and s1 are partially correlated. What do you

observe?
(d) Repeat part (b) for the modified relationship y =

√
ρ/2 (s0 + s1) + z.

Can you draw any conclusion related to MIMO from this problem?
1.18 Let s be of unit variance and uniformly distributed on a disk while z ∼ NC(0, 1).

(a) What is the first-order expansion of I(ρ) = I(s;
√
ρs+ z) for small ρ?

(b) What is the leading term in the expansion of I(ρ) for large ρ?
Note: The signal distribution in this problem can be interpreted as a dense set of
concentric ∞-PSK rings, conveying information in both phase and magnitude.

1.19 Repeat Problem 1.18 with s conforming to a one-dimensional discrete constellation
featuring M points equidistant along a line forming an angle φ with the real axis.

1.20 Let s and z conform to BPSK distributions. Express I(ρ) = I(s;
√
ρs + z) and

obtain expansions thereof for small and large ρ. How much is I(ρ) for ρ = 5?
1.21 Compute I(s;

√
ρs+ z) with s ∼ NC(0, 1) and with z having a BPSK distribution.
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1.22 Compute I(s;
√
ρs+ z) with both s and z having BPSK distributions.

1.23 Verify that, as argued in Example 1.11,

IQPSK(ρ) = 2 IBPSK

(ρ
2

)
. (1.259)

1.24 Express the Gaussian mutual information of a square QAM signal as a function of
the Gaussian mutual information of another signal whose points are equiprobable
and uniformly spaced over the real line.
Note: This relationship substantially simplifies the computation of the Gaussian mu-
tual information of square QAM signals, and it is exploited to perform such compu-
tations in this book.

1.25 Let y =
√
ρs + z. If z were not independent of s, would that increase or decrease

I(s; y) relative to the usual situation where they are independent? Can you draw any
communication-theoretic lesson from this?

1.26 Let s ∼ NC(0, I) and z ∼ NC(0, I) while

A =

[
0.7 1 + 0.5 j 1.2 j

0.2 + j −2.1 0

]
. (1.260)

(a) Plot the exact I(s;
√
ρAs+ z) against its low-ρ expansion for ρ ∈ [0, 1]. Up to

which value of ρ is the difference below 10%?
(b) Plot the exact I(s;

√
ρAs + z) against its high-ρ expansion for ρ ∈ [10, 100].

Beyond which value of ρ is the difference below 10%?

1.27 Let s have two independent unit-variance entries and let z ∼ NC(0, I) while A =

[0.7 1 + 0.5 j]. On a common chart, plot I(ρ) = I(s;
√
ρAs + z) for ρ ∈ [0, 10]

under the following distributions for the entries of s:
(a) Real Gaussian.
(b) Complex Gaussian.
(c) BPSK.
(d) QPSK.

1.28 Compute and plot, as function of ρ ∈ [−5, 25] dB, the Gaussian mutual information
function for the following constellations:
(a) 8-PSK.
(b) 16-QAM.

1.29 Establish the law of the channel

ȳ =
√
ρAs̄+ z̄, (1.261)

where A is a fixed matrix whose (n, n)th entry determines how the nth transmit
symbol affects the nth received one, while z̄ ∼ NC(0,Rz̄) with the (n, n)th entry
of Rz̄ determining the correlation between the noise afflicting symbols n and n.

1.30 Consider the channel

y[n] =
√
ρ h[n]s[n] + z[n] n = 0, . . . , N − 1 (1.262)

where z[0], . . . , z[N − 1] are IID with z ∼ NC(0, 1).
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(a) If h[0], . . . , h[N − 1] are also IID with h ∼ NC(0, 1), what is the channel law?
Is the channel memoryless?

(b) Now suppose that h[n + 1] = h[n] for n = 0, 2, 4, . . . , N − 2 while h[n + 1]

and h[n] are independent for n = 1, 3, 5, . . . , N − 1, meaning that every pair
of symbols shares the same coefficient but then the coefficients change across
symbol pairs in an IID fashion. For h ∼ NC(0, 1), what is the channel law? Is
the channel memoryless?

1.31 Express, to first order, the number of codeword symbols N required to achieve a
certain share of the capacity C as a function of V and pe. Then, for V/C2 = 4, use
the found expression to gauge the following.
(a) The value of N required to achieve 90% of capacity at pe = 10−2.
(b) The value of N required to achieve 95% of capacity at pe = 10−3.

1.32 Consider a system with B = 100 MHz, equally divided among U = 10, and with a
coding latency target of 1 ms. If the operating point is pe = 10−2 and V/C2 = 2,
what fraction of the capacity can each user attain?

1.33 Reproduce the BICM curve on the left-hand side of Fig. 1.6.

1.34 Consider the transformation y =
√
ρs+ z.

(a) Prove that, for any arbitrary function g(·), E[g(y)(s− E[s|y])] = 0. This is the
so-called orthogonality principle.

(b) Taking advantage of the orthogonality principle, prove that the MMSE estimate
is given by ŝ(y) = E[s|y].

1.35 Consider the transformation y =
√
ρs+ z with z a standard complex Gaussian and

with s ∼ NC(μs, σ
2
s).

(a) Obtain the conditional-mean estimator.
(b) Express the corresponding MMSE(ρ).
(c) Verify that, when μs = 0 and σ2

s = 1, such estimator reduces to (1.172) while
MMSE(ρ) reduces to (1.175).

(d) Verify that MMSE(·) does not depend on μs.

1.36 Prove that, for the transformation y =
√
ρs+ z with z a standard complex Gaussian

and with s being BPSK-distributed, the following are true.
(a) The conditional-mean estimate equals (1.181).
(b) The MMSE as a function of ρ equals (1.182).

1.37 Given the transformation y =
√
ρs+ z with z a standard complex Gaussian, derive

the function MMSE(ρ) for s conforming to a 16-QAM distribution.

1.38 Consider the vector transformation y = As+ z where A is fixed while s and z are
independent with s ∼ NC(0,Rs) and z ∼ NC(0,Rz).
(a) Obtain the conditional-mean estimator.
(b) Express the corresponding MMSE matrix.
(c) Verify that, for Rz = I , the MMSE matrix equals (1.192).

1.39 Let s be BPSK-distributed while z ∼ NC(0, 1). Compute the dB-difference between
the MMSEs achieved by conditional-mean and LMMSE estimates of s based on
observations of

√
ρs+ z for two cases:
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(a) ρ = 1.
(b) ρ = 10.

1.40 Verify that the application of (1.196) to (1.200) yields (1.201).
1.41 Let s be of unit variance while z ∼ NC(0, 1). Provide first-order low-ρ expansions of

MMSE(ρ) as achieved by the conditional-mean estimate of s based on observations
of

√
ρs+ z under the following distributions for s:

(a) Real Gaussian.
(b) Complex Gaussian.
(c) BPSK.
(d) QPSK.
(e) ∞-PSK.
(f) ∞-QAM.
What can be observed?

1.42 On a common chart, plot MMSE(ρ) for the estimation of s based on observing√
ρs+ z with z ∼ NC(0, 1) and under the following distributions for s:

(a) Real Gaussian.
(b) Complex Gaussian.
(c) BPSK.
(d) QPSK.
Further plot, on the same chart, the corresponding low-ρ expansions of MMSE(ρ).

1.43 Let y =
√
ρs + z with s zero-mean unit-variance and with z a standard complex

Gaussian. For ρ ∈ [0, 10], plot the dB-difference between the mean-square error
achieved by a regular LMMSE estimator and by a modified version thereof in which
the estimation bias for each realization of s has been removed.

1.44 Consider the vector transformation y = As + z where s ∼ NC(0,Rs) and z ∼
NC(0,Rz).
(a) Express the MMSE matrix E when estimating s based on the observation of y.
(b) Based on the expression obtained for E, generalize to colored Gaussian noise

the I-MMSE relationship for white Gaussian noise given in (1.207).
Note: Although derived for a Gaussian signal in this problem, the generalized ver-
sion of the I-MMSE relationship does hold for arbitrarily distributed s.

1.45 For the LMMSE estimator ŝ(y) = W MMSE∗y + bMMSE, determine the value of bMMSE

as a function of the known means μs and μy .
1.46 Let s be a vector containing two unit-variance entries exhibiting 50% correlation

and let z ∼ NC(0, 1) while A = [0.7 1 + 0.5 j]. Plot the MMSE as a function of
ρ ∈ [0, 10] when LMMSE-estimating s from

√
ρAs+ z.



2 A signal processing perspective

Mathematics may be compared to a mill of exquisite workmanship, which grinds your
stuff of any degree of fineness; but, nevertheless, what you get out depends upon what
you put in.

Thomas Huxley

2.1 Introduction

Signal processing deals with topics such as analysis (e.g., decomposing a signal to look for
important features), processing (e.g., designing systems to create specified input–output
relationships), or estimation, and it is often oblivious to the coded nature of the signals:
symbols are processed without regard for the fact that they are pieces of a codeword. In
a sense, these signal processing tasks interface the information-theoretic abstractions of
Figs. 1.2 and 1.3 with the physical signals.

We begin the chapter by establishing the mathematical relationships that connect the
input and output of the wireless channel. The foundations for this development are the
concepts of passband and baseband representations described in Section 2.2. While this
might be familiar to those well versed in digital communication, a construction from first
principles ensures the highest level of understanding. A key observation is that communi-
cation signals are well modeled as being narrowband in the sense that the bandwidth they
occupy around some carrier frequency is small relative to that carrier. This narrowbandness
makes it possible to work with a complex baseband signal, which is carrier independent,
instead of the more cumbersome real passband signal. And, because this complex base-
band signal is bandlimited, the transmit–receive relationship can be represented in discrete
time. Once in discrete time, the signal and noise powers are formally defined.

The complex baseband representation is extended to MIMO in Section 2.3. The multi-
plicity of transmit antennas, in particular, gives rise to the possibility of spatially formatting
signals, and to various types of signal constraints.

Based on the models, it becomes clear that channel equalization is one of the signal
processing functions that may be required in a MIMO receiver. Equalization is the term
for removing convolutive distortion. In Section 2.4, we derive two linear equalizers: zero-
forcing and LMMSE. A surprising result is that, in the absence of noise, perfect equal-
ization is possible provided there are more receive than transmit antennas. Equalization
can be simplified by operating in the frequency domain. In Sections 2.5 and 2.6, we intro-
duce the two most common such techniques: single-carrier frequency-domain equalization
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(SC-FDE) and OFDM. Each approach uses a cyclic prefix to convert the linear convo-
lution in the channel into a circular convolution that can be conveniently handled in the
frequency domain. The difference between SC-FDE and OFDM is in how the time-to-
frequency transformations are split between transmitter and receiver. SC-FDE and OFDM
are also explained through their connection to circulant and block circulant matrices, con-
structed from the convolution matrix of the channel.

Channel equalization requires CSI. In Section 2.7 we introduce the concept of pilot-
aided channel estimation, whereby known pilot signals are inserted periodically within the
transmission so as to facilitate the estimation of the channel response at the receiver. By
writing the received signal in terms of a block convolution matrix constructed from the
pilots, a problem can be formulated and solved to obtain a channel estimate. We entertain
two criteria for finding an estimator, ML and MMSE, further showing that the ML estimate
in this case happens to be equivalent to the least-squares estimate.

2.2 Signal, channel, and noise representations

Throughout this section, we develop mathematical models for the transmit and receive
signals, for the impulse response that describes the channel, and for the additive noise. To
assist readers throughout this formulation, a review of the basics of Fourier transformations
is provided in Appendix A.1.

2.2.1 Passband signals and complex baseband
equivalents

Wireless transmitters map data onto electromagnetic waves using a combination of digital,
mixed-signal, and analog components. We can characterize the transmitted waveform by
the continuous-time voltage xp(t) that is applied to the antenna. This signal is passband,
meaning that, in the frequency domain, most of its energy is concentrated around a carrier
frequency fc. The subscript (·)p serves as a reminder that xp(t) is passband.

Suppose that xp(t) is an “ideal” passband signal, where “ideal” means that, in the fre-
quency domain, it is nonzero only over a bandwidth B centered on fc. (The ideality makes
the mathematical exposition more precise; actual signals are not ideally bandlimited, but do
have most of their energy within B.) Except in the so-called ultrawideband systems, which
require separate treatment [128–131], it further holds that B � fc. Under this narrowband
condition, xp(t) can be written as

xp(t) = A(t) cos
(
2πfct+ φ(t)

)
, (2.1)

where A(t) is an magnitude function and φ(t) is a phase function. Applying trigonometric
identities, (2.1) can be arranged into

xp(t) = A(t) cos(φ(t))︸ ︷︷ ︸√
2 xi(t)

cos(2πfct)−A(t) sin(φ(t))︸ ︷︷ ︸√
2 xq(t)

sin(2πfct), (2.2)
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xp(t)

xi(t) = {x(t)}

xq(t) = �{x(t)}

√
2 cos(2πfct)

−
√
2 sin(2πfct)

�Fig. 2.1 Direct upconversion of a baseband signal to passband.

where, as advanced in the previous chapter, xi(t) is known as the in-phase component and
xq(t) is known as the quadrature component; xi(t) modulates a cosine carrier while xq(t)

modulates a sine carrier.
Now, let us define the complex envelope or complex baseband equivalent of xp(t) as

x(t) = xi(t)+jxq(t). Noting that the factors
√
2 in (2.2) simply ensure that x(t) is defined

as having the same power as xp(t), we can apply Euler’s formula, ejθ = cos θ + j sin θ, to
rewrite (2.2) as

xp(t) =
√
2
(
xi(t) cos(2πfct)− xq(t) sin(2πfct)

)
(2.3)

=
√
2 

{
x(t) ej2πfct

}
. (2.4)

While x(t) is complex, the voltage xp(t) applied to the antenna is real because it represents
a physical quantity.

In the frequency domain, (2.4) corresponds to

xp(f) =
1√
2

(
x(f − fc) + x∗(f + fc)

)
, (2.5)

where x(f) = xi(f) + j xq(f) is the Fourier transform of x(t). This means that if xp(f) is
ideally bandlimited with passband bandwidth B, then x(f) and its components xi(f) and
xq(f) are bandlimited with baseband bandwidth B/2. Essentially, a passband signal of
bandwidth B can convey two baseband signals of bandwidth B/2, which, although seem-
ingly entangled because they overlap in both time and frequency, are actually orthogonal
by virtue of the phase difference between the cosine and sine carriers.

The generation of a passband signal from a baseband counterpart at the transmitter is
known as upconversion, while the reverse process at the receiver is downconversion.

Upconversion can be accomplished through a direct implementation of (2.2), as illus-
trated in Fig. 2.1. A local oscillator generates a carrier signal

√
2 cos(2πfct) and, through a

phase shifter, also −√
2 sin(2πfct). The in-phase signal xi(t) is applied to the cosine while

xq(t) is applied to the sine. The frequency-domain interpretation of a direct upconversion
is provided in Fig. 2.2. (As an alternative to this direct implementation, upconversion may
be accomplished in multiple stages.)

The downconversion of the received passband signal is more involved than the upcon-
version. Referring to Figs. 2.3 and 2.4, let yp(t) denote the received passband signal, i.e.,
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=
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−
√
2 sin(2πfct)

�Fig. 2.2 Top, upconversion of the in-phase signal component. Middle, upconversion of its

quadrature counterpart. Bottom, passband signal containing both components. (For

illustration purposes, only the magnitude of the signals is depicted.)

the voltage observed at the antenna. This signal is first bandpass-filtered to reject trans-
missions on other frequency bands that the antenna may be picking up and that could get
mixed in during the downconversion. Being passband, yp(t) has a baseband equivalent
y(t) = yi(t) + j yq(t) such that

yp(t) =
√
2
(
yi(t) cos(2πfct)− yq(t) sin(2πfct)

)
. (2.6)

The product of yp(t) and
√
2 cos(2πfct) gives, with a bit of trigonometry,

yp(t)
√
2 cos(2πfct) = yi(t) + yi(t) cos(4πfct)− yq(t) sin(4πfct). (2.7)

Since B < fc, there is no spectral overlap between yi(t) and the last two terms in (2.7),
which are higher frequency images. Thus, a lowpass filter with cutoff at ±B/2 can repro-
duce the in-phase component yi(t). Similarly, the product of yp(t) and −√

2 sin(2πfct)

yields

−yp(t)
√
2 sin(2πfct) = yq(t)− yq(t) cos(4πfct)− yi(t) sin(4πfct) (2.8)

from which, again, an appropriate lowpass filter can recover yq(t) [132].
Note that performing downconversion correctly requires that fc be known precisely at

the receiver—not an easy task! This is the subject of carrier frequency estimation, an im-
portant signal processing problem.

Signal processing and communication engineers generally prefer to work with the com-
plex baseband equivalent of a signal instead of the passband signal. Besides the mathemat-
ical convenience of not requiring the carrier frequency fc in the notation, this reflects the
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yi(t)
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�Fig. 2.3 Direct downconversion of a passband signal to baseband. The circuit includes a

bandpass limiting filter right after the antenna and a low-noise amplifier with a series

of gain-control circuits.

fact that most—if not all—signal processing and communication algorithms are applied in
baseband, before upconversion at the transmitter and after downconversion at the receiver.

2.2.2 Complex baseband channel response

There are many kinds of impairments that distort the version of the transmitted signal
that is observed at the receiver. The over-the-air propagation channel attenuates the sig-
nal and introduces (possibly time-varying) dispersion owing to the presence of multiple
propagation paths. The radio-frequency circuits may exhibit nonlinear behaviors, and also
introduce additive noise and phase noise. Nonideal filters may also introduce additional
dispersion. Some of these impairments (e.g., nonlinearity) are minimized by careful de-
signs; their effects on the overall system are incorporated later through simulations. Other
impairments (e.g., those due to propagation and additive noise) are unavoidable and are
most often modeled and analyzed explicitly because they represent inherent obstacles to
communication.

In this section, a generic complex baseband model for the channel response is developed
in both continuous and discrete time. In Chapter 3, we specialize this model to the wireless
realm and provide a rich statistical description of those features that are relevant.

A linear time-invariant channel model suffices for the combined effects of multipath
propagation and of frequency selectivity in the analog filters making up the radio front-
end. Linearity follows from the linearity of electromagnetic propagation in the far-field.
The time invariance is a more fragile assumption. The response of a propagation channel
does vary over time due to mobility of the transmitter, receiver, or environment. Most
wireless systems, though, are designed so that the channel is roughly constant over certain
intervals of time and frequency. These intervals are studied in detail in Chapter 3 as part of
a more general time-varying formulation, but for our purposes in this chapter a linear time-
invariant impulse response is sufficient. Let us write the received signal in terms of such
response, denoted by cp(τ), which characterizes the output produced by an impulse as a
function of the delay τ relative to that impulse. Although we subscript it by (·)p because it
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�Fig. 2.4 Top, bandpass filtering and downconversion via cosine. Middle, application of a

lowpass filter to remove higher frequency images. Bottom, recovered in-phase

baseband signal component. (For illustration purposes, only the magnitude of the

signals is depicted.)

is applied to the transmit passband signal, cp(τ) need not be itself bandlimited. Because of
time invariance, yp(t) relates to xp(t) through the linear convolution

yp(t) = (cp ∗xp)(t) (2.9)

=

∫ ∞

−∞
cp(τ)xp(t− τ) dτ, (2.10)

where, since xp(t) is passband, yp(t) is also passband.
Next, we develop an expression that involves the complex baseband equivalents of the

transmit and receive signals, rather than their passband counterparts. The complex base-
band impulse response cb(τ) serves the same purpose as cp(τ), relating the complex base-
band signals x(t) and y(t) through

y(t) = (cb ∗x)(t). (2.11)

To find an expression for cb(τ) given cp(τ), let us denote by gB/2(f) = rect(f/B) an
ideal lowpass filter with unit gain for f ∈ [−B/2, B/2], with inverse Fourier transform

gB/2(τ) = B sinc(Bτ), (2.12)
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where sinc(z) = sin(πz)
πz and the filter satisfies gB/2(0) = B. In turn, an ideal bandpass

filter with bandwidth B centered on fc is

gp,B(τ) = 2 gB/2(τ) cos(2πfcτ). (2.13)

Recalling that xp(t) is passband, it is only necessary to model the portion of cp(τ) that
lies within the occupied spectrum of xp(t) with bandwidth B centered on fc. Given what
unfolds in the signal downconversion, cb(τ) is a bandpass filtered version of cp(τ), subse-
quently shifted down to baseband and lowpass-filtered again, i.e.,

cb(τ) = gB/2(τ)∗ [(
cp(τ)∗ gp,B(τ)) e−j2πfcτ

]
. (2.14)

Although, as explained, the double filtering at passband and baseband is necessary to reject
adjacent signals, for our derivations here one of them suffices and thus we can directly write

cb(τ) = gB/2(τ)∗ [
cp(τ) e

−j2πfcτ
]
. (2.15)

Example 2.1

Consider a signal that propagates from transmitter to receiver incurring a delay τ0 and
experiencing a complex amplitude gain A0. Determine cp(τ) and cb(τ).

Solution

A channel impulse response with a complex gain A0 and a delay τ0 corresponds to

cp(τ) = A0 δ(τ − τ0). (2.16)

Applying (2.15), we obtain cb(t) = A0 gB/2(τ − τ0) e
−j2πfcτ0 which, recalling gB/2(τ)

from (2.12), becomes

cb(τ) = A0B sinc
(
B(τ − τ0)

)
e−j2πfcτ0 . (2.17)

Example 2.2

Now suppose there is a second path for the signal with complex gain A1 and delay τ1.
Determine again cp(τ) and cb(τ).

Solution

From linearity, cp(τ) = A0 δ(τ − τ0) +A1 δ(τ − τ1) and

cb(τ) = A0B sinc(B(τ − τ0)) e
−j2πfcτ0 +A1B sinc(B(τ − τ1)) e

−j2πfcτ1 . (2.18)

From Examples 2.1 and 2.2, we can infer the more general form with Q paths,

cp(τ) =

Q−1∑
q=0

Aq δ(τ − τq), (2.19)
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where Aq and τq are the complex gain and delay of the qth signal path. Following the logic
of Example 2.2,

cb(τ) =

Q−1∑
q=0

Aq gB/2(τ − τq) e
−j2πfcτq (2.20)

and, with the lowpass filter pulled out,

cb(τ) = gB/2(τ)∗
Q−1∑
q=0

Aq δ(τ − τq) e
−j2πfcτq . (2.21)

From (2.11) then, the received baseband signal is

y(t) =

∫ ∞

−∞

(
gB/2(τ)∗

Q−1∑
q=0

Aq δ(τ − τq) e
−j2πfcτq

)
x(t− τ) dτ (2.22)

which, since x(t) is already bandlimited, amounts to

y(t) =

∫ ∞

−∞

(Q−1∑
q=0

Aq δ(τ − τq) e
−j2πfcτq

︸ ︷︷ ︸
c(τ)

)
x(t− τ) dτ (2.23)

= (c∗x)(t). (2.24)

We term c(τ) the complex pseudo-baseband channel response since it is downshifted, but
not bandlimited—hence “pseudo” baseband. The corresponding cb(τ) can be obtained
from c(τ) by lowpass filtering, i.e.,

cb(τ) = gB/2(τ)∗ c(τ). (2.25)

As an alternative to the model with Q discrete paths that leads to c(τ) containing Q im-
pulses, a more general continuous model can be adopted for c(τ) within a certain delay
interval. Also in this case, c(τ) would not be bandlimited and would have to be lowpass
filtered to obtain the corresponding bandlimited cb(τ).

2.2.3 Time discretization

The complex baseband transmit–receive relationship in (2.11) can be further simplified by
exploiting the bandlimitedness of x(·), y(·), and cb(·). Leveraging the sampling theorem,
corresponding models entirely in discrete time can be developed. These models reflect the
reality that most of the signal processing takes place digitally and in baseband, namely in
programmable digital signal processors or in application-specific integrated circuits.

Digressing briefly, we can recall the essence of the sampling theorem: a bandlimited
signal z(t) with baseband bandwidth B/2 is completely determined from its samples
z[n] = z(nT ) provided that T ≤ 1/B; conversely, z(t) can be reconstructed from z[n] as

z(t) =
∑
n

z[n] sinc

(
t− nT

T

)
. (2.26)
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Thus, our x(t) and y(t) can be represented by their discrete-time samples with T = 1/B.
Now, let us find a discrete-time equivalent channel response c[�] such that

y[n] =

∞∑
�=−∞

c[�]x[n− �]. (2.27)

Discretizing the integral that effects the linear convolution (cb ∗x) with a step size dτ = T

and sampling the outcome, what is obtained is

y(nT ) =

∫ ∞

−∞
cb(τ)x(nT − τ) dτ (2.28)

≈
∞∑

�=−∞
cb(�T )x(nT − �T )T (2.29)

=

∞∑
�=−∞

T cb(�T )x[n− �], (2.30)

which points to c[�] ≈ Tcb(�T ). This intuitive result is actually exact as, for any baseband
or pseudo-baseband channel, the discrete-time equivalent in (2.27) is obtained by applying
a lowpass filter T gB/2(τ) with subsequent sampling at τ = �T [133, ch. 4]. For an already
bandlimited channel such as cb(τ), this filtering amounts to a scaling by T and thus

c[�] = T cb(τ)|τ=�T (2.31)

= T cb(�T ), (2.32)

matching the intuitive result above. The scaling by T ensures the conservation of power
when moving the transmit–receive relationship from continuous to discrete time, with one
interpretation of this scaling being that it subsumes two factors

√
T that convert the trans-

mit and receive energies per unit time into energies per sample.

Example 2.3

Determine the discrete-time complex baseband response for Example 2.1 with T = 1/B.

Solution

From (2.32) and (2.17)

c[�] = A0 sinc
(
�− τ0

T

)
e−j2πfcτ0 . (2.33)

Alternatively, if an offset τ0 (not multiple of T ) is applied to the sampler, then

c[�] = A0 sinc(�) e
−j2πfcτ0 (2.34)

= A0 δ[�] e
−j2πfcτ0 . (2.35)

There is a pronounced difference between (2.33) and (2.35) in that the former channel is
dispersive, meaning that the convolution is bound to mix x[n] with other symbols, while
the latter merely multiplies x[n] by a complex factor A0e

−j2πfcτ0 . Thus, the former does
not allow for communication free of interference among symbols of period T , so-called
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intersymbol interference (ISI), while the latter does. Invoking the notion of memoryless-
ness introduced in Chapter 1, (2.33) exhibits memory while (2.35) is memoryless. This
distinction indicates the importance of time synchronization, again not an easy task and an
important signal processing problem. Once the receiver has succeeded at synchronizing,
the delay introduced by the channel can be corrected and the most convenient offset can be
applied to the sampler.

Example 2.4

Determine c[�] for Example 2.2 with T = 1/B.

Solution

Repeating the procedure of the previous example,

c[�] = A0 sinc
(
�− τ0

T

)
e−j2πfcτ0 +A1 sinc

(
�− τ1

T

)
e−j2πfcτ1 . (2.36)

In this case, a sampling offset of τ0 leads to

c[�] = A0 δ[�] e
−j2πfcτ0 +A1 sinc

(
�− τ1 − τ0

T

)
e−j2πfcτ1 . (2.37)

Alternative discrete-time channels are obtained with distinct sampling offsets, but some
degree of ISI is inevitable.

In light of the connection established between passband signals, bandlimited baseband
signals, and discrete-time signals, most results in this book are formulated directly in dis-
crete time. Although actual signals are not exactly bandlimited since they are time-limited,
and the filters in the front-ends are never ideal, signals are close to bandlimited as they
are mandated to have low adjacent channel interference. Commercial systems also feature
analog-to-digital and digital-to-analog converters with finite precision. Normally, perfect
conversion is assumed in the design stages and then the required tolerances are investi-
gated after the fact via simulation. Quantization and reconstruction errors are not part of
the models in this text.

2.2.4 Pulse shaping

Besides being more amenable, a discrete-time formulation contributes to bridging the
transmit–receive signal relationships that we are elaborating here with the information-
theoretic concepts presented in Chapter 1, and particularly with the basic ingredient of
symbols. The sampling and reconstruction that we have applied to discretize the transmit–
receive relationships can be interpreted as basic modulation and demodulation schemes,
whereby the complex symbols that make up the codewords are embedded onto x(t) and
then extracted from y(t). Reproducing (2.26), we can interpret the baseband transmit signal

x(t) =
∑
n

x[n] sinc

(
t− nT

T

)
(2.40)
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Discussion 2.1 Baseband versus pseudo-baseband channel responses

There is some confusion in the research literature between the complex baseband and
the complex pseudo-baseband channel responses. Both are equivalent, by virtue of the
bandlimitedness of x(t), in the sense that y(t) = cb(τ)∗x(t) and y(t) = c(τ)∗x(t),
and thus the simpler c(τ) is often used for convenience. However, since c(τ) is not
bandlimited, it cannot be sampled and therefore care must be exercised when moving to
discrete-time representations. Lowpass filtering of c(τ), which gives cb(τ), is necessary
before discretization.

The confusion is fed by the fact that, in the important case that c[�] exhibits a single
nonzero tap, the gain of such tap can be pulled directly from c(τ). The channel merely
multiplies the signal by that complex gain.

Example 2.5

If Q = 1 and the sampler is offset by τ0, the discretization of cb(τ) in (2.20) with period
T = 1/B yields

c[�] = Tcb(�T ) (2.38)

= A0 e
−j2πfcτ0︸ ︷︷ ︸

Complex gain

δ[�], (2.39)

as shown in Fig. 2.5. The complex gain of the single nonzero tap is directly that of the
corresponding pseudo-baseband channel c(τ) = A0 e

−j2πfcτ0δ(τ − τ0) and the channel
output is y[n] = A0 e

−j2πfcτ0x[n].

Example 2.5 continues to hold approximately if Q > 1 with the path delays not very
different relative to T ; then, c[�] ≈ (∑

q Aq e
−j2πfcτq

)
δ[�]. However, if Q > 1 and the

path delays are sufficiently dissimilar relative to T , the effect of the channel is no longer
merely multiplicative; rather, it is dispersive and c[�] does not directly follow from c(τ),
but only from sampling the lowpass-filtered cb(τ).

Example 2.6

If Q = 2 with τ1 = τ0+
4
3T , the discretization of cb(τ) with the sampler aligned with τ0

yields c[�] as shown in Fig. 2.6. Neither such c[�] nor y[n] can be directly derived from
the pseudo-baseband c(τ).

Figure 2.7 recaps, in a graphical fashion, the relationships among the various channel
representations.

as a sequence of symbols {x[n]} linearly modulated onto the pulse shape sinc(t/T ) and
transmitted at a rate of 1/T symbols/s. In turn, at the receiver, we can interpret the sampling
y(nT ) as the demodulation of those symbols from the waveform that emerges from the
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cb(τ)

c[�]

c(τ)

�Fig. 2.5 c(τ), cb(τ), and c[�] for a single-path channel with properly aligned sampling.

cb(τ)

c(τ)

c[�]

�Fig. 2.6 c(τ), cb(τ), and c[�] for a two-path channel with τ1 = τ0 +
4
3T and A1 = 0.8A0.
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discrete channels

�Fig. 2.7 Relationships among cp(τ), cb(τ), c(τ), and c[�]. When c[�] exhibits a single nonzero

tap, the gain of that tap can be gathered directly from c(τ), bypassing the need for

explicit lowpass filtering.

lowpass filter and, if the channel merely effects a multiplicative gain and the lowpass filter
is ideal, then the pulse shape is a scaled version of the original sinc(·) function.

In practice, shapes that depart from the sinc(·) function are preferable because this func-
tion exhibits pronounced ripples and is therefore not very robust to sampling time offsets.
Thus, in lieu of (2.40), the transmit signal is built as

x(t) =
∑
n

x[n] gtx(t− nT ), (2.41)

where gtx(·) is the transmit pulse shape. Effectively, symbol x[n] rides the pulse gtx(t−nT )

and the result is a complex pulse amplitude transmission. Likewise, rather than an ideal
lowpass filter gB/2(·), the receiver features a modified filter grx(·). Altogether, the pulse
shape is the composite function

g(τ) = (gtx ∗ grx)(τ). (2.42)

A design criterion for g(·) is that g(�T ) = 1 for � = 0 and g(�T ) = 0 for � �= 0. In
particular, the condition g(�T ) = 0 for � �= 0, termed the Nyquist criterion, ensures that,
although distinct pulses overlap, the on-time sampling of each is free of ISI.

A family of shapes satisfying the Nyquist criterion are the functions [134]

g(τ) = sinc
( τ

T

) cos(πbτ/T )

1− (2bτ/T )2
(2.43)

parameterized by the so-called rolloff factor b ∈ [0, 1]. An increase in b makes g(f) roll
off more smoothly and attenuates the ripples in g(τ), making the sampling more forbidding
to imperfect synchronization, at the expense of an increase in bandwidth. This tradeoff is
better appreciated in the frequency domain, where

g(f) =

⎧⎪⎪⎨
⎪⎪⎩

T |f | ≤ 1−b
2T

T
2

[
1 + cos

(
πT
b

[|f | − 1−b
2T

])]
1−b
2T ≤ |f | ≤ 1+b

2T

0 otherwise

(2.44)

exhibits a raised-cosine shape with b the share of excess bandwidth over 1/T : the passband
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y(t)

g(t)

−g(t− T )

g(t− 2T )

g(t− 3T )

�Fig. 2.8 Noiseless signal y(t) carrying the BPSK symbols +1, −1, +1, and +1 with

g(τ) = sinc(τ/T ).

bandwidth is 1+b
T and a sampling rate correspondingly faster than 1/T may be required.

For b = 0, we recover g(τ) = sinc(τ/T ).

Example 2.7

For g(τ) = sinc(τ/T ), draw the noiseless received signal corresponding to the transmis-
sion of the sequence of BPSK symbols +1, −1, +1, and +1 over a multiplicative channel
exerting a gain A0. Verify that, despite the pulse overlaps, there is no ISI.

Solution

Depicted at the bottom of Fig. 2.8 is

y(t) = A0

(
g(t)− g(t− T ) + g(t− 2T ) + g(t− 3T )

)
, (2.45)

which, sampled at multiples of T , returns a scaled version of the original BPSK symbols.

A breakdown that ensures matched transmit and receive filters with the composite pulse
shape corresponding to a raised-cosine filter is

gtx(f) =
√

Tg(f) (2.46)
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grx(f) =

√
g(f)

T
, (2.47)

whereby both the transmit and receive filters exhibit root raised-cosine shapes. This ensures
matched filtering and ISI-free transmission provided the channel is multiplicative, as turns
out to be the case with OFDM. In terms of implementation at the receiver, an analog filter
grx(·) may be followed by a sampler or else the downconverted signal may be oversampled
faster than 1/T , digitally filtered, and then downsampled to 1/T .

If the channel is markedly dispersive, say in a non-OFDM system, a true matched-filter
receiver would have to be shaped as (gtx ∗ c) and therefore it would be channel-dependent.
Moreover, the sampled signal is then generally plagued with ISI and equalization becomes
necessary. Once that is the case, the advantage of careful pulse shaping mostly evaporates.
Since ISI is to arise regardless, the precise shape of grx(·) becomes of little consequence and
it can be subsumed within the subsequent equalization [135]. The downconverted signal
can then be sampled (possibly faster than 1/T ) and directly equalized. In turn, the design
of the transmit filter gtx(·) can concentrate on minimizing the excess bandwidth.

2.2.5 Additive noise

Besides channel distortion, communication receivers have to deal with additive noise and
the most common type thereof is the thermal noise caused by the random motion of elec-
trons in the components. Other sources of additive noise include quantization noise (men-
tioned in reference to analog-to-digital conversion) and interference from undesired trans-
missions. Phase noise, not considered here, is also possible in some instances.

Additive white Gaussian noise (AWGN), represented by vp(t) in its passband form, is
the de-facto model for thermal noise.

It is white because its autocovariance is Rvp(τ) = E
[
vp(t)v

∗
p(t + τ)

]
= N0 δ(τ) and

the corresponding power spectrum is Svp(f) = N0. It follows that vp(t) is stationary
and ergodic (see Appendix C.3).
It is Gaussian because vp(t) ∼ NC(0, N0) at each time t. The variance N0 is the noise
spectral density (in W/Hz), computed as N0 = kTeff where k = 1.38 · 10−23J/K is
Boltzmann’s constant and Teff (in Kelvins) is the effective noise temperature that de-
pends on the ambient temperature, the type of antennas, and the material properties of
the analog front-end [132]. Sometimes, Teff is conveniently expressed as the product of
the ambient temperature and a noise figure subsuming all hardware-related aspects.

Although, strictly speaking, a flat noise spectral density of N0 would indicate that the
power goes to infinity with growing bandwidth, the thermal noise density eventually falls
off to zero; however, this happens at frequencies that are several orders of magnitude be-
yond those used for communication and thus a white noise model is valid for all our pur-
poses [136, section 4.4].

While both transmitter and receiver are noisy, only the noise in the analog portion of
the receiver—where the signal is weak—is material; at the transmitter, the signal is or-
ders of magnitude stronger than the noise. Because of the filtering in the analog front-
end, it suffices to model the noise within the baseband signal bandwidth, namely vb(t) =
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(grx ∗ vp)(t). This is a Gaussian random process with zero-mean and power spectrum

N0 |grx(f)|2 =
N0

T
g(f), (2.48)

where we have applied (2.47). The corresponding autocovariance is

Rvb
(τ) =

N0

T
g(τ) (2.49)

and it follows from g(0) = 1 that the noise power is Rvb
(0) = N0/T , which, as intuition

would have it, is proportional to the symbol rate 1/T and thus to the signal bandwidth.
Interestingly, this noise power does not depend on the excess bandwidth. This property is
sometimes expressed through the notion of noise bandwidth, defined as the bandwidth of
an ideal filter letting in a certain noise power. In Problem 2.7 the reader is invited to verify
that, with raised-cosine pulse shaping, the noise bandwidth indeed does not depend on the
excess bandwidth.

With noise added to the baseband received signal, we obtain, in discrete time,

y[n] =

∞∑
�=−∞

c[�]x[n− �] + v[n], (2.50)

where v[n] = vb(nT ). This sampled noise is a discrete-time complex Gaussian random
process with zero-mean and covariance

Rv[�] =
N0

T
g(�T ) (2.51)

and, by virtue of the Nyquist criterion, Rv[�] = N0/T δ[�] meaning that v[n] is white. If
the signal were oversampled, this would no longer be the case and a whitening filter could
be applied to remove the effects of correlation. Although oversampling is an attractive
implementation option that facilitates synchronization, it does not affect the conceptual
derivations in this text and the discrete-time thermal noise is thus regarded as white.

Example 2.8

Compute the noise power within every hertz of bandwidth at the nominal ambient temper-
ature of 290 K.

Solution

The noise power (in W) within 1 Hz of bandwidth equals

kTeff = 1.38 · 10−23 · 290 (2.52)

= 4 · 10−21, (2.53)

which is typically given as −174 dBm/Hz. Within a bandwidth B, then, the noise power (in
dBm) is −174 + B|dB. This power is further increased by the noise figure of the receiver,
typically between 2 and 10 dB depending on the front-end: in the lower part of this range
for base stations, higher for user devices.
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2.2.6 Energy and power

Energy is a crucial resource in wireless communication. This is perhaps most evident in
mobile devices, where battery life is a major concern, but it is also exceedingly important
at fixed base stations; indeed, the electricity bill is often the highest operating expense of
network operators. Unless otherwise stated, we concern ourselves only with the energy
borne by the transmit signal and with the corresponding power, which is the rate at which
such energy is radiated. Denoting the average transmit power (in watts) by Pt, then, if the
symbols {x[n]} are independent and zero-mean,

Pt = lim
N→∞

1

NT

∫
NT

E
[|x(t)|2] dt (2.54)

= lim
N→∞

1

NT

∫
NT

E

[∣∣∣∑
n

x[n] gtx(t− nT )
∣∣∣2] dt (2.55)

=
1

T

∫ ∞

−∞
|gtx(t)|2 dt · 1

N
lim

N→∞

N−1∑
n=0

E
[|x[n]2|] (2.56)

=
1

T

∫ 1+b
2T

− 1+b
2T

|gtx(f)|2 df · 1

N
lim

N→∞

N−1∑
n=0

E
[|x[n]2|] (2.57)

=
1

T

∫ 1+b
2T

− 1+b
2T

T g(f) df · 1

N
lim

N→∞

N−1∑
n=0

E
[|x[n]2|] (2.58)

=

∫ 1+b
2T

− 1+b
2T

g(f) df · 1

N
lim

N→∞

N−1∑
n=0

E
[|x[n]2|] (2.59)

=
1

N
lim

N→∞

N−1∑
n=0

E
[|x[n]2|], (2.60)

where, in (2.59), the integral equals 1. With a practical view, the average power of the
transmit sequence is more meaningfully written as

1

N

N−1∑
n=0

E
[|x[n]|2] = Pt, (2.61)

with N depending on the ability of the power amplifier to sustain power peaks and be
limited by its average load. In turn, as seen earlier, the power of the thermal noise contam-
inating the received signal is—irrespective of the excess bandwidth—given by N0/T .

With symbols transmitted at a rate 1/T , a convenient amount by which to parcel the
energy spent at the transmitter is the amount that goes into each symbol. Denoting by Es

the average transmit energy per symbol (in joules), we have that Es = PtT . In turn, the
thermal noise energy within a symbol period is N0

T T = N0. It follows that, if we scale both
sequences {x[n]} and {v[n]} by

√
T , the transmit–receive relationship is preserved only

with

1

N

N−1∑
n=0

E
[|x[n]|2] = Es (2.62)
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and with v ∼ NC(0, N0). Since the powers of signal and noise only become meaningful
when related to each other, simultaneous scalings of both are immaterial; moreover, any
common scaling of both signal and noise can be absorbed by grx(·).

Both (2.61) and (2.62), respectively with v ∼ NC(0, N0/T ) and v ∼ NC(0, N0), are
equally valid. The former is in terms of energy per unit time, i.e., power, while the latter is
in terms of energy per symbol. If the symbols had unit period, then power and energy per
symbol would coincide, and the factor

√
T bridging (2.61) with (2.62) can be interpreted

as the stretching of the time axis that makes it so. We choose to apply (2.62) because the
energy per symbol will allow us to draw parallels with another yet-to-be-defined quantity,
the energy per bit. Nonetheless, the conversion of energy to power is immediate through
1/T and, more often than not, power is the concept we work with.

It is further useful to write the transmit symbols as

x[n] =
√

EsP [n] s[n], (2.63)

with Es made explicit and with s[n] a unit-variance symbol compliant with the various
signal distributions in Section 1.2. If the transmit power is fixed, then P [n] = 1, whereas
if power control is to be effected, constrained only by (2.62), then P [0], . . . , P [N − 1] can
register the power variations with 1

N

∑N−1
n=0 P [n] = 1.

Those signal processing functionalities for which the codebook structure is immaterial
can be conveniently formulated directly with x[0], . . . , x[N − 1]. The emphasis shifts to
s[0], . . . , s[N − 1] once quantities with information-theoretic underpinnings are derived,
beginning in Chapter 4.

2.2.7 Channel normalization

Starting to view the channel response stochastically, it is rather customary to factor a con-
stant

√
G out of all baseband and pseudo-baseband channel representations such that

c(τ) =
√
Gh(τ) (2.64)

cb(τ) =
√
Ghb(τ) (2.65)

c[�] =
√
Gh[�] (2.66)

with the ensemble of realizations h[�] satisfying
∑

� E
[|h[�]|2] = 1. As elaborated in

Chapter 3, there are sound physical justifications for this decoupling, which reflects inher-
ent differences in the space and time scales of distinct features of the radio channel. By
virtue of the normalization of h[�], the received signal power equals Pr = GPt = GEs/T

and the average SNR at the receiver can be written as

SNR =
Pr

N0/T
(2.67)

=
GEs

N0
(2.68)

irrespective of the excess bandwidth b. Taking advantage of this, we henceforth consider
the passband bandwidth to be B = 1/T ; any excess bandwidth can be separately accounted



75 2.2 Signal, channel, and noise representations

for simply by penalizing the spectral efficiency by the appropriate factor, which in the
raised-cosine case is 1

1+b .

Example 2.9

Let b = 0.25 and suppose the transmit bit rate (in b/s) is R. The average SNR at the
receiver is SNR = Pr

N0B
with B = 1/T , while the spectral efficiency (in b/s/Hz) computed

as R/B must be corrected to 1
1.25R/B = 0.8R/B.

2.2.8 Vector representation

Putting the pieces together, Fig. 2.9 provides a diagram for SISO communication that en-
compasses the transmit and receive front-ends (including local oscillators, upconversion
and downconversion, filters and sampling devices), the channel (factored into the product
of

√
G with the normalized response h(τ)), and the additive noise. Henceforth, all of this

is abstracted into the end-to-end discrete-time complex baseband relationship

y[n] =
√
G

∞∑
�=−∞

h[�]x[n− �] + v[n], (2.69)

where, recall, x[n] =
√

EsP [n]s[n]. Although, in principle, {h[�]} extends indefinitely, it
is reasonable to assume that wireless channels have a finite impulse response (FIR). As dis-
cussed in Chapter 3, indeed, signal paths with longer delays experience further attenuation
and, beyond a certain delay, their strength is bound to be negligible relative to the noise. In
turn, the pulse shapes, which also extend indefinitely in delay according to the bandlimited
raised-cosine filters, are in practice truncated to a length of a few symbol periods. This
truncation, in conjunction with a suitable delay, results in discrete-time impulse responses
that are causal. Under the FIR and causality conditions, (2.69) becomes

y[n] =
√
G

L∑
�=0

h[�]x[n− �] + v[n], (2.70)

where there are L+ 1 taps with L being the memory or order of the channel.
If L = 0, then the channel is multiplicative and (2.80) reduces to

y[n] =
√
Ghx[n] + v[n], (2.71)

which can be rendered time-variant by allowing h[n] to be itself a function of n. In the
frequency domain, an impulse response having a single tap corresponds to a flat function,
and hence such channels are termed frequency-flat.

If L > 0, conversely, the channel exhibits ISI and, because its response is not flat in
frequency, it is said to be frequency-selective. Then, (2.70) can be expressed more com-
pactly in an alternative vector form that we derive in the remainder of this section. This
vector representation hinges on zooming out and considering a block of N consecutive
observations, y[0], . . . , y[N − 1], rather than an individual symbol y[n]. Besides facilitat-
ing notational compactness, this representation becomes fitting once codewords enter the
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Transmitter front-end 

+

v(t)

∼fc

√
Ghp(τ)

gtx(·)
xi(t)

xq(t)
xq[n]

xi[n] ×

×

∼ fc

grx(·)

grx(·)

1/T

1/T

yi[n]

yq[n]

Receiver front-end 

xp(t)

yp(t)

xxxxxxxxxxxxx ︸︷︷︸
y

y[n] =
√
G

∑
�

h[�]x[n− �] + v[n]

×

gtx(·) ×

+

−π/2 −π/2

�Fig. 2.9 Diagram relating the transmit and receive front-ends, the radio channel, and the

additive noise.

formulation and thus it is a handy recourse for later analyses. The central ingredient in a
vector representation is the N × (N + L) convolution matrix

H̄N,N+L =

⎡
⎢⎢⎢⎣

h[L] · · · h[0] 0 0 · · · 0

0 h[L] · · · h[0] 0 · · · 0
...

. . .
...

0 · · · 0 0 h[L] · · · h[0]

⎤
⎥⎥⎥⎦ , (2.72)

which displays a characteristic Toeplitz structure (see Appendix B.2.4). This structure can
be exploited to develop fast algorithms [137–139].

To effect a linear convolution by means of H̄N,N+L, we need to collect N+L consecutive
samples of x[n] into a vector

x̄N+L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[−L]
...

x[−1]

x[0]

x[1]
...

x[N − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.73)

where past values x[−L], . . . , x[−1] are needed because of the memory in the convolution;
often, these samples are part of a guard region containing zeros or else they may contain
repeated data in the form of a cyclic prefix. From H̄N,N+L and x̄N+L, we can now write

ȳN =
√
GH̄N,N+Lx̄N+L + v̄N (2.74)

where ȳN =
[
y[0] · · · y[N − 1]

]T
and v̄N =

[
v[0] · · · v[N − 1]

]T
. It can be verified that

the nth row in (2.74) is equivalent to (2.70).
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Transmitter front-end

2

1

Nt

√
GHx[n]

Nr

y[n]

Receiver front-end

v[n]

.. ..

1

2

… +

…

�Fig. 2.10 MIMO setting with Nt transmit and Nr receive antennas.

2.3 Signal, channel, and noise representations:
extension to MIMO

Let us now extend the SISO representations seen thus far to the realm of a MIMO setting
such as the one sketched in Fig. 2.10, where transmitter and receiver are equipped with Nt

and Nr antennas, respectively. With the understanding that each antenna is connected to a
radio-frequency front-end for upconversions and downconversions, we proceed directly to
the complex baseband and pseudo-baseband representations.

2.3.1 Vector and matrix representations

As a result of the linearity of the propagation environment, the ith receive antenna observes
the superposition

y(i)(t) =
√
G

Nt−1∑
j=0

∫ ∞

−∞
h(i,j)(τ)x(j)(t− τ) dτ + v(i)

b (t)

i = 0, . . . , Nr − 1, (2.75)

where x(j)(t) is the signal emitted by the jth transmit antenna and
√
Gh(i,j)(τ) is the

impulse response from the jth transmit to the ith receive antenna; the factor
√
G is regarded

as common to the NtNr impulse responses, a point that is amply justified in Chapter 3. In
turn, v(i)

b (t) is the thermal noise at the ith receiver, statistically independent from the noise
at other receivers due to the separateness of the corresponding components.

For notational and analytical reasons, it seems desirable to bring together all the transmit
signals, all the channel responses, and all the receive signals. As advanced in the previous
chapter, vectors and matrices are again the natural means to achieve this. Let us define the
Nr × 1 receive signal and noise vectors

y(t) =

⎡
⎢⎣

y(0)(t)
...

y(Nr−1)(t)

⎤
⎥⎦ v(t) =

⎡
⎢⎣

v(0)

b (t)
...

v(Nr−1)

b (t)

⎤
⎥⎦ , (2.76)
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the Nt × 1 transmit signal vector

x(t) =

⎡
⎢⎣

x(0)(t)
...

x(Nt−1)(t)

⎤
⎥⎦ , (2.77)

and the Nr ×Nt normalized channel matrix

H(τ) =

⎡
⎢⎢⎢⎣

h(0,0)(τ) h(0,1)(τ) · · · h(0,Nt−1)(τ)

h(1,0)(τ) h(1,1)(τ) · · · h(1,Nt−1)(τ)
...

...
. . .

...

h(Nr−1,0)(τ) h(Nr−1,1)(τ) · · · h(Nr−1,Nt−1)(τ)

⎤
⎥⎥⎥⎦ . (2.78)

With this notation, the MIMO transmit–receive relationship can be written compactly as

y(t) =
√
G

∫ ∞

−∞
H(τ) x(t− τ) dτ + v(t). (2.79)

The matrix function H(τ) is a multivariate impulse response, a notion that arose histor-
ically in control applications [140] and that, herein, serves to describe a linear (for now
time-invariant but generally time-variant) channel with multiple inputs and outputs.

Since signals and channels require further indexing later on, for the sake of clarity we
begin using the notation [a]j and [A]i,j to refer, respectively, to the jth entry of a vector a
and to the (i, j)th entry of a matrix A.

To time-discretize (2.79), let y[n] = y(nT ), x[n] = x(nT ), and v[n] = v(nT ). Then,
denote the discrete-time multivariate impulse response at tap � as H[�] where

[
H[�]

]
i,j

is
obtained by filtering and sampling h(i,j)(t). With that, the discrete-time transmit-receive
MIMO relationship becomes

y[n] =
√
G

L∑
�=0

H[�]x[n− �] + v[n], (2.80)

where the arguments that support a causal FIR response in SISO apply verbatim.
If L = 0, then the frequency-selective MIMO relationship in (2.80) reduces to the

frequency-flat MIMO relationship

y[n] =
√
GHx[n] + v[n], (2.81)

which can be rendered time-variant by allowing H[n] to be itself a function of n. Much of
the theory developed for MIMO communication relies on (2.81) and, indeed, a variation of
the frequency-flat channel turns out to be a satisfactory model with OFDM.

2.3.2 Channel normalization

Although a strict entry-wise extension to MIMO of the SISO channel normalization would
result in

∑L
�=0 E

[|[H[�]]i,j |2
]
= 1 for i = 0, . . . , Nr − 1 and j = 0, . . . , Nt − 1, a more

flexible extension allows us to also embrace channel models that exhibit power asymme-
tries across antennas. We therefore establish the normalization of MIMO channels jointly
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over all their entries as

L∑
�=0

Nr−1∑
i=0

Nt−1∑
j=0

E

[∣∣[H[�]
]
i,j

∣∣2] = NtNr. (2.82)

This can be compactly formulated via the Frobenius norm (see Appendix B.5), giving

L∑
�=0

E

[
‖H[�]‖2F

]
=

L∑
�=0

E

[
tr
(
H[�]H∗[�]

)]
(2.83)

=

L∑
�=0

E

[
tr
(
H∗[�]H[�]

)]
(2.84)

= NtNr. (2.85)

In frequency-flat channels, the normalization reduces to

E

[
‖H‖2F

]
= E

[
tr(HH∗)

]
(2.86)

= E

[
tr(H∗H)

]
(2.87)

= NtNr. (2.88)

2.3.3 Stacked vector representation

Adopting simultaneously for both the time and the antenna dimensions the block-wise
representation that led to (2.74) in SISO, it is possible to express in a similarly compact
manner an entire MIMO relationship. Applying (2.74) between the Nt transmit antennas
and the ith receive antenna, we obtain

ȳ(i)

N =
√
G

Nt−1∑
j=0

H̄ (i,j)

N,N+Lx̄
(j)

N+L + v̄(i)

N (2.89)

where ȳ(i)

N =
[
y(i)[0] · · · y(i)[N − 1]

]T
and v̄(i)

N =
[
v(i)[0] · · · v(i)[N − 1]

]T
while

x̄(j)

N+L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(j)[−L]
...

x(j)[−1]

x(j)[0]

x(j)[1]
...

x(j)[N − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.90)
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and

H̄ (i,j)

N,N+L =

⎡
⎢⎢⎢⎣

h(i,j)[L] · · · h(i,j)[0] 0 0 · · · 0

0 h(i,j)[L] · · · h(i,j)[0] 0 · · · 0
...

. . .
...

0 · · · 0 0 h(i,j)[L] · · · h(i,j)[0]

⎤
⎥⎥⎥⎦ .

(2.91)
Collecting the temporal block observations for all receive antennas into a larger vector, i.e.,
stacking ȳ(0)

N through ȳ(Nr−1)

N , we obtain the NrN × 1 observation vector

ȳNrN =

⎡
⎢⎣

ȳ(0)

N

...

ȳ(Nr−1)

N

⎤
⎥⎦ . (2.92)

Likewise, stacking v̄(0)

N through v̄(Nr−1)

N we obtain the NrN × 1 noise vector v̄NrN and
stacking x̄(0)

N+L through x̄(Nt−1)

N+L we obtain the Nt(N + L)× 1 transmit vector

x̄Nt(N+L) =

⎡
⎢⎣

x̄(0)

N+L

...

x̄(Nt−1)

N+L

⎤
⎥⎦ . (2.93)

These vectors are connected through the block Toeplitz matrix

H̄NrN,Nt(N+L) =

⎡
⎢⎢⎢⎣

H̄ (0,0)

N,N+L H̄ (0,1)

N,N+L · · · H̄ (0,Nt−1)

N,N+L

H̄ (1,0)

N,N+L H̄ (1,1)

N,N+L · · · H̄ (1,Nt−1)

N,N+L

...
...

. . .
...

H̄ (Nr−1,0)

N,N+L H̄ (Nr−1,1)

N,N+L · · · H̄ (Nr−1,Nt−1)

N,N+L

⎤
⎥⎥⎥⎦ . (2.94)

With these definitions, (2.80) becomes

ȳNrN
=

√
GH̄NrN,Nt(N+L)x̄Nt(N+L) + v̄NrN

, (2.95)

which resembles the frequency-flat MIMO relationship in (2.81), only with augmented
dimensions. The structured perspective offered by (2.95) can enable the application of
frequency-flat MIMO results to frequency-selective MIMO channels.

2.3.4 Precoding

In SISO, recall, the transmit signal can be written as x[n] =
√

EsP [n] s[n], where Es

is the average energy per symbol and P [n] allows performing power control. When one
considers generalizing this transformation to MIMO, it becomes clear that the scalar P [n]

can be replaced by a matrix entailing more than a power gain. Specifically, with an Nt×Ns

matrix we can transform an Ns × 1 vector s[n] into the Nt × 1 vector x[n], meaning that
Ns ≤ Nt symbols are embedded into x[n] and thus Ns ≤ Nt data streams are transmitted
at once.
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Denoting the Nt ×Ns transformation matrix by F [n], what ensues is

x[n] =

√
Es

Nt
F [n]s[n], (2.96)

where the normalization by Nt appears because we define F [·] such that

1

N

N−1∑
n=0

‖F [n]‖2F =
1

N

N−1∑
n=0

tr
(
F [n]F ∗[n]

)
= Nt. (2.97)

(Alternatively, one could define F [·] such that 1
N

∑N−1
n=0 ‖F [n]‖2F = 1 and do away with

the explicit normalization by Nt. However, (2.97) is the more standard normalization, and
we abide by it.)

Since codeword symbols are IID, E
[
s[n]s∗[n]

]
= I and the covariance of x[n] equals

Rx[n] = E
[
x[n]x∗[n]

]
(2.98)

=
Es

Nt
F [n]F ∗[n]. (2.99)

Somewhat paradoxically given that it operates on coded symbols s[n], hence after the
encoder, the filter F [·] is termed precoder. The reasons for this are historical, as the term
was coined in a context where uncoded or weakly coded signals were transformed and then
subsequently run through an inner space-time code (providing mostly antenna diversity)
prior to transmission [9, 10, 141, 142]. Nowadays, powerful outer channel codes are almost
ubiquitous and diversity tends to be abundant, such that the subsequent inner code is largely
unnecessary. Altogether, “postcoder” would be a more fitting name for F [·], but by now
the term precoder has stuck.

The precoder plays a very important role in MIMO communication, enabling a spatial
formatting of the transmission on the basis of whatever CSI is available to the transmitter.

Being a matrix, F [·] can be subject to a singular-value decomposition (SVD, see Ap-
pendix B.3.2) and expressed as

F [n] = UF [n]ΣF [n]V
∗
F [n], (2.100)

where UF [·] and VF [·] are unitary, respectively Nt ×Nt and Ns ×Ns, while ΣF [·] is the
Nt ×Ns matrix

ΣF [n] =

[
P 1/2

0

]
(2.101)

whose upper portion is the square-root of an Ns × Ns matrix P = diag(P0, . . . , PNs−1)

satisfying
∑Ns−1

j=0 Pj = Nt while the lower portion is an (Nt −Ns)×Ns all-zero matrix.
This decomposition is analytically convenient and, more importantly, it invites a meaning-
ful interpretation based on which we term the ingredients as follows: VF [·] as the mixing
matrix, P [·] as the power allocation matrix, and UF [·] as the steering matrix:

The unit-variance entries of s[n], which conform to arbitrary distributions, are mixed by
VF [n] into a vector VF [n]s[n] whose entries are still of unit variance (because of the
unitary nature of VF [n]), but which exhibit modified distributions.
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The jth mixed signal is allocated a power Es

Nt
Pj , for j = 0, . . . , Ns − 1.

The jth amplified mixed signal is launched from all transmit antennas weighted by the
coefficients on the jth column of UF [n].

Because UF [n] is unitary, the final step does not alter the powers but merely endows
each signal with a spatial orientation, making it possible to transmit on channel directions
that may be particularly favorable. Details on this are deferred to Section 3.5, where the
necessary background on array processing is provided.

If UF [n] and VF [n] are identity matrices, and P = Nt

Ns
I , then

F [n] =
Nt

Ns

[
INs

0

]
. (2.102)

With such trivial precoder, each of Ns antennas directly radiates one of the data streams
within s[n] while the remaining Nt −Ns antennas are silent; the transmit signals are inde-
pendent. Notwithstanding the possible directivity of the antennas, the transmission is then
said to be isotropic from a precoding standpoint, or outright unprecoded.

Example 2.10

Let Nt = Ns = 2 and suppose that the two signals within s[n] are QPSK-distributed.
Examine the structure of the transmit signal x[n] produced by a time-invariant precoder.

Solution

Dropping the dependence on n, let P = diag(P1, P2) and

UF =

[
U00 U01

U10 U11

]
VF =

[
V00 V01

V10 V11

]
. (2.103)

The application of the mixing matrix to s yields the mixed signal vector

V ∗
F s =

[
V ∗
00[s]0 + V ∗

10[s]1
V ∗
01[s]0 + V ∗

11[s]1

]
(2.104)

whose unit-variance entries conform to 16-ary distributions, in general distinct. Then, after
power allocation,√

Es

2
P 1/2V ∗

F s =

⎡
⎣

√
P0Es

2

(
V ∗
00[s]0 + V ∗

10[s]1
)√

P1Es

2

(
V ∗
01[s]0 + V ∗

11[s]1
)

⎤
⎦ . (2.105)

The top signal is launched from the two antennas, weighted by U00 and U10, while the
bottom signal is launched weighted by U01 and U11. If F = I , then each signal is radiated
from only one antenna. Conversely, if F �= I , each signal is transmitted from both antennas
and steered in a certain direction. Both possibilities are illustrated in Fig. 2.11.

Besides providing operational intuition, the breakdown of F [·] into its constituent parts,
UF [·], P [·], and VF [·], also facilitates the optimization of the precoder. Although it is
possible—in fact rather common—to optimize precoders based on estimation-theoretic
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x[n]

Precoder

s[n]

√
Es

Nt

Front-end

1

0

x[n]

Precoder

s[n]

√
Es

Nt

Front-end

1

0

F �= I

F = I

�Fig. 2.11 Above, isotropic transmission with Nt = Ns = 2 and F = I; each signal is radiated

from a single antenna according to the pattern of that antenna. Below, nonisotropic

transmission; complementing the antenna patterns, each of the two signals is steered

in a distinct spatial direction.

criteria or to minimize the uncoded error probability [18, 123, 143–145], what should
drive this optimization in heavily coded systems is maximizing the amount of informa-
tion that can be conveyed through the channel, i.e., the precoder should spatially format
the signals so that as much information as possible can couple into the channel, with the
suppression of errors left to encoder and decoder. Put differently, the cascade of precoder
and channel should yield the widest possible information pipe. This naturally leads to the
mutual-information-based precoder optimizations posed in later chapters. Although it may
be tempting to anticipate that one would always want to transmit Ns = Nt signal streams,
in some cases the optimum strategy turns out to entail Ns < Nt, hence our insistence in
keeping these two quantities differentiated.

A precoding case of the utmost relevance, because of the virtues of complex Gaussian
codebooks, occurs when the entries of s[n] are complex Gaussian. Then, the mixing matrix
VF [·] becomes immaterial because the IID complex Gaussian distribution is rotationally
invariant (see Appendix C.1.9) and thus V ∗

F [n]s[n] ∼ s[n]. In this all-important case, then,
the precoder can take the simpler form F [n] = UF [n]P

1/2[n].

2.3.5 Signal constraints

Having extended the signal models to MIMO and introduced the notion of precoding, we
are now ready to formalize the various ways in which the transmit signal may be con-
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strained. These constraints are not arbitrary; rather, they embody physical limitations of
the amplifiers that feed the transmit antennas.

Power constraints
Constraints imposed on the transmit power are the primary ones. Frequency-domain fluc-
tuations in the power are not problematic, and thus no constraint is imposed in that domain.
It is in the time and antenna domains where power constraints arise. Let us contemplate
the most common such types of constraints, from looser to tighter.

Under a per-block power constraint, x[0], . . . ,x[N − 1] must satisfy

1

N

N−1∑
n=0

E

[
‖x[n]‖2

]
= Es (2.106)

or, equivalently,

1

N

N−1∑
n=0

tr
(
Rx[n]

)
= Es. (2.107)

With this constraint, which applies if the power amplifiers tolerate signal crests and are
limited only by their average loads over N symbols, it is possible to allocate power
unevenly over time/frequency and across the transmit antennas as long as the average
energy per symbol does not exceeded Es. If we identifying the blocklength N with
the extension of a codeword, the per-block power constraint becomes a per-codeword
power constraint. Translated to the precoder, this type of constraint gives, from (2.99)
and (2.107),

1

N

N−1∑
n=0

tr
(
F [n]F ∗[n]

)
= Nt, (2.108)

as anticipated in (2.97). Moreover, since the rotations effected by the unitary matrices
UF [n] and VF [n] do not affect the trace, this is further equivalent to

1

N

N−1∑
n=0

tr
(
P [n]

)
= Nt. (2.109)

Under a per-symbol power constraint, for every n,

E

[
‖x[n]‖2

]
= Es (2.110)

or, equivalently,

tr
(
Rx[n]

)
= Es. (2.111)

This constraint prohibits uneven power allocation over time, directly capturing the peak
capability of the amplifiers, but does allow it across antennas. In terms of the precoder,
it amounts to

tr
(
F [n]F ∗[n]

)
= tr

(
P [n]

)
= Nt. (2.112)
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Under a per-antenna power constraint,[
Rx[n]

]
j,j

=
Es

Nt
, (2.113)

which fixes the power of the scalar symbols transmitted by each antenna. This can
serve to explicitly reflect the existence of a separate amplifier behind each antenna.
Translated to the precoder, it requires that every row of F have unit norm, such that[
F [n]F ∗[n]

]
j,j

= 1 for j = 0, . . . , Nt − 1.

All the foregoing constraints ensure that the total radiated power is preserved regardless
of Nt, evincing the MIMO challenge of improving the performance without increasing the
transmit power, only through the addition of antennas. This conservation of the radiated
power further registers limitations imposed by regulatory agencies that relate to environ-
mental safety and other matters. From a practical vantage, the per-antenna power con-
straint is arguably the most pertinent, and the volume of related results has slowly grown
over time, yet the per-block and per-symbol power constraints are the most prevalent ones
in MIMO analysis. Although their undeniable analytical convenience is by itself hardly a
sound reason to justify their use, with OFDM the argument can be made that the average
transmit power under these constraints should not vary much from antenna to antenna if the
number of subcarriers is large, and thus (2.113) might also be—approximately—satisfied.
When this is not the case, the per-codeword and per-symbol constraints yield upper bounds
to what can be achieved under the more stringent per-antenna constraint.

Sometimes the type of power constraint ends up being somewhat inconsequential. If the
transmitter is not privy to the channel response, for instance, then it cannot effect time-
domain power control and it ends up abiding by (2.110) or (2.113) even if a per-block
constraint does apply. It is only when the transmitter has CSI that the distinctiveness of a
per-block constraint becomes material.

Magnitude constraints
A secondary type of constraints are those related to the signal magnitude, whose peaked-
ness directly impacts the nonlinear behavior of power amplifiers: the more peaky the mag-
nitude, the higher the chances that the amplifiers will be driven into a range where their
response is nonlinear and, ultimately, into saturation [146, 147].

If x is the zero-mean scalar symbol transmitted by one of the antennas, the most relevant
measures of its peakedness are as follows. (As with entropies and differential entropies, we
slightly abuse notation and express these measures as a function of |x| when they are really
a function of its distribution.)

The peak-to-average power ratio (PAPR), which quantifies the maximum excursion of
the squared magnitude over the average power, i.e.,

PAPR
(|x|) = max

(|x|2)
E
[|x|2] (2.114)

whose square root is sometimes termed crest factor. A finite PAPR puts a hard limit on
the signal magnitude.
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The kurtosis (see Appendix C.1.8)

κ
(|x|) = E

[|x|4]
E
[|x|2]2 . (2.115)

The cubic metric (CM), which characterizes the effects of the third-order nonlinearity of
the power amplifier and has been identified as a leading indicator of nonlinear behaviors
[148]. It is defined as

CM
(|x|) = E

[|x|6]
E
[|x|2]3 . (2.116)

Example 2.11

Compute the peakedness measures for x ∼ NC(0, σ
2).

Solution

PAPR
(|x|) = ∞ (2.117)

κ
(|x|) = 2 (2.118)

CM
(|x|) = 6. (2.119)

Example 2.12

Compute the peakedness measures for s drawn from an M -PSK constellation.

Solution

For M -PSK, all measures of peakedness are unity; it is the ultimate nonpeaky distribution.

Example 2.13

Compute the peakedness measures for x drawn from a square M -QAM constellation.

Solution

For square M -QAM,

κ
(|s|) = 1

5

7M − 13

M − 1
(2.120)

PAPR
(|s|) = 3

√
M − 1√
M + 1

(2.121)

with the cubic metric best computed numerically.

The infinite PAPR of Gaussian-distributed signals may seem problematic because such
signals are theoretically optimum in numerous situations. As the next example shows, how-
ever, the peakedness of the Gaussian distribution, as measured by the more informative
kurtosis and CM, is actually rather modest.
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Table 2.1 PAPR, kurtosis, and CM for signal
distributions of interest

Distribution PAPR κ CM

NC ∞ 2 9π/16

NC (clipped) 10 1.9 1.74

M -PSK 1 1 1

M -QAM [1, 3] [1, 1.4] [1, 1.33]

on–off 1/δ 1/δ 1/δ

Example 2.14

Consider x ∼ NC(0, σ
2) and let z be a clipped version of x satisfying PAPR

(|z|) = 10 dB.
Compute the kurtosis and CM of z.

Solution

κ
(|z|) = 1.94 (2.122)

CM
(|z|) = 5.4. (2.123)

By contrasting these values with those in Example 2.11 we observe that this very sub-
stantive clipping reduces the kurtosis and CM by only about 3% and 10%, respectively.
Gaussian-distributed signals may be clipped to relatively small PAPR values with hardly
any disruption in their information-carrying ability.

Table 2.1 summarizes the peakedness measures (or range thereof given all possible car-
dinalities) of various signal distributions of interest, including a clipped complex Gaussian
distribution. Also included is the on–off distribution in (1.3); for δ → 0, the “on” mass
point diverges to infinity and, with it, all the measures of peakedness.

Besides the marginal distribution of individual symbols, in the case of OFDM the peaked-
ness in the time domain depends on the frequency-domain signal structure (refer to Prob-
lem 2.16) [146]. And, since what is ultimately of essence is the peakedness of the transmit
analog waveforms, a final—but minor—contributor to such peakedness is the pulse shape.

2.4 Linear channel equalization

A frequency-selective channel smears the signals in delay, causing ISI, and if the channel
is MIMO it further introduces interference among the signals emitted by the various trans-
mit antennas. Equalization is the removal of these channel effects and an assortment of
equalization methods exist, both linear and nonlinear. This section concentrates on linear
strategies, which require minimal assumptions on the signal structure.
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2.4.1 Linear ZF equalization

For pedagogical purposes, equalization is first considered with noise neglected. An ideal
equalizer under these circumstances completely removes the effect of the channel. Such
equalizers, when they exist, are known as zero-forcing (ZF). In this section we devise linear
ZF equalizers for SISO and MIMO channels, providing the foundation for their existence
and then describing algorithms to compute exactly or approximately their coefficients.

Basic formulation
We start by explaining the challenge of equalizing a scalar channel with impulse response√
Gh[0], . . . ,

√
Gh[L]. Because this exposition depends on concepts from system theory,

we make use of basic notions of the Z-transform that are summarized in Appendix A.2. Let
h(z) denote the Z-transform of h[n] and let w(z) denote the Z-transform of an equalizer.
A ZF equalizer satisfies

w∗(z)
√
G h(z) = z−Δ (2.124)

for some delay Δ (in number of taps). This delay parameter provides an additional degree
of freedom in the design and can be cleared through subsequent optimization.

The ideal solution to (2.124) is an equalizer with an infinite impulse response (IIR), yet
such equalizers are challenging to implement. Most often, one wants to employ an FIR
equalizer. Unfortunately, it is known that, except in trivial cases, an FIR impulse response
does not have an FIR equalizer satisfying (2.124). When w(z) must be FIR of order Leq,
approximate ZF solutions may be obtained by truncating the IIR response, with a valid rule
of thumb for satisfactory inversion being Leq ≈ 3L. With an FIR equalizer of order Leq,
the delay is bounded in the range 0 ≤ Δ ≤ (Leq + L) as determined by the length of the
linear convolution of the time-domain counterparts to w(z) and h(z).

Example 2.15

For a two-tap channel where
√
Gh[0] = 1 and

√
Gh[1] = −a, find an IIR equalizer

satisfying (2.124) with a delay of Δ = 1.

Solution

The Z-transform of
√
Gh[�] is

√
G
(
1− az−1

)
, giving as ideal ZF equalizer

w∗
IIR(z) =

1√
G

z−1

1− az−1
. (2.125)

For a < 1, the inverse Z-transform of (2.125) returns the causal filter

w∗
IIR[�] =

1√
G

a�−1 u[�− 1], (2.126)
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where u[�] is the unit-step function.

Example 2.16

Following up on Example 2.15, identify an FIR equalizer w[0], . . . , w[Leq] by truncating
the IIR solution.

Solution

Expanding (2.126),

w∗
IIR[�] =

δ[�− 1]− a δ[�− 2] + a2δ[�− 3]− · · ·√
G

(2.127)

whose truncation gives

w∗[�] =
δ[�− 1]− a δ[�− 2] + a2δ[�− 3]− · · ·+ (−a)Leqδ[�− Leq − 1]√

G
. (2.128)

In Problem 2.19, the reader is invited to check that the convolution of w∗[�] and
√
Gh[�]

yields an approximation to δ[�− 1].

Extension to MIMO
Under certain conditions, FIR ZF equalizers turn out to exist for many types of FIR mul-
tivariate channels—an interesting oddity of multidimensional signal processing. Let the
Z-transform of H[0], . . . ,H[L] be

H(z) =

L∑
�=0

H[�] z−� (2.129)

whose (i, j)th entry is the Z-transform of h(i,j)[0], . . . , h(i,j)[L], and let W(z) denote the
Z-transform of the matrix equalizer (see Fig. 2.12).

A ZF matrix equalizer is a left inverse of H(z) that satisfies

W∗(z)
√
GH(z) = D(z), (2.130)

where D(z) is a diagonal matrix with (possibly different) delay terms of the form z−Δ. As
in the SISO case, it is in practice desirable to restrict the focus to FIR equalizers, meaning
that each entry of W(z) corresponds to an FIR filter of order Leq. Do exact left inverses
of H(z) exist? Yes, as it turns out. More precisely, the answer is found in what is called
perfect recoverability [149]. A MIMO transfer function H(z) has a left FIR inverse if and
only if H(z) has full column rank (see Appendix B) for every complex z �= 0.

The existence of left FIR inverses is a type of coprimeness in the polynomials that com-
prise H(z). While the result is somewhat esoteric, it turns out that exact FIR ZF MIMO
equalizers exist for Nr > Nt provided the polynomial coefficients are sufficiently random
[150]. We explore this with an example for Nt = 1 and Nr = 2.
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�Fig. 2.12 MIMO equalizer for a single-tap channel with Nt = Nr = 2. Notice how the signal

received on each antenna contributes to recovering each of the transmit signals.

Example 2.17

For Nt = 1 and Nr = 2, find the conditions on H(z) such that FIR ZF equalizers exist.

Solution

Satisfying the ZF criterion requires that

[w(z)]∗0
√
G [H(z)]0 + [w(z)]∗1

√
G [H(z)]1 = z−Δ. (2.131)

To have a left inverse, the results on perfect recoverability mandate that H(z) have full
column rank for every complex z �= 0. Since H(z) is a column vector, the only way it
cannot have full column rank is if H(z) = 0 for some z. This would require [H(z)]0 =

[H(z)]1 = 0, which can only be true if [H(z)]0 and [H(z)]1 share a common root. There-
fore, as long as [H(z)]0 and [H(z)]1 are coprime (meaning they do not share a common
root) it is possible to find an exact FIR inverse.

The result in Example 2.17 extends to any Nr × 1 channel: the polynomials [H(z)]i for
i = 0, . . . , Nr − 1 must be coprime. If the channel coefficients are sufficiently random, it
is increasingly unlikely as Nr grows that all these polynomials share a common root.

With their existence established, the next question is how to find FIR ZF MIMO equal-
izers, exactly if possible or approximately otherwise. Taking the inverse Z-transform of
(2.130), the objective is to find W [0], . . . ,W [Leq] such that

√
G

Leq∑
�=0

W ∗[�]H[n− �] = diag
(
δ[n−Δ0], . . . , δ[n−ΔNt−1]

)
(2.132)

where Δj corresponds to the allowable reconstruction delay for the signal emanating from
the jth transmit antenna. An inspection of (2.132) reveals that only the jth column of W [�]

contributes to equalizing the signal emitted by the jth transmit antenna and thus, barring
other constraints, the columns of W can be designed independently. Using the shorthand
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notation wj [�] =
[
W [�]

]
:,j

, perfect ZF requires that

√
G

Leq∑
�=0

w∗
j [�]H[n− �] = d∗

j [n] n = 0, 1, . . . , Leq + L (2.133)

where d∗
j [n] is a row vector with δ[n−Δj ] on the jth entry and zero elsewhere and where,

recall, Δj ∈ {0, . . . , Leq + L}. If perfect ZF is not possible, then we seek a solution that
approximates (2.133) in some sense.

To unravel (2.133), which is in essence a convolution, it is useful to resort once more to
stacked vectors and block matrices. Let the Nr(Leq+1)×1 vector of equalizer coefficients
for the jth signal be

w̄j =

⎡
⎢⎣

wj [0]
...

wj [Leq]

⎤
⎥⎦ (2.134)

and let the Nt(Leq + L+ 1)× 1 vector of target delays be similarly defined as

dj =

⎡
⎢⎣

dj [0]
...

dj [Leq + L]

⎤
⎥⎦ . (2.135)

Note that dj is identically zero except for a 1 in the position NtΔj + j. Finally, define the
Nr(Leq + 1)×Nt(Leq + L+ 1) block Toeplitz matrix

T̄ =

⎡
⎢⎢⎢⎣
H[0] · · · H[L] 0 0 · · · 0

0 H[0] · · · H[L] 0 · · · 0
...

. . .
...

0 · · · 0 0 H[0] · · · H[L]

⎤
⎥⎥⎥⎦ (2.136)

such that we can rewrite (2.133) as
√
G w̄∗

j T̄ = d
∗
j . (2.137)

The rank of T̄ is an important consideration when solving for w̄0, . . . , w̄Nt−1. If T̄ is
not full-rank, then it is not possible to recover what was sent from at least one antenna; we
thus assume that T̄ is full-rank. This is in fact equivalent to assuming that the conditions
for perfect recoverability hold, and is also related to results on block Toeplitz matrices.

From standard linear algebra considerations, the existence and uniqueness of an exact
solution depend on the dimensionality of T̄ . Since T̄ is Nr(Leq + 1)×Nt(Leq + L+ 1),
its shape can be controlled through the equalizer order Leq with three regimes of interest.

(1) T̄ is fat, meaning that Nt(Leq+L+1) > Nr(Leq+1). Then, (2.137) is overdetermined
and has no solution; the common approach is to minimize the squared equalization
error for the chosen d

∗
j , an error that is proportional to∥∥√G w̄∗

j T̄ − d
∗
j

∥∥2
=

(√
G w̄∗

j T̄ − d
∗
j

)(√
G w̄∗

j T̄ − d
∗
j

)∗
(2.138)
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= G w̄∗
j T̄ T̄ ∗w̄j + ‖dj‖2 −

√
G w̄∗

j T̄ dj −
√
Gd

∗
j T̄

∗w̄j .

(2.139)

The equalizer w̄j minimizing the above expression must satisfy

∇w̄ZF
j

∥∥√G w̄ZF

j
∗
T̄ − d

∗
j

∥∥2
= 0. (2.140)

Applying the gradient expressions (D.5), (D.6), and (D.7) in Appendix D, this gives
the necessary condition

G T̄ T̄ ∗w̄ZF

j −
√
G T̄ dj = 0 (2.141)

whose unique solution is

w̄ZF

j =
1√
G
(T̄ T̄ ∗)−1T̄ dj . (2.142)

In the absence of delay constraints, one can further select dj to render the ensuing
squared error as small as possible.

(2) T̄ is square, meaning that Nt(Leq +L+1) = Nr(Leq +1). In this case, (2.137) has a
unique solution that is readily given by

w̄ZF

j =
1√
G
(T̄ ∗)−1dj . (2.143)

(3) T̄ is tall, meaning that Nt(Leq +L+1) < Nr(Leq +1). In this case, (2.137) is under-
determined and there are infinitely many solutions. A common criterion for selecting
one among those is the minimum norm, which gives (refer to Problem 2.21)

w̄ZF

j =
1√
G
T̄ (T̄ ∗T̄ )−1dj . (2.144)

A general form for the ZF equalizer in all three cases above can be given by means of the
Moore–Penrose pseudoinverse of T̄ ∗, a notion that is described in Appendix B.6. Given a
rectangular matrix A, its pseudoinverse A† satisfies AA†A = A and A†AA† = A†.

The ZF equalizer

w̄ZF

j =
1√
G
(T̄ ∗)† dj (2.145)

unifies the three solutions. Moreover, assembling the equalizers for the Nt signals into the
Nr(Leq + 1)×Nt matrix W̄ ZF =

[
w̄ZF

0 · · · w̄ZF

Nt−1

]
and letting D̄ =

[
d0 · · · dNt−1

]
, we

can compactly write

W̄ ZF =
1√
G
(T̄ ∗)†D̄. (2.146)

Unstacking the Leq + 1 vertical blocks within W̄ ZF, we finally obtain the (Leq + 1)-tap
Nr × Nt MIMO equalizer W ZF[0], . . . ,W ZF[Leq]. The factor 1/

√
G permeating all the

terms cleanly separates what is mere compensation for the average channel attenuation,
implemented via low-noise amplification, from the signal processing that disentangles the
ISI and the multiantenna interference. The choice of Leq impacts the dimensions of T̄ ∗

and, through them, the performance of such signal processing.
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For Nt > Nr, T̄ is always fat and perfect ZF is not feasible. Linear equalization is
generally unappealing when Nt > Nr.
For Nt = Nr, it becomes possible to have Nt(Leq + L + 1) = Nr(Leq + 1) and
hence a square T̄ ∗. This occurs when L = 0, i.e., in frequency-flat channels, and it
holds regardless of the value of Leq. It follows that, in frequency-flat channels, a single-
tap equalizer (Leq = 0) suffices. However, in frequency-selective channels, perfect ZF
equalization is in general not possible with Nt = Nr.
For Nr > Nt, T̄ is rendered square when it is possible to find a nonnegative integer
Leq = NtL/(Nr − Nt) − 1, the minimum equalizer order that ensures perfect ZF.
For Leq > NtL/(Nr − Nt) − 1 we have a fat T̄ ∗ and a multiplicity of ZF solutions.
Increasing the number of receive antennas Nr yields a decrease in Leq for a given L and,
altogether, Nr > Nt is most desirable when operating with FIR equalizers.

Although, in the absence of noise, it may seem harmless to select Leq above the value
strictly necessary to ensure ZF feasibility, this changes once noise is considered. When
noise runs through the equalizer, its power is enhanced in proportion to

∑Leq

�=0 ‖W ZF[�]‖2F,
hence the minimum-norm criterion when a multiplicity of solutions exist. And, while it
does not play a role in the feasibility of ZF, the delay Δj can be optimized to further
minimize the norm among all possible delays. If delay optimization is not possible, a rule
of thumb is Δj ≈ L.

Example 2.18 (Linear ZF equalizer for frequency-flat channels)

Compute the ZF equalizer for a frequency-flat channel with Nr ≥ Nt.

Solution

In a frequency-flat channel, L = 0 and therefore T̄ = H . Setting Leq = 0 to minimize the
equalizer norm, the optimum delay is also Δj = 0 for j = 0, . . . , Nt − 1. It follows that
dj = [I]:,j and hence that D̄ = I , from which W ZF as given by (2.146) satisfies

W ZF∗ =
1√
G
H†. (2.147)

Example 2.19

Verify that the W ZF derived in Example 2.18 effects perfect ZF equalization.

Solution

The application of the equalizer to the channel gives

W ZF∗√GH = (HH∗)−1H∗H (2.148)

= I. (2.149)

As Example 2.18 evidences, ZF equalization simplifies drastically in frequency-flat
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channels and it essentially amounts to solving a set of linear equations for the transmit
vector. Without ISI, only multiantenna interference needs to be dealt with.

The ZF equalizer is at the heart of a suboptimum yet appealing MIMO linear receiver
that is studied in detail in Chapter 6.

2.4.2 LMMSE equalization

The main drawback of ZF equalization is that noise is neglected in its formulation. To
address this shortcoming, a metric is required that accounts not only for self-interference
(both ISI and multiantenna interference) but further for noise, and the most natural such
metric is the MMSE introduced in Chapter 1. The equalizer is then nothing but an MMSE
estimator of the transmit signal, and in the context of linear equalization it is an LMMSE
estimator. LMMSE equalization is but one example of the application of Wiener the-
ory [126] within statistical signal processing [127] and an early application of MIMO
channel equalization was in the ocean acoustic channel [151]. In this section, we derive
the FIR MIMO equalizer, putting to work the LMMSE concepts laid down in Section 1.7.
For this derivation, both x[n] and v[n] are regarded as wide-sense stationary—this assump-
tion is supported in Chapter 2—with correlation functions Rx[�] = E

[
x[n]x∗[n+ �]

]
and

Rv[�] = N0δ[�]I . It follows from the transmit–receive relationship in (2.80) that

Ry[�] = E
[
y[n]y∗[n+ �]

]
(2.150)

= E

[√
G

L∑
�1=0

H[�1]x[n− �1]

(√
G

L∑
�2=0

H[�2]x[n+ �− �2]

)∗]

+ E
[
v[n]v∗[n+ �]

]
(2.151)

= GE

[
L∑

�1=0

L∑
�2=0

H[�1]x[n− �1]x
∗[n+ �− �2]H

∗[�2]

]
+N0δ[�]I (2.152)

= G

L∑
�1=0

L∑
�2=0

H[�1]E
[
x[n− �1]x

∗[n+ �− �2]
]
H∗[�2] +N0δ[�]I (2.153)

= G

L∑
�1=0

L∑
�2=0

H[�1]Rx[�+ �1 − �2]H
∗[�2] +N0δ[�]I, (2.154)

while

Ryx[�] = E
[
y[n]x∗[n+ �]

]
(2.155)

=
√
GE

[
L∑

�1=0

H[�1]x[n− �1]x
∗[n+ �]

]
+ E

[
v[n]x∗[n+ �]

]
(2.156)

=
√
G

L∑
�1=0

H[�1]E
[
x[n− �1]x

∗[n+ �]
]

(2.157)

=
√
G

L∑
�1=0

H[�1]Rx[�+ �1]. (2.158)
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Recall that a linear FIR MIMO equalizer is W [0], . . . ,W [Leq] where W [�] is Nr×Nt.
The error between the equalizer output and the desired signal at symbol n is

x̃[n] = x[n−Δ]−
Leq∑
�=0

W ∗[�]y[n− �], (2.159)

with a target delay Δ taken to be common for all signals, though the formulation can be
further generalized to distinct Δj for j = 0, . . . , Nt − 1. Stacking items in the usual way,
(2.159) can be rewritten as

x̃[n] = x[n−Δ]− W̄ ∗ ȳ[n], (2.160)

where

W̄ =

⎡
⎢⎣

W [0]
...

W [Leq]

⎤
⎥⎦ ȳ[n] =

⎡
⎢⎣

y[n]
...

y[n− Leq]

⎤
⎥⎦ . (2.161)

with x[n−Δ] being estimated on the basis of the observation of ȳ[n].
Applying directly the findings of Section 1.7, the MMSE is achieved by

W̄ MMSE = R−1
ȳ[n] Rȳ[n]x[n−Δ] (2.162)

=

⎡
⎢⎢⎢⎣

Ry[0] Ry[1] · · · Ry[Leq]

Ry[1] Ry[0] · · · Ry[Leq − 1]
...

...
. . .

...

Ry[Leq] Ry[Leq − 1] · · · Ry[0]

⎤
⎥⎥⎥⎦
−1 ⎡

⎢⎢⎢⎣
Ryx[−Δ]

Ryx[1−Δ]
...

Ryx[Leq −Δ]

⎤
⎥⎥⎥⎦ ,

(2.163)

with Ry[�] and Ryx[�] as established in (2.154) and (2.158), respectively. In turn, the
MMSE matrix characterizing the performance of the equalizer is

E = E
[
x̃[n] x̃∗[n]

]
(2.164)

= Rx[0]−Rx[n−Δ]ȳ[n] R
−1
ȳ[n] Rȳ[n]x[n−Δ] (2.165)

= Rx[0]−R∗
ȳ[n]x[n−Δ] R

−1
ȳ[n] Rȳ[n]x[n−Δ] (2.166)

= Rx[0]−

⎡
⎢⎢⎢⎣

Ryx[−Δ]

Ryx[1−Δ]
...

Ryx[Leq −Δ]

⎤
⎥⎥⎥⎦
∗ ⎡
⎢⎢⎢⎣

Ry[0] · · · Ry[Leq]

Ry[1] · · · Ry[Leq − 1]
...

. . .
...

Ry[Leq] · · · Ry[0]

⎤
⎥⎥⎥⎦
−1 ⎡

⎢⎢⎢⎣
Ryx[−Δ]

Ryx[1−Δ]
...

Ryx[Leq −Δ]

⎤
⎥⎥⎥⎦ .

(2.167)

In the special but highly relevant cases that the transmit symbols are IID and/or the
channel is frequency-flat, the structure of the LMMSE equalizer simplifies considerably.

Example 2.20 (LMMSE equalizer with IID signaling)

For Rx[�] =
Es

Nt
δ[�]I , which corresponds to IID transmissions in time and across antennas

compliant with the per-block, per-symbol, and per-antenna power constraints, the covari-
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ances in (2.154) and (2.158) reduce respectively to

Ry[�] =
GEs

Nt

L∑
�1=0

H[�1]H
∗[�+ �1] +N0δ[�]I (2.168)

and

Ryx[�] =

√
GEs

Nt
H[−�], (2.169)

which, plugged into (2.163), yield W̄ MMSE.
This LMMSE equalizer can be related back to the exposition of its ZF counterpart.

Recovering the Toeplitz matrix T̄ introduced in (2.136), we can write

Rȳ[n] =
GEs

Nt
T̄ T̄ ∗ +N0I (2.170)

and

Rȳ[n]x̄[n−Δ] =

√
GEs

Nt
T̄ D̄, (2.171)

where the Nt(L+ Leq + 1)×Nt matrix D̄ has zeros everywhere except for the Nt ×Nt

submatrix [D̄]ΔNt:ΔNt+Nt−1,: = I . Then,

W̄ MMSE =

(
GEs

Nt
T̄ T̄ ∗ +N0I

)−1 √
GEs

Nt
T̄ D̄ (2.172)

=
1√
G

(
T̄ T̄ ∗ +

N0Nt

GEs
I

)−1

T̄ D̄ (2.173)

=
1√
G

(
T̄ T̄ ∗ +

Nt

SNR
I

)−1

T̄ D̄, (2.174)

where we have recalled SNR = GEs

N0
. Replicating the steps in Section 1.7.1, the expression

in (2.174) can further be rewritten into the alternative form

W̄ MMSE =
1√
G

T̄

(
T̄ ∗T̄ +

Nt

SNR
I

)−1

D̄. (2.175)

Both forms are correct. Normally, (2.174) is applied when T̄ is fat while (2.175) is prefer-
able when T̄ is tall, as these choices result in lower-dimensional matrix inversions. Both
forms also evidence how, for growing SNR, the LMMSE equalizer converges to the ZF
solution (either the least-squares or the minimum-norm solution depending on the case).

Inserting (2.170) and (2.171) into (2.166), the MMSE matrix with IID signaling becomes

E =
Es

Nt
I − Es

Nt
D̄∗T̄ ∗

(
T̄ T̄ ∗ +

Nt

SNR
I

)−1

T̄ D̄. (2.176)
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Example 2.21 (LMMSE equalizer for frequency-flat channels)

For L = 0, with the single-tap channel being
√
GH , and with arbitrary Rx[�], the covari-

ances in (2.154) and (2.158) reduce respectively to

Ry[�] = GHRx[�]H
∗ +N0δ[�]I (2.177)

and

Ryx[�] =
√
GHRx[�], (2.178)

which, plugged into (2.163) with Leq = Δ = 0, yield

W MMSE =
(
GHRx[0]H

∗ +N0I
)−1√

GHRx[0] (2.179)

=
1√
G

(
H

Rx[0]
Es

Nt

H∗ +
Nt

SNR
I

)−1

H
Rx[0]

Es

Nt

. (2.180)

In turn, from (2.166),

E = Rx[0]−Rx[0]H
∗
(
H

Rx[0]
Es

Nt

H∗ +
Nt

SNR
I

)−1

H
Rx[0]

Es

Nt

. (2.181)

Recalling that Rx[0] =
Es

Nt
FF ∗, both W MMSE and E can alternatively be expressed as a

function of the precoder F , to wit

W MMSE =
1√
G

(
HFF ∗H∗ +

Nt

SNR
I

)−1

HF (2.182)

and

E =
Es

Nt
FF ∗ − Es

Nt
FF ∗H∗

(
HFF ∗H∗ +

Nt

SNR
I

)−1

HFF ∗ (2.183)

=
Es

Nt
F

[
I − F ∗H∗

(
HFF ∗H∗ +

Nt

SNR
I

)−1

HF

]
F ∗. (2.184)

An important difference between the ZF and LMMSE equalizers is that the latter can
deal with channels that are ill-conditioned, meaning not full-rank. The regularization prior
to inversion ensures the stability of the LMMSE equalizer.

And, just like the ZF equalizer is at the heart of a linear MIMO receiver, the LMMSE
equalizer is the basis of another linear MIMO receiver that is studied in Chapter 6. More-
over, such an LMMSE receiver turns out to be optimum within the class of linear receivers
and can be an ingredient of an optimum nonlinear receiver, hence its importance is capital.
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2.5 Single-carrier frequency-domain equalization

FIR equalization of a MIMO channel entails calculating the taps of a matrix equalizer and
applying this filter to the observed signal by means of NtNr convolution operations. An
alternative is to equalize in the frequency domain [152]. This allows for an ideal inversion
of the channel without requiring an IIR implementation. Frequency-domain equalization,
however, is not straightforward. From a computational perspective, it is preferable to use
the discrete Fourier transform (DFT) since this involves only a finite number of frequencies
and can be implemented efficiently via the fast Fourier transform (FFT). The challenge with
direct application of the DFT is that frequency-domain products correspond to circular
convolutions in discrete time, whereas what the channel effects is a linear convolution.
This issue can be resolved by adding a cyclic prefix to the transmit signal, which renders
the linear convolution equivalent to a circular one.

This section presents SC-FDE, first for SISO, to cleanly explain the key ideas, and sub-
sequently for MIMO. The qualifier single-carrier is applied to distinguish this approach
from its multicarrier counterpart embodied by OFDM. For interested readers, a brief re-
view of the DFT is included in Appendix A.1.4.

2.5.1 Basic formulation

Consider the product of the K-point DFTs of the transmit signal and of the channel re-
sponse, namely

y[k] =
√
G h[k] x[k] 0 = 1, . . . ,K − 1, (2.185)

which corresponds, in the discrete-time domain, to the circular convolution

y[n] =
√
G

K−1∑
�=0

h[�]x
[
((n− �))K

]
n = 0, . . . ,K − 1, (2.186)

where ((·))K indicates modulo-K. From (2.185), and provided the channel response is
nonzero, ZF equalization only requires computing 1√

G
y[k]/h[k] for k = 0, . . . ,K − 1.

The complexity is low, requiring only divisions in the frequency domain in addition to the
transformations between time and frequency.

Let us see how to take advantage of such a low-complexity equalization possibility,
starting by explaining why (2.185) cannot be applied directly. Suppose that h[n] is FIR of
order L and that K > L, such that the K-point DFT of h[n] is computed by zero-padding
h[0], . . . , h[L] with K − L+ 1 zeros. Then, (2.186) becomes

y[n] =
√
G

L∑
�=0

h[�]x
[
((n− �))K

]
n = 0, . . . ,K − 1 (2.187)
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... x[K−1]x[1]... x[0]x[−1]x[−Lc]

xxxxxxxxxxxxx ︸︷︷︸
y

xxxxxxxxxxxxx ︸︷︷︸
yCyclic prefix Payload data

�Fig. 2.13 Extended signal x̄[n] obtained by appending a cyclic prefix of length Lc to a block of

K payload symbols.

whose inspection for different values of n gives

y[n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
G

n∑
�=0

h[�]x[n− �] +
√
G

L∑
�=n+1

h[�]x[n+K − �] n = 0, . . . , L− 1

√
G

L∑
�=0

h[�]x[n− �] n = L, . . . ,K − 1

where the portion corresponding to n > L does look like a linear convolution, but the rest
depends on values at the end of the signal block. The issue is precisely that the propaga-
tion channel (determined by nature and by the electronics) effects a linear convolution in
discrete time, but SC-FDE is only possible under a circular convolution.

One solution to this problem is to insert a cyclic prefix, whereby the last few symbols are
duplicated at the beginning of the block so as to create the effect of a circular convolution
from a purely linear one. Denoting the length of such cyclic prefix by Lc ≥ L, this results
in the extended discrete-time signal block (see Fig. 2.13)

x̄[n] =

{
x[n+K] n = −Lc, . . . ,−1

x[n] n = 0, . . . ,K − 1.
(2.188)

This cyclic prefix does make the linear convolution output look as if it came from a circular
convolution. To see that, consider the output

ȳ[n] =
√
G

L∑
�=0

h[�] x̄[n− �] n = 0, . . . ,K − 1. (2.189)

Evaluated for n = 0, the above gives

ȳ[0] =
√
G

(
h[0] x̄[0] + h[1] x̄[−1] + · · ·+ h[L] x̄[−L]

)
(2.190)

which, by virtue of the structure of x̄[n], equals

ȳ[0] =
√
G

(
h[0]x[0] + h[1]x[K − 1] + · · ·h[L]x[K − L]

)
(2.191)

=
√
G

L∑
�=0

h[�]x
[
((−�))K

]
. (2.192)

The same relationship can be seen to hold for an arbitrary n, precisely

ȳ[n] =
√
G

L∑
�=0

h[�]x
[
((n− �))K

]
n = 0, . . . ,K − 1 (2.193)
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and therefore ȳ[0], . . . , ȳ[K−1] coincide with the outcome of a circular convolution while
ȳ[−Lc], . . . , ȳ[−1] can be discarded by the receiver as far as the equalization is concerned.
(These samples may have other uses, e.g., for synchronization.)

Thanks to the insertion of the cyclic prefix then, and provided that Lc ≥ L, it is possible
to implement SC-FDE by computing 1√

G
IDFTK

{
y[k]/h[k]

}
. In matrix form, the output

of the equalizer is⎡
⎢⎣

x̂[0]
...

x̂[K − 1]

⎤
⎥⎦ = U∗ diag

(
1√

G h[0]
, . . . ,

1√
G h[K − 1]

)
U

⎡
⎢⎣

y[0]
...

y[K − 1]

⎤
⎥⎦ (2.194)

where U is a Fourier matrix that effects a DFT (see Appendix B.2.3) while U∗ effects the
IDFT. A diagram of SC-FDE is provided in Fig. 2.14. The equalizer complexity is fixed
and determined by the DFT and IDFT, which with an FFT implementation entail on the
order of K log2 K operations. From a complexity perspective it is thus desirable to keep
K small, which also promotes time-invariance over the block being equalized. However,
the overhead associated with the cyclic prefix is Lc

K+Lc
and hence, from that perspective, it

is desirable to increase K. The value for K emerges from resolving this tradeoff, an issue
that we shall revisit in the context of OFDM. In turn, Lc should be as small as possible
while respecting the condition Lc ≥ L; consequently, for the remainder of this section and
for the ensuing formulation of OFDM we directly set

Lc = L. (2.195)

Let us now see how the application of SC-FDE affects the noise. In the presence of
noise, the output of an SC-FDE ZF equalizer is⎡
⎢⎣

x̂[0]
...

x̂[K − 1]

⎤
⎥⎦ =

1√
G

U∗ diag
(

1

h[0]
, . . . ,

1

h[K − 1]

)
U

⎡
⎢⎣

y[0]
...

y[K − 1]

⎤
⎥⎦ (2.196)

=

⎡
⎢⎣

x[0]
...

x[K − 1]

⎤
⎥⎦+

1√
G

U∗ diag
(

1

h[0]
, . . . ,

1

h[K − 1]

)
U

⎡
⎢⎣

v[0]
...

v[K − 1]

⎤
⎥⎦

︸ ︷︷ ︸
Output noise, v̄

.

The noise contaminating this output is zero-mean with covariance

E
[
v̄v̄∗] = 1

G
U∗ diag

(
1

h[0]
, . . . ,

1

h[K − 1]

)
U E

⎡
⎢⎣
⎡
⎢⎣

v[0]
...

v[K − 1]

⎤
⎥⎦
⎡
⎢⎣

v[0]
...

v[K − 1]

⎤
⎥⎦
∗⎤
⎥⎦U∗

· diag
(

1

h[0]
, . . . ,

1

h[K − 1]

)∗
U

=
N0

G
U∗ diag

(
1

h[0]
, . . . ,

1

h[K − 1]

)
UU∗diag

(
1

h[0]
, . . . ,

1

h[K − 1]

)∗
U
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ȳ[n]

…
…

          …
          …

Discard cyclic prefix

DFTK

…
          …

          …

IDFTK

…
          …

          …
Parallel

to 
serial(
K : 1

)
1/

√
G h[0]

1/
√
G h[K − 1]
…

          …
          …

h[0]

h[L]

h[1]

0

0

…
      …

…

…h[0] h[K − 1]

Serial
to 

parallel(
1:K+Lc

)

×

×

DFTK

�Fig. 2.14 Above, an SC-FDE equalizer. Below, K-point DFT of the channel response that is fed

to the equalizer.

=
N0

G
U∗ diag

(
1

h[0]
, . . . ,

1

h[K − 1]

)
diag

(
1

h[0]
, . . . ,

1

h[K − 1]

)∗
U (2.197)

=
N0

G
U∗ diag

(
1

|h[0]|2 , . . . ,
1

|h[K − 1]|2
)
U . (2.198)

The above covariance matrix is, in general, not proportional to the identity, indicating that
the noise is correlated. The variance of the noise on the nth equalized symbol is[

N0

G
U∗ diag

(
1

|h[0]|2 , . . . ,
1

|h[K − 1]|2
)
U

]
n,n

(2.199)

=
N0

G

1

K

K−1∑
k=0

e−j 2πK nk 1

|h[k]|2 ej
2π
K nk (2.200)

=
N0

G

1

K

K−1∑
k=0

1

|h[k]|2 , (2.201)

which does not depend on n, revealing that the noise variance is constant over the output
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symbols; such variance is given by the average of the channel’s inverted power frequency
response. As seen later in the chapter, this is a point of differentiation with OFDM. This
noise variance expression also reveals the noise-enhancement issue that arises with ZF
channel inversion, something that can be alleviated by regularizing the strict inversion so
as to equalize in the LMMSE sense. This is the subject of Problem 2.27.

SC-FDE offers advantages with respect to time-domain linear equalization, including
the possibility of perfect channel inversion with an equalizer featuring a finite number of
coefficients and a very attractive degree of computational complexity. Whereas, in linear
equalization, the length of the equalizer grows with L, in SC-FDE the complexity is de-
termined only by K. The breakpoint where SC-FDE becomes more efficient than linear
equalization typically corresponds to rather small values of L, possibly as small as L = 4.

While our exposition has emphasized the use of copied data as a cyclic prefix, other
types of prefixes may be used, including sequences of pilot symbols [153, 154] or simply
zeroes [155, 156]. The alternative of pilot sequences, which when utilized as prefixes are
termed pilot words in some WLAN standards, is the subject of Problem 2.29.

2.5.2 Extension to MIMO

Let us now extend the SC-FDE formulation to MIMO. At the transmitter, a cyclic prefix
is added to the signal sent from each transmit antenna. At the receiver, there is a bank
of Nr DFTs whose outputs are fed into K matrix equalizers; the K equalized vectors thus
obtained are subsequently recombined and run through a bank of Nt IDFT transformations.
A diagram of the entire process with ZF equalization is provided in Fig. 2.15.

The vector of prefixed signals

x̄[n] =

{
x[n+K] n = −L, . . . ,−1

x[n] n = 0, . . . ,K − 1
(2.202)

engenders at the receiver, with the noise ignored,

ȳ[n] =
√
G

L∑
�=0

H[�] x̄[n− �] n = 0, . . . ,K − 1. (2.203)

Applying the same logic as in (2.193), we have that

y[n] =
√
G

L∑
�=0

H[�]x
[
((n− �))K

]
n = 0, . . . ,K − 1, (2.204)

which, in the frequency domain, corresponds to

y[k] =
√
GH[k] x[k] k = 0, . . . ,K − 1, (2.205)

where y[k] = DFTK{y[n]}, x[k] = DFTK{x[n]}, and

H[k] = DFTK

{
H[n]

}
(2.206)

=
L∑

�=0

H[�] e−j 2πK k� k = 0, . . . ,K − 1. (2.207)
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matrix entries that are fed to the equalizer.

To perform ZF equalization, the receiver must compute

x̂[n] =
1√
G

IDFTK

{
H†[k] y[k]

}
n = 0, . . . ,K − 1, (2.208)

which amounts to K channel inversions, one per discrete frequency. Alternatives to ZF are
of course also possible, say LMMSE equalization on a per-frequency basis.

As far as the noise, for all but trivial channels it is spatially correlated at the equalizer’s
output. Its covariance depends on the specifics of the equalizer, but it is the same at all
frequencies. With ZF, the output noise experienced by the signal sent from antenna j has
variance

N0

G

1

K

K−1∑
k=0

1[(
H∗[k]H[k]

)−1
]
j,j

(2.209)
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which is the MIMO generalization of (2.201).
MIMO SC-FDE involves the same steps as SISO SC-FDE, although with an increased

number of operations because of the multiple inputs and outputs [157, 158]. After discard-
ing the cyclic prefix, the receiver must compute Nr K-point DFTs to transform the inputs,
NtNr K-point DFTs to obtain the frequency response of the channel, K matrix pseu-
doinverses, K products of those inverses with the frequency-domain observations, and Nr

K-point IDFTs. Despite these seemingly many operations, the overall complexity is lower
than that of a linear equalizer even for relatively small values of L and K [152, 159]. Only
for very small L may linear equalization be superior for the same complexity.

2.6 OFDM

SC-FDE relies on performing a DFT on the received signal, equalizing with the DFT of
the channel, and taking the IDFT to form the equalized sequence. This concentrates the
equalization operations at the receiver. Alternatively, it may be of interest to balance the
operational load between transmitter and receiver. This can be achieved by shifting the
IDFT to the transmitter, and what ensues is OFDM [160, 161]. The defining feature of
OFDM is that the transmission gets parallelized, meaning that symbols that would oth-
erwise be transmitted serially are now conveyed concurrently over a bank of subcarriers
or tones (see Fig. 2.16). In conjunction with the fact that blocks of symbols constitute
codewords, this implies that the coding takes place in the frequency—rather than time—
domain. Deferring the information-theoretic implications to Chapter 4, in this section we
review the signal processing aspects of OFDM starting with SISO and then graduating
to MIMO. The exposition differs from other books in that we build on the mathematics
developed for SC-FDE.

2.6.1 Basic formulation

Reconsider the SC-FDE block diagram in Fig. 2.14. To convert it to OFDM, an IDFT is
inserted after the serial-to-parallel converter at the transmitter while removing the IDFT
from the receiver. The resulting diagram is illustrated in Fig. 2.17 and expounded next.

Transmitter
The symbols to be sent are treated as being in the frequency domain, denoted by x[k]. The
transmitter parses them into blocks of K and runs each block through an IDFT to produce

x[n] =
1

K

K−1∑
k=0

x[k] ej
2π
K nk n = 0, ...,K − 1, (2.210)



105 2.6 OFDM

xxxxxxxxxxxxx
︸

︷︷
︸

y

xxxxxxxxxxxxx ︸︷︷︸ y

xxxxxxxxxxxxx ︸︷︷︸ y

t

f
TOFDM = (K + L)T

B

K

...
...

.........

T

B

Cyclic prefix Payload data
L K

x[n] x[k]K

�Fig. 2.16 Left, serial transmission of K + L symbols in time. Right, parallel transmission of K

subcarriers in frequency. (The nonoverlapping shapes are for illustration purposes

only, and to emphasize the orthogonality in each domain; in actuality, symbols and

subcarriers do overlap with their neighbors.) The footprint on the time–frequency

plane is (K + L)T ×B in both cases.
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which, after insertion of an L-symbol cyclic prefix, becomes

x̄[n] =
1

K

K−1∑
k=0

x[k] ej
2π
K nk n = −L, ...,K − 1. (2.211)
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Featuring a cyclic prefix, this time-domain signal is equipped to generate a circular con-
volution from the channel. The interpretation invited by (2.211) and illustrated at the top
of Fig. 2.18 is that x[k] is sent over a subcarrier ej

2π
K kn at a discrete frequency k/K, for

k = 0, . . . ,K − 1. Hence the consideration of OFDM as a multicarrier—or multitone—
transmission scheme. Typically, K is a power of two to allow for the FFT to be employed.

Receiver
At the receiver, after discarding the cyclic prefix and with the noise neglected for now,

y[n] =
√
G

L∑
�=0

h[�] x̄[n− �] (2.212)

=
√
G

L∑
�=0

h[�]x[((n− �))K ] n = 0, . . . ,K − 1, (2.213)

which, in the frequency domain, corresponds to

y[k] =
√
G h[k] x[k] k = 0, . . . ,K − 1. (2.214)

As an alternative to exploiting that a linear convolution with x̄[n] equals a circular convo-
lution with x[n], we can directly substitute for x̄[n] in (2.212) to obtain

y[n] =

√
G

K

L∑
�=0

h[�]

K−1∑
k=0

x[k] ej
2π
K k(n−�) (2.215)

from which, expanding the complex exponential and rearranging the summations,

y[n] =

√
G

K

L∑
�=0

h[�]

K−1∑
k=0

x[k] ej
2π
K kn e−j 2πK k� (2.216)

=

√
G

K

K−1∑
k=0

(
L∑

�=0

h[�] e−j 2πK k�

)
x[k] ej

2π
K kn (2.217)

=

√
G

K

K−1∑
k=0

h[k] x[k] ej
2π
K kn, (2.218)

which is indeed the IDFT of
√
G h[k] x[k]. Equalization entails simple per-subcarrier oper-

ations, with ZF in particular amounting to

x̂[k] =
y[k]√
G h[k]

k = 0, . . . ,K − 1. (2.219)

The absence of ISI in the OFDM transmit–receive relationship indicates that each subcar-
rier experiences a frequency-flat channel, and this is one of the main justifications for the
prevalence and claimed generality of frequency-flat analyses and algorithms.

Incorporating noise onto the formulation,

y[k] =
√
G h[k] x[k] + v[k], (2.220)
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�Fig. 2.18 Above, discrete-frequency signal x[k] where, for illustration purposes, each shown

subcarrier is modulated by a +1 BPSK symbol. Below, corresponding

continuous-frequency signal x(f) with a rectangular time-domain pulse shape.

where v[0], . . . , v[K− 1] is IID with v[k] ∼ NC(0, N0) because the IID complex Gaussian
distribution of v[0], . . . , v[K−1] is invariant to unitary transformations such as a DFT (see
Appendix C.1.6).

With ZF as in (2.219), the variance of the output noise on subcarrier k equals

N0

G

1

|h[k]|2 , (2.221)

which depends on k.

Pulse shaping
Before proceeding, and given that OFDM underlies many of the derivations in this text, it
is appropriate that we establish some terminology:

An IDFT sample, x[n], is termed an OFDM chip. The interval between successive chips,
the chip period, equals what the single-carrier symbol period would be in the absence of
OFDM and is thus denoted by T .
The number of subcarriers is K, the dimension of the IDFT/DFT.
The collection of chips x̄[−L], . . . , x̄[K − 1] forms an OFDM symbol.
The OFDM symbol period is TOFDM = (K + L)T .
The subcarrier spacing indicates the frequency-domain displacement between adjacent
subcarriers.

Prior to upconversion, the discrete-time OFDM symbols need to be turned into an analog
waveform, for which purpose a pulse shape needs to be defined. Recalling the single-carrier
pulse shaping discussion earlier in this chapter, the simplest starting point is to consider a
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rectangular shape. Excluding the cyclic prefix, which is added after the IDFT and dis-
carded before the DFT, a rectangular pulse of duration KT endows the subcarriers with a
KT sinc(fKT ) shape and gives rise to the classical illustration at the bottom of Fig. 2.18.
The attractiveness of OFDM stems from the tight interlacing of the subcarriers, courtesy
of the DFT, which keeps them orthogonal yet closely packed. Moreover, all K subcarriers
are tied to a single oscillator, in stark contrast with multicarrier schemes of yore where
each subcarrier was driven by a separate oscillator and the orthogonality was vulnerable
to the relative drift of any of those oscillators. In essence, OFDM produces a frequency-
domain dual of the time-domain arrangement of symbols in single-carrier transmission
with sinc(·) pulse shapes (recall Fig. 2.8). The subcarrier spacing of 1/K in discrete fre-
quency translates, given the sampling period T , to 1

KT in continuous frequency, and thus
the K subcarriers span a bandwidth of 1/T .

Example 2.22

Let TOFDM = 3.2 μs with K = 256 subcarriers and a cyclic prefix of length L = 64.
Find the chip period T , the passband bandwidth 1/T , the subcarrier spacing, and the guard
interval spanned by the cyclic prefix.

Solution

The chip period T satisfies (256 + 64)T = 3.2 μs and thus T = 10 ns. Then, 1/T = 100

MHz and the subcarrier spacing is 1
KT = 390.6 kHz. The guard interval is LT = 0.64 μs

and therefore channels with impulse responses of this duration can be handled.

Increasing K renders the subcarriers narrower and faster-decaying in frequency, and in
that respect a larger number of subcarriers is advantageous, but nevertheless the overall
signal is bound to spill outside the interval 1/T (refer to Problems 2.32 and 2.33), making
it necessary to zero-out some edge subcarriers.

Precisely because of the possibility of turning off edge subcarriers, pulse shaping is less
critical in OFDM than in single-carrier transmission. Nonetheless, to steepen the spectral
decay and reduce the number of wasted subcarriers, the rectangular pulse shape in the time
domain can be smoothed into a raised cosine, reinforcing the time–frequency duality be-
tween OFDM and single-carrier transmission. This can be done by multiplying the OFDM
chips by coefficients chiseling every OFDM symbol into the desired shape, in a process
termed windowing. Alternatively, the OFDM signal can be filtered before transmission, at-
tenuating out-of-band power at the expense of compromising part of the cyclix prefix and
thus the tolerance to channel dispersion [162].

Proceeding as in single-carrier transmission, we declare the passband bandwidth to be
B = 1/T , with the understanding that there is inevitably some excess bandwidth—the idle
edge subcarriers—and that any spectral efficiency expression derived in the book can be
corrected by applying an appropriate penalty factor.
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Example 2.23

In LTE, the subcarrier spacing is 15 kHz and every 5 MHz of bandwidth accommodates
K = 300 subcarriers. What penalty factor should be applied to the spectral efficiency
computed with B = 1/T ?

Solution

Since 300 ·15 ·103 Hz out of 5 ·106 Hz are used, the penalty factor equals 300·15·103
5·106 = 0.9.

For NR, this tightens up to 0.96.

Besides influencing the containment of the signal within the bandwidth 1/T , the sub-
carrier spacing determines the sensitivity to time variations in the channel and to residual
frequency offsets, which respectively distort and displace the subcarriers. It also determines
the resolution of channel frequency selectivity. We provide guidelines on how to select the
subcarrier spacing—which, for a given bandwidth, amounts to selecting K—in Chapter 4,
once detailed models for the wireless channel are in place.

Comparisons abound between OFDM and single-carrier techniques [152, 159, 163].
OFDM is highly scalable and flexible, as each subcarrier can be loaded with a distinct
power—even turned off by making that power zero—as well as modulated with a different
constellation. These virtues come at the expense of a pronounced increase in peakedness,
with the PAPR being essentially proportional to K, as well as enhanced sensitivity to RF
impairments such as nonlinearity [164], frequency offsets [165], gain and phase imbalances
between transmitter and receiver [166], and phase noise [167]. In terms of complexity, the
overall volume of operations is similar in OFDM and in SC-FDE and, except for the com-
putation of the channel frequency response, it is independent of L. This is advantageous
over time-domain equalization where, as mentioned, complexity does grows with L. The
OFDM complexity is balanced between transmitter and receiver, while in SC-FDE and in
time-domain equalization it is heavily concentrated at the receiver.

For LTE, the balance of the foregoing tradeoffs led to the selection of SC-FDE and
OFDM for the reverse and forward links, respectively. For NR, OFDM is employed in
both directions.

Resource elements
As the parallelization effected by OFDM is only partial, and the signals are parceled in
both time (OFDM symbols) and frequency (subcarriers), the most convenient canvas for
their representation is the time–frequency plane introduced in Fig. 2.16 and that makes re-
peated appearances throughout the text. The basic unit that emerges from the simultaneous
parceling in time and frequency is the OFDM resource element, which corresponds to an
OFDM symbol in time and a subcarrier in frequency (see Fig. 2.19). Being the basic unit
over which codewords can be constructed, the resource element is the direct generalization
to OFDM of the notion of single-carrier symbol.
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2.6.2 Extension to MIMO

A block diagram of MIMO-OFDM is presented in Fig. 2.20. The signal to be transmitted
from each antenna is subject to the OFDM procedures of IDFT and cyclic prefix insertion
and then, at the receiver, removal of cyclic prefix followed by FFT; the difference with
SISO appears when it comes to the equalization. The MIMO counterpart to (2.214) is

y[k] =
√
GH[k] x[k] + v[k] k = 0, . . . ,K − 1, (2.222)

which, on a subcarrier basis, does not differ from the frequency-flat MIMO channels for
which equalizers are derived in this chapter, say the ZF equalizer in Example 2.18 or the
LMMSE equalizer in Example 2.21. This justifies the anticipated emphasis on frequency-
flat channels throughout this text and in much of the research in this area. Because of the
simple equalization that it enables, also with MIMO, a majority of wireless and wireline
standards have come to adopt OFDM [168–170].

2.7 Channel estimation

Equalization and coherent data detection require CSI at the receiver. While blind algo-
rithms are available that exploit the structure of the signal to gather information about the
channel (see, e.g., [171–174]), most wireless systems rely on pilot-assisted channel esti-
mation. The defining feature of this approach is the insertion of known pilot symbols, also
termed reference or training symbols, within the transmit data [175–177]. The receiver ex-
plicitly estimates the channel coefficients on the basis of the corresponding observations
and then applies those estimates to tasks such as equalization and data detection; as a by-
product, pilot symbols facilitate other procedures such as synchronization.

In this section, we take a first look at the issue of estimating a MIMO channel on the
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�Fig. 2.20 MIMO-OFDM block diagram with ZF equalization.

basis of pilot observations for both single-carrier and OFDM transmission. Some of the
derivations that follow are then retaken in Section 3.7, with the benefit of the time-varying
wireless channel models presented throughout Chapter 3, so as to obtain relevant expres-
sions for these models that then sprinkle the rest of the book.

2.7.1 Single-carrier channel estimation

Consider a sequence of known time-domain pilots p[0], . . . ,p[Np − 1] where Np ≥ 1

denotes the number of pilots, each an Nt × 1 vector. These pilots are transmitted through
an L-tap MIMO channel

√
GH[�], for � = 0, . . . , L, where G is known but the matrices

H[0], . . . ,H[L] are not. From observations of the received signal and the knowledge of
the pilots, plus whatever is known about the channel and noise distributions, optimization
problems can be formulated whose solutions are the channel estimates Ĥ[0], . . . , Ĥ[L].

Recalling from Section 2.3.3 how convolutions can be formulated through vectorization,
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we can vectorize the part of the channel convolution that involves only p[0], . . . ,p[Np−1]

without contribution from other (in principle unknown) payload data symbols that may
precede or succeed these pilots. To that end, let us define a carefully curtailed Nt(L+1)×
(Np − L) block matrix

P̄ =

⎡
⎢⎢⎢⎣

p[L] p[L+ 1] · · · p[Np − 1]

p[L+ 1] p[L+ 2] · · · p[Np − 2]
... . .

.
. .
. ...

p[0] p[1] · · · p[Np − L− 1]

⎤
⎥⎥⎥⎦ , (2.223)

where each pilot symbol appears repeated along a rightward-ascending diagonal, forming
what is referred to as a Hankel matrix (see Appendix B.2.5). Assembling H[0], . . . ,H[L]

into the Nr ×Nt(L+ 1) block matrix

H̄ =
[
H[0] H[1] · · · H[L]

]
, (2.224)

the Nr × (Np − L) matrix of observations Ȳ =
[
y[L] · · · y[Np − 1]

]
containing only

contributions from pilot symbols can be expressed as

Ȳ =
√
GH̄P̄ + V̄ , (2.225)

where

V̄ =
[
v[L] v[L+ 1] · · · v[Np − 1]

]
. (2.226)

An alternative form may be derived from (2.225) by applying the operator vec(·), which
stacks the columns of a matrix onto a vector. This gives

vec(Ȳ ) =
√
G vec(H̄P̄ ) + vec(V̄ ) (2.227)

=
√
G
(
P̄ T ⊗ INr

)
vec(H̄) + vec(V̄ ) (2.228)

=
√
GP̄⊗ vec(H̄) + vec(V̄ ), (2.229)

where ⊗ denotes the Kronecker product (see Appendix B.8) such that P̄⊗ = P̄ T⊗INr
is an

Nr(Np−L)×NtNr(L+1) matrix. In (2.228) we used vec(ABC) = (CT ⊗A)vec(B).

Maximum-likelihood and least-squares channel estimation
Let us begin by assuming that the conditional distribution of the received signal given the
channel is known. This amounts to knowing that the channel is linear and contaminated by
AWGN, i.e., that the transmit–receive relationship abides by (2.229). No other statistical
assumptions are made for now, and in particular the distribution of the channel itself need
not be known. The conditional distribution of the received signal given the channel suffices
for ML estimation, a classical approach mentioned briefly in Chapter 1 that selects as an
estimate the quantity with the highest likelihood. The ML estimate converges in probability
(see Appendix C.1.10) to its true value as the number of observations grows large [115].

Consider (2.229). Since P̄⊗ is known, the observation elicited by a certain channel re-
alization h is complex Gaussian with mean

√
GP̄⊗h and covariance N0I . The likelihood
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function we need is the corresponding PDF, to wit

fvec(Ȳ )|vec(H̄)(y|h) =
1

(πN0)(Np−L)Nr
exp

(
−‖y −√

GP̄⊗h‖2
N0

)
. (2.230)

The ML estimate of vec(H̄) given the observation y is

vec( ˆ̄H)(y) = argmax
h

fvec(Ȳ )|vec(H̄)(y|h), (2.231)

where the maximization is over all vectors h of dimension NtNr(L+ 1). Since the expo-
nential function is monotonic, the above is equivalent to minimizing − log fvec(Ȳ )|vec(H̄)(·).
Neglecting constants, which are immaterial to the minimization, this leads to

vec( ˆ̄H)(y) = argmin
h

‖y −
√
GP̄⊗h‖2. (2.232)

This least-squares minimization appears in Section 2.4.1, in the context of ZF equalization,
and if P̄⊗ is tall (or at least square) and full-rank, then the solution is given by

vec( ˆ̄H)(y) =
1√
G
(P̄ ∗

⊗P̄⊗)
−1P̄ ∗

⊗︸ ︷︷ ︸
W LS∗

y, (2.233)

which amounts to applying the linear estimator W LS = 1√
G
P̄⊗(P̄

∗
⊗P̄⊗)

−1 to the observa-
tion. Since P̄⊗ is Nr(Np − L)×NtNr(L+ 1), ensuring that it is square or tall requires

Np ≥ (L+ 1)Nt + L, (2.234)

while ensuring that P̄⊗ is full-rank requires that the constituent matrix P̄ be itself full-rank,
something that can be achieved through careful design of the pilot sequence. Estimators
that solve problems of the form of (2.232) are known, because of the structure of those
problems, as least-squares estimators, and they are relatively easy to compute using linear
algebra [178, chapter 5]. Least-squares estimators thus happen to be, owing to the form of
the complex Gaussian PDF, also ML estimators in channels contaminated by AWGN; this
is a welcome occurrence.

Problem 2.36 proposes verifying that, for a channel realization h, the least-squares esti-
mate satisfies

E

[
vec( ˆ̄H) |vec(H̄)=h

]
= h, (2.235)

meaning that the estimation error is zero-mean and there is no bias. Over the distributions
of channel and noise, the mean-square error matrix is

E = E

[(
vec(H̄)− vec( ˆ̄H)

)(
vec(H̄)− vec( ˆ̄H)

)∗]
(2.236)

=
1

G
E

[(
(P̄ ∗

⊗P̄⊗)
−1P̄ ∗

⊗vec(V̄ )
)(
(P̄ ∗

⊗P̄⊗)
−1P̄ ∗

⊗vec(V̄ )
)∗]

(2.237)

=
1

G
(P̄ ∗

⊗P̄⊗)
−1P̄ ∗

⊗ E
[
vec(V̄ )vec(V̄ )∗

]
P̄⊗(P̄

∗
⊗P̄⊗)

−1 (2.238)

=
N0

G
(P̄ ∗

⊗P̄⊗)
−1. (2.239)
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To unravel vec( ˆ̄H) and express it as a function of the original P̄ rather than P̄⊗, we can
exploit certain properties of the Kronecker product (see Appendix B.8) and write

(P̄ ∗
⊗P̄⊗)

−1P̄ ∗
⊗ =

(
(P̄ T ⊗ I)∗(P̄ T ⊗ I)

)−1
(P̄ T ⊗ I)∗ (2.240)

=
(
(P̄ c ⊗ I)(P̄ T ⊗ I)

)−1
(P̄ c ⊗ I) (2.241)

=
(
(P̄ cP̄ T ⊗ I)

)−1
(P̄ c ⊗ I) (2.242)

=
(
P̄ cP̄ T)−1 ⊗ I

)
(P̄ c ⊗ I) (2.243)

= (P̄ cP̄ T)−1P̄ c ⊗ I, (2.244)

which, in conjunction with (2.233), gives

vec( ˆ̄H) =
1√
G

(
(P̄ cP̄ T)−1P̄ c ⊗ I

)
vec(Ȳ ). (2.245)

It is also possible to unvectorize the estimate and put it in terms of the unstacked matrix
H̄ rather than vec(H̄). Using again vec(ABC) = (CT ⊗ A)vec(B), only this time
backwards, we obtain

ˆ̄H =
1√
G
Ȳ
(
(P̄ cP̄ T)−1P̄ c

)T
(2.246)

=
1√
G
Ȳ P̄ ∗(P̄ P̄ ∗)−1, (2.247)

which admits the interpretation of Ȳ P̄ ∗ correlating the observations with the pilot se-
quence while (P̄ ∗P̄ )−1 removes from the ensuing channel estimate the autocorrelation of
that very pilot sequence. This relates to the LMMSE channel estimate discussed later in
the section.

In comparison with (2.233), the form in (2.247) entails the inversion of a smaller matrix
as well as fewer scalar products. Moreover, since the pilot sequence is known, P̄ ∗(P̄ P̄ ∗)−1

can be precomputed and the evaluation of the estimate only requires a matrix multiplication
for each i = 0, . . . , Nr − 1. Also notice that the ith row of H̄ corresponds to the channel
coefficients between the Nt transmit and the ith receive antenna, while the ith row of Ȳ
corresponds to the observation at the ith receive antenna. From (2.247) then, each row of
H̄ can be estimated simultaneously and independently of the other rows.

Not all pilot sequences are equally effective and it has been shown that, for least-squares
channel estimation in AWGN, it is best if P̄ P̄ ∗ is a scaled identity matrix with the largest
scaling factor allowed by the transmit power constraint (refer to Problem 2.39). In light
of the Hankel form of P̄ , the product P̄ P̄ ∗ contains partial autocorrelations as well as
cross-correlations and thus an ideal pilot sequence requires perfect partial autocorrelation
and zero partial cross-correlation. This is sensible, as correlations in the pilot sequence
would reduce the information gathered by the receiver while power imbalances would
improve the estimation of some coefficients at the expense of others. Structures that are
attractive because of their correlation properties include Gold codes and Zadoff–Chu se-
quences [179–181]. For the latter in particular, and with a prime value of Np, so-called
Zadoff–Chu root sequences can be obtained as follows. The nth symbol of the jth root
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sequence is

e−jπn(n+1)j/Np n = 0, . . . , Np − 1 j = 1, . . . , Np − 1. (2.248)

Each length-Np root sequence is of unit-magnitude and, most importantly, orthogonal to
any cyclic version of itself; therefore, from each root sequence a family of orthogonal pilot
sequences can be obtained through mere shifts. Moreover, the cross-correlation between
distinct root sequences is well-behaved and the DFT of a Zadoff–Chu sequence is also a
(scaled) Zadoff–Chu sequence. These attractive properties have led Zadoff–Chu sequences
to be adopted by LTE, among other standards.

Example 2.24 (Least-squares estimator for a frequency-flat SISO channel)

Let L = 0 and Nt = Nr = 1. For this simplest of settings, a single scalar pilot suffices.
With such a pilot being

√
Ese

jφ where φ is an arbitrary phase, (2.247) reduces to

ĥ =
e−jφ

√
GEs

y (2.249)

while E in (2.239) reduces to

MMSE =
N0

GEs
(2.250)

=
1

SNR
, (2.251)

which does not depend on φ; the pilot’s phase can thus be set to zero.
For Np > 1, P̄ becomes a row vector and the pilot sequence requires no special struc-

ture: in this setting, P̄ P̄ ∗ is always a scalar, even if the same pilot symbol is simply re-
peated. It is easy to verify that

MMSE =
1

NpSNR
, (2.252)

indicating that the accrual of energy over multiple pilots has the same effect as increasing
the energy of a single pilot.

Example 2.25

Let Nt = Nr = 1, but now with arbitrary L. Show how a sequence with perfect periodic
correlation can be utilized to construct a pilot sequence of the desired length Np.

Solution

Consider a sequence x[0], . . . , x[Q− 1] with perfect periodic cross correlation, i.e., with

Q−1∑
n=0

x∗[((n− �))Q]x[n] = Qδ[n]. (2.253)

Now, let Np = Q+L and create a pilot sequence by adding to x[0], . . . , x[Q− 1] a cyclic
prefix of length L. The corresponding P̄ defined as per (2.223) satisfies P̄ P̄ ∗ = QI .
Scaled up to the maximum permissible transmit power, such P̄ conforms to the desiderata.
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The idea in this example extends to MIMO, and readers interested in this generalization
are referred to [182, 183].

Example 2.26 (Least-squares estimator for a frequency-flat MIMO channel)

For L = 0 with the channel embodied by the Nr × Nt matrix H , we have that H̄ = H

directly while P̄ =
[
p[0] · · · p[Np − 1]

]
is Nt × Np and Ȳ = [y[0] · · · y[Np − 1]] is

Nr ×Np. Then, under the condition Np ≥ Nt, (2.247) reduces to

Ĥ =
1√
G

∑Np−1
n=0 y[n]p∗[n]∑Np−1
n=0 ‖p[n]‖2

, (2.254)

where the numerator correlates the observations with the pilot sequence while the denom-
inator normalizes by the energy of the latter.

In a frequency-flat channel, the jth row of P̄ is the pilot sequence sent from the jth
transmit antenna and the condition that P̄ P̄ ∗ be proportional to the identity translates to
those Nt sequences being orthogonal.

Example 2.27

Design a set of Nt orthogonal pilot sequences of length Np ≥ Nt.

Solution

Select Nt out of the Np rows of an Np ×Np unitary matrix (see Appendix B) and scale as
allowed by the applicable power constraint.

The least-squares estimator can be generalized to settings where P̄ may not be fully
known ahead of time. For instance, detected data symbols can be treated as additional
pilots in what is known as data-aided estimation [184]. In this case, P̄ ∗(P̄ P̄ ∗)−1 can-
not be precomputed because the data part is unknown. Adaptive algorithms such as the
recursive least-squares, normalized least-squares, and least mean-squares algorithms can
be employed in this case [185]. Adaptive algorithms are extensible to the case where the
channel is time-varying and the estimate needs to be updated periodically.

Variations of the least-square solution may also be entertained, for instance a scaled
version of the estimator may achieve a lower mean-square error at the expense of such
estimator no longer being unbiased for every channel realization. Readers interested in
how to tweak such fixed scaling are referred to [183].

LMMSE channel estimation
The least-squares channel estimator that we obtained by applying the ML criterion only
involves prior knowledge of the pilot sequence and the observation of that sequence at the
receiver. The statistics of the channel do not enter the formulation and yet, as elaborated
in Chapter 3, those statistics are rather stable and thus they can be known with relative
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certitude. This opens the door to formulating an MMSE channel estimator, in which the
estimate of each channel realization is optimally biased such that the mean-square error is
minimized. The expectation of these biases over all channel realizations, however, is still
zero.

Particularly accessible are the second-order channel statistics, based on which an LMMSE
estimator can be implemented. To continue subsuming both MIMO and frequency selec-
tivity, we stay with the vectorized transmit–receive relationship in (2.229), namely

vec(Ȳ ) =
√
GP̄⊗ vec(H̄) + vec(V̄ ). (2.255)

Since the mean of a quantity being estimated does not influence the MMSE, we can restrict
ourselves to zero-mean channels for which Rvec(H̄) = E

[
vec(H̄) vec(H̄)∗

]
is known.

Then, from Rvec(V̄ ) = N0I , also Rvec(Ȳ ) and Rvec(Ȳ )vec(H̄) are known.
Exercising the teachings of Section 1.7, the LMMSE channel estimate is

vec( ˆ̄H) = W MMSE∗vec(Ȳ ) (2.256)

where, applying (1.244),

W MMSE = R−1
vec(Ȳ )

Rvec(Ȳ )vec(H̄) (2.257)

=
√
G

(
GP̄⊗Rvec(H̄)P̄

∗
⊗ +N0I

)−1
P̄⊗Rvec(H̄) (2.258)

or, equivalently, applying (1.250),

W MMSE =
√
GP̄⊗

(
N0R

−1
vec(H̄)

+GP̄ ∗
⊗P̄⊗

)−1
(2.259)

while, from (1.245), the MMSE matrix is

E = E

[(
vec(H̄)− vec( ˆ̄H)

)(
vec(H̄)− vec( ˆ̄H)

)∗]
(2.260)

= Rvec(H̄) −R∗
vec(Ȳ )vec(H̄)R

−1
vec(Ȳ )

Rvec(Ȳ )vec(H̄) (2.261)

= Rvec(H̄) −GR∗
vec(H̄)P̄

∗
⊗
(
GP̄⊗Rvec(H̄)P̄

∗
⊗ +N0I

)−1
P̄⊗Rvec(H̄). (2.262)

Example 2.28

Verify that, for a given realization of a zero-mean channel, the LMMSE estimate exhibits
a bias and that the expectation of this bias over the channel distribution is zero.

Solution

For vec(H̄) = h, applying the LMMSE estimator form in (1.250),

E

[
vec( ˆ̄H) |vec(H̄)=h

]
= E

[
W MMSE∗(√GP̄⊗vec(H̄) + vec(V̄ )

) |vec(H̄)=h
]

= E

[(
N0

G
R−1

vec(H̄)
+ P̄ ∗

⊗P̄⊗

)−1

P̄ ∗
⊗P̄⊗ vec(H̄) (2.263)

+
√
G
(
N0R

−1
vec(H̄)

+GP̄ ∗
⊗P̄⊗

)−1
P̄ ∗

⊗ vec(V̄ ) |vec(H̄)=h

]



118 A signal processing perspective

=

(
N0

G
R−1

vec(H̄)
+ P̄ ∗

⊗P̄⊗

)−1

P̄ ∗
⊗P̄⊗︸ ︷︷ ︸

�=I

h (2.264)

�= h (2.265)

while E
[
vec( ˆ̄H)

]
= E

[
vec(H̄)

]
= 0.

While the least-squares form for vec( ˆ̄H) in (2.233) can be unvectorized—by unraveling
its underlying Kronecker structure—and written in terms of ˆ̄H as in (2.247), in general
the LMMSE estimator in (2.256) does not enable such unvectorization. Because it exploits
potential correlations in the channel coefficients, the LMMSE estimator cannot generally
be applied separately to the observations at each receive antenna. In some relevant special
cases though, when correlations within the channel are absent or they abide by certain
structures, simplification is forthcoming. For SISO settings also, the LMMSE formulation
becomes illuminatingly simple.

Example 2.29 (LMMSE estimation for a frequency-flat SISO channel)

For L = 0 and Nt = Nr = 1, a single pilot symbol suffices. With such pilot symbol having
energy Es, the LMMSE estimator reduces to

ĥ =

√
GEs

N0 +GEs
y (2.266)

=
SNR

1 + SNR

1√
GEs

y, (2.267)

whereas the MMSE matrix condenses down to

MMSE =
1

1 + SNR
, (2.268)

which is always lower than its least-squares cousin, MMSE = 1/SNR. By incorporating an
SNR-dependent bias to the least-squares estimate of each channel realization, the LMMSE
estimator reduces the MMSE down to its minimum.

As in least-squares estimation, increasing the number of pilots is tantamount to increas-
ing the SNR and thus, for arbitrary Np,

MMSE =
1

1 +NpSNR
. (2.269)

The LMMSE advantage over least-squares vanishes for SNR → ∞ and/or Np → ∞,
in the latter case because, as the number of observations grows, a least-squares estimator
becomes privy to the statistics required to perform LMMSE estimation in this setting.

Example 2.30 (LMMSE estimation for an IID MIMO channel)

Let the entries of H̄ be IID and, by normalization, of unit variance. Then, Rvec(H̄) = I

and

W MMSE =
√
GP̄⊗

(
N0 +GP̄ ∗

⊗P̄⊗
)−1

, (2.270)
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from which

vec( ˆ̄H) =
√
G

(
GP̄ ∗

⊗P̄⊗ +N0I(L+1)NtNr

)−1
P̄ ∗

⊗vec(Ȳ ), (2.271)

while the MMSE matrix in (2.262) specializes to

E = I −GP̄ ∗
⊗
(
GP̄⊗P̄

∗
⊗ +N0I

)−1
P̄⊗. (2.272)

In the foregoing expression for vec( ˆ̄H), the dimensionality of the identity matrix has been
noted explicitly to set the stage for the decomposition N0I(L+1)NtNr

= N0I(L+1)Nt
⊗INr

.
Recalling that P̄⊗ = P̄ T ⊗ INr , we can then write

vec( ˆ̄H) =
√
G

(
GP̄ cP̄ T ⊗ INr

+N0I(L+1)Nt
⊗ INr

)−1
(P̄ c ⊗ INr

) vec(Ȳ ) (2.273)

=
[√

G
(
GP̄ cP̄ T +N0I(L+1)Nt

)−1
P̄ c ⊗ INr

]
vec(Ȳ ) (2.274)

and, resorting once more to the identity vec(ABC) = (CT ⊗A) vec(B), what ensues is

ˆ̄H =
√
G Ȳ P̄ ∗(GP̄ P̄ ∗ +N0I

)−1
, (2.275)

which coincides with its least-squares counterpart in (2.247), save for the argument of the
inverse being regularized in proportion to the noise strength. This similarity is consistent
with the fact that the channel statistics, which differentiate the least-squares and LMMSE
estimators, are trivial when the entries of H̄ are IID; an SNR-dependent regularization
suffices to optimally bias the estimate of each realization. The possibility of unvectorizing
the estimate in the form (2.275) is also a consequence of the receive antennas being uncor-
related, as then the LMMSE estimate of each row of H̄ can be produced separately, based
only on the corresponding row of Ȳ .

Example 2.31

Elaborating on the previous example, suppose that P̄⊗ is constructed by taking a unitary
matrix (to balance the estimation error across the IID channel coefficient) and scaling it
to the maximum allowable transmit power (to keep that error to a minimum). Express the
MMSE incurred in the estimation of each of the NtNr(L + 1) channel coefficient as a
function of SNR = GEs

N0
where Es is the total transmit energy across all Nt antennas, i.e.,

such that E[‖p[n]‖2] = Es for every n. How does this MMSE behave for growing SNR?

Solution

Irrespective of the type of power constraint (because with P̄⊗ unitary the power is balanced
across time and antennas) we have that P̄⊗P̄

∗
⊗ = P̄ ∗

⊗P̄⊗ = Es

Nt
I . Then,

E = I −
(
1 +

N0Nt

GEs

)−1

I (2.276)

= I −
(
1 +

Nt

SNR

)−1

I (2.277)

=
1

1 + SNR
Nt

I (2.278)
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and thus, on each channel coefficient,

MMSE =
1

1 + SNR
Nt

. (2.279)

Save for the dependence on Nt, this is in perfect agreement with the SISO result in (2.268),
intuitively indicating that, when the channel coefficients are independent, there is no loss
of optimality in estimating them separately. The dependence on Nt reflects that, for a fixed
transmit power, the MMSE per channel coefficient shrinks with Nt because the power of
the scalar pilot symbol transmitted by each antenna diminishes. In contrast, the MMSE per
channel coefficient depends neither on Nr nor on L: if these increase, for each additional
IID coefficient to estimate, additional IID observations of undiminished power are made
available.

Example 2.32

Moving beyond IID channels, let L = 0 and H = R
1/2
r HwR

1/2
t where Hw contains IID

entries while Rt and Rr are, respectively, transmit and receive antenna correlation matri-
ces. For this particular antenna correlation model, commonly encountered in the literature
and physically justified in Section 3.6.1, what form does W MMSE take?

Solution

For this model, with antenna correlation at both transmitter and receiver,

Rvec(H̄) = E
[
vec(H) vec(H)∗

]
(2.280)

= E

[(
RT/2

t ⊗R1/2
r

)
vec(Hw) vec(Hw)

∗
(
RT/2

t ⊗R1/2
r

)∗]
(2.281)

=
(
RT/2

t ⊗R1/2
r

)(
RT/2

t ⊗R1/2
r

)∗
(2.282)

= RT

t ⊗Rr (2.283)

and

P̄⊗Rvec(H̄) = (P̄ T ⊗ INr)(R
T

t ⊗Rr) (2.284)

= P̄ TRT

t ⊗Rr (2.285)

where we applied (A⊗B)(C ⊗D) = AC ⊗BD. It follows that

W MMSE =
√
G

(
G
(
P̄ TRT

t ⊗Rr

)(
P̄ c ⊗ INr

)
+N0I

)−1(
P̄ TRT

t ⊗Rr

)
(2.286)

=
√
G

(
GP̄ TRT

t P̄
c ⊗Rr +N0I

)−1(
P̄ TRT

t ⊗Rr

)
, (2.287)

which is not conducive to an unvectorized form similar to (2.247) whenever Rr is not
diagonal. Indeed, a nondiagonal Rr entails correlation across the receive antennas, forcing
the LMMSE estimator to jointly process the corresponding observations and precluding
the decomposition required for an unvectorized form.

The case of frequency-flat channels whose structure is H = HwR
1/2
t , with Rr = I

such that the antennas are correlated only at the transmitter, is treated in Problem 2.41.
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2.7.2 OFDM channel estimation

In OFDM, pilots are inserted in the frequency domain. Focusing on a specific OFDM sym-
bol, the dual of the situation we considered for time-invariant single-carrier transmission
would be to have a pilot sequence occupy the first Np subcarriers. However, in anticipation
of frequency selectivity it is more sensible to intersperse the pilot sequence as uniformly
as possible over the K subcarriers [182, 186, 187].

Suppose that the subcarriers with indices k0, . . . , kNp−1 are reserved for pilots. Recall-
ing (2.222), the receiver observation of the pilot transmissions p[k0], . . . ,p[kNp−1] is

y[k] =
√
GH[k]p[k] + v[k] (2.288)

=
√
G

(
L∑

�=0

H[�] e−j 2πK �k

)
p[k] + v[k] k = k0, . . . , kNp−1, (2.289)

which, rewritten in terms of H̄ =
[
H[0] · · · H[L]

]
, becomes

y[k] =
√
GH̄

⎡
⎢⎢⎢⎣

INt

e−j 2πK kINt

...

e−j 2πK kLINt

⎤
⎥⎥⎥⎦p[k] + v[k] (2.290)

=
√
GH̄

⎡
⎢⎢⎢⎣

p[k]

e−j 2πK kp[k]
...

e−j 2πK kLp[k]

⎤
⎥⎥⎥⎦+ v[k] (2.291)

and, letting

u[k] =
[
1 e−j 2πK k · · · e−j 2πK kL

]T

, (2.292)

further

y[k] =
√
GH̄

(
u[k]⊗ p[k]

)
+ v[k]. (2.293)

Applying vec(·) to both sides of the equality, using vec(y[k]) = y[k] and vec(v[k]) = v[k]

as these are column vectors, and invoking yet again vec(ABC) = (CT ⊗A) vec(B),

y[k] =
√
G

((
u[k]⊗ p[k]

)T ⊗ INr

)
vec(H̄) + v[k] (2.294)

=
√
G

(
u[k]T ⊗ p[k]T ⊗ INr

)
vec(H̄) + v[k]. (2.295)

Stacking all observations corresponding to pilot-bearing subcarriers, we obtain [188]⎡
⎢⎢⎢⎣

y[k0]

y[k1]
...

y[kNp−1]

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ȳ

=
√
G

⎡
⎢⎢⎢⎣

u[k0]
T ⊗ p[k0]T ⊗ INr

u[k1]
T ⊗ p[k1]T ⊗ INr

...

u[kNp−1]
T ⊗ p[kNp−1]

T ⊗ INr

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
P̄⊗

vec(H̄) +

⎡
⎢⎢⎢⎣

v[k0]

v[k1]
...

v[kNp−1]

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
v̄

(2.296)
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which is isomorphic with (2.229). The least-squares and LMMSE solutions derived for
single-carrier transmission can thus be applied verbatim with vec(Ȳ ), P̄⊗, and vec(V̄ )

respectively replaced by ȳ, P̄⊗, and v̄. Ensuring that P̄⊗ is square or tall requires

Np ≥ (L+ 1)Nt (2.297)

and a quick comparison with (2.234) indicates that, while in frequency-flat channels the
number of pilots coincides, in frequency-selective channels that number is reduced with
OFDM. The reduction equals precisely L, the channel memory, which is the number of
pilot observations that have to be discarded because they are influenced by payload data
symbols—see the construction in (2.223).

As an alternative to estimating the delay-domain matrices H[0], . . . ,H[L] in the forego-
ing formulation, the channel can be estimated directly in the frequency domain. Applying
a least-squares or LMMSE estimator to (2.288), Ĥ[k0], . . . , Ĥ[kNp−1] are readily obtained
and, from them, the channel at other subcarriers can be derived by interpolation—in the
MMSE sense if the channel statistics are available, or through other methods (e.g., polyno-
mially) otherwise [189]. Moreover, under the mild premise that the channel be identically
distributed, i.e., that all subcarriers look the same statistically, k0, . . . , kNp−1 should be
regularly spaced over the K subcarriers, facilitating the interpolation.

2.8 Summary and outlook

The gist of this chapter is captured in the form of take-away points within the companion
summary box.

Given the predominance of OFDM, and the attractiveness of SC-FDE for those transmis-
sions (such as the LTE reverse link) that resist adopting OFDM on account of its peaked-
ness, the interest in time-domain equalization has diminished. This is reflected, in the re-
mainder of this book, with a decided inclination of the analysis toward OFDM signaling.
And, whenever ergodicity applies, the analysis then often folds onto frequency-flat settings,
which is welcome news from the standpoint of clarity and presentation.

As of channel estimation, given that pilots are overhead and that fresh pilots need to
be transmitted as soon as the channel has experienced any substantial variation, it is im-
portant to keep them to a minimum. Since the number of required pilots grows with Nt,
the proposition of massive MIMO has infused new momentum into the problem of channel
estimation. Specifically, there is much interest in the possibility of exploiting channel struc-
tures to improve and/or simplify the estimation process. Experimental measurements have
shown that high-dimensional and/or high-carrier-frequency wireless channels may exhibit
a sparse structure such that the estimator could concentrate on learning only those few
coefficients that are nonnegligible. Unfortunately, the location of those coefficients tends
itself to be unknown, which leads to posing a problem that also tries to find the vector that
is most sparse. There is considerable research activity on designing sparsity-aware channel
estimation algorithms and on revisiting classic channel estimation problems leveraging the
framework of compressed sensing (see, e.g., [190–193] and references therein).
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Take-away points

1. Complex baseband equivalent models allow representing passband communication
more compactly and independently of fc.

2. Because of the bandlimitedness of the transmit signal, the complex baseband rep-
resentation can be further sampled and time-discretized.

3. A physical channel may not be bandlimited, in which case it cannot be sampled,
but its restriction to the finite signal bandwidth can always be time-discretized.

4. Given a symbol period T and a pulse shape compliant with the Nyquist criterion,
the bandwidth in terms of noise power is B = 1/T . Typically the signal exceeds
this value, and a suitable penalty factor must be applied to the spectral efficiency.

5. The baseband discrete-time transmit–receive relationship over an (L+1)-tap time-
invariant MIMO channel with Nt transmit and Nr receive antennas is

y[n] =
√
G

L∑
�=0

H[�]x[n− �] + v[n], (2.298)

where G is such that E
[
tr(HH∗)

]
= NtNr and v[n] ∼ NC(0, N0I). For L = 0,

this reduces to the frequency-flat relationship

y[n] =
√
GHx[n] + v[n]. (2.299)

6. Stacked vectors and structured matrices can be used to convert (2.298) into a single
matrix relationship, simplifying tasks such as channel estimation or equalization.

7. The transmit vector at time n can be expressed as

x[n] =

√
Es

Nt
F [n]s[n], (2.300)

where Es is the average energy per vector symbol, F [n] is the precoder, and s[n]

contains Ns independent unit-variance scalar symbols.
8. The precoder can be decomposed as

F [n] = UF [n]

[
P 1/2[n]

0

]
V ∗
F [n], (2.301)

where VF [n] is a unitary mixing matrix, P [n] is a diagonal power allocation ma-
trix, and UF [n] is a unitary steering matrix.

9. The number of transmitted data streams, Ns ≤ Nt, determines the dimensions of
P [n] as well as the rank of F [n].

10. If F [n] = Nt

Ns
[I 0]T, then Ns antennas radiate independent signal streams while

Nt − Ns antennas are off. More generally, the precoding mixes the Ns streams,
assigns them distinct powers, and steers them into specific spatial directions.

11. The average SNR at the receiver is

SNR =
GEs

N0
. (2.302)
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12. Under a per-block or per-codeword power constraint with a time horizon of N

symbols, 1
N

∑N−1
n=0 tr(P [n]) = Nt; power can be allocated unevenly over time

and across antennas. Under a stricter per-symbol constraint, tr(P [n]) = Nt for
every n; power can be shifted across antennas, but not in time. Finally, under a per-
antenna constraint,

[
F [n]F ∗[n]

]
j,j

= 1 for every n and j; each transmit antenna
features a separate amplifier.

13. Perfect FIR ZF linear equalizers exist for almost all MIMO channels whenever
Nr > Nt, enabling perfect reconstruction in the absence of noise.

14. The MMSE criterion yields linear equalizers that are more robust than their ZF
counterparts in the presence of noise, balancing interference suppression and noise
enhancement rather than stubbornly seeking to invert the channel response.

15. The parsing of the transmit sequence into blocks of K symbols with insertion of
an L-symbol cyclic prefix per block allows for efficient frequency-domain equal-
ization using the DFT, so-called SC-FDE.

16. With OFDM, the transmission takes place in parallel over K subcarriers with
simple per-subcarrier equalization. In the time domain, every burst—an OFDM
symbol—has a duration TOFDM = (K + L)T . The subcarrier spacing is 1

KT . The
intersection of a specific subcarrier and a specific OFDM symbol defines an OFDM
resource element, the basic unit in which signals are parceled. A larger K reduces
the cyclic prefix overhead and the excess bandwidth (which here adopts the form
of idle edge subcarriers) at the expense of higher complexity and increased vulner-
ability to time-variability in the channel.

17. In contrast with linear equalizers, the complexities of SC-FDE and OFDM do not
depend on the channel memory L.

18. Through the observation of how known pilot symbols are received, the channel
response can be learned. In additive Gaussian noise, the ML estimator coincides
with the least-squares estimator, which does not rely on the channel distribution. If
the channel covariance is known, the superior LMMSE estimator can be used. In
both cases, the required number of pilot symbols grows in proportion to Nt.

Problems

2.1 Prove these results concerning the Kronecker product and the vec(·) operator.
(a) If A and B are square, then tr(A⊗B) = tr(A) tr(B).
(b) vec(ABC) = (CT ⊗A) vec(B).
(c) vec(abT) = b⊗ aT.

2.2 Determine the vector x that maximizes x∗Rx subject to ‖x‖2 = 1.
Hint: You may use the method of Lagrange multipliers and matrix calculus, both
topics covered in the Appendix.
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2.3 Find the vector x that minimizes ‖y−Ax‖2 for A tall but low-rank. Further express
the corresponding ‖y −Ax‖2.

2.4 With fc = 1.9 GHz and B = 5 MHz, consider the channel

cp(τ) = 0.05 δ(τ − τ0)− 0.01 δ(τ − τ1) (2.303)

where τ0 = 0.3 μs and τ1 = 0.5 μs.
(a) Express the bandpass-filtered channel by applying an ideal filter with center fre-

quency fc and passband bandwidth B.
(b) Express the complex pseudo-baseband equivalent channel c(τ).
(c) Express the complex baseband equivalent channel cb(τ).
(d) Express the discrete-time complex baseband equivalent channel c[�] with sam-

pling rate 1/T .
(e) Express the normalized discrete-time complex baseband equivalent channel h[�].

2.5 Consider the channel cp = A0δ(τ − τ0) +A1δ(τ − τ1 +A2δ(τ − τ2).
(a) Obtain the discrete-time baseband representation c[�] with ideal lowpass filter-

ing.
(b) Under which conditions would such representation equal c[�] = A0 e

−j2πfcτ0 +

A1 e
−j2πfcτ1 +A2 e

−j2πfcτ2?
(c) Give c[n] for τ0 = 0, τ1 = T/2 and τ2 = T .

2.6 Prove that B sinc(Bτ) ∗ B sinc(Bτ) = B sinc(Bτ), confirming that applying a
unit-gain ideal lowpass filter twice has the same effect as applying it once.

2.7 Show that, with raised-cosine pulse shaping, the baseband bandwidth W satisfying

N0W =

∫ 1+b
2T

0

N0 |grx(f)|2 df (2.304)

is W = 1
2T . Thus, irrespective of b, the passband noise bandwidth is B = 1/T .

2.8 Redo Example 2.6 and the bottom drawing in Fig. 2.6, but have the sampler aligned
with τ1 rather than τ0. Verify that a different discrete-time baseband channel arises.

2.9 Let Nt = 1 and Nr = 2 with

c(0,0)(τ) = A0 δ(τ − τ0) (2.305)

c(1,0)(τ) = A1 δ(τ − τ1) +A2 δ(τ − τ2). (2.306)

(a) Determine the complex pseudo-baseband equivalent channel.
(b) Determine the complex baseband equivalent channel.
(c) Determine the complex baseband equivalent channel in the continuous-frequency

domain.
(d) Determine the discrete-time complex baseband equivalent channel.

2.10 Let Nt = Nr = 2 with
√
G
[
H[�]

]
0,0

= δ[�] + 0.5 δ[�− 1] (2.307)
√
G
[
H[�]

]
0,1

= −0.5 δ[�] + j δ[�− 1] (2.308)
√
G
[
H[�]

]
1,0

= 0.75 δ[�] + (1− 0.5 j) δ[�− 1] (2.309)
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√
G
[
H[�]

]
1,1

= −δ[�]. (2.310)

For N = 3, compose the block Toeplitz matrix in (2.94).

2.11 Write out the stacked-vector MIMO relationship for L = 2 and N = 4.

2.12 Plot, as a function of ξ (in dB) between 5 dB and 30 dB, the differential entropy of
the random variable obtained by clipping s ∼ N (0, 1) such that its PAPR equals ξ.

2.13 Given x ∼ N (0, σ2), let z be a clipped version of x satisfying PAPR(|z|) = 5 dB.
Compute the kurtosis and CM of z.

2.14 Calculate the PAPR and the kurtosis of a 16-QAM constellation where the four inner
points have twice the probability of the 12 outer points.

2.15 Consider a signal distribution made up of two concentric ∞-PSK rings, such that
symbols are drawn equiprobably from either ring and uniformly in angle.
(a) Relate the radii of the inner and outer rings, keeping in mind the unit-variance

normalization of the distribution.
(b) Express the PAPR, the kurtosis, and the CM as a function of the inner radius.
(c) Plot the PAPR, the kurtosis, and the CM as a function of the inner radius. The

plot should cover the range of feasible values of the inner radius.

2.16 Compute the PAPR, the kurtosis and the CM for a 10-MHz OFDM discrete-time
signal with 500-kHz guards at both ends and 15-kHz subcarriers. Consider that each
subcarrier carries an independent signal conforming to:
(a) QPSK.
(b) 16-QAM.

2.17 Show that, for the ∞-QAM distribution, the peakedness measures are PAPR = 3,
κ = 1.4, and CM = 1.33.

2.18 Consider an FIR equalizer of order Leq = 10 operating on a SISO channel where
h[0] = 0.8, h[1] = 0.5 ejπ/4, and h[2] = −0.33.
(a) Obtain the ZF equalizer coefficients by approximating the IIR solution.
(b) Obtain the LMMSE equalizer assuming that {x[n]} and {v[n]} are IID se-

quences.

2.19 For a two-tap SISO channel where
√
Gh[0] = 1 and

√
Gh[1] = a.

(a) Express the error at the output of an FIR ZF equalizer of order Leq.
(b) For a = 0.1 and Leq = 4, quantify the dB-ratio between the output signal power

and that of the error.
(c) Repeat part (b) for a = 0.1 and Leq = 10.

2.20 Let Nt = 1 and Nr = 2 with
√
G
[
H[�]

]
0,0

= δ[�] + 0.5 ejπ/4δ[�− 1]− 0.25 δ[�− 2] (2.311)
√
G
[
H[�]

]
1,0

= j δ[�]− 0.5 j δ[�− 1] + 0.125 ejπ/3δ[�− 2]. (2.312)

(a) Determine the lowest-order perfect FIR equalizer.
(b) Compute the ZF equalizer coefficients for Leq = 10.
(c) Compute the LMMSE equalizer for Leq = 10 assuming that {x[n]} and {v[n]}

are IID sequences.
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2.21 For T̄ tall, prove that the ZF equalizer with the minimum norm is

w̄ZF

j =
1√
G
T̄ (T̄ ∗T̄ )−1dj (2.313)

and obtain the corresponding minimum squared norm.
Hint: You may use the method of Lagrange multipliers and matrix calculus.

2.22 Let L = 1 with

H[0] =

[
1 j

0 0

]
H[1] =

[
0 1

0.8 −0.6 j

]
. (2.314)

(a) Find an order-3 ZF equalizer. Show the effectiveness of the equalizer by com-
puting W ZF∗[�] ∗H[�] and plotting the magnitude of the result.

(b) Find an order-3 LMMSE equalizer for SNR = 10 dB and with {x[n]} and
{v[n]} being IID sequences. Show the effectiveness of the equalizer by com-
puting W ZF∗[�] ∗H[�] and plotting the magnitude of the result. Further plot the
MMSE for each of the two equalized signals.

2.23 For a frequency-flat channel H whose entries are drawn from IID standard complex
Gaussian distributions, express the mean-square error with ZF equalization.

2.24 Reconsider Example 2.20 for signals IID in time but not necessarily across antennas,
such that Rx[�] = δ[�]Rx.
(a) Express Ry[�] and Ryx[�].
(b) Express W̄ MMSE and E.

2.25 Consider the frequency-flat channel

H =
1√

3 + ρ2

[
1 1

ρ 1

]
. (2.315)

(a) Compute the ZF equalizer.
(b) Compute the LMMSE equalizer.
(c) For SNR = 10 dB, plot the two mean-square errors (in dB) for each equalizer as

a function of ρ ∈ [−1, 0.99]. Explain the intuition behind the results.
2.26 Let Nt = 1 and Nr = 2. Suppose that a sequence of Np known pilots is transmitted

to trigger observations y[0], . . . ,y[Np+L−1]. Formulate and solve a least-squares
problem for the equalizer w[0], . . . ,w[Leq] directly from the observations, without
first estimating the channel explicitly.
(a) Write the output of the equalizer as a function of y[0], . . . ,y[Np+L−1], noting

that you may not need to use all these outputs.
(b) Rewrite in matrix form.
(c) Find the least-squares equalizer solution.
(d) Comment on the choices of Np and Leq relative to L.
(e) What are the pros and cons of direct equalization versus first estimating the

channel and then computing the equalizer?
2.27 Give an expression for the output SNR in a SISO channel with SC-FDE and the

following frequency-domain equalizers:
(a) ZF.
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(b) LMMSE.
Assume that {x[n]} and {v[n]} are IID sequences.

2.28 For the MIMO channel in (2.314), plot the per-stream output SNR with SC-FDE
and ZF equalization. Set the cyclic prefix length to Lc = L and let K = 4, 8, 16, 64.
Interpret the results.

2.29 In certain WLAN standards, the data are parsed into blocks of K symbols and a
pilot word of Lc symbols is inserted between consecutive blocks. Show how the
pilot word can be interpreted as a cyclic prefix and explain how to choose K and Lc.

2.30 Prove that, with MIMO SC-FDE and ZF, the variance of the noise contaminating the
signal sent from the jth antenna is given, at the output of the equalizer, by (2.209).

2.31 Compute an expression for the per-subcarrier output SNR for SISO-OFDM with the
following frequency-domain equalizers:
(a) ZF.
(b) LMMSE.
Assume that {x[n]} and {v[n]} are IID sequences.

2.32 Consider a SISO OFDM signal with rectangular time-domain pulse shaping.
(a) Plot, as a function of fT , the power spectrum (in dB) for K = 16, K = 64, and

K = 256 subcarriers.
(b) For each value of K, what is the excess bandwidth measured at −30 dB? How

about at −40 dB?

2.33 Reconsider Problem 2.32 for K = 64, but with the time-domain pulse shape modi-
fied into a raised cosine.
(a) Plot, as a function of fT , the power spectrum for raised-cosine rolloff factors

0.05 and 0.1.
(b) For each rolloff factor, recompute the excess bandwidth at −30 dB and −40 dB.

2.34 Reconsider the MIMO channel in (2.314), but now with OFDM and a cyclic prefix
of length L. Plot the per-stream per-subcarrier output SNR with ZF equalization for
K = 4, 8, 16, 64. Interpret the results.

2.35 Find the values for Nt, Nr, T , N , TOFDM, Lc, the excess bandwidth and the subcarrier
spacing for the following WLAN standards:
(a) IEEE 802.11ac.
(b) IEEE 802.11ax.

2.36 Verify that, for a channel realization h, the least-squares estimate vec( ˆ̄H) = W LS∗y
satisfies

E

[
vec( ˆ̄H) | vec(H̄)=h

]
= h. (2.316)

2.37 Let Nt = Nr = 2.
(a) From the first Zadoff–Chu root sequence of length 3, design the pilot sequences

for the two transmit antennas. Verify that they are orthogonal.
(b) For a frequency-flat channel, assemble the Hankel matrix P̄ as well as P̄⊗ and
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the ensuing least-square estimator W LS. Generate a realization of the receiver
observation (three symbols) for the channel

H =

[
1 −1

j j

]
(2.317)

at SNR = 5 dB. From this observation, produce a least-square estimate of H .
(c) Repeat part (b) for a frequency-selective channel with L = 1, H[0] = H , and

H[1] =

[
0.3 j −0.2

0.1 −0.5 j

]
. (2.318)

In this case, the receiver observation to generate must have four symbols.

2.38 In a frequency-flat SISO channel, consider the ratio between the power of the chan-
nel estimate E[|ĥ|2] and the power of the estimation error E[|h− ĥ|2].
(a) At SNR = 5 dB, how many pilot symbols does a least-squares estimator require

to make this ratio 20 dB?
(b) Repeat part (a) for an LMMSE estimator.
(c) Taking into account that pilot symbols are overhead, at SNR = 5 dB, how much

bandwidth does an LMMSE estimator save relative to a least-squares estimator?
(d) Beyond which SNR does the number of pilots become equal for both estimators?

2.39 Consider a least-squares MIMO channel estimator. Show that the sum of the powers
of the estimation error terms,

E

[
‖H̄ − ˆ̄H‖2F

]
(2.319)

is minimized when the pilot sequence is such that P̄ P̄ ∗ is proportional to the identity
matrix with ‖P̄ ‖2F as large as allowed by the applicable power constraint.

2.40 Consider the frequency-flat channel

H =
2√
2.85

[
1 0.2

0.9 j

]
(2.320)

and suppose that the pilot sequence p[0], . . . ,p[Np − 1], with Np even, consists of
successive columns of the identity matrix scaled to the available power. The SNR is
10 dB. Plot the channel estimation MMSE. What is the value of Np that pushes the
MMSE below 0.01?

2.41 Consider the frequency-flat MIMO channel H = R
1/2
r WR

1/2
t as in Example 2.32

and let Rr = I . Express the LMMSE channel estimate Ĥ for an arbitrary pilot
sequence.

2.42 Consider a frequency-flat MIMO channel H with Nt = Nr = 2 and zero-mean IID
entries. Referring to the estimation of each entry of H:
(a) If the transmit antennas emit equal-power orthogonal pilot sequences of length

Np = Nt, what is the dB-difference between the mean-square error achieved by
a least-squares and an LMMSE estimator at SNR = 0, 10, and 20 dB?

(b) Repeat part (a) for Np = 2Nt.
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2.43 Repeat Problem 2.42 for H = R
1/2
r Hw where the entries of Hw are zero-mean IID

complex Gaussian, Nt = 2, and the receive antennas are correlated as per

Rr =

[
1 0.5

0.5 1

]
. (2.321)

Has the receive antenna correlation increased or decrease the estimation error?
2.44 Let Nt = Nr = L = 2. The channel coefficients are IID complex Gaussian and

the pilot sequence is taken from the first two rows of a Fourier matrix of size Np.
Consider Np = 4, 8, 16, 32, 64, 256.
(a) Plot the channel estimation MMSE (in dB) for SNR ∈ [0, 10] dB.
(b) Plot the channel estimation mean-square error (in dB) attained by a least-squares

estimator for SNR ∈ [0, 10] dB.
2.45 Repeat Problem 2.44 for the fixed channel in (2.314), assumed drawn from an IID

complex Gaussian distribution.
2.46 Consider a MIMO link subject to interference from another transmitter. The intended

user has Nt transmit antennas while the interferer features N1 antennas and the
receiver observes

y[n] =
√
GHx[n] +

√
G1H1x1[n] + v[n], (2.322)

where both H and H1 contain IID complex Gaussian entries while x1[n] is an
IID sequence satisfying E

[
x1[n]x

∗
1[n]

]
= Es

Nt
I . Based on a sequence of Np pilots,

derive the LMMSE estimator for H and the corresponding MMSE matrix.
2.47 Consider a SISO-OFDM signal with a cyclic prefix of length Lc = L. The receiver

conducts channel estimation over multiple OFDM symbols. The observation of sym-
bol n over subcarrier k is

y[k, n] =
√
G h[k] x[k, n] + v[k, n], (2.323)

where h[k] is the time-invariant channel response in the frequency domain while
x[k, n] and v[k, n] are the transmit signal and noise. Let the indices of the Q pilot-
carrying subcarriers be k =

{
0,K/Q, 2K/Q, . . . , (Q − 1)K/Q

}
for some Q that

evenly divides K.
(a) Suppose that Np/Q pilot symbols are sent on each pilot subcarrier. Derive a

least-squares channel estimate ĥ[k] for k corresponding to pilot subcarriers.
(b) Now assume that ĥ[k] = h[k] on the pilot subcarriers and use linear interpolation

to find the rest of the coefficients, precisely

ĥ[k] =

Q−1∑
q=0

�[k, q] h[qK/Q+ 1] , (2.324)

where �[k, q] for q = 0, . . . , Q−1 are scalar interpolator coefficients for subcar-
rier k. Assuming that the channel taps h[0], . . . , h[L] are IID complex Gaussian,
find the interpolator coefficients that minimize E

[|h[k]− ĥ[k]|2].
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A communication channel is the part of a communication system that we are unwilling
or unable to change.

John L. Kelly

While all models are wrong, some are actually useful.

George Box

3.1 Introduction

The wireless channel, understood as everything that stands between the transmit and re-
ceive antennas, has a decisive influence on the quality and characteristics of the received
signal. It impacts virtually every performance metric that we can associate with the ability
of such a signal to convey information.

Channel models are mathematical constructs that intend to capture and represent the
most relevant aspects of actual propagation channels. The art of channel modeling is faced
with the challenge of striking a balance between realism and tractability. The world in
which wireless systems operate is rife with complexity, and hence the mechanisms of radio
propagation are highly involved. While it may be tempting to keep adding further layers
of detail and realism to increase the generality and accuracy of a given channel model, this
must be weighed against the danger of cluttering the ensuing analysis and observations.
This tension is never fully resolved, and thus a wireless engineer must exercise judgment
and apply, from a channel modeling toolbox as comprehensive as possible, those particular
tools that capture what is essential to the problem at hand. The choice of models should
promote usefulness and traction while avoiding artifacts that can misguide and confuse,
always keeping in mind that the modeling assumptions largely condition the scope and
validity of the end results [194, 195].

We begin this chapter, in Section 3.2, with an overview of the radio propagation mech-
anisms that are important for terrestrial wireless communication: transmission, reflection,
diffraction, and scattering. On the basis of these mechanisms, we motivate a general chan-
nel model composed of the product of two terms: large-scale and small-scale. The large-
scale (or macroscopic) term models phenomena that cause signal variations noticeable only
over a scale of many wavelengths. The small-scale (or microscopic) term, in turn, models
phenomena that affect the signal over scales comparable to the wavelength. Section 3.3 is
devoted to the large-scale term. We present models that are inspired by measurements and
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actually employed in cellular and WLAN system design; for these models, the potential
MIMO nature of the wireless link is largely immaterial. Next, in Section 3.4, we review
models for the small-scale term; the key aspect captured by these models is multipath prop-
agation and the fading fluctuations that it elicits, highly selective in time, frequency, and
space. Then, Section 3.5 brings into the discussion some essential notions related to an-
tenna arrays, setting the stage for the presentation in Section 3.6 of a number of MIMO
channel models with emphasis on those that are to be invoked throughout the book. With
the benefit of the preceding exposition, Section 3.7 revisits the issue of channel estimation,
already touched on in Chapter 2, and obtains handy expressions of great analytical value.
Finally, the chapter concludes in Section 3.8 with a review of models that have helped
to develop actual wireless standards. The use of standardized channel models facilitates
comparisons and design decisions during the development, in a manner that is unified and
agreed upon by different parties. We briefly introduce some of these models and direct the
reader to suitable references for a more detailed coverage.

The chapter focuses squarely on channel modeling at microwave frequencies, ranging
between a few hundred megahertz and a few gigahertz, which is where existing wireless
systems largely operate. At the end of the chapter, some observations are made with respect
to the current interest in extending the operation to higher frequencies where vast amounts
of unused bandwidth are available.

3.2 Preliminaries

3.2.1 Basics of radio propagation

Radio propagation has been studied extensively and continues to be a favorite research
topic. A vast body of empirical measurements as well as numerous analytical results are
available [196–198]. Distilling that accumulated knowledge, let us briefly introduce vari-
ous physical mechanisms that enable the propagation of signals in terrestrial wireless chan-
nels at microwave frequencies.

A signal transmitted into a wireless medium can reach the receiver by means of a num-
ber of mechanisms. A signal component that reaches the receiver through a single path,
without suffering any reflections, diffractions, or scattering, is referred to as line-of-sight
(LOS). Necessarily, a LOS component has the shortest delay among all possible received
components and it is typically the strongest one. Signal components that reach the receiver
through reflection, scattering, or diffraction, are referred to as non-line-of-sight (NLOS).

When a wave bounces off a smooth object that is exceedingly large relative to the wave-
length, the wave is said to have undergone reflection. Each incoming wave is mapped
onto a single reflected direction.

Scattering is said to have occurred when a wave travels through a medium that contains
objects whose dimensions are smaller than or comparable to the wavelength, and where
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�Fig. 3.1 The three types of NLOS propagation: dotted lines indicate reflection, dashed lines

indicate scattering, and dash-dot lines represent diffraction. The solid line, in turn,

indicates an LOS component.

the number of such objects is large. Then, each incoming wave is mapped onto many
scattered ones.
Radio waves also bend around sharp edges, a phenomenon that is referred to as diffrac-
tion and that plays a pivotal role in urban settings. Indeed, a major contributor to the
propagation of radio signals in such settings is rooftop diffraction.

These various NLOS propagation mechanisms, illustrated in Fig. 3.1, give rise to the phe-
nomena that we study in the sequel.

A consequential distinction for outdoor transceivers is whether they are located above or
within the so-called propagation clutter of buildings, trees, vehicles, and suchlike. Roughly
speaking, a transceiver is elevated if it is above the rooftop level, and it is within the clutter
otherwise.

3.2.2 Modeling approaches

Channel models can be classified as either deterministic or stochastic. The former attempt
to reproduce the propagation mechanisms (reflection, scattering, and diffraction) as they
occur, at the expense of high computational complexity and limited applicability. The lat-
ter, alternatively, choose to regard the channel response as a stochastic process whose prop-
erties can be tuned on the basis of empirical measurements and/or physical considerations.

Deterministic modeling
The principal deterministic channel modeling technique is ray tracing, which aims at pre-
dicting the propagation characteristics of a specific site. This technique reproduces the
propagation mechanisms in such a site, or more precisely in a computer recreation of it.
This recreation must be highly accurate, not only in terms of the geometry but also of the
constituent materials and their electromagnetic properties. Since the recreation of outdoor
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�Fig. 3.2 Ray tracing in an indoor setting.

environments tends to be unwieldy, ray tracing is mostly restricted to indoor sites. As illus-
trated in Fig. 3.2, the simulating computer launches numerous waves from the transmitter
and tracks their trajectories. The channel behavior is then reconstructed through an account
of the features (e.g., delay, angle, and power) of all those waves that end up reaching the
receiver. A number of software packages exist to implement ray tracing [199–201].

Ray tracing techniques offer the convenience of virtually testing the impact of modifying
transmitter and receiver locations, antenna configurations, or other such parameters. The
disadvantages of ray tracing include high computational requirements and the potential
unavailability of fine environmental details such as interior furniture, which negatively
impacts the accuracy.

As an alternative to ray tracing, it is possible to directly store channel responses mea-
sured in the field and apply them to offline performance evaluations.

Stochastic modeling
Quoting the French mathematician Henri Poincaré, “chance is only a measure of our igno-
rance.” And yet, stochastic channel models offer so much analytical tractability, flexibility,
and convenience that they deservingly are the workhorse of wireless communications and
our focus henceforth. In general, a stochastic model is embodied by the conditional distri-
bution of the channel output given its input. When the channel is linear, as is the case in
the wireless medium, this is tantamount to a stochastic impulse response.

A critical modeling consideration in virtually all stochastic wireless channel models is
the distinction between large-scale and small-scale phenomena. Specifically, what is as-
sumed is that the distribution of the channel response is locally stationary within certain
neighborhoods around transmitter and receiver [198]. (For the derivations in this chap-
ter, wide-sense stationarity would suffice, but there is no reason not to directly assume
strict-sense stationarity.) Although it is difficult to pinpoint the precise size of the local
neighborhoods where stationarity does hold approximately, it is on the order of tens to
hundreds of wavelengths. Large-scale phenomena impact the local distribution to which
the small-scale phenomena conform, chiefly the local-average power. With the possible
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�Fig. 3.3 Local-average received power (in some dB scale) as a function of the

transmit–receive distance D (in log-scale). Cartoon example of a cloud of empirical

values and the corresponding linear regression.

exception of massive MIMO, where antenna arrays may become exceedingly large [202],
this clean separation holds fairly approximately in practice and greatly facilitates analytical
characterizations that could otherwise be unwieldy.

Because of the importance of the decoupling of large- and small-scale phenomena, we
use distinct variables to model them and carry those throughout the derivations in the entire
book. While this takes a small toll in terms of the compactness of some expressions, it
reinforces the separation between quantities that change at very different scales in time
and frequency, and which have markedly different effects on the communication.

3.3 Large-scale phenomena

3.3.1 Pathloss and shadow fading

Under the separation argued in the previous paragraph, large-scale phenomena are those
that determine the local distribution of the stochastic channel response. The prime feature
of that distribution is, of course, the power. If one plots, for a given transmit power, the
local-average received power (in log-scale) obtained from many empirical measurements
in otherwise identical conditions as a function of the distance (also in log-scale) between
transmitter and receiver, the result is invariably a cloud of scattered points (see Fig. 3.3).
Through a linear regression, one can then find a law relating the local-average received
power and the distance. Such a law represents what we call the pathloss, denoted by Lp,
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�Fig. 3.4 Received signal power as a function of distance, illustrating the large-scale (pathloss

and shadow fading) and the small-scale propagation phenomena.

and the spread of the scattered measurements around that law represents what we call
shadow fading, denoted by χ. Together, the pathloss and the shadow fading conform the
large-scale description of virtually every existing channel model. Although recent work
indicates, on solid analytical footings based on random walks and diffusion theory, that
nonlinear regressions may sometimes be superior [203, 204], the combination of pathloss
and shadow fading suffices for our purposes.

The pathloss can be interpreted as the expected attenuation over an ensemble of realiza-
tions of a given propagation scenario, whereas the shadow fading individualizes, through
randomization, the attenuation of each such potential realization. Another common inter-
pretation of the large-scale phenomena is that the pathloss quantifies the local-average at-
tenuation tied exclusively to distance whereas the shadow fading accounts for the presence
of obstacles that cause the local-average attenuation to deviate from the value predicted by
the pathloss. This is illustrated in Fig. 3.4, which depicts how both pathloss and shadow
fading affect the evolution of the received signal power as the distance between transmitter
and receiver increases over a generic trajectory; the pathloss is monotonic, whereas the
shadow fading can oscillate as obstacles come in and out of the way.

It was suggested in [205] that the shadow fading attenuation, χ, could follow a log-
normal distribution and empirical measurements have repeatedly confirmed the excellent
fit to data offered by such distribution [206, 207]. The most widely accepted justification for
this log-normal nature is that shadow fading represents the product of the losses introduced
by the several obstacles traversed by the signal and, in log-scale, such a product becomes
a sum of independent terms. Despite the fact that those terms can hardly be assumed to
conform to the same distribution, and that the number of such terms may not be particularly
large, the robustness of the central limit theorem (see Appendix C.1.10) renders the sum
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surprisingly well modeled by a Gaussian random variable. Under the log-normal model,
χ|dB is Gaussian with PDF

fχ|dB
(ξ) =

1√
2π σdB

exp

(
− ξ2

2σ2
dB

)
, (3.1)

where σdB is the standard deviation, typically assumed independent of the distance for the
sake of simplicity. (Dependences have been observed, but they are not easily character-
ized.) Outdoors, σdB tends to range between 8 and 12 dB. Indoors, it is usually smaller.

We note that, although χ|dB is defined as being zero-mean in (3.1), there is no loss of
generality once both pathloss and shadow fading are considered together: any nonzero-
mean in χ|dB can be incorporated directly to the log-scale pathloss.

Through a change of variables, the PDF of χ in linear scale can be found to be

fχ(ξ) =
1√

2π σξ
exp

(
− (loge ξ)

2

2σ2

)
ξ ≥ 0, (3.2)

where

σ =
σdB loge(10)

10
. (3.3)

A relevant property confirmed through empirical observations is that, as intuition would
have it, shadow fading can be broken up into distinct pieces: one that depends on the loca-
tion of the transmitter and one that depends on the location of the receiver [207]. Two mu-
tually distant receivers communicating with the same transmitter (or two mutually distant
transmitters communicating with the same receiver) experience the same shadow fading for
one piece but a completely different shadow fading for the other. These two pieces, whose
values add up in log-scale, tend to have similar strengths. Furthermore, measurements re-
ported in [208] point to an exponential model for the spatial autocorrelation of each piece,
with a correlation distance that is on the order of tens of meters outdoors, depending on the
environment, and substantially shorter indoors [209]. For more refinements on the model-
ing of shadow fading, the reader is referred to [210, 211] and references therein.

The local-average received power Pr can be expressed as a balance of gains and losses
according to the so-called link budget equation [212]

Pr|dB = Pt|dB +Gt|dB +Gr|dB − (Lp|dB + χ|dB), (3.4)

where Pt is the transmit power, herein considered fixed, while Gt and Gr are, respectively,
the gains of the single transmit and single receive antennas in the directions of propagation.
Additional terms that can be added to the link budget equation include building penetration
losses, cable losses, polarization mismatch between the transmit and receive antennas, or
protection margins against impairments such as small-scale fading. In particular, additional
power gains may arise with channel-dependent power control and with MIMO; since yet-
to-see notions are required to express these gains, they are deferred to later in the book,
respectively to Sections 4.2 and 5.2.

The link budget equation in (3.4) can be written more compactly as

Pr|dB = Pt|dB +G|dB, (3.5)
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where

G =
GtGr

Lp χ
(3.6)

is the large-scale channel gain, a quantity already introduced in Chapter 2 to normalize the
channel response and that now acquires its full significance.

Homing in on the pathloss, its most recurrent representation as a function of the trans-
mission distance D is

Lp(D) = Kref

(
D

Dref

)η

, (3.7)

where η is the pathloss exponent while Dref is a reference distance and Kref is the pathloss
at Dref . In log-scale, this becomes

Lp(D)|dB = Kref |dB + 10 η log10

(
D

Dref

)
D > Dref . (3.8)

The exponent η is the most consequential parameter, with typical values ranging between
3.5 and 4 if either the transmitter or the receiver are elevated. If both are within the prop-
agation clutter, higher values can be encountered. Values below 2 are rare but possible in
settings such as indoor corridors, outdoor urban canyons, or tunnels.

The parameter Kref is sometimes referred to as the intercept at Dref because it is the
value at which a plot of Lp(D) intercepts a vertical axis drawn at Dref . Given a refer-
ence distance, Kref can be measured empirically. Alternatively, if the reference distance
is chosen properly, Kref can be computed under the assumption that the propagation from
the antenna up to that point follows the free-space law described next. In this case, the
representation in (3.8) becomes the two-slope model in Fig. 3.5, namely free-space decay
up to Dref and decay with exponent η thereafter. This two-slope behavior can be justified
analytically [51, section 2.4.1] and on the basis of experimental observations [213].

Besides the representation in (3.8), suitably complemented by log-normal shadow fad-
ing, several pathloss modeling alternatives are available. These alternatives are the subject
of the remainder of this section. While the focus here is exclusively on how the large-scale
propagation phenomena affect the local-average received power, models do exist for how
other features of the local distribution (introduced later in this chapter) are affected, e.g.,
the Rice factor, the power delay profile, or the angle spread [214, 215].

3.3.2 Free-space model

The pathloss in free space, named after the radio pioneer Harald T. Friis [216], is given by

Lp(D)|dB = 20 log10

(
4πD

λc

)
, (3.9)

where λc is the carrier wavelength. It holds only when D lies in the far-field region of the
antennas, the rule of thumb being D ≥ 2 d2a/λc where da is the largest physical dimension
of either antenna. By definition, this model applies only when there are no obstructions be-
tween transmitter and receiver or in the vicinity of the trajectory linking them; this restricts
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its applicability to very specific situations, e.g., the computation of the intercept at a nearby
point. There is no accompanying shadow fading.

The presence of objects of any kind, even simply the ground, alters the square-law dis-
tance decay in (3.9), yielding a more general exponent η.

3.3.3 Macrocell models

This section describes two models tailored to macrocells, defined as cells with radius ex-
ceeding roughly 1 km. These are empirical models, based on fitting parameters to match
observed pathloss dependences on quantities such as frequency or antenna heights.

Okumura–Hata model
The Okumura–Hata model (or, in short, the Hata model) is a pathloss model based on
empirical measurements conducted in Tokyo, Japan. In urban areas, it is given by [217]

Lp(D)|dB = 69.55 + 26.16 log10 fc − 13.82 log10 hb − b(hm)

+ (44.9− 6.55 log10 hb) log10 D, (3.10)

where fc is the carrier frequency in megahertz (150 ≤ fc ≤ 1500 MHz), hb is the base
station antenna height in meters (30 ≤ hb ≤ 200 m), hm is the mobile user antenna height
also in meters (1 ≤ hm ≤ 10 m), D is in kilometers (D ≥ 1 km), and

b(hm)=

⎧⎨
⎩

(1.1 log10 fc − 0.7)hm − 1.56 log10 fc + 0.8 small-to-medium cities
8.29 [log10(1.54hm)]

2 − 1.1 large cities, fc ≤ 300 MHz
3.2 [log10(11.75hm)]

2 − 4.97 large cities, fc ≥ 300 MHz.
(3.11)
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The relationship in (3.10) can be extended to suburban areas by adding

−2 [log10(fc/28)]
2 − 5.4 (3.12)

or, alternatively, it can be extended to rural areas by adding

−4.78 (log10 fc)
2 + 18.33 log10 fc − 40.94. (3.13)

Due to the restrictions on the values of D and hb, the Okumura–Hata model is not valid for
microcells; the COST-231 Walfisch–Ikegami model described later extends it to microcell
environments. And, within the context of macrocells, the COST-231 Hata model presented
next extends Hata’s frequency range to 2 GHz.

COST-231 Hata model
The European Cooperation in Science and Technology (COST) agency conducted propa-
gation measurements to extend the Okumura–Hata model to frequencies between 150 MHz
and 2 GHz [218]. In urban areas, the COST-231 Hata pathloss is

Lp(D)|dB = 46.3 + 33.9 log10 fc − 13.82 log10 hb − b(hm)

+ (44.9− 6.55 log10 hb) log10 D (3.14)

with b(hm) as in (3.11). In dense metropolitan areas, an extra loss of 3 dB must be added.
Further corrections are available for suburban and rural areas.

Example 3.1

Compute the pathlosses predicted by the Okumura–Hata and COST-231 Hata models in
an urban environment (small city) for a base station antenna height of hb = 32 m, a user
height of hm = 1.5 m, and fc = 1 GHz at D = 2 km.

Solution

For a small city, the Okumura–Hata equations in (3.10) and (3.11) give Lp = 137.76 dB.
The COST-231 Hata pathloss computed via (3.14) and (3.11) is Lp = 137.73 dB. At this
frequency, as expected, the agreement is basically complete.

SUI models
The Stanford University interim (SUI) pathloss models can be applied to predict the pathloss
in rural, suburban, and urban macrocells [213, 219]. The targeted application is fixed wire-
less access, with the user antennas rooftop-mounted and the base stations elevated 15–40 m
over the clutter. The SUI models are divided depending on the type of terrain:

(A) Hilly terrains with heavy tree density.
(B) Mostly flat terrains with moderate-to-heavy tree densities or hilly terrains with light

tree densities.
(C) Flat terrains with light tree densities.
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Table 3.1 Values of a, b, and c in (3.16)

Parameter Terrain A Terrain B Terrain C
a 4.6 4.0 3.6
b
(
m−1

)
0.0075 0.0065 0.005

c (m) 12.6 17.1 20

The main equation is a refinement of (3.8), namely

Lp(D)|dB = Kref |dB + 10 η log10

(
D

Dref

)
+X(fc) +X(hm) D > Dref , (3.15)

where Dref = 100 m and Kref |dB is the intercept at Dref (computed assuming free-space
propagation up to this reference distance). The pathloss exponent is defined as

η = a− bhb +
c

hb
, (3.16)

where the constants a, b, and c are given in Table 3.1 while 10 ≤ hb ≤ 80 m. In turn,
X(fc) and X(hm) are correction factors associated with the carrier frequency and the user
height, respectively, and defined as

X(fc) = 6.0 log10

(
fc

2000

)
(3.17)

and

X(hm) =

{ −10.8 log10 (hm/2000) Terrains A and B
−20.0 log10 (hm/2000) Terrain C.

(3.18)

3.3.4 Microcell models

Let us now shift our attention to microcells, defined as those with a radius ranging roughly
between 100 m and 1 km. For such cells, we present the COST-231 Walfisch–Ikegami
pathloss model.

COST-231 Walfisch–Ikegami model
This model, defined for frequencies between 800 MHz to 2 GHz, is an elaborate construc-
tion that accounts for parameters such as the distance between buildings, the street width,
or the distance between the rooftop horizon and the base station. For the 3GPP parameters
of base station height hb = 12.5 m, building height of 12 m, building-to-building distance
of 50 m, street width of 25 m, and user height hm = 1.5 m, the pathloss under NLOS
propagation is

Lp|dB = −55.9 + 38 log10 D +

(
24.5 + 1.5

fc
925

)
log10 fc, (3.19)

where fc is in megahertz while D, here in meters, must satisfy D ≥ 20. Log-normal
shadow fading should be added, with a recommended standard deviation σdB = 10 dB.
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Under LOS propagation, the COST-231 Walfisch–Ikegami street canyon model with the
aforementioned 3GPP parameters gives

Lp|dB = −35.4 + 26 log10 D + 20 log10 fc. (3.20)

Here, the recommended standard deviation for the shadow fading is σdB = 4 dB.

Example 3.2

Compute the pathloss at D = 100 m for a 2-GHz microcell under the 3GPP parameters.

Solution

Application of (3.19) gives Lp = 111.7 dB, which is 26 dB lower than the pathloss ob-
tained in Example 3.1 for a 2-km macrocell. By transmitting only Pt = 1 W, a micro-
cellular base station can generate an SNR that is 13 dB higher—everything else being
equal—than what a macrocellular base station would generate with Pt = 20 W.

3.3.5 Picocell and indoor models

Like in the SUI case, the pathloss models for picocell and indoor environments tend to
adopt a version of (3.8) with free-space decay up to Dref and with an exponent on the order
of η = 3.5 thereafter. The shadowing standard deviation in indoor picocells is markedly
smaller than in outdoor large cells, typically ranging between 3 and 6 dB.

Example 3.3

Compute the pathloss at D = 20 m for a 5-GHz indoor WLAN with Dref = 5 m.

Solution

Applying the free-space equation in (3.9) up to Dref = 5 m we obtain Kref = 30.2 dB
from which, subsequently, (3.8) gives Lp = 51.3 dB. Notice the several tens of dB of
difference between this pathloss and the one obtained for an outdoor macrocell in Exam-
ple 3.1, implying that, thanks to the much shorter range, a WLAN can attain the same SNR
as a cellular system with a transmit power orders of magnitude lower and in the face of
wider bandwidths (and thus higher noise powers). Even if the macrocell benefited from
a typical 16.5-dBi base station antenna gain and the WLAN had ten times more band-
width, the WLAN would still have a 60-dB advantage in link budget, meaning that despite
transmitting 20 mW in lieu of 20 W, the WLAN would have a 30-dB edge in SNR.
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Discussion 3.1 A note of caution

Although blurred by shadow fading, significant discrepancies may sometimes arise
among the pathloss values returned by different models; this merely illustrates the dif-
ficulty of the modeling process [220]. Particular predictions are neither correct nor in-
correct, but simply a better fit to specific scenarios. An Okumura–Hata prediction, for
instance, is likely to be more accurate in Japan than in other parts of the world. In fact,
it can be argued that stochastic channel modeling does not intend to reproduce specific
environments, but rather to come up with descriptions that are representative of classes
of environments of interest for the purpose of design and performance assessment.

3.4 Small-scale fading

Let us now zoom in and enter the small-scale realm. When dealing with continuous-time
representations, we use the complex pseudo-baseband channel response. We also recall
from Section 2.2.3 that, to discretize this representation, lowpass filtering is in general
required before sampling, although in those cases when the discretization returns a single-
tap response and the effect is only multiplicative, the complex gain of the pseudo-baseband
channel can be borrowed directly.

3.4.1 Multipath propagation

Small-scale fading, also known as multipath fading because it is caused by multipath prop-
agation, is perhaps the most defining feature of wireless channels. The propagation mech-
anisms of reflection, diffraction, and scattering, acting on objects surrounding the trans-
mitter and the receiver within the respective local neighborhoods, give rise to a number
of distinct propagation paths. Thus, what the receiver gets to observe is the superposition
of a number of replicas of the transmitted signal; the overall channel response is the sum
of the contributions over all those paths. Each such contribution is described by the at-
tenuation and the delay that the signal traveling through that particular path is bound to
experience, i.e., the complex pseudo-baseband impulse response over the qth path has the
form Aq δ(τ−τq) e

−j2πfcτq . Since they stem from objects within the local neighborhoods,
all the relevant paths can be assumed to be subject to similar pathloss and shadow fading,
suitably modified by the local reflection/diffraction/scattering, and thus the complex gains
{Aq} may not exhibit major differences. However, because at carrier frequencies of interest
the phase 2πfcτq shifts radically with the slightest variation in τq , the differences in path
delays are always sufficient to regard the path phases as independent random variables.

Suppose for now that the transmit signal x(t) corresponds to a passband sinusoid at
frequency fc. Since the effect of a delay on such a signal is merely a phase shift, we can
absorb each delay τq as a shift 2πfcτq in the phase of Aq . Then, the overall channel impulse
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response can be written as (∑
q

Aq e
−j2πfcτq

)
︸ ︷︷ ︸

Gain=
√
G·h

δ(τ) (3.21)

and the signal reaching the receiver is y(t) =
√
Gh · x(t). Thus, upon a sinusoid the chan-

nel does have only a multiplicative effect, i.e., a complex gain. Furthermore, the preceding
consideration on the path phases suggests modeling this gain as a sum of IID random vari-
ables; if the number of paths is large enough and some mild conditions are satisfied [221],
application of the central limit theorem leads to a complex Gaussian distribution. The result
of the sum in (3.21) changes rapidly with the position of both transmitter and receiver: a
mere displacement on the order of a wavelength alters the path lengths, and thus the delays
thereon, by an amount that shifts the path phases drastically, causing major swings in the
sum. Put differently, the paths can add constructively or destructively depending on their
relative phases, which are completely modified by small changes in position. The same ef-
fect transpires if, instead of a change in position, there is a change in frequency that shifts
the phases substantially.

The picture that emerges is thus as follows: the large-scale channel features (pathloss and
shadow fading) determine the average channel conditions within the local neighborhood
while the small-scale fading determines, subject to that local-average, the instantaneous
channel conditions at each position and frequency. This invites decoupling the complex
gain as in (3.21), namely

√
G · h where

√
G determines the local-average received power,

Pr, as per (3.5), whereas the small-scale fading h is normalized to have unit power. This
largely achieves the desired separation between large-scale and small-scale features, yet
a mild coupling remains in that certain other parameters of the local small-scale fading,
e.g., the Rice factor, may depend on (or be correlated with) the large-scale gain. Ideally,
the value of the large-scale features should be taken into account when setting those small-
scale parameters, or else there is a danger that the hugely convenient decoupling between
large- and small-scale gains entails a loss of relevant information.

The small-scale fading is locally modeled as a stationary random process, in principle
zero-mean and complex Gaussian, normalized to have unit variance. At a given position
and frequency, then, it is h ∼ NC(0, 1) with uniformly distributed phase and with a mag-
nitude that abides by the Rayleigh distribution (see Appendix C.1.9), hence the popular
designation of small-scale fading as simply Rayleigh fading. Precisely,

f|h|(ξ) = ξ e−
1
2 ξ

2

(3.22)

while the power |h|2 follows the exponential distribution

f|h|2(ξ) = e−ξ. (3.23)

If a multipath term dominates over the rest, e.g., because it propagates through LOS and
it is subject to a distinct pathloss, then the receiver can lock onto that signal component and
render it unfaded. It follows that h ∼ NC(μh, σ

2
h) with mean μh �= 0 and with variance
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�Fig. 3.6 Two nearby locations spaced by ΔD and a propagation path at an angle θ relative to

the segment connecting these locations.

σ2
h = 1− |μh|2. For this so-called Rice fading, named after Stephen O. Rice [222],

f|h|(ξ) = 2 (K+ 1) ξ e−(K+1)ξ2−K I0

(
2
√
K(K+ 1) ξ

)
, (3.24)

where K = |μh|2/σ2
h is the Rice factor while I0(·) is the zero-order modified Bessel func-

tion of the first kind (see Appendix E). For K = 0, Rice fading reverts to Rayleigh; for
K → ∞, the fading vanishes as the value of h becomes deterministic. Thus, the Rice dis-
tribution bridges these extremes and allows, through K, to regulate the severity of the fad-
ing. Analytically speaking, however, the PDF in (3.24) is not particularly friendly because
of the presence of I0(·). A more tractable alternative that also allows modeling varying
degrees of fading severity is the Nakagami-m distribution, whereby

f|h|(ξ) =
2mm ξ2m−1

Γ(m)
e−mξ2 (3.25)

f|h|2(ξ) =
mm ξm−1

Γ(m)
e−mξ, (3.26)

with Γ(·) the Gamma function (see Appendix E) and with m ≥ 1/2 a tunable parameter.
For m = 1, the Rayleigh distribution is recovered while, for m → ∞, the fading vanishes.
Moreover, for m = (K+1)2/(2K+1), the Nakagami-m distribution closely approximates
the Rice distribution with factor K. The flexibility of the Nakagami-m distribution allows
modeling situations where the central limit theorem applies as well as others where it does
not quite hold, either because the number of propagation paths is not large enough or
because their gains are not sufficiently IID.

Distributions that further subsume the Nakagami-m as well as other forms of fading
arising in satellite channels have been put forth, with the most general ones being the κ–μ
and η–μ distributions [223]. To model terrestrial channels, though, the Rice and Nakagami-
m distributions tend to suffice.

Altogether, an assortment of options that fits empirical data satisfyingly are available to
model the marginal distribution of the small-scale fading. A more imposing challenge is to
model its dynamics, i.e., the joint distribution of the channel response at multiple nearby
positions/frequencies. This modeling is the topic of the remainder of this section.
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3.4.2 Space selectivity

Power angle spectrum
Small-scale fading arises because multiple propagation paths exist and the signal replicas
thereby engendered experience distinct phase shifts. Within the local neighborhood, the
variation of these phase shifts from one location to another is governed by the angle be-
tween the propagation paths and the segment connecting those locations. This is illustrated
in Fig. 3.6, which shows the segment connecting two locations and a propagation path at an
angle θ thereabout. The change in path length from one location to the other is simply the
projection of this segment along the path direction. Since this projection depends on θ, a
central quantity in the characterization of small-scale fading should be a function establish-
ing the angular distribution of paths, and indeed this is the case. This function is the power
angle spectrum (PAS), which expresses the received signal power as a function of angle
when acting as a receiver; when acting as a transmitter, equivalently, the PAS expresses the
transmitted signal power that reaches the receiver at the other end of the link as a function
of the angle of departure. The PAS is a continuous function of angle, normalized so it can
be interpreted as a PDF, which is a definition consistent with the unit-power normalization
of the small-scale fading. The standard deviation of the PAS, viewed as a distribution, gives
the root-mean-square (RMS) angle spread.

Although, in principle, the definition of the PAS as a continuous function of angle mod-
els a diffuse propagation scenario, it does not preclude modeling situations where power
is received only from a finite number of discrete angles; these situations can be accommo-
dated by constructing the PAS on the basis of discrete delta functions.

Formally, the PAS is a function of both azimuth and elevation. However, empirical mea-
surements have indicated that in most outdoor wireless systems the dependence on eleva-
tion plays only a secondary role [224]. Historically then, the focus has been on character-
izing the marginal PAS on the azimuth plane—in fact, PAS can also be taken to stand for
power azimuth spectrum—yet the elevation dimension should not be carelessly dismissed
in other types of deployment, e.g., indoors or in vertical urban picocells. We return to this
aspect at the end of the chapter.

Several functions have been proposed and applied to model the marginal PAS in azimuth,
which in this text is denoted by P(·).

Example 3.4 (Clarke–Jakes PAS)

For transceivers immersed in the propagation clutter, a simple model is the uniform PAS

P(θ) =
1

2π
θ ∈ [−π, π). (3.27)

Corresponding to the multipath setting in Fig. 3.7, this model was proposed in 1968 by
Clarke [225] and subsequently popularized by Jakes [212].

Despite its simplicity, or perhaps because of it, the Clarke–Jakes PAS has been a pow-
erful tool for decades. It fits surprisingly well the behavior observed at mobile users, cap-
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�Fig. 3.7 Multipath setting modeled by a Clarke–Jakes uniform PAS.

turing the essence of multipath propagation in a manner that is friendly to analysis. Such
friendliness, however, drops markedly as soon as the angular range is reduced below 2π

[226, 227] and more convenient alternatives exist if directional preference (particularly
important in transceivers located above the clutter, e.g., elevated base stations) is to be
introduced. We next catalog several such options.

Example 3.5 (Power cosine PAS)

A directional azimuth PAS centered on an angle μθ can be modeled as [228]

P(θ) = Kc

[
cos

(
θ − μθ

2

)]2q
θ ∈ [μθ − π, μθ + π), (3.28)

where q is an integer and

Kc =
(q!)2 4q

2π (2q)!
(3.29)

ensures that the function integrates to one.

Example 3.6 (Truncated Gaussian PAS)

An alternative to the power cosine PAS is the truncated Gaussian distribution [229, 230]

P(θ) =
KG√
2σθ

exp

(
− (θ − μθ)

2

2σ2
θ

)
θ ∈ [μθ − π, μθ + π), (3.30)

where

KG =
1√

π [1− 2Q(π/σθ)]
(3.31)
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�Fig. 3.8 Truncated Laplacian PAS for μθ = 0 and σθ = 0.52 (which corresponds to 30◦).

is the normalization factor needed to ensure that the function integrates to one, σθ is a
measure of its spread (it would equal the RMS angle spread in the absence of truncation),
and Q(·) is the Gaussian Q-function (see Appendix E).

Example 3.7 (Truncated Laplacian PAS)

Yet another alternative is a truncated Laplacian distribution (see Fig. 3.8)

P(θ) =
KL√
2σθ

exp

(
−
∣∣∣∣
√
2 (θ − μθ)

σθ

∣∣∣∣
)

θ ∈ [μθ − π, μθ + π), (3.32)

where

KL =
1

1− exp
(−√

2π/σθ

) (3.33)

is, again, the normalization factor needed to ensure that the function integrates to one.

Besides the foregoing ones, yet other functions have been applied to model the PAS, e.g.,
the von-Mises distribution detailed in Section 3.6.2. Extensive measurement campaigns,
both indoors [231–234] and outdoors [235–237], have shown a particularly satisfactory fit
to the Laplacian PAS with a properly tuned σθ. As a result, (3.32) is a favorite choice.

It is also possible, at the expense of more cumbersome expressions, to consider a su-
perposition of several functions of a given type to account for the existence of multiple
scattering clusters [238].
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Space correlation
For the sake of the exposition, let us for now posit that the transmitter remains fixed and let
us study the fading dynamics as a function of the position of the receiver. The simultaneous
dependence on the positions of both transmitter and receiver, essential for MIMO channel
modeling, is deferred to later in the chapter.

The baseband noiseless received signal at a given location can be expressed as

y(t) =
√
G

∫ π

−π

√
P(θ)Gr(θ)x(t−D(θ)/c) dθ, (3.34)

where D(θ) is the length of the path reaching the receiver at an angle θ and D(θ)/c is its
propagation delay given the speed of light c. Recalling that Gr denotes the receive antenna
gain, i.e., the pinnacle of its pattern, we use Gr(θ) to denote the entire antenna pattern as a
function of angle. And, since the gain Gr was already incorporated within the large-scale
channel gain G, the function Gr(θ) is normalized to keep the small-scale fading unit power.
For a sinusoid with wavelength λc = c/fc, which in baseband is a constant x, the delay
of the signal replica received through angle θ maps to a phase shift of φ(θ) = 2πD(θ)/λc

and thus

y =
√
G

∫ π

−π

√
P(θ)Gr(θ) x e

−jφ(θ)dθ (3.35)

=
√
Gx

∫ π

−π

√
P(θ)Gr(θ) e

−jφ(θ)dθ. (3.36)

It follows that y =
√
Gh0 x with

h0 =

∫ π

−π

√
P(θ)Gr(θ) e

−jφ(θ) dθ, (3.37)

which, as reasoned earlier, can be modeled as a complex Gaussian random variable un-
der certain assumptions regarding the uniformity of the PAS and the independence of the
phases viewed as random variables.

At a second location spaced ΔD from the first one, the length of each propagation path
changes by ΔD cos(θ) as shown in Fig. 3.6 and thus the complex channel gain becomes

h1 =

∫ π

−π

√
P(θ)Gr(θ) e

−j[φ(θ)+2πΔD cos(θ)/λc] dθ. (3.38)

The correlation between h0 and h1 is

Rh(ΔD) = E
[
h0 h

∗
1

]
(3.39)

= E

[∫ π

−π

∫ π

−π

√
P(θ0)Gr(θ0)P(θ1)Gr(θ1) e

−j[φ(θ0)−φ(θ1)−2πΔD cos(θ1)/λc] dθ0dθ1

]

=

∫ π

−π

∫ π

−π

√
P(θ0)Gr(θ0)P(θ1)Gr(θ1)E

[
e−j[φ(θ0)−φ(θ1)−2πΔD cos(θ1)/λc]

]
dθ0dθ1

(3.40)

with expectation over the phase φ at each angle. Under the very reasonable assumption
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�Fig. 3.9 Space correlation function corresponding to the Clarke–Jakes PAS as a function of

distance (in wavelengths).

that the phase at each angle is uniformly distributed in [−π, π), this expectation is nonzero
only for θ0 = θ1; then, the dependence on φ vanishes, giving

Rh(ΔD) =

∫ π

−π

P(θ)Gr(θ) e
j2πΔD cos(θ)/λc dθ. (3.41)

This expression, which is a transformation of the function P(θ)Gr(θ), can now be particu-
larized to specific antenna patterns and to specific PAS functions such as the ones surveyed
earlier. The antenna pattern Gr(·) can in principle be designed to modify the environment’s
PAS, and thus Rh(·), at the expense of failing to capture all the incoming power [239, 240].
However, the habitual design principle is to apply an antenna pattern that is broader than
the PAS, and approximately flat thereupon, so as to essentially capture all of the power.
If the PAS is unknown or the antenna cannot be properly pointed, as is often the case, a
uniform pattern is then preferable and (3.41) simplifies to

Rh(ΔD) =

∫ π

−π

P(θ) ej2πΔD cos(θ)/λc dθ. (3.42)

Example 3.8 (Space correlation function for the Clarke–Jakes PAS)

For P(θ) = 1
2π , the integral in (3.42) gives

Rh(ΔD) = J0(2πΔD/λc), (3.43)

where J0(·) is the zero-order Bessel function of the first kind (see Appendix E). This space
correlation function is depicted in Fig. 3.9.
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For most other PAS functions, (3.42) does not admit a closed form but it can be computed
as a series in cylindrical coordinates [241] or else numerically.

In settings where the dependence on elevation is relevant, it is natural to resort to spher-
ical coordinates, and for the simplest case of a PAS uniform over all points of a sphere the
space correlation function emerges also in closed form.

Example 3.9 (Space correlation function for a uniform spherical PAS)

Uniform integration over a sphere gives [242]

Rh(ΔD) = sinc(2πΔD/λc). (3.44)

For certain other PAS functions involving both azimuth and elevation, series expansions
in spherical coordinates have been given [241]. Henceforth, we again focus on PAS func-
tions involving only azimuth.

Often, the space correlation function is reduced to a single characterizing quantity, the
coherence distance.

Example 3.10 (Coherence distance for the Clarke–Jakes PAS)

For the Clarke–Jakes PAS, a natural choice for the coherence distance is the first zero
of the function J0(·), which occurs when its argument equals 2.4. Denoting by Dc such
coherence distance, the condition 2πDc/λc = 2.4 gives

Dc = 0.38λc. (3.45)

Example 3.11

Compute the coherence distance with a Clarke–Jakes PAS at a frequency of 2 GHz.

Solution

Applying (3.45), Dc = 5.7 cm. The value at this typical microwave frequency illustrates
the tiny displacements over which the small-scale fading can exhibit sweeping variations.

The value Dc = 0.38λc, often rounded to λc/2, has become over the years a rule of
thumb for the distance over which small-scale fading decorrelates in cluttered environ-
ments. Besides the first zero of Rh(·), other definitions of coherence distance are possible,
and in fact necessary if Rh(·) does not exhibit zeros.

3.4.3 Time selectivity

Time correlation
The function Rh(ΔD) studied in the previous section characterizes the correlation between
the fading experienced at two nearby locations. This can serve to characterize the correla-
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tion between two nearby antennas, and also the time correlation of the time-varying com-
plex gain h(t) undergone by a single antenna in motion. At a velocity v, a distance ΔD is
covered in a time Δt = ΔD/v and thus, with a simple change of variables, the expressions
for space correlation map directly onto expressions for time correlation. From (3.42) then,
the time correlation function is

Rh(Δt) =

∫ π

−π

P(θ) ej2πfΔt cos(θ)v/c dθ, (3.46)

where, taking advantage of the fact that their arguments are scaled versions of one another,
we have slightly abused notation and reused Rh(·) for both space and time correlation.

Example 3.12 (Time correlation function for the Clarke–Jakes PAS)

Applying Δt = ΔD/v to Example 3.8, or plugging P(θ) = 1
2π into (3.46),

Rh(Δt) = J0

(
2π

v

c
fc Δt

)
. (3.47)

Applying the same change of variables, the coherence time of the small-scale fading
observed by a moving antenna is seen to be Tc = Dc/v.

Example 3.13

For velocities v = 5 km/h and v = 100 km/h, compute the coherence time with a Clarke–
Jakes PAS at a frequency of 2 GHz.

Solution

From Example (3.11), Dc = 5.7 cm. Thus, Tc = 41 ms at 5 km/h and Tc = 2 ms at 100
km/h.

Notice how fading changes over time scales measured in milliseconds. Wireless systems
need to react to dramatic channel fluctuations at these time scales.

Caution must be exercised when assessing the coherence time at v = 0, which the above
models would declare unbounded. Background motion of objects in the local neighborhood
(e.g., vehicles, people, foliage), relatively negligible when v is positive, comes to the fore
at v = 0 curbing the coherence time at values of a few hundred milliseconds.

Doppler spectrum
Recall that, as the receiver travels a distance ΔD, the length of a path at an angle θ changes
by ΔD cos(θ). This rotates the phase of a signal at frequency fc by 2πΔD cos(θ)/λc =

2πfcΔtv cos(θ)/c. Since the time incurred to travel ΔD is precisely Δt, this phase rotation
corresponds to a frequency fcv cos(θ)/c. In other words, a signal of frequency fc arriving
over a path an angle θ relative to the direction of motion suffers a frequency increase (which
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can be negative, hence a decrease) equal to ν = fcv cos(θ)/c. This frequency shift, a mere
manifestation of the Doppler effect, is within the range [−νM, νM], where

νM =
v

c
fc (3.48)

is aptly termed the maximum Doppler shift. Since every pair of paths at angles ±θ map
to a unique Doppler shift, (3.46) can be rewritten as an integral over Doppler shifts rather
than angles. Precisely, introducing the change of variables ν = νM cos(±θ) and carefully
discriminating the two opposite angles that map to the same ν [212, 243]

Rh(Δt) =

∫ 0

−π

P(θ) ej2πfcΔt cos(θ)v/c dθ +

∫ π

0

P(θ) ej2πfcΔt cos(θ)v/c dθ (3.49)

=

∫ νM

−νM

P(− arccos(ν/νM))√
ν2M − ν2

ej2πνΔtdν +

∫ νM

−νM

P(arccos(ν/νM))√
ν2M − ν2

ej2πνΔtdν

(3.50)

=

∫ νM

−νM

P(− arccos(ν/νM)) + P(arccos(ν/νM))√
ν2M − ν2

ej2πνΔtdν (3.51)

where we have used
d

dξ
arccos(ξ) = − 1√

1− ξ2
. (3.52)

Eq. (3.51) is nothing but a Fourier transformation and thus the time correlation function
Rh(Δt) is seen to be the Fourier transform of

Sh(ν) =

⎧⎪⎨
⎪⎩

P(− arccos(ν/νM)) + P(arccos(ν/νM))√
ν2M − ν2

ν ∈ [−νM, νM]

0 ν /∈ [−νM, νM]

(3.53)

which is termed Doppler spectrum because it gives the density of power received at each
Doppler shift (under the condition, as we recall, that the antenna pattern does not modify
the PAS). For a stationary random process, indeed, the Fourier transform of the autocor-
relation function gives its power spectrum (see Appendix C.3). When that random pro-
cess corresponds to a multipath fading channel, the power spectrum is embodied by the
Doppler spectrum and it can be interpreted as follows: a transmit sinusoid of frequency fc
gets smeared into received components at every frequency within [fc − νM, fc + νM] as
indicated by Sh(ν). As can be verified∫ π

−π

P(θ) dθ =

∫ νM

−νM

Sh(ν) dν. (3.54)

Using (3.53), the Doppler spectrum can be readily obtained for the PAS functions intro-
duced earlier in this section. Moreover, for all these PAS functions the Doppler spectrum
exists free of delta functions and hence, as explained in Appendix C.3.2, the assumption
of (local) stationarity carries with it the characteristic of (local) ergodicity. The correspon-
dence between stationarity and ergodicity would not hold if the Doppler spectrum featured
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�Fig. 3.10 Clarke–Jakes Doppler spectrum for νM = 148 Hz. This corresponds, for instance, to a

velocity of v = 80 km/h at fc = 2 GHz.

delta functions, i.e., in the face of LOS components; this is just as well because LOS com-
ponents are regarded as deterministic as far as the small-scale distributions are concerned
and thus they can be excluded from the spectrum.

Example 3.14 (Clarke–Jakes Doppler spectrum)

For P(θ) = 1
2π ,

Sh(ν) =

⎧⎪⎨
⎪⎩

1

π
√
ν2M − ν2

ν ∈ [−νM, νM]

0 ν /∈ [−νM, νM]

(3.55)

which is the Fourier transform of the time correlation function in Example 3.12, more
compactly rewritten by means of νM as

Rh(Δt) = J0(2πνMΔt). (3.56)

The Clarke–Jakes spectrum has the distinctive U-shape depicted in Fig. 3.10.

Besides the ones that can be obtained by transforming PAS functions given earlier in
this text, additional Doppler spectra have been proposed, including the following.

Example 3.15 Bell-shape Doppler spectrum)

For v = 0, when the dynamics are only caused by environmental motion, the fading is
strongly nonzero-mean and the Doppler spectrum of the random component—which, with
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�Fig. 3.11 Bell-shape Doppler spectrum for νM = 148 Hz. This corresponds, for instance, to a

velocity of v = 80 km/h at fc = 2 GHz.

a slight abuse of notation, we continue to denote by Sh(·)—has been found to firmly fit the
bell-shape spectral function [244]

Sh(ν) =
1

1 +KB

(
ν/νM

)2 . (3.57)

Example 3.16

Depict the bell-shape spectrum for a velocity of v = 80 km/h at a carrier frequency of
fc = 2 GHz.

Solution

The maximum Doppler shift is νM = fcv/c = 148.15 Hz. Then, for the right-hand side of
(3.57) to integrate to unity, we must set KB = 55.23. The resulting spectrum is shown in
Fig. 3.11.

From the scaling property of the Fourier transform relating Rh(·) and Sh(·), namely that
compression by a factor in one domain causes expansion by the same factor in the other
domain, and vice versa, we can affirm that the coherence time satisfies

Tc ∝ 1

νM

(3.58)

where the precise relationship depends on the shapes of Rh(·) and Sh(·), as well as on the
degree of decorrelation in the definition of Tc. Although we cannot render (3.58) precise
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in a way that is universal in Rh(·) and Sh(·), later in the chapter we present arguments in
favor of settling this scaling at

Tc =
1

2 νM

. (3.59)

Also, since the spectral smearing brought about by motion is experienced by every fre-
quency component, a signal of bandwidth B suffers a spectral broadening that expands it
to B+ νM. This broadening is negligible if νM � B, which, utilizing (3.58) and B = 1/T

where T is the single-carrier symbol period, is equivalent to T � Tc. This confirms the
intuition that, for time-varying fading not to cause waveform distortion, the fading should
not change noticeably over the duration of an individual symbol.

Fading regularity
The bandlimited nature of Sh(·) in the foregoing derivations (with the exception of the
bell-shape case if not truncated) renders the fading process a nonregular random process
in the sense of Section 1.3.3. In such a process, the present value is perfectly predictable
from noiseless observations of the entire past. The bandlimited nature of Sh(·) descends
directly from the modeling assumptions, specifically from having implicitly presumed that
the signal incoming along each path bounces only once and from a stationary object. If we
allowed for the possibility that the signal bounces back and forth between the receiver and
the objects, or we allowed for such objects to be themselves in motion, then Doppler shifts
larger than νM = fcv/c could be observed. In the limit, if Sh(·) were not bandlimited,
then we would be in the presence of a regular fading process, for which the present value
cannot be perfectly predicted from noiseless observations of the entire past.

Unless otherwise stated, we consider nonregular fading bandlimited to νM. While Doppler
shifts exceeding this value are possible, the corresponding signal components are likely to
be very weak relative to those within [−νM, νM] and hence, barring exceedingly high SNRs,
those components beyond ±νM are likely to be buried well below the noise level.

Time discretization
For fading conforming to h(t, τ) = h(t)δ(τ) as we are considering thus far, the channel
has the multiplicative effect y(t) =

√
Gh(t)x(t) and, as we learned in Example 2.3, the

sampled pseudo-baseband gain h[n] = h(nT ) suffices for a discrete-time representation;
we can directly write y[n] =

√
Gh[n]x[n]. Strictly speaking, the time-discretization of

y(t) should entail a sampling period 1
B+νM

because the bandwidth B of the transmit sig-
nal increases to B + νM as the signal undergoes time-varying fading. However, provided
that νM � B, there is little loss in sampling with a period T = 1/B. By the same to-
ken that h[n] = h(nT ), the autocorrelation of h[n] equals Rh(�T ) where Rh(τ) is the
autocorrelation of h(t). And, given Sh(ν), the Doppler spectrum of h[n] equals

1

T
Sh

( ν

T

)
ν ∈ [−νMT, νMT ], (3.60)
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with the factor 1/T ensuring that the scaling of the frequency axis ν to ν = νT does not
affect the power.

Simplified models
As mentioned at the outset of the chapter, the art of channel modeling must seek a compro-
mise between realism and tractability, distilling what is essential for each purpose. When
it comes to fading dynamics, it is sometimes desirable to have models that capture the
essence of time selectivity but are otherwise stripped down to the bones. We next introduce
two such models, formulated directly for the discrete-time complex channel h[n] = h(nT ).

Gauss–Markov model

A first possibility is to resort to a first-order Gauss–Markov process, or first-order autore-
gressive process, whereby the fading at symbol n satisfies

h[n] =
√
1− ε h[n− 1] +

√
εw[n], (3.61)

where {w[n]} is a sequence of IID random variables with w ∼ NC(0, 1). In turn, ε is the
one-step prediction error, i.e., the variance of the error to which h[n] can be predicted from
a noiseless observation of h[n − 1], something that in a first-order Markov process is as
informative as a noiseless observation of the entire past. By definition, a Gauss–Markov
process is regular and its degree of decorrelation after � symbols is determined by ε via

Rh[�] = E
[
h[n]h∗[n+ �]

]
(3.62)

= (1− ε)�/2. (3.63)

Example 3.17

Let T = 5 μs and suppose we want a first-order Gauss–Markov fading channel that decor-
relates by 50% over 10 ms. What should the value of ε be?

Solution

The number of 5-μs single-carrier symbols within a 10-ms interval equals 2000 and thus
we can pose the equality

0.5 = (1− ε)1000 (3.64)

from which ε = 6.93 · 10−4.

Block-fading model

A second possibility, illustrated in Fig. 3.12, is to resort to a block-fading structure, whereby
the fading remains constant over blocks of duration Tc while changing values across blocks.
It is worth noting that this model is not stationary but cyclostationary with period Tc. The
fading values at consecutive blocks may be correlated, but are most often assumed IID.
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�Fig. 3.12 Block-fading model.

Denoting by Nc the number of single-carrier symbols per block, we have that

Nc =
Tc

T
(3.65)

= B Tc (3.66)

and, if the blocks are IID, then it makes sense to set Tc to coincide with the coherence time
of a stationary fading process. Recalling (3.59), this leads to

Nc =
1

2 νMT
. (3.67)

However, care must be exercised with both (3.66) and (3.67) because they hold only if the
bandwidth B is “not too large,” where the precise meaning of “not too large” is to become
clear in the next section.

The block-fading model can be broadened to allow for continuous variability within
each block, with transitions to independent values across blocks. This more general block-
fading model can sometimes serve as a convenient bridge with a true continuous fading
model [245, 246].

3.4.4 Frequency selectivity

Frequency correlation
In our characterization of space and time selectivity, we have focused on the fading expe-
rienced by a sinusoid at frequency fc. The derivations hold approximately for frequencies
close enough to fc, and thus the fading goes (roughly) unchanged over a certain frequency
span. If the entire signal fits within a swath of frequencies that experience (roughly) the
same fading, the fading is frequency-flat; the channel is then multiplicative, i.e., it merely
applies a complex gain. The signal can also be said to be narrowband, although such nar-
rowness must be understood only in reference to the fading.

If the signal bandwidth is large enough, however, it is bound to exceed the range of
frequencies experiencing (roughly) the same fading. At a given location then, in static
conditions, the noiseless received signal is y(f) =

√
G h(f) x(f) where h(f) is no longer

constant over the bandwidth B. The signal undergoes frequency-selective fading, and it can
be said to be fading-wise wideband; the channel is not merely multiplicative, but rather it
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effects a nontrivial convolution that modifies the shape of the symbol pulses. The degree
of selectivity over a frequency range Δf is quantified by Rh(Δf ) = E[h(f)h∗(f + Δf )]

whose chief measure is the coherence bandwidth Bc, the natural counterpart to the coher-
ence time and the coherence distance. The fading is frequency-flat if B � Bc.

Power delay profile

Frequency selectivity can be physically explained via the duality between the frequency
and the delay domains. Thus far, we have attributed to the different delays experienced by
the signal replicas traveling over distinct paths merely the effect of a different phase shift,
and that is indeed the only effect upon a sinusoid. Then, in the absence of motion, the time-
invariant impulse response corresponding to h(f) has the form h(τ) = h δ(τ) where h is
the complex gain at the given position. With motion, this becomes h(t, τ) = h(t) δ(τ).

Sticking to motionless channels, when the signal is richer than a sinusoid, specifically a
sequence of symbol pulses with period T , the dominant effect of each path’s delay is still
a phase shift as long as τmax − τmin � T with τmax and τmin, respectively, the longest and
shortest delays among all paths. This condition ensures that, relative to the much longer
symbols, the channel still behaves approximately as h(τ) = h δ(τ). Put differently, delay
differences much smaller than T are blurred by the lowpass filtering that the pulse shaping
effects, and the corresponding signal replicas all fall within the main tap in the discretized
h[�]. However, if the condition τmax − τmin � T is not satisfied, the sequence of symbol
pulses received over distinct paths no longer overlap fully and the replica of the nth symbol
arriving over a given path collides with replicas of symbols other than n incoming over
other paths (see Fig. 3.13). Multipath propagation then causes not only fading, but also
signal distortion because of ISI. Relative to the symbol pulses, the channel response is
revealed as not being simply an impulse scaled by a complex gain h, but rather as having a
more general form h(τ); since it spreads the signals in delay, the channel is dispersive.

To be sure, any form of fading is the result of self-interference among multipath sig-
nal replicas of each symbol; the difference between frequency-flat and frequency-selective
fading is that, in the former, every symbol essentially interferes exclusively with replicas
of itself, whereas in the latter it experiences significant interference with adjacent symbols
as well. The same exact channel can exhibit either frequency-flat or frequency-selective
fading depending on T or, equivalently, depending on the bandwidth through which it is
observed.

Ultimately, the delay-dispersive nature of fading channels, and thus the frequency se-
lectivity, is rooted in the fact that the speed of light is finite. To appreciate this, the reader
is referred to Fig. 3.14, which depicts a transmit sequence of symbols traveling over two
distinct propagation paths. The finite value of c bestows upon the symbol separation a fi-
nite length in space and opens the door to distinct symbols colliding at the receiver if the
difference in length between the paths is sufficiently large. In contrast, if c were infinite,
then the symbol sequences received over the multiple paths would always align.
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Frequency-flat fading

Frequency-selective fading

�Fig. 3.13 Signal replicas received over multiple propagation paths. Above, a flat-faded channel,

where each replica only experiences a different phase shift and magnitude gain.

Below, a frequency-selective channel, where in addition there is ISI and distortion.

(For the sake of the illustration, the symbol pulses are drawn as rectangles.)

Example 3.18

Consider Fig. 3.14 with a single-carrier symbol period T = 3.7 μs, which was the value
employed in the 2G GSM system. Over the air, each such period maps to a length of
1.11 km. If the distance between transmitter and receiver exceeds this value, then multiple
symbols are on the air at any given instant. If the difference in length between the two
propagation paths shown in the figure were 500 m, then the corresponding signal repli-
cas would have their sequences staggered by almost half a symbol, and the ensuing ISI
would have to be equalized [247]. Even substantially shorter path length differences, in
fact, would require equalization at the receiver.

The foregoing interpretation can be further stretched to motivate the use of OFDM:
since ISI arises because of the finite length of the symbols, the antidote to ISI is to make
the symbols longer.
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�Fig. 3.14 Symbol sequence traveling over two distinct propagation paths with lengths differing

by substantially more than the symbol period. The sequences received over the two

paths are staggered by about half a period, which for T = 3.7 μs would happen if the

path lengths differed by about 500 m.

Example 3.19

In LTE, OFDM is employed with TOFDM = 71 μs, mapping to an over-the-air length of 21.3
km. For any reasonable transmission range, then, a single OFDM symbol is on the air at
any given instant. Most importantly, there is a cyclic prefix of 4.7 μs between consecutive
symbols, mapping to a safety length of 1.41 km. As long as the length difference between
propagation paths does not exceed this considerable safety value, no ISI is experienced.

Figure 3.15 reminds us that OFDM’s robustness against ISI comes at the expense of
parallelizing the transmission in the frequency domain, with narrower subcarriers that are
more vulnerable to the spectral smearing caused by Doppler spread.

The distribution of received power as a function of delay, normalized so it can be inter-
preted as a PDF, is termed power delay profile (PDP) and denoted by

Sh(τ) = E

[
|h(τ)|2

]
. (3.68)

Although in general a continuous function of delay, discrete PDP descriptions are also
possible, and in fact fairly common. In our formulation, these are readily accommodated
by means of delay-shifted delta functions, each modeling a group of paths—a ray—with
similar delays. Because of the plurality of paths per ray, each ray is still subject to fading.
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�Fig. 3.15 OFDM signal traveling over two distinct propagation paths. The staggering of the two

replicas does not exceed the cyclic prefix and thus there is no ISI.

Example 3.20 (Typical urban PDPs)

A family of typical urban discrete PDPs, with different numbers of rays, have been utilized
to test several generations of cellular systems. Summarized in Table 3.2 are the ray delays
and average power shares in a version of such PDP [248].

Example 3.21 (ITU PDPs)

Another common set of discrete PDPs are those recommended by the International Telecom-
munications Union (ITU) [249]. These recommendations specify different test environ-
ments: indoor, pedestrian, and vehicular. In addition, each such environment splits onto
a low-dispersion version (labeled as “A”) and a high-dispersion version (labeled as “B”).
Altogether then, six different variations exist, two of which are reproduced in Table 3.3.

For indoor environments in particular, the PDP described in the following example has
particular historical relevance.

Example 3.22 (Saleh–Valenzuela PDP)

In the 1980s, Adel Saleh and Reinaldo Valenzuela conducted wideband indoor measure-
ments that revealed that the PDP rays tended to exhibit a clustered structure with a double-
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Table 3.2 Six-ray typical urban PDP

Delay (μs) Power share
0 0.189

0.2 0.379

0.5 0.239

1.6 0.095

2.3 0.061

5.0 0.037

Table 3.3 ITU vehicular PDP

Vehicular A Vehicular B
Delay (μs) Power share Delay (μs) Power share

0 0.485 0 0.322

0.31 0.385 0.3 0.574

0.71 0.061 8.9 0.03

1.09 0.048 12.9 0.057

1.73 0.015 17.1 0.002

2.51 0.005 20.0 0.014

exponential shape [230]. These observations formed the foundation of the so-called Saleh–
Valenzuela model, illustrated in Fig. 3.16. The power of the rays within each cluster decays
exponentially at a rate γSV while the power of the set of rays leading the respective clusters
also decays exponentially, at a different rate ΓSV. Each ray is then Rayleigh-faded.

The delay of the lead ray of the kth cluster is τk, normalized by setting τ0 = 0. In turn,
the delay of the �th ray within the kth cluster, relative to τk, is τk,�. The aggregate delay of
the �th ray within the kth cluster is thus τk + τk,�. The inter- and intra-cluster delays are
mutually independent and Poisson-distributed.

Often, the PDP is succinctly reduced down to a key parameter quantifying its spread.
Relative to the average delay

μτ =

∫ ∞

−∞
τ Sh(τ) dτ, (3.69)

such RMS delay spread is simply the standard deviation

Td =

√∫ ∞

−∞
(τ − μτ )2 Sh(τ) dτ . (3.70)

Example 3.23

Compute the RMS delay spread for the PDP

Sh(τ) =

{
Ke exp(−4 · 105τ) τ ∈ [0, 10μs]

0 τ /∈ [0, 10μs].
(3.71)
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�Fig. 3.16 PDP based on the Saleh–Valenzuela model.

Solution

Setting Ke such that the PDP integrates to unity and applying (3.69) and (3.70), we obtain
μτ = 2.31μs and subsequently Td = 2.08μs.

If the PDP is discrete, the definition of delay spread in (3.70) becomes

Td =

√√√√Q−1∑
q=0

(τq − μτ )2Pq, (3.72)

where τq and Pq are the delay and power shares for the qth ray, respectively, while the
average delay is μτ =

∑Q−1
q=0 τqPq .

Example 3.24

Compute the delay spread for the six-ray typical urban PDP in Table 3.2.

Solution

Application of (3.72) to the ray delays and power shares in Table 3.2 yields Td = 1.05μs.

Example 3.25

Compute the delay spread for the vehicular PDPs in Table 3.3.

Solution

Application of (3.72) gives Td = 0.37 μs for vehicular A and Td = 4 μs for vehicular B.

As the preceding examples illustrate, the habitual values for the delay spread in out-
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door macrocells range between a fraction of a microsecond and a few microseconds. In
urban macrocells specifically, a very representative value is 1 μs. Indoors, alternatively, the
typical values range between 50 and 100 ns.

Using the delay spread, the condition Bc � B for frequency flatness can be equivalently
written as Td � T .

Uncorrelated scattering
Not surprisingly, the frequency-domain correlation Rh(·) and the PDP can be related through
a Fourier transform, namely

Rh(Δf ) = E
[
h(f)h∗(f +Δf )

]
(3.73)

= E

[∫ ∞

−∞
h(τ0) e

−j2πfτ0 dτ0

∫ ∞

−∞
h∗(τ1) ej2π(f+Δf )τ1 dτ1

]
(3.74)

=

∫ ∞

−∞

∫ ∞

−∞
E
[
h(τ0)h

∗(τ1)
]
ej2π[(f+Δf )τ1−fτ0] dτ0 dτ1. (3.75)

Under the condition that E[h(τ0)h∗(τ1)] = 0 for τ0 �= τ1, (3.75) becomes

Rh(Δf ) =

∫ ∞

−∞
E

[
|h(τ)|2

]
ej2πΔfτ dτ (3.76)

=

∫ ∞

−∞
Sh(τ) e

j2πΔfτ dτ. (3.77)

The pivotal condition that E[h(τ0)h∗(τ1)] = 0 for τ0 �= τ1 is referred to as the uncorrelated
scattering condition; it is grounded in the reasonable premise that the propagation mech-
anisms giving rise to paths having resolvable delays are essentially independent. Together
with the assumption of local stationarity, the uncorrelated scattering condition underpins
the traditional modeling of small-scale fading conforming the wide-sense stationary un-
correlated scattering (WSSUS) framework introduced by Bello in 1963 [250]. Further note
from (3.77) that the uncorrelated scattering condition in the delay domain ensures that
Rh(·) does not depend on f , but only on Δf , thereby rendering the fading wide-sense
stationary also in the frequency domain.

It follows from the Fourier relationship between Rh(·) and Sh(·) that

Bc ∝ 1

Td
, (3.78)

with the exact scaling depending on the shapes of Rh(·) and Sh(·), as well as on the degree
of decorrelation implied by Bc [197]. This inverse relation is, in a sense, the dual of (3.58).

Simplified models
Whatever modeling approaches one can apply to simplify the representation of fading in
the time domain can be applied to represent it in the frequency domain. This includes the
Gauss–Markov approach as well as the block-fading approach, in this case embodied by
frequency blocks of size Bc over which the fading remains constant.
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3.4.5 Time–frequency double selectivity

Time–frequency correlation
In order to foster conceptual clarity and intuition, we have thus far analyzed separately
the fading selectivity in the time (or equivalently space) and in the frequency domains. To
inspect the former we have posited no variations in frequency, i.e., y(t) =

√
Gh(t)x(t); to

investigate the latter we have postulated no variations in time, i.e., y(f) =
√
G h(f) x(f),

which is tantamount to y(t) =
√
G (h∗x)(t) = √

G
∫
τ
h(τ)x(t− τ) dτ .

When both types of selectivity are brought together, as is the case in actual wireless
channels, small-scale fading must be modeled as a time-varying relationship of the form

y(t) =
√
G

∫ ∞

−∞
h(t, τ)x(t− τ) dτ, (3.79)

where h(t, τ) is the channel response at time t to an impulse delayed by τ . By transforming
delay into frequency or time into Doppler shift, h(t, τ) can be converted respectively into
a time-varying transfer function [129]

�(t, f) =

∫ ∞

−∞
h(t, τ) e−j2πfτ dτ (3.80)

or into the Doppler-delay spreading function

�(ν, τ) =

∫ ∞

−∞
h(t, τ) e−j2πνt dt. (3.81)

Both of these functions offer alternative means of expressing the noiseless received signal
as a function of the transmit signal, e.g.,

y(t) =
√
G

∫ ∞

−∞

∫ ∞

−∞
�(ν, τ)x(t− τ) ej2πνt dτdν, (3.82)

which conveys particular intuition: y(t) is a superposition of replicas of x(t), each delayed
by a given τ and subject to a certain Doppler shift ν according to �(ν, τ). The formulation
is thereby seen to capture multipath fading in all its generality.

From �(t, f) one can compute a joint time–frequency correlation, which in general
would be four-dimensional but thanks to the stationarity in both time and frequency is
a function of only Δt and Δf ,

R�(Δt,Δf ) = E

[
�(t, f) �∗(t+Δt, f +Δf )

]
. (3.83)

Scattering function
From �(ν, τ), one can compute a joint Doppler–delay spectrum

S�(ν, τ) = E

[
|�(ν, τ)|2

]
, (3.84)
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which is commonly called the scattering function, and which relates to the time–frequency
correlation in (3.83) through the two-dimensional Fourier transform

S�(ν, τ) =

∫ ∞

−∞

∫ ∞

−∞
R�(Δt,Δf ) e

−j2π(Δtν−Δfτ) dΔtdΔf . (3.85)

This general WSSUS formulation allows for an easy recovery of all the earlier special
cases. Indeed, when there is no dependence on either time or frequency, R�(Δt,Δf ) re-
verts to the time correlation Rh(Δt) or the frequency correlation Rh(Δf ), respectively,
while the marginals of the scattering function equal the Doppler spectrum and the PDP

Sh(ν) =

∫ ∞

−∞
S�(ν, τ) dτ (3.86)

Sh(τ) =

∫ ∞

−∞
S�(ν, τ) dν. (3.87)

Simplified models
The block-fading approach can be applied to model double selectivity in time and fre-
quency, giving rise to rectangular tiles of size Tc × Bc (see Fig. 3.17). Fine-stretched to
encompass an integer number of symbols and subcarriers, this structure is particularly
amenable to the analysis of multicarrier signals; taking the spans of a resource element
to be TOFDM and 1/TOFDM in the time and frequency domains, respectively, the number of
resource elements per tile is given by the integer rounding of

Nc =
Tc

TOFDM

Bc

1/TOFDM

(3.88)

= BcTc, (3.89)

which generalizes (3.66).
The product BcTc is an important quantity that makes frequent appearances throughout

the text, its significance descending from the fact that it returns the number of resource
elements per time–frequency tile that render a block-fading model representative of more
general fading processes. Typical values taken by the product BcTc are given shortly.

Note that, in taking the spans of a resource element to be TOFDM and 1/TOFDM, the cyclic
prefix overhead inherent to OFDM has been neglected. Accounting for it, the time and
frequency spans become TOFDM = (K + L)T and 1/KT , and thus

Nc =
Tc

(K + L)T

Bc
1

KT

(3.90)

=
K

K + L
BcTc, (3.91)

where a good design ensures that K
K+L is not far from unity. Throughout the book, we use

Nc ≈ BcTc; the cyclic prefix overhead L
K+L should be separately accounted for.
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�Fig. 3.17 Time–frequency tiles in a block-fading model with both time and frequency selectivity.

The underspread property
A consequential property of wireless fading is that it is highly underspread, meaning that
the delay spread is much shorter than the coherence time (Td � Tc) or, equivalently,
that the Doppler spectrum is very narrow relative to the coherence bandwidth (νM � Bc)
[251]. As delay spreads are in the microsecond or sub-microsecond range while coherence
times are in the millisecond range or above, wireless channels are indeed underspread.
(Underwater communication channels, in contrast, are often not underspread because the
speed of sound is a great deal slower than the speed of light and the delay spreads are
accordingly higher.) A particularly convenient way of quantifying the underspreadness of
a fading channel is through the product BcTc, which, in an underspread channel, satisfies

BcTc � 1. (3.92)

Let us illustrate the range of values taken by BcTc in the form of some test cases to be
invoked throughout the text.

Example 3.26

Consider an outdoor vehicular scenario where the velocity and delay spread are, respec-
tively, v = 100 km/h and Td = 2 μs, with carrier frequency fc = 2 GHz. What is the value
of BcTc?

Solution

The maximum Doppler shift is νM = fcv/c = 185 Hz and thus Tc ≈ 1
2 νM

= 2.7 ms. The
coherence bandwidth is Bc ≈ 1

Td
= 500 kHz. Hence, BcTc ≈ 1350, which, to allow for



169 3.4 Small-scale fading

the possibility of higher velocities and/or carrier frequencies, or longer delay spreads, we
round down to 1000 symbols.

Example 3.27

Consider an outdoor pedestrian scenario where the velocity and delay spread are, respec-
tively, v = 3.5 km/h and Td = 2 μs, with carrier frequency fc = 3.5 GHz. What is the
value of BcTc?

Solution

The maximum Doppler shift is νM = fcv/c = 11.3 Hz and thus Tc = 44 ms. The coher-
ence bandwidth is Bc ≈ 500 kHz. Hence, BcTc ≈ 22 000. Again, this is conservatively
rounded down, in this case to 20 000 symbols.

Example 3.28

Consider an indoor pedestrian scenario where the velocity and delay spread are, respec-
tively, v = 3.5 km/h and Td = 100 ns, with the carrier frequency being fc = 5 GHz. What
is the value of BcTc?

Solution

The maximum Doppler shift is νM = fcv/c = 16 Hz and thus Tc = 31 ms. The coherence
bandwidth is Bc ≈ 1

Td
= 10 MHz. Hence, BcTc ≈ 3.1 · 105.

The discretization of a time-varying channel is generally problematic because its eigen-
functions depend on the realization. Fortunately, in underspread channels a straightforward
sampling of the time-varying transfer function in both time and frequency yields a discrete
representation from which the original continuous channel could be reconstructed with
high fidelity. This conveniently fits multicarrier schemes, where each such sample maps
to a resource element. Although, in the face of both Doppler and delay spread, it is not
possible to shape these elements in such a way as to ensure simultaneous orthogonality in
time and frequency—i.e., zero ISI and zero intercarrier interference—in sufficiently under-
spread channels the residual interference among elements can be made negligible [252].
As the name suggests, the underspread property allows having resource elements that are
at once “long” and “wide” relative to the delay and Doppler spreads, respectively. Ideally,
the shape of these elements should be computed from the scattering function [253], but
pragmatically a fixed a-priori shape is utilized. With OFDM in particular, and at the ex-
pense of the overhead represented by the cyclic prefix, the fixed shape of the subcarriers is
carefully designed to enable a tight packing in the frequency domain.

This sampling of the time-varying transfer function returns, on OFDM subcarrier k, the
discrete-time channel h[n] = �(nTOFDM, k/TOFDM) with time index n and, for a given n,
the discrete-frequency channel h[k] = �(nTOFDM, k/TOFDM) with frequency index k. And,
because with well-designed OFDM the fading is essentially multiplicative in both time
and frequency, these discrete representations are sufficient. By the same token, the time
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�Fig. 3.18 Spherical versus planar wavefronts. While propagation is spherical, the wavefronts

can be regarded as planar over an array because the constituent antennas are

closely spaced relative to the distance from the source.

correlation of h[n] and the frequency correlation of h[k] are obtained by directly sampling
Rh(·) and Rh(·), respectively.

3.5 Interlude: essential notions of antenna arrays

Before delving into MIMO channel modeling, we pause to provide some background ma-
terial on antenna arrays. This material serves to describe the topology of an array from a
communications standpoint. Conventional array processing is built around the mathemati-
cal description laid out in this section.

3.5.1 Array steering vectors

Array steering vectors are classical descriptors of the relative differences in the response
between antennas within an array. As a starting point, consider an array of two receive
antennas as in Fig. 3.18. A signal x(t) is radiated from a point source toward this receive
array, as a spherical wave. The propagation delay between the point source and the ith
antenna is τi = Di/c and the corresponding complex pseudo-baseband LOS channel is√
Gi e

−j2πDi/λc δ(τ − τi). If the antennas are closely spaced, then
√
G0 =

√
G1 =

√
G

and the noiseless complex baseband received signal at the ith antenna is

yi(t) =
√
Ge−j2πDi/λc x(t− τi). (3.93)

Next we simplify the received signal model further by making two assumptions: frequency
flatness and far-field.

First we incorporate the assumption of frequency flatness [254]. Let da denote the largest
dimension of the array and d the spacing between the antennas. With two antennas, da = d.
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Under frequency flatness, the time for a wave to propagate along the longest dimension of
the array satisfies da/c � T and thus

yi(t) ≈
√
Ge−j2πDi/λc x(t− τ), (3.94)

where the delay τ is now common to all antennas; at the same time, because small changes
in distance can lead to major phase shifts, it is important not to simplify the phase term. The
condition da/c � T , which extends to an array the notion of frequency flatness seen earlier
for a single antenna, is reasonable in MIMO except for cases like underwater communi-
cation [255, 256], where the speed of propagation is much less than c and the bandwidths
are small, or in distributed forms of MIMO [257], where the antennas may be deployed
throughout a building or on different sites.

When the receive array of size da is in the far-field region, meaning that the point source
is far enough (the rule of thumb being beyond 2 d2a/λc), the spherical wavefronts are ap-
proximately planar over the array. This condition, illustrated in Fig. 3.18, is satisfied with
the only possible exception of extreme massive MIMO [258, 259].

Now, take the location of antenna 0 as a reference. From the angle of arrival θ in
Fig. 3.18, the delay difference between the onset of the planar wavefront at each antenna
equals d cos(θ)/c. Under frequency flatness, the excess propagation delay results in only a
phase shift of 2πd cos(θ)/λc and thus

y1(t) = ej
2πd
λc

cos(θ) y0(t). (3.95)

Antenna 1 receives exactly the same signal, with a phase shift that depends only on θ. If,
rather than two, there are Na receive antennas, each observes a phase-shifted version of
the signal. Denoting by φi(θ) the shift at the ith antenna as a function of θ and of the array
topology, the array steering vector (or array response) is the collection of the Na phase
shifts

a(θ) =
[
ejφ0(θ) ejφ1(θ) · · · ejφNa−1(θ)

]T
(3.96)

experienced by a signal impinging from the direction determined by θ. Equivalently, these
are the phase shifts that, applied at the antennas, generate a plane wave in the direction of
θ when the array acts as a transmitter. A common shift of all the phases within a steering
vector, i.e., ejφa(θ) for arbitrary φ, merely affects the absolute phase of the signal being
received or transmitted, but not the direction. The choice of a coordinate system for the
array has the same effect.

The array manifold is the set of possible array response vectors, i.e., {a(θ)} for θ run-
ning from 0 to 2π. The mathematical structure of this set is exploited in array signal pro-
cessing algorithms to perform tasks such as direction-of-arrival finding [4].

Example 3.29 (Uniform linear array)

For a uniform linear array (ULA), from Fig. 3.19,

φi(θ) = 2π
i d cos(θ)

λc
i = 0, . . . , Na − 1, (3.97)
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�Fig. 3.19 Common antenna array topologies: the ULA and the UCA.

where θ is measured relative to the axis of the array, the so-called endfire direction, as
indicated in the figure. With this choice of coordinate system, θ = π/2 corresponds to the
broadside direction. We have implicitly centered the coordinates on antenna 0, where the
signal is received/transmitted with phase zero, but this coordinate center can be displaced
at will by applying a common shift to φ0(θ), . . . , φNa−1(θ).

Example 3.30 (Nonuniform linear array)

For a nonuniform linear array, (3.97) generalizes to

φi(θ) = 2π

∑i
ι=1 dι,ι−1 cos(θ)

λc
i = 0, . . . , Na − 1, (3.98)

where dι,ι−1 is the distance between receive antennas ι− 1 and ι.

Example 3.31 (Uniform circular array)

For a uniform circular array (UCA) with radius rUCA, as illustrated in Fig. 3.19,

φi(θ) = 2π
rUCA cos(θ − θi)

λc
i = 0, . . . , Na − 1, (3.99)

where θi is the angle subtended by the ith antenna [260]. All the angles are defined relative
to the same direction, which is otherwise arbitrary.

The formulation of the array steering vectors for other array topologies, e.g., star or
hexagonal, is straightforward. If the array and the wave are not coplanar, the formulation
generally requires azimuth and elevation angles but is otherwise conceptually identical.

Note that (3.42), which returns the correlation between two positions in space, or equiv-
alently between two closely spaced antennas, is nothing but an integral over the PAS of
the array steering vector of those antennas. Thus, the steering vectors are intimately related
with the antenna correlations. Precisely, they inform those correlations of the array topol-
ogy and antenna spacings. In terms of diversity against fading, the use of antennas that
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are spaced beyond the coherence distance is naturally termed antenna diversity or space
diversity.

The array steering vector definition in (3.96) does not include the pattern of the con-
stituent antennas or, put differently, it presumes that every antenna has a uniform pattern in
θ and that such uniform pattern is normalized by the peak gain Gr that is already included
in the large-scale channel gain G. If the individual antennas exhibit a nonuniform but iden-
tical pattern, its normalized version can be incorporated as a factor multiplying a(θ); this
can be observed in (3.41).

3.5.2 Array factor and beamforming

In classic array processing over LOS channels, the antennas form a directional beam. While
MIMO makes a more general use of the antennas, it is useful to review some of these classic
concepts for completeness. The array factor is a function A(θ) that represents the pattern
created if all the antenna outputs are linearly combined, e.g., A(θ) = 1Ta(θ) where 1 is
an all-ones vector. Used this way, the antennas work together to create a single effective
antenna with a directive beam pattern. The function Ga(θ) = |A(θ)|2 determines the power
gain experienced by a signal arriving from or transmitting toward direction θ. The array
factor can be interpreted as the angular response or pattern that the array would exhibit if
its constituent antennas were isotropic in θ. If the constituent antennas are nonuniform in θ

but identical, A(θ) is simply multiplied by the individual antenna pattern [261, chapter 20].
The generalization of A(θ) to arrays with antennas having distinct patterns is the subject
of Problem 3.14.

Example 3.32 (ULA array factor)

For a ULA,

A(θ) =

Na−1∑
i=0

ej2πi
d
λc

cos(θ) (3.100)

=
ej2πNa

d
λc

cos(θ) − 1

ej2π
d
λc

cos(θ) − 1
(3.101)

=
sin

(
Na

πd
λc

cos θ
)

sin
(
πd
λc

cos θ
) ejπNa

d
λc

cos(θ), (3.102)

where (3.101) is the sum of the geometric series in (3.100). The magnitude of the array
factor is

|A(θ)| = sin
(
Na

πd
λc

cos θ
)

sin
(
πd
λc

cos θ
) , (3.103)

whose peak value is Na. For Na = 4 and various choices of d/λc, the function |A(θ)| is de-
picted in Fig. 3.20. The horizontal symmetry is due to the ULA only having an unambigu-
ous response for θ ∈ [0, π). As d/λc approaches 1/2, the main lobe becomes progressively
narrower while, for d/λc > 1/2, spatial aliasing occurs; this is reflected in the main lobe
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�Fig. 3.20 Array factor magnitude for a ULA with Na = 4 and various choices of d/λc.

of the antenna pointing in multiple directions. In multipath environments, the appearance
of spatial aliases when d/λc increases beyond 1/2 causes ripples in the spatial correlation
(see Fig. 3.9), as multipath components from different directions get mixed differently.

If a common phase shift can be applied dynamically to the entire array, to change the
direction in which the beams point, we speak of a phased array and of beam steering. If
magnitude weighting can also be applied dynamically at each antenna prior to summation,
to further shape the beams, we have an adaptive array and beamforming. Letting w contain
the weight coefficients, with w having unit-magnitude entries in the case of a phased array
and arbitrary magnitudes in the case of an adaptive array,

Ga(θ) = |w∗a(θ)|2, (3.104)

with w designed to achieve a specific response, for instance to accentuate signals around a
certain angle and attenuate signals on other directions. In LOS propagation, beamforming
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�Fig. 3.21 Beam directed toward μθ = π/4 with d = λc/2, for matched filtering with Na = 4 and

Na = 16. More antennas produce a sharper beam with increased gain; the relative

sidelobe level also decreases.

has the literal significance of geometrically shaping a beam in θ. In Chapter 5, we provide a
more general definition of beamforming that applies even when the propagation is not LOS
and the geometric interpretation in the angular domain is lost. Perhaps the simplest form
of adaptive beamforming is matched filtering: given a target angle μθ, matched filtering
entails w = a(μθ) and Ga(θ) = |a∗(μθ)a(θ)|2. The design of beamforming vectors is
the topic of a rich body of literature, with parallel developments in filter design given that
an antenna array can be viewed as a filter in the angular domain.

Example 3.33 (ULA beamforming)

A gain pattern oriented toward μθ = π/4 is shown in Fig. 3.21 for a ULA with d = λc/2

under matched filtering with Na = 4 and Na = 16.

The introduction of adaptive arrays modifies the PAS in the same way that changing
the antenna pattern modifies it in single-antenna transceivers (recall (3.41)). The space
correlation function and the coherence distance are therefore altered depending on the
weight coefficients [262].

3.6 Modeling of MIMO channels

Having laid a solid foundation on channel modeling for SISO channels, we are now in a
position to graduate onto MIMO. The key new aspect, of course, is that with MIMO the



176 Channel modeling

ΔD

0

1

2

3

�Fig. 3.22 Four-antenna transceiver moving along a certain trajectory. For antenna pairs 0–1 and

2–3, the antenna correlation maps directly onto time-domain correlation through the

velocity. For all other antenna pairs, however, the mapping is modified. For pairs 0–3

and 1–2 in particular, the time correlation has nothing to do with the antenna

correlation.

channel response becomes matrix-valued, and this requires that some notions be expanded
and generalized.

A first consideration must refer to whether the separation of large- and small-scale phe-
nomena is upheld, and that depends, once more, on the physical size of the antenna arrays.
Unless otherwise stated, we consider that the number of antennas and their physical spacing
are such that the array size does not exceed the size of the local scattering neighborhood.
Under this premise, which may only need revisiting in the realm of massive MIMO, the
separation is upheld—with the addition of antenna correlation as a small-scale parameter
that should be made dependent, as appropriate, on the large-scale channel gain. The large-
scale models presented earlier apply verbatim and, in the sequel, we focus exclusively on
the small-scale domain via stochastic modeling.

Another consideration has to do with the normalization of the small-scale channel ma-
trix, H . The unit-power normalization of a scalar SISO channel can be generalized to
matrices in several ways, the most obvious options being a per-entry unit-power normal-
ization or a normalization of the Frobenius norm, E[‖H‖2F] = NtNr. As advanced in the
previous chapter, in this book we adopt the latter, which offers further flexibility, although
in many of the models it is the case that every entry of H ends up being unit-power.

In contrast with SISO, where we found it convenient to bind space and time, in MIMO
they need to be decoupled. The space dimension, properly sampled, becomes the antenna
dimension, and it is unlocked from the time selectivity engendered by motion. More pre-
cisely, the actual trajectory of a transceiver, which induces the time selectivity, needs to be
distinguished from the segments connecting every antenna pair (see Fig. 3.22).

In MIMO, the focus is evidently on how to model the joint distribution of the entries of
H , which is the differentiating aspect with respect to SISO [263–269]. In fact, some MIMO
channel models concern themselves exclusively with this aspect, with the tacit assumption
that the time/frequency dynamics of each entry can be modeled as in SISO; this disregards
dependences that may actually exist, but facilitates a sharp emphasis on the MIMO nature
of the link. We label these models as analytical, for lack of a better name. Other models,
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which we classify under the moniker parametric, do offer the possibility of capturing the
space, time, and frequency dimensions jointly. All these types of models are reviewed next.

3.6.1 Analytical models

The models we package under this label share the principle of not attempting to recreate the
geometry of the propagation environment, but merely the marginal statistical behavior of
the channel matrix H at a given time/frequency. In most cases, the entries of H are mod-
eled as jointly Gaussian (see Appendix C.1.9) and thus the model amounts to a description
of the first- and second-order characteristics. This description can be fairly compact and
analytically convenient, which is what makes these models attractive and justifies the label.

IID Rayleigh-faded model
The simplest possible analytical model, sometimes referred to as the canonical channel,
is the one where the entries of H are IID and [H]i,j ∼ NC(0, 1) for i = 0, . . . , Nr − 1

and j = 0, . . . , Nt − 1. Since, besides having importance on its own, this model is the
centerpiece of other analytical models, we introduce for it the specific symbol Hw. The
PDF of Hw is

fHw(H) =
1

πNtNr
e−tr(H∗H), (3.105)

whereas H∗
wHw (if Nt ≤ Nr) or HwH

∗
w (if Nt ≥ Nr) conform to the Wishart distribution

detailed in Appendix C.1.9.
The IID Rayleigh-faded model is typically justified as representative of environments

with rich scattering, meaning a broad PAS enabling complete decorrelation with relatively
tight antenna spacings. This is a simplification of reality, since simultaneous and complete
decorrelation of more than two antennas may be geometrically impossible, but the model
has enormous value nevertheless; it enables exploring and demarcating what may be feasi-
ble, and in that respect it played a very important role in the early days of MIMO.

IID Rice-faded model
An obvious generalization of the IID Rayleigh-faded model is the IID Rice-faded model

H =

√
K

1 + K
HLOS︸ ︷︷ ︸

μH

+

√
1

1 + K
Hw, (3.106)

where HLOS is deterministic and K is the Rice factor. For the normalization of H to be
upheld, it is necessary that ‖HLOS‖2F = NtNr. The mean μH is made explicit in (3.106)
while the PDF of H is

fH(H) =

(
1 + K

π

)NtNr

e−tr((H−μH)∗(H−μH)), (3.107)

which reduces to (3.105) for K = 0. For K → ∞, conversely, H becomes deterministic.



178 Channel modeling

Example 3.34

Establish HLOS for an LOS component departing from a ULA transmitter at an angle θt
and impinging on a ULA receiver at an angle θr. The antenna spacings at transmitter and
receiver are dt and dr, respectively.

Solution

Recalling the definitions in Section 3.5.1, the transmit and receive steering vectors are

at(θt) =
[
1 ej2π

dt cos(θt)
λc · · · ej2π

(Nt−1)dt cos(θt)
λc

]T
(3.108)

ar(θr) =
[
1 ej2π

dr cos(θr)
λc · · · ej2π

(Nr−1)dr cos(θr)
λc

]T
. (3.109)

The relative phase shifts between each transmit and each receive antenna are captured by
the outer product ar(θr)a

T
t (θt) and, given the normalization of HLOS, we can directly write

HLOS = ar(θr)a
T

t (θt) (3.110)

with the power of the LOS component affecting K, but not HLOS.

In the foregoing example, HLOS is of unit rank, and this is indeed the most common
situation, but it is conceivable that multiple LOS components exist and the rank of HLOS be
plural. The topology and physical dimension of the arrays may play some role here, and
readers interested in this aspect are referred, e.g., to [270, 271].

Kronecker model
The defining feature of the two analytical models presented thus far is that the entries of H
are IID. The next step toward wider generality is to allow for the dependences that almost
inevitably shall arise given the close antenna proximity within a MIMO transceiver. With
the channel entries jointly Gaussian, these dependences are fully captured by a second-
order statistical description. For a matrix, such a description is in principle in the form of a
four-dimensional tensor

RH(i, j; i′, j′) = E
[
[H − μH ]i,j [H − μH ]∗i′,j′

]
. (3.111)

Alternatively, the description can be reshuffled into a matrix by taking advantage of the
vec(·) operator; the NrNt ×NrNt correlation matrix

Rvec(H) = E
[
vec(H − μH) vec(H − μH)∗

]
(3.112)

then contains all the pairwise correlation terms between any two entries (i, j) and (i′, j′)
within H .

Most often, the above fully general second-order description is skirted in favor of sim-
pler forms. By far the most prevailing structure in the MIMO literature is the so-called
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Kronecker correlation model, sometimes also referred to as the separable or product cor-
relation model [272–275]. In this structure,

RH(i, j; i′, j′) = [Rr]i,i′ [Rt]j,j′ (3.113)

where Rr and Rt are, respectively, receive and transmit correlation matrices. Under this
condition, the channel matrix can be expressed as

H = μH +R1/2
r HwR

1/2
t (3.114)

from which, given the IID and zero-mean nature of the entries of Hw, it can be verified
(refer to Problem 3.16) that

Rt =
1

Nr
E
[
(H − μH)∗(H − μH)

]
(3.115)

Rr =
1

Nt
E
[
(H − μH)(H − μH)∗

]
, (3.116)

such that tr(Rt) = Nt and tr(Rr) = Nr. Recalling Rvec(H) as defined in (3.112),

Rvec(H) = E

[
vec

(
Rr

1/2HwRt
1/2

)
vec

(
Rr

1/2HwRt
1/2

)∗]
(3.117)

= E

[(
Rt

T/2 ⊗Rr
1/2

)
vec(Hw) vec(Hw)

∗
(
Rt

T/2 ⊗Rr
1/2

)∗]
(3.118)

=
(
Rt

T/2 ⊗Rr
1/2

)
E
[
vec(Hw) vec(Hw)

∗] (Rt
T/2 ⊗Rr

1/2
)

(3.119)

=
(
Rt

T/2 ⊗Rr
1/2

)(
Rt

T/2 ⊗Rr
1/2

)
(3.120)

= RT
t ⊗Rr, (3.121)

where (3.118) follows from vec(ABC) = (CT⊗A) vec(B) [276], (3.120) follows from
E[vec(Hw)vec(Hw)

∗] = I , and (3.121) follows from (A⊗B)(C ⊗D) = AC ⊗BD.
Thus, Rvec(H) emerges as the Kronecker product of RT

t and Rr, justifying the name of
the model.

The significance of (3.113) is the following: the correlation between the signal fading at
any two receive antennas is the same irrespective of the transmit antenna from which the
signal emanates, and conversely the correlation between the fading of the signals emanat-
ing from any two transmit antennas is the same at any receive antenna [277]. Intuitively,
this requires that the local scattering processes around the transmitter and the receiver be
decoupled. Under this condition, the entries of Rt and Rr can be obtained by sampling
the space correlation function in (3.42) at the spacings between every transmit and every
receive antenna pair, respectively, i.e.,

[Rt]j,j′ =

∫ π

−π

Pt(θ) e
−j2πdt,j,j′ cos(θ)/λc dθ (3.122)

[Rr]i,i′ =

∫ π

−π

Pr(θ) e
−j2πdr,i,i′ cos(θ)/λc dθ, (3.123)

with dt,j,j′ and dr,i,i′ the distances between transmit antennas j and j′, and between receive
antennas i and i′, respectively, and with Pt(·) and Pr(·) the transmit and receive PAS.
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�Fig. 3.23 Four-antenna user communicating with an elevated base station. The propagation

paths lie within the angle width (centered at μθ) that the user’s local scattering

neighborhood subtends at the base.

Unless otherwise stated, throughout this text we consider the correlation matrices to be
nonsingular, not only because that is appropriate from the perspective of modeling situa-
tions of interest, but further because dimensions in the null space of any singular correlation
matrix could be taken out, leaving a reduced-dimension nonsingular model. The nonsingu-
larity of the correlation matrices has the welcome benefit of yielding channel matrices H
that are themselves full-rank with probability 1, a property that prevents certain nuisances
in the formulation of subsequent chapters.

Base station correlation matrices

A common situation in cellular systems is to have a base station elevated above the clutter,
deprived of local scattering, communicating with a user located within the clutter. Then,
the user’s PAS can be modeled as Clarke–Jakes, with the consequent applicability of the
correlation function in Example 3.8. In turn, the base station’s PAS can be assumed to be
highly localized around its mean, μθ; as shown in Fig. 3.23, μθ is dictated by the azimuth
location of the user (relative, without loss of generality, to the endfire direction) while the
spread is determined by the angle subtended, from the vantage of the base station, by the
local scattering neighborhood around the user. This spread depends on the elevation and
the distance, among other aspects, and it can be as small as a few degrees.

Example 3.35

What would a typical base station azimuth angle spread be in a suburban environment?
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Solution

In suburbia, the azimuth angle spread at a base situated 30 m above the ground has been
shown to be around 1 or 2 degrees for distances between 1 and 6 km [214].

Such localized PAS functions set the stage for certain simplifications of (3.122) and
(3.123) [229, 278]. Consider the reverse link, where the base station acts as a receiver. By
means of the trigonometric identity cos(α+ β) = cos(α) cos(β)− sin(α) sin(β), we can
rewrite (3.123) into

[Rr]i,i′ =

∫ π

−π

Pr(θ) e
−j2πdr,i,i′ cos(μθ+θ−μθ)/λc dθ (3.124)

=

∫ π

−π

Pr(θ) e
−j2πdr,i,i′ cos(μθ) cos(θ−μθ)/λc ej2πdr,i,i′ sin(μθ) sin(θ−μθ)/λc dθ

≈ e−j2πdr,i,i′ cos(μθ)/λc

∫ π

−π

Pr(θ) e
j2πdr,i,i′ sin(μθ)(θ−μθ)/λc dθ, (3.125)

where we have used cos(θ − μθ) ≈ 1 and sin(θ − μθ) ≈ θ − μθ, which hold if the
PAS is indeed concentrated around μθ. The leading term in (3.125) is a fixed phase shift,
inconsequential for many purposes, while the magnitude is

∣∣[Rr]i,i′
∣∣ ≈ ∣∣∣∣

∫ π

−π

Pr(θ) e
j2πdr,i,i′ sin(μθ)(θ−μθ)/λc dθ

∣∣∣∣ , (3.126)

which can serve as a stepping stone toward other convenient expressions for small angle
spreads. Notice that in (3.126) we have maintained the integration from θ = −π to θ = π,
even though the approximation requires the integrand to be substantial only for θ in the
vicinity of μθ; the integral could thus be compacted around μθ with minimal effect.

For the forward link, where the base station acts as a transmitter, starting from (3.122)
and repeating the same steps,

∣∣[Rt]j,j′
∣∣ ≈ ∣∣∣∣

∫ π

−π

Pt(θ) e
j2πdt,j,j′ sin(μθ)(θ−μθ)/λc dθ

∣∣∣∣ . (3.127)

Example 3.36 (Antenna correlation for a truncated Gaussian PAS)

Consider the truncated Gaussian PAS introduced in Example 3.6. Under the premise of a
small σθ, the truncation can be neglected and the integral in (3.126) extended to obtain

∣∣[Rr]i,i′
∣∣ ≈ ∣∣∣∣

∫ ∞

−∞

1√
2πσθ

e
− θ2

2σ2
θ ej2πdr,i,i′ sin(μθ)(θ−μθ)/λc dθ

∣∣∣∣ (3.128)

= exp

(
−2

[
π dr,i,i′ sin(μθ)σθ

λc

]2)
, (3.129)
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which has been shown to offer a good fit to empirical data in elevated base stations located
in suburban or rural areas [214].

Example 3.37 (Antenna correlation for a truncated Laplacian PAS)

Consider now the truncated Laplacian PDF introduced in Example 3.7. Again, under the
premise of a small σθ, the truncation can be neglected and (3.126) becomes [279]∣∣[Rr]i,i′

∣∣ ≈ ∣∣∣∣
∫ ∞

−∞

1√
2σθ

e−|
√
2(θ−μθ)/σθ| ej2πdr,i,i′ sin(μθ)(θ−μθ)/λc dθ

∣∣∣∣ (3.130)

=
1

1 + 2 (πdr,i,i′ sin(μθ)σθ/λc)2
. (3.131)

As an alternative to the exact computation or to approximations of (3.122) on the basis
of a postulated PAS, it is possible to posit an arbitrary correlation function that decays with
distance. This approach is devoid of a physical interpretation, but it can suffice for certain
purposes, e.g., for crude preliminary analyses.

Example 3.38 (Exponential antenna correlation model)

The magnitude of the correlation between receive antennas i and i′ could be represented
by [280, 281] ∣∣[Rr]i,i′

∣∣ = ρ|i−i′|, (3.132)

where ρ is a parameter.

UIU model
Although the Kronecker correlation model has been shown to fit the data reasonably well in
numerous instances, both indoors [272, 282–284] and outdoors [285], it also has limitations
that stem from the transmit and receive PAS being fully decoupled, a condition that tends to
result in optimistic assessments of capacity or of to-be-introduced metrics such as diversity
[286–290].

A modeling representation that, while still short of offering the complete representation
in (3.111) or (3.112), is more general than the Kronecker model is [291]

H = μH +UrHindU
∗
t , (3.133)

where Ur and Ut are fixed unitary matrices while Hind has zero-mean independent non-
identically distributed (IND) entries. Because of its structure, this representation is termed
the UIU model or, in the case that the entries of Hind are not only IND but further complex
Gaussian, also the Weichselberger model [292, 293]. As its main feature, the UIU model
allows for the transmit and receive PAS to be coupled, something that becomes clearer
once the model is further specialized in the subsequent section. Experimental data pre-
sented in [293] indicated that the UIU model mitigates the aforementioned deficiencies of
its Kronecker counterpart.
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An interesting interpretation of (3.133) is that it represents the Karhunen–Loève expan-
sion of H . Widely employed in data analysis, the Karhunen–Loève expansion is a trans-
formation where the orthogonal basis functions are not fixed (e.g., complex exponentials in
the Fourier case) but rather they are derived from the covariance of the process itself, in this
case from the tensor RH(i, j; i′, j′); this ensures the best possible expansion for the given
number of parameters. In the UIU case, it means that the columns of Ur and Ut contain
the eigenfunctions of RH(i, j; i′, j′) while the variances of the entries of Hind equal the
eigenvalues of RH(i, j; i′, j′), such that∑

i′

∑
j′

RH(i, j; i′, j′) [Ur]i,k [U
∗
t ]j,� = λk,�(RH) [Ur]i,k [U

∗
t ]j,�, (3.134)

with the (k, �)th eigenvalue of RH satisfying λk,�(RH) = E
[ |[Hind]k,�|2

]
. Note from

(3.133) that, indeed, the columns of Ut and Ur coincide with the eigenvectors of E[H∗H]

and E[HH∗], respectively. The essence of the UIU model is that it maps the variances of
Hind onto correlations within H . The more uneven the variances in the former, the stronger
the correlations in the latter.

To see the structure that the UIU model imposes on the complete correlation description
in (3.112), it suffices to recall vec(ABC) = (CT⊗A)vec(B) in order to write vec(H) =

(U c
t ⊗Ur)vec(Hind), from which

Rvec(H) = (U c
t ⊗Ur)E

[
vec(Hind) vec(Hind)

∗](UT
t ⊗U∗

r ), (3.135)

where the leading and trailing matrices are unitary, because the Kronecker product of uni-
tary matrices is unitary, while E [vec(Hind)vec(Hind)

∗] is a diagonal matrix whose NtNr

diagonal entries are the variances of the entries of Hind.

UIU versus Kronecker

The Kronecker model is but a special case of the UIU model. From (3.114), using the
eigenvalue decompositions (see Appendix B) Rt = UtΛtU

∗
t and Rr = UrΛrU

∗
r , we

obtain H = UrΛ
1/2
r U∗

r HwU
∗
t Λ

1/2
t Ut. Because the distribution of Hw is invariant to

unitary rotations, this is statistically equivalent to H = UrΛ
1/2
r HwΛ

1/2
t Ut, which in turn

coincides with (3.133) if

E

[∣∣[Hind]i,j
∣∣2] = λi(Rr)λj(Rt). (3.136)

This condition is yet another way to see the constraints that the Kronecker model imposes
on the structure of the correlation.

Besides the Kronecker model, another special case of (3.133) that is of interest in MIMO
is the one where both Ut and Ur are simple identity matrices. Here, the channel matrix H

has itself IND entries, which allows modeling antenna configurations where mechanisms
other than physical separation are at play (see Discussion 3.2) and also situations where the
antennas that are jointly transmitting or receiving are truly far apart, say distributed over a
building or on distinct sites.
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Discussion 3.2 Alternatives to space: pattern and polarization diversity

The antennas within an array can have different patterns, causing them to observe the
same PAS through what essentially amounts to different lenses, and that tends to decor-
relate them. Conceivably, two overlaid antennas can have very low correlation if their
patterns are completely different and, in terms of diversity against fading, this is rightly
termed pattern diversity [275, 294–297]. If low antenna correlation is desirable, pattern
diversity has the advantage of requiring less physical space for a given number of anten-
nas; this can be of interest at portable devices with restricted form factors. The downside
is that such decorrelation comes at the expense of a loss in received power because, for
the antennas to observe the same PAS differently, they must violate the design rule of
having a pattern that is broader than the PAS and flat thereupon. Another consequence
of utilizing different patterns is that the fading at the various antennas may be nonidenti-
cally distributed. As a special case, different patterns can be obtained by simply rotating
a given (nonuniform) one; such implementation of pattern diversity is referred to as
angle diversity.

Besides different patterns, also distinct polarizations enable more compact arrays with
decreased levels of antenna correlation. The polarization of an antenna refers to the ori-
entation of its transmit/receive electric field relative to the ground. More precisely, it
refers to the projection of the electric field orientations over time onto a plane perpen-
dicular to the direction of propagation of the radio signals. Such projection is in general
an ellipse, which often is made to either specialize to a circle or to collapse onto a line.
Two orthogonal polarizations are possible on a plane, namely clockwise and counter-
clockwise in the case of circular polarizations, and any two perpendicular lines in the
case of linear polarizations. The linear orientations that naturally come to mind are hor-
izontal, vertical, or slanted at ±45◦ (see Fig. 3.24). As it turns out, man-made environ-
ments tend to favor the horizontal polarization over the vertical, possibly creating power
imbalances between the two. Thus, slanted orientations are preferred because their pow-
ers are then sure to be balanced.

When a signal is transmitted on a given polarization, a receive antenna on the same
polarization may collect more power than a receive antenna on the orthogonal polariza-
tion, and this difference is termed cross-polar discrimination [298]. At the same time, the
fading at the two orthogonally polarized receive antennas tends to exhibit very low cor-
relation [299] and hence the mixture of cross-polarized antennas allows packing twice
as many of them in a given surface or volume without a significant increase in correla-
tion. Such polarization diversity may result, like pattern diversity, in fading that is not
identically distributed across the array antennas, and the cross-polar discrimination that
determines the power differences has been found to be related to other large-scale pa-
rameters such as the large-scale channel gain or the Rice factor [300–302]. The modeling
and the information-theoretic properties of MIMO channels with polarization diversity
are illustrated in Examples 3.39 and 5.36. Empirical evidence of the effectiveness of
polarization diversity is given, e.g., in [303–306].
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Horizontal
and vertical

Slanted

�Fig. 3.24 Cross-polarization arrangements for a pair of linearly polarized antennas. Left,

horizontal and vertical. Right, slanted at ±45◦.

Example 3.39

Let Nt = Nr = 2. At both transmitter and receiver the antennas are overlaid, i.e., dt,0,1 =

dr,0,1 = 0, but with the antennas having ±45◦ slanted polarizations as per Fig. 3.24. There
is complete fading decorrelation across polarizations while the cross-polar discrimination,
i.e., the ratio of the power gain between co-polarized and cross-polarized antennas, is de-
noted by Ξ [298]. Express the channel matrix via the UIU model.

Solution

The channel is IND and, denoting by Ω a matrix such that [Ω]i,j = E

[∣∣[Hind]i,j
∣∣2],

Ω =
2

1 + Ξ

[
1 Ξ

Ξ 1

]
, (3.137)

where the leading factor guarantees the normalization. Then, H = Ω1/2 �Hw where �
indicates Hadamard (entry-wise) product.

The above example illustrates the added versatility of the UIU structure. While, in the
Kronecker model, zero antenna spacing entails full correlation and the entries of H must
have the same variance, that need not be so on the UIU mode. This enables the analysis
of antenna arrays with an assortment of polarizations and patterns, that is, arrays whose
constituent antennas are not identical.

Virtual channel model
The UIU model becomes particularly meaningful when its mean is zero and Ut and Ur are
Fourier matrices (see Appendix B). Then, the representation leads to the virtual channel
model championed in [307], namely

H = UrHvirU
∗
t , (3.138)

where Hvir is, by the very nature of Ut and Ur, the two-dimensional discrete Fourier
transform of H . In the virtual model, the entries of Hvir are zero-mean complex Gaussian,
with a joint distribution detailed below. By inverting (3.138), we obtain Hvir = U∗

r HUt.
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This model opens the door to intuitive interpretations that borrow concepts from array
processing. Consider ULAs with antenna spacings dt and dr at transmitter and receiver,
respectively. The phase shifts that must be applied to the receive antennas in order to point
a beam toward an azimuth angle θr relative to the endfire direction are given by the corre-
sponding steering vector (see Section 3.5.1)

ar(θr) =
[
1 ej2π

dr cos(θr)
λc · · · ej2π

(Nr−1)dr cos(θr)
λc

]T
. (3.139)

Since the ith column of an Nr ×Nr Fourier matrix Ur equals

[Ur]:,i =
1√
Nr

[
1 ej2π

i
Nr · · · ej2π (Nr−1)i

Nr

]T
, (3.140)

the basis functions that those columns correspond to are a set of fixed beams pointing to
angles

θr,i = arccos

(
λc

dr

i

Nr

)
i = 0, . . . , Nr − 1. (3.141)

Likewise, the columns of Ut correspond to a set of fixed transmit beams pointing to angles
θt,j = arccos

(
λc

dt

j
Nt

)
for j = 0, . . . , Nt− 1. The Fourier transformation in (3.138) can be

seen as a mapping from a beam domain onto the antenna domain, and the entries of Hvir

signify the coupling between the Nt transmit and the Nr receive beams. These beams can
also be interpreted as a partition of the transmit and receive PAS into Nt and Nr (over-
lapping) intervals, respectively, and Hvir determines how these intervals couple, which is
something that the Kronecker model does not allow.

The resolution in the beam domain—or virtual domain, the term after which the model
is named [307]—depends on the number of antennas in the corresponding array. As this
number grows, the beams sharpen and become more orthogonal. It follows that the entries
of Hvir characterize the coupling between the transmit and receive local neighborhoods
with a resolution that depends on the number of antennas (see Fig. 3.25). Scatterers within
the angular resolution of the beams are not discriminated or, put differently, their aggregate
effect is captured by a single entry of Hvir. The variance of [Hvir]i,j indicates how intensely
the jth transmit beam scatters into the ith receive beam. If there are no significant scatterers
connecting those beams, then E

[ |[Hvir]i,j |2
] ≈ 0.

Example 3.40

Figure 3.25 shows a cartoon representation of the virtual channel model for Nt = Nr = 5.
The outbound and inbound solid arrows indicate the axes of the transmit and receive beams,
whose shapes are not explicitly shown. The dashed arrows indicate the coupling between
beams, and thus every such arrow corresponds with one entry of Hvir. In this case, for
instance, E

[ |[Hvir]1,2|2
] ≈ 0.

Unlike in the UIU model, where the entries of Hind are by definition independent, in the
virtual channel model their strict definition is as the two-dimensional Fourier transform of
H , which need not render them independent. However, under the reasonable assumption
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�Fig. 3.25 Virtual channel model for Nt = Nr = 5.

that scatterers behave independently (in essence the uncorrelated scattering condition al-
ready invoked earlier as part of the WSSUS framework), the entries of Hvir decorrelate as
Nt and Nr grow and the beams illuminate progressively more disjoint sets of scatterers.
For finite Nt and Nr, the entries of Hvir are only approximately independent; to the extent
that this approximation holds, the information about the correlation among the entries of
H is reflected in the variances of those of Hvir.

When specialized to the Kronecker structure, through the imposition of condition (3.136)
to Hvir, the virtual model results in transmit and receive correlation matrices Rt and Rr

whose eigenvectors are the columns of a Fourier matrix.

Keyhole model
To finalize this survey of analytical models, we briefly discuss the keyhole or pinhole chan-
nel model [308–311]. In this model, the entries of H are uncorrelated yet not independent;
they are therefore necessarily also non-Gaussian. Precisely,

H = hr h
∗
t , (3.142)

where ht and hr are, respectively, Nt × 1 and Nr × 1 vectors with IID zero-mean unit-
variance entries. Typically the entries of ht and hr are further modeled as complex Gaus-
sian, in which case each entry of H is the product of two independent complex Gaussian
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scalars; the distribution of the power of every entry of H can then be shown to be [312]

f|[H]i,j |2(ξ) = 2K0

(
2
√
ξ
)

i = 0, . . . , Nr − 1 j = 0, . . . , Nt − 1, (3.143)

where K0(·) is the modified Bessel function of the second kind.
In terms of MIMO performance, the foremost property of the keyhole model is that H

has unit rank, in contrast with the generally full-rank nature of the other models.
The keyhole model serves to represent degenerate situations where the propagation from

transmitter to receiver encounters a point of spatial collapse. To visualize this, one can
imagine that a giant screen with a tiny hole is placed between transmitter and receiver;
local scattering at transmitter and receiver notwithstanding, the signals must inevitably
travel through this tiny hole. The vectors ht and hr are then the channel responses in and
out of the hole, and H is the product thereof. While this model is a theoretical construct,
notoriously difficult to replicate experimentally [313, 314], there are physical situations
where behaviors reminiscent of it could be encountered, chiefly tunnels or indoor hallways
where a waveguide behavior is encountered with the lowest-order mode suffering far less
attenuation than the rest, and under certain conditions also roof-edge diffraction [309]. It
is important to realize that, in a keyhole situation, increasing the amount of local scattering
within the transmit and receive local neighborhoods does not alter the nature of the channel.
In fact, the model already presumes extensive local scattering, hence the IID character of
the entries of both ht and hr.

If multiple holes—understood in the broad sense of the above situations—exist, then
H must be a superposition of several keyhole matrices, which progressively increases the
rank. This richer scenario, with the further addition of local transmit and receive correla-
tions, leads to the more elaborate model [310]

H = R1/2
r Hw1R

1/2
m Hw2R

1/2
t , (3.144)

where Hw1 and Hw2 are mutually independent and distributed as Hw while Rm is an
additional intermediate correlation matrix.

3.6.2 Parametric models

The analytical models reviewed thus far, and chiefly the Kronecker model, are the ones
most extensively applied to explore theoretic aspects of MIMO. Other modeling approaches
do exist, however, and these constitute the object of the remainder of the section. These al-
ternatives tend to be more physically inspired, and some of them serve as building blocks
for the standardized models sketched at the end of the chapter. The common trait of these
alternative modeling approaches, and the reason we refer to them as parametric, is that
they do not directly determine the statistical properties of the entries of H but, rather, they
model parameters from which those statistical properties then derive. Let us therefore begin
by resorting back to a parametric description used in Chapter 2 whereby the signals travel
from transmitter to receiver through Q discrete propagation paths rather than a continuum
thereof. Then, rather than an integral over a continuous PAS, as in (3.37), we encounter a
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sum over the paths and the (i, j)th entry of H is given by

[H]i,j =
1√
Q

Q−1∑
q=0

Aq e
jφi(θr,q)ejφj(θt,q), (3.145)

where θt,q and θr,q are the angles of departure and arrival of the qth path, φj(θt,q) and
φi(θr,q) are the relative phase shifts accrued by such a path traveling the transmit and re-
ceive local neighborhoods (these vary from antenna to antenna, hence the indexing by j

and i). In turn, Aq is a complex coefficient whose magnitude is the path gain and whose
phase is random, uniform in [−π, π), to represent the shift accumulated while traveling
between the transmitter and receiver local neighborhoods plus whatever shift the inter-
action with the scatterers may introduce. The phase shift associated with Aq is common
to all antennas, and the path magnitudes are normalized such that E[|[Hi,j ]|2] = 1 for
j = 0, . . . , Nt − 1 and i = 0, . . . , Nr − 1. It follows that [27]

H =
1√
Q

Q−1∑
q=0

Aq ar(θr,q)a
T

t (θt,q), (3.146)

with ar(·) and at(·) the receive and transmit array steering vectors. It is generally assumed
that the number of paths Q is larger than min(Nt, Nr), such that H is full-rank with
probability 1. If that were not the case, the channel would be rank-deficient and the number
of spatial dimensions available for communication would be limited by the channel rather
than by the number of antennas [27].

If the differences among the delays suffered by the Q paths are not insignificant relative
to the symbol period, then, as we have learned, the fading becomes frequency-selective. In
the delay domain, (3.146) then splits into multiple taps; every such tap corresponds to a
matrix H[�] that has the form of (3.146) only with the summation restricted to the paths
whose delays fall onto the �th tap, and with complex gains suitably modified by the cascade
of the transmit and receive filters, gtx(·) and grx(·), at the sampling instant of the tap.

The models presented in the remainder of this section rely either on the geometry of
the transmit and receive local neighborhoods, or else in certain distributions, in order to
establish concrete values for the path lengths and angles, and therefore for their magnitudes
and phases, in the above parametric representation.

Before proceeding though, it is instructive to relate (3.146) with the virtual channel
model. If we define St,j as the set of paths whose angle of departure falls within the jth
transmit beam in that model, for j = 0, . . . , Nt − 1, and Sr,i as the set of paths whose
angle of arrival falls within the ith receive beam, for i = 0, . . . , Nr − 1, then the variance
of the (i, j)th entry of the beam–domain matrix Hvir is

E

[∣∣[Hvir]i,j
∣∣2] ≈

∑
q∈(St,j∩Sr,i)

E

[
|Aq|2

]
, (3.147)

where the relationship is approximate because, recall, the beams become completely dis-
joint only as Nt, Nr → ∞. In turn, the entries of Hvir become complex Gaussian as the
number of paths per beam grows. Then, H becomes a Rayleigh-faded MIMO channel with
correlations dictated by the two-dimensional discrete Fourier transform of Hvir.
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�Fig. 3.26 One-ring model where, for clarity, the size of the arrays has been blown up relative to

D and to the ring radius. Explicitly indicated is the path that transmits by way of

scatterer q.

One-ring model
The tour of parametric models starts with a couple of geometry-based ones that address
complementary situations. First, the one-ring model, which is meant to represent a situation
already encountered in the context of analytical modeling: a base station elevated above
the propagation clutter, deprived of local scattering, communicating with a user within the
clutter. For this scenario, the correlation between any two base station antennas in the face
of diffuse scattering was characterized in Examples 3.35 and 3.36. The one-ring model is
merely a discrete version of the same formulation, by means of the parametric description
in (3.146), which is more amenable to simulation.

This model, depicted in Fig. 3.26, considers that scatterers exist only on a ring of a
certain radius centered on the user [274, 315]. Specifically, there are Q scatterers randomly
distributed along the ring, each such scatterer creating a distinct path between the base
station and the user’s array. If the distribution of scatterers is uniform along the ring, the
discrete PAS at the user is merely a sampled version of the continuous Clarke–Jakes PAS
while, at the base station, the discrete PAS has a width—and thus an angle spread—that is
determined by the range D and the radius of the ring.

For the sake of specificity we can focus on the forward link; the corresponding reverse-
link channel would be obtained through a simple conjugate transposition. In the one-ring
model, the base station local scattering neighborhood is absent and its role is played di-
rectly by the propagation between the base and the faraway ring. Then, as indicated in
Fig. 3.26, θr,q and θt,q are the angles spanned by scatterer q at the user and at the base
station, respectively, and ar(θr,q) and at(θt,q) are the corresponding array steering vectors
depending on the topology of the arrays (see Section 3.5.1). In turn, the phase of Aq equals
the shift introduced by the reflection at the qth scatterer. Mimicking the Clarke–Jakes PAS
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at the receiver entails setting |Aq| = 1, for q = 0, . . . , Q− 1, although any set of magni-
tudes that respects the unit-variance normalization of the entries of H would in principle
be acceptable.

As a refinement of the model, one could think about making the distribution of scatterers
nonuniform over the ring, which would modify the PAS at both transmitter and receiver.
A possibility here would be a distribution that, from the vantage of the transmitter, returns
a sampled version of any of the continuous PAS functions given earlier, e.g., a truncated
Gaussian or a truncated Laplacian. An alternative possibility is the von-Mises distribution,
whereby the angles of the ring scatterers—from the vantage of the receiver—are drawn
from [286]

fθr,q (θ) =
eκ cos(θ−μ)

2πI0(κ)
θ ∈ [μ− π, μ+ π), (3.148)

where I0(·), recall, is the zero-order modified Bessel function, κ ≥ 0, and μ indicates the
angle where the density of scatterers peaks. The interest of the von-Mises distribution is
that it closely approximates what would be obtained by wrapping a Gaussian distribution
around a circle [316], without truncations, and it does so with a PDF that is compact and
tractable. The parameter κ determines the concentration of the distribution, ranging from
uniform if κ = 0 to a mass point at μ if κ → ∞.

Two-ring model
The complementary situation of that captured by the one-ring model is the one where
the base station is not elevated high above the clutter, but immersed within it; that is the
case, e.g., in microcells. Then, the existence of local scattering neighborhoods around both
transmitter and receiver naturally calls for the two-ring model in Fig. 3.27 [317]. Focusing
again on the forward link, for the sake of specificity, the rings around the base and the user
contain Qt and Qr scatterers, respectively, such that Q = QtQr and (3.146) can be refined
as

H =
1√
QtQr

Qt−1∑
qt=0

Qr−1∑
qr=0

Aqt,qr ar(θr,qr)a
T

t (θt,qt), (3.149)

where θt,qt and θr,qr are the angles spanned by scatterer qt on the transmitter ring and
by scatterer qr on the receiver ring, respectively, and at(θt,qt) and ar(θr,qr) are the corre-
sponding array steering vectors depending on the topology of the arrays.

In principle the scatterers are uniformly spread along both rings, with path magnitudes
|Aqt,qr | = 1, which corresponds to sampled Clarke–Jakes PAS at either end, but again
alternative distributions and any set of path magnitudes that respects the unit-variance nor-
malization of the entries of H would be acceptable.

Clustered models
The last type of parametric models we tour are clustered models [318, 319]. Specifically,
we describe an extension, suitable for MIMO, of the Saleh–Valenzuela model presented in
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D
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�Fig. 3.27 Two-ring model where, for clarity, the size of the arrays has been blown up relative to

D and to the ring radii. Explicitly indicated is the path that transmits by way of transmit

scatterer qt and receive scatterer qr.

Example 3.22. Recall that the Saleh–Valenzuela model represents scenarios with multiple
scattering clusters (whose locations are modeled statistically rather than geometrically).
The key to incorporating space variability to this model is to distinguish paths on the basis,
not only of their propagation delays, but also of their angles [233]. As shown in Fig. 3.28,
each cluster of scatterers is then characterized by a mean delay and a mean angle around
which the path delays and angles are spread. The resulting channel exhibits a clustered
structure in both PDP and PAS, as illustrated in Fig. 3.29. The channel matrix at a given
delay can be generated from the parametric construction in (3.146), with the angles drawn
from any distribution of choice—typically the mean angle of each cluster is drawn uni-
formly while the distribution of angles thereabout is drawn from a truncated Laplacian—
and with the magnitudes subject to fading in order to account for the fact that here each
term models a multipath ray, rather than a single path. The clustered structure invites a
multitap channel response with a number of taps that depends on the bandwidth.

3.7 Channel estimation revisited

One of the topics of Chapter 2 is pilot-assisted channel estimation. Indeed, knowledge of
the channel response at the receiver (and sometimes at the transmitter) has a capital impor-
tance that goes beyond equalization and data detection. As the extent of such knowledge
is one of the axes in our exposition, with the benefit of the material in this chapter more
elaborate statements on the matter can be made at this point. Consistent with our dissocia-
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�Fig. 3.29 Power density as a function of both delay and angle in a clustered model.

tion of large-scale and small-scale channel terms for modeling purposes, also for channel
estimation purposes both terms are considered separately.

3.7.1 Large-scale phenomena

The large-scale channel gain G varies very slowly over space (and thus over time for a
given velocity) and also very slowly over frequency, and hence lots of observations can be
gathered from which to estimate it.
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Discussion 3.3 A follow-up note of caution

With the benefit of the derivations hitherto, we can briefly retake the issue of model pre-
diction accuracy. As observed in Discussion 3.1, part of the art of modeling is to select
the most appropriate model from an assortment thereof. Another aspect of this art is the
adjustment of parameters. All the models described in the chapter feature one or several
parameters (e.g., pathloss exponent, shadow fading standard deviation, Rice factor, or
antenna correlations). The more general models feature a larger number of parameters
while the simpler models include fewer—but often more sensitive—ones. An inappro-
priate value for a parameter, not to speak of an inadequate choice of the model itself, can
cause gross prediction errors. For instance, as explored in Problem 3.30, an improper
choice for the pathloss exponent could cause a deviation on the predicted signal power
that exceeds most of the swings of the accompanying shadow fading, It is wise to account
for the uncertainty in the knowledge of these parameters, and it is best to distinguish this
uncertainty from the channel variations that the model intends to reproduce. Put differ-
ently, it is wise to distinguish between “known unknowns” and “unknown unknowns,”
and techniques do exist to deal with this separation, including random-set theory [320]
and probability boxes [321]. Readers interested in the applicability of these techniques
to wireless channel modeling are referred to [322].

When the value taken by the channel is estimated directly during the communication
process, parameter uncertainty ceases to be an issue and what becomes relevant is the
accuracy of the estimation. Section 3.7 explores this very issue.

Example 3.41

Consider a system bandwidth of B = 10 MHz and an outdoor channel whose shadow
fading correlation distance is 10 m. How many observations of G can (roughly) be gathered
at a vehicular velocity of v = 100 km/h?

Solution

At frequencies of interest, the shadow fading and pathloss do not vary appreciably over
10 MHz and hence all such bandwidth is available to gather observations.

On the spatial domain, at v = 100 km/h (which equals 27.8 m/s) the shadowing cor-
relation distance maps to a shadowing coherence time of 10/27.8 = 0.36 s. Given T =

1/B = 0.1 μs, roughly the same shadow fading is observed by 3.6 million single-carrier
symbols, or equivalently 3.6 million OFDM resource elements. Even if only 5% of these
were devoted to channel estimation, say through the transmission of pilots, that would still
amount to 180 000 observations.

The pathloss also varies over distance, but only slightly over a shadowing correlation
distance and thus the effect on the number of observations is minimal.

Given the very stable nature of G, the availability of a perfect estimate thereof is almost
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universally taken for granted, and such is also the premise in this text. This is thoroughly
justified in most conceivable scenarios, and only in extreme cases (e.g., the conjunction of
very narrowband signals and utterly high velocities) may its validity warrant verification.
Readers interested in how to estimate G, and other large-scale quantities such as the fading
coherence and the Doppler spectrum, are directed to [323] and references therein.

3.7.2 Small-scale fading

Shifting the focus to the province of small-scale fading, the number of single-carrier sym-
bols or OFDM resource elements over which such fading remains coherent was shown
earlier to be given (roughly) by the product BcTc. This product was quantified in Ex-
amples 3.26–3.28, which essentially bracketed the range of values that are likely to be
encountered: from upwards of 1000 symbols in outdoor high-mobility settings to tens of
thousands in low-mobility and indoor settings. While these values tend to be sufficiently
large to enable satisfactory estimation of the fading with moderate pilot overheads, such
estimation can no longer be taken for granted. This is particularly true when the number of
transmit antennas grows large, as the estimation of the fading coefficients associated with
each such antenna essentially carves a portion of the available observations; in massive
MIMO, therefore, the number of observations available to estimate each fading coefficient
may shrink to a point that renders this aspect critical.

The procedures of pilot insertion and of communication supported by the ensuing es-
timates, as well as the possibility of communication without explicit channel estimates,
are all deferred to other chapters. This section merely sets forth, for subsequent reference,
expressions that arise when we apply to certain fading channels the LMMSE estimators
derived for time-invariant channels in Section 2.7. Besides their applicability, the obtained
expressions are relevant because they uncover an interesting relationship between fading
models.

The focal interest on the LMMSE as a preferred estimator for small-scale fading has a
dual motivation.

The MMSE is intimately linked with the signal-to-interference-plus noise ratio (SINR),
whose maximization turns out to be a sound criterion in the design of transmitters and
receivers.
The distribution of the fading is not controlled by the system designer and hence it is
seldom available, negating the possibility of conditional-mean MMSE estimation. How-
ever, the second-order statistics required by an LMMSE estimator are indeed accessible;
the variance, in particular, essentially amounts to the large-scale gain G, whose value
can be precisely learned.

SISO
For the derivations that follow, we can regard the fading as frequency-flat with the under-
standing that the results and procedures apply on a coherence-bandwidth basis.
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Let us first consider block fading. Given a scalar complex gain h, zero-mean and unit-
variance but otherwise arbitrarily distributed and with IID fading blocks spanning Nc

single-carrier symbols or OFDM resource elements, an LMMSE estimator would gauge
the value of h in every fading block by observing a number of pilot transmissions. Over
each block, this coincides exactly with the fixed-channel setting of Example 2.29. If α de-
notes the portion of symbols devoted to pilot transmissions, then Np = αNc observations
are available and

MMSE =
1

1 + αNcSNR
, (3.150)

where SNR is the per-symbol SNR defined in the usual way.
Now, let h(t, τ) = h(t)δ(τ) be continuously faded with h(t) having an arbitrary time

correlation Rh(·) and a corresponding Doppler spectrum Sh(ν) confined to ν ∈ [−νM, νM].
Sampled with period T , h(t) yields a discrete-time fading process h[n] whose Doppler
spectrum is a function of the normalized Doppler shift ν = ν T and relates to its continuous-
time counterpart via

1

T
Sh

( ν

T

)
ν ∈ [−νMT, νMT ]. (3.151)

If a share α of the symbols, uniformly spaced, are reserved for the transmission of pilots
(see Fig. 4.22), then the discrete-time fading is further decimated and its Doppler spectrum
broadens and scales into

S(ν) =
α

T
Sh

(αν

T

)
ν ∈

[−νMT

α
,
νMT

α

]
. (3.152)

The LMMSE estimate of h[n] should process all those receiver observations that have
nonzero correlation with the channel at symbol n, as each of them supplies information. If
all observations are processed, even future ones, (1.254) applies and thus

MMSE = 1−
∫ νMT/α

−νMT/α

SNRS2(ν)

1 + SNRS(ν)
dν. (3.153)

Example 3.42 (Channel estimation MMSE for continuous fading with a Clarke–
Jakes Doppler spectrum)

For the Clarke–Jakes spectrum Sh(·) derived in Example 3.14,

S(ν) =
α

T
Sh

(αν

T

)
(3.154)

=
1

π

√(
νMT
α

)2 − ν2

ν ∈
[−νMT

α
,
νMT

α

]
, (3.155)

whose integration in (3.153) gives [324, proposition 1]

MMSE = 1−
arctanh

√
1−

(
SNR
π

α
νMT

)2

π
2

√(
π

SNR
νMT
α

)2 − 1
. (3.156)
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Example 3.43 (Channel estimation MMSE for continuous fading with a rect-
angular Doppler spectrum)

For a rectangular (or uniform within ±νM) Doppler spectrum Sh(ν) =
1

2 νM
,

S(ν) =
α

2 νMT
ν ∈

[−νMT

α
,
νMT

α

]
(3.157)

from which

MMSE = 1− SNR
(

α
2 νMT

)2
1 + SNR α

2 νMT

· 2 νMT

α
(3.158)

=
1

1 + α
2 νMT SNR

. (3.159)

Notice, by contrasting (3.159) with (3.150), that the channel estimation MMSE under a
rectangular Doppler spectrum coincides with its block-fading counterpart if

Nc =
1

2 νMT
, (3.160)

which is the same relationship found in (3.67) by equating the block- and continuous-
fading coherence times. This relationship is therefore rather profound as it implies that,
despite its apparent coarseness, a properly dimensioned block-fading model can exactly
reproduce—in terms of channel estimation MMSE—the behavior of continuous fading
with a rectangular Doppler spectrum. This in turn has important ramifications because,
as becomes clear in Chapter 4, the corresponding MMSE largely captures the impact of
channel estimation on the performance. Certainly, the equivalence between block fading
and continuous fading is only exact for a specific Doppler spectrum, but as it turns out
the shape of the spectrum is irrelevant for SNR → ∞ (only νM matters) and relatively
unimportant except possibly for SNR → 0. This confers a somewhat surprising relevance
to the simple block-fading model, greatly facilitating performance analyses that account
for channel estimation. In our SU-MIMO coverage, we consider both block fading and
continuous fading, and further elaborate on the equivalence between the two, so as to fully
rely on block fading in the more intricate analysis of MU-MIMO.

Recall that the foregoing derivations rely on the fading being frequency-flat, meaning
T � Td or, at most, T ≈ Td; therefore, (3.160) holds at most up to Nc ≈ 1

2 νMTd
≈ BcTc.

This is indeed, as found, the maximum number of single-carrier symbols that fit within
a coherence time without frequency selectivity; with OFDM, equivalently, BcTc is the
number of resource elements that fit in a time–frequency coherence tile.

In addition to unifying the block- and continuous-fading models, (3.160) also offers a
way to render precise the relationship Tc ∝ 1

νM
deduced in Section 3.4.3: converting the

block duration from symbol units onto time units, (3.160) becomes NcT = 1
2 νM

and, since
in block fading the coherence time is directly the block duration, we find that

Tc =
1

2 νM

, (3.161)
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as anticipated in (3.59).
Before progressing onto small-scale channel estimation for MIMO, a comment on the

noncausality of the LMMSE estimator behind (3.153) and the ensuing results is in or-
der: this noncausality is finessed through proper buffering and block processing, which as
seen in Chapter 1 are underpinnings of reliable communication and therefore very much
required even if we ignored the issue of channel estimation. Two possibilities arise.

The signals are processed in blocks that exceed the coherence time of the fading, in
which case (3.153) is indeed achieved with relatively high accuracy.
The signal blocklength is shorter than the coherence time of the fading and thus the num-
ber of informative channel observations is curtailed. In this case, (3.153) is optimistic,
yet the fading is so coherent that its estimation is extremely accurate and not a limiting
factor in the first place.

Altogether then, the noncausal MMSE expression in (3.153) is representative when it mat-
ters. If, rather than on a buffered-block basis, the channel were to be estimated on a strict
causal basis, i.e., based only on pilot observations received prior to the fading value being
estimated, then (1.255) would apply and we would have

MMSE =
1

SNR

[
exp

(∫ 1/2

−1/2

loge
(
1 + SNRS(ν)

)
dν

)
− 1

]
. (3.162)

Although less relevant to reliable data detection than the noncausal MMSE, (3.162) has the
interest that its limit for SNR → ∞ can be used to test the regular/nonregular condition of
the fading: if it is nonregular, then the Doppler spectrum is bandlimited and MMSE → 0,
consistent with the present value being perfectly predictable from noiseless observations of
the entire past; conversely, if it is regular, then the spectrum is not bandlimited and strictly
positive, such that [68]

MMSE → exp

(∫ νMT/α

−νMT/α

loge S(ν) dν

)
, (3.163)

which remains strictly positive.

MIMO
In the absence of antenna correlations, the derived MMSE expressions extend to MIMO
without difficulty given that, as learned in Example 2.31, when the entries of the channel
matrix H are independent, there is no loss of optimality in estimating them separately.
The only caveat is that the opportunities available for pilot transmissions must be divided
among the Nt transmit antennas and hence the role played by α is now played by α/Nt.
Conversely, the number of receive antennas is immaterial because each additional one sup-
plies its own channel observations and these are not at the expense of other receive anten-
nas. Thus, the noncausal estimation of each entry of H can achieve

MMSE =
1

1 + αNc

Nt
SNR

(3.164)
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under block fading while, under continuous fading,

MMSE = 1−
∫ NtνMT/α

−NtνMT/α

SNRS2(ν)

1 + SNRS(ν)
dν, (3.165)

with the Doppler spectrum further broadened and scaled into

S(ν) =
α

NtT
Sh

(
αν

NtT

)
ν ∈

[−NtνMT

α
,
NtνMT

α

]
. (3.166)

Notice how, in terms of channel estimation MMSE, an increase in the number of transmit
antennas is akin to an increase in the symbol period (and thus a signal bandwidth reduction)
for the same Doppler, or equivalently to an increase in νM for the same signal bandwidth;
this merely reflects the lower pilot rate per transmit antenna. The equivalence between
block and continuous fading with a rectangular Doppler spectrum is not affected.

In the face of antenna correlations, the above MMSE expressions continue to hold if the
entries of H are separately estimated, but a smaller estimation error can be attained through
joint estimation. For the Kronecker model in particular, the LMMSE joint estimator derived
in Example 2.32 can be applied and the ensuing advantage is the subject of Problem 3.29.

Finally, broadening the view to fading selective in both time and frequency, an interpreta-
tion of the derivations in this section based on time–frequency tiles containing Nc = BcTc

single-carrier symbols or OFDM resource elements leads to

MMSE =
1

1 + αBcTc

Nt
SNR

, (3.167)

a handy expression that, while remarkably simple, reflects the dependence on all the key
quantities: coherence time, coherence bandwidth, number of transmit antennas, observa-
tion SNR, and pilot overhead.

3.8 MIMO channel models in standards

The importance of MIMO is unequivocally demonstrated by its inclusion in wireless stan-
dards such as those of 3GPP for cellular networks, IEEE 802.16 for wireless-metropolitan-
area and fixed-wireless access, and IEEE 802.11 for WLANs. Channel models have been
developed to suit the requirements of these standards [269], and this section briefly reviews
some of these models.

Besides the standard-specific models introduced herein, and for the sake of complete-
ness, it is worth referring to nonstandard-specific models that were also conceived for the
purpose of system-level performance evaluation. Chief among these stand the COST-259
[325, 326], the COST-273 [327], and the WINNER I and WINNER II models [328, 329].
The COST-259 model, in particular, broadly includes macro-, micro-, and picocell envi-
ronments and was the first model to jointly incorporate delay and angular properties. For its
part, the WINNER models were developed as part of the IST-WINNER project, supported
by measurement campaigns in Europe.
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3.8.1 3GPP spatial channel model

The 3GPP spatial channel model (SCM) was developed jointly by 3GPP and by its North-
American former counterpart, 3GPP2, for MIMO performance evaluation in outdoor de-
ployments at frequencies of around 2 GHz. The SCM features both a calibration model
and a system-level simulation model. The calibration model, highly simplified, is devised
for quick testing of simulation implementations; it consists of several independently fading
rays, each with a mean angle and a PAS chosen to be either Clarke–Jakes or a truncated
Laplacian. The simulation model, much more detailed, is the one intended for actual per-
formance evaluation and thus it is the one we dwell on in the remainder of this section. It
distinguishes between three types of environments: urban macrocell, suburban macrocell,
and urban microcell. The same parametric approach is taken irrespective of the type of
environment, only with different values for the parameters.

The SCM simulation model is intended for simulations involving multiple cells and
users. More precisely, the procedure that the model is designed for entails a succession of
snapshots or drops, where a drop is characterized by a set of randomly selected user posi-
tions, orientations, and velocities. From those positions and orientations, the mean angles
and the distances of each user relative to its serving base station are readily obtained, and
from the distances the pathloss values derive. The rest of the relevant large-scale quantities
are also set at each drop, specifically shadow fading, angle spread, and delay spread. All of
these large-scale quantities are held fixed over the duration of the drop, which recreates a
short displacement—within the local scattering neighborhood—over which the small-scale
fading is allowed to manifest itself.

The pathloss is computed by means of the COST-231 Hata model (see Section 3.3.3)
in the case of macrocells, both urban and suburban, and the COST-231 Walfisch–Ikegami
model (see Section 3.3.4) in the case of microcells.

The channel response between each user and its serving base station comprises six rays
subject to Rayleigh or Rice fading. The ray delays and their power shares are chosen, at
each drop, from a given distribution. The angular modeling, in turn, is fairly sophisticated.

The mean angles, from the viewpoints of the user and the base station, are determined
directly by the position and orientation of the user at the given drop.
Each ray is then considered to emanate from 20 scattering clusters, whose delays are
identical and whose angles are drawn from a Gaussian distribution centered on the mean
angle and with a variance that is a parameter of the model.
Each scattering cluster within each ray gives rise to 20 propagation paths with slightly
different angular offsets; these offsets are fixed and tabulated in the standard.

As the users move about during each drop at their assigned velocities, the phases shift over
the propagation paths contributed by all the clusters at each ray, and the superposition of
these paths yields the desired ray fading.

In addition to all the above characteristics, the SCM has a number of additional optional
features related to polarization, to the existence of distant scattering clusters, or to the
presence of an LOS component for the microcellular environment (which goes hand in
hand with the Rice distribution for the ray fading).
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Table 3.4 Doppler and delay spread for SUI channels

Doppler Low delay spread Moderate delay spread High delay spread
Low SUI-3 (low K-factor) SUI-5 (low K-factor)

SUI-1,2 (high K-factor)
High SUI-4 (low K-factor) SUI-6 (low K-factor)

For further details, the reader interested in implementing the SCM is referred to [330].

3.8.2 SUI models for IEEE 802.16

The models proposed by the IEEE 802.16 working group for fixed wireless access repre-
sent the outcome of the group’s efforts to define models within 2–11 GHz [219]. Six SUI
models were defined for the three terrain types introduced in Section 3.3.3, namely SUI-1
and SUI-2 for type A (hilly), SUI-3 and SUI-4 for type B (intermediate), and SUI-5 and
SUI-6 for type C (flat). A breakdown of the Doppler and delay spread features of the six
models is given in Table 3.4.

Every SUI model features three rays, the first of which is Rice-faded for models SUI-1
through SUI-4, while the rest are Rayleigh-faded. IEEE 802.16 also incorporates the angu-
lar aspects necessary for MIMO deployment [331]. Since scatterers generating propagation
paths with identical delays must necessarily lie on an ellipse with the transmitter and re-
ceiver as foci [332, 333], each of the three rays can be mapped to a distinct ellipse—with
the ellipse corresponding to the first ray essentially degenerating to an axis in the strong
Rice cases. Scatterers can then be deployed over the ellipses in different ways.

Altogether, the SUI models are neither particularly intuitive nor easy to implement, but
they are the approach of choice for IEEE 802.16.

3.8.3 IEEE 802.11 channel model

The IEEE 802.11n channel model, defined for 2-GHz and 5-GHz frequency bands, relies
on the clustered approach described in Section 3.6.2. Six propagation environments (A
through F) are defined in representation of small and large office spaces, residential homes,
and open spaces, both with and without LOS components [334].

The pathloss, the only item in the model that depends on the frequency band, espouses
the free-space model with 3-dB log-normal shadowing up to Dref ; thereafter, the model
defaults to (3.8) with exponent η = 3.5 and a shadowing standard deviation that depends
on the environment (see Table 3.5). The distance Dref also varies with the environment.

The number of scattering clusters ranges between two and six, each such cluster con-
tributing up to 18 Rayleigh-faded rays separated by at least 10 ns. From the perspectives
of both transmitter and receiver, each ray is assigned a mean azimuth angle and a truncated
Laplacian PAS with an angle spread ranging between 20◦ and 40◦. Altogether, the delay
spread can range between Td = 0 (flat fading) and Td = 150 ns.

The array topologies can be freely specified and, in conjunction with the aforesketched
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Table 3.5 Large-scale parameters
for the IEEE 802.11n channel model

Environment Dref σ2
dB(D ≥ Dref)

A 5 m 4 dB
B 5 m 4 dB
C 5 m 5 dB
D 10 m 5 dB
E 20 m 6 dB
F 30 m 6 dB

cluster structure, they determine the antenna correlations. As far as the Doppler spectrum is
concerned, and under the presumption that users are static and time-variability arises only
because of environmental motion, the bell-shape spectrum in Example 3.15 is adopted,
with an optional additional peak at a higher Doppler shift to represent passing vehicles. In
addition, by means of a magnitude modulation of the rays, the model incorporates further
time variations caused by fluorescent lights.

3.9 Summary and outlook

Distilling what is covered in the chapter, a number of points are enumerated in the com-
panion summary box. In terms of the research outlook on MIMO channel modeling, we
highlight some avenues of interest, beginning in the frequency axis and then proceeding
onto the spatial domain.

Although the chapter deals exclusively with microwave frequencies ranging between
several hundred megahertz and a few gigahertz, there is intense activity looking into wire-
less communication at millimeter-wave frequencies, where abundant idle spectrum awaits.
(Strictly speaking, millimeter frequencies begin at 30 GHz, but the term is informally ap-
plied from 6 GHz onwards.) Historically, these high frequencies had been largely avoided
because of unfavorable channel characteristics, including overly directional propagation
and excessive atmosphere and rain attenuation, but these obstacles can be overcome for
short-range transmissions with the aid of the dense antenna arrays that the short wave-
length makes possible. NR and the IEEE 802.11ad and 802.11ay WLAN standards operate
in this realm already. Thus, channel modeling at millimeter-wave frequencies is likely to
be a favorite topic going forward [335].

Another line of work that has momentum is that of exploiting the elevation dimension,
something that might become increasingly important as networks densify and the shrink-
ing horizontal dimension of the links becomes more comparable to the vertical dimension
[202, 336]. This requires proper three-dimensional propagation models that are no longer
restricted to a plane, and the development and refinement of such models is another ac-
tivity seeing increased action. Surveys of existing results can be found in [337–339], and
the three-dimensional extension of the 3GPP SCM is discussed in [340]. For their part, the
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Take-away points

1. The large-scale phenomena determine the distribution over local neighborhoods
(tens to hundreds of wavelengths in size) of the small-scale fading, which can be
regarded as stationary therewithin.

2. The large-scale phenomena are pathloss and shadow fading, respectively the ex-
pected attenuation at a given distance and the deviation with respect to it. The
combination of both determines the large-scale channel gain, G.

3. The shadow fading is usually well modeled by a log-normal distribution with a
standard deviation on the order of 8–12 dB outdoors and 3–6 dB indoors.

4. The most recurrent representation for the pathloss at a distance D is Lp =

Kref(D/Dref)
η where η is the exponent, Dref is a reference distance and Kref is

the pathloss therein. The exponent is η = 2 in free space while typically between
3.5 and 4 if transmitter or receiver are immersed in scattering clutter.

5. The small-scale fading is caused by multipath propagation. Signal replicas trav-
eling through different paths are subject to independent phase shifts and their su-
perposition can be modeled as a complex Gaussian gain; its magnitude is then
Rayleigh or, if one of the multipath terms dominates, Rice.

6. The small-scale fading is highly selective in space: a small displacement (order
of a wavelength) drastically alters the phase shifts over the paths causing major
variations in the composite gain. The PAS expresses the transmit/received signal
power as a function of angle. Continuous or discrete, the PAS is normalized so it
can be interpreted as a PDF and its standard deviation is the angle spread. Given a
PAS P(θ), the correlation between the fading at two locations spaced by ΔD is

Rh(ΔD) =

∫ π

−π

P(θ) e−j2πΔD cos(θ)/λc dθ, (3.168)

which is said to have decayed when ΔD equals the coherence distance, Dc.
7. Given a velocity v, the space correlation maps directly onto time correlation and Dc

maps to a coherence time Tc = Dc/v. The Fourier transform of the time correla-
tion gives the Doppler spectrum, Sh(ν), which characterizes the spectral smearing
suffered by a sinusoid because of motion.

8. If the Doppler spectrum is bandlimited, typically to νM = fcv/c, the fading is said
to be nonregular: its present value is perfectly predictable from noiseless observa-
tions of its entire past. Conversely, if the spectrum is not bandlimited, the fading
is said to be regular: its present value cannot be perfectly predicted from noiseless
observations of its entire past.

9. If the signal bandwidth fits within a swath of frequencies that experience (roughly)
the same fading, then such fading is frequency-flat. Otherwise, it is frequency-
selective. The selectivity across a frequency range Δf is quantified by the fre-
quency correlation Rh(Δf ) whose chief measure is the coherence bandwidth, Bc.
The fading is frequency-flat if B � Bc. Frequency selectivity implies that the
fading is not multiplicative, but rather dispersive; in fact, the PDP function ex-
pressing the received power as a function of delay is directly the Fourier transform
of Rh(Δf ). The standard deviation of the PDP is the delay spread Td ≈ 1/Bc.
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10. Even if generally selective in both time and frequency, wireless channels are highly
underspread, meaning that the fading remains approximately constant over many
(BcTc � 1) symbol periods. As a result, fixed-shape OFDM resource elements can
remain approximately orthogonal in both time and frequency. It follows that, with a
correct OFDM design, the fading is only multiplicative and thus one complex coef-
ficient per resource element suffices for a discrete time–frequency representation;
the pulse shaping does not affect the discretization.

11. Simplified models such as block fading can capture the essence of fading dynamics
in time and/or frequency remarkably well.

12. The correlation between antennas within an array can be influenced through spac-
ing, antenna patterns, and polarization. These correspond, respectively, to the no-
tions of spatial, pattern, and polarization diversity.

13. In MIMO, the focus is on how to model the joint distribution of the entries of the
channel matrix H . In the most basic analytical models, the entries of H are IID,
either Rayleigh- or Rice-distributed. Then,

H =

√
K

1 + K
HLOS +

√
1

1 + K
Hw, (3.169)

where HLOS is deterministic, K is the Rice factor, and [Hw]i,j ∼ NC(0, 1).
14. Antenna correlations are incorporated, in a restricted form, by the Kronecker model

H = μH +R1/2
r HwR

1/2
t , (3.170)

where Rr and Rt are receive and transmit correlation matrices. The restriction
in this model is that the correlation between the signal fading at any two receive
antennas is the same irrespective of the transmit antenna from which the signal
emanates, and vice versa; this entails decoupled transmit and receive PAS. The
entries of the correlation matrices can be computed by applying (3.168).

15. The restriction of decoupled transmit and receive PAS is overcome by the UIU
model, whereby

H = μH +UrHindU
∗
t , (3.171)

with Ur and Ut fixed unitary matrices while Hind has zero-mean IND entries. The
Kronecker model is a special case of the UIU model.

16. If μH = 0 while Ut and Ur are Fourier matrices, the UIU model leads to
the virtual channel model H = UrHvirU

∗
t where Hvir is the two-dimensional

discrete Fourier transform of H . Here, with ULAs having antenna spacings dt
and dr, the columns of Ut and Ur synthesize fixed beams pointing to angles
θt,j = arccos(λc

dt

j
Nt

) and θr,i = arccos(λc

dr

i
Nr

) for j = 0, . . . , Nt − 1 and
i = 0, . . . , Nr − 1, respectively. In turn, the variance of [Hvir]i,j indicates how
intensely the jth transmit beam couples into the ith receive beam.
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WINNER+ extension of the WINNER models also incorporates elevation [341]. Then, the
vertical tilting of the antennas themselves becomes a relevant aspect [342, 343].

Also, and in light of the growing volume of wireless traffic that is proximal in nature,
direct device-to-device transmission that bypasses base stations and the network infras-
tructure may become an important mode of communication [344, 345]. The elaboration of
channel MIMO models for this mode is yet another research direction of interest.

Finally, site-specific reconstruction techniques that transcend ray tracing and can be ap-
plied outdoors are becoming possible thanks to the data deluge provided by the users.
Based on their continual received-power reports, measurement-driven machine learning
algorithms can be applied to construct maps of the large-scale channel gains across the
network [346–353].

Problems

3.1 Prove that the PDF of log-normal shadow fading equals (3.2) when χ is in linear
scale.

3.2 Consider a 100-m link, omnidirectional antennas, and a pathloss exponent η = 3.5.
Further, let the pathloss at Dref = 1 m be as it would be in free space, and let the
shadow fading be log-normal with σdB = 12 dB.
(a) What is the probability that, because of shadow fading, the large-scale channel

gain over this relatively short link exceeds its value at Dref?
(b) What is the probability that the large-scale channel gain exceeds 0 dB, such that

the average received power exceeds the transmit power?
(c) What is the probability that the large-scale channel gain is better than if the

propagation were entirely in free space?
Note: The modeling of shadow fading by a log-normal distribution, whose upper tail
extends endlessly, could raise the concern that unrealistically optimistic channels
are produced by the model and, in extreme cases, that conservation of energy is
violated. In this problem, we examine this issue for the situation where the effects of
shadowing are more pronounced: a short link, a small pathloss exponent, and strong
shadow fading.

3.3 Compute the pathloss predicted by the COST-231 Hata model at fc = 2 GHz given
hb = 30 m and hm = 1.5 m, at distances D = 1 km and D = 2 km. What is the
pathloss exponent?

3.4 According to the COST-231 Hata model at fc = 2 GHz, what is the percentage of
increase in the power received from a user at D = 1 km when the base station height
goes from hb = 30 m to hb = 50 m?

3.5 Consider a scalar Rayleigh-faded channel.
(a) What is the probability that the power received over this channel exceeds its

local-average by at least 10 dB, 20 dB, or 30 dB?
(b) How about if the channel is Rice-faded with K = 5 dB?
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Note: As with shadow fading, also with multipath fading there is a concern that
unrealistic channels could be produced because of the unbounded upper tail of most
fading distribution models, and this has relevant implications for some multiuser
techniques discussed in the book. In this problem we examine this issue and derive
guidelines on how the Rayleigh and Rice distributions are disturbed if truncated at
various points.

3.6 It was quantified in Example 3.11 that, for a Clarke–Jakes PAS at fc = 2 GHz, the
fading decorrelates completely over Dc = 5.7 cm. Compute the degree of decorre-
lation over the same distance and at the same frequency for the following cases:
(a) A power cosine PAS with q = 1.
(b) A truncated Gaussian PAS with σθ = 10◦.
(c) A truncated Laplacian PAS with σθ = 10◦.
In all cases, let μθ = 60◦.

3.7 Verify (3.54).

3.8 Obtain, either exactly or approximately, the Doppler spectra for the following:
(a) A power cosine PAS with q = 1.
(b) A truncated Gaussian PAS.
(c) A truncated Laplacian PAS.

3.9 Consider a wireless system whose signal bandwidth is 500 times smaller than the
carrier frequency. Given a user velocity of 50 km/h, what value should ε take for a
Gauss–Markov frequency-flat fading model to achieve 50% decorrelation over the
same number of symbols required for a Clarke–Jakes model to decorrelate by 50%?

3.10 Express in closed form the Doppler spectrum of a Gauss–Markov frequency-flat
fading channel.

3.11 When servicing a high-speed train from an elevated base station, the velocity may
be as large as v = 350 km/h. Argue why, in terms of fading coherence, this is more
benign than what the maximum Doppler shift would indicate.
Hint: Any constant Doppler shift is automatically corrected, at the receiver, by the
automatic frequency control of the local oscillator.

3.12 Compute the RMS delay spread for the PDP

Sh(τ) =

⎧⎨
⎩

K0 τ ∈ [0, 2]μs

K1 τ ∈ [2, 5]μs

0 elsewhere.

(3.172)

3.13 Consider a time–frequency doubly selective fading channel. Argue that, if we model
it as continuously faded in time and block faded in frequency, the coherence in num-
ber of symbols satisfies

Nc ≈ 1

2 νMTd
. (3.173)
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3.14 Redo Example 3.32 and Fig. 3.20 for an array where two of the antennas are uniform
in θ while the other two have a normalized pattern whose magnitude is

cos
(
π
2 cos θ

)
sin θ

. (3.174)

3.15 Compute HLOS for a Rice MIMO channel where two equal-power LOS components
are present, departing from the transmitter at angles θt,0 = 30◦ and θt,1 = 45◦,
respectively, and impinging on the receiver at angles θr,0 = 60◦ and θr,1 = 0◦,
respectively. The transmitter features two antennas spaced by dt = λc/2 while the
receiver is a UCA with rUCA = λc and Nr = 4.

3.16 Prove that, if H is defined as in (3.114), then Rt and Rr satisfy (3.115) and (3.116),
respectively.

3.17 Express the magnitude of the correlation between two arbitrary receive antennas,
|[Rr]i,i′ |, given a PAS conforming to the power cosine function in Example 3.5 with
q large enough for (3.126) to apply.

3.18 Express the magnitude of the correlation between two arbitrary transmit antennas,
|[Rt]j,j′ |, given a PAS uniform within [μθ −Δ, μθ +Δ] and zero elsewhere, with Δ

small.

3.19 Consider the exponential antenna correlation model in Example 3.38 applied to a
transceiver equipped with two antennas spaced by four wavelengths. What value
should ρ take for the correlation between the antennas to coincide with the one
caused by a truncated Laplacian PAS with σθ = 2◦?

3.20 Consider a transmitter with two antennas, 40% correlated, communicating with a re-
ceiver equipped with two antennas, 60% correlated. In a UIU channel representation,
what variances should the entries of Hind have?

3.21 Consider the setup of Problem 3.20. In a virtual channel representation, what corre-
lations would remain among the entries of Hvir?

3.22 Consider a block-fading channel with Nc symbols per block, of which a portion α

are pilots. Treating the pilots within a block as a vector observation, prove that an
LMMSE estimator attains (3.150).

3.23 Derive the counterpart to (3.150) for a unit-variance scalar channel exhibiting a Rice
factor K.
Hint: The deterministic component of the channel need not be estimated.
Note: A more formal derivation of the LMMSE estimator for nonzero-mean quanti-
ties is the subject of Problem 1.35

3.24 Express the channel estimation MMSE for a continuous fading channel with a band-
limited Doppler spectrum that takes a uniform value in

[− νMT
2α , νMT

2α

]
and half that

value elsewhere within
[− νMT

α , νMT
α

]
.

3.25 Consider a continuous fading channel with a bell-shape Doppler spectrum truncated
to ±νM where νM = 10 Hz. Given a bandwidth B = 10 MHz and a pilot overhead
α = 5%, compute the channel estimation MMSE.
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3.26 For continuous fading with α SNR = 1 and νMT = 10−3, compute the channel
estimation MMSE under both rectangular and Clarke–Jakes Doppler spectra. Then,
calculate the respective number of symbols Nc in a block-faded model that would
yield the same MMSE.
Note: The difference between both values of Nc is the error that would be incurred
if the relationship Nc =

1
2 νMT were applied to a Clarke–Jakes spectrum.

3.27 Expand, to first and second order in the SNR, the MMSE expression in (3.42) for
high-SNR conditions. Plot the expansions and the exact MMSE expression as func-
tion of SNR for νMT

α = 10−4.
3.28 For a continuous fading channel with a rectangular Doppler spectrum, express the

ratio between the SISO and MIMO (without antenna correlations) channel estima-
tion MMSEs. Then, expand this ratio in the SNR for high-SNR conditions and con-
trast the first term in this expansion against the exact MMSE at SNR = 10 dB, given
νMT
α = 10−4 and Nt = 4. Repeat the exercise for a Clarke–Jakes Doppler spectrum,

taking advantage of the derivations in Problem 3.27.
3.29 Let the frequency-flat block-faded channel H conform to the Kronecker correlation

model with

Rt =

[
1 0.6

0.6 1

]
Rr =

[
1 0.4

0.4 1

]
. (3.175)

(a) For αNc = 2 and SNR = 3 dB, what is the dB-reduction in MMSE that a joint
LMMSE estimator attains relative to an LMMSE estimator operating indepen-
dently on each channel entry?

(b) Repeat part (a) for SNR = 10 dB.
3.30 Consider a channel that is modeled with a pathloss exponent of η = 3.7 when the

exponent that would have correctly matched its behavior is η = 4.
(a) Let σdB = 9 dB. What is the probability that the local-average signal power

predicted with the mismatched exponent deviates from the true power by more
than the value of the shadow fading?

(b) What is the probability that the local-average signal power predicted with the
mismatched exponent deviates from the true power by more than the small-scale
variation caused by Rayleigh fading?

(c) Suppose that we want to predict the capacity of a MIMO link over this channel,
with Nt = Nr = 2. Under the mismatched model, we obtain SNR = 10 dB and
compute the ensuing capacity assuming no antenna correlations. What antenna
correlation would have to be introduced at the receiver to render the capacity
prediction correct?

Hint: The applicable capacity expression for this problem is given in (5.96).
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To see things in the seed, that is genius.

Lao-Tzu

4.1 Introduction

An information-theoretic approach to the study of MIMO requires a solid foundation in
the application of information theory to wireless communications. Without MIMO, whose
coverage starts in the next chapter, and without multiple users, which make their appear-
ance later on, in this chapter we entertain a number of important notions involved in the
communication between a single-antenna transmitter and a single-antenna receiver, the
so-called single-user SISO (SU-SISO) context. Many of these notions are subsequently
generalized to MIMO and to multiuser setups, but here in a SU-SISO context we can see
them in their most basic and cleanest forms.

The chapter begins with a section that formulates the fundamental tradeoffs between
power, bandwidth, and bit rate, and defines several quantities that play a central role in
this interplay. Sections 4.3–4.9 then dwell extensively on the problem of communicating
reliably over SU-SISO channels, beginning with the simplest possible setting and progres-
sively assessing the impact of frequency selectivity, fading, CSI, and interference. In the
process, distinct information-theoretic idealizations arise and are established for subse-
quent applicability in the study of MIMO. Finally, Section 4.10 concludes the chapter.

4.2 Interplay of bit rate, power, and bandwidth

The design of a communication system involves tradeoffs between an objective quantity,
namely the bit rate R (in bits/s), and two resources, namely the transmit power Pt (in
watts) and the bandwidth B (in hertz, and conveniently parceled into single-carrier sym-
bols or OFDM resource elements). These tradeoffs are modulated by the computational
complexity that can be afforded, proxies for which include the codeword length and the
numbers of antennas. With MIMO put aside for now, let us focus on the interplay between
R, Pt, and B for SISO and without any complexity constraints, taking into account that:

To interpret this interplay at a fundamental level, we want to reference it to the channel
capacity.

209
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Even though the power is constrained at the transmitter, where it is consumed, the per-
formance depends on its value at the receiver—relative to the noise—and what bridges
both ends is the channel gain.

It follows that the channel capacity and the channel gain play a central role in the for-
mulation of the tradeoffs between R, Pt, and B. The total channel gain is, by definition,
the ratio between the received and the transmit signal powers, i.e.,

E
[|√Ghx|2]
E
[|x|2] = G

E
[|hx|2]
Es

(4.1)

which, for fading-independent transmissions (x independent of the unit-power small-scale
channel coefficient h) directly equals G

Es
E
[|h|2]E[|x|2] = G, i.e., the total channel gain

equals the large-scale channel gain introduced in Chapter 3, subsuming pathloss and shad-
owing. With fading-dependent power control, alternatively, the total channel gain is the
complete expression on the right-hand side of (4.1), which depends on the distribution of
h and on how the transmit power is controlled on the basis of h. Deferring to later in this
chapter the analysis of channel-dependent power control, we take the total channel gain to
equal the large-scale channel gain G unless otherwise indicated.

To illustrate the various definitions and relationships put forth in this section, we have
the running example of the channel y =

√
Ghx+ v with h = 1 and v ∼ NC(0, N0). This

basic channel, which permeates many of the derivations in Chapter 1, is termed the AWGN
channel because it is only impaired by AWGN; its capacity function, borrowed here and
then formally derived in Section 4.3, is C(SNR) = log2(1 + SNR).

Delving into the tradeoffs between R, Pt, and B, we begin by observing that, rather than
relate these quantities directly, it is preferable to relate the ratios R/B, Pt/B, and Pt/R,
which happen to have an operational importance of their own.

The ratio between R and B is the spectral efficiency R/B (in b/s/Hz), a quantity intro-
duced already in Chapter 1 that quantifies how well the available bandwidth is utilized.
The ratio between Pt and B gives the transmit energy (in joules) per single-carrier sym-
bol or per OFDM resource element, Pt/B = PtT = Es = E

[|x|2], which, normalized
by N0, would yield a transmit-referenced SNR. Since it is more fitting to define the SNR
at the receiver, applying G we can translate the transmit-referenced SNR to the receiver
and write

SNR =
GPt/B

N0
(4.2)

=
GEs

N0
, (4.3)

which is the definition given in Chapter 2 for the local-average SNR. (Alternative SNR
definitions are possible and, as long as they are applied consistently, all of them can be
valid.)
The ratio between R and Pt defines the power efficiency (in bits/joule) that quantifies
how well the available power is utilized, i.e., how many message bits are transmitted
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per unit energy.1 Equivalently, the reciprocal ratio, Pt/R, measures how much transmit
energy is spent per bit. Applying G, we can also translate this transmit-referenced energy
per bit to the receiver to obtain

Eb =
GPt

R
(4.4)

=
GEs

R/B
. (4.5)

This quantity, referenced to N0, yields

Eb

N0
=

1

N0

GEs

R/B
(4.6)

=
SNR

R/B
. (4.7)

The interplay of the ratios R/B, SNR (as proxy for Pt/B) and Eb

N0
(as proxy for Pt/R)

captures the interplay of R, Pt, and B, with the added benefit that the ratios embody very
meaningful figures of merit, respectively the spectral efficiency, the local-average SNR,
and the power efficiency. Since, as indicated by (1.105), R/B is bounded by the capacity,
in terms of fundamental performance limits we can set R/B = C. With that, the quantities
to interrelate become C, SNR, and Eb

N0
. As illustrated in Fig. 4.1, we can proceed to define

C(SNR) as the function that leads from SNR to the capacity while its inverse C−1(·)
returns back the SNR. Likewise, C(Eb

N0
) and its inverse C−1(·) convert Eb

N0
to capacity and

vice versa. The functions C(·) and C(·) map different arguments to the same value. In turn,
from (4.7) and R/B = C = C, we can connect SNR and Eb

N0
through the direct and inverse

relationships
Eb

N0
=

SNR

C(SNR)
(4.8)

and

SNR =
Eb

N0
C

(
Eb

N0

)
. (4.9)

The functions C(·) and C(·), and their inverses, are not always available in explicit closed
forms, but, as long as they can be computed and tabulated, the tradeoffs can be assessed.

Example 4.1 (Relationships among C, SNR, and Eb

N0
in an AWGN channel)

In an AWGN channel, as submitted, C(SNR) = log2(1+SNR) with inverse SNR = 2C−1,
which constitute a first edge on the right-hand side triangle of Fig. 4.1. Since C = C, we
then obtain from (4.8) the inverse relationship

Eb

N0
=

2C − 1

C
, (4.10)

1 The power efficiency can be generalized into the notion of capacity per unit cost, where an arbitrary cost
function (of which the power is a special case) is defined over the signal [354]. This notion may be invoked
to characterize fundamental performance limits in the face of constraints other than on the power, e.g., with
constraints on the signal peakedness.
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R
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Pt

N0R
=

GPt

N0B
SNR

C =
R

B

C(·) C(·)
C−1(·)C−1(·)

C=

GPt

N0R

�Fig. 4.1 Left, interplay between R, Pt and B. Right, interplay between C, SNR, and
Eb

N0
from which the functions C(SNR) and C(Eb

N0
), and their inverses, arise.

which, along with C(Eb

N0
), is another edge in the triangle; unfortunately, C(Eb

N0
) cannot be

untangled into an explicit form. The final edge in the triangle is

Eb

N0
=

SNR

log2(1 + SNR)
(4.11)

and its inverse, which also cannot be cleared explicitly.

Let us next see how the relationships on the right-hand-side triangle of Fig. 4.1 can
be applied to the original objective of establishing the fundamental tradeoffs between bit
rate, power, and bandwidth on the left-hand-side triangle. Recall that the communication
is SISO with some given values for G and N0.

Tradeoff between R and Pt for fixed B

For fixed B, the tradeoff between R and Pt is mirrored in the tradeoff between R/B and
SNR = GPt

N0B
and thus it is captured by the function C(SNR) via

R = B · C
(
GPt

N0B

)
(4.12)

Pt =
N0B

G
C−1

(
R

B

)
. (4.13)

By moving along the corresponding curves, we could establish how R grows with Pt and
vice versa, for some given B, N0, and G. In particular, the ratio between the bit rates
achievable with powers P (a)

t and P (b)

t is given by

R(a)

R(b)
=

C
(

GP
(a)
t

N0B

)
C
(

GP
(b)
t

N0B

) , (4.14)

while the ratio between the powers required for bit rates R(a) and R(b) is

P (a)

t

P (b)

t

=
C−1

(
R(a)

B

)
C−1

(
R(b)

B

) , (4.15)
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meaning that, to bring the bit rate from R(b) to R(a), the transmit power must change by
C−1

(
R(a)/B

)|dB − C−1
(
R(b)/B

)|dB.
Fixing Pt and releasing N0 or G in (4.14), we could also determine how R changes with

the strength of the noise or with the large-scale channel gain.

Example 4.2 (Applicability of C(SNR) in an AWGN channel)

Shown on the left-hand side of Fig. 4.2 is C(SNR) = log2(1 + SNR) as corresponds to an
AWGN channel. The ratio between the bit rates achievable with powers P (a)

t and P (b)

t is

R(a)

R(b)
=

log2

(
1 +

GP
(a)
t

N0B

)
log2

(
1 +

GP
(b)
t

N0B

) (4.16)

while the ratio between the powers required for bit rates R(a) and R(b) is

P (a)

t

P (b)

t

=
2R

(a)/B − 1

2R(b)/B − 1
. (4.17)

Example 4.3

On an AWGN channel with bandwidth B = 5 MHz, how much transmit power must be
added to double the bit rate from R = 6 Mb/s to R = 12 Mb/s?

Solution

From (4.17), the change in transmit power must be

212/5 − 1

26/5 − 1
|dB = 5.18 dB. (4.18)

The mapping of this tradeoff on C(SNR) = log2(1 + SNR) is indicated in Fig. 4.2, left-
hand side.

Whereas, in settings more elaborate than the AWGN channel, the function C(·) and its
inverse may not be available in closed form, as long as these functions can be evaluated,
e.g., numerically or through simulation, we can apply (4.14) and (4.15) all the same. Fur-
thermore, while SNR is in linear scale in Fig. 4.2, it is typically represented in log-scale
and the conversion between SNR and Pt, G, or N0 is then facilitated as the factors become
mere shifts along the horizontal axis.

Tradeoff between Pt and B for fixed R

This tradeoff is no longer captured by C(SNR) as SNR depends on both Pt and B. In
this case, C(Eb

N0
) and its inverse are what we need: they capture the dependence between

R/B and Pt

N0R
, which for fixed R mirrors the dependence between B and Pt. By moving

along the corresponding curves, we could establish how B varies as Pt is modified, and
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vice versa, for some given R, N0, and G. In particular, the ratio between the bandwidths
required with powers P (a)

t and P (b)

t is

B(a)

B(b)
=

C
(

GP
(b)
t

N0R

)
C
(

GP
(a)
t

N0R

) , (4.19)

while the ratio between the powers required with bandwidths B(a) and B(b) is

P (a)

t

P (b)

t

=
C−1

(
R

B(a)

)
C−1

(
R

B(b)

) . (4.20)

Example 4.4 (Applicability of C( Eb

N0
) in an AWGN channel)

Depicted on the right-hand side of Fig. 4.2 is C(Eb

N0
) corresponding to Eb

N0
= 1

C

(
2C − 1

)
.

For fixed R, G, and N0, moving along this curve we could determine how much bandwidth
can be saved with a certain increase in power and vice versa.

Example 4.5

On an AWGN channel with G = −114 dB, N0 = 4 · 10−20 W/Hz, and R = 10 Mb/s, how
much bandwidth can we save if we manage to double a transmit power of Pt = 100 mW?

Solution

From (4.19), the bandwidth can be reduced by the factor

C
(
2 GPt

N0R

)
C
(
GPt

N0R

) =
C(2)

C(1)
(4.21)

≈ 2.66, (4.22)
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where we have used C(1) = 1, which can be established analytically, and C(2) ≈ 2.66,
which can be read out from the right-hand side of Fig. 4.2. Thus, only about 1/2.66 ≈ 38%

of the original bandwidth is needed once the power has been doubled.

As in the case of SNR when representing C(·), the argument Eb

N0
is typically in log-scale

when representing the function C(·) and, most advantageously, this log-scale representation
of C(Eb

N0
) exhibits a quasi-linear behavior at low-SNR levels (see Fig. 4.4). This simplifies

moving along the tradeoff between Pt and B in this regime.

Tradeoff between R and B for a fixed Pt

In this case, both C(SNR) and C(Eb

N0
) are required, each to formulate the tradeoff in a

specific direction, namely

R = B · C
( GPt

N0B

)
(4.23)

and

B =
R

C
(
GPt

N0R

) . (4.24)

All things considered, C(SNR) is more frequently analyzed than C(Eb

N0
), since more

often than not the bandwidth is given and the focus is on the tradeoff between power and bit
rate, yet C(Eb

N0
) packs significant meaning as well. In particular, C(Eb

N0
) is informative in the

low-SNR regime because of the quasi-linear behavior it displays when the argument Eb

N0
is

in log-scale. Moreover, in reference to the tradeoff between transmit power and bandwidth,
a general observation can be made on account of the monotonicity of the function C(Eb

N0
).

Power efficiency and spectral efficiency are conflicting objectives. In order to be power
efficient, the transmission must take place at the lowest possible Eb

N0
and, consequently, at

a low spectral efficiency, and vice versa.
The ratio Eb

N0
is also instrumental when assessing decoding error probabilities with non-

ideal codes, as its scaling by R facilitates comparing codebooks of different rates, and
C(Eb

N0
) is the appropriate benchmark in that context.

Special attention is paid throughout this text to the low-SNR and high-SNR regimes,
sometimes dubbed the power-limited and the bandwidth-limited regimes, respectively. The
findings in these regimes not only offer superior insights, but they turn out to apply over
a surprisingly wide range of SNRs. We examine these regimes by means of expansions of
quantities of interest, chiefly the capacity, making use of the Landau symbols O(·) and o(·)
described in Appendix F.

4.2.1 Low-SNR regime

The low-SNR regime arises when the received signal power is weak relative to the noise,
meaning that SNR is not far from zero. In that vicinity, C(SNR) admits the expansion

C(SNR) = Ċ(0) SNR+
1

2
C̈(0) SNR2 + o(SNR2). (4.25)
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In terms of Eb

N0
, however, the low-SNR regime does not correspond to the vicinity of zero,

as can be seen for the AWGN channel in Fig. 4.2.

Example 4.6

For C = log2(1 + SNR),

lim
SNR→0

Eb

N0
= lim

SNR→0

SNR

log2(1 + SNR)
(4.26)

=
1

log2 e
, (4.27)

which amounts to −1.59 dB. Below this mark, the capacity of an AWGN channel is strictly
zero and reliable communication is simply unfeasible, something that was observed as
early as 1949 by Shannon himself [77].

The low-SNR expansion of C(Eb

N0
), therefore, must take place around a point different

from zero. Moreover, as mentioned earlier, this expansion is more conveniently carried out
in log-scale, as the function is then quasi-linear and only its first-order behavior needs to
be captured. Denoting the minimum value of Eb

N0
by Eb

N0 min
, the low-SNR expansion then

becomes [64]

C

(
Eb

N0

)
= S0

Eb

N0

∣∣∣
dB

− Eb

N0 min

∣∣∣
dB

3 dB
+ ε, (4.28)

where ε is a second-order term and S0 is the slope (in b/s/Hz/(3 dB)) of C(Eb

N0
) at Eb

N0 min
.

Minimum energy per bit
Reliable communication requires Eb

N0
> Eb

N0 min
. Whenever C(SNR) is not only increasing,

but further concave in SNR, this minimum is obtained for SNR → 0 (refer to Problem 4.1).
This gives

Eb

N0min

= lim
SNR→0

SNR

C(SNR)
(4.29)

=
1

Ċ(0)
, (4.30)

which quantifies:

The power, relative to any chosen baseline, that is needed to communicate a nonzero bit
rate reliably. Multiple examples are presented later.
The first-order scaling of C(SNR) whenever (4.30) holds, i.e., whenever C(SNR) is
concave, since then we can rewrite (4.25) as

C(SNR) =
1

Eb

N0 min

SNR+
1

2
C̈(0) SNR2 + o(SNR2). (4.31)
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The value Eb

N0 min
= 1

log2 e = −1.59 dB encountered in Example 4.6 for the AWGN
channel turns out to be very robust, as seen throughout this chapter: as long as the trans-
mission is SISO and fading-independent, this value is upheld. The behavior of Eb

N0 min
with

channel-dependent power control and with MIMO is examined later in the chapter and in
subsequent chapters, respectively.

Low-SNR slope
From the definition of Eb

N0
and the expansion of C(SNR),

Eb

N0
=

SNR

C(SNR)
(4.32)

=
1

Ċ(0) + 1
2 C̈(0) SNR+ o(SNR)

(4.33)

and then, from (4.30) whenever it applies, i.e., whenever C(SNR) is concave,
Eb

N0 min
Eb

N0

= 1 +
C̈(0)

2 Ċ(0)
SNR+ o(SNR). (4.34)

Using (4.34) and C(Eb

N0
) = C(SNR), the definition of S0 implied by (4.28) can be manip-

ulated into [64]

S0 = lim
Eb
N0

→Eb
N0 min

C
(

Eb

N0

)
Eb

N0

∣∣∣
dB

− Eb

N0 min

∣∣∣
dB

· 3 dB (4.35)

= lim
SNR→0

C(SNR)

−10 log10

(
1 + C̈(0)

2Ċ(0)
SNR+ o(SNR)

) · 10 log10 2 (4.36)

= lim
SNR→0

C(SNR)

− log2

(
1 + C̈(0)

2Ċ(0)
SNR+ o(SNR)

) (4.37)

= lim
SNR→0

Ċ(0) SNR+ o(SNR)
C̈(0)

−2Ċ(0)
SNR log2 e+ o(SNR)

(4.38)

=
2 [Ċ(0)]2

−C̈(0) log2 e
, (4.39)

where we have further used log2(1 + z) = z log2 e + o(z), and relegated the negative
sign to the denominator in the final expression to emphasize that −C̈(0) is positive. Notice
that the first-order expansion in (4.28) captures, through Ċ(0) and C̈(0), the second-order
behavior of C(SNR).

Example 4.7

Given two channels with equal Eb

N0 min
, say channels (a) and (b), relate—within the confines

of the low-SNR regime—the bandwidths they require to achieve the same bit rate with the
same transmit power.
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Solution

As seen in (4.19), the two bandwidths always satisfy

B(a)

B(b)
=

C
(

GP
(b)
t

N0R

)
C
(

GP
(a)
t

N0R

) . (4.40)

Applying

C

(
Eb

N0

)
≈ S0

Eb

N0

∣∣∣
dB

− Eb

N0 min

∣∣∣
dB

3 dB
(4.41)

we have that, provided Eb

N0 min
is the same in channels (a) and (b),

B(a)

B(b)
≈ S(b)

0

S(a)

0

(4.42)

where the approximation sharpens as Eb

N0
→ Eb

N0 min
.

The foregoing example shows how low-SNR calculations can benefit from the quasi-
linear behavior of C(Eb

N0
) in log-scale. In many instances when this function may not be

available explicitly, S0 might be.

4.2.2 High-SNR regime

The high power regime arises when SNR � 1, a condition that leads to oft-encountered
expansions of the capacity.

Example 4.8

In an AWGN channel, the capacity C(SNR) = log2(1 + SNR) behaves as

C(SNR) = log2 SNR+O
(

1

SNR

)
. (4.43)

The logarithmic behavior of the high-SNR capacity in AWGN channels is not anecdotal,
but rather a characteristic of the vast majority of channels of interest. For all such channels,
the high-SNR behavior can be accommodated by the expansion

C(SNR) = S∞
(
log2 SNR− L∞

)
+O

(
1

SNR

)
, (4.44)

where

S∞ = lim
SNR→∞

C(SNR)

log2 SNR
(4.45)

is the pre-log factor whereas

L∞ = lim
SNR→∞

(
log2 SNR− C(SNR)

S∞

)
(4.46)

is the zero-order term, not dependent on SNR.
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Spatial DOF and power offset
As is to be seen extensively, S∞ quantifies the number of spatial DOF and it is the signa-
ture figure of merit in MIMO. One can think of S∞ as the number of spatial dimensions
available for communication. This dimensionality, revealed as SNR → ∞, is however
only partially informative even in the high-SNR regime; the term L∞ helps anchor the
high-SNR expansion and enables discriminating channels that, despite sharing the same
S∞, can be rather different.

Tinkering with (4.44), we obtain

C(SNR) = S∞

(
10 log10 SNR

10 log10 2
− L∞

)
+O

(
1

SNR

)
(4.47)

= S∞

(
SNR|dB
3 dB

− L∞

)
+O

(
1

SNR

)
(4.48)

= S∞
(
SNR|3 dB − L∞

)
+O

(
1

SNR

)
, (4.49)

which justifies referring to L∞ as the high-SNR power offset in 3-dB units [355]. Put
differently, L∞ is the SNR shift, in units of 3 dB, with respect to the baseline

C(SNR) = S∞ log2 SNR+O
(

1

SNR

)
. (4.50)

As a side comment, when information is measured in bits, the quantification of power in
3-dB units arises quite naturally because, when log2(·) is applied to some quantity z,

log2 z =
10 log10 z

10 log10 2
(4.51)

=
z|dB
3 dB

(4.52)

= z|3 dB. (4.53)

The high-SNR expansion of C(SNR) allows, for instance, for an easy inversion into
C−1(·), namely SNR = 2

C
S∞ +L∞ or, in log-scale,

SNR|dB =

(
C

S∞
+ L∞

)
· 3 dB. (4.54)

Example 4.9

As seen following (4.15), the difference in transmit power required to bring the bit rate
from R(a) to R(b) while maintaining the bandwidth at B is

C−1
(
R(a)/B

)|dB − C−1
(
R(b)/B

)|dB. (4.55)

In the high-SNR regime, this simplifies to(
R(a)/B

S∞
+ L∞

)
3 dB−

(
R(b)/B

S∞
+ L∞

)
3 dB =

R(a) −R(b)

S∞B
3 dB (4.56)

which only requires the easy-to-compute S∞.



220 Single-user SISO

When two channels share the same S∞, their power offsets serve to establish penalties
and gains that would otherwise be lost. And, if one prefers to measure such penalties or
gains in terms of capacity rather than power, i.e., vertically rather than horizontally in a log-
scale representation of C(SNR), any capacity penalty or gain ΔC between two channels (a)
and (b) follows from the corresponding power offset penalty or gain, ΔL∞ = L(b)

∞ −L(a)
∞ ,

via ΔC = S∞ ΔL∞.

Example 4.10

Illustrate ΔL∞ and ΔC between the AWGN channel (for which S∞ = 1 and L∞ = 0)
and some other channel having the same S∞.

Solution

See Fig. 4.16.

4.3 AWGN channel

With all the important quantities defined, and with their mutual relationships solidly estab-
lished, we are ready to embark upon a tour of progressively more general SISO settings,
beginning with the memoryless channel

y[n] =
√
Gx[n] + v[n] n = 0, . . . , N − 1 (4.57)

where the signal x[n] =
√
Es s[n] and the noise v[n] ∼ NC(0, N0) are independent. The

codeword symbols s[0], . . . , s[N − 1], recall, are zero-mean unit-variance and it is irrel-
evant whether the power constraint is per-symbol or per-codeword. It is further irrelevant
whether the codeword symbols are transmitted serially as single-carrier symbols or, with
some parallelization, as OFDM resource elements.

This canonical channel, termed, as mentioned, the AWGN channel (or sometimes the
Gaussian channel) is a key building block of most other settings and it therefore deserves
extensive treatment. The single-letter channel law is

fy|s(y|s) = 1

πN0
e−

|y−√
GEss|2
N0 . (4.58)

4.3.1 Capacity

The AWGN channel is information stable and thus, from Section 1.5,

C = max
fs:E[|s|2]=1

I
(
s;
√
GEss+ v

)
(4.59)

= max
fs:E[|s|2]=1

[
h
(√

GEss+ v
)
− h

(√
GEss+ v |s

)]
(4.60)
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= max
fs:E[|s|2]=1

[
h
(√

GEss+ v
)
− h(v)

]
(4.61)

= max
fs:E[|s|2]=1

h
(√

GEss+ v
)
− log2(πeN0), (4.62)

where the symbol index n has been dropped, as it is unnecessary in a single-letter formu-
lation, and where h(v) has been imported from Example 1.5. The mutual information thus
depends on s through the differential entropy of

√
GEss+ v and we know from Chapter 1

that, for a given variance, the differential entropy is maximized by the complex Gaussian
distribution. Moreover, for

√
GEss+ v to be complex Gaussian, s must itself be complex

Gaussian. Hence, and given that the channel is memoryless and stationary, the codewords
should be constructed by drawing symbols independently from a standard complex Gaus-
sian distribution. Although, from a practical viewpoint, this may seem problematic because
of the infinite PAPR of the complex Gaussian distribution, it was illustrated in Problem 2.12
that such distribution can be subject to a severe truncation without much loss in its ability to
pack information. Indeed, the capacity can be closely approached with signal distributions
that are much more amenable to implementation.

For s ∼ NC(0, 1), (4.62) reduces to the mutual information in Example 1.7 and we
obtain the AWGN channel capacity (in b/s/Hz) as

C(SNR) = log2
(
πe(GEs +N0)

)− log2(πeN0) (4.63)

= log2(1 + SNR). (4.64)

This relationship, arguably the most iconic formula in all of communications, was used as
a running example earlier in this chapter. It is portrayed, in log-scale, in Fig. 4.3. As shown
in Example 4.1, the companion function C(Eb

N0
) can only be obtained implicitly through its

inverse
Eb

N0
=

2C − 1

C
. (4.65)

Figure 4.4 depicts C(Eb

N0
), again in log-scale.

Finite blocklength

For the AWGN channel, the variance of the information density defined in (1.144) was
shown in [101] to admit the closed form

V =

(
1− 1

(1 + SNR)2

)
log22 e (4.66)

and thus, recalling (1.143), with a finite blocklength N and an acceptable error probability
pe it is possible to achieve

R

B
≈ log2(1 + SNR)−

√
1− 1

(1 + SNR)2
Q−1(pe)

log2 e√
N

(4.67)

where the approximation becomes tighter with growing N .
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as a function of Eb
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Example 4.11

What spectral efficiency can be achieved with N = 2000 and pe = 10−3?
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�Fig. 4.5 In solid, AWGN channel capacity. In dashed, spectral efficiency achievable with

N = 2000 and pe = 10−3.

Solution

Shown in Fig. 4.5 is, alongside C(SNR), the result of applying (4.67) with the given values
of N and pe. Except perhaps at very low SNR, with these conservative values the loss with
respect to the capacity is anecdotal.

Low- and high-SNR regimes

In the low-SNR regime (recall Example 1.7)

C(SNR) =

(
SNR− 1

2
SNR2

)
log2 e+ o

(
SNR2

)
(4.68)

and thus Ċ(0) = −C̈(0) = log2 e. In turn, in the high-SNR regime, as seen earlier,

C(SNR) = log2 SNR+O
(

1

SNR

)
(4.69)

=
SNR|dB
3 dB

+O
(

1

SNR

)
, (4.70)

which fits the expansion in (4.48) with L∞ = 0; indeed, the unfaded AWGN channel
serves as baseline for other channels in terms of power offset. We further observe that:

In the low-SNR regime, C(SNR) is—to first order—linear in the SNR. Every doubling
of the received power roughly doubles the capacity. The communication is therefore
power-efficient.
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In the high-SNR regime, C(SNR) is only logarithmic in the SNR. Every doubling yields
only one additional b/s/Hz. The communication is power-inefficient.

In terms of C(Eb

N0
), the expansion in (4.28) applies with

Eb

N0min

=
1

Ċ(0)
(4.71)

=
1

log2 e
, (4.72)

which is −1.59 dB, as found earlier, while

S0 =
2 [Ċ(0)]2

−C̈(0) log2 e
(4.73)

= 2. (4.74)

Since C(SNR) is concave, the minimum energy per bit—and thus the maximum power
efficiency—is achieved for SNR → 0. This entails a vanishing bit rate if the bandwidth is
fixed and the transmitter powers down,

lim
Pt→0

B log2

(
1 +

GPt

N0B

)
= 0, (4.75)

but not if the power is fixed and the bandwidth is increased, in which case the bit rate grows
monotonically with the bandwidth and

lim
B→∞

B log2

(
1 +

GPt

N0B

)
=

GPt

N0
log2 e. (4.76)

Although in both cases we end up operating at Eb

N0
= Eb

N0 min
, the bit rate is very different.

Figure 4.6 depicts Eb

N0
as a function of SNR, in log–log scale, and with that a perspective

of how −1.59 dB is slowly approached as SNR → 0.

4.3.2 Discrete constellations

Recall that we resist utilizing the term capacity with suboptimum signal distributions, and
instead speak only of spectral efficiency. (Alternatively, the terms constellation-constrained
capacity or even simply constrained capacity are sometimes invoked in the literature.)

The spectral efficiency with BPSK, QPSK, and M -QAM signals is given directly by the
corresponding mutual information functions, derived in Examples 1.8–1.12. The spectral
efficiency of some of those signal distributions is shown in Fig. 4.3 alongside C(SNR).
Notice how, up to the vicinity of log2 M bits, the spectral efficiency of M -QAM tightly
hugs the capacity. This is a welcome result that dispels potential concerns about the prac-
tical significance of the capacity in light of the fact that the capacity-achieving signals are
complex Gaussian: signals drawn from discrete constellations can perform virtually as well
provided the SNR corresponding to log2 M bits is not approached too closely. The enve-
lope of the spectral efficiencies achieved by progressively denser M -QAM constellations
coincides with the mutual information of ∞-QAM (see Example 1.9).
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Low- and high-SNR regimes

Turning to discrete constellations in the low-SNR regime, the value of Eb

N0 min
is unaffected

by the signal distribution provided it is zero-mean [356]. The slope S0 = 2 is also unaf-
fected as long as the signal distribution is proper complex, and thus QPSK and M -QAM
constellations exhibit the same slope. For BPSK, which fails to utilize both complex di-
mensions and is therefore not proper complex, (1.62) and (4.39) lead to S0 = 1. Recalling
Example 4.7, this indicates that, for a given low-SNR level, BPSK requires twice the band-
width to achieve the same bit rate as a proper complex signal; this is evident in how the
various curves approach the −1.59-dB mark in Fig. 4.4. For a given bandwidth, however,
the bit rate achieved by BPSK in the low-SNR regime is only modestly lower than that of
proper complex constellations (see Fig. 4.3 in the low-SNR range).

In the high-SNR regime, Examples 1.8–1.9 apply for ∞-PSK and ∞-QAM, respec-
tively, up to the vicinity of log2 M , where the spectral efficiency saturates. The high-SNR
power penalty suffered below that point (approximately 1.53 dB as per Example 1.9) can
be partially recovered by reshaping the constellation and making the constituent points
nonequiprobable in such a way that the constellation more closely resembles a complex
Gaussian distribution [357–360]. This recovery, dubbed shaping gain, comes at the ex-
pense of a somewhat magnified peakedness.

4.3.3 Sneak preview of link adaptation

Mobile wireless transceivers feature a number of constellations; rarely BPSK (because it
wastes half of each complex dimension in baseband or, equivalently, half the passband
bandwidth), customarily QPSK, 16-QAM, 64-QAM, and, for evolved releases of LTE as
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well as for NR and for certain WLANs, even 256-QAM. Very-short-range or fixed wire-
less transceivers could feature even denser constellations. The combination of these vari-
ous constellations with a restricted number of binary coding rates yields a set of discrete
spectral efficiencies, each termed a modulation and coding scheme (MCS), at which the
transmitter can operate. It is important for the set of MCSs to cover the entire range of
operational interest, more or less uniformly.

The transmitter needs to select, depending on the SNR, the most appropriate MCS. In
a canonical AWGN channel, this needs to be done only once. In fading channels, alter-
natively, it becomes a recurring procedure, termed link adaptation (alternatively adaptive
modulation and coding or rate control), that constitutes one of the hallmarks of modern
communication. With ideal coding and N → ∞, the MCS to select would be the highest
MCS supported by the channel, i.e., the one whose nominal spectral efficiency is largest
while not exceeding I(SNR) for the corresponding constellation. With practical codes,
necessarily finite in length and not error-free, it is more convenient to select the MCS that
yields the largest possible throughput. Erroneous codewords are then subject to hybrid-
ARQ and, if necessary, to higher-layer retransmissions to ensure that all payload bits are
correctly delivered in the end. This breaks down the responsibility for the reliability of the
transmission between the PHY layer and the rest of the protocol stack [361].

Example 4.12 (LTE MCSs)

Listed in Table 4.1 are the 27 MCSs available in a basic release of LTE, obtained by com-
bining QPSK, 16-QAM, and 64-QAM with various values for the binary coding rate r.

Example 4.13 (Error probability in LTE)

Shown in Fig. 4.7 is pe(SNR), the codeword error probability as a function of SNR (in
dB), for MCSs 2, 5, 8, 11, 14, 17, 20, 23, and 26 with turbo coding and one-shot BICM at
N = 6480. (Results courtesy of the coded modulation library maintained by Prof. Mathew
Valenti [362].) Also indicated, for each MCS, is the minimum SNR at which that MCS can
operate reliably, i.e., the SNR that solves

r log2 M = I(SNR), (4.77)

with I(·) the Gaussian mutual information function for the corresponding MCS constella-
tion and with M the constellation cardinality. Notice how, with turbo coding at this rather
typical blocklength, the coding shortfall at the error probabilities of interest is only 1–2 dB.

Example 4.14 (Throughput and link adaptation in LTE)

Shown in Fig. 4.8 is the throughput per unit bandwidth,
(
1−pe(SNR)

)
r log2 M , for MCSs

2, 5, 8, 11, 14, 17, 20, 23 and 26. By selecting the MCS that provides the highest throughput
at each SNR, the highlighted envelope can be achieved and, with a progressively denser set
of MCSs, the dashed line could be approached. The intervals on which each MCS delivers
the highest throughput are indicated right below the SNR axis, and their boundaries deter-
mine the MCS switching thresholds that maximize the throughput. (It if were of interest to
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Table 4.1 MCSs in LTE

MCS Constellation Code rate, r r log2M (b/s/Hz)
0 QPSK 0.097 0.194
1 QPSK 0.124 0.248
2 QPSK 0.156 0.312
3 QPSK 0.206 0.401
4 QPSK 0.250 0.500
5 QPSK 0.309 0.618
6 QPSK 0.368 0.737
7 QPSK 0.428 0.856
8 QPSK 0.478 0.957
9 QPSK 0.538 1.075

10 QPSK 0.617 1.233
11 16-QAM 0.353 1.411
12 16-QAM 0.397 1.589
13 16-QAM 0.442 1.767
14 16-QAM 0.500 2.000
15 16-QAM 0.522 2.089
16 16-QAM 0.567 2.267
17 16-QAM 0.633 2.533
18 16-QAM 0.678 2.711
19 16-QAM 0.736 2.944
20 16-QAM 0.795 3.181
21 64-QAM 0.589 3.537
22 64-QAM 0.630 3.780
23 64-QAM 0.655 3.928
24 64-QAM 0.704 4.225
25 64-QAM 0.729 4.373
26 64-QAM 0.845 5.070

keep the error probability below a certain level, then these thresholds could be adjusted to
ensure that, at the expense of some degradation in the throughput.)

The foregoing string of examples illustrates how, with a relatively modest number of
MCSs—the entire set of 27 MCSs can be indexed with five bits—and off-the-shelf turbo
codes plus a one-shot BICM receiver, it is possible to operate remarkably close to capacity.
At low SNR, the shortfall from capacity is tiny, all of it due to the nonideality of the coding
given that QPSK is optimum in this regime. At high SNR, the shortfall increases because
of the nonideality of uniform QAM constellations, but the throughput tracks the capacity
closely all along. (With 256-QAM included, the high-SNR shortfall would shrink further.)

Examples 4.12–4.14 could be replicated for NR, and the coded modulation library does
support the necessary LDPC codes.
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�Fig. 4.7 Error probability versus SNR (in dB) for the LTE MCSs 2, 5, 8, 11, 14, 17, 20, 23, and

26 in Table 4.1 and turbo coding with N = 6480. Also indicated are the minimum

SNRs at which reliable communication is possible for each MCS.

4.4 Frequency-selective channel

Consider now the channel

y[n] =
√
G

L∑
�=0

h[�]x[n− �] + v[n] n = 0, . . . , N − 1, (4.78)

subject to a per-symbol or a per-codeword power constraint. The coefficients h[0], . . . , h[L]
are fixed, i.e., not subject to fading, but normalized to satisfy

∑L
�=0 |h[�]|2 = 1 such that

G and SNR retain their significance. We dwell on this channel somewhat meticulously
because its analysis entails a decomposition and some optimizations that are encountered,
in more elaborate forms, once we deal with MIMO.

While decidedly information-stable, the channel in (4.78) is not memoryless and thus
the formulation of its mutual information must necessarily be nonsingle-letter, i.e., based
on blocks [363]. To better visualize that, we can recall Section 2.2.8 and re-express (4.78)
block-wise by means of a convolution matrix, namely

ȳN =
√
G H̄N,N+Lx̄N+L + v̄N , (4.79)

where

ȳN =
[
y[0] · · · y[N − 1]

]T
(4.80)

x̄N+L =
[
x[−L] · · · x[−1]x[0]x[1] · · · x[N − 1]

]
(4.81)
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throughput, delineated below the SNR axis, determine the switching thresholds. The

envelope of the individual throughputs, indicated with a thicker stepped line, is the

throughput achievable with link adaptation relying on this subset of MCSs and these

switching thresholds while, in dashed, we have the throughput approached by this

turbo code with a densifying set of MCSs. Also shown is the AWGN channel capacity.

v̄N =
[
v[0] · · · v[N − 1]

]T
(4.82)

whereas H̄N,N+L is the N × (N + L) Toeplitz matrix

H̄N,N+L =

⎡
⎢⎢⎢⎣

h[L] · · · h[0] 0 0 · · · 0

0 h[L] · · · h[0] 0 · · · 0
...

. . .
...

0 · · · 0 0 h[L] · · · h[0]

⎤
⎥⎥⎥⎦ . (4.83)

With v̄N ∼ NC(0, N0I), the channel law is

fȳN |x̄N+L
(ȳ|x̄) = 1

(πN0)N
e−

‖ȳ−√
Gx̄‖2

N0 (4.84)

and the arguments used for the AWGN channel apply to justify that the capacity-achieving
transmit signal is complex Gaussian, x̄N+L ∼ NC(0,Rx̄). Then, invoking Example 1.13,

1

N
I
(
x̄N+L; ȳN

)
=

1

N
log2 det

(
I +

G

N0
H̄∗

N,N+LH̄N,N+LRx̄

)
, (4.85)

from which the capacity would follow by letting N → ∞ while optimizing Rx̄.
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Applying the SVD (see Appendix B.3.2), we have that H̄N,N+L = UH̄ΣH̄V ∗̄
H where the

unitary matrices UH̄ and VH̄ are N ×N and (N +L)× (N +L), respectively, while ΣH̄

satisfies

Σ∗̄
HΣH̄ = diag(λ0, . . . , λN−1, 0, . . . , 0︸ ︷︷ ︸

L

). (4.86)

With the columns of UH̄ and VH̄ ordered differently, the SVD of H̄N,N+L can equivalently
be expressed with ΣH̄ satisfying Σ∗̄

HΣH̄ = diag(0, . . . , 0, λ0, . . . , λN−1). Then, given
that U ∗̄

HUH̄ = I ,

1

N
I
(
x̄N+L; ȳN

)
=

1

N
log2 det

(
I +

G

N0
VH̄Σ∗̄

HΣH̄V ∗̄
HRx̄

)
(4.87)

=
1

N
log2 det

(
I +

G

N0
VH̄ diag(0, . . . , 0, λ0, . . . , λN−1)V ∗̄

HRx̄

)
(4.88)

=
1

N
log2 det

(
I +

G

N0
diag(0, . . . , 0, λ0, . . . , λN−1)V ∗̄

HRx̄VH̄

)
. (4.89)

Since a positive-definite matrix A satisfies det(A) ≤ ∏
j [A]j,j with equality when A is

diagonal, the mutual information is maximized when the argument of (4.89) is diagonal,
which entails a diagonal form for V ∗̄

HRx̄VH̄ . With the IID unit-variance codeword symbols
to be transmitted denoted as usual by s[0], . . . , s[N − 1], this can be achieved by letting

x̄N+L =
√

Es VH̄

[
0 · · · 0︸ ︷︷ ︸

L

√
P [0]s[0] · · ·

√
P [N − 1]s[N − 1]

]T

(4.90)

since then

Rx̄ = Es VH̄ diag
(
0, . . . , 0, P [0], . . . , P [N − 1]

)
V ∗̄

H , (4.91)

meaning that V ∗̄
HRx̄VH̄ is indeed diagonal.

It is therefore optimum to transmit the codeword symbols s[0], . . . , s[N − 1] by driving
with them the columns of VH̄ , which can be regarded as the channel response’s eigenfunc-
tions, with power coefficients P [0], . . . , P [N − 1] satisfying 1

N

∑N−1
n=0 P [n] = 1 such that

the power constraint is met. Unraveling the definition of x̄N+L in (4.90), we further obtain

x[n] =

⎧⎪⎨
⎪⎩

0 n = −L, . . . ,−1√
Es

N−1∑
�=0

√
P [�] s[�]

[
VH̄

]
n,�

n = 0, . . . , N − 1
(4.92)

indicating how the codeword symbols are to be mixed before being launched onto the
channel. Indeed, since a frequency-selective channel is not memoryless, maximizing its
mutual information generally requires non-IID signals, and the mixing in (4.92) creates,
from the IID codeword symbols s[0], . . . , s[N − 1], a complex Gaussian transmit signal
with the optimum autocorrelation. Notice that symbols x[−L], . . . , x[−1] are set to zero,
a guard interval that isolates consecutive codewords playing a role similar to that of the
cyclic prefix in OFDM.
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4.4.1 Partition into parallel subchannels

With the channel response known by both transmitter and receiver—something that is im-
plied when h[0], . . . , h[L] are modeled as deterministic rather than random—it would be
possible to implement (4.92) so as to transmit each codeword symbol using one of the
columns of VH̄ . In fact, this strategy need not be applied to the entire block of N sym-
bols at once. Parsing the N symbols into subblocks of K, we could leverage the earlier
definitions to write, for each such subblock,

ȳK =
√
GUH̄ΣH̄V ∗̄

H x̄K+L + v̄K (4.93)

and, applying at the subblock level the transmit transformation

x̄K+L =
√

Es VH̄

[
0 · · · 0︸ ︷︷ ︸

L

√
P [0]s[0] · · ·

√
P [K − 1]s[K − 1]

]T

(4.94)

while using, at the receiver, the orthonormal columns of UH̄ to rotate ȳK into ȳ′
K = U ∗̄

HȳK ,
the output for each subblock would then be

ȳ′
K = U ∗̄

H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√
GEs UH̄ΣH̄V ∗̄

HVH̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0√
P [0]s[0]

...√
P [K − 1]s[K − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ v̄K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.95)

=
√
GEs ΣH̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0√
P [0]s[0]

...√
P [K − 1]s[K − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ v̄′

K , (4.96)

where v̄′
K = U ∗̄

H v̄K . Because IID complex Gaussian vectors are unitarily invariant (see
Appendix C.1.6), we have that v̄′

K ∼ NC(0, N0I).
Recalling that ΣH̄ =

[
0 diag(

√
λ0, . . . ,

√
λK−1)

]
with λk the kth eigenvalue of the

matrix H̄∗
K,K+LH̄K,K+L, (4.96) is equivalent to

y′[k] =
√

GEs

√
λkP [k]s[k] + v′[k] k = 0, . . . ,K − 1, (4.97)

evidencing that the transmit and receive transformations in (4.94) and (4.95), jointly re-
ferred to as vector coding [364], would yield a bank of K parallel subchannels, each an
AWGN channel having a distinct SNR [12].

Besides a free allocation of the available power via the coefficients P [0], . . . , P [K − 1],
vector coding entails channel-dependent unitary transformations at both transmitter and re-
ceiver, namely VH̄ and U ∗̄

H
. As an alternative to vector coding, we can recall the teachings
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of Chapter 2 and apply IDFT/DFT transformations, which are also unitary yet channel-
agnostic. That allows converting each subblock—or OFDM symbol, as it is termed in that
familiar context—into the frequency-domain transmit–receive relationship produced by
OFDM, to wit

y[k] =
√
G h[k] x[k] + v[k] (4.98)

=
√
GEs h[k]

√
P[k] s[k] + v[k] k = 0, . . . ,K − 1, (4.99)

where h[·] is the K-point DFT of h[·], with K > L, while x[k] =
√

EsP[k] s[k] with
1
K

∑K−1
k=0 P[k] = 1 such that the power constraint is met (refer to Problem 4.18). The

frequency-domain noise samples are IID with v[k] ∼ NC(0, N0), and hence the K subcar-
riers thereby obtained again constitute a bank of K parallel subchannels (see Fig. 4.9).

Altogether, both vector coding and OFDM manage to partition a frequency-selective
channel into a bank of parallel subchannels, and to contrast these partitioning alternatives
some considerations are appropriate.

With vector coding, the SNR on the kth subchannel is GEs

N0
λkP [k] = SNRλkP [k] while,

with OFDM, it is GEs

N0
|h[k]|2P[k] = SNR |h[k]|2P[k].

As we know, it is necessary that N → ∞ for the mutual information to have the oper-
ational interpretation of a spectral efficiency that can be achieved reliably. This is com-
patible with a finite K as long as the codewords stretch over multiple subblocks/OFDM
symbols, and the operational significance is then acquired as the number of such sub-
blocks/OFDM symbols grows large. Both vector coding and OFDM have an overhead
of L for each K codeword symbols, with such overhead taking the form of an idle guard
interval in vector coding and of a cyclic prefix in OFDM. These overheads only vanish
for K → ∞ and thus only then can the capacity be truly achieved.
For finite K, the spectral efficiency of vector coding always exceeds that of OFDM,
given that the former transmits on the channel response’s own eigenfunctions while



233 4.4 Frequency-selective channel

the latter transmits on the fixed basis functions embodied by the OFDM subcarriers.
However, OFDM can exploit the processing advantage of the FFT so as to afford, for a
given computational budget, a larger value of K.

4.4.2 Waterfilling power allocation

In both the vector coding and the OFDM partitionings, the transmitter is free to allocate
power across the K subchannels subject to the power constraint. For the sake of specificity,
let us address this power allocation problem under OFDM, with the understanding that the
formulation carries over to vector coding if |h[k]|2 is replaced by λk.

With the parallel subchannels noninterfering, their individual mutual informations add
up onto 1

K

∑K−1
k=0 I

(
s[k]; y[k]

)
with the scaling by K ensuring that the units are b/s/Hz

(increasing K does not alter the actual bandwidth, but merely partitions it into narrower
subcarriers). The optimum power allocation P[0], . . . ,P[K − 1] is the one that, subject to
the power constraint, maximizes this quantity, i.e., the one that solves

max
P[0],...,P[K−1]
1
K

∑
k P[k]=1

1

K

K−1∑
k=0

log2

(
1 + SNR |h[k]|2 P[k]

)
, (4.100)

which is a convex optimization problem with an equality constraint and can thus be solved
through the method of Lagrange multipliers (see Appendix G). Forming the Lagrangian

L
(
P[0], . . . ,P[K− 1], λ

)
=

1

K

K−1∑
k=0

log2

(
1 + SNRP[k] |h[k]|2

)
+λ

(
1

K

K−1∑
k=0

P[k]− 1

)
(4.101)

and setting its partial derivatives to zero, we obtain the necessary and sufficient conditions
that characterize the solution P�[0], . . . ,P�[K − 1] as

P�[k] = − λ

log2 e
− 1

SNR |h[k]|2 k = 0, . . . ,K − 1 (4.102)

1

K

K−1∑
k=0

P�[k] = 1, (4.103)

with the added implicit condition that P�[k] ≥ 0. Defining a new parameter η = − log2 e
λ

,
the optimum power allocation can be compactly rewritten as

P�[k] =

[
1

η
− 1

SNR |h[k]|2
]+

k = 0, . . . ,K − 1, (4.104)

with [z]+ = max(0, z) and with η satisfying

1

K

K−1∑
k=0

[
1

η
− 1

SNR |h[k]|2
]+

= 1. (4.105)
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Discussion 4.1 OFDM design revisited

In the time-invariant channels considered in this section, the value of K should in princi-
ple be as large as can be afforded so as to minimize the relative overhead L

K+L . However,
once mobility is taken into account this needs to be restrained to ensure that each OFDM
symbol is short enough relative to the coherence time. The practice is thus to set K to
the smallest possible value that renders the overhead “small.”

Example 4.15

How many subcarriers should (roughly) be used in an OFDM system that is to be oper-
ated in urban and suburban outdoor environments?

Solution

Since L depends on the relationship between the delay spread and the bandwidth, the
value of K is also inextricably tied to the bandwidth; what can be established in absolute
terms is the subcarrier spacing.

Referring to Chapter 2, let us take the worst-case delay spread to be Td ≈ 8 μs. For
the overhead to be “small,” the payload part of each OFDM symbol should be at least
ten times as long, meaning KT � 80 μs. It follows that K � 8 · 10−5/T = 8 · 10−5B and
that the subcarrier spacing should be B/K � 12.5 kHz.

This rough calculation leads with remarkable precision to the LTE design: the subcar-
rier spacing is 15 kHz and every 5 MHz of bandwidth fits K = 300 subcarriers. In NR,
subcarrier spacings that are multiples of 15 kHz (up to 960 kHz and down to 3.75 kHz)
are featured to match channels with different worst-case delay spreads.

Note, by identifying their respective reciprocals, how the condition that the delay
spread be “small” relative to the OFDM symbol period is mapped, in the frequency
domain, onto the requirement that the subcarrier spacing be “small” relative to the co-
herence bandwidth. While this may agree with the intuition that each OFDM subcarrier
be narrow enough to experience a (roughly) frequency-flat channel response, such fre-
quency flatness over each subcarrier is not required for orthogonality; it suffices that
K > L for the subcarriers to be orthogonal at the discrete points h[0], . . . , h[K − 1] and
hence for the parallel subchannels to be noninteracting. Frequency flatness over each
subcarrier is merely the frequency-domain interpretation of the condition that ensures
low overhead.

At the same time, as mentioned, mobility requires the OFDM subcarriers to be wide
enough to withstand the necessary Doppler spreads. It is to be celebrated that, as ar-
gued in Section 3.4.5, in underspread channels there is a broad enough gap between the
Doppler spread and the coherence bandwidth for subcarriers to be wide relative to the
former while narrow relative to the latter. Low overhead and robustness in the face of
mobility are therefore compatible.
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From (4.104) and (4.100), the maximized mutual information across the K subchannels is

1

K
I
(
s[0], . . . , s[K−1]; y[0], . . . , y[K−1]

)
=

1

K

K−1∑
k=0

[
log2

(
SNR |h[k]|2

η

)]+

. (4.106)

The power allocation policy described by (4.104) and graphically illustrated in Fig. 4.10
is termed waterfilling. First derived by Shannon in 1949 [77] and rigorously formalized
in [59, 363, 365, 366], the waterfilling policy is not only a central result in information
theory but one that is frequently encountered in other disciplines. The term waterfilling
(or, equivalently, waterpouring) appears to have been coined by Robert Fano [367], and
it is justified by the interpretation of pouring K units of water onto a bank of unit-base
vessels solid up to a height 1

SNR |h[k]|2 . The water level reaches 1/η across all subchannels
and the water height within the kth vessel gives P�[k]. Note that some vessels may end up
with no water whatsoever, indicating that the corresponding subchannels are too weak to
warrant being employed.

Example 4.16

Compute the waterfilling power allocation for SNR = 6 dB and

|h[0]|2 = 0.5 (4.107)

|h[1]|2 = 0.4 (4.108)

|h[2]|2 = 0.1. (4.109)

Solution

Clearing η from (4.105) under the assumption that all the terms therein are nonnegative,
we obtain η = 0.83, yet that value renders the third term negative. This indicates that
P[2] = 0, something that can be verified through (4.104). Recomputing η from (4.105)
with the third term set to zero, we obtain η = 0.48 and subsequently, from (4.104),

P[0] = 1.56 (4.110)

P[1] = 1.44 (4.111)

P[2] = 0. (4.112)

4.4.3 Capacity

From (4.100) and the overhead of L symbols for every K codeword symbols, the spectral
efficiency equals

R

B
=

1

K + L

K−1∑
k=0

log2

(
1 + SNR |h[k]|2 P�[k]

)
, (4.113)

where the optimum power allocation P�[k] is given by waterfilling. Achieving capacity re-
quires letting K → ∞, which suffices to ensure that N → ∞ while rendering the overhead
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�Fig. 4.10 Waterfilling power allocation.

negligible. When K → ∞, the Toeplitz matrix H̄K,K+L becomes asymptotically equiva-
lent to the circulant matrix obtained by augmenting H̄K,K+L with L additional bottom
rows, namely

H̄K+L,K+L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h[L] · · · h[0] 0 0 · · · 0

0 h[L] · · · h[0] 0 · · · 0
...

. . .
...

0 · · · 0 0 h[L] · · · h[0]

h[0] 0 · · · 0 0 h[L] · · ·
...

. . .
...

h[L− 1] · · · h[0] 0 · · · 0 h[L]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.114)
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as the edge effect associated with this augmentation vanishes with growing K. It fol-
lows from the properties of circulant matrices (see Appendix B.2.4) that, asymptotically,
H̄K+L,K+L can be decomposed as UΣH̄U∗ where U is the Fourier matrix in (B.7) while
the diagonal entries of ΣH̄ are the DFT coefficients of an arbitrary row of H̄K+L,K+L (or
of H̄K,K+L), i.e., the DFT of h[L], . . . , h[0] zero-padded up to K+L. Since the multiplica-
tion by a Fourier matrix effects an OFDM transformation, it follows that the vector coding
transmit and receive transformations converge to OFDM transformations as K grows large,
and hence OFDM becomes optimum in the asymptote in which capacity is achieved.

Considering therefore OFDM with K → ∞, what ensues is that the frequency resolution
becomes increasingly fine and the DFTs become discrete-time Fourier transforms on the
interval [−1/2, 1/2] (see Section A.1). Then, (4.100) leads to the capacity

C(SNR) =

∫ 1/2

−1/2

log2

(
1 + SNR |h(ν)|2 P�(ν)

)
dν, (4.115)

with the continuous power allocation P�(ν) given by waterfilling over |h(ν)|2, where h(ν)
is the continuous-frequency channel response, and with the waterfilling subject to

∫ 1/2

−1/2

P�(ν) dν = 1. (4.116)

If, rather than optimizing the power allocation via waterfilling, we elect to allocate power
uniformly across subcarriers, then all the foregoing expressions apply only with P�[k] and
P�(ν) replaced by 1.

Single-carrier signaling

It is worthwhile to rewrite the capacity of a frequency-selective channel as that of an
AWGN channel,

C(SNReq) = log2
(
1 + SNReq

)
, (4.117)

where, to preserve the equivalence with (4.115),

SNReq = 2

∫ 1/2

−1/2

log2
(
1 + SNR |h(ν)|2P�(ν)

)
dν

− 1. (4.118)

Given that an AWGN channel is frequency-flat, the quantity SNReq can be interpreted as
the SNR at the output of a perfect time-domain equalizer. As it happens, equalizers achiev-
ing this performance are indeed feasible, for instance in the form of a structure having an
LMMSE front-end (see Section 2.4.2) plus a decision-feedback loop integrated with the
decoder [368]. Thus, complexity considerations notwithstanding, directly with a single-
carrier signal optimally autocorrelated, without explicit OFDM or vector coding transfor-
mations, the capacity in (4.115) could theoretically be approached arbitrarily well.
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Low- and high-SNR regimes

The behavior of the optimum power allocation in the low- and high-SNR regimes can be
inferred from (4.104) and from the waterfilling interpretation.

For SNR → 0, it is optimum to allocate power exclusively to the subcarrier(s) with the
highest gain; the ensuing expansion of the spectral efficiency of frequency-selective chan-
nels in the low-SNR regime is the subject of Problem 4.30. If max

(|h[0]|, . . . , |h[K − 1]|)
is not unique, then the power should be evenly divided among the corresponding subcarri-
ers, a fine point to which Problem 4.29 is devoted.

For SNR → ∞, we observe from (4.105) that η → 1 + O(
1

SNR

)
and, plugging this

expansion into (4.104), that

P�[k] = 1 +O
(

1

SNR

)
k = 0, . . . ,K − 1, (4.119)

making evident that, for SNR → ∞, waterfilling converges to a uniform power allocation.
Combining this expansion for P�[0], . . . ,P�[K − 1] with (4.113), the spectral efficiency
achievable with a given K can be specialized to the high-SNR regime; the corresponding
expansion is the subject of Problem 4.32.

4.4.4 Discrete constellations

Given a bank of parallel noninteracting subchannels, say K OFDM subcarriers, what is the
optimum power allocation policy if the transmit signals are independent but not Gaussian?
For arbitrary signal distributions, possibly different per subcarrier, we can recast (4.100) as

max
P[0],...,P[K−1]
1
K

∑
k P[k]=1

1

K

K−1∑
k=0

Ik
(
SNR |h[k]|2 P[k]

)
, (4.120)

where Ik(·) is the Gaussian mutual information function for the signal distribution on the
kth subcarrier. Since the mutual information functions are concave, the problem remains
convex. By means of the I-MMSE relationship in (1.196) and the method of Lagrange
multipliers, the solution can be expressed (refer to Problem 4.33) as

P�[k] =
1

SNR |h[k]|2 MMSE−1
k

(
min

(
1,

η

SNR |h[k]|2
))

, (4.121)

where η is the unique solution to the nonlinear equation

1

K

∑
SNR |h[k]|2>η

1

SNR |h[k]|2 MMSE−1
k

(
η

SNR |h[k]|2
)

= 1, (4.122)

while MMSE−1
k (·) is the inverse of MMSEk(·) with respect to the composition of func-

tions, with domain equal to [0, 1]. An interpretation of (4.121) that generalizes the water-
filling policy and preserves some of its intuition is put forth in [71, 369] under the name
mercury/waterfilling. This interpretation, illustrated in Fig. 4.11, is as follows.

(a) For each subcarrier, set up a unit-base vessel solid up to 1
SNR |h[k]|2 .
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(b) Pour mercury onto each vessel until its height, solid included, reaches a certain level.

(c) Pour K units of water, at which point the water level reaches 1/η.

(d) The water height over the mercury on the kth vessel gives P�[k].

The mercury-pouring stage regulates the water admitted by each vessel, tailoring the pro-
cedure to arbitrary signal distributions. No mercury is poured onto vessels corresponding
to subcarriers fed by Gaussian signals. The mercury can be seen as playing the role of
the approximate SNR gap invoked by certain heuristic methods [370–373], but with the
advantage of being exact for any signal power and distribution.

For SNR → 0, mercury/waterfilling behaves exactly as regular waterfilling as long as
the signals fed into all the subcarriers are proper complex; this coincidence constitutes the
subject of Problem 4.36.

At high SNR, (4.119) holds with continuous distributions such as ∞-PSK and ∞-QAM
but not with discrete constellations. Rather, the optimum power allocation then seeks to
equalize, across the subcarriers, the product of the received power and the squared mini-
mum distance of the constellation [71, theorem 7]. However, this solution applies at SNR
levels where communication is highly power-inefficient, where the spectral efficiency of
the corresponding constellations no longer hugs the capacity. Operation in this regime
should be avoided if power efficiency is of minimal essence.

Single-carrier signaling

With discrete constellations, the exact equivalence between OFDM and single-carrier trans-
mission breaks down. The equalized SNR given in (4.118) continues to be achievable, but
any residual ISI is bound to be non-Gaussian if the signal itself is non-Gaussian; thus, the
combined noise-plus-interference is non-Gaussian and the Gaussian mutual information
functions I(·) strictly do not apply. Nonetheless, these functions evaluated at the equalized
SNR have been shown to approximate rather well the spectral efficiency achievable with
single-carrier transmission [374] and therefore we can write

R

B
≈ I(SNReq), (4.123)

where I(·) is the Gaussian mutual information function that matches the signal distribu-
tion. While not exact, the right-hand side of (4.123) is infinitely easier to compute than

lim
N→∞

I
(
s[0], . . . , s[N − 1]; y[0], . . . , y[N − 1]

)
. (4.124)

The values of (4.120) and (4.123) are rather analogous and thus all the OFDM-based dis-
crete constellation derivations in this text are largely applicable to non-OFDM alternatives
as well. If anything, when (4.120) and (4.123) are compared carefully, there is a slight edge
for the single-carrier alternative provided the computational complexity of a joint optimum
equalizer and decoder can be afforded [375].
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4.4.5 CESM, MIESM, and EESM mapping methods

To wrap up our examination of fixed frequency-selective channels, it is worth examining
briefly what ensues when we back off from N → ∞. This setting provides a very clean
context to introduce some methods that make appearances throughout the text, in the con-
text of link adaptation. Letting N be finite, each codeword occupies K subcarriers over
N/K OFDM symbols for a total of N resource elements, with an overhead of L

K+L .
The computation of the spectral efficiency achievable with a finite N and a certain code-

word error probability pe could be approached via the finite-codeword-length framework
introduced in Section 1.5.5 and specialized to frequency-selective channels in [376]. The
result of this approach would be in the form of an expansion equaling (4.113) with a back-
off δC(N, pe), which mapped to an equivalent AWGN channel would yield

SNReq ≈ 2
1

K+L

∑K−1
k=0 log2(1+SNR |h[k]|2P[k])−δC− 1. (4.125)

Complementing its earlier interpretation as the SNR at the output of a perfect time-domain
equalizer, SNReq can be seen to represent the mapping of h[0], . . . , h[K−1] onto an AWGN
channel, and specifically the mapping in terms of the equivalent SNR at which an AWGN
channel would perform as the frequency-selective channel h[0], . . . , h[K−1] when a single
codeword spans all subcarriers.

As an alternative to the foregoing approach, which presumes finite-length but otherwise
ideal coding, rather than backing off from (4.113) we can pragmatically fudge it so that its
SNR mapping is

SNRCESM ≈ β 2
1

K+L

∑K−1
k=0 log2(1+SNR |h[k]|2P[k]/β)− 1, (4.126)

where β is a fudge factor to be adjusted depending, not only on N , but further on the
specific codebook being used and on other practical aspects. While not solidly grounded on
information-theoretic principles, this so-called capacity-effective SNR mapping (CESM)
method is highly flexible [377]. Furthermore, β does not depend on pe. In fact, rather than
adjusting β such that log2(1 + SNRCESM) gives the spectral efficiency achievable at pe,
the factor β is adjusted such that pe(SNRCESM) equals the error probability on an AWGN
channel with the codebook of choice. Then, the throughput equals (1− pe)R.

The CESM method can be generalized as

SNRxESM ≈ β g−1
k

(
1

K + L

K−1∑
k=0

gk

(
SNR |h[k]|2P[k]

β

))
, (4.127)

where gk(·) for k = 0, . . . ,K − 1 are concave functions and g−1
k (·) is the inverse of gk(·)

with respect to the composition. Indeed, by setting gk(γ) = log2(1 + γ), we recover the
CESM method as a special case of (4.127). Two alternatives to CESM have been shown to
be particularly effective.

When gk(γ) = Ik(γ), the Gaussian mutual information function for the constellation on
the kth subcarrier, xESM stands for MIESM (mutual-information-effective SNR map-
ping) [378]. At the expense of not being in closed form, the choice of a distinct func-
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tion depending on the signal distribution facilitates the task of adjusting β and renders
MIESM particularly precise.

For g(γ) = e−γ , xESM stands for EESM (exponential-effective SNR mapping). Deriv-
ing from an uncoded error probability expression, this exponential function is slightly
less efficacious and tends to feature much more dispersed values for β, yet its analyti-
cally convenience is unbeatable [379, 380].

The MIESM and EESM methods, widely employed by industry and standardization bod-
ies, enable abstracting frequency-selective channels onto the single scalar metric SNRxESM.
This scalar metric is not only a succinct representation, but a convenient one, as it ap-
plies on a simple AWGN channel. Once β has been calibrated—via explicit simulation
of coding and decoding in all its detail—such that the error probability as a function of
SNR on some sample frequency-selective channels matches pe(SNRxESM) on an AWGN
channel, the performance of any frequency-selective channel of the sampled class can be
read-up from pe(SNRxESM) with the coding and decoding details forgone. Given a channel
h[0], . . . , h[K − 1] and a power allocation P[0], . . . ,P[K − 1] at a certain SNR, we can
readily compute SNRxESM from (4.127) and use it to read the error probability from the
AWGN curve pe(·).

Example 4.17 (LTE fudge factors)

For the LTE MCSs, the mapping has been found to be optimized by β ∈ [0.85, 1.2] for
MIESM and β ∈ [0.8, 35] for EESM [381, appendix E]. Supporting these findings, further
studies [382] have reported β ∈ [0.8, 1.2] for MIESM and β ∈ [3, 23] for EESM with
N = 480, with the EESM range shrinking to β ∈ [3, 8] for N = 960.

Example 4.18 (3G fudge factors)

For K = 416 subcarriers and N = K such that each codeword occupies exactly one
OFDM symbol, the values of β that best match the performance of 16-QAM with a turbo
code of binary rate r = 1/3 are given in [377]. The channel model applied for the cali-
bration is the SCM (see Section 3.8.1) with its three environments included. The values
obtained for β are shown in Table 4.2.

Example 4.19

Consider the setting in Example 4.18, only with a channel where in half the subcarriers
|h[k]|2 = 1.6 while, in the other half, |h[k]|2 = 0.4. Knowing that pe(SNREESM) = 10−2

at SNREESM = 4.1 dB, how far is this operating point from the fundamental limit with a
complex Gaussian codebook and N → ∞? Assume a uniform power allocation.

Solution

We can ignore the cyclic-prefix overhead, as it does not affect comparisons where K is
fixed. On the one hand, the throughput per unit of bandwidth equals (1 − pe) r log2 M =
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Table 4.2 Exemplary fudge factors
for CESM, MIESM, and EESM with

N = K = 416

Method β

CESM 0.92

MIESM 1.11

EESM 3.24

0.99 · 4/3 = 1.32 b/s/Hz while, from (4.127),

104.1/10 = −3.24 loge

(
e−1.6 SNR/3.24 + e−0.4 SNR/3.24

2

)
(4.128)

and we find that SNR = 3.07. On the other hand, the SNR at which the spectral efficiency
achievable with complex Gaussian codebooks and N → ∞ equals R/B = 1.32 b/s/Hz is
the solution to

1.32 =
log2(1 + 1.6 SNR) + log2(1 + 0.4 SNR)

2
, (4.129)

which gives SNR = 1.7. The ratio of the two SNRs comes to 3.07
1.7 |dB = 2.57 dB, which ap-

proximates the loss associated with employing 16-QAM and a relatively short code rather
than an unboundedly long complex Gaussian codebook. This modest loss is in line with
what we found in the AWGN channel, and thus frequency selectivity need not significantly
increase the shortfall of practical implementations from capacity.

Example 4.20

How would the result of the foregoing example change if CESM were applied instead of
EESM?

Solution

With CESM (refer to Problem 4.40), the loss becomes 2.48 dB. The difference of 0.09 dB
between both methods provides a sense of their accuracy.

As alternatives to CESM, MIESM, and EESM, all based on a single metric, methods that
map h[0], . . . , h[K−1] onto pe via multiple metrics are presented and tested in [383, 384].

Regardless of the choice of method, the mapping of a frequency-selective channel onto
one or a few metrics has direct applicability in link adaptation, which is otherwise as ex-
plained in Section 4.3.3: given the channel’s metric(s), the MCS that yields the largest
possible throughput is selected at the transmitter.
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4.5 Frequency-flat fading channel

Multipath fading is arguably the most intrinsic feature of wireless channels and a thorough
study of its impact is thus imperative. Circumscribing the analysis to frequency-flat fading
for now, consider

y[n] =
√
Gh[n]x[n] + v[n] n = 0, . . . , N − 1, (4.130)

where {h[n]} is a zero-mean unit-variance random process representing the fading while
the noise samples are IID with v[n] ∼ NC(0, N0). For the sake of specificity we presume
single-carrier transmission throughout this long section, with the frequency flatness ensur-
ing that the results would hold equally—cyclix prefix overheads aside—if the codeword
symbols were transmitted over OFDM resource elements instead.

Frequency-flat fading is, in essence, a form of multiplicative noise. It is, however, very
different from the additive noise v[n] in that fading has memory, i.e., {h[n]} has an autocor-
relation function that is not an impulse, and a correspondingly nonflat Doppler spectrum.
Fading can therefore be estimated, tracked, and possibly even predicted, giving rise to the
notion of CSI. Throughout this text, CSI refers to knowledge of the fading realizations en-
countered by the codewords. The distribution of the fading, sometimes termed statistical
CSI, is herein considered known by both transmitter and receiver on the grounds that, as
submitted in Section 3.7.1, this distribution is stable over a truly large number of symbols.

The pilot symbols that are regularly inserted within the signals in the vast majority of
wireless systems facilitate the task of acquiring CSI at the receiver. There is then the option
of feeding some CSI back to the transmitter. Alternatively, if TDD or full duplexing is
utilized and the channel is reciprocal, then every transceiver can acquire CSI while acting
as receiver and subsequently exploit such CSI when acting as transmitter.

Altogether, different information-theoretic variants arise depending on the CSI. These
variants are typically modeled by providing CSI as side information to the receiver and/or
transmitter. By side information we mean that this CSI constitutes additional information
granted at no cost, and to stress this point a genie is sometimes invoked as the source of
the CSI.

The imprint of CSI on the capacity cannot be overstated. Not only does the value of the
capacity itself vary, but especially the difficulty of its computation and the nature of the
signaling strategies that achieve it can change radically. Additional CSI always increases
the capacity and typically simplifies its computation and the required signaling strategies.
Although, fundamentally, the only true capacity is the one without CSI, which subsumes
every possible procedure whereby {h[n]} can be inferred from the observations at the
receiver, this does not render the computation of the capacity with CSI pointless. Often,
while the capacity without CSI is unknown or of unwieldy computation, simple expressions
can be obtained by granting CSI and these expressions can approximate very well the actual
capacity and offer superior insights and guidance.

To dissect the role of CSI, and to better connect the ensuring derivations with those
presented for unfaded channels, we begin by granting CSI to both transmitter and receiver.
The CSI is then progressively removed, first from the transmitter and ultimately from the
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Discussion 4.2 When is CSIT a reasonable assumption?

In TDD and full-duplex systems, and provided there are calibration procedures in place
to compensate for potential differences between the transmit and receive circuits in the
reverse and forward links (because the over-the-air portion of the channel is reciprocal,
but the equipment need not be), CSIT follows from CSIR thanks to reciprocity.

In FDD systems, in contrast, the reverse- and forward-link fading coefficients are
independent and thus explicit feedback is required. CSIT can then only be safely as-
sumed when, besides being underspread (so that CSIR can be gathered with reasonable
overhead), the fading exhibits a long enough coherence time (so that the feedback that
converts CSIR into CSIT can also take place with reasonable overhead). This naturally
leads to the notion of CSI feedback.

Reciprocity and CSI feedback are dealt with in Section 5.10, directly for MIMO.

receiver. Finally, we contemplate a specific instance where the receiver obtains channel
estimates on the basis of embedded pilot symbols and then applies these estimates in lieu
of ideal CSI; then, the overhead associated with the pilot symbols, as well as the nonideality
of the channel estimates, come explicitly to the fore.

For notational compactness, we introduce the acronyms CSIR and CSIT to indicate,
respectively, CSI at the receiver and CSI at the transmitter.

Besides the availability of CSI, the other defining aspect of fading channels in terms of
reliable communication is the relationship between the codewords and the fading dynam-
ics. In that respect, we make extensive use of two classic settings that, despite representing
limiting idealizations, offer a compromise between realism and tractability and, properly
applied, are invaluable sources of insight [385–387]:

The quasi-static setting, where each codeword experiences essentially a single fading
value (see Fig. 4.13). This setting arises whenever the codewords are compact enough
relative to the fading coherences in time and frequency for the fading to remain approx-
imately constant over each.
The ergodic setting, where each codeword is exposed to sufficiently many fades (see
Fig. 4.15) for the local fading distribution to be revealed thereupon and for ergodicity to
apply.

4.5.1 CSIR and CSIT

Having CSIR and CSIT is tantamount to saying that {h[n]} is a known sequence. Basically,
we are then faced with a bank of parallel AWGN subchannels in the time domain and
the mutual information on each is maximized when the corresponding symbol is complex
Gaussian. Following the reasoning of Section 4.4, this yields

C(SNR) = max
P [0],...,P [N−1]

lim
N→∞

1

N

N−1∑
n=0

log2

(
1 + SNR |h[n]|2 P [n]

)
, (4.131)
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where P [n] =
E[|x[n]|2]

Es
is what the precoder reduces to in SISO, and the maximization is

over all possible transmit power control policies subject to the applicable power constraint.
The channel is memoryless.

Quasi-static setting
If the channel remains constant for the entire span of each codeword, h[n] = h for n =

0, . . . , N − 1, then, regardless of the type of power constraint, the maximization in (4.131)
returns P [n] = 1 (refer to Problem 4.37). It follows that

C
(
SNR, h

)
= log2

(
1 + SNR |h|2) . (4.132)

The potential incongruity between the finite span of a fading block and an infinite codeword
length (N → ∞) is typically finessed by declaring each fading block—and thus each
codeword—as being very long in symbol units, and indeed (recall Examples 3.26–3.28)
the fading can remain roughly constant over sufficiently many symbols. The performance
in this setting can be characterized by the distribution of C(SNR, h), viewed as a random
variable induced by |h| and thus subject to the vagaries of the fading, with local average

E
[
C(SNR, h)

]
= E

[
log2

(
1 + SNR |h|2)] . (4.133)

The performance over this channel is indelibly associated with link adaptation whereby, by
virtue of the CSIT, the transmit bit rate is matched to the fading [388].

Example 4.21 (Link adaptation with quasi-static Rayleigh fading in LTE)

Consider a frequency-flat Rayleigh channel conforming to a block-fading structure with
N = 6480. Available to the transmitter is the entire set of 27 LTE MCSs listed in Table 4.1.
The transmit power is fixed. On each fading block, the transmitter selects, on the basis of
curves such as those in Fig. 4.8, the MCS that can deliver the highest throughput given the
value of SNR |h|2. The average throughput per unit bandwidth, obtained via Monte-Carlo
simulation, is depicted in Fig. 4.12 as a function of SNR (in dB). Also shown, as baseline,
is the capacity C(SNR, h) averaged over the distribution of h.

In contrast with unfaded channels, where the throughput exhibits a ladder structure, here
it gets smoothed over as the fading maps each SNR to every possible value for SNR |h|2,
which is what determines the MCS. At every local-average SNR, the average performance
involves many—possibly all—MCSs, and their mixing changes gradually with SNR.

Despite the somewhat idealized setting of the foregoing example, sketched in Fig. 4.13,
the result is actually fairly representative of what can be achieved with link adaptation
assisted by only a smattering of CSIT (five bits suffice to index 27 MCSs). From Fig. 4.12,
the loss caused by discrete constellations and nonideal finite-length coding with BICM in
lieu of an ideal Gaussian codebook of unbounded length is within 2–3 dB. (This holds up to
SNR ≈ 15 dB, beyond which the scarcity of high-spectral-efficiency MCSs is evidenced;
a limitation that is not fundamental and that is addressed with the inclusion of 256-QAM.)
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From quasi-static to ergodic settings
Let us now allow the fading to vary over each codeword, considering a block-fading struc-
ture for the sake of specificity but with the ideas applying equally to continuous fading.

Situations where each codeword spans a plurality of fading blocks, but short of what
is needed for ergodicity to take hold, can be tackled through the notion of delay-limited
capacity [389]. Under a per-symbol power constraint, there is no alternative better than
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keeping the transmit power fixed and the capacity is then the time-average of (4.132) over
the limited number of fading blocks spanned by each codeword. Alternatively, under a
per-codeword power constraint, time-domain power control could be applied yet, without
ergodicity, that would require anticausal knowledge of the fading over the blocks spanned
by each codeword. With causality enforced, the optimum power control policy can be
found through dynamic programming [390].

If the fading fluctuations over each codeword are rich enough for ergodicity to apply,
then, under a per-symbol power constraint the time-averaging of (4.132) gives

C(SNR) = E
[
log2

(
1 + SNR |h|2)] (4.134)

while, under a per-codeword power constraint, the power control simplifies markedly. Al-
though per-codeword power constraints are rarely applicable in frequency-flat faded chan-
nels, the ensuing power control policies are worth a brief digression.

Power control for ergodic settings

If {h[n]} is a stationary and ergodic process, or a sequence of blocks whose fading values
are ergodic, then, as N → ∞, (4.131) converges almost surely (a.s., see Appendix C.1.10)
to

C(SNR) = max
P (|h|)

E

[
log2

(
1 + SNR |h|2 P (|h|)

)]
, (4.135)

where h is the fading at any arbitrary instant and P (|h|) signifies the power control policy
as a function of the distribution of |h|. Under a per-codeword power constraint, the opti-
mization in (4.135) is isomorphic with (4.100) and the solution is therefore time-domain
waterfilling with the parameter η dependent only on the fading statistics. Specifically,

P �(h) =

[
1

η
− 1

SNR |h|2
]+

(4.136)

with η the solution to ∫ ∞

η/SNR

(
1

η
− 1

SNR ξ

)
f|h|2(ξ) dξ = 1 (4.137)

where f|h|2(·) is the PDF of the fading power.

Example 4.22

For the special case of Rayleigh fading, express (4.137) in closed form.

Solution

Using f|h|2(ξ) = e−ξ, (4.137) can be written as [391]

e−η/SNR

η
− E1(η/SNR)

SNR
= 1, (4.138)

where E1(·) is an exponential integral (see Appendix E.3).
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With waterfilling power control, more power is transmitted when the fading is strong and
less, or even none, when it is weak. The ensuing improvement can be quantified through
the reduction in Eb

N0 min
since, with channel-dependent power control, the minimum value

of
Eb

N0
=

SNR

C(SNR)
(4.139)

still corresponds to SNR → 0, but that minimum is no longer −1.59 dB. Rather, Eb

N0 min
can

take a (much) smaller value once x depends on h, directly reflecting an increment in total
channel gain: rather than G, the total channel gain then equals the more general expression
in (4.1) and the low-SNR capacity is proportionally higher. Operationally, this increase in
channel gain and the corresponding reduction in Eb

N0 min
descend from the fact that fading

creates peaks and nulls and, with CSIT, the transmissions can take place opportunistically
only when the channel is around its peaks [392]. For Rayleigh fading, the relative improve-
ment obtained through time-domain waterfilling is theoretically unlimited (at the expense
of the equally unlimited delay that ensues from having to wait for ever higher peaks), but
in actuality this is merely an artifact of the unbounded support of the Rayleigh distribu-
tion; actual fading distributions have a bounded support [194]. (The Rayleigh distribution
is a legitimate and well-tested model for the fading magnitude in most respects, and in
particular for the fading nulls, but not for the peaks.)

Power control policies other than waterfilling can be applied, e.g., channel inversion or
truncated inversion [51, chapter 4][393]. These alternate policies, and in particular channel
inversion, which is the opposite of waterfilling, always yield a lower spectral efficiency,
albeit sometimes in exchange for simpler encoding and decoding.

If the codebook is not complex Gaussian, then, rather than waterfilling, the optimum
power control policy is time-domain mercury/waterfilling [71, section IX].

4.5.2 No CSIT

With CSIR but no CSIT, the transmit power and bit rate must be oblivious to the fading and
thus the type of power constraint becomes irrelevant. As far as the transmitter is concerned,
the sequence {h[n]} is unknown. The receiver, however, is privy to {h[n]}, a knowledge
that should be made manifest by conditioning on the fading when expressing the chan-
nel law and computing the mutual information. Moreover, because of this knowledge, the
channel is still memoryless: y[n] does not depend on transmit symbols other than x[n], be-
cause any information they could help provide about the fading is redundant to the receiver
and the noise is IID. The single-letter channel law is

fy|h,s(y|h, s) = 1

πN0
e−

|y−√
GEshs|2
N0 . (4.140)

Quasi-static setting
In this setting, the fading is unknown to the transmitter but constant over an entire code-
word, i.e., h[n] = h for n = 0, . . . , N − 1. The value of h does change from code-
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Discussion 4.3 When is CSIR a reasonable assumption?

As seen later in the chapter, the coherence of the underspread channels of interest is
more than sufficient to validate the assumption of CSIR side information in all but very
extreme SNR conditions. This is especially inviting when one considers the enormous
analytical simplicity that CSIR elicits. Moreover, pilot-based suboptimum schemes can
approach such CSIR capacity with small overheads and penalties—which can be explic-
itly accounted for, to refine the results.

The above observation is made for the SU-SISO channels considered in this chapter.
While it continues to hold for single-user MIMO (SU-MIMO) setups with moderate
numbers of antennas, and for multiuser setups with moderate numbers of users, it may
cease to hold for massive MIMO.

Taking some liberties, an analogy could be made with the notions of relativistic and
classical physics: strictly speaking only the former describe nature, but in most everyday
situations the latter provide excellent approximations that are far easier to obtain. Like-
wise, strictly speaking the capacity should be computed without side information, but in
a wide range of conditions the assumption of CSIR leads to good approximations that
are far easier to obtain. Just like classical physics, though, this assumption does break
down beyond certain points.

word to codeword. Conditioned on h, we are faced with an AWGN channel whose SNR is
SNR |h|2. The spectral efficiency that could be supported is therefore log2

(
1+ SNR |h|2),

which we can regard as a random variable with a distribution induced by that of |h|. As ar-
gued earlier, it is entirely reasonable to consider that the fading coherence be large enough
to allow for the asymptotic behavior in N to be approached within. However, without
CSIT the transmitter cannot align the codewords with the fading cycles. Consequently, the
frequency-flat quasi-static setting is somewhat problematic, yet it is worth examining what
unfolds when the model is taken at face value.

Unlike in the CSIT case, here the transmitter cannot match its bit rate to what the channel
can support. Rather, the transmitter must blindly select a bit rate R paving the way for two
distinct outcomes:

If log2
(
1 + SNR |h|2) ≥ R/B, the chosen bit rate is supported and the transmission can

succeed with at most a small error probability because of the finiteness of N .
If log2

(
1 + SNR |h|2) < R/B, the chosen bit rate is not supported and the error proba-

bility is bounded away from zero.

The contrast with the CSIT case is stark: with CSIT, the capacity of a quasi-static setting
is log2(1 + SNR |h|2); without CSIT, it is the minimum value of such quantity, the only
amount whose reliable delivery can be guaranteed. For any fading distribution that can fade
completely, e.g., Rayleigh, such amount is nil and thus the capacity in the Shannon sense
is zero.

When the bit rate R is not supported, the transmission is said to be in outage and the
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outage probability is

pout(SNR, R/B) = P

[
log2

(
1 + SNR |h|2) < R/B

]
(4.141)

and the transmitter can make use of the fading distribution in order to select the bit rate R

that ensures a desired outage probability.
For large enough N , the errors are dominated by the outage events and we can iden-

tify pout with the error probability, i.e., codewords are decoded correctly whenever the
transmission is not in outage but not otherwise [394]. More precisely, the error probability
decays exponentially with N when not in outage, and not otherwise.

To facilitate further analysis, it is interesting to rearrange (4.141) into

pout(SNR, R/B) = P

[
|h|2 <

2R/B − 1

SNR

]
(4.142)

= F|h|2
(
2R/B − 1

SNR

)
, (4.143)

where F|h|2(·) is the cumulative distribution function (CDF) of the fading power.

Example 4.23

Express the outage probability in Rayleigh fading and specialize it to the high-SNR regime.

Solution

In Rayleigh fading, F|h|2(ξ) = 1− e−ξ and thus

pout(SNR, R/B) = 1− exp

(
1− 2R/B

SNR

)
, (4.144)

which, for large SNR, behaves as

pout(SNR, R/B) =
2R/B − 1

SNR
+O

(
1

SNR2

)
. (4.145)

Although, being zero, the Shannon capacity is not an operationally meaningful quantity
in this setting, it is often desirable to express the performance in terms of spectral efficiency
rather than outage probability. The notion of outage capacity serves this purpose [385].
Denoted by Cε(SNR), it designates the highest spectral efficiency such that pout < ε, i.e.,

Cε(SNR) = max
c

(c : pout(SNR, c) < ε) (4.146)

and, from (4.143),

Cε(SNR) = log2

(
1 + SNRF−1

|h|2(ε)
)
. (4.147)

Example 4.24

Express the outage capacity in Rayleigh fading.
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Solution

In Rayleigh fading, F−1
|h|2(ε) = − loge(1− ε) and thus

Cε(SNR) = log2

(
1− SNR loge(1− ε)

)
. (4.148)

In the low-SNR regime, (4.147) expands as

Cε(SNR) = F−1
|h|2(ε) SNR log2 e+O

(
1

SNR

)
, (4.149)

where the first-order term equals its counterpart without fading, given in (4.68), but scaled
by F−1

|h|2(ε). Typically one wants to operate at small ε, which entails a small F−1
|h|2(ε) and,

consequently, an outage capacity that is only a small share of the unfaded AWGN capacity.

Example 4.25

Consider a quasi-static Rayleigh-faded channel without CSIT at SNR = 0 dB. Compute,
both via (4.149) and exactly, the share of AWGN capacity achievable for ε = 10−2.

Solution

For ε = 10−2, (4.149) indicates that only 1% of the AWGN capacity can be achieved. The
exact share, from Example 4.24, is 1.4%.

In the high-SNR regime, alternatively, (4.147) expands as

Cε(SNR) = log2 SNR− log2
1

F−1
|h|2(ε)

+O
(

1

SNR

)
, (4.150)

which exhibits, relative to an AWGN channel, an approximate SNR fading loss (in 3-dB
units) of

log2
1

F−1
|h|2(ε)

(4.151)

and, for small ε, this loss is large.

Example 4.26

Compute the SNR fading loss in Rayleigh fading at ε = 10−2.

Solution

Applying (4.151), the loss is seen to equal approximately 6.64 (in 3-dB units), just shy of
20 dB.

Albeit introduced here in the context of a quasi-static setting, the notion of outage ca-
pacity applies to any setting that is not information stable, e.g., where each codeword spans
a plural but small number of fading blocks.
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If the signal is not complex Gaussian, the definition of outage probability in (4.141) can
be generalized to

pout(SNR, R/B) = P

[
I(SNR |h|2) < R/B

]
, (4.152)

where I(·) is the Gaussian mutual information function of the corresponding signal distri-
bution. The outage spectral efficiency has a form similar to (4.146).

The diversity–multiplexing tradeoff

From (4.145), if the spectral efficiency R/B is held constant then the outage probability
in Rayleigh fading decays as 1/SNR at high SNR. Alternatively, from (4.150), if the spec-
tral efficiency scales with log2 SNR then the outage probability remains constant at high
SNR. As it turns out, these two situations are only end-points of a more general tradeoff
between spectral efficiency and outage probability, a tradeoff governed by how the spectral
efficiency is controlled as a function of the SNR. (Note that this control cannot respond
to the fading, since there is no CSIT, but only to the local-average SNR.) For SNR → ∞,
proxy quantities related to both the spectral efficiency and the outage probability can be
defined and the tradeoff can be more conveniently established between them. These quan-
tities are the diversity order (as proxy for the outage probability) and the multiplexing
gain (as proxy for the spectral efficiency), and the tradeoff between them is the diversity–
multiplexing tradeoff (DMT) [395]. Making explicit the dependence between R/B and
SNR, the diversity order is

d = − lim
SNR→∞

log pout(SNR, R(SNR)/B)

log SNR
, (4.153)

whereas the multiplexing gain is

r = lim
SNR→∞

R(SNR)/B

log2 SNR
(4.154)

with the justification for the term gain to be found in MIMO, where r can exceed 1. Al-
together, the diversity order quantifies the asymptotic slope of the outage-versus-SNR re-
lationship, in log–log scale, while the multiplexing gain quantifies the asymptotic slope of
the spectral efficiency-versus-SNR relationship, in log scale.

From (4.154), we can write

R

B
= r log2 SNR+ L+O

(
1

SNR

)
, (4.155)

where r ∈ [0, 1] while L does not depend on SNR. As seen next, for our purposes here
the value of this term is irrelevant and thus we can also drop the remainder O(1/SNR).
Applying the definition of outage probability,

pout = P

[
log2

(
1 + SNR |h|2) < r log2 SNR+ L

]
(4.156)

= P

[
|h|2 <

2L SNRr − 1

SNR

]
(4.157)
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= 1− exp

(
1− 2L SNRr

SNR

)
(4.158)

=
2L

SNR1−r +O
(

1

SNR

)
(4.159)

from which (4.153) gives the DMT for the SISO Rayleigh-faded channel considered in
these derivations, namely

d = (1− r). (4.160)

As long as r and d abide by the DMT, at high SNR a 3-dB power increment can simulta-
neously yield r additional b/s/Hz and an outage probability scaling by 2−d.

The DMT for Rayleigh fading applies verbatim to Rice fading [396], can be extended to
other fading types [397], and acquires further relevance with MIMO (see Section 5.4).

While it is an elegant and supremely simple formulation that allows skirting analytical
hurdles associated with the exact computation of the outage capacity, the DMT also suffers
from a number of weaknesses [398].

Both d and r are asymptotic notions whose definitions entail letting SNR → ∞. This
restricts the validity to the high-SNR regime. Nonasymptotic DMT formulations have
been developed for certain transmission strategies [399], but they lack the generality and
simplicity that make this framework enticing in the first place.
d and r quantify only the asymptotic slope of outage and spectral efficiency, respectively,
as a function of SNR. Arbitrarily large differences in the SNR required for a given outage
probability may exist for identical diversity orders (see Fig. 4.14). These differences are
simply neglected when evaluating d. Likewise, arbitrarily large disparities in the SNR
required for a given spectral efficiency are lost in r (see Fig. 4.14). Only for SNR → ∞
can superiority be guaranteed on the basis of a better diversity/multiplexing. The DMT,
in synthesis, expresses the tradeoff between the derivatives of the quantities of interest
rather than between those quantities themselves.

Because of these issues, d and r provide only a coarse description of the tradeoff be-
tween spectral efficiency and outage probability [50, section 9.1.2] and hence care must
be exercised when utilizing these notions to establish comparisons between schemes or to
determine absolute performance standards [400].

Ergodic setting
A cartoon representation of the ergodic setting without CSIT is provided in Fig. 4.15, with
each codeword spanning multiple fades in the time domain. Although, as is to become
clear, this setting arises in more practically relevant situations than this one, the essence of
a codeword experiencing multiple fading values is well captured by the cartoon.

It can be reasoned that, in an ergodic setting without CSIT, the capacity should be no
different from the one derived with CSIT under a per-symbol power constraint, which
precludes time-domain power control. Indeed, the maximization of the sequence mutual
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information under a per-symbol power constraint gives

max
fs[0]···s[N−1]:

E[|s[n]|2]=1

lim
N→∞

1

N
I
(
s[0], . . . , s[N − 1]; y[0], . . . , y[N − 1] |h[0], . . . , h[N − 1]

)
,

(4.161)

which becomes single-letter because, conditioned on h[0], . . . , h[N−1], the channel is ren-
dered memoryless and the mutual information between the transmit and receive sequences
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�Fig. 4.15 Ergodic setting with either continuous or block fading. Above, fading realizations of

either model. Below, codeword span growing large to bring about the ergodicity.

breaks down. Thus,

C(SNR) = max
fs[n]:

E[|s[n]|2]=1

lim
N→∞

1

N

N−1∑
n=0

I
(
s[n]; y[n] |h[n]) (4.162)

= lim
N→∞

1

N

N−1∑
n=0

max
fs[n]:

E[|s[n]|2]=1

h
(√

GEs h[n]s[n] + v[n] |h[n]
)
− log2(πeN0)

= lim
N→∞

1

N

N−1∑
n=0

log2

(
πe

(
GEs|h[n]|2 +N0

))− log2(πeN0) (4.163)

= lim
N→∞

1

N

N−1∑
n=0

log2

(
1 + SNR |h[n]|2

)
(4.164)

a.s.
= E

[
log2

(
1 + SNR |h|2

)]
, (4.165)

where the maximization of the differential entropy of
√
GEsh[n]s[n] + v[n], conditioned

on h[n] and with E[|s[n]|2] = 1, readily leads to s[n] ∼ NC(0, 1). Finally, the summation
in (4.164) converges a.s. to the expectation in (4.165) by virtue of the strong law of large
numbers.
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Example 4.27 (Capacity versus SNR of a SISO Rayleigh-faded channel)

With Rayleigh fading, (4.165) yields the closed form [385, 401]

C(SNR) =

∫ ∞

0

log2 (1 + SNR ξ) e−ξ dξ (4.166)

= e1/SNR E1
(

1

SNR

)
log2 e, (4.167)

where we have applied (C.40). This highly relevant C(SNR) is depicted in Fig. 4.16.

Example 4.28 (Capacity versus SNR of a SISO Nakagami-faded channel)

With Nakagami-m fading, whose distribution is given in (3.26),

C(SNR) =

∫ ∞

0

log2 (1 + SNR ξ)
mm ξm−1

Γ(m)
e−mξ dξ (4.168)

= em/SNR
m−1∑
q=0

( m

SNR

)q

Γ
(
−q,

m

SNR

)
log2 e, (4.169)

where Γ(·) and Γ(·, ·) are, respectively, the complete and incomplete Gamma functions
(see Appendix E), and where (4.169) holds for integer m [391, 402].

For m = 1, the Nakagami fading reverts to Rayleigh fading and thus (4.169) should
equal (4.167); that is indeed the case because, as indicated in (E.14), Γ(0, z) = E1(z).
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Table 4.3 Kurtosis of common fading
distributions

|h| κ
(|h|)

Rayleigh 2
Rice (factor K ≥ 0) 2− 4K2

(1+2K)2

Nakagami-m (m ≥ 1
2
) 1 + 1

m

We hasten to emphasize that, even in the absence of CSIT, the transmitter must be cog-
nizant of the capacity in order to transmit at the correct bit rate. The transmitter can use
its knowledge of the fading distribution to deduce the capacity on its own, or else it can be
informed by the receiver.

Using Jensen’s inequality (see Appendix G.6), it is observed that the ergodic capacity
without CSIT satisfies

C(SNR) ≤ log2

(
1 + SNRE

[
|h|2

])
(4.170)

= log2(1 + SNR), (4.171)

manifesting that fading can only diminish the CSIR-only capacity. This is in stark contrast
with the CSIT case, where fading could be exploited via power control to increase the
capacity.

If the signal conforms to a discrete constellation, the ergodic spectral efficiency cannot
generally be expressed in closed form. For BPSK or QPSK in Rayleigh fading, an infinite
series form is available [403].

Low-SNR regime

The low-SNR behavior can be characterized, for an arbitrary fading distribution, by ex-
panding (4.165) into

C(SNR) =

(
SNR− 1

2
E
[|h|4] SNR2

)
log2 e+ o(SNR2) (4.172)

=

(
SNR− 1

2
κ
(|h|) SNR2

)
log2 e+ o(SNR2), (4.173)

where we have taken advantage of the unit variance of h to directly express the fourth-order
moment of |h| as its kurtosis. Contrasting the above with its AWGN-channel counterpart
in (4.68), fading is seen to be immaterial to first order and thus Eb

N0 min
= −1.59 dB as in an

unfaded channel. Only the second-order term reflects the impact of fading and, from (4.39)
and (4.173),

S0 =
2

κ
(|h|) , (4.174)

with the kurtosis of the most common fading distributions listed in Table 4.3.
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Example 4.29 (Capacity versus Eb

N0
of a SISO Rayleigh-faded channel)

The function C(Eb

N0
) and its low-SNR expansion in Rayleigh fading are displayed in Fig. 4.17

alongside their counterparts without fading.

Example 4.30

How much more bandwidth is required in Rayleigh fading, relative to an unfaded channel,
to achieve a certain bit rate with a given power in the low-SNR regime?

Solution

In Rayleigh fading, k(|h|) = 2 and thus S0 = 1 while, without fading, S0 = 2. Applying
(4.42) we see that twice as much bandwidth is required in the former.

If the signal distribution is not complex Gaussian, but it is proper complex, (4.173) is
upheld and thus Eb

N0 min
= −1.59 dB and S0 = 2/κ

(|h|) are preserved. In contrast, for
BPSK, which is not proper complex (refer to Problem 4.53)

C(SNR) =
(
SNR− κ

(|h|) SNR2
)
log2 e+ o(SNR2), (4.175)

implying that Eb

N0 min
= −1.59 dB, but S0 = 1/κ

(|h|). As in the AWGN channel, the
suboptimality of BPSK in the low-SNR regime is reflected in a reduction of S0 by half.
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High-SNR regime

In the high-SNR regime, (4.165) expands as

C(SNR) = log2 SNR+ E
[
log2

(|h|2)]+O
(

1

SNR

)
(4.176)

and thus S∞ = 1, as in the AWGN channel, while L∞ = −E
[
log2

(|h|2)] > 0. The
impact of fading is reflected exclusively in the power offset, L∞.

Example 4.31 (Power offset of a SISO Rayleigh-faded channel)

With Rayleigh fading, f|h|2(ξ) = e−ξ and thus [401]

L∞ = −
∫ ∞

0

log2(ξ) e
−ξ dξ (4.177)

= γEM log2 e, (4.178)

where γEM ≈ 0.5772 is the Euler–Mascheroni constant (see Appendix E.2). Hence,

C(SNR) = log2
SNR

eγEM
+O

(
1

SNR

)
, (4.179)

indicating that Rayleigh fading causes a power-offset penalty of L∞ = γEM log2 e in 3-dB
units, roughly 2.5 dB.

Example 4.32 (Power offset of a SISO Rice-faded channel)

With Rice fading of factor K [404]

L∞ = log2
K+ 1

K
− E1(K) log2 e (4.180)

which satisfies L∞ ∈ [0, γEM log2 e]. Therefore, Rice fading causes a power-offset penalty
ranging between 0 and about 2.5 dB.

Example 4.33 (Power offset of a SISO Nakagami-faded channel)

From the corresponding ergodic capacity in Example 4.28, for Nakagami-m fading with
integer m the power offset equals

L∞ = log2 m+

(
γEM −

m−1∑
q=1

1

q

)
log2 e. (4.181)

It can be verified that, as in Rice fading, this power offset satisfies L∞ ∈ [0, γEM log2 e].

At high SNR, the ergodic capacity is only modestly eroded by fading, as appreciated in
Fig. 4.16. Except for the power-offset penalty, the tradeoff between power and bit rate with
fixed bandwidth remains largely as it is without fading.
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Discrete constellations

With discrete signal constellations, the spectral efficiency of a sufficiently dense M -QAM
constellation hugs the function C(SNR), within approximately 1.53 dB, up to the vicinity
of log2 M . For arbitrary SNR levels, computing the ergodic spectral efficiency achievable
with a specific discrete constellation entails expecting the expressions in Examples 1.10 or
1.12 over the fading distribution, something that must generally be done numerically.

4.5.3 No CSI

In the absence of CSIR, the capacity of a fading channel is generally unknown. In some
simple cases it can be computed numerically, but most of the available understanding stems
from expressions obtained in different asymptotic regimes. In what follows we adhere to
the ergodic setting.

A hurdle that arises in the absence of CSIR is that the channel is generally not memory-
less, even when the fading is frequency-flat, because symbols other than x[n] can furnish
the receiver with information about the fading at time n, and hence about the distribution
of y[n]. The capacity-achieving signal distribution is generally not IID complex Gaussian.
In fact, the codewords s[0], . . . , s[N − 1] should, in general, not even be composed of
independent symbols. Rather, their optimum structure descends from that of the fading,
which greatly complicates things. The derivation of (4.165) is not upheld once the mutual
information cannot be conditioned on h[0], . . . , h[N − 1] and we are therefore stuck with
an optimization problem involving sequences, which does not generally break down into
single-letter optimizations.

Intuition says that, in underspread channels, the capacity-achieving distribution should
not differ substantially from an IID complex Gaussian sequence, and this is indeed the
case. In fast-fading, however, it is radically different. This difference is best illustrated
by probing the extreme case of temporally IID fading, which, despite its minimal practi-
cal relevance, is illuminating.2 In this case, the channel does become memoryless, as any
information about the fading at a certain symbol becomes useless to other symbols, and
the maximization of the mutual information between the transmit and receive sequences
does reduce to a single-letter optimization; the optimum signal distribution that ensues
is known to be discrete with a finite number of mass points—one of them always at the
origin—whose precise number and location depend on the SNR [63, 405, 406]. This signal
structure lessens the uncertainty at the receiver in a gradual manner depending on the SNR.
At low SNR, two mass points suffice to achieve capacity and the optimum signaling con-
forms to the “on–off” keying in (1.3). One of the mass points is at zero magnitude while
the other one has vanishing probability and diverging magnitude as SNR → 0, rendering
the signal increasingly peaky as the SNR shrinks. In contrast with (4.173), the low-SNR

2 This extreme case cannot be interpreted as a very fast-fading channel since, for the sampled fading to be IID,
the continuous fading would have to be so fast as to introduce considerable distortion over each symbol, i.e.,
the channel would not be underspread. The discretization process assumed throughout this text would then
have to be modified [63]. Rather, the extreme case of IID fading must be taken as a theoretical exercise that
helps understand the fundamentals.
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capacity then behaves as [407]

C(SNR) ≈
[
SNR− SNR

loge(1/SNR)

]
log2 e, (4.182)

from which, applying (4.30) and (4.39), it follows that Eb

N0 min
= −1.59 dB holds but with

S0 = 0 (see Fig. 4.18). Conversely, for growing SNR, the peakedness abates and additional
mass points appear. For SNR → ∞, a curious behavior is observed, namely [408]

C(SNR) = log2 log SNR+O(1), (4.183)

where the base of the inner logarithm is immaterial as it merely affects the term O(1). This
peculiar expression indicates that additional transmit power becomes essentially wasted
once the high-SNR regime has been entered.

Moving beyond the IID channel, consider a frequency-flat block-fading channel where
codewords span multiple Nc-symbol coherence blocks. This channel is no longer mem-
oryless because the same unknown fading affects multiple symbols and, as mentioned,
information about the fading inflicting a symbol can be gathered from the observation at
other symbols; thus, a nonsingle-letter formulation is required. As it turns out, the code-
word distribution that achieves capacity has the following structure over each coherence
block [409]:

s[n] = As

√
Nc us[n] n = 0, . . . , Nc − 1, (4.184)

where As is a positive random magnitude with E
[
A2

s

]
= 1 and ūs =

[
us[0] · · ·us[Nc−1]

]
is an isotropically distributed unit vector, i.e., a vector that is equally likely to point in any
direction; such a vector can be conveniently generated as ūs = z̄/‖z̄‖ with z̄ having IID
entries, z[n] ∼ NC(0, 1). Perhaps not obviously, the entries of ūs are not independent.
Some relevant special cases of (4.184) are worth noting.

For Nc = 1, an isotropically distributed vector reduces to a complex scalar with unit
magnitude and uniform phase. If the channel is Rayleigh-faded or otherwise circularly
symmetric, the phase rotation caused by us[0] is then inconsequential and the infor-
mation is conveyed exclusively by As[0]. Furthermore, as in the memoryless case, the
distribution of As[0] is discrete.
Conversely, for Nc → ∞ the distribution of As coalesces around a single mass at 1, i.e.,
it becomes deterministic, while the entries of ūs become IID complex Gaussian because
the strong law of large numbers dictates that ‖z̄‖ a.s.→ 1. Altogether, the symbols become
IID complex Gaussian, an expected result since a channel that fades infinitely slowly
can be learned at negligible cost and thus the capacity-achieving distribution should
coincide, asymptotically, with the one obtained under CSIR.

Low-SNR regime

At low SNR, as we move from Nc = 1 to Nc � 1, the optimum signal structure transitions
from schemes based on “on–off” keying to bursty blocks of IID symbols and, ultimately,
to continuous sequences of IID symbols.
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As seen for the stringent case of Nc = 1, Eb

N0 min
= −1.59 dB can be achieved without

CSIR, but at the expense of signal peakedness. In Rayleigh fading specifically, the kurtosis
of the transmitted sequence must grow as 1

Nc SNR for SNR → 0 to achieve −1.59 dB [64].
While this is certainly problematic for small Nc, as the coherence increases the need for
peakedness is swiftly alleviated and, in underspread fading, it remains significant only for
exceedingly low SNRs.

In terms of the low-SNR slope, without CSIR it is S0 = 0 regardless of the fading
coherence, but again the value of Nc causes pronounced differences in the significance of
this zero value. Figure 4.18 shows C(Eb

N0
) computed numerically for IID Rayleigh fading

(Nc = 1), with penalties of several dB relative to the CSIR capacity, alongside a cartoon
representation of C(Eb

N0
) for an underspread fading channel (Nc � 1), which would only

exhibit a minute penalty relative to the CSIR capacity [407, 410]. Both no-CSIR curves do
have S0 = 0, yet they are radically different.

When the peakedness of the transmit signal is constrained, Eb

N0
= −1.59 dB cannot be

reached without CSIR, but it can be approached closely provided the fading is underspread.
Also, with a constrained signal peakedness the spectral efficiency is no longer a concave
function of SNR; rather, it is convex up to some SNR and concave thereafter [64, 75, 411–
414]. Because of the lack of concavity for low SNRs, Eb

N0 min
is no longer attained for

SNR → 0, but rather at some SNR > 0 that depends on Nc; SNRs below this value
should be averted as they would entail both a lower spectral efficiency and a lower power
efficiency (higher Eb

N0
). This observation that excessively low SNRs should be avoided is

further reinforced when one takes into account practical aspects such as the radiated power
being only a portion of the power consumed by the communication devices; activating
the circuitries to transmit expends a fixed amount of power, rendering overly low SNRs
decidedly energy-inefficient.

High-SNR regime

In the high-SNR regime, the memoryless behavior in (4.183) changes radically as soon as
Nc > 1, conforming, under block Rayleigh fading, to (4.44) with [415, 416]

S∞ = 1− 1

Nc
(4.185)

L∞ = γEM log2 e+ log2
Nc

e
− 1

Nc − 1
log2

[
(Nc − 1)!

]
. (4.186)

For Nc � 1, the loss in DOF is minute and, for Nc → ∞, Stirling’s formula for the
factorial of large numbers can be applied to verify that (4.186) reduces to the CSIR solution
in Example 4.31.

Looking beyond block-fading, the behavior of the capacity without CSIR for SNR → ∞
is quite sensitive to the modeling assumptions. With continuous fading, in particular:

If the fading coefficients are perfectly predictable from noiseless observations of their
entire past (nonregular fading, see Chapter 3), a scaling akin to the one indicated by
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(4.185) is obtained, namely [417]

C(SNR) = S∞ log2 SNR+O(1), (4.187)

where S∞ = 1−μ with μ the share of signal bandwidth where the Doppler spectrum is
null. If the Doppler spectrum is compact with νM its maximum frequency, then

S∞ = 1− 2 νM

B
(4.188)

= 1− 2 νMT. (4.189)

Recalling from (3.67) the coherence equivalence between continuous and block fading
derived in Chapter 3 under frequency flatness, namely Nc = 1

2 νMT , it is comforting to
see (4.188) agree with (4.185). In a frequency-selective channel, the equivalence would
continue to hold only with Nc =

Bc

2 νM
with Bc the coherence bandwidth (recall (3.173)).

Altogether, and this is a recurring observation, a block-fading model offers a solid equiv-
alence to nonregular continuous fading in terms of the number of DOF. The differences
between the two arise only once finer features such as the power offset are examined.
In contrast, if the fading coefficients cannot be perfectly predicted from noiseless obser-
vations of their entire past (regular fading), then [404]

C(SNR) = log2 log SNR+O(1), (4.190)

where the leading term equals its counterpart for temporally IID fading.
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The regularity of fading channels, or lack thereof, is an almost philosophical issue that
becomes relevant only at SNRs beyond the operational range of interest [418]. For all
practical purposes, the capacity abides by (4.187).

Impact of granting CSIR as side information

It is interesting to consider the performance, without CSIR, of the IID complex Gaussian
signals that achieve the CSIR capacity. For SNR → 0, such performance is character-
ized in [412, 419]. Expressions for arbitrary SNR seem out of reach, but a semi-analytical
computational procedure is put forth in [420] and bounds are given in [421].

Being suboptimal without CSIR, IID complex Gaussian signals can also be used to de-
rive lower bounds for the no-CSIR capacity [386, 422]. Consider IID complex Gaussian
signaling over a block-fading channel. On each block

y[n] =
√
GEs h s[n] + v[n] n = 0, . . . , Nc − 1 (4.191)

and, applying the chain rule of mutual information twice,

I
(
s[0], . . . , s[Nc − 1]; y[0], . . . , y[Nc − 1]

)
= I

(
h, s[0], . . . , s[Nc − 1]; y[0], . . . , y[Nc − 1]

)
− I

(
h; y[0], . . . , y[Nc − 1] |s[0], . . . , s[Nc − 1]

)
(4.192)

= I
(
s[0], . . . , s[Nc − 1]; y[0], . . . , y[Nc − 1] |h)

+ I
(
h; y[0], . . . , y[Nc − 1]

)
− I

(
h; y[0], . . . , y[Nc − 1] |s[0], . . . , s[Nc − 1]

)
. (4.193)

Dropping I
(
h; y[0], . . . , y[Nc − 1]

)
, which is expected to be small—whatever information

can be inferred about h from observing its noisy product with an unknown IID complex
Gaussian sequence—we obtain

I
(
s[0], . . . , s[Nc − 1]; y[0], . . . , y[Nc − 1]

)
≥ I

(
s[0], . . . , s[Nc − 1]; y[0], . . . , y[Nc − 1] |h)

− I
(
h; y[0], . . . , y[Nc − 1] |s[0], . . . , s[Nc − 1]

)
, (4.194)

where the first term is the CSIR capacity (because, conditioned on h, IID complex Gaussian
signals are optimum) and the second term bounds the penalty caused by the lack of CSIR.
This second term has a curious structure, equivalent to having a bank of AWGN channels
with gains s[0], . . . , s[Nc−1] through which a single scalar h is transmitted. We know that,
in such a setting, the mutual information is maximized when the transmit quantity is zero-
mean complex Gaussian and thus the CSIR penalty cannot exceed its value in Rayleigh
fading. For h ∼ NC(0, 1), invoking Example 1.13, we have that (in bits/block)

I
(
h; y[0], . . . , y[Nc−1] |s[0], . . . , s[Nc−1]

)
= E

[
log2

(
1 + SNR

Nc−1∑
n=0

|s[n]|2
)]

(4.195)

≤ log2

(
1 + SNR

Nc−1∑
n=0

E

[
|s[n]|2

])
(4.196)
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= log2

(
1 +Nc SNR

)
, (4.197)

where, in (4.196), Jensen’s inequality has been applied. In b/s/Hz, therefore, (4.194) trans-
lates into

CCSIR(SNR)− CNo CSI(SNR) ≤ 1

Nc
log2

(
1 +NcSNR

)
, (4.198)

where we have introduced superscripting to distinguish the two capacities.

Example 4.34

Plot CCSIR(SNR) alongside the lower bound for CNo CSI(SNR) in a vehicular setting.

Solution

As seen in Chapter 3, in a typical vehicular setting, Nc = 1000. Figure 4.19 evidences that,
for such Nc, there is no appreciable difference between CCSIR(SNR) and CNo CSI(SNR); the
gap between the two is a meager 5% at SNR = −10 dB and less than 1% for SNR > 0 dB.

As the no-CSIR capacity—recall that this is the actual capacity—lies between the CSIR
capacity and the no-CSIR lower bound, the closeness of these latter quantities pinpoints
very precisely that actual capacity. Thus, for most SISO channels of interest, granting CSIR
as side information has an essentially negligible effect at all relevant SNRs. The capacity
is basically unchanged, yet the benefits in terms of analysis and design are enormous.
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4.6 Frequency-selective fading channel

The generalization of the analysis of frequency-flat fading channels to the province of
frequency-selective fading is relatively straightforward when the fading is underspread.
The transmit–receive relationship is given by (4.78), only with the channel coefficients
subject to fading. Under the underspread property, the vector coding and OFDM transfor-
mations remain approximately valid over relatively long blocks. (If the channel were not
underspread, the subchannels obtained through the transformations would not be orthog-
onal and their signals would have to be jointly processed [423].) For vector coding, de-
tailed CSIT—including both magnitude and phase for each fading coefficient—is required
whereas, for OFDM, that is not the case.

For the remainder of the book we concentrate on OFDM, whose predominance in com-
mercial systems has become almost absolute. Unless otherwise stated, and because it
amounts to a mere penalty factor that affects all settings equally, we dismiss the cyclic
prefix overhead and use the term capacity with a finite number of subcarriers.

We also note that:

The fading is identically distributed across subcarriers under the reasonable premise that
the time-domain fading coefficients are circularly symmetric (refer to Problem 4.58).
The fading is highly dependent for close-by subcarriers, and essentially independent
beyond the coherence bandwidth.

As has been established, the number of resource elements over which the fading remains
(roughly) constant is Nc = BcTc, which the underspread property renders a large number.
The availability of CSIR is therefore a reasonable premise.

With frequency selectivity, per-codeword power constraints may become applicable even
if the power amplifiers do not tolerate crests: the power averaging may take place in the
frequency domain, such that, with sufficiently many subcarriers, the time-domain transmit
power is roughly constant.

Link adaptation is greatly facilitated by mapping methods such as CESM, MIESM, or
EESM, which allow selecting on the basis of a single metric the MCS that should be em-
ployed for the transmission of each codeword. The fading variations across the resource
elements spanned by the codeword, i.e., across both OFDM symbols in time and subcar-
riers in frequency, map onto that single metric, from which the throughput-maximizing
MCS is easily identified. And only this metric, quantized down to the number of available
MCSs, is required at the transmitter.

In the extreme cases of quasi-static and ergodic settings in the time domain, and depend-
ing on the availability of CSIT, the usual notions of ergodic and outage capacity apply.
Without CSIT in particular, the ergodic capacity is [424]

C(SNR) = E

[
1

K

K−1∑
k=0

log2

(
1 + SNR |h[k]|2

)]
(4.199)

= E

[
log2

(
1 + SNR |h|2

)]
, (4.200)
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where h is the fading on an arbitrary subcarrier and (4.200) follows from the identical dis-
tribution across subcarriers. In a setting already ergodic in the time domain, therefore, the
capacity would be unaffected by frequency selectivity. In the opposite extreme, in contrast,
frequency selectivity would have a major effect. The outage probability

pout(SNR, R/B) = P

[
1

K

K−1∑
k=0

log2

(
1 + SNR |h[k]|2

)
< R/B

]
(4.201)

would improve radically with growing K if the subcarriers involved exhibited sufficiently
independent fading. An ergodic behavior would rapidly be approached, which confers ad-
ditional relevance to the ergodic capacity.

4.7 Which fading setting applies?

One can legitimally feel a certain sense of confusion in light of the variety of settings that
arise in fading channels, even if the CSIR is taken for granted. It is thus worthwhile to
discuss the corresponding applicability.

To the generic question of whether the outage or the ergodic capacity should be invoked,
the answer is that “it depends.” Naı̈vely, one could think that it depends only on the ve-
locity, and indeed that used to be the case in the fixed-rate narrowband systems of 1G and
2G. The classical wisdom for these systems was that the quasi-static setting and outage ca-
pacity applied in slow fading while the ergodic setting and ergodic capacity applied in fast
fading. This wisdom had to be revised once adaptivity was introduced and the signal band-
width exceeded the coherence bandwidth of the fading [195]. Since 3G, wireless systems
invariably feature the following.

Link adaptation. Rather than a single fixed MCS, a set of MCSs is available and the
transmission is matched to the fading whenever a modicum of CSIT is available. In ad-
dition, the codeword length itself is made adaptive through hybrid-ARQ, which requires
only one-bit notifications of decoding success/error.
Wideband signals, whereby each codeword may span multiple coherence bandwidths.

In slow fading, adaptivity can preclude fading-induced outages and thus the outage ca-
pacity has manifestly lost relevance [195]. The ergodic setting, alternatively, has grown in
relevance as time-domain ergodicity has been progessively reinforced in the frequency do-
main (and, with MIMO, further in the spatial domain). Altogether, the picture that emerges
is as follows.

For frequency-flat slowly fading channels, with codewords spanning OFDM resource
elements within a single coherence tile, the appropriate setting is a quasi-static setting
with CSIT. This is nothing but an AWGN channel with a changing SNR accorded by the
fading distribution, and with the ergodic capacity measuring the local-average spectral
efficiency.
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�Fig. 4.20 LTE resource blocks separated by 1 MHz in the frequency domain. The resource

blocks are cast on a realization of a Rayleigh-faded channel exhibiting a typical urban

(recall Example 3.20) power delay profile with delay spread Td = 1 ms.

For frequency-selective fading channels, with the codeword spanning subcarriers across
multiple coherence bandwidths, either with slow fading and especially with fast fading,
the number of fading realizations affecting each codeword usually suffices for the er-
godic setting to be a satisfactory model and for the channel to be largely information
stable.

Example 4.35 (Localized transmission in LTE)

In LTE, each codeword is overlaid on a number of so-called resource blocks consisting of
12 adjacent subcarriers and seven OFDM symbols (for a total of 84 resource elements).
With the LTE subcarrier spacing of 15 kHz, each such resource block thus occupies 180

kHz, narrow enough for the fading to be frequency-flat over one or even over various
contiguous resource blocks. At low velocities, moreover, the fading remains constant over
multiple successive resource blocks such that, altogether, each codeword experiences an
AWGN channel with SNR determined by the fading.

Example 4.36 (Distributed transmission in LTE)

Rather than being contiguous, the resource blocks can also be interspersed across the avail-
able bandwidth. Provided their frequency separation is minimally large, this ensures IID
fading across resource blocks bearing pieces of a given codeword. Figure 4.20 shows how
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�Fig. 4.21 CDF of spectral efficiency for an LTE distributed transmission at distinct local-average

SNRs (0, 10, and 20 dB). Also indicated are the corresponding ergodic capacities.

resource blocks separated by 1 MHz would indeed be far apart relative to the fading coher-
ence of a typical urban channel.

Example 4.37 (Spectral efficiency with LTE distributed transmission)

Consider an LTE transmission on a dozen interspersed resource blocks subject to IID
Rayleigh fading. No additional fading variation is assumed in the time domain. Figure 4.21
shows the distribution of codeword spectral efficiency for local-average SNRs of 0, 10,
and 20 dB. Also indicated are the corresponding ergodic capacities, which are seen to be
very representative at each local-average SNR. The limited spread of the codeword spec-
tral efficiency around the ergodic capacity is a measure of the information stability of the
transmissions and it confirms the appropriateness of the ergodic setting. With hybrid-ARQ
contributing channel variations in the time domain, and with multiple antennas contribut-
ing channel variations in the space domain, these spreads squeeze further and the spectral
efficiencies tightly coalesce around the respective ergodic capacities.

The foregoing considerations, reinforced in NR with an even more flexible dimension-
ing of the resource blocks, give clear prominence to the AWGN and ergodic capacities,
which is welcome news from an analytical standpoint. The outage capacity is somewhat
relegated, although it may remain relevant to transmissions that do not abide by the op-
erational principles of adaptivity and wideband signaling. Wireless sensor networks, for
instance, may transmit at a fixed bit rate in narrowband channels, but, by the same to-
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ken that these systems forgo advanced functionalities, they may not feature near-capacity
codebooks; if so, the fundamental communication limits studied in this book are not di-
rectly relevant to them. The control channels would be another example that may not fully
conform to our observations due to the short nature of the carried messages.

4.8 Pilot-assisted communication

Having established that the true (no CSI) capacity of underspread SISO channels is very
well approximated by its CSIR value, it is instructive to explore how closely that value
can be approached when the receiver explicitly estimates the fading with the aid of pilot
symbols. We hasten to emphasize that this is a specific instance of communication without
CSIR, and a suboptimum one in fact: the optimum signaling strategy, recall, is to transmit
a signal conforming to (4.184) rather than complex Gaussian codewords with inserted pilot
symbols. However, this specific instance is of enormous relevance given that virtually all
existing wireless systems comply with it.

For the sake of specificity, the analysis that ensues is tailored to ergodic Rayleigh-faded
settings (either continuously faded with a certain Doppler spectrum or else block-faded),
yet much of it applies to other fading models as well, e.g., Gauss–Markov, and variations
of the analysis for all these models can be found in [324, 407, 416, 425–434]. No attempt
is made to derive the capacity-achieving signal distribution when the decoding is based on
the observation of the pilots. Rather, we want to investigate how the complex Gaussian sig-
nals that are optimum under CSIR perform when the knowledge of the fading is extracted
directly by the receiver rather than granted as side information.

4.8.1 Frequency-flat fading

Let us begin by considering single-carrier transmission over frequency-flat fading chan-
nels. Referring to Fig. 4.22 and denoting by α the share of single-carrier symbols that
are pilots, one in every 1/α symbols is a pilot while the rest are payload data. Moreover,
α ≥ αmin for some αmin to be established. Let D denote the set of indices corresponding to
data symbols. For n ∈ D, (4.130) holds with x[0], . . . , x[N−1] a sequence of IID complex
Gaussian symbols. For n /∈ D, alternatively, fixed pilots x[n] =

√
Es are transmitted and

y[n] =
√

GEs h[n] + v[n] n /∈ D. (4.202)

Notice that pilot and data symbols have the same energy, Es. Later we lift this constraint,
allowing for power-boosted pilots.

Under block fading with Nc symbols per block, at least one pilot symbol must be in-
serted within each fading block and thus

αmin =
1

Nc
(4.203)
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while, if Np ≥ 1 is the number of actual pilot symbols in every block, then

α =
Np

Nc
. (4.204)

Under continuous frequency-flat fading with a Doppler spectrum bandlimited to [−νM, νM],
the Doppler spectrum of the corresponding discrete-time fading process {h[n]} is ban-
dlimited to [−νMT, νMT ]. It follows from the sampling theorem that, to ensure that the
decimated fading process observed through the pilots has an unaliased spectrum,

αmin = 2 νMT. (4.205)

The minimum pilot overheads dictated by the block-fading and the continuous fading mod-
els, (4.203) and (4.205) respectively, are consistent if we declare the block duration in the
former to be Tc = 1

2 νM
, which, expressed in number of symbols rather than time, gives

Nc = Tc/T = 1
2 νMT . This reinforces, and in this case irrespectively of the shape of the

Doppler spectrum, the equivalence between block-fading and continuous fading unveiled
for rectangular spectra in (3.160).

In pilot-assisted communication, decoding must be conducted on the basis of the obser-
vations at the receiver (both pilots and data), without genie-granted CSIR. The maximum
spectral efficiency that can be achieved reliably is then the mutual information between the
transmitted data symbols and the observations at the receiver (pilots and data), i.e.,

lim
N→∞

1

N
I
(
s[0], . . . , s[N − 1]︸ ︷︷ ︸

n∈D

; y[0], . . . , y[N − 1]︸ ︷︷ ︸
n∈D

, y[0], . . . , y[N − 1]︸ ︷︷ ︸
n/∈D

)
(4.206)

= lim
N→∞

1

N

[
I
(
s[0], . . . , s[N − 1] ; y[0], . . . , y[N − 1]︸ ︷︷ ︸

n∈D

| y[0], . . . , y[N − 1]︸ ︷︷ ︸
n/∈D

)

+ I
(
s[0], . . . , s[N − 1]︸ ︷︷ ︸

n∈D

; y[0], . . . , y[N − 1]︸ ︷︷ ︸
n/∈D

)]
(4.207)

= lim
N→∞

1

N
I
(
s[0], . . . , s[N − 1] ; y[0], . . . , y[N − 1]︸ ︷︷ ︸

n∈D

| y[0], . . . , y[N − 1]︸ ︷︷ ︸
n/∈D

)
, (4.208)

where (4.207) follows from the chain rule detailed in Section 1.4.2 and (4.208) from the
independence between the transmitted data symbols and the pilot observations. Achieving
(4.208), for which there is no known simplified expression, generally requires joint data
decoding and channel estimation [177, 419, 435–438].



273 4.8 Pilot-assisted communication

Besides being cumbersome, (4.208) is not very representative of how wireless systems
actually operate because it does not capture a number of additional aspects. It is therefore
common to study a different quantity, to be found in (4.216), that is both more tractable
and operationally relevant. Let us briefly comment on the receiver procedures that reduce
(4.208) to (4.216), step by step.

(1) Only the observed pilots, y[n] for n /∈ D, assist in the processing of the data symbols.
That is, the processing of a data symbol n does not benefit from information about the
fading conveyed by other data symbols. This effectively breaks (4.208) into

lim
N→∞

1

N

∑
n∈D

I
(
s[n]; y[n] | y[0], . . . , y[N − 1]︸ ︷︷ ︸

/∈D

)
. (4.209)

The observed pilots, y[n] for n /∈ D, are used to form fading estimates ĥ[n] for n ∈ D
and, provided the process of channel estimation does not destroy information, (4.209)
is then equivalent to

lim
N→∞

1

N

∑
n∈D

I
(
s[n]; y[n] |ĥ[n]

)
= (1− α)E

[
I
(
s[n]; y[n] |ĥ[n]

)]
(4.210)

where the expectation arises thanks to the law of large numbers, with the factor (1−α)

excluding the pilot symbols from the summation. Altogether, we have a single-letter
expression with expectation over the distribution of ĥ[n]. Achieving (4.210), which
must be computed numerically [324, appendix A], requires that the receiver take into
account the joint distribution of h[n] and ĥ[n].

(2) Further simplifying (4.210), the fading estimates are taken to be correct. Expressing
each fading coefficient as h[n] = ĥ[n] + h̃[n] where the conditional-mean estimate
(recall Section 1.6)

ĥ[n] = E

[
h[n] | y[0], . . . , y[N − 1]︸ ︷︷ ︸

/∈D

]
(4.211)

gives the MMSE estimate of h[n] on the basis of the pilot observations, the transmit–
receive relationship can be rewritten as

y[n] =
√
Gh[n]x[n] + v[n] (4.212)

=
√
G

(
ĥ[n] + h̃[n]

)√
Ess[n] + v[n] (4.213)

=
√

GEs ĥ[n]s[n] + v′[n], (4.214)

where MMSE = E
[|h̃[n]|2] and E

[|ĥ[n]|2] = (1−MMSE). Now, ĥ[n] is the fading,
from the receiver’s viewpoint, and the effective noise is

v′[n] =
√

GEs h̃[n]s[n] + v[n]. (4.215)

Because the MMSE estimation errors h̃[0], . . . , h̃[N − 1] are zero-mean and IID, the
sequence v′[0], . . . , v′[N − 1] is also zero-mean and IID and, by virtue of the proper-
ties of the MMSE estimator, v′[n] is uncorrelated with ĥ[n]x[n]. However, v′[n] is, in
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general, not Gaussian; rather, the distribution of v′[n] and hence the optimum decoding
rules become fading-dependent.

(3) We have seen that, in terms of mutual information, the best signal distribution in the
face of Gaussian noise is itself Gaussian. As it turns out, this is but one side of the
saddle point property of the Gaussian distribution. The other side is that, when the sig-
nal is Gaussian, the worst possible noise distribution is also Gaussian [439]. Starting
from Gaussian signal and Gaussian noise, any perturbation of the signal distribution
can only decrease the mutual information and any perturbation of the noise distribu-
tion can only increase it. Therefore, replacing v′[n] in (4.215) with an independent
complex Gaussian variable of the same variance we obtain an achievable spectral ef-
ficiency. Moreover, such spectral efficiency is attainable with minimum-distance de-
coding, i.e., by standard decoders designed for Gaussian noise [440]. Thereby setting
v′[n] ∼ NC(0, GEsMMSE+N0), an achievable spectral efficiency for the channel in
(4.210) is

R

B
= (1− α)C(SNReff) (4.216)

with C(·) the CSIR capacity and with

SNReff =
GEs(1−MMSE)

GEsMMSE+N0
(4.217)

=
SNR (1−MMSE)

1 + SNR ·MMSE
. (4.218)

Although not explicitly indicated, MMSE and SNReff are functions of SNR, α, and the
fading distribution. In Rayleigh fading, the conditional-mean estimator is linear and the
MMSE expressions derived in Section 3.7.2 for an LMMSE estimator apply directly here.
Particularly relevant is the expression that unifies block fading with continuous fading
(under a rectangular Doppler spectrum), which for the reader’s convenience we reproduce
here as

MMSE =
1

1 + αNcSNR
. (4.219)

In addition to being more tractable and operationally relevant, (4.216) serves, on ac-
count of the various simplifications introduced, as a lower bound to (4.208). Inspecting its
expression, (4.216) evidences two differences with respect to the CSIR capacity:

A factor (1− α) associated with the pilot overhead.
A local-average effective SNR given by SNReff ≤ SNR.

These differences reflect the tension between improving the quality of the channel esti-
mates (by increasing α) and diminishing the overhead (by reducing α). There is a unique
value, α�, that resolves this tradeoff and maximizes (4.216). This optimization is simple
as (4.216) is a concave function of α and can be conveniently expressed by means of the
CSIR capacity function C(·). Pleasingly, if a genie could render α = 0 and MMSE = 0 at
once, then (4.216) would return C(SNR).
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Example 4.38

Plot, as function of SNR, the spectral efficiency in (4.216) for a frequency-flat Rayleigh-
faded channel with a Clarke–Jakes Doppler spectrum corresponding to a vehicular user,
with the pilot overhead optimized for each SNR; contrast it with the CSIR capacity of the
same channel. Separately, plot the optimum pilot overhead.

Solution

For Nc = 1000, corresponding to a vehicular user, the requested results are presented in
Fig. 4.23. On the left-hand side subfigure we find the ergodic spectral efficiency with the
pilot overhead optimized, alongside the CSIR capacity borrowed from Example 4.27. On
the right-hand side subfigure, we find the corresponding optimum pilot overhead. From
(4.205), the floor on the overhead is αmin = 10−3, which does not take effect within the
SNR range in the figure.

From the foregoing example, the following can be inferred:

Even in this considerably fast-fading channel, with standard minimum-distance decod-
ing treating the channel estimation errors as additional Gaussian noise, pilot-assisted
communication can closely approach the CSIR capacity.
Consistent with the minute loss with respect to the capacity, the optimum overheads are
very low. Indeed, the pilot overheads in LTE and NR are, for single-user SISO transmis-
sion, on the order of 5%.

In slower-fading channels, say in pedestrian settings, these observations would be rein-
forced even further, lending full support to the operational meaning of the CSIR capacity:
the pilot-assisted spectral efficiency can either be directly approximated by C(SNR), or
exactly quantified as (1− α)C(SNReff).

Other than for SNR → 0 and SNR → ∞, considered next, it is not possible to express
the optimum pilot overhead in closed form. However, leveraging the underspread condition
Nc � 1, it is possible to express it as a series expansion in 1/Nc [441].

Low-SNR regime

In the low-SNR regime under block fading, (4.216) in conjunction with (4.218) and (4.165)
expands into

R

B
= (1− α)αNc SNR

2 log2 e+ o(SNR2). (4.220)

With continuous fading, (4.220) holds verbatim for a rectangular Doppler spectrum and
Nc = BcTc. A more general expansion, of higher order than (4.220) and valid for arbitrary
Doppler spectra, is derived in [324] as

R

B
= (1− α)(1−MMSE)

[
SNR− SNR2 + o(SNR2)

]
log2 e, (4.221)

where MMSE depends on α and on the Doppler spectrum as per (3.153).
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�Fig. 4.23 Left, for an ergodic Rayleigh-faded channel with a Clarke–Jakes Doppler spectrum

and Nc = 1000: optimized pilot-assisted spectral efficiency and CSIR capacity, both

as a function of SNR. Right, corresponding optimum pilot overhead.

Example 4.39

Specialize (4.221) for a Clarke–Jakes spectrum.

Solution

For a Clarke–Jakes spectrum, MMSE is as given in (3.42) and thus

R

B
=

2α (1− α)

π2νMT
log2

(
2π νMT

α SNR

)
SNR2 + o(SNR2). (4.222)

The foregoing low-SNR expressions prompt a couple of remarks.

As can be verified, for SNR → 0, α� → 0.5. Although, as Fig. 4.23 indicates, this limit
is only relevant for extremely low SNR, it does confirm the intuition that the optimum
overhead grows as the SNR diminishes.
The spectral efficiency is not a concave function of SNR, corroborating that pilot-based
communication is but a special case of communication without CSIR. As the signal’s
peakedness does not grow with diminishing SNR, the spectral efficiency becomes con-
vex below a certain SNR and Eb

N0 min
is attained at some low but positive SNR.

Example 4.40

In a Rayleigh block-faded channel, compare the CSIR capacity with the pilot-assisted spec-
tral efficiency for Nc = 1000 (vehicular user) and for Nc = 20 000 (pedestrian user), all
expressed as a function of Eb

N0
(in dB). For each value of Nc, further establish Eb

N0 min
and

the SNR at which it is attained.
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Solution

See Fig. 4.24. For Nc = 1000, Eb

N0 min
= −0.34 dB attained at SNR = −9 dB. Past that

point, the pilot-assisted spectral efficiency tracks the CSIR capacity to within 0.6 dB. For
Nc = 20 000, a substantially more underspread channel, Eb

N0 min
= −1.12 dB, attained at

SNR = −14 dB. Beyond that, the pilot-assisted efficiency falls to within only 0.15 dB of
the CSIR capacity.

High-SNR regime

In the high-SNR regime, under either block fading or continuous fading with a rectangular
Doppler spectrum, (4.216) in conjunction with (4.218) and (4.165) expands into

R

B
= (1− α) log2

(
SNR

eγEM

αNc

1 + αNc

)
+O

(
1

SNR

)
(4.223)

where γEM, recall, is the Euler–Mascheroni constant. By simple inspection, α� in (4.223)
should be made as small as possible, i.e., α� = αmin = 1/Nc under block fading or
α� = αmin = 2 νMT under continuous fading. Plugging such α� into (4.223) we observe,
by comparison with the no-CSIR expressions in (4.185) and (4.187), that pilot-based com-
munication suffers no penalty in terms of spatial DOF. In this regime, only a power offset
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penalty is incurred, which can be at most 3 dB since that is the gap to the CSIR capacity
(contrast (4.223) evaluated at αmin with Example 4.31).

4.8.2 Pilot power boosting

Sometimes, it is possible to allocate unequal powers for pilot and data symbols. This is
certainly the case under a per-codeword power constraint, since then the symbols are al-
lowed to have unequal powers, but it is also the case under a per-symbol power constraint
if OFDM is used: the pilot and data symbols can then be multiplexed (at least partially) in
the frequency domain, and having subcarriers with unequal powers is compatible with a
per-symbol power constraint.

Indeed, many wireless systems do feature moderate degrees of pilot power boosting, a
possibility that can be accommodated in the formulation by allowing the transmit power to
equal ρpPt and ρdPt on pilot and data symbols, respectively, with

ρpα+ ρd(1− α) = 1 (4.224)

so that the average transmitted power is preserved. Then, the SNRs on pilot and data sym-
bols equal ρpSNR and ρdSNR, respectively. The spectral efficiency in (4.216) continues to
hold, only with

SNReff =
SNR (1−MMSE)

1/ρd + SNR ·MMSE
. (4.225)

The MMSE expressions derived in Section 3.7.2 for an LMMSE estimator also hold, with
SNR replaced with ρpSNR, and the concavity of the CSIR capacity function C(·) implies
that the spectral efficiency is maximized by setting α = αmin and optimizing the pilot
power boost. Moreover, with α fixed, the optimum ρ�p is directly the one that maximizes
SNReff .

For SNR → 0, ρp → Nc/2 under block fading and ρp → 1
4νMT under continuous fad-

ing. However, pilot power boosting yields no advantage for SNR → 0; in the limit, power
and bandwidth become interchangeable and hence optimality simply entails devoting half
the transmit energy to pilots regardless of the power boosting.

For SNR → ∞, with block fading,

ρp → Nc

1 +
√
Nc − 1

, (4.226)

which does pay off: a hefty part of the 3-dB SNR loss suffered in the absence of power
boosting with respect to the CSIR capacity can be recovered through pilot power boosting.

Although the peakedness implied by (4.226) and (4.224), which is ρp/ρd ≈ √
Nc for

large Nc, might be excessive in practice, the corresponding analysis—together with the
earlier one without power boosting—does bracket what is theoretically possible.

4.8.3 Frequency-selective fading

In frequency-selective fading channels, pilot-assisted communication is conceptually as
in frequency-flat fading, with pilot symbols properly arranged on a time–frequency grid
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�Fig. 4.25 OFDM resource elements with inserted pilot symbols.

[176, 182, 442]. Under the very mild premise that fading be identically distributed in the
frequency domain, pilot symbols should be uniformly spaced thereon and thus the one-
dimensional arrangement in Fig. 4.22 becomes the two-dimensional arrangement in Fig.
4.25. Most commercial systems feature variations of this arrangement (see [177, figure 1]).
The optimization of the overhead now entails both the coherence time and the coherence
bandwidth [443]. In block fading specifically, (4.216) and (4.225) apply verbatim with α

interpreted as the share of OFDM resource elements that are reserved for pilots and with

MMSE =
1

1 + αBcTcρpSNR
, (4.227)

where, given the mixture of time and frequency multiplexing of pilots, power boosting
should be feasible regardless of the type of power constraint.

4.9 Channels with interference

Although the issues surrounding multiuser communication and interference are confronted
head-on in later chapters, we can take a first look at the impact of interference on a given
link. To that end, let us augment our single-letter transmit–receive relationship into

y =
√

GEs h s+

U∑
u=1

√
GuEu husu + v. (4.228)

In addition to the noise v, the received signal is further corrupted by undesired transmis-
sions (not be decoded by this receiver) from U other transmitters with large-scale chan-
nel gains G1, . . . , GU , unit-variance fading coefficients h1, . . . , hU , and per-symbol ener-
gies E1, . . . , EU . In contrast with the noise, such interference is subject to fading. When
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observed through unknown fading channels, moreover, the aggregate faded interference∑U
u=1

√
GuEuhusu is generally non-Gaussian.

Recalling the saddle-point property of the Gaussian distribution in terms of mutual in-
formation, we have that, for a given total interference-plus-noise power, the capacity with
interference can only be higher than its noise-limited value. Statements to the contrary in
the literature refer to the detrimental effect of adding interference to a constant level of
noise, but, at a given SINR, the presence of interference in lieu of noise can only increase
the channel capacity. Computing such capacity, however, is a formidable task whenever
h1, . . . , hU are unknown to the receiver of interest, as

∑U
u=1

√
GuEuhusu + v is then

indeed non-Gaussian and the maximization of the mutual information becomes very chal-
lenging. Fortunately, most instances in which h1, . . . , hU are not known correspond to
cases where U is large and

∑U
u=1

√
GuEuhusu + v is not far from Gaussian, such that

a good approximation can be obtained by replacing it by a zero-mean complex Gaussian
term of the same variance, i.e., by turning (4.228) into

y =
√
GEs h s+ v′ (4.229)

with v′ ∼ NC

(
0,

∑U
u=1 GuEu + N0

)
. This leaves us with an ordinary fading channel

impaired by Gaussian noise, to which the results in this chapter apply directly and whose
capacity tends to approximate very well—and in fact lower-bounds—that of the original
channel in (4.228) [444]. Throughout the book, unless otherwise stated, the interference
from transmissions in other cells is subsumed within the Gaussian noise, and the spectral
efficiencies thereby formulated can be achieved with standard minimum-distance decoders.

Alternatively, the interference fading coefficients h1, . . . , hU could be considered known
by the receiver, a situation that might correspond to a small value of U and that we could
regard as an extended form of CSIR. The mutual information could then be conditioned
on h1, . . . , hU and, from the vantage of the link of interest, the worst possible distribution
for s1, . . . , sU would be complex Gaussian, in which case the conditional (on the fading)
interference-plus-noise would also be complex Gaussian and the capacity-achieving signal
would itself be complex Gaussian. Under these premises,

I
(
s; y |h, h1, . . . , hU

)
= log2

(
1 +

GEs |h|2∑U
u=1 GuEu |hu|2 +N0

)
(4.230)

= log2

(
1 +

|h|2∑U
u=1

|hu|2
SIRu

+ 1
SNR

)
(4.231)

with individual local-average signal-to-interference (SIR) ratios SIRu = GEs

GuEu
for u =

1, . . . , U . With all the interference terms mutually independent, the aggregate SIR and the
SINR would satisfy

1

SIR
=

U∑
u=1

1

SIRu
(4.232)

1

SINR
=

1

SIR
+

1

SNR
, (4.233)
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such that

SINR =
GEs∑U

u=1 GuEu +N0

=
GEs

N ′
0

(4.234)

where N ′
0 subsumes, besides the noise, also the interference.

From the mutual information in (4.231), both outage and ergodic capacities could be
established depending on the setting. In quasi-static settings without CSIT, the outage ca-
pacity would conceptually be as in noise-limited channels, with the difference that outages
could be triggered either by signal fades or by interference surges. In ergodic settings, the
CSIR-only capacity would be

C(SNR, SIR1, . . . , SIRU ) = E

[
log2

(
1 +

|h|2∑U
u=1

|hu|2
SIRu

+ 1
SNR

)]
, (4.235)

with expectation over the distributions of h and h1, . . . , hU . Since log(1 + 1/z) is convex
in z, Jensen’s inequality suffices to verify that having interference in lieu of noise can only
increase the capacity:

C(SNR, SIR1, . . . , SIRU ) ≥ E

⎡
⎣log2

⎛
⎝1 +

|h|2
E

[∑U
u=1

|hu|2
SIRu

+ 1
SNR

]
⎞
⎠
⎤
⎦ (4.236)

= E

[
log2

(
1 +

|h|2∑U
u=1

1
SIRu

+ 1
SNR

)]
(4.237)

= E

[
log2

(
1 + SINR |h|2)], (4.238)

where (4.238) is the noise-limited capacity at the same SINR. In much the same way in
which fading of the desired signal is unfavorable to the CSIR-only capacity, fading of the
interference would be favorable.

As intuition would have it, the inequality in (4.236) becomes an equality if the inter-
ferers are equal-power and their number grows, i.e., when SIRu = SIR for u = 1, . . . , U

and U → ∞. The superposition of many fading interference contributions of comparable
power behaves essentially as noise. Conversely, the largest deviation from the noise-limited
capacity occurs if there is a single dominant interferer, i.e., when U = 1 and SNR → ∞, a
case for which closed forms can be found.

Example 4.41

Let U = 1 with h and h1 Rayleigh-faded. Obtain the ergodic capacity as a function of SIR
for SNR → ∞.

Solution

From (4.235),

C(SNR, SIR) → E

[
log2

(
1 +

|h|2
|h1|2 SIR

)]
(4.239)
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=

∫ ∞

0

∫ ∞

0

log2

(
1 +

ξ

ζ
SIR

)
e−ξe−ζ dξ dζ (4.240)

=
SIR

SIR− 1
log2 SIR. (4.241)

Less compact but more general closed forms allowing for multiple Rayleigh-faded inter-
ferers are given, e.g., in [445]. Another avenue for analysis would be opened by rearranging
(4.235) into [446]

C(SNR, SIR1, . . . , SIRU ) = E

[
log2

(
1 + SNR

(
|h|2 +

U∑
u=1

|hu|2
SIRu

))]

− E

[
log2

(
1 + SNR

U∑
u=1

|hu|2
SIRu

)]
, (4.242)

which is the difference between two noise-limited capacities with modified fading distri-
butions. Unfortunately, these modified distributions are more involved than the actual ones
(e.g., they are not Rayleigh even if the actual fading is Rayleigh), thereby precluding direct
applicability of many results obtained for noise-limited channels.

Low-SNR regime

In the low-SNR regime, the interest would be in assessing how the capacity behaves when
the signal is weak relative to the sum of noise and interference, and it therefore would not
suffice to let SNR → 0. What would be required is to let SINR → 0 or, equivalently and
more conveniently, to let Es → 0 for the user of interest with all other energies held fixed,
in which case the definition of Eb

N0 min
in (4.30) would mutate into

Eb

N ′
0 min

= lim
SINR→0

SINR

C(SINR)
(4.243)

= lim
Es→0

GEs

N ′
0 C(GEs

N ′
0
)

(4.244)

=
G

N ′
0

dC
dEs

|Es=0

. (4.245)

From (4.235) or (4.242) expressed explicitly as a function of Es rather than as a function
of SNR and SIR1, . . . , SIRU ,

dC

dEs
|Es=0 = E

[
G |h|2∑U

u=1 GuEu|hu|2 +N0

]
log2 e (4.246)

= GE

[
1∑U

u=1 GuEu|hu|2 +N0

]
log2 e, (4.247)

where we have invoked the independence of h from the other interference fading coef-
ficients and its unit-power nature, such that in (4.247) the outer expectation is only over
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h1, . . . , hU . Plugging this expression into (4.245),

Eb

N ′
0 min

=
1

N ′
0 E

[
1∑U

u=1 GuEu|hu|2+N0

]
log2 e

(4.248)

=
1

E

[ ∑U
u=1 GuEu+N0∑U

u=1 GuEu|hu|2+N0

]
log2 e

(4.249)

=
1

E

[ ∑U
u=1 INRu+1∑U

u=1 INRu|hu|2+1

]
log2 e

, (4.250)

where we have invoked N ′
0 =

∑U
u=1 GuEu + N0 and defined INRu = GuEu/N0 to

denote the interference-to-noise ratio for the uth interferer. Absent all interference, the
above would revert to the familiar Eb

N0 min
= −1.59 dB. With interference, this quantity

could only be reduced because

E

[ ∑U
u=1 INRu + 1∑U

u=1 INRu|hu|2 + 1

]
≥ 1. (4.251)

The transmit power needed for reliable communication would thus be reduced by the left-
hand side of (4.251) relative to a noise-limited channel at the same SINR; the largest de-
parture from noise-limited conditions is for U = 1, which is the focus of the next example.

Example 4.42

Evaluate the left-hand side of (4.251) with a single interferer subject to Rayleigh fading.

Solution

Let U = 1. Recalling Γ(·, ·) as the incomplete Gamma function

E

[
INR + 1

INR |h1|2 + 1

]
=

∫ ∞

0

INR + 1

INR |h1|2 + 1
e−ξ dξ (4.252)

=

(
1 +

1

INR

)
e1/INR Γ

(
0,

1

INR

)
, (4.253)

which can lie anywhere within [1,∞). Although indicative that reliable communication
through the fades of the interference could be possible with minimal transmit power if there
were no noise (INR → ∞), this result is fragile and should not be taken at face value. For
other fading distributions, or with multiple interferers, the left-hand side of (4.251) might
only be modestly above 1. With two equal-power Rayleigh-faded interferers, for instance,
it lies between 1 and 2 (refer to Problem 4.68).

As far as expressions for S0 in the face of interference are concerned, interested readers
are referred to [447].
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High-SNR regime

In the high-SNR regime, by simple inspection S∞ = 1 and C = log2 SINR− L∞ + o(1)

where, from (4.46) and (4.235),

L∞ = −E

[
log2

( ∑U
u=1 INRu + 1∑U

u=1 INRu|hu|2 + 1
|h|2

)]
(4.254)

in 3-dB units. On the one hand, the power offset could not exceed its noise-limited value
(recall Examples 4.31 and 4.32). On the other hand, the smallest possible power offset
must occur with a single dominant interferer and thus

L∞ ≥ −E

[
log2

|h|2
|h1|2

]
(4.255)

= E

[
log2 |h1|2

]
− E

[
log2 |h|2

]
, (4.256)

which, if h and h1 have the same distribution, is zero.

4.10 Summary and outlook

This chapter establishes a foundation for the rest of the book, introducing, in the simplest
context of SISO communication, notions, quantities, and expressions that in the sequel are
extended to MIMO and to multiple users. A listing of the main points is provided in the
accompanying summary box.

The relevance of an information-theoretic approach to wireless communications is sup-
ported for SISO channels with frequency selectivity, fading, and interference. Simple con-
stellations and off-the-shelf codes achieve throughputs within 3 dB of what information
theory stipulates for complex Gaussian codebooks of unbounded length. To this shortfall,
a fraction of dB must be added because of imperfect channel estimates and about 10% of
the spectral efficiency must be subtracted, half of it to account for pilot overhead and half
as OFDM cyclic-prefix overhead. Altogether, a gap of roughly 5 dB exists at the PHY layer
whose recovery is a steep slope. Other imperfections such as feedback delays and errors
(which hamper link adaptation), synchronization offsets (which cause loss of orthogonality
among OFDM subcarriers and thus self-interference), and excess bandwidth (pulse shap-
ing in single-carrier transmission or unused subcarriers in OFDM [448]) may push the gap
to about 8–10 dB as reported for specific implementations [449–451]; these imperfections,
however, are resolvable aspects on which steady progress is being made.

Particularly noteworthy is the role played by hybrid-ARQ, which contributes to many de-
sirable characteristics built into modern wireless systems and alleviates some of the afore-
mentioned imperfections. Specifically, hybrid-ARQ is beneficial in the following respects.

It shields against feedback delays and even feedback errors, as it allows recovering from
mismatched MCS selections. By diluting the coding rate over multiple hybrid-ARQ
transmissions, initial MCSs selections can be corrected.
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Take-away points

1. The tradeoffs between bit rate, transmit power, and bandwidth are mirrored in the
functions C(SNR) and C(Eb

N0
), which express the capacity as a function of, respec-

tively, the per-symbol/per-resource-element SNR and the per-bit SNR.
2. In the low-SNR regime, Eb

N0 min
quantifies the Eb

N0
above which reliable communi-

cation is possible, and also the first-order scaling of C(SNR), while S0 measures
the slope of C(Eb

N0
) in log-scale at Eb

N0 min
. Precisely

C

(
Eb

N0

)
= S0

Eb

N0

∣∣∣
dB

− Eb

N0 min

∣∣∣
dB

3 dB
+ ε. (4.257)

3. In the high-SNR regime, S∞ quantifies the slope of C(SNR) in log-scale while L∞
quantifies the difference (in 3-dB units) in the SNR required for a certain capacity,
relative to a baseline channel where L∞ = 0. Precisely,

C(SNR) = S∞
(
log2 SNR− L∞

)
+O

(
1

SNR

)
. (4.258)

4. In an unfaded SISO channel, C(SNR) = log2(1 + SNR) while Eb

N0
= (2C − 1)/C.

This channel provides the baseline values S∞ = 1 and L∞ = 0 as well as Eb

N0 min
=

−1.59 dB and S0 = 2. The spectral efficiency with M -ary constellations hugs the
capacity up to the vicinity of log2 M .

5. Frequency selectivity can be handled by means of either vector coding or OFDM.
While both provide decompositions into parallel subchannels, OFDM does not rely
on the specific channel response and is therefore more robust. If the transmitter is
indeed privy to the channel response, then it can further allocate its power optimally
across the subchannels.

6. With fading, several information-theoretic variants arise depending on whether
there is CSI at the receiver and/or transmitter. Although the actual capacity is the
one with no side information, simpler expressions are often obtained with CSIR
granted and, in underspread fading, these expressions accurately represent the ac-
tual capacity. Under TDD/full duplex, or in channels whose coherence is long
enough to accommodate feedback, CSIT can be further considered.

7. Among the various fading idealizations, strong prominence should be given to the
quasi-static setting with CSIT and to the ergodic setting.

8. The quasi-static setting with CSIT amounts to an AWGN channel with SNR ac-
corded by the fading. With fading coefficient h, C(SNR, h) = log2(1 + SNR |h|2)
with local average E

[
log2(1 + SNR |h|2)].

9. In an ergodic setting with fixed transmit power, the capacity is

C(SNR) = E
[
log2

(
1 + SNR |h|2)] , (4.259)

irrespective of the availability of CSIT. Its coincidence with the local-average ca-
pacity of the quasi-static setting renders this a quantity of capital relevance. In
Rayleigh fading, furthermore, (4.259) admits the closed form

C(SNR) = e1/SNR E1
(

1

SNR

)
log2 e. (4.260)
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10. Frequency selectivity, when present over the codewords, contributes to the onset of
ergodicity. Since the signals of current systems may span many coherence band-
widths, this reinforces the importance of the ergodic setting.

11. Link adaptation with a reduced number of MCSs and commercial codes of rea-
sonable length can deliver throughputs within 2–3 dB of capacity. With frequency
selectivity, methods such as MIESM or EESM can map the fading coefficients
across the subcarriers to a single quantity from which to select the MCS.

12. To explicitly account for the pilot overhead and for the SNR penalty that reflects
the imperfection of the fading estimates, the spectral efficiency can be written as
(1− α)C(SNReff) where α is the pilot overhead while

SNReff =
SNR (1−MMSE)

1 + SNR ·MMSE
, (4.261)

with MMSE the variance of estimation error. This variance depends on the fading
dynamics, with MMSE = 1

1+αNcSNR in the case of block fading with a coher-
ence of Nc single-carrier symbols or OFDM resource elements. Slight variations
of SNReff and MMSE apply if pilot power boosting is allowed.

13. With interference in lieu of additive noise, the capacity at a given SINR could only
increase relative to its noise-limited value because, in contrast with noise, the inter-
ference is generally non-Gaussian and subject to fading. However, the difference
is only significant if the interference is dominated by one or two terms and the
corresponding fading coefficients can be tracked by the receiver.

Likewise, it protects against interference surges that may take place between the moment
of MCS selection and the decoding of the ensuing transmission.

Finally, and most relevant to the discussions in this chapter, hybrid-ARQ may be a source
of time-domain ergodicity [452, 453]. Codewords may span multiple transmissions and,
because each hybrid-ARQ process is typically interlaced with other hybrid-ARQ pro-
cesses intended for the same and/or other users, the constituting transmissions are non-
consecutive and their fading may thus be—at least partially—independent. The only
limitation to the stretching of the hybrid-ARQ process is the tolerance to latency.

In terms of power efficiency, we have seen that from an information-theoretic vantage
it is maximized by operating at the lowest possible SNR (at the expense of an equally
low spectral efficiency). Although the result that Eb

N0
→ Eb

N0 min
for SNR → 0 is formally

obtained with CSIR, in underspread fading it essentially applies. However, this result must
be toned down by noting that it refers only to radiated power. If the power consumed by
the transmitter and receiver equipment is further considered, then it becomes undesirable
to operate at SNRs too close to zero. Zooming out from the formal information-theoretic
analysis, power-efficient communication is seen to entail operating at low, but decidedly
positive, SNRs.
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Problems

4.1 Show that, when C(SNR) is increasing and concave in SNR, then Eb

N0
= SNR

C(SNR) is
minimized for SNR → 0.

4.2 Reproduce the plot of C(Eb

N0
) given in Fig. 4.4 for an AWGN channel.

4.3 Consider the discrete constellation defined by the points{
− 3√

5
,− 1√

5
, 1√

5
, 3√

5

}
. (4.262)

(a) Plot, as a function of SNR (in dB), the spectral efficiency achieved with this
constellation on an AWGN channel.

(b) Plot, as a function of Eb

N0
(in dB), the spectral efficiency achieved with this con-

stellation on an AWGN channel.

4.4 Reproduce the spectral efficiency curves of BPSK, QPSK, and 16-QAM in Fig. 4.3.
Further incorporate the corresponding curve for 8-PSK.

4.5 Reproduce the spectral efficiency curves of BPSK, QPSK, and 16-QAM in Fig. 4.4.
Further incorporate the corresponding curve for 8-PSK.

4.6 Reproduce the curves in Fig. 4.6 corresponding to the capacity-achieving distribu-
tion as well as to BPSK.

4.7 Consider an AWGN channel operating over a finite blocklength N .
(a) Applying (1.143), show how to compute the excess energy per bit, ΔEb

N0
, re-

quired to achieve a certain bit rate with a certain pe as a function of N .
(b) For V = 10 and pe = 10−2, plot ΔEb

N0
as a function of N ∈ [102, 104].

4.8 Compute and plot, as a function of SNR (in dB), the spectral efficiency achieved
on an AWGN channel by an equiprobable 16-QAM constellation and by a 16-QAM
constellation where the four inner points have twice the probability of the 12 outer
points. Is there a positive shaping gain that recovers part of the 1.53-dB penalty
experienced by QAM constellations relative to the capacity?

4.9 Consider an AWGN channel.
(a) Compute the ratio between the bandwidths required by BPSK and QPSK at any

combination of Pt and R that maps to Eb

N0
= 0 dB. Repeat for Eb

N0
= 3 dB.

(b) Compute the ratio between the exact bit rates achievable by BPSK and QPSK
with a bandwidth B at SNR = −3 dB. Repeat for SNR = 0 dB.

Note: In light of Example 4.7, and given that both signal types have the same Eb

N0 min
,

we know that, at low SNR, BPSK requires twice the bandwidth as QPSK. In the first
part of this problem we verify this result. Then, in the second part, we see how the
penalty in terms of bit rate for given bandwidth and power is far less substantial.

4.10 Consider the bandwidth B required to achieve an ergodic bit rate of R = 10 Mb/s
by a user transmitting Pt = 20 dBm to a base station with antenna gain Gr = 17 dB
and N0 = 3.2 ·10−20 W/Hz. Assume that the user’s antenna is ominidirectional. The
range is D = 600 m and the pathloss exponent is η = 3.8, while the intercept at 1 m
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equals Kref = 100. Generate (via Monte-Carlo) and plot the large-scale distribution
of B in the face of an 8-dB log-normal shadow fading for these small-scale settings:
(a) AWGN channel (unfaded).
(b) Rayleigh-faded channel.
(c) Rice-faded channel with K = 5 dB.

4.11 Reconsider Problem 4.10, but with the bandwidth fixed at B = 5 MHz. Generate
(via Monte-Carlo) and plot the large-scale distribution of the bit rate achievable in
the face of a 10-dB log-normal shadow fading for the specified small-scale settings.

4.12 Reconsider Problem 4.10, with the bandwidth fixed at B = 10 MHz and no shadow
fading.
(a) Plot the achievable R as a function of Pt for a range broad enough to encompass

low- and high-SNR behaviors.
(b) On the same chart, plot the low- and high-SNR expansions of R versus Pt.
(c) Comment on the extent to which the expansions are valid.

4.13 Reconsider Problem 4.10 once more, with the transmit power fixed at Pt = 20 dBm
and no shadow fading.
(a) Plot the achievable R as a function of B for a range broad enough to encompass

low- and high-SNR behaviors.
(b) On the same chart, plot the low- and high-SNR expansions of R versus B.
(c) Comment on the extent to which the expansions are valid.

4.14 Reconsider the setup of Problem 4.10 for the final time, with the bit rate fixed at
R = 10 Mb/s and no shadow fading.
(a) Plot the required B as a function of Pt for a range broad enough to encompass

low- and high-SNR behaviors.
(b) On the same chart, plot the low- and high-SNR expansions of B versus Pt.
(c) Comment on the extent to which the expansions are valid.

4.15 Plot, for an AWGN channel and SNR ∈ [0, 20] dB, the percentage of capacity that
can be achieved with N = 2000 and pe = 10−2.

4.16 Consider an AWGN channel.
(a) Find an approximate expression for the codeword length N required to achieve

a certain share of the capacity with a given pe.
(b) What codeword length is (approximately) required to achieve 95% of capacity

at SNR = 10 dB with pe = 10−3?

4.17 From the error probabilities as a function of SNR, pe(SNR), given in the book’s
companion webpage for the LTE MCSs, reproduce the individual throughput curves
in Example 4.8 as well as their envelope.

4.18 Prove the following.
(a) A per-symbol or per-codeword power constraint on x[0], . . . , x[N−1] translates

to 1
N

∑N−1
n=0 P [n] = 1.

(b) An OFDM signal x[0], . . . , x[K − 1] is subject to 1
K

∑K−1
k=0 P[k] = 1.

4.19 Repeat Example 4.15 for an indoor system, and contrast the values obtained with
those of a commercial system designed for indoor operation.
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4.20 Consider the time-invariant channel response described by h[0] = 0.94 and h[1] =

0.34, presumably the result of sampling some continuous impulse response h(τ),
and let SNR = 5 dB.
(a) Compute the spectral efficiency achieved by vector coding with waterfilling

power allocation for K = 2.
(b) Recompute the spectral efficiency achieved by vector coding, but this time with

a uniform power allocation.
(c) Compute the spectral efficiency achievable by OFDM, employing K = 2 sub-

carriers, under waterfilling power allocation.
(d) Recompute the spectral efficiency achievable by OFDM and K = 2 subcarriers,

but this time with a uniform power allocation.

4.21 Consider again the time-invariant channel response of Problem 4.20 and suppose
that, to reduce the cyclic-prefix overhead, we apply vector coding and OFDM with
K = 4 rather than K = 2. Repeat the derivations under this increased value of K.

4.22 Consider the setting of Problem 4.20, except that the bandwidth has been quadru-
pled. Sampled four times faster, the impulse response h(τ) leads to h[0] = 0.64,
h[1] = 0.5, h[2] = 0.39, h[3] = 0.3, h[4] = 0.24, and h[5] = 0.18. Repeat the
derivations with this channel response and K = 8.

4.23 Consider the time-invariant channel response described by h[0] = 0.07 + 0.12j,
h[1] = −0.4954 + 0.86j, and h[2] = −0.02.
(a) Compute the frequency-domain channel response faced by an OFDM transmis-

sion with K = 4 subcarriers.
(b) Establish the value SNR0 below which a single subcarrier is allocated power

when applying waterfilling.
(c) Obtain the waterfilling power allocations at SNR = 5 dB and at SNR = 20 dB.
(d) Calculate the spectral efficiency achievable, with waterfilling power allocations,

at SNR = SNR0 as well as at SNR = 5 dB and 20 dB.
(e) Compute the spectral efficiency achievable with a uniform power allocation at

each of those SNRs, and compare it with the respective capacities.

4.24 Formulate the counterpart to the discrete waterfilling solution in (4.104) and (4.105)
for a continuous-frequency channel response h(ν).

4.25 Consider the continuous-frequency channel response h(ν) =
√
2 sin(πν) for ν ∈

[−1/2, 1/2] at SNR = 4 dB.
(a) Apply waterfilling to obtain the continuous power allocation P�(ν).
(b) Calculate the capacity.
(c) Compute the spectral efficiency achievable with a uniform power allocation.

4.26 For the time-invariant channel response described by h[0] = 0.9, h[1] = 0.44, com-
pute the spectral efficiency achievable with K → ∞ and a uniform power allocation.

4.27 Consider again the discrete-time channel response of Problem 4.20 with subblocks
of size K = 4. Under single-carrier transmission, how should the signal within each
subblock be autocorrelated in order to maximize the achievable spectral efficiency?
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4.28 Consider a frequency-selective channel h[0], . . . , h[L] and a single-carrier signal
x[0], . . . , x[N −1] with the constituent codeword symbols being complex Gaussian.
Suppose that, rather than optimally time-correlated, these symbols are IID. What is
the highest achievable spectral efficiency as a function of h[0], . . . , h[L]?

4.29 Express Eb

N0 min
and S0, accounting for the cyclic prefix overhead, for a fixed OFDM

channel response h[0], . . . , h[K − 1] having a unique max
(|h[0]|, . . . , |h[K − 1]|).

4.30 Let h[0], . . . , h[K−1] be an OFDM channel response whose two strongest values are
similar, which we can model by letting max

(|h[0]|, . . . , |h[K−1]|) have cardinality
two. Show that Eb

N0 min
does not depend on how the power is split between the two

while S0 does. Further, show that S0 is only maximized when the power split is even.

4.31 Reconsider the setting of Example 4.23, specialized to the low-SNR regime. Plot,
for the range of values where the match is satisfactory, the exact functions C(SNR)

and C(Eb

N0
) alongside their low-SNR expansions.

4.32 Let h[0], . . . , h[K − 1] be a fixed OFDM channel response. Express S∞ and L∞
with the cyclic-prefix overhead accounted for.

4.33 Prove (4.121).

4.34 Consider K = 2 subcarriers with QPSK signals on each and let |h[0]|2 = 0.25 and
|h[1]|2 = 0.75 while SNR = 9 dB.
(a) Compute the waterfilling power allocation.
(b) Compute the mercury/waterfilling power allocation.

4.35 Consider K = 3 subcarriers carrying signals conforming to distinct distributions, re-
spectively BPSK, QPSK, and complex Gaussian, with |h[0]|2 = |h[1]|2 = |h[2]|2 =

1/
√
3 and SNR = 8 dB.

(a) Compute the waterfilling power allocation.
(b) Compute the mercury/waterfilling power allocation.

4.36 Consider a bank of K parallel noninteracting subchannels. Prove that, as long as the
K signals fed in are proper complex, mercury/waterfilling reverts to regular water-
filling in the low-SNR regime, i.e., in terms of Eb

N0 min
and S0.

4.37 Prove that, if h[n] = h for n = 0, . . . , N − 1, then

1

N

N−1∑
n=0

log2

(
1 + SNR |h[n]|2 P [n]

)
(4.263)

is maximized by P [n] = 1 for n = 0, . . . , N − 1 regardless of whether the power
constraint is per-symbol or per-codeword.

4.38 Recall Example 4.19.
(a) Recompute how far (in SNR) the performance is from that of asymptotically

long complex Gaussian codebooks, with the power allocated via waterfilling.
(b) Keeping the waterfilling power allocation, recompute part (a) with respect to

the performance of the best possible codebook of finite length N , capitalizing
on the fact [376] that the spectral efficiency backoff due to a length-N code is
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δC =
√
V/NQ−1(pe) +O(logN/N), with

V =
1

K + L

K−1∑
k=0

[
1− η2

|h[k]|4 SNR2

]+
log22 e (4.264)

where 1/η is the water level.

4.39 Let h[0] = 1 and h[1] = 0.5 j. For K = 4, overlay plots of the squared singular
values of the Toepliz matrix H̄K,K+L and of its circulant counterpart H̄K+L,K+L;
further overlay the sorted frequency-response coefficients |h[k]|2. Repeat for K =

16, K = 64 and K = 256. Explain what you see and why it makes sense.

4.40 Verify that the outcome of Example 4.20 is 2.48 dB.

4.41 In LTE, the OFDM symbol period is T = 66.7 μs. How many such symbols fit
within the coherence time of a fading channel exhibiting a Clarke–Jakes Doppler
spectrum, at v = 100 km/h and fc = 2 GHz? How can this result be reconciled with
the value of Nc ≈ 1000 obtained in Example 3.26?

4.42 Consider OFDM over a fixed channel h[0], . . . , h[K − 1] with K = 324, which in
LTE would approximately occupy B = 5 MHz. From the error probabilities given in
the book’s companion webpage for the LTE MCSs, and applying the EESM method
with β = 3.24 to map the K subcarrier SNRs onto SNREESM, plot the throughput as
a function of SNR for MCSs 2, 5, 8, 11, 14, 17, 20, 23, and 26 in these cases:
(a) Under frequency flatness, h[k] = 1 for k = 0, . . . ,K − 1, in which case we

revert to Example 4.8.
(b) With |h[k]|2 = 0.9 for k = 0, . . . , K

2 −1 and |h[k]|2 = 0.1 for k = K
2 , . . . ,K−1.

(c) With h[k] drawn once from a standard complex Gaussian distribution and nor-
malized such that 1

K

∑K−1
k=0 |h[k]|2 = 1.

4.43 Reconsider Example 4.21 with the set of MCSs available to the transmitter reduced
to MCSs 2, 5, 8, 11, 14, 17, 20, 23, and 26.
(a) Plot the average throughput per unit bandwidth as a function of SNR (in dB) and

verify the degradation with respect to having the entire set of MCSs available.
(b) Plot the average error probability as a function of SNR (in dB).
(c) Replot the average throughput per unit bandwidth as a function of SNR (in dB)

with the MCS switching thresholds modified to ensure that the error probability
does not exceed pe = 0.1.

4.44 For a frequency-flat quasi-static Rayleigh-faded channel with only CSIR, plot the
exact tradeoff between Cε and ε ∈ [10−3, 0.5] at SNR = 0 dB and SNR = 20 dB.
Precisely, plot ε (in log-scale) as a function of Cε.
Note: For SNR → ∞, this relationship, scaled by log2 SNR, gives the DMT.

4.45 For a frequency-flat quasi-static Rayleigh-faded channel with only CSIR, where the
transmitter operates at 1 b/s/Hz, plot the exact outage probability and its high-SNR
expansion (from which the notion of diversity emanates) as a function of SNR, over
a range broad enough for the latter to closely match the former.

4.46 Reproduce Fig. 4.16 and incorporate the function C(SNR) for a Rice-faded channel
with K = 0 dB and K = 10 dB.
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4.47 Reproduce Fig. 4.17 and incorporate the function C(Eb

N0
) for a Rice-faded channel

with K = 0 dB and K = 10 dB.

4.48 For a Rice-faded channel at SNR = 10 dB, plot the ergodic capacity with CSIR as a
function of the Rice factor K between −10 dB and 20 dB. Indicate on the figure the
ergodic capacities of AWGN and Rayleigh-faded channels at the same SNR.

4.49 Prove (4.181) and verify that L∞ ∈ [0, γEM log2 e].

4.50 Consider an ergodic Rice-faded channel with K = 5 dB, SNR = 0 dB, and CSIR.
Compute how much bandwidth is required relative to an unfaded channel.
(a) Approximately, based on the respective second-order low-SNR expansions.
(b) Exactly, on the basis of the exact capacities.

4.51 Consider a Rice-fading channel with K = 0 dB and CSIR. Compute the additional
power required to reach the same bit rate achievable over an AWGN channel at
SNR = 10 dB.
(a) Approximately, on the basis of the respective zero-order high-SNR expansions.
(b) Exactly, on the basis of the exact capacities.

4.52 Plot, as a function of SNR, the ergodic spectral efficiency achievable with QPSK
signaling and CSIR over a Rayleigh-faded channel. On the same chart, plot the cor-
responding spectral efficiency over an AWGN channel.

4.53 Prove that, in the low-SNR regime, the ergodic spectral efficiency achieved with
BPSK expands as (4.175).
Hint: Recall the Gaussian mutual information and its expansions in Example 1.10.

4.54 Consider a channel impaired by AWGN, possibly subject to fading, and let the in-
formation unit be the nat rather than the bit. What is the minimum energy per nat
necessary per reliable communication? What observation does the result elicit?

4.55 In a block Rayleigh-faded channel, what is the minimum value of Nc required for
the no-CSIR capacity to be within 1% of the CSIR capacity at SNR = 3 dB?

4.56 Repeat Example 4.34, but plotting as a function of Eb

N0
(in dB) and only over the

low-SNR regime. What do you observe?

4.57 Consider an outdoor block-fading channel where the fading blocks have duration
Tc = 1 ms. Which type of system would experience coherences of only 10 symbols,
making the CSIR capacity no longer representative of the actual one?

4.58 Prove that the fading experienced by OFDM subcarriers is identically distributed if
the time-domain fading coefficients h[0], . . . , h[L] are circularly symmetric.

4.59 Consider an ergodic frequency-flat setting where the fading is continuous and Rayleigh
with a rectangular Doppler spectrum.
(a) Plot the capacity under CSIR as a function of SNR (in dB).
(b) For νMT = 10−3 plot the spectral efficiency achievable with pilot-assisted com-

plex Gaussian signaling as a function of SNR (in dB), with the pilot overhead
optimized for each SNR.

(c) Plot the optimum pilot overhead as a function of SNR (in dB).
(d) Indicate which would be the number of single-carrier symbols per fading block

in the equivalent block-fading model.
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Note: For parts (b) and (c), a convex optimization solver such as fmincon in
MATLAB® can be used. Alternatively, since the optimization is over a single scalar,
the optimum value can be found by scanning over α ∈ [0, 1].

4.60 Repeat Problem 4.59 for νMT = 10−4.
4.61 Show that, in the high-SNR regime, (4.216) expands into (4.223).
4.62 Consider a Rayleigh-faded channel with a Clarke–Jakes spectrum at SNR = 0 dB,

and let νMT = 10−3.
(a) Compute the pilot overhead α� that maximizes (4.216).
(b) Compute the approximate counterpart to α� obtained by optimizing the low-

SNR expansion in (4.220).
(c) Compute the approximate counterpart to α� obtained by optimizing the low-

SNR expansion in (4.222).
4.63 Reproduce Example 4.40.
4.64 Consider an ergodic frequency-flat fading channel with a Clarke–Jakes Doppler

spectrum and νMT = 10−3. Compute the SNR at which the optimum pilot over-
head equals αmin.

4.65 Consider an ergodic frequency-flat block-fading channel with pilot-assisted trans-
mission and the possibility of pilot power boosting.
(a) Prove that, for SNR → 0, ρp → Nc/2.
(b) Prove that, for SNR → ∞, ρp → Nc/(1 +

√
Nc − 1).

(c) Express the reduction in high-SNR power loss with pilot power boosting.
4.66 Repeat Example 4.38 with the incorporation of pilot power boosting.
4.67 Consider a frequency-flat block-fading channel with Nc = 1000 at SNR = 10 dB.

(a) With no pilot power boosting, what is the maximum spectral efficiency deficit
that pilot-assisted transmission with complex Gaussian signaling can incur over
the no-CSIR capacity? Express this deficit in both absolute and percentual terms.

(b) Repeat part (a) with pilot power boosting.
4.68 Prove that, as per Example 4.42, with two equal-power Rayleigh-faded interferers,

1

2G log2 e
≤ Eb

N ′
0 min

≤ 1

G log2 e
. (4.265)

Find a general expression for the minimum possible Eb

N ′
0 min

given an arbitrary num-
ber of equal-power Rayleigh-faded interferers. Verify that, for U → ∞,

Eb

N ′
0 min

→ 1

G log2 e
. (4.266)

4.69 Consider the channel y[n] = x[n] + x1[n]. There is no noise, but there is one inter-
ferer whose received power equals that of the desired signal, i.e., SIR = 1. We know
that, if the signal distribution were Gaussian, the worst possible interference distri-
bution would also be Gaussian. However, if the signal is BPSK, which is the worst
possible interference distribution? Compare (i) the spectral efficiency given such
worst-case interference distribution with (ii) the spectral distribution given complex
Gaussian interference, in both cases with the signal being BPSK and with SIR = 1.
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5 SU-MIMO with optimum receivers

The most exciting phrase to hear in science, the one that heralds new discoveries, is not
‘Eureka!’ (I found it!) but ‘that’s funny...’

Isaac Asimov

5.1 Introduction

This second part of the book kicks off the treatment of MIMO, bringing together the
information-theoretic notions, the signal processing perspective, and the channel models
presented hitherto. It expands to the MIMO realm many of the results advanced for SISO
throughout Chapter 4, enriching the analysis with new aspects that arise in this realm.
Specifically, the dependencies of the capacity on the numbers of antennas, and the ensu-
ing tradeoffs, are incorporated beginning in this chapter. The coverage is circumscribed to
single-user links, with the extensions to multiuser scenarios deferred to the third part of the
book. Specifically, the present chapter deals with the fundamental benefits of SU-MIMO,
without regard for the complexity of the receiver.

The chapter begins by generalizing to MIMO certain quantities of interest as well as the
tradeoff between power, bandwidth, and bit rate. This is followed by a prolonged look at
the problem of reliable communication over SU-MIMO channels, which, with the benefit
of observations made in Chapter 4, prioritizes the ergodic setting. Advantageously, this
reduces the need to consider flat- and frequency-selective fading separately as the ergodic
capacities of the two coincide in relevant situations. The outage capacity in quasi-static
settings is also treated, albeit less extensively. Within this prolonged look at SU-MIMO,
more specifically, Sections 5.3–5.5 consider situations of progressively diminishing CSI,
starting with the availability of both CSIR and CSIT as side information and ending with
the complete absence of side information—a case that, recall, yields the true capacity. This
is followed, in Section 5.6, by the consideration of the practical instance of communication
without side information in which explicit channel estimates are gathered from pilot sym-
bol observations. Subsequently, Section 5.7 brings into the picture the issue of interference
from other transmissions, an aspect whose imprint becomes more pronounced with MIMO.
Then, Section 5.8 overviews SU-MIMO receiver structures, including a relevant one that
emanates directly from a form in which the capacity can be expressed, and Section 5.9 of-
fers a perspective on link adaptation for SU-MIMO. Finally, Section 5.11 summarizes the
contents of the chapter, briefly discusses lines of work not explicit covered, and catalogues
some open problems.
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As an additional analytical tool, especially for nonlimiting SNRs, the regime of large
numbers of antennas is explored. This large-dimensional regime is not only convenient
for the sake of tractability, but practically relevant as the asymptotic results thus obtained
turn out to constitute excellent approximations even for very modest numbers of antennas
[454, 455]. In fact, the large-dimensional results in this chapter do not seek to quantify
the performance when many antennas are actually utilized—something that requires mas-
sive MIMO models whose study is deferred to Chapter 10—but rather to serve as simpler
surrogates for settings with limited numbers of antennas. Additionally to their tractability,
asymptotic results are highly robust, often invariant to the fading distribution. The applica-
bility to MIMO of large-dimensional analysis was pioneered by Foschini while, contem-
porarily, it was being utilized to study multiuser detection for CDMA systems with random
spreading [456–458]. The two problems are highly isomorphic and, over their parallel de-
velopments, there has been a fair amount of cross-fertilization.

5.2 Initial considerations

Recollecting the exposition in Chapter 2, the MIMO transmit–receive single-letter rela-
tionship is

y =
√
GHx+ v, (5.1)

where, unless otherwise stated, the noise is v ∼ NC(0, N0I) while the channel matrix is
normalized such that

E
[‖H‖2F

]
= tr

(
E [H∗H]

)
(5.2)

= NtNr. (5.3)

In turn,

x =

√
Es

Nt
Fs, (5.4)

where s is an Ns × 1 vector containing independent unit-variance codeword symbols
(possibly subject to distinct coding rates and/or distinct signal distributions). This makes
Ns ≤ Nt the number of data streams that are spatially multiplexed via the Nt×Ns precoder

F = UF

[
P 1/2

0(Nt−Ns)×Ns

]
V ∗
F , (5.5)

where VF and UF are a unitary mixing matrix and a unitary steering matrix, respectively,
while P = diag(P1, . . . , PNs

) is a power allocation matrix. The precoder is of rank Ns,
and thus Rx = Es

Nt
FF ∗ is also of rank Ns. The transmit energy per symbol, Pt/B =

PtT = Es, now applies to vector symbols and thus E
[‖x‖2] = Es irrespective of Nt.

Figure 5.1 pictures the transmit–receive relationship and reconciles it with the more
generic abstraction in Fig. 1.2, where F is subsumed within the encoder. While in SISO
the precoder can only perform power control, in MIMO it is further tasked with spatial
processing aspects: the encoder produces vector symbols s with independent entries and it
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Decoder

Transmitter Receiver Channel 

s[0], . . . , s[N−1] x[0], . . . ,x[N−1] y[0], . . . ,y[N−1]

Nt NrNs

F
√
GH

√
Es

Nt

Encoder

�Fig. 5.1 Basic abstraction of a MIMO communication link.

is up to the precoder to mix these entries and steer them into the channel on the basis of
the available CSIT. As it turns out, the restriction that the precoder be linear does not entail
loss of optimality in terms of SU-MIMO capacity, which is the design metric that drives
the precoder optimization throughout this text.

The covariance Rx, and therefore the precoder itself, are subject to the applicable power
constraint. Let us recall, from Section 2.3.5, the various types of power constraint as well
as their translation onto P given our normalizations:

Under a per-codeword power constraint, with P a function of n in this case,

1

N

N−1∑
n=0

tr(P [n]) = Nt. (5.6)

Under a per-symbol power constraint,

tr(P ) = Nt. (5.7)

Under a per-antenna power constraint,[
FF ∗]

j,j
= 1 j = 0, . . . , Nt − 1, (5.8)

with the off-diagonal entries of
[
FF ∗] not necessarily zero. (In this case, the constraint

cannot be put as function of solely P .)

Let us now turn our attention to the total channel gain introduced for SISO in (4.1). With
MIMO, this quantity generalizes to

E
[‖√GHx‖2]
E
[‖x‖2] = G

E
[‖Hx‖2]

Es
. (5.9)

If there is no fading-dependent power control (meaning that x is independent of H) and
there is no precoding (i.e., F = I), then

G
E
[‖Hx‖2]

Es
= G

E
[
tr
(
Hxx∗H∗)]
Es

(5.10)

= G
E
[
tr
(
H E[xx∗]H∗)]

Es
(5.11)
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Discussion 5.1 Side effects of the channel normalization

As anticipated in earlier chapters, it is customary to study MIMO with H subject to
a normalization such as the one in (5.3), or some variant thereof. This makes explicit
the distinction between large- and small-scale propagation phenomena and also happens
to facilitate the analysis. However, this convenience does come at a cost: in disassoci-
ating the structure of H from the SNR, we lose track of the dependence between the
two. A low-SNR situation, for instance, is likely to correspond to a long-range transmis-
sion and therefore to certain small-scale fading distributions. In contrast, a high-SNR
condition might correspond to a short-range transmission and hence to different fading
distributions. While, in SISO, this can mean the distinction between Rayleigh and Rice
fading, in MIMO it is more serious since it not only affects the marginal distribution
of the entries of H but also their joint distribution. This should be taken into account
when drawing conclusions related to the structure of H , e.g., on the impact of antenna
correlations.

= G
E
[
tr
(
H Es

Nt
H∗)]

Es
(5.12)

= G
E
[
tr
(
HH∗)]
Nt

(5.13)

= GNr, (5.14)

which engulfs the large-scale gain G experienced by every entry of the channel matrix as
well as the aggregation of power at the Nr receive antennas. More generally, if the transmit
power and/or the precoding take H (either its value or its distribution) into account, the
total channel gain may exceed GNr. The additional gain that precoding can bring about
relates to the notion of beamforming introduced in Section 3.5; such gain is explored in
Problems 5.2–5.4 and characterized throughout the present chapter. For SNR → 0, not
surprisingly, the precoder that achieves capacity happens to be the one that maximizes the
total channel gain, as power is the limiting factor in this regime. For growing SNR, how-
ever, the capacity-achieving precoder diverges progressively from the one that maximizes
the total channel gain.

The ability of each receive antenna to capture additional power, which is an intrinsic
advantage of MIMO as reflected in (5.14), rests on the receive antennas not exhibiting
significant electromagnetic mutual coupling. If the antennas were in excessive proximity,
say a small fraction of a wavelength, then coupling would set in lessening the received
power [459]. In the limit, if the antenna spacing vanished, the receive array would yield the
same power as a single antenna. Although coupling is negligible if the antennas are spaced
by as little as half a wavelength, arrays devoid of the power gain factor Nr can be invoked
to study the paradigm of packing a growing number of antennas in a fixed volume of space
[460–465]. This paradigm is not explicitly considered in this book, but the tools provided
herein could be applied all the same, further letting the absence of the power gain factor
Nr ripple through the analysis.
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�Fig. 5.2 Inner structure of a MIMO precoder F = UF [P 1/2 0]T.

5.3 CSIR and CSIT

With CSIT, a per-codeword power constraint opens the door to time-domain power control.
We do not dwell on this possibility beyond what is covered for SISO in Chapter 4 and rather
focus on a per-symbol power constraint, which places the emphasis squarely on the space
domain. This implies that tr(FF ∗) = tr(P ) = Nt.

5.3.1 Quasi-static setting

In this setting, with the MIMO channel fixed and known, the formulation becomes isomor-
phic with that of a fixed frequency-selective channel in Section 4.4. While the significance
of the vector dimensions is different, and some normalizations must correspondingly be
adjusted, (5.1) is indeed isomorphic with (4.79) and thus we can capitalize on the corre-
sponding derivations.
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Precoder optimization

Steering matrix

The capacity-achieving signal is complex Gaussian and thus the precoder can reduce to

F = UF

[
P 1/2

0

]
, (5.15)

with the mixing matrix VF immaterial because V ∗
F s ∼ s, i.e., the mixing of IID complex

Gaussian vectors yields vectors that are also IID complex Gaussian. The structure of this
simplified precoder is illustrated in Fig. 5.2. Invoking the SVD of the channel matrix,
H = UHΣHV ∗

H with Σ∗
HΣH a diagonal matrix containing the eigenvalues of H∗H ,

the mutual information conditioned on H equals (recall Example 1.13)

I(x;y |H) = log2 det

(
I +

G

N0
H∗H

Es

Nt
FF ∗

)
(5.16)

= log2 det

(
I +

SNR

Nt
VHΣ∗

HΣHV ∗
HUF [P

1/2 0]T[P 1/2 0]U∗
F

)
(5.17)

= log2 det

(
I +

SNR

Nt
Σ∗

HΣHV ∗
HUF diag(P0, . . . , PNs−1, 0, . . . , 0)U

∗
FVH

)
which is maximized when the argument of the determinant is diagonal, hence the saying
that the optimum CSIT-based precoder diagonalizes the channel. Since Σ∗

HΣH is already
diagonal, this can be accomplished by letting UF = VH , which turns the transmit–receive
relationship into

y =
√
GH

√
Es

Nt
Fs+ v (5.18)

=
√
GUHΣHV ∗

H

√
Es

Nt
UF

[
P 1/2

0

]
s+ v (5.19)

=

√
GEs

Nt
UHΣH

[
P 1/2

0

]
s+ v. (5.20)

Applying an innocuous unitary rotation U∗
H at the receiver,

U∗
Hy =

√
GEs

Nt
ΣH

[
P 1/2

0

]
s+U∗

Hv, (5.21)

where U∗
Hv ∼ NC(0, N0I). Since

[
P 1/2 0

]T
= diag(P0, . . . , PNmin−1, 0, . . . , 0) and

ΣH =

[
diag

(√
λ0, . . . ,

√
λNmin−1

)
0Nmin×(Nt−Nmin)

0(Nr−Nmin)×Nmin
0(Nr−Nmin)×(Nt−Nmin)

]
(5.22)

with Nmin = min(Nt, Nr), we can finally write

[U∗
Hy]j =

√
GEs λj(H∗H)Pj

Nt
[s]j + [U∗

Hv]j j = 0, . . . , Nmin − 1, (5.23)
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showing that the transmit–receive relationship can be cast as a bank of parallel subchannels,
as many as Nmin = min(Nt, Nr) under the default condition of H being full-rank; the
number of signal streams with CSIT-based transmission is then Ns ≤ Nmin. The SNR on
the jth subchannel is SNR

Nt
λj(H

∗H)Pj .

Power allocation

As we know from Section 4.4.2, when faced with a bank of parallel subchannels on which
independent signals are conveyed, the capacity-achieving power allocation is given by the
waterfilling policy. Couched for MIMO, this gives

P �
j =

[
1

η
− Nt

SNRλj(H∗H)

]+
j = 0, . . . , Nmin − 1, (5.24)

where η must ensure that
∑

j P
�
j = Nt.

Altogether, the optimum precoder features UF = VH and P = diag(P �
0 , . . . , P

�
Nmin−1).

For future reference, the optimum P �
0 , . . . , P

�
Nmin−1 in (5.24) can be reformulated as the

fixed point of the equations

P �
j =

1−MMSEj(P
�
j )

1
Nmin

∑Nmin−1
q=0

(
1−MMSEq(P �

q )
) j = 0, . . . , Nmin − 1, (5.25)

where

MMSEj(P
�
j ) =

1

1 + SNR
Nt

P �
j λj(H∗H)

(5.26)

is the MMSE incurred when estimating [s]j by observing y. It can be verified that (5.24)
indeed solves (5.25).

Capacity
With the optimum precoder diagonalizing the channel and allocating power via waterfill-
ing, the capacity of a given channel H equals

C(SNR,H) =

Nmin−1∑
j=0

log2

(
1 +

SNR

Nt
λj(H

∗H)P �
j

)
(5.27)

=

Nmin−1∑
j=0

[
log2

(
SNR

Nt

λj(H
∗H)

η

)]+
. (5.28)

Some observations are in order.

Because the nonzero eigenvalues of H∗H and HH∗ coincide, the capacity is un-
changed if the channel matrix is transposed, i.e., if the roles of transmitter and receiver
are reversed. This duality between the forward and reverse transmissions in SU-MIMO
with CSIR and CSIT is but the tip of the iceberg of a deeper and powerful duality that is
expounded later in the book, in the context of multiuser communication. (Without CSIT,
this duality ceases to hold in general.)
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A further implication of the aforementioned duality is that swapping the values of Nt

and Nr does not alter the capacity with CSIR and CSIT, i.e., a channel with Nr transmit
and Nt receive antennas offers the same capacity as a channel with Nt transmit and Nr

receive antennas. (Again, this is generally not the case without CSIT.)

Referring back to the notion of beamforming, whereby a scalar signal is simultaneously
emitted from various antennas with suitable coefficients—the array response—applied, a
useful interpretation of an optimum CSIT-based MIMO transmission is as a set of concur-
rent beams where the jth such beam conveys the jth entry of s with power determined by
Pj and with an array response given by the jth column of VH , that is, by the jth eigenvec-
tor of H∗H . The rotation U∗

H at the receiver can also be interpreted as a set of concurrent
beams, defined by the columns of this matrix. The optimality arises because such transmit
beams interlock perfectly with such receive beams along the channel’s preferred directions,
and these interlocked beams form orthogonal signal routes whose powers can be optimized
via waterfilling. This interpretation is appealing, yet in its context the term “beam” should
be used with the understanding that, while the angular distribution of power launched and
received would retain the form of a beam in an LOS channel, multipath propagation dis-
torts these angular structures—possibly beyond recognition. Hence, these beams exist in
the vector space spanned by H , but not necessarily in the angular domain.

The foregoing interpretation can be further stretched to construe the transmission of the
jth entry of s as a scaling (by the magnitude of [s]j) and rotation (by the phase of [s]j)
of the jth beam. MIMO would then amount to concurrent beams switching at the symbol
rate with respect to directions dictated by the precoder and, when CSIT is available, these
directions are the channel’s preferred ones.

Besides optimum precoding, the other necessary ingredient in CSIT-based transmission
is link adaptation, whereby the bit rate of each of the Nmin signal streams is matched to
the SNR of the corresponding subchannel. We defer the issue of MIMO link adaptation
to Section 5.9, toward the end of the chapter, so as to leverage notions that are yet to be
discussed and provide a more general view of this aspect.

Limiting regimes

Low-SNR regime

For SNR → 0, waterfilling dictates that all the power be allocated onto the strongest sub-
channel, which amounts to the precoder concentrating the power along the maximum-
eigenvalue eigenvector of H∗H . This reduces the transmission to a single beam, which is
what the term “beamforming” is typically reserved for: a transmission of unit rank, Ns = 1.
This definition is the one espoused in this text, regardless of whether the power actually
holds an angular beam shape.

If the largest eigenvalue of H∗H has plural multiplicity, low-SNR optimality may re-
quire multiple equal-power beams determined by the corresponding eigenvectors.
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High-SNR regime

For SNR → ∞, the waterfilling power allocation becomes uniform and (5.27) expands as

C(SNR,H) = Nmin log2 SNR+O(1), (5.29)

evidencing that the number of DOF is S∞ = Nmin: every 3-dB increment in SNR yields
Nmin additional b/s/Hz. This scaling is consequential, as it ignited the interest in MIMO.

The expansion in (5.29) can be further refined by means of L∞, which in MIMO repre-
sents the offset (in 3-dB units) with respect to a bank of S∞ parallel AWGN channels. From
the definition in (4.46) and the capacity in (5.27), the power offset emerges as follows. If
Nt ≤ Nr, then P �

j = 1 for j = 0, . . . , Nt − 1 and

L∞(H) = lim
SNR→∞

(
log2 SNR− C(SNR)

Nt

)
(5.30)

= log2 Nt − 1

Nt

Nt−1∑
j=0

log2 λj(H
∗H) (5.31)

= log2 Nt − 1

Nt
log2 det(H

∗H). (5.32)

Conversely, if Nt ≥ Nr, then P �
j = Nt/Nr for j = 0, . . . , Nr − 1 and

L∞(H) = log2 Nr − 1

Nr
log2 det(HH∗). (5.33)

In both cases, the premise of a full-rank channel ensures that the log-determinants are
bounded, and the refinement of (5.29) materializes as

C(SNR,H) = Nmin

(
log2 SNR− L∞(H)

)
+O

(
1

SNR

)
. (5.34)

Discrete constellations
It is important to stress that the optimality of a precoder of the form F = UF

[
P 1/2 0

]T
,

and the ensuing diagonalization of the channel into parallel subchannels, rest on the signals
being Gaussian. If the signals are drawn from other distributions, then complete precoders
F = UF

[
P 1/2 0

]T
V ∗
F may perform better. The incorporation of the mixing matrix VF has

direct consequences for discrete constellations. On the one hand, it allows forming richer
signals, which is relevant beyond some SNR; on the other hand, since the mixed signals
launched into the channel are then not independent, it makes joint processing preferable
and consequently it makes channel diagonalization generally undesirable. The receiver
then becomes more involved than a mere bank of scalar decoders [466].

Example 5.1

Let Nt = 2 with s containing two QPSK signals. When is a mixing matrix desirable?
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Solution

Without a mixing matrix, at most 2 b/s/Hz can be dispatched through each of the columns
of UF . If either of the two subchannels that would be obtained by diagonalizing H could
accommodate a higher spectral efficiency, then a mixing matrix becomes desirable so as to
produce a vector V ∗

F s containing two 16-ary signals.
However, because these two 16-ary signals are not independent, the steering matrix UF

that maximizes the mutual information then no longer equals VH and the channel is not
diagonalized, meaning that joint processing of the two signals based on the observation of
y becomes necessary.

The intuition provided by the foregoing example applies in broad generality: the mixing
matrix becomes relevant whenever the spectral efficiency of the densest available constel-
lation is insufficient if the power concentrates on the strongest subchannel, i.e., when

log2 M < log2
(
1 + SNRλmax(H

∗H)
)
, (5.35)

with λmax(·) denoting the largest eigenvalue. Referring back to Fig. 4.3, the mixing matrix
is relevant if we want to operate past the point where the spectral efficiency of the con-
stellation ceases to hug the capacity. As long as this can be avoided, for instance with link
adaptation that switches to denser constellations when the SNR is high, the optimum pre-
coder devised for Gaussian signals remains effective. In well-designed systems, this should
be the case.

If the constellations are constrained and insufficiently rich in a significant share of chan-
nel realizations, then the mixing matrix does help. And, just as the I-MMSE relationship for
scalar channels spawns the mercury/waterfilling solution for parallel noninteracting chan-
nels, the I-MMSE relationship for vector channels can be capitalized on to optimize the
complete precoder in MIMO. Unfortunately, and in contrast with the problem that arises
under channel diagonalization, this more general optimization is not always concave in
FF ∗ and thus the conditions [467] that can be derived through the vector I-MMSE re-
lationship are necessary but not sufficient for optimality; they are satisfied by any local
maximum, minimum, and saddle point. Gradient search algorithms can be constructed to
find these critical points [125], but due to their slow convergence these algorithms do not
seem too well suited for wireless channels. Later developments have shown that the mutual
information with arbitrary signal distributions is a concave function of the quadratic form
F ∗H∗HF , thereby opening the door to globally convergent algorithms [74, 468–470];
again, though, the slow convergence may restrict the applicability. As a simpler alternative,
and despite being suboptimum, diagonalizing precoders of the form F = VH

[
P 1/2 0

]T
can be used and then the best P for such precoders is given by mercury/waterfilling. In-
termediate solutions offering a compromise between optimum precoding and pragmatic
diagonalization-plus-mercury/waterfilling have also been formulated. These include the
X-codes [471], which first diagonalize the channel and then further precode by mixing se-
lected pairs of subchannels, and also the flexible reduced-mixing approach propounded in
[472, 473].

For SNR → 0, the mixing matrix becomes unnecessary and, regardless of the signal
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distribution, the optimum precoder is the one derived for Gaussian signals, that is, beam-
forming on the maximum-eigenvalue eigenvector(s) of H∗H .

For SNR → ∞ with specific constellations, the mixing matrix is always eventually re-
quired and the optimum precoder turns out to be the one that maximizes the minimum
distance between the constellation vectors [467]. Recall, however, that communication
becomes highly power-inefficient once the spectral efficiency ceases to hug the capacity
function and that operation in this regime should be avoided. In a well-designed system
this is the case, as mentioned, also because receiver imperfections and other-user interfer-
ence prevent the SNR from truly growing without bound [474, 475]. By and large then, the
limit SNR → ∞ can be safely understood as indicating that the SNR becomes high but
within the range where the mutual information hugs the capacity.

5.3.2 Ergodic setting

The ergodic capacity with CSIT is given by the expectation of the right-hand side of (5.28)
over the distribution of λj(H

∗H) for j = 0, . . . , Nmin − 1. Since, unordered, these eigen-
values have the same marginal distribution,

C(SNR) = E

⎡
⎣Nmin−1∑

j=0

[
log2

(
SNR

Nt

λj(H
∗H)

η

)]+⎤⎦ (5.36)

= Nmin E

[[
log2

(
SNR

Nt

λ(H∗H)

η

)]+]
, (5.37)

where λ(·) is an arbitrary eigenvalue. For the canonical channel with IID Rayleigh-faded
entries, H∗H is a Wishart matrix and the PDF of λ(H∗H) is given in Appendix C.1.9.
The expectation in (5.37) can then be computed in closed form for a given η, but, unfortu-
nately, η must still be optimized numerically [476, 477].

Large-dimensional expressions are available for the ergodic capacity of channels with
IID entries [478, 479] and even with a Kronecker correlation structure [480]. These expres-
sions, however, apply only for SNRs high enough that P �

j > 0 for j = 0, . . . , Nmin − 1.

Limiting regimes

Low-SNR regime

At low SNR, recall, the waterfilling policy dictates that precoder beamform along the
maximum-eigenvalue eigenvector of H∗H for each realization of H . The SNR experi-
enced by the scalar signal sent on that eigenvector equals λmax(H

∗H) SNR and, recalling
Example 1.7,

C(SNR) =

(
E
[
λmax(H

∗H)
]
SNR− 1

2
E
[
λ2
max(H

∗H)
]
SNR2

)
log2 e+ o(SNR2).

(5.38)
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It follows, applying (4.30) and (4.39), that

Eb

N0min

=
1

E
[
λmax(H∗H)

]
log2 e

(5.39)

S0 =
2

κ
(√

λmax(H∗H)
) , (5.40)

where, as usual, κ(·) denotes kurtosis. If λmax(H
∗H) has plural multiplicity, (5.39) holds

regardless of how the power is allocated among the corresponding eigenvectors (refer to
Problem 5.12). To maximize S0, however, the transmit power should be evenly divided
among those eigenvectors and then (5.38) and (5.40), which correspond to power allocation
on only one eigenvector, should be modified accordingly. We also note that (5.38)–(5.40)
hold for non-Gaussian signals as long as these are proper complex.

The contrast of (5.39) with its SISO counterpart

Eb

N0min

=
1

log2 e
= −1.59 dB (5.41)

indicates that, thanks to the beamforming, the transmit power required to achieve Eb

N0 min
can be reduced by E[λmax(H

∗H)]|dB relative to SISO. Alternatively, from (5.38), beam-
forming multiplies the capacity at a given (low) SNR by E[λmax(H

∗H)].
The expectation of λmax(H

∗H) is far from simple, precluding direct general insights.
In special cases though, insight is forthcoming.

Example 5.2 (Beamforming in a SIMO channel)

For Nt = 1, we are faced with a single-input multiple-output (SIMO) channel. Then, H is
a column vector and E[λmax(H

∗H)] = Nr. Receive beamforming amounts to maximum-
ratio combining via the linear filter UH = 1

‖H‖H at the receiver.

Example 5.3 (CSIT-based beamforming in a MISO channel)

For Nr = 1, we have a multiple-input single-output (MISO) channel. Then, H is a row
vector and beamforming reduces to maximum-ratio transmission whereby the precoder
equals F =

√
Nt

‖H‖H
∗ while E[λmax(H

∗H)] = Nt.

Example 5.4 (CSIT-based beamforming in a fully correlated MIMO channel)

If the antennas are fully correlated at both the transmitter and the receiver, then we have
that E

[
λmax(H

∗H)
]
= NtNr.

To unleash further intuition, we can let Nt and Nr grow large with ratio β = Nt/Nr

[481]. If the entries of H are IID and zero-mean, then the multiplicity of λmax(H
∗H)

becomes one while its value converges a.s. to a nonrandom limit. Precisely [482]

λmax(H
∗H)

Nr

a.s.→
(
1 +

√
β
)2

. (5.42)
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Thus, in the absence of antenna correlations and for sufficiently large Nt and Nr,

E
[
λmax(H

∗H)
] ≈ (√

Nt +
√
Nr

)2

, (5.43)

which is substantially smaller than the NtNr gain obtained in Example 5.4 for full correla-
tion. Indeed, correlation is beneficial at low SNR, or whenever one chooses to beamform,
because it creates preferred directions on which the channel is stronger and the beamform-
ing more effective.

Example 5.5

Suppose that Nt = Nr = 8 with the entries of H being IID. By how much can the transmit
power be reduced, relative to SISO, while maintaining the same low-SNR capacity?

Solution

Applying the large-dimensional approximation, we obtain

E
[
λmax(H

∗H)
]|dB ≈ 20 log10

(√
Nt +

√
Nr

)
= 15 dB, (5.44)

while the exact dB value, computed via Monte-Carlo, is E
[
λmax(H

∗H)
]|dB = 13.8 dB.

The transmit power can be reduced by this dB amount, relative to SISO, and still achieve
the same capacity at a receiver operating at low SNR. Alternatively, keeping the same
transmit power, the capacity can be scaled (to first order) by the corresponding linear factor,
E
[
λmax(H

∗H)
]
= 23.7.

The foregoing results on beamforming have added importance because, in addition to
being the optimum scheme at low SNR, beamforming is a popular and relatively simple
technique that could be exercised irrespective of the SNR whenever CSIT is available.

High-SNR regime

The high-SNR behavior in (5.29), which applies to every full-rank channel realization,
translates to any ergodic setting where such condition holds with probability 1. For all
channels of interest then, S∞ = Nmin. As far as the power offset goes, by expecting over
(5.32) and (5.33) we obtain, for Nt ≤ Nr,

L∞ = log2 Nt − 1

Nt
E
[
log2 det(H

∗H)
]
, (5.45)

whereas, for Nt ≥ Nr,

L∞ = log2 Nr − 1

Nr
E
[
log2 det(HH∗)

]
. (5.46)

Although general closed forms for L∞ seem out of reach, solutions can be found when the
entries of H are Rayleigh-faded.
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Example 5.6 (Power offset for an IID Rayleigh-faded MIMO channel with CSIT)

If Nt ≤ Nr, then H∗H is a Wishart matrix. Invoking (C.28) in Appendix C.1.9, the
expression in (5.45) specializes to

L∞ = log2 Nt − log2 e

Nt

Nt−1∑
j=0

ψ(Nt − j), (5.47)

where ψ(·) is the digamma function (see Appendix E.2). Exploiting the recursive property
in (E.9) we further obtain [479, 483–485]

L∞ = log2 Nt +

⎛
⎝γEM −

Nr−Nt∑
q=1

1

q
− Nr

Nt

Nr∑
q=Nr−Nt+1

1

q
+ 1

⎞
⎠ log2 e. (5.48)

If Nt ≥ Nr, then, replicating the preceding derivation with the Wishart matrix HH∗, or
merely interchanging Nt and Nr, we obtain

L∞ = log2 Nr +

⎛
⎝γEM −

Nt−Nr∑
q=1

1

q
− Nt

Nr

Nt∑
q=Nt−Nr+1

1

q
+ 1

⎞
⎠ log2 e. (5.49)

For Nt = Nr = Na, both expressions reduce to the common form

L∞ = log2 Na +

(
γEM −

Na∑
q=2

1

q

)
log2 e. (5.50)

Example 5.7 (Power offset for a MIMO channel with Kronecker correlations,
Nt = Nr and CSIT)

For H = R
1/2
r HwR

1/2
t and Nt = Nr = Na,

L∞ = log2 Na − 1

Na
E
[
log2 det (H

∗
wRrHwRt)

]
(5.51)

= log2 Na − 1

Na
E
[
log2 det (H

∗
wRrHw)

]− 1

Na
log2 det (Rt) (5.52)

= log2 Na − 1

Na
E
[
log2 det (HwH

∗
w)

]
− 1

Na
log2 det (Rt)− 1

Na
log2 det (Rr) (5.53)

= log2 Na +

(
γEM −

Na∑
q=2

1

q

)
log2 e

− 1

Na

Na−1∑
j=0

log2 λj(Rt)− 1

Na

Na−1∑
i=0

log2 λi(Rr), (5.54)

which equals the power offset of a channel without correlations, given in (5.50), plus two
corrective terms associated with the transmit and receive correlations, respectively. These
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corrections are positive, e.g., for Rt, applying Jensen’s inequality,

− 1

Na

Na−1∑
j=0

log2 λj(Rt) ≥ − log2

⎛
⎝ 1

Na

Na−1∑
j=0

λj(Rt)

⎞
⎠ = 0 (5.55)

and therefore, as they increase the power offset, both types of correlation are detrimental
for Nt = Nr = Na.

Derivations similar to the one above can be conducted for Nt < Nr with correlation
only at the transmitter, and for Nt > Nr with correlation only at the receiver. The general
case Nt �= Nr with correlation at both ends requires additional mathematical machinery,
and the interested reader is referred to [355, proposition 4].

5.4 No CSIT

Let us now turn our attention to the case that the transmitter is not privy to H , but only
to its distribution. Without CSIT, no time-domain power control is possible at the small-
scale level and thus we need not distinguish between per-codeword and per-symbol power
constraints. The fundamental quantity here is the mutual information between s and y,
conditioned on H to register the CSIR. The arguments that prove the optimality of complex
Gaussian signals in SISO extend readily to MIMO and hence, recalling Example 1.13,

I(s;y|H) = log2 det

(
I +

SNR

Nt
HFF ∗H∗

)
(5.56)

where the precoder satisfies tr(FF ∗) = tr(P ) = Nt.

5.4.1 Quasi-static setting

In a flat-faded quasi-static setting, we must resort to the notion of outage capacity intro-
duced for SISO, only with the mutual information of the scalar channel replaced by (5.56).
This gives

Cε(SNR) = max
c

(c : pout(SNR, c) < ε), (5.57)

with the outage probability being

pout(SNR, R/B) = P

[
log2 det

(
I +

SNR

Nt
HFF ∗H∗

)
< R/B

]
. (5.58)

The case Nt = 1, while not strictly MIMO but rather SIMO, has historical significance
as it embodies receive diversity setups that preceded MIMO when the idea of multiantenna
devices was still far-fetched.

Example 5.8

Express the outage probability in a Rayleigh-faded SIMO channel.
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Solution

Let Nt = 1 and let the vector H have IID Rayleigh-faded entries. Then, ‖H‖2 ∼ χ2
2Nr

,
meaning that ‖H‖2 follows a chi-square distribution with 2Nr degrees of freedom (see
Appendix C.1.9) and

pout(SNR, R/B) = P
[
log2

(
1 + SNR ‖H‖2) < R/B

]
(5.59)

= P

[
‖H‖2 <

2R/B − 1

SNR

]
(5.60)

=

∫ (2R/B−1)/SNR

0

f‖H‖2(ξ) dξ (5.61)

=

∫ (2R/B−1)/SNR

0

ξNr−1e−ξ

(Nr − 1)!
dξ (5.62)

=
γ
(
Nr, (2

R/B − 1)/SNR
)

(Nr − 1)!
, (5.63)

where the chi-square PDF appears in (5.62) while γ(·, ·) is the lower incomplete Gamma
function (see Appendix E.1).

For Nt > 1, the transmitter has the added freedom of selecting the precoder F . Strictly
speaking, the outage capacity then entails a maximization over F for each choice of pout.
This maximization is in general unwieldy and the term “outage capacity” is typically in-
voked even if F is fixed or outright absent. Nonetheless, as the following examples il-
lustrate, in some special cases it is indeed possible to, at least partially, characterize the
optimum F as a function of pout.

Example 5.9

Determine the outage-optimum precoder for a channel with IID Rayleigh-faded entries.

Solution

If H has IID complex Gaussian entries, or more generally it is unitarily invariant, then the
steering matrix UF is immaterial because HUF ∼ H and we can confine the optimization
to the diagonal power allocation matrix P . Based on the symmetry of the problem, Telatar
conjectured that the optimum precoder might have the form [25]

F =
Nt

Q
diag

(
1, . . . , 1︸ ︷︷ ︸
Q ones

, 0, . . . , 0︸ ︷︷ ︸
Nt−Q zeros

)
, (5.64)

with Q dependent on pout. This conjecture was eventually proved for MISO channels [486].

Example 5.10

If H has correlations only at the transmitter, then the optimum UF always coincides with
the eigenvector matrix of Rt [487]. The power allocation P , however, must be optimized
numerically depending on pout and SNR.
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In the high-SNR regime, recall, the tradeoff between spectral efficiency and outage prob-
ability is very often studied through their proxies, the multiplexing gain r and the diversity
order d respectively, with the DMT as the benchmark. With MIMO, the term multiplex-
ing gain acquires its full significance as it becomes possible that r > 1. More precisely,
0 ≤ r ≤ Nmin. The full DMT for Rayleigh fading is defined by the piecewise linear curve
connecting the points (r, d) where r = 0, . . . , Nmin and [395]

d = (Nt − r)(Nr − r). (5.65)

At one end of the DMT, r = 0 and d = NtNr: the spectral efficiency does not increase
for SNR → ∞ (at least not with log2 SNR) and the outage probability then decays as
1/SNRNtNr , accelerated by MIMO. At the other end, r = Nmin and d = 0: the spectral
efficiency does increase as R/B = Nmin log2 SNR + O(1) with the full force of MIMO
directed toward a higher spectral efficiency, but the outage probability does not decay with
SNR (at least not polynomially). We note the following.

Noninteger values for r and d are possible, simply by scaling the spectral efficiency
fractionally with log2 SNR.
For suboptimum transmit and receive architectures, the tradeoff between r and d may
fall short of the DMT in (5.65).
Ns and r should not be confused. The former is the number of signal streams that are
simultaneously transmitted whereas the latter informs of how the amount of information
encoded in these streams scales with log2 SNR. For sure, r ≤ Ns.
If there is a precoder, only its rank Ns affects the DMT. This does not imply that the
precoder choice is irrelevant at high SNR, but that the coarse description provided by
the DMT is unable to distinguish between different precoders of the same rank.
The DMT is likewise insensitive to nonsingular antenna correlations, because they do
not modify the number of spatial DOF.

As explicated in Section 4.5.2, care must be exercised not to extrapolate the meaning of
the DMT beyond what it actually signifies.

Example 5.11

Draw the DMT for Nt = 3 and Nr = 4 in Rayleigh fading.

Solution

See Fig. 5.3.

As the number of antennas grows large, the fluctuations of the mutual information
around its expected value tend, in fairly broad generality, to a normal behavior [488–497].
This is because, even though each entry of H is stuck at a given value in a quasi-static
setting, with an increasing number of entries the fading distribution is revealed and outage-
free communication becomes possible [498, 499]. Put differently, the quasi-static setting
becomes progressively ergodic in the space domain and thus the ergodic capacity, studied
next, is directly the metric of interest.



314 SU-MIMO with optimum receivers

��,��

��,��

��,	�

��,���

d

r

�Fig. 5.3 DMT for Nt = 3 and Nr = 4 in Rayleigh fading.

5.4.2 Ergodic setting

From (5.56), the ergodic capacity equals

C(SNR) = max
F :tr(FF ∗)=Nt

E

[
log2 det

(
I +

SNR

Nt
HFF ∗H∗

)]
, (5.66)

which is the vector brethren of (4.165), only involving a convex optimization over FF ∗

(or equivalently over the transmit covariance Rx) [500]. Indeed, the expectation in (5.66)
is concave in FF ∗ and the set of admissible matrices FF ∗, i.e., positive-semidefinite and
satisfying tr(FF ∗) = Nt, is convex.

Although one can concoct channels where the capacity-achieving precoder is not unique,
in the vast majority of cases it is [501]. The precoder structure in Fig. 5.2 continues to
apply, only with UF and P computed differently and kept steady throughout the fading.
Completely general expressions for UF and P are not forthcoming, but a fairly precise
characterization can be provided that encompasses most of the MIMO channel models
described in Chapter 3.

Precoder optimization

Steering matrix

Let us first examine UF . For a broad class of channels (including the Kronecker and UIU
models, the IID Rice model, and the keyhole model), the optimum precoder diagonalizes
E
[
H∗H

]
[291, 502–506]; this is a gratifying counterpart to the CSIT result where H∗H

was diagonalized. Without CSIT, the strategy then amounts to diagonalizing H∗H on
average. Although this steering strategy is not universally optimum, requiring a modicum
of symmetry and structure in the distribution of H [507][508, myth 1], for most channels of
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interest we can indeed affirm that the optimum UF is the eigenvector matrix of E
[
H∗H

]
.

Next, we specialize this result to specific models.

Example 5.12 (Steering matrix for a MIMO channel with Kronecker correla-
tions and no CSIT)

Consider the Kronecker correlation model, H = R
1/2
r HwR

1/2
t . Defining the eigenvalue

decompositions Rt = UtΛtU
∗
t and Rr = UrΛrU

∗
r ,

E
[
H∗H

]
= E

[
R

1/2
t H∗

wRrHwR
1/2
t

]
(5.67)

= E

[
UtΛ

1/2
t H∗

wΛrHwΛ
1/2
t U∗

t

]
(5.68)

= UtΛ
1/2
t E

[
H∗

wΛrHw

]
Λ

1/2
t U∗

t (5.69)

= Nr UtΛtU
∗
t , (5.70)

where, in (5.68), the unitary matrices right and left of H∗
w and Hw are absorbed therein

owing to unitary invariance whereas (5.70) follows from E
[
H∗

wΛrHw

]
= NrI . The steer-

ing matrix is thus UF = Ut.

Example 5.13 (Steering matrix for a UIU MIMO channel with no CSIT)

Let H = UrHindU
∗
t where Hind has zero-mean IND entries. Then,

E
[
H∗H

]
= E

[
UtH

∗
indHindU

∗
t

]
(5.71)

= Ut E
[
H∗

indHind

]
U∗

t , (5.72)

where E
[
H∗

indHind

]
is a diagonal matrix. Thus, UF = Ut.

Example 5.14 (Steering matrix for a Rice MIMO channel with no CSIT)

Consider the uncorrelated Rice channel

H =

√
K

K+ 1
HLOS +

√
1

K+ 1
Hw. (5.73)

Defining the eigenvalue decomposition H∗
LOSHLOS = ULOSΛLOSU

∗
LOS,

E
[
H∗H

]
=

K

K+ 1
H∗

LOSHLOS +
1

K+ 1
E
[
H∗

wHw

]
(5.74)

=
K

K+ 1
ULOSΛLOSU

∗
LOS +

Nr

K+ 1
I (5.75)

=
1

K+ 1
ULOS

(
KΛLOS +NrI

)
U∗

LOS (5.76)

and thus UF = ULOS.
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Power allocation

Recall how, with both CSIR and CSIT, the precoder’s rank was found to be Ns ≤ Nmin,
with equality at high SNR and then diminishing toward Ns = 1 (beamforming) at low
SNR. This emanates directly from the formulation of the capacity.

With only CSIR, the precoder’s rank, and the optimum power allocation over the corre-
sponding data streams, should again emerge from the capacity. We equate the steering ma-
trix, UF , to the eigenvector matrix of E[H∗H], as per the considerations in the foregoing
subsection, and proceed to optimize over P = diag(P0, . . . , PNs−1) with

∑
j Pj = Nt.

Then, (5.66) becomes

C(SNR) = max
P :tr(P )=Nt

E

[
log2 det

(
I +

SNR

Nt
HUFPU∗

FH
∗
)]

, (5.77)

which is a convex problem. Thus, the necessary and sufficient conditions satisfied by the
optimum P � can be obtained by applying the techniques in Appendix G. Alternatively,
these conditions can be derived from first principles [291, appendix B][509, 510] by im-
posing that the derivative of the spectral efficiency in the direction from P � to any other
P be negative. Plugging Pξ = (1− ξ)P � + ξP into the argument of (5.77) we obtain, for
0 ≤ ξ ≤ 1, the spectral efficiency over the line that connects P � with P . Enforcing that
its one-side derivative with respect to ξ at ξ = 0+ be negative, we obtain

E

[
tr

((
I +

SNR

Nt
HUFPU∗

FH
∗
)(

I +
SNR

Nt
HUFP

�U∗
FH

∗
)−1

− I

)]
≤ 0.

(5.78)
As it turns out, because the above condition is affine on P , imposing it on the Nt extreme
points of the set of admissible matrices P suffices to enforce it for the entire set. At the jth
extreme point (Pj = Nt, Pj′ = 0 for j′ �= j), the condition specializes to

E

[
tr

((
I + SNRHuju

∗
jH

∗)(I +
SNR

Nt
HUFP

�U∗
FH

∗
)−1

− I

)]
≤ 0, (5.79)

where uj = [UF ]:,j . The line connecting the jth extreme point with P � extends beyond
P � if and only if P �

j > 0, i.e., if and only if P � is in the interior of the set (all powers
strictly positive); the derivative at P � then vanishes and (5.79) becomes a strict equality.
Otherwise, P �

j = 0, meaning that P � is on the boundary, and (5.79) remains an inequality.
From these considerations, cartooned in Fig. 5.4, we can write

E

[
tr

((
I + SNRHuju

∗
jH

∗)(I +
SNR

Nt
HUFP

�U∗
FH

∗
)−1

)]
= Nr if P �

j > 0

≤ Nr if P �
j = 0.

(5.80)
Interestingly, these Nt equations can be rewritten to involve the MMSE that would be

incurred if we were to estimate s at the receiver, adding to the body of results that connect
information theory with estimation. Couching (1.245) for the model at hand, the MMSE
matrix if the receiver were to estimate s ∼ NC(0, I) on the basis of y would be

E = I − SNR

Nt
P 1/2U∗

FH
∗
(
I +

SNR

Nt
HUFPU∗

FH
∗
)−1

HUFP
1/2. (5.81)
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P : tr(P ) = Nt

Pj = Nt

P : tr(P ) = Nt

Pj = Nt

P �

P �

�Fig. 5.4 Convex set of matrices P satisfying tr(P ) = Nt and Pj ≥ 0, with the boundary

defined by those for which one or several powers are zero. At the extreme points,

indicated by solid circles, only one power is nonzero. Left, a case where P � is in the

interior. Right, a case where P � is on the boundary.

It follows that the estimation of [s]j would incur an error with variance

MMSEj = [E]j,j (5.82)

= 1− SNR

Nt
Pju

∗
jH

∗
(
I +

SNR

Nt
HUFPU∗

FH
∗
)−1

Huj (5.83)

while, with a bit of algebra (proposed in Problem 5.19), it can be verified that

tr

((
I +

SNR

Nt
HUFPU∗

FH
∗
)−1

)
=

Nt−1∑
j=0

MMSEj +Nr −Nt. (5.84)

For P �
j > 0, we can develop the left-hand side of (5.80) into

E

[
tr

((
I +

SNR

Nt
HUFP

�U∗
FH

∗
)−1

+SNRHuju
∗
jH

∗
(
I +

SNR

Nt
HUFP

�U∗
FH

∗
)−1

)]
(5.85)

and, subsequently, into

Nt−1∑
q=0

MMSEq +Nr −Nt + E

[
tr

(
SNRu∗

jH
∗
(
I +

SNR

Nt
HUFP

�U∗
FH

∗
)−1

Huj

)]

=

Nt−1∑
q=0

MMSEq +Nr −Nt + E

[
SNRu∗

jH
∗
(
I +

SNR

Nt
HUFP

�U∗
FH

∗
)−1

Huj

]

=

Nt−1∑
q=0

MMSEq +Nr −Nt +
Nt

P �
j

(
1−MMSEj

)
, (5.86)

where we have used (5.83) and (5.84) while defining MMSEj = E
[
MMSEj

]
. Equated to
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Nr, as per (5.80), the above gives

P �
j =

1−MMSEj

1
Nt

∑Nt−1
q=0 (1−MMSEq)

, (5.87)

which, since MMSEj depends on the power allocation, amounts to a fixed-point relation-
ship characterizing P �

0 , . . . , P
�
Nt−1. Remarkably, this fixed-point relationship is identical to

the CSIT-based one in (5.25), only with the MMSEs averaged over the fading, suggesting
that this relationship holds the key to optimality in rather wide generality.

Since [s]j is of unit-power and MMSEj would be the average power of the error es-
timating it, 1 − MMSEj would be the average power of the signal estimate. Examining
(5.87) then, P �

j , which is the share of the total transmit power allocated to the jth signaling
eigenvector, should equal the share of average signal power that would be recovered from
that eigenvector by an LMMSE estimator. If the channel is poor on average along the jth
signaling eigenvector, then P �

j = 0 and MMSEj = 1, and that dimension can be taken out
of the optimization. Specifically, developing (5.80) with P �

j = 0, the precise condition for
the jth dimension not to be active emerges as

1

Pj
E

[
1

MMSEj
− 1

]
≤ 1

Nt

Nt−1∑
q=0

(1−MMSEq) (5.88)

for Pj → 0.
Despite the parallelism between the CSIT-based expression in (5.25) and its no-CSIT

counterpart in (5.87), two differences do exist.

With CSIT, Ns ≤ Nmin while, without CSIT, the optimization yields a precoder whose
rank is possibly as large as Nt. This difference, only material for Nt > Nr, is com-
mented on in Discussions 5.2–5.4.
Whereas the CSIT-based solution reduces to a waterfilling, the no-CSIT solution does
not. Because the signals sent through the eigenvectors of E

[
H∗H

]
are mutually inter-

fering at the receiver, the power allocation that solves (5.87) is in general not a water-
filling; in particular, a waterfilling—sometimes termed statistical waterfilling—on the
eigenvalues of E

[
H∗H

]
does not generally lead to the capacity-achieving power allo-

cation P �, although it can provide solutions that are quite satisfactory [511].

Rather than the hallway to a waterfilling, (5.87) and (5.88) constitute a set of coupled
equations that invites an iterative approach, and indeed simply feeding P0, . . . , PNt−1 re-
peatedly into these relationships tends to lead to a solution [512]. An obvious hurdle, how-
ever, is the need to average MMSE0, . . . ,MMSENt−1 over the fading at every iteration to
find MMSE0, . . . ,MMSENt−1. This obstacle can be dodged in several ways.

Using closed forms for MMSEj in those cases in which they are known [513–515].
Borrowing solutions obtained in the large-dimensional regime, where the fading-related
randomness disappears and the averaging is no longer needed.
Leveraging the simpler solutions that emerge in the low- and high-SNR regimes.
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Discussion 5.2 Dimensional overloading

With CSIR, but no CSIT, the optimum precoder can have a rank as large as Nt. For
Nt > Nr, this entails overloading the channel with more signal streams than receiver
dimensions. The benefit of overloading tends to be modest, and it takes a toll in receiver
complexity, but it is necessary to reach capacity when the eigendirections of H are not
known to the transmitter. Take the all-important channel with IID entries: the optimum
precoder with CSIR but no CSIT, F = I , does entail transmission from all antennas,
even if Nt > Nr.

Enter pilot overhead, which, as shown later in the chapter, scales with the precoder’s
rank. One could think that, given the modest advantage of overloading, a precoder of
lower rank requiring less overhead may actually be preferable; in channels with IID
entries, this would amount to activating less than Nt antennas.

In underspread channels, as it turns out, the additional overhead associated with an
overloading precoder only erases the corresponding benefits at extreme SNRs (either
very small or very large). Elsewhere these benefits largely stand, and altogether the CSIR
results obtained throughout this chapter—possible refined by the appropriate overhead
and channel-estimation-related SNR penalty—are representative of pilot-assisted trans-
mission. The issue of dimensional overloading is revisited in Discussions 5.3 and 5.4,
and it is the subject of Problems 5.41–5.44.

Resorting to suboptimum but easier-to-compute power allocations. This is a pragmatic
yet often effective option, with the most popular power allocations being the uniform
one and the one derived from statistical waterfilling [516]. An additional alternative is
to allocate power uniformly over a subset of the precoder’s steering directions [517].

Some of these options are discussed in the balance of this section, and the last option is
elaborated, in the context of CSI feedback, at the end of the chapter. And, for the important
class of channels in the next example, the precoder becomes altogether unnecessary.

Example 5.15 (Precoder for MIMO channels with no transmit correlations and
no CSIT)

Let H = R
1/2
r Hw, whose columns are independent and have the same marginal distribu-

tion. From Example 5.12, UF = I . Let P be any power allocation satisfying tr(P ) = Nt

and let P (n) be its n-position cyclic shift, i.e., such that P (n)
j = Pj′ with j′ = ((j −n))Nt

.
Clearly,

1

Nt

Nt−1∑
n=0

P (n) = I (5.89)

and, applying Jensen’s inequality,

E

[
log2 det

(
I +

SNR

Nt
HH∗

)]
= E

[
log2 det

(
I +

SNR

Nt
H

(
1

Nt

Nt−1∑
n=0

P (n)

)
H∗

)]
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≥ 1

Nt

Nt−1∑
n=0

E

[
log2 det

(
I +

SNR

Nt
HP (n)H∗

)]
(5.90)

= E

[
log2 det

(
I +

SNR

Nt
HPH∗

)]
, (5.91)

where (5.91) holds because the distribution of H = R
1/2
r Hw is invariant to any cyclic

shift of its columns, meaning that the distribution of HP (n)H∗ does not depend on n.
Altogether, a uniform power allocation (P = I) outperforms any other choice of P and, in
conjunction with UF = I , leads to an unprecoded transmission [518, 519]. A special case
of this is the canonical channel with IID Rayleigh-faded entries, for which an unprecoded
transmission indeed achieves capacity [25].

Capacity
Although the lack of general explicit expressions for the optimum precoder hampers the
provision of closed forms for the no-CSIT ergodic capacity, the abundance of channels for
which an unprecoded transmission is optimal facilitates a number of important instances.
Before graduating to full MIMO, let us consider the special case of SIMO, where the
precoder optimization is immaterial.

Example 5.16 (Capacity of an IID Rayleigh-faded SIMO channel)

For Nt = 1, (5.66) specializes to

C(SNR) = E

[
log2

(
1 + SNR ‖H‖2

)]
, (5.92)

which equals the capacity of a SISO channel (recall (4.165)), only with ‖H‖2 in lieu of
|H|2. This reflects the fact that, in a SIMO channel, capacity can be achieved by simply
combining the signals at the Nr receive antennas and applying a scalar decoder.

As seen in the quasi-static SIMO setting of Example 5.8, when the entries of H are IID
complex Gaussian, the distribution of ‖H‖2 is chi-square (see Appendix C.1.9). Then, the
ergodic capacity equals

C(SNR) =

∫ ∞

0

log2(1 + SNR ξ) f‖H‖2(ξ) dξ (5.93)

=

∫ ∞

0

log2(1 + SNR ξ)
ξNr−1e−ξ

(Nr − 1)!
dξ (5.94)

= e1/SNR
Nr∑
q=1

Eq
(

1

SNR

)
log2 e, (5.95)

where the integration is solved by invoking (C.37) and where Eq(·), recall, is an exponential
integral.

As it turn out, the SIMO setting appears as a building block in the analysis of certain
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MIMO receiver structures and hence the expressions in Example 5.16 are to be encountered
repeatedly throughout the text.

Moving onto MIMO now, we next generalize Example 5.16, giving a closed form for
the capacity of the all-important canonical channel.

Example 5.17 (Capacity of an IID Rayleigh-faded MIMO channel with no CSIT)

If H has IID Rayleigh-faded entries, no precoder is needed and

C(SNR) = E

[
log2 det

(
I +

SNR

Nt
HH∗

)]
(5.96)

=

Nmin−1∑
j=0

E

[
log2

(
1 +

SNR

Nt
λj

(
HH∗))]

(5.97)

= Nmin E

[
log2

(
1 +

SNR

Nt
λ

)]
(5.98)

= Nmin

∫ ∞

0

log2

(
1 +

SNR

Nt
ξ

)
fλ(ξ) dξ (5.99)

= eNt/SNR
Nmin−1∑
i=0

i∑
j=0

2j∑
�=0

[(
2i− 2j

i− j

)(
2j + 2Nmax − 2Nmin

2j − �

)

· (−1)� (2j)! (Nmax −Nmin + �)!

22i−� j! �! (Nmax −Nmin + j)!

Nmax−Nmin+�+1∑
q=1

Eq
(

Nt

SNR

)]
log2 e,

(5.100)

where (5.98) holds because the Nmin unordered nonzero eigenvalues of the Wishart matrix
HH∗ have the same marginal distribution, and λ is any of those eigenvalues. The distri-
bution fλ(·) is given in Appendix C.1.9 and the result of the integration in (5.99), solved in
[520], directly generalizes the SISO formula in Example 4.27. To express the final result,
we introduced Nmax = max(Nt, Nr).

An alternative closed form for C(SNR), with a recursive structure, is [521]

C(SNR) =

Nmin−1∑
i=0

i∑
j=0

i∑
�=0

(
i

j

)
(i+Nmax −Nmin)! (−1)j+�

(i− �)! (Nmax −Nmin + j)! (Nmax −Nmin + �)! �!

· Ij+�+Nmax−Nmin

(
SNR

Nt

)
log2 e, (5.101)

where I0(ρ) = e1/ρ E1(1/ρ) and

Ik(ρ) = k Ik−1(ρ) + (−ρ)−k

[
I0(ρ) +

k∑
q=1

(q − 1)! (−ρ)q

]
. (5.102)
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for MIMO with Nt = Nr = 4. Dashed, corresponding high-SNR expansions. Circles,

large-dimensional approximation to the MIMO case.

Yet another form for C(SNR), this one involving an infinite series but no exponential
integral functions, is given in [522].

Example 5.18

Recover the capacity of a SIMO channel with IID Rayleigh-faded entries as a special case
of MIMO.

Solution

Plugging Nt = 1, Nmin = 1, and Nmax = Nr into either (5.100) or (5.101), the SIMO
capacity expression in Example 5.16 is readily recovered.

Example 5.19

Under IID Rayleigh fading, plot C(SNR) for a SISO channel, for a SIMO channel with
Nr = 4, and for a MIMO channel with Nt = Nr = 4.

Solution

The plots are shown in Fig. 5.5, and the benefits of unlocking new signaling dimensions
with MIMO are manifest.

The exact expressions for the capacity become rapidly unwieldy once features such as
antenna correlations or Rice terms are incorporated. With only receive antenna correlations,
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exact closed forms for C(SNR) can still be found [523–526]. With transmit antenna corre-
lations and/or Rice terms, only capacity bounds—in some cases corresponding to the exact
spectral efficiency without precoding—are available [274, 484, 527–536]. Although these
exact expressions and bounds are analytical conquests that allow circumventing Monte-
Carlo evaluations, they offer little in the way of insight. Further intuition is often sought by
examining various asymptotic regimes, a task we next embark on.

Prior to that, though, a few observations can already be advanced concerning the impact
of antenna correlation.

Without precoding, both transmit and receive correlations are detrimental to the spectral
efficiency at every SNR [537]. The eigenvalues of E

[
H∗H

]
become dissimilar with

correlation, and the uniform power allocation in an unprecoded transmission is then
inadequate.
With optimum precoding, conversely, transmit correlations enable focusing power. For
MISO specifically, this has been shown to increase the capacity at every SNR [513]. The
extension of this wisdom to MIMO is to be found in the asymptotic realm.

Discrete constellations
Recalling Example 1.14, we can cast the spectral efficiency with precoder F and an equipro-
bable M -ary constellation per stream, such that s takes values sm for m = 0, . . . ,MNs−1,
as

R

B
= −E

⎡
⎢⎣log2

⎛
⎜⎝ 1

πNr

1

MNs

MNs−1∑
m=0

exp

⎛
⎜⎝−

∥∥∥√GEs

Nt
HF (s− sm) + v

∥∥∥2

N0

⎞
⎟⎠
⎞
⎟⎠
⎤
⎥⎦

−Nr log2(πe) (5.103)

= − 1

MNs

MNs−1∑
m′=0

E

⎡
⎣log2 MNs−1∑

m=0

exp

⎛
⎝−

∥∥∥∥∥
√

SNR

Nt
HF (sm′ − sm) + v′

∥∥∥∥∥
2
⎞
⎠
⎤
⎦

+Ns log2 M −Nr log2 e, (5.104)

where the expectation over the equiprobable signal vector s has been effected in (5.104),
by means of the outer average over the auxiliary index m′, leaving an expectation over the
scaled noise v′ ∼ NC(0, I) and the fading H . The optimization of this expression with
respect to the precoder F = UFP

1/2V ∗
F seems in general unwieldy. In order to tame the

problem, [538] derives a tractable bound on (5.104) and optimizes F approximately on the
basis of that bound. For M -PSK signaling and IID Rayleigh fading, a simplified version of
(5.104) is obtained in [539].

In any event, as long as the constellation is dense enough for its mutual information to
hug the capacity in almost all channel realizations at the SNRs of interest, the precoder that
maximizes (5.104) is hardly different from the capacity-achieving precoder derived earlier
and R/B ≈ C. In a well-designed system, this should be the case.
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Limiting regimes

Low-SNR regime

At low SNR, taking advantage of the mutual information expansion in Example 1.13,

C(SNR) = max
F :tr(FF ∗)=Nt

[
1

Nt
tr
(
E[H∗H]FF ∗) SNR

− 1

2N2
t

tr
(
E

[
(H∗HFF ∗)2

])
SNR2

]
log2 e+ o(SNR2), (5.105)

whose leading term, with a precoder diagonalizing E
[
H∗H

]
, equals

SNR

Nt

Nmin−1∑
j=0

Pj λj

(
E[H∗H]

)
. (5.106)

This value is maximized by pouring all the power on the eigenvector of E
[
H∗H

]
corre-

sponding to the largest eigenvalue, as any allocation diverting power onto weaker-gain di-
rections would yield a smaller sum. Likewise, with a precoder not diagonalizing E

[
H∗H

]
,

some power would be deflected onto eigenvectors other than the maximum-gain one. Alto-
gether then, the optimum strategy for SNR → 0 is always to concentrate all the power on
the maximum-eigenvalue eigenvector(s) of E[H∗H], a scheme dubbed statistical beam-
forming to distinguish it from CSIT-based beamforming. If λmax

(
E[H∗H]

)
is unique and

u is the corresponding eigenvector, then F =
√
Ntu and, applying (4.30),

Eb

N0min

=
1

1
Nt

tr
(
E[H∗H]FF ∗) 1

log2 e
(5.107)

=
1

tr
(
E[H∗H]uu∗) 1

log2 e
(5.108)

=
1

u∗E[H∗H]u

1

log2 e
(5.109)

=
1

λmax

(
E[H∗H]

) 1

log2 e
, (5.110)

indicating that the minimum energy per bit is reduced by λmax

(
E[H∗H]

)|dB relative to
SISO and, correspondingly, that C(SNR) is scaled (to first-order) by λmax

(
E[H∗H]

)
.

As far as S0 is concerned, plugging the asymptotically optimal (SNR → 0) precoder
F =

√
Ntu into (5.105),

C(SNR) =

[
λmax

(
E[H∗H]

)
SNR− 1

2
tr
(
E

[
(u∗H∗Hu)

2
]
SNR2

)]
log2 e

+ o
(
SNR2

)
(5.111)

=

[
λmax

(
E[H∗H]

)
SNR− 1

2
E
[‖Hu‖4] SNR2

]
log2 e+ o

(
SNR2

)
, (5.112)

which, applying (4.39), gives

S0 =
2

κ
(‖Hu‖) . (5.113)
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Discussion 5.3 Precoder’s rank at low SNR

With only CSIR, the optimum precoder’s rank at low SNR equals the multiplicity of
λmax

(
E[H∗H]

)
, with uniform power allocation over the applicable streams if the mul-

tiplicity is plural. In a channel with IID entries, this amounts to an equal-power trans-
mission from all antennas, F = I , which involves dimensional overloading if Nt > Nr.

The pilot overhead, however, is proportional to the number of streams and it increases
as the SNR shrinks. At sufficiently low SNR, in the vicinity of Eb

N0 min
, transmitting a

single stream is preferable once we account for the overhead, and thus a beamforming-
based computation of Eb

N0 min
and S0 would lead to a more exact asymptote for pilot-

assisted communication. In underspread fading though, as the SNR inches up, additional
streams are quickly activated and the expressions obtained with CSIR-based precoders
immediately become appropriate for pilot-assisted communication as well. For channels
with IID entries, this means F = I .

If λmax(E[H
∗H]) has plural multiplicity, then multiple signal streams can be transmit-

ted on the corresponding eigenvectors and Eb

N0 min
does not depend on how many of those

eigenvectors are activated or on how the power is divided among them (refer to Problem
5.26). However, S0 is maximized if all those eigenvectors are activated and the power is
evenly divided among them [64, 540]. The most relevant precoder in which the power is
divided among multiple signal streams at low SNR—in fact at every SNR—is F = I and,
for such unprecoded transmission, (5.105) specializes to

C(SNR) =

[
Nr SNR− 1

2N2
t

tr
(
E

[
(H∗H)

2
])

SNR2

]
log2 e+ o(SNR2) (5.114)

from which, applying (4.30) and (4.39),

Eb

N0min

=
1

Nr log2 e
(5.115)

S0 =
2N2

t N
2
r

tr
(
E [(HH∗)2]

) . (5.116)

We hasten to emphasize that (5.115) and (5.116) hold any time that F = I , regardless of
whether this is optimal or not.

Let us exemplify the applicability of the foregoing derivations of Eb

N0 min
and S0, first on

channels free of antenna correlation.

Example 5.20 (Eb

N0 min
and S0 for a MIMO channel with IID entries and no CSIT)

When the entries of H are IID, (5.115) applies. Thus, Eb

N0 min
depends only on the number

of receive antennas, irrespective of Nt and of the fading distribution. At the same time, if h
denotes an arbitrary entry of H , then

tr
(
E
[
(H∗H)2

])
=

Nt−1∑
j=0

Nt−1∑
j′=0

E

[∣∣∣[H∗H]j,j′

∣∣∣2] (5.117)
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= NtNr

(
Nt +Nr + κ(|h|)− 2

)
, (5.118)

with the reader invited, in Problem 5.28, to verify (5.118). Plugged into (5.116), this gives

S0 =
2NtNr

Nt +Nr + κ(|h|)− 2
. (5.119)

If |h| is further Rayleigh distributed, then κ(|h|) = 2 and

S0 =
2NtNr

Nt +Nr
. (5.120)

Example 5.21

In the absence of antenna correlations, how much does MIMO improve the low-SNR ca-
pacity relative to SISO?

Solution

For MIMO with Nt = Nr = Na, Eb

N0 min
= 1

Na log2 e and S0 = Na, both improved by a
factor of Na relative to their SISO counterparts. To first order, C(SNR) grows linearly with
Na or, put differently, the capacity per antenna equals the SISO capacity irrespective of the
number of antennas. This is graphically illustrated later in the chapter, in Fig. 5.16, which
compares the SISO capacity with the per-antenna MIMO capacity in IID Rayleigh fading.
Indeed, the multiantenna interference is drowned by the noise in this regime, and it is as if
we had Na noninterfering subchannels despite the lack of CSIT.

Example 5.22

In the absence of antenna correlations, how much does MIMO improve the low-SNR ca-
pacity relative to SIMO?

Solution

There is no change in Eb

N0 min
and thus no first-order improvement in C(SNR), as can be

appreciated in Fig. 5.5. Following (5.120), the slope S0 does increase when additional
transmit antennas are added, and the increase is highest while Nt � Nr.

Example 5.23

Under IID Rayleigh fading, plot C(Eb

N0
) for a SISO channel, for a SIMO channel with

Nr = 4, and for a MIMO channel with Nt = Nr = 4.

Solution

The plots, shown in Fig. 5.6, are obtained via the usual relationship

Eb

N0
=

SNR

C(SNR)
, (5.121)

with C = C. Also shown in the figure are the corresponding low-SNR expansions, with
both SIMO and MIMO exhibiting the anticipated 6-dB reduction in Eb

N0 min
relative to SISO.
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In addition, S0 = 1 for SISO, S0 = 1.6 for SIMO, and S0 = 4 for MIMO. Notice the broad
range of values over which the low-SNR expansions accurately track the actual function
C(Eb

N0
).

Example 5.24

Let (GPt/N0)|dB = 60 dB and B = 1 MHz, such that SNR = 0 dB. The fading is IID
across antennas and Rayleigh-distributed. With SISO, Eb

N0 min
= 1

log2 e = −1.59 dB and
S0 = 1 b/s/Hz/(3 dB) and, applying the ergodic capacity expression in Example 4.27, the
bit rate is found to be R = B · C(SNR) = 863 Kb/s. Relative to this SISO transmission,
by how much could MIMO with Nt = 2 and Nr = 4 reduce the power and the bandwidth
while still achieving the same bit rate?

Solution

For Nt = 2 and Nr = 4, Eb

N0 min
= 1

4 log2 e and S0 = 2.67 b/s/Hz/(3 dB). Therefore, the
transmitter can power down by 6 dB and simultaneously reduce its bandwidth by a factor
of 2.67 while still achieving the same bit rate as with SISO. An exact calculation using the
MIMO capacity expression in Example 5.17 validates this figure: the exact bit rate with
(GPt/N0)|dB = 54 dB and B = 375 kHz is 832 Kb/s, very close to the original 863 Kb/s.

Alternatively, if the original power and bandwidth are conserved, then MIMO can scale
up the SISO bit rate (to first order) by a factor of 4, giving R ≈ 4 · 863 = 3.45 Mb/s. An
exact calculation yields a MIMO bit rate of 2.86 Mb/s.
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Let us now extend the characterization of Eb

N0 min
and S0 to channels exhibiting antenna

correlations, to show how these quantities shed light on the impact of such correlations.

Example 5.25 (Eb

N0 min
and S0 for a MIMO channel with Kronecker correlations

and no CSIT)

As shown in Example 5.12, in a channel with Kronecker correlations the eigenvalues of
E
[
H∗H

]
coincide with those of Rt scaled by Nr. Thus,

λmax

(
E[H∗H]

)
= Nr λmax(Rt), (5.122)

from which (5.110) gives

Eb

N0min

=
1

Nr λmax(Rt)

1

log2 e
, (5.123)

indicating that, the stronger the transmit correlations, the better; with full transmit corre-
lation, λmax(Rt) = Nt and the reduction in Eb

N0 min
would be maximum. Receive antenna

correlations, conversely, are irrelevant to (5.123).
In turn, after some algebra

S0 =
2N2

r

N2
r + tr

(
R2

r

) , (5.124)

which is not affected by transmit correlations. Since tr
(
R2

r

)
is minimized when Rr = I ,

receive correlations can only diminish S0 and are thus detrimental.

From the foregoing example, the impact of Kronecker antenna correlations on the low-
SNR capacity is established as follows.

Transmit correlations decrease Eb

N0 min
without affecting S0 and they are therefore always

beneficial. This is because they enhance the effectiveness of statistical beamforming.
Receive correlations diminish S0 without affecting Eb

N0 min
. Thus, they are invariably

detrimental.

Things are different without precoding, as then Eb

N0 min
is invariant to correlations but

S0 in (5.116) diminishes with both transmit and receive correlations. It follows that all
correlations are detrimental when the transmission does not take them into account [447].

Since every proper complex signal exhibits the same second-order mutual information
expansion (recall Examples 1.13 and 1.14), the foregoing low-SNR observations extend to
non-Gaussian signals. For BPSK, which is not proper complex, the expressions involving
S0 have to be reworked.

In closing this examination of low-SNR behaviors we note that, as was the case with
CSIT, the simplicity of beamforming (in this case statistical) makes it an attractive strategy
even when the SNR is moderately high [541]. The SNR breakpoint above which beam-
forming is no longer optimal can be determined as a function of the two largest eigenvalues
of E

[
H∗H

]
[487, 542–544]. The more disparate these eigenvalues, the higher the break-

point. For Kronecker correlations, this translates to the rule that, the stronger the transmit
correlations, the higher the breakpoint and the more the appeal of statistical beamforming.



329 5.4 No CSIT

High-SNR regime

Let us now turn to the high-SNR regime. For Nt ≤ Nr, the ergodic spectral efficiency with
a precoder F can be written as

R

B
= E

[
log2 det

(
I +

SNR

Nt
H∗HFF ∗

)]
(5.125)

= log2 det(SNR · INt
) + E

[
log2 det

(
1

SNR
I +

1

Nt
H∗HFF ∗

)]
(5.126)

= Nt log SNR+ E

[
log2 det

(
1

SNR
I +

1

Nt
H∗HFF ∗

)]
. (5.127)

Similarly, for Nt > Nr,

R

B
= E

[
log2 det

(
INr

+
SNR

Nt
HFF ∗H∗

)]
(5.128)

= Nr log SNR+ E

[
log2 det

(
1

SNR
I +

1

Nt
HFF ∗H∗

)]
. (5.129)

Altogether,

S∞ = Nmin = min(Nt, Nr) (5.130)

as long as H∗HFF ∗ and HFF ∗H∗ are of full rank, Nmin, such that the log-determinants
in (5.127) and (5.129) are bounded for SNR → ∞. With H being full-rank with probabil-
ity 1, the rank of the precoder must itself be no smaller than Nmin.

In terms of the power offset, applying to (5.66) the definition of L∞ given in (4.46) we
obtain, for Nt ≤ Nr,

L∞ = − 1

Nt
max

F :tr(FF ∗)=Nt

E

[
log2 det

(
1

Nt
H∗HFF ∗

)]
(5.131)

= − 1

Nt
E
[
log2 det(H

∗H)
]− 1

Nt
max

F :tr(FF ∗)=Nt

log2 det

(
1

Nt
FF ∗

)
, (5.132)

where the argument of the last term satisfies, applying Jensen’s inequality,

log2 det

(
1

Nt
FF ∗

)
=

Nt−1∑
j=0

log2
λj(FF ∗)

Nt
(5.133)

= Nt

⎛
⎝ 1

Nt

Nt−1∑
j=0

log2
λj(FF ∗)

Nt

⎞
⎠ (5.134)

≤ Nt log2

(
1

Nt

Nt−1∑
j=0

λj(FF ∗)
Nt

)
(5.135)

= Nt log2
tr(FF ∗)

N2
t

(5.136)

= Nt log2
1

Nt
. (5.137)

The above inequality becomes an equality for F = I , and thus an unprecoded transmission
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is optimal in terms of both DOF and power offset whenever Nt ≤ Nr. Precisely, S∞ = Nt

and

L∞ = log2 Nt − 1

Nt
E
[
log2 det(H

∗H)
]
. (5.138)

Interestingly, and perhaps somewhat surprisingly, these are the same S∞ and L∞ encoun-
tered without CSIT in Section 5.3.2. For Nt ≤ Nr, therefore, the absence of CSIT does
not affect the high-SNR capacity. (The receiver complexity of the receiver does increase,
since the signal streams are mutually interfering once they are not transmitted through the
channel’s eigendirections.)

In turn, for Nt > Nr,

L∞ = − 1

Nr
max

F :tr(FF ∗)=Nt

E

[
log2 det

(
1

Nt
HFF ∗H∗

)]
(5.139)

= log2 Nt − 1

Nr
max

F :tr(FF ∗)=Nt

E
[
log2 det(HFF ∗H∗)

]
, (5.140)

which need no longer be optimized by F = I , and which no longer equals its no-CSIT
counterpart. Thus, the absence of CSIT does have an effect on the high-SNR capacity for
Nt > Nr, and such is the subject of Problem 5.14.

Example 5.26 (Power offset for an IID Rayleigh-faded MIMO channel with no
CSIT)

If Nt ≤ Nr, then, borrowing the expression derived with CSIT in Example 5.6,

L∞ = log2 Nt +

⎛
⎝γEM −

Nr−Nt∑
q=1

1

q
− Nr

Nt

Nr∑
q=Nr−Nt+1

1

q
+ 1

⎞
⎠ log2 e, (5.141)

which, for the special case Nt = Nr = Na, simplifies to

L∞ = log2 Na +

(
γEM −

Na∑
q=2

1

q

)
log2 e. (5.142)

If Nt > Nr, and capitalizing on the optimality at every SNR of F = I for channels with
IID entries, we have that

L∞ = log2 Nt − 1

Nr
E
[
log2 det(HH∗)

]
, (5.143)

where HH∗ is a Wishart matrix. This allows (refer to Problem 5.34) elaborating the power
offset further into

L∞ = log2 Nt +

⎛
⎝γEM −

Nt−Nr∑
q=1

1

q
− Nt

Nr

Nt∑
q=Nt−Nr+1

1

q
+ 1

⎞
⎠ log2 e, (5.144)
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Discussion 5.4 Precoder’s rank at high SNR

Consider an IID Rayleigh-faded channel with CSIR, but no CSIT. By increasing Nt

indefinitely and transmitting Ns = Nt > Nr signal streams, sustained improvements in
high-SNR capacity are attained even with Nr held fixed. Indeed, for Nt → ∞,

Nt∑
q=1

1

q
− loge Nt → γEM, (5.146)

which, plugged into (5.144), returns L∞ → 0. In contrast, the power offset given for
Nt = Nr in (5.142) is invariably positive, meaning that with CSIR, but no CSIT, there
are benefits to be had by overloading.

At the same time, the additional pilot symbols required by the overloading antennas
erode the DOF, meaning that the improvement in L∞ comes at the expense of some
reduction in S∞. For SNR → ∞, it is thus best not to overload once the overhead is ac-
counted for and, indeed, if we remove the CSIR, the optimum number of active transmit
antennas does equal Nmin at asymptotically high SNRs. Again though, in underspread
fading, as soon as we back off from infinity and consider SNRs of interest, CSIR-based
expressions become appropriate for pilot-assisted transmission as well. For Nt > Nr,
this means that the overloading-based power offset in (5.144) is meaningful—possibly
in conjunction with the suitable overhead discount and channel estimation penalty.

in reference to which the reader is referred to Discussion 5.4.

Example 5.27 (Power offset for an IID Rayleigh-faded SIMO channel)

For SIMO, (5.141) specializes to

L∞ =

(
γEM −

Nr−1∑
q=1

1

q

)
log2 e, (5.145)

which evidences the power gain of incorporating additional receive antennas to a SISO
setting whose power offset is L∞ = γEM log2 e.

Building on the foregoing examples, we can attest to the accuracy of the high-SNR
analysis based on S∞ and L∞.

Example 5.28

Let H have IID Rayleigh-faded entries. Shown in Fig. 5.5 is the exact function C(SNR)

for SISO and for MIMO with Nt = Nr = 4, along with the corresponding high-SNR
expansions. Notice how these become accurate at rather modest SNRs.
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Example 5.29

For Nt = Nr = 4, the power offset in 3-dB units comes at L∞ = 1.27, while its SISO
counterpart is L∞ = 0.83. The difference is ΔL∞ = 0.44, meaning 0.44·3 dB = 1.31 dB.
This is precisely the high-SNR gap that can be appreciated in Fig. 5.16 between the SISO
capacity and the per-antenna MIMO capacity in IID Rayleigh fading. With the spatial DOF
normalized to be the same, the capacity is displaced by this amount at high SNR.

In the presence of Kronecker antenna correlations, the result for Nt = Nr = Na derived
with CSIT in Example 5.7 continues to apply without CSIT, namely

L∞ = log2 Na +

(
γEM −

Na∑
q=2

1

q

)
log2 e−

1

Na

Na−1∑
j=0

log2 λj(Rt)− 1

Na

Na−1∑
i=0

log2 λi(Rr).

(5.147)

Example 5.30

Consider a channel (a) with Nt = Nr = 2 and with the Kronecker correlation matrices

Rt =

[
1 0.8

0.8 1

]
Rr =

[
1 0.6

0.6 1

]
(5.148)

and further consider a second channel (b) with Nt = 2, Nr = 4, and no correlations.
Establish the difference in the SNRs required to achieve a certain high-SNR capacity.

Solution

Applying (5.147),

L(a)

∞ = 2.17, (5.149)

while, applying (5.141),

L(b)

∞ = −0.57. (5.150)

Although an analysis based only on the fact that S(a)
∞ = S(b)

∞ = 2 would declare both
of these channels equivalent at high SNR, the discrepancy in power offsets points to an
asymptotic difference of L(a)

∞ − L(b)
∞ = (2.17 + 0.57)× 3 = 8.22 dB in the SNR required

to achieve a certain capacity.
A Monte-Carlo computation indicates that the capacity of channel (a) at SNR = 25 dB

is 12.5 b/s/Hz, whereas channel (b) attains that same capacity at SNR = 17.08 dB. The
difference is 7.92 dB, very close to the asymptotic prediction of 8.22 dB.

By further exercising the power offset expressions, the impact of antenna correlations
on the high-SNR capacity can be established as follows.

For Nt ≤ Nr, transmit correlations can only increase L∞ and are thus deleterious to
the capacity. For Nt > Nr, however, they may be favorable. (Recall that, for MISO,
transmit correlations are beneficial at every SNR [513].)
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Receive correlations can only increase L∞ and they are therefore always detrimental in
terms of SU-MIMO capacity.

Closed forms can be derived for the power offset of more general channels, e.g., Rice,
but the expressions become highly involved [355, 545].

Large-dimensional regime

As mentioned at the beginning of the chapter, the large-dimensional results that follow
do not seek to quantity the performance when many antennas are actually utilized, but
rather to offer an alternative to the exact analysis for specific Nt and Nr. The idea is to let
Nt, Nr → ∞ with the aspect ratio of H held at

β =
Nt

Nr
(5.151)

and to characterize the ensuing capacity as a function of β. Since, for Nt, Nr → ∞,
the capacity typically grows without bound, it is commonplace to study a normalized ver-
sion thereof, namely the capacity per receive antenna, 1

Nr
C(SNR) (in b/s/Hz/antenna). The

large-dimensional expressions thus found then serve as approximations (sometimes termed
deterministic equivalents) for finite Nt and Nr.

To begin with, the ergodic spectral efficiency with a certain precoder F and CSIR can
be posed as a function of the eigenvalues of 1

Nt
HFF ∗H∗, to wit

R

B
= E

[
Nr−1∑
i=0

log2

(
1 + SNRλi

(
1

Nt
HFF ∗H∗

))]
. (5.152)

Let us denote the empirical cumulative distribution of the eigenvalues of 1
Nt

HFF ∗H∗ by

FNr(ξ) =
1

Nr

Nr−1∑
i=0

1

{
λi

(
1

Nt
HFF ∗H∗

)
≤ ξ

}
, (5.153)

where 1{·} is the indicator function, returning 1 if its argument is true and 0 otherwise.
Thus, FNr(ξ) gives the fraction of the eigenvalues λi(

1
Nt

HFF ∗H∗), i = 0, . . . , Nr − 1,
that fall below ξ while the corresponding density fNr(ξ) can be seen as a collection of
delta functions at those eigenvalues. With that, the spectral efficiency per receive antenna
can be expressed as

1

Nr

R

B
= E

[
1

Nr

Nr−1∑
i=0

log2

(
1 + SNRλi

(
1

Nt
HFF ∗H∗

))]
(5.154)

= E

[∫ ∞

0

log2
(
1 + SNR ξ

)
fNr(ξ) dξ

]
. (5.155)

For most MIMO channels (with rare exceptions being channels with rank-limited correla-
tions and keyhole channels), FNr(·) converges a.s. to a nonrandom limit as Nt, Nr → ∞.
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Then, as the randomness recedes, the eigenvalue distribution, and by association the chan-
nel itself, are said to harden. Denoting by F (·) the nonrandom asymptotic eigenvalue dis-
tribution,

1

Nr

R

B

a.s.→
∫

log2 (1 + SNR ξ) dF (ξ) (5.156)

=

∫
log2 (1 + SNR ξ) f(ξ) dξ, (5.157)

where the outer expectation in (5.155) becomes immaterial, and f(·) denotes the density
corresponding to F (·). Since (5.157) depends on the channel only through f(·), the anal-
ysis profits directly from advances in the characterization of the asymptotic eigenvalue
distribution of random matrices. A primer on this topic is featured in Appendix C.2. For
more extensive tutorials, the interested reader is referred to [546, 547].

If only one of the dimensions of H is allowed to grow, the other one being kept fixed,
then the hardening transpires directly from the law of large numbers (see Appendix C.1.10).
Specifically, if h = [h0 · · · hN−1]

T is a vector with IID zero-mean unit-variance entries,
then, for growing N ,

1

N
h∗h =

1

N

N−1∑
i=0

|hi|2 (5.158)

a.s.→ E
[|hi|2

]
(5.159)

= 1 (5.160)

while, if h and g are two independent such vectors,

1

N
h∗g =

1

N

N−1∑
i=0

h∗
i gi (5.161)

a.s.→ E[h∗
i gi] (5.162)

= 0. (5.163)

Applied to the rows and columns of H , these principles ensure that, if the entries are IID,

1

Nr
H∗H a.s.→ INt

(fixed Nt and Nr → ∞) (5.164)

1

Nt
HH∗ a.s.→ INr (fixed Nr and Nt → ∞). (5.165)

The above find immediate application in MIMO, whenever H has IID entries and even
when correlations are present at the end of the link whose dimension is fixed.

Example 5.31

Consider a channel with Rt = I , for which capacity is achieved by F = I . Determine the
capacity for fixed Nr and Nt → ∞, and then use this result to predict the capacity of an
IID channel having Nr = 2 and Nt = 8 at SNR = 3 dB.
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Solution

From

1

Nt
HH∗ a.s.→ Rr, (5.166)

the capacity per receive antenna satisfies

1

Nr
C(SNR)

a.s.→ 1

Nr
log2 det

(
I + SNRRr

)
, (5.167)

which, if Rr = I , further becomes 1
Nr

C(SNR) = log2(1 + SNR). For Nr = 2 and
SNR = 3 dB, this gives 1.58 b/s/Hz/antenna for a total of 3.16 b/s/Hz. The exact ergodic
capacity for Nr = 2 and Nt = 8 is 3.01 b/s/Hz, already close to the large-dimensional
(Nt → ∞) value.

Example 5.32

Determine the capacity with fixed Nt and growing Nr if the channel has IID zero-mean
entries.

Solution

With no precoding and SNR > 0,

C(SNR) = Nt log2

(
Nr

Nt
SNR

)
+O

(
1

Nr

)
. (5.168)

Care must be exercised whenever multiple limits are taken simultaneously, and Exam-
ple 5.32 serves to illustrate this issue. The expansion in (5.168) hinges on Nr

Nt
SNR � 1,

which is assured for any fixed SNR > 0 and sufficiently large Nr. Suppose, however, that
SNR = 1/N2

r ; then, Nr

Nt
SNR � 1 and C(SNR) = 1

Nr
log2 e+O(

1
N2

r

)
. Thus, the low-SNR

large-dimensional capacity depends entirely on the relative speed with which Nr → ∞ and
SNR → 0. In contrast, the high-SNR large-dimensional capacity abides by (5.168) regard-
less of the relative speeds with which Nr → ∞ and SNR → ∞. Hence, complications do
not always arise, but one must be alert when multiple asymptotes are explored.

If H has IID zero-mean entries and both Nt and Nr grow large simultaneously, with β =

Nt/Nr, then something remarkable occurs: the diagonal entries of both HH∗ and H∗H
converge to 1 while their off-diagonal entries converge to 0, but the empirical eigenvalue
distributions of these matrices do not converge to that of the identity, namely a step function
at 1. The number of entries of HH∗ and H∗H grows faster than the pace at which
those entries converge to 1 (diagonal) and 0 (off-diagonal), preventing the eigenvalues
from clustering around 1. Nonetheless, although not to a step function at 1, the empirical
eigenvalue distribution does converge to a nonrandom limit, by means of which the large-
dimensional capacity of MIMO channels with IID entries can be established in its full
generality.
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Example 5.33 (Large-dimensional capacity of a MIMO channel with IID zero-
mean entries and no CSIT)

For this channel, capacity is achieved without precoding and the asymptotic eigenvalue
density of 1

Nt
HH∗ is the Marčenko–Pastur law (see Appendix C.2)

f(ξ) = [1− β]+ δ(ξ) + β

√
(ξ − a)(b− ξ)

2πξ
ξ ∈ [a, b], (5.169)

where [1−β]+ δ(ξ) corresponds to the zero-value eigenvalues that HH∗ has if β < 1 and

a =

(
1− 1√

β

)2

b =

(
1 +

1√
β

)2

. (5.170)

From (5.156) and (5.169), bearing in mind that the zero-value eigenvalues do not contribute
to the capacity,

1

Nr
C(SNR)

a.s.→
∫ b

a

log2(1 + SNR ξ) f(ξ) dξ (5.171)

=
β

2π

∫ b

a

log2(1 + SNR ξ)

√
(ξ − a)(b− ξ)

ξ
dξ (5.172)

= log2
(
1 + SNR−F(SNR, β)

)
+ β log2

(
1 +

SNR

β
−F(SNR, β)

)

− β
log2 e

SNR
F(SNR, β), (5.173)

where

F(SNR, β) =
1

4

⎛
⎝
√
1 + SNR

(
1 +

1√
β

)2

−
√

1 + SNR

(
1− 1√

β

)2
⎞
⎠2

, (5.174)

with the integral in (5.172) having been independently solved in [457] and [458]. Special-
izing the result to β = 1, i.e., for Nt = Nr = Na,

1

Na
C(SNR)

a.s.→ 2 log2

(
1 +

√
1 + 4 SNR

2

)
− log2 e

4 SNR

(√
1 + 4 SNR− 1

)2
(5.175)

which confirms that, at a fixed SNR, the capacity grows linearly with the number of anten-
nas. At high SNR, the right-hand side of (5.175) expands as log2 SNR− log2 e+O( 1

SNR ),

an expression first derived in [23].

Example 5.34

Let H have IID Rayleigh-faded entries. From (5.173), the large-dimensional approxima-
tion to the capacity for specific Nt and Nr is

C(SNR) ≈ Nr log2

(
1 + SNR−F(

SNR, Nt

Nr

))
+Nt log2

(
1 +Nr

SNR

Nt
−F(

SNR, Nt

Nr

))

−Nt
log2 e

SNR
F(

SNR, Nt

Nr

)
. (5.176)
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Table 5.1 Exact ergodic capacity and large-dimensional
approximation (in b/s/Hz) at SNR = 10 dB

Nr Nt = 1 Nt = 2 Nt = 3 Nt = 4

1 2.9 (2.72) 3.17 (3.12) 3.26 (3.24) 3.32 (3.3)
2 4.06 (4.01) 5.56 (5.45) 6.05 (6.0) 6.29 (6.25)
3 4.73 (4.7) 7.05 (6.98) 8.22 (8.17) 8.84 (8.79)
4 5.2 (5.17) 8.05 (8.02) 9.87 (9.8) 10.93 (10.89)

Within brackets in Table 5.1 are these large-dimensional approximations for 1 ≤ Nt ≤ 4

and 1 ≤ Nr ≤ 4 at SNR = 10 dB, each next to the exact ergodic capacity.

Example 5.35

Let H have IID Rayleigh-faded entries. Shown in Fig. 5.5 is the exact function C(SNR)

for Nt = Nr = 4 along with the corresponding large-dimensional approximations. Notice
the accuracy despite the modest numbers of antennas.

Interestingly, the capacity expressions in Example 5.33 have been shown to apply to a
class of channels broader than that of matrices with zero-mean IID entries. Specifically,
consider an instance of the UIU model seen in Chapter 3 where H has zero-mean IND
entries whose variances are assembled into the matrix Ω, i.e., such that

[Ω]i,j = E

[
|[H]i,j |2

]
. (5.177)

If Ω is mean doubly regular, meaning that the average of the entries along every row and
column coincides, then, under the very mild technical condition that the entries of Ω remain
bounded as Nt, Nr → ∞, the large-dimensional spectral efficiency without precoding is
equivalent to that on a channel with IID entries at the same SNR [548]. If an unprecoded
transmission achieves the capacity of H , then the foregoing spectral efficiency equivalence
directly translates to a capacity equivalence.

Example 5.36

Suppose that antennas with alternating orthogonal polarizations are utilized and that there
is no correlation, in which case [549]

Ω =
2

1 + Ξ

⎡
⎢⎢⎢⎢⎢⎣

1 Ξ 1 Ξ · · ·
Ξ 1 Ξ 1 · · ·
1 Ξ 1 Ξ · · ·
Ξ 1 Ξ 1 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ , (5.178)

with Ξ the cross-polar discrimination introduced in Chapter 3 [298]. The large-dimensional
capacity of this channel is given by (5.173).



338 SU-MIMO with optimum receivers

In channels whose entries exhibit correlations, the asymptotic analysis becomes sub-
stantially more involved, but progress can still be made well beyond what is possible
nonasymptotically [478, 489, 548, 550–552]. The most relevant finding is that the capacity
still scales linearly with Nmin, although the scaling varies with respect to (5.173).

Example 5.37 (Large-dimensional spectral efficiency of a MIMO channel with
Kronecker correlations and no CSIT)

For the Kronecker correlation model, a large-dimensional solution is available [548]. Ex-
pressed for finite Nt and Nr,

R

B
≈

Nt−1∑
j=0

log2

(
1 + SNRPj λj(Rt)Υr

eSNRΥtΥr

)
+

Nr−1∑
i=0

log2
(
1 + SNRλi(Rr)Υt

)
(5.179)

where P0, . . . , PNt−1 is the power allocation whereas Υt and Υr must be obtained by
solving the fixed-point equations

Υt =
1

Nt

Nt−1∑
j=0

Pj λj(Rt)

1 + SNRPj λj(Rt)Υr
(5.180)

Υr =
1

Nt

Nr−1∑
i=0

λi(Rr)

1 + SNRλi(Rr)Υt
. (5.181)

The spectral efficiency without precoding is obtained simply by setting Pj = 1 for
j = 0, . . . , Nt − 1. If Rt and Rr are further replaced by identity matrices, the right-hand
side of (5.179) then reverts to that of (5.173).

The asymptotic characterization of the capacity-achieving powers, P �
0 , . . . , P

�
Nt−1, is

tackled in [489, 548, 552].

A noteworthy exception to the usually rapid convergence of the ergodic capacity to its
large-dimensional value occurs in Rice channels with unit-rank HLOS. The Rice term then
perturbs a single eigenvalue of HFF ∗H∗, not affecting the asymptotic eigenvalue distri-
bution of this matrix [553]. It follows that the large-dimensional capacity is as if the Rice
term were not there, yet the Rice term does influence the actual capacity with small Nt and
Nr, and this influence disappears very slowly with the number of antennas.

5.5 No CSI

It was argued in the analysis of SISO that, in underspread settings, the assumption of CSIR
is always reasonable. With MIMO, this rationale slowly weakens as Nt grows, to the point
of becoming a potential limitation in massive MIMO. Thus, although CSIR is still fully
justified for moderate Nt, because of its relevance to massive MIMO we briefly examine
the MIMO capacity without CSIR.

Consider a frequency-flat Rayleigh-faded channel with coherence blocks spanning Nc
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symbols and no antenna correlation. Since, without CSIR, this channel does have memory,
a nonsingle-letter formulation is required; moreover, the codeword symbols need not be
independent. Assembling the portion of those symbols transmitted over one coherence
block, s[0], . . . , s[Nc − 1], into an Nt ×Nc matrix S, the capacity-achieving signal (with
the precoder subsumed) has been shown to have the form

S = AS ·
√
Nc US , (5.182)

where AS = diag
(
A0, . . . , ANt−1

)
with Aj the magnitude of the signal emitted by the

jth antenna, satisfying E[A2
j ] = 1 [409]. In turn, US is a Nt × Nc matrix whose rows

are orthonormal isotropic vectors, equally likely to point in any direction. For Nt < Nc,
such US amounts to Nt rows of an Nc × Nc unitary matrix and, since USU

∗
S = I but

U∗
SUS �= I , the term semiunitary is sometimes applied. The factor

√
Nc in (5.182) scales

the rows of S so as to comply with the normalization in this text.
On a given coherence block, the jth antenna transmits the jth row of

√
NcUS scaled by

Aj , i.e., the antennas transmit easy-to-discriminate orthogonal sequences with magnitudes
A0, . . . , ANt−1 drawn from a suitable distribution that must be optimized numerically.
Note how, for Nt = 1, we recover the optimum signal structure unveiled for SISO.

The transmit–receive relationship over each fading block is

Y =

√
GEs

Nt
HS +V, (5.183)

where V =
[
v[0] · · ·v[Nc − 1]

]
is Nr × Nc with [V]i,n ∼ NC(0, N0). The conditional

distribution of Y for a given S is (see Appendix C.1.9)

fY |S(Y|S) = 1

πNrNc detNr
(
I + SNR

Nt
S∗S

) exp

(
−tr

((
I +

SNR

Nt
S∗S

)−1

Y∗Y

))
,

(5.184)
which depends on S only through S∗S. Since S∗S is Nc × Nc, one would expect that
any desired distribution for it could be realized with at most Nc transmit antennas, and that
is indeed the case [409, theorem 1]. In other words: whatever capacity could be achieved
with Nt > Nc antennas can also be achieved with at most Nt = Nc antennas. Intuitively,
trying to transmit too many concurrent signals with unknown fading coefficients is coun-
terproductive beyond a point, with the added fading uncertainty offsetting the addition of
new signals. In fact, once Nt > Nc −Nr, signals of the form S = AS · √Nc US cease to
be optimum altogether [554]. In any event though, other than possibly in massive MIMO,
it is the case that Nt � Nc and the sustained capacity scaling with Nt that we encounter
in the face of CSIR essentially holds without CSIR.

Low-SNR regime

As seen throughout our derivations of Eb

N0 min
, its value in Gaussian noise equals 1

log2 e =

−1.59 dB, reduced by the total channel gain attainable beyond G. Let us apply this princi-
ple over a block of Nc symbols, wherein for the transmit sequence S the total channel gain
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is given by

E

[∥∥√GEs

Nt
HS

∥∥2

F

]
E

[∥∥√Es

Nt
S
∥∥2

F

] =
G

E
[‖S‖2F] E

[‖HS‖2F
]

(5.185)

=
G

NtNc
E
[‖HS‖2F

]
, (5.186)

from which

Eb

N0min

=

1
log2 e

1
NtNc

E
[‖HS‖2F

] (5.187)

=
NtNc

tr
(
E[HSS∗H∗]

)
log2 e

(5.188)

=
Nt

tr
(
E[HASUSU∗

SA
∗
SH

∗]
)
log2 e

(5.189)

=
Nt

tr
(
E[HH∗]

)
log2 e

(5.190)

=
1

Nr log2 e
, (5.191)

where (5.190) holds because USU
∗
S = I and E[ASA

∗
S ] = I , with AS independent of

H , while (5.191) holds because tr
(
E[HH∗]

)
= NtNr. Since (5.191) coincides with the

value found for IID channels with CSIR, we confirm that, as in SISO, the lack of CSIR
does not alter Eb

N0 min
.

In low-SNR no-CSIR conditions, the information is conveyed mostly by the magni-
tudes within AS and, again as in SISO, achieving Eb

N0 min
exactly would entail unbounded

peakedness in those magnitudes. However, in underspread settings, it can be approached
very closely with standard IID complex Gaussian signaling. Indeed, the low-SNR no-CSIR
slope is S0 = 0, but—recall Fig. 4.18—this must be properly interpreted: for Nc � 1, the
no-CSIR capacity tightly tracks its CSIR counterpart, despite the two having very different
slopes at Eb

N0 min
[555].

High-SNR regime

In high-SNR no-CSIR conditions, the magnitudes within AS cluster around 1 and the
information is conveyed mostly by US [415, 556, 557]. It can be established that, to max-
imize S∞, the number of streams should equal Ns = min(Nt, Nr, �Nc/2�) [416]. Other
than possibly in extreme versions of massive MIMO, Nmin = min(Nt, Nr) < �Nc/2�
and therefore Ns = Nmin, a result that should be construed in light of Discussion 5.4. The
maximum number of spatial DOF is then

S∞ =

(
1− Nmin

Nc

)
Nmin, (5.192)

which, for Nt = Nr = 1, reduces to the SISO value in (4.185). Contrasting (5.192) with
its CSIR counterpart, S∞ = Nmin, the penalty associated with the lack of side information
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at the receiver is seen to be the factor (1 − Nmin/Nc), which, in underspread nonmassive
settings, is very small.

Expressions for the power offset without CSIR are derived in [416, 554].
If the fading is continuous rather than in blocks, then, as in SISO, the capacity with-

out CSIR exhibits extreme sensitivity to the modeling assumptions for SNR → ∞. With
nonregular fading, the analogy between block fading and continuous fading established in
Chapter 3, Nc = BcTc, would mean that

C(SNR) =

(
1− Nmin

BcTc

)
Nmin log2 SNR+O(1), (5.193)

where Bc and Tc, recall, are the coherence bandwidth and the coherence time of the fading
process. With regular fading, however [404, 558]

C(SNR) = log2 log SNR+O(1) (5.194)

and a single DOF is available. For SNRs of practical relevance, the regularity in the fading
is immaterial and the MIMO capacity abides by (5.193).

For the IID complex Gaussian signals that are optimum with CSIR, the spectral effi-
ciency without CSIR can be computed by means of the semi-analytical procedure in [420].

5.6 Pilot-assisted communication

Let us now extend the SISO pilot-assisted analysis presented in Section 4.8 to the province
of MIMO [183, 187, 559–563]. To avoid distracting elements that might clutter the analy-
sis, we focus on the canonical channel with IID Rayleigh-faded entries.

We denote by α ≥ αmin the total share of symbols that are pilots, with α/Nt the fraction
corresponding to each transmit antenna. The pilot sequences emitted by distinct antennas
are taken to be mutually orthogonal, which, as argued in Chapter 2, is optimum in time-
invariant channels and, by extension, quasi-optimum in underspread fading [564, 565].
A preferred embodiment are the Zadoff–Chu sequences also described in Chapter 2. Ar-
guably the simplest manner in which the pilot symbols constituting those sequences can be
mixed with the data is by insertion in time and/or frequency (see Fig. 5.7), although other
approaches such as superposition or code-division multiplexing are possible.

Under block fading, at least Nt pilot symbols must be inserted within each coherence
block, one per antenna, and thus αmin = Nt/Nc; with Np ≥ Nt pilot symbols per block,
α = Np/Nc. Under continuous frequency-flat fading, in turn, to ensure that the decimated
fading process observed through the pilot sequence of each antenna has an unaliased spec-
trum, it is necessary that αmin = Nt · 2νMT .

As in our SISO analysis, rather than study the mutual information between the trans-
mitted data symbols and the received symbols (pilots and data), we focus on the spectral
efficiency achieved by receivers that form explicit channel estimates from the pilot ob-
servations and subsequently decode the data regarding these channel estimates as correct
while treating the term containing the estimation error as additional Gaussian noise. With



342 SU-MIMO with optimum receivers

P1 ...... D D P1 ...D D ...
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1

α
− 1

1

α

1

α
+ 1...

P2...

...

D D P2

�Fig. 5.7 MIMO transmit signal with Nt = 2 and time-multiplexed pilot symbols. On the time

indices labeled as P1 and P2, only the corresponding antenna transmits a pilot.

Elsewhere, both antennas transmit data symbols.

the entries of H being IID, they can be separately estimated without loss of optimality and
a derivation similar to the one for SISO leads to an achievable spectral efficiency of

R

B
= (1− α)C(SNReff), (5.195)

where C(·) is the MIMO capacity with CSIR, closed forms for which are provided in
Example 5.17, while

SNReff =
SNR (1−MMSE)

1 + SNR ·MMSE
, (5.196)

where MMSE is the variance of the estimation error for each entry of H . In Rayleigh
fading, the MMSE channel estimator is linear and thus the MMSE expressions derived in
Section 3.7.2 for an LMMSE estimator apply. In particular, recalling from Chapter 3 the
form that unifies block fading and continuous fading,

MMSE =
1

1 + αNc

Nt
SNR

. (5.197)

The right-hand side of (5.195) is concave in α and thus the optimum overhead α� can
be found efficiently.

Example 5.38

Let Nt = Nr = 4 with the antennas uncorrelated and plot, as a function of SNR, the
spectral efficiency in (5.195) for a Rayleigh-faded channel with a Clarke–Jakes Doppler
spectrum corresponding to vehicular and to outdoor pedestrian users, with the pilot over-
head optimized for each SNR. Contrast these spectral efficiencies with the CSIR capacity.
Separately, plot the respective optimum pilot overheads.

Solution

As computed in Examples 3.26 and 3.27, typical vehicular and outdoor pedestrian settings
may correspond to Nc = 1000 and Nc = 20 000, respectively. For these fading coher-
ences, the requested results are presented in Figs. 5.8 and 5.9. In the left-hand subfigures
we find the ergodic spectral efficiencies with the pilot overheads optimized, alongside the
CSIR capacity borrowed from Example 5.17. In the right-hand subfigures, we find the
corresponding optimum pilot overheads.
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�Fig. 5.8 Left, for an ergodic Rayleigh-faded channel with Nt = Nr = 4 uncorrelated antennas

and Nc = 1000: optimized pilot-assisted spectral efficiency and CSIR capacity, both

as function of SNR (in dB). Right: corresponding optimum pilot overhead.
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�Fig. 5.9 Left, for an ergodic Rayleigh-faded channel with Nt = Nr = 4 uncorrelated antennas

and Nc = 20 000: optimized pilot-assisted spectral efficiency and CSIR capacity, both

as function of SNR (in dB). Right: corresponding optimum pilot overhead.

Even in vehicular conditions, and decidedly in pedestrian situations, pilot-assisted com-
munication can perform satisfactorily close to capacity with Nt = Nr = 4. With re-
spect to SISO, here the tension between more accurate channel estimates at the expense of
higher overhead is exacerbated as the number of transmit antennas increases. Interestingly,
the estimation error depends on Nt only through the product Nt · νMT (with continuous
frequency-flat fading) or through the radio Nt/Nc (with block fading) and thus any scaling
in the number of transmit antennas is equivalent to the inverse scaling in fading coherence.
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�Fig. 5.10 Optimum pilot overhead for SNR = 10 dB and νMT = 10−3 (equivalent to Nc = 500

symbols) as a function of the number of antennas, Nt = Nr = Na.

Example 5.39

Let H have IID Rayleigh-faded entries with Nt = Nr = Na and let SNR = 10 dB. The
fading is frequency-flat, with a rectangular Doppler spectrum and νMT = 10−3. For this
setting, whose block-fading equivalent would have only Nc =

1
2 νMT = 500 symbols, plot

the optimum pilot overhead as a function of Na = 1, . . . , 8.

Solution

See Fig. 5.10. For SISO, the optimum overhead is about 3%, climbing to a still modest 7%
with Na = 8.

From (5.195) and (5.196), low- and high-SNR expansions can be derived and α� can be
expressed explicitly [426]. For SNR → ∞ in particular, α� → αmin and hence the number
of spatial DOF is

S∞ =
(
1− αmin

)
Nmin (5.198)

=

(
1− Nt

Nc

)
Nmin, (5.199)

which, for Nt ≤ Nr, equals the no-CSIR value in (5.192). For Nt > Nr, (5.199) is smaller
than (5.192), but this shortfall in DOF can be corrected by reducing the rank of the pre-
coder to Ns = Nmin, and thus the pilot overhead down to αmin = Nmin/Nc; then, (5.199)
becomes equal to (5.192). The maximization of S∞ by Ns = Nmin is consistent with our
no-CSIR analysis, of which pilot-assisted communication is indeed a special case, but it is
also equally modulated by Discussion 5.4.
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Returning to arbitrary SNRs, the spectral efficiency can be expanded as a series in the
fading coherence, leading to explicit forms for α� [441].

If pilot-power boosting is allowed, then, at every SNR, the spectral efficiency is opti-
mized by α� = αmin in conjunction with the power boost that maximizes SNReff [426].

Antenna correlation is bound to influence not only the channel estimation MMSE, and
thus the effective SNR, but also the function C(SNR). The optimization becomes consider-
ably richer, since then the separate estimation of each channel entry is no longer optimum.
Rather, joint estimation of the entries of H is superior, and SNReff generalizes into a ma-
trix of effective SNRs [566]. At the same time, in the face of correlation the payload data
should ideally be nontrivially precoded. Moreover, the pilot sequences can themselves be
precoded, meaning not being dispatched from the transmit antennas directly but rather from
the columns of the steering matrix UF , possibly with different powers. Then, the problem
of estimating H morphs into the problem of estimating HF . This modified problem takes
center stage in the third part of the book, once we turn to CSIT-based precoding for MU-
MIMO. In the present context of SU-MIMO, the interplay of antenna correlation, precod-
ing, and pilot-assisted channel estimation is explored in Problems 5.45–5.47, and readers
interested in probing further are pointed to [567–569]; these references treat the spectral
efficiency assuming that, through reciprocity or feedback, both transmitter and receiver
have access to the same channel estimates.

5.7 Channels with interference

In the presence of interference from U other users, the single-letter transmit–receive rela-
tionship for a certain user of interest is

y =
√
GHx+

U∑
u=1

√
GuHuxu + v, (5.200)

where the per-symbol energies of the interfering signals are E
[‖xu‖2

]
= Eu and the

fading channels satisfy, as usual, E
[‖Hu‖2F

]
= NuNr where Nu is the number of transmit

antennas at the uth interferer.
If H1F1, . . . ,HUFU are not known by the receiver of interest, then, as argued in the

SISO analysis of Section 4.9, the non-Gaussianity of the interference subject to fading can
be circumvented by converting (5.200) into

y =
√
GHx+ v′, (5.201)

where

v′ ∼ NC

(
0,

U∑
u=1

GuE
[
HuRxu

H∗
u

]
+N0 I

)
. (5.202)

The capacity of this modified channel lower-bounds, usually very tightly [444], that of
(5.200). Therefore, the entire body of results in this chapter applies under the premise that
H1F1, . . . ,HUFU are unknown to the receiver of interest.
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Alternatively, we can posit a receiver that does know H1F1, . . . ,HUFU in addition to
H and F . The conditional covariance of the received interference-plus-noise then equals

R(H1, . . . ,HU ) = E

[(
U∑

u=1

√
GuHuxu + v

)(
U∑

u=1

√
GuHuxu + v

)∗∣∣∣H1, . . . ,HU

]

=

U∑
u=1

GuHuRxu
H∗

u +N0 I. (5.203)

The mutual information when the desired and interfering signals are complex Gaussian is

I(x;y |H,H1, . . . ,HU ) = log2 det
(
I +GHRxH

∗R−1(H1, . . . ,HU )
)
, (5.204)

which generalizes the SISO expression in (4.231). From the mutual information, the ca-
pacity, with and without CSIT, can be evaluated.

With CSIT, the capacity that derives from (5.204) is studied in [570–575], with the
main complication being the optimization of the precoder. In fact, if not only the desired
transmitter but also the interferers selfishly optimize their precoders, we have a game-
theoretic scenario where every transmitter is a player and the payoff is the mutual infor-
mation [576, 577]. When confronted with this scenario, one naturally gravitates towards
the idea of having the transmitters cooperate and jointly optimize their precoders for the
common good, an idea that is surveyed in works such as [577–579].

Without CSIT, alternatively,

C = max
Rx:tr(Rx)=Es

E

[
log2 det

(
I +GHRxH

∗R−1(H1, . . . ,HU )
)]

(5.205)

= max
F :tr(FF ∗)=Nt

E

[
log2 det

(
I +

SNR

Nt
HFF ∗H∗

(
I +

U∑
u=1

INRu

Nu
HuFuF

∗
uH

∗
u

)−1
)]

(5.206)

where we have used Rxu = E
[
xux

∗
u|Fu

]
=

√
Eu/NuFuF

∗
u and recalled the definition of

INR, namely INRu = GuEu/N0. The expectation in (5.206) is over H and H1, . . . ,HU ,
and the precoder optimization is again complicated relative to a noise-limited channel.
From the viewpoint of the receiver of interest, it would be desirable if the interferers ap-
plied precoders with the lowest possible ranks: as shown in Chapter 6, interference with
dimensionality inferior to Nr can be completely suppressed through mere linear process-
ing [11]. At the same time, from a selfish standpoint, each interferer might want to apply a
precoder with higher rank. Therefore, if all the transmitters could optimize their precoders,
we would again be faced with a game-theoretic situation [580].

Let us examine, in the remainder of this section, what unfolds if the interferers are
unprecoded. As in SISO, having interference in lieu of noise is beneficial—at a given
SINR—because the interference undergoes fading. With MIMO, furthermore, the interfer-
ence exhibits spatial color that, thanks to its knowledge of H1F1, . . . ,HUFU , the receiver
can exploit. For a given power, the more structured the interference, the less harmful, with
unstructured noise being the worst possible impairment. The ability to discern spatial struc-
ture is determined by Nr whereas the degree of structure is determined by

∑U
u=1 Nu. If
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Nr >
∑U

u=1 Nu, the receiver can theoretically nullify the interference completely. At the
other extreme, if Nr is fixed and

∑U
u=1 Nu → ∞, the structure becomes hopelessly fine

and the aggregate interference looks like noise to the receiver.
The analysis at arbitrary SNR of the no-CSIT capacity with interference can be tackled

directly [581], or else by rewriting (5.206) as the difference of two noise-limited capacities,
namely [446]

C = max
F :tr(FF ∗)=Nt

E

[
log2 det

(
I +

SNR

Nt
HFF ∗H∗ +

U∑
u=1

INRu

Nu
HuFuF

∗
uH

∗
u

)]

− E

[
log2 det

(
I +

U∑
u=1

INRu

Nu
HuFuF

∗
uH

∗
u

)]
. (5.207)

Then, as usual, the large-dimensional regime offers an alternative arena for the analysis
[489, 582, 583].

Low-SNR regime

Let us now turn our attention to the low-SNR regime, recalling the SISO definition of
N ′

0 =
∑U

u=1 GuEu + N0 to subsume both noise and interference. Following a similar
derivation, the formula for Eb

N0 min
found in (4.250) generalizes to

Eb

N ′
0min

=
1(

1 +
∑U

u=1 INRu

)
log2 e

(5.208)

· min
F :tr(FF ∗)=Nt

1

tr

(
E

[
1
Nt

HFF ∗H∗
]
E

[(
I+

∑U
u=1

INRu

Nu
HuFuF ∗

uH
∗
u

)−1
])

where the minimization can be trivial, in canonical examples like the one that follows, but
is in general rather involved.

Example 5.40

Consider a transmission impaired by a single unprecoded interferer, i.e., U = 1, F1 = I ,
and INR → ∞. Evaluate Eb

N ′
0 min

.

Solution

Applying (5.208),

Eb

N ′
0min

= min
F :tr(FF ∗)=Nt

1

tr

(
E

[
1
Nt

HFF ∗H∗
]
E

[(
1
N1

H1H∗
1

)−1
]) · 1

log2 e
. (5.209)

If both H and H1 have IID Rayleigh-faded entries, then the same arguments invoked for
noise serve to claim that capacity is achieved with F = I . Thus, E

[
1
Nt

HFF ∗H∗] = I
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such that
Eb

N ′
0min

=
1

N1 tr
(
E

[
(H1H∗

1 )
−1

]) · 1

log2 e
, (5.210)

where H1H
∗
1 is a Wishart matrix to which we can apply (C.26). If N1 ≤ Nr, then

tr(E[(H1H
∗
1 )

−1]) is infinite whereas, if N1 > Nr, tr(E[(H1H
∗
1 )

−1]) = Nr/(N1 −Nr).
Altogether,

Eb

N ′
0min

=
1

log2 e

[
1

Nr
− 1

N1

]+
, (5.211)

consistent with the fact that, if the interference has dimensionality inferior to Nr, some di-
mensions at the receiver of interest remain free of interference and, in the absence of noise,
communication over those dimensions is possible with negligible power. Of course, in ac-
tuality there is always residual noise beneath the interference, and reliable communication
necessitates a received Eb that is −1.59 dB above that residual noise.

Alternatively, if the interference dimensionality is substantially larger than Nr, then
Eb

N ′
0 min

≈ Eb

N0 min
, meaning that the interference looks approximately like Gaussian noise

to the receiver. Then, we revert to the same situation encountered when the receiver is not
privy to H1F1, . . . ,HUFU and the results derived throughout the chapter fully apply.

High-SNR regime

In the high-SNR regime, provided that H∗R−1(H1, . . . ,HU )H is nonsingular with prob-
ability 1, the number of spatial DOF is as in noise-limited conditions, namely S∞ = Nmin.
For analyses of the power offset in the face of interference, the reader is referred to [355].

5.8 Optimum transmitter and receiver structures

5.8.1 Single codeword versus multiple codewords

Henceforth in this chapter, no constraints have been imposed on the structure of the MIMO
transmitter and receiver. At this point, we peek inside these units to discuss how, depending
on the number of codewords being transmitted, distinct capacity-achieving structures are
possible. Indeed, the Ns data streams in the vector sequence s[0], . . . , s[N − 1] can embed
one or various codewords [584]. Although intermediate cases are possible, conceptually
it suffices to consider the two limiting cases where the number of codewords is either 1
or Ns (see Fig. 5.11). While the capacity does not depend on the number of codewords,
the structure of the receiver may. Moreover, for finite N , a single codeword has an Ns-
fold advantage in length, which can help close whatever performance deficit there may be
relative to N → ∞.

If a single codeword occupies the Ns data streams, then to achieve capacity the receiver
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must decode these streams jointly with a complexity that, barring possible simplifications,
grows exponentially in Ns.

5.8.2 LMMSE-SIC receiver

If separate encoders feed the Ns data streams, then joint decoding continues to be opti-
mum but other possibilities arise. Transmission of multiple codewords is particularly allur-
ing with CSIT, as in this case parallel noninteracting subchannels are created and a bank
of scalar decoders suffices to achieve capacity with a complexity that scales only polyno-
mially with Ns. Without CSIT, the spatially multiplexed signals are in general mutually
interfering but, remarkably, separate codeword decoding can still achieve capacity under
certain conditions. To see this, first observe that

FF ∗ = f0f
∗
0 + F>0F

∗
>0, (5.212)

where we used the shorthand notation fj = [F ]:,j and F>j = [F ]:,j+1:Nt−1. Exploiting
this decomposition, we can elaborate the mutual information with a given precoder F into

log2 det

(
I +

SNR

Nt
HFF ∗H∗

)

= log2 det

(
I +

SNR

Nt

(
HF>0F

∗
>0H

∗ +Hf0f
∗
0H

∗
))

(5.213)
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(
I +

SNR

Nt
HF>0F

∗
>0H

∗
)

+ log2 det

(
1 + f∗

0H
∗
( Nt

SNR
I +HF>0F

∗
>0H

∗
)−1

Hf0

)
. (5.217)

Repeated application of the above expansion leads to the telescopic expression

log2 det

(
I +

SNR

Nt
HFF ∗H∗

)

=

Ns−1∑
j=0

log2

(
1 + f∗

j H
( Nt

SNR
I +HF>jF

∗
>jH

∗
)−1

Hfj

)
, (5.218)

which deserves careful inspection. As made clear in the next chapter,

f∗
j H

(
Nt

SNR
I +HF>jF

∗
>jH

∗
)−1

Hfj (5.219)

is the SINR experienced by stream j at the output of an LMMSE receiver in the absence
of interference from streams 0, . . . , j − 1, interfered only by streams j + 1, . . . , Ns − 1.
Hence, the jth term in (5.218) is the spectral efficiency achievable by stream j at the output
of an LMMSE receiver with interference from streams 0, . . . , j − 1 previously canceled
out. This naturally invites the multistage receiver structure in Fig. 5.12, where, at stage j,
the following unfolds.

(1) The sequence of observations y[0], . . . ,y[N − 1] passes through an LMMSE filter that
targets stream j.

(2) Stream j is decoded.
(3) The interference caused by stream j onto streams j + 1, . . . , Ns − 1 is reconstructed

and canceled from y[0], . . . ,y[N − 1].

The optimality of this strategy, aptly dubbed successive interference cancelation (SIC),
hinges critically on each stream corresponding to a separate codeword, for only in that case
can the cancelation be based on highly reliable decoded data. As importantly, each code-
word must be encoded at the correct rate such that, after SIC and LMMSE filtering, the
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spectral efficiency of the corresponding stream equals the jth term in (5.218). These code-
word rates depend on H and thus, even when there is no CSIT and the precoder is fixed,
the transmitter must be furnished the limited information of these rates for (5.218) to be
achieved. Put differently, link adaptation must be conducted separately for each codeword,
which is sometimes referred to as per-antenna rate control (PARC) [585–587].

Encoding all codewords at the same rate, i.e., enforcing a common link adaptation pro-
cess, would incur a significant penalty [588, 589]. Moreover, while PARC allows achieving
capacity regardless of the decoding order because (5.218) holds with the columns of HF

arbitrarily reordered, if all codewords were encoded at some common rate, then the spectral
efficiency would depend on the decoding order [23]. Thus, at each stage, the receiver would
have to compute the LMMSE filter for every remaining codeword and select the highest-
SINR one, a procedure that can be simplified by exploiting structure commonalities in the
filters [590] but that is nevertheless tedious.

The information-theoretic optimality of the LMMSE-SIC receiver was first observed by
Varanasi and Guess in the context of the multiple-access channel (MAC) [591]. Indeed,
when each stream corresponds to a separate codeword, a MIMO channel can be viewed
as a MAC where each such stream is a separate user, and then direct analogies arise with
multiuser detection [20, 592, 593]. This MAC result was subsequently rederived for MIMO
[584]. Alternative interpretations of the optimality of the LMMSE-SIC receiver can be
devised, for instance, by means of the chain rule of mutual information [50, section 8.3.4].

In non-OFDM systems facing frequency selectivity, the filters within an LMMSE-SIC
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receiver can be converted into space–time LMMSE equalizers able to handle both spatial
interference and ISI [584, 594].

5.8.3 The layered architecture

A multiple-codeword transmission with LMMSE-SIC reception is appealing on the grounds
of directly accommodating encoders and decoders designed for SISO, with the spatial-
domain signal processing circumscribed to the simple LMMSE filters connecting the vari-
ous stages at the receiver. The intuition that multiple-codeword transmissions could indeed
be preferable guided and motivated Foschini in his original designs, even if the considered
receivers were short of optimal. Viewing the codewords as layers that were piled on at
the transmitter to be successively decoded and peeled at the receiver, he coined the term
layered space–time architecture to refer to those designs; the concept was popularized as
Bell-labs layered space–time or BLAST, a clever acronym concocted by Glenn Golden, a
member of the Valenzuela-led team that assembled the corresponding prototype. Foschini
proposed two variants of the layered architecture, which we proceed to describe.

Vertical and Horizontal BLAST
The first variant consisted of an unprecoded multiple-codeword transmitter and a SIC re-
ceiver where the various stages, rather than by LMMSE filters, were connected by ZF
filters. A prototype devoid of coding was built to demonstrate the practical feasibility of
the concept [24, 595]. Although, without coding ensuring low error probabilities, SIC re-
ceivers are prone to error propagation [584, 596–598] and a hefty back-off in bit rate is
required, the prototype did succeed at proving the viability of MIMO. The term vertical
BLAST (V-BLAST) caught on because of the vertical piling of the layers, which in this
case were not codewords but merely raw uncoded symbols.

With coding incorporated and the layers thereby stretching from individual symbols to
long codewords, the more fitting name of horizontal BLAST (H-BLAST) was put forth
[599]. Fundamentally, this version of the layered architecture was not capacity-achieving
in the following respects.

The transmitter lacked a precoder. (This was not an issue for the IID channels initially
considered, but would have been in wider generality.)
The linear filters connecting the receiver stages were ZF, rather than LMMSE. (Not an
issue for the high SNRs initially considered, but again it would have been in general.)
All codewords were encoded at the same rate.

With the top two of these issues being easily correctable, it is actually the latter point that
fundamentally limited the ability to achieve capacity. As argued, this limitation can be
sidestepped by releasing the restriction that all codeword rates be equal and adjusting each
one individually as per (5.218), yet Foschini was focused on quasi-static settings without
link adaptation. In such conditions, indeed, V-BLAST is decidedly deficient in terms of
outage capacity as each codeword is at the mercy of the fading at a specific transmit antenna
[395]. This led Foschini to formulate a second type of layered architecture.
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Diagonal BLAST
In the second variant of Foschini’s layered architecture, aptly nicknamed diagonal BLAST
(D-BLAST), each codeword was not associated with a specific transmit antenna. Rather,
the codewords were cycled around the Nt antennas to ensure equal exposition to all fading
coefficients. This closed the gap in terms of outage capacity, ensuring optimality in quasi-
static settings without link adaptation. The rotating association between codewords and
transmit antennas can be interpreted as a time-varying precoder.

Example 5.41

For Nt = 2, alternating the precoders

F0 =

[
1 0

0 1

]
F1 =

[
0 1

1 0

]
(5.220)

ensures that each codeword is equally exposed to the two columns of H , rather than to
only one of them. The receiver must be aware of which precoder is applied at each symbol
so as to map its outputs correspondingly.

Refinements of D-BLAST by other authors went on to propose more intricate ways of
permuting the codewords across antennas and time, including the possibility of blending
the time-varying precoder and the interleaver into a space–time interleaver [600, 601].
Despite their optimality, these architectures, and D-BLAST itself as a matter of fact, have
been largely relegated for the same reasons that the outage capacity has been relegated:
in ergodic settings, the additional diversity brought about by associating each codeword
with all transmit antennas is immaterial while, in quasi-static settings, link adaptation is
universally employed and easily upgradeable to PARC.

5.8.4 BICM implementations

As developed in earlier chapters, the de-facto implementation of SISO transceivers entails
binary codebooks and BICM. Let us now see how to extend those principles to MIMO,
depending on whether one or multiple codewords are transmitted. There are various flavors
of MIMO BICM, all bound—within the tiny loss that BICM incurs if the constellations are
higher-order and the receiver is one-shot, and with the caveat of any nonidealities—by the
fundamental limits established throughout this chapter.

Single-codeword BICM
For a single codeword, the MIMO BICM transmitter and receiver are depicted in Fig. 5.13.
The coded and interleaved bits are parsed into groups of Ns log2 M ; of the bits within
each group, log2 M are mapped to each of Ns M -ary constellations, giving the Ns × 1

vector s. Finally, s is precoded and amplified into the transmit signal x. As far as the
receiver is concerned, Fig. 5.13 illustrates its iterative form [112, 113, 602]. From the
observation y, and a-priori information on the coded bits sent back from the decoder, a soft



354 SU-MIMO with optimum receivers

Single-codeword BICM transmitter 

I

Q

M -ary

b

I

Q

M -ary

x

…

0 : Ns−1… F

√
Es

Nt

√
Es

Nt

s

…
…

…
…

…
…0 : Nt−1

BICM MIMO iterative receiver

Rate-
binary 

encoder
Interleaver

r

M−ary

Sign( ).
LD(b)y b̂

+ -
Soft

demapper

Interleaver

APP
binary 

decoder
+

+

Deinterleaver

+-

Lmap
D (b�) Lmap

E (b�)

Lmap
A (b�)

Lcod
A (b�)

Lcod
D (b�)Lcod

E (b�)

� = 0, . . . , log2M−1

b

�Fig. 5.13 MIMO BICM architecture with a single codeword and iterative reception.

demapper computes L-values Lmap
D (·) and subsequently extrinsic information Lmap

E (·) =

Lmap
D (·) − Lmap

A (·) on those coded bits. The extrinsic information is deinterleaved and fed
into the APP decoder as Lcod

A (·). In turn, the decoder outputs its own extrinsic information
on the coded bits, Lcod

E (·) = Lcod
D (·) − Lcod

A (·), which, properly interleaved, becomes the
new a-priori information for the soft demapper, completing an iteration. The APP decoder
also generates L-values for the message bits and, once sufficient iterations have been run,
the sign of these directly gives the final MAP decisions. As mentioned for SISO, when the
receiver is iterative, departing from Gray mapping is preferable.

A one-shot receiver is a special case of the structure in Fig. 5.13 where latency is reduced
at the expense of the soft demapper not benefitting from a-priori information. Then, Gray
mapping becomes advisable.

To zoom in on the computation of the L-values produced by the soft demapper, the SISO
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expression in (1.128) readily generalizes to MIMO CSIR settings as

LD
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where S�
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1 are the subsets of MNs -ary vectors sm obtained by mapping every group
of Ns log2 M coded bits whose �th element is 0 or 1, respectively. In turn, Bm
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where the summations in numerator and denominator feature 1
2M

Ns terms; this is half the
number of possible MNs vectors, a potentially very large value. The numerical evaluation
of (5.223) is often simplified by means of the so-called max-log approximation [603]

loge
(
ea0 + · · ·+ eaQ−1

) ≈ max
(
a0, . . . , aQ−1

)
, (5.224)

whereby the aforementioned summations revert to finding the vector sm that minimizes∥∥∥∥y −
√

GEs

Nt
HFsm

∥∥∥∥2

(5.225)

over each of the subsets, S�
0 and S�

1. Even so, the number of candidate vectors continues to
be 1

2M
Ns .

Example 5.42

How many vectors have to be considered in the numerator and denominator of (5.223) if
Ns = 4 and the constellations are 64-QAM? How about for Ns = 8 with the constellations
being 16-QAM?

Solution

For M = 64 and Ns = 4, the number of vectors equals 1
2 64

4 = 8.4 million. In turn, for
M = 16 and Ns = 8, the number is 1

2 16
8 = 2150 million.

Several approaches have been set forth to further approximate these computations, dras-
tically shrinking the number of vectors to consider. A favorite such approach is the list
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sphere decoding algorithm, which excludes all those vectors sm for which (5.225) exceeds
a certain value [604–609]. Viewing the set of MNs vectors as a lattice, this amounts to
considering only vectors that lie within a sphere centered on√

Nt

GEs
(F ∗H∗HF )−1H∗F ∗y, (5.226)

which (see Section 2.7.1) is the unconstrained ML estimate of the vector minimizing
(5.225). Evidently, the efficacy of the algorithm is closely tied to the choice of the sphere
radius, which should be large enough to contain—with high probability—the sought vec-
tor yet small enough to bring about a sufficient reduction in complexity [610]. Another
approach to lessen the complexity of the soft demapping is the tree decoder [611], which
also reduces the search space by exploiting the structure of the space of MNs -ary vectors.

Multiple-codeword BICM
A multiple-codeword BICM transmitter is illustrated in Fig. 5.14. After being separately
interleaved, each codeword is parsed into groups of log2 M coded bits and mapped to
respective M -ary constellations. The vector s thus obtained is precoded and amplified into
the transmit signal x.

At the receiver, it is certainly possible to disregard the fact that separate codewords are
built into the signal and apply the same structure described for single-codeword transmis-
sions. However, if joint decoding is to take place, then it is arguably preferable to transmit
a single (and therefore longer) codeword in the first place. The main point of using multiple
codewords is to take advantage of that at the receiver, with an LMMSE-SIC structure. The
BICM version of this structure is depicted in the bottom part of Fig. 5.14. An LMMSE
filter isolates an initial codeword, for which a soft demapper then computes Lmap

D (·). With-
out a-priori information, this is directly the extrinsic information on the coded bits, and
its deinterleaved version is fed into the corresponding APP decoder. The decoder goes on
to generate L-values for the message bits, whose sign gives the final MAP decisions, as
well as L-values for the coded bits, whose sign is a reconstruction of the binary codeword
itself. Reinterleaved and remapped again, this yields a reconstruction of the corresponding
entry of s and subsequently—via precoder, channel estimate, and amplification—of its in-
terference contribution on the observed vector y. This interference is subtracted and the
process is repeated for the next codeword, and so on, until all the Ns codewords have been
decoded.

The one-shot demapping and decoding of each codeword could also be rendered iterative
if high-order constellations are to be used, an idea inspired by turbo multiuser receivers
[612] and that could be imported to LMMSE-SIC MIMO receivers [584, 613].

Also, and despite hard decisions at each stage sufficing for the information-theoretic
optimality of LMMSE-SIC reception, to render the implementation robust against imper-
fections the SIC process could be made soft, i.e., rather than using hard bit decisions to
reconstruct and cancel interference, L-values could be used instead [614].

Hybrid receiver structures having aspects of joint decoding and aspects of SIC are also
possible, for instance by jointly decoding groups of two or more codewords and then
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applying group-wise LMMSE-SIC [615]. Or, as in the so-called turbo BLAST, multiple-
codewords could be space–time interleaved into a single one, jointly mapped at the trans-
mitter and demapped at the receiver, but with split outer decoders [601]. These, and other
variations of the architectures depicted in Figs. 5.13–5.14 offer distinct options in terms
of complexity, latency, and error probability, but always bound by the fundamental limits
established throughout the chapter.

5.9 Link adaptation

Link adaptation, recall, is how transmissions are matched to the channel by means of dis-
crete constellations and binary codes of various rates. The MCS combinations available in
LTE, for instance, are the ones in Table 4.1. Transmit adaptivity is particularly important
in quasi-static settings, so as to avoid being trapped in the outage framework. With proper
link adaptation, rather, AWGN channels of varying qualities are encountered as the link
undergoes fading (see Section 4.7).

In SISO, the channel is scalar and the throughput delivered by each MCS can be put as a
function of a scalar channel-quality metric: directly SNR |h|2 if the fading is frequency-flat,
or else SNRxESM (computed via the CESM, MIESM, or EESM methods) if it is frequency-
selective. Then, from throughput-versus-scalar-metric relationships such as the LTE curves
in Fig. 4.8, the best MCS can be identified.

In MIMO, multiple signal streams are transmitted and the channel is matrix-valued
rather than scalar. The link adaptation process must be accordingly elaborated and, since
the MCS is controlled at the codeword level, this elaboration depends on whether these
multiple signal streams correspond to one or to multiple codewords.

5.9.1 Single codeword

Single-codeword MIMO transmissions feature, just as SISO transmissions, a single link
adaption process. However, the channel experienced by the codeword is now matrix-valued.
Although the capacity (or spectral efficiency achievable with suboptimum precoding or
signal distributions) is a scalar quantity, the error probability is not easily captured as a
function of a scalar metric. Given a certain SNR, for instance, different channel matrices
might correspond to rather distinct error probabilities.

Example 5.43

Consider the precoded channel matrices

H0F0 =

[
1 1

1 1

]
H1F1 =

[ √
2 0

0
√
2

]
. (5.227)

Although both of these precoded matrices yield the same value for the MIMO counterpart
to SNR |h|2, namely for SNR ‖HF ‖2F, the former suffers from strong spatial interference
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whereas the latter is free of it. The error probability of a certain MCS is likely to be signif-
icantly different in either case.

The natural approaches to obtain a scalar metric more representative than SNR ‖HF ‖2F
are again the CESM, MIESM, and EESM methods introduced in Chapter 4, applied here in
the spatial domain. Specifically, these methods could be applied to the nonzero eigenvalues
of HFF ∗H∗. And, in MIMO OFDM, by applying these methods to the nonzero eigenval-
ues of H[k]F [k]F [k]∗H[k]∗ for subcarriers k = 0, . . . ,K − 1, the mapping onto a scalar
metric in the frequency and in the space domains would be conveniently blended. However,
the calibration of the fudge factor for these methods would then be much more challenging,
particularly if the precoded channel is not diagonal and the various signal streams are mu-
tually interfering. Beyond the marginal distribution of each entry of H , meaning the type
of fading, the fudge factor would go on to depend on the joint distribution, meaning the
antenna correlations, and on the numbers of antennas themselves. A large stock of fudge
factors, and the ability to know which one to apply based on the distribution of H , might
be needed to cover most likely scenarios. Besides a colossal amount of offline simulation
work, this would likely lead to significant performance variability.

As an alternative to the CESM, MIESM, and EESM methods, and with a view to BICM
implementations, scalar metrics based on the L-values at the output of the decoder can be
entertained. Specifically, the average (over the entire codeword) of the mutual information
between the distribution of the coded bits and that of the posterior L-values has been iden-
tified as a robust indicator of the error probability [616]. Besides monitoring how the error
probability decays as iterations unfold, therefore, this average mutual information could
serve to gauge the throughput attainable by each MCS and to effect link adaptation [617].

Regardless of the metric, as mentioned, there is likely to be a higher performance vari-
ability for each value of the metric than there is in SISO. This makes hybrid-ARQ even
more invaluable in MIMO, as its ability to recover from mismatched MCS selections avoids
the introduction of hefty safety margins and the ensuing loss in spectral efficiency.

5.9.2 Multiple codewords

When multiple codewords are transmitted, scalar channel-quality metrics are more forth-
coming. In particular, with CSIT-based precoding diagonalizing the channel, each code-
word is conveyed over a noninterfering subchannel and the corresponding SNR can di-
rectly be such a metric. If frequency selectivity is present, then CESM, MIESM, or EESM
can be applied to each subchannel separately, exactly as in SISO.

With precoders that do not diagonalize the channel, the signal streams bearing the code-
words are mutually interfering. If the receiver features a joint decoder, then the remarks
made in relation to single-codeword link adaptation apply. Alternatively, if an LMMSE-
SIC receiver is featured, then scalar metrics can be formulated based on the effective scalar
channel experienced by each codeword. As anticipated in the derivation of the LMMSE-
SIC and detailed in the next chapter, the SINR experienced by the jth signal stream is given
by (5.219), and this quantity can perfectly serve as a scalar metric for the link adaptation
of the jth codeword. This enables PARC, whereby each codeword is subject to a separate
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�Fig. 5.15 For an IID Rayleigh-faded MIMO channel with Nt = Nr = 4, BICM, PARC, and no

precoding, throughput per unit bandwidth achievable with LMMSE-SIC reception and

the entire set of 27 LTE MCSs. Also shown is the no-CSIT ergodic capacity.

adaptation. Again, if frequency selectivity is present, then CESM, MIESM, or EESM can
be applied across the SINR values on the OFDM subcarriers.

Example 5.44 (Link adaptation with MIMO IID Rayleigh fading and LMMSE-
SIC reception in LTE)

Let Nt = Nr = 4 with the channel being IID Rayleigh-faded and frequency-flat. The
transmission is BICM and unprecoded, with a separate codeword emitted from each an-
tenna and with PARC. The receiver is LMMSE-SIC and the channel is quasi-static over
each codeword.

Presented in Fig. 5.15 is the throughput achievable with the set of 27 LTE MCSs. Also
shown is the ergodic spectral efficiency achievable by an unprecoded transmission, which,
in an IID channel, directly equals the no-CSIT ergodic capacity. With only the modicum
of information at the transmitter represented by the MCS selections, the throughput can
closely track such capacity. A set of 27 MCSs over Nt = 4 antennas can be indexed with
only 19 bits, which could be compressed into fewer by removing those MCS combinations
that occur with very low probability, given the fact that the first decoded codeword suffers
from interference from all the rest, whereas the last decoded codeword is interference-free.

Example 5.45

By how much is the gap between the throughput and the capacity exacerbated by MIMO,
relative to a SISO transmission utilizing the same set of MCSs?



361 5.10 Reciprocity and CSI feedback

2

3

4

6

7

SNR (dB)

S
pe

ct
ra

l e
ffi

ci
en

cy
 (

b/
s/

H
z)

(1− pe)
R

B

MIMO

SISO

1

Nr

1

Nr
C(SNR)

(per antenna)

�Fig. 5.16 Solid lines, per-antenna throughput per unit bandwidth and per-antenna capacity as a

function of SNR for a MIMO channel with Nt = Nr = 4, IID Rayleigh fading,

unprecoded BICM with PARC and LMMSE-SIC reception. Dashed lines, same

quantities for a SISO channel.

Solution

This question can be addressed by bringing Figs. 4.12 and 5.15, respectively corresponding
to SISO and MIMO, together on an equal footing. Fig. 5.16 shows per-antenna throughputs
and capacities for both settings. The per-antenna capacities coincide at low SNR, with
MIMO having only a small loss of 1.31 dB at high SNR (see Example 5.29). Remarkably,
the per-antenna throughout is also preserved at low SNR and exhibits a similarly small loss
at high SNR—before eventually saturating at the value dictated by the highest-rate MCS.
Thus, MIMO does not worsen the gap between throughput and capacity in this specific but
very relevant example. Other cases are proposed as problems at the end of the chapter.

As far as hybrid-ARQ is concerned, the transmission of multiple codewords enables
flexibility. Rather than trigger a complete retransmission of all Ns codewords if any of them
is erroneously decoded, it becomes possible to retransmit only those specific codewords
that are in error, and this is indeed advantageous [618, 619]

5.10 Reciprocity and CSI feedback

Link adaptation requires an MCS indicator per codeword, and CSIT-based precoding—
desirable not only from a performance standpoint, but also on the grounds of transceiver
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complexity—needs somewhat detailed CSI for each time–frequency channel coherence
tile, altogether pointing to the issue of CSI acquisition on the part of the transmitter.

The process of estimating the channel at the receiver is discussed in detail in preceding
chapters; here, we shift the focus to how the CSI reaches the transmitter and discuss three
methods advanced earlier in the text: channel reciprocity, analog feedback, and digital
feedback. We establish basic terminology and provide simple mathematical descriptions
of their operation.

5.10.1 Channel reciprocity

Reciprocity leverages some fundamentals of propagation. In a linear and isotropic medium,
the over-the-air channel between two antennas at a given frequency is reciprocal [620].
Extracting the benefits of reciprocity requires TDD or full duplexing, such that the CSIT
can be obtained from the reverse-direction channel estimates on the same frequency range.
Since, in practice, the channel estimation relies on inserted pilots, in TDD specifically
this creates a certain tension regarding the placement of those pilots in the time domain:
while, from a receiver’s vantage when estimating the channel, it is desirable to have pilots
regularly sprinkled, from the reverse-direction transmitter’s vantage it is preferable to have
the pilots placed toward the end of the duplexing duty cycle so as to have fresh estimates.

To adjust them to a reciprocity situation, the CSIT-based results in this chapter, derived
under the premise of perfect CSIT, need to be tinkered with so as to incorporate the reverse-
direction estimation errors. And it must be taken into account that both communication
directions benefit from a pilot overhead that is nominally incurred in the reverse direction.
(Note, for instance, that the maximization of the forward spectral efficiency, disregarding
the costs to the reverse link, would entail devoting this link exclusively to pilots [621].) We
do not delve here into the inclusion of reverse-direction channel estimation errors and into
the optimization of the overhead for reciprocal SU-MIMO settings, but rather defer these
issues directly to Chapter 9, in the context of multiuser MIMO. The single-user setup is a
special case of the results therein.

The primary challenge associated with exploiting reciprocity is that the transmit and
receive circuits are themselves not reciprocal, i.e., the tandem of base station transmitter
and user receiver may differ from the tandem of user transmitter and base station receiver.
The main sources of mismatch are due to differences between the power amplifier output
impedance at the transmitter and the input impedance of the low-noise amplifier at the
receiver [622]. Mathematically, these can be treated as an additional per-antenna complex
gain such that the effective channel becomes DAHDB where DA and DB are diagonal
matrices that differ at transmitter and receiver [623]. These matrices drift over time, for
instance due to variations in temperature, but slowly relative to H , meaning that their
calibration and compensation entail a negligible additional overhead [624–626].

There are two methods for calibration.

Self-calibration, where an extra transceiver is used [623, 627]. This extra transceiver
determines differences between the transmit and receive channels successively for each
antenna during a special calibration stage.
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�Fig. 5.17 SU-MIMO transmission based on analog feedback.

Over-the-air calibration, where the channel estimate gathered at the receiver is fed back
to the transmitter so that the required calibration parameters can be determined [628].

Calibration mismatches are typically neglected in analyses, and this is also the approach
in this text.

5.10.2 Analog feedback

In FDD systems there is no reciprocity and thus explicit feedback is required, as well as a
coherence time much longer than the feedback delay. The quantity being fed back can be
the observation, y, the ensuing channel estimate, Ĥ , or even the precoder obtained from
that estimate. If the quantity of choice, possibly subject to a linear or nonlinear transforma-
tion (if nothing else, scaled to match the feedback power), is sent back without quantiza-
tion, the feedback is said to be analog [629–633]. Referring to Fig. 5.17, where the quantity
being fed back is Ĥ , the analysis of analog feedback should incorporate three sources of
error.

Channel estimation errors, which alter the actual channel matrix H into Ĥ . The rele-
vance of these errors is determined by the quantity and power of the forward pilots.
Errors in the estimation of the feedback channel over which Ĥ is subsequently con-
veyed. These errors depend on the quantity and power of whatever pilots accompany the
feedback.
Errors in the estimation of Ĥ at the output of the inaccurately known feedback channel,
which further alter Ĥ into ˆ̂H . These errors depend on the size of the feedback interval,
which limits how many repetitions are possible, and on the feedback power.

These various errors compound to deviate the final CSIT, ˆ̂H , from its true value, H , and
the overall error minimization entails a joint optimization of the various overheads and
powers [634]. A detailed exercise of all of this is undertaken in Chapter 9.

An advantage of analog feedback over its digital counterpart is that, for growing SNRs
(in both directions), all three types of estimation error vanish and ˆ̂H → H .
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5.10.3 Digital feedback

In FDD systems, the alternative to analog feedback is to relay back a digital representation
of the CSI. Since, as any overhead, the number of feedback bits should be limited, this
approach is sometimes known as limited feedback [635].

To effect digital feedback, the quantity of choice needs first of all to be quantized. This
entails selecting a representative value from a finite set, i.e., from a codebook shared by
transmitter and receiver. Suppose for instance that the quantity to be fed back is the channel
estimate itself, as in Fig. 5.18, and let the codebook be {H0, . . . ,HNf−1} where Nf is the
number of entries. From the channel estimate Ĥ at the receiver, the index �̂ of a selected
codebook entry is fed back to the transmitter and, by virtue of the codebook being shared,
the transmitter can then generate H�̂ as its CSIT.

The distortion introduced by this process is a function of the codebook and the channel
distribution. Relative to its analog counterpart, the main drawback of digital feedback is
that, in the former, the distortion vanishes as the SNRs grow, whereas in the latter it does
not. With digital feedback, rather, the distortion only vanishes for Nf → ∞. This is not
catastrophic in single-user channels, but it acquires great relevance in multiuser setups
[147] and it requires Nf to grow with the SNRs (or, in practice, to be dimensioned for the
highest envisioned SNRs).

Feedback need not take place for every symbol and subcarrier, but only once per co-
herence tile, and many works have explored how to tailor the quantization and feedback
process to changing fading coherences in both frequency [636, 637] and time [638–640].
Antenna correlations can be leveraged to reduce the amount of feedback [641, 642].

Beamforming
Before opening the discussion to precoders of arbitrary rank, it is instructive to examine
digital feedback for beamforming, a transmission option whose precoder, recall, is ideally
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given by the maximum-eigenvalue eigenvector of H∗H . A beamforming situation allows
illustrating why quantizing the channel itself may be inefficient.

The main motivation comes from an argument about dimensionality. An Nr×Nt channel
matrix is parameterized by 2NrNt real values. With direct quantization, the beamforming
vector would be computed from the quantized channel after feedback, a computation whose
accuracy generally requires much resolution in the quantized feedback. Alternatively, the
receiver could quantize and feed back the beamforming vector itself, which is parameter-
ized by only 2Nt real values. Furthermore, since the beamforming vector has norm Nt,
there is one free quantity and only 2Nt − 1 real values are needed.

Instead of a codebook of channel matrices then, a codebook F = {F0, . . . ,FNf−1} of
beamforming vectors can advantageously be featured. Selecting an entry from this code-
book on the basis of minimum distance, �̂ = argmin ‖vmax − F�‖2 where vmax is the
maximum eigenvalue eigenvector of Ĥ∗Ĥ , would lead to a low distortion in the quantiza-
tion of the precoder, but not necessarily to the best communication performance. Rather, it
is better to maximize the ergodic spectral efficiency by selecting [643–645]

�̂ = argmax
�

E

[
log2

(
1 +

SNR

Nt

∥∥∥ĤF�

∥∥∥2
)]

(5.228)

or, since beamforming is mostly of interest at low SNR, to directly maximize the average
SNR at the receiver by selecting

�̂ = argmax
�

E

[∥∥∥ĤF�

∥∥∥2
]
. (5.229)

Note that, for any phase φ,

‖Ĥ (ejφF�)‖2 = (ejφF�)
∗Ĥ∗Ĥ (ejφF�) (5.230)

= e−jφejφF∗
�Ĥ

∗ĤF� (5.231)

= ‖ĤF�‖2, (5.232)

indicating that the optimum beamforming vector is not unique: any phase-rotated version
performs equally. This phase invariance amounts to another free quantity, leaving 2Nt − 2

real values to quantify. A good design for F should incorporate the norm constraint and
the phase invariance.

Let us see a codebook design based on (5.229), i.e., a codebook F that minimizes the
distortion

D(F) =
SNR

Nt
E

[
‖Ĥvmax‖2 − max

F�∈F
‖ĤF�‖2

]
. (5.233)

We can rewrite D(F) in terms of the maximizer F�̂ (which depends on the codebook) as

D(F) =
SNR

Nt
E

[
‖Ĥvmax‖2 − ‖ĤF�̂‖2

]
(5.234)

= SNR E

⎡
⎣λmax(Ĥ

∗Ĥ)−
Nmin−1∑
j=0

λj(Ĥ
∗Ĥ)

∣∣v∗
jF�̂

∣∣2
Nt

⎤
⎦ . (5.235)
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Discarding the terms corresponding to smaller eigenvalues gives an upper bound on the
average distortion, to wit

D(F) ≤ SNR E

[
λmax(Ĥ

∗Ĥ)

(
1−

∣∣v∗
maxF�̂

∣∣2
Nt

)]
(5.236)

= SNR E
[
λmax(Ĥ

∗Ĥ)
]
E

[
1−

∣∣v∗
maxF�̂

∣∣2
Nt

]
(5.237)

= SNR E
[
λmax(Ĥ

∗Ĥ)
]
E

[
d2
(
vmax,

F�̂√
Nt

)]
, (5.238)

where (5.237) follows from the independence of the eigenvalues and eigenvectors of com-
plex Wishart matrices [646, 647], while in (5.238) we have introduced the function

d(x,y) =

√
1− |x∗y|2. (5.239)

Applied to unit-norm vectors, whose inner product equals the cosine of the angle they
subtend, d(x,y) = sin(θ) with θ ∈ [0, π/2] being the angle between x and y. As it
turns out, d(·, ·) is a measure of distance on the set of one-dimensional subspaces (i.e.,
lines) within the Nt-dimensional space, a set known as the Grassmann manifold G(Nt, 1).
It is important to distinguish the subspace distance d(·, ·) from the Euclidean distance
employed elsewhere in the book. Among other properties, the subspace distance function
is phase invariant, i.e., d(ejφx,y) = d(x,y), as desired in a good codebook.

Returning to (5.238), we have that the distortion upper bound depends on the subspace
distance between the ideal beamforming vector, vmax, and its best codebook entry, F�̂.
If the entries of Ĥ are IID Rayleigh-faded, then vmax is isotropically distributed and
E
[
d2(F�̂,vmax)

]
in (5.238) can itself be upper-bounded. For a given codebook F , let

dmin(F) = min
0≤�<�′≤Nf−1

√
1− |F∗

�F�′ |2
N2

t

(5.240)

be the smallest subspace distance between any pair of vectors in the codebook. Then [648]

D(F) ≤ SNR E
[
λmax(Ĥ

∗Ĥ)
] [

1 +Nf

(
dmin(F)

2

)2(Nt−1) (
d2min(F)

4
− 1

)]
(5.241)

where SNR E
[
λmax(Ĥ

∗Ĥ)
]

is the average receive SNR with unquantized CSIT, and thus
the remaining term reflects the penalty of a quantized CSIT. This penalty is minimized by
the codebook F with the largest dmin(F). Designs of maximally spaced lines are known as
Grassmannian line packings [649, 650].

The bound in (5.241) provides a fundamental connection between digital feedback beam-
forming for IID channels, the Grassmann manifold, and Grassmannian line packings. For
this reason, the term Grassmannian beamforming is sometimes employed, and the corre-
sponding codebooks (which exactly or nearly maximize the minimum distance) are known
as Grassmannian codebooks [651–656]. The minimum distances in Grassmannian code-
books are often the benchmark by which other beamforming codebooks for IID Rayleigh-
faded channels are measured.
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The upper bound in (5.241) can be complemented by lower bounds, and any specific
codebook yields one such bound. In particular [654],

D(F) � SNR
(
E[λmax(Ĥ

∗Ĥ)]−Nr

)
Nf

− 1
Nt−1 , (5.242)

which is a rigorous inequality for MISO (Nr = 1) and an approximate one for MIMO
(Nr > 1). This expression shows how the distortion decreases with the size of the code-
book, raised to a power that depends on Nt. For a certain codebook size, additional transmit
antennas increase the distortion.

As an alternative to characterizing the performance for specific codebooks, the perfor-
mance can be averaged over a randomly drawn codebook [644, 645, 657, 658]. In the case
of beamforming, this corresponds to vectors distributed on the unit sphere and, for MISO
IID Rayleigh-faded channels specifically [645],

E[D(F)] = SNR E[λmax(Ĥ
∗Ĥ)]

Nf(Nf − 1)! Γ
(

Nt

Nt−1

)
Γ
(
Nf +

Nt

Nt−1

) . (5.243)

As the codebook grows large, E[D(F)] decays approximately with Nf
− 1

Nt−1 , as in (5.242).

Arbitrary-rank precoders
An arbitrary precoder for complex Gaussian signals comprises a steering matrix UF and
a power allocation matrix P . For feedback purposes, the power allocation coefficients are
sometimes rendered binary, meaning that Ns is set to the number of eigenvectors of Ĥ∗Ĥ
on which waterfilling would allocate nonzero power, and then power is allocated uniformly
thereon [659]. With that, only a properly dimensioned UF must be fed back, a semiunitary
precoder satisfying UFU

∗
F = INs

(but U∗
FUF �= INt

for Ns < Nt). Note that, for both
SNR → 0 and SNR → ∞, this entails no loss in optimality, as the optimum precoders
in these limiting regimes do allocate power uniformly, respectively over the maximum-
eigenvalue eigenvector(s) of H∗H and over all the eigenvectors. At intermediate SNRs
there is a loss, and Problem 5.58 is devoted to its quantification.

As in beamforming, there are invariances in arbitrary-rank precoding that reduce the
dimensionality. Because of the unitary invariance of IID complex Gaussian signals, for
any Ns ×Ns unitary matrix V , the precoder UFV achieves the same mutual information
as UF , meaning that the spectral efficiency with an optimum receiver is unaffected. The
orthogonality of the columns of UF and the unitary invariance reduces the number of free
parameters, and digital-feedback semiunitary precoding with relatively small codebooks
can have surprisingly satisfactory performance.

The equivalence of UFV for any unitary V implies that what matters is the subspace
spanned by the columns of UF . With the Grassmann manifold G(Nt, Ns) being the set
of all possible Ns-dimensional subspaces on the Nt-dimensional space, each precoding
subspace corresponds to a point in the Grassmann manifold and the optimization of the
codebook entails selecting Nf such points depending on the channel distribution. For IID
Rayleigh-faded channels specifically, a good codebook should feature precoders that are
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regularly far in terms of subspace distance; again, a tight connection emerges with Grass-
mannian packings [660].

To allow for Ns itself to be a parameter that is fed back—this complement of link adap-
tation is termed rank adaptation—and that can vary between 1 and Nmin, the codebook
needs to consist of Nmin subcodebooks, one for each possible rank [659, 661–665].

Codebook designs
Although a detailed analysis of digital-feedback codebooks is beyond the scope of this
book, we do present a brief survey of the main families of codebooks and provide refer-
ences for readers interested in further exploring the topic.

Vector-quantization-based codebooks

Vector quantization extends the classical notion of scalar quantization to vector-valued
sources [666]. The source is quantized by selecting one vector from a codebook. This tends
to rely on squared-error distortion functions, which makes its direct application to MIMO
precoding difficult in light of the different distortion functions that arise in this context.
With some generalizations though, vector quantization can be applied [654, 665, 667, 668].

Most approaches are based on modifications of the Linde–Buzo–Gray (LGB) algorithm
[669], which is itself a variation of the Lloyd or the k-means clustering algorithms in signal
processing [670]. The operation of these algorithms can be sketched as follows. The code-
book is initialized with Nf entries drawn at random. Then, a number of source realizations
are produced, in our case precoders. Each precoder is assigned to its closest—in some
desired sense—codebook entry, forming Nf clusters, and the centroids of these clusters
become the entries of a new codebook. The process is repeated until convergence. While
such convergence may be to a local optimum, the technique is enticing because it can
find a codebook for any channel distribution, possibly in real time. Dynamically optimized
codebooks would keep the distortion at a minimum, at the expense of frequent updates.

Grassmannian codebooks

As seen earlier in the section, codebooks maximizing the minimum subspace distance are
desirable for IID Rayleigh-faded channels. The entries of a Grassmannian codebook corre-
spond to subspaces, e.g., lines for Ns = 1 or planes for Ns = 2. Maximizing the minimum
distance ensures that these subspaces are as far as possible. Essentially, Grassmannian
codebooks yield a near-uniform sampling of the precoding space, and their design is a
packing problem.

Example 5.46

Shown in Fig. 5.19 is the toy example of packing points in a square with the largest pos-
sible minimum distance [671, 672]. Some packings are more efficient than others, leaving
smaller gaps.
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�Fig. 5.19 Packing points in a box [672].

Example 5.47

Shown in Fig. 5.20 are packings in G(3, 1), i.e., packings of lines in a three-dimensional
space [673]. For Nf = 3, the lines are orthogonal. In the other cases they are not orthogo-
nal, but they are apart in terms of subspace distance

Example 5.48

Shown in Fig. 5.21 are packings in G(3, 2), i.e., packings of planes in a three-dimensional
space. Exploiting the fact that a packing for G(Nf , 1) can serve to fabricate a packing for
G(Nf , Nf − 1), each plane in this example is determined by a line.

One of the challenges of Grassmannian codebook design is that the problem of finding
the best subspace packings has received attention in the mathematics community only in
recent years [649]. Finding optimum packings is notoriously difficult and closed forms
are known only in special cases; most solutions have to be derived numerically. In [649]
specifically, a nonlinear optimization software package is employed; resulting codebooks
can be downloaded online [673]. Possibly the most relevant practical approach to design
new codebooks is the alternating projection technique described in [650]. A few closed
form solutions are also available for optimum packings, for instance a construction with
Nf = 2Nt entries for Ns = 1 and power-of-two values of Nt [674] and optimum designs
for Ns = 1 and several values of Nt [651]. Yet another source of potential codebooks for
digital feedback is the literature on communication over no-CSIR MIMO channels, whose
capacity-achieving signals, recall from Section 5.5, are Nt×Nc signal matrices of the form
S = AS · √Nc US , where US is semiunitary; the design of signal codebooks from which
to draw US relates to optimum packings on the Grassmann manifold [647, 675].

For beamforming on IID Rayleigh-faded channels specifically, the Grassmannian code-
books are packings in G(Nt, 1) and the minimum subspace distance in (5.240) satisfies

dmin(F) ≥
√
1− Nf −Nt

Nt (Nf − 1)
. (5.244)

Equality can be achieved in only a few special cases [651, 674], a necessary condition
being Nf ≤ N2

t . When the equality holds, the constructions are equiangular, meaning that,
for every F�,F�′ ∈ F , � �= �′, the value of |F ∗

� F�′ | is constant.
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�Fig. 5.20 Packings in G(3, 1) for Nf = 3, 5, and 8.

3 planes in G���
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�Fig. 5.21 Packings in G(3, 2) for Nf = 3, 5, and 8.

Example 5.49

The Grassmannian beamforming codebook for Nt = 2 and Nf = 4, which satisfies (5.244)
with equality, is

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

[−0.16125− j 0.73479

−0.51347− j 0.41283

]
√
2

[−0.07869− j 0.31920

−0.25059 + j 0.91056

]
√
2

[−0.23994 + j 0.59849

−0.76406− j 0.02120

]
√
2

[−0.95406

0.29961

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5.245)

Example 5.50

Consider an IID Rayleigh-faded MISO channel with Nt = 2. The receiver has CSIR and
at every coherence tile it feeds back two bits indexing the entry of the codebook in (5.245)
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�Fig. 5.22 In solid, CSIT and no-CSIT capacities of a MISO IID Rayleigh-faded channel with

Nt = 2. In dashed, spectral efficiency with two bits of feedback and a Grassmannian

beamforming codebook.

that maximizes the receive SNR. The feedback delay is much shorter than the coherence
time, such that the selected precoder can be assumed to apply over the entire tile. Plot the
achievable spectral efficiency alongside the capacities with and without CSIT.

Solution

See Fig. 5.22. With only two bits of feedback per coherence tile, most of the gap between
the CSIT and no-CSIT capacities is bridged. With additional bits and a richer codebook, it
could be sealed completely.

As in any Grassmannian codebook, the vectors in (5.245) can be subject to unitary ro-
tations: for F� representing a point in G(Nt, Ns), F�V represents the same point for any
unitary V because the columns of F� and F�V span the same subspace. Indeed, subjecting
the lines or planes in Figs. 5.20 and 5.21 to a common rotation is inconsequential to their
packing and to their effectiveness as precoders for IID Rayleigh-faded channels.

Fourier codebooks

Grassmannian codebooks maximize the minimum subspace distance between entries, min-
imize bounds on several average distortion metrics for IID Rayleigh-faded channels, are
ideally equiangular, and have intuitively appealing properties. However, as most packings
are found through numerical search, they do not exhibit much structure, complicating the
implementation both in terms of search and of storage. Consequently, there has been in-
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terest in developing approximate Grassmannian codebooks that possibly sacrifice the strict
optimality of the packing in exchange for additional structure. The Fourier design is an
instance of such a codebook [660, 675, 676].

Let us first examine the beamforming case. By taking a length-Nt portion of an Nf -
dimensional Fourier vector, we obtain the harmonic vector

ν� =

⎡
⎢⎢⎢⎢⎣

1

e
j2π �

Nf

...

e
j2π

(Nt−1)�
Nf

⎤
⎥⎥⎥⎥⎦ . (5.246)

The distance between the subspaces spanned by any two such vectors satisfies

d2(ν�,ν�′) = 1− |ν∗
� ν�′ |2
N2

t

(5.247)

= 1− 1

N2
t

∣∣∣∣∣∣
Nt−1∑
j=0

e
j2π

(�−�′)j
Nf

∣∣∣∣∣∣
2

(5.248)

=

⎧⎪⎨
⎪⎩

1 � = �′

1− 1
N2

t

∣∣∣∣∣ sin
(

πNt(�−�′)
Nf

)

sin
(

π(�−�′)
Nf

)

∣∣∣∣∣
2

� �= �′,
(5.249)

which depends on � and �′ only through ((�−�′))Nf
, i.e., it has a circulant structure. Thus, it

suffices to consider d(ν0,ν�) for � = 1, . . . , Nt−1. The key idea behind Fourier codebooks
is to reorder the entries of (5.246) into beamforming vectors with the best possible such
distances for the channel distribution of interest. To that end, consider the diagonal matrix

Θ =

⎡
⎢⎢⎢⎢⎣
e
j 2π
Nf

u0 0 · · · 0

0 e
j 2π
Nf

u1 0 0
...

. . .
. . .

...

0 0 · · · e
j 2π
Nf

uNt−1

⎤
⎥⎥⎥⎥⎦ , (5.250)

where 0 ≤ u0, . . . , uNt−1 ≤ Nf −1. From Θ and a generating Fourier vector ν0, a Fourier
beamforming codebook is obtained as

F =
{
ν0,Θν0,Θ

2ν0, . . . ,Θ
Nf−1ν0

}
, (5.251)

corresponding to Nf points arranged on an Nt-dimensional complex circle. The choice
of ν0 and {u0, . . . , uNt−1} should optimize this arrangement depending on the channel
distribution, something that can be done through exhaustive search, for small codebooks,
and more generally through random search.

If the channel is IID Rayleigh-faded, then the Nf points should be regularly spaced
over the Nt-dimensional complex circle, so as to maximize the minimum distance. There
are Fourier such codebooks that are also Grassmannian codebooks [651]. Based on this
connection, Fourier constructions that meet (5.244) with equality can be found.
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Looking beyond beamforming, for semiunitary precoders of rank Ns > 1, the same
ideas apply only with the generator containing Ns columns of an Nt-dimensional Fourier
matrix.

Fourier codebooks possess much structure and small storage requirements, as only the
generator and Θ need to be stored and the codebook entries can then be generated in real
time. Because every codebook entry is of unit magnitude, the calculation of Θ�ν0 only
entails phase rotations. Moreover, subcodebooks for different precoder ranks may admit
nested constructions whereby all the subcodeword items derive from those of the highest
rank. Because of all of these features, Fourier codebooks are featured in LTE.

Kerdock codebooks

Kerdock codebooks are based on the concept of mutually unbiased bases, which are col-
lections of unitary matrices with constant cross-correlation [677, 678]. Precisely, the set
U = {U0, . . . ,UL−1} with U� an Nt × Nt unitary matrix is a mutually unbiased collec-
tion if any two columns u and v of different matrices therein satisfy

|u∗v|2 =
1

Nt
. (5.252)

In turn, any two columns of the same matrix are orthogonal because of the unitary nature
of these matrices. It is not possible to find collections satisfying (5.252) for every Nt and
L, and in fact a necessary condition is L ≤ Nt + 1, which upper-bounds the size of the
feasible codebooks at Nf = Nt (Nt + 1). There are known constructions for important
values of Nt, and specifically for Nt = 1, 2, 3, 4, and 8 [679–683].

Kerdock codebooks for digital feedback have been proposed for Nt = 2, 4, and 8 [680,
684, 685]. For beamforming specifically, the codebooks are assembled from columns in
one or various bases. These designs have a systematic construction and a quaternary al-
phabet, reducing storage and search complexity. Other values of Nt may entail larger al-
phabets. Links to Grassmannian packings further justify their potential as digital feedback
codebooks [686].

Householder codebooks

A Householder linear transformation describes a reflection about a hyperplane containing
the origin. This hyperplane can be determined by an Nt × 1 vector g orthogonal to it, and
the reflection of a vector with respect to the hyperplane can be effected by the so-called
Householder matrix

U(g) = I − 2

‖g‖2 gg
∗, (5.253)

which satisfies

U(g)U(g) = I (5.254)

U(g)U(g)∗ = I (5.255)

U(g) g = −g. (5.256)
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Together, these properties indicate that U(g) is full-rank and unitary, that it has Nt − 1

eigenvalues that equal 1 and one eigenvalue that equals −1, and that g/‖g‖ is the eigen-
vector corresponding to λ(U(g)) = −1. A Householder matrix derives from one of its
eigenvectors and, if g is of unit norm, then no divisions are required to compute it.

There are several ways to build a digital-feedback codebook from a Householder ma-
trix. All constructions start from a generating codebook of vectors having the same norm.
This could be a Grassmannian codebook or some other construction described in this sec-
tion. The generators are then used to create a set of Householder matrices, whose columns
can subsequently be employed for either beamforming or arbitrary-rank precoding. House-
holder codebooks are also featured in LTE [687].

5.11 Summary and outlook

The chief results derived throughout this chapter are restated in the companion summary
box. In consistency with the prioritization of the ergodic setting, only those results are in-
cluded in the summary; readers interested in the outage capacity and the DMT are referred
back to Section 5.4.1.

All in all, the problem of communicating over SU-MIMO channels impaired by under-
spread fading and Gaussian noise can be regarded as a relatively mature topic, yet interest-
ing research avenues do remain. One such avenue is the capacity-achieving precoding, with
and without CSIT, under a per-antenna power constraint. A pragmatic approach with such
type of constraint is to discard precoding altogether, yet the ability to precode is not lost—it
is merely diminished. This problem has been solved for certain channels [688–690].

In MISO channels with CSIT, the optimum precoder transmits equal-power signals that
add coherently at the receiver, i.e., [F ]j = [H]j/‖[H]j‖.
In ergodic MIMO channels without CSIT and with no transmit antenna correlations,
the optimum precoding strategy is the same one that applies under a per-symbol power
constraint, namely F = I .

Further results can be found in [691, 692], but complete solutions for the precoding and
the ensuing capacity under a per-antenna power constraint are still lacking. Likewise, the
inclusion of magnitude constraints into the design of the precoders is a relevant extension
of the results presented in this chapter, and interested readers are referred to [693–695].

Another interesting direction relates to the impact of delay constraints, both from a pure
physical-layer perspective (finite-length codewords in MIMO [696]) as well as from the
viewpoint of a protocol stack that has to meet delay guarantees that are possibly different
for different data flows. At the higher level of abstraction required for the latter, a modified
metric termed effective capacity has been proposed [697].

Yet other research avenues open up if complexity and hardware constraints are allowed
priority over the raw performance. The reduction in baseband complexity by means of lin-
ear receivers is deferred to Chapter 6, which is devoted entirely to such receivers. If, alter-
natively, the limitations are placed at the radio-frequency level, then one can formulate the
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Take-away points

1. For moderate numbers of antennas, results obtained under CSIR (and possibly
CSIT, if the coherence is long enough to accommodate feedback) are fully mean-
ingful. To represent pilot-assisted transmission, these results can be refined via the
appropriate overhead discount and the replacement of SNR by SNReff .

2. With CSIT, the capacity-achieving precoder is F = UF

[
P 1/2 0

]T
where UF

diagonalizes the channel and creates Nmin = min(Nt, Nr) parallel subchannels
over which P effects a waterfilling. This can be interpreted as the steering of
Nmin beams with optimized powers toward the nonzero-eigenvalue eigenvectors
of H∗H , giving

C(SNR) = Nmin E

[[
log2

(
SNR

Nt

λ(H∗H)

η

)]+]
, (5.257)

which is unchanged if transmitter and receiver swap roles.
3. At low SNR, the CSIT-based precoder reduces to beamforming on the maximum-

eigenvalue eigenvector(s) of H∗H . In an ergodic setting, this gives

Eb

N0min

=
1

E[λmax(H∗H)] log2 e
(5.258)

S0 =
2

κ
(√

λmax(H∗H)
) . (5.259)

4. At high SNR, S∞ = Nmin. Transmission of Nmin equal-power streams delivers
such DOF and the optimum L∞.

5. With signals drawn from discrete constellations rather than complex Gaussian, the
CSIT-based capacity-achieving precoder remains valid as long as the constellation
cardinalities do not become a limiting factor. Otherwise, the precoder must incor-
porate a mixing matrix and channel diagonalization becomes suboptimum.

6. Without CSIT, transmission on the eigenvectors of E[HH∗] is optimal for a broad
class of channels. This on-average diagonalization does not create parallel sub-
channels, and hence spatial interference does arise. The optimum power allocation
is no longer a waterfilling; rather, the share of power allocated to each of the con-
current beams should equal the share of useful signal that an LMMSE estimator
would recover from that beam. If the transmit antennas are uncorrelated, this re-
duces to a uniform power allocation.

7. With F set to the optimum no-CSIT precoder,

C(SNR) = E

[
log2 det

(
I +

SNR

Nt
HFF ∗H∗

)]
, (5.260)

which in general does change if transmitter and receiver swap roles. For H having
IID Rayleigh-faded entries, C(SNR) admits a closed form involving only expo-
nential integral functions.
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8. Without CSIT, beamforming on the maximum-eigenvalue eigenvector(s) of
E[H∗H] is low-SNR-optimal in all channels. This yields

Eb

N0min

=
1

λmax

(
E [H∗H]

)
log2 e

. (5.261)

Denoting by u the maximum-eigenvalue eigenvector of E[H∗H], S0 = 2
κ(‖Hu‖2)

which reverts, in IID Rayleigh fading, to

S0 =
2NtNr

Nt +Nr
. (5.262)

9. Without CSIT and Nt ≤ Nr, transmission of Ns = Nmin equal-power streams
ensures S∞ = Nmin and the optimum L∞. For Nt > Nr, Ns ≥ Nmin suffices to
ensure S∞, but overloading with Ns = Nt is required to optimize L∞.

10. Transmit antenna correlations are beneficial at low SNR, as they enable a more fo-
cused beam and higher received power. At high SNR, transmit antenna correlations
may also be beneficial if Nt > Nr but they are detrimental if Nt ≤ Nr. Receive
antenna correlations reduce the capacity at every SNR.

11. If the transmission is unprecoded, all correlations are detrimental at every SNR.
12. As Nt and/or Nr grow,

1

Nr

R

B

a.s.→
∫

log2(1 + SNR ξ) f(ξ) dξ, (5.263)

with f(·) the asymptotic PDF of the eigenvalues of 1
Nt

HFF ∗H∗. This nonran-
dom limit is more amenable to analysis while serving as an excellent approxima-
tion to the ergodic spectral efficiency with very modest numbers of antennas.

13. Incorporating pilot overhead and the impact of imperfect channel estimation, the
spectral efficiency in an unprecoded IID Rayleigh-faded channel can be written as
(1− α)C(SNReff) where α is the total pilot overhead whereas

SNReff =
SNR (1−MMSE)

1 + SNR ·MMSE
(5.264)

with MMSE = 1/(1+ αNc

Nt
SNR) the variance of the estimation error on each entry

of H . As the overhead must be divided among the transmit antennas, any scaling
in Nt is equivalent to the inverse scaling in fading coherence.

14. With interference in lieu of additive noise, the capacity at a given SINR can only
increase relative to its noise-limited value because, in contrast with noise, the inter-
ference has structure. However, the difference is only significant if the dimension-
ality of the interference is not large relative to Nr and its fading can be tracked.

15. Capacity can be achieved by threading a single codeword across all signal streams,
but also by transmitting a separate codeword per stream and sequentially decoding
with LMMSE filters at each stage and SIC. Both approaches admit BICM embod-
iments, either one-shot or with iterations between soft demappers and decoders.
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16. With TDD or full duplexing, the CSIT can be obtained through reciprocity. With
FDD, it requires feedback, either analog or digital, and sufficient time coherence
for that feedback to be effective. In the digital case, a codebook of Nf precoders
can be featured, and the design of such codebooks relates to the problem of packing
Nf subspaces of dimension Ns on an Nt-dimensional space.

problem of communicating with a restricted number of radio-frequency chains—possibly
a single one—even if the number of antennas and the baseband processing are unrestricted.
A family of schemes, emerged from this formulation, are briefly reviewed in the sequel.

Spatial modulation

Spatial modulation is a technique devised for transmitters equipped with multiple antennas,
but a single radio-frequency chain [698–705]. At each symbol, the signal is emitted from
only one antenna, and the selection of one from among the Nt antennas conveys log2 Nt

bits. Additional information can be embedded in the magnitude and phase of the signal
emitted from the chosen antenna such that, with an M -ary constellation, log2 Nt+log2 M

coded bits/symbol can be sent; depending on the SNR, then, R/B ≤ log2 Nt + log2 M is
achievable. The reception can take place with either one or multiple radio chains.

To bridge the gap between pure spatial modulation (which transmits from a single an-
tenna) and standard MIMO (which transmits from all Nt antennas), the former can be ex-
tended so as to transmit from a number of antennas ranging between 1 and Nt [706, 707].

Parasitic antennas

Parasitic arrays also rely on a single radio-frequency chain, but in this case the active an-
tenna is fixed and all other antennas are parasitic, deprived of any power feed [708–711].
The arrangement of the array is such that mutual coupling is strong and the parasitic an-
tennas capture and reradiate significant amounts of the power emitted by the active one;
then, by controlling the coupling through tunable reactive elements, information can be
embedded in this reradiated power and by default in the overall radiation pattern. Indeed,
by controlling the coupling at the symbol rate, fast beam-switching is possible, which—
recall—is an interpretation of MIMO and justifies the common designation of these trans-
mitters as electrically-steerable parasitic array radiators (ESPARs). However, in contrast
with a standard MIMO transceiver, in ESPAR far less power is effectively transmitted and
the amount of control that can be effected through the coupling is limited.

Media-based communication

This scheme is built around the idea of controlling, not the radiation pattern, but rather
the propagation channel itself. Put differently, it relies on meddling with the transmission
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medium, hence the term media-based communication [712]. Information is imprinted onto
the radio signals after they have left the transmit antenna(s), rather than before. In principle,
any technique that allows for intentional alterations of the electromagnetic properties in the
vicinity of the transmitter at a sufficiently fast rate can be utilized to realize this scheme.
One such possibility is to install a ring of radio-frequency mirrors around each transmit
antenna, with each mirror being individually reconfigurable as transparent or reflective at
the frequencies of interest [713]. The channel can then be blocked in specific directions,
thereby modifying the multipath propagation characteristics of the channel, and the amount
of information that can be embedded on the signals depends on the number of mirrors and
the multipath richness. And, as in the case of spatial modulation, additional information
can be modulated onto the magnitude and phase of the signals themselves.

Hybrid precoding

As carrier frequencies shift into the millimeter-wave range, the pathloss and atmospheric
attenuation increase, and the interference becomes angularly sparse, such that the com-
munication tends to be mostly noise-limited; thus, beamforming becomes progressively
attractive. At the same time, with the shrinking wavelength, a growing number of antennas
can be packed on any given area. Altogether then, the situation becomes one of many an-
tennas but few signal streams, possibly a single stream. This is just as well because, at such
high frequencies, the analog-to-digital and digital-to-analog converters consume enormous
amounts of power and it is desirable to keep their number down.

Hybrid precoders and hybrid receive filters reconcile the sufficiency of a small number
of streams, the desire for a small number of converters, and the need for a large number
of antennas. The idea is to have an Ns-dimensional digital stage cascaded with an analog
stage that brings the over dimensionality up to the number of antennas. Readers interested
in the design of such precoders are referred to [191–193, 714, 715] and references therein.

Problems

5.1 Show that, for Ns = Nt, a per-antenna power constraint requires FF ∗ = I .

5.2 Consider the channel gain within (5.9) that is in excess of the gain GNr achieved
without precoding. This additional gain equals

E
[‖Hx‖2]
EsNr

=
E
[
tr
(
HFF ∗H∗)]
NtNr

. (5.265)

For H having IID Rayleigh-faded entries, plot (5.265) expressed in dB as a function
of Nt = Nr between 1 and 10 antennas for the following precoders.
(a) CSIT-based beamforming on the maximum-eigenvalue eigenvector of H∗H .
(b) CSIT-based beamforming on the minimum-eigenvalue eigenvector of H∗H .
(c) Equal-power allocation on all the eigenvectors of H∗H .
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What do you observe?

5.3 Let Nt = 2 with the transmit correlation matrix

Rt =

[
1 ρ

ρ 1

]
(5.266)

while Nr = 2 with Rr = I . Suppose the precoder beamforms on the maximum-
eigenvalue eigenvector of Rt.
(a) Plot (5.265) in dB as a function of ρ ∈ [0, 1].
(b) Repeat part (a) with Rr = Rt.

5.4 Let H have IID Rice-faded entries with Nt = Nr = 3 and with HLOS = 1. Suppose
that the precoder beamforms on the maximum-eigenvalue eigenvector of E[H∗H].
Plot (5.265) in dB as a function of the Rice factor K ∈ [−5, 10] dB.

5.5 Consider the quasi-static channel

H =

[
1 + 0.5 j −0.6

0.2 + j 0.4 + 0.1 j

]
(5.267)

with CSIT. Establish the SNR below which beamforming is optimal and give the
precoder that effects such beamforming.

5.6 Consider again the channel in Problem 5.5 and let the antenna spacings at transmitter
and receiver be dt = λc and dr = λc/2, respectively. Compute the optimum CSIT-
based precoder at SNR = 10 dB and, from it, the angles of the two beams launched
by the transmitter and those of the two beams formed by the receiver.

5.7 As established, the mixing matrix within a CSIT-based precoder becomes relevant
whenever

log2 M < log2
(
1 + SNRλmax(H

∗H)
)
. (5.268)

Let us examine this condition for an IID Rayleigh-faded channel with Nt = 2 and
Nr = 3.
(a) Plot the CDF of the right-hand side of (5.268) for SNR = 5 dB. What is the

probability that (5.268) is satisfied for QPSK? How about for 16-QAM? How
about for 64-QAM?

(b) Repeat part (a) for SNR = 15 dB.

5.8 Consider an IID Rayleigh-faded channel with Nt = 4 and Nr = 2 and with CSIT.
(a) Plot the ergodic capacity as a function of SNR ∈ [−5, 20] dB.
(b) On the same chart as part (a), plot the ergodic spectral efficiency without pre-

coding.
(c) Plot the ergodic capacity as a function of Eb

N0
|dB ∈ [Eb

N0 min
|dB, Eb

N0 min
|dB +6 dB].

(d) On the same chart as part (c), plot the ergodic spectral efficiency without pre-
coding.

5.9 Consider an ergodic channel with IID Rice-faded entries and HLOS = 1, and with
CSIT.
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(a) For K = 0 dB and K = 10 dB, plot the power gain achieved by beamforming
as function of Nt = Nr = 1, . . . , 8. Alongside, plot the largest possible gain,
NtNr.

(b) On the same chart as part (a), plot the power gain achieved by beamforming for
an IID Rayleigh-faded channel as well as its large-dimensional approximation,(√

Nt +
√
Nr

)
.

5.10 Let Nt = Nr = 2 with H having IID Rayleigh-faded entries and with CSIT. Plot the
low-SNR expansion of C(Eb

N0
) based on Eb

N0 min
and S0, alongside the actual C(Eb

N0
).

All plots in log-scale.

5.11 Suppose that an antenna array is to be used in a certain low-SNR environment, with
the benefit of CSIT. What can the system designer do to ensure its best performance?

5.12 Consider a MIMO channel with CSIT and with λmax(H
∗H) having multiplicity

two. Prove that Eb

N0 min
has the same value regardless of how the transmit power is

allocated between the two corresponding eigenvectors of H∗H .

5.13 At low SNR and with CSIT, antenna correlation is beneficial. Is the same true at high
SNR?

5.14 Consider an ergodic MIMO channel with Nt > Nr and CSIR.
(a) By means of the power offset, express the power advantage brought about by

CSIT at high SNR.
(b) For H having IID Rayleigh-faded entries, further express part (a) in closed form.
(c) Quantify the power advantage in part (b) for Nt = 4 and Nr = 2.

5.15 Express the outage capacity of a Rayleigh-faded channel having Nr = 1 and Nt > 1

with those Nt transmit antennas fully correlated.

5.16 Consider a SIMO channel with Nr = 3 and IID Rayleigh fading.
(a) Plot the DMT.
(b) Separately plot, in log-scale, pout versus R/B for SNR = 10 dB, SNR = 20 dB,

and SNR = 30 dB.
(c) On the same chart as part (a), plot log pout

log SNR versus R/B
log2 SNR for SNR = 10 dB,

SNR = 20 dB, and SNR = 30 dB.
Note: This problem allows gauging the efficacy of the DMT as a representation of
the tradeoff between pout and R/B.

5.17 Repeat Problem 5.16 for a MIMO channel with Nt = Nr = 2 and the following
precoders.
(a) F = I .
(b) F = diag(2, 0).
What do you observe?

5.18 Show that, by enforcing that the one-side derivative of Pξ = (1− ξ)P � + ξP with
respect to ξ be negative at ξ = 0+, the condition (5.78) follows from (5.77).

5.19 Prove (5.84).

5.20 Consider a Rice-faded channel subject to transmit and receive correlations Rt and
Rr, with no CSIT.
(a) Express the optimum UF .
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(b) Indicate three cases in which UF = ULOS.
(c) Is there any situation in which UF = I is optimal?

5.21 Let Nt = 3 and Nr = 4, with no CSIT. Suppose that the transmitter is elevated above
the propagation clutter, such that Example 3.36 applies and, specifically, [Rt]i,j =

e−0.05(i−j)2 . The receiver is located within the clutter, such that Rr = I .
(a) Obtain the steering matrix, UF .
(b) For SNR = −3 dB, obtain the optimum power allocation P � after ten iterations

of (5.87) and (5.88). Compute the corresponding capacity.
(c) Repeat part (b) for SNR = 5 dB.

5.22 Let Nt = Nr = 2, with no CSIT. Suppose the channel is Rice-faded with no antenna
correlations, K = 0 dB, and

HLOS =

[
1 −1

j j

]
. (5.269)

(a) Obtain the steering matrix, UF .
(b) For SNR = 5 dB, obtain the optimum power allocation P � after ten iterations

of (5.87) and (5.88). Compute the corresponding capacity.

5.23 Reproduce Fig. 5.5.

5.24 Let Nt = Nr = 4 with no CSIT.
(a) Letting the fading be IID, plot the capacity as a function of SNR ∈ [−10, 25]

dB.
(b) On the same chart as part (a), plot the capacity with receive antenna correlations

[Rr]i,j = e−0.05(i−j)2 .

5.25 Consider a channel with IID Rayleigh-faded entries and Nt = Nr = Na.
(a) Plot the capacity without CSIT as a function of Na = 1, . . . , 8, for SNR = 0 dB,

SNR = 10 dB, and SNR = 20 dB.
(b) On the same chart, repeat part (a) with CSIT.

5.26 Show that, if the largest eigenvalue of E[H∗H] has plural multiplicity, the expres-
sion for Eb

N0 min
in (5.110) holds as long as the precoder concentrates its power on the

corresponding eigenspace and regardless of how that power is divided among the
constituent eigenvectors.

5.27 Generalize the expression for S0 in (5.113) for the case that the largest eigenvalue
of E[H∗H] has plural multiplicity and the precoder divides its power evenly among
the corresponding eigenvectors.

5.28 Verify that (5.118) follows from (5.117).

5.29 Consider the setting of Example 5.24, only with the two transmit antennas in MIMO
exhibiting a 60% correlation. The receive antennas are uncorrelated. Calculate the
reduction in power and bandwidth with MIMO such that the original SISO bit rate
of 863 Kb/s can still be achieved.

5.30 In ergodic channels without CSIT, the key quantity at low SNR is λmax

(
E[H∗H]

)
.

Show that this quantity satisfies

Nr ≤ λmax

(
E[H∗H]

) ≤ NtNr. (5.270)
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5.31 Consider the setting of Example 5.24, only with the receive antennas in MIMO sub-
ject to the correlations

Rr =

⎡
⎢⎢⎣

1 ρ ρ4 ρ9

ρ 1 ρ ρ4

ρ4 ρ 1 ρ

ρ9 ρ4 ρ 1

⎤
⎥⎥⎦ , (5.271)

with ρ = 0.5. The transmit antennas are uncorrelated. Using Eb

N0 min
and S0, calculate

the reduction in power and bandwidth with MIMO such that the original SISO bit
rate of 863 Kb/s can still be achieved.

5.32 Consider a channel with CSIR but no CSIT, subject to Kronecker antenna correla-
tions. Verify that the general expression for S0 in (5.113) specializes to (5.124).

5.33 Expand the high-SNR spectral efficiency of an ergodic MIMO channel where we
choose to transmit Ns < Nmin signal streams.

5.34 Derive the expression in (5.144).

5.35 Consider a channel with Nt = Nr = 2 and no CSIT. The transmit antennas are
uncorrelated while the receive antennas are 50% correlated. Plot the capacity for
SNR ∈ [0, 30] dB, as well as the corresponding high-SNR expansion.

5.36 Let Nt = Nr in the absence of CSIT. On a given chart, and for SNR ∈ [0, 20] dB,
plot the following.
(a) The large-dimensional capacity per receive antenna of an IID channel.
(b) The ergodic capacity of an IID Rayleigh-faded channel with Nt = Nr = 4.
(c) The ergodic capacity of an IND Rayleigh-faded channel, the variance of whose

entries conforms to (5.178) with Ξ = 0.4.

5.37 Consider a Rice-faded channel with HLOS = 1, K = 0 dB, and SNR = 10 dB.
Plot, as a function of Nt = Nr = 4, . . . , 10, the ergodic spectral efficiency without
precoding and its large-dimensional approximation.

5.38 Verify that, in a MIMO channel with IID entries, pilot-assisted transmission with
complex Gaussian signaling, and LMMSE channel estimation at the receiver, the
spectral efficiency achievable with a pilot overhead α is given by (5.195).

5.39 Repeat Problem 4.59 for a Clarke–Jakes Doppler spectrum, Nt = 2, and Nr = 3,
with the antennas uncorrelated.
Hint: A convex optimization solver such as fmincon in MATLAB® can be used.
Alternatively, since each optimization is over a single scalar, the optimum value can
be found by scanning over α ∈ [0, 1].

5.40 Repeat Problem 5.39 for Nt = Nr = 4.

5.41 Consider an ergodic channel that is continuous, frequency-flat, and Rayleigh-faded
with a rectangular spectrum, and where there is no antenna correlation. Let Nr = 1

and SNR = 0 dB.
(a) Beyond which value of νMT does going from Nt = 1 to Nt = 2 become

detrimental, rather than beneficial, in pilot-assisted communication without pilot
power boosting?
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(b) For a reasonable outdoors coherence bandwidth (or, equivalently, a reasonable
delay spread), to how many symbols or OFDM resource elements of coherence
in time–frequency does that correspond?

5.42 Consider an ergodic frequency-flat Rayleigh-faded channel with Nc = 1000, and
with no antenna correlation. Let Nr = 1. Plot the pilot-assisted spectral efficiency
for SNR ∈ [−10, 10] dB, for both Nt = 1 and Nt = 2, without pilot power boosting.
What do you observe?

5.43 Consider a channel with IID Rayleigh-faded entries.
(a) Assuming CSIR, reproduce the plots of C(Eb

N0
) in Fig. 5.6.

(b) Repeat the exercise with pilot-assisted transmission in a block-faded setting with
Nc = 1000, corresponding to a vehicular channel. What do you observe?

5.44 Repeat Problem 5.43 for the function C(SNR) and SNR ∈ [−10, 0] dB.

5.45 Consider a vehicular frequency-flat block-fading channel that conforms to the Kro-
necker model with

Rt =

[
1 0.6

0.6 1

]
Rr =

[
1 0.4

0.4 1

]
. (5.272)

Neither pilots nor data are precoded, with pilot power boosting allowed and thus
with Np = Nt. Plot, for SNR ∈ [−5, 25] dB, the ergodic spectral efficiency and the
corresponding pilot overhead achieved in the following cases.
(a) Independent LMMSE estimation of the channel entries.
(b) Joint LMMSE estimation of the channel entries.
Further plot, over the same SNR range, the relative gain of the latter over the former.
Hint: The joint LMMSE channel estimator for channels with Kronecker correlations
is derived in Example 2.32.

5.46 Repeat Problem 5.45 with the pilots unprecoded, but with a payload data precoder
optimized for Rt.

5.47 Repeat Problem 5.45 with both the pilots and the payload data sent through a pre-
coder optimized for Rt.
Hint: The receiver should estimate HF ; furthermore, only those spatial dimensions
on which data are to be sent need to be estimated [566].

5.48 Consider a vehicular frequency-flat block-fading Rayleigh channel with no precod-
ing and Nt = Nr = 2.
(a) For SNR = 0 dB, and with independent LMMSE estimation of each channel

entry, compare the spectral efficiency without antenna correlation and with the
correlations in (5.272).

(b) Repeat part (a) with joint LMMSE estimation of the channel entries and quantify
the reduction in the spectral efficiency gap.

(c) Repeat parts (a) and (b) at SNR = 10 dB.

5.49 Repeat Problem 5.48 with a precoder optimized for Rt.

5.50 Derive the expression in (5.208) for an ergodic MIMO channel impaired by noise
and by U interferers, with CSIR (including the fading of the interferers) but no CSIT.
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5.51 We know that, with a separate codeword per stream and optimized rate per code-
word, an LMMSE-SIC receiver achieves capacity. Suppose, however, that all the
codewords must be encoded at the same rate. Then, what share of the ergodic capac-
ity of an IID Rayleigh-faded channel could be achieved at SNR = 10 dB?

5.52 Consider a layered architecture where each antenna transmits a separate codeword
and the receiver is LMMSE-SIC, but all codewords must be encoded at the same
rate. Focus on IID Rayleigh-faded channels.
(a) Derive expressions for Eb

N0 min
and S0.

(b) Derive expressions for S∞ and L∞.
(c) Using the derived expressions, characterize how the tradeoff between power,

bandwidth, and bit rate worsens relative to a capacity-achieving architecture.

5.53 From the error probabilities as a function of SNR given in the book’s companion
webpage for the LTE MCSs, reproduce the throughput per unit bandwidth in Exam-
ple 5.44. Also reproduce the ergodic spectral efficiency in the same example.

5.54 Repeat Problem 5.53 with the receive antennas correlated according to Rr as in
(5.271) and ρ = 0.6. Plot the throughput per unit bandwidth and the spectral effi-
ciency on a per-antenna basis and contrast them with their counterparts in Fig. 5.16.

5.55 Repeat Problem 5.53 with Nt = 2 and Nr = 3. The transmit antennas are correlated
according to Rt as in (5.272) while the receive antennas are uncorrelated. Suppose
that, while the channel is quasi-static over each codeword, the precoder is held fixed
at the optimum value dictated by Rt.

5.56 Verify that (5.235) follows from (5.234).

5.57 Consider the average distortion with a random codebook as given in (5.243).
(a) Determine the leading term in the expansion of this expression for growing Nf .
(b) For Nt = 4, contrast the decay in average distortion when going from Nf = 32

to Nf = 64 as predicted by this term versus the exact value.

5.58 Consider an IID Rayleigh-faded channel with Nt = Nr = 4.
(a) Plot, for SNR ∈ [0, 20] dB, the ergodic capacity with CSIT.
(b) On the same chart, plot the ergodic spectral efficiency with a precoder allocating

its power uniformly over the Ns eigenvectors of H∗H on which waterfilling
would allocate nonzero power.

Note: This problem allows gauging the spectral efficiency deficit of a semiunitary
precoder, an interesting alternative in FDD systems requiring CSIT feedback.

5.59 Applying (5.240), quantify the worst-case dB-loss in average receive SNR when
beamforming on an IID Rayleigh-faded channel and with digital feedback via the
codebook in Example 5.49.

5.60 For Nt = 3, design a digital feedback codebook made up of three subcodebooks,
one for each possible precoder rank Ns. The subcodebook corresponding to a cer-
tain value of Ns should allow for the simultaneous cophased transmission from Ns

antennas. How many feedback bits are required to index the overall codebook?

5.61 Reproduce Example 5.50.
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5.62 Repeat Example 5.50, but with the precoder selection at the receiver based on an
LMMSE channel estimate rather than on CSIR side information. Assume that a sin-
gle pilot with optimized power boosting is inserted within each coherence tile, with
the underspreadness ensuring that (1− 1/Nc) ≈ 1.

5.63 Repeat Example 5.50 with the same beamforming codebook, but over a MIMO chan-
nel with Nt = Nr = 2.

5.64 Repeat Example 5.50, concentrating on the low-SNR regime and with the spectral
efficiencies depicted as a function of Eb

N0
rather than SNR.

5.65 Verify (5.249).
5.66 Design an optimum Fourier beamforming codebook for Nt = 2 and Nf = 4 in the

following situations.
(a) An IID Rayleigh-faded channel.
(b) The LOS channel HLOS = ar(θr)a

T
t (θt).

(c) A channel with a uniform PAS over θ ∈ [μθ −Δθ, μθ +Δθ].
5.67 Express the capacity of a MISO channel with CSIT and a per-antenna power con-

straint.
5.68 Express Eb

N0 min
for a MISO channel with CSIT and a per-antenna power constraint.



6 SU-MIMO with linear receivers

The most profound technologies are those that disappear. They weave themselves into
the fabric of everyday life until they are indistinguishable from it.

Mark Weiser

6.1 Introduction

While, in SISO, the degree of decoding complexity at the receiver is largely dominated
by the codeword length, in MIMO it becomes further associated with the number of spa-
tially multiplexed signal streams, which itself depends on the numbers of antennas. As
illustrated in Example 5.42, the mere computation of L-values at the soft demapper is ex-
ponential in the number of streams and may become prohibitively complex even for small
numbers thereof if constellations of considerable cardinality are employed—and the trend
is precisely to move to such rich constellations. The transmission of multiple codewords
alleviates this issue, pointing to a receiver structure that separately decodes such code-
words and whose complexity scales more gracefully with the number of signal streams,
while still achieving capacity: the LMMSE-SIC receiver. Relaxing the need for optimal-
ity, this follow-up chapter on SU-MIMO delves into even simpler receivers within the
class that separately decodes multiple codewords. Specifically, the chapter is devoted to
strictly linear receivers, devoid of nonlinear SIC components. Without backing off from
the asymptote of long codewords, and building upon the linear ZF and LMMSE equalizers
derived in Chapter 2, we examine the information-theoretic potential of the linear receivers
that emanate from those equalizers, and relate their performance with that of the optimum
receivers considered heretofore.

The disposition of the chapter is as follows. Section 6.2 presents a general overview of
linear receivers. This is followed, respectively in Sections 6.3 and 6.4, by detailed analyses
of the linear ZF and the LMMSE receivers. These analyses entail characterizations of the
linear filters themselves, of the SNR and SINR distributions at the output of those filters,
and of the resulting ergodic spectral efficiencies. Finally, Section 6.5 revisits and expands
the relationship, advanced in the previous chapter, between the LMMSE and the optimum
receiver, while Section 6.6 concludes the chapter.

386
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6.2 General characteristics of linear MIMO
receivers

A generic linear MIMO receiver consists of a linear filter W followed by a bank of de-
coders operating separately on each signal stream (see Fig. 6.1). This separate decoding,
which rests on each stream bearing a distinct codeword, is responsible for both the reduc-
tion in complexity and for the suboptimality of linear reception, two sides of the same
coin. Note that, in an LMMSE-SIC receiver, the decoding of the codewords is sequential
but each benefits from the decoding of all other codewords in earlier stages; thanks to this,
such a receiver can achieve capacity. In a pure linear receiver, in contrast, each codeword
is decoded oblivious to the rest; only during the linear filtering do the respective signal
streams interact. We concentrate on frequency-flat fading channels, with the understand-
ing that frequency selectivity can be readily accommodated by having the linear filter be
W[0], . . . ,W[K − 1], computed on the basis of H[0], . . . ,H[K − 1] over K subcarriers.
Thus, the formulations in this chapter can be interpreted as pertaining to a specific subcar-
rier, with the ensuing ergodic spectral efficiencies subsuming any frequency selectivity.

Taking advantage of the wisdom expounded in preceding chapters concerning the appli-
cability of side information and the efficacy of pilot-assisted channel estimation, CSIR is
considered throughout the analysis that follows. As far as CSIT, when it is available, linear
SU-MIMO receivers emerging from the SVD have been seen to achieve capacity. With
CSIT, therefore, linear SU-MIMO receivers are directly the ones studied in the previous
chapter, and we can refer to the treatment of their structure and performance therein. It
is when CSIT is unavailable that linear SU-MIMO receivers materialize as a suboptimum
alternative to their more involved capacity-achieving counterparts, and it is hence in the
absence of CSIT that the analysis is conducted.

There is one limiting regime in which linear receivers do achieve capacity in the ab-
sence of CSIT: for Nr/Nt → ∞. The columns of any channel matrix with independent
entries then become naturally orthogonal and separate decoding of the corresponding sig-
nals suffices for optimality. In this situation, which may arise in the reverse link of massive
MIMO systems, the linear receiver needs only be a simple spatial matched filter, namely
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W MF ∝ H if the transmission is unprecoded such that, by virtue of (5.164),

1

Nr
W MF∗H a.s.→ I (6.1)

rendering the output of the spatial matched-filter a scaled version of s, plus filtered noise.
If there are antenna correlations, the transmission can then be precoded and W MF ∝ HF .

As a matter of fact, a spatial matched filter could serve as a linear MIMO receiver even
if the condition Nr � Nt is not satisfied [423]. In its simplicity, a spatial matched filter
merely maximizes the received signal power, disregarding the interference among streams
and, for arbitrary Nt and Nr, this maximization only pays off as SNR → 0, once the noise
overwhelms everything else. Other than for Nr � Nt or SNR → 0, the performance of
a spatial matched-filter tends to be poor (refer to Problems 6.1 and 6.3), and thus in this
chapter we dwell exclusively on receivers featuring the superior ZF and LMMSE filters.
The analysis of matched-filter receivers is deferred to Chapter 10, in the context of massive
MIMO.

The ZF and LMMSE filters are derived in Section 2.4 in the framework of channel
equalization, with both ISI and spatial interference present. In the absence of ISI, either
because the fading is itself frequency-flat or by virtue of OFDM, the ZF and LMMSE
equalizers revert to the spatial filters (see Examples 2.18 and 2.21) that equip the receivers
studied in this chapter.

As far as the precoder is concerned, when dealing with Gaussian signals it reduces as
usual to F = UF

[
P 1/2 0

]T
. While the optimum choice for UF appears to be the same

one that achieves capacity [716], not as much progress has been made on characterizing
the optimum P . In the sequel, no attempt is made to optimize the precoder; rather, the
formulation unfolds for a generic precoder F and the results are left as functions thereof.

6.3 Linear ZF receiver

6.3.1 Receiver structure

Consider a frequency-flat MIMO setting with CSIR. A ZF filter, also termed a decorrela-
tor, projects—in the spatial domain—each of the signal streams onto a subspace orthog-
onal to the one spanned by all other streams. This completely rids each signal stream of
interference from the rest, at the expense of some loss in SNR. The jth signal stream is ob-
served by the receiver through the vector corresponding to the jth column of HF , which
is what connects the jth entry of s with the Nr receive antennas, and thus a ZF receiver
needs to project this vector onto a subspace orthogonal to the one defined by columns
0, . . . , j − 1, j + 1, . . . , Ns − 1 of the same matrix, HF . Geometrically, a necessary con-
dition for this projection to succeed is to have at least as many receiver dimensions as
data streams, i.e., Ns ≤ Nr, which in IID channels with trivial precoding is tantamount
to Nt ≤ Nr. This is the same conclusion reached in Section 2.4.1, on the basis of linear
algebra considerations.
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As intuition would have it, and Example 2.18 confirms, a ZF filter is essentially the
inverse of the channel experienced by the target signal. To recover s, the ZF filter must
essentially invert HF with proper scaling. Invoking (see Appendix B.6) the notion of
Moore–Penrose pseudoinverse A† for a matrix A, whereby A†A = I , the ZF filter W ZF

satisfies

W ZF∗ =

(√
GEs

Nt
HF

)†
(6.2)

=

√
Nt

GEs

(
F ∗H∗HF

)−1
F ∗H∗. (6.3)

The ouput of this filter is, as desired,

W ZF∗y = W ZF∗
(√

GEs

Nt
HFs+ v

)
(6.4)

= s+ v̆ (6.5)

where the filtered noise v̆ = W ZF∗v has, for a given channel realization, the conditional
covariance

E

[
v̆v̆∗ |H

]
= E

[
W ZF∗vv∗W ZF |H

]
(6.6)

= N0 W
ZF∗W ZF (6.7)

=
Nt

SNR

(
F ∗H∗HF

)−1
. (6.8)

Example 6.1

Express W ZF for an invertible channel H with Nt = Nr = 2 and F = I .

Solution

In this case, W ZF∗ =
√

Nt

GEs
H−1. Letting

H =

[
h00 h01

h10 h11

]
(6.9)

and applying the 2× 2 matrix inverse formula

H−1 =
1

h00h11 − h01h10

[
h11 −h01

−h10 h00

]
, (6.10)

we obtain

W ZF =

√
Nt

GEs

h00h11 − h01h10

|h00h11 − h01h10|2
[
h∗
11 −h∗

10

−h∗
01 h∗

00

]
. (6.11)
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6.3.2 Output SNR distribution

It follows from (6.5) and (6.8) that, for a given H , the output (or post-processing) SNR for
stream j is

snrZFj =

[
E[ss∗]

]
j,j[

E[v̆v̆∗ |H]
]
j,j

(6.12)

=
1[

E[v̆v̆∗ |H]
]
j,j

(6.13)

=
SNR

Nt

1[
(F ∗H∗HF )−1

]
j,j

, (6.14)

which we can regard as a random variable whose distribution is induced by that of H . If
desired, snrZFj can be put as a function of the constituent elements of the precoder, namely

snrZFj =
SNR

Nt

Pj[
(U∗

FH
∗HUF )−1

]
j,j

. (6.15)

Using the cofactor expression for the (j, j)th entry of a matrix inverse (A∗A)−1, which is
given by [

(A∗A)−1
]
j,j

=
det(A∗

−jA−j)

det(A∗A)
, (6.16)

where A−j is the submatrix obtained by removing the jth column from A, the expression
in (6.14) can equivalently be written as

snrZFj =
SNR

Nt

det(F ∗H∗HF )

det(F ∗
−jH

∗HF−j)
. (6.17)

Note that the removal of the jth column of HF has been carried out by removing the jth
column of F . Yet alternatively, (6.14) can be expressed (refer to Problem 6.2) as [717]

snrZFj =
SNR

Nt
f∗
j H

∗
(
I −HF−j

(
F ∗

−jH
∗HF−j

)−1
F ∗

−jH
∗
)
Hfj , (6.18)

where, as in the previous chapter, fj = [F ]:,j .
Playing a trick with the columns of the identity matrix, we can garner that

max
j

[
F ∗H∗HF

]−1

j,j
= max

j
[I]∗:,j

[
F ∗H∗HF

]−1
[I]:,j (6.19)

≤ max
a:||a||2=1

a∗[F ∗H∗HF
]−1

a (6.20)

= λmax

([
F ∗H∗HF

]−1
)

(6.21)

=
1

λmin(F ∗H∗HF )
, (6.22)

where (6.20) holds because extending the maximization from the unit-norm columns of I
to the entire set of unit-norm vectors cannot reduce the maximum while (6.21) results from



391 6.3 Linear ZF receiver

making a the maximum-eigenvalue eigenvector of F ∗H∗HF . From (6.14) and (6.22),
we have that

snrZFj ≥ SNR

Nt
λmin(F

∗H∗HF ), (6.23)

which points to the importance of the smallest eigenvalue of F ∗H∗HF . Channel realiza-
tions where this eigenvalue is close to zero are indeed ill-conditioned for ZF purposes.

Letting H now conform to MIMO channel models of interest, let us proceed to examine
the distribution of snrZFj for j = 0, . . . , Ns−1. With Nr receive antennas having to null-out
Ns− 1 competing signal streams, the distribution of snrZFj amounts to the SNR distribution
in a SIMO channel with Nr−Ns+1 effective antennas at the receiver and we can therefore
leverage SIMO results—where linear reception suffices to achieve capacity—obtained in
Section 5.4.2.

Example 6.2 (ZF output SNR distribution in an IID Rayleigh-faded MIMO chan-
nel)

Let H have IID Rayleigh-faded entries, in which case the precoder can be set to F = I

with Ns = Nt.
As shown in Example 5.16, the SNR distribution in a SIMO channel with IID Rayleigh-

faded entries is chi-square with a number of degrees of freedom equal to twice the number
of receive antennas. The SIMO interpretation of how each signal stream is processed under
ZF, with Nr −Ns + 1 effective antennas at the receiver, gives

snrZFj ∼ χ2
2(Nr−Nt+1) j = 0, . . . , Nt − 1. (6.24)

Furthermore, since this SIMO channel is part of a MIMO channel with Nt transmit anten-
nas, the role of the local-average SNR is played by SNR

Nt
. Altogether, from the chi-square

PDF in (5.62), we have that, for ξ ≥ 0,

fsnrZFj (ξ) =
Nt

SNR (Nr −Nt)!
exp

(
− Nt

SNR
ξ

)(
Nt

SNR
ξ

)Nr−Nt

(6.25)

which, for Nt = Nr, reduces to an exponential distribution.
From fsnrZFj (·), the average SNR for stream j at the output of the ZF filter is

E
[
snrZFj

]
=

∫ ∞

0

ξ fsnrZFj (ξ) dξ (6.26)

=
Nr −Nt + 1

Nt
SNR. (6.27)

The generalization of fsnrZFj (·) to Rayleigh-faded channels with transmit antenna corre-
lation is addressed in [717–719] and distilled in the next two examples.



392 SU-MIMO with linear receivers

Example 6.3 (ZF output SNR distribution in a correlated Rayleigh-faded MIMO
channel with optimum precoding)

Let H be Rayleigh-faded with transmit correlation Rt and no receive antenna correlations.
Further, let the precoder transmit Ns = Nt signal streams aligned with the eigenvectors of
Rt. The generalization of (6.25) is, for ξ ≥ 0,

fsnrZFj (ξ) =
Nt

SNRPjλj(Rt)(Nr −Nt)!
exp

(
− Nt

SNR

ξ

Pjλj(Rt)

)(
Nt

SNR

ξ

Pjλj(Rt)

)Nr−Nt

(6.28)
where, as usual, λj(·) denotes the jth eigenvalue of a matrix. Correspondingly,

E
[
snrZFj

]
=

Nr −Nt + 1

Nt
Pj λj(Rt) SNR. (6.29)

Example 6.4 (ZF output SNR distribution in a correlated Rayleigh-faded MIMO
channel without precoding)

With H being Rayleigh-faded with transmit correlation Rt and no correlations at the re-
ceiver, now let F = I . In this case,

fsnrZFj (ξ) =
Nt [R

−1
t ]j,j

SNR (Nr −Nt)!
exp

(
−Nt [R

−1
t ]j,j

SNR
ξ

)(
Nt [R

−1
t ]j,j

SNR
ξ

)Nr−Nt

, (6.30)

whose average

E
[
snrZFj

]
=

Nr −Nt + 1

Nt [R
−1
t ]j,j

SNR (6.31)

equals that of a channel with IID entries, divided by the (j, j)th entry of R−1
t .

For more general channel models, say simultaneous correlations at both transmitter and
receiver, the analytical characterization of the distribution of snrZFj complicates very consid-
erably. For the case of Rice-faded channels, the interested reader is referred to [720, 721].

6.3.3 Ergodic spectral efficiency

Effectively, the jth signal stream experiences a scalar fading channel known by the receiver
and with SNR given by snrZFj . The spectral efficiency is therefore maximized when the
corresponding codeword is drawn from a complex Gaussian distribution, and the overall
ergodic spectral efficiency is then

CZF(SNR) =
Ns−1∑
j=0

E

[
log2

(
1 + snrZFj

)]
(6.32)

=

Ns−1∑
j=0

E

[
log2

(
1 +

SNR

Nt

1[
(F ∗H∗HF )−1

]
j,j

)]
. (6.33)
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Example 6.5 (ZF spectral efficiency in an IID Rayleigh-faded MIMO channel)

Let H have IID Rayleigh-faded entries, in which case the precoder can be set to F = I

with Ns = Nt. In this case, the Nt streams exhibit the same SNR distribution and thus

CZF(SNR) = Nt E
[
log2

(
1 + snrZFj

)]
(6.34)

= Nt

∫ ∞

0

log2(1 + ξ)
Nt

SNR (Nr −Nt)!
exp

(
− Nt

SNR
ξ

)(
Nt

SNR
ξ

)Nr−Nt

dξ,

(6.35)

where j is the index of an arbitrary antenna and fsnrZFj (·) is as derived in Example 6.2.
Applying (C.37),

CZF(SNR) = Nt e
Nt/SNR

Nr−Nt+1∑
q=1

Eq
(

Nt

SNR

)
log2 e, (6.36)

which amounts to Nt times the ergodic capacity of a SIMO channel (see Example 5.16)
with Nr−Nt+1 receive antennas and local-average SNR equal to SNR

Nt
. For Nt = Nr, the

ZF spectral efficiency reduces to

CZF(SNR) = Nt e
Nt/SNR E1

(
Nt

SNR

)
log2 e, (6.37)

which is Nt times the ergodic capacity of a SISO channel (see Example 4.22) with local-
average SNR equal to SNR

Nt
.

Example 6.6

For a channel with IID Rayleigh-faded entries and Nt = Nr = 4, plot, as a function
of SNR (in dB), the ZF ergodic spectral efficiency in Example 6.5 alongside the ergodic
capacity of an optimum receiver given in Example 5.17.

Solution

See Fig. 6.2. (Also included in the figure is the ergodic spectral efficiency of an LMMSE
receiver, derived in the next section.)

The characterization of CZF(SNR) for channels with transmit antenna correlations is the
subject of Problems 6.6 and 6.7. For even more general channel models, the character-
ization of the spectral efficiency may not be within reach analytically, but Monte-Carlo
evaluations are always possible for any of the models described in Chapter 3.

The Eb

N0
perspective on the fundamental performance of linear ZF receivers is obtained

the usual way, namely through the relationship

Eb

N0
=

SNR

CZF(SNR)
, (6.38)

which yields CZF(Eb

N0
) in an implicit form.
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efficiency of the linear receivers approaches ΔL∞ = 4.7 dB already within the range

of the plot.

Example 6.7

For a channel with IID Rayleigh-faded entries and Nt = Nr = 4, plot, as a function of
Eb

N0
(in dB), the ergodic spectral efficiency of a linear ZF receiver alongside the ergodic

capacity with an optimum receiver.

Solution

See Fig. 6.3. (Also included in the figure is the ergodic spectral efficiency of an LMMSE
receiver, derived in the next section.)

In terms of the performance with signal distributions other than complex Gaussian, if
stream j conforms to a discrete constellation with mutual information function Ij(·), then
the right-hand side of (6.33) morphs into

∑Ns−1
j=0 E

[Ij(snrZFj )] .

Low- and high-SNR regimes

The low- and high-SNR behaviors of ZF receivers can be examined using the tools derived
in previous chapters.
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�Fig. 6.3 Ergodic capacity, ZF spectral efficiency, and LMMSE spectral efficiency as a function

of Eb

N0
(in dB) for Nt = Nr = 4.

Example 6.8 (Eb

N0

ZF

min
in an IID Rayleigh-faded MIMO channel)

For a channel with IID Rayleigh-faded entries

Eb

N0

ZF

min

=
1

Nr −Nt + 1
· 1

log2 e
, (6.39)

in contrast with Eb

N0 min
= 1

Nr log2 e for an optimum MIMO receiver. The ZF strategy of
stubbornly suppressing interference while ignoring the noise is decidedly flawed in the
regime where it is the noise that dominates the performance, and the first-order scaling of
the spectral efficiency with SNR is heavily penalized. For Nr = Nr, in fact, Eb

N0

ZF

min
reverts

back to −1.59 dB as in SISO, regardless of how many antennas are present, and thus—to
first order—all MIMO gains are forsaken.

From the previous example it is evident that, as one might have anticipated, ZF receivers
are ill-advised in the low-SNR regime and we thus move, without further ado, to the high-
SNR regime. There, interference is the dominant impairment and the ZF strategy does
appear to be fitting. The maximum number of signal streams by definition satisfies Ns ≤
Nt, and for ZF also Ns ≤ Nr so that the inversion is feasible, altogether meaning that the
number of spatial DOF is SZF

∞ = Nmin = min(Nt, Nr); there is no loss in DOF with respect
to the optimum receiver. However, the power offset does reflect a shortfall with respect to
capacity, which vanishes only as Nr/Nt → ∞ and linear receivers become optimum.
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Example 6.9 (ZF power offset in an IID Rayleigh-faded MIMO channel with
Nt = Nr = Na)

If H has IID Rayleigh-faded entries, then F = I and, from (4.46) and (6.36),

LZF

∞ = log2 Na + γEM log2 e (6.40)

in contrast with (5.142) for an optimum receiver. For Na > 1, ZF incurs a power loss.

Example 6.10

How much power does a ZF receiver lose in the high-SNR regime, relative to an optimum
receiver, if Na = 4?

Solution

From (5.142) and (6.40),

ΔL∞ = LZF

∞ − L∞ (6.41)

=

Na∑
q=2

1

q
log2 e, (6.42)

which, evaluated for Na = 4, returns 1.56 3-dB units. Therefore, the power loss for Na = 4

amounts to 4.7 dB, as visualized in Fig. 6.2.

To finalize the discussion of ZF receivers, let us briefly comment on their performance
in quasi-static settings without CSIT. These receivers can operate at any multiplexing gain
r ≤ Nt. The diversity available to each codeword, however, is capped at Nr −Nt + 1 and
hence the corresponding DMT falls short of the optimum one in (5.65). Precisely [722],

dZF = (Nr −Nt + 1)

[
1− r

Nt

]+
. (6.43)

6.4 LMMSE receiver

6.4.1 Receiver structure

In contrast with the ZF filter, which completely eliminates the interference among streams
disregarding its strength relative to the noise, the LMMSE filter strikes a balance between
interference reduction and noise enhancement in the sense of minimizing the mean-square
error between the filter output and the actual signal. This in principle allows relaxing the
constraint that Ns ≤ Nr, but, as seen later in the chapter, pushing the number of streams
beyond Nmin is ill-advised even disregarding the additional pilot overheads.

Derived in Section 1.7.1, the filter W that simultaneously minimizes every diagonal
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entry of E
[(
s−W ∗y

)(
s−W ∗y

)∗]
for a given H is

W MMSE = R−1
y Rys (6.44)

=

√
Nt

GEs

(
HFF ∗H∗ +

Nt

SNR
I

)−1

HF (6.45)

and, as intuition would have it, W MMSE acquires ZF behavior for SNR → ∞ and matched-
filter behavior for SNR → 0.

Replicating the steps in Section 1.7.1, by means of the matrix inversion lemma (given in
Appendix B.7) we can rewrite (6.45) in the alternative form

W MMSE =

√
Nt

GEs

[
SNR

Nt
I −

(
SNR

Nt

)2

HF

(
I +

SNR

Nt
F ∗H∗HF

)−1

F ∗H∗
]
HF

=

√
Nt

GEs

SNR

Nt

[
HF −HF

(
Nt

SNR
I + F ∗H∗HF

)−1

F ∗H∗HF

]
(6.46)

=

√
Nt

GEs

SNR

Nt
HF

[
I −

(
Nt

SNR
I + F ∗H∗HF

)−1

F ∗H∗HF

]
(6.47)

=

√
Nt

GEs

SNR

Nt
HF

(
Nt

SNR
I + F ∗H∗HF

)−1

·
[(

Nt

SNR
I + F ∗H∗HF

)
− F ∗H∗HF

]
(6.48)

=

√
Nt

GEs
HF

(
Nt

SNR
I + F ∗H∗HF

)−1

. (6.49)

Since y =
√
GEs/Nt HFs + v, the MMSE matrix for a given H , i.e., the conditional

covariance of the estimation error, is

E(H) = E

[(
s−W MMSE∗y

)(
s−W MMSE∗y

)∗ |H]
(6.50)

= I −
√

GEs

Nt
W MMSE∗HF −

√
GEs

Nt
F ∗H∗W MMSE

+W MMSE∗
(
GEs

Nt
HFF ∗H∗ +N0I

)
W MMSE, (6.51)

which, invoking (6.45) and the fact that

W MMSE∗
(
GEs

Nt
HFF ∗H∗ +N0I

)
W MMSE = F ∗H∗

(
HFF ∗H∗ +

Nt

SNR
I

)−1

HF

simplifies, after a bit of algebra, into

E(H) = I − F ∗H∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

HF . (6.52)

Applying the matrix inversion lemma in reverse, the above can alternatively be put as

E(H) =

(
I +

SNR

Nt
F ∗H∗HF

)−1

. (6.53)
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It follows from (6.52) and (6.53) that, given a channel realization H , the MMSE for the
jth stream is

MMSEj = E

[∣∣[s]j − [W MMSE]∗:,j y
∣∣2] (6.54)

=
[
E(H)

]
j,j

(6.55)

= 1− f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj (6.56)

=

[(
I +

SNR

Nt
F ∗H∗HF

)−1
]
j,j

(6.57)

where we once more used fj = [F ]:,j .

6.4.2 Output SINR distribution

Let us now evaluate the SINR at the output of the LMMSE filter. For a generic receive
filter W , and with the shorthand notation wj = [W ]:,j , the output corresponding to the
jth signal stream is

[W ∗y]j = w∗
j y (6.58)

=

√
GEs

Nt
w∗

jHFs+w∗
jv (6.59)

=

√
GEs

Nt
w∗

jHfj [s]j︸ ︷︷ ︸
Desired signal

+

√
GEs

Nt

∑
� �=j

w∗
jHf� [s]� +w∗

jv︸ ︷︷ ︸
Interference + filtered noise

(6.60)

with SINR given by

sinrj =
GEs

Nt

∣∣w∗
jHfj

∣∣2
GEs

Nt

∑
� �=j

∣∣w∗
jHf�

∣∣2 +N0 ‖wj‖2
. (6.61)

While a ZF receiver nullifies the interference and leaves only filtered noise, with other
receivers both are present at the output. For an LMMSE receiver, in particular, recalling
the expression in (6.45) we have that

wMMSE

j = [W MMSE]:,j (6.62)

=

√
Nt

GEs

(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj (6.63)

which, plugged into (6.61), yields for sinrMMSE

j a ratio with numerator

Num = f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfjf
∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

=

[
f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

]2

(6.64)
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and denominator

Den =
∑
� �=j

f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hf�f
∗
� H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

+
Nt

SNR
f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1 (
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

= f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1
⎡
⎣∑

� �=j

Hf�f
∗
� H

∗

⎤
⎦

·
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj (6.65)

+
Nt

SNR
f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1 (
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

= f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1 [
HFF ∗H∗ −Hfjf

∗
j H

∗]
·
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj (6.66)

+ f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

· Nt

SNR
I ·

(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

= f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1 [
HFF ∗H∗ +

Nt

SNR
I −Hfjf

∗
j H

∗
]

·
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj (6.67)

= f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

−
[
f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

]2

, (6.68)

altogether giving

sinrMMSE

j =
Num

Den
(6.69)

=
f∗
j H

∗ (HFF ∗H∗ + Nt

SNRI
)−1

Hfj

1− f∗
j H

∗ (HFF ∗H∗ + Nt

SNRI
)−1

Hfj

(6.70)

=
1−MMSEj

MMSEj
(6.71)

where in (6.71) we have invoked (6.56). This is indeed the expression that one would have
expected in light of the unit power of the quantity being estimated, [s]j . Equivalently,

sinrMMSE

j =
1

MMSEj
− 1 (6.72)



400 SU-MIMO with linear receivers

=
1[(

I + SNR
Nt

F ∗H∗HF
)−1

]
j,j

− 1, (6.73)

where we have applied (6.57).
Yet an alternative form can be derived for sinrMMSE

j by further manipulating (6.70) into

sinrMMSE

j = f∗
j H

∗
(
HF−jF

∗
−jH

∗ +
Nt

SNR
I

)−1

Hfj (6.74)

where we used F−j as the shorthand for [F ]:,−j , the submatrix obtained by removing the
jth column from F . Verifying the coincidence of (6.70) and (6.74) entails showing that

f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj =

[
1− f∗

j H
∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj

]

· f∗
j H

∗
(
HF−jF

∗
−jH

∗ +
Nt

SNR
I

)−1

Hfj

which, with the right-hand side expanded, amounts to the equality

f∗
j H

∗
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfj = f∗
j H

∗
[(

HF−jF
∗
−jH

∗ +
Nt

SNR
I

)−1

−
(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfjf
∗
j H

∗

·
(
HF−jF

∗
−jH

∗ +
Nt

SNR
I

)−1
]
Hfj

and therefore to(
HFF ∗H∗ +

Nt

SNR
I

)−1

=

[
I −

(
HFF ∗H∗ +

Nt

SNR
I

)−1

Hfjf
∗
j H

∗
]

·
(
HF−jF

∗
−jH

∗ +
Nt

SNR
I

)−1

, (6.75)

which can be seen to indeed hold by multiplying both sides by
(
HFF ∗H∗ + Nt

SNRI
)
; the

left-hand side then becomes an identity matrix while the right-hand side becomes[(
HFF ∗H∗ +

Nt

SNR
I

)
−Hfjf

∗
j H

∗
](

HF−jF
∗
−jH

∗ +
Nt

SNR
I

)−1

, (6.76)

which is also an identity matrix because FF ∗ − fjf
∗
j = F−jF

∗
−j .

As intuition would have it, in minimizing the mean-square error for each of the streams,
the LMMSE receiver maximizes each of the SINRs. To verify that, let us rewrite the SINR
of the jth stream for a generic receiver, given in (6.61), as

sinrj =
w∗

jHfjf
∗
j H

∗wj

w∗
j

(∑
� �=j Hf�f∗

� H
∗ + Nt

SNRI
)
wj

(6.77)
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=
w∗

jHfjf
∗
j H

∗wj

w∗
j

(
HF−jF ∗

−jH
∗ + Nt

SNRI
)
wj

(6.78)

=
d∗
j

(
HF−jF

∗
−jH

∗ + Nt

SNRI
)−1/2

Hfjf
∗
j H

∗ (HF−jF
∗
−jH

∗ + Nt

SNRI
)−1/2

dj

d∗
jdj

=
d∗
j

‖dj‖

(
HF−jF

∗
−jH

∗+
Nt

SNR
I

)−1/2

Hfjf
∗
j H

∗
(
HF−jF

∗
−jH

∗+
Nt

SNR
I

)−1/2
dj

‖dj‖
where we have defined the column vector

dj =

(
HF−jF

∗
−jH

∗ +
Nt

SNR
I

)1/2

wj . (6.79)

Further defining uj = dj/‖dj‖ and

Bj =

(
HF−jF

∗
−jH

∗+
Nt

SNR
I

)−1/2

Hfjf
∗
j H

∗
(
HF−jF

∗
−jH

∗+
Nt

SNR
I

)−1/2

(6.80)

we obtain sinrj = u∗
jBjuj , which is maximized when uj is the maximum-eigenvalue

eigenvector of Bj because any other choice would partially project on directions on which
Bj has less gain. In the problem at hand, moreover, Bj is a rank-1 matrix with a single
nonzero eigenvalue; any choice for uj other than the corresponding eigenvector would
partially project on zero-gain directions. Such nonzero-eigenvalue eigenvector is

uj =

(
HF−jF

∗
−jH

∗ + Nt

SNRI
)−1/2

Hfj∥∥∥(HF−jF ∗
−jH

∗ + Nt

SNRI
)−1/2

Hfj

∥∥∥ , (6.81)

giving the maximum value

sinrj = u∗
jBjuj (6.82)

=

[
f∗
j H

∗ (HF−jF
∗
−jH

∗ + Nt

SNRI
)−1

Hfj

]2
∥∥∥(HF−jF ∗

−jH
∗ + Nt

SNRI
)−1/2

Hfj

∥∥∥2 (6.83)

=

[
f∗
j H

∗ (HF−jF
∗
−jH

∗ + Nt

SNRI
)−1

Hfj

]2
f∗
j H

∗ (HF−jF ∗
−jH

∗ + Nt

SNRI
)−1

Hfj

(6.84)

= f∗
j H

∗
(
HF−jF

∗
−jH

∗ +
Nt

SNR
I

)−1

Hfj , (6.85)

which coincides with SINR at the output of an LMMSE receiver as given in (6.74). This
confirms that an LMMSE receiver simultaneously maximizes the output SINRs of all
streams and, given that the mutual information over a scalar channel is monotonic in the
SINR, the LMMSE is the optimum linear receiver in the sense of maximizing the spectral
efficiency—which is the truly relevant sense of optimality as far as reliable communication
is concerned. Indeed, it should not be forgotten that, while for signal processing purposes
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the minimization of the mean-square error can be an end in itself, in a communication
design this minimization is but a conduit to the maximization of the spectral efficiency.

As a matter of fact, any scaled version of W MMSE achieves the same maximum SINR be-
cause the scaling affects equally the desired signal, the noise, and the interference. (When
the LMMSE filter is scaled, it continues to minimize the mean-square error only with re-
spect to a scaled version of s rather than s itself.) At the same time, from the expression
for uj in (6.81), obtained via uj = dj/‖dj‖2, we can go back and clear from (6.79) that

wj =

(
HF−jF

∗
−jH

∗ +
Nt

SNR
I

)−1

Hfj (6.86)

or any scaled version thereof is an alternative linear filter that maximizes the output SINR
for signal stream j. It follows that wMMSE

j in (6.63) and wj in (6.86) must be colinear
vectors, and that is indeed the case: the removal of the jth column of HF from within the
inverse in (6.86) merely scales the projection of that very column vector, Hfj , onto the
inverse. This is an instance of the result(

A−jA
∗
−j + aja

∗
j + I

)−1
aj ∝ (

A−jA
∗
−j + I

)−1
aj , (6.87)

which the reader is invited to prove in Problem 6.19.
With sinrMMSE

j expressed, let us now turn our attention to its distribution. Such distribution
is substantially more involved than that of snrZFj , but an expression for the canonical channel
with IID Rayleigh-faded entries does exist.

Example 6.11 (LMMSE output SINR distribution in an IID Rayleigh-faded MIMO
channel)

Let H have IID Rayleigh-faded entries while F = I with Ns = Nt ≤ Nr. Some lengthy
derivations in [723, 724], not reproduced here, yield

fsinrMMSE
j

(ξ) = e−ξNt/SNR

[
Nr∑

i=Nr−Nt+2

(
Nt

SNR
− i− 1

ξ
+

Nt − 1

1 + ξ

)
t0(i, ξ)− t1(i, ξ)

− Nt

SNR

Nr−Nt+1∑
i=1

i− 1− ξ Nt/SNR

(i− 1)!

(
ξ Nt

SNR

)i−2
]
, (6.88)

where

tk(i, ξ) =
(ξ Nt/SNR)

i−1

(i− 1)!

Nr−i∑
j=k

(
Nt − 1

j

)
jkξj−k

(1 + ξ)Nt−1
(6.89)

with jk = 1 whenever j = k = 0. For SNR → ∞, the above PDF approaches its ZF
counterpart in Example 6.2.

The CDF of sinrMMSE

j can also be found in [723, 724].

The derivations in [723, 724] can accommodate transmit antenna correlations with suit-
able precoding. Beyond that, for more general channel structures, closed forms for the
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distribution of sinrMMSE

j do not seem forthcoming, but it can be shown [719, 725] that

sinrMMSE

j = snrZF +Tj , (6.90)

where Tj is independent of snrZFj . The distribution of snrZFj was discussed in Section 6.3
whereas that of Tj can be well approximated, for channels with certain correlations, by
means of suitably tuned Gamma or generalized Gamma distributions [719]. In turn, the
exceedingly more involved analysis of the SINR distribution for Rice-faded channels is
tackled in [726, 727].

6.4.3 Ergodic spectral efficiency

It must be mentioned that, in contrast with the ZF receiver, where the filter output is im-
paired strictly by noise, in the LMMSE case the impairment contains a mixture of noise
and interference from other streams. When the signaling is complex Gaussian, this mixture
is, conditioned on H , also complex Gaussian and the spectral efficiency is directly

CMMSE(SNR) =
Ns−1∑
j=0

E
[
log2

(
1 + sinrMMSE

j

)]
(6.91)

=

Ns−1∑
j=0

E

[
log2

1

MMSEj

]
. (6.92)

There is no guarantee that (6.91) and (6.92) represent the highest possible spectral effi-
ciency because of the separate decoding of each stream: with optimum decoders, non-
Gaussian codewords could constitute worse signals for the corresponding streams, but also
more benign interference to the rest. Nevertheless, it has been shown that, regardless of the
signal distribution, the noise-plus-interference mixture becomes rapidly Gaussian as the
number of antennas grows [728]. Hence, not only is complex Gaussian signaling close-to-
optimum with LMMSE reception, but we can further approximate the spectral efficiency
with other types of signals as

∑Nt−1
j=0 E[Ij(sinrMMSE

j )].

Whatever the signal distribution, the LMMSE receiver is the best within the class of
linear ones because, recall, an LMMSE filter maximizes the SINRs and the mutual infor-
mation conditioned on the fading is monotonic in the SINR.

Example 6.12

For a channel with Nt = Nr = 4 and IID Rayleigh-faded entries, for which F = I is
optimum, plot CMMSE(SNR) and CMMSE(Eb

N0
).

Solution

See Figs. 6.2 and 6.3, where the LMMSE spectral efficiency has been computed via Monte-
Carlo.

An important remark is forthcoming in reference to linear receivers, and to the LMMSE
receiver in particular. In contrast with the spectral efficiency of an optimum receiver, which
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is invariant to unitary precoding (for any unitary F , the distribution of the quadratic form
HFF ∗H∗ is unaltered), the spectral efficiency of the LMMSE receiver does change with
unitary precoding: the distribution of sinrMMSE

j varies and, with that, the spectral efficiency.
This is because unitary precoding amounts to a spatial rotation that modifies the signal
and interference mix for each of the streams at the output of the filters attempting to isolate
them. In contrast, an optimum receiver processing the signal vector as a whole is unaffected
by mere signal rotations; what is not captured in one dimension is captured in another.

Low-SNR regime

Applying (6.91) and the results in earlier sections, the low-SNR performance measures for
an LMMSE receiver can be obtained.

Example 6.13 (Eb

N0

MMSE

min
and SMMSE

0 in an IID Rayleigh-faded MIMO channel)

Let H have IID Rayleigh-faded entries and let F = I . Applying to (6.91) the correspond-
ing definitions [729, 730],

Eb

N0

MMSE

min

=
1

Nr log2 e
(6.93)

SMMSE

0 =
2NtNr

2Nt +Nr − 1
, (6.94)

where Eb

N0

MMSE

min
coincides with its counterpart for an optimum receiver, revealing that the

spatial matched-filter behavior of the LMMSE receiver renders it first-order optimum for
SNR → 0. However, and except for Nt = 1, SMMSE

0 < S0 and thus the LMMSE MIMO
receiver is not optimum to second order.

High-SNR regime

It is easily verified from (6.91) that, for Nt ≤ Nr, the number of spatial DOF with an
LMMSE receiver is SMMSE

∞ = Nt, exactly as with an optimum receiver. For Nt > Nr,
however, SMMSE

∞ = 0; this evinces that, as SNR → ∞, the signals at the LMMSE output
would get clogged with interference from other streams that the filter would be unable to
reject. It is thus ill-advised to insist on transmitting more than Nmin signal streams with an
LMMSE receiver in the high-SNR regime.

For Ns ≤ Nmin, the power offset with an LMMSE receiver is larger than with an opti-
mum receiver (see Fig. 6.2 and Problem 6.21), indicating that there is always a gap between
the spectral efficiency of an LMMSE receiver and the actual capacity.

As one would expect, for SNR → ∞ the LMMSE receiver converges to ZF; indeed, let-
ting SNR → ∞ in W MMSE immediately yields W ZF. The difference Tj = sinrMMSE

j − snrZFj ,
in turn, converges in distribution to a fixed-variance random variable for every stream j

[725]. It follows that
sinrMMSE

j

snrZFj
→ 1. (6.95)
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The difference Tj = sinrMMSE

j − snrZFj does not vanish, but it is inconsequential to CMMSE in
this regime because, for growing SNR,

log2
(
snrZFj +Tj

)
= log2 snr

ZF

j +O
(

1

snrZF

)
, (6.96)

irrespective of the bounded value Tj . (The nonvanishing difference between sinrMMSE

j and
snrZFj does have an impact on the high-SNR uncoded performance [725].)

In quasi-static settings, the DMT is also unaffected by Tj and hence it equals that of a
ZF receiver, given in (6.43) [722].

Large-dimensional regime

Let us finally consider the regime where Nt, Nr → ∞ with β = Nt/Nr.

Example 6.14 (Large-dimensional LMMSE spectral efficiency of a channel
with IID zero-mean entries)

Consider a channel whose entries are IID and zero-mean, but otherwise arbitrarily dis-
tributed, and let F = I . For every j, as Nt, Nr → ∞ [457]

E

[
sinrMMSE

j

]
= E

[
h∗
j

(
H−jH

∗
−j +

Nt

SNR
I

)−1

hj

]
(6.97)

= E

⎡
⎣Nr−1∑

i=0

[(
H−jH

∗
−j +

Nt

SNR
I

)−1
]
i,i

⎤
⎦ (6.98)

= E

[
tr

((
HjH

∗
j +

Nt

SNR
I

)−1
)]

(6.99)

= E

[
Nr−1∑
i=0

λi

((
H−jH

∗
−j +

Nt

SNR
I

)−1
)]

(6.100)

= E

[
Nr−1∑
i=0

1

λi

(
H−jH∗

−j +
Nt

SNRI
)
]

(6.101)

= Nr E

[
1

λ
(
H−jH∗

−j +
Nt

SNRI
)
]

(6.102)

=
Nr

Nt
E

⎡
⎣ 1

λ
(

1
Nt

H−jH∗
−j

)
+ 1

SNR

⎤
⎦ (6.103)

→ 1

β

∫ ∞

0

1

ξ + 1
SNR

f(ξ) dξ (6.104)

=
SNR

β
−F(SNR, β), (6.105)
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where in (6.98) we have exploited the independence between hj and H−j (refer to Prob-
lem 6.22) whereas, in (6.102) and (6.103), λ(·) is any of the Nr identically distributed
eigenvalues of its argument. In (6.104), f(·) is the Marčenko–Pastur asymptotic empirical
eigenvalue density of 1

Nt
HH∗ (see Appendix C.2), which coincides with its brethren for

1
Nt

H−jH
∗
−j because the deletion of a single column of H is asymptotically immaterial.

The integration over f(·) yields the final result where, as defined in (5.174),

F(SNR, β) =
1

4

⎛
⎝
√
1 + SNR

(
1 +

1√
β

)2

−
√
1 + SNR

(
1− 1√

β

)2
⎞
⎠2

. (6.106)

As it turns out, not only does the expectation of sinrMMSE

j converge to (6.105), but actually
every realization of sinrMMSE

j converges a.s. to (6.105) and hence the expectation in the
foregoing derivation is unnecessary [546]. The spectral efficiency of an LMMSE receiver
follows suit, giving

1

Nr
CMMSE(SNR)

a.s.→ β log2

(
1 +

SNR

β
−F(SNR, β)

)
, (6.107)

which is the counterpart to the large-dimensional capacity expression in (5.173).

With antenna correlations, each stream generally experiences a distinct SINR. While
the asymptotic empirical distribution of such SINRs still converges to a nonrandom limit,
it generally cannot be expressed in closed form but only as the solution of a fixed-point
equation.

Example 6.15 (Large-dimensional LMMSE spectral efficiency of a channel
with Kronecker correlations)

Let H = Rr
1/2HwRt

1/2 with Rr = UrΛrU
∗
r and Rt = UtΛtU

∗
t , and let the precoder

be F = UFP
1/2 with the steering matrix set to UF = Ut. The precoded channel is then

HF = UrΛrU
∗
r HwUtΛtP

1/2 whose distribution, because of the unitary invariance of
Hw, coincides with that of UrΛrHwΛtP

1/2. Furthermore, since the application at the
receiver of a unitary rotation U∗

r does not alter the noise distribution, we can equivalently
consider the channel ΛrHwΛtP

1/2 whose entries are IND. Then [548]

sinrMMSE

j ≈ Pj λj(Rt)Υr SNR, (6.108)

where Υr solves the fixed-point equations in (5.180) and where the approximation sharp-
ens as Nt and Nr grow large. From the large-dimensional distribution of output SINRs, the
corresponding spectral efficiency is readily obtained by applying (6.91) with the expecta-
tions rendered unnecessary.

With correlation only at the transmitter, the expression in Example 6.15 maps to a well-
known large-dimensional solution derived for multiuser detection [456].
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6.5 Relationship between the LMMSE and the
optimum receiver

As established in Section 5.8.2, an optimum receiver can be constructed as a cascade of
LMMSE filters coupled by SIC elements, such that

C(SNR) =
Ns−1∑
j=0

log2
(
1 + sinrMMSE-SIC

j

)
, (6.109)

whose jth term is the spectral efficiency achievable by signal stream j at the output of an
LMMSE receiver with interference from streams 0, . . . , j − 1 canceled out. This allows
expressing the capacity as a function of the LMMSE spectral efficiency.

A converse relationship can also be derived, so as to express the LMMSE spectral effi-
ciency as a function of the capacity of an optimum receiver. To get to this relationship, let
us replicate the derivation in (5.213)–(5.217), but for an arbitrary column of HF rather
than for the column j = 0. This gives

log2 det

(
I +

SNR

Nt
HFF ∗H∗

)
= log2 det

(
I +

SNR

Nt
HF−jF

∗
−jH

∗
)

+ log2

(
1 + f∗

j H
∗
(

Nt

SNR
+HF−jF

∗
−jH

∗
)−1

Hfj

)

or, more compactly,

log2 det

(
I +

SNR

Nt
HFF ∗H∗

)
= log2 det

(
I +

SNR

Nt
HF−jF

∗
−jH

∗
)

+ log2

(
1 + sinrMMSE

j

)
. (6.110)

Taking expectations over the distribution of H , this leads to

C(SNR) = C−j

(
Nt − Pj

Nt
SNR

)
+ E

[
log2

(
1 + sinrMMSE

j

)]
, (6.111)

where C−j(·) is the capacity with the jth signal stream removed and its power not relocated
to other streams, i.e., C−j(·) is the capacity of the Nr × (Ns − 1) precoded channel HF−j

with per-symbol power constraint ‖F−j‖2F = Nt − Pj . Note that we have implicitly as-
sumed that F is the capacity-achieving precoder; if that is not the case, the term “capacity”
should formally not be employed, but the derivation holds all the same. Then, summing
both sides of (6.111) over j = 0, . . . , Ns − 1, we obtain

Ns C(SNR) =
Ns−1∑
j=0

C−j

(
Nt − Pj

Nt
SNR

)
+ CMMSE (6.112)

from which, finally,

CMMSE = Ns C(SNR)−
Ns−1∑
j=0

C−j

(
Nt − Pj

Nt
SNR

)
. (6.113)
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This relationship enables direct application to the LMMSE realm of all the results avail-
able for the optimum receiver (refer to Problems 6.25 and 6.26). For IID Rayleigh-faded
channels, for instance, a closed form for CMMSE emerges from (6.113) and Example 5.17.

6.6 Summary and outlook

The contents of the chapter, reliant on the premise of CSIR, are condensed into the take-
away points within the accompanying summary box.

The chapter has not delved into link adaptation, which was covered extensively in the
context of optimum receivers and whose applicability to linear receivers entails no con-
ceptual novelty. A problem is proposed, at the end of the chapter, to exercise this aspect;
readers interested in the specificity of link adaptation for linear receivers are further re-
ferred to [731, 732].

Likewise, the chapter has not probed the issue of pilot-assisted transmission because
there is no conceptual difference in how pilot symbols are inserted and channel estimates
gathered when linear receivers are in place. From the estimate Ĥ , the linear filter of choice
can be readily computed using the expressions given in the chapter. The LMMSE filter in
particular can alternatively be computed via

W MMSE = R−1
y Rys (6.122)

with

Rys =

√
GEs

Nt
ĤF , (6.123)

but with Ry estimated directly from the observed data rather than computed from Ĥ . From
observations y[0], . . . ,y[N − 1] at the receiver, the sample average

R̂y =
1

N

N−1∑
n=0

y[n]y∗[n] (6.124)

can be plugged directly into (6.122). This approach does not presume a specific covariance
for the noise but rather incorporating it automatically, which is advantageous in the face of
spatially colored interference.

The matter of pilot-assisted transmission with linear receivers is addressed in detail later
in the book, in multiuser settings of which SU-MIMO is a particular case, and we therefore
do not dwell on it further at this point.

In terms of open research problems in the context of linear receivers for SU-MIMO, one
that transpires from the treatment in this chapter is the information-theoretic optimization
of the precoder in the absence of CSIT.
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Take-away points

1. Within the class of linear receivers, meaning a linear filter followed by a bank of
scalar decoders operating separately on each stream, the LMMSE receiver is the
one that maximizes the spectral efficiency. With precoder F , such a filter is

W MMSE =

√
Nt

GEs

(
HFF ∗H∗ +

Nt

SNR
I

)−1

HF (6.114)

=

√
Nt

GEs
HF

(
Nt

SNR
I + F ∗H∗HF

)−1

. (6.115)

2. For SNR → 0, the LMMSE filter reverts to a spatial matched filter. For SNR → ∞,
the LMMSE filter reverts to the ZF filter

W ZF =

√
Nt

GEs
HF (F ∗H∗HF )

−1
. (6.116)

3. The ergodic LMMSE spectral efficiency with precoder F equals

CMMSE =

Ns−1∑
j=0

E
[
log2

(
1 + sinrMMSE

j

)]
(6.117)

where

sinrMMSE

j =
f∗
j H

∗ (HFF ∗H∗ + Nt

SNRI
)−1

Hfj

1− f∗
j H

∗ (HFF ∗H∗ + Nt

SNRI
)−1

Hfj

(6.118)

=
1[(

I + SNR
Nt

F ∗H∗HF
)−1

]
j,j

− 1 (6.119)

= f∗
j H

∗
(
HF−jF

∗
−jH

∗ +
Nt

SNR
I

)−1

Hfj . (6.120)

4. The ergodic ZF spectral efficiency of an IID Rayleigh-faded channel amounts to
Nt times the capacity of a SIMO channel having Nr−Nt+1 receive antennas and
local-average SNR equal to SNR

Nt
, namely

CZF(SNR) = Nt e
Nt/SNR

Nr−Nt+1∑
q=1

Eq
(

Nt

SNR

)
log2 e. (6.121)

5. The LMMSE and spatial matched filter receivers achieve the same Eb

N0 min
as an

optimum receiver, but a reduced S0.
6. The LMMSE and ZF receivers achieve the same number of spatial DOF as an

optimum receiver, but incur a loss in terms of power offset.
7. CMMSE can be expressed as a function of the difference between the capacities with

Ns and Ns − 1 signal streams and, through this relationship, any related quantities
can be obtained by harnessing the results derived for optimum receivers.
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Problems

6.1 Express Eb

N0 min
for a MIMO channel with a spatial matched-filter receiver.

6.2 Applying the identity [A−1]00 = (A00 − A01A
−1
11 A10)

−1 to a matrix with block
partitionings

A =

[
A00 A01

A10 A11

]
A−1 =

[
[A−1]00 [A−1]01
[A−1]10 [A−1]11

]
, (6.125)

verify that (6.14) and (6.18) coincide.

6.3 Reconsider Example 6.6.
(a) Reproduce the plot of CZF(SNR) in Fig. 6.2.
(b) Reproduce the plot of CMMSE(SNR) in Fig. 6.2.
(c) Plot the corresponding ergodic spectral efficiency with a spatial matched-filter

receiver.

6.4 Plot, as a function of SNR ∈ [−10, 25] dB, C(SNR) for SISO and for MIMO with
Nt = Nr = 4. In the same chart, plot CZF(SNR) and CMMSE(SNR) for Nt = Nr = 4.

6.5 Let H have IID Rayleigh-faded entries.
(a) Plot, as a function of SNR ∈ [−10, 25] dB, the ZF spectral efficiency per an-

tenna, 1
Nr

CZF(SNR), for Nt = Nr = 1, for Nt = Nr = 2, for Nt = Nr = 4,
and for Nt = Nr = 8.

(b) Repeat part (a) for an LMMSE receiver.
What do you observe?

6.6 Derive CZF(SNR) for a Rayleigh-faded MIMO channel with transmit correlation Rt

and with a precoder aligned with the eigenvectors of Rt.

6.7 Consider a Rayleigh-faded MIMO channel with transmit correlation Rt and no pre-
coding.
(a) Derive CZF(SNR).
(b) For Nt = Nr = 2 and

Rt =

[
1 0.7

0.7 1

]
, (6.126)

what is the optimum power allocation (in terms of maximizing the ergodic spec-
tral efficiency with ZF reception) at SNR = 7 dB?

6.8 Let Nt = Nr = 2 with H having Rayleigh-faded entries and with Rt as in (6.126).
Plot, as a function of SNR ∈ [−10, 25] dB, the ergodic ZF spectral efficiency without
precoding and with the optimum precoding. What do you observe?

6.9 Repeat Problem 6.8 for an LMMSE receiver, without precoding.

6.10 Reconsider Example 6.7.
(a) Reproduce the plot of CZF(Eb

N0
) in Fig. 6.3.

(b) Reproduce the plot of CMMSE(Eb

N0
) in Fig. 6.3.
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(c) Plot the corresponding ergodic spectral efficiency with a spatial matched-filter
receiver.

6.11 Prove (6.39) and further derive SZF
0 for a ZF receiver in a MIMO channel with IID

Rayleigh-faded entries.

6.12 Using Eb

N0

ZF

min
and SZF

0 , compute the power and bandwidth reduction that a MIMO
transmission with Nt = Nr = 4 and ZF reception enjoys, relative to a SISO trans-
mission at the same bit rate. Assume low-SNR conditions.

6.13 For a Rayleigh-faded MIMO channel with transmit correlation Rt and no receive
correlations, express Eb

N0

ZF

min
in the following conditions.

(a) With an optimum precoder.
(b) Without precoding.

6.14 Generalize the power offset expression in Example 6.9 to arbitrary Nt and Nr.

6.15 Verify (6.52).

6.16 Verify (6.53).

6.17 Produce a table similar to Table 5.1 contrasting the exact spectral efficiency of an
LMMSE receiver and its large-dimensional approximation, for Nt, Nr = 1, . . . , 4

and SNR = 10 dB.

6.18 Provide an alternative proof that sinrMMSE

j is given by (6.74), by formulating a linear
receiver for stream j that whitens the interference from all other streams and then
performs matched filtering. Since a matched filter is the optimum receiver with white
noise, this strategy does ensure the maximization of sinrj .

6.19 Prove (6.87).
Hint: Start from AA∗ + I = A−jA

∗
−j + ajaj + I .

6.20 Repeat Example 6.6 with Nt = 2 and Nr = 4. What are the key differences in
behavior when Nr is substantially larger than Nt?

6.21 Given a channel with IID Rayleigh-faded entries and Nt ≤ Nr, write in closed form
the difference between the high-SNR power offsets of an LMMSE receiver and an
optimum receiver.

6.22 Verify (6.98).

6.23 Specialize to β = 1 the large-dimensional LMMSE spectral efficiency expression
for a channel with IID entries.

6.24 For an unprecoded channel with IID entries and LMMSE reception in the large-
dimensional regime, verify that, for β → ∞, the following holds.
(a) The average output SINR of every signal stream drops to zero.
(b) The number of spatial DOF also drops to zero.
Note: The spectral efficiency would seem not to vanish, but rather to approach a
nonzero constant. However, the overhead required to sustain it would also grow
unboundedly with β. Again, for Ns > Nmin, we find that results that rely on side
information are modeling artifacts.

6.25 Use (6.113) to rederive, for an unprecoded transmission, the following.
(a) Eb

N0

MMSE

min
for an arbitrary MIMO channel.
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(b) LMMSE
∞ for a MIMO channel with IID Rayleigh-faded entries and Nt = Nr.

6.26 Use (6.113) to express CMMSE for a channel with Nt = Nr = 2 and IID Rayleigh-
faded entries.

6.27 Let Nt = Nr = 4, with the channel being IID Rayleigh-faded and frequency-flat.
The transmission is unprecoded, with a separate codeword emitted from each an-
tenna and with PARC. The receiver is LMMSE and the channel can be regarded as
quasi-static over each codeword. From the error probabilities as a function of SNR
given in the book’s companion webpage for the 27 LTE MCSs, plot the throughput
per unit bandwidth. Further plot, on the same chart, CMMSE.

6.28 Consider a vehicular block-fading channel (Nc = 1000) with IID Rayleigh-faded
entries and Nt = Nr = 2. Pilot power boosting is not allowed. Plot, for SNR ∈
[−5, 25] dB, the ergodic LMMSE spectral efficiency of a pilot-based transmission
alongside CMMSE with CSIR. Further plot the overhead of the pilot-based transmis-
sion.
Hint: A convex optimization solver such as fmincon in MATLAB® can be used.
Alternatively, since each optimization is over a single scalar, the optimum value can
be found by scanning over α ∈ [0, 1].

6.29 Suppose that, rather than a complete precoder, an Nt×Ns semiunitary precoder UF

is applied.
(a) Prove that

∑Ns

j=0 MMSEj is invariant to right unitary rotations of the precoder.
(b) Verify that, for an IID Rayleigh-faded channel with Nt = Nr = 4 and with

SNR = 10 dB, E[MMSEj ] for j = 0, . . . , Ns are invariant to unitary rotations
of the precoder.

(c) Does the invariance in part (b) extend to E[sinrMMSE

j ] for j = 0, . . . , Ns? How
about to the per-stream average spectral efficiencies with LMMSE reception?

(d) Now let the transmit antennas be correlated via

Rt =

⎡
⎢⎢⎣

1 0.8 0.6 0.4

0.8 1 0.8 0.6

0.6 0.8 1 0.8

0.4 0.6 0.8 1

⎤
⎥⎥⎦ . (6.127)

Which of the foregoing invariances apply?
Note: As elaborated in Chapter 5, the unitary invariance of the precoder is relevant
to the CSIT quantization required for digital feedback. With an optimum receiver, the
spectral efficiency is always invariant.
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7 Multiuser communication prelude

He that will not apply new remedies must expect new evils; for time is the greatest
innovator.

Francis Bacon

7.1 Introduction

Throughout the leading parts of the book, we have laid down a foundation for SU-MIMO
communication, that is, with a single transmitter and a single receiver. It is now time to
broaden the scope and consider setups with multiple users. From an information-theoretic
viewpoint, the understanding of multiuser channels is decidedly less mature than that of
their single-user counterparts, and the capacity is not fully determined even for seemingly
simple cases. Fortuitously, the two setups that are arguably most relevant to wireless net-
works are relatively well characterized. These are the so-called multiple-access channel
(MAC) and broadcast channel (BC), respectively abstracting the reverse link (or uplink)
and the forward link (or downlink) within a given system cell. The MIMO incarnations of
these two setups, and some intriguing duality relationships between them, are what we set
out to cover next, as a stepping stone to the study of massive MIMO.

The present chapter kicks off this coverage, generically introducing those concepts that
are necessary to move beyond single-user communication. Some of these concepts have
appeared tangentially in our analyses of channels with interference and are now fully em-
braced, while others appear for the first time. For the sake of crispness, they are presented
and exemplified for single-antenna transceivers in the present chapter. With these con-
cepts established, and with multiple antennas incorporated, subsequent chapters then delve
into the analysis of the MU-MIMO MAC and BC, with the treatment of optimum and
linear transceivers deferred to separate respective chapters as done in the exposition of SU-
MIMO; this provides a clean distinction between the study of the capacity, along with the
transmitter and receiver structures that achieve it, and the examination of linear transmitters
and receivers that need not be capacity-achieving but are more attractive to implement.

Since the necessary information-theoretic notions are already well defined by now, the
starting points for the derivations are directly, on the one hand, the power and bandwidth
constraints, and, on the other hand, the bit rate, the spectral and power efficiencies, and the
capacity, all suitably generalized to the multiuser realm.

Although we focus directly on error-free communication for N → ∞, the considerations
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made in Section 1.5 concerning communication at nonzero error probabilities over a
finite blocklength apply.
We consider multiuser communication in fading channels impaired by Gaussian noise,
with the wisdom expounded in Sections 4.9 and 5.7 in relation to any additional interfer-
ence (say, from neighboring cells) very present: at a given SINR, having interference in
lieu of noise is beneficial, but the difference is significant only if the overall interference
dimensionality is small relative to the number of receive antennas. Since this is seldom
the case, the noise-limited performance, with the interference regarded as additional
noise, is wholly meaningful.
Likewise, we consider coded modulation signals keeping present that in most instances
the actual implementation is in the form of BICM (see Sections 1.5.4 and 5.8.4).
We emphasize the dependence on the number of users, which is the distinguishing aspect
in the multiuser realm, and de-emphasize (except in those instances where it runs counter
to what it was in SU-MIMO) the impact of channels features such as antenna correlation
or Rice factors.

The chapter begins in Section 7.2 with the generalization to multiuser contexts of the
concept of capacity, followed in Sections 7.3 and 7.4 by a dissection of the various ways
in which a channel can be shared by multiple users; orthogonal and non-orthogonal shar-
ing schemes are inspected in these respective sections. This sets the stage for Section 7.5,
which introduces several scalar metrics that are commonly employed to succinctly repre-
sent the communication performance on multiuser channels. Then, Section 7.6 discusses
how to dynamically implement the channel-sharing process, introducing notions such as
user selection, scheduling, and resource allocation. Finally, Section 7.7 justifies the high-
SNR emphasis of non-orthogonal multiuser sharing schemes and Section 7.8 wraps up the
chapter.

7.2 Spectral efficiency region

We are interested in these two multiuser setups:

The MAC, where multiple transmitting users communicate with a single receiver.
The BC, where a single transmitter communicates with multiple receiving users.

With respect to single-user setups, a chief variable in the multiuser realm is the number
of users U that transmit to a common receiver (in the MAC) or that receive from a common
transmitter (in the BC). These U active users are generally selected from a larger pool of
Utot users, through criteria that are important and considered later on, but which are of no
concern at this point. What is immediately relevant is that, rather than an individual spec-
tral efficiency, we now need to refer to a plurality of U efficiencies. Whereas the spectral
efficiency of a single user lies on a segment (ranging between zero and a scalar capacity),
the combination of spectral efficiencies simultaneously achievable by U users determine
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R0/B

R1/B

NOMA / MU-SISO

Corner 1

Corner 2

log2 det (I+
∑

uSNRuHuH
∗
u)

TDMA

FDMA

C1

C0

C1

�Fig. 7.1 Example of MAC regions of achievable spectral efficiencies for U = 2.

a region in a U -dimensional space. This multidimensional nature of the performance is a
key point from which the rest of the multiuser concepts then emanate.

Although the capacity is really only the boundary of the largest region of achievable
spectral efficiencies, it is not uncommon in the literature to have the entire region referred
to as the capacity region. (It is also not uncommon to have the region of achievable spectral
efficiencies referred to as the rate region, with the bandwidth B implicitly normalized.)
For U = 1, the region of achievable spectral efficiencies collapses to a segment and the
boundary particularizes to the familiar scalar capacity of a single-user channel.

For illustration purposes, we often resort to the case U = 2, which captures the multiuser
essence with a simple-to-visualize capacity boundary.

Example 7.1

Draw the two-dimensional region of achievable spectral efficiency pairs, (R0/B,R1/B),
for a single-antenna MAC with U = 2.

Solution

See Fig. 7.1, which portrays the region for the various channel-sharing schemes described
throughout the chapter.

For U > 2, the achievable spectral efficiencies are no longer pairs but rather U -tuples,
(R0/B, . . . , RU−1/B), and the region they form as well as its boundary become difficult
to visualize, yet they are conceptually identical.
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Discussion 7.1 Interpretation of a spectral efficiency region

It is essential to understand that a user’s spectral efficiency, say Ru/B, changes from
one boundary point to another, not necessarily because the transmit power of that user
varies, but chiefly because the rate at which the corresponding signal is encoded varies.
By encoding a user’s signal at a lower rate, it is possible to accommodate higher rates
from other users, and vice versa, because when the users’ signals are jointly received or
transmitted, each individual signal affects the rest.

In the MAC with an optimum receiver, in particular, the spectral efficiency region
grows monotonically with the transmit power of each user—this point is explored in
Problem 7.4 and more formally ratified in Chapter 8—and hence transmission at full
power is always optimal; it is only the balance of the encoding rates by the U users that
defines the capacity boundary in a given channel. For the two-user setup in Fig. 7.1, for
instance, moving upward along the boundary entails contracting the rate of the first user
while increasing that of the second. Needless to say, link adaptation is instrumental in
the process of establishing a specific operating point of choice over the boundary.

In the MAC with a suboptimum linear receiver (see Chapter 9), delineating the bound-
ary does further require adjusting the transmit powers, but link adaptation continues to
be instrumental.

7.3 Orthogonal channel sharing

The channel signaling dimensions (time, frequency, and space) must be shared by the U

active users, with the most straightforward approach being a division of the time and/or
frequency axes into U disjoint intervals, each assigned to one of the users.

7.3.1 Time-division

In time-division, the time axis gets divided into slots. Then, if slots are assigned to users
statically and Tu ∈ [0, 1] is the time share of user u, such that

∑U−1
u=0 Tu = 1, the spectral

efficiencies of the users are

Ru

B
= Tu Cu(SNRu) u = 0, . . . , U − 1 (7.1)

with Cu(·) the individual capacity of the corresponding user in absence of the rest, and
with SNRu its local-average SNR. This relationship applies to both the MAC and the BC.
Strictly speaking, time-division should be termed time-division multiple access (TDMA)
in the MAC and time-division multiplexing in the BC; however, the acronym TDMA is
often abused to denote time-division for both the MAC and the BC.
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Example 7.2

Consider a MAC where U = 2 users communicate with a common receiver. Which spectral
efficiency pairs (R0/B,R1/B) are achievable with TDMA?

Solution

If T0 = 1 and T1 = 0, then R0/B ≤ C0 and R1/B = 0 whereas, if T0 = 0 and T1 = 1,
then R0/B = 0 and R1/B ≤ C1. The straight segment connecting (C0, 0) and (0, C1)

can be achieved by varying T0 and T1 = 1−T0, and all the spectral efficiency pairs within
the inner triangular region are therefore achievable (see Fig. 7.1).

For U = 3, the TDMA region boundary becomes a plane while the region itself is the
volume under that plane. For U > 3, the boundary becomes a hyperplane.

7.3.2 Frequency-division

In frequency-division, it is the frequency axis that gets partitioned into bands. As with time-
division, a strict denomination would call for the term frequency-division multiple access
(FDMA) in the MAC and frequency-division multiplexing in the BC, yet the acronym
FDMA often refers to both.

Let us suppose that the frequency bands are assigned statically and that Fu is the share
of the bandwidth B assigned to user u, such that

∑U−1
u=0 Fu = 1.

Multiple-access channel
In the MAC, user u concentrates its power on a bandwidth FuB and thus faces a noise
power FuN0B. With SNRu denoting the local-average SNR that this user would experience
signaling over the entire bandwidth B, the local-average SNR experienced over FuB is
SNRu/Fu and therefore

Ru

B
= Fu Cu

(
SNRu

Fu

)
u = 0, . . . , U − 1. (7.2)

Example 7.3

Consider the same setup of Example 7.2. Which spectral efficiency pairs (R0/B,R1/B)

are achievable with FDMA?

Solution

From (7.2) with F0 ∈ [0, 1] and F1 = 1 − F0, we obtain the FDMA boundary in Fig. 7.1,
whose contained region is somewhat larger than its TDMA counterpart.

The reason why the MAC spectral efficiency in (7.2) does not coincide with its TDMA
brethren in (7.1) is insinuated in the definition of FDMA: each user concentrates its power
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on only a fraction of the bandwidth, hence subject to only a fraction of the noise. If, in
TDMA, through power control subject to only an average constraint, the power not trans-
mitted during idle slots could be reclaimed for active slots, then the signal power on the
active slots would increase by 1/Tu and the resulting spectral efficiencies would coincide
with their FDMA counterparts.

Broadcast channel
In the BC, the transmitter has to divide its power among the U frequency bands assigned
to the U active users. If the power is divided among those users in direct proportion to how
the bandwidth is allocated to them, then on every band there are identical shares of signal
power and of noise, meaning that the local-average SNR experienced by user u is precisely
SNRu and hence

Ru

B
= Fu Cu(SNRu) u = 0, . . . , U − 1, (7.3)

as in time-division. However, the power need not be divided proportionally to the band-
width; rather, its allocation to users can be separately controlled. Denoting by Eu

Es
∈ [0, 1]

the share of transmit power allocated to user u, we then have

Ru

B
= Fu Cu

(
Eu

Es
SNRu

Fu

)
u = 0, . . . , U − 1. (7.4)

By separately optimizing E0

Es
, . . . , EU−1

Es
, subject to

∑U−1
u=0

Eu

Es
= 1, it is possible to en-

large the frequency-division spectral efficiency region [733]. The advantage of frequency-
division with an optimized power allocation with respect to time-division increases with
the disparity in user SNRs.

7.3.3 OFDMA

In systems featuring OFDM signaling, frequency-division can be conveniently implemented
by assigning blocks of subcarriers to different users. Referred to as orthogonal frequency
division multiple access (OFDMA), this modern form of frequency-division is often im-
plemented in conjunction with time-division and with a resource allocation engine making
decisions on subcarrier and time slot assignments. This approach represents an enticing
alternative that underpins most modern communication standards.

Besides time- and frequency-division, possibly via OFDMA, other orthogonal sharing
strategies are possible, chiefly code-division.

7.4 Non-orthogonal channel sharing

While time- and frequency-division are channel-sharing approaches that readily come to
mind, their orthogonal structure is imposed and comes at a cost in terms of information-
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theoretic optimality. The principles of MIMO clearly suggest that higher efficiencies can be
attained if all the transmissions are allowed to take place concurrently, in a non-orthogonal
fashion, and that is indeed the case. With single-antenna transceivers, this is sometimes
termed superposition coding, or simply superposition, an approach long known to be
information-theoretically optimum for such setups [14] and that is now getting practical
traction under the moniker of non-orthogonal multiple access (NOMA). With NOMA, the
combination of time slotting and OFDMA that forms the basis of most of today’s wire-
less systems is augmented by a certain degree of superposition, meaning the possibility
of U > 1 overlapping transmissions on each time slot and subcarrier [734–737]. With
single-antenna transceivers, NOMA entails dimensional overloading.

Once multiple antennas enter the picture, NOMA reverts to the broader scheme of MU-
MIMO and, to avoid an excessive proliferation of acronyms, in this book we directly refer
to all non-orthogonal multiuser communication types as MU-MIMO, regardless of whether
there is dimensional overloading. If transmitters or/and receivers feature a single-antenna,
then we have the special cases of MU-SIMO, MU-MISO, and MU-SISO. Note that, in all
these MU-xxxx setups, the channel features multiple inputs and multiple outputs, jointly
processed at the base station and separately processed at each user, with the qualifiers
“SIMO,” “MISO,” and “SISO” indicating the multiantenna nature of the individual links.
In this chapter specifically, all examples correspond to MU-SISO: a single-antenna base
station communicating with various single-antenna users.

With properly optimized transmit signals, the MU-MIMO region of spectral efficiencies
cannot be improved upon. In certain cases, e.g., in an MU-SISO MAC, the FDMA and
MU-MIMO boundaries touch at one point and thus FDMA is also optimum thereupon, but
the latter boundary always contains the former.

Example 7.4

Draw the MU-SISO capacity boundary for a MAC with U = 2.

Solution

See Fig. 7.1.

The unique local-average SNR at the receiver, which for single-user setups is defined as
SNR = GPt

N0B
= GEs

N0
, ramifies for MU-MIMO into

SNRu =
GuEs

N0
u = 0, . . . , U − 1, (7.5)

where Gu is, in general, distinct for each user.
While, strictly speaking, optimality entails having all users transmit concurrently, the

more pragmatic approach given a large population of Utot users is to have subsets of U
users operating in an MU-MIMO fashion, with orthogonal multiplexing of the subsets
[738]. This approach, which is far simpler and hardly suboptimum if U is chosen wisely
depending on the numbers of antennas, is the one presumed throughout this text.
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7.5 Scalar metrics

Consider a multiuser setup with U users. Having the capacity be a region boundary rather
a scalar quantity complicates its role as a performance benchmark and, often, it is desirable
to select a few points on that boundary that are representative in some respect and whose
dependence on parameters of interest (e.g., the numbers of antennas) can be more conve-
niently evaluated [34]. Indeed, while in general the entire boundary is of interest, certain
points thereon command special attention because of their operational relevance.

7.5.1 Sum of the spectral efficiencies

Perhaps the most obvious scalar metric is the point corresponding to the largest sum of the
spectral efficiencies of the U users. This quantity, for which we reserve the function C(·)
in our multiuser analysis, is intimately related with the SU-MIMO spectral efficiency. In
fact, in SU-MIMO one could characterize a boundary involving the spectral efficiencies of
the various transmit antennas. However, since all these antennas belong to the same user,
only their sum is relevant. In multiuser setups, such is no longer the case and the sum
of the spectral efficiencies does not suffice as a characterization, yet it continues to have
considerable relevance.

With MU-MIMO and properly optimized transmit signals, the sum of the spectral effi-
ciencies becomes the sum-capacity.

7.5.2 Weighted sum of the spectral efficiencies

More generally, we may be interested in characterizing the points on the boundary that cor-
respond, not to the highest possible value for

∑U−1
u=0 Ru/B, but rather for

∑U−1
u=0 quRu/B

given some nonnegative weights q0, . . . , qU−1 establishing a relative priority for each of
the users. While maximizing the sum of the spectral efficiencies may lead to operating
points where the performance is considerably skewed for the various users, a weighted
sum can characterize the performance under any degree of fairness imposed through the
weights. And, if q0 = · · · = qU−1, the weighted sum yields the sum itself.

Example 7.5

Consider the same setup of Example 7.2. For given q0 and q1, how can we determine the
boundary point where q0R0/B + q1R1/B is maximized?

Solution

For any q0 and q1, the contours of constant weighted sum spectral efficiency, i.e., the pairs
(R0/B,R1/B) such that q0R0/B+q1R1/B is constant, form lines having a slope −q0/q1.
Figure 7.2 shows the MU-SISO, TDMA, and FDMA two-dimensional regions with such
contours explicitly depicted. For each region, the sought boundary point (indicated with a
solid circle) is the one touching the farthest contour.
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�Fig. 7.2 Example of region boundaries for U = 2 with TDMA, FDMA, and MU-SISO. Shown

with dotted lines are the weighted sum spectral efficiency contours for some specific

q0 and q1 and, marked with solid circles, the ensuing weighted sum points. Shown

with dashes is a unit-slope line going through the origin and, marked with clear

circles, are the equal spectral efficiency points. Marked with crossed circles are the

proportional-fair points.

For TDMA in particular, the point of maximum weighted sum corresponds to R0/B = 0

if q0C0 < q1C1 (as in the figure) and to R1/B = 0 if q0C0 > q1C1.

The weights need not be normalized in any specific way, but it must be understood that
scaled versions thereof give the same boundary point, and thus the same spectral efficiency
U -tuple, yet different weighted sums. Comparisons and evaluations are perfectly meaning-
ful as long as the weights are utilized consistently.

Example 7.6

Reconsider Example 7.5. If we double both q0 and q1, the contours are unaffected and thus
the pairs (R0/B,R1/B) that maximize the weighted sum for each of the regions (TDMA,
FDMA, and MU-SISO) do not change. However, q0R0/B+q1R1/B doubles in each case.

The ideas of Examples 7.5 and 7.6 generalize straightforwardly to U > 2. The MU-
MIMO weighted sum is maximized by the spectral efficiency U -tuple at the boundary
point touching the farthest contour hyperplane for the given q0, . . . , qU−1.
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As graphical intuition would have it, by computing the U -tuples that maximize the
weighted sum

∑U−1
u=0 quRu/B for every possible combination of q0, . . . , qU−1, the en-

tire boundary is obtained; thus, the maximization of the weighted sum spectral efficiency
for all possible weight combinations is itself a way of computing the region boundary. And,
when the transmit signals are properly optimized, the weighted sum spectral efficiency be-
comes the weighted sum-capacity and its maximization for all possible weights delineates
the capacity boundary.

With time-division, in contrast,
∑U−1

u=0 quRu/B is maximized when only the user u for
which quCu is largest gets to transmit.

7.5.3 Equal spectral efficiencies

In addition to the weighted sum for any desired set of weights, another relevant boundary
point is the one where R0/B = R1/B = · · · = RU−1/B, which indicates the highest
spectral efficiency that can be achieved by all users simultaneously. This enforces a strict
performance equality among the users, possibly at the expense of exacting a steep price in
sum spectral efficiency.

Example 7.7

Consider, yet again, the same setup of Example 7.2. How is the equal spectral efficiency
point determined?

Solution

As illustrated in Fig. 7.2, this boundary point is the one intersecting the unit-slope line that
crosses the origin.

7.5.4 Minimum of the spectral efficiencies

As yet another alternative to the weighted sum, one can focus on maximizing the worst
among the spectral efficiencies of the U users [739]. While this falls short of enforcing
a strict performance equality, it does make the sum spectral efficiency take a back seat
relative to fairness. And, indeed, a substantial price is often paid also in this case in terms
of sum spectral efficiency.

7.5.5 Proportional fairness

As mentioned, a shortcoming of the straight sum as a scalar metric is that it completely
disregards fairness, yielding skewed spectral efficiencies if the user SNRs are highly dis-
similar. This can be corrected by resorting to a weighted sum, at the cost of involving
further parameters (the weights) whose choice is itself not devoid of difficulty. The equal
spectral efficiency point suffers from the opposite limitation: an excess of fairness that pe-
nalizes users with favorable channel conditions, forcing them to operate at the low spectral
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efficiencies imposed by users having worse channels. Altogether, it would be desirable to
identify a point offering a balance between aggregate performance and fairness, and an
attractive such point is the one corresponding to the largest product of the spectral efficien-
cies of the U users [740]. Since the logarithm is a monotonic function, this is equivalently
the spectral efficiency U -tuple that maximizes

log

(
U−1∏
u=0

Ru

B

)
=

U−1∑
u=0

log
Ru

B
. (7.6)

This is the so-called proportional-fair point, which provides a satisfying balance between
fairness and sum spectral efficiency. Specifically, multiplying any of the user’s spectral
efficiency by some factor has the same effect on (7.6), regardless of the user. Moreover,
denoting by R�

0/B, . . . , R�
U−1/B the proportional-fair U -tuple, it can be shown that [740]

U−1∑
u=0

Ru/B −R�
u/B

R�
u/B

≤ 0, (7.7)

meaning that, if we move the operating point from R�
0/B, . . . , R�

U−1/B to any other
boundary point R0/B, . . . , RU−1/B, the sum of the fractional increases in user spectral
efficiency cannot be positive. In this specific sense, the proportional-fair point is optimal.
Also, this point is implementationally relevant because a time-multiplexed system can be
made to operate on it through the simple and popular proportional-fair scheduling algo-
rithm described later in the chapter.

Example 7.8

For the setup of Example 7.2, indicate the points maximizing (7.6).

Solution

See Fig. 7.2. For TDMA in particular, at the proportional-fair point each of the two users
transmits half the time.

7.5.6 Generalized proportional fairness

The range of operating points that stretches from maximizing the sum of spectral ef-
ficiencies down to maximizing exclusively the minimum thereof, crossing through the
proportional-fair point, can be bridged through the utility function [741]

U−1∑
u=0

gζ

(
Ru

B

)
(7.8)

with

gζ(z) =

⎧⎨
⎩

loge z ζ = 1

z1−ζ

1−ζ ζ �= 1
(7.9)
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where ζ is a single parameter that regulates the fairness. For ζ = 0, the maximization
of (7.8) yields the sum spectral efficiency while for ζ = 1 it gives the proportional-fair
solution, and for ζ → ∞ it leads to maximizing the minimum of the U spectral efficiencies.

The ability to tune the degree of fairness with a single parameter, rather than a set of U
weights, makes this generalized proportional fairness an attractive alternative to determine
the operating point in a multiuser channel.

7.6 User selection and resource allocation

As mentioned, the pervading approach to channel sharing is, given a population of Utot

users, to have subsets of U users operate in an MU-MIMO fashion, with orthogonal multi-
plexing of the Utot/U subsets. This gives rise to two intertwined challenges:

User selection, meaning the decision of which users constitute each subset, i.e., which
U users are served concurrently.
Resource allocation, meaning the policy that determines the subset of U users to which
each time–frequency resource is assigned.

Altogether, this amounts to a tortuous problem that could warrant an entire book. We touch
on it tangentially, in this chapter and in subsequent ones, only to the extent necessary for
our coverage of MIMO.

The starting point for resource allocation is the decision of how to partition the available
time and frequency resources. In older systems, this was rather rudimentary: time slots and
fixed frequency bands. With OFDM, much finer granularity is possible in the frequency
domain. Typically, a basic resource block is defined containing a specified number of re-
source elements, i.e., a certain number of OFDM symbols in time and a certain number of
subcarriers.

Example 7.9

In both LTE and NR, a basic resource block spans 7 OFDM symbols and 12 subcarriers,
for a total of 84 resource elements. Whereas, in LTE, this always corresponds to a time–
frequency tile of 0.5 ms by 180 kHz, in NR the aspect ratio of this tile depends on the
subcarrier spacing: every time the subcarrier spacing is doubled, the tile contracts in time
while stretching in frequency.

By concatenating resource blocks, a variety of different time and frequency shares (with
the ensuing variety of bit rates) can be made available.

The second issue, once the resources have been partitioned into blocks on the time–
frequency plane, is to allocate those signaling resources to users. In older systems with
telephony as the reigning application, this was done statically, even simply round-robin;
most importantly, the allocations were blind to channel conditions. In modern systems,
conversely, the allocations are determined dynamically on the basis of the users’ demands
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Discussion 7.2 Multiuser diversity

Besides accounting for large-scale channel gains, resource allocation schemes oppor-
tunistically exploit small-scale fading swings, attempting to constantly reallocate each
resource block to users enjoying favorable channel conditions thereon. This brings about
a phenomenon commonly referred to as multiuser diversity, and asymptotic laws have
been put forth that quantify the sustained improvements that arise as Utot → ∞ if the
users having the most favorable fading are assigned to each resource block [742–745].
As is often the case, the asymptotic expressions are simple and insightful [746, 747].
However, and letting alone the latency and the ceiling posed by the cardinality of the
available constellations, one must be cautious about these asymptotic laws for two rea-
sons.

The multiuser diversity gains are significant for small numbers of users, quickly di-
minishing thereafter. In this range of interest, the gains cannot be quantified through
asymptotic expressions.
For Utot → ∞, modeling artifacts take hold if an unbounded support is assumed for
the user fading distributions. Beyond a point, the upper tails of such distributions are
no longer representative of actual fading and results that rely on operating ever fur-
ther along such tails are suspect. Put differently, fading distributions such as Rayleigh,
Rice, or Nakagami are excellent models—except precisely for their upper tail, which
is unbounded. Because the transmit power is finite, the support of actual fading distri-
butions is necessarily bounded and thus multiuser diversity inevitably saturates. This
is explored in Problems 7.14–7.16.

Altogether, resource allocation schemes are effective at avoiding downfades, but one
must be prudent not to assume excessively favorable upfades on the allocated resources
[748]. Values moderately above the local-average is what a fine resource allocation en-
gine may be able to achieve.

and their channel conditions over each resource block. The relative latency tolerance and
bursty nature of many non-telephony applications grant a high degree of flexibility in the
sense that, to a substantial extent, each resource can be allocated to the U users that stand
to make the most efficient utilization thereof. However, as reasoned in reference to the
operating points on a multiuser capacity boundary, the push toward the most efficient uti-
lization of resources—allocating each block to the U users reaping the highest sum spectral
efficiency—needs to be balanced with the need for some degree of fairness and, also, with
the latency constraints of the overlaying applications. Altogether, the resource allocation
exercise is extraordinarily complicated, and the algorithms addressing it represent one of
the proprietary elements in the wireless ecosystem; not being subject to standardization,
resource allocation engines enable vendor differentiation.
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7.6.1 The proportional-fair algorithm

The idea behind this algorithm is to allocate each resource block to the U users that can
collectively achieve the highest spectral efficiency thereon relative to their own running
average [749] (see also [34, section 5.4.3]).

To begin with, suppose that the resource blocks are defined only in time, spanning the
entire bandwidth B, and that they are of equal duration. Further, let such time slots be
indexed by n. The resource allocation engine then reduces to a time scheduler. Denoting by
Cu[n] the spectral efficiency that could be achieved—with whatever transmission scheme
is in place—by the uth user on the nth block, such a block should be assigned to the U

users that can achieve the highest weighted sum spectral efficiency,
∑U−1

u=0 quCu[n], with
weights given by

qu =
1

C̄u[n]
, (7.10)

where C̄u[n] is the average spectral efficiency achieved by the uth user hitherto. The more
deficit that a user has accrued in spectral efficiency, the higher that user’s weight at block n.
Then, once the nth resource block has been allocated, the running average for all users is
updated via

C̄u[n + 1] =

(
1− 1

ε

)
C̄u[n] +

1

ε
Cu[n] u = 0, . . . , Utot − 1, (7.11)

with Cu[n] = 0 for those users that were not allocated to the nth block.
With this algorithm, the Utot users dynamically share the channel in such a way that,

on average, each one occupies a fraction U/Utot of the time–frequency resources. The
parameter ε ≥ 1 determines the memory of the running average and, with that, the number
of consecutive blocks that a user can go without service. At most, a user with poor channel
conditions will have to wait (roughly) ε/U blocks to be served, and thus (approximate)
latency guarantees can be established. A small value for ε ensures shorter service latencies,
sacrificing sum spectral efficiency; for ε = 1 in particular, the algorithm reverts to simple
round-robin, regardless of channel conditions. Conversely, a larger ε gives the scheduler
permission to wait longer for each user to experience relatively strong channel conditions
and, for ε → ∞, the performance converges to proportional fairness [750]. As per (7.7),
any other scheduling algorithm that increased the spectral efficiency of a specific user by
some percentage would cause an aggregate reduction across all other users at least as large
as that percentage.

Rather than on the basis of the spectral efficiencies that could have been achieved in the
absence of errors, the running averages that underlie the proportional-fair algorithm can
alternatively be based on actually achieved throughput, so as to discard from the decision
metric those previous transmissions that were unsuccessful [751, 752].

For applications with strict requirements, the algorithm can also be modified to require
that a minimum average spectral efficiency be granted to every user [753].

If the resource blocks are of unequal size, then (7.11) should be refined by applying to
Cu[n] an appropriate coefficient. Moreover, if the resource blocks are defined as tiles on the



429 7.7 Low-SNR regime

time–frequency plane, then in effect there are multiple parallel channels (in the frequency
domain) over which to schedule [748, 754].

7.7 Low-SNR regime

In the low-SNR regime, the spectral efficiency regions of frequency-division and of MU-
MIMO become progressively similar because other-user interference takes a back seat rel-
ative to the noise. Recalling (4.25),

Cu(SNRu) = Ċu(0) SNRu +O(SNR2
u), (7.12)

which is a valid expansion for the single-user capacity with CSIR; the value of Ċu(0)

depends on the numbers of antennas, the presence or absence of CSIT, and possibly some
channel features. Let us now see what transpires in multiuser setups.

Multiple-access channel
In the case of the MAC, from (7.2), the FDMA spectral efficiency for any user with Fu > 0

behaves as

Ru

B
= Fu

[
Ċu(0)

SNRu

Fu
+O(SNR2

u)

]
(7.13)

= Ċu(0) SNRu +O(SNR2
u) u = 0, . . . , U − 1 (7.14)

and thus, regardless of the choice of F0, . . . ,FU−1, all users having strictly positive Fu

simultaneously enjoy (to first order) their single-user capacity. Put differently, each user
can enjoy (to first order) its own single-user capacity irrespective of what the other users
are doing. We note that, if any of the Fu is very small, for that user the range of validity of
the first-order expansion squeezes down.

With MU-MIMO, there is other-user interference, but its effect vanishes as the SNRs
drop and the behavior also conforms to (7.14). This can be verified (refer to Problems 8.10
and 8.23) by expanding specific MU-MIMO MAC spectral efficiency expressions derived
in Chapter 8. Altogether, the FDMA and the MU-MIMO regions become similar in the
sense that their ratio goes to unity. This implies a first-order equivalence between FDMA
and MU-MIMO and therefore, by virtue of (4.30), equality in terms of Eb

N0 min
.

Example 7.10

Replot the two-dimensional spectral efficiency regions of Fig. 7.1, which corresponded to
intermediate SNRs, but this time for SNR0 � 1 and SNR1 � 1.

Solution

See Fig. 7.3. Notice how the FDMA and MU-SISO capacity boundaries become progres-



430 Multiuser communication prelude

R0/B

R1/B

TDMA

FDMA

C0

C1

C1

NOMA / MU-SISO

�Fig. 7.3 Spectral efficiency regions for U = 2 when SNR0 � 1 and SNR1 � 1.

sively rectangular, indicating that the spectral efficiency of one user is not influenced by
that of the other.

In contrast, there is no such equivalence between TDMA and MU-MIMO because of
the more inefficient utilization of power in the former, a matter that is of the essence in the
low-SNR regime. Indeed, from (7.1),

Ru

B
= Tu Ċu(0) SNRu +O(SNR2

u) u = 0, . . . , U − 1 (7.15)

no longer conforming to (7.14).
The equivalence between the FDMA and the MU-MIMO regions need not extend to

the second-order behavior and thus the low-SNR slopes do not necessarily coincide [755].
And, just as the corresponding spectral efficiencies, the low-SNR slopes achievable by
the U users form a slope region. For U = 2 and Nt = Nr = 1, this slope region is
characterized in [755].

Broadcast channel
In the BC, we saw that time-division leads to (7.1) while frequency-division leads to (7.4).
The respective spectral efficiency regions coincide, for arbitrary SNRs, only in the special
case that the power allocation in the frequency-division approach is proportional to the
bandwidth allocation. Let us now see how these regions behave at the low SNR. From
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(7.12), in the time-division case we have that

Ru

B
= Tu Ċu(0) SNRu +O(SNR2

u) u = 0, . . . , U − 1 (7.16)

while, in the frequency-division case,

Ru

B
= Fu Ċu(0)

Eu

Es
SNRu

Fu
+O(SNR2

u) (7.17)

=
Eu

Es
Ċu(0) SNRu +O(SNR2

u) u = 0, . . . , U − 1. (7.18)

By identifying Tu in (7.16) with Eu

Es
in (7.18), the corresponding expressions for Ru/B

become identical to first order; the spectral efficiency region achievable with all possible
time-divisions in the former coincides with the region achievable with all possible power
allocations in the latter, in the sense that their ratios go to unity. Even more importantly for
our purposes, the ratio of either of these regions to the region achievable with MU-MIMO
also goes to unity as the SNRs shrink. Again, this can be verified (refer to Problem 8.34)
by expanding specific BC spectral efficiency expressions derived in Chapter 8.

7.8 Summary and outlook

The main lessons from this chapter are summarized in the box that accompanies this sec-
tion.

As a result of the first-order optimality of frequency-division (and, in the case of the
BC, also time-division) at low SNR, this regime is downplayed throughout the MU-MIMO
analysis in the chapters that follow. The values of Eb

N0 min
for MU-MIMO can be directly ob-

tained by borrowing the corresponding single-user expressions and the signaling strategies
that yield those values are the applicable forms of beamforming or statistical beamforming,
with other-user interference disregarded. The slope regions, in turn, could be characterized
by extending the derivations of [755].

The above point is reinforced even further in subsequent chapters, once we apply linear
transceivers, since then orthogonal single-user transmissions may not only be first-order
equivalent to MU-MIMO, but, depending on the channel and the type of transceiver, pos-
sibly superior. This phenomenon is exemplified in Chapter 9.

In our MU-MIMO analysis, therefore, the spotlight is on the high-SNR regime, which
is where the advantages over orthogonal SU-MIMO become more pronounced and crisply
evident. In particular, MU-MIMO increases the number of spatial dimensions and, in the
high-SNR regime, this has a direct reflection in the number of spatial DOF. Moreover,
the understanding that emerges from a high-SNR analysis—whose range of validity is
determined by the lowest among the U SNRs—is decidedly illuminating.

A further consequence of focusing the MU-MIMO analysis on the high-SNR regime
is that the importance of optimizing the power allocations weakens. As in SU-MIMO,
spreading the transmit power uniformly over the signaling dimensions available to each
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Take-away points

1. The two most relevant multiuser setups are the MAC and the BC, respectively fea-
turing U transmitters for a single receiver and a single transmitter for U receivers.

2. Rather than a scalar R/B ∈ [0, C], the spectral efficiency in a multiuser setup is a
U -dimensional region and the capacity is the boundary of this region. Each point
on the capacity boundary corresponds to a U -tuple of user spectral efficiencies.

3. The U users can share the channel via time- and/or frequency-division. This or-
thogonal partition is straightforward, yet in general not optimum.

4. Alternatively, the U transmissions can take place concurrently. This approach,
termed NOMA or directly MU-MIMO, entails no a-priori loss of optimality.

5. Given a set of nonnegative weights q0, . . . , qU−1 establishing relative user pri-
orities, a boundary point can be determined that maximizes the corresponding
weighted sum spectral efficiency. If all weights are equal, then the sum spectral
efficiency is obtained. Other points of interest include the one where all spectral
efficiencies are equal, and the one where the minimum thereof is largest.

6. Particularly relevant in terms of the tradeoff between aggregate performance and
fairness is the proportional-fair point, where the product (or sum of the logarithms)
of the user spectral efficiencies is maximized.

7. Given a population of Utot users, it is customary to orthogonally multiplex subsets
of U users, with each such subset operating in MU-MIMO mode. The selection and
allocation of user subsets to orthogonal resource blocks is done dynamically on the
basis of the users’ channel conditions thereon. In the time domain specifically, the
proportional-fair scheduling algorithm can be applied.

8. At low SNR, the spectral efficiency regions of orthogonal frequency-division and
of MU-MIMO are equivalent to first order. For the BC, this equivalence extends
also to time-division.

user is often satisfactory and frequently optimal in this regime [756]. And, when it comes
to allocating the power of the BC transmitter among users, spreading such power in direct
proportion to the weights q0 . . . , qU−1 turns out to be the generalization of the uniform
power allocation whenever the objective is not the sum of the spectral efficiencies, but
rather some weighted sum. Despite this weakened importance of the power allocation, for
the sake of completeness, and because it sometimes contributes to the overall understand-
ing, we entertain the general optimization of the transmit powers in each of the multiuser
settings considered in the sequel. Also entertained, and crucial for the BC at all SNRs, are
those precoding aspects related to the spatial orientation of the signals, i.e, the steering
matrices.

The proportional-fair scheduling algorithm—suitably extended to time–frequency re-
source partitions and tweaked to accommodate strict latency and bit rate constraints for
some applications—is a satisfactory approach to determine which U users should be al-
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located to each resource block, with U = 1 for SU-MIMO and U > 1 for MU-MIMO.
These U users are then the ones maximizing the weighted sum spectral efficiency with
user weights q0, . . . , qU−1 given by the reciprocals of the respective average spectral effi-
ciencies. This delivers the arguably most relevant point on the capacity boundary. At the
same time, obtaining these specific weights requires dynamic simulations instantiating the
large-scale as well as the time–frequency small-scale channel coefficients and actually im-
plementing the scheduling algorithm. For the purpose of our exposition of MIMO, it is
preferable to resort to operating points corresponding to some fixed weights and thus, in
the chapters that follow, the MU-MIMO coverage touches on several of the scalar metrics
presented earlier but prioritizes the sum, especially when it comes to the choice of exam-
ples and illustrations. This preference is further reinforced by the fact that in the MAC, as
is to be seen, often the choice of weights alters the spectral efficiencies achieved by the
users but not their sum, which remains constant.

Problems

7.1 Consider an unfaded single-antenna MAC with U = 2 and with SNR0 = 15 dB and
SNR1 = 10 dB. Plot the TDMA/FDMA spectral efficiency region.

7.2 Consider an unfaded single-antenna BC with U = 2 and with SNR0 = 15 dB and
SNR1 = 10 dB.
(a) Plot the time-division spectral efficiency region.
(b) Plot the frequency-division spectral efficiency region.
Hint: Remember that SNRu is the SNR that the uth user would experience signaling
over the entire bandwidth B.

7.3 Consider an unfaded single-antenna MAC. Interpret the aggregation of the U single-
antenna users as a U -antenna transmitter with precoder F = I , such that no power
sharing or collaboration can take place between those users.
(a) Provide an expression for the capacity boundary.
(b) For U = 2 and SNR0 = 15 dB, SNR1 = 10 dB, draw the capacity boundary.

7.4 Prove that, in a single-antenna MAC, reducing the power from any of the users can
only shrink the capacity boundary.

7.5 For an unfaded single-antenna BC operated in a time-division fashion, with U = 2,
establish the boundary pairs (R0/B,R1/B) for the following operating points.
(a) Equal spectral efficiency for both users.
(b) Maximization of the minimum spectral efficiency.

7.6 Repeat Problem 7.5 for frequency-division.

7.7 Let a base station transmit independent QPSK signals to two users via superposition,
with 90% of the power allocated to user 0 and the remaining 10% to user 1.
(a) Plot the composite transmit constellation.
(b) Is Gray mapping feasible?
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7.8 For an unfaded MU-SISO MAC with U = 2, give the boundary pairs (R0/B,R1/B)

for the following operating points.
(a) Equal spectral efficiency for both users.
(b) Maximization of the minimum spectral efficiency.

7.9 Consider an unfaded single-antenna BC operated in a time-division fashion and let
U = 3 with SNR0 = 10 dB, SNR1 = 7 dB, and SNR2 = 3 dB. Compute the triplet
(R0/B,R1/B,R2/B) whose weighted sum is maximized for the following weight
combinations.
(a) q0 = 0.3, q1 = 0.3 and q2 = 0.4.
(b) q0 = 0.2, q1 = 0.3 and q2 = 0.5.
(c) q0 = 0.3, q1 = 0.4 and q2 = 0.3.

7.10 Consider an unfaded MU-SISO MAC and let U = 2 with SNR0 = SNR1 = 10 dB.
Compute the pair (R0/B,R1/B) whose weighted sum is maximized for q0 = 0.8

and q1 = 0.2.

7.11 Consider an unfaded single-antenna BC operated in a time-division fashion with
SNR0 = 10 dB and SNR1 = 0 dB. Compute the boundary pair (R0/B,R1/B)

corresponding to the proportional-fair point.

7.12 Prove that, in an unfaded single-antenna MAC or BC operated in a time-division
fashion, the point corresponding to T0 = T1 = 0.5 satisfies (7.7) and it is thus the
proportional-fair point.
Note: Without fading, simple round-robin transmission suffices. With fading and a
proportional-fair scheduler, the generalization of this result is that every user is al-
located the same share of time, but, rather than round-robin, the user selected at
each slot is the one whose fading is the most favorable relative to its own average.

7.13 Consider an unfaded MU-SISO MAC. Let U = 2 with SNR0 = 10 dB. What is
the range of SNR1 such that operating at the equal-spectral-efficiency point entails a
sacrifice in sum spectral efficiency?

7.14 Consider a population of Utot users with SNRu = 10 dB for u = 0, . . . , Utot−1 and
independent Rayleigh block fading per user. The channel is shared via time-division.
Suppose that a scheduler selects, at each time slot, the single user having the highest
SNR.
(a) Plot the ergodic spectral efficiency attained over the channel as a function of

Utot ∈ [1, 1000], with Utot in log-scale.
(b) On the same chart, repeat part (a) with the fading at each user clipped to have a

PAPR of 6 dB.
What do you observe?

7.15 Consider a population of Utot users with each SNRu drawn independently and uni-
formly between 0 and 20 dB. Each user is also subject to unclipped Rayleigh block
fading. The channel is shared via time-division. Suppose that a scheduler selects, at
each time slot, the single user having the highest SNR.
(a) Plot the ergodic spectral efficiency, further averaged over the distributions of

SNRu for u = 0, . . . , Utot − 1, as a function of Utot ∈ [1, 1000] in log-scale.
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(b) On the same chart, repeat part (a) with the fading at each user clipped to have a
PAPR of 6 dB.

What do you observe?
7.16 Consider a population of Utot users with SNRu = 10 dB for u = 0, . . . , Utot−1 and

independent Rayleigh block fading per user. The channel is shared via time-division.
Suppose that a scheduler selects, at each time slot, the single user having the highest
SNR.
(a) Plot the ergodic spectral efficiency attained over the channel as a function of

Utot ∈ [1, 1000], with Utot in log-scale.
(b) On the same chart, repeat part (a) with the constellation cardinality restricted to

16-QAM.
What do you observe?
Hint: For (b), it may be useful to precompute the 16-QAM mutual information func-
tion into a look-up table from which values for arbitrary SNRs can be interpolated.

7.17 Contemplate a single-antenna BC with single-user transmission (U = 1) via time-
division among Utot users. All time slots are of equal duration. Let Utot = 1000 and
SNRu = 5 dB for u = 0, . . . , Utot − 1, with the users further subject to unclipped
Rayleigh fading.
(a) Suppose that a scheduler selects, at each slot, the user having the highest SNR.

Plot the CDF of the spectral efficiency over the channel. Further compute the
ergodic spectral efficiency and the average latency (in number of slots) between
successive transmissions to the same user.

(b) Repeat part (a) with a proportional-fair scheduler for ε = 10, ε = 100, and
ε = 1000 slots.

(c) Repeat part (a) for a scheduler that allocates each slot to the user with the lowest
spectral efficiency running average.

(d) Repeat part (a) for a round-robin scheduler.
7.18 Contemplate a single-antenna BC with single-user transmission (U = 1) via time-

division among Utot users. All time slots are of equal duration. Let SNRu = 10 dB
for u = 0, . . . , Utot − 1, with the users further subject to unclipped Rayleigh fading.
(a) Suppose that a scheduler selects, at each slot, the user having the highest SNR.

Plot the ergodic spectral efficiency as a function of Utot ∈ [1, 1000] in log-scale.
(b) Repeat part (a) with a proportional-fair scheduler for ε = 10, ε = 100, and

ε = 1000 slots.
(c) Repeat part (a) for a scheduler that allocates each slot to the user with the lowest

spectral efficiency running average.
(d) Repeat part (a) for a round-robin scheduler.



8 MU-MIMO with optimum
transceivers

Every great movement must experience three stages: ridicule, discussion, adoption.

John Stuart Mill

8.1 Introduction

As argued in the previous chapter, MU-MIMO is hardly better than frequency-division SU-
MIMO in the low-SNR regime. At high SNR, conversely, MU-MIMO can be decidedly
superior. Given the lesser complexity of orthogonal channel sharing, this invites applying
SU-MIMO and MU-MIMO for low- and high-SNR users, respectively. Good system de-
signs should thus feature both SU-MIMO (U = 1) and MU-MIMO (U > 1), and indeed
they do. At the same time, as seen in this chapter, it is ineffective to have U exceed a certain
value that depends on the numbers of antennas; thus, even MU-MIMO needs to be com-
bined with time- and frequency-division because of the need to accommodate a potentially
large population of Utot users.

The information-theoretic principles of SU-MIMO were covered in detail in the second
part of the book, and their applicability in concert with scheduled time- and frequency-
division is immediate. The present part is centered on MU-MIMO, with SU-MIMO as an
occasional baseline and with the low-SNR regime de-emphasized in favor of high-SNR
conditions.

This specific chapter initiates the treatment of MU-MIMO, with the objective of estab-
lishing the MAC and BC capacity boundaries as well as transmitter and receiver architec-
tures that can attain them. Optimality is the driving force, rather than complexity. Perhaps
counterintuitively, the MAC is notoriously less intricate than the BC, and thus we begin by
analyzing the former and then, taking advantage of a duality relationship between the two,
move on to the latter. Within both the MAC and BC portions of this chapter, the organiza-
tion of the discussion mirrors that of the SU-MIMO exposition, with the availability of CSI
as a guiding axis. And, on account of the observations made in Section 4.7, we prioritize
the ergodic setting.

The chapter is organized as follows. Sections 8.2 through 8.6 address the MAC, with
progressively diminishing degrees of CSI, while Sections 8.8 through 8.10 cover the BC,
again with diminishing levels of CSI. Between these two blocks, Section 8.7 plays the
pivotal role of presenting the duality that connects the MAC and the BC, facilitating the
analysis of the latter based on the former. Finally, Section 8.11 wraps up the chapter.

436
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Discussion 8.1 Fading distribution in multiuser channels

In a multiuser setup, the resource allocation policy modifies the fading distribution.
Specifically, in assigning users to selected time–frequency resource blocks, the resource
allocation procedure tends to render the fading distribution more benign. Adverse sit-
uations such as pronounced downfades tend to be avoided. This multiuser diversity is
disregarded if the fading distribution is taken to be a standard one, e.g., Rayleigh, Rice,
or their MIMO generalizations.

The impact of multiuser diversity is major on outage metrics. The impact is much
more moderate on ergodic quantities, where expectations—such as the ones computed
in this and subsequent chapters—over standard fading distributions should be construed
as conservative assessments of the achievable performance. If multiuser diversity were
taken into account, then, besides the fading distributions themselves, the actual perfor-
mance would go on to depend on Utot and on the resource allocation policy.

8.2 The multiple-access channel

The MAC, illustrated in Fig. 8.1, consists of U transmitters and a single receiver; it ab-
stracts a reverse link with the users and the base station playing the roles of transmitters
and receiver, respectively. The capacity of the MAC was first established, for SISO links,
in the 1970s [757, 758]. In what follows, we proceed to formulate it directly for MIMO.

With Nu antennas at the uth transmitter and Nr antennas at the common receiver, the
single-letter MAC transmit–receive relationship under frequency-flat fading is

y =

U−1∑
u=0

√
GuHuxu + v, (8.1)

where Hu is the Nr×Nu channel matrix linking the uth user with the receiver, normalized
as usual such that E

[‖Hu‖2F
]
= NuNr, while Gu is the corresponding large-scale channel

gain and

xu =

√
Eu

Nu
Fusu. (8.2)

The precoder Fu, and thus the covariance Rxu
= Eu

Nu
FuF

∗
u , are subject to the type of

power constraint (per-codeword, per-symbol, or per-antenna) that applies to user u, whose
energy per symbol is Eu ≤ Es. The signal vectors s0, . . . , sU−1 have IID entries whereas
the noise is v ∼ NC(0, N0I). Recalling, from the previous chapter, the definition

SNRu =
GuEs

N0
(8.3)

we have that the SNR experienced by user u is determined by the product Eu

Es
SNRu, where

SNRu is a local-average inherent to the channel (pathloss, shadow fading, bandwidth,
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�Fig. 8.1 MAC with U Nt-antenna transmitters and one Nr-antenna receiver.

power budget) whereas Eu

Es
∈ [0, 1] is a power control coefficient that can be adjusted

on the basis of SNRu, or of other factors.
As a consequence of the focus on the high-SNR regime, in our multiuser analysis we

let—unless otherwise stated—the number of transmit signal streams be as large as possible,
not contemplating beamforming, but rather full spatial multiplexing.

It is sometimes useful to interpret the MAC in Fig. 8.1 as an SU-MIMO channel where
the U transmitters are dislodged pieces—unable to jointly precode or pool their transmit
powers—of a larger aggregate transmitter. This forces the precoder and spatial covariance
of this aggregate transmitter to have a block-diagonal structure, but otherwise the isomor-
phism does hold. To reflect this interpretation, we can rewrite (8.1) as

y =
[√

G0H0

√
G1H1 · · ·

√
GU−1HU−1

]
︸ ︷︷ ︸

C

⎡
⎢⎣

x0

...

xU−1

⎤
⎥⎦

︸ ︷︷ ︸
x

+v (8.4)

= Cx+ v, (8.5)

which is the familiar SU-MIMO relationship, only with a more structured Nr ×
∑

u Nu
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channel matrix C and with

Rx =

⎡
⎢⎢⎢⎢⎣

E0

N0
F0F

∗
0 0 · · · 0

0 E1

N1
F1F

∗
1 0 · · ·

...
. . .

...

0 · · · 0 EU−1

NU−1
FU−1F

∗
U−1

⎤
⎥⎥⎥⎥⎦ (8.6)

having more restrictive constraints. In the special case that all users feature a single antenna
(an MU-SIMO MAC), we have that Rx = diag(E0, . . . , EU−1).

Alternatively to (8.4), we can write

y =

[√
G0E0

N0
H0 · · ·

√
GU−1EU−1

NU−1
HU−1

]⎡
⎢⎢⎢⎣

F0 0 · · · 0

0 F1 0 · · ·
...

. . .
...

0 · · · 0 FU−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
F

s+ v,

(8.7)

where F is an aggregate precoder and s =
[
sT
0 · · · sT

U−1

]T
. In an MU-SIMO MAC, F = I

and s =
[
s0 · · · sU−1

]T
.

For any aggregate precoder complying with the above structure, expressions derived for
SU-MIMO can be directly imported to compute the sum spectral efficiency. Thus, even
before we formally begin our analysis of the MU-MIMO MAC we can already make a
powerful observation: except for further restrictions on the precoding, an MU-MIMO MAC
looks like an SU-MIMO channel participated by all U users at once. And, because the SU-
MIMO capacity is monotonic in the transmit power, we can infer that users should transmit
at full power, meaning that Eu

Es
= 1 for u = 0, . . . , U − 1 such that (8.3) is directly the

local-average SNR of user u. (The optimality of full-power transmission holds as long as
the receiver is optimum, but not necessarily once we consider linear receivers in the next
chapter.)

Also note that, in the foregoing SU-MIMO interpretation of the MAC, the transmis-
sions from the various users have been assumed to be symbol-synchronous. This is not
unreasonable in the context of OFDM; coarse synchronization is ensured by advancing
or delaying each user’s signals and any remaining time offset is automatically handled as
part of the corresponding delay spread. Readers interested in how to explicitly incorporate
asynchronicities into the MAC analysis are referred to [759, 760].

To avoid an explosion in the number of parameters that would hardly add further intu-
ition, the exposition in the sequel lets Nu = Nt for u = 0, . . . , U − 1, with qualifying
comments wherever appropriate.

Provided there is CSIR, complex Gaussian codebooks continue to maximize the mutual
information, in this case between the U transmitters and the receiver. The argument used
to justify this optimality in Chapter 5 applies verbatim: for a given power, the differen-
tial entropy of y is maximized when its distribution (conditioned on H0, . . . ,HU−1) is
complex Gaussian and, in the face of Gaussian noise, this occurs when x0, . . . ,xU−1 are
themselves complex Gaussian. Then, the only quantities that remain free in the derivation
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of the MU-MIMO MAC capacity are the user precoders, depending on the availability of
CSIT and the type of power constraint; as seen in the sequel though, the optimization of
these precoders is considerably more involved than in SU-MIMO.

8.3 Multiple-access channel with CSIR and CSIT

With CSIT, a per-codeword power constraint would open the door to time-domain power
control. The optimum power control in a MAC shares some of the features of time-domain
waterfilling, namely that users are allocated more power in favorable fading conditions and
less in poor fading conditions, but with the differentiating aspect that multiple users com-
pete for the channel; thus, the transmit powers become in general coupled and the optimum
policy allows for only a limited number of simultaneous transmissions, depending on Nr.
Rather than elaborate on this further, we henceforth focus directly on the more practically
relevant per-symbol power constraint, meaning ‖Fu‖2F = Nt for u = 0, . . . , U−1. Readers
interested in power control policies for the MAC under a per-codeword power constraint
are referred to [761–765]

8.3.1 Quasi-static setting

In this setting, as usual, H0, . . . ,HU−1 are fixed over the codeword span. It is instructive
to begin with a basic setup where U = 2 and Nt = 1.

Example 8.1

Determine the capacity boundary for a MAC with U = 2 and with H0 and H1 being
Nr × 1 vectors.

Solution

The spectral efficiency of each user cannot exceed the respective individual capacity and
thus R0/B ≤ C0 and R1/B ≤ C1 with

C0(SNR0,H0) = log2
(
1 + SNR0 ‖H0‖2

)
(8.8)

C1(SNR1,H1) = log2
(
1 + SNR1 ‖H1‖2

)
. (8.9)

Invoking the analogy with an SU-MIMO setup whose channel is

C =
[√

G0H0

√
G1H1

]
(8.10)

and where the aggregate precoder is the identity matrix, we see that R0/B + R1/B ≤ C,
with the sum-capacity being (see Example 1.13)

C(SNR0, SNR1,H0,H1) = log2 det

(
I +

Es

N0
CC∗

)
(8.11)

= log2 det
(
I + SNR0H0H

∗
0 + SNR1H1H

∗
1

)
. (8.12)
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�Fig. 8.2 MAC with U = 2 and Nt = 1. Dashed, conditions R0/B = C0, R1/B = C1, and

R0/B +R1/B = C. Solid, MAC capacity boundary. Also shown with dotted lines are

the contours of constant weighted sum spectral efficiency for q0 < q1, q0 = q1, and

q0 > q1.

The conditions R0/B = C0, R1/B = C1 and R0/B + R1/B = C map, on a two-
dimensional representation, to lines that intersect at two corner points and define the capac-
ity boundary depicted in Fig. 8.2. In combination with the axes, which can be interpreted
as incorporating the trivial conditions R0/B ≥ 0 and R1/B ≥ 0, this boundary encloses
a pentagonal region of spectral efficiency pairs (R0/B,R1/B).

A compact way of describing the capacity boundary in Example 8.1 is

∑
u∈U

Ru

B
≤ log2 det

(
I +

∑
u∈U

SNRuHuH
∗
u

)
(8.13)

applied with U = {0}, U = {1}, and U = {0, 1}. This description integrates the three
conditions defining the segments that form the capacity boundary in Fig. 8.2. Extend-
ing this description to an arbitrary number of users, the achievable spectral efficiency
U -tuples satisfy (8.13) with the summations expanded to encompass all possible subsets
U ⊆ {0, . . . , U − 1}. This gives 2U − 1 conditions, which for U = 3 correspond to planes
instead of segments, and for U > 3 to hyperplanes. Intersecting at U ! corner points, these
hyperplanes define a capacity boundary that generalizes the two-dimensional pentagon in
Fig. 8.2. For U = 3, this region acquires the form of a polyhedron and, beyond that, of a
U -dimensional polytope.

Note that, since every user transmits a signal stream, dimensional overloading takes
place if U > Nr.
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As the final step in the characterization of the MAC capacity boundary with CSIR and
CSIT in a quasi-static setting, we need to allow for Nt > 1, which brings into the formu-
lation the precoders F0, . . . ,FU−1. For Nt > 1 and any admissible F0, . . . ,FU−1, (8.13)
straightforwardly generalizes to

∑
u∈U

Ru

B
≤ log2 det

(
I +

∑
u∈U

SNRu

Nt
HuFuF

∗
uH

∗
u

)
U ⊆ {0, . . . , U − 1}. (8.14)

The largest
∑U−1

u=0 Ru/B is given by the right-hand side of (8.14) with U = {0, . . . , U−1}
and thus the sum spectral efficiency is maximized at every point on the main hyperplane
involving simultaneous transmission by all users; in Fig. 8.2, this means every point on the
segment connecting corners 0 and 1. Interestingly then, the imposition of fairness through
weights comes at no cost in terms of sum spectral efficiency, a point that was anticipated
in Section 7.7 to highlight the role of such sum as a chief scalar metric. This also indicates
that the system should preferably operate somewhere on that main hyperplane, as doing
otherwise would entail an unnecessary sacrifice in the spectral efficiency of at least one of
the users. (Note that the invariance of the sum spectral efficiency to the fairness imposed
through weights may not hold if it were mandated that R0/B = . . . = RU−1/B, as that
could push the system outside the referred hyperplane. This is the subject of Problem 7.13.)

The weighted sum,
∑U−1

u=0 quRu/B, is maximized by the spectral efficiency U -tuple
at a corner point of that main hyperplane, depending on q0, . . . , qU−1. This is evident in
Fig. 8.2, where corner 0 is optimum for q0 > q1 while corner 1 is optimum for q0 < q1.

Example 8.2

Let U = 2 with SNR0 = 10 dB and SNR1 = 3 dB, and with

H0 =

[
1 + 0.5 j 2

0.3− j 0.7 + 1.2 j

]
H1 =

[
0.4 j 2 + 0.3 j

1.1 + j 1.2

]
. (8.15)

Further let the precoders be F0 = F1 = I . For q0 = 1/4 and q1 = 3/4, compute the pair
(R0/B,R1/B) that maximizes q0R0/B + q1R1/B.

Solution

The SU-MIMO capacities (in b/s/Hz) are

C0 = log2 det

(
I +

SNR0

2
H0H

∗
0

)
= 8.5 (8.16)

C1 = log2 det

(
I +

SNR1

2
H1H

∗
1

)
= 4, (8.17)

whereas (8.14) gives R0/B +R1/B ≤ 9 b/s/Hz. The pair (R0/B,R1/B) that maximizes
q0R0/B + q1R1/B is found at corner 1 under the labeling in Fig. 8.2, where R1/B =

C1 = 4 b/s/Hz and R0/B = 9− C1 = 5 b/s/Hz.

Let us now release the precoders from being fixed. The MU-MIMO MAC capacity is, by
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R0/B

R1/B

∑
u Ru/B = C =

log2 det
(
I +

∑1
u=0

SNRu

Nt
HuF uF

∗
uH

∗
u

)

Weighted sum spectral
efficiency contours

�Fig. 8.3 MAC capacity boundary with U = 2. With thin lines, boundaries of the pentagonal

regions achievable with some specific precoders. With a thicker line, boundary of the

union of all possible such pentagonal regions. Also shown with dotted lines are the

weighted sum spectral efficiency contours for some q0 and q1.

definition, the boundary of the union of the regions spawned by all admissible precoders,
i.e., the boundary of

⋃
‖Fu‖2

F=Nt

[∑
u∈U

Ru

B
≤ log2 det

(
I+

∑
u∈U

SNRu

Nt
HuFuF

∗
uH

∗
u

)
U ⊆ {0, . . . , U−1}

]
(8.18)

which is exemplified, for U = 2, in Fig. 8.3. The precoders that correspond to the points
on the boundary cannot in general be expressed explicitly, but they can be obtained numer-
ically as explained later in the section.

Discrete constellations

With signals drawn from equiprobable M -ary constellations, rather than the complex Gaus-
sian distribution, (8.14) naturally becomes

∑
u∈U

Ru

B
≤ I(sU ;y |CU) U ⊆ {0, . . . , U−1} (8.19)

where sU is the |U|Ns×1 vector obtained by stacking the signal vectors of all users whose
indices are within the set U . To express I(sU ;y |CU), we can again resort to the SU-MIMO
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analogy and rewrite (5.104) into

I(sU ;y|CU) =
−1

M |U|Ns

M |U|Ns−1∑
m′=0

E

⎡
⎢⎣log2M

|U|Ns−1∑
m=0

exp

⎛
⎜⎝−

∥∥∥√Es

Nt
CUF U(sU

m′ − sU
m) + v

∥∥∥2

N0

⎞
⎟⎠
⎤
⎥⎦

+ |U|Ns log2 M −Nr log2 e, (8.20)

where CU is the Nr × |U|Nt matrix obtained by concatenating the channel matrices from
all the users whose indices are within U , each such matrix scaled by the corresponding
factor

√
Gu, i.e., CU is the appropriate submatrix of

C =
[√

G0H0

√
G1H1 · · · √

GU−1HU−1

]
(8.21)

as introduced in (8.4), whereas F U is a block-diagonal matrix containing the precoders for
all those same users, i.e., the appropriate submatrix of the aggregate precoder in (8.7). We
note that, in (8.20), the expectation is only over the noise v.

8.3.2 Optimum receiver structure

As seen for SU-MIMO, information theory not only serves to quantify the limits of reliable
communication, but it can further offer design guidelines. Specifically, an LMMSE-SIC re-
ceiver can achieve capacity, and it can do so regardless of the order in which the codewords
are decoded. In an MU-MIMO MAC, the optimality of LMMSE-SIC not only holds, but it
acquires further significance. (Recall from Chapter 5 that, in fact, the information-theoretic
optimality of the LMMSE-SIC receiver was first observed in the context of the MAC [591]
and only in due course recognized for SU-MIMO.)

In MU-MIMO, the codewords are transmitted by distinct users and while, as in SU-
MIMO, the sum-capacity is invariant to their decoding order, the individual spectral ef-
ficiencies of the U users are not. Hence, different boundary points can be attained with
different decoding orders.

Example 8.3

Consider again Example 8.1 and Fig. 8.2. Which pairs (R0/B,R1/B) can be achieved by
an LMMSE-SIC receiver?

Solution

Referring back to Section 5.7, if user 0 is decoded with interference from user 1,

R0

B
= log2

(
1 +G0Es H

∗
0

(
N0I +G1EsH1H

∗
1

)−1
H0

)
(8.22)

= log2

(
1 + SNR0H

∗
0

(
I + SNR1H1H

∗
1

)−1
H0

)
(8.23)

while subsequently, with
√
G0H0x0 canceled from the received signal, R1/B = C1. With

a modicum of algebra, the sum of (8.23) and C1 can be seen to equal the sum-capacity in
(8.12) and thus we are operating at corner 1 of the capacity boundary under the labeling
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in Fig. 8.2. Conversely, if the decoding order were reversed, we would operate at corner
0. And, by time-dividing both decoding orders, we could operate at any point on the sum-
capacity segment connecting the corners.

Since corner 0 befits q0 > q1 while corner 1 befits q0 < q1, the highest weight user
should be decoded last so it does not experience interference.

When U > 2, the capacity boundary has U ! corners and each can be achieved with
a distinct decoding order. To operate at the correct corner for some q0, . . . , qU−1, i.e.,
to maximize the weighted sum spectral efficiency, users should be decoded in order of
increasing weights. The sum-capacity, though, is achieved regardless of the order because
it is the same at every corner point, and in fact all over the main hyperplane [766, 767].

The LMMSE-SIC optimality and significance also apply with Nt > 1, as the next ex-
ample illustrates.

Example 8.4

Reconsider Example 8.3, only with Nt > 1. Which spectral efficiency pairs can be achieved
by an LMMSE-SIC receiver?

Solution

If the signal of user 0 is decoded with interference from user 1, then

R0

B
= log2 det

(
I +

SNR0

Nt
H0F0F

∗
0 H

∗
0

(
I +

SNR1

Nt
H1F1F

∗
1 H

∗
1

)−1
)

(8.24)

while subsequently, with
√
G0H0x0 canceled from the received signal,

R1

B
= C1(SNR1,H1) = log2 det

(
I +

SNR1

Nt
H1F1F

∗
1 H

∗
1

)
. (8.25)

The sum of (8.24) and (8.25) gives the sum-capacity and thus this pair (R0/B,R1/B)

continues to lie at corner 1 under the labeling in Fig. 8.2. The reverse decoding order
would give the pair at corner 0.

The above is irrespective of whether each user transmits one or multiple codewords.
In the former case, joint decoding of the signals transmitted by the Nt user antennas is
required whereas, in the latter, an inner LMMSE-SIC process could be applied instead
(with the decoding order therein immaterial).

Example 8.4 stretches rather effortlessly to U > 2. With the users indexed and decoded
in order of increasing weight, user u suffers interference from users u+ 1, . . . , U − 1 but
not from users 0, . . . , u− 1 and thus

Ru

B
= log2 det

⎛
⎝I +

SNRu

Nt
HuFuF

∗
uH

∗
u

(
I +

U−1∑
u=u+1

SNRu

Nt
HuFuF

∗
uH

∗
u

)−1
⎞
⎠

u = 0, . . . , U − 1, (8.26)
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which, denoting the inverted matrix by A and decomposing the leading identity matrix as
I = AA−1, can be rewritten as

Ru

B
= log2 det

(
I +

U−1∑
u=u

SNRu

Nt
HuFuF

∗
uH

∗
u

)
(8.27)

− log2 det

(
I +

U−1∑
u=u+1

SNRu

Nt
HuFuF

∗
uH

∗
u

)
u = 0, . . . , U − 1.

Such (R0/B, . . . , RU−1/B) corresponds to one of the U ! corners of the region spawned
by F0, . . . ,FU−1, precisely the corner that befits q0 ≤ · · · ≤ qU−1. All that remains is to
optimize the precoders, a task on which we embark shortly.

As mentioned, the sum-capacity is achieved at any of the corners, or at any point on
the hyperplane that connects those corners, and therefore it is not affected by the decoding
order. The decoding order affects the spectral efficiencies of the individual users, but not
their sum.

We hasten to emphasize that LMMSE-SIC reception is not the only way to operate at any
given corner, and that a joint decoder can achieve the same spectral efficiency U -tuples, but
an LMMSE-SIC receiver does facilitate deriving and interpreting (8.27). In fact, caution
must be exercised when actually employing an LMMSE-SIC receiver in an MU-MIMO
MAC because of the potentially large power differences between users, given their different
locations. (This is in contrast with SU-MIMO, where all the codewords emanate from the
same location.) Imperfections in the CSIR, even if small, are amplified by these power
differences and can give rise to highly restrictive levels of interference. This is sometimes
referred to as the near–far effect.

Example 8.5

Let U = 2 and SNR0|dB − SNR1|dB = 20 dB. Suppose that user 0 is decoded first,
with its signal subsequently reconstructed and cancelled from the observation, y. If the
CSIR imperfection led to a 1% error in that reconstruction and cancelation, user 1 would
encounter a residual interference as strong as its own signal. How small must the error be
to ensure that the residual interference is at least 10 dB below?

Solution

An additional 10 dB means that the error cannot exceed 0.1%.

The near–far effect can be mitigated by power control—which makes additional sense
when one considers discrete constellations, rather than Gaussian signals, as then it is point-
less to transmit at power levels beyond those needed to support the available constellation
cardinalities.
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8.3.3 Precoder optimization

Recall that the users are indexed such that q0 ≤ · · · ≤ qU−1. From (8.27), the weighted
sum spectral efficiency equals

U−1∑
u=0

qu
Ru

B
=

U−1∑
u=0

qu

[
log2 det

(
I +

U−1∑
u=u

SNRu

Nt
HuFuF

∗
uH

∗
u

)

− log2 det

(
I +

U−1∑
u=u+1

SNRu

Nt
HuFuF

∗
uH

∗
u

)]
. (8.28)

Although it may not be immediately obvious whether the optimization of (8.28) over the
precoders is convex, because we have the difference of two concave functions, which itself
need not be concave, the concavity of (8.28) can be made evident by regrouping it into

U−1∑
u=0

qu
Ru

B
= q0 log2 det

(
I +

U−1∑
u=0

SNRu

Nt
HuFuF

∗
uH

∗
u

)

+

U−1∑
u=1

(qu − qu−1) log2 det

(
I +

U−1∑
u=u

SNRu

Nt
HuFuF

∗
uH

∗
u

)
, (8.29)

where we now have a sum of positive terms, each concave in a subset of the covariance ma-
trices F0F

∗
0 , . . . ,FU−1F

∗
U−1. Moreover, the feasible F0F

∗
0 , . . . ,FU−1F

∗
U−1 take values

on a convex set. These covariances, and thus the precoders yielding the weighted sum-
capacity for any q0, . . . , qU−1, can be found with general-purpose convex optimization
tools (see Appendix G). For a tailored algorithm, readers are referred to [34, section 3.5.1].

Referring back to the two-user example in Fig. 8.3, the optimization of the precoders
is tantamount to identifying the specific pentagon whose appropriate corner (the one de-
termined by q0 ≤ q1) is at the boundary wherever the contours of constant weighted sum
spectral efficiency touch it for the given q0 and q1.

For the sum-capacity in particular, the optimum precoders can alternatively be found
through the elegant iterative waterfilling algorithm [768], which exploits the structure of
the problem. This algorithm rests on the intuitive idea that the optimum precoder for the
uth user must solve the corresponding SU-MIMO optimization (see Section 5.3) with the
received signals from all other users acting as interference, i.e., with a Gaussian noise-plus-
interference vector having covariance

Σu = N0I +
∑
u �=u

GuEs

Nt
HuFuF

∗
uH

∗
u , (8.30)

and this must hold for all users simultaneously. The SU-MIMO solution for the uth user is
then to diagonalize Σ

−1/2
u Hu via SVD and allocate its power via waterfilling thereupon.

The fact that this needs to be true for all users invites an iterative procedure whereby
users take turns at optimizing their respective precoders, each updated while the others
are held fixed. Striking a compromise between the benefits for the channel of interest and
the impairment to the rest, each precoder evolves and the algorithm rapidly converges.
Multiple solutions mapping to the same sum-capacity may exist for F0, . . . ,FU−1 and
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the algorithm always converges to one of those, depending on the initialization. Iterative
waterfilling is attractive when the goal is to seek the sum-capacity, without regard for how
that capacity breaks down among users.

Discrete constellations

Consider now discrete constellations. From (8.19)–(8.20), the problem of finding the pre-
coders F0, . . . ,FU−1 that maximize the region of achievable spectral efficiencies—or,
equivalently, the problem of maximizing the weighted sum spectral efficiency for some
arbitrary weights—is no longer a concave function of those precoders. Thus, as in SU-
MIMO with discrete constellations, the conditions that can be derived through the vector
I-MMSE relationship are necessary but not sufficient for optimality; they are satisfied by
any local maximum, minimum, and saddle point. An iterative algorithm designed to find
maxima has been proposed [769], but global optimality cannot be guaranteed.

A relevant observation made in [769, 770] is that, when the constellations are fixed,
the performance with the capacity-achieving precoders (designed for complex Gaussian
signals) can be substantially worse than with the constellation-optimized precoders. More
surprisingly, the performance with the capacity-achieving precoders can be substantially
worse than without precoding. This is a sobering reminder that the results derived for
Gaussian signaling are representative up to some SNR that depends on the constellation
richness. Beyond that SNR, there is little point in going through the optimization (e.g.,
iterative waterfilling) necessary to compute the capacity-achieving precoders.

Example 8.6

Let U = 2 with Nt = Nr = 2 and with SNR0 = SNR1 = 10 dB. Further, let

H0 =

[
1.39 0.11 j

−0.11 j 0.21

]
H1 =

[
1.22 0

0 0.7

]
. (8.31)

Compute the achievable spectral efficiency regions with QPSK signaling, both with the
capacity-achieving precoders and without precoding.

Solution

The regions, obtained by evaluating (8.19) and (8.20), on the one hand with the precoders
obtained from a convex optimization of the weighted sum-capacity and on the other hand
with F0 = F1 = I , are shown in Fig. 8.4.

As the mutual information of QPSK signals departs markedly from its complex Gaus-
sian counterpart at this SNR, the capacity-achieving precoders are actually detrimental. In
particular, the combined strength of noise and other-user interference drives the capacity-
achieving precoders to effect beamforming: each user transmits a single signal stream, and
this is ill-advised when the signal is QPSK because it limits R0/B and R1/B to 2 b/s/Hz
each. Simple unprecoded signaling from all users ends up yielding a substantially larger
region that exhibits the familiar pentagonal shape associated with fixed precoders. With
precoders tailored to QPSK, an even larger region would be attained (see [769, figure 7]).
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8.3.4 High-SNR regime

Spatial DOF
Recall that, for SNR → ∞, the waterfilling power allocation in SU-MIMO becomes uni-
form. Rewriting the expansion in (5.29) as a function of Es/N0 rather than SNR, the ensu-
ing SU-MIMO capacity behaves as

C = S∞ log2
Es

N0
+O(1), (8.32)

where G has been lumped into the O(1) term and where the number of spatial DOF is
the customary S∞ = min(Nt, Nr). In a multiuser channel where SU-MIMO is applied in
conjunction with FDMA or TDMA, the number of DOF does not increase further.

Enter MU-MIMO. The aggregate channel of the U users is described by the Nr × UNt

matrix defined in (8.4) and (8.21) and, with the usual caveat of full-rank channel matrices,
the sum-capacity behaves as

C = min(UNt, Nr) log2
Es

N0
+O(1), (8.33)

where the advantage of expanding with respect to Es/N0 becomes clear, as a single term is
obtained despite the plurality of SNRs. It can be verified, from the rank of the argument of
the determinant in (8.14), that (8.33) is indeed the expansion thereof with G0, . . . , GU−1

and F0, . . . ,FU−1 relegated to the O(1) term. This expansion illuminates the key advan-
tage of MU-MIMO over SU-MIMO: the number of spatial DOF is S∞ = min(UNt, Nr)
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rather than S∞ = min(Nt, Nr), registering the increase in the number of spatial dimen-
sions available for communication.

The implications of having S∞ = min(UNt, Nr) are immediate. Rather than being
limited by the number of antennas at the user end, often a small number, by having multi-
ple concurrent users the limitation in DOF can be shifted to the base station, where large
numbers of antennas might be feasible.

Example 8.7

Consider two-antenna users transmitting to a four-antenna base station. With SU-MIMO in
conjunction with FDMA or TDMA, the number of spatial DOF is S∞ = 2. Furthermore,
additional base station antennas would not increase the number of DOF.

However, by allowing U = 2 users to communicate simultaneously via MU-MIMO,
the number of DOF increases to S∞ = 4. With U > 2, moreover, additional base station
antennas would increase the number of DOF even further.

The increase in spatial DOF that it may bring about crisply justifies the space-division
multiple access (SDMA) interpretation that is sometimes made of MU-MIMO, i.e., the
interpretation of MU-MIMO as a way to organize channel access in the space domain, in
contrast with (or, more appropriately, in addition to) TDMA and FDMA. Much in the same
way that TDMA and FDMA orthogonalize the transmissions in their respective domains,
in an orthodox conception of SDMA the transmissions would be as orthogonal as possible
in the space domain [771]. If the angle spreads are narrow enough to render the antennas
strongly correlated, and there is sufficient angular separation among users, the SDMA re-
ceiver could form U beams pointing to the respective users and achieve a certain degree
of isolation [772]. This orthodox conception is actually transcended in MU-MIMO, where
the users are jointly processed and, by virtue of fading and CSIR, can be discriminated
even if not angularly separated [773].

Note that, in terms of spatial DOF, there is no point in making U larger than the value
that makes UNt = Nr. If UNt > Nr, then we have dimensional overloading and there
are not enough spatial dimensions at the receiver to simultaneously accommodate Nt dis-
entangled signals from each of U users. Suppose, though, that we do have UNt > Nr

and we insist on each user transmitting Nt signal streams. At whatever corner point of
the capacity boundary is optimal for the given q0, . . . , qU−1, the user decoded last com-
municates in interference-free conditions thereby enjoying min(Nt, Nr) spatial DOF. The
user decoded next-to-last communicates in the face of an Nt-dimensional interferer whose
power does not vanish with growing Es/N0; as learned in earlier chapters, linearly re-
moving such interference requires Nt receiver dimensions and thus that next-to-last user
enjoys min(Nt, Nr − Nt) spatial DOF, and so on. Finally, the user decoded first enjoys
min(Nt, Nr− (U −1)Nt). The foregoing DOF should be taken as zero whenever negative
and hence, for UNt > Nr, some of the early-decoded users are bound to have zero DOF.
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Example 8.8

Consider a three-user MAC with Nt = 2 and Nr = 4. At the corner point that maps to
LMMSE-SIC processing in some order, the user decoded first enjoys zero DOF while the
other two users enjoy two DOF each. The sum-capacity scales with S∞ = 4 b/s/Hz/(3 dB).

If UNt > Nr, to have all users enjoy some spatial DOF it is necessary that Ns < Nt

signal streams be transmitted (e.g., beamforming with Ns = 1) such that the total number
of streams does not exceed S∞.

Power offset
The legitimate excitement elicited by the prospects of an increased number of spatial DOF
thanks to MU-MIMO must be slightly tempered, as argued for SU-MIMO in Section 4.2,
by the fact that the number of DOF is only a partially informative metric. Conscious of this,
we proceed to refine the coarse expansion in (8.33). Precisely, we characterize the power
offset for UNt ≤ Nr. Under this condition, each user can find Nt usable dimensions and
therefore the signals from the U users become progressively disentangled as the SNRs
grow large. It can be shown [774, lemma 1] that, if we denote by H⊥,u the projection of
Hu onto the null space of Hu+1, . . . ,HU−1, then

lim
Es/N0→∞

⎡
⎣H∗

⊥,uH⊥,u −H∗
u

(
I +

U−1∑
u=u+1

SNRu

Nt
HuFuF

∗
uH

∗
u

)−1

Hu

⎤
⎦ = 0 (8.34)

and thus, for the purpose of what takes place for Es/N0 → ∞, we can replace (8.26) by

Ru

B
= log2 det

(
I +

SNRu

Nt
H⊥,uFuF

∗
uH

∗
⊥,u

)
u = 0, . . . , U − 1. (8.35)

This implies that, in the high-SNR regime, user u transmits on the null space of the chan-
nels of users u+ 1, . . . , U − 1; user u could thus experience interference only from users
0, . . . , u − 1, but these have already been decoded and removed in an MMSE-SIC proce-
dure by the time the signals of user u come up for decoding. Asymptotically released from
all interference, user u then undergoes the SU-MIMO channel embodied by H⊥,u and im-
paired only by Gaussian noise, as reflected by (8.35); the ensuing waterfilling is known
to converge to a uniform power allocation over all dimensions with nonzero gain. Since
the condition UNt ≤ Nr ensures that the projections H⊥,0, . . . ,H⊥,U−1 are full-rank, it
follows that Fu → I for u = 0, . . . , U − 1.

Plugging Fu = I into (8.35) and expanding, we obtain

Ru

B
= log2 det

(
SNRu

Nt
H∗

⊥,uH⊥,u

)
+O

(
1

SNRu

)
(8.36)

= Nt log2 SNRu −Nt log2 Nt + log2 det
(
H∗

⊥,uH⊥,u

)
+O

(
1

SNRu

)
. (8.37)
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Discussion 8.2 Collaborative upper bound for the MU-MIMO MAC

Imagine the U users in a MU-MIMO MAC truly functioning as a single user, pooling
their powers and jointly precoding. Since cost-free collaboration can only be benefi-
cial, the ensuing single-user capacity upper bounds the sum-capacity of the actual MU-
MIMO MAC. While not generally tight (refer to Problem 8.15), this collaborative upper
bound does becomes tight for UNt ≤ Nr and once all users have entered the high-
SNR regime. Indeed, the collaborative user’s precoder would satisfy F → I with uni-
form power allocation across all UNt antennas while, in the actual MU-MIMO MAC,
Fu → I for u = 0, . . . , U − 1. Remarkably, even if admittedly only in the asymptote
of all SNRs, the MU-MIMO capacity is exactly as if the U users could fully collaborate
and pool their powers, even though such collaboration is not taking place.

Each user enjoys Nt spatial DOF and, adapting the SU-MIMO definition in Section 4.2,
the uth user exhibits a power offset

L∞,u(Hu, . . . ,HU−1) = lim
SNRu→∞

(
log2 SNRu − Ru/B

Nt

)
(8.38)

= log2 Nt − 1

Nt
log2 det

(
H∗

⊥,uH⊥,u

)
, (8.39)

where we have emphasized that, in a quasi-static setting, the power offset is a function
of the channel realizations; moreover, it is not only a function of Hu but, through the
projection on their null space, also of Hu+1, . . . ,HU−1. Utilizing the power offset, we
can write the high-SNR expansion of Ru/B as

Ru

B
= Nt

(
log2 SNRu − L∞,u(Hu, . . . ,HU−1)

)
+O

(
1

SNRu

)
. (8.40)

For given channel realizations, the power offset of each user depends on the decoding order
and it is through that order that the weights q0, . . . , qU−1 are accounted for. What does not
depend on the decoding order is the sum-capacity, which always satisfies

C =

U−1∑
u=0

Nt

(
log2 SNRu − L∞,u(Hu, . . . ,HU−1)

)
+O

(
1

Es/N0

)
(8.41)

= Nt

(
U−1∑
u=0

log2 SNRu − UL∞(Hu, . . . ,HU−1)

)
+O

(
1

Es/N0

)
(8.42)

= Nt

U−1∑
u=0

(
log2 SNRu − L∞(Hu, . . . ,HU−1)

)
+O

(
1

Es/N0

)
, (8.43)

and which represents the sought refinement of (8.33) for UNt ≤ Nr. The quantity

L∞(H0, . . . ,HU−1) =
1

U

U−1∑
u=0

L∞,u(Hu, . . . ,HU−1) (8.44)
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= log2 Nt − 1

UNt

U−1∑
u=0

log2 det
(
H∗

⊥,uH⊥,u

)
(8.45)

naturally emerges as the sum-capacity version of the single-user power offset. The ex-
pression in (8.45) has the inconvenience of involving the matrices H⊥,0, . . . ,H⊥,U−1. An
analytically more convenient form can be found by plugging Fu = I into the right-hand
side of (8.14) and expand the ensuing sum-capacity expression

C = log2 det

(
I +

U−1∑
u=0

SNRu

Nt
HuH

∗
u

)
(8.46)

= log2 det

(
I +

Es/N0

Nt

U−1∑
u=0

HuGuH
∗
u

)
(8.47)

= log2 det

⎛
⎜⎝I +

Es

NtN0
H diag

(
G0, . . . , G0︸ ︷︷ ︸

Nt

, . . . , GU−1, . . . , GU−1︸ ︷︷ ︸
Nt

)
H∗

⎞
⎟⎠ (8.48)

= log2 det

⎛
⎜⎝I +

Es

NtN0
diag

(
G0, . . . , G0︸ ︷︷ ︸

Nt

, . . . , GU−1, . . . , GU−1︸ ︷︷ ︸
Nt

)
H∗H

⎞
⎟⎠ , (8.49)

where we have introduced the Nr ×UNt matrix H =
[
H0 · · · HU−1

]
. The expansion of

(8.49) gives

C = log2 det

⎛
⎜⎝ Es

NtN0
diag

(
G0, . . . , G0︸ ︷︷ ︸

Nt

, . . . , GU−1, . . . , GU−1︸ ︷︷ ︸
Nt

)
H∗H

⎞
⎟⎠

+O
(

1

Es/N0

)
(8.50)

= UNt log2
Es

NtN0
+ log2

(
U−1∏
u=0

GNt
u

)
+ log2 det

(
H∗H

)
+O

(
1

Es/N0

)
(8.51)

= UNt log2
Es

N0
+

U−1∑
u=0

Nt log2 Gu − UNt log2 Nt + log2 det
(
H∗H

)
+O

(
1

Es/N0

)
(8.52)

=

U−1∑
u=0

Nt log2 SNRu − UNt log2 Nt + log2 det(H
∗H) +O

(
1

Es/N0

)
(8.53)

= Nt

U−1∑
u=0

(
log2 SNRu − L∞(H0, . . . ,HU−1)

)
+O

(
1

Es/N0

)
, (8.54)

from which we can identify for the sum-capacity power offset the alternative form

L∞(H0, . . . ,HU−1) = log2 Nt − 1

UNt
log2 det

(
H∗H

)
, (8.55)
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which depends only on H , far simpler to manipulate than H⊥,0, . . . ,H⊥,U−1. We return
to this power offset (which, recall, is for UNt ≤ Nr) in the ergodic analysis that follows.

8.3.5 Ergodic setting

Expecting (8.14) over the fading distribution, the boundary of the ergodic spectral effi-
ciency region achievable with CSIT-based precoders F0, . . . ,FU−1 is characterized by

∑
u∈U

Ru

B
= E

[
log2 det

(
I +

∑
u∈U

SNRu

Nt
HuFuF

∗
uH

∗
u

)]
U ⊆ {0, . . . , U − 1},

(8.56)
where, though not indicated explicitly, the precoders (subject to the applicable power con-
straints) are a function of H0, . . . ,HU−1 and thus the expectation is over them as well.

Let us now focus on one of the U ! corners of the region enclosed by (8.56). Invoking
an LMMSE-SIC receiver and assuming as usual that the users are indexed and decoded in
order of increasing weight, the expectation of (8.27) over H0, . . . ,HU−1 gives

Ru

B
= E

[
log2 det

(
I +

U−1∑
u=u

SNRu

Nt
HuFuF

∗
uH

∗
u

)
(8.57)

− log2 det

(
I +

U−1∑
u=u+1

SNRu

Nt
HuFuF

∗
uH

∗
u

)]
u = 0, . . . , U − 1,

where, again, the precoders are functions of H0, . . . ,HU−1 and hence the expectation is
over them as well. The ergodic weighted sum-capacity for some q0, . . . , qU−1 is obtained
by expecting

∑
u quRu/B over H0, . . . ,HU−1 with the precoders optimized at each re-

alization.

Example 8.9

Consider a three-user MAC with Nt = 2 and Nr = 6. The respective local-average channel
strengths are referenced to a common SNR such that

SNR0|dB = SNR|dB (8.58)

SNR1|dB = SNR|dB + 5dB (8.59)

SNR2|dB = SNR|dB + 8dB, (8.60)

with H0, H1 and H2 having IID Rayleigh-faded entries. Obtain the ergodic sum-capacity
and compare it with its unprecoded counterpart. Further compare it with the SU-MIMO
ergodic capacity for each of the users.

Solution

Shown in Fig. 8.5 are the ergodic sum-capacity, obtained through iterative waterfilling
by all users on each channel realization, and the ergodic sum spectral efficiency with
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precoding and the individual SU-MIMO ergodic capacities of the three users. In all

cases, the channels are IID Rayleigh-faded.

no precoding. Also shown are the individual ergodic capacities of each user under SU-
MIMO; with FDMA and/or TDMA, SU-MIMO would perform somewhere within the
range spanned by these three curves.

The potency of MU-MIMO is on full display: whereas the number of spatial DOF in
SU-MIMO is curbed at S∞ = 2 b/s/Hz/(3 dB), in MU-MIMO it is S∞ = 6 b/s/Hz/(3 dB),
revealed progressively as each user enters the high-SNR regime. Furthermore, the MU-
MIMO sum-capacity is closely approached without precoding, and thus without the com-
putationally intensive iterative waterfilling.

Further building on the previous example, we can illustrate the impact of operating on
different corner points on the spectral efficiency region. And for that, given its effective-
ness, unprecoded signaling suffices.

Example 8.10

Reconsider the setup of Example 8.9, with MU-MIMO and with Fu = I for u = 0, 1, 2.
Obtain the ergodic user spectral efficiencies for the two corner points corresponding to
decoding the users in (i) the order of their indices, and in (ii) the reverse order.

Solution

See Fig. 8.6. Since users should be decoded in order of increasing weight, the user spectral
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�Fig. 8.6 MU-MIMO MAC ergodic user spectral efficiencies with U = 3, Nt = 2, and Nr = 6, as
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efficiency triplet on the left-hand side graph is fitting if q0 < q1 < q2 whereas the right-
hand side triplet matches q0 > q1 > q2. In both cases, the sum of the three curves equals
the unprecoded sum spectral efficiency in Fig. 8.5.

High-SNR regime

For UNt ≤ Nr, an expansion of the sum-capacity is given in (8.54) and (8.55) and, taking
its expectation with respect to the fading distribution, we obtain

C(SNR0, . . . , SNRU−1) = Nt

U−1∑
u=0

(
log2 SNRu − L∞

)
+O

(
1

Es/N0

)
(8.61)

such that S∞ = UNt whereas

L∞ = log2 Nt − 1

UNt
E
[
log2 det(H

∗H)
]

(8.62)

is the sum-capacity power offset (in 3-dB units). For U = 1, this expression reverts to the
SU-MIMO power offset in (5.45).

Example 8.11 (Power offset for an IID Rayleigh-faded MU-MIMO MAC with
UNt ≤ Nr)

For channel matrices H0, . . . ,HU−1 having IID Rayleigh-faded entries, the aggregate
matrix H =

[
H0 · · · HU−1

]
is an Nr × UNt matrix with IID complex Gaussian entries

and the argument of the log det(·) function in (8.62) is a Wishart matrix. Invoking (C.28)
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in Appendix C.1.9 as well as (E.9) in Appendix E,

L∞ = log2 Nt +

⎛
⎝γEM −

Nr−UNt∑
q=1

1

q
− Nr

UNt

Nr∑
q=Nr−UNt+1

1

q
+ 1

⎞
⎠ log2 e, (8.63)

which, for UNt = Nr, becomes

L∞ = log2 Nr +

(
γEM −

Nr∑
q=2

1

q

)
log2 e. (8.64)

Example 8.12

Consider U = 3 users, each equipped with Nt = 2 antennas, transmitting to a base sta-
tion having Nr = 6 antennas. Under IID Rayleigh fading, compute L∞ and utilize it to
approximate the ergodic sum-capacity at high SNR.

Solution

Applying (8.64), we obtain L∞ = −0.26 (in 3-dB units). Along with (8.61), this gives

C(SNR0, SNR1, SNR2) ≈ 2

2∑
u=0

(
log2 SNRu + 0.26

)
. (8.65)

In terms of individual user spectral efficiencies, the breakdown of DOF discussed earlier
for given channel realizations holds: the user decoded first enjoys min(Nt, Nr−(U−1)Nt)

DOF, the user decoded second enjoys min(Nt, Nr − (U − 2)Nt) DOF, and so on till the
user decoded last, which enjoys min(Nt, Nr) DOF. As long as UNt ≤ Nr, each user
enjoys Nt spatial DOF.

8.4 Multiple-access channel with no CSIT

Let us now suppose that each transmitter is not privy to the realization of its channel matrix,
but only to its distribution. No time-domain power control is then possible and thus the per-
symbol power constraint we consider effectively subsumes also a per-codeword constraint.

8.4.1 Quasi-static setting

As we know, the ruling notions in a flat-faded quasi-static setting without CSIT are those
of outage probability and outage capacity. Extending these notions to the MAC,

pout(SNR0, . . . , SNRU−1, R0/B, . . . , RU−1/B)

= P

[
log2 det

(
I +

∑
u∈U

SNRu

Nt
HuFuF

∗
uH

∗
u

)
<

∑
u∈U

Ru

B

]
(8.66)

for any U ⊆ {0, . . . , U−1}
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with the outage capacity region at outage ε being the largest spectral efficiency U -tuple
(R0/B, . . . , RU−1/B) for which pout ≤ ε at some certain SNRs.

As in SU-MIMO, the term capacity is often employed in reference to this spectral effi-
ciency U -tuple even when the precoders are not optimized for the given ε but simply fixed,
typically at Fu = I for u = 0, . . . , U − 1. Even for such unprecoded transmission, the
distribution of the mutual informations within (8.66) is not easily characterized analyti-
cally. This again motivates the interest in assessing the tradeoff between spectral efficiency
and outage through the respective proxies, multiplexing gain and diversity, and a MAC
extension of the DMT can be formulated between the two [775].

8.4.2 Ergodic setting

The ergodic spectral efficiency region without CSIT differs from (8.56) only in that the
precoders F0, . . . ,FU−1 are not allowed to depend on H0, . . . ,HU−1, but only on their
distribution. The capacity is the boundary of [776]

⋃
‖Fu‖2

F=Nt

{ ∑
u∈U

Ru

B
≤ E

[
log2 det

(
I +

∑
u∈U

SNRu

Nt
HuFuF

∗
uH

∗
u

)]

U ⊆ {0, . . . , U−1}
}

(8.67)

and the transmit precoders that achieve a given point on the boundary can be obtained again
through a convex optimization.

Example 8.13 (Precoders for a MU-MIMO MAC with IID fading and no CSIT)

Although less evident than in SU-MIMO, it is still the case [777, 778] that, with IID fading
at all users, the capacity-achieving precoders are F �

u = I for u = 0, . . . , U − 1.

Example 8.14 (Capacity of a MU-MIMO MAC with IID fading and no CSIT)

With F �
u = I for u = 0, . . . , U − 1, the ergodic capacity is the boundary of

∑
u∈U

Ru

B
≤ E

[
log2 det

(
I +

∑
u∈U

SNRu

Nt
HuH

∗
u

)]
U ⊆ {0, . . . , U−1}, (8.68)

with the sum-capacity corresponding to U = {0, . . . , U − 1}. For a plot of the ergodic
sum-capacity with no CSIT, the reader is referred to Fig. 8.5; the unprecoded transmission
curve therein equals the sum-capacity in the absence of CSIT. As far as the user spectral
efficiencies are concerned, letting q0 ≤ · · · ≤ qU−1 and plugging F �

u = I into (8.57),

Ru

B
= E

[
log2 det

(
I +

U−1∑
u=u

SNRu

Nt
HuH

∗
u

)
− log2 det

(
I +

U−1∑
u=u+1

SNRu

Nt
HuH

∗
u

)]

u = 0, . . . , U−1. (8.69)
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From the weighted sum-capacity,
∑U−1

qu=0 quRu/B, swept over all weight combinations,
we could reconstruct the boundary in (8.68).

For a number of more general channel structures of interest, precoder characterizations
that hold regardless of the user weights and SNRs can be provided.

Example 8.15 (Precoders for a transmit-correlated MU-MIMO MAC with no
CSIT)

Let the uth user have a transmit correlation matrix Ru = UuΛuU
∗
u while Rr = I . Then,

F �
u = UuP

1/2
u , meaning that the uth user’s steering matrix should equal Uu. The diagonal

power allocation matrix Pu remains to be optimized.

Example 8.16 (Precoders for a transmit-uncorrelated MU-MIMO MAC with no
CSIT)

If the transmit correlation matrix of user u is Ru = I , then F �
u = I regardless of the

transmit correlations at the other users and of the receive correlation matrix [777, 778].
As a corollary, if there are no transmit or receive correlations, unprecoded signaling by all
users is optimum, as claimed earlier.

Gratifyingly, the foregoing precoder characterizations are consistent with the SU-MIMO
intuition of having the uth user diagonalize E[H∗

uHu] whenever there is a modicum of
structure in the correlations. This consistency carries over to uncorrelated Rice channels.

In terms of the power allocation matrices, P0, . . . ,PU−1, an iterative algorithm for their
optimization is provided in [512]. And it is known that, as in SU-MIMO, if the transmit cor-
relations are strong enough—in relation to the user’s SNR—then statistical beamforming
becomes the optimum strategy [778]. Interestingly, statistical beamforming is always opti-
mum (regardless of the SNRs and correlations) for U → ∞ with fixed Nt and Nr [778]; by
minimizing the rank of each individual transmission, the system can better accommodate
a growing number of users within the fixed receiver dimensionality.

The impact of correlation in an MU-MIMO MAC is no different than in SU-MIMO:
receive correlations are detrimental, as they squeeze the dimensionality spanned by the re-
ceiver, whereas transmit correlations are beneficial at low SNR and may be either beneficial
or detrimental at high SNR depending on the balances of U , Nt, and Nr.

If one does not want to bother optimizing the precoders, pragmatically adopting Fu = I

for u = 0, . . . , U − 1 regardless of the distribution of the channel matrices, the spectral
efficiency expressions in Example 8.14 apply and all correlations become damaging.

Discrete constellations

With discrete constellations in lieu of Gaussian signals, the ergodic spectral efficiency re-
gion for some fixed precoders is defined by (8.19) and (8.20) with the expectation in the
latter further involving the fading coefficients within CU . The precoder optimization con-
tinues to be nonconvex [779].
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High-SNR regime

Without CSIT, the number of spatial DOF continues to be S∞ = min(UNt, Nr). As far
as L∞ goes, the expressions derived with CSIT and UNt ≤ Nr also apply here because
they correspond to a uniform power allocation, which does not depend on the channel
realization, meaning that the CSIT is actually immaterial to those expressions. Hence, L∞
for UNt ≤ Nr is given by (8.62) all the same.

Large-dimensional regime

A large-dimensional MU-MIMO MAC framework is presented in [780, 781] and, as in
SU-MIMO, it enables extending the reach of the finite-dimensional analysis. In particular,
an iterative algorithm to compute the optimum transmit power allocations is put forth and,
advantageously with respect to the finite-dimensional algorithm given in [512], no expecta-
tions over the fading are required because the corresponding randomness has disappeared
asymptotically. This power allocation algorithm is a welcome addition to the MU-MIMO
MAC understanding, with the necessary qualification that MU-MIMO is of interest mostly
at medium and high SNRs, when the precoder and power optimizations are less vital. This
is illustrated in [781, figures 2 and 3], which (as observed under CSIT in Fig. 8.5) shows
limited improvements over unprecoded signaling when the SNRs are high.

Additional MU-MIMO large-dimensional results can be found, e.g., in [782, 783].

8.5 Multiple-access channel with no CSI

As we learned earlier in the book, in SU-MIMO the assumption of CSIR is sound provided
that the fading coherence in symbols, Nc, satisfies Nt � Nc. Resorting to its interpretation
as a dislodged SU-MIMO setup, in the MU-MIMO MAC the same rationale is bound to
apply with this condition generalized to UNt � Nc. This condition is met in many MU-
MIMO scenarios, making the results obtained thus far in the chapter very relevant. As Nt

and/or U grow, care must be exercised and appropriate corrections must be introduced; this
becomes acutely important once the realm of massive MIMO is entered.

Much of what is laid down in Section 5.5 concerning SU-MIMO without CSI extends
to the MU-MIMO MAC. In particular, the translation of SU-MIMO to MU-MIMO readily
indicates that the number of streams that maximizes S∞ is Ns = min

(
UNt, Nr, �Nc/2�

)
.

With massive MIMO deferred to Chapter 10, it holds that min(UNt, Nr) < �Nc/2�;
therefore, Ns = min(UNt, Nr) and

S∞ =

(
1− min(UNt, Nr)

Nc

)
min(UNt, Nr) (8.70)

meaning that, with respect to the DOF obtained under CSIR, there is a penalty factor of

1− min(UNt, Nr)

Nc
. (8.71)
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As the next example confirms, even under adverse combinations of the various parameters
this penalty is very minor.

Example 8.17

Let UNt = Nr = 8, with the users of a vehicular nature. What percentage of the eight
spatial DOF stipulated by a CSIR analysis is actually achievable?

Solution

As calculated in Example 3.26, we can take vehicular users to correspond to a coherence of
Nc = 1000. Applying (8.71), we see that 99.2% of the DOF stipulated by a CSIR analysis
is achievable.

A substantial difference between SU-MIMO and MU-MIMO, immaterial in terms of
S∞ but which does affect L∞, is the power constraint: in SU-MIMO, additional transmit
antennas do not alter the power budget while, in MU-MIMO, additional users mean addi-
tional power. With this proviso, and the necessary independence of the signals transmitted
by distinct users, the computation of the power offset without CSI may borrow from the
SU-MIMO derivations in [416, 554].

Once we pull back from the high-SNR regime, the MU-MIMO MAC capacity without
CSI becomes analytically elusive. Interested readers are referred to the bounding tech-
niques in [784].

8.6 Pilot-assisted multiple-access channel

In multiuser contexts, every user may have its own distinct fading coherence; strictly speak-
ing then, user-specific values should be utilized for Nc (or for the Doppler spread if the fad-
ing is modeled as continuous). At the same time, having a multitude of fading coherences
complicates the formulation without much conceptual enrichment, hence it is customary
to retain a single fading coherence for all users. We abide by this practice and, invoking
a worst-case design guideline, note that the value of Nc can be regarded as that of the
least-underspread active user.

When pilot symbols are explicitly transmitted, the corrections required by the CSIR
spectral efficiency of user u are the usual ones [785]:

A factor (1− αu), where αu is that user’s pilot overhead.
In place of SNRu, a lower effective SNR that accounts for channel estimation errors.

The optimum overheads α�
0, . . . , α

�
U−1 emerge from balancing these two corrections in

an optimization process. To pose such optimization for the MAC, we can resort once
more to the analogy with an SU-MIMO channel; the main difference in the formulation
is that, in a MAC, multiple SNRs and pilot overheads are now involved, one per user
[784]. Alternatively, the overheads can be set to their minimum values, αu = Nt/Nc for
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u = 0, . . . , U − 1, with the optimization transplanted to the pilot power boosting at each
user [786].

As SNRu grows, shrinking the linear penalty (1−αu) takes precedence over improving
the effective SNR within the logarithm and the number of pilots per transmit antenna and
per coherence block is sure to approach one; as that happens, αu → Nt/Nc such that the
total overhead satisfies

U−1∑
u=0

αu → UNt

Nc
. (8.72)

The number of spatial DOF is thus

S∞ =

(
1− UNt

Nc

)
min

(
UNt, Nr

)
, (8.73)

which, for UNt ≤ Nr, equals (8.70), the highest possible number of DOF. The condition
UNt � Nc ensures that each antenna at each user can transmit at least one pilot symbol
within each coherence interval without the total overhead becoming significant.

8.7 Duality between the multiple access and
broadcast channels

It is rather convenient, before delving into the analysis of the BC, to introduce a duality
relationship that connects it with the by-now-familiar MAC. This duality is instrumental
in the computation of the BC capacity because, as it turns out, the corresponding precoder
optimization is nonconvex whereas, recall, it is convex for the MAC. Through the dual-
ity relationship between the two, the nonconvex BC optimization can be mapped onto a
computationally friendlier convex dual-MAC problem. In addition to this important sim-
plification in the computation of the capacity boundary, the MAC–BC duality reveals an
optimum transmitter structure for the BC that mirrors the LMMSE-SIC receiver structure
in the dual MAC.

8.7.1 Description and significance

Some early indications that there might be a certain duality between the MAC and the
BC appeared in works such as [787, 788], and also in the reciprocal nature of the encod-
ing/decoding schemes that achieve the capacity of the SISO MAC and BC [14]. Confir-
mation that this duality was profound in an information-theoretic sense was eventually
provided [789–791]. We purposely avoid plunging into the proofs, for which the reader
is referred to the foregoing references, and cut straight to the essence of the result and its
implications.

The MAC, illustrated in Fig. 8.1, consists of U transmitters and a single receiver; it
abstracts a reverse link. The BC, in Fig. 8.7, is obtained by reversing the direction of trans-
mission; correspondingly, it abstracts a forward link where a single base station transmits
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to U users. In a nutshell, what the MAC–BC duality states is that the capacity boundaries
of the two setups are identical under some conditions.

CSIR and CSIT.
Reciprocal channel matrices, such that the MAC gain from transmit antenna j at user
u to receive antenna i coincides with the BC gain from transmit antenna i to receive
antenna j at user u. Applying superscripts to distinguish between dual MAC and BC,
what this means is that the channels between the base station and the uth user satisfy
GMAC

u = GBC
u and HMAC

u = HBC
u

∗; identical magnitudes and opposite phases on account
of the reverse wave travel directions.
Complex Gaussian noise with the same power per antenna in both setups.
Power constraint in the BC transmitter equal to the sum of the power constraints at the
U MAC transmitters.

The last point serves to bridge a defining difference between a BC and a MAC, namely
that, in the latter, the signals transmitted by the various users are subject to separate power
constraints whereas, in the former, the signals transmitted to the various users can be sub-
ject to a joint power constraint at the base station.

Duality therefore implies that any spectral efficiency U -tuple achievable in the BC can
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also be achieved in a dual MAC where the U users are allowed to share their powers ac-
cording to a single power constraint equal to that of the original BC. This implies that, for
any U BC precoders, there are some other U dual-MAC precoders (of different dimen-
sionality in general, since the numbers of antennas at the base station and the users need
not coincide) that lead to the same spectral efficiency U -tuple. Putting all the U -tuples
together, the region of achievable spectral efficiencies in the BC amounts to the union of
the spectral efficiency regions of the dual MAC, with the union taken over all user power
constraints that sum to the original BC constraint.

Besides the capacity boundary, the duality further extends to the optimum decoding
strategy. In a dual MAC, by positing some transmit precoders and an LMMSE-SIC re-
ceiver with a certain decoding order, we obtain a certain spectral efficiency U -tuple; as
a by-product, we obtain some LMMSE filters within the receiver structure. Then, in the
corresponding BC, the same spectral efficiency U -tuple can be achieved by:

(1) Applying those same LMMSE filters as transmit precoders.
(2) Encoding the users in the reverse order. (The optimum successive encoding structure

that serves as the dual of the SIC decoding procedure is described in Section 8.9.1.)

Thanks to duality, the BC precoders for a given setup and given user weights can be
obtained by first solving for the dual-MAC precoders; this is a straightforward convex
problem. The dual-MAC decoding order and the LMMSE receive filters follow as per
earlier sections, and their reversal gives the BC precoders and the encoding order.

The relationship between precoders can be formalized into a transformation that gives
the BC precoders directly as a function of the dual-MAC precoders obtained from the
convex optimization. Precisely, with F dMAC

0 , . . . ,F dMAC

U−1 denoting the dual-MAC precoders
and with users decoded in their indexing order in the MAC, the BC precoders with reverse
encoding order satisfy [789]

F BC

u =

√
Nt

Nr
B−1/2

u UuV
∗
u A1/2

u · F dMAC

u u = 0, . . . , U − 1, (8.74)

where Nt and Nr are the transmit and per-user receive antennas in the BC, whereas

Au = I +
SNRu

Nt
Hu

(
u−1∑
u=0

Eu

Es
F BC

u F BC

u
∗
)
H∗

u (8.75)

Bu = I +
SNRu

Nr

U−1∑
u=u+1

Eu

Es
H∗

uF
dMAC

u F dMAC

u
∗
Hu, (8.76)

with Uu and V ∗
u arising from the SVD of B−1/2

u H∗
uA

−1/2
u , i.e., such that

B−1/2
u H∗

uA
−1/2
u = UuΣuV

∗
u . (8.77)

Importantly, this SVD must be zero-padded such that Σu is not only diagonal but also
square, implying the following.1

1 Standard software packages such as MATLAB® by default return the most compact form of the SVD, without
unnecessary zeroes, and hence corrections may be required or else the matrix dimensionalities will not match.
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If Nt ≤ Nr, then Σu is Nr × Nr. Thus, Uu is Nt × Nr (the first Nt columns contain
the left singular vectors of B−1/2

u H∗
uA

−1/2
u and the last Nr − Nt columns are zero)

whereas Vu is Nr×Nr (it contains the right singular vectors). Correspondingly, VuV
∗
u =

V ∗
u Vu = INr

and UuU
∗
u = INt

, while

U∗
uUu =

[
INt

0

0 0

]
. (8.78)

If Nt ≥ Nr, then Σu is Nt × Nt. Thus, Uu is Nt × Nt (it contains the left singular
vectors) whereas Vu is Nr ×Nt (the first Nr columns contain the right singular vectors
and the last Nt −Nr columns are zero). Correspondingly, UuU

∗
u = U∗

uUu = INt
and

VuV
∗
u = INr , while

V ∗
u Vu =

[
INr

0

0 0

]
. (8.79)

From the normalization ‖F BC
u ‖2F = Nt and the transformation in (8.74), it can be verified

that the corresponding dual-MAC precoder satisfies ‖F dMAC
u ‖2F = Nr. This verification is

the subject of Problem 8.27.
Although, as mentioned, we do not delve into the technical proofs of the information-

theoretic equivalence of a BC and its dual MAC, we do illustrate it for the specific case of
U = 1; this connects with the SU-MIMO analysis in Chapter 5, where the capacity with
CSIR and CSIT is seen not to change if the roles of transmitter and receiver are reversed.
Indeed, for U = 1, the dual-MAC coincides with the actual MAC.

Example 8.18

Show that, for U = 1, the BC and dual-MAC capacities at a given SNR are equal.

Solution

For U = 1, A0 = INr
, and B0 = INt

, and thus B−1/2
0 H∗

0A
−1/2
0 = H∗

0 . Dropping, for
notational compactness, the single-user index, we can express the SVD of the Nt × Nr

matrix H∗ as H∗ = UΣV ∗, where Σ is square with dimensions given by max(Nt, Nr).
The precoders can be decomposed as F BC = UBCP

1/2
BC and F dMAC = UdMACP

1/2
dMAC, where

UBC and PBC are Nt ×Nt while UdMAC and PdMAC are Nr ×Nr.
For Nt ≤ Nr, the BC capacity is

C = log2 det

(
INr

+
SNR

Nt
HF BCF BC∗H∗

)
(8.80)

= log2 det

(
INr

+
SNR

Nt
V ΣU∗UBCPBCU

∗
BCUΣV ∗

)
(8.81)

= log2 det

(
INr +

SNR

Nt
U∗UBCPBCU

∗
BCUΣ2

)
, (8.82)

where (8.82) follows from V ∗V = I . The capacity-achieving strategy is to transmit
along the channel’s singular vectors, for which the columns of UBC must equal the first
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Nt columns within the Nt ×Nr matrix U . Then, U∗
BCU =

[
I 0

]
and, consequently,

U∗UBCPBCU
∗
BCU =

[
I

0

]
PBC

[
I 0

]
(8.83)

=

[
PBC 0

0 0

]
(8.84)

while

Σ2 =

[
Λ 0

0 0

]
, (8.85)

with Λ an Nt×Nt diagonal matrix containing the nonzero eigenvalues of H∗H or, equiv-
alently, of HH∗. Altogether,

C = log2 det

(
INr

+
SNR

Nt

[
PBC 0

0 0

] [
Λ 0

0 0

])
(8.86)

= log2 det

(
INr

+
SNR

Nt
PBCΛ

)
, (8.87)

with the powers within PBC optimized via waterfilling.
Applying duality, the above capacity should coincide with

C = log2 det

(
INt

+
SNR

Nr
H∗F dMACF dMAC∗H

)

= log2 det

(
INt +

SNR

Nr
UΣV ∗UdMACPdMACU

∗
dMACV ΣU∗

)
(8.88)

= log2 det

(
INt

+
SNR

Nr
V ∗UdMACPdMACU

∗
dMACV ΣU∗UΣ

)
, (8.89)

where U∗U is given by (8.78), such that

ΣU∗UΣ =

[
Λ 0

0 0

]
. (8.90)

In turn, the capacity-achieving precoder features UdMAC = V and, all in all,

C = log2 det

(
INt

+
SNR

Nr
PdMAC

[
Λ 0

0 0

])
, (8.91)

which does equal its BC counterpart provided that

PdMAC =

[ Nr

Nt
PBC 0

0 0

]
. (8.92)

This is sensible: the optimum allocation over the min(Nt, Nr) parallel subchannels is the
same in both directions, only scaled to comply with the respective precoder normalizations.

For Nt ≥ Nr, a similar derivation, relegated to Problem 8.28, yields

PBC =

[ Nt

Nr
PdMAC 0

0 0

]
. (8.93)
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An alternative interpretation of duality is that, when a BC is recast in a form that is
concave on the precoders, it emerges in a disposition that resembles a MAC, only with a
joint power constraint.

In the case of a BC with a per-antenna (rather than per-symbol) power constraint, a
different duality relationship exists [792].

Some final considerations on duality are that the relationship does not in general hold
without CSIT and that, in ergodic settings with CSIT, duality holds for the ergodic spec-
tral efficiency regions irrespective of whether the dual-MAC and BC fading realizations
coincide at all times—as long as their distributions do coincide.

8.7.2 Dual versus actual multiple-access channels

For U > 1, it is important to distinguish between the dual MAC and the actual MAC that
embodies the reverse link. On the one hand, the dual MAC is a fictitious construction in
the following sense.

The U users can pool their powers, subject to a single power constraint.
Irrespective of U , such single power constraint equals the power transmitted by the base
station in the BC.

On the other hand, the actual MAC is a factual channel.

Each user has a separate power constraint.
The sum of the U separate power constraints may be very different from the power
transmitted by the base station in the BC, and this sum increases with U as each extra
user contributes additional power.

Note that, in the dual MAC, the transmit power can be shared among users but, other
than that, each user has a separate precoder that spans only that user’s signals. Differently
from the collaborative upper bound entertained in Discussion 8.2, in both the dual and the
actual MAC there is no joint precoding across users.

8.8 The broadcast channel

The BC, already pictured in Fig. 8.7, consists of a single transmitter communicating with U

receivers. The establishment of the BC capacity was a far less forthcoming exercise than
that of the MAC, and the efforts that began in the 1970s [793–795] did not culminate
until the 2000s [789, 790, 796, 797]. The attention in this text is on the transmission of
independent information to each of the users, yet the BC can be further generalized to
include mixtures of independent and common information [14, section 14.6].

With Nt transmit antennas and Nu antennas at the uth receiver, the BC transmit–receive
single-letter relationship under frequency-flat fading is

yu =
√

GuHux+ vu u = 0, . . . , U − 1, (8.94)
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where Hu is the Nu×Nt channel matrix linking the transmitter with the uth user, satisfying
E
[‖Hu‖2F

]
= NtNu, while

x =

U−1∑
u=0

√
Eu

Nt
Fusu. (8.95)

The covariance

Rx =

U−1∑
u=0

Eu

Nt
FuF

∗
u (8.96)

is subject to the applicable power constraint (per-codeword, per-symbol, or per-antenna).
Consistent with the normalizations in this text, we can translate (8.96) into

U−1∑
u=0

Eu

Es
= 1, (8.97)

with each of the precoders, F0, . . . ,FU−1, satisfying the applicable type of constraint as
given in (5.6), (5.7), and (5.8) for SU-MIMO. (Any other combination of power and pre-
coder constraints that preserves the overall constraint on Rx would also be valid, but it
would modify the operational significance of E0, . . . , EU−1 as the total energy-per-symbol
transmitted to each of the users.)

As in the single-user and MAC setups, we avail ourselves of the local-average quantities

SNRu =
GuEs

N0
u = 0, . . . , U − 1, (8.98)

which do not depend on the allocation of power among users. Then, the SNR experienced
by user u is determined by the product Eu

Es
SNRu as in the MAC, with the difference that

the MAC power control coefficients are individually constrained whereas the BC (and the
dual MAC) power allocation coefficients are joint constrained by (8.97).

Example 8.19

Verify the constraint on the precoders F0, . . . ,FU−1 when x is subject to a per-symbol
power constraint.

Solution

Under a per-symbol power constraint,

tr(Rx) = Es (8.99)

and, upholding
∑U−1

u=0
Eu

Es
= 1, the precoders must satisfy, as in the MAC,

‖Fu‖2F = Nt u = 0, . . . , U − 1. (8.100)

Example 8.20

Verify the constraint on the precoders F0, . . . ,FU−1 when x is subject to a per-antenna
power constraint?
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Solution

Under a per-antenna power constraint,

[Rx]j,j =
Es

Nt
j = 0, . . . , Nt − 1. (8.101)

Upholding
∑U−1

u=0
Eu

Es
= 1, each precoder must satisfy [FuF

∗
u ]j,j = 1 for j = 0, . . . , Nt−1.

Equivalently, we need every row of every precoder to be of unit norm.

Although one could be inclined to dismiss the possibility of interpreting the BC as an
aggregate SU-MIMO channel, because the BC users cannot jointly process their received
signals, duality makes this interpretation possible—as long as there is both CSIR and CSIT.
Indeed, duality recognizes that the MU-MIMO BC is equivalent to a certain MU-MIMO
MAC, which does admit an SU-MIMO interpretation. This is a first indication that, in the
BC, CSIT is instrumental.

The assumption of symbol-synchronous transmission is well justified in the BC, given
that all the signals emanate from the same transmitter.

As for the MAC, and in order to avoid an unnecessary explosion in the number of pa-
rameters, the exposition in the sequel considers that Nu = Nr for u = 0, . . . , U − 1, with
qualifying comments wherever appropriate.

In the face of CSIR, the optimality of Gaussian codebooks is once again upheld, although
it must be noted that for the BC the proof of this optimality is much more intricate that in
the SU-MIMO and the MAC [797].

8.9 Broadcast channel with CSIR and CSIT

Once again, because of its higher practical relevance, we focus on the per-symbol power
constraint setting

∑U−1
u=0

Eu

Es
= 1 and ‖Fu‖2F = Nt for u = 0, . . . , U − 1.

8.9.1 Optimum transmitter structure

Recall how, in the MAC with CSIR, the LMMSE-SIC structure emerges as an important
element, not only as one possible embodiment of the optimum receiver, but further as an
interpretation of the spectral efficiency breakdown among users at each corner of the ca-
pacity boundary. In the BC, by virtue of duality, the role of the MAC receiver is played
by the transmitter and the role of the CSIR is played by the CSIT. This suggests the exis-
tence of a transmit structure that, under CSIT, serves as one embodiment of the capacity-
achieving transmitter and further as an interpretation of how the spectral efficiency breaks
down among users. This is indeed the case and, just as the MAC the LMMSE-SIC struc-
ture involves U linear filters and U single-user decoders, properly chained together, in the
BC the dual structure involves U linear precoders and U single-user encoders, properly
chained together.

Without coding, such a transmit structure could operate on a symbol-by-symbol basis.
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From the knowledge of H0, . . . ,HU−1 and of the information symbols s0[n], . . . , sU−1[n],
a signal x[n] can be produced such that the uth user observes su[n] with interference from
only a subset of the symbols meant for other users. To achieve this, one could exploit
the parallelisms between a single-user ISI channel (recall Section 4.4) and a BC: in the
former, the information symbol at a given time epoch is received with interference from
information symbols corresponding to other epochs while, in the latter, the information
symbol of a given user is received with interference from information symbols meant for
other users. Ideas originally developed to communicate over single-user ISI channels can
be applied, e.g., the Tomlinson–Harashima transmit–receive structure, which yields a per-
formance similar to that which would be achieved by a symbol-by-symbol SIC receiver
[798, 799].

Example 8.21

Consider a two-user BC where, for conceptual simplicity, Nt = Nr = 1. It follows that
the precoders are F0 = F1 = 1, and we further split the transmit power evenly between
the two users. Thus

yu =

√
GuEs

2
hu (s0 + s1) + vu u = 0, 1. (8.102)

Suppose that su is drawn from the unit-variance M -ary pulse amplitude modulation (M -
PAM) constellation{

(2m− 1−M)
dmin

2

}
m = 0, . . . ,M − 1, (8.103)

where the distance between neighboring points is

dmin = 2

√
3

M2 − 1
. (8.104)

How can the interference that user 0 would normally inflict upon user 1 be eliminated?

Solution

As illustrated in Fig. 8.8, let us repeat the M -PAM constellation along the entire real axis
so as to obtain an endlessly extended constellation [50, section 10.3.3]. Each of the M

original constellation points now maps to a class of equivalent points. To convey a certain
constellation point to user 1, say the point indexed by 0, the transmitter examines all the
equivalent points within that class and selects the one closest to s0. If that closest point (see
Fig. 8.9) is the one with magnitude q, the symbol for user 1 becomes s1 = q − s0. Upon
reception, user 1 observes

y1 =

√
G1Es

2
h1

(
(q− s0) + s0

)
+ v1 (8.105)

or, with adequate scaling, equivalently

y′1 = q+ v′1, (8.106)
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In-phase

M-PAM

In-phase

Extended constellation 

dmin = 2

√
3

M2 − 1

0 1 M - 1…

M - 1 0 1… M - 1 0 1… M - 1 0 1… M - 1… …

�Fig. 8.8 M -PAM constellation (above) and its endlessly extended version (below). Each of the

M original points gives rise to a class of equivalent points that share the same label.

where v′1 has a modified variance. User 1 then searches the endlessly extended constella-
tion, identifies the point closest to y1, and maps it to the original constellation point that
gives rise to that class of equivalent points; if the noise is not strong enough to cause an er-
ror, this will be the point indexed by 0 in our case. From (8.106), it is clear that the uncoded
error probability at user 1 equals what it would be in the absence of s0, only for an end-
lessly extended constellation as opposed to the actual M -PAM constellation: the impact of
the extension is rather minor, mostly noticeable only in the two edge points—which have a
single nearest-neighbor in the original constellation but two in the extended constellation.

It remains to ensure that E
[
s21
]
= 1 and, if not, to scale the transmit signal appropriately.

It is easily verified that s1 ∈ [−Mdmin/2,Mdmin/2]. To get a feel for how much E
[
s21
]

may depart from unity, let us assume that s1 is uniformly distributed over the identified
interval [−Mdmin/2,Mdmin/2]. Then,

E
[
s21
]
=

M2d2min

12
(8.107)

=
M2

M2 − 1
, (8.108)

and hence the extended constellation indeed has an increased power, although this increase
is minor even for small M . This calls for an overall signal scaling that causes a correspond-
ingly minor decrease in SNR.

What about user 0? Its normalized observation is y′0 = q + v′0 and, since q = s1 + s0,
what it observes is its intended signal s0 subject to interference from s1. Given an arbitrary
user ordering, then, only the interference from users earlier in the order can be suppressed
(approximately, because of the aforementioned edge effects).

Basic as the above toy example may be, it does convey the intuition that underpins opti-
mum symbol-by-symbol transmission in the BC. With actual Tomlinson–Harashima, this
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In-phase

0 1 30 1 33 2 2 022

q

s0

s1 = q− s0

�Fig. 8.9 For M = 4, computation of s1 when the constellation point to be communicated is the

one with index 0.

generalizes to unequal transmit powers and to U > 2 [800–803]. The idea also generalizes
to multiple antennas, in which case it can be vectorized [804, 805].

The drawback of Tomlinson–Harashima is, precisely, that it operates on a symbol-by-
symbol basis and, as such, it is essentially the dual of symbol-by-symbol SIC at the re-
ceiver. Recall, however, that achieving capacity requires codeword-wise SIC whereby the
interference cancelation occurs after each entire codeword has been decoded and recon-
structed. This naturally prompts the question of whether a transmit dual of codeword-wise
SIC exists, and this question was answered in the affirmative by Costa in [806]. This dual,
referred to as either Costa’s precoding or—on account of the paper’s title, “Writing on dirty
paper”—as dirty-paper coding (DPC), successively encodes the users’ data into codewords
in such a way that each codeword does not experience interference from the codewords that
preceded it. Tempting as it may be to think that this entails a form of presubtraction, DPC
actually goes in the opposite direction: much like in the symbol-by-symbol procedure of
Example 8.21, DPC adapts to the interference from the preceding codewords, rather than
trying to counter it; the encoder looks for codewords that are compatible with that inter-
ference in terms of the power constraint yet distinguishable given the noise level. Fittingly,
the ensuing U codewords turn out to be IID complex Gaussian and statistically indepen-
dent, and the edge effects experienced with Tomlinson–Harashima disappear as N → ∞.
The precoders F0, . . . ,FU−1 and the power allocation E0

Es
, . . . , EU−1

Es
also play a role in

rotating and scaling the successive codewords as the composite signal x is produced (see
Fig. 8.10).

Although the description of specific DPC implementations is beyond the scope of this
book (see, e.g., [807, 808]), it is worth mentioning that, just as in Example 8.21, the trans-
mit operation can be interpreted as a scalar quantization of one user’s symbol onto the
other, a full DPC transmitter entails large-dimensional vector quantizers that are not only
elaborate but very sensitive to CSIT inaccuracies [809]. (This motivates the interest in lin-
ear transmission strategies, which are deferred to Chapter 9.)

8.9.2 Quasi-static setting

In this setting, recall, H0, . . . ,HU−1 are fixed over the codeword span. As usual, it is
instructive to begin with the most elemental case: U = 2 and Nt = 1. For this setup, DPC
is not the only capacity-achieving approach, and simpler superposition suffices.
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�Fig. 8.10 DPC transmitter structure.

Example 8.22

Let U = 2 with H0 and H1 being Nr×1 vectors. Suppose that
√
G0‖H0‖ <

√
G1‖H1‖.

Determine the BC capacity boundary with s0 and s1 separately encoded utilizing IID com-
plex Gaussian codebooks, and with subsequent superposition.

Solution

For Nt = 1, the precoders are F0 = F1 = 1 and the transmit signal is thus x = E0s0 +

E1s1. If
√
G0‖H0‖ <

√
G1‖H1‖, then, regardless of E0 and E1, when s1 is encoded at

the maximum rate decodable at user 1, such signal is not decodable at user 0 because the
SNR at that receiver is insufficient. In terms of the capacity boundary then, user 0 must
decode its signal in the face of noise plus the interference

√
G0H0E1s1. Conditioned on

H0, such interference is complex Gaussian and hence

R0

B
= log2

(
1 +

G0E0 ‖H0‖2
N0 +G0E1 ‖H0‖2

)
(8.109)

= log2

(
1 +

E0

Es
SNR0 ‖H0‖2

1 + E1

Es
SNR0 ‖H0‖2

)
. (8.110)

Conversely, user 1 can decode s0 because such codeword is rated for a weaker channel
and, after SIC, the decoding of s1 is impaired by only noise. Thus,

R1

B
= log2

(
1 +

E1

Es
SNR1 ‖H1‖2

)
. (8.111)

The points on the ensuing capacity boundary (see Fig. 8.11) can be achieved by varying
the power split between E0

Es
and E1

Es
, subject to E0

Es
+ E1

Es
= 1, with the transmit rates
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properly adjusted. Notice the smoothness of this boundary, in contrast with the pentagonal
shape of its MAC counterpart in Fig. 8.2.

Since the SIC operation can only be performed by the receiver with the stronger channel,
it is not possible to swap the roles of the two users.

As an alternative to superposition at the transmitter and SIC at the user with the stronger
channel, DPC can be utilized.

Example 8.23

Reconsider Example 8.22, but with DPC. Specifically, let s0 be encoded first with s1 sub-
sequently DPC-encoded, taking s0 into account.

Solution

The capacity boundary determined by (8.110) and (8.111) continues to be achievable as
the DPC process ensures that user 1 is not afflicted by interference.

Example 8.24

Still for
√
G0‖H0‖ <

√
G1‖H1‖, what happens if s1 is encoded first and s0 is subse-

quently DPC-encoded taking s1 into account?

Solution

The resulting region, also depicted in Fig. 8.11, is not only contained within the capacity
boundary but contained even within the time-division region. Hence, DPC makes sense in
this setup only if the channel strengths are taken into account.

A compact way of describing the capacity boundary defined by (8.110) and (8.111) is

Ru

B
= log2

(
1 +

Eu

Es
SNRu‖Hu‖2

1 +
∑U−1

u=u+1
Eu

Es
SNRu‖Hu‖2

)
u = 0, 1. (8.112)

Indexing the users in such a way that
√
G0‖H0‖ ≤ √

G1‖H1‖ ≤ · · · ≤ √
GU−1‖HU−1‖,

(8.112) readily extends to arbitrary U . The corresponding capacity boundary can be achieved
either by superposition with SIC at the receivers, or by DPC encoding in order of channel
strengths. Irrespective of q0, . . . , qU−1, the weighted sum-capacity is achieved with this
encoding order.

The fact that, when Nt = 1, the users can be absolutely ranked by their channel strength
is the key to the equivalence between superposition with SIC, on the one hand, and DPC, on
the other. The setups where this is possible are said to be degraded (for a precise definition
of degradedness, see [14, chapter 15]). This condition generally ceases to hold when Nt >

1 as, in that case, one cannot always rank users absolutely.
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R1/B

Capacity:
user 1 DPC-encoded

after user 0
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after user 1

√
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√
G1‖H1‖

�Fig. 8.11 BC regions of achievable spectral efficiencies for U = 2 and Nt = 1 with√
G0‖H0‖ <

√
G1‖H1‖.

Example 8.25

Let U = 2 with Nt > 1. For Nr > 1, multiple spatial dimensions exist and the ranking in
one need not apply to another. However, for Nr = 1, is an absolute ranking not possible?

Solution

It is not. Even if
√
G0‖H0‖ <

√
G1‖H1‖, there may be an admissible precoder F0 such

that
√
G0|H0F0| >

√
G1|H1F0|. Consequently, it cannot be guaranteed that, when s0 is

encoded at the maximum rate decodable by user 0, it is also decodable by user 1, and vice
versa.

Once users cannot be absolutely ranked, there is no degradedness. DPC remains capacity-
achieving, while superposition does not. Unlike in the degraded case, where the DPC spec-
tral efficiency region with a certain user ordering contains all other ones, in a nondegraded
setup that need not be the case.

Example 8.26

Determine the region of DPC spectral efficiencies for a nondegraded BC with U = 2 and
Nt > 1, and with fixed

√
E0/EsF0 and

√
E1/EsF1.
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User 1
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q0 < q1

q0 > q1

�Fig. 8.12 Left, BC regions of DPC spectral efficiencies for U = 2 and Nt > 1 with fixed

precoders. Right, convex hull of the union of both regions; also shown with dotted

lines are the weighted sum spectral efficiency contours for q0 < q1 and q0 > q1.

Solution

The regions achievable with either DPC encoding order are illustrated on the left-hand side
of Fig. 8.12. As neither is contained within the other one, the union of both is achievable.
Furthermore, spectral efficiency pairs anywhere within the minimum convex set of that
union (termed the convex hull and depicted on the right-hand side of Fig. 8.12) are also
achievable by time-dividing both DPC orderings with the appropriate duty cycle.

Notice from the weighted sum spectral efficiency contours included in Fig. 8.12 how,
for q0 < q1, user 1 should be encoded first while, for q0 > q1, user 0 should be encoded
first. In this nondegraded BC example, therefore, users should be DPC-encoded in order of
decreasing weight. As seen later in the section, this is not an anecdotal observation.

For arbitrary U and Nt, as well as specific
√
E0/EsF0, . . . ,

√
EU−1/EsFU−1, and

with the users DPC-encoded in the order of their indices, (8.112) generalizes to

Ru

B
= log2 det

⎛
⎝I +

Eu

Es
SNRu

Nt
HuFuF

∗
uH

∗
u

(
I +Hu

U−1∑
u=u+1

Eu

Es
SNRu

Nt
FuF

∗
u ·H∗

u

)−1
⎞
⎠

u = 0, . . . , U − 1, (8.113)

which can be rewritten as

Ru

B
= log2 det

(
I +Hu

U−1∑
u=u

Eu

Es
SNRu

Nt
FuF

∗
u ·H∗

u

)
(8.114)

− log2 det

(
I +Hu

U−1∑
u=u+1

Eu

Es
SNRu

Nt
FuF

∗
u ·H∗

u

)
u = 0, . . . , U − 1.
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What can be attained in a nondegraded BC is the convex hull of the union of the regions
achievable with every possible DPC ordering. The necessity of the convex hull operation,
to render convex a union of regions that is otherwise not, has important consequences that
become clear once we release

√
E0/EsF0, . . . ,

√
EU−1/EsFU−1 from being fixed so as

to take a further union over all their admissible values.
Specifically, and in contrast with the MAC, the BC precoder optimization is not con-

vex because
∑U−1

u=0 quRu/B with Ru/B as given by (8.114) is not a concave function of√
E0/EsF0, . . . ,

√
EU−1/EsFU−1. While (8.114) may, at a first glance, appear similar

to the MAC expression for Ru/B in (8.27), the subtle difference between the two suffices
to break the convexity. See, for instance, how (8.114) cannot be put in the form of (8.29),
which substantiates the convexity of the MAC precoder optimization.

It is precisely in the face of the nonconvexity of the BC optimization that the BC-MAC
duality comes to the rescue: the BC weighted sum-capacity for any arbitrary q0, . . . , qU−1

can be obtained by computing the same weighted sum-capacity for the dual MAC, which
is convex. Thanks to duality, then, by merely replacing every Hu with H∗

u in (8.18) and
modifying the power constraint to turn the MAC into a dual MAC, we obtain the weighted
sum-capacity of the BC as the boundary of

⋃
‖F dMAC

u ‖2
F
=Nr∑U−1

u=0
Eu
Es

=1

[ ∑
u∈U

Ru

B
≤ log2 det

(
I +

∑
u∈U

Eu

Es
SNRu

Nr
H∗

uF
dMAC

u F dMAC

u
∗
Hu

)

U ⊆ {0, . . . , U − 1}
]
. (8.115)

Notice that, as a by-product of the channel transpositions, the precoder normalization has
changed to 1/Nr; such is indeed the number of transmit antennas per user in the dual MAC,
and the value to which the corresponding precoder is normalized.

In terms of the spectral efficiency U -tuples, the modification of the MAC expression in
(8.27) gives, for the dual MAC with the users decoded in their indexing order,

Ru

B
= log2 det

(
I +

U−1∑
u=u

Eu

Es
SNRu

Nr
H∗

uF
dMAC

u F dMAC

u
∗
Hu

)
(8.116)

− log2 det

(
I +

U−1∑
u=u+1

Eu

Es
SNRu

Nr
H∗

uF
dMAC

u F dMAC

u
∗
Hu

)
u = 0, . . . , U − 1.

By applying the transformation in (8.74), it can be verified (refer to Problem 8.30) that
the foregoing expression indeed equals the spectral efficiency U -tuple for the BC with the
users DPC-encoded in the reverse indexing order, namely

Ru

B
= log2 det

(
I +Hu

u∑
u=0

Eu

Es
SNRu

Nt
FuF

∗
u ·H∗

u

)
(8.117)

− log2 det

(
I +Hu

u−1∑
u=0

Eu

Es
SNRu

Nt
FuF

∗
u ·H∗

u

)
u = 0, . . . , U − 1.
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It follows that, since in the MAC it is optimum to decode the users in order of increas-
ing weight, in a nondegraded BC it is optimum to encode the users in order of decreasing
weight. Hence, (R0/B, . . . , RU−1/B) as given by (8.117) befits q0 ≤ · · · ≤ qU−1, some-
thing that would hardly be obvious without duality. Although this encoding order seems
to expose the highest-weight user to the most interference, the precoders and the power
allocation also play a role and, altogether, this is indeed the correct order.

In terms of sum-capacity, that is, for q0 = · · · = qU−1, the DPC encoding order becomes
immaterial.

8.9.3 Precoder and power allocation optimization

With Ru/B in the dual-MAC form provided in (8.116),
∑U−1

u=0 quRu/B is a concave func-
tion of

√
E0/EsF

dMAC
0 , . . . ,

√
EU−1/EsF

dMAC

U−1. Any optimization algorithm tailored to the
MAC can be applied, suitably modified to solve the dual MAC where there is a single
aggregate power constraint rather than individual per-user constraints; interested readers
are referred, e.g., to the convex optimization procedure in [34, section 3.5.2] or, for the
sum-capacity specifically, to the modified version of the iterative waterfilling algorithm in
[810, 811]. It must be kept in mind that the precoders obtained from this optimization are
not the sought BC precoders; the obtained precoders are Nr ×Nr, as befits the dual MAC,
while the BC precoders are Nt × Nt. The transformation in (8.74) must be applied to re-
cover the BC precoders F0, . . . ,FU−1 from F dMAC

0 , . . . ,F dMAC

U−1. However, because of the
difficulties in implementing DPC, we are interested in the BC capacity for benchmarking
purposes only, and by virtue of duality such capacity boundary can be determined without
explicitly obtaining the BC precoders. We thus do not dwell on the optimum BC precoders
any further at this point. (In the next chapter, we return with force to the issue of BC
precoding under linear transmission schemes.)

In the MU-MISO BC specifically, the dual-MAC precoders become trivial and the de-
termination of the capacity adopts a particularly simple form.

Example 8.27 (Capacity boundary for a MU-MISO BC with CSIT)

In the relevant special case that the U users are equipped with a single antenna, the dual
MAC features F dMAC

u = 1 for u = 0, . . . , U − 1 and (8.115) simplifies into

⋃
∑U−1

u=0
Eu
Es

=1

[ ∑
u∈U

Ru

B
≤ log2

(
1 +

∑
u∈U

Eu

Es
SNRu

Nr
‖Hu‖2

)
U ⊆ {0, . . . , U−1}

]
.

(8.118)

Example 8.28

Consider a base station with Nt = 2 antennas serving U = 2 single-antenna users with
SNR0 = 6 dB and SNR1 = 10 dB. Let the respective channel matrices be

H0 =
[
0.3− j 0.7 + 1.2 j

]
(8.119)
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�Fig. 8.13 Left, spectral efficiency regions corresponding to a few specific power shares in the

dual MAC. Right, union over all possible such shares delineating the capacity

boundary.

and

H1 =
[
0.4 j 2− 0.3 j

]
. (8.120)

For some fixed F0 and F1, the region of achievable spectral efficiencies would resemble
the right-hand side of Fig. 8.12. Establishing the capacity boundary would entail a union
of all such regions over all admissible two-dimensional vector precoders. Instead, establish
the capacity boundary by applying duality.

Solution

From (8.118), and taking a union over only a scalar power share, the BC capacity boundary
can be obtained. Shown on the left-hand side of Fig. 8.13 are the regions corresponding to
a few specific power shares, with the right-hand side depicting the union over all possible
power shares.

Concentrating now on the BC sum-capacity, we can obtain it from (8.115) as

C = max
F dMAC
0 ,...,F dMAC

U−1
:‖F dMAC

u ‖2
F
=Nr

E0
Es

,...,
EU−1

Es
:
∑U−1

u=0
Eu
Es

=1

log2 det

(
I +

U−1∑
u=0

Eu

Es
SNRu

Nr
H∗

uF
dMAC

u F dMAC

u
∗
Hu

)
.

(8.121)
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Example 8.29 (Sum-capacity of a MU-MISO BC with CSIT)

In the relevant special case that the U users are equipped with a single antenna, F dMAC
u = 1

for u = 0, . . . , U − 1 and the sum-capacity simplifies into

C = max
E0
Es

,...,
EU−1

Es
:
∑U−1

u=0
Eu
Es

=1

log2

(
1 +

U−1∑
u=0

Eu

Es
SNRu ‖Hu‖2

)
, (8.122)

where only the power shares among dual-MAC users must be optimized.

Example 8.30

For the setup of Example 8.28, compute the sum-capacity.

Solution

A scalar optimization over E0

Es
, with E1

Es
= 1− E0

Es
, gives C = 6.52 b/s/Hz. The breakdown

of this quantity between the two users, and the corresponding spectral efficiency pairs for
proportional fairness and for other operating points, are the subject of Problem 8.36.

In terms of how multiple codewords can be conveyed to each of the users in a MU-
MIMO BC, the answer is to embed a standard MIMO transmission within the DPC process.
At user u, a local LMMSE-SIC receiver can be applied to extract the various codewords.

Readers interested in the optimization of the BC precoders for discrete constellations are
referred to [812].

8.9.4 High-SNR regime

The argument that supports that, at high SNR, the sum-capacity of a MU-MIMO MAC
having UNt ≤ Nr is achieved by a uniform power allocation at each user (see Section
8.3.4) can be applied verbatim to the dual MAC of a MU-MIMO BC. It is important to
realize that the corresponding BC precoders, once the duality transformations are applied,
do not generally embody uniform power allocations and actually depend on the channel
realizations through those transformations. Remarkably, thanks to duality, we can compute
the high-SNR BC capacity boundary for Nt ≥ UNr without having to identify those
optimum BC precoders, dealing only with the asymptotically trivial F dMAC

0 , . . . ,F dMAC

U−1.
What remains to be optimized is the asymptotic power allocation, E0

Es
, . . . , EU−1

Es
, which

applies to both the dual MAC and the BC.

Power allocation
For Nt ≥ UNr, the asymptotically uniform power allocations in the dual-MAC imply that
F dMAC
u → I for u = 0, . . . , U − 1. Plugged into (8.116), these give

Ru

B
= log2 det

⎛
⎝I +

Eu

Es
SNRu

Nr
H∗

uHu

(
I +

U−1∑
u=u+1

Eu

Es
SNRu

Nr
H∗

uHu

)−1
⎞
⎠ (8.123)
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and, invoking as done for the actual MAC the result in [774, lemma 1], if we denote by
H⊥,u the projection of Hu onto the null space of Hu+1, . . . ,HU−1, then

lim
Es/N0→∞

⎡
⎣H⊥,uH

∗
⊥,u −Hu

(
I +

U−1∑
u=u+1

Eu

Es
SNRu

Nr
H∗

uHu

)−1

H∗
u

⎤
⎦ = 0. (8.124)

Hence, for the purposes of what transpires for Es/N0 → ∞, we can replace (8.123) by

Ru

B
= log2 det

(
I +

Eu

Es
SNRu

Nr
H⊥,uH

∗
⊥,u

)
(8.125)

and, to optimize the power allocation for some given weights q0, . . . , qU−1, we can build
the Lagrangian function (see Appendix G)

L

(
E0

Es
, . . . ,

EU−1

Es
, λ

)
=

U−1∑
u=0

qu log2 det

(
I +

Eu

Es
SNRu

Nr
H⊥,uH

∗
⊥,u

)

+ λ ·
(

U−1∑
u=0

Eu

Es
− 1

)
(8.126)

whose partial derivative with respect to Eu

Es
yields the necessary and sufficient condition

qu tr

⎛
⎝(

I +
Eu

Es
SNRu

Nr
H⊥,uH

∗
⊥,u

)−1
SNRu

Nr
H⊥,uH

∗
⊥,u

⎞
⎠ log2 e+ λ = 0 (8.127)

where we have applied

∂

∂z
loge det

(
A(z)

)
= tr

(
A−1(z)

∂A(z)

∂z

)
. (8.128)

For Nt ≥ UNr, the projection H⊥,u is full-rank and, for growing SNRu and nonzero Eu

Es
,

the condition in (8.127) expands as

qu
Eu

Es

log2 e+ λ+O
(

1

SNRu

)
= 0. (8.129)

This leads to
Eu

Es
= − log2 e

λ
qu +O

(
1

SNRu

)
, (8.130)

where the Lagrange multiplier λ can be cleared by enforcing
∑U−1

u=0
Eu

Es
= 1, yielding

λ = − log2 e ·
U−1∑
u=0

qu +O
(

1

SNRu

)
. (8.131)

Plugged into (8.130), such λ finally gives

Eu

Es
=

qu∑U−1
u=0 qu

+O
(

1

SNRu

)
, (8.132)
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Discussion 8.3 Collaborative upper bound for the MU-MIMO BC

The collaborative upper bound on the sum-capacity, introduced for the MAC in Discus-
sion 8.2, can also be applied to the BC. In this case, it is obtained by allowing the U

users to function as a single one, jointly receiving and decoding all the transmissions.
As in the MAC, this bound is not generally tight (refer to Problem 8.40), but it does
become so for UNt ≥ Nr and once all users are at high SNR. Observed already in the
early works on the MU-MIMO BC [796], this follows directly from the BC-MAC dual-
ity and the similar high-SNR tightness observed in the MAC, and in that sense it should
not be surprising. However, from an operational perspective, it is rather striking that the
sum-capacity is asymptotically as if all users collaborated, even though no collaboration
is taking place.

which is the optimum power allocation policy at high SNR: each user should be allocated
power in direct proportion to its weight. As seen in the next chapter, this policy turns out
to have broad validity well beyond the context of optimum DPC transmission, holding also
for other types of transmitters.

Homing in on the sum-capacity, (8.132) gives Eu

Es
→ 1/U .

Spatial DOF
Let us see how the sum-capacity behaves at high SNR. Inserting Eu

Es
= 1/U and F dMAC

u = I

into (8.121), we obtain

C = log2 det

(
I +

U−1∑
u=0

SNRu

UNr
H∗

uHu

)
, (8.133)

a coarse expansion of which gives

C = S∞ log2
Es

N0
+O

(
1

Es/N0

)
, (8.134)

where, provided the channels are as usual full-rank,

S∞ = min(Nt, UNr). (8.135)

Thanks to the CSIT, it holds also for the BC that MU-MIMO circumvents DOF bottlenecks
resulting from limitations in the number of antennas at user devices (see Example 8.7,
which applies verbatim to the BC). The number of active users U should be such that Nt ≥
UNr, with Nr signal streams sent to each user for a total of UNr streams. If we insisted on
transmitting more than UNr streams, then the number of DOF per user would be, applying
duality, as in the MAC but with the order reversed: the user encoded first would enjoy
min(Nt, Nr) spatial DOF, the user encoded second would enjoy min(Nt−Nr, Nr) spatial
DOF, and so on, with these quantities taken as zero whenever negative. In order to have
all users enjoy some spatial DOF, it is necessary that the total number of streams does not
exceed S∞.
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Power offset
For Nt ≥ UNr, we can rewrite (8.133) as

C = log2 det

(
I +

Es/N0
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U−1∑
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)
(8.136)
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where H∗ =
[
H∗

0 · · · H∗
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]
. Expanding this expression, we obtain
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= UNr log2
Es

N0
− UNr log2(UNr) + log2
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)
+ log2 det(HH∗)

+O
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)
(8.138)

= NrU log2
Es

N0
+Nr

U−1∑
u=0

log2 Gu − UNr log2(UNr) + log2 det(HH∗)

+O
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1
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)
(8.139)

= Nr

U−1∑
u=0

log2 SNRu − UNr log2(UNr) + log2 det(HH∗) +O
(

1

Es/N0

)

=
U−1∑
u=0

Nr

(
log2 SNRu − L∞(H0, . . . ,HU−1)

)
+O

(
1

Es/N0

)
, (8.140)

where the S∞ = UNr spatial DOF, precisely Nr DOF per user, are evident while the power
offset given the channel realizations H0, . . . ,HU−1 equals [774]

L∞(H0, . . . ,HU−1) = log2(UNr)− 1

UNr
log2 det(HH∗). (8.141)
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8.9.5 Ergodic setting

Expecting (8.114) over the fading,

Ru

B
= E

[
log2 det

(
I +Hu

U−1∑
u=u

Eu

Es
SNRu

Nt
FuF

∗
u ·H∗

u

)
(8.142)

− log2 det

(
I +Hu

U−1∑
u=u+1
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Es
SNRu

Nt
FuF

∗
u ·H∗

u

)]
u = 0, . . . , U − 1,

where, recall, the precoders are a function of H0, . . . ,HU−1 (subject to the applicable
power constraints) and thus the expectation is over them as well.

The ergodic weighted sum-capacity for some q0, . . . , qU−1 equals
∑U−1

u=0 quRu/B with
the precoders optimized, at each fading realization, for H0, . . . ,HU−1. And, by sweeping
over all possible weight combinations, the entire capacity boundary could be delimited.
Unfortunately, as observed earlier, the precoder optimization for each fading realization
is a nonconvex and rather inconvenient problem. Alternatively, we can invoke duality and
more conveniently obtain the ergodic capacity boundary by expecting (8.115) over the
fading distribution. Likewise, the ergodic sum-capacity C(SNR0, . . . , SNRU−1) can be
obtained from (8.121) as

C = E

⎡
⎢⎢⎢⎣ max

F dMAC
0 ,...,F dMAC
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uF
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u F dMAC

u
∗
Hu

)⎤
⎥⎥⎥⎦ .

(8.143)

Example 8.31

Consider a base station with Nt = 6 antennas serving U = 3 users, each equipped with
Nr = 2 antennas. The channel matrices have IID Rayleigh-faded entries and

SNR0|dB = SNR|dB (8.144)

SNR1|dB = SNR|dB + 5 dB (8.145)

SNR2|dB = SNR|dB + 8 dB. (8.146)

Compute the ergodic sum-capacity with CSIR and CSIT and plot it as a function of the
reference SNR.

Solution

Applying a standard convex optimization solver to (8.143), with the explicit additional
constraints that

(
F dMAC
u F dMAC

u
∗) be positive-semidefinite and Eu

Es
≥ 0 for u = 0, . . . , U − 1,
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the result presented in Fig. 8.14 is readily obtained. We are to recall this result later in the
book, to gauge the performance of linear transmission schemes.

Example 8.32 (Ergodic sum-capacity of a MISO BC with CSIT)

If the users are equipped with a single antenna, F dMAC
u = 1 for u = 0, . . . , U − 1 and the

sum-capacity simplifies into

C = E

⎡
⎣ max

E0
Es

,...,
EU−1

Es
:
∑U−1

u=0
Eu
Es

=1

log2

(
1 +

U−1∑
u=0

Eu

Es
SNRu ‖Hu‖2

)⎤
⎦ , (8.147)

where, for each fading realization, only the power shares among dual-MAC users must be
optimized.

Example 8.33

Repeat Example 8.31, only with Nt = U = 3 and Nr = 1.

Solution

The result, obtained by applying a standard convex optimization solver to (8.147), with the
explicit additional constraint that Eu

Es
≥ 0 for u = 0, . . . , U − 1, is shown in Fig. 8.14. We

are also to recall this result later, to gauge the performance of linear transmission schemes.
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High-SNR regime

The expectation over the fading of the expansion in (8.140) and (8.141), which recall ap-
plies for Nt ≥ UNr, returns,

C(SNR0, . . . , SNRU−1) =

U−1∑
u=0

Nr

(
log2 SNRu − L∞

)
+O

(
1

Es/N0

)
(8.148)

such that S∞ = min(Nt, UNr) while

L∞ = log2(UNr)− 1

UNr
E
[
log2 det(HH∗)

]
(8.149)

is the BC sum-capacity power offset (in 3-dB units).

Example 8.34 (Power offset of an ergodic MU-MIMO BC with IID Rayleigh
fading and CSIT)

If H0, . . . ,HU−1 have IID Rayleigh-faded entries, H∗=
[
H∗

0 · · · H∗
U−1

]
is an Nt×UNr

matrix with IID complex Gaussian entries and the argument of the log det(·) function in
(8.149) is a Wishart matrix. Invoking (C.28) and (E.9),

L∞ = log2(UNr) +

⎛
⎝γEM −

Nt−UNr∑
q=1

1

q
− Nt

UNr

Nt∑
q=Nt−UNr+1

1

q
+ 1

⎞
⎠ log2 e (8.150)

which, for Nt = UNr, becomes

L∞ = log2(UNr) +

(
γEM −

UNr∑
q=2

1

q

)
log2 e. (8.151)

Example 8.35

Consider a base station featuring Nt = 6 antennas, communicating with U = 3 users each
equipped with Nr = 2 antennas. Given IID Rayleigh fading, compute L∞ and utilize it to
approximate the sum-capacity in the high-SNR regime. Then, plot this approximation next
to the actual sum-capacity for

SNR0|dB = SNR|dB (8.152)

SNR1|dB = SNR|dB + 5 dB (8.153)

SNR2|dB = SNR|dB + 8 dB. (8.154)

Solution

Applying (8.151), we obtain L∞ = 1.32 (in 3-dB units). In conjunction with (8.148), this
gives

C(SNR0, SNR1, SNR2) ≈ 2

2∑
u=0

(
log2 SNRu − 1.32

)
(8.155)
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which is plotted in Fig. 8.14 alongside the actual sum-capacity.

Example 8.36

Repeat the previous example for U = Nt = 3 and Nr = 1.

Solution

Applying again (8.151), L∞ = 1.22 (in 3-dB units). The ensuing high-SNR approximation
is also depicted in Fig. 8.14, next to the actual sum-capacity.

The number of DOF for individual users is, in the ergodic sense, as argued for specific
channel realizations: the user encoded first enjoys min(Nt, Nr) spatial DOF, the user en-
coded second enjoys min(Nt−Nr, Nr) spatial DOF, and so on, with these quantities taken
as zero whenever negative.

8.10 Broadcast channel with no CSIT

When the transmitter is not privy to the realization of the channel matrices, but only to
their distribution, no time-domain power control is possible and thus a per-symbol power
constraint effectively engulfs also a per-codeword constraint.

Rather than separately study what happens with no CSIT or with no CSI whatsoever,
we can consider both cases in concert. Indeed, we have learned throughout the text that
the availability of CSIR in the form of side information changes but little the performance
in nonmassive MIMO conditions. Consequently, what drives our interest here is the role
of CSIT. In SU-MIMO and in the MU-MIMO MAC, this role was far from critical, and
altogether inconsequential in most high-SNR situations. In the MU-MIMO BC, things
turns out to be radically different and not having CSIT has severe consequences:

The MAC–BC duality no longer holds.
DPC cannot be applied.

As a result, much of what is learned under CSIT ceases to apply. Since, without CSIT,
the precoders can only depend on the fading distributions and chiefly the transmit antenna
correlations, it is then of interest to have these be as pronounced as possible. Without
antenna correlations, in fact, the transmitter is unable to take advantage of the availability
of multiple antennas to communicate concurrently with multiple users as it does not know
in which spatial directions the signals intended for each user should be launched [796].
Intuitively, then, the capacity of a MU-MIMO BC should be no better than if the transmitter
multiplexed its signals orthogonally, and this is indeed the case. Specifically, it is shown
in [813] that the capacity boundary of a MU-MISO BC (single-antenna users and Nt > 1

antennas at the base station) is contained within that of the corresponding MU-SISO BC
(single-antenna users but Nt = 1); without CSIT, therefore, the space dimension cannot
be exploited for multiplexing purposes and the spatial DOF collapse. More generally, the
situation in terms of the number of DOF is as in Table 8.1.
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Table 8.1 Number of spatial DOF

CSIT (side information) No CSIT
S∞ = min(Nt, UNr) S∞ = min(Nt, Nr)

In order to transcend what can be achieved by a combination of SU-MIMO and or-
thogonal multiplexing, avoiding the collapse of the spatial DOF, it is necessary to acquire
CSIT. Fortunately, the underspreadness of the fading makes this possible, just as it makes
it possible to acquire CSIR. As discussed in Section 5.10, with TDD/full duplexing the
CSIR acquired upon reception can double as CSIT while, with FDD, feedback is often
effective. In either case, the analysis of how pilot symbols enable the procurement of chan-
nel estimates and, from those, the adjustment of transmitters and receivers, is certainly
more involved in the BC than in SU-MIMO or in the MAC. An extensive analysis of how
pilot-assisted transmission can bridge the gap between the no-CSI and the CSI extremes is
presented in the next chapter, in the context of linear transmitters for the MU-MIMO BC.

In the present chapter’s context of optimum transmitters, the elucidation of how exploit-
ing the fading coherence can enable a transmitter deprived of side information to approach
what is possible with CSIT is forestalled by the fact that the capacity boundary of a MU-
MIMO BC without CSIT is unknown and appears to be rather unwieldy. Notwithstanding
that, illuminating results in this respect have been put forth in terms of the number of DOF;
despite the coarse nature of the DOF metric, informative only of the high-SNR asymptotic
behavior, these results shed light on the problem and merit attention. The gist of them is
encased in the example that follows, and the implications are discussed in due course.

Example 8.37

Consider a MU-MISO BC with U ≤ Nt. Antenna correlations may exist at the base station.
Suppose that H0 is known by the transmitter while H1, . . . ,HU−1 are not. Then, as indi-
cated, the capacity is no better than with single-user operation: S∞ = 1. We are interested
in the conditions leading to S∞ > 1 and, in particular, to S∞ = U . Do H1, . . . ,HU−1

have to become perfectly known as their SNRs grow? If so, how fast should the uncertainty
in the transmitter knowledge of H1, . . . ,HU−1 decay as those SNRs grow?

Solution

It is proved in [814] (see also [815] and [816]) that, if the uncertainty in the transmitter
knowledge of Hu for u = 1, . . . , U − 1 behaves as

O
(

1

SNRζu
u

)
ζu ∈ [0, 1], (8.156)

then the sum-capacity exhibits

S∞ = 1 +

U−1∑
u=1

ζu. (8.157)
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The fact that the quality of the CSIT needs to improve with the SNR and become per-
fect in the limit for each DOF not to be zero is hardly surprising. Intuitively, as the noise
vanishes, the interference that a signal stream experiences from others should vanish as
well—lest it become the limiting impairment—and such interference relates directly to the
CSIT. But (8.157) is a stronger result, as it quantifies the rate at which the CSIT needs to
improve for a given number of DOF between 1 and U to be achievable. In particular:

For ζu = 0, the DOF of user u collapse. In fact, such a collapse occurs not only in the
complete absence of CSIT, but anytime the CSIT does not improve with the SNR as per
(8.156). Beware that the coarseness of the DOF metric is on display here; having more
CSIT is certainly better than having less, even if the improvement does not conform to
(8.156), and any difference is sure to reflect on a higher capacity even if the number of
DOF is unchanged.
For ζ1 = · · · = ζU−1 = 1 we obtain S∞ = U . An even faster rate of improvement in
the CSIT quality may bring about further gains in capacity, necessarily sublogarithmic
because the number of spatial DOF cannot exceed S∞ = U . Again, the DOF metric
fails to capture these finer aspects.

Elaborating on Example 8.37 and taking the implications to their logical conclusion we
could affirm that, without side information, the number of spatial DOF in a MU-MIMO BC
equals min(Nt, UNr) times a loss factor capturing the signaling resources that have to be
consumed in order to satisfy (8.156). For an FDD system, the loss factor needs to further
account for whatever feedback resources are necessary to ensure (8.156). In this regard, it
is also argued in [814] that quantized digital feedback at the proper rate suffices.

Transmit antenna correlations, allowed in Example 8.37, as well as receive antenna cor-
relations in the case of multiantenna users, are immaterial when it comes to the spatial
DOF but would likely affect the capacity boundary. On the one hand, correlations facilitate
the acquisition of CSI while, on the other hand, they may modify (either enlarge or shrink)
the CSI capacity boundary. The balance of these effects is in general not obvious.

If one wanted to operate a BC without gathering and exploiting CSIT, that would favor
closely spaced transmit antennas and narrow angle spreads, suggesting base stations ele-
vated over the scattering clutter (see Section 3.6.1). With strong antenna correlations, the
precoders could synthesize beams directed to each user and, if those users were sufficiently
separated in angle—this could be aided by an adequate selection of the U active users from
the population Utot—the beams would interfere minimally even without nonlinear process-
ing at the transmitter. What this points to is the orthodox notion of SDMA illustrated in the
bottom part of Fig. 2.11. Since the exact capacity-achieving statistical beamformers are not
easy to compute explicitly [516, 817–819], a pragmatic approach to such SDMA would
be to simply apply SU-MIMO statistical beamforming to each user’s signal. As learned
in Section 5.4, this amounts to setting Fu =

√
Ntuu with uu the maximum-eigenvalue

eigenvector of E
[
H∗

uHu

]
. As mentioned, interference among beams could be kept to a

minimum with a proper user selection and, if necessary, by perturbing the SU-MIMO pre-
coding solutions. In fact, sectorization—a mainstay of traditional cellular design—can be
viewed as a static form of SDMA, where the “beams” are fixed sectors that can be shaped
by a single directive antenna but also by an array of closely spaced antennas.
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8.11 Summary and outlook

A key insight in MU-MIMO is that, with CSIR and CSIT as well as with optimum transmit-
ters and receivers, the high-SNR sum-capacity is essentially as if U users could collaborate
as a single user. This is a powerful result that allows skirting restrictions in the number of
antennas at the user devices, where form factors may be an issue, by simply activating
multiple users. This advantage does not show at low SNRs, where performance is driven
by the captured power, something on which MU-MIMO is not superior to SU-MIMO: in
the MAC, the number of receive antennas is the same for both SU-MIMO and MU-MIMO
while, in the BC, the transmit power must be split among MU-MIMO users. It is thus at
high SNR that the superiority of MU-MIMO becomes pronounced, once the performance
is driven by the number of communication dimensions; this is sharply registered by the
increase in spatial DOF when switching from SU-MIMO to MU-MIMO.

In the MAC, the foregoing insight holds despite the U users being unable to pool their
powers or precode their signals jointly. For Es/N0 → ∞ and UNt ≤ Nr, the power allo-
cation becomes uniform and this restriction is rendered irrelevant, with or without CSIT.

In the BC, alternatively, the transmit powers are inherently pooled and the precoding is
localized, but the availability of CSIT is critical. It is the CSIT that enables the BC to per-
form as if the U receivers could collaborate, but, by the same token, if the CSIT is absent—
or does not improve sufficiently fast with the SNRs—the MU-MIMO BC founders.

The more specific findings of the chapter, with the low-SNR regime de-emphasized
given its reduced interest for MU-MIMO, are recapped in the form of take-away points
within the companion summary box.

Because of its complexity and sensitivity to CSIT inaccuracies, DPC is used mostly for
benchmarking and bounding, rather than actually implemented; we resort to this bench-
mark in the next chapter. And, on the matter of CSI accuracy, the all-important issue of
pilot-based transmission has been touched on briefly; the bulk of it is also deferred to the
next chapter, where it is covered extensively in the context of linear transceivers.

The reader may also have noticed that, in contrast with the SU-MIMO part of the book,
in this part we are not resorting as intensively to the large-dimensional regime. Indeed,
except for very special cases such as equals-SNR users, the matrices involved have more
intricate structures and the insight advantages are largely lost. Despite this reality, some
results are pointed out in Section 8.4.2, with more to come in the massive MIMO analysis.

Problems

8.1 Draw the MU-SIMO MAC capacity boundary for U = 2 with SNR0 = 10 dB,
SNR1 = 5 dB, and

H0 =

[
1 + 0.5 j

0.3− j

]
H1 =

[
2 + 0.3 j

1.2

]
. (8.163)
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Take-away points

1. In a MAC with an optimum receiver, users should transmit at full power (or, with
discrete constellations, at the highest power convenient for those constellations).

2. With CSIR and CSIT, the achievable (R0/B, . . . , RU−1/B) for channel realiza-
tions H0, . . . ,HU−1 with precoders F0, . . . ,FU−1 is defined by

∑
u∈U

Ru

B
≤ log2 det

(
I +

∑
u∈U

SNRu

Nt
HuFuF

∗
uH

∗
u

)
U ⊆ {0, . . . , U − 1}

and the MAC capacity is the boundary of the union of all regions corresponding to
admissible precoders.

3. The precoders that yield the boundary point corresponding to some weights
q0, . . . , qU−1 can be obtained via convex optimization. For the sum-capacity
specifically, the precoders can also be obtained through iterative waterfilling.

4. With LMMSE-SIC reception, users should be decoded in order of increasing
weight and the uth decoded user achieves

Ru

B
= log2 det

(
I +

U−1∑
u=u

SNRu

Nt
HuFuF

∗
uH

∗
u

)
(8.158)

− log2 det

(
I +

U−1∑
u=u+1

SNRu

Nt
HuFuF

∗
uH

∗
u

)
u = 0, . . . , U − 1,

from which
∑U−1

q=0 quRu/B can be optimized over the precoders. This optimiza-
tion, swept over all possible weights, yields again the capacity boundary.

5. In the MAC, the number of spatial DOF is S∞ = min(UNt, Nr) whereas the
sum-capacity power offset is

L∞(H0, . . . ,HU−1) = log2 Nt − 1

UNt
log2 det(H

∗H), (8.159)

where H = [H0 · · · HU−1].
6. Without CSIT, the MAC precoders depend on the distribution of H0, . . . ,HU−1

and can again be obtained via convex optimization. In correlated channels specifi-
cally, each user should diagonalize its transmit own correlation matrix.

7. To bypass the assumption of CSIR side information, a penalty factor (1−S∞/Nc)

should be applied to S∞ = min(UNt, Nr). The ensuing number of DOF can be
achieved with pilot-assisted transmission.

8. The BC capacity boundary with CSIT and CSIR coincides with the capacity bound-
ary of a fictitious dual MAC where users can pool their powers (but not jointly
precode).

9. In a nondegraded BC with CSIT, DPC transmission with users encoded in order
of decreasing weight is optimum. For a degraded BC, both DPC and superposition
are optimal.
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10. With DPC in order of decreasing weights, the BC counterpart to (8.158) is

Ru

B
= log2 det

(
I +Hu

u∑
u=0

Eu

Es
SNRu

Nt
FuF

∗
u ·H∗

u

)
(8.160)

− log2 det

(
I +Hu

u−1∑
u=0

Eu

Es
SNRu

Nt
FuF

∗
u ·H∗

u

)
u = 0, . . . , U − 1.

In contrast with the MAC, here the optimization of
∑U−1

q=0 quRu/B is not convex.
11. Applying the BC-MAC duality, (8.160) can be converted into

Ru

B
= log2 det

(
I +

U−1∑
u=u

Eu

Es
SNRu

Nr
H∗

uF
dMAC

u F dMAC

u
∗
Hu

)
(8.161)

− log2 det

(
I +

U−1∑
u=u+1

Eu

Es
SNRu

Nr
H∗

uF
dMAC

u F dMAC

u
∗
Hu

)
u = 0, . . . , U − 1

whose optimization over
√
E0/EsF

dMAC
0 , . . . ,

√
EU−1/EsF

dMAC

U−1 is convex. More-
over, the BC precoders are given by the filters in the LMMSE-SIC receiver for this
dual MAC.

12. In the BC with CSIT, the number of spatial DOF is S∞ = min(Nt, UNr) whereas
the sum-capacity power offset is

L∞(H0, . . . ,HU−1) = log2(UNr)− 1

UNr
log2 det(HH∗), (8.162)

where H∗ = [H∗
0 · · · H∗

U−1].
13. In ergodic settings, the spectral efficiencies and power offsets in this summary

should be further expected over the distribution of H0, . . . ,HU−1 and of any
quantities that are functions thereof.

14. In the BC, in the absence of CSIT, S∞ = 1 +
∑U−1

u=1 ζu provided the uncertainty
in the transmitter knowledge of Hu scales as O(

SNR−ζu
u

)
for ζu ∈ [0, 1] and

u = 1, . . . , U − 1.

8.2 Write down the conditions determining the MU-SIMO MAC capacity boundary for
U = 3 with SNR0 = 10 dB, SNR1 = 3 dB, and SNR2 = 5 dB, and with

H0 =

[
1 + 0.5 j

0.3− j

]
H1 =

[
2 + 0.3 j

1.2

]
H2 =

[
2

0.7 + 1.2 j

]
.

8.3 Repeat Example 8.2 in the following cases.
(a) SNR0 = SNR1 = 0 dB.
(b) SNR0 = 0 dB and SNR1 = 10 dB.

8.4 Repeat Example 8.2, but with the precoders optimized.
Hint: A convex solver is required, for instance fmincon in MATLAB®.
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8.5 In a quasi-static MAC with LMMSE-SIC reception, if the users are decoded in an
order other than that of increasing weights, do the sum-capacity and weighted sum-
capacity diminish or stay unchanged? What is the significance of this?

8.6 Prove that, when the noise is v ∼ NC(0,Σ), the optimum SU-MIMO precoder is
the one that diagonalizes Σ−1/2H . This sets the stage for iterative waterfilling.

8.7 For the setup of Example 8.2, apply iterative waterfilling to obtain the precoders that
deliver the sum-capacity. Then apply those precoders to compute such sum-capacity.

8.8 For the setup in Example 8.2, compute q0R0/B+q1R1/B under TDMA SU-MIMO.
What is the advantage for each user of employing MU-MIMO rather than TDMA
SU-MIMO at the operating point defined by such q0 and q1?

8.9 Prove that (8.23) plus C1 equal the sum-capacity C in Example 8.3.

8.10 Expand (8.57) and show that it behaves as

Ru

B
= Ċu(0) SNRu +O(SNR2

u) (8.164)

as claimed in Section 7.7. Further show that, in this expansion,

Ċu(0) = E
[
λmax(H

∗
uHu)

]
log2 e (8.165)

as in the corresponding expansion for the SU-MIMO ergodic capacity with CSIT,
given in (5.38).
Note: This proves that, with CSIT, MU-MIMO and frequency-division SU-MIMO are
equivalent to first order in a low-SNR MAC.

8.11 Consider a vehicular block-faded MU-SIMO MAC with U = 2, SNR0 = 20 dB,
SNR1 = 0 dB, and Nr = 2. The receiver is LMMSE-SIC with user 0 decoded first.
What is the minimum pilot overhead to ensure that the effective SNR experienced
by user 0 is at least 10 dB above SNR1?

8.12 Let U = 3 with SNRu = SNR for u = 0, 1, 2 and with

H0 =

[
1 + 0.5 j 2

0.3− j 0.7 + 1.2 j

]
H1 =

[
0.4 j 2 + 0.3 j

1.1 + j 1.2

]

H2 =

[
0.7 −1 + 0.9 j

1.3 j 0

]
.

(a) Calculate the multiuser power offset, L∞(H0,H1,H2).
(b) Plot the unprecoded sum spectral efficiency as a function of SNR ∈ [0, 30] dB.

On the same chart, plot the high-SNR expansion of the sum-capacity.

8.13 Generalize to the MU-MIMO MAC the power offset definition in (4.46).

8.14 Derive the counterpart for UNt > Nr to the high-SNR expansion of the MU-MIMO
MAC sum-capacity in (8.53).

8.15 Reproduce Example 8.9. Further plot, on the same chart, the collaborative upper
bound: the ergodic sum-capacity of an SU-MIMO channel where the transmitter
aggregates the U users, with their antennas and powers pooled, and joint precoding.

8.16 Repeat Example 8.9 with Nr = 4.
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8.17 Repeat Example 8.9 with every user’s two transmit antennas being fully correlated.
What do you observe?

8.18 Reproduce Example 8.10.

8.19 Repeat Example 8.10 with Nr = 4 and corroborate that now one of the users has
zero DOF.

8.20 Plot (8.65) alongside the corresponding ergodic sum spectral efficiency without pre-
coding for SNRu = SNR, u = 0, 1, 2, over the range SNR ∈ [0, 30] dB.

8.21 For U = 3 and Nt = 2, plot L∞ for an ergodic MU-MIMO MAC with IID Rayleigh
fading as a function of Nr = 6, . . . , 10.

8.22 Consider an ergodic MU-MIMO MAC with U = 4, Nt = 2, and Nr = 8. Further
let SNR0|dB = SNR1|dB = SNR|dB and SNR2|dB = SNR3|dB = SNR|dB + 5 dB,
with H0 and H1 having IID Rayleigh-faded entries while H2 and H3 have IID
Rice-faded entries (K = 3 dB).
(a) Plot the unprecoded ergodic sum-spectral efficiency for SNR ∈ [0, 30] dB.
(b) On the same chart, plot the corresponding high-SNR expansion.

8.23 Prove the low-SNR first-order equivalence between MU-MIMO and frequency-division
SU-MIMO in a MAC, as in Problem 8.10, but this time with CSIR only (no CSIT).

8.24 Consider a MU-MIMO MAC with U = Nr = 3 and Nt = 2. The channels are
Rayleigh-faded with transmit correlation matrix

Ru =

[
1 0.7

0.7 1

]
u = 0, 1, 2 (8.166)

and the uth user beamforms along the maximum-eigenvalue eigenvector of Ru. For
SNR0|dB = SNR1|dB = SNR|dB and SNR2|dB = SNR|dB + 5 dB, plot the ergodic
sum spectral efficiency as a function of SNR ∈ [0, 20] dB and confirm that S∞ = 3.

8.25 Consider a MU-SIMO MAC with SNRu = SNR for u = 0, . . . , U − 1 and with
SNR = 10 dB. Further, H0, . . . ,HU−1 have IID Rayleigh-faded entries. For this
setup and fixed Nr, compute the leading term in the expansion of the ergodic sum-
capacity as a function of U .

8.26 Consider a vehicular Rayleigh-faded MU-MIMO MAC with U = Nt = 2 and
Nr = 4. The channel matrices have IID entries and the transmissions are unprecoded
with SNR0|dB = SNR|dB and SNR1|dB = SNR|dB + 6 dB.
(a) Plot the ergodic sum spectral efficiency with CSIR over SNR ∈ [0, 20] dB.
(b) On the same chart, plot the pilot-assisted sum spectral efficiency without pilot

power boosting. Further plot the optimum pilot overheads, α�
0 and α�

1.
Hint: A convex solver is required, for instance fmincon in MATLAB®.

8.27 Show that, given ‖F BC
u ‖2F = Nt, the dual-MAC precoder satisfies ‖F dMAC

u ‖2F = Nr.

8.28 Show how, for U = 1 and Nt ≥ Nr, the capacity of the BC and MAC channels
coincide at any given SNR.

8.29 Verify that (8.114) equals (8.113).

8.30 Verify that (8.74) equates the BC expression in (8.117) with its dual-MAC counter-
part in (8.116).



495 Problems

8.31 Consider an MU-SISO BC with U = 2 and Nt = Nr = 1. Let SNR0 |h0|2 = 5 dB
and SNR1 |h1|2 = 10 dB, with CSIR and CSIT.
(a) Draw the capacity boundary directly.
(b) Draw the capacity boundary as the union of the spectral efficiency regions achiev-

able under all possible power allocations in the dual MAC. Verify that this
boundary coincides with the one in part (a).

8.32 Reconsider Problem 8.31, but this time suppose that user 1 is DPC-encoded before
user 0.
(a) Draw the boundary of the region of achievable spectral efficiencies.
(b) Draw the line connecting corner 1 of the spectral efficiency pentagons achiev-

able under all possible power allocations in the dual MAC. Verify that this line
coincides with the boundary in part (a).

Note: This problem shows how an incorrect encoding order in a degraded BC (i.e.,
not in order of channel strengths) corresponds to a decoding order (i.e., a corner) in
the dual MAC that is not the one delineating the capacity boundary when the union
is taken over all power allocations.

8.33 Show that (8.127) expands as (8.129).

8.34 Expand (8.142) and show that it behaves as

Ru

B
=

Eu

Es
Ċu(0) SNRu +O(SNR2

u), (8.167)

with Ċu(0) = E
[
λmax(H

∗
uHu)

]
log2 e. This expansion coincides with (7.18), prov-

ing that MU-MIMO and frequency-division SU-MIMO are equivalent to first order
in a low-SNR BC.

8.35 Reproduce Example 8.28.

8.36 For the BC in Example 8.28, compute the spectral efficiency pairs corresponding to
the following operating points.
(a) Sum-capacity.
(b) Proportional fairness.
(c) Equal spectral efficiencies.
Hint: A convex solver is required, for instance fmincon in MATLAB®.

8.37 Compute the sum-capacity for the BC in Example 8.28, modified such that SNR0 =

10 dB and SNR1 = 3 dB.

8.38 Reconsider the BC in Example 8.28, except with SNR0 = SNR1 = SNR.
(a) Plot the sum spectral efficiency with an equal power allocation as a function of

SNR ∈ [10, 20] dB.
(b) Compute S∞ and L∞(H0,H1), and plot, on the same chart as part (a), the

high-power expansion of the sum-capacity.

8.39 Reconsider Example 8.31.
(a) Reproduce the sum-capacity in Fig. 8.14.
(b) On the same chart, plot the CSIT-aware SU-MIMO ergodic capacity for each of

the three users.
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8.40 Plot the collaborative upper bound for Example 8.31, i.e., the ergodic sum-capacity
of an SU-MIMO channel where the receiver is the aggregation of the three receivers
therein.

8.41 The collaborative upper bound equals the sum-capacity of both MAC and BC, asymp-
totically in the SNRs. Does that equality extend to the entire high-SNR capacity
boundary?

8.42 Consider a BC where U = Nt = 2 and Nr = 1 with

SNR0|dB = SNR|dB (8.168)

SNR1|dB = SNR|dB + 3 dB (8.169)

and with IID Rayleigh fading. Applying duality, compute the ergodic sum-capacity
with CSIR and CSIT and plot it as a function of SNR.
Hint: Although a convex solver may be applied, it is not essential since the dual-
MAC optimization entails a single scalar parameter.

8.43 Repeat Problem 8.42 with the number of base station antennas increased to Nt = 4.
8.44 Repeat Problem 8.42 with U = Nt = 4 and with

SNR2|dB = SNR|dB (8.170)

SNR3|dB = SNR|dB + 3 dB. (8.171)

8.45 Repeat Problem 8.42, but with Nt = 4 and U = Nr = 2. The fading is Rayleigh-
distributed and each user’s antennas are 70% correlated. The transmit antennas re-
main uncorrelated.

8.46 Repeat Problem 8.42 with Nt = 3 and U = 2; one of the users has a single antenna
while the other has two antennas.

8.47 For an ergodic BC with CSIT, confirm utilizing the power offset expressions for IID
Rayleigh fading that, once all users have entered the high-SNR regime, the sum-
capacity is exactly as if those users could collaborate as a single receiver.

8.48 Reproduce Example 8.35.
8.49 Reconsider the setup of Example 8.35. Compute the change in high-SNR sum-

capacity if, rather than IID Rayleigh-faded, the channels are as follows.
(a) IID Rice-faded with K = 0 dB.
(b) IID Rice-faded with K = 10 dB.
(c) Rayleigh-faded with 70% correlation between user antennas and no correlation

at the base station.
8.50 Repeat Problem 8.49, but this time express the changes in terms of transmit power.
8.51 Consider a two-antenna base station communicating with two single-antenna users.

The channels are Rayleigh-faded and uncorrelated, with

SNR0|dB = SNR|dB (8.172)

SNR1|dB = SNR|dB + 5 dB. (8.173)

On a common chart, plot the MAC and the BC sum-capacities as a function of
SNR ∈ [0, 20] dB with CSIR and CSIT. What do you observe?
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Leave the beaten tracks occasionally, and dive into the woods. You will be certain to
find something that you have never seen before.

Alexander Graham Bell

9.1 Introduction

As in SU-MIMO, linear receivers are a lesser complexity alternative also in MU-MIMO.
Moreover, for the MU-MIMO BC, linear transmitters are almost a necessity given the
difficulties of implementing DPC. Altogether, the importance of linear transceivers for
MU-MIMO is far-reaching and deserving of the comprehensive treatment dispensed in
this chapter.

In comparison with SU-MIMO, where the performance deficit of linear receivers de-
pends chiefly on the balance between the number of transmit and receive antennas, in
MU-MIMO some additional elements influence the shortfall of linear transceivers relative
to capacity.

User selection, whereby each resource block is allocated to a selected subset of U users
from the population of Utot users.
The need to furnish the BC transmitter with CSIT.

These elements permeate the exposition in the chapter, injecting into the derivations aspects
such as the type of duplexing or the feedback.

With linear in place of optimum transceivers, the structure of this chapter mirrors that of
the previous one, namely a block of sections dealing with the MAC and another block deal-
ing with the BC, with both blocks connected by a pivotal section examining the MAC–BC
duality. Precisely, Section 9.2 lays the ground for the study of the MAC with linear re-
ceivers while Sections 9.3 and 9.4 analyze the ZF and LMMSE receivers, respectively.
Then, Section 9.5 addresses the duality with linear transceivers and leads into the BC
part of the chapter. Within that part, Section 9.6 kicks things off by introducing the key
ingredients of a BC with linear transmission and Section 9.7 extensively covers the ZF
performance in MU-MISO channels, including the issues that arise in pilot-assisted trans-
mission with FDD, TDD, or full duplexing. Subsequently, Section 9.8 generalizes the ZF
MU-MISO transmission into block-diagonalization for MU-MIMO, and Section 9.9 fur-
ther extends the ZF approach by means of regularization. Finally, Section 9.10 wraps up
the chapter.

497
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W ∗
0

W ∗
U−1

�Fig. 9.1 Linear MU-MIMO MAC receiver. The linear filter W is made up of U filters

W0, . . . ,WU−1, each targeting the streams of the pertinent user. If Ns < Nt, then

some of the outputs for each user are zero.

9.2 Linear receivers for the multiple-access
channel

In the study of linear receivers, the interpretation of the MAC as a SU-MIMO channel
with block-diagonal precoding proves once again useful, allowing for a rather economic
presentation. As in Chapter 8, we consider that every user has the same number of transmit
antennas, Nt; this assumption reduces the number of variables with no appreciable loss
of content in the exposition. We also consider, unless otherwise indicated, that Ns = Nt.
However, we do retain distinct power control coefficients, E0

Es
, . . . , EU−1

Es
, because, with

a linear receiver, having every user transmit at full power need not be optimal. (With an
optimum receiver it is optimal, which is why in the corresponding MAC treatment Eu

Es
= 1

for u = 0, . . . , U − 1.)
For the sake of linear reception, separate codewords should be transmitted, not only

across users—always the case—but further across same-user data streams. The linear re-
ceiver, in turn, can be viewed as either a single filter estimating all data streams at once or,
alternatively, as U filters, one per user (see Fig. 9.1). This is followed by a bank of scalar
decoders operating separately on each stream.

With Wu the filter in charge of recovering the signals from user u, the output corre-
sponding to the jth stream of such user is

[W ∗
uy]j = [Wu]

∗
:,j y (9.1)
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= [Wu]
∗
:,j

(
U−1∑
u=0

√
GuEu

Nt
HuFusu + v

)
(9.2)

=

√
GuEu

Nt
[Wu]

∗
:,j Hu [Fu]:,j [su]j︸ ︷︷ ︸

Desired signal

+

√
GuEu

Nt

∑
j′ �=j

[Wu]
∗
:,j Hu [Fu]:,j′ [su]j′

︸ ︷︷ ︸
Interference from same-user streams

(9.3)

+
∑
u �=u

√
GuEu

Nt

Nt−1∑
j′=0

[Wu]
∗
:,j Hu [Fu]:,j′ [su]j′

︸ ︷︷ ︸
Interference from other users

+ [Wu]
∗
:,j v︸ ︷︷ ︸

Filtered noise

from which, for given fading realizations, we can express this stream’s SINR as

sinru,j =
Eu

Es

SNRu

Nt

∣∣[Wu]
∗
:,j Hu [Fu]:,j

∣∣2
Den

(9.4)

where the denominator, packaging the interference-plus-noise power, is

Den =
Eu

Es
SNRu

Nt

∑
j′ �=j

∣∣[Wu]
∗
:,j Hu [Fu]:,j′

∣∣2

+
∑
u �=u

Eu

Es
SNRu

Nt

Nt−1∑
j′=0

∣∣[Wu]
∗
:,j Hu [Fu]:,j′

∣∣2 + ∥∥[Wu]:,j
∥∥2

. (9.5)

In MU-SIMO MAC specifically, the receive filter for user u is a column vector and the
precoders become immaterial, such that

sinru =
Eu

Es
SNRu

∣∣W ∗
uHu

∣∣2∑
u �=u

Eu

Es
SNRu

∣∣W ∗
uHu

∣∣2 + ∥∥Wu

∥∥2 . (9.6)

The simplest possible linear receiver consists of a bank of matched filters, Wu ∝ HuFu

for u = 0, . . . , U − 1, which performs well if Nr � UNt as then the columns of
H0, . . . ,HU−1 are close to orthogonal even in the absence of any smart user selection;
this situation may arise in massive MIMO. Otherwise, a bank of matched filters performs
poorly and the more involved ZF and LMMSE receivers are called for.

User selection, which as mentioned influences the gap between linear receivers and ca-
pacity, also affects the relative performance of the ZF and LMMSE structures. When there
is a large pool of Utot users from which to favorably select the U active ones, with the value
of U itself subject to choice, the performance of both linear structures improves and the gap
between them shrinks. However, such sum-spectral-efficiency-driven user selection must
be balanced with the need for long-term fairness, and the chapter includes examples that
illustrate this point.
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9.3 Linear ZF receiver for the multiple-access
channel

9.3.1 Receiver structure

As in SU-MIMO, the first idea that comes to mind to outdo a matched filter is that of a ZF
filter completely ridding each signal from the interference from the rest. Advantageously,
this renders full-power transmission by each user optimal, as the intended signals become
stronger without the downside of increased interference. Therefore, in this section we can
let Eu

Es
= 1 for u = 0, . . . , U − 1. Under the premise, necessary for ZF feasibility, that

Nr ≥ UNt, the ZF receiver for the MU-MIMO MAC could be obtained by resorting
to our recurring SU-MIMO interpretation and applying the corresponding solution. The
resulting ZF filter would have to invert (in the Moore–Penrose pseudoinverse sense, see
Appendix B.6) the equivalent SU-MIMO channel connecting s = [sT

0 · · · sT

U−1]
T with y,

i.e., the channel

[√
G0Es

Nt
H0 · · ·

√
GU−1Es

Nt
HU−1

]⎡⎢⎣
F0 0 0

0
. . . 0

0 0 FU−1

⎤
⎥⎦

=
[√

G0Es

Nt
H0F0 · · ·

√
GU−1Es

Nt
HU−1FU−1

]
. (9.7)

The single ZF filter W ZF inverting such channel satisfies

W ZF∗ =
[√

G0Es

Nt
H0F0 · · ·

√
GU−1Es

Nt
HU−1FU−1

]†
(9.8)

=

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

√
G0Es

Nt
F ∗
0 H

∗
0

...√
GU−1Es

Nt
F ∗
U−1H

∗
U−1

⎤
⎥⎥⎥⎦
[√

G0Es

Nt
H0F0 · · ·

√
GU−1Es

Nt
HU−1FU−1

]
⎞
⎟⎟⎟⎠

−1

·

⎡
⎢⎢⎢⎣

√
G0Es

Nt
F ∗
0 H

∗
0

...√
GU−1Es

Nt
F ∗
U−1H

∗
U−1

⎤
⎥⎥⎥⎦ , (9.9)

which, for U = 1, reduces to the SU-MIMO solution in (6.3). Parceling out W ZF into U

blocks of Nt columns such that

W ZF =
[
W ZF

0 · · · W ZF

U−1

]
, (9.10)

we obtain separate ZF filters W ZF
0 , . . . ,W ZF

U−1 that recover the individual user signals, i.e.,
that satisfy

W ZF

u
∗
y = su + v̆u (9.11)
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where the filtered noise v̆u = W ZF
u

∗vu has a conditional covariance

E
[
v̆uv̆

∗
u |H0, . . . ,HU−1

]
= N0 W

ZF

u
∗
W ZF

u . (9.12)

9.3.2 Output SNR distribution

From (9.11) and (9.12), the output SNR for the jth stream of the uth user equals, for given
fading realizations,

snrZFu,j =
1

N0 [W ZF
u

∗W ZF
u ]j,j

. (9.13)

The distribution of this quantity can be characterized by recognizing that, from the vantage
of the jth stream of the uth user, the Nr receive antennas null out UNt − 1 interfering
streams, leaving the equivalent of Nr−UNt+1 receive antennas to effectively process the
desired signal. The distribution of snrZFu,j is thus identical to that of a SIMO channel with
Nr − UNt + 1 receive antennas.

Example 9.1 (ZF output SNR distribution in an IID Rayleigh-faded MU-MIMO
MAC)

Consider unprecoded transmissions in IID Rayleigh fading. As shown in Examples 5.16
and 6.2, the SNR distribution in the corresponding MU-SIMO channel is chi-square. It
follows from those examples that, with Nr − UNt + 1 effective receive antennas,

snrZFu,j ∼ χ2
2(Nr−UNt+1) j = 0, . . . , Nt − 1 u = 0, . . . , U − 1. (9.14)

Precisely, for ξ ≥ 0,

fsnrZFu,j
(ξ) =

Nt

SNRu(Nr − UNt)!
exp

(
− Nt

SNRu
ξ

)(
Nt

SNRu
ξ

)Nr−UNt

, (9.15)

which, if UNt = Nr, reduces to an exponential distribution. The average SNR output for
the jth stream of the uth user is

E
[
snrZFu,j

]
= (Nr − UNt + 1)

SNRu

Nt
, (9.16)

which, if UNt = Nr, reduces to E
[
snrZFu,j

]
= SNRu

Nt
.

9.3.3 Ergodic spectral efficiency

The jth stream of the uth user experiences a scalar Gaussian-noise channel with fading
SNR given by snrZFu,j , hence its spectral efficiency is maximized when the codewords are
drawn from a complex Gaussian distribution. Adding over the corresponding streams, the
ergodic spectral efficiency of the uth user then equals

CZF

u =

Nt−1∑
j=0

E
[
log2

(
1 + snrZFu,j

)]
(9.17)
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and the weighted sum spectral efficiency is
∑U−1

u=0 quC
ZF
u .

Example 9.2 (ZF spectral efficiency in an IID Rayleigh-faded MU-MIMO MAC)

Consider unprecoded transmissions in IID Rayleigh fading. The Nt streams of user u ex-
hibit the same SNR distribution and hence

CZF

u = Nt E
[
log2

(
1 + snrZFu,j

)]
(9.18)

= Nt

∫ ∞

0

log2(1 + ξ)
Nt

SNRu (Nr − UNt)!
exp

(
− Nt

SNRu
ξ

)(
Nt

SNRu
ξ

)Nr−UNt

dξ

(9.19)

with j the index of an arbitrary stream and with fsnrZFu,j
(·) borrowed from Example 9.1.

Then, applying (C.37),

CZF

u = Nt e
Nt/SNRu

Nr−UNt+1∑
q=1

Eq
(

Nt

SNRu

)
log2 e. (9.20)

Example 9.3 (ZF spectral efficiency in an IID Rayleigh-faded MU-SIMO MAC)

For Nt = 1 and U = Nr, Example 9.2 specializes to

CZF

u = e1/SNRu E1
(

1

SNRu

)
log2 e, (9.21)

which coincides with the capacity of a Rayleigh-faded SISO channel with the same SNR
(recall Example 4.27). A linear ZF receiver therefore enables as many single-antenna users
as receive antennas to communicate concurrently as if each transmission was picked up by
a single receive antenna, free of interference.

Example 9.4

Consider a three-user MAC with Nt = 2 and Nr = 6. The respective local-average SNRs
are referenced to a common variable SNR such that

SNR0|dB = SNR|dB (9.22)

SNR1|dB = SNR|dB + 5dB (9.23)

SNR2|dB = SNR|dB + 8dB. (9.24)

Letting H0, H1, and H2 be IID Rayleigh-faded while Fu = I for u = 0, 1, 2, evaluate
the sum spectral efficiency of ZF and compare it with the sum-capacity. Include in the
comparison also the SU-MIMO spectral efficiency obtained when only each of the users
transmits without precoding and individual ZF reception is applied.

Solution

See Fig. 9.2. At low SNR, having only the strongest user transmit in SU-MIMO mode
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�Fig. 9.2 MAC ergodic sum spectral efficiency for MU-MIMO with U = 3, Nt = 2, and Nr = 6,

as a function of the reference SNR (in dB). In solid lines, linear ZF and LMMSE

receivers compared against the optimum receiver. In dashed lines, high-SNR

expansions and also individual spectral efficiencies achieved by each user in

SU-MIMO mode with ZF reception. All transmissions are unprecoded.

is preferable with reception. Once the high-SNR regime is entered, however, MU-MIMO
overpowers SU-MIMO.

While it was argued in previous chapters that the low-SNR sum-capacity of MU-MIMO
roughly equals that of SU-MIMO, in Example 9.4 we observe that, with ZF reception, the
low-SNR sum spectral efficiency of MU-MIMO is decidedly lower than that of SU-MIMO
with a properly selected user. This points to the advantage of selecting how many and which
users are actively served under ZF reception, two aspects that are worth differentiating.

The smallest singular value of a square or quasi-square matrix with complex Gaussian
random entries is known to behave poorly; such singular value tends to be very small,
such that its inversion greatly enhances the noise. Thus, depending on the SNRs, having
UNt < Nr (rather than UNt = Nr) so as to invert a more rectangular matrix may
actually be advantageous in terms of ZF performance.

With a pool of Utot candidate users available from which to select the U active users,
additional performance improvements can be attained.

The next example illustrates the first of these aspects in a setup that, by having all users
at the same SNR, conveniently seeks to decouple it as much as possible from the second.



504 MU-MIMO with linear transceivers

Number of receive antennas
1 2 3 4 5 6 7 8 9 10

S
um

 s
pe

ct
ra

l e
ffi

ci
en

cy
 (

b/
s/

H
z)

0

5

10

15

20

25

30

35

40

C(SNR)

CZF(SNR)

U
=
N r

− 1

U
=
N r

− 2

U = Nr
− 1

U
=
N
r
− 1

Nr

�Fig. 9.3 MAC ergodic sum spectral efficiency with Nt = 1 as a function of Nr. The solid curves

correspond to U = Nr, for both the optimum receiver (the sum-capacity) and for the

linear ZF receiver, while the dashed lines correspond also to the linear ZF receiver but

with U = Nr − 1 and U = Nr − 2. In all cases, there is no precoding and SNRu = 10

dB for u = 0, . . . , U − 1. The circles trace the envelope of the ZF curves.

Example 9.5

Consider the particular setup SNRu = SNR for u = 0, . . . , U − 1, and let SNR = 10 dB.
Further let H0, . . . ,HU−1 have IID Rayleigh-faded entries. For Nt = 1, compute as a
function of Nr, the ergodic sum spectral efficiency with linear ZF reception with the value
of U optimized for each value of Nr.

Solution

Figure 9.3 depicts, in solid, the sum spectral efficiency with ZF reception and U = Nr.
As the dashed lines show, for some values of Nr this can be improved upon by having
U < Nr, and the envelope of circles is the sought optimized ZF sum spectral efficiency.
Also shown in the figure, as a baseline, is the sum-capacity with U = Nr.

The foregoing example offers a glimpse of what unfolds as the dimensionality increases,
namely that the optimum ratio UNt/Nr under ZF approaches a value that depends on the
SNRs. The lower the SNRs, the further that this optimum ratio is from 1. Conversely, at
sufficiently higher SNRs, it is optimum to have UNt = Nr, a behavior that is explored in
Problem 9.3 and formalized in the upcoming high-SNR analysis.

With unequal SNRs and a dynamic user selection, the advantage of having a progres-
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sively smaller ratio UNt/Nr as we pull back from the high-SNR regime can only become
more pronounced. However, the fairness and latency limitations discussed in Section 7.6
must be very present whenever this additional benefit is quantified.

To conclude the analysis of ZF reception at arbitrary SNRs we note that, throughout
this section, we have made no attempt to optimize the precoders, placing the burden of
eliminating the interference exclusively at the receiver. If the precoders could be designed
to eliminate interference among the streams of each given user, then the structure of the
receiver could be relaxed to zero-force only across users, but not across same-user streams.
This so-called block diagonalization approach is explored in Section 9.6, in the context of
the BC, where it acquires increased relevance.

9.3.4 High-SNR regime

At high SNR, each user enjoys Nt spatial DOF and thus the sum spectral efficiency with
ZF reception exhibits SZF

∞ = UNt spatial DOF. There is no DOF penalty with respect to an
optimum receiver; the suboptimality of ZF reception is registered only in the power offset.

The high-SNR expansion of the uth user’s spectral efficiency is as in SU-MIMO with
Nt spatial DOF, i.e.,

CZF

u (SNRu) = Nt

(
log2 SNRu − LZF

∞,u

)
+O

(
1

SNRu

)
. (9.25)

Applied to (9.17), this gives the power offset of the uth user as

LZF

∞,u = lim
SNRu→∞

⎛
⎝log2 SNRu − 1

Nt

Nt−1∑
j=0

E
[
log2 snr

ZF

u,j

]⎞⎠ (9.26)

= lim
SNRu→∞

1

Nt

Nt−1∑
j=0

E

[
log2

SNRu

snrZFu,j

]
(9.27)

=
1

Nt

Nt−1∑
j=0

E

[
log2

SNRu

snrZFu,j

]
, (9.28)

where the limit becomes immaterial because, from (9.9), (9.10), and (9.13), the ratio
SNRu/snr

ZF
u,j can be seen to be independent of SNRu.

From (9.25), summing over the U users, the sum spectral efficiency expands as

CZF(SNR0, . . . , SNRU−1) = Nt

U−1∑
u=0

(
log2 SNRu − LZF

∞,u

)
+O

(
1

Es/N0

)
(9.29)

= Nt

U−1∑
u=0

(log2 SNRu − LZF

∞) +O
(

1

Es/N0

)
, (9.30)

with the sum spectral efficiency power offset being L∞ = 1
U

∑U−1
u=0 LZF

∞,u. For IID Rayleigh
fading, as we show next, closed forms can be obtained for LZF

∞,u and thus for LZF
∞.
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Example 9.6 (ZF power offset in an IID Rayleigh-faded MU-MIMO MAC)

Let the channel be IID Rayleigh-faded and let Fu = I for u = 0, . . . , U − 1. Although the
power offset could be derived by applying the corresponding definition to the spectral effi-
ciency in Example 9.2, it is more expeditious to recognize once again that such expression
equals its SU-MIMO brethren only with Nr − UNt + 1 in lieu of Nr − Nt + 1. Trans-
lating this change into (6.9), the power offset of each user in a MU-MIMO MAC with ZF
reception is, in 3-dB units,

LZF

∞,u = log2 Nt +

(
γEM −

Nr−UNt∑
q=1

1

q

)
log2 e u = 0, . . . , U − 1, (9.31)

which, for UNt = Nr, reduces to

LZF

∞,u = log2 Nt + γEM log2 e u = 0, . . . , U − 1. (9.32)

Example 9.7

Compare the expansion in (9.30) with the exact sum spectral efficiency for the setup in
Example 9.4.

Solution

For U = 3, Nt = 2, and Nr = 6, we have that LZF
∞ = 1.83 in 3-dB units and thus the ZF

power offset equals 5.52 dB. From (9.30) then,

CZF(SNR0, SNR1, SNR2) ≈
2∑

u=0

2 (log2 SNRu − 1.83) (9.33)

which is depicted in Fig. 9.2 alongside the actual sum spectral efficiency.

Armed with the power offset expressions derived here and in Section 8.4.2, we can
quantify the high-SNR performance gap between a ZF and an optimum receiver. Indeed,
since the number of spatial DOF is the same in both cases, it is only through the power
offset that these receivers can be discriminated at high SNR. The difference between the
respective power offsets represents the power loss of ZF, relative to the sum-capacity, at
high SNR.

Example 9.8

Express the high-SNR power loss of ZF for IID Rayleigh fading.

Solution

From (8.63) and (9.31), the power loss in 3-dB units is

ΔL∞ = LZF

∞ − L∞ (9.34)
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=

⎛
⎝ Nr

UNt

Nr∑
q=Nr−UNt+1

1

q
− 1

⎞
⎠ log2 e, (9.35)

which, for UNt = Nr, simplifies into

ΔL∞ =

(
Nr∑
q=2

1

q

)
log2 e. (9.36)

Example 9.9

Evaluate ΔL∞ for U = 3, Nt = 2, and Nr = 6.

Solution

Applying (9.36), we obtain ΔL∞ = 2.09 in 3-dB units and thus a power loss of 6.29 dB.
This is indeed the difference between the power offsets found in Examples 8.12 and 9.7,
respectively.

Although (9.35) is specific to IID Rayleigh fading, observations with broad validity can
be made therefrom.

The power loss experienced by ZF is minimized for UNt � Nr and, in fact, as UNt

Nr

shrinks, the power loss vanishes. However, potential spatial DOF then go unused.
Conversely, the power loss is maximum when UNt = Nr, when all the potential DOF
are activated.

Altogether: while, as seen earlier, at certain SNRs having UNt < Nr might be advan-
tageous in terms of ZF performance, at sufficiently high SNRs it is always best to have
UNt = Nr. (This conclusion holds for nonmassive-MIMO setups, where the acquisition
of CSIR is not a major issue.)

9.4 LMMSE receiver for the multiple-access
channel

9.4.1 Receiver structure

Before delving into the derivation of the LMMSE receiver for the MU-MIMO MAC, a
preliminary comment on the issue of estimation in multiuser setups is warranted: from the
vantage of the mean-square error when estimating a given user’s signal, say su, it would be
best that all other users are simply powered off, but of course that is in general undesirable
from a communication perspective. The receiver structure derived in this section simulta-
neously minimizes the mean-square error in the linear estimation of all the data streams
within s0, . . . , sU−1 for some given transmit precoders and powers.
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To derive such LMMSE receiver we could, as done for ZF in the previous section, ap-
ply the SU-MIMO solution to the corresponding interpretation of the MU-MIMO MAC,
thereby obtaining a single filter that estimates s = [sT

0 · · · sT

U−1]
T at once; this approach

is the subject of Problem 9.4. Alternatively, we can proceed with a separate formulation for
each user and apply the teachings of Section 1.7.1 to write down the filter that minimizes
the mean-square error incurred in the estimation of su with the signals from all other users
regarded as interference. This gives

W MMSE

u = R−1
y Rysu (9.37)

=

√
Nt

GuEu

(
U−1∑
u=0

Eu

Es
SNRu

Eu

Es
SNRu

HuFuF
∗
uH

∗
u +

Nt

Eu

Es
SNRu

I

)−1

HuFu, (9.38)

which, for Es/N0 → ∞, reverts to W ZF
u whereas, for Es/N0 → 0, converges to a matched

filter for user u.
Conditioned on the fading realizations, the MMSE matrix of user u is

Eu(H0, . . . ,HU−1) = E

[(
su −W MMSE

u
∗
y
) (

su −W MMSE

u
∗
y
)∗ |H0, . . . ,HU−1

]
= I −

√
GuEu

Nt
W MMSE

u
∗
HuFu −

√
GuEu

Nt
F ∗
uH

∗
uW

MMSE

u

+W MMSE

u
∗
(

U−1∑
u=0

GuEu

Nt
HuFuF

∗
uH

∗
u +N0I

)
W MMSE

u , (9.39)

where all crossed terms involving different users have disappeared because their signals
are independent and zero-mean. Combining (9.38) and (9.39), and after a bit of algebra,

Eu(H0, . . . ,HU−1) = I − F ∗
uH

∗
u

(
U−1∑
u=0

Eu

Es
SNRu

Eu

Es
SNRu

HuFuF
∗
uH

∗
u +

Nt

Eu

Es
SNRu

I

)−1

HuFu

(9.40)

which is the MAC generalization of (6.52), and which can alternatively be put as

Eu(H0, . . . ,HU−1)

= I − F ∗
uH

∗
u

⎛
⎝HuFuF

∗
uH

∗
u +

∑
u �=u

Eu

Es
SNRu

Eu

Es
SNRu

HuFuF
∗
uH

∗
u +

Nt

Eu

Es
SNRu

I

⎞
⎠−1

HuFu

=

⎡
⎢⎣I +

Eu

Es
SNRu

Nt
F ∗
uH

∗
u

⎛
⎝I +

∑
u �=u

Eu

Es
SNRu

Nt
HuFuF

∗
uH

∗
u

⎞
⎠−1

HuFu

⎤
⎥⎦
−1

, (9.41)

where (9.41) follows from the matrix inversion lemma; the reader is invited to verify this
step in Problem 9.6. The MMSE corresponding to jth stream of user u is

MMSEu,j =
[
Eu(H0, . . . ,HU−1)

]
j,j

(9.42)
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= 1− [Fu]
∗
:,jH

∗
u

(
U−1∑
u=0

Eu

Es
SNRu

Eu

Es
SNRu

HuFuF
∗
uH

∗
u +

Nt

Eu

Es
SNRu

I

)−1

Hu [Fu]:,j

(9.43)

=

⎡
⎢⎣I +

Eu

Es
SNRu

Nt
F ∗
uH

∗
u

⎛
⎝I +

∑
u �=u

Eu

Es
SNRu

Nt
HuFuF

∗
uH

∗
u

⎞
⎠−1

HuFu

⎤
⎥⎦
−1

j,j

,

(9.44)

where, here and henceforth, [A]−1
j,j compactly denotes the (j, j)th entry of A−1.

9.4.2 Output SINR distribution

Let us now evaluate the SINR enjoyed by the jth stream of user u at the output of the
LMMSE receiver. Plugging the expression for W MMSE

u given in (9.38) into (9.4) and (9.5),
and after some algebra (refer to Problem 9.7), we obtain

sinrMMSE

u,j =

Eu

Es
SNRu [Fu]

∗
:,jH

∗
u

(∑U−1
u=0

Eu

Es
SNRuHuFuF

∗
uH

∗
u +NtI

)−1

Hu[Fu]:,j

1− Eu

Es
SNRu [Fu]∗:,jH∗

u

(∑U−1
u=0

Eu

Es
SNRuHuFuF ∗

uH
∗
u +NtI

)−1

Hu[Fu]:,j

(9.45)

=
1−MMSEu,j

MMSEu,j
(9.46)

=
1

MMSEu,j
− 1 (9.47)

=
1[

I + Eu

Es

SNRu

Nt
F ∗
uH

∗
u

(
I +

∑
u �=u

Eu

Es

SNRu

Nt
HuFuF ∗

uH
∗
u

)−1

HuFu

]−1

j,j

− 1,

(9.48)

whose convergence to snrZFu,j as N0 → 0 abides by the observation made in the context
of SU-MIMO: the ratio of both quantities approaches unity but their difference does not
vanish.

For U = 1, the above expressions for sinrMMSE

u,j revert to their SU-MIMO counterparts in
Section 6.4 and, resorting to the same arguments and proving technique applied therein,
it can be confirmed that the LMMSE receiver is optimum in the sense of maximizing the
SINR of all streams and hence the region of achievable spectral efficiencies (for given
precoders and transmit powers).

9.4.3 Ergodic spectral efficiency

Repeating from Chapter 6 the disclaimer that complex Gaussian codewords need not be
strictly capacity-achieving with an LMMSE receiver (because, by improving the interfer-
ence distribution at the separate decoders, non-Gaussian codewords could prove slightly
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superior), the spectral efficiency of user u with complex Gaussian signaling is, conditioned
on the fading realizations,

CMMSE

u =

Nt−1∑
j=0

E
[
log2

(
1 + sinrMMSE

u,j

)]
(9.49)

=

Nt−1∑
j=0

E

[
log2

1

MMSEu,j

]
(9.50)

and the weighted sum spectral efficiency is
∑U−1

u=0 quC
MMSE
u .

Example 9.10

Considering again the setup of Example 9.4, with full-power transmission by every user
(Eu

Es
= 1 for u = 0, 1, 2), evaluate the sum spectral efficiency achievable with an LMMSE

receiver and complex Gaussian signaling.

Solution

The result is presented in Fig. 9.2, alongside its counterparts for both the ZF and the opti-
mum receiver. Notice how LMMSE reception approaches optimality at low SNR and ZF
performance at high SNR.

Let us now see how adjusting U , i.e., the number of active users, can impact the perfor-
mance gap between ZF and LMMSE.

Example 9.11

Considering again the setup of Example 9.5, with full-power transmission by every user,
compute, as a function of Nr, the ergodic sum spectral efficiency with LMMSE reception
with the value of U optimized for each value of Nr. Show the resulting curve next to its ZF
counterpart.

Solution

Figure 9.4 depicts, in solid, the sum spectral efficiency for U = Nr with ZF and with
LMMSE reception and, in dotted lines, the sought sum spectral efficiencies with the val-
ues of U optimized. With U properly adjusted, as opposed to fixed, the performance gap
between the ZF and LMMSE receivers is largely closed.

Also shown in the figure, as a baseline, is the sum-capacity with U = Nr.

Before concluding this section with some remarks on the high-SNR behavior, a note on
the optimization of the precoders under LMMSE reception is in order. For any choice of
precoders, setting the receive filters for all users to (9.38) ensures simultaneous minimiza-
tion of the mean-square error for every stream and, with that, maximization—conditioned
on that choice of precoders—of the corresponding SINRs and of the spectral efficiency
boundary.
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receiver, and for the LMMSE receiver. The dotted lines correspond to optimizing U for

every Nr. In all cases, SNRu = 10 dB for u = 0, . . . , U − 1.

Should there be CSIT in the system, this information could be put toward optimizing the
precoders; however, this feat is fraught with difficulties.

The precoders that maximize the SINR for a given stream do not necessarily maximize
it for the rest.

The optimum precoder for user u is not solely a function of W MMSE
u , but rather a function

of W MMSE
0 , . . . ,W MMSE

U−1 [820].

Formally, the problem that must be solved is

max
F0,...,FU−1

U−1∑
u=0

qu

Nt−1∑
j=0

E

[
log2

1

MMSEu,j(F0, . . . ,FU−1)

]
, (9.51)

subject to tr(FuF
∗
u ) = Nt for u = 0, . . . , U − 1 and with MMSEu,j(F0, . . . ,FU−1),

whose dependence on the precoders has been made explicit, given by either (9.43) or
(9.44). This optimization is generally nonconvex in F0, . . . ,FU−1.

The foregoing difficulties are compounded by the fact that, in contrast with an optimum
MAC receiver, for which it is always optimal to have every user transmit at full power, with
an LMMSE receiver this need not be the case.
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Example 9.12

Let U = 2 and Nt = 1 with SNR0 = SNR1 = SNR where SNR � 1, and further
let the channel vectors for both users coincide, i.e., H0 = H1 [34, section 4.1.2]. With
an optimum receiver, both users would transmit at full power and only their coding rates
would depend on q0 and q1 (refer to Problem 9.10). What are the optimum transmit powers
with an LMMSE receiver, depending on q0 and q1?

Solution

If both users transmit at full power, then sinrMMSE

0 = sinrMMSE

1 ≈ 1. Alternatively, if only
user 0 transmits, then sinrMMSE

0 � 1 and sinrMMSE

1 = 0 whereas, if only user 1 transmits,
sinrMMSE

0 = 0 and sinrMMSE

1 � 1; in either case the sum spectral efficiency is superior to
when both users transmit. User 1 should refrain from transmitting if q0 > q1, and vice
versa.

The optimization of the precoders needs therefore to be broadened to include the opti-
mization of the power control coefficients E0

Es
, . . . , EU−1

Es
converting (9.51) into

max
F0,...,FU−1,

E0
Es

,...,
EU−1

Es

U−1∑
u=0

qu

Nt−1∑
j=0

E

[
log2

1

MMSEu,j(F0, . . . ,FU−1,
E0

Es
, . . . , EU−1

Es
)

]
(9.52)

subject to tr(FuF
∗
u ) = Nt and Eu

Es
≤ 1 for u = 0, . . . , U − 1. This is an even harder,

generally nonconvex problem.

Example 9.13

For Nt = 1, with the precoders rendered immaterial, verify that the weighted sum spec-
tral efficiency with an LMMSE receiver is not a concave function of the power control
coefficients.

Solution

Applying (9.43) and (9.46),

sinrMMSE

u =
Eu

Es
SNRu |Hu|2

1 +
∑

u �=u
Eu

Es
SNRu |Hu|2

, (9.53)

from which the weighted sum spectral efficiency with an LMMSE receiver is

U−1∑
u=0

qu log2(1 + sinru) =
U−1∑
u=0

qu log2

(
1 +

∑U−1
u=0

Eu

Es
SNRu |Hu|2

1 +
∑

u �=u
Eu

Es
SNRu |Hu|2

)
(9.54)

= log2

(
1 +

U−1∑
u=0

Eu

Es
SNRu |Hu|2

)
U−1∑
u=0

qu
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−
U−1∑
u=0

qu log2

⎛
⎝1 +

∑
u �=u

Eu

Es
SNRu |Hu|2

⎞
⎠ , (9.55)

which is generally not concave in E0

Es
, . . . , EU−1

Es
. The reader is invited to verify this lack

of concavity in Problems 9.12 and 9.13.

As argued earlier, from the vantage of a given user it is best that all other users are
simply powered off, but in terms of the weighted sum spectral efficiency, in principle all
should transmit at varying power levels depending on their channels and on q0, . . . , qU−1.
(In some extreme cases such as Example 9.12, the optimum value for some of the trans-
mit powers may be strictly zero.) The corresponding optimization of the precoders and
transmit powers can be tackled iteratively, through alternating minimization procedures
whereby, in turns, the precoders and powers are re-optimized with the receivers fixed, and
vice versa, in a process that progressively lowers the MMSEs. Algorithmic embodiments
of this procedure have been presented for single-stream (beamforming) transmission per
user [787, 788, 821] and for arbitrary-rank MU-MIMO [820]. However, although these
algorithms are sure to converge to some solution, there is no guarantee that such solution
is globally optimum because of the lack of concavity. Moreover, since this CSIT-based it-
erative optimization would have to converge well within the coherence time of the fading,
its scope of applicability is limited.

If the optimization of precoders and transmit powers is to entail an iterative process,
then it would be more practically relevant to have it based on channel distributions; then,
the speed of convergence and the overheads would be less problematic given the radically
different time scale over which distributions are stable. A pragmatic but very effective
such power control algorithm, reliant only on local-average channel gains, is presented
and applied in Chapter 10.

9.4.4 High-SNR regime

In terms of the high-SNR behavior of the LMMSE receiver, the comments made for SU-
MIMO apply—with the dimensionalities properly adjusted—quite verbatim to the MAC.

For UNt ≤ Nr, we have SMMSE
∞ = UNt exactly as with an optimum or a ZF receiver.

For UNt > Nr, we need to back off on the number of transmit streams in order not to
overload the dimensionality of the receiver. Otherwise, SMMSE

∞ = 0, indicating that it is
not advisable to transmit more than Nr streams when an LMMSE receiver is utilized
in this regime. (With a ZF receiver, it is directly not possible to separate more than Nr

streams.)

Altogether then, we find for the sum spectral efficiency the familiar value

SMMSE

∞ = min(UNt, Nr). (9.56)

As far as the power offset is concerned, for UNt ≤ Nr the expressions derived for the MU-
MIMO MAC with ZF reception apply given that the spectral efficiencies of both receivers
converge for Es/N0 → ∞.
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Also noteworthy is that the optimization of the transmit powers becomes more tractable
in the high-SNR regime, where it adopts the form of a geometric programming problem
that can be recast as a convex problem [822, 823]. Although not consequential in terms of
the number of spatial DOF, which is insensitive to the value of the transmit powers, this
optimization would register on the power offset.

9.5 Duality with linear transceivers

The MU-MIMO MAC with a linear receiver and CSIR has its dual in the MU-MIMO
BC with a linear transmitter and CSIT. In fact, such duality was the first to be observed
[787, 788] and its clues eventually led to the discovery of the MAC–BC capacity duality
presented in Chapter 8. As in our exposition of that duality, superscripts are applied in this
section to distinguish between MAC and BC quantities. Furthermore, for notational clarity
we introduce the variable Na to denote both the number of receive antennas in the MAC
and the coinciding number of transmit antennas in the BC.

Let us begin by considering an MU-SIMO MAC with an Na-antenna receiver, arbitrary
Na × 1 channels H0, . . . ,HU−1, and arbitrary receive filters W0, . . . ,WU−1 normalized
such that ‖Wu‖2 = Na for u = 0, . . . , U−1. Filter Wu targets the signal of user u, giving
at its output

W ∗
u

(
U−1∑
u=0

√
GuHu

√
EMAC

u su + v

)
=

√
GuEMAC

u W ∗
uHusu (9.57)

+
∑
u �=u

√
GuEMAC

u W ∗
uHusu +W ∗

uv,

with the SINR given in (9.6) and reproduced here with the additional superscripting:

sinrMAC

u =

EMAC
u

Es
SNRu |W ∗

uHu|2∑
u �=u

EMAC
u

Es
SNRu |W ∗

uHu|2 +Na

. (9.58)

Consider now the dual MU-MISO BC with channels H∗
0 , . . . ,H

∗
U−1 and an Na-antenna

transmitter with precoders W0, . . . ,WU−1. We release the BC transmit energies per sym-
bol from coinciding with those in the MAC, superscripting the former by (·)BC just as we
have superscripted the latter by (·)MAC. User u then receives

yu =
√

GuH
∗
u

(
U−1∑
u=0

√
EBC

u

Na
Wusu

)
+ vu (9.59)

with SINR

sinrBCu =

E

[∣∣∣H∗
u

√
GuEBC

u

Na
Wusu

∣∣∣2]
E

[∣∣∣H∗
u

∑
u �=u

√
GuEBC

u

Na
Wusu + vu

∣∣∣2] (9.60)
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=

GuE
BC
u

Na
|H∗

uWu|2∑
u �=u

GuEBC
u

Na
|H∗

uWu|2 +N0

(9.61)

=

EBC
u

Es
SNRu |H∗

uWu|2∑
u �=u

EBC
u

Es
SNRu |H∗

uWu|2 +Na

. (9.62)

The duality for linear transceivers states that any feasible combination of SINRs can
be achieved in both the MAC and the BC with the same W0, . . . ,WU−1 (acting as re-
ceive filters in the former and as precoders in the latter) and with the power constraint in
the BC transmitter equal to the sum of the power constraints at the U MAC transmitters.
Put differently, for any feasible sinr0, . . . , sinrU−1 there exist W0, . . . ,WU−1 as well as
EMAC

0 , . . . , EMAC

U−1 and EBC
0 , . . . , EBC

U−1 such that, for u = 0, . . . , U − 1,

EMAC
u

Es
SNRu |W ∗

uHu|2∑
u �=u

EMAC
u

Es
SNRu |W ∗

uHu|2 +Na

=

EBC
u

Es
SNRu |H∗

uWu|2∑
u �=u

EBC
u

Es
SNRu |H∗

uWu|2 +Na

, (9.63)

with
U−1∑
u=0

EMAC
u

Es
=

U−1∑
u=0

EBC
u

Es
(9.64)

although, in general, with EMAC
u

Es
�= EBC

u

Es
.

Corroborating the above relationship requires solving for the transmit energies per sym-
bol that yield the same given SINRs with some given W0, . . . ,WU−1 in both (9.58) and
(9.62). This entails solving two systems of U linear equations [50, section 10.3.2]. It can
be verified that the solutions to (9.58) are

EMAC
u

Es
=

U−1∑
u=0

[
A−1

MAC

]
u,u

u = 0, . . . , U − 1, (9.65)

where [AMAC]u,u = −SNRu

Na
|W ∗

uHu|2 for u �= u and

[AMAC]u,u =
SNRu

Na

|W ∗
uHu|2

sinrMAC

u

. (9.66)

In turn, the values that solve (9.62) are

EBC
u

Es
=

U−1∑
u=0

[A−1
BC ]u,u u = 0, . . . , U − 1, (9.67)

where [ABC]u,u = −SNRu

Na
|W ∗

uHu|2 for u �= u and

[ABC]u,u =
SNRu

Na

|W ∗
uHu|2
sinrBCu

. (9.68)

If sinrMAC

u = sinrBCu for u = 0, . . . , U − 1, then from the foregoing relationships we have
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that ABC = AT
MAC and hence

U−1∑
u=0

EMAC
u

Es
=

U−1∑
u=0

U−1∑
u=0

[
A−1

MAC

]
u,u

(9.69)

=

U−1∑
u=0

U−1∑
u=0

[
(AT

BC)
−1

]
u,u

(9.70)

=

U−1∑
u=0

U−1∑
u=0

[
A−1

BC

]
u,u

(9.71)

=

U−1∑
u=0

EBC
u

Es
(9.72)

confirming the duality.
Attempts to generalize the foregoing duality to multiantenna users would require intro-

ducing linear filters at those users as well; for each data stream, a separate filter acting as
precoder in the MAC and as receiver in the BC.

Given the direct relationship between sinr0, . . . , sinrU−1 and the corresponding spectral
efficiencies, we find that with linear transceivers—just as found in Section 8.7 for the
optimum transceivers—the MAC and the BC exhibit the same spectral efficiency regions
if the power constraint at the BC transmitter equals the sum of the power constraints at the
U MAC transmitters. And, given that the number of spatial DOF is insensitive to the power
constraint, the MAC and BC exhibit the same number thereof.

In the case of a BC with a per-antenna (rather than per-symbol) power constraint, a
different duality relationship can be formulated and interested readers are referred to [792].

9.6 Linear transmitters for the broadcast channel

For the BC, the appeal of a linear structure is very high, given the difficulties posed by the
optimum DPC transmitter presented in the previous chapter. With a linear structure, the
BC transmit signal continues to be

x =

U−1∑
u=0

√
Eu

Nt
Fusu (9.73)

only with s0 through sU−1 separately encoded. This rules out DPC, Tomlinson–Harashima,
and any other nonlinear interaction among the codewords. Then, as far as the transmitter is
concerned, the task of managing interference rests exclusively on the precoders.

In terms of the U receivers, and unless otherwise stated, we consider them to be linear
as well, each conforming to Fig. 6.1. This makes our BC the exact reciprocal of the MAC
considered earlier in the chapter.

It is useful, for the formulation that follows, to stack into a single matrix the channels
(including both large- and small-scale components) that connect the transmitter with the U
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receivers. This gives the UNr ×Nt aggregate channel matrix

C =

⎡
⎢⎣

√
G0H0

...√
GU−1HU−1

⎤
⎥⎦ . (9.74)

9.7 Linear ZF transmitter for the MU-MISO
broadcast channel

The ZF transmitter is best introduced for single-antenna users and, for that reason, this is
the setup considered in the thorough analysis that we undertake in this section. The exten-
sion to Nr > 1, and its natural progression into block-diagonalization, follow thereafter.

9.7.1 Transmitter structure

When it comes to applying the ZF principles to the BC, the dimensionality constraint that
applies is Nt ≥ UNr; in the MU-MISO case, this reduces to Nt ≥ U . The aggregate
channel matrix C defined in (9.74) is then U × Nt and the first idea that comes to mind,
the one pursued in most of the related literature, is to transmit C†[s0 · · · sU−1]

T with the
appropriate scaling to ensure that the power constraint is satisfied. This yields, at the chan-
nel outputs, scaled and noisy versions of s0, . . . , sU−1 with a common SNR and thus a
common spectral efficiency per user.

While indeed achieving ZF, the foregoing transmission strategy is unnecessarily restric-
tive. Subsuming precoding and power allocation, it enforces, in addition to ZF, equality in
the spectral efficiencies of the U users, not allowing the flexibility of operating on other
points of the spectral efficiency boundary. Put differently, this strategy turns the cascade of
transmitter and channel experienced by [s0 · · · sU−1]

T into a scaled identity matrix, when
in reality all that is required for ZF is that it be a diagonal matrix.

To relax the restriction of equal spectral efficiencies, precoding and power allocation
must be decoupled as per the formulation utilized throughout this book. Vectorizing the
transmit–receive relationship for the U users, we obtain⎡
⎢⎣

y0
...

yU−1

⎤
⎥⎦ =

⎡
⎢⎣

√
G0H0

...√
GU−1HU−1

⎤
⎥⎦

︸ ︷︷ ︸
C

[
F ZF

0 · · · F ZF

U−1

]
⎡
⎢⎢⎢⎣

√
E0

Nt
0 0

0
. . . 0

0 0
√

EU−1

Nt

⎤
⎥⎥⎥⎦
⎡
⎢⎣

s0
...

sU−1

⎤
⎥⎦

+

⎡
⎢⎣

v0
...

vU−1

⎤
⎥⎦ , (9.75)

where the aggregate Nt × U precoder
[
F ZF
0 · · · F ZF

U−1

]
should equal the pseudoinverse
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of C, with each column of such aggregate precoder properly normalized to satisfy the
constraint that applies to the corresponding individual precoder; with a per-symbol power
constraint at each precoder, this means

F ZF

u =
√

Nt
[C†]:,u
‖[C†]:,u‖ , (9.76)

satisfying ‖F ZF
u ‖2 = Nt. The resulting transmitter diagonalizes the channel completely,

conveying one data stream to each single-antenna user without interference because, nor-
malizations notwithstanding, HuF

ZF
u = 0 for u �= u. Thus

yu =

√
GuEu

Nt
HuF

ZF

u su + vu u = 0, . . . , U − 1, (9.77)

with power allocation E0

Es
, . . . , EU−1

Es
.

If the power constraint is per-antenna, rather than per-symbol, then the formulation re-
quires generalizing the notion of pseudoinverse; interested readers are referred to [824].

9.7.2 SNR distribution

From (9.77), the SNR at user u equals, for given Hu,

snrZFu =
GuEu

N0

|HuF
ZF
u |2

Nt
(9.78)

=
Eu

Es
SNRu |HuF

ZF
u |2

Nt
. (9.79)

We have U parallel noninterfering subchannels with generally different snrZF0 , . . . , snr
ZF

U−1,
which can be controlled by adjusting E0

Es
, . . . , EU−1

Es
subject to

∑U−1
u=0

Eu

Es
= 1. This allows

operating at any desired point on the boundary of the spectral efficiency region.
For any fixed E0

Es
, . . . , EU−1

Es
, the distribution of snrZFu can be characterized by recogniz-

ing that F ZF
u in (9.76) is an Nt-dimensional fixed-norm vector that lies orthogonal to the

(U − 1)-dimensional subspace spanned by H0, . . . ,Hu−1,Hu+1, . . . ,HU−1. Intuitively
then, U − 1 of the Nt dimensions of F ZF

u are tied up to enforce the orthogonality and
Nt − (U − 1) dimensions remain free to focus power toward the intended single-antenna
user. This is tantamount to Nt−U+1 transmit and one receive antenna, which, with CSIT
and by virtue of duality, is equivalent to one transmit and Nt−U+1 receive antennas with
CSIR. Thus, precoder normalization aside, the distribution of the SNRs with ZF transmis-
sion turns out to be similar to what is encountered with ZF reception (see Section 9.3).

Example 9.14 (ZF SNR distribution in an IID Rayleigh-faded MU-MISO BC)

Let Eu

Es
be fixed while Hu has IID Rayleigh-faded entries. The distribution of |HuF

ZF
u |2, as

per the reasoning above, must equal that of a CSIR-equipped MU-SIMO channel with one
transmit and Nt −U +1 receive antennas. As argued in earlier examples, this corresponds
to a chi-square distribution χ2

2(Nt−U+1), in this case with E
[|HuF

ZF
u |2 ] = Nt(Nt−U+1).
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This confers to (9.79) the distribution (for ξ ≥ 0),

fsnrZFu (ξ) =
1

Eu

Es
SNRu(Nt − U)!

exp

(
− ξ

Eu

Es
SNRu

)(
ξ

Eu

Es
SNRu

)Nt−U

, (9.80)

with

E
[
snrZFu

]
= (Nt − U + 1)

Eu

Es
SNRu. (9.81)

If the power allocation is uniform, then Eu

Es
= 1/U and

fsnrZFu (ξ) =
U

SNRu(Nt − U)!
exp

(
− U

SNRu
ξ

)(
U

SNRu
ξ

)Nt−U

, (9.82)

with

E
[
snrZFu

]
=

Nt − U + 1

U
SNRu. (9.83)

Example 9.15

How does Example 9.14 specialize to the case U = Nt?

Solution

For U = Nt, F ZF
u is completely determined by the requirement that it be orthogonal to

the subspace spanned by the channels of all other users and by the constraint that its
norm be fixed. Hence, F ZF

u is actually independent of Hu. Since the entries of Hu are
IID standard complex Gaussian while ‖F ZF

u ‖2 = Nt, for every feasible realization of F ZF
u

the scalar HuF
ZF
u is some linear combination of such complex Gaussian entries satisfying

E[HuF
ZF
u ] = 0 and E

[|HuF
ZF
u |2] = Nt. Altogether then,

HuF
ZF

u ∼ NC(0, Nt). (9.84)

It follows that |HuF
ZF
u |2, and therefore snrZFu , are exponentially distributed and indeed this

is the type of distribution that we recover by setting U = Nt in (9.80), namely

fsnrZFu (ξ) =
1

Eu

Es
SNRu

exp

(
− ξ

Eu

Es
SNRu

)
, (9.85)

with

E
[
snrZFu

]
=

Eu

Es
SNRu. (9.86)

If the power allocation is further uniform, then

fsnrZFu (ξ) =
U

SNRu
exp

(
− U

SNRu
ξ

)
, (9.87)

with

E
[
snrZFu

]
=

SNRu

U
. (9.88)
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9.7.3 Power allocation

Given the availability of CSIT, the power allocation E0

Es
, . . . , EU−1

Es
need not be fixed but

may be adjusted on the basis of the fading. This optimization is a convex problem, and
familiar forms emerge as solutions.

Example 9.16

What is the optimum power allocation in terms of sum spectral efficiency given a ZF trans-
mitter and single-antenna users?

Solution

As learned in Section 4.4, the power allocation E	
0

Es
, . . . ,

E	
U−1

Es
that maximizes the sum of

the mutual informations over a bank of parallel subchannels is waterfilling. Applying it,

E�
u

Es
=

[
1

η
− Nt

SNRu |HuF ZF
u |2

]+

u = 0, . . . , U − 1, (9.89)

with η such that
∑U−1

u=0
E	

u

Es
= 1. The advantage of such power allocation, as opposed to

the one that equalizes the user spectral efficiencies, is the subject of Problem 9.15.
Readers interested in generalizations of this policy to arbitrary signal constellations, in

essence a multiuser form of mercury/waterfilling, are referred to [825, 826].

To maximize the weighted sum spectral efficiency rather than simply the sum spectral
efficiency, variations of the waterfilling policy must be applied. We defer the formulation
of these variations to Problem 9.16, and address the considerably simpler form they adopt
in high-SNR conditions later in this section.

9.7.4 Ergodic spectral efficiency

Turning now to the ergodic spectral efficiency, the data stream intended for the uth user ex-
periences a scalar fading channel and hence the corresponding codeword should be drawn
from a complex Gaussian distribution. Then, the spectral efficiency achieved by the uth
user is

CZF

u = E
[
log2 (1 + snrZFu )

]
(9.90)

= E

[
log2

(
1 +

Eu

Es
SNRu |HuF

ZF
u |2

Nt

)]
(9.91)

and the weighted sum spectral efficiency is
∑U−1

u=0 quC
ZF
u , which is a concave function of

E0

Es
, . . . , EU−1

Es
from which the aforementioned variations of waterfilling can be formulated.

For a power allocation not dependent on the fading, explicit expressions can be obtained
for CZF

u .
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Example 9.17 (ZF spectral efficiency in an IID Rayleigh-faded MU-MISO BC)

Let H0, . . . ,HU−1 have IID Rayleigh-faded entries while E0

Es
, . . . , EU−1

Es
are fixed. The

distributions of snrZF0 , . . . , snr
ZF

U−1 then abide by Example 9.14 and thus

CZF

u =

∫ ∞

0

log2(1 + ξ)
1

Eu

Es
SNRu(Nt − U)!

exp

(
− ξ

Eu

Es
SNRu

)(
ξ

Eu

Es
SNRu

)Nt−U

dξ,

(9.92)

which amounts to the ergodic spectral efficiency of a scalar channel with a chi-square fad-
ing distribution, a computation we have encountered throughout the text. Applying (C.37),

CZF

u = exp

(
1

Eu

Es
SNRu

)
Nt−U+1∑

q=1

Eq
(

1
Eu

Es
SNRu

)
log2 e. (9.93)

Example 9.18

How does Example 9.17 specialize to the case U = Nt?

Solution

For U = Nt,

CZF

u = exp

(
1

Eu

Es
SNRu

)
E1

(
1

Eu

Es
SNRu

)
log2 e, (9.94)

which equals the ergodic capacity of a Rayleigh-faded SISO channel with an average SNR
of Eu

Es
SNRu. If the power allocation is uniform, then

CZF

u = eU/SNRu E1
(

U

SNRu

)
log2 e. (9.95)

Example 9.19

Compare the MU-MISO BC sum spectral efficiency achieved by ZF transmission under
waterfilling and under a uniform power allocation if U = Nt = 3 with

SNR0|dB = SNR|dB (9.96)

SNR1|dB = SNR|dB + 5dB (9.97)

SNR2|dB = SNR|dB + 8dB (9.98)

and with Rayleigh fading. Further compare both ZF solutions with the ergodic sum-capacity.

Solution

See Fig. 9.5, where the result with waterfilling was obtained numerically while its uniform-
power counterpart corresponds to Example 9.18. The sum-capacity, in turn, is borrowed
from Example 8.33.
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�Fig. 9.5 MU-MISO BC sum spectral efficiency as a function of SNR (in dB) with U = Nt = 3.

The two bottom solid lines correspond to ZF transmission under both waterfilling and

a uniform power allocation. The dashed line is the high-SNR expansion for both ZF

solutions. The top solid line indicates the sum-capacity, borrowed from Example 8.33.

Example 9.19 suggests that the optimization of the power allocation in ZF transmis-
sion may be relatively unimportant. Its benefit appears only at SNR values low enough to
warrant other types of MU-MIMO transmission or directly single-user transmission with
orthogonal sharing.

As mentioned in the coverage of ZF receivers for SU-MIMO and for the MU-MIMO
MAC, the inversion of a channel with small singular values suffers from strong noise en-
hancement. ZF transmission is afflicted by the converse phenomenon: the inversion of a
channel with small singular values drives the precoder power consumption into overdrive.
The consequence is the same, namely a disappointingly sublinear increase in the sum spec-
tral efficiency with the number of antennas for U = Nt without user selection, and this
consequence is further aggravated by another issue that is specific to the BC. In contrast
with the MAC, where each user contributes its own power budget, in the BC a fixed trans-
mit power must be divided among the U users. As U grows, the power per signal stream is
preserved in the MAC while, in the BC, it shrinks sustainedly. Indeed, a contrast of (9.16)
and (9.88) confirms that the local-average SNR of any given signal stream is not inversely
proportional to U in the MAC, while it is in the BC.

The extent to which the performance of a ZF transmitter suffers if U ≈ Nt and both
U and Nt grow large is best illustrated by the example that follows, which is inspired by
[827, section III].



523 9.7 Linear ZF transmitter for the MU-MISO broadcast channel

Number of transmit antennas
1 2 3 4 5 6 7 8 9 10

S
um

 s
pe

ct
ra

l e
ffi

ci
en

cy
 (

b/
s/

H
z)

0

2

4

6

8

10

12

14

16

18

20

C(SNR)

CZF(SNR)

U = Nr − 1

U
=
N
r
− 1

U
=
N r
− 2

U
=
N r
− 1

N t

N
t

N t

Nt

U
=
N t

− 3

Nt

�Fig. 9.6 MU-MISO BC sum spectral efficiency with ZF transmission as a function of Nt. The

top solid line is the BC sum-capacity for U = Nt. The bottom solid curve corresponds

to ZF with U = Nt, while the dashed lines correspond to ZF with U = Nt − 1,

U = Nt−2, and U = Nt−3. The envelope of circles indicates the best possible value

achievable with ZF for each Nt. In all cases, SNRu = 10 dB for u = 0, . . . , U − 1.

Example 9.20

Let SNRu = SNR for u = 0, . . . , U − 1 with SNR = 10 dB and with H0, . . . ,HU−1 hav-
ing IID Rayleigh-faded entries. Obtain the MU-MISO BC sum spectral efficiency with lin-
ear ZF transmission and waterfilling power allocation for U = Nt and depict it as function
of Nt = 1, . . . , 10. Further compare such sum spectral efficiency with the corresponding
BC sum-capacity.

Solution

The results are the two solid curves in Fig. 9.6, with the sum-capacity computed by apply-
ing duality and a convex optimization solver.

Although admittedly very particular because of the equality in SNRs, the above example
does illustrate the fact that, at a reasonable SNR, the scaling of the ZF spectral efficiency
with Nt is markedly sublinear when U = Nt. This is in stark contrast with the BC sum-
capacity, which does exhibit a linear increase. However, things do improve for ZF if U is
carefully adjusted.
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Example 9.21

For the setup of Example 9.20, obtain the ZF sum spectral efficiency with U optimized for
each value of Nt.

Solution

See again Fig. 9.6, which, besides the ZF sum spectral efficiency and the sum-capacity for
U = Nt, further depicts, in dashed lines, the ZF spectral efficiencies for U = Nt − 1,
U = Nt − 2, and U = Nt − 3. By selecting the best U for each Nt, the essentially linear
scaling indicated by the envelope of circles is achieved. Moreover, for U,Nt → ∞, the
ratio Nt/U that maximizes the ZF performance approaches a constant ratio that depends
on the SNR (refer to Problem 9.18).

By adjusting U , the smallest singular value of the channel inverse is made to behave
better and we avoid spreading the transmit power too thinly over too many signal streams.
As suggested by Fig. 9.6 and proved in [827], with the proper ratio Nt/U , in the equal-SNR
setup of Examples 9.20 and 9.21 a ZF transmitter can achieve a hefty share of the channel
capacity. Both the sum-capacity and the sum spectral efficiency of ZF with a properly
adjusted U scale linearly with Nt and thus their ratio is bound to approach the ratio of the
corresponding slopes. (For general unequal SNRs, the optimum number of active users and
the achievable share of the capacity would depart from those in the equal-SNR case, but
the qualitative observations would hold.)

If, moreover, the U active users are opportunistically selected on the basis of their chan-
nel conditions, then the slope versus Nt of the ZF sum spectral efficiency with a properly
adjusted U converges, as Utot → ∞, to the slope of the sum-capacity versus Nt [828];
this convergence holds under either a per-antenna or a per-symbol power constraint [829].
While these results are indicative of the simple ZF transmit structure being a more enticing
option than its performance for some fixed U may indicate, it must be borne in mind that
an offset remains with respect to the sum-capacity and that the opportunistic selection of
users is subject to the caveats discussed in Chapter 8.

As a final remark, and to reconcile the desideratum for U < Nt with the upcoming
high-SNR analysis, it is worth anticipating that, as the SNR grows large, the optimum ratio
Nt/U approaches unity. At sufficiently high SNRs, it is optimum to have U = Nt.

9.7.5 High-SNR regime

For given fading realizations H0, . . . ,HU−1, the weighted sum spectral efficiency is

U−1∑
u=0

qu log2

(
1 +

Eu

Es
SNRu |HuF

ZF
u |2

Nt

)
, (9.99)
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from which the power allocation E0

Es
, . . . , EU−1

Es
can be optimized by building the La-

grangian (see Appendix G)

L

(
E0

Es
, . . . ,

EU−1

Es
, λ

)
=

U−1∑
u=0

qu log2

(
1 +

Eu

Es
SNRu|HuF

ZF
u |2

Nt

)
+ λ

(
U−1∑
u=0

Eu

Es
− 1

)
(9.100)

and differentiating; this yields for Eu

Es
the necessary and sufficient condition

qu

SNRu

Nt
|HuF

ZF
u |2

1 + Eu

Es

SNRu

Nt
|HuF ZF

u |2 log2 e+ λ = 0, (9.101)

from which the anticipated variations of waterfilling can be derived. For growing SNRu

and nonzero Eu

Es
, this condition expands as

qu
Eu

Es

log2 e+ λ+O
(

1

SNRu

)
= 0, (9.102)

from which
Eu

Es
= − log2 e

λ
qu +O

(
1

SNRu

)
, (9.103)

where λ can be cleared by enforcing the power constraint

U−1∑
u=0

Eu

Es
= − log2 e

λ

U−1∑
u=0

qu +O
(

1

SNRu

)
(9.104)

= 1, (9.105)

leading to

λ = − log2(e)

U−1∑
u=0

qu +O
(

1

SNRu

)
. (9.106)

Plugged into (9.103), this value of λ finally gives

Eu

Es
=

qu∑U−1
u=0 qu

+O
(

1

SNRu

)
, (9.107)

which is the same high-SNR allocation policy found in Section 8.9.4 for the BC capacity:
each user should be allocated power in direct proportion to its weight, a sort of “weighted
uniform power allocation.” For the sum spectral efficiency in particular, (9.107) reduces to
the truly uniform power allocation

Eu

Es
=

1

U
+O

(
1

SNRu

)
. (9.108)

With a single receive antenna, each user enjoys a single spatial DOF and thus the sum
spectral efficiency exhibits SZF

∞ = U (which generalizes to SZF
∞ = UNr for Nr > 1).

The suboptimality of ZF transmission is registered in the power offset, whose computation
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benefits from the simplicity of the asymptotic power allocation in (9.107). Applying the
single-user definition of power offset to (9.90), user u is seen to experience

LZF

∞,u = lim
SNRu→∞

(
log2 SNRu − CZF

u

)
(9.109)

= lim
SNRu→∞

(
log2 SNRu − E[log2(1 + snrZFu )]

)
(9.110)

= lim
SNRu→∞

E

[
log2

SNRu

1 + snrZFu

]
(9.111)

= log2 Nt − E

[
log2

(
Eu

Es
|HuF

ZF

u |2
)]

, (9.112)

where we have recalled (9.79).
From LZF

∞,u, we can write the spectral efficiency of user u as

CZF

u (SNRu) = log2 SNRu − LZF

∞,u +O
(

1

SNRu

)
(9.113)

and, summing over the U users, the sum spectral efficiency as

CZF(SNR0, . . . , SNRU−1) =

U−1∑
u=0

(
log2 SNRu − LZF

∞,u

)
+O

(
1

Es/N0

)
, (9.114)

where LZF
∞,u should be computed with Eu

Es
= 1/U ; then, LZF

∞ = 1
U

∑U−1
u=0 LZF

∞,u provides
the sum spectral efficiency power offset.

Under IID Rayleigh fading in particular, LZF
∞,u and L∞ can be expressed in closed form.

Example 9.22 (ZF power offset for an IID Rayleigh-faded MU-MISO BC)

Consider the sum spectral efficiency. Setting Eu

Es
= 1/U , we can apply duality between the

MAC with ZF reception in Example 9.2 and the BC with ZF transmission in Example 9.17.
This allows translating the MAC power offset expression in Example 9.6 into

LZF

∞,u = log2 U +

(
γEM −

Nt−U∑
q=1

1

q

)
log2 e, (9.115)

which, for U = Nt, reduces to

LZF

∞,u = log2 U + γEM log2 e. (9.116)

Example 9.23

Compare (9.114) with the exact sum spectral efficiency for U = Nt = 3, with

SNR0|dB = SNR|dB (9.117)

SNR1|dB = SNR|dB + 5dB (9.118)

SNR2|dB = SNR|dB + 8dB (9.119)

and with Rayleigh fading.
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Solution

See Fig. 9.5, where the expansion is seen to be valid over a wide range of SNRs.

From the power offset expressions in this section and in Section 8.9.4, we can quantify
the performance gap between ZF and optimum DPC transmission at high SNR. Since the
number of DOF is the same in both cases, it is only through the power offset that these
transmitters can be discriminated.

Example 9.24

For IID Rayleigh fading, express the shortfall of the ZF sum spectral efficiency relative to
the sum-capacity in terms of a high-SNR power loss.

Solution

From (8.150), particularized to Nr = 1, and (9.115), the power loss in 3-dB units equals

ΔL∞ = LZF

∞ − L∞ (9.120)

=

⎛
⎝Nt

U

Nt∑
q=Nt−U+1

1

q
− 1

⎞
⎠ log2 e, (9.121)

which, for U = Nt, simplifies into

ΔL∞ =

(
Nt∑
q=2

1

q

)
log2 e. (9.122)

Example 9.25

What is the high-SNR power loss of ZF for IID Rayleigh fading when U = Nt = 3?

Solution

In this case, ΔL∞ = 1.2, indicating a power loss of 3.6 dB. As shown in Fig. 9.5, this
value approximates very well the gap between the ZF sum spectral efficiency and the sum-
capacity even at moderate SNRs.

The power loss ΔL∞ with single-antenna receivers and ZF transmission dualizes the
one for single-antenna transmitters and ZF reception, and the corresponding observations
can thus be directly imported.

The power loss experienced by ZF is minimized for U � Nt and, in fact, it vanishes for
Nt/U → ∞. However, most spatial DOF then go unused.
Conversely, the power loss is maximum when U = Nt, when all the potential DOF are
activated.

Altogether, while at certain SNRs having U < Nt is advantageous in terms of ZF per-
formance, at sufficiently high SNRs it is always best to have U = Nt. However, this con-
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clusion is contingent on CSIT side information, and that is a natural lead into the subject
of the next section.

9.7.6 Pilot-assisted ZF transmission

The preceding formulation of MU-MISO ZF transmission relies critically on the knowl-
edge of H0, . . . ,HU−1 at the transmitter. It is imperative to assess whether the perfor-
mance established under such CSIT is robust and can be actually approached when the
CSI must be extracted from pilot-symbol observations, rather than being granted as side
information. In fact, the issue of CSI acquisition is even more delicate here than it was in
SU-MIMO and in the MU-MIMO MAC because, in contrast with those setups, in the MU-
MIMO BC the CSI is required at the transmitter. It is not obvious whether the reassuring
conclusions drawn for other setups apropos the CSIR continue to hold here with respect to
the CSIT. Consequently, the matter deserves careful attention.

With the aim of quantifying the degree to which the performance of signaling schemes
developed under CSI can be approached when these same schemes are applied with CSI
acquired in operationally relevant conditions, the analysis that follows has this specificity.

IID Rayleigh fading—purposely chosen as an adverse distribution as far as the CSI is
concerned, since antenna correlations would facilitate the channel estimation and reduce
the amount of feedback—with a block-fading structure having coherence Nc. The fad-
ing need not be frequency-flat, but rather the fading blocks can be time–frequency tiles
containing Nc resource elements.
Complex Gaussian signaling, optimum under CSIR.
ZF precoding with a uniform power allocation, which as seen earlier is only slightly
suboptimal in the range of operational interest to MU-MIMO while being more robust
than the optimum power allocation in the face of CSI uncertainty.
A fully loaded system with U = Nt, the most vulnerable configuration. (Despite the
equality between U and Nt, we carry both variables through the analysis in order to shed
light on the role played by each and also to set the stage for potential generalizations to
U < Nt.)

General multistage procedure
The type of duplexing, which is immaterial when CSI is presumed, acquires considerable
importance here. We therefore begin with a broad formulation that accommodates all types
of duplexing, and in due course specialize the analysis. This initial broad formulation calls
for a multistage procedure tailored to the fading coherence.

(1) Unprecoded pilot transmission. In a first stage, the transmitter emits at least one pilot
symbol orthogonally in time (and/or in frequency) from each of the transmit antennas
for a total of Np ≥ Nt pilot symbols and an overhead of α = Np/Nc. These pilots
are unprecoded and, since all users profit from them, they are also termed common.
During each unprecoded pilot transmission from the jth transmit antenna, the uth user
observes

√
GuEs [Hu]j + vu .
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(2) CSI acquisition at each user. Accumulating its observations over the Np/Nt pilots
emitted from the jth antenna, user u collects, for that antenna,

yu,j =

√
Np

Nt
GuEs [Hu]j + vu (9.123)

=

√
αNc

Nt
GuEs [Hu]j + vu (9.124)

and, assembling its cumulative observations for all the transmit antennas into a column
vector, user u obtains

yu =

√
αNc

Nt
GuEs H

T

u + vu, (9.125)

where vu ∼ NC(0, N0I).
From yu, the uth user may derive the MMSE channel estimate Ĥu, satisfying

ĤT

u = E
[
HT

u |yu

]
(9.126)

=
(
R−1

yu
RyuHT

u

)∗
yu (9.127)

=

√
αNc

Nt
GuEs

N0 +
αNc

Nt
GuEs

yu, (9.128)

where (9.127) holds because, as Hu is complex Gaussian, the MMSE and the LMMSE
estimates coincide. Since the entries of Hu are independent, each one is estimated on
the basis of only the corresponding entry of yu. We can write Hu = Ĥu + H̃u where
H̃u is independent of Ĥu and it satisfies H̃T

u ∼ NC(0,MMSEuI) with

MMSEu =
1

1 + αNc

Nt
SNRu

. (9.129)

(3) CSI feedback. The averaged observations y0, . . . ,yU−1, or else the ensuing chan-
nel estimates Ĥ0, . . . , ĤU−1, are conveyed from the users back to the transmitter,
which ends up with generally different estimates ˆ̂H0, . . . ,

ˆ̂HU−1. Subsuming both
reciprocity as well as actual feedback, this process can be modeled as a mapping, in
general probabilistic to allow for noise and errors, from Ĥu to ˆ̂Hu. We denote by αfb

the associated overhead and, even though it is inflicted on the reverse channel, we carry
it through our computations in recognition of the fact that it exists to enable the BC
precoding.

(4) Computation of the precoders. From ˆ̂H0, . . . ,
ˆ̂HU−1, the transmitter can now compute

the ZF precoders by constructing the U ×Nt matrix

ˆ̂C =

⎡
⎢⎢⎣

√
G0

ˆ̂H0

...√
GU−1

ˆ̂HU−1

⎤
⎥⎥⎦ (9.130)

and applying (9.76) to ˆ̂C to obtain, for each user, a column vector precoder ˆ̂F ZF
u that is

orthogonal to the subspace spanned by ˆ̂Hu for u �= u.
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(5) Precoded pilot transmission. At this point, additional pilot symbols need to be trans-
mitted such that each user can estimate its precoded channel and be ready to process
data coherently. Indeed, the users are not privy to ˆ̂F ZF

0 , . . . , ˆ̂F ZF

U−1 nor can they compute
these precoders on the basis of the channel estimates they gather from the unprecoded
pilots, as the uth user only gets to learn Ĥu. The difference between unprecoded and
precoded pilot transmissions is that the former are emitted orthogonally from each of
the antennas whereas the latter are emitted orthogonally through each of the precoders.
And, since each precoded pilot is transmitted for the benefit of a specific user, these
pilots are also termed dedicated. We denote by αd the precoded pilot overhead and
thus the number of precoded pilots is αdNc, evenly divided among the U precoders.
The averaged (over its αdNc/U share of pilots) observation from the uth precoder at
the uth user is

yu,u =

√
αdNc

UNt
GuEs Hu

ˆ̂F ZF

u︸ ︷︷ ︸
au,u

+ vu, (9.131)

where we have introduced au,u = Hu
ˆ̂F ZF
u to denote the coupling coefficient between

the uth precoder and the u user. Common factors aside, au,u represents the intended
channel coefficient for the uth stream whereas au,u for u �= u quantifies the amount
of interference that leaks from the uth stream onto the uth user; this leakage, which
would be zero with CSIT, is caused by precoder misalignments induced by channel
estimation and feedback inaccuracies. For U = Nt, ˆ̂F ZF

u depends on ˆ̂Hu for u �= u

but not on ˆ̂Hu (see Example 9.15) and, since ˆ̂Hu for u �= u are independent of Hu, it
follows that ˆ̂F ZF

u is independent of Hu. Hence,

au,u = Hu
ˆ̂F ZF

u (9.132)

is the product of a standard complex Gaussian vector with an independent random
vector having norm Nt and uniform phase, giving au,u ∼ NC(0, Nt).

(6) Payload data transmission. Finally, MU-MIMO transmission can take place for the
remainder of the fading coherence block, i.e., for (1−α−αfb −αd)Nc symbols. The
uth user receives

yu =
√

GuHu

U−1∑
u=0

√
Eu

Nt

ˆ̂F ZF

u su + vu (9.133)

=

√
Gu

Es

UNt
au,usu +

∑
u �=u

√
Gu

Es

UNt
au,usu + vu, (9.134)

where, because of the uniform power allocation, Eu = Es/U for u = 0, . . . , U−1. To
process (9.134), the uth user has access to the precoded-pilot observations in (9.131).

Spectral efficiency
To determine the maximum spectral efficiency that can be achieved reliably by the uth
user, we need to evaluate the mutual information between su and the outputs: yu in (9.134)
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and yu,0, . . . , yu,U−1 in (9.131). That is, we need to evaluate

I(su; yu, yu,0, . . . , yu,U−1) = I(su; yu|yu,0, . . . , yu,U−1)

+ I(su; yu,0, . . . , yu,U−1) (9.135)

= I(su; yu|yu,0, . . . , yu,U−1), (9.136)

where (9.135) follows from the chain rule of mutual information and (9.136) from the in-
dependence between the transmitted data and the precoded-pilot observations. As intuition
would have it, then, what we need to evaluate is the mutual information between su and yu
with the precoded-pilot observations as (the only) side information, and indeed (9.136) is
the MU-MIMO operational counterpart to the single-user expression in (4.208).

Without the possibility of conditioning on anything other than the precoded-pilot obser-
vations, and in particular without the possibility of conditioning on the fading, the com-
putation of (9.136) is challenging. Fortunately, as in single-user communication, we can
reduce this quantity to another that is both more tractable and more representative of how
wireless systems operate, and that further serves as a lower bound to (9.136). This entails
having the uth user form estimates of its intended channel coefficient au,u on the basis of
only the precoded-pilot observation yu,u in (9.131), in particular the MMSE estimate

âu,u = E
[
au,u |yu,u

]
(9.137)

=
E
[
au,u y

∗
u,u

]
E
[|yu,u|2] yu,u (9.138)

=

√
αd

Nc

U NtGuEs

N0 + αd
Nc

U GuEs

yu,u, (9.139)

where (9.138) holds because au,u is complex Gaussian. Further to this Gaussian nature,
âu,u ∼ NC

(
0, Nt(1−MMSEu,u)

)
and ãu,u ∼ NC

(
0, Nt MMSEu,u

)
with

MMSEu,u =
1

1 + αd
Nc

U SNRu

, (9.140)

and we can write au,u = âu,u + ãu,u where âu,u and ãu,u are independent.
The uth user then regards âu,u as its true channel coefficient, allowing for (9.134) to be

rewritten as

yu =

√
GuEs

UNt
âu,usu +

√
GuEs

UNt
ãu,usu +

∑
u �=u

√
GuEs

UNt
au,usu + vu (9.141)

=

√
GuEs

UNt
âu,usu + v′u, (9.142)

where

v′u =

√
GuEs

UNt
ãu,usu +

∑
u �=u

√
GuEs

UNt
au,usu + vu (9.143)

incorporates the own-channel estimation errors, the other-stream interference, and the noise.
While v′u is uncorrelated with the term of interest to the uth user, âu,usu, the distribution
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of v′u is not Gaussian. Nonetheless, invoking the saddle-point property of the Gaussian
distribution in terms of the mutual information, we can obtain a spectral efficiency achiev-
able with minimum-distance decoding by replacing v′u with Gaussian noise of the same
variance, i.e., of variance

E

[
|v′u|2 |âu,u

]
=

GuEs

U
MMSEu,u +

∑
u �=u

GuEs

UNt
E

[
|au,u|2 |âu,u

]
+N0 (9.144)

where the conditioning on âu,u reflects the fact that the receiver knows it and regards it as
the true channel coefficient. With that, (9.142) leads to

I(su; yu|âu,u) = log2

(
1 +

|âu,u|2
Nt (1−MMSEu,u)

sinreff,u(âu,u)

)
, (9.145)

with |âu,u|2
Nt(1−MMSEu,u)

having unit power, such that the effective conditional average SINR
is given by

sinreff,u(âu,u) =
GuEs

U (1−MMSEu,u)

E
[|v′u|2 |âu,u] (9.146)

=
GuEs

U (1−MMSEu,u)
GuEs

U MMSEu,u +
∑

u �=u
GuEs

UNt
E
[|au,u|2 |âu,u]+N0

(9.147)

=
1
U SNRu (1−MMSEu,u)

1 + 1
U SNRuMMSEu,u +

∑
u �=u

SNRu

NtU
E
[|au,u|2 |âu,u] . (9.148)

From (9.145), taking an outer expectation over the distribution of âu,u and accounting
for the fact that a share (1 − α − αfb − αd) of the symbols are available for payload data
transmission—the rest being consumed by unprecoded and precoded pilot transmissions
and by feedback—the ergodic spectral efficiency achievable by the uth user is

Ru

B
= (1− α− αfb − αd) E

[
log2

(
1 +

sinreff,u(âu,u)

Nt (1−MMSEu,u)
|âu,u|2

)]
, (9.149)

with sinreff,u(âu,u) and MMSEu,u as given in (9.148) and (9.140), respectively. The factor
(1 − α − αfb − αd) is common to every user and the weighted sum spectral efficiency is
given by

∑U−1
u=0 quRu/B.

Example 9.26

How does the spectral efficiency in (9.149) behave as the fading coherence grows?

Solution

Let Nc → ∞. Since α, αfb, and αd depend on the number of users and number of antennas,
but not on Nc, for Nc → ∞ the overhead vanishes. Also, from (9.140), MMSEu,u → 0

and consequently âu,u → au,u ∼ NC(0, Nt). Altogether,

Ru

B
→ E

[
log2

(
1 +

sinreff,u(au,u)

Nt
|au,u|2

)]
(9.150)
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= E

[
log2

(
1 +

SNRu

UNt

1 +
∑

u �=u
SNRu

UNt
E
[|au,u|2 |au,u] |au,u|2

)]
. (9.151)

From (9.129), MMSEu → 0 and therefore Ĥu → Hu meaning that the channel estimates
obtained by the users from the unprecoded pilot transmissions become perfect. The feed-
back process then maps Hu to ˆ̂Hu and, assuming this mapping can itself become perfect
for Nc → ∞, then the true ZF precoders are implemented. It follows that the interference
leakage vanishes (E

[|au,u|2] → 0), giving

Ru

B
= E

[
log2

(
1 +

SNRu

UNt
|au,u|2

)]
(9.152)

= E

[
log2

(
1 +

SNRu

UNt
|HuF

ZF

u |2
)]

, (9.153)

which coincides with the CSI-based spectral efficiency in (9.91), specialized to a uniform
power allocation.

The pilot-assisted multistage procedure that we are considering is, as shown by the
foregoing example, asymptotically optimal in the fading coherence under the reasonable
assumption that the feedback process is itself asymptotically optimal. This pilot-assisted
multistage procedure is therefore a reasonable basis to establish the robustness of ZF trans-
mission in the MU-MISO BC. For finite Nc, degradation arises in the following respects:

Strictly positive overheads, α, αfb, αd > 0.
Strictly positive MMSEu,u, which diminishes both sinreff,u and the power of the in-
tended channel coefficient, E

[|âu,u|2].
Strictly positive conditional interference power, E

[|au,u|2 |âu,u].
While the first two effects are tractable directly from (9.149), the third one is a serious
obstacle owing to the intricate dependences between au,u and âu,u. In order to circumvent
this obstacle and drive home the analysis, we follow the footsteps of [830, section III] and
proceed to lower-bound (9.149).

Spectral efficiency lower bound
Plugging into (9.149) the expression for sinreff,u(·) obtained in (9.148), we can write

Ru

B
= (1− α− αfb − αd)

(
E

[
log2

(
1 +

SNRu

U
MMSEu,u

+
∑
u �=u

SNRu

UNt
E

[
|au,u|2 |âu,u

]
+

SNRu

UNt
|âu,u|2

)]

− E

[
log2

(
1 +

SNRu

U
MMSEu,u +

∑
u �=u

SNRu

UNt
E

[
|au,u|2 |âu,u

])])
(9.154)
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≥ (1− α− αfb − αd)

(
E

[
log2

(
1 +

SNRu

U
MMSEu,u +

SNRu

UNt
|âu,u|2

)]

− E

[
log2

(
1 +

SNRu

U
MMSEu,u +

∑
u �=u

SNRu

UNt
E

[
|au,u|2 |âu,u

])])
(9.155)

= (1− α− αfb − αd)

(
E

[
log2

(
1 +

SNRu

UNt

(
Nt MMSEu,u + |âu,u|2

))]

− E

[
log2

(
1 +

SNRu

U
MMSEu,u +

∑
u �=u

SNRu

UNt
E

[
|au,u|2 |âu,u

])])
(9.156)

≥ (1− α− αfb − αd)

(
E

[
log2

(
1 +

SNRu

UNt

(
Nt MMSEu,u |z|2 + |âu,u|2

))]

− E

[
log2

(
1 +

SNRu

U
MMSEu,u +

∑
u �=u

SNRu

UNt
E

[
|au,u|2 |âu,u

])])
, (9.157)

where in (9.155) a positive term has been dropped and in (9.157) we have introduced
an independent variable z ∼ NC(0, 1) that reduces the expectation of the corresponding
logarithm. Indeed, from Jensen’s inequality,

E

[
log2

(
1 +

SNRu

UNt

(
Nt MMSEu,u |z|2 + |âu,u|2

))]

≤ E

[
log2

(
1 +

SNRu

UNt

(
Nt MMSEu,u E

[|z|2]︸ ︷︷ ︸
1

+ |âu,u|2
))]

, (9.158)

as applied in (9.157). And, since âu,u ∼ NC

(
0, Nt(1−MMSEu,u)

)
as derived earlier, we

have that √
Nt MMSEu,u z + âu,u ∼ NC(0, Nt) (9.159)

and consequently

E

[
log2

(
1 +

SNRu

UNt

(
Nt MMSEu,u |z|2 + |âu,u|2

))]

= E

[
log2

(
1 +

SNRu

UNt

∣∣∣√Nt MMSEu,u z + âu,u

∣∣∣2)
]

(9.160)

= CZF

u (SNRu), (9.161)

where CZF
u (·), the CSI-based spectral efficiency function for ZF transmission with uniform

power allocation, is obtained because the argument of (9.160) has the same distribution
as that of (9.153); for IID Rayleigh fading, this function admits the closed form in (9.95).
Altogether, (9.157) can be rewritten as

Ru

B
≥ (1− α− αfb − αd)

(
CZF

u (SNRu)
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− E

[
log2

(
1 +

SNRu

U
MMSEu,u +

∑
u �=u

SNRu

UNt
E

[
|au,u|2 |âu,u

])])
(9.162)

and, applying Jensen’s inequality again,

Ru

B
≥ (1− α− αfb − αd)

(
CZF

u (SNRu) (9.163)

− log2

(
E

[
1 +

SNRu

U
MMSEu,u +

∑
u �=u

SNRu

UNt
E

[
|au,u|2 |âu,u

] ]))

= (1− α− αfb − αd)

(
CZF

u (SNRu)

− log2

(
1 +

SNRu

U
MMSEu,u +

∑
u �=u

SNRu

UNt
E

[
|au,u|2

]))
, (9.164)

where E
[|au,u|2] has become disentangled from âu,u, thereby facilitating its computation.

Recalling the definitions of MMSEu,u and au,u, finally,

Ru

B
≥ (1− α− αfb − αd)

[
CZF

u (SNRu)

− log2

(
1 +

SNRu

U + αdNc SNRu
+

∑
u �=u

SNRu

UNt
E

[
|Hu

ˆ̂F ZF

u |2
])]

, (9.165)

which lower bounds the spectral efficiency in complete generality as far as the duplexing
is concerned. It can be verified that the bound is tight for Nc → ∞, returning CZF

u (SNRu).
Even in complete generality as far as the duplexing is concerned, some preliminary

observations can be made from (9.165).

There is an immediate decrease factor of (1 − α − αfb − αd) in the number of spatial
DOF per user, and hence in the total number of spatial DOF.
Decrease in DOF aside, the second term in (9.165) directly bounds the losses in spectral
efficiency.

This second observation raises the interest in assessing how the term E
[|Hu

ˆ̂F ZF
u |2] be-

haves and, particularly, how it behaves as a function of SNRu. From a cursory inspection
of (9.165) it is seen—in concord with the basic result in Section 8.10—that, if this term
decays at least as fast as 1/SNRu, then the power loss is sure to be in the form of only a
shift in the power offset. Otherwise, the power loss swells without bound and there could
be an additional decrease in the number of spatial DOF. To establish the behavior of this
term, though, it becomes necessary to postulate a specific duplexing scheme.

FDD
We begin with FDD, decidedly the most adverse type of duplexing for the matter at hand,
and, for the purpose that occupies us here, we consider analog feedback. A digital im-
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plementation of the feedback would entail extending to the multiuser realm the SU-MIMO
concepts in Section 5.10, and readers interested in this extension are directed to [831–849].

With analog feedback, user u feeds back transformed versions of either the cumulative
observation yu in (9.125) or of the ensuing channel estimate Ĥu. For the sake of speci-
ficity, let us posit that user u sends back yu, possibly repeated and scaled according to
the available feedback power. Let us begin by considering that the feedback transmissions
from the U users are orthogonally multiplexed, such that each one extends over αfb

Nc

U

symbols per block, leaving αfb
Nc

NtU
feedback symbols to repeat each of the Nt entries of

yu. Moreover, let us momentarily consider that the feedback transmissions are subject to
noise, but not to fading. Introducing additional (·)r superscripting to distinguish reverse-
link quantities from their BC counterparts, the feedback transmission of yu on the part of
user u is observed back at the base station, after accumulation over αfb

Nc

UNt
repetitions and

assembly of the Nt entries into a vector, as

yr
u =

√
αfb

Nc

UNt
NtGuEr

s√
1
Nt

E
[‖yu‖2

] yu + vr
u (9.166)

where the denominator scales down to unity the variance of each entry of yu while:

Er
s scales it back up to the available reverse-link power.

Gu is the large-scale power gain of the reverse link of user u, identical to that of the
corresponding forward link, with an accompanying factor Nt because each feedback
symbol is picked up by Nt antennas back at the base station.
αfb

Nc

UNt
amasses power over the repetitions of each entry.

Recalling (9.125), the above unfolds into

yr
u =

√
αfb

Nc

U GuEr
s√

αNc

Nt
GuEs +N0

yu + vr
u (9.167)

=
Gu

√
αfbα

N2
c

UNt
EsEr

s√
αNc

Nt
GuEs +N0

HT

u +

√
αfb

Nc

U GuEr
s√

αNc

Nt
GuEs +N0

vu + vr
u

︸ ︷︷ ︸
Total noise, v′

u

, (9.168)

where, given the independence and IID complex Gaussian nature of vu and vr
u, the total

noise is v′
u ∼ NC(0, σ

2I) with

σ2 =

(
1 +

αfb
Nc

U SNRr
u

1 + αNc

Nt
SNRu

)
N0, (9.169)

where we have introduced the reverse-link local-average SNR

SNRr
u =

GuE
r
s

N0
. (9.170)
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From yr
u, the sought estimate ˆ̂Hu can be derived via

ˆ̂Hu
T = E

[
HT

u |yr
u

]
(9.171)

= E
[
HT

u yr ∗
u

](
E
[
yr
u y

r ∗
u

])−1

yr
u (9.172)

=
Nc

Nt√
N0

√
αfbα

Nt

U SNRuSNR
r
u(

1 + αfb
Nc

U SNRr
u

)√
1 + αNc

Nt
SNRu

yr
u, (9.173)

where (9.172) holds because Hu is complex Gaussian while (9.173) emerges after a bit of
algebra. The reader is invited to verify this step in Problem 9.25.

As in earlier occasions, we can write Hu = ˆ̂Hu + ˜̃Hu where ˜̃Hu is independent of
ˆ̂Hu and ˜̃Hu ∼ NC(0, σ

2
eI) with

σ2
e =

1

1 + αfb
Nc

U SNRr
u

(
1 +

αfb
Nc

U SNRr
u

1 + αNc

Nt
SNRu

)
. (9.174)

Armed with the foregoing expressions, we are finally in a position to establish the be-
havior of E

[|Hu
ˆ̂F ZF
u |2] in (9.165). Precisely,

E

[∣∣∣Hu
ˆ̂F ZF

u

∣∣∣2] = E

[∣∣∣( ˆ̂Hu + ˜̃Hu

)
ˆ̂F ZF

u

∣∣∣2] (9.175)

= E

[∣∣∣ ˜̃Hu
ˆ̂F ZF

u

∣∣∣2] (9.176)

= E

[
ˆ̂F ZF∗
u

˜̃H∗
u
˜̃Hu

ˆ̂F ZF

u

]
(9.177)

= E

[
ˆ̂F ZF∗
u E

[
˜̃H∗
u
˜̃Hu

]
ˆ̂F ZF

u

]
(9.178)

= σ2
e E

[
‖ ˆ̂F ZF

u ‖2
]

(9.179)

= Nt σ
2
e , (9.180)

where we have exploited that, for U = Nt, ˆ̂F ZF
u is both orthogonal to ˆ̂Hu and independent

of ˜̃Hu, and in (9.180) we have further invoked the precoder normalization.
By means of (9.180) and (9.174), the general lower bound in (9.165) can now be partic-

ularized to FDD with analog feedback, giving

Ru

B
≥ (1− α− αfb − αd)

[
CZF

u (SNRu) (9.181)

− log2

(
1 +

1
U SNRu

1 + αd
Nc

U SNRu

+
(1− 1

U ) SNRu

1 + αfb
Nc

U SNRr
u

(
1 +

αfb
Nc

U SNRr
u

1 + αNc

Nt
SNRu

))]
.

The final step in the characterization of the performance of pilot-assisted transmission is
to optimize the overheads α, αfb, and αd, yielding a maximized bound that depends only
on SNRu, SNRr

u, U = Nt, and Nc. Specifically, the optimization of the weighted sum
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spectral efficiency is formulated as

max
α,αfb,αd

(1− α− αfb − αd)
U−1∑
u=0

qu

[
CZF

u (SNRu) (9.182)

− log2

(
1 +

1
U SNRu

1 + αd
Nc

U SNRu

+
(1− 1

U ) SNRu

1 + αfb
Nc

U SNRr
u

(
1 +

αfb
Nc

U SNRr
u

1 + αNc

Nt
SNRu

))]

with the constraints that α > 0, αfb > 0 and αd > 0, as well as α + αfb + αd < 1. This
problem is convex and very affordable, but the function is involved and it is not easy to
glean much analytical insight from it beyond some asymptotic behaviors that are explored
in [850] and entertained later in this section. Furthermore, the optimization couples the
performance of the various users through the common factor (1− α− αfb − αd).

If all user SNRs are equal, then the optimization does decouple into per-user problems
of the form

max
α,αfb,αd

(1− α− αfb − αd)

[
CZF

u (SNRu) (9.183)

− log2

(
1 +

1
U SNRu

1 + αd
Nc

U SNRu

+
(1− 1

U ) SNRu

1 + αfb
Nc

U SNRr
u

(
1 +

αfb
Nc

U SNRr
u

1 + αNc

Nt
SNRu

))]
,

whose solution, while not general, is highly revealing. We thus choose to tackle this prob-
lem at this point, bracketing the range of values taken by the various overheads and by the
ensuing bound by numerically solving (9.183) for extreme values of U = Nt and Nc.

Let us first consider the case of balanced forward and reverse transmit powers, such that
SNRr

u = SNRu, and revisit this condition a bit later.

Example 9.27

Let U = Nt = 2 and SNRr
u = SNRu. For fading coherences corresponding to vehicular

and pedestrian users, solve (9.183). Plot the optimized lower bound alongside CZF
u (SNRu),

which represents an upper bound to the spectral efficiency achievable with pilot-assisted ZF
transmission; these two bounds demarcate the range where the actual ZF spectral efficiency
lies. Further plot the various overheads, as well as their sum, as a function of SNRu.

Solution

As calculated in Example 3.27, vehicular and pedestrian settings may correspond, respec-
tively, to Nc = 1000 and Nc = 20 000. For these fading coherences, the spectral efficien-
cies and overheads are presented in Figs. 9.7 and 9.8. On the left-hand side subfigures, the
shaded regions indicate the range of spectral efficiencies comprised between the lower and
upper bounds. On the right-hand side subfigures, the values of α, αd, and αfb that optimize
the lower bound, as well as their sum, are depicted.

Example 9.28

Repeat Example 9.27 for U = Nt = 8.
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�Fig. 9.7 Left, shaded region containing the spectral efficiency of a user as a function of its

SNR (in dB) for pilot-assisted ZF transmission with FDD and with U = Nt = 2,

Nc = 1000, and SNRr
u = SNRu. Right, corresponding overheads (α, αd, and αfb, as

well as their sum) optimized for the spectral efficiency lower bound.
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�Fig. 9.8 Left, shaded region containing the spectral efficiency of a user as a function of its

SNR (in dB) for pilot-assisted ZF transmission with FDD and with U = Nt = 2,

Nc = 20 000, and SNRr
u = SNRu. Right, corresponding overheads (α, αd, and αfb, as

well as their sum) optimized for the spectral efficiency lower bound.

Solution

See Figs. 9.9 and 9.10.

From the foregoing examples, we observe the following.

For pedestrian users, the total overhead is small (well below 10% for U ≤ 8 in the
medium-to-high-SNR range) and the reduction in spectral efficiency with respect to its
CSI-based value is minute.
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�Fig. 9.9 Left, shaded region containing the spectral efficiency of a user as a function of its

SNR (in dB) for pilot-assisted ZF transmission with FDD and with U = Nt = 8,

Nc = 1000, and SNRr
u = SNRu. Right, corresponding overheads (α, αd, and αfb, as

well as their sum) optimized for the spectral efficiency lower bound.
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�Fig. 9.10 Left, shaded region containing the spectral efficiency of a user as a function of its

SNR (in dB) for pilot-assisted ZF transmission with FDD and with U = Nt = 8,

Nc = 20 000, and SNRr
u = SNRu. Right, corresponding overheads (α, αd, and αfb, as

well as their sum) optimized for the spectral efficiency lower bound.

For a reduced number of vehicular users, the total overhead is still small (again below
10% for U = 2) and the spectral efficiency continues to be largely preserved.

Only under the combination of both vehicular conditions and a substantial number of
users does the total overhead escalate and the spectral efficiency exhibit a noticeable
decrease. Even here though, the degradation is far from catastrophic.

The optimum overheads decrease monotonically with the SNR, a behavior already ob-
served in pilot-assisted SU-MIMO and that is rooted in the fact that the cost of adding
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further pilot and feedback symbols is in the form of a linear factor while the benefits
from more precise channel and precoder estimates are sublinear. At sufficiently high
SNR, fewer pilot and feedback symbols are sure to be preferable.

Following these examples, we are left with the reassurance that the performance of ZF
transmission with FDD is robust and that the CSI analysis conducted earlier in the chapter
is meaningful, with corrections that depend on the number of users and antennas and on
the fading coherence. As argued earlier, ZF with large U might require—even with CSI
and let alone without—that Nt > U .

The repercussions of having SNRr
u �= SNRu are considered next, as we seek to more

sharply determine the corrections that the CSI-based spectral efficiency necessitates to
properly represent the performance of pilot-assisted ZF transmission.

Reverse-link power asymmetry

It can be seen by inspecting (9.181) that, if SNRr
u does not grow with SNRu, i.e., if for

SNRu → ∞ it holds that
SNRr

u

SNRu
→ 0 (9.184)

then the spectral efficiency lower bound behaves poorly (refer to Problem 9.28). It being a
lower bound, this does not necessarily spell doom for the actual spectral efficiency, but it
supports the intuition developed in Section 8.10 that the feedback needs to become cleaner
so as to pack richer CSI content as SNRu grows and the forward estimates themselves
become cleaner. Building on this intuition, let us allow SNRu and SNRr

u to keep some
positive ratio

ρ =
Es

Er
s

(9.185)

=
SNRu

SNRr
u

. (9.186)

This allows rewriting (9.181) as a function of solely SNRu, namely

Ru

B
≥ (1− α− αfb − αd)

[
CZF

u (SNRu) (9.187)

− log2

(
1 +

1
U SNRu

1 + αd
Nc

U SNRu

+
(1− 1

U ) SNRu

1 + αfb
Nc

ρU SNRu

(
1 +

αfb
Nc

ρU SNRu

1 + αNc

Nt
SNRu

))]
,

which expression is an opportune point to transition the analysis to the high-SNR regime.

High-SNR regime

Recalling (9.113) and (9.116),

CZF

u (SNRu) = log2 SNRu − LZF

∞,u +O
(

1

SNRu

)
(9.188)
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= log2
SNRu

U
− γEM log2 e+O

(
1

SNRu

)
, (9.189)

which, plugged into (9.187) and after a further expansion with respect to SNRu, gives

Ru

B
≥ (1− α− αfb − αd)

[
log2

SNRu

U
− γEM log2 e

− log2

(
1 +

1

αdNc
+

1− 1
U

Nc

(
ρU

αfb
+

Nt

α

))]
+O

(
1

SNRu

)
. (9.190)

For SNRu → ∞, as argued, the optimum overheads converge to their minimum values:

One unprecoded pilot symbol per antenna, such that α = Nt/Nc.
One precoded pilot symbol per precoder, hence αd = U/Nc.
One feedback symbol from each user for each of the precoders, giving αfb = UNt/Nc.

Inserting these quantities into (9.190), we obtain

Ru

B
≥

(
1− Nt + U + UNt

Nc

)[
log2

SNRu

U
− γEM log2 e− log2

(
2 + ρ

1− 1
U

Nt

)]

+O
(

1

SNRu

)
(9.191)

and therefore

ΔLZF

∞ = log2

(
2 + ρ

1− 1
U

Nt

)
(9.192)

gives the power offset penalty, in 3-dB units, of pilot-assisted ZF transmission relative to
its CSI counterpart. And, although derived under a uniform power allocation, this power
offset penalty pertains to the optimum power allocation as well because of the asymptotic
uniformity of the waterfilling solution.

Altogether then, the degradation with respect to the CSI spectral efficiency in the high-
SNR regime is in the form of a decrease factor(

1− Nt + U + UNt

Nc

)
(9.193)

in spatial DOF plus a power offset penalty equal to ΔLZF
∞.

Example 9.29

Reconsider Example 9.28, where U = Nt = 8 and ρ = 1 for the vehicular setting repre-
sented by Nc = 1000. Plot again the range of values between the optimized lower bound
and the upper bound CZF

u (SNRu), as on the left-hand side of Fig. 9.9, but homing in on the
high-SNR regime. Then, add to the plot the expansions in (9.189) and (9.191) and verify
that they hug this range for growing SNRu.

Solution

See Fig. 9.11.
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�Fig. 9.11 Shaded region containing the spectral efficiency of a given user as a function of its

SNR (in dB) for pilot-assisted ZF transmission with U = Nt = 8, Nc = 1000, and

ρ = 1. The dashed lines are the high-SNR expansions in (9.189) and (9.191).

By means of the DOF decrease factor in (9.193) and of the power offset penalty ΔLZF
∞

in (9.192), the degradation with respect to the CSI spectral efficiency can be more crisply
gauged.

In terms of DOF, the decrease factor is entirely caused by overhead. Beyond that in-
evitable degradation, pilot-based ZF transmission is able to preserve the integrity of the
U = Nt spatial DOF. This can be reconciled with the basic result laid down in Section
8.10, according to which the preservation of the spatial DOF in a BC requires that the un-
certainty in the transmitter knowledge of the channel coefficients decay at least inversely
with the SNR. In the FDD flavor of pilot-assisted ZF that occupies us here, the rate of
decay of this uncertainty can be gauged from the variance of the error between each true
channel realization Hu and the corresponding estimate available to the transmitter, ˆ̂Hu.
This variance, derived in (9.174), expands as

σ2
e =

Nt

αNc SNRu
+O

(
1

SNR2
u

)
, (9.194)

which indeed decays inversely with SNRu.
In terms of power offset penalty, it can be verified (refer to Problem 9.29) that, regardless

of the value of ρ, such penalty is maximum for U = Nt = 2. From (9.192) then,

ΔLZF

∞ ≤ log2

(
2 + ρ

1− 1
2

2

)
(9.195)

= log2

(
2 +

ρ

4

)
. (9.196)
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For ρ = 1 then,

ΔLZF

∞ ≤ log2

(
2 +

1

4

)
(9.197)

= 1.17, (9.198)

in 3-dB units, amounting to 3.52 dB. This is a relatively modest penalty at high SNR and
thus what dominates the behavior, at least for ρ = 1, is the decrease factor in DOF: as long
as this factor is not far from unity, the performance of pilot-assisted transmission is bound
to be satisfactory.

Let us now examine the impact of having ρ > 1, a situation that is descriptive of many
outdoor systems where the power budget of a base station might be one or two orders
of magnitude above that of a user. (While the superior base station transmit powers are
somewhat compensated by the higher noise figures encountered in consumer-grade user
receivers, the SNR balance decidedly favors the forward link.)

Example 9.30

Everything else being the same, quantify the additional power offset penalty associated
with having ρ = 10 rather than ρ = 1.

Solution

For U = Nt = 2, the additional power offset penalty in 3-dB units is

log2

(
2 + 10

1− 1
2

2

)
− log2

(
2 +

1− 1
2

2

)
= 1 (9.199)

amounting to a 3-dB loss. For U = Nt > 2, this additional penalty is seen to decrease
monotonically. Altogether then, the high-SNR cost of a 10-dB imbalance between the for-
ward and reverse links does not exceed 3 dB relative to the balanced case.

For ρ/Nt � 1, we have from (9.192) that ΔLZF
∞ grows logarithmically with ρ and thus

every dB of reduction in reverse transmit power, relative to the forward power, maps di-
rectly to a dB of additional penalty in the power offset. This bodes poorly for systems with
major asymmetries, although with an important mitigating factor: as can be noticed by ex-
amining (9.190), the spectral efficiency lower bound depends on ρ only through its ratio
with αfbNc, the number of feedback symbols, which sensibly indicates that what matters
is the total energy applied to the feedback signals. Consequently, any increase in ρ can
be made up by a corresponding increase in the number of feedback symbols and, at not-
so-high SNRs, asymmetries indeed are bound to translate partly (depending on the fading
coherence) onto additional feedback symbols. Although not necessarily optimal, we could
translate the entire effect of the asymmetry onto additional feedback symbols. Precisely,
increasing the number of feedback symbols from UNt to ρUNt (integer-rounded if nec-
essary), we can keep the power offset penalty to within the modest 3.52 dB calculated in
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(9.198) while turning the DOF decrease factor in (9.193) into(
1− Nt + U + ρUNt

Nc

)
. (9.200)

This allows us to safely state that, with U = Nt, pilot-assisted ZF with FDD performs
satisfactorily if

2U + ρU2

Nc
� 1. (9.201)

From this compact condition, involving the number of users (and transmit antennas), the
fading coherence, and the forward–reverse SNR asymmetry, we can delineate the combi-
nations of these parameters that are well tolerated.

Example 9.31

For the decrease factor on the number of spatial DOF not to exceed 10%, meaning

2U + ρU2

Nc
< 0.1, (9.202)

what is the largest number of users and antennas that can be accommodated with symmetric
powers in pedestrian and vehicular conditions?

Solution

For ρ = 1, the condition becomes

2U + U2 < 0.1Nc. (9.203)

Setting Nc = 1000 to represent vehicular coherence, we obtain U < 10, which is consis-
tent with earlier findings. With pedestrian users, the condition becomes much laxer.

Example 9.32

For the decrease factor in the number of spatial DOF not to exceed 10%, what is the largest
number of users and antennas that can be accommodated with a 10-dB power asymmetry?

Solution

For ρ = 10, (9.203) morphs into

2U + 10U2 < 0.1Nc. (9.204)

Setting Nc = 1000 we obtain U < 4 and thus vehicular users can still be supported, albeit
in limited number. Pedestrian users can be amply supported.

Example 9.33

Finally, for the decrease factor in the number of DOF not to exceed 10%, what is the largest
number of users and antennas that can be accommodated with a 20-dB power asymmetry?
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Solution

For ρ = 100,

2U + 100U2 < 0.1Nc. (9.205)

Setting Nc = 1000, we obtain U < 1, which warns that under such strong power asym-
metry vehicular users might not be supportable at all. Turning to pedestrians though,
Nc = 20 000 still yields a comforting value of U < 5.

SNR asymmetries therefore constrain and eventually compromise the ability of the sys-
tem to support fast-moving users, but, even in highly asymmetric situations, pilot-assisted
ZF transmission with FDD can perform rather satisfactorily for pedestrian users.

Reverse-link fading

The one weak point of the analysis up to this point is the consideration of an AWGN
feedback channel. With that, we have captured the effect of noise and, most importantly,
the scaling of the reverse SNR with its forward counterpart and the possible asymmetries
between the two, but we have omitted reverse-link fading. While, per se, reverse-link fading
diminishes the spectral efficiency only slightly (refer to Problem 9.30), it does have two
notable consequences.

To be coherently detected, the feedback transmissions must be preceded by additional
reverse pilots, at least one from each user, transmitted orthogonally. This means addi-
tional overhead.
Recognizing that the reverse channel is a MAC, the feedback transmissions themselves
can be concurrent rather than orthogonal [630]. It is shown in [830] that, with LMMSE
reception at the Nt-antenna base station, the spectral efficiency lower bound is max-
imized by having two orthogonal feedback transmissions, each involving U/2 users
transmitting simultaneously. (It is also argued in [830] that the exact spectral efficiency
might be maximized by having a single feedback transmission by all U users at once,
but, since such exact spectral efficiency is unwieldy and we have instead chosen to utilize
the lower bound, we abide by the two orthogonal transmissions.)

In terms of the number of spatial DOF, the balance of these two consequences is actually
favorable. For SNRu → ∞:

One reverse pilot is required orthogonally from each user for a total of U additional
reverse pilots.
In exchange, rather than UNt feedback symbols, 2Nt suffice with non-orthogonal feed-
back.

When all this is considered, (9.201) changes into

3 + 2ρ

Nc
U � 1. (9.206)
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Example 9.34

By means of (9.201) and for the decrease factor in number of DOF not to exceed 10%, it is
determined in Example 9.33 that, with a 10-dB power asymmetry, U < 4 vehicular users
are supportable. Redo this calculation with (9.206) in place of (9.201).

Solution

For ρ = 10, (9.206) yields

23U < 0.1Nc. (9.207)

Setting Nc = 1000, we obtain U < 5.

As an additional improvement, if either the base station or the user power constraints
allow it, it may be possible to allocate unequal transmit powers to the various pilot symbols
relative to the data and feedback symbols. As seen in the context of SU-MIMO, such pilot
power boosting does not affect the number of spatial DOF but it can bring about a reduction
(expected to be modest) in the power offset penalty.

TDD and full duplexing
Leaving FDD behind, let us now move on to TDD and full duplexing. These are more fa-
vorable duplexing alternatives because they open the door to the exploitation of reciprocity,
and with that to a reduction in the number of pilots [851]. The performance under these
alternatives can be established from the FDD expressions, without the need to start the
analysis anew. To see that, let us revisit the FDD procedure, which entails these stages:

(1) Unprecoded pilot transmissions from each antenna.
(2) CSI acquisition at each user.
(3) Reverse-link pilot transmissions from each user, reverse-link channel estimation at the

base station, and CSI feedback.
(4) Computation of the precoders.
(5) Precoded pilot transmission through each precoder.
(6) Payload data transmission.

Channel reciprocity enables the removal of the two initial stages as well as of the CSI
feedback, leaving the procedure as follows:

(1) Reverse-link pilot transmissions from each user, and channel estimation at the base
station.

(2) Computation of the precoders applying the reverse-link channel estimates to the for-
ward direction.

(3) Precoded pilot transmission through each precoder.
(4) Payload data transmission.
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Tempting as it may be to think that perhaps the precoded pilot transmissions could also
be done away with, that is not the case in nonmassive MIMO, as users are unable to in-
dependently produce the precoders generated at the base station. The subsequent precoded
pilot transmissions make it possible for the users to learn the precoded channels through
which the data are to be ultimately sent.

As far as our analysis is concerned, the general lower bound obtained in (9.165) contin-
ues to apply by setting αfb = 0. This aside, the differences between FDD and TDD emerge
once the term

E

[∣∣∣Hu
ˆ̂F ZF

u

∣∣∣2] (9.208)

is developed. Recall that ˆ̂F ZF
0 , . . . , ˆ̂F ZF

U−1 are generated by applying ZF to ˆ̂Hu = Hu− ˜̃Hu

for u = 0, . . . , U − 1. Now, rather than being given by (9.174), the variance of the entries
of ˜̃Hu is

σ2
e =

1

1 + αNc

U SNRr
u

, (9.209)

reflecting the fact that each such estimate is obtained directly at the base station by observ-
ing reverse pilot transmissions from the users. We have retained the variable α, previously
utilized to denote the unprecoded pilot overhead in the forward direction, to now denote the
unprecoded pilot overhead that takes its place in the reverse direction; each of the U users
gets to transmit αNc

U pilot symbols per block and every pilot symbol enables simultaneous
estimation of that user’s Nt fading coefficients—one per antenna—at the base station.

From (9.180) and (9.209),

E

[∣∣∣Hu
ˆ̂F ZF

u

∣∣∣2] =
Nt

1 + αNc

U SNRr
u

, (9.210)

which, plugged into the general lower bound in (9.165), yields

Ru

B
≥ (1− α− αd)

[
CZF

u (SNRu) − log2

(
1 +

1
U SNRu

1 + αd
Nc

U SNRu

+
(1− 1

U ) SNRu

1 + αNc

U SNRr
u

)]
.

(9.211)

Invoking the forward–reverse SNR ratio

ρ =
SNRu

SNRr
u

, (9.212)

we finally obtain

Ru

B
≥ (1− α− αd)

[
CZF

u (SNRu) − log2

(
1 +

1
U SNRu

1 + αd
Nc

U SNRu

+
(1− 1

U ) SNRu

1 + αNc

ρU SNRu

)]
,

(9.213)

which is a TDD/full duplex counterpart to the FDD expression in (9.187); to get a sense of
how much the two differ, we can repeat for the former one of the examples of the latter.
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�Fig. 9.12 Left, shaded region containing the spectral efficiency of a user as a function of its

SNR (in dB) for pilot-assisted ZF transmission with TDD/full duplex, U = Nt = 8,

Nc = 1000, and SNRr
u = SNRu. In a solid line below the shaded region, the FDD

lower bound. Right, TDD/full duplex overheads (α and αd, as well as their sum)

optimized for the spectral efficiency lower bound.

Example 9.35

Repeat Example 9.28, where U = Nt = 8 and ρ = 1, for TDD/full duplex in a vehicular
setting (Nc = 1000). Contrast the TDD/full duplex spectral efficiency lower bound with
its FDD brethren.

Solution

See Fig. 9.12. On the left-hand side subfigure, the shaded region indicates the range be-
tween the CSI spectral efficiency and the TDD/full duplex lower bound. Below, a solid line
indicates the FDD lower bound. On the right-hand side subfigure, α and αd that optimize
the TDD lower bound, as well as their sum.

With TDD/full duplex, the total overheads are reduced substantially and the worst-case
loss in spectral efficiency is cut almost in half.

High-SNR regime

Recalling the expansion of CZF
u (SNRu) in (9.189), the lower bound in (9.213) can be seen

to behave as

Ru

B
≥ (1− α− αd)

[
log2

SNRu

U
− γEM log2 e− log2

(
1 +

1

αdNc
+ ρ

U − 1

αNc

)]

+O
(

1

SNRu

)
. (9.214)
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For SNRu → ∞, the overheads converge to their minimum values:

One reverse pilot symbol from each user, such that α = U/Nc.
One precoded pilot symbol per precoder, hence αd = U/Nc.

Inserting these quantities into (9.214),

Ru

B
≥

(
1− 2U

Nc

)[
log2

SNRu

U
− γEM log2 e− log2

(
1 + ρ− ρ− 1

U

)]

+O
(

1

SNRu

)
, (9.215)

from which the decrease factor in the number of spatial DOF is(
1− 2U

Nc

)
(9.216)

while the power offset penalty, in 3-dB units, is

ΔLZF

∞ = log2

(
1 + ρ− ρ− 1

U

)
. (9.217)

Both the decrease factor in DOF and the power offset penalty reflect a milder degradation,
with respect to the CSI spectral efficiency, than we had found with FDD. As far as the
DOF is concerned, this is confirmed by contrasting (9.216) with (9.193). And, as far as the
power offset is concerned, since ρ− 1 ≥ 0, the TDD penalty ΔLZF

∞ in (9.217) achieves its
higher value for U → ∞. Thus,

ΔLZF

∞ ≤ log2(1 + ρ) (9.218)

which, for ρ = 1, gives a penalty not exceeding 3 dB. This is less than the 3.52 dB en-
countered when this same exercise was conducted for FDD, and thus the conclusion is
reinforced: it is a relatively modest penalty at high SNR and what dominates the behavior,
at least for ρ = 1, is the decrease factor in DOF.

Any increase in ρ above unity, that is, any asymmetry SNRr
u < SNRu, can be com-

pensated by a proportional increase in the number of reverse pilot symbols emitted by the
users and, depending on the SNRs and fading coherence, power asymmetries are sure to
translate partly onto additional reverse pilots. Translating the entire effect of any asymme-
try onto additional reverse symbols, and thereby keeping the power offset penalty to within
the modest 3 dB calculated above, we can safely state that pilot-assisted ZF with TDD/full
duplex performs satisfactorily if

1 + ρ

Nc
U � 1. (9.219)

Recalling the equivalent expression derived in (9.206) for FDD, in Table 9.1 we con-
veniently contrast the sufficient conditions in terms of number of users and antennas,
forward–reverse SNR asymmetry, and fading coherence, for pilot-assisted ZF transmis-
sion to operate “close” to its CSI level with either FDD or TDD/full duplex; the mean-
ing of “close” is made precise by quantifying the degree of inequality in the conditions.
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Table 9.1 Sufficient condition in terms of U = Nt, power
asymmetry, and fading coherence, for pilot-assisted ZF

transmission to approach CSI-based ZF

FDD TDD/full duplex(
3 + 2ρ

)
U � Nc

(
1 + ρ

)
U � Nc

TDD/full duplex is uniformly superior, meaning that for any given ρ more users can be
accommodated and, for any given U = Nt, a steeper power asymmetry can be tolerated.

Example 9.36

Quantify how TDD or full duplex increase the tolerance to asymmetries for some given U .

Solution

Introducing additional scripting to distinguish between the power asymmetry tolerated with
FDD or with TDD/full duplex, for some given U = Nt the equivalence of the respective
conditions in Table 9.1 gives

ρTDD ≈ 2
(
1 + ρFDD

)
. (9.220)

For ρFDD = 1 for instance, ρTDD = 4, meaning a 6-dB enhancement in tolerance. In turn,
for sufficiently pronounced asymmetries,

ρTDD ≈ 2 ρFDD, (9.221)

meaning a 3-dB enhancement in tolerance. All in all, with TDD/full duplex an additional
power asymmetry of 3–6 dB can be tolerated, everything else being equal.

In a similar vein, we could quantify how the number of users and antennas that can be
accommodated for a given ρ increases with TDD/full duplex relative to FDD, an aspect
that is explored in Problems 9.32 and 9.33.

Let us now present a final example where we contrast the performance of pilot-assisted
ZF transmission against the ultimate performance limit, namely the BC capacity with CSIT
side information. This serves the double purpose of gauging the performance of a specific
practical scheme, and of appraising the role of the BC capacity as a benchmark. We conduct
the example in a familiar setup for which we have already computed the BC sum-capacity.

Example 9.37

Let us revisit Example 8.33, where U = Nt = 3 with

SNR0|dB = SNR|dB (9.222)

SNR1|dB = SNR|dB + 5dB (9.223)

SNR2|dB = SNR|dB + 8dB (9.224)
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shaded region below contains the sum spectral efficiency for pilot-assisted ZF

transmission with TDD, Nc = 20 000, and ρ = 10.

and with Rayleigh fading. Figure 8.14 presents the sum-capacity while Fig. 9.5 presents
both the sum-capacity and the sum spectral efficiency achieved by ZF with CSI.

Quantify now the range of sum spectral efficiencies for pilot-based ZF transmission with
TDD in pedestrian conditions (Nc = 20 000) and with a 10-dB power asymmetry (ρ = 10).

Solution

The lower bound to the sum spectral efficiency with ZF transmission and TDD is obtained
by solving

max
α,αd

(1− α− αd)

2∑
u=0

[
CZF

u (SNRu) − log2

(
1 +

1
U SNRu

1 + αd
Nc

U SNRu

+
(1− 1

U ) SNRu

1 + αNc

ρU SNRu

)]
(9.225)

subject to α > 0, αd > 0, and α + αd < 1. The shaded region in Fig. 9.13 contains the
range of values between the result of this convex optimization and the CSI-based ZF sum
spectral efficiency while the curve above it is the BC sum-capacity.

Example 9.38

Repeat the previous example for vehicular users (Nc = 1000).

Solution

See Fig. 9.14.
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To wrap up the coverage of pilot-assisted ZF transmission, some final remarks.

Our analysis relies on a block-fading channel model, perfectly representative in terms of
the computation of the number of DOF while possibly less-than-perfect on finer mea-
sures such as the power offset. Therefore, the conditions derived in Table 9.1 should
hold up also under continuous-fading whereas the values returned by the expressions
for ΔLZF

∞ may depart slightly from the power penalties in a continuous fading chan-
nel. Specifically, it is reasonable to suspect that there may be a slightly bigger edge for
TDD/full duplex over FDD than what our analysis reports, and that there may be a small
differentiation, too fine for our models to capture, favoring full duplex over TDD.

Our analysis is for U = Nt, the fully loaded configuration where the user SNRs are
pushed down the most. For U < Nt, the decrease factors in the number of spatial DOF,
and hence the conditions summarized in Table 9.1, continue to apply given that they are
based on the number of dimensions devoted to channel estimation and feedback, and that
we have taken the care of carrying both variables, U and Nt, separately throughout the
foregoing analysis; the number of dimensions hence remain properly counted. In turn,
the power offset penalty can only improve if U < Nt and therefore our expressions for
ΔLZF

∞, evaluated for U = Nt, can be regarded as worst-case values.

We have evenly divided the precoded-pilot overhead among the U precoders, and the
feedback overhead among the U users, optimizing only the totals αd and αdb. This even
split is not strictly optimal except when all user SNRs are equal, and a separate optimiza-
tion whereby each precoder’s and each user’s shares of the overheads are tailored to the
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respective SNRs may yield minor performance improvements at medium power levels.
In the high-SNR regime, though, once the overheads hit their minima, any differences
disappear.
In terms of overhead, IID fading is a worst-case scenario because any correlation among
the channel entries would improve the quality of the estimates and allow for transforma-
tions that not only scale the feedback, but further compress it. Moreover, certain transmit
correlations could be exploited to structure the communication itself. In elevated base
stations specifically, each user may span a narrow PAS in azimuth (see Section 3.4.2)
and it may be possible to identify groups of users whose PAS are essentially nonoverlap-
ping across groups. Then, if angular sectors could be formed segregating those groups
and shielding them from mutual interference, pilots could be reused across groups. Such
angular sectors could be formed by cascading an additional beamforming stage onto
the ZF precoders [852–855]; since the PAS are reflected in the antenna correlations at
the base station, the beamforming stage would be based on those correlations and thus
computed at a time scale much slower than the fading-based ZF precoders. This ap-
proach, aptly termed joint spatial division and multiplexing (JSDM), may be regarded
as a group version of SDMA with spatial multiplexing within each group and it could
allow reducing the pilot overhead by the number of groups provided the beam isolation
is satisfactory and pilots can be reused [856]; in that, both the angular segregation and
the antenna spacing play a role. And, just as fixed sectorization is the static version of
SDMA, fixed sectorization with spatial multiplexing within each sector would be the
static version of JSDM.

9.8 Block-diagonalization for the broadcast
channel

After the long detour on pilot-assisted ZF transmission, let us bring back the CSI. The
MU-MISO analysis of ZF could be extended to multiantenna users in a straightforward
fashion by simply regarding each receive antenna as a separate user [857]; this approach is
demonstrated in Example 9.40, a bit later in the text. The resulting aggregate precoder, of
dimension Nt ×UNr, would be—with suitable normalizations such that the U constituent
user precoders respect their respective constraints—the pseudoinverse of the UNr × Nt

aggregate channel matrix C defined in (9.74) and reproduced here for convenience:

C =

⎡
⎢⎣

√
G0H0

...√
GU−1HU−1

⎤
⎥⎦ . (9.226)

This extension to multiantenna users, however, would place the burden of eliminating in-
terference solely at the transmitter, ignoring that each multiantenna user can further apply a
receive filter. Specifically, each multiantenna user can apply a local filter to help remove the
interference among its streams, and thus the transmit structure can be relaxed so as to con-
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centrate on eliminating only other-user interference. This amounts to block-diagonalizing
(rather than strictly diagonalizing) the channel, hence the term block-diagonalization al-
ready brought up in the context of the MAC and on which we dwell next.

9.8.1 Transmitter structure

The derivations that follow rely on the concepts of column and null spaces of a matrix, for
details on which the reader is referred to Appendix B.

With F BD
u the Nt × Nr precoder for the uth user—each user is sent as many signal

streams as antennas it has—we seek an aggregate Nt × UNr precoder [F BD
0 · · · F BD

U−1]

that, applied to C, yields a block-diagonal matrix: U blocks of dimension Nr ×Nr along
the diagonal and zeros elsewhere. This is tantamount to enforcing HuF

BD
u = 0 for u �= u.

From the vantage of user u, the channel to all other (unintended) users is embodied by
the (U − 1)Nr ×Nt matrix

C−u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
G0H0

...√
Gu−1Hu−1√
Gu+1Hu+1

...√
GU−1HU−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9.227)

which, with probability 1 under all fading distributions of interest and given the condition
Nt ≥ UNr, has rank (U − 1)Nr. To avoid spilling signals onto users other than u, F BD

u

needs to lie in the null space of C−u. We can write the SVD of C−u as

C−u = U−u Σ−u
[
V null

−u V null

−u
]∗

, (9.228)

where we have grouped the initial (U − 1)Nr right singular vectors into V null
−u and the other

Nt − (U − 1)Nr ones into V null
−u ; these latter ones correspond to zero singular values and

thus they span the desired null space [858–860]. Applying the Nt × (Nt − (U − 1)Nr)

matrix V null
−u as a precoder for user u, we obtain for such user the Nr × (Nt − (U − 1)Nr)

effective channel HuV
null

−u . Let the SVD of this effective channel be(
HuV

null

−u
)
= Uu Σu

[
V null

u V null

u

]∗
, (9.229)

where again we have grouped the right singular vectors, in this case the initial Nr corre-
sponding to nonzero singular values, into V null

u and the remaining Nt − UNr into V null
u .

Faced with the effective channel
(
HuV

null
−u

)
and being in possession of CSIT, the optimum

SU-MIMO signaling strategy for the uth user (see Section 5.3) is to further precode with
the (Nt − (U − 1)Nr)×Nr matrix V null

u and to receive with the Nr ×Nr matrix Uu so as
to diagonalize this effective channel matrix. Transmitting through the cascaded precoders
V null

−u and V null
u , and receiving with the filter Uu, what emerges at the output is

y̆u = U∗
uyu (9.230)

= U∗
u

√
GuEu

Nt

(
HuV

null

−u
)
V null

u su +U∗
uvu (9.231)
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=

√
GuEu

Nt
U∗

u

(
UuΣu

[
V null

u V null

u

]∗)
V null

u su + v̆u (9.232)

=

√
GuEu

Nt
(U∗

uUu)Σu

([
V null
u

∗

V null
u

∗

]
V null

u

)
su + v̆u (9.233)

=

√
GuEu

Nt
Σu

[
I

0

]
su + v̆u (9.234)

=

√
GuEu

Nt
diag

(
λ
1/2
u,0 , . . . , λ

1/2
u,Nr−1

)
su + v̆u, (9.235)

where in (9.232) we have invoked (9.229) while λu,j denotes the jth nonzero eigenvalue
of

(
HuV

null
−u

)(
HuV

null
−u

)∗
. The preceding derivation holds for u = 0, . . . , U − 1, with each

filtered noise vector v̆u = U∗
uvu having the same IID complex Gaussian distribution as

the corresponding original noise vu because of unitary invariance.
With the channel thus diagonalized, we can equivalently write for user u the scalar

transmit–receive relationships

[y̆u]j =

√
GuEu

Nt
λ
1/2
u,j [su]j + [v̆u]j j = 0, . . . , Nr − 1. (9.236)

Hence, with precoders
(
V null

−u V
null
u

)
and receivers U∗

u for u = 0, . . . , U−1 we have obtained
a bank of U SU-MIMO channels, each in turn consisting of Nr parallel subchannels. Since
each

(
V null

−u V
null
u

)
is semiunitary, these precoders orient the signals in space but do not effect

power allocation. Put differently, the power allocation is uniform, which need not be opti-
mal with CSIT. This invites the further incorporation to each precoder of a diagonal matrix
Pu = diag(Pu,0, . . . , Pu,Nr−1), with

∑Nr−1
j=0 Pu,j = Nt, yielding the familiar form

F BD

u =
(
V null

−u V
null

u

)
P 1/2

u , (9.237)

where
(
V null

−u V
null
u

)
is the steering matrix. With that, the transmit–receive relationship for

user u ends up being

[y̆u]j =

√
GuEu

Nt
λu,jPu,j [su]j + [v̆u]j j = 0, . . . , Nr − 1. (9.238)

9.8.2 Power allocation

It is observed for ZF transmission that the optimization of the power allocation has a mod-
est effect on the performance, and hence a legitimate choice—and a robust one in the face
of CSI uncertainly—would be to forgo this optimization for block-diagonalization, keep-
ing the power uniform across both signal streams and users. Nevertheless, for the sake of
completeness, we next develop this optimization.

The problem of allocating power across the signal streams of each given user reduces
to the problem of allocating power in an SU-MIMO setting with CSIT and hence the opti-
mization of Pu,0, . . . , Pu,Nr−1 must return a waterfilling policy. Specifically, by identifying
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terms in the waterfilling solution of Section 5.3 we find that

P �
u,j =

[
1

ηu
− NtN0

GuEuλu,j

]+
(9.239)

=

[
1

ηu
− Nt

Eu

Es
SNRuλu,j

]+

j = 0, . . . , Nr − 1, (9.240)

where ηu ensures that
∑Nr−1

j=0 Pu,j = Nt. Then, the ergodic spectral efficiency achieved
by the uth user is

CBD

u =

Nr−1∑
j=0

E

[
log2

(
1 +

Eu

Es
SNRu

Nt
Pu,jλu,j

)]
(9.241)

=

Nr−1∑
j=0

E

[
log2

(
Eu

Es
SNRu

Nt

λu,j

ηu

)]+

(9.242)

and the weighted sum spectral efficiency is
∑U−1

u=0 quC
BD
u . The allocation of power across

users, i.e., the optimization of E0

Es
, . . . , EU−1

Es
subject to

∑U−1
u=0

Eu

Es
= 1, depends on the

weights q0, . . . , qU−1.

Example 9.39

What are the values E0

Es
, . . . , EU−1

Es
that maximize the sum spectral efficiency?

Solution

For the sum spectral efficiency, the optimization of E0

Es
, . . . , EU−1

Es
also adopts the form of

a waterfilling and thus we can formulate a single waterfilling spanning the UNr parallel
subchannels with a single power constraint, namely

(
Pu,j

Eu

Es

)�

=

[
1

η
− Nt

SNRuλu,j

]+
u = 0, . . . , U − 1 j = 0, . . . , Nr − 1,

(9.243)
with η such that

U−1∑
u=0

Nr−1∑
j=0

Pu,j
Eu

Es
= Nt. (9.244)

The sum spectral efficiency is

CBD(SNRu) =
U−1∑
u=0

Nr−1∑
j=0

E

[
log2

(
SNRu

Nt

λu,j

η

)]+
. (9.245)
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9.8.3 Ergodic spectral efficiency

To gauge the advantage that block-diagonalization can offer over regular ZF transmission at
arbitrary SNRs, as well as its closeness to the BC capacity, let us exemplify the application
of the spectral efficiency expression in (9.241).

Example 9.40

Consider a three-user BC with Nt = 6 and Nr = 2 where

SNR0|dB = SNR|dB (9.246)

SNR1|dB = SNR|dB + 5dB (9.247)

SNR2|dB = SNR|dB + 8dB, (9.248)

with H0, H1, and H2 having IID Rayleigh-faded entries. Compare, as a function of SNR,
the MU-MIMO sum spectral efficiencies of strict ZF and block-diagonalization. Further
compare both of them with the BC sum-capacity.

Solution

Shown in Fig. 9.15 are the sum spectral efficiencies of MU-MIMO with strict ZF and with
block-diagonalization, in both cases with waterfilling power allocation at each channel
realization. Also shown is the BC sum-capacity, obtained via duality and convex optimiza-
tion. Observe how block-diagonalization manages to partially close the gap between the
performance of a ZF transmitter and the capacity.

Example 9.41

Further compare the results generated in Example 9.40 with the individual SU-MIMO
capacity for each of the users, in otherwise equal conditions (CSIR and CSIT).

Solution

Also shown in Fig. 9.15 are the individual SU-MIMO sum-capacities with single-user
waterfilling at each channel realization.

Notice how, at low SNR, serving only the strongest user is preferable to MU-MIMO
with either linear scheme (ZF or block-diagonalization), and serving even only the second
strongest user is preferable to ZF. With linear transmission schemes, as observed, it is not
only that MU-MIMO is no better than SU-MIMO at low SNR, but that it may be decidedly
worse.

Once the power increases, though, all MU-MIMO alternatives prevail over SU-MIMO
given the difference in DOF (S∞ = 6 versus S∞ = 2).

The advantage of block-diagonalization over strict ZF may grow in the face of antenna
correlations (refer to Problem 9.39). Furthermore, the performance of block-diagonalization
can sometimes be further improved upon by a slightly more general technique termed mul-
tiuser eigenmode transmission. The premise of this idea is that, with block-diagonalization,
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some degrees of freedom may be consumed to enforce ZF conditions that protect from in-
terference certain channels to which then the subsequent waterfilling process allocates no
power. By avoiding such situations, further spectral efficiency improvements can some-
times be attained, particularly when antenna correlations do exist. For details on the imple-
mentation of this technique, the reader is referred to [861] and [34, section 4.2.1].

The formulation of block-diagonalization under a per-antenna power constraint is tack-
led in [862], while the combination of block diagonalization and user selection is addressed
in [863, 864].

9.8.4 High-SNR regime

In the high-SNR regime, waterfilling is known to return a uniform power allocation and
thus P �

u,j = 1 for j = 0, . . . , Nr−1 and u = 0, . . . , U−1. Plugged into (9.241), this gives

CBD

u =

Nr−1∑
j=0

E

[
log2

(
1 +

Eu

Es
SNRu

Nt
λu,j(HuV

null

−u V
null

−u
∗
H∗

u)

)]
. (9.249)

For nonzero Eu

Es
and growing SNRu,

CBD

u = Nr log2

(
Eu

Es
SNRu

Nt

)
+ E

⎡
⎣Nr−1∑

j=0

log2 λu,j(HuV
null

−u V
null

−u
∗
H∗

u)

⎤
⎦+O

(
1

SNRu

)
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= Nr log2

(
Eu

Es
SNRu

Nt

)
+ E

[
log2 det

(
HuV

null

−u V
null

−u
∗
H∗

u

)]
+O

(
1

SNRu

)
(9.250)

which can serve to optimize E0

Es
, . . . , EU−1

Es
in the high-SNR regime, depending on the

weights q0, . . . , qU−1. Specifically, the solution to the convex problem

max
E0
Es

,...,
EU−1

Es
:
∑U−1

u=0
Eu
Es

=1

U−1∑
u=0

qu C
BD

u (9.251)

expands as

Eu

Es
=

qu∑U−1
u=0 qu

+O
(

1

SNRu

)
, (9.252)

which coincides with the expansions found in Chapter 8 with optimum transmission and
earlier in this chapter for ZF transmission. This corroborates the broad applicability of this
high-SNR solution to the power allocation for arbitrary weights q0, . . . , qU−1.

When it comes to the sum spectral efficiency, (9.252) reduces to a uniform power split
and, summing over the U users,

CBD =

U−1∑
u=0

Nr

(
log2 SNRu − LBD

∞,u

)
+O

(
1

SNRu

)
, (9.253)

with LBD
∞ = 1

U

∑U−1
u=0 LBD

∞,u providing the sum spectral efficiency power offset, given

LBD

∞,u = log2(UNt)− 1

Nr
E
[
log2 det

(
HuV

null

−u V
null

−u
∗
H∗

u

)]
. (9.254)

For IID Rayleigh fading, as it turns out, the power offset can be expressed in a closed
form that sheds light on how block diagonalization behaves at high SNR, relative to both
the optimum and the ZF transmitters.

Example 9.42 (Block-diagonalization power offset in an IID Rayleigh-faded
MU-MIMO BC)

In Rayleigh fading, Hu has IID complex Gaussian entries. Its product with the semiunitary
precoder V null

−u yields a matrix that has IID complex Gaussian entries and dimensionality
Nr × (Nt − (U − 1)Nr). It follows that

(HuV
null

−u V
null

−u
∗
H∗

u) ∼ WNr

(
Nt − (U − 1)Nr, I

)
(9.255)

is an Nr ×Nr Wishart matrix with Nt − (U − 1)Nr degrees of freedom. Invoking (C.28)
in Appendix C.1.9 as well as (E.9) in Appendix E,

LBD

∞,u = log2(UNt)+

⎛
⎝γEM −

Nt−UNr∑
q=1

1

q
− Nt − (U − 1)Nr

Nr

Nt−(U−1)Nr∑
q=Nt−UNr+1

1

q
+ 1

⎞
⎠ log2 e,

(9.256)
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which, for Nt = UNr, becomes

LBD

∞,u = log2(UNt) +

(
γEM −

Nr∑
q=2

1

q

)
log2 e. (9.257)

From the foregoing expressions for the power offset, as well as those derived for the sum-
capacity in Chapter 8, we can quantify the power loss of block-diagonalization relative to
the sum-capacity at high SNR.

Example 9.43

For IID Rayleigh fading, express the high-SNR power loss of block-diagonalization rela-
tive to the sum-capacity.

Solution

From (8.150) and (9.256), the power loss in 3-dB units is

ΔL∞ = LBD

∞ − L∞ (9.258)

=

⎛
⎝ Nt

UNr

Nt∑
q=Nt−UNr+1

1

q
− Nt − (U − 1)Nr

Nr

Nt−(U−1)Nr∑
q=Nt−UNr+1

1

q

⎞
⎠ log2 e, (9.259)

which, for Nt = UNr, simplifies into

ΔL∞ =

⎛
⎝ Nt∑

q=Nr+1

1

q

⎞
⎠ log2 e. (9.260)

An alternative expression for (9.259), derived in [774], is

ΔL∞ =
log2 e

UNr

U−1∑
q=0

Nr−1∑
i=0

(U−1)Nr∑
�=qNr+1

1

Nt − i− �
. (9.261)

Example 9.44

What is the high-SNR power loss of block-diagonalization for IID Rayleigh fading when
Nt = 6, U = 3, and Nr = 2?

Solution

In this case, ΔL∞ = 1.37, which puts the power loss at 4.13 dB. As can be appreciated
in Fig. 9.15, this value approximates very well the gap between the block-diagonalization
sum spectral efficiency and the sum-capacity even at rather moderate SNRs.

In addition to establishing the high-SNR performance deficit with respect to the sum-
capacity, ΔL∞ can further serve to quantify how much of the high-SNR losses experi-
enced by ZF transmission can be recovered, whenever Nr > 1, by applying instead block-
diagonalization. This calculation is exercised in Problem 9.35.
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Hu

spa
n of H

u,
u �= u

F ZF

u

�Fig. 9.16 ZF precoder orthogonal to the span of H0, . . . ,Hu−1,Hu+1, . . . ,HU−1, and a

matched filter that aligns with Hu. In between live a range of other precoders.

9.9 Regularized ZF transmitter for the broadcast
channel

To complete our coverage of linear transmitters for the MU-MIMO BC, it is necessary
to address how the gap between the matched-filter and ZF precoders can be bridged.
This is visualized in Fig. 9.16, from the vantage of user u. The subspace spanned by
H0, . . . ,Hu−1,Hu+1, . . . ,HU−1, which for simplicity is depicted as a plane but is in
general of dimension (U − 1)Nr, contains the interfering signals and thus the ZF precoder
for user u is orthogonal to it. Conversely, the matched-filter precoder aligns with Hu. Be-
tween these two extremes live a range of other linear structures, often termed regularized
ZF transmitters [865].

A subtle issue that arises once we depart from the ZF solution is that the argument in-
voked to support the optimality of complex Gaussian codebooks, namely the Gaussian
nature of the noise, ceases to hold. Now, besides noise, each receiver may be afflicted by
interference from signals intended for other users. We are thus faced by the saddle point
property of the Gaussian distribution encountered earlier in the text: it is both the best sig-
nal distribution if the interference is Gaussian, and the worst interference distribution if
the signal is Gaussian. It is therefore possible that codebook distributions other than Gaus-
sian be optimal, yet, as it turns out, provided we do not depart excessively from ZF such
that the interference power is low or moderate, complex Gaussian codebooks do remain
approximately optimal [866].
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9.9.1 Regularizing term

On the one hand, the ZF structure is based on the pseudoinverse C∗(CC∗)−1 with C the
UNr ×Nt aggregate channel matrix in (9.74) whereas, on the other hand, a matched filter
is embodied by C∗. A structure that naturally bridges these extremes is the familiar form

C∗(CC∗ + �I)−1, (9.262)

where, given the respective asymptotic optimality of ZF and matched filter precoding at
high and low SNRs, the desideratum for the regularizing term � includes having � → 0 and
� → ∞ in those respective regimes. However, finding the proper amount of regularization
is far less straightforward here than in the MAC: while in the MAC the SINR experienced
by a given data stream depends only on the corresponding receive filter (recall (9.58)), in
the BC the SINR experienced by a given data stream in general depends, not only on the
precoder for that stream, but on every precoder for every user.

Example 9.45

In a MU-MISO BC, we can express the SINR experienced by the one stream sent to the
uth user by couching (9.62) into our regular BC notation, giving

sinru =
GuEu

Nt
|HuFu|2∑

u �=u
GuEu

Nt
|HuFu|2 +N0

(9.263)

=
Eu

Es
|HuFu|2∑

u �=u
Eu

Es
|HuFu|2 + Nt

SNRu

, (9.264)

which indeed depends, not only on Fu, but also on Fu for u �= u. Thus, while in the
MAC we can optimize (in the SINR sense) each receive filter separately, and the result is
the LMMSE receiver, in the BC we cannot optimize (in the SINR sense) each precoder
separately. The exception is the low-SNR regime, where

sinru ≈
Eu

Es
SNRu

Nt
|HuFu|2 , (9.265)

which depends only on Fu, pointing to a matched-filter precoder. Conversely, at high SNR,

sinru ≈
Eu

Es
|HuFu|2∑

u �=u
Eu

Es
|HuFu|2

, (9.266)

which is maximized by disregarding the numerator and having the rest of the precoders
nullify the denominator, i.e., the ZF solution.

Clearly then, � ought to depend on the SNR and, since in general each user enjoys a dif-
ferent SNR, � should be individualized, meaning that we should have distinct �0, . . . , �U−1.



564 MU-MIMO with linear transceivers

Regularization in MU-MISO
Continuing for now with the MU-MISO case, the foregoing argumentation points to the
uth user’s precoder being the uth column of C∗(CC∗ + �uI)

−1 properly normalized;
with a per-symbol power constraint, this gives

F Reg

u =
√

Nt

[
C∗(CC∗ + �uI)

−1
]
:,u

‖ [C∗(CC∗ + �uI)−1]:,u ‖
. (9.267)

For �u > 0, the matrix inversion lemma indicates that

C∗(CC∗ + �uI)
−1 =

1

�u

[
C∗ −C∗C (C∗C + �uI)

−1
C∗

]
(9.268)

=
1

�u

[
(C∗C + �uI)−C∗C

]
(C∗C + �uI)

−1
C∗ (9.269)

= (C∗C + �uI)
−1

C∗, (9.270)

based on which we can rewrite (9.267) as

F Reg

u =
√
Nt

[
(C∗C + �uI)

−1C∗]
:,u

‖ [(C∗C + �uI)−1C∗]:,u ‖
(9.271)

=
√
Nt

(C∗C + �uI)
−1[C∗]:,u

‖(C∗C + �uI)−1[C∗]:,u‖ (9.272)

=
√
Nt

(∑U−1
u=0 GuH

∗
uHu + �uI

)−1√
GuH

∗
u∥∥∥(∑U−1

u=0 GuH∗
uHu + �uI)−1

√
GuH∗

u

∥∥∥ (9.273)

=
√
Nt

(∑U−1
u=0

Gu

Gu
H∗

uHu + �′uI
)−1

H∗
u∥∥∥(∑U−1

u=0
Gu

Gu
H∗

uHu + �′uI)−1 H∗
u

∥∥∥ (9.274)

=
√
Nt

(∑U−1
u=0

SNRu

SNRu
H∗

uHu + �′uI
)−1

H∗
u∥∥∥(∑U−1

u=0
SNRu

SNRu
H∗

uHu + �′uI)−1 H∗
u

∥∥∥ , (9.275)

where we have recalled the structure of C from (9.74) and introduced �′u = �u/Gu. It
can be proved [867] that the precoder structure in (9.275) can maximize the SINR, yet the
determination of the values of �′0, . . . , �

′
U−1 that renders it optimal in that sense turns out

to be a hard problem [868, 869]. In light of this, we proceed down a different path.
The MAC–BC duality relationship for linear transceivers (see Section 9.6) indicates that,

with the important caveat of having an aggregate power constraint in the dual MAC, the
same SINRs can be achieved in both directions when the BC precoders equal the dual
MAC receive filters. And we know that, for the MAC, the receive filters that maximize the
SINRs for some given transmissions are the LMMSE ones in (9.38). This suggests that
a good choice for the BC precoders could be the dual of (9.38) and indeed (9.275) has,
normalization aside, already that form. In the MAC, and with additional superscripting to
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distinguish its SNR from that of the BC, the role of �′u is played by

Nt

SNRr
u

=
N0Nt

EuGu
, (9.276)

whose application to the BC gives

�′u =
N0Nt

EuGu
(9.277)

=
Nt

Eu

Es
SNRu

. (9.278)

This choice for �′u in (9.278) has the inconvenience of depending on the power alloca-
tion coefficient Eu

Es
, which, given the availability of CSIT, should be reoptimized for each

coherence tile. To decouple the structure of the precoders from the power allocation, one
possibility is to fix �′u to the value it would have under a specific power allocation, with the
most robust choice being the uniform one. This gives

�′u =
UNt

SNRu
, (9.279)

which is a pleasing expression, yet a function of only SNRu and not of SNRu for u �= u.
Since the BC SINR for user u depends on all the SNRs, this suggests lack of optimality,
and indeed the regularization in (9.279) need not maximize the BC SINRs. Rather, as
one would expect given how we derived (9.279), such regularization maximizes the dual-
MAC SINRs; recalling the expression for the MAC SINR in (9.58), this means that, with
a uniform power allocation, the quantities being maximized are [869]

slnru =
1
U |HuFu|2∑

u �=u
1
U

SNRu

SNRu
|HuFu|2 + Nt

SNRu

u = 0, . . . , U − 1, (9.280)

which are the so-called signal-to-leakage-plus-noise ratios (SLNRs), hence the variable
introduced to denote them. In Problem 9.41, readers are invited to verify that (9.280) is
indeed maximized by the regularized ZF precoder

F Reg

u =
√
Nt

(∑U−1
u=0

SNRu

SNRu
H∗

uHu + UNt

SNRu
I
)−1

H∗
u∥∥∥∥(∑U−1

u=0
SNRu

SNRu
H∗

uHu + UNt

SNRu
I
)−1

H∗
u

∥∥∥∥
(9.281)

=
√
Nt

(∑U−1
u=0 SNRuH

∗
uHu + UNtI

)−1

H∗
u∥∥∥∥(∑U−1

u=0 SNRuH∗
uHu + UNtI

)−1

H∗
u

∥∥∥∥
. (9.282)

A close inspection of the SINR and SLNR expressions in (9.264) and (9.280) reveals
that they differ in the indices being swapped within the denominator summation. While
in the SINR such summation involves the total interference inflicted upon user u, in the
SLNR it involves the total interference caused by the transmission of user u. Precisely:

The SINR relates (i) the power meant for user u that is actually conveyed to that user,
with (ii) the power meant for other users that leaks onto user u, plus noise.
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Discussion 9.1 SLNR versus SINR

The regularizing term that maximizes the SLNR, �′u = UNt

SNRu
, behaves sensibly in that,

when a user’s SNR is low, it pushes that user’s precoder toward selfish matched-filter
beamforming while, when the SNR is high, it pushes the precoder toward selfless ZF.
The lack of optimality stems from this behavior not being tempered by the SNRs of the
other users.

In the very special case that all SNRs are equal, the ensuing symmetry makes the
SLNRs and SINRs analogous—to the point that the regularizing term that maximizes
the SLNRs also maximizes the SINRs for U → ∞ [870, 871]. This strongly suggests
that SLNR-maximizing precoders are close to optimal when the SNRs are not very dis-
similar. It is only in the face of major SNR differences that SLNR-maximizing precoders
may significantly depart from optimality in the SINR and spectral efficiency senses.

The SLNR relates (i) the power meant for user u that is actually conveyed to that user,
with (ii) the power meant for user u that leaks onto other users, plus noise.

By appropriately relaxing the ZF constraint of having zero leakage onto other users, it
becomes possible to better focus onto the intended user’s channel, and when the regular-
ization is as in (9.280) the result is the maximization of the SLNR.

Despite not being SINR-maximizing in general, and therefore not optimal in a spectral
efficiency sense, there is ample evidence that supports (9.282) as a satisfactory precoder for
the MU-MISO BC [827, 872, 873]. In conjunction with the utterly simple form of its regu-
larizing term, this represents a tempting shortcut when designing regularized ZF transmit-
ters, and indeed SLNR-maximizing precoders (alternatively termed transmit Wiener filters
or MMSE beamformers, among other monikers) are favorite choices.

Generalization to MU-MIMO
In MU-MIMO regularized ZF with Nr signal streams transmitted to every Nr-antenna
user, the Nr column-vector precoders for user u can be brought together into that user’s
precoding matrix. Thus, F Reg

u is still essentially given by (9.282), only with H0, . . . ,HU−1

being matrices rather than vectors and with the normalization being effected column-wise
to ensure that ‖[F Reg

u ]:,i‖2 = Nt for i = 0, . . . , Nr − 1.

9.9.2 Power allocation and ergodic spectral efficiency

The MU-MISO case
To tackle the optimization of E0

Es
, . . . , EU−1

Es
, let us again begin with the MU-MISO case.

From the SINR expression in (9.264), the ergodic spectral efficiency achieved by user u is

CReg

u = E

[
log2

(
1 +

Eu

Es
|HuF

Reg
u |2∑

u �=u
Eu

Es
|HuF

Reg
u |2 + Nt

SNRu

)]
, (9.283)
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with F Reg

0 , . . . ,F Reg

U−1 as in (9.282). The weighted sum spectral efficiency is
∑U−1

u=0 quC
Reg
u ,

with the power allocation E0

Es
, . . . , EU−1

Es
the only aspect that remains to be optimized.

From the vantage of each user, it is best that all power be simply allocated to the cor-
responding signal stream, with none left for the streams of other users. The tensions that
this selfish tendency creates must be balanced, depending on q0, . . . , qU−1, by the power
allocation algorithm. As pointed out in [874], there is in general no E0

Es
, . . . , EU−1

Es
that si-

multaneously maximizes all SINRs, meaning that the optimization of the power allocation
must be effected directly over the weighted sum spectral efficiency. With CSIT available,
the power allocation should aim at maximizing

U−1∑
u=0

qu log2

(
1 +

Eu

Es
|HuF

Reg
u |2∑

u �=u
Eu

Es
|HuF

Reg
u |2 + Nt

SNRu

)
(9.284)

prior to any outer expectation over the fading. However, this optimization is not convex.
Building the Lagrangian function (see Appendix G)

L

(
E0

Es
, . . . ,

EU−1

Es
, λ

)
=

U−1∑
u=0

qu log2

(
1 +

Eu

Es
|HuF

Reg
u |2∑

u �=u
Eu

Es
|HuF

Reg
u |2 + Nt

SNRu

)

+ λ

(
U−1∑
u=0

Eu

Es
− 1

)
(9.285)

and taking partial derivatives with respect to E0

Es
, . . . , EU−1

Es
, we obtain the following nec-

essary (but not sufficient because of the nonconvexity) conditions for the optimum power
allocation: for u = 0, . . . , U − 1,

λ+
qu |HuF

Reg
u |2∑U−1

u=0
Eu

Es
|HuF

Reg
u |2 + Nt

SNRu

=
∑
u′ �=u

qu′ |Hu′F Reg
u |2∑U−1

u=0
Eu

Es
|Hu′F Reg

u |2 + Nt

SNRu′

·
Eu′
Es

|Hu′F BD

u′ |2∑
u �=u′

Eu

Es
|Hu′F Reg

u |2 + Nt

SNRu′

, (9.286)

with λ such that
∑U−1

u=0
Eu

Es
= 1. These conditions lead to various candidate power allo-

cations and, as the next example shows, when U is small these various candidates can be
simply contrasted and the optimum power allocation determined by inspection. Since the
nonnegativity of the powers is not explicitly incorporated into the above conditions, the
feasibility of the candidates must be verified and solutions with negative powers must be
discarded.

Example 9.46

Let U = 2 and q0 = q1 = 1, such that the quantity being targeted is the sum spectral
efficiency. The combination of (9.286) for u = 0 and u = 1 gives

|H0F
Reg

0 |2∑1
u=0

Eu

Es
|H0F

Reg
u |2 + Nt

SNR0

− |H1F
Reg

1 |2∑1
u=0

Eu

Es
|H1F

Reg
u |2 + Nt

SNR1

(9.287)
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=
|H1F

Reg

0 |2∑1
u=0

Eu

Es
|H1F

Reg
u |2 + Nt

SNR1

·
E1

Es
|H1F

Reg

1 |2
E0

Es
|H1F

Reg

0 |2 + Nt

SNR1

− |H0F
Reg

1 |2∑1
u=0

Eu

Es
|H0F

Reg
u |2 + Nt

SNR0

·
E0

Es
|H0F

Reg

0 |2
E1

Es
|H0F

Reg

1 |2 + Nt

SNR0

with E0

Es
+ E1

Es
= 1. For every fading realization, this yields two potential solutions for the

power allocation. Discarding any solutions not in the admissible set defined by

0 ≤ Eu

Es
≤ 1 u = 0, 1 (9.288)

and contrasting any remaining solutions against the extremes of the admissible set, namely
(E0

Es
= 0, E1

Es
= 1) and (E0

Es
= 1, E1

Es
= 0), the optimum power allocation can be iden-

tified. Note that the extremes of the admissible set must be examined in case the spectral
efficiency is monotonic thereon.

Example 9.47

Consider the setup of Example 9.46, further with

SNR0|dB = SNR|dB (9.289)

SNR1|dB = SNR|dB + 5dB (9.290)

and with H0 and H1 having IID Rayleigh-faded entries. Compute, as a function of SNR,
the sum spectral efficiency with regularized ZF and optimized power allocation, and com-
pare it against the sum spectral efficiency with ZF and waterfilling. Further contrast both
linear transmission schemes against the BC sum-capacity.

Solution

The requested sum spectral efficiencies and the sum-capacity are depicted in Fig. 9.17.
For the regularized ZF solution, the optimum power allocation is obtained by numerically
solving the conditions in Example 9.46. In turn, the sum-capacity is obtained by applying
a convex solver to (8.147). Notice how the SLNR-maximizing regularization enables a
successful bridging of the gap between the ZF and the optimum DPC transmitters at low
and medium SNRs.

As U grows, the computation and inspection of the solutions becomes cumbersome and
alternative methods become desirable. Although approaches based on game theory, convex
relaxation, or branch-and-bound have been suggested [875, 876], there is still a need for
power allocation schemes that could be implemented in real time. Short of that, a uniform
power allocation is a robust and uncomplicated recourse.

Generalization to MU-MIMO
The generalization of the foregoing derivations to multiantenna users requires, first of all,
that we generalize the SINR expression in (9.264). With arbitrary precoders F0, . . . ,FU−1
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and linear receivers W0, . . . ,WU−1, the output corresponding to the jth data stream at the
uth user is

[W ∗
uyu]j = [Wu]

∗
:,j yu (9.291)

= [Wu]
∗
:,j

(
U−1∑
u=0

√
GuEu

Nt
HuFusu + vu

)
(9.292)

=

√
GuEu

Nt
[Wu]

∗
:,j Hu [Fu]:,j [su]j︸ ︷︷ ︸

Desired signal

+

√
GuEu

Nt

∑
j′ �=j

[Wu]
∗
:,j Hu [Fu]:,j′ [su]j′

︸ ︷︷ ︸
Interference from same-user streams

+
∑
u �=u

√
GuEu

Nt

Nr−1∑
j′=0

[Wu]
∗
:,j Hu [Fu]:,j′ [su]j′

︸ ︷︷ ︸
Interference from other users

+ [Wu]
∗
:,j vu︸ ︷︷ ︸

filtered noise

, (9.293)

from which, for given fading realizations,

sinrReg

u,j =
GuEu

Nt

∣∣[Wu]
∗
:,j Hu [Fu]:,j

∣∣2
Den

, (9.294)
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where

Den =
GuEu

Nt

∑
j′ �=j

∣∣[Wu]
∗
:,j Hu [Fu]:,j′

∣∣2

+
∑
u �=u

GuEu

Nt

Nr−1∑
j′=0

∣∣[Wu]
∗
:,j Hu [Fu]:,j′

∣∣2 +N0

∥∥[Wu]j,:
∥∥2. (9.295)

At this point, the generalization to MU-MIMO can take several forms. The first and
simplest would be via fixed W0, . . . ,WU−1. Although rather straightforward, this gener-
alization would not be operationally very relevant because, with CSIR, there is no reason
why the receiver would be held fixed. Much more pertinent would be to reformulate the
problem with optimized receivers at each user and, based on the SU-MIMO derivations of
Section 6.4 we know that, among all linear receivers, the LMMSE is the one that maxi-
mizes the output SINR irrespective of the precoders, i.e.,

W MMSE

u = R−1
yu

Ryusu
(9.296)

=

√
Nt

GuEu

(
U−1∑
u=0

Eu

Eu
HuFuF

∗
uH

∗
u +

Nt

Eu

Es
SNRu

)−1

HuFu. (9.297)

Combining (9.294) and (9.295) with the above W MMSE
u plugged in, and after some alge-

bra, we obtain an SINR expression that is reminiscent of—but not identical to—the ones
obtained for SU-MIMO and for the MU-MIMO MAC with LMMSE reception, precisely

sinrRegu,j =
[Fu]

∗
:,jH

∗
u

(∑U−1
u=0

Eu

Eu
HuFuF

∗
uH

∗
u + Nt

Eu
Es

SNRu

)−1

Hu [Fu]:,j

1− [Fu]∗:,jH∗
u

(∑U−1
u=0

Eu

Eu
HuFuF ∗

uH
∗
u + Nt

Eu
Es

SNRu

)−1

Hu [Fu]:,j

, (9.298)

which is the basis from which the weighted sum spectral efficiency

U−1∑
u=0

qu

Nr−1∑
j=0

E

[
log2

(
1 + sinrMMSE

u,j

)]
(9.299)

could then be maximized by adjusting F0, . . . ,FU−1 and E0

Es
, . . . , EU−1

Es
. This optimiza-

tion, decidedly nonconvex, is studied in [877], where a procedure that searches for maxima
is derived. Unfortunately, besides the lack of guarantees that the global maximum be found,
this procedure is iterative and based on CSIT, meaning that it must converge within the co-
herence of the small-scale fading. Hence, operationally practical algorithms to adjust the
precoders and powers would be a welcome development.

As an alternative form of generalization to MU-MIMO, the transmission could adopt
a regularized version of block-diagonalization rather than a regularized ZF, relaxing the
requirement of controlling the interference among same-user streams [878].

Finally, the generalization to MU-MIMO could transcend the limitation of linearity at
the corresponding multiantenna receivers and consider optimum receive structures, main-
taining the requirement of linearity only at the transmitter. Then, rather than by (9.299),
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the weighted sum spectral efficiency would be given by

U−1∑
u=0

qu E

[
log2 det

(
I +

Eu

Es
SNRu

Nt
HuFuF

∗
uH

∗
u

·
(
I +

∑
u �=u

Eu

Es
SNRu

Nt
HuFuF

∗
uH

∗
u

)−1
⎞
⎠
⎤
⎦ , (9.300)

whose maximization over F0, . . . ,FU−1 and E0

Es
, . . . , EU−1

Es
is again a nonconvex problem.

An iterative algorithm that seeks maxima of this function is put forth in [879, 880], and the
same comments made in reference to [877] apply: there are no optimality guarantees and
convergence should take place within the coherence of the small-scale fading.

Things simplify somewhat, as usual, in the large-dimensional regime, and readers inter-
ested in the corresponding formulation are referred to [881].

9.9.3 High-SNR regime

The spectral efficiency of a regularized ZF transmitter falls between that of a pure ZF trans-
mitter and the capacity. Since the number of spatial DOF with ZF transmission coincides
with that of the BC capacity, it follows that a regularized ZF transmitter enjoys the same
number of spatial DOF: S∞ = min(Nt, UNr).

As in the MU-MIMO MAC, in the high-SNR regime the optimization of the MU-MIMO
BC transmit powers becomes more tractable: it adopts the form of a geometric program-
ming problem that can be recast as a convex problem [822]. Although this optimization is
not consequential in terms of the number of spatial DOF, which is insensitive to the value
of the transmit powers, it would register on the power offset.

9.10 Summary and outlook

In the MAC, the linear receivers reviewed in this chapter are an alternative to their non-
linear counterparts in Chapter 8. As in SU-MIMO, this offers flexibility in terms of the
performance versus complexity tradeoff.

In the BC, linear transmitters play a much more central role. Because of the implemen-
tational difficulties of DPC, the structures reviewed in this chapter are not merely com-
plementary, but arguably the prime choices. Moreover, owing to the necessity of CSIT, a
realistic characterization of their performance entails delving into the duplexing, the in-
sertion of pilots, and possibly the feedback, and a comprehensive such analysis for ZF
transmitters is included in the chapter.

The main findings are summarized in the list of take-away points, while several open
problems have been identified throughout the chapter.

For the MAC, this includes the optimization of the precoders and of the power control,
with and without CSIT, under LMMSE reception.
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Take-away points

1. In a MAC with ZF reception, the ergodic spectral efficiency of user u is given by
CZF

u =
∑Nt−1

j=0 E
[
log2

(
1 + snrZFu,j

)]
, where

snrZFu,j =
1

N0 [W ZF
u

∗W ZF
u ]j,j

(9.301)

with W ZF
u the uth block of Nt columns within W ZF, which in turn satisfies

W ZF∗ =
[√

G0Es

Nt
H0F0 · · ·

√
GU−1Es

Nt
HU−1FU−1

]†
. (9.302)

2. In IID Rayleigh fading,

CZF

u = Nt e
Nt/SNRu

Nr−UNt+1∑
q=1

Eq
(

Nt

SNRu

)
log2 e. (9.303)

3. With ZF reception at high SNRs, it is optimum to have UNt = Nr. As the SNRs
diminish, the ratio Nr

UNt
should rise above unity.

4. In a MAC with LMMSE reception, CMMSE
u =

∑Nt−1
j=0 E

[
log2

(
1 + sinrMMSE

u,j

)]
, where

sinrMMSE

u,j = 1
MMSEu,j

− 1 and MMSEu,j is given by

1− [Fu]
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∗
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Es
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Eu

Es
SNRu

HuFuF
∗
uH

∗
u +

Nt

Eu

Es
SNRu

I

)−1

Hu [Fu]:,j .

5. The LMMSE MAC receiver for user u is

W MMSE

u =

√
Nt

GuEu

(
U−1∑
u=0

Eu

Es
SNRu

Eu

Es
SNRu

HuFuF
∗
uH

∗
u +

Nt

Eu

Es
SNRu

I

)−1

HuFu.

6. Provided that UNt ≤ Nr, the high-SNR MAC behavior with ZF or LMMSE re-
ception is governed by S∞ = min(UNt, Nr).

7. With single-antenna users, duality indicates that any feasible combination of MAC
SINRs achievable with receivers W0, . . . ,WU−1 can also be achieved in the BC
with those same filters acting as precoders and with the BC power constraint equal
to the sum of the power U MAC power constraints.

8. In the BC, the combination of ZF across users and joint processing of same-user
streams yields block-diagonalization. User u’s precoder is F BD

u =
(
V null

−u V
null
u

)
P

1/2
u

where V null
−u contains the right singular vectors of

C−u =
[√

G0H
T

0 · · ·
√
Gu−1H

T

u−1 · · ·
√
Gu+1H

T

u+1 · · ·
√
GU−1H

T

U−1

]T

corresponding to zero singular values while V null
u contains the right singular vec-

tors of (HuV
null

−u ) corresponding to nonzero singular values, and Pu is a power
allocation matrix optimizable via waterfilling.
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9. With block-diagonalization,

CBD

u =

Nr−1∑
j=0

E

[
log2

(
1 +

Eu

Es
SNRu

Nt
Pu,j , λu,j

)]
, (9.304)

where λu,j is the jth nonzero eigenvalue of
(
HuV

null
−u

)(
HuV

null
−u

)∗
and the power

allocation E0

Es
, . . . , EU−1

Es
can be further optimized for given weights q0, . . . , qU−1.

If the weights are equal, then this optimization is again a waterfilling.
10. At high SNRs, Eu

Es
= qu∑U−1

u=0 qu
+O

(
1

SNRu

)
while S∞ = min(Nt, UNr).

11. Block-diagonalization can be simplified into ZF and, with IID Rayleigh fading
specifically,

CZF

u = exp

(
Nr

Eu

Es
SNRu

)
Nt−UNr+1∑

q=1

Eq
(

Nr

Eu

Es
SNRu

)
log2 e. (9.305)

12. At high SNRs, it is optimum to have UNr = Nt. As the SNRs diminish, the ratio
Nt

UNr
should progressively escalate.

13. Block-diagonalization and ZF can be regularized, improving the performance at
low and medium SNRs. Since it is hard to establish the SINR-maximizing regular-
ization, a suboptimum yet simple and robust alternative is to maximize the SLNRs.

14. With FDD, the following is required before payload data can be communicated
on each BC coherence tile: transmitting unprecoded pilots from the Nt antennas,
gathering CSI at the U users, reporting back the CSI, computing the precoders,
transmitting pilots through those precoders, and obtaining precoded channel esti-
mates at the users. The total overhead is small for pedestrian users, and modest for
vehicular users provided U is not large. At high SNR, relative to the CSI-based
performance, there is a decrease factor in DOF and a power penalty; altogether, the
performance is satisfactory if (3 + 2ρ)U � Nc, with ρ the forward–reverse SNR
imbalance.

15. With TDD or full duplexing, the procedure simplifies into: transmitting reverse-
link pilots from the U users, effecting channel estimation, computing the precoders,
transmitting pilots through those precoders, and establishing CSIR at the users. The
condition ensuring satisfactory performance relaxes to (1 + ρ)U � Nc.

For the BC, it includes the SINR-maximizing regularization, known to be difficult, and
the optimum power allocation in a regularized transmission, which is nonconvex. For
this latter problem, a possible way forward would be to perturb the ZF solution, which
does result from a convex optimization.

Open problems notwithstanding, the contents of this chapter set the stage for massive
MIMO, which is the subject of the next and final chapter of the book.



574 MU-MIMO with linear transceivers

Problems

9.1 Reproduce the ZF curve and the SU-MIMO curves in Example 9.4.

9.2 Reproduce the ZF curves in Example 9.5.

9.3 Repeat Example 9.5 for SNR = 20 dB and verify that, with ZF reception, as the SNR
grows large the optimum number of active users and/or transmit antennas increases
for each given Nr.

9.4 Formulate the MU-MIMO MAC LMMSE receiver by applying the SU-MIMO LMMSE
solution to the SU-MIMO interpretation of the MAC, and verify that it is equivalent
to (9.38).

9.5 Show that the expression for W MMSE
u in a MAC converges to the corresponding W ZF

u

for Es/N0 → ∞.

9.6 Show, by means of the matrix inversion lemma, that (9.41) is a valid expression for
Eu(H0, . . . ,HU−1).

9.7 Verify that (9.4) and (9.5), with the definition of W MMSE
u given in (9.7), yield (9.45).

9.8 Reproduce the LMMSE curve in Example 9.4.

9.9 Reproduce the ZF and LMMSE dotted lines in Fig. 9.4 and provide a table containing
the optimum value of U for each Nr and each type of receiver.

9.10 Compute the capacity region for the MAC in Example 9.12 and contrast it with the
spectral efficiency region for an LMMSE receiver in the example.

9.11 Consider an MU-SIMO MAC with U = Nr = 4 operating at high SNR.
(a) Let the fading be IID Rayleigh. How much additional power is required with a

ZF or LMMSE receiver to achieve the sum-capacity that an optimum receiver
would attain?

(b) Concentrate now on the ZF or LMMSE receiver. Relative to the IID Rayleigh
fading setting, how much more power is required to achieve the same sum spec-
tral efficiency if the receiver conforms to the exponential correlation model (re-
call Example 3.38) with ρ = 0.8?

9.12 Specialize Example 9.13 to U = 2 and show analytically that the sum spectral
efficiency is not a concave function of E0

Es
(for given E1

Es
) and vice versa.

9.13 Specialize Example 9.13 to U = 2 with |H0|2 = |H1|2 = 1 and suppose that
E0

Es
SNR0 cannot exceed E1

Es
SNR1. If E1

Es
SNR1 = 3 dB, what value of E0

Es
SNR0 max-

imizes the sum spectral efficiency? How about if E1

Es
SNR1 = 7 dB?

9.14 Verify, for U = 2, that (9.65) and (9.67) yield sinrMAC

u and sinrBCu , respectively.

9.15 Let Nt = 4, Nr = 1, and U = 4, with SNRu = SNR for u = 0, . . . , 3. Plot,
as a function of SNR (in dB), the sum spectral efficiency of a ZF transmitter with
waterfilling power allocation and with a uniform power allocation. Further plot the
sum spectral efficiency when all users are constrained to having the same efficiency,
i.e., when the transmit signal is C†[s0 · · · s3]T with C as per (9.74).
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9.16 Consider a linear ZF transmitter with Nt antennas and U ≤ Nt single-antenna users.
Formulate the power allocation policy that maximizes the weighted sum spectral ef-
ficiency for arbitrary weights q0, . . . , qU−1. Show that, for equal weights, it reduces
to waterfilling.

9.17 Reproduce Example 9.19

9.18 Consider the setup of Examples 9.20 and 9.21. For U,Nt → ∞ with Nt/U = β the
sum spectral efficiency normalized by Nt satisfies [827]∑U−1

u=0 CZF
u

Nt
→ 1

β
log2

(
1 + (β − 1) SNR

)
. (9.306)

Compute the optimum ratio β for SNR = 10 dB and for SNR → ∞.

9.19 Repeat Example 9.21 for SNR = 20 dB and verify that, with ZF transmission, as the
SNR grows the optimum number of active users increases for each given Nt.

9.20 Show that, in a MU-MIMO BC, the high-SNR power loss of a linear ZF transmit-
ter relative to an optimum transmitter admits, in addition to (9.121), the alternative
expression

ΔL∞ =
1

U

U−1∑
q=0

U−1∑
�=q+1

log2 e

Nt − �
. (9.307)

Hint: Exploit the high-SNR analysis of block-diagonalization.

9.21 Consider a six-antenna base station communicating with U = 4 single-antenna users
having SNR0 = 10 dB, SNR1 = 12 dB, SNR2 = 14 dB, and SNR3 = 16 dB.
Assume CSIT and IID Rayleigh fading. Relative to the BC sum-capacity with the
foregoing SNRs, how much additional transmit power would a linear ZF transmit-
ter require to perform equally? Contrast the exact calculation with the approximate
value obtained from power offset expressions.

9.22 For the setup of Example 9.25, compute the high-SNR spectral efficiency shortfall
of a ZF transmitter relative to the sum-capacity, i.e., convert the high-SNR power
loss into a spectral efficiency difference.

9.23 In SU-MIMO with digital CSI feedback, reporting back a selected precoder (via
codebook indexing) has some advantages with respect to reporting back the pilot
observation or the ensuing channel estimate. Is this still the case in the MU-MIMO
BC?

9.24 Show that, with a suitably defined sinru, (9.148) can be rewritten as

sinreff,u(âu,u) =
1
U sinru · (1−MMSEu,u)

1 + 1
U sinru ·MMSEu,u

, (9.308)

which can be recognized as a counterpart to, and in fact a generalization of, the
single-user effective SNR in (4.218).

9.25 Verify (9.173) and (9.174).

9.26 Repeat Example 9.27 for U = Nt = 3.
Note: A convex solver is required, for instance fmincon in MATLAB®.
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9.27 Reproduce Example 9.28.

9.28 Suppose that the reverse-link SNR is held fixed or simply does not improve at the
same pace as the forward SNR. We can model this behavior by letting

SNRr
u

SNRu
→ 0 (9.309)

for SNRu → ∞. Show that, under this condition, the right-hand side of (9.181) does
not exhibit a sustained growth with SNRu and thus the spectral efficiency lower
bound exhibits zero spatial DOF.

9.29 Prove that ΔLZF
∞ as expressed in (9.192), which is valid for U = Nt, achieves its

highest value for U = Nt = 2.

9.30 Incorporating fading onto the reverse-link analog feedback, (9.166) becomes

yr
u =

√
αfb

Nc

NtU
GuNtEr

s√
1
Nt

E[‖yu‖2]
H r

uyu + vr
u, (9.310)

where H r
u ∼ NC(0, I) is the Nt×1 vector connecting the uth user with the Nt base

station antennas. Assuming H r
0, . . . ,H

r
U−1 are known by the base station, rederive

the spectral efficiency lower bound in (9.181) conditioned thereon. Although the re-
verse channel is hardly ergodic over a given feedback transmission—it takes a single
value per block—its fading merely alters the variance of the interference leakage that
impairs the forward communication and the codewords being transmitted forwardly
do experience ergodicity. It is thus legitimate to average the spectral efficiency lower
bound for user u over the distribution of H r

u. Taking such expectation, and expand-
ing with respect to SNRu, verify that the number of spatial DOF is unaltered while
the power offset penalty in (9.192) becomes

ΔLZF

∞ = E

[
log2

(
2 + ρ

1− 1
U

‖Hu‖2
)]

. (9.311)

Finally, confirm that, for U = Nt = 2, reverse-link fading known by the base station
increases the power offset penalty only slightly, from 3.52 dB to 3.86 dB.

9.31 Reproduce the TDD spectral efficiency lower bound and the various overheads in
Example 9.35.
Note: A convex solver is required, for instance fmincon in MATLAB®.

9.32 It is found in Example 9.34 that U < 5 vehicular users can be supported, with FDD
and a 10-dB forward–reverse SNR asymmetry, without exceeding a 10% decrease
in the number of spatial DOF of pilot-assisted ZF transmission relative to CSI-based
ZF transmission. How many more users could be supported with TDD, everything
else being the same?

9.33 Consider an MU-MISO ZF transmission with U = Nt = 2 and a 10-dB power
asymmetry between the forward and reverse links. What percentage of the two spa-
tial DOF achievable with CSI can be achieved with pilot-assisted ZF transmission?
Answer the question for both FDD and TDD by means of Table 9.1.
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9.34 Repeat Example 9.40 but with U = 2, keeping only the two strongest users in the
original example.

9.35 Consider a BC with Nr ≥ 1 and Nt ≥ UNr with all users operating at high SNR.
How much of the power loss experienced by linear ZF transmission is recovered by
applying block-diagonalization?

9.36 Consider a four-antenna base station communicating with U = 2 two-antenna users
having SNR0 = 15 dB and SNR1 = 20 dB. Assume CSIT and IID Rayleigh fad-
ing. Relative to the BC sum-capacity at these SNRs, how much additional transmit
power would a linear ZF transmitter require to perform equally? Contrast the exact
calculation with the approximate value obtained from power offset expressions.

9.37 Repeat Problem 9.36 for block-diagonalization rather than ZF.
Note: A convex solver is required to compute the BC capacity, for instance fmincon
in MATLAB®.

9.38 Reconsider Example 9.40.
(a) Compute the ZF sum spectral efficiency with a uniform power allocation, and

compare it with the waterfilling curve in the original example.
(b) Repeat part (a) for block-diagonalization.

9.39 Repeat Example 9.40 with correlation 0.75 between the antennas at each receiver.
9.40 Consider an MU-MIMO BC. Having CSIT, the base station chooses to apply a

block-diagonalization precoding. Show that, in the high-SNR regime, the optimum
power allocation among users expands as in (9.252).

9.41 Verify that (9.280) is maximized by F Reg
u in (9.282).

Hint: Recall the derivation, in Chapter 6, of the linear filter that maximizes the SINR
at the receiver.

9.42 Consider a MU-MISO BC with all users having the same SNR and regularized ZF
transmission. Derive the regularizing term that maximizes the SINR at every user
for U → ∞ and verify that it equals the value that maximizes the SLNRs.

9.43 Reproduce the regularized ZF curve in Fig. 9.17.
9.44 For the setup of Examples 9.46 and 9.47, compute and plot the ergodic sum spectral

efficiency as a function of SNR with regularized ZF precoding and a uniform power
allocation. Contrasting this curve with its optimum-power-allocation counterpart in
Fig. 9.17, what do you observe?



10 Massive MIMO

Originality consists of returning to the origin.

Antoni Gaudı́

10.1 Introduction

Distilling the essence of the book up to this point, we can state that the addition of an-
tennas at transmitters and receivers opens up new spatial signaling dimensions, and that
these dimensions are indeed usable under reasonable assumptions—more precisely, un-
der assumptions that hold for small and moderate numbers of antennas, when CSI can be
taken for granted or the effects of its acquisition can be cleanly discounted. The result is
a sustained increase in the spectral and/or power efficiency within the confines of such
numbers of antennas. The reader may have noticed how, in the examples thus far, we have
purposely avoided venturing beyond those confines, and we hasten to restate that the large-
dimensional formulations scattered throughout the text are mere stratagems to simplify the
analysis of settings with limited numbers of antennas.

The natural question to pose at this point is: how far can this go? Such is the question that
drives this final chapter and, as the contents unfold, it is to become clear that a multicell
formulation is required to address it. This entails mutually interfering MACs and BCs,
one of each per cell. In this multicell context, we broaden the terminology and speak of
reverse link and forward link, respectively, to refer to the transmissions by users and by
base stations.

With such terminological broadening, and with some related notational adjustments, the
chapter is organized in the following manner. Section 10.2 shifts things into gear and mo-
tivates key aspects, such as the payoffs of reciprocity and excess antennas, that to some ex-
tent have come to define massive MIMO itself. Then, Section 10.3 recollects earlier results
on MMSE channel estimation and adapts them to a multicell environment; in the process,
the issues of pilot reuse and pilot contamination—in a single-cell context these issues are
immaterial—become manifest. Mirroring once more the MAC–BC coverage of previous
chapters, Sections 10.4 and 10.5 tackle the transmission of payload data in the reverse and
forward directions. Matched-filter structures, not considered for nonmassive settings, take
center stage here, not only because of their satisfactory performance, but further owing to
their instrumental value on the analytical front. Channel hardening, a phenomenon briefly
encountered earlier in the text, emerges with force. Besides matched filters, the LMMSE
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receiver and the regularized ZF precoder, superior yet less analytically friendly, are also
considered. Ramping things down, Section 10.6 surveys techniques to mitigate pilot con-
tamination, Section 10.7 briefly addresses practical concerns that naturally arise in the
formulation of massive MIMO, and Section 10.8 concludes the chapter.

10.2 Going massive

10.2.1 The massive MIMO regime

Venturing beyond the comfortable realm of moderate numbers of antennas and exploring
what unfolds when these numbers are in the tens or even hundreds is sure to require a
formulation devoid of side information, and to have a first taste we can recall the analysis
of pilot-assisted ZF transmission in Section 9.7.6. In particular, and with the caveats asso-
ciated with the high-SNR regime and a single-cell BC, we can recall from Table 9.1 that,
with TDD/full duplex and U = Nt, satisfactory forward-link operation is guaranteed if(

1 + ρ
)
U � Nc, (10.1)

where ρ is the forward–reverse SNR ratio.

Example 10.1

Apply (10.1) to gauge the limits of massification in outdoor macrocellular deployments,
which is where one can most easily imagine base stations with a multitude of antennas.

Solution

For outdoor macrocellular deployments, power asymmetries on the order of 20 dB are
reasonable. Setting ρ = 100 in (10.1), we obtain

U � Nc

101
(10.2)

and, if we interpret the “�” sign as 1
10 , then

U <
Nc

1010
. (10.3)

This condition indicates that, in a vehicular setting with Nc = 1000, efficient MU-MIMO
communication may not be possible while, in a pedestrian setting with Nc = 20 000, less
than U = 20 users could be actively served from less than Nt = 20 antennas. Hardly a
huge number, which would shrink even further with FDD.

The foregoing example, based on a sufficient condition, does not imply that truly large
numbers of antennas are out of reach, but rather that pushing into those numbers might
require relaxing some premises. To that end, a couple of observations are in order.
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With TDD/full duplex, advantageously, the CSI-related overhead does not scale with Nt,
but only with U as pilots are transmitted by users over the reverse link. This suggests
decoupling Nt from U , such that the former, which does not affect the overhead, can
grow larger. Taken to the limit, this leads to Nt � U .
With hefty numbers of antennas and a correspondingly sized spectral efficiency, substan-
tial overheads can be tolerated for a net performance that might still be very attractive.
(As little as 50% of a very large figure may represent much more than 90% of a com-
paratively small figure.) This motivates having U � 1, such that the number of spatial
DOF is large, even if the overhead is then high.

These considerations point to the regime where Nt � U � 1 or, bringing both link
directions into the same umbrella,

Na � U � 1, (10.4)

where Na is the number of antennas at the base station. These conditions frame the mas-
sive MIMO regime as originally envisioned by Marzetta, who spearheaded its analysis
for matched-filter transceivers [882, 883]. With more sophisticated transceivers and/or the
incorporation of power control, the first inequality softens into

Na ≥ U � 1, (10.5)

which would be a more general framing of massive MIMO. The challenges and opportu-
nities that arise in this regime quickly captured the imagination of researchers, and a string
of follow-up analyses subsequently expanded its understanding [884–897].

In this chapter we concentrate on TDD/full duplex systems featuring linear transceivers
at the base stations and a single antenna at each user. For such systems, we explore what
is possible when the only fundamental limitation is either Na or the real estate available at
the base stations. Comments on FDD massive MIMO and on massive MIMO with multi-
antenna users are provided in the closing section.

For the forward link of TDD/full duplex systems, a multistage procedure is laid down
in Chapter 9. Incorporating to it a stage for reverse-link data transmission, we obtain the
following scheme:

(1) Pilots are transmitted from the users.
(2) The base station effects channel estimation and computes the receive filters and for-

ward precoders.
(3) Reverse-link data transmission takes place.
(4) Precoded pilots are transmitted through each precoder to enable precoded channel es-

timates at the users,
(5) Finally, forward data transmission occurs.

On each coherence tile, Np symbols or OFDM resource elements are reserved for pilots,
representing an overhead of α = Np/Nc. The remaining Nc − Np symbols are available
for data. These can be apportioned between the forward and reverse directions according to
the needs of the system. Moreover, the reverse and forward data transmission stages could
be swapped.
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The user channels are embodied by the column vectors H0, . . . ,HU−1 in the reverse
link and by the row vectors H∗

0 , . . . ,H
∗
U−1 in the forward link. In the analysis that follows,

we consider block fading with no antenna correlations at the base station; the impact of
correlations is discussed at the end of the chapter. Each user is assumed to experience the
same local-average SNR across the Na antennas, a point that is also qualified at the end of
the chapter.

Recognizing that the power budgets at base stations and users, Es and Er
s respectively,

may be rather different indeed, we retain the forward–reverse SNR ratio

ρ =
Es

Er
s

(10.6)

such that, for the forward link, SNRu = GuEs

N0
with power allocation coefficient Eu

Es
,

whereas for the reverse link

SNRr
u =

GuE
r
s

N0
(10.7)

=
SNRu

ρ
, (10.8)

with power control coefficient Eu

Er
s

.

10.2.2 Excess antennas

As argued, one of the postulates of massive MIMO is a potentially large ratio Na/U—this
ratio is the reciprocal of the system load in terms of users per spatial dimension—and thus
it is worth dwelling on what this entails. Although it may seem that enlarging Na much
beyond U condemns us to a slow logarithmic improvement, two opportunities open up as
Na/U grows large.

(1) As advanced in the large-dimensional analysis of Chapter 5, the law of large num-
bers dictates that, if Wu and Hu are Na-dimensional vectors with IID entries, then
1
Na

W ∗
uHu → 1

Na
E[W ∗

uHu] for Na/U → ∞. Setting Wu = Hu, this leads to the
channel hardening

1

Na
H∗

uHu
a.s.→ 1 u, u = 0, . . . , U − 1 u = u (10.9)

as well as to the asymptotic orthogonality

1

Na
H∗

uHu
a.s.→ 0 u, u = 0, . . . , U − 1 u �= u, (10.10)

which is sometimes termed favorable propagation. Altogether, for Na � U , a receive
filter Wu aligned with Hu shall reject most of the interference from users other than
u; similarly, a precoder aligned with Hu shall inflict little interference onto users other
than u. Hence, a simple matched filter for each user might suffice at the base station,
both to receive and to transmit, drastically simplifying the tasks of interference avoid-
ance. In fact, a condition weaker than (10.9) and (10.10) suffices: as long as H∗

uHu
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grows faster than H∗
uHu (u �= u) for Na/U → ∞, a matched filter is ultimately

effective to both receive and transmit.
(2) Because of channel hardening, forward-link precoded pilot transmissions become dis-

pensable. Put differently, hardened channels acquire operational significance in mas-
sive MIMO because, in contrast with the large-dimensional analyses of earlier chap-
ters, here the large number of antennas is factual rather than a mathematical artifice.

With simple matched filters then, as Na/U → ∞, the intended signals surge above the
interference, the noise, and even the channel estimation errors, while the small-scale fading
is averaged out. All of this materializes into sustainedly high SINRs for many simultaneous
users and enormous spectral efficiencies, which is the promise of massive MIMO. At the
same time, forward precoded pilots may be dispensable, a point whose implications are
dissected later in the chapter.

10.3 Reverse-link channel estimation

Let us begin by examining the acquisition of CSI at a single base station. Suppose that
there is no pilot power boosting; the same power control applies to data and pilot symbols.
On every coherence tile, the uth user transmits a single pilot of energy Eu. With the U

pilot symbols being mutually orthogonal, the base station observes

yu =
√

GuEu Hu + vu u = 0, . . . , U − 1 (10.11)

and, with Hu having independent entries, each such entry can be separately estimated
without loss of optimality. Reproducing a basic result that appears throughout the book,
the LMMSE channel estimates Ĥ0, . . . , ĤU−1 obtained by the base satisfy

Hu = Ĥu + H̃u u = 0, . . . , U − 1 (10.12)

where the errors H̃0, . . . , H̃U−1 are uncorrelated with the respective estimates and have
variances

MMSEu =
1

1 + Eu

Er
s
SNRr

u

u = 0, . . . , U − 1. (10.13)

10.3.1 Pilot reuse

At this point, a new ingredient must be incorporated into the analysis. Because the fading
coherence Nc is finite, the number of orthogonal pilot dimensions Np < Nc is also finite.
While it is certainly not a problem to assign, on each coherence tile, orthogonal pilots to
the U active users within a certain cell, it is impossible to maintain strict pilot orthogonality
over an entire network having many cells. Eventually, the system runs out of pilot dimen-
sions and has to reuse them. Precisely, if there are Lnetw cells, each having U users, then
at least ULnetw pilots are required. Once ULnetw ≥ Nc, pilots are to be reused in different
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parts of the network. This reuse causes interference during the pilot stage and, to distin-
guish its effects from those of regular interference during the data transmission stages, the
distinct term pilot contamination (or pilot pollution) has conveniently been coined.

To be sure, pilot reuse and contamination occur regardless of the number of antennas and
thus the issue is not specific to massive MIMO. However, it is in this regime that it acquires
relevance because U becomes large and because, unlike interference, noise, and fading, the
contamination does not vanish for Na/U → ∞, but rather it stubbornly persists.

10.3.2 Pilot contamination

Explicitly capturing pilot contamination requires zooming out to encompass multiple cells,
and in turn an additional level of indexing. Referring to Fig. 10.1, where for illustration
purposes the cells are hexagonal and arranged into a regular lattice, let us denote by Dl;�,u

the distance between the uth user at the �th cell and the base station at cell l. The pathloss
associated with this distance, and the companion shadow fading, combine into a large-scale
gain Gl;�,u, from which the channel connecting the uth user at the �th cell with the base
station at cell l can be written as

√
Gl;�,u Hl;�,u. In turn, the energy per symbol transmitted

by user u at cell � is E�,u.
Since, in a large and homogeneous network, all cells are statistically equivalent, without

loss of generality we declare cell 0 to be the cell of interest, meaning the cell where we
assess performance. Letting C denote the subset of other cells reusing the same pilots as
the cell of interest, the observations of the pilot transmissions at the base station of interest
now become

y0,u =
√

G0;0,uE0,u H0;0,u +
∑
�∈C

√
G0;�,uE�,u H0;�,u + v0,u u = 0, . . . , U − 1,

(10.14)

which reduce to (10.11) if there is no pilot reuse and the subset C is empty. The index u

identifies the users at the cell of interest and at the cells within C that are sharing the same
pilot dimension. Since the index of the cell of interest is uninformative, it can be dropped
to avoid carrying it throughout the derivations; this compacts (10.14) into

yu =
√

GuEu Hu +
∑
�∈C

√
G�,uE�,u H�,u + vu u = 0, . . . , U − 1. (10.15)

Jointly considering the large- and small-scale channel components and the power con-
trol, which is what the pilot symbols undergo, the base station of interest would like to
estimate, for its U users, √

Eu

Er
s

Gu Hu u = 0, . . . , U − 1. (10.16)

However, it actually ends up estimating√
Eu

Er
s

Gu Hu +
∑
�∈C

√
E�,u

Er
s

G�,uH�,u u = 0, . . . , U − 1, (10.17)
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�Fig. 10.1 Hexagonal lattice network. The cell of interest and the cells belonging to subset C, i.e.,

all the ones reusing the same pilot dimensions, are shaded and a copilot user in each

such cell is indicated by a circle. Also indicated is the distance Dcopilot between the

cell of interest and its first tier of copilot cells.

which are the composite channels between each set of copilot transmissions and that base.
Scaled by the known large-scale components and power control coefficients, the small-
scale channel estimates satisfy

Ĥu ∝ Hu +
∑
�∈C

√
E�,u

Er
s
G�,u√

Eu

Er
s
Gu

H�,u + noise u = 0, . . . , U − 1 (10.18)
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or, equivalently,

Ĥu ∝ Hu +
∑
�∈C

√√√√ E�,u

Er
s
SNRr

�,u

Eu

Er
s
SNRr

u

H�,u

︸ ︷︷ ︸
pilot contamination

+ noise u = 0, . . . , U − 1. (10.19)

Indeed, as the reader is invited to verify in Problem 10.4, the LMMSE channel estimate is

Ĥu =

Eu

Er
s
SNRr

u

1 + Eu

Er
s
SNRr

u +
∑

�∈C
E�,u

Er
s
SNRr

�,u

⎛
⎝Hu +

∑
�∈C

√√√√ E�,u

Er
s
SNRr

�,u

Eu

Er
s
SNRr

u

H�,u + v′
u

⎞
⎠ ,

(10.20)

which does conform with (10.19) and makes precise the scaling of the intended term and
of the pilot contamination, as well as the strength of the noise. The variance of the IID
entries of v′

u is
1

Na
E
[‖v′

u‖2
]
=

1
Eu

Er
s
SNRr

u

. (10.21)

Rearranging (10.20) into Hu = Ĥu + H̃u, where Ĥu and H̃u are uncorrelated, the
estimation error variance, i.e., the variance of the entries of H̃u, comes out as

MMSEu =
1 +

∑
�∈C

E�,u

Er
s
SNRr

�,u

1 + Eu

Er
s
SNRr

u +
∑

�∈C
E�,u

Er
s
SNRr

�,u

, (10.22)

which reduces to (10.13) whenever there is no pilot reuse and C is empty. It can be verified
from (10.20) that the variance of the entries of Ĥu equals (1−MMSEu).

Examining (10.20), we observe that the channel estimate for user u at the base sta-
tion of interest contains, besides an intended term, also an undesired term—whose power
is weighted down by the ratio of local-average SNRs and power control coefficients—
belonging to the corresponding user u in every copilot cell. As a result, when such channel
estimate is subsequently applied to receive data, the base station of interest inadvertently
welcomes small amounts of contamination-induced interference from the users in copilot
cells; likewise, when the channel estimate is applied to transmit data, the base of inter-
est inadvertently launches small amounts of power onto users in copilot cells, creating
contamination-induced interference.

Typically, pilots are reused in cells that are not adjacent, but rather sufficiently apart to
ensure that ∑

�∈C

E�,u

Er
s

SNRr
�,u � 1, (10.23)

signifying that the total power received from copilot transmissions in other cells is well
below the noise floor. Then, (10.20) and (10.22) can be seen to approximate their respective
noise-limited forms, namely

Ĥu ≈
Eu

Er
s
SNRr

u

1 + Eu

Er
s
SNRr

u

(Hu + v′
u) (10.24)
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Discussion 10.1 Regular versus irregular pilot sequences

The pilot disposition considered in our analysis, consisting of a set of Np symbols or
OFDM resource elements declared as pilots of which each user is assigned a subset, can
be seen as a special embodiment of a more general arrangement where there is a set
of Np orthogonal sequences of length Np (e.g., the Zadoff–Chu sequences mentioned
in Chapter 2) and each user is assigned one of those sequences. Our disposition, more-
over, is regular in that the same set of sequences is reused over and over throughout the
network.

In an alternative disposition of this more general arrangement, one could generate at
random a set of Np orthogonal sequences, for instance the columns of an Np × Np

unitary isotropic random matrix; the eigenvectors of an IID complex Gaussian matrix
are, recall, an example of such matrix. Then, rather than reuse the same set of orthogonal
sequences once these have been exhausted, a new set could be drawn at random for every
additional cluster of cells, in what we could call an irregular disposition.

In a regular disposition, the pilot symbols transmitted by user u in the cell of interest
collide only with those transmitted by users u in cells � ∈ C, but the collision is com-
plete. In an irregular disposition, in contrast, the pilot sequences transmitted by user u in
the cell of interest collide with those from every user in the network save for the Np − 1

in the same set; however, the collision is now only partial, dictated by the orientation of
two random isotropic vectors. This partial overlap with a larger population of users has
the effect of a spatial average of the pilot contamination [883, section VII-F]. Although
an accurate comparison of how the regular and irregular dispositions perform would re-
quire detailed system-level simulations, the former appears preferable if the pilots are
allocated with care whereas the latter seems more robust to careless allocations. Prefer-
ring to presume a carefully orchestrated system, in our analysis we consider a regular
disposition, yet we do not expect any of the conclusions drawn in the chapter to change
drastically with an irregular disposition.

and

MMSEu ≈ 1

1 + Eu

Er
s
SNRr

u

, (10.25)

with the pilot contamination being negligible. This proviso is implicit in all pilot-assisted
formulations in earlier chapters, and indeed it is amply satisfied.

However, because excess antennas effectively lower the noise floor, in terms of effective
SINRs (with the processing at the receive filters or transmit precoders accounted for) the
condition in (10.23) needs to be modified for massive MIMO. Moreover, this modifica-
tion depends on the specific type of filters and precoders, which affect the degree of noise
reduction and of other-user and other-cell interference adding to the noise. For that rea-
son, we defer quantifying the impact of pilot contamination to later in the chapter, in the
context of specific receivers and transmitters, meanwhile keeping it present in the general
formulation.
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Discussion 10.2 Aligned versus staggered pilot sequences

Another relevant aspect of the pilot disposition considered in our analysis is that, be-
sides being regular, the Np available pilot sequences are aligned. Put differently, pilot
sequences are transmitted at once throughout the network, as depicted in the upper part
of Fig. 10.2. Consequently, the transmission of payload data also takes place at once.
With this disposition, the estimation of Hu is impaired by noise and contaminated by
the pilots transmitted by users u in cells � ∈ C. While this is perhaps the most natural
disposition, it is not the only one [898–900].

Consider the alternative disposition in the lower part of Fig. 10.2, where the sets of
Np pilot sequences reused throughout the network are staggered and do not overlap.
Besides noise, the estimation of Hu is now interfered by payload data from every user
in every other-cluster cell. The LMMSE channel estimate in (10.20) then morphs (refer
to Problem 10.5) into

Ĥu =

Eu

Er
s
SNRr

u

1 + Eu

Er
s
SNRr

u +
∑

�∈S
∑U−1

u=0
E�,u

Er
s
SNRr

�,u

·
⎛
⎝Hu +

∑
�∈S

U−1∑
u=0

√√√√ E�,u

Er
s
SNRr

�,u

Eu

Er
s
SNRr

u

H�,u s�,u + v′
u

⎞
⎠ , (10.26)

where s�,u is a data symbol transmitted by user u in cell � and the set S contains all cells
whose transmissions are staggered relative to the cell of interest. The entries of v′

u are
IID complex Gaussian with power

1

Na
E

[
‖v′

u‖2
]
=

1
Eu

Er
s
SNRr

u

, (10.27)

whereas the interference that the payload data inflict during the estimation stage is IID,
but non-Gaussian on account of its unknown fading. Altogether, the entries of H̃u are
IID with variance

MMSEu =
1 +

∑
�∈S

∑U−1
u=0

E�,u

Er
s
SNRr

�,u

1 + Eu

Er
s
SNRr

u +
∑

�∈S
∑U−1

u=0
E�,u

Er
s
SNRr

�,u

, (10.28)

which is worse than its aligned-pilot counterpart in (10.22). Comparisons between the
two dispositions are proposed in the problems at the end of the chapter.

10.4 Reverse-link data transmission

Upon data transmission from the users, the observation at the base station of interest is

y =
∑
�

U−1∑
u=0

√
G�,uE�,u H�,us�,u + v (10.29)
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=
U−1∑
u=0

√
GuEu

(
Ĥu + H̃u

)
su +

∑
� �=0

U−1∑
u=0

√
G�,uE�,u Ĥ�,us�,u + v, (10.30)

where, in (10.30), we have segregated the same-cell and the other-cell transmissions and
we have decomposed the fading for the former—the base station has estimates of these
channels—as Hu = Ĥu + H̃u for u = 0, . . . , U − 1. Applying a generic linear receiver
Wu, the filtered observation for user u is

W ∗
uy =

√
GuEu W

∗
uĤusu︸ ︷︷ ︸

Desired signal

+
√
GuEu W

∗
uH̃usu︸ ︷︷ ︸

Estimation error term

+
∑
u �=u

√
GuEu W

∗
u

(
Ĥu + H̃u

)
su

︸ ︷︷ ︸
Same-cell interference

+
∑
� �=0

U−1∑
u=0

√
G�,uE�,u W

∗
uH�,us�,u

︸ ︷︷ ︸
Other-cell interference

+ W ∗
uv︸ ︷︷ ︸

Filtered noise

, (10.31)

where the desired signal is the component projected on what the receiver regards as the
true channel for this user, Ĥu, while the projection on the estimation error H̃u is treated as
additional Gaussian noise (filtered by Wu). The other-cell interference, subsumed within
the noise in most of this book, is made explicit in this formulation, but it is also treated as
Gaussian noise (filtered by Wu).

Conditioned on Ĥ0, . . . , ĤU−1 and Wu, which the base station of interest is privy to,
the output SINR for user u equals

sinru =

Eu

Er
s
SNRr

u

∣∣W ∗
uĤu

∣∣2
Den

, (10.32)

with

Den =
∑
u �=u

Eu

Er
s

SNRr
u

∣∣W ∗
uĤu

∣∣2
︸ ︷︷ ︸

Same-cell interference (estimated channels)

+

(
1 +

U−1∑
u=0

Eu

Er
s

SNRr
u MMSEu

)
‖Wu‖2︸ ︷︷ ︸

Noise plus same-cell estimation error terms

+
∑
� �=0

U−1∑
u=0

E�,u

Er
s

SNRr
�,u E

[∣∣W ∗
uH�,u

∣∣2 |Wu

]
︸ ︷︷ ︸

Other-cell interference

, (10.33)

where we have capitalized on the independence between Wu and H̃u, for u = 0, . . . , U−1,
to develop

E

[∣∣∣W ∗
uH̃u

∣∣∣2 |Wu

]
= E

[
W ∗

uH̃uH̃
∗
uWu |Wu

]
(10.34)

= W ∗
u E

[
H̃uH̃

∗
u

]
Wu (10.35)
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= W ∗
u (MMSEu · I)Wu (10.36)

= MMSEu ‖Wu‖2 . (10.37)

As far as the other-cell interference, E
[|W ∗

uH�,u|2 |Wu

]
= W ∗

u E
[
H�,uH

∗
�,u |Wu

]
Wu

cannot be further elaborated in complete generality for copilot interferers, i.e., for � ∈ C
and u = u, because Wu is contaminated by, and therefore it is not independent of, H�,u

whenever � ∈ C. For noncopilot interferers, though, Wu and H�,u do exhibit independence
and thus

W ∗
u E

[
H�,uH

∗
�,u |Wu

]
Wu = W ∗

u E
[
H�,uH

∗
�,u

]
Wu (10.38)

= ‖Wu‖2 , (10.39)

allowing for (10.33) to be written as

Den =
∑
u �=u

Eu

Er
s

SNRr
u

∣∣W ∗
uĤu

∣∣2

+

⎛
⎜⎝1 +U−1∑

u=0

Eu

Er
s

SNRr
u MMSEu +

∑
� 	=0

�/∈C

U−1∑
u=0

E�,u

Er
s

SNRr
�,u +

∑
�∈C

∑
u �=u

E�,u

Er
s

SNRr
�,u

⎞
⎟⎠ ‖Wu‖2

+
∑
�∈C

E�,u

Er
s

SNRr
�,u W

∗
u E

[
H�,uH

∗
�,u |Wu

]
Wu, (10.40)

where the final term contains the copilot interference. Plugging (10.40) into (10.32), we ob-
tain sinru for specific Ĥ0, . . . , ĤU−1 and Wu. If the channel estimation were perfect, the
pilot contamination were negligible, and the other-cell interference were subsumed within
the noise, we would recover from sinru the corresponding MU-SIMO MAC expression in
(9.6). All these effects, essential for the derivations at hand, are herein explicit.

Let us distinguish as gross spectral efficiencies the values measured over the data sym-
bols only, before discounting the pilot overheads. At the cell of interest, with the other-cell
interference—whose fading is unknown to the base of interest—and the channel estimation
errors all treated as filtered Gaussian noise, the gross reverse-link user spectral efficiencies

Ru

B
= E

[
log2(1 + sinru)

]
u = 0, . . . , U − 1 (10.41)

can be achieved, with expectation over Ĥu and consequently also over Wu. Such spectral
efficiencies should be optimized over the choice of U . Subsequently, the combined gross
spectral efficiencies over the reverse and forward data symbols need to be adjusted down
by the pilot overhead, Np/Nc, and optimized also over such overhead, and possibly also
over the pilot power boosting.

10.4.1 Channel hardening

The foregoing derivations hinge on that, having gathered the estimate Ĥu, the decoder for
user u at the base station of interest regards W ∗

uĤu as the filtered channel bearing the
desired signal.
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As mentioned early in the chapter, one of the benefits of having excess antennas is the
hardening of the filtered signals. To see how a receiver can capitalize on this phenomenon,
let us decompose the filtered channel of user u at the base station of interest as

W ∗
uHu = E[W ∗

uHu] +
(
W ∗

uHu − E[W ∗
uHu]

)
. (10.42)

Suppose that, rather than W ∗
uĤu, the decoder regards E[W ∗

uHu] as the filtered channel—
the receiver can compute this value from the channel statistics—that bears the desired
signal and regards the signal borne by the bracketed term in (10.42) as self-interference,
treated as additional noise. Since, for Na → ∞, we have that 1

Na
W ∗

uHu
a.s.→ 1

Na
E[W ∗

uHu],
it follows that, for growing Na/U , the term E[W ∗

uHu] will come to accurately approxi-
mate the true filtered channel and the bracketed term in (10.42) will be small. (In non-
massive MIMO, the same approach could be taken, but then E[W ∗

uHu] would be a lousy
approximation to W ∗

uHu and the self-interference would be correspondingly strong, alto-
gether leading to poor performance.)

For a receiver regarding E[W ∗
uHu] as the filtered channel, the counterpart to (10.31) is

W ∗
uy =

√
GuEu E

[
W ∗

uHu

]
su︸ ︷︷ ︸

Desired signal

+
√
GuEu

(
W ∗

uHu − E[W ∗
uHu]

)
su︸ ︷︷ ︸

Self-interference

(10.43)

+
∑
u �=u

√
GuEu W

∗
uHu su

︸ ︷︷ ︸
Same-cell interference

+
∑
� �=0

U−1∑
u=0

√
G�,uE�,u W

∗
uH�,u s�,u

︸ ︷︷ ︸
Other-cell interference

+ W ∗
uv︸ ︷︷ ︸

Filtered noise

and the output SINR for user u at the base station of interest is

sinru =

Eu

Er
s
SNRr

u

∣∣E[W ∗
uHu]

∣∣2
Den

, (10.44)

where

Den =
Eu

Er
s

SNRr
u var[W

∗
uHu] +

∑
u �=u

Eu

Er
s

SNRr
u E

[∣∣W ∗
uHu

∣∣2]

+
∑
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E�,u

Er
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SNRr
�,u E

[∣∣W ∗
uH�,u

∣∣2]+ E
[‖Wu‖2

]
. (10.45)

Recalling the considerations made for the other-cell interference in the case of a receiver
reliant on channel estimates, namely that Wu is independent of H�,u except for � ∈ C and
u = u we can further elaborate Den into
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+
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E�,u
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s

SNRr
�,u E

[∣∣W ∗
uH�,u

∣∣2] . (10.46)

Note that, in sinru and Den, we have introduced an overline, which is how we distinguish
these hardening-based quantities from their channel-estimation-based brethren. Undoubt-
edly, sinru ≤ E

[
sinru

]
for u = 0, . . . , U − 1 because, to compute sinr0, . . . , sinrU−1,

we have unconditioned on Ĥ0, . . . , ĤU−1 and Wu, depriving the receiver of information.
Comparisons between sinru and E

[
sinru

]
are provided in the section that begins hereafter.

With sinr0, . . . , sinrU−1 stable over the respective local neighborhoods, the ensuing
gross spectral efficiencies would not require expectations over the fading, but rather they
would directly be

R̄u

B
= log2

(
1 + sinru

)
u = 0, . . . , U − 1. (10.47)

Since the base station does need to gather channel estimates to compute the receive filters,
there is no operational advantage in exploiting channel hardening in the reverse link. More-
over, as argued, R̄u/B ≤ Ru/B. However, the performance of a hardening-based receiver
is easier to evaluate and, deep into the massive MIMO regime, it is hardly inferior, thereby
serving as a tight lower bound and a convenient analytical instrument. And, by introducing
hardening-based receivers at this point, we set the stage for the forward link, where they
do have an operational advantage.

10.4.2 Matched-filter receiver

For nonmassive settings, previous chapters focus on the ZF and LMMSE receivers, which
are crafted to reject, completely or partially, the interference from same-cell users. The sim-
pler matched-filter receiver is disregarded because its performance in those settings is poor.
For Na/U � 1, this is no longer the case, and a matched filter that ignores interference
and merely seeks to capture as much desired power as possible can perform quite well. In
fact, because of the asymptotic orthogonality of any two distinct channel vectors, the ZF
and LMMSE receivers revert to a matched filter for Na/U → ∞ and thus the appeal of the
latter in this regime is based on a sound argument. Invoking the parallel beamforming inter-
pretation of MIMO, what occurs for growing Na/U is that the beam through which each
user’s signal is received becomes progressively sharper and the interference is naturally
rejected. Indeed, this is one of the stimuli for having Na/U � 1.

A matched filter or maximum-ratio combiner for user u satisfies W MF
u ∝ Ĥu; the scaling

factor is important to operate the decoder, but immaterial (because it equally affects signal,
interference, and noise) to the output SINR and thus to the spectral efficiency. Recalling
from (10.20) the estimate Ĥu gathered by the base station, the matched filter for user u at
the cell of interest can therefore be taken to be

W MF
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(10.48)
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with scaling such that E
[‖W MF

u ‖2] = Na and with the entries of v′
u, recall, having power

1/(Eu

Er
s
SNRr

u). The pilots are presumed regular and aligned at every cell.

Output SINR
For W MF

u , the conditional covariance of the copilot interference can be evaluated (refer to
Problem 10.7) as
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(10.49)

from which, regrouping some terms, (10.32) and (10.40) become
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and
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where the final term is the interference that other-cell copilot users provoke in excess of
the interference they would cause if they did not reuse the pilots of the cell of interest. This
term features ‖W MF

u ‖4, which behaves as O(N2
a ) thereby reflecting the partial pointing of

the receive beam formed by W MF
u to those other-cell copilot users.

Turning to a receiver reliant on channel hardening, (10.44) and (10.45) specialize, with
a matched filter satisfying E

[‖W MF
u ‖2] = Na, to

sinrMF

u =

Eu

Er
s
SNRr

u

∣∣E[W MF
u

∗Hu]
∣∣2

DenMF
(10.52)
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with
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whose various terms are elaborated next. First of all (refer to Problem 10.11),
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= Na. (10.56)

Then, since W MF
u and Hu are independent for u �= u,
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whereas the unconditional copilot interference power (refer to Problem 10.8) equals
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Altogether,
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from which, finally,

sinrMF

u =

(
Eu

Er
s
SNRr

u

)2
1+Eu

Er
s
SNRr

u+
∑

�∈C
E�,u
Er

s
SNRr

�,u

Na

(
1 +

∑
�

U−1∑
u=0

E�,u

Er
s
SNRr

�,u

)
+

∑
�∈C

(
E�,u

Er
s
SNRr

�,u

)2 .
(10.62)

For the purpose of mirroring this expression with its forward-link counterpart later in the
chapter, we also present it as
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A first observation that can be made, by mere inspection, is that sinrMF
u → Na for

SNRr
u → ∞. This SINR ceiling, caused by self-interference, is approached by users with

the most favorable combinations of short distance and shadow fading to the serving base
station, but cannot be exceeded by a matched-filter receiver reliant on channel hardening.
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Beyond this observation, let us see how sinrMF

u and sinrMF
u behave for relevant values of

Na/U , initially without power control.

Example 10.2

Consider the reverse link of a hexagonal lattice network where η = 4 and the shadow
fading is log-normal with σdB = 8 dB. The thermal noise is neglected, meaning that the
system is interference-limited. Let E�,u

Er
s

= 1 ∀�, u. Further let Np → ∞ such that there is
no pilot contamination. Set U = 10. For Na/U = 10 and Na/U = 100, plot the CDFs of
sirMF

u and of E
[
sirMF

u

]
.

Solution

These distributions, and subsequent ones throughout the chapter, are produced by a Monte-
Carlo simulator (versions of which are provided in the book’s companion webpage). It
encompasses a hexagonal network subset featuring a central cell of interest, where the
performance statistics are computed, surrounded by two tiers of interfering cells; these
18 surrounding cells (6 on the first tier and 12 on the second) contribute a vast majority
of the other-cell interference experienced by the central cell. In examples featuring pilot
contamination, if the pilot reuse factor happens to be large enough for no copilot cells to be
included within these two tiers, then an additional tier of six copilot cells is incorporated as
in Fig. 10.1. All antennas have uniform patterns in azimuth. Users associate with the cell
from whose base they have the strongest large-scale channel gain. Large-scale statistics are
obtained from drops, each involving the uniformly random positioning with independent
shadow fading instantiation of as many users as required for U users to associate with each
cell. There is a tiny exclusion region around each base station—0.1% of the cell’s area—to
account for the base station height and avoid distance singularities. The number of drops
is adjusted to push the 95% confidence interval below 0.25 dB in SIR. On each drop, the
local-average expectation of siru and/or the corresponding spectral efficiency are computed
by means of an inner Monte-Carlo drawing realizations of the IID Rayleigh fading.

The CDFs requested in the present example are displayed in Fig. 10.3. We observe that
sirMF

u tracks E
[
sirMF

u

]
most of the way with a gap of about 2 dB that, in the absence of

pilot contamination, remains roughly unchanged in absolute value and therefore shrinks
relatively as Na/U grows. In its upper tail, sirMF

u ≤ Na as anticipated.
For interested readers, the validity of the interference-limited premise in typical macro-

cellular conditions is verified in Problems 10.26 and 10.37.

A conclusion of broad significance can be drawn from the foregoing example: with
matched-filter receivers and no power control, Na/U does need to be truly large lest a
substantial share of the users be starved of service. With Na/U = 10, as many as 25%
of the users would have a local-average SIR below −5 dB, a value that we can regard as
a reasonable threshold for service. (Equivalently, a service threshold could be imposed in
terms of user spectral efficiency rather than SIR.) It takes Na/U = 100 for the percent-
age of users not reaching −5 dB to shrink to a more palatable, if still considerable, 8% of
users. This testifies to the shortcomings of a matched-filter receiver for finite Na/U , and
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the consequence is a highly spread distribution for the local-average SIR without power
control. The lower tail, which essentially maps to users in cell-edge locations and/or with
adverse shadow fading, is heavy: too many users are basically in large-scale outage, de-
prived of service. Lifting this lower tail requires an exceedingly large Na/U and, for some
given Na, the corollary is a reduction in U and, ultimately, in the sum spectral efficiency.
Referring back to Example 10.2, even with Na = 1000, a ratio Na/U = 100 allows for
only U = 10.

Fractional power control
Enter power control. Formally, E�,0

Er
s
, . . . ,

E�,U−1

Er
s

should be optimized, at each cell �, on
the basis of that cell’s weighted sum spectral efficiency, further with a view to causing the
least amount of interference to other cells. And, in the absence of CSIT at the users, such
optimization would have to be based on channel statistics only. This is a generalization of
the power control problem encountered in Section 9.4, with the nonconvexity aggravated
by the interactions among cells: a user’s power increase worsens the interference, not only
for same-cell users but, furthermore, for other-cell users. Maxima can be found, but with
no assurance of global optimality [901, 902]. It is an imposing optimization, which relaxes
somewhat only if all users are simultaneously at high SINR or for certain metrics that are
not the weighted sum spectral efficiency [822, 823].

A pragmatic but very effective alternative to the formal optimization of the weighted
sum spectral efficiency is the fractional power control policy, featured in LTE and NR,
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whereby [903–906]

E�,u

Er
s

∝ 1

Gϑ
�;�,u

u = 0, . . . , U − 1, (10.64)

where the proportionality factor should ensure that E�,u

Er
s

≤ 1 for u = 0, . . . , U−1, meaning
that transmit powers do not exceed their maximum value. Besides such proportionality
factor, advantageously, this policy features a single knob: the exponent ϑ ∈ [0, 1]. For
ϑ = 0, the fractional power control policy reverts to a fixed-power transmission. For ϑ > 0,
conversely, it compresses the dynamic range of the received powers in dB by a factor
ϑ, lifting the lower tail of the SIR distribution at the expense of a cutback in the upper
tail and, ultimately, in the cell’s sum spectral efficiency. Exponent values on the order of
ϑ = 0.5–0.7 have been identified as providing a satisfactory balance between cell-edge
and aggregate performance.

Example 10.3

Repeat Example 10.2 with fractional power control (ϑ = 0.7), incorporating also the
curves for Na/U = 4.

Solution

See Fig. 10.4, which confirms that the fractional power control has brought the percentage
of users below −5 dB from 25% and 8%, respectively for Na/U = 10 and Na/U = 100,
down to essentially zero. Even for Na/U = 4, the percentage with fractional power control
is still essentially zero, indicating that Na/U can be pushed even further downward.

Power control appears instrumental in massive MIMO with matched-filter receivers, and
a fractional control policy can be an effective means to incorporate it. We therefore consider
it in the sequel.

Behavior for Na/U → ∞
To gauge the limits of massive MIMO, let us examine the behavior of the user SINRs for
Na/U → ∞.

Suppose first of all that we could afford having Np → ∞ and hence no pilot contami-
nation, such that Ĥu = Hu + v′

u and W MF
u ∝ Hu + v′

u. Referring back to the expression
for sinrMF

u in (10.50), since 1
Na

‖Hu‖2 a.s.→ 1, 1
Na
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uv

′
u

a.s.→ 0 and 1
Na

‖v′
u‖2 a.s.→ 1/SNRr

u,
the numerator of sinrMF

u would behave as
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∣∣∣2 (10.65)

= O(N2
a ). (10.66)

In turn, the denominator would behave as

DenMF = O(Na), (10.67)
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meaning that sinrMF

u would grow linearly and unboundedly with Na. The same verdict
would be reached for sirMF

u .
This powerful result corroborates that the effects of fading, interference from same- and

other-cell transmissions, and noise could all be eradicated by having sufficiently many
antennas per base station. Moreover, this could be accomplished with very simple linear
receivers based on pilot-assisted channel estimates or even on channel hardening.

Now, let us see how the limiting behavior changes with pilot contamination taken into
account, i.e., with W MF

u as in (10.48). The numerator of sinrMF

u continues to exhibit the
behavior in (10.66), precisely
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but the denominator now satisfies
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meaning that
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and confirming that pilot contamination does impose a limit on the SINRs. By inspection,
it can be verified that sinrMF

u in (10.62) also abides by (10.70) or, equivalently, by
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u →
(
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s
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)2
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)2 , (10.71)

which, minus the power control, is how it was originally expressed by Marzetta [883] and
how it is typically found in the literature.

The bottom line is that, as Na grows unboundedly and the user beams become exceed-
ingly sharp, the desired signal surges over the noise and the interference, but, along with
it, the pilot contamination—a very minor term for small Na—also surges. Eventually, both
the signal and the pilot contamination come to dominate and, since they scale similarly,
the SINR is curbed no matter how many more antennas are added. But how much of an
operational limitation does this represent for large but finite values of Na?

Impact of pilot contamination
To answer this question, observe that, without pilot contamination, the set C would be
empty and thus (10.62) would reduce to
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Pilot contamination would have negligible impact provided that the difference between the
denominators of (10.62) and (10.72) is itself negligible, i.e., if∑
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Since this is tantamount to requiring that the contamination-induced interference from
copilot users be negligible relative to the contamination-unrelated interference plus the
noise, an even stronger condition can be derived with the noise disregarded, namely∑
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�Fig. 10.5 Pilot reuse patterns: left, for Lcluster = 3; right, for Lcluster = 4.
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from which, by considering worst-case situations in terms of strength of the contamination-
induced interference and weakness of the contamination-unrelated interference, sufficient
conditions for pilot contamination negligibleness can be derived. This, however, requires
positing specific network topologies.

Example 10.4 (Impact of pilot contamination in a hexagonal network)

Consider a hexagonal lattice network like the one in Fig. 10.1, with a pilot reuse pattern
whereby each pilot is used up in only one cell within every cluster of Lcluster adjacent
cells. Only certain values of Lcluster lead to regular reuse patterns on a hexagonal network,
precisely Lcluster = (k + �)2 − k� for integer k and �. Such values Lcluster = 1, 3, 4, 7, . . .

are the ones considered in this text, with the pilot reuse patterns for two of them depicted in
Fig. 10.5. (Other values for Lcluster, even noninteger ones, could be implemented via pilot
hopping [907, 908] or by adopting fractional reuse ideas [909–911] whereby cells would
be divided in concentric parts with different pilot reuse factors on each [912, 913].) Given
Lcluster, the number of required pilot symbols readily equals Np = LclusterU .

Let us carry off a coarse assessment based only on pathloss, with shadow fading disre-
garded. The worst-case situation in terms of contamination-induced versus contamination-
unrelated interference corresponds to having every copilot user placed at its cell corner
closest to the base station of interest while simultaneously having every noncopilot user
on its farthest cell corner, as far as possible from the base of interest. In this situation, il-
lustrated in Fig. 10.6, all users are at cell corners and thus their power control coefficients
coincide, factoring out of (10.75).

The distance from the base of interest to the bases of its first-tier copilot cells is [212]

Dcopilot =
√
3Lcluster Dcell, (10.76)
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Dcell

Useru

√
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…(√
3Lcluster − 1

)
Dcell

…

�Fig. 10.6 Cell of interest and first tier of neighboring cells, with all the users therein (indicated by

circles) at their farthest distances from the base station of interest; this corresponds to

the weakest possible contamination-unrelated interference (i.e., from noncopilot

users). In turn, the first tier of copilot users are at their minimum distance from the

base of interest; this corresponds to the strongest possible copilot interference (i.e.,

from copilot users).

where Dcell is the cell radius. Hence, the minimum possible distance from the base of
interest to the closest corners of the first-tier copilot cells is

Dcopilot −Dcell =
(√

3Lcluster − 1
)
Dcell. (10.77)

Since the pathloss decays with D−η , if cell � is a first-tier copilot neighbor, then, as far as
pathloss is concerned

G�,u =
Gu|Du=Dcell(√
3Lcluster − 1

)η , (10.78)

where the numerator equals Gu evaluated at Du = Dcell. Thus, we can upper-bound the
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left-hand side of (10.75) by means of

G�,u

Gu
=

1(√
3Lcluster − 1

)η � ∈ C. (10.79)

Next, we lower-bound the right-hand side of (10.75) for same-cell interferers at the corners
of the cell of interest and for other-cell interferers at the farthest corners of their respective
cells. With a bit of trigonometry, the distance from the farthest corner of an adjacent cell
to the base station in the cell of interest can be seen to equal

√
7Dcell and therefore

G�,u

Gu
=

{
1 � = 0

1/7η/2 � �= 0.
(10.80)

There are six first-tier copilot cells with subsequent tiers having a rather minor impact
(refer to Problem 10.13). In turn, the contamination-unrelated interference is mostly con-
tributed by users within the cell of interest and within its six adjacent cells. With the sum-
mations restricted to such relevant cells, and with (10.79) and (10.80) plugged in, (10.75)
becomes

6(√
3Lcluster − 1

)2η �
(
1− 6(√

3Lcluster − 1
)η

)
U

Na

(
1 +

6

7η/2

)
. (10.81)

Relaxing the right-hand side via

1− 6(√
3Lcluster − 1

)η ≈ 1 (10.82)

and interpreting the “�” sign as a contamination protection factor ε (say ε = 1
10 or 1

100 ),
we obtain

6(√
3Lcluster − 1

)2η � ε
U

Na

(
1 +

6

7η/2

)
(10.83)

and, recalling that Np = LclusterU , a bit of algebra finally leads to

Np

U
� 1

3

[
1 +

(
6/ε ·Na/U

1 + 6/7η/2

)1/2η
]2

. (10.84)

In Problem 10.14, the reader is invited to verify that the relaxation in (10.82) has a minor
effect on (10.84). This final condition, which does not account for shadow fading but is
otherwise highly conservative—it corresponds to an interference-limited network with the
simultaneous worst-case positions for all users involved—depends only on the pathloss
exponent η, on Na/U , and on the contamination protection factor ε. Let us proceed to test
this condition, with and without power control.

Example 10.5

For η = 4 and Na/U ≤ 10, and with the contamination protection factor set to ε = 1
10 ,

(10.84) gives
Np

U
� 3.4, (10.85)
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comparison between Np → ∞ and Np = 4U .

which we can conveniently round to Np/U = 3, whereby the pilot reuse clusters feature
three cells. This value, which we found analytically, agrees with the simulation-based result
reported in [914].

Consider an interference-limited hexagonal network with no power control, η = 4,
σdB = 8 dB, and U = 10. For Na/U = 10, plot the CDF of sirMF

u both for Np → ∞
(no pilot contamination) and for Np = 3U = 30.

Solution

The CDFs, presented in Fig. 10.7, corroborate that Np = 3U suffices for the effect of the
contamination to be shy of 1 dB at low SIRs, and outright imperceptible at high SIRs.

Example 10.6

For η = 4 and Na/U ≤ 100, and with the interference protection factor set to ε = 1
10 ,

(10.84) gives Np

U � 5.1, which we aggressively round to Np/U = 4. Repeat Example 10.5
to test such condition with Na/U = 100.

Solution

The CDFs, also presented in Fig. 10.7, again confirm the efficacy of (10.84) with ε = 1
10 ,

even with Na/U aggressively rounded.
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Example 10.7

Repeat Examples 10.5 and 10.6 for E
[
sirMF

u

]
instead of sirMF

u .

Solution

See Fig. 10.8, buttressing the validity of (10.84) with ε = 1
10 also for a receiver reliant on

channel estimates rather than on channel hardening.

Example 10.8

Repeat Example 10.7 with fractional power control (ϑ = 0.7), further testing the case
Na/U = 4 for which (10.84) with ε = 1

10 gives Np/U � 2.7, rounded to Np/U = 3.

Solution

See Fig. 10.9. Except perhaps for the need of a slight tightening in the case Na/U = 100,
the pilot reuse factors derived analytically again prove satisfactory.

With the condition in (10.84) thoroughly verified we can, even without a formal opti-
mization of Na/U , begin to gauge the range of channel coherences where pilot contami-
nation becomes noticeable.
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Example 10.9

The coherence range Nc ≥ 1000 considered in most of this book, with a reasonable over-
head of Np/Nc = 0.15, gives Np ≥ 150. For Na/U = 4, 10, and 100, establish the values
of Na where pilot contamination would begin to be noticeable.

Solution

From (10.84) with ε = 1
10 , Np/U � 3 for Na/U = 4 and Na/U = 10, which gives

U � 50; this marks Na = 200 and Na = 500 antennas as the respective points where pilot
contamination would begin to be noticeable. For Na/U = 100, that number goes up to a
whopping Na = 3000 antennas.

This example, to be sharpened once we optimize Na/U , suggests that pilot contami-
nation would only impair matched-filter receivers in truly massive MIMO settings and/or
in situations of unusually low fading coherence, say simultaneous high carrier frequencies,
long delay spreads, and extreme velocities. Barring this, the contamination can be rendered
negligible with acceptable overheads leading sinrMF

u to behave approximately as

Eu

Er
s
SNRr

u

∣∣W MF
u

∗Ĥu

∣∣2
∑

u �=u
Eu

Er
s
SNRr

u

∣∣W MF
u

∗Ĥu

∣∣2 +(
1 +

∑
u

Eu
Er

s
SNRr

u

1+Eu
Er

s
SNRr

u

+
∑

� �=0

∑
u

E�,u

Er
s
SNRr

�,u

)
‖W MF

u ‖2
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while sinrMF
u behaves approximately as

sinrMF

u ≈
Na

(
Eu

Er
s
SNRr

u

)2
(
1 + Eu

Er
s
SNRr

u

)(
1 +

∑
�

∑U−1
u=0

E�,u

Er
s
SNRr

�,u

) . (10.86)

Spectral efficiency
For a base station reliant on channel estimates, the matched-filter gross spectral efficiencies
of the users at the cell of interest are

RMF
u

B
= E[log2(1 + sinrMF

u )] u = 0, . . . , U − 1, (10.87)

from which
∑U−1

u=0 RMF
u /B is the gross sum spectral efficiency at that cell.

While a formal optimization of this quantity over all tunable parameters is beyond the
scope of this text, guidelines can be gleaned by recognizing that certain parameters have a
superior influence. Chief among these stands the ratio Na/U . And, as long as its optimiza-
tion falls within the range established in Example 10.9, it can advantageously be conducted
directly upon (10.87), with pilot contamination neglected.

Example 10.10

Let Na = 100 in an interference-limited hexagonal network with matched-filter receivers
reliant on channel estimates, fractional power control (ϑ = 0.7), η = 4 and σdB = 8 dB.
Which Na/U maximizes the gross sum spectral efficiency in the absence of pilot contam-
ination, subject to less than 3% of the users having a local-average SIR below −5 dB?

Solution

Consider the distribution, over the locations and shadow fadings of the U users, of the
gross sum spectral efficiency per cell. Shown in the main plot of Fig. 10.10 is the evo-
lution of such distribution as Na/U is swept from 100/25 down to 100/67. The inset,
meanwhile, displays the corresponding distributions of E[sinrMF

u ]. The optimum ratio is
Na/U = 100/50 = 2, for which the average gross sum spectral efficiency is 60.2 b/s/Hz
per cell with 2.8% of users below −5 dB.

Altogether, for typical propagation conditions and with pilot overhead and pilot contam-
ination ignored, ratios on the order of Na/U ≈ 2 yield interesting operating points in terms
of sum spectral efficiency versus large-scale outage with matched-filter receivers. (Loos-
ening the large-scale outage constraint would allow for lower ratios Na/U and higher sum
spectral efficiencies, and vice versa. A more aggressive power control, ϑ > 0.7, would
also allow for lower ratios Na/U , although curtailing the spectral efficiency of users in
favorable locations.) With user selection, it would be desirable that the ratio Na/U be ren-
dered dynamic rather than fixed: higher when low-SIR users are selected, to increase their
interference protection, and vice versa.
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A further elaboration of the spectral efficiency requires accounting for the pilot contam-
ination and factoring the pilot overhead into (10.87), something that we defer to the next
section, in the context of the LMMSE receiver.

10.4.3 LMMSE receiver

The deficiency of the matched-filter receiver is its obliviousness to interference, and the
remedy for this deficiency is an interference-aware receiver structure. Since, as learned
in previous chapters, the SINR-maximizing structure is the LMMSE receiver, we proceed
directly to this structure. Retrieving and specializing to single-antenna users and channel
estimates the solution derived in (9.282), we obtain

W MMSE

u ∝
[

U−1∑
u=0

Eu

Er
s

SNRr
u ĤuĤ

∗
u (10.88)

+

(
1 +

U−1∑
u=0

Eu

Er
s

SNRr
u MMSEu +

∑
� �=0

U−1∑
u=0

E�,u

Er
s

SNRr
�,u

)
I

]−1

Ĥu,

which is a function of Ĥ0, . . . , ĤU−1, meaning that it explicitly accounts for the same-cell
interference, while treating other-cell interference and same-cell channel estimation errors
as noise.
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The formulation could be extended to actively encompass the channels for users in the
other (Lcluster − 1) cells within the pilot reuse cluster of the cell of interest; those channels
could be estimated at the base station of interest since orthogonal pilots are employed
across the entire cluster [914–916]. In this section, we adhere to (10.88), which can be
regarded as the single-cell baseline.

Output SINR
For W MMSE

u , the conditional copilot interference power in the general SINR expression of
(10.32) and (10.40), E

[|W MMSE∗
u H�,u|2 |W MMSE

u

]
= W MMSE∗

u E
[
H�,uH

∗
�,u |W MMSE

u

]
W MMSE

u

for � ∈ C, is not easily evaluated, hence we relax in into its unconditional counterpart. This
relaxation is inconsequential in the absence of pilot contamination, while it yields a tight
lower bound on the SINR with contamination.

The most convenient avenue for the analysis of the unconditional copilot interference
power is the large-dimensional regime, whereby Na, U → ∞ with fixed Na/U ; readers
interested in this pursuit are referred to [884, 917]. Alternatively, E

[|W MMSE∗
u H�,u|2

]
for

� ∈ C can be computed via Monte-Carlo and fed into (10.40) to obtain sirMMSE

u ; this is how
the results that follow are produced.

Gone the analytical edge offered by channel hardening in the case of matched-filter re-
ceivers, here we concentrate on receivers reliant on channel estimates. Also, since the pres-
ence of noise blurs the difference between the matched-filter and the LMMSE receivers,
all the examples are again for interference-limited networks.

Example 10.11

Consider a hexagonal network where η = 4, the shadow fading is log-normal with σdB =

8 dB, the thermal noise is neglected, and there is no power control. Let Na = 100 and let
Np → ∞ such that there is no pilot contamination. For Na/U = 4 and 10, plot the CDFs
of E

[
sirMMSE

u

]
and compare them with those of E

[
sirMF

u

]
.

Solution

The requested distributions are displayed in Fig. 10.11. Despite the substantial level of
excess antennas for Na/U = 10, even in that case, and let alone for Na/U = 4, the
LMMSE receiver markedly improves the SINRs over the entire range. The lower tails, in
particular, become much better behaved than with matched filters, rendering power control
less critical.

Example 10.12

Repeat Example 10.11 with fractional power control (ϑ = 0.7).

Solution

See Fig. 10.12. With this rather stringent power control, the advantage of the LMMSE
receiver relative to the matched filter subsides.
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The foregoing examples suggest that, with an LMMSE receiver, the power control may
be relaxed so as to enable higher SINR values for users in favorable situations while keep-
ing an acceptable degree of large-scale outage. We return to this at the end of the section.

Impact of pilot contamination
Let us now check whether the sufficient condition for pilot contamination negligibleness
derived for matched filters continues to hold for LMMSE receivers.

Example 10.13

Recall that, for Na/U ≤ 10, the sufficient condition with ε = 1
10 gives Np/U � 3.

Consider an interference-limited hexagonal network with no power control, η = 4, σdB =

8 dB and Na = 100. For Na/U = 4 and 10, compare the CDFs of E
[
sirMMSE

u

]
for Np → ∞

(no pilot contamination) and Np = 3U .

Solution

See Fig. 10.13.

The sufficient condition remains applicable, even if it is slightly looser than with a
matched filter (recall Fig. 10.8). This can undoubtedly be attributed to the enhanced abil-
ity of the LMMSE receiver to suppress contamination-unrelated interference, making the
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contamination-induced interference relatively more significant. But the condition holds up
and, possibly with a slight tightening of the factor ε, it can continue to ensure the negligi-
bleness of pilot contamination.

Spectral efficiency
For a base station reliant on channel estimates, the LMMSE reverse-link gross spectral
efficiencies at the cell of interest are

RMMSE
u

B
= E

[
log2(1 + sinrMMSE

u )
]

u = 0, . . . , U − 1, (10.89)

from which
∑U−1

u=0 RMMSE
u /B is the gross sum spectral efficiency at that cell. Within the

range of Na where pilot contamination can be rendered negligible with acceptable over-
head, the optimization of this quantity directly yields suitable values for Na/U and ϑ.

Example 10.14

Let Na = 100 in an interference-limited hexagonal network with LMMSE receivers, frac-
tional power control, η = 4 and σdB = 8 dB. Which ratio Na/U and which power control
parameter ϑ maximize the reverse-link gross sum spectral efficiency in the absence of pilot
contamination, subject to less than 3% of users having a local-average SIR below −5 dB?

Solution

An optimization over the power control parameter assumed to change in steps of 0.1 re-
turns ϑ = 0.4, which, as anticipated, is smaller than with matched-filter receivers, thereby
allowing for higher-power transmissions and higher SINRs. Shown in the main plot of
Fig. 10.14 is the distribution of the gross sum spectral efficiency as Na/U is swept from
100/33 down to 100/83. The inset, meanwhile, displays the corresponding distributions
of E[sinrMMSE

u ]. The optimum ratio is Na/U = 100/62 = 1.6, for which the average gross
sum spectral efficiency is 146 b/s/Hz per cell with 3% of users below −5 dB.

Combining Examples 10.10 and 10.14 we surmise that, for typical propagation con-
ditions and with pilot overhead and pilot contamination ignored, ratios on the order of
Na/U ≈ 1.6–2 yield interesting operating points in terms of sum spectral efficiency ver-
sus large-scale outage. The difference in the optimum value of this ratio is only marginal
when moving from matched-filter to LMMSE receivers, but the gross sum spectral effi-
ciency more than doubles. While, without pilot contamination, the LMMSE receiver is no
better than a matched filter for Na/U → ∞, for large but finite numbers of antennas the
former is considerably better.

Example 10.15

From the result for Na = 100 antennas in Example 10.14, extrapolate the average gross
sum spectral efficiency as a function of Na assuming that its value per antenna remains
stable.
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Solution

From 146 b/s/Hz per cell at Na = 100,

E
[
RMMSE

]
B

≈ 1.46Na, (10.90)

where the expectation is over the large-scale quantities (user locations and shadow fadings).
This extrapolation is depicted in Fig. 10.15.

Next, incorporating pilot contamination and pilot overhead calls for an aggregation of
the reverse and forward spectral efficiencies or, in its place, for a partition of the over-
head between the reverse and the forward links. As an exercise, we can ascribe half of the
overhead to the reverse-link efficiency and rewrite the gross quantity in (10.89) into its net
counterpart

RMMSE
u

B
=

(
1− Np

2Nc

)
E
[
log2(1 + sinrMMSE

u )
]

u = 0, . . . , U − 1, (10.91)

where the SINRs are now computed with the inclusion of pilot contamination.
For the range we have identified earlier, Na/U ≈ 1.6–2, condition (10.84) with ε = 1

10

leads to Np � 1.5Na. The transition from gross to net spectral efficiencies then depends
crucially on the fading coherence.
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are for an interference-limited hexagonal network with η = 4 and σdB = 8 dB.

For pedestrian users (Nc = 20 000) and almost any conceivable number of antennas,(
1− Np

2Nc

)
≈ 1 (10.92)

even with Np large enough to keep the contamination at a negligible level. The net
spectral efficiency then essentially equals the gross spectral efficiency, meaning that the
top curve in Fig. 10.15 is directly representative of pedestrian settings.

For vehicular users (Nc = 1000), in contrast,(
1− Np

2Nc

)
< 1, (10.93)

and thus the net and gross spectral efficiencies do differ. We next elaborate on this case
through a string of examples.

Example 10.16

For Nc = 1000, and keeping the power control parameter at ϑ = 0.4, redo Example 10.14
with pilot contamination accounted for and with the net spectral efficiency as per (10.91).
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Solution

A tedious optimization returns Na/U = 2 and Np/Nc = 0.2. The average net sum spectral
efficiency is 116 b/s/Hz per cell, with 3% of users below −5 dB.

Example 10.17

From the result for Na = 100 antennas in the previous example, extrapolate the average
net sum spectral efficiency, as a function of Na, for Nc = 1000. Assume that Na/U and
Np/Na remain stable.

Solution

Unraveling the previous example, we have that the average gross sum spectral efficiency
equals 1.29 b/s/Hz per antenna. Also, from Np = 200 and Na = 100 we have that
Np/Na = 2. The extrapolation thus gives

E
[
RMMSE

]
B

≈
(
1− Na

Nc

)
1.29Na (10.94)

=

(
1− Na

1000

)
1.29Na, (10.95)

which indeed returns 116 b/s/Hz per cell for Na = 100. This extrapolation, also depicted
in Fig. 10.15, evidences how, as Na becomes comparable to Nc, the fading coherence
becomes a fundamental limitation.

Example 10.18

To test the average net sum spectral efficiency extrapolation derived above for Nc = 1000,
find the exact values for Na = 50 and Na = 200.

Solution

The exact solutions obtained via Monte-Carlo are as follows.

For Na = 50, the optimization returns Na/U = 1.85 and Np/Nc = 0.19. The average
net sum spectral efficiency is 61.8 b/s/Hz per cell, with 2.9% of users below −5 dB.
For Na = 200, the optimization returns Na/U = 2.22 and Np/Nc = 0.27. The average
net sum spectral efficiency is 208.7 b/s/Hz per cell, with 3% of users below −5 dB.

These exact average net sum spectral efficiencies, shown in Fig. 10.15 alongside the ex-
trapolation, confirm the validity of the latter up to hundreds of antennas.

As a final elaboration of the LMMSE receiver, the spectral efficiencies could be further
optimized by releasing our premise that, on every coherence tile, every user transmits a
single pilot symbol [918, 919]. The tradeoff between devoting additional symbols to over-
head in exchange for more precise channel estimates could be tackled as done in Section
4.8 for SU-SISO. Alternatively, it is possible to keep the overhead as is and optimize the
pilot power boosting in its stead [920]; this is simpler, as it can be effected directly over
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the SINRs. Again, the reader is referred to Section 4.8 for an SU-SISO version of this
optimization.

In order to push Na/U into even lower values, nonlinear receivers could be entertained,
for instance by incorporating SIC at the base stations. The incorporation of SIC, however,
is not without complications, e.g., higher complexity and an enhanced exposure to error
propagation. Parallel interference cancelation, originally developed for CDMA [921], is an
alternative for nonlinear reception [922].

10.5 Forward-link data transmission

Upon data transmission from the base stations, the users at the cell of interest (cell 0)
observe

y0,u =
∑
�

√
G�;0,u H

∗
�;0,ux� + v0,u u = 0, . . . , U − 1, (10.96)

where, by virtue of reciprocity,
√
G�;0,u H

∗
�;0,u is the channel connecting the �th base with

the uth user at cell 0. The signal emitted by the �th base is

x� =

U−1∑
u=0

√
E�,u

Na
F�,u s�,u, (10.97)

where ‖F�,u‖2 = Na (under a per-symbol power constraint) or E
[‖F�,u‖2

]
= Na (under

a per-codeword power constraint). In turn, and provided that the �th base station radiates
its full power,

∑U−1
u=0 E�,u = Es. While, in the single-cell setups of previous chapters, it is

pointless—from a spectral efficiency vantage—to power down a base station, in a multicell
context and with linear transceivers it is conceivable that, in times or places of low traffic,∑U−1

u=0 E�,u < Es so as to reduce other-cell interference and power consumption. However,
for the purpose of exploring the limits of massive MIMO in a highly loaded network, full-
power transmission at each base is fitting.

Altogether, and with the index of the cell of interest dropped,

yu =

U−1∑
u=0

√
GuEu

Na
H∗

uFusu +
∑
� �=0

U−1∑
u=0

√
G�;uE�,u

Na
H∗

�;uF�,us�,u + vu (10.98)

u = 0, . . . , U − 1,

where, with the compacted indexing, G�;uH
∗
�;u is the channel between the �th base station

and user u at the cell of interest.
While, in the reverse link, channel estimates are readily available to the base stations

from the corresponding pilot observations, users are in principle not cognizant of either
their forward-link fading realizations or of the precoders selected by their serving base.
To enable the estimation of these quantities at the user receivers, precoded forward pilots
(at least one per user and coherence tile) would have to be sent. Alternatively, the user
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receivers can rely on hardening, possibly reinforced by blind methods operating on payload
data observations [923].

In light of the closeness, observed for the reverse link, between the performance of
channel-estimate-reliant receivers and hardening-reliant receivers, for our forward-link
analysis we consider only the latter. This is not to advocate that the forward link should be
devoid of pilots, but rather it is an analytical shortcut whose fruits can be regarded as tight
lower bounds on the performance with sufficiently many antennas. In all likelihood, mas-
sive MIMO is to be implemented with forward pilots, and the corresponding analysis with
pilot-assisted channel estimation at the users could be effected building on the teachings of
Section 9.7.6. Readers interested in this extension are referred to [924–926].

Focusing then on receivers reliant on channel hardening, user u regards E[H∗
uFu] as its

precoded channel. With this in mind, (10.98) can be rewritten as

yu =

√
GuEu

Na
E
[
H∗

uFu

]
su︸ ︷︷ ︸

Desired signal

+

√
GuEu

Na

(
H∗

uFu − E
[
H∗

uFu

])
su︸ ︷︷ ︸

Self-interference

(10.99)

+
∑
u �=u

√
GuEu

Na
H∗

uFu su

︸ ︷︷ ︸
Same-cell interference

+
∑
� �=0

U−1∑
u=0

√
G�;uE�,u

Na
H∗

�;uF�,u s�,u

︸ ︷︷ ︸
Other-cell interference

+ vu︸︷︷︸
Noise

such that the SINR at user u in the cell of interest is

sinru =
Eu

Es
SNRu

∣∣E[H∗
uFu]

∣∣2
Den

, (10.100)

with

Den =
Eu

Es
SNRu var[H

∗
uFu] +

∑
u �=u

Eu

Es
SNRu E

[
|H∗

uFu|2
]

+
∑
� �=0

U−1∑
u=0

E�,u

Es
SNR�;u E

[∣∣H∗
�;uF�,u

∣∣2]+Na. (10.101)

10.5.1 Matched-filter transmitter

With matched-filter or maximum-ratio transmissions, sometimes also termed conjugate
beamforming, the precoders at cell � are given by

F MF

�,u =
√

Na
Ĥ�;�,u√

E
[‖Ĥ�;�,u‖2

] u = 0, . . . , U − 1, (10.102)

where Ĥ�;�,0, . . . , Ĥ�;�,U−1 are the channel estimates gathered by base � from the reverse-
link pilots and where a per-codeword power constraint has been applied; this constraint is
more amenable to the analysis that follows and, as argued in earlier chapters, appropriate
for wideband systems featuring many OFDM subcarriers. Readers interested in the slightly
more involved analysis under a per-symbol power constraint are directed to Problem 10.39.



617 10.5 Forward-link data transmission

Recalling the expression for the reverse-link channel estimates in (10.20), at the cell of
interest specifically, for u = 0, . . . , U − 1,

F MF

u =

Hu +
∑

�∈C

√
E�,u
Er

s
SNRr

�,u

Eu
Er

s
SNRr

u

H�,u + v′
u√√√√ 1

Na
E

[∥∥Hu +
∑

�∈C

√
E�,u
Er

s
SNRr

�,u

Eu
Er

s
SNRr

u

H�,u + v′
u

∥∥2

] (10.103)

=

√√√√ Eu

Er
s
SNRr

u

1 + Eu

Er
s
SNRr

u +
∑

�∈C
E�,u

Er
s
SNRr

�,u

⎛
⎝Hu +

∑
�∈C

√√√√ E�,u

Er
s
SNRr

�,u

Eu

Er
s
SNRr

u

H�,u + v′
u

⎞
⎠ ,

(10.104)

which coincides with the reverse-link matched-filter receiver in (10.48).

Output SINR
With matched-filter transmissions, (10.100) and (10.101) specialize—the reader is invited
to verify the derivation in Problem 10.36—to

sinrMF

u =

Na

Eu

Er
s
SNRr

u

1 + Eu

Er
s
SNRr

u +
∑

�∈C
E�,u

Er
s
SNRr

�,u

Eu

Es
SNRu

1 +
∑
�

SNR�;u +Na

∑
�∈C

Eu

Er
s
SNRr

�;u

1 + Eu

Er
s
SNRr

�;u +
∑

l∈C
El,u

Er
s
SNRr

�;l,u

E�,u

Es
SNR�;u

,

(10.105)
which, invoking the forward–reverse relationship SNRr

�;u = SNR�;u/ρ, can be rewritten as

sinrMF

u =

Na

ρ+ Eu

Er
s
SNRu +

∑
�∈C

E�,u

Er
s
SNR�,u

Eu

Er
s

Eu

Es
SNR2

u

1 +
∑
�

SNR�;u +
∑
�∈C

Na

ρ+ Eu

Er
s
SNR�;u +

∑
l∈C

El,u

Er
s
SNR�;l,u

Eu

Er
s

E�,u

Es
SNR2

�;u

.

(10.106)
Readers should watch out for the subtleties in the notation: SNR�,u = SNR0;�,u relates the
base station of interest with user u at cell � whereas SNR�;u = SNR�;0,u relates the �th base
with user u at the cell of interest. The power control coefficient applied to the reverse-link
pilot is Eu

Er
s

, whereas Eu

Es
is the forward-link power allocation coefficient.

The form in (10.106) has the advantage of being solely a function of the forward-link
SNRs, facilitating a contrast with the reverse-link SINR expression in (10.63). As noted in
[883], these expressions are not dual in the sense of the MAC–BC duality expounded in
Chapters 8 and 9. However, if pilot contamination is negligible, then (10.106) reduces to

sinrMF

u ≈
Eu

Er
s

Eu

Es
SNR2

u Na

(ρ+ Eu

Er
s
SNRu)

(
1 +

∑
� SNR�;u

) , (10.107)

which does admit a duality with its reverse-link counterpart in (10.86). Under the premise
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that ρ + Eu

Er
s
SNRu ≈ Eu

Er
s
SNRu, meaning perfect channel estimation, any combination of

SINRs achievable in the reverse link can also be achieved in the forward link if the same
total power is transmitted. This is consistent with results that, under the premise of CSI,
extend to multicell networks the linear-transceiver MAC–BC duality [927–929].

Power allocation
Unlike the reverse-link transmitters, which might be deprived of CSIT, the forward-link
transmitters are always privy to channel estimates for all the users in their respective cells
and could therefore perform CSIT-based power allocation. However, the channel harden-
ing makes CSIT-based power allocations hardly better than simpler counterparts based on
statistical information, hence only the latter are considered here.

As in the reverse link, the forward power allocation embodies a demanding nonconvex
optimization: a user’s power rise comes at the expense of all other same-cell users, and it
increases the interference to other-cell users. In the forward-link version of the problem,
maxima found through techniques such as those in [901, 902] can be appraised through the
iterative procedure in [930], which can identify the global optimum with a precision con-
tingent on the number of iterations (a vanishing error requires a diverging number of iter-
ations). However, this procedure requires centralized processing, hence it serves to bench-
mark distributed power allocation schemes rather than being itself an allocation scheme.

The principle of fractional power control that, in the reverse link, conveniently effects
a partial SINR equalization, turns out not to be effective in the forward link. Indeed, re-
ducing the power transmitted to nearby users could cause them to drown in interference
from stronger transmissions to more distant users. Other guiding principles are therefore
necessary to effect power allocation. As suggested in [914], the duality observed in the
absence of pilot contamination and of channel estimation errors could be leveraged to for-
mulate a power allocation policy whereby E0

Es
, . . . , EU−1

Es
are computed on the basis of the

reverse-link power control coefficients obtained, say, through fractional power control.
Alternatively, and observing that, in (10.107), the power allocation coefficient Eu

Es
ap-

pears only in the numerator, the SINRs in the absence of pilot contamination can be fully
equalized for the U users by setting [931]

Eu

Es
∝

(ρ+ Eu

Er
s
SNRu)

(
1 +

∑
� SNR�;u

)
Eu

Er
s
SNR2

u

u = 0, . . . , U − 1, (10.108)

with the proportionality constant ensuring that
∑U−1

u=0
Eu

Es
= 1. Generalizing this idea, the

SINRs can be partially equalized by setting

Eu

Es
∝

[
(ρ+ Eu

Er
s
SNRu)

(
1 +

∑
� SNR�;u

)
Eu

Er
s
SNR2

u

]ϑ

u = 0, . . . , U − 1, (10.109)

where ϑ ∈ [0, 1]. By adjusting ϑ, the tradeoff between cell-edge performance and sum
spectral efficiency can be regulated.
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Example 10.19

Specialize (10.109) to interference-limited conditions.

Solution

In interference-limited conditions,

Eu

Es
=

(∑
� G�;u

Gu

)ϑ
∑U−1

u=0

(∑
� G�;u

Gu

)ϑ , (10.110)

which does not depend on the reverse-link power control.

Example 10.20

Consider an interference-limited hexagonal network with η = 4 and σdB = 8 dB. Let
Np → ∞ such that there is no pilot contamination and set Na = 100. For Na/U = 4

and 10, plot the CDFs of sirMF
u , both with a uniform power allocation (ϑ = 0) and with a

partially equalizing one (ϑ = 0.5).

Solution

See Fig. 10.16, which confirms the effectiveness of the power allocation in (10.109) as a
mechanism to regulate fairness: as ϑ is driven away from zero, the lower tail improves at
the expense of the upper part of the distribution.

Behavior for Na/U → ∞
If U is held fixed while Na → ∞, pilot contamination eventually comes to dominate the
performance and (10.106) behaves as [932]

sinrMF

u =

1

ρ+ Eu

Er
s
SNRu +

∑
�∈C

E�,u

Er
s
SNR�,u

Eu

Er
s

Eu

Es
SNR2

u

∑
�∈C

1

ρ+ Eu

Er
s
SNR�;u +

∑
l∈C

El,u

Er
s
SNR�;l,u

Eu

Er
s

E�,u

Es
SNR2

�;u

, (10.111)

which is the forward-link counterpart to (10.71). As anticipated, these expressions do not
exhibit the duality relationship that is encountered when pilot contamination is negligible.

Impact of pilot contamination
The derivation of a sufficient condition for pilot contamination negligibleness is not straight-
forward in the forward link. Unlike in the reverse link, where there is an easy-to-identify
worst-case combination of user locations, in the forward link the worst-case user locations
in terms of exposure to pilot contamination are not evident (refer to Problem 10.45). How-
ever, since the value of Np would ultimately be determined by the most stringent condition
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η = 4, σdB = 8 dB, Np → ∞, and Na = 100 for both Na/U = 2 and 10.

on either direction, the reverse-link condition in (10.84) can serve to establish this value
provided that it guarantees a negligible degree of contamination in the forward link as well.
Let us see that this is indeed the case, with slightly more conservative pilot reuse factors.

Example 10.21

Consider an interference-limited hexagonal network with uniform power allocation, η = 4,
σdB = 8 dB, and Na = 100. For Na/U = 2 and 10, plot the CDF of sirMF

u for both Np → ∞
and Np = 4U .

Solution

See Fig. 10.17.

The foregoing example illustrates how, with a reasonable ratio Np/U , pilot contamina-
tion can be caused to be negligible on both the reverse and forward links. At this point, and
rather than optimize the forward-link spectral efficiency for matched-filter transmitters, we
defer this step to the next section, in the context of the superior regularized ZF transmitters.

10.5.2 Regularized ZF transmitter

Refashioning for channel estimates and a per-codeword power constraint the MU-MISO
regularized ZF solution derived in Section 9.4, we obtain, for u = 0, . . . , U − 1 at the cell
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of interest,

F Reg

u =
√

Na

(∑U
u=1 SNRuĤuĤ

∗
u +NaU

(
1 +

∑
� �=0 SNR�;u

)
I
)−1

Ĥu√
E

[∥∥∥(∑U−1
u=0 SNRu ĤuĤ∗

u +NaU
(
1 +

∑
� �=0 SNR�;u

)
I
)−1

Ĥu

∥∥∥2
] ,

(10.112)

which is a function of Ĥ0, . . . , ĤU−1, meaning that it explicitly accounts for the same-cell
interference while treating other-cell interference as noise.

As for the reverse-link LMMSE receiver, one might argue that the regularized ZF pre-
coder could be broadened so as to explicitly account, not only for the interference inflicted
upon same-cell users, but rather upon the entire pilot reuse cluster of the cell of inter-
est [932, 933]. In the sequel though, we abide by (10.112), which can be regarded as the
single-cell baseline. Also note that, following the argumentation in Section 9.9, the regu-
larization term is set so as to maximize the SLNR.

Output SINR
Plugging (10.112) into (10.100) and (10.101), and taking advantage of the independence
between the precoders at the cell of interest and the channels to other-cell users, we obtain

sinrRegu =

∣∣E[H∗
uF

Reg
u ]

∣∣2Eu

Es
SNRu

DenReg
(10.113)
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with

DenReg =
Eu

Es
SNRuvar[H

∗
uF

Reg

u ] +
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Es
SNRu E

[
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uF
Reg
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(10.114)
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)
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)
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which, when pilot contamination is negligible, reduces to
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∑
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SNR�;u

)
Na.

(10.115)

This expression contains multiple expectations that, involving precoders and channels that
are not independent, do not lend themselves to clean closed forms. Henceforth, these ex-
pectations are evaluated via Monte-Carlo.

Spectral efficiency
For receivers reliant on channel hardening, without precoded forward pilots, the regular-
ized ZF forward-link gross spectral efficiencies at the cell of interest are

R̄Reg
u

B
= log2

(
1 + sinrRegu

)
u = 0, . . . , U − 1, (10.116)

from which
∑U−1

u=0 R̄Reg
u /B is the gross sum spectral efficiency at that cell. Within the range

where pilot contamination can be rendered negligible, the optimization of this quantity
directly yields suitable values for Na/U .

Example 10.22

Let Na = 100 in an interference-limited hexagonal network with regularized ZF transmit-
ters, uniform power allocation, η = 4, and σdB = 8 dB. Which ratio Na/U maximizes the
forward-link gross sum spectral efficiency in the absence of pilot contamination, subject to
no more than 3% of users having an SIR below −5 dB?

Solution

The ratio can be as low as Na/U = 1 without exceeding the 3% large-scale outage. The
corresponding distributions of gross sum spectral efficiency and user SIR are presented in
Fig. 10.18. The average gross sum spectral efficiency is 291.2 b/s/Hz per cell with 1% of
users below −5 dB.

The forward-link performance could be improved further with nonuniform power alloca-
tions, albeit again with the obstacle of the lack of convexity. To skirt this hurdle, the simple
power allocation in (10.109) could be considered. Alternatively, strict ZF precoders could
be applied; this would open the door to a power allocation based on waterfilling [934],
which, recall from Section 9.7, maximizes the sum spectral efficiency with ZF transmission
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and CSIT. The variations of waterfilling proposed in Problem 9.16, which maximize the
weighted sum spectral efficiency, could allow giving higher weights to users in detrimental
locations so as to avoid starving those users while maximizing the aggregate performance.

The final steps in the optimization of the spectral efficiency, moving from gross to net,
would be to explicitly account for the pilot overhead (whichever share is ascribed to the
forward link) and for the effect (minor provided the sufficient condition is respected) of
pilot contamination, as well as for the possibility of increasing the number of pilot symbols
per user or adjusting the pilot power boost. We also hasten to recall that the forward-
link analysis and results throughout this section are for hardening-reliant receivers; with
additional precoded pilots and pilot-observation-reliant receivers, the performance could
further improve in many settings, e.g., pedestrian.

10.6 Mitigation of pilot contamination

We have seen throughout the chapter that, other than for extreme—in excess of several
hundred—numbers of antennas, contamination can be rendered minor with reasonable
overheads thanks to the many pilot opportunities allowed by underspread fading as well
as the fast decay of power over distance. Furthermore, this conclusion emanates from
interference-limited evaluations, and the presence of noise would further conceal the con-



624 Massive MIMO

tamination. Additional mechanisms, not included in the models invoked throughout the
book because they only become significant over distances exceeding the size of a cell,
would tone down pilot contamination to an even greater extent; these include vertical an-
tenna tilts at the base stations and pathloss exponents that increase with distance, among
others. Notwithstanding these considerations, and for the sake of completeness, in this
section we briefly survey some techniques that can serve to actively mitigate pilot contam-
ination. Yet other schemes, not explicitly elaborated here, are developed in [935–940].

10.6.1 Subspace methods

These propositions [854, 941–944] rely on the premise of the channel being sparse in the
angle domain, with the ensuing antenna correlations given the reduced antenna spacings
that are to be expected in massive MIMO. As discussed in Chapter 3, this sparsity premise
is certainly reasonable in elevated base stations: the PAS at an elevated base is highly
concentrated around a certain angle. And, even if the PAS is not particularly compact in
angle, it is reasonable to expect that, as the number of spatial dimensions grows large and
the angular resolution sharpens, the PAS may become sparse: most power from each given
user may be received over a limited number of angular directions.

Consider the transmission of a pilot from an intended user within the cell of interest.
The contamination impinging on the corresponding base station of interest outside the
angular directions occupied by that intended pilot can be filtered out. In fact, a channel
estimator equipped with antenna correlation information for the intended pilots would au-
tomatically reject the nonoverlapping contamination, in a sense by forming one or multi-
ple beams that avoid it while targeting the intended pilot. Alternatively, machine learning
techniques could be applied to isolate the channel estimate of the intended user from the
nonoverlapping contamination. Interestingly then, antenna correlations, often detrimental,
are advantageous when it comes to channel estimation—not only because of the reduced
uncertainty in the channel vectors, but, more subtly, because of the possibility of rejecting
the contamination in the estimates.

Besides the angle domain, sparsity may also exist in the delay domain: the delay spread
may be short enough that the power delay profile of the intended user is essentially nonover-
lapping with those of the more distant (and thus later-arriving) contaminating users [945,
946]. Again, a channel estimator equipped with the delay information for the intended user,
or a suitable machine learning algorithm, could strip the nonoverlapping contamination.

An alternative perspective on these ideas, referring back to Section 5.7, would be that
pilot contamination is less harmful if it exhibits color in the space or frequency domains,
as some dimensions are then less contaminated and the receiver can project the intended
signal onto the subspace defined by those dimensions. Conversely, in the absence of color,
all dimensions are equally contaminated and projections have no effect.

10.6.2 Coordinated pilot assignment

The rejection of contamination based on subspace projections can be fostered by assigning
pilots to users in such a way that the contamination is as disjoint as possible, in angle and/or
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delay, to the intended pilot transmissions at nearby copilot base stations. This requires
integrating into the user selection procedures a certain degree of coordination among cells,
and is subject to the possibilities offered by the propagation environment and the user
locations.

This relates to the idea, discussed in Chapter 9, of exploiting correlations so as to reuse
each pilot multiple times within each cell. In fact, what we are pondering here may be
interpreted as a multicell version of that idea. Ironically, this multicell version, seemingly
less aggressive, is harder to coordinate, as the copilot users in question are connected to
distinct base stations rather than to the same one.

10.6.3 Reception and precoding with other-cell awareness

Suppose that, because it does not affect the formulation that follows, the power control
is inactive. Recall from (10.20) that the MMSE channel estimate gathered by the base of
interest for user u, in the face of pilot contamination and without antenna correlations, is

Ĥu =
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If the same base attempted to estimate the channel for user u in copilot cell � ∈ C, that
estimate would be
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(10.118)
which is a scaled version of Hu. These two estimates, and those of any other copilot users,
are hence colinear and there is no hope of disentangling the corresponding signals through
the projections effected by linear receivers. Hence the contamination.

Enter antenna correlations, with R�,u denoting the correlation matrix experienced at the
base of interest by user u in cell �. The above MMSE channel estimates then generalize
(for both � = 0 and � ∈ C) to
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, (10.119)

satisfying H�,u = Ĥ�,u + H̃�,u where Ĥ�,u ∼ NC(0,R�,u −E�,u) while the estimation
error, uncorrelated with the estimates, is H̃�,u ∼ NC(0,E�,u). The MMSE matrix equals

E�,u = R�,u − SNRr
�,uR�,u

(
I + SNRr

uRu +
∑
l∈C

SNRr
l,uRl,u

)−1

R�,u. (10.120)

The key point is that, in the face of antenna correlations, Ĥu and Ĥ�,u need no longer
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be colinear if Ru and R�,u are different. In fact, if RuR�,u = 0, the estimates Ĥu and
Ĥ�,u are uncorrelated and there is no contamination between them, which is what the
coordinated pilot allocation in the previous section seeks to foster. Even without this strong
condition though, if simply the estimates are not colinear, the door is opened to rejecting
the contamination from user u at cell � without simultaneously rejecting all the wanted
signal from user u at the cell of interest. As claimed in [947], this could be achieved by
an LMMSE receiver that explicitly accounted for the channels of copilot users in other
cells, rather than treat them as noise. In its most ambitious form, with all other-cell users
explicitly incorporated, this would entail changing (10.88) into
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Provided that, at the base of interest, copilot users exhibit correlations that are “suffi-
ciently different” from those of the same-cell users, the above LMMSE receivers would
automatically reject the contamination and enable an unbounded growth of the SINRs for
Na/U → ∞. Technical conditions given in [947] make precise the notion of “sufficiently
different,” which for a certain user u essentially amounts to

lim
Na→∞

1

Na

∥∥Ru − ξR�,u

∥∥2

F
> 0 (10.122)

for every ξ. Intuitively, this ensures that Ru and R�,u do not become progressively similar
as they grow large, which in turn ensures that the respective MMSE channel estimates
remain noncolinear, rendering W MMSE

u effective at rejecting the contamination from cell �
as Na → ∞.

The same mitigation of pilot contamination could be achieved in the forward link with
a regularized ZF transmitter that explicitly accounted for copilot users in other cells [947].

The implementation of receivers and transmitters that explicitly account for other-cell
channels requires the estimation of those channels with knowledge of the corresponding
individual antenna correlation matrices. While antenna correlations can in principle be
computed empirically from either pilot or data observations, if obtaining individual corre-
lation matrices for each user demanded silence from all other neighboring users during the
necessary number of symbols, that would certainly be a complication. Methods to disen-
tangle individual correlation matrices would be a welcome support to this method.

10.6.4 Large-scale multicell processing

In contrast with the preceding techniques, which hinge upon properties of the antenna cor-
relations, this idea does not involve correlations. Rather, it entails transcending the frame-
work, firmly held throughout the chapter, of single-cell processing. Precisely, the idea in-
volves augmenting the single-cell reception and precoding procedures studied throughout
the chapter with an additional stage of multicell processing [948].

For the reverse link, let us recall from (10.31) what the base station of interest observes.
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As established, for Na/U → ∞ the intended signal and those from copilot users surge
above everything else (channel estimation errors, same-cell and other-cell interference,
and noise) such that, scaled by
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E�,us�,u u = 0, . . . , U − 1, (10.123)

which readily leads to the limiting SINR expression in (10.71). Based on its individual
observation for user u, the base cannot untangle the intended and contaminating symbols,
namely su and s�,u for � ∈ C. Even if the transmit energies (E0 and E�,u for � ∈ C)
and the large-scale gains (Gu and G�,u for � ∈ C) are known, the base is faced with
many unknowns and a single equation. However, combining the observations from the
L̄ = L/Lcluster copilot bases, all of a sudden we have for each user index u a system with
as many unknowns as equations. Indeed, we can write

ȳu = Ξus̄u u = 0, . . . , U − 1, (10.124)

where s̄u = [su s1,u · · · sL̄−1,u]
T contains the sought information symbols,
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contains scaled versions of the base station observations, and
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The information symbols can be ridden of the pilot contamination, the only lingering im-
pairment for Na/U → ∞, via

s̄u = Ξ−1
u ȳu, (10.127)

which can be interpreted as an added multicell ZF operation that, by virtue of channel
hardening, entails only large-scale quantities.

In the forward link, the process is reversed: there is multicell ZF precoding based on
large-scale quantities, whereby the information symbols for every set of copilot users are
converted into a vector whose entries are then distributed to specific base stations. At each,
the respective entry is scaled and further precoded, this time on the basis of the channel
estimates therein.

While, in theory, the additional multicell processing stage would ensure an unlimited
increase of the spectral efficiency for Na → ∞, for finite Na it suffers the usual issues
of ZF: the noise and the contamination-unrelated interference, which for finite Na are
significant and possibly even dominant, get enhanced, to the point that the performance
may ultimately deteriorate [949]. By regularizing the large-scale-based multicell ZF, this
enhancement can be balanced with the sought mitigation of pilot contamination.

Implementationally, the multicell processing stage should take place at some central hub,
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which could be a separate entity or a designated base station playing that role. Although
only slowly changing large-scale quantities are required for such centralized processing,
and not small-scale fading coefficients, what dominates the amount of data to be exchanged
between the bases and the hub are the complex data symbols, and these dictate a very high
degree of cooperation across the infrastructure.

10.7 Practical considerations

There are a number of aspects that are not of particular concern for small numbers of
antennas, but which have the potential to result in blockades as Na grows seriously large.
All these aspects pertain to the base stations, which is where the massification takes place.

Hardware nonidealities

A first aspect relates to hardware nonidealities (e.g., multiplicative phase noise due to drifts
in the oscillators, distortion due to amplifier nonlinearities and filter imperfections, and
quantization noise due to a finite number of bits in the digital representations) and as
to whether the effects of these nonidealities compound with catastrophic consequences
as Na grows large. Satisfyingly, that is not the case [897, 950–952]. Because additive
impairments are independent of the intended signals, and usually also independent from
antenna to antenna, their effect—just like those of noise, channel estimation errors, and
interference—vanishes for Na/U → ∞. In turn, the multiplicative effect of phase noise
does not vanish, but it does not worsen with Na either [953].

Complexity

Also related to hardware is the issue of complexity, and specifically its increase with Na

and U . With the preferred LMMSE receivers and regularized ZF transmitters, the obtention
of the filters and precoders entails inverting a large matrix per coherence tile.

For the dimensionalities considered in this chapter, the computational cost is still within
the practical realm [951, 954]. Moreover, polynomial approximations to the matrix in-
verse [887, 955–957] and certain iterative methods [958–960] are highly effective in the
presence of excess antennas.
For extreme numbers of antennas and users, the computational burden could become
overwhelming. However, in that extreme, matched-filter transceivers would become ef-
fective, and their computational cost scales far more gracefully.

Power consumption

The power consumed by the baseband processors and by the analog-to-digital and digital-
to-analog converters does grow steadily with Na, but the radiated power need not. Keeping
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that power (typically tens of watts per base station) constant, with massive MIMO the
power radiated by each antenna drops to hundreds or even tens of milliwatts. Put differ-
ently, massive MIMO pushes the power radiated by each antenna from the level of regular
base stations down roughly to the level of user devices. This may enable, at least for part of
the transmission chains, low-power consumer-grade parts rather than high-power industry-
grade equipment [961].

To further restrain the power consumption and the costs associated with the digital-
ization, hybrid precoders and hybrid receive filters can be employed. These consist of a
U -dimensional digital stage cascaded with an analog stage that brings the overall dimen-
sionality to Na [962, 963].

Form factors

An evident concern in massive MIMO is the size and shape of the base stations. It is
simply not feasible to endlessly pack additional antennas within a given space, not only
because of mutual coupling, but because the channel dimensionality over a finite volume is
fundamentally limited [964]. On a volumetric array, only outer antennas contribute to the
communication because the electromagnetic fields inside a volume are not independent
of, but rather fully described by those on the surface [965–967]. On a cylindrical layout,
for instance, no antennas should be installed inside the cylinder. At some point, therefore,
additional antennas require increasing the footprint of the base station. Importantly though,
that footprint refers to the electrical size, i.e., relative to the wavelength.

If the carrier frequencies are unchanged, then the physical size of the base stations does
eventually need to grow.
If progressively higher frequencies come into use, then dense arrays could be retrofitted
into existing base stations, and into possibly even smaller ones.

Another family of issues that affect the base station form factor are cell sectorization
and fixed vertical beamforming, traditional complementary approaches that split each cell
into multiple subcells (the sectors) whose serving antennas are collocated. While it may be
tempting to combine these approaches with massive MIMO, the creation of fixed sectors
and the formation of vertical beams require either bulkier directional antennas or else a
sacrifice—various nondirectional antennas need to be combined to achieve directionality—
in the number of antennas that remain usable for MIMO, i.e., in the value of Na in our
derivations.

Example 10.23

Consider a typical macrocellular base station, where every “antenna” is in actuality a ver-
tical array of eight tightly spaced antennas that effect vertical beamforming. Suppose that
there are three sectors, each featuring four such “antennas” for MIMO or diversity. Alto-
gether, this base station is equipped with 3 · 4 · 8 = 96 actual antennas. If these antennas,
possibly rearranged, were allowed to operate individually, a 96-antenna massive MIMO
base station would be obtained.
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Conversely, if we introduced vertical beamforming and sectorization in a 96-antenna
massive MIMO array keeping the same physical antennas, we would end up with a classic
structure having four “antennas” per sector.

Note that the above equivalence refers to the antenna count for a given form factor.
Operating in a massive MIMO fashion does require many additional radio front-ends and
much additional baseband processing.

Massive MIMO can therefore be seen as a deconstruction of existing base station ar-
chitectures that maximizes signaling dimensionality and flexibility as fixed interconnec-
tions, fixed sectors, and beams, are released and rendered adaptive to the channel and user
conditions via pilot observations. This deconstruction, though, tends to require increased
physical space, especially because the vertical dimension tends to be less useful for signal-
ing than the horizontal one: as anticipated in Chapter 3, the correlation distance is longer
vertically because the angle spread is smaller in elevation than in azimuth. Hence, beyond
pushing to their limits existing base station arrangements, alternative structures, ideally
camouflaged with the environment, ought to be considered for massive MIMO. This may
include arrays deployed along rooftops, building facades, billboards, or other urban ele-
ments [968], and even contiguous surfaces of electromagnetically active material [969].

Channel reciprocity

Instrumental for massive MIMO is the reciprocity between the reverse and forward chan-
nels. Calibration algorithms specific to massive MIMO have been proposed and validated,
e.g., in [970–974], and the impact of residual nonreciprocities is studied in [975].

Besides the nuisance of recurring calibration procedures, TDD requires tight synchro-
nization across cells so as to avoid potentially damaging base-to-base and user-to-user
interference [976]. This danger materializes with full duplexing, and a full-duplex network
would have to be designed with these new types of interference in mind [977].

Turning now to FDD, could it be compatible with massive MIMO? What is onerous in
FDD, recall, is that the pilot overhead scales, besides U , also with Na. Two avenues have
been proposed to avoid the ensuing overhead explosion whenever Na � U [978].

Exploit sparsity in the channel, whenever present. If a domain could be identified, say the
angle domain, where the channel were markedly sparse, then Np � Na pilot symbols
per coherence interval would suffice [979–983].

Exploit antenna correlations, e.g., by parsing the Na antennas into groups and estimating
the channels at only one antenna per group [984]. Alternatively, schemes can be applied
that parse the U users into groups having similar correlations and then isolate the groups
through correlation-based beams; each beam serves a fraction of U with a number of
equivalent base antennas that is a fraction of Na. Practical embodiments of this latter
idea range from the JSDM scheme described in Chapter 9, which fully adapts to the
correlations via two-stage precoding [985–990], to traditional sectorization, which for
the purpose of FDD implementation could be a necessary recourse.
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Channel conditions

The IID fading postulated throughout the chapter exhibits the so-called favorable prop-
agation property whereby the channel vectors of different users become orthogonal for
Na/U → ∞. While IID fading indeed suffices for this property to hold, it is not required.
For single-antenna users in particular, the favorable propagation property is perfectly fea-
sible in the face of antenna correlations at the base. As long as the channels corresponding
to different users are not colinear, they may exhibit this property and be discriminated by
linear transceivers [883, 991]. Even in the extreme case of LOS propagation, with full cor-
relation across the base station antennas, the favorable propagation property holds provided
there is a modicum of angular separation—the user selection process would have to ensure
this within each cell—among users [951, 992, 993]. Importantly though, and consistently
with the earlier comments about the limited channel dimensionality over a finite space,
this holds only if the base station becomes large as Na → ∞. If its size is constrained,
conversely, favorable propagation cannot be enabled through angular separation [994].

Turning to multiantenna users, they can always be viewed as multiple single-antenna
users that happen to be collocated, with the further possibility of joint processing, say
through block-diagonalization (recall Section 9.8). In that sense, multiantenna users are
subsumed by the analysis in the chapter provided the fading is IID. However, antenna
correlations do have an effect here because angular separation of same-user antennas is
unfeasible. The impact of such correlations can be determined by applying and extending
the MU-MIMO results in Chapter 9.

Fading stationarity along the arrays, a cornerstone of classic models and a consistent
assumption throughout this book, may cease to hold if the arrays become comparable in
size to the correlation distance of the shadow fading [202, 259, 995, 996]. This need not be
detrimental, and it could for instance facilitate the technique described in Section 10.6.3 to
fight pilot contamination, but if the nonstationarity becomes pronounced it might require
modifying long-standing models and alter some of the expressions in this chapter [997].

Besides antenna correlations and nonstationarity, other channel features not explicitly
included in the analysis and results in the chapter are Rice factors [998] and correlation
among the shadow fading of links having a common base station or a common user. Some
problems are proposed at the end to exercise the impact of these features.

Differences in the models and results notwithstanding, simulations conducted on exper-
imentally measured channels welcomely indicate that analytical predictions made on the
basis of IID fading mostly hold up [999–1003].

10.8 Summary and outlook

Massive MIMO culminates the idea of space-domain signaling, pushing it toward the limits
imposed by the real estate at the base stations and motivating the interest in expanding
that real estate. With the number of active users properly set, and with power control and
power allocation ensuring that over 97% of users perform acceptably, well over 1 b/s/Hz
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per base antenna is achievable on average with large- and small-scale propagation, same-
and other-cell interference, channel estimation, pilot contamination, and pilot overheads
all accounted for. This figure could be further increased with more involved power control
and power allocation policies, and with further optimizations of the pilot overheads and/or
power boostings. Yet further improvements could be attained with user selection as well as
with user-cell associations based, not only on channel gains, but also on cell loads [1004].

With the caveat of a diminished ability to spatially multiplex data streams to multi-
antenna users, the performance is relatively robust to antenna correlations at the base. In
fact, certain correlations may be advantageous if pilot contamination needs to be mitigated,
or the pilot overhead otherwise reduced.

The performance may degrade if interfering users are ever in LOS to the base station of
interest and, to a lesser extent, if interfering bases are in LOS to users in the cell of interest.
In both cases, the interference surges because of its lower pathloss exponent, requiring
a compensating increase in Na/U and/or ϑ. The impact of the pathloss exponent is the
subject of some of the problems at the end of the chapter.

All in all, the book begins with SISO communication and link spectral efficiencies in
the low single digits, which, transplanted onto a cellular network, map to average values
on the order of 1 b/s/Hz per cell [444, 1005]. We finish the book with a similar value per
antenna, meaning average spectral efficiencies of tens or even hundreds of b/s/Hz per cell,
a journey of two orders of magnitude [1006–1008]. Massive MIMO, sometimes under the
moniker full-dimension MIMO and beginning at Na = 64, is an integral part of the LTE
and NR roadmaps [1009–1012].

It is interesting to contrast the performance of the forward and reverse links, which this
chapter brings together. Recalling the duality results in Chapters 8 and 9, we can state that,
in a single-cell setup, the capacity would be the same in both directions if the same total
power were transmitted and CSI were available at both ends. Although the power budget
of a base station tends to be a couple of orders of magnitude higher than that of an individ-
ual user, the number of active users gets to be considerable in massive MIMO. Moreover,
once we zoom out to an entire network, other-cell interference comes into play and, in
interference-limited conditions, the absolute power values become immaterial and things
even out in the forward and reverse directions. This tie is broken by the forward-link in-
terference being localized at a single spot per cell (the corresponding base, by definition
far from the cell boundary) while the reverse-link interference is generated at many ge-
ographically distributed spots (the users, some of which may be near the boundary with
other cells). The forward-link interference distribution is altogether more benign [1013],
causing a performance asymmetry in favor of the forward link. This is reflected by the
mirror examples in this chapter, e.g., Examples 10.10 and 10.18.

In relation to the large-scale distributions in the chapter, we must recall that they are pro-
duced through Monte-Carlo on hexagonal layouts. Indeed, Monte-Carlo simulations have
long been the workhorse of wireless network design. While that is still the case, an in-
creasingly popular alternative to produce large-scale distributions of quantities such as the
SINR or the spectral efficiency is stochastic geometry, whereby, in lieu of shadow fading,
the base station locations are randomized [1005, 1014, 1015]. Then, with both users and
base station positions drawn from appropriate stochastic point processes, a powerful and
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Take-away points

1. The massive MIMO regime can be defined by the relationships Na ≥ U � 1,
where the former inequality should be in the range Na/U ≈ 1–2 depending on
type of transceivers and the channel conditions, whereas the latter should be as
pronounced as the fading coherence allows. The number of spatial DOF per cell
equals U .

2. TDD or full duplex enable the CSI-related overhead to scale only with U , and not
with Na.

3. The communication procedure, tailored to the fading coherence, entails: reverse-
link pilots from the users, channel estimation at the bases, receive filter and pre-
coder computation, (optionally) precoded forward pilot transmission, and succes-
sive data transmission in both directions.

4. Pilot dimensions are finite, hence they must be reused across cells. This causes con-
tamination in the channel estimates; unlike fading, noise, interference, and channel
estimation errors, the effects of this contamination do not abate for Na/U → ∞.

5. Sufficiently many excess antennas leads to the hardening of the filtered signals,
i.e., the vanishing of small-scale randomness, and renders simple matched filters
feasible. Furthermore, precoded forward pilots then become dispensable as the user
receivers can track the hardened precoded channels.

6. While matched-filter receivers are feasible, without power control Na/U must be
exceedingly large for the share of users at very low SINR to be acceptable. For
given Na, this curtails the number of users and thus the sum spectral efficiency.

7. Although the optimization of the reverse-link power control is nonconvex, sim-
ple suboptimum policies operating on large-scale quantities allow matched filters
to operate at much smaller Na/U while keeping the share of low-SINR users in
check.

8. Despite the limiting (Na/U → ∞) optimality of matched filters in the absence
of pilot contamination, up to hundreds of antennas the LMMSE receiver remains
markedly superior. Power control is then less critical, yet properly adjusted it con-
tinues to be beneficial.

9. Likewise in the forward link, matched-filter transmitters are feasible but regular-
ized ZF transmitters remain decidedly superior.

10. On average, and up to hundreds of antennas per base, well over 1 b/s/Hz per an-
tenna is achievable with 97% of users exceeding −5 dB of SINR.

11. For Na/U → ∞, pilot contamination becomes a limiting impairment, but up to
hundreds of antennas and for the desirable ratios Na/U ≈ 1–2 its effects can be
rendered negligible with acceptable pilot overheads. Moreover, techniques exist to
mitigate the contamination by exploiting antenna correlations and multicell coor-
dination.
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Table 10.1 Parameter s for
typical pathloss exponents

η s

3.5 −0.672

3.6 −0.71

3.7 −0.747

3.8 −0.783

3.9 −0.819

4.0 −0.854

expanding toolkit of mathematical results can be applied to generate certain large-scale
distributions analytically. In fact, under a mild homogeneity condition and the premise that
the base station locations are agnostic to the radio propagation, a simple Poisson point
process (PPP) represents the limit to which actual behaviors converge as the shadowing
strengthens [1016]. Precisely, an increasing shadowing standard deviation makes the pow-
ers that a user receives from any population of base stations look as if they originated from
PPP-distributed bases. Ironically then, shadow fading, a nuisance in the study of lattice
networks, simplifies the stochastic modeling of networks by making them all look alike
propagation-wise. And, although the convergence is asymptotic in the shadowing standard
deviation, values of interest for σdB suffice for networks to look essentially Poisson.

Example 10.24 (Forward-link SIR distribution with matched-filter transmis-
sion and a uniform power allocation)

Let s < 0 be the solution, common values for which are listed in Table 10.1, to

s2/η γ(−2/η, s) = 0, (10.128)

where γ(·, ·) is the lower incomplete gamma function. In the absence of pilot contamina-
tion, and with a uniform power allocation, the distribution of sirMF
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where � denotes asymptotic equality for ξ → 0 and
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z

)
z1+4/η Γ

(
2 + 4

η

)
Γ2

(
1− 2

η

) , (10.130)

with 2F1(·) the Gauss hypergeometric function (see Appendix E.6). Then, ε can be set such
that FsirMF

u

(Na/U
3+ε

)
= FsirMF

u

(Na/U
3

)
and the CDF taken as constant therewithin.
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�Fig. 10.19 Large-scale distributions of sirMF
u in the forward link of an interference-limited network

with uniform power allocation, η = 4, Np → ∞, and Na = 100 for both Na/U = 2 and

10. Comparison between the analytical solution in (10.131) and the simulation-based

results with σdB = 8 dB on a hexagonal lattice network.

Example 10.25

Specialize (10.129) to η = 4 and compare it against the simulation-based distribution for
a hexagonal lattice network with σdB = 8 dB, Na = 100, and Na/U = 10.

Solution

For η = 4, s = −0.854 and (10.129) simplifies into

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FsirMF
u
(ξ) � exp

(
−0.854

[
Na/U

ξ − 1
])

0 ≤ ξ < Na/U
3.19

FsirMF
u
(ξ) = 1− 4

π

√
Na/U

ξ − 1 + Na/U
πξ

Na/U
3 ≤ ξ < Na/U

2

FsirMF
u
(ξ) = 1− 2

π

√
Na/U

ξ − 1 Na/U
2 ≤ ξ < Na

U .

(10.131)

The comparison with the simulation-based results, recovered from Fig. 10.16, is presented
in Fig. 10.19. The gap between the analytical results (which are asymptotic in the number
of cells and the shadowing standard deviation) and the simulation results (with only 19
cells and with σdB = 8 dB) is always below 2 dB. If the strength of the shadow fading and
the number of cells in the simulator were to grow, the gap would shrink as the simulation
curves converge to their analytical counterparts. Likewise, if the base station locations
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ceased to conform to a lattice and adopted a more irregular layout, the simulation curves
would move toward the analytical ones.

Example 10.26 (Forward-link spectral efficiency with matched-filter transmis-
sion and a uniform power allocation)

From (10.129), the distribution of RMF
u /B is

F (ξ) = P
[
log2(1 + sirMF

u ) < ξ
]

(10.132)

= FsirMF
u

(
2ξ − 1

)
(10.133)

and its average over the base station and user locations is [1017]

E

[
RMF

u

B

]
= log2(e)

∫ ∞

0

1− e−zNa/U

1F1

(
1; 1− 2

η ; z
) dz

z
, (10.134)

where 1F1(·) is the Kummer confluent hypergeometric function (see Appendix E.6). The
average in (10.134) applies to every user, and the average sum spectral efficiency per cell
is U times this quantity.

Since 1F1

(
1; 1− 2

η ; z
)
> 0 for z ≥ 0, an inspection of (10.134) indicates that E[RMF

u /B]

decreases as Na/U shrinks, i.e., as we add users with Na fixed. However, this decrease is
sublinear in U , hence the average sum spectral efficiency grows as users are added.

Example 10.27

Compare the analytical solution for the average sum spectral efficiency in the previous
example against simulation-based results for η = 4, Na = 100, and Na/U = 10.

Solution

For Na/U = 10, (10.134) evaluates into 27.6 b/s/Hz per cell while the simulation returns
29.8 b/s/Hz per cell.

The analytical solutions in the foregoing string of examples hardly convey much intu-
ition, but they do eliminate the need for tedious and time-consuming simulations in the
situations they cover. Also, they allow calibrating the simulators, e.g., determining how
many cells are needed—too few cells lead to optimistic results because of insufficient
interference—for some desired accuracy. Given η and Na/U , the gap between these ana-
lytical solutions and case-specific simulations captures the variability associated with the
network layout, the shadow fading, and the number of cells. This gap is remarkably small,
rendering the analysis broadly applicable in those respects and making it desirable that
other large-scale distributions and averages could similarly be produced analytically.

Problems

10.1 Replicate Example 10.1 with FDD, rather than TDD/full-duplex.
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10.2 Express the variances of the left-hand sides of (10.9) and (10.10) and then plot
those variances for Na = 1, . . . , 100.

10.3 How would you generalize (10.9) and (10.10) to channel vectors with non-IID
entries?

10.4 Verify (10.20)–(10.22).

10.5 Verify (10.26)–(10.28).

10.6 Formulate a matched-filter receiver for the reverse link, scaled to yield a unit-power
output signal, by letting Na/U → ∞ in the corresponding LMMSE MAC receiver.

10.7 Verify (10.49).
Hint: Use (C.19)–(C.21).

10.8 Verify (10.60).

10.9 Consider a staggered pilot disposition, such that Ĥu and MMSEu are as given in
Discussion 10.2.
(a) Derive sinrMF

u , the staggered-pilot counterpart to (10.50).
(b) Derive sinrMF

u , the staggered-pilot counterpart to (10.62).
(c) From part (b), identify the limiting behavior of sinrMF

u for Na/U → ∞.

10.10 Consider a staggered pilot disposition such as the one in Fig. 10.2, but explicitly
account for the fact that only Nc/Np pilot sequence sets can be staggered into
nonoverlapping positions. Express Ĥu, generalizing both (10.20) and (10.26).

10.11 Verify (10.56).

10.12 Verify (10.66), (10.67), and (10.69).

10.13 Consider a hexagonal lattice network with a pilot reuse pattern based on clusters
of Lcluster cells. User u is located at a corner of the cell of interest. Suppose that,
around that cell, there are an infinite number of concentric tiers of copilot cells,
with the kth tier containing 6k cells and being at distance kDcopilot from the cell of
interest. Further suppose that every copilot user is at the center of its own cell.
(a) Express, as a function of the pathloss exponent and the shadow fading coeffi-

cients, the share of the term
∑

�∈C G�,u that corresponds to the first tier.
(b) Quantify part (a) for η = 4, with no shadow fading.

10.14 For η = 4 and ε = 1
10 , quantify the impact that the relaxation in (10.82) has on the

condition in (10.85) in the following cases:
(a) Na/U = 10.
(b) Na/U = 4.

10.15 Recompute the condition in (10.85) with ε = 1
100 rather than ε = 1

10 .

10.16 Quantify the change in the condition in (10.85) as the pathloss exponent shrinks
from η = 4 to η = 3.5.

10.17 Consider the reverse link of a hexagonal lattice network with a pilot reuse pattern
based on clusters of Lcluster cells. Neglect shadow fading and account for only the
first tier of copilot cells around the cell of interest.
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(a) Derive, as a function of Np, U , and η, the limiting (Na/U → ∞) cell-edge
SINR with the copilot users at the corner of their respective cells that is closest
to the cell of interest.

(b) Let η = 4 and suppose that Np/Nc = 0.1, a conservatively low overhead.
Express, for vehicular users, the worst-case limiting SINR as a function of U .

(c) Establish the range of U where the SINR derived in part (b) is above 20 dB,
which, with fading quelled by the unbounded spatial diversity, suffices to sup-
port 64-QAM (recall Fig. 4.3).

10.18 Repeat Problem 10.17 with a second tier of copilot cells, having twice as many
cells as the first tier and being at twice the distance, also accounted for. Does the
result of part (c) change significantly?

10.19 Repeat Problem 10.17, but with the users in the copilot cells located at the corner
of their respective cells that is farthest from the cell of interest.

10.20 Repeat Problem 10.17 for the following cases in terms of the cell of interest.
(a) A user halfway between the center and the edge of the cell.
(b) A pedestrian cell-edge user.
(c) A vehicular cell-edge user requiring an SINR of only 10 dB.

10.21 In the context of Problem 10.17, establish the pilot overhead required to support
U = 30 vehicular users with a worst-case SINR of 25 dB.

10.22 Consider the reverse link of a hexagonal network with η = 4, σdB = 8 dB, and no
power control. Plot the CDF of sirMF

u for Na/U → ∞ in the following cases:
(a) Np/U = 1.
(b) Np/U = 3.
(c) Np/U = 7.

10.23 Repeat Problem 10.22 with fractional power control (ϑ = 0.7).

10.24 Generalize (10.62) to an arbitrary fading distribution, not necessarily Rayleigh.
Note: Leave the solution in terms of the kurtosis of the fading magnitude.

10.25 Reproduce Example 10.2.

10.26 Consider a macrocellular network with Dcell = 1 km (such that the distance be-
tween adjacent base stations is

√
3 km), a transmit power of Pt = 200 mW per

user, a noise figure of 3 dB at the base station receivers, a pathloss intercept of
−128 dB at 1 km, and a bandwidth of B = 20 MHz. Let Na = 100, U = 10, and
Np = 3U . Further let the user antennas be omnidirectional and, for the gain of the
base station antennas, consider the following cases.
(a) A 12-dB gain, corresponding to antennas that focus power in the elevation

domain.
(a) Omnidirectional.
Contrasting the reverse-link distribution of E

[
sirMF

u

]
with its interference-limited

brethren in Fig. 10.8, how significant is the effect of noise?
Note: This problem allows gauging the validity of the interference-limited premise
in the reverse link for typical macrocellular conditions.

10.27 In reference to Example 10.3.
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(a) Reproduce the example verbatim, with ϑ = 0.7.
(b) Repeat for ϑ = 0.5.
Comment on the impact of varying the fractional power control exponent.

10.28 Repeat Example 10.3 with the pathloss exponent modified as follows:
(a) η = 3.5.
(a) η = 4.5.
Comment on the impact of the pathloss exponent.

10.29 Repeat Example 10.3 with the shadow fading strengthened to σdB = 10 dB. Com-
ment on the impact of this change.

10.30 Repeat Problem 10.8 with ε = 1
100 and with the ensuing Np/U rounded to the

closest feasible value.

10.31 Repeat Example 10.9 for Nc = 500, corresponding to an extreme vehicular setting,
and for Nc = 2000, corresponding to a relaxed one.

10.32 In reference to Example 10.10.
(a) Reproduce the example verbatim, with ϑ = 0.7.
(b) Repeat for ϑ = 0.5.
Verify that this reduction in the fractional power control exponent increases the
optimum ratio Na/U and decreases the average sum spectral efficiency.

10.33 Redo Example 10.10 with the allowance of users below −5 dB loosened to 5%. By
how much does the sum spectral efficiency increase?

10.34 For a reverse link with matched filter reception, rederive sinrMF

u and sinrMF
u under the

assumption that the payload data are subject to power control, but the pilot symbols
are not. What would the advantages and disadvantages be? Is there a regime in
which the performance is irrespective of whether the pilots are power-controlled?
Note: This derivation can serve as a stepping stone toward a matched-filter formu-
lation with an arbitrary pilot power boosting.

10.35 Reformulate the LMMSE receiver in (10.88) with further conditioning on the chan-
nel estimates from users in the Lcluster cells within the pilot reuse cluster of the cell
of interest.

10.36 Verify (10.105).

10.37 Consider a macrocellular network with Dcell = 1 km (such that the distance be-
tween adjacent base stations is

√
3 km), a transmit power of Pt = 60 W per base, a

user noise figure of 7 dB, a pathloss intercept of −128 dB at 1 km, and a bandwidth
of B = 20 MHz. The forward–reverse SNR ratio is ρ = 20 dB. Let Na = 100,
U = 25, and Np = 4U . Further let the user antennas be omnidirectional and, for
the gain of the base station antennas, consider the following extreme cases.
(a) A 12-dB gain, corresponding to antennas that focus power in elevation.
(a) Omnidirectional.
Contrasting the forward-link distribution of E

[
sirMF

u

]
with its interference-limited

brethren in Fig. 10.17, how significant is the effect of noise?
Note: This problem allows gauging the validity of the interference-limited premise
in the forward link for typical macrocellular conditions.
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10.38 For a forward link with conjugate beamforming, rederive sinrMF
u under the premise

that the payload data are subject to power control, but the pilot symbols are not.

10.39 With a per-symbol power constraint, the matched-filter precoders in (10.102) morph
into

F MF

�,u =
√

Na
Ĥ�;�,u

‖Ĥ�;�,u‖
u = 0, . . . , U − 1. (10.135)

Let us consider such precoders.
(a) Compute E[H∗

uF
MF
u ] and, from this expectation, rewrite the numerator of the

SINR expression in (10.105).
(b) Express the ratio between the numerator in part (a) and that in (10.105).
(c) From the ratio in part (b), calculate the dB-loss in intended signal power when

going from a per-codeword to a per-symbol power constraint with Na = 100.
(d) Show that, for Na → ∞, the loss vanishes.
Hint: Useful to this problem may be the chi distribution (see Appendix C.1.9), the
relationship Γ(M + 1/2) =

√
π 21−2MΓ(2M)/Γ(M), and Stirling’s formula

lim
M→∞

M !√
2πMMMe−M

= 1. (10.136)

10.40 Reproduce Example 10.20.

10.41 Derive the counterpart to (10.107) with additional side information whereby each
user is privy to its own precoded channel. Then, plot the CDF of such sinrMF

u against
that of sinrMF

u in (10.107). Apply the setting of Example 10.20 with a uniform power
allocation. What do you observe?

10.42 Consider the forward link of a hexagonal network with η = 4, σdB = 8 dB, and a
uniform power allocation. Plot the CDF of sirMF

u for Na/U → ∞ in these cases:
(a) Np/U = 1.
(b) Np/U = 3.
(c) Np/U = 7.

10.43 Letting Es/N0 → ∞ in the reverse- and forward-link SINR expressions in (10.86)
and (10.107), express the forward-link power allocation E0

Es
, . . . , EU−1

Es
that achieves

some specific sinr0, . . . , sinrU−1.
Hint: Apply the MAC–BC duality for linear transceivers with the role of thermal
noise played by the sum of thermal noise plus other-cell interference.

10.44 Show that the fully equalizing power allocation policy in (10.108), implemented in
the forward link with matched-filter transmitters, can only reduce 1

U

∑U−1
u=0 sinru

relative to a uniform power allocation.
Hint: The Cauchy–Schwarz inequality states that

(a0b0 + · · ·+ aN−1bN−1)
2 ≤ (

a20 + · · ·+ a2N−1

) (
b20 + · · ·+ b2N−1

)
.

(10.137)

10.45 In relation to establishing a sufficient condition for pilot contamination negligible-
ness in the forward link.
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(a) Why is a corner location within the cell of interest not a worst case in terms of
exposure to contamination?

(b) Characterize the worst-case user location in terms of same-cell and other-cell
interference.

(c) Does the location identified in part (b) serve to formulate a sufficient condition?

10.46 Verify that, on the basis of channel estimates, with a per-codeword power con-
straint, and with other-cell interference incorporated and treated as noise, (9.282)
morphs into (10.112).

10.47 Reformulate the regularized ZF precoder in (10.112) with further conditioning on
the channel estimates from users in the Lcluster cells within the pilot reuse cluster
of the cell of interest.

10.48 Verify (10.113)–(10.115).

10.49 Consider a forward link with regularized ZF transmission. What is the limiting
value of the precoder F Reg

u for Na/U → ∞?

10.50 Derive (10.121).

10.51 Reformulate (10.86) with user u at cell � subject, at the base station of interest, to
an antenna correlation matrix R�,u.

10.52 Reformulate (10.107) with user u at cell � experiencing, at the cell of interest, a
correlation matrix R�;u.

10.53 Reformulate (10.86) with Rice fading. For a hexagonal interference-limited net-
work with η = 4, σdB = 8 dB, Na = 100, and Na/U = 10, plot the CDF of this
quantity for K = 0, K = 1, and K = 10. Assume no power control.

10.54 Reformulate (10.107) with Rice fading. For a hexagonal interference-limited net-
work with η = 4, σdB = 8 dB, Na = 100, and Na/U = 10, plot the CDF of this
quantity for K = 0, K = 1, and K = 10. Assume a uniform power allocation.

10.55 Consider a hexagonal interference-limited network with η = 4, σdB = 8 dB, Na =

100, and Na/U = 10. Assume no power control. Plot the CDF of (10.86) without
macroscopic diversity, meaning with users connecting to their closest base station
rather than the one from which they receive the strongest local-average power.
Contrast this plot with Fig. 10.3.

10.56 Consider a hexagonal interference-limited network with η = 4, σdB = 8 dB,
Na = 100 and Na/U = 10. Assume a uniform power allocation. Plot the CDF
of (10.107) without macroscopic diversity, meaning with users connecting to their
closest base station rather than the one from which they receive the strongest local-
average power. Contrast this plot with Fig. 10.16.

10.57 Express ε so as to ensure that FsirMF
u

(Na/U
3+ε

)
= FsirMF

u

(Na/U
3

)
in (10.129).

10.58 Repeat Example 10.25 for Na/U = 4.

10.59 From the SIR distribution in (10.131), express the distribution of the corresponding
user spectral efficiency.

10.60 Consider the forward link of an interference-limited network with PPP-distributed
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base stations, matched-filter transmission and a uniform power allocation. Pilot
contamination is negligible.
(a) For Na/U = 4, plot the average spectral efficiency per cell as function of

η ∈ [3.5, 4]. Alongside, plot the simulation-based results for a hexagonal lattice
network with Na = 100 and σdB = 8 dB.

(b) For η = 4, plot the average spectral efficiency per cell as function of Na/U ∈
[2, 10]. Alongside, plot the simulation-based results for a hexagonal lattice net-
work with Na = 100 and σdB = 8 dB.

10.61 Consider the forward link of an interference-limited network with PPP-distributed
base stations, matched-filter transmission, and a uniform power allocation. Pilot
contamination is negligible and Na = 128.
(a) Plot, as a function of η ∈ [3.5, 4], the largest possible U such that sirMF

u ≤ −5

dB for no more than 3% of users.
(b) On the same chart as part (a), plot the average sum spectral efficiency for the

found values of U .



11 Afterword

11.1 Beyond cellular

What is next in the evolution of cellular networks, and of MIMO in particular? Besides the
push toward progressively higher carrier frequencies and wider bandwidths, some trends
seem highly relevant.

The delocalization of base station antennas, so as to distribute them over the cell area by
extending the lines that connect them to the bases [257, 1018, 1019].
The blurring of the cell boundaries via different intensities of base station cooperation,
which, besides pilot contamination, can serve to fight other-cell interference as well.
These cooperation intensities range from loosely coordinating user assignments, in order
to keep other-cell interference at bay, all the way to joint reception and transmission
on the part of neighboring bases, ambitiously intending to turn interference into usable
signal—at the expense of having to acquire more extensive and precise channel estimates
[475, 1020–1030].

Ultimately, a very aggressive degree of antenna delocalization and base station coop-
eration with increased processing at central hubs may naturally lead to so-called cell-free
or cell-less networks [1031–1035]: fields of antennas connected directly to central hubs,
where all the baseband processing takes place, and without actual base stations. The net-
work would then look like a canopy that could offer superior coverage and a dynamic load
balance. Furthermore, this would open the door to cloud-based implementations of mas-
sive MIMO, with all the baseband processing progressively software-defined on the cloud
rather than hardwired at physical base stations [1036, 1037]. This, and other visions for the
evolution and revolution of cellular networks, are sure to occupy the research community
for years to come, with MIMO ideas at the center of it all.

Beyond cellular networks, and beyond WLANs, there are communication setups that
have not been explicitly considered in this book, but to which the MIMO ideas expounded
herein readily apply, for instance, device-to-device communication, relays, or ad hoc net-
works. The contents of this book are further a stepping stone to the following paradigms.

Millimeter-wave and terahertz communication

As mentioned in Chapter 3, the abundance of idle spectrum in the millimeter-wave band
makes these high frequencies very attractive. With a longer view, and for very-short-range
transmissions, even terahertz frequencies could be tapped [1038].

643
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The primary application of MIMO in these realms is power gain, to overcome the high
propagation losses, and hence the signaling strategies of interest are primarily those pre-
sented for the low-SNR regime, namely beamforming and reduced-rank transmissions.
Thanks to the small wavelength, large numbers of antennas can be packed for that pur-
pose into small form factors. Incorporating the specificities of radio propagation at these
frequencies, many results in the book become immediately relevant.

Interference alignment

Interference alignment (IA) is a technique whereby multiple base stations share their CSIT
and jointly design their precoders such that, from the vantage of each user, all unintended
signals align on a certain subspace leaving the remaining dimensions free of interfer-
ence [1039, 1040]. On those dimensions, the intended signals encounter only noise. The
joint design of the precoders is most conveniently conducted on a centralized fashion,
which would make IA a form of base station cooperation, but distributed iterative imple-
mentations are possible [1041, 1042].

If all the base stations could participate in the alignment and the CSIT were perfect, IA
could deliver an unbounded growth of the spectral efficiency with the SNR. Unfortunately,
only a limited number of bases, depending on the number of antennas, can participate in the
alignment: with two antennas, for instance, at most three bases can participate. This nec-
essarily leads to the formation of IA clusters that are inevitably exposed to other-cluster
interference. Thus, even the subspaces that IA protects from in-cluster interference are
bound to experience interference [475]. In addition, IA restricts the spatial dimensional-
ity of the transmit signals; in the three-base two-antenna example, the interference-free
subspaces have spatial dimension one; without IA, in contrast, a two-dimensional signal
could be transmitted by each base. Altogether then, IA can create subspaces with reduced
interference in exchange for a sacrifice in signal dimensions.

While this advises against a blanket use of IA in cellular networks, it is a technique to
consider in cases where isolated clusters of transmitters naturally occur, say for WLANs
within physically separated residences or small buildings [1043], or for in-vehicle net-
works.

11.2 Beyond wireless

The applicability of MIMO principles does not end in the province of wireless communi-
cation, and as closure we briefly point to other domains of application.

Fiber optics

Fiber optics constitute the backbone of communication networks. In what is called mul-
timode fiber, specifically, multiple propagation modes are excited at once and, in certain
deployments, mode mixing limits the performance. This problem can be viewed through
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the lens of MIMO communication, and multiple works have explored the feasibility of this
approach [1044–1046].

Digital subscriber lines

Digital subscriber lines (DSL) enable high-bit-rate transmissions over legacy wireline tele-
phone networks. A chief impairment in DSL is crosstalk: near-end crosstalk between a
transmitter and receiver at the same end of the full-duplex link, and far-end crosstalk
between a transmitter and receiver at opposite ends. The former is avoided by resort-
ing to FDD, rather than full-duplex, while the latter can be handled by applying MIMO
principles—termed vectoring in this context [1047].

Visible-light communication

Visible-light communication is a form of free space optics, suitable for WLANs. Huge un-
licensed bandwidths are available, limited only by safety regulations and device capabili-
ties, and with the distinguishing feature of in-room signal confinement and lack of obstacle
penetration. This is a double-edged sword, constraining the coverage but also eliminating
interference and restricting the possibility of eavesdropping.

With the advancement of solid-state technology, the light-emitting diode has evolved
from dowdy indicator light to the main instrument for lighting technology and, thanks to
its fast response time, for visible-light transmission. Although these devices currently have
a limited modulation bandwidth [1048], often multiple light-emitting diodes are available,
making MIMO a possibility [1049, 1050].

Underwater acoustic communication

Marine research, oceanography, and oil drilling are example applications of underwater
acoustic communication. The carrier here is sound rather than an electromagnetic wave.
This is because sound propagates best in seawater, where long-range propagation of radio
waves is feasible only at very low frequency (30–300 Hz) with prohibitively large antennas.
The bandwidth of underwater acoustic transmissions is very limited, which puts a premium
on spectral efficiency thereby rendering MIMO attractive [1051, 1052].
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A Appendix A Transforms

This appendix reviews several Fourier transforms, instrumental in the transition between
the time and the frequency domains, as well as the Z-transform.

A.1 Fourier transforms

A.1.1 Continuous-time Fourier transform

A well-behaved continuous-time function x(t) and its Fourier transform x(f) are related
by the analysis and synthesis equations

Analysis x(f) =

∫ ∞

−∞
x(t) e−j2πft dt (A.1)

Synthesis x(t) =

∫ ∞

−∞
x(f) ej2πft df. (A.2)

A detailed account of the technical conditions that are necessary for a Fourier transform
to exist is beyond the scope of this book, and interested readers are referred for instance
to [1053]. It suffices to say that all physically realizable signals do have Fourier transforms.
For our purposes, therefore, we can take “well-behaved” to simply mean a signal for which
the integral in (A.1) exists.

Those properties of the continuous-time Fourier transform that are invoked somewhere
in the text are listed in Table A.1. Likewise, relevant Fourier transform pairs are presented
in Table A.2.

A.1.2 Continuous-time Fourier series

Periodic functions do not fall under the umbrella of well-behaved functions and yet they are
very important in the analysis of communication signals. This obstacle can be side-stepped
through the definition of the Fourier series and by invoking the Dirac delta function, δ(·).

Consider a periodic signal x(t) whose period, T > 0, is the smallest real number such
that x(t) = x(t+ T ). The continuous-time Fourier series of such signal is defined as

Analysis x[n] =
1

T

∫ T

0

x(t) e−j 2πT nt dt (A.3)

Synthesis x(t) =
∑
n

x[n] ej
2π
T nt. (A.4)
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Table A.1 Continuous-time Fourier transform properties

Property Aperiodic signal Fourier transform
x(t) x(f)

Linearity a x(t) + b y(t) a x(f) + b y(f)

Time shift x(t− t0) e−j2πft0 x(f)

Conjugation x∗(t) x∗(−f)

Time reversal x(−t) x(−f)

Time scaling x(at) 1
|a| x

(
f
a

)
Convolution x(t)∗ y(t) =

∫
x(τ) y(t− τ) dτ x(f) y(f)

Autocorrelation x(t)∗x∗(−t) |x(f)|2
Modulation x(t) ej2πf0t x(f − f0)

Conjugate symmetry x(t) is real x(f) = x∗(−f)

Duality x(t) ←→ x(f) x(t) ←→ x(−f)

Parseval’s theorem
∫
x(t) y∗(t) dt =

∫
x(f) y∗(f) df

Table A.2 Continuous-time Fourier transform pairs

Function Time-domain Frequency-domain
Impulse δ(t) 1
Constant function 1 δ(f)

Complex exponential ej2πf0t δ(f − f0)

Cosine cos(2πf0t+ θ) 1
2

[
ejθδ(f − f0) + e−jθδ(f + f0)

]
Sine sin(2πf0t+ θ) 1

2j

[
ejθδ(f − f0)− e−jθδ(f + f0)

]
Impulse train

∑
k

δ(t− kT ) 1
T

∑
n

δ(f − n
T
)

Rectangular pulse rect
(

t
T

)
=

{
1 |t| � T

2

0 else
T sinc(fT ) = sin(πfT )

πf

W sinc2(fW )

Sinc pulse sinc(Wt) = sin(πWt)
πWt

1
W

rect( f
W

)

The continuous-time Fourier series creates as an output a weighting of the fundamental
frequency of the signal e−j2π/T and its harmonics. From the series it is possible to express
the Fourier transform of a periodic signal as

x(f) =
∑
n

x[n] δ
(
f − n

T

)
(A.5)

x(t) =

∫ ∞

−∞
x(f) ej2πft df, (A.6)

where the unboundedness of (A.1) has been circumvented by means of δ(·).
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A.1.3 Discrete-time Fourier transform

Consider now a well-behaved discrete-time signal x[n]. Its discrete-time Fourier transform
analysis and synthesis relationships are

x(ν) =
∑
n

x[n] e−j2πnν (A.7)

x[n] =

∫ 1/2

−1/2

x(ν) ej2πnν dν, (A.8)

where the frequency ν is defined on any finite interval of unit length, typically [−1/2, 1/2].

A.1.4 Discrete Fourier transform

While the discrete-time Fourier transform offers a sound analytical framework for discrete-
time signals, it is inconvenient due to its continuous frequency. An alternative is the dis-
crete Fourier transform (DFT) and its easy-to-implement cousin, the fast Fourier transform
(FFT). The DFT is extremely important in digital signal processing and communications,
and instrumental in the context of OFDM. It applies to finite-length discrete-time signals
and, since any finite-length signal can be repeated to form a periodic discrete-time signal,
the DFT can also be interpreted as applying to periodic signals. The DFT synthesis and
analysis equations are

x[k] =
N−1∑
n=0

x[n] e−j 2πN kn k = 0, . . . , N − 1 (A.9)

x[n] =
1

N

N−1∑
k=0

x[k] ej
2π
N kn n = 0, . . . , N − 1, (A.10)

where the discrete and finite-range nature of both time and frequency are noteworthy. To
compactly denote the direct (analysis) and inverse (synthesis) N -point DFT transforms,
we introduce the terminology

x[k] = DFTN

{
x[n]

}
(A.11)

x[n] = IDFTN

{
x[k]

}
. (A.12)

Some relevant DFT properties are listed in Table A.3, where ((·))N denotes modulo-N
operation.

A.2 Z-transform

The Z-transform converts a function of a discrete real variable (say the discrete time, n)
to a function of a complex variable z. This converts difference equations into algebraic
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Table A.3 DFT properties

Length-N sequence N -point DFT
x[n] x[k]

a x[n] + b y[n] a x[k] + b y[k]

x[n] N x[((−k))N ]

x[((n−m))N ] ej2πkm/N x[k]∑
m

x[m] y[((n−m))N ] x[k] y[k]

x∗[n] x∗[((−k))N ]

x[n] is real x[k] = x∗[((−k))N ]

equations and convolution into product. The Z-transform of a causal function x[n] is

x(z) =
∞∑

n=0

x[n] z−n, (A.13)

while the inversion of x(z) back onto x[n] requires an integration on the complex plane [133].

Example A.1

Obtain the Z-transform of x[n] = δ[n−Δ].

Solution

x(z) = z−Δ.

The foregoing example generalizes into a time-shifting property according to which, if
the Z-transform of x[n] is x(z), then the Z-transform of x[n−Δ] is z−Δ x(z).
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B.1 Column space, row space, null spaces

The column space of an N ×M matrix A = [a0 · · · aM−1] is the set of all linear combi-
nations of its column vectors a0, . . . ,aM−1. It is therefore a subspace (whose dimension
is at most M ) of the N -dimensional vector space. Since a linear combination with arbitrary
coefficients x0, . . . , xM−1 of the columns of A can be written as the product of A with the
vector x = [x0 · · · xM−1]

T, i.e.,

x0 a0 + · · ·+ xM−1 aM−1 = A

⎡
⎢⎣

x0

...

xM−1

⎤
⎥⎦ , (B.1)

the column space of A consists of all possible vectors y = Ax.
The row space of A, in turn, equals the column space of AT or, equivalently, of A∗.

Thus, it is a subspace (whose dimension is at most N ) of the M -dimensional vector space.

Example B.1

The column space of

A =

⎡
⎣ 0 3

2 0

0 1

⎤
⎦ (B.2)

is the set of vectors y = [y0 y1 y2]
T having the form

y = Ax (B.3)

=

⎡
⎣ 3x1

2x0

x1

⎤
⎦ . (B.4)

These vectors satisfy y0 = 3 y2, which defines a subspace of dimension M = 2 (that is, a
plane) on a vector space of dimension N = 3.

Example B.2

The row space of A in (B.2), in turn, is the set of vectors y having the form

y = ATx (B.5)

653
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=

[
2x1

3x0 + x2

]
, (B.6)

which defines the entire vector space of dimension M = 2.

The column rank and row rank of A are the dimensions of its column space and row
space, respectively. For the matrix in Examples B.1 and B.2, for instance, both equal 2.
The fact that the column and row ranks coincide in this case is not a coincidence. Indeed,
the row and column ranks always coincide, giving the rank of the matrix. A matrix is said
to be full-rank if its rank equals the largest possible, which is min(N,M), and it is said to
be rank-deficient otherwise.

In addition to its column and row spaces, a matrix A elicits two additional subspaces,
respectively the orthogonal complements of such column and row spaces.

The orthogonal complement of the row space, termed the null space of A, is the col-
lection of those vectors that are orthogonal to every row of A, i.e., of those vectors x

satisfying Ax = 0. The null space of A has dimension M − rank(A).
The orthogonal complement of the column space of A equals the null space of AT, with
dimension N − rank(A).

Example B.3

For the matrix A in Examples B.1 and B.2, the null space is empty while the null space
of AT contains all the colinear vectors y = [y0 y1 y2]

T that are orthogonal to the plane
defined by y0 = 3 y2.

B.2 Special matrices

B.2.1 Hermitian matrices

A complex matrix A is said to be Hermitian if A∗ = A.

B.2.2 Unitary matrices

A complex matrix U is said to be unitary if U∗U = UU∗ = I . In addition:

U is nonsingular and U∗ = U−1.
The columns of U form an orthonormal set, as do the rows of U .
For any complex vector x, the vector y = Ux satisfies |y| = |x|. Thus, y is a rotated
version of x and U embodies that rotation.
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B.2.3 Fourier matrices

An N × N Fourier matrix U is a unitary matrix whose (i, j)th entry equals ej2πij/N . It
follows that the jth column, for j = 0, . . . , N − 1, is given by

uj =
1√
N

⎡
⎢⎢⎢⎣

1

ej2πj/N

...

ej2π(N−1)j/N

⎤
⎥⎥⎥⎦ . (B.7)

The DFT of a vector x is

x =
√
N U∗x (B.8)

whereas the IDFT is

x =
1√
N

Ux. (B.9)

Indeed, by interpreting the entries of x and x as sequences, (B.8) and (B.9) are scaled
versions of the DFTN{·} and IDFTN{·} transforms in (A.9) and (A.10).

B.2.4 Toeplitz and circulant matrices

A matrix is Toeplitz if it is constant along each of its diagonals. A Toeplitz matrix is further
circulant if it is completely described by any of its rows, of which the other rows are just
circular shifts with offsets equal to the row indices. Alternatively, a circulant matrix is
described by any of its columns with the other columns just circular shifts thereof.

Example B.4

The real matrices A and B below are Toeplitz and circulant, respectively.

A =

⎡
⎣ 2 5 1

4 2 5

3 4 2

⎤
⎦ B =

⎡
⎣ 2 5 1

1 2 5

5 1 2

⎤
⎦ . (B.10)

If A is an N ×N circulant matrix, then the following holds:

The eigenvectors of A equal the columns of the Fourier matrix U in (B.7).
The eigenvalues of A equal the entries of U∗a where a is any column of A.

Hence, the eigenvalues of a circulant matrix are directly the DFT of any of the columns (or
rows) of that matrix [139].

B.2.5 Hankel matrices

A Hankel matrix is an upside-down Toeplitz matrix, i.e., a matrix in which each rightward-
ascending diagonal is constant.
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Example B.5

The real matrix A below is a Hankel matrix.

A =

⎡
⎣ 3 4 2

4 2 5

2 5 1

⎤
⎦ (B.11)

B.3 Matrix decompositions

B.3.1 Eigenvalue decomposition

Any N ×N Hermitian matrix A can be factored into the canonical form

A = UΛU∗ (B.12)

=

N−1∑
i=0

λi(A)uiu
∗
i , (B.13)

where U = [u0 · · · uN−1] is a unitary matrix whose columns are the eigenvectors of A
whereas Λ = diag

(
λ0(A), . . . , λN−1(A)

)
is a diagonal matrix whose diagonal entries

are the eigenvalues of A. The eigenvectors are the vectors (normalized to have unit norm)
that the linear transformation embodied by A does not rotate but merely stretches, and the
eigenvalues are the factors by which they are stretched. Thus,

Aui = λi(A)ui i = 0, . . . , N − 1. (B.14)

The eigenvalues of a Hermitian matrix are always real. Furthermore, a Hermitian matrix is
positive-semidefinite if, for every nonzero complex vector x,

x∗Ax ≥ 0. (B.15)

If the equality in (B.15) is strict, then A is positive-definite. The eigenvalues of a positive-
definite matrix are strictly positive whereas those of a positive-semidefinite matrix may be
zero.

The rank of A equals the number of nonzero eigenvalues and A is invertible if it is full
rank, i.e., if rank(A) = N . Then, the eigenvectors of A and A−1 coincide and

A−1 = UΛ−1U∗ (B.16)

= U diag
(

1

λ0(A)
, . . . ,

1

λN−1(A)

)
U∗. (B.17)

The eigenvectors are defined up to phase rotations, meaning that ejφui is as valid a
choice as ui for the ith eigenvector.
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Table B.1 Bases for the column, row, and null spaces of an
N ×M matrix A = UΣV ∗

Subspace Dimension Basis
Column space of A r = rank(A) First r columns of U
Row space of A r First r columns of V
Null space of AT (N − r) Last (N − r) columns of U
Null space of A (M − r) Last (M − r) columns of V

B.3.2 Singular-value decomposition

By means of the singular-value decomposition (SVD), any N ×M matrix A can be fac-
tored as

A = UΣV ∗, (B.18)

where U and V are unitary, respectively N×N and M×M , while Σ is an N×M matrix
with real entries on its main diagonal and zero elsewhere. The entries on the main diagonal
of Σ are termed the singular values of A, whereas the leading min(M,N) columns of U
and of V are the left and the right singular vectors of A, respectively, such that

Avj = σjuj j = 0, . . . ,min(M,N)− 1 (B.19)

and

A∗uj = σjvj j = 0, . . . ,min(M,N)− 1 (B.20)

where σj is the jth singular value whereas uj = [U ]:,j is the jth left singular vector and
vj = [V ]:,j is the jth right singular vector.

The SVD of A has an intimate relationship with the eigenvalue decompositions of AA∗

and A∗A.

The squared singular values of A are the nonzero eigenvalues of AA∗ and A∗A.
The left singular vectors of A are the eigenvectors of AA∗. Indeed, AA∗ = UΣΣ∗U∗.
Conversely, A∗A = V Σ∗ΣV ∗ and thus the right singular vectors of A are the eigen-
vectors of A∗A.

The number of nonzero singular values of A equals its rank. Moreover, the columns of
U and V provide bases for the column, row, and null spaces of A as detailed in Table B.1.

B.3.3 QR decomposition

Given N ≥ M , any N ×M matrix A can be factored as

A = QR, (B.21)

where Q is an N ×N unitary matrix while R is an N ×M upper-diagonal matrix whose
bottom (N −M) rows are all-zero.
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B.4 Trace and determinant

The trace of a square matrix equals the sum of the entries on its main diagonal and, also,
the sum of its eigenvalues. It is a linear operation that is invariant to a change of basis and,
therefore, to pre- or post-multiplication by unitary matrices.

The determinant of a square matrix equals the product of its eigenvalues, counted with
their corresponding multiplicities. If the determinant is nonzero, the matrix is invertible
and

det
(
A−1

)
=

1

det(A)
. (B.22)

If the determinant is zero, the matrix is said to be singular and it is not invertible.
Although matrix multiplication is generally noncommutative, there are some very useful

commutative properties involving the determinant and trace of products of matrices. In
particular, for properly dimensioned matrices A and B,

det(I +AB) = det(I +BA), (B.23)

with the identity matrix sized accordingly, and

det(AB) = det(BA) (B.24)

= det(A) det(B). (B.25)

Also,

tr(AB) = tr(BA), (B.26)

which, more generally, makes the trace invariant to cyclic permutations.

B.5 Frobenius norm

The Frobenius norm of an N ×M matrix A equals

‖A‖F =
√
tr
(
AA∗) (B.27)

=
√
tr
(
A∗A

)
. (B.28)

Expanding the argument of the square root, what results is

‖A‖F =

√√√√N−1∑
i=0

M−1∑
j=0

|[A]i,j |2, (B.29)

which, in the special case that A is a vector, reduces to the standard Euclidean norm. Unless
otherwise stated, this is the norm definition throughout the book. And, since the distance
between two vectors is the norm of their difference, unless otherwise stated the distances
in this book are Euclidean distances.
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B.6 Moore–Penrose pseudoinverse

The pseudoinverse generalizes the concept of an inverse. In particular, the Moore–Penrose
pseudoinverse of an N ×M rectangular matrix A is the unique matrix A† satisfying

AA†A = A (B.30)

A†AA† = A† (B.31)

and such that AA† and A†A are both Hermitian.

If A∗A is invertible, then it is easily verified that

A† = (A∗A)−1A∗ (B.32)

satisfies the above conditions and that A†A = I . This may be the case if N ≥ M .
In turn, if it is AA∗ that is invertible, then

A† = A∗(AA∗)−1 (B.33)

and AA† = I . This may be the case if N ≤ M .
If A is square and invertible, then (B.32) and (B.33) coincide and the pseudoinverse
reduces to the regular inverse, A† = A−1.

B.7 Matrix inversion lemma

An identity that often comes handy in many derivations is the so-called matrix inversion
lemma, which states that

(A+BCD)
−1

= A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1. (B.34)

This formula, also termed the Woodbury matrix identity, allows computing the inverse of
the linear operator on the left-hand side of (B.34) whenever the inverse of its two main
pieces, A and C, are known.

B.8 Kronecker product

The Kronecker product extends to matrices the outer product vector operator. Given an
NA×MA matrix A and an NB×MB matrix B, their Kronecker product yields an NANB×
MAMB matrix

A⊗B =

⎡
⎢⎣

[A]0,0B · · · [A]0,MA−1B
...

. . .
...

[A]NA−1,0B · · · [A]NA−1,MA−1B

⎤
⎥⎦ . (B.35)
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Like the regular matrix product, the Kronecker product is nonconmutative, linear, and as-
sociative. In addition,

(A⊗B)∗ = A∗ ⊗B∗ (B.36)

and, if both A and B are invertible,

(A⊗B)−1 = A−1 ⊗B−1. (B.37)

Finally, if A and B have rA and rB nonzero singular values, respectively, then (A ⊗B)

has rArB nonzero singular values given by all the cross products thereof.



C Appendix C Random variables and
processes

This appendix collects a host of relevant results on random variables (scalars, vectors, and
matrices), presents the distributions used throughout the book, and provides a classification
of the principal forms of convergence of random sequences. Special treatment is given to
the behavior of certain random matrices as their size grows without bound, as this behavior
is exploited to provide large-dimensional MIMO characterizations of quantities of inter-
est. Shifting the attention from random variables to random processes, the all-important
concepts of stationarity and ergodicity are then set forth.

C.1 Random variables

The random variables in this section are regarded as continuous unless otherwise indicated,
yet most of the concepts extend to discrete distributions with a probability mass function
(PMF) in place of the probability density function (PDF), and with a proper replacement
of integrals by summations.

C.1.1 Bayes’ theorem

Given two random variables x and y with joint PDF fxy(·, ·) and with marginals fx(·) and
fy(·), the respective conditional distributions are obtained as

fy|x(y|x) = fxy(x, y)

fx(x)
(C.1)

fx|y(x|y) = fxy(x, y)

fy(y)
(C.2)

respectively for fx(x) > 0 and fy(y) > 0. Bayes’ theorem states that

fx|y(x|y) =
fy|x(y|x) fx(x)

fy(y)
. (C.3)

Bayes’ theorem has been said to play a role similar to that of Pythagoras’ theorem in
geometry [1054], a comparison that seems certainly appropriate in light of its importance
and of the triangular relationship it establishes between the joint distribution and the two
conditionals.

661
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C.1.2 Expectation

Given a real scalar x with PDF fx(·), the expected value of x can be obtained directly from
fx(·) via

E[x] =

∫ ∞

−∞
x fx(x) dx (C.4)

and also from the corresponding cumulative distribution function (CDF), Fx(·), through
the relationship

E[x] =

∫ ∞

0

(
1− Fx(x)

)
dx−

∫ 0

−∞
Fx(x) dx. (C.5)

If x is complex, then (C.4) applies with integration over the complex plane. Sometimes,
the integration limits in the expectations are not explicitly indicated; then, they should be
taken over the support of the corresponding random variables, i.e., the set of values on
which their probabilities are nonzero.

C.1.3 Correlation

The covariance between two random scalars x and y, with respective means μx = E[x]

and μy = E[y], is given by

Rxy = E
[
(x− μx)(y − μy)

∗], (C.6)

which, if x = y, reduces to the variance var[x] = σ2
x. As is common practice in signal

processing and communications, we use the term correlation interchangeably with co-
variance. In other disciplines, chiefly in statistics, the term correlation instead refers to

1
σxσy

Rxy , scaled so it ranges within ±1. In this text, this scaled version is referred to as
correlation coefficient rather than merely correlation.

Similarly, for two random vectors x and y we can define the covariance/correlation
matrix

Rxy = E
[
(x− μx)(y − μy)

∗], (C.7)

which, if x = y, reduces to the covariance/correlation matrix of x, denoted by Rx. By
properly scaling the entries of Rxy , a matrix of correlation coefficients could be obtained.

A concept that arises frequently in MIMO is that of uncorrelatedness: we say that x and
y are uncorrelated if Rxy = 0. If two random variables are independent, then they are also
uncorrelated because

Rxy = E
[
(x− μx)(y − μy)

∗] (C.8)

= E
[
x− μx

]
E
[
y∗ − μ∗

y

]
(C.9)

= 0. (C.10)

However, two uncorrelated variables need not be independent.
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C.1.4 Properness

Another relevant notion, which distinguishes a relevant class of signals, is properness
[1055]. A complex random scalar x is said to be proper complex if E[x2] = E[x]2. As can
be verified, properness requires that the real and imaginary parts of x, respectively {x}
and �{x}, be uncorrelated and have the same variance. The concept generalizes to vectors
in a straightforward manner: x is a proper complex random vector if E[xxT] = E[x]E[xT].
This is tantamount to {x} and �{x} having identical covariance matrices while the
cross-covariance of {x} and �{x} is zero.

Any subvector of a proper complex vector is also proper complex, i.e., if [x0 x1]
T is

proper complex then both x0 and x1 are proper complex. The converse, however, is not
true: two vectors that are individually proper complex need not be jointly proper complex.

Properness is preserved under affine transformations, that is, if x is proper complex then
y = Ax+ b is also proper complex for any constant matrix A and vector b.

C.1.5 Circular symmetry

A random scalar x is circularly symmetric if its distribution remains unchanged when x

is rotated around its mean by an arbitrary angle, i.e., if the distribution of (x − E[x])ejφ

is identical to that of (x − E[x]) for any arbitrary φ. The property generalizes directly to
vectors and is preserved under affine transformations. For matrices, the notion of circular
symmetry generalizes into the unitary invariance property described next.

C.1.6 Unitary invariance

A random matrix X is left unitarily invariant if its distribution equals that of UX for
any unitary matrix U independent of X . Alternatively, X is right unitarily invariant if its
distribution equals that of XV ∗ for any unitary matrix V independent of X . If X is both
left and right unitarily invariant, then it is bi-unitarily invariant.

C.1.7 Linear transformations

If x is a complex random vector with PDF fx(·) and A is a nonsingular matrix, then the
PDF of y = Ax is

fy(y) =
fx

(
A−1y

)
|det(A)|2 . (C.11)

C.1.8 Kurtosis

A descriptor of random variables that comes in handy to describe certain constraints that
the hardware poses on signals as well as relevant properties of fading channels is the kur-
tosis, which informs of the shape of the PDF. A large kurtosis indicates that, for a given
power, a random variable exhibits infrequent but extreme deviations—as opposed to fre-
quent but mild ones if the kurtosis is small. This is captured by the relationship between
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the fourth- and second-order moments, which can be formulated in various ways. The def-
inition we adopt for the kurtosis of a real scalar x is

κ(x) =
E
[
x4

]
E2

[
x2

] , (C.12)

which satisfies κ(x) ≥ 1 with equality if x is nonrandom.
If x is zero-mean, then the above definition coincides with the common one in statistics,

where the fourth- and second-order moments are centered on the mean. That is appropriate
to analyze transmit signals, which are indeed zero-mean, but for fading channels (C.12)
turns out to be a more convenient definition.

As yet another variant, the kurtosis may be adjusted so as to equal zero for a Gaussian
variable, a definition encountered in signal processing and that is sometimes dubbed excess
kurtosis [1056].

C.1.9 Relevant distributions

The Gaussian distribution
The PDF of a Gaussian scalar x with mean μx and variance σ2

x is

fx(x) =
1√
2πσx

e−
1
2 (x−μx)

2/σ2
x , (C.13)

denoted as x ∼ N (μx, σ
2
x). A Gaussian scalar is standard if μx = 0 and σ2

x = 1.
It is frequently necessary to evaluate the tail probability of a standard Gaussian, which

is quantified by the Q-function described in Section E.5.
A result that casts great importance on the Gaussian distribution is the central limit

theorem (see Example C.1), which states that the normalized sum of N IID random obser-
vations having a bounded variance converges to a Gaussian random variable for N → ∞.
Often, approximate Gaussianity holds even for modest values of N and even if the com-
posing variables are not IID. The central limit theorem is, for instance, the reason that
the background noise encountered in communications is Gaussian, as it descends from the
superposition of many spurious fluctuations of thermal origin.

The complex Gaussian distribution
The complex Gaussian distribution plays a central role in many of the derivations in this
book. A complex Gaussian scalar x has Gaussian real and imaginary parts. Unless other-
wise stated, properness is always assumed and hence those real and imaginary parts are
independent. The magnitude and phase of x are also mutually independent. With mean μx

and variance σ2
x, the PDF of x is

fx(x) =
1

πσ2
x

e−|x−μx|2/σ2
x (C.14)
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and we write x ∼ NC(μx, σ
2
x).

1 The phase of x is uniform over [0, 2π) and independent
of its magnitude, which abides by the Rayleigh distribution given later in this section. As
in the case of a real Gaussian, a complex Gaussian is standard if μx = 0 and σ2

x = 1.
Moving on to vectors, we define a complex Gaussian random vector as one that has

jointly Gaussian entries. Again, properness is assumed unless otherwise stated. Such a
vector x with mean μx and covariance matrix Rx has the PDF

fx(x) =
1

det(πRx)
e−(x−μx)

∗R−1
x (x−μx), (C.15)

which we write as x ∼ NC(μx,Rx).2 If Rx = σ2I , meaning that the entries of x are
IID, then the magnitude ‖x‖ and the vector direction x/‖x‖ are mutually independent and
the latter is uniformly distributed.

Extending the definition from vectors to matrices, the PDF of a complex Gaussian matrix
X = [x0 · · · xM−1] whose columns are independent with the jth column, xj , having
mean μj and covariance Rj , equals

fX(X) =
1∏M−1

j=0 det
(
πRj

) exp

⎛
⎝−

M−1∑
j=0

(xj − μj)
∗R−1

j (xj − μj)

⎞
⎠. (C.16)

If the columns of X are not only independent but also identically distributed, i.e., μj = μ

and Rj = R for j = 0, . . . ,M − 1, then (C.16) can be more conveniently written as

fX(X) =
1

(det(πR))M
e−tr((X−μ)∗R−1(X−μ)) (C.17)

which, if the entries of X are further IID and zero-mean with variance σ2, simplifies to

fX(X) =
1

(πσ2)MN
e−tr(X∗X)/σ2

(C.18)

where N and M are the dimensions of X.
Some relevant properties of the complex Gaussian distribution are as follows.

Uncorrelatedness and independence are equivalent attributes for Gaussian random vari-
ables.
If a random vector is both proper complex and Gaussian, then it is also circularly sym-
metric. In the complex Gaussian case, therefore, circular symmetry and properness are
equivalent concepts.
Gaussianity is preserved under linear transformations. Thus, linear combinations of
complex Gaussian scalars, vectors, or matrices are themselves complex Gaussian.
The IID zero-mean complex Gaussian distribution is bi-unitarily invariant. It does not
have preference for any spatial direction and it is therefore invariant to rotations and
reflections.

1 If x were complex Gaussian but not proper, then it would not be completely characterized by μx and σ2
x. We

would further require its pseudo-covariance E[(x− μx)2], which for proper complex Gaussians is zero.
2 If x were complex Gaussian but not proper, its characterization would further require the pseudo-covariance

E[(x−μx)(x−μx)T], which would no longer be zero. When referring to a complex Gaussian vector with
the notationNC(·, ·) we always mean a vector abiding by (C.15).
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A further relevant result is that, if x and y are jointly Gaussian, i.e.,[
y

x

]
∼ NC

([
μy

μx

]
,

[
Ry Ryx

Rxy Rx

])
, (C.19)

then y|x=x is complex Gaussian with mean

μ = RyxR
−1
x x (C.20)

and covariance

R = Ry −RyxR
−1
x Rxy. (C.21)

The Wishart distribution
Also arising frequently in MIMO and closely related to the complex Gaussian distribution
is the Wishart distribution [1057]. Let X be an N × M matrix distributed as per (C.17)
with μ = 0. If M ≥ N , then W = XX∗ is an N ×N central Wishart matrix with PDF

fW (W) =
π−N(N−1)/2

(detR)M
∏N

i=1(M − i)!
e−tr(R−1W)(detW)N−M (C.22)

indicated as W ∼ WN (M,R). Alternatively, if M ≤ N , then W = X∗X ∼ WM (N,R).
(In both cases, if μ �= 0 then W conforms to the more involved noncentral Wishart distri-
bution.)

Some results of interest pertaining to W ∼ WN (M, I) are [546, 1058]

E
[
tr(W )

]
= MN (C.23)

E
[
tr(W 2)

]
= MN(M +N) (C.24)

E
[
tr2(W )

]
= MN(MN + 1) (C.25)

E
[
tr
(
W−1

)]
=

N

M −N
(C.26)

E
[
(detW )K

]
=

N−1∏
n=0

Γ(M +K − n)

Γ(M − n)
(C.27)

E
[
loge detW

]
=

N−1∑
n=0

ψ(M − n), (C.28)

where Γ(·) and ψ(·) are the gamma and digamma functions introduced in Appendix E.
As important as the distribution of a Wishart matrix W ∼ WN (M, I) is that of its

eigenvalues, and specifically the marginal distribution of an unordered eigenvalue λ, which
equals [1059]

fλ(ξ) =
1

N

N−1∑
k=0

k!

(k +M −N)!

(
LM−N
k (ξ)

)2
ξM−Ne−ξ, (C.29)
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where Lq
k(·) is the associated Laguerre polynomial

Lq
k(ξ) =

eξξ−q

k!

dk

dξk
(
e−ξξq+k

)
(C.30)

=

k∑
i=0

(−1)i
(k + q)!

(k − i)!(q + i)!i!
ξi. (C.31)

The chi-square distribution
For N = 1, the central Wishart distribution reduces to the chi-square distribution. Specifi-
cally, if xi ∼ NC(0, 1) for i = 0, . . . ,M − 1, then

w =

M−1∑
i=0

|xi|2 (C.32)

is said to be a chi-square random variable with 2M degrees of freedom (there are M

complex terms in the summation, hence 2M real terms), denoted w ∼ χ2
2M and with PDF

fw(ξ) =
ξM−1e−ξ

(M − 1)!
. (C.33)

The chi-square is a special case of the gamma distribution, which features two distinct
parameters as opposed to only the number of degrees of freedom.

An expectation of particular interest in MIMO analysis, and which is invoked repeatedly
throughout the text, is

E

[
loge

(
1 +A

M−1∑
i=0

|xi|2
)]

=

∫ ∞

0

loge(1 +Aξ)
ξM−1e−ξ

(M − 1)!
dξ (C.34)

= e1/A
M∑
q=1

Γ(q −M, 1/A)

AM−q
, (C.35)

where Γ(·, ·) is the incomplete gamma function introduced in Appendix E and where we
have applied the identity [1060, 1061]

∫ ∞

0

loge(1 +Aξ) e−cξ ξM−1dξ = Γ(n) ec/A
M∑
q=1

Γ(q −M, c/A)

cq AM−q
. (C.36)

By means of the relationship provided in (E.12), the expectation in (C.35) can be rewritten
in the alternative form

E

[
loge

(
1 +A

M−1∑
i=0

|xi|2
)]

= e1/A
M∑
q=1

Eq
(
1

A

)
, (C.37)

where Eq(·) is an exponential integral function also introduced in Appendix E.
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The exponential distribution
For M = 1, the chi-square reverts to the exponential distribution, which thereby gives the
distribution of the squared magnitude of a zero-mean complex Gaussian. If x ∼ NC(0, σ

2),
then

f|x|2(ξ) =
1

σ2
e−ξ/σ2

, (C.38)

which, for σ2 = 1, reduces to f|x|2(ξ) = e−ξ. Of particular interest to MIMO is the
expectation

E

[
loge

(
1 +A |x|2

)]
=

∫ ∞

0

loge(1 +Aξ) e−ξ dξ (C.39)

= e1/A E1
(
1

A

)
, (C.40)

which is the special case of (C.37) corresponding to M = 1.

The chi distribution
If xi ∼ NC(0, 1) for i = 0, . . . ,M − 1, then

w =

√√√√M−1∑
i=0

|xi|2 (C.41)

is a chi random variable with 2M degrees of freedom and mean

E[w] =
Γ(M + 1/2)

Γ(M)
. (C.42)

Squaring a chi random variable, we obtain a chi-square random variable.

The Rayleigh distribution
For M = 1, the chi distribution reduces to the Rayleigh distribution. Therefore, the square-
root of an exponentially distributed variable gives a Rayleigh-distributed variable. Letting
x ∼ NC(0, σ

2),

f|x|(ξ) =
ξ

σ2
e−

1
2 ξ

2/σ2

. (C.43)

C.1.10 Convergence of sequences

Results on the convergence of sequences of random variables play a very important role in
information theory. We next classify the most relevant forms of convergence, focusing on
scalar random variables; similar notions apply to vectors, matrices, and functions.
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Convergence in distribution
A sequence of random variables {xn} is said to converge in distribution to another random
variable x if

lim
n→∞Fxn

(x) = Fx(x) (C.44)

at every x where Fx(x) is continuous. The formulation in terms of CDFs rather than PDFs
is not irrelevant, as the latter do not always converge. While relatively weak, in the sense
that it is implied by all other types of convergence in this section, the notion of convergence
in distribution can be extremely useful, as the next result illustrates.

Example C.1 (Central limit theorem)

Let x0, . . . , xN−1 be IID random variables with mean μ and variance σ2 < ∞ and let

yN =
1√
N

N−1∑
n=0

(xn − μ). (C.45)

Then, for N → ∞, yN converges in distribution to x ∼ N (0, σ2). This result, indispens-
able in engineering and in countless other disciplines, states that the normalized sum of an
increasing number of independent observations of a random event becomes progressively
Gaussian regardless of the underlying distribution—provided that its variance is bounded.
(If the variance is not bounded, there may be still convergence in distribution, only to a
non-Gaussian function.)

Next, we turn our attention to stronger forms of convergence that go beyond the limiting
distribution of a sequence.

Convergence in probability
A sequence of random variables {xn} is said to converge in probability (or weakly) to x

if, for every ε > 0,

lim
n→∞P

[ |xn − x| > ε
]
= 0. (C.46)

This indicates that the probability of outcomes deviating from x diminishes as the sequence
progresses. For every ε > 0 and δ > 0, there is an N such that P[|xn≥N − x| > ε] < δ.
However, there are no guarantees about specific realizations of xn≥N being within ε of x;
the guarantee is only that the probability thereof be smaller than δ.

Example C.2 (Weak law of large numbers)

Let x0, . . . , xN−1 be IID random variables with mean μ < ∞ and let

x̄N =
1

N

N−1∑
n=0

xn. (C.47)



670 Random variables and processes

Then, for N → ∞, x̄N converges in probability to μ.
This supremely important result affirms that the sample average converges to the ex-

pected value, thereby ensuring, in probability, an increasing stability as more and more
independent observations are thrown into the average. No condition is placed on the vari-
ance σ2

xn
because the convergence takes place (possibly at a slower rate) even if σ2

xn
is not

bounded.

Convergence almost surely
A sequence of random variables {xn} is said to converge almost surely (or strongly) to x

if it holds that

P

[
lim

n→∞xn = x
]
= 1. (C.48)

This form of convergence, denoted by xn
a.s.→ x, signifies that all the realizations not con-

vergent upon x have an aggregate probability of zero. For this reason, convergence almost
surely is also termed convergence with probability 1. Furthermore, this strong type of con-
vergence immediately implies the weaker convergence in probability.

Example C.3 (Strong law of large numbers)

Let x0, . . . , xN−1 be IID random variables with mean μ < ∞ and let

x̄N =
1

N

N−1∑
n=0

xn. (C.49)

Then, for N → ∞, we have that x̄N
a.s.→ μ. Under technical conditions only slightly more

stringent than those required for its weak counterpart, the strong law of large numbers
indicates that, beyond a certain N that depends on ε, all realizations of x̄n are within ε of
μ with probability 1.

The strong law continues to apply even if x0, . . . , xN−1 are independent but nonidenti-
cally distributed (IND), provided that their variances σ2

xn
are bounded and

∑N−1
n=0 σ2

xn
/n2

remains bounded for N → ∞.

Convergence in the mean-square sense
Finally, and given the importance of the concept of mean-square distortion, we present a
form of convergence involving a vanishing mean-square difference. A sequence of random
variables {xn} is said to converge in the mean-square sense to x if

lim
n→∞E

[
|xn − x|2

]
= 0. (C.50)

While weaker than convergence almost surely, convergence in the mean-square sense also
implies convergence in probability.
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C.2 Large random matrices

Many performance metrics in MIMO communication are functions of the eigenvalues of a
random matrix embodying the channel. For a Hermitian N×N matrix A, such eigenvalues
can be fully characterized by the empirical cumulative distribution

FN
A (ξ) =

1

N

N−1∑
i=0

1{λi(A) ≤ ξ}, (C.51)

where 1{·} is the indicator function, returning 1 if its argument is true and 0 otherwise.
FN
A (ξ), which gives the fraction of the eigenvalues λ0(A), . . . , λN−1(A) that fall below

ξ, is itself random. In many instances, however, FN
A (ξ) converges to a nonrandom limit,

FA(ξ), as N → ∞. This deterministic function, termed the asymptotic eigenvalue distribu-
tion, enables robust large-dimensional characterizations that are not subject to the vagaries
of specific realizations of A.

Driven by nuclear physics, the first results on the asymptotic eigenvalue distribution of
random matrices were derived by the physicist Eugene Wigner in the 1950s [1062, 1063].
By means of these asymptotic distributions, Wigner explained the statistics of experimen-
tally measured atomic energy levels. Since then, research on the large-dimensional behav-
ior of random matrices has continued to draw interest in physics, probability, statistics,
and, more recently, engineering. At first, Wigner considered an N ×N symmetric matrix
A with zeroes along the diagonal, and independent equiprobable ±1 upper-triangular en-
tries [1062]. For N → ∞, the averaged empirical distribution of the eigenvalues of A/

√
N

was shown to converge to the semicircle law

fA/
√
N (ξ) =

1

2π

√
4− ξ2 |ξ| ∈ [0, 2]. (C.52)

Subsequently, Wigner realized that the same result is obtained if the upper-triangle entries
are simply independent and zero-mean, not necessarily ±1 [1063].

If A is not symmetric and all its entries are IID, then the eigenvalues of A/
√
N are

complex and fall asymptotically uniformly on the unit circle of the complex plane, a result
commonly referred to as Girko’s full-circle law [1064].

A quantum leap was made in 1967, when Marčenko and Pastur [1065] derived the
asymptotic eigenvalue distribution of A = B + HDH∗ where B is deterministic and
Hermitian, H is N ×M with IID entries, and D is real, diagonal, and independent of H .
In its general form, the asymptotic eigenvalue distribution is not characterized explicitly,
but indirectly through its Stieltjes transform, which uniquely determines it. Since then, this
transform, which can be interpreted as an iterated Laplace transform, has played a funda-
mental role in the theory of large random matrices. In the case that B = 0 and D = I , with
H having unit-variance entries, the Marčenko–Pastur law for 1

MHH∗ emerges explicitly
as

f 1
M HH∗(ξ) = [1− β]+δ(ξ) + β

√
(ξ − a)(b− ξ)

2πξ
ξ ∈ [a, b], (C.53)
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where β = M/N , [z]+ = max(0, z) and

a =

(
1− 1√

β

)2

b =

(
1 +

1√
β

)2

. (C.54)

In turn,

f 1
M H∗H(ξ) =

[
1− 1

β

]+
δ(ξ) +

√
(ξ − a)(b− ξ)

2πξ
. (C.55)

Recall that the nonzero eigenvalues of HH∗ and H∗H coincide. For β ≤ 1, on the one
hand, HH∗ has M nonzero and (N −M) zero eigenvalues; a share (1− β) is thus zero,
as reflected by the mass point in (C.53). For β > 1, on the other hand, all eigenvalues of
HH∗ are nonzero and the mass point then moves to f 1

M H∗H(·).
The counterpart to the Marčenko–Pastur law with B = 0 and with D no longer diagonal

but Hermitian was reported by Silverstein, also in terms of its Stieltjes transform [1066].
Characterizations for progressively more general matrices, e.g., Gaussian matrices with

certain correlation structures, have continued to appear in the literature, often in the Stielt-
jes domain or else through their asymptotic moments. Recently, an important advance was
the realization that the noncommutative free probability theory introduced by Voiculescu
in the 1980s applies to random matrices [1067]. In this theory, the traditional notion of
independence of random variables is replaced by the concept of freeness. While, unless
they share the same eigenvectors, we cannot find the eigenvalues of a sum of matrices
from their individual eigenvalues, for asymptotically free random matrices [1068, 1069]
the asymptotic eigenvalue distribution of the sum is obtainable from their individual ones.
In free probability, the role of the Gaussian distribution in the central limit theorem of clas-
sical probability is taken by the semicircle law in the sense that the asymptotic eigenvalue
distribution of the normalized sum of free random matrices converges to (C.52).

The fact that abstract mathematical tools such as free probability can now be applied to
study MIMO communication is a reflection of the “unreasonable effectiveness of mathe-
matics” that Wigner himself, and others have marveled at [1070, 1071].

C.3 Random processes

A random process is a random function of time or, alternatively, a collection of random
variables (possibly vectors or matrices) indexed by time. We next illustrate some relevant
notions, concentrating for the sake of brevity on continuous-time processes; with the ap-
propriate integrals replaced by suitable summations, the same ideas apply to discrete-time
processes. Of particular interest are Gaussian random processes, any finite collection of
whose samples are jointly Gaussian. If a Gaussian process is input to a linear time-invariant
filter, the output is sure to be also a Gaussian process.

Given the mean μx(t) = E
[
x(t)

]
, the autocovariance of a random process x(t) at time

t and lag τ is

Rx(t, τ) = E
[(
x(t)− μx(t)

)(
x(t+ τ)− μx(t+ τ)

)∗]
, (C.56)
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which in general is a function of both t and τ . As for random variables, we use the term
autocorrelation interchangeably with autocovariance.

C.3.1 Stationarity

A random process x(t) is stationary if time shifts do not affect its distribution. Then, μx is
not a function of time. Likewise, the autocorrelation is not a function of time, but only of
lag, with Rx(τ) measuring the similarity between samples of the process separated by τ ;
at lag τ = 0, in particular, Rx(0) gives the power of the process. All higher-order moments
are equally invariant to time shifts.

Having a mean and autocorrelation that are invariant to time shifts suffices for a pro-
cess to be wide-sense stationary, even if higher-order moments are not invariant. Clearly,
all stationary processes are wide-sense stationary but not vice versa and, to emphasize the
difference, stationary processes are sometimes dubbed strict-sense stationary. In the spe-
cial case of Gaussian processes, the notions of wide-sense and strict-sense stationarity are
equivalent (all higher moments derive from the first two), but in general one is more lax
than the other.

The power spectral density or power spectrum of a wide-sense stationary process is
defined as the Fourier transform (with respect to the lag) of the autocorrelation, that is,

Sx(ν) =

∫ ∞

−∞
Rx(τ) e

−j2πντ dτ. (C.57)

C.3.2 Ergodicity

A random process x(t) is ergodic if its distribution can be deduced from a single, suffi-
ciently long, realization. This requires that the time-average of x(t) and of x(t)x∗(t + τ)

equal (asymptotically) the mean and the autocorrelation, respectively, i.e., that

lim
T→∞

1

T

∫ T/2

−T/2

x(t) dt = E
[
x(t)

]
(C.58)

lim
T→∞

1

T

∫ T/2

−T/2

x(t)x∗(t+ τ) dt = E
[
x(t)x∗(t+ τ)

]
. (C.59)

The left-hand sides of the above identities do not depend on t and hence there is only hope
for them to hold if x(t) is wide-sense stationary. Moreover, for the ergodicity to extend to
all other moments, strict-sense stationarity is required and thus an ergodic process needs
to be stationary. Although the converse need not hold, i.e., a stationary process need not be
ergodic, under mild conditions it does: a stationary process is ergodic if its autocorrelation
decays to zero sufficiently rapidly in the lag, sufficing that∫ ∞

0

|Rx(τ)| dτ < ∞. (C.60)

Equivalently, a stationary process is ergodic if its power spectrum exists free of delta func-
tions [68].



D Appendix D Gradient operator

The gradient of a scalar-valued function f(x) of vector argument x, denoted by ∇xf(x),
yields a vector-valued function that, at each point x, identifies the direction of greatest in-
crease of f(·), with a magnitude that equals the corresponding rate of increase. It is nothing
but the generalization to multiple dimensions of the standard one-dimensional derivative.

In rectangular coordinates, where x = [x0 x1 x2],

∇f(x0, x1, x2) =
∂f(x0, x1, x2)

∂x0
e0 +

∂f(x0, x1, x2)

∂x1
e1 +

∂f(x0, x1, x2)

∂x2
e2, (D.1)

where e0, e1, and e2 are unit vectors along the corresponding coordinates. More generally,
for vectors x with an arbitrary number of dimensions, and with the allowance of them
being complex, we can compactly write

[∇xf(x)]j =
∂f(x)

∂[x∗]j
, (D.2)

which can be further extended to express the gradient of a scalar-valued function f(X) of
a complex matrix argument X as

[∇Xf(X)]i,j =
∂f(X)

∂[X∗]i,j
. (D.3)

Example D.1

For the linear function of complex matrix argument f(X) = tr(R0X
∗R1),

∇X tr(R0X
∗R1) = R1R0 (D.4)

and, as a corollary [127, chapter 2]

∇x (x∗r) = r. (D.5)

Furthermore, because a vector and its conjugate can be regarded as independent for the
purpose of gradient computations,

∇x(r
∗x) = 0. (D.6)

Example D.2

For the quadratic form f(x) = x∗Rx, the gradient equals [127, chapter 2]

∇x(x
∗Rx) = Rx (D.7)
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while, for f(X) = tr(R0XR1X
∗),

∇X tr(R0XR1X
∗) = R0XR1 (D.8)

Example D.3

A scalar function of matrix argument that appears often in this text is f(X) = loge det(X),
with gradient

∇X loge det(X) = X−1. (D.9)

From this expression, in turn, (D.8) and the chain rule of differentiation lead to

∇X loge det
(
I +X∗R0XR1

)
= R0XR1

(
I +X∗R0XR1

)−1
. (D.10)

For definitions of the gradient operator in cylindrical and spherical coordinates, the
reader is referred to [1072].



E Appendix E Special functions

In order to maximize the generality, elegance, and meaning of their analysis, researchers
strive for closed-form results, meaning a combination and composition of elementary func-
tions via the four basic operations. These elementary functions include algebraic functions
(solutions of a polynomial equation with integer coefficients) and transcendental functions
(including exponentials, logarithms, trigonometric functions, and their inverses).

There are other functions that, while not elementary, appear frequently enough and dis-
play sufficiently important properties to have their own names and to be readily tabulated
or computable. It is common to relax the interpretation of “closed-form” to also encom-
pass expressions involving these special functions. In this appendix, we survey the special
functions that appear throughout this textbook [1073].

E.1 Gamma function

Perhaps the most common special function, and therefore the least special of them all, is
the gamma function. For arguments whose real part is positive,

Γ(z) =

∫ ∞

0

ξz−1e−ξ dξ, (E.1)

which, for positive integers arguments, reduces to Γ(n) = (n − 1)!, indicating that the
gamma function can be interpreted as an interpolator for the factorial function. For nonin-
teger arguments, the best known value is Γ(1/2) =

√
π.

Partial integrals with the same integrand as (E.1) are referred to as incomplete gamma
functions, of which two varieties exist: the upper incomplete gamma function

Γ(z, s) =

∫ ∞

s

ξz−1e−ξ dξ, (E.2)

and the lower incomplete gamma function

γ(z, s) =

∫ s

0

ξz−1e−ξ dξ. (E.3)
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E.2 Digamma function

The digamma function is the logarithmic derivative of the gamma function, i.e.,

ψ(z) =
d

dz
loge Γ(z) (E.4)

=
Γ̇(z)

Γ(z)
, (E.5)

which, for integer arguments, can be expressed as

ψ(N) = −γEM +

N−1∑
�=1

1

�
(E.6)

given the Euler–Mascheroni constant

γEM = lim
N→∞

(
N∑

n=1

1

n
− loge N

)
(E.7)

≈ 0.5772. (E.8)

The digamma function satisfies the recursion

ψ(N + 1) = 1 +
1

N

N∑
n=1

ψ(n). (E.9)

E.3 Exponential integrals

For real nonzero arguments, the exponential integral function is

Ei(z) =
∫ z

−∞

eξ

ξ
dξ, (E.10)

from which a class of functions, parameterized by an order n, is defined as

En(z) =
∫ ∞

1

e−zξ

ξn
dξ. (E.11)

These functions, which we loosely refer to as exponential integrals, are related with the
gamma function via

En(z) = zn−1 Γ(1− n, z), (E.12)

with the most commonly encountered exponential integral being

E1(z) = −Ei(−z) (E.13)

= Γ(0, z). (E.14)
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E.4 Bessel functions

Bessel functions are solutions to a famed differential equation, Bessel’s equation. These
solutions are parameterized by an order, the most important such orders being integers or
half-integers.

Bessel functions of the first kind, denoted by Jn(x), are solutions that are finite at the
origin for integer n. They can be expressed as an infinite series or in the integral forms

Jn(x) =
1

2π

∫ π

−π

e−j(nξ−x sin ξ) dξ (E.15)

=
1

π

∫ π

0

cos(nξ − x sin ξ) dξ. (E.16)

From Jn(·), one can further define the modified Bessel functions of the first kind as

In(x) = j−nJn(jx) (E.17)

and, in due course, the modified Bessel functions of the second kind as

Kn(x) =
π

2

I−n(x)− In(x)

sin(nπ)
. (E.18)

E.5 Q-function

The Q-function is the tail probability of a standard Gaussian distribution. If x ∼ N (0, 1),
then Q(x) = P[x > x] and thus the CDF of x satisfies Fx(x) = 1−Q(x). The usual form
for Q(·) is

Q(x) =
1√
2π

∫ ∞

x

e−ξ2/2 dξ, (E.19)

which can be rewritten as the finite-range integral

Q(x) =
1

π

∫ π/2

0

exp

(
− x2

2 sin2 φ

)
dφ. (E.20)

For positive arguments, the Q-function can be bounded as

x

1 + x2
e−x2/2

√
2π

< Q(x) <
1

x

e−x2/2

√
2π

, (E.21)

where the upper bound can be relaxed into the popular Chernoff bound

Q(x) <
1

2
e−x2/2. (E.22)
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Other upper and lower bounds are given in [1074]. Alternatively, a widely valid approxi-
mation is

Q(x) ≈ 1
π−1
π x + 1

π

√
x2 + 2π

e−x2/2

√
2π

, (E.23)

which, like the bounds, evidences that the tail decays exponentially fast.
One can also relate the Q-function with the complementary error function via

Q(x) =
1

2
erfc

(
x√
2

)
, (E.24)

where

erfc(x) =
2√
π

∫ ∞

x

e−ξ2 dξ. (E.25)

E.6 Hypergeometric functions

A hypergeometric function pFq(a0, . . . , ap−1; b0, . . . , bq−1;x) is defined by its series be-
ing hypergeometric, meaning that the ratio of consecutive terms is a rational function of
the summation index. If cn and cn+1 are the nth and (n+ 1)th terms in the series, then

cn+1

cn
=

P (n)

Q(n)
, (E.26)

where P (n) and Q(n) are polynomials. We identify two hypergeometric functions in par-
ticular.

The Kummer confluent hypergeometric function is

1F1(a; b;x) =

∞∑
n=0

(a)n
(b)n

xn

n!
, (E.27)

where (a)n = x · (x+ 1) · · · (x+ n− 1) with (a)0 = 1. In integral form,

1F1(a; b;x) =
Γ(b)

Γ(b− a) Γ(a)

∫ 1

0

extta−1(1− t)b−a−1dt. (E.28)

The Gauss hypergeometric function is

2F1(a0, a1; b;x) =

∞∑
n=0

(a0)n(a1)n
(b)n

xn

n!
. (E.29)



F Appendix F Landau symbols

The Landau symbols O(·) and o(·) allow describing, in terms of simpler functions, the
limiting behavior of a function as its argument approaches a particular value or tends to
infinity. We present these two symbols in the simplest possible way that suffices for their
usage in this book.

A function f(x) is said to be O(
g(x)

)
, with g(·) being another—ideally simpler—

function, if [1075]

|f(x)| ≤ b |g(x)| (F.1)

for some constant b and all values of x.
In turn, f(x) is said to be o

(
g(x)

)
if

f(x)

g(x)
→ 0 (F.2)

for x approaching a certain value or tending to infinity, depending on the behavior being
described.
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G Appendix G Convex optimization

G.1 Convex sets

A set is convex if it contains all segments between any two of its points, meaning that it is
free of indentations. An example of convex set is the one depicted in Fig. 5.4.

G.2 Convex and concave functions

A real-valued function f(x) is convex if it satisfies

f
(
θx0 + (1− θ)x1

) ≤ θf(x0) + (1− θ)f(x1) (G.1)

for any real vectors x0 and x1 on a certain domain and for every real scalar θ ∈ [0, 1].
This implies that the graph of the function lies below any chord, i.e., below any segment
connecting two points of that graph.

If the inequality in (G.1) is strict, then the function is strictly convex. Conversely, if the
inequality is a strict equality, then the function is linear.

A function f(·) is concave (respectively strictly concave) if −f(·) is convex (respec-
tively strictly convex), meaning that its graph lies above any chord. Examples of concave
functions are shown in Fig. G.1.

G.3 Convex optimization problems

An optimization problem has the form

minimize f(x) (G.2)

subject to gi(x) ≤ di i = 0, . . . , N − 1,

where f(·) is the objective or cost function whereas gi(·) are the constraint functions. The
solution x� satisfies f(x�) ≤ f(x) for every vector x meeting the N constraints.

If f(·) as well as g0(·), . . . , gN−1(·) are convex, then the optimization problem is said
to be convex. This means that the set defined by the constraint functions, over which the
optimum is to be found, is convex and the objective function thereon is also convex. Convex
problems can be interpreted as a generalization of linear problems, which are those where
f(·) and g0(·), . . . , gN−1(·) are linear functions.
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f(x)

x

f(x)

x

�Fig. G.1 Left, nonmonotonic concave function of a real scalar argument. Right, monotonically

increasing concave function.

If f(·) is concave, then the problem of finding its maximum over a convex set readily
maps to (G.2) with the objective function given by −f(·).

While, in general, the solution of generic optimizations may pose considerable difficulty,
convex problems can be solved reliably and efficiently even when they involve vectors with
many dimensions. For an overview of convex optimization procedures and algorithms,
the reader is referred to textbooks such as [1076]. Convex optimization problems arise
frequently in communications and, in particular, in MIMO.

A key advantage of convex problems over nonconvex ones is that, if a local minimum
exists, then it is a global minimum. As a result, any set of necessary conditions character-
izing a minimum are also sufficient for global optimality.

G.4 KKT optimality conditions

The Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient conditions char-
acterizing the solution to a convex problem. In order to present them, it is useful to rewrite
(G.2) distinguishing between those constraints that are inequalities and those that are strict
equalities. Also, by suitably modifying the constraint functions, we can set all the con-
straints to zero, obtaining

min f(x) (G.3)

s.t. gi(x) ≤ 0 i = 0, . . . ,M ′ − 1

hj(x) = 0 j = 0, . . . ,M − 1.

Then, the KKT conditions characterizing x� are

∇f(x�) +

M ′−1∑
i=0

λ′i ∇gi(x
�) +

M−1∑
j=0

λj∇hj(x
�) = 0 (G.4)

gi(x
�) ≤ 0 i = 0, . . . ,M ′ − 1
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hj(x
�) = 0 j = 0, . . . ,M − 1

λ′i ≥ 0 i = 0, . . . ,M ′ − 1

λ′i gi(x
�) = 0 i = 0, . . . ,M ′ − 1,

where λ′0, . . . , λ
′
M ′−1 and λ0, . . . , λM−1 are the so-called KKT multipliers.

The KKT conditions play an important role in convex optimization, often serving as
targets for the algorithms. Moreover, sometimes the KKT conditions can be analytically
resolved, yielding expressions that characterize the solution directly.

G.5 Lagrange multipliers

If there are no inequality constraints, but only equality ones, the solution of the KKT con-
ditions reverts to the method of Lagrange multipliers. Consider the problem

min f(x) (G.5)

s.t. hj(x) = 0 j = 0, . . . ,M − 1.

If we augment the objective function with a weighted sum of the constraint functions we
obtain the so-called Lagrangian function

L(x, λ0, . . . , λM−1) = f(x) +

M−1∑
j=0

λjhj(x), (G.6)

where λ0, . . . , λM−1 are termed Lagrange multipliers.
Any point x� where all partial derivatives of L(·) are zero corresponds to an extreme

point (minimum or maximum) that satisfies the equality constraints. If f(·) is convex or
concave, then this extreme point is guaranteed to be the global one. The conditions satisfied
by x� can be written as

∇xL(x
�) = ∇f(x�) +

M−1∑
j=0

λj∇hj(x
�) = 0 (G.7)

hj(x
�) = 0 j = 0, . . . ,M − 1,

which, indeed, can be seen to be a special case of (G.4).
Often, the objective functions encountered in communications are not only convex or

concave, but further monotonic in quantities of interest (see Fig. G.1). Taking advantage
of that, inequality constraints can be tightened into strict equalities, paving the way for
the application of Lagrange multipliers directly, rather than the more general KKT con-
ditions. Examples include the spectral efficiency or the error probability, both of which
improve monotonically with the signal power in most settings; then, any applicable power
constraints can be considered directly as equalities.
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G.6 Jensen’s inequality

As stated earlier, the inequality in (G.1) reflects that the graph of a convex function lies be-
low any chord. This generalizes into the widely utilized Jensen’s inequality [1077]. Given
a convex function f(x) and the vectors x0, . . . ,xN−1 in its domain,

f

(∑N−1
i=0 ai xi∑N−1
i=0 ai

)
≤

∑N−1
i=0 aif(xi)∑N−1

i=0 ai
(G.8)

for any positive coefficients a0, . . . , aN−1. As a special case, if ai = 1 for 0 = 1, . . . , N−1,
the weighted sum gives the average and thus, if the vectors are random variables, we can
write

f
(
E[x]

) ≤ E
[
f(x)

]
. (G.9)

If f(·) is concave, rather than convex, the above inequalities are simply reversed.
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[67] S. Verdú, “Fifty years of Shannon theory,” IEEE Trans. Inform. Theory, vol. 44,
no. 6, pp. 2057–2078, 1998.

[68] J. Doob, Stochastic processes. Wiley, 1990.
[69] J. G. Kreer, “A question of terminology,” IEEE Trans. Inform. Theory, vol. 3, p.

208, Sep. 1957.
[70] J. M. Geist, “Capacity and cutoff rate for dense M-ary constellation,” Proc. IEEE

Military Commun. Conf. (MILCOM’90), pp. 768–770, Sep. 1990.
[71] A. Lozano, A. M. Tulino, and S. Verdú, “Optimum power allocation for parallel
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central limit theorem, 137, 145, 146, 668, 673, 676
centroid, 370
CESM method, 243, 245, 270, 360, 362
chain rule

differential entropy, 10
entropy, 8
mutual information, 17, 268, 275, 353, 534

channel capacity, 222
channel diagonalization, 305, 307, 308, 326, 361, 362,

449, 450, 461, 521
channel dispersion, 109
channel estimation, 111–113, 117, 121, 123, 195, 275,

364, 410, 532, 534, 583, 585, 628, 630
channel hardening, 336, 583, 593, 619, 622, 631
channel inversion power control, 251
channel law, 18, 19, 22, 31, 38, 39, 222, 252, 357
channel order, 76, 79
channel-state information, see CSI
channel-state information at the receiver, see CSIR
channel-state information at the transmitter, see CSIT
Chase combining, 37
Chernoff bound, 682
chi distribution, 672
chi-square distribution, 313, 322, 393, 504, 521, 524,

671
chip period, 107, 108
Cioffi, xx
circuit power consumption, 266, 380, 633
circulant matrix, 239, 659
circular array, 173
circular convolution, 98–100, 105, 106, 655
circular polarization, 186
circular symmetry, 667, 669
Clarke, 148, 151, 153, 155, 182, 191, 198, 201, 273,

277, 279, 344
clipped Gaussian distribution, 87
clipping, 87
cloud, 647
code-division multiple access, see CDMA
codebook, 18, 25, 38, 74, 366, 442, 471, 475
coded bit, 25
coded modulation, 25
coded modulation library, 229
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codeword, 17, 69, 76, 104, 446
BICM, 30, 355, 358
complex Gaussian, 405
dirty-paper coding, 474, 482
error probability, 20
latency, 36
layered architecture, 355
length, 35, 211
memoryless channel, 19
MIMO, 38
minimum-distance decoding, 24
OFDM, 243
power constraint, 81, 85
random coding, 25
single vs multiple, 350, 351, 389, 447, 501

coding rate, 25, 355, 420
coherence bandwidth, 160, 168, 169, 196, 197, 267,

269, 271, 275, 281, 282, 343, 344, 367, 463, 541
coherence distance, 151, 173, 176, 196
coherence time, 153, 157, 634

block fading, 168, 196, 282, 343, 344, 463, 541
feedback, 248, 365, 367
OFDM, 236, 269
pilot overhead, 281, 535
power control, 516
precoding, 516, 574

collaborative upper bound, 454, 469, 484, 492
column rank, 90, 658
column space, 657, 661
complex baseband equivalent, 59, 77
complex baseband equivalent channel, 62
complex envelope, 59
complex Gaussian

differential entropy, 10
dirty-paper coding, 475
distribution, 668
interference, 282
ML estimation, 113
MMSE estimation, 41
signal distribution, 4, 13, 84, 223, 282, 308, 313,

343, 394, 405, 442, 475
Wishart distribution, 670

complex Gaussian matrix, 669
complex Gaussian vector, 669
complex pseudo-baseband equivalent, 63, 77, 144
complexity, 36, 99, 100, 104, 109, 211, 321, 332, 351,

358, 364, 389, 574, 618, 633
compressed sensing, 123
concave function, 685, 688

capacity, 219, 226
mutual information, 241, 308
power allocation, 523
power control, 515
precoding, 449, 469, 479, 480, 515
spectral efficiency, 265, 277, 279, 344
xESM methods, 244

conditional Gaussian distribution, 670
conditional-mean estimator, 40, 41, 44, 50, 276, 277
confidence interval, 598, 612
conjugate beamforming, 620
constant envelope, 86
constellation-constrained capacity, 226
constrained capacity, 226
contours of constant weighted sum spectral efficiency,

424
convergence

almost surely, 250, 259, 265, 310, 336, 408, 674
in distribution, 406, 673
in probability, 113, 673
mean-square sense, 674

convex function, 49, 265, 279, 284, 685, 688
convex hull, 478, 479
convex optimization, 685

BC power allocation, 523, 563, 574
dual-MAC precoding, 466, 480, 487, 526, 561
MAC power control, 517
MAC precoding, 445, 449, 460, 464
pilot overhead, 541, 555
single-user power allocation, 318
single-user precoding, 316
waterfilling, 237

convex relaxation, 572
convex set, 478, 685
convolution, 62, 65, 66, 77, 89, 98–100, 105, 106,

160, 231, 655
convolution matrix, 77, 231
cooperation, 632, 647
Cooperation in Science and Technology, see COST
coordination, 629
coprimeness, 90
corner point, 443, 444, 447, 448, 452, 456, 457, 472
correlation, 368, 666
correlation coefficient, 666
correlation distance, 138
correlation matrix, 120, 180, 334, 461, 629, 630, 666
COST-231, 201

Hata, 141
Walfisch–Ikegami, 142

COST-273, 201
Costa, 475
covariance matrix, 666
crest factor, 86
cross-polar discrimination, 185, 186, 339
CSI, 81, 85, 247, 263, 305, 321, 340, 389, 462, 463,

490, 531, 543, 550, 581, 585, 599
CSIR, 247, 248

BC with CSIT, 471, 521, 557
duality, 305, 466, 467, 471, 517
MAC with CSIT, 442, 444, 448
MAC without CSIT, 462, 463
pilot-assisted, 273, 275, 279, 283
SDMA, 452
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side information, 267, 268, 270, 490
single-user with CSIT, 247, 305, 431
single-user without CSIT, 252, 260, 279, 321, 389,

390, 431
CSIT, 248

BC, 471, 485, 491, 492, 523, 531, 554, 557, 574,
621

duality, 305, 466, 467, 469, 471, 517, 521
MAC, 442, 444, 513
single-user, 247, 305, 311, 321, 364, 389, 431

cubic metric, 86
cumulative distribution function, see CDF
cyclic permutation, 662
cyclic prefix, 77, 98–100, 102, 104, 105, 107, 110,

116, 162, 168, 171, 233, 235, 236, 239, 269, 287
cyclostationarity, 158

D-BLAST, 355
data stream, 81
decimation, 197
decision region, 23
decoder, 18, 23, 31, 35, 38, 84, 472
decoding order, 353, 446–448, 454, 466, 479
decorrelator, 390, 503
degradedness, 477
degrees of freedom, see DOF
delay, 63, 64, 66, 76, 88, 91, 93, 95, 171, 193, 365
delay spread, 164, 166, 170, 203, 236, 269, 272, 441,

628
delay-limited capacity, 249
delta function, 63, 145, 147, 155, 160, 163, 335, 653,

677
demodulation, 24, 26, 66
determinant, 662
deterministic equivalent, 335
device-to-device, 204, 647
DFT, 98, 100, 102, 104, 107, 234, 239, 655
diagonal BLAST, see D-BLAST
differential entropy, 9, 11, 442
diffraction, 134, 144
digamma function, 312, 670, 681
digital feedback, 248, 364, 366
digital subscriber lines, 649
digital-to-analog conversion, 66, 71, 380, 633
dimensional overloading, 321, 327, 333, 423, 444, 452
Dirac delta function, see delta function
direction of arrival, xix
direction of departure, xix
dirty-paper coding, see DPC
discrete constellations, 4

BICM, 30, 358
coded modulation, 25
entropy, 8
extended constellation, 472
link adaptation, 228, 263
MMSE estimation, 43
mutual information, 15, 396

precoding, 307, 309, 325, 445, 448, 450, 462, 482
signal-space coding, 25
spatial modulation, 379

discrete Fourier transform, see DFT, 185, 191, 655
discrete-time Fourier transform, 239, 655
dispersive channel, 61, 66, 67, 70, 160
diversity, xix, 81, 173, 183, 186, 255, 313, 315, 398,

634
diversity–multiplexing tradeoff, see DMT
DMT, 255, 315, 355, 398, 407
DOF

BC, 484, 487, 489–491, 529, 538, 549, 554
MAC, 451, 452, 457, 459, 462–464, 508, 516
multiuser, 433, 492, 519, 583
single-user, 221, 266, 280, 307, 311, 313, 315, 332,

333, 342, 347, 350, 398, 406
Doppler spectrum, 153, 158, 168, 197, 198, 200, 246,

267, 269, 275, 277, 279, 343, 344, 346
Doppler-delay spreading function, 167
downconversion, 59, 61, 63, 75, 77
DPC, 475–477, 480, 482, 490, 493
drop, 201, 598
duality, 305, 417, 464, 471, 472, 479–482, 485, 486,

490, 517, 521, 526, 561, 567, 621, 636
duplexing, 490, 531, 550, 582, 583, 634
dynamic programming, 250

EESM method, 243, 245, 270, 360, 362
eigenfunction, 184
eigenvalue, 47, 403, 659, 660, 662, 675, 676

channel, 305, 306, 308, 309, 323, 337, 468
correlation, 184, 325–327, 330, 331, 394, 492
LOS component, 317
precoded channel, 335, 340, 361, 393, 559
precoder, 376

eigenvalue decomposition, 184, 317, 659, 660
eigenvector, 184, 189, 306, 309, 315, 317, 320, 326,

327, 376, 393, 394, 403, 492, 659, 660
electrically-steerable parasitic array radiator, see

ESPAR
elevation, 147, 151, 173, 204
empirical eigenvalue distribution, 335, 337, 340
encoder, 17, 25, 38, 84, 472
encoding order, 466, 474, 477, 478, 480
endfire, 173, 182, 185
energy, 73
energy per bit, 212, 218, 226, 227, 251, 261, 265, 310,

326, 330, 342, 350, 397
energy per symbol, 74, 85, 282, 439
entropy, 7, 9
entropy rate, 10
equal spectral efficiencies, 426
equalization, 70, 88, 161, 241
equalizer, 240
ergodic capacity, 259–261, 263, 270, 271, 284, 309,

316, 322, 337, 339, 348, 360, 362, 457, 460
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ergodic setting, 247, 249, 258, 271, 309, 316, 439,
456, 460, 486

ergodicity, 21, 72, 85, 123, 155, 677
error function, 683
error probability, 20, 22, 35, 360, 361, 418
ESPAR, 380
estimation, 113
estimation bias, 40, 117, 120
estimation theory, 39
Euclidean distance, 662
Euclidean norm, 662
Euler, 59
Euler–Mascheroni constant, 262, 280, 681
excess antennas, 584, 589, 599, 612, 627, 633
excess bandwidth, 22, 70, 74, 75, 108, 109, 287
excess kurtosis, 668
expectation, 666
exponential correlation model, 183
exponential distribution, 10, 146, 393, 504, 522, 672
exponential integral, 251, 259, 260, 263, 322, 323,

681
exponential-effective SNR mapping, see EESM

method
extended constellation, 473
extrinsic information, 27, 34

factorial function, 680
fading, 144
fairness, 424, 426–429, 444, 508
Fano, 237
far field, 61, 139, 172
fast-Fourier transform, see FFT, 655
favorable propagation, 584, 635
FDD, xxiv, 246, 248, 365, 490, 538, 549, 582, 583,

634
FDMA, 421, 424, 431, 451, 452
feedback, 532
feedback symbols, 490, 491, 549, 557
FFT, 98, 100, 105, 110, 235, 655
filtered noise, 391, 592
filtering, 51
finite impulse response, see FIR
finite-length coding, 36, 243, 351, 360, 418
FIR, 76, 79, 88, 93, 95, 99
forward link, 182, 191, 417, 465, 582, 583, 618, 621,

630, 631
forward–reverse SNR ratio, 544, 582, 584
Foschini, xx, 300, 354, 355
Fourier, 653
Fourier codebooks, 373
Fourier matrix, 100, 185, 189, 375, 659
Fourier transform, 58, 59, 62, 63, 98, 154–156, 166,

168, 187, 653, 677
fractional power control, 599, 609, 612, 622
fractional reuse, 603
frame error probability, 21
free probability, 676

free space, 139
frequency band, 421, 428
frequency correlation, 159
frequency offset, 109
frequency selectivity, 159
frequency-division, 421, 424, 433, 451, 452
frequency-division duplexing, see FDD
frequency-division multiple access, see FDMA
frequency-domain equalization, 98
frequency-flat channel, 76, 79, 97, 107, 110, 115, 118,

172
frequency-flat fading, 159

BC, 470
channel estimation, 197, 199, 274
MAC, 439
single-user, 246, 248, 253, 263, 264, 277, 313, 341,

343, 346, 362, 389, 390
frequency-selective channel, 76, 79, 230
frequency-selective fading, 160, 190, 269, 271, 360,

389
Friis, 139
Frobenius norm, 79, 662
front-end, 72, 73, 77
full duplexing, xxiv, 246, 248, 364, 490, 550, 634
full-dimension MIMO, 636
full-rank, 92, 98, 113, 190, 305, 307, 311, 331, 376,

452, 484, 485, 658, 660

Gallager, 25
game theory, 572
gamma distribution, 405
gamma function, 146, 260, 286, 314, 369, 670, 672,

680, 681
Gans, xx
Gauss, 40
Gauss–Markov, 158, 167, 274
Gaussian, 223, 240, 282, 668
Gaussian channel, 212, 217, 220, 222
Gaussian noise, see noise
Gaussian random process, 676, 677
generalized decision-feedback equalizer, 353
generalized proportional fairness, 427
generalized spatial modulation, 380
geometric programming, 517, 574
Girko, 675
Gold codes, 115
Golden, 354
gradient, 46, 49, 92, 678
Grassmann manifold, 368, 370
Grassmannian codebook, 371, 376
Grassmannian packing, 369
Gray mapping, 8, 28, 32, 34, 357
gross spectral efficiency, 593, 595, 609, 614, 616, 626
group detection, 360
GSM, xv, 161

Hadamard product, 185
hallway, 189
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Hankel matrix, 112, 115, 659
hard decision, 24
hardware, 633
Hata, 140
Hermitian matrix, 658, 660, 663, 675
hexagonal network, 586, 598, 603, 605, 612, 623
high-SNR regime, 217

capacity, 220, 225, 240, 306, 311, 331, 337, 342,
440, 451, 454, 461, 482, 484, 487

MMSE, 43
mutual information, 13, 14, 16
spectral efficiency, 240, 280, 281, 286, 346, 396,

406, 433, 484, 528, 543, 562, 563, 581
Householder codebook, 376
Householder matrix, 376
hybrid precoding, 380, 633
hybrid-ARQ, 37, 271, 273, 289, 361, 364
hypergeometric function

Gauss, 638, 683
Kummer confluent, 639, 683

hyperplane, 421, 425, 444, 447

I-MMSE relationship, 45, 241, 308, 450
IDFT, 100, 102, 104, 107, 234, 655
IEEE 802.11ac, xxi
IEEE 802.11ad, xxi, 204
IEEE 802.11ax, xxi
IEEE 802.11ay, xxi, 204
IEEE 802.11n, xxi
IEEE 802.16, xxi, 201
IIR, 88
ill-conditioned, 393
impulse response, 62, 108
in-phase, 4, 5, 31, 32, 43, 59
incomplete gamma function, 260, 286, 314, 680
incremental redundancy, 37
independence, 533

additive impairments, 632
channel entries, 120, 184, 188, 189, 200, 321, 407,

508, 675
channel matrices, 189
coded bits, 27, 38
codeword symbols, 19, 22, 30, 73, 264, 341, 342,

475
fading, 285, 289, 336
fading blocks, 159
interference, 283
MMSE estimation, 532, 585, 592, 597
multipath components, 145, 150
noise, 78, 539
pilot and data symbols, 275
precoders, 522, 540, 626
random variables, 8, 10, 12, 137, 666, 669, 674
ray delays, 164
real and imaginary parts, 5, 32
reverse and forward fading, 248
signal and noise, 13, 16, 44, 45, 222

signal streams, 240, 300, 305
signals, 463, 470, 511
subcarrier fading, 270
WSSUS, 166

indicator function, 675
indoor environment, 143, 147, 149, 163, 164, 166,

170, 189
infinite impulse response, see IIR
infinite-PSK, 5, 13
infinite-QAM, 5, 14
information, 6, 11, 18, 21
information density, 35
information divergence, 11, 12
information stability, 21, 231, 255, 271, 273
INR, 286, 348
intercarrier interference, 171
intercept, 139, 142
interference, 519, 611

colored, 410
data upon pilot symbols, 590
multiantenna, 88, 93, 94, 328, 585
other-beam, 492
other-cell, 418, 592, 599, 602, 605, 606, 619, 625,

628, 631
other-stream, 406, 409, 491, 512
other-user, 71, 282, 347, 431, 433, 446–449, 453,

474–476, 480, 511, 595, 602, 625, 631
pilot contamination, 586

interference alignment, 648
interference-to-noise ratio, see INR
interleaving, 25, 30, 32, 34
interpolation, 51, 123
intersymbol interference, see ISI
intrinsic information, 27
inverse discrete Fourier transform, see IDFT
Iospan Wireless, xx
irregular pilot sequences, 589
ISI, 66, 69, 70, 88, 107, 160, 171, 241, 353, 472
isotropic matrix, 341
isotropic signaling, 82
isotropic vector, 265, 341
iterative decoding, 27, 35
iterative waterfilling, 449, 450, 457, 480

Jakes, 148, 151, 153, 155, 182, 191, 198, 201, 273,
277, 279, 344

Jensen’s inequality, 260, 268, 284, 313, 321, 331, 537,
538, 688

joint spatial division and multiplexing, 557

k-means clustering, 370
Kailath, xx
Kalman filter, 51
Karhunen–Loève expansion, 184
Karush–Kuhn–Tucker conditions, see KKT conditions
Kerdock codebooks, 375
keyhole channel, 189, 317
KKT conditions, 686
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Kronecker model, 120, 180, 184, 187, 309, 312, 315,
317, 330, 334–336, 340, 409, 461

Kronecker product, 112, 114, 181, 663
Kullback–Leibler divergence, 11, 12
kurtosis, 86, 261, 265, 310, 327, 328, 667

L-value, 26, 29, 34, 357, 358, 360, 361
Lagrange multipliers, 235, 240, 484, 687
Lagrangian, 237, 483, 527, 570
Landau symbols, 13, 217, 684
Laplace transform, 675
Laplacian, 149, 183, 192, 193
large city, 141
large-dimensional regime, 300, 320, 335, 340, 349,

407, 419, 462, 493, 581, 585, 611, 675
large-scale channel gain, 138, 145, 150, 173, 186,

195, 212, 429, 439, 539
large-scale phenomena, 135, 177, 195, 302
latency, 25, 34, 36, 429, 434, 508
law of large numbers, 276, 336, 585, 673, 674
layered architecture, xx, 354
LDPC code, 25, 30, 36
least mean-squares, 117
least-squares error, 114
least-squares estimation, 114, 122
left singular vector, 661
left unitary invariance, 370, 667
Legendre, 40
likelihood function, 24, 27, 39, 113
likelihood ratio, 26, 29
limited feedback, 364, 366
Linde–Buzo–Gray algorithm, 370
line-of-sight, 134, 143, 146, 155, 172, 174, 176, 179,

202, 635
linear array, 173, 176
linear convolution, 62, 65, 66, 77, 89, 98, 99, 106,

160, 231, 655
linear estimation, 42
linear estimator, 48
linear minimum mean-square error, see LMMSE
linear polarization, 186
link adaptation, 26, 243, 245, 248, 270, 271, 306, 308,

355, 360, 370, 410, 420
link budget, 138
list sphere decoder, 357
Lloyd algorithm, 370
LMMSE

BC, 482
channel estimation, 196
dual-MAC, 464, 466
equalization, 94, 390
estimation, 48, 49
MAC, 446–448, 453, 456
single-user receiver, 352–355, 358, 362, 389, 398,

400, 402, 404–407, 409
local neighborhood, 135
local oscillator, 59, 75, 108

local stationarity, 135
log-likelihood ratio, 26, 27, 29
log-normal, 137, 143
long-term evolution, see LTE
low-density parity check code, see LDPC code
low-noise amplifier, 93
low-SNR regime, 217

capacity, 217, 225, 240, 260, 306, 309, 326, 337,
341, 431, 461

MMSE, 43, 46
mutual information, 13–16
spectral efficiency, 240, 278, 281, 285, 346, 396,

406, 431, 433
low-SNR slope, 218, 226, 261, 265, 309, 326, 342,

406, 432, 433
lower incomplete gamma function, 680
lowpass filter, 60, 63, 64, 69
LTE, xv, xxi, 36, 109, 161, 228, 229, 236, 244, 248,

272, 273, 278, 360, 362, 375, 376, 428, 599, 636

machine learning, 204, 628
macrocell, 140, 142, 166, 201
magnitude constraint, 86, 115
Marconi, xix
Marzetta, 583, 602
Marčenko–Pastur, 338, 408, 675
Massey, xxii
massive MIMO, xxi, 123, 136, 173, 177, 196, 341,

343, 389, 419, 462, 490, 502, 510, 551, 581, 583
matched filter, 176, 389, 399, 502, 511, 565, 582, 583,

585, 595, 620
matrix inversion lemma, 50, 399, 400, 511, 567, 663
max-log approximation, 357
maximum a-posteriori, 23, 30
maximum a-posteriori estimation, 39, 42
maximum-eigenvalue eigenvector, 306, 309, 326, 327,

367, 393, 403, 492
maximum likelihood, 23, 113, 358
maximum-likelihood estimation, 40, 42, 113, 358
maximum-ratio combining, 310, 595
maximum-ratio transmission, 310, 565, 620
MCS, 228, 245, 271, 360, 362
mean doubly regular, 339
media-based communication, 380
memoryless channel, 19, 21, 24, 27, 30, 31, 38, 66,

222, 231, 233, 247, 252, 264
mercury/waterfilling, 241, 251, 308, 523
message, 23, 25, 34
microcell, 142, 192, 201
MIESM method, 243, 245, 270, 360, 362
millimeter wave, 204, 380, 633, 647
minimum distance, 5, 16
minimum-distance decoding, 24, 276, 278, 283, 535
minimum energy per bit, 218, 226, 227, 251, 261,

265, 309, 326, 330, 341, 342, 350, 397, 406, 433
minimum mean-square error, see MMSE
minimum-norm equalizer, 92, 97
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minimum spectral efficiency, 426
MISO, 310, 314, 369, 480, 481
mixing matrix, 82–84
MMSE, 40, 45, 48, 94, 117, 122, 197, 200, 240, 276,

305, 318, 344, 353, 398, 532, 573, 582, 611, 630
MMSE beamformer, 569
MMSE matrix, 44, 46, 49, 118, 318, 399, 630
modified Bessel function, 146, 189, 192, 682
modulation, 25, 66
modulation and coding scheme, see MCS
modulo operation, 655
Monte-Carlo, 248, 311, 324, 334, 395, 405, 598, 611,

612, 626, 638
Moore–Penrose pseudoinverse, 92, 94, 391, 503, 521,

565, 663
MU-MISO, 423, 490, 517, 520, 521, 523, 524, 624
MU-SIMO, 423, 441, 502, 504, 505, 517, 593
MU-SISO, 423
multicarrier, 98, 105, 108, 168, 171
multicell, 586, 619, 621, 629
multidimensional symbol mapping, 35
multipath, 61, 380

fading, 145, 154
propagation, 144

multiple codewords, 358
multiple-access channel, 353, 417, 418, 431, 439,

464, 501, 517
multiple-input single-output, see MISO
multiplexing gain, 255, 315, 398, 460
multiplicative noise, 246, 632
multitone, 105
multiuser detection, xx, 300, 409
multiuser diversity, 429, 439
multiuser eigenmode transmission, 562
multiuser MISO, see MU-MISO
multiuser SIMO, see MU-SIMO
multiuser SISO, see MU-SISO
multivariate impulse response, 78
mutual coupling, 302, 380, 633
mutual information, 12, 25, 313, 343, 348, 351, 442,

460, 534
BICM, 31, 35
BPSK, 14
complex Gaussian signal, 13, 282
discrete constellations, 15, 16, 226, 229, 308, 325,

450
Gaussian noise, 13, 282
I-MMSE relationship, 45
infinite PSK, 13
infinite QAM, 14
information stability, 21
large-dimensional regime, 315
link adaptation, 361
nonsingle-letter formulation, 231, 232
precoding, 84, 304
QPSK, 15

single-letter formulation, 222
mutual-information-effective SNR mapping, see

MIESM method
mutually unbiased bases, 375

Nakagami fading, 146, 178, 260, 263, 429
narrowband, 58, 159
nat, 7
near–far effect, 448
nearest-neighbor decoding, 24, 276, 278, 283
new radio, see NR
noise, 13, 71, 75, 80, 300, 328, 341, 342, 348, 350,

397, 405, 410, 421, 422, 431, 440, 442, 446
bandwidth, 72, 74
BICM, 31, 33
channel law, 19, 20
enhancement, 102, 398, 525, 632
equalization, 93, 94, 100, 104
estimation, 40
figure, 72, 73, 547
filtered, 390, 391, 592
Gaussian, 71, 276, 282, 308, 668
I-MMSE relationship, 45, 46
log-likelihood ratio, 29
ML decoding, 24
MMSE estimation, 39, 41, 43, 50, 120, 588
OFDM, 107
power, 144, 398, 466, 473, 475, 491, 589
spectral density, 72

NOMA, 423
noncausal MMSE, 51, 123
non-line-of-sight, 134, 143
nonmemoryless, 264, 341
non-orthogonal multiple access, see NOMA
nonregular fading, 11, 157, 266
nonregular random process, 11, 51
nonsingle-letter formulation, 20, 21, 231, 264, 341
nonsquare QAM, 5
nonuniform linear array, 173
normalization

antenna pattern, 173
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channel, 75, 79, 139, 145, 177, 179, 185, 230, 300,

302, 439
power angle spectrum, 147, 149
power delay profile, 163, 164
precoder, 81, 467, 470, 479, 567
receiver, 517
signal, 341
SNR, 212

NR, xv, 36, 109, 230, 236, 273, 278, 428, 599
null space, 181, 558, 657, 658, 661
Nyquist, 69
Nyquist criterion, 69, 70, 72

OFDM, 20, 37, 70, 79, 104, 269, 390, 422, 441, 655
channel estimation, 121, 199
chip, 107
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cyclic prefix, 233
equalization, 107, 241
link adaptation, 361
LTE, 161, 236
multicarrier, 105, 171
multitone, 105, 171
peakedness, 87
power constraint, 85, 620
resource element, 110, 168, 171, 196, 197, 200,

211, 212, 222, 246, 271, 282, 428, 583, 589
symbol, 107, 109, 110, 121, 234–236, 239, 240,

243, 244, 270, 287, 428, 589
symbol period, 107
xESM methods, 361, 362

OFDMA, 422, 423
Okumura–Hata, 140
on–off keying, 6, 264
one-ring model, 191
one-shot BICM, 29, 34, 38, 357
one-step prediction error, 158
opportunistic transmissions, 429
orthogonal frequency-division multiple access, see

OFDMA
orthogonal frequency-division multiplexing, see

OFDM
orthogonality principle, 40, 49, 55
outage, 253, 439
outage capacity, 254, 273, 313, 355, 460
outage probability, 253, 273, 313, 460
output SINR, 400, 512, 596, 611, 626
output SNR, 392, 504
over-the-air calibration, 365
oversampling, 72

PAM signal, 472
PAPR, 86, 109, 223
parallel interference cancelation, 618
parallel subchannels, 234, 240, 305, 309, 469, 521,

559
parasitic antenna arrays, 380
PARC, 353, 362
passband, 58
pathloss, 137, 195, 203, 212, 380, 598, 603, 605, 612,

623
pathloss exponent, 139, 142, 638
pathloss intercept, 139, 142
pattern diversity, 186
Paulraj, xx
PDF, 665
peak-to-average power ratio, see PAPR
peakedness, 5, 86, 264, 281, 342
pedestrian setting, 153, 163, 170, 278, 279, 344, 345,

541, 542, 548, 549, 555, 582, 616, 627
pentagonal region, 443, 445, 450, 476
per-antenna rate control, see PARC
perfect reconstruction, 90
phase, 59

phase invariance, 368
phase noise, 61, 71, 109, 632
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SVD, 82, 232, 304, 389, 449, 450, 467, 558, 661
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two-ring model, 192
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